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Brownian integration

In this chapter we introduce the elements of stochastic integration theory that
are necessary to treat some financial models in continuous time. In Paragraph
3.4 we gave grounds for the interest in the study of the limit of a Riemann-
Stieltjes sum of the form

N∑
k=1

utk−1(Wtk
−Wtk−1) (4.1)

as the refinement parameter of the partition {t0, . . . , tN} tends to zero. In (4.1)
W is a real Brownian motion that represents a risky asset and u is an adapted
process that represents an investment strategy: if the strategy is self-financing,
the limit of the sum in (4.1) is equal to the value of the investment.

However the paths of W do not have bounded variation a.s. and this fact
prevents us to define pathwise the integral∫ T

0

utdWt

in the Riemann-Stieltjes sense. On the other hand W has finite quadratic
variation and this property makes it possible to construct the stochastic in-
tegral for suitable classes of integrands u: generally speaking, we require that
u is progressively measurable and satisfies some integrability conditions.

The concept of Brownian integral was introduced by Paley, Wiener and
Zygmund [275] for deterministic integrand functions. The general construc-
tion is due to Itô [179]-[180] in the case of Brownian motion, and to Kunita
and Watanabe [219] in M 2. This theory lays the foundations for a rigorous
study of stochastic differential equations that describe the diffusion processes
introduced by Kolmogorov [213], on which the modern stochastic models for
finance are based. In this chapter we confine ourselves to the Brownian case.

The aim of this chapter is to construct the Brownian integral gradually,
first considering the integration of “simple” processes, i.e. processes that are
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140 4 Brownian integration

piecewise constant with respect to the time variable, then extending the defi-
nition to a sufficiently general class of progressively measurable and square-
integrable processes. Among the main consequences of the definition, we have
that the stochastic integral has null expectation, it is a continuous martingale
in M 2

c and it satisfies Itô isometry. By further extending the class of inte-
grands, some of those properties are lost and it is necessary to introduce the
more general notion of local martingale.

4.1 Stochastic integral of deterministic functions

As an introductory example, useful to see in advance some of the main results
we are going to prove, we consider Paley, Wiener and Zygmund’s construction
[275] of the stochastic integral for deterministic functions.

Let u ∈ C1([0, 1]) be a real-valued function such that u(0) = u(1) = 0.
Given a real Brownian motion W, we define∫ 1

0

u(t)dWt = −
∫ 1

0

u′(t)Wtdt. (4.2)

This integral is a random variable that verifies the following properties:

i) E
[∫ 1

0
u(t)dWt

]
= 0;

ii) E

[(∫ 1

0
u(t)dWt

)2
]

=
∫ 1

0
u2(t)dt.

Indeed

E

[∫ 1

0

u′(t)Wtdt

]
=
∫ 1

0

u′(t)E [Wt] dt = 0.

Further,

E

[∫ 1

0

u′(t)Wtdt

∫ 1

0

u′(s)Wsds

]
=
∫ 1

0

∫ 1

0

u′(t)u′(s)E [WtWs] dtds =

(since E [WtWs] = t ∧ s)

=
∫ 1

0

u′(t)
(∫ t

0

su′(s)ds + t

∫ 1

t

u′(s)ds

)
dt

=
∫ 1

0

u′(t)
(

tu(t)−
∫ t

0

u(s)ds + t(u(1)− u(t))
)

dt

=
∫ 1

0

u′(t)
(
−
∫ t

0

u(s)ds

)
dt =

∫ 1

0

u2(t)dt.

More generally, if u ∈ L2(0, 1) and (un) is a sequence of functions in C1
0 (0, 1)

approximating u in the L2 norm, by property ii) we have

E

[(∫ 1

0

un(t)dWt −
∫ 1

0

um(t)dWt

)2
]

=
∫ 1

0

(un(t)− um(t))2dt.
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Therefore the sequence of integrals is a Cauchy sequence in L2(Ω,P ) and we
can define ∫ 1

0

u(t)dWt = lim
n→∞

∫ 1

0

un(t)dWt.

We have thus constructed the stochastic integral for u ∈ L2([0, 1]) and, by
passing to the limit, it is immediate to verify properties i) and ii).

Evidently this construction can be considered only an introductory step,
since we are interested in defining the Brownian integral in the case u is
a stochastic process. Indeed we recall that, from a financial point of view,
u represents a future-investment strategy, necessarily random. On the other
hand, since (4.2) seems to be a reasonable definition, in the following para-
graphs we will introduce a definition of stochastic integral that agrees with
the one given for the deterministic case.

4.2 Stochastic integral of simple processes

In what follows W is a real Brownian motion on the filtered probability space
(Ω,F , P, (Ft)) where the usual hypotheses hold and T is a fixed positive
number.

Definition 4.1 The stochastic process u belongs to the class L2 if

i) u is progressively measurable with respect to the filtration (Ft);
ii) u ∈ L2([0, T ]×Ω) that is ∫ T

0

E
[
u2

t

]
dt <∞.

Condition ii) is a simple integrability condition, while i) is the property playing
the crucial part in what follows. Since the definition of L2 depends on the
given filtration (Ft), when it is necessary we will also write L2(Ft) instead
of L2. More generally, for p ≥ 1, we denote by Lp the space of progressively
measurable processes in Lp([0, T ]×Ω). We note explicitly that Lp is a closed
subspace of Lp([0, T ]×Ω).

Now we start by defining the Itô integral for a particular class of stochastic
processes in L2.

Definition 4.2 A process u ∈ L2 is called simple if it can be written as

ut =
N∑

k=1

ek1]tk−1,tk](t), t ∈ [0, T ], (4.3)

where 0 ≤ t0 < t1 < · · · < tN ≤ T and ek are random variables1 on (Ω,F , P ).
1 We assume also that

P (ek−1 = ek) = 0, k = 2, . . . , N,

so that the representation (4.3) for u is unique a.s.
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Remark 4.3 It is important to observe that, since u is progressively measu-
rable and by hypothesis (3.27) of right-continuity of the filtration, we have that
ek in (4.3) is Ftk−1-measurable for every k = 1, . . . , N . Further, ek ∈ L2(Ω,P )
and we have∫ T

0

E
[
u2

t

]
dt =

N∑
k=1

∫ T

0

E
[
e2

k

]
1]tk−1,tk](t)dt =

N∑
k=1

E
[
e2

k

]
(tk − tk−1). (4.4)

�

If u ∈ L2 is a simple process of the form (4.3), then we define the Itô integral
in the following way: ∫

utdWt =
N∑

k=1

ek(Wtk
−Wtk−1) (4.5)

and also, for every 0 ≤ a < b ≤ T ,∫ b

a

utdWt =
∫

ut1]a,b](t)dWt (4.6)

and ∫ a

a

utdWt = 0.

