
Chapter 13

Appendices

13.1 Appendix A: Rotating Bars, Paddles and Blades

Many practical applications involve bars or blades rotating around an axis, in which

the body forces resulting from centrifugal loading generate internal stresses that

must be kept under control. Take, for example, the solid bar shown in Fig. A.1,

which has a circular cross section and rotates at angular velocity o; the bar has the
free edge, i.e. without end mass.

The elementary centrifugal force generated by a bar element of mass dm located

between two cross sections of abscissa r and r þ dr relative to the rotational axis

respectively is given by the relation:

dF ¼ dm � o2 � r ¼ g � dV � o2 � r ¼ g � A � o2 � r � dr (A.1)

where g is the density of the bar material, dV is the elementary volume of the

element in question, and A is the surface area of the cross section.

The resultant centrifugal force on a generic cross section at a distance r from the

rotational axis and deriving from the body forces acting from r to L will thus be

given by the relation:

F ¼
ðL
r

g � A � o2 � r � dr ¼g � A � o2 � L2 � r2
� �

2
: (A.2)

It follows that the stress due to centrifugal load acting at radius r is given by:

sr ¼ F

A
¼ g � o2 � L2 � r2

� �
2

: (A.3)

The maximum value of stress sr occurs for r ¼ 0 and is srð Þmax ¼ g � o2 � L2 2= .

V. Vullo and F. Vivio, Rotors: Stress Analysis and Design,
Mechanical Engineering Series, DOI 10.1007/978-88-470-2562-2_13,
# Springer-Verlag Italia 2013

317



As we are dealing here with a uniaxial stress state, the total elongation of the

portion of the rotating bar between generic axis r and the free end, where r ¼ L, is
given by the relation:

‘ ¼
ðL
r

d‘ ¼
ðL
r

sr
E
� dr ¼

ðL
r

g � o2 � L2 � r2
� �

2E
� dr: (A.4)

Integrating this relation gives:

‘ ¼ g � o2

2E
� 2

3
� L3 � L2 � r þ r3

3

� �
: (A.5)

It follows from this relation that the total elongation of the bar occurs for r ¼ 0

and is given by the relation:

‘t ¼ g � o2 � L3
3 � E : (A.6)

If a mass m whose center of gravity G is located at a distance L1 from the

rotational axis is connected to the end of the bar, as also shown in Fig. A.1, its effect

must be taken into account. Consequently, relation (A.3) becomes:

sr ¼ g � o2 � L2 � r2
� �

2
þ m � L1 � o2

A
: (A.7)

We will now suppose that the solid bar has a conical profile and that its cross

section is circular (Fig. A.2). Let A and A0 be the surface areas of the cross sections

at the generic distance r from the apex and at the rotational axis respectively. As

these surface areas are clearly linked by the relation A ¼ A0 � r2/L2, the elementary

centrifugal force generated by a bar element of mass dm located between two cross

sections of abscissa r and r þ dr relative to the apex respectively is given by the

relation:

m

G

drr

L
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w

Fig. A.1 Solid cylindrical bar with circular cross section only rotating, with and without end mass
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dF ¼ dm � o2 � L� rð Þ ¼ g � dV � o2 � L� rð Þ
¼ g � o2 � A0=L

2
� � � L� rð Þ � r2 � dr: (A.8)

The resultant centrifugal force on a generic section at a distance (L � r) from the

rotational axis and deriving from the body forces acting from the apex (r ¼ 0) to the

cross section of abscissa r will thus be given by the relation:

F ¼ g � A0 � o2

L2
�
ðr
0

L� rð Þ � r2 � dr ¼ g � A0 � o2

L2
� L � r3

3
� r4

4

� �
: (A.9)

It follows that the stress due to centrifugal load acting at the generic abscissa r is
given by:

sr ¼ F

A
¼ g � o2 � L � r

3
� r2

4

� �
: (A.10)

This stress assumes its maximum value for r ¼ L, where it is srð Þmax ¼
g � o2 � L2 12= .

