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Preface

This book gives an introduction to the mathematical, probabilistic and nu-
merical methods used in the modern theory of option pricing. It is intended
as a textbook for graduate and advanced undergraduate students, but I hope
it will be useful also for researchers and professionals in the financial industry.

Stochastic calculus and its applications to the arbitrage pricing of financial
derivatives form the main theme. In presenting these, by now classic, topics,
the emphasis is put on the more quantitative rather than economic aspects.
Being aware that the literature in this field is huge, I mention the following
incomplete list of monographs whose contents overlap with those of this text:
in alphabetic order, Avellaneda and Laurence [14], Benth [43], Björk [47],
Dana and Jeanblanc [84], Dewynne, Howison and Wilmott [340], Dothan [100],
Duffie [102], Elliott and Kopp [120], Epps [121], Follmer and Schied [134],
Glasserman [158], Huang and Litzenberger [171], Ingersoll [178], Karatzas
[200; 202], Lamberton and Lapeyre [226], Lipton [239], Merton [252], Musiela
and Rutkowski [261], Neftci [264], Shreve [310; 311], Steele [315], Zhu, Wu
and Chern [349].

What distinguishes this book from others is the attempt to present the
matter by giving equal weight to the probabilistic point of view, based on the
martingale theory, and the analytical one, based on partial differential equa-
tions. The present book does not claim to describe the latest developments in
mathematical finance: that target would indeed be very ambitious, given the
speed of progress of research in the field. Instead, I have chosen to develop
some of the essential ideas of the classical pricing theory to devote space to
the fundamental mathematical and numerical tools when they arise. Thus I
hope to provide a sound background of basic knowledge which may facilitate
the independent study of newer problems and more advanced models.

The theory of stochastic calculus, for continuous and discontinuous pro-
cesses, constitutes the bulk of the book: Chapters 3 on stochastic processes, 4
on Brownian integration and 9 on stochastic differential equations may form
the material for an introductory course on stochastic calculus. In these chap-
ters, I have constantly sought to combine the theoretical concepts to the in-
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sight on the financial meaning, in order to make the presentation less abstract
and more motivated: in fact many theoretical concepts naturally lend them-
selves to an intuitive and meaningful economic interpretation.

The origin of this book can be traced to courses on option pricing which
I taught at the master program in Quantitative Finance of the University of
Bologna, which I have directed with Sergio Polidoro since its beginning, in
2004. I wrote the first version as lecture notes for my courses. During these
years, I substantially improved and extended the text with the inclusion of
sections on numerical methods and the addition of completely new chapters
on stochastic calculus for jump processes and Fourier methods. Nevertheless,
during these years the original structure of the book remained essentially
unchanged.

I am grateful to many people for the suggestions and helpful comments
with which supported and encouraged the writing of the book: in particular
I would like to thank several colleagues and PhD students for many valuable
suggestions on the manuscript, including David Applebaum, Francesco Car-
avenna, Alessandra Cretarola, Marco Di Francesco, Piero Foscari, Paolo Fos-
chi, Ermanno Lanconelli, Antonio Mura, Cornelis Oosterlee, Sergio Polidoro,
Valentina Prezioso, Enrico Priola, Wolfgang Runggaldier, Tiziano Vargiolu,
Valeria Volpe. I also express my thanks to Rossella Agliardi, co-author of
Chapter 13, and to Matteo Camaggi for helping me in the translation of the
book.

It is greatly appreciated if readers could forward any errors, misprints or
suggested improvements to: andrea.pascucci@unibo.it
Corrections received after publication will be posted on the website:
http://www.dm.unibo.it/∼pascucci/

Bologna, November 2010 Andrea Pascucci
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General notations

• N = {1, 2, 3, . . . } is the set of natural numbers
• N0 = {0, 1, 2, 3, . . . } is the set of non-negative integers
• Q is the set of rational numbers
• R is the set of real numbers
• R>0 = ]0,+∞[
• R≥0 = [0,+∞[
• ST = ]0, T [×RN is a strip in RN+1

• B = B(RN ) is the Borel σ-algebra in RN

• |H| or m(H) denote the Lebesgue measure of H ∈ B
• 1H is the indicator function of H, p. 606
• ∂x = ∂

∂x is the partial derivative with respect to x

For any a, b ∈ R,

• a ∧ b = min{a, b}
• a ∨ b = max{a, b}
• a+ = max{a, 0}
• a− = max{−a, 0}

For any N × d-matrix A = (aij),

• A∗ is the transpose of A
• trA is the trace of A
• rankA is the rank of A

• |A| =
√

N∑
i=1

d∑
j=1

a2
ij

• ‖A‖ = sup
|x|=1

|Ax|

Note that ‖A‖ ≤ |A|. The point x ∈ RN is identified with a column vector
N × 1 and

x∗y = 〈x, y〉 = x · y =
N∑

i=1

xiyi

denotes the Euclidean scalar product in RN .



XVI General notations

Depending on the context, F denotes the Fourier transform or the σ-algebra
of a probability space. The Fourier transform of a function f is denoted by f̂ .

Shortenings

• A := B means that “by definition, A equals B”
• r.v. = random variable
• s.p. = stochastic process
• a.s. = almost surely
• a.e. = almost everywhere
• i.i.d. = independent and identically distributed (referred to random varia-

bles)
• mg = martingale
• PDE = Partial Differential Equation
• SDE = Stochastic Differential Equation

Function spaces

• mB: space of B-measurable functions, p. 608
• mBb: space of bounded functions in mB, p. 608
• BV: space of functions with bounded variation, p. 127
• Lip: space of Lipschitz continuous functions, p. 679
• Liploc: space of locally Lipschitz continuous functions, p. 679
• Ck: space of functions with continuous derivatives up to order k ∈ N0

• Ck
b : space of functions in Ck bounded together with their derivatives

• Ck+α: space of functions differentiable up to order k ∈ N0 with partial
derivatives that are Hölder continuous of exponent α ∈]0, 1[

• Ck+α
loc : space of functions differentiable up to order k ∈ N0 with partial

derivatives that are locally Hölder continuous of exponent α ∈]0, 1[
• C∞0 : space of test functions, i.e. smooth functions with compact support,

p. 678
• C1,2: space of functions u = u(t, x) with continuous second order deriva-

tives in the “spatial” variable x ∈ RN and continuous first order derivative
in the “time” variable t, p. 631

• Cα
P : space of parabolic Hölder continuous functions of exponent α, p. 258

• Lp: space of functions integrable of order p
• Lp

loc: space of functions locally integrable of order p
• W k,p: Sobolev space of functions with weak derivatives up to order k in

Lp, p. 679
• Sp: parabolic Sobolev space of functions with weak second order deriva-

tives in Lp, p. 265



General notations XVII

Spaces of processes

• Lp: space of progressively measurable processes in Lp([0, T ]×Ω), p. 141
• Lp

loc: space of progressively measurable processes X such that X(ω) ∈
Lp

loc([0, T ]) for almost any ω, p. 159
• Ac: space of continuous processes (Xt)t∈[0,T ], Ft-adapted and such that

[[X]]T =

√
E

[
sup

0≤t≤T
X2

t

]
is finite, p. 280

• M 2: linear space of right continuous martingales (Mt)t∈[0,T ] such that
M0 = 0 a.s. and E

[
M2

T

]
is finite, p. 115

• M 2
c : linear subspace of the continuous martingales of M 2, p. 115

• Mc,loc: space of continuous local martingales M such that M0 = 0 a.s.,
p. 161



1

Derivatives and arbitrage pricing

A financial derivative is a contract whose value depends on one or more se-
curities or assets, called underlying assets. Typically the underlying asset is a
stock, a bond, a currency exchange rate or the quotation of commodities such
as gold, oil or wheat.

1.1 Options

An option is the simplest example of a derivative instrument. An option is a
contract that gives the right (but not the obligation) to its holder to buy or
sell some amount of the underlying asset at a future date, for a prespecified
price. Therefore in an option contract we need to specify:

• an underlying asset;
• an exercise price K, the so-called strike price;
• a date T , the so-called maturity.

A Call option gives the right to buy, whilst a Put option gives the right to
sell. An option is called European if the right to buy or sell can be exercised
only at maturity, and it is called American if it can be exercised at any time
before maturity.

Let us consider a European Call option with strike K, maturity T and
let us denote the price of the underlying asset at maturity by ST . At time T
we have two possibilities (cf. Figure 1.1): if ST > K, the payoff of the option
is equal to ST − K, corresponding to the profit obtained by exercising the
option (i.e. by buying the underlying asset at price K and then selling it at
the market price ST ). If ST < K, exercising the option is not profitable and
the payoff is zero. In conclusion the payoff of a European Call option is

(ST −K)+ = max{ST −K, 0}.

Figure 1.2 represents the graph of the payoff as a function of ST : notice that
the payoff increases with ST and gives a potentially unlimited profit. Analo-

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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gously, we see that the payoff of a European Put option is

(K − ST )+ = max{K − ST , 0}.

Call and Put options are the basic derivative instruments and for this reason
they are often called plain vanilla options. Combining such types of options
it is possible to build new derivatives: for example, by buying a Call and a
Put option with the same underlying asset, strike and maturity we obtain a
derivative, the so-called Straddle, whose payoff increases the more ST is far
from the strike. This kind of derivative is interesting when one expects a wide
movement of the price of the underlying asset without being able to foresee
the direction. Evidently the pricing of this option can be reformulated in terms
of the pricing of plain vanilla options. On the other hand, in the real-world
markets there exists a great deal of derivatives (usually called exotic) having
very complicated structures: the market of such derivatives is in continuous
expansion and development. One can consult, for example, Zhang [344] for an
encyclopedic exposition of exotic derivatives.

1.1.1 Main purposes

The use of derivatives serves mainly two purposes:

• hedging the risk;
• speculation.

For example, let us consider an investor holding the stock S: buying a Put
option on S, the investor gets the right to sell S in the future at the strike price
and therefore he/she hedges the risk of a crash of the price of S. Analogously,
a firm using oil in its business might purchase a Call option to have the right
to buy oil in the future at the fixed strike price: in this way the firm hedges
the risk of a rise of the price of oil.

In recent years the use of derivatives has become widespread: not long ago
a home loan was available only with fixed or variable rate, while now the offer
is definitely wider. For example, it is not hard to find “protected” loans with
capped variable rate: this kind of structured products contains one or more
derivative instruments and pricing such objects is not really straightforward.

Derivatives can be used to speculate as well: for instance, buying Put op-
tions is the simplest way to get a profit in case of a market crash. We also
remark that options have a so-called leverage effect: relatively minor move-
ments in stock price can result in a huge change of the option price. For
example, let us denote by S0 the current price of the underlying asset and
let us suppose that $1 is the price of a Call option with K = S0 = $10 and
maturity one year. We suppose that, at maturity, ST = $13: if we buy one
unit of the underlying asset, i.e. we invest $10, we would have a $3 profit (i.e.
30%); if we buy a Call option, i.e. we invest only $1, we would have a $2 profit
(i.e. 200%). On the other hand, we must also bear in mind that, if ST = $10,
by investing in the Call option we would lose all our money!
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1.1.2 Main problems

An option is a contract whose final value is given, this depending on the price
of the underlying asset at maturity which is not known at present. Therefore
the non-trivial problem of pricing arises, i.e. the determination of the “ratio-
nal” or fair price of the option: this price is the premium that the buyer of
the option has to pay at the initial time to get the right guaranteed by the
contract.

The second problem is that of hedging: we have already pointed out that a
Call option has a potentially unlimited payoff and consequently the institution
that sells a Call option exposes itself to the risk of a potentially unlimited
loss. A bank selling a derivative faces therefore the problem of finding an
investment strategy that, by using the premium (i.e. the money received when
the derivative was sold), can replicate the payoff at maturity, whatever the
final value of the underlying asset will be. As we are going to see shortly, the
problems of pricing and hedging are deeply connected.

1.1.3 Rules of compounding

Before going any further, it is good to recall some notions on the time value
of money in finance: receiving $1 today is not like receiving it after a month.
We point out also that it is common practice to consider as the unit of time
one year and so, for example, T = 0.5 corresponds to six months.

The rules of compounding express the dynamics of an investment with
fixed risk-free interest rate: to put it simply, this corresponds to deposit the
money on a savings account. In the financial modeling, it is always assumed
that a (locally1) risk-free asset, the so-called bond, exists. If Bt denotes the
value of the bond at time t ∈ [0, T ], the following rule of simple compounding
with annual interest rate r

BT = B0(1 + rT ),

states that the final value BT is equal to the initial value B0 plus the interest
B0rT , corresponding to the interest over the period [0, T ] accrued on the
initial wealth. Therefore, by the rule of simple compounding, the interest is
only paid on the initial wealth.

Alternatively we may consider the period [0, T ], divide it into N sub-
intervals [tn−1, tn] whose common length is T

N and assume that the simple
interest is paid at the end of every sub-interval: we get

BT = BtN−1

(
1 + r

T

N

)
= BtN−2

(
1 + r

T

N

)2

= · · · = B0

(
1 + r

T

N

)N

.

1 This means that the official interest rate is fixed and risk-free over a brief period
of time (e.g. some weeks) but in the long term it is random as well.
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By taking the limit as N →∞, i.e. by assuming that the simple interest is paid
more and more frequently, we obtain the formula of continuous compounding
with annual interest rate r:

BT = B0 erT . (1.1)

Formula (1.1) expresses the final wealth in terms of the initial investment.
Conversely, since to obtain a final wealth (at time T ) equal to B, it is necessary
to invest the amount Be−rT at the initial time, this amount is usually called
discounted value of B.

While the rule of simple compounding is the one used in the market, the
rule of continuous compounding is generally used in theoretical contexts and
particularly in continuous-time models.

1.1.4 Arbitrage opportunities and Put-Call parity formula

Broadly speaking an arbitrage opportunity is the possibility of carrying out
a financial operation without any investment, but leading to profit without
any risk of a loss. In real-world markets arbitrage opportunities do exist,
even though their life span is very brief: as soon as they arise, the market
will reach a new equilibrium because of the actions of those who succeed in
exploiting such opportunities. From a theoretical point of view it is evident
that a sensible market model must avoid this type of profit. As a matter of
fact, the no-arbitrage principle has become one of the main criteria to price
financial derivatives.

The idea on which arbitrage pricing is built is that, if two financial in-
struments will certainly have the same value2 at future date, then also in this
moment they must have the same value. If this were not the case, an obvious
arbitrage opportunity would arise: by selling the instrument that is more ex-
pensive and by buying the less expensive one, we would have an immediate
risk-free profit since the selling position (short position) on the more more
expensive asset is going to cancel out the buying position (long position) on
the cheaper asset. Concisely, we can express the no-arbitrage principle in the
following way:

XT ≤ YT =⇒ Xt ≤ Yt, t ≤ T, (1.2)

where Xt and Yt are the values of the two financial instruments respectively.
From (1.2) in particular it follows that

XT = YT =⇒ Xt = Yt, t ≤ T. (1.3)

Now let us consider a financial-market model that is free from arbitrage op-
portunities and consists of a bond and a stock S, that is the underlying asset
2 We note that we need not know the future values of the two financial instruments,

but only that they will certainly be equal.
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of a Call option c and of a Put option p, both of European type with maturity
T and strike K:

cT = (ST −K)+, pT = (K − ST )+.

We denote by r the risk-free interest rate and we assume that the bond follows
the dynamics given by (1.1). On the basis of arbitrage arguments, we get the
classical Put-Call parity formula, which establishes a relation between the
prices c and p, and some upper and lower estimates for such prices. It is
remarkable that the following formulas are “universal”, i.e. independent of
the market model and based only on the general no-arbitrage principle.

Corollary 1.1 (Put-Call parity) Under the previous assumptions, we
have

ct = pt + St −Ke−r(T−t), t ∈ [0, T ]. (1.4)

Proof. It suffices to note that the investments

Xt = ct +
K

BT
Bt and Yt = pt + St,

have the same final value

XT = YT = max{K,ST }.

The claim follows from (1.3). �

If the underlying asset pays a dividend D at a date between t and T , the
Put-Call parity formula becomes

ct = pt + St −D −Ke−r(T−t).

Corollary 1.2 (Estimates from above and below for European options)
For every t ∈ [0, T ] we have(

St −Ke−r(T−t)
)+

< ct < St,(
Ke−r(T−t) − St

)+

< pt < Ke−r(T−t).

(1.5)

Proof. By (1.2)
ct, pt > 0. (1.6)

Consequently by (1.4) we get

ct > St −Ke−r(T−t).

Moreover, since ct > 0, we get the first estimate from below. Finally cT < ST

and so by (1.2) we get the first estimate from above. The second estimate can
be proved analogously and it is left as an exercise. �
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1.2 Risk-neutral price and arbitrage pricing

In order to illustrate the fundamental ideas of derivative pricing by arbitrage
arguments, it is useful to examine a simplified model in which we consider
only two moments in time, the initial date 0 and the maturity T . As usual we
assume that there exists a bond with risk-free rate r and initial value B0 = 1.
Further, we assume that there is a risky asset S whose final value depends
on some random event: to consider the simplest possible model, we assume
that the event can assume only two possible states E1 and E2 in which ST

takes the values S+ and S− respectively. To fix the ideas, let us consider the
outcome of a throw of a die and let us put, for example,

E1 = {1, 2, 3, 4}, E2 = {5, 6}.

In this case S represents a bet on the outcome of a throw of a die: if we get a
number between 1 and 4 the bet pays S+, otherwise it pays S−. The model
can be summarized by the following table:

Time 0 T

Bond 1 erT

Risky asset ? ST =

{
S+ if E1,

S− if E2.

The problem is to determine the value S0, i.e. the price of the bet.

1.2.1 Risk-neutral price

The first approach is to assign a probability to the events:

P (E1) = p and P (E2) = 1− p, (1.7)

where p ∈ ]0, 1[. For example, if we roll a die it seems natural to set p = 4
6 . In

this way we can have an estimate of the final average value of the bet

ST = pS+ + (1− p)S−.

By discounting that value at the present time, we get the so-called risk-neutral
price:

S̃0 = e−rT
(
pS+ + (1− p)S−

)
. (1.8)

This price expresses the value that a risk-neutral investor assigns to the risky
asset (i.e. the bet): indeed the current price is equal to the future discounted
expected profit. On the basis of this pricing rule (that depends on the proba-
bility p of the event E1), the investor is neither inclined nor adverse to buy
the asset.
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1.2.2 Risk-neutral probability

Let us suppose now that S0 is the price given by the market and therefore it
is a known quantity. The fact that S0 is observable gives information on the
random event that we are considering. Indeed by imposing that S0 = S̃0, i.e.
that the risk-neutral pricing formula holds with respect to some probability
defined in terms of q ∈ ]0, 1[ as in (1.7), we have

S0 = e−rT
(
qS+ + (1− q)S−

)
,

whence we get

q =
erT S0 − S−

S+ − S−
, 1− q =

S+ − erT S0

S+ − S−
. (1.9)

Evidently q ∈ ]0, 1[ if and only if

S− < erT S0 < S+,

and, on the other hand, if this were not the case, obvious arbitrage oppor-
tunities would arise. The probability defined in (1.9) is called risk-neutral
probability and it represents the unique probability to be assigned to the events
E1, E2 so that S0 is a risk-neutral price.

Therefore, in this simple setting there exists a bijection between prices
and risk-neutral probabilities: by calculating the probabilities of the events,
we determine a “rational” price for the risky asset; conversely, given a market
price, there exists a unique probability of events that is consistent with the
observed price.

1.2.3 Arbitrage price

Let us suppose now that there are two risky assets S and C, both depending
on the same random event:

Time 0 T

Bond 1 erT

Risky asset S S0 ST =

{
S+ if E1,

S− if E2,

Risky asset C ? CT =

{
C+ if E1,

C− if E2.

To fix the ideas, we can think of C as an option with underlying the risky asset
S. If the price S0 is quoted by the market, we can infer the corresponding risk-
neutral probability q defined as in (1.9) and then find the neutral-risk price
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of C under the probability q:

C̃0 = e−rT
(
qC+ + (1− q)C−

)
. (1.10)

This pricing procedure seems reasonable and consistent with the market price
of the underlying asset. We emphasize the fact that the price C̃0 in (1.10) does
not depend on a subjective estimation of the probabilities of the events E1, E2,
but it is implicitly contained in the quoted market value of the underlying asset.
In particular this pricing method does not require to estimate in advance the
probability of random events. We say that C̃0 is the risk-neutral price of the
derivative C.

An alternative approach is based upon the assumption of absence of arbi-
trage opportunities. We recall that the two main problems of the theory and
practice of derivatives are pricing and hedging. Let us suppose to be able to
determine an investment strategy on the riskless asset and on the risky asset
S replicating the payoff of C. If we denote the value of this strategy by V , the
replication condition is

VT = CT . (1.11)

From the no-arbitrage condition (1.3) it follows that

C0 = V0

is the only price guaranteeing the absence of arbitrage opportunities. In other
terms, in order to price correctly (without giving rise to arbitrage opportu-
nities) a financial instrument, it suffices to determine an investment strategy
with the same final value (payoff): by definition, the arbitrage price of the
financial instrument is the current value of the replicating strategy. This price
can be interpreted also as the premium that the bank receives by selling the
derivative and this amount coincides with the wealth to be invested in the
replicating portfolio.

Now let us show how to construct a replicating strategy for our simple
model. We consider a portfolio which consists in holding a number α of shares
of the risky asset and a number β of bonds. The value of such a portfolio is
given by

V = αS + βB.

By imposing the replicating condition (1.11) we have{
αS+ + βerT = C+ if E1,

αS− + βerT = C− if E2,

which is a linear system, with a unique solution under the assumption S+ 
=
S−. The solution of the system is

α =
C+ − C−

S+ − S−
, β = e−rT S+C− − C+S−

S+ − S−
;
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therefore the arbitrage price is equal to

C0 = αS0 + β = S0
C+ − C−

S+ − S−
+ e−rT S+C− − C+S−

S+ − S−

= e−rT

(
C+ erT S0 − S−

S+ − S−
+ C−

S+ − erT S0

S+ − S−

)
=

(recalling the expression (1.9) of the risk-neutral probability)

= e−rT
(
C+q + C−(1− q)

)
= C̃0,

where C̃0 is the risk-neutral price in (1.10). The results obtained so far can be
expressed in this way: in an arbitrage-free and complete market (i.e. in which
every financial instrument is replicable) the arbitrage price and the risk-neutral
price coincide: they are determined by the quoted price S0, observable on the
market.

In particular the arbitrage price does not depend on the subjective estima-
tion of the probability p of the event E1. Intuitively, the choice of p is bound
to the subjective vision on the future behaviour of the risky asset: the fact of
choosing p equal to 50% or 99% is due to different estimations on the events
E1, E2. As we have seen, different choices of p determine different prices for
S and C on the basis of formula (1.8) of risk-neutral valuation. Nevertheless,
the only choice of p that is consistent with the market price S0 is that corre-
sponding to p = q in (1.9). Such a choice is also the only one that avoids the
introduction of arbitrage opportunities.

1.2.4 A generalization of the Put-Call parity

Let us consider again a market with two risky assets S and C, but S0 and C0

are not quoted:

Time 0 T

Riskless asset 1 erT

Risky asset S ? ST =

{
S+ if E1,

S− if E2,

Risky asset C ? CT =

{
C+ if E1,

C− if E2.

We consider an investment on the two risky assets

V = αS + βC
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and we impose that it replicates at maturity the riskless asset, VT = erT :{
αS+ + βC+ = erT if E1,

αS− + βC− = erT if E2.

As we have seen earlier, we obtain a linear system that has a unique solution
(provided that C and S do not coincide):

ᾱ = erT C+ − C−

C+S− − C−S+
, β̄ = −erT S+ − S−

C+S− − C−S+
.

By the no-arbitrage condition (1.3), we must have V0 = 1 i.e.

ᾱS0 + β̄C0 = 1. (1.12)

Condition (1.12) gives a relation between the prices of the two risky assets
that must hold in order not to introduce arbitrage opportunities. For fixed S0,
the price C0 is uniquely determined by (1.12), in line with the results of the
previous section. This fact must not come as a surprise: since the two assets
“depend” on the same random phenomenon, the relative prices must move
consistently.

Formula (1.12) also suggests that the pricing of a derivative does not nec-
essarily require that the underlying asset is quoted, since we can price a deriva-
tive using the quoted price of another derivative on the same underlying asset.
A particular case of (1.12) is the Put-Call parity formula expressing the link
between the price of a Call and a Put option on the same underlying asset.

1.2.5 Incomplete markets

Let us go back to the example of die rolling and suppose that the risky assets
have final values according to the following table:

Time 0 T

Riskless asset 1 erT

Risky asset S S0 ST =

{
S+ if {1, 2, 3, 4},
S− if {5, 6},

Riskless asset C ? CT =

{
C+ if {1, 2},
C− if {3, 4, 5, 6}.

Now we set

E1 = {1, 2}, E2 = {3, 4}, E3 = {5, 6}.
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If we suppose to be able to assign the probabilities to the events

P (E1) = p1, P (E2) = p2, P (E3) = 1− p1 − p2,

where p1, p2 > 0 and p1 + p2 < 1, then the risk-neutral prices are defined just
as in Section 1.2.1:

S̃0 =e−rT
(
p1S

+ + p2S
+ + (1− p1 − p2)S−

)
=e−rT

(
(p1 + p2) S+ + (1− p1 − p2)S−

)
C̃0 =e−rT

(
p1C

+ + p2C
− + (1− p1 − p2)C−

)
=e−rT

(
p1C

+ + (1− p1)C−
)
.

Conversely, if S0 is quoted on the market, by imposing S0 = S̃0, we obtain

S0 = e−rT
(
q1S

+ + q2S
+ + (1− q1 − q2)S−

)
and so there exist infinitely many3 risk-neutral probabilities.

Analogously, by proceeding as in Section 1.2.3 to determine a replicating
strategy for C, we obtain⎧⎪⎨⎪⎩

αS+ + βerT = C+ if E1,

αS+ + βerT = C− if E2,

αS− + βerT = C− if E3.

(1.13)

In general this system is not solvable and therefore the asset C is not replica-
ble: we say that the market model is incomplete. In this case it is not possible
to price C on the basis of replication arguments: since we can only solve two
out of three equations, we cannot build a strategy replicating C in all the
possible cases and we are able to hedge the risk only partially.

We note that, if (α, β) solves the first and the third equation of the system
(1.13), then the terminal value VT of the corresponding strategy is equal to

VT =

⎧⎪⎨⎪⎩
C+ if E1,

C+ if E2,

C− if E3.

With this choice (and assuming that C+ > C−) we obtain a strategy that
super-replicates C.

Summing up:

• in a market model that is free from arbitrage opportunities and complete,
on one hand there exists a unique the risk-neutral probability measure;

3 Actually, it is possible to determine a unique risk-neutral probability if we assume
that both S0 and C0 are observable.
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on the other hand, for every derivative there exists a replicating strategy.
Consequently there exists a unique risk-neutral price which coincides with
the arbitrage price;

• in a market model that is free from arbitrage opportunities and incomplete,
on one hand there exist infinitely many risk-neutral probabilities; on the
other hand not every derivative is replicable. Consequently there exist in-
finitely many risk-neutral prices but it is not possible, in general, to define
the arbitrage price.



2

Discrete market models

In this chapter we describe market models in discrete time to price and hedge
European and American-style derivatives. We present the classical model in-
troduced by Cox, Ross and Rubinstein in [78] and we mention briefly the
pricing problem in incomplete markets. General references on topics covered
in this chapter are Dana and Jeanblanc [84], Föllmer and Schied [134], Lam-
berton and Lapeyre [226], Pliska [282], Shreve [310], van der Hoek and Elliott
[329]: we also mention Pascucci and Runggaldier [277] where several examples
and exercises can be found.

2.1 Discrete markets and arbitrage strategies

We consider a discrete-market model where, for a fixed time interval [0, T ],
we suppose that all transactions take place only at times

0 = t0 < t1 < · · · < tN = T.

To fix the ideas, t0 denotes today’s date and tN is the expiration date of a
derivative. Let us recall that the unit of time is the year.

The market consists of one riskless asset (bond) B and d risky assets
S = (S1, . . . , Sd) that are stochastic processes defined on a probability space
(Ω,F , P ). We assume:

(H1) Ω has a finite number of elements, F = P(Ω) and P ({ω}) > 0 for any
ω ∈ Ω.

The dynamics of the bond is deterministic: if Bn denotes the price of the bond
at time tn, we have{

B0 = 1,

Bn = Bn−1(1 + rn), n = 1, . . . , N,
(2.1)

where rn, such that 1 + rn > 0, denotes the risk-free rate in the n-th period
[tn−1, tn]. Occasionally we also call B the bank account.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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The risky assets have the following stochastic dynamics: if Si
n denotes the

price at time tn of the i-th asset, then we have{
Si

0 ∈ R>0,

Si
n = Si

n−1

(
1 + μi

n

)
, n = 1, . . . , N,

(2.2)

where μi
n is a real random variable such that 1+μi

n > 0, which represents the
yield rate of the i-th asset in the n-th period [tn−1, tn]. Then Si = (Si

n)n=0,...,N

is a discrete stochastic process on (Ω,F , P ) and we say that (S,B) is a discrete
market on the probability space (Ω,F , P ).

We set
μn = (μ1

n, . . . , μd
n), 1 ≤ n ≤ N,

and consider the filtration (Fn) defined by

F0 = {∅, Ω}, (2.3)
Fn = σ(μ1, . . . , μn), 1 ≤ n ≤ N. (2.4)

The σ-algebra Fn represents the amount of information available in the market
at time tn (cf. Appendix A.1.6): note that, by (2.2), we also have Fn =
σ(S0, . . . , Sn) for 0 ≤ n ≤ N . Formula (2.3) is equivalent to the fact that the
prices S1

0 , . . . , Sd
0 of the assets at the initial time are observable and so they are

deterministic, i.e. positive numbers not random variables (cf. Example A.38).
In the sequel we shall also assume:

(H2) FN = F .

2.1.1 Self-financing and predictable strategies

Definition 2.1 A strategy (or portfolio) is a stochastic process in Rd+1

(α, β) = (α1
n, . . . , αd

n, βn)n=1,...,N .

In the preceding definition, αi
n (resp. βn) represents the amount of the asset Si

(resp. bond) held in the portfolio during the n-th period [tn−1, tn]. Therefore
we denote the value of the portfolio (α, β) at time tn by

V (α,β)
n = αnSn + βnBn, n = 1, . . . , N, (2.5)

and

V
(α,β)
0 =

d∑
i=1

αi
1S

i
0 + β1B0.

In (2.5)

αnSn =
d∑

i=1

αi
nSi

n, n = 1, . . . , N,
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denotes the scalar product in Rd. The value V (α,β) = (V (α,β)
n )n=0,...,N is a real

stochastic process in discrete time: to shorten notations, sometimes we simply
write Vn in place of V

(α,β)
n . We point out that negative values of αi

n, βn are
allowed since short selling of shares or borrowing from the bank are permitted.

Definition 2.2 A strategy (α, β) is self-financing if the relation

V
(α,β)
n−1 = αnSn−1 + βnBn−1 (2.6)

holds for every n = 1, . . . , N.

The self-financing property (2.6) can interpreted as follows:

at time tn−1 the wealth at our disposal is V
(α,β)
n−1 = αn−1Sn−1 + βn−1Bn−1

and we re-balance the strategy with the new quantities (αn, βn) in such a
way that we do not modify the overall value of the portfolio.

For example, if at t0 = 0 we have at our disposal the initial wealth V0, we
construct the strategy (α1, β1) in such a way that its value α1S0 + β1B0 is
equal to V0. Note that (αn, βn) denotes what the portfolio built at time tn−1

is composed of.

Example 2.3 In the case of one risky asset (i.e. d = 1) (2.6) is equivalent to

βn = βn−1 − (αn − αn−1)
Sn−1

Bn−1
.

The previous formula shows how βn must vary in a self-financing portfolio if,
at time tn−1, we change the amount of the risky asset from αn−1 to αn. Note
that, in the particular case d = 0, a portfolio is self-financing if and only if it
is constant. �

The variation, from time tn−1 to tn, of the value of a self-financing strategy
(α, β) is given by

V (α,β)
n − V

(α,β)
n−1 = αn(Sn − Sn−1) + βn(Bn −Bn−1) (2.7)

and therefore it is caused only by the variation of the prices of the assets and
not by the fact that we have injected or withdrawn funds. Therefore, in a
self-financing strategy we establish the wealth we want to invest at the initial
time and afterwards we do not inject or withdraw funds.

In what follows we consider only investment strategies based upon the
amount of information available at the moment (of course foreseeing the fu-
ture is not allowed). Since in a self-financing strategy the rebalancing of the
portfolio from (αn−1, βn−1) to (αn, βn) occurs at time tn−1, it is natural to
assume that (α, β) is predictable:

Definition 2.4 A strategy (α, β) is predictable if (αn, βn) is Fn−1-measurable
for every n = 1, . . . , N .
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Notation 2.5 We denote by A the family of all self-financing and predictable
strategies of the market (S,B).

The self-financing condition establishes a relationship between the processes
α and β: as a consequence, it turns out that a strategy in A is identified by
(α, β) or equivalently by V0 and α where V0 ∈ R is the initial value of the
strategy and α is a d-dimensional predictable process. Indeed we have the
following:

Lemma 2.6 The value of a self-financing strategy (α, β) is determined by its
initial value V0 and recursively by

Vn = Vn−1(1 + rn) +
d∑

i=1

αi
nSi

n−1

(
μi

n − rn

)
(2.8)

for n = 1, . . . , N .

Proof. By (2.7), the variation of a self-financing portfolio in the period
[tn−1, tn] is equal to

Vn − Vn−1 = αn (Sn − Sn−1) + βn (Bn −Bn−1)

=
d∑

i=1

αi
nSi

n−1μ
i
n + βnBn−1rn = (2.9)

(since, by (2.6), we have βnBn−1 = Vn−1 − αnSn−1)

=
d∑

i=1

αi
nSi

n−1

(
μi

n − rn

)
+ rnVn−1

and the claim follows. �

Proposition 2.7 Given V0 ∈ R and a predictable process α, there exists a
unique predictable process β such that (α, β) ∈ A and V

(α,β)
0 = V0.

Proof. Given V0 ∈ R and a predictable process α, we define the process

βn =
Vn−1 − αnSn−1

Bn−1
, n = 1, . . . , N,

where (Vn) is recursively defined by (2.8). Then by construction (βn) is pre-
dictable and the strategy (α, β) is self-financing. �

Remark 2.8 Given (α, β) ∈ A, by summing over n in (2.9) we get

Vn = V0 + g(α,β)
n , n = 1, . . . , N, (2.10)
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where

g(α,β)
n =

n∑
k=1

(αk (Sk − Sk−1) + βk (Bk −Bk−1))

=
n∑

k=1

(
d∑

i=1

αi
kSi

k−1μ
i
k + βkBk−1rk

) (2.11)

defines the process of the gain of the strategy. �

2.1.2 Normalized market

For a fixed asset Y = (Yn), we define by

S̃i
n =

Si
n

Yn
, B̃n =

Bn

Yn
, (2.12)

the normalized market with respect to Y . In the normalized market we ob-
viously have Ỹ ≡ 1 and the prices of the other assets are denominated in
units of the asset Y : for this reason Y is usually called a numeraire. Often
Y plays the part of the non-risky asset B corresponding to the investment in
a bank account: in this case S̃i is also called the discounted price of the i-th
asset. In practice, by discounting one can compare quoted prices at different
times.

Let us now consider the discounted market S̃, that is we assume that B is
the numeraire. Given a strategy (α, β), we set

Ṽ (α,β)
n =

V
(α,β)
n

Bn
.

Then the self-financing condition becomes

Ṽ
(α,β)
n−1 = αnS̃n−1 + βn, n = 1, . . . , N,

or equivalently

Ṽ (α,β)
n = Ṽ

(α,β)
n−1 + αn

(
S̃n − S̃n−1

)
, n = 1, . . . , N.

Therefore Lemma 2.6 has the following extension.

Lemma 2.9 The discounted value of a self-financing strategy (α, β) is uni-
quely determined by its initial value V0 and recursively by

Ṽ (α,β)
n = Ṽ

(α,β)
n−1 +

d∑
i=1

αi
n

(
S̃i

n − S̃i
n−1

)
for n = 1, . . . , N .
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The following formula, analogous to (2.10), holds:

Ṽ (α,β)
n = V0 + G(α)

n (2.13)

where

G(α)
n =

n∑
k=1

αk

(
S̃k − S̃k−1

)
is the normalized gain related to the predictable process α. Note that in general
G

(α)
n is different from g(α,β)

n

Bn
and that G

(α)
n does not depend on β. We also recall

that Ṽ0 = V0 since B0 = 1 by assumption.

2.1.3 Arbitrage opportunities and admissible strategies

We recall that A denotes the family of self-financing and predictable strategies
of the market (S,B).

Definition 2.10 We say that (α, β) ∈ A is an arbitrage strategy (or simply
an arbitrage) if the value V = V (α,β) is such that1

i) V0 = 0;

and there exists n ≥ 1 such that

ii) Vn ≥ 0 P -a.s.;
iii)P (Vn > 0) > 0.

We say that the market (S,B) is arbitrage-free if the family A does not contain
arbitrage strategies.

An arbitrage is a strategy in A that does not require an initial investment,
does not expose to any risk (Vn ≥ 0 P -a.s.) and leads to a positive value with
positive probability. In an arbitrage-free market it is not possible to have such
a sure risk-free profit by investing in a predictable and self-financing strategy.

The absence of arbitrage opportunities is a fundamental assumption from
an economic point of view and is a condition that every reasonable model
must fulfill. Clearly, the fact that there is absence of arbitrage depends on
the probabilistic model considered, i.e. on the space (Ω,F , P ) and on the
kind of stochastic process (S,B) used to describe the market. In Section 2.1.4
we give a mathematical characterization of the absence of arbitrage in terms
of the existence of a suitable probability measure, equivalent to P , called
martingale measure. Then, in Paragraph 2.3 we examine the very easy case of
the binomial model, so that we see the practical meaning of the concepts we
1 By assumption (H1), the empty set is the only event with null probability: al-

though it is superfluous to write P -a.s. after the (in-)equalities, it is convenient to
do so to adapt the presentation to the continuous case in the following chapters,
where the (in-)equalities hold indeed only almost surely.
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have introduced. In particular we see that in the binomial model the market
is arbitrage-free under very simple and intuitive assumptions.

We allowed the values of a strategy to be negative (short-selling), but it
seems reasonable to require that the overall value of the portfolio does not
take negative values.

Definition 2.11 A strategy (α, β) ∈ A is called admissible if

V (α,β)
n ≥ 0 P -a.s.

for every n ≤ N .

Implicitly the definition of arbitrage includes the admissibility condition or,
more precisely, in a discrete market every arbitrage strategy can be modified
to become admissible. We remark that this result does not generalize to the
continuous-time case.

Proposition 2.12 A discrete market is arbitrage-free if and only if there
exist no admissible arbitrage strategies.

Proof. We suppose that there exist no admissible arbitrage strategies and
we have to show that no arbitrage opportunity exists. We prove the thesis
by contradiction: we suppose there exists an arbitrage strategy (α, β) and we
construct an admissible arbitrage strategy (α′, β′).

By assumption, V
(α,β)
0 = α1S0 + β1B0 = 0 and there exists n (it is not

restrictive to suppose n = N) such that αnSn +βnBn ≥ 0 a.s. and P (αnSn +
βnBn > 0) > 0. If (α, β) is not admissible there exist k < N and F ∈ Fk with
P (F ) > 0 such that

αkSk + βkBk < 0 on F and αnSn + βnBn ≥ 0 a.s. for k < n ≤ N.

Then we define a new arbitrage strategy as follows: α′n = 0, β′n = 0 on Ω \ F
for every n, while on F

α′n =

{
0, n ≤ k,

αn, n > k,
, β′n =

{
0, n ≤ k,

βn − (αkSk + βkBk) , n > k.

It is straightforward to verify that (α′, β′) is an arbitrage strategy and it is
admissible. �

2.1.4 Equivalent martingale measure

We consider a discrete market (S,B) on the space (Ω,F , P ) and fix a nu-
meraire Y that is a prices process in (S,B). More generally, in the sequel we
will take as numeraire the value of any strategy (α, β) ∈ A, provided that
V (α,β) is positive. In this section we characterize the property of absence of
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arbitrage in terms of the existence of a new probability measure equivalent2 to
P and with respect to which the normalized price processes are martingales.
We give the following important:

Definition 2.13 An equivalent martingale measure (in short, EMM) with
numeraire Y is a probability measure Q on (Ω,F) such that:

i) Q is equivalent to P ;
ii) the Y -normalized prices are Q-martingales, that is

Sn−1

Yn−1
= EQ

[
Sn

Yn
| Fn−1

]
,

Bn−1

Yn−1
= EQ

[
Bn

Yn
| Fn−1

]
, (2.14)

for every n = 1, . . . , N .

Remark 2.14 Consider the particular case Y = B and denote by S̃n = Sn

Bn

the discounted prices. If Q is an EMM with numeraire B, by the martingale
property we also have

S̃k = EQ
[
S̃n | Fk

]
, 0 ≤ k < n ≤ N,

and consequently

EQ
[
S̃n

]
= EQ

[
EQ
[
S̃n | F0

]]
= S̃0, n ≤ N. (2.15)

Formula (2.15) has an important economic interpretation: it states that the
expectations of the future normalized prices are equal to the current prices.
Therefore (2.15) is a risk-neutral pricing formula in the sense of Section 1.2.1:
the mean of S̃n with respect to the measure Q corresponds to the value given
by an investor who reckons that the current market-prices of the assets are
correct (and so he/she is neither disposed nor averse to buy the assets). For
this reason, Q is also called a risk-neutral probability.

Instead, the probability measure P is usually called objective or real-world
probability since the dynamics of the random variables μn is usually given
under the probability P and these variables (or the parameters of the model)
have to be determined a priori from observations on the market or on the basis
of the historical data on the stocks. In other terms, the random variables μn

(that are an “input” that any discrete model needs in order to be used) have
to be estimated by means of observations of the real world. �

We emphasize that the notion of EMM depends on the numeraire con-
sidered. Further, we notice that, since Q is equivalent to P , the market is
arbitrage-free under the measure P if and only if it is arbitrage-free under Q.

The next result, in view of its importance, is commonly known as First
Fundamental Theorem of asset pricing.

2 That is, having the same null and certain events, cf. Appendix A.5.1.
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Theorem 2.15 (First Fundamental Theorem of asset pricing) A di-
screte market is arbitrage-free if and only if there exists at least one EMM.

We defer the proof of Theorem 2.15 to Section 2.2.3 and we analyze now some
important consequences of the definition of EMM.

The following result exhibits a fundamental feature of self-financing pre-
dictable portfolios: they preserve the martingale property, that is if (S̃, B̃) is
a martingale and (α, β) ∈ A then also Ṽ (α,β) is a martingale.

Proposition 2.16 Let Q be an EMM with numeraire Y and (α, β) ∈ A.

Then Ṽ (α,β) =
(

V (α,β)
n

Yn

)
is a Q-martingale:

Ṽ
(α,β)
n−1 = EQ

[
Ṽ (α,β)

n | Fn−1

]
, n = 1, . . . , N. (2.16)

In particular the following risk-neutral pricing formula holds:

Ṽ
(α,β)
0 = EQ

[
Ṽ (α,β)

n

]
, n ≤ N. (2.17)

Conversely, if Q is a measure equivalent to P and for every (α, β) ∈ A,
equation (2.16) holds, then Q is an EMM with numeraire Y .

