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Preface

This book gives an introduction to the mathematical, probabilistic and nu-
merical methods used in the modern theory of option pricing. It is intended
as a textbook for graduate and advanced undergraduate students, but I hope
it will be useful also for researchers and professionals in the financial industry.

Stochastic calculus and its applications to the arbitrage pricing of financial
derivatives form the main theme. In presenting these, by now classic, topics,
the emphasis is put on the more quantitative rather than economic aspects.
Being aware that the literature in this field is huge, I mention the following
incomplete list of monographs whose contents overlap with those of this text:
in alphabetic order, Avellaneda and Laurence [14], Benth [43], Bjork [47],
Dana and Jeanblanc [84], Dewynne, Howison and Wilmott [340], Dothan [100],
Duffie [102], Elliott and Kopp [120], Epps [121], Follmer and Schied [134],
Glasserman [158], Huang and Litzenberger [171], Ingersoll [178], Karatzas
[200; 202], Lamberton and Lapeyre [226], Lipton [239], Merton [252], Musiela
and Rutkowski [261], Neftci [264], Shreve [310; 311], Steele [315], Zhu, Wu
and Chern [349].

What distinguishes this book from others is the attempt to present the
matter by giving equal weight to the probabilistic point of view, based on the
martingale theory, and the analytical one, based on partial differential equa-
tions. The present book does not claim to describe the latest developments in
mathematical finance: that target would indeed be very ambitious, given the
speed of progress of research in the field. Instead, I have chosen to develop
some of the essential ideas of the classical pricing theory to devote space to
the fundamental mathematical and numerical tools when they arise. Thus I
hope to provide a sound background of basic knowledge which may facilitate
the independent study of newer problems and more advanced models.

The theory of stochastic calculus, for continuous and discontinuous pro-
cesses, constitutes the bulk of the book: Chapters 3 on stochastic processes, 4
on Brownian integration and 9 on stochastic differential equations may form
the material for an introductory course on stochastic calculus. In these chap-
ters, I have constantly sought to combine the theoretical concepts to the in-
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sight on the financial meaning, in order to make the presentation less abstract
and more motivated: in fact many theoretical concepts naturally lend them-
selves to an intuitive and meaningful economic interpretation.

The origin of this book can be traced to courses on option pricing which
I taught at the master program in Quantitative Finance of the University of
Bologna, which I have directed with Sergio Polidoro since its beginning, in
2004. T wrote the first version as lecture notes for my courses. During these
years, I substantially improved and extended the text with the inclusion of
sections on numerical methods and the addition of completely new chapters
on stochastic calculus for jump processes and Fourier methods. Nevertheless,
during these years the original structure of the book remained essentially
unchanged.

I am grateful to many people for the suggestions and helpful comments
with which supported and encouraged the writing of the book: in particular
I would like to thank several colleagues and PhD students for many valuable
suggestions on the manuscript, including David Applebaum, Francesco Car-
avenna, Alessandra Cretarola, Marco Di Francesco, Piero Foscari, Paolo Fos-
chi, Ermanno Lanconelli, Antonio Mura, Cornelis Oosterlee, Sergio Polidoro,
Valentina Prezioso, Enrico Priola, Wolfgang Runggaldier, Tiziano Vargiolu,
Valeria Volpe. I also express my thanks to Rossella Agliardi, co-author of
Chapter 13, and to Matteo Camaggi for helping me in the translation of the
book.

It is greatly appreciated if readers could forward any errors, misprints or
suggested improvements to: andrea.pascucci@unibo.it
Corrections received after publication will be posted on the website:
http://www.dm.unibo.it/~pascucci/

Bologna, November 2010 Andrea Pascucci



Contents

Preface . ... ... \Y
General notations. ........ ... .. XV
1 Derivatives and arbitrage pricing ......................... 1
1.1 Options . ..ot 1
1.1.1  Main purposes . ... ..c.oueenem i 3

1.1.2 Main problems .. ...t 4

1.1.3 Rules of compounding .............. .. .. ... .. ..., 4

1.1.4 Arbitrage opportunities and Put-Call parity formula . . )

1.2 Risk-neutral price and arbitrage pricing ................... 7
1.2.1 Risk-neutral price ......... .. .. ... .. L 7

1.2.2 Risk-neutral probability ............. .. ... ... ..., 8

1.2.3 Arbitrage price...........c. i 8

1.2.4 A generalization of the Put-Call parity .............. 10

1.2.5 Incomplete markets.......... .. . .. .. .. .. . .. .. 11

2 Discrete market models............. .. .. .. . ... L. 15
2.1 Discrete markets and arbitrage strategies .................. 15
2.1.1 Self-financing and predictable strategies ............. 16

2.1.2 Normalized market ......... ... .. .. ... .. .. ..... 19

2.1.3 Arbitrage opportunities and admissible strategies. . ... 20

2.1.4 Equivalent martingale measure . .................... 21

2.1.5 Change of numeraire............. .. ... .. .. ... .. 24

2.2 European derivatives......... .. .. .. . i i 26
2.2.1 Pricing in an arbitrage-free market ................. 27

2.2.2 Completeness .. ......c.ouuiiiiniiin i 30

2.2.3 Fundamental theorems of asset pricing .............. 31

2.2.4 Markov property .........c.. i 34

2.3 Binomial model ..... ... .. .. . 35
2.3.1 Martingale measure and arbitrage price ............. 38

2.3.2 Hedging strategies .. ...... .. .. .. .. . . . 40



VIII

Contents
2.3.3 Binomial algorithm ...... ... ... ... .. .. .. ... 45
2.3.4 Calibration ............ .o 50
2.3.5 Binomial model and Black-Scholes formula .......... 53
2.3.6 Black-Scholes differential equation .................. 60
2.4 Trinomial model. ....... ... .. ... . 62
2.4.1 Pricing and hedging in an incomplete market ........ 66
2.5 American derivatives. . ......... ... .. i 72
2.5.1 Arbitrage price......... .. 74
2.5.2 Optimal exercise strategies ........................ 80
2.5.3 Pricing and hedging algorithms .................... 83
2.5.4 Relations with European options ................... 88
2.5.5 Free-boundary problem for American options ........ 90

2.5.6 American and European options in the binomial model 93

Continuous-time stochastic processes ..................... 97
3.1 Stochastic processes and real Brownian motion ............. 97
3.1.1 Markov property .........c.. i 100
3.1.2 Brownian motion and the heat equation............. 102
3.2 UnIQUeNESS . ...ttt 103
3.2.1 Law of a continuous process ....................... 103
3.2.2 Equivalence of processes............ ... .. .. .. ... .. 105
3.2.3 Modifications and indistinguishable processes ........ 107
3.2.4 Adapted and progressively measurable processes. . .. .. 110
3.3 Martingales. ... ... .. 111
3.3.1 Doob’s inequality.......... ..o i 113
3.3.2 Martingale spaces: .42 and A2 . ........ ... ... ..... 114
3.3.3 The usual hypotheses ......... ... ... ... ... .. ... 117
3.3.4 Stopping times and martingales .................... 120
3.4 Riemann-Stieltjes integral ......... ... ... .. .. .. . 125
3.4.1 Bounded-variation functions ....................... 127
3.4.2 Riemann-Stieltjes integral and It6 formula........... 131
3.4.3 Regularity of the paths of a Brownian motion ........ 134
Brownian integration .......... .. .. . . . oL 139
4.1 Stochastic integral of deterministic functions ............... 140
4.2 Stochastic integral of simple processes..................... 141
4.3 Integral of L2-processes . .............oueeeiueeuineoen... 145
4.3.1 It6 and Riemann-Stieltjes integral .................. 149
4.3.2 Tto integral and stopping times .. ................... 151
4.3.3 Quadratic variation process........................ 153
4.3.4 Martingales with bounded variation ................ 156
4.3.5 Co-variation process . ... .......c...oeueueunenan.. 157
4.4 Integral of Lfoc—processes ................................ 159
4.4.1 Local martingales ............. .. .. . ... ... 161

4.4.2 Localization and quadratic variation ................ 163



Contents IX

Ité calculus . ... .. ... 167
5.1 T60 PrOCESSES . v vttt ettt 168
5.1.1 It6 formula for Brownian motion ................... 169
5.1.2 General formulation ................ .. ... ........ 174
5.1.3 Martingales+and parabolic equations ............... 176
5.1.4 Geometric Brownian motion ....................... 176
5.2  Multi-dimensional It6 processes ........... .. .. .. .. ... ... 179
5.2.1 Multi-dimensional It6 formula...................... 183
5.2.2 Correlated Brownian motion+and martingales ....... 188
5.3  Generalized It formulas ......... ... .. .. . ... . ... 191
5.3.1 It6 formula and+weak derivatives .................. 191
5.3.2 Tanaka formula+and local times ................... 194
5.3.3 Tanaka+formula for It6 processes .................. 197
5.3.4 Local+time and Black-Scholes formula .............. 198
Parabolic PDEs with variable coefficients: uniqueness. . ... 203
6.1 Maximum principle and Cauchy-Dirichlet problem .......... 206
6.2 Maximum principle and Cauchy problem .................. 208
6.3 Non-negative solutions of the Cauchy problem ............. 213
Black-Scholes model ............... ... ... ... .. ... ... . ... 219
7.1 Self-financing strategies ......... ... ... ... .. il 220
7.2 Markovian strategies and Black-Scholes equation ........... 222
7.3 Pricing...... ... 225
7.3.1 Dividends and time-dependent parameters........... 228
7.3.2 Admissibility and absence of arbitrage .............. 229
7.3.3 Black-Scholes analysis: heuristic approaches.......... 231
7.3.4 Market priceof risk......... ... .. .. .. . 233
T4 Hedging ... ... ..o 236
741 The Greeks . ... i 236
7.4.2 Robustness of the model .......................... 245
7.4.3 Gamma and Vega-hedging ................ ... ... ... 246
7.5 Implied volatility ....... .. .. . .. . 248
7.6 Asian options .......... .. i 252
7.6.1 Arithmetic average ......... ... ... . i 253
7.6.2 Geometric average . . ... vvvv i et 255
Parabolic PDEs with variable coefficients: existence ...... 257
8.1 Cauchy problem and fundamental solution................. 258
8.1.1 Levi’s parametrix method ................. ... .. .. 260
8.1.2 Gaussian estimates and adjoint operator ............ 261
8.2 Obstacle problem . ......... ... .. i 263
8.2.1 Strong solutions........... ... . .. i, 265

8.2.2 Penalization method ... .......... .. ... .. ... .. ..... 268



10

Contents
Stochastic differential equations ........................ .. 275
9.1 Strong sOlUtions ... .....c..oouuiii i 276
9.1.1 UniqUeness . .......c.vuuiiiininiin . 278
9.1.2 Existence............. i 280
9.1.3 Properties of solutions ........... ... ... ... ... ... 283
9.2 Weak solutions . ........ .. .. i 286
9.2.1 Tanaka’s example .......... ... .. .. .. .. ... 286
9.2.2 Existence: the martingale problem .................. 287
9.2.3 UNIQUENESS .« o\ttt ettt e 290
9.3 Maximal estimates. .. ... 292
9.3.1 Maximal estimates for martingales.................. 293
9.3.2 Maximal estimates for diffusions................. ... 296
9.4 Feynman-Ka¢ representation formulas.................. ... 298
9.4.1 Exit time from a bounded domain .................. 300
9.4.2 Elliptic-parabolic equations and Dirichlet problem . ... 302
9.4.3 Evolution equations and Cauchy-Dirichlet problem ... 307
9.4.4 Fundamental solution and transition density ......... 308
9.4.5 Obstacle problem and optimal stopping ............. 310
9.5 Linear equations . ..............iiiiiiiii i 314
9.5.1 Kalman condition .......... .. .. .. .. . . . .. 318
9.5.2 Kolmogorov equations and Hérmander condition ... .. 323
9.5.3 Examples ......... 326
Continuous market models ............................... 329
10.1 Change of MEASUTe .. ....c.uittiit e 329
10.1.1 Exponential martingales................ .. ... ...... 329
10.1.2 Girsanov’s theorem .......... ... ... .. ... 332
10.1.3 Representation of Brownian martingales............. 334
10.1.4 Change of drift....... ... ... .. .. .. . . 339
10.2 Arbitrage theory ....... .. .. .. 340
10.2.1 Change of drift with correlation .................... 343
10.2.2 Martingale measures and market prices of risk ....... 345
10.2.3 Examples ... 348
10.2.4 Admissible strategies and arbitrage opportunities. . ... 352
10.2.5 Arbitrage pricing . ... 355
10.2.6 Complete markets ... ...... .. .. ... .. . ... 357
10.2.7 Parity formulas ......... ... .. i 358
10.3 Markovian models: the PDE approach .................... 359
10.3.1 Martingale models for the short rate ................ 361
10.3.2 Pricing and hedging in a complete model ............ 364
10.4 Change of numeraire . ... .........c.oouieinininennann.. 366
10.4.1 LIBOR market model .. ........... ... ... .. ... .... 370
10.4.2 Change of numeraire for It6 processes............... 372
10.4.3 Pricing with stochastic interest rate................. 374
10.5 Diffusion-based volatility models .............. ... ... ... 376



11

12

13

Contents XI

10.5.1 Local and path-dependent volatility ................ 377
10.5.2 CEV model .. ... ..o i 379
10.5.3 Stochastic volatility and the SABR model ........... 386
American options........ ... .. ... . 389
11.1 Pricing and hedging in the Black-Scholes model ............ 389
11.2 American Call and Put options in the Black-Scholes model .. 395
11.3 Pricing and hedging in a complete market ................. 398
Numerical methods . ........ .. . ... . ... ... .. 403
12.1 Euler method for ordinary equations ...................... 403
12.1.1 Higher order schemes ............. .. .. .. ... .. .... 407
12.2 Euler method for stochastic differential equations........... 408
12.2.1 Milstein scheme ........... .. .. . .. .. . .. ... 411
12.3 Finite-difference methods for parabolic equations ........... 412
12.3.1 Localization .......... ... ... . .. . . 413
12.3.2 f-schemes for the Cauchy-Dirichlet problem.......... 414
12.3.3 Free-boundary problem ............ ... ... ... ..... 419
12.4 Monte Carlo methods ........... ... ... .. 420
12.4.1 Simulation. ........o i 423
12.4.2 Computation of the Greeks ........................ 425
12.4.3 Error analysis........ .. .. . o i i 427
Introduction to Lévy processes ........................... 429
13.1 Beyond Brownian motion............... ... ... ... .. ... 429
13.2 POISSON PIOCESS . . ettt ettt 432
13.3 LEVY PrOCESSES . . vttt ettt e e 437
13.3.1 Infinite divisibility and characteristic function........ 439
13.3.2 Jump measures of compound Poisson processes. ... ... 444
13.3.3 Lévy-Itd decomposition ............. ... .. ... .. .... 450
13.3.4 Lévy-Khintchine representation .................... 457
13.3.5 Cumulants and Lévy martingales . .................. 460
13.4 Examples of Lévy processes . .......... ... 463
13.4.1 Jump-diffusion processes .......................... 464
13.4.2 Stable Processes .. ...t 466
13.4.3 Tempered stable processes . ........................ 469
13.4.4 Subordination................o it 471
13.4.5 Hyperbolic processes. .. ... .. 478
13.5 Option pricing under exponential Lévy processes ........... 480
13.5.1 Martingale modeling in Lévy markets ............... 480
13.5.2 Incompleteness and choice of an EMM .............. 485
13.5.3 Esscher transform .......... ... ... .. .. . .. 486
13.5.4 Exotic option pricing ............ .. . . .. 491

13.5.5 Beyond Lévy processes . ..........ouueunuunenan .. 494



XII Contents
14 Stochastic calculus for jump processes .................... 497
14.1 Stochastic integrals .. ........ ... . i 497
14.1.1 Predictable processes ......... ... .. .. . ... 500
14.1.2 Semimartingales. ... 504
14.1.3 Integrals with respect to jump measures............. 507
14.1.4 Lévy-type stochastic integrals ........... ... ... .... 511
14.2 Stochastic differentials .......... ... ... i 514
14.2.1 Tt6 formula for discontinuous functions .............. 514
14.2.2 Quadratic variation......... ... ... ... .. oo 515
14.2.3 It6 formula for semimartingales .................... 518
14.2.4 1t6 formula for Lévy processes ..................... 520
14.2.5 SDEs with jumps and 1t6 formula .................. 525
14.2.6 PIDEs and Feynman-Ka¢ representation ............ 529
14.2.7 Linear SDEs with jumps ........... ... ... ... .... 532
14.3 Lévy models with stochastic volatility ..................... 534
14.3.1 Lévy-driven models and pricing PIDEs .............. 534
14.3.2 Batesmodel ....... .. .. . 537
14.3.3 Barndorff-Nielsen and Shephard model .............. 539
15 Fourier methods ....... .. ... .. .. .. . . 541
15.1 Characteristic functions and branch cut ................ ... 542
15.2 Integral pricing formulas ......... ... ... ... . .. 545
15.2.1 Damping method......... ... ... ... .. .. .. ... 546
15.2.2 Pricing formulas. ........ ... .. ... i 547
15.2.3 Implementation ........... .. .. ... .. .. 551
15.2.4 Choice of the damping parameter .................. 553
15.3 Fourier-cosine series expansions .......................... 562
15.3.1 Implementation ......... ... ... .. .. ... .. .. .. .. .. 567
16 Elements of Malliavin calculus ............................ 577
16.1 Stochastic derivative . ....... ... .. .. . i 578
16.1.1 Examples . ... ..o 580
16.1.2 Chainrule....... ... .. i 582
16.2 Duality . ....ooo i 586
16.2.1 Clark-Ocone formula. ........... ... .. ... ... .... 588
16.2.2 Integration by parts and computation of the Greeks .. 590
16.2.3 Examples . ... 594
Appendix: a primer in probability and parabolic PDEs ....... 599
A.1 Probability Spaces . ...... ... 599
A.1.1 Dynkin’s theorems. ................ i, 601
A.1.2 Distributions ........... ... 605
A.1.3 Random variables ............ ... .. .. .. ... 608
A14 Integration ..............iiiiiiiiiiiii 610

A.1.5 Mean and variance ............... ... 612



Contents XIII

A.1.6 o-algebras and information .............. ... . ..... 618
A.1.7 Independence ............ ..o 619
A.1.8 Product measure and joint distribution.............. 622
A.1.9 Markov inequality ......... .. .. i 625

A.2 Fourier transform......... .. ... . .. ... . 626
A.3 Parabolic equations with constant coefficients .............. 630
A31 Aspecial case. . ... 631
A3.2 General case ........ ... 636
A.3.3 Locally integrable initial datum .................... 637
A.3.4 Non-homogeneous Cauchy problem ................. 638
A.3.5 Adjoint operator ........... . i 639

A .4 Characteristic function and normal distribution ............ 641
A.4.1 Multi-normal distribution ........... ... ... ... ... 643

A.5 Conditional expectation ........... ... ... .. . i 646
A.5.1 Radon-Nikodym theorem .......................... 646
A.5.2 Conditional expectation ........................... 648
A.5.3 Conditional expectation and discrete random variables 650
A.5.4 Properties of the conditional expectation ............ 652
A.5.5 Conditional expectationin L2...................... 655
A.5.6 Change of measure ..............cooiuiiiniinaon.. 656

A.6 Stochastic processes in discrete time ...................... 657
A.6.1 Doob’s decomposition.............. ... 659
A.6.2 Stopping times . ....... ..ot 661
A.6.3 Doob’s maximal inequality ........................ 665

A.7 Convergence of random variables ......................... 669
A.7.1 Characteristic function and convergence of variables .. 670
A.7.2 Uniform integrability ............. ... ... . ..... 674

A.8 Topologies and g-algebras ............ . ... ... 676
A.9 Generalized derivatives ... ... ... ... i i 678
A.9.1 Weak derivativesin R...... ... ... .. .. ... ... 678
A.9.2 Sobolev spaces and embedding theorems ............ 681
A.9.3 Distributions ............ .. 682
A9.4 Mollifiers . . ..o ot 687
A.10 Separation of convex sets . ........... ... i 690
References...... ... ... 691



General notations

N =1{1,2,3,...} is the set of natural numbers

No ={0,1,2,3,...} is the set of non-negative integers
Q is the set of rational numbers

R is the set of real numbers

R>0 = }Oa +OO[

RZO = [07 +OO[

St =10, T[xRY is a strip in RV+1

% = #A(RY) is the Borel o-algebra in RV

|H| or m(H) denote the Lebesgue measure of H € A
14 is the indicator function of H, p. 606

0, = 8% is the partial derivative with respect to x

For any a,b € R,

e aAb=min{a,b}
e aVb=max{a,b}
e at =max{a,0}
e o =max{—a,0}

For any N x d-matrix A = (a;5),

A* is the transpose of A
trA is the trace of A
rankA is the rank of A

. A= T e

i=1j=1
o [All = sup [Az|
|z|=1

Note that ||A|| < |A|. The point € RY is identified with a column vector
N x 1 and

N
Py=(ry)=z-y=> wy
i=1

denotes the Euclidean scalar product in RV .
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Depending on the context, F denotes the Fourier transform or the o-algebra
of a probability space. The Fourier transform of a function f is denoted by f.

Shortenings

e A := B means that “by definition, A equals B”

e r.v. = random variable

e s.p. = stochastic process

e a.s. = almost surely

e a.e. = almost everywhere

e iid. = independent and identically distributed (referred to random varia-

bles)

mg = martingale

PDE = Partial Differential Equation
SDE = Stochastic Differential Equation

Function spaces

m9B: space of #-measurable functions, p. 608

m%By: space of bounded functions in m%, p. 608

BV: space of functions with bounded variation, p. 127

Lip: space of Lipschitz continuous functions, p. 679

Lip,,.: space of locally Lipschitz continuous functions, p. 679

C*: space of functions with continuous derivatives up to order k € Ny
Cf: space of functions in C* bounded together with their derivatives
C*+e: space of functions differentiable up to order k& € Ny with partial
derivatives that are Holder continuous of exponent a €]0, 1|

C{ZJCF“: space of functions differentiable up to order & € Ny with partial
derivatives that are locally Holder continuous of exponent « €]0, 1]

Cg°: space of test functions, i.e. smooth functions with compact support,
p. 678

C12: space of functions u = u(t, =) with continuous second order deriva-
tives in the “spatial” variable z € RN and continuous first order derivative
in the “time” variable ¢, p. 631

C3: space of parabolic Holder continuous functions of exponent o, p. 258
LP: space of functions integrable of order p

LY : space of functions locally integrable of order p

WkP: Sobolev space of functions with weak derivatives up to order k in
LP, p. 679

SP: parabolic Sobolev space of functions with weak second order deriva-
tives in LP, p. 265



General notations XVII

Spaces of processes

IL?: space of progressively measurable processes in LP([0,T] x £2), p. 141
LY .: space of progressively measurable processes X such that X(w) €
L? ([0,77) for almost any w, p. 159

e A.: space of continuous processes (X¢):eo,7], Fi-adapted and such that

X1y = E[ sup Xf]
0<t<T

is finite, p. 280

e /*: linear space of right continuous martingales (M;)¢cpo, 7] such that
My =0 a.s. and E [M?] is finite, p. 115

e /2 linear subspace of the continuous martingales of .#Z2, p. 115

M 100 space of continuous local martingales M such that My = 0 a.s.,
p- 161
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Derivatives and arbitrage pricing

A financial derivative is a contract whose value depends on one or more se-
curities or assets, called underlying assets. Typically the underlying asset is a
stock, a bond, a currency exchange rate or the quotation of commodities such
as gold, oil or wheat.

1.1 Options

An option is the simplest example of a derivative instrument. An option is a
contract that gives the right (but not the obligation) to its holder to buy or
sell some amount of the underlying asset at a future date, for a prespecified
price. Therefore in an option contract we need to specify:

e an underlying asset;
e an exercise price K, the so-called strike price;
e a date T, the so-called maturity.

A Call option gives the right to buy, whilst a Put option gives the right to
sell. An option is called Furopean if the right to buy or sell can be exercised
only at maturity, and it is called American if it can be exercised at any time
before maturity.

Let us consider a European Call option with strike K, maturity 7" and
let us denote the price of the underlying asset at maturity by Sp. At time T
we have two possibilities (cf. Figure 1.1): if S > K, the payoff of the option
is equal to St — K, corresponding to the profit obtained by exercising the
option (i.e. by buying the underlying asset at price K and then selling it at
the market price St). If S < K, exercising the option is not profitable and
the payoff is zero. In conclusion the payoff of a European Call option is

(S7 — K)* = max{Sr — K,0}.

Figure 1.2 represents the graph of the payoff as a function of St: notice that
the payoff increases with St and gives a potentially unlimited profit. Analo-

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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1 Derivatives and arbitrage pricing
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Fig. 1.1. Different scenarios for a European Call option
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Fig. 1.2. Payoff of a European Call option
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Fig. 1.3. Payoff of a European Put option
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Fig. 1.4. Payoff of a Straddle
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gously, we see that the payoff of a European Put option is
(K — ST)+ = maX{K — ST, O}

Call and Put options are the basic derivative instruments and for this reason
they are often called plain vanilla options. Combining such types of options
it is possible to build new derivatives: for example, by buying a Call and a
Put option with the same underlying asset, strike and maturity we obtain a
derivative, the so-called Straddle, whose payoff increases the more St is far
from the strike. This kind of derivative is interesting when one expects a wide
movement of the price of the underlying asset without being able to foresee
the direction. Evidently the pricing of this option can be reformulated in terms
of the pricing of plain vanilla options. On the other hand, in the real-world
markets there exists a great deal of derivatives (usually called ezotic) having
very complicated structures: the market of such derivatives is in continuous
expansion and development. One can consult, for example, Zhang [344] for an
encyclopedic exposition of exotic derivatives.

1.1.1 Main purposes

The use of derivatives serves mainly two purposes:

e hedging the risk;
e speculation.

For example, let us consider an investor holding the stock S: buying a Put
option on S, the investor gets the right to sell S in the future at the strike price
and therefore he/she hedges the risk of a crash of the price of S. Analogously,
a firm using oil in its business might purchase a Call option to have the right
to buy oil in the future at the fixed strike price: in this way the firm hedges
the risk of a rise of the price of oil.

In recent years the use of derivatives has become widespread: not long ago
a home loan was available only with fixed or variable rate, while now the offer
is definitely wider. For example, it is not hard to find “protected” loans with
capped variable rate: this kind of structured products contains one or more
derivative instruments and pricing such objects is not really straightforward.

Derivatives can be used to speculate as well: for instance, buying Put op-
tions is the simplest way to get a profit in case of a market crash. We also
remark that options have a so-called leverage effect: relatively minor move-
ments in stock price can result in a huge change of the option price. For
example, let us denote by Sy the current price of the underlying asset and
let us suppose that $1 is the price of a Call option with K = Sy = $10 and
maturity one year. We suppose that, at maturity, ST = $13: if we buy one
unit of the underlying asset, i.e. we invest $10, we would have a $3 profit (i.e.
30%); if we buy a Call option, i.e. we invest only $1, we would have a $2 profit
(i.e. 200%). On the other hand, we must also bear in mind that, if S = $10,
by investing in the Call option we would lose all our money!
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1.1.2 Main problems

An option is a contract whose final value is given, this depending on the price
of the underlying asset at maturity which is not known at present. Therefore
the non-trivial problem of pricing arises, i.e. the determination of the “ratio-
nal” or fair price of the option: this price is the premium that the buyer of
the option has to pay at the initial time to get the right guaranteed by the
contract.

The second problem is that of hedging: we have already pointed out that a
Call option has a potentially unlimited payoff and consequently the institution
that sells a Call option exposes itself to the risk of a potentially unlimited
loss. A bank selling a derivative faces therefore the problem of finding an
investment strategy that, by using the premium (i.e. the money received when
the derivative was sold), can replicate the payoff at maturity, whatever the
final value of the underlying asset will be. As we are going to see shortly, the
problems of pricing and hedging are deeply connected.

1.1.3 Rules of compounding

Before going any further, it is good to recall some notions on the time value
of money in finance: receiving $1 today is not like receiving it after a month.
We point out also that it is common practice to consider as the unit of time
one year and so, for example, T" = 0.5 corresponds to six months.

The rules of compounding express the dynamics of an investment with
fixed risk-free interest rate: to put it simply, this corresponds to deposit the
money on a savings account. In the financial modeling, it is always assumed
that a (locally!) risk-free asset, the so-called bond, exists. If B; denotes the
value of the bond at time ¢ € [0, T, the following rule of simple compounding
with annual interest rate r

BT = B()(l —|— TT),

states that the final value Br is equal to the initial value By plus the interest
ByrT, corresponding to the interest over the period [0,7] accrued on the
initial wealth. Therefore, by the rule of simple compounding, the interest is
only paid on the initial wealth.

Alternatively we may consider the period [0,7], divide it into N sub-
intervals [t,—1,t,] whose common length is % and assume that the simple

interest is paid at the end of every sub-interval: we get

T T\? 7\V
BT:BtN71 <1+T'N) :BtN72 <1+T'N) ::BQ (1+TN> .

! This means that the official interest rate is fixed and risk-free over a brief period
of time (e.g. some weeks) but in the long term it is random as well.
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By taking the limit as N — oo, i.e. by assuming that the simple interest is paid
more and more frequently, we obtain the formula of continuous compounding
with annual interest rate r:

BT ZBQ eTT. (11)

Formula (1.1) expresses the final wealth in terms of the initial investment.
Conversely, since to obtain a final wealth (at time T") equal to B, it is necessary
to invest the amount Be~"T at the initial time, this amount is usually called
discounted value of B.

While the rule of simple compounding is the one used in the market, the
rule of continuous compounding is generally used in theoretical contexts and
particularly in continuous-time models.

1.1.4 Arbitrage opportunities and Put-Call parity formula

Broadly speaking an arbitrage opportunity is the possibility of carrying out
a financial operation without any investment, but leading to profit without
any risk of a loss. In real-world markets arbitrage opportunities do exist,
even though their life span is very brief: as soon as they arise, the market
will reach a new equilibrium because of the actions of those who succeed in
exploiting such opportunities. From a theoretical point of view it is evident
that a sensible market model must avoid this type of profit. As a matter of
fact, the no-arbitrage principle has become one of the main criteria to price
financial derivatives.

The idea on which arbitrage pricing is built is that, if two financial in-
struments will certainly have the same value? at future date, then also in this
moment they must have the same value. If this were not the case, an obvious
arbitrage opportunity would arise: by selling the instrument that is more ex-
pensive and by buying the less expensive one, we would have an immediate
risk-free profit since the selling position (short position) on the more more
expensive asset is going to cancel out the buying position (long position) on
the cheaper asset. Concisely, we can express the no-arbitrage principle in the
following way:

Xr<Yr - X <Y, t<T, (12)

where X; and Y; are the values of the two financial instruments respectively.
From (1.2) in particular it follows that

Xr=Yr - X :}/t, t<T. (13)

Now let us consider a financial-market model that is free from arbitrage op-
portunities and consists of a bond and a stock .S, that is the underlying asset

2 We note that we need not know the future values of the two financial instruments,
but only that they will certainly be equal.
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of a Call option ¢ and of a Put option p, both of European type with maturity
T and strike K:

er = (S — K)T, pr = (K —S)*.

We denote by r the risk-free interest rate and we assume that the bond follows
the dynamics given by (1.1). On the basis of arbitrage arguments, we get the
classical Put-Call parity formula, which establishes a relation between the
prices ¢ and p, and some upper and lower estimates for such prices. It is
remarkable that the following formulas are “universal”’, i.e. independent of
the market model and based only on the general no-arbitrage principle.

Corollary 1.1 (Put-Call parity) Under the previous assumptions, we
have
c=pr+ S — Ke 7T, t e 0,7 (1.4)

Proof. It suffices to note that the investments
K
Xi=ci+—5-DB; and Y;=p;+ 5,
Br

have the same final value
XT = YT = max{K, ST}
The claim follows from (1.3). O

If the underlying asset pays a dividend D at a date between t and T', the
Put-Call parity formula becomes

Ct = Dt + St — D — KB_T(T_t).
Corollary 1.2 (Estimates from above and below for European options)

For every t € [0,T] we have

+
(St — KG_T(T_t)> < < St,
(1.5)
+
(Ke_T(T_t) — St) <pp < Ke m(T=1),

Proof. By (1.2)
ct,pe > 0. (1.6)

Consequently by (1.4) we get
ce > S — KE_T(T_t).

Moreover, since ¢; > 0, we get the first estimate from below. Finally ¢ < St
and so by (1.2) we get the first estimate from above. The second estimate can
be proved analogously and it is left as an exercise. a
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1.2 Risk-neutral price and arbitrage pricing

In order to illustrate the fundamental ideas of derivative pricing by arbitrage
arguments, it is useful to examine a simplified model in which we consider
only two moments in time, the initial date 0 and the maturity 7. As usual we
assume that there exists a bond with risk-free rate r and initial value By = 1.
Further, we assume that there is a risky asset S whose final value depends
on some random event: to consider the simplest possible model, we assume
that the event can assume only two possible states Ey and Es in which St
takes the values ST and S~ respectively. To fix the ideas, let us consider the
outcome of a throw of a die and let us put, for example,

E, ={1,2,3,4}, E, = {5,6}.

In this case S represents a bet on the outcome of a throw of a die: if we get a
number between 1 and 4 the bet pays ST, otherwise it pays S~. The model
can be summarized by the following table:

Time 0 T

Bond 1 e’

St ifE
Risky asset| ? Sr=14 1 b
S if EQ.

The problem is to determine the value S, i.e. the price of the bet.

1.2.1 Risk-neutral price

The first approach is to assign a probability to the events:

P(Ey)=p and P(E;)=1-np, (1.7)
where p €]0, 1[. For example, if we roll a die it seems natural to set p = %. In

this way we can have an estimate of the final average value of the bet
Sr=pSt+(1-p)S~.

By discounting that value at the present time, we get the so-called risk-neutral
price: _
So=e"T (pStT+(1-p)S7). (1.8)

This price expresses the value that a risk-neutral investor assigns to the risky
asset (i.e. the bet): indeed the current price is equal to the future discounted
expected profit. On the basis of this pricing rule (that depends on the proba-
bility p of the event Ej), the investor is neither inclined nor adverse to buy
the asset.
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1.2.2 Risk-neutral probability

Let us suppose now that Sy is the price given by the market and therefore it
is a known quantity. The fact that Sy is observable gives information on the
random event that we are considering. Indeed by imposing that Sy = Sy, i.e.
that the risk-neutral pricing formula holds with respect to some probability
defined in terms of ¢ €]0,1[ as in (1.7), we have

So=c¢" (S + (1-)S7),
whence we get

ETTSQ -5~ St — €TTSO

Sros 0 0T o (1.9)

q =
Evidently ¢ €]0,1[ if and only if
S~ <etsy < ST,

and, on the other hand, if this were not the case, obvious arbitrage oppor-
tunities would arise. The probability defined in (1.9) is called risk-neutral
probability and it represents the unique probability to be assigned to the events
FEq, Es so that Sy is a risk-neutral price.

Therefore, in this simple setting there exists a bijection between prices
and risk-neutral probabilities: by calculating the probabilities of the events,
we determine a “rational” price for the risky asset; conversely, given a market
price, there exists a unique probability of events that is consistent with the
observed price.

1.2.3 Arbitrage price

Let us suppose now that there are two risky assets S and C, both depending
on the same random event:

Time 0 T

Bond 1 e’
St it E;
Risk t S| S St = ’
isky asse 0 T {S_ if By,

c+ it By,
C~— if Es.

Risky asset C| 7 Cr = {

To fix the ideas, we can think of C' as an option with underlying the risky asset
S. If the price Sy is quoted by the market, we can infer the corresponding risk-
neutral probability ¢ defined as in (1.9) and then find the neutral-risk price
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of C' under the probability g¢:
Co=e"T(qCt+(1—-q)C7). (1.10)

This pricing procedure seems reasonable and consistent with the market price
of the underlying asset. We emphasize the fact that the price Cy in (1.10) does
not depend on a subjective estimation of the probabilities of the events E1, Fo,
but it is implicitly contained in the quoted market value of the underlying asset.
In particular this pricing method does not require to estimate in advance the
probability of random events. We say that Cy is the risk-neutral price of the
derivative C.

An alternative approach is based upon the assumption of absence of arbi-
trage opportunities. We recall that the two main problems of the theory and
practice of derivatives are pricing and hedging. Let us suppose to be able to
determine an investment strategy on the riskless asset and on the risky asset
S replicating the payoff of C. If we denote the value of this strategy by V, the
replication condition is

Vr = Cr. (1.11)

From the no-arbitrage condition (1.3) it follows that
Co=Vy

is the only price guaranteeing the absence of arbitrage opportunities. In other
terms, in order to price correctly (without giving rise to arbitrage opportu-
nities) a financial instrument, it suffices to determine an investment strategy
with the same final value (payoff): by definition, the arbitrage price of the
financial instrument is the current value of the replicating strategy. This price
can be interpreted also as the premium that the bank receives by selling the
derivative and this amount coincides with the wealth to be invested in the
replicating portfolio.

Now let us show how to construct a replicating strategy for our simple
model. We consider a portfolio which consists in holding a number « of shares
of the risky asset and a number § of bonds. The value of such a portfolio is
given by

V =aS+ 3B.

By imposing the replicating condition (1.11) we have

aSt + pe'’ = C* if £y,

aS™ + et =C~ if Fs,
which is a linear system, with a unique solution under the assumption S+ #
S~. The solution of the system is

ct—C- _ _pStC—Cts

=gi_g B=e¢ g

(%
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therefore the arbitrage price is equal to

Cct—-C- StC~ - C*S~
COZOCSQ“FB:SQW +€_TTW
rT — + rT
T +€ S()—S 75 — € S() -
=e <C St — g +C -

(recalling the expression (1.9) of the risk-neutral probability)
=T (C’+q +C (1- q)) = Cy,

where Cj is the risk-neutral price in (1.10). The results obtained so far can be
expressed in this way: in an arbitrage-free and complete market (i.e. in which
every financial instrument is replicable) the arbitrage price and the risk-neutral
price coincide: they are determined by the quoted price Sy, observable on the
market.

In particular the arbitrage price does not depend on the subjective estima-
tion of the probability p of the event E;. Intuitively, the choice of p is bound
to the subjective vision on the future behaviour of the risky asset: the fact of
choosing p equal to 50% or 99% is due to different estimations on the events
E,, E5. As we have seen, different choices of p determine different prices for
S and C on the basis of formula (1.8) of risk-neutral valuation. Nevertheless,
the only choice of p that is consistent with the market price Sy is that corre-
sponding to p = ¢ in (1.9). Such a choice is also the only one that avoids the
introduction of arbitrage opportunities.

1.2.4 A generalization of the Put-Call parity

Let us consider again a market with two risky assets S and C, but Sy and Cj
are not quoted:

Time 0 T
Riskless asset| 1 e’
St if By,
Risky asset S| 7?7 St = 1 !
S— if Bs,
ct ifE
Risky asset C| ? Cr = 1 b
c— if EQ.

We consider an investment on the two risky assets

V=aS+pC
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and we impose that it replicates at maturity the riskless asset, Vy = e"T:

aST+38CT =¢7 if B,
aS™+pC =¢eT if Fs.

As we have seen earlier, we obtain a linear system that has a unique solution
(provided that C and S do not coincide):

Cct—-C~ - St — S~
~ _ _rT — _ rT
A= g —os PTG —os
By the no-arbitrage condition (1.3), we must have Vj = 1 i.e.
aSy + fCy = 1. (1.12)

Condition (1.12) gives a relation between the prices of the two risky assets
that must hold in order not to introduce arbitrage opportunities. For fixed S,
the price Cp is uniquely determined by (1.12), in line with the results of the
previous section. This fact must not come as a surprise: since the two assets
“depend” on the same random phenomenon, the relative prices must move
consistently.

Formula (1.12) also suggests that the pricing of a derivative does not nec-
essarily require that the underlying asset is quoted, since we can price a deriva-
tive using the quoted price of another derivative on the same underlying asset.
A particular case of (1.12) is the Put-Call parity formula expressing the link
between the price of a Call and a Put option on the same underlying asset.

1.2.5 Incomplete markets

Let us go back to the example of die rolling and suppose that the risky assets
have final values according to the following table:

Time 0 T

Riskless asset 1 e

i {1,2,3,4
Risky asset S | Sp Sy = S 1 {1,2,3,4},
S5 i {5,6),
ctoif{1,2},
C™ if {3,4,5,6}.

Riskless asset C| 7 Cr = {

Now we set

Ey={1,2}, E,={3,4}, E;={56}
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If we suppose to be able to assign the probabilities to the events
P(Ey) = p1, P(E2) = pa, P(E3) =1—p1 —pa,

where p1,p2 > 0 and p; + p2 < 1, then the risk-neutral prices are defined just
as in Section 1.2.1:

So =e™"T (p1StT +p2ST+ (1 —p1—p2)S7)
T ((p1+p2) ST+ (1 —p1 —p2)S7)
T (p1Ct +p2C” + (1= p1 —p2)C7)

"

p10+ 1 — pl)C_) .
Conversely, if Sy is quoted on the market, by imposing Sy = gg, we obtain
So=e"T (ST +@ST+(1—q —q)S7)

and so there exist infinitely many® risk-neutral probabilities.
Analogously, by proceeding as in Section 1.2.3 to determine a replicating
strategy for C, we obtain

aSt + pert = CF if B,
aSt + pert = C- if Fy, (1.13)
aS + ﬁerT C_ lf E3.

In general this system is not solvable and therefore the asset C' is not replica-
ble: we say that the market model is incomplete. In this case it is not possible
to price C on the basis of replication arguments: since we can only solve two
out of three equations, we cannot build a strategy replicating C' in all the
possible cases and we are able to hedge the risk only partially.

We note that, if («, 3) solves the first and the third equation of the system
(1.13), then the terminal value Vi of the corresponding strategy is equal to

c+ if B,
Vp =< C+ if B,
Cc- if Fs.

With this choice (and assuming that CT > C~) we obtain a strategy that
super-replicates C.
Summing up:

e in a market model that is free from arbitrage opportunities and complete,
on one hand there exists a unique the risk-neutral probability measure;

3 Actually, it is possible to determine a unique risk-neutral probability if we assume
that both Sy and Cy are observable.
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on the other hand, for every derivative there ezists a replicating strategy.
Consequently there exists a unique risk-neutral price which coincides with
the arbitrage price;

in a market model that is free from arbitrage opportunities and incomplete,
on one hand there exist infinitely many risk-neutral probabilities; on the
other hand not every derivative is replicable. Consequently there exist in-
finitely many risk-neutral prices but it is not possible, in general, to define
the arbitrage price.



2

Discrete market models

In this chapter we describe market models in discrete time to price and hedge
European and American-style derivatives. We present the classical model in-
troduced by Cox, Ross and Rubinstein in [78] and we mention briefly the
pricing problem in incomplete markets. General references on topics covered
in this chapter are Dana and Jeanblanc [84], F6llmer and Schied [134], Lam-
berton and Lapeyre [226], Pliska [282], Shreve [310], van der Hoek and Elliott
[329]: we also mention Pascucci and Runggaldier [277] where several examples
and exercises can be found.

2.1 Discrete markets and arbitrage strategies

We consider a discrete-market model where, for a fixed time interval [0, 7],
we suppose that all transactions take place only at times

O=to<t1i <---<ty=T.

To fix the ideas, tg denotes today’s date and ¢y is the expiration date of a
derivative. Let us recall that the unit of time is the year.

The market consists of one riskless asset (bond) B and d risky assets
S = (S1,...,8%) that are stochastic processes defined on a probability space
(2, F, P). We assume:

(H1) 2 has a finite number of elements, F = P (§2) and P({w}) > 0 for any
w € (2.

The dynamics of the bond is deterministic: if B,, denotes the price of the bond
at time t,,, we have

By=1
o (2.1)
B, = Bn_1(1+m), n=1,...,N,
where r,,, such that 1 + r,, > 0, denotes the risk-free rate in the n-th period

[tn—1,tn]. Occasionally we also call B the bank account.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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The risky assets have the following stochastic dynamics: if S! denotes the
price at time t,, of the i-th asset, then we have

S € Rxo, (2.2)
Si=8._,(1+p), n=1,...,N, '

where 1!, is a real random variable such that 1+ ,u,'l > 0, which represents the
yield rate of the i-th asset in the n-th period [t,,—1,¢,]. Then S* = (S?)n—0,... N
is a discrete stochastic process on (£2, F, P) and we say that (S, B) is a discrete
market on the probability space (£2,F, P).
We set
/*Ln:(/’éfiv"'v/’éfril)v 1<n<N,

and consider the filtration (F,,) defined by

:{0 12}, (2.3)
(B1y -5 fon)s 1<n<N. 2.4

The o-algebra F,, represents the amount of information available in the market
at time ¢, (cf. Appendix A.1.6): note that, by (2.2), we also have F,, =
o(So,...,Sy) for 0 <n < N. Formula (2.3) is equivalent to the fact that the
prices S3, ..., S¢ of the assets at the initial time are observable and so they are
deterministic, i.e. positive numbers not random variables (cf. Example A.38).
In the sequel we shall also assume:

(H2) Fn=7F.

2.1.1 Self-financing and predictable strategies

Definition 2.1 A strategy (or portfolio) is a stochastic process in R+
(Oé, ﬁ) = (avlw R afriw ﬁn)n:l,

In the preceding definition, o, (resp. 3,) represents the amount of the asset S*
(resp. bond) held in the portfolio during the n-th period [t,—_1,t,]. Therefore
we denote the value of the portfolio («, 8) at time t,, by

V(P = 0, S, + BnBy, n=1,...,N, (2.5)
and

(a,8) ZO‘ So+/3130
In (2.5)

d
anSy =Y alSh,  n=1,...,N,
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denotes the scalar product in R%. The value V(8 = (Véa’ﬁ))nzo,wN is areal
stochastic process in discrete time: to shorten notations, sometimes we simply
write V,, in place of V,Sa”@ ). We point out that negative values of of,, 3, are

allowed since short selling of shares or borrowing from the bank are permitted.

Definition 2.2 A strategy (o, B8) is self-financing if the relation
V,ggf) = ansnfl + 5an71 (26)
holds for everyn=1,..., N.

The self-financing property (2.6) can interpreted as follows:

at time t,,_1 the wealth at our disposal is Véf’lﬁ) =an_1S1-1+ Bn_1Bn_1

and we re-balance the strategy with the new quantities (an, By) in such a
way that we do not modify the overall value of the portfolio.

For example, if at t; = 0 we have at our disposal the initial wealth V{, we
construct the strategy (aq,01) in such a way that its value a1.Sy + 81 By is
equal to V4. Note that (a,, 3,) denotes what the portfolio built at time ¢,
is composed of.

Example 2.3 In the case of one risky asset (i.e. d = 1) (2.6) is equivalent to

Snfl

/Bn = 67171 - (an - Olnfl)B _1.

The previous formula shows how 3, must vary in a self-financing portfolio if,
at time t,_1, we change the amount of the risky asset from «,_1 to a,,. Note
that, in the particular case d = 0, a portfolio is self-financing if and only if it
is constant. O

The variation, from time ¢,,_1 to t,, of the value of a self-financing strategy
(a, B) is given by

VoD — Vi = (S0 = Su-1) + Bu(By — Buo1) (2.7)

and therefore it is caused only by the variation of the prices of the assets and
not by the fact that we have injected or withdrawn funds. Therefore, in a
self-financing strategy we establish the wealth we want to invest at the initial
time and afterwards we do not inject or withdraw funds.

In what follows we consider only investment strategies based upon the
amount of information available at the moment (of course foreseeing the fu-
ture is not allowed). Since in a self-financing strategy the rebalancing of the
portfolio from (a,—1,Bn—1) to (au, B,) occurs at time ¢,_1, it is natural to
assume that («, 8) is predictable:

Definition 2.4 A strategy («, ) is predictable if (cn, Br) is Fn—1-measurable
for everyn=1,... ,N.
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Notation 2.5 We denote by A the family of all self-financing and predictable
strategies of the market (S, B).

The self-financing condition establishes a relationship between the processes
«a and (: as a consequence, it turns out that a strategy in A is identified by
(o, B) or equivalently by Vj and « where Vy € R is the initial value of the
strategy and « is a d-dimensional predictable process. Indeed we have the
following:

Lemma 2.6 The value of a self-financing strategy (c, ) is determined by its
initial value Vy and recursively by

d
Vo=V (l+m)+ Zaflelfl (= m0) (2.8)
i=1
form=1,... N.

Proof. By (2.7), the variation of a self-financing portfolio in the period
[tn—1,tn] is equal to

Vn - Vn—l = Qp (Sn - Sn—l) + ﬁn (Bn - Bn—l)

d
= Al Syl + BuBnarn = (2.9)
i=1
(since, by (2.6), we have 8, Bp—1 = Vp—1 — @pnSp—1)

d
= Z aflehl (M; — rn) + 7 Vo1
i=1

and the claim follows. O

Proposition 2.7 Given Vy € R and a predictable process «, there exists a
unique predictable process 3 such that (o, 3) € A and Vo(a”g) =V.

Proof. Given V; € R and a predictable process «, we define the process

Vn—l _anSn—l
R o e Uk U —1,...,N,
B Bn—l "

where (V},) is recursively defined by (2.8). Then by construction (8,,) is pre-
dictable and the strategy (a, 3) is self-financing. O

Remark 2.8 Given (a, 3) € A, by summing over n in (2.9) we get

Vo=Vo+g?  n=1,... N, (2.10)
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where
98P =" (ak (Sk — Sk-1) + Br (Bx — Br_1))
k=1
Y (2.11)
= (Z 11 + ﬁkBk—1Tk>
k=1 \i=1
defines the process of the gain of the strategy. a
2.1.2 Normalized market
For a fixed asset Y = (Y,,), we define by
~. St ~ B
St =2 B, = ==, 2.12

the normalized market with respect to Y. In the normalized market we ob-
viously have Y = 1 and the prices of the other assets are denominated in
units of the asset Y: for this reason Y is usually called a numeraire. Often
Y plays the part of the non-risky asset B corresponding to the investment in
a bank account: in this case S’ is also called the discounted price of the i-th
asset. In practice, by discounting one can compare quoted prices at different
times. _

Let us now consider the discounted market S, that is we assume that B is
the numeraire. Given a strategy («, 3), we set

Véaﬁ) _n

n

Then the self-financing condition becomes
v(a’lﬁ):angnfl'*'ﬂn, n=1,...,N,

n—

or equivalently
‘775111/6):‘7755’16)—#@71 (§H—§R_1>, n:l,...,N.

Therefore Lemma 2.6 has the following extension.

Lemma 2.9 The discounted value of a self-financing strategy (o, B) is uni-
quely determined by its initial value Vi and recursively by

d
ViD= Ve £ 3" al, (S - S
i=1

form=1,... N.
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The following formula, analogous to (2.10), holds:
V@B =V, + G (2.13)

where
nga) = Zak <§k - §k—1)
k=1

is the normalized gain related to the predictable process «. Note that in general
(er,8)

G,({l) is different from Z=— and that G%a) does not depend on 3. We also recall

that ‘70 = Vp since By = 1 by assumption.

2.1.3 Arbitrage opportunities and admissible strategies

We recall that A denotes the family of self-financing and predictable strategies
of the market (S, B).

Definition 2.10 We say that (o, 8) € A is an arbitrage strategy (or simply
an arbitrage) if the value V = V(@B is such that!

Z) Vo = O,‘
and there exists n > 1 such that

it) V, >0 P-a.s.;
iii) P(V,, > 0) > 0.

We say that the market (S, B) is arbitrage-free if the family A does not contain
arbitrage strategies.

An arbitrage is a strategy in A that does not require an initial investment,
does not expose to any risk (V,, > 0 P-a.s.) and leads to a positive value with
positive probability. In an arbitrage-free market it is not possible to have such
a sure risk-free profit by investing in a predictable and self-financing strategy.

The absence of arbitrage opportunities is a fundamental assumption from
an economic point of view and is a condition that every reasonable model
must fulfill. Clearly, the fact that there is absence of arbitrage depends on
the probabilistic model considered, i.e. on the space (£2,F,P) and on the
kind of stochastic process (S, B) used to describe the market. In Section 2.1.4
we give a mathematical characterization of the absence of arbitrage in terms
of the existence of a suitable probability measure, equivalent to P, called
martingale measure. Then, in Paragraph 2.3 we examine the very easy case of
the binomial model, so that we see the practical meaning of the concepts we

! By assumption (H1), the empty set is the only event with null probability: al-
though it is superfluous to write P-a.s. after the (in-)equalities, it is convenient to
do so to adapt the presentation to the continuous case in the following chapters,
where the (in-)equalities hold indeed only almost surely.
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have introduced. In particular we see that in the binomial model the market
is arbitrage-free under very simple and intuitive assumptions.

We allowed the values of a strategy to be negative (short-selling), but it
seems reasonable to require that the overall value of the portfolio does not
take negative values.

Definition 2.11 A strategy (o, 3) € A is called admissible if
V,Ea”@) >0 P-as.

for everyn < N.

Implicitly the definition of arbitrage includes the admissibility condition or,
more precisely, in a discrete market every arbitrage strategy can be modified
to become admissible. We remark that this result does not generalize to the
continuous-time case.

Proposition 2.12 A discrete market is arbitrage-free if and only if there
exist no admissible arbitrage strategies.

Proof. We suppose that there exist no admissible arbitrage strategies and
we have to show that no arbitrage opportunity exists. We prove the thesis
by contradiction: we suppose there exists an arbitrage strategy (o, 3) and we

construct an admissible arbitrage strategy (o, 3).

By assumption, VO(O"B) = @150 + $1Bo = 0 and there exists n (it is not

restrictive to suppose n = N) such that a,, S, + 3, B, > 0 a.s. and P(«,,S, +
BrnBr > 0) > 0. If (a, ) is not admissible there exist k¥ < N and F € F, with
P(F) > 0 such that

apSk + BxBr <0 on F' and «,S, + B.Bn >0 as. for k <n < N.

Then we define a new arbitrage strategy as follows: o/, =0, 8/, =0 on 2\ F
for every n, while on F

, 0, n <k, 3 0, n <k,
o = =
" Qi n>k,’ " Brn — (Sk + BrBk) , n>k.
It is straightforward to verify that (o, ') is an arbitrage strategy and it is
admissible. a

2.1.4 Equivalent martingale measure

We consider a discrete market (S, B) on the space (£2,F,P) and fix a nu-
meraire Y that is a prices process in (S, B). More generally, in the sequel we
will take as numeraire the value of any strategy («,3) € A, provided that
V(@8 is positive. In this section we characterize the property of absence of
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arbitrage in terms of the existence of a new probability measure equivalent? to
P and with respect to which the normalized price processes are martingales.
We give the following important:

Definition 2.13 An equivalent martingale measure (in short, EMM) with
numeraire Y is a probability measure Q on (£2,F) such that:

i) @ is equivalent to P;
it) the Y -normalized prices are Q-martingales, that is

S, 1 S, B_1 B,
=EQ |22 | F,_ =EQ |2 | F_ 2.14
Yn71 |:Yn | n 1:| ) Ynfl |:Yn | n 1:| ) ( )

for everyn=1,...,N.
Remark 2.14 Consider the particular case Y = B and denote by §n = g’l
the discounted prices. If Q) is an EMM with numeraire B, by the martingale
property we also have

Sy = E9 [§n|f,€}, 0<k<n<N,
and consequently
EQ [S}} - B9 [EQ [En | ]—‘OH ~ S5, n<AN. (2.15)

Formula (2.15) has an important economic interpretation: it states that the
expectations of the future normalized prices are equal to the current prices.
Therefore (2.15) is a risk-neutral pricing formula in the sense of Section 1.2.1:
the mean of §n with respect to the measure ) corresponds to the value given
by an investor who reckons that the current market-prices of the assets are
correct (and so he/she is neither disposed nor averse to buy the assets). For
this reason, @) is also called a risk-neutral probability.

Instead, the probability measure P is usually called objective or real-world
probability since the dynamics of the random variables p,, is usually given
under the probability P and these variables (or the parameters of the model)
have to be determined a priori from observations on the market or on the basis
of the historical data on the stocks. In other terms, the random variables p,
(that are an “input” that any discrete model needs in order to be used) have
to be estimated by means of observations of the real world. O

We emphasize that the notion of EMM depends on the numeraire con-
sidered. Further, we notice that, since @) is equivalent to P, the market is
arbitrage-free under the measure P if and only if it is arbitrage-free under Q.

The next result, in view of its importance, is commonly known as First
Fundamental Theorem of asset pricing.

2 That is, having the same null and certain events, cf. Appendix A.5.1.
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Theorem 2.15 (First Fundamental Theorem of asset pricing) A di-
screte market is arbitrage-free if and only if there exists at least one EMM.

We defer the proof of Theorem 2.15 to Section 2.2.3 and we analyze now some
important consequences of the definition of EMM.

The following result exhibits a fundamental feature of self-financing pre-
dictable portfolios: they preserve the martingale property, that is if (S, B) is
a martingale and (a, 8) € A then also V(*#) is a martingale.

Proposition 2.16 Let Q be an EMM with numeraire Y and (o, 3) € A.
Then V(e:8) = (%) is a Q-martingale:

7B _ go ma,ﬁ) |fn_1} . mn=1,...,N. (2.16)
In particular the following risk-neutral pricing formula holds:
7@f — go [f/rga,ﬂ)} . n<N. (2.17)

Conversely, if @Q is a measure equivalent to P and for every (o,) € A,
equation (2.16) holds, then @ is an EMM with numeraire Y.

Proof. For simplicity we only consider the case Y = B. The result is an
immediate consequence of formula (2.13) which basically expresses the fact
that (a, 8) is self-financing if and only if V(@B s the transform of S by
(cf. Definition A.120). Then, since « is predictable, the claim follows directly
from Proposition A.121. However, for the sake of clarity, it seems to be useful
to go through the proof again: by the self-financing condition (2.6), we have

Vieh) = ‘711(3’1@ + @ (Sn — Sp—1)
and by taking the conditional expectation given F,,_;, we get
B[V | Fot| = VD + B9 [an(Sn = Sam) | Faca| =

(by the properties of conditional expectation, Proposition A.107-(7), since «
is predictable)
= ‘7752’1@ + OénEQ |:§n - §H,1 | ~7:n711| = ‘771(2’1,6)
by (2.14). The converse is trivial.
The following result expresses the main consequence, fundamental from a
practical point of view, of the condition of absence of arbitrage: if two self-

financing predictable strategies have the same terminal value, then they must
have the same value at all preceding times.
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Proposition 2.17 (No arbitrage principle) In an arbitrage-free market,

if (@, ), (o/,3) € A and
V]S{o{75) = VIS/'O/’B,) P-G.S.,

then
Vn(o"ﬁ) = Véa/’ﬁ/) P-a.s.

for everyn =0,...,N.

Proof. Since the market is arbitrage-free, there exists an EMM @ with
numeraire Y. The claim follows from the fact that V(&8 V(@8 are Q-
martingales with the same terminal value. Indeed, since the measures P,Q

are equivalent, we have Vjs,a’ﬁ) = Vjsfal’ﬁ,) Q-a.s. and so
V(s = gQ [gj(vaﬁ) |fn] — EQ [17]5[&/75/) |-7:n} _ P,
for every n < N. O

Remark 2.18 Analogously, in an arbitrage-free market, if (a, 8), (o/,5') € A
and L
ViR >y B pas

then
V(@) > yehf) poas,

for every n=0,..., N. O

2.1.5 Change of numeraire

The choice of the numeraire is not in general unique. From a theoretical point
of view, we shall see that a suitable choice of the numeraire can make compu-
tations easier (cf. Example 2.37); from a practical point of view, it is possible
that different investors use different numeraires, e.g. when market prices can
be expressed in different currencies (Euros, Dollars, etc.). In this section we
study the relation among martingale measures relative to different numeraires:
specifically, we give an explicit formula for the Radon-Nikodym derivative of
a EMM with respect to another, thus showing how to switch between diffe-
rent numeraires. The main tool that we are going to use is Bayes’ formula in
Theorem A.113.

Theorem 2.19 In a discrete market (S, B), let Q be an EMM with numeraire

Y and let X be a positive adapted process such that );—:) s a Q-martingale

(X represents the value process of another asset or strategy to be considered
as the new numeraire). Then the measure QX defined by

do* _ X (YN>_1

dQ ~ Xo \ Yo

V. (2.18)



2.1 Discrete markets and arbitrage strategies 25

s such that

Y, E@ [YZ |}"n} = X, EQ {XZ |fn} . n<N,  (219)
N N

for every random variable Z. Consequently QX is an EMM with numeraire
X.

Remark 2.20 We may rewrite formula (2.19) in the form

E? [DY(n,N)Z | F,] = o [DX(n,N)Z | ], n<N, (220)
where x v
D™ (n,N) Xy D" (n,N) Yo' n < N,

denote the discount factors from N to n with respect to the numeraires X
and Y, respectively.

Proof. In (2.18), L := % denotes the Radon-Nikodym derivative of Q¥
with respect to @ and therefore

EQY (7] = EQ[Z1)
for any random variable Z.

From (2.18) we infer

EQY (7| F] = E
1Z | 7l Yu \Xn

-1
ZYn(Xn) m], RN, o))

Indeed by Bayes’ formula we have

N Q 1 B9 Z32 | Fy
B 2150 = o 7 = E@{B; fJ]

and (2.21) follows, since by assumption (%) is a Q-martingale and therefore

n

we have
E° [— | Fn| = 2.

Now (2.19) is a simple consequence of (2.21):

Y, (Xn)_l X, 7

Yn \ Xy

zZ
Y, E° {Y— \ ]—‘n] = E@
N

(by (2.21))

x[ Z
= Q —_
X, E { an].
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Eventually from (2.19) it follows that Q¥ is an EMM with numeraire Y
indeed, by definition of EMM we have

S
= Q 7N =
Sp =Y, E {YN |-7:71,:|
(by (2.19) with Z = Sy)
xS
= Q —N
X, E |:XN |]—'n} 7

for n < N, and an analogous formula holds for B. O

Corollary 2.21 Under the assumptions of Theorem 2.19, for any n < N
and A € F,,, we have

X, (Y, \ 7!
Q¥ (A) = E° lXo <Y()> 1A] . (2.22)
that is
Q¥ _ X (Yu)™
aQ T X \ %

Proof. We have

Q¥(4) = B [14] =

(by (2.18))

(using that A € F,)

= EQ |1,E9

()]

and the thesis follows from the fact that % is a @-martingale. ]

2.2 European derivatives

We consider an arbitrage-free discrete market (S, B) on the space (£2,F, P).

Definition 2.22 A Furopean-style derivative is an Fy-measurable random
variable X on (2,F, P).
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To fix the ideas, X represents the terminal value (or payoff) of an option
with maturity 7. The Fy-measurability condition describes the fact that X
depends on the price process S, that is S',..., 8% are the underlying assets of
the derivative X: actually, under our assumption (H2), Fy = F and therefore
X is simply a random variable on ({2, F, P).

e A derivative X is called path-independent if it depends only on the terminal
value of the underlying assets:

X = F(Sy), (2.23)

where F' is a given function. This is the typical case of a European Call
option with strike K for which we have

F(z)=(z - K)T, x > 0;

e a derivative X is called path-dependent if it depends also on the values of
the underlying assets at times before maturity: for example, in the case of
a Look-back option we have
X =Sy— min S,.

0<n<N
The main problems in the study of a derivative X are:

1) the pricing problem, i.e. to determine a price for the derivative such that
no arbitrage opportunities are introduced in the market;

2) the replication problem, i.e. to determine a strategy (if it exists) («, 5) € A
that assumes the same value of the derivative at maturity:

V]S,a’ﬁ) =X a.s.

If such a strategy exists, X is called replicable and («, ) is called replicating
strategy.

In an arbitrage-free market, the first problem is solvable but the solution
is not necessarily unique: in other words, it is possible to find at least one
value for the price of a derivative in such a way that the absence of arbitrage
is preserved. Regarding the second problem, we saw in Chapter 1 that it is
rather easy to construct a market model that is arbitrage-free, but in which
some derivatives are not replicable. On the other hand, if a replicating strategy
(ar, B) for the derivative X exists, then by the no arbitrage principle (in the
form of Proposition 2.17) VO(Q“6 ) is the unique value for the initial price of X
that does not introduce arbitrage opportunities.

2.2.1 Pricing in an arbitrage-free market

We introduce the families super and sub-replicating portfolios for the deriva-
tive X:

Ap ={(a.B) e A|VEP =X}, Ay ={(a,0) e A| VP < X}
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Given (o, ) € , the initial value V( o) represents the price at which

everyone would be Wllhng to sell the derivative: indeed Vb(a’ﬂ ) is an initial
investment sufficient to build a strategy that super-replicates X. To fix ideas
we denote by Hy the (unknown and possibly not unique) initial price of X: it
is clear that we necessarily must have

Hy <V (a,8) € AL, (2.24)

If inequality (2.24) were not true, by introducing in the market the derivative

at the price Hy > Vo(a’ﬁ) for a certain strategy (@, 3) € A}, one could create
an obvious arbitrage opportunity which consists in selling the derivative and
buying the strategy (@, 3).

Analogously we must have

Hy >V (a,B) € Ax.

Indeed Vo(a’ﬁ ), for (o, 8) € Ay, represents the price at which everyone would
be willing to buy the derivative since, by selling («, 8) and buying the deriva-
tive, one could make a risk-free profit.

In conclusion any fair initial price Hy of X must satisfy

sup Vo(a’ﬁ) < Hy< inf Vo(a’ﬁ). (2.25)
(,B)EA% (a,B)eAL

Now, assuming that the market is arbitrage-free, there exists (and in ge-
neral it is not unique) an EMM @Q. By Theorem 2.19 it is not restrictive to
assume that B is the numeraire. Then with respect to ), the discounted prices
of the assets and the discounted value of any strategy in A are martingales:
in particular, they coincide with the conditional expectation of their terminal
values. For the sake of consistency, it seems reasonable to price the derivative
X in an analogous way: for a fixed EMM @, we put

HQ
HY = 5 = E° {—|f} n=0,...,N, (2.26)
n

and we say that H? is the risk-neutral price of X with respect to the EMM Q.

Actually, definition (2.26) verifies the consistency assumption (2.25) for
the price of X, i.e. it does not introduce arbitrage opportunities. Indeed we
have the following;:

Lemma 2.23 For every EMM @ with numeraire B, we have

sup V B < @ [ |.7-"} inf ‘7750"6),
(a,B)€A% By (a,B)eA%

formn=0,...,N
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Proof. If (a, 5) € Ay then, by Proposition 2.16, we have
7 (.B8) — pQ |{7(B) Q| X
Vied) = g [V | £ < B | 2| Fal
By

and an analogous estimate holds for (a, 8) € A%. O

Remark 2.24 The family of EMMs is a convex set, i.e. if Q1,Q2 are mar-
tingale measures with numeraire B, by the linearity property of conditional
expectation then also any linear combination of the form

)‘Q1+(1_)\)Q2; )‘e [Oa 1]7

is an EMM. As a simple consequence we have that the set of discounted initial
prices E¢ [%} is convex and can consist of a single point only or otherwise

it can be a non-trivial interval: in this last case it is an open interval (see, for
example, Theorem 5.33 in [134]). 0

The following theorem contains the definition of the arbitrage price of a
replicable derivative.

Theorem 2.25 Let X be a replicable derivative in an arbitrage-free market.
Then for every replicating strategy (o, 3) € A and for every EMM Q with
numeraire B, we have

X 7504@)
}: n=0,...,N. (2.27)

EQ || Fu :
The process H := V(P is called arbitrage price (or risk-neutral price) of X.

Proof. If (o, 8),(/,3") € A replicate X then they have the same terminal
value and, by Proposition 2.17, they have the same value at all preceding
times. Moreover, if (a, 3) € A replicates X, then (a, 3) € Ay N A% and by
Lemma 2.23 we have

X ~
EQ | | = (a,8)
for every EMM @ with numeraire B. |

The pricing formula (2.27) is extremely intuitive: for n = 0 it becomes

X
Hy=E° | —|;
0 |:BN:|’

then the current price of the option is given by the best estimate (expected
value) of the discounted terminal value. The expectation is computed with
respect to a risk-neutral measure (), i.e. a measure that makes the mean of
the prices of the assets exactly equal to the current observed price, inflated by
the interest rate. This is consistent with what we had seen in the introduction,
Paragraph 1.2.
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Remark 2.26 The following generalization of Theorem 2.25 holds:

in an arbitrage-free market, a derivative X is replicable if and only if
E@ [BL} is independent of the particular EMM @ (with numeraire B ).
N

For the proof of this result, based on the separation of convex sets of RY (cf.
Theorem A.177) we refer, for instance, to [282]. O

2.2.2 Completeness

We know that those who sell a derivative have to deal with the replication
problem. For example, a bank selling a Call option takes a potentially un-
bounded risk of loss: therefore, from the point of view of the bank, it is impor-
tant to determine an investment strategy that, by using the money obtained
by selling the derivative, guarantees the replication at maturity, “hedging”
the risk.

Definition 2.27 A market is complete if every European derivative is repli-
cable.

In a complete market every derivative has a unique arbitrage price, defined by
(2.27): moreover the price coincides with the value of any replicating strategy.

Remark 2.28 On the other hand, there exist derivatives whose underlying
is not quoted and traded, that is the case for instance of a derivative on a
temperature: more precisely, consider a contract that pays a certain amount
of money, say 1 Euro, if at a specified date and place the temperature is below
20 degrees centigrade. Then the payoff function of the contract is

1 if 2
Fay=q LTS
0 if z > 20.

In this case it sounds more appropriate to talk about “insurance” instead
of “derivative”. Since the underlying of the contract is a temperature and
not an asset that we can buy or sell in the market, it is not possible to
build a replicating portfolio for the contract, even though we can construct a
probabilistic model for the dynamics of the temperature. Clearly in this case
the market is incomplete. We note that also for derivatives on quoted stocks,
the completeness of the market is not always considered a desirable or realistic
property.

Now we remark that the completeness of a market model implies the
uniqueness of the EMM related to a fixed numeraire. Indeed let us first recall
that, by Theorem 2.19, we may always assume B as numeraire: then if Q1, Qo
are EMMs with numeraire B, by (2.27) we have

E@ [X] = EQ2 [X]
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for every derivative X. Since by assumption (H.2) we have F = F, we may
consider X =14, A € F, to conclude that Q1 = Qs.

As a matter of fact, the uniqueness of the EMM is a property that cha-
racterizes complete markets. Indeed we have the following classical result:

Theorem 2.29 (Second Fundamental Theorem of asset pricing) An
arbitrage-free market (S, B) is complete if and only if there exists a unique
EMM with numeraire B.

2.2.3 Fundamental theorems of asset pricing

We prove the First Fundamental Theorem of asset pricing which establishes
the connection between the absence of arbitrage opportunities and the exi-
stence of an EMM.

Proof (of Theorem 2.15). By Theorem 2.19 it is not restrictive to consider
B as the numeraire. The proof of the fact that, if there exists an EMM then
(S,B) is free from arbitrage opportunities is amazingly simple. Indeed let
Q@ be an EMM and, by contradiction, let us suppose that there exists an

arbitrage portfolio («, 3) € A. Then VO(O"fj ) — 0 and there exists n > 1 such
that P(Véa’ﬂ) >0)=1and P(Véa’ﬂ) > 0) > 0. Since @ ~ P, we also have
Q™ > 0) = 1 and Q(V{*? > 0) > 0, and consequently E? [‘7,5“’5)} > 0.
On the other hand, by (2.17) we obtain

B [Ve0)] = Vi =,

and this is a contradiction.

Conversely, we assume that (S, B) is free from arbitrage opportunities and
we prove the existence of an EMM () with numeraire 5. By using the second
part of Proposition A.121 with M = S, it is enough to prove the existence of

@ ~ P such that
N
B2 |3 o (Sh - §;_1)] =0 (2.28)

n=1
for every i = 1,...,d and for every real-valued predictable process a. Formula
(2.28) expresses the fact that the expected gain is null.

Let us fix i for good; the proof of (2.28) is based upon the result of sepa-
ration of convex sets (in finite dimension) of Appendix A.10. So it is useful
to set the problem in the Euclidean space: we denote the cardinality of {2 by

m and its elements by wi,...,wy,. If Y is a random variable in {2, we put
Y (wj) =Y, and we identify Y with the vector in R™
(Vi) Vo).

Therefore we have
m

EQ[Y] = ZY]'Q({WJ'})'
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For every real-valued predictable process «, we use the notation
N ~ ~
Gla) =Y an (S -5ia)
n=1

First of all we observe that the assumption of absence of arbitrage opportu-
nities translates into the condition

Gla) ¢ RT :={Y e R"\ {0} |Y; >0for j=1,...,m}

for every predictable a. Indeed if there existed a real-valued predictable pro-
cess a such that G(a) € R, then, by using Proposition 2.7 and choosing

‘70 = 0, one could construct a strategy in A with null initial value and final
value Viy = G(«) i.e. an arbitrage strategy, violating the assumption.
Consequently
¥ := {G(«a) | a predictable}

is a linear subspace of R" such that
yox =0,
with 2 defined by
H o={Y eR |1+ ---4+Y, =1}

Let us observe that %" is a compact convex subset of R™: then the conditions
to apply Corollary A.178 are fulfilled and there exists & € R™ such that

i) (¢, Yy=0foreveryY € ¥;
ii) (¢,Y) >0 for every Y € .%;

or equivalently

i) > &;Gj(a) =0 for every predictable process «;
=1
m

ii) > &Y; >0 forevery Y € .
j=1

In particular ii) implies that &; > 0 for every j and so we can normalize the
vector £ to define a probability measure @), equivalent to P, by

Q({w;}) = (Z&) 1.

Then i) translates into
E?[G(a)] =0

for every predictable «, concluding the proof of (2.28). a
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Next we prove the Second Fundamental Theorem of asset pricing, which
establishes the connection between the completeness of the market and the
uniqueness of the EMM.

Proof (of Theorem 2.29). We just have to prove that if (S, B) is free from
arbitrage opportunities and the EMM @ with numeraire B is unique, then the
market is complete. We proceed by contradiction: we suppose that the market
is not complete and we construct an EMM with numeraire B, different from Q.
We denote the linear space of normalized final values of strategies (o, 3) € A
by

V= {7 | (a.0) € A}

As in the proof of Theorem 2.15 we identify random variables with elements
of R™. Then the fact that (S, B) is not complete translates into the condition

¥ CR™. (2.29)

We define the scalar product in R™
(X,Y)g=E?[XY] =) X;Y;Q({w;}).
j=1
Then, by (2.29), there exists £ € R™ \ {0} orthogonal to ¥, i.e. such that
(& X)q = B?[¢X] =0, (2.30)
for every X = ‘71570“6), (o, ) € A. In particular, by choosing® X = 1 we infer

E9[¢ =0. (2.31)

For a fixed parameter 6 > 1, we put

Aty = (1+ o) Q. =L,
where
[€lloo == max |&;].

1<j<m

We prove that, for every § > 1, Qs defines an EMM (obviously different from
@ since & # 0). First of all Q5({w;}) > 0 for every j, since

& -0

1+ :
61100

3 The constant random variable that is equal to 1 belongs to the space ¥ by
the representation (2.13) for Vjs,a’ﬁ )| it is enough to use Proposition 2.7 choosing
al,...,a?=0and V) = 1.
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Moreover we have

2= Qultes)) = Z( si—) @)
i 1

= ; ({w;}) + 6”5”00 leij({ i) =

_ L Qe

=Q(2) + 6H§HooE €] =1

by (2.31). Therefore Q5 is a probability measure equivalent to @ (and to P).

Next we prove that S is a s-martingale. Using the second part of Propo-
sition A.121 with M = S, it is enough to prove that

N
B |3 a, (S - S )] —0
n=1
for every i = 1,...,d and for every real-valued predictable process «. For fixed

i, we use the notation
N
Yo (-5,
n=1
Then we have

5 atal = 3 (1+ ) S@atter)

Jj=1

I

Il
—

GJ( ) ({w]} 6”5”0026] {w]})

J

1
= B9 [G(a)] + g B (€G] =
(by (2.30))
= E?[G(a)] =0,
by Proposition A.121, since Sisa @Q-martingale and « is predictable. a

2.2.4 Markov property

Consider a discrete market (S, B) in the form (2.1)-(2.2). Under the additional
assumption that the random wvariables p1, ..., un are independent, the price
process S has the Markov property: intuitively this property expresses the fact
that the future expected trend of the prices depends only on the “present”
and is independent of the “past”. We recall the following:
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Definition 2.30 A discrete stochastic process X = (X,,) on a filtered proba-
bility space (2, F, P,(F,)) has the Markov property if

i) X is adapted to (Fp);
it) for every bounded %B-measurable function ¢ we have

Elp(Xy) | Facal = Elp(Xy) | Xpa],  n2>1 (2.32)

As a consequence of (2.32) and Corollary A.10, for any n there exists a mea-
surable function g, such that

E [‘P(Xn) | -7:71/—1] = gn(Xn—l)-

The proof of the Markov property is based upon Lemma A.108.

Theorem 2.31 If the random variables p1, ..., un are independent then the
stochastic process S has the Markov property.

Proof. We have?
E [‘P(Sn) | fn—l] =F [‘P(Sn—l (1 + Hn)) | fn—l] =

(applying Lemma A.108 with X = 14+pu,, Y =S5,-1, = F,—1and h(X,Y) =
P(XY))

= gn(Sn-1), (2.33)
where
gn(s) = Elp(s(1 + )]
and the thesis follows from Remark A.109. a

2.3 Binomial model

In the binomial model, the market is composed of a non-risky asset B (bond),
corresponding to the investment into a savings account in a bank, and of a
risky asset S (stock), corresponding, for example, to a quoted stock in the
exchange.

For the sake of simplicity, we suppose that the time intervals have the

same length
T
tp —th_1 = N
and the interest rate is constant over the period [0, T], that is r,, = r for every

n. Then the dynamics of the bond is given by
B, =B,_1(1+71), n=1,...,N, (2.34)
so that B, = (1 +r)".

4 By assumption the empty set is the only event with null probability and so
there is only one version of the conditional expectation that we denote by
Ep(Sn) | Fral-
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For the risky asset we assume that the dynamics is stochastic: in particular
we assume that when passing from time ¢,_1 to time ¢,, the stock can only
increase or decrease its value with constant increase and decrease rates:

Sn = Sn—1(1+ fin), n=1,...,N, (2.35)

where p1,...,un are independent and identically distributed (i.i.d.) random
variables on a probability space (2, F, P), whose distribution is a combination
of Dirac’s Deltas:

1+ pin, ~ pdy + (1 — p)da, n=1,...,N. (2.36)

In (2.36) p €]0,1[, u denotes the increase rate of the stock over the period
[tn_1,tn] and d denotes the decrease rate®. We assume that

0<d<u. (2.37)
We point out that we have

P(Sy = 1S1) = P+ =) =

that is
s, — {uSn_l, with probability p,
dS,—1, with probability 1 — p.
Hence a “trajectory” of the stock is a vector such as (for example, in the case
N =4)
(So, uSo, udSy, u>dSy, u>dSp)

or
(So, dS()7 dQSO, Ud250, U2d250)

which can be identified with the vectors
(u7 d7 u7 u)
and
(d,d,u,u)

of the occurrences of the random variable (1 + p1,1 + po, 1 + ps, 1 + p4),
respectively. Therefore we can assume that the sample space §2 is the family

{(e1,...,en) | ex =u or e =d}

containing 2V elements and F is the o-algebra of all subsets of £2. The family
of trajectories can be represented on a binomial tree as in Figure 2.1 in the
case N = 3.

® The state u (up) corresponds to the increase of the value of the stock, whilst the
state d (down) to its decrease.
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Fig. 2.1. Three-period binomial tree

Remark 2.32 The probability measure P is uniquely determined by (2.36)

and the assumption of independence of the random variables p1, ..., uy. In-
deed we have

P(S, = w/d"18,) = (;‘) P—p)"i,  j=0,...,n, (2.38)
for n = 1,...,N. Formula (2.38) corresponds to the well-known binomial

distribution which represents the probability of obtaining j successes (j ups)
after n trials (n time steps), when p is the probability of success of the single

trial. The coefficient
(5)-m=
i) gin—j)

represents the number of trajectories on the binomial tree that reach the price
Sp = ’U,jdnijSO.
For example, in the case n = 2, the probability that Sy is equal to u2Sj is
given by
P(Sy = u*Sp) = P((1+ m = u) N (1 + p2 = u)) = p°,
where the last equality follows from the independence of pq and ps. Analo-
gously we have

P(Sy =udSy) = P(1 + 1 =u)N(1+ p2 =d))
+P(1+m=d)N(1+ p2 =u)) =2p(1l—p). 0
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2.3.1 Martingale measure and arbitrage price

In this section we study existence and uniqueness of the EMM.
Theorem 2.33 In the binomial model, the condition

d<l+r<u, (2.39)

is equivalent to the existence and uniqueness of the EMM Q. More precisely,
if (2.39) holds then

= ﬁ%;d €10,1], (2.40)
and we have
QUApi =) = 1= QL+ pn = d) = ¢ (2.41)
Moreover the random variables 1, ..., un are Q-independent and we have

Q(S, = uFd"*Sy) = (;) (1 —q)"F, 0<k<n<N. (2.42)

The process S has the Markov property on the space (£2,F,Q, (F,)): for every
function ¢ we have

EQ [@(Sn) | fn—l] = EQ [@(Sn) ‘ Sn—l] = q@(usn—l) + (1 - q)@(dsn—l)'
(2.43)

Proof. If an EMM @ exists, then by Definition 2.13 we have
S, ;= E° [§n | fn_l} , (2.44)
or equivalently
Sn—1(1+7) = B9[Syt (1+ pin) | Fumr] = Sp1 BQ[(1+ p1n) | Fra].

Since S,,—1 > 0, we simplify the previous expression and obtain (cf. Proposi-
tion A.105)

r:EQ[Mn | o1l =(u = 1)Q (tn =u — 1] Fr1)
H(d=1) (1= Q= u—1] Fuo)).
Then we have 1+ p
r—
and (2.39) must hold. Moreover, since the conditional probability in (2.45)
is constant, by Proposition A.106 the random variables pi,...,uny are Q-

independent. Consequently (2.41) holds and also (2.42) can be proved as in
Remark 2.32: in particular @ is uniquely determined. The Markov property of
S follows from Theorem 2.31 and the fact that uq,..., un are @Q-independent.
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Note that p1, ..., un are Q-independent even if we do not assume that they are
P-independent. Then formula (2.43) follows from (2.33) since, in the binomial
case, we have

9n(s) = E? [p(s(1 + pn))] = qp(us) + (1 — q)p(ds).

Conversely, condition (2.39) is equivalent to the fact ¢ in (2.45) belongs
to the interval ]0,1[. Then @, defined by (2.42), is a probability measure
equivalent to P and since (2.45) is equivalent to the martingale condition
(2.44), Q is an EMM. O

Condition (2.39) has a clear financial interpretation. Indeed assume that
the parameters u,d,r in (2.34)-(2.36) verify (2.39), i.e. d < 14 r < u: then
the fact of borrowing money from the bank to invest it in the stock gives a
positive probability of getting a profit, greater than leaving the money in the
savings account, since 1 + r < u. This correspond to point iii) of Definition
2.10 of arbitrage. Nevertheless, this investment strategy does not correspond
to an arbitrage portfolio, since there is also exposure to the risk of loss (we
have d < 1 4 r, so there is a positive probability that the stock is worth less
than the savings account) i.e. property ii) is ruled out. More generally, we
have the following:

Corollary 2.34 The binomial model is arbitrage-free and complete if and
only if condition (2.39) holds. In this case the arbitrage price (Hy,) of a deriva-
tive X is uniquely defined by the following risk-neutral pricing formula:

1

Hy=
(I14+7r)N-n

E9[X|F), 0<n<N. (2.46)
In particular, if X = F(Sn), we have the following explicit formula for the
initial price of X :

1
(1+r)N

N
— e 2 (F ) - ovrrare sy,
k=0

Proof. Combining Theorem 2.33 with the Fundamental Theorems of asset
pricing, we prove that the binomial model is arbitrage-free and complete if
and only if condition (2.39) holds. Formula (2.46) follows from (2.27). Formula
(2.47) follows from (2.46) with n = 0 and (2.42). ]

Hoy = E9[F(Sn)]

(2.47)

In Remark 2.14, we called P the objective or real-world probability, since
it has to be determined on the basis of observations on the market, while
Q is defined a posteriori. Indeed the EMM has no connection with the “real
world”, but it is useful to prove theoretical results and to get simple and
elegant expressions for the prices of derivatives such as formulas (2.46) and
(2.47).
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2.3.2 Hedging strategies

In the previous section we showed the completeness of the binomial market as
a consequence of the theoretical result of Theorem 2.29: here we aim at giving
a direct and constructive proof of the existence of a replicating strategy for a
derivative X.

First we analyze the case of a path-independent option X that is o(Sn)-
measurable: in this case, by Corollary A.10, there exists a function F' such
that X = F(Sn). If Sy_1 denotes the price of the risky asset at time tx_1,
we have two possible final values

uSN*la
Sn —
N {dle.
For fixed (a, B) € A, we set
Vn:ansn"_ﬁan, 'I’L:O,...,.ZV’7

and impose the replication condition Vy = X: this is equivalent to

{OéNUSN—1 + OnvBy = F(uSn-1),

(2.48)
andSn-1+ By = F(dSn_1).

Since it is necessary that both equations are satisfied, we get a linear system

in the unknowns an and by, whose solution is given by

F(USN_l)fF(dSN_l) B _ UF(dSN_l)de(uSN_l)
uSy_1—dSn—1 N (1+7)N(u—d) .

anN =
(2.49)

Formula (2.49) expresses ay and By as functions of Sy_; and shows how to
construct a predictable portfolio in a unique way at time ¢y_1, replicating
the derivative at time ¢y for any trend of the underlying asset. We note that
ay and By do not depend on the value of the parameter p (the objective
probability of growth of the underlying asset). Further, ay has the form of
an incremental ratio (technically called Delta).

We can now write the value of the replicating portfolio (or equivalently the
arbitrage price H of the derivative) at time t_1: indeed by the self-financing
condition we have

Vo1 =anSv-1+BnNBn_1 =

(by (2.49) and the definition of ¢ in (2.40))

= 1xr (¢F(uSn-1) + (1 —q)F(dSn-1)). (2.50)

Recalling the Markov property (2.43) and the expression
q=Q(Sn =uSn-1) =1-Q(Sy = dSN-1),
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Fig. 2.2. Hedging of a Call in a one-period binomial model

we have that (2.50) is consistent with the risk-neutral pricing formula (2.46)
that here reads

1
Hy_ 1 =Vy_1 = 1—EQ [F(Sn) | Sn_1]. (2.51)
+r
By (2.51), Hy_1 is a deterministic function of Sy _; and equals the discounted
conditional expectation F'(Sy) given Sy_i.
Let us now consider a simple example to fix the ideas.

Example 2.35 We suppose that the current price of a stock is Sy = 10 and
that over the year the price can rise or fall within 20% of its initial value.
We assume that the risk-free rate is r = 5% and we determine the hedging
strategy for a Call option with maturity 7' = 1 year and strike K = 10. In
this case v = 1.2 and d = 0.8 and the replication condition (2.48) becomes

{12a+}gg =2,

105 5 _
S8a + T00P = 0,
hence o« = % and g = —%. Then the current value of the hedging portfolio
(corresponding to the arbitrage price of the option) is equal to
25
Vo =10 = —.
0 o+ ﬂ 21
O

Let us go back to the previous argument and repeat it to compute, by a
backward induction, the complete hedging strategy (&, 3,) forn =1,..., N.
More precisely, assume that the arbitrage price H,, = H,(S,,) is known. Then,
since at time t,, we have two cases

Sn _ USn—la
dSnflu
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by imposing the replication condition V,, = H,,, we obtain the system

anusn—l + ﬂan = Hn(USn—l)a (252)
O‘ndsnfl + ﬁan = Hn(dsnfl)
The solution of (2.52) is
. = Hn(uSn_l) - Hn(dSn_l) 2 an(dSn_1) — dHn(USn_1)
" Sp—1(u—d) ’ " (14 7r)"(u—d) ’
(2.53)

that is the hedging strategy for the n-th period [t,,—1, ¢,]. By the self-financing
condition we also find the arbitrage price of X at time ¢,,_1:

Hn—l = Vn—l = o‘ann_l + Ban—l' (254)
Equivalently we have

f, = HeluSn) T A= )HAS0or) _ L oy 15, ) (255)
n—1 1+7r 1+r n n—1]- .

More generally, we have

Hx o = e B2 [F(S0) | Snoa)
- ﬁ > <Z> ¢“(1— @ Pk Sy ),

k=0
and in particular the current value of the derivative is given by

1
Tk

N
a2 (F ) - ovrrare s
k=0

consistently with formula (2.47).

The previous expressions can be computed explicitly as a function of the
current value of the underlying asset, once F' is given; nevertheless in the
following section we will see that, from a practical point of view, it is easier
to compute the price using a suitable iterative algorithm.

Ho = EQ [F(SN)]

Remark 2.36 As we have already pointed out in Paragraph 1.2, the arbitrage
price of X does not depend on the probability p of growth under the real-world
probability but only on the increase and decrease rates u, d (and also on r). O

Let us consider now the general case and let X be a European derivative
(possibly path-dependent). The final replication condition reads

Sn_ By = X
ayuSny_1+ OnBn dv (2.56)
andSn-1+ BnBy = X9,
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where X* and X? denote the payoffs in case of increase and decrease of the
asset given the information at time ¢{y_1, respectively. The solution of the
linear system (2.56) is given by

Xv - x4 = uX?—dX"

R O R CENT RO}

Ll T (2.57)

and provides the strategy for the last period that guarantees the final repli-
cation. By the self-financing condition we have that

Hy_1:=VNn_1=anxSn-1+ OnBn-1

is the arbitrage price of X at time ¢ty _1. A direct computation shows that this
result is consistent with the risk-neutral valuation formula (2.46): precisely,
we have

(qX“ + (1 - q)Xd) = %EQ (X | Fn-1]-

anSn-1+ BnBy-1 = T

147
Next we use an analogous argument in the generic n-th period. If S,,_; denotes
the asset price at time t,,_1, we have

Sn — usn—l;
dSn—1.