The total elongation of the portion of the rotating bar between generic abscissa r
and the apex is given by the relation:

‘ ¼
ðr
0

d‘ ¼
ðr
0

sr
E
� dr ¼

ðr
0

g � o2

E
� L � r

3
� r2

4

� �
� dr ¼ g � o2

6 � E L � r2 � r3

3

� �
: (A.11)

It follows from this relation that the total elongation of the bar is with r ¼ L
and is:

dr r

L

w

A0 A

Fig. A.2 Solid conical bar with circular cross section only rotating
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‘t ¼ g � o2 � L3
12 � E : (A.12)

If the rotating bar’s profile cannot be expressed by a simple equation, it will not

be possible to proceed analytically, as numerical methods or graphic procedures

will be needed. The following example illustrates a procedure belonging to this

latter family. We will consider the rotating blade shown in Fig. A.3, whose shape

and the surface areas of the cross sections at predetermined distances r from the

rotational axis are known. It will be assumed that the blade consists of aluminum

and rotates at a velocity of 1,500 rpm.

The elementary centrifugal force generated by a blade element of mass dm
located between two cross sections of abscissa r and r þ dr relative to the rotational
axis respectively is given by the relation:

dF ¼ g � A � o2 � r � dr: (A.13)

where g is the density of the material (for aluminum, g ¼ 2,700 kg/m3) and A is the

surface area of the cross section at the generic distance r from the rotational axis.

The resultant centrifugal force on a generic cross section of abscissa r deriving from
the body forces acting from r to L will thus be given by the relation:

F ¼ g � o2 �
ðL
r

A � r � dr: (A.14)
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Fig. A.3 Rotating blade of given geometry
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When all magnitudes are expressed in consistent SI units (L and r in m, A in m2,

o ¼ 2pn/60 ¼ 157 rad/s), the foregoing relation becomes:

F ¼ 6:655 � 107 �
ð2:5
r

A � r � dr: (A.15)

This relation is integrated graphically as follows. The product A�r is first plotted
versus r, as shown in Fig. A.4. The centrifugal force acting on the generic cross

section at distance r from the rotational axis is given by the area subtended by the

portion of the curve between abscissa r and the end of the blade (r ¼ L), multiplied

by the factor 6.655�107. The stress sr due to centrifugal force in the generic cross

section of area A is then obtained from the simple relation sr ¼ F/A. Table A.1

summarizes the values of the magnitudes needed to calculated this stress.

The elongation of the portion of the blade between the generic cross section of

abscissa r and the free end occurring as a result of centrifugal force is given by the

relation:

‘ ¼
ðL
r

sr
E
� dr ¼ 1

E
�
ðL
r

sr � dr: (A.16)

The first step is to plot stress sr as a function of r as shown in Fig. A.5, after

which this function is integrated graphically. Detailed calculation will be left to the
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Fig. A.4 Product A·r versus radius r
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reader. Noting that we have E ¼ 70 GPa for aluminum, the resulting total elonga-

tion is thus:

‘ ¼ 1

E
�
ð2:5
0

sr � dr ¼ 2:24 � 10�3m:

Table A.1 Numerical values of the magnitudes used to calculate radial stress sr

r A � r
Ð2:5
r

A � r � dr: F ¼ 6:655 � 107 � Ð2:5
r

A � r � dr: sr ¼ F
A

(m) (10�3 m3) (10�3 m4) (MN) (MPa)

0 0 17.47 1.163 58

0.25 4.0 16.97 1.129 71

0.50 6.0 15.72 1.046 87

0.75 7.5 14.03 0.934 94

1.00 9.0 11.97 0.797 89

1.25 10.0 9.72 0.647 81

1.50 10.5 7.16 0.475 68

1.75 10.5 4.53 0.302 50

2.00 8.0 2.22 0.148 37

2.25 4.5 0.66 0.044 22

2.50 0 0 0 0
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Fig. A.5 Stress sr versus radius r
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13.2 Appendix B: In-Depth Analysis of the Solution

of the Hypergeometric Differential Equation

Both Honegger and Giovannozzi note that: (1) the independent integrals u1 and u2
are convergent within the interval 0 < t < 1; (2) convergence decreases as

t increases and, starting around t ¼ 1/2, several terms of the series expansion are

needed to calculate the function value with suitable accuracy; (3) with even higher

t values, calculation becomes more intricate, especially in view of the calculation

tools available at the time these authors wrote. Accordingly, both split the interval