Proof. For simplicity we only consider the case Y = B. The result is an
immediate consequence of formula (2.13) which basically expresses the fact
that (α, β) is self-financing if and only if Ṽ (α,β) is the transform of S̃ by α
(cf. Definition A.120). Then, since α is predictable, the claim follows directly
from Proposition A.121. However, for the sake of clarity, it seems to be useful
to go through the proof again: by the self-financing condition (2.6), we have

Ṽ (α,β)
n = Ṽ

(α,β)
n−1 + αn(S̃n − S̃n−1)

and by taking the conditional expectation given Fn−1, we get

EQ
[
Ṽ (α,β)

n | Fn−1

]
= Ṽ

(α,β)
n−1 + EQ

[
αn(S̃n − S̃n−1) | Fn−1

]
=

(by the properties of conditional expectation, Proposition A.107-(7), since α
is predictable)

= Ṽ
(α,β)
n−1 + αnEQ

[
S̃n − S̃n−1 | Fn−1

]
= Ṽ

(α,β)
n−1

by (2.14). The converse is trivial.
The following result expresses the main consequence, fundamental from a

practical point of view, of the condition of absence of arbitrage: if two self-
financing predictable strategies have the same terminal value, then they must
have the same value at all preceding times.



24 2 Discrete market models

Proposition 2.17 (No arbitrage principle) In an arbitrage-free market,
if (α, β), (α′, β′) ∈ A and

V
(α,β)
N = V

(α′,β′)
N P -a.s.,

then
V (α,β)

n = V (α′,β′)
n P -a.s.

for every n = 0, . . . , N.

Proof. Since the market is arbitrage-free, there exists an EMM Q with
numeraire Y . The claim follows from the fact that Ṽ (α,β), Ṽ (α′,β′) are Q-
martingales with the same terminal value. Indeed, since the measures P,Q

are equivalent, we have V
(α,β)
N = V

(α′,β′)
N Q-a.s. and so

Ṽ (α,β)
n = EQ

[
Ṽ

(α,β)
N | Fn

]
= EQ

[
Ṽ

(α′,β′)
N | Fn

]
= Ṽ (α′,β′)

n ,

for every n ≤ N . �

Remark 2.18 Analogously, in an arbitrage-free market, if (α, β), (α′, β′) ∈ A
and

V
(α,β)
N ≥ V

(α′,β′)
N P -a.s.,

then
V (α,β)

n ≥ V (α′,β′)
n P -a.s.

for every n = 0, . . . , N. �

2.1.5 Change of numeraire

The choice of the numeraire is not in general unique. From a theoretical point
of view, we shall see that a suitable choice of the numeraire can make compu-
tations easier (cf. Example 2.37); from a practical point of view, it is possible
that different investors use different numeraires, e.g. when market prices can
be expressed in different currencies (Euros, Dollars, etc.). In this section we
study the relation among martingale measures relative to different numeraires:
specifically, we give an explicit formula for the Radon-Nikodym derivative of
a EMM with respect to another, thus showing how to switch between diffe-
rent numeraires. The main tool that we are going to use is Bayes’ formula in
Theorem A.113.

Theorem 2.19 In a discrete market (S,B), let Q be an EMM with numeraire
Y and let X be a positive adapted process such that

(
Xn

Yn

)
is a Q-martingale

(X represents the value process of another asset or strategy to be considered
as the new numeraire). Then the measure QX defined by

dQX

dQ
=

XN

X0

(
YN

Y0

)−1

, (2.18)
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is such that

YnEQ

[
Z

YN
| Fn

]
= XnEQX

[
Z

XN
| Fn

]
, n ≤ N, (2.19)

for every random variable Z. Consequently QX is an EMM with numeraire
X.

Remark 2.20 We may rewrite formula (2.19) in the form

EQ
[
DY (n,N)Z | Fn

]
= EQX [

DX(n,N)Z | Fn

]
, n ≤ N, (2.20)

where
DX(n,N) =

Xn

XN
, DY (n,N) =

Yn

YN
, n ≤ N,

denote the discount factors from N to n with respect to the numeraires X
and Y , respectively.

Proof. In (2.18), L := dQX

dQ denotes the Radon-Nikodym derivative of QX

with respect to Q and therefore

EQX

[Z] = EQ [ZL]

for any random variable Z.
From (2.18) we infer

EQX

[Z | Fn] = EQ

[
Z

Yn

YN

(
Xn

XN

)−1

| Fn

]
, n ≤ N. (2.21)

Indeed by Bayes’ formula we have

EQX

[Z | Fn] =
EQ [ZL | Fn]
EQ [L | Fn]

=
EQ
[
Z XN

YN
| Fn

]
EQ
[

XN

YN
| Fn

]
and (2.21) follows, since by assumption

(
Xn

Yn

)
is a Q-martingale and therefore

we have

EQ

[
XN

YN
| Fn

]
=

Xn

Yn
.

Now (2.19) is a simple consequence of (2.21):

YnEQ

[
Z

YN
| Fn

]
= EQ

[
Yn

YN

(
Xn

XN

)−1
XnZ

XN
| Fn

]
=

(by (2.21))

= XnEQX

[
Z

XN
| Fn

]
.
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Eventually from (2.19) it follows that QX is an EMM with numeraire Y :
indeed, by definition of EMM we have

Sn = YnEQ

[
SN

YN
| Fn

]
=

(by (2.19) with Z = SN )

= XnEQX

[
SN

XN
| Fn

]
,

for n ≤ N , and an analogous formula holds for B. �

Corollary 2.21 Under the assumptions of Theorem 2.19, for any n ≤ N
and A ∈ Fn, we have

QX(A) = EQ

[
Xn

X0

(
Yn

Y0

)−1

1A

]
, (2.22)

that is
dQX

dQ
|Fn =

Xn

X0

(
Yn

Y0

)−1

.

Proof. We have

QX(A) = EQX

[1A] =

(by (2.18))

= EQ

[
1A

XN

X0

(
YN

Y0

)−1
]

=

(using that A ∈ Fn)

= EQ

[
1AEQ

[
XN

X0

(
YN

Y0

)−1

| Fn

]]

and the thesis follows from the fact that X
Y is a Q-martingale. �

2.2 European derivatives

We consider an arbitrage-free discrete market (S,B) on the space (Ω,F , P ).

Definition 2.22 A European-style derivative is an FN -measurable random
variable X on (Ω,F , P ).
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To fix the ideas, X represents the terminal value (or payoff) of an option
with maturity T . The FN -measurability condition describes the fact that X
depends on the price process S, that is S1, . . . , Sd are the underlying assets of
the derivative X: actually, under our assumption (H2), FN = F and therefore
X is simply a random variable on (Ω,F , P ).

• A derivative X is called path-independent if it depends only on the terminal
value of the underlying assets:

X = F (ST ), (2.23)

where F is a given function. This is the typical case of a European Call
option with strike K for which we have

F (x) = (x−K)+, x > 0;

• a derivative X is called path-dependent if it depends also on the values of
the underlying assets at times before maturity: for example, in the case of
a Look-back option we have

X = SN − min
0≤n≤N

Sn.

The main problems in the study of a derivative X are:

1) the pricing problem, i.e. to determine a price for the derivative such that
no arbitrage opportunities are introduced in the market;

2) the replication problem, i.e. to determine a strategy (if it exists) (α, β) ∈ A
that assumes the same value of the derivative at maturity:

V
(α,β)
N = X a.s.

If such a strategy exists, X is called replicable and (α, β) is called replicating
strategy.

In an arbitrage-free market, the first problem is solvable but the solution
is not necessarily unique: in other words, it is possible to find at least one
value for the price of a derivative in such a way that the absence of arbitrage
is preserved. Regarding the second problem, we saw in Chapter 1 that it is
rather easy to construct a market model that is arbitrage-free, but in which
some derivatives are not replicable. On the other hand, if a replicating strategy
(α, β) for the derivative X exists, then by the no arbitrage principle (in the
form of Proposition 2.17) V

(α,β)
0 is the unique value for the initial price of X

that does not introduce arbitrage opportunities.

2.2.1 Pricing in an arbitrage-free market

We introduce the families super and sub-replicating portfolios for the deriva-
tive X:

A+
X = {(α, β) ∈ A | V (α,β)

N ≥ X}, A−X = {(α, β) ∈ A | V (α,β)
N ≤ X}.



28 2 Discrete market models

Given (α, β) ∈ A+
X , the initial value V

(α,β)
0 represents the price at which

everyone would be willing to sell the derivative: indeed V
(α,β)
0 is an initial

investment sufficient to build a strategy that super-replicates X. To fix ideas
we denote by H0 the (unknown and possibly not unique) initial price of X: it
is clear that we necessarily must have

H0 ≤ V
(α,β)
0 , (α, β) ∈ A+

X . (2.24)

If inequality (2.24) were not true, by introducing in the market the derivative
at the price H0 > V

(ᾱ,β̄)
0 for a certain strategy (ᾱ, β̄) ∈ A+

X , one could create
an obvious arbitrage opportunity which consists in selling the derivative and
buying the strategy (ᾱ, β̄).

Analogously we must have

H0 ≥ V
(α,β)
0 , (α, β) ∈ A−X .

Indeed V
(α,β)
0 , for (α, β) ∈ A−X , represents the price at which everyone would

be willing to buy the derivative since, by selling (α, β) and buying the deriva-
tive, one could make a risk-free profit.

In conclusion any fair initial price H0 of X must satisfy

sup
(α,β)∈A−X

V
(α,β)
0 ≤ H0 ≤ inf

(α,β)∈A+
X

V
(α,β)
0 . (2.25)

Now, assuming that the market is arbitrage-free, there exists (and in ge-
neral it is not unique) an EMM Q. By Theorem 2.19 it is not restrictive to
assume that B is the numeraire. Then with respect to Q, the discounted prices
of the assets and the discounted value of any strategy in A are martingales:
in particular, they coincide with the conditional expectation of their terminal
values. For the sake of consistency, it seems reasonable to price the derivative
X in an analogous way: for a fixed EMM Q, we put

H̃Q
n =

HQ
n

Bn
:= EQ

[
X

BN
| Fn

]
, n = 0, . . . , N, (2.26)

and we say that HQ is the risk-neutral price of X with respect to the EMM Q.
Actually, definition (2.26) verifies the consistency assumption (2.25) for

the price of X, i.e. it does not introduce arbitrage opportunities. Indeed we
have the following:

Lemma 2.23 For every EMM Q with numeraire B, we have

sup
(α,β)∈A−X

Ṽ (α,β)
n ≤ EQ

[
X

BN
| Fn

]
≤ inf

(α,β)∈A+
X

Ṽ (α,β)
n ,

for n = 0, . . . , N .
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Proof. If (α, β) ∈ A−X then, by Proposition 2.16, we have

Ṽ (α,β)
n = EQ

[
Ṽ

(α,β)
N | Fn

]
≤ EQ

[
X

BN
| Fn

]
,

and an analogous estimate holds for (α, β) ∈ A+
X . �

Remark 2.24 The family of EMMs is a convex set, i.e. if Q1, Q2 are mar-
tingale measures with numeraire B, by the linearity property of conditional
expectation then also any linear combination of the form

λQ1 + (1− λ)Q2, λ ∈ [0, 1],

is an EMM. As a simple consequence we have that the set of discounted initial
prices EQ

[
X

BN

]
is convex and can consist of a single point only or otherwise

it can be a non-trivial interval: in this last case it is an open interval (see, for
example, Theorem 5.33 in [134]). �

The following theorem contains the definition of the arbitrage price of a
replicable derivative.

Theorem 2.25 Let X be a replicable derivative in an arbitrage-free market.
Then for every replicating strategy (α, β) ∈ A and for every EMM Q with
numeraire B, we have

EQ

[
X

BN
| Fn

]
=

V
(α,β)
n

Bn
, n = 0, . . . , N. (2.27)

The process H := V (α,β) is called arbitrage price (or risk-neutral price) of X.

Proof. If (α, β), (α′, β′) ∈ A replicate X then they have the same terminal
value and, by Proposition 2.17, they have the same value at all preceding
times. Moreover, if (α, β) ∈ A replicates X, then (α, β) ∈ A−X ∩ A+

X and by
Lemma 2.23 we have

EQ

[
X

BN
| Fn

]
= Ṽ (α,β)

n ,

for every EMM Q with numeraire B. �

The pricing formula (2.27) is extremely intuitive: for n = 0 it becomes

H0 = EQ

[
X

BN

]
;

then the current price of the option is given by the best estimate (expected
value) of the discounted terminal value. The expectation is computed with
respect to a risk-neutral measure Q, i.e. a measure that makes the mean of
the prices of the assets exactly equal to the current observed price, inflated by
the interest rate. This is consistent with what we had seen in the introduction,
Paragraph 1.2.
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Remark 2.26 The following generalization of Theorem 2.25 holds:

in an arbitrage-free market, a derivative X is replicable if and only if
EQ
[

X
BN

]
is independent of the particular EMM Q (with numeraire B).

For the proof of this result, based on the separation of convex sets of RN (cf.
Theorem A.177) we refer, for instance, to [282]. �

2.2.2 Completeness

We know that those who sell a derivative have to deal with the replication
problem. For example, a bank selling a Call option takes a potentially un-
bounded risk of loss: therefore, from the point of view of the bank, it is impor-
tant to determine an investment strategy that, by using the money obtained
by selling the derivative, guarantees the replication at maturity, “hedging”
the risk.

Definition 2.27 A market is complete if every European derivative is repli-
cable.

In a complete market every derivative has a unique arbitrage price, defined by
(2.27): moreover the price coincides with the value of any replicating strategy.

Remark 2.28 On the other hand, there exist derivatives whose underlying
is not quoted and traded, that is the case for instance of a derivative on a
temperature: more precisely, consider a contract that pays a certain amount
of money, say 1 Euro, if at a specified date and place the temperature is below
20 degrees centigrade. Then the payoff function of the contract is

F (x) =

{
1 if x < 20,

0 if x ≥ 20.

In this case it sounds more appropriate to talk about “insurance” instead
of “derivative”. Since the underlying of the contract is a temperature and
not an asset that we can buy or sell in the market, it is not possible to
build a replicating portfolio for the contract, even though we can construct a
probabilistic model for the dynamics of the temperature. Clearly in this case
the market is incomplete. We note that also for derivatives on quoted stocks,
the completeness of the market is not always considered a desirable or realistic
property.

Now we remark that the completeness of a market model implies the
uniqueness of the EMM related to a fixed numeraire. Indeed let us first recall
that, by Theorem 2.19, we may always assume B as numeraire: then if Q1, Q2

are EMMs with numeraire B, by (2.27) we have

EQ1 [X] = EQ2 [X]
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for every derivative X. Since by assumption (H.2) we have FN = F , we may
consider X = 1A, A ∈ F , to conclude that Q1 = Q2.

As a matter of fact, the uniqueness of the EMM is a property that cha-
racterizes complete markets. Indeed we have the following classical result:

Theorem 2.29 (Second Fundamental Theorem of asset pricing) An
arbitrage-free market (S,B) is complete if and only if there exists a unique
EMM with numeraire B.

2.2.3 Fundamental theorems of asset pricing

We prove the First Fundamental Theorem of asset pricing which establishes
the connection between the absence of arbitrage opportunities and the exi-
stence of an EMM.

Proof (of Theorem 2.15). By Theorem 2.19 it is not restrictive to consider
B as the numeraire. The proof of the fact that, if there exists an EMM then
(S,B) is free from arbitrage opportunities is amazingly simple. Indeed let
Q be an EMM and, by contradiction, let us suppose that there exists an
arbitrage portfolio (α, β) ∈ A. Then V

(α,β)
0 = 0 and there exists n ≥ 1 such

that P (V (α,β)
n ≥ 0) = 1 and P (V (α,β)

n > 0) > 0. Since Q ∼ P , we also have
Q(V (α,β)

n ≥ 0) = 1 and Q(V (α,β)
n > 0) > 0, and consequently EQ

[
Ṽ

(α,β)
n

]
> 0.

On the other hand, by (2.17) we obtain

EQ
[
Ṽ (α,β)

n

]
= Ṽ

(α,β)
0 = 0,

and this is a contradiction.
Conversely, we assume that (S,B) is free from arbitrage opportunities and

we prove the existence of an EMM Q with numeraire B. By using the second
part of Proposition A.121 with M = S̃, it is enough to prove the existence of
Q ∼ P such that

EQ

[
N∑

n=1

αn

(
S̃i

n − S̃i
n−1

)]
= 0 (2.28)

for every i = 1, . . . , d and for every real-valued predictable process α. Formula
(2.28) expresses the fact that the expected gain is null.

Let us fix i for good; the proof of (2.28) is based upon the result of sepa-
ration of convex sets (in finite dimension) of Appendix A.10. So it is useful
to set the problem in the Euclidean space: we denote the cardinality of Ω by
m and its elements by ω1, . . . , ωm. If Y is a random variable in Ω, we put
Y (ωj) = Yj and we identify Y with the vector in Rm

(Y1, . . . , Ym).

Therefore we have

EQ [Y ] =
m∑

j=1

YjQ({ωj}).
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For every real-valued predictable process α, we use the notation

G(α) =
N∑

n=1

αn

(
S̃i

n − S̃i
n−1

)
.

First of all we observe that the assumption of absence of arbitrage opportu-
nities translates into the condition

G(α) /∈ Rm
+ := {Y ∈ Rm \ {0} | Yj ≥ 0 for j = 1, . . . ,m}

for every predictable α. Indeed if there existed a real-valued predictable pro-
cess α such that G(α) ∈ Rm

+ , then, by using Proposition 2.7 and choosing
Ṽ0 = 0, one could construct a strategy in A with null initial value and final
value ṼN = G(α) i.e. an arbitrage strategy, violating the assumption.

Consequently
V := {G(α) | α predictable}

is a linear subspace of Rm such that

V ∩K = ∅,

with K defined by

K := {Y ∈ Rm
+ | Y1 + · · ·+ Ym = 1}.

Let us observe that K is a compact convex subset of Rm: then the conditions
to apply Corollary A.178 are fulfilled and there exists ξ ∈ Rm such that

i) 〈ξ, Y 〉 = 0 for every Y ∈ V ;
ii) 〈ξ, Y 〉 > 0 for every Y ∈ K ;

or equivalently

i)
m∑

j=1

ξjGj(α) = 0 for every predictable process α;

ii)
m∑

j=1

ξjYj > 0 for every Y ∈ K .

In particular ii) implies that ξj > 0 for every j and so we can normalize the
vector ξ to define a probability measure Q, equivalent to P , by

Q({ωj}) = ξj

(
m∑

i=1

ξi

)−1

.

Then i) translates into
EQ [G(α)] = 0

for every predictable α, concluding the proof of (2.28). �
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Next we prove the Second Fundamental Theorem of asset pricing, which
establishes the connection between the completeness of the market and the
uniqueness of the EMM.

Proof (of Theorem 2.29). We just have to prove that if (S,B) is free from
arbitrage opportunities and the EMM Q with numeraire B is unique, then the
market is complete. We proceed by contradiction: we suppose that the market
is not complete and we construct an EMM with numeraire B, different from Q.
We denote the linear space of normalized final values of strategies (α, β) ∈ A
by

V = {Ṽ (α,β)
N | (α, β) ∈ A}.

As in the proof of Theorem 2.15 we identify random variables with elements
of Rm. Then the fact that (S,B) is not complete translates into the condition

V � Rm. (2.29)

We define the scalar product in Rm

〈X,Y 〉Q = EQ [XY ] =
m∑

j=1

XjYjQ({ωj}).

Then, by (2.29), there exists ξ ∈ Rm \ {0} orthogonal to V , i.e. such that

〈ξ,X〉Q = EQ [ξX] = 0, (2.30)

for every X = Ṽ
(α,β)
N , (α, β) ∈ A. In particular, by choosing3 X = 1 we infer

EQ [ξ] = 0. (2.31)

For a fixed parameter δ > 1, we put

Qδ({ωj}) =
(

1 +
ξj

δ‖ξ‖∞

)
Q({ωj}), j = 1, . . . ,m,

where
‖ξ‖∞ := max

1≤j≤m
|ξj |.

We prove that, for every δ > 1, Qδ defines an EMM (obviously different from
Q since ξ 
= 0). First of all Qδ({ωj}) > 0 for every j, since

1 +
ξj

δ‖ξ‖∞
> 0.

3 The constant random variable that is equal to 1 belongs to the space V : by
the representation (2.13) for Ṽ

(α,β)
N , it is enough to use Proposition 2.7 choosing

α1, . . . , αd = 0 and Ṽ0 = 1.
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Moreover we have

Qδ(Ω) =
m∑

j=1

Qδ({ωj}) =
m∑

j=1

(
1 +

ξj

δ‖ξ‖∞

)
Q({ωj})

=
m∑

j=1

Q({ωj}) +
1

δ‖ξ‖∞

m∑
j=1

ξjQ({ωj}) =

= Q(Ω) +
1

δ‖ξ‖∞
EQ [ξ] = 1

by (2.31). Therefore Qδ is a probability measure equivalent to Q (and to P ).
Next we prove that S̃ is a Qδ-martingale. Using the second part of Propo-

sition A.121 with M = S̃, it is enough to prove that

EQδ

[
N∑

n=1

αn

(
S̃i

n − S̃i
n−1

)]
= 0

for every i = 1, . . . , d and for every real-valued predictable process α. For fixed
i, we use the notation

G(α) =
N∑

n=1

αn

(
S̃i

n − S̃i
n−1

)
.

Then we have

EQδ [G(α)] =
m∑

j=1

(
1 +

ξj

δ‖ξ‖∞

)
Gj(α)Q({ωj})

=
m∑

j=1

Gj(α)Q({ωj}) +
1

δ‖ξ‖∞

m∑
j=1

ξjGj(α)Q({ωj})

= EQ [G(α)] +
1

δ‖ξ‖∞
EQ [ξG(α)] =

(by (2.30))
= EQ [G(α)] = 0,

by Proposition A.121, since S̃ is a Q-martingale and α is predictable. �

2.2.4 Markov property

Consider a discrete market (S,B) in the form (2.1)-(2.2). Under the additional
assumption that the random variables μ1, . . . , μN are independent, the price
process S has the Markov property: intuitively this property expresses the fact
that the future expected trend of the prices depends only on the “present”
and is independent of the “past”. We recall the following:
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Definition 2.30 A discrete stochastic process X = (Xn) on a filtered proba-
bility space (Ω,F , P, (Fn)) has the Markov property if

i) X is adapted to (Fn);
ii) for every bounded B-measurable function ϕ we have

E [ϕ(Xn) | Fn−1] = E [ϕ(Xn) | Xn−1] , n ≥ 1. (2.32)

As a consequence of (2.32) and Corollary A.10, for any n there exists a mea-
surable function gn such that

E [ϕ(Xn) | Fn−1] = gn(Xn−1).

The proof of the Markov property is based upon Lemma A.108.

Theorem 2.31 If the random variables μ1, . . . , μN are independent then the
stochastic process S has the Markov property.

Proof. We have4

E [ϕ(Sn) | Fn−1] = E [ϕ(Sn−1 (1 + μn)) | Fn−1] =

(applying Lemma A.108 with X = 1+μn, Y = Sn−1, G = Fn−1 and h(X,Y ) =
ϕ(XY ))

= gn(Sn−1), (2.33)

where
gn(s) = E [ϕ(s(1 + μn))]

and the thesis follows from Remark A.109. �

2.3 Binomial model

In the binomial model, the market is composed of a non-risky asset B (bond),
corresponding to the investment into a savings account in a bank, and of a
risky asset S (stock), corresponding, for example, to a quoted stock in the
exchange.

For the sake of simplicity, we suppose that the time intervals have the
same length

tn − tn−1 =
T

N

and the interest rate is constant over the period [0, T ], that is rn = r for every
n. Then the dynamics of the bond is given by

Bn = Bn−1(1 + r), n = 1, . . . , N, (2.34)

so that Bn = (1 + r)n.
4 By assumption the empty set is the only event with null probability and so

there is only one version of the conditional expectation that we denote by
E [ϕ(Sn) | Fn−1].
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For the risky asset we assume that the dynamics is stochastic: in particular
we assume that when passing from time tn−1 to time tn the stock can only
increase or decrease its value with constant increase and decrease rates:

Sn = Sn−1(1 + μn), n = 1, . . . , N, (2.35)

where μ1, . . . , μN are independent and identically distributed (i.i.d.) random
variables on a probability space (Ω,F , P ), whose distribution is a combination
of Dirac’s Deltas:

1 + μn ∼ pδu + (1− p)δd, n = 1, . . . , N. (2.36)

In (2.36) p ∈ ]0, 1[, u denotes the increase rate of the stock over the period
[tn−1, tn] and d denotes the decrease rate5. We assume that

0 < d < u. (2.37)

We point out that we have

P (Sn = uSn−1) = P (1 + μn = u) = p,

P (Sn = dSn−1) = P (1 + μn = d) = (1− p),

that is

Sn =

{
uSn−1, with probability p,

dSn−1, with probability 1− p.

Hence a “trajectory” of the stock is a vector such as (for example, in the case
N = 4)

(S0, uS0, udS0, u
2dS0, u

3dS0)

or
(S0, dS0, d

2S0, ud2S0, u
2d2S0)

which can be identified with the vectors

(u, d, u, u)

and
(d, d, u, u)

of the occurrences of the random variable (1 + μ1, 1 + μ2, 1 + μ3, 1 + μ4),
respectively. Therefore we can assume that the sample space Ω is the family

{(e1, . . . , eN ) | ek = u or ek = d}

containing 2N elements and F is the σ-algebra of all subsets of Ω. The family
of trajectories can be represented on a binomial tree as in Figure 2.1 in the
case N = 3.
5 The state u (up) corresponds to the increase of the value of the stock, whilst the

state d (down) to its decrease.
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Fig. 2.1. Three-period binomial tree

Remark 2.32 The probability measure P is uniquely determined by (2.36)
and the assumption of independence of the random variables μ1, . . . , μN . In-
deed we have

P (Sn = ujdn−jS0) =
(

n
j

)
pj(1− p)n−j , j = 0, . . . , n, (2.38)

for n = 1, . . . , N . Formula (2.38) corresponds to the well-known binomial
distribution which represents the probability of obtaining j successes (j ups)
after n trials (n time steps), when p is the probability of success of the single
trial. The coefficient (

n
j

)
=

n!
j!(n− j)!

represents the number of trajectories on the binomial tree that reach the price
Sn = ujdn−jS0.

For example, in the case n = 2, the probability that S2 is equal to u2S0 is
given by

P (S2 = u2S0) = P ((1 + μ1 = u) ∩ (1 + μ2 = u)) = p2,

where the last equality follows from the independence of μ1 and μ2. Analo-
gously we have

P (S2 = udS0) = P ((1 + μ1 = u) ∩ (1 + μ2 = d))
+ P ((1 + μ1 = d) ∩ (1 + μ2 = u)) = 2p(1− p). �
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2.3.1 Martingale measure and arbitrage price

In this section we study existence and uniqueness of the EMM.

Theorem 2.33 In the binomial model, the condition

d < 1 + r < u, (2.39)

is equivalent to the existence and uniqueness of the EMM Q. More precisely,
if (2.39) holds then

q :=
1 + r − d

u− d
∈ ]0, 1[, (2.40)

and we have
Q(1 + μn = u) = 1−Q(1 + μn = d) = q. (2.41)

Moreover the random variables μ1, . . . , μN are Q-independent and we have

Q(Sn = ukdn−kS0) =
(

n
k

)
qk(1− q)n−k, 0 ≤ k ≤ n ≤ N. (2.42)

The process S has the Markov property on the space (Ω,F , Q, (Fn)): for every
function ϕ we have

EQ [ϕ(Sn) | Fn−1] = EQ [ϕ(Sn) | Sn−1] = qϕ(uSn−1) + (1− q)ϕ(dSn−1).
(2.43)

Proof. If an EMM Q exists, then by Definition 2.13 we have

S̃n−1 = EQ
[
S̃n | Fn−1

]
, (2.44)

or equivalently

Sn−1(1 + r) = EQ [Sn−1 (1 + μn) | Fn−1] = Sn−1E
Q [(1 + μn) | Fn−1] .

Since Sn−1 > 0, we simplify the previous expression and obtain (cf. Proposi-
tion A.105)

r = EQ [μn | Fn−1] =(u− 1)Q (μn = u− 1 | Fn−1)
+(d− 1) (1−Q (μn = u− 1 | Fn−1)) .

Then we have
Q (1 + μn = u | Fn−1) =

1 + r − d

u− d
= q (2.45)

and (2.39) must hold. Moreover, since the conditional probability in (2.45)
is constant, by Proposition A.106 the random variables μ1, . . . , μN are Q-
independent. Consequently (2.41) holds and also (2.42) can be proved as in
Remark 2.32: in particular Q is uniquely determined. The Markov property of
S follows from Theorem 2.31 and the fact that μ1, . . . , μN are Q-independent.
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Note that μ1, . . . , μN are Q-independent even if we do not assume that they are
P -independent. Then formula (2.43) follows from (2.33) since, in the binomial
case, we have

gn(s) = EQ [ϕ(s(1 + μn))] = qϕ(us) + (1− q)ϕ(ds).

Conversely, condition (2.39) is equivalent to the fact q in (2.45) belongs
to the interval ]0, 1[. Then Q, defined by (2.42), is a probability measure
equivalent to P and since (2.45) is equivalent to the martingale condition
(2.44), Q is an EMM. �

Condition (2.39) has a clear financial interpretation. Indeed assume that
the parameters u, d, r in (2.34)-(2.36) verify (2.39), i.e. d < 1 + r < u: then
the fact of borrowing money from the bank to invest it in the stock gives a
positive probability of getting a profit, greater than leaving the money in the
savings account, since 1 + r < u. This correspond to point iii) of Definition
2.10 of arbitrage. Nevertheless, this investment strategy does not correspond
to an arbitrage portfolio, since there is also exposure to the risk of loss (we
have d < 1 + r, so there is a positive probability that the stock is worth less
than the savings account) i.e. property ii) is ruled out. More generally, we
have the following:

Corollary 2.34 The binomial model is arbitrage-free and complete if and
only if condition (2.39) holds. In this case the arbitrage price (Hn) of a deriva-
tive X is uniquely defined by the following risk-neutral pricing formula:

Hn =
1

(1 + r)N−n
EQ [X | Fn] , 0 ≤ n ≤ N. (2.46)

In particular, if X = F (SN ), we have the following explicit formula for the
initial price of X:

H0 =
1

(1 + r)N
EQ [F (SN )]

=
1

(1 + r)N

N∑
k=0

(
N
k

)
qk(1− q)N−kF (ukdN−kS0).

(2.47)

Proof. Combining Theorem 2.33 with the Fundamental Theorems of asset
pricing, we prove that the binomial model is arbitrage-free and complete if
and only if condition (2.39) holds. Formula (2.46) follows from (2.27). Formula
(2.47) follows from (2.46) with n = 0 and (2.42). �

In Remark 2.14, we called P the objective or real-world probability, since
it has to be determined on the basis of observations on the market, while
Q is defined a posteriori. Indeed the EMM has no connection with the “real
world”, but it is useful to prove theoretical results and to get simple and
elegant expressions for the prices of derivatives such as formulas (2.46) and
(2.47).
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2.3.2 Hedging strategies

In the previous section we showed the completeness of the binomial market as
a consequence of the theoretical result of Theorem 2.29: here we aim at giving
a direct and constructive proof of the existence of a replicating strategy for a
derivative X.

First we analyze the case of a path-independent option X that is σ(SN )-
measurable: in this case, by Corollary A.10, there exists a function F such
that X = F (SN ). If SN−1 denotes the price of the risky asset at time tN−1,
we have two possible final values

SN =

{
uSN−1,

dSN−1.

For fixed (α, β) ∈ A, we set

Vn = αnSn + βnBn, n = 0, . . . , N,

and impose the replication condition VN = X: this is equivalent to{
αNuSN−1 + βNBN = F (uSN−1),
αNdSN−1 + βNBN = F (dSN−1).

(2.48)

Since it is necessary that both equations are satisfied, we get a linear system
in the unknowns αN and bN , whose solution is given by

ᾱN =
F (uSN−1)− F (dSN−1)

uSN−1 − dSN−1
, β̄N =

uF (dSN−1)− dF (uSN−1)
(1 + r)N (u− d)

.

(2.49)

Formula (2.49) expresses ᾱN and β̄N as functions of SN−1 and shows how to
construct a predictable portfolio in a unique way at time tN−1, replicating
the derivative at time tN for any trend of the underlying asset. We note that
ᾱN and β̄N do not depend on the value of the parameter p (the objective
probability of growth of the underlying asset). Further, ᾱN has the form of
an incremental ratio (technically called Delta).

We can now write the value of the replicating portfolio (or equivalently the
arbitrage price H of the derivative) at time tN−1: indeed by the self-financing
condition we have

VN−1 = ᾱNSN−1 + β̄NBN−1 =

(by (2.49) and the definition of q in (2.40))

=
1

1 + r
(qF (uSN−1) + (1− q)F (dSN−1)) . (2.50)

Recalling the Markov property (2.43) and the expression

q = Q(SN = uSN−1) = 1−Q(SN = dSN−1),
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10

H0 = 25
21

α = 1
2
, β = − 80

21

12

F (uS0) = 2

8

F (dS0) = 0

Fig. 2.2. Hedging of a Call in a one-period binomial model

we have that (2.50) is consistent with the risk-neutral pricing formula (2.46)
that here reads

HN−1 = VN−1 =
1

1 + r
EQ [F (SN ) | SN−1] . (2.51)

By (2.51), HN−1 is a deterministic function of SN−1 and equals the discounted
conditional expectation F (SN ) given SN−1.

Let us now consider a simple example to fix the ideas.

Example 2.35 We suppose that the current price of a stock is S0 = 10 and
that over the year the price can rise or fall within 20% of its initial value.
We assume that the risk-free rate is r = 5% and we determine the hedging
strategy for a Call option with maturity T = 1 year and strike K = 10. In
this case u = 1.2 and d = 0.8 and the replication condition (2.48) becomes{

12α + 105
100β = 2,

8α + 105
100β = 0,

hence α = 1
2 and β = − 80

21 . Then the current value of the hedging portfolio
(corresponding to the arbitrage price of the option) is equal to

V0 = 10α + β =
25
21

.

�

Let us go back to the previous argument and repeat it to compute, by a
backward induction, the complete hedging strategy (ᾱn, β̄n) for n = 1, . . . , N .
More precisely, assume that the arbitrage price Hn = Hn(Sn) is known. Then,
since at time tn we have two cases

Sn =

{
uSn−1,

dSn−1,
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by imposing the replication condition Vn = Hn, we obtain the system{
αnuSn−1 + βnBn = Hn(uSn−1),
αndSn−1 + βnBn = Hn(dSn−1).

(2.52)

The solution of (2.52) is

ᾱn =
Hn(uSn−1)−Hn(dSn−1)

Sn−1(u− d)
, β̄n =

uHn(dSn−1)− dHn(uSn−1)
(1 + r)n(u− d)

,

(2.53)
that is the hedging strategy for the n-th period [tn−1, tn]. By the self-financing
condition we also find the arbitrage price of X at time tn−1:

Hn−1 := Vn−1 = ᾱnSn−1 + β̄nBn−1. (2.54)

Equivalently we have

Hn−1 =
qHn(uSn−1) + (1− q)Hn(dSn−1)

1 + r
=

1
1 + r

EQ [Hn | Sn−1] . (2.55)

More generally, we have

HN−n =
1

(1 + r)n
EQ [F (SN ) | SN−n]

=
1

(1 + r)n

n∑
k=0

(
n
k

)
qk(1− q)n−kF (ukdn−kSN−n),

and in particular the current value of the derivative is given by

H0 =
1

(1 + r)N
EQ [F (SN )]

=
1

(1 + r)N

N∑
k=0

(
N
k

)
qk(1− q)N−kF (ukdN−kS0)

consistently with formula (2.47).
The previous expressions can be computed explicitly as a function of the

current value of the underlying asset, once F is given; nevertheless in the
following section we will see that, from a practical point of view, it is easier
to compute the price using a suitable iterative algorithm.

Remark 2.36 As we have already pointed out in Paragraph 1.2, the arbitrage
price of X does not depend on the probability p of growth under the real-world
probability but only on the increase and decrease rates u, d (and also on r). �

Let us consider now the general case and let X be a European derivative
(possibly path-dependent). The final replication condition reads{

αNuSN−1 + βNBN = Xu,

αNdSN−1 + βNBN = Xd,
(2.56)
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where Xu and Xd denote the payoffs in case of increase and decrease of the
asset given the information at time tN−1, respectively. The solution of the
linear system (2.56) is given by

ᾱN =
Xu −Xd

(u− d)SN−1
, β̄N =

uXd − dXu

(1 + r)N (u− d)
, (2.57)

and provides the strategy for the last period that guarantees the final repli-
cation. By the self-financing condition we have that

HN−1 := VN−1 = ᾱNSN−1 + β̄NBN−1

is the arbitrage price of X at time tN−1. A direct computation shows that this
result is consistent with the risk-neutral valuation formula (2.46): precisely,
we have

ᾱNSN−1 + β̄NBN−1 =
1

1 + r

(
qXu + (1− q)Xd

)
=

1
1 + r

EQ [X | FN−1] .

Next we use an analogous argument in the generic n-th period. If Sn−1 denotes
the asset price at time tn−1, we have

Sn =

{
uSn−1,

dSn−1.

We denote by Hu
n and Hd

n the arbitrage prices at time tn, given the informa-
tion at time tn−1, in case of increase and decrease of the underlying asset,
respectively. Imposing the replication condition Vn = Hn, we obtain the sys-
tem {

αnuSn−1 + βnBn = Hu
n ,

αndSn−1 + βnBn = Hd
n,

(2.58)

with solution

ᾱn =
Hu

n −Hd
n

Sn−1(u− d)
, β̄n =

uHd
n − dHu

n

(1 + r)n(u− d)
. (2.59)

By the self-financing condition we infer

Hn−1 := Vn−1 = ᾱnSn−1 + β̄nBn−1 (2.60)

that is the arbitrage price of X at time tn−1. Equivalently we have

Hn−1 =
qHu

n + (1− q)Hd
n

1 + r
=

1
1 + r

EQ [Hn | Fn−1] . (2.61)

Example 2.37 (European Call option) We consider the payoff function
of a European Call option with strike K:

F (SN ) = (SN −K)+ = max{SN −K, 0}.
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By using formula (2.47) and recalling that q = 1+r−d
u−d , the initial price C0 of

the option is given by

C0 =
1

(1 + r)N

N∑
h=0

(
N
h

)
qh(1− q)N−h

(
uhdN−hS0 −K

)+
=S0

N∑
h>h0

(
N
h

)(
qu

1 + r

)h( (1− q)d
1 + r

)N−h

− K

(1 + r)N

N∑
h>h0

(
N
h

)
qh(1− q)N−h,

where h0 is the smallest non-negative integer number greater than or equal to

log K
dN S0

log u
d

.

Therefore
C0 = S0N (q̃)− K

(1 + r)N
N (q), (2.62)

where
q̃ =

qu

1 + r
(2.63)

and

N (p) =
N∑

h>h0

(
N
h

)
ph(1− p)N−h, p = q̃, q.

We note that N (q̃) and N (q) in formula (2.62) can be expressed in terms of
probability of events with respect to suitable probability measures. Indeed,
for 0 ≤ n ≤ N , we have

Cn = BnEQ

[
(SN −K)+

BN
| Fn

]
= BnEQ

[
(SN −K)

BN
1{SN >K} | Fn

]
≡ I1 − I2,

where
I2 =

BnK

BN
Q (SN > K | Fn) ,

and

I1 = BnEQ

[
SN

BN
1{SN >K} | Fn

]

= Bn
S0

B0

EQ

[
SN

BN
1{SN >K}

(
S0
B0

)−1

| Fn

]
EQ

[
SN

BN

(
S0
B0

)−1

| Fn

] EQ

[
SN

BN

(
S0

B0

)−1

| Fn

]
=
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(by Bayes’ formula and Theorem 2.19 on the change of numeraire, denoting
by Q̃ the EMM with numeraire S)

= Bn
S0

B0
Q̃(SN > K | Fn)

Sn

Bn

(
S0

B0

)−1

.

In conclusion, we obtain the following formula:

Cn = SnQ̃(SN > K | Fn)− K

(1 + r)N−n
Q (SN > K | Fn) ,

and in particular, with n = 0

C0 = S0Q̃(SN > K)− K

(1 + r)N
Q (SN > K) . (2.64)

Comparing (2.64) to (2.62), we see that the EMM Q̃ with numeraire S is the
equivalent measure to P such that (cf. (2.40) and (2.63))

Q̃(1 + μn = u) = q̃ =
qu

1 + r
.

It is easy to verify that 0 < q̃ < 1 if and only if d < 1 + r < u.
Although formulas (2.64) and (2.62) may be more elegant from a theore-

tical point of view, for the numerical computation of the price of a derivative
in the binomial model, it is often preferable to use a recursive algorithm as
the one that we are going to present in the next section. �

2.3.3 Binomial algorithm

In this section we present an iterative scheme that is easily implementable
to determine the replicating strategy and the price of a path-independent
derivative. We discuss briefly also some particular cases of path-dependent
derivatives.

Path-independent case. In this case the payoff is of the form X = F (SN ).
The arbitrage price Hn−1 and the strategy (αn, βn) depend only on the price
Sn−1 of the underlying asset at time tn−1. Since Sn is of the form

Sn = Sn,k := ukdn−kS0, n = 0, . . . , N and k = 0, . . . , n, (2.65)

the value of the underlying asset is determined by the “coordinates” n (time)
and k (number of movements of increase). Hence we introduce the following
notation:

Hn,k = Hn(Sn,k), (2.66)
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for the arbitrage price of X, and analogously

αn,k = αn(Sn−1,k), βn,k = βn(Sn−1,k),

for the related hedging strategy. By the replication condition and the pricing
formula (2.55), we get the following backward iterative formula for the price
(Hn):

HN,k = F (SN,k), 0 ≤ k ≤ N, (2.67)

Hn−1,k =
1

1 + r
(qHn,k+1 + (1− q)Hn,k), 0 ≤ k ≤ n− 1, (2.68)

for n = 1, . . . , N and where q defined in (2.40). Clearly the initial price of the
derivative is equal to H0,0.

Once we have determined the values Hn,k, by (2.53) the corresponding
hedging strategy is given explicitly by

αn,k =
Hn,k+1 −Hn,k

Sn−1,k(u− d)
, βn,k =

uHn,k − dHn,k+1

(1 + r)n(u− d)
, (2.69)

for n = 1, . . . , N and k = 0, . . . , n− 1. We remark explicitly that (αn,k, βn,k)
is the strategy for the n-th period [tn−1, tn], that is constructed at time tn−1

in the case Sn−1 = Sn−1,k.

Example 2.38 We consider a European Put option with strike K = 5
2 and

value of the underlying asset S0 = 1. We set the following values for the
parameters in a three-period binomial model:

u = 2, d =
1
2
, r =

1
2

hence we obtain

q =
1 + r − d

u− d
=

2
3
.

First of all we construct in Figure 2.3 the binomial tree where we put the
prices of the underlying asset inside the circles and the payoff of the option at
maturity outside, using notation (2.66), i.e. Hn,k is the value of the derivative
at time tn if the underlying asset has grown k times.

Next we use the algorithm (2.67)-(2.68)

Hn−1,k =
1

1 + r
(qHn,k+1 + (1− q)Hn,k) =

1
1 + 1

2

(
2
3
Hn,k+1 +

1
3
Hn,k

)
and we compute the arbitrage prices of the option, putting them outside the
circles in Figure 2.4.