We denote by H* and H¢? the arbitrage prices at time t,,, given the informa-
tion at time t,_1, in case of increase and decrease of the underlying asset,
respectively. Imposing the replication condition V,, = H,,, we obtain the sys-
tem

n Sn— an = Hua
OntiSy—1 + 0 " (2.58)
andsn—l + ﬂan = Hn7
with solution
HY — H? = uH? — dH"
Oy = — 22—, = —————— 1 2.59
Spalw—d) T A (259
By the self-financing condition we infer
Hn—l = Vn—l = &nsn—l + Ban—l (260)
that is the arbitrage price of X at time t,,_1. Equivalently we have
H" + (1 —q)H? 1
g, =t (-0l _ EQ[H, | Fu_i]. (2.61)

1+7r T 14

Example 2.37 (European Call option) We consider the payoff function
of a European Call option with strike K:

F(Sy) = (Sy — K)T = max{Sy — K, 0}.
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By using formula (2.47) and recalling that ¢ = lt%;d,

the option is given by

the initial price Cy of

N

0

=2 () (7

h>hg

N
K (N) h N—h
- > ¢"(1 =)™ ",
(1 + T) h>hg h
where hg is the smallest non-negative integer number greater than or equal to
log ﬁ
log 7
Therefore K
Co = SoN(q) — ———N(q), 2.62
0 = SoN(q) AT~ (9) (2.62)
where qu
d= 2.63
e 1+r ( )
and

Y (N
— h N—h o~
Np) =Y (h)p 1-pN" p=Gq
h>hg
We note that N (q) and N (g) in formula (2.62) can be expressed in terms of
probability of events with respect to suitable probability measures. Indeed,
for 0 < n < N, we have

Sy — K)t
C, = B,E® {% j:n]
Sy — K
= BnEQ |:(NBN) ]l{SN>K} | ‘7:77«:| = Il - 123
where B K
I, = gN Q(Sy > K| F,),
and

S
Il = BnEQ [B—ZH{SN>K} | .7:”:|

-1
S S|
s EQ[ﬁﬂ{Swm(—Z) m] .

R ONE

Sy (So\ ! B
(@) n) -
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(by Bayes’ formula and Theorem 2.19 on the change of numeraire, denoting
by @ the EMM with numeraire S)

& -1

By ’

Sy ~ Sh
—Bn§0 Q(Sn > K | Fp) B,

In conclusion, we obtain the following formula:

~ K
= K - K
Cn SnQ(SN > | fn) (1 +7’)an Q(SN > | ‘7:71)7
and in particular, with n =0
~ K

Comparing (2.64) to (2.62), we see that the EMM Q with numeraire S is the
equivalent measure to P such that (cf. (2.40) and (2.63))

~ - qu
1 n = = = .
QL+ pn =u)=q T+r

It is easy to verify that 0 < ¢ < 1 if and only if d < 1 4+ 7 < w.

Although formulas (2.64) and (2.62) may be more elegant from a theore-
tical point of view, for the numerical computation of the price of a derivative
in the binomial model, it is often preferable to use a recursive algorithm as
the one that we are going to present in the next section. a

2.3.3 Binomial algorithm

In this section we present an iterative scheme that is easily implementable
to determine the replicating strategy and the price of a path-independent
derivative. We discuss briefly also some particular cases of path-dependent
derivatives.

Path-independent case. In this case the payoff is of the form X = F(Sy).
The arbitrage price H,_; and the strategy (ay,3,) depend only on the price
Sn_1 of the underlying asset at time t,,_1. Since S,, is of the form

Sp = Sn i = uFd"F Sy, n=0,...,N and k=0,...,n, (2.65)

the value of the underlying asset is determined by the “coordinates” n (time)
and k (number of movements of increase). Hence we introduce the following
notation:

3
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for the arbitrage price of X, and analogously
On k= an(Sn—l,k)a ﬂn,k = ﬂn(sn—l,k)7

for the related hedging strategy. By the replication condition and the pricing
formula (2.55), we get the following backward iterative formula for the price
(Hn):

Hy . = F(Sn k), 0<k<N, (267
1
H, 1= T+ T(an,kH +(1-q)Hni), 0<k<n-—1, (2.68)

forn=1,..., N and where ¢ defined in (2.40). Clearly the initial price of the
derivative is equal to Hy .

Once we have determined the values H, i, by (2.53) the corresponding
hedging strategy is given explicitly by

Hn,k-‘rl - Hn,k

Qa _ ink+l o ANk U'Hn,k - dHn,k+1
n,k Sn—l,k(u — d) ’

Bk = "3 Py (u - d)

(2.69)

forn=1,...,N and £k =0,...,n — 1. We remark explicitly that (c,k,Onr)
is the strategy for the n-th period [tn,_1,t,], that is constructed at time t,_;
in the case Sp—1 = Sn—1k-

Example 2.38 We consider a European Put option with strike K = % and
value of the underlying asset Sy = 1. We set the following values for the
parameters in a three-period binomial model:

1 1
u , 5 r 5
hence we obtain
B 1—|—7"—d_2
T u—-d 3

First of all we construct in Figure 2.3 the binomial tree where we put the
prices of the underlying asset inside the circles and the payoff of the option at
maturity outside, using notation (2.66), i.e. Hy i is the value of the derivative
at time ¢, if the underlying asset has grown k times.

Next we use the algorithm (2.67)-(2.68)

1 1 2 1
H, _ = H, + (1 —q)H, =— | =H, + -
n—1,k 1 T(q k1 ( Q) n,k) 1 % (3 n,k+1 3 n,k)

and we compute the arbitrage prices of the option, putting them outside the
circles in Figure 2.4.

Eventually, using formulas (2.69), we complete the figure with the hedging
strategy for the derivative in Figure 2.5. |
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Fig. 2.3. Three-period binomial tree for a Put option with strike K = g and So =1,

with parameters u =2 and d =7 = %

Fig. 2.4. Arbitrage prices of a Put option with strike K = g and So = 1in a
three-period binomial model with parameters u =2 and d =r =
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_ 1 __ 16
a32 = — 13, ﬂ3,2 =31

__ 5 _ 92

2,1 = —357, /32,1 = 243
_ 67 __ 364 _ _ 20
Q10 = —9335 P10 = 559 =-1, B31 =5
— 20
- 27

Fig. 2.5. Hedging strategy for a Put option with strike K = % and So = 11in a

three-period binomial model with parameters u =2 and d =r =

Path-dependent case. We examine some well-known path-dependent deriva-
tives: Asian, look-back and barrier options. The iterative scheme (2.67)-(2.68)
is based upon the fact that the price H, of the derivative has the Markov
property: so it is a function of the prices at time ¢,, and it does not depend on
the previous prices. In particular the scheme (2.67)-(2.68) requires that at the
n-th step n+ 1 equations must be solved in order to determine (H,, 1)k=0, .. n-
Therefore the computational complexity grows linearly with the number of
steps of the discretization.

On the contrary, we have already pointed out that, in the path-dependent
case, H, depends on the path of the underlying asset (Sp,...,S,) until time
t,. Since there are 2" possible paths, the number of the equations to solve
grows exponentially with the number of the steps of the discretization. For
example, if we choose N = 100, we should solve 21%° equations just to compute
the price at maturity and this is unfeasible.

Sometimes, by adding a state variable that incorporates the information
from the past (the path-dependent variable), it is possible to make the price
process Markovian: this simple idea is sometimes used also in the continuous
case. We consider the following payoff:

(Sy — Ay)T  Call option with variable strike,

2.70
(Ay — K)t  Call option with fixed strike K, (2.70)

F(Sy,An) = {
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where A denotes the path-dependent variable: more precisely, forn =0,..., N,
n
T kX—:O S (Asian option with arithmetic average)
" ntl . . . .
A, = (kl:IO Sk) (Asian option with geometric average) (2.71)
min Sy (Look-back option with variable strike)
0<k<n
max Sk (Look-back option with fixed strike).
0<k<n

When passing from time ¢,,_; to time t,,, we have S,, = uS,_1 or S,, = dS,,_1
and consequently A,, takes the values A% or A% where

nAp_1+uSn_1
n+1

(
1
Av — ((An—1)"uSp—1)"+1  (
min{A4,,_1,uS,—1}  (Look-back option with variable strike)
max{A,_1,uS,—1} (Look-back option with fixed strike)
(2.72)
and A% is defined analogously. The following result can be proved as Theo-
rem 2.31.

Asian option with arithmetic average)

Asian option with geometric average)

Lemma 2.39 The stochastic process (S, A) has the Markov property, and for
every function f we have that
E® [P(Snt1, Ant1) | Ful = E® [e(Sn+1, Ant1) | (S, An)]
= qp(uSn, A3) + (1 — q)p(dSy, A7).
We set Sy, i, as in (2.65) and denote by A, ;(j) the possible values of the path-

dependent variable corresponding to S, i, for 0 < j < J(n, k) and suitable
J(n,k) € N.

Example 2.40 Under the assumption ud = 1, we have

Snk:

)

dr—2ks, if n > 2k,
u?knSy if n < 2k.

In the case of a Look-back option with fixed strike, if n > 2k then S, 1, < S
and ‘
Ani(j) =uFS,  j=0,....,n—k,

while, if n < 2k, then S, > Sy and
Ak (5) = uFI 85, j=0,...,k.

Just to fix the ideas, it can be useful to construct a binomial tree with N = 4
and verify the previous formulas.
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Also in the case of a Call option with strike K and barrier B > K, we can
use the previous processes: here the payoff is given by

F(Sn,An) = (Sn — K)*1{a,<By}-

O
In general we put
Hy 1 (5) = Hn(Sn ks An.k(5))- (2.73)
By the previous lemma, since
L pe
H, = mE [Hn+1 | fn]

we can price a path-dependent derivative using the following iterative scheme:
Hy i (j) = F(Sn e, Ane(5)),
for0< k<N, 0<j<J(N,k), and

1 .
:m (an (usn—l,kn AZ—I,k(]))

+ (1= q)Hy, (dSn-1,6, A% 1()) )’

Hn—Lk(j)

for0<k<n-1,0<j<Jn-1k),and n = 1,...,N. Eventually the
hedging strategy is given by

o Hug1(G) — Huk(5)
an,k(]) - (U — d)Snfl,k 5
wHy, 1 (j) — dHp x11(5)

Bn,k(j) = (U7d)(1 +T)n ’

(2.74)

forn=1,....N, k=0,....n—1and j =0,...,J(n, k). Note that, for a

n

Look-back option with fixed strike, J(n,k) < % and so the computational

complexity at the n-th step is of order n?2.

2.3.4 Calibration

The calibration of a model consists in determining the parameters by the ob-
servation of the current-world market. The parameters in the binomial model
are the risk-free rate r over the period [t,—1,t,], the increase and decrease
factors u, d of the underlying asset and the objective probability p. However,
we have already noticed (cf. Remark 2.36) that the arbitrage price of a deriva-
tive does not depend on p: therefore only 7, u,d have to be determined. We
point out that the parameters depend on N since obviously the increase and
decrease rates depend on the amplitude of the time period % nevertheless
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in this section N is fixed and so we do not show this dependence explicitly.
In the following procedure the hypothesis of P-independence of the random
variables u1,...,un plays a crucial role.

If we suppose that the annual interest rate © is known, then we can obtain
r easily by the relation

l+r=e¥. (2.75)

Next we define the annual rate of return u of the risky asset by putting

ST = Soe”T, (276)
or equivalently
St
T =log —.

It is clear that p is a random variable that plays an analogous role to the
interest rate in the compounding formula. By (2.35) we have

g N
log S_T = Z log(1 + pn),
0 n=1

and since the random variables p,, are identically distributed by (2.36), we
get the following formula that defines the average rate of return m:

mT = E[uT] = NE [log(1 + p1)] = N (plogu + (1 — p)logd) . (2.77)

Analogously the wvolatility o is defined by the following equality:

N
S
o?T := var (lo —T) = var log(1 4 pu,) | =
85 ; (1 + n)

(by the independence of the random variables p,,)
= Nvar (log(1 + 1)) =

(in virtue of Exercise A.36)

2
= Np(1l—p) (log g) . (2.78)
In other words, the average rate of return and the volatility are the expec-
tation and the standard deviation of the annual rate of return, respectively.
The volatility represents one of the most common and known estimators of
the riskiness of the underlying asset. In principle the values of m and o can be
considered approximately observable in the current-world market. For exam-
ple, one can easily get some estimates of the values of m and o starting from
a given set of historical values of S. We therefore suppose that m and o are
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known and we try to draw from them the value of v and d. By equations
(2.77)-(2.78) and putting § = %, we obtain the system

md = (plogu + (1 —p)logd),
025 =p(1 —p) (log %)2.

Thus we have a non-linear system of two equations in the three unknowns u, d

and p: in order to find a solution, we impose another condition a priori. The

most common choices in the literature are the following ones: p = % or

(2.79)

ud = 1. (2.80)
Imposing p = %, system (2.79) becomes
{ud = 20m,
u 620\/3’
and its solution is given by
u = e7Votms, d = e=oVotms, (2.81)
Imposing condition (2.80), we have® d < 1 < u and system (2.79) becomes

{2p—1+ 1;’;‘1,

025 = 4p(p — 1) (logu)®,
and its solution is given by
—rVIVIH(R)T g V1 (3)” (2.82)
In both cases (2.81) and (2.82), we obtain’
u=eVotoVo) — 1 4 5\/5 + o(V),
= e 7Voto(Vo) — 1 _ 51/§ + o(V6),

for § — 0; in other terms, “—\;31 and 1;\/3‘1 approximate the value o of the volati-

lity or riskiness of the asset. For the sake of simplicity, in order to implement
the binomial algorithm it is very common to choose

Vi g= eV, (2.83)

 We note that, if condition (2.80) holds, then
u"d"So = So
therefore the price “moves around” its starting value.
" We recall that the function f is a “little-0” of the function g as  — zo (in symbols
f(z) =o(g(z)) as ¢ — xo) if there exists a function w such that f = gw and

lim w(z) =0.

T—x(
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Remark 2.41 Assuming (2.83) and recalling that § = %, for the maximum
and minimum values of the final price of the underlying asset, we have

Sj(vmaX) — UNSO _ ea\/NTSO ~ +00,

SU™ = aN sy = e VNS, —— 0,
N—o0
and so, when N increases, the interval of the final values of S gets larger and
“covers” the whole R+ as ©z — xg.
The no-arbitrage condition d < 1 4+ r < u becomes

e V8 < 0 < ooVE

or equivalently

—oV'N < VT < oV/N.

Therefore if we choose arbitrary values 7 and o > 0, for the the annual risk-
free rate and the volatility respectively, then the no-arbitrage condition is
fulfilled provided that N is large enough: in that case, by (2.83) the EMM is
defined by

1+r—d e _ e—oV3 1 1 /. o2
9= eaﬁ_605§+—<r——>ﬁ+o(\/3)

as 6 — 0. O

Example 2.42 We set the parameters of the market as follows: annual in-
terest rate # = 5% and volatility o = 30%. We consider a 10-period binomial
model for an option with maturity in 6 months: N = 10 and T = % By (2.75)
we have

_5_.

r=em'z 1 —1 ~ 0.0025,
Analogously, by (2.83), we have

30 .
10

5V~ 1.0693. O

S

~ e

2.3.5 Binomial model and Black-Scholes formula

We have seen that the binomial model, with a fixed number of periods NV,
allows us to determine the initial arbitrage price HéN) of a given derivative
X. We may wonder if the binomial model is stable, this meaning that, if we
increase the number of steps, the price HéN) actually converges to some value,
so that the situation in which the value diverges or oscillates around more than
one value is avoided?.

8 The divergence or the oscillation around some values would cast doubts on the
consistency of the model.
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T
European Put
2351 ——— American Put |

231 1

2.25 1

2.2

Option Price

10 20 30 40 50 60 70 80 90 100
Iterations

Fig. 2.6. Convergence of the price of a European and an American option in the
binomial model to the corresponding Black-Scholes price when N tends to infinity

In this section we prove that the binomial model is stable and approximates
the classical Black-Scholes model in a suitable way, when IV tends to infinity.
In what follows, the number of periods N € N is variable so it is important
to express the dependence on N of the parameters of the model explicitly:
therefore we denote the interest rate, the increase and decrease factors by
rN,un,dy respectively, the random variables in (2.35) for k = 1,..., N by

,uch) and the martingale probability by ¢y, @x. Let T > 0 be fixed: we put

T
6]\7 = N7
so, by (2.75), we have
L+ry =€, (2.84)

where we denote by r the annual risk-free rate. Further, we assume that uy
and dy take the following form:

uy = eam-‘rc@N’ dy = e—Um-i-,BéN’ (2.85)

where «, 0 are real constants. Such a choice is in line with what we saw in the
previous section: indeed by imposing one of the conditions p = % or ud =1
for the calibration, we obtain parameters of the form (2.85). Furthermore, the
simplest choice (2.83) corresponds to a = = 0.

First of all we observe that the asymptotic behaviour of the EMM is in-

dependent of «, 3. Indeed we have the following;:
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Lemma 2.43 If (2.84)-(2.85) hold, we have

113100 qN = % (2.86)
Proof. By definition
eron e—am+ﬁéN
IN = oVon+adn — o—o/ontBon

(2.87)

Then, using a Taylor expansion for the exponentials in the expression (2.87)
of gn, we get

26T6N _ 60'\/6N+056N _ e*U\/5N+ﬁ6N

20N~ = T e ratn — o—ovanthon
(T o a_w) 53 + 0 (8n) (2.88)
T ovason) o BAT
hence the claim. a

Now we consider a European Put option with strike K and maturity 7": by
formula (2.47), the initial price PéN) of the option in the N-period binomial

model is given by
+
(K—S (1—|—uk ))) ]
-1 (2.89)

= "TEON [(K SOeXN)T

PV = e TR

where we put

N
Xy = log H (1 + ol ) Sy, (2.90)
k=1 k=1
and
Y™ = log (1+u(N)), k=1,...,N,

are i.i.d. random variables®. Further, we have
Qn (Yk(N) =0\on + aéN) = qn,
Qn (Y;N) = —0\/on + 55N> =1-gn.

We rewrite (2.89) in the form

(2.91)

N
By = B9 [o(Xn)],
9 By Theorem 2.33, the random variables uéN)
EMM.

are independent also under the



56 2 Discrete market models

where
o(x) = e " (K — Spe™) T (2.92)

is a continuous bounded function on R, ¢ € Cy(R). The following result
provides asymptotic values for the mean and the variance of Xy in (2.90).

Lemma 2.44 We have:

2
lim var® (Xy) = o2T. (2.94)

N—o0

2
lim E9Y [Xy] = <r - U—) T, (2.93)
N—oo

Before proving the lemma, let us dwell on some remarks. By the central limit
theorem'®, X converges in distribution to a normally distributed random
variable X and so, by (2.93)-(2.94), we have

X NN(rfﬁ)T,ﬁT' (2.95)
Since the function ¢ is bounded and continuous, we infer'! that
Jim P = Jim B9V [p(Xx)] = Ep(X)]. (2.96)

Since X has a normal distribution, the expectation E [¢(X)] can be com-
puted explicitly and, as we will see, corresponds to the classical Black-Scholes
formula.

Proof (of Lemma 2.44). In order to prove (2.93), we compute

EQON [Yl(N)} =qN (J\/a + a5N) + (1 —qn) (—U\/a + ﬁfsN)
= (2qn — 1) o\/n + On (agn + B (1 — qn)) =
(by (2.88) and (2.86))

,’,_0_2_01_4-5 0]
:( 2 lio)(f)NJr <§N)+5N<a—;ﬁ+0(1)>

2
(r—%) OnN +0(dn), as N — oo. (2.97)

Then we have, recalling that 6y = %,

0.2

E9Y [Xy] = NEOY {YfN)} = (r 5

)T—&-o(l)7 as N — oo,

hence (2.93).

10 See Lemma 2.45 for a rigorous proof of this statement.

' By (A.128): this is the reason why we considered a Put option instead of a Call.
The Put-Call parity formula (cf. Corollary 1.1) allows us to obtain the price of a
Call option: the reader can see also Remark 2.49.



2.3 Binomial model 57

Now we prove (2.94) by using the identity
var®™ (Xy) = Nvar® (Y) = N (EQN [v?] — B9~ [Y]Q) (2.98)

where we put Y = YI(N). By (A.30) in Exercise A.36, we have

E®Y [Y?] = (loguy + logdy) E®Y [Y] — loguy log dy

= dn(a+ B)E [Y] — ( Von + aaN) (—am + 55N)

=%y +0(0n), as N — oo,
(2.99)

and so the claim follows immediately substituting the last expression into
(2.98), bearing in mind also that

E°V[Y]P=0(0y), asN — occ. 0

Lemma 2.45 The sequence of random variables (Xn) defined in (2.90) con-
verges in distribution to a random variable X that is normally distributed as
n (2.95).

Proof. This result is a variation of the central limit Theorem A.146: by Lévy’s
Theorem A.141, it is enough to verify that the sequence (¢x, ) of the corre-
sponding characteristic functions converges pointwise. We have:

pxy(n) = B9V [eXN] =

(N)

(since the random variables Y, "'/ are i.i.d. and putting ¥ = Y(N))

- (5o )" -

(by Lemma A.142, applying formula (A.129) with & = n/dx and p = 2)
2 N
= (1 +inE9N [Y] — %EQN (V2] +o0 (5N)> for N — co.  (2.100)

Now we recall formulas (2.97) and (2.99):

2

EQN [Y]: (7‘—%) 5N+O((5N), EQN [YQ] 2025N+0(5N),

as N — oo. Substituting those formulas into (2.100), we get

2 2 N
<PXN(77):(14‘%(_“771(7"—%)—772% +0(1)>) as N — oo,
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hence
2 2T
i oxy (n) = exp (—inT (r - %) - 77207) ., VneR.

Then, by Lévy’s theorem, we have Xy %, X where X is a random variable
whose characteristic function is

) o2 o2T
©x(n) = exp (—mT <T - 2) - 7722) 7

and so, by Theorem A.89, X has normal distribution and (2.95)-(2.96) hold.

In conclusion, gathering the results of the previous lemmas, we have proved
the following:

Theorem 2.46 Let PéN) be the price of a Furopean Put option with strike
K and maturity T in an N -period binomial model with parameters

uy = eUmJFQJN dy = efﬂerﬁJN 1+ry = 67‘5N
where a, B are real constants. Then the limit

lim PV =P

N—o0 0 0

exists and we have

Py=¢"TE [(K - Soex)ﬂ (2.101)
where X is a random variable with normal distribution
X NN(T—%)T,O'2T. (2.102)

Definition 2.47 Py is called Black-Scholes price of a European Put option
with strike K and maturity T.

One of the reasons why the Black-Scholes model is renowned is the fact that
the prices of European Call and Put options possess a closed-form expression.

Corollary 2.48 (Black-Scholes formula) The following Black-Scholes for-
mula holds:

Py = Ke "'®(—dy) — So®(—dy), (2.103)
where @ is the standard normal distribution function
1 v y?
P(x) = — e” 2 dy, r €R, 2.104
@=—= [ Ea (2104

and

log(%)-i-(r—i—%z)T
d =
1 U\/T )

log (52 + (r - %) T
oVT '

(2.105)

d2:d1—0 T =
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Proof. By (2.101), we have to prove that
e TE {(K - Soex)q = Ke " Td(—dy) — So®(—dy), (2.106)
where X is normally distributed as in (2.102). Now, (cf. Remark A.32)
X = (r“;)T+m/TZ
with Z ~ Ny 1, and a simple computation shows that
Sp = Spe* < K — Z < —ds. (2.107)
Then we have
E|((K - 50e¥)"| = KE [Lis;<iy] = B [Srlgs,<] =1 + B,

and, by (2.107),
I = KE[L{zc_ay)] = K&(—dy).

On the other hand, we have

(by the change of variable y = z — o/T)

—dp—oVT —%
= GTTSO/ \/%dy,

and this concludes the proof of (2.106). O

Remark 2.49 (Black-Scholes formula) By the Put-Call parity formula,
we have that the Black-Scholes price Cy of a European Call option with strike
K and maturity T is given by

Co=PFPy+ Sy — Ke™ T,

Using (A.26), a simple computation shows that the following Black-Scholes
formula holds:

Co = So®(dy) — Ke " '®(dy), (2.108)

where dy,dy are defined in (2.105) and @ is the standard normal distribution
function. O
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2.3.6 Black-Scholes differential equation

In this section we continue the study of the consistency of the binomial model
with the Black-Scholes model. We saw that, as NV tends to infinity, the bino-
mial price tends to the Black-Scholes price: we prove now that it is possible
to interpret the iterative scheme (2.67)-(2.68) of the binomial model as a
discrete version of the Cauchy problem for a parabolic differential equation,
called Black-Scholes equation. By means of stochastic calculus techniques, in
Chapter 7 we will present the Black-Scholes theory which gives the price of a
derivative directly in terms of the solution of the Black-Scholes equation.

In the rest of the section we adopt the usual notation § = % and assume
that the parameters u, d, 7y of the binomial model with N periods (cf. (2.83))
are of the form:

2
u:e"ﬁ:1+a\/3+%5+o(§),

2
d=eF = 1-0V5+5+0() (2.109)

l4+ry=€e® =1+75+0(d),

as 6 — 0. Here o and r denote the volatility and annual interest rate, respec-
tively. In this case we have

Cl4ry-d 11 o?
(= ———— =5+ (r 2>\/5+o(\/5) (2.110)

as & — 0.

Given a function f = f(¢,5) defined over [0,7] x Rsq (here f plays the
role of the arbitrage price of a derivative with underlying asset S), we recall
the pricing formula (2.68) that, using the notation above, takes the following
form:

f(t,S) = (gft+0,uS)+ (1 —q)f(t+6,d9)). (2.111)

1+7ry
If we put

f:f(t’S)v f“:f(t+5,u5), fd:f(t+5,d5),

and if we define the discrete operator

Jsf(t,8) = —(L+rn)f+af*"+ (1 —q)f? (2.112)
(2.111) is equivalent to
Jsf(t,S)=0.
Proposition 2.50 For every f € C12([0,T] x Rsg) we have
tim 15 g, s),

6—0t )
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for every (t,5) €10, T[xRsq, where

0_2 SQ

LBsf(t, S) = 8tf(t, S) + 9

9ssf(t,5) +rS0sf(t,5) —rf(t,5) (2.113)

is called Black-Scholes differential operator.

Proof. Taking a second-order Taylor expansion of f we get'?

U= f=0f0+0sfS(u—1)+ %833]"52(1& —1)? +0(8) + o((u—1)?) =

(by (2.109), substituting the expression for u in terms of § and ordering the
expression according to the increasing powers of \/3)

= 0805 fVé+ L6 +0(6), 6—0, (2.114)
where , o
Lf =0+ % Sosf+ T dssf,
and analogously
f4—f=-08S0sfVs+Lfs+0(5), §—0. (2.115)

Then we have

Jsf(t,8) = —(L+rn)f +af* +(1—q)f?
= —0rf+q(f* = F= ("= )+ (=) +0(5) =
(substituting the expressions (2.114) and (2.115))
= —6rf +0Lf +V6(2¢ — 1)aSds f + o(0) =
(by (2.110))

= —0rf+0Lf + V5 ((7‘ - ";) \/34—0(\/5)) 7S0s f + o)
= dLpsf + o(9),
as  — 0 and this concludes the proof. |
By the previous proposition, the differential equation
Lpsf(t,S) =0, (t,S) €10, T[xRso, (2.116)

is the asymptotic version of the pricing formula (2.68). Further, (2.67) corre-
sponds to the final condition

f(T,S)=F(S), S ¢cRs,. (2.117)

12 Tn the rest of the proof we always drop the argument (¢, .S) of the functions.
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The pair of equations (2.116)-(2.117) constitutes a Cauchy problem that, as
we have already said, we will analyze again in Chapter 7 using the tools of
stochastic calculus in continuous time.

Problem (2.116)-(2.117) is a backward problem with final datum such as
the one examined in Appendix A.3.5. With the change of variables

f(t,8) =u(T —t,logs)

i.e. putting 7 =T —t and x = log S, problem (2.116)-(2.117) is the backward
version of the following parabolic Cauchy problem with constant coefficients

(cf. Appendix A.3):

§8z1u+ (r— "72) Oz — ru — Oru =0, (r,2) €10, T[xR,
u(0,z) = F(e*), x € R.

By Theorem A.72, if the payoff  — F(e®) is a function that does not grow too
rapidly, we can express the solution w in terms of the Gaussian fundamental
solution I" of the differential equation:

u(r,x) = /RF(T,]J —y)F(e¥)dy, 7€]0,T], z € R,

where I' is given explicitly by (A.61).

The previous formula can be interpreted in terms of the expectation of the
payoff that is a function of a random variable with normal distribution and
density I'. By using the expression for I', with a direct computation we can
obtain again the Black-Scholes formulas (2.103) and (2.108) for the price of
European Put and Call options.

A posteriori, the binomial algorithm can be considered as a numerical
scheme for the solution of a parabolic Cauchy problem. As a matter of fact,
Proposition 2.50 implicitly includes the fact that the binomial algorithm is
equivalent to an explicit finite-difference scheme that will be analyzed further
in Chapter 12. In their recent paper [188], Jiang and Dai extend the results
for the binomial model approximating the continuous Black-Scholes case to
FEuropean and American path-dependent derivatives, and they prove that the
binomial model is equivalent to a finite-difference scheme for the Black-Scholes
equation.

2.4 Trinomial model

In the trinomial model, the market is composed of a non-risky asset B whose
dynamics is given by (2.1) with r,, = r, and one or two risky assets whose
dynamics is driven by a stochastic process (hp)n=1,...v With hy,..., hy 1.i.d.
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random variables such that

1 with probability pq,
hn, = < 2 with probability ps,
3 with probability ps =1 — p1 — po,

where p1,p2 > 0 and p; + p2 < 1. The trinomial model with only one risky
asset S! is called standard trinomial model, while in case there are two risky
assets S, 52, it is called completed trinomial market.

In general we assume that S}, S2 > 0 and

Si=81 (14 ui(hn)), n=1,...,N, i=1,2, (2.118)
where
L+p'(h) =< m; ifh=2,
d; if h=3,

and 0 < d; < m; < u;. In Figure 2.7 a two-period binomial tree is represented.

In the standard trinomial model S! typically represents the underlying
asset of a derivative: the standard trinomial model is the simplest example
of incomplete model. On the contrary, the completed trinomial model is a
complete model that is typically used to price and hedge exotic options: we
may think of S' and S? as an asset and a plain vanilla option on S! that is
supposed to be quoted on the market, respectively. Then the hedging strategy
of an exotic option on S is constructed by using both S and S2.

We first examine the standard trinomial model and we set S = S! for
convenience. In order to study the existence of an EMM @, we proceed as in
the binomial case by imposing the martingale condition (2.44): in this setting

it reads
1

T 1+r
where p(h) = pt(h). Then, putting

Snfl EQ [Snfl (1 + M(hn)) | -7:7171] ’ (2'119)

@ =Q(hn=j| Fazr), i=1,2,3, n=1,...,N, (2.120)

we obtain the following system

{uq? +mgy +dgf =1+, (2.121)

q +4q95 + g5 =1,

that does not admit a unique solution ¢1, g, g3. Therefore the EMM is not
unique and consequently, by Theorem 2.29, the market is incomplete. Note

also that the random variables h,, are not necessarily independent under a
generic EMM.



64 2 Discrete market models

Fig. 2.7. Two-period trinomial tree

The incompleteness of the market can also be deduced more directly by
examining the construction of a replicating strategy. For the sake of simplicity,
we consider the one-period case N = 1 and we let S} =1 and r = 0. Given a
derivative X = F(S7), the replication condition V; = X becomes

181 + pi1 = F(S1),

that is equivalent to the following linear system in the unknowns aq, 5:
au+ B = F(u)
aym+ B = F(m) (2.122)
Oéld + ﬂl = F(d)

It is interesting to note that the matrix associated to system (2.122)

u 1
m 1

d1

is the transpose of the matrix associated to system (2.121): this points to the
duality relation between the problem of completeness and absence of arbitrage
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opportunities. In the binomial model an analogous part is played by the matrix

(@1)

that is a square matrix with maximum rank, so guaranteeing completeness.
It is well known from linear algebra that system (2.122) admits a solution
if and only if the complete matrix

does not have maximum rank. Imposing, for example, that the second row is
a linear combination (with coefficients A, u) of the first and of the third rows,
we obtain

m = Au+ pd
1=A+u
F(m) = AF(u) + pF(d),
hence
U—m m—d
P u—a T u—d’

and we can eventually write the condition a derivative must verify in order to

be replicated: p
m — u—m
F(m)=-"— Fu+ —
Condition (2.123) is tantamount to saying that the second equation of the
system (2.122) is superfluous and can be dropped. In that case the system
can be solved and we see that it is equivalent to the analogous system in the
binomial model, whose solution is given by (2.49): in this particular case we
get

F(d). (2.123)

F(u) — F(d) uF'(d) — dF(u)
@ = B = S . (2.124)
By the self-financing condition, the arbitrage price of the derivative is defined
by
Hy = a150 + 81Bg

and it does not depend on the fixed EMM. The derivatives that do not satisfy
condition (2.123) cannot be replicated and this substantiates the fact that the
standard trinomial market is incomplete.

Next we consider the completed trinomial model: imposing the martingale
condition (2.119) with S = S% and u = p’ for i = 1,2, and setting q =
Qhy =37 Fnz1),j =1,2,3, we obtain the linear system

u1qy + migy +digfd =1+,
u2qy + moqy +daqz =1+, (2.125)
q +a3 +aq5 =1,
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which has a solution ¢7 = ¢;, j = 1,2, 3, independent on n. Under suitable
conditions on the parameters of the model, we have that ¢; €]0, 1] and there-
fore the EMM (@ is uniquely determined. In this case the completed trinomial
model is arbitrage-free and complete. Furthermore, since ¢} are constants in-
dependent on n and w € {2, we conclude that the random variables h,, are i.i.d.
under the probability Q. As a consequence, S' and S? are Markov processes
on (£2,F,Q,(F,)) by Theorem 2.31.

On the other hand, the replication strategy of a derivative X with arbitrage
price H can be determined as in the binomial case: to construct the hedging
strategy (al,a?,f,) for the n-th period [t,_1,t,] given F,,_1, we solve the
linear system

akulsgL—l + Q%UZSEL—l + (1 +7r)" = HY,
agpmiSy_y +apmaSy_y + Bu(1+7)" = H, (2.126)
aldi St | +a2dyS? |+ Bu(1+7)" = HY,

where H*, H™ and H¢ denote the arbitrage prices of the derivative at time
t, in the three possible scenarios. The solution to system (2.126) is

1 do(H' = HY) + Hymg — HMug + H (—my + uy)
no S,,ll_l (dg (m1 — ul) + mou — mius + dy (UQ — mg))
o2 — @ (HY — HY) + Hym — Hi'ug + Hy (ur —ma)
" S??L—l (—mgul + ds (u1 - ml) +d; (m2 - UQ) + m1u2)7
do (H'my — H™up) + dy (—H%my + H™ug) + H (mauy — myus)
(1 +7)" (dg (my1 — uy) + mauy — myug + dy (—ma + uz))

)

ﬁn:

2.4.1 Pricing and hedging in an incomplete market

In this section we briefly discuss the pricing and hedging problems in incom-
plete markets. We first recall the following definition given in Section 2.2.1.

Definition 2.51 In an arbitrage-free market (S, B), let Q be an EMM with
numeraire B. The risk-neutral price relative to Q of a (not necessarily repli-
cable) derivative X is defined by

HEP = E9[D(n, N)X | F], 0<n<N, (2.127)
where D(n, N) = g—; is the discount factor.

By Lemma 2.23, the pricing formula (2.127) does not introduce arbitrage
opportunities in the sense that the augmented market (S, B, H®) is still
arbitrage-free. Further, in the case X is replicable, by Theorem 2.25 the price
H® does not depend on the fixed EMM and is equal to the arbitrage price.
Given a self-financing predictable strategy (a, 3) € A, the quantity

X —vi?
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represents the replication error, also called Profit and Loss (P&L), at maturity
of the strategy. Now, if @) denotes the selected EMM and V is the discounted
value process, we may consider the expected (discounted and squared) P&L

X - 2
(BN - vaa’ﬁ)> ] (2.128)

as a measure of the hedging risk under the EMM Q.
We now remark that any strategy that minimizes the risk R® requires an

R%(a, ) := E®

initial investment equal to the risk-neutral price B9 {BL} Indeed, using the
N

fact that V(@) is a @-martingale and the identity
EY? =E[YP?+E [(Y - E(Y))Q] :

with Y = BL

= Vjs,a’ﬂ), we may rewrite (2.128) as follows:

R9(a, ) = <EQ [;} _‘70a,m)2

N

X X - - 2
A pe | A (s gl
<BN F {BN} (VN i )>

Now, recalling that the gain V™ — V{*" does not depend on V{*? (cf.
formula (2.13) and Proposition 2.7), we conclude that in order to minimize
the risk R? it is necessary to put

+E9

~(a X
vied) = gQ l:-BN:| . (2.129)

This motivates Definition 2.51 even if it poses some questions on the very foun-
dations of the classical theory of arbitrage pricing. In particular this theory
has two cornerstones:

i) the uniqueness of the price of the derivative: the arbitrage price should be
objective, dependent only on the quoted prices of the underlying assets
and not on the subjective estimate of the probability P;

i) the hedging procedure, i.e. the neutralization of the risk that we take on
the derivative by the investment in a replicating strategy.

The risk-neutral price in Definition 2.51 is not unique since it depends on the
choice of the EMM. Furthermore, in an incomplete market, a derivative is not
generally replicable and so it is necessary to study possible hedging strategies
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that limit the risks (super-hedging, risk minimization within the set of EMMs,
etc.). Such a choice can be made by following the preferences of the traders or
on the grounds of some objective criterion (calibration to market data). The
study of these problems goes beyond the scope of this book and is treated
thoroughly in monographs such as [134] by Follmer and Schied, to which we
refer the interested reader.

Here we confine ourselves to the following example that shows how the
hedging problem can be tackled in the standard (hence, incomplete) tri-
nomial model. The approach is based on a classical optimization technique
called Dynamic Programming. The main idea is to find a strategy minimizing
the expected replication error of the payoff under the real-world probability
measure+P.

Example 2.52 We consider a two-period standard trinomial market model
where the dynamics of the risky asset is given by

50:17 Sn: n—1(1+/-1/n)7 n:1a2

and p,, n = 1,2, are i.i.d. random variables defined on a probability space
(£2,F, P) and such that

% with probability p; =
14 p, =41 with probability ps =
2

with probability ps =

Wl W Wl

We assume that the short rate is null, 7 = 0.
We consider the problem of pricing and hedging a European Call option
with payoff

F(Sy) = (S — 1),

by minimization of the “shortfall” risk criterion. More precisely, by means
of the Dynamic Programming (DP) algorithm, we aim at determining a self-
financing strategy with non-negative value V' (that is, such that V,, > 0 for
any n) that minimizes

E” U(Va, S,)],

where

UV, s) = (F() = V)"

is the shortfall risk function.
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Payoff

Fig. 2.8. Two-period trinomial tree: price of the underlying and payoff of a Euro-
pean Call with strike 1

We first represent the binomial tree with the prices of the underlying asset.
By (2.8), the value V of a self-financing strategy («, 3) satisfies

ansnfh
Va=Vo1+ anSnfllin =V + 0, (2130)
7QnSn71
Then V,, > 0 for any n if and only if V5 > 0 and
_ 2V, _
_angang Vn 1> ’I’L:1,2
n—1 n—1

In the general framework of a model with N periods, the DP algorithm consists
of two steps:

i) we compute

Ry (V, S) = mi

ae[*

n  EP UV + Saun,S 1+ py))]

2V
S

u< 2

)

for S varying among the possible values of Sy_1. Recalling that we are
considering predictable strategies, we denote by ay = ayx(V) the mini-
mum point for V varying among the possible values of Vy_1;
ii) forne {N—-1,N—2,...,1}, we compute
R,1(V,8):= min  EP[R,(V + Sap,,S 1+ u,))

ac[-%.2]
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for S varying among the possible values of S,,_1. We denote by «,, = ., (V)
the minimum point for V varying among the possible values of V,,_1.

In our setting, as a first step of the DP algorithm we compute Ry (V,.S) for
S e {2, 1, %} We have

Ry (V,2) = ae[in‘;l/lz)v] EP UV 4 2012, 2(1 + p2))]
= e E" [((2(1 tug) -1 = (V4 2%2))*}
- mn (6-veT - =g
and the minimum is attained at
az =V. (2.131)

Next we have

Ry (V,1)= min  EP UV + apz, 1+ u)]

a€e[-V,2V]
= min EF |:([L+*(V+Oéﬂg))+:|
ag[-v,2v] 2
1 1
= in ~(1-V-at=-01-3"
L e @)’ =3z A=3)7,

and the minimum is attained at
oy = 2V. (2.132)
Moreover we have

1 [ 1
R(viz)= min EP|u(vg otz LTHe
2 ag[—-2V,4V] | 2 2

- +

1 +
= min EP (+M2—1> —(V—i-%)

|
=)

2 2

—_——
L =0 >0

and the minimum is attained at any

ag € [-2V,4V]. (2.133)
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The second step consists in computing the risk at the initial time:

Ry (V,1) = ae[rf%}lzv] E” [Ry (V + ap, 1+ )]

1

=3 (R1(V;1) + R (V +«,2))

, 1 L4 N
ae{r{l‘l/%v] (3 (1-3V)" + 3 1-(V+a)) )

Ol Wl

(1-3V)", (2.134)
and the minimum is attained at
a; = 2V. (2.135)

By formula (2.134) for Ry (V,1), it is clear that an initial wealth V' > I is
sufficient to make the shortfall risk null or, in more explicit terms, to super-
replicate the payoff.

Next we determine the shortfall strategy, that is the self-financing strategy
that minimizes the shortfall risk. Let us denote by Vj the initial wealth: by
(2.135) we have

a1 = 2%.
Consequently, by (2.130) we get
2V, for py =1,
Vi=W+40, for puy =0,
Vo, for pu; = —%.

Then by (2.131)-(2.132)-(2.133) we have

3V, if $; =2,
Qg = 2%7 if Sl = 1,
0, if ) =1,

and we can easily compute the final value V5 by means of (2.130). We represent
in Figure 2.9 the trinomial tree with the prices of the underlying asset and the
values of the shortfall strategy inside the circles. On the right side we also in-
dicate the final values of the option and of the shortfall strategy corresponding
to Vo = % We remark that we have perfect replication in all scenarios except
for the trajectory Sy = .S; = So = 1 for which we have super-replication: the
terminal value of the shortfall strategy Vo = % is strictly greater than the
payoff of the Call option that in this case is null. |
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Final value

Payoff
for Vo = %

3 3

=}
wlR

Fig. 2.9. Two-period trinomial tree: prices of the underlying asset and values of
the shortfall strategy with initial wealth Vj are inside the circles

2.5 American derivatives

In this section we examine pricing and hedging of American-style deriva-
tives. We consider a generic discrete market (S, B) defined on the space
(2, F, P,(F,)). American derivatives are characterized by the possibility of
early exercise at every time t,, 0 < n < N, during the life span of the con-
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tract. To describe an American derivative it is therefore necessary to specify
the premium (or payoff) that has to be paid to the owner in case he/she
exercises the option at time ¢, with n < N. For example, in the case of an
American Call option with underlying asset S and strike K, the payoff at time
ty is X, = (S, — K)* .

Definition 2.53 An American derivative is a non-negative discrete stocha-
stic process X = (X,) adapted to the filtration (Fy).

By definition, X, is a non-negative F,-measurable random variable: the mea-
surability condition describes the fact that the payoff X, is known only at
time ¢,. We say that X is path-independent if X,, is o (S, )-measurable, for
every n, so that there exist measurable functions ¢,, such that X,, = ¢, (S,).

Since the choice of the best time to exercise an American option must
depend only on the information available at that moment, the following defi-
nition of exercise strategy seems natural.

Definition 2.54 A stopping time
v: 2 —{0,1,...,N},
i.e. a random variable such that
{v=n} € F,, n=20,...,N, (2.136)

is called exercise strategy (or exercise time). We denote by Ty the set of all
exercise strategies.

Intuitively, given a path w € £2 of the underlying market, the number v(w)
represents the moment when one decides to exercise the American deriva-
tive. Condition (2.136) merely means that the decision to exercise at time ¢,
depends on F,,, i.e. on the information available at ¢,,.

In the rest of the paragraph we assume that the market (S, B) is arbitrage-
free and so there exists at least one EMM @ equivalent to P, with numeraire
B. Hereafter

denotes the discounted price of any asset Y.

Definition 2.55 Given an American derivative X and an exercise strateqy
v € Ty, the random variable X,, defined by

(XV) (LU) = Xu(w)(w)7 w € Qv

1s called payoff of X relative to the strateqy v. An exercise strateqy vy is called
optimal under Q if

E@ [}?yo} = suwp E@ [}?y} . (2.137)
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We observe that the random variable

can be interpreted as the discounted payoff of a Furopean option: in particular
E® {XV} gives the risk-neutral price relative to @ of the option (cf. Definition

2.51) when the option is exercised following the strategy v. The greatest price
among all exercise strategies corresponds to the optimal exercise strategy:
that price is equal to the greatest expected payoff with respect to the fixed
EMM.

2.5.1 Arbitrage price

In an arbitrage-free complete market, the price of a Furopean option with
payoff Xy is by definition equal to the value of a replicating strategy: in
particular, the discounted price is a martingale with respect to the risk-neutral
measure Q. Pricing an American option X = (X,,) is a slightly more delicate
matter since it is not possible to determine a self-financing predictable strategy
(a, B) that replicates the option in the sense that Véa’ﬁ) = X, for every
n =0,..., N: this is simply due to the fact that V(@h) iga @-martingale while
X is a generic adapted process. On the other hand, it is possible to develop
a theory of arbitrage pricing for American options, essentially analogous to
the European case, by using the results on stopping times, martingales and
Doob’s theorems collected in Appendix A.6.

Let us begin by observing that, by arbitrage arguments, it is possible to
determine upper and lower bounds to the price of X: to fix ideas, as in the
European case we denote by H the (unknown and possibly not unique) initial
price of X. Recalling that A denotes the family of self-financing predictable
strategies, we define

AL ={(,B) e A| VP > X, n=0,...,N},

the family of those strategies in A that super-replicate X. By Remark 2.18, to
avoid introducing arbitrage opportunities, the price Hy must be less or equal
to the initial value Vo(a’ﬁ ) for every (a,3) € A% and so

Hy< inf V™9
(a,B)eA%

On the other hand we put

Ay = {(a, B) € A| there exists v € Ty s.t. X, > V(@A)

Intuitively, an element (v, ) of Ay represents a strategy in which a short
position is taken, to get money to invest in the American option. In other
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words, Vo(a’ﬁ ) represents the amount of money that one can initially borrow
to buy the option X, knowing that there exists an exercise strategy v yielding
a payoff X, greater or equal to Vl,(a”g ), corresponding to the amount necessary
to close the short position in the strategy («,3). The initial price Hy of X
must necessarily be greater or equal to Vo(a’ﬁ ) for every (a, 8) € Ay if this
were not true, one could easily build an arbitrage strategy. Then we have

sup Vo(a’ﬁ) < Hy.
(a,8)€AY

Therefore we determined an interval to which the initial price Hy must be-
long, in order to avoid introducing arbitrage opportunities. Let us show now
that risk-neutral pricing relative to an optimal exercise strategy respects such
conditions.

Proposition 2.56 For every EMM @, we have

sup ‘N/o(a’ﬁ) < sup E@ [f(y} < inf 170(0"6). (2.138)
(a,B)€AY veTo (a,8)eAT

Proof. If (o, B) € Ay, there exists vy € 7y such that V(o) < X,,,. Further,

V(@B) ig a @-martingale and so by the Optional sampling Theorem A.129 we
have _ - ~
Vo(a,ﬁ) — EQ [Vu(oaﬁ)} < EQ [Xuo} < sup EQ |:Xu:| ,
veTy

hence we obtain the first inequality in (2.138), by the arbitrariness of («, ) €
Ax.

On the other hand, if (a, 8) € A% then, again by Theorem A.129, for
every v € Ty we have

79 — g [71e9) 2 B2 %],

hence we get the second inequality in (2.138), by the arbitrariness of («, 3) €
AL and v € Tp. O

Under the assumption that the market is arbitrage-free and complete'?,
the following theorem shows how to define the initial arbitrage price of an
American derivative X in a unique way.

Theorem 2.57 Let X be an American derivative in an arbitrage-free and
complete market. Then there ezists (a, 8) € A% N A% and so we have:

i) Vi > x, n=0,...,N;

ii) there exists vy € Ty such that Vl,f’ﬁ) =X,,-

13 According to Definition 2.27, this means that every Furopean derivative is repli-
cable.
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Consequently'

V@) — qup E@ [)}V} o) [;}VO} , (2.139)
veTy

defines the initial arbitrage price of X.

Proof. The proof is constructive and is made up of three main steps:

1) we construct the smallest super-martingale H greater than X , usually
called Snell envelope of the process )N(;

2) we use Doob’s decomposition theorem to find the martingale part of the
process H and by this we determine the strategy (o, B) € AL NAy;

3) we conclude by proving that Hy = Vo(a’ﬁ) and (2.139) holds.

First step. We define iteratively the stochastic process H by putting

~ )Z—N, n = N,
i, = _ _ (2.140)
max{Xn,EQ {Hn+1|}'n”, n=0,... N—-1.

Below we will see that the process H defines the discounted arbitrage price
process of X (cf. Definition 2.60). It is indeed an intuitive notion of price
that gives rise to the definition above: indeed the derivative is worth Xy at
maturity and at time ¢ _1 it is worth

o Xpy_1 if one decides to exercise it;
o the price of a European derivative with payoff Xy and maturity ¢, if one
decides not to exercise it.

Consistently with the arbitrage price of a European option (2.27), it seems
reasonable to define

1
1+7r

Hy_1 = max {XNl, E°[Hy | le]} .

By repeating this argument backwards and setting H, = %, we get definition
(2.140). !

Next we show that H is the smallest super-martingale greater than X.
Evidently, H is an adapted non-negative stochastic process. Further, for every
n, we have

H, > E° [ﬁnﬂ | ]—'n} : (2.141)

ie Hisa Q-super-martingale. This means that H “decreases in mean” (cf.
Section A.6): intuitively this corresponds to the fact that, moving forward
in time, the advantage of the possibility of early exercise decreases. More
generally, from (2.141) it follows also that

ﬁszQ[ﬁ”fk}’ 0<k<n<AN.

14 Recall that, by assumption, By = 1 and therefore Vp = Vo.
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We conclude by showing that H is the smallest super-martingale that domi-
nates X:if Y is a @-super-martingale such that Y;, > X,,, then we have

ﬁN:jZNSYN.

Then the thesis follows by induction: indeed, assuming I;fn <Y,, we have

H,_{ = max {)?n_l,EQ [ﬁn | .7:71_1}}
< max{)?n,l,EQ [Ya | fnfl]}

< max {)?n—layn—l} = Yn—l-

Second step. We prove that there exists (o, 8) € A% N A%. Since His a
@-super-martingale, we can apply Doob’s decomposition Theorem A.119 to
get _

H=M+A

where M is a @Q-martingale such that My = I;fo and A is a predictable de-
creasing process with null initial value.

By assumption the market is complete, and so there exists a strategy
(o, B) € A that replicates the European derivative My. Further, since V(@5
and M are martingales with the same terminal value, they are equal:

Vo = B [V | F| = B My | F] = My, (2.142)
for 0 <n < N. Consequently, («,3) € A} : indeed, since A4, < 0, we have
v =M, >H,>X,  0<n<N.
Moreover, since Ay = 0, we have
Vi = My = Ho.

Then (a, 3) is a hedging strategy for X that has an initial cost equal to the
price of the option.
In order to verify that («, 8) € Ay, we put:

vo(w) = min{n | Hy(w) = Xp(w)}, we . (2.143)
Since
{vo=n}={Hy>Xo}N--N{Ho1> X, 1} N{H, = X,} € F,

for every n, then 1 is a stopping time, i.e. an exercise strategy. Further, v is
the first time that X,, > E? [Hn+1 | fn] and so intuitively it represents the

first time that it is profitable to exercise the option.
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According to Doob’s decomposition theorem and in particular by (A.107),
forn=1,...,N, we have

n—1
M, = H, + (f{rk - EQ [fka | ka , (2.144)
k=0
and consequently N
M,, = H,, (2.145)
since B _
H; = EQ {Hk-s—l | .7:].3:| over {k < Vo}.
Then, by (2.142), we have
Vu((;lﬁ) = MVO =
(by (2.145))
= ﬁVO =
(by the definition of vyp)
- )}Vm (2.146)

and this proves that (a, 5) € Ax.

Third step. We show that 1 is an optimal exercise time. Since («, ) €
AL N A%, by (2.138) in Proposition 2.56 we get

Vo(a’ﬁ) = sup E¢ [5(,,} .
veTy

On the other hand, by (2.146) and the optional sampling Theorem A.129, we
have B
‘/0(&76) == EQ |:X1/0:|

and this concludes the proof. a

Remark 2.58 The preceding theorem is significant from both a theoretical
and practical point of view: on one hand it proves that there exists a unique
initial price of X that does not give rise to arbitrage opportunities. On the
other hand it shows a constructive way to determine the main features of X:
i) the initial price I;fo = sup E@ [X'V} that can be computed by the iterative
veTy
formula (2.140) (see also (2.148) below);
ii) an optimal exercise strategy vg for which we have

E® [)?,,0} = sup E© [)?u} = Hoy;
veTy
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iii) a hedging strategy (o, 3) € A% N A such that ViR > X, for any n
and whose initial cost equals the initial arbitrage price ﬁo. More precisely,
(a, B) is the replicating strategy for the European option My: in Section
2.5.3, we will analyze more in details how to compute (a, 3). a

Remark 2.59 For fixed n < N, we denote by
T, ={veTy|v>n}

the family of exercise strategies of an American derivative bought at time t,,.
A strategy v, € 7, is optimal if

EQ [)N(Vn |]-"n} — sup E@ [fg | fn} .
veT,

If H is the process in (2.140), we denote the first time it is profitable to
exercise the American derivative bought at time t,, by

Vn(w) = min{k > n | Hy(w) = Xp(w)}, w € (2.

We can easily extend Theorem 2.57 and prove that v, is the first optimal
exercise time following n. To be more precise we have

H, = B9 [f{un | fn} = sup B9 [)N(V | ]—"n} . (2.147)
veT,
O

Definition 2.60 The process H defined by H,, = BnH,, with H as in (2.140),
is called arbitrage price of X. More explicitly we have

XN? n = .ZV7
H, = Lo (2.148)
max{Xn,mE [Hn+1|]-'n}}, n=0,... N—-1.

Remark 2.61 In the proof of Theorem 2.57 we saw that hedging X is equi-
valent to replicating the (European) derivative My . Let us point out that, by
(2.144), we have

n—1
~ ~ ~ + ~
M, =H,+ (Xk—EQ[HkHU-'kD —H,+1,, 1<n<N,
k=0

and so M, can be decomposed as the sum of the discounted price f[n
and the term I,, that can be interpreted as the value of early exercises: as
a matter of fact, the terms of the sum that defines I,, are positive when

X’k > E@ [ﬁkﬂ | fk} , i.e. at times that early exercise is profitable. To fix
the ideas, if n = 1, we have
~ ~ ~ +
M, = H, + (XO —E© {Hl}) . (2.149)

d
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2.5.2 Optimal exercise strategies

The optimal exercise strategy of an American derivative X is not necessarily
unique. In this section we aim at giving some general characterization of op-
timal exercise strategies and to determine the first and the last ones of these
strategies.

Hereafter we assume that the market is arbitrage-free but not necessarily
complete. For a fixed EMM @, we denote by H the Snell envelope of X,
with respect to @, defined in (2.140). We recall that, by (2.137), an exercise
strategy v € 7y is optimal for X under @ if we have

E° {)N(,;} = max E® {)N(V} .
veTy
Moreover, given a process Y and a stopping time v, we denote by Y¥ = (Y}¥)
the stopped process defined as

Y;Izj(w) = Yn/\l/(w)(w), w € .

By Lemma A.125, if Y is adapted then Y is adapted; if Y is a martin-
gale (resp. super/sub-martingale) then Y is a martingale (resp. super/sub-
martingale) as well.

Lemma 2.62 For any v € Ty we have

E@ [)?V} < H. (2.150)
Moreover v € 1y is optimal for X under Q if and only if

E@ [)?V} — Hy. (2.151)

Proof. We have

20 [%,) € g0 (] = 2 [1g] € (2152)

where inequality (1) is a consequence of the fact that X,, < H,, for any n and
(2) follows from the Q-super-martingale property of H and Doob’s optional
sampling Theorem A.129.

By (2.150), it is clear that (2.151) is a sufficient condition for the optima-
lity of v. In order to prove that (2.151) is also a necessary condition, we have
to show the existence of at least one strategy for which (2.151) holds: actually,
two of these strategies will be explicitly constructed in Proposition 2.64 below.
The reader can check that the proof of Proposition 2.64 is independent on
our thesis so that no circular argument is used. We also remark that, under
the assumption of completeness of the market, an exercise strategy verifying
(2.151) was already introduced in the proof of Theorem 2.57. O
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Corollary 2.63 Ifv € 1y is such that

) X, =0,

it) H" is a Q-martingale;

then v is an optimal exercise strategy for X under Q.

Proof. Conditions i) and #i) imply that (1) and (2) in formula (2.152) are

equalities. Consequently E? {)NC,,} = Hjy and therefore, by Lemma 2.62, v is
optimal for X under Q. a

Next, for greater convenience, we introduce the process

1
E,=--—E?[H, 21, <N-1, 2.1
T [(Hn1 | Fnl n < (2.153)

and we also set Ey = —1. Then by (2.148) we have
H, =max{X,, E,}, n <N,

and the sets {n | X,, > E,} and {n | X,, > E,} are nonempty since Xy > 0
by assumption. Consequently the following definition of exercise strategies is
well-posed:

Vmin = min{n | X, > E,}, (2.154)
Vmax = min{n | X,, > E,}. (2.155)

Proposition 2.64 The exercise strategies Vmin and Vmax are optimal for X
under Q.

Proof. We show that vy, and vy,ay are optimal by verifying the conditions
i) and %) of Corollary 2.63. By definition (2.154)-(2.155) we have that

H

Vmin

= max {Xymin7 El/min
=max{X, .., F

}: Xl/min7
J- X

Vmax Vmax Vmax )

and this proves 7). Next we recall that by Doob’s decomposition theorem we
have B
H, =M, + A,, n < N,

where M is a Q-martingale such that My = Hy and A is a predictable and
decreasing process such that Ay = 0. More precisely we have (cf. (A.108))

n—1

An:_Z(ﬁk_Ek>a n:l,...,N.
k=0

By definition (2.154)-(2.155), we have

H,=E, in {n<vmx-—1}



82 2 Discrete market models

so that
A, =0 in {n <vVmax} (2.156)
and
A, <0 in {n>vmax + 1} (2.157)
Thus we get B
H,=M, in {n<uvmpax}, (2.158)

and since clearly vmin < Vmax, we have
ITVmin Vrni TV _ v
HVwin — J\fVmin HVwmax — J|[Vmax

Consequently, by Lemma A.125, the processes Hvmin and HYwex are Q-
martingales: this proves i) of Corollary 2.63 and concludes the proof. a

We close this section by proving that vy, and vyay are the first and last
optimal exercise strategies for X under @), respectively.

Proposition 2.65 If v € Ty is optimal for X under Q then
Vmin <V < Vmax-
Proof. Let us suppose that
P (v < Umin) > 0. (2.159)

We aim at proving that v cannot be optimal because (1) in (2.152) is a strict
inequality. Indeed, since P and @ are equivalent, from (2.159) it follows that

0 (5(, < ffy) >0,
and therefore, since )~(l, < PNI,,, we get
B?[X,| < B9 |1,
On the other hand, let us suppose that

P (V> Unax) > 0. (2.160)

In this case we prove that v cannot be optimal because (2) in (2.152) is a
strict inequality. Indeed, since P, (Q are equivalent and A is a decreasing and
non-positive process, from (2.157) it follows that

E9[A,)] <O.
Consequently we have

Jo [ﬁy} — B9 [M,] + E?[A,] < My = H,. 0
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2.5.3 Pricing and hedging algorithms

We consider an American derivative X in a complete market (5, B) where
Q@ is the EMM with numeraire B. By the results of the previous sections,
the arbitrage price of an American derivative X is defined by the recursive
formula

X =N
H,={"N e (2.161)
max{X,,E,}, n=0,...,N—1,

where FE is the process defined by Ey = —1 and

E, = ﬁEQ [Hpp1 | Fn], n<N-1. (2.162)
A remarkable case is when the underlying assets are modeled by Markov
processes (as in the binomial and trinomial models by Theorem 2.31) and the
American derivative is path-independent, that is X = (¢, (S,)) where @, is
the payoff function at time ¢,. In this case, by the Markov property of the
price process S, the arbitrage price is given by

H = SDN(SN% n = N,
" max{gpn(Sn), L EQ[H,y | Sn]}, n=0,. . N-1,
(2.163)

and therefore H, can be expressed as a function of S,,.
Once we have determined the process E in (2.162), the minimal and maxi-
mal among optimal exercise strategies are given by

Vmin = min{n | X,, > E,}, Vmax = min{n | X, > E,}. (2.164)

Concerning the hedging strategy, at least from a theoretical point of view,
this problem was solved in Theorem 2.57: indeed a super- and sub-replicating
strategy (a, 3) (i.e. a strategy (o, 8) € A% N A%) was defined as the replica-
ting strategy for the European derivative My. We recall that M denotes the
martingale part of the Doob’s decomposition of H, that is the Snell envelope
of X, and once H has been determined by (2.140), then the process M can
be computed by the forward recursive formula (cf. (A.105))

Mo = Hy, M1 = My + Hypr — E {ﬁnﬂ | ]—'n] : (2.165)

consequently the hedging strategy can be determined proceeding as in the
European case. However My is given by formula (2.165) in terms of a condi-
tional expectation and therefore My is a path-dependent derivative even if X
is path-independent. So the computation of the hedging strategy can be bur-
densome, since My is a function of the entire path of the underlying assets
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and not just of the final values. As a matter of fact, this approach is not used
in practice.

Instead, it is worthwhile noting that the process M,, depends on the path
of the underlying assets just because it has to keep track of the possible early
exercises: but at the moment the derivative is exercised, hedging is no longer
necessary and the problem gets definitely easier. Indeed we recall that (cf.
(2.158))

H, =M, for n< vma, (2.166)

where vy is the last optimal exercise time by Proposition 2.65. In particular,
before vy.x the hedging strategy can be determined by using directly the process
H instead of M : this is convenient since if X is Markovian, i.e. X,, = ¢, (Sp),
then H is Markovian as well by (2.163).

Next we consider the special case of the binomial model. We use notation
(2.65) and, for a path-independent derivative with payoff X,, = ¢,(S,) at
time t,, by the Markovian property of the arbitrage price in (2.163), we set

Then the binomial algorithm that we presented in Section 2.3.3 can be easily
modified to handle the possibility of early exercise. More precisely we have
the following iterative pricing algorithm:

Hy k= on(Snk), E <N,
Hypo1 = maX{‘Pnfl(snfl,kL 5 (qHn kg1 + (1 - q)Hn,k)} , k<n-—1,
(2.167)
withn=1,...,N and ¢ = %’l where u, d, r are the binomial parameters.

Concerning the hedging problem, by using identity (2.166) we have that
the hedging strategy for the n-th period, n < vy, is simply given by
Hn,k+1 - Hn,k UHn,k - dHn,k—i—l

T s T )

k=0,...,n—1,

(2.168)
exactly as in the European case. We recall that (o, k, Bnk) s the strategy
for the n-th period [t,—1,t,], that is constructed at time t,_q in the case
Sn—l = Sn—l,k-

At time ¢, it is not necessary to compute the strategy (au,.... 1> Bvmanis)
(for the (Vmax—+1)-th period) since ¢, __ is the last time at which it is profitable
to exercise the American option. If the holder of the option erroneously does
not exercise at a time preceding or equal to t,,__, then he/she gives rise to
an arbitrage opportunity for the writer: indeed, since the value of the hedging
strategy is equal to M, , for the writer it suffices to adopt the strategy
(2.168) with n = vjpax + 1 at time ¢,,___, to get at time ¢,___ 11

Mvmax+1 > Hl/max+1 > XVmax+17

that is strictly greater than the payoff.
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X3’3 =0

Fig. 2.10. Binomial tree with asset prices (inside the circles) and payoff X of the
American Put with strike K = %

Example 2.66 In a three-period binomial model, we consider an American
Put option with payoff X,, = (% —Sp)t, n = 0,1,2,3. We assume that
u=2d=r= % and the initial price of the underlying asset is Sop = 1. In
Figure 2.10 we represent the asset prices and the values of the payoff of the
American Put on the binomial tree.

We first compute the arbitrage price process H and the minimal and maxi-

mal optimal exercise strategies. By (2.167) we have

1_ g+ _
7, -G 531) ’ n=3 (2.169)
max{(i—Sn)'*',En}, n=20,1,2,

where E is the process in (2.162), that is E5 = —1 and

E, = ﬁEQ [Hpi1 | Fnl, n=0,1,2.
At maturity we have
H33=X33= (%—8)+=0,
H3o= X35 = (%*Q)Jrioa
H31=X3:1= (%*%)Jr:(),
Hyo=Xs0=(5-4)" =%

Subsequently, by (2.169), we have
Xoo=Xo1=E32=1FEy;=0,
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so that Hy 9 = Hy; = 0. Moreover

1 1\*" 1
Xoo=1(=—~ ==
20 (2 4) 4’

and
1 2 3 1
Eoo=—— (qH 1l—Hso)=2(qg-04+(1-q)2) = =
2,0 1+r(q 31+ (1 —q)Hzp) 3(q + ( Q)8> B
since ¢ = % = %.Then we have
1
Hy o =max{Xs0,F20} = Xo0 = 1

At the previous time we have X1 1 = FEy; = H; 1 =0 and

1 1/1—gq 1
Eig=—(qH. 1—q)Hypo) = - = —
1,0 1+r(q 21+ (1 —q)Hz2,) 4<1+r> 18’
so that, since X; 9 =0, we have Hy g = E1 9 = %. Lastly, we have X¢0 =0

and therefore

Hyo = Eopo = ﬁ (qHip+ (1 —q)Hyip) = 8i1
To make the following computations easier, in Figure 2.11 we represent the
values of the processes X (inside the circles) and E (outside the circles),
writing in bold the greater of the two values that is equal to the arbitrage
price H of the American option.
Examining Figure 2.11 we can easily determine the minimal and maximal
optimal exercise strategies: indeed, by definition (2.164) we have

1 on {Sl = 51,1}

Vimin = mindn | X, > Bp} = {2 on {S1 =510}

Analogously we have

2 on {SQ = 5270}

Vmax = minn | Xo, > By} = {3 otherwise

These extreme optimal strategies are represented in Figure 2.12.

Next we compute the hedging strategy (a, ). As we already explained,
even if (o, ) is the replicating strategy of the European derivative My in
(2.165), it is not necessary to determine My explicitly: instead, we may use
the usual formulas (2.168) for n < vpyax. Thus, in the first period we have

 Hip-Hiy 0—15 1 uHyg—dHy ;1  2{g 4

0= ds, 3w PO T W d) 2 8




2.5 American derivatives 87

—1

Fig. 2.11. Values of the processes X (inside the circles) and E (outside the circles)

Vmax

Fig. 2.12. Minimal (on the left) and maximal (on the right) optimal exercise strate-
gies

In the second period, the strategy is the following:

’U,Hg,l — dHQ’Q

= %2 T4 ) L E——
Qs (w— )51 ; B2,1 Ot 2a—d
N _Hyy—Hppy -3 _ 1 3 _ ulao—dHy, 4

U w=dS, 5 3 T 4rP—d) 2T

In the last period we have to compute the strategy only for S, = S and
Sy = Sp1 since in Sy = Sy there is the last opportunity of optimal early
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Fig. 2.13. Hedging strategy for 0 <r <1

exercise (see also Figure 2.12). Then we have

o Hzs — Hzo _ 0 By = uls, —dHzs _ 0
P2 (u—d)Syy T A+ rpBu—d
e Hjz o — Hs _0 By = uHs 1 — dHs _0
BT —d)Sy, T A+ rpPu—d
The hedging strategy is represented in Figure 2.13. O

2.5.4 Relations with European options

In an arbitrage-free and complete market, we denote by (H?) the arbitrage
price of the American derivative X and by (HF) the arbitrage price of the
related European derivative with payoff X . We recall that

HA = max E9 [)Nf,,|]-'n}, 0F = g {XN|fn}7 n=0,....N,

veT,

where @ is the EMM.

The next result establishes some relations between the prices of American-
style and European-style derivatives. In particular we prove that an American
Call option (on a stock that does not pay dividends and assuming that r > 0)
is worth just as the corresponding European option.
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Proposition 2.67 We have

i) H2>HFE for0<n < N;
i) if HE > X,, for every n, then

H? = HE, n=0,...,N,
and v = N 1is an optimal exercise strategy.

Proof. i) Since His a @-super-martingale, we have
Hi > BQ [0 7| = B9 [Xy | 7| = HE,

hence the claim, since B,, > 0. This first part states that, in general, an Ame-
rican derivative is worth more than its corresponding European counterpart:
this fact is intuitive because an American derivative gives more rights to the
holder who is free to exercise it even before maturity.

ii) By hypothe51s HE is a martingale (and thus also a super- martlngale)
greater than X. However H# is the smallest super- -martingale greater than X
(cf. first step in the proof of Theorem 2.57): therefore we have H4 = HF and

also HA = HE. O
Remark 2.68 Assume r > 0. We have

~ 1 1 ~ K

AE = ~ pe ~K)* n]>—EQ CK | Fa=8, -

Since r > 0, we get

B,
HY>S,-K=">85,-K
By

and since HE > 0, we also have
P> (S, —K)T.

As a consequence of the second part of Proposition 2.67, an American Call
option is worth as the corresponding European option.

We can also give an intuitive meaning to the preceding result: it is known
that instead of exercising an American Call option before maturity it is more
profitable to sell the underlying asset. Indeed, if the owner of an American
Call option decided to exercise it early at time n < N, he/she would get a
S, — K profit, that becomes (1 +7)V~"(S,, — K) at maturity. Conversely, by
selling one unit of the underlying asset at time ¢,, and keeping the option, at
maturity he/she would get

(1+4r)N-"s, — K, if Sy > K,

1 N-ng _ g Sy —K)t =

Therefore in all cases, if » > 0, the second strategy is worth more than the
first. a
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Example 2.69 The equivalence between the prices of American and Euro-
pean derivatives does not hold for Call options that pay dividends and for Put
options. As a simple example, let us consider an American Put option in a
one-period binomial model (N = 1) with r > 0 and, for the sake of simplicity,

Cltr—d 1

u—d 2
Then u+d = 2(1+r) and the price of the corresponding European Put option

18
1

2(147)
(if, for example, K > uSg)

Po = ((K — ’LLSO)+ + (K — dSO)+) =

1 K

For the American Put option we have
PO = maX{K - S(),po} =K -— S()

and so in this case it is profitable to exercise the option immediately. a

2.5.5 Free-boundary problem for American options

In this section we study the asymptotic behaviour of the binomial model for an
American option X = ¢(t,S) as N goes to infinity and we prove a consistency
result for American-style derivatives, analogous to the one presented in Section
2.3.5. As we are going to see, the Black-Scholes price of an American option
is the solution of a so-called “free-boundary problem” that is in general more
difficult to handle than the classical Cauchy problem for European options. In
this case pricing by the binomial algorithm becomes an effective alternative
to the solution of the problem in continuous time.

We use the notations of Section 2.3.6: in particular we denote the arbitrage
price of the derivative by f = f(¢,5), (¢,5) € [0,7] x Rs¢, and we put § = %;
the recursive pricing formula (2.167) becomes

F(T,5) = o(T, 5),
F(t,8) = max { 1= (af (t+ 8,u8) + (1= ) f(t +6,d9)) , (£, S) }
(2.170)
The second equation in (2.170) is equivalent to

ax{wﬁo(t,kg) —f(t,S)} =0

where J;s is the discrete operator in (2.112). By using the consistency result
of Proposition 2.50, we get the asymptotic version of the discrete problem
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(2.170) as ¢ tends to zero:

maX{LBSfaQO_f} = Oa in]OaT[XR>07 (2 171)
f(T,S):QO(T,S), S € Ry,
where
0252

Lpsf(t,5) = 0 f(t,5) +

5 Ossf(t,S) +rSosf(t,S) —rf(t,S)
is the Black-Scholes differential operator. Problem (2.171) contains a diffe-
rential inequality and is theoretically more difficult to study than the usual
parabolic Cauchy problem: we will prove the existence and the uniqueness of
the solution in Paragraph 8.2. On the other hand, from a numerical point of
view, the classical finite-difference methods can be adapted without difficulties
to such problems.

The domain of the solution f of problem (2.171) can be divided in two
regions:

[0,T[xRso = Re UR,,

where!?

Re ={(t,5) € [0,T[xRx0 | Lps f(t,5) <0 and f(£,5) = ¢(t, )}
is called early-exercise region, where f = ¢, and

Re={(t,9) € [0,T[xR>o | Lps f(t,5) =0 and f(£,5) > ¢(t,5)}

is called continuation region, where f > ¢ (i.e. it is not profitable to exer-
cise the option) and the price satisfies the Black-Scholes equation, as in the
European case.

The boundary that separates the sets R., R. depends on the solution f
and is not assigned a priori in the problem: if this were the case, then problem
(2.171) could be reduced to a classical Cauchy-Dirichlet problem for Lpg over
R. with boundary value . On the contrary, (2.171) is usually called a free
boundary problem because finding the boundary is an essential part of the
problem. Indeed, from a financial point of view, the free boundary determines
the optimal exercise price and time.

Example 2.70 In the particular case of an American Put option, ¢(S) =
(K — S)* with maturity T, some properties of the free boundary can be
proved by resorting solely to arbitrage arguments. Let us put

Re(t) ={S | (t,5) € Re}.
15 Since

{max{F(z),G(z)} =0} ={F(z) =0, G(z) <0} U{F(z) <0, G(z) = 0}.
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S |
KL N /Y

Free boundary

N"

Fig. 2.14. Exercise and continuation regions of an American Put option

Then, under the assumption that the risk-free rate r is positive, for every
t € [0, 7] there exists 3(t) €0, K[ such that

Re(t) =10, 5(t)].

Indeed let f(t,.S) be the price of the option. Then f(¢,.9) is strictly positive
for every t € [0, T[: on the other hand, since ¢(S) = 0 for S > K, we have

R.(t)C{S< K}, tel0,T]. (2.172)

Further, by definition, R,.(t) is relatively closed in Rsg. Rc(t) is an interval
because of the convexity with respect to S of the price: if Sy, Ss € Re(t), then
for every p € [0, 1] we have

@081+ (1= 0)S2) < f(t, 051 + (1= 0)S2) < of (t,51) + (1 — o) f(£,92) =
(since S1,52 € R.(t) and by (2.172))
= o(K = 51) + (1 = 0)(K = 52) = (051 + (1 = 0)52),

and so 951 + (1 — 0)S2 € R.(t). The fact that the price function is convex can
be proved by using the no-arbitrage principle.
Finally we have
10, K — Ke " T=Y] C R,(t).

Indeed, if S < K(1 — e "(T=%), then it is profitable to exercise the option,
since at time ¢ one receives the amount

K—8>Ke (T
that, at maturity, yields

(K —8)er™=Y > K > f(T,S).



2.5 American derivatives 93

By arbitrage arguments it is also possible to prove that [ is a continuous and
monotone increasing function. Figure 2.14 depicts the exercise and continua-
tion regions of an American Put option. a

Going back to the general case, we point out that, by definition, we have
Re - {(t,S) € [07T[XR>O ‘ LBSSO(taS) < 0}7 (2173)

and this raises the question about the regularity assumptions we have to
impose on ¢, and also about what kind of regularity we might expect for the
solution f of (2.171). Indeed, even in the simplest case of a Put option, the
payoff function ¢ = (S) is not differentiable at S = K and Lgsy is not
defined everywhere in the classical sense. However in this case, by using the
theory of distributions (cf. Appendix A.9.3), we get

0_2 K2
2

LBS(K — S>+ = 5K(S) — TKIL]O,K[(S),

where dx denotes Dirac’s delta distribution, concentrated at K. Therefore, if
r > 0, at least formally we have

<0 S<K

Lps(K—=8)T¢_ " ’

sl =) {zo, S =K,
and (2.173) is verified, recalling (2.172). Concerning the regularity of the so-
lution, problem (2.171) does not admit in general a classical solution: in Para-
graph 8.2 we will prove the existence of a solution in a suitable Sobolev space.

We conclude the section by stating a result analogous to Theorem 2.46
on the approximation of the continuous case by the binomial model: for the
proof we refer to Kushner [220] or Lamberton and Pages [228].

Theorem 2.71 Let P{(0,S) be the price at the initial time of an American
Put option with strike K and maturity T in the N-period binomial model with

parameters
un = 80\/5N-|-Ot5N7 dy = e—UV5N+[35N’
where o, 3 are real constants. Then the limit

lim Px(0,5) = £(0,9), S>0
N—oo
exists and f is the solution of the free-boundary problem (2.171).

2.5.6 American and European options in the binomial model

In this section, by using the arbitrage pricing formulas in the N-period bino-
mial model, we present a qualitative study of the graph of the price of a Put
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option, as a function of the price of the underlying asset, and we compare the
American and European versions.

Let PE and P4 be the prices of a European and an American Put option,
respectively, with strike K on the underlying asset S: using the notations
of Paragraph 2.3, and denoting the initial price of the underlying asset by

So = x, we have
n

Sp=atn,  tn =[]+ m)

k=1

and the arbitrage prices at the initial time have the following expressions:

o (K — l"(/)N)+

PE(z) = E9 [W} ’ (2.174)
B (K — xp,) T

PA(x) = sup E9 {7(1 T } (2.175)

Proposition 2.72 Assume that the parameter d in the binomial model is
smaller than 1. The function x +— P (x) is continuous, convex and decreasing
for x € R>q. Further,

K

PE(0) = [(ETLE

PE(z) =0, x € [Kd™", o0,

and there exists T €0, K[ such that

PE(z) < (K —2)%, z €]0,1], PE(z) > (K —x)*, v e[z, Kd™"].
(2.176)
The function x — PA(z) is continuous, convex and decreasing for © € Rxq.
Further,
PA(0) = K, PAz) =0, z € [Kd™N, 400,

and there exists x* €0, K| such that

PAz) = (K —x)*, z€[0,27], PAz) > (K —2)F, ez, Kd™N].

Proof. We can write (2.174) more explicitly as
1 N
PP(z) = —— ) en(K —uldV o)t
((E) (1 —|—T‘)N hZOCh( u m) )

where ¢, = qh(l — q)N ~h are positive constants. Hence we infer directly

N
h
the properties of continuity, convexity and the facts that the price function is
monotone decreasing and that P¥(z) = 0 if and only if (K —u"dN~"z)* =0

for every h or, equivalently, if u*dN~"x > K for every h i.e.!0 dVNz > K.

16 Since d < 1.
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European Put

Fig. 2.15. Graph of the binomial price (dotted line) of an American Put option
as a function of the price x of the underlying asset. The broken line represents the
graph of the corresponding European Put option

Further, by (2.174) it is obvious that P¥(0) = ﬁ To prove (2.176), let
7

us consider the continuous convex function!
g(x) = PP(x) — (K —x),  w€[0,K]

Since ¢(0) < 0 and g(K) > 0, by continuity ¢ is null in at least one point: it
remains to be seen whether such a point is unique. We put

zo = inf{z | g(x) > 0}, z1 =sup{z | g(x) < 0}.

By continuity g(xg) = g(x1) = 0 and z¢ < z1: we want to prove that g = 1.
If this were not the case, i.e. 2o < z1, by the convexity of g we would have

0= g(xo) < tg(0) + (1 = t)g(z1) = tg(0) <0
for some ¢ €]0, 1] and this is a contradiction. This concludes the proof of the
first part of the proposition.

The continuity of the function P4 follows from (2.140) which recursively
defines P# as the composition of continuous functions. The facts that the
price function is convex and monotone decreasing follow from (2.175) since

the functions
(K — :m/J,,)"’}
(1+r)

are convex and decreasing and their least upper bound, when v varies, pre-
serves such properties.

xHEQ[

T The sum of convex functions is convex.



96 2 Discrete market models

Now, by (2.175), P4(x) = 0 if and only if

(K — I%)* _
E? {W} =0 (2.177)

for every v € 7. The expectation in (2.177) is a sum of terms of the form
Con (K —uld"=hz)* | with ¢,;, positive constants. So P4 (z) = 0 if and only if
uhd" x> K for every!'® n,kie. if dVNz > K.

Finally let us consider the function

f(x) = PHz) - (K —z)".
By (2.140) f > 0 and since v > 0, we have

f(0) =K sup E?[(1+7)7"] - K =0,
veTy

that is P4(0) = K. Further

_ K osup @ |17
fK) =K sup B {(Hr)"}z

(for v =1)

(1+47r)
For x > K we obviously have f(x) = PA(z) > (K — x)* = 0. We put

o[G0

z* =inf{z € [0,K] | f(z) > 0}.

On the grounds of what we have already proved, we have 0 < z* < K and,
by definition, f = 0 over [0,2*]. Finally we have that f > 0 over Jz*, K]; we
prove this last fact by contradiction. Let us suppose that f(z1) = 0 for some
x1 €]z*, K[. By the definition of z*, there exists xo < x1 such that f(xq) > 0.
Now we note that, over the interval [0, K], the function f is convex and so

0 < flwo) Stf(x)+ (1 —t)f(z1) = (1 —1)f(21)

if xg = tx + (1 — t)z1, t €]0, 1[. This concludes the proof. 0

18 Quch that 0 < k <n < N.
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Continuous-time stochastic processes

In this chapter we introduce the elements of the theory of stochastic processes
that we will use in continuous-time financial models. After a general presen-
tation, we define the one-dimensional Brownian motion and we discuss some
equivalence notions among stochastic processes. The most substantial part of
the chapter is devoted to the study of the first and the second variation of a
process: such a concept is introduced at first in the framework of the classical
function theory and for Riemann-Stieltjes integration. Afterwards, we extend
our analysis to the Brownian motion by determining its quadratic-variation
process.

3.1 Stochastic processes and real Brownian motion
Let (§2, F, P) be a probability space and I a real interval of the form [0, 7] or
Rzo.

Definition 3.1 A measurable stochastic process (in what follows, simply a
stochastic process) on RN is a collection (X;)ier of random variables with
values in RN such that the map

X:Ix2—RN, X(t,w) = Xy (w),

is measurable with respect to the product o-algebra (1) @ F. We say that X
is integrable if Xy € L(£2, P) for every t € I.

The concept of stochastic process extends that of deterministic function
f:1— RNV,

Just as f associates ¢ to the variable (the number) f(¢) in RY, similarly the
stochastic process associates t to the random variable X; in RY. A stochastic
process can be used to describe a random phenomenon that evolves in time:
for example, we can interpret a positive random variable X; as the price of

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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a risky asset at time ¢, or a random variable X; in R? as the position of a
particle in space at time t.

To further help intuition, it is useful to think of a function f : I — RY
as a curve or trajectory in RY: the range of the curve f is

v=A{f)[tel}

and as the parameter ¢ varies, f(t) represents a point of the range ~. The idea
can be extended to stochastic processes and, in this case, a different path (and
therefore a possible trajectory of the price of an asset or a possible motion of
a particle in space) corresponds to any w € (2:

Yo = {Xe(w) | t € T}, w e .
Definition 3.2 A stochastic process X is continuous (a.s.) if the paths
t— Xi(w)

are continuous functions for every w € §2 (for almost all w € 2).
Analogously X is right continuous (a.s.-right continuous) if

Xi(w) = Xy (w) := Slirg Xs(w)

for every t and for every w € 2 (for almost all w € 2).

The family of right-continuous processes is extremely important since, by
using the density of Q in R, many properties of discrete-time processes can
be extended to this collection. This quite general fact will be used repeatedly
later on.

Now we extend the concepts of filtration and adapted stochastic process
to the continuous case. As in the discrete case, a filtration represents a flow of
information and saying that a price is described by an adapted process means
that it depends on the information available up to that moment.

Definition 3.3 A filtration (Fi)i>0 in (£2,F,P) is an increasing family of
sub-o-algebras of F.

We say beforehand that later on we will assume suitable hypotheses on the
filtration (cf. Section 3.3.3).

Definition 3.4 Given a stochastic process X = (Xi)ier , the natural filtra-
tion for X is defined by

FX=0(X, | 0<s<t):=c({X;Y(H) | 0<s<t HeRB}), tel.
(3.1)

Definition 3.5 A stochastic process X is adapted to a filtration (Fy) (or,
simply, Fi-adapted) if FX C F; for every t, or, in other terms, if X; is
Fi-measurable for every t.
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Clearly FX is the smallest filtration with respect to which X is adapted.

Definition 3.6 (Real Brownian motion) Let (£2,F, P, (F;)) be a filtered
probability space. A real Brownian motion is a stochastic process W = (W;)i>0
in R such that

i) Wo=0 a.s.;

it) W is Fi-adapted and continuous;

iii) for t > s > 0, the random variable Wy — Wy has normal distribution Ny —
and is independent of F.

It is not straightforward to prove the existence of a Brownian motion: some
proofs can be found, for example, in Karatzas-Shreve [201]. A remarkable case
is when the filtration is the natural one for W, i.e. F, = FV.

In view of properties i) and ii) of Definition 3.6, the paths of a Brownian
motion start (at ¢ = 0) from the origin a.s. and they are continuous. Further,

as a consequence of i) and iii), for every ¢ we have
Wi ~ No (3-2)
since Wy, = W, — Wy a.s.

Remark 3.7 (Brownian motion as random motion) Brownian motion
was originally created as a probabilistic model for the motion of a particle. The
following properties of Brownian motion are obvious consequences of (3.2):

a) E[W;] =0 for every t > 0, i.e. at any time the expected position of the
particle is the initial one;

b) recalling the expression of the density of the normal distribution I'(¢,-) in
(A.7), we have that, for every fixed t > 0, the probability that W; belongs
to a Borel set H decreases by translating H far from the origin. Intuitively
the probability that the particle reaches H decreases moving H away from
the starting point;

c¢) for every fixed H € 4,

t—0+
Intuitively, when time decreases also the probability that the particle has
moved away from the initial position decreases;
d) E[W?] = var(W,;) = t, i.e. the estimate of the distance, at time ¢, from
the starting point of a particle moving randomly is v/#: this fact is less
intuitive but it corresponds to Einstein’s observations [118].

Example 3.8 (Brownian motion as a model for a risky asset) A first
continuous time model for the price of a risky asset S is the following:
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n (3.3), Sy is the initial price of the asset, p is the expected rate of return
and o denotes the riskiness of the asset or volatility. If o = 0, the dynamics in
(3.3) is deterministic and correspond to simple compounding of interest with
risk-free rate p. If ¢ > 0, the dynamics in (3.3) is stochastic and S = (S¢)e>0
is a Gaussian (or normal) stochastic process, i.e.

St ~ NSg(l—i—;Lt),a'Qt (3'4)
for t > 0. From (3.4) it follows that
E[S;] = So(1 + ut)

so that the expectation of S corresponds to a risk-free deterministic dynamics.
Then a Brownian motion introduces “noise” but it does not modify the process
in mean. Further, o is directly proportional to the variance and so to the
riskiness of the asset.

In practice this model is not used for two reasons: on one hand it is prefe-
rable to use a continuously compounded rate; on the other hand (3.4) implies
that P(S; < 0) > 0 if ¢ is positive and this is does not make sense from an
economic point of view. Nevertheless, (3.3) is sometimes used as a model for
the debts/credits of a firm. O

3.1.1 Markov property

We have already commented on the meaning of the Markov property from a
financial point of view: a stochastic process X, representing the price of an
asset, has the Markov property if the expectation at time ¢ of the future price
X7, T > t, depends only on the current price X; and not on the past prices.
While there are several ways to express this property, perhaps the following
is the simplest one.

Definition 3.9 In a filtered probability space (£2,F,P,(F:)), an adapted
stochastic process X has the Markov property if:

(M) for every bounded Z-measurable function ¢ we have
Elp(Xr) | Fe] = Elp(Xr) | X4, T >t

Remark 3.10 By Dynkin’s Theorem A.9, property (M) is equivalent to the
following condition that in general is easier to verify:

(M1) for every Borel set H, we have
EXreH|FR|=FE[XreH| X, T>t. a
Note that the Markov property depends on the given filtration. The first

remarkable example of Markov process is the Brownian motion: in order to
illustrate more clearly this fact, we introduce some notations.
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Definition 3.11 Let W be a Brownian motion on the space (2, F, P, (F:)).
For fized x € R and t > 0, the stochastic process Wh* defined by

Wyt =z+Wr-W,,  T>t,
is called Brownian motion starting at time t from x.

Clearly we have

i) Wht=ua;

ii) Wh? is an adapted and continuous stochastic process;

iii) for t < T < T + h, the random variable W;ih — W;m has normal distri-
bution NO,h and is independent of Fr.

Remark 3.12 As a consequence of the previous properties we have
Wit ~ Ny, T >t (3.5)
Therefore, for fixed x € R and T > t, the density of W;m is
y = Itz Ty),

where

I (t,z;T,y) = (:L‘—y)2> (3.6)

@ =1 P <_2(T —t)

is the fundamental solution of the adjoint heat equation (cf. Section 3.1.2
below). O

This justifies the following:

Definition 3.13 The function I'* = I'*(t,x; T, ") is called transition density
of the Brownian motion from the “initial” point (t,x) to the “final” time T.

We prove now that a Brownian motion has the Markov property. Let ¢ be
a bounded Z-measurable function: in view of Lemma A.108, we get

Elo(Wr) | Fi] = Elp(Wr — Wy + Wy) | Fi] = u(t, Wh), =t (3.7
where u is the %-measurable function defined by
u(t,z) = E[p(Wr — Wi +2)] = E [p(Wr™)] . (3-8)
Therefore we have proved the following:

Theorem 3.14 A Brownian motion W on the space (£2,F, P, (F:)) has the
Markov property with respect to (F;) and, in particular, formulas (3.7)-(3.8)
hold: in a more compact form, we have

E[p(Wr) | F] = E [p(Wg")] (3.9)

.’E:Wt !
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We note that (3.9) implies in particular (cf. Remark A.109) that
Elp(Wr) | Fi] = Ele(Wr) [ W], T=t,

i.e. W is a Markov stochastic process, according to Definition 3.9.
Using the expression for the transition density of Brownian motion, we
can also write (3.9) more explicitly:

Elp(Wr) | F] = W= Wt)>dll

/«/ —tep< 2T — 1)
Note that both sides of the equality are actually random variables.