0 < t < 1 into two contiguous parts 0 < t � 1/2 and 1/2 < t < 1 bounded by

t ¼ 1/2, and use the integral u1 and a linear combination of the two independent

integrals u1 and u2 in the interval 0 < t � 1/2, whereas in the interval 1/2 < t < 1

they make use of other solutions of associated homogeneous equation (6.6) based

on two different independent integrals expressed by means of power series in the

variable x ¼ (1 � t).
By introducing this new variable, the differential equation (6.6) becomes:

d2u

dx2
þ 1

x
þ 1

x� 1

� �
� du
dx

þ � 1� nð Þ � 1

x� 1

� �
� u

x � x� 1ð Þ ¼ 0 (B.1)

This is still a hypergeometric differential equation, again featuring three singu-

larity points (x ¼ 0; x ¼ 1; x ¼ 1), and corresponding to the general form:

d2u

dx2
þ 1�a�a0

x
þ1�g�g0

x�1

� �
�du
dx

þ �a �a0
x

þ g �g0
x�1

þb �b0
� �

� u

x � x�1ð Þ¼0 (B.2)

As this has the same structure as (6.16), applying the procedure described earlier

to it allows us to conclude that its integrals are the same as those given by relations

(6.20), after substituting factors a and a0 with g and g0respectively, while b and b0

remain unchanged. As a result of the variable change x ¼ (1 � t), the three

singularity points of variable t (t ¼ 0; t ¼ 1; t ¼ 1) correspond respectively to

as many singularity points of variable x (x ¼ 0; x ¼ 1; x ¼ 1). In other words,

using Riemann’s notation, the following can be specified:

P
0 1 1

a b g
a0 b0 g0

t

0
@

1
A ¼ P

1 1 0

a b g
a0 b0 g0

x

0
@

1
A ¼ P

0 1 1

g b a
g0 b0 a0

x

0
@

1
A: (B.3)
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The first independent integral �u1 in (6.6) will thus be expressed in the following

form:

�u1¼ 1�xð Þ�F g0þbþa; g0þb0þa; 1�g0�g; xð Þ¼ 1�xð Þ�F a; b; c; xð Þ¼

¼ 1�xð Þ�F 3

2
þx;

3

2
�x; 1; x

� �
¼

¼ 1�xð Þ�
"
1þ

3

2
þx

� �
� 3

2
�x

� �
1!�1 �xþ

3

2
þx

� �
� 3

2
þxþ1

� �
� 3

2
�x

� �
� 3

2
�xþ1

� �
2!�1�2 �x2þ:::

#

(B.4)

which, reintroducing variable t, becomes:

�u1 ¼ t � F 3

2
þ x;

3

2
� x; 1; 1� t½ �

 !
(B.5)

Here again, the second independent integral �u2 must be calculated with a domain

change of the independent variable, as we are again dealing with factors in the

hypergeometric series that assume infinite value. With a procedure similar to that

used in Sect. 6.2.2 to calculate u2, it can be demonstrated that the following

expression can be used for �u2:

�u2 ¼ �u1 � lnxþ 1� xð Þ �
X1
i¼1

�Ci � xi ¼ �u1 � ln 1� tð Þ þ t �
X1
i¼1

�Ci � 1� tð Þi (B.6)

where

�Ci¼

Qi
m¼1

3

2
þxþm�1

 !
� 3

2
�xþm�1

 !

i!�i! �
Xi�1

m¼0

1

3

2
þxþm

þ

0
B@ 1

3

2
�xþm

� 2

1þm

1
CA: (B.7)

With the procedure used by Honegger and by Giovannozzi, two pairs of inde-

pendent integrals are found for the homogeneous differential equation 6.6, the first

(u1 and u2) being valid within the interval 0 � t � 1/2 and the second (�u1 and �u2)
valid within the interval 1/2 < t � 1. However, it can readily be seen that at point

t ¼ 1/2 separating the two contiguous parts of the interval, the domain of the

internal integrals u1 and u2 does not match the domain of the two external integrals

