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Derivatives and arbitrage pricing

A financial derivative is a contract whose value depends on one or more se-
curities or assets, called underlying assets. Typically the underlying asset is a
stock, a bond, a currency exchange rate or the quotation of commodities such
as gold, oil or wheat.

1.1 Options

An option is the simplest example of a derivative instrument. An option is a
contract that gives the right (but not the obligation) to its holder to buy or
sell some amount of the underlying asset at a future date, for a prespecified
price. Therefore in an option contract we need to specify:

• an underlying asset;
• an exercise price K, the so-called strike price;
• a date T , the so-called maturity.

A Call option gives the right to buy, whilst a Put option gives the right to
sell. An option is called European if the right to buy or sell can be exercised
only at maturity, and it is called American if it can be exercised at any time
before maturity.

Let us consider a European Call option with strike K, maturity T and
let us denote the price of the underlying asset at maturity by ST . At time T
we have two possibilities (cf. Figure 1.1): if ST > K, the payoff of the option
is equal to ST − K, corresponding to the profit obtained by exercising the
option (i.e. by buying the underlying asset at price K and then selling it at
the market price ST ). If ST < K, exercising the option is not profitable and
the payoff is zero. In conclusion the payoff of a European Call option is

(ST −K)+ = max{ST −K, 0}.

Figure 1.2 represents the graph of the payoff as a function of ST : notice that
the payoff increases with ST and gives a potentially unlimited profit. Analo-
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gously, we see that the payoff of a European Put option is

(K − ST )+ = max{K − ST , 0}.

Call and Put options are the basic derivative instruments and for this reason
they are often called plain vanilla options. Combining such types of options
it is possible to build new derivatives: for example, by buying a Call and a
Put option with the same underlying asset, strike and maturity we obtain a
derivative, the so-called Straddle, whose payoff increases the more ST is far
from the strike. This kind of derivative is interesting when one expects a wide
movement of the price of the underlying asset without being able to foresee
the direction. Evidently the pricing of this option can be reformulated in terms
of the pricing of plain vanilla options. On the other hand, in the real-world
markets there exists a great deal of derivatives (usually called exotic) having
very complicated structures: the market of such derivatives is in continuous
expansion and development. One can consult, for example, Zhang [344] for an
encyclopedic exposition of exotic derivatives.

1.1.1 Main purposes

The use of derivatives serves mainly two purposes:

• hedging the risk;
• speculation.

For example, let us consider an investor holding the stock S: buying a Put
option on S, the investor gets the right to sell S in the future at the strike price
and therefore he/she hedges the risk of a crash of the price of S. Analogously,
a firm using oil in its business might purchase a Call option to have the right
to buy oil in the future at the fixed strike price: in this way the firm hedges
the risk of a rise of the price of oil.

In recent years the use of derivatives has become widespread: not long ago
a home loan was available only with fixed or variable rate, while now the offer
is definitely wider. For example, it is not hard to find “protected” loans with
capped variable rate: this kind of structured products contains one or more
derivative instruments and pricing such objects is not really straightforward.

Derivatives can be used to speculate as well: for instance, buying Put op-
tions is the simplest way to get a profit in case of a market crash. We also
remark that options have a so-called leverage effect: relatively minor move-
ments in stock price can result in a huge change of the option price. For
example, let us denote by S0 the current price of the underlying asset and
let us suppose that $1 is the price of a Call option with K = S0 = $10 and
maturity one year. We suppose that, at maturity, ST = $13: if we buy one
unit of the underlying asset, i.e. we invest $10, we would have a $3 profit (i.e.
30%); if we buy a Call option, i.e. we invest only $1, we would have a $2 profit
(i.e. 200%). On the other hand, we must also bear in mind that, if ST = $10,
by investing in the Call option we would lose all our money!
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1.1.2 Main problems

An option is a contract whose final value is given, this depending on the price
of the underlying asset at maturity which is not known at present. Therefore
the non-trivial problem of pricing arises, i.e. the determination of the “ratio-
nal” or fair price of the option: this price is the premium that the buyer of
the option has to pay at the initial time to get the right guaranteed by the
contract.

