
Chapter 1

Mono-Dimensional Elastic Theory of Thin Disk

Take (Fig. I.1) a thin disk having a geometry of revolution, featuring a plane of

symmetry perpendicular to its axis (plane of axial coordinate z ¼ 0, in which the

other two axes x, y that complete the three-dimension rectangular Cartesian refer-

ence system O(x, y, z) lie), rotating at angular velocity o and subject to angular

acceleration _o. Let it also be assumed that no surface force is applied to disk side

faces 5 and 6. In addressing this type of problem, it is advantageous to use a polar

reference system O(r, #, z), where the position of a generic point P (x, y) � P (r, #),
in the midplane of the disk is defined by coordinate r, which establishes its distance
from pole O, and by angle # (angular coordinate) between axis O-r and abscissa O-x
taken as reference.

The disk’s mass elements will be subjected to centrifugal forces and to elemen-

tary tangential forces. These forces generate the stress and strain states that will be

analysed here using the mono-dimensional theory, whose range of validity was

illustrated in the introduction. Within the limits of this theory, radial stress sr, hoop
stress st and radial displacement u are functions of coordinate r alone, or in other

words are constant above a cylinder of radius r whose axis is the axis of the disk.
To analyse thin disk stress and strain states, the equilibrium equations and the

compatibility equations must be considered simultaneously.

1.1 Equilibrium Equations

Take an isolated mixtilinear volume element of the disk located between side

surfaces 5 and 6 shown in Fig. I.1 and delimited by two diametral planes with

angular coordinates # and # + d#, which consequently form the angle d# between

them, and by two cylinders having radii r and r + dr (Fig. 1.1). This element thus

has finite dimensions in the direction of the z axis and infinitesimal dimensions

along the other two polar coordinates. Consider the equilibrium of all forces acting

on the element, both along line OA perpendicular to the disk axis and passing

through the centre of gravity G, and along line GB perpendicular in G to OA.
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The volume element is subjected to two elementary body forces applied at the

centre of gravity: force dFc acting in a radial centrifugal direction and due to the

centrifugal load (this is generally the most severe load condition), and force dFt

acting in the tangential direction, i.e., perpendicular to the radius and due to angular

acceleration _o. These forces are given by the following relations:

dFc ¼ r � o2 � dm ¼ r � o2 � g � dV ¼ g � o2 � r2 � h � d# � dr;
dFt ¼ r � o � dm ¼ r � o � g � dV ¼ g � o � r2 � h � d# � dr: (1.1)

where dm and dV denote the elementary mass and volume of the isolated element,

and g is the mass per unit volume, or density, of the material.

The other elementary forces acting on the volume element are:

• The radial force on the element’s cylindrical face 1, at radius r, directed radially
and facing the interior:

dFr1 ¼ sr � h � r � d#; (1.2)

• The tangential force on the element’s cylindrical face 1, at radius r, directed
tangentially:

dFt1 ¼ trt � h � r � d#; (1.3)

where trt is the shear stress component;

Fig. 1.1 Volume element, distribution of normal and shear stress components on its faces

assuming axisymmetry, and elementary surface and body forces acting on the element
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• The radial force on the element’s cylindrical face 2, at radius r + dr, directed
radially and facing the exterior:

dFr2 ¼ sr þ dsr
dr

� dr
� �

� hþ dh

dr

�
� dr

�
� r þ drð Þ � d# ¼ dFr1 þ d

dr
dFr1ð Þ � dr ¼

¼ sr � h � r þ d

dr
sr � h � rð Þ � dr

� �
� d#; ð1:4Þ

• Tangential force on the element’s cylindrical face 2, at radius r + dr, directed
tangentially:

dFt2 ¼ trt þ dtrt
dr

� dr
� �

� hþ dh

dr
� dr

� �
� r þ drð Þ � d# ¼ dFt1 þ d

dr
dFt1ð Þ � dr ¼

¼ trt � h � r þ d

dr
trt � h � rð Þ � dr

� �
� d# ; ð1:5Þ

• Two equal radial forces acting on the element’s plane side faces 3 and 4 and

facing in the centrifugal direction on face 3 and in the centripetal direction on

face 4 (these forces are equal in modulus, neglecting higher-order

infinitesimals):

dFr3j j ¼ dFr4j j ¼ trt � h � dr; (1.6)

• Two equal tangential forces acting on the element’s plane side faces 3 and 4,

perpendicular to them and facing the exterior of the element:

dFt3j j ¼ dFt4j j ¼ st � h � dr: (1.7)

In formulating these relations, which express the elementary forces acting on the

mixtilinear volume element, terms introducing higher-order infinitesimals in the

equilibrium equations are omitted. In accordance with the initial assumptions, in

any case, no forces act on the volume element’s side faces 5 and 6, which are those

delimiting the disk laterally (Fig. I.1).