�u1 and �u2. Continuity of integral u1 beyond t ¼ 1/2 up to t ¼ 1 can be obtained by

means of a linear combination of �u1and �u2, given that any linear combination of two

independent integrals is sufficient solution to satisfy the differential equation in

question.
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In this connection, Honnegger and Giovannozzi define two constants l and m, so
that, for t ¼ 1/2, the continuity of the function and of its first derivative are

satisfied, in order to have:

u1 ¼ l � �u1 þ m � �u2
du1
dt

¼ l � d�u1
dt

þ m � d�u2
dt

: (B.8)

A relation is thus obtained – the first of relations (B.8) – whereby u1 can be

calculated beyond t ¼ 1/2, i.e., within the interval of independent variable 1/2 <
t � 1. Similarly, and again following the procedure outlined by Honegger and

Giovannozzi, a function �u1 ¼ l1 � u1 þ m1 � u2 expressed as a linear combination

of u1 and u2 can be found by using two new constants l1 and m1. This function is

valid within the interval 0 � t � 1/2.

To summarize, both Honegger and Giovannozzi split the interval 0 � t � 1 into

two component partial intervals 0 � t � 1/2 and 1/2 < t � 1 and, as shown in

Fig. B.1, use integral u1 obtained from relation (6.22) within the interval 0 � t � 1/

2, and linear combination u1 ¼ l � �u1 þ m � �u2 obtained from the first relation (B.8)

within the interval 1/2 < t � 1. In addition, they use integral �u1 obtained from

relation (B.5) within the interval 1/2 � t � 1, and linear combination �u1 ¼ l1
�u1 þ m1 � u2(equivalent to the first relation (B.8)), with l1 and m1 as constants to
be found by imposing the continuity of the function and its first derivative at

point t ¼ 1/2, within the interval 0 � t < 1/2. Both researchers express the
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Fig. B.1 Functions u1 and �u1 used by Honegger and Giovannozzi for conical disks, and functions

u2 and �u2
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solution of the associated homogeneous equation (6.6) as a linear combination

of the two independent integrals, viz.:

u ¼ C1 � u1 þ C2 � �u1; (B.9)

where C1 and C2 are integration constants to be determined by imposing boundary

conditions, whereas u1and �u1feature different expressions depending on whether

the interval 0 � t � 1/2 or the interval 1/2 < t � 1 applies.

Lastly, it should be noted that, as shown in Fig. 6.1b, e, f, g the function

h ¼ h0 · (1 � t) can also describe the geometry of diverging conical disks. In the

general case where the apex V does not converge on the axis (Fig. 6.1e, f, g) and

t > 1, it is advisable to introduce the new variable y ¼ 1/t, as does Giovannozzi, to
solve (6.6) analytically. By replacing this variable in (6.6), a hypergeometric

differential equation is found which is formally similar to (6.16) and (B.1). By

following the same procedure used for these two equations, we again reach the

conclusion that the integrals of the hypergeometric differential equation thus

obtained are the same as those given by relations (6.20), after substituting factors

a and a0with b and b0, while g and g0 remain unchanged. As a result of the variable

change y ¼ 1/t, the three singularity points of variable t (t ¼ 0; t ¼ 1; t ¼ 1)

correspond respectively to as many singularity points of variable y (y ¼ 1; y ¼ 1;

y ¼ 0). In this case, using Riemann’s notation, the following can be specified:

P
0 1 1

a b g
a0 b0 g0

t

0
@

1
A ¼ P

1 0 1

a b g
a0 b0 g0

y

0
@

1
A ¼ P

0 1 1

b a g
b0 a0 g0

y

0
@

1
A: (B.10)

We will not discuss the further developments (which are entirely similar to those

that have been described) or the procedures involved in introducing new variables

related to variable t in order to improve calculation of hypergeometrical series, as

does Giovannozzi, in specific sub-intervals of interval 1 < t < 1.

Where the conical disc has lateral faces converging on the axis of rotation (see

Fig. 4.1a), it is in any case preferable to calculate stress and strain states by means of

a closed form formulation based on Stodola’s hyperbolic profile disk.