The second problem is that of hedging: we have already pointed out that a
Call option has a potentially unlimited payoff and consequently the institution
that sells a Call option exposes itself to the risk of a potentially unlimited
loss. A bank selling a derivative faces therefore the problem of finding an
investment strategy that, by using the premium (i.e. the money received when
the derivative was sold), can replicate the payoff at maturity, whatever the
final value of the underlying asset will be. As we are going to see shortly, the
problems of pricing and hedging are deeply connected.

1.1.3 Rules of compounding

Before going any further, it is good to recall some notions on the time value
of money in finance: receiving $1 today is not like receiving it after a month.
We point out also that it is common practice to consider as the unit of time
one year and so, for example, T = 0.5 corresponds to six months.

The rules of compounding express the dynamics of an investment with
fixed risk-free interest rate: to put it simply, this corresponds to deposit the
money on a savings account. In the financial modeling, it is always assumed
that a (locally1) risk-free asset, the so-called bond, exists. If Bt denotes the
value of the bond at time t ∈ [0, T ], the following rule of simple compounding
with annual interest rate r

BT = B0(1 + rT ),

states that the final value BT is equal to the initial value B0 plus the interest
B0rT , corresponding to the interest over the period [0, T ] accrued on the
initial wealth. Therefore, by the rule of simple compounding, the interest is
only paid on the initial wealth.

Alternatively we may consider the period [0, T ], divide it into N sub-
intervals [tn−1, tn] whose common length is T

N and assume that the simple
interest is paid at the end of every sub-interval: we get

BT = BtN−1

(
1 + r

T

N

)
= BtN−2

(
1 + r

T

N

)2

= · · · = B0

(
1 + r

T

N

)N

.

1 This means that the official interest rate is fixed and risk-free over a brief period
of time (e.g. some weeks) but in the long term it is random as well.
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By taking the limit as N →∞, i.e. by assuming that the simple interest is paid
more and more frequently, we obtain the formula of continuous compounding
with annual interest rate r:

BT = B0 erT . (1.1)

Formula (1.1) expresses the final wealth in terms of the initial investment.
Conversely, since to obtain a final wealth (at time T ) equal to B, it is necessary
to invest the amount Be−rT at the initial time, this amount is usually called
discounted value of B.

While the rule of simple compounding is the one used in the market, the
rule of continuous compounding is generally used in theoretical contexts and
particularly in continuous-time models.

1.1.4 Arbitrage opportunities and Put-Call parity formula

Broadly speaking an arbitrage opportunity is the possibility of carrying out
a financial operation without any investment, but leading to profit without
any risk of a loss. In real-world markets arbitrage opportunities do exist,
even though their life span is very brief: as soon as they arise, the market
will reach a new equilibrium because of the actions of those who succeed in
exploiting such opportunities. From a theoretical point of view it is evident
that a sensible market model must avoid this type of profit. As a matter of
fact, the no-arbitrage principle has become one of the main criteria to price
financial derivatives.

The idea on which arbitrage pricing is built is that, if two financial in-
struments will certainly have the same value2 at future date, then also in this
moment they must have the same value. If this were not the case, an obvious
arbitrage opportunity would arise: by selling the instrument that is more ex-
pensive and by buying the less expensive one, we would have an immediate
risk-free profit since the selling position (short position) on the more more
expensive asset is going to cancel out the buying position (long position) on
the cheaper asset. Concisely, we can express the no-arbitrage principle in the
following way:

XT ≤ YT =⇒ Xt ≤ Yt, t ≤ T, (1.2)

where Xt and Yt are the values of the two financial instruments respectively.
From (1.2) in particular it follows that

XT = YT =⇒ Xt = Yt, t ≤ T. (1.3)

Now let us consider a financial-market model that is free from arbitrage op-
portunities and consists of a bond and a stock S, that is the underlying asset
2 We note that we need not know the future values of the two financial instruments,

but only that they will certainly be equal.
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of a Call option c and of a Put option p, both of European type with maturity
T and strike K:

cT = (ST −K)+, pT = (K − ST )+.