Eventually, using formulas (2.69), we complete the figure with the hedging
strategy for the derivative in Figure 2.5. �
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Fig. 2.3. Three-period binomial tree for a Put option with strike K = 5
2

and S0 = 1,
with parameters u = 2 and d = r = 1
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Fig. 2.4. Arbitrage prices of a Put option with strike K = 5
2

and S0 = 1 in a
three-period binomial model with parameters u = 2 and d = r = 1

2
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1 α1,0 = − 67
243 , β1,0 = 364

729

2 α2,1 = − 5
27 , β2,1 = 92

243

1
2 α2,0 = −1, β2,0 = 20

27
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81
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Fig. 2.5. Hedging strategy for a Put option with strike K = 5
2

and S0 = 1 in a
three-period binomial model with parameters u = 2 and d = r = 1

2

Path-dependent case. We examine some well-known path-dependent deriva-
tives: Asian, look-back and barrier options. The iterative scheme (2.67)-(2.68)
is based upon the fact that the price Hn of the derivative has the Markov
property: so it is a function of the prices at time tn and it does not depend on
the previous prices. In particular the scheme (2.67)-(2.68) requires that at the
n-th step n+1 equations must be solved in order to determine (Hn,k)k=0,...,n.
Therefore the computational complexity grows linearly with the number of
steps of the discretization.

On the contrary, we have already pointed out that, in the path-dependent
case, Hn depends on the path of the underlying asset (S0, . . . , Sn) until time
tn. Since there are 2n possible paths, the number of the equations to solve
grows exponentially with the number of the steps of the discretization. For
example, if we choose N = 100, we should solve 2100 equations just to compute
the price at maturity and this is unfeasible.

Sometimes, by adding a state variable that incorporates the information
from the past (the path-dependent variable), it is possible to make the price
process Markovian: this simple idea is sometimes used also in the continuous
case. We consider the following payoff:

F (SN , AN ) =

{
(SN −AN )+ Call option with variable strike,
(AN −K)+ Call option with fixed strike K,

(2.70)
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where A denotes the path-dependent variable: more precisely, for n = 0, . . . , N ,

An =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n+1

n∑
k=0

Sk (Asian option with arithmetic average)(
n∏

k=0

Sk

) 1
n+1

(Asian option with geometric average)

min
0≤k≤n

Sk (Look-back option with variable strike)

max
0≤k≤n

Sk (Look-back option with fixed strike).

(2.71)

When passing from time tn−1 to time tn, we have Sn = uSn−1 or Sn = dSn−1

and consequently An takes the values Au
n or Ad

n where

Au
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nAn−1+uSn−1

n+1 (Asian option with arithmetic average)

((An−1)nuSn−1)
1

n+1 (Asian option with geometric average)
min{An−1, uSn−1} (Look-back option with variable strike)
max{An−1, uSn−1} (Look-back option with fixed strike)

(2.72)
and Ad

n is defined analogously. The following result can be proved as Theo-
rem 2.31.

Lemma 2.39 The stochastic process (S,A) has the Markov property, and for
every function f we have that

EQ [ϕ(Sn+1, An+1) | Fn] = EQ [ϕ(Sn+1, An+1) | (Sn, An)]

= qϕ(uSn, Au
n) + (1− q)ϕ(dSn, Ad

n).

We set Sn,k as in (2.65) and denote by An,k(j) the possible values of the path-
dependent variable corresponding to Sn,k, for 0 ≤ j ≤ J(n, k) and suitable
J(n, k) ∈ N.

Example 2.40 Under the assumption ud = 1, we have

Sn,k =

{
dn−2kS0 if n ≥ 2k,

u2k−nS0 if n < 2k.

In the case of a Look-back option with fixed strike, if n ≥ 2k then Sn,k ≤ S0

and
An,k(j) = uk−jS0, j = 0, . . . , n− k,

while, if n ≤ 2k, then Sn,k ≥ S0 and

An,k(j) = uk−jS0, j = 0, . . . , k.

Just to fix the ideas, it can be useful to construct a binomial tree with N = 4
and verify the previous formulas.
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Also in the case of a Call option with strike K and barrier B > K, we can
use the previous processes: here the payoff is given by

F (SN , AN ) = (SN −K)+1{AN <B}.

�

In general we put
Hn,k(j) = Hn(Sn,k, An,k(j)). (2.73)

By the previous lemma, since

Hn =
1

1 + r
EQ [Hn+1 | Fn]

we can price a path-dependent derivative using the following iterative scheme:

HN,k(j) = F (SN,k, AN,k(j)),

for 0 ≤ k ≤ N, 0 ≤ j ≤ J(N, k), and

Hn−1,k(j) =
1

1 + r

(
qHn

(
uSn−1,k, Au

n−1,k(j)
)

+ (1− q)Hn

(
dSn−1,k, Ad

n−1,k(j)
) )

,

for 0 ≤ k ≤ n − 1, 0 ≤ j ≤ J(n − 1, k), and n = 1, . . . , N . Eventually the
hedging strategy is given by

αn,k(j) =
Hn,k+1(j)−Hn,k(j)

(u− d)Sn−1,k
,

βn,k(j) =
uHn,k(j)− dHn,k+1(j)

(u− d)(1 + r)n
,

(2.74)

for n = 1, . . . , N , k = 0, . . . , n − 1 and j = 0, . . . , J(n, k). Note that, for a
Look-back option with fixed strike, J(n, k) ≤ n

2 and so the computational
complexity at the n-th step is of order n2.

2.3.4 Calibration

The calibration of a model consists in determining the parameters by the ob-
servation of the current-world market. The parameters in the binomial model
are the risk-free rate r over the period [tn−1, tn], the increase and decrease
factors u, d of the underlying asset and the objective probability p. However,
we have already noticed (cf. Remark 2.36) that the arbitrage price of a deriva-
tive does not depend on p: therefore only r, u, d have to be determined. We
point out that the parameters depend on N since obviously the increase and
decrease rates depend on the amplitude of the time period T

N : nevertheless



2.3 Binomial model 51

in this section N is fixed and so we do not show this dependence explicitly.
In the following procedure the hypothesis of P -independence of the random
variables μ1, . . . , μN plays a crucial role.

If we suppose that the annual interest rate r̂ is known, then we can obtain
r easily by the relation

1 + r = er̂ T
N . (2.75)

Next we define the annual rate of return μ of the risky asset by putting

ST = S0e
μT , (2.76)

or equivalently

μT = log
ST

S0
.

It is clear that μ is a random variable that plays an analogous role to the
interest rate in the compounding formula. By (2.35) we have

log
ST

S0
=

N∑
n=1

log(1 + μn),

and since the random variables μn are identically distributed by (2.36), we
get the following formula that defines the average rate of return m:

mT := E [μT ] = NE [log(1 + μ1)] = N (p log u + (1− p) log d) . (2.77)

Analogously the volatility σ is defined by the following equality:

σ2T := var
(

log
ST

S0

)
= var

(
N∑

n=1

log(1 + μn)

)
=

(by the independence of the random variables μn)

= N var (log(1 + μ1)) =

(in virtue of Exercise A.36)

= Np(1− p)
(
log

u

d

)2

. (2.78)

In other words, the average rate of return and the volatility are the expec-
tation and the standard deviation of the annual rate of return, respectively.
The volatility represents one of the most common and known estimators of
the riskiness of the underlying asset. In principle the values of m and σ can be
considered approximately observable in the current-world market. For exam-
ple, one can easily get some estimates of the values of m and σ starting from
a given set of historical values of S. We therefore suppose that m and σ are
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known and we try to draw from them the value of u and d. By equations
(2.77)-(2.78) and putting δ = T

N , we obtain the system{
mδ = (p log u + (1− p) log d) ,

σ2δ = p(1− p)
(
log u

d

)2
.

(2.79)

Thus we have a non-linear system of two equations in the three unknowns u, d
and p: in order to find a solution, we impose another condition a priori. The
most common choices in the literature are the following ones: p = 1

2 or

ud = 1. (2.80)

Imposing p = 1
2 , system (2.79) becomes{

ud = e2δm,
u
d = e2σ

√
δ,

and its solution is given by

u = eσ
√

δ+mδ, d = e−σ
√

δ+mδ. (2.81)

Imposing condition (2.80), we have6 d < 1 < u and system (2.79) becomes{
2p = 1 + mδ

log u ,

σ2δ = 4p(p− 1) (log u)2 ,

and its solution is given by

u = eσ
√

δ
√

1+δ(m
σ )2

, d = e−σ
√

δ
√

1+δ(m
σ )2

. (2.82)

In both cases (2.81) and (2.82), we obtain7

u = eσ
√

δ+o(
√

δ) = 1 + σ
√

δ + o(
√

δ),

d = e−σ
√

δ+o(
√

δ) = 1− σ
√

δ + o(
√

δ),

for δ → 0; in other terms, u−1√
δ

and 1−d√
δ

approximate the value σ of the volati-
lity or riskiness of the asset. For the sake of simplicity, in order to implement
the binomial algorithm it is very common to choose

u = eσ
√

δ, d = e−σ
√

δ. (2.83)
6 We note that, if condition (2.80) holds, then

undnS0 = S0

therefore the price “moves around” its starting value.
7 We recall that the function f is a “little-o” of the function g as x → x0 (in symbols

f(x) = o(g(x)) as x → x0) if there exists a function w such that f = gw and

lim
x→x0

w(x) = 0.
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Remark 2.41 Assuming (2.83) and recalling that δ = T
N , for the maximum

and minimum values of the final price of the underlying asset, we have

S
(max)
N = uNS0 = eσ

√
NT S0 −−−−→

N→∞
+∞,

S
(min)
N = dNS0 = e−σ

√
NT S0 −−−−→

N→∞
0,

and so, when N increases, the interval of the final values of S gets larger and
“covers” the whole R>0 as x→ x0.

The no-arbitrage condition d < 1 + r < u becomes

e−σ
√

δ < er̂δ < eσ
√

δ

or equivalently
−σ
√

N < r̂
√

T < σ
√

N.

Therefore if we choose arbitrary values r̂ and σ > 0, for the the annual risk-
free rate and the volatility respectively, then the no-arbitrage condition is
fulfilled provided that N is large enough: in that case, by (2.83) the EMM is
defined by

q =
1 + r − d

u− d
=

er̂δ − e−σ
√

δ

eσ
√

δ − e−σ
√

δ
=

1
2

+
1
2σ

(
r̂ − σ2

2

)√
δ + o(

√
δ)

as δ → 0. �

Example 2.42 We set the parameters of the market as follows: annual in-
terest rate r̂ = 5% and volatility σ = 30%. We consider a 10-period binomial
model for an option with maturity in 6 months: N = 10 and T = 1

2 . By (2.75)
we have

r = e
5

100 · 12 · 1
10 − 1 ≈ 0.0025.

Analogously, by (2.83), we have

u ≈ e
30
100 · 1√

20 ≈ 1.0693. �

2.3.5 Binomial model and Black-Scholes formula

We have seen that the binomial model, with a fixed number of periods N ,
allows us to determine the initial arbitrage price H

(N)
0 of a given derivative

X. We may wonder if the binomial model is stable, this meaning that, if we
increase the number of steps, the price H

(N)
0 actually converges to some value,

so that the situation in which the value diverges or oscillates around more than
one value is avoided8.
8 The divergence or the oscillation around some values would cast doubts on the

consistency of the model.
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Fig. 2.6. Convergence of the price of a European and an American option in the
binomial model to the corresponding Black-Scholes price when N tends to infinity

In this section we prove that the binomial model is stable and approximates
the classical Black-Scholes model in a suitable way, when N tends to infinity.
In what follows, the number of periods N ∈ N is variable so it is important
to express the dependence on N of the parameters of the model explicitly:
therefore we denote the interest rate, the increase and decrease factors by
rN , uN , dN respectively, the random variables in (2.35) for k = 1, . . . , N by
μ

(N)
k and the martingale probability by qN , QN . Let T > 0 be fixed: we put

δN =
T

N
,

so, by (2.75), we have
1 + rN = erδN , (2.84)

where we denote by r the annual risk-free rate. Further, we assume that uN

and dN take the following form:

uN = eσ
√

δN+αδN , dN = e−σ
√

δN+βδN , (2.85)

where α, β are real constants. Such a choice is in line with what we saw in the
previous section: indeed by imposing one of the conditions p = 1

2 or ud = 1
for the calibration, we obtain parameters of the form (2.85). Furthermore, the
simplest choice (2.83) corresponds to α = β = 0.

First of all we observe that the asymptotic behaviour of the EMM is in-
dependent of α, β. Indeed we have the following:
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Lemma 2.43 If (2.84)-(2.85) hold, we have

lim
N→∞

qN =
1
2
. (2.86)

Proof. By definition

qN =
erδN − e−σ

√
δN+βδN

eσ
√

δN+αδN − e−σ
√

δN+βδN
. (2.87)

Then, using a Taylor expansion for the exponentials in the expression (2.87)
of qN , we get

2qN − 1 =
2erδN − eσ

√
δN+αδN − e−σ

√
δN+βδN

eσ
√

δN+αδN − e−σ
√

δN+βδN

=

(
r − σ2

2 −
α+β

2

)
δN + o (δN )

σ
√

δN (1 + o(1))
, as N →∞,

(2.88)

hence the claim. �

Now we consider a European Put option with strike K and maturity T : by
formula (2.47), the initial price P

(N)
0 of the option in the N -period binomial

model is given by

P
(N)
0 = e−rT EQN

[(
K − S0

N∏
k=1

(
1 + μ

(N)
k

))+
]

= e−rT EQN

[(
K − S0e

XN
)+]

,

(2.89)

where we put

XN = log
N∏

k=1

(
1 + μ

(N)
k

)
=

N∑
k=1

Y
(N)
k , (2.90)

and
Y

(N)
k := log

(
1 + μ

(N)
k

)
, k = 1, . . . , N,

are i.i.d. random variables9. Further, we have

QN

(
Y

(N)
k = σ

√
δN + αδN

)
= qN ,

QN

(
Y

(N)
k = −σ

√
δN + βδN

)
= 1− qN .

(2.91)

We rewrite (2.89) in the form

P
(N)
0 = EQN [ϕ(XN )] ,

9 By Theorem 2.33, the random variables μ
(N)
k are independent also under the

EMM.
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where
ϕ(x) = e−rT (K − S0e

x)+ (2.92)

is a continuous bounded function on R, ϕ ∈ Cb(R). The following result
provides asymptotic values for the mean and the variance of XN in (2.90).

Lemma 2.44 We have:

lim
N→∞

EQN [XN ] =
(

r − σ2

2

)
T, (2.93)

lim
N→∞

varQN (XN ) = σ2T. (2.94)

Before proving the lemma, let us dwell on some remarks. By the central limit
theorem10, XN converges in distribution to a normally distributed random
variable X and so, by (2.93)-(2.94), we have

X ∼ N(
r−σ2

2

)
T,σ2T

. (2.95)

Since the function ϕ is bounded and continuous, we infer11 that

lim
N→∞

P
(N)
0 = lim

N→∞
EQN [ϕ(XN )] = E [ϕ(X)] . (2.96)

Since X has a normal distribution, the expectation E [ϕ(X)] can be com-
puted explicitly and, as we will see, corresponds to the classical Black-Scholes
formula.

Proof (of Lemma 2.44). In order to prove (2.93), we compute

EQN

[
Y

(N)
1

]
= qN

(
σ
√

δN + αδN

)
+ (1− qN )

(
−σ
√

δN + βδN

)
= (2qN − 1)σ

√
δN + δN (αqN + β (1− qN )) =

(by (2.88) and (2.86))

=

(
r − σ2

2 −
α+β

2

)
δN + o (δN )

1 + o(1)
+ δN

(
α + β

2
+ o(1)

)
=
(

r − σ2

2

)
δN + o (δN ) , as N →∞. (2.97)

Then we have, recalling that δN = T
N ,

EQN [XN ] = NEQN

[
Y

(N)
1

]
=
(

r − σ2

2

)
T + o (1) , as N →∞,

hence (2.93).
10 See Lemma 2.45 for a rigorous proof of this statement.
11 By (A.128): this is the reason why we considered a Put option instead of a Call.

The Put-Call parity formula (cf. Corollary 1.1) allows us to obtain the price of a
Call option: the reader can see also Remark 2.49.
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Now we prove (2.94) by using the identity

varQN (XN ) = NvarQN (Y ) = N
(
EQN

[
Y 2
]
− EQN [Y ]2

)
(2.98)

where we put Y ≡ Y
(N)
1 . By (A.30) in Exercise A.36, we have

EQN
[
Y 2
]

= (log uN + log dN )EQN [Y ]− log uN log dN

= δN (α + β)EQN [Y ]−
(
σ
√

δN + αδN

)(
−σ
√

δN + βδN

)
= σ2δN + o (δN ) , as N →∞,

(2.99)

and so the claim follows immediately substituting the last expression into
(2.98), bearing in mind also that

EQN [Y ]2 = o (δN ) , as N →∞. �

Lemma 2.45 The sequence of random variables (XN ) defined in (2.90) con-
verges in distribution to a random variable X that is normally distributed as
in (2.95).

Proof. This result is a variation of the central limit Theorem A.146: by Lévy’s
Theorem A.141, it is enough to verify that the sequence (ϕXN ) of the corre-
sponding characteristic functions converges pointwise. We have:

ϕXN (η) = EQN
[
eiηXN

]
=

(since the random variables Y
(N)
k are i.i.d. and putting Y ≡ Y

(N)
1 )

=
(
EQN

[
eiηY

])N
=

(by Lemma A.142, applying formula (A.129) with ξ = η
√

δN and p = 2)

=
(

1 + iηEQN [Y ]− η2

2
EQN

[
Y 2
]
+ o (δN )

)N

for N →∞. (2.100)

Now we recall formulas (2.97) and (2.99):

EQN [Y ] =
(

r − σ2

2

)
δN + o (δN ) , EQN

[
Y 2
]

= σ2δN + o (δN ) ,

as N →∞. Substituting those formulas into (2.100), we get

ϕXN (η) =
(

1 +
1
N

(
−iηT

(
r − σ2

2

)
− η2 σ2T

2
+ o (1)

))N

as N →∞,
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hence

lim
N→∞

ϕXN (η) = exp
(
−iηT

(
r − σ2

2

)
− η2 σ2T

2

)
, ∀η ∈ R.

Then, by Lévy’s theorem, we have XN
d−−→ X where X is a random variable

whose characteristic function is

ϕX(η) = exp
(
−iηT

(
r − σ2

2

)
− η2 σ2T

2

)
,

and so, by Theorem A.89, X has normal distribution and (2.95)-(2.96) hold.

In conclusion, gathering the results of the previous lemmas, we have proved
the following:

Theorem 2.46 Let P
(N)
0 be the price of a European Put option with strike

K and maturity T in an N -period binomial model with parameters

uN = eσ
√

δN+αδN , dN = e−σ
√

δN+βδN , 1 + rN = erδN ,

where α, β are real constants. Then the limit

lim
N→∞

P
(N)
0 = P0

exists and we have
P0 = e−rT E

[(
K − S0e

X
)+]

(2.101)

where X is a random variable with normal distribution

X ∼ N(
r−σ2

2

)
T,σ2T

. (2.102)

Definition 2.47 P0 is called Black-Scholes price of a European Put option
with strike K and maturity T .

One of the reasons why the Black-Scholes model is renowned is the fact that
the prices of European Call and Put options possess a closed-form expression.

Corollary 2.48 (Black-Scholes formula) The following Black-Scholes for-
mula holds:

P0 = Ke−rT Φ(−d2)− S0Φ(−d1), (2.103)

where Φ is the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy, x ∈ R, (2.104)

and

d1 =
log
(

S0
K

)
+
(
r + σ2

2

)
T

σ
√

T
,

d2 = d1 − σ
√

T =
log
(

S0
K

)
+
(
r − σ2

2

)
T

σ
√

T
.

(2.105)
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Proof. By (2.101), we have to prove that

e−rT E
[(

K − S0e
X
)+]

= Ke−rT Φ(−d2)− S0Φ(−d1), (2.106)

where X is normally distributed as in (2.102). Now, (cf. Remark A.32)

X =
(

r − σ2

2

)
T + σ

√
TZ

with Z ∼ N0,1, and a simple computation shows that

ST = S0e
X < K ⇐⇒ Z < −d2. (2.107)

Then we have

E
[(

K − S0e
X
)+]

= KE
[
1{ST <K}

]
− E

[
ST1{ST <K}

]
≡ I1 + I2,

and, by (2.107),
I1 = KE

[
1{Z<−d2}

]
= KΦ(−d2).

On the other hand, we have

I2 = erT S0E
[
e−

σ2T
2 +σ

√
TZ1{Z<−d2}

]
= erT S0

∫ −d2

−∞

1√
2π

e−
σ2T

2 +σ
√

Tx− x2
2 dx =

(by the change of variable y = x− σ
√

T )

= erT S0

∫ −d2−σ
√

T

−∞

e−
y2

2

√
2π

dy,

and this concludes the proof of (2.106). �

Remark 2.49 (Black-Scholes formula) By the Put-Call parity formula,
we have that the Black-Scholes price C0 of a European Call option with strike
K and maturity T is given by

C0 = P0 + S0 −Ke−rT .

Using (A.26), a simple computation shows that the following Black-Scholes
formula holds:

C0 = S0Φ(d1)−Ke−rT Φ(d2), (2.108)

where d1, d2 are defined in (2.105) and Φ is the standard normal distribution
function. �
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2.3.6 Black-Scholes differential equation

In this section we continue the study of the consistency of the binomial model
with the Black-Scholes model. We saw that, as N tends to infinity, the bino-
mial price tends to the Black-Scholes price: we prove now that it is possible
to interpret the iterative scheme (2.67)-(2.68) of the binomial model as a
discrete version of the Cauchy problem for a parabolic differential equation,
called Black-Scholes equation. By means of stochastic calculus techniques, in
Chapter 7 we will present the Black-Scholes theory which gives the price of a
derivative directly in terms of the solution of the Black-Scholes equation.

In the rest of the section we adopt the usual notation δ = T
N and assume

that the parameters u, d, rN of the binomial model with N periods (cf. (2.83))
are of the form:

u = eσ
√

δ = 1 + σ
√

δ +
σ2

2
δ + o(δ),

d = e−σ
√

δ = 1− σ
√

δ +
σ2

2
δ + o(δ),

1 + rN = erδ = 1 + rδ + o(δ),

(2.109)

as δ → 0. Here σ and r denote the volatility and annual interest rate, respec-
tively. In this case we have

q =
1 + rN − d

u− d
=

1
2

+
1
2σ

(
r − σ2

2

)√
δ + o(

√
δ) (2.110)

as δ → 0.
Given a function f = f(t, S) defined over [0, T ] × R>0 (here f plays the

role of the arbitrage price of a derivative with underlying asset S), we recall
the pricing formula (2.68) that, using the notation above, takes the following
form:

f(t, S) =
1

1 + rN
(qf(t + δ, uS) + (1− q)f(t + δ, dS)) . (2.111)

If we put

f = f(t, S), fu = f(t + δ, uS), fd = f(t + δ, dS),

and if we define the discrete operator

Jδf(t, S) = −(1 + rN )f + qfu + (1− q)fd (2.112)

(2.111) is equivalent to
Jδf(t, S) = 0.

Proposition 2.50 For every f ∈ C1,2([0, T ]× R>0) we have

lim
δ→0+

Jδf(t, S)
δ

= LBSf(t, S),
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for every (t, S) ∈ ]0, T [×R>0, where

LBSf(t, S) := ∂tf(t, S) +
σ2S2

2
∂SSf(t, S) + rS∂Sf(t, S)− rf(t, S) (2.113)

is called Black-Scholes differential operator.

Proof. Taking a second-order Taylor expansion of f we get12

fu − f = ∂tfδ + ∂SfS(u− 1) +
1
2
∂SSfS2(u− 1)2 + o(δ) + o((u− 1)2) =

(by (2.109), substituting the expression for u in terms of δ and ordering the
expression according to the increasing powers of

√
δ)

= σS∂Sf
√

δ + Lfδ + o(δ), δ → 0, (2.114)

where

Lf = ∂tf +
σ2

2
S∂Sf +

σ2S2

2
∂SSf,

and analogously

fd − f = −σS∂Sf
√

δ + Lfδ + o(δ), δ → 0. (2.115)

Then we have

Jδf(t, S) = −(1 + rN )f + qfu + (1− q)fd

= −δrf + q(fu − f − (fd − f)) + (fd − f) + o(δ) =

(substituting the expressions (2.114) and (2.115))

= −δrf + δLf +
√

δ(2q − 1)σS∂Sf + o(δ) =

(by (2.110))

= −δrf + δLf +
√

δ

((
r − σ2

2

)√
δ + o(

√
δ)
)

σS∂Sf + o(δ)

= δLBSf + o(δ),

as δ → 0 and this concludes the proof. �

By the previous proposition, the differential equation

LBSf(t, S) = 0, (t, S) ∈ ]0, T [×R>0, (2.116)

is the asymptotic version of the pricing formula (2.68). Further, (2.67) corre-
sponds to the final condition

f(T, S) = F (S), S ∈ R>0. (2.117)
12 In the rest of the proof we always drop the argument (t, S) of the functions.
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The pair of equations (2.116)-(2.117) constitutes a Cauchy problem that, as
we have already said, we will analyze again in Chapter 7 using the tools of
stochastic calculus in continuous time.

Problem (2.116)-(2.117) is a backward problem with final datum such as
the one examined in Appendix A.3.5. With the change of variables

f(t, S) = u(T − t, log S)

i.e. putting τ = T − t and x = log S, problem (2.116)-(2.117) is the backward
version of the following parabolic Cauchy problem with constant coefficients
(cf. Appendix A.3):{

σ2

2 ∂xxu +
(
r − σ2

2

)
∂xu− ru− ∂τu = 0, (τ, x) ∈ ]0, T [×R,

u(0, x) = F (ex), x ∈ R.

By Theorem A.72, if the payoff x �→ F (ex) is a function that does not grow too
rapidly, we can express the solution u in terms of the Gaussian fundamental
solution Γ of the differential equation:

u(τ, x) =
∫
R

Γ (τ, x− y)F (ey)dy, τ ∈ ]0, T [, x ∈ R,

where Γ is given explicitly by (A.61).
The previous formula can be interpreted in terms of the expectation of the

payoff that is a function of a random variable with normal distribution and
density Γ . By using the expression for Γ , with a direct computation we can
obtain again the Black-Scholes formulas (2.103) and (2.108) for the price of
European Put and Call options.

A posteriori, the binomial algorithm can be considered as a numerical
scheme for the solution of a parabolic Cauchy problem. As a matter of fact,
Proposition 2.50 implicitly includes the fact that the binomial algorithm is
equivalent to an explicit finite-difference scheme that will be analyzed further
in Chapter 12. In their recent paper [188], Jiang and Dai extend the results
for the binomial model approximating the continuous Black-Scholes case to
European and American path-dependent derivatives, and they prove that the
binomial model is equivalent to a finite-difference scheme for the Black-Scholes
equation.

2.4 Trinomial model

In the trinomial model, the market is composed of a non-risky asset B whose
dynamics is given by (2.1) with rn ≡ r, and one or two risky assets whose
dynamics is driven by a stochastic process (hn)n=1,...,N with h1, . . . , hN i.i.d.
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random variables such that

hn =

⎧⎪⎨⎪⎩
1 with probability p1,

2 with probability p2,

3 with probability p3 = 1− p1 − p2,

where p1, p2 > 0 and p1 + p2 < 1. The trinomial model with only one risky
asset S1 is called standard trinomial model, while in case there are two risky
assets S1, S2, it is called completed trinomial market.

In general we assume that S1
0 , S2

0 > 0 and

Si
n = Si

n−1(1 + μi(hn)), n = 1, . . . , N, i = 1, 2, (2.118)

where

1 + μi(h) =

⎧⎪⎨⎪⎩
ui if h = 1,

mi if h = 2,

di if h = 3,

and 0 < di < mi < ui. In Figure 2.7 a two-period binomial tree is represented.
In the standard trinomial model S1 typically represents the underlying

asset of a derivative: the standard trinomial model is the simplest example
of incomplete model. On the contrary, the completed trinomial model is a
complete model that is typically used to price and hedge exotic options: we
may think of S1 and S2 as an asset and a plain vanilla option on S1 that is
supposed to be quoted on the market, respectively. Then the hedging strategy
of an exotic option on S1 is constructed by using both S1 and S2.

We first examine the standard trinomial model and we set S = S1 for
convenience. In order to study the existence of an EMM Q, we proceed as in
the binomial case by imposing the martingale condition (2.44): in this setting
it reads

Sn−1 =
1

1 + r
EQ [Sn−1 (1 + μ(hn)) | Fn−1] , (2.119)

where μ(h) = μ1(h). Then, putting

qn
j = Q(hn = j | Fn−1), j = 1, 2, 3, n = 1, . . . , N, (2.120)

we obtain the following system{
uqn

1 + mqn
2 + dqn

3 = 1 + r,

qn
1 + qn

2 + qn
3 = 1,

(2.121)

that does not admit a unique solution q1, q2, q3. Therefore the EMM is not
unique and consequently, by Theorem 2.29, the market is incomplete. Note
also that the random variables hn are not necessarily independent under a
generic EMM.
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Fig. 2.7. Two-period trinomial tree

The incompleteness of the market can also be deduced more directly by
examining the construction of a replicating strategy. For the sake of simplicity,
we consider the one-period case N = 1 and we let S1

0 = 1 and r = 0. Given a
derivative X = F (S1), the replication condition V1 = X becomes

α1S1 + β1 = F (S1),

that is equivalent to the following linear system in the unknowns α1, β1:⎧⎪⎨⎪⎩
α1u + β1 = F (u)
α1m + β1 = F (m)
α1d + β1 = F (d).

(2.122)

It is interesting to note that the matrix associated to system (2.122)⎛⎝u 1
m 1
d 1

⎞⎠
is the transpose of the matrix associated to system (2.121): this points to the
duality relation between the problem of completeness and absence of arbitrage
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opportunities. In the binomial model an analogous part is played by the matrix(
u 1
d 1

)
that is a square matrix with maximum rank, so guaranteeing completeness.

It is well known from linear algebra that system (2.122) admits a solution
if and only if the complete matrix⎛⎝u 1 F (u)

m 1 F (m)
d 1 F (d)

⎞⎠
does not have maximum rank. Imposing, for example, that the second row is
a linear combination (with coefficients λ, μ) of the first and of the third rows,
we obtain ⎧⎪⎨⎪⎩

m = λu + μd

1 = λ + μ

F (m) = λF (u) + μF (d),

hence
μ =

u−m

u− d
, λ =

m− d

u− d
,

and we can eventually write the condition a derivative must verify in order to
be replicated:

F (m) =
m− d

u− d
F (u) +

u−m

u− d
F (d). (2.123)

Condition (2.123) is tantamount to saying that the second equation of the
system (2.122) is superfluous and can be dropped. In that case the system
can be solved and we see that it is equivalent to the analogous system in the
binomial model, whose solution is given by (2.49): in this particular case we
get

α1 =
F (u)− F (d)

u− d
, β1 =

uF (d)− dF (u)
u− d

. (2.124)

By the self-financing condition, the arbitrage price of the derivative is defined
by

H0 = α1S0 + β1B0

and it does not depend on the fixed EMM. The derivatives that do not satisfy
condition (2.123) cannot be replicated and this substantiates the fact that the
standard trinomial market is incomplete.

Next we consider the completed trinomial model: imposing the martingale
condition (2.119) with S = Si and μ = μi for i = 1, 2, and setting qn

j =
Q(hn = j | Fn−1), j = 1, 2, 3, we obtain the linear system⎧⎪⎨⎪⎩

u1q
n
1 + m1q

n
2 + d1q

n
3 = 1 + r,

u2q
n
1 + m2q

n
2 + d2q

n
3 = 1 + r,

qn
1 + qn

2 + qn
3 = 1,

(2.125)
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which has a solution qn
j = qj , j = 1, 2, 3, independent on n. Under suitable

conditions on the parameters of the model, we have that qj ∈ ]0, 1[ and there-
fore the EMM Q is uniquely determined. In this case the completed trinomial
model is arbitrage-free and complete. Furthermore, since qn

j are constants in-
dependent on n and ω ∈ Ω, we conclude that the random variables hn are i.i.d.
under the probability Q. As a consequence, S1 and S2 are Markov processes
on (Ω,F , Q, (Fn)) by Theorem 2.31.

On the other hand, the replication strategy of a derivative X with arbitrage
price H can be determined as in the binomial case: to construct the hedging
strategy (α1

n, α2
n, βn) for the n-th period [tn−1, tn] given Fn−1, we solve the

linear system⎧⎪⎨⎪⎩
α1

nu1S
1
n−1 + α2

nu2S
2
n−1 + βn(1 + r)n = Hu

n ,

α1
nm1S

1
n−1 + α2

nm2S
2
n−1 + βn(1 + r)n = Hm

n ,

α1
nd1S

1
n−1 + α2

nd2S
2
n−1 + βn(1 + r)n = Hd

n,

(2.126)

where Hu
n , Hm

n and Hd
n denote the arbitrage prices of the derivative at time

tn in the three possible scenarios. The solution to system (2.126) is

α1
n =

d2 (Hm
n −Hu

n) + Hu
nm2 −Hm

n u2 + Hd
n (−m2 + u2)

S1
n−1 (d2 (m1 − u1) + m2u1 −m1u2 + d1 (u2 −m2))

,

α2
n =

d1 (Hm
n −Hu

n) + Hu
nm1 −Hm

n u1 + Hd
n (u1 −m1)

S2
n−1 (−m2u1 + d2 (u1 −m1) + d1 (m2 − u2) + m1u2)

,

βn =
d2 (Hu

nm1 −Hm
n u1) + d1 (−Hu

nm2 + Hm
n u2) + Hd

n (m2u1 −m1u2)
(1 + r)n (d2 (m1 − u1) + m2u1 −m1u2 + d1 (−m2 + u2))

.

2.4.1 Pricing and hedging in an incomplete market

In this section we briefly discuss the pricing and hedging problems in incom-
plete markets. We first recall the following definition given in Section 2.2.1.

Definition 2.51 In an arbitrage-free market (S,B), let Q be an EMM with
numeraire B. The risk-neutral price relative to Q of a (not necessarily repli-
cable) derivative X is defined by

HQ
n = EQ [D(n,N)X | Fn] , 0 ≤ n ≤ N, (2.127)

where D(n,N) = Bn

BN
is the discount factor.

By Lemma 2.23, the pricing formula (2.127) does not introduce arbitrage
opportunities in the sense that the augmented market (S,B,HQ) is still
arbitrage-free. Further, in the case X is replicable, by Theorem 2.25 the price
HQ does not depend on the fixed EMM and is equal to the arbitrage price.

Given a self-financing predictable strategy (α, β) ∈ A, the quantity

X − V
(α,β)
N



2.4 Trinomial model 67

represents the replication error, also called Profit and Loss (P&L), at maturity
of the strategy. Now, if Q denotes the selected EMM and Ṽ is the discounted
value process, we may consider the expected (discounted and squared) P&L

RQ(α, β) := EQ

[(
X

BN
− Ṽ

(α,β)
N

)2
]

(2.128)

as a measure of the hedging risk under the EMM Q.
We now remark that any strategy that minimizes the risk RQ requires an

initial investment equal to the risk-neutral price EQ
[

X
BN

]
. Indeed, using the

fact that Ṽ (α,β) is a Q-martingale and the identity

E
[
Y 2
]

= E [Y ]2 + E
[
(Y − E(Y ))2

]
,

with Y = X
BN
− Ṽ

(α,β)
N , we may rewrite (2.128) as follows:

RQ(α, β) =
(

EQ

[
X

BN

]
− Ṽ

(α,β)
0

)2

+ EQ

[(
X

BN
− EQ

[
X

BN

]
−
(
Ṽ

(α,β)
N − Ṽ

(α,β)
0

))2
]

.

Now, recalling that the gain Ṽ
(α,β)
N − Ṽ

(α,β)
0 does not depend on Ṽ

(α,β)
0 (cf.

formula (2.13) and Proposition 2.7), we conclude that in order to minimize
the risk RQ it is necessary to put

Ṽ
(α,β)
0 = EQ

[
X

BN

]
. (2.129)

This motivates Definition 2.51 even if it poses some questions on the very foun-
dations of the classical theory of arbitrage pricing. In particular this theory
has two cornerstones:

i) the uniqueness of the price of the derivative: the arbitrage price should be
objective, dependent only on the quoted prices of the underlying assets
and not on the subjective estimate of the probability P ;

ii) the hedging procedure, i.e. the neutralization of the risk that we take on
the derivative by the investment in a replicating strategy.

The risk-neutral price in Definition 2.51 is not unique since it depends on the
choice of the EMM. Furthermore, in an incomplete market, a derivative is not
generally replicable and so it is necessary to study possible hedging strategies
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that limit the risks (super-hedging, risk minimization within the set of EMMs,
etc.). Such a choice can be made by following the preferences of the traders or
on the grounds of some objective criterion (calibration to market data). The
study of these problems goes beyond the scope of this book and is treated
thoroughly in monographs such as [134] by Follmer and Schied, to which we
refer the interested reader.

Here we confine ourselves to the following example that shows how the
hedging problem can be tackled in the standard (hence, incomplete) tri-
nomial model. The approach is based on a classical optimization technique
called Dynamic Programming. The main idea is to find a strategy minimizing
the expected replication error of the payoff under the real-world probability
measure+P .

Example 2.52 We consider a two-period standard trinomial market model
where the dynamics of the risky asset is given by

S0 = 1, Sn = Sn−1(1 + μn), n = 1, 2

and μn, n = 1, 2, are i.i.d. random variables defined on a probability space
(Ω,F , P ) and such that

1 + μn =

⎧⎪⎨⎪⎩
1
2 with probability p1 = 1

3 ,

1 with probability p2 = 1
3 ,

2 with probability p3 = 1
3 .

We assume that the short rate is null, r = 0.
We consider the problem of pricing and hedging a European Call option

with payoff

F (S2) = (S2 − 1)+ ,

by minimization of the “shortfall” risk criterion. More precisely, by means
of the Dynamic Programming (DP) algorithm, we aim at determining a self-
financing strategy with non-negative value V (that is, such that Vn ≥ 0 for
any n) that minimizes

EP [U(V2, S2)] ,

where

U(V, S) = (F (S)− V )+

is the shortfall risk function.
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1

2

1

1/2

4

Payoff

3

2 1

1 0

1/2 0

1/4 0

Fig. 2.8. Two-period trinomial tree: price of the underlying and payoff of a Euro-
pean Call with strike 1

We first represent the binomial tree with the prices of the underlying asset.
By (2.8), the value V of a self-financing strategy (α, β) satisfies

Vn = Vn−1 + αnSn−1μn = Vn−1 +

⎧⎪⎨⎪⎩
αnSn−1,

0,

−αnSn−1
2 .

(2.130)

Then Vn ≥ 0 for any n if and only if V0 ≥ 0 and

−Vn−1

Sn−1
≤ αn ≤

2Vn−1

Sn−1
, n = 1, 2.

In the general framework of a model with N periods, the DP algorithm consists
of two steps:

i) we compute

RN−1 (V, S) := min
α∈[−V

S , 2V
S ]

EP [U (V + SαμN , S (1 + μN ))]

for S varying among the possible values of SN−1. Recalling that we are
considering predictable strategies, we denote by αN = αN (V ) the mini-
mum point for V varying among the possible values of VN−1;

ii) for n ∈ {N − 1, N − 2, . . . , 1}, we compute

Rn−1 (V, S) := min
α∈[−V

S , 2V
S ]

EP [Rn (V + Sαμn, S (1 + μn))]
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for S varying among the possible values of Sn−1. We denote by αn = αn(V )
the minimum point for V varying among the possible values of Vn−1.

In our setting, as a first step of the DP algorithm we compute R1(V, S) for
S ∈

{
2, 1, 1

2

}
. We have

R1 (V, 2) = min
α∈[−V/2,V ]

EP [U (V + 2αμ2, 2(1 + μ2))]

= min
α∈[−V/2,V ]

EP

[(
(2(1 + μ2)− 1)+ − (V + 2αμ2)

)+
]

= min
α∈[−V/2,V ]

1
3

(
(3− V − 2α)+ + (1− V )+

)
=

4
3

(1− V )+ ,

and the minimum is attained at

α2 = V. (2.131)

Next we have

R1 (V, 1) = min
α∈[−V,2V ]

EP [U (V + αμ2, 1 + μ2)]

= min
α∈[−V,2V ]

EP
[(

μ+
2 − (V + αμ2)

)+]
= min

α∈[−V,2V ]

1
3

(1− V − α)+ =
1
3

(1− 3V )+ ,

and the minimum is attained at

α2 = 2V. (2.132)

Moreover we have

R1

(
V,

1
2

)
= min

α∈[−2V,4V ]
EP

[
U
(

V +
αμ2

2
,
1 + μ2

2

)]

= min
α∈[−2V,4V ]

EP

⎡⎢⎢⎣
⎛⎜⎜⎝(1 + μ2

2
− 1
)+

︸ ︷︷ ︸
=0

−
(
V +

αμ2

2

)
︸ ︷︷ ︸

≥0

⎞⎟⎟⎠
+⎤⎥⎥⎦ = 0,

and the minimum is attained at any

α2 ∈ [−2V, 4V ]. (2.133)
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The second step consists in computing the risk at the initial time:

R0 (V, 1) = min
α∈[−V,2V ]

EP [R1 (V + αμ1, 1 + μ1)]

=
1
3

min
α∈[−V,2V ]

(R1 (V, 1) + R1 (V + α, 2))

=
1
3

min
α∈[−V,2V ]

(
1
3

(1− 3V )+ +
4
3

(1− (V + α))+
)

=
5
9

(1− 3V )+ , (2.134)

and the minimum is attained at

α1 = 2V. (2.135)

By formula (2.134) for R0 (V, 1), it is clear that an initial wealth V ≥ 1
3 is

sufficient to make the shortfall risk null or, in more explicit terms, to super-
replicate the payoff.

Next we determine the shortfall strategy, that is the self-financing strategy
that minimizes the shortfall risk. Let us denote by V0 the initial wealth: by
(2.135) we have

α1 = 2V0.

Consequently, by (2.130) we get

V1 = V0 +

⎧⎪⎨⎪⎩
2V0, for μ1 = 1,

0, for μ1 = 0,

−V0, for μ1 = −1
2 .

Then by (2.131)-(2.132)-(2.133) we have

α2 =

⎧⎪⎨⎪⎩
3V0, if S1 = 2,

2V0, if S1 = 1,

0, if S1 = 1
2 ,

and we can easily compute the final value V2 by means of (2.130). We represent
in Figure 2.9 the trinomial tree with the prices of the underlying asset and the
values of the shortfall strategy inside the circles. On the right side we also in-
dicate the final values of the option and of the shortfall strategy corresponding
to V0 = 1

3 . We remark that we have perfect replication in all scenarios except
for the trajectory S0 = S1 = S2 = 1 for which we have super-replication: the
terminal value of the shortfall strategy V2 = 1

3 is strictly greater than the
payoff of the Call option that in this case is null. �
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1 | V0

2 | 3V0

1 | V0

1
2
| 0

Payoff
Final value

for V0 = 1
3

4 | 9V0 3 3

2 | 3V0 1 1

1 | 0 0 0

2 | 3V0 1 1

1 | V0 0 1
3

1
2
| 0 0 0

1 | 0 0 0

1
2
| 0 0 0

1
4
| 0 0 0

Fig. 2.9. Two-period trinomial tree: prices of the underlying asset and values of
the shortfall strategy with initial wealth V0 are inside the circles

2.5 American derivatives

In this section we examine pricing and hedging of American-style deriva-
tives. We consider a generic discrete market (S,B) defined on the space
(Ω,F , P, (Fn)). American derivatives are characterized by the possibility of
early exercise at every time tn, 0 ≤ n ≤ N , during the life span of the con-
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tract. To describe an American derivative it is therefore necessary to specify
the premium (or payoff) that has to be paid to the owner in case he/she
exercises the option at time tn with n ≤ N . For example, in the case of an
American Call option with underlying asset S and strike K, the payoff at time
tn is Xn = (Sn −K)+.