Example 4.4 Integrating the simple process u = 1]0,t] , we get

Wt =
∫ t

0

dWs.

Then, going back to Example 3.8, we have

St = S0

(
1 +
∫ t

0

μds

)
+
∫ t

0

σdWs, t > 0. �

The following theorem contains some important properties of the Itô integral
of simple processes.

Theorem 4.5 For all simple processes u, v ∈ L2, α, β ∈ R and 0 ≤ a < b <
c ≤ T the following properties hold:

(1) linearity: ∫
(αut + βvt)dWt = α

∫
utdWt + β

∫
vt dWt;

(2) additivity: ∫ b

a

utdWt +
∫ c

b

utdWt =
∫ c

a

utdWt;
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(3) null expectation:

E

[∫ b

a

utdWt | Fa

]
= 0, (4.7)

and also

E

[∫ b

a

utdWt

∫ c

b

vtdWt | Fa

]
= 0; (4.8)

(4) Itô isometry:

E

[∫ b

a

utdWt

∫ b

a

vtdWt | Fa

]
= E

[∫ b

a

utvtdt | Fa

]
; (4.9)

(5) the stochastic process

Xt =
∫ t

0

usdWs, t ∈ [0, T ], (4.10)

is a continuous Ft-martingale, i.e. X ∈M 2
c (Ft), and we have

[[X]]2T = E

[
sup

t∈[0,T ]

X2
t

]
≤ 4E

[∫ T

0

u2
t dt

]
. (4.11)

Remark 4.6 Since
E [X] = E [E [X | Fa]] ,

the non-conditional versions of (4.7), (4.8), (4.9) hold:

E

[∫ b

a

utdWt

]
= 0,

E

[∫ b

a

utdWt

∫ c

b

vtdWt

]
= 0,

E

[∫ b

a

utdWt

∫ b

a

vtdWt

]
= E

[∫ b

a

utvtdt

]
.

The last identity for u = v is equivalent to the L2-norm equality∥∥∥ ∫ b

a

utdWt

∥∥∥
L2(Ω)

= ‖u‖L2([a,b]×Ω)

and this is why the fourth property is called “Itô isometry”. �

Proof. Properties (1) and (2) are trivial. Concerning property (3), we have

E

[∫ b

a

utdWt | Fa

]
=

N∑
k=1

E
[
ek(Wtk

−Wtk−1) | Fa

]
=



144 4 Brownian integration

(since t0 ≥ a, ek is Ftk−1-measurable by Remark 4.3 and so independent of
Wtk
−Wtk−1 and then we use Proposition A.107-(6))

=
N∑

k=1

E [ek | Fa] E
[
Wtk
−Wtk−1

]
= 0.

To prove (4.8) we proceed analogously: if v is of the form

v =
M∑

h=1

dh1]th−1,th] ,

then E
[∫ b

a
utdWt

∫ c

b
vtdWt | Fa

]
is a sum of terms of the form

E
[
ekdh(Wtk

−Wtk−1)(Wth
−Wth−1) | Fa

]
, with tk ≤ th−1,

that are all equal to zero since ekdh(Wtk
−Wtk−1) is Fth−1 -measurable and

so independent of the increment Wth
−Wth−1 whose expectation is null, since

a ≤ th−1 .
Let us prove Itô isometry: if u and v are simple processes, we have

E

[∫ b

a

utdWt

∫ b

a

vtdWt | Fa

]
= E

[
N∑

k=1

∫ tk

tk−1

ekdWt

N∑
h=1

∫ th

th−1

dhdWt | Fa

]

=
N∑

k=1

E

[∫ tk

tk−1

ekdWt

∫ tk

tk−1

dkdWt | Fa

]

+ 2
∑
h<k

E

[∫ tk

tk−1

ekdWt

∫ th

th−1

dhdWt | Fa

]
=

(by (4.8) the terms in the second summation are null)

=
N∑

k=1

E
[
ekdk(Wtk

−Wtk−1)
2 | Fa

]
=

(by Proposition A.107-(6), since Wtk
−Wtk−1 is independent of ekdk and of

Fa)

=
N∑

k=1

E [ekdk | Fa] E
[
(Wtk

−Wtk−1)
2
]

= E

[
N∑

k=1

ekdk(tk − tk−1) | Fa

]

and the claim follows by (4.4) at least for u = v: the general case is analogous.
Let us now prove that the stochastic process X in (4.10) is a continuous

Ft-martingale. The continuity follows directly from the definition of stochastic
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integral. By definition (4.5)-(4.6) and Remark 4.3, it is obvious that X is Ft-
adapted. Further, Xt is integrable since, by Hölder’s inequality, we have

E [|Xt|]2 ≤ E
[
X2

t

]
=

(by Itô isometry)

= E

[∫ t

0

u2
sds

]
<∞

since u ∈ L2. Then, for 0 ≤ s < t we have

E [Xt | Fs] = E [Xs | Fs] + E

[∫ t

s

uτ dWτ | Fs

]
= Xs,

since Xs is Fs-measurable and (4.7) holds: therefore X is a martingale. Finally
(4.11) is consequence of Doob’s inequality, Theorem 3.38, and Itô isometry:
indeed we have

[[X]]2T ≤ 4E
[
X2

T

]
= 4E

[∫ T

0

u2
t dt

]
.

Remark 4.7 The martingale property of the stochastic integral can also be
written in the following meaningful way:

E

[∫ T

0

usdWs | Ft

]
=
∫ t

0

usdWs, t ≤ T. �

4.3 Integral of L2-processes

We extend the definition of stochastic integral to the class L2 of progres-
sively measurable and square-integrable processes. Unlike the case of simple
processes, the integral will be defined only modulo indistinguishability. Apart
from this, all the usual properties in Theorem 4.11 carry over to this case.

To present the general idea, we consider Itô isometry∥∥∥∫ T

0

utdWt

∥∥∥
L2(Ω)

= ‖u‖L2([0,T ]×Ω) . (4.12)

This isometry plays an essential role in the construction of the stochastic
integral

IT (u) :=
∫ T

0

utdWt, (4.13)

with u ∈ L2, since it guarantees that, if (un) is a Cauchy sequence in
L2([0, T ] × Ω), then also (IT (un)) is a Cauchy sequence in L2(Ω). This fact
makes it possible to define the integral in L2 as soon as we prove that the
elements in L2 can be approximated by simple processes.
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Lemma 4.8 For every u ∈ L2 there exists a sequence (un) of simple processes
in L2 such that

lim
n→+∞

E

[∫ T

0

(ut − un
t )2dt

]
= lim

n→+∞

∥∥u− un
∥∥2

L2([0,T ]×Ω)
= 0.

