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TOn the damped geometric telegrapher’s process

Antonio Di Crescenzo, Barbara Martinucci, and Shelemyahu Zacks

Abstract. The geometric telegrapher’s process has been proposed in 2002 as a model
to describe the dynamics of the price of risky assets. In this contribution we con-
sider a related stochastic process, whose trajectories have two alternating slopes, for
which the random times between consecutive slope changes have exponential dis-
tribution with linearly increasing parameters. This leads to a process characterized
by a damped behavior. We study the main features of the transient probability law
of the process, and of its stationary limit.

Key words: Geometric telegrapher’s process, damped processes, exponential
times, linear rates, log-logistic stationary distribution, moment generating function

1 Introduction

Motivated by the need of describing the price of a risky asset by means of a process
with bounded variations, which seems quite realistic in true markets, [4] introduced
the geometric telegrapher’s process expressed via an exponential transformation of
the telegrapher’s process. Paper [8] proposed a similar financial market model that
is free of arbitrage under suitable conditions, and is based on a continuous time
random motion with alternating constant velocities and jumps occurring when the
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velocities are switching. Other contributions on stochastic processes characterized
by alternating finite velocities are given in [2, 7, 9] and [10]. Moreover, the problem
of estimating the parameters of the geometric telegrapher’s process has been faced
in [1].

In this contribution we study a modified version of the geometric telegrapher’s
process under the assumption that the random times between consecutive slope
changes are exponentially distributed with linearly increasing parameters. This is
suggested in the recent paper [3], where a damped telegrapher’s process is stud-
ied. In this framework the trajectories of damped processes are continuous curves
composed by stochastically smaller and smaller paths. Some examples of damped
diffusion processes can be found in the literature of financial modeling, such as [6].

The damped geometric telegrapher’s process is introduced in Section 2, where we
obtain its probability law and study the asymptotic behavior. The moment generating
function-approach is then used to evaluate the m-th moment of the process.

We remark that our contribution can be seen as an initial attempt to modify the
geometric telegrapher’s process. Specific problems of mathematical finance, such
as the problem of existence of arbitrage opportunities, will be the object of future
investigations.

2 The stochastic model and probability laws

Let us assume that the price of risky assets is described by the following stochastic
process, named damped geometric telegrapher’s process:

St = s0 exp [a t + Xt ] , with Xt = c
∫ t

0
(−1)Nτ dτ, t ≥ 0, (1)

where s0 > 0, a ∈ R, c > 0, and where Nt is an alternating counting process
characterized by independent random times Uk, Dk , k ≥ 1. Hence,

N0 = 0, Nt =
∞∑

n=1

1{Tn≤t}, t > 0,

where T2k = U (k) + D(k) and T2k+1 = T2k + Uk+1 for k = 0, 1, . . ., with U (0) =
D(0) = 0 and

U (k) = U1+U2+· · ·+Uk, D(k) = D1+D2+· · ·+Dk, k = 1, 2, . . . . (2)

We assume that {Uk} and {Dk} are mutually independent sequences of indepen-
dent random variables characterized by exponential distribution with parameters

λk = λ k, μk = μ k, (λ, μ > 0; k = 1, 2, . . .), (3)

respectively. We remark that process St has bounded variations and its sample-paths
are constituted by connected lines having exponential behavior, characterized alter-
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Fig. 1. A simulated sample path of St

nately by growth rates a + c and a − c, where a is the growth rate of risky assets’
price in the absence of randomness, and c is the intensity of the random factor of
alternating type. Assumption (3) implies that the reversal rates λk and μk linearly
increase with the number of reversals, so that the sample paths of St are subject to an
increasing number of slope changes when t increases, this giving a damped behavior.
An example is shown in Fig. 1.

Denoting by F (k)(u) the distribution function of the k-fold convolution of random
variables U j (see (2)), hereafter we show a suitable method to disclose it.

Proposition 1. For k = 1, 2, . . . we have

F (k)(u) := P(U (k) ≤ u) = (1 − e−λu)k, u ≥ 0. (4)

Proof. We proceed by induction on k. For k = 1, the result is obvious. Let us now
assume (4) holding for all m = 1, . . . , k − 1. Hence, due to independence,

F (k)(u) = λk
∫ u

0
e−λky(1 − e−λ(u−y))k−1dy

= λk
k−1∑
j=0

(−1) j
(

k − 1

j

)
e−λju

∫ u

0
e−λ(k− j)ydy

= k

k − j

k−1∑
j=0

(−1) j
(

k − 1

j

)
e−λ ju[1 − e−λ(k− j)u]