We denote by r the risk-free interest rate and we assume that the bond follows
the dynamics given by (1.1). On the basis of arbitrage arguments, we get the
classical Put-Call parity formula, which establishes a relation between the
prices c and p, and some upper and lower estimates for such prices. It is
remarkable that the following formulas are “universal”, i.e. independent of
the market model and based only on the general no-arbitrage principle.

Corollary 1.1 (Put-Call parity) Under the previous assumptions, we
have

ct = pt + St −Ke−r(T−t), t ∈ [0, T ]. (1.4)

Proof. It suffices to note that the investments

Xt = ct +
K

BT
Bt and Yt = pt + St,

have the same final value

XT = YT = max{K,ST }.

The claim follows from (1.3). �

If the underlying asset pays a dividend D at a date between t and T , the
Put-Call parity formula becomes

ct = pt + St −D −Ke−r(T−t).

Corollary 1.2 (Estimates from above and below for European options)
For every t ∈ [0, T ] we have(

St −Ke−r(T−t)
)+

< ct < St,(
Ke−r(T−t) − St

)+

< pt < Ke−r(T−t).

(1.5)

Proof. By (1.2)
ct, pt > 0. (1.6)

Consequently by (1.4) we get

ct > St −Ke−r(T−t).

Moreover, since ct > 0, we get the first estimate from below. Finally cT < ST

and so by (1.2) we get the first estimate from above. The second estimate can
be proved analogously and it is left as an exercise. �
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1.2 Risk-neutral price and arbitrage pricing

In order to illustrate the fundamental ideas of derivative pricing by arbitrage
arguments, it is useful to examine a simplified model in which we consider
only two moments in time, the initial date 0 and the maturity T . As usual we
assume that there exists a bond with risk-free rate r and initial value B0 = 1.
Further, we assume that there is a risky asset S whose final value depends
on some random event: to consider the simplest possible model, we assume
that the event can assume only two possible states E1 and E2 in which ST

takes the values S+ and S− respectively. To fix the ideas, let us consider the
outcome of a throw of a die and let us put, for example,

E1 = {1, 2, 3, 4}, E2 = {5, 6}.

In this case S represents a bet on the outcome of a throw of a die: if we get a
number between 1 and 4 the bet pays S+, otherwise it pays S−. The model
can be summarized by the following table:

Time 0 T

Bond 1 erT

Risky asset ? ST =

{
S+ if E1,

S− if E2.

The problem is to determine the value S0, i.e. the price of the bet.

1.2.1 Risk-neutral price

The first approach is to assign a probability to the events:

P (E1) = p and P (E2) = 1− p, (1.7)

where p ∈ ]0, 1[. For example, if we roll a die it seems natural to set p = 4
6 . In

this way we can have an estimate of the final average value of the bet

ST = pS+ + (1− p)S−.

By discounting that value at the present time, we get the so-called risk-neutral
price:

S̃0 = e−rT
(
pS+ + (1− p)S−

)
. (1.8)

This price expresses the value that a risk-neutral investor assigns to the risky
asset (i.e. the bet): indeed the current price is equal to the future discounted
expected profit. On the basis of this pricing rule (that depends on the proba-
bility p of the event E1), the investor is neither inclined nor adverse to buy
the asset.
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1.2.2 Risk-neutral probability

Let us suppose now that S0 is the price given by the market and therefore it
is a known quantity. The fact that S0 is observable gives information on the
random event that we are considering. Indeed by imposing that S0 = S̃0, i.e.
that the risk-neutral pricing formula holds with respect to some probability
defined in terms of q ∈ ]0, 1[ as in (1.7), we have

S0 = e−rT
(
qS+ + (1− q)S−

)
,

whence we get

q =
erT S0 − S−

S+ − S−
, 1− q =

S+ − erT S0

S+ − S−
. (1.9)

Evidently q ∈ ]0, 1[ if and only if

S− < erT S0 < S+,

and, on the other hand, if this were not the case, obvious arbitrage oppor-
tunities would arise. The probability defined in (1.9) is called risk-neutral
probability and it represents the unique probability to be assigned to the events
E1, E2 so that S0 is a risk-neutral price.