Exercise 3.15 Given «, 3 € R, a # 0, prove that (o'W, + 3) is a Brow-
nian motion starting from .

3.1.2 Brownian motion and the heat equation

We consider the adjoint heat operator in two variables:

1
L* = 5 Oue + 0, (t,x) € R?. (3.10)

In Appendix A.3 we show that the function I™* in (3.6) is the fundamental
solution of L* and consequently, for every final datum ¢ € Cy(R), the Cauchy
problem

L*u(t,z) =0, (t,x) €]0, T[ xR, (3.11)
WT,a)=p(z)  zeR, '
has a classical solution
u(t,x) = / I'*(t,z;T,y)p(y)dy, t<T, xR (3.12)
R

Since I'* is the transition density of Brownian motion, there exists a strong
connection between Brownian motion and the heat equation; this is summed
up in the following statements:

i) the solution u in (3.12) of problem (3.11) has the following probabilistic
representation:

ut,z) = E [p (Wg")], reR, tel0,T]; (3.13)

it) by Theorem 3.14, the following formula for the conditional expectation of
a Brownian motion holds:

Elp(Wrp) | F] = u(t, Wy), T2>t, (3.14)

where u is the solution in (3.12) of the Cauchy problem (3.11): (3.14)
expresses the Markov property of Brownian motion.

We remark that Monte Carlo' numerical methods for PDEs are based on
representation formulas like (3.13).

! See Paragraph 12.4.
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3.2 Uniqueness

3.2.1 Law of a continuous process
The law (or distribution) of a discrete stochastic process
(Xoy-., Xn)

is the joint distribution of the random variables Xy, ..., X,. Now we examine
how to extend this notion to the case of a continuous stochastic process

X:0,T) x 2 — RY

defined on a probability space ({2, F, P).
We denote by C([0,T]) := C([0, T],RY) the linear space of the continuous
functions on [0, 7] with values in RY and we consider the function

X: 02— c(o,1))

that maps the elementary event w into the continuous trajectory t — X;(w).
Endowing C([0,T]) with a structure of probability space, we aim at showing
that X is a random variable. First of all we recall that C([0,T]), with the
usual maximum norm

o = )|, c(o,TY),
oo = max (0], we C(0.7)

is a complete? normed space: in particular the norm defines the collection
of open sets in C([0,T]) and consequently the Borel o-algebra of C([0,T)),
denoted by B(C(]0,T])). The simplest example of Borel set is the ball with
radius 7 > 0 and center wy:

D(wg,r) :={w e C([0,T]) | |w(t) — wo(t)| <r, t €[0,T]}. (3.15)

We recall also that C([0,T]) is a separable space and Z(C([0,T1])) is generated
by a countable collection of balls of the form (3.15): for the proof of this
statement, see Example A.157 in Appendix A.8.

Lemma 3.16 For every H € #(C([0,T])), we have

XM H)y={we?|X(w)e H}cF,

and therefore A
X (2, F) — (C([0,T]), #(C([0,T]))

1s a random variable.

2 Every Cauchy sequence is convergent.
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Proof. Since Z(C([0,T1])) is generated by a countable collection of balls, it
suffices to observe that, being X continuous, we have

{X € D(wq,7)} = ﬂ {w e N || Xe(w) —wp(t)] <7},
te[0,7]NQ

eF
hence the claim, in view of Remark A.20. |
Definition 3.17 The probability measure P, defined by
PX(H)=P(X € H), H e #(C([0,17)),

is called law of the process X .

Next we consider the map

X:[0,7] x C([0,T]) — RY, X, (w) := w(t), (3.16)
that defines a stochastic process on (C([0,T7]), B(C(]0,T]))): indeed
(t,w) = Xy (w)

is a continuous function and therefore measurable with respect to the pro-
duct o-algebra #([0,T]) ® #(C([0,T])). Since the process X, defined on the
probability space

(C([0,1), 2(C(0,T1)), P¥),

has the same law of X, we give the following:

Definition 3.18 The process X on (C([0,T)]), B(C([0,T))), PX) is called
canonical realization of X.

Lemma 3.19 We have that
o(X¢,t €10,17) = B(C([0,T7)).

Proof. Given a set 7 = {t1,...,t,} consisting of a finite number of points in
[0,7)] and K = K; x --- x K,, with K; € Z(RV),i=1,...,n, a “cylinder” in
PB(C(]0,T))) is a set of the form

H(r, K) ={w e C([0,T)) | w(t;) € K;, i =1,...,n}
i=1
Since X is a stochastic process, by Fubini’s Theorem, we have
o(Xy,t € [0,T]) € Z(C([0,T7)).

To prove the reverse inclusion, we have to verify that the collection of cylinders
H(r, K), when 7 and K vary, generates #(C([0,T])). To this end, we recall
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that #(C([0,7])) is generated by a countable collection of balls. Then it
suffices to prove that every closed ball D(wp,r) is a countable intersection of
cylinders: let (7;) be a sequence of sets of points in [0,T] as above, such that

Umn=0b1na
j=>1
Then, using the notation 7; = {tJ, ... ,t{Lj}, we have

D(wo,r) = (V{w e C([0,T)) | [w(t]) —wo(t))| <7, i=1,...,n;}.

j=1
O
Notation 3.20 We denote the natural filtration for X by
PB:(C([0,T))) :=0(Xs, s € [0,1]), 0<t<T. (3.17)

The previous results can be easily extended to the case T' = +0c0. Indeed,

C(Rxp) := C(Rxg,RY)

endowed with the norm3
=1
lwlloe = Zl 5 g ([w(®)] A1),
e

is a normed, complete and separable space in which the Borel o-algebra is
defined in a natural way. Further, Lemmas 3.16 and 3.19 can be easily gene-
ralized and, as before, we can define the canonical realization of a continuous
process X.

In particular, if X is a Brownian motion, then the process X in (3.16) on the
space (C(Rx), Z(C(R>p)), P, (%:(C(R>y)))) is called canonical Brownian
motion (or canonical realization of the Brownian motion).

3.2.2 Equivalence of processes

Given a finite set of points 7 = {t1,...,t,}, we say that the joint distribution
of (X¢,,...,Xs,) is a finite-dimensional distribution of the process X.

Definition 3.21 Two processes X,Y defined on the spaces (2, F,P) and
(2, F', P, respectively, are called equivalent if they have the same finite-
dimensional distributions for every T = {t1,...,t,} as above.

Proposition 3.22 Two processes are equivalent if and only if they have the
same law.

3 This norm induces uniform convergence on compact sets.



106 3 Continuous-time stochastic processes

Proof. Let X,Y be two equivalent stochastic processes defined on (£2, F, P)
and (2, F', P’) respectively. The claim follows from Proposition A.6, observ-
ing that, by assumption,

P(X e H(r,K)) = P'(Y € H(, K)),

for every cylinder H(7, K) and the collection of cylinders is N-stable and, as
we have seen in the proof of Lemma 3.19, generates the Borel o-algebra. The
reverse implication is left as an exercise. O

According to Definition 3.6 any stochastic process verifying properties i),
ii) and iii) is a Brownian motion. Therefore, in principle, there exist different
Brownian motions, possibly defined on different probability spaces. Now we
show that Definition 3.6 characterizes the finite-dimensional distributions of
Brownian motion uniquely and so its law as well. In particular, by Proposition
3.22, the canonical realization of a Brownian motion is unique.

The following proposition contains some useful characterizations of a
Brownian motion: in particular it gives explicitly the finite-dimensional dis-
tributions of a Brownian motion, i.e. the joint distributions of the random
variables Wy, , ..., W;, for every set of points 0 <¢; < --- < tn.

Proposition 3.23 A Brownian motion W on the filtered probability space
(2,F, P, (F)) verifies the following properties:

1) W has independent and stationary increments, i.e. for 0 < t < T the
random variable Wo — W, has normal distribution NU’T,t and the random

variables
Wi, = Wiyt s Wiy — Wiy,
are independent for every set of points t1,to,...,tny with 0 < t1 < to <
- < tN;

2) for 0 <ty <---<ty, the joint distribution of Wy, ..., W, is given by

P(Wiy, ..., Wiy) €Hy X --- x Hy) =
/ / (0,051, y1) I (t1, 15 t2,y2) -+ (3.18)
H1 HN

I (tN—1,yN—1;tN, YN )dyrdys . .. dyn
where Hy,...,Hy € B and I'* is defined in (3.6).

Conversely, if W is a continuous stochastic process on a probability space
(2, F, P) such that P(Wy = 0) = 1 and it satisfies 1) or 2), then W is a
Brownian motion with respect to the natural filtration FW .

Sketch of the proof. It is easy to prove that, if W is a Brownian motion,

then it verifies 1). First of all it suffices to prove the independence of the
increments: if N = 3, since

{(Wtz _th) € H} € ]:tza
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the claim is an immediate consequence of the fact that Wy, — W;, and F;, are
independent. For N > 3, we iterate the previous argument.

To prove that a Brownian motion W verifies 2), we consider only the case
N = 2: firstly, for 0 < ¢ < T and H, K € %, we have
{Wye HyNn{Wre K} ={W,y e H}N{(Wpr — W) € (K — H)},

where K — H={zx—y |z € K, y € H}. Then, by the independence of the
increments we get

PW,eH, Wpe K)=PW, € H)P(Wp —W,) e (K —H)) =

(by property iii))

:/ F*(0,0;t,xl)dxl/ F*(t70;T,$2)dSﬂ2 =
H K—-H

(by the change of variables 1 = y; and xo = y2 — y1)
= / / (0,0, y0) I (¢, y15 T, y2 ) dyr dys.
HJK

To prove the other implication, we have to verify that, if W is a continuous
stochastic process on a probability space ({2, F, P) such that P(Wy =0) =1
and it satisfies 1), then the random variable Wy — W is independent of ﬁtW ,
for t < T. In this case we can use Dynkin’s Theorem A.5: in general, if
X is a stochastic process such that, for every set of points ¢1,...,txy with
0<t; <ty <---<tp, the random variables

Xoy, Xy — Xy oo, Xey — Xin

are independent, then X1 — X} is independent of ftX for 0 <t<T.

Finally, we leave it as an exercise to prove that, for every stochastic process
W such that P(Wy = 0) = 1, the properties 1) and 2) are equivalent. O

3.2.3 Modifications and indistinguishable processes

We introduce some other notions of equivalence of stochastic processes.

Definition 3.24 Let X,Y be stochastic processes defined on the same proba-
bility space (2, F, P). We say that X is a modification of Y if X; = Y; a.s.
for every t > 0. We say that X and Y are indistinguishable if, for almost all
w € §2, we have

Xi(w) =Y (w) forany t>0.

We set
Ny ={we 2| X;(w) #Yi(w)}, N=JN.
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Then X is a modification of Y if Ny is negligible, Ny € N, for every ¢t > 0. As
already said, since ¢ varies in the set of real numbers that is not countable:
even if Ny € N for any ¢, we may have N ¢ F or even N = (2. On the other
hand, the processes X and Y are indistinguishable if N € N, that is almost
all the paths of X andY coincide.

In general it is clear that, if XY are indistinguishable, then they are also
modifications, but the converse may not hold: nevertheless, if the stochastic
processes are continuous, it is possible to employ the density of the set of the
rational numbers in R to prove that the two notions coincide.

Proposition 3.25 Let X,Y be a.s. right-continuous stochastic processes. If
X is a modification of Y, then X,Y are indistinguishable. In particular we
can equivalently write

X =Y a.s. for every t or X =Y; for every t a.s.

Remark 3.26 The result of Proposition 3.25 still holds true if we assume
that X, Y are a.s. left-continuous (instead of right-continuous) stochastic pro-
cesses such that Xy =Y. a

Proof (of Proposition 3.25). It suffices to consider the case Y = 0. Let
F € N be the set in which the paths of X are not right continuous. We set

N = U N,UF
tERzom@

where N, = {w € 2| X, # 0} is a negligible event by assumption. Then we
get N € N and X;(w) = 0 for every w € 2\ N and ¢t € R>¢ N Q. Further,
if t € R>o \ Q, we take a sequence (¢,) € Q converging to ¢ from the right.
Then for every w € £2\ N we have

Xi(w) = lim Xy (w) =0,

n—oo
and this concludes the proof. |

Summing up: two continuous processes are indistinguishable if and only if
they are modifications; in this case they are also equivalent and have the same
canonical realization.

Example 3.27 Let u,v € L] (R) such that u = v almost everywhere (with
respect to Lebesgue measure) and u(0) = v(0). If W is a real Brownian motion,
then the processes u(W;) and v(W;) are modifications: indeed, assuming that

H = {u # v} has null Lebesgue measure, we have
P (u(W3) £ (W) = P (W, € H) = / D*(0,0:t,2)dz =0,  ¢>0,
H

where I'* is defined in (3.6). Note that for ¢ = 0 we use the fact that 0 ¢ H
by assumption.
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However in general the processes u(W),v(W) are not indistinguishable.
Indeed, to fix ideas, let assume that 1 € H, that is u(1) # v(1): then, for
any fixed T' > 0, we have P (Wp > 1) > 0 and this means that the family
of trajectories w such that u(Wi(w)) = u(l) # v(1) = v(Wi(w)) for some
t € [0, 7] has a positive probability. In other terms

P({w e 2| u(Wy(w)) = v(Wi(w)) for any t € [0,T]}) < 1,

and therefore u(W),v(W) are not indistinguishable.

A second simple example of processes that are modifications but are not
indistinguishable is the following: on the probability space ([0, 1], B, m), where
m is Lebesgue measure, the processes

X =0, and Yi(w)=1g,(1), te0,1],
are modifications, but
{w] Xi(w) = Yiw), ¢ € [0,1]}
is empty and therefore X, Y are not indistinguishable. O

We now introduce another weaker notion of equivalence of processes. As
usual, let m denote the Lebesgue measure.

Definition 3.28 We say that the stochastic processes X,Y are (m @ P)-
equivalent if
(m @ P)({(t,w) | Xe(w) # Yi(w)}) =0 (3.19)

that is X =Y (m ® P)-almost everywhere.

The processes X,Y are (m ® P)-equivalent if X; = Y; a.s. for almost every
t or equivalently if X; = Y; for almost every ¢, a.s. In particular if XY
are modifications then they are (m ® P)-equivalent. On the other hand, the

process
1 t=0
X; = ’
0 t>0,

is (m® P)-equivalent to the null process, even if X is not a modification of the
null process since Ny = {w | Xo(w) # 0} is not negligible. However, in the case
of continuous processes, also (3.19) is equivalent to the indistinguishability

property.

Proposition 3.29 Let XY be (m ® P)-equivalent, a.s. right-continuous
stochastic processes. Then X,Y are indistinguishable.

Proof. It suffices to consider the case Y = 0. We set

N ={we Q| X #0}),  I={t=0]P(N,) >0}
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We aim at showing that X is a modification of the null process or equivalently
that I = (): then the thesis will follow from Proposition 3.25.
We consider a countable subset J of [0, +o0o[\I, that is dense in [0, +-oc0[\]

and we put
N:UM
teJ

so that P(N) = 0. We fix ¢ > 0 and consider a decreasing sequence (t,) in J
converging to t. Then for any w € 2\ N we have

Xi(w) = nh_)rgo X, (w) = 0.

This proves that X; = 0 P-a.s., that is t ¢ I. Therefore I is empty and this
concludes the proof. O

3.2.4 Adapted and progressively measurable processes

The definition of stochastic process X requires not only that, for every ¢, X,
is a random variable, but also the stronger condition of measurability in the
pair of variables (¢,w). We shall soon see* that the property of being adapted
must be strengthened in an analogous way.

Definition 3.30 A stochastic process X is called progressively measurable
with respect to the filtration (Fy) if, for every t, Xl qxq is #([0,t]) ® Fi-
measurable, i.e.

{(5,0) €[0,] x 2| Xy(w) € H} € B(0,1]) ® Fr,  He B.

Clearly every progressively measurable process is also measurable and, by the
Fubini-Tonelli Theorem A.50, adapted. Conversely, it is not a trivial result®
to prove that, if X is measurable and adapted, then it admits a progressively
measurable modification. Nevertheless, if the processes are continuous, the
situation is much simpler:

Lemma 3.31 FEvery right-continuous and adapted process is progressively
measurable.

Proof. Let X be right continuous and adapted. For fixed ¢ and n € N, we
set X{™ = X, and

k+1

t, on

k
Xg"):X%t, for s € [—

t k+1<2m.
L

Since X is right continuous, X (™) converges pointwise to X on [0,¢] x £2 for
n — co. The claim follows from the fact that X (") is progressively measurable

4 See, for example, Theorem 3.58.
® See, for example, Meyer [253].
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because, for every H € A, we have

{(s,w) €[0,t] x 2| X" (w) € H}
_ ko, k1 t
7121 ({2"15’ on t{ X (X tEH)) U ({t} x (X, € H))

which belongs to Z([0,t]) ® F. O

3.3 Martingales

We present some fundamental results on continuous-time martingales: many
of these results are simple extensions of their counterparts in Appendix A.6
in the discrete-time setting.

Definition 3.32 Let M be an integrable adapted stochastic process on the
filtered probability space (2, F, P,(F;)). We say that M is

e a martingale with respect to (Ft) and to the measure P if
M, = FE[M; | Fs], for every 0 < s < t;
e q super-martingale if
M, > E[M; | Fs], for every 0 < s < t;
e a sub-martingale if
Ms; < E[M; | FJ, for every 0 < s < t.
As in the discrete case, the mean of a martingale M is constant in time: indeed
E My = E[E[M; | Fo]] = E [My], t>0. (3.20)

Example 3.33 Given an integrable random variable Z in (2, F, P, (F})), the
stochastic process, defined by

M, =E[Z|F], t>0,
is a Fi-martingale. a

Example 3.34 In a filtered probability space (2, F, P, (F;)), let Q@ <5 P
be another probability measure on F. Then we have

Q <, P, tel0,T],
and, by the Radon-Nikodym Theorem A.96, we define the process

_ 4@
T

It is easy to verify that L is a P-martingale: indeed

Ly
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i) Ly >0and E[L] = Q(£2) =1, for every ¢t > 0;
ii) by (A.101), we have Ly = E [L; | F] for every s < .

Prove as an exercise that M is a @Q-martingale if and only if ML is a P-
martingale. O

Example 3.35 Let M be a martingale and X an adapted and bounded pro-
cess. Then we have

E[MrX;) = E[M:Xy], t<T.
Indeed
E[MX:|=FE[E[Mr | F]X:]|=E[E[MrX: | F]| = E[MrX].
O

Remark 3.36 If M is a martingale and ¢ is a convex function on R such
that (M) is integrable, then ¢(M) is a sub-martingale. Indeed

Elp(My) | Fs] =
(by Jensen’s inequality in Proposition A.107)
> p(E[My | Fs) = o(Ms).

Further, if M is a sub-martingale and ¢ is a convex and increasing function on
R such that (M) is integrable, then p(M) is a sub-martingale. As remarkable
cases, if M is a martingale, then |M| and M? are sub-martingales. a

The next result shows some remarkable examples of martingales that can
be constructed using Brownian motion.

Proposition 3.37 If W is a Brownian motion on (2, F, P,(F;)) and o € R,
then

Z) Wt;
i) W2 —t;
iii) exp <0Wt - %Qt)
are continuous Fi-martingales.
Proof. i) By Holder’s inequality,
E(W|? <E[W =t,
and so W is integrable. Further, for 0 < s < ¢t we have

E[Wt|‘7:S]:E[Wt_WS|‘7:S]+E[WS|j:8]:
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(since Wy — Wy is independent of Fy and Wy is Fs-measurable)
= BE[W, — W] + W, = W,.

ii) This is left as an exercise. We shall see later on that the fact that W2 —¢
is a martingale essentially characterizes Brownian motion (cf. Theorem 5.34).

iii) Recalling Exercise A.34, clearly exp (UWt - %zt) is integrable; further,

for s < t we have
o2
E |exp O'Wt—?t | Fs
o2
— exp (aws - 2t) E [exp(o (W, — W,)) | 7] =
(since Wy — Wy is independent of Fy)

— exp <UWS - U;t) E [exp(oZvE=5)]

with Z = W\};TV‘S/ ~ Np,1. The claim follows from Exercise A.34. a

3.3.1 Doob’s inequality

We extend to the continuous case Doob’s inequality, Theorem A.130, by using
a simple density argument.

Theorem 3.38 (Doob’s inequality) Let M be a right continuous martin-
gale® and p > 1. Then for every T

E
t€[0,T)

sup |Mt|p] < ¢E[|M7]"], (3.21)

where ¢ = 1% is the conjugate exponent to p.

Proof. We denote by (¢,),>0 an enumeration of the rational numbers in the
interval [0, T[ with to = 0, i.e.

QNIo,T[= {to,t1,---}
Let us consider the increasing sequence (g,,) of partitions” of [0, T

Sn = {tO;tla"'7tn7T}a

6 The result holds also for every a.s. right-continuous martingale.
" For every m we re-assign the indexes to the points to,...,t, in such a way that
to<t1 <---<tn.
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such that
U Sn = [07 T[ﬂ Q U {T}

n>1
For every n, the discrete process M (™ defined by
M™ = (My,, My, ..., M, , Mr)
is a martingale with respect to the filtration
(Fros Ftys -y Fr, s Fr)-
So, by Theorem A.130, setting
fn(w) = max{|My, (w)], | My, ()], [My, (W)], IMp (@)}, we L2

we have
E[f}] < "B [|Mr[*] (3.22)

for every n € Nand p > 1. Further, (f,) is an increasing non-negative sequence
an so, by Beppo Levi’s theorem, taking the limit as n goes to infinity in (3.22),
we get

E

sup Mt|p] < ¢"E[|Mr|"].
+€[0,7[N QU{T}

The claim follows from the fact that, being M right-continuous, we have
sup |M;| = sup [My].
te[0,T[NQU{T} t€[0,T]
Example 3.39 Let 2 =0, 1], let P be Lebesgue measure and
Xi(w) = L pqe(w), w e {2,
with fixed € €]0,1[. Then X has non-negative values and is such that

sup E[Xi] < FE
te[0,7]

sup X¢| - 0
t€[0,T]

Example 3.40 If M; = E[Z | ;] is the martingale in Example 3.33 with
Z € L*(92, P), then using Doob’s and Jensen’s inequalities we get

E | sup | M|

<4 M) < 45 [12P). :
te[0,T)

3.3.2 Martingale spaces: .#?2 and .#?>

Even though we often deal with martingales whose continuity property is
known, we state the following classical result®.

8 For the proof see, for example, Karatzas-Shreve [201], p. 16.
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Theorem 3.41 Let M be a super-martingale on a filtered probability space
(2,F,P,(F)) satisfying the usual hypotheses on the filtration (cf. Section
3.8.8). Then M has a cadlag’ modification M if and only if the function
t — E[My] is right continuous. In this case, we can choose M in such a way
that it is Fi-adapted and so it is a Fy-super-martingale.

In view of the previous theorem and of (3.20), every martingale admits a right-
continuous modification that is unique, up to indistiguishability, by Proposi-
tion 3.25. So the assumption of right-continuity, that will be conventionally
made later on, is not actually restrictive: in other words, we will always assume
that we are taking the right continuous version of every martingale.

Further, we note that, if M is a martingale, then (M; — Mj) is a martingale
with null initial value. So every martingale can be “normalized” in such a way
that MU =0.

Notation 3.42 For fired T > 0, we denote by

o /? the linear space of right-continuous Fi-martingales (M¢)epo,r) such
that My =0 a.s. and

[M]r =, |E L)ittlgT IMtIQ} (3.23)

s finite;
o /2 the subspace of continuous martingales in M*.

The importance of the class .#2 will be clear in Paragraphs 4.2 and 4.3,
where we shall see that, under suitable assumptions, the stochastic integral is
an element of .Z2.

Equation (3.23) defines a semi-norm in .#?: we note that [M]r = 0 if
and only if M is indistinguishable from (but not necessarily equal to) the null
stochastic process. Further, by Doob’s inequality, we have'®

|Mzllz = B [|MT]°]” < [M]r < 2| Mrlls, (3.24)

and therefore [M]r and ||[Mr|2 are equivalent semi-norms in .#?2. Next we
prove that the spaces .#2 and .#? are complete.

Lemma 3.43 The space (A%, [|r) is complete, i.e. for every Cauchy se-
quence (M™) there exists M € .#* such that

lim [M"™ — M]r = 0.

n—oo

Further, if the sequence (M™) is in M2, then M € M?2: in other terms, M2
is a closed subspace of M.

9 Cadlag is the French shortening for “right-continuous with finite left limits at all
t” (continue a droite et limité a gauche).

19 We recall that | Mr||2 = \/E [[M7|2].
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Proof. The proof is similar to that of the completeness of the L? space. First
of all, given a Cauchy sequence (M™) in .#?, it suffices to prove that it admits
a convergent subsequence to conclude that also (M™) converges.

Let (M*") be a subsequence of (M™) such that

Mkn — M) < i, n>1.
2n

For the sake of simplicity, we put v, = M*» and define

N

wy(w) = Z sup |vp41(t,w) — v (t, w)|, N >1.
n—1 t€[0,T]

Then (wy) is a non-negative, monotone increasing sequence such that

N
Ewy] < 22[[”n+1 —u,]3 <2
n=1

Therefore the limit

w(w) := A}gnoo wy (w), w € 2,

exists and, by Beppo Levi’s Theorem, FE [wz] < 2: in particular there exists
F € N such that w(w) < oo for every w € 2\ F. Further, for n > m > 2 we
have
sup |op(t,w) — v (t, w)| < w(w) — wWp—1 (W), (3.25)

te[0,7)
and so (v, (t,w)) is a Cauchy sequence in R for ¢t € [0,7] and w € 2\ F
and it converges, uniformly with respect to ¢ for every w € £2\ F, to a limit
that we denote by M (¢,w). Since the convergence of (v,) is uniform in ¢, we
have that the path M (-,w) is right-continuous (continuous if M™ € .#?2) for
every w € 2\ F: in particular, M is indistinguishable from a right-continuous
stochastic process. We denote such a process again by M. From (3.25) it
follows that

sup |M(t,w) — v, (t,w)| < ww), we N\ F, (3.26)

t€[0,T)
hence we infer that [M]r < oco. Finally we can use the estimate (3.26) and
Lebesgue’s dominated convergence theorem to prove that
lim [X —v,]r = 0.

Eventually we observe that M is adapted since it is a pointwise limit of
adapted processes: further, for 0 < s < t < T and A € F,, we have, by
Holder’s inequality,

0= lim E[(M— M;)14]= lim E[(M}— M)1,4],

n—oo n—oo

and so the equality E [M{*14] = E[M?1,4] implies E [M14] = E[M,1 4]
and in view of this we conclude that M is a martingale. O
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3.3.3 The usual hypotheses

Given a probability space (£2,F, P), we recall the notation
N ={F e F|P(F)=0},
for the family of P-negligible events.

Definition 3.44 We say that (F;) satisfies the so-called “usual hypotheses”
with respect to P if:

i) Fo (and so also Fy for every t > 0) contains N;
it) the filtration is right-continuous, i.e. for everyt > 0

ft = m ft_t,.s. (327)

e>0

The idea of considering only filtrations containing the collection of negligible
events stems from the need of avoiding the unpleasant situation in which
X =Y as., X is Fi-measurable but Y fails to be so. Analogously, for purely
technical reasons, it is useful to know that, if a random variable X is F,-
measurable for every s > t, then X is also F;-measurable: this is ensured by
(3.27). We will shortly be using these properties, for example in the proof of
Proposition 3.50 and in Remark 4.3.

The rest of the section can be skipped on first reading: we prove how
to complete a filtration so that we make it satisfy the usual hypotheses. At
a first glance this problem might seem technical, but actually it is of great
importance in the development of stochastic calculus.

Recalling Definition 3.4, we point out that, in general, even if X is a
continuous stochastic process, its natural filtration F*X may not satisfy the
usual hypotheses and, in particular, it may not be right-continuous. This
motivates the following:

Definition 3.45 Given a stochastic process X on the space (2, F,P), we
set, fort >0,

Fi = ﬂ FX. where FX =0 (,7-"tX U./\/) . (3.28)
e>0

It can be easily verified that FX := (F;X) is a filtration satisfying the usual
hypotheses: it is called standard filtration of X.

Remark 3.46 In what follows, unless otherwise stated, given a filtration
(F:), we implicitly assume that it verifies the usual hypotheses in Definition
3.44. In particular, given a stochastic process X, we will usually employ the
standard filtration F¥X instead of the natural filtration F¥X. O

Now we consider the particular case of a Brownian motion W on a proba-
bility space (£2, F, P) endowed with the natural filtration F". We prove that,
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in order to make the filtration FW standard, it suffices to complete it with
the negligible events, without having to further enrich it as in (3.28). More
precisely, we define the natural filtration completed by the negligible events
by setting

FY =0 (FVuN),

and we call FWV = (ftW ) Brownian filtration.

Theorem 3.47 The filtration F" verifies the usual hypotheses and it coin-
cides with the standard filtration of W. Further, W is a Brownian motion on
the space (2, F, P,FV) and is called standard Brownian motion.

Proof. The proof makes use of Dynkin’s Theorems A.5 and A.9. We set

ft::0<U.7:SW>, ftJr::meW.

s<t s>t

We point out that, in general, |J F¥ may not be a o-algebra and this justifies
s<t
the definition of F;_. Clearly we have
Fio CFY CFiy.
We want to prove that
Fir © Fi, (3.29)
for every t. To this end, it suffices to prove that

E[X | Fiy] = BIX | Fi] (3.30)

for every bounded F!V-measurable random variable X, with s > t: indeed,
if this holds true in particular for every bounded F;,-measurable random
variable X, then we will infer that X is also J;_-measurable, hence (3.29)
holds.

We denote the imaginary unit by . For every @« € R and u < t < s we

have
B[ | FV] = ¢oWe g {em(ws—wu) |.7:1‘7} _

(since W, — W, is independent on FV)
— piaWup [em(WFWu)} _
(by Example A.34)

) o2
= etoWu=5 (s—u), (3.31)

Taking the limit as u — t~, we get

) 02 )
Z = Wem 5o — im E [eroVe

u—t—

F.
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Now we verify that Z = E [e?*W+ | F,_]: first of all we observe that Z is F;_-
measurable, being the pointwise limit of F;_-measurable random variables. It
remains to be seen that

E[Z1g] = E [V 1¢], (3.32)

for every G € F;_. This follow from Dynkin’s Theorem, in the version of
Exercise A.104: indeed, if G € F)V, u < t, we have

E[Z1¢] = lim E [E [¢"*""

v—t—

Fl ] =

(since 1B [e'*Ws

FV] =E[eW:lg | FV] if v > u)

= lim E[E [ 1¢ | FY]] = E[e"1¢] .

v—t—

So (3.32) holds for G € |J F which is an N-stable collection, containing {2
u<t
and generating J;_: consequently, (3.32) holds also for G € F;_. In conclusion

we have proved that

E [eionS ft—] _ eiaWt—%z(s—t) - E [eiaWS ]:t] )
In an analogous way we can prove that
E [emws Fiil = emwﬁaf;(sft) - B [6mws AR

and so, for every s > 0 (for s < ¢ it is obvious),

E I:eiaWS

ft_] =F [eiaWS | ]:H-] .
More generally, proceeding as above, we can prove that
E [ei(a1W51+"'+°‘kW5k) | .7-}_} =F {ei(mWSl*'”*akWSk) \ }'t_‘_} (3.33)

for every aq,...,ap € Rand 0 < 51 < --- < sg, k € N. It suffices to observe
that, if k& = 2, we can prove a relation analogous to (3.31) in the following
way: for u < t < s1 < $o we have

E |:ei(0¢1W.91+042Ws2) |f‘1‘L/V}
_ pilata)Wa pp [ei(al-i-az)(Wsl—Wu)emQ(WSZ—WSl) |f134/} _

(since Wy, — W, and W, — Wy, are independent on FV)

_ gilata)Wu [ei(aﬁ-az)(Wsl—Wu)ei@2(W92—Wsl)}

i(og )W, —M(sl—u) —u—%(SQ—sl)
=€ ) “e 2 e 2 .
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Now let us call H the collection of bounded random variables Z such that
EZ|F-|=E[Z]| Fiy]-

Then H is a monotone family of functions (cf. Definition A.8), containing the
a.s. null random variables (since F;_ and F;4 contain the negligible events)
and the linear combinations and the products of cos(aWs) = Re (eiO‘WS) and
sin(aW,) = Im (e’*"+) for « € R and s > 0, in view of (3.33). For fixed 5 > 0
and setting

ASZ{(WslEH1>ﬁ-"ﬂ(WSkEH}C)‘OSSJ‘SS, Hjegﬁ’, ISJSICGN},

by density!'! H contains also the characteristic functions of the elements of .4
and . On the other hand, A and N are N-stable and o(AUN) = FWV: so,
by Theorem A.9 H contains also every bounded F}-measurable function (for
every s > 0). This concludes the proof of (3.30) and of the theorem. O

Remark 3.48 A result, analogous to that of the previous theorem, holds in
general for the processes having the strong Markov property: for the details
we refer to Karatzas-Shreve [201], Chapter 2.7, or Breiman [60]. O

3.3.4 Stopping times and martingales
Definition 3.49 A random wvariable
T: 02— RsgU{+o0}
is a stopping time with respect to the filtration (Fy) if
{r <t} eHF, (3.34)

for every t > 0.

Clearly a (constant) deterministic time 7 = t is a stopping time. Note also
that a stopping time 7 can take the value +o0o0. The next significant result is
based on the usual hypotheses on the filtration.

Proposition 3.50 The random variable T is a stopping time if and only if
{r <t} eF, (3.35)
for every t > 0. Consequently we also have {T = t},{r > t},{r >t} € F;.
Proof. If 7 is a stopping time, then
{r<t}= U {T<t—l}
N B n
neN

11 Tt is well known that the indicator function of a Borel set can be approximated
by trigonometric polynomials.
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with {7 <t— 1} € F,_1 C F. Conversely, for every € > 0 we have

{r<ty= ) {r<t+d},

0<o<e

and so {1 <t} € Fi1c. Consequently, in view of the usual hypotheses,

{r<te Fi=() Fise-

e>0

Proposition 3.51 Let 7,7 be stopping times. Then also
TAT =min{r,71} and 7V7 =max{r, 7}

are stopping times.

Proof. It suffices to observe that

{min{r, 7} <t} ={r <t} u{n <t},
{max{r,m} <t} ={r <t} n{n <t}

121

In mathematical finance, the typical example of stopping time is the exerci-
se time of an American option (cf. Paragraph 2.5). Another remarkable exam-
ple having a particularly intuitive geometrical interpretation is the so-called

hitting time for a stochastic process of an open or closed set in R¥.

Theorem 3.52 (Hitting time) Let X = (X;)ier., be a stochastic process
in RN, right-continuous and F;-adapted and let H be an open set in RN . We

put
IHw)={t>0]| X;(w) € H}, w € 12,
and
(W) = inf I(w), if I(w) # 0,
+o00, if I(w) = 0.

Then 7 is an F;-stopping time called “hitting time” of H for X.

Proof. In view of Proposition 3.50, it suffices to verify that {r < t} € F; for

every t. Since H is open and X is right-continuous, we have

{r<t}= U {Xs; € H},

seQN[0,¢[
and the claim follows from the fact that, being X adapted, we have

{X; e H} € F, s <t.
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LX),

Fig. 3.1. Hitting time for a process of an open set H

Corollary 3.53 Let X = (Xt)teleo be a stochastic process in RN, right-
continuous and Fi-adapted and let H be a closed set in RN . We put

Iw)={t>0| X;(w) € H or X;_(w) € H}, w e 2,

and
(W) = inf I'(w), if I(w) # 0,
+00, if (w) =10

Then T is an Fy-stopping time.

Proof. We consider the sequence of open sets in RV
N g 1
H,=<qxeR" |dist(z,H) < = ¢, n €N,
n

where dist(-, H) is the Euclidean distance from H. The claim follows from the
equality 2

freti={xeHoa X emu( | U KeHl})
neN seQN[0,t[

The condition {7 < t} € F; expresses the fact that, to know if X reaches H
by time ¢, it suffices to observe the paths of the process until time ¢. Looking
at Figure 3.1, the subtlety of Proposition 3.50 is apparent: intuitively, the
information in F; allows us to establish if X enters the open set H at time
t. However the paths of X (w;), X (w2) in the figure coincide until time ¢ in
which X;(w1) = X¢(w2) ¢ H and afterwards the path X (wq) enters H (and
so 7(wy) = t) while the path X (ws) does not enter H (and so 7(wg) > t).

12 Since 7(w) < t if and only if X;(w) € H or, for every n € N, there exists
s € QN 0, ¢] such that X,(w) € Hy.
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We explicitly remark that the last exit time
T=sup{t| X, € H}

is not in general a stopping time. Intuitively, in order to know if X leaves H
at time ¢ for the last time, it is necessary to observe the entire path of X.

Notation 3.54 Let 7 be a stopping time which is finite on 2\ N, where N
is a negligible event, and let X be a stochastic process. We set

X7 (w) = Xr ) (W), w € (2. (3.36)
Further, we define the o-algebra
Fr={F e F|Fn{r <t} eF for everyt} (3.37)
that is called o-algebra associated to the stopping time T.

We observe that, if 71, 75 are stopping times such that 7 < 75 a.s., then
Fr, C F.,. Indeed, for fixed t, by assumption

{n <t} 2{m <t}
so, if F' € F,, we have
Fﬂ{TQ St}:(Fm{Tl St})m{TQ St}EFt.

Remark 3.55 For every stopping time 7 and n € N, the equation

k+l ek k41
Tn(w) _ on lf on S T(‘JJ) < n
+oo  if T(w) = 400,

defines a decreasing sequence (7,,) of discrete-valued stopping times, such that

7= lim 7,. 0
n—oo

Now we prove the continuous version of Theorem A.129: the proof is based
on an approximation procedure and on the analogous result in discrete time.

Theorem 3.56 (Doob’s optional sampling Theorem) Let M be a right-
continuous martingale and let 71,7 be stopping times such that 71 < 75 < T
a.s., with T > 0. Then

M, = E[MTz | ‘7:7'1]-

In particular, for every a.s. bounded stopping time T we have

E[M,] = E[M].
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Proof. Let (71,,), (72,n) be sequences of discrete stopping times, constructed
as in Remark 3.55, approximating 7 and 7o respectively. By the continuity
assumption,

lim M., , = M, 1=1,2, as.

n—oo

Further, by Theorem A.129 we have
MTQ,n =E [MT | fTQ,n:I

and so, by Corollary A.151, the sequence (MTM) is uniformly integrable.
Finally, by Theorem A.129

MTl,n = E [M7'2,n |f7—1,n:|
and the claim follows by taking the limit in n. a

Remark 3.57 In an analogous way we prove that, if M is a right-continuous
super-martingale and 7, < 75 < T a.s., then

M, > E[M,, | Fp]. (3.38)

We refer to [201] for all the details.

The boundedness assumption on the stopping times can be replaced by a
boundedness assumption on the process: (3.38) is still valid if M is a super-
martingale such that

M, > E[M | F], t >0,
with M € L'(§2, P), and 7y < 75 are a.s. finite stopping times. a

Theorem 3.58 Let X be a stochastic process on the space (£2,F, P, (F))
and let T be an a.s. bounded stopping time. We consider the stopped process

X7 defined by
X[ (w) = Xt/\.,-(w)<w>7 t>0, we 1. (3.39)

We have:

i) if X is progressively measurable, then also Y is progressively measurable;

it) if X is progressively measurable, then the random wvariable X, is F,-
measurable;

iit) if X is a right-continuous Fy-martingale, then

Xt/\‘r = E [XT | ./Tt] (340)

and consequently also X7 is a right-continuous F¢-martingale.
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Proof. i) The function
@:[0,t] x 2 —[0,1] x 2, p(s,w) = (s AT(w),w),

is measurable with respect to the product o-algebra ([0, t]) ® F;. Since Xinr
is equal to the composition of X with ¢

Xop: ([0,t] x 2,8()0,t]) @ F;) — RY

the first part of the claim follows by the assumption of progressive measura-
bility on X.

ii) To prove that X, is F,-measurable, we have to show that, for every
He P andt >0, we have F := {X,; € H} N {r <t} € F;. Since we have
F = {Xianr € H} N {7 < t}, the claim follows from the fact that (X;r,) is
progressively measurable.

iii) We apply Theorem 3.56 to get

Xinr = B [X‘r | ft/\T}
= E[X:ljray + Xz | Fine]
=X lpeyy + E[Xo sy | Fine] =
(since Al >y € Fr if A€ Fy)
= Xrlireny + E[Xr | B Loy =
(since X 1,4 is Fy-measurable)
=FE[X,|F],

and this proves (3.40).
For fixed ¢ < s, applying (3.40) with the stopping time s A 7 instead of T,
we get
Xt/\‘r =F [XS/\T ‘ ft],

and therefore X7 is a Fi-martingale. a

3.4 Riemann-Stieltjes integral

Let us go back to the model for a risky asset in Example 3.8 where, assuming
So =1, we have
St:1+ﬂt+O'Wt, tE[O,T],

and W is a real Brownian motion starting from the origin. We consider a
partition

¢ ={to,t1,...,tn}
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of [0,T) with 0 =tg <t <--- <ty =T. Now, let V.= uS be the value of a
self-financing portfolio (cf. Definition 2.2) that is composed only by the asset
S. Then, for every k =1,..., N, we have

‘/tk - ‘/tk,1 = utk71(Stk - Stk—l)
pasg, (te — th—1) + oug,_ (Wy, — Wy, ).

Summing over k from 1 to N, we get

N N

Vr=Vo+ Mzutk—l(tk — tk—l) —I—O'Z utk—l(Wtk — Wtk—l) . (3.41)
k=1 k=1

=:I ¢ =iz ¢

To move on to continuous time, it is necessary to verify the existence of the
limits I; ¢ and I ¢ as the refinement parameter || of the partition tends to
zero: we recall that

= ~ by 42
ol = max_ [t — ti (3.42)

The first term I; ¢ is a Riemann sum and so, supposing that the function
t — uy(w) is Riemann integrable!® in [0, 7] for every w € £2, we simply have

T
lim Ilyg(w):/ g (w)dt,
0

ls|—0+

for every w € (2.
The second term I ¢ is the transform of u by W (cf. Definition A.120).
The existence of the second limit is not trivial: if we suppose that the limit

lim I =1 (3.43)

|s]—0+

exists and is finite, by analogy we may use the notation

T
0

Therefore we get, at least formally, the following formula

T T
VT:%+/$/ utdt—l—a/ Utth.
0 0

Actually the limit in (3.43) does not exist in general, unless further assum-
ptions on the stochastic process u are made. In order to justify this claim,

13 As a matter of fact, in a self-financing portfolio with one asset only, the function
t — u is necessarily constant. The situation is not trivial anymore in the case of
a portfolio with at least two assets.
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we ought to digress and give some mathematical details showing that the
trajectories of a Brownian motion are almost surely “irregular” in a sense
that will be specified later on.

Indeed, let us consider a regular path

t — Wt(w),

and assume that it belongs to C*([0,T7]): in this case we can easily prove that
there exists the limit

T
lim Ip (@ )—/ u ()W (@) dt, (3.45)
ls|—0+ 0

where the integral is understood in the usual Riemann sense and W/ (@) de-
notes the derivative %Wt (®). Indeed, by Lagrange mean value theorem there
exists t5 € [tx—1,tx] such that

I (@ Zutkl @)We: (@) (te — th-1);

so Iy (@) is a Riemann sum and (3.45) follows easily.

As a matter of fact it is not difficult to prove the existence of the limit in
(3.43) under the weaker assumption that ¢ — Wy (®) is a bounded variation
function (cf. Section 3.4.1):

lim I (w)=1€eR.

|g|~>()+

The number [ is usually called Riemann-Stieltjes integral of us () with respect
to Wy(®) over [0,T] (cf. Section 3.4.2) and the notation | = (fOT ut th) (@)

is used.

Unfortunately, in Section 3.4.3 we show that the paths of a Brownian
motion do not have bounded variation almost surely and so the integral in
(3.44) cannot be defined in the Riemann-Stieltjes sense. Chapter 4 will be
entirely devoted to an introduction to stochastic integration theory.

3.4.1 Bounded-variation functions

The material in this section is not essential for the rest of the treatment and
can be skipped on first reading, although some concepts may help the reader
understand more clearly the next chapter.

Given a real interval [a, b], we consider a function

g:la,b] = R"
and a partition ¢ = {tg,...,tn} of [a,b]. The variation of g relative to ¢ is
defined by
N

Via.p)(9:6) = Z |9(tk) — g(tk—1)l.

k=1
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Definition 3.59 The function g has bounded variation on [a,b] (we write
g € BV([a,b])) if the supremum of Via4(g,5), taken over all partitions s of
[a,b], is finite:
Via,p)(9) 7= sup Vg 4(g,5) < +oc.
<

Via,n1(g) is called (first) variation of g over [a,b].

Example 3.60 i) If
g:la,b) > R

is monotone, then g € BV([a, b]). For example, if g is increasing, we have

2

ab] g7 Z tk: 1)) g(b)_g(a’)7

k=1

and so
Via.p)(9) = g(b) — g(a);

ii) if g is Lipschitz continuous, i.e. there exists a constant C' such that
|g(t)7g($)| §C|t78|7 t,s € [aab]a

then g € BV([a, b]). Indeed

2

N
Viap)(g,5) = Z lg(tk) — g(te—1)| < CZ(tk —ty—1) = C(b—a),

k=1 k=1

and so

Via)(9) < C(b = a);

iii) if w € L([a, b]), then the integral function

N N L
Vil (9:) = D lgte) = g(te1)| = > / u(s)ds
k=1 k=1 |/tk—1
N ty b
< u(s)lds = [ [u(s)|ds,

and so
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iv) the function

0 per t =0,
g(t)={ .

tsin (1) pert€]0,1],

is continuous on [0, 1] but does not have bounded variation. As an exercise,
prove this statement by using partitions with points of the form ¢, =

x —1
(5 +nm)
Lemma 3.61 If g € BVNC([a,b]), then
Viab)(9) = \RTO Via)(9,5)- (3.46)

Proof. Let us first recall that |¢| denotes the refinement parameter of the
partition ¢, defined in (3.42). By contradiction, if (3.46) were not true, then

there would exist a partition ¢ = {tg,...,tx} of [a, ], a sequence of partitions
(¢n) and a positive number ¢ such that
Vv[a,b] (gvgn) < ‘/[a,b] (ga §) -5 nh—>ngo |§’ﬂ| =0. (347)
Now we have
N
Va1 (9:6) < Viaw (9:50) + D _ lg(te) — g(t7.)]|
k=1

where ¢} are points of the partition g, such that [t —} | < |¢,[. On the other
hand, since the function g is uniformly continuous on [a b] and hm lsn| =0,

we can choose n large enough such that

Z\g tr) —g(tx,)| <

contradicting (3.47). O

wlm

Example 3.62 The function g : [0,2] — R, identically zero except for ¢t = 1
where g(1) = 1, is such that Vi 2j(g) = 2. On the other hand,

Vio,21(9,6) =0

for every partition ¢ not containing 1. Therefore (3.46) is not true for a generic
g € BV([a,]). O

Remark 3.63 Geometrically, the variation Vi, (g,<) of a function
g:la,b] = R"

represents the length of the broken line in R™ given by the union of the line
segments g(to)g(t1),...,9(tn—1)g(tn). Intuitively if g is a continuous curve,
then by Lemma 3.61, Vj,4)(g,s) approximates the length of g as || tends to
zero: therefore the curve g is of bounded variation (or rectifiable) if it has
finite length, approximated by broken lines inscribed to g. O
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Fig. 3.2. Approximation of a continuous curve by a broken line

The following result characterizes real-valued functions of bounded varia-
tion.

Theorem 3.64 A real function has bounded variation if and only if it is a
difference of two monotone increasing functions.

Proof. As a consequence of the triangular inequality we have

Viap) (91 + 92) < Via(91) + Viay) (92),

and so from Example 3.60-1) it follows that the difference of two monotone
increasing function has bounded variation.

The converse is a consequence of the following property'* of the variation:
for every ¢ € ]a, b[ we have

Vi) (9) = Via,y(9) + Viey (9)- (3.48)

First of all the function

Qﬁ(t) = Vv[a,t] (g)v te [av b]»
is monotone increasing, in view of (3.48). Further, setting ¢ = ¢ — g, we get
P(t+ h) > (t) for h > 0, since equivalently we have
et +h) = p(t) + gt +h)—g(t)
as a consequence of (3.48). O

Remark 3.65 As asimple consequence of the previous result, if g € BV ([a, b])
then the limits

g(t+) = lim+g(s), and g(t—) = lim g(s), (3.49)

s—t s—t—
exist and are finite, for every ¢. Further, the set of the discontinuity points
of g is at most countable’®. Consequently it is always possible to modify a

' For its simple proof see, for instance, Rudin [293].
15 Tt suffices to consider g monotone increasing. The jumps of ¢ in ¢t are

Ag(t) = g(t+) — g(t-).

For every n € N, the set A, = {t €]a,b]| Ag(t) > 1/n} is finite since g(a) <
g(t) < g(b). The claim follows from the fact that the set of discontinuity points
of g is given by the countable union of the A,,.
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function g € BV([a,b]) over a countable set (having null Lebesgue measure)
in such a way that g becomes right-continuous , i.e.

g(t+) = g(), t € [a,b],

or left-continuous. |

3.4.2 Riemann-Stieltjes integral and It6 formula

Let us introduce some notations: given a real interval [a, b], we denote by
Plap) ={s = (o, .- tn) [a=1to <ty <--- <ty =0},
1. = {T = (7‘1,...,7'1\/) |Tk S [tk—l,tk], k= 1,...,]\[}7

the collection of partitions of [a, b] and the collection of the “choices of points”
relative to the partition ¢, respectively. Given two real functions u, g defined
on [a,b], we define by

S(u,g,5,7) =Y u(rr)(g(tk) — g(tk—1))

k=1

the Riemann-Stieltjes sum of u relative to g, to the partition ¢ and to the
choice of points 7 € 7.. We have the following classical result:

Theorem 3.66 Ifu € C([a,b]) and g € BV([a,b]), then there exists the limit

b
lim S(u,g,¢,7) ::/ u(t)dg(t), (3.50)

[s|—0

i.e. for every e > 0 there exists § > 0 such that

<e,

b
/ u(t)dg(t) — S(u, g,5,7)

for every ¢ € Pl such that || < & and for every T € 1. Formula (3.50)
defines the Riemann-Stieltjes integral of u with respect to g. Further, if g €
C1([a,b]) then we simply have

b b
/u(t)dg(t):/ u(t)g' (t)dt. (3.51)

Example 3.67 Consider the interval [0,1] and the BV function g(t) =
Ly (t), t € [0,1], where T €]0,1[. If ¢ is a partition of [0,1], we have two
cases: if ¢y ¢ ¢ then S(u,g,s,7) = 0 for any function v and 7 € 7_. In partic-
ular, if the Riemann-Stieltjes integral exists, we necessarily have

/ w(t)dg(t) = 0.
0
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On the other hand, if T € ¢ = (tg,...,tn), say T = t,, then

S(u, 9,6, 7) = w(mn)(9(tn) = 9(tn-1)) + u(Tns1)(9(tnt1) = 9(tn))

= U(Tn) - U(Tn+1)

for every 7, € [tn—1,T] and 741 € [T, tn41]. Letting |s| go to zero, we see
that S(u,g,s,7) converges to 0 if and only if u is continuous at T. Thus the
continuity of the integrand is necessary to guarantee the convergence of the
Riemann-Stieltjes sum for any BV function g. The class of integrands can be
extended by considering Lebesgue-Stieltjes integration (cf. Section 14.1).
Conversely, if the Riemann-Stieltjes sum S(u,g,s,T) converges to a limit
for every continuous function u then g has bounded variation (see, for instance,
Theorem I-55 in Protter [287]). O

Example 3.68 Let T €]0, 1] and consider a BV function g such that g(¢t) =0
for t € [0,T] and g(t) = 1 for t €]|T,1]. For any u € C([0, 1]), we have

/0 u(t)dg(t) = u(T) Ag(T) = u(T) (9(T+) — g(T—)).

Note that the value of the integral is independent of g(7T"). On the other hand,
we have

/0 u(t)dg(t) = w(T) (g(T) — 9(T—)). (3.52)

and therefore the value of the Riemann-Stieltjes in (14.25) may vary by mo-
difying g at the point T It is left as an exercise to prove that, if g = 1)q 1,
then

/0 u(t)dg(t) = u(0)
for any T €]0, 1]. O

Proof (of Theorem 3.66). We give a sketch of the proof and leave the
details to the reader. To prove (3.50) using the Cauchy criterion, it suffices to
verify that, for every £ > 0, there exists d > 0 such that

1S(u, g,¢",7") = S(u, g,¢",7")| <¢,

for every ¢’,¢" € P,y such that |¢'|,[¢"| < & and for every 7' € 7., and
T e ’TCH.

We put ¢ = ¢ U¢” = {tg,...,tn}. For fixed ¢ > 0, since f is uniformly
continuous on [a,b], it is enough to choose |¢’| and |¢”| small enough to get

N

1S, 9,6",7) = S(u,g,<", 7)) <> |g(tn) — g(tr—1)| < eViay(9),
k=1

so we can conclude.
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If g € C'([a,b]), by the mean value theorem, given ¢ € Pla,5) there exists
7 € 7. such that

N
’I,L » 9,6, T Zu tk:_tk: 1) S(’U/g/,id7§,7')
k=1
and (3.51) follows by taking the limit as || tends to zero. O

Now we list some simple properties of the Riemann-Stieltjes integral; their
proof is left as an exercise.

Proposition 3.69 Let u,v € C([a,b]), f,g9 € BV([a,b]) and X\, € R. Then
we have:

i
/ab(/\u+v)d(f+ug):)\/abudf+/\u/abudg—i—/abvdf—i—u/abvdg;

it) if u < wv and g is monotone increasing, then

b b
/udgé/ vdg;
a a

b

/udg

b c b
/udg:/ udg+/ udg.

Now we prove a theorem that extends the classical results concerning the
notion of primitive and its role in the computation of the Riemann integral.
The next theorem is the “deterministic version” of the It6 formula, the fun-
damental result in stochastic calculus that will be proved in Chapter 5.1.1.

Theorem 3.70 (Itd formula) Let F € C'([a,b] xR) and g € BVNC([a,b]).
Then we have

iii)

< max [u| Va5 (9);

iv) for ¢ €]a,b] we have

b

b
F(b, g(b)) = F(a, 9(a)) =/ (O.F) (t,g(t))dH/ (04 F) (t, 9(t))dg(t). (3.53)

Before proving the theorem, we consider some examples: in the particular case
F(t,g) = g, (3.53) becomes
b
0= [ dgtt)
a
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Further, if g € C! we have

For F(t,g) = f(t)g we get

b b
f(b)g(b)—f(a)g(a)=/ f’(t)g(t)dt+/ f(t)dg(t),

and this extends the integration by parts formula to the case g € BVNC(]a, b]).
Formula (3.53) allows also to compute explicitly some integrals: for example,
if F(t,g) = g° we get

b
[ otds( = 5 (*0) - (@)

Proof (of Theorem 3.70). For every ¢ € P, 3, we have

N
F(b,g(b)) = F(a,g(a)) = Y (F(tk,g(tx)) = Ftr—1, 9(tr-1))) =

k=1
(by the mean value theorem and the continuity of g, with ¢}, ¢} € [tx—1,tx])

N

=D (O F (t, g(#)) (1 — te1) + g F' (1, 9 (8)) (9 (tk) — 9(tk-1)))
k=1

and the claim follows by taking the limit as |¢| — 0. O
Exercise 3.71 Proceeding as in the proof of the It6 formula, prove the fol-
lowing integration-by-parts formula
b b
F0)9(b) - Fagla) = [ s0dg0)+ [ aaso).

valid for f,g € BVNC([a,b]).

3.4.3 Regularity of the paths of a Brownian motion

In this section we prove that the family of trajectories with bounded variation
of a Brownian motion W is negligible. In other words W has almost all paths
that are irregular, non-rectifiable: in every time interval [0,¢] with ¢ > 0, W
covers almost surely a path of infinite length. Consequently, for almost all the
paths of W it is not possible to define the integral

T
/ Ut th
0

in the Riemann-Stieltjes sense. In order to study the regularity of the paths
of Brownian motion we introduce the fundamental concept of quadratic va-
riation.
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Definition 3.72 Given a function

g:[0,t] = R"
and a partition ¢ = {to,...,tnN} € Py, the quadratic variation of g relative
to ¢ is defined by
N
2
V(g,9) =" lo(t) — glter)[*.
k=1

The case of continuous functions with bounded (first) variation is of particular
interest.

Proposition 3.73 If g € BVNC([0,t]) then

lim V( )(g, ¢)=0.

[s|—0

Proof. The function g is uniformly continuous on [0, ¢], consequently for every
€ > 0 there exists § > 0 such that

lg(tr) —g(te—1)| < e

for every ¢ = {to,t1,...,tn} € Pjoy such that || < J. The claim follows from
the fact that
N
0< V(g5 Z g(tr-1)* < 62 l9(tk) — g(tk—1)] < € Vjoy(9)
where the first variation Vjo4(g) is finite by assumption. |

Theorem 3.74 If W is a Brownian motion, then we have

lim V2(W,¢) =t  in L2(2, P). (3.54)

ls|—0

Consequently, for any t > 0, almost all the trajectories of W do not have
bounded variation on [0,t]. We say that the function f(t) =t is the quadratic
variation of the Brownian motion and we write (W), =t fort > 0.

Proof. To unburden notations, for fixed t > 0 and the partition
S = {t07' .. 7tN} S P[O,t]v

we set
Ap =Wy, — Wy, and 0 =t —tp—1
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for k =1,...,N. We recall that E [A?] = &j. Further, it is not difficult to
prove'6 that
E [A}] = 36;. (3.55)

Then we have

2 [(vt‘”(vv,c) -1y =

]l

k=1
N

Z (42 - 00)°| +2 3 B [(47 - ) (42 - )]

k=1 h<k
Now we observe that, by (3.55), we have
E (A} -6)°| = B[AL] - 26, [A7] + 0} = 267
On the other hand
B [(A7 = 6¢) (A7 = on)] =
(by the independence of the increments of Brownian motion for h < k)
=E[A} — 6] E[A} — 6] = 0.

In conclusion we get

N
E[(V( (W) —t) ] ZékS%Id

that proves (3.54).
Now by Theorem A.136, for any sequence of partitions (s,) with mesh
converging to zero, there exists a subsequence (g, ) such that

lim Vt(2)(VV, Sk, ) =1t a.s.

n—oo

Thus, by Proposition 3.73, almost all the trajectories of W cannot have
bounded variation on [0, t]. O

Remark 3.75 Since the L2-convergence implies convergence in probability
(cf. Theorem A.136), by (3.54) we also have that Vt(2) (W,s) converges in
probability to t, that is

Jim, P<|Vt (W) —t] > s) =0
g *}
16 We have
E[A}] = /y4F(y,5k)dy,
R

with I" as in (A.7). Then (3.55) can be obtained integrating by parts. See also
Example 5.6-(3).
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for every € > 0. Note however that it is not true that

lim Vt(Z)(W, )=t a.s.

ls|—0

Indeed, one can find (cf. Exercise 1.15 in [259]) a sequence (s,) of partitions
in Pjg4 such that |5, — 0 as n — oo and

lim sup Vt(Q) (W, ¢k, ) = +o0 a.s.

n—oo

On the other hand,
lim V;(Q)(VV, Gn) =1 a.s.

for any refining!” sequence (s,) of partitions such that lim |c,| = 0 (see, for
n—oo

instance, Theorem I-28 in [287]). O
Exercise 3.76 Let f € C([0,T]). Prove that
N T
|1}m02f(tk,1)(wtk Wi, )¥= [ f@at, in L?(02),
T =1 0
where, as usual, ¢ = {to,...,tn} € Ppo 1)

Exercise 3.77 Given g € C([0,t]), p > 1 and ¢ = {to,...,tn} € Pjoy, we
define

N
ViP(g,6) = > lg(tr) — gltr—1)I?
k=1

the p-th order variation of g over [0, ] relative to the partition . Prove that,
if
lim V,**)(g,5) €0, +oc],

ls|—0
for some pg, then
+o0 p<po
0 p > po-

The case p > py can be proved exactly as in Proposition 3.73; the case p < pg
can be proved by contradiction.

lim V" (g,¢) = {
[s]—0

Definition 3.78 Given two functions f,g : [0,t] — R™, the co-variation of
fyg over [0,t] is defined by the limit (if it exists)

N

(frg)e="lim > (f(tx) = f(te1), 9(tx) — glte—1)).

[s|—0
SEP(0,¢] k=1

The following result can be proved as Proposition 3.73.
Proposition 3.79 If f € C([0,t]) and g € BV([0,1]), then (f,g): = 0.

17 A sequence () is refining if ¢, D 11 for any n.
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Brownian integration

In this chapter we introduce the elements of stochastic integration theory that
are necessary to treat some financial models in continuous time. In Paragraph
3.4 we gave grounds for the interest in the study of the limit of a Riemann-
Stieltjes sum of the form

N
> i (W, = Wi, ) (4.1)
k=1
as the refinement parameter of the partition {to, ..., ¢y} tends to zero. In (4.1)

W is a real Brownian motion that represents a risky asset and u is an adapted
process that represents an investment strategy: if the strategy is self-financing,
the limit of the sum in (4.1) is equal to the value of the investment.

However the paths of W do not have bounded variation a.s. and this fact
prevents us to define pathwise the integral

T
/ Ut th
0

in the Riemann-Stieltjes sense. On the other hand W has finite quadratic
variation and this property makes it possible to construct the stochastic in-
tegral for suitable classes of integrands u: generally speaking, we require that
u is progressively measurable and satisfies some integrability conditions.

The concept of Brownian integral was introduced by Paley, Wiener and
Zygmund [275] for deterministic integrand functions. The general construc-
tion is due to It6 [179]-[180] in the case of Brownian motion, and to Kunita
and Watanabe [219] in .#2. This theory lays the foundations for a rigorous
study of stochastic differential equations that describe the diffusion processes
introduced by Kolmogorov [213], on which the modern stochastic models for
finance are based. In this chapter we confine ourselves to the Brownian case.

The aim of this chapter is to construct the Brownian integral gradually,
first considering the integration of “simple” processes, i.e. processes that are

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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piecewise constant with respect to the time variable, then extending the defi-
nition to a sufficiently general class of progressively measurable and square-
integrable processes. Among the main consequences of the definition, we have
that the stochastic integral has null expectation, it is a continuous martingale
in .#2 and it satisfies Itd isometry. By further extending the class of inte-
grands, some of those properties are lost and it is necessary to introduce the
more general notion of local martingale.

4.1 Stochastic integral of deterministic functions

As an introductory example, useful to see in advance some of the main results
we are going to prove, we consider Paley, Wiener and Zygmund’s construction
[275] of the stochastic integral for deterministic functions.

Let u € C1([0,1]) be a real-valued function such that u(0) = u(1) = 0.
Given a real Brownian motion W, we define

/01 u(t)dW, = — /01 o' (t)Wydt. (4.2)

This integral is a random variable that verifies the following properties:

E [y u(t)aw,| = o;
{( I th) ] = [ u2(t)dt
Indeed

E [/Olu’(t)Wtdt] - /Olu’(t)E[Wt] dt = 0.

E Uolu'(t)wtdt/ st} / / E [W,W,] dtds =

(
1 u'(t) (tu(t) - /Ot u(s)ds + t(u(l) — u(t))) dt
(

/
:/Olu’(t) —/Otu(s)ds> dt:/oluQ(t)dt.

More generally, if u € L?(0,1) and (u,) is a sequence of functions in C3(0,1)
approximating u in the L? norm, by property ii) we have

(/01 un(t)th—/Ol um(t)dwtﬂ :/Ol(un(t)_um(t))zdt_

E
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Therefore the sequence of integrals is a Cauchy sequence in L?(§2, P) and we
can define

n—oo 0

1 1
/ W(BdW, = lim | up (£)dW,.
0

We have thus constructed the stochastic integral for u € L?([0,1]) and, by
passing to the limit, it is immediate to verify properties i) and ii).

Evidently this construction can be considered only an introductory step,
since we are interested in defining the Brownian integral in the case u is
a stochastic process. Indeed we recall that, from a financial point of view,
u represents a future-investment strategy, necessarily random. On the other
hand, since (4.2) seems to be a reasonable definition, in the following para-
graphs we will introduce a definition of stochastic integral that agrees with
the one given for the deterministic case.

4.2 Stochastic integral of simple processes

In what follows W is a real Brownian motion on the filtered probability space
(2, F, P,(F;)) where the usual hypotheses hold and T is a fixed positive
number.

Definition 4.1 The stochastic process u belongs to the class L? if

i) wu is progressively measurable with respect to the filtration (F3);
ii) u € L*([0,T] x 2) that is

T
/ B [u?] dt < oc.
0

Condition ii) is a simple integrability condition, while i) is the property playing
the crucial part in what follows. Since the definition of L.? depends on the
given filtration (F;), when it is necessary we will also write L?(F;) instead
of 2. More generally, for p > 1, we denote by P the space of progressively
measurable processes in LP ([0, T] x §2). We note explicitly that L is a closed
subspace of L?([0,T] x £2).

Now we start by defining the It6 integral for a particular class of stochastic
processes in L2.

Definition 4.2 A process u € L2 is called simple if it can be written as

N
ue=» el (), tel0,T], (4.3)
k=1

where 0 < tg <t; < --- <ty <T and e, are random variables' on (12, F, P).

1 We assume also that
P(ex—1 =exr) =0, k=2,...,N,

so that the representation (4.3) for w is unique a.s.
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Remark 4.3 It is important to observe that, since u is progressively measu-
rable and by hypothesis (3.27) of right-continuity of the filtration, we have that
ex in (4.3) is 7y, _,-measurable for every k = 1,..., N. Further, e, € L?({2, P)
and we have

N

T N T
/ E[u?] dt = Z/ Elef]1, . (®dt=> E[e}] (tx —te-1). (4.4)
0 =170

k=1
O

If u € IL? is a simple process of the form (4.3), then we define the It6 integral
in the following way:

N
/Utth = Zek(Wtk — Wtkfl) (45)

k=1

and also, for every 0 <a <b < T,

b
/ Utth :/utl]a,b](t)th (46)

/ Utth =0.

Example 4.4 Integrating the simple process u = 1

t
Wi = / dWs.
0

Then, going back to Example 3.8, we have

t t
Sy = So (1 +/ ,uds> +/ odWs, t>0. |
0 0

The following theorem contains some important properties of the It6 integral
of simple processes.

and

Jo,0 We get

Theorem 4.5 For all simple processes u,v € L2, o, € R and 0 < a < b <
c < T the following properties hold:

(1) linearity:
/(O[Ut + ﬂvt)th = a/utth + 6/1& C”/Vvt7

b c c
/ wus dWy +/ ur dWy :/ usdWy;
a b a

(2) additivity:
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(3) null expectation:
E

b
/ utth | fa‘| = 07 (47)

b c
E [/ U,tth/ Utth ‘ fa] = 0, (48)
a b

b b
/ utth/ ’Utth ‘ fa

(5) the stochastic process

and also

(4) Ité isometry:

b
E =F / Ut’Utdt ‘ ./Ta‘| 3 (49)

t
Xt:/ udW,,  telo,T], (4.10)
0

is a continuous Fy-martingale, i.e. X € M2 (F;), and we have

T
/ ufdt] : (4.11)
0

[X]3=E| sup X7| <4E

t€[0,T)

Remark 4.6 Since
EX]|=FE[E[X | F]],

the non-conditional versions of (4.7), (4.8), (4.9) hold:

b .
/utth :0,

E

b c
/ Utth / ’Utth = 0,
a b

b b i b
/ utth/ 'Utth =F / UtUtdt .

The last identity for u = v is equivalent to the L?-norm equality

b
H / Utth
a

and this is why the fourth property is called “It6 isometry”. a

E

E

L2(0) = Hu||L2([a,b]><(2)

Proof. Properties (1) and (2) are trivial. Concerning property (3), we have

E

b N
/ usdWy | f};| = ZE [ek(Wtk - Wtk—l) ‘ ‘7:&] =
a k=1
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(since tg > a, ey is Fi,_,-measurable by Remark 4.3 and so independent of
Wi, — We,_, and then we use Proposition A.107-(6))

N
ZE €L | f [Wtk - Wtk—l] =0.
k=1

To prove (4.8) we proceed analogously: if v is of the form

M
v= Z dh]l]t’Lfl’t’L],
h=1

then E Uab urdWy fbc ved Wy | fa} is a sum of terms of the form

E [ekdh(Wtk — Wtk—l)(Wth — Wth,—l) | Fa] y Wlth tk S thfl,
that are all equal to zero since egdy (W, — We, _,) is Fy, _,-measurable and
so independent of the increment Wy, — W,, , whose expectation is null, since

a S th—l .
Let us prove Itd isometry: if u and v are simple processes, we have

b b tr
/ up dW; / v dWy | Ful| = Z / edetZ
a a th—1 th—
N tr tr
=Y E / edet/ dydWy | Fy
k=1 th—1 te—1
+2> E

Tk th
/ edet/ dpdWy | Fo| =
h<k th—1 th—1

(by (4.8) the terms in the second summation are null)

E ddet | ]—'a]

N
ZE ekdk Wtk Wtk—l)Q | ‘7:‘1} =
k=1

(by Proposition A.107-(6), since W;, — W;, _, is independent of egdj, and of
Fa)

N N
= Elerdi | Fl E [(We, = Wi, )] = E | exdn(ty — tr-1) | Fa

k=1 k=1

and the claim follows by (4.4) at least for u = v: the general case is analogous.
Let us now prove that the stochastic process X in (4.10) is a continuous
Fi-martingale. The continuity follows directly from the definition of stochastic
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integral. By definition (4.5)-(4.6) and Remark 4.3, it is obvious that X is F;-
adapted. Further, X; is integrable since, by Holder’s inequality, we have

E[X.[]* < E[X]] =

¢
:E[/ u5d5]<oo
0

since u € L2. Then, for 0 < s < t we have

(by It6 isometry)

t
E[Xt|f5]:E[XS|-FS}+E|:/UTdWT|fS:|:XS’

since X is Fs-measurable and (4.7) holds: therefore X is a martingale. Finally
(4.11) is consequence of Doob’s inequality, Theorem 3.38, and It isometry:

indeed we have
T
/ uldt| .
0

Remark 4.7 The martingale property of the stochastic integral can also be
written in the following meaningful way:

[XI3 <4B[X3) =4F

E

T t
/ usdWs | .7'}] = / usdWs, t<T. O
0 0

4.3 Integral of L2-processes

We extend the definition of stochastic integral to the class L2 of progres-

sively measurable and square-integrable processes. Unlike the case of simple

processes, the integral will be defined only modulo indistinguishability. Apart

from this, all the usual properties in Theorem 4.11 carry over to this case.
To present the general idea, we consider It6 isometry

T
H / utth
0

This isometry plays an essential role in the construction of the stochastic
integral

paay Nl <) - (4.12)

T
I (u) ::/O urdWy, (4.13)

with u € L2, since it guarantees that, if (u") is a Cauchy sequence in
L3([0,T] x £2), then also (I7(u™)) is a Cauchy sequence in L?({2). This fact
makes it possible to define the integral in I.? as soon as we prove that the
elements in .2 can be approximated by simple processes.
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Lemma 4.8 Foreveryu € L2 there exists a sequence (u™) of simple processes
in L2 such that

lim F

n—-+o0o n—-+oo

T
/0 (ue —U?)th] =l HU_UHH;([o,T]xm =0.

In particular an approzrimating sequence is defined by

2" —1 1 e
u" = Z (/ U5d8> ]]-]tk,tk+1]; (414)
1

P te — th—1 Je,_
where ty, := g—{ for 0 < k < 2™: for this sequence we also have

[u™ 2o, x2) < llullzz(o. 1% 2)-

We shall soon prove the lemma in a meaningful particular case (cf. Proposition
4.20 and Remark 4.21): for the general case we refer, for instance, to Steele
[315], Theorem 6.5.
Thus we consider a sequence (u™) of simple processes approximating u €
IL2: since it converges, (u™) is a Cauchy sequence in L?([0,T] x (2), that is
I —_— —0.
i =z o2y = 0
Then, by Ito isometry, the sequence of stochastic integrals (I7(u™)) is a
Cauchy sequence in L?(£2) and therefore it is convergent. It seems natural
to define

T
/ wdW, = lim Ir(u™) in L*(R). (4.15)
0 n—-+oo

Note that (4.15) defines the stochastic integral only except for a negligible
event Ny € N. This causes problems in defining the integral as a stochastic
process, i.e. as T varies. Indeed T' belongs to an uncountable set and therefore
the previous definition is questionable since the set |J Nr might not be
T>0
measurable, or if it is measurable, it might not have null_probability.
On the other hand, this problem can be solved by using Doob’s inequality,
Theorem 3.38. Indeed, let us consider a sequence (u™) of simple stochastic
processes in L? approximating v in L2([0,T] x £2): we put

t
It(u”):/ wrdw,,  telo,T). (4.16)
0

By (4.11) we obtain
[1(u") = I(u™)]r < 2[[u"™ = v"||L2(j0,7)x 2)

and so (I(u™)) is a Cauchy sequence in (.#2,[-]r) that is a complete space
by Lemma 3.43. So there exists I(u) € .2, unique up to indistinguishability,
such that

lim [I(u) — I(u™)]r = 0. (4.17)

n—oo
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We observe that I(u) does not depend on the approximating sequence, i.e. if
v™ is another sequence of simple processes in L2 approximating u, we have

[1(u") = I(v™")]r < 2[|u"™ — 0" L2(0,11x 2)
< 2[|u™ = ullp2o,mx2) + 2llu — V™| L2(j0,71x2) — O

as n — OQ.

Definition 4.9 The stochastic integral of u € 1.2 is defined (up to indistin-
guishability) by (4.17), that is

t t
/udeS ;= lim udW, in M2,
0

where (u™) is a sequence of simple processes, approximating u in L2

Remark 4.10 Just as in classical functional analysis it is common practice to
identify functions that are equal almost everywhere (cf., for example, Brezis
[62] Chapter 4) in what follows we will identify indistinguishable stochastic

processes. d

The following result is the natural extension of Theorem 4.5.

Theorem 4.11 For every u,v € L2, a € R and 0 < a < b < ¢, we have:

(1) linearity:

a a a
/ (aut + B’Ut)th = Oé/ Utth + ﬁ/ Utth;
0 0 0

c b c
/ Utth :/ utth+/ Utth;
a a b
b
/ utth | fa‘| = O,
b c
/ utth/ v dWy | fal =0;
a b

(2) additivity:

(8) null expectation:

E

and also

E

(4) Ité isometry:

E =F

b b
/ utth/ ’Utth ‘ ]:a

b
/ Ut’l)tdt ‘ .7:@‘| ;
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(5) the process
t
Xy :/ usdWs, t € 0,7, (4.18)
0

/0 ' ufdt] . (4.19)

As in Remark 4.6 the “non-conditional versions” of the identities in (3) and

(4) hold.

Proof. The theorem can be proved by taking the limit in the analogous
relations that hold for the integral of simple stochastic processes: the details
are left as an exercise. O

belongs to the space M2 and we have

[X]7 <4E

Remark 4.12 An immediate but important consequence of the estimate
(4.19) is that if u,v € L2 are (m® P)-equivalent (or, in particular, if they are
modifications) then their stochastic integrals coincide. This is a fundamental
consistency property of the integral (recall Example 3.27). The converse is
true as well, by Corollary 4.13 below. O

Corollary 4.13 Ifu € L? and for a fized positive T we have

T
/ utth = 0,
0

then u is (m ® P)-equivalent to the null process on [0,T] x §2, that is
{(t,w) € [0,T] x 2| up(w) # 0}
has null (m ® P)-measure.

Proof. The thesis follows from It isometry, since we have
2

T T
0=FE </ utth> =F / ufdt}. 0
0 0

We wish to point out that the stochastic integral is not defined pathwise
and the value of the integral in w € {2 does not only depend on the paths u(w)
and W (w) but on the entire processes u and W. For this reason the following
“identity principle” for the stochastic integral will be useful later on:

Corollary 4.14 Let F € F and let u,v € L? be modifications on F, i.e.
ut(w) = ve(w) for almost allw € F and for every t € [0,T). If

t t
th/ s d W, Yt=/ vsdWV,,
0 0

then X and Y are indistinguishable on F'.
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Proof. Let us consider the approximation by simple processes u”,v™ in L2
defined in (4.14). By construction 4™ and v™ are modifications on F' for every
n. Hence it follows directly that, if

t t
Xy = / wrdW,, Y] = / v dWy,
0 0

then X™ and Y are modifications on F' for every n.

Now, for fixed t €]0,T], we have that X', Y;" converge in L*(§2, P)-norm
(and pointwise a.s. after taking a subsequence) to X; and Y;, respectively.
Therefore X; = Y; a.s. in F' and this proves that they are modifications in
F. The claim follows from Proposition 3.25, since X and Y are continuous
processes. d

Example 4.15 Let us consider a process of the form

t t
St =50 Jr/ w(s)ds +/ o(s)dWs
0 0

where Sp € R and p, 0 € L?([0,T]) are deterministic functions. By the previ-
ous theorem, we have

B8] = S+ / (s)ds

and

var(Sy) = E {(st — Sy — /Ot ,u(s)dS)z] -

- /0 ' o(s)ds.

We will see later on that S; has normal distribution: we shall prove this
stronger result only after proving the It6 formula (cf. Proposition 5.13). O

(by It6 isometry)

Exercise 4.16 Under the hypotheses of Theorem 4.11, prove that, for every
o-algebra G C F,, we have

b b
/ Utth | g] = / FE [Ut | g] th

4.3.1 It6 and Riemann-Stieltjes integral

E

In this section we show that, in the case of continuous processes, the stochastic
integral is the limit of Riemann sums and so it is the natural extension of the
Riemann-Stieltjes integral.
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Definition 4.17 A process X is called L?-continuous at to if

lim E [(X; — X,)?] = 0.

t—>t0

Example 4.18 Given u € L2, the process
t
Xt = / ’ll,des7 t Z 0,
0

is L?-continuous at every point. Indeed, if t > ¢,
t 2
x| )]
to
(by It6 isometry)
t
:/E[ui]ds—»O, as t — g,
to

by Lebesgue’s dominated convergence theorem and the case t < ¢y is analo-
gous. In particular every Brownian motion is L2-continuous. ]

Example 4.19 Let X be a continuous process such that |X;| <Y a.s. with
Y € L?*(£2). Then, as an immediate consequence of the dominated conver-
gence theorem, the process X is L?-continuous at any point. In particular,
if X is continuous and f is a bounded continuous function, then f(X) is
L2-continuous. a

Proposition 4.20 Let u € IL? be an L?-continuous process on [0,T). If we

put
N
(s)
utt =) juy L,
k=1

where ¢ = {to,t1,...,tn} is a partition of [0,T], then u's) is a simple process
in L2 and we have

lim u® =
ls] =0+

, in L*([0,T] x £2). (4.20)

Proof. For every ¢ > 0, there exists? §. > 0 such that, if |g| < J., then we
have

T 2 N tr
/ E [(ut - u,@) } dt = Z/ E [(uy —uy,_,)?] dt < eT. O
0 k=1"tk—1

2 By the Heine-Cantor theorem, if X is L?-continuous on the compact set [0,7],
then it is also uniformly L2-continuous.
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Remark 4.21 Proposition 4.20 states that u(¢) is a simple stochastic process
in IL? approximating u in L2([0,T] x £2) for || — 0. Then by definition we
have
T T
lim u$aw, = / wp dW, in .22,
0 0

[s|—0*
or equivalently

N T
lim ug, (Wi, — Wi, ,) = / u dWr, in 2. (4.21)
1 0

0+
ls|—0%+ 7

In this sense the Ito integral, being the limit of Riemann-Stieltjes sums as in
(4.1), generalizes the Riemann-Stieltjes integral. O

4.3.2 It6 integral and stopping times

Some properties of the stochastic integral are similar to those of the Lebesgue
integral, even though in general it is necessary to be careful: for example, let
us consider the following (false) equality

T T
X/ Utth = / Xutth,
0 0

where u € L? and X is a Fi,-measurable random variable for some ¢g > 0.
Although X is constant with respect to the variable t, the member on the right-
hand side of the equality does not make sense since the integrand Xu ¢ L2
and is not in general adapted. However, the equality

T T
to to

holds true, since (4.22) is true for every simple process u in L? and can be
proved in general by approximation.

The following result contains the definition of stochastic integral with a
random time as upper integration limit: the statement might seem tautological
but, in the light of the previous remark, it requires a rigorous proof.

Proposition 4.22 Given u € L?(F;), we set
t
X, = / usdW,,  te[0,T]. (4.23)
0

If T is an (F;)-stopping time such that 0 < 7 < T a.s. then (Ut]l{tgr}) cL?
and

T T
X, :/ usdW :/ US]I{SST}CIWS a.s. (4.24)
0 0
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Proof. It is clear that, by definition of stopping time, the process (u;1{1<,})
belongs to L2 and in particular is adapted. We put

T
Y = / uS]]'{SST}dWSv
0

and we prove that
X, =Y as.

First of all, we consider the case

=Y tilp (4.25)
k=1
with 0 <t; <--- <t, =T and Fj € F;, disjoint events such that

F = LnJ F, € Fo.
k=1

It is apparent that 7 is a stopping time. Given X in (4.23), we have X, = 0
on 2\ F and

T T
X, = / ugdWs — / usdWs, on Fy,
0 tr

or, in other terms,

T n T
X, = np/ usdW, — Zﬂﬂ,/ usdWs.
0 k=1 t

On the other hand, we have

T
Y= / s (1= Tissry) AW, =
0

(by linearity)

T T n
:/ usdW, —/ s (nQ\F +Z]1Fk]1{s>tk}> AW,
0 0

k=1
T n T
= ]]-F/ ustVs - Z/ us]ledW97
0 k=1 tr

and we conclude that X, =Y by (4.22). To use (4.22) we have written the
integral from O to t as the difference of the integral from 0 to T and the
integral from ¢ to 7.
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In the case of a general stopping time 7, we adapt the approximation
result of Remark 3.55 and we consider the following decreasing sequence (7,)
of stopping times of the form (4.25):

on

S T(k+1)

Tn = on ]1{%<TST(§R+1)}.

k=0

We have that (7,,) converges to T a.s. and, by continuity, X, converges to X,
a.s. Further, if we put

t
Y”:/ uslpoer, ydWs,
0

by the dominated convergence theorem, we have that Y™ converges to Y in
L?(£2, P) and this is enough to conclude. O

The following proposition extends the usual properties of the Ito integral
when the integration limit is a stopping time.

Corollary 4.23 Letty € [0,T] and T € [to, T| be a stopping time. If u,v € L2
then we have

E|:/ Utth|ft0 :0,
to i

T T
/ Utth/ ’Utth | .7:150 = 0,

to T

E

FE |:/ Utth/ ’Utth | .7:150 =F |:/ Ut’Utdt | .7:150:| .
to to i to

Proof. By (4.24) we have

T T
/ Utth = / Ut]l{tgr}th

to to

with wl<ry € L2 and so the claim follows from Theorem 4.11. a

4.3.3 Quadratic variation process

In Theorem 3.74 we computed the quadratic variation of a Brownian motion
W, showing that
Wy =t, t>0.

On the other hand, in Proposition 3.37 we proved that

My =WE — (W), (4.26)
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is a martingale. Since W2 is a sub-martingale (cf. Remark 3.36), this result
is in line with the Doob’s decomposition Theorem A.119 that states that,
in discrete time, any sub-martingale can be decomposed as the sum of a
martingale M and an increasing predictable process A with null initial value.
Thus, in the Brownian framework, (4.26) can be interpreted as a Doob-type
decomposition where the role of the process A is played by the quadratic
variation (W).

In this section we aim at getting similar results for the stochastic integral
process

t
Xt:/ USdWS, (427)

0
with u € L2. We already proved that X € .#2. Now we introduce the

quadratic variation process (X) and show that X2 — (X) is a martingale.

Proposition 4.24 Let X be as in (4.27) with u € L2. Then for any t > 0,
there exists the limit
N ) t
lim X, — X | = / u?ds in L*(2, P). (4.28)
1 0

[s]—0
<€79[01t] k=

We set
t
(= [ udds,te 1), (4.29)
0

and we say that (X) is the quadratic variation process of X. We have that
X2 — (X) is a martingale.

Proof. If u is a simple L2-process, (4.28) can be proved by proceeding as in
Theorem 3.74. In general the claim follows approximating X by integrals of
simple processes.

Next we verify that X2 — (X) is a martingale. For every 0 < s < t we have

E[XZ = (X) | F)] = B[(X; = X,)* 42X, (X, = X,) + X2 = (X), | | =
(by (3) in Theorem 4.11)
= B[(X, = X" = (X)o | 7| + X2 =

(by It6 isometry)

t
:E[/ uEdT—<X>t|fs]+M§:M§—<X>S. O



4.3 Integral of L?-processes 155

Remark 4.25 Since the L2-convergence implies convergence in probability
(cf. Theorem A.136), the limit in (4.28) converges in probability as well. More-
over, by Theorem A.136, we also have that, for any sequence of partitions (s,,)
of [0,t], with mesh converging to zero, there exists a subsequence (g, ) such
that .
lim Vt(Q)(X, Sk, ) = / u?ds a.s.

0

n—oo

(2)

where V' is the quadratic variation of Definition 3.72. a

Proposition 4.24 is a particular case of the classical Doob-Meyer decompo-
sition theorem which we state below: the interested reader can find an organic
presentation of the topic, for example, in Chapter 1.4 of Karatzas-Shreve [201].

In what follows, (£2,F, P, (F;)) is a filtered probability space verifying the
usual hypotheses. We recall that a process A is increasing if almost all the
paths of A are increasing functions. Moreover if M € .#? then, by Jensen’s
inequality, |M|? is a sub-martingale.

Theorem 4.26 (Doob-Meyer decomposition theorem) For every M =
(My)epo,r) € AME(Fy) there exists a unique (up to indistinguishability) in-
creasing continuous process A such that Ag = 0 a.s. and |M|* — A is a F-
martingale. We call A the quadratic-variation process of M and we write
Ay = (M);. Moreover, for any t < T we have

A= 1lim VP (M) (4.30)

in probability.

We explicitly remark that the general definition of quadratic variation agrees
with that given in (4.29): indeed, for X as in (4.27), (X) in (4.29) is an
increasing continuous process such that (X)p = 0 a.s. and |X|? — (X) is a
martingale (cf. Proposition 4.24).

It is remarkable that (M) in (4.30) does not depend on the filtration that
we consider: in the case (F;) is the Brownian filtration, the martingale rep-
resentation Theorem 10.11 states that any square-integrable (F;)-martingale
can be represented as a stochastic integral of the form (4.29); as a consequence,
in this particular case Theorem 4.26 follows by Proposition 4.24.

The proof of Theorem 4.26 is based on a discrete approximation procedure:
we observe that, if (M,,) is a real discrete martingale, then the process (4,,)
defined by Ayg = 0 and

iMk_Mkzl , n>1,

is increasing and such that M? — A is a martingale. Indeed

E M — Apr | Fo] = M2 — A,
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if and only if
E [M2+1 - (Mn—H - Mn)2 | -7:71} = sz

n
hence the claim.

The proof of (4.30) is similar to that of Theorem 3.74 and it is based on
the fact that the mean of the product of increments of a martingale M over
non-overlapping intervals is equal to zero®. More precisely, in the scalar case,
for 0 < s <t <wu< v we have

E [(Mv - Mu)(Mt - Ms)] =F [E [(Mv - Mu) ‘ ‘Fu] (Mt - Ms)] =0. (4‘31)

Formula (4.31) is very simple yet useful and meaningful: for instance, (4.31)
is one of the key ingredients in the construction of the stochastic integral for
a general martingale.

Given M € .#2, as a consequence of Theorem 4.26, we also have that

B (IM? = ML | 7] = E[(M)e — (M) | 7], s<t, (4.32)

that follows from the fact that [M|* — (M) is a martingale.

4.3.4 Martingales with bounded variation

As a consequence of the Doob-Meyer Theorem 4.26 we have that if a mar-
tingale M € .#2 has bounded variation, then it is indistinguishable from the
null process: this means that almost all the paths of a non-trivial martingale
M are irregular in the sense that they do not have bounded variation. More
precisely, we have:

Proposition 4.27 Let M € .#2. For almost any w such that (M)r(w) > 0,
the function t — M(w) does not have bounded variation over [0, T]. Moreover,
for almost any w such that (M)r(w) = 0 the function t — My(w) is null.

Proof. By Theorem 4.26 there exists a sequence of partitions (s,) in Pjo 7,
with mesh converging to zero, such that

(M)r = lim Vz(?)(]W7 Sn) a.s.

n—00

Thus, by Proposition 3.73, the condition (M)r(w) > 0 is a.s. incompatible
with the fact that M (w) has bounded variation.
Concerning the second part of the claim, we set

7 =inf{t | (M) >0} AT.

By Theorem 3.52, 7 is a stopping time and since M? — (M) is a martingale,
then, by Theorem 3.58, also*

MtQ/\'r - <M>t/\'r = MtQ/\r

3 For further details see, for example, Karatzas-Shreve [201], Chapter 1.5.
4 The equality follows from the fact that (M); = 0 for ¢ < 7.
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is a martingale. Therefore
2 2
E [MTAT] =F [MO] =0.

Consequently, by Doob’s inequality, (M7, ,) has a.s. null paths and the claim
follows from the fact that M = (M2, )sejo,m) over {(M)r = 0}. 0

4.3.5 Co-variation process

For the sake of simplicity, in this section we consider only real-valued pro-
cesses. We remark that, by Theorem 4.26, for any X,Y € .#2 the processes

(X +Y) = (X +Y), (X -Y) = (X -Y)

are martingales and therefore so is the following process, obtained as their
difference,
4XY - ((X4+Y)—(X-Y)).
This motivates the following:
Definition 4.28 For any X,Y € .#?2, the process

1

(X,Y):= 1

(X+Y) - (X-Y))

18 called co-variation process of X and Y.