Accordingly, the dynamic equilibrium equations along radial direction GA and

tangential direction GB are:

� dFr1 þ dFr2 þ dFr3 � cos d#
2

� dFr4 � cos d#
2

� dFt3 � sin d#
2

� dFt4 � sin d#
2

þ dFc ¼ 0

� dFt1 þ dFt2 þ dFr3 � sin d#
2

þ dFr4 � sin d#
2

þ dFt3 � cos d#
2

� dFt4 � cos d#
2

þ dFt ¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

(1.8)
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By introducing relations (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7) derived earlier,

which express the elementary forces acting on the element, in the above equilibrium

equations, noting that cos(d#/2) ¼ 1 and sin(d#/2) ¼ d#/2 for infinitesimal angle

d#/2, developing calculations and taking care to omit higher-order infinitesimals,

we arrive at the following dynamic equilibrium equations for the volume element:

sr � hþ dsr
dr

� h � r þ dh

dr
� sr � r � st � hþ g � o2 � r2 � h ¼ 0

trt � hþ dtrt
dr

� h � r þ dh

dr
� trt � r þ trt � hþ g � _o � r2 � h ¼ 0:

8><
>: (1.9)

These equations can also be rewritten in the following more compact form:

d

dr
sr � h � rð Þ � st � hþ g � o2 � r2 � h ¼ 0

d

dr
trt � h � rð Þ þ trt � hþ g � _o � r2 � h ¼ 0:

8><
>: (1.10)

Note that the shear stress components do not appear in the first of (1.10), which

expresses dynamic equilibrium in the radial direction, while the normal stress

components do not appear in the second of (1.10), which expresses dynamic

equilibrium in the direction perpendicular to the radius. This decoupling of normal

and shear stress components is because axisymmetry was assumed. Had this

assumption not been made, the equilibrium equations would have been:

@

@r
sr � h � rð Þ þ @

@#
trt � hð Þ � st � hþ g � o2 � r2 � h ¼ 0

@

@r
trt � h � rð Þ þ @

@#
st � hð Þ þ trt � hþ g � _o � r2 � h ¼ 0:

8>><
>>:

(1.11)

These are more general than (1.10), which are a specific case for axisymmetry.

1.2 Compatibility Equations

In the general case in which there is no axisymmetry, normal strain components

(radial strain er and tangential strain et) and shear strain component grt are linked to
components of the displacement in the radial and tangential directions u and vby the
following geometric relations:

er ¼ @u

@r

et ¼ u

r
þ 1

r
� @v
@#

grt ¼
@v

@r
� v

r
þ 1

r
� @u
@#

:

8>>>>>><
>>>>>>:

(1.12)
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The first of relations (1.12) is obtained by considering (Fig. 1.2a) the unde-

formed mixtilinear element ABCD located between two cylinders of radius r and
r + dr and between two diametral planes with angular coordinates # and # + d#
(given that d# is an elementary angle, arcs AB and CD, which are not shown in the

figure in order to avoid over-complication, can be replaced by their chords) and

bearing in mind that the radial displacements of sidesAB andCD are given by u and
by uþ @u @r=ð Þ � dr respectively. It follows that the unit elongation of this element

in the radial direction is given by relation er ¼ @u @r= , or in other words by the first

of the two expressions (1.12).

Tangential strain component et, on the other hand, depends on both radial displace-
ment u and tangential displacement v. For side AB of the element in question, the

contribution of radial displacement u is evaluated by considering that this displacement

causes initial arc AB ¼ r � d# to acquire a length r þ uð Þ � d# . Consequently

(Fig. 1.2b), the tangential strain related to displacement u is given by relation:

r þ uð Þ � d#� r � d#
r � d# ¼ u

r
: (1.13)

The contribution of tangential displacement v is determined by considering that

it moves point A to A0, with a tangential displacement v, and point Bmoves to point

B00, with a tangential displacement vþ @v @#=ð Þ � d# . It follows that there is a

difference of tangential displacement equal to @v @#=ð Þ � d#, and the related tan-

gential strain will be 1 r=ð Þ � @v @#= . Adding the two contributions gives the total

tangential strain expressed by the second of relations (1.12).