In particular an approximating sequence is defined by

un =
2n−1∑
k=1

(
1

tk − tk−1

∫ tk

tk−1

usds

)
1]tk,tk+1], (4.14)

where tk := kT
2n for 0 ≤ k ≤ 2n: for this sequence we also have

‖un‖L2([0,T ]×Ω) ≤ ‖u‖L2([0,T ]×Ω).

We shall soon prove the lemma in a meaningful particular case (cf. Proposition
4.20 and Remark 4.21): for the general case we refer, for instance, to Steele
[315], Theorem 6.5.

Thus we consider a sequence (un) of simple processes approximating u ∈
L2: since it converges, (un) is a Cauchy sequence in L2([0, T ]×Ω), that is

lim
m,n→∞

‖un − um‖L2([0,T ]×Ω) = 0.

Then, by Itô isometry, the sequence of stochastic integrals (IT (un)) is a
Cauchy sequence in L2(Ω) and therefore it is convergent. It seems natural
to define ∫ T

0

utdWt = lim
n→+∞

IT (un) in L2(Ω). (4.15)

Note that (4.15) defines the stochastic integral only except for a negligible
event NT ∈ N . This causes problems in defining the integral as a stochastic
process, i.e. as T varies. Indeed T belongs to an uncountable set and therefore
the previous definition is questionable since the set

⋃
T≥0

NT might not be

measurable, or if it is measurable, it might not have null probability.
On the other hand, this problem can be solved by using Doob’s inequality,

Theorem 3.38. Indeed, let us consider a sequence (un) of simple stochastic
processes in L2 approximating u in L2([0, T ]×Ω): we put

It(un) =
∫ t

0

un
s dWs, t ∈ [0, T ]. (4.16)

By (4.11) we obtain

[[I(un)− I(um)]]T ≤ 2‖un − vn‖L2([0,T ]×Ω),

and so (I(un)) is a Cauchy sequence in
(
M 2

c , [[·]]T
)

that is a complete space
by Lemma 3.43. So there exists I(u) ∈M 2

c , unique up to indistinguishability,
such that

lim
n→∞

[[I(u)− I(un)]]T = 0. (4.17)
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We observe that I(u) does not depend on the approximating sequence, i.e. if
vn is another sequence of simple processes in L2 approximating u, we have

[[I(un)− I(vn)]]T ≤ 2‖un − vn‖L2([0,T ]×Ω)

≤ 2‖un − u‖L2([0,T ]×Ω) + 2‖u− vn‖L2([0,T ]×Ω) −→ 0

as n→∞.

Definition 4.9 The stochastic integral of u ∈ L2 is defined (up to indistin-
guishability) by (4.17), that is∫ t

0

usdWs := lim
n→∞

∫ t

0

un
s dWs in M 2

c ,

where (un) is a sequence of simple processes, approximating u in L2.

Remark 4.10 Just as in classical functional analysis it is common practice to
identify functions that are equal almost everywhere (cf., for example, Brezis
[62] Chapter 4) in what follows we will identify indistinguishable stochastic
processes. �

The following result is the natural extension of Theorem 4.5.

Theorem 4.11 For every u, v ∈ L2, α ∈ R and 0 ≤ a < b < c, we have:

(1) linearity: ∫ a

0

(αut + βvt)dWt = α

∫ a

0

utdWt + β

∫ a

0

vtdWt;

(2) additivity: ∫ c

a

utdWt =
∫ b

a

utdWt +
∫ c

b

utdWt;

(3) null expectation:

E

[∫ b

a

utdWt | Fa

]
= 0,

and also

E

[∫ b

a

utdWt

∫ c

b

vtdWt | Fa

]
= 0;

(4) Itô isometry:

E

[∫ b

a

utdWt

∫ b

a

vtdWt | Fa

]
= E

[∫ b

a

utvtdt | Fa

]
;
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(5) the process

Xt =
∫ t

0

usdWs, t ∈ [0, T ], (4.18)

belongs to the space M 2
c and we have

[[X]]2T ≤ 4E

[∫ T

0

u2
t dt

]
. (4.19)

As in Remark 4.6 the “non-conditional versions” of the identities in (3) and
(4) hold.

Proof. The theorem can be proved by taking the limit in the analogous
relations that hold for the integral of simple stochastic processes: the details
are left as an exercise. �

Remark 4.12 An immediate but important consequence of the estimate
(4.19) is that if u, v ∈ L2 are (m⊗P )-equivalent (or, in particular, if they are
modifications) then their stochastic integrals coincide. This is a fundamental
consistency property of the integral (recall Example 3.27). The converse is
true as well, by Corollary 4.13 below. �

Corollary 4.13 If u ∈ L2 and for a fixed positive T we have∫ T

0

utdWt = 0,

then u is (m⊗ P )-equivalent to the null process on [0, T ]×Ω, that is

{(t, ω) ∈ [0, T ]×Ω | ut(ω) = 0}

has null (m⊗ P )-measure.

Proof. The thesis follows from Itô isometry, since we have

0 = E

⎡⎣(∫ T

0

utdWt

)2
⎤⎦ = E

[∫ T

0

u2
t dt

]
. �

We wish to point out that the stochastic integral is not defined pathwise
and the value of the integral in ω ∈ Ω does not only depend on the paths u(ω)
and W (ω) but on the entire processes u and W . For this reason the following
“identity principle” for the stochastic integral will be useful later on:

Corollary 4.14 Let F ∈ F and let u, v ∈ L2 be modifications on F , i.e.
ut(ω) = vt(ω) for almost all ω ∈ F and for every t ∈ [0, T ]. If

Xt =
∫ t

0

usdWs, Yt =
∫ t

0

vsdWs,

then X and Y are indistinguishable on F .
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Proof. Let us consider the approximation by simple processes un, vn in L2

defined in (4.14). By construction un and vn are modifications on F for every
n. Hence it follows directly that, if

Xn
t =

∫ t

0

un
s dWs, Y n

t =
∫ t

0

vn
s dWs,

then Xn and Y n are modifications on F for every n.
Now, for fixed t ∈ ]0, T ], we have that Xn

t , Y n
t converge in L2(Ω,P )-norm

(and pointwise a.s. after taking a subsequence) to Xt and Yt, respectively.
Therefore Xt = Yt a.s. in F and this proves that they are modifications in
F . The claim follows from Proposition 3.25, since X and Y are continuous
processes. �

Example 4.15 Let us consider a process of the form

St = S0 +
∫ t

0

μ(s)ds +
∫ t

0

σ(s) dWs

where S0 ∈ R and μ, σ ∈ L2([0, T ]) are deterministic functions. By the previ-
ous theorem, we have

E [St] = S0 +
∫ t

0

μ(s)ds

and

var(St) = E

[(
St − S0 −

∫ t

0

μ(s)ds
)2
]

=

(by Itô isometry)

=
∫ t

0

σ(s)2ds.