By Theorem 4.26, (X,Y) is the unique (up to indistinguishability) continuous
adapted process with bounded variation® such that (X,Y)s = 0 a.s. and
XY — (X,Y) is a continuous martingale. Moreover, for any ¢ < T we have

N
<X7 Y>t = ‘lim Z(th - th—l)(}/tk - }/tk—l)

5|—0
SE€EP[0,1] k=1

in probability. Note that (X, X) = (X) and the following identity (that ex-
tends (4.32)) holds:

E [(Xt - Xs)(}/t - Ys) | ]:s] =F [Xt}/t - XsYs | ‘7:‘;]
= E[<X7 Y>t - <XaY>S | ]:s]y

for every X,Y € .2 and 0 < s < t. In the following proposition we collect
other straightforward properties of the co-variation process.

5 A process has bounded variation if almost all its paths are functions with bounded
variation.
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Proposition 4.29 The co-variation (-,-) is a bi-linear form in A2 : for every
X,Y,Z € #2, N\, p € R we have

Z) <X7 Y> = <Y7X>7
i) AX +uY, Z) = XX, Z) + (Y, Z);
i) | (X, V) < (X)(Y).

Example 4.30 A particularly important case is when
t t
Xy = / udes; Y= / Udes;
0 0
with u, v € L2. Then, proceeding as in Proposition 4.24, we can show that
t
XY= [ v,
0
is a martingale and therefore®
t
(X,Y), = / wevsdW,,  te0,T), (4.33)
0

is the quadratic variation process of X,Y. Proceeding as in Theorem 3.74, we
can also directly prove that

t N
/ usvsdWs = lim Z(th - th—l)()/tk - }/tk—l)
0

|<|—0
SEP(0,¢] k=1

where the limit is in L?(§2, P)-norm and therefore also in probability. O

Next we recall that, by Proposition 3.79, if X is a continuous process and Y
is a process with bounded variation then

lim Z (th <w> - th—l((’U)) (Y;fk (w) - }/tk—l(w)) =0

[s|—0

SE€EP[0,1] k=1

for any t < T and w € (2. Hence, if Z and V are continuous processes with
bounded variation and X,Y € .2, we formally have

(X+ZY+V)=( X V)+(ZY+V)+(X+Z,V).

=0

Therefore it seems natural to extend Definition 4.28 as follows:

S Note also that the process
t
I :/ UsVsdW, t € 10,7,
0

has bounded variation in view of Example 3.60-iii) and I = 0.
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Definition 4.31 Let Z and V be continuous processes with bounded variation
and X,Y € M2. We call

(X+Z2,Y+V)=(XY)
the co-variation process of X +7Z and Y + V.
Example 4.32 We go back to Example 4.15 and consider

¢ ¢
St =50 —l—/ u(s)ds + / o(s)dWs
0 0

with p, 0 € L2([0,T]) deterministic functions. We proved that
t
var(Sy) = / o(s)?ds.
0

Now we observe that the process Sp+ fg 1(s)ds is continuous and has bounded
variation by Example 3.60-iii). Therefore, according to Definition 4.31 and
formula (4.29), we have

<S>t = VaI’(St), te [O,T],

i.e. the quadratic variation process is deterministic and equal to the variance
function. O

4.4 Integral of L2 -processes

In this paragraph we further extend the class of processes for which the
stochastic integral is defined. This generalization is necessary because sim-
ple processes like f(W}), where f is a continuous function, do not generally
belong to L?: indeed we have

/OT f(Wt)dt] - \/%/OT/Rexp <—§i> F(z)dadt.

Then, for example, f(W;) ¢ L2 if f(x) = e Luckily it is not difficult to
extend the construction of the It6 integral to a class of progressively mea-
surable processes that verify an integrability condition that is weaker than in
Definition 4.1-ii) and that is sufficiently general to handle most applications.
However, when this generalization is made, some important properties are
lost: in particular the stochastic integral is not in general a martingale.

E

Definition 4.33 We denote by L2 . the family of processes (ut)iepo,r) that
are progressively measurable with respect to the filtration (]:t)te[O,T] and such

that .
/ ufdt < oo a.s. (4.34)
0
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Example 4.34 Every stochastic process that is progressively measurable and
has a.s. continuous paths belongs to L2 . In particular exp(W}}), where W is

a Brownian motion, belongs to ILIQOC. O

It is interesting to note that the space ]]_4120C is invariant with respect to changes
of equivalent probability measures: if (4.34) holds and @ ~ P then we have
of course

T
/ u? dt < oo, Q-a.s.
0

On the contrary, the space .2 depends on the fixed probability measure.

2
loc

Now we define the stochastic integral u € i step by step: the rest of the
paragraph can be skipped on first reading.

I) Given u € L2, the process’

t
At:/ u?ds, t €0,7],
0

is continuous and adapted to the filtration. Indeed it is enough to observe
that v can be approximated pointwise by a sequence of simple and adapted
processes.

II) For every n € N we put

T, = inf{t € [0,T] | As > n} AT.

By Theorem 3.52, 7, is a stopping time and

™ T a.s. as n — oo.
We have
and so, since u € ]LIQOC,
UF.=02\N New. (4.36)
neN
IIT) We put
U? = ut]l{tgm}, te [O,j_']7

and note that u™ € L? since

E VOT (u?)Zdt] =E UOT ufdt} <n.

Therefore the process
t
Xr = / AW, 1€ [0,T] (4.37)
0

is well-defined and X" € .#2.
T We put A(w) = 0 if u(w) ¢ L*(0,T).
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IV) For every n,h € N, we have u" = u"*" = u on F, in (4.35). So, by
Corollary 4.14, the processes X™ and X"*" are indistinguishable on F},.
Recalling that (F),) is an increasing sequence for which (4.36) holds, the
following definition is well-posed.

Definition 4.35 Given u € LY , let F,, and X" be defined as in (4.35) and
(4.37), respectively. Then the stochastic integral of u is the continuous and
Fi-adapted stochastic process X that is indistinguishable from X™ on F,, for
every n € N. We write

t
Xt:/ u dW,,  te€0,7).
0

Note that, by construction, we have

t
Xy = lim uy dWy, te[0,7], as. (4.38)

n—oo 0

Remark 4.36 Given p > 1, we denote by LY = the family of progressively
measurable processes (u¢)¢e[o,7] such that

T
/ |ug|Pdt < 0o a.s. (4.39)
0

By Holder’s inequality we have

L CLi

loc = ~loc?

p=>q=>1,

and in particular L, . C L] . Since L} = depends on the filtration (F;), when-

loc loc
ever it is necessary we write more explicitly L (F;). The space leoc is the
natural setting for the definition of stochastic integral: we refer to Steele [315],
Paragraph 7.3, for an interesting discussion about the impossibility of defining

the Itd integral of u € LY for 1 <p < 2. O

4.4.1 Local martingales

In general, the stochastic integral of a process u € }L120C is not a martingale:
however, in the sense that we are going to explain, it is not “far off to be a
martingale”.

Definition 4.37 A process M = (My)c(o,1) is a Fy-local martingale if there
exists an increasing sequence (1) of Fi-stopping times, called localizing se-
quence for M, such that

lim 7, =T a.s. (4.40)

n—oo
and, for every n € N, the stochastic process Min,, is a Fi-martingale. We

denote by M 1oc the space of continuous local martingales such that My = 0
a.s.
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To put it simply, a local martingale is a stochastic process that can be
approximated by a sequence of true martingales. Sometimes, when we want
to emphasize the fact that a process M is a true martingale and not simply a
local martingale, we say that M is a strict martingale. An interesting example
of a local martingale that is not a strict martingale is given in Example 9.34.

By definition, we have that

Mspr, = E[Mins, | Fdl, 0<s<t<T, (4.41)
and if M is continuous, since 7, — T a.s., we have

lim Minr, = M; as.

n—oo
Consequently, whenever we can take the limit inside the conditional expecta-
tion in (4.41), we have that M is a strict martingale: as particular cases, see
Propositions 4.39 and 4.40 below.

Clearly every martingale is also a local martingale: it is enough to choose

7, = T for every n. Further, we remark that every local martingale admits a
right-continuous modification: indeed it is enough to note that, by Theorem
3.41, this holds true for the stopped processes Mia,, . In what follows we shall
always consider the right-continuous version of every local martingale.

Remark 4.38 Every continuous local martingale M admits an approxima-
ting sequence of continuous and bounded martingales. Indeed let (7,,) be a
localizing sequence for M and let us put

o =inf{t € [0,T] | |My| > n} AT, neN.

Since M is continuous we have that o, satisfies (4.40) and also (7, A ogy,) is a
localizing sequence for M: indeed

Mt/\(‘rn/\a'n) = M(t/\‘rn)/\an

and so, by Doob’s Theorem 3.58, M;" := M, (7, no,,) 1S @ bounded martingale
such that
MP <n,  te0,T) 0

We present now some simple properties of continuous local martingales.

Proposition 4.39 If M € 4 1oc and

sup |M;| € L*(92,P),
te(0,T]

then M is a martingale. In particular every bounded® M € M 1oc 15 6 mar-
tingale.

8 There exists a constant ¢ such that |M;| < ¢ a.s. for every t € [0, T).
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Proof. The claim follows directly from (4.41), applying the dominated con-
vergence theorem for conditional expectation. a

Proposition 4.40 Fvery continuous non-negative local martingale M is also
a super-martingale. Further, if

E[My] = E[M,) (1.42)

then (My)<,<r is @ martingale.
Proof. Applying Fatou’s lemma for conditional expectation to (4.41), we get
M,>E[M,|F,], 0<s<t<T, (4.43)

and this proves the first part of the claim.
By taking the expectation in the previous relation we get

E[My) > E[M,) > E[My], 0<t<T.

By assumption (4.42), we infer that E [M;] = E [My] for every ¢t € [0,T].
Eventually, by (4.43), if we had M, > E[M, | F,] on an event of strictly
positive probability, then we would get a contradiction. |

Proposition 4.41 If M € A 1oc and T is a stopping time, then also Min, €
%c,loc-

Proof. If (1,,) is a localizing sequence for M and X; = Mi., we have

Xinr, = Miarynr, = Minr,)ar-

Consequently, by Theorem 3.58 and since by assumption M;a,, is a continuous
martingale, we have that (7,,) is a localizing sequence for X. O

4.4.2 Localization and quadratic variation

2

The following theorem states that the stochastic integral of a process u € L,

is a continuous local martingale. In the whole section we use the notations
t t
X, = / usdWs, Ay = / ulds,  t€0,T]. (4.44)
0 0

Theorem 4.42 We have:

i) if u € L%, then X € M?;
i) if u € L ., then X € Mo and a localizing sequence for X is given by

To=inf{t€[0,T]| A >n} AT, neN. (4.45)
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Proof. We only prove ii). We saw at the beginning of Paragraph 4.4 that
() in (4.45) is an increasing sequence of stopping times such that 7, — T
a.s. for n — oo.

By Definition 4.35, on Fj, = {Ar < k} with k > n, we have

tATH
Xt/\‘rn :/ us]]-{sgrk}dWs =
0

(by Proposition 4.22, since u 1 s<s,} € L?)

t
= / us]l{ngk}]l{ngn}dVVs =
0
(since n < k)
t
:/ Us]l{sg'rn}dvvsa on Fk
0
By the arbitrariness of k and by (4.36), we get
t
Xt/\rn :/ usl{sgrn}dWSa te [O,T], a.s. (446)
0
The claim follows from the fact that us11,<;,} € L? and so X;p,, € 42 and
T, is a localizing sequence for X. a
Next we extend Proposition 4.24.

Proposition 4.43 Given u € L2, let X and A be the processes in (4.44).

loc’
Then X2 — A is a continuous local martingale: A is called quadratic variation

process of X and we write A = (X).

Proof. Let us consider the localizing sequence (7,,) for X defined in Theorem
4.42. We proved that (cf. (4.46))

t
Xt/\Tn :/ usl{sgrn}dWS
0

with usli,<s,) € L2. Therefore, by Proposition 4.24, we have that the fol-
lowing process is a martingale:

t
‘thQ/\‘r71 - / ug]l{SSTn}ds = th/\Tn - At/\'rn = (X2 - A)t/\rn :
0

Hence X? — A is a local martingale and 7, is a localizing sequence for X. O

Proposition 4.43 has the following extension: for every X,Y € . 1oc there
exists a unique (up to indistinguishability) continuous process (X,Y") with
bounded variation, such that (X,Y)o = 0 a.s. and

XY —(X,Y) € Moroe.
We call (X,Y) the co-variation process of X,Y . Note that (X) = (X, X).
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Remark 4.44 1If
t t
Xt:/ s dW,, Yt:/ vydWV,,
0 0

with u,v € LZ | then

loc?

t
(X,Y>t=/ UsVsdS. O
0

More generally, by analogy with Definition 4.31, we give the following:

Definition 4.45 Let Z and V be continuous processes with bounded variation
and X,Y € Ms1oc. We call

(X +ZY +V):=(X)Y) (4.47)

the co-variation process of X +Z and Y + V. In (4.47), (X,Y) is the unique
(up to indistinguishability) continuous process with bounded variation, such
that (X,Y)o =0 a.s. and XY — (X,Y) € M 10c-

Proposition 4.27 can be extended as follows:

Proposition 4.46 Let M € M. 1oc. For almost any w such that (M)p(w) >
0, the function t — M;(w) does not have bounded variation over [0,T]. More-
over, for almost any w such that (M)r(w) = 0 the function t — My(w) is
null.

We conclude the paragraph stating® a classical result that claims that, for
every M € M oc, the expected values

E [(M)4] and E

sup |Mt|2p]
te[0,7)

are comparable, for p > 0. More precisely, we have

Theorem 4.47 (Burkholder-Davis-Gundy’s inequalities) For any p >
0 there exist two positive constants \,, A, such that

ME[(M)?] < E | sup |Mt|2p

te(0,7]

< ApE[(M)7],

for every M € M. 1oc and stopping time T.

As a consequence of Theorem 4.47 we prove a useful criterion to establish

whether a stochastic integral of a process in L _ is a martingale.

® For the proof we refer, for example, to Theorem 3.3.28 in [201].
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Corollary 4.48 Ifu€L?  and

1
2

E </0 utdt> < 00, (4.48)

t
/udeS, te 0,7,
0

then the process

18 a martingale.

Proof. First of all we observe that, by Holder’s inequality, we have
1
2

T % T
E /ufdt <FE / uidt|
0 0

and so condition (4.48) is weaker than the integrability condition in the space
L2
By the second Burkholder-Davis-Gundy’s inequality with p = % and 7 =

T, we have
1
t T 2
/ u dW,|| < AL E / uidt < o0
0 2 0

and so the claim follows from Proposition 4.39. a

E | sup

t€[0,T]
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1tO0 calculus

As for the Riemann and Lebesgue integral, the definition of stochastic integral
is theoretical and it is not possible to use it directly for practical purposes,
apart from some particular cases. Classical results reduce the problem of the
computation of a Riemann integral to the determination of a primitive of the
integrand function; in stochastic integration theory, the concept of primitive
is translated into “integral terms” by the It6-Doeblin formula!. This formula
extends Theorem 3.70 in a probabilistic framework and lays the grounds for
differential calculus for Brownian motion: as we have already seen the Brow-
nian motion paths are generally irregular and so an integral interpretation of
differential calculus for stochastic processes is natural.

In this chapter we present the fundamental connection established by
the It6 formula between martingale and partial differential equation theo-
ries: this connection will be explained thoroughly in Paragraph 9.4, having at
our disposal the foundations of the theory of stochastic differential equations.
In Paragraph 5.2 we extend to the multi-dimensional case the main results on
stochastic processes and stochastic calculus, and we dwell on the concept of
correlation of processes. The last part of the chapter deals with some exten-
sions of the It6 formula: in order to be able to apply the formula to the study
of American options, we weaken the classical C1'? regularity assumptions of
the function only requiring it belongs to a suitable Sobolev space. In the end
we describe the so-called local time of an Ité process by which it is possible
to give a direct proof of the Black-Scholes formula to price a European Call
option.

! The formula for the “change of variable” presented in this chapter was proved
by It6 [180] and is commonly known as Itd formula in the literature. Recently
a posthumous 1940 paper by W. Doeblin [98] was found, where the author con-
structed the stochastic integral and stated the change-of-variable formula. That
paper was recently published again [99] with a historical note by Bru. In what fol-
lows, for the sake of brevity we simply indicate that formula by the more common
“Itd formula”.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011



168 5 Ito calculus

5.1 Itd processes

Let W be a real Brownian motion on a filtered probability space (£2, F, P, (F3))
where the usual hypotheses hold.

Definition 5.1 An Ito process is a stochastic process X of the form

t t
Xt = Xo +/ psds +/ osdWs, te [OaT]v (51)
0 0

where X is a Fy-measurable random variable, u € ]LllOC and o € ILIQOC.

Formula (5.1) is usually written in the “differential form”
dXt = ,LLtdt + Utth. (52)

The processes u and o are called drift and diffusion coefficients, respectively.
Intuitively p “gives the direction” to the process X, while the part of X con-
taining o is a (local) martingale giving only a “stochastic contribution” to the
evolution of X.

On the one hand, (5.2) is shorter to write than (5.1) and so more conve-
nient to use; on the other hand, (5.2) is more intuitive and familiar, because
(just formally!) it reminds us of the usual differential calculus for functions
of real variables. We remark that we have defined every single term appear-
ing in (5.1); on the contrary (5.2) must be taken “on the whole” and it is
merely a more compact notation to write (5.1). For the sake of clarity, we
wish to emphasize the fact that the term dX;, sometimes called stochastic
differential, has not been defined and it makes sense only within formula
(5.2).

The It6 process X in (5.1) is the sum of the continuous process with
bounded variation

t
XO"’/ psds
0

with the continuous local martingale

t
/ osdWs.
0

Therefore, by Definition 4.45 and Remark 4.44, we have

Corollary 5.2 If X is the Ité process in (5.1), then its quadratic variation
process is given by

t
(X)t:/ Ugds,
0

or, in differential terms,

d(X), = odt.
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The differential representation of an Ité process is unique, that is the drift
and diffusion coefficients are determined uniquely. Indeed we have the follow-
ing:

Proposition 5.3 If X is the Ité process in (5.1) and there exist a random
variable X{, i/ € L} and o’ € L _ such that

loc

¢ t
Xt:X(’)—i—/ ,u;ds—i—/ ol dWs, te[0,7T],
0 0
then Xo = X} a.s. and p=p/,0 =0’ (m @ P)-a.e. that is

{(t,w) € [0,T] x 2| pu(w) # ()}, {(t,w) €[0,T] x 2] 04(w) # oy(w)}
have null (m ® P)-measure.

Proof. By assumption we have

¢ ¢
M, = / (us — pl)ds = / (05 —0l)dWs, t€]0,T] as.
0 0

Therefore M € .. 1, and has bounded variation: hence by Proposition 4.46
M is indistinguishable from the null process. Consequently we have

T
0=(M)r = /0 (o¢ — o})?dt,

and this proves that o and ¢’ are (m ® P)-equivalent. We also have u = p/
(m ® P)-a.e. since it is a standard result that, if u € L*([0,7]) and

t
/ usds =0, t e 0,77,
0

then v = 0 almost everywhere with respect to Lebesgue measure.

Remark 5.4 An Ité process is a local martingale if and only if it has null
drift. More precisely, if X in (5.1) is a local martingale, then 1 = 0 (m® P)-a.e.
Indeed by assumption the process

t t
/ psds = Xy — Xo — / osdWy
0 0

would belong to . 1oc and, at the same time, would have bounded variation,
since it is a Lebesgue integral: the claim follows from Proposition 4.46. O

5.1.1 Ito formula for Brownian motion

Theorem 5.5 (Itd formula) Let f € C%(R) and let W be a real Brownian
motion. Then f(W) is an Ito process and we have

AF(W) = (W)W, + o " (W), (5.3)
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Proof. The great news of the Itd formula with respect to (3.53) is the pres-
ence of a “second order” term % f”(W;)dt (as we shall see, the coefficient 3
comes from a second-order Taylor expansion) due to the fact that a Brownian
motion has positive quadratic variation:

A(W), = dt.

We first prove the thesis under the additional assumption that f has bounded
first and second derivatives. We set

X, = f(W,) — f(Wo),  Yi= / W)W, + 2 / 1w

and, for a fixed ¢t > 0, we prove that X; = Y; a.s. Given a partition
¢ = {to,t1,...,tn} of [0,t], to simplify the notation we put fr = f(Wy,)
and Ay = Wy, — Wy, . We have

N
=f(W) — =Y (fx = fr1)
k=1

(by taking the second-order Taylor expansion with the Lagrange form of the
remainder, with ¢ € [tp_1,tx))

B SVAPNES P AVTIEs SIS
k=1 k=1 k:l
=:I1(s) =:I2(<) =:I3(<)

Concerning I1(s), since f’ is by assumption a continuous bounded function,
then f/(W) is a L?-continuous process (cf. Example 4.19) and so by Remark
4.21 we have
lim I (s / f/(W)dW,  in 42
ls|—0F
Concerning I5(s), it is enough to proceed as in the proof of Theorem 3.74,
using the fact that (W), = s, to prove that

lim Iy(s /f” in L%(02).

s|—0F
Eventually we verify that

lim I3(s) =0 in L*(£2). (5.4)

|g|~>()+

Intuitively this is due to the fact that f”(W;) is a continuous process and
W has finite quadratic variation: as a matter of fact the proof is based upon
the same idea of Proposition 3.73, analogous result for the first variation.
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Preliminarily, we observe that, for every ¢ = {to,...,tn} € P4, t > 0, we
have

N 2 N
= (Z(tk - tk_1)> =3 (e —te1)®+2 ) (th — th1) (b — tr1);
k=1 k=1

h<k
=:J1(s) =:J2(s)
consequently
0<Ji(s <|§|Z tk — tr-1) |§|tT)O (5.5)
Si—
0< J2(§) <t, S P[O,t]- (5.6)

Then, we have

N
[ } ZE // Wt // )2A4]
k=1

=:L1 ()

23 B Wg) - F) (" Wig) — ) 4387)
h<k

=:Ls(s)
We have

N
Li(s) < dsup [f"[2YE[A}] =
k=1

(by (3.55))

N
= 12sup | f"|? Z(tk —tp_1)? |'|—0+> 0
k=1 o

by (5.5). On the other hand, by Holder’s inequality, we get

[N

< 3B (W) — (W) — )] B[40 <
h<k

(given € > 0, if |¢| is small enough, by Lebesgue’s dominated convergence
theorem, since f” is bounded and continuous)

N
<e) E[ALAY]® <
h<k



172 5 Ito calculus

(by the independence of the Brownian increments)

N N
<eY E[APE[AL]? =32 (th — tho1)(te — tro1) < 3et
h<k h<k

by (5.6) and this proves (5.4).

To conclude, we remark that by Theorem A.136 the L?-convergence im-
plies that for any ¢ there exists of a sequence of partitions (g,), with mesh
converging to zero, such that

nh_)n;o (I1(sn) + I2(sn) + I3(sn)) / F(W)dWy + = / ["(Wyds =Y, as.

On the other hand X; = I1(s,) + I2(s,) + Is(s,) for any n and therefore
the processes X and Y are modifications; eventually, since X and Y are
continuous, we infer that they are indistinguishable as well. This concludes
the proof under assumption that f has bounded first and second deriva-
tives.

For the general case, it suffices to use a localization argument: we introduce
the sequence of stopping times

= inf{t | |[W| > n}, n €N,

and consider the stopped Brownian motion W;* = Wi, that takes its values
in a compact set where f/ and f” are bounded. Using the same arguments as
above, we prove

FWor) = 10%0) = [ povgaw,+ 5 [ prwyas

and the thesis follows since n is arbitrary (see, for instance, Steele [315] or
Durrett [108] for further details). O

Example 5.6
i) Applying the It6 formula with f(x) = 22 we have
d(W?) = 2WdW; + dt,

t 2
/ Wdw, =
0

ii) We compute E [Wt‘l]: by the It6 formula we have

hence we get

AW} = AW 2dW, 4+ 6W2dt,
i.e.

t t
Wi = / AW3dW, + / 6W2ds.
0 0
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By the property of having null mean (4.7), we infer
t t
E W] = / 6E [WZ]ds = / 6sds = 3t°.
0 0
iii) Let X; = et with W Brownian motion and o € R; we have
1
dXt:aXﬂﬂ%f%§a%&dt (5.7)

We aim at computing E [X;]: since X € L2, by the property of null expec-
tation (4.7), from (5.7) we get

E[X,] = 07/0 E[X,]ds.

In other terms, if we put y(t) = F [X¢], we have that y is solution to the
ordinary Cauchy problem

and we conclude that
Efe""] =e%t (5.8)

Formula (5.8) is also a direct consequence of the result in Exercise A.34
or can also be proved by noting that

o a? o2
E [eUWt] o5 E [ean,—Tt} — %t

where the last equality follows from the the martingale property of the
exponential Brownian motion, see Proposition 3.37-iii).

a

Exercise 5.7 Proceeding as in Example 5.6 and using the It6 formula, com-
pute E [Wf]. By induction, prove that E [W"] =0 if n is odd and

if n is even. a
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5.1.2 General formulation

Notation 5.8 Let X be an Ito process

dXt = ,LLtdt + Utth. (59)
If h is a stochastic process such that hy € ]LllOC and ho € ILIQOC, we shorten the
notation
d}/;: = ht/J/tdt + htO'tth
by writing

dYy = hyd Xy (5.10)

Consistently we employ the notation

t t t
Y=Y, —|—/ hsdX, =Yy +/ hspisds —|—/ hsosdW.
0 0 0

We remark that, if u € Li , 0 € L2 _and h is a continuous adapted pro-

loc» loc
cess, then hy € Ll and ho € L2 . More generally it is enough that h is

progressively measurable and a.s. bounded.
We state now a more general version of the It6 formula: we will not go
through the proof that is substantially analogous to that of Theorem 5.5.

Theorem 5.9 (Itd6 formula) Let X be the Ité process in (5.9) and f =
f(t,z) € CY2(R?). Then the stochastic process

Ye = f(t, X3)
is an Ito process and we have
df (t, Xy) = Ouf (¢, Xy)dt + 0, f (1, X )d Xy + %8mf(t,Xt)d(X>t. (5.11)
Remark 5.10 Since, by Corollary 5.2, we have
d(X); = oldt,

Formula (5.11) can be written more explicitly as follows
1

where f = f(t, Xy). a

Example 5.11 If f(t,z) = tx and X = W is a Brownian motion, we
have
d(tWy) = Wedt + tdWs.
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We emphasize the resemblance with the classical differentiation rule for the
product of two functions. In integral form we get

t t
tWy :/ Wds +/ sdWs.
0 0

As an exercise, compute the stochastic differential of tW?. |
Example 5.12 (Exponential martingale)

Given u € L2, we set

1
dY; = u dW; — 5ufdt, (5.13)
and consider the process e¥ . By the It formula we have

1
de* = e¥tdY, + §eYtd<Y>t = we"t dW.

Therefore e is a local martingale, called exponential martingale. By Propo-

sition 4.40, since it is a positive process, e¥ is also a super-martingale and in
particular we have that

B[] < B[], 120
Further, if £ [eYT] =F [BYO], then (eyf’)ogth

is true in particular if u; = o with o real constant (or even if o € C): then
the process

is a martingale. By (5.8) this

2
eUWt*‘GTt

is a martingale. Let us remark explicitly that
1
Yi =X — §<X )t
where

t t
Xt:/ usdWi, <X>t:/ u?ds. O
0 0

Proposition 5.13 If u € L' and o € L? are deterministic functions, then
the process defined by

has normal distribution with
t

E[S] =5 —|—/0 w(s)ds, var(St) :/0 o?(s)ds.

Proof. By Theorem A.89 and recalling Example 4.15, it is enough to prove
that, for every t, we have

E [¢5] = exp <i£ (So + /Otu(s)ds) — % /Ot 02(s)ds> . (5.14)

The proof of (5.14) is left as an exercise: it is enough to proceed as in the
proof of (5.8). O
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5.1.3 Martingales+and parabolic equations

We consider the It6 process X in (5.9) with constant drift and diffusion co-
efficients pu; = p and o; = o and we define the parabolic differential operator
with constant coefficients

0.2
L=0;+ puo, + 7({%1

Then, for f € C12?(R?), (5.12) is equivalent to
df (t, X)) = Lf(t, X¢)dt + 00, f(t, Xy )dWs. (5.15)

Corollary 5.14 Under the previous assumptions, the process (f(t, Xt))ie[o,7]
is a local martingale if and only if f is a solution of L:

Lf=0,  inl0,T[xR.

Proof. It is obvious that, if f is a solution, then f(¢,X;) is a stochas-
tic integral by (5.15) and so a continuous local martingale. Conversely, if
f(t, X:) is a local martingale, then its drift is null by Remark 5.4, i.e. we
have Lf(t,X;) = 0 (m ® P)-almost everywhere. The claim follows from
Proposition A.59, since X; has strictly positive density on R: we observe
that

O_/OtE[Lf(S,Xs)Hds:AtA|Lf(s,x)|F(s,z)dxds,
with I" > 0. _

We note that, if 9, f(t, X;) € L2, then f(t, X;) is a square integrable strict
martingale, f(t, X;) € .#2. Analogously f(t, X;) is a local super-martingale
if and only if f is a supersolution? of L, i.e. we have that

Lf<0, in]0,T[xR. (5.16)

5.1.4 Geometric Brownian motion
A geometric Brownian motion is a solution of the stochastic differential equa-

tion

dSt = MStdt + O'Stth, (517)

where p,0 € R, i.e. it is a stochastic process S € L.? such that

t t
Sy = So + u/ S.ds + 0/ S, dWs. (5.18)
0 0

2 See the note on p. 264.
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The process S can be written explicitly in the form S; = f(¢,W;) with
f = f(t,z) € C12. Indeed applying the Ité6 formula and imposing (5.17),
we get

(atf(ta W) + %azzf(ty Wt)) dt + 0, f(t, Wy)dWy
= ,Ltf(t, Wt)dt + Jf(t7 Wt)th

By the uniqueness of the representation of an It6 process, (cf. Proposition 5.3)
we infer® that, for (t,2) € Rs¢ x R, we have that

amf(t71') = Uf(ta :Z})7
ft @) + 50u f(t,2) = pf(t, ).

For the first equation, there exists a function g = ¢(t) such that

[t x) = g(t)e”™ (5.19)
and, plugging (5.19) into the second equation, we get

0.2

! —Qq =
g+2g 2

o2
hence g(t) = g(0)6<“77)t. In conclusion we have that

S, = SoeVit (=)t (5.20)

and, applying the Itd formula, it is easy to verify that S in (5.20) is really a
solution of equation (5.17).

Bachelier [16] was the first to use (non-geometric) Brownian motion
as a model for asset prices, even though such a process can be nega-
tive with positive probability. Later on, Samuelson [295] considered geo-
metric Brownian motion, that was then used by Black, Merton and Sc-
holes in their classical works [49], [250] on arbitrage pricing of options. Be-
ing an exponential, if Sy > 0 then the geometric Brownian motion (S;)
is a strictly positive process: more precisely, S; has a density whose sup-
port lies in R>¢ and is strictly positive over ]0,+oo[ (see (5.22) further
down).

If 0 = 0, the dynamics of S is deterministic

St = Soeﬂt

and this corresponds to continuous compounding with rate p. For this reason
the drift coefficient p is usually called expected rate of return of S and the

3 Here we use also the fact that, for ¢ > 0, W; has strictly positive density on R:
by Proposition A.59, if g is a continuous function such that g(W;) = 0 a.s., then
g=0.
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Fig. 5.1. Graph of a path ¢t — Si(w) of a geometric Brownian motion S and its
mean FE [Si]

diffusion coefficient o, adjusting the stochastic effect of Brownian motion, is
called wvolatility. Since

2

o
log(S;) = log(So) + (u - 7) t+oWy ~ /\[log(so)+(u_o_22)t702t, (5.21)

S has log-normal distribution (cf. Example A.34). Clearly it is easy to com-
pute
P(S; € [a,b]) = P(log S € [loga,logh]),

using, for example (A.24) to get a normal standard distribution. Alternatively
we can explicitly write the density ¥ (So;t,-) of Sy: since Sy = F(W;) with

F(x) = Spexp (am + (u - %2) t), by Remark A.33, we have

2
o () %)
% 2 ., t>0, z>0.

1
U(Spit,x) = — —
(S03t,) ox/2mt P ( 202t

(5.22)
In Figure 5.2 we depict the graph of the log-normal density.
Recalling that, by Example 5.12,

o2
M; = exp (aWt - 2t>

is a martingale, we have

E[Sr | F]=e"TE[Mr | F] ="M, = T3,



5.2 Multi-dimensional Itd processes 179
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Fig. 5.2. Graph of the log-normal density ¥(So; ¢, x) with Sp =1

for every 0 < t < T. Consequently S; is a sub-martingale if pw > 0
and it is a martingale if and only if p = 0. Further, if Sy € R, we
have

E [St] = Soe”t,

as we can verify directly by (A.27). Eventually, by (A.28), we have

var(S;) = Sge?t (e"2t - 1) .

5.2 Multi-dimensional It6 processes

We extend the definition of Brownian motion to the multi-dimensional case.

Definition 5.15 (d-dimensional Brownian motion) Let (2, F, P, (F;))
be a filtered probability space. A d-dimensional Brownian motion is a stochas-
tic process W = (W) ie[o, 400 0 R? such that

i) Wo=0 P-a.s.;

it) W is an Fi-adapted and continuous stochastic process;
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iit) for t > s > 0, the random variable Wy — Wy has multi-normal distribution
No,(t—s)1,, where 14 is the (d x d)-identity matriz, and it is independent of

S

The following lemma contains some immediate consequences of the defi-
nition of multi-dimensional Brownian motion.

Lemma 5.16 Let W = (W',... . W%) be a d-dimensional Brownian motion

on (£2,F, P, (F:)). Then, for everyi=1,...,d we have

1) W' is a real Brownian motion on (12, F, P,(F;)) and so, in particular, an
Fi-martingale; ‘ ‘

2) Wi, — Wi and W}, — W} are independent random variables for i # j
and t,h > 0.

Proof. The claim follows from the fact that, for z = (z1,...,74) € R? and
h > 0, we have

I(h,z) = (27r1h)‘% exp <—§> = f[l \/;?h exp (-i—h) . (5.23)

Indeed, we prove property 1) in the case ¢ = 1: it is enough to verify
that

(Wien = W) ~ Nojp. (5.24)
Given H € 4 and h > 0, we have

P(Wh, =W eH)=P(Wynh—Wy) € HxRx - xR) =

(since (Wipn, — We) ~ No 41, and (5.23) holds)

1 x? d 1 x?
= exp | —— | dz exp | —=% | dx;
/Hmrh p( 2h> 111:[2/11&\/27711 p( 2h>

and this proves (5.24) since all the integrals in dx; for i > 2 evaluate to
one.

Since we know the joint and marginal distributions of Wy, , — W/ and
Wng — Wij, property 2) is an immediate consequence of Proposition A.53
and of (5.23). O

Example 5.17 (Correlated Brownian motion) Given an (N xd)-dimensional
matrix « with constant real entries, we set

0o=oaa’ (5.25)
Evidently ¢ = (¢%) is an (N x N)-dimensional matrix, symmetric, posi-
tive semi-definite and ¢ = (a’,a’) where o’ is the i-th row of the ma-

trix a.
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Given p € RN and a d-dimensional Brownian motion W, we put
Bt =K + OLWt, (526)

ie.
dBt = Oéth. (527)

By Remark A.93, we have that
Bt ~ NM;tQ

and in particular
Cov(By) =to (5.28)

ie. - {(BZ i) (Bﬁ ,Hj)} — to.

We say that B is a Brownian motion starting from u, with (deterministic)
correlation matriz 9. We treat in Section 5.2.2 the case of a Brownian motion
with stochastic correlation matrix.

For instance, if N = 1, we have a = (a”)izlywd and the random vari-
able

d
By =p+ Z Wi
i=1
has normal distribution with expectation y and variance |a|?t.

In intuitive terms, we can think of N as the number of assets traded
on the market, represented by B, and of d as the number of sources of
randomness. In building a stochastic model, we can suppose that the cor-
relation matrix ¢ of the assets is observable: if ¢ is symmetric and positive
definite, the Cholesky decomposition algorithm? allows us to determine an

(N x N)-dimensional lower triangular matrix « such that ¢ = aa®, and
so it is possible to obtain a representation for the risk factors in the form
(5.26). a

Since the components of a d-dimensional Brownian motion W on (£2, F, P,
(F1)) are independent real Brownian motions, the integral

t
/udesj, j=1,...,d,
0

is defined in the usual way for every u € L (F;). Moreover we have

Lemma 5.18 For every u,v € L2(F;), to <t and i # j, we have

t t
E U usdwg'/ v, dW? |ft0} =0. (5.29)
to to

* See, for example, [263].
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Proof. By an approximation argument it is enough to consider simple wu, v:
since the proof is similar to that of Theorem 4.5, we employ analogous nota-
tions. We have

t t
E [/ uSdWSi/ v dW? |‘7:t0}
to to

N ) N
Zek(wtlk tk 1 Z t; 1) | fto‘|
k=1 h=1

=F

M-

B [exer (Wi, = Wi, (Wi, = Wi, )| F]

~
Il

1
+2 3B [exen (Wi, = Wi, )WY, = Wi, ) | F|
h<k

and we conclude by using Proposition A.107-(6), by the independence of
Wi — Wi _ from W] — W/ _ (by Lemma 5.16), from ej, and & (being
Fi._,-measurable random variables). O
Notation 5.19 If u is an (N x d)-matriz with components in L _(F;) (in
what follows we simply write u € ILIQOC), we put

t d t
/ usdWy = | Y / AW
0 =170

The following result extends the properties of the stochastic integral in The-
orem 4.11.

Theorem 5.20 For all (N x d)-matrices u,v € L2 and 0 < a < b < c, the
following properties hold true:

i=1,..,N

(1) null expectation:

b
/udes|Fa] =0, E

(2) Ité isometry:

b b
</ Utth,/ ’Utth |.7

E

d

=E / Zzu?v;ﬁjdt | Fa

=1 4= (5.30)
b
/ tr (ugvy) dt | fa] ,

b
| Fa El/ |ut|2dt|]-'a];

E

=F

and in particular
2

E

b
/ utth
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(3)if we put
¢
X, = / wdW,,  tel0,T],
0
we have that X € 42 and
T
P <4 [ B fluf] .
0
Further, the “non-conditional” versions of the equalities at points (1) and (2)

hold.
Proof. We prove only (5.30):

b b
</ Utth,/ ’Utth> |‘7:a‘|

N d b b
=Y E (Z / u;'deth> (Z / vgkdwf> |]-'a]
i=1 h=1"¢ k=174

(by Lemma 5.18 and It6 isometry)

» N d
Z Zuihvihdt | fa] . O

@ =1 h=1

E

=F

5.2.1 Multi-dimensional It6 formula

Definition 5.21 An N-dimensional Ité process is a stochastic process of the
form

t t
Xt:X0+/ usds—i—/ o dW,, — tel0,T], (5.31)
0 0

where X is Fo-measurable, W is a d-dimensional Brownian motion, u € ILllOC

is a (N x 1)-vector and o € L% _ is a (N x d)-matriz.

Formula (5.31) can be written in the equivalent differential form
dXt = ,utdt + O'tth

or, more explicitly

d
dX} = pdt + Y ofdW/,  i=1,...,N.

j=1
We recall the Definition 4.45 of co-variation process and, if

X=X .., xN) and Y=(Y'.. . Y
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are vector-valued processes, we put
(X,Y ) = (X', V7)) s

and (X, X) = (X). The following result follows from Remark 4.44 and gene-
ralizes Corollary 5.2.

Lemma 5.22 Consider an Ité process X of the form (5.31) and set

C=o0". (5.32)
Then we have .
(X, X7, :/O Clds, t>0, (5.33)
or, in differential notation,
d(X)s = Cydt.

In practice, given two It6 processes X,Y in RY, the computation of (X,Y),
can be handled by applying the following “rule”:

d(X',Y7), = dX[dYY,

where the product on the right-hand side of the previous equality can be
computed using the following formal rules:

dtdt = dtdW' = dW'dt =0,  dW'dW7 = §;;dt,
and 6;; denotes Kronecker’s delta
0 .,
5y = { ; z_# J
1, 1=7.
Example 5.23 For X = (X!, X?) defined by

dth = /,Ltdt + Oétthl + ﬂtthQ,
dX? = vidt + v dW}! + 6, dW2,

we have ) )
_(apB «_ [+ B ay+ 56
0(75) and 00(@74—6572—}—52 .

Then we have

d(X), = d(X', X" = (af + B7) dt, d(X1, X2, = (v + Bedy) dt.
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Example 5.24 For a correlated Brownian motion B = p + aW, recalling
(5.25)-(5.28), we have

(B, B9}, = t(aa*)¥ = cov (B;,Bﬂ) O

We state now the general version of It6 formula.

Theorem 5.25 Let X be an Ité process of the form (5.31) and f = f(t,z) €
CH2(R x RY). Then

N
df = O, fdt +Vf-dX; + % > Oppa, fA(XT, XT ), (5.34)
ij=1
with f = f(t,X¢) and Vf = (0, f,...,0ur f)-

In compact form, if we put C = oo* and recall Lemma 5.22, then formula
(5.34) becomes

N
1 .
df = | 5 D ClOuw,f e VI +0f | db+ V] 0rdW,

i,j=1
1 N - N ) N d )
=5 20 GO, f+ D O f+0uf | dt+ D> O foi"dW}.
i,j=1 i=1 i=1 h=1

(5.35)

Example 5.26 (Standard Brownian motion) Let W be a d-dimensional
Brownian motion and f = f(t,z) € CY?(R x R?). Then we have

d d
1 .
df(t,vm( 1t t+225rmft”t)dHZarzf(f,Wt)dW;

i=1

= <8tf(t, W) + %Af(u Wt)> dt + V(t, W) - dW, (5.36)

where A denotes the Laplace operator in R<. a

Example 5.27 (Correlated Brownian motion) Let B = (B!,...,BV) =
aW be a correlated Brownian motion with correlation matrix ¢ = aa™. We
consider the Itd processes in R

dX} = pidt +oldB;, i=1,...,N.
Then, for every f = f(t,x) € C12(R x RY), we have

N
1
5 D ELAA $]f+2ut8xlf+8tf dt+Za%fa;dB;, (5.37)

7,7=1 =1 1=1

with f = f(t, X3). O
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We consider further examples of application of the It6 formula that are
useful to get acquainted to the multi-dimensional version.

Example 5.28 Let (W', W?2) be a 2-dimensional Brownian motion and
f(t, o1, 29) = 2170,

Then
dWW?) = Wlaw? + w2dw?.

Further, for f(t,z1,22) = 2325 we have
a((Wh)*w?) = (W) dw? 2w W2aw? + widr.

In the case of a Brownian motion B in R2? with correlation matrix

and f(t,x1,x2) = 129, we have
d(B}B}) = B}dB? + B}dB} + fdt.

As an exercise, apply the It6 formula in the case B = (B!, B% B?) and
f(B)=B'BI or f(B) = B'B'B*. a

Example 5.29 (Integration by parts) We consider an Ité process with
N=2and d=1:

dX} = pidt + oidWy,  i=1,2.
In this case
d( X} X?) = X}dX? + XPdX] + % (X, X% + d(X?, X))
= X}dX} + X}dX} + olofdt, (5.38)
ie.

t t t
/ X2dX} = X} X? - X} X2 —/ X, dX? —/ o,0%ds.
0 0 0

Note that it is enough that o' = 0 or o2 = 0 in order for the usual integration-
by-parts rule to hold formally true. a

Example 5.30 (Exponential martingale) Let W be a d-dimensional

Brownian motion and o € L an (N x d)-matrix. We put

t
Xt:/ O'des,
0
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and we recall that

(X X9y, / Cds,

where C = go*. Given £ € RY, we consider the process

zi=oo( [ ¢ naw -} [(eeas)

= exp (e Xo- S 5ifj<Xi,Xj>t).

ij=1
By the It formula we get
dZ¢ = Z5¢ - dX, = Z5¢ - opdW,

and so Z¢ is a positive local martingale, called exponential martingale (con-
sistently with the 1-dimensional case, treated in Example 5.12).
In the particular case that o is the (d x d)-identity matrix, the pro-

cess 2

is a martingale for every ¢ € RY. a
Remark 5.31 If f solves the adjoint heat equation in R¢
1
iAf +0.f =0, (5.39)
then (5.36) becomes
df (t, W) = Vf(t, Wy) - dW;.
Hence, analogously to what we have seen in Section 5.1.3, f(t, W) is a local

martingale® if and only if f is solution to (5.39). In this case, if we denote the
Brownian motion starting from x at time ¢ by

Wh* = x4+ Wr — Wy, t<T,

in analogy to what we have seen in Section 3.1.2, we have:

) f(tx) = B[/ (T.Wr")];
5 If Vf(t,W;) € L? (for example, if Vf is bounded), then

F(E W) = F(0,Wo) + / Vf(s, W) - dW,

is an F;-martingale.
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i) E[f(T,Wr) | F] = f(t,Wr)
for t <T and z € R<. O

We conclude the section by stating the multi-dimensional version of Propo-
sition 5.13.

Proposition 5.32 If u € L' and o € L? are deterministic functions, then
the process defined by

dSt = /i(t)dt + O'(t)th, SO =x € R7

has multi-normal distribution with

E[S;)] ==« +/0 w(s)ds, cov(St) :/0 o(s)o*(s)ds.

The proof is analogous to that of the one-dimensional case and is therefore
left as an exercise.

5.2.2 Correlated Brownian motion+and martingales

In this section we present a useful characterization of Brownian motion in
terms of exponential martingales. Going back to Example 5.30, we consider
the process
€ _ iew+ L2
Zp =St

where ¢ is the imaginary unit, W is a d-dimensional Brownian motion and
¢ € R% We pointed out that Z¢ is a local martingale and since Z¢ is a
bounded process, then it is also a strict martingale. Conversely, we have the
following:

Theorem 5.33 Let X be a continuous process in R on (2, F, P, (F;)) such
that Xo = 0 a.s. If for every € € R? the process

2
78 = ei6Xet 1t (5.40)
is a martingale, then X is a Brownian motion.

Proof. We just have to verify that:

i) X; — X, has normal distribution Ny (;—g)1,;
il) Xy — X, is independent of Fy.

By (5.40) we have that
E [eze(Xt—Xs) |fs} _ s

for every ¢ € R? and taking the mean on both sides of the equality we get
that the characteristic function of X; — X, verifies

E |:e7;£'(Xt_XS):| — e—%(t—s)’ g S Rd.

Then i) follows from Theorem A.89 and ii) from Proposition A.110. O
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We give now a classical characterization of Brownian motion. First of all
we observe that, if W is a Brownian motion in R?, it is immediate to verify
by the Ito formula that the process

WIWI — 6t

where 6;; is Kronecker’s delta, is a martingale: in terms of quadratic variation,
this is tantamount to saying

(W WY, = 5.

It is remarkable that the quadratic variation and the martingale property
characterize the Brownian motion. Indeed we have

Theorem 5.34 (Lévy’s characterization of Brownian motion)

Let X be a stochastic process in R% on the space (2,F,P,(F;)) such that
Xo =0 a.s. Then X is a Brownian motion if and only if it is a continuous
local martingale such that

(X7, X7y, = gyt (5.41)

Proof. The proof is based upon Theorem 5.33 and it consists in verifying
that, for every ¢ € RV, the exponential process

2

Zf ‘= exp (z§ - X+ %t)

is a martingale. We consider only the particular case in which X is an It6

process: for a general proof we refer, for example, to Protter [287], Theorem
39, Chapter II.

By assumption X is a local martingale, therefore its drift is null and X

takes the form
dXt = Utth,

with o € L2 . By the It6 formula we have

loc*

d
€17 : 1 i i
Sdt i€ dX, — o D GGAXL X, | =

ij=1

dzs = Z¢

(by (5.41))
= Zt{7'£ . O'tth.

So Z¢ is a local martingale but, being bounded, it is also a strict martingale.
Then the claim follows from Theorem 5.33. a

Corollary 5.35 Let a = (a!,...,a%) a progressively measurable process in
R? such that

loy|? = Z (ozi)2 =1 t>0, as.
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and let W be a d-dimensional Brownian motion. Then
t
Bt = / OédeS
0

Proof. By assumption o € .2 and so B is a continuous martingale. Further,

we have that .
By, = / |as|2ds =1t.
0

Therefore the hypotheses of Theorem 5.34 are verified and this concludes the
proof. O

1s a real Brownian motion.

Definition 5.36 Let us consider an (N x d)-dimensional matriz o, whose
components o'l = oy’ are progressively measurable processes and whose rows
o' are such that

laij=1 t>0, as.

t
Bt:/ asdWy
0

1s called correlated Brownian motion.

The process

By Corollary 5.35, every component of B is a real Brownian motion and by
Lemma 5.22

t
(B", B, = / 07ds
0
where o, = oy is called correlation matriz of B. Further, we have
t
Cov(B;) = / Fo.] ds,
0

since

cov(Bi,Bl) = E [B Bﬂ -

Z/ zdekZ/ adhdwh

=
I

(by Lemma 5.18)

d t t
Z/ agdesk/ ozgdef =
k=10 0

(by It6 isometry)

/0 Za”ﬁa]kds] =/ E [07] ds.

k=1

If « is an orthogonal® matrix, then B is a standard Brownian motion, accor-
ding to Definition 5.15. a

6 Le. such that o* = a~'. Consequently o’ - of = §;; for every pair of rows.
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5.3 Generalized Ito formulas

In this paragraph we are going to examine some extensions of the It6 formula
(5.34): in particular we are interested in weakening the assumptions on the
regularity of the function f.

The first generalization is an It6 formula for weakly differentiable fun-
ctions. We will use this result in the study of American options since, as
we saw in Section 2.5.5, the price of such derivatives is a function be-
longing to a suitable Sobolev space and does not belong, in general, to
ch2,

Secondly, we want to extend the Ito formula to the payoff function of a
Call option

f(x)=(x - K)", z eR, (5.42)

where K is a fixed number. In this case” f does not possess a classical deriva-
tive in x = K, but it does admit first weak derivative

Df =1k ool (5.43)
and has second derivative only in the distributional sense: precisely
D*f =g (5.44)

where g is Dirac’s delta concentrated at K. In Section 5.3.4 we use an ex-
tension of It6 formula valid for f in (5.42) to get an interesting representation
of the price of a European Call option.

5.3.1 Ito formula and+weak derivatives

The main result of the section is the following It6 formula for weakly diffe-
rentiable functions. Hereafter W is an N-dimensional Brownian motion and
W2P (resp. W) denotes the Sobolev space of LP (resp. LP ) functions

loc
with first and second order weak derivatives in L (resp. Lf ), see Appendix
A.9.2.

Theorem 5.37 Let f € W2P(RN) withp > 1+ 8. Then we have

C

f(Wt)=f(0)+/O Vf(Ws)-dWs—F%/O Af(Wy)ds. (5.45)

The proof of the theorem is based upon the following lemmas.

Lemma 5.38 Let

I'(t,z) =

2
~ €Xp —& , t>0, zeRN,
(27Tt) 2 2t
" We refer to the Appendix, Paragraph A.9, where we present the main results of
the theory of distributions and weak derivatives.
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be the density of the N-dimensional Brownian motion. Then
I € L]0, T[xRY)

for everqu]O,l—i—%[ and T > 0.

Proof. We have

T T 2
1
/ / I(t,z)dzdt = / / . €Xp (—M> dzdt =
0 JrN o JrN (27t)3 2t
/ot)

(by the change of variables y = —&

Vat

1 T 1 2
= dt/ e~ gy,
(w)%/o (2t) > (=1 Jpw Y

Whichisﬁniteforw<1andq>0,i.e.0<q<l+%. a

Lemma 5.39 Assume that f € W?P(RN), with p > 1+ 5. Then f is
(Holder) continuous and we have:

i) if p < N then |Vf|?> € LY(RYN) for some ¢ > 1+ g;

i) if p> N then Vf € C(RY) N L®(RY).

Proof. If p > N the thesis follows from the Sobolev-Morrey embedding Theo-

rem A.168. If 1+ % < p < N then necessarily N > 2 and, again by Theorem
A.168, we have Vf € L%(RY) with

(since p > 1+ &)

This proves that |V f|? € LY(RY) for some ¢ > 1 + % and consequently, by
Theorem A.168, f is Holder continuous. O

Proof (of Theorem 5.37). By using a localization argument as in the proof
of the standard It6 formula, Theorem 5.5, it is not restrictive to assume that
f e W2P(RN),

We first consider the case N > 2. Let (f,) be a regularizing sequence
for f, obtained by convolution with the usual mollifiers. Then, by Theorem
A176-v), f, € C®°(RY) and (f,) converges to f in W2P. Moreover, by the
continuity of f proved in Lemma 5.39, we also have that (f,,) converges to f
(uniformly on compacts) so that

n—oo

for any t > 0.
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By the standard It6 formula we have

FalW2) = Fu(Wo) / Vhu (W) - dW, + = / Afo(W,

Further, by It6 isometry,

E l( / RRUARRA dWS)Z]

-/ B[940V - VA0V ds
= /t/ IV fu(z) = V(@) I(s,x)dxds =: I,,.
0 JrN

If p > N then, we have
lim I, =0

n—oo

by the dominated convergence theorem, since by Lemma 5.39 Vf € C'N L*°,
and so the integrand converges to zero pointwise and is dominated by the
integrable function ||V f, — V f||? @)L

On the other hand, if 1 + % < p < N, by Lemma 5.39 we have
IVf? € LYRY) for some ¢ > 1+ 5. Let ¢’ be the conjugate exponent
of ¢: then we have

’—14—L<1+3
€= p—1 N

and therefore, by Lemma 5.38, I' € L9 (]0, T[xR"). By Holder’s inequality,
we get

L <198 - 17| 170t o iy 7 O

d |

g/o E[|Afn(We) — Af(Wy)|] ds

L1(]0,T[xRN)
Finally

t

t
= [ [ 1800 = @) Do, aods <
0 JRN
(by Holder’s inequality, with p’ conjugate exponent of p)

< ”Afn - AfHLP(]O,T[x]RN) HFHLP'(]O,T[X]RN) " 0

— 00
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since (f,) converges to f in W2P(R") and the assumption p > 1+ & implies
p’ <14 Z:so, by Lemma 5.38, we have

”F”Lp’(]o,T[XRN) < 0.

In conclusion, we proved that (5.45) holds a.s. for every ¢ > 0, and by Propo-
sition 3.25, this is enough to conclude.

In the case N < 2, the hypothesis p > 1+ % implies p > N and the thesis
can be proved as before. a

Remark 5.40 The previous proof can easily be adapted to the case in which
f depends also on time, i.e. the It6 formula holds for f in the parabolic Sobolev
space SEP(RN*Y) with p > 1 + N2 Moreover the generalized Ito formula
holds can be proved for a class of processes more general than Brownian
motion (see Theorem 9.47). A crucial tool in the proof of Theorem 5.37 is
the integrability estimate of the transition density in Lemma 5.38: in Chapter
8 we prove an analogous estimate for a wide class of Itd processes, solutions
of stochastic differential equations. In Chapter 11 we adapt the arguments
used in this section to study the optimal stopping problem for American
options. O

5.3.2 Tanaka formula+and local times

We consider the payoff function of a Call option
f(z)=(z - K)T, xR

By applying formally the It6 formula to the process f(W), where W is a
real Brownian motion, and recalling the expression (5.43) and (5.44) of the
derivatives of f, we get

t 1 t
(Wt — K)+ = (WO — K)+ —|—/ ]l[K)JrOO[(Wé)dWé + 5/ 5K(Wé)d5 (546)
0 0

The relation (5.46), known as the Tanaka formula, besides a rigorous proof,
requires also an explanation of the meaning of every term that appears in it. In
particular, the last integral in (5.46), containing the distribution d5, must be
interpreted in a formal way at this level: as we shall see, that term is indeed
interesting from both a theoretical and a practical point of view, above all
in financial applications. In order to give a precise meaning to that integral,
it is necessary to introduce the concept of local time of a Brownian motion,
after some preliminary considerations. In the next definition | - | denotes the
Lebesgue measure.

Definition 5.41 (Occupation time) Lett > 0 and H € %. The occupa-
tion time of H by time t of a Brownian motion W, is defined by

JI = |{sc[0,t]| W, € H}|. (5.47)
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Intuitively, for every w € 2, JH(w) measures the time W has spent in the
Borel set H before t. The next properties of the occupation time follow directly
from the definition:

i) we have

¢
J{I:/ 1 (Ws)ds; (5.48)
0
ii) for every H € %, (J#) is an adapted and continuous stochastic pro-
cess;
iii) for every w € 2 and H € %, the function ¢t — J(w) is increasing
and

0<JH(w) <t

iv) for every t,w, the map H — JH(w) is a measure on % and J}(w) =
2
v) by (5.48), we have

E(JM) = /tP(Ws € H)ds = /t/ I'(s,z)dxzds,
0 0o JH
where I' is the Gaussian density in (A.7). Consequently
|H| =0 = JE =0 P-as. (5.49)
In particular it follows that the occupation time of a single point in R by

a Brownian motion is null.

Formally (5.49) suggests that H +— JH is a measure equivalent to the
Lebesgue measure, and so, by the Radon-Nikodym theorem it possesses a
density:

JH = / Ly(x)dz. (5.50)
H
Actually the situation is more delicate since JH is a random variable: anyway,
(5.50) holds true in the sense of the following:

Theorem 5.42 There exists a two-parameter stochastic process
L={Liz) =Li(z,w) : Ryg x R x 2 — R>¢}

with the following properties:

i) Li(x) is Fy-measurable for every t,x;

it) (t,x) — Ly(x) is an a.s. continuous function and, for every x, t — L¢(x)
1S @.S. increasing;

iii) (5.50) holds for every t and H a.s.

The process L is called Brownian local time.

For the proof of Theorem 5.42 we refer, for example, to Karatzas-Shreve [201],
p- 207.
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Remark 5.43 Combining (5.50) with (5.48) we get
t
/ 1y (Wy)ds = / Li(x)dz, He %, as. (5.51)
0 H
and, by Dynkin’s Theorem A.9, this is equivalent to the fact that

/ @(Wg)d.s:/ga(x)Lt(I)dx, a.s. (5.52)
0 R

for every bounded and measurable function ¢. a

Remark 5.44 As a consequence of the a.s. continuity property of L;(x), we
have that, almost surely

1 T+e
Li(z) = Jim o= /w_8 Li(y)dy =
(by (5.51)) .
= lim ——[{s € [0,¢] [ [W, — 2] <&} (5.53)

This is the definition of local time originally introduced by P. Lévy: in-
tuitively L;(z) measures the time (up to t) spent by W “around” the
point x. a

We prove now a representation formula for Brownian local time.

Theorem 5.45 (Tanaka formula) For every K € R we have
¢
1
(Wy — K)T = (Wy— K)*" +/ ]l[K7+oo[(Ws)dWs + iLt(K). (5.54)
0

Remark 5.46 If we choose ¢ = g, in (5.52), where (g,,) is a regularizing
sequence® for 6x and if we take the limit in n, we get, by the a.s. continuity
of L,
¢
lim on(Ws)ds = lim | on(z)Li(x)de = Li(K), a.s.

So it is natural to use the notation
t
/ Sic (W.)ds = Ly(K). (5.55)
0

Plugging (5.55) into (5.54), we get the Tanaka formula in the version given
by (5.46).

We point out that the It6 formula was generalized under the only assump-
tion of convexity of f by Meyer [254] and Wang [336]: concerning this topic,
we refer the reader to Karatzas-Shreve [201], Chapter 3.6-D. O

8 See Appendix A.9.4.
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Proof (of Theorem 5.45). We construct a regularizing sequence for f(x) =
(x — K)™T using the mollifiers g,:

folz) = /R oz — y)(y — K)*dy.

We recall that, by Theorem A.176-v), we have

f1(2) = (Df)a(z) = /R 02— 9L oey (4)dy, (5.56)
f1(&) = (D2 f)(x) = /R 0n (2 — )3 (dy) = pnl( — K). (5.57)

Since f,, € C*°, applying the It6 formula we get

t t
Fu(Wy) = £ (Wo) + /O FL (W)W, + /0 FW,)ds.

=:It(1) =:It(2)
By (5.57) we have
t
= / on(W, — K)ds =
0
(by (5.52))

- / oule = K)Li(0)de —— Ly(K),  as,

n—oo

t 2
(It(l) _/ n[K,m[(W‘S)dWS) ] _
0

-5[f (R — s (W) ] 0

Further,

E

(by It6 isometry)

n—oo

by the dominated convergence theorem, since the integrand converges to zero
a.s. and it is bounded. This proves the Tanaka formula (5.54) (m ® P)-
a.e.: on the other hand, by continuity, (5.54) holds true indeed for every ¢
a.s. O

5.3.3 Tanaka+formula for It6 processes

In view of financial applications, we state the generalization of Theorem 5.42
for It6 processes in the form

t t
X = X, —|—/ Lsds —|—/ o,dWs, (5.58)
0 0
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with 4 € Li_ and ¢ € L2_. The main difference with respect to the

loc loc*
Brownian case lies in the fact that the local time is a continuous pro-

cess in t rather than in the pair (¢,x) and the term d(X); substitutes the
term dt.

Theorem 5.47 There exists a two-parameter stochastic process, called local
time of the process X,

L={Li(x) =Li(z,w) : Rsg x R x 2 — R>¢}

with the following properties:

i) (t,x,w) — Li(xz,w) is measurable and Li(x) is Fi-measurable for every
t,x;

it) t — Li(z,w) is a continuous and increasing function for every x a.s.;

it1) for every ¢ € %y we have the identity

[ etxoan = [e@ni,  as
Further, if we put

/O (X)A(X)s = LK), KER,
the Tanaka formula holds:

t 1 t
(X, — K)* = (XO—K)++/O ]I[K)+OO[(XS)dXS+§/O S1c(X3)d(X)s. (5.59)

For the proof of the theorem, we refer, for example, to Karatzas-Shreve
201].

5.3.4 Local+time and Black-Scholes formula

The material in this section is partially taken from [298]. We consider a
financial model in which the dynamics of the price of a risky asset is
described by a geometric Brownian motion and for the sake of simplic-
ity we assume that the expected return p and the interest rate r are
null:

dSt = O'Stth.
Applying the Tanaka formula we get

T 1 T
(Sp—K)T = (Sy— K)T +/ Lis,>r1dS: + 3 / 02576k (Sy)dt, (5.60)
0 0

and we have a representation for the payoff of a Call option with strike K as
the sum of three terms:
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e (Sp— K)T represents the intrinsic value of the option;

. fOT 1¢s,>K}dS; is the final value of a self-financing strategy that consists
in holding one unit of the asset when its price is greater than the strike
and no units when the price is smaller than the strike. This is what we
call a “stop-loss strategy”;

o %fOT 028265 (S;)dt is the local time around the strike: this non-negative
term gives the error that one makes by replicating the strategy with
the stop-loss strategy. Intuitively, if S does not hit the strike, the stop-
loss replication is perfect. On the other hand, if S hits the strike we
have to buy or sell the underlying asset. Since the paths of S are
very irregular, this happens very often and in such a way that, intu-
itively, we are not able to buy (or sell) in the exact moment that S is
worth K: in other terms we are forced to sell (buy) for a value which
is a little bit smaller (greater) than the strike. This causes a replica-
tion error that is not due to transaction costs but is indeed a fea-
ture of the model based upon Brownian motion whose paths are irreg-
ular.

Taking the mean in formula (5.60) and using the property of null expectation
of the stochastic integral we get

T
E [(ST — K)*} = (So— K)" + % /0 E [0°S76k(S))] dt
1 T
=(So— K)" + 5 /0 /R&s%(so;t, S)éx (dS)dt

o2K?

T
= (So—K)" + / W (So; t, K)dt, (5.61)
0
where ¥ (So;t,-) is the log-normal density of S; in (5.22) with g = 0. Formula
(5.61) expresses the mean of the payoff (intuitively the risk-neutral price of
the Call option) as a sum of the intrinsic value of the option with the integral
with respect to the time variable of the density of the underlying asset, where
the density is evaluated at K.

Remark 5.48 Formula (5.61) can also be obtained in a easier way by using
PDE arguments. We first note that ¥(Sp;¢,x) is the fundamental solution of
the Black-Scholes differential operator (cf. (2.113)) that, in the case r = 0,

reads
202

oS,
Lgs = 5 0 85050 + 0.

Therefore, for any t < T and S,Sy > 0, we have Lgs¥(So;T —¢,5) = 0
and

0252

LESW(S(); T — t7 S) = 855 ( EP(S(); T— t7 S)) - 8T!p(S();T - t, S) =0

(5.62)
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where Lfq is the adjoint operator of Lgg: these identities follow by a direct
computation. Moreover, formally we have

¥ (S0;0,-) = ds,

where dg, denotes the Dirac’s delta centered at Sy. Hence we have
U(Se;T,S) =0dg,(S / 0¥ (So;t,S)d

(by (5.62))

T 0252
=d5,(5) +/ Oss ( 5 W(So;t75)> dt.
0

Multiplying by the payoff function (S — K)* and integrating over Rq, we
obtain the following representation of the Call price:

B (st~ K)7] =
= (So— K)t + /:O /OT (S — K) dss (”2252w(50; t, S)> dtdsS =
(by parts)
o [
(50— k)T 4+ 2K /O W(Sy: t, K)dt

that proves (5.61). O

W(Soit, S)) dtdS =

Proposition 5.49 Formula (5.61) is equivalent to the Black-Scholes formula
(2.108) with interest rate r = 0.

Proof. For the sake of simplicity we consider only the at-the-money case
So = K and we leave it to the reader as an exercise to verify the general case.
If C is the Black-Scholes price, by (2.108) we have

C = So®(d1) — Ke "Td(dy),

where dy,dy are defined in (2.105) and & is the standard normal distri-
bution function in (2.104). In the particular case So = K and r = 0 we
have

C=K (@ (m/f/Q) s (—ax/f/2)> - 2K/7 \/12_7re—§dx.
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On the other hand, by (5.61), we have

E [(ST - K)ﬂ = "22[(2 /OTu'/(t,K)dt =

(substituting the expression of ¥ given by (5.22))

oK /T 1 o < 02t> gt
= — _ X S —
2 0o Vv 2t P 8

whence the claim, by the change of variables z = UT\/E a

We conclude by pointing out that the results in this section can be ap-
plied more generally to every model in which the underlying asset is an It6
process.
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Parabolic PDEs with variable coefficients:
uniqueness

In this chapter we consider elliptic-parabolic equations with variable coeffi-
cients of the form
Lou := Lu — au = 0, (6.1)

where L is the second order operator

N N
1
L=3 Y tlam, + ) bids, =0 (t2) RV (6.2)
j,k=1 j=1

In the whole chapter we assume:

Hypothesis 6.1 The coefficients c¢;; = c;;(t,x),b; = b;(t,z) and a = a(t, )
are real-valued functions. The matriz C(t,xz) = (c;j(t,x)) is symmetric and
positive semi-definite for any (t,x). The coefficient a is bounded from below:

infa=:ap €R. (6.3)

Hereafter we use systematically the following:

Notation 6.2 For fized T > 0, we set
Sr =10, T[ xRN,

We are interested in studying conditions that guarantee the uniqueness of the
solution of the Cauchy problem
Lu —au = f, in ST]\,] (6.4)
u(0,-) = ¢, on RY.

Such results, besides the apparent theoretical interest, are crucial in the study
of the derivatives pricing problem: indeed, as we have already pointed out in
the discrete-time setting, the arbitrage price of an option can be defined in
terms of the solution of a problem of the form (6.4). The uniqueness for (6.4)

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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translates into terms of absence of arbitrage opportunities and is equivalent
to the uniqueness of the arbitrage price.

In general, problem (6.4) admits more than one solution: the classical
Tychonov’s example [327] shows that there exist classical non-null solutions
of the Cauchy problem

%Au — Ju =0, in Ryg X R,
u(0,) =0, on R.

For this reason the study of uniqueness for (6.4) consists in determining suit-
able families of functions in which there exists at most one classical solution:
such families are usually called uniqueness classes for L. In what follows we
specify two of them related to the main results of this chapter, Theorems 6.15
and 6.19.

In the first part, Paragraphs 6.1 and 6.2, we show a classical result, the so-
called weak mazimum principle, that allows proving the uniqueness for (6.4)
within the class of functions verifying the following growth estimate at infinity:

lu(t,z)| < CeCl*l,(t,2) € Sp, (6.5)

for some constant C. This result, contained in Theorem 6.15, is very general
and holds true under extremely weak conditions. More precisely, Hypothesis
6.1 suffices to prove uniqueness results on bounded domains (cf. Paragraph
6.1); when we study problems on unbounded domains (as the Cauchy prob-
lem), we also assume the following growth conditions on the coefficients:

Hypothesis 6.3 There exists a constant M such that
lesj(t,2)| < M, |bi(t,2)] < M1+ [2]), a(t,2)] < M(1+|z*),  (6.6)
for every (t,x) € Sy and i, =1,...,N.

In this chapter we only study the problem of uniqueness of the solution: we
point out that Hypotheses 6.1 and 6.3 are so weak that are generally not
sufficient to guarantee the existence of classical solutions. As we shall see in
the following chapters, the growth condition (6.6) is usually quite natural in
the financial applications.

In Paragraph 6.3 we present other more general uniqueness results, never-
theless requiring the much stronger assumption of existence of a fundamental
solution of L and so, basically, the solvability of the Cauchy problem. We
recall the following:

Definition 6.4 A fundamental solution of the operator L, with pole in the
point (s,y) in RNT1 is a function I'(-,-;s,y) defined on ]s,+oo[xRN such
that, for every ¢ € Cy(RY), the function

u(t,z) = /RN I(t,z;s,9)p(y)dy (6.7)
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is a classical solution of the Cauchy problem

(6.8)

Lou=0, in ]s, +oo[ xRN
u(s, ) = @, on RV,

In Paragraph 6.3 we prove that the family of non-negative (or, more generally,
bounded from below) functions is a uniqueness class for L,: we will use this
result in Chapter 7 to define the arbitrage price of a derivative; in particular
we shall see that a solution of (6.8) represents the value of a self-financing
strategy: the non-negativity condition translates, in economic terms, into an
admissibility assumption for the strategies, necessary in order to avoid arbi-
trage opportunities.

We now state precisely the assumptions that will be in force in Paragraph
6.3. For a fixed positive constant A, let

1 2|2

I\(t,z) = ———e 2x, t>0, z RV, 6.9
(&) (27rAt)%e v (6.9)

be the fundamental solution, with pole at the origin, of the heat operator in
RN+

A
YN
2 O

Hypothesis 6.5 The operator L, has a fundamental solution I'. Moreover,
there exists A > 0 such that, for every T >0, k=1,... N, t €ls,s +T| and
x,y € RV, the following estimates hold:

1

|0y, I (t, 238, y)| < I\(t— s,z —y), (6.11)

M
Vt—s
with M positive constant depending on T'.

Hypothesis 6.6 The operator L, admits the adjoint operator

N N
* 1 * *
Liu= 3 E CikOz U + E b;0p,u — a*u + Opu (6.12)

Jk=1 j=1

and the coefficients

N N N
1
b;k = —b; + E 8Iicij, a* =a— 5 E 8a;ichij + E 8Ijbj, (613)
Jj=1 5,j=1

j=1
verify growth conditions analogous to (6.6).

Remark 6.7 We note explicitly that all the previous assumptions are satis-
fied if L, belongs to the class of parabolic operators with constant coefficients
(cf. Appendix A.3) or, more generally, to the class of uniformly parabolic op-
erators with variable coefficients considered in Chapter 8. a
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6.1 Maximum principle and Cauchy-Dirichlet problem

In this paragraph we study the uniqueness problem on bounded domains. In
this section we suppose that L, in (6.1)-(6.2) verifies Hypothesis 6.1 and that
Q is a bounded open set in RY.

Remark 6.8 Given o € R, we set
v(t, ) = e*u(t, z). (6.14)

Then we have
L (e“u) = e (Lqu — au)

that is
Lig—ayv = €' Lqu. (6.15)
In particular, if a < ag then inf(a — a) > 0. O
For T > 0, we denote by
QT - ]0» T[XQv

the open cylinder with basis @ and height T": moreover Q1 is the closure of
Qr and 9,Qr is the parabolic boundary defined by

OpQr = 0Qr \ ({T} x Q).

Definition 6.9 Let f € C(Qr) and ¢ € C(0,Qr). A classical solution of the
Cauchy-Dirichlet problem for L, in Qp with boundary datum o is a function
u € CH2(Qr) N C(Qr UdQr) such that

{Lau = fa in QTv (616)

U=, on Op,Qr.

Theorem 6.10 (Weak maximum principle) Let u € C12(Q7)NC(Qr U
0pQr) such that Lyu >0 on Qr. If u <0 on 0,Q7, then uw <0 on Q7.

Proof. First of all, by Remark 2.57 it is not restrictive to assume ag > 0,
since we may prove the thesis for v in (6.14) with o < ag and then use the
fact that v and v have the same sign.

By contradiction, we assume that u(tg,zo) > 0 at some point (t,xg) €
Qr: then for some (t1,21) € Qy, \ 9pQs, We have

u(ty, 1) = maxu > u(tg, o) > 0,
to

and

D?u(ty, z1) == (Op,0,ult1,21)) <0, Opou(ti,z1) =0, Spu(ty,z1) >0,
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for every k = 1,...,N. Then there exists a symmetric and positive semi-
definite matrix M = (m;;) such that

N
—D?u(ty, 1) = (Z mmmh]> = (Z mihmjh>
irj h=1 irj

and therefore we have

N N
1
Lou(ty,z1) = 5 Z cij(t1, 1) Zmzhm]h—FZb tl,xl)ﬁ u(ty,x1)
ij=1 — i=1

— a(tl, xl)u(tl,xl) — 8{11@1,1‘1)

N N
ZZ it x)mipmgn —a(ty, x1)u(ty, x1) — Ogu(ty, 1)

l\J\H

>0 since C>0
< —a(tl,xl)u(tl,xl) <0,

and this contradicts the assumption L,u > 0. O

The previous result is called weak mazximum principle since it does not
rule out the possibility that a solution may attain its maximum also inside
the cylinder: the strong maximum principle states on the contrary that the
only solution attaining its maximum internally is the constant one.

Corollary 6.11 (Comparison principle) Let u,v € C*?(Q7) N C(Qr U
0pQr) such that Lou < Lov in Qr and u > v in 0pQr. Thenu > v in Qr. In
particular there exists at most one classical solution of the Cauchy-Dirichlet
problem (6.16).

Proof. It suffices to apply the maximum principle to the function v — u. O

Now we prove an a priori' estimate of the maximum of a solution to (6.16).

Theorem 6.12 Let u € C12(Q7) N C(Qr U dpQ1) and let us set
ay := max{0, —ao}.
Then
sup Ju| < enT (Sup |u| + ngp |Lau|> (6.17)

QT T

L An a priori estimate is an estimate that is valid for all the possible solutions of
a family of differential equations even though the assumptions on the equations
do not guarantee the existence of such solutions. In the classical theory of par-
tial differential equations, these a priori estimates are a basic tool to prove the
existence and the regularity of solutions.
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Proof. We first suppose that ag > 0 and also that v and L,u are bounded in
0pQr and Q7 respectively, otherwise there is nothing to prove. We consider
the function

w(t,z) = sup |u| + tsup|Lqul;

0p QT T

we have

L,w = —aw — sup | Lyu| < Lau, Lo(—w) = aw + sup |Lau| > Lau,
Qr

T

and —w < u < w in 0pQr. Then estimate (6.17), with a; = 0, follows from
the comparison principle, Corollary 6.11.

On the other hand, if ap < 0 we consider v in (6.14) with a@ = ag and by
estimate (6.17) we infer

sup [v] < sup |v| +sup |Lg—qq)v|-
Qr Q

p<T T
Consequently, since ag < 0, we get

e“suplul < sup [e®u(t,z)| < sup [v] +sup |Lig_a)v| <
Qr (t,x)eQT 0pQr Qr

(by (6.15))

< sup [|e®™u(t,x)|+T sup |e® Lyu(t,x)| <

(t,2)€0,Qr (t,x)€Qr

(since ag < 0)
< sup [u| + T sup |Lqul,
apQT Qr

from which the thesis follows. ]

Under suitable regularity assumptions, existence results for the Cauchy-
Dirichlet problem can be proved by using the classical theory of Fourier series:
we refer to Chapter V in DiBenedetto [97] for a clear presentation of this topic.

6.2 Maximum principle and Cauchy problem

In this paragraph we prove uniqueness results for the Cauchy problem. The
standard Cauchy problem differs from the Cauchy-Dirichlet problem studied
in the previous section, in that it is posed on a strip of RNY*!, that is on an
unbounded domain where only the initial conditions is given, but no lateral
conditions. In what follows we assume that the operator L, in (6.1)-(6.2)
verifies Hypotheses 6.1 and 6.3. We recall the notation

Sr =10, T[xR".
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Theorem 6.13 (Weak maximum principle) Let u € CY2(Sp) N C(St)
such that

Lau S 0, m ST,
u(0,-) >0, on RN,
If
u(t,z) > —CeC*’ (t,x) € S, (6.18)

for some positive constant C, then u > 0 on St.
Before Theorem 6.13, we prove first the following:

Lemma 6.14 Let u € C%2(S7) N C(St) such that

Lou <0, in Sr,
U(O7 ) > 07 on RN7
and
liminf< inf u(t,x)) > 0. (6.19)
|z|—o0 \t€]0,T]

Then u >0 on St.

Proof. By the same argument used in the proof of Theorem 6.10 and based on
Remark 2.57, it is not restrictive to assume ag > 0. Then, for fixed (g, zo) €
St and € > 0, we have

Lo(u+e) <0, in St,
u(0,-) +¢ >0, on RV,

and, by assumption (6.19), there exists a large enough R > |x¢| such that
u(t,z) + ¢ >0, t€]0,T|, |z| = R.
Then we can apply the maximum principle, Theorem 6.10, on the cylinder
Qr =10, T[x{lz| < R}
to infer that u(tg,z¢) + € > 0 and, by the arbitrariness of ¢, u(to,z¢) > 0. O
Proof (of Theorem 6.13). We observe that it suffices to prove that u > 0
on a strip Sy, with Ty > 0: once we have proved this, by applying the result

repeatedly we get the claim on the entire strip Sp.
We prove first the remarkable case of the heat operator

1
L—§A—3t,
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and a =0, i.e. L = L,. For fixed v > C, we set Ty = % and we consider the
function

2
v(t,x) = ] > ) (t,z) € Sty

A—2m) 0 <1 — 2t
A direct computation shows that

Lo(t,z) =0 and wo(t,z) > elel® (t,x) € St -
Moreover, for every € > 0, Lemma 6.14 ensures that the function
w=u-+ev

is non-negative: since ¢ is arbitrary, this suffices to conclude the proof.

The general case is only technically more complicated and it is based
upon the crucial Hypothesis 6.3 on the growth at infinity of the coefficients
of the operator. For fixed v > C and two parameters «, 3 € R to be chosen
appropriately, we consider the function

vlel? 1
t,z) = t), 0<t< —.
v(t, ) exp<1_at+ﬁ 5
We have
Lgv 27 v 27 aylz[?
o A ¢ trC bii —a— g
v (1—at)2<z7x>+l—atr +1—atz i (1— at)? b

i=1
Using Hypothesis 6.3, we see that, if a, 5 are large enough, then

Lav
v

<0. (6.20)

Now we consider the function w = %: by assumption (6.18), we have

liminf( inf w(t,a:)) > 0;

|z]—o0 \t€]0,T[

furthermore w satisfies the equation

1 & N Lou
5Zcijawiij—&-Zbi@ziw—Ziw—atw: Z <0,
ij=1 i=1
where N
~ Oy v L,v
bZ:bz i z 5 a=— .

Since @ > 0 by (6.20), we can apply Lemma 6.14 to infer that w (and so u) is
non-negative. O
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The following uniqueness result is a direct consequence of Theorem 6.13.
We emphasize that L, verifies only the very general Hypotheses 6.1 and 6.3:
for example, L, can be a first-order operator.

Theorem 6.15 There exists at most one classical solution u € C12(Sr) N
C(St) of the problem

Lou = fv mn STv
u(0,-) = o, on RN,

such that ,
lu(t,z)| < CeCl*l (t,2) € S, (6.21)

for some positive constant C.

Remark 6.16 Let us suppose that L, also verifies Hypothesis 6.5. Then L
has a fundamental solution I" and, given ¢ € C(R”) such that

o) < e,y eRN, (6.22)

with ¢,y positive constants and < 2, then the function

uta)= [ Pes0nemdy  (GoeSn  (023)

is a classical solution of the Cauchy problem

6.24
’U,(O, ) =¥, on RNa ( )

{Lau =0, in Sr,
for every T' > 0.
By using the upper estimate of I' in (6.10), it is not hard to prove that
for every T > 0 there exists a constant ¢y such that

lu(t,z)| < cpel®” (t,z) € Sp. (6.25)

Then, by Theorem 6.15, u in (6.23) is the unique solution of the Cauchy
problem (6.24) verifying estimate (6.22).

Now we prove (6.25) assuming, without loss of generality, that v > 1. By
(6.22) we have

M z—y|? v
u(t, z)| < (26/\)1\,/ e A eyl dy =
TAt)2 JRN

(by the change of variable n = j%\’t)

_ M P relemaVEND g <

T2 JRN
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(by the elementary inequality (a+ b)Y < 277! (a” + b7) that holds for a,b > 0
and v > 1)

2c|x|”
S cre Iz )
where
CM 2 ~y
— 2¢c|nV2AT
T = —x e " +2¢ln l d'f] O
T2 JRN

Remark 6.17 Let us suppose that the operator L, in (6.1)-(6.2) satisfies
Hypotheses 6.1, 6.3 and 6.5. Then its fundamental solution I' satisfies the
reproduction (or semigroup) property: for every to <t < T and z,y € RV we
have

/ D(T, 24, ) (s to, y)dn = (T, 2 to, y). (6.26)
RN

Formula (6.26) is an immediate consequence of the representation formula
(6.23) and of the uniqueness of the solution of the Cauchy problem

Lou = 0, in Jt, T[xRYN,
u(ta ) = F(tv 1T, y)7 on RN

Further, if a = 0, then I is a density, i.e.
/ D(T, 25t y)dy = 1, (6.27)
RN

for every t < T and z,y € RY. Also (6.27) follows from the uniqueness of
the representation (6.23) of the solution of the Cauchy problem with initial
datum identically equal to one.

More generally, for a generic a, we have

/RN D(t,z;to,y)dy < e~ %tt0), (6.28)

Indeed (6.28) follows from the maximum principle, Theorem 6.13, applied to
the function

u(t,x) = e_QO(t_tO) _/ F(tam7t07y)dy7 t>ty, € RN
RN

Indeed we have u(tg,xz) =1 and

Lou(t,z) = Lae~%(—t0) — —(a(t,z) — ao)e_ag(t_t(’) <0. O
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We conclude the paragraph proving a maximum estimate that is analogous
to that of Theorem 6.12.

Theorem 6.18 Under Hypotheses 6.1 and 6.3, let u € CY%(Sy) N C(St)
such that ,
lu(t, z)] < CeClel”, (t,x) € Sr,

for some constant C. Then, setting
ay := max{0, —ap},

we have
sup |u| < e ? (sup |w(0, )| + T sup |Lau|> . (6.29)
RN Sr

T

Proof. If ag > 0, then, setting

wy = sup |u(0,-)| + tsup |Lou| £+ u, in S,

RN St
we have
Lowy < —sup|Lyu|l £ Lyu <0, in Sr,
St
w(0,-) >0, on RY,

and it is apparent that wy verify estimate (6.18) in S7. Therefore, by Theorem
6.13, wy > 0 in St and this proves the claim.
If ag < 0, then we proceed as in the proof of Theorem 6.12. a

We will see in Chapter 12, that a priori estimates such as (6.29) play a
crucial part in the proof of stability results of numerical schemes. Moreover,
as a consequence of (6.29), if u,v € C1%(Sp) N C(St) verify the exponential
growth estimate, then

sup |u — v| < emT <sup |u(0,-) —v(0,-)] + Tsup |Lou — Lav|> .
St RN St

This formula gives an estimate of the sensitivity of the solution of the Cauchy
problem (6.4) with respect to variations of the initial datum and f.

6.3 Non-negative solutions of the Cauchy problem

In this paragraph we assume that L, has a fundamental solution and we
prove that the family of non-negative functions (or, more generally, functions
bounded from below) is a uniqueness class for L.

Theorem 6.19 Under Hypotheses 6.1, 6.3, 6.5 and 6.0, there exists at most
one function u € C12(S7) N C(St) that is bounded from below and solves the
problem

Lou=0, n St,
u(0,) = ¢, on RN,
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We defer the proof to the end of the paragraph: it is based on the follow-
ing result that generalizes Theorem 6.15, weakening the exponential growth
condition.

Theorem 6.20 Under Hypotheses 6.1, 6.3, 6.5 and 6.0, there exists at most
one solution u € C12(Sp) N C(St) of the problem

Lou = fv n STv
u(0,-) = ¢, on RY,

for which there exists a constant C such that
/RN |u(t,x)|e_c“”‘2dx < o0, (6.30)

for every 0 <t <T.

Before proving the theorem, we dwell on a few remarks. First of all, it is
apparent that condition (6.21) is stronger than (6.30). Moreover, Theorem
6.21 below shows that the non-negative solutions verify estimate (6.30) and
consequently we have uniqueness within the class of non-negative functions.
For uniformly parabolic operators this result was proven by Widder [338]
for N = 1 and it was subsequently generalized by Kato [203] and Aronson
[12], among others. The uniqueness results in Polidoro [284], Di Francesco
and Pascucci [94] further examine the more general case of non-uniformly
parabolic operators that arise in some financial models.

Theorem 6.21 Under Hypotheses 6.1, 6.3 and 6.5, if u € C12(Sr) is a
non-negative function such that Lou < 0, then

/RN I'(t,x; s, y)u(s,y)dy < u(t,x), (6.31)

for every x € RN and0< s <t <T.

Proof. We consider a decreasing function h € C(R) such that h(r) = 0 for
r>2and h(r) =1 for r < 1. For fixed s €]0, T, we set

gn(s,y) = u(s,y)h ('—?) , meEN,

and
Uy (t, 1) ::/ I'(t,x;s,9)gn(s,y)dy, (t,x) €]s, T[xRYN, n € N.
RN
Since y — gn(s,y) is a continuous bounded function on R, we have

{La(u—un) <0, in ]s, T[xRY,
(u—un)(s,-) = (u—gn)(s,-) >0, on R¥.
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Moreover, since g, is bounded and has compact support, we have

lim sup un(t,x) | =0.
lz]l—o0 \ te]s,T|

Therefore we can apply Lemma 6.14 to the function u — u,, to get
u(t, ) 2/ L(t,x:8,9)gn(s,y)dy >0,  (t,z) €]s, T[xRY,
RN

for every n € N. Since g, is an increasing sequence of non-negative functions
tending to u, the claim follows by taking the limit in n and using Beppo Levi
theorem.

We point out that in the proof we used only one part of Hypothesis 6.5,
precisely the fact that L, has a non-negative fundamental solution. a

Now we prove a corollary of Theorem 6.21 that, as we shall see in Section
7.3.2, has a very interesting financial interpretation.

Corollary 6.22 Let Hypotheses 6.1, 6.3 and 6.5 hold and suppose that a = 0.
If u € CY2(87) is a function that is bounded from below such that Lu < 0,
then (6.31) holds, i.e.

/RN I'(t,z;s,9)u(s,y)dy < u(t,x), (6.32)

for every x € RN and 0 < s <t <T.

Proof. Let ug = iglf u. Then, since a = 0, we have L(u — up) = Lu < 0 and,
T

by Theorem 6.21,
[ Tt (u(s,) = w) dy < u(t. )~ wo
RN

The claim follows from (6.27). 0

Proof (of Theorem 6.20). In view of the linearity of the problem, it suffices
to prove that, if Lyu = 0 and w(0,-) = 0, then w = 0. Let us consider an
arbitrary point (o, xo) € St and let us show that u(tp,29) = 0. To this end,
we use the classical Green’s identity:

N N
vLou —ullv = Z@wi Z (C” v@xju u@Ijv) — %@;Jcij) + uwb;
=1 j=1
— O¢(uw),
(6.33)
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that follows directly from the definition of adjoint operator L¥ in (6.12). We
use identity (6.33) with

U(Say) = hR(y)F(t07x0;S7y)7 (S7y) € Stgfsa

where e > 0 and hr € C%(RY) is such that

1, if ly—=xo| <R,

and

1 2
Vhal < o uhal < o GG =1 N. (6.34)

Let Bg denote the ball in RY with center z and radius R: integrating Green’s
identity over the domain ]0, ¢y — [X B2, by the divergence theorem we get

to—e
Th = / / u(s, y) L (hi(y) T (to, zo; ,)) dyds
0 JBer (6.35)

= / hr(y)I(to, z0;to — €,y)u(to — €, y)dy =: Ir..
Bar

Here we have used the fact that L,u = 0, 4(0,-) = 0 and some integral over
the boundary cancels since h is zero (with its derivatives) on the boundary of
Bspg.

Now, by condition (6.30) and by the estimate from above of I" in (6.10),
if € is small enough we have

I(to,zo3to — &, Ju(to —&,-) € L'(RY).