Shear strain component grt represents the total variation of angle BAC, initially a
right angle. It is determined by comparing the element’s position A0B0C0D0 after
strain-induced deformation, and its initial position ABCD. The angle between

directions AB and A0B0 is due to radial displacement u and is 1 r=ð Þ � @u @#= .
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Fig. 1.2 (a) Displacements and rotations of a mixtilinear element, without axisymmetry;

(b) elementary radial and tangential fibers and displacements of their ends, with axisymmetry
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Likewise, the angle between directions AC and A0C0 is due to tangential displace-

ment v and is @v @r= . However, only a part of the latter contributes to shear strain

component (the part represented with a dashed area), as the remaining part, v/r
represents the angular displacement due to rotation of the element ABCD as a rigid

body about the axis through O. It can be concluded from these considerations that

shear strain component grt is given by the third relation (1.12).

Where the assumption of axisymmetry applies, relations (1.12) are reduced to

the simpler form:

er ¼ du

dr
; et ¼ u

r
; grt ¼

dv

dr
� v

r
: (1.14)

In the case of axisymmetry, as can thus be seen, normal strain components er and
et are linked only to radial displacement u, while shear strain component grt is linked
only to tangential displacement v. Assuming axisymmetry, expressions er and et can
be derived from even simpler geometrical considerations. Take, for instance, a

radial fiber, considering (Fig. 1.2b) a portion thereof of infinitesimal length dr prior
to deformation, located between points A and B at distances r and r + dr from the

centre respectively: after deformation, end Amoves to A0, displaced by u, while end
B moves to B0, displaced by u + du. Similarly, if we take a tangential fiber,

considering (again with reference to Fig. 1.2b) an infinitesimal arc thereof of length

r·d# prior to displacement, located between points C and D both at distance r from
the centre, after displacement end C moves to C0, displaced by u, while end D
moves to D0, also displaced by u. We thus have:

er ¼ A0B0 � AB

AB
¼ du

dr
; (1.15)

et ¼ r þ uð Þ � d#� r � d#
r � d# ¼ u

r
: (1.16)

It is also clear that, where loading is entirely centrifugal (o 6¼ 0 and _o ¼ 0) and

for an axisymmetric stress field, tangential displacement v will be zero, and grt ¼ 0.

Essentially, then, if axisymmetry is assumed, when the mixtilinear element shown

in Fig. 1.1 is subjected to axisymmetric centrifugal load, its movement will be

entirely radial, with no tangential displacement.

The first two geometric relations (1.14), which apply when axisymmetry is

assumed, give the following compatibility equation in terms of strain:

er ¼ d

dr
r � etð Þ: (1.17)

Were the assumption of axisymmetry not to apply, the compatibility equation

would be expressed as follows:

r � @2grt
@r � @#þ @grt

@#
� r2 � @

2et
@r2

� 2r � @et
@r

þ r � @er
@r

� @2er
@#2

¼ 0; (1.18)
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which is more general than (1.17) and subsumes it.

For an axisymmetric orthotropic material, the constitutive equations which relate

the stress components to strain components (these equations, in the linear elastic

range, represent the generalised Hooke’s law) can be written in the following form:

er
et
grt

8><
>:

9>=
>; ¼ S½ � �

sr
st
trt

8><
>:

9>=
>; ¼

1

Er

�ntr
Et

0

�nrt
Er

1

Et
0

0 0
1

Grt

2
6666664

3
7777775
�

sr
st
trt

8><
>:

9>=
>;: (1.19)

As will be recalled, an orthotropic material is a non-isotropic material which has

three mutually orthogonal planes of symmetry at every point. From the standpoint

of its elastic behaviour, complete characterization requires nine parameters, viz.,

the three Young’s moduli E, the three moduli of rigidity G and the three Poisson’s

ratios n in the directions normal to the planes of symmetry. For complete elastic

characterization of an isotropic material, on the other hand, only two of the three

parameters E, G, n, are required, as they are linked by a linear dependence. If the

structure of the orthotropic material is such that it has three mutually orthogonal

planes of symmetry at every point, but also an overall axis of symmetry, the

material is axisymmetric orthotropic. A composite material produced by winding

a fiber embedded in a matrix around a cylinder fulfils these conditions if the fiber is

wound tangentially: in this case, the radial, tangential and axial directions are

normal to the planes of symmetry at every point.