We will see later on that St has normal distribution: we shall prove this
stronger result only after proving the Itô formula (cf. Proposition 5.13). �

Exercise 4.16 Under the hypotheses of Theorem 4.11, prove that, for every
σ-algebra G ⊆ Fa, we have

E

[∫ b

a

utdWt | G
]

=
∫ b

a

E [ut | G] dWt.

4.3.1 Itô and Riemann-Stieltjes integral

In this section we show that, in the case of continuous processes, the stochastic
integral is the limit of Riemann sums and so it is the natural extension of the
Riemann-Stieltjes integral.
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Definition 4.17 A process X is called L2-continuous at t0 if

lim
t→t0

E
[
(Xt −Xt0)

2
]

= 0.

Example 4.18 Given u ∈ L2, the process

Xt =
∫ t

0

usdWs, t ≥ 0,

is L2-continuous at every point. Indeed, if t > t0,

E
[
(Xt −Xt0)

2
]

= E

[( ∫ t

t0

usdWs

)2
]

=

(by Itô isometry)

=
∫ t

t0

E
[
u2

s

]
ds −→ 0, as t→ t0,

by Lebesgue’s dominated convergence theorem and the case t < t0 is analo-
gous. In particular every Brownian motion is L2-continuous. �

Example 4.19 Let X be a continuous process such that |Xt| ≤ Y a.s. with
Y ∈ L2(Ω). Then, as an immediate consequence of the dominated conver-
gence theorem, the process X is L2-continuous at any point. In particular,
if X is continuous and f is a bounded continuous function, then f(X) is
L2-continuous. �

Proposition 4.20 Let u ∈ L2 be an L2-continuous process on [0, T ]. If we
put

u(ς) =
N∑

k=1

utk−11]tk−1,tk] ,

where ς = {t0, t1, . . . , tN} is a partition of [0, T ], then u(ς) is a simple process
in L2 and we have

lim
|ς|→0+

u(ς) = u, in L2([0, T ]×Ω). (4.20)

Proof. For every ε > 0, there exists2 δε > 0 such that, if |ς| < δε, then we
have ∫ T

0

E

[(
ut − u

(ς)
t

)2
]

dt =
N∑

k=1

∫ tk

tk−1

E
[
(ut − utk−1)

2
]
dt ≤ εT. �

2 By the Heine-Cantor theorem, if X is L2-continuous on the compact set [0, T ],
then it is also uniformly L2-continuous.



4.3 Integral of L2-processes 151

Remark 4.21 Proposition 4.20 states that u(ς) is a simple stochastic process
in L2 approximating u in L2([0, T ] × Ω) for |ς| → 0+. Then by definition we
have

lim
|ς|→0+

∫ T

0

u
(ς)
t dWt =

∫ T

0

utdWt, in M 2
c ,

or equivalently

lim
|ς|→0+

N∑
k=1

utk−1(Wtk
−Wtk−1) =

∫ T

0

utdWt, in M 2
c . (4.21)

In this sense the Itô integral, being the limit of Riemann-Stieltjes sums as in
(4.1), generalizes the Riemann-Stieltjes integral. �

4.3.2 Itô integral and stopping times

Some properties of the stochastic integral are similar to those of the Lebesgue
integral, even though in general it is necessary to be careful: for example, let
us consider the following (false) equality

X

∫ T

0

utdWt =
∫ T

0

XutdWt,

where u ∈ L2 and X is a Ft0-measurable random variable for some t0 > 0.
Although X is constant with respect to the variable t, the member on the right-
hand side of the equality does not make sense since the integrand Xu /∈ L2

and is not in general adapted. However, the equality

X

∫ T

t0

utdWt =
∫ T

t0

XutdWt (4.22)

holds true, since (4.22) is true for every simple process u in L2 and can be
proved in general by approximation.

The following result contains the definition of stochastic integral with a
random time as upper integration limit: the statement might seem tautological
but, in the light of the previous remark, it requires a rigorous proof.

Proposition 4.22 Given u ∈ L2(Ft), we set

Xt =
∫ t

0

usdWs, t ∈ [0, T ]. (4.23)

If τ is an (Ft)-stopping time such that 0 ≤ τ ≤ T a.s. then
(
ut1{t≤τ}

)
∈ L2

and

Xτ =
∫ τ

0

usdWs =
∫ T

0

us1{s≤τ}dWs a.s. (4.24)
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Proof. It is clear that, by definition of stopping time, the process
(
ut1{t≤τ}

)
belongs to L2 and in particular is adapted. We put

Y =
∫ T

0

us1{s≤τ}dWs,

and we prove that
Xτ = Y a.s.

First of all, we consider the case

τ =
n∑

k=1

tk1Fk
(4.25)

with 0 < t1 < · · · < tn = T and Fk ∈ Ftk
disjoint events such that

F :=
n⋃

k=1

Fk ∈ F0.

It is apparent that τ is a stopping time. Given X in (4.23), we have Xτ = 0
on Ω \ F and

Xτ =
∫ T

0

usdWs −
∫ T

tk

usdWs, on Fk,

or, in other terms,

Xτ = 1F

∫ T

0

usdWs −
n∑

k=1

1Fk

∫ T

tk

usdWs.

On the other hand, we have

Y =
∫ T

0

us

(
1− 1{s>τ}

)
dWs =

(by linearity)

=
∫ T

0

usdWs −
∫ T

0

us

(
1Ω\F +

n∑
k=1

1Fk
1{s>tk}

)
dWs

= 1F

∫ T

0

usdWs −
n∑

k=1

∫ T

tk

us1Fk
dWs,

and we conclude that Xτ = Y by (4.22). To use (4.22) we have written the
integral from 0 to t as the difference of the integral from 0 to T and the
integral from t to T .
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In the case of a general stopping time τ , we adapt the approximation
result of Remark 3.55 and we consider the following decreasing sequence (τn)
of stopping times of the form (4.25):

τn =
2n∑

k=0

T (k + 1)
2n

1{T k
2n <τ≤T (k+1)

2n }.

We have that (τn) converges to τ a.s. and, by continuity, Xτn converges to Xτ

a.s. Further, if we put

Y n =
∫ t

0

us1{s≤τn}dWs,

by the dominated convergence theorem, we have that Y n converges to Y in
L2(Ω,P ) and this is enough to conclude. �

The following proposition extends the usual properties of the Itô integral
when the integration limit is a stopping time.