So, by the dominated convergence theorem,
R—o0

lim Ip. = / I'(to, wosto — €, y)ulto — €,y)dy. (6.36)
RN

On the other hand, since L*I(to,zo;-,) = 0 in |0, ¢y — €[x Bagr, we get

N

to—e Cii
tee= [ s X G (o004, nlo)
0 Bar\Br 5=

N
+20y, I (to, x0; $,y)0y, hr(y)) + bef(towo;&y)ayihﬁf(y) dyds,
im1

(6.37)

with bf in (6.13). Now we use estimates (6.34) on the derivatives of hg, the
estimate from above of I" in (6.10), estimate (6.11) of the first order derivatives
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of I' and the assumption of linear growth of b* and we obtain

to—e 1
el <const [ [ W s G,
0 0 = S JBar\Br

const [o¢ ly|?
< [T e Wy ldyds.
€ 0 Byr\Br

Therefore, by condition (6.30), if ¢ > 0 is small enough, we have

li =0.
Rgnoo JR7€ 0
In conclusion, gathering (6.35), (6.36) and the previous result, we get
/N I'(to, zo;to — &,y)ulto — &,y)dy = 0.
R

Taking the limit as ¢ — 07 we infer that u(to, zo) = 0. 0
We conclude the paragraph with the

Proof (of Theorem 6.19). If u is non-negative, it suffices to observe that
u verifies a condition analogous to (6.30) that can be obtained easily by using
the estimate from below of I" in (6.10) and by Theorem 6.21 that ensures that

/ I'(t,0;s,y)u(s,y)dy < 0.
]RN

If u is bounded from below, we can easily go back to the previous case by
a substitution v = u 4+ C: we observe that we can always perform a further
substitution v(¢,z) = e®'u(t, x), so it is not restrictive to assume a > 0. O
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Black-Scholes model

In this chapter we present some of the fundamental ideas of arbitrage pricing
in continuous time, illustrating Black-Scholes theory from a point of view that
is, as far as possible, elementary and close to the original ideas in the papers by
Merton [250], Black and Scholes [49]. In Chapter 10 the topic will be treated
in a more general fashion, fully exploiting martingale and PDEs theories.

In the Black-Scholes model the market consists of a non-risky asset, a bond
B and of a risky asset, a stock S. The bond price verifies the equation

dBt = ’I"Btdt

where 7 is the short-term (or locally risk-free) interest rate, assumed to be
a constant. Therefore the bond follows a deterministic dynamics: if we set
By =1, then

By = e, (7.1)

The price of the risky asset is a geometric Brownian motion, verifying the
equation
dSt == uStdt + O'Stth, (72)

where p € R is the average rate of return and o € R+ is the volatility. In (7.2),
(Wt)teo,m) is a real Brownian motion on the probability space (§2, F, P, (F;)).
Recall that the explicit expression of the solution of (7.2) is

S, = SpeWit (=T )t (7.3)

In what follows we study FEuropean-style derivatives in a Markovian setting
and we consider payoffs of the form F(Sr), where T is the maturity and F
is a function defined on R-y. The most important example is the European
Call option with strike K and maturity 7"

F(St) = (Sp — K)™.

In Section 7.6 we study Asian-style derivatives, whose payoff depends on an
average of the prices of the underlying asset.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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7.1 Self-financing strategies

Let us introduce some definitions that extend in a natural way the concepts
analyzed in discrete time in Chapter 2.

Definition 7.1 A strategy (or portfolio) is a stochastic process (a, B¢) where
a €L, and 3 € LL .. The value of the portfolio (v, 3) is the stochastic process

defined by
‘/t(a,ﬁ) = OZtSt + ﬂtBt. (74)

As usual «,( are to be interpreted as the amount of S and B held by the
investor in the portfolio: let us point out that short-selling is allowed, so «, 3
can take negative values. Where there is no risk of ambiguity, we simply write
V instead of V(8

Intuitively the assumption that «, 3 have to be progressively measurable!
describes the fact that the investment strategy depends only on the amount
of information available at that moment.

Definition 7.2 A strategy (o, 8;) is self-financing if
avi*? = a,dS, + B,dB, (7.5)
holds, that is
t t
vt = ylef) 4 / asdSs + / BsdBs. (7.6)
0 0

We observe that, since S is a continuous and adapted stochastic process we
have that S € L2 and then the stochastic integral in (7.6) is well defined.

loc
Equation (7.5) is the continuous version? of the relation

AV = aAS + BAB

valid for discrete self-financing portfolios (cf. (2.7)): from a purely intuitive
point of view, this expresses the fact that the instantaneous variation of the
value of the portfolio is caused uniquely by the changes of the prices of the
assets, and not by injecting or withdrawing funds from outside.

Let us now take a strategy (o, 3) and define the discounted prices

gt = G_TtSt, ‘Z = e_rtVt.

! In the discrete case we considered predictable strategies: for the sake of simplicity,
in the continuous case we prefer to assume the condition (not really restrictive
indeed) that «, 3 are progressively measurable.

2 If a, 3 are Itd processes, by the two-dimensional Ité formula we have

v, " = 0,dS, + BidB; + Sidoy + BidpBy + d{ov, Sy,
and the condition that («, 3) is self-financing is equivalent to

Stdat —+ Btdﬂt =+ d<0&, S>t = 0
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The following proposition gives a remarkable characterization of the self-
financing condition.

Proposition 7.3 A strategy (o, 3) is self-financing if and only if
AV " = a,dS,
holds, that is
ve?) = yled) 4 /0 t a,dS,. (7.7)

Remark 7.4 Thanks to (7.7), the value of a self-financing strategy (c, B) is

determined uniquely by its initial value Vo(a’ﬁ) and by the process o that is the
amount of risky stock held by the investor in the portfolio. The integral in
(7.7) equals the difference between the final and initial discounted values and
therefore represents the gain of the strategy.

When an initial value V; € R and a process « € ILIQOC are given, we can
construct a strategy («, ) by putting

- Vi — oSy

t
Vi=W +/0 asdssa B B,

By construction («, 3) is a self-financing strategy with initial value Vo(a’ﬂ) =
Vo. In other words, a self-financing strategy can be indifferently set by speci-
fying the processes «, 8 or the initial value V{j and the process a. a

Proof (of Proposition 7.3). Given a strategy («, 3), we obviously have

BB, = VP _ q,8,. (7.8)

Furthermore
dS; = —re "t Sy dt + et dS, (7.9)
= (i — 1) Sydt + oS dW;. (7.10)

Then (a, ) is self-financing if and only if
dV P = VDt 4 emrtay,
= VPt + e (0, dS, + B1dB,) =
(since dB; = rBidt and by (7.8))

= VP dt 4 et (atdSt + VDt — mtStdt)
— e_TtO[t (dSt — ’f’Stdt) =

(by (7.9)) .
= a;dS;,

and this concludes the proof. |
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Remark 7.5 Thanks to (7.10), condition (7.7) takes the more explicit form

t t
V;(Ot,ﬁ) — ‘/O(Q’ﬁ) + (/’(‘ _ ,r.)/ OCSSSdS + 0'/ aSSSdWS' (711)
0 0

This extends the result, proved in discrete time, according to which, if the
discounted prices of the assets are martingales, then also the self-financing
discounted portfolios built upon those assets are martingales.

Indeed, by (7.10), the discounted price S; of the underlying asset is a
martingale? if and only if 4 = 7 in (7.2). Under this condition S is a martingale
and we have B _

dSt = O'Stth; (712)

moreover (7.11) becomes
AV = 58,0, f(t, S)dWr,

and therefore V(@8) is a (local) martingale. O

7.2 Markovian strategies and Black-Scholes equation
Definition 7.6 A strategy (a, Bt) is Markovian if

o = aft, St), B = B(t, S)
where o, B are functions in CH2([0, T[xRxg).

The value of a Markovian strategy (a, 3) is a function of time and of the price
of the underlying asset:

F(t,Sy) =V, P = a(t,8,)S, + B(t, Sp)e™,  te[0,T], (7.13)

with £ € C12([0, T[xRso).
We point out that the function f in (7.13) is uniquely determined by (o, 3):
if
VO = f(t,5) = g(t, S) .
then f = g in [0, T[xRsq. This follows from Proposition A.59 and by the fact
that S; has a strictly positive (log-normal) density on Rsg. As we are going
to use Proposition A.59 often, for the reader’s convenience we recall it here:

3 In this chapter we are not going to introduce the concept of EMM: we defer
the rigorous justification of the steps above to Chapter 10, where we prove the
existence of a probability measure equivalent to P, under which the dynamics of
S is given by (7.2) with pu =r.
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Proposition 7.7 Let X be a random variable with strictly positive density
on H € B. If g € mAB is such that g(X) = 0 a.s. (¢(X) > 0 a.s.) then
g =0 (g >0) almost everywhere with respect to Lebesgue measure on H. In
particular if g is continuous then g =0 (g >0) on H.

The following result characterizes the self-financing condition of a Marko-
vian portfolio in differential terms.

Theorem 7.8 Suppose that («, ) is a Markovian strategy and set f(t,S;) =

V;(O"B). The following two conditions are equivalent:

i) («,B) is self-financing;
it) f is solution to the partial differential equation

o%s?
2
with (t,s) € [0, T[xRsq, and we have that*

a(t,s) = 0sf(t,s). (7.15)

Oss f(t,s) + 1805 f(t,s) + O f(t,s) =1f(t,s), (7.14)

Equation (7.14) is called Black-Scholes partial differential equation.

We have already seen Black-Scholes partial differential equation in Section
2.3.6 as the asymptotic version of the binomial algorithm.

Theorem 7.8 relates the self-financing condition to a partial differential
equation whose coefficients depend on the volatility o of the risky asset and
on the risk-free rate r, but they do not depend on the average rate of return
1. After examining the elementary example of Section 1.2 and the discrete
case in Section 2.1, this fact should not come as a surprise: as we have already
pointed out, arbitrage pricing does not depend on the subjective estimate of
the future value of the risky asset.

We remark that, for a portfolio based upon formulas (7.14)-(7.15), a inac-
curate estimate of the parameters o and r of the model might affect the self-
financing property of the strategy: for example, this means that if we change
those parameters in itinere (e.g. after a re-calibration of the model), then the
strategy might need more funds than the ones earmarked at the initial time.
This might cause unwanted effects when we are using that strategy to hedge
a derivative: if we modify the value of o, hedging might actually cost more
than expected at the beginning on the basis of the self-financing condition.

Proof (of Theorem 7.8). [i) = ii)] By the self-financing condition and
expression (7.2) of S, we have that

AV = (S, + BurBy)dt + 040 S,V (7.16)

4 Let us recall that the expression of the process B can be obtained from a and
Vo(a”@), by Remark 7.4. More precisely:

Blt,s) =e " (f(t,5) = s0:f(t,5)).
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Then, by the It formula and putting for brevity f = f(¢,S;), we have that

d‘/;(aﬁ) = Oy fdt + 05 fdSy + %aesfd<s>t
o (7.17)
= <8tf + uS:0sf + 2taesf) dt + 05,05 fdWs.

From the uniqueness of the representation of an Ité process (cf. Proposition
5.3) we infer the equality of the terms in d¢ and dW; in (7.16) and (7.17).
Then, concerning the terms in dWy, since ¢S is strictly positive, we obtain

y = Béf(t, St) a.s. (718)

hence, by Proposition 7.7, we get relation (7.15).
Concerning now the terms in dt, by (7.18), we get

0.252
8tf + Ttassf — TﬁtBt =0 a.s. (719)

Substituting the expression
OtBy = f — Si0sf as.
in (7.19), we get

2q2
01,5 + 180,115 + ToL0, (1,S) ~rf(1,8) =0, as (7.20)

therefore, by Proposition 7.7, f is a solution of the deterministic differential

equation (7.14).

[i7) = ¢)] By the Itd formula, we have

202
i

2

AV P = af(t, S,) = 0, f(t, S:)dS; + (” Dss (£, 5:) + Ouf (¢, St)> dt =

(since, by assumption, f is a solution of equation (7.14))
= 0, f(t,S)dSy + r(f(t,S¢) — S:0s f(t, St))dt = (7.21)
(by (7.15) and since dB; = rB.dt)
= o dS; + B d By,
therefore (o, 3) is self-financing. O

There is an intimate connection between the Black-Scholes equation (7.14)
and the heat differential equation. To see this, let us consider the change of
variables

t=T—r, s=e%",
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and let us put
u(r,z) = e (T — 7,e7%), T€[0,T], v €R, (7.22)
where a, b are constants to be chosen appropriately afterwards. We obtain
Oru = e (bf — 0, f),
Dyt = ™7 (af + o€, f), (7.23)
Dot = €2%+bT (a2f +2a0e°%0,f + 02e7 0, f + 0262”883f) ,

hence
2.2 2 2
%a:rmu—aﬂru = (:’aI-H)T (028 assf + (O'(l + %) Sasf + 8tf + (% - b) f) =

(if f solves (7.14))

:e““bT((Ua—i-U;—r) 883f+(%2—b+7‘)f>-

We have thus proved the following result.
Proposition 7.9 Let

2
r oo a
_r_oc R 24

a=_ -, b=r+ 5 (7.24)
Then the function f is a solution of the Black-Scholes equation (7.14) in
[0, T[xRxq if and only if the function u = u(r,x) defined by (7.22) satisfies
the heat equation

1

Ozt = O-u =0, in ]0,7] x R. (7.25)

7.3 Pricing

Let us consider a European derivative with payoff F(St). As in the discrete
case, the arbitrage price equals by definition the value of a replicating stra-
tegy. In order to guarantee the well-posedness of such a definition, we ought
to prove that there exists at least one replicating strategy (problem of mar-
ket completeness) and that, if there exist more than one, all the replicating
strategies have the same value (problem of absence of arbitrage).

In analytic terms, completeness and absence of arbitrage in the Black-
Scholes model correspond to the problem of existence and uniqueness of the
solution of a Cauchy problem for the heat equation. To make use of the results
on differential equations, it is necessary to impose some conditions on the
payoff function F' (to ensure the existence of a solution) and narrow the family
of admissible replicating strategies to a class of uniqueness for the Cauchy
problem (to guarantee the uniqueness of the solution).
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Hypothesis 7.10 The function F is locally integrable on R~, lower bounded
and there exist two positive constants a < 1 and C such that

F(s) < CelllossI™ g e R, (7.26)
Condition (7.26) is not really restrictive: the function

ellog )™ — gllogs)* s> 1,

grows, as s — —00, less than an exponential but more rapidly than any
polynomial function. This allows us to deal with the majority (if not all) of
European-style derivatives actually traded on the markets.

Condition (7.26) is connected to the existence results of Appendix A.3: if
we put p(z) = F(e®), we obtain that ¢ is lower bounded and we have that

p(z) < el R,

that is a condition analogous to (A.57).

Definition 7.11 A strategy (o, 3) is admissible if it is bounded from below,
i.e. there exists a constant C' such that

v >c,  te0,T), as (7.27)

We denote by A the family of Markovian, self-financing admissible strategies.

The financial interpretation of (7.27) is that investment strategies which re-
quest unlimited debt are not allowed. This condition is indeed realistic because
banks or control institutions generally impose a limit to the investor’s losses.
We comment further on condition (7.27) in Section 7.3.2.

If £(,8;) = V,'*? with (a, ) € A, then by Proposition 7.7, f is lower
bounded so it belongs to the uniqueness class for the parabolic Cauchy pro-
blem studied in Section 6.3.

Definition 7.12 A Furopean derivative F(St) is replicable if there exists an
admissible portfolio (o, 3) € A such that®

vi*?) = F(S7) in Rsy. (7.28)
We say that (o, B) is a replicating portfolio for F(St).

5 Let f(t, ) = V;'*? If F is a continuous function, then (7.28) simply has to be
understood in the pointwise sense: the limit
lim t,s) = F(s),
(t,8)—(T,5) F(t.s) (%)
exists for every 5§ > 0, which is tantamount to saying that f, defined on [0, T[xRxq
can be prolonged by continuity on [0,7] X Rso and, by Proposition 7.7, f(T,-) =
F. More generally, if F' is locally integrable then (7.28) is to be understood in the
L. sense, cf. Section A.3.3.
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The following theorem is the central result in Black-Scholes theory and gives
the definition of arbitrage price of a derivative.

Theorem 7.13 The Black-Scholes market model is complete and arbitrage-
free, this meaning that every Furopean derivative F(St), with F verifying
Hypothesis 7.10, is replicable in a unique way. Indeed there exists a unique
strategy h = (o, B¢) € A replicating F(St), that is given by

ar = 05 f(t,S), Br = e (f(t, 1) = Si0s f (L, 51)) (7.29)
where f is the lower bounded solution of the Cauchy problem
2.2
T 0uf4rsOf +0f =vf, in [0,T[xRs,  (7.30)
f(T,s) = F(s), s € Rso. (7.31)

By definition, f(t,S;) = Vt(a’ﬁ) is the arbitrage price of F(Srt).
Proof. A strategy («, ) replicates F(Sr) if and only if:

i) (a, ) is Markovian and admissible, so there exists f € C12([0, T[xRxq)
that is lower bounded and such that Vt(a’ﬁ) = f(t, St);

ii) (a, B) is self-financing, so, by Theorem 7.8, f is solution of the differential
equation (7.30), the first of formulas (7.29) holds and the second one follows
by Remark 7.4;

iii) (e, B) is replicating so, by Proposition 7.7, f verifies the final condition
(7.31).

To prove that («, ) exists and is unique, let us transform problem (7.30)-

(7.31) into a parabolic Cauchy problem in order to apply the results of exis-

tence and uniqueness of Appendices A.3 and 6.3. If we put

u(r,z) = e "D (T — 7,6%), T€[0,T], z €R, (7.32)

we obtain that f is solution of (7.30)-(7.31) if and only if u is solution of the
Cauchy problem

2 (Dt — Dpt) + 10pu — Dyu = 0, (t,z) €]0,T] x R,

u(0,2) = e "TF(e®), xeR.
By Hypothesis 7.10 and the lower boundedness of F', Theorem A.77 guarantees
the existence of a lower bounded solution u. Furthermore, by Theorem 6.19,
u is the only solution belonging to the class of lower bounded functions. Thus

the existence of a replicating strategy and its uniqueness within the class of
lower bounded functions follow immediately. O

Remark 7.14 The admissibility condition (7.27) can be replaced by the
growth condition

f(t,s)| < CeCloes)* s e Rog, t €]0,TT.

In this case, by the uniqueness of the solution guaranteed by Theorem 6.15,
we obtain a result that is analogous to that of Theorem 7.13. a
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Corollary 7.15 (Black-Scholes Formula)  Let us assume the Black-
Scholes dynamics for the underlying asset

dSt = MStdt + O'Stth,

and let us denote by r the short rate. Then, if K is the strike price and T is
the maturity, the following formulas for the price of European Call and Put
options hold:

e = S ®(dy) — Ke " T Dd(dy),
pe = Ke " T 0B(—dy) — S, B(—dy),

1 [ e
P(xr) = — e zd
@ ==
is the standard normal distribution function and
2
. log (5) + (r+ %) (T 1)
' ovT —1 ’
log (%) + (r— %) (T —¥)
ovT —1 '
Proof. The claim follows directly from the representation formula for the
solution of the Cauchy problem (7.30)-(7.31) for the Black-Scholes equation

(or for the heat equation, by transformation (7.22)). We are not going through
the explicit computations, already carried out in Section 2.3.5. |

(7.33)

where

dQZdl—U T—t=

7.3.1 Dividends and time-dependent parameters

Black-Scholes pricing formulas can be adapted to treat the case of a dividend-
paying underlying asset. The simplest case is when we suppose a continuous
payment with constant return g, i.e. we suppose that in the amount of time dt
the dividend paid equals ¢Sidt. In this case, since dividends paid by a stock
reduce its value, we assume the following dynamics

dSt = (/.L — q)Stdt + O'Stth. (734)
Moreover we modify the self-financing condition (7.5) as follows:
av*? = o, (dS, + qS,dt) + B,dB,. (7.35)

Then, proceeding as in the proof of Theorem 7.8, we obtain® the modified
Black-Scholes equation

o?s?

T assf(ta S) + (T - Q)sasf(ta 8) + 8tf(t7 S) = ’I“f(t, S)

 On one hand, inserting (7.34) in the self-financing condition (7.35), we get (cf.
(7.16))
d‘/t(aﬁ) = (at,uSt =+ ,gtT’Bt)dt + OétO'Stth;
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Therefore the Black-Scholes formula for the price of a dividend-paying Call
option becomes

= e_(I(T_t)St@(Jl) — Ke_T(T_t)SP(czl —oVvT —1t),

where

B log(%)—i—(r—q—k%z)(T—t)
= VT =1 |
We can obtain explicit pricing formulas even when the parameters 7, i, o
are time-dependent deterministic functions:
dBt = ’I"(t)Btdt,

Let us suppose, for example, that r, u,o are continuous functions on [0, T].
Then we have

By = efot r(s)ds’

Sy = Spexp (/Ota(s)dWS - /Ot (u(S) - @) ds> .

Following the same arguments we obtain formulas that are analogous to the
ones of Corollary 7.15 where the terms (T — t) and ov/T — ¢ must be re-
placed by

/tT r(s)ds and (/fT 02(5)d3>% ,

respectively.

7.3.2 Admissibility and absence of arbitrage

In this section, we comment on the concept of admissibility of a strategy and
on its relation with the absence of arbitrage in the Black-Scholes model.

As in the discrete case, an arbitrage is an investment strategy that requires
a null initial investment, with nearly no risk, and that has the possibility of
taking a future positive value. Let us formalize the concept into the following:

on the other hand, by the Ito formula for V;fa’ﬂ) = f(t,St), we have (cf. (7.17))
0?57
dm(a:ﬁ) = (atf + (,u — q)Stasf +4 Ttassf) dt +4 aStBSdet,

and the modified Black-Scholes equation follows from the uniqueness of the re-
presentation of an Itd process.
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Definition 7.16 An arbitrage is a self-financing strategy («, 3) whose value
V(@B s such that

i) Vo(a”g) =0 a.s.;
and there exists to €10,T| such that

ii) Vi >0 as.;

iii) P(V7 > 0) > 0.

In the binomial model the absence of arbitrage strategies is guaranteed under
straightforward and intuitive assumptions summed up by condition (2.39)
which expresses a relation between the return of the risky asset and the return
of the bond. On the contrary, in the continuous-time models, the problem of
existence of arbitrage opportunities is a very delicate matter. Indeed, without
imposing an admissibility condition, even in the Black-Scholes market model
it is possible to construct arbitrage portfolios, i.e. one can invest in the assets
(7.1) and (7.3) with a self-financing strategy of null initial cost to obtain a
risk-free profit.

In very loose terms”, the idea is to use a strategy consisting in doubling the
bet in case of loss: this is well known in gambling games. To fix the ideas, let
us consider a coin-tossing game in which if we bet $1 we get $2 if the outcome
is head, and nothing if the outcome is tail. In this case the doubling strategy
consists in beginning by betting $1 and keeping on gambling, doubling the
bet every time one loses and then stopping the first time one wins. Thus,
if one wins for the first time at the n-th game, the amount of money gained
equals the difference between what one invested and lost in the game, precisely
1+2+4+---4+27"1 and what one won at the n-th game, i.e. 2™: so, the
total wealth is positive and equals $1. In this way one is sure to win if the
following two conditions hold:

i) one can gamble an infinite number of times;
ii) one has at his/her disposal an infinite wealth.

In a discrete market with finite horizon, these strategies are automatically
ruled out by i), cf. Proposition 2.12. In a continuous-time market, even in the
case of finite horizon, it is necessary to impose some restrictions in order to
rule out the “doubling strategies” which constitute an arbitrage opportunity:
this motivates the admissibility condition of Definition 7.11.

The choice of the family of admissible strategies must be made in a suitable
way: we have to be careful not to choose a family that is too wide (this might
generate arbitrage opportunities), but also not too narrow (this to guarantee
a certain degree of freedom in building replicating portfolios that make the
market complete). In the literature different notions of admissibility can be
found, not all of them being expressed in an explicit fashion: Definition 7.11
looks a simple and intuitive choice. In order to compare our notion of ad-

" For further details we refer, for example, to Steele [315], Chapter 14.
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missibility to other ones, let us prove now that the class A does not contain
arbitrage opportunities.

Proposition 7.17 (No-arbitrage principle) The family A does not con-
tain arbitrage strategies.

Proof. The claim follows directly from Corollary 6.22. By contradiction, let
(o, B) € A, with Vt(a’ﬁ) = f(t,S;), be an arbitrage strategy: then f is lower
bounded, it is a solution of the PDE (7.30) and we have that f(0,Sy) = 0.
Moreover there exist ¢ €]0,7] and § > 0 such that f(¢,5) > 0 and f(¢,s) >0
for every s > 0. To use Corollary 6.22, let us transform the Black-Scholes
PDE into a parabolic equation by substitution(7.32)

u(r,z) = e "I (T — 7,¢%), T€0,T], = €R.

Then w is a solution of the equation

2

> (Opzt — Ozu) + r0pu — Oru = 0, (7.36)

and Corollary 6.22 leads to the absurd inequality:

0= £(0, 50) = u(T, log So) > / (T, 10g S0, T — t, y)ulT — t,y)dy > 0,
R

since u(T — t,y) = e "' f(t,e¥) > 0 for every y € R, u(T — t,logs) =
e "t f(t,5) > 0 and I'(T,-,T,-), the fundamental solution of (7.36) is strictly
positive when 7 < T. O

7.3.3 Black-Scholes analysis: heuristic approaches

We present now some alternative ways to obtain the Black-Scholes equation
(7.14). The following approaches are heuristic; their good point is that they
are intuitive, while their flaw is they are not completely rigorous. Furthermore
they share the fact that they assume the no-arbitrage principle as a starting
point, rather than a result: we will comment briefly on this at the end of the
section, in Remark 7.18. What follows is informal and not rigorous.

In the first approach, we aim at pricing a derivative H with maturity T
assuming that its price at a time ¢ in the form H; = f(¢, S;) with f € C12. To
this end we consider a self-financing portfolio («, #) and impose the replication
condition
Vq(ﬂu’ﬁ) = Hp as.

By the no-arbitrage principle, it must also hold that
Vt(a’ﬂ) =H; as.

for ¢ < T. Proceeding as in the proof of Theorem 7.8, we impose that the
stochastic differentials dV;(a’ﬁ) and df (t,S;) are equal to get (7.14) and the
hedging strategy (7.15). The result thus obtained is formally identical: never-
theless in this way one could erroneously think that the Black-Scholes equa-
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tion (7.14) is a consequence of the absence of arbitrage opportunities rather
than a characterization of the self-financing condition.

Concerning the second approach, let us consider the point of view of a bank
that sells an option and wants to determine a hedging strategy by investing in
the underlying asset. Let us consider a portfolio consisting of a certain amount
of the risky asset Sy and of a short position on a derivative with payoff F'(St)
whose price, at the time ¢, is denoted by f(¢, S¢):

V(t,S;) = oSy — f(t,S).

In order to determine oy, we want to render V neutral with respect to the
variation of S, or, in other terms, V immune to the variation of the price of
the underlying asset by imposing the condition

sV (t,s) =0.
By the equality V (¢, s) = ays — f(t,s), we get®
ar = 05 f(t, 5), (7.37)

and this is commonly known as the Delta hedging’ strategy. By the self-
financing condition we have

dV(t, St) = o dSy — df(tv St)

= ((Oét — 05 f)pSe — O f —

O'QSE
2

8ssf> dt + (ar — 05 f)o SedWr.

Therefore the choice (7.37) wipes out the riskiness of V', represented by the
term in dW;, and cancels out also the term containing the return p of the
underlying asset. Summing up we get

0282
2

dv(t,Sy) = — (@f + Bssf> dt. (7.38)
Now since the dynamics of V' is deterministic, by the no-arbitrage principle V
must have the same return of the non-risky asset:

AV (L, S,) = rV (¢, 8,)dt = r (S0, f — f)dt, (7.39)

so, equating formulas (7.38) and (7.39) we obtain again the Black-Scholes
equation.

The idea that an option can be used to hedge risk is very intuitive and
many arbitrage pricing techniques are based upon such arguments.

8 The attentive reader may wonder why, even though «; is function of s, dsa; does
not appear in the equation.
% In common terminology, the derivative O, f is usually called Delta.
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Remark 7.18 In the approaches we have just presented, the no-arbitrage
principle, under different forms, is assumed as a hypothesis in the Black-
Scholes model: this certainly helps intuition, but a rigorous justification of
this might be hard to find. Indeed we have seen that in the Black-Scholes
model arbitrage strategies actually exist, albeit they are pathological. In our
presentation, as in other more probabilistic ones based upon the notion of
EMM, all the theory is built upon the self-financing condition: in this ap-
proach, the absence of arbitrage opportunities is the natural consequence of
the self-financing property. Intuitively this corresponds to the fact that if a
strategy is adapted and self-financing, then it cannot reasonably generate a
risk-free profit greater than the bond: in other words it cannot be an arbitrage
opportunity. O

7.3.4 Market price of risk

Let us go back to the ideas of Section 1.2.4 and analyze the pricing and hedging
of a derivative whose underlying asset is not exchanged on the market, sup-
posing though that another derivative on the same underlying asset is traded.
A noteworthy case is that of a derivative on the temperature: even though
it is possible to construct a probabilistic model for the value of temperature,
it is not possible to build up a replicating strategy that uses the underlying
asset since this cannot be bought or sold; consequently we cannot exploit the
argument of Theorem 7.13. Nevertheless, if on the market there already exists
an option on the temperature, we can try to price and hedge a new derivative
by means of that option.

Let us assume that the underlying asset follows the geometric Brownian
motion dynamics

dSt = /J,Stdt + O'Stth, (740)

even if the following results do not depend on the particular model considered.
We suppose that a derivative on S is exchanged on the market, and that its
price at time ¢ is known. We assume also that this price can be written as
f(t,Sy), with f € C12([0, T[xRs). Finally we request that

9 f#0

and that suitable assumptions hold in order to guarantee the existence and the
uniqueness of the solution of the Cauchy problem (7.49)-(7.50) below. Since
we go through such conditions in Chapters 6 and 8, it seems unnecessary to
recall them here.

By the It6 formula, we have

df(t,St) = Lf(t,St)dt+UStagf(t,St)th, (741)

where
2.2

Lf(t,s) = 8, f(t, ) + usds f(t, 5) + %ass (t,9). (7.42)
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Our aim is to price a derivative with payoff G(S7). We imitate the technique
of the preceding sections and build a Markovian self-financing portfolio on the
bond and on the derivative f. We denote by g¢(t, .S;) the value of such portfolio
at time ¢,
g(taSt) = O(tf(t,St) +5tBt7 (743)
and we impose the self-financing condition:
dg(t,St) = oudf(t,S¢) + BrdBy =
(by (7.41))
= (atLf(t,St) + 1B Bt) dt + 0 S05 f (¢, S¢)dWy =

(since By By = g(t, St) — e f(t, St))

= (O(t(Lf(t’ St) - rf(tv St)) + Irg(t7 St)) dt + atUStasf(ta St)th (744)

Now we compare this expression with the stochastic differential obtained by
the It6 formula

dg(t, St) = Lg(t, St)dt + oStﬁsg(t, St)th

By the uniqueness of the representation for an It6 process, we deduce the
equality of the terms in dt and dW;:

asg(ta St)
=" 7.45
TS (749
ar(Lf(t,5:) = rf(t,5:)) = Lg(t, St) — rg(t, S1)- (7.46)
Substituting (7.45) into (7.46) and reordering the terms, we obtain
Lg(t, S) —rg(t, St) = 0SiAf0sg(t, St), (7.47)

where

Lf(t,S) —rf(t,5)
JStasf(ta St) .

Finally, substituting expression (7.42) for L into (7.47), we have proved the

following generalization of Theorems 7.8 and 7.13.

Theorem 7.19 The portfolio given by (7.43) is self-financing if and only if
g is solution of the differential equation

Ar=Ap(t,S) = (7.48)

2.2
T 0ug(ts) + (1= oAf(t,5)) s0.g(t,5) + Duglt,5) = rg(t, ), (7.49)

with (t,s) € [0,T[xRsq. Under the assumptions of Theorem 7.13, there exists
a unique replicating portfolio for G(St), given by the solution of the Cauchy
problem for (7.49) with terminal condition

9(T,s) = G(s), s € Ry (7.50)

The value (g(t,St)),<r is the arbitrage price of G(St) and the replicating
strategy is given by (7.45).
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By Theorem 7.19, the replication of an option (and then the completeness
of the market) is guaranteed even if the underlying asset is not exchanged,
provided that on the market there exists another derivative on the same un-
derlying asset.

If the underlying asset is traded, we can choose f(t,s) = s: in this case we
simply denote A = Ay and we observe that

(7.51)

Substituting (7.51) into (7.49) we obtain exactly the Black-Scholes equation.

The coefficient A represents the difference between the expected return p
and the riskless return r, that the investors request when buying S in order to
take the risk represented by the volatility ¢. For this very reason, A is usually
called market price of risk and it measures the investors’ propensity to risk.

The market price of risk can be determined by the underlying asset (if
exchanged) or by another derivative. Let us point out that (7.41) can be
rewritten in a formally similar way to (7.40):

df(t7 St) = Mff(t, St)dt + Uff(ta St)tha

where
_ Lf(ta St) or = O-Stasf(t, St)
M TS A
so, by definition (7.48), we have that
_ kT
Af = vt

in analogy to (7.51).

We can now interpret the Black-Scholes differential equation (7.49) in a
remarkable way: it is indeed equivalent to relation (7.47) that can be simply
rewritten as

A=Ay (7.52)

To put this in another terms, the self-financing condition imposes that g and f
share the same market price of risk. And since f and g are generic derivatives,
(7.52) is actually a market consistency condition:

o all the traded assets (or self-financing strategies) must have the same mar-
ket price of risk.

In the case of an incomplete market, where the only exchanged asset is the
bond, the theoretical prices of the derivatives must verify a Black-Scholes
equation similar to (7.49) but in this case the value of the market price of risk
is not known, i.e. the coefficient Ay that appears in the differential equation
is unknown. Therefore the arbitrage price of an option is not unique, just as
we have seen in the discrete case for the trinomial model.
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7.4 Hedging

From a theoretical point of view the Delta-hedging strategy (7.37) guarantees
a perfect replication of the payoff. So there would be no need to further study
the hedging problem. However, in practice the Black-Scholes model poses some
problems: first of all, the strategy (7.29) requires a continuous rebalancing
of the portfolio, and this is not always possible or convenient, for example
because of transition costs. Secondly, the Black-Scholes model is commonly
considered too simple to describe the market realistically: the main issue lies
in the hypothesis of constant volatility that appears to be definitely too strong
if compared with actual data (see Paragraph 7.5).

The good point of the Black-Scholes model is that it yields explicit formu-
las for plain vanilla options. Furthermore, even though it has been severely
criticized, it is still the reference model. At a first glance this might seem
paradoxical but, as we are going to explain, it is not totally groundless.

The rest of the paragraph is structured as follows: in Section 7.4.1 we in-
troduce the so-called sensitivities or Greeks: they are the derivatives of the
Black-Scholes price with respect to the risk factors, i.e. the price of the un-
derlying and the parameters of the model. In Section 7.4.2 we analyze the
robustness of the Black-Scholes model, i.e. the effects its use might cause if
it is not the “correct” model. In Section 7.4.3 we use the Greeks to get more
effective hedging strategies than the mere Delta-hedging.

7.4.1 The Greeks

In the Black-Scholes model the value of a strategy is a function of several
variables: the price of the underlying asset, the time to maturity and the
parameters of the model, the volatility ¢ and the short-term rate r. From a
practical point of view it is useful to be able to evaluate the sensitivity of the
portfolio with respect to the variation of these factors: this means that we are
able to estimate, for example, how the value of the portfolio behaves when
we are getting closer to maturity or we are varying the risk-free rate or the
volatility. The natural sensitivity indicators are the partial derivatives of the
value of the portfolio with respect to the corresponding risk factors (price of
the underlying asset, volatility, etc...). A Greek letter is commonly associated
to every partial derivative, and for this reason these sensitivity measurements
are usually called the Greeks.

Notation 7.20 We denote by f(t, s, o,r) the value of a self-financing Marko-
vian strategy in the Black-Scholes model, as a function of time t, of the price
of the underlying s, of the volatility o and of the short-term rate r. We put:

A=0f (Delta),
I' =04 f (Gamma),
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V=20,f (Vega),
0= arf (Rho),
O =0f (Theta).

We say that a strategy is neutral with respect to one of the risk factors if
the corresponding Greek is null, i.e. if the value of the portfolio is insensitive
to the variation of such factor. For example, the Delta-hedging strategy is
constructed in such a way that the portfolio becomes neutral to the Delta, i.e.
insensitive with respect to the variation of the price of the underlying.

We can get an explicit expression for the Greeks of European Put and Call
options, just by differentiating the Black-Scholes formula: some computations
must be carried out, but with a little bit of shrewdness they are not particu-
larly involved. In what follows we treat in detail only the call-option case. For
the reader’s convenience we recall the expression of the price at the time ¢ of
a European Call with strike K and maturity T :

et = g(da),
where g is the function defined by
o(d) = Sip(d) - Ke T Vp(d —oVT =), deR
and
B(z) = L/ Lay - log (§¢) + (r+ %) -1
vam o oVT —t

The graph of the price of a Call option is shown in Figure 7.1. Sometimes it
is convenient to use the following notation:

log (5¢) + (r - "72) (T —t)
oT —t ’

and the following lemma serves the purpose of simplifying the computations.

dgidlfo' T—t=

Lemma 7.21 We have
g(d) =0, (7.53)

and consequently
8@ (dy) = Ke " T (dy — /T —1). (7.54)

Proof. It is enough to observe that
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0.5

Fig. 7.1. Graph of the price of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility o = 0.3, risk-free rate r = 0.05

Then
_d? _(d=—ovT=D)?
"(d) = S e _ Ke—T(T—t);
g(d) ! V2 V2T
_ ez (St . Ke—(?“—l-”;)(T—t)edm/T—t)
V2T
and the claim follows immediately by the definition of d;. ]

Let us examine now every single Greek of a Call option.
Delta: we have
A =d(dy). (7.55)
Indeed
A= 0,c = Sp(dl) + g’(dl)asdl,

and (7.55) follows by (7.53).
The graph of the Delta is shown in Figure 7.2. Let us point out that the
Delta of the Call option is positive and less than one, because @ is such:

0< A<,
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0.5

Fig. 7.2. Graph of the Delta of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility o = 0.3, risk-free rate r = 0.05

Since the Delta has to be interpreted as the amount of risky asset to be
held in the Delta-hedging portfolio, this corresponds to the intuitive fact
that we must buy the underlying asset in order to hedge a short position
on a Call option. Let us note that

lim dy = —o0, lim d; = +oo,
s—0t s——+o00

so the following asymptotic expressions for price and Delta hold:

lim ¢, =0, lim ¢ = +o0,
s—0+ §——+00
lim A =0, lim A=1.
s—0+ s§——+00
Gamma: we have ,
o %)
O'St T—t

Indeed
I'=0,A =& (d1)dsd;.

The graph of the Gamma is shown in Figure 7.3. We note that the Gamma
of a Call option is positive and therefore the price and the Delta are a
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0.5

Fig. 7.3. Graph of the Gamma of a European Call option in the Black-Scholes
model, as a function of the price of the underlying asset (0.5 < S < 1.5) and of time
to maturity (0.05 < T' < 1). The parameters are: strike K = 1, volatility o = 0.3,
risk-free rate r = 0.05

convex function and an increasing function with respect to the underlying
asset, respectively. Furthermore we have that

lim I'= lim I'=0.

s—0T s§—+00

Vega: we have

V - St \/T - t@l(dl)
Indeed

V = 0p¢; = g'(d1)0pdy + Ke " T (dy — o/T —t)VT —t =

(by (7.53))
= Ke "I (d) —o/T —t)VT —t =

(by (7.54))
= ST — 18 (dy).

The graph of the Vega is shown in Figure 7.4. The Vega is positive, so
the price of a Call option is a strictly increasing function of the volatility
(cf. Figure 7.5). Intuitively this is due to the fact that an option is a
contract giving a right, not an obligation: therefore one takes advantage of
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0.5

Fig. 7.4. Graph of the Vega of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility o = 0.3, risk-free rate r = 0.05

the greater riskiness of the underlying asset. It also follows that the price
of the option is an invertible function of the volatility: in other terms, all
other parameters being fixed, there is a unique value of the volatility that,
plugged into the Black-Scholes formula, produces a given option price.
This value is called implied volatility.

We show that

+
lim ¢; = (St - Ke_T(T_t)) : lim ¢ =8, (7.56)

o—0 o— 400

and so N
(St — Ke_T(T_t)) <c < St,

in accordance with the estimates of Corollary 1.2, based upon arbitrage
arguments. Indeed if we put

S,
A =log (Kt) +r(T —1t),
we have that A = 0 if and only if

St = KG_T(T_t),
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vol

Fig. 7.5. Graph of the price of a European Call option in the Black-Scholes model,
as a function of the price of the volatility (0 < ¢ < 5) and of time to maturity
(0.05 < T < 1). The parameters are: S = K = 1, risk-free rate r = 0.05

and furthermore

400, if A >0,
lim dy =<0, if A=0,
oc—0+
—00, if A < 0.
So
, Sy — Ke(T=t), if A >0,
lim ¢; = .
o—0t 07 if A S O,
and this proves the first limit in (7.56). Then
lim dy = 400, lim dy = —o0,
g—-+00 o—-+00

so that also the second limit in (7.56) follows easily.
Theta: we have

O'St

O =—rKe "I Yd(dy) —
rhe () = 5=

& (dy). (7.57)

Indeed
O = ey = g'(d1)edy — rKe " T 0D(dy) — Ke " T (dy) ——
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0.5

Fig. 7.6. Graph of the Theta of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset (0.5 < S < 1.5) and of time to
maturity (0.05 < T' < 1). The parameters are: strike K = 1, volatility o = 0.3,
risk-free rate r = 0.05

and (7.57) follows from (7.54). The graph of the Theta is shown in Figure
7.6. Let us note that © < 0 so the price of a Call option decreases when
we get close to maturity: intuitively this is due to the lowering of the effect
of the volatility, that is indeed multiplied in the expression for the price

by a /T —t factor.

Rho: we have

0=K(T —t)e " T d(dy).

Indeed

0=0¢; = g'(d)dydy + K(T —t)e " T=d(dy),

and the claim follows from (7.53). The graph of the Rho is shown in Figure
7.7. Let us note that p > 0 and so the price of a Call option increases when
the risk-free rate does so: this is due to the fact that if the Call is exercised,
this imposes the payment of the strike K whose discounted value decreases
as r increases.
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0.5

Fig. 7.7. Graph of the Rho of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility o = 0.3, risk-free rate r = 0.05

Let us mention without proof the expressions for the Greeks of a European
Put option:

A = 8spt = Q—S(dl) — 1,

P'(dy)
I'= 6ss = T4 A
bt O'St T—1t
V = (9gpt = St\/T — t@’(dl),
oS
O =0y =rKe "I (1 — &(dy)) — ﬁt_t@’(dl),

o= O = K(T — )T (@(dy) — 1)

We point out that the Delta of a Put option is negative. Gamma and Vega have
the same expression for both Put and Call options: in particular, the Vega is
positive and so also the price of the Put option increases when the volatility
does so. The Theta of a Put option may assume positive and negative values.
The Rho of the Put is negative.



7.4 Hedging 245
7.4.2 Robustness of the model
We assume the Black-Scholes dynamics for the underlying asset
dS; = pSidt + oS dW; (7.58)

where u, 0 are constant parameters and we denote by r the short-term rate.
Then the price f(t,S;) of an option with payoff F'(St) is given by the solution
of the Cauchy problem

02s?
Tassf+rsasf+8tf =rf, in [0, T[xR>o, (7.59)
F(T,s) = F(s), s € Rso. (7.60)

Moreover
f(t,S) = Sy + BBy

is the value of the Delta-hedging strategy given by a; = 95 f(t,S¢) and §; =
f(t7 St) - Stgsf(t7 St)

Let us suppose now that the actual dynamics of the underlying asset is
different from (7.58) and are described by an It6 process of the form

dgt = ,U,tgtdt + Utgtth, (761)

with pu; € Ll and oy € LZ .. On the basis of the final condition (7.60), the
Delta-hedging strategy replicates the payoff F(St) on any trajectory of the
underlying asset. However the fact that the actual dynamics (7.61) is different
from the Black-Scholes’ ones causes the loss of the self-financing property: in
practice, this means that hedging has a different cost (possibly greater) with

respect to the Black-Scholes price f(0,S5p). Indeed we have

232
h

df (t, S;) = 05 fdS; + (&tf + Tassf> dt =

(by (7.59))

2 _2\a2
= 0.fdS; + (rf — 18,0, f — “’%ﬁaﬁf) dt

(0~ o1)3;

=05 fdS; + (f — S:0sf) dB; — 5 L, fdt. (7.62)

More explicitly we have the following integral expression of the payoff
F(ST) = f(T, ST) =hL+1L+1;

where
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is the Black-Scholes price,

T B B T B B B
12:/ 8Sf(t,St)dSt+/ (£(t,5)) — Si0.f(t, 51)) dB,
0 0

is the gain of the Delta-hedging strategy,

T
L= / (02 — 02)520,, £ (t, 5,)dt (7.63)
0

is a correction term due to the erroneous specification of the model for the
underlying asset. Clearly Is = 0 if ¢ = 04 and only in that case the strategy
is self-financing.

We remark that I3 depends only on the misspecification of the volatility
term and not on the drift. More precisely I3, which also represents the replica-
tion error of the Delta-hedging strategy, depends on the Vega which measures
the convexity of the Black-Scholes price as a function of the price of the un-
derlying asset. In particular the error is small if Jssf is small. Furthermore,
if the price is convex, Js5f > 0, as in the case of Call and Put options, then
the Black-Scholes strategy (whose final value is I + I5) super-replicates the
derivative for any dynamics of the underlying asset as long as we choose the
volatility sufficiently large, o > oy, since in this case I3 < 0.

In this sense the Black-Scholes model is robust and, if used with all due
precautions, can be effectively employed to hedge derivatives. Let us note
finally that there exist options whose price is not a convex function of the
underlying asset and so the Vega is not necessarily positive: this is the case of
the digital option, corresponding to the Delta of a Call (see Figure 7.2), and
also of some barrier options. Consequently in some cases in order to super-
replicate it may be necessary to decrease the volatility.

7.4.3 Gamma and Vega-hedging

The Greeks can be used to determine more efficient hedging strategies than
Delta-hedging. Here we consider the replication problem from a practical point
of view: it is clear that theoretically the Delta-hedging approach offers perfect
replication; nevertheless we have already mentioned some substantial pro-
blems we might have to face:

e the strategies are discrete and there are transition costs;
e the volatility is not constant.

As an example, in this section we consider the Delta-Gamma and Delta- Vega-
hedging strategies whose purpose is to reduce the replication error due to the
fact that rebalancing is not continuous in the first case and to the variation
of the volatility in the second.

The reason why it is necessary to rebalance the Black-Scholes hedging
portfolio is that the Delta changes as the underlying price varies. So, to mini-
mize the number of times we have to rebalance (and the relative costs, of
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course), it seems natural to create a strategy that is neutral not only to the
Delta but also to the Gamma. With all due adjustments, the procedure is simi-
lar to the Delta-hedging one in Section 7.3.3. Nevertheless in order to impose
two neutrality conditions, one unknown is no longer sufficient, so it is necessary
to build a portfolio with three assets. The situation is analogous to that of an
incomplete market (cf. Section 2.4.1): indeed if continuous rebalancing is not
allowed, not all derivatives are replicable and the Black-Scholes model loses
its completeness property.

Let us suppose that we have sold a derivative f(¢,S;) and we try to hedge
the short position by investing on the underlying asset and on another deriva-
tive g(t,St): the typical situation is when f is an exotic derivative and g is
a plain vanilla option and we suppose it is exchanged on the market. We
consider

V(t7 St) = —f<t, St) + atSt + ﬁtg<t7 St>7 (764)

and we determine «a, 3 by imposing the neutrality conditions
0sV =0, 0ssV = 0.

We get the system of equations

*89]0 + oy + /Btasg = 07
_aSSf + 5:&3359 = O,

hence we deduce the Delta-Gamma-hedging strategy

Ooo 6, 51) _ 0.t
Oug(t,S) T Osf(t, St) dsg(t, S).

6t - assg(ta St)

We use a similar argument to reduce the uncertainty risk of the vola-
tility parameter. The main assumption of the Black-Scholes model is that
the volatility is constant, therefore the Delta-Vega-hedging strategy that we
present in what follows is, in a certain sense, “beyond” the model. In this
case also, the underlying asset is not sufficient and so we suppose there exists
a second derivative which is exchanged on the market. Let us consider the
portfolio (7.64) and let us impose the neutrality conditions

osV =0, 0,V =0.
We get the system of equations

—0sf + oy + ;059 = 0,
=05 f + 40,5 + 1059 = 0,

and then we can obtain easily the hedging strategy by observing that 0,5; =
St(Wt — O't)
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7.5 Implied volatility

In the Black-Scholes model the price of a European Call option is a function
of the form
CBS = CBS (Ua Sa K7 T7 T)

where ¢ is the volatility, S is the current price of the underlying asset, K is
the strike, T' is the maturity and r is the short-term rate. Actually the price
can also be expressed in the form

S
C’BS = SQD (07 EaTa T’> 5

where @ is a function whose expression can be easily deduced from the Black-
Scholes formula (7.33). The number m = % is usually called “moneyness” of
the option: if % > 1, we say that that the Call option is “in the money”, since
we are in a situation of potential profit; if % < 1, the Call option is “out of
the money” and has null intrinsic value; finally, if % =1lie S = K, we say
that the option is “at the money”.

Of all the parameters determining the Black-Scholes price, the volatility o
is the only one that is not directly observable. We recall that

o~ Cgs (0,5 K,T,7)

is a strictly increasing function and therefore invertible: having fixed all the
other parameters, a Black-Scholes price of the option corresponds to every
value of o; conversely, a unique value of the volatility ¢* is associated to every
value C* on the interval ]0, S| (the interval to which the price must belong by
arbitrage arguments). We set

o =VI(C*,S,K,T,r),
where o* is the unique value of the volatility parameter such that
C*=Cgs (", S, K,T,r).

The function
C*— VI(C*,S,K,T,r)

is called implied volatility function.

The first problem when we price an option in the Black-Scholes model is
the choice of the parameter o that, as we have already said, is not directly
observable. The first idea could be to use a value of o obtained from an esti-
mate on the historical data on the underlying asset, i.e. the so-called historical
volatility. Actually, the most widespread and simple approach is that of using
directly, where it is available, the implied volatility of the market: we see,
however, that this approach is not free from problems.
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The concept of implied volatility is so important and widespread that, in
financial markets, the plain vanilla options are commonly quoted in terms of
implied volatility, rather than explicitly by giving their price. As a matter of
fact, using the implied volatility is convenient for various reasons. First of all,
since the Put and Call prices are increasing functions of the volatility, the
quotation in terms of the implied volatility immediately gives the idea of the
“cost” of the option. Analogously, using the implied volatility makes it easy
to compare the prices of options on the same asset, but with different strikes
and maturities.

For fixed S and r, and given a family of prices

(Crli=1,...M} (7.65)

where C} denotes the price of the Call with strike K and maturity T¢, the
implied volatility surface relative to (7.65) is the graph of the function

(K',T") — VI(C;,S, K", T"r).
If we assume the Black-Scholes dynamics for the underlying asset
dSt = /JStdt + O'Stth

and (C]gs)i ¢ 1s a family of Black-Scholes prices relative to the strikes K ‘
and maturities T*, then the corresponding implied volatilities must obviously

coincide: 4 o
VI (C]%S,S,Kl,Tz,r) =o¢ foranyiel.

In other terms, the implied volatility surface relative to the prices obtained by
the Black-Scholes model is flat and coincides with the graph of the function
that is constant and equal to o.

On the contrary, for an empirical implied volatility surface, inferred from
quoted prices in real markets, the result is generally quite different: it is well
known that the market prices of European options on the same underlying
asset have implied volatilities that vary with strike and maturity. By way of
example, in Figure 7.8 we depict the implied volatility surface of options on
the London FTSE index on March 31st 2006.

Typically every section, with T" fixed, of the implied volatility surface takes
a particular form that is usually called “smile” (in the case of Figure 7.9) or
“skew” (in the case of Figure 7.8). Generally we can say that market quotation
tends to give more value (greater implied volatility) to the extreme cases “in”
or “out of the money”. This reflects that some situations in the market are
perceived as more risky, in particular the case of extreme falls or rises of the
quotations of the underlying asset.

Also the dependence on T, the time to maturity, is significant in the ana-
lysis of the implied volatility: this is called the term-structure of the implied
volatility. Typically when we get close to maturity (7' — 07), we see that the
smile or the skew become more marked.
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Fig. 7.8. Implied-volatility surface of options on the FTSE index on March 31st
2006

Other characteristic features make definitely different the implied volatility
surface of the market from the constant Black-Scholes volatility: for example,
in Figure 7.9 we show the dependence of the implied volatility of options on
the S&P500 index, with respect to the so-called “deviation from trend” of
the underlying asset, defined as the difference between the current price and
a weighted mean of historical prices. Intuitively this parameter indicates if
there have been sudden large movements of the quotation of the underlying
asset.

Finally we note that the implied volatility depends also on time in absolute
terms: indeed, it is well known that the shape of the implied volatility surface
on the S&P500 index has significantly changed from the beginning of the
eighties until today. The market crash of 19 October 1987 may be taken as
the date marking the end of flat volatility surfaces.

This also reflects the fact that, though based on the same mathematical
and probabilistic tools, the modeling of financial and, for instance, physical
phenomena are essentially different: indeed, the financial dynamics strictly
depends on the behaviour and beliefs of investors and therefore, differently
from the general laws in physics, may vary drastically over time.

The analysis of the implied volatility surface makes it evident that the
Black-Scholes model is not realistic: more precisely, we could say that nowa-
days Black-Scholes is the language of the market (since prices are quoted in
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smiles for options on the S&P500 index are grouped for different values of the
deviation, as indicated on top of each box

terms of implied volatility), but usually it is not the model really used by
investors to price and hedge derivatives. Indeed the use of the Black-Scholes
model poses some not merely theoretical problem: for instance, let us suppose
that, despite all the evidence against the Black-Scholes model, we wish to use
it anyway. Then we have seen that we have to face the problem of the choice
of the volatility parameter for the model. If we use the historical volatility, we
might get quotations that are “out of the market”, especially when compared
with those obtained from the market-volatility surface in the extreme “in”
and “out of money” regions. On the other hand, if we want to use the implied
volatility, we have to face the problem of choosing one value among all the
values given by the market, since the volatility surface is not “flat”. Evidently,
if our goal is to price and hedge a plain vanilla option, with strike, say, K and
maturity, say, T, the most natural idea is to use the implied volatility corre-
sponding to (K,T'). But the problem does not seem to be easily solvable if we
are interested in the pricing and hedging of an exotic derivative: for example,
if the derivative does not have a unique maturity (e.g. a Bermudan option)
or if a fixed strike does not appear in the payoff (e.g., an Asian option with
floating strike).

These problems make it necessary to introduce more sophisticated models
than the Black-Scholes one, that can be calibrated in such a way that it is
possible to price plain vanilla options in accordance with the implied volatility
surface of the market. In this way such models can give prices to exotic deriva-
tives that are consistent with the market Call and Put prices. This result is
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not particularly difficult and can be obtained by various models with non-
constant volatility such as those in Chapter 10.5. A second goal that poses
many more delicate questions and is still a research topic consists in finding
a model that gives the “best” solution to the hedging problem and that is
stable with respect to perturbations of the value of the parameters involved
(see for instance Schoutens, Simons, and Tistaert [302] and Cont [75]).

7.6 Asian options

An Asian option is a derivative whose payoff depends on an average of the
prices of the underlying asset. This kind of derivative is quite often used,
for example in the currencies or commodities markets: one of the reasons to
introduce this derivative is to limit speculation on plain vanilla options. Indeed
it is known that the European Call and Put option prices close to maturity
can be influenced by the investors through manipulations on the underlying
asset.

Asian options can be classified by the payoff function and by the particular
average that is used. As usual we assume that the underlying asset follows a
geometric Brownian motion S verifying equation (7.2) and we denote by M;
the value of the average at time ¢: for an Asian option with arithmetic average
we have

A t
M, = Tt with A; = / S, dr; (7.66)
0
for an Asian option with geometric average we have
Gy t
M, =e7 with Gy = / log (S;) dr. (7.67)
0

Even though arithmetic Asian options are more commonly traded in real
markets, in the literature geometric Asian options have been widely studied
because they are more tractable from a theoretical point of view and, un-
der suitable conditions, they can be used to approximate the corresponding
arithmetic version.

Concerning the payoff, the most common versions are the Asian Call with
fized strike K

F(Sp, Mp) = (Mp — K)*,

the Asian Call with floating strike
F(Sr,Mr) = (Sr — Mr)",

and the corresponding Asian Puts.

Formally, the pricing and hedging problems for Asian options have a lot
in common with their standard European counterparts: the main difference
is that an Asian option depends not only on the spot price of the underlying
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asset but also on its entire trajectory. Nevertheless, as already mentioned in
the discrete case in Section 2.3.3, it is possible to preserve the Markovian
property of the model by using a technique now standard: this consists in
augmenting the space by introducing an additional state variable related to
the average process A, in (7.66) or Gy in (7.67).

7.6.1 Arithmetic average

In order to make the previous ideas precise, let us examine first the arithmetic
average case. We say that (o, B)e(o,r] is a Markovian portfolio if

ay = alt, St, Ay), B = B(t, S, Ar), t€[0,77,

where «, 3 are functions in C12([0, T[xRxg x R~0) N C([0,7] x R x R~p),
and we denote by

f(t7 Stht) = OétSt + BtBh te [OaT]7
the corresponding value. The following result extends Theorems 7.8 and 7.13:

Theorem 7.22 The following conditions are equivalent:

i) (au, Be)iejor) 5 self-financing, i.e. we have
df (t, St, A) = cudS; + BidBy;

it) f is a solution of the partial differential equation

o2s?

- Oss f(t,8,a) + 1805 f(t,8,a) + 50.f(t,s,a) + O f(t,8,a) =71f(t s, a),
(7.68)

for (t,s,a) € [0,T[xRsg x Rsq, and we have that
Oé(t, S, CL) = a.sf(t7 S, CL).

The arbitrage price f = f(t, S, A¢) of an Asian arithmetic option with payoff
function F is the solution of the Cauchy problem for equation (7.68) with final
datum

f(T,S,a):F(S,%), s,a € Rxp.

For example, in the case of a fixed strike Asian Call, the final condition for
equation (7.68) is

+
f(T,s,a) = (% - K) , s,a € Ryg. (7.69)
For the floating strike Asian Call, the final condition becomes

f(T,s,a) = (s - %)+, s,a € Ryo. (7.70)
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The proof of Theorem 7.22 is formally analogous to the ones of Theorems
7.8 and 7.13. Let us observe that equation (7.68) cannot be transformed into
a parabolic equation by a change of variables as in the European case. In
particular the results of existence and uniqueness for the Cauchy problem of
Appendix A.3 and Section 6.2 are not sufficient to prove the completeness
of the market and the existence and uniqueness of the arbitrage price: these
results have been recently proved, for a generic payoff function, by Barucci,
Polidoro and Vespri [33].

Equation (7.68) is degenerate parabolic, because the matrix of the second-
order part of the equation is singular and only positive semi-definite: indeed,
in the standard notation (A.45) of Appendix A.3, the matrix C corresponding

to (7.68) is
0?52 0
= (0"3)

and has rank one for every (s,a) € Rso X Rsg. This does not have to come
as a surprise: equation (7.68) was deduced by using the It6 formula and the
second-order derivative appearing in it is “produced” by the Brownian motion
of the process S. The average A brings an additional state variable in, thus
augmenting the dimension of the problem, setting it in R3, but it does not
bring a new Brownian motion in (nor second-order derivative with respect to
the variable a).

In some particular cases there exists a suitable transformation to take
back the problem to two dimensions. In the floating strike case, Ingersoll [178§]
suggests the change of variable z = ¢: if we put

f(t,s,a) = su (t, g) (7.71)

we have
2

Ouf = sOu,  Oof =u— %axu, s f = Z—gau Oaf = Oyu.

So f solves the Cauchy problem (7.68)-(7.70) if and only if the function u =
u(t, z) defined in (7.71) is a solution of the Cauchy problem in R?

"229”2 oot + (1 — r2)0pu + Opu = 0, te[0,T], z >0,
u(T,x):(l—%)Jr, x> 0.

More generally, transformation (7.71) allows to reduce the dimension of the
problem in case the payoff is a homogeneous function of degree one, that is

F(s,a):sF(l,g), s,a > 0.

For the fixed strike Asian option, Rogers and Shi [291] suggest the change

of variable u
U
P

xTr =
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If we put
a_ K
f(t,s,a) = su|t, (7.72)
s
we have
2
L - K a _ i
Osf=u— T Oz, Oss f = Qarrua Ouf = azu.
s s T

So f solves the Cauchy problem (7.68)-(7.69) if and only if the function v =
u(t, ) defined in (7.72) is a solution of the Cauchy problem in R?

L Opat+ (& — ) Oy + Opu = 0, te[0,T], = €R,
w(T,z) =at, z €R.

Note that the reduction of the dimension of the problem is possible only in
particular cases and assuming the Black-Scholes dynamics for the underlying
asset.

7.6.2 Geometric average

We consider a geometric average Asian option: in this case the value f =
f(t,s,g) of the replicating portfolio is function of ¢, S; and Gy in (7.67). Fur-
thermore a result analogous to Theorem 7.22 holds, where (7.68) is replaced
by the differential equation

o2s?

—5 Ossf(t,5,9) + 7505 f(t,5,9) + (log 5)0y f(t,5,9) + Oc f(t,5,9) = rf(t, 5,9),
(7.73)
with (¢,s,9) € [0,T[xRso x R.
Similarly to Proposition 7.9, we change the variables by putting
t=T—r, s=e%7, g = oy,
and
u(r,z,y) = e HT — 1,7 0y),  TE[0,T], m,yeR,  (7.74)

where a,b are constants to be determined appropriately later. Let us recall
formulas (7.23) and also that

_ _ax+bt .
Oyu=ce o0y f;

it follows that

%amu + z0yu — Oru =
2.2 2 2
eaa:erT (0—28 assf + <0a+ 02> sasf —+ (logs)agf + atf + (042 — b) f> =
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(if f solves (7.73))

= (cra—ka;—r)s@sf%—(a;—b—l-r) I

This proves the following result.

Proposition 7.23 By choosing the constants a and b as in (7.24), the fun-
ction f is a solution of the equation (7.73) in [0, T[XRsq X R if and only if
the function u = u(r,x,y) defined in (7.74) satisfies the equation

1

§0mu + 20yu — O;u =0, in ]0,7] x R?. (7.75)
(7.75) is a degenerate parabolic equation, called Kolmogorov equation which
will be studied in Section 9.5 and whose fundamental solution will be con-
structed explicitly in Example 9.53.
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Parabolic PDEs with variable coefficients:
existence

The Black-Scholes model is based upon the results of existence and uniqueness
for parabolic equations with constant coefficients, in particular for the heat
equation. The study of more sophisticated diffusion models requires analogous
results for differential operators with variable coefficients.

In this chapter we consider a parabolic operator of the form

N N
1
Lu=3 >, it 2  bidu = o= Do (81)
1,j= =

where (t,7) is an element of R x RY and (c;;) is a symmetric matrix. We
suppose that the coefficients ¢;; = ¢;;(¢t,x), b; = b;(t,x) and a = a(t,x) are
bounded and Hélder continuous functions. As already noted in Chapter 6,
these assumptions are less general than those introduced in the study of the
uniqueness problem.

We aim at studying on one hand the existence and the properties of the
fundamental solution of L and on the other hand the free-boundary obstacle
problem. The first issue is deeply connected to the solvability of the Cauchy
problem and therefore to the pricing and hedging of European options. The
second topic, as we had pointed out already in Section 2.5.5, has to deal with
the study of American-style derivatives: in this setting, the obstacle function
plays the part of the payoff of the option.

A thorough treatment of these topics is definitely beyond the scope of the
present book: these central subjects in the theory of partial differential equa-
tions are studied in several classical monographs such as Friedman’s [139],
[141], Ladyzhenskaya, Ural’tseva and Solonnikov’s [222], Oleinik and Rad-
kevi¢’s [274], Lieberman’s [238] and Evans’ [124].

Section 8.1 describes in general terms the construction of the fundamental
solution by the so-called parametriz method introduced by E. E. Levi in [236].
In Section 8.2, using some known a priori estimates for the solutions of L in
Holder and Sobolev spaces, we give a detailed proof of the existence of strong
solutions to the obstacle problem.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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8.1 Cauchy problem and fundamental solution

We suppose that the operator L in (8.1) is uniformly parabolic, i.e. the fol-
lowing condition holds:

Hypothesis 8.1 There exists a positive constant \ such that

N
AR < Y cyta)sil S MR, teR, xEeRY. (82)

i,5=1

The prototype for the class of uniformly parabolic operators is the heat opera-
tor with constant coefficients, that has the identity matrix as (c;;).

In the theory of parabolic equations, it is natural to give the time variable
t “double weight” with respect to the space variables z. In order to make this
concept rigorous, we define the parabolic Holder spaces.

Definition 8.2 Let a €]0,1] and O be a domain in RNTL. We denote by
C%(0) the space of bounded functions u on O, such that

|u(t,x)—u(s,y)| SC(‘t—S|% +‘m_y|a)7 (t,x),(s,y) 607 (83)
for some positive constant C. We define the norm

u(t, x) = uls,y)|

lullogoy) = sup |u(t,z)|+  sup o :
PO (t,@)e0 ) (smeo [t =82 + |z —y|*
(t,z)#(s,y)

Moreover we denote by CLT*(0) and C%7*(O) the Holder spaces defined by
the following norms:

N

lullcire oy = llulleg o) + > 0w ullcs o),
=1

N
lullezta oy = lullorreqoy + 3 1sa, ullep o) + I0eullcp o).
i,j=1

respectively. We write u € C’];,Ifc(O), k=0,1,2, ifu € Clli+a(M) for every
compact domain M such that M C O.

In the sequel we assume the following regularity condition on the coefficients
of the operator:

Hypothesis 8.3 The coefficients are bounded and Hélder continuous:
cij, by, a € CHRNT)

for some o €]0,1] and for every 1 <i,j < N.
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We now consider the Cauchy problem

Lu = i :=]0, T[x RN

U f7 m STN ]07 [X y (84)
u(0,-) = ¢, on RY,

where ¢ and f are given functions.

Definition 8.4 A classical solution of the Cauchy problem (8.4) is a function
u € CY2(S1) N C(St) that satisfies equations in (8.4) pointwise.

As we have already seen in the case of the heat equation, it is natural to
assume the following growth and regularity conditions:

Hypothesis 8.5 The functions ¢ and f are continuous and there exist some
positive constants c,y, with v < 2, such that

lp(z)] < ceclzl” reRY, (8.5)
|f(t,z)] < cel®l”, (t,z) € Sr. (8.6)

Moreover f is locally Holder continuous in x, uniformly in t, i.e. for every
compact set M in RN we have that

|f(t,x)—f(t,y)| SC(lx_ylga x,yeM, tE]O’T[’ (87)
with B €]0,1] and C > 0.
The main result of this section is the following:

Theorem 8.6 Under Hypotheses 8.1 and 8.3, the operator L has a fun-
damental solution I' = I'(t,x;s,y) that is a positive function, defined for
z,y € RY and t > s, such that for every o, f verifying Hypothesis 8.5, the
function u defined by

t

ut) = [ reasogedy - [ [ I fendids 55

RN 0 JRN
with (t,z) € Sy and by u(0,x) = p(x), is a classical solution of the Cauchy
problem (8.4).
Remark 8.7 By Theorem 6.15, the function u in (8.8) is the unique solution
of (8.4) such that
u(t,z)| < ce®, (t,2) € Sr,

with ¢ positive constant.
Conditions (8.5)-(8.6) can be weakened: we could take

lp(@)] < crexp(ealal?), @ eRY,
|f(t,$)| <a exp(cz|x|2), (t,lﬁ) € ST:

with ¢, ca positive constants. In such a case the solution u in (8.8) is defined
on St for T < ﬁ

Finally analogous results to those of Section A.3.3 hold if the initial datum
is a locally integrable function. a
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8.1.1 Levi’s parametrix method

The classical proof of Theorem 8.6 is rather lengthy and involved. Here we give
only the main ideas here and for further details we refer to Friedman [139].
For a more recent presentation and in a more general setting including also
non-uniform parabolic operators as those that arise in the pricing problem
for Asian options, we refer the reader to Di Francesco and Pascucci [94] and
Polidoro [283]. For a more practical presentation, we also refer to Corielli,
Foschi and Pascucci [77] where the parametrix method is used to obtain nume-
rical approximations of the fundamental solution (and so also of the price of
an option, expressed as the solution of a Cauchy problem) by an expansion of
fundamental solutions of parabolic operators with constant coefficients whose
explicit expression is known. In particular, analytical approximations of local
volatility models are provided. Recently Gatheral, Hsu, Laurence, Ouyang and
Wang [151] use a heat kernel expansion to obtain asymptotic approximations
for call prices and implied volatility in local-stochastic volatility models.

In what follows we assume Hypotheses 8.1, 8.3 and for the sake of brevity
we denote generic points in RV*! by z = (¢,7) and ¢ = (s,y) . Furthermore,
for fixed w € RV*!, we denote by

Ly(250)

the fundamental solution of the parabolic operator with constant coefficients

L, =

| —

N
Z Cij (w)amﬂw - ata
Q=1

obtained from L by freezing the second-order coefficients in w and by can-
celling the lower-order terms, with the exception of the time derivative, obvi-
ously. The explicit expression of I, is given in Section A.3.1.

The parametrix method is a constructive technique that allows us to prove
the existence and some estimates of the fundamental solution I'(¢,x;s,y) of
L: for the sake of simplicity, in the sequel we treat only the case s = 0. The
method is based mainly upon two ideas: the first is to approximate I'(z; () by
the so-called parametrix defined by

Z(2;¢) = I'e(#50).

The second idea is to suppose that the fundamental solution takes the form
(let us recall that ¢ = (0,y)):

0 =20+ [ [ Zaw6wode (8.9)

In order to find the unknown function G, we impose that I" is the solution to
the equation LI'(:;¢) = 0 in Ry x R: we wish to point out one more time,
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to make this totally transparent, that the operator L acts on the variable z
while the point ( is fixed. Then formally we obtain

0=LP(:0 = 120+ L | [ ZGuw)Glwiau

ZLZ(Z;CH/O /RN LZ(zw)G(w; ()dw — G(z;C),

hence
G(z;¢) = LZ (%) —l—/o /RN LZ(z;w)G(w; ¢)dw. (8.10)

Therefore G is a solution of an integral equation equivalent to a fixed-point
problem that can be solved by the method of successive approximations:

+oo

G(2:0) = > (LZ)k(20). (8.11)

k=1
where

(LZ)1(2;¢) = LZ(%;C),

L2tz = [ [ L2GoE2nwom,  ken

The previous ideas are formalized by the following (cf. Proposition 4.1 in [94]):

Theorem 8.8 There exists kg € N such that, for all T > 0 and ¢ = (0,y) €

RN*L the series
—+oo

> (LZ)k(5¢)

k=ko

converges uniformly on the strip Sp. Furthermore, the function G(-,() defined
by (8.11) is a solution to the integral equation (8.10) in Sy and I' in (8.9) is
a fundamental solution to L.

Remark 8.9 The fundamental solution can be constructed in a formally
analogous way also by using the backward parametrix defined by

Z(2,¢) = I'.(%C)- 0

8.1.2 Gaussian estimates and adjoint operator

By the parametrix method it is possible to obtain also some noteworthy esti-
mates of the fundamental solution and its derivatives in terms of the fun-
damental solution of the heat operator. These estimates play a basic role in
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several frameworks, for instance the uniqueness results of Section 6.3 and the
Feynman-Ka¢ representation Theorem 9.48. Given a positive constant A\, we

denote by
1 ik
I\(t,z) = 71\,67'2"*, t>0, z€RY,
(2mAt) 2

the fundamental solution, with pole at the origin, of the heat operator in
RN+

‘s
Theorem 8.10 Under Hypotheses 8.1 and 8.3, for all T,e > O there exists
a positive constant C, dependent only on €, \,T and on the Cg-norm of the
coefficients of the operator, such that

I'(t,z;s,y) < CInye(t— s,z —y), (8.12)

C
Op, L'(t,x;8,y)| + 19, ['(t,x;s, < I t—s,x—y), (8.13
01T (t:5.9)] 410, T (1 :5,9)] € = Do ) )
|8T1TJF(t,x,$,y)| + |atF(t7x757y)|+ (8 14)
)

c
|3yzygp(ta$75ay)| + \agF(t,x,s,yﬂ < t— SF>\+€(t — 5T = y)a (8 15

forallx,y e RNt €ls,s+T| andi,j=1,...,N.

Corollary 8.11 Under Hypotheses 8.1, 8.3 and 8.5, let u be the solution of
the problem (8.4) defined in (8.8). Then there exists a positive constant C
such that

lu(t,z)| < CeClol”, (8.16)
Cla|?
ortta)] < S (8.17)
Clz|?
|0 ult, )| + |Opu(t, )| < Ce (8.18)

t b
forall (t,z) € Sy andi,j=1,...,N.

Example 8.12 Without any further regularity assumption on the initial da-
tum ¢, we have d,,u(t,xz) = O (%) as t — 0T, consistently with estimate

(8.17). Indeed, for the 2-dimensional heat equation and initial datum ¢(z) =0
when z > 0 and ¢(z) =1 when z < O, we have

Dpu(0,1) =

b ()

(by the change of variable z = 72—1)

— e = — .
V21t J - V2rt =
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Hereafter we assume:

Hypothesis 8.13 The derivatives Oy, Cij, O, ;Cij, Oz, bi exist for all i,j =
1,...,N and they belong to the space CE(RN*1).

We recall the expression of the adjoint operator of L (cf. (6.12)), formally

defined by the equality
/ vLu = / ul*v.
RN+1 RN+1

We have
N N
L*u = 3 Z Cjk Oz, U + Z b 0z,u — a*u + Oyu
g k=1 j=1
where
N 1N N
bi = —bit Y ey A" =a—g D Dusciit Y Oub;.
j=1 ij=1 j=1

The parametrix method allows to prove also the following result.

Theorem 8.14 Under Hypotheses 8.1, 8.3, 8.5 and 8.13, there exists the
fundamental solution I'* of L* and we have

r“(t,x;T,y) = I'(T,y;t,x),

when z,y € RN andt < T.

8.2 Obstacle problem

We consider problem

{max{Lu, o—u} =0, in Sy =]0, T[xRY, (8.19)

u(0,) = ¢, on RV,

where L is a parabolic operator of the form (8.1) and ¢ is a locally Lipschitz-
continuous function which is also convex in a weak sense that will be made
precise later (cf. Hypothesis 8.19). In Chapter 11 we shall prove that the price
of an American option with payoff ¢ can be expressed in terms of the solution
u of (8.19).

The first equation in (8.19) asserts that u > ¢ so the strip St is divided
in two parts:

i) the exercise region where u = ;

ii) the continuation region where u > ¢ and Lu = 0 i.e. the price of the
derivative verifies a PDE that is analogous to the Black-Scholes differential
equation.
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Exercise region

| Free boundary
: -~

T t

Fig. 8.1. Exercise and continuation regions of an American Put option

Problem (8.19) is equivalent! to:

Lu <0, in Sy,
S .
= in Sr, (8.20)
(u—¢)Lu=0, in Sr,
u(0,2) = (0, ), x € RN,

This kind of problem is usually called obstacle problem. The solution is a
function such that:

i) it is super-solution? of L (i.e. Lu < 0);
ii) it is greater or equal to the obstacle, represented by the function ¢;

ii) it solves the equation Lu = 0 when u > ¢;
iv) it assumes the initial condition.

! We use here the equivalence

F(z) <0,
max{F(z),G(z)} =0 < G(z) <0,
F(z)G(z) =0.

2 The term “super-solution” comes from the classical theory of differential equa-
tions. More precisely, let O be a L-regular domain, that is a domain for which
the Dirichlet problem for L, with boundary datum wu, i.e.

{LH =0, inO, (8.21)

Hlso = u,

is solvable: in that case, we denote the solution by H = HS. Then, by the
maximum principle Lu < 0 if and only if u > HS for every L-regular domain O.
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Actually we can verify that u is the smallest super-solution greater than the
obstacle, by analogy with the notion of Snell envelope.

One of the main features of problem (8.19) is that, in general, it does not
admit a classical solution in C1»? even if ¢ is a smooth function. Therefore it is
necessary to introduce a weak formulation of the problem that may be based
upon different notions of generalized solution. A general theory of existence
and regularity has been developed by many authors since the seventies: in
the literature we can find techniques to prove the existence of solutions in the
variational sense (cf., for example, Bensoussan and Lions [42], Kinderlehrer
and Stampacchia [209]), in the strong sense (cf., for example, Friedman [140],
[141]) and, more recently, in the wiscosity sense (cf., for example, Barles [21],
Fleming and Soner [132], Varadhan [331]). For a general presentation of the
theory of optimal stopping and free-boundary problems, see also Peskir and
Shiryaev [278].

The variational approach to problem (8.20) consists of looking for the so-
lution as the minimum of a functional within a suitable space of functions
admitting first order weak derivatives (we refer to [141] for a general pre-
sentation of the topic). The notions of variational solution and, above all, of
viscosity solution are very weak and allow one to get existence results under
very general assumptions. Strong solutions, even though requiring more re-
strictive assumptions (that are indeed verified in all the practical cases) seem
to be preferable in the financial applications because of their better regu-
larity properties. For this reason, we aim at studying problem (8.19) in the
framework of the theory of strong solutions, following the presentation by Di
Francesco, Pascucci and Polidoro [95].

8.2.1 Strong solutions

We introduce the definition of parabolic Sobolev spaces used in the study of
the obstacle problem and we present some preliminary results to prove the
existence of a strong solution. The proof of such results can be found, for
example, in Lieberman [238]; in Appendix A.9 we briefly recall the elements
of the theory of weak derivatives and Sobolev spaces.

Definition 8.15 Let O be a domain in R x RN and 1 < p < co. We denote
by SP(O) the space of the functions w € LP(O) for which the weak derivatives

8Iiua 8ziwju, atu S LI)(O)

exist for every i,j =1,...,N. We write u € Sf, (O) if u € S?(Oy) for every
bounded domain O1 such that O1 C O.

In the definition of the parabolic Sobolev spaces, the time derivative has dou-
ble weight, in the sense that Definition 8.15 involves the second order spatial
derivatives of u but only the first order derivative in time. This is in line with
Definition 8.2 of parabolic Holder space.
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Now we state the parabolic version of the Sobolev-Morrey imbedding The-
orem A.168: ig the following statements Op, Oy denote bounded domains in
R x RY with O; C Os.

Theorem 8.16 (Sobolev-Morrey imbedding theorem) For every p >
N + 2 there exists a positive constant C, depending on p, N, Oy and Oo only,

such that N 42
lullcrreo,y < Cllullse0y), — a=1- PR

for all u € SP(O3).
Let us state now some a priori estimates

Theorem 8.17 (Interior estimates in SP) Let L be uniformly parabolic
(Hypothesis 8.1). For every p €]|1,00[ there exists a positive constant C, de-
pending on p, N, L,O1 and Oz only, such that

[ullsr 0,y < C (lullzroy) + 1 LullLr(oy)) »
for all uw € SP(O3).

Theorem 8.18 (Schauder interior estimates) Under Hypotheses 8.1 and
8.3, there exists a positive constant C, depending on N, L,O1 and Oy only,
such that

lullseon < € (suplul + Izulegion )
2

for all u € CEF*(0y).
We now lay down the hypotheses on the obstacle function:

Hypothesis 8.19 The function ¢ is continuous on S, locally Lipschitz-
continuous and for every bounded open set O, O C St, there exists a constant
C' such that

Y 6i&iOum,0 > ClEP in O, L€RY, (8.22)
ij=1
in the sense of distributions, i.e.

e, [ evuspzciet [ v

ij=1
for all ¢ € RN and ¢ € C§°(0O) with 1 > 0.

Condition (8.22) gives the local lower boundedness of the matrix of the second
order spatial distributional derivatives. We point out that any C? function
verifies Hypothesis 8.19: moreover any locally Lipschitz continuous and convex
function verifies Hypothesis 8.19, including the payoff functions of the Call
and Put options. On the contrary the function p(z) = —z™ does not satisfy
condition (8.22) since its second order distributional derivative is a Dirac’s
delta with negative sign that is “not bounded from below”.
We give now the definition of strong solution.
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Definition 8.20 A strong solution of problem (8.19) is a function u €
SE.(ST) N C(St) satisfying the equation

max{Lu, o —u} =0

almost everywhere in St and taking the initial datum pointwise. We say that
w is a strong super-solution of (8.19) if u € SL_(Sr) N C(St) and it verifies

<
{max{Lu,gp u} <0, a.e. in S, (8.23)

u(0,-) > ¢, on RV,
The main result of this section is the following:

Theorem 8.21 (Existence of a strong solution) Assume Hypotheses 8.1,
8.3 and 8.19. If there exists a strong super-solution @ to problem (8.19), then
there exists also a strong solution u such that u < u in Sp. Moreover u €
SP (St) for every p > 1 and consequently, by the imbedding Theorem 8.16,

loc

u € C}gjg‘c(ST) for all a €]0,1].
Theorem 8.21 will be proved in the following section.

Remark 8.22 In typical financial applications, the obstacle corresponds to
the option payoff i: for example, in the case of a Call option, N = 1 and

W(S) = (S—K)*, S>0.

In general, if v is a Lipschitz-continuous function, then there exists a positive
constant C' such that

(S <C1+5), §>0,
and by the transformation
@(t,%) = w(ta e:z:)’

we have that
lp(t,z)] < C(14e%), z€R.

In this case a super-solution of the obstacle problem is
a(t,x) = Ce™ (1 +¢%), te0,T], z €R,

where v is a suitable positive constant: indeed it is evident that @ > ¢ and
moreover, when N = 1,

1
Lu=Ce" (—a—r) + Ce"™* (2011 +b—a— 7) <0,

when v is large enough. a
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Remark 8.23 Theorem 8.21 gives an existence result: the uniqueness of the
strong solution in the class of non-rapidly increasing functions will be proved
in Section 9.4.5 as a consequence of the Feynman-Ka¢ representation formula
of Theorem 9.48. O

Remark 8.24 Concerning the regularity of the solution, we notice that on
the grounds of Definition 8.2 of the space C’}ng‘c, the solution w is a lo-
cally Holder continuous function, together with its first spatial derivatives
Oy Uy - . ., O, Of exponent « for any a €]0, 1[. Moreover, the strong solution
found in Theorem 8.21 is also a solution in the weak and viscosity senses
(for a proof of this claim see Di Francesco, Pascucci and Polidoro [95]). This
means that the other weaker notions on generalized solution gain the stronger

regularity properties of the strong solutions. |

Remark 8.25 Besides the regularity of the solution, another important the-
oretical issue is to determine the regularity of the free boundary, that is the
boundary of the exercise region. In the classical case of a single asset follow-
ing a geometric Brownian motion, that is the standard Black&Scholes [49]
and Merton [250] framework, the C'°°-smoothness of the free boundary of the
American put option was proved by Friedman [140] and van Moerbeke [330].
In the multi-dimensional Black&Scholes setting and for a quite general class
of convex payoffs, the smoothness of the free boundary problem has been
recently proved by Laurence and Salsa in [232]. In the case of variable co-
efficients, for the one-dimensional parabolic obstacle problem Blanchet [51],
Blanchet, Dolbeault and Monneau [50] prove that the free boundary is Holder
continuous. In more general settings, only qualitative properties of the free
boundary and of the exercise region are known: see for instance Jacka [182],
Myneni [262], Broadie and Detemple [64], Villeneuve [334]. The asymptotic
behaviour of the free boundary near maturity has been studied by Barles, Bur-
deau, Romano and Samscen [23], Lamberton [224], Lamberton and Villeneuve
[229], Shahgholian [306]. O

8.2.2 Penalization method

In this section we prove the existence and uniqueness of a strong solution of
the obstacle problem

{maX{Lu, p—u}l =0, in B(T) :=]0, T[x B, (8.24)

U|apB(T) =9,

where B is the Euclidean ball with radius R, R > 0 being fixed in the whole
section,
B ={z cR" | |z| < R},

and OpB(T') denotes the parabolic boundary of B(T'):
opB(T) :=0B(T)\ ({T} x B).
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We impose a condition analogous to Hypothesis 8.19 on the obstacle:

Hypothesis 8.26 The function o is Lipschitz continuous on B(T) and the
weak-convezity condition (8.22) holds with O = B(T). Furthermore g €
C(0pB(T)) and we have that g > .

We say that u € S._(B(T)) N C(B(T)) is a strong solution of problem (8.24)
if the differential equation is verified a.e. on B(T') and the boundary datum
is taken pointwise. The main result of this section is the following:

Theorem 8.27 Under the Hypotheses 8.1, 8.3 and 8.26 there exists a strong
solution u to the problem (8.24). Moreover, for every p > 1 and O such that
O C B(T), there exists a positive constant ¢, depending only on L,0, B(T),p
and on the L°°-norms of g and ¢, such that

lulls»0y < c. (8.25)

We prove Theorem 8.27 by using a classical penalization technique. Let us
consider a family (3:)cco,1] of functions in C*°(R): for every e > 0, . is a
bounded, increasing function with bounded first order derivative such that

B:(0) =0, B(s)<e,  5>0.
Moreover we require that

lin(l)ﬂg(s) = —o0, 5<0.

When 6 €]0,1[, we denote by ¢° the regularization of ¢ obtained with the
usual mollifiers (cf. Appendix A.9.4). Since g > ¢ on dpB(T), we have that

@ =g+ N>, in 9pB(T),

where A is the Lipschitz constant of .

L

Fig. 8.2. Penalization function j.
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Let us consider the penalized problem

{Lu—ﬂs(u—go‘s), in B(T),

" (8.26)
ulopB(T) = 9°,

and at a first stage we prove that it admits a classical solution. The proof
consists in determining the solution of the non-linear differential equation
internally and then in verifying that it is a continuous function up to the
boundary. To study the behaviour of the solution close to the boundary, we
use a standard tool in PDE theory, the barrier functions.

Definition 8.28 Given a point (t,x) € OpB(T), a barrier function for L at
(t,) is a function w € C*(V N B(T);R), where V is a neighborhood of (t, ),
such that

i) Lw<-1inVNB(T);
it) w>0im VNBT)\{(t2x)} and wt,x) =0.

Lemma 8.29 There exists a barrier function for L at any point (t,z) €

dpB(T).

Proof. If the point belongs to the basis of the cylinder B(T), i.e. it is of the
form (0, Z), then a barrier function is given by

w<t7;(;) = etllalloo (‘SC _ .’f|2 + Ct) 7

with C a sufficiently large constant.
If the point belongs to the lateral boundary of the cylinder, (¢,z) € 9pB(T)
with ¢ €]0, T'[, then we put

1 1
— tlalle - —
w(t,z) = Ce <|x —p RP> ,

where (f,7) is the centre of a sphere which is externally tangent to the cylinder
n (¢,7) and

1
R=(le—3P+(t—-D)%.
Then we have
N
Cp p+2 - ~
Lw = ——ellall= <— — Z cij(zy — ;) (xj — T5)

Rp+4 2
ij=1

—|——ZC“+R Zb P — T;) (t—f)R2> + (a — ||alloo)w

Since L is uniformly parabolic, the expression within the parentheses is nega-
tive when p is large enough and then Lw < 0: by taking a suitably large C,
we prove property i) and we conclude that w is a barrier function. |
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Theorem 8.30 Assume Hypotheses 8.1 and 8.3. If g € C (0pB(T)) and
h = h(z,u) € Lip (B(T) X R), then there exists a classical solution u €

CZr(B(T)) N C(B(T)) of the problem

{Luzh(~,u)7 in B(T),

ulopB(T) = 9-

Moreover there exists a positive constant ¢, depending on h and B(T') only,
such that
sup [uf < e (1+ lgllz=). (8.27)
B(T)
Proof. It is not restrictive to take a = 0 since, after regularizing it, we can
always include this term in the function h. We use a monotone iteration
technique based upon the maximum principle. Let us put

uo(z,t) = e (1+[|gllz=) — 1,

where c is a positive constant such that

[h(t,z,u)| < c(1+ |u)), (t,z,u) € B(T) x R.

Then we define recursively the sequence (u;),en by means of

(8.28)

LUj — )\’LL]' = h(‘,Uj_l) — )\Uj_l, in B(T),
Uj|apB(T) =9

where X is the Lipschitz constant of the function h. Here we use the classical
theory (cf. for example, Chapter 3 in Friedman [139l) which assures that the
linear problem (8.28) possesses a unique solution C5*(B(T)) N C(B(T)) for
every a €]0, 1].

Now we prove by induction that (u;) is a decreasing sequence. By the
maximum principle, Theorem 6.10, we have u; < wug: indeed (recalling that

a=0)
L(uy —up) — Mug —ug) = h(-,ug) — Lug = h(-,ug) + ¢(1 4+ ug) >0,

and u; < ug on OpB(T). For a fixed j € N, let us assume the inductive
hypothesis u; < u;_1; then, recalling that A is the Lipschitz constant of h, we
have that

L(ujy1 — ug) = Mugpr —uj) = h(-,uy) — h(-,uj-1) = Muj; —uj—1) > 0.

Furthermore ;1 = u; on dpB(T) and so the maximum principle implies
that u;11 < u;. With an analogous argument we show that u; is bounded
from below by —ug. Summing up, for j € N, we have

—Uug < Uj41 < Uj < Uugp- (829)



272 8 Parabolic PDEs with variable coefficients: existence

We denote by u the pointwise limit of the sequence (u;) on B(T). Since u,
is solution to (8.28) and by the uniform estimate (8.29), we can apply the
a priori estimates in SP and the imbedding theorems, Theorems 8.17 and
8.16, in order to prove that, on every open set O included with its closure in
B(T) and for every a €]0, 1], the norm H'U/jHCIID+a(O) is bounded by a constant

depending on L, B(T'), O, a and X only. Then by the Schauder estimates,
Theorem 8.18, we infer that the norm ||u; HCIZ;FQ(O) is uniformly bounded with
respect to j € N. It follows that, by the Ascoli-Arzela theorem, there exists
a subsequence of (u;);en (that, for the sake of simplicity, we still denote by
(uj)jen) converging locally in C’Izj'o‘. Taking the limit in (8.28) as j — oo, we
get
Lu = h(-,u), in B(T),

and U‘BPB(T) =4d.