In formulating the constitutive equations given above, the tangential and radial

directions of the axisymmetric orthotropic material were considered to be the

principal directions. If this were not true, no component of the matrix of the

material compliances [S] would be zero. In this case, normal strain components er
and et and shear strain component grt would be linked simultaneously to normal

stresses sr and st and to shear stress trt, and a number of the simplifications that will

be discussed below would not be possible. Note that in writing matrix [S] appearing

in (1.19), the first term in the second line, i.e., �nrt/Er, is often substituted by �ntr/
Et, as this matrix is symmetrical with respect to the principal diagonal.

Though we will be dealing chiefly with homogeneous isotropic materials in this

text, generalizing for axisymmetric orthotropic materials presents no difficulties. The

constitutive equations for homogeneous isotropic materials take the following form:

er
et
grt

8><
>:

9>=
>; ¼

1

E

�n
E

0

�n
E

1

E
0

0 0
1

G

2
666664

3
777775
�

sr
st
trt

8><
>:

9>=
>;: (1.20)
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If the effect of a generic temperature variation deriving from a thermal load is to

be taken into account, the strain components due to this thermal load must obvi-

ously be added to strains er and et caused by stresses {s}. These additional strain

components are given by a�T, where a and T are the material’s coefficient of linear

thermal expansion and the temperature respectively. If the material is homogeneous

and isotropic, a does not depend on direction and, consequently, (1.20) becomes:

er
et
grt

8><
>:

9>=
>; ¼

1

E

�n
E

0

�n
E

1

E
0

0 0
1

G

2
666664

3
777775
�

sr
st
trt

8><
>:

9>=
>;þ a � T �

1

1

0

8><
>:

9>=
>;: (1.21)

For an axisymmetric orthotropic material, (1.21) becomes:

er
et
grt

8><
>:

9>=
>; ¼

1

Er

�ntr
Et

0

�nrt
Er

1

Et
0

0 0
1

Grt

2
6666664

3
7777775
�

sr
st
trt

8><
>:

9>=
>;þ T �

ar
at
0

8><
>:

9>=
>;: (1.22)

Taking the expressions of er and et from (1.21) and introducing them in the

compatibility equation (1.17) gives the following compatibility equation in terms of

stress:

st � srð Þ � 1þ nð Þ þ r � dst
dr

� n � r � dsr
dr

þ a � E � r dT
dr

¼ 0: (1.23)

This equation applies assuming that quantities E, n and a are constant throughout
the disk. Were these quantities variable, (1.23) would become:

st � srð Þ � 1þ nð Þ þ r � dst
dr

� n � r � dsr
dr

þ �E � r � st d
dr

1

E

� �

� E � r � sr � d
dr

n
E

� �
þ E � r � d

dr
a � Tð Þ ¼ 0: ð1:24Þ

1.3 General Differential Equation for Rotating Disk Subjected

to Thermal Load

Here, analysis will be limited to the stress and strain state in an axisymmetric disk

of arbitrary profile only rotating and subjected to a non-zero temperature gradient

along the radius.
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If the disk is only rotating (o ¼ const), the only body force acting on it is

that due to the centrifugal load. Accordingly, the tangential equilibrium equation

given by the second relation (1.10) reduces to the identity trt ¼ 0, which clearly

satisfies the compatibility equation. Thus, if functions h ¼ h(r), g ¼ g(r), E ¼ E(r),
n¼ n(r), T ¼ T(r) and a ¼ a(r) are known, the radial equilibrium equation given by

the first relation (1.10) and compatibility equation (1.23) or (1.24) are sufficient to

solve the problem completely, i.e., to determine how the two unknowns sr and
st vary with radius. From the two equilibrium and compatibility equations, which

are first order differential equations in two unknowns sr and st, we can obtain only

one second order differential equation in one unknown.

Within certain arbitrary limits, two alternatives are usually considered in

selecting this unknown: the first is to express stress components as a function of

radial displacement u by means of the compatibility equation and then introduce

these expressions in the equilibrium equation, while the second alternative is to first

derive the expression of stress st as a function of sr from the equilibrium equation

and then introduce this expression in the compatibility equation. The two

approaches are equivalent and lead to very similar solving equations. The first

approach will be followed below, assuming that quantities g, E, n and a are constant
and thus independent of r. In dealing with the disk whose profile varies non-linearly
according to a power of a linear function and which is loaded beyond yielding, the

second approach will be used (see Chap. 12, Sect. 12.2).