13.3 Appendix C: The Finite Element Method

for Elastic-Plastic Problems

Many structural problems involve nonlinearities, which may be both geometric and

in the material’s behavior. The latter include cases where, as a result of applied

loads, stress and strain states are generated in the material that exceed the non-

linear elastic limits, so that the material is stressed beyond yielding. With the finite

element method, all nonlinear problems, regardless of the nature of the nonlinearities,

are generally solved by reducing them to a sequence of linear steps.
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The procedure thus involves writing the equilibrium equations {Q} ¼ [K]{d} in
the following incremental form:

DQf g ¼ K½ � Ddf g (C.1)

where {DQ} is the total or equivalent nodal force increment matrix, and the

stiffness matrix [K] is a function of displacements {d}, as the problem is nonlinear.

In the following steps, the current vector df g is the sum of the previous vectors

{Dd}, while the current matrix [K], called the tangent stiffness matrix, is used to

calculate the next step {Dd}. The vector {d} and the matrix [K] are then updated,

and we are ready to perform another step. With this process, the true stress-true

strain curve is approximated by means of a succession of straight segments.

As we know from continuum mechanics, if the stress-strain relationships are

linear or nonlinear but still elastic, there is a one-to-one correspondence between

stress and strain. By contrast, if there are plastic deformations, this correspondence

will no longer be one-to-one, as any given stress state can be produced by many

different strain paths. As the focus here is on plasticity, we will ignore the effects of

other nonlinearities such as the geometric nonlinearities resulting from large

deformations. The algorithms used to solve these problems are in any case entirely

general, and apply independently of the nature of the nonlinearities exhibited.

Solving plastic problems with the finite element method is based on the Levy-

Mises plasticity theory, which is an incremental theory or plastic flow theory, as it
relates stress increments to strain increments. According to this theory, the incre-

ment of equivalent or effective plastic strain depe is defined by the contributions of

the single, separate increments of plastic strain and is expressed with reference to a

three-dimensional rectangular system O(x, y, z) of non-principal axes in the form:

depe¼
ffiffiffi
2

p

3
depx�depy
	 
2

þ depy�depz
	 
2

þ depz �depx
� �2þ3

2
dgpxy
	 
2

þ dgpyz
	 
2

þ dgpzx
� �2� �� �1 2=

;

(C.2)

where index p, in addition to the other subscripts of known meaning, denotes the

plastic contribution. In accordance with the Von Mises criterion for triaxial stress,

and again with reference to the system of non-principal axes, yielding begins when

the equivalent or effective stress se reaches and exceeds a specific limit value; se is
given by the relation:

se ¼
ffiffiffi
2

p

2
sx � sy
� �2 þ sy � sz

� �2 þ sz � sxð Þ2 þ 6 t2xy þ t2yz þ t2zx
h i" #1 2=

: (C.3)

With reference to the uniaxial tensile test, beyond yielding, or in other words in

the plastic range where Poisson’s ratio n is 0.5, we have:

se ¼ sx and depe ¼ depx (C.4)
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In the se ¼ se eeð Þ curve shown in Fig. 12.3a, P represents the onset of yielding

(s ¼ ss); for s ¼ sA, with sA > ss, the total equivalent strain ee is the sum of

elastic strain eee , which can be completely recovered when load is removed, and

plastic strain epe, i.e., ee ¼ eee+ epe. The material hardens as a result of plastic strain epe.
If the specimen is loaded again, further yielding will not take place until se exceeds
sA. It is assumed that yielding will occur for se > sA regardless of the type of stress

considered (i.e., tensile, compressive or multiaxial), i.e., that the material anisotropy

effects generated by plastic deformation – including the Bauschinger effect described

earlier – can be neglected. In other words, the isotropic strain hardening criterion is

considered to apply.