Definition 2.53 An American derivative is a non-negative discrete stocha-
stic process X = (Xn) adapted to the filtration (Fn).

By definition, Xn is a non-negative Fn-measurable random variable: the mea-
surability condition describes the fact that the payoff Xn is known only at
time tn. We say that X is path-independent if Xn is σ(Sn)-measurable, for
every n, so that there exist measurable functions ϕn such that Xn = ϕn(Sn).

Since the choice of the best time to exercise an American option must
depend only on the information available at that moment, the following defi-
nition of exercise strategy seems natural.

Definition 2.54 A stopping time

ν : Ω −→ {0, 1, . . . , N},

i.e. a random variable such that

{ν = n} ∈ Fn, n = 0, . . . , N, (2.136)

is called exercise strategy (or exercise time). We denote by T0 the set of all
exercise strategies.

Intuitively, given a path ω ∈ Ω of the underlying market, the number ν(ω)
represents the moment when one decides to exercise the American deriva-
tive. Condition (2.136) merely means that the decision to exercise at time tn
depends on Fn, i.e. on the information available at tn.

In the rest of the paragraph we assume that the market (S,B) is arbitrage-
free and so there exists at least one EMM Q equivalent to P , with numeraire
B. Hereafter

Ỹn =
Yn

Bn

denotes the discounted price of any asset Y .

Definition 2.55 Given an American derivative X and an exercise strategy
ν ∈ T0, the random variable Xν defined by

(Xν) (ω) = Xν(ω)(ω), ω ∈ Ω,

is called payoff of X relative to the strategy ν. An exercise strategy ν0 is called
optimal under Q if

EQ
[
X̃ν0

]
= sup

ν∈T0

EQ
[
X̃ν

]
. (2.137)
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We observe that the random variable

X̃ν =
Xν

Bν

can be interpreted as the discounted payoff of a European option: in particular
EQ
[
X̃ν

]
gives the risk-neutral price relative to Q of the option (cf. Definition

2.51) when the option is exercised following the strategy ν. The greatest price
among all exercise strategies corresponds to the optimal exercise strategy:
that price is equal to the greatest expected payoff with respect to the fixed
EMM.

2.5.1 Arbitrage price

In an arbitrage-free complete market, the price of a European option with
payoff XN is by definition equal to the value of a replicating strategy: in
particular, the discounted price is a martingale with respect to the risk-neutral
measure Q. Pricing an American option X = (Xn) is a slightly more delicate
matter since it is not possible to determine a self-financing predictable strategy
(α, β) that replicates the option in the sense that V

(α,β)
n = Xn for every

n = 0, . . . , N : this is simply due to the fact that Ṽ (α,β) is a Q-martingale while
X is a generic adapted process. On the other hand, it is possible to develop
a theory of arbitrage pricing for American options, essentially analogous to
the European case, by using the results on stopping times, martingales and
Doob’s theorems collected in Appendix A.6.

Let us begin by observing that, by arbitrage arguments, it is possible to
determine upper and lower bounds to the price of X: to fix ideas, as in the
European case we denote by H0 the (unknown and possibly not unique) initial
price of X. Recalling that A denotes the family of self-financing predictable
strategies, we define

A+
X = {(α, β) ∈ A | V (α,β)

n ≥ Xn, n = 0, . . . , N},

the family of those strategies in A that super-replicate X. By Remark 2.18, to
avoid introducing arbitrage opportunities, the price H0 must be less or equal
to the initial value V

(α,β)
0 for every (α, β) ∈ A+

X and so

H0 ≤ inf
(α,β)∈A+

X

V
(α,β)
0 .

On the other hand we put

A−X = {(α, β) ∈ A | there exists ν ∈ T0 s.t. Xν ≥ V (α,β)
ν }.

Intuitively, an element (α, β) of A−X represents a strategy in which a short
position is taken, to get money to invest in the American option. In other
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words, V
(α,β)
0 represents the amount of money that one can initially borrow

to buy the option X, knowing that there exists an exercise strategy ν yielding
a payoff Xν greater or equal to V

(α,β)
ν , corresponding to the amount necessary

to close the short position in the strategy (α, β). The initial price H0 of X

must necessarily be greater or equal to V
(α,β)
0 for every (α, β) ∈ A−X : if this

were not true, one could easily build an arbitrage strategy. Then we have

sup
(α,β)∈A−X

V
(α,β)
0 ≤ H0.

Therefore we determined an interval to which the initial price H0 must be-
long, in order to avoid introducing arbitrage opportunities. Let us show now
that risk-neutral pricing relative to an optimal exercise strategy respects such
conditions.

Proposition 2.56 For every EMM Q, we have

sup
(α,β)∈A−X

Ṽ
(α,β)
0 ≤ sup

ν∈T0

EQ
[
X̃ν

]
≤ inf

(α,β)∈A+
X

Ṽ
(α,β)
0 . (2.138)

Proof. If (α, β) ∈ A−X , there exists ν0 ∈ T0 such that Vν0(α) ≤ Xν0 . Further,
Ṽ (α,β) is a Q-martingale and so by the Optional sampling Theorem A.129 we
have

Ṽ
(α,β)
0 = EQ

[
V (α,β)

ν0

]
≤ EQ

[
X̃ν0

]
≤ sup

ν∈T0

EQ
[
X̃ν

]
,

hence we obtain the first inequality in (2.138), by the arbitrariness of (α, β) ∈
A−X .

On the other hand, if (α, β) ∈ A+
X then, again by Theorem A.129, for

every ν ∈ T0 we have

Ṽ
(α,β)
0 = EQ

[
Ṽ (α,β)

ν

]
≥ EQ

[
X̃ν

]
,

hence we get the second inequality in (2.138), by the arbitrariness of (α, β) ∈
A+

X and ν ∈ T0. �

Under the assumption that the market is arbitrage-free and complete13,
the following theorem shows how to define the initial arbitrage price of an
American derivative X in a unique way.

Theorem 2.57 Let X be an American derivative in an arbitrage-free and
complete market. Then there exists (α, β) ∈ A+

X ∩ A−X and so we have:

i) V
(α,β)
n ≥ Xn, n = 0, . . . , N ;

ii) there exists ν0 ∈ T0 such that V
(α,β)
ν0 = Xν0 .

13 According to Definition 2.27, this means that every European derivative is repli-
cable.
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Consequently14

V
(α,β)
0 = sup

ν∈T0

EQ
[
X̃ν

]
= EQ

[
X̃ν0

]
, (2.139)

defines the initial arbitrage price of X.

Proof. The proof is constructive and is made up of three main steps:

1) we construct the smallest super-martingale H̃ greater than X̃, usually
called Snell envelope of the process X̃;

2) we use Doob’s decomposition theorem to find the martingale part of the
process H̃ and by this we determine the strategy (α, β) ∈ A+

X ∩ A−X ;
3) we conclude by proving that H̃0 = V

(α,β)
0 and (2.139) holds.

First step. We define iteratively the stochastic process H̃ by putting

H̃n =

{
X̃N , n = N,

max
{

X̃n, EQ
[
H̃n+1 | Fn

]}
, n = 0, . . . , N − 1.

(2.140)

Below we will see that the process H̃ defines the discounted arbitrage price
process of X (cf. Definition 2.60). It is indeed an intuitive notion of price
that gives rise to the definition above: indeed the derivative is worth XN at
maturity and at time tN−1 it is worth

◦ XN−1 if one decides to exercise it;
◦ the price of a European derivative with payoff XN and maturity tN , if one

decides not to exercise it.

Consistently with the arbitrage price of a European option (2.27), it seems
reasonable to define

HN−1 = max
{

XN−1,
1

1 + r
EQ [HN | FN−1]

}
.

By repeating this argument backwards and setting H̃n = Hn

Bn
, we get definition

(2.140).
Next we show that H̃ is the smallest super-martingale greater than X̃.

Evidently, H̃ is an adapted non-negative stochastic process. Further, for every
n, we have

H̃n ≥ EQ
[
H̃n+1 | Fn

]
, (2.141)

i.e. H̃ is a Q-super-martingale. This means that H̃ “decreases in mean” (cf.
Section A.6): intuitively this corresponds to the fact that, moving forward
in time, the advantage of the possibility of early exercise decreases. More
generally, from (2.141) it follows also that

H̃k ≥ EQ
[
H̃n | Fk

]
, 0 ≤ k ≤ n ≤ N.

14 Recall that, by assumption, B0 = 1 and therefore V0 = Ṽ0.
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We conclude by showing that H̃ is the smallest super-martingale that domi-
nates X̃: if Y is a Q-super-martingale such that Yn ≥ X̃n, then we have

H̃N = X̃N ≤ YN .

Then the thesis follows by induction: indeed, assuming H̃n ≤ Yn, we have

H̃n−1 = max
{

X̃n−1, E
Q
[
H̃n | Fn−1

]}
≤ max

{
X̃n−1, E

Q [Yn | Fn−1]
}

≤ max
{

X̃n−1, Yn−1

}
= Yn−1.

Second step. We prove that there exists (α, β) ∈ A+
X ∩ A−X . Since H̃ is a

Q-super-martingale, we can apply Doob’s decomposition Theorem A.119 to
get

H̃ = M + A

where M is a Q-martingale such that M0 = H̃0 and A is a predictable de-
creasing process with null initial value.

By assumption the market is complete, and so there exists a strategy
(α, β) ∈ A that replicates the European derivative MN . Further, since Ṽ (α,β)

and M are martingales with the same terminal value, they are equal:

Ṽ (α,β)
n = EQ

[
Ṽ

(α,β)
N | Fn

]
= EQ [MN | Fn] = Mn, (2.142)

for 0 ≤ n ≤ N . Consequently, (α, β) ∈ A+
X : indeed, since An ≤ 0, we have

Ṽ (α,β)
n = Mn ≥ H̃n ≥ X̃n, 0 ≤ n ≤ N.

Moreover, since A0 = 0, we have

V
(α,β)
0 = M0 = H̃0.

Then (α, β) is a hedging strategy for X that has an initial cost equal to the
price of the option.

In order to verify that (α, β) ∈ A−X , we put:

ν0(ω) = min{n | H̃n(ω) = X̃n(ω)}, ω ∈ Ω. (2.143)

Since

{ν0 = n} = {H̃0 > X̃0} ∩ · · · ∩ {H̃n−1 > X̃n−1} ∩ {H̃n = X̃n} ∈ Fn

for every n, then ν0 is a stopping time, i.e. an exercise strategy. Further, ν0 is
the first time that X̃n ≥ EQ

[
H̃n+1 | Fn

]
and so intuitively it represents the

first time that it is profitable to exercise the option.
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According to Doob’s decomposition theorem and in particular by (A.107),
for n = 1, . . . , N , we have

Mn = H̃n +
n−1∑
k=0

(
H̃k − EQ

[
H̃k+1 | Fk

])
, (2.144)

and consequently
Mν0 = H̃ν0 (2.145)

since
H̃k = EQ

[
H̃k+1 | Fk

]
over {k < ν0}.

Then, by (2.142), we have

Ṽ (α,β)
ν0

= Mν0 =

(by (2.145))
= H̃ν0 =

(by the definition of ν0)
= X̃ν0 , (2.146)

and this proves that (α, β) ∈ A−X .

Third step. We show that ν0 is an optimal exercise time. Since (α, β) ∈
A+

X ∩ A−X , by (2.138) in Proposition 2.56 we get

V
(α,β)
0 = sup

ν∈T0

EQ
[
X̃ν

]
.

On the other hand, by (2.146) and the optional sampling Theorem A.129, we
have

V
(α,β)
0 = EQ

[
X̃ν0

]
and this concludes the proof. �

Remark 2.58 The preceding theorem is significant from both a theoretical
and practical point of view: on one hand it proves that there exists a unique
initial price of X that does not give rise to arbitrage opportunities. On the
other hand it shows a constructive way to determine the main features of X:

i) the initial price H̃0 = sup
ν∈T0

EQ
[
X̃ν

]
that can be computed by the iterative

formula (2.140) (see also (2.148) below);
ii) an optimal exercise strategy ν0 for which we have

EQ
[
X̃ν0

]
= sup

ν∈T0

EQ
[
X̃ν

]
= H̃0;
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iii) a hedging strategy (α, β) ∈ A+
X ∩ A−X such that V

(α,β)
n ≥ Xn for any n

and whose initial cost equals the initial arbitrage price H̃0. More precisely,
(α, β) is the replicating strategy for the European option MN : in Section
2.5.3, we will analyze more in details how to compute (α, β). �

Remark 2.59 For fixed n ≤ N , we denote by

Tn = {ν ∈ T0 | ν ≥ n}

the family of exercise strategies of an American derivative bought at time tn.
A strategy νn ∈ Tn is optimal if

EQ
[
X̃νn | Fn

]
= sup

ν∈Tn

EQ
[
X̃ν | Fn

]
.

If H̃ is the process in (2.140), we denote the first time it is profitable to
exercise the American derivative bought at time tn by

νn(ω) = min{k ≥ n | H̃k(ω) = X̃k(ω)}, ω ∈ Ω.

We can easily extend Theorem 2.57 and prove that νn is the first optimal
exercise time following n. To be more precise we have

H̃n = EQ
[
X̃νn | Fn

]
= sup

ν∈Tn

EQ
[
X̃ν | Fn

]
. (2.147)

�

Definition 2.60 The process H defined by Hn = BnH̃n with H̃ as in (2.140),
is called arbitrage price of X. More explicitly we have

Hn =

{
XN , n = N,

max
{

Xn, 1
1+r EQ [Hn+1 | Fn]

}
, n = 0, . . . , N − 1.

(2.148)

Remark 2.61 In the proof of Theorem 2.57 we saw that hedging X is equi-
valent to replicating the (European) derivative MN . Let us point out that, by
(2.144), we have

Mn = H̃n +
n−1∑
k=0

(
X̃k − EQ

[
H̃k+1 | Fk

])+

=: H̃n + In, 1 ≤ n ≤ N,

and so Mn can be decomposed as the sum of the discounted price H̃n

and the term In that can be interpreted as the value of early exercises: as
a matter of fact, the terms of the sum that defines In are positive when
X̃k > EQ

[
H̃k+1 | Fk

]
, i.e. at times that early exercise is profitable. To fix

the ideas, if n = 1, we have

M1 = H̃1 +
(
X̃0 − EQ

[
H̃1

])+

. (2.149)

�
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2.5.2 Optimal exercise strategies

The optimal exercise strategy of an American derivative X is not necessarily
unique. In this section we aim at giving some general characterization of op-
timal exercise strategies and to determine the first and the last ones of these
strategies.

Hereafter we assume that the market is arbitrage-free but not necessarily
complete. For a fixed EMM Q, we denote by H̃ the Snell envelope of X̃,
with respect to Q, defined in (2.140). We recall that, by (2.137), an exercise
strategy ν̄ ∈ T0 is optimal for X under Q if we have

EQ
[
X̃ν̄

]
= max

ν∈T0
EQ
[
X̃ν

]
.

Moreover, given a process Y and a stopping time ν, we denote by Y ν = (Y ν
n )

the stopped process defined as

Y ν
n (ω) = Yn∧ν(ω)(ω), ω ∈ Ω.

By Lemma A.125, if Y is adapted then Y ν is adapted; if Y is a martin-
gale (resp. super/sub-martingale) then Y ν is a martingale (resp. super/sub-
martingale) as well.

Lemma 2.62 For any ν ∈ T0 we have

EQ
[
X̃ν

]
≤ H0. (2.150)

Moreover ν ∈ T0 is optimal for X under Q if and only if

EQ
[
X̃ν

]
= H0. (2.151)

Proof. We have

EQ
[
X̃ν

] (1)

≤ EQ
[
H̃ν

]
= EQ

[
H̃ν

N

] (2)

≤ H0 (2.152)

where inequality (1) is a consequence of the fact that Xn ≤ Hn for any n and
(2) follows from the Q-super-martingale property of H̃ and Doob’s optional
sampling Theorem A.129.

By (2.150), it is clear that (2.151) is a sufficient condition for the optima-
lity of ν. In order to prove that (2.151) is also a necessary condition, we have
to show the existence of at least one strategy for which (2.151) holds: actually,
two of these strategies will be explicitly constructed in Proposition 2.64 below.
The reader can check that the proof of Proposition 2.64 is independent on
our thesis so that no circular argument is used. We also remark that, under
the assumption of completeness of the market, an exercise strategy verifying
(2.151) was already introduced in the proof of Theorem 2.57. �
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Corollary 2.63 If ν ∈ T0 is such that

i) X̃ν = H̃ν ;
ii) H̃ν is a Q-martingale;

then ν is an optimal exercise strategy for X under Q.

Proof. Conditions i) and ii) imply that (1) and (2) in formula (2.152) are
equalities. Consequently EQ

[
X̃ν

]
= H0 and therefore, by Lemma 2.62, ν is

optimal for X under Q. �

Next, for greater convenience, we introduce the process

En =
1

1 + r
EQ [Hn+1 | Fn] , n ≤ N − 1, (2.153)

and we also set EN = −1. Then by (2.148) we have

Hn = max{Xn, En}, n ≤ N,

and the sets {n | Xn ≥ En} and {n | Xn > En} are nonempty since XN ≥ 0
by assumption. Consequently the following definition of exercise strategies is
well-posed:

νmin = min {n | Xn ≥ En} , (2.154)
νmax = min {n | Xn > En} . (2.155)

Proposition 2.64 The exercise strategies νmin and νmax are optimal for X
under Q.

Proof. We show that νmin and νmax are optimal by verifying the conditions
i) and ii) of Corollary 2.63. By definition (2.154)-(2.155) we have that

Hνmin = max {Xνmin , Eνmin} = Xνmin ,

Hνmax = max {Xνmax , Eνmax} = Xνmax ,

and this proves i). Next we recall that by Doob’s decomposition theorem we
have

H̃n = Mn + An, n ≤ N,

where M is a Q-martingale such that M0 = H0 and A is a predictable and
decreasing process such that A0 = 0. More precisely we have (cf. (A.108))

An = −
n−1∑
k=0

(
H̃k − Ẽk

)
, n = 1, . . . , N.

By definition (2.154)-(2.155), we have

Hn = En in {n ≤ νmax − 1},



82 2 Discrete market models

so that

An = 0 in {n ≤ νmax}, (2.156)

and

An < 0 in {n ≥ νmax + 1}. (2.157)

Thus we get
H̃n = Mn in {n ≤ νmax}, (2.158)

and since clearly νmin ≤ νmax, we have

H̃νmin = Mνmin , H̃νmax = Mνmax .

Consequently, by Lemma A.125, the processes H̃νmin and H̃νmax are Q-
martingales: this proves ii) of Corollary 2.63 and concludes the proof. �

We close this section by proving that νmin and νmax are the first and last
optimal exercise strategies for X under Q, respectively.

Proposition 2.65 If ν ∈ T0 is optimal for X under Q then

νmin ≤ ν ≤ νmax.

Proof. Let us suppose that

P (ν < νmin) > 0. (2.159)

We aim at proving that ν cannot be optimal because (1) in (2.152) is a strict
inequality. Indeed, since P and Q are equivalent, from (2.159) it follows that

Q
(
X̃ν < H̃ν

)
> 0,

and therefore, since X̃ν ≤ H̃ν , we get

EQ
[
X̃ν

]
< EQ

[
H̃ν

]
.

On the other hand, let us suppose that

P (ν > νmax) > 0. (2.160)

In this case we prove that ν cannot be optimal because (2) in (2.152) is a
strict inequality. Indeed, since P,Q are equivalent and A is a decreasing and
non-positive process, from (2.157) it follows that

EQ [Aν ] < 0.

Consequently we have

EQ
[
H̃ν

]
= EQ [Mν ] + EQ [Aν ] < M0 = H0. �
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2.5.3 Pricing and hedging algorithms

We consider an American derivative X in a complete market (S,B) where
Q is the EMM with numeraire B. By the results of the previous sections,
the arbitrage price of an American derivative X is defined by the recursive
formula

Hn =

{
XN , n = N,

max {Xn, En} , n = 0, . . . , N − 1,
(2.161)

where E is the process defined by EN = −1 and

En =
1

1 + r
EQ [Hn+1 | Fn] , n ≤ N − 1. (2.162)

A remarkable case is when the underlying assets are modeled by Markov
processes (as in the binomial and trinomial models by Theorem 2.31) and the
American derivative is path-independent, that is X = (ϕn(Sn)) where ϕn is
the payoff function at time tn. In this case, by the Markov property of the
price process S, the arbitrage price is given by

Hn =

{
ϕN (SN ), n = N,

max
{

ϕn(Sn), 1
1+rEQ [Hn+1 | Sn]

}
, n = 0, . . . , N − 1,

(2.163)
and therefore Hn can be expressed as a function of Sn.

Once we have determined the process E in (2.162), the minimal and maxi-
mal among optimal exercise strategies are given by

νmin = min{n | Xn ≥ En}, νmax = min{n | Xn > En}. (2.164)

Concerning the hedging strategy, at least from a theoretical point of view,
this problem was solved in Theorem 2.57: indeed a super- and sub-replicating
strategy (α, β) (i.e. a strategy (α, β) ∈ A+

X ∩ A−X) was defined as the replica-
ting strategy for the European derivative MN . We recall that M denotes the
martingale part of the Doob’s decomposition of H̃, that is the Snell envelope
of X̃, and once H̃ has been determined by (2.140), then the process M can
be computed by the forward recursive formula (cf. (A.105))

M0 = H0, Mn+1 = Mn + H̃n+1 − E
[
H̃n+1 | Fn

]
; (2.165)

consequently the hedging strategy can be determined proceeding as in the
European case. However MN is given by formula (2.165) in terms of a condi-
tional expectation and therefore MN is a path-dependent derivative even if X
is path-independent. So the computation of the hedging strategy can be bur-
densome, since MN is a function of the entire path of the underlying assets
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and not just of the final values. As a matter of fact, this approach is not used
in practice.

Instead, it is worthwhile noting that the process Mn depends on the path
of the underlying assets just because it has to keep track of the possible early
exercises: but at the moment the derivative is exercised, hedging is no longer
necessary and the problem gets definitely easier. Indeed we recall that (cf.
(2.158))

H̃n = Mn for n ≤ νmax, (2.166)

where νmax is the last optimal exercise time by Proposition 2.65. In particular,
before νmax the hedging strategy can be determined by using directly the process
H instead of M : this is convenient since if X is Markovian, i.e. Xn = ϕn(Sn),
then H is Markovian as well by (2.163).

Next we consider the special case of the binomial model. We use notation
(2.65) and, for a path-independent derivative with payoff Xn = ϕn(Sn) at
time tn, by the Markovian property of the arbitrage price in (2.163), we set

Hn,k = Hn(Sn,k), 0 ≤ k ≤ n ≤ N.

Then the binomial algorithm that we presented in Section 2.3.3 can be easily
modified to handle the possibility of early exercise. More precisely we have
the following iterative pricing algorithm:{

HN,k = ϕN (SN,k), k ≤ N,

Hn−1,k = max
{
ϕn−1(Sn−1,k), 1

1+r (qHn,k+1 + (1− q)Hn,k)
}

, k ≤ n− 1,

(2.167)
with n = 1, . . . , N and q = 1+r−d

u−d where u, d, r are the binomial parameters.
Concerning the hedging problem, by using identity (2.166) we have that

the hedging strategy for the n-th period, n ≤ νmax, is simply given by

αn,k =
Hn,k+1 −Hn,k

(u− d)Sn−1,k
, βn,k =

uHn,k − dHn,k+1

(1 + r)n(u− d)
, k = 0, . . . , n− 1,

(2.168)
exactly as in the European case. We recall that (αn,k, βn,k) is the strategy
for the n-th period [tn−1, tn], that is constructed at time tn−1 in the case
Sn−1 = Sn−1,k.

At time tνmax it is not necessary to compute the strategy (ανmax+1 , βνmax+1)
(for the (νmax+1)-th period) since tνmax is the last time at which it is profitable
to exercise the American option. If the holder of the option erroneously does
not exercise at a time preceding or equal to tνmax , then he/she gives rise to
an arbitrage opportunity for the writer: indeed, since the value of the hedging
strategy is equal to Mνmax , for the writer it suffices to adopt the strategy
(2.168) with n = νmax + 1 at time tνmax , to get at time tνmax+1

Mνmax+1 > H̃νmax+1 ≥ X̃νmax+1,

that is strictly greater than the payoff.



2.5 American derivatives 85

1

X0,0 = 0
2

X1,1 = 0

1
2

X1,0 = 0

4

X2,2 = 0

1

X2,1 = 0

1
4

X2,0 = 1
4

8

X3,3 = 0

2

X3,2 = 0

1
2

X3,1 = 0

1
8

X3,0 = 3
8

Fig. 2.10. Binomial tree with asset prices (inside the circles) and payoff X of the
American Put with strike K = 1

2

Example 2.66 In a three-period binomial model, we consider an American
Put option with payoff Xn = (1

2 − Sn)+, n = 0, 1, 2, 3. We assume that
u = 2, d = r = 1

2 and the initial price of the underlying asset is S0 = 1. In
Figure 2.10 we represent the asset prices and the values of the payoff of the
American Put on the binomial tree.

We first compute the arbitrage price process H and the minimal and maxi-
mal optimal exercise strategies. By (2.167) we have

Hn =

{
( 1
2 − S3)+, n = 3,

max
{
( 1
2 − Sn)+, En

}
, n = 0, 1, 2,

(2.169)

where E is the process in (2.162), that is E3 = −1 and

En =
1

1 + r
EQ [Hn+1 | Fn] , n = 0, 1, 2.

At maturity we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H3,3 = X3,3 =

(
1
2 − 8

)+ = 0,

H3,2 = X3,2 =
(

1
2 − 2

)+ = 0,

H3,1 = X3,1 =
(

1
2 − 1

2

)+ = 0,

H3,0 = X3,0 =
(

1
2 − 1

8

)+ = 3
8 .

Subsequently, by (2.169), we have

X2,2 = X2,1 = E2,2 = E2,1 = 0,
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so that H2,2 = H2,1 = 0. Moreover

X2,0 =
(

1
2
− 1

4

)+

=
1
4
,

and

E2,0 =
1

1 + r
(qH3,1 + (1− q)H3,0) =

2
3

(
q · 0 + (1− q)

3
8

)
=

1
12

since q = 1+r−d
u−d = 2

3 . Then we have

H2,0 = max {X2,0, E2,0} = X2,0 =
1
4
.

At the previous time we have X1,1 = E1,1 = H1,1 = 0 and

E1,0 =
1

1 + r
(qH2,1 + (1− q)H2,0) =

1
4

(
1− q

1 + r

)
=

1
18

,

so that, since X1,0 = 0, we have H1,0 = E1,0 = 1
18 . Lastly, we have X0,0 = 0

and therefore

H0,0 = E0,0 =
1

1 + r
(qH1,1 + (1− q)H1,0) =

1
81

.

To make the following computations easier, in Figure 2.11 we represent the
values of the processes X (inside the circles) and E (outside the circles),
writing in bold the greater of the two values that is equal to the arbitrage
price H of the American option.

Examining Figure 2.11 we can easily determine the minimal and maximal
optimal exercise strategies: indeed, by definition (2.164) we have

νmin = min{n | Xn ≥ En} =

{
1 on {S1 = S1,1}
2 on {S1 = S1,0}.

Analogously we have

νmax = min{n | Xn > En} =

{
2 on {S2 = S2,0}
3 otherwise.

These extreme optimal strategies are represented in Figure 2.12.
Next we compute the hedging strategy (α, β). As we already explained,

even if (α, β) is the replicating strategy of the European derivative MN in
(2.165), it is not necessary to determine MN explicitly: instead, we may use
the usual formulas (2.168) for n ≤ νmax. Thus, in the first period we have

α1,0 =
H1,1 −H1,0

(u− d)S0
=

0− 1
18

3
2

= − 1
27

, β1,0 =
uH1,0 − dH1,1

(1 + r)(u− d)
=

2 1
18
9
4

=
4
81

.
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1
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0

0

0

0

1
4

1
12
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−1
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−1

0

−1

3
8
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Fig. 2.11. Values of the processes X (inside the circles) and E (outside the circles)

νmin

νmin

νmin νmax

νmax

νmax

νmax

Fig. 2.12. Minimal (on the left) and maximal (on the right) optimal exercise strate-
gies

In the second period, the strategy is the following:

α2,1 =
H2,2 −H2,1

(u− d)S1,1
= 0, β2,1 =

uH2,1 − dH2,2

(1 + r)2(u− d)
= 0,

α2,0 =
H2,1 −H2,0

(u− d)S1,0
=
− 1

4
3
2 · 1

2

= −1
3
, β2,0 =

uH2,0 − dH2,1

(1 + r)2(u− d)
=

4
27

.

In the last period we have to compute the strategy only for S2 = S2,2 and
S2 = S2,1 since in S2 = S2,0 there is the last opportunity of optimal early



88 2 Discrete market models

1 α1,0 = − 1
27

, β1,0 = 4
81

2 α2,1 = 0, β2,1 = 0

1
2

α2,0 = − 1
3
, β2,0 = 4

27

4 α3,2 = 0, β3,2 = 0

1 α3,1 = 0, β3,1 = 0

1
4

8

2

1
2

1
8

Fig. 2.13. Hedging strategy for 0 < r < 1

exercise (see also Figure 2.12). Then we have

α3,2 =
H3,3 −H3,2

(u− d)S2,2
= 0, β3,2 =

uH3,2 − dH3,3

(1 + r)3(u− d)
= 0,

α3,1 =
H3,2 −H3,1

(u− d)S2,1
= 0, β3,1 =

uH3,1 − dH3,2

(1 + r)3(u− d)
= 0.

The hedging strategy is represented in Figure 2.13. �

2.5.4 Relations with European options

In an arbitrage-free and complete market, we denote by (HA
n ) the arbitrage

price of the American derivative X and by (HE
n ) the arbitrage price of the

related European derivative with payoff XN . We recall that

H̃A
n = max

ν∈Tn

EQ
[
X̃ν | Fn

]
, H̃E

n = EQ
[
X̃N | Fn

]
, n = 0, . . . , N,

where Q is the EMM.
The next result establishes some relations between the prices of American-

style and European-style derivatives. In particular we prove that an American
Call option (on a stock that does not pay dividends and assuming that r ≥ 0)
is worth just as the corresponding European option.
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Proposition 2.67 We have

i) HA
n ≥ HE

n for 0 ≤ n ≤ N ;
ii) if HE

n ≥ Xn for every n, then

HA
n = HE

n , n = 0, . . . , N,

and ν ≡ N is an optimal exercise strategy.

Proof. i) Since H̃A is a Q-super-martingale, we have

H̃A
n ≥ EQ

[
H̃A

N | Fn

]
= EQ

[
X̃N | Fn

]
= H̃E

n ,

hence the claim, since Bn > 0. This first part states that, in general, an Ame-
rican derivative is worth more than its corresponding European counterpart:
this fact is intuitive because an American derivative gives more rights to the
holder who is free to exercise it even before maturity.

ii) By hypothesis, H̃E is a martingale (and thus also a super-martingale)
greater than X̃. However H̃A is the smallest super-martingale greater than X̃
(cf. first step in the proof of Theorem 2.57): therefore we have H̃A = H̃E and
also HA = HE . �

Remark 2.68 Assume r ≥ 0. We have

H̃E
n =

1
BN

EQ
[
(SN −K)+ | Fn

]
≥ 1

BN
EQ [SN −K | Fn] = S̃n −

K

BN
.

Since r ≥ 0, we get

HE
n ≥ Sn −K

Bn

BN
≥ Sn −K,

and since HE
n ≥ 0, we also have

HE
n ≥ (Sn −K)+ .

As a consequence of the second part of Proposition 2.67, an American Call
option is worth as the corresponding European option.

We can also give an intuitive meaning to the preceding result: it is known
that instead of exercising an American Call option before maturity it is more
profitable to sell the underlying asset. Indeed, if the owner of an American
Call option decided to exercise it early at time n < N , he/she would get a
Sn −K profit, that becomes (1 + r)N−n(Sn −K) at maturity. Conversely, by
selling one unit of the underlying asset at time tn and keeping the option, at
maturity he/she would get

(1 + r)N−nSn−SN + (SN −K)+ =

{
(1 + r)N−nSn −K, if SN > K,

(1 + r)N−nSn − SN , if SN ≤ K.

Therefore in all cases, if r ≥ 0, the second strategy is worth more than the
first. �



90 2 Discrete market models

Example 2.69 The equivalence between the prices of American and Euro-
pean derivatives does not hold for Call options that pay dividends and for Put
options. As a simple example, let us consider an American Put option in a
one-period binomial model (N = 1) with r > 0 and, for the sake of simplicity,

q =
1 + r − d

u− d
=

1
2
.

Then u+d = 2(1+r) and the price of the corresponding European Put option
is

p0 =
1

2(1 + r)
((K − uS0)+ + (K − dS0)+) =

(if, for example, K > uS0)

=
1

2(1 + r)
(K − uS0 + K − dS0) =

K

1 + r
− S0.

For the American Put option we have

P0 = max {K − S0, p0} = K − S0

and so in this case it is profitable to exercise the option immediately. �

2.5.5 Free-boundary problem for American options

In this section we study the asymptotic behaviour of the binomial model for an
American option X = ϕ(t, S) as N goes to infinity and we prove a consistency
result for American-style derivatives, analogous to the one presented in Section
2.3.5. As we are going to see, the Black-Scholes price of an American option
is the solution of a so-called “free-boundary problem” that is in general more
difficult to handle than the classical Cauchy problem for European options. In
this case pricing by the binomial algorithm becomes an effective alternative
to the solution of the problem in continuous time.

We use the notations of Section 2.3.6: in particular we denote the arbitrage
price of the derivative by f = f(t, S), (t, S) ∈ [0, T ]×R>0, and we put δ = T

N ;
the recursive pricing formula (2.167) becomes{

f(T, S) = ϕ(T, S),

f(t, S) = max
{

1
1+rN

(qf(t + δ, uS) + (1− q)f(t + δ, dS)) , ϕ(t, S)
}

.

(2.170)
The second equation in (2.170) is equivalent to

max
{

Jδf(t, S)
δ

, ϕ(t, S)− f(t, S)
}

= 0

where Jδ is the discrete operator in (2.112). By using the consistency result
of Proposition 2.50, we get the asymptotic version of the discrete problem
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(2.170) as δ tends to zero:{
max {LBSf, ϕ− f} = 0, in ]0, T [×R>0,

f(T, S) = ϕ(T, S), S ∈ R>0,
(2.171)

where

LBSf(t, S) = ∂tf(t, S) +
σ2S2

2
∂SSf(t, S) + rS∂Sf(t, S)− rf(t, S)

is the Black-Scholes differential operator. Problem (2.171) contains a diffe-
rential inequality and is theoretically more difficult to study than the usual
parabolic Cauchy problem: we will prove the existence and the uniqueness of
the solution in Paragraph 8.2. On the other hand, from a numerical point of
view, the classical finite-difference methods can be adapted without difficulties
to such problems.

The domain of the solution f of problem (2.171) can be divided in two
regions:

[0, T [×R>0 = Re ∪Rc,

where15

Re = {(t, S) ∈ [0, T [×R>0 | LBSf(t, S) ≤ 0 and f(t, S) = ϕ(t, S)}

is called early-exercise region, where f = ϕ, and

Rc = {(t, S) ∈ [0, T [×R>0 | LBSf(t, S) = 0 and f(t, S) > ϕ(t, S)}

is called continuation region, where f > ϕ (i.e. it is not profitable to exer-
cise the option) and the price satisfies the Black-Scholes equation, as in the
European case.

The boundary that separates the sets Re, Rc depends on the solution f
and is not assigned a priori in the problem: if this were the case, then problem
(2.171) could be reduced to a classical Cauchy-Dirichlet problem for LBS over
Rc with boundary value ϕ. On the contrary, (2.171) is usually called a free
boundary problem because finding the boundary is an essential part of the
problem. Indeed, from a financial point of view, the free boundary determines
the optimal exercise price and time.

Example 2.70 In the particular case of an American Put option, ϕ(S) =
(K − S)+ with maturity T , some properties of the free boundary can be
proved by resorting solely to arbitrage arguments. Let us put

Re(t) = {S | (t, S) ∈ Re}.
15 Since

{max{F (x), G(x)} = 0} = {F (x) = 0, G(x) ≤ 0} ∪ {F (x) < 0, G(x) = 0}.
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Fig. 2.14. Exercise and continuation regions of an American Put option

Then, under the assumption that the risk-free rate r is positive, for every
t ∈ [0, T [ there exists β(t) ∈ ]0,K[ such that

Re(t) = ]0, β(t)].

Indeed let f(t, S) be the price of the option. Then f(t, S) is strictly positive
for every t ∈ [0, T [: on the other hand, since ϕ(S) = 0 for S ≥ K, we have

Re(t) ⊆ {S < K}, t ∈ [0, T [. (2.172)

Further, by definition, Re(t) is relatively closed in R>0. Re(t) is an interval
because of the convexity with respect to S of the price: if S1, S2 ∈ Re(t), then
for every � ∈ [0, 1] we have

ϕ(�S1 + (1− �)S2) ≤ f(t, �S1 + (1− �)S2) ≤ �f(t, S1) + (1− �)f(t, S2) =

(since S1, S2 ∈ Re(t) and by (2.172))

= �(K − S1) + (1− �)(K − S2) = ϕ(�S1 + (1− �)S2),

and so �S1 +(1−�)S2 ∈ Re(t). The fact that the price function is convex can
be proved by using the no-arbitrage principle.

Finally we have
]0,K −Ke−r(T−t)] ⊆ Re(t).

Indeed, if S ≤ K(1 − e−r(T−t)), then it is profitable to exercise the option,
since at time t one receives the amount

K − S ≥ Ke−r(T−t),

that, at maturity, yields

(K − S)er(T−t) ≥ K ≥ f(T, S).
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By arbitrage arguments it is also possible to prove that β is a continuous and
monotone increasing function. Figure 2.14 depicts the exercise and continua-
tion regions of an American Put option. �

Going back to the general case, we point out that, by definition, we have

Re ⊆ {(t, S) ∈ [0, T [×R>0 | LBSϕ(t, S) ≤ 0}, (2.173)

and this raises the question about the regularity assumptions we have to
impose on ϕ, and also about what kind of regularity we might expect for the
solution f of (2.171). Indeed, even in the simplest case of a Put option, the
payoff function ϕ = ϕ(S) is not differentiable at S = K and LBSϕ is not
defined everywhere in the classical sense. However in this case, by using the
theory of distributions (cf. Appendix A.9.3), we get

LBS(K − S)+ =
σ2K2

2
δK(S)− rK1]0,K[(S),

where δK denotes Dirac’s delta distribution, concentrated at K. Therefore, if
r ≥ 0, at least formally we have

LBS(K − S)+
{
≤ 0, S < K,

≥ 0, S ≥ K,

and (2.173) is verified, recalling (2.172). Concerning the regularity of the so-
lution, problem (2.171) does not admit in general a classical solution: in Para-
graph 8.2 we will prove the existence of a solution in a suitable Sobolev space.

We conclude the section by stating a result analogous to Theorem 2.46
on the approximation of the continuous case by the binomial model: for the
proof we refer to Kushner [220] or Lamberton and Pagès [228].

Theorem 2.71 Let PA
N (0, S) be the price at the initial time of an American

Put option with strike K and maturity T in the N -period binomial model with
parameters

uN = eσ
√

δN+αδN , dN = e−σ
√

δN+βδN ,

where α, β are real constants. Then the limit

lim
N→∞

PA
N (0, S) = f(0, S), S > 0

exists and f is the solution of the free-boundary problem (2.171).

2.5.6 American and European options in the binomial model

In this section, by using the arbitrage pricing formulas in the N -period bino-
mial model, we present a qualitative study of the graph of the price of a Put
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option, as a function of the price of the underlying asset, and we compare the
American and European versions.

Let PE and PA be the prices of a European and an American Put option,
respectively, with strike K on the underlying asset S: using the notations
of Paragraph 2.3, and denoting the initial price of the underlying asset by
S0 = x, we have

Sn = xψn, ψn =
n∏

k=1

(1 + μk)

and the arbitrage prices at the initial time have the following expressions:

PE(x) = EQ

[
(K − xψN )+

(1 + r)N

]
, (2.174)

PA(x) = sup
ν∈T0

EQ

[
(K − xψν)+

(1 + r)ν

]
. (2.175)

Proposition 2.72 Assume that the parameter d in the binomial model is
smaller than 1. The function x �→ PE(x) is continuous, convex and decreasing
for x ∈ R≥0. Further,

PE(0) =
K

(1 + r)N
, PE(x) = 0, x ∈ [Kd−N ,+∞[,

and there exists x̄ ∈ ]0,K[ such that

PE(x) < (K − x)+, x ∈ [0, x̄], PE(x) > (K − x)+, x ∈ [x̄,Kd−N ].
(2.176)

The function x �→ PA(x) is continuous, convex and decreasing for x ∈ R≥0.
Further,

PA(0) = K, PA(x) = 0, x ∈ [Kd−N ,+∞[,

and there exists x∗ ∈ ]0,K[ such that

PA(x) = (K − x)+, x ∈ [0, x∗], PA(x) > (K − x)+, x ∈ [x∗,Kd−N ].

Proof. We can write (2.174) more explicitly as

PE(x) =
1

(1 + r)N

N∑
h=0

ch(K − uhdN−hx)+,

where ch =
(

N
h

)
qh(1−q)N−h are positive constants. Hence we infer directly

the properties of continuity, convexity and the facts that the price function is
monotone decreasing and that PE(x) = 0 if and only if (K −uhdN−hx)+ = 0
for every h or, equivalently, if uhdN−hx ≥ K for every h i.e.16 dNx ≥ K.
16 Since d < 1.
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Fig. 2.15. Graph of the binomial price (dotted line) of an American Put option
as a function of the price x of the underlying asset. The broken line represents the
graph of the corresponding European Put option

Further, by (2.174) it is obvious that PE(0) = K
(1+r)N . To prove (2.176), let

us consider the continuous convex function17

g(x) = PE(x)− (K − x), x ∈ [0,K].

Since g(0) < 0 and g(K) > 0, by continuity g is null in at least one point: it
remains to be seen whether such a point is unique. We put

x0 = inf{x | g(x) > 0}, x1 = sup{x | g(x) < 0}.

By continuity g(x0) = g(x1) = 0 and x0 ≤ x1: we want to prove that x0 = x1.
If this were not the case, i.e. x0 < x1, by the convexity of g we would have

0 = g(x0) ≤ tg(0) + (1− t)g(x1) = tg(0) < 0

for some t ∈ ]0, 1[ and this is a contradiction. This concludes the proof of the
first part of the proposition.

The continuity of the function PA follows from (2.140) which recursively
defines PA as the composition of continuous functions. The facts that the
price function is convex and monotone decreasing follow from (2.175) since
the functions

x �→ EQ

[
(K − xψν)+

(1 + r)ν

]
are convex and decreasing and their least upper bound, when ν varies, pre-
serves such properties.

17 The sum of convex functions is convex.
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Now, by (2.175), PA(x) = 0 if and only if

EQ

[
(K − xψν)+

(1 + r)ν

]
= 0 (2.177)

for every ν ∈ T0. The expectation in (2.177) is a sum of terms of the form
cnh(K − uhdn−hx)+, with cnh positive constants. So PA(x) = 0 if and only if
uhdn−hx ≥ K for every18 n, k i.e. if dNx ≥ K.

Finally let us consider the function

f(x) = PA(x)− (K − x)+.

By (2.140) f ≥ 0 and since ν ≥ 0, we have

f(0) = K sup
ν∈T0

EQ
[
(1 + r)−ν

]
−K = 0,

that is PA(0) = K. Further

f(K) = K sup
ν∈T0

EQ

[
(1− ψν)+

(1 + r)ν

]
≥

(for ν = 1)

≥ KEQ

[
(−μ1)+

(1 + r)

]
> 0.