Therefore, in this simple setting there exists a bijection between prices
and risk-neutral probabilities: by calculating the probabilities of the events,
we determine a “rational” price for the risky asset; conversely, given a market
price, there exists a unique probability of events that is consistent with the
observed price.

1.2.3 Arbitrage price

Let us suppose now that there are two risky assets S and C, both depending
on the same random event:

Time 0 T

Bond 1 erT

Risky asset S S0 ST =

{
S+ if E1,

S− if E2,

Risky asset C ? CT =

{
C+ if E1,

C− if E2.

To fix the ideas, we can think of C as an option with underlying the risky asset
S. If the price S0 is quoted by the market, we can infer the corresponding risk-
neutral probability q defined as in (1.9) and then find the neutral-risk price
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of C under the probability q:

C̃0 = e−rT
(
qC+ + (1− q)C−

)
. (1.10)

This pricing procedure seems reasonable and consistent with the market price
of the underlying asset. We emphasize the fact that the price C̃0 in (1.10) does
not depend on a subjective estimation of the probabilities of the events E1, E2,
but it is implicitly contained in the quoted market value of the underlying asset.
In particular this pricing method does not require to estimate in advance the
probability of random events. We say that C̃0 is the risk-neutral price of the
derivative C.

An alternative approach is based upon the assumption of absence of arbi-
trage opportunities. We recall that the two main problems of the theory and
practice of derivatives are pricing and hedging. Let us suppose to be able to
determine an investment strategy on the riskless asset and on the risky asset
S replicating the payoff of C. If we denote the value of this strategy by V , the
replication condition is

VT = CT . (1.11)

From the no-arbitrage condition (1.3) it follows that

C0 = V0

is the only price guaranteeing the absence of arbitrage opportunities. In other
terms, in order to price correctly (without giving rise to arbitrage opportu-
nities) a financial instrument, it suffices to determine an investment strategy
with the same final value (payoff): by definition, the arbitrage price of the
financial instrument is the current value of the replicating strategy. This price
can be interpreted also as the premium that the bank receives by selling the
derivative and this amount coincides with the wealth to be invested in the
replicating portfolio.

Now let us show how to construct a replicating strategy for our simple
model. We consider a portfolio which consists in holding a number α of shares
of the risky asset and a number β of bonds. The value of such a portfolio is
given by

V = αS + βB.

By imposing the replicating condition (1.11) we have{
αS+ + βerT = C+ if E1,

αS− + βerT = C− if E2,

which is a linear system, with a unique solution under the assumption S+ =
S−. The solution of the system is

α =
C+ − C−

S+ − S−
, β = e−rT S+C− − C+S−

S+ − S−
;
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therefore the arbitrage price is equal to

C0 = αS0 + β = S0
C+ − C−

S+ − S−
+ e−rT S+C− − C+S−

S+ − S−

= e−rT

(
C+ erT S0 − S−

S+ − S−
+ C−

S+ − erT S0

S+ − S−

)
=

(recalling the expression (1.9) of the risk-neutral probability)

= e−rT
(
C+q + C−(1− q)

)
= C̃0,

where C̃0 is the risk-neutral price in (1.10). The results obtained so far can be
expressed in this way: in an arbitrage-free and complete market (i.e. in which
every financial instrument is replicable) the arbitrage price and the risk-neutral
price coincide: they are determined by the quoted price S0, observable on the
market.

In particular the arbitrage price does not depend on the subjective estima-
tion of the probability p of the event E1. Intuitively, the choice of p is bound
to the subjective vision on the future behaviour of the risky asset: the fact of
choosing p equal to 50% or 99% is due to different estimations on the events
E1, E2. As we have seen, different choices of p determine different prices for
S and C on the basis of formula (1.8) of risk-neutral valuation. Nevertheless,
the only choice of p that is consistent with the market price S0 is that corre-
sponding to p = q in (1.9). Such a choice is also the only one that avoids the
introduction of arbitrage opportunities.

1.2.4 A generalization of the Put-Call parity

Let us consider again a market with two risky assets S and C, but S0 and C0

are not quoted:

Time 0 T

Riskless asset 1 erT

Risky asset S ? ST =

{
S+ if E1,

S− if E2,

Risky asset C ? CT =

{
C+ if E1,

C− if E2.