Corollary 4.23 Let t0 ∈ [0, T [ and τ ∈ [t0, T ] be a stopping time. If u, v ∈ L2

then we have

E

[∫ τ

t0

utdWt | Ft0

]
= 0,

E

[∫ τ

t0

utdWt

∫ T

τ

vtdWt | Ft0

]
= 0,

E

[∫ τ

t0

utdWt

∫ τ

t0

vtdWt | Ft0

]
= E

[∫ τ

t0

utvtdt | Ft0

]
.

Proof. By (4.24) we have∫ τ

t0

utdWt =
∫ T

t0

ut1{t≤τ}dWt

with ut1{t≤τ} ∈ L2 and so the claim follows from Theorem 4.11. �

4.3.3 Quadratic variation process

In Theorem 3.74 we computed the quadratic variation of a Brownian motion
W , showing that

〈W 〉t = t, t ≥ 0.

On the other hand, in Proposition 3.37 we proved that

Mt = W 2
t − 〈W 〉t (4.26)
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is a martingale. Since W 2
t is a sub-martingale (cf. Remark 3.36), this result

is in line with the Doob’s decomposition Theorem A.119 that states that,
in discrete time, any sub-martingale can be decomposed as the sum of a
martingale M and an increasing predictable process A with null initial value.
Thus, in the Brownian framework, (4.26) can be interpreted as a Doob-type
decomposition where the role of the process A is played by the quadratic
variation 〈W 〉.

In this section we aim at getting similar results for the stochastic integral
process

Xt =
∫ t

0

usdWs, (4.27)

with u ∈ L2. We already proved that X ∈ M 2
c . Now we introduce the

quadratic variation process 〈X〉 and show that X2 − 〈X〉 is a martingale.

Proposition 4.24 Let X be as in (4.27) with u ∈ L2. Then for any t > 0,
there exists the limit

lim
|ς|→0
ς∈P[0,t]

N∑
k=1

∣∣Xtk
−Xtk−1

∣∣2 =
∫ t

0

u2
sds in L2(Ω,P ). (4.28)

We set

〈X〉t =
∫ t

0

u2
sds, t ∈ [0, T ], (4.29)

and we say that 〈X〉 is the quadratic variation process of X. We have that
X2 − 〈X〉 is a martingale.

Proof. If u is a simple L2-process, (4.28) can be proved by proceeding as in
Theorem 3.74. In general the claim follows approximating X by integrals of
simple processes.

Next we verify that X2−〈X〉 is a martingale. For every 0 ≤ s < t we have

E
[
X2

t − 〈X〉t | Fs

]
= E

[
(Xt −Xs)

2 + 2Xs (Xt −Xs) + X2
s − 〈X〉t | Fs

]
=

(by (3) in Theorem 4.11)

= E
[
(Xt −Xs)

2 − 〈X〉t | Fs

]
+ X2

s =

(by Itô isometry)

= E

[∫ t

s

u2
τdτ − 〈X〉t | Fs

]
+ M2

s = M2
s − 〈X〉s. �
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Remark 4.25 Since the L2-convergence implies convergence in probability
(cf. Theorem A.136), the limit in (4.28) converges in probability as well. More-
over, by Theorem A.136, we also have that, for any sequence of partitions (ςn)
of [0, t], with mesh converging to zero, there exists a subsequence (ςkn) such
that

lim
n→∞

V
(2)
t (X, ςkn) =

∫ t

0

u2
sds a.s.

where V
(2)
t is the quadratic variation of Definition 3.72. �

Proposition 4.24 is a particular case of the classical Doob-Meyer decompo-
sition theorem which we state below: the interested reader can find an organic
presentation of the topic, for example, in Chapter 1.4 of Karatzas-Shreve [201].

In what follows, (Ω,F , P, (Ft)) is a filtered probability space verifying the
usual hypotheses. We recall that a process A is increasing if almost all the
paths of A are increasing functions. Moreover if M ∈ M 2 then, by Jensen’s
inequality, |M |2 is a sub-martingale.

Theorem 4.26 (Doob-Meyer decomposition theorem) For every M =
(Mt)t∈[0,T ] ∈ M 2

c (Ft) there exists a unique (up to indistinguishability) in-
creasing continuous process A such that A0 = 0 a.s. and |M |2 − A is a Ft-
martingale. We call A the quadratic-variation process of M and we write
At = 〈M〉t. Moreover, for any t ≤ T we have

At = lim
|ς|→0
ς∈P[0,t]

V
(2)
t (M, ς) (4.30)

in probability.

We explicitly remark that the general definition of quadratic variation agrees
with that given in (4.29): indeed, for X as in (4.27), 〈X〉 in (4.29) is an
increasing continuous process such that 〈X〉0 = 0 a.s. and |X|2 − 〈X〉 is a
martingale (cf. Proposition 4.24).

It is remarkable that 〈M〉 in (4.30) does not depend on the filtration that
we consider: in the case (Ft) is the Brownian filtration, the martingale rep-
resentation Theorem 10.11 states that any square-integrable (Ft)-martingale
can be represented as a stochastic integral of the form (4.29); as a consequence,
in this particular case Theorem 4.26 follows by Proposition 4.24.

The proof of Theorem 4.26 is based on a discrete approximation procedure:
we observe that, if (Mn) is a real discrete martingale, then the process (An)
defined by A0 = 0 and

An =
n∑

k=1

(Mk −Mk−1)2, n ≥ 1,

is increasing and such that M2 −A is a martingale. Indeed

E
[
M2

n+1 −An+1 | Fn

]
= M2

n −An
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if and only if
E
[
M2

n+1 − (Mn+1 −Mn)2 | Fn

]
= M2

n,

hence the claim.
The proof of (4.30) is similar to that of Theorem 3.74 and it is based on

the fact that the mean of the product of increments of a martingale M over
non-overlapping intervals is equal to zero3. More precisely, in the scalar case,
for 0 ≤ s < t ≤ u < v we have

E [(Mv −Mu)(Mt −Ms)] = E [E [(Mv −Mu) | Fu] (Mt −Ms)] = 0. (4.31)

Formula (4.31) is very simple yet useful and meaningful: for instance, (4.31)
is one of the key ingredients in the construction of the stochastic integral for
a general martingale.

Given M ∈M 2
c , as a consequence of Theorem 4.26, we also have that

E
[
|Mt|2 − |Ms|2 | Fs

]
= E [〈M〉t − 〈M〉s | Fs] , s ≤ t, (4.32)

that follows from the fact that |M |2 − 〈M〉 is a martingale.