For x ≥ K we obviously have f(x) = PA(x) ≥ (K − x)+ = 0. We put

x∗ = inf{x ∈ [0,K] | f(x) > 0}.

On the grounds of what we have already proved, we have 0 < x∗ < K and,
by definition, f = 0 over [0, x∗]. Finally we have that f > 0 over ]x∗,K]; we
prove this last fact by contradiction. Let us suppose that f(x1) = 0 for some
x1 ∈ ]x∗,K[. By the definition of x∗, there exists x0 < x1 such that f(x0) > 0.
Now we note that, over the interval [0,K], the function f is convex and so

0 < f(x0) ≤ tf(x) + (1− t)f(x1) = (1− t)f(x1)

if x0 = tx + (1− t)x1, t ∈ ]0, 1[. This concludes the proof. �

18 Such that 0 ≤ k ≤ n ≤ N .
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Continuous-time stochastic processes

In this chapter we introduce the elements of the theory of stochastic processes
that we will use in continuous-time financial models. After a general presen-
tation, we define the one-dimensional Brownian motion and we discuss some
equivalence notions among stochastic processes. The most substantial part of
the chapter is devoted to the study of the first and the second variation of a
process: such a concept is introduced at first in the framework of the classical
function theory and for Riemann-Stieltjes integration. Afterwards, we extend
our analysis to the Brownian motion by determining its quadratic-variation
process.

3.1 Stochastic processes and real Brownian motion

Let (Ω,F , P ) be a probability space and I a real interval of the form [0, T ] or
R≥0.

Definition 3.1 A measurable stochastic process (in what follows, simply a
stochastic process) on RN is a collection (Xt)t∈I of random variables with
values in RN such that the map

X : I ×Ω −→ RN , X(t, ω) = Xt(ω),

is measurable with respect to the product σ-algebra B(I)⊗F . We say that X
is integrable if Xt ∈ L1(Ω,P ) for every t ∈ I.

The concept of stochastic process extends that of deterministic function

f : I −→ RN .

Just as f associates t to the variable (the number) f(t) in RN , similarly the
stochastic process associates t to the random variable Xt in RN . A stochastic
process can be used to describe a random phenomenon that evolves in time:
for example, we can interpret a positive random variable Xt as the price of

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011



98 3 Continuous-time stochastic processes

a risky asset at time t, or a random variable Xt in R3 as the position of a
particle in space at time t.

To further help intuition, it is useful to think of a function f : I −→ RN

as a curve or trajectory in RN : the range of the curve f is

γ = {f(t) | t ∈ I}

and as the parameter t varies, f(t) represents a point of the range γ. The idea
can be extended to stochastic processes and, in this case, a different path (and
therefore a possible trajectory of the price of an asset or a possible motion of
a particle in space) corresponds to any ω ∈ Ω:

γω = {Xt(ω) | t ∈ I}, ω ∈ Ω.

Definition 3.2 A stochastic process X is continuous (a.s.) if the paths

t �−→ Xt(ω)

are continuous functions for every ω ∈ Ω (for almost all ω ∈ Ω).
Analogously X is right continuous (a.s.-right continuous) if

Xt(ω) = Xt+(ω) := lim
s→t+

Xs(ω)

for every t and for every ω ∈ Ω (for almost all ω ∈ Ω).

The family of right-continuous processes is extremely important since, by
using the density of Q in R, many properties of discrete-time processes can
be extended to this collection. This quite general fact will be used repeatedly
later on.

Now we extend the concepts of filtration and adapted stochastic process
to the continuous case. As in the discrete case, a filtration represents a flow of
information and saying that a price is described by an adapted process means
that it depends on the information available up to that moment.

Definition 3.3 A filtration (Ft)t≥0 in (Ω,F , P ) is an increasing family of
sub-σ-algebras of F .

We say beforehand that later on we will assume suitable hypotheses on the
filtration (cf. Section 3.3.3).

Definition 3.4 Given a stochastic process X = (Xt)t∈I , the natural filtra-
tion for X is defined by

F̃X
t = σ(Xs | 0 ≤ s ≤ t) := σ({X−1

s (H) | 0 ≤ s ≤ t, H ∈ B}), t ∈ I.
(3.1)

Definition 3.5 A stochastic process X is adapted to a filtration (Ft) (or,
simply, Ft-adapted) if F̃X

t ⊆ Ft for every t, or, in other terms, if Xt is
Ft-measurable for every t.
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Clearly F̃X is the smallest filtration with respect to which X is adapted.

Definition 3.6 (Real Brownian motion) Let (Ω,F , P, (Ft)) be a filtered
probability space. A real Brownian motion is a stochastic process W = (Wt)t≥0

in R such that

i) W0 = 0 a.s.;
ii) W is Ft-adapted and continuous;
iii) for t > s ≥ 0, the random variable Wt−Ws has normal distribution N0,t−s

and is independent of Fs.

It is not straightforward to prove the existence of a Brownian motion: some
proofs can be found, for example, in Karatzas-Shreve [201]. A remarkable case
is when the filtration is the natural one for W , i.e. Ft = F̃W

t .
In view of properties i) and ii) of Definition 3.6, the paths of a Brownian

motion start (at t = 0) from the origin a.s. and they are continuous. Further,
as a consequence of i) and iii), for every t we have

Wt ∼ N0,t (3.2)

since Wt = Wt −W0 a.s.

Remark 3.7 (Brownian motion as random motion) Brownian motion
was originally created as a probabilistic model for the motion of a particle. The
following properties of Brownian motion are obvious consequences of (3.2):

a) E [Wt] = 0 for every t ≥ 0, i.e. at any time the expected position of the
particle is the initial one;

b) recalling the expression of the density of the normal distribution Γ (t, ·) in
(A.7), we have that, for every fixed t > 0, the probability that Wt belongs
to a Borel set H decreases by translating H far from the origin. Intuitively
the probability that the particle reaches H decreases moving H away from
the starting point;

c) for every fixed H ∈ B,

lim
t→0+

P (Wt ∈ H) = δ0(H).

Intuitively, when time decreases also the probability that the particle has
moved away from the initial position decreases;

d) E
[
W 2

t

]
= var(Wt) = t, i.e. the estimate of the distance, at time t, from

the starting point of a particle moving randomly is
√

t: this fact is less
intuitive but it corresponds to Einstein’s observations [118].

Example 3.8 (Brownian motion as a model for a risky asset) A first
continuous time model for the price of a risky asset S is the following:

St = S0(1 + μt) + σWt, t ≥ 0. (3.3)
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In (3.3), S0 is the initial price of the asset, μ is the expected rate of return
and σ denotes the riskiness of the asset or volatility. If σ = 0, the dynamics in
(3.3) is deterministic and correspond to simple compounding of interest with
risk-free rate μ. If σ > 0, the dynamics in (3.3) is stochastic and S = (St)t≥0

is a Gaussian (or normal) stochastic process, i.e.

St ∼ NS0(1+μt),σ2t (3.4)

for t ≥ 0. From (3.4) it follows that

E [St] = S0(1 + μt)

so that the expectation of S corresponds to a risk-free deterministic dynamics.
Then a Brownian motion introduces “noise” but it does not modify the process
in mean. Further, σ is directly proportional to the variance and so to the
riskiness of the asset.

In practice this model is not used for two reasons: on one hand it is prefe-
rable to use a continuously compounded rate; on the other hand (3.4) implies
that P (St < 0) > 0 if t is positive and this is does not make sense from an
economic point of view. Nevertheless, (3.3) is sometimes used as a model for
the debts/credits of a firm. �

3.1.1 Markov property

We have already commented on the meaning of the Markov property from a
financial point of view: a stochastic process X, representing the price of an
asset, has the Markov property if the expectation at time t of the future price
XT , T > t, depends only on the current price Xt and not on the past prices.
While there are several ways to express this property, perhaps the following
is the simplest one.

Definition 3.9 In a filtered probability space (Ω,F , P, (Ft)), an adapted
stochastic process X has the Markov property if:

(M) for every bounded B-measurable function ϕ we have

E [ϕ(XT ) | Ft] = E [ϕ(XT ) | Xt] , T ≥ t.

Remark 3.10 By Dynkin’s Theorem A.9, property (M) is equivalent to the
following condition that in general is easier to verify:

(M1) for every Borel set H, we have

E [XT ∈ H | Ft] = E [XT ∈ H | Xt] , T ≥ t. �

Note that the Markov property depends on the given filtration. The first
remarkable example of Markov process is the Brownian motion: in order to
illustrate more clearly this fact, we introduce some notations.
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Definition 3.11 Let W be a Brownian motion on the space (Ω,F , P, (Ft)).
For fixed x ∈ R and t ≥ 0, the stochastic process W t,x defined by

W t,x
T = x + WT −Wt, T ≥ t,

is called Brownian motion starting at time t from x.

Clearly we have

i) W t,x
t = x;

ii) W t,x is an adapted and continuous stochastic process;
iii) for t ≤ T ≤ T + h, the random variable W t,x

T+h −W t,x
T has normal distri-

bution N0,h and is independent of FT .

Remark 3.12 As a consequence of the previous properties we have

W t,x
T ∼ Nx,T−t, T ≥ t. (3.5)

Therefore, for fixed x ∈ R and T > t, the density of W t,x
T is

y �→ Γ ∗(t, x;T, y),

where

Γ ∗(t, x;T, y) =
1√

2π(T − t)
exp
(
− (x− y)2

2(T − t)

)
(3.6)

is the fundamental solution of the adjoint heat equation (cf. Section 3.1.2
below). �

This justifies the following:

Definition 3.13 The function Γ ∗ = Γ ∗(t, x;T, ·) is called transition density
of the Brownian motion from the “initial” point (t, x) to the “final” time T .

We prove now that a Brownian motion has the Markov property. Let ϕ be
a bounded B-measurable function: in view of Lemma A.108, we get

E [ϕ(WT ) | Ft] = E [ϕ(WT −Wt + Wt) | Ft] = u(t,Wt), T ≥ t, (3.7)

where u is the B-measurable function defined by

u(t, x) = E [ϕ(WT −Wt + x)] = E
[
ϕ(W t,x

T )
]
. (3.8)

Therefore we have proved the following:

Theorem 3.14 A Brownian motion W on the space (Ω,F , P, (Ft)) has the
Markov property with respect to (Ft) and, in particular, formulas (3.7)-(3.8)
hold: in a more compact form, we have

E [ϕ(WT ) | Ft] = E
[
ϕ(W t,x

T )
]
x=Wt

. (3.9)



102 3 Continuous-time stochastic processes

We note that (3.9) implies in particular (cf. Remark A.109) that

E [ϕ(WT ) | Ft] = E [ϕ(WT ) |Wt] , T ≥ t,

i.e. W is a Markov stochastic process, according to Definition 3.9.
Using the expression for the transition density of Brownian motion, we

can also write (3.9) more explicitly:

E [ϕ(WT ) | Ft] =
∫
R

ϕ(y)√
2π(T − t)

exp
(
− (y −Wt)2

2(T − t)

)
dy.

Note that both sides of the equality are actually random variables.

Exercise 3.15 Given α, β ∈ R, α 
= 0, prove that (α−1Wα2t + β) is a Brow-
nian motion starting from β.

3.1.2 Brownian motion and the heat equation

We consider the adjoint heat operator in two variables:

L∗ =
1
2

∂xx + ∂t, (t, x) ∈ R2. (3.10)

In Appendix A.3 we show that the function Γ ∗ in (3.6) is the fundamental
solution of L∗ and consequently, for every final datum ϕ ∈ Cb(R), the Cauchy
problem {

L∗u(t, x) = 0, (t, x) ∈]0, T [×R,

u(T, x) = ϕ(x) x ∈ R,
(3.11)

has a classical solution

u(t, x) =
∫
R

Γ ∗(t, x;T, y)ϕ(y)dy, t < T, x ∈ R. (3.12)

Since Γ ∗ is the transition density of Brownian motion, there exists a strong
connection between Brownian motion and the heat equation; this is summed
up in the following statements:

i) the solution u in (3.12) of problem (3.11) has the following probabilistic
representation:

u(t, x) = E
[
ϕ
(
W t,x

T

)]
, x ∈ R, t ∈ [0, T ]; (3.13)

ii) by Theorem 3.14, the following formula for the conditional expectation of
a Brownian motion holds:

E [ϕ(WT ) | Ft] = u(t,Wt), T ≥ t, (3.14)

where u is the solution in (3.12) of the Cauchy problem (3.11): (3.14)
expresses the Markov property of Brownian motion.

We remark that Monte Carlo1 numerical methods for PDEs are based on
representation formulas like (3.13).
1 See Paragraph 12.4.
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3.2 Uniqueness

3.2.1 Law of a continuous process

The law (or distribution) of a discrete stochastic process

(X0, . . . ,Xn)

is the joint distribution of the random variables X0, . . . ,Xn. Now we examine
how to extend this notion to the case of a continuous stochastic process

X : [0, T ]×Ω −→ RN

defined on a probability space (Ω,F , P ).
We denote by C([0, T ]) := C([0, T ],RN ) the linear space of the continuous

functions on [0, T ] with values in RN and we consider the function

X̂ : Ω −→ C([0, T ])

that maps the elementary event ω into the continuous trajectory t→ Xt(ω).
Endowing C([0, T ]) with a structure of probability space, we aim at showing
that X̂ is a random variable. First of all we recall that C([0, T ]), with the
usual maximum norm

‖w‖∞ = max
t∈[0,T ]

|w(t)|, w ∈ C([0, T ]),

is a complete2 normed space: in particular the norm defines the collection
of open sets in C([0, T ]) and consequently the Borel σ-algebra of C([0, T ]),
denoted by B(C([0, T ])). The simplest example of Borel set is the ball with
radius r > 0 and center w0:

D(w0, r) := {w ∈ C([0, T ]) | |w(t)− w0(t)| < r, t ∈ [0, T ]}. (3.15)

We recall also that C([0, T ]) is a separable space and B(C([0, T ])) is generated
by a countable collection of balls of the form (3.15): for the proof of this
statement, see Example A.157 in Appendix A.8.

Lemma 3.16 For every H ∈ B(C([0, T ])), we have

X̂−1(H) = {ω ∈ Ω | X(ω) ∈ H} ∈ F ,

and therefore
X̂ : (Ω,F) −→ (C([0, T ]),B(C([0, T ]))

is a random variable.

2 Every Cauchy sequence is convergent.
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Proof. Since B(C([0, T ])) is generated by a countable collection of balls, it
suffices to observe that, being X continuous, we have

{X ∈ D(w0, r)} =
⋂

t∈[0,T ]∩Q
{ω ∈ Ω | |Xt(ω)− w0(t)| ≤ r}︸ ︷︷ ︸

∈F

,

hence the claim, in view of Remark A.20. �

Definition 3.17 The probability measure PX , defined by

PX(H) = P (X ∈ H), H ∈ B(C([0, T ])),

is called law of the process X.

Next we consider the map

X : [0, T ]× C([0, T ]) −→ RN , Xt(w) := w(t), (3.16)

that defines a stochastic process on (C([0, T ]),B(C([0, T ]))): indeed

(t, w) �→ Xt(w)

is a continuous function and therefore measurable with respect to the pro-
duct σ-algebra B([0, T ]) ⊗B(C([0, T ])). Since the process X, defined on the
probability space

(C([0, T ]),B(C([0, T ])), PX ),

has the same law of X, we give the following:

Definition 3.18 The process X on (C([0, T ]),B(C([0, T ])), PX ) is called
canonical realization of X.

Lemma 3.19 We have that

σ(Xt, t ∈ [0, T ]) = B(C([0, T ])).

Proof. Given a set τ = {t1, . . . , tn} consisting of a finite number of points in
[0, T ] and K = K1× · · · ×Kn with Ki ∈ B(RN ), i = 1, . . . , n, a “cylinder” in
B(C([0, T ])) is a set of the form

H(τ,K) = {w ∈ C([0, T ]) | w(ti) ∈ Ki, i = 1, . . . , n}

=
n⋂

i=1

{Xti ∈ Ki}.

Since X is a stochastic process, by Fubini’s Theorem, we have

σ(Xt, t ∈ [0, T ]) ⊆ B(C([0, T ])).

To prove the reverse inclusion, we have to verify that the collection of cylinders
H(τ,K), when τ and K vary, generates B(C([0, T ])). To this end, we recall
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that B(C([0, T ])) is generated by a countable collection of balls. Then it
suffices to prove that every closed ball D(w0, r) is a countable intersection of
cylinders: let (τj) be a sequence of sets of points in [0, T ] as above, such that⋃

j≥1

τj = [0, T ] ∩Q.

Then, using the notation τj = {tj1, . . . , tjnj
}, we have

D(w0, r) =
⋂
j≥1

{w ∈ C([0, T ]) | |w(tji )− w0(t
j
i )| ≤ r, i = 1, . . . , nj}.

�

Notation 3.20 We denote the natural filtration for X by

Bt(C([0, T ])) := σ(Xs, s ∈ [0, t]), 0 ≤ t ≤ T. (3.17)

The previous results can be easily extended to the case T = +∞. Indeed,

C(R≥0) := C(R≥0,RN )

endowed with the norm3

‖w‖∞ =
∞∑

n=1

1
2n

max
0≤t≤n

(|w(t)| ∧ 1),

is a normed, complete and separable space in which the Borel σ-algebra is
defined in a natural way. Further, Lemmas 3.16 and 3.19 can be easily gene-
ralized and, as before, we can define the canonical realization of a continuous
process X.

In particular, if X is a Brownian motion, then the process X in (3.16) on the
space (C(R≥0),B(C(R≥0)), PX , (Bt(C(R≥0)))) is called canonical Brownian
motion (or canonical realization of the Brownian motion).

3.2.2 Equivalence of processes

Given a finite set of points τ = {t1, . . . , tn}, we say that the joint distribution
of (Xt1 , . . . ,Xtn) is a finite-dimensional distribution of the process X.

Definition 3.21 Two processes X,Y defined on the spaces (Ω,F , P ) and
(Ω′,F ′, P ′), respectively, are called equivalent if they have the same finite-
dimensional distributions for every τ = {t1, . . . , tn} as above.

Proposition 3.22 Two processes are equivalent if and only if they have the
same law.
3 This norm induces uniform convergence on compact sets.
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Proof. Let X,Y be two equivalent stochastic processes defined on (Ω,F , P )
and (Ω′,F ′, P ′) respectively. The claim follows from Proposition A.6, observ-
ing that, by assumption,

P (X ∈ H(τ,K)) = P ′(Y ∈ H(τ,K)),

for every cylinder H(τ,K) and the collection of cylinders is ∩-stable and, as
we have seen in the proof of Lemma 3.19, generates the Borel σ-algebra. The
reverse implication is left as an exercise. �

According to Definition 3.6 any stochastic process verifying properties i),
ii) and iii) is a Brownian motion. Therefore, in principle, there exist different
Brownian motions, possibly defined on different probability spaces. Now we
show that Definition 3.6 characterizes the finite-dimensional distributions of
Brownian motion uniquely and so its law as well. In particular, by Proposition
3.22, the canonical realization of a Brownian motion is unique.

The following proposition contains some useful characterizations of a
Brownian motion: in particular it gives explicitly the finite-dimensional dis-
tributions of a Brownian motion, i.e. the joint distributions of the random
variables Wt1 , . . . ,WtN for every set of points 0 ≤ t1 < · · · < tN .

Proposition 3.23 A Brownian motion W on the filtered probability space
(Ω,F , P, (Ft)) verifies the following properties:

1) W has independent and stationary increments, i.e. for 0 ≤ t ≤ T the
random variable WT −Wt has normal distribution N0,T−t and the random
variables

Wt2 −Wt1 , . . . ,WtN −WtN−1

are independent for every set of points t1, t2, . . . , tN with 0 ≤ t1 < t2 <
· · · < tN ;

2) for 0 ≤ t1 < · · · < tN , the joint distribution of Wt1 , . . . ,WtN is given by

P ((Wt1 , . . . ,WtN ) ∈H1 × · · · ×HN ) =

=
∫

H1

· · ·
∫

HN

Γ ∗(0, 0; t1, y1)Γ ∗(t1, y1; t2, y2) · · ·

· · ·Γ ∗(tN−1, yN−1; tN , yN )dy1dy2 . . . dyN

(3.18)

where H1, . . . ,HN ∈ B and Γ ∗ is defined in (3.6).

Conversely, if W is a continuous stochastic process on a probability space
(Ω,F , P ) such that P (W0 = 0) = 1 and it satisfies 1) or 2), then W is a
Brownian motion with respect to the natural filtration F̃W .

Sketch of the proof. It is easy to prove that, if W is a Brownian motion,
then it verifies 1). First of all it suffices to prove the independence of the
increments: if N = 3, since

{(Wt2 −Wt1) ∈ H} ∈ Ft2 ,
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the claim is an immediate consequence of the fact that Wt3 −Wt2 and Ft2 are
independent. For N > 3, we iterate the previous argument.

To prove that a Brownian motion W verifies 2), we consider only the case
N = 2: firstly, for 0 ≤ t ≤ T and H,K ∈ B, we have

{Wt ∈ H} ∩ {WT ∈ K} = {Wt ∈ H} ∩ {(WT −Wt) ∈ (K −H)},

where K −H = {x − y | x ∈ K, y ∈ H}. Then, by the independence of the
increments we get

P (Wt ∈ H, WT ∈ K) = P (Wt ∈ H)P ((WT −Wt) ∈ (K −H)) =

(by property iii))

=
∫

H

Γ ∗(0, 0; t, x1)dx1

∫
K−H

Γ ∗(t, 0;T, x2)dx2 =

(by the change of variables x1 = y1 and x2 = y2 − y1)

=
∫

H

∫
K

Γ ∗(0, 0; t, y1)Γ ∗(t, y1;T, y2)dy1dy2.

To prove the other implication, we have to verify that, if W is a continuous
stochastic process on a probability space (Ω,F , P ) such that P (W0 = 0) = 1
and it satisfies 1), then the random variable WT −Wt is independent of F̃W

t ,
for t ≤ T . In this case we can use Dynkin’s Theorem A.5: in general, if
X is a stochastic process such that, for every set of points t1, . . . , tN with
0 ≤ t1 < t2 < · · · < tN , the random variables

Xt1 ,Xt2 −Xt1 , . . . ,XtN −XtN−1

are independent, then XT −Xt is independent of F̃X
t for 0 ≤ t < T .

Finally, we leave it as an exercise to prove that, for every stochastic process
W such that P (W0 = 0) = 1, the properties 1) and 2) are equivalent. �

3.2.3 Modifications and indistinguishable processes

We introduce some other notions of equivalence of stochastic processes.

Definition 3.24 Let X,Y be stochastic processes defined on the same proba-
bility space (Ω,F , P ). We say that X is a modification of Y if Xt = Yt a.s.
for every t ≥ 0. We say that X and Y are indistinguishable if, for almost all
ω ∈ Ω, we have

Xt(ω) = Yt(ω) for any t ≥ 0.

We set
Nt = {ω ∈ Ω | Xt(ω) 
= Yt(ω)}, N =

⋃
t≥0

Nt.
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Then X is a modification of Y if Nt is negligible, Nt ∈ N , for every t ≥ 0. As
already said, since t varies in the set of real numbers that is not countable:
even if Nt ∈ N for any t, we may have N /∈ F or even N = Ω. On the other
hand, the processes X and Y are indistinguishable if N ∈ N , that is almost
all the paths of X and Y coincide.

In general it is clear that, if X,Y are indistinguishable, then they are also
modifications, but the converse may not hold: nevertheless, if the stochastic
processes are continuous, it is possible to employ the density of the set of the
rational numbers in R to prove that the two notions coincide.

Proposition 3.25 Let X,Y be a.s. right-continuous stochastic processes. If
X is a modification of Y , then X,Y are indistinguishable. In particular we
can equivalently write

Xt = Yt a.s. for every t or Xt = Yt for every t a.s.

Remark 3.26 The result of Proposition 3.25 still holds true if we assume
that X,Y are a.s. left-continuous (instead of right-continuous) stochastic pro-
cesses such that X0 = Y0. �

Proof (of Proposition 3.25). It suffices to consider the case Y = 0. Let
F ∈ N be the set in which the paths of X are not right continuous. We set

N =
⋃

t∈R≥0∩Q
Nt ∪ F

where Nt = {ω ∈ Ω | Xt 
= 0} is a negligible event by assumption. Then we
get N ∈ N and Xt(ω) = 0 for every ω ∈ Ω \ N and t ∈ R≥0 ∩ Q. Further,
if t ∈ R≥0 \ Q, we take a sequence (tn) ∈ Q converging to t from the right.
Then for every ω ∈ Ω \N we have

Xt(ω) = lim
n→∞

Xtn(ω) = 0,

and this concludes the proof. �

Summing up: two continuous processes are indistinguishable if and only if
they are modifications; in this case they are also equivalent and have the same
canonical realization.

Example 3.27 Let u, v ∈ L1
loc(R) such that u = v almost everywhere (with

respect to Lebesgue measure) and u(0) = v(0). If W is a real Brownian motion,
then the processes u(Wt) and v(Wt) are modifications: indeed, assuming that
H = {u 
= v} has null Lebesgue measure, we have

P (u(Wt) 
= v(Wt)) = P (Wt ∈ H) =
∫

H

Γ ∗(0, 0; t, x)dx = 0, t ≥ 0,

where Γ ∗ is defined in (3.6). Note that for t = 0 we use the fact that 0 /∈ H
by assumption.
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However in general the processes u(W ), v(W ) are not indistinguishable.
Indeed, to fix ideas, let assume that 1 ∈ H, that is u(1) 
= v(1): then, for
any fixed T > 0, we have P (WT > 1) > 0 and this means that the family
of trajectories ω such that u(Wt(ω)) = u(1) 
= v(1) = v(Wt(ω)) for some
t ∈ [0, T ] has a positive probability. In other terms

P ({ω ∈ Ω | u(Wt(ω)) = v(Wt(ω)) for any t ∈ [0, T ]}) < 1,

and therefore u(W ), v(W ) are not indistinguishable.
A second simple example of processes that are modifications but are not

indistinguishable is the following: on the probability space ([0, 1],B,m), where
m is Lebesgue measure, the processes

Xt = 0, and Yt(ω) = 1{ω}(t), t ∈ [0, 1],

are modifications, but

{ω | Xt(ω) = Yt(ω), t ∈ [0, 1]}

is empty and therefore X,Y are not indistinguishable. �

We now introduce another weaker notion of equivalence of processes. As
usual, let m denote the Lebesgue measure.

Definition 3.28 We say that the stochastic processes X,Y are (m ⊗ P )-
equivalent if

(m⊗ P )({(t, ω) | Xt(ω) 
= Yt(ω)}) = 0 (3.19)

that is X = Y (m⊗ P )-almost everywhere.

The processes X,Y are (m ⊗ P )-equivalent if Xt = Yt a.s. for almost every
t or equivalently if Xt = Yt for almost every t, a.s. In particular if X,Y
are modifications then they are (m ⊗ P )-equivalent. On the other hand, the
process

Xt =

{
1 t = 0,

0 t > 0,

is (m⊗P )-equivalent to the null process, even if X is not a modification of the
null process since N0 = {ω | X0(ω) 
= 0} is not negligible. However, in the case
of continuous processes, also (3.19) is equivalent to the indistinguishability
property.

Proposition 3.29 Let X,Y be (m ⊗ P )-equivalent, a.s. right-continuous
stochastic processes. Then X,Y are indistinguishable.

Proof. It suffices to consider the case Y = 0. We set

Nt = {ω ∈ Ω | Xt(ω) 
= 0}, I = {t ≥ 0 | P (Nt) > 0}.
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We aim at showing that X is a modification of the null process or equivalently
that I = ∅: then the thesis will follow from Proposition 3.25.

We consider a countable subset J of [0,+∞[\I, that is dense in [0,+∞[\I
and we put

N̂ =
⋃
t∈J

Nt

so that P (N̂) = 0. We fix t ≥ 0 and consider a decreasing sequence (tn) in J
converging to t. Then for any ω ∈ Ω \ N̂ we have

Xt(ω) = lim
n→∞

Xtn(ω) = 0.

This proves that Xt = 0 P -a.s., that is t /∈ I. Therefore I is empty and this
concludes the proof. �

3.2.4 Adapted and progressively measurable processes

The definition of stochastic process X requires not only that, for every t, Xt

is a random variable, but also the stronger condition of measurability in the
pair of variables (t, ω). We shall soon see4 that the property of being adapted
must be strengthened in an analogous way.

Definition 3.30 A stochastic process X is called progressively measurable
with respect to the filtration (Ft) if, for every t, X|[0,t]×Ω is B([0, t]) ⊗ Ft-
measurable, i.e.

{(s, ω) ∈ [0, t]×Ω | Xs(ω) ∈ H} ∈ B([0, t])⊗Ft, H ∈ B.

Clearly every progressively measurable process is also measurable and, by the
Fubini-Tonelli Theorem A.50, adapted. Conversely, it is not a trivial result5

to prove that, if X is measurable and adapted, then it admits a progressively
measurable modification. Nevertheless, if the processes are continuous, the
situation is much simpler:

Lemma 3.31 Every right-continuous and adapted process is progressively
measurable.

Proof. Let X be right continuous and adapted. For fixed t and n ∈ N, we
set X

(n)
t = Xt and

X(n)
s = X k+1

2n t, for s ∈
[

k

2n
t,

k + 1
2n

t

[
, k + 1 ≤ 2n.

Since X is right continuous, X(n) converges pointwise to X on [0, t] × Ω for
n→∞. The claim follows from the fact that X(n) is progressively measurable
4 See, for example, Theorem 3.58.
5 See, for example, Meyer [253].
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because, for every H ∈ B, we have

{(s, ω) ∈ [0, t]×Ω | X(n)
s (ω) ∈ H}

=
⋃

k<2n

([
k

2n
t,

k + 1
2n

t

[
×
(
X k+1

2n t ∈ H
))
∪ ({t} × (Xt ∈ H))

which belongs to B([0, t])⊗Ft. �

3.3 Martingales

We present some fundamental results on continuous-time martingales: many
of these results are simple extensions of their counterparts in Appendix A.6
in the discrete-time setting.

Definition 3.32 Let M be an integrable adapted stochastic process on the
filtered probability space (Ω,F , P, (Ft)). We say that M is

• a martingale with respect to (Ft) and to the measure P if

Ms = E [Mt | Fs] , for every 0 ≤ s ≤ t;

• a super-martingale if

Ms ≥ E [Mt | Fs] , for every 0 ≤ s ≤ t;

• a sub-martingale if

Ms ≤ E [Mt | Fs] , for every 0 ≤ s ≤ t.

As in the discrete case, the mean of a martingale M is constant in time: indeed

E [Mt] = E [E [Mt | F0]] = E [M0] , t ≥ 0. (3.20)

Example 3.33 Given an integrable random variable Z in (Ω,F , P, (Ft)), the
stochastic process, defined by

Mt = E [Z | Ft] , t ≥ 0,

is a Ft-martingale. �

Example 3.34 In a filtered probability space (Ω,F , P, (Ft)), let Q �F P
be another probability measure on F . Then we have

Q�Ft
P, t ∈ [0, T ],

and, by the Radon-Nikodym Theorem A.96, we define the process

Lt =
dQ

dP
|Ft .

It is easy to verify that L is a P -martingale: indeed
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i) Lt ≥ 0 and E [Lt] = Q(Ω) = 1, for every t ≥ 0;
ii) by (A.101), we have Ls = E [Lt | Fs] for every s ≤ t.

Prove as an exercise that M is a Q-martingale if and only if ML is a P -
martingale. �

Example 3.35 Let M be a martingale and X an adapted and bounded pro-
cess. Then we have

E [MT Xt] = E [MtXt] , t ≤ T.

Indeed

E [MtXt] = E [E [MT | Ft]Xt] = E [E [MT Xt | Ft]] = E [MT Xt] .

�

Remark 3.36 If M is a martingale and ϕ is a convex function on R such
that ϕ(M) is integrable, then ϕ(M) is a sub-martingale. Indeed

E [ϕ(Mt) | Fs] ≥

(by Jensen’s inequality in Proposition A.107)

≥ ϕ(E [Mt | Fs]) = ϕ(Ms).

Further, if M is a sub-martingale and ϕ is a convex and increasing function on
R such that ϕ(M) is integrable, then ϕ(M) is a sub-martingale. As remarkable
cases, if M is a martingale, then |M | and M2 are sub-martingales. �

The next result shows some remarkable examples of martingales that can
be constructed using Brownian motion.

Proposition 3.37 If W is a Brownian motion on (Ω,F , P, (Ft)) and σ ∈ R,
then

i) Wt;
ii) W 2

t − t;
iii) exp

(
σWt − σ2

2 t
)

are continuous Ft-martingales.

Proof. i) By Hölder’s inequality,

E [|Wt|]2 ≤ E
[
W 2

t

]
= t,

and so W is integrable. Further, for 0 ≤ s ≤ t we have

E [Wt | Fs] = E [Wt −Ws | Fs] + E [Ws | Fs] =
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(since Wt −Ws is independent of Fs and Ws is Fs-measurable)

= E [Wt −Ws] + Ws = Ws.

ii) This is left as an exercise. We shall see later on that the fact that W 2
t −t

is a martingale essentially characterizes Brownian motion (cf. Theorem 5.34).
iii) Recalling Exercise A.34, clearly exp

(
σWt − σ2

2 t
)

is integrable; further,
for s < t we have

E

[
exp
(

σWt −
σ2

2
t

)
| Fs

]
= exp

(
σWs −

σ2

2
t

)
E [exp(σ(Wt −Ws)) | Fs] =

(since Wt −Ws is independent of Fs)

= exp
(

σWs −
σ2

2
t

)
E
[
exp(σZ

√
t− s)

]
,

with Z = Wt−Ws√
t−s

∼ N0,1. The claim follows from Exercise A.34. �

3.3.1 Doob’s inequality

We extend to the continuous case Doob’s inequality, Theorem A.130, by using
a simple density argument.

Theorem 3.38 (Doob’s inequality) Let M be a right continuous martin-
gale6 and p > 1. Then for every T

E

[
sup

t∈[0,T ]

|Mt|p
]
≤ qpE [|MT |p] , (3.21)

where q = p
p−1 is the conjugate exponent to p.

Proof. We denote by (tn)n≥0 an enumeration of the rational numbers in the
interval [0, T [ with t0 = 0, i.e.

Q ∩ [0, T [= {t0, t1, . . . }.

Let us consider the increasing sequence (ςn) of partitions7 of [0, T ]

ςn = {t0, t1, . . . , tn, T},

6 The result holds also for every a.s. right-continuous martingale.
7 For every n we re-assign the indexes to the points t0, . . . , tn in such a way that

t0 < t1 < · · · < tn.
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such that ⋃
n≥1

ςn = [0, T [∩Q ∪ {T}.

For every n, the discrete process M (n) defined by

M (n) = (Mt0 ,Mt1 , . . . ,Mtn ,MT )

is a martingale with respect to the filtration

(Ft0 ,Ft1 , . . . ,Ftn ,FT ).

So, by Theorem A.130, setting

fn(ω) = max{|Mt0(ω)|, |Mt1(ω)|, . . . , |Mtn(ω)|, |MT (ω)|}, ω ∈ Ω,

we have
E [fp

n] ≤ qpE [|MT |p] (3.22)

for every n ∈ N and p > 1. Further, (fn) is an increasing non-negative sequence
an so, by Beppo Levi’s theorem, taking the limit as n goes to infinity in (3.22),
we get

E

[
sup

t∈[0,T [∩Q∪{T}
|Mt|p

]
≤ qpE [|MT |p] .

The claim follows from the fact that, being M right-continuous, we have

sup
t∈[0,T [∩Q∪{T}

|Mt| = sup
t∈[0,T ]

|Mt|.

�

Example 3.39 Let Ω = [0, 1], let P be Lebesgue measure and

Xt(ω) = 1[t,t+ε](ω), ω ∈ Ω,

with fixed ε ∈ ]0, 1[. Then X has non-negative values and is such that

sup
t∈[0,T ]

E [Xt] < E

[
sup

t∈[0,T ]

Xt

]
. �

Example 3.40 If Mt = E [Z | Ft] is the martingale in Example 3.33 with
Z ∈ L2(Ω,P ), then using Doob’s and Jensen’s inequalities we get

E

[
sup

t∈[0,T ]

|Mt|2
]
≤ 4E

[
|MT |2

]
≤ 4E

[
|Z|2

]
. �

3.3.2 Martingale spaces: M 2 and M 2
c

Even though we often deal with martingales whose continuity property is
known, we state the following classical result8.
8 For the proof see, for example, Karatzas-Shreve [201], p. 16.
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Theorem 3.41 Let M be a super-martingale on a filtered probability space
(Ω,F , P, (Ft)) satisfying the usual hypotheses on the filtration (cf. Section
3.3.3). Then M has a càdlàg9 modification M̃ if and only if the function
t �→ E [Mt] is right continuous. In this case, we can choose M̃ in such a way
that it is Ft-adapted and so it is a Ft-super-martingale.

In view of the previous theorem and of (3.20), every martingale admits a right-
continuous modification that is unique, up to indistiguishability, by Proposi-
tion 3.25. So the assumption of right-continuity, that will be conventionally
made later on, is not actually restrictive: in other words, we will always assume
that we are taking the right continuous version of every martingale.

Further, we note that, if M is a martingale, then (Mt−M0) is a martingale
with null initial value. So every martingale can be “normalized” in such a way
that M0 = 0.

Notation 3.42 For fixed T > 0, we denote by

• M 2 the linear space of right-continuous Ft-martingales (Mt)t∈[0,T ] such
that M0 = 0 a.s. and

[[M ]]T :=

√
E

[
sup

0≤t≤T
|Mt|2

]
(3.23)

is finite;
• M 2

c the subspace of continuous martingales in M 2.

The importance of the class M 2
c will be clear in Paragraphs 4.2 and 4.3,

where we shall see that, under suitable assumptions, the stochastic integral is
an element of M 2

c .
Equation (3.23) defines a semi-norm in M 2: we note that [[M ]]T = 0 if

and only if M is indistinguishable from (but not necessarily equal to) the null
stochastic process. Further, by Doob’s inequality, we have10

‖MT ‖2 = E
[∣∣MT

∣∣2] 1
2 ≤ [[M ]]T ≤ 2‖MT ‖2, (3.24)

and therefore [[M ]]T and ‖MT ‖2 are equivalent semi-norms in M 2. Next we
prove that the spaces M 2 and M 2

c are complete.

Lemma 3.43 The space (M 2, [[·]]T ) is complete, i.e. for every Cauchy se-
quence (Mn) there exists M ∈M 2 such that

lim
n→∞

[[Mn −M ]]T = 0.

Further, if the sequence (Mn) is in M 2
c , then M ∈M 2

c : in other terms, M 2
c

is a closed subspace of M 2.
9 Càdlàg is the French shortening for “right-continuous with finite left limits at all

t” (continue à droite et limité à gauche).
10 We recall that ‖MT ‖2 =

√
E [|MT |2].
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Proof. The proof is similar to that of the completeness of the L2 space. First
of all, given a Cauchy sequence (Mn) in M 2, it suffices to prove that it admits
a convergent subsequence to conclude that also (Mn) converges.

Let (Mkn) be a subsequence of (Mn) such that[[
Mkn −Mkn+1

]]
≤ 1

2n
, n ≥ 1.

For the sake of simplicity, we put vn = Mkn and define

wN (ω) =
N∑

n=1

sup
t∈[0,T ]

|vn+1(t, ω)− vn(t, ω)|, N ≥ 1.

Then (wN ) is a non-negative, monotone increasing sequence such that

E
[
w2

N

]
≤ 2

N∑
n=1

[[vn+1 − vn]]2T ≤ 2.

Therefore the limit

w(ω) := lim
N→∞

wN (ω), ω ∈ Ω,

exists and, by Beppo Levi’s Theorem, E
[
w2
]
≤ 2: in particular there exists

F ∈ N such that w(ω) <∞ for every ω ∈ Ω \ F. Further, for n ≥ m ≥ 2 we
have

sup
t∈[0,T ]

|vn(t, ω)− vm(t, ω)| ≤ w(ω)− wm−1(ω), (3.25)

and so (vn(t, ω)) is a Cauchy sequence in R for t ∈ [0, T ] and ω ∈ Ω \ F
and it converges, uniformly with respect to t for every ω ∈ Ω \ F , to a limit
that we denote by M(t, ω). Since the convergence of (vn) is uniform in t, we
have that the path M(·, ω) is right-continuous (continuous if Mn ∈M 2

c ) for
every ω ∈ Ω \F : in particular, M is indistinguishable from a right-continuous
stochastic process. We denote such a process again by M . From (3.25) it
follows that

sup
t∈[0,T ]

|M(t, ω)− vn(t, ω)| ≤ w(ω), ω ∈ Ω \ F, (3.26)

hence we infer that [[M ]]T < ∞. Finally we can use the estimate (3.26) and
Lebesgue’s dominated convergence theorem to prove that

lim
n→∞

[[X − vn]]T = 0.

Eventually we observe that M is adapted since it is a pointwise limit of
adapted processes: further, for 0 ≤ s < t ≤ T and A ∈ Fs, we have, by
Hölder’s inequality,

0 = lim
n→∞

E [(Mn
t −Mt)1A] = lim

n→∞
E [(Mn

s −Ms)1A] ,

and so the equality E [Mn
t 1A] = E [Mn

s 1A] implies E [Mt1A] = E [Ms1A]
and in view of this we conclude that M is a martingale. �
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3.3.3 The usual hypotheses

Given a probability space (Ω,F , P ), we recall the notation

N = {F ∈ F | P (F ) = 0},

for the family of P -negligible events.

Definition 3.44 We say that (Ft) satisfies the so-called “usual hypotheses”
with respect to P if:

i) F0 (and so also Ft for every t > 0) contains N ;
ii) the filtration is right-continuous, i.e. for every t ≥ 0

Ft =
⋂
ε>0

Ft+ε. (3.27)

The idea of considering only filtrations containing the collection of negligible
events stems from the need of avoiding the unpleasant situation in which
X = Y a.s., X is Ft-measurable but Y fails to be so. Analogously, for purely
technical reasons, it is useful to know that, if a random variable X is Fs-
measurable for every s > t, then X is also Ft-measurable: this is ensured by
(3.27). We will shortly be using these properties, for example in the proof of
Proposition 3.50 and in Remark 4.3.

The rest of the section can be skipped on first reading: we prove how
to complete a filtration so that we make it satisfy the usual hypotheses. At
a first glance this problem might seem technical, but actually it is of great
importance in the development of stochastic calculus.

Recalling Definition 3.4, we point out that, in general, even if X is a
continuous stochastic process, its natural filtration F̃X may not satisfy the
usual hypotheses and, in particular, it may not be right-continuous. This
motivates the following:

Definition 3.45 Given a stochastic process X on the space (Ω,F , P ), we
set, for t ≥ 0,

FX
t :=

⋂
ε>0

F̂X
t+ε, where F̂X

t := σ
(
F̃X

t ∪N
)

. (3.28)

It can be easily verified that FX := (FX
t ) is a filtration satisfying the usual

hypotheses: it is called standard filtration of X.

Remark 3.46 In what follows, unless otherwise stated, given a filtration
(Ft), we implicitly assume that it verifies the usual hypotheses in Definition
3.44. In particular, given a stochastic process X, we will usually employ the
standard filtration FX instead of the natural filtration F̃X . �

Now we consider the particular case of a Brownian motion W on a proba-
bility space (Ω,F , P ) endowed with the natural filtration F̃W . We prove that,
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in order to make the filtration F̃W standard, it suffices to complete it with
the negligible events, without having to further enrich it as in (3.28). More
precisely, we define the natural filtration completed by the negligible events
by setting

FW
t = σ

(
F̃W

t ∪N
)

,

and we call FW =
(
FW

t

)
Brownian filtration.