Finally, to prove that u € C(B(T)), we use the barrier functions. Given
z = (t,z) € 0pB(T) and ¢ > 0, we consider an open neighborhood V of z
such that

l9(z) —9(2)[ <&, z=(t,z) e VNIpB(T),

and suppose there exists a barrier function w for L in V' N B(T'). We put
v (2) = g(2) £ (e + kew(2))
where k. is a sufficiently large constant, not depending on j, such that
L(uj —v") > h(-,uj—1) — A(uj—1 —uj) + ke >0,

and u; < v on d(VNB(T)). By the maximum principle we have that u; < v*
on VN B(T).
Analogously we have u; > v~ on V N B(T) and, when j — oo, we get

9(2) —e — kew(z) <u(z) < g(2) + £ + k-w(z2), z € VNnB(T).
Then

9(z) — e <liminfu(z) < limsupu(z) < g(z) + ¢, zeVnB(T),

Z—z z—Z

and this proves the claim by the arbitrariness of €. Finally the estimate (8.27)
can be justified by the maximum principle and by (8.29). a

Proof (of Theorem 8.27). We apply Theorem 8.30 with
h(-u) = Be(u—¢°),

in order to infer the existence of a classical solution u. 5 € CH'*(B(T)) N
C(B(T)) of the penalized problem (8.26). After the simple change of variable
v(t,z) = etllleqy(t, z), we can always assume that a > 0.
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First of all we prove that we have

B (ues — )| <€ (8.30)

for some constant ¢ not depending on ¢ and §. Since f. < & we have to
prove only the estimate from below. We denote by ¢ a minimum point of the
function B:(ue s—¢?) € C(B(T)) and we suppose that . (ue s(¢)—¢°(¢)) <0,
otherwise there is nothing to prove. If ( € 9p B(T') then

B:(9°(¢) = ¢°(¢)) > B-(0) = 0.

Conversely, if ¢ € B(T), then, since 3 is an increasing function, also u. 5 — ¢°
assumes the (negative) minimum at ¢ and therefore

(L +a)ue5(¢) = (L+a)e’(€) 20 2 a(C) (ue5(¢) = ¢°(C)) -

that is
Lu. 5(¢) = L®(C). (8.31)

Now, by Hypothesis 8.26, Ly?(¢) is bounded from below by a constant not
depending on §. So by (8.31) we get

Be(ue,s(¢) = ¢°()) = Lue,s() 2 L’ (Q) 2 &,

with ¢ independent on ¢, thus proving the estimate (8.30).
By the maximum principle, Theorem 6.12, we have

e slloo < llgllze + TC. (8.32)

Then by the a priori estimates in SP, Theorems 8.17, and the estimates (8.30),
(8.32) we infer that the norm ||u. 5| gr(0) is uniformly bounded with respect
to € and 4, for every open set O included with its closure in B(T') and for every
p > 1. It follows that there exists a subsequence of (u. s) weakly convergent
as,0 — 0 in S? (and in C5") on compact subsets of B(T') to a function u.
Furthermore,

lim sup Be (ue,5 — 906) <0,
£,0—0

so that Lu < 0 a.e. in B(T). Finally, Lu = 0 a.e. on the set {u > ¢}.
We can eventually conclude that v € C(B(T)) and u = g on 0pB(T) by
using the argument of the barrier functions, just as in the proof of Theorem

8.30. O

We now prove a comparison principle for the obstacle problem.

Proposition 8.31 Let u be a strong solution to the problem (8.24) and v a
super-solution, i.e. v € S} _(B(T)) N C(B(T)). If

loc

{maX{Lv,ga —v} <0, a.e. in B(T),

vlopB(T) > 9,

then w < v in B(T). In particular the solution to (8.24) is unique.
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Proof. By contradiction, we suppose that the open set defined by
D:={ze€ B(T) | u(z) > v(z2)}
is not empty. Then, since u > v > ¢ in D, we have that
Lu=0, Lv<0 in D,

and v = v on dD. The maximum principle implies v < v in D and we get a
contradiction. |

Proof (of Theorem 8.21). We prove the thesis by solving a sequence of
obstacle problems on a family of cylinders that cover the strip Sy, namely

B, (T) =]0, T[x{|z| < n}, n € N.

For every n € N, we consider a function x,, € C(R";[0, 1]) such that y,,(z) = 1
if [z] <n — 1 and x,(z) = 0 if |z| > n, and we set

gn(t,x) = Xn(@)(t, ) + (1 — xn(x))u(t,z),  (t,z) € Sr.
By Theorem 8.27, for every n € N, there exists a strong solution u,, of problem
max{Lu,p —u} =0, in B,(T),
{u|c’)pB"(T) = gn-
By Proposition 8.31 we have
© < Upt1 < up < 4, in B,(T),

and we can conclude the proof by using again the arguments of Theorems 8.27

and 8.30, based on the a priori estimates in S = and the barrier functions. O
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Stochastic differential equations

In this chapter we present some basic results on stochastic differential equa-
tions, hereafter shortened to SDEs, and we examine the connection to the
theory of parabolic partial differential equations.

We consider Z € R and two measurable functions

b="0b(t,z):[0,T] x RN — RV, o=o(t,x):[0,T] x RN — RN*4,

In the sequel, we refer to b and o as the drift and diffusion coefficient, respec-
tively.

Definition 9.1 Let W a d-dimensional Brownian motion on the filtered pro-
bability space (£2,F, P, (F;)) on which the usual hypotheses hold. A solution
relative to W of the SDE with coefficients Z,b,0 is a Fi-adapted continuous
process (Xit)iepo, 1) such that

i) b(t,X;) €Ll ando(t,X;) €L

loc
it) we have that

2 .
loc”

t t
Xt:Z+/ b<s,xs)ds+/ o(s, X)dW,,  te[0,T],  (9.1)
0 0

that is
dXt = b(t, Xt)dt+0'(t,Xt)th, XO =Z.

Next we introduce the notions of solution to (9.1).

Definition 9.2 The SDE with coefficients Z,b, o is solvable in the weak sense
if a standard Brownian motion exists with respect to which the SDE admits a
solution.

The SDE with coefficients Z, b, o is solvable in the strong sense if, for every
fixed standard Brownian motion W, there exists a solution relative to W.

On the basis of the previous definition, a strong solution is constructed on
a given probability space and with respect to a given Brownian motion W.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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On the contrary, for weak solutions, the Brownian motion and the probability
space are not assigned a priori and actually they are part of the solution rather
than the statement of the problem.

Also for the concept of uniqueness, it is natural to introduce two different
notions depending on whether we consider a strong or a weak solution.

Definition 9.3 For the SDE with coefficients Z,b, 0 we have uniqueness

e in the weak sense (or in law) if two solutions are equivalent processes, i.e.
they have the same law;

e in the strong sense (or pathwise) if two solutions defined on the same
probability space are indistinguishable.

In general it is possible to assign a stochastic initial datum. When we con-
sider strong solutions and we suppose that we have fixed a priori the pro-
bability space with filtration (F;), we assume that the initial datum Z is a
Fo-measurable random variable: by (9.1), we have Xg = Z. When we study
the solvability in the weak sense, we merely assign the initial distribution u
of the solution: X ~ p, i.e. if the solution is defined on the space (§2, F, P)
we have that

P(Xo € H) = u(H), H e ZRN).

9.1 Strong solutions

In the case 0 = 0 and Z € R, equation (9.1) reduces to the deterministic
Volterra equation

¢
X, =27 +/ b(s, Xs)ds, (9.2)
0

and assuming that b is a continuous function, (9.2) is equivalent to the ordi-
nary Cauchy problem

d
— X =0b(t, X Xg=Z.
dt t (7 t)a 0

In the theory of existence and uniqueness for strong solutions of SDEs, many
results are analogous to those for ordinary differential equations. In particular,
it is known that, in order to obtain results of existence and uniqueness for the
solution of (9.2) it is necessary to assume some regularity assumption on
the coefficient b: typically it is assumed that b = b(¢, x) is locally Lipschitz
continuous with respect to the variable x. For example, the equation

t
X, = / X, |°ds 9.3)
0



9.1 Strong solutions 277

has as unique solution the null function if & > 1, while if o €]0, 1] there exist
infinitely many solutions! of the form

A
~
IN
w

0, 0<
Xt: — [3
(TS) , s<t<T

where 3 = 11 and s € [0, T].

Furthermore it is known that, in order to guarantee the global existence of
a solution it is necessary to impose conditions on the growth of the coefficient
b(t,x) as |z| — oo: typically it is assumed a linear growth. For example, for
fixed z > 0, the equation

¢
X ::c+/ X2ds
0

has a (unique) solution X; = —%— which diverges for t — L.

On the grounds of these examples, we introduce the so-called “standard
hypotheses” for a SDE. Since we are interested in studying strong solutions,
in this section we assume that a d-dimensional Brownian motion W is fixed

on the filtered probability space (£2,F, P, (F)).
Definition 9.4 The SDE

dXt = b(t,Xt)dt + O'(t, Xt)th; XO = Z,

verifies the standard hypotheses if

i) Z € L*(£2,P) and it is Fo-measurable;

it) b,o are locally Lipschitz continuous in x uniformly with respect to t, i.e.
for every n € N there exists a constant K,, such that

[b(t,2) = b(t,y)* + lo(t,2) — o(t.y)|* < Kalz — yP?, (9-5)

for |z|, |yl <n, t €[0,T];
ii1) b, o have at most linear growth in x, i.e.

b(t,2)]? + |o(t,2)? < K1+ |z2) zeRY, te[0,T],  (9.6)
for a positive constant K.

1 On the other hand, for the problem with stochastic perturbation
t
Xi=2Z +/ b(Xs)ds + Wy, (9.4)
0

where W is a Brownian motion, a remarkable result was proved by Zvonkin [350]
and Veretennikov [333]: they proved pathwise uniqueness for (9.4) when b is only
bounded and measurable.
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9.1.1 Uniqueness

A classical tool for the study of the properties of differential equations is the
following:

Lemma 9.5 (Gronwall’s lemma) Let ¢ € C([0,T]) be such that

o) <ot [ 6o, e
where a € R and f is a continuous, non-negative function. Then we have
p(t) < aedo 1(5)ds te 0,7
Proof. We put
F=a+ [ 1ol
By assumption, ¢ < F' and since f is non-negative we have

4

dt (6* S f(S)dSF(t)) = e o s (_F () F(t) + f(1)p()) < 0.

Integrating we get
e~ N f(S)dSF(t) <a,

hence the claim:
o(t) < F(t) < aelo /()45

d

As in the case of deterministic equations, the uniqueness of the solution is
consequence of the Lipschitz continuity on the coefficients. More precisely we
have

Theorem 9.6 If the standard conditions i) and ) hold, then the solution of
the SDE
dXt = b(t, Xt)dt + O'(t, Xt)th, XO = Z7

s pathwise unique, i.e. two strong solutions are indistinguishable.

Proof. Let X, X be strong solutions with initial datum Z and Z, respectively.
For n € N and w € §2, we put

sp(w) =T ANinf{t € [0,T] | | X (w)| > n}

and we define s,, analogously. By Theorem 3.52, s,,s,, are stopping times.
Therefore also

Tn = 8y N\ Sp,
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is a stopping time and

lim 7,(w) =T, a.s.

n—oo

Recalling Proposition 4.22, which defines the 1t6 integral with a stopping time
as integration limit, we have

tATR .
Xonr, — Xopo = 7 — 7 + / (b(s, X.) — b(s, X.))ds
0
tAT, .
Jr/ (0(s,Xs) —o(s, Xg))dWs.
0
By the elementary inequality (a+ b+ c)? < 3(a? 4+ b+ ¢?) (cf. (9.9)), we have

E |:’Xt/\7'n - Xt/\rn

2 r ~
} <3E |Z—Z|2}

[ tATn ~ 2
+3E / (b(s,Xs)—b(s,XS)ds]
0

i tATy N 2
+3E /0 (o(s, Xs) —o(s,Xs))dWs ] <

(by Holder’s inequality and It6 isometry, Corollary 4.23, since (o(s, Xs) —
U(S7XS))]]'{S§t/\Tn} € ]LQ)

tATh . 1
S 3E ['Z o Z|2i| +3tE |:/ |b($,X5) — b(S,XS)‘QdS
0 J

IN

tAT, .
+3F U lo(s, X,) — o(s, X,)|?ds
0 i

.
ds) .
By applying Gronwall’s inequality, we infer that

2] <3E [|Z _ 2‘2} e3En (T+1)t

(by the assumption of Lipschitz continuity of the coefficients)

t
<3 (E [\Z - 2\2} + Ko (T + 1)/ E [(XW” — Xonr,
0

E |:‘Xt/\7'n - )’Zt/\‘rn

In particular, if Z = Z a.s., then by Fatou’s lemma we have

]
1o

< liminf E UXW” — Xinr,
n—oo

and therefore X, X are modifications. Finally, since X, X are continuous pro-

cesses, it follows that they are indistinguishable, by Proposition 3.25. a

n—oo

~ |2 ~
E Uxt —Xt( ] _E[lim ’Xtm ~ Xinn
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9.1.2 Existence
As in the deterministic case, existence of a solution of an SDE can be reduced
to a fixed-point problem: formally the process X is solution of the SDE
dXy = b(t, Xy)dt + o(t, Xy)dWy, Xo =2, (9.7)
if and only if it is a fixed point for the functional ¥ defined by
t t
U(X) =7 + / b(s, Xo)ds + / o(s, X)dW,,  te[0,T].  (9.8)
0 0
To present the proper setting in which we look for the strong solution of the

SDE (9.7), we introduce the following:

Notation 9.7 A. is the space of continuous F;-adapted processes (Xi)iejo,1]
such that

[X]2:=E { sup |Xt|2] < 00.
0<t<T

The following result can be proved just as Lemma 3.43.
Lemma 9.8 (A, []r) is a semi-normed complete space.
In what follows we repeatedly use the following inequalities:
Lemma 9.9 For alln € N and ay,...,a, € R we have
(a1 4 +a,)? <nad 4+ - +ad2). (9.9)
For all X € A; we have that

s 2 t
E | sup / Xudu 1§t/ [X]2ds, (9.10)
0<s<t|JO 0
s 2 t
E | sup / X, dW, 1g4/ [X]2ds. (9.11)
0<s<t[JO 0
Proof. We have
(a1 4+ +an)?=ad -+ a2 +2) aq
i<j
<ai+--+al+ Y (af +a))
i<j

=n(ad +---+a2).

By Holder’s inequality we get

/ X, du
0

2
E

<FE [ sup s/ Xu|2du}
0<s<t 0

t t
=tE U Xu|2du} gt/ [XT]2du.
0 0

Finally (9.11) is a consequence of Doob’s inequality and It6 isometry. O

sup
0<s<t
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Lemma 9.10 Under the standard hypotheses i) and iii) of Definition 9.4,
the functional ¥ in (9.8) is well defined from A. to A.. Further, there exists
a constant Cy depending on T and K only, such that

t
[w(x)]; < (1 +E[|Z]] +/ [[X]]jfds> , t €0, 7). (9.12)
0
Proof. By the assumption of linear growth on the coefficients, we have

B| s b X + | swp [o(s, X)P| < KO+ [XE) e 0,11

0<s<t 0<s<t
(9.13)
and so b(t, X;),0(t,X;) € Ac when X € A;. Then we get

2

E

[w(X)]? = E

; sup

0<s<t

Z+/ b(u,Xu)du+/ o(u, Xy)du
0 0

(by (9.9), (9.10) and (9.11))

< 3(13 [1Z)?] +t/OtE{ sup |b(u,Xu)I2] ds

0<u<s

+4/OtE { sup IU(%Xu)IQ} d5> <

(by (9.13)) o .
<3 (E [1Z]*] + K(4+1) (t+/0 [[X]]gds». O

The following classical theorem gives sufficient conditions for the existence
of a unique strong solution of the SDE (9.1): although it is not the most general
result, it is satisfactory for many applications.

Theorem 9.11 Under the standard hypotheses of Definition 9.4 the SDE
t t
X =7 +/ b(s, Xs)ds +/ o(s, Xs)dWs, te[0,T], (9.14)
0 0

has a strong solution in the space A.. Such a solution is unique modulo indis-
tinguishability and it verifies the estimate

[X]7 <C(1+E[|Z]*])e,  tel0,T], (9.15)
where C' is a constant depending on K in (9.6) and T only.

Proof. The uniqueness of the solution has already been proved in Theo-
rem 9.6. Concerning its existence, for the sake of simplicity we consider the
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standard hypotheses with K,, = K, not depending on n: the general case can
be proved by a localization argument, just as in the proof of Theorem 9.6.
As in the deterministic case, the proof is based upon the Banach-Cacciop-
poli fixed-point theorem: we have already proved that ¥ is well-defined from
A to A (cf. Lemma 9.10) and that (Ac,[]r) is a semi-normed complete
space (cf. Lemma 3.43). What is left to prove is then the existence of an
integer n € N such that
Ygr =Po-...0W
H,_/
n times

is a contraction, that is
[o"(X)—9"(V)]r < Co[X — Y], X,Y € A,

for a constant Cj €0, 1[. More precisely, we prove by induction that for every
n € N we have that

[ (X) — wn(v)2 < (&2 )[[X Y],  X,YeA, telo,T], (9.16)

where Cy = 2K (T + 4).
We have

HW“+%xv——wn+%Yvﬁ::E[sup

0<s<t

/0 (b B (X)) — b, U7 (V) ) du

1-

v /OS(U(u, I (X)) — 0w, U (Y )a)) AW

(by (9.9), (9.10) and (9.11))

< Qt/OtE[ sup |b(u, "(X)y) —b(u,@”(Y)u)z} ds

0<u<s

+8/OtE[ sup |o(u, U (X)) a(u,q‘/”(y)u)ﬁ} ds <

0<u<s

(by the hypothesis of Lipschitz continuity)

e / [ (X) - 0" (Y)]2ds <

(by the inductive hypothesis)

t .n
<optt [ Taslx -V,

hence (9.16) follows. We infer that ¥ admits a unique fixed point X in A..
Since X = ¥(X) the estimate (9.12) becomes

[[X]]?gcl(1+E|Z| /[[X ) te 0,7,

and, by applying Gronwall’s inequality, we directly obtain (9.15). O
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Remark 9.12 The previous proof implicitly contains a uniqueness result in-
dependent of Theorem 9.6: indeed, since W™ is a contraction, it admits a
unique fixed point in the space A.. On the other hand the uniqueness result
in Theorem 9.6 is stronger because it gives the uniqueness not only within
the class A.: in particular under the standard hypotheses, every solution to
(9.14) belongs to the class A.. O

Remark 9.13 As in the deterministic case, the solution of a SDE can be
determined by successive approximations. More precisely, let (X,,) be the
sequence in A, defined by

XO = Z;
Xn = W(anl)a n e Na

where ¥ is the functional in (9.8). Then, under the standard hypotheses and
denoting by X the solution, we have that

lim [X — X, ]r = 0. O

n—oo

9.1.3 Properties of solutions

In this section we prove some remarkable growth estimates and results on
regularity, comparison and dependence on the data for the solution of a SDE.
This kind of estimates plays a crucial role, for instance, in the study of the
numerical solution of stochastic equations.

Theorem 9.14 Let X be solution of the SDE
t t
Xt:Xo—i—/ b(s,Xs)ds—i—/ o(s, X)dW,,  te[0,T].  (9.17)
0 0

If the standard hypotheses of Definition 9.4 hold and E [|X0|2p} is finite for
some p > 1, then there exists a constant C depending only on T, p and K in
(9.6), such that

E [ sup XS|2P} <C (14 E [| X, |?]) 010, (9.18)
to<s<t
E [ sup | X, — Xt0|2p} <C 1+ E[|X4)*]) (t = to)?, (9.19)
toSSSt

with 0 <tg <t <T.

Proof. We prove the claim in the case p = 1, N = 1 and ¢y = 0. The case
p > 1 is analogous and can be proved by using the fact that X2 is a solution
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of the SDE

t
Xfp = Xgp—i-/ (Qprp_lb(s,Xs) +p(2p — l)Xip_QUQ(S,XS)) ds
0

t
+ / X (s, Xg)dW,.
0

For further details we refer, for example, to Kloeden and Platen [210], Theo-
rem 4.5.4.

The inequality (9.18) for p = 1 is equivalent to (9.15) of Theorem 9.11.
Concerning (9.19), by Lemma 9.9 and the condition of linear growth of the
coefficients, we have

[X — Xo[2 < 2K (¢ + 4) /t(l +[X]2)ds <
0

(by (9.18))
<Ct(1+ E[|X0*]). =

We now prove a result on the continuous dependence on the parameters
of a SDE. First of all we introduce the following:

Notation 9.15 We put

t t
Lo X = Xt—XtO—/ b(s,Xs)ds—/ o(s, X ) AW, L€ [to,T], (9.20)

to to

and, for the sake of simplicity, Lo :X = L:X. Further, when we write Ly, +X
we implicitly assume that (X¢)iep,, ) i an adapted process such that

b(t,X;) €Ll  and o(t,X;) € LY.
Clearly X is a solution to the SDE (9.17) if £, X = 0.

Theorem 9.16 Consider Ly, in (9.20) for 0 < ¢ty < t < T and assume
that the coefficients of the SDE are Lipschitz continuous in x uniformly with
respect to t, that is

2 2
|b(t,$)*b(t,y)| +|0(t71’)70—(t7y)| SK‘I*]JF, te [to,TL I,yERN,
for some positive constant K. Then there exists a constant C depending on

K, T andp > 1 only, such that for every pair of processes X,Y , we have that

E| sup |Xs— Y3|2p] < Celli—to) (E [ X1, — Yo ]

toSSSt

+E [ sup [Ly, s X — £t075Y|2p] )

to<s<t
(9.21)
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Proof. We only consider the case p =1 and ¢y = 0. Using Lemma 9.9 we get
t
X - VT <t( B0 = %0+ ¢ [ ) -,V
0
t
+4/ [o(, X) —a(-,Y)]?ds + [LX — /:Y]]f) <
0
(by the assumption of Lipschitz continuity on the coefficients)
t
<4 (E [(Xo —Yo)?] + K(t+ 4)/ [X —Y]?ds + [£X — [,Y}]?) :
0

The claim follows by Gronwall’s Lemma. a

Remark 9.17 If X,Y are solutions of the SDE (9.17), then by (9.21) we
have that

[X — Y]} <4E[|Xo — Yo[?] .

By examining the proof, we can improve the previous estimate by using an
elementary inequality such as

(a+b)?<(1+e)a®+ 1+ Hp*, >0,

and so we get .
[X - Y]} <(1+2)E [|Xo - Yo|] e, (9-22)

with C depending on ¢, K and 7. Inequality (9.22) provides us with a sen-
sitivity (or stability) estimate of the solution in terms of dependence on the
initial datum. Formula (9.22) can be useful if one wants to estimate the error
made by an erroneous specification of the initial datum due, for instance, to
incomplete information. a

We conclude this section mentioning a comparison result for solutions of SDE:
for the proof we refer, for example, to [201], Theorem 5.2.18.

Theorem 9.18 Let X', X? be solutions of the SDEs
X/ = 7 +/ by (s, X7)ds +/ o(s, XDdW,,  te[0,T), j=1,2,
0 0

with the coefficients verifying the standard hypotheses. If
i) ZY<Z? as.;
ii) by (t,z) < ba(t,x) for every x € R and t € [0,T7;
then
P(X}! < X2 te0,T]) =1.
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9.2 Weak solutions

In this section we present some classical theorems on existence and unique-
ness of weak solutions of SDEs with continuous and bounded coefficients. The
material in this section summarizes very classical results: a more detailed
exposition can be found, for instance, in the monographs by Stroock and
Varadhan [321], Karatzas and Shreve [201].

We begin by presenting a SDE solvable in the weak sense but not in the
strong sense. The following example shows also that a SDE can have solutions
that are equivalent in law but not indistinguishable: in this sense uniqueness
in law does not imply pathwise uniqueness.

9.2.1 Tanaka’s example

The following example is due to Tanaka [324] (see also Zvonkin [350]). Let us
consider the scalar SDE (N = d = 1) with coefficients Z = 0 = b and

1 z >0,
o(x) =sgn(x) =
() = sgn(z) {_1 e
First of all we prove that, for such a SDE, we have uniqueness in the weak
sense. Indeed, if X is a solution relative to a Brownian motion W, then

t
Xt:/ sgn(X,)dWs,
0

and by Corollary 5.35, X is a Brownian motion. Therefore we have uniqueness
in law. On the other hand, —X is a solution relative to W as well, we do not
have pathwise uniqueness.

Let us now prove the existence of a weak solution. We consider a standard
Brownian motion W on the probability space (£2, F, P, (F;)) and we put

t
Bt:/ sgn(Ws)dWs.
0

Again by Corollary 5.35, B is a Brownian motion on (2, F, P, (F;)). Further,
we have that
AW, = (sgn(W;))? AW, = sgn(W;)dB,

i.e. W is solution relative to the Brownian motion B.

Eventually we prove that the SDE does not admit a strong solution. By
contradiction, let X be a solution relative to a Brownian motion W defined
on (£2,F,P,F}V) where (F}V) denotes the standard filtration? of W. Then
we have

AW, = (sgn(Xy))* dW, = sgn(X,)dX,. (9.23)

2 Theorem 3.47, p. 118.
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Since X is a Brownian motion on (£2, F, P, F}V'), applying Tanaka’s formula?,
we obtain

t
| Xe| = / sgn(X,)dX, + 2L;(0) (9.24)
0

where, by (5.53),

. 1
LE©) = lm |5 € [0,4] | 1X,] <}

€

is the local time of X at zero. Putting (9.23) and (9.24) together we get
W, = | X[ — 2L (0)

and this implies that W is adapted to the standard filtration ft‘Xl of |X|.
On the other hand, by its very definition, X is F/V-adapted: so the following
inclusion holds
7 A,

where F;¥ is the standard filtration of X, and this is absurd.

We would like to mention also Barlow’s work [24] where the author gives
an example of a SDE with continuous coefficients which does not admit a
strong solution.

9.2.2 Existence: the martingale problem

In this section we give an overview of the classical results of Stroock and
Varadhan [319; 320] on the existence and uniqueness of weak solutions to
SDEs with bounded and continuous coefficients. Instead of confronting the
question of solvability directly, Stroock and Varadhan formulate and solve an
equivalent problem, called the martingale problem.

To introduce the martingale problem, let us consider a SDE with bounded
and continuous coefficients

be Cb(RZO X RN;RN), (s Cb(RZO X RN;RNXd).
We suppose there exists a solution X to the SDE
dX; = b(t, X3)dt + o(t, Xy)dWs, (9.25)
relative to a d-dimensional Brownian motion W defined on the probability
space (£2,F, P, (F)).
Applying the It6 formula (5.34), for every f € C2(RY) we have

df (Xi¢) = A f(Xe)dt + V f(Xe) - o(t, Xy)dWy,

3 Formula (5.54), p. 196 con K = 0, recalling that | X| = X + (= X)T.



288 9 Stochastic differential equations

where
1 N N
Atf(x) = 5 Z Cij(ta x)amm7f($) + ij(tvx)amjf(x)v (926)
i,j=1 j=1

and (c;5) = oo™

Definition 9.19 The operator A, is called characteristic operator of the SDE
(9.25).

Since by assumption Vf and o are bounded, we have that V f(X;)o(t, X;) €
L2 and consequently the process

M/ = F(X) — F(Xo) / Af(X,)ds (9.27)

is a Fy-continuous martingale.

Now, in order to state the martingale problem, instead of considering the
stochastic equation we start directly from a differential operator of the form
(9.26), we assume that the coefficients c;;,b; € Cp(R>o x RY) and that the
matrix (c;;) is symmetric and positive semi-definite.

We recall briefly the results of Section 3.2.1: on the space

C(Rx0) = C(Rx0; RY)

endowed with the Borel o-algebra (C(R>()), we define the “canonical” pro-
cess
Xi(w) = w(t), w € C(Rxp),

and the related standard filtration® %;(C(R>0)). In the following we prefer
to use the more intuitive notation w(t) instead of X;(w).

Definition 9.20 A solution of the martingale problem associated to operator
Ay is a probability measure P on the space

(C(R>0), Z(C(Rx0)))
such that, for every f € C2(RYN), the process
M () = f(w(®) - Fw©) - [ A((s)ds
0

is a P-martingale, with respect to the filtration %,(C(Rxo)).

* Obtained by completing the natural filtration %;(C(R>0)) in (3.17), in accordance
with Definition 3.45.
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If the SDE (9.25) has a solution X, then the martingale problem for 4, in
(9.26) is solvable: a solution is the law of X. Actually, it turns out that the
problems are equivalent since, according to Theorem 9.22, the existence of a
solution of the martingale problem implies the solvability in the weak sense
of the associated SDE.

Let us point out that the SDE appears only indirectly in the formulation
of the martingale problem, i.e. only through the coefficients of the equation
defining the operator 4;. The martingale-problem approach turns out to give
a great deal of advantage in the study of SDEs for many reasons: for instance,
one can use the results of convergence for Markov chains to diffusion processes
which play a crucial part in the proof of the existence of the solution. With
these techniques it is possible to prove weak existence results under mild
assumptions. The question of uniqueness in law is in general more delicate:
in Section 9.2.3 we present a theorem based upon the results of existence for
the parabolic Cauchy problem of Chapter 8.

In order to state the equivalence between the martingale problem and
SDEs we have to introduce the notion of extension of a probability space.

Remark 9.21 (Extension of a probability space) Let X be an adapted
process on the space (§2, F, P, (F;)). In general it is not possible to construct
a Brownian motion on {2, since the space could not be sufficiently “rich”
to support it. On the other hand, if W is a Brownian motion on the space
(2,F, P, F;), we can consider the product space

<9>< ﬁ,f@ﬁ,P@ﬁ)

endowed with the standard filtration F; obtained from F; ® ]?t, and extend
in a natural fashion the processes X and W by putting

X(w,0) = X(w), W(w,w) = W().

Then we have that, on the product space, W is a F;-Brownian motion inde-
pendent of X. a

The following result, that we merely mention, establishes the equivalence be-
tween the martingale problem and the weak formulation of the associated
SDE. The proof is based upon the representation of continuous martingales
in terms of Brownian integrals: we refer to, for example, Karatzas and Shreve
[201], Proposition 5.4.11 and Corollary 5.4.9.

Theorem 9.22 Let ¢ be a distribution on RY. There exists a solution P of
the martingale problem associated to Ay with initial datum ¢ (i.e. such that
P(w(0) € H) = ((H) for every H € B(RY)) if and only if there exists a
d-dimensional Brownian motion W, defined on an extension of

(C(RZO)7 ‘%(C(RZO))v P, ‘%}t(C(RZO))) )
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such that the extension of the process X¢(w) = w(t) is a solution of the SDE
(9.25) relative to W with initial datum (.

Further, the uniqueness of the solution of the martingale problem with
initial datum ( is equivalent to the uniqueness in law for the SDE with initial
datum C.

We conclude the section stating the main existence result. The proof is based
on the discretization of the SDE and on a limiting procedure for the sequence
(P,) of solutions of the martingale problem associated to the discrete SDEs
(we refer, for instance, to Stroock and Varadhan [321], Theorem 6.1.7, or
Karatzas and Shreve [201], Theorem 5.4.22).

Theorem 9.23 Let us consider the SDE
dX; = b(t, X3)dt + o(t, X¢)dWy, (9.28)
with continuous coefficients, satisfying the linear growth condition
b(t,2)|* + |o(t,z)* < K1+ |z*) reRN, te(o,T],

for a positive constant K. Then, for any x € RN, (9.28) admits at least one
weak solution with initial datum x.

9.2.3 Uniqueness

As already mentioned, the weak uniqueness is generally more involved to deal
with, compared to the mere existence. It is enough to consider the deter-
ministic equation (9.3) to notice that the only assumption of continuity and
boundedness of the coefficients is not sufficient to guarantee this property. In
this section we show that the formulation in terms of the martingale problem
allows one to obtain a very natural condition for uniqueness: the existence of
a solution of the Cauchy problem relative to the elliptic-parabolic operator
Ai + 0;. As we have seen in Chapter 8, under suitable assumptions, for such
an operator a well-established theory is available.

Let us recall that® two measures P, @ on (C(Rx), Z(C(R>0))) are equal
if and only they have the same finite-dimensional distributions, i.e. if

P(w(tl) € Hla s 7w(tn) € Hn) = Q(w(tl) € Hla' < 7w(tn) € Hn)

for every n € N, 0 <t; <---<t, and Hy,..., H, € BRN).

The following result gives a sufficient condition for which two solutions P
and @ of the martingale problem with the same initial datum have the same
one-dimensional distributions, i.e.

P(w(t)e H)=Q (w(t) € H)
for every t > 0 and H € Z(R").

5 Proposition 3.22, p. 105.
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Proposition 9.24 Let P, Q be solutions of the martingale problem associated
to A, with initial datum z¢ € RN, i.e. such that

P(w(0) = 20) = Q(w(0) = o) = 1.

Suppose that for every T > 0 and for every o € Cy(RN) there exists a bounded
classical solution

uwe C2(10,T[ xRY) N Cy([0, T) x RY),

to the Cauchy problem with final datum

(9.29)

Au(t, x) + dwu(t,x) = 0, in )0, T[ xRN,
u(T,-) = o, on RV,

Then P and Q have the same one-dimensional distributions.

Proof. By Theorem 9.22; the process X;(w) = w(t) is solution to the SDE
(9.25) on some extension of the space of continuous functions endowed with the
probability measure P and the same result holds for Q. It follows that, if u is a
solution of the problem (9.29), then the process u(t, w(t)) is a local martingale,
by the It6 formula. On the other hand, u(t,w(t)) is a strict martingale because
u is bounded and therefore we have

BT [p(w(T))] = B [u(T, w(T))] = u(0, zo)

9.30
= B9 (T (1)) = B9 [pw(my). )

Now it is fairly easy to conclude by using Dynkin’s Theorem: indeed if H is a
bounded open set in RY | we construct the increasing sequence of non-negative,
continuous and bounded functions

1
n = i ) inf - )
on(x) nmln{n ;£H|x y|}

approximating the characteristic function of H as n tends to infinity. By the
theorem of monotone convergence and (9.30), we get

P(w(T) € H) = Q(w(T) € H),
and the claim follows easily by Proposition A.6. a

Now we are interested to go from the uniqueness of the one-dimensional
distributions to the uniqueness of all finite-dimensional distributions. We men-
tion the following result, due to Stroock and Varadhan [321], Theorem 6.2.3.

Proposition 9.25 Suppose that the solutions of the martingale problem as-
sociated to Ay with initial condition xo € RN have the same one-dimensional
distributions. Then the solution of the martingale problem with initial datum
To 1S unique.
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Remark 9.26 A similar result is proved in Karatzas and Shreve [201], Propo-
sition 5.4.27, by using the Markov property in a way not dissimilar, for exam-
ple, to the ideas in the proof of Proposition 3.23, which characterized the finite-
dimensional distributions of Brownian motion. Nevertheless, this approach re-
quires the hypothesis of autonomous coefficients, b = b(z) and o = o(x), since
it has to be proven first that P, Q have the Markov property. O

We can eventually state a remarkable result of weak uniqueness for SDEs.

Theorem 9.27 Consider a SDE with measurable and bounded coefficients
b and o. As usual, we denote by A; the related differential operator defined
in (9.26). If, for all T > 0 and for all p € C,(RY), there exists a bounded
classical solution of the Cauchy problem (9.29), then for the SDE we have
uniqueness in law.

Sufficient conditions for the solvability of problem (9.29), as requested in The-
orem 9.27, were given in Chapter 8. If the coeflicients c;;,b; are Holder con-
tinuous bounded functions and the matrix (¢;;) is uniformly positive definite,
then the operator A; + 9; has a fundamental solution I" such that

u(t,z) = /RN L(t,z;T,y)e(y)dy

is a classical solution of the Cauchy problem (9.29). Further, w is the only
bounded solution:

)| < el [ Tt 7o) = .

In Section 9.5.2 we treat also the case of non-uniformly parabolic PDEs
that appear in some financial models: in the case of constant coefficients, the
prototype of such a class is the Kolmogorov equation (7.75)

aww + -ray + atv (t,x,y) € R37

introduced in the study of Asian options.

9.3 Maximal estimates

We consider the solution X of a SDE. In order to prove some fundamental
results, as the Feynman-Ka¢ formula of Section 9.4.2 on unbounded domains,
it is necessary to estimate “how far from the starting point the process X
has gone in a given time interval”. We loosely use the adjective “maximal” to
denote an estimate of the upper bound

sup X;.
0<t<T
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9.3.1 Maximal estimates for martingales

We have already seen in the proof of Doob’s inequality, Theorem 3.38, that for
martingales it is possible to obtain uniform estimates with respect to time. The
following result is the natural “uniform in ¢” version of the Markov inequality.

Theorem 9.28 (Maximal martingale inequalities) Let X be a right-
continuous super-martingale. For every A > 0 we have

FX FE| X~
P(sup th/\)g [Xo] + [T], (9.31)
0<t<T A
FEl|X
P( inf X, < —/\) < M, (9.32)
0<t<T A
where X = max{—Xr,0}. In particular
FE X 2F || X
P( sup |Xt|>)\) < BlXol + 2B (| X} (9.33)
0<t<T A

Proof. We use the notation

Xi= sup X,
0<s<t

and, for fixed A > 0, we put
T(w) =1inf{t > 0| Xy(w) > A} AT, w e f2.
Then 7 is a bounded stopping time and, by Theorem 3.56, we have that

E[XO]ZE[XT]:/{A }XTdP+/{A }XTdP
zAP()_ZTzA)E[XT—],

and this proves (9.31).
Now we put
Xt = inf XS,
0<s<t
and
T=inf{t>0]| X; < -A}AT.

By Theorem 3.56 we have

E[X7] < E[X,] :/{X . XTdP+/{X - X,dP

=P (Xr < -)) +/ XrdP,
{Xr>-2}

hence (9.32) follows. Finally, (9.33) follows because we have

P(sup |XS|Z)\> §P<sup XSZ)\>+P(0inf<tXSS)\>' O

0<s<t 0<s<t
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Now we use Theorem 9.28 to get a maximal estimate for integral processes.

Corollary 9.29 (Exponential inequality) Let W be a real Brownian mo-

tion and o € L? such that
T
/ U?ds <k a.s.
0

for a constant k. Then, if we put

t
Xt = / Udes,
0
for every A > 0 we have that
2
P< sup |X;| > )\) < 27 3% . (9.34)
0<t<T

Proof. We consider the quadratic variation process

¢
(X)) = / Ugds,
0
and we recall that®

2
Z\*) = exp <OlXt - O;<X>t>

is a continuous super-martingale for every o € R. Further, we point out that,
for every A\, a > 0, we have

{X: > A} = {exp(aX;) > exp(aN)}

2
C {Zt(a) > exp (a)\ — oz2k> } .

Then, by applying the maximal inequality (9.31), we get

() O[,\_cv_zk —a)\—i-ﬁ

P sup Xy >A ) <P| sup Z;,' >e 2 <e 7 .
0<t<T 0<t<T

By choosing a = % we maximize the last term of the previous inequality and

we get

2
P< sup X; > )\) Se_%.
0<t<T

An analogous argument applied to the process —X gives the estimate
>\2
P( inf X; < )\) <e 2k
0<t<T
hence the claim follows. a
6 Cf. Example 5.12.
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Remark 9.30 With the technique of Corollary 9.29 we can also prove the
following inequality: let W be a d-dimensional Brownian motion and o € L2
an (N X d)-matrix such that

T
/ (05050,0)ds < k (9.35)
0
for some § € RY | |0| = 1, and a constant k. Then, if we put

t
X, = / o dW,
0

for every A > 0 we have that

2

P( sup [(0, Xy)| > )\> < 2e” 2.
0<t<T

>

=

(9.36)

Now we prove the multi-dimensional version of Corollary 9.29.

Corollary 9.31 Let W be a d-dimensional Brownian motion and o € L2 an
(N x d)-matriz such that”
T
/ losoilds < k
0

for a constant k. Then, if we put

t
X = / osdWs,
0
for every A > 0 we have that

P( sup |X¢| > )\> < 2Ne #v
0<t<T

Proof. Let us notice that, if

sup_ | Xy(w)| = A,
0<t<T

then

. A
sup | X! (w)| > —
ogth‘ i )| ~ VN

" We recall that, if A = (as;) is a matrix, we have that

= 2 > =
Al /;az]%g|Ae\ 1Al



296 9 Stochastic differential equations

for some i = 1,..., N, where X? denotes the i-th component of the vector X.
Consequently

N
. )\ 22
P( sup | X 2)\) < E P( sup |th‘ > —) < 2Ne %K,
i=1 \/N

0<t<T 0<t<T

where the last inequality follows from (9.36), by choosing 6 among the vectors
of the canonical basis. a

9.3.2 Maximal estimates for diffusions

The following maximal estimates play a crucial part in the proof of the rep-
resentation formulas for the Cauchy problem of Section 9.4.4 that extend, by
a localization technique, the results of Section 9.4.2. In this section we prove
maximal estimates for solutions of SDE with bounded diffusion coefficient
(cf. Theorem 9.32) or with diffusion coefficient growing at most linearly (cf.
Theorem 9.33).

Theorem 9.32 Let us consider the SDE in RN
t t
X, = 20 + / b(s, X.)ds + / (s, X,)dW,. (9.37)
0 0

We suppose that o is a bounded and measurable (N x d)-matriz: in particular
we have that
loo*(t,z)| <k, te[0,T], = € RY; (9.38)

further, we suppose that b is measurable with at most linear growth,
b(t,z)| < K(1+|z|), te0,T], z€R". (9.39)

Then there exists a positive constant o depending only on k, K,T and N such
that, if X is a solution of (9.37), then we have

E [e‘”ﬂ < 0, (9.40)
where -
Xr = sup [Xi|.
0<t<T

Proof. By Proposition A.56 we have
Xz +oo )\2 —
B [e¥1] =1+/ 200N P (X7 > \) d),
0

so it is enough to have a suitable estimate of P (XT > )\) when A > 1. If we
put

t
Mt:/ o(s, Xs)dWs,
0
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by Corollary 9.31 we have that

2
P( sup | M,| 2R> <2Ne 78T, R>0.

0<t<T

On the other hand on the event

{ sup ‘Mt| <R}a

0<t<T

we have

X0 < ol + [ KOs + R
hence, by Gronwall’s lemma, we get
IX¢| < (Jzo| + KT+ R) 5T, t€]0,T).
Summing up
P (X7 > (Jzo| + KT + R) eX7) < 2Ne~#57

that is, for A large enough,

P(Xp>)\) <2N (77X ~ fo| ~ KT)° 9.41)
T =)= Sep 2ENT ’ ®.
hence the claim by choosing
o—2KT
a < SENT O

If the diffusion coefficients have linear growth, we can get a result of maxi-
mal integrability of polynomial type: the following result generalizes the esti-
mate (9.18).

Theorem 9.33 Suppose that the coefficients of the SDE (9.37) are measur-
able and satisfy the estimate (9.6) of linear growth. Then if X is a solution
of (9.37), for every p > 1 we have

E[ sup Xt|p} < 0. (9.42)
0<t<T

Proof. We resort to a trick to go back to the case of a SDE with bounded
coefficients. We consider the function f(z) = log(1 + |x|?) and compute the
derivatives of first and second order:

21‘1‘

_ 251'3' 4581'1‘3‘
1 |22

Tl fer (14 [22)2

auf(x) awiwjf(x)
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Since
0z, f(x) =0 (|l"71) v Oz f(2) =0 (|x\*2) , as|z| — +oo,

by the assumption of linear growth on the coefficients, it is immediate to
verify, by applying the It6 formula (5.35), that the coefficients of the stochastic
differential of the process

Y, = log (1+|X[*)

are bounded. Therefore by proceeding as in the proof of Theorem 9.32 we get

P( sup YtZ/\> Sce‘cv, A >0,
0<t<T

for some positive constant depending on xg, T, N and on the growth constant
K in (9.6): this is tantamount to writing that

P ( sup |X¢| > )\> =P < sup Y: > log(1 +)\2)>
0<t<T 0<t<T
c

—clog? 1+)\2

The claim follows from Proposition A.56, since

E[ sup |Xt|p] :/ p)\plP< sup |X;| > >\> dX,
0<t<T 0 0<t<T

and the last integral converges by the estimate (9.43). a

9.4 Feynman-Kac¢ representation formulas

In this section we examine the deep connection between SDEs and PDEs,
where the trait d’union is the It6 formula. To face the problem in a systematic
way, we treat first the stationary® (or ellipic) case, which does not have direct
financial applications but is nevertheless introductory to the study of evolution
(or parabolic) problems that typically arise in the study of American and
European derivatives.

Let us fix some notations and assumptions that will hold in the entire
section. We consider the SDE in RV

dXt = b(t, Xt)dt + O’(t7 Xt)th, (944)
we denote by D a bounded domain® in RY and we assume that:

8 The coefficients do not depend on time.
% Open and connected set.
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i) the coefficients are locally bounded: b, s € LS (R>o x RY);

ii) for every t > 0 and = € D there exists a solution X*% of (9.44) such that
Xtt ¥ = g, relative to a d-dimensional Brownian motion W on the space

(Q,f,P, (ft))

In the following, 7(; ,) denotes the first exit time of X 4% from D: for the sake of
simplicity, we write X%* = X* and 7(g ;) = 7,. Further, putting (¢;;) = oo™,

N

N
Acf(z) = % 37 it )0, S 0) + Db (1,100, 1) (9.45)

j=1

denotes the characteristic operator of the SDE (9.44).

The main results of this section, commonly known as Feynman-Ka¢ theo-
rems, give a representation of the solution u of the Cauchy-Dirichlet, Cauchy
and obstacle problems relative to (9.45) in terms of expectation of u(t, Xy).
For example, let us consider u € C2(RN*1), solution of the equation

A+ dyu = 0. (9.46)

By the It6 formula we have
T
u(T, X5") = u(t,x) —|—/ Vu(s, X0%) - o (s, X0")dWs, (9.47)
t

and if the stochastic integral on the right hand side is a martingale, by taking
expectations we get
ut,z) = E [u(T, X)) . (9.48)

This formula has a remarkable financial meaning, since it shows the connection
between the notions of risk-neutral price and arbitrage price of a derivative. As
a matter of fact, on one hand (9.48) is the usual risk-neutral pricing formula for
a financial instrument, for example a European option with payoff u(T), X;I)
On the other hand, if u represents the value of an investment strategy, the
PDE (9.46) expresses the self-financing condition (cf. Section 7.1) that, put
together with the final replicating condition, determines the arbitrage price of
a European derivative as the solution of the corresponding Cauchy problem.

Note however that the stochastic integral on the right hand side of (9.47) is
in general only a local martingale, as the following remarkable example shows
(cf., for instance, Example 7.19 in [259]).

Example 9.34 Consider the radially symmetric function defined on R\ {0}

() = log|z|  for d =2,
)| T2 for d > 3,

which is a harmonic function, that is a solution of the Laplace equation

Au(z) = Z@mﬂiu(x) =0, zecR\{0}.
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The function u is usually called fundamental solution of the Laplace equation
since it plays a role analogous to the Gaussian function for the heat equation.
For a given a d-dimensional Brownian motion W and zo € R\ {0}, we set
B = W +x4 and denote by 7 the first time when B hits the origin: it is known
(cf. Corollary 2.26 in [259]) that, for d > 2, we have

P ({w | Bs =0 for some s < t}) =0, t>0, (9.49)

that is, a Brownian motion in R¢, with d > 2, does not hit almost surely
singletons and therefore 7 = oo a.s. Consequently the process X; = u(B;) is
well defined and X; = u(Bia-) a.s. Now we show that X is a local, but not
strict, martingale.

First of all, we consider an increasing sequence (K,,) of compacts whose
union is R?\ {0} and a sequence of functions u, € C§°(R%). We also denote
by 7, the exit time of B from K,. Then by It6 formula and assuming that
u, = u on K,, we have

tATH
Xinr, = tn(Bine,) = tn(0) + / Vun(By) - dW,.
0

Since Vu,,(B) € L2, by the Optional sampling theorem (X;x, ) is a martingale
for any n and this proves that X is a local martingale.

Next we show that X is not a strict martingale by proving that its expec-
tation is not constant in time. We only consider the case d > 3: we have

. 2
E [Xt] = / 71 exp (—7@ £E0| ) dx =
d
R [g]d=2 (27t)* 2t

(by the change of variable y = £50)

1 e~ lvl?
) / o i
7% Jra |2ty + 2o
and therefore, by the dominated convergence theorem, F [X;] tends to zero as
t — o0. O

The rest of the paragraph is structured as follows: in the first three sections
we study the representation of the solution of the Cauchy-Dirichlet problem on
a bounded domain. Section 9.3.2 is devoted to the proof of some preliminary
estimates, necessary to the study of the Cauchy problem in Section 9.4.4. In
Section 9.4.5 we represent the solution of the obstacle problem in terms of the
solution of an optimal stopping problem.

9.4.1 Exit time from a bounded domain

In this section we study some simple conditions that guarantee that the first
exit time from a bounded domain D

. = inf{t | X? ¢ D}
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of the solution of the SDE (9.44) is integrable and therefore, in particular,
finite a.s.

Proposition 9.35 If there exists a function f € C*(RY), non-negative over
D and such that
A f < -1, in D, t>0, (9.50)

then E [1,] is finite for every x € D.

Before proving the proposition, we examine a remarkable example. Let us
suppose there exists A > 0 such that

e (t, ) = A, over D, ¢t > 0. (9.51)

Then there exists f € C?(RY), non-negative over D, such that (9.50) holds:
indeed it is enough to put

(@) = a(e"F — )

where «, 0 are suitable positive constants and R is large enough to make
the Euclidean ball of radius R, centered in the origin include D. Indeed f is
non-negative over D and we have

Aif(z) = —ael™ (%cu(t, z)3% + bl(t,x)ﬁ)

_ A0
< —aBe PR (7 - |b||L0°(D))

hence the claim, by choosing «, 3 large enough.
Condition (9.51) ensures that A; is not totally degenerate and is obviously
fulfilled when (¢;;) is uniformly positive definite.

Proof (of Proposition 9.35). For fixed ¢, by the It6 formula we have that

tAT, tATy
f(Xi) = f(2) + / Af(XT)ds + / VI(X?) - o(s, X2)dW,.

Since V f and o(s, ) are bounded in D when s < ¢, the stochastic integral has
null expectation and by (9.50) we have

E [f(Xiyr,)] < f(2) = B[t A7)
hence, since f > 0, we have
Elt N1 < f(x).
Finally, taking the limit as ¢t — oo, by Beppo Levi’s theorem we get

Er] < f(z). a
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Remark 9.36 Similar arguments yield a condition on the first-order (drift)
term: if |b1(¢,-)] > A in D for ¢ > 0, with X positive constant, then E [r] is
finite. Indeed, let us suppose for example that by (¢, z) > A (the case by (¢,2) <
—\ is analogous): then by applying the It6 formula to the function f(x) = z1
we have

t/\‘rl tATL
(Xine,), =21 +/ (s, X7) d5+Z/ o1i(s, X2)dW?,
0

and in mean
E [(Xme)l] > a1+ AE[t AT,

hence the claim, taking the limit as t — oo. a

9.4.2 Elliptic-parabolic equations and Dirichlet problem

In this section we assume that the coefficients of the SDE (9.44) are au-
tonomous, i.e. b = b(z) and 0 = o(z). In many cases this assumption is
not restrictive since time-dependent problems can be treated analogously by
including time in the state variables (cf. Example 9.42). In addition to the
assumptions that we stated at the beginning of the paragraph, we suppose
that F [7,] is finite for every x € D and we denote the characteristic operator
of (9.44) by

N
1
A= 3 Z CijOz,z; + Zb Og; - (9.52)
i,j=1
The following result gives a representation formula (and so, in particular, a

uniqueness result) for the classical solutions of the Dirichlet problem relative
to the elliptic-parabolic operator A:

{Au —au=f, inD, (9.53)

ulap = ¢,
where f,a, are given functions.

Theorem 9.37 Let f € L*°(D), ¢ € C(9D) and a € C(D) such that a > 0.
Ifu € C*(D)NC(D) is solution to the Dirichlet problem (9.53) then, for fized
x € D and writing for the sake of simplicity T = 7, we have

u(z) = E e Jo «(XDdt x7y / e Jo aXDds p(xm)ay| | (9.54)
0

Proof. For € > 0 small enough, let D. be a domain such that

x € D,, D. C D, dist (9D.,0D) < ¢
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We denote the exit time of X* from D, by 7. and we observe that, since X*
is continuous,

lim 7. = 7.
e—0

We put
7, =e" f(; a(X7)ds

and we notice that, by assumption, Z, €]0, 1]. Further, if u. € CZ(RY) is such
that u. = uw in D, by the It6 formula we get

d(Zrue(XY)) = Zi ((Aue — aue) (X[)dt + Vue (X)) - o (X)) dW)

hence
ZTEu(XfE) = u(x) +/ Zf(X7)dt +/ ZiNVu(X7) - o(X7)dW;.
0 0

Since Vu and o are bounded in D, by taking expectations we get

u(z) = E [ZTEu(XfE) - /OTE th(Xf)dt} .

The claim follows by passing to the limit as € — 0, by the dominated conver-
gence theorem: indeed, recalling that Z, €]0,1], we get

| Zr u(X2)| < llullp=(p), ’/0 th(Xf)dt’ <7l fllzee(p);

where, by assumption, 7 is integrable. a

By the techniques of Section 9.4.5 it is possible to get a similar result for the
strong solutions of the Dirichlet problem, i.e. for solutions u € W,>*(D)NC(D)
that satisfy the equation Au — au = f almost everywhere.

From the numerical point of view, formula (9.54) is relevant since it allows
the use of Monte Carlo-type methods for approximating the solution of the
Dirichlet problem (9.53).

e ~

Fig. 9.1. Dirichlet problem and paths of the corresponding SDE
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Remark 9.38 The hypothesis a > 0 is essential: the function
u(z,y) =sinxsiny

is a solution of the problem

Au+2u=0, in D =]0,2x[x]0,2n][,
u|aD = 07

but it does not satisfy (9.54). O

Existence results for problem (9.53) are well known in the uniformly elliptic
case: we mention the following classical theorem (we refer, e.g., to Gilbarg and
Trudinger [157], Theorem 6.13).

Theorem 9.39 Under the following assumptions

i) A is a uniformly elliptic operator, i.e. there exists a constant X > 0 such

that
N

> ci(@)&g; = NE?,  weD, £eRY;

4,j=1

it) the coefficients are Holder-continuous functions, ¢;;,bj,a, f € C*(D). Fur-
ther, the functions c;j,b;, f are bounded and a > 0;

iii) for every y € 0D there exists'® an Euclidean ball B contained in the
complement of D and such that y € B;

i) ¢ € C(OD);

there exists a classical solution u € C***(D) N C(D) of problem (9.53).
Let us now consider some remarkable examples.
Example 9.40 (Expectation of an exit time) If the problem

{Au =1, D,

ulop =0,
has a solution, then by (9.54) we have that u(z) = F [1,]. O

Example 9.41 (Poisson kernel) If a = f =0, (9.54) can be rewritten in
terms of a mean value formula. More precisely, we denote the distribution of

the random variable X7 by u®: then p” is a probability measure on 9D and
by (9.54) we have

u() = E [u(X2)] = /6 ).

10 This is a regularity condition of the boundary of D, verified if, for example, D
is a C*-manifold.
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X(w,)

X(®,)

Fig. 9.2. Cauchy-Dirichlet problem and paths of the corresponding SDE

The law p* is usually called harmonic measure of A over 0D. In particular,
let us consider the case of a Brownian motion X with initial point 2 € RV:
then A = A and if D = B(0, R) is the Euclidean ball with radius R, u” has
a density (with respect to the surface measure) whose explicit expression is
known and is given by the so-called Poisson kernel

1 R—|z)?
Ruy |z —y[V’

where wy is the measure of the unit sphere in RY. O

Example 9.42 (Heat equation) The process X; = (W, —t), where W is
a real Brownian motion, is solution of the SDE

dX} = dwy,
dX? = —dt,

and the corresponding characteristic operator

1
A= 58951951 — Oy,

is the heat operator in R%. Let us consider formula (9.54) in a rectangular
domain
D :}a1,b1[x]a2,bz[.

By examining the explicit expression of the paths of X (see also Figure 9.2),
it is clear that the value u(Z1,Z2) of a solution of the heat equation depends
only on the values of u on the portion of the boundary of D contained in
{x2 < Z2}. In general the value of u in D depends only on the values of u over
the parabolic boundary of D, defined as

8pD = aD\ (]al,bl[ X{bg})
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This fact is consistent with the results on the Cauchy-Dirichlet problem of
Section 6.1. 9, D is also called regular boundary of D since it is the part of 9D
where it is allowed to impose the boundary condition of the Dirichlet problem
for the heat equation: indeed, if Au = 0 in D then by (9.54) the values of
won Jag,b[ x{ba} are determined by the values of v on d,D and cannot be
imposed arbitrarily. a

Example 9.43 (Method of characteristics) If o = 0, the characteristic
operator is a first-order differential operator

N
A= b0,
i=1

The corresponding SDE is actually deterministic and becomes
t
X7 = x+/ b(XT)ds,
0

i.e. X is an integral curve of the vector field b:

d
2 X, =b(X,).
dt b(X)

Note that d
S u(X0) = (b(X)), Vu(X0)) = Au(X,)

and therefore a solution of Au = 0 is constant along the integral curves of b.
By Theorem 9.37, if the exit time of X from D is finite (cf. Remark 9.36),
we have the representation

u() = e~ T A (x ) / e R pxna,  (9.55)
0

for the solution of the problem

(b,Vu) —au=f in D,
ulop = .

Formula (9.55) is related to the classical it method of characteristics which

can be used to solve the initial value problem for general first order (only

contain first order partial derivatives) PDEs: for a description of the method
we refer, for instance, to Evans [124], Chapter 3.2.

For example, let us consider b(z,y) = (1, —z) on the (unbounded) domain
D = R x Ry. For a fixed point (z,y) € D, the integral curve of b starting
from (x,y) is given by

%Xt =1, Xo = €,
%Y;ﬁ = _Xt7 YO =Y,

that is (X3, Y;) = (ac +t,y—xt — %) Putting Y; = 0 we find the time ¢ at

which the curve reaches the boundary of D: we have t = —x £+ /22 + 2y and
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imposing ¢ > 0, we obtain t = —x + /22 + 2y. Thus
(X5, Ys) = (Va? +29,0)

is the point at which the integral curve starting from (z, y) reaches the bounda-
ry. Note that (X7, Y7) € Ry x {0} for any (x,y) € D and therefore R x {0}
is the regular boundary of D for the operator A = J, — x0,. Moreover, by
(9.55), the solution of the problem

Opu(z,y) — xdyu(z,y) =0, in R x Rx,
u(z,0) = p(z), x>0,

is u(z,y) = p(/x? + 2y) at least if ¢ is a sufficiently regular function: note
indeed that, in the case of a first order equation, the solution in (9.55) inherits
the regularity of the boundary datum and there is no smoothing effect due
to the expectation (i.e. convolution with the density) as in the diffusive case
(9.54). ]

9.4.3 Evolution equations and Cauchy-Dirichlet problem

In this section we state the parabolic version of Theorem 9.37. Let the assump-
tions we imposed at the beginning of the paragraph hold and let us denote
the characteristic operator of the SDE (9.44) by

N N

Au(t,z) = % D it 2)Onwult,x) + > bi(t2)0n, u(t, ). (9.56)

i,j=1 j=1
Further, we consider the cylinder
Q =10, T[xD,
whose backward!! parabolic boundary is defined by
9,Q = 0Q \ ({0} x D).
The following theorem gives a representation formula for the classical solutions

of the Cauchy-Dirichlet problem:

{Au—au—l-aﬂt:fa in @, (9.57)

u|6pQ =¥,

where f,a,  are given functions.

11 In this section we consider backward operators such as A + 9;.
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Theorem 9.44 Let f € L™(Q), ¢ € C(0,Q) and a € C(Q) such that
ap :=infa

is finite. If u € C%(Q) N C(Q) is a solution of the problem (9.57) then, for
any (t,x) € Q, we have

u(t, m) :E |:e_ ft-r/\T a(S,Xs)dS@(T A T, XT/\T):|

TANT .
-F / e Ji “(T’Xr)drf(s,Xs)ds] ,
t

where, for the sake of simplicity, we put X = X** and 7 = T(t,2)-

Proof. The proof is analogous to that of Theorem 9.37. a

9.4.4 Fundamental solution and transition density

In this section we prove a representation formula for the classical solution of
the Cauchy problem

Au—au+ 0= f, inSr:=]0,T[ xRV, (9.58)
U(T, ) =¥,
where f,a, ¢ are given functions, (¢;;) = co* and
X N
A=3 Z CijOia, + Z b;0s, (9.59)
3,7=1 j=1
is the characteristic operator of the SDE
dXt = b(t, Xt)dt + O'(t, Xt)th (960)

We assume that

i) the coefficients b, o are measurable and have at most linear growth in x;
ii) for every (t,x) € Sr, there exists a solution X of the SDE (9.60) relative
to a d-dimensional Brownian motion W on the space (£2,F, P, (F)).

Theorem 9.45 (Feynman-Kaé formula) Let u € C?(Sy) N C(Sr) be a
solution of the Cauchy problem (9.58) where a € C(St) is such that ag =
infa > —oo. Assume that i), i1) and at least one of the following conditions
are in force:

1) there exist two positive constants M,p such that

lu(t, 2)| +|f(t,2)] < M1+ |2[P),  (t,2) € Sr;
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2) the matriz o is bounded and there exist two positive constants M and «,
with o small enough'?, such that

lu(t, )| + | f(t,2)] < Me?l*F (t,2) € Sr.

Then for every (t,xz) € Sr, we have the representation formula

u(t,x) = F

T
e Ir a(S’XS)dSQD(XT) _/ e ffa(7-,Xr)drf(8’XS)dS‘| 7
t

where, for the sake of simplicity, X = X5®.

Proof. If 7g denotes the exit time of X from the Euclidean ball with radius
R, by Theorem 9.44 we have

TATR

u(t,r) =F [e’ t (s, Xe)dsy, (A TRaXT/\TR)}

taen (9.61)
-F / e~ i Xn)dr (g X \)ds| .
¢
Since
Rlim TATr(w) =T,

for every w € {2, the claim follows by taking the limit in R in (9.61) by the
dominated convergence theorem. Indeed we have pointwise convergence of the
integrands and under condition 1), we have that

o= ftTATR a(s,Xs)ds |'LL(T /\TRjXT/\’TR)‘ S Me‘aolT (1 + X;)’

TATR . _
/ e S ot Xndr £ X Vds| < Tel®TM (14 XE),
t

where
Xr = sup |Xy
0<t<T
is integrable by the maximal estimate of Theorem 9.33.
Under condition 2) we can proceed in an analogous way, by using the
integrability estimate (9.40) in Theorem 9.32. O

The Feynman-Kac¢ representation formula allows us to generalize the re-
sults of Paragraph 3.1.1 on the transition density of Brownian motion. More
12 1t is sufficient to take

672KT

2kNT’
where |0o*| < k and K is the growth constant in (9.39), so that we can apply
Theorem 9.32.

a <
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precisely, if'3 the operator A+0; has a fundamental solution I'(t, z; T, y) then,
for every ¢ € Cy(RY), the function

u(ta) = [ o))y

is the classical bounded solution of the Cauchy problem (9.58) witha = f =0
and so, by the Feynman-Ka¢ formula, we have that

E [p(X7")] = /RN e(y) I (t,z; T, y)dy.

By the arbitrariness of ¢, this means that, for fixed z € RY and ¢t < T, the
function

y— Itz T,y)
is the density of the random variable erp’m: we express this fact by saying that
I is the transition density of the SDE (9.60). This fundamental result unveils
the deep connection between PDEs and SDEs:

Theorem 9.46 If there exists the fundamental solution of the differential
operator A+ 0y with A in (9.59), then it is equal to the transition density of
the SDE (9.60).

9.4.5 Obstacle problem and optimal stopping

In this section we prove a representation formula for the strong solution of
the obstacle problem

max{Au — au + Oyu, p —u}, in Sy :=]0,T[ xRN,
(9.62)
u(Tv ) =%
where a and ¢ are given functions and, if we put (¢;;) = o0,
1 N
A= Z CijOia, + Z b; 0y, (9.63)
3,j=1 j=1
is the characteristic operator of the SDE
dXt = b(t, Xt)dt + O'(t7 Xt)th (964)

We assume that the operator
Lu = Au — au + Osu

is uniformly parabolic (Hypothesis 8.1) and has bounded and Holder conti-
nuous coefficients (Hypothesis 8.3). We sum up here some of the main conse-
quences of those hypotheses:

13 As we have seen in Chapter 8, typical conditions that guarantee the existence of
the fundamental solution are the uniform parabolicity, the boundedness and the
Holder continuity of the coefficients.
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e by Theorem 8.6, L has a fundamental solution I
e by Theorem 8.10, the Gaussian estimate

holds for every T' > t and z,y € RY, where I} is a Gaussian function,
fundamental solution of a suitable parabolic operator with constant coef-
ficients. In particular, as a consequence of Lemma 5.38, we have

I(t,z;-,-) € LI0t, T[xRY),  ge[1,1+2/N]|, (9.65)

for every (t,z) € RN+ and T > t;

e by Theorem 9.27, for every (t,2) € Sr, there exists a unique solution
X% of the SDE (9.64), with initial datum X, = z € RY| relative to a d-
dimensional Brownian motion W on the space (£2, F, P, (¥;)). By Theorem
9.46, I'(t,x;-,-) is the transition density of X"*;

e under Hypothesis 8.19 on the regularity of the function ¢, Theorem 8.21
guarantees that the obstacle problem (9.62) has a strong solution u €

SP (Sr) N C(Sr) for every p > 1; in particular u € C};{g‘c (Sr) for every

a €]0, 1[. We recall that the Holder spaces C% and the Sobolev spaces S?

were introduced in Definitions 8.2 and 8.15, respectively.

Moreover, the following weak It6 formula can be proved by using the same
arguments as in the proof of Theorem 5.37.

Theorem 9.47 (It6 formula) If f = f(t,z) € SP([0, T]xRN) and (Vf)* €
L9([0,T] x RN) with p,q > 1+ &, then we have

f(t,Xt):f(O,Xo)—i—/O Lf(s,Xs)ds+/O V (s, Xa) - o(s, Xa)dW,.

The main result of this section is a representation theorem for the obstacle
problem in terms of a solution of the optimal stopping problem for the diffusion
X. Recalling the results in discrete time in Paragraph 2.5, the connection with
the problem of pricing American options is evident: in the continuous time
case, this connection will be made precise in Chapter 11.

Theorem 9.48 (Feynman-Kaé formula) Under Hypotheses 8.1 and 8.3,
let u be a strong solution of the obstacle problem (9.62) and let us assume that
there exist two positive constants C and A, with A\ small enough, such that

lu(t,z)| < X (t,2) € Sp. (9.66)
Then, for every (t,z) € ST, we have the representation formula

U(t,x) = sup E [e_ I ‘1(57)(2"I)ds(p(T7 X:’L)} ’
TET,T

where I, 1 denotes the family of stopping times with values in [t,T).
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Proof. As for the standard Feynman-Ka¢ formula, the proof is based on the
It6 formula: since a strong solution is generally not in C2, then we have to
apply the generalized It formula of Theorem 9.47 by means of a localization
argument. For more clarity, we only treat the case a = 0.

We set Br = {x € RV | |z| < R}, R > 0, and for a fixed * € Bp we
denote by 7g the first exit time of X%* from Bg. Under our assumptions, it
is well-known that F [7g] is finite.

We show that for any (¢,z) €]0,T[xBg and 7 € Z; p such that 7 < 7p
a.s., it holds

u(t,z) = E {u(r, Xty - /t ’ Lu(s,Xﬁ’z)ds} . (9.67)

Since u € Sf (Sr) for any p > 1 then, for any positive and suitably small
e, there exists a function u* such that u®% € SP(RN+1) for any p > 1 and
uS® =win Jt,T — e[x Bg.
We next apply It6 formula to u® and using the fact that «>% = wu in
Jt,T — e[xBgr, we get
T T
u(r, X5%) = u(t, z) +/ Lu(s, X1*)ds —|—/ Vu(s, X5%) - o(s, X0")dWs,
t t

(9.68)
for any 7 € ;1 such that 7 < 7 A (T'—¢). Since u € C}Dﬁg‘c then (Vu)o is a
bounded function on ]¢,T — e[x B so that

E [/ Vu(s, X0*) - o(s,Xﬁ’m)dWS} =0.
t

Thus, taking expectations in (9.68), we conclude the proof of formula (9.67),
since € > 0 is arbitrary.

Next we recall that Lu < 0 a.e.: since the law of X %7 is absolute continuous
with respect to the Lebesgue measure, we have

E [/ Lu(s,Xﬁ’m)ds] <0, T€ %,
¢

so that from (9.67) we deduce
u(t,z) > B [u(t ATr, Xi8en)] s TE T (9.69)
Now we pass to the limit as R — +oo: it holds

lim 7ATR =T
R—+o00

and, by the growth condition (9.66), we have

(T A TR, X7Rr)| < Cexp <>\ sup ’XﬁlF) '

t<s<T
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By the maximal estimates of Theorem 9.32, the random variable on the right
hand side is integrable, thus by the dominated convergence theorem, passing
to the limit in (9.69) as R — 400, we infer

u(t, ) > E [u(r, X2%)] > E [p(r, X27)] .

This proves that

u(t,z) > sup E [o(t,XL")].
TET:,T

We conclude the proof by setting
ro = inf{s € [1,7] | u(s, X) = g(s, Xi%)}.

Since Lu = 0 a.e. on {u > ¢}, it holds
ToONTR
E [/ Lu(s, X"")ds| = 0,
¢

so that by (9.67) we have
U(t,ﬂ?) =F [U(TO A TRaX'ir&gi\‘rR)} .

Using the previous argument to pass to the limit as R — +oo, we finally
deduce
u(t"r) =FE [U(T07X'f{)m):| =F I:QO(T()’X:'&I)} . .

From the Feynman-Ka¢ representation it is possible to obtain useful in-
formation about the solution of the obstacle problem under more specific
assumptions. For example, if we suppose that the function ¢ is Lipschitz con-
tinuous in x uniformly in ¢, i.e. there exists a constant C' such that

lp(t,x) — oty <Clz—yl,  (t2),(ty) € Sr,

then we can prove that the spatial gradient Vu is bounded over Sp. More
precisely we have the following:

Proposition 9.49 Under the assumptions of Theorem 9.48, suppose that the
function ¢ and the coefficients of the SDE (9.64) are Lipschitz continuous in
uniformly with respect to t over St. Further, let the coefficient a be a constant
or ¢ be bounded. Then the strong solution w of the obstacle problem (9.62)
satisfies

Vu € L*(Sr).

Proof. Let us first consider the case a is a constant. The claim follows from
the general inequality

sup F(r)— sup G(1)| < sup |F(1) = G(T)],
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that holds true for every function F,G. By the Feynman-Ka¢ representation
formula we have

ult,2) —u(t, )| < sup B [0 fo(r, X07) — o(r, X19)|| <
TET,T

(by the assumption of Lipschitz continuity, for a suitable positive constant c)

<c sup F [’Xﬁ”“ — XﬁyH <
T€ET, T

(by the result on the dependence on the initial datum, Theorem 9.16)
S C1 |.’I,‘ - y|a

where the constant ¢; depends only on 7" and on the Lipschitz constants of ¢
and of the coefficients.

If ¢ is bounded, the claim follows in an analogous way by using the fact
that the product of two bounded Lipschitz-continuous functions

(t,z) — e 7ol X0 ds o Xty

is itself a Lipschitz-continuous function. O

9.5 Linear equations

In this paragraph we study the simplest and most important class of stochastic
equations, namely those whose coefficients are linear functions of the solution,
and we introduce the corresponding class of second-order differential opera-
tors, the Kolmogorov operators. Such operators arise in some classical physical
and financial models, and mostly possess all the good properties of the heat
operator, even though they are not, in general, uniformly parabolic.

Let us consider the following linear SDE in RY

dX; = (B(t)X, + b(t))dt + o (t)dW, (9.70)

where b, B and o are Lj -functions with values in the space of (N x1), (N xN)
and (N x d)-dimensional matrices respectively, and W is a d-dimensional
Brownian motion with d < N. Since the standard hypotheses of Definition
9.4 hold, a strong solution of (9.70) exists and is unique. Further, just as in the
case of deterministic linear equations, it is also possible to obtain the explicit
expression for the solution.

Let us denote by @ = ®(t) the solution of the ordinary Cauchy problem

P'(t) = B(t)2(1),
D(ty) = In,

where Iy is the (N x N) identity matrix.
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Proposition 9.50 The solution of the SDE (9.70) with initial condition
X§ = x is given by

X7 = d(1) (ac + /0 t &1 (5)b(s)ds + /0 t qﬁ—l(s)a(s)dws) . (9.71)

Further, X[ has multi-normal distribution with mean

E[X?] = &(t) <9: + /0 t slil(s)b(s)ds> (9.72)

and covariance matriz

cov(X() = d(t) </0 D 1(s)a(s) (@*1(3)0(5))* ds> D (). (9.73)
Proof. Hereafter we use the notation
m,(t) = E[X]], C(t) = cov(XY)). (9.74)

To prove that X* in (9.71) is the solution, we merely have to use the Ito
formula: we put

t t
Y2+ / &1 (s)b(s)ds + / & (5)o (s)dW,
0 0
and we have
dX7? = d(D(t)Y;) = &' (1)Yydt + P(t)dY, = (B(t) X} + b(t))dt + o (t)dW;.
Since X7’ is the sum of integrals of deterministic functions, by Proposition
5.32 we have that X; has multi-normal distribution with mean and covariance

given by (9.72) and (9.73) respectively. For the sake of clarity, we repeat the
computation of the covariance matrix: we have

cov(X7) = B [(X; — ma(t)) (X; — ma(t)"]

/ B (5o (s)aw, ( / t ¢—1<s>a(s)dWS)

and the thesis follows by It6 isometry. a

*

— O(t)E &* (1)

We explicitly note that, since d < N, in general the matriz C(t) is only
positive semi-definite. The case C(t) > 0 is particularly important: indeed in
this case X7 has density y — I'(0,z;t,y), where

FO.ast) = s e (5000 —ma), (- ma(0))
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for x,y € RN and t > 0. Moreover, by the results in Section 9.4.4, I" is the
fundamental solution of the differential operator in RN+ associated to the
linear SDE:
N N
L= Cij(1)0a,z; + > bi(1)a, + Y Bij(t)i0a, + 01
i=1

i=1

DN | =
IMZ

1

=

5

(9.75)

Il
DN | =
IMZ

Cij (t)amilj + <b(t) + B(t)‘r> v> + 0

3,7=1

where (¢;;) = 00" and V = (0p,,...,05, )
Remark 9.51 The case constant coefficients, b(t) = b, B(t) = B and o(t) =

o, is utterly important. First of all, let us recall that in this case we have
d(t) = e'B where

P = Z:O (tf !)n. (9.76)

Note that the series in (9.76) is absolutely convergent, since

o0 o0

[t"B"|| "™ in B
2 S 2 Bl =L
n=0 n=0

Moreover we have
* *
(eP)" =etP", etBesB = ()8 t,s e R

B

In particular, e!f is not degenerate and we have that

(etB)_l — B
Then, by Proposition 9.50, the solution of the linear SDE
dX; = (b+ BX})dt + odW, (9.77)

with initial datum =z, is given by

t t
XP =¢'P (x—i—/ e_SBbds+/ e_SBJdWS)
0 0
and we have

¢ ¢
mg(t) = B[XF] = e'B (x —|—/ eSBbds) =By —|—/ e*Pods (9.78)
0 0
and

t t
C(t) = cov(X]) = €tB/ e *Bg (6_330‘)* dsetP” = / (e*Po) (GSBO')* ds.
0 0
(9.79)
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In this case we also have that
X" =X, t>t, (9.80)
is the solution of (9.77) with initial condition X,°" = x. O

Example 9.52 If N =d, B =0 and b, o are constant with ¢ non degenerate,
L in (9.75) is the parabolic operator with constant coefficients

1 N N
L= ‘_Zl(ag*)ijamj + Zl biOy, + Oy
i,j= i=

Then, since e!? is the identity matrix, by (9.78)-(9.79) we have
mg(t) = x + tb, C(t) =too™,

and by (9.80) the fundamental solution of L is given by (see also Appendix

A3.2)
N 2
(2n(T - 1) % o1y — @ — (T = )
rt,Ty) = ———— — .81
for z,y e RN and t < T. a

Example 9.53 The SDE in R?

dX} = dwy,
dX}? = X/dt,

is the simplified version of the Langevin equation [231] that describes the
motion of a particle in the phase space: X} and X? represent the velocity and
the position of the particle, respectively. In this case d =1 < N = 2 and we

have
00 1

Since B? = 0, the matrix B is nilpotent and

10

tB _

= (17):

Moreover, if we put = (1, x2), using notation (9.78)-(9.79) we have

mx(t) = GtBl' = (1‘171‘2 + tl‘1)7

t t
— sB ___x_sB* _ 10 10 1 s
C(t)—/oe ooe dS—/O (sl)(OO)(Ol)dS_

|
/N
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We note that C(t) is positive definite for every ¢ > 0 and so the associated

differential operator

1
L= 569%1 + 2104, + O (9.82)

has the following fundamental solution

V3
(T —t)%

exp (= CHT )y = TPy - 05

Itz T,y) =

for z,y € R? and t < T, where

o~
)

o+
|

9
—
—
-
S—
Il
VS
| e
)
o
~_

More explicitly we have

_ V3

(T — 1)

exp ((yl —21)? 32y — 2a0 — (T — ) (1 + xl))2> '

I(t,a;T,y) =

2T — 1) 2T — t)3 o)

We emphasize that L in (9.82) it is not a uniformly parabolic operator since
the matrix of the second-order part of L

. (10
0'0'—00

is degenerate. Nevertheless L has a Gaussian fundamental solution as the
heat equation. Kolmogorov [214] was the first to determine the fundamental
solution of L in (9.82): for further details we refer to the introduction in
Hormander’s paper [170].

From a financial point of view, the operator L arises in the problem of
pricing Asian options with geometric average and Black-Scholes dynamics (cf.
Section 7.6.2). O

9.5.1 Kalman condition

The distribution of X, solution of a linear SDE, is multi-normal and in general
it is degenerate. In this section we give some necessary and sufficient conditions
that make the covariance matrix of X; positive definite so that X; has a
density.

For the sake of simplicity and clarity of exposition, in the sequel we take
B and o constant. To avoid trivial situations, we also suppose that the matrix
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0 has maximum rank d: then, after a suitable linear transformation, we can
assume that the columns of o are the first d elements of the canonical basis,
i.e. o assumes the block form
14
=1y )

where I is the (d x d) identity matrix. As usual B is a (N x N)-dimensional
generic matrix. Note that by (9.73) the co-variance matrix of X; does not
depend on b.

The first result that we present gives a condition in terms of controllability
in the setting of linear-system theory; for further details we refer, for instance,
to Lee and Markus [233] or Zabczyk [341]. We first recall the following clas-
sical:

Definition 9.54 The pair (B, o) is controllable over [0,T)] if for every x,y €
RN there ezists a function v € C([0,T];R?) such that the problem

Y (t) = By(t) +ou(t),  t€0,T]
10) ==z,  AT) =y,
has a solution. The function v is called a control for (B,o).

Theorem 9.55 Given T > 0, the matrix

C(T) = / ' (ePo) (e'Po)” dt (9.84)
i :

is positive definite if and only if the pair (B, o) is controllable over [0,T]. In
that case a control is given by

v(t) = G* ()M~ (T)(e TPy — z), t € [0,T], (9.85)

where

M(T) = /0 ' G(t)G* (t)dt. (9.86)

Before proving the theorem, we dwell on some remarks. First of all we intro-
duce the notation
G(t)=eBg

that will be used systematically in what follows. Then, for fixed z € RV, as a
particular case of formula (9.71), we have that

t
v(t) = e'B (x +/ G(s)v(s)ds) (9.87)
0
is the solution of the linear Cauchy problem

{7’@) =By(t) +ov(t), t€JO, T, (9.88)

~7(0) = x.
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If (B, o) is controllable over [0, T, then for every y € RY there exists a control
v such that the trajectory v in (9.87) hits the target y at time T'. The existence
of a control is not guaranteed in general since v in (9.88) multiplies the matrix
o that “reduces” the influence of the control: this is obvious in the case o = 0.
In general, the differential equation in (9.88) can be rewritten in the following

way:
d

Y =By+) wo',
i=1

where the vectors o?, i = 1,...,d, denote the columns of o, i.e. the first d
vectors of the canonical basis of RY. The physical interpretation is that the
“speed” +' equals B~ plus a linear combination of the vectors o?, i = 1,...,d:
the coeflicients of this linear combination are the components of the control v.
Therefore v allows us to control the speed of the trajectory v in RN only in the
first d directions. Evidently if ¢ is the identity matrix, then the columns of o
constitute the canonical basis of RN and (B, o) is controllable for any matrix
B. Nevertheless there are cases in which the contribution of B is crucial, as
in the following:

Example 9.56 Let B and ¢ be as in Example 9.53: then v has real values
and problem (9.88) becomes

Y1 (t) = (),
Y5(t) = 1 (t), (9.89)
7(0) =z

The control v acts directly only on the first component of -, but influences
also o through the second equation: in this case we can directly verify that
(B, 0) is controllable over [0, 7] for every positive T' by using the control in
(9.85) (see Figure 9.3). O

Proof (of Theorem 9.55). We recall that by (9.79) we have
C(T) = e"BM(T)eTE",

with M as in (9.86). Since the exponential matrices are non-degenerate, C(T")
is positive definite if and only if M(T) is as such.

We suppose M (T) > 0 and prove that (B, o) is controllable over [0, T]. For
fixed z € RY, we consider the curve 7 in (9.87), solution of problem (9.88):
given y € RY | we have that v(T) = y if and only if

/T Gt)v(t)dt = e "By —x =: 2, (9.90)
0

and therefore, using the non-degeneracy assumption on M (T), a control is
simply given as in (9.85) by

v(t) = G* ()M (T)z, t€10,7).
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 9.3. Graph of the optimal trajectory v(t) = (6(t —t?), 3t> — 2t*) solution of the
problem (9.89) with v(0) = z = (0,0) and such that it satisfies the final condition

(1) =y=(0,1)

Conversely, let (B, o) be controllable over [0,T] and, by contradiction, let us
suppose that M(T) is degenerate. Then there exists w € RY \ {0} such that

T
0 = (M(T)w, w) :/0 ot G(#) [2dt,

and consequently we have
w*G(t) =0, t €10,7).

By assumption, (B, o) is controllable over [0,7] and so for every x,y € RV
there exists a suitable control v such that (9.90) holds. Multiplying by w*, we
have

T
w¥z = / w*G(s)v(s)ds = 0,
0
and this leads to a contradiction. O

Remark 9.57 The control v in (9.85) is optimal in the sense that it mini-
mizes the “cost functional”

T
U0) = [0laqgomy = [ o0 u(t)

This can be proved by the Lagrange-Ljusternik theorem (cf. for instance [322])
that extends to the functional setting the standard Lagrange multipliers the-
orem. Indeed, in order to minimize U subject to the constraint (9.90), we
consider the Lagrange functional

T
L(0,2) = 0l F20.7y) = A* (/0 G(t)v(t)dt — Z) ;



322 9 Stochastic differential equations

where A € RV is the Lagrange multiplier. Taking the Fréchet differential of
L, we impose that v is a stationary point of £ and we get

T T
DL(u) = 2/ o(t) u(t)dt — )\*/ Glyu(t)dt =0,  ue L2(0,T)).
0 0
Then we find v = %)\G* where A is determined by the constraint (9.90),
A = 2M~(T)z, according with (9.85). O

The following result gives a practical criterion to check whether the co-
variance matrix is non-degenerate.

Theorem 9.58 (Kalman rank condition) The matriz C(T') in (9.84) is
positive definite for T > 0 if and only if the pair (B, o) verifies the Kalman
condition, i.e. the (N X (Nd))-dimensional block matriz, defined by

(¢ Bo B?c --- BN"lg), (9.91)

has mazximum rank, equal to N.

We point out explicitly that the Kalman condition does not depend on 7" and
consequently C(T') is positive definite for some positive T if and only if it is
positive definite for every positive T.

Example 9.59 In Example 9.53, we have

(o) 2=(0) (o))

therefore (o Bo) is the identity matrix and evidently the Kalman condition
is satisfied. |

Proof (of Theorem 9.58). We recall the Cayley-Hamilton theorem: let
p(A) =det(A—Ay) =AY + @ AV + - fan A +an

be the characteristic polynomial of an (N x N)-dimensional matrix A. Then
we have p(A) = 0 and so every power A* with k > N can be expressed as a
linear combination of Iy, A4,..., AN

Now we observe that the matrix (9.91) does not have maximum rank if
and only if there exists w € RY \ {0} such that

w*ec =w*Bo = =w*BY "o = 0. (9.92)

Then, assuming that the matrix (9.91) does not have maximum rank, by (9.92)
and the Cayley-Hamilton theorem, we have

w*B*e =0, k € Ny,
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hence we infer

Consequently
T
(C(T)w, w) :/ lw*eBa| dt = 0, (9.93)
0
and C(T) is degenerate for every T > 0.
Conversely, if C(T') is degenerate for some T' > 0 then there exists w €

RN\ {0} such that (9.93) holds, hence

ft) :=w*ePa =0, te0,T).

Differentiating we get
dk
0= ﬁf(t) |li—o= w*BFo, k € No,
so we infer that the matrix (9.91) does not have maximum rank, by (9.92).0

9.5.2 Kolmogorov equations and Hérmander condition

Let us consider the linear SDE
dX, = (BX, + b)dt + cdW, (9.94)
with B,b, o constant, o given by
(9
R
and let us assume that the Kalman condition holds true:
rank (U Bo B?c - BN_IO') = N.
Definition 9.60 We say that the differential operator in RN +1
L= %AW + (b+ B, V) +d,, (9.95)

associated to the SDE (9.94), is a Kolmogorov-type operator with constant
coefficients. Here we use the notation

d
A]Rd = Z 8@“ :
i=1
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We recall the definition of C and m, in (9.78)-(9.79). By the Kalman condition
C(t) is positive definite for ¢ > 0, hence it follows that L has a fundamental
solution whose explicit expression is
N
Dt o Ty) = — P2 he  (T=0(-ma(T=0).(g=ma (1))
det C(T —t)
for z,y € RN and t < T.

Now we prove that the Kalman condition is equivalent to the Horman-
der condition which is a non-degeneracy criterion, well known in the theory
of partial differential equations. By convention, we identify every first-order
differential operator Z in RY given by

2

Zf(@) =3 (), f(2),

k=1

with the vector field of its coefficients and so we also write
Z = (a1,...,aN).

The commutator of Z with

N
U= B,
k=1

is defined by

N
(Z2,U]=2U~-UZ=> (ZB— Uay)0s,.
k=1

Hormander’s theorem [170] (see also Stroock [318] for a more recent exposi-
tion) is a very general result that, in the particular case of the Kolmogorov
operator with constant coefficients in (9.95), states that L has a fundamental
solution if and only if, at any point € RY, the vector space spanned by the
differential operators (vector fields)

Oryseevy O, and Y .= (Bx,V),

and by their commutators of every order, computed at z, coincides with RV .
This is the so-called Hormander condition.

Example 9.61 a

i) If the operator is parabolic we have d = N therefore the Hoérmander
condition is obviously satisfied, without resorting to commutators, since
Oz,5- -0z, form the canonical basis of RV.
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ii) In Example 9.53 we simply have Y = 210,,. So
0z, ~ (1,0) and [0z, Y] = 0py ~ (0,1)

span R2.
iii) Let us consider the differential operator

Bmlml + 1’18952 + xgc‘?zs + 0.

Here N =3,d=1and Y = 210,, +220,,: also in this case the Hérmander
condition is verified since

89617 [83?17Y] = 8902) [[&Cuy]ay} = 6;837

span R3.

Proposition 9.62 Kalman and Hormander conditions are equivalent.

Proof. It is enough to notice that, for i =1,...,d,

N
[aﬂvw Y} = Z bkiawk
k=1

is the i-th column of the matrix B. Further, [[0,,,Y],Y] is the i-th column of
the matrix B? and an analogous representation holds for higher-order com-

mutators.
On the other hand, for k¥ = 1,...,N, B*s in (9.91) is the (N x d)-
dimensional matrix whose columns are the first d columns of B*. a

Let us now introduce the definition of Kolmogorov operator with variable
coefficients. We consider the SDE in RY

dX, = (BX; + b(t, X;))dt + o(t, X )dWy, (9.96)

where as usual W is a d-dimensional Brownian motion and we assume:

().

where ¢ = 0¢(t,z) is a d x d-dimensional matrix such that (c¢;;) = 00§
is uniformly positive definite, i.e. there exists a positive constant A such
that

i) the matrix o takes the form

Z cij(t, x)ninj > A?|n)?, neR? (t,z) e RN,

4,j=1
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ii) B and <éd) verify the Kalman condition or, in other terms,

1
iARd + <Bl‘, V> + 825

is a Kolmogorov operator with constant coefficients;
iii) bg41, - .., bn are functions of the variable ¢ only.

The first condition weakens the uniform parabolicity in (8.2). The second as-
sumption is a non-degeneracy condition that makes up for the possible absence
of parabolicity: if the coefficients are constant, this guarantees the existence
of a fundamental solution. The third condition aims at preserving the second
one: if b could be a generic function, then the linear term BX} in the stochastic
equation would be superfluous. In particular the Kalman condition, which is
based upon the particular structure of the matrix B, would be lost.

Definition 9.63 We say that the differential operator in RN +1

d d
Z cij(tvx)awiawj + Z bz(t,x)(‘)wb + <Bm7 v> + 875,

i,j=1 i=1

L =

DN | =

associated to the SDE (9.96), is a Kolmogorov-type operator with variable
coefficients.

A theory, analogous to the classical one for uniformly parabolic operators,
presented in Chapter 8, has been developed by various authors for the gen-
eral class of Kolmogorov operators with variable coefficients: we mention
the results in Lanconelli and Polidoro [230], Polidoro [283], [284], [285], Di
Francesco and Pascucci [94]. Recently in [95] and [276] the obstacle problem
for Kolmogorov operators was studied, and with this the corresponding opti-
mal stopping problem that arises in the pricing problem for American Asian
options.

9.5.3 Examples

We examine a couple of interesting examples of linear SDEs.