4.3.4 Martingales with bounded variation

As a consequence of the Doob-Meyer Theorem 4.26 we have that if a mar-
tingale M ∈M 2

c has bounded variation, then it is indistinguishable from the
null process: this means that almost all the paths of a non-trivial martingale
M are irregular in the sense that they do not have bounded variation. More
precisely, we have:

Proposition 4.27 Let M ∈M 2
c . For almost any ω such that 〈M〉T (ω) > 0,

the function t �→Mt(ω) does not have bounded variation over [0, T ]. Moreover,
for almost any ω such that 〈M〉T (ω) = 0 the function t �→Mt(ω) is null.

Proof. By Theorem 4.26 there exists a sequence of partitions (ςn) in P[0,T ],
with mesh converging to zero, such that

〈M〉T = lim
n→∞

V
(2)
T (M, ςn) a.s.

Thus, by Proposition 3.73, the condition 〈M〉T (ω) > 0 is a.s. incompatible
with the fact that M(ω) has bounded variation.

Concerning the second part of the claim, we set

τ = inf{t | 〈M〉t > 0} ∧ T.

By Theorem 3.52, τ is a stopping time and since M2 − 〈M〉 is a martingale,
then, by Theorem 3.58, also4

M2
t∧τ − 〈M〉t∧τ = M2

t∧τ

3 For further details see, for example, Karatzas-Shreve [201], Chapter 1.5.
4 The equality follows from the fact that 〈M〉t = 0 for t ≤ τ .
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is a martingale. Therefore

E
[
M2

T∧τ

]
= E

[
M2

0

]
= 0.

Consequently, by Doob’s inequality, (M2
t∧τ ) has a.s. null paths and the claim

follows from the fact that M = (M2
t∧τ )t∈[0,T ] over {〈M〉T = 0}. �

4.3.5 Co-variation process

For the sake of simplicity, in this section we consider only real-valued pro-
cesses. We remark that, by Theorem 4.26, for any X,Y ∈M 2

c the processes

(X + Y )2 − 〈X + Y 〉, (X − Y )2 − 〈X − Y 〉

are martingales and therefore so is the following process, obtained as their
difference,

4XY − (〈X + Y 〉 − 〈X − Y 〉) .

This motivates the following:

Definition 4.28 For any X,Y ∈M 2
c , the process

〈X,Y 〉 := 1
4

(〈X + Y 〉 − 〈X − Y 〉)

is called co-variation process of X and Y .

By Theorem 4.26, 〈X,Y 〉 is the unique (up to indistinguishability) continuous
adapted process with bounded variation5 such that 〈X,Y 〉0 = 0 a.s. and
XY − 〈X,Y 〉 is a continuous martingale. Moreover, for any t ≤ T we have

〈X,Y 〉t = lim
|ς|→0
ς∈P[0,t]

N∑
k=1

(Xtk
−Xtk−1)(Ytk

− Ytk−1)

in probability. Note that 〈X,X〉 = 〈X〉 and the following identity (that ex-
tends (4.32)) holds:

E [(Xt −Xs)(Yt − Ys) | Fs] = E [XtYt −XsYs | Fs]
= E [〈X,Y 〉t − 〈X,Y 〉s | Fs] ,

for every X,Y ∈ M 2
c and 0 ≤ s < t. In the following proposition we collect

other straightforward properties of the co-variation process.

5 A process has bounded variation if almost all its paths are functions with bounded
variation.
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Proposition 4.29 The co-variation 〈·, ·〉 is a bi-linear form in M 2
c : for every

X,Y,Z ∈M 2
c , λ, μ ∈ R we have

i) 〈X,Y 〉 = 〈Y,X〉;
ii) 〈λX + μY,Z〉 = λ〈X,Z〉+ μ〈Y,Z〉;
iii) |〈X,Y 〉|2 ≤ 〈X〉〈Y 〉.

Example 4.30 A particularly important case is when

Xt =
∫ t

0

usdWs, Yt =
∫ t

0

vsdWs,

with u, v ∈ L2. Then, proceeding as in Proposition 4.24, we can show that

XtYt −
∫ t

0

usvsdWs

is a martingale and therefore6

〈X,Y 〉t =
∫ t

0

usvsdWs, t ∈ [0, T ], (4.33)

is the quadratic variation process of X,Y . Proceeding as in Theorem 3.74, we
can also directly prove that∫ t

0

usvsdWs = lim
|ς|→0
ς∈P[0,t]

N∑
k=1

(Xtk
−Xtk−1)(Ytk

− Ytk−1)

where the limit is in L2(Ω,P )-norm and therefore also in probability. �

Next we recall that, by Proposition 3.79, if X is a continuous process and Y
is a process with bounded variation then

lim
|ς|→0
ς∈P[0,t]

N∑
k=1

(
Xtk

(ω)−Xtk−1(ω)
) (

Ytk
(ω)− Ytk−1(ω)

)
= 0

for any t ≤ T and ω ∈ Ω. Hence, if Z and V are continuous processes with
bounded variation and X,Y ∈M 2

c , we formally have

〈X + Z, Y + V 〉 = 〈X,Y 〉+ 〈Z, Y + V 〉+ 〈X + Z, V 〉︸ ︷︷ ︸
=0

.

Therefore it seems natural to extend Definition 4.28 as follows:
6 Note also that the process

It =

∫ t

0

usvsdWs, t ∈ [0, T ],

has bounded variation in view of Example 3.60-iii) and I0 = 0.
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Definition 4.31 Let Z and V be continuous processes with bounded variation
and X,Y ∈M 2

c . We call

〈X + Z, Y + V 〉 := 〈X,Y 〉

the co-variation process of X + Z and Y + V .

Example 4.32 We go back to Example 4.15 and consider

St = S0 +
∫ t

0

μ(s)ds +
∫ t

0

σ(s) dWs

with μ, σ ∈ L2([0, T ]) deterministic functions. We proved that

var(St) =
∫ t

0

σ(s)2ds.

Now we observe that the process S0+
∫ t

0
μ(s)ds is continuous and has bounded

variation by Example 3.60-iii). Therefore, according to Definition 4.31 and
formula (4.29), we have

〈S〉t = var(St), t ∈ [0, T ],

i.e. the quadratic variation process is deterministic and equal to the variance
function. �

4.4 Integral of L2
loc-processes

In this paragraph we further extend the class of processes for which the
stochastic integral is defined. This generalization is necessary because sim-
ple processes like f(Wt), where f is a continuous function, do not generally
belong to L2: indeed we have

E

[∫ T

0

f(Wt)dt

]
=

1√
2πt

∫ T

0

∫
R

exp
(
−x2

2t

)
f(x)dxdt.