Theorem 3.47 The filtration FW verifies the usual hypotheses and it coin-
cides with the standard filtration of W . Further, W is a Brownian motion on
the space (Ω,F , P,FW ) and is called standard Brownian motion.

Proof. The proof makes use of Dynkin’s Theorems A.5 and A.9. We set

Ft− := σ

(⋃
s<t

FW
s

)
, Ft+ :=

⋂
s>t

FW
s .

We point out that, in general,
⋃

s<t
FW

s may not be a σ-algebra and this justifies

the definition of Ft−. Clearly we have

Ft− ⊆ FW
t ⊆ Ft+.

We want to prove that
Ft+ ⊆ Ft−, (3.29)

for every t. To this end, it suffices to prove that

E [X | Ft+] = E [X | Ft−] (3.30)

for every bounded FW
s -measurable random variable X, with s > t: indeed,

if this holds true in particular for every bounded Ft+-measurable random
variable X, then we will infer that X is also Ft−-measurable, hence (3.29)
holds.

We denote the imaginary unit by i. For every α ∈ R and u < t ≤ s we
have

E
[
eiαWs | FW

u

]
= eiαWuE

[
eiα(Ws−Wu) | FW

u

]
=

(since Ws −Wu is independent on FW
u )

= eiαWuE
[
eiα(Ws−Wu)

]
=

(by Example A.34)

= eiαWu−α2
2 (s−u). (3.31)

Taking the limit as u→ t−, we get

Z := eiαWt−α2
2 (s−t) = lim

u→t−
E
[
eiαWs | FW

u

]
.
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Now we verify that Z = E
[
eiαWs | Ft−

]
: first of all we observe that Z is Ft−-

measurable, being the pointwise limit of Ft−-measurable random variables. It
remains to be seen that

E [Z1G] = E
[
eiαWs1G

]
, (3.32)

for every G ∈ Ft−. This follow from Dynkin’s Theorem, in the version of
Exercise A.104: indeed, if G ∈ FW

u , u < t, we have

E [Z1G] = lim
v→t−

E
[
E
[
eiαWs | FW

v

]
1G

]
=

(since 1GE
[
eiαWs | FW

v

]
= E

[
eiαWs1G | FW

v

]
if v ≥ u)

= lim
v→t−

E
[
E
[
eiαWs1G | FW

v

]]
= E

[
eiαWs1G

]
.

So (3.32) holds for G ∈ ⋃
u<t
FW

u which is an ∩-stable collection, containing Ω

and generating Ft−: consequently, (3.32) holds also for G ∈ Ft−. In conclusion
we have proved that

E
[
eiαWs | Ft−

]
= eiαWt−α2

2 (s−t) = E
[
eiαWs | Ft

]
.

In an analogous way we can prove that

E
[
eiαWs | Ft+

]
= eiαWt−α2

2 (s−t) = E
[
eiαWs | Ft

]
,

and so, for every s ≥ 0 (for s < t it is obvious),

E
[
eiαWs | Ft−

]
= E

[
eiαWs | Ft+

]
.

More generally, proceeding as above, we can prove that

E
[
ei(α1Ws1+···+αkWsk) | Ft−

]
= E

[
ei(α1Ws1+···+αkWsk) | Ft+

]
(3.33)

for every α1, . . . , αk ∈ R and 0 ≤ s1 < · · · < sk, k ∈ N. It suffices to observe
that, if k = 2, we can prove a relation analogous to (3.31) in the following
way: for u < t ≤ s1 < s2 we have

E
[
ei(α1Ws1+α2Ws2) | FW

u

]
= ei(α1+α2)WuE

[
ei(α1+α2)(Ws1−Wu)eiα2(Ws2−Ws1 ) | FW

u

]
=

(since Ws1 −Wu and Ws2 −Ws1 are independent on FW
u )

= ei(α1+α2)WuE
[
ei(α1+α2)(Ws1−Wu)eiα2(Ws2−Ws1 )

]
= ei(α1+α2)Wue−

(α1+α2)2

2 (s1−u)e−
α2
2
2 (s2−s1).
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Now let us call H the collection of bounded random variables Z such that

E [Z | Ft−] = E [Z | Ft+] .

Then H is a monotone family of functions (cf. Definition A.8), containing the
a.s. null random variables (since Ft− and Ft+ contain the negligible events)
and the linear combinations and the products of cos(αWs) = Re

(
eiαWs

)
and

sin(αWs) = Im
(
eiαWs

)
for α ∈ R and s ≥ 0, in view of (3.33). For fixed s > 0

and setting

As = {(Ws1 ∈ H1)∩ · · · ∩ (Wsk
∈ Hk) | 0 ≤ sj ≤ s, Hj ∈ B, 1 ≤ j ≤ k ∈ N},

by density11 H contains also the characteristic functions of the elements of A
and N . On the other hand, A and N are ∩-stable and σ(A ∪N ) = FW

s : so,
by Theorem A.9 H contains also every bounded FW

s -measurable function (for
every s > 0). This concludes the proof of (3.30) and of the theorem. �

Remark 3.48 A result, analogous to that of the previous theorem, holds in
general for the processes having the strong Markov property: for the details
we refer to Karatzas-Shreve [201], Chapter 2.7, or Breiman [60]. �

3.3.4 Stopping times and martingales

Definition 3.49 A random variable

τ : Ω −→ R≥0 ∪ {+∞}

is a stopping time with respect to the filtration (Ft) if

{τ ≤ t} ∈ Ft, (3.34)

for every t ≥ 0.

Clearly a (constant) deterministic time τ ≡ t is a stopping time. Note also
that a stopping time τ can take the value +∞. The next significant result is
based on the usual hypotheses on the filtration.

Proposition 3.50 The random variable τ is a stopping time if and only if

{τ < t} ∈ Ft, (3.35)

for every t > 0. Consequently we also have {τ = t}, {τ ≥ t}, {τ > t} ∈ Ft.

Proof. If τ is a stopping time, then

{τ < t} =
⋃
n∈N

{
τ ≤ t− 1

n

}
11 It is well known that the indicator function of a Borel set can be approximated

by trigonometric polynomials.
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with
{
τ ≤ t− 1

n

}
∈ Ft− 1

n
⊆ Ft. Conversely, for every ε > 0 we have

{τ ≤ t} =
⋂

0<δ<ε

{τ < t + δ},

and so {τ ≤ t} ∈ Ft+ε. Consequently, in view of the usual hypotheses,

{τ ≤ t} ∈ Ft =
⋂
ε>0

Ft+ε.
�

Proposition 3.51 Let τ, τ1 be stopping times. Then also

τ ∧ τ1 = min{τ, τ1} and τ ∨ τ1 = max{τ, τ1}

are stopping times.

Proof. It suffices to observe that

{min{τ, τ1} ≤ t} = {τ ≤ t} ∪ {τ1 ≤ t},
{max{τ, τ1} ≤ t} = {τ ≤ t} ∩ {τ1 ≤ t}. �

In mathematical finance, the typical example of stopping time is the exerci-
se time of an American option (cf. Paragraph 2.5). Another remarkable exam-
ple having a particularly intuitive geometrical interpretation is the so-called
hitting time for a stochastic process of an open or closed set in RN .

Theorem 3.52 (Hitting time) Let X = (Xt)t∈R≥0 be a stochastic process
in RN , right-continuous and Ft-adapted and let H be an open set in RN . We
put

I(ω) = {t ≥ 0 | Xt(ω) ∈ H}, ω ∈ Ω,

and

τ(ω) =

{
inf I(ω), if I(ω) 
= ∅,
+∞, if I(ω) = ∅.

Then τ is an Ft-stopping time called “hitting time” of H for X.

Proof. In view of Proposition 3.50, it suffices to verify that {τ < t} ∈ Ft for
every t. Since H is open and X is right-continuous, we have

{τ < t} =
⋃

s∈Q∩[0,t[

{Xs ∈ H},

and the claim follows from the fact that, being X adapted, we have

{Xs ∈ H} ∈ Ft, s ≤ t. �
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Fig. 3.1. Hitting time for a process of an open set H

Corollary 3.53 Let X = (Xt)t∈R≥0 be a stochastic process in RN , right-
continuous and Ft-adapted and let H be a closed set in RN . We put

I(ω) = {t ≥ 0 | Xt(ω) ∈ H or Xt−(ω) ∈ H}, ω ∈ Ω,

and

τ(ω) =

{
inf I(ω), if I(ω) 
= ∅,
+∞, if I(ω) = ∅.

Then τ is an Ft-stopping time.

Proof. We consider the sequence of open sets in RN

Hn =
{

x ∈ RN | dist(x,H) <
1
n

}
, n ∈ N,

where dist(·,H) is the Euclidean distance from H. The claim follows from the
equality12

{τ ≤ t} = {Xt ∈ H or Xt− ∈ H} ∪
( ⋂

n∈N

⋃
s∈Q∩[0,t[

{Xs ∈ Hn}
)
.

�

The condition {τ ≤ t} ∈ Ft expresses the fact that, to know if X reaches H
by time t, it suffices to observe the paths of the process until time t. Looking
at Figure 3.1, the subtlety of Proposition 3.50 is apparent: intuitively, the
information in Ft allows us to establish if X enters the open set H at time
t. However the paths of X(ω1),X(ω2) in the figure coincide until time t in
which Xt(ω1) = Xt(ω2) /∈ H and afterwards the path X(ω1) enters H (and
so τ(ω1) = t) while the path X(ω2) does not enter H (and so τ(ω2) > t).

12 Since τ(ω) ≤ t if and only if Xt(ω) ∈ H or, for every n ∈ N, there exists
s ∈ Q ∩ [0, t[ such that Xs(ω) ∈ Hn.
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We explicitly remark that the last exit time

τ̃ = sup{t | Xt ∈ H}

is not in general a stopping time. Intuitively, in order to know if X leaves H
at time t for the last time, it is necessary to observe the entire path of X.

Notation 3.54 Let τ be a stopping time which is finite on Ω \N , where N
is a negligible event, and let X be a stochastic process. We set

Xτ (ω) = Xτ(ω)(ω), ω ∈ Ω. (3.36)

Further, we define the σ-algebra

Fτ = {F ∈ F | F ∩ {τ ≤ t} ∈ Ft for every t} (3.37)

that is called σ-algebra associated to the stopping time τ .

We observe that, if τ1, τ2 are stopping times such that τ1 ≤ τ2 a.s., then
Fτ1 ⊆ Fτ2 . Indeed, for fixed t, by assumption

{τ1 ≤ t} ⊇ {τ2 ≤ t};

so, if F ∈ Fτ1 we have

F ∩ {τ2 ≤ t} = (F ∩ {τ1 ≤ t}) ∩ {τ2 ≤ t} ∈ Ft.

Remark 3.55 For every stopping time τ and n ∈ N, the equation

τn(ω) =

{
k+1
2n if k

2n ≤ τ(ω) < k+1
2n ,

+∞ if τ(ω) = +∞,

defines a decreasing sequence (τn) of discrete-valued stopping times, such that

τ = lim
n→∞

τn. �

Now we prove the continuous version of Theorem A.129: the proof is based
on an approximation procedure and on the analogous result in discrete time.

Theorem 3.56 (Doob’s optional sampling Theorem) Let M be a right-
continuous martingale and let τ1, τ2 be stopping times such that τ1 ≤ τ2 ≤ T
a.s., with T > 0. Then

Mτ1 = E [Mτ2 | Fτ1 ] .

In particular, for every a.s. bounded stopping time τ we have

E [Mτ ] = E [M0] .
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Proof. Let (τ1,n), (τ2,n) be sequences of discrete stopping times, constructed
as in Remark 3.55, approximating τ1 and τ2 respectively. By the continuity
assumption,

lim
n→∞

Mτi,n = Mτi , i = 1, 2, a.s.

Further, by Theorem A.129 we have

Mτ2,n = E
[
MT | Fτ2,n

]
and so, by Corollary A.151, the sequence

(
Mτ2,n

)
is uniformly integrable.

Finally, by Theorem A.129

Mτ1,n = E
[
Mτ2,n | Fτ1,n

]
and the claim follows by taking the limit in n. �

Remark 3.57 In an analogous way we prove that, if M is a right-continuous
super-martingale and τ1 ≤ τ2 ≤ T a.s., then

Mτ1 ≥ E [Mτ2 | Fτ1 ] . (3.38)

We refer to [201] for all the details.
The boundedness assumption on the stopping times can be replaced by a

boundedness assumption on the process: (3.38) is still valid if M is a super-
martingale such that

Mt ≥ E [M | Ft] , t ≥ 0,

with M ∈ L1(Ω,P ), and τ1 ≤ τ2 are a.s. finite stopping times. �

Theorem 3.58 Let X be a stochastic process on the space (Ω,F , P, (Ft))
and let τ be an a.s. bounded stopping time. We consider the stopped process
Xτ defined by

Xτ
t (ω) = Xt∧τ(ω)(ω), t ≥ 0, ω ∈ Ω. (3.39)

We have:

i) if X is progressively measurable, then also Y is progressively measurable;
ii) if X is progressively measurable, then the random variable Xτ is Fτ -

measurable;
iii) if X is a right-continuous Ft-martingale, then

Xt∧τ = E [Xτ | Ft] (3.40)

and consequently also Xτ is a right-continuous Ft-martingale.
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Proof. i) The function

ϕ : [0, t]×Ω −→ [0, t]×Ω, ϕ(s, ω) = (s ∧ τ(ω), ω),

is measurable with respect to the product σ-algebra B([0, t])⊗Ft. Since Xt∧τ

is equal to the composition of X with ϕ

X ◦ ϕ : ([0, t]×Ω,B([0, t])⊗Ft) −→ RN

the first part of the claim follows by the assumption of progressive measura-
bility on X.

ii) To prove that Xτ is Fτ -measurable, we have to show that, for every
H ∈ B and t ≥ 0, we have F := {Xτ ∈ H} ∩ {τ ≤ t} ∈ Ft. Since we have
F = {Xt∧τ ∈ H} ∩ {τ ≤ t}, the claim follows from the fact that (Xt∧τ ) is
progressively measurable.

iii) We apply Theorem 3.56 to get

Xt∧τ = E [Xτ | Ft∧τ ]

= E
[
Xτ1{τ<t} + Xτ1{τ≥t} | Ft∧τ

]
= Xτ1{τ<t} + E

[
Xτ1{τ≥t} | Ft∧τ

]
=

(since A1{τ≥t} ∈ Fτ if A ∈ Ft)

= Xτ1{τ<t} + E [Xτ | Ft]1{τ≥t} =

(since Xτ1{τ<t} is Ft-measurable)

= E [Xτ | Ft] ,

and this proves (3.40).
For fixed t < s, applying (3.40) with the stopping time s ∧ τ instead of τ ,

we get
Xt∧τ = E [Xs∧τ | Ft] ,

and therefore Xτ is a Ft-martingale. �

3.4 Riemann-Stieltjes integral

Let us go back to the model for a risky asset in Example 3.8 where, assuming
S0 = 1, we have

St = 1 + μt + σWt, t ∈ [0, T ],

and W is a real Brownian motion starting from the origin. We consider a
partition

ς = {t0, t1, . . . , tN}
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of [0, T ] with 0 = t0 < t1 < · · · < tN = T . Now, let V = uS be the value of a
self-financing portfolio (cf. Definition 2.2) that is composed only by the asset
S. Then, for every k = 1, . . . , N , we have

Vtk
− Vtk−1 = utk−1(Stk

− Stk−1)
= μutk−1(tk − tk−1) + σutk−1(Wtk

−Wtk−1).

Summing over k from 1 to N , we get

VT = V0 + μ
N∑

k=1

utk−1(tk − tk−1)︸ ︷︷ ︸
=:I1,ς

+σ
N∑

k=1

utk−1(Wtk
−Wtk−1)︸ ︷︷ ︸

=:I2,ς

. (3.41)

To move on to continuous time, it is necessary to verify the existence of the
limits I1,ς and I2,ς as the refinement parameter |ς| of the partition tends to
zero: we recall that

|ς| = max
1≤k≤N

|tk − tk−1|. (3.42)

The first term I1,ς is a Riemann sum and so, supposing that the function
t �→ ut(ω) is Riemann integrable13 in [0, T ] for every ω ∈ Ω, we simply have

lim
|ς|→0+

I1,ς(ω) =
∫ T

0

ut(ω)dt,

for every ω ∈ Ω.
The second term I2,ς is the transform of u by W (cf. Definition A.120).

The existence of the second limit is not trivial: if we suppose that the limit

lim
|ς|→0+

I2,ς = I (3.43)

exists and is finite, by analogy we may use the notation

I =
∫ T

0

ut dWt. (3.44)

Therefore we get, at least formally, the following formula

VT = V0 + μ

∫ T

0

utdt + σ

∫ T

0

ut dWt.

Actually the limit in (3.43) does not exist in general, unless further assum-
ptions on the stochastic process u are made. In order to justify this claim,

13 As a matter of fact, in a self-financing portfolio with one asset only, the function
t �→ ut is necessarily constant. The situation is not trivial anymore in the case of
a portfolio with at least two assets.
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we ought to digress and give some mathematical details showing that the
trajectories of a Brownian motion are almost surely “irregular” in a sense
that will be specified later on.

Indeed, let us consider a regular path

t �−→Wt(ω̄),

and assume that it belongs to C1([0, T ]): in this case we can easily prove that
there exists the limit

lim
|ς|→0+

I2,ς(ω̄) =
∫ T

0

ut(ω̄)W ′
t(ω̄) dt, (3.45)

where the integral is understood in the usual Riemann sense and W ′
t(ω̄) de-

notes the derivative d
dtWt(ω̄). Indeed, by Lagrange mean value theorem there

exists t∗k ∈ [tk−1, tk] such that

I2,ς(ω̄) =
N∑

k=1

utk−1(ω̄)W ′
t∗k

(ω̄)(tk − tk−1);

so I2,ς(ω̄) is a Riemann sum and (3.45) follows easily.
As a matter of fact it is not difficult to prove the existence of the limit in

(3.43) under the weaker assumption that t �→ Wt(ω̄) is a bounded variation
function (cf. Section 3.4.1):

lim
|ς|→0+

I2,ς(ω̄) = l ∈ R.

The number l is usually called Riemann-Stieltjes integral of ut(ω̄) with respect
to Wt(ω̄) over [0, T ] (cf. Section 3.4.2) and the notation l =

(∫ T

0
ut dWt

)
(ω̄)

is used.
Unfortunately, in Section 3.4.3 we show that the paths of a Brownian

motion do not have bounded variation almost surely and so the integral in
(3.44) cannot be defined in the Riemann-Stieltjes sense. Chapter 4 will be
entirely devoted to an introduction to stochastic integration theory.

3.4.1 Bounded-variation functions

The material in this section is not essential for the rest of the treatment and
can be skipped on first reading, although some concepts may help the reader
understand more clearly the next chapter.

Given a real interval [a, b], we consider a function

g : [a, b]→ Rn

and a partition ς = {t0, . . . , tN} of [a, b]. The variation of g relative to ς is
defined by

V[a,b](g, ς) =
N∑

k=1

|g(tk)− g(tk−1)|.
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Definition 3.59 The function g has bounded variation on [a, b] (we write
g ∈ BV([a, b])) if the supremum of V[a,b](g, ς), taken over all partitions ς of
[a, b], is finite:

V[a,b](g) := sup
ς

V[a,b](g, ς) < +∞.

V[a,b](g) is called (first) variation of g over [a, b].

Example 3.60 i) If
g : [a, b]→ R

is monotone, then g ∈ BV([a, b]). For example, if g is increasing, we have

V[a,b](g, ς) =
N∑

k=1

(g(tk)− g(tk−1)) = g(b)− g(a),

and so
V[a,b](g) = g(b)− g(a);

ii) if g is Lipschitz continuous, i.e. there exists a constant C such that

|g(t)− g(s)| ≤ C|t− s|, t, s ∈ [a, b],

then g ∈ BV([a, b]). Indeed

V[a,b](g, ς) =
N∑

k=1

|g(tk)− g(tk−1)| ≤ C
N∑

k=1

(tk − tk−1) = C(b− a),

and so
V[a,b](g) ≤ C(b− a);

iii) if u ∈ L1([a, b]), then the integral function

g(t) :=
∫ t

a

u(s)ds

has bounded variation over [a, b], indeed

V[a,b](g, ς) =
N∑

k=1

|g(tk)− g(tk−1)| =
N∑

k=1

∣∣∣∣∣
∫ tk

tk−1

u(s)ds

∣∣∣∣∣
≤

N∑
k=1

∫ tk

tk−1

|u(s)| ds =
∫ b

a

|u(s)| ds,

and so
V[a,b](g) ≤ ‖u‖L1 ;



3.4 Riemann-Stieltjes integral 129

iv) the function

g(t) =

{
0 per t = 0,

t sin
(

1
t

)
per t ∈ ]0, 1],

is continuous on [0, 1] but does not have bounded variation. As an exercise,
prove this statement by using partitions with points of the form tn =(

π
2 + nπ

)−1.
�

Lemma 3.61 If g ∈ BV ∩ C([a, b]), then

V[a,b](g) = lim
|ς|→0

V[a,b](g, ς). (3.46)

Proof. Let us first recall that |ς| denotes the refinement parameter of the
partition ς, defined in (3.42). By contradiction, if (3.46) were not true, then
there would exist a partition ς = {t0, . . . , tN} of [a, b], a sequence of partitions
(ςn) and a positive number ε such that

V[a,b](g, ςn) ≤ V[a,b](g, ς)− ε, lim
n→∞

|ςn| = 0. (3.47)

Now we have

V[a,b](g, ς) ≤ V[a,b](g, ςn) +
N∑

k=1

|g(tk)− g(tnkn
)|

where tnkn
are points of the partition ςn such that |tk−tnkn

| ≤ |ςn|. On the other
hand, since the function g is uniformly continuous on [a, b] and lim

n→∞
|ςn| = 0,

we can choose n large enough such that
N∑

k=1

|g(tk)− g(tnkn
)| ≤ ε

2
,

contradicting (3.47). �

Example 3.62 The function g : [0, 2]→ R, identically zero except for t = 1
where g(1) = 1, is such that V[0,2](g) = 2. On the other hand,

V[0,2](g, ς) = 0

for every partition ς not containing 1. Therefore (3.46) is not true for a generic
g ∈ BV([a, b]). �

Remark 3.63 Geometrically, the variation V[a,b](g, ς) of a function

g : [a, b]→ Rn

represents the length of the broken line in Rn given by the union of the line
segments g(t0)g(t1), . . . , g(tN−1)g(tN ). Intuitively if g is a continuous curve,
then by Lemma 3.61, V[a,b](g, ς) approximates the length of g as |ς| tends to
zero: therefore the curve g is of bounded variation (or rectifiable) if it has
finite length, approximated by broken lines inscribed to g. �
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Fig. 3.2. Approximation of a continuous curve by a broken line

The following result characterizes real-valued functions of bounded varia-
tion.

Theorem 3.64 A real function has bounded variation if and only if it is a
difference of two monotone increasing functions.

Proof. As a consequence of the triangular inequality we have

V[a,b](g1 + g2) ≤ V[a,b](g1) + V[a,b](g2),

and so from Example 3.60-i) it follows that the difference of two monotone
increasing function has bounded variation.

The converse is a consequence of the following property14 of the variation:
for every t ∈ ]a, b[ we have

V[a,b](g) = V[a,t](g) + V[t,b](g). (3.48)

First of all the function

ϕ(t) := V[a,t](g), t ∈ [a, b],

is monotone increasing, in view of (3.48). Further, setting ψ = ϕ− g, we get
ψ(t + h) ≥ ψ(t) for h ≥ 0, since equivalently we have

ϕ(t + h) ≥ ϕ(t) + g(t + h)− g(t)

as a consequence of (3.48). �

Remark 3.65 As a simple consequence of the previous result, if g ∈ BV([a, b])
then the limits

g(t+) = lim
s→t+

g(s), and g(t−) = lim
s→t−

g(s), (3.49)

exist and are finite, for every t. Further, the set of the discontinuity points
of g is at most countable15. Consequently it is always possible to modify a
14 For its simple proof see, for instance, Rudin [293].
15 It suffices to consider g monotone increasing. The jumps of g in t are

Δg(t) = g(t+)− g(t−).

For every n ∈ N, the set An = {t ∈ ]a, b[ | Δg(t) ≥ 1/n} is finite since g(a) ≤
g(t) ≤ g(b). The claim follows from the fact that the set of discontinuity points
of g is given by the countable union of the An.
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function g ∈ BV([a, b]) over a countable set (having null Lebesgue measure)
in such a way that g becomes right-continuous , i.e.

g(t+) = g(t), t ∈ [a, b],

or left-continuous. �

3.4.2 Riemann-Stieltjes integral and Itô formula

Let us introduce some notations: given a real interval [a, b], we denote by

P[a,b] = {ς = (t0, . . . , tN ) | a = t0 < t1 < · · · < tN = b},
Tς = {τ = (τ1, . . . , τN ) | τk ∈ [tk−1, tk], k = 1, . . . , N},

the collection of partitions of [a, b] and the collection of the “choices of points”
relative to the partition ς, respectively. Given two real functions u, g defined
on [a, b], we define by

S(u, g, ς, τ) =
N∑

k=1

u(τk)(g(tk)− g(tk−1))

the Riemann-Stieltjes sum of u relative to g, to the partition ς and to the
choice of points τ ∈ Tς . We have the following classical result:

Theorem 3.66 If u ∈ C([a, b]) and g ∈ BV([a, b]), then there exists the limit

lim
|ς|→0

S(u, g, ς, τ) =:
∫ b

a

u(t)dg(t), (3.50)

i.e. for every ε > 0 there exists δ > 0 such that∣∣∣∣∣
∫ b

a

u(t)dg(t)− S(u, g, ς, τ)

∣∣∣∣∣ < ε,

for every ς ∈ P[a,b] such that |ς| < δ and for every τ ∈ Tς . Formula (3.50)
defines the Riemann-Stieltjes integral of u with respect to g. Further, if g ∈
C1([a, b]) then we simply have∫ b

a

u(t)dg(t) =
∫ b

a

u(t)g′(t)dt. (3.51)

Example 3.67 Consider the interval [0, 1] and the BV function g(t) =
1{T}(t), t ∈ [0, 1], where T ∈]0, 1[. If ς is a partition of [0, 1], we have two
cases: if t0 /∈ ς then S(u, g, ς, τ) = 0 for any function u and τ ∈ Tς . In partic-
ular, if the Riemann-Stieltjes integral exists, we necessarily have∫ 1

0

u(t)dg(t) = 0.
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On the other hand, if T ∈ ς = (t0, . . . , tN ), say T = tn, then

S(u, g, ς, τ) = u(τn)(g(tn)− g(tn−1)) + u(τn+1)(g(tn+1)− g(tn))
= u(τn)− u(τn+1)

for every τn ∈ [tn−1, T ] and τn+1 ∈ [T, tn+1]. Letting |ς| go to zero, we see
that S(u, g, ς, τ) converges to 0 if and only if u is continuous at T . Thus the
continuity of the integrand is necessary to guarantee the convergence of the
Riemann-Stieltjes sum for any BV function g. The class of integrands can be
extended by considering Lebesgue-Stieltjes integration (cf. Section 14.1).

Conversely, if the Riemann-Stieltjes sum S(u, g, ς, τ) converges to a limit
for every continuous function u then g has bounded variation (see, for instance,
Theorem I-55 in Protter [287]). �

Example 3.68 Let T ∈]0, 1[ and consider a BV function g such that g(t) = 0
for t ∈ [0, T [ and g(t) = 1 for t ∈]T, 1]. For any u ∈ C([0, 1]), we have∫ 1

0

u(t)dg(t) = u(T )Δg(T ) := u(T ) (g(T+)− g(T−)) .

Note that the value of the integral is independent of g(T ). On the other hand,
we have ∫ T

0

u(t)dg(t) = u(T ) (g(T )− g(T−)) , (3.52)

and therefore the value of the Riemann-Stieltjes in (14.25) may vary by mo-
difying g at the point T . It is left as an exercise to prove that, if g = 1]0,1],
then ∫ T

0

u(t)dg(t) = u(0)

for any T ∈]0, 1]. �

Proof (of Theorem 3.66). We give a sketch of the proof and leave the
details to the reader. To prove (3.50) using the Cauchy criterion, it suffices to
verify that, for every ε > 0, there exists δ > 0 such that

|S(u, g, ς ′, τ ′)− S(u, g, ς ′′, τ ′′)| < ε,

for every ς ′, ς ′′ ∈ P[a,b] such that |ς ′|, |ς ′′| < δ and for every τ ′ ∈ Tς′ and
τ ′′ ∈ Tς′′ .

We put ς = ς ′ ∪ ς ′′ = {t0, . . . , tN}. For fixed ε > 0, since f is uniformly
continuous on [a, b], it is enough to choose |ς ′| and |ς ′′| small enough to get

|S(u, g, ς ′, τ ′)− S(u, g, ς ′′, τ ′′)| ≤ ε
N∑

k=1

|g(tk)− g(tk−1)| ≤ εV[a,b](g),

so we can conclude.
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If g ∈ C1([a, b]), by the mean value theorem, given ς ∈ P[a,b] there exists
τ ∈ Tς such that

S(u, g, ς, τ) =
N∑

k=1

u(τk)g′(τk)(tk − tk−1) = S(ug′, id, ς, τ)

and (3.51) follows by taking the limit as |ς| tends to zero. �

Now we list some simple properties of the Riemann-Stieltjes integral; their
proof is left as an exercise.

Proposition 3.69 Let u, v ∈ C([a, b]), f, g ∈ BV([a, b]) and λ, μ ∈ R. Then
we have:

i) ∫ b

a

(λu + v)d(f + μg) = λ

∫ b

a

udf + λμ

∫ b

a

udg +
∫ b

a

vdf + μ

∫ b

a

vdg;

ii) if u ≤ v and g is monotone increasing, then∫ b

a

udg ≤
∫ b

a

vdg;

iii) ∣∣∣∣∣
∫ b

a

udg

∣∣∣∣∣ ≤ max |u|V[a,b](g);

iv) for c ∈ ]a, b[ we have ∫ b

a

udg =
∫ c

a

udg +
∫ b

c

udg.

Now we prove a theorem that extends the classical results concerning the
notion of primitive and its role in the computation of the Riemann integral.
The next theorem is the “deterministic version” of the Itô formula, the fun-
damental result in stochastic calculus that will be proved in Chapter 5.1.1.

Theorem 3.70 (Itô formula) Let F ∈ C1([a, b]×R) and g ∈ BV∩C([a, b]).
Then we have

F (b, g(b))−F (a, g(a)) =
∫ b

a

(∂tF ) (t, g(t))dt+
∫ b

a

(∂gF ) (t, g(t))dg(t). (3.53)

Before proving the theorem, we consider some examples: in the particular case
F (t, g) = g, (3.53) becomes

g(b)− g(a) =
∫ b

a

dg(t).
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Further, if g ∈ C1 we have

g(b)− g(a) =
∫ b

a

g′(t)dt.

For F (t, g) = f(t)g we get

f(b)g(b)− f(a)g(a) =
∫ b

a

f ′(t)g(t)dt +
∫ b

a

f(t)dg(t),

and this extends the integration by parts formula to the case g ∈ BV∩C([a, b]).
Formula (3.53) allows also to compute explicitly some integrals: for example,
if F (t, g) = g2 we get ∫ b

a

g(t)dg(t) =
1
2
(
g2(b)− g2(a)

)
.

Proof (of Theorem 3.70). For every ς ∈ P[a,b], we have

F (b, g(b))− F (a, g(a)) =
N∑

k=1

(F (tk, g(tk))− F (tk−1, g(tk−1))) =

(by the mean value theorem and the continuity of g, with t′k, t′′k ∈ [tk−1, tk])

=
N∑

k=1

(∂tF (t′k, g(t′′k))(tk − tk−1) + ∂gF (t′k, g(t′′k))(g(tk)− g(tk−1)))

and the claim follows by taking the limit as |ς| → 0. �

Exercise 3.71 Proceeding as in the proof of the Itô formula, prove the fol-
lowing integration-by-parts formula

f(b)g(b)− f(a)g(a) =
∫ b

a

f(t)dg(t) +
∫ b

a

g(t)df(t),

valid for f, g ∈ BV ∩ C([a, b]).

3.4.3 Regularity of the paths of a Brownian motion

In this section we prove that the family of trajectories with bounded variation
of a Brownian motion W is negligible. In other words W has almost all paths
that are irregular, non-rectifiable: in every time interval [0, t] with t > 0, W
covers almost surely a path of infinite length. Consequently, for almost all the
paths of W it is not possible to define the integral∫ T

0

ut dWt

in the Riemann-Stieltjes sense. In order to study the regularity of the paths
of Brownian motion we introduce the fundamental concept of quadratic va-
riation.
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Definition 3.72 Given a function

g : [0, t]→ Rn

and a partition ς = {t0, . . . , tN} ∈ P[0,t], the quadratic variation of g relative
to ς is defined by

V
(2)
t (g, ς) =

N∑
k=1

|g(tk)− g(tk−1)|2.

The case of continuous functions with bounded (first) variation is of particular
interest.

Proposition 3.73 If g ∈ BV ∩ C([0, t]) then

lim
|ς|→0

V
(2)
t (g, ς) = 0.

Proof. The function g is uniformly continuous on [0, t], consequently for every
ε > 0 there exists δ > 0 such that

|g(tk)− g(tk−1)| ≤ ε

for every ς = {t0, t1, . . . , tN} ∈ P[0,t] such that |ς| < δ. The claim follows from
the fact that

0 ≤ V
(2)
t (g, ς) =

N∑
k=1

|g(tk)− g(tk−1)|2 ≤ ε
N∑

k=1

|g(tk)− g(tk−1)| ≤ ε V[0,t](g)

where the first variation V[0,t](g) is finite by assumption. �

Theorem 3.74 If W is a Brownian motion, then we have

lim
|ς|→0

V
(2)
t (W, ς) = t in L2(Ω,P ). (3.54)

Consequently, for any t > 0, almost all the trajectories of W do not have
bounded variation on [0, t]. We say that the function f(t) = t is the quadratic
variation of the Brownian motion and we write 〈W 〉t = t for t ≥ 0.

Proof. To unburden notations, for fixed t > 0 and the partition

ς = {t0, . . . , tN} ∈ P[0,t],

we set
Δk = Wtk

−Wtk−1 and δk = tk − tk−1
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for k = 1, . . . , N . We recall that E
[
Δ2

k

]
= δk. Further, it is not difficult to

prove16 that
E
[
Δ4

k

]
= 3δ2

k. (3.55)

Then we have

E

[(
V

(2)
t (W, ς)− t

)2
]

= E

[( N∑
k=1

Δ2
k − t

)2
]

= E

[( N∑
k=1

(
Δ2

k − δk

) )2
]

=
N∑

k=1

E
[(

Δ2
k − δk

)2]
+ 2
∑
h<k

E
[(

Δ2
k − δk

) (
Δ2

h − δh

)]
.

Now we observe that, by (3.55), we have

E
[(

Δ2
k − δk

)2]
= E

[
Δ4

k

]
− 2δkE

[
Δ2

k

]
+ δ2

k = 2δ2
k.

On the other hand
E
[(

Δ2
k − δk

) (
Δ2

h − δh

)]
=

(by the independence of the increments of Brownian motion for h < k)

= E
[
Δ2

k − δk

]
E
[
Δ2

h − δh

]
= 0.

In conclusion we get

E

[(
V

(2)
t (W, ς)− t

)2
]

= 2
N∑

k=1

δ2
k ≤ 2t|ς|

that proves (3.54).
Now by Theorem A.136, for any sequence of partitions (ςn) with mesh

converging to zero, there exists a subsequence (ςkn) such that

lim
n→∞

V
(2)
t (W, ςkn) = t a.s.

Thus, by Proposition 3.73, almost all the trajectories of W cannot have
bounded variation on [0, t]. �

Remark 3.75 Since the L2-convergence implies convergence in probability
(cf. Theorem A.136), by (3.54) we also have that V

(2)
t (W, ς) converges in

probability to t, that is

lim
|ς|→0

P
(
|V (2)

t (W, ς)− t| > ε
)

= 0

16 We have

E
[
Δ4

k

]
=

∫
R

y4Γ (y, δk)dy,

with Γ as in (A.7). Then (3.55) can be obtained integrating by parts. See also
Example 5.6-(3).
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for every ε > 0. Note however that it is not true that

lim
|ς|→0

V
(2)
t (W, ς) = t a.s.

Indeed, one can find (cf. Exercise 1.15 in [259]) a sequence (ςn) of partitions
in P[0,t] such that |ςn| → 0 as n→∞ and

lim sup
n→∞

V
(2)
t (W, ςkn) = +∞ a.s.

On the other hand,
lim

n→∞
V

(2)
t (W, ςn) = t a.s.

for any refining17 sequence (ςn) of partitions such that lim
n→∞

|ςn| = 0 (see, for

instance, Theorem I-28 in [287]). �

Exercise 3.76 Let f ∈ C([0, T ]). Prove that

lim
|ς|→0

N∑
k=1

f(tk−1)(Wtk
−Wtk−1)

2 =
∫ T

0

f(t)dt, in L2(Ω),

where, as usual, ς = {t0, . . . , tN} ∈ P[0,T ].

Exercise 3.77 Given g ∈ C([0, t]), p ≥ 1 and ς = {t0, . . . , tN} ∈ P[0,t], we
define

V
(p)
t (g, ς) =

N∑
k=1

|g(tk)− g(tk−1)|p

the p-th order variation of g over [0, t] relative to the partition ς. Prove that,
if

lim
|ς|→0

V
(p0)
t (g, ς) ∈ ]0,+∞[,

for some p0, then

lim
|ς|→0

V
(p)
t (g, ς) =

{
+∞ p < p0

0 p > p0.

The case p > p0 can be proved exactly as in Proposition 3.73; the case p < p0

can be proved by contradiction.

Definition 3.78 Given two functions f, g : [0, t] → Rn, the co-variation of
f, g over [0, t] is defined by the limit (if it exists)

〈f, g〉t = lim
|ς|→0
ς∈P[0,t]

N∑
k=1

〈f(tk)− f(tk−1), g(tk)− g(tk−1)〉.

The following result can be proved as Proposition 3.73.

Proposition 3.79 If f ∈ C([0, t]) and g ∈ BV([0, t]), then 〈f, g〉t = 0.

17 A sequence (ςn) is refining if ςn ⊃ ςn+1 for any n.



4

Brownian integration

In this chapter we introduce the elements of stochastic integration theory that
are necessary to treat some financial models in continuous time. In Paragraph
3.4 we gave grounds for the interest in the study of the limit of a Riemann-
Stieltjes sum of the form

N∑
k=1

utk−1(Wtk
−Wtk−1) (4.1)

as the refinement parameter of the partition {t0, . . . , tN} tends to zero. In (4.1)
W is a real Brownian motion that represents a risky asset and u is an adapted
process that represents an investment strategy: if the strategy is self-financing,
the limit of the sum in (4.1) is equal to the value of the investment.

However the paths of W do not have bounded variation a.s. and this fact
prevents us to define pathwise the integral∫ T

0

utdWt

in the Riemann-Stieltjes sense. On the other hand W has finite quadratic
variation and this property makes it possible to construct the stochastic in-
tegral for suitable classes of integrands u: generally speaking, we require that
u is progressively measurable and satisfies some integrability conditions.

The concept of Brownian integral was introduced by Paley, Wiener and
Zygmund [275] for deterministic integrand functions. The general construc-
tion is due to Itô [179]-[180] in the case of Brownian motion, and to Kunita
and Watanabe [219] in M 2. This theory lays the foundations for a rigorous
study of stochastic differential equations that describe the diffusion processes
introduced by Kolmogorov [213], on which the modern stochastic models for
finance are based. In this chapter we confine ourselves to the Brownian case.

The aim of this chapter is to construct the Brownian integral gradually,
first considering the integration of “simple” processes, i.e. processes that are

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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piecewise constant with respect to the time variable, then extending the defi-
nition to a sufficiently general class of progressively measurable and square-
integrable processes. Among the main consequences of the definition, we have
that the stochastic integral has null expectation, it is a continuous martingale
in M 2

c and it satisfies Itô isometry. By further extending the class of inte-
grands, some of those properties are lost and it is necessary to introduce the
more general notion of local martingale.

4.1 Stochastic integral of deterministic functions

As an introductory example, useful to see in advance some of the main results
we are going to prove, we consider Paley, Wiener and Zygmund’s construction
[275] of the stochastic integral for deterministic functions.

Let u ∈ C1([0, 1]) be a real-valued function such that u(0) = u(1) = 0.
Given a real Brownian motion W, we define∫ 1

0

u(t)dWt = −
∫ 1

0

u′(t)Wtdt. (4.2)

This integral is a random variable that verifies the following properties:

i) E
[∫ 1

0
u(t)dWt

]
= 0;

ii) E

[(∫ 1

0
u(t)dWt

)2
]

=
∫ 1

0
u2(t)dt.

Indeed

E

[∫ 1

0

u′(t)Wtdt

]
=
∫ 1

0

u′(t)E [Wt] dt = 0.

Further,

E

[∫ 1

0

u′(t)Wtdt

∫ 1

0

u′(s)Wsds

]
=
∫ 1

0

∫ 1

0

u′(t)u′(s)E [WtWs] dtds =

(since E [WtWs] = t ∧ s)

=
∫ 1

0

u′(t)
(∫ t

0

su′(s)ds + t

∫ 1

t

u′(s)ds

)
dt

=
∫ 1

0

u′(t)
(

tu(t)−
∫ t

0

u(s)ds + t(u(1)− u(t))
)

dt

=
∫ 1

0

u′(t)
(
−
∫ t

0

u(s)ds

)
dt =

∫ 1

0

u2(t)dt.

More generally, if u ∈ L2(0, 1) and (un) is a sequence of functions in C1
0 (0, 1)

approximating u in the L2 norm, by property ii) we have

E

[(∫ 1

0

un(t)dWt −
∫ 1

0

um(t)dWt

)2
]

=
∫ 1

0

(un(t)− um(t))2dt.



4.2 Stochastic integral of simple processes 141

Therefore the sequence of integrals is a Cauchy sequence in L2(Ω,P ) and we
can define ∫ 1

0

u(t)dWt = lim
n→∞

∫ 1

0

un(t)dWt.

We have thus constructed the stochastic integral for u ∈ L2([0, 1]) and, by
passing to the limit, it is immediate to verify properties i) and ii).

Evidently this construction can be considered only an introductory step,
since we are interested in defining the Brownian integral in the case u is
a stochastic process. Indeed we recall that, from a financial point of view,
u represents a future-investment strategy, necessarily random. On the other
hand, since (4.2) seems to be a reasonable definition, in the following para-
graphs we will introduce a definition of stochastic integral that agrees with
the one given for the deterministic case.

4.2 Stochastic integral of simple processes

In what follows W is a real Brownian motion on the filtered probability space
(Ω,F , P, (Ft)) where the usual hypotheses hold and T is a fixed positive
number.

Definition 4.1 The stochastic process u belongs to the class L2 if

i) u is progressively measurable with respect to the filtration (Ft);
ii) u ∈ L2([0, T ]×Ω) that is ∫ T

0

E
[
u2

t

]
dt <∞.

Condition ii) is a simple integrability condition, while i) is the property playing
the crucial part in what follows. Since the definition of L2 depends on the
given filtration (Ft), when it is necessary we will also write L2(Ft) instead
of L2. More generally, for p ≥ 1, we denote by Lp the space of progressively
measurable processes in Lp([0, T ]×Ω). We note explicitly that Lp is a closed
subspace of Lp([0, T ]×Ω).