Equation 1.21 give:

er ¼ 1

E
sr � n � stð Þ þ a � T

et ¼ 1

E
st � n � srð Þ þ a � T;

8><
>: (1.25)

which, solved for sr and st, yield the relationships:

sr ¼ E

1� n2
� er � a � Tð Þ þ n � et � a � Tð Þ½ �

st ¼ E

1� n2
� et � a � Tð Þ þ n � er � a � Tð Þ½ �:

8><
>: (1.26)

Bearing the first two geometric relations (1.12) in mind, relations (1.26) can be

written in the form:

sr ¼ E

1� n2
� du

dr
� a � T

� �
þ n � u

r
� a � T

� �� �

st ¼ E

1� n2
� u

r
� a � T

� �
þ n � du

dr
� a � T

� �� �
:

8>>><
>>>:

(1.27)

Deriving the first of relations (1.27) by respect to r and introducing this deriva-

tive, together with relations (1.27) in the equilibrium equation, which in this case is

the first (1.10), and carrying out a few other passages yields the following second
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order differential equation in u, which is the equation that solves the disk of

arbitrary profile only rotating and subject to a non-zero temperature gradient

along the radius:

d2u

dr2
þ 1

h
� dh
dr

þ 1

r

� �
� du
dr

þ n
h � r �

dh

dr
� 1

r2

� �
� u� 1þ nð Þ � a � dT

dr
þ T

h
� dh
dr

� �

þ 1� n2
� 	 � g � o2 � r

E
¼ 0: ð1:28Þ

Whether this equation can be integrated analytically depends on the function

h ¼ h (r). Closed form integration is possible, and relatively simple, in three special

cases: constant thickness disk, uniform strength disk, and hyperbolic disk.1

In other cases, such as those of the linear tapered disk (the so-called conical

profile disk) and the non-linearly variable thickness disk, a hypergeometric series

solution is possible. Series solutions are also possible for the following other

profiles (these will also be hypergeometric in all cases below except for the two-

parameter exponential profile, whose solution involves the use of confluent

hypergeometric series):

• Profile whose thickness varies according to an exponential function of the type

characterizing the uniform strength disk, but with two parameters, and thus

defined by relation h ¼ h0·e
�n�rk , where h0 is the thickness at the axis, r ¼ r/re

is the radius made dimensionless relative to the outside radius re, and n and k are
the two geometric parameters controlling thickness at the outer edge relative to

that at the axis and the profile shape respectively. This function makes it possible

to describe solid and annular disks with concave, convex and inflection point

profiles, but not conical disks;

• Profile whose thickness varies according to a generalization of Stodola’s hyper-

bolic function, defined by the relation h ¼ h0· 1þ rð Þa, where a is a parameter

controlling disk shape. This function does not give rise to singularity at the axis

and thus, unlike Stodola’s relationship, can be used to describe also the hyper-

bolic profile of a solid disk;

• Profile whose thickness varies according to an elliptical function defined by the

relation h ¼ h0· 1� n � r2ð Þ1=2 , with one parameter n, whereby convex

converging and concave diverging profiles can be described;

• Profile whose thickness varies according to the following two parabolic

functions, both with two parameters, h ¼ h0· 1� n � rk� 	
and h ¼ h0·

1� re�r
reþn

� �k
� �

, whereby solid and annular convex and linear tapered disk profiles

can be described.

1 For a broad overview of these importacnt topics, see, in particular, Stodola [70], Love [44],

Giovannozzi [29], Timoshenko and Goodier [74], Saada [62], Burr [7], Ugural and Fenster [76].
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In all other cases, it is necessary to use numerical solutions which, however, pose

no difficulties and yield results that, though approximate, are acceptable from the

design standpoint.

In the following pages, the general (1.28) will be specialized and integrated for

the three cases that can be solved in closed form, as well as for the two families

consisting of the conical disk and the non-linearly variable thickness disk, with the

disk subject to simple load conditions. In the linear elastic field (where stress is

proportional to strain), the stress and strain states in a disk subjected to a complex

load condition can obviously be determined by using the method of the superposi-

tion, that is as the superposition of the individual load conditions into which actual

loading can be broken down, which are assumed to operate separately. The treat-

ment used for the other disk profiles indicated above will not be discussed, as the

analytical developments are formally similar to those for the two families we have

just mentioned. These developments will thus be left to the reader.
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