Then, for example, f(Wt) /∈ L2 if f(x) = ex4
. Luckily it is not difficult to

extend the construction of the Itô integral to a class of progressively mea-
surable processes that verify an integrability condition that is weaker than in
Definition 4.1-ii) and that is sufficiently general to handle most applications.
However, when this generalization is made, some important properties are
lost: in particular the stochastic integral is not in general a martingale.

Definition 4.33 We denote by L2
loc the family of processes (ut)t∈[0,T ] that

are progressively measurable with respect to the filtration (Ft)t∈[0,T ] and such
that ∫ T

0

u2
t dt <∞ a.s. (4.34)
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Example 4.34 Every stochastic process that is progressively measurable and
has a.s. continuous paths belongs to L2

loc. In particular exp(W 4
t ), where W is

a Brownian motion, belongs to L2
loc. �

It is interesting to note that the space L2
loc is invariant with respect to changes

of equivalent probability measures: if (4.34) holds and Q ∼ P then we have
of course ∫ T

0

u2
t dt <∞, Q-a.s.

On the contrary, the space L2 depends on the fixed probability measure.

Now we define the stochastic integral u ∈ L2
loc step by step: the rest of the

paragraph can be skipped on first reading.

I) Given u ∈ L2
loc, the process7

At =
∫ t

0

u2
sds, t ∈ [0, T ],

is continuous and adapted to the filtration. Indeed it is enough to observe
that u can be approximated pointwise by a sequence of simple and adapted
processes.

II) For every n ∈ N we put

τn = inf{t ∈ [0, T ] | At ≥ n} ∧ T.

By Theorem 3.52, τn is a stopping time and

τn ↗ T a.s. as n→∞.

We have
Fn := {τn = T} = {AT ≤ n}, (4.35)

and so, since u ∈ L2
loc,⋃

n∈N
Fn = Ω \N, N ∈ N . (4.36)

III) We put
un

t = ut1{t≤τn}, t ∈ [0, T ],

and note that un ∈ L2 since

E

[∫ T

0

(un
t )2 dt

]
= E

[∫ τn

0

u2
t dt

]
≤ n.

Therefore the process

Xn
t =

∫ t

0

un
t dWt, t ∈ [0, T ] (4.37)

is well-defined and Xn ∈M 2
c .

7 We put A(ω) = 0 if u(ω) /∈ L2(0, T ).
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IV) For every n, h ∈ N, we have un = un+h = u on Fn in (4.35). So, by
Corollary 4.14, the processes Xn and Xn+h are indistinguishable on Fn.
Recalling that (Fn) is an increasing sequence for which (4.36) holds, the
following definition is well-posed.

Definition 4.35 Given u ∈ L2
loc, let Fn and Xn be defined as in (4.35) and

(4.37), respectively. Then the stochastic integral of u is the continuous and
Ft-adapted stochastic process X that is indistinguishable from Xn on Fn, for
every n ∈ N. We write

Xt =
∫ t

0

usdWs, t ∈ [0, T ].

Note that, by construction, we have

Xt = lim
n→∞

∫ t

0

un
t dWt, t ∈ [0, T ], a.s. (4.38)

Remark 4.36 Given p ≥ 1, we denote by Lp
loc the family of progressively

measurable processes (ut)t∈[0,T ] such that∫ T

0

|ut|pdt <∞ a.s. (4.39)

By Hölder’s inequality we have

Lp
loc ⊆ L

q
loc, p ≥ q ≥ 1,

and in particular L2
loc ⊆ L1

loc. Since Lp
loc depends on the filtration (Ft), when-

ever it is necessary we write more explicitly Lp
loc(Ft). The space L2

loc is the
natural setting for the definition of stochastic integral: we refer to Steele [315],
Paragraph 7.3, for an interesting discussion about the impossibility of defining
the Itô integral of u ∈ Lp

loc for 1 ≤ p < 2. �

4.4.1 Local martingales

In general, the stochastic integral of a process u ∈ L2
loc is not a martingale:

however, in the sense that we are going to explain, it is not “far off to be a
martingale”.

Definition 4.37 A process M = (Mt)t∈[0,T ] is a Ft-local martingale if there
exists an increasing sequence (τn) of Ft-stopping times, called localizing se-
quence for M , such that

lim
n→∞

τn = T a.s. (4.40)

and, for every n ∈ N, the stochastic process Mt∧τn is a Ft-martingale. We
denote by Mc,loc the space of continuous local martingales such that M0 = 0
a.s.
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To put it simply, a local martingale is a stochastic process that can be
approximated by a sequence of true martingales. Sometimes, when we want
to emphasize the fact that a process M is a true martingale and not simply a
local martingale, we say that M is a strict martingale. An interesting example
of a local martingale that is not a strict martingale is given in Example 9.34.

By definition, we have that

Ms∧τn = E [Mt∧τn | Fs] , 0 ≤ s ≤ t ≤ T, (4.41)

and if M is continuous, since τn → T a.s., we have

lim
n→∞

Mt∧τn = Mt a.s.

Consequently, whenever we can take the limit inside the conditional expecta-
tion in (4.41), we have that M is a strict martingale: as particular cases, see
Propositions 4.39 and 4.40 below.

Clearly every martingale is also a local martingale: it is enough to choose
τn = T for every n. Further, we remark that every local martingale admits a
right-continuous modification: indeed it is enough to note that, by Theorem
3.41, this holds true for the stopped processes Mt∧τn . In what follows we shall
always consider the right-continuous version of every local martingale.

Remark 4.38 Every continuous local martingale M admits an approxima-
ting sequence of continuous and bounded martingales. Indeed let (τn) be a
localizing sequence for M and let us put

σn = inf{t ∈ [0, T ] | |Mt| ≥ n} ∧ T, n ∈ N.

Since M is continuous we have that σn satisfies (4.40) and also (τn ∧ σn) is a
localizing sequence for M : indeed

Mt∧(τn∧σn) = M(t∧τn)∧σn

and so, by Doob’s Theorem 3.58, Mn
t := Mt∧(τn∧σn) is a bounded martingale

such that
|Mn

t | ≤ n, t ∈ [0, T ]. �

We present now some simple properties of continuous local martingales.

Proposition 4.39 If M ∈Mc,loc and

sup
t∈[0,T ]

|Mt| ∈ L1(Ω,P ),

then M is a martingale. In particular every bounded8 M ∈ Mc,loc is a mar-
tingale.
8 There exists a constant c such that |Mt| ≤ c a.s. for every t ∈ [0, T ].
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Proof. The claim follows directly from (4.41), applying the dominated con-
vergence theorem for conditional expectation. �

Proposition 4.40 Every continuous non-negative local martingale M is also
a super-martingale. Further, if

E [MT ] = E [M0] (4.42)

then (Mt)0≤t≤T is a martingale.