Now we start by defining the Itô integral for a particular class of stochastic
processes in L2.

Definition 4.2 A process u ∈ L2 is called simple if it can be written as

ut =
N∑

k=1

ek1]tk−1,tk](t), t ∈ [0, T ], (4.3)

where 0 ≤ t0 < t1 < · · · < tN ≤ T and ek are random variables1 on (Ω,F , P ).
1 We assume also that

P (ek−1 = ek) = 0, k = 2, . . . , N,

so that the representation (4.3) for u is unique a.s.
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Remark 4.3 It is important to observe that, since u is progressively measu-
rable and by hypothesis (3.27) of right-continuity of the filtration, we have that
ek in (4.3) is Ftk−1-measurable for every k = 1, . . . , N . Further, ek ∈ L2(Ω,P )
and we have∫ T

0

E
[
u2

t

]
dt =

N∑
k=1

∫ T

0

E
[
e2

k

]
1]tk−1,tk](t)dt =

N∑
k=1

E
[
e2

k

]
(tk − tk−1). (4.4)

�

If u ∈ L2 is a simple process of the form (4.3), then we define the Itô integral
in the following way: ∫

utdWt =
N∑

k=1

ek(Wtk
−Wtk−1) (4.5)

and also, for every 0 ≤ a < b ≤ T ,∫ b

a

utdWt =
∫

ut1]a,b](t)dWt (4.6)

and ∫ a

a

utdWt = 0.

Example 4.4 Integrating the simple process u = 1]0,t] , we get

Wt =
∫ t

0

dWs.

Then, going back to Example 3.8, we have

St = S0

(
1 +
∫ t

0

μds

)
+
∫ t

0

σdWs, t > 0. �

The following theorem contains some important properties of the Itô integral
of simple processes.

Theorem 4.5 For all simple processes u, v ∈ L2, α, β ∈ R and 0 ≤ a < b <
c ≤ T the following properties hold:

(1) linearity: ∫
(αut + βvt)dWt = α

∫
utdWt + β

∫
vt dWt;

(2) additivity: ∫ b

a

utdWt +
∫ c

b

utdWt =
∫ c

a

utdWt;
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(3) null expectation:

E

[∫ b

a

utdWt | Fa

]
= 0, (4.7)

and also

E

[∫ b

a

utdWt

∫ c

b

vtdWt | Fa

]
= 0; (4.8)

(4) Itô isometry:

E

[∫ b

a

utdWt

∫ b

a

vtdWt | Fa

]
= E

[∫ b

a

utvtdt | Fa

]
; (4.9)

(5) the stochastic process

Xt =
∫ t

0

usdWs, t ∈ [0, T ], (4.10)

is a continuous Ft-martingale, i.e. X ∈M 2
c (Ft), and we have

[[X]]2T = E

[
sup

t∈[0,T ]

X2
t

]
≤ 4E

[∫ T

0

u2
t dt

]
. (4.11)

Remark 4.6 Since
E [X] = E [E [X | Fa]] ,

the non-conditional versions of (4.7), (4.8), (4.9) hold:

E

[∫ b

a

utdWt

]
= 0,

E

[∫ b

a

utdWt

∫ c

b

vtdWt

]
= 0,

E

[∫ b

a

utdWt

∫ b

a

vtdWt

]
= E

[∫ b

a

utvtdt

]
.

The last identity for u = v is equivalent to the L2-norm equality∥∥∥ ∫ b

a

utdWt

∥∥∥
L2(Ω)

= ‖u‖L2([a,b]×Ω)

and this is why the fourth property is called “Itô isometry”. �

Proof. Properties (1) and (2) are trivial. Concerning property (3), we have

E

[∫ b

a

utdWt | Fa

]
=

N∑
k=1

E
[
ek(Wtk

−Wtk−1) | Fa

]
=
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(since t0 ≥ a, ek is Ftk−1-measurable by Remark 4.3 and so independent of
Wtk
−Wtk−1 and then we use Proposition A.107-(6))

=
N∑

k=1

E [ek | Fa] E
[
Wtk
−Wtk−1

]
= 0.

To prove (4.8) we proceed analogously: if v is of the form

v =
M∑

h=1

dh1]th−1,th] ,

then E
[∫ b

a
utdWt

∫ c

b
vtdWt | Fa

]
is a sum of terms of the form

E
[
ekdh(Wtk

−Wtk−1)(Wth
−Wth−1) | Fa

]
, with tk ≤ th−1,

that are all equal to zero since ekdh(Wtk
−Wtk−1) is Fth−1 -measurable and

so independent of the increment Wth
−Wth−1 whose expectation is null, since

a ≤ th−1 .
Let us prove Itô isometry: if u and v are simple processes, we have

E

[∫ b

a

utdWt

∫ b

a

vtdWt | Fa

]
= E

[
N∑

k=1

∫ tk

tk−1

ekdWt

N∑
h=1

∫ th

th−1

dhdWt | Fa

]

=
N∑

k=1

E

[∫ tk

tk−1

ekdWt

∫ tk

tk−1

dkdWt | Fa

]

+ 2
∑
h<k

E

[∫ tk

tk−1

ekdWt

∫ th

th−1

dhdWt | Fa

]
=

(by (4.8) the terms in the second summation are null)

=
N∑

k=1

E
[
ekdk(Wtk

−Wtk−1)
2 | Fa

]
=

(by Proposition A.107-(6), since Wtk
−Wtk−1 is independent of ekdk and of

Fa)

=
N∑

k=1

E [ekdk | Fa] E
[
(Wtk

−Wtk−1)
2
]

= E

[
N∑

k=1

ekdk(tk − tk−1) | Fa

]

and the claim follows by (4.4) at least for u = v: the general case is analogous.
Let us now prove that the stochastic process X in (4.10) is a continuous

Ft-martingale. The continuity follows directly from the definition of stochastic
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integral. By definition (4.5)-(4.6) and Remark 4.3, it is obvious that X is Ft-
adapted. Further, Xt is integrable since, by Hölder’s inequality, we have

E [|Xt|]2 ≤ E
[
X2

t

]
=

(by Itô isometry)

= E

[∫ t

0

u2
sds

]
<∞

since u ∈ L2. Then, for 0 ≤ s < t we have

E [Xt | Fs] = E [Xs | Fs] + E

[∫ t

s

uτ dWτ | Fs

]
= Xs,

since Xs is Fs-measurable and (4.7) holds: therefore X is a martingale. Finally
(4.11) is consequence of Doob’s inequality, Theorem 3.38, and Itô isometry:
indeed we have

[[X]]2T ≤ 4E
[
X2

T

]
= 4E

[∫ T

0

u2
t dt

]
.

Remark 4.7 The martingale property of the stochastic integral can also be
written in the following meaningful way:

E

[∫ T

0

usdWs | Ft

]
=
∫ t

0

usdWs, t ≤ T. �

4.3 Integral of L2-processes

We extend the definition of stochastic integral to the class L2 of progres-
sively measurable and square-integrable processes. Unlike the case of simple
processes, the integral will be defined only modulo indistinguishability. Apart
from this, all the usual properties in Theorem 4.11 carry over to this case.

To present the general idea, we consider Itô isometry∥∥∥∫ T

0

utdWt

∥∥∥
L2(Ω)

= ‖u‖L2([0,T ]×Ω) . (4.12)

This isometry plays an essential role in the construction of the stochastic
integral

IT (u) :=
∫ T

0

utdWt, (4.13)

with u ∈ L2, since it guarantees that, if (un) is a Cauchy sequence in
L2([0, T ] × Ω), then also (IT (un)) is a Cauchy sequence in L2(Ω). This fact
makes it possible to define the integral in L2 as soon as we prove that the
elements in L2 can be approximated by simple processes.
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Lemma 4.8 For every u ∈ L2 there exists a sequence (un) of simple processes
in L2 such that

lim
n→+∞

E

[∫ T

0

(ut − un
t )2dt

]
= lim

n→+∞

∥∥u− un
∥∥2

L2([0,T ]×Ω)
= 0.

In particular an approximating sequence is defined by

un =
2n−1∑
k=1

(
1

tk − tk−1

∫ tk

tk−1

usds

)
1]tk,tk+1], (4.14)

where tk := kT
2n for 0 ≤ k ≤ 2n: for this sequence we also have

‖un‖L2([0,T ]×Ω) ≤ ‖u‖L2([0,T ]×Ω).

We shall soon prove the lemma in a meaningful particular case (cf. Proposition
4.20 and Remark 4.21): for the general case we refer, for instance, to Steele
[315], Theorem 6.5.

Thus we consider a sequence (un) of simple processes approximating u ∈
L2: since it converges, (un) is a Cauchy sequence in L2([0, T ]×Ω), that is

lim
m,n→∞

‖un − um‖L2([0,T ]×Ω) = 0.

Then, by Itô isometry, the sequence of stochastic integrals (IT (un)) is a
Cauchy sequence in L2(Ω) and therefore it is convergent. It seems natural
to define ∫ T

0

utdWt = lim
n→+∞

IT (un) in L2(Ω). (4.15)

Note that (4.15) defines the stochastic integral only except for a negligible
event NT ∈ N . This causes problems in defining the integral as a stochastic
process, i.e. as T varies. Indeed T belongs to an uncountable set and therefore
the previous definition is questionable since the set

⋃
T≥0

NT might not be

measurable, or if it is measurable, it might not have null probability.
On the other hand, this problem can be solved by using Doob’s inequality,

Theorem 3.38. Indeed, let us consider a sequence (un) of simple stochastic
processes in L2 approximating u in L2([0, T ]×Ω): we put

It(un) =
∫ t

0

un
s dWs, t ∈ [0, T ]. (4.16)

By (4.11) we obtain

[[I(un)− I(um)]]T ≤ 2‖un − vn‖L2([0,T ]×Ω),

and so (I(un)) is a Cauchy sequence in
(
M 2

c , [[·]]T
)

that is a complete space
by Lemma 3.43. So there exists I(u) ∈M 2

c , unique up to indistinguishability,
such that

lim
n→∞

[[I(u)− I(un)]]T = 0. (4.17)
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We observe that I(u) does not depend on the approximating sequence, i.e. if
vn is another sequence of simple processes in L2 approximating u, we have

[[I(un)− I(vn)]]T ≤ 2‖un − vn‖L2([0,T ]×Ω)

≤ 2‖un − u‖L2([0,T ]×Ω) + 2‖u− vn‖L2([0,T ]×Ω) −→ 0

as n→∞.

Definition 4.9 The stochastic integral of u ∈ L2 is defined (up to indistin-
guishability) by (4.17), that is∫ t

0

usdWs := lim
n→∞

∫ t

0

un
s dWs in M 2

c ,

where (un) is a sequence of simple processes, approximating u in L2.

Remark 4.10 Just as in classical functional analysis it is common practice to
identify functions that are equal almost everywhere (cf., for example, Brezis
[62] Chapter 4) in what follows we will identify indistinguishable stochastic
processes. �

The following result is the natural extension of Theorem 4.5.

Theorem 4.11 For every u, v ∈ L2, α ∈ R and 0 ≤ a < b < c, we have:

(1) linearity: ∫ a

0

(αut + βvt)dWt = α

∫ a

0

utdWt + β

∫ a

0

vtdWt;

(2) additivity: ∫ c

a

utdWt =
∫ b

a

utdWt +
∫ c

b

utdWt;

(3) null expectation:

E

[∫ b

a

utdWt | Fa

]
= 0,

and also

E

[∫ b

a

utdWt

∫ c

b

vtdWt | Fa

]
= 0;

(4) Itô isometry:

E

[∫ b

a

utdWt

∫ b

a

vtdWt | Fa

]
= E

[∫ b

a

utvtdt | Fa

]
;
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(5) the process

Xt =
∫ t

0

usdWs, t ∈ [0, T ], (4.18)

belongs to the space M 2
c and we have

[[X]]2T ≤ 4E

[∫ T

0

u2
t dt

]
. (4.19)

As in Remark 4.6 the “non-conditional versions” of the identities in (3) and
(4) hold.

Proof. The theorem can be proved by taking the limit in the analogous
relations that hold for the integral of simple stochastic processes: the details
are left as an exercise. �

Remark 4.12 An immediate but important consequence of the estimate
(4.19) is that if u, v ∈ L2 are (m⊗P )-equivalent (or, in particular, if they are
modifications) then their stochastic integrals coincide. This is a fundamental
consistency property of the integral (recall Example 3.27). The converse is
true as well, by Corollary 4.13 below. �

Corollary 4.13 If u ∈ L2 and for a fixed positive T we have∫ T

0

utdWt = 0,

then u is (m⊗ P )-equivalent to the null process on [0, T ]×Ω, that is

{(t, ω) ∈ [0, T ]×Ω | ut(ω) 
= 0}

has null (m⊗ P )-measure.

Proof. The thesis follows from Itô isometry, since we have

0 = E

⎡⎣(∫ T

0

utdWt

)2
⎤⎦ = E

[∫ T

0

u2
t dt

]
. �

We wish to point out that the stochastic integral is not defined pathwise
and the value of the integral in ω ∈ Ω does not only depend on the paths u(ω)
and W (ω) but on the entire processes u and W . For this reason the following
“identity principle” for the stochastic integral will be useful later on:

Corollary 4.14 Let F ∈ F and let u, v ∈ L2 be modifications on F , i.e.
ut(ω) = vt(ω) for almost all ω ∈ F and for every t ∈ [0, T ]. If

Xt =
∫ t

0

usdWs, Yt =
∫ t

0

vsdWs,

then X and Y are indistinguishable on F .
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Proof. Let us consider the approximation by simple processes un, vn in L2

defined in (4.14). By construction un and vn are modifications on F for every
n. Hence it follows directly that, if

Xn
t =

∫ t

0

un
s dWs, Y n

t =
∫ t

0

vn
s dWs,

then Xn and Y n are modifications on F for every n.
Now, for fixed t ∈ ]0, T ], we have that Xn

t , Y n
t converge in L2(Ω,P )-norm

(and pointwise a.s. after taking a subsequence) to Xt and Yt, respectively.
Therefore Xt = Yt a.s. in F and this proves that they are modifications in
F . The claim follows from Proposition 3.25, since X and Y are continuous
processes. �

Example 4.15 Let us consider a process of the form

St = S0 +
∫ t

0

μ(s)ds +
∫ t

0

σ(s) dWs

where S0 ∈ R and μ, σ ∈ L2([0, T ]) are deterministic functions. By the previ-
ous theorem, we have

E [St] = S0 +
∫ t

0

μ(s)ds

and

var(St) = E

[(
St − S0 −

∫ t

0

μ(s)ds
)2
]

=

(by Itô isometry)

=
∫ t

0

σ(s)2ds.

We will see later on that St has normal distribution: we shall prove this
stronger result only after proving the Itô formula (cf. Proposition 5.13). �

Exercise 4.16 Under the hypotheses of Theorem 4.11, prove that, for every
σ-algebra G ⊆ Fa, we have

E

[∫ b

a

utdWt | G
]

=
∫ b

a

E [ut | G] dWt.

4.3.1 Itô and Riemann-Stieltjes integral

In this section we show that, in the case of continuous processes, the stochastic
integral is the limit of Riemann sums and so it is the natural extension of the
Riemann-Stieltjes integral.
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Definition 4.17 A process X is called L2-continuous at t0 if

lim
t→t0

E
[
(Xt −Xt0)

2
]

= 0.

Example 4.18 Given u ∈ L2, the process

Xt =
∫ t

0

usdWs, t ≥ 0,

is L2-continuous at every point. Indeed, if t > t0,

E
[
(Xt −Xt0)

2
]

= E

[( ∫ t

t0

usdWs

)2
]

=

(by Itô isometry)

=
∫ t

t0

E
[
u2

s

]
ds −→ 0, as t→ t0,

by Lebesgue’s dominated convergence theorem and the case t < t0 is analo-
gous. In particular every Brownian motion is L2-continuous. �

Example 4.19 Let X be a continuous process such that |Xt| ≤ Y a.s. with
Y ∈ L2(Ω). Then, as an immediate consequence of the dominated conver-
gence theorem, the process X is L2-continuous at any point. In particular,
if X is continuous and f is a bounded continuous function, then f(X) is
L2-continuous. �

Proposition 4.20 Let u ∈ L2 be an L2-continuous process on [0, T ]. If we
put

u(ς) =
N∑

k=1

utk−11]tk−1,tk] ,

where ς = {t0, t1, . . . , tN} is a partition of [0, T ], then u(ς) is a simple process
in L2 and we have

lim
|ς|→0+

u(ς) = u, in L2([0, T ]×Ω). (4.20)

Proof. For every ε > 0, there exists2 δε > 0 such that, if |ς| < δε, then we
have ∫ T

0

E

[(
ut − u

(ς)
t

)2
]

dt =
N∑

k=1

∫ tk

tk−1

E
[
(ut − utk−1)

2
]
dt ≤ εT. �

2 By the Heine-Cantor theorem, if X is L2-continuous on the compact set [0, T ],
then it is also uniformly L2-continuous.
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Remark 4.21 Proposition 4.20 states that u(ς) is a simple stochastic process
in L2 approximating u in L2([0, T ] × Ω) for |ς| → 0+. Then by definition we
have

lim
|ς|→0+

∫ T

0

u
(ς)
t dWt =

∫ T

0

utdWt, in M 2
c ,

or equivalently

lim
|ς|→0+

N∑
k=1

utk−1(Wtk
−Wtk−1) =

∫ T

0

utdWt, in M 2
c . (4.21)

In this sense the Itô integral, being the limit of Riemann-Stieltjes sums as in
(4.1), generalizes the Riemann-Stieltjes integral. �

4.3.2 Itô integral and stopping times

Some properties of the stochastic integral are similar to those of the Lebesgue
integral, even though in general it is necessary to be careful: for example, let
us consider the following (false) equality

X

∫ T

0

utdWt =
∫ T

0

XutdWt,

where u ∈ L2 and X is a Ft0-measurable random variable for some t0 > 0.
Although X is constant with respect to the variable t, the member on the right-
hand side of the equality does not make sense since the integrand Xu /∈ L2

and is not in general adapted. However, the equality

X

∫ T

t0

utdWt =
∫ T

t0

XutdWt (4.22)

holds true, since (4.22) is true for every simple process u in L2 and can be
proved in general by approximation.

The following result contains the definition of stochastic integral with a
random time as upper integration limit: the statement might seem tautological
but, in the light of the previous remark, it requires a rigorous proof.

Proposition 4.22 Given u ∈ L2(Ft), we set

Xt =
∫ t

0

usdWs, t ∈ [0, T ]. (4.23)

If τ is an (Ft)-stopping time such that 0 ≤ τ ≤ T a.s. then
(
ut1{t≤τ}

)
∈ L2

and

Xτ =
∫ τ

0

usdWs =
∫ T

0

us1{s≤τ}dWs a.s. (4.24)
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Proof. It is clear that, by definition of stopping time, the process
(
ut1{t≤τ}

)
belongs to L2 and in particular is adapted. We put

Y =
∫ T

0

us1{s≤τ}dWs,

and we prove that
Xτ = Y a.s.

First of all, we consider the case

τ =
n∑

k=1

tk1Fk
(4.25)

with 0 < t1 < · · · < tn = T and Fk ∈ Ftk
disjoint events such that

F :=
n⋃

k=1

Fk ∈ F0.

It is apparent that τ is a stopping time. Given X in (4.23), we have Xτ = 0
on Ω \ F and

Xτ =
∫ T

0

usdWs −
∫ T

tk

usdWs, on Fk,

or, in other terms,

Xτ = 1F

∫ T

0

usdWs −
n∑

k=1

1Fk

∫ T

tk

usdWs.

On the other hand, we have

Y =
∫ T

0

us

(
1− 1{s>τ}

)
dWs =

(by linearity)

=
∫ T

0

usdWs −
∫ T

0

us

(
1Ω\F +

n∑
k=1

1Fk
1{s>tk}

)
dWs

= 1F

∫ T

0

usdWs −
n∑

k=1

∫ T

tk

us1Fk
dWs,

and we conclude that Xτ = Y by (4.22). To use (4.22) we have written the
integral from 0 to t as the difference of the integral from 0 to T and the
integral from t to T .
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In the case of a general stopping time τ , we adapt the approximation
result of Remark 3.55 and we consider the following decreasing sequence (τn)
of stopping times of the form (4.25):

τn =
2n∑

k=0

T (k + 1)
2n

1{T k
2n <τ≤T (k+1)

2n }.

We have that (τn) converges to τ a.s. and, by continuity, Xτn converges to Xτ

a.s. Further, if we put

Y n =
∫ t

0

us1{s≤τn}dWs,

by the dominated convergence theorem, we have that Y n converges to Y in
L2(Ω,P ) and this is enough to conclude. �

The following proposition extends the usual properties of the Itô integral
when the integration limit is a stopping time.

Corollary 4.23 Let t0 ∈ [0, T [ and τ ∈ [t0, T ] be a stopping time. If u, v ∈ L2

then we have

E

[∫ τ

t0

utdWt | Ft0

]
= 0,

E

[∫ τ

t0

utdWt

∫ T

τ

vtdWt | Ft0

]
= 0,

E

[∫ τ

t0

utdWt

∫ τ

t0

vtdWt | Ft0

]
= E

[∫ τ

t0

utvtdt | Ft0

]
.

Proof. By (4.24) we have∫ τ

t0

utdWt =
∫ T

t0

ut1{t≤τ}dWt

with ut1{t≤τ} ∈ L2 and so the claim follows from Theorem 4.11. �

4.3.3 Quadratic variation process

In Theorem 3.74 we computed the quadratic variation of a Brownian motion
W , showing that

〈W 〉t = t, t ≥ 0.

On the other hand, in Proposition 3.37 we proved that

Mt = W 2
t − 〈W 〉t (4.26)
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is a martingale. Since W 2
t is a sub-martingale (cf. Remark 3.36), this result

is in line with the Doob’s decomposition Theorem A.119 that states that,
in discrete time, any sub-martingale can be decomposed as the sum of a
martingale M and an increasing predictable process A with null initial value.
Thus, in the Brownian framework, (4.26) can be interpreted as a Doob-type
decomposition where the role of the process A is played by the quadratic
variation 〈W 〉.

In this section we aim at getting similar results for the stochastic integral
process

Xt =
∫ t

0

usdWs, (4.27)

with u ∈ L2. We already proved that X ∈ M 2
c . Now we introduce the

quadratic variation process 〈X〉 and show that X2 − 〈X〉 is a martingale.

Proposition 4.24 Let X be as in (4.27) with u ∈ L2. Then for any t > 0,
there exists the limit

lim
|ς|→0
ς∈P[0,t]

N∑
k=1

∣∣Xtk
−Xtk−1

∣∣2 =
∫ t

0

u2
sds in L2(Ω,P ). (4.28)

We set

〈X〉t =
∫ t

0

u2
sds, t ∈ [0, T ], (4.29)

and we say that 〈X〉 is the quadratic variation process of X. We have that
X2 − 〈X〉 is a martingale.

Proof. If u is a simple L2-process, (4.28) can be proved by proceeding as in
Theorem 3.74. In general the claim follows approximating X by integrals of
simple processes.

Next we verify that X2−〈X〉 is a martingale. For every 0 ≤ s < t we have

E
[
X2

t − 〈X〉t | Fs

]
= E

[
(Xt −Xs)

2 + 2Xs (Xt −Xs) + X2
s − 〈X〉t | Fs

]
=

(by (3) in Theorem 4.11)

= E
[
(Xt −Xs)

2 − 〈X〉t | Fs

]
+ X2

s =

(by Itô isometry)

= E

[∫ t

s

u2
τdτ − 〈X〉t | Fs

]
+ M2

s = M2
s − 〈X〉s. �
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Remark 4.25 Since the L2-convergence implies convergence in probability
(cf. Theorem A.136), the limit in (4.28) converges in probability as well. More-
over, by Theorem A.136, we also have that, for any sequence of partitions (ςn)
of [0, t], with mesh converging to zero, there exists a subsequence (ςkn) such
that

lim
n→∞

V
(2)
t (X, ςkn) =

∫ t

0

u2
sds a.s.

where V
(2)
t is the quadratic variation of Definition 3.72. �

Proposition 4.24 is a particular case of the classical Doob-Meyer decompo-
sition theorem which we state below: the interested reader can find an organic
presentation of the topic, for example, in Chapter 1.4 of Karatzas-Shreve [201].

In what follows, (Ω,F , P, (Ft)) is a filtered probability space verifying the
usual hypotheses. We recall that a process A is increasing if almost all the
paths of A are increasing functions. Moreover if M ∈ M 2 then, by Jensen’s
inequality, |M |2 is a sub-martingale.

Theorem 4.26 (Doob-Meyer decomposition theorem) For every M =
(Mt)t∈[0,T ] ∈ M 2

c (Ft) there exists a unique (up to indistinguishability) in-
creasing continuous process A such that A0 = 0 a.s. and |M |2 − A is a Ft-
martingale. We call A the quadratic-variation process of M and we write
At = 〈M〉t. Moreover, for any t ≤ T we have

At = lim
|ς|→0
ς∈P[0,t]

V
(2)
t (M, ς) (4.30)

in probability.

We explicitly remark that the general definition of quadratic variation agrees
with that given in (4.29): indeed, for X as in (4.27), 〈X〉 in (4.29) is an
increasing continuous process such that 〈X〉0 = 0 a.s. and |X|2 − 〈X〉 is a
martingale (cf. Proposition 4.24).

It is remarkable that 〈M〉 in (4.30) does not depend on the filtration that
we consider: in the case (Ft) is the Brownian filtration, the martingale rep-
resentation Theorem 10.11 states that any square-integrable (Ft)-martingale
can be represented as a stochastic integral of the form (4.29); as a consequence,
in this particular case Theorem 4.26 follows by Proposition 4.24.

The proof of Theorem 4.26 is based on a discrete approximation procedure:
we observe that, if (Mn) is a real discrete martingale, then the process (An)
defined by A0 = 0 and

An =
n∑

k=1

(Mk −Mk−1)2, n ≥ 1,

is increasing and such that M2 −A is a martingale. Indeed

E
[
M2

n+1 −An+1 | Fn

]
= M2

n −An
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if and only if
E
[
M2

n+1 − (Mn+1 −Mn)2 | Fn

]
= M2

n,

hence the claim.
The proof of (4.30) is similar to that of Theorem 3.74 and it is based on

the fact that the mean of the product of increments of a martingale M over
non-overlapping intervals is equal to zero3. More precisely, in the scalar case,
for 0 ≤ s < t ≤ u < v we have

E [(Mv −Mu)(Mt −Ms)] = E [E [(Mv −Mu) | Fu] (Mt −Ms)] = 0. (4.31)

Formula (4.31) is very simple yet useful and meaningful: for instance, (4.31)
is one of the key ingredients in the construction of the stochastic integral for
a general martingale.

Given M ∈M 2
c , as a consequence of Theorem 4.26, we also have that

E
[
|Mt|2 − |Ms|2 | Fs

]
= E [〈M〉t − 〈M〉s | Fs] , s ≤ t, (4.32)

that follows from the fact that |M |2 − 〈M〉 is a martingale.

4.3.4 Martingales with bounded variation

As a consequence of the Doob-Meyer Theorem 4.26 we have that if a mar-
tingale M ∈M 2

c has bounded variation, then it is indistinguishable from the
null process: this means that almost all the paths of a non-trivial martingale
M are irregular in the sense that they do not have bounded variation. More
precisely, we have:

Proposition 4.27 Let M ∈M 2
c . For almost any ω such that 〈M〉T (ω) > 0,

the function t �→Mt(ω) does not have bounded variation over [0, T ]. Moreover,
for almost any ω such that 〈M〉T (ω) = 0 the function t �→Mt(ω) is null.

Proof. By Theorem 4.26 there exists a sequence of partitions (ςn) in P[0,T ],
with mesh converging to zero, such that

〈M〉T = lim
n→∞

V
(2)
T (M, ςn) a.s.

Thus, by Proposition 3.73, the condition 〈M〉T (ω) > 0 is a.s. incompatible
with the fact that M(ω) has bounded variation.

Concerning the second part of the claim, we set

τ = inf{t | 〈M〉t > 0} ∧ T.

By Theorem 3.52, τ is a stopping time and since M2 − 〈M〉 is a martingale,
then, by Theorem 3.58, also4

M2
t∧τ − 〈M〉t∧τ = M2

t∧τ

3 For further details see, for example, Karatzas-Shreve [201], Chapter 1.5.
4 The equality follows from the fact that 〈M〉t = 0 for t ≤ τ .
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is a martingale. Therefore

E
[
M2

T∧τ

]
= E

[
M2

0

]
= 0.

Consequently, by Doob’s inequality, (M2
t∧τ ) has a.s. null paths and the claim

follows from the fact that M = (M2
t∧τ )t∈[0,T ] over {〈M〉T = 0}. �

4.3.5 Co-variation process

For the sake of simplicity, in this section we consider only real-valued pro-
cesses. We remark that, by Theorem 4.26, for any X,Y ∈M 2

c the processes

(X + Y )2 − 〈X + Y 〉, (X − Y )2 − 〈X − Y 〉

are martingales and therefore so is the following process, obtained as their
difference,

4XY − (〈X + Y 〉 − 〈X − Y 〉) .

This motivates the following:

Definition 4.28 For any X,Y ∈M 2
c , the process

〈X,Y 〉 := 1
4

(〈X + Y 〉 − 〈X − Y 〉)

is called co-variation process of X and Y .

By Theorem 4.26, 〈X,Y 〉 is the unique (up to indistinguishability) continuous
adapted process with bounded variation5 such that 〈X,Y 〉0 = 0 a.s. and
XY − 〈X,Y 〉 is a continuous martingale. Moreover, for any t ≤ T we have

〈X,Y 〉t = lim
|ς|→0
ς∈P[0,t]

N∑
k=1

(Xtk
−Xtk−1)(Ytk

− Ytk−1)

in probability. Note that 〈X,X〉 = 〈X〉 and the following identity (that ex-
tends (4.32)) holds:

E [(Xt −Xs)(Yt − Ys) | Fs] = E [XtYt −XsYs | Fs]
= E [〈X,Y 〉t − 〈X,Y 〉s | Fs] ,

for every X,Y ∈ M 2
c and 0 ≤ s < t. In the following proposition we collect

other straightforward properties of the co-variation process.

5 A process has bounded variation if almost all its paths are functions with bounded
variation.
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Proposition 4.29 The co-variation 〈·, ·〉 is a bi-linear form in M 2
c : for every

X,Y,Z ∈M 2
c , λ, μ ∈ R we have

i) 〈X,Y 〉 = 〈Y,X〉;
ii) 〈λX + μY,Z〉 = λ〈X,Z〉+ μ〈Y,Z〉;
iii) |〈X,Y 〉|2 ≤ 〈X〉〈Y 〉.

Example 4.30 A particularly important case is when

Xt =
∫ t

0

usdWs, Yt =
∫ t

0

vsdWs,

with u, v ∈ L2. Then, proceeding as in Proposition 4.24, we can show that

XtYt −
∫ t

0

usvsdWs

is a martingale and therefore6

〈X,Y 〉t =
∫ t

0

usvsdWs, t ∈ [0, T ], (4.33)

is the quadratic variation process of X,Y . Proceeding as in Theorem 3.74, we
can also directly prove that∫ t

0

usvsdWs = lim
|ς|→0
ς∈P[0,t]

N∑
k=1

(Xtk
−Xtk−1)(Ytk

− Ytk−1)

where the limit is in L2(Ω,P )-norm and therefore also in probability. �

Next we recall that, by Proposition 3.79, if X is a continuous process and Y
is a process with bounded variation then

lim
|ς|→0
ς∈P[0,t]

N∑
k=1

(
Xtk

(ω)−Xtk−1(ω)
) (

Ytk
(ω)− Ytk−1(ω)

)
= 0

for any t ≤ T and ω ∈ Ω. Hence, if Z and V are continuous processes with
bounded variation and X,Y ∈M 2

c , we formally have

〈X + Z, Y + V 〉 = 〈X,Y 〉+ 〈Z, Y + V 〉+ 〈X + Z, V 〉︸ ︷︷ ︸
=0

.

Therefore it seems natural to extend Definition 4.28 as follows:
6 Note also that the process

It =

∫ t

0

usvsdWs, t ∈ [0, T ],

has bounded variation in view of Example 3.60-iii) and I0 = 0.
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Definition 4.31 Let Z and V be continuous processes with bounded variation
and X,Y ∈M 2

c . We call

〈X + Z, Y + V 〉 := 〈X,Y 〉

the co-variation process of X + Z and Y + V .

Example 4.32 We go back to Example 4.15 and consider

St = S0 +
∫ t

0

μ(s)ds +
∫ t

0

σ(s) dWs

with μ, σ ∈ L2([0, T ]) deterministic functions. We proved that

var(St) =
∫ t

0

σ(s)2ds.

Now we observe that the process S0+
∫ t

0
μ(s)ds is continuous and has bounded

variation by Example 3.60-iii). Therefore, according to Definition 4.31 and
formula (4.29), we have

〈S〉t = var(St), t ∈ [0, T ],

i.e. the quadratic variation process is deterministic and equal to the variance
function. �

4.4 Integral of L2
loc-processes

In this paragraph we further extend the class of processes for which the
stochastic integral is defined. This generalization is necessary because sim-
ple processes like f(Wt), where f is a continuous function, do not generally
belong to L2: indeed we have

E

[∫ T

0

f(Wt)dt

]
=

1√
2πt

∫ T

0

∫
R

exp
(
−x2

2t

)
f(x)dxdt.

Then, for example, f(Wt) /∈ L2 if f(x) = ex4
. Luckily it is not difficult to

extend the construction of the Itô integral to a class of progressively mea-
surable processes that verify an integrability condition that is weaker than in
Definition 4.1-ii) and that is sufficiently general to handle most applications.
However, when this generalization is made, some important properties are
lost: in particular the stochastic integral is not in general a martingale.

Definition 4.33 We denote by L2
loc the family of processes (ut)t∈[0,T ] that

are progressively measurable with respect to the filtration (Ft)t∈[0,T ] and such
that ∫ T

0

u2
t dt <∞ a.s. (4.34)
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Example 4.34 Every stochastic process that is progressively measurable and
has a.s. continuous paths belongs to L2

loc. In particular exp(W 4
t ), where W is

a Brownian motion, belongs to L2
loc. �

It is interesting to note that the space L2
loc is invariant with respect to changes

of equivalent probability measures: if (4.34) holds and Q ∼ P then we have
of course ∫ T

0

u2
t dt <∞, Q-a.s.

On the contrary, the space L2 depends on the fixed probability measure.

Now we define the stochastic integral u ∈ L2
loc step by step: the rest of the

paragraph can be skipped on first reading.

I) Given u ∈ L2
loc, the process7

At =
∫ t

0

u2
sds, t ∈ [0, T ],

is continuous and adapted to the filtration. Indeed it is enough to observe
that u can be approximated pointwise by a sequence of simple and adapted
processes.

II) For every n ∈ N we put

τn = inf{t ∈ [0, T ] | At ≥ n} ∧ T.

By Theorem 3.52, τn is a stopping time and

τn ↗ T a.s. as n→∞.

We have
Fn := {τn = T} = {AT ≤ n}, (4.35)

and so, since u ∈ L2
loc,⋃

n∈N
Fn = Ω \N, N ∈ N . (4.36)

III) We put
un

t = ut1{t≤τn}, t ∈ [0, T ],

and note that un ∈ L2 since

E

[∫ T

0

(un
t )2 dt

]
= E

[∫ τn

0

u2
t dt

]
≤ n.

Therefore the process

Xn
t =

∫ t

0

un
t dWt, t ∈ [0, T ] (4.37)

is well-defined and Xn ∈M 2
c .

7 We put A(ω) = 0 if u(ω) /∈ L2(0, T ).
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IV) For every n, h ∈ N, we have un = un+h = u on Fn in (4.35). So, by
Corollary 4.14, the processes Xn and Xn+h are indistinguishable on Fn.
Recalling that (Fn) is an increasing sequence for which (4.36) holds, the
following definition is well-posed.

Definition 4.35 Given u ∈ L2
loc, let Fn and Xn be defined as in (4.35) and

(4.37), respectively. Then the stochastic integral of u is the continuous and
Ft-adapted stochastic process X that is indistinguishable from Xn on Fn, for
every n ∈ N. We write

Xt =
∫ t

0

usdWs, t ∈ [0, T ].

Note that, by construction, we have

Xt = lim
n→∞

∫ t

0

un
t dWt, t ∈ [0, T ], a.s. (4.38)

Remark 4.36 Given p ≥ 1, we denote by Lp
loc the family of progressively

measurable processes (ut)t∈[0,T ] such that∫ T

0

|ut|pdt <∞ a.s. (4.39)

By Hölder’s inequality we have

Lp
loc ⊆ L

q
loc, p ≥ q ≥ 1,

and in particular L2
loc ⊆ L1

loc. Since Lp
loc depends on the filtration (Ft), when-

ever it is necessary we write more explicitly Lp
loc(Ft). The space L2

loc is the
natural setting for the definition of stochastic integral: we refer to Steele [315],
Paragraph 7.3, for an interesting discussion about the impossibility of defining
the Itô integral of u ∈ Lp

loc for 1 ≤ p < 2. �

4.4.1 Local martingales

In general, the stochastic integral of a process u ∈ L2
loc is not a martingale:

however, in the sense that we are going to explain, it is not “far off to be a
martingale”.

Definition 4.37 A process M = (Mt)t∈[0,T ] is a Ft-local martingale if there
exists an increasing sequence (τn) of Ft-stopping times, called localizing se-
quence for M , such that

lim
n→∞

τn = T a.s. (4.40)

and, for every n ∈ N, the stochastic process Mt∧τn is a Ft-martingale. We
denote by Mc,loc the space of continuous local martingales such that M0 = 0
a.s.
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To put it simply, a local martingale is a stochastic process that can be
approximated by a sequence of true martingales. Sometimes, when we want
to emphasize the fact that a process M is a true martingale and not simply a
local martingale, we say that M is a strict martingale. An interesting example
of a local martingale that is not a strict martingale is given in Example 9.34.

By definition, we have that

Ms∧τn = E [Mt∧τn | Fs] , 0 ≤ s ≤ t ≤ T, (4.41)

and if M is continuous, since τn → T a.s., we have

lim
n→∞

Mt∧τn = Mt a.s.

Consequently, whenever we can take the limit inside the conditional expecta-
tion in (4.41), we have that M is a strict martingale: as particular cases, see
Propositions 4.39 and 4.40 below.

Clearly every martingale is also a local martingale: it is enough to choose
τn = T for every n. Further, we remark that every local martingale admits a
right-continuous modification: indeed it is enough to note that, by Theorem
3.41, this holds true for the stopped processes Mt∧τn . In what follows we shall
always consider the right-continuous version of every local martingale.

Remark 4.38 Every continuous local martingale M admits an approxima-
ting sequence of continuous and bounded martingales. Indeed let (τn) be a
localizing sequence for M and let us put

σn = inf{t ∈ [0, T ] | |Mt| ≥ n} ∧ T, n ∈ N.

Since M is continuous we have that σn satisfies (4.40) and also (τn ∧ σn) is a
localizing sequence for M : indeed

Mt∧(τn∧σn) = M(t∧τn)∧σn

and so, by Doob’s Theorem 3.58, Mn
t := Mt∧(τn∧σn) is a bounded martingale

such that
|Mn

t | ≤ n, t ∈ [0, T ]. �

We present now some simple properties of continuous local martingales.

Proposition 4.39 If M ∈Mc,loc and

sup
t∈[0,T ]

|Mt| ∈ L1(Ω,P ),

then M is a martingale. In particular every bounded8 M ∈ Mc,loc is a mar-
tingale.
8 There exists a constant c such that |Mt| ≤ c a.s. for every t ∈ [0, T ].
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Proof. The claim follows directly from (4.41), applying the dominated con-
vergence theorem for conditional expectation. �

Proposition 4.40 Every continuous non-negative local martingale M is also
a super-martingale. Further, if

E [MT ] = E [M0] (4.42)

then (Mt)0≤t≤T is a martingale.

Proof. Applying Fatou’s lemma for conditional expectation to (4.41), we get

Ms ≥ E [Mt | Fs] , 0 ≤ s ≤ t ≤ T, (4.43)

and this proves the first part of the claim.
By taking the expectation in the previous relation we get

E [M0] ≥ E [Mt] ≥ E [MT ] , 0 ≤ t ≤ T.

By assumption (4.42), we infer that E [Mt] = E [M0] for every t ∈ [0, T ].
Eventually, by (4.43), if we had Ms > E [Mt | Fs] on an event of strictly
positive probability, then we would get a contradiction. �

Proposition 4.41 If M ∈Mc,loc and τ is a stopping time, then also Mt∧τ ∈
Mc,loc.

Proof. If (τn) is a localizing sequence for M and Xt = Mt∧τ , we have

Xt∧τn = M(t∧τ)∧τn
= M(t∧τn)∧τ .

Consequently, by Theorem 3.58 and since by assumption Mt∧τn is a continuous
martingale, we have that (τn) is a localizing sequence for X. �

4.4.2 Localization and quadratic variation

The following theorem states that the stochastic integral of a process u ∈ L2
loc

is a continuous local martingale. In the whole section we use the notations

Xt =
∫ t

0

usdWs, At =
∫ t

0

u2
sds, t ∈ [0, T ]. (4.44)

Theorem 4.42 We have:

i) if u ∈ L2, then X ∈M 2
c ;

ii) if u ∈ L2
loc, then X ∈Mc,loc and a localizing sequence for X is given by

τn = inf {t ∈ [0, T ] | At ≥ n} ∧ T, n ∈ N. (4.45)
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Proof. We only prove ii). We saw at the beginning of Paragraph 4.4 that
(τn) in (4.45) is an increasing sequence of stopping times such that τn → T
a.s. for n→∞.

By Definition 4.35, on Fk = {AT ≤ k} with k ≥ n, we have

Xt∧τn =
∫ t∧τn

0

us1{s≤τk}dWs =

(by Proposition 4.22, since us1{s≤τk} ∈ L2)

=
∫ t

0

us1{s≤τk}1{s≤τn}dWs =

(since n ≤ k)

=
∫ t

0

us1{s≤τn}dWs, on Fk.

By the arbitrariness of k and by (4.36), we get

Xt∧τn =
∫ t

0

us1{s≤τn}dWs, t ∈ [0, T ], a.s. (4.46)

The claim follows from the fact that us1{s≤τn} ∈ L2 and so Xt∧τn ∈M 2
c and

τn is a localizing sequence for X. �

Next we extend Proposition 4.24.

Proposition 4.43 Given u ∈ L2
loc, let X and A be the processes in (4.44).

Then X2−A is a continuous local martingale: A is called quadratic variation
process of X and we write A = 〈X〉.
Proof. Let us consider the localizing sequence (τn) for X defined in Theorem
4.42. We proved that (cf. (4.46))

Xt∧τn =
∫ t

0

us1{s≤τn}dWs

with us1{s≤τn} ∈ L2. Therefore, by Proposition 4.24, we have that the fol-
lowing process is a martingale:

X2
t∧τn
−
∫ t

0

u2
s1{s≤τn}ds = X2

t∧τn
−At∧τn =

(
X2 −A

)
t∧τn

.

Hence X2 −A is a local martingale and τn is a localizing sequence for X. �

Proposition 4.43 has the following extension: for every X,Y ∈Mc,loc there
exists a unique (up to indistinguishability) continuous process 〈X,Y 〉 with
bounded variation, such that 〈X,Y 〉0 = 0 a.s. and

XY − 〈X,Y 〉 ∈Mc,loc.