Example 9.64 (Brownian bridge) Let b € R. We consider the 1-dimensional

SDE
b— By

dB = dt + dW,
1—¢ + ts
whose solution, at least for ¢t < 1, is given by
t
dW
Bt:BO(l—t)+bt+(1—t)/ s
0 — S

Then we have
E [B:] = Bo(1 —t) + bt,
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and, by It6 isometry,

var(B;) = (1 4)2/0 (1?‘;2 =t(1 —1t).

We note that

lim E[B] =0, and lim var(B;) = 0.

t—1- t—1-

As a matter of fact, we can prove that

lim B; =0, a.s.
t—1-
since, for t < 1, we have
Bt—b
L aw, Law,\’
o 1—s o 1—s
—_——
=0
t ds
=(1-t)*((b- Bo) e | =
< 2 (1—s>2>
(1—1)%( (b— By) 1 1 0
_ _ — .o
O _t t—1— U

Example 9.65 (Ornstein and Uhlenbeck [328], Langevin [231]) We
consider the following model for the motion of a particle with friction: speed
and position are described by the pair X; = (V;, P;), solution of the linear
SDE

dVy = —uVidt + odW;

dP, = Vdt,
where W is a real Brownian motion, p and o are the positive friction and
diffusion coefficients. Equivalently we have

dX; = BXdt + adW;

- (10) ()

We can easily check that the Kalman condition is verified. Further, it is im-
mediate to prove by induction that, for every n € N, we have that

ro(G08)

where
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N n —ut
oY @B)" _ [ e 0
& - IQ + —~ ! = 1—e Ht 1 .

m

and so

We know that X, has normal distribution. To conclude, we compute the ex-
pectation and covariance matrix:

20 = (gl ) = (30) = (m s - ey )
further,

C(t

~—

o var(Vy) cov(Vi, P)\ b eB—_x\ sB*
_<cov(Vt,Pt) var(P;) —Jo (*Po0™) e* ds

t —us —ps l—e P
= 0'2/ 1?6*#5 e ¥ H ds
0 0 0 1

e HS _g—2us

—2us

2 ! € M
=0 /O oI5 _ o208 (176—,”)2 ds
w I
1 _ ,—2ut 1 o —put —2ut
) ( om (1 e ) 77 (1 2e Mt e ) )
g ) . O

g (L= 2e7# 4 e72) <ut e mt €03
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Continuous market models

In this chapter we present the theory of derivative pricing and hedging for
continuous-time diffusion models. As in the discrete-time case, the concept of
martingale measure plays a central role: we prove that any equivalent martin-
gale measure (EMM) is associated to a market price of risk and determines a
risk-neutral price for derivatives, that avoids the introduction of arbitrage op-
portunities. In this setting we generalize the theory in discrete time of Chapter
2 and extend the Markovian formulation of Chapter 7, based upon parabolic
equations.

Our presentation follows essentially the probabilistic approach introduced
in the papers by Harrison and Kreps [163], Harrison and Pliska [164]. In the
first two paragraphs we give the theoretical results on the change of proba-
bility measure and on the representation of Brownian martingales. Then, we
introduce the market models in continuous time and we study the existence of
an EMM and its relation with the absence of arbitrage opportunities. At first
we discuss pricing and hedging of options in a general framework; afterwards
we treat the Markovian case that is based upon the parabolic PDE theory
developed in the previous chapters: this case is particularly significant, since
it allows the use of efficient numerical methods to determine the price and the
hedging strategy of a derivative. We next give a coincise description of the
well-known technique of the change of numeraire: in particular, we examine
some remarkable applications to the fixed-income markets and prove a quite
general pricing formula.

10.1 Change of measure

10.1.1 Exponential martingales

We consider a d-dimensional Brownian motion (Wt)te[o,T] on the space
(2,F,P,(F)). Let A\ € L2 _ be a d-dimensional process: we define the ez-

loc

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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ponential martingale associated to A (cf. Example 5.12) as

t 1 t
Z> = exp (—/ Ae - dW, — 5/ )\S|2ds> . telo,T. (10.1)
0 0

We recall that the symbol “” denotes the scalar product in R¢. By the Ito
formula we have
dZ}) = =ZM\ - dWy, (10.2)

so that Z* is a local martingale. Since Z* is positive, by Proposition 4.40 it
is also a super-martingale:

E[Z])<E[Z] =1, tel.T),
and (Z)ie(o,77 is a strict martingale if and only if E [Z3] = 1.

Lemma 10.1 If there exists a constant C' such that
T
/ IN|*dt < C  as. (10.3)
0
then Z* in (10.1) is a martingale such that

E[ sup (Zt*)”] <oo, p>1. (10.4)
0<t<T

In particular Z* € LP(£2, P) for every p > 1.
Proof. We put

Zp = sup Z{\.
0<t<T

For every ¢ > 0, we have
R t
P(ZTZC) §P( sup exp(—/ )\s'dWS> ZC)
0<t<T 0
t
:P(Sup <_/ )\des>>10gC)<
0<t<T 0

(by Corollary 9.31, using condition (10.3) with ¢, co positive constants)

< 616702(10%)2.
Then, by Proposition A.56 we have
E [Zg] :p/ r-lp (ZT > g) d¢ < 0.
0

In particular for p = 2 we have that AZ* € L? and so, by (10.2), that Z* is a
martingale. a
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Remark 10.2 Given z = (21,...,2q) € C%, we set
d d
22 :ZZ’% and  |z|? :Z\zk|2.
k=1 k=1

If A = (A',...,\%) takes complex values, \¥ € C, k& = 1,...,d, then by
proceeding as in the proof of Lemma 10.1, we can prove that, if

T
/ NPdt<C  P-as.,
0

t 1 t
Z} = exp (—/ As - AWy — 5/ Aids) , t € 0,77,
0 0

is a (complex) martingale in LP({2, P) for every p > 1. O

then

We now suppose that Z* in (10.1) is a martingale and define the measure
Q on (£2,F) by
dq

= Z3, (10.5)

i.e.

Q(F) = / Z3dP, FeF.
F
We recall Bayes’ formula, Theorem A.113: for every X € L'(§2, Q) we have

EY [XZ) | 7]

PRI )

te[0,77. (10.6)

Consequently we get the following:

Lemma 10.3 Assume that Z* in (10.1) is a P-martingale and Q is the
probability measure defined in (10.5). Then a process (My)icpo,r) s a Q-
martingale if and only if (MtZt)‘)te[o,T] is a P-martingale.

Proof. Since Z* is strictly positive and adapted, it is clear that M is adapted
if and only if MZ* is adapted. Moreover, since Z* is a P-martingale, M is
Q-integrable if and only if M Z?* is P-integrable: indeed

EC (M) = BY [|M| 23] = BT [EY [| M| 27 | 72]] =
(since M is adapted)
= BV [|M|E" [Z7 | F]] = ET [|M:] 2} -
Analogously, for s < ¢ we have

EY Mz} | FJ) = EY [EP [MZ3 | Ri] | F.) = EP M2} | 7] .
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Then by (10.6) with X = M; we have

EP [MZ) | F)]  EP Mz} | F.]
ECQ M, | F,) = L = ! ,
(M| 7] = —5F (23| 7] Z

hence the claim. O

Remark 10.4 Under the assumptions of Lemma 10.3, the process

-1 t 1/t
(Zt/\) = exp (/ )\s . dWs +5 / |)‘s|2d8>
0 2 0

is a Q-martingale since Z* (Z )‘) s clearly a P-martingale. Further, for every
integrable random variable X, we have

EP[X] = EP [X (z)"" Z%} = B9 [X (Z%)_l}

and so P
i~ A
In particular P, Q are equivalent measures since they reciprocally have strictly
positive densities.
Finally, by proceeding as in Lemma 10.1, we can prove that, if condition

(10.3) holds, then (Z>‘)_1 € LP(£2, P) for every p > 1. O

10.1.2 Girsanov’s theorem

Girsanov’s theorem shows that it is possible to substitute “arbitrarily” the
drift of an Ito6 process by modifying appropriately the considered probability
measure and Brownian motion, while keeping unchanged the diffusion coeffi-
cient. In this section (W3);c[o,7] denotes a d-dimensional Brownian motion on
the space (£2, F, P, (F;)). The main result is the following:

Theorem 10.5 (Girsanov’s theorem) Let Z* in (10.1) be the exponential

martingale associated to the process A € L120c' We assume that Z» is a P-

martingale and we consider the measure Q defined by

dQ N
— =75 10.
Then the process
t
W) =W, +/ Aeds, t€[0,T], (10.8)
0

is a Brownian motion on (£2,F,Q, (F1)).
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Proof. We use the Brownian motion characterization Theorem 5.33. We have
to prove that, for every ¢ € R, the process

. 1£12
V= WS e 0,7,

is a @Q-martingale or, equivalently, by Lemma 10.3, that the process

2 t t
Y Z, = exp (zf Wt+z/£ Ads+|5| /Awﬂ%—%/ IAslzds)
0 0

—exp | — —3€) - _1 t k—ikzs
- p</0<As 9, 2;/()(& s)d>

is a P-martingale. If

T
/ I\ |dt < C P-as.,
0

then the claim follows from Lemma 10.1 that holds true also for complex-
valued processes and in particular for A — i€ (cf. Remark 10.2).

In general we have to use a localization argument: we consider the sequence
of stopping times

¢
7',1:T/\inf{t|/|)\5|2als>n}7 n €N,
0
By Lemma, 10.1, the process (Yté\m Zipr, ) is a P-martingale and we have
EP |:)/t/\’7' Zt/\Tn | ‘7::| - éé-/\TnZS/\TT,,7 s<t, ne N.

Therefore, in order to prove that Y¢Z is a martingale, it is enough to show
that (Yfm,n Zinr,) converges to (i Z;) in L*-norm as n tends to infinity. Since

lim Y;/\T = Yf a.s.

n—oo
and 0 < YfAT" < e~z , it is enough to prove that
lim Zinr, =2, in L'(2,P).
n—oo

Putting
Mn = min{Zt/\‘rn 5 Zt}7

we have 0 < M,, < Z; and, by the dominated convergence theorem

lim E[M,] = E[Z].

n—oo

On the other hand,

E “Zt - Zt/\TnH =E [Zt - Mn} +E [Zt/\‘rn - Mn] =
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(since E [Zy] = E[Zipr,] = 1)
=2F[Z; — M,)
hence the claim. a

The main assumption of the Girsanov’s theorem is the martingale property
of the process Z*. In financial applications we frequently assume that \ is a
bounded process: in that case the martingale property of Z* follows from
Lemma 10.1. Nevertheless in general the fact that A\ is bounded may not be
verified directly, so the following Novikov condition [266] can be very useful:
we merely state it here.

Theorem 10.6 (Novikov condition) If \ € L2  is such that

loc
1 (T
exp 5/ |\s|?ds
0

then the exponential martingale Z» in (10.1) is a strict martingale.

FE < 0

10.1.3 Representation of Brownian martingales

Let (Wi)iejo, 1) be a d-dimensional Brownian motion on the space ({2, F, P)
endowed with the Brownian filtration 7' = (FV),c(0,77- We know (cf. The-
orem 5.20) that, for every d-dimensional process u € L*(F"V) and M, € R,
the real-valued integral process

t
Mt:MO+/ we-dW,,  tel0,T], (10.9)
0

is a F"W-martingale. In this paragraph we prove that, conversely, every real
FW_martingale can be represented in the form (10.9).

Theorem 10.7 For every real random variable X € L?(2, F¥') there exists
a unique' u € L2(FW) such that

T
X:E[X]+/ g - AW, (10.10)
0

For the sake of simplicity, we consider only the 1-dimensional case d = 1 even
though the arguments that follow can be adapted to the general case. The
proof of Theorem 10.7 is based upon the following preliminary results.

Lemma 10.8 The collection of random variables of the form

Wiy, s Wi,

n

with ¢ € CPR™), ty, € [0,T] for k = 1,...,n and n € N, is dense in
LQ(Q,}—YW).

! In the sense of the (m ® P)-equivalence, cf. Definition 3.28.
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Proof. We consider a countable dense subset {t, }nen of [0,7T] and we define
the discrete filtration

Foni=cWy,...,Wy, ), n € N;

we observe that 7V = o(F,,n € N). Given X € L?(£2, F})¥), we consider the
discrete martingale defined by

X,=F[X|F)], n € N.
By Corollary A.134 we have
lim X, = X, in L?;

further, by Corollary A.10, for every n € N there exists a measurable function
©™ such that
X, = oMWy, ... W)

By density, ¢(™) can be approximated in L?(R™) by a sequence (gpén))k.eN in

C§°(R™): it follows that

kh_{go(pl(cn)(wtl""’Wt )=X,, in L%, P),

and this concludes the proof. O

Lemma 10.9 The space of the linear combinations of random variables of

the form
T 1 T
Z> = exp —/ A(t) - dWy — 5/ IA(t)Pdt |,
0 0

where X is a function in L>=([0,T];R?), is dense in L*(2, F¥, P).
Proof. We prove the claim by verifying that, if
(X, ZM 12(0) :/ XZ P =0, (10.11)
Q
for every A € L*°([0,T]), then X = 0 a.s. As before, we consider only the case

d=1.
By choosing a suitable piecewise constant function A, from (10.11) we infer

F(&) ::/ eStWat+aWe, xqp — 0, (10.12)
2

for every £ € R™, t1,...,t, € [0,T] and n € N. Now we consider the extension
of F on C™:

F(z) = / e Wat+zWe, xgp, zeC",
0
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and we observe that, by the analytic continuation principle and (10.12), F = 0.
Then, on the grounds of the inverse Fourier transform Theorem A.65, for every
v € C§°(R™) we have

1 R
/()w(wtm...,WtH)XdP:/Q ((277)” /R eng‘1+"'+£"Wt"ap(—{)df) XdP

1 R
- (27T)n/ <P(—r£)/ne&w“+ oo XdPdg = 0,
and, by Lemma 10.8, this proves the claim. O

Proof (of Theorem 10.7). Concerning the uniqueness, if u,v € L? satisfy
(10.10), then

T
/ (’U/t—’l)t)'th:O
0

and therefore, by Corollary 4.13, u and v are (m ® P)-equivalent.
Concerning the existence, first of all we consider the case in which X is of
the form

T T
1
X = 7> —exp <_/ E) - dW, — 5/ A(t)?dt) (10.13)
0 0
with A € L>([0,7]) deterministic function. By the Ité formula we have

dZ} = —Z}\(t) - dW,

hence "
X:l—/ ZIN(t) - dW;.
0

Further, by Lemma 10.1, since ) is a bounded function we have AZ* € L2;
this proves (10.10) for X in (10.13).

Now, by Lemma 10.9 every X € L?(2, 7}V, P) can be approximated in
L? by a sequence (X,,) of linear combinations of random variables of the type
(10.13): therefore we have the representation

T
X, = E[X] +/ u - dW, (10.14)
0
with u™ € L2. By It6 isometry we have

Elx, - Xm)ﬂ —(E[Xn - Xn])?+ E

T
| =]
0

hence (u™) is a Cauchy sequence in L2(F"W) and therefore it is convergent.
Taking the limit in (10.14) as n — oo we have the claim. O
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Remark 10.10 By using Malliavin calculus, in Section 16.2.1 we obtain the
expression of the process u in (10.10) in terms of conditional expectation of
the stochastic derivative of X. a

Theorem 10.11 Let (M;)icjo,1) be a FW -martingale such that
My € L2(2, F¥).
Then there exists a unique (up to (m ® P)-equivalence) process u € L2(FW)
such that .
M; = M, +/ ug - AW a.s. (10.15)
0

for anyt € [0,T). In particular, every square integrable FV -martingale admits
a continuous modification.

Proof. Since My € L?(02, F¥), by Theorem 10.7 there exists u € L2(FW)
such that

T
MT=M0—|—/ us-dWs.
0

For a fixed ¢t < T, taking the conditional expectation, we have

¢
Mt:E[MT|‘7:g}V}:MO+/US'dW9a tG[O,T].
0
a
Theorem 10.12 Let (My)eo,r) be a F"V -local martingale. Then there exists
a unique (up to (m @ P)-equivalence) process u € L _(FW) such that

t
M, = M, +/ us-dW,,  te[0,T). (10.16)
0

Proof. Uniqueness follows from Proposition 5.3, that is from the uniqueness
of the representation of an It6 process. Regarding the existence, we assume at
first that M is continuous: by Remark 4.38, there exists a localizing sequence
(75) such that (M™) is a sequence of continuous and bounded martingales.
Then, by Theorem 10.11, there exists a sequence (u™) in L2(F") such that

t
MtTH = Mt/\‘rn = My +/ ’U/? ' dW57 te [07T] (1017)
0
Now

M = M on {t <7},

and so, by the uniqueness result of the Theorem 10.11 and by using an argu-
ment analogous to that in Paragraph 4.4, the definition

ulpry = uy, te0,7)

is well-posed; furthermore u € L2 _ and by (10.17) we get (10.16).

loc
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Now we prove that every local martingale M admits a continuous modifi-
cation. Initially we consider the case of a martingale M: since My € L'(§2, P)
and L?(£2,P) is dense in L'({2, P), there exists a sequence (X,,) of FJ-
measurable and square-integrable random variables such that

1
[ Xn = M| < o0

S on n € N.
By Theorem 10.11 the sequence of martingales
M!=E[X,|F"Y], tel0,T]

admits a continuous modification. By the maximal inequality (cf. Theorem
9.28), applied to the super-martingale — |M; — M}*|, we have

1 k
P| sup |My— M} >+ | <kE|[Mr-X,|]<—,
t€[0,T) k 2n

and so by the Borel-Cantelli lemma? we infer that (M,,) converges uniformly

a.s. to M which therefore is continuous a.s.
Finally, if M is a local martingale, we consider a localizing sequence (7,):
as we have just seen, M admits a continuous modification, hence

M=Mm™ on {t <7,},
is continuous and, since n € N is arbitrary, we have proved the claim. a

We conclude the paragraph by proving that the representation result for
Brownian martingales holds true also after a Girsanov type change of measure.

Theorem 10.13 Under the assumptions of Girsanov’s Theorem 10.5, if M
is a local martingale in (2, F,Q,(FV)), then there evists a unique (up to
(m ® P)-equivalence) u € LE (FW) such that

loc
t
Mt:M0+/ us - dW2,  te€]0,T),
0
where W* is the Q-Brownian motion defined in (10.8).

2 Given a sequence (A,) of events and putting

A:m UAk7

n>1k>n
if
Z P(A,) < oo,
n>1

then P(A) = 0.
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Proof. As usual we can always use the localization argument as in the proof
of Theorem 10.12, so it is enough to consider the case M is a martingale. We
note that, since M is a Q-martingale with respect to F" which is the natural
filtration for W and not for W*, we cannot apply Theorem 10.12 directly.

By Lemma 10.3, the process Y := M Z, where Z = Z* is the exponential
martingale defining @, is a P-martingale and so

t
Yt:MO+/ v - AW, t €[0,T],
0

where v € leoc' We observe that?

t 1 t
dZ;' = dexp (/ )\S-dW5+§/ |)\52ds)
0 0

=zt (At AW, + |)\t\2dt) = Z7 M - AW, (10.18)
and so by the Ito6 formula we have
dM, =d (V2 Z;") =Y,dZ; ' + Z;7'dY, +d(Y, Z7 1),
=Z;7" (Vi - dW + vp - AWy + v - Aedt)
=Z;7 N (Vi +vp) - AW
Therefore we have proved the claim with

u=Z"1(YA+v). O

10.1.4 Change of drift

Let W be a d-dimensional standard Brownian motion on a probability space
(2, F, P) endowed with the Brownian filtration (F}"). We combine the results
of the previous sections and examine how a change of measure from P to an
equivalent measure (), modifies the coefficients of an It6 process.

Theorem 10.14 (Change of drift) Let Q be a probability measure equi-
valent to P. The Radon-Nikodym derivative of @ with respect to P is an
exponential martingale

4Q
dP
with A € L2 _ and the process W*, defined by

loc

e = 27, dZ} = —Z}\ - dW,

AWy, = dW — \dt, (10.19)
is a Brownian motion on (2, F,Q,(FV)).

3 Note the analogy between formulas (10.18) and (10.2).
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Proof. We denote by Z the density process of @ with respect to P (cf. Exam-
ple 3.34):

ap | T _d_P|]-'tW7 tefo,T].

Since Q ~ P, the process Z is a positive P-martingale. Then, by the mar-
tingale representation Theorem 10.12, there exists a unique d-dimensional
process u € L2 (FW) such that

loc

dZt = U * th,

or equivalently
dZt = _Zt)\t . th7

where A is the process defined by

A= —— te0,T). (10.20)

Note that A belongs to L2 . because u € L2 _ and Z is positive and continuous.
Hence Z is the exponential martingale associated to A. Moreover, since by
construction Z is a strict martingale, by Girsanov’s theorem we infer that

W in (10.19) is a Brownian motion on (2, F,Q, (FV)). O
Remark 10.15 Let X be an N-dimensional It6 process of the form
dX; = bydt + o, dW,.
Under the assumptions of Theorem 10.14, the @Q-dynamics of X is given by
dX; = (by — oy hy) dt + o dW). (10.21)

We emphasize the fundamental feature of the changes of measure: a change
of measure only affects the drift coefficient of the process X; the diffusion
coefficient (or volatility) does not vary. a

10.2 Arbitrage theory

In this paragraph we study the problem of pricing European derivatives in a
continuous-time market model. First of all, we fix the assumptions that are
going to hold in the rest of the chapter: we consider a market with N risky
assets and d sources of risk that are represented by a d-dimensional correlated
Brownian motion W = (Wl,...,Wd) on the probability space (£2,F, P),
endowed with the Brownian filtration (F/V'). For simplicity, we only consider
the case of constant correlation matrix even if all the following results can be
extended to the more general case of stochastic correlation (see Remark 10.23
below). Thus, we assume that

W, = AW, (10.22)
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where W is a standard d-dimensional Brownian motion and A = (A7)

i,7=1,....d
is a non-singular d X d constant matrix. We denote by o = AA* the correlation
matrix and, for any i = 1,...,d, we assume that
d N2
oy = Z (A;]) =1, te[0,T] as.
j=1

Then, by Corollary 5.35,
W= APW!, =1,
j=1

is a standard 1-dimensional Brownian motion and the covariance processes
are given by ‘ ‘ N
d(W* W7, = o dt, ,7=1,...,d.

Example 10.16 In the case d = 2, we typically assume

1 0
A‘(@ 1—@2>

where g €] — 1,1[. Then W, = AW, is a correlated Brownian motion with
non-singular correlation matrix
1o
. (é ! ) |

In general, for d > 3, A can be obtained from o by the Cholesky decomposition
algorithm (see, for example, [263]). O

We assume that the number NV of risky assets is less or equal to the number
d of risk factors, that is
N <d.

We give grounds for this last choice in Example 10.36 and the argument pre-
ceding it. Intuitively the idea is that, if N > d then we have two possibilities:
the market admits arbitrage opportunities or some assets are “redundant”,
i.e. they can be replicated by using only d “primitive” assets among the N
traded assets.

We denote by S = (Sl, ceey SN) the price process where S is the price at
time t € [0, T of the i-th risky asset. We suppose that

Si = i
where X? is an It process of the form

dX; =bidt +ofdW;,  i=1,...,N, (10.23)

2

with b € Ll  and o' is a positive process in L2 ..

loc
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Remark 10.17 By assumption, the processes b and ¢ are progressively
measurable with respect to the Brownian filtration F": in particular, the
dynamics of the N assets depends on the d-dimensional Brownian motion W
and, apart from trivial cases, the filtration F° of the assets coincides with
FW. 0

Equation (10.23) can be rewritten in compact form as

dXt = btdt + O'tth

where b = (b,...,bY) and o is the (N x d)-matrix valued process
ol 0~ 0 00--0
0 o2 -~ 0 00---0
o=\ 1 . N (10.24)
00--a¥tP00---0
00-- 0 oNO0---0

By the It formula we have
dS; = i Sydt + o S;dWy,  i=1,...,N, (10.25)

where p* = b + (g;)z, or equivalently

_ _ t ' t [ (Ui)Q
S = Sjexp / oL dW,; +/ e — % ds | . (10.26)
0 0

Concerning the locally non-risky asset B, we suppose it satisfies the equa-
tion

dBt = TtBtdt, BQ = 1,
with » € L! | that is we have

loc?
By=elmds 10,7 (10.27)

We remark that, although B represents the “non-risky” asset, it is a stochastic
process because r is FW-progressively measurable: however B has bounded
variation (cf. Example 3.60-iii)) and null quadratic variation so, intuitively,
it possesses a smaller degree of randomness with respect to the other risky
assets.

To simplify the exposition, we also assume some further integrability con-
dition on the coefficients: we assume that r and o?, i = 1,..., N, verify the
estimate (10.3); more explicitly, we suppose that

T N T
/ r?dt+2/ (eh?dt<C  as. (10.28)
0 = Jo

for some positive constant C.
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Remark 10.18 Under condition (10.28), the process B is bounded and
strictly positive since, by Holder’s inequality, we have

t
/ reds
0

Summing up, we consider a market model where:
Hypothesis 10.19

e There are N risky assets S*,..., SN and one no-risky asset B whose dy-
namics is given by (10.25) and (10.27) respectively;

o W is a d-dimensional Brownian motion with constant correlation matriz
oandd> N;

e the processes o,r satisfy the integrability condition (10.28) and the pro-
cesses ot are positive.

¢ 3
<Vt </ r?ds) <VC(CT, te[0,T], as. O
0

10.2.1 Change of drift with correlation

We provide some results on the change of measure that are preliminary to the
discussion of the concept of equivalent martingale measure. Specifically, we
extend the results of Section 10.1.4 on the change of drift, to the case of the
correlated Brownian motion in (10.22).

Theorem 10.20 (Change of drift with correlation) For any probability
measure QQ equivalent to P there exists a process A € L2, such that

loc
dQ

ﬁ|frw = Zt and dZt = _Zt)\t . th

Moreover the process W defined by
AWy = dW — o)dt (10.29)
is a Brownian motion on (2, F,Q, (F)) with correlation matriz o.

Proof. By the martingale representation Theorem 10.12 for the standard
Brownian motion W, there exists a d-dimensional process A € L2 _(F"W) such

that %'EW = Z; and

AZ; = —Zh - AWy = —Zih; - (A7 dW,) = =Z,A, - AW,

where* \; = (Afl)* ;. We remark that, by the It6 formula we have

t t
Z, = exp (—/ As - dWy — %/ (g)\s,)\s>ds) . (10.30)
0 0

e, ATHdW) = ((A7Y) " Xe, dW).

4 Note that
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By Girsanov’s theorem, the process W defined by
AW = dW, + \dt,  t€ 0,7,

is a standard Q-Brownian motion: since A = A*\, multiplying by A in the
previous equation we infer that

AW} = AdW} = dW, + o)\t
is a correlated @-Brownian motion with correlation matrix o. O

Remark 10.21 Under the assumptions of Theorem 10.20, let X be an N-
dimensional It6 process of the form

dX; = bydt + o, dW,. (10.31)

Then the Q-dynamics of X is given by
dX; = (by — or0\) dt + o, dW). (10.32)
O

Remark 10.22 It is sometimes useful to rephrase Theorem 10.20 as follows:
if Q is a probability measure equivalent to P then there exists a process \ € L
such that

d
d%‘ﬂw =7 and  dZy=-Z,(0"'\) - dW;.
Moreover the process W defined by

AW, = dW* — N\t (10.33)

is a Brownian motion on (2, F,Q,(FV)) with correlation matriz o. O

Remark 10.23 It is possible to extend the previous results to the case of a
stochastic correlation matrix: specifically, if we assume that ¢ has bounded
variation, that is

doy = 0,dt (10.34)

with @ € L{ , then we have the following formula for the change of drift

t
AW, = dW)} — (gt)\t + 6, / )\Sds> dt (10.35)
0

that generalizes formula (10.29). In particular, for the It6 process X in (10.31),
we have

t
dXt = (bt — O¢ (;Qt)\t + et/ )\Sd8>> dt + Utth)\. O
0
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10.2.2 Martingale measures and market prices of risk

The concept of EMM plays a central role in the theory of financial derivatives.
As already seen in the discrete case, it gives a characterization of arbitrage-
free markets and allows us to introduce the risk-neutral or arbitrage price of
replicable derivatives (see Section 10.2.5).

Definition 10.24 An equivalent martingale measure QQ with numeraire B is
a probability measure on (2, F) such that

i) @ is equivalent to P;
i) the process of discounted prices

§t :effotrsdsst’ te [O,T],
is a strict® Q-martingale. In particular, the risk-neutral pricing formula
S, = E° [e* [lredsg | ftW] . telo,T]. (10.36)

holds.

Now we consider an EMM @ and we use Theorem 10.20, in the form of
Remark 10.22; to find the @-dynamics of the price process: we recall that
there exists a process A = ()\1, ey )\d) € leoc such that

d
d%w _z (10.37)
where Z solves
dZy = —Zy (Q_lAt) AW, Zy=1 (10.38)

Moreover the process W = (W/\’l, ey W)”d) defined by
AWy = dW — N\t (10.39)

is a @-Brownian motion with correlation matrix g. Therefore, fori =1,..., N
we have

d§§ = (,ug — rt) gtidt + aigdef
(4 — ry) Sidt + 015 (thA’i - Aidt)
= (ui = 7 — 0N Sidt + ot SiAW)M. (10.40)

5 We assume that S is a strict, not simply a local, Q-martingale. This subtle dis-
tinction is necessary because pathologies may arise when the discounted prices
process is a local martingale: we refer to Sin [312] where interesting examples are
analyzed.
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Now we recall that an Ito process is a local martingale if and only if it has
null drift (cf. Remark 5.4); since @ is an EMM, the following drift condition
necessarily holds®

N="t_—1" i=1,...,N. (10.41)

Due to the strong analogy with the concept of market price of risk introduced
in Section 7.3.4 (see in particular formula (7.51)), we give the following:

2

Definition 10.25 A market price of risk is a d-dimensional process A € Ly,

such that:

i) the first N components of A are given by (10.41);
i) the solution Z to the SDE (10.38) is a strict P-martingale.

The drift condition (10.41) fixes the first N components of the d-dimensional
process A: when N < d, it is clear that the market price of risk is not uniquely
determined. The following result shows the strict relationship between EMMs
and market prices of risk.

Theorem 10.26 Formulas (10.37)-(10.38) establish a one-to-one correspon-
dence between EMMs and market prices of risk. The dynamics, under an EMM
Q, of the asset prices is given by

dS} = r,Sidt + ol SidW, (10.42)

where W = (W)‘*l, cee W)"d) is the Q-Brownian motion in (10.39). More-
over

E° { sup |St|”} < o0, (10.43)
0<t<T

for every p > 1.

Proof. We have already proved, by using Theorem 10.20, that any EMM @
defines a market price of risk A such that (10.42) holds.

Conversely, if A\ is a market price of risk, we consider the process Z in
(10.38) and using that Z is a P-martingale, we define the measure @) by putting
j—% = Zp. Then @ is an EMM: indeed, by Girsanov’s theorem for correlated
Brownian motions (cf. Remark 10.22), W* in (10.39) is a correlated Brownian
motion on (£2,F,Q,(F})) and, by Remark 10.4, P and @ are equivalent.

Further, by (10.41) we directly get (10.42) and therefore S is the exponential

martingale
t t ()2
SZ = exp (/ OidW;"i —/ (U;)d8> . (10.44)
0 0

6 More precisely, we have ‘
)\72 (w) _ :U’t(w)ii Tt (w)
oi(w)
for almost all (¢,w) € [0,T] x £2.
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Since o and r verify the integrability condition (10.28), by Lemma 10.1 and
Remark 10.18, we infer that S* is a strict martingale and verifies (10.43). O

Theorem 10.26 shows that the notions of EMM and market price of risk are
equivalent. However, while the EMM is mainly a theoretical concept, on the
contrary the market price of risk is of essential importance from the practical
point of view: indeed, by the change of drift formula (10.39), it determines ex-
plicitly the change of measure and the dynamics of the assets as It6 processes.
Moreover, the market price of risk is also an essential tool in the proof of the
existence of an EMM. In the following theorem we give a simple condition on
the coefficients u, o, 7 which guarantees the existence of a market price of risk
and of the related EMM.

Theorem 10.27 (Existence of an EMM) Assume that the processes

i
i Mg — Tt .
ANo="Ft i=1,...,N,
i

verify the integrability condition (10.3), that is
T
/ M| 7dt<C  as, (10.45)
0

for some positive constant C. Then an EMM Q) ezists.

Proof. By Theorem 10.26, in order to show that an EMM exists, it suffices to
construct a market price of risk. Let A € L2 be any d-dimensional process with
the first N components defined by (10.41) and such that estimate (10.45) holds
for any ¢ = 1,...,d. By Lemma 10.1, Z in (10.38) is a strict P-martingale
and therefore ) is a market price of risk. a

Notation 10.28 We denote by Q the family of EMMs whose corresponding
process of market prices of risk \ verify estimate (10.45) for anyi=1,...,d.

Remark 10.29 The class Q will play a central role in the sequel (see, for
instance, Proposition 10.41). We remark that if Q € Q, then the Radon-
Nikodym derivative of Q with respect to P belongs to LP ({2, P) for everyp > 1:
more precisely, let us recall that

dq

ap T

where
dZt = _Zt (9_1)\15) : th7 ZO = ]-a

and A is the market price of risk associated to Q. If A is is such that

T
/\)\t|2dt§0 a.s.
0
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then, by Lemma 10.1, Z is a P-martingale and
E[sup Zf}<oo, p>1.
0<t<T
Clearly, under the assumptions of Theorem 10.27, the class Q is not empty.O

Remark 10.30 The following condition is stronger than _(10.45), but simpler
to check: the process r is bounded and the processes ¢*, ¢ = 1,..., N, are
bounded and uniformly positive, i.e. there exists C' € R+ such that

1 ]
ml<C, F<lal<C i=1. N, e[0T,

almost surely. a

10.2.3 Examples

Example 10.31 In the Black-Scholes market model N = d = 1 and the
coefficients r, u, o are constant. In this case the market price of risk is uniquely
determined by equation (10.41) and we have

w—r
o

A=

which corresponds to the value found in Section 7.3.4. By Theorem 10.26, the
process
W) =W, + \t, t€[0,T],

is a Brownian motion under the measure ) defined by

d A2

% = exp (—)\WT - 2T> , (10.46)
and the dynamics of the risky asset is

dS; = rSydt + 0.S;dW;>.

Moreover the discounted price process gt = e "5, is a Q-martingale and we
have
Sp=e " TVEQ[Sy | FV],  te0,T). O

Example 10.32 In a market model where the number of risky assets is equal
to the dimension of the Brownian motion, i.e. N = d, the drift condition
(10.41) determines the process A univocally. Therefore, under the assumptions
of Theorem 10.27 we have that the EMM Q) exists and is unique. As usual the
@-dynamics of the discounted prices is

dSi = oiSidw,  i=1,...,N,
where W* is the Q-Brownian motion defined by dW; = dW;* — \dt. ]
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Example 10.33 In the Heston stochastic volatility model [165], there is an
underlying asset (N = 1) whose volatility is a stochastic process that is driven
by a second real Brownian motion (d = 2). More precisely, we assume that

dS; = pSydt + /v S;dW}, (10.47)
dvy = k(D — vp)dt + ny/vdW2, (10.48)

where u, k, 7, n are constant parameters and W is a two-dimensional correlated
Brownian motion. As in Example 10.16, we set

1 0
AZ(@ 1—@2>

wl=w}, W2 = oW} + /1 - 2W?,
where (Wl, W2) is a two-dimensional standard Brownian motion and o €
]—1,1[ is the (constant) correlation parameter. The interest rate r is supposed
to be constant.
Equation (10.48) was previously suggested by Cox, Ingersoll and Ross [80]
as a model for the short rate dynamics in a fixed-income market (cf. Section

10.3.1): here the process v represents the variance of S. By the It6 formula,
the solution of (10.47) is

t t v
St:SOexp(/ mdwj+/ (u—f)ds)
0 0

On the other hand, we remark that the existence and uniqueness results for
SDEs in Chapter 9 do not apply to (10.48) because the diffusion coefficient
is only Holder continuous. However we have the following result (see, for in-
stance, [177] p.168).

and

Theorem 10.34 For any vy > 0, there exists a unique non-negative strong
solution to (10.48) starting from vy.

A solution to (10.48) is called a mean reverting square root process. For k > 0,
the drift is positive if vy < U and it is negative if 14 > v and so the process
v is “pushed” towards the value 7 that can be interpreted as a long-term
mean. The other parameters represent respectively: p the drift of S;, k the
speed of mean reversion and 7 the volatility of the variance. We remark that
in general the solution v can reach the origin: more precisely, let us denote by
7 the stopping time defined by

T=if{t >0| v, =0}

and 7(w) = oo if »(w) > 0 for any t. Then we have (see Feller [129] or
Proposition 6.2.3 in [226]):
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Proposition 10.35 Assume that vg > 0. Then we have:

o ifkv > "—22 then T = o0 a.s.;
. if0§k5<"—;andkz<0then0<P(T<oo)<1;
. if0§k5<"—;andkEOth@nT<ooa.s.

In the notations introduced at the beginning of the paragraph, o; in (10.24)
is the (1 x 2)-dimensional matrix

O't:(\/V_t 0)

A market price of risk is a two-dimensional process A = (A1, \?) € L
that, by (10.41),

2

ic such

A=

, 10.49
while there is no restriction on the second component A? except for the fact
that Z in (10.38) must be a martingale. If this is the case, we consider the
corresponding EMM @ with respect to which the process W*, defined by (cf.
(10.39))

H—r
AWy = dW} — \ydt = dW; — (Axgﬁ) dt,
t

is a 2-dimensional Brownian motion: then the @)-dynamics of the risky asset
is given by

dS, = rSydt + /S dWH, (10.50)
dvy = (k(7 — v) = ny/wA]) dt + ny/md W) (10.51)

This is the dynamics to be used in order to compute a risk neutral price in the
form E9[f(Sr)], for instance by Monte Carlo simulation (cf. Section 12.4):
clearly, the result depends on the choice of the process A2, that is on the
market price of risk. We also remark that, by taking the process A2 of the
form \? = £ with a,b € R, then (10.51) reduces to

N
dvy = k(U — v)dt + /o dW)2, (10.52)

where ~ ke
k=k+na, U= e (10.53)

and therefore v is a square root process under @ as well.
Since the log-characteristic function of S

E [eif log ST]

can be computed explicitly, analytical approximations of the price of Euro-
pean Calls and Puts are available by Fourier inversion techniques: this will be
discussed in Examples 15.15 and 15.20.
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From the economical point of view, the price of risk A is determined by
the market: in other terms, A must be chosen on the basis of observations,
by calibrating the parameters of the model to the available data. Once A and
the corresponding EMM (@ have been selected, the risk neutral price of a
derivative on S is defined as in Section 10.2.5 by a risk neutral formula under
Q. Note that it is not possible in general to construct a hedging strategy based
only on the underlying asset and the bond and therefore the Heston model is
incomplete. a

By Theorem 10.26, the existence of an EMM implies that a market price of
risk A exists and verifies the drift condition (10.41): since A is a d-dimensional
process and (10.41) gives N constraints on A, it is natural to assume N < d. If
this is not the case, the market might admit arbitrage opportunities: the proof
of this claim in a general setting goes beyond the scope of this exposition. This
result, which is part of the first fundamental theorem of asset pricing, has been
proved by many authors and under different hypotheses: we mention, among
others, Stricker [317], Ansel and Stricker [10], Delbaen [85], Schweizer [304],
Lakner [223], Delbaen and Schachermayer [86; 87; 88; 89; 90; 91], Frittelli and
Lakner [143]. Here we confine ourselves to examine a simple example in which
the arbitrage strategy can be constructed explicitly.

Example 10.36 We consider a market which consists of two geometric Brow-
nian motions

dSi = p'Sidt + o' SidWy,  i=1,2,
where W is a real Brownian motion: in this case N = 2 > d = 1. The drift
condition (10.41) takes the form:

o h=pul —r,
o\ =pu? —r,

and the system is solvable if and only if

1

uw=r puf-r
= . (10.54)
This is in line with what we had observed in Section 7.3.4, in particular with
formula (7.52) which states that, in an arbitrage-free market, all the assets
must have the same market price of risk. If (10.54) is not satisfied, the market

admits arbitrage opportunities: indeed, let us suppose that
pt—r p?-r
ol g2

k= >0,
and let us consider the self-financing (cf. Definition 10.37 and Corollary 10.40)
portfolio (at, a2, 3) with null initial value, defined by
; 1
“ Sigt’ ! ’
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Then the value V' of the portfolio verifies

AV, = afdS; + ofdS; +r (Vi — oy S} — o} S7) dt
1 2
=B e aw, — B — aw, + rvidt

ol o2

= (rVy + k) dt,

and therefore it gives rise to an arbitrage opportunity since it produces a
certain profit that is strictly greater than the bond. a

10.2.4 Admissible strategies and arbitrage opportunities
We consider a standard market (S, B) under Hypothesis 10.19, where
dS; = piSidt 4+ Siotdw}, — i=1,...,N,

with W d-dimensional correlated Brownian motion. Moreover the coefficients
1, o satisfy condition (10.45) of Theorem 10.27 that guarantees the existence
of an EMM.

We introduce the family of self-financing strategies.

Definition 10.37 A strategy (or portfolio) is a process («, 3) where «, 3 €
Ll  have values in RN and in R, respectively. The value of the strategy (o, 3)

loc
1s the real-valued process

N
‘/t(aﬂ) =aq- St +ﬂtBt = ZO{%SZ +ﬂtBt, te [O,T]
=1

A strategy («, B) is self-financing if
dVy = a4 - dSy + (dB. (10.55)

Remark 10.38 In the definition of self-financing strategy («, ), we implic-
itly assume that o
a‘o’ € L} i=1,...,N. (10.56)

loc»

This condition ensures that the stochastic integrals
N

a;-dSy =Y ajoiSidW}
i=1

are well-defined. ]

The following result extends a useful characterization of self-financing
strategies already proved in the Black-Scholes framework. As usual, we de-
note the discounted values by S and V.
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Proposition 10.39 A strategy (o, 8) is self-financing if and only if
av>? = a, - ds,. (10.57)

Moreover, a self-financing strategy (o, 3) is determined by its initial value Vy
and by the process a. of the amount of risky assets held in portfolio: indeed, for
any Vo € R and o € L}, verifying (10.56), there exists a unique self-financing

strategy (o, B) such that Vo(a’ﬂ) = V.
Proof. We have
AV, = = Jo reds (—rtVt(a’B)dt + th(aﬁ)) —

(by the self-financing property (10.55))

= e direds (<Dt + o - Sy + Bt ) =

(since V;(a’ﬂ) — BeBy = oy - St)
=e fot rods (*T’tO[t . Stdt + oy - dSt) = Q¢ dgt,

and this proves (10.57).

To prove the second part of the thesis we proceed as in the Black-Scholes
case and, for any Vy € R and o € L] _ such that (10.56) holds, we define the
processes V' and 3 by putting

t
e—fo'rsdsmsz/as-dss, Be=B; ' (Vi—ar-S), tel0,T].
0

Then, by (10.57), («, 3) is a self-financing strategy such that Vt(a’ﬁ) =V, for
te[0,T]. O

A simple consequence of Proposition 10.39 is the following:

Corollary 10.40 Let Q be an EMM with associated Q-Brownian motion
W = (WhL . W) defined by (10.37)-(10.39). For any self-financing
strategy (o, 3), we have

N t
TR~y L 3 /0 ol Sigt AWM, (10.58)
=1

and in particular V(@B s a local Q-martingale.
Proof. The thesis follows from (10.57) and Theorem 4.42. O

The following proposition gives very natural conditions under which V(@h)
is a strict Q-martingale. The result is non trivial since the integrability condi-
tion (10.59), which replaces (10.56), is given under the objective probability P
and therefore is independent on the selected EMM. Let us first recall Notation
10.28 of the family Q of EMMs.
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Proposition 10.41 If Q is an EMM in Q and («,3) be a self-financing
strategy such that

alot € L2(2, P), i=1,...,N, (10.59)

then V(@B is q strict Q-martingale. In particular the following risk-neutral
pricing formula holds:

ViR = g [en Sty D V] e (0,7 (10.60)

Proof. By (10.58) and Corollary 4.48, if

T, _\2 }
E®@ ( / (a;a;s;) dt) < o0,
0

for every i = 1,..., N, then V(@B is a @Q-martingale. We recall that under
our main Hypothesis 10.19, B and B! are bounded processes (cf. Remark
10.18); therefore in order to prove the thesis it is enough to verify that

EQ[Yﬂ<oo, i=1,...,N,
where
Y, = / (aiols?)? dt.
0

Now we use the fact that Q € Q and therefore, by Remark 10.29, the Radon-
Nikodym derivative Z of @ with respect to P belongs to LP({2, P) for every
p > 1. Given two conjugate exponents ¢,q¢" with 1 < ¢ < 2, by Holder’s
inequality we get

=

e 1] = o7 i) < 1] ]

and we conclude by verifying that

We have

q
2

T
Ef |v?| <EF alol 2at sup [S¢]?] <
’ 0

t€[0,7)

NS

(by Hoélder’s inequality)

T2
| (i)’
0

by the assumption on « and estimate (10.43). O

q 2—q
2

< EP EF

e =
sup |Si|2-q < o0
t€[0,T]
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Definition 10.42 A self-financing strategy (v, 8) such that V(®P) is a Q-
martingale for every Q € Q, is called an admissible strategy. We denote by A
the collection of all admissible strategies.

Proposition 10.41 guarantees that the family A is not empty: indeed, any
self-financing strategy («, 3) verifying condition (10.59) is admissible.

As in the discrete case, it is immediate to verify that an admissible strategy
cannot be an arbitrage: in particular, the collection of self-financing strategies
(o, B) with o € L2(§2, P) does not contain arbitrage portfolios. Indeed we
have the following version of the no-arbitrage principle.

Corollary 10.43 (No-arbitrage principle) If an EMM in Q exists and
(o, B), (&, B") are admissible self-financing strategies such that

Ve =y P,
then V(@B qnd V(@5 gre indistinguishable.

Proof. If Q € Q exists and (¢, ), (o, ') are admissible, then y(@p) yp)
are Q-martingales with the same final value Q-a.s. (because @ ~ P) and the
thesis follows. a

Remark 10.44 Consider the following alternative definition of admissibility:
a self-financing strategy (o, 3) is admissible if there exists at least one Q € Q
such that V(@8 is a Q-martingale. With this definition, we are not able to
prove the thesis of Corollary 10.43: indeed, in general V(@) V(@B are only
local martingales with respect to a generic EMM but it could be the case that
they are not strict martingales with respect to the same EMM. This explains
why we adopted the stronger Definition 10.42 and spent some effort in the
proof of Proposition 10.41. a

10.2.5 Arbitrage pricing

We consider a standard market (S, B) under Hypothesis 10.19 and we assume
condition (10.45) of Theorem 10.27 for the existence of an EMM in Q. By
arguments that are substantially analogous to those used in discrete time (cf.
Section 2.1), we analyze the problem of pricing of a European derivative.

Definition 10.45 A FEuropean derivative X with maturity T is a FJY -
measurable random wvariable such that X € LP(§2,P) for some p > 1. A
derivative X is called replicable if there is an admissible strategy (o, 8) € A
such that

X=v*"  Pas (10.61)

The random variable X represents the payoff of the derivative. The .7-'¥V -
measurability condition describes the fact that X depends on the risk factors
given by (W}),.p: note that replicable payoffs are necessarily F}¥' -measurable

since so is VT(a’ﬁ). An admissible strategy («, 3) such that (10.61) holds, is
called a replicating strategy for X.
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Definition 10.46 The risk-neutral price of a FEuropean derivative X with
respect to the EMM @Q € Q, is defined as

HS:EQF*ﬁ%“X|ﬁWy te0,T. (10.62)

Remark 10.47 The assumption X € LP({2, P) for some p > 1, guarantees
that X is Q-integrable for any @ € Q, so that definition (10.62) is well-posed.
Indeed, for a fixed @ € Q, let us denote by Z the Radon-Nikodym derivative
of @ with respect to P and recall that (cf. Remark 10.29) Z € L9({2, P) for
every ¢ > 1. Then, by Hélder’s inequality, we have

EQ X[ = EP[|X|Zr] < | X|lteco,p) | Z7 || Lo(o,py < 00

where p,q are conjugate exponents and this shows that X € L'(£2,Q). On
the other hand, by Remark 10.18 the discount factor appearing in (10.62) is
a bounded process. |

Next we introduce the collections of super and sub-replicating strategies:

At ={(,B) € A| VP > X, P-as.},

Ay ={(a,B) € A| VP < X, P-as.}).
For a given (a,) € A% (resp. (o, 3) € Ax), the value Vo(a’ﬁ) represents
the initial wealth sufficient to build a strategy that super-replicates (resp.
sub-replicates) the payoff X at maturity. The following result confirms the
natural consistency relation among the initial values of the sub and super-

replicating strategies and the risk-neutral price: this relation must necessarily
hold true in any arbitrage-free market.

Lemma 10.48 Let X be a FEuropean derivative. For every EMM Q € Q and
t €10,T] we have

sup V;(a,ﬁ) S EQ [67 ftT TstX | ft‘/V:| S inf V;(a,ﬁ).
(e,B)eAy (e,B)EAL

Proof. If (o, 8) € Ay, then V(@) ig a @-martingale for any @ € Q: thus we
have

‘/;(avﬁ) — EQ |:€_ ftTTSdSV,Zga”a) |fth:| g
(since VT(O"ﬁ) < X, P-as.)
< BQ[e ST | 7Y

and an analogous estimate holds for (o, 8) € A%. O
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Lemma 10.48 ensures that any risk-neutral price does not give rise to ar-
bitrage opportunities since it is greater than the price of every sub-replicating
strategy and smaller than the price of every super-replicating strategy. By
definition, H? depends on the selected EMM Q; however, this is not the case
if X is replicable. Indeed the following result shows that the risk-neutral price
of a replicable derivative is uniquely defined and independent of Q) € Q.

Theorem 10.49 Let X be a replicable European derivative. For every repli-
cating strategy (o, 8) € A and for every EMM Q € Q, we have

Hy = VO = B [em 1T retex | 7] (10.63)

The process H is called risk-neutral (or arbitrage) price of X.

Proof. If (o, 3) € A replicates X, then (a, ) € Ay N A% and by Lemma
10.48 we have

EQ [en Il rtsx | V] = vle?, e o),

for every EMM @ € Q. |

10.2.6 Complete markets

We consider a standard market (S, B) and, as usual, we assume Hypothesis
10.19 and condition (10.45) of Theorem 10.27 for the existence of an EMM.

In this section we show that, if the number of risky assets is equal to the
dimension of the underlying Brownian motion, i.e. N = d, then the market
is complete and the martingale measure is unique. Roughly speaking, in a
complete market every European derivative X is replicable and by Theorem
10.49 it can be priced in a unique way by arbitrage arguments: the price of X
coincides with the value of any replicating strategy and with the risk-neutral
price under the unique EMM.

Theorem 10.50 When N = d, the market model (S, B) in (10.25)-(10.27)
is complete, that is every Furopean derivative is replicable. Moreover there
exists only one EMM.

Proof. The uniqueness of the EMM has been already pointed out in Example
10.32: it follows from the fact that, when N = d, the drift condition (10.41)
determines uniquely the market price of risk.

Next we denote by @ the EMM and by W?* the associated Q-Brownian
motion. We define the Q-martingale”

M, = E? {e* Rty | g teo,1].

7 Let us recall that X € L'(2, Q) by Remark 10.47.
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By Theorem 10.13 we have the representation

t
Mt — EQ |:€7 foT mth:| +/ Uy - dW:‘
0

with u € L2 (F"): in other terms we have

N t
M, = E° [e* o ’"tth} +y / uldWM
i=170

N t
— @ {e‘ r ”th} n Z/ aiaéSde;\’i,
i=1 0

where .
1
a' = ——, i1=1,...,N.
O—ZS’L
i

Note that alc? = % € ]L120c because S’ is positive and continuous, so that

condition (10.56) is fulfilled. By Proposition 10.39, o and M, define a self-
financing strategy (o, 3) such that

ver =m,  telo,T)

The strategy («, ) is admissible, (a, 8) € A, because M is a Q-martingale.
Moreover we have _ .
Véa’ﬂ) —_ MT — e fo rtth,

and therefore («, 3) is a replicating strategy for X. O

10.2.7 Parity formulas

By the risk-neutral pricing formula (10.62), the price of a derivative is defined
as the expectation of the discounted payoff and therefore it depends linearly
on the payoff. Let us denote by HX the risk-neutral price of a derivative X,
under a fixed EMM @Q: then we have

XXt — o g X' 4 o, g (10.64)

for every c1,co € R. This fact may be useful to decompose complex payoffs in
simpler ones: for instance, the payoff of a straddle on the underlying asset S,
with strike K and maturity 7', is given by

Y (ST—K), if S > K,
(K—ST), if0< Sr < K.

By (10.64), we simply have HX = ¢ + p where ¢ and p denote the prices
of a European Call and a Put option, respectively, with the same strike and
maturity.
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Using (10.64), we can also obtain a generalization of the Put-Call parity
formula of Corollary 1.1. Indeed, let us consider the following payoffs:

X' =(Syr - K)T, (Call option),
X% =1, (bond),
X3 =S, (underlying asset).

Then we have
HY = EQ e it 7] g = s,
Now we observe that the payoff of a Put option is a linear combination of

X', X2 and X3:
(K—Sp)"=KX? - X34+ X'

Then, by (10.64), we get the Put-Call parity formula
pr = KEQ [~ I reds | ]—"tW} Syt telo,T] (10.65)

that is obviously equivalent to (1.4) if the short rate is deterministic.

10.3 Markovian models: the PDE approach

In this section we examine a typical Markovian realization of the general
market model analyzed in Paragraph 10.2. Specifically, we consider a model
of the form

dS; = uiSidt + SjoidWy, i=1,...,N, (10.66)
dvl = midt + gl dw N j=1,...,d—N, (10.67)
where W = (Wl, ceey Wd) is a d-dimensional correlated Brownian motion,
S = (S%,...,8N) is the stochastic process of the risky assets that are sup-
posed to be traded on the market and v = (v!,..., v ) is the vector of

additional stochastic factors (e.g. the stochastic volatility in the Heston model
of Example 10.33). We assume that

Mt :H’(taStht)a Ot :U(ta Stvl/t)v mg :m(t,St,l/t)7 un :n(tvstayt)

where pu, o, m,n are deterministic functions:

o 1,0:[0,T] xR — R¥ are the drift and volatility functions, respectively,
of the assets;

o m,n:[0,T] x R — R4V are the drift and volatility functions, respec-
tively, of the stochastic factors.
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The locally non-risky asset is given by
By=elhmds  te(0,T),

where r, = r(t, S¢, v¢) for some (deterministic) bounded function r.

Under suitable conditions on u, o, m, n, the results in Chapter 9 guarantee
that a unique solution to the system of SDEs (10.66)-(10.67) exists: for every
(t,5,v) € [0, T[xR? we denote by (S v457) the solution of (10.66)-(10.67)
such that S}*” = 5 and Vf’g’l_' = ¥. Moreover there exists a d-dimensional
process of the market price of risk (cf. Definition 10.25) of the form

At = A(tystﬂ/t)'

Let @ be the EMM associated to A and W* denote the correlated Q-Brownian
motion defined by
AW, = dW} — \dt.

Then we have the following risk-neutral dynamics under Q:
dS; = rSidt + SjodW;, i=1,...,N, (10.68)
vl = (m{ - n{A{) dt + ] dW)NH, j=1,...,d—N. (10.69)

Next we consider a derivative of the form X = F(St,vr), where F is the
deterministic payoff function. In this Markovian setting, the risk-neutral price
of X (cf. (10.62)), under the selected EMM @, is equal to HZ = f(t, Sy, )
where

f(tv S, V) = B¢ [ei f T(u’szsyu’yf;&y)duF (S;:S’V’ l/;“’s’u)} ’

Under the hypotheses of the Feynman-Ka¢ representation Theorem 9.45, the
price function f is the solution of the Cauchy problem for the differential
operator associated to the system of SDEs (10.68)-(10.69), with final con-
dition f(T,s,v) = F(s,v): this is in perfect analogy with what we proved
in the Black-Scholes framework. On the other hand, we emphasize that the
non-uniqueness of the risk-neutral price reflects on the fact that the pricing
differential operator depends on the fixed EMM: indeed, the market price of
risk A enters as a coefficient of the differential operator and therefore we have
a different pricing PDE for each EMM.

To facilitate a deeper comprehension of these facts, we now examine three
remarkable examples:

the Heston model where N =1 and d = 2;

a model for interest rate derivatives where N =0 and d > 1;

a general complete model where N = d > 1: in this case the PDE approach
has also the great advantage of providing the hedging strategy.

Example 10.51 We consider the Heston stochastic volatility model of Exam-
ple 10.33. The price of the risky asset S is given by the system of SDEs
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(10.47)-(10.48). In this case the market price of risk is a 2-dimensional pro-
cess A = (A', A?) with A} determined by the drift condition (10.41):
w—r

v

As already mentioned, A is generally not unique and a natural choice for the
second component of the market price of risk is

M\ = (10.70)

(th+b
N

with a,b € R: then the risk-neutral dynamics, under the EMM @ related to
A, is given by equations (10.50)-(10.52), that is

X =

(10.71)

dS, = rSydt + /S dW,
dl/t = mtdt + ntthA’Q,

where W* is a 2-dimensional Brownian motion with correlation
AWM W) = odt, 0 €] —1,1],

and
mt:m(tashyt):k(afyt)v nt:n(tastﬂyt):n\/’/_ta

where k, 7,7 are real constants (cf. (10.53)).
The Q-risk-neutral price of the derivative F/(St,vr) is equal to f(t, Sy, v4)
where f = f(t,s,v) is solution to the Cauchy problem

LAf—rf=0, in ]0, T[xR2,,
{f(T, s,v) = F(s,v), (s,v)€R%,, (10.72)

and L* is the pricing operator related to A in (10.70)-(10.71):

2

2 ~
LMf = %&Sf—i—ngsuasl,f—i—772—]/(9Wf+r585f+k(”17—Z/)Bl,f—i—atf.

As already mentioned, in the Heston model semi-analytical approximations
for the price of European Calls and Puts are available (cf. Section 15): these
formulas are generally preferable due to precision and computational efficiency
with respect to the solution of problem (10.72) by standard numerical tech-
niques. a

10.3.1 Martingale models for the short rate

We consider a Markovian market model in the very particular case when
N = 0 (no risky asset) and d > 1 (d risk factors). In this case the money
market account

By =elords 10,1,
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is the only traded asset. If the function r = r(t,v) is smooth, then the short
rate 1, = r(t,14) is an It6 process whose stochastic differential can be easily
computed by the Ité formula starting from the dynamics (10.67) of the risk
factor v. For simplicity, we consider the case d = 1 and directly assume that
r solves the SDE

dry = p(t,re)dt + o(t, ry)dWr, (10.73)

where W is a standard 1-dimensional Brownian motion. This kind of model
can be used to describe the primary objects of a so-called fized-income market.

Definition 10.52 A zero coupon bound with maturity T (or, simply, a T-
bond) is a contract paying to its holder one unit of cash at time T'. We denote
by p(t,T) the price at time t of the T-bond.

Since the final value (payoff) of a T-bond is known, p(T,T) = 1, it seems
natural to view bonds as interest rate derivatives, that is derivatives with
“underlying” the short rate r. However, since r is not an asset traded in the
market, the corresponding market model is incomplete. Indeed, even if we can
invest in the money market account B, in general we cannot hope to replicate
a T-bond with certainty. On one hand, this is due to the fact that a self-
financing strategy involving only the asset B is necessarily constant; on the
other hand, we remark that r is only “locally” riskless, but in the long run
it is stochastic. Indeed, the wealth needed at time ¢ to replicate a T-bond at
maturity is equal to the discount factor

D(t,T) = e J reds,

that is unknown at time ¢ since r is a progressively measurable stochastic
process: mathematically, D(¢,T) is a F}" -random variable. Note the concep-
tual difference between p(t,T) and D(t,T): at maturity they have the same
value p(T,T) = D(T,T) = 1; but while p(¢,T) is a price and, as such, it is
observable at time ¢ (i.e. F}V-measurable), on the contrary the discount factor
is F¥ -measurable and unobservable at time ¢ < T

By the definition of risk-neutral price of a T-bond, under the selected
EMM @, we have

p(t,T) = B [e= K redsp( Ty | ftW} = EQ[D@,T) | FY].  (10.74)

Remark 10.53 By definition (10.74), the Put-Call parity formula (10.65)
becomes
Pt :KP(LT)*Stﬁ“Ct, te [O,T}

a

In this framework, the existence of an EMM ( is a trivial fact: indeed,
the only traded asset that, when discounted, has to be a Q-martingale is the
money market account B. But obviously B = 1 and therefore any probability
measure Q, that is equivalent to P, is an EMM. Analogously, in order for
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a process A to be a market price of risk (cf. Definition 10.25) it is sufficient
that the exponential martingale defined by dZ; = —Z; \;dW; is a strict P-
martingale: indeed, the martingale (or drift adjustment) condition (10.41) is
automatically satisfied because there are no traded risky assets. This is the
reason why, instead of specifying p and A under the real-world probability
measure P, it is common practice to specify the dynamics of the short rate
directly under the martingale measure @Q: in other terms, we suppose that
(10.73) describes the dynamics of r under the EMM Q. This procedure is
known as martingale modeling. In the literature there is a large number of
proposed models for the Q-dynamics of r: Vasicek [332], Cox, Ingersoll and
Ross [80], Black, Derman and Toy [48], Ho and Lee [168], Hull and White
[176] were among the first proposed models. We refer to Bjork [47] for an
effective introduction to the subject and to Brigo and Mercurio [63], Part II,
for a deep and exhaustive account of short rate modeling.

Assuming the @Q-dynamics (10.73) for the short rate r, by the pricing
formula (10.74) and Feynman-Ka¢ representation, we obtain that p(¢t,T) =
F(t,r; T) where (t,r) — F(t,r; T) solves the so-called term structure equation

2 T
{%%F + pu(t,r)0.F + O,F —rF =0, (10.75)

F(T,r;T)=1.

Contrary to the Black-Scholes equation, the PDE in (10.75) depends on the
drift coefficient p of the underlying process, because it takes into account the
fixed EMM. Therefore, in the framework of martingale modeling, the selection
of the EMM among all probability measures equivalent to P is an important
task: essentially, it can be considered a problem equivalent to the calibration
of the model, that is the problem of determining the coefficients p and o of
the SDE (10.73). More precisely, since we know that the diffusion coefficient
remains unchanged through a change of measure a la Girsanov, selecting @) is
equivalent to estimating u. Note however that u represents the drift coefficient
in the risk-neutral dynamics (i.e. under an EMM) and therefore we cannot
adopt standard statistical procedures to find p starting from the historical
dynamics of the process r: indeed, the historical data describe the real-world
dynamics and not the risk-neutral ones that we are trying to estimate.

Alternatively, this problem is typically approached by calibrating the
model to the set of today’s prices of the T-bonds and other liquid interest
rate derivatives: more precisely, we assume that the so called empirical term
structure, that is the set {p*(0,T) | T > 0} of the initial prices of T-bonds, is
observable. Then we can estimate p and o by imposing that the theoretical
prices p(0,T), T > 0, given by the model via the term structure equation
(10.75), agree with the empirical data, that is

p(0,T) = p*(0,T), T > 0.

This procedure is particularly efficient for the so-called affine models, where
w(t,r) = a(t)r+ p(t) and o(t,r) = \/~v(t)r + 6(t) with a, 8, v, § deterministic
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functions. These models are of particular interest since the term structure
equation can be solved semi-analytically in terms of first order differential
equations of Riccati type: for more details we refer to Bjork [47], Filipovi¢ [131]
and the more comprehensive studies by Duffie, Filipovi¢ and Schachermayer
[103] and Keller-Ressel [204].

The short rate models examined so far, are also called one-factor models
since the risk factor v is one-dimensional (d = 1). As a matter of fact, it is
straightforward to extend the previous analysis to models with two or more
risk factors: these models are more appealing for the practical applications
and still widely used. We refer, for instance, to [63], Chapter 4, for a practice-
oriented account of two-factors short rate models.

10.3.2 Pricing and hedging in a complete model

We have already commented on the fact that Theorem 10.50 is indeed an
interesting result from a theoretical point of view but it is not constructive and
it does not provide the expression of the hedging strategy for the derivative.
By using Malliavin calculus, in Section 16.2.1 we will prove the Clark-Ocone
formula that, under suitable assumptions, expresses the replicating strategy
in terms of the so-called stochastic derivative of the payoff. Without using the
advanced tools of Malliavin calculus, the most interesting and general results
can be obtained in the Markovian setting, employing the theory of parabolic
PDEs.

In this section we consider a Markovian model of the form (10.66)-(10.67)
which, under the assumption N = d, reduces to

dSi = piSidt + SioidWi,  i=1,...,N, (10.76)

where 1y = p(t,S;), op = o(t,S) and W = (W', ..., W?¥) is Brownian
motion with constant correlation matrix p:

AW, W7, = oY dt.
We also assume that r; = r(t,S;) and the following:

Hypothesis 10.54 The coefficients i, o, are Holder continuous and bounded
functions. The matriz (c;;) = (gijoioj) is uniformly positive-definite: there
exists a constant C > 0 such that

N
D it 9)&g =l te0,T], seRY, (RN,
i,j=1

The arguments presented in Chapter 7 for the study of the Black-Scholes
model can be easily adapted to the general case of a market with N risky
assets. In particular it is possible to characterize the self-financing property
in terms of a parabolic PDE of Black-Scholes type: moreover, the price and
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the hedging strategy are given in terms of the solution of a suitable Cauchy
problem. Without going through the details that were already seen in Chapter
7, we can directly establish the connection between PDE and arbitrage pricing
theories, by using the Feynman-Kac¢ representation Theorem 9.45.

We recall that the results in Paragraphs 9.2 and 8.1 guarantee the existence
of a weak solution S of (10.76). Further, by Theorem 10.27 (see also Remark
10.30), there exists a unique EMM Q: we denote by W® = (W@ . W)
the Brownian motion associated to (), under which the risk-neutral dynamics
of the prices is

dSi = rSidt + SioldW',  i=1,...,N. (10.77)

As usual, for every (t,s) € [0,T[xRY,, we denote by S™* the solution of
(10.77) such that
Stt’s =s.

We consider a European derivative with payoff F(Sr), where F is a locally
integrable function on RY, such that

|F(s)| < CeCllossl” se R>O,

with C, positive constants and vy < 2.
Theorem 10.55 Let f be the solution of the Cauchy problem

Lf=0, in )0, T[xRY,,

f(T,)=F, on R>O,
where

| X
Lf(t,s 75 Z:: zj (t,s 315]83 s]f(t s)
r(t, s) Z 8j0s, f(t,8) + Ocf(t,s) —r(t,s)f(t,s).
j=1
Then
f(t,s) = B [ SO residap(gin)) - (ts) € 0,T] x R, (10.78)

and Hy = f(t,S;) is the arbitrage price, at time t, of the derivative F(ST).
Further, a replicating strategy (o, 3) is given by
Vi = f(t,8),  ar=Vf(t,5),  te[0,T]. (10.79)

8 Here

V=051, 0sx )
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Proof. The claim is a consequence of the existence results for the Cauchy
problem in Paragraph 8.1 and of the Feynman-Kac¢ formula: they can be ap-
plied directly after the transformation s = e®. More precisely, fori =1,..., N,
we set

=logS;, o(t,x)=o0(te"), 7(t,x)=r(te"), ctz)=c(te").
Then, by the Ito formula, we have

dX; = (?(t, X;) - @t X))

5 ) dt + &' (t, X,)dWE',  i=1,...,N.

(10.80)
The characteristic operator associated to the system of SDEs (10.80) is

N S0t )2
Z:: 5 (t,2)0p, 0, u(t, ) +Z< (UO;’))> Oz ult, ).

Since, by assumption, A + 0; is a uniformly parabolic operator, Theorem 8.6
ensures the existence of a classical smooth solution of the Cauchy problem

l\D\»—~

{Au—?u+atu: 0, in]O7T[XRN7 (1081)

u(T,z) = F(e"), on RV,

and (10.78) follows by the Feynman-Ka¢ formula. By definition f is the arbi-
trage price of the derivative; moreover, by Proposition 10.39, formula (10.79)
defines an admissible strategy (a, ) that, by construction, replicates the
derivative. a

10.4 Change of numeraire

We consider a market model (S, B) of the form (10.25)-(10.27), introduced in
Paragraph 10.2. Throughout the paragraph we assume that the class Q (cf.
Notation 10.28) of EMMs is not empty.

Definition 10.56 Let Q € Q be an EMM with numeraire B. A process U is
called a “Q-price process” if:

i) U is strictly positive;

it) the discounted process defined by Uy = %i, t <T, is a strict Q-martingale.
In economic terms, a )-price process is a stochastic process with the main

features of a “true price”: it is positive and it verifies the risk-neutral pricing
formula under the EMM @. Indeed, the martingale property is equivalent to

U= E®? [D(t,T)Ur | 7], t€[0,T],
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where -
D(t,T) = e~ Jv rds

is the standard discount factor. By definition of martingale measure, any risky
asset S%, i =1,..., N, is a Q-price process; further, the value of any admissible
(cf. Definition 10.42) and positive self-financing strategy (o, 3) is a Q-price
process.

We already noted in the framework of discrete market models (see in par-
ticular Section 2.1.5) that it is sometimes convenient to use a numeraire dif-
ferent from the standard money market account. The @Q-price processes of
Definition 10.56 are exactly the kind of processes which we might choose as
numeraire, i.e. as a basic standard by which prices of all other assets are
measured.

Definition 10.57 Let U be a Q-price process. A probability measure QY on
(02, F) is called an EMM with numeraire U if:

i) QU is equivalent to P;
i) the processes of the U-discounted prices 5—: and 5—: are strict QU -martin-
gales. In particular, the risk-neutral pricing formulas

[ tTST|f]
[ t,T)Br | 7V], t€[0,T],

hold, where DY (t,T) = U; is the U-discount factor.

Next we prove the first basic result on the change of numeraire: any @Q-price
process U can be chosen as numeraire, that is for any @-price process U there
exists an EMM QY with numeraire U. Moreover we have an explicit formula
for the change of measure between EMMs in terms of their Radon-Nikodym
derivative. The following result is essentially equivalent to Lemma 10.3.

Theorem 10.58 Let QQ be an EMM with numeraire B and let U be a Q-price
process. Consider the probability measure QU on (2, F) defined by’

dQYV  UrBy
_ . 10.82
dQ — BrU, (1082)
Then for any X € L' (£2,Q) we have
EQ [D(t,T)X | FV] = E?" [DU(t, T)X | F'],  t€[0, 7). (10.83)

Consequently QU is an EMM with numeraire U and the Q-risk-neutral price
of a European derivative X 1is also equal to

EQ” [DY(t,T)X | FV],  te[o,T. (10.84)

9 Or equivalently, by
D(0,T)dQ = DY (0,T)dQ".
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Proof. We first prove that for any X € L! (Q, QU) we have

o Wi _ oa [ DLT) .
EY [X|F']=E ek el (10.85)
We set 0B
7, = Zt20 t T.
©= By €[0,T]

Since U is a Q-price process, Z is a strictly positive @Q-martingale. By the
Bayes’ formula in Theorem A.113, we have

EQ [XZr | FV]

E? [X|F"] = Rz 7]

(since Z is a @Q-martingale)

D(t,T)

114
DU (t,T) |7

= E° [XZT ]-}W} = E@ [X
Zy

where in the last equality we have used the following identity:

Zr UrByUsB, UrBi _ D(t,T)
Z, UyBrUB, UBr DU(,T)

This proves (10.85) and now (10.83) simply follows from

D(t,T)

EC D)X | 7Y =2 | Fras

(DYt 1)X) | 7Y

(by (10.85))

—EQ" [DY(t, T)X | F['].

U
Moreover, QYU ~ @ because % > 0 and therefore QU is equivalent to P.

Finally

S, =E? Dt T)Sr | FV] = (10.86)
(by (10.83))
- E?" [DY(t,T)Sr | F)V], (10.87)

and an analogous result holds for B. Thus QU is an EMM with numeraire U
and this concludes the proof. O

As a consequence of the previous result, we also have the following useful:
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Corollary 10.59 Let U,V be Q-price processes with corresponding EMMs
QY and QV. Then we have

dQU' 7" T Uy

(10.88)

As the following example shows, the change of numeraire is a very powerful
tool when dealing with stochastic interest rates: Geman [152] and Jamshidian
[186] first put it to a systematic use for facilitating the computation of option
prices.

Example 10.60 (Forward measure) As in Section 10.3.1, we denote by
p(t,T) the price at time ¢, under a fixed EMM @ with numeraire B, of the
zero coupon bond with maturity 7' (cf. (10.74)):

p(t,T) = E° [e* Jlrds | gW] 0 o

Clearly p(-,T) is a Q-price process and we may consider the associated EMM
QT usually called T-forward measure. By (10.84) the risk neutral price H of
a European derivative X is equal to

H,=E? ng?)x \ ftW} = p(t, T)E?" [X | FV]. (10.89)

In this formula the price is given in terms of the Q7-expectation of X and
therefore, at least formally, it appears much simpler than the standard ex-
pression

E€ [e_ S reds x | ftW}

where the @Q-expectation also involves the stochastic discount factor. On the
other hand, in order to use formula (10.89) (for instance, for a Monte Carlo
simulation) we need to determine the distribution of X under Q7. Let us
mention how this can be done: to fix ideas, we assume that X = X is the
final value of an It process and recall that a change of measure simply affects
the drift of X; (not the diffusion coefficient). Now Theorem 10.20 gives us the
expression of the change of drift in terms of the Radon-Nikodym derivative
%; in turn, this Radon-Nikodym derivative is known explicitly by Theorem
10.58:

dQ" By

dQ  p(0,T)Br’
We will come back to this matter in a more comprehensive way in Section

10.4.2 where we will give more direct formulas for the change of measure/drift
for It6 processes. |
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10.4.1 LIBOR market model

As a second meaningful example of application of Theorem 10.58, we analyze
the construction of the so-called LIBOR market model that is a widespread
model in fixed-income markets introduced by Miltersen [257], Brace [58],
Jamshidian [187]. At first our discussion will be informal, trying to determine
the main feature of the model we aim at setting up.

We denote as usual by p(¢, T) the price at time ¢ of the T-bond. The simple
forward rate (or, more commonly, LIBOR rate) L = L(t; T, S) is defined by
the formula

p(t,T) = p(t,S)(1+ (S —T)L), t<T<S§.

Then L(t;T,S) is the simple interest rate, contracted at ¢, for the period
[T, S], which agrees with the quoted prices of zero-coupon bonds.

We consider a fixed set of increasing maturities Ty, 71, . .., Ty and we put
§; =T, —T;_1 for i = 1,...,N. Moreover, to shorten notations we set pi =
p(t,T;) and we denote by L! = L(t;T;_1,T;) the LIBOR rates corresponding
to the given maturities: then we have

1 it

L;:-(ﬁ —1), i=1,...,N. (10.90)
& \ pi

Now we aim at constructing a mathematical model for the fixed-income mar-

ket where an EMM Q@ exists (i.e. the model is arbitrage-free) and the prices p

of T-bonds are @-price processes (i.e. they are positive processes that can be

used as numeraire). In this model, we denote by @ the EMM with numeraire

p* and we remark that the processes %: are QQ*-martingales for any j < N:

consequently, by formula (10.90), L? is a Q'-martingale as well, i.e. it is a
driftless process.

Keeping in mind the previous considerations, we look for the processes L’
in the form

dL} = i Lidt + oi Lidw™,  i=1,...,N, (10.91)

where WV = (WN’I, . ,WN’UI)7 with N < d, is a correlated d-dimensional
Brownian motion with correlation matrix o and the (scalar) volatilities o
may be positive constants such as in the standard LIBOR market model or
positive processes depending on some additional stochastic factors driven by
the last d — N components of W, such as in a typical stochastic volatility
model. We suppose that (10.91) gives the dynamics of the LIBOR rates under
the Ty-forward measure Q™ (cf. Example 10.60) and we try to determine, if
they exist, the processes u' such that L is a martingale under the forward
measure ° with numeraire p’, for any i = 1,..., N: more precisely,

dLi = ol LidW;", i=1,...,N, (10.92)
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where W¥J denotes the j-th component of the Q‘-Brownian motion W, for
i=1,...,Nand j =1,...,d, in agreement with the fact that L? must be a
Q*-martingale.

As in [47], in order to find u?, we perform the change of measure from Q™
to Q' and impose that the Q'-drift is null. More precisely, by Corollary 10.59,

we have . .y
Q' p ' ph ;
- = —T = Yt 10.93
erL | pt Py 1 t ( )
and we note that, by (10.90),
yi=20 (146,11 (10.94)
Py
Therefore, assuming the dynamics (10.91), we get
i 6 i i N, i i 5 L- N,i
dyi = =256 LiotdW; " = vio, S L L/

Po

Now that we have obtained explicitly the Radon-Nikodym derivative dg(;l as
an exponential martingale, we can apply directly the result about the change
of drift with correlation, Theorem 10.20 (see in particular formula (10.29)),
to get

)

- o 5L
AW = dW; ™ 4 oitol Tt dt

1+06;L}
Applying this inductively, we also obtain
AWM = awi + Z e SeLy i<N (10.95)
K SN ' '

k=i+1

Plugging (10.95) into (10.91), we conclude that, in order to get (10.92), we
necessarily have to put

SpLE
- — ik Ok i < N 10.96
Ukzl;lQ t1+6Lk7 ? ) ( )

and obviously Y = 0 because LV is a Q"V-martingale.

We conclude that, if a LIBOR market model with all the desired features
exists, it must be of the form (10.91)-(10.96). Actually, the argument can be
now reverted and we have the following existence result.

Theorem 10.61 Let W be a correlated d-dimensional Brownian motion on
a space (12, F,QN) endowed with the Brownian filtration (F}V'). We define the
processes L', ..., LN by

, Sp Lk
dLi = —L} E: olof — Tt dt + ol Lidw,",  i=1,...,N -1,
+ &, LY
k=i+1
dLY = o LY aw NN

)
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where ot € L2 are positive processes and o is the correlation matriz of W .

Then, for any i = 1,...,N, the process L' is a positive martingale under
the forward measure Q° defined by (10.93)-(10.94) and it satisfies equation
(10.92).

10.4.2 Change of numeraire for It6 processes

In this section we examine the change of measure induced by numeraires
that are Ito processes. As usual @ is a fixed EMM with numeraire B. As a
preliminary result, we compute the diffusion coefficient of the ratio of two Ito
processes: since we are only interested in the diffusion coefficient, we use the
symbol (---) to denote a generic drift term.

Lemma 10.62 Let U,V be two positive Ité processes of the form

dU; = (---)dt + ol - dWy,
dVy = (---)dt + o) - dW;,

where W is a correlated d-dimensional Brownian motion and oV,c" € L2

are the R%-valued diffusion coefficients. Then % is an Ito process of the form

N

Vi O'tv 0,{]
=(C-)dt+ — | =% — == | - dW,. 10.
o= e g t (10.97)

Vi U
Proof. The thesis follows directly by the It6 formula, since we have

Vi Vi Vedl,

1
= d(U, V).
Ut Ut UtQ < Y >t O

-

Vi
+ Uitgd<Ua U>t

Remark 10.63 Since W is a correlated Brownian motion we may assume (cf.
(10.22)) that it takes the form W = AW where W is a standard d-dimensional
Brownian motion. Then ¢ = AA* is the correlation matrix of W. Under the
assumptions of Lemma 10.62, we set

and from (10.97) we get

Vi Vi .
— = dt + — d
Ut ( ) + Ut Ot Wt
Vi . o
= (o )dt + = (6| AW, (10.98)
t

where




10.4 Change of numeraire 373

We remark explicitly that, by Corollary 5.35, W is a one-dimensional standard
Brownian motion. Note also that

Vv U Vv U
R oy oy oy oy
= EA A TN (S A 10.
|54 \/<@<Vt Ut)’(vt Ut>> (10.99)

a

The following example is due to Margrabe [247] who first used explicitly a
change of numeraire in order to value an exchange option.

Example 10.64 (Exchange option) We consider an exchange option
whose payoff is
(St —s7)"
where the two stocks S', $? are modeled as geometric Brownian motions:
dS; = p'Sidt + o' Sidwy, i=1,2.
Here W = (Wl, W2) is a 2-dimensional Brownian motion with correlation g:

d<W17W2>t = odt, 0 6} -1, 1[

By the results in Section 10.2.6 the market is complete, the martingale mea-
sure is unique and by the pricing formula (10.84) of Theorem 10.58, the arbi-
trage price H of the exchange option under the EMM @Q? with numeraire S2,

is given by
Si * W

Hence the price of the exchange option is equal to the price of a Call option
with underlying asset Y = g—; and strike 1.

Next we find the Q?-law of the process Y: we first remark that Y is driftless
since it is a Q%-martingale and therefore its dynamics is only determined by the
diffusion coefficient that is independent on the change of measure. Therefore,

by (10.97) we have!?

2 52 + 2
H, = E® S—;(S;fs%) ftW} = S2E@
T

dYy =Y, (c'dW} — 0?dW}) =
(by (10.98))

= YiodW,,
10 Tn the notations of (10.97) we have

V=S U=5* o =(s'5,0), of =(0,0S7).
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where W is a one-dimensional standard Brownian motion and, as in (10.99),

o= \/(01)2 + (62)% = 2001 02.

We have thus proved that Y is a geometric Brownian motion with volatility o
and therefore an explicit Black-Scholes type formula for the exchange option
holds. a

Combining Corollary 10.59 with Lemma 10.62 and Theorem 10.20, we get
the following;:

Theorem 10.65 (Change of numeraire) Let U,V be Q-price processes of
the form

dU; = (---)dt + ol - dWy,

10.100
dVi = (---)dt + o) - dW;, ( )

where W is a d-dimensional Brownian motion with correlation matriz o. Let
QY,QV be the EMM:s related to U,V respectively and WY, WV be the related
Brownian motions. Then the following formula for the change of drift holds:

O'V O'U
dwl =awY + o (—t - —t> dt. (10.101)

Example 10.66 In the Black-Scholes model, let us denote by W2 and W*
the Brownian motions with numeraires B and S respectively. Then by (10.101)

we have
dWP = dw}? + odt.

In particular the dynamics of S under W* is given by

dSy = rSdt + oS dW P
= rSydt + oS, (AW} + odt)
= (r+0?) Sidt + oS, dWf. O

10.4.3 Pricing with stochastic interest rate

The aim of this section is to give a fairly general formula for the pricing of
a European call option in a model with stochastic interest rate. This formula
is particularly suitable for the use of Fourier inversion techniques in the case
7 is not deterministic. The following result is a special case of a systematic
study of general changes of numeraire that has been carried out by Geman,
El Karoui and Rochet [154]. As already mentioned, in the context of interest
rate theory, changes of numeraires were previously used by Geman [152] and
Jamshidian [186]; this technique was also used by Harrison and Kreps [163],
Harrison and Pliska [164] and even earlier by Merton [250].



10.4 Change of numeraire 375

We consider a general market model of the type introduced in Paragraph
10.2 with N =1 (only one asset S) and d > 1. We assume the existence of an
EMM @ with numeraire B. The main idea is to write the @-neutral price C'
as follows:

Co = E€ [67 I TSdS(ST — K)Jr}
= BQ [ I Sy — K)Lsyomy| = T+ 1P
where, by (10.83) of Theorem 10.58, we have

Il — EQ |:€_ foT TSdSST]]'{STZK}} — SOEQS []l{STZK}:I ’

12 = KEQ [e* I Tsds]l{STZK}} = Kp(0,.T)E?" [11s,5x7] ,
by the change the numeraire where in the first term above we use the measure
Q*° with numeraire S, and for the second term we use the T-forward measure

QT with numeraire the T-bond p(-,T). Thus we get the following general
pricing formula.

Theorem 10.67 The Q-risk neutral price of a Call option with underlying
S, strike K and maturity T is given by

Co = 5Q° (S 2 K) — Kp(0,T)Q" (St = K), (10.102)

where Q° and QT denote the EMMs obtained from Q by the change of nu-
meraire S and p(-,T) respectively.

For the practical use of this formula we have to determine the distribution
of S under the new martingale measures. We first recall the dynamics of S
under the EMM @ with numeraire B and related Brownian motion W® =
(WQ’l, ceey WQ’d) with correlation matrix o:

dS; = 1Syt 4+ 0, SpdW .

Moreover we introduce the d-dimensional process ; = (04,0, ...,0), and we
assume that
dp(t,T) = rip(t, T)dt + p(t, T)o{ - AW,

where o7 denotes the d-dimensional volatility process of p(-,T). Then by
Theorem 10.65 we have that the processes W and W7, defined by

WS = dWR — p5,dt
and

AWl = dw? — goldt,
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are Brownian motions with correlation matrix g, under the measures Q° and
QT respectively. Hence we have

S, = (re +0?) Sydt + 0,8, dW
and

asS; = (Tt + 0y (QUtT)1> Sidt + 0, S, dW,

where (QUtT )1 denotes the first component of the vector gof .

Remark 10.68 When the short rate » = r(¢) is deterministic, as in most
models for equity derivatives, we have p(t,T) = e~ [ r(9)ds and ¢T = 0: thus
the dynamics of S under @ and Q7 coincide. a

Finally, we also give the expression of the Radon-Nikodym derivatives for
the changes of measure: by Corollary 10.59, for ¢t € [0, 7] we have

@| _ StBO . e~ fot TsdsSt

Ll o
and

ﬁ _ p(t7 T)BO 67 fot Tst

dQ 7" T Bp(0,T) —  p(0,1)

10.5 Diffusion-based volatility models

This section is devoted to the analysis of volatility risk with special focus on
the most popular extensions of the Black-Scholes models in the diffusion-based
framework, from local to stochastic volatility models. In order to explain the
systematic differences between the market prices and the theoretical Black-
Scholes prices (cf. Paragraph 7.5), various approaches to model volatility have
been introduced. The general idea is to modify the dynamics of the under-
lying asset, thus obtaining a stochastic process that is more flexible than
the standard geometric Brownian motion. Broadly speaking, the models with
non-constant volatility can be divided in two groups:

e in the first one, the volatility is endogenous, i.e. it is described by a process
that depends on the same risk factors of the underlying asset. In this case,
the completeness of the market is generally preserved;

e in the second one, the volatility is exogenous, i.e. it is described by a
process that is driven by some additional risk factors: for example other
Brownian motions and/or jump processes. In this case the corresponding
market model is generally incomplete.
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10.5.1 Local and path-dependent volatility

Among the models with endogenous volatility, the most popular ones are the
so-called local-volatility models for which ¢ is assumed to be function of time
and of the price of the underlying asset: the dynamics of the underlying asset
is simply that of a diffusion process

dSt = /j/(t, St)Stdt + O'(t, St)Stth. (10103)

Under the assumptions of Section 10.3.2 such a model is complete and it is
possible to determine the price and the hedging strategy by solving numeri-
cally a Cauchy problem as in Theorem 10.55.

Actually the dependence of o on S; does not seem to be easily justified from
an intuitive point of view. Nevertheless, local-volatility models have enough
flexibility to give the theoretical price of an option in accordance (at least
approximately) with the implied volatility surface of the market. In order to
replicate an implied volatility surface, the model must be calibrated; in other
terms, a so-called inverse problem must be solved: this consists in determining
the function o = o(t,S) such that the theoretical prices match the quoted
market prices. The calibration of the local volatility is an extremely delicate
matter that made several authors in the literature question the effectiveness
and the validity of the model: we refer, for example, to Dumas, Fleming and
Whaley [106] and Cont [75].

Starting from Breeden and Litzenberger’s work [59], Dupire [107] has
shown how, at least theoretically, it is possible to solve the inverse prob-
lem for a local volatility model. In what follows, for the sake of simplicity we
consider the one-dimensional case, with » = 0 and we denote by I'(0,S;T,-)
the transition density of the process of the underlying asset, with initial value
S at time 0. In view of the risk-neutral pricing formula, we have that the price
C=0C(0,5,T,K) of a European Call option with strike K and maturity T is
equal to

C(0,8,T,K) = E? [(St — K)*] :/ (s— K)tr(0,8;T,s)ds.
R>o

Now, the second-order distributional derivative, with respect to K, of the
payoff is
8KK(5 — K)+ = (5}{(5),

where 0 is the Dirac’s delta and so, at least formally, we get
OxkxC(0,S,T,K)=1(0,5;T,K). (10.104)

By (10.104), as soon as we know all the market prices of the Call options for
all the strikes and maturities, it is theoretically possible to obtain the density
of St: in other terms, knowing exactly the implied volatility surface means
knowing the transition density of the underlying asset.



378 10 Continuous market models

Now let us recall (cf. Theorem 9.46) that the transition density, as a fun-
ction of T, K, satisfies the adjoint PDE associated to the SDE (10.103) and
o

orr(0,8;T,K) = %aKK (o*(T, K)K*I(0,S;T, K)). (10.105)

Substituting (10.104) into (10.105) we have
1
OrxrC(0,8;,T,K) = 5aKK (o*(T, K)K?0xkC(0,5;T, K))
and integrating in K we get

1
orC(0,8;T,K) — 502(T, K)K?0xC(0,8;T,K) = A(T)K + B(T),
(10.106)
where A, B are arbitrary functions of T'. Since, at least formally, the right-
hand side of (10.106) tends to zero as K — 400, we must have A = B =0
and so

1
0rC(0,8;T,K) = 5aZ(T, K)K?0kkC(0,5;T,K), K,T >0. (10.107)

In principle, 9rC(0,S; T, K) and 9k kC(0, S; T, K) can be computed once the
implied volatility surface is known: therefore from (10.107) we get
207rC(0,5;T,K)

AT, K) = 10.1
o (T, K) K20rxC(0,8;T, K)’ (10.108)

which is the expression of the volatility function to plug as a coefficient into the
SDE (10.103) in order for the local-volatility model to replicate the observed
volatility surface.

Unfortunately formula (10.108) cannot be used in practice since the im-
plied volatility surface is known only at a finite number of strikes and maturi-
ties: more precisely, the computation of the derivatives OrC, 0k x C strongly
depends on the interpolation scheme used to build a continuous surface start-
ing from discrete data, this scheme being necessary to compute the derivatives
of the price. This makes formula (10.108) and the corresponding volatility sur-
face highly unstable.