Proof. Applying Fatou’s lemma for conditional expectation to (4.41), we get

Ms ≥ E [Mt | Fs] , 0 ≤ s ≤ t ≤ T, (4.43)

and this proves the first part of the claim.
By taking the expectation in the previous relation we get

E [M0] ≥ E [Mt] ≥ E [MT ] , 0 ≤ t ≤ T.

By assumption (4.42), we infer that E [Mt] = E [M0] for every t ∈ [0, T ].
Eventually, by (4.43), if we had Ms > E [Mt | Fs] on an event of strictly
positive probability, then we would get a contradiction. �

Proposition 4.41 If M ∈Mc,loc and τ is a stopping time, then also Mt∧τ ∈
Mc,loc.

Proof. If (τn) is a localizing sequence for M and Xt = Mt∧τ , we have

Xt∧τn = M(t∧τ)∧τn
= M(t∧τn)∧τ .

Consequently, by Theorem 3.58 and since by assumption Mt∧τn is a continuous
martingale, we have that (τn) is a localizing sequence for X. �

4.4.2 Localization and quadratic variation

The following theorem states that the stochastic integral of a process u ∈ L2
loc

is a continuous local martingale. In the whole section we use the notations

Xt =
∫ t

0

usdWs, At =
∫ t

0

u2
sds, t ∈ [0, T ]. (4.44)

Theorem 4.42 We have:

i) if u ∈ L2, then X ∈M 2
c ;

ii) if u ∈ L2
loc, then X ∈Mc,loc and a localizing sequence for X is given by

τn = inf {t ∈ [0, T ] | At ≥ n} ∧ T, n ∈ N. (4.45)
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Proof. We only prove ii). We saw at the beginning of Paragraph 4.4 that
(τn) in (4.45) is an increasing sequence of stopping times such that τn → T
a.s. for n→∞.

By Definition 4.35, on Fk = {AT ≤ k} with k ≥ n, we have

Xt∧τn =
∫ t∧τn

0

us1{s≤τk}dWs =

(by Proposition 4.22, since us1{s≤τk} ∈ L2)

=
∫ t

0

us1{s≤τk}1{s≤τn}dWs =

(since n ≤ k)

=
∫ t

0

us1{s≤τn}dWs, on Fk.

By the arbitrariness of k and by (4.36), we get

Xt∧τn =
∫ t

0

us1{s≤τn}dWs, t ∈ [0, T ], a.s. (4.46)

The claim follows from the fact that us1{s≤τn} ∈ L2 and so Xt∧τn ∈M 2
c and

τn is a localizing sequence for X. �

Next we extend Proposition 4.24.

Proposition 4.43 Given u ∈ L2
loc, let X and A be the processes in (4.44).

Then X2−A is a continuous local martingale: A is called quadratic variation
process of X and we write A = 〈X〉.
Proof. Let us consider the localizing sequence (τn) for X defined in Theorem
4.42. We proved that (cf. (4.46))

Xt∧τn =
∫ t

0

us1{s≤τn}dWs

with us1{s≤τn} ∈ L2. Therefore, by Proposition 4.24, we have that the fol-
lowing process is a martingale:

X2
t∧τn
−
∫ t

0

u2
s1{s≤τn}ds = X2

t∧τn
−At∧τn =

(
X2 −A

)
t∧τn

.

Hence X2 −A is a local martingale and τn is a localizing sequence for X. �

Proposition 4.43 has the following extension: for every X,Y ∈Mc,loc there
exists a unique (up to indistinguishability) continuous process 〈X,Y 〉 with
bounded variation, such that 〈X,Y 〉0 = 0 a.s. and

XY − 〈X,Y 〉 ∈Mc,loc.

We call 〈X,Y 〉 the co-variation process of X,Y . Note that 〈X〉 = 〈X,X〉.
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Remark 4.44 If

Xt =
∫ t

0

usdWs, Yt =
∫ t

0

vsdWs,

with u, v ∈ L2
loc, then

〈X,Y 〉t =
∫ t

0

usvsds. �

More generally, by analogy with Definition 4.31, we give the following:

Definition 4.45 Let Z and V be continuous processes with bounded variation
and X,Y ∈Mc,loc. We call

〈X + Z, Y + V 〉 := 〈X,Y 〉 (4.47)

the co-variation process of X + Z and Y + V . In (4.47), 〈X,Y 〉 is the unique
(up to indistinguishability) continuous process with bounded variation, such
that 〈X,Y 〉0 = 0 a.s. and XY − 〈X,Y 〉 ∈Mc,loc.

Proposition 4.27 can be extended as follows:

Proposition 4.46 Let M ∈Mc,loc. For almost any ω such that 〈M〉T (ω) >
0, the function t �→Mt(ω) does not have bounded variation over [0, T ]. More-
over, for almost any ω such that 〈M〉T (ω) = 0 the function t �→ Mt(ω) is
null.

We conclude the paragraph stating9 a classical result that claims that, for
every M ∈Mc,loc, the expected values

E [〈M〉pT ] and E

[
sup

t∈[0,T ]

|Mt|2p

]

are comparable, for p > 0. More precisely, we have

Theorem 4.47 (Burkholder-Davis-Gundy’s inequalities) For any p >
0 there exist two positive constants λp, Λp such that

λpE [〈M〉pτ ] ≤ E

[
sup

t∈[0,τ ]

|Mt|2p

]
≤ ΛpE [〈M〉pτ ] ,

for every M ∈Mc,loc and stopping time τ .

As a consequence of Theorem 4.47 we prove a useful criterion to establish
whether a stochastic integral of a process in L2

loc is a martingale.

9 For the proof we refer, for example, to Theorem 3.3.28 in [201].
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Corollary 4.48 If u ∈ L2
loc and

E

⎡⎣(∫ T

0

u2
t dt

) 1
2
⎤⎦ <∞, (4.48)

then the process ∫ t

0

usdWs, t ∈ [0, T ],

is a martingale.

Proof. First of all we observe that, by Hölder’s inequality, we have

E

⎡⎣(∫ T

0

u2
t dt

) 1
2
⎤⎦ ≤ E

[∫ T

0

u2
t dt

] 1
2

,

and so condition (4.48) is weaker than the integrability condition in the space
L2.

By the second Burkholder-Davis-Gundy’s inequality with p = 1
2 and τ =

T , we have

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

usdWs

∣∣∣∣
]
≤ Λ 1

2
E

⎡⎣(∫ T

0

u2
t dt

) 1
2
⎤⎦ <∞

and so the claim follows from Proposition 4.39. �
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