=
k−1∑
j=0

(−1) j
(

k

j

)
[e−λ ju − e−λku] =

k−1∑
j=0

(−1) j
(

k

j

)
e−λju + (−1)ke−λku

= (1 − e−λu)k,

this giving (4). �
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Making use of a similar reasoning, for k = 1, 2, . . . we also have

G(k)(u) := P(D(k) ≤ u) = (1 − e−μu)k, u ≥ 0. (5)

Note that (4) and (5) identify with the distribution functions of the maximum
of k independent and exponentially distributed random variables with parameters
λ and μ, respectively. Moreover, denoting by Ũ j (D̃ j ), j ≥ 1, independent and
exponentially distributed random variables with parameters λ (μ), recalling (2) and
(3) we remark that

U (k) d=
k∑

j=1

Ũ j

j
,

⎛⎝D(k) d=
k∑

j=1

D̃ j

j

⎞⎠ , k = 1, 2, . . . .

In order to obtain the distribution function of process Xt , let us now introduce the
compound process

Yt =
Mt∑

n=0

Dn, where Mt := max{n ≥ 0 :
n∑

j=1

U j ≤ t}, t > 0.

Hereafter we obtain the distribution function of Yt .

Proposition 2. For any fixed t > 0 and y ∈ [0,+∞), we have

H(y, t) := P(Yt ≤ y) = e−λt

e−λt + e−μy (1 − e−λt )
. (6)

Proof. For t > 0 the distribution function of Yt can be expressed as

H(y, t) =
+∞∑
n=0

P(Mt = n) G(n)(y),

where, due to (4),

P(Mt = n) = F (n)(t) − F (n+1)(t) = e−λt (1 − e−λt )n, n = 0, 1, . . . .

Hence, recalling (5), we obtain

H(y, t) = e−λt
+∞∑
n=0

(1 − e−λt )n(1 − e−μy)n,

so that (6) immediately follows. �

Notice that P(Yt = 0) = e−λt .
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Let us now define the stochastic process identifying the total time spent by St

going upward:

Wt =
∫ t

0
1{Ns even}ds, t > 0,

so that
Xt = c(2Wt − t), t > 0. (7)

Proposition 3. For all 0 < τ < t , the distribution function of Wt is:

P(Wt ≤ τ ) = e−μ(t−τ)(1 − e−λτ )

e−λτ + e−μ(t−τ) (1 − e−λτ )
. (8)

Moreover,
P(Wt < t) = 1 − e−λt , P(Wt ≤ t) = 1.

Proof. Note that, for a fixed value t0 > 0,

Wt0 = inf{t > 0 : Y (t) ≥ t0 − t}. (9)

Moreover, if Wt0 = τ , τ ≤ t0, and Yτ = t0 − τ (Yτ > t0 − τ ), then the motion
is going upward (downward) at time t0. Finally, since Yt is an increasing process,
due to (9), the survival function P(Wt > τ) is equal to H(t − τ, τ ) for 0 < τ ≤ t .
Hence, (8) immediately follows from (6). �

Due to (7) and Proposition 3, the probability law of Xt can be easily obtained.

Proposition 4. Let τ∗ = τ∗(x, t) = (x + ct)/(2c). For all t > 0 and x < ct we
have

P(Xt ≤ x) = e−μ(t−τ∗)(1 − e−λτ∗)

e−λτ∗ + e−μ(t−τ∗) (1 − e−λτ∗)
.

Moreover, P(Xt < ct) = 1 − e−λt and P(Xt ≤ ct) = 1.

In the following proposition we finally obtain the distribution function of St .

Proposition 5. For all t > 0 and x < s0 e(a+c)t , we have

P(St ≤ x) = Aμ(t)
[
x/s0

](λ+μ)/(2c) − Aμ(t)Aλ(t)
[
x/s0

]μ/(2c)

Aλ(t) + Aμ(t)
[
x/s0

](λ+μ)/(2c) − Aμ(t)Aλ(t)
[
x/s0

]μ/(2c)
,

where Aλ(t) = exp
{−λ

2

(
1 − a

c

)
t
}

and Aμ(t) = exp
{−μ

2

(
1 + a

c

)
t
}
. Moreover,

P(St < s0 e(a+c)t ) = 1 − e−λt , P(St ≤ s0 e(a+c)t ) = 1.

Proof. It immediately follows from (1) and recalling Proposition 4. �
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• • • •

Fig. 2. Plot of p(x, t) for s0 = 1, a = 0.1, c = 1, μ = 2, and λ = 2, 3, 4, 5, from bottom to top
near the origin, with t = 1 (left-hand-side) and t = 3 (right-hand-side)

By straightforward use of Proposition 5, hereafter we come to the probability law
of St , which is characterized by a discrete component on s0 e(a+c)t having probability
e−λt , and by an absolutely continuous component on (s0 e(a−c)t , s0 e(a+c)t ).