As we saw in Sect. 12.3, the slope H0 at any point of the se ¼ se epe
� �

curve

(Fig. 12.3b) is given by relation (12.33). The increments of equivalent stresses, of

total strains and of plastic strains are given by the following relations, which all

involve 6�1 vectors:

dsef g ¼ dsx; dsy; :::; dtzx
 �

deef g ¼ dex; dey; :::; dgzx
 �

depe
 � ¼ depx ; de

p
y ; :::; dg

p
z

n o
: (C.5)

The deviatoric stresses sx, sy, . . ., are defined by the relations:

sx ¼ sx � sm; sy ¼ sy � sm; sz ¼ sz � sm;

sxy ¼ txy; syz ¼ tyz; szx ¼ tzx; (C.6)

where sm ¼ sx þ sy þ sz
� �

3= is the average stress. By differentiating relation

(C.3), we then obtain:

dse ¼ Rf gT dsf g where Rf g ¼ 3

se

sx
2

sy
2

sz
2

sxy syz szx

( )
(C.7)

It should be noted here thats2e ¼ 9t2oct=2 ¼ 3J2, where toct is the octahedral shear
stress and J2 is the second invariant of the deviatoric stresses. The theory used here

is also called the J2 flow theory. It should also be borne in mind that the flow rule

associated with the Von Mises yield criterion is represented by the Prandtl-Reuss

relation, which states that:

dep ¼ Rf gdepe : (C.8)

This means that there will be increments of plastic strain {dep} when an

increment of equivalent plastic strain depeoccurs as the result of a stress state{R}.
The corresponding stress increment {ds} can be written as a function of the

increments of elastic strain {dee} in the following shape:
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dsf g ¼ E½ � deef g or dsf g ¼ E½ � de�f g � depf g
 !

(C.9)

with

deef g ¼ def g � depf g � deT
 �� deC

 �
and

de�f g ¼ def g � deT
 �� deC

 � (C.10)

where [E] is the conventional matrix of elastic constants, while the five strain

vectors appearing in the first relation (C.10) represent the increments of elastic,

total, plastic, thermal (or initial) and creep strains respectively. Obviously, if there

is no contribution from thermal loading or creep, we must put {deT} ¼ 0 and

{deC} ¼ 0 in this relation.

With the finite element method, we first determine the vector {de}. Relations
(C.8) and (C.9) can be used to find the vector {ds} only after depe has been

calculated. To find depe , relation (C.8) is substituted in (C.9) and both members of

the relation thus found are premultiplied by {R}T. We then substitute {R}T{ds} ¼
H0 depe , as obtained from relations (C.4), (12.34) and (C.7), and obtain:

depe ¼ W½ � de�f g with W½ � ¼ Rf gT E½ �
H0 þ Rf gT E½ � Rf g (C.11)

Substituting relation (C.11) in (C.8) and the result thus found in relation (C.9)

gives the following incremental stress-strain relation, similar to the elastic relation

{s} ¼ [E] {e}, but applying to elasto-plastic behavior:

dsf g ¼ E�½ � def g � deT
 �� deC

 � !
¼ E�½ � de�f g (C.12)

where

E�½ � ¼ E½ � � E½ � Rf g W½ � (C.13)

Matrix [E*] is symmetric and also applies for elastic-perfectly plastic materials, for

which ET ¼ H0 ¼ 0 (Fig. 12.3).

In linear elastic problems, stresses and strains depend on load, but not on how the

load state is reached: in other words, the sequence of loads is not important. In

elastic-plastic problems, on the other hand, the results depend on the loading

sequence. Loading is considered proportional when the stresses at any point of the

continuum in question maintain the same ratio to one another throughout loading.

The assumption of isotropic strain hardening holds true for proportional loads.

For non-proportional loads, as for loads that change sign, this assumption is less
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valid, though it is still a sufficiently satisfactory approximation for many problems

involved in practical applications. Other strain hardening criteria lead to different

matrixes [E*]; in this connection, it should be noted that a number of models have

attempted to unify and generalize the strain hardening criteria, even in cases where

softening phenomena are also involved.

It should also be borne in mind that plasticity is independent of time. The equations

involved are often written in terms of rate, with the sole purpose of highlighting

the nature of plastic flow. Thus, for example, (C.8) becomes _epf g ¼ Rf g _epe
 �

. This,

however, is a topic that goes beyond our scope here.
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