The true interest in equation (10.107) lies in the fact that, by solving the
Cauchy problem for (10.107) with initial datum C(0,S;0,K) = (S — K)T,
it is possible to obtain the prices of the Call options for all the strikes and
maturities in one go.

A variant of the local volatility is the so-called path-dependent volati-
lity, introduced by Hobson and Rogers [169] and generalized by Foschi and
Pascucci [135]. Path-dependent volatility describes the dependence of the vo-
latility on the movements of the asset in terms of deviation from trend (cf.
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Figure 7.9). The model is very simple: we consider a function ¢ that is non-
negative, piecewise continuous and integrable over | — 0o, T'|. We assume that
1) is strictly positive on [0,7] and we set

vy = [ vy

We define the weighted average process of the underlying asset as

1 t
M, = 20 /_Do W(s)Zeds,  t€]0,T),

where Z; = log(e™"tS;) is the logarithm of the discounted price. The Hobson-
Rogers model corresponds to the choice ¥(t) = e with « a positive param-
eter. By the Itd formula we have

(1)
th = m (Zt - Mt) dt.

Assuming the following dynamics for the logarithm of the price
dZt = /J,(Zt - Mt)dt + O'(Zt - Mt)th,
with suitable functions u, o, we get the pricing PDE

(0uaf = 0.)+ 50} (e =0T 40 =0 (t,5:m) €10.TIXER®

(10.109)
Equation (10.109) is a Kolmogorov equation, similar to the ones that arise in
the pricing problem for Asian options: as we have seen in Section 9.5.2, for such
equations an existence and uniqueness theory for the Cauchy problem, similar
to that for uniformly parabolic PDEs, is available. Further, since no additional
risk factor is introduced, the path-dependent volatility model is complete. As
shown by Foschi and Pascucci [136], a suitable choice of the function o allows
to replicate the volatility surface of the market and reproduce some typical
feature like the rapid increase of implied volatility corresponding to large
decreases of the underlying asset.

o%(z —m)

2

10.5.2 CEV model

We consider a local volatility model where the volatility depends on the un-
derlying asset according to a power law

o(t,Sy) = o(t)SP (10.110)

with o(t) deterministic function of time and 0 < @ < 1. This model was first

proposed in Cox [79] where it was called the constant elasticity of variance
(CEV) model.
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Fig. 10.1. CEV-implied volatilities for T—t = 1, r = 5%, o(t) = 30% and different
values of 3

The function in (10.110) does not satisfy the standard assumption for the
coefficient of a SDE which guarantee the strong uniqueness of the solution:
more precisely, by the classical results on one-dimensional SDEs (see, for in-
stance, Section 5.5.5 in Karatzas and Shreve [201]), it is known that there
exists a pathwise unique solution of the SDE

dS, = o (t)SP dW, (10.111)

for any 3 > %, while uniqueness fails to hold for any 3 €]0,1/2[; further, the
point 0 is an attainable state for the process S. On the other hand, Delbaen
and Shirakawa [92] studied the arbitrage free option pricing problem and
proved that, for any 0 < 8 < 1, there exists a unique EMM measure under
which the risk-neutral dynamics of the asset is given by

dS, = rSydt + o (t)SP dW,.

Thus the model is complete and the arbitrage price of a European Call option,
with strike K and maturity 7', is equal to C(t, S;) = e "(T=t(t, S;) where

u(t,s) =F [(S?S — K)T

and, by the Feynman-Kac formula, u solves the Cauchy problem

Opu(t, s) + Ug(gsm Ossu(t, s) + rsdsul(t, s) =0, t €]0,T], s >0,
u(T,s) = (s — K)*, 5> 0.
(10.112)
Notice that for =1, (10.112) yields the standard Black-Scholes model.
A main feature of the CEV model is that volatility changes inversely with
the price, and this reproduces a well documented characteristic of actual price
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movements, recognized by several econometric studies. From the point of view
of volatility modeling, the CEV model introduces the skew pattern that is
commonly observed in some markets (see Figure 10.1) but it seems incapable
of reproducing realistic smiles. Moreover, a time dependent parameter o(t) is
required to accommodate the observed term structure of implied volatility.

The transition density of the price in the CEV model can be explicitly
represented in terms of special functions: in particular, Cox [79] expressed the
price of a Call option as the sum of a series of Gamma cumulative distribution
functions. It is known that these formulae give a good local (at-the-money)
approximation of the option price. For instance, Figure 10.2 shows the Cox
option prices in the case 8 = 2 and T = § with a number n of terms in the
series expansion equal to n = 400, 420, 440, 460: it is evident that for far from
the money options this approximation gives wrong prices unless we consider
a high number of terms in the series expansion. This is particularly sensible
for short times to maturity.

On the other hand, the approximation by Shaw [307] (see also Schroder
[303] and Lipton [239]) expresses the payoff random variable in terms of Bessel
functions and then uses numerical integration to provide the option price.
Since it is an adaptive method, the representation of prices is valid globally
even if the method may become computationally expensive when we have to
compute deep out-of or in-the money option prices.

Here we present another approach due to Hagan and Woodward [160] who
employed singular perturbation techniques to obtain an analytical approxi-
mation formula for the implied volatility in the CEV model. Singular pertur-
bation methods were largely originated by workers in fluid dynamics but their
use has spread throughout other fields of applied mathematics: Kevorkian and
Cole [205], [206] are reference texts on the subject. We present this approach
in some detail since it is quite general and can be applied in different settings
(an example is given by the SABR stochastic volatility model).

We recall that the implied volatility is defined as the value of the volatility
to be inserted in the classical Black-Scholes formula to obtain a given Call or
Put option price (cf. Section 7.5). The main result in [160] is the following:

Theorem 10.69 The implied volatility generated by the CEV model (10.111),
with B €]0, 1], is approximated by the following formula:

Var (L (1=B)2+8) (F-K\?
UcEV(StaTvK) = — <1+ 6 ( Ft )
(10.113)

+0—6V@—ﬂ%I>
2(1—

where

1 T
T = /t 2r(T=n0=02(7)dr
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Fig. 10.2. CEV-expansion option price by Cox [79], in the case 8 = % and T = é
with a number n of terms in the series expansion equal to n = 400, 420, 440, 460

and

er(T—s)St 1+ K

Ft: 2

Proof. The proof proceeds in some steps.

First step. We consider the pricing problem
Opu(t, s) + wawu(ﬁ, s) + rsdsu(t, s) = 0, t €]0,T[, s >0,
u(T,s) = (s — K)*, s> 0,

(10.114)
where, for greater convenience, we put A(s) = s?. We also set ¢ = A(K) and

T 2 r(T—t) g _
T(t):/ (er(ng)U(Q)A(efr(ng))) do, x(t,s):#.
t
(10.115)
By the change of variable
ult,s) = £Q(r(t), a(t, ), (10.116)

problem (10.114) is equivalent to

22

_ A?(K+ex) - _K
aTQ(T? ‘/E) ang(T, 'I) 07 T > O? € > e’ (10117)
Q0,z) =a",  x>-7.
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Next we consider the Taylor expansion

1
A(K +ex) = A(K) (1 +exvy + §€2JJ2V2 + 0(63)> (10.118)
as € — 0, where
_ A(K) _ A"(K)
v = AK)’ Uy = AR (10.119)

Plugging (10.118) into (10.117), we get

0:Q — $0:0Q = ex110:2Q + %;W)@MQ 1O, >0, 2> K,
Q(O,I):IE+, I>*§

(10.120)
Second step. Let
I'tx)=——e¢ 2t
(t) V2t
be the fundamental solution of the heat equation. We set
Q=G +¢Gy + 26,
where "
G(t,x) = x/ I'(t,y)dy + tI'(t, ) (10.121)
—0oQ
is the positive solution to the Cauchy problem
_1 = R
0,G(t,x) — 50.2G(t,x) =0, t>0, zeR, (10.122)
G(0,z) = aT, x €R,
while the functions G, G4 are defined recursively by
-1 TT = Tx t R
6tG1 23.G1 VllL'alG, >07 T € KR, (10.123)
G1(0,2) =0, z € R,
0;Go — %&ng = nx20::G1 + % (1/12 + 1/2) 220G, t>0, reR,
G2(0,2) =0, z € R.
(10.124)

A direct computation shows that

até - %ama:@ = Exylazm@ + E2(V§2+V2)a«”1@ + 0(53)7 >0, v > _g’
Q0,z) =z, z>-—£

and therefore, by comparison with problem (10.120), we take @ as an approx-
imation of the solution Q).
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Third step. Now we derive the explicit expression of @ We first remark that,

as a simple consequence of the following identities

8, (t,z) = —§r(t,x),

x2 —t

WF(t,x),

1
I (t,x) = iamf(t,x) =
we have

x

OtG(t,x):%F(t,s), 0.G(t,7) = / D(t,y)dy,

— 00

1’2

OuG(t,z) = e

x* — 622t + 3t2

3tttG(t7$) = 8t4

I'(t,x).
Now we prove that

G1(t,z) = ritxdG(t, x).

(10.125)

(10.126)

(10.127)

“rg ), 6xtG(t,:z:):—%F(t,z), 0, G(t, ) = I'(t,2),

(10.128)

(10.129)

(10.130)

Indeed by the classical representation formula (A.67) for solutions of the

Cauchy problem, we have
t
Galt.o) = [ [ 1t .0~ 4)u0,, Gls. )dyds =
0o Jr

(by (10.128))

t
= —Vl/ /F(t — 5,2 —y)s0,I'(s,y)dyds =
o Jr

(integrating by parts and since 9y I'(-,x — y) = —0,I'(-,z — y))

t
= —V1/ S(?x/ I(t—s,x—y)I'(s,y)dyds =
0 R

(by the reproduction property (6.26) and then again by (10.128))

V1t2
= fTGEF(Lx) = txdG(t, x)

and this proves (10.130). A similar argument yields

3 2 3 2
GQ = 1/12 <t48mG + 8%6%(? + tQatG) + vy (Q;BttG + 1;5}6’) =



10.5 Diffusion-based volatility models 385

(by (10.128) and (10.129))

vitta?
2

t
— ($2(4y2 +v2) +t(2v5 — 1/12)) 0,G +

=35 o G. (10.131)

Summing up, we have

Q(r,2) =G(7,2) + eG4 (7, z) + 2Ga(T, )
2

=G(r,x) + <51/17’:z: + 61—27— (1:2(4V2 + ) + 120y — 1/12))> 0-G(1,x)

and therefore

Q(t,2) = G(7,z) + 0O(e%), as e — 0,
where

2
T=1 (1 +enT + i_Q (1:2(47/2 + 7)) + (200 — Vf))) :

Thus, ignoring the errors of order greater than or equal to three, by (10.116)
we get the following approximation formula for the price of the Call option:

r(Tft)S - K
_ —r(T—t) _ —r(T—t) ~ € t _
C(t,S;) =e u(t,Sy) =e A(K)G (T, A(K) >

(since eG(t,x) = G(e%t,ex) for € > 0)
= e TTDG (AQ(K)%‘, er@T0g, — K) (10.132)

with G as in (10.121) and

2
; :7‘(1 + 141 (eT(T_t)St - K) + T12 (er(T_t)St — K) (41/2 + 1/12)
10.133
A2(K) ( )

+T 12 (2V2—l/12)>,

where

T
T:/ (eT(T_Q)U(Q)A(e_T(T_Q)))2dg.
t

Fourth step. We finally prove the approximation formula (10.113) for the
implied volatility. For the special case of the Black-Scholes model, that is with
A(s) = s and o(t) = 0ymp, the approximation formula (10.132)-(10.133) reads

Cps(t,Sy) = P le <K2TBS, e"T-Ng, — K)
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with G as in (10.121) and

1
Tas zaizmpl(T —t) (1 + 174 (er(Tft)St — K)

2 1
(em—t) S, — K) — 50T = t)).

(10.134)
+

12K2

Since G(7,x) is an increasing function of 7, the Black-Scholes price matches
the CEV price if and only if 7 in (10.133) equals 7 in (10.134): solving this
equation with respect to oi,,,, we find formula (10.113) for the implied vola-
tility in the CEV model. O

10.5.3 Stochastic volatility and the SABR model

Local volatility, and more generally complete market models, are commonly
considered unrealistic and unable to hedge the volatility risk. Hagan, Kumar,
Lesniewski and Woodward [159] argued that local volatility models have an
inherent flaw of predicting the wrong dynamics of the implied volatility. More-
over several studies support the fact that the stock price volatility should be
modeled by an autonomous stochastic process; the presence of jumps in the
dynamics of risky assets and/or their volatilities is another well documented
characteristic (see, for instance, the accounts given by Musiela and Rutkowski
[261], Cont and Tankov [76] and the bibliographies therein).

Typically, a stochastic volatility model is a Markovian model of the form
examined in Section 10.3: in the one-dimensional case, the stock price S is
given by

dSt == ,LL(t7 St)Stdt + O'tStdWI

where oy is a stochastic process, solution to the SDE
doy = a(t,o)dt + b(t, o) dW?,

and (Wl, WQ) is a two-dimensional correlated Brownian motion. Many diffe-
rent specifications of stochastic volatility have been proposed in the literature:
among others we mention Hull and White [175], Johnson and Shanno [189],
Stein and Stein [316], Heston [165], Ball and Roma [18], Renault and Touzi
[290]. The Heston model, that is one of the classical and most widely used
models, was already presented in Example 10.33: the related numerical issues
will be discussed in Chapter 15.

Another popular model, also used in the modelling of fixed income mar-
kets, is the so called SABR model proposed and analyzed by Hagan, Kumar,
Lesniewski and Woodward [159]. The SABR model is the natural extension
of the classical CEV model to stochastic volatility: the risk-neutral dynamics
of the forward price F, = ¢"(T=9§, is given by

dF, = a,FPdw},
doy = I/OétthQ,
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where (W?!,W?) is a Brownian motion with constant correlation o. The sin-
gular perturbation techniques presented in Section 10.5.2 can be employed
to prove the following approximation formula of the implied volatility in the
SABR model:

(7)) z
(Fok)'s" (1+ U582 1082 (52) + Ui 10g” () 7(2)

O e A D]

o(K,T,Fy,r) =

2U(FoK) =P 4(FyK)(1-P)/2 24
where r
v
— Z(FKY1-8)/2 50 20
¥ Oto( 0 ) 8 K
and

1—-202+22+2—0p
x(z) = log .

I—-o

We mention that Kahl and Jackel [193], Rogers and Veraart [292] have
recently proposed stochastic-local volatility models alternative to SABR, in
which option prices for European plain vanilla options have accurate closed-
form expressions. Moreover, Benhamou, Gobet and Miri in [39] and [40] pro-
posed a recent methodology based on stochastic analysis and Malliavin cal-
culus to derive tractable approximations of option prices in various stochastic
volatility models.

A common feature of stochastic volatility models is the market incomplete-
ness: typically, in a market model with stochastic volatility and/or jumps, it
is not possible to replicate all the payoffs and the arbitrage price is not unique
because it depends on the market price of risk. On the other hand, in practice
these models can be effectively used by employing a procedure of market com-
pletion, analogous to that we presented in the Gamma and Vega hedging (cf.
Section 7.4.3). The parameters of the model are usually calibrated to market
data in order to determine the market price of risk: then, in some cases a
hedging strategy for an exotic derivative can be constructed by using a plain
vanilla option, besides the bond and the underlying assets.

It is well known that stochastic volatility models account for long term
smiles and skews but they cannot give rise to realistic short-term implied
volatility patterns. To cope with these and other problems, more recently
models with jumps have become increasingly popular. Financial modeling
with jump processes will be discussed in Chapters 13, 14 and 15.
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American options

We present the main results on the pricing and hedging of American deriva-
tives by extending to continuous time the ideas introduced in the discrete-
market setting in Section 2.5. Even in the simplest case of the Black-Scholes
market model, the hedging and pricing problems for American options need
very refined mathematical tools. In the complete-market setting, Bensous-
san [41] and Karatzas [198], [199] developed a probabilistic approach based
upon the notion of Snell envelope in continuous time and upon the Doob-
Meyer decomposition. The problem was also studied by Jaillet, Lamberton
and Lapeyre [185] who employed variational techniques, and by Oksendal
and Reikvam [273], Gatarek and Swiech [149] in the framework of the theory
of viscosity solutions. American options for models with jumps were studied
among others by Zhang [345], Mulinacci [260], Pham [279], Levendorskii [235],
Ekstrom [119], Ivanov [181], Lamberton and Mikou [227], Bayraktar and Xing
[36].

In this chapter we present an analytical Markovian approach, based on the
existence results for the obstacle problem proved in Section 8.2 and on the
Feynman-Ka¢ representation Theorem 9.48. In order to avoid technicalities
and to show the main ideas in a clear fashion, we consider first the Black-
Scholes model and then in Section 11.3 we treat the case of a complete market
model with d risky assets.

11.1 Pricing and hedging in the Black-Scholes model

We consider the Black-Scholes model with risk-free rate r on a bounded time
interval [0, T]. Since in the theory of American options dividends play an es-

sential role, we assume the following risk-neutral dynamics for the underlying
asset under the EMM @:

dSt = (7' - Q)Stdt + O'Stth, (111)

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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where as usual, ¢ is the volatility parameter, ¢ > 0 is the dividend yield and
W is a real Brownian motion on the filtered space (£2,F, @, F;). Let us point
out that the discounted price S; = e~"tS; follows the dynamics

dgt = —qgtdt + Ugtth. (112)
Definition 11.1 An American option is a process of the form

(¥(t,St))teo, 1)

where ¥ is a convex Lipschitz continuous function on [0,T] x Rsg: (¢, St)
represents the premium obtained by exercising the option at time t.

An early-ezercise strategy is a stopping time on (2, F,Q, F;) taking values
in [0,T]: we denote by T the family of all exercise strategies. We say that
To € Jr is an optimal strategy if we have that

E€ [e_TTOw(TO,STO)} = sup E© [e_”w(r, ST)] .
TEIr

The following result relates the parabolic obstacle problem to the correspond-
ing problem for the Black-Scholes differential operator

2¢Q2

S
Lysf(t.8) = 7

8SSf(t75) + (’I“ - q)San(tas) + 8tf(t7S) - Tf(t7S)'

We recall Definition 8.20 of strong solution of an obstacle problem and that any

strong solution belongs to the parabolic Holder space C};{g‘c, for any « €]0, 1[.

Theorem 11.2 There exists a unique strong solution f of the obstacle prob-
lem

{max{LBsf,w —f1=o, in 10, T[xRxo, aL3)
f(T,) =(T,), on R,
satisfying the following properties:
i) for every (t,y) € [0, T[xRsq, we have
f(t,y) = sup E© [e_r(T_t)w(ﬂ StY) |, (11.4)
N

where SY is a solution of the SDE (11.1) with initial condition Sy = y;
it) f admits first-order partial derivative with respect to S in the classical
sense and we have

Osf € CNL>(0,T[xRxg). (11.5)
Proof. With the change of variables

u(t,x) = f(t’ em)v Lp(t,l‘) = '(/)(tv em)



11.1 Pricing and hedging in the Black-Scholes model 391

problem (11.3) is equivalent to the obstacle problem

max{Lu,p —u} =0, in 10, T[xR,
U’(Ta ) = <)0(T7 ')7 on Ra
for the parabolic operator with constant coefficients
2

2
Lu= %8mu+ (r—q— %) Ogpu + Opu — ru.

The existence of a strong solution is guaranteed by Theorem 8.21 and Re-
mark 8.22. Furthermore, again by Remark 8.22; u is bounded from above by
a super-solution and from below by ¢ so that an exponential-growth estimate
similar to (9.66) holds: then we can apply the Feynman-Ka¢ representation
theorem, Theorem 9.48, which justifies formula (11.4). Finally, the uniqueness
of the solution follows from (11.4). Moreover, by proceeding as in the proof
of Proposition 9.49, we get the global boundedness of the gradient. a

We now consider a strategy h = (s, 8;), with o € LZ _ and 8 € L, with
value

Vi(h) = Sy + B By.
We recall that h is self-financing if and only if

If we set N
Vi(h) = e™""Vy(h),

we have:

Proposition 11.3 A strategy h = («, 3) is self-financing if and only if
AVy(h) = oy (d§t i q§tdt) ,
i.e.
Vi(h) = Vo(h) +/ a,dS, Jr/ asqSsds
0 0
t
=TVp(h) —l—/ 008 dWs. (11.6)
0

In particular every self-financing strategy is uniquely determined by its initial
value and its a-component. Furthermore, V(h) is a Q-local martingale.

Proof. The proof is analogous to that of Proposition 7.3, the only difference
being the term due to the dividend. Formula (11.6) follows from (11.2). O
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On the grounds of the previous proposition, the discounted value of any
self-financing strategy is a -local martingale. In what follows we are interested
in the strategies whose value is a strict martingale. Then we denote by A
the family of self-financing strategies h = (o, 3) such that a € L*(P): a
noteworthy example is represented by the strategies where « is a bounded
process. We recall that, by Proposition 10.41, the discounted value of every
h € A is a @-martingale. Let us now prove a version of the no-arbitrage
principle.

Lemma 11.4 Let h',h? € A be two self-financing strategies such that
Vo (h') < Vo (h?) (11.7)

for some T € . Then
Vo(h') < Vo(h?).

Proof. The claim is an immediate consequence of (11.7), of the martingale

property of both V(hl) and V(hQ) and of Doob’s optional sampling theorem,
Theorem 3.56. a

Just as in the discrete case, we define the rational price of an American
option by comparing it from above and below with the value of suitable self-
financing strategies. This kind of argument is necessary because, differently
from the European case, the payoff ¢ (¢,5;) of an American option is not
replicable in general, i.e. no self-financing strategy assumes the same value
of the payoff at every single time. Indeed by Proposition 11.3 the discounted
value of a self-financing strategy is a local martingale (or, in analytical terms,
a solution of a parabolic PDE) while (¢, S;) is a generic process.

Let us denote by

Af = {he A| Vi(h) = ¥(t,Sy), t € [0,T] as.),

the family of self-financing strategies that super-replicate the payoff ¥(t, S).
Intuitively, in order to avoid arbitrage opportunities, the initial price of the
American option must be less than or equal to the initial value Vo(h) for every
heAl.

P

Furthermore, we set
A, ={h € A|there exists 7 € I s.t. Y(7,S;) > V7 (h) as.}.

We can think of h € .sz as a strategy on which we assume a short position to
obtain funds to invest in the American option. In other words, Vj(h) represents
the amount that we can initially borrow to buy the option that has to be
exercised, exploiting the early-exercise feature, at time 7 to obtain the payoff
(1, S;) which is greater or equal to V;(h), amount necessary to close the
short position on the strategy h. To avoid arbitrage opportunities, intuitively
the initial price of the American option must be greater than or equal to Vy(h)
for allh € Aj.
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These remarks are formalized by the following results. In particular, as an
immediate consequence of Lemma 11.4, we have the following;:
Proposition 11.5 Ifhy € A and hy € Ajﬁ' then we have
Vo(h') < Vo(h?).
Further, for every hi,ha € AN A;Z we have
Vo(h') = Vo (h?).
By Theorem 11.7, there exists a strategy h € A:g N All: then, by Proposition
11.5 the following definition is well-posed.
Definition 11.6 The arbitrage price of the American option Y(t,St) is the
initial value of any strategy h € A;L' N A; :
Vo(h) = inf Vy(h) = sup Vi(h).
hE.A$ he_A:D

Theorem 11.7 Let f be the strong solution to the obstacle problem (11.3).
The self-financing strategy h = («, 3) defined by

Vo(h) = f(0,5), o =0sf(t,5)

belongs to A;Z N Ay . Consequently f(0,S0) is the arbitrage price of ¥(t, S).
Furthermore an optimal exercise strategy is defined by

7o = inf{t € [0,T] | f(¢,St) = ¥(t, St)}, (11.8)
and we have that

Vo(h) = E9 [e7"™%(10, Sr,)| = sup EQ [e7y(r, S.)],
TEIT

where )
St _ SerW¢+(r—q—%)t
is the solution of the SDE (11.1) with initial condition Sy.

Proof. The idea is to use the It6 formula to compute the stochastic differen-
tial of f(t,St) and to separate the martingale part from the drift part of the
process. We recall that, by definition of strong solution, (cf. Definition 8.20),
€SP ([0,T]xRs0) and so it does not belong in general to C2. Consequently
we have to use a weak version of the Ito6 formula: however, since we do not

have a global estimate of the second derivatives® of f (and therefore of Lpsf),
! Tt is possible to prove (cf. for example [225]) the following global estimate

¢

VT —t

and then we could use it as in Remark 5.40 in order to prove the validity of the
1t6 formula for f.

||atf(t: ')||L°°(R>o) + ||8ssf(t, ')||L°°(R>o) <



394 11 American options

but only a local one, we cannot use Theorem 5.37 directly, and we must use
a localization argument. After fixing R > 0, let us consider the stopping time

Tr =T ANinf{t | S; €]0,1/R[U]R, +o0[}.

By the standard regularization argument used in the proof of Theorems 5.37
and 9.48, we can prove that, for all 7 € I, we have

TATR
e_T(TMR)f(T ATRy Searn) = f(0,50) + / 0Ss0s f(s,8s)dWy
O rn (11.9)
—|—/ e " Lpsf(s,Ss)ds
0

or equivalently, by (11.6),
. TATR
e "TNTR) £ A TR, Senrn) = Venrs + / e " Lpsf(s,Ss)ds, (11.10)
0

where V is the discounted value of the self-financing strategy h = (a, 3)
defined by the initial value f(0,Sy) and oy = dgf(t,St). Let us point out the
analogy with the hedging strategy and the Delta of a European option (cf.
Theorem 7.13).

We observe that V is a martingale since dgf is a continuous, bounded
function by (11.5), and therefore h € A. Let us prove that, for all 7 € Fr, we
have that

lim Viar, = Vi (11.11)
R—o .

- 2
(/ a§sasf(s,ss)dws) ]

2
T
=F (/ UStasf(t7 St)]l{‘r/\‘rRStST}th> =
0

Indeed

E

(by It6 isometry, since the integrand belongs to 1.?)

=F

R—oo

T, _ 2
/ (UStan(ta St)ll{‘r/\‘rRStS‘r}) dt] —0
0

by the dominated convergence theorem, being dg f € L.

Now we can prove that h € .AJ N A;. First of all, since Lgsf < 0 a.e. and
S has positive density, by (11.10), we have

W/\TR Z f(t A TR, St/\TR)
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forallt € [0,7] and R > 0. Taking the limit in R, by (11.11) and the continuity
of f, we get
Vvt Zf(tast) 21/)(157515), te [OaT]v

and this proves that h € A;Z.
Secondly, since Lpgf(t,S:) = 0 a.s. on {79 >t} with 79 defined by (11.8),
again by (11.10) we have

VT(J/\TR = f(TO N TR, ST()/\TR)
for all R > 0. Taking the limit in R as above, we get
Vie = f(70,57) = ¢(70, Sry).

This proves that h € .A; and concludes the proof. |

11.2 American Call and Put options in the Black-Scholes
model

By Theorem 11.7 we have the following expressions for the prices of Call and
Put American options in the Black-Scholes model, with risk-neutral dynamics
(11.1) for the underlying asset:

C(T7505K7T7q) = Sup E
TE€Tr

2 +

e T <5060Wq—+<rq"2 )‘r . F,) ‘| ’
2 +

e T <Rf _ SOeUVVTJr(rqu% )‘r) ‘| )

In the preceding expressions, C(T, Sy, K,r,q) and P(T, Sy, K,r,q) represent
the prices at time 0 of Call and Put American options respectively, with
maturity 7', initial price of the underlying asset Sy, strike K, interest rate r and
dividend yield ¢. For American options explicit formulas as in the European
case are not known, and in order to compute the prices and the hedging
strategies we have to resort to numerical methods.

The following result establishes a symmetry relation between the prices of
American Call and Put options.

P(T,SO,K,T,Q) = Ssup E
TE€ETr

Proposition 11.8 We have
C(T,So,K,r,q) = P(T,K,So,q,7). (11.12)
Proof. We set

2
Zt _ eUWt—"Tt

)

and recall that Z is a @-martingale with unitary mean. Moreover, the process

Wt:Wt—Ut
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is a Brownian motion with respect to the measure @ defined by

dQ
— = Zr.
g — "
Then we have

I 2 +
C(T, Sy, K,r,q) = sup E9 |Z.e 9" (SO _Ke”Wf+(q’“+z)T> ]
€I

) +
= sup EQ |Zpe 17 (So — KegW’Jr(qur?)T)
TEITr

T€Ir

Q W +
= sup EQ |17 (SO —Ke_UWT+(q_’”—022>T) 1 .

The claim follows because, by symmetry, ~Wisa @—Brownian motion. O

Now we state a Put-Call parity formula for American options, analogous
to Corollaries 1.1 and 1.2. The proof is a general consequence of the absence
of arbitrage opportunities and is left as an exercise.

Proposition 11.9 (Put-Call parity for American options) Let C,P
be the arbitrage prices of American Call and Put options, respectively, with
strike K and maturity T. The following relations hold:

S, —K<Cy—P, <8 —Ke Tt (11.13)

and
(K -8)" <P <K (11.14)

Now we study some qualitative properties of the prices: in view of Propo-
sition 11.8 it is enough to consider the case of the American Put option. In
the following result we denote by

P(T,S)= sup F
Te€Ir

02 +
e’ (K - Se"W’+(’“q2‘)T> ] : (11.15)

the price of the American Put option.
Proposition 11.10 The following properties hold:

i) for all S € Rsq, the function T — P(T,S) is increasing. In other words,
if we fix the parameters of the option, the price of the Put option decreases
as we get closer to maturity;

it) for all T € [0,T], the function S — P(T,S) is decreasing and convez;

iii) for all (T, S) € [0, T[xRso we have that

—1< dsP(T,S) <0.
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Proof. i) is trivial. ii) is an immediate consequence of (11.15), of the mono-
tonicity and convexity properties of the payoff function and of the fact that
those properties are preserved by taking the supremum over all stopping times:
indeed, if (g,) is a family of increasing and convex functions then also

g :=supg,
T

is increasing and convex.
Then 9sP(T,S) < 0 since S — P(T,S) is decreasing. Furthermore, if
¥(S) = (K — S)T then we have

[W(S) = ()| < [ - 5,

and so the third property follows from the argument used in the proof of
Proposition 9.49, by observing that

’E |:e—r-r¢ <5060W7+(r—q—”22)r> —eTy <S(’)€UWT+(T_q_022)T>:| ‘

< |50 — S| E [e”Wf—(Wf)T} <

(since ¢ > 0)
o2
< |So — SHIE [60”7777—} =

(since the exponential martingale has unitary mean)

=[S — Sp|. 0

In the last part of this section, we study the relation between the prices
of the European Put option and American Put option by introducing the
concept of early exercise premium. In the sequel we denote by f = f(¢,.5) the
solution of the obstacle problem (11.3) relative to the payoff function of the
Put option

P(t,S) = (K — S)+'

For ¢ € [0,T], we define
S*(t) =inf{S > 0] f(¢,5) > ¥(t,5)}.

S*(t) is called critical price at time t and it corresponds to the point where f
“touches” the payoff 1.

Lemma 11.11 For all (t,S) € [0, T[xRsq, we have that
Lgsf(t,S) = (qS - TK)IL{SSS*(t)]w (11.16)

In particular Lgsf is a bounded function.
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Proof. First of all let us observe that S*(¢) < K: indeed if we had S*(¢t) > K
then it should hold that

f(th) 21/)(75=K) =0

and this is absurd (since f > 0 by (11.4)). Then by the convexity of S
f(¢,S) (that follows from Proposition 11.10-ii)) we infer that

i) f(t,S)=K— S for S < S5*(t);

i) f(t,S) > (¢, S) for S > S*(1).

So we have that

(¢S —rK), for S <S5*(t),

L t,S) =
Bsf(t,5) {07 a.e. for S > S*(t). -

Now we go back to formula (11.9) with 7 = T": since Lggf is bounded, we
can take the limit as R — +o0o and then get

T

T o~
7T F(T, Sz) = £(0, 50) + / ¢ L (t, So)dt + / 08,05 £ (t, 5))dWr,
0 0

and taking expectation, by (11.16),

T
p(T, So) = P(T, So) +/ e " E? [(gS; — rK)1is,<s-yy] dt,  (11.17)
0

where p(T, Sp) and P(T, Sp) denote the price at time 0 of the European and
American options respectively, with maturity 7. The expression (11.17) gives
the difference P(T,Sy) — p(T, Sp), usually called early exercise premium: it
quantifies the value of the possibility of exercising before maturity. Formula
(11.17) has been proved originally by Kim [208].

11.3 Pricing and hedging in a complete market

Let us consider a market model consisting of d risky assets S}, i = 1,...,d,
and one non-risky asset By, t € [0,T]. We suppose that

i

Si=eXe, i=1,...,d,
where X = (X!,..., X%) is solution of the system of SDEs
dX} =0b'(t, Xy)dt + o' (t, Xp)dW},  i=1,...,d, (11.18)

and W = (Wl, ...,Wd) is Brownian motion on the space (2, F, P, (F;)),
with constant correlation matrix p:

AW, W7, = oY dt.
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We will specify in Hypothesis 11.12 the regularity conditions on the coefficients
that guarantee the existence of a strong solution to (11.18). By the It6 formula
we have

dSi = piSidt +oiSidwyi,  i=1,...,d, (11.19)

where pi = b'(t, Xy) + M We also assume that the price of the non-
risky asset is
t
Bt = efo rsds’ te [0, T],

where 1, = r(t, X;), with r a suitable function, and that the i-th asset pays
continuous dividends at the rate ¢; = ¢" (¢, X).

Hypothesis 11.12 The functions b, o, r and q are bounded and locally Holder
continuous on |0, T[xR%. The matriz (c;;) = (gijoiaj) is uniformly positive
definite: there exists a positive constant A such that

d
ATEP <> et 2)&8 < AP, t€]o,T] o6 € RY

4,j=1

Under these conditions, by Theorem 10.27 (see also Remark 10.30), there
exists a unique EMM Q: we denote by W& = (WQ’l, ceey WQ’d) the Brow-
nian motion associated to @, under which the risk-neutral dynamics of the
discounted prices
§i = e Siradsg
is given by _ _ _ ‘
dS! = —¢iSidt + Sicldw 2", i=1,...,d. (11.20)

The definitions of American option and exercise strategy are analogous to the
ones in the Black-Scholes case. An American option is a process of the form

(¥(t, St))teo, 1)

where ¢ is a convex Lipschitz continuous function on [0,T] x R‘io.

We denote by Jr the family of the Fi-stopping times with values in [0, T
and we say that 7 € I is an early-exercise strategy. Furthermore 7y € Jr is
an optimal strategy if we have

E° [67 I5° rsdsz/;(To,STo)} = sup E@ |e” Jo ’"Sdsi//(T, S| -
TEIT

The following result generalizes Theorem 11.2. In the following statement
(t,S) is an element of [0,7] x R%, and L is the parabolic operator associated
to the process (S;):

d d
1 ~ i ~_ Qi r
Lf =, > ;S 0sisi f + igl(?“ — )5 05 [ + 0 f =T,

ij=1
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where, after setting log S = (log S', ..., log S9),
¢j = cij(t,logS), T=r(tlogS) and ¢ =q'(t,logS).

Theorem 11.13 There exists a unique strong solution f of the obstacle prob-
lem

max{Lf,¥— f} =0, in 10, T[xRY (11.21)
f(Ta ) = d](Tv ')a on RiOa .
satisfying the following properties:
i) for all (t,y) € [0, T[xR%,, we have
Jty) = sup B9 e Ty 5]
reTp
TEt,T]
where S™Y is the price process with initial value S; = y, and rtY

r(s,log St:Y);
it) [ admits spatial gradient Vf = (Os1 f,...,0qaf) in the classical sense and

VfeC(]o,T[xRL,).

Furthermore, assume that the functions b,o and q are globally Lipschitz con-
tinuous in x, uniformly with respect to t, on |0, T[xR®: if ¢ is bounded or the
coefficient v is constant® then

Ve L>(]0,T[xR%,).

Proof. By the change of variable S = e*, the claim is direct consequence of
Theorems 8.21, 9.48 and of Proposition 9.49. O

Let us now consider a strategy h = (a4, B¢), o € ILIQOC and 3 € I[JlloC7 with
value
Vi(h) = oy - St + B¢ By,

and let us recall the self-financing condition:

d
dVy(h) = o} (dS} + q}Sjdt) + BidB;.
=1
If we set _ .
Vi(h) = e~ Jo 9y, (n),

the following holds:
2 In general, without the assumptions on the boundedness of ¢ or the fact that r

is constant, proceeding as in Proposition 9.49 we can prove that V f has at most
linear growth in S.
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Proposition 11.14 The strategy h = («, ) is self-financing if and only if
Vi(h) :vo(h)+2/ a;dS;JrZ/ olqiSids
i=170 i=170

L (11.22)
=Vo(h) + Z/ ol Sigldw @t
i=170

Proof. The proof is analogous to that of Proposition 7.3. The second equality
in (11.22) follows from (11.20). O

The definition of arbitrage price of the American Option is based upon
the same arguments already used in the Black-Scholes market setting.

Notation 11.15 We recall Definition 10.42 and we set
AS ={h e A|Vi(h) = 4(t,S), t €[0,T] as.},
A, ={h € A| there exists 1o € Tr s.t. (70, Sry) = Vry(h) a.s.}.

f% and A; denote the families of self-financing strategies super- and sub-
replicating respectively. By the martingale property, it follows that

Vo(h™) < Vo(h™)

for any h™ € A and ht e Ajl;. Furthermore, in order not to introduce
arbitrage opportunities, the price of the American option (t,S;) must be
less or equal to the initial value Vy(h) for all h € Aqr and greater or equal to
the initial value Vo(h) for all h € A, .

The following result, analogous to Theorem 11.7, gives the definition of
the arbitrage price of the American option by showing that

inf Vy(h) = sup Vy(h).
heAz hEA,;

Theorem 11.16 Let f be the solution to the obstacle problem (11.21). The
self-financing strategy h = («, 8) defined by

Vb(h) = f(o’ SO)? oy = Vf(t, St)?
belongs to A$ NA,. By definition
£(0,80) = Vo(h) = inf+ Vo(h) = sup Vo(h)
heAy heA,

is the arbitrage price of ¥(t,St). Furthermore, an optimal exercise strategy is
defined by

70 = 1inf{t € [0,T] | f(¢,S:) = ¥(t,Sp)},
and we have that

Vo(h) = B e 0oy (m, §1,)| = sup B9 |em iy (r, 1))
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Numerical methods

In this chapter we present some methods for the numerical solution of deter-
ministic and stochastic differential equations. The numerical approximation
is necessary when it is not possible to determine explicitly the solution of an
equation (i.e. nearly always).

What underlies many numerical methods for differential equations is sim-
ply the approximation of the derivatives (the integrals) with incremental ra-
tios (with sums). We will follow this approach in the whole chapter, trying
to present the methods for different kinds of equations (ordinary, with partial
derivatives, deterministic or stochastic) in the same common setting. Broadly
speaking, the main ingredients we will use in order for a solution X of a
differential equation LX = 0 to be approximated by a solution X? of the
“discretized” equation are three:

e the regularity of the solution X, that is derived from the properties of
the differential equation and is in general a consequence of the regularity
hypotheses on the coefficients;

e the consistency of the discretization (or numerical scheme), i.e. the fact

that L — L° 6—+> 0 in an appropriate sense: this is in general a con-
—0

sequence of the approximation by a Taylor series expansion and of the
regularity of the solution in the previous point;

e the stability of the numerical scheme, in general a consequence of a max-
imum principle for L% that gives an estimate of a function (or a process)
Y in terms of the initial datum Yy and of LY.

12.1 Euler method for ordinary equations

Let us consider the ordinary differential equation

dX
ditt = M(t7Xt)a te [07T}7 (121)

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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where
w:[0,T]xR—R

is a continuous function. For the sake of simplicity and clarity, we confine
ourselves to the 1-dimensional case, but the following results can be extended
without difficulties. We assume the linear-growth condition

lu(t, z)| < K(1+ |z|), zeR, tel0,T], (12.2)

and, further, we assume Lipschitz continuity with respect to both variables
(so a slightly stronger assumption than the standard Lipschitz continuity in
x):

‘ﬂ(t7x)_u(57y)| SK(‘t—S|—|—‘$—y|)7 xvyeRv t,SE [OvT] (123)

For fixed N € N, we divide the interval [0,T] into N intervals [t,_1,ty]
whose length is § := %, so that t, = nd for n = 0,..., N. We denote by
d the discretization step. By approximating the derivative in (12.1) by the
incremental ratio relative to it (or, equivalently, by truncating the Taylor
expansion of the function X with initial point ¢,, to the first order), we get
the following discretization of (12.1):

X6

tnt1

=X} + pultn, X7 )4, n=1,...,N. (12.4)

By imposing XJ = Xj, (12.4) defines recursively the values of an for n =
1,..., N, giving an algorithm for the determination of an approximation of
the solution X.

It can be useful to consider the equivalent integral version of (12.1):

L;X =0, t €10,T], (12.5)
where L; is the operator defined by
t
LiX =X, — Xo —/ (s, Xs)ds, te[0,T). (12.6)
0
For fixed t,, as before, equation (12.5) can be discretized by making the in-

tegrand p(s, Xg) ~ p(tn—1, Xy, ,) constant over the interval [t,,—1,t,]. More
precisely, we define the discretized operator L by putting

t N
LIX = Xt—XO—/ > pltn-, Xe, )y, e (s)ds,  t€[0,T). (12.7)
0 p=1
The equation
LIX° =0, tel0,T],

is equivalent to

t N
Xf:XO—/ S pltn-1, X0 )y, e(s)ds,  te€[0,T],  (12.8)
0 p=1



12.1 Euler method for ordinary equations 405

and it defines recursively the same (at the points ¢ = t,,) approximation X?
of the solution X introduced earlier with formula (12.4): more precisely the
function X?° is defined by linear interpolation of the values an, n=20,...,N.

In order to study the convergence of the Euler numerical scheme, first we
prove an a-priori estimate of the regularity of the solutions to the differential
equation.

Proposition 12.1 (Regularity) The solution X in (12.6) is such that
| X — X5 < Kyt — s, t,s €10,T], (12.9)
with Ky depending on K in (12.2), T and Xy only.

Proof. By definition, if s < ¢, we have

t
/ p(u, Xy)du

The claim follows by the assumption of linear growth on p and from the
following estimate

1X; - X, = < (t—s) max_|u(u, X,)|

w€[0,T]

Xy < X (|1 X0| + KT), t €10,7], (12.10)

that can be proved using Gronwall’s Lemma and the inequality
t
) < Xl + [ (s, X,)]ds <
0
(by the linear-growth assumption on pu)

t
§|X0‘+KT+K/ |X5‘d8 O
0

Now we verify the consistency of the discretized operator L with L.

Proposition 12.2 (Consistency) LetY be a Lipschitz continuous function
on [0, T] with Lipschitz constant K. For every t € [0,T

|LY — LYY| < C5, (12.11)
where the constant C depends only on K, K, and T'.
Proof. It suffices to consider the case t = t,,. We have
n

123
Lo, Y — L} Y| = / (u(s,Ys) = o (th-1,Ye,_,)) ds| <

tp—1
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(by the Lipschitz-continuity assumption on )

n t
<SEY [ (s—ta+|Ye—Yi | ds

k=1"tk-1

(by (12.9))

n t
SK(1+K1)Z/ (s — tr_1)ds
k=1"1tk—1

< K(1+ K,)Tb. -

The third step is the proof of a maximum principle for the discrete operator
Lo,

Proposition 12.3 (Stability - Maximum principle) Let X|Y be conti-
nuous functions on [0,T]. Then

max |X; — Y| < &7 (|XU —Yy| + max |[LIX — L§Y|) : (12.12)
te[0,7) te[0,T]
Proof. Since

X, Y, =Xo - Yo+ L2X — LY

t N
4 / S (a1, X, ) = ilbn1, Yoo 1)) s 10 (5)dls
0 n=1

by the Lipschitz-continuity assumption on p, we have

t

max | X, — Y| < |Xo — Yo|+ max |LIX — LY|+K [ max |X, —Y,|ds.
s€[0,t] s€[0,T] 0 u€l0,s]

The claim follows from Gronwall’s Lemma. O

Remark 12.4 The previous result is sometimes called “maximum principle”
because, if Y; = 0 and the differential equation is linear and homogeneous, i.e.
of the form u(t,x) = a(t)z, then (12.12) becomes

max | X;| < KT <|XO| + max |LtX|> ,
te[0,T) te(0,T]
and this expresses the fact that the maximum of the solution to the equation
L;X = f can be estimated in terms of the initial value Xy and the known
function f. This kind of result guarantees the stability of a numerical scheme:
this means that, for two solutions X% Y? of L°X = 0, (12.12) becomes

max | X? — V7| < B XS - YY)

s X0 = 7| < X113 - Yy
and this gives an estimate of the sensitivity of the solution with respect to
some perturbation of the initial datum. O
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Now we prove that the order of convergence of the Euler discretization
scheme is one.

Theorem 12.5 Let X and X°be the solutions of LiX = 0 and L{X° = 0,
respectively, with the same initial datum Xog = Xg . There exists a constant C
depending only on T, K in (12.2) and Xy such that

max | X, — X/| < C6. (12.13)
t€[0,T)

Proof. By the maximum principle we have

max |X; — X7| < e*T max |LIX — LYX°| = X7 max |L{X — L, X| <
t€[0,T] t€[0,T) t€[0,T)
(by the consistency results, Proposition 12.2, and by the regularity results,

Proposition 12.1)
<Cé

where C' depends only on T, K and X. O

12.1.1 Higher order schemes

The Euler discretization is extremely simple and intuitive, nevertheless it gives
satisfying results only if the coefficient p can be well-approximated by linear
functions. In general it is preferable to use higher order numerical schemes.
We briefly touch upon the main ideas. In what follows we assume that the
coefficient p is sufficiently regular and we consider the equation

X; = /J‘(tht)v te [OvT]

Differentiating the previous equation and omitting the arguments of the fun-
ction p and of its derivatives, we get

X" = o + pe X' = py + props,

X" = puy + 20 X' + piog (X/)2 + e X",
where g, 1, denote the partial derivatives of the function pu = p(t,x). Sub-
stituting these expressions in the Taylor expansion of the p-th order, we have

1
Kty = Xp, + X1 04+ HXt(fj)(sp

n+1
and we obtain the p-th order Euler scheme. For example, the second order
scheme is

2

o
Xp o = X0, 4 it X700+ - (pe(tn, X3,) + (b, X7, Ja(tn, X7,)) -

tnt1

Under suitable regularity assumptions on the coefficient pu, it is possible to
prove that the order of convergence of the p-th order Euler scheme is p, i.e.

max |X; — Xf‘ < CoP.
t€[0,T)
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12.2 Euler method for stochastic differential equations

We examine the problem of numerical approximation of a stochastic differ-
ential equation. We refer to the monographs by Kloeden and Platen [210],
Bouleau and Lépingle [54] for the presentation of the general theory.

We use the notations of Paragraph 9.1 and we define the operator

¢ ¢
LiX =X — Xo— / p(s, Xs)ds — / o(s, Xs)dWs, te[0,7], (12.14)
0 0

where X is a given JFy-measurable random variable in L2({2, P) and the
coefficients

pw=pultz):[0,T] xR — R, oc=o(tx):[0,T] x R — R,
verify the following assumption
|,u(t,x) - /’L(S7y)‘2 + |0'(t,.’1)) - U(ta y)|2 S K (|t - S‘ + |aj - y‘z) ) (121‘5)

for ,y € R and ¢, s € [0, T]. Notice that (12.15) is slightly stronger than the
standard assumptions (cf. Definition 9.4), since it is equivalent to global Lips-
chitz continuity in the x variable and to Holder continuity with exponent 1/2
in ¢: in particular (12.15) contains the usual linear-growth condition. Under
these assumptions, Theorem 9.11 ensures the existence of a strong solution
X € A, of the equation

LiX =0, t e 0,7

We recall (cf. Notation 9.7) that A, denotes the space of continuous Fi-
adapted processes such that

X1y = E[ sup Xf]
0<t<T
is finite.

We divide the interval [0,7] into N intervals [t,_1,t,] whose length is

0= % and we define the discretized operator L° obtained by making the

integrands in (12.14) piecewise constant:

t N
LfX =Xy — Xo—/ Z u(tn—l,thfl)]l]tn—htn](s)ds
0 iz
=t (12.16)

t N
_ / S 0t Xey )t 0y (5) AW,
0 n=1

for t € [0,T]. The equation

X =0, telo,T], (12.17)
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defines the discretized process X°: for t = t, (12.17) is equivalent to the
formula

X6

tn41

=X} 4 b, XP )6+ 0 (tn, XP ) (Wi, — W2,) (12.18)

that determines the discretized process X° recursively, starting from the initial
datum X§ = Xo.

The first tool we need in order to prove the convergence of the Euler
scheme is the following result on the regularity of the solutions of the stochastic
equation, contained in Theorem 9.14:

Proposition 12.6 (Regularity) The solution X of L;X = 0 is such that

E

sup | X, — Xt|2] <K \(t' —t), 0<t<t<T, (12.19)
s€E[t,t’]

where K1 is a constant that depends only on T, E [XOQ] and K in (12.15).

The second step consists in verifying the consistency of the discretized
operator L with L: the next result is analogous to Proposition 12.2.

Proposition 12.7 (Consistency) LetY € A, such that

E| sup [V, -V

sS€E[t,t’]

< Ky (t' —t), 0<t<t' <T. (12.20)

Then
[LY — L°Y]r < CVG, (12.21)

where the constant C' depends only on K, Ky, and T'.

Proof. We have

t N
LY — L?Y :/ Z (u(t"—lv )/tn—l) - :u’(sv YS)) ]l]tnfhtn](s) ds
0 ,—

=z

t N
+/ Z (U(tn—la Y;fn—l) - J(Sa Y;)) ]l]tn,flﬂfn](s) dWSa
0 p=1

=Z7

and so, by Lemma 9.9,

[LY — L°Y]3 < 2/T (T[2"]; +A[2°]7) dt.
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To conclude the proof, we observe that

[2']; = E

N
2
sup Z (,LL(S, Y‘?) - ,U'(tn—h an—l)) ]l}tnl,tn](s)‘| <

s<t n=1

(by the Lipschitz-continuity assumption (12.15))

N
sup > (s = tp1| + |V = Vi, ) ]l]tnl,tn](s)] <Co

s<t

<KFE

n=1

in view of the regularity assumption (12.20), and an analogous estimate holds
for [Z1]3. O

The third tool is a maximum principle for the discrete operator L°.

Proposition 12.8 (Stability - Maximum principle) There exists a con-
stant Cy, depending only on K and T such that, for every pair of processes
X,Y € A., we have

[X — Y13 < Co (B [|Xo — Yol?] + [L°X — L°Y]3) . (12.22)

Proof. Since

X, - Y, =L0X — LYY + X, — Y,

t N
+ / Z (M(tn—lv th—l) - ,U(tn—la Ytn—l)) ]]‘]t'nflatn] (8) ds
0o, _

=z

t+ N
+ / S (0t 1, Xep 1) — 0t 1, Yo ) Ty 0y () AW,
0 _

=Z7

s

using Lemma 9.9 we get

[X - Y]? <4 (E (X0~ Yo)?] + [L°X — Y3

+t/0t[[Z”]]§ds+4/0t[[Z"]]§ds>.

On the other hand we have

N

sup > (ultn-1, X1, ) = pltn-1,Y1,_,))

[2']} = E ?

Ly, ot (8)] <

n=1
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(by the Lipschitz-continuity assumption on )

N
<KE|sup Y |Xi_, ~ i, |2n]t,,bl,tn]<s>] < K[X - VT2,

s<t n=1

and an analogous estimate holds for [Z°]7. So putting the previous estimates
together, we get

t

[X - Y]? <4E [(Xo — Yo)?] +4[L°X — L°Y]% + 4K (T + 4) / [X —Y]2ds
0

and the claim follows from Gronwall’s Lemma. a

We can now prove the following result that states that the order of strong

1

convergence of the Euler scheme is 5.

Theorem 12.9 There exists a constant C depending only on K,T and
E [X§], such that

[X — X%y < OV,
Proof. By the maximum principle, Proposition 12.8, we have
[X — X3 < Co[L°X — L2X°]% = Co[L°X — LX]% < C6
where C' depends only on T, K and E [Xg}, and the last inequality follows

from the consistency and regularity results, Propositions 12.7 and 12.6. O

12.2.1 Milstein scheme

Analogously to the deterministic case, it is possible to introduce higher-order
schemes for the discretization of stochastic equations. One of the simplest is
the Milstein scheme, which uses a first-order approximation of the diffusion
term with respect to the variable x:

tn+1 tnt1
/ O'(t,Xt)th ~ / (O'(tn,th) —|—3z0(tn,th)(Wt - th)) th
t t

n n

By simple computation we get

Wi

2
nt1 th) - (thrl - tn)

tni1 (
[ e wiaw, - :
t

n

Then, putting 6 = ¢,,41 —t,, and denoting a standard Normal random variable
by Z, we get the natural extension of the iterative scheme (12.18):

522 -1
= th + M(truth)(s + U(tnu th)\/(_sz + axa(tnath)Q-

X >

n+1
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It is known that the order of strong convergence of the Milstein scheme is one.
By way of example, for the discretization of a geometric Brownian motion

dSt = uStdt + O'Stth,

we have

2
St =Sty (1 +9d (/L+ %(Zz — 1)) +a\/3Z> .

12.3 Finite-difference methods for parabolic equations

In this section we present some simple finite-difference schemes for parabolic
differential operators in R?. Finite-difference methods give superior results, in
terms of accuracy and speed of computation of the price and the Greeks of an
option, with respect to other numerical schemes (binomial and Monte Carlo),
even though their application is limited to low dimensional problems.

Among the monographs that study in depth finite-difference schemes ap-
plied to financial problems, we mention Zhu, Wu and Chern [349], Tavella
and Randall [325]. The monographs by Mitchell and Griffiths [258], Raviart
and Thomas [289], Smith [314], Hall and Porsching [161] investigate finite-
difference methods for partial differential equations on a more advanced and
general level.

Let us consider an operator of the form A 4 9;, where

Au(t,x) := a(t, x)Opzu(t, x) + b(t, x)Opu(t, ) — r(t, z)u(t, x), (12.23)

and (t,2) € R%. We suppose that A verifies the standard hypotheses in Para-
graph 8.1: the coefficients a, b and r are bounded Ho6lder continuous functions
and there exists a positive constant p such that

pt <altz)<p, o (tz) R
If we assume the dynamics
dXt = ‘U,(t,Xt)dt+0'(t,Xt)th, (1224)

for the logarithm of the price of a risky asset S and if r is the short-term rate,
in Section 10.3.2 we have expressed the arbitrage price of a derivative with
payoff F(St) in terms of a solution of the Cauchy problem

Owu(t, ) + Au(t,z) = 0, (t,x) €]0, T[xR, (12.25)
uw(T, z) = o(x), z € R,
where A is the differential operator in (12.23) with
2 2
a= J—, b=r— J—,
2 2

and ¢(x) = F (e%).
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12.3.1 Localization

In order to construct a discretization scheme and to implement it, the first
step is to localize the problem (12.25) on a bounded domain. More precisely,
for fixed R > 0, we introduce the Cauchy-Dirichlet problem

Owu + Au =0, in 10, T[x] — R, R],
u(t’ 7R) - <P—R(t)a u(t7R) - @R(t)v te [OvT]v (12'26)
w(T, x) = o(z), lz| < R,

where @4 are functions that express the data on the lateral boundary and
have to be chosen in a suitable way: the simplest choice is ¢+ r = 0 and other
typical choices are

eir(t) = @(£R), or  pip(t)=e i TEERA R e (0, ).

Instead of lateral Cauchy-Dirichlet-type conditions, it is possible to assign
Neumann-type ones: for example, in the case of a Put option,

Ou(t,—R) = dyu(t, R) =0, t €10,T].

By using the Feynman-Ka¢ probabilistic representation of Theorems 9.44
and 9.45, it is possible to easily obtain an estimate of the difference between
the solution ug of (12.26) and u. For the sake of simplicity we consider only
the case p+r = 0: an analogous result can be proved without major difficulties
when ¢ i are bounded functions. We have

'Uz(t71') =F |:6_ ft,T T(S’Xz’x)dsgﬂ(X,;’z)] 7
T ) ds =
o~ [ ]

where 7, is the exit time of the process X%, solution of the SDE (12.24) with
= b, from the interval | — R, R[. Then

T t,z S T
[ult,2) — un(t,@)| < B [e” XD o (X) |1, emy | <
(since r is bounded)

< elrlee@=0 1)l Lo P < sup |X0*| > R) <
t<s<T

(by the maximal estimate (9.41))

(e"KT=OR — |z| — K(T —t))*
2k(T —t)

< 2|l Lo exp (— + el (T - t)) ;

(12.27)
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where k, K are positive constants depending explicitly on the coefficients of
the stochastic equations (cf. (9.38)-(9.39)). Formula (12.27) proves that ug
converges uniformly on compact sets to u for R — +o0o and gives an explicit
estimate, quite coarse indeed, of the approximation error. More precise sup-
norm estimates for the truncation error in terms of the maximal error at the
boundary are given by Kangro and Nicolaides [197].

12.3.2 @-schemes for the Cauchy-Dirichlet problem

For a fixed discretization step & > 0, we introduce the following first-order
finite differences:

_ vy +9)—v(y)

D; v(y) 5 ) “forward”
ng(y) — M’ “backward”,

! - vy +9) —v(y =9 ccontral”
Dsoly) = 5 (DFo(w) + Dy ofy)) = "W =0) contral”

Further, we define the second-order central ratio

Digy) = DW= DFH0) _ oty D) = 2) 40ty =)

We prove the consistency of the previous finite differences with the corre-
sponding derivatives: the order of approximation of the backward and forward
differences is one, whilst for the central differences the order is two.

Lemma 12.10 If v is four times differentiable in a convex neighborhood of
the point y, then the following estimates hold:

sup |v”|

D3 v(y) —v'(y)] < o—5—, (12.28)
_ sup |v”|
D —v'(y)| < 0—7— 12.29
D5 oly) —v'(y)| <0, (12.29)
‘D(S'U(y) _ U/(y)| < 62 Sllp?|)'UH/| + 53 Sl].p1|;}/m|7 (1230)
"
|Djo(y) —o"(y)] < 525 [V (12.31)

12

Proof. Taking the Taylor series expansion of v with initial point y, we get

oy + ) = vly) + W)+ L ()5, (12.32)

oy~ 6) = o(y) ~ /(05 + 50" (7). (12.3)
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with 4,7 €y — 6,y + [. Then (12.28) follows from (12.32) and (12.29) follows
from (12.33).
Now let us consider the fourth-order expansion:

oy +8) = o(y) + v (W) + 30 W) + 0" W) + (@), (1234)
oy =) = vly) — V() + S0 W) — W) + (@8 (12.35)

with §, 9 €y—4, y+4[. Summing (subtracting) (12.34) and (12.35), we obtain
immediately (12.30) ((12.31)). O

For fixed M, N € N, we define the space-discretization and the time-discre-
tization steps

and on the domain [0,7] x [-R, R] we construct the grid of points
G = {(tn,x;) = (n7,—R+1i6) | n=0,...,N, i=0,...,M+1}. (12.36)

For every function g = ¢(t,z) and for every ¢t € [0,T], we denote by ¢(t) the
RM_vector with components

further, on the grid G(™% we define the function

In,i = gz(tn) = g(t'ruxi)v

forn=0,...,Nandi=0,...,M + 1.

Using the finite differences described earlier, we introduce the discretiza-
tion in the space variable of the Cauchy-Dirichlet problem: we define the linear
operator As = As(t) approximating A in (12.23) and acting on u(t), vector in
RM defined as in (12.37), in the following way

ui+1(t) — 2u, (t) + Ui_l(t)
62
U; (t) — U;— (t)
+ by (t) 5 L ()t

= () ui_1(t) — Bi(O)ui(t) + vi(uip1(t),  i=1,..., M,

(Asu)i(t) :=ai(t)

where

2@1‘ (t)
52

Bi(t) =

+rit), )= +
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In other terms, incorporating the null Dirichlet condition at the boundary,
the operator As(t) is represented by the tridiagonal matrix

) m@) 0 0 0

az(t) B2(t) 12(t) 0 0

0 as(t) Bs(t) s(t) 0
As(t) =

0 0 - am—a(t) Bu-1(t) Yar—1(t)

o 0 - 0 an(t)  Bu(t)

and the discretized version of problem (12.26) with null lateral-boundary data
is

4 u(t) + Asu(t) =0, t €]0,T7, (12.38)
wi(T) = p(x;), 1=1,..., M.
Finally we approximate the time derivative by a forward finite difference:
d Un+143 = Uny
—ui(t,) ~ /=
dtu (£n) T

Definition 12.11 For fized 6 € [0,1], the finite-difference 6-scheme for the
problem (12.26) with null lateral-boundary data consists of the final condition

uni(t) = @(z;), i=1,...,M, (12.39)

associated to the following equation to be solved iteratively for n decreasing
fromn=N—1ton=0:

Ot li Ui 4 g Asu) s+ (1— 0)(Ast)nirs =0,  i=1,..., M. (12.40)
.

The finite-difference #-scheme is called explicit if 6 = 0: in this case the
computation of (uy, ;) starting from (u,+1,) in (12.40) is immediate, since

Unp,i :un+1,i+T(A5u)n+1,i7 1=1,..., M.
In general, we note that (12.40) is equivalent to
(I =70A5)u), ;= (I +7(1—0)As)u), 11, t=1,...,M.

So, if @ > 0, in order to solve this equation it is necessary to invert the matrix
I — 70 A;: algorithms to solve tri-diagonal linear systems can be found, for
example, in Press, Teukolsky, Vetterling and Flannery [286]. For § = 1 we say
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that the scheme is totally implicit, whilst for 8 = % it is called Crank-Nicolson
scheme [81]. It is evident that the simplest choice seems 6 = 0, nevertheless
the greater complexity of implicit schemes gives better convergence results
(cf. Remark 12.14).

We also give the expression of the operator As(t) if null Neumann-type
conditions are assumed at the boundary:

ar(t) + Au(t) m() 0 0 0
o (t) Ba(t) 2(t) 0 0
0 as(t) Bs(t)  73(t) 0
As(t) =
0 0 an—1(t) Bu-1(t)  ym-1(t)
0 0 - 0 am(t)  Bu(t) +ym(t)

In this case (12.38) is the discretized version of the problem

Opu + Au =0, in 10, T[x] — R, R],
Oyu(t,—R) = Ou(t, R) =0, t e 0,77,
w(T, z) = o(x), |z| < R.

By way of example, now we study the explicit scheme (§ = 0) for an
equation with constant coefficients: more simply, with a change of variables
as in (7.22), we can consider the heat equation directly,i.e.a = landb=r =0
in (12.23). Setting

Lu = Osu + Oppu,

Up4+1,i — Ung n Up41,i+1 — Unt1s T Untli—1
T 02 ’

the Cauchy-Dirichlet problem

(L(T76)u)n,i =

Lu=0, in 10, T[x] — R, R],
u(t,—R) = p_gr(t), u(t,R) = ¢r(t), te[0,T], (12.41)
u(T, z) = o(x), |z] < R,
is discretized by the system of equations
L%y, =0, in G(7:9),
Un,0 = (,D,R(tn), Un,M+1 = (pR(tn), n = 0, ey ]\/'7 (1242)
UN,ing(l‘i), iZl,...,M.

The next result extends the weak maximum principle proved in Paragraph 6.1.
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Proposition 12.12 (Discrete maximum principle) Let g be a function
defined on the grid G such that

L% g >0, on G(:9),
gn,OSO? In,M+1 SO’ ’I’L:O,...7N7
gn: <0, i=1,...,M.
If the condition
52
T < 5 (12.43)

is satisfied, then g <0 on G(™9).
Proof. We observe that L(™%¢g > 0 on G(™% if and only if

2T T
Inyi < Gnt1,i (1 - ﬁ) + (Gn+1,i41 + gn+1,i71)5—2

forn=0,...,N—1and i =1,...,M. Then the claim follows from the fact
that, in view of condition (12.43), the coefficients on the right-hand side of the
previous inequality are non-negative: consequently, since the boundary data
are less or equal to zero, we have that g,41,; < 0 implies g, ; < 0. O

The following theorem proves that the explicit finite-difference scheme
converges with speed proportional to 62.

Theorem 12.13 Let u be a solution of problem (12.41) and let us suppose
that Orgwat and Oy are bounded. If condition (12.43) holds, then there exists
a positive constant C such that, for every d > 0

max |u — u("9| < 062,
G(7,9)

where u(™%) is the solution of the discretized problem (12.42).

Proof. Firstly we observe that, by Lemma 12.10 combined with condition
(12.43), we have

(L), ) = (LT u) i — (Lu)pi1i] < C82, (12.44)

Wlth C _ Hattu”oo + Ilazzrxu”oc .
Then, on the grid G( T 5 ) we define the functions

wh =u—u™ — (T —1)62, w™ =u" —u— C(T —t)6?,

and we observe that w® < 0 on the parabolic boundary of G(™%. Further,
since LMt =1,

LTyt = LT (y — u(79)) 4 062 = LDy + 052 > 0,

by the estimate (12.44). Analogously we have L(m9w= > 0 and so, by Propo-
sition 12.12, we get w* < 0 on G(™?9), hence the claim. a



12.3 Finite-difference methods for parabolic equations 419

Remark 12.14 Inequality (12.43) is usually called stability condition and it
is in general necessary for the convergence of a -scheme if 0 < 0 < %: if
(12.43) is not satisfied, the claim of the previous proposition does not hold
true. For this reason the #-schemes are called conditionally convergent for
0 < % On the contrary, if % < 0 < 1, the -schemes are called unconditionally

convergent because they converge when 7, tend to zero. a

We conclude the section by stating a general convergence result for finite-
difference 6-schemes; for the proof we refer to Raviart and Thomas [289].

Theorem 12.15 Let u and u(™% be the solutions of problem (12.26) and of
the corresponding problem discretized by a 6-scheme, respectively. Then

o f0<H< % and the stability condition

. T
lim = = 0
7,6 —071 1)

holds, we have

lim u(™%) =y, in L*(]0, T[x] — R, R]);

7,6—01
e if3<6<1, we have

lim u(™ =wu,  in L%(]0,T[x] — R, R]).

7,6—01

12.3.3 Free-boundary problem

The finite-difference schemes can be easily adapted to the pricing problem
of options with early exercise. Basically the idea consists in approximating
an American option with the corresponding Bermudan option that admits a
finite number of possible exercise dates. Using the notations in the preceding
section and in particular having fixed the time discretization

t, = nT, T=—,
" N

we employ the usual 6-scheme in (12.40) to compute the “European” price
(Un,i)i=1,... m at time t,, starting from (Upn41,:)i=1,....ps and then we apply the
early-exercise condition

un,i:max{an,iaw(tn7$i)}v Z‘:l,"'aMa

to determine the approximation of the price of the American option. In this
way also an approximation of the free boundary is obtained.

In the last years many numerical methods for American options have been
proposed in the literature. Brennan and Schwartz [61] were the first to use
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analytic methods (i.e. based on the solution of the corresponding obstacle
problem) for options with early exercise: Jaillet, Lamberton and Lapeyre [185]
and Han-Wu [162] gave a rigorous justification of the method and Zhang [346]
studied its convergence and its extension to jump models. In Barraquand
and Martineau [31], Barraquand and Pudet [32], Dempster and Hutton [93]
the previous techniques have been improved to price exotic options. Among
the other methods that have been proposed, we mention the finite elements
in Achdou and Pironneau [1], the methods ADI in Villeneuve and Zanette
[335] and the methods based on wavelets in Matache, Nitsche and Schwab
[248]. MacMillan [242], Barone-Adesi and Whaley [30], Carr and Faguet [66],
Jourdain and Martini [190; 191] give semi-explicit approximation formulas for
the price of American derivatives.

12.4 Monte Carlo methods

The Monte Carlo method is a simple technique of numerical approximation
of the mean of a random variable X. It is used in many circumstances in
mathematical finance and in particular in the pricing problem and in the
computation of the Greeks of derivatives. More generally, the Monte Carlo
method allows approximating the value of an integral numerically: indeed we
recall that, if Y ~ Unifjg ;) is uniformly distributed on [0,1] and X = f(Y),
then we have

E[X]:/O f(z)dx.

The Monte Carlo method is based on the strong law of large numbers (cf.

Section A.7.1): if (X,,) is a sequence of integrable i.i.d. random variables and
such that E[X;] = E[X], then

1 n
lim — Xy =F[X
Jm 2 Xe=EBlX] s

Consequently, if we are able to draw samples X1, ..., X,, from X in an inde-
pendent way, then the mean
15
2%
k=1

gives an a.s. approximation of E [X].
In order to analyze some of the main features of this technique, we consider
the problem of numerical approximation of the following integral over the

unitary cube in R%:
/[0 » f(z)dz. (12.45)

The most natural way to approximate the value of the integral consists in
considering a discretization by Riemann sums: for fixed n € N, on [0, 1]¢ we
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build a grid of points with coordinates of the form %, k=0,...,n. Then we
rewrite the integral in the form

n—1 n—1 k1+1 kqt+1

n n

JARCCED DD o Y RN CIRERT R

1
k1=0  kg=0"m ™

and we approximate the right-hand side by

n—1 - kd+1 i i

> - Z/ / f( 1,...,—d>dx1---dxd (12.46)
k1 kg n n

]i)l:O = n

n—1

:%Z z__:( kd)—S(f)

If f is Lipschitz continuous, with Lipschitz constant L, then

L

Si
n

/ f(@)dz — 5,(f)
[0,1]4

Further, if f € C9([0,1]?), we can easily obtain an n~%-order scheme, by
substituting f (k—nl, cee k—r‘j) in (12.46) with the g-th order Taylor expansion of
f with initial point (£,... %),

In principle, this kind of approximation gives better results than the Monte
Carlo method. However, we wish to highlight the following aspects concerning

the regularity assumption and the computational complexity:

1) the convergence of the scheme depends heavily on the regularity of f. For
example, the measurable function

f(@) = Lo 1yng (12.47)

has integral equal to 1, but S, (f) = 0 for every n € N;

2) the computation of the approximation term S,,( f) necessary to get an error
of the order of % involves the valuation of f in n points; so the number of
points increases exponentially with the dimension of the problem. It follows
that, in practice, only if d is small enough it is possible to implement the
method in an effective way. In other terms, if the number of points taken in
the discretization is fixed, say, equal to n, the quality of the approximation
gets worse When the dimension d of the problem increases: the order of the
error is n~ 1.

Now we consider the approximation with the Monte Carlo method. If (Y;,)
is a sequence of i.i.d random variables with uniform distribution on [0, 1]¢, we
have

/[O ] f(@)de = E[f(V})] = lim M) as. (12.48)
114 n—oo N =1
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We observe that, in order for the integral to converge, it suffices that f is inte-
grable on [0, 1]? and no further regularity assumption is required: for example,
for the function f in (12.47) we have f(Yj;) = 1 a.s. and so the approximation
is correct a.s.

Concerning the computational complexity, we can give a first estimate
of the error of the Monte Carlo method directly by the Markov inequality
proceeding as in Remark A.144. We consider a sequence of real i.i.d. random
variables (X,,) with 4 = F[X;] and 02 = var(X1) finite. Furthermore, we set

1 n
M, = E;Xk.

By Markov’s inequality, for every € > 0, we have

var(M,,
P(|Mn_ﬂ‘28)§%:
(by the independence)
_ nvar (£1) o
&2 pe?’

that can be rewritten in a more appealing way as follows:

0_2

P(|M, —u| <e) >p, where p:=1-—. (12.49)
ne
First of all we note that, being the technique based on the generation of
random numbers, the result and the error of the Monte Carlo method are
random variables. Formula (12.49) gives an estimate of the error in terms of
three parameters:

i) n, the number of samples, i.e. how many random numbers we have gener-
ated;

ii) e, the maximum approximation error;

iii) p, the minimum probability that the approximated value M, belongs to
the confidence interval [ — e, u + €].

According to (12.49), for fixed n € N and p €]0, 1[, the maximum approxima-
tion error of the Monte Carlo method is

g

g= —— (12.50)

Vn(l—p)

In the example of the computation of the integral (12.45), we have X = f(Y)
with Y uniformly distributed on [0,1]¢ and in this case the maximum error
of the method can be estimated by

var(f(Y))
n(l—p)
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In other terms the error is of the order of ﬁ regardless of the dimension
of the problem: for comparison, we recall that the order of the error of the
deterministic scheme that we examined earlier was n~4.

Summing up, if the dimension is low and some suitable regularity assump-
tions are verified, then it is not difficult to implement deterministic algorithms
performing better than Monte Carlo. However, when the dimension of the
problem increases, these deterministic algorithms become burdensome and
the Monte Carlo method is, for now, the only viable alternative.

We also observe that, by (12.50), the standard deviation o is directly
proportional to the approximation error: as a matter of fact, from a compu-
tational point of view o is a crucial parameter which influences significantly
the efficiency of the approximation. Typically ¢ is not known; nevertheless it
is possible to use the random numbers that we have generated to construct
an estimator of o:

S

1
Nn , Mn = n ZXk~
k:l k=1

-1

In other words, we can use the realizations of X to have simultaneously the
approximation of F [X] and of the error that we commit, in terms of confidence
intervals. Evidently o, is just an approximation of o, even though in general
it is sufficiently accurate to estimate the error satisfactorily.

Usually, in order to improve the effectiveness of the Monte Carlo method,
variance-reduction methods are used. These techniques, elementary in some
cases, employ the specific features of the problem to reduce the value of o,
and consequently increase the speed of convergence: for the description of such
techniques, we refer to Chapter 4 in [158].

In the next sections we will briefly deal with some questions on the im-
plementation of the Monte Carlo method. In Section 12.4.1 we analyze the
problem of the simulation of X, i.e. how to generate independent realizations
of X; further, we discuss the application of the Monte Carlo method to the
problem of derivative pricing. In Section 12.4.2 we present some techniques
to compute the Greeks. Finally in Section 12.4.3 we go back to the problem
of the error analysis and of the determination of confidence intervals by mak-
ing use of the central limit theorem. A complete presentation of Monte Carlo
methods and their applications to mathematical finance, can be found in the
reference text by Glasserman [158].

12.4.1 Simulation

The first step to approximate F [X] by the Monte Carlo method consists in
generating n independent realizations of the random variable X: this poses
some practical problems.

First of all n must be large enough and so the generation of the simula-
tions cannot be made by hand (for example, by tossing a coin): therefore we
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must use the power of a computer to perform the computation. This rather
obvious remark introduces the first serious problem: a computer can gener-
ate “random” values only by using deterministic algorithms. So, in order to
implement the Monte Carlo method, actually we have at our disposal only
“pseudo-random” numbers, i.e. numbers that have the same statistical prop-
erties as the actual random values but, when the number of times we simulate
increases, are not generated in a really independent way. This translates into
an additional error that cannot be easily estimated in the approximated re-
sult. Therefore it should always be borne in mind the fact that the quality of
the random-number generator influences the numerical result significantly.

After shedding some light on this first matter, for the vast majority of the
well-known distributions, and in particular for the Normal standard distribu-
tion, it is not difficult to find a pseudo-random number generator. Having this
at our disposal, pricing of a European option with payoff F' is indeed an easy
task. For example, in the Black-Scholes model, where the final price of the
underlying asset is!

o2
St = Spexp (UWT + (r - 7) T) ,

the procedure is as follows:

(A.1) we draw n independent samples Zi, ..., Z,, from the standard Normal
distribution;

(A.2) we consider the corresponding realizations of the final value of the un-
derlying asset

50 _ g JTZ N\ 7).
T = Soexp | oVITZy, + r—7 T];

(A.3) we compute the approximation of the price of the derivative

e—rT

n
—>F (5*;’“)) ~ e T E[F(ST)].
k=1

Because of its easy applications to a wide range of problems, the Monte
Carlo is one of the most popular numerical methods. Now we see how it can
be used in conjunction with the Euler scheme. We consider a local-volatility
model in which the dynamics of the underlying asset under the EMM is given
by

dSt = ’I“Stdt + O'(t, St)th

In this case the distribution of the final price St is not known explicitly. In
order to obtain some realizations of ST we use a Euler-type scheme: it is clear

that, in this way, the discretization error of the SDE must be added to the
error of the Monte Carlo method. The procedure is as follows:

! Here o is, as usual, the volatility coefficient.
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(B.1) we produce nm independent realizations Zj;, for k = 1,...,n and
i=1,...,m, of the Normal standard distribution Np 1;
(B.2) using the iterative formula

S =8 (14 ety —ti 1)) + o (ti1, ST )/t — ti1 Zis

we determine the corresponding realizations of the final value of the un-
derlying asset S(l) . ,5'7(31);

(B.3) we compute the approximation of the price of the derivative as in (A.3).

Finally we consider an Up&OQOut contract with barrier B and payoff
Hr = F(ST)ll{ . StSB}'
0<t<T

Since it is a path-dependent option, also in this case the Euler-Monte Carlo
method is suitable in order to simulate the full path of the underlying asset
and not only the final price. For the sake of simplicity we set » = 0. In this
case the steps are as follows:

(C.1) as in (B.1);
(C.2) using (B.2) we determine the realizations of the final Value of the un-

derlying asset 5% and of the maximum M®) := =, max St7 :
i= ,m

(C.3) we compute the approximation of the price of the derivative
AN )
=3 F (89) 1.p (819)) = B [Hy].
k=1

12.4.2 Computation of the Greeks

With some precautions, the Monte Carlo method can be used also to compute
the sensitivities. We consider in particular the problem of computing the Delta
of an option: we denote by S;(z) the price of the underlying asset with initial
value x and F' the payoff function of a European derivative. In the sequel the
mean is computed with respect to an EMM.

The simplest approach to compute the Delta

A =0, E[F(Sr(x))]

consists in approximating the derivative by an incremental ratio:

An T |[FErEE h);)L —FSrle)) (12.51)

The mean in (12.51) can be approximated by the Monte Carlo method, by
choosing a suitable h and taking care to use the same realizations of the Nor-
mal standard variables to simulate St(x + h) and St(x). It is often preferable
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to use a central incremental ratio or also a higher-order one to get a more
accurate result. Nevertheless it is important to note that this approach is
efficient only if F' is sufficiently regular: in general extra care must be taken.

We also touch upon an alternative method that will be presented in greater
detail in Chapter 16. The following technique uses the fact that, in the Black-
Scholes model, we have an explicit expression of the density of the underlying
asset as a function of the initial price x:

Sr(z) =eY, Y ~ /\/Iogr+(r_§)T,ng.

The price of the option is

lﬂ@=64”ﬂF@ﬂ@H=64T4F@%FWWM%

where

1 (y—logx—(r—‘é)T)z

V2ro?2T P 202T

F(:E,y) =

Then, under suitable assumptions justifying the exchange of the derivative-
integral sign, we have

A=0,H(z) = e_TT/RF(ey)azF(x,y)dy

2

yflogasf<rf%)T
d

02Tz

= [ Ferey) y

B ;:ZE [F(ST(QJ)) (10g Sr(x) —logx — (r - %2) Tﬂ (12.52)
- ir_TTZE[F(ST)WT]' (12.53)

We observe that (12.52) expresses the Delta in terms of the price of a new
option: the same result can be obtained by means of Malliavin calculus tech-
niques (cf. (16.19)). What is peculiar about formula (12.52) is that the deriva-
tive of F' does not appear anymore: indeed the partial derivative 0, was applied
directly to the density of the underlying asset. The advantage from a numer-
ical point of view is remarkable above all if F' is not regular: the typical case
is that of the digital option, in which the derivative of the payoff function
F =1k 4o is (in the distributional sense) a Dirac delta.

With the same technique it is also possible to get similar expressions of the
other Greeks in the Black-Scholes model. For more general models, or when
the explicit expression of the density is not known, analogous results can be
proved by using the more sophisticated tools of Malliavin calculus, which will
be presented in Chapter 16.
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12.4.3 Error analysis

We consider a sequence (X,,) of i.i.d. random variables with finite expectation
and variance:

w=FE[X4], 0? = var(X1).
By the strong Law of large numbers, the sequence

Xi+--+ X,
n

M, =

converges a.s. to u. Now we show that the central limit theorem provides an
estimate of the speed of convergence and the error distribution. Indeed, by
Theorem A.146 we have

vn <‘M"'u> N ZNNo,l,

o n— o0

and so, asymptotically for n — oo, for every x € R we have

(15 (2) s o0

where @ is the standard Normal distribution function as in (A.25). Conse-
quently, for every = > 0,

P (Mn € { T o+ TD ~ p, where p=20(z)—1. (12.54)

Therefore, for a fixed p €]0, 1], the distance between the exact value and the
approximated one is with probability p (asymptotically) less than

T g (ﬂ)
vn 2 )
For example, ~1(P11) ~ 1,96 for p = 95%.

From a theoretical point of view, it is apparent that the previous esti-
mates are inconsistent, since they hold asymptotically, for n — oo and we
cannot control the speed of convergence. However, in practice they give a
more accurate estimate than (12.49). This fact can be justified rigorously
by the Berry-Esseen Theorem. This result gives the speed of convergence in
the central limit theorem, thus allowing us to obtain rigorous estimates for
the confidence intervals. In the next statement we assume, for the sake of

simplicity, that E [X] = 0: we can always make this assumption satisfied by
substituting X with X — E [X].
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Theorem 12.16 (Berry-Esseen) Let (X,,) be a sequence of i.i.d. random
variables such that E [X1] = 0 and 0® = var(X1), o = E [|X1|?] are finite. If
D, is the distribution function of VM, , then

g

Pa@) = )| < 5

for every x € R.

For the proof we refer to, for example, Durrett [109].
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Introduction to Lévy processes
(with Rossella Agliardi)

The classical Black-Scholes model employs the Brownian motion as the driving
stochastic process of asset prices. Empirical evidence has pointed out that such
an assumption does not provide an accurate description of financial data and
has promoted the development of more flexible models. This chapter presents
the fundamentals of Lévy processes and option pricing under such stochastic
processes. Since this chapter is intended as an informal introduction to Lévy
processes, many of the proofs are omitted: for a complete treatment of the
theory we refer to the classical monographs by Bertoin [44], Sato [297], Jacod
and Shiryaev [184].

13.1 Beyond Brownian motion

The classical Black-Scholes model assumes that the price S of the risky un-
derlying asset follows a geometric Brownian motion. In other words, the asset
price returns behave according to a normal distribution and the paths of asset
prices are continuous functions of time: more precisely, by (7.3), we have
St = SOBX" where Xt ~ N(#—%)t,a%'

However, empirical evidence has brought to the light several stylized facts
which are in contrast with this simple assumption and are now recognized as
essential ingredients of any mathematical model of financial assets. A list of
such empirical facts and their implications on the modeling of market moves
is included in the monograph by Cont and Tankov [76] (see also the recent
account by Tankov and Voltchkova [115]) and here we give a short outline.

The presence of jumps in the stock price trajectories, which appear as
discontinuities in the price path, is a well-documented evidence. One rem-
edy is proposed by Merton [251] who adopted a jump-diffusion model, that is
a mixture of independent Brownian motion and Poisson processes. A closed

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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form solution to the option pricing problem is available under specific as-
sumptions on the distribution of jumps. However some criticisms have been
raised towards the use of jump-diffusions: tractable jump-diffusion models re-
quire special assumptions, they do not allow for too many jumps, empirical
analysis of high-frequency data supports purely discontinuous processes, etc.

Another important feature that has led to adopting more flexible distribu-
tions than the normal one is the widely recognized non-Gaussian behaviour
of the log-returns. As we know, the normal distribution has zero skewness
(cf. (A.79)). Moreover the kurtosis is 3 for the normal distribution, while it is
greater (less) than 3 for the distributions with a higher (flatter) peak. Excess
kurtosis is related to fat tails, that is, large movements are more frequent
than a normal distribution may predict. The empirical analysis of stock re-
turns typically exhibits some significant (usually negative) skewness and an
excess kurtosis. For example, the kurtosis of S&P 500 index in the period
1970-2001 is 7.17 if the pathological data of the crash of October 19, 1987
are expelled, and is 43.36 if the complete dataset is considered (see Schoutens
[301]).

While extreme stock market movements are relatively rare (for example,
the —20% stock market crash of October 19, 1987 was the only daily move-
ment in the post World War II era to exceed 10% in magnitude), persistent
deviations from the normal distribution have been noticed, especially after
the October 1987 crash. Indeed the classical models tend to under-estimate
the probability of large drops of stock prices, thus leading to under-pricing
of financial risk. The use of alternative distributions to capture outliers dates
back to Mandelbrot [245] who pointed out that “the empirical distributions of
price changes are usually too peaked to be relative to samples from Gaussian
populations” and the adoption of the stable Paretian distribution was pro-
posed as an alternative. The Gaussian assumption was rejected also in Fama
[125]. Stable distributions (cf. Section 13.4.2) are defined in terms of an index
a €]0,2]: the case a = 2 corresponds to the normal distribution, which is
the only stable distribution with a finite variance. Since stable distributions
with a < 2 are more peaked and have fatter tails than the normal one, they
have been proposed as a more realistic description of price returns. A stable
random variable X satisfies:

P(|X|>2)=0(z7%), as & — 0o,

while )
P(X| >x):O(x_1e_%>, as r — 00,

in the standard Gaussian case. Therefore the tails are heavier when a sta-
ble non-normal distribution is employed. However further empirical studies
suggested a faster decrease at infinity than predicted in this framework. For
example, Officer [271] found evidence of thinner tails for large sums of daily
returns; moreover, he found an increase in « for daily returns and concluded
that it would be more appropriate to consider a modified model with a finite
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second moment distribution and semi-heavy tails, that is such that
P(|X|>z)=0 <|x|°‘ie*)‘ilm‘) , as r — 00,

for some positive constants A.

Madan and Seneta [243] introduced an alternative distribution, the Varian-
ce-Gamma (VG), and tested the goodness-of-fit on several Australian stocks:
the best performance was attained by the VG model, while the stable model
out-performed in two cases out of 19 and the normal distribution in none. Sev-
eral other models have been proposed to overcome the inconsistency of the
Gaussian assumption with empirical data. Examples of such models are the
truncated Lévy flights proposed by Mantegna and Stanley [246], the Normal
Inverse Gaussian (NIG) employed by Barndorff-Nielsen [25], the Hyperbolic
distribution adopted by Eberlein and Keller [113] and the more general Gener-
alized Hyperbolic (GH) model (see Eberlein [110], Eberlein and Prause [117],
the Meixner process (see Schoutens [300]), the CGMY model introduced by
Carr, Geman, Madan and Yor [67] and generalized to a six-parameter model
in [68].

The above listed processes belong to the wide family of the Lévy processes
that will be the object of the following sections. The Lévy class has gained in-
creasing favor in the financial literature thanks to its flexibility which allows to
capture some features of the empirical distributions as sharp peaks and semi-
heavy tails. Another qualitative features of empirical price trajectories which
is not captured in a purely Brownian framework is the non-self-similarity, that
is, dramatic changes occur in the distributions of returns if one looks at them
on different time scales, as already pointed out in Fama [126]. On the contrary,
a Wiener process has the self-similarity property: Wyz; = A\W; for any scaling
factor A > 0. The only self-similar Lévy processes are the Brownian motion
(without drift) and the symmetric a-stable Lévy process. The deviation from
the normal distribution is investigated also in Eberlein and Keller [113] in
details. Note that it is significant especially if prices are considered on a daily
or an intraday time grid, which has become of major interest for the nowadays
trading on electronic platforms and availability of high-frequency data.

Another interesting property of some Lévy processes proposed in the finan-
cial literature is that they can be obtained as time-changed Brownian motions:
that is, X; = Wg, where S; is a stochastic time change or a “stochastic clock”.
As Geman [153] points out, such a “stochastic time change is in fact a mea-
sure of the economic activity” and accounts for the asset price reaction to the
arrival of information. “Some days, very little news, good or bad, is released;
trading is typically slow and prices barely fluctuate. In contrast, when new
information arrives and traders adjust their expectation accordingly, trad-
ing becomes brisk and the price evolution accelerates”. This point of view is
related to the problem of handling stochastic volatility. In [68] a stochastic
volatility effect is obtained by letting the price process be subordinated by
a second stochastic process, a “stochastic clock”: periods with high volatility
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are obtained letting time run faster than in periods with low volatility. As
Cont and Tankov [76] emphasize, “unlike the Brownian model where realized
volatility has a deterministic continuous-time limit, model based on Lévy pro-
cesses lead to a realized volatility which remains stochastic when computed
on fine time grids” and a stochastic volatility effect may be achieved without
employing any additional random factors.

Another major issue that has driven beyond the classical Black-Scholes
theory is the calibration to the market option prices. The discrepancy between
the Black-Scholes prices and the empirical prices results in the shape of the
implied volatility surface. The problem of fitting of the implied volatility and
the study of the stability of the solution to this inverse problem has generated
several diffusion-based models, either of the level dependent volatility type
or in the stochastic volatility approach. The main drawback of stochastic
volatility models is their inability to reproduce the variation in moneyness
of the volatility surfaces at shorter term. As we shall see in Chapter 14, the
combination of stochastic volatility models with jump processes seems to offer
more powerful tools to face the problem, both in terms of greater flexibility
in generating smile/skew patterns and in giving a convincing explanation.

13.2 Poisson process

The Poisson process is a fundamental example of stochastic process with dis-
continuous paths and serves as the basic building block for jump processes. To
construct a Poisson process, we consider a sequence (7,)n>1 of independent
random variables with exponential distribution with parameter A\ > 0:

o ~ Exp,, n > 1.

We refer to Example A.29 for a review of the main properties of the expo-
nential distribution. We consider a model where jumps occur randomly and
T, denotes the time distance of the n-th jump from the preceding one: thus,
the first jump occurs at time 77, the second jump occurs 7o time units after
71 and so forth: then, for any n € N,

T, = ZTk (13.1)
k=1

is the time of the n-th jump. We remark that

1
E[Tn—Tn_l]:E[Tn]:X, n €N,
that is % is the average distance among subsequent jumps: this can also be
expressed by saying that A jumps are expected in a unit time interval; for this

reason, A is also called the intensity parameter.
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Lemma 13.1 For anyn € N, the random variable T,, has probability density

fr, (t) = Ae—”%ﬂR>o(t), teR. (13.2)

Proof. We prove the thesis by induction. For n = 1 it is obvious. Next we
assume that T, has probability density given by (13.2): by the independence
of