We consider an investment on the two risky assets

V = αS + βC
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and we impose that it replicates at maturity the riskless asset, VT = erT :{
αS+ + βC+ = erT if E1,

αS− + βC− = erT if E2.

As we have seen earlier, we obtain a linear system that has a unique solution
(provided that C and S do not coincide):

ᾱ = erT C+ − C−

C+S− − C−S+
, β̄ = −erT S+ − S−

C+S− − C−S+
.

By the no-arbitrage condition (1.3), we must have V0 = 1 i.e.

ᾱS0 + β̄C0 = 1. (1.12)

Condition (1.12) gives a relation between the prices of the two risky assets
that must hold in order not to introduce arbitrage opportunities. For fixed S0,
the price C0 is uniquely determined by (1.12), in line with the results of the
previous section. This fact must not come as a surprise: since the two assets
“depend” on the same random phenomenon, the relative prices must move
consistently.

Formula (1.12) also suggests that the pricing of a derivative does not nec-
essarily require that the underlying asset is quoted, since we can price a deriva-
tive using the quoted price of another derivative on the same underlying asset.
A particular case of (1.12) is the Put-Call parity formula expressing the link
between the price of a Call and a Put option on the same underlying asset.

1.2.5 Incomplete markets

Let us go back to the example of die rolling and suppose that the risky assets
have final values according to the following table:

Time 0 T

Riskless asset 1 erT

Risky asset S S0 ST =

{
S+ if {1, 2, 3, 4},
S− if {5, 6},

Riskless asset C ? CT =

{
C+ if {1, 2},
C− if {3, 4, 5, 6}.

Now we set

E1 = {1, 2}, E2 = {3, 4}, E3 = {5, 6}.
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If we suppose to be able to assign the probabilities to the events

P (E1) = p1, P (E2) = p2, P (E3) = 1− p1 − p2,

where p1, p2 > 0 and p1 + p2 < 1, then the risk-neutral prices are defined just
as in Section 1.2.1:

S̃0 =e−rT
(
p1S

+ + p2S
+ + (1− p1 − p2)S−

)
=e−rT

(
(p1 + p2) S+ + (1− p1 − p2)S−

)
C̃0 =e−rT

(
p1C

+ + p2C
− + (1− p1 − p2)C−

)
=e−rT

(
p1C

+ + (1− p1)C−
)
.

Conversely, if S0 is quoted on the market, by imposing S0 = S̃0, we obtain

S0 = e−rT
(
q1S

+ + q2S
+ + (1− q1 − q2)S−

)
and so there exist infinitely many3 risk-neutral probabilities.

Analogously, by proceeding as in Section 1.2.3 to determine a replicating
strategy for C, we obtain⎧⎪⎨⎪⎩

αS+ + βerT = C+ if E1,

αS+ + βerT = C− if E2,

αS− + βerT = C− if E3.

(1.13)

In general this system is not solvable and therefore the asset C is not replica-
ble: we say that the market model is incomplete. In this case it is not possible
to price C on the basis of replication arguments: since we can only solve two
out of three equations, we cannot build a strategy replicating C in all the
possible cases and we are able to hedge the risk only partially.

We note that, if (α, β) solves the first and the third equation of the system
(1.13), then the terminal value VT of the corresponding strategy is equal to

VT =

⎧⎪⎨⎪⎩
C+ if E1,

C+ if E2,

C− if E3.

With this choice (and assuming that C+ > C−) we obtain a strategy that
super-replicates C.

Summing up:

• in a market model that is free from arbitrage opportunities and complete,
on one hand there exists a unique the risk-neutral probability measure;

3 Actually, it is possible to determine a unique risk-neutral probability if we assume
that both S0 and C0 are observable.
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on the other hand, for every derivative there exists a replicating strategy.
Consequently there exists a unique risk-neutral price which coincides with
the arbitrage price;

• in a market model that is free from arbitrage opportunities and incomplete,
on one hand there exist infinitely many risk-neutral probabilities; on the
other hand not every derivative is replicable. Consequently there exist in-
finitely many risk-neutral prices but it is not possible, in general, to define
the arbitrage price.
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