Proposition 6. The absolutely continuous component of the probability law of St for
t > 0 and x ∈ (s0 e(a−c)t , s0 e(a+c)t ) is given by:

p(x, t) := d

dx
P(St ≤ x) = λ + μ − μ

( x
s0

)− λ
2c exp{−λt (c−a)

2c }
2cx

× 1

{2 cosh{λ+μ
4c log

( x
s0

)+ λt (c−a)−μt (c+a)
4c } − ( x

s0

)− λ−μ
4c exp{−λt (c−a)+μt (c+a)

4c }}2
.

Some plots of density p(x, t) are shown in Fig. 2 for various choices of λ and t .
Let us now analyze the behavior of p(x, t) in the limit as t tends to +∞.

Corollary 1. If λ(c − a) = μ(c + a) then

lim
t→+∞ p(x, t) = β

s0

(x/s0)
β−1

[1 + (x/s0)β ]2
, x ∈ (0,+∞),

where β = λ/(c + a); whereas, if λ(c − a) �= μ(c + a) then

lim
t→+∞ p(x, t) = 0.

Hence, under condition λ(c − a) = μ(c + a), process St has a stationary density
which is of log-logistic type with shape parameter β and scale parameter s0. We
remark that a similar result also holds under the suitable scaling conditions given
hereafter.

Corollary 2. Let αt = s0 exp{at}. If λ = μ → +∞, c → +∞, with λ/c → θ , then

p(x, t) → θ

αt

(x/αt )
θ−1

[1 + (x/αt )θ ]2
, x ∈ (0,+∞).
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Let us now analyse the behavior of p(x, t) when x approaches the endpoints of
its support, i.e. the interval [s1, s2] := [s0 e(a−c)t , s0 e(a+c)t ].

Corollary 3. For any fixed t > 0, we have

lim
x↓s1

p(x, t) = λ

2cs0
e(c−a−μ)t , lim

x↑s2
p(x, t) = [λ + μ(1 − e−λt )] e−(c+a+λ)t

2cs0
.

Hereafter we express the m-th moment of St in terms of the Gauss hypergeometric
function 2 F1.

Proposition 7. Let m be a positive integer. Then, for t > 0,

E[Sm
t ] = sm

0 em (a−c)t
{

1 + 2 m c

λ

+∞∑
k=0

(1 − e−λt )k+1

k + 1

×
k∑

r=0

(
k

r

)
(−e−μt )r

2 F1

(
2 m c

λ
+ μ

λ
r, k + 1; k + 2; 1 − e−λt

)}
. (10)

Proof. Due to Proposition 4, by setting y = (ct + x)/2c we have

MXt (s) := E
[
es X (t)

]
= e−sct

{
1 + 2sc

∫ t

0

e−(λ−2cs)y

e−λy + e−μ(t−y)(1 − e−λy)
dy

}
.

(11)
After some calculations (11) gives

MXt (s) = e−sct

{
1 + 2sc

λ

+∞∑
k=0

k∑
r=0

(
k

r

)
(−e−μt )k−r

∫
I

xk(1 − x)−[2cs+μ(k−r)]/λ dx

}
,

where I = (0, 1 − e−λt ). Hence, recalling the equation (3.194.1) of [5], and noting
that E[Sm

t ] = sm
0 em at MXt (m), the right-hand-side of (10) immediately follows. �

Figures 3 and 4 show some plots of mean and variance of St , respectively, evalu-
ated by using (10). The right-hand-sides of both figures show cases when condition
λ(c − a) = μ(c + a) is fulfilled.

Remark 1. If λ = μ, then the moment (10) can be expressed as:

E[Sm
t ] = sm

0 em (a−c)t
{

1 + 2 m c

λ

+∞∑
k=0

(k !)2(1 − e−λt )2k+1

(2k + 1) !

× 2 F1

(
2 m c

λ
+ k, k + 1; 2k + 2; 1 − e−λt

)}
.
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Fig. 3. Plot of E(St ) for (λ, μ) = (1.5, 0.9), (1.75, 1.05), (2, 1.2) (left-hand-side) and for
(λ, μ) = (3, 1.8), (3.5, 2.1), (4, 2.4) (right-hand-side) from top to bottom, with s0 = 1, a = 0.5,
c = 2

•

•

•

•

•
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•
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• •

Fig. 4. Plot of Var(St ) for (λ, μ) = (1, 0.6), (1.5, 0.9), (2, 1.2) (left-hand-side) and for (λ, μ) =
(6, 3.6), (7, 4.2), (8, 4.8) (right-hand-side) from top to bottom, with s0 = 1, a = 0.5, c = 2.
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