We call 〈X,Y 〉 the co-variation process of X,Y . Note that 〈X〉 = 〈X,X〉.
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Remark 4.44 If

Xt =
∫ t

0

usdWs, Yt =
∫ t

0

vsdWs,

with u, v ∈ L2
loc, then

〈X,Y 〉t =
∫ t

0

usvsds. �

More generally, by analogy with Definition 4.31, we give the following:

Definition 4.45 Let Z and V be continuous processes with bounded variation
and X,Y ∈Mc,loc. We call

〈X + Z, Y + V 〉 := 〈X,Y 〉 (4.47)

the co-variation process of X + Z and Y + V . In (4.47), 〈X,Y 〉 is the unique
(up to indistinguishability) continuous process with bounded variation, such
that 〈X,Y 〉0 = 0 a.s. and XY − 〈X,Y 〉 ∈Mc,loc.

Proposition 4.27 can be extended as follows:

Proposition 4.46 Let M ∈Mc,loc. For almost any ω such that 〈M〉T (ω) >
0, the function t �→Mt(ω) does not have bounded variation over [0, T ]. More-
over, for almost any ω such that 〈M〉T (ω) = 0 the function t �→ Mt(ω) is
null.

We conclude the paragraph stating9 a classical result that claims that, for
every M ∈Mc,loc, the expected values

E [〈M〉pT ] and E

[
sup

t∈[0,T ]

|Mt|2p

]

are comparable, for p > 0. More precisely, we have

Theorem 4.47 (Burkholder-Davis-Gundy’s inequalities) For any p >
0 there exist two positive constants λp, Λp such that

λpE [〈M〉pτ ] ≤ E

[
sup

t∈[0,τ ]

|Mt|2p

]
≤ ΛpE [〈M〉pτ ] ,

for every M ∈Mc,loc and stopping time τ .

As a consequence of Theorem 4.47 we prove a useful criterion to establish
whether a stochastic integral of a process in L2

loc is a martingale.

9 For the proof we refer, for example, to Theorem 3.3.28 in [201].
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Corollary 4.48 If u ∈ L2
loc and

E

⎡⎣(∫ T

0

u2
t dt

) 1
2
⎤⎦ <∞, (4.48)

then the process ∫ t

0

usdWs, t ∈ [0, T ],

is a martingale.

Proof. First of all we observe that, by Hölder’s inequality, we have

E

⎡⎣(∫ T

0

u2
t dt

) 1
2
⎤⎦ ≤ E

[∫ T

0

u2
t dt

] 1
2

,

and so condition (4.48) is weaker than the integrability condition in the space
L2.

By the second Burkholder-Davis-Gundy’s inequality with p = 1
2 and τ =

T , we have

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

usdWs

∣∣∣∣
]
≤ Λ 1

2
E

⎡⎣(∫ T

0

u2
t dt

) 1
2
⎤⎦ <∞

and so the claim follows from Proposition 4.39. �
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Itô calculus

As for the Riemann and Lebesgue integral, the definition of stochastic integral
is theoretical and it is not possible to use it directly for practical purposes,
apart from some particular cases. Classical results reduce the problem of the
computation of a Riemann integral to the determination of a primitive of the
integrand function; in stochastic integration theory, the concept of primitive
is translated into “integral terms” by the Itô-Doeblin formula1. This formula
extends Theorem 3.70 in a probabilistic framework and lays the grounds for
differential calculus for Brownian motion: as we have already seen the Brow-
nian motion paths are generally irregular and so an integral interpretation of
differential calculus for stochastic processes is natural.

In this chapter we present the fundamental connection established by
the Itô formula between martingale and partial differential equation theo-
ries: this connection will be explained thoroughly in Paragraph 9.4, having at
our disposal the foundations of the theory of stochastic differential equations.
In Paragraph 5.2 we extend to the multi-dimensional case the main results on
stochastic processes and stochastic calculus, and we dwell on the concept of
correlation of processes. The last part of the chapter deals with some exten-
sions of the Itô formula: in order to be able to apply the formula to the study
of American options, we weaken the classical C1,2 regularity assumptions of
the function only requiring it belongs to a suitable Sobolev space. In the end
we describe the so-called local time of an Itô process by which it is possible
to give a direct proof of the Black-Scholes formula to price a European Call
option.

1 The formula for the “change of variable” presented in this chapter was proved
by Itô [180] and is commonly known as Itô formula in the literature. Recently
a posthumous 1940 paper by W. Doeblin [98] was found, where the author con-
structed the stochastic integral and stated the change-of-variable formula. That
paper was recently published again [99] with a historical note by Bru. In what fol-
lows, for the sake of brevity we simply indicate that formula by the more common
“Itô formula”.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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5.1 Itô processes

Let W be a real Brownian motion on a filtered probability space (Ω,F , P, (Ft))
where the usual hypotheses hold.

Definition 5.1 An Itô process is a stochastic process X of the form

Xt = X0 +
∫ t

0

μsds +
∫ t

0

σsdWs, t ∈ [0, T ], (5.1)

where X0 is a F0-measurable random variable, μ ∈ L1
loc and σ ∈ L2

loc.

Formula (5.1) is usually written in the “differential form”

dXt = μtdt + σtdWt. (5.2)

The processes μ and σ are called drift and diffusion coefficients, respectively.
Intuitively μ “gives the direction” to the process X, while the part of X con-
taining σ is a (local) martingale giving only a “stochastic contribution” to the
evolution of X.

On the one hand, (5.2) is shorter to write than (5.1) and so more conve-
nient to use; on the other hand, (5.2) is more intuitive and familiar, because
(just formally!) it reminds us of the usual differential calculus for functions
of real variables. We remark that we have defined every single term appear-
ing in (5.1); on the contrary (5.2) must be taken “on the whole” and it is
merely a more compact notation to write (5.1). For the sake of clarity, we
wish to emphasize the fact that the term dXt, sometimes called stochastic
differential, has not been defined and it makes sense only within formula
(5.2).

The Itô process X in (5.1) is the sum of the continuous process with
bounded variation

X0 +
∫ t

0

μsds

with the continuous local martingale∫ t

0

σsdWs.

Therefore, by Definition 4.45 and Remark 4.44, we have

Corollary 5.2 If X is the Itô process in (5.1), then its quadratic variation
process is given by

〈X〉t =
∫ t

0

σ2
sds,

or, in differential terms,
d〈X〉t = σ2

t dt.
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The differential representation of an Itô process is unique, that is the drift
and diffusion coefficients are determined uniquely. Indeed we have the follow-
ing:

Proposition 5.3 If X is the Itô process in (5.1) and there exist a random
variable X ′

0, μ′ ∈ L1
loc and σ′ ∈ L2

loc such that

Xt = X ′
0 +
∫ t

0

μ′sds +
∫ t

0

σ′s dWs, t ∈ [0, T ],

then X0 = X ′
0 a.s. and μ = μ′, σ = σ′ (m⊗ P )-a.e. that is

{(t, ω) ∈ [0, T ]×Ω | μt(ω) 
= μ′t(ω)}, {(t, ω) ∈ [0, T ]×Ω | σt(ω) 
= σ′t(ω)}

have null (m⊗ P )-measure.

Proof. By assumption we have

Mt :=
∫ t

0

(μs − μ′s)ds =
∫ t

0

(σs − σ′s)dWs, t ∈ [0, T ] a.s.

Therefore M ∈Mc,loc and has bounded variation: hence by Proposition 4.46
M is indistinguishable from the null process. Consequently we have

0 = 〈M〉T =
∫ T

0

(σt − σ′t)
2dt,

and this proves that σ and σ′ are (m ⊗ P )-equivalent. We also have μ = μ′

(m⊗ P )-a.e. since it is a standard result that, if u ∈ L1([0, T ]) and∫ t

0

usds = 0, t ∈ [0, T ],

then u = 0 almost everywhere with respect to Lebesgue measure.

Remark 5.4 An Itô process is a local martingale if and only if it has null
drift. More precisely, if X in (5.1) is a local martingale, then μ = 0 (m⊗P )-a.e.
Indeed by assumption the process∫ t

0

μsds = Xt −X0 −
∫ t

0

σsdWs

would belong to Mc,loc and, at the same time, would have bounded variation,
since it is a Lebesgue integral: the claim follows from Proposition 4.46. �

5.1.1 Itô formula for Brownian motion

Theorem 5.5 (Itô formula) Let f ∈ C2(R) and let W be a real Brownian
motion. Then f(W ) is an Itô process and we have

df(Wt) = f ′(Wt)dWt +
1
2
f ′′(Wt)dt. (5.3)
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Proof. The great news of the Itô formula with respect to (3.53) is the pres-
ence of a “second order” term 1

2f ′′(Wt)dt (as we shall see, the coefficient 1
2

comes from a second-order Taylor expansion) due to the fact that a Brownian
motion has positive quadratic variation:

d〈W 〉t = dt.

We first prove the thesis under the additional assumption that f has bounded
first and second derivatives. We set

Xt = f(Wt)− f(W0), Yt =
∫ t

0

f ′(Ws)dWs +
1
2

∫ t

0

f ′′(Ws)ds

and, for a fixed t > 0, we prove that Xt = Yt a.s. Given a partition
ς = {t0, t1, . . . , tN} of [0, t], to simplify the notation we put fk = f(Wtk

)
and Δk = Wtk

−Wtk−1 . We have

Xt = f(Wt)− f(W0) =
N∑

k=1

(fk − fk−1) =

(by taking the second-order Taylor expansion with the Lagrange form of the
remainder, with t∗k ∈ [tk−1, tk])

=
N∑

k=1

f ′k−1Δk︸ ︷︷ ︸
=:I1(ς)

+
1
2

N∑
k=1

f ′′k−1Δ
2
k︸ ︷︷ ︸

=:I2(ς)

+
1
2

N∑
k=1

(f ′′(Wt∗k)− f ′′k−1)Δ
2
k︸ ︷︷ ︸

=:I3(ς)

.

Concerning I1(ς), since f ′ is by assumption a continuous bounded function,
then f ′(W ) is a L2-continuous process (cf. Example 4.19) and so by Remark
4.21 we have

lim
|ς|→0+

I1(ς) =
∫ t

0

f ′(Ws)dWs in M 2
c .

Concerning I2(ς), it is enough to proceed as in the proof of Theorem 3.74,
using the fact that 〈W 〉s = s, to prove that

lim
|ς|→0+

I2(ς) =
∫ t

0

f ′′(Ws)ds in L2(Ω).

Eventually we verify that

lim
|ς|→0+

I3(ς) = 0 in L2(Ω). (5.4)

Intuitively this is due to the fact that f ′′(Wt) is a continuous process and
W has finite quadratic variation: as a matter of fact the proof is based upon
the same idea of Proposition 3.73, analogous result for the first variation.
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Preliminarily, we observe that, for every ς = {t0, . . . , tN} ∈ P[0,t], t > 0, we
have

t2 =

(
N∑

k=1

(tk − tk−1)

)2

=
N∑

k=1

(tk − tk−1)2︸ ︷︷ ︸
=:J1(ς)

+2
∑
h<k

(th − th−1)(tk − tk−1)︸ ︷︷ ︸
=:J2(ς)

;

consequently

0 ≤ J1(ς) ≤ |ς|
N∑

k=1

(tk − tk−1) = |ς|t −−−−−→
|ς|→0+

0, (5.5)

0 ≤ J2(ς) ≤ t, ς ∈ P[0,t]. (5.6)

Then, we have

E
[(

I3(ς)
)2] =

N∑
k=1

E
[
(f ′′(Wt∗k)− f ′′k−1)

2Δ4
k

]
︸ ︷︷ ︸

=:L1(ς)

+ 2
N∑

h<k

E
[
(f ′′(Wt∗h)− f ′′h−1)(f

′′(Wt∗k)− f ′′k−1)Δ
2
hΔ2

k

]
︸ ︷︷ ︸

=:L2(ς)

.

We have

L1(ς) ≤ 4 sup |f ′′|2
N∑

k=1

E
[
Δ4

k

]
=

(by (3.55))

= 12 sup |f ′′|2
N∑

k=1

(tk − tk−1)2 −−−−−→
|ς|→0+

0

by (5.5). On the other hand, by Hölder’s inequality, we get

L2(ς) ≤
N∑

h<k

E
[
(f ′′(Wt∗h)− f ′′h−1)

2(f ′′(Wt∗k)− f ′′k−1)
2
] 1

2 E
[
Δ4

hΔ4
k

] 1
2 ≤

(given ε > 0, if |ς| is small enough, by Lebesgue’s dominated convergence
theorem, since f ′′ is bounded and continuous)

≤ ε

N∑
h<k

E
[
Δ4

hΔ4
k

] 1
2 ≤
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(by the independence of the Brownian increments)

≤ ε
N∑

h<k

E
[
Δ4

h

] 1
2 E
[
Δ4

k

] 1
2 = 3ε

N∑
h<k

(th − th−1)(tk − tk−1) ≤ 3εt

by (5.6) and this proves (5.4).
To conclude, we remark that by Theorem A.136 the L2-convergence im-

plies that for any t there exists of a sequence of partitions (ςn), with mesh
converging to zero, such that

lim
n→∞

(I1(ςn) + I2(ςn) + I3(ςn)) =
∫ t

0

f ′(Ws)dWs +
1
2

∫ t

0

f ′′(Ws)ds = Yt a.s.

On the other hand Xt = I1(ςn) + I2(ςn) + I3(ςn) for any n and therefore
the processes X and Y are modifications; eventually, since X and Y are
continuous, we infer that they are indistinguishable as well. This concludes
the proof under assumption that f has bounded first and second deriva-
tives.

For the general case, it suffices to use a localization argument: we introduce
the sequence of stopping times

τn = inf{t | |Wt| ≥ n}, n ∈ N,

and consider the stopped Brownian motion Wn
t = Wt∧τn that takes its values

in a compact set where f ′ and f ′′ are bounded. Using the same arguments as
above, we prove

f(Wt∧τn)− f(W0) =
∫ t∧τn

0

f ′(Ws)dWs +
1
2

∫ t∧τn

0

f ′′(Ws)ds

and the thesis follows since n is arbitrary (see, for instance, Steele [315] or
Durrett [108] for further details). �

Example 5.6

i) Applying the Itô formula with f(x) = x2 we have

d(W 2
t ) = 2WtdWt + dt,

hence we get ∫ t

0

WsdWs =
W 2

t − t

2
.

ii) We compute E
[
W 4

t

]
: by the Itô formula we have

dW 4
t = 4W 3

t dWt + 6W 2
t dt,

i.e.

W 4
t =

∫ t

0

4W 3
s dWs +

∫ t

0

6W 2
s ds.
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By the property of having null mean (4.7), we infer

E
[
W 4

t

]
=
∫ t

0

6E
[
W 2

s

]
ds =

∫ t

0

6sds = 3t2.

iii) Let Xt = eσWt with W Brownian motion and σ ∈ R; we have

dXt = σXtdWt +
1
2
σ2Xtdt. (5.7)

We aim at computing E [Xt]: since X ∈ L2, by the property of null expec-
tation (4.7), from (5.7) we get

E [Xt] =
σ2

2

∫ t

0

E [Xs] ds.

In other terms, if we put y(t) = E [Xt], we have that y is solution to the
ordinary Cauchy problem {

y′(t) = σ2

2 y(t),
y(0) = 1,

and we conclude that
E
[
eσWt

]
= e

σ2
2 t. (5.8)

Formula (5.8) is also a direct consequence of the result in Exercise A.34
or can also be proved by noting that

E
[
eσWt

]
= e

σ2
2 tE

[
eσWt−σ2

2 t
]

= e
σ2
2 t

where the last equality follows from the the martingale property of the
exponential Brownian motion, see Proposition 3.37-iii).

�

Exercise 5.7 Proceeding as in Example 5.6 and using the Itô formula, com-
pute E

[
W 6

t

]
. By induction, prove that E [Wn

t ] = 0 if n is odd and

E [Wn
t ] =

(
t

2

)n
2 n!

(n/2)!
,

if n is even. �
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5.1.2 General formulation

Notation 5.8 Let X be an Itô process

dXt = μtdt + σtdWt. (5.9)

If h is a stochastic process such that hμ ∈ L1
loc and hσ ∈ L2

loc, we shorten the
notation

dYt = htμtdt + htσtdWt

by writing
dYt = htdXt. (5.10)

Consistently we employ the notation

Yt = Y0 +
∫ t

0

hsdXs := Y0 +
∫ t

0

hsμsds +
∫ t

0

hsσsdWs.

We remark that, if μ ∈ L1
loc, σ ∈ L2

loc and h is a continuous adapted pro-
cess, then hμ ∈ L1

loc and hσ ∈ L2
loc. More generally it is enough that h is

progressively measurable and a.s. bounded.
We state now a more general version of the Itô formula: we will not go

through the proof that is substantially analogous to that of Theorem 5.5.

Theorem 5.9 (Itô formula) Let X be the Itô process in (5.9) and f =
f(t, x) ∈ C1,2(R2). Then the stochastic process

Yt = f(t,Xt)

is an Itô process and we have

df(t,Xt) = ∂tf(t,Xt)dt + ∂xf(t,Xt)dXt +
1
2
∂xxf(t,Xt)d〈X〉t. (5.11)

Remark 5.10 Since, by Corollary 5.2, we have

d〈X〉t = σ2
t dt,

Formula (5.11) can be written more explicitly as follows

df =
(

∂tf + μt∂xf +
1
2
σ2

t ∂xxf

)
dt + σt∂xfdWt, (5.12)

where f = f(t,Xt). �

Example 5.11 If f(t, x) = tx and X = W is a Brownian motion, we
have

d(tWt) = Wtdt + tdWt.
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We emphasize the resemblance with the classical differentiation rule for the
product of two functions. In integral form we get

tWt =
∫ t

0

Wsds +
∫ t

0

sdWs.

As an exercise, compute the stochastic differential of tW 2
t . �

Example 5.12 (Exponential martingale)
Given u ∈ L2

loc, we set

dYt = utdWt −
1
2
u2

t dt, (5.13)

and consider the process eY . By the Itô formula we have

deYt = eYtdYt +
1
2
eYtd〈Y 〉t = ute

YtdWt.

Therefore eY is a local martingale, called exponential martingale. By Propo-
sition 4.40, since it is a positive process, eY is also a super-martingale and in
particular we have that

E
[
eYt
]
≤ E

[
eY0
]
, t ≥ 0.

Further, if E
[
eYT
]

= E
[
eY0
]
, then

(
eYt
)
0≤t≤T

is a martingale. By (5.8) this
is true in particular if ut = σ with σ real constant (or even if σ ∈ C): then
the process

eσWt− |σ|
2

2 t

is a martingale. Let us remark explicitly that

Yt = Xt −
1
2
〈X〉t,

where

Xt =
∫ t

0

usdWs, 〈X〉t =
∫ t

0

u2
sds. �

Proposition 5.13 If μ ∈ L1 and σ ∈ L2 are deterministic functions, then
the process defined by

dSt = μ(t)dt + σ(t)dWt,

has normal distribution with

E [St] = S0 +
∫ t

0

μ(s)ds, var(St) =
∫ t

0

σ2(s)ds.

Proof. By Theorem A.89 and recalling Example 4.15, it is enough to prove
that, for every t, we have

E
[
eiξSt

]
= exp

(
iξ

(
S0 +

∫ t

0

μ(s)ds

)
− ξ2

2

∫ t

0

σ2(s)ds

)
. (5.14)

The proof of (5.14) is left as an exercise: it is enough to proceed as in the
proof of (5.8). �
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5.1.3 Martingales+and parabolic equations

We consider the Itô process X in (5.9) with constant drift and diffusion co-
efficients μt = μ and σt = σ and we define the parabolic differential operator
with constant coefficients

L = ∂t + μ∂x +
σ2

2
∂xx.

Then, for f ∈ C1,2(R2), (5.12) is equivalent to

df(t,Xt) = Lf(t,Xt)dt + σ∂xf(t,Xt)dWt. (5.15)

Corollary 5.14 Under the previous assumptions, the process (f(t,Xt))t∈[0,T ]

is a local martingale if and only if f is a solution of L:

Lf = 0, in ]0, T [×R.

Proof. It is obvious that, if f is a solution, then f(t,Xt) is a stochas-
tic integral by (5.15) and so a continuous local martingale. Conversely, if
f(t,Xt) is a local martingale, then its drift is null by Remark 5.4, i.e. we
have Lf(t,Xt) = 0 (m⊗ P )-almost everywhere. The claim follows from
Proposition A.59, since Xt has strictly positive density on R: we observe
that

0 =
∫ t

0

E [|Lf(s,Xs)|] ds =
∫ t

0

∫
R

|Lf(s, x)|Γ (s, x)dxds,

with Γ > 0. �

We note that, if ∂xf(t,Xt) ∈ L2, then f(t,Xt) is a square integrable strict
martingale, f(t,Xt) ∈ M 2

c . Analogously f(t,Xt) is a local super-martingale
if and only if f is a supersolution2 of L, i.e. we have that

Lf ≤ 0, in ]0, T [×R. (5.16)

5.1.4 Geometric Brownian motion

A geometric Brownian motion is a solution of the stochastic differential equa-
tion

dSt = μStdt + σStdWt, (5.17)

where μ, σ ∈ R, i.e. it is a stochastic process S ∈ L2 such that

St = S0 + μ

∫ t

0

Ssds + σ

∫ t

0

SsdWs. (5.18)

2 See the note on p. 264.
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The process S can be written explicitly in the form St = f(t,Wt) with
f = f(t, x) ∈ C1,2. Indeed applying the Itô formula and imposing (5.17),
we get (

∂tf(t,Wt) +
1
2
∂xxf(t,Wt)

)
dt + ∂xf(t,Wt)dWt

= μf(t,Wt)dt + σf(t,Wt)dWt.

By the uniqueness of the representation of an Itô process, (cf. Proposition 5.3)
we infer3 that, for (t, x) ∈ R>0 × R, we have that{

∂xf(t, x) = σf(t, x),
f(t, x) + 1

2∂xxf(t, x) = μf(t, x).

For the first equation, there exists a function g = g(t) such that

f(t, x) = g(t)eσx (5.19)

and, plugging (5.19) into the second equation, we get

g′ +
σ2

2
g = μg

hence g(t) = g(0)e
(

μ−σ2
2

)
t
. In conclusion we have that

St = S0e
σWt+

(
μ−σ2

2

)
t
, (5.20)

and, applying the Itô formula, it is easy to verify that S in (5.20) is really a
solution of equation (5.17).

Bachelier [16] was the first to use (non-geometric) Brownian motion
as a model for asset prices, even though such a process can be nega-
tive with positive probability. Later on, Samuelson [295] considered geo-
metric Brownian motion, that was then used by Black, Merton and Sc-
holes in their classical works [49], [250] on arbitrage pricing of options. Be-
ing an exponential, if S0 > 0 then the geometric Brownian motion (St)
is a strictly positive process: more precisely, St has a density whose sup-
port lies in R≥0 and is strictly positive over ]0,+∞[ (see (5.22) further
down).

If σ = 0, the dynamics of S is deterministic

St = S0e
μt

and this corresponds to continuous compounding with rate μ. For this reason
the drift coefficient μ is usually called expected rate of return of S and the
3 Here we use also the fact that, for t > 0, Wt has strictly positive density on R:

by Proposition A.59, if g is a continuous function such that g(Wt) = 0 a.s., then
g ≡ 0.
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Fig. 5.1. Graph of a path t �→ St(ω) of a geometric Brownian motion S and its
mean E [St]

diffusion coefficient σ, adjusting the stochastic effect of Brownian motion, is
called volatility. Since

log(St) = log(S0) +
(

μ− σ2

2

)
t + σWt ∼ Nlog(S0)+

(
μ−σ2

2

)
t, σ2t

, (5.21)

S has log-normal distribution (cf. Example A.34). Clearly it is easy to com-
pute

P (St ∈ [a, b]) = P (log St ∈ [log a, log b]),

using, for example (A.24) to get a normal standard distribution. Alternatively
we can explicitly write the density Ψ (S0; t, ·) of St: since St = F (Wt) with
F (x) = S0 exp

(
σx +

(
μ− σ2

2

)
t
)
, by Remark A.33, we have

Ψ(S0; t, x) =
1

σx
√

2πt
exp

(
−

(
log
(

x
S0

)
− μ + σ2t

2

)2

2σ2t

)
, t > 0, x > 0.

(5.22)
In Figure 5.2 we depict the graph of the log-normal density.

Recalling that, by Example 5.12,

Mt := exp
(

σWt −
σ2

2
t

)
is a martingale, we have

E [ST | Ft] = eμT E [MT | Ft] = eμT Mt = eμ(T−t)St,
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Fig. 5.2. Graph of the log-normal density Ψ(S0; t, x) with S0 = 1

for every 0 ≤ t ≤ T . Consequently St is a sub-martingale if μ ≥ 0
and it is a martingale if and only if μ = 0. Further, if S0 ∈ R, we
have

E [St] = S0e
μt,

as we can verify directly by (A.27). Eventually, by (A.28), we have

var(St) = S2
0e2μt

(
eσ2t − 1

)
.

5.2 Multi-dimensional Itô processes

We extend the definition of Brownian motion to the multi-dimensional case.

Definition 5.15 (d-dimensional Brownian motion) Let (Ω,F , P, (Ft))
be a filtered probability space. A d-dimensional Brownian motion is a stochas-
tic process W = (Wt)t∈[0,+∞[ in Rd such that

i) W0 = 0 P -a.s.;
ii) W is an Ft-adapted and continuous stochastic process;
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iii) for t > s ≥ 0, the random variable Wt−Ws has multi-normal distribution
N0,(t−s)Id

, where Id is the (d×d)-identity matrix, and it is independent of
Fs.

The following lemma contains some immediate consequences of the defi-
nition of multi-dimensional Brownian motion.

Lemma 5.16 Let W = (W 1, . . . ,W d) be a d-dimensional Brownian motion
on (Ω,F , P, (Ft)). Then, for every i = 1, . . . , d we have

1) W i is a real Brownian motion on (Ω,F , P, (Ft)) and so, in particular, an
Ft-martingale;

2) W i
t+h −W i

t and W j
t+h −W j

t are independent random variables for i 
= j
and t, h ≥ 0.

Proof. The claim follows from the fact that, for x = (x1, . . . , xd) ∈ Rd and
h > 0, we have

Γ (h, x) :=
1

(2πh)
d
2

exp
(
−|x|

2

2h

)
=

d∏
i=1

1√
2πh

exp
(
−x2

i

2h

)
. (5.23)

Indeed, we prove property 1) in the case i = 1: it is enough to verify
that

(W 1
t+h −W 1

t ) ∼ N0,h. (5.24)

Given H ∈ B and h > 0, we have

P ((W 1
t+h −W 1

t ) ∈ H) = P ((Wt+h −Wt) ∈ H × R× · · · × R) =

(since (Wt+h −Wt) ∼ N0,tId
and (5.23) holds)

=
∫

H

1√
2πh

exp
(
−x2

1

2h

)
dx1

d∏
i=2

∫
R

1√
2πh

exp
(
−x2

i

2h

)
dxi

and this proves (5.24) since all the integrals in dxi for i ≥ 2 evaluate to
one.

Since we know the joint and marginal distributions of W i
t+h − W i

t and
W j

t+h − W j
t , property 2) is an immediate consequence of Proposition A.53

and of (5.23). �

Example 5.17 (Correlated Brownian motion) Given an (N×d)-dimensional
matrix α with constant real entries, we set

� = αα∗. (5.25)

Evidently � = (�ij) is an (N × N)-dimensional matrix, symmetric, posi-
tive semi-definite and �ij = 〈αi, αj〉 where αi is the i-th row of the ma-
trix α.
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Given μ ∈ RN and a d-dimensional Brownian motion W , we put

Bt = μ + αWt, (5.26)

i.e.
dBt = αdWt. (5.27)

By Remark A.93, we have that

Bt ∼ Nμ,t�

and in particular
Cov(Bt) = t� (5.28)

i.e.
E
[(

Bi
t − μi

) (
Bj

t − μj

)]
= t�ij .

We say that B is a Brownian motion starting from μ, with (deterministic)
correlation matrix �. We treat in Section 5.2.2 the case of a Brownian motion
with stochastic correlation matrix.

For instance, if N = 1, we have α = (α1i)i=1,...,d and the random vari-
able

Bt = μ +
d∑

i=1

α1iW i
t

has normal distribution with expectation μ and variance |α|2t.
In intuitive terms, we can think of N as the number of assets traded

on the market, represented by B, and of d as the number of sources of
randomness. In building a stochastic model, we can suppose that the cor-
relation matrix � of the assets is observable: if � is symmetric and positive
definite, the Cholesky decomposition algorithm4 allows us to determine an
(N × N)-dimensional lower triangular matrix α such that � = αα∗, and
so it is possible to obtain a representation for the risk factors in the form
(5.26). �

Since the components of a d-dimensional Brownian motion W on (Ω,F , P,
(Ft)) are independent real Brownian motions, the integral∫ t

0

usdW j
s , j = 1, . . . , d,

is defined in the usual way for every u ∈ L2
loc(Ft). Moreover we have

Lemma 5.18 For every u, v ∈ L2(Ft), t0 < t and i 
= j, we have

E

[∫ t

t0

usdW i
s

∫ t

t0

vsdW j
s | Ft0

]
= 0. (5.29)

4 See, for example, [263].
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Proof. By an approximation argument it is enough to consider simple u, v:
since the proof is similar to that of Theorem 4.5, we employ analogous nota-
tions. We have

E

[∫ t

t0

usdW i
s

∫ t

t0

vsdW j
s | Ft0

]
=E

[
N∑

k=1

ek(W i
tk
−W i

tk−1
)

N∑
h=1

εh(W j
th
−W j

th−1
) | Ft0

]

=
N∑

k=1

E
[
ekεk(W i

tk
−W i

tk−1
)(W j

tk
−W j

tk−1
) | Ft0

]
+ 2
∑
h<k

E
[
ekεh(W i

tk
−W i

tk−1
)(W j

th
−W j

th−1
) | Ft0

]
and we conclude by using Proposition A.107-(6), by the independence of
W i

tk
− W i

tk−1
from W j

tk
− W j

tk−1
(by Lemma 5.16), from ek and εk (being

Ftk−1-measurable random variables). �

Notation 5.19 If u is an (N × d)-matrix with components in L2
loc(Ft) (in

what follows we simply write u ∈ L2
loc), we put∫ t

0

us dWs =

⎛⎝ d∑
j=1

∫ t

0

uij
s dW j

s

⎞⎠
i=1,...,N

.

The following result extends the properties of the stochastic integral in The-
orem 4.11.

Theorem 5.20 For all (N × d)-matrices u, v ∈ L2 and 0 ≤ a < b < c, the
following properties hold true:

(1) null expectation:

E

[∫ b

a

usdWs | Fa

]
= 0, E

[
〈
∫ b

a

utdWt,

∫ c

b

vtdWt〉 | Fa

]
= 0;

(2) Itô isometry:

E

[
〈
∫ b

a

utdWt,

∫ b

a

vtdWt〉 | Fa

]
= E

⎡⎣∫ b

a

N∑
i=1

d∑
j=1

uij
t vij

t dt | Fa

⎤⎦
= E

[∫ b

a

tr (utv
∗
t ) dt | Fa

]
,

(5.30)

and in particular

E

⎡⎣∣∣∣∣∣
∫ b

a

utdWt

∣∣∣∣∣
2

| Fa

⎤⎦ = E

[∫ b

a

|ut|2 dt | Fa

]
;
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(3) if we put

Xt =
∫ t

0

usdWs, t ∈ [0, T ],

we have that X ∈M 2
c and

[[X]]2T ≤ 4
∫ T

0

E
[
|ut|2

]
dt.

Further, the “non-conditional” versions of the equalities at points (1) and (2)
hold.

Proof. We prove only (5.30):

E

[
〈
∫ b

a

utdWt,

∫ b

a

vtdWt〉 | Fa

]

=
N∑

i=1

E

[(
d∑

h=1

∫ b

a

uih
t dW h

t

)(
d∑

k=1

∫ b

a

vik
t dW k

t

)
| Fa

]

(by Lemma 5.18 and Itô isometry)

= E

[∫ b

a

N∑
i=1

d∑
h=1

uih
t vih

t dt | Fa

]
. �

5.2.1 Multi-dimensional Itô formula

Definition 5.21 An N -dimensional Itô process is a stochastic process of the
form

Xt = X0 +
∫ t

0

μsds +
∫ t

0

σs dWs, t ∈ [0, T ], (5.31)

where X0 is F0-measurable, W is a d-dimensional Brownian motion, μ ∈ L1
loc

is a (N × 1)-vector and σ ∈ L2
loc is a (N × d)-matrix.

Formula (5.31) can be written in the equivalent differential form

dXt = μtdt + σtdWt

or, more explicitly

dXi
t = μi

tdt +
d∑

j=1

σij
t dW j

t , i = 1, . . . , N.

We recall the Definition 4.45 of co-variation process and, if

X = (X1, . . . ,XN ) and Y = (Y 1, . . . , Y M )
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are vector-valued processes, we put

〈X,Y 〉t =
(
〈Xi, Y j〉t

)
i=1,...,N
j=1,...,M

,

and 〈X,X〉 = 〈X〉. The following result follows from Remark 4.44 and gene-
ralizes Corollary 5.2.

Lemma 5.22 Consider an Itô process X of the form (5.31) and set

C = σσ∗. (5.32)

Then we have

〈Xi,Xj〉t =
∫ t

0

Cij
s ds, t ≥ 0, (5.33)

or, in differential notation,

d〈X〉t = Ctdt.

In practice, given two Itô processes X,Y in RN , the computation of 〈X,Y 〉t
can be handled by applying the following “rule”:

d〈Xi, Y j〉t = dXi
tdY j

t ,

where the product on the right-hand side of the previous equality can be
computed using the following formal rules:

dtdt = dtdW i = dW idt = 0, dW idW j = δijdt,

and δij denotes Kronecker’s delta

δij =

{
0, i 
= j,

1, i = j.

Example 5.23 For X = (X1,X2) defined by

dX1
t = μtdt + αtdW 1

t + βtdW 2
t ,

dX2
t = νtdt + γtdW 1

t + δtdW 2
t ,

we have

σ =
(

α β
γ δ

)
and σσ∗ =

(
α2 + β2 αγ + βδ
αγ + βδ γ2 + δ2

)
.

Then we have

d〈X1〉t = d〈X1,X1〉t =
(
α2

t + β2
t

)
dt, d〈X1,X2〉t = (αtγt + βtδt) dt.

�
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Example 5.24 For a correlated Brownian motion B = μ + αW , recalling
(5.25)-(5.28), we have

〈Bi, Bj〉t = t(αα∗)ij = cov
(
Bi

t, B
j
t

)
. �

We state now the general version of Itô formula.

Theorem 5.25 Let X be an Itô process of the form (5.31) and f = f(t, x) ∈
C1,2(R× RN ). Then

df = ∂tfdt +∇f · dXt +
1
2

N∑
i,j=1

∂xixj fd〈Xi,Xj〉t, (5.34)

with f = f(t,Xt) and ∇f = (∂x1f, . . . , ∂xN f).

In compact form, if we put C = σσ∗ and recall Lemma 5.22, then formula
(5.34) becomes

df =

⎛⎝1
2

N∑
i,j=1

Cij
t ∂xixj f + μt · ∇f + ∂tf

⎞⎠ dt +∇f · σtdWt

=

⎛⎝1
2

N∑
i,j=1

Cij
t ∂xixj f +

N∑
i=1

μi
t∂xif + ∂tf

⎞⎠ dt +
N∑

i=1

d∑
h=1

∂xifσih
t dW h

t .

(5.35)

Example 5.26 (Standard Brownian motion) Let W be a d-dimensional
Brownian motion and f = f(t, x) ∈ C1,2(R× Rd). Then we have

df(t,Wt) =

(
∂tf(t,Wt) +

1
2

d∑
i=1

∂xixif(t,Wt)

)
dt +

d∑
i=1

∂xif(t,Wt)dW i
t

=
(

∂tf(t,Wt) +
1
2
�f(t,Wt)

)
dt +∇f(t,Wt) · dWt, (5.36)

where � denotes the Laplace operator in Rd. �

Example 5.27 (Correlated Brownian motion) Let B = (B1, . . . , BN ) =
αW be a correlated Brownian motion with correlation matrix � = αα∗. We
consider the Itô processes in R

dXi
t = μi

tdt + σi
tdBi

t, i = 1, . . . , N.

Then, for every f = f(t, x) ∈ C1,2(R× RN ), we have

df =

⎛⎝1
2

N∑
i,j=1

�ijσi
tσ

j
t ∂xixj f +

N∑
i=1

μi
t∂xif + ∂tf

⎞⎠ dt +
N∑

i=1

∂xifσi
tdBi

t, (5.37)

with f = f(t,Xt). �
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We consider further examples of application of the Itô formula that are
useful to get acquainted to the multi-dimensional version.

Example 5.28 Let (W 1,W 2) be a 2-dimensional Brownian motion and

f(t, x1, x2) = x1x2.

Then
d(W 1W 2) = W 1dW 2 + W 2dW 1.

Further, for f(t, x1, x2) = x2
1x2 we have

d
((

W 1
)2

W 2
)

=
(
W 1
)2

dW 2 + 2W 1W 2dW 1 + W 2dt.

In the case of a Brownian motion B in R2 with correlation matrix

� =
(

α β
β γ

)
and f(t, x1, x2) = x1x2, we have

d(B1
t B2

t ) = B1
t dB2

t + B2
t dB1

t + βdt.

As an exercise, apply the Itô formula in the case B = (B1, B2, B3) and
f(B) = BiBj or f(B) = BiBjBk. �

Example 5.29 (Integration by parts) We consider an Itô process with
N = 2 and d = 1:

dXi
t = μi

tdt + σi
tdWt, i = 1, 2.

In this case

d(X1
t X2

t ) = X1
t dX2

t + X2
t dX1

t +
1
2
(
d〈X1,X2〉t + d〈X2,X1〉t

)
= X1

t dX2
t + X2

t dX1
t + σ1

t σ2
t dt, (5.38)

i.e. ∫ t

0

X2
s dX1

s = X1
t X2

t −X1
0X2

0 −
∫ t

0

X1
s dX2

s −
∫ t

0

σ1
sσ2

sds.

Note that it is enough that σ1 = 0 or σ2 = 0 in order for the usual integration-
by-parts rule to hold formally true. �

Example 5.30 (Exponential martingale) Let W be a d-dimensional
Brownian motion and σ ∈ L2

loc an (N × d)-matrix. We put

Xt =
∫ t

0

σsdWs,
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and we recall that

〈Xi,Xj〉t =
∫ t

0

Cij
s ds,

where C = σσ∗. Given ξ ∈ RN , we consider the process

Zξ
t = exp

(∫ t

0

ξ · σsdWs −
1
2

∫ t

0

〈Csξ, ξ〉ds

)
= exp

(
ξ ·Xt −

1
2

d∑
i,j=1

ξiξj〈Xi,Xj〉t
)

.

By the Itô formula we get

dZξ
t = Zξ

t ξ · dXt = Zξ
t ξ · σtdWt,

and so Zξ is a positive local martingale, called exponential martingale (con-
sistently with the 1-dimensional case, treated in Example 5.12).

In the particular case that σ is the (d × d)-identity matrix, the pro-
cess

Zξ
t = exp

(
ξ ·Wt −

|ξ|2
2

t

)
is a martingale for every ξ ∈ Rd. �

Remark 5.31 If f solves the adjoint heat equation in Rd

1
2
�f + ∂tf = 0, (5.39)

then (5.36) becomes

df(t,Wt) = ∇f(t,Wt) · dWt.

Hence, analogously to what we have seen in Section 5.1.3, f(t,Wt) is a local
martingale5 if and only if f is solution to (5.39). In this case, if we denote the
Brownian motion starting from x at time t by

W t,x
T := x + WT −Wt, t ≤ T,

in analogy to what we have seen in Section 3.1.2, we have:

i) f(t, x) = E
[
f
(
T,W t,x

T

)]
;

5 If ∇f(t, Wt) ∈ L2 (for example, if ∇f is bounded), then

f(t, Wt) = f(0, W0) +

∫ t

0

∇f(s, Ws) · dWs

is an Ft-martingale.
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ii) E [f(T,WT ) | Ft] = f(t,Wt)

for t ≤ T and x ∈ Rd. �

We conclude the section by stating the multi-dimensional version of Propo-
sition 5.13.

Proposition 5.32 If μ ∈ L1 and σ ∈ L2 are deterministic functions, then
the process defined by

dSt = μ(t)dt + σ(t)dWt, S0 = x ∈ R,

has multi-normal distribution with

E [St] = x +
∫ t

0

μ(s)ds, cov(St) =
∫ t

0

σ(s)σ∗(s)ds.

The proof is analogous to that of the one-dimensional case and is therefore
left as an exercise.

5.2.2 Correlated Brownian motion+and martingales

In this section we present a useful characterization of Brownian motion in
terms of exponential martingales. Going back to Example 5.30, we consider
the process

Zξ
t = eiξ·Wt+

|ξ|2
2 t,

where i is the imaginary unit, W is a d-dimensional Brownian motion and
ξ ∈ Rd. We pointed out that Zξ is a local martingale and since Zξ is a
bounded process, then it is also a strict martingale. Conversely, we have the
following:

Theorem 5.33 Let X be a continuous process in Rd on (Ω,F , P, (Ft)) such
that X0 = 0 a.s. If for every ξ ∈ Rd the process

Zξ
t = eiξ·Xt+

|ξ|2
2 t (5.40)

is a martingale, then X is a Brownian motion.

Proof. We just have to verify that:

i) Xt −Xs has normal distribution N0,(t−s)Id
;

ii) Xt −Xs is independent of Fs.

By (5.40) we have that

E
[
eiξ·(Xt−Xs) | Fs

]
= e−

|ξ|2
2 (t−s)

for every ξ ∈ Rd and taking the mean on both sides of the equality we get
that the characteristic function of Xt −Xs verifies

E
[
eiξ·(Xt−Xs)

]
= e−

|ξ|2
2 (t−s), ξ ∈ Rd.

Then i) follows from Theorem A.89 and ii) from Proposition A.110. �
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We give now a classical characterization of Brownian motion. First of all
we observe that, if W is a Brownian motion in Rd, it is immediate to verify
by the Itô formula that the process

W iW j − δijt,

where δij is Kronecker’s delta, is a martingale: in terms of quadratic variation,
this is tantamount to saying

〈W i,W j〉t = δijt.

It is remarkable that the quadratic variation and the martingale property
characterize the Brownian motion. Indeed we have

Theorem 5.34 (Lévy’s characterization of Brownian motion)
Let X be a stochastic process in Rd on the space (Ω,F , P, (Ft)) such that
X0 = 0 a.s. Then X is a Brownian motion if and only if it is a continuous
local martingale such that

〈Xi,Xj〉t = δijt. (5.41)

Proof. The proof is based upon Theorem 5.33 and it consists in verifying
that, for every ξ ∈ RN , the exponential process

Zξ
t := exp

(
iξ ·Xt +

|ξ|2
2

t

)
is a martingale. We consider only the particular case in which X is an Itô
process: for a general proof we refer, for example, to Protter [287], Theorem
39, Chapter II.

By assumption X is a local martingale, therefore its drift is null and X
takes the form

dXt = σtdWt,

with σ ∈ L2
loc. By the Itô formula we have

dZξ
t = Zξ

t

⎛⎝ |ξ|2
2

dt + iξ · dXt −
1
2

d∑
i,j=1

ξiξjd〈Xi,Xj〉t

⎞⎠ =

(by (5.41))
= Zξ

t iξ · σtdWt.

So Zξ is a local martingale but, being bounded, it is also a strict martingale.
Then the claim follows from Theorem 5.33. �

Corollary 5.35 Let α = (α1, . . . , αd) a progressively measurable process in
Rd such that

|αt|2 =
d∑

i=1

(
αi

t

)2
= 1 t ≥ 0, a.s.
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and let W be a d-dimensional Brownian motion. Then

Bt =
∫ t

0

αsdWs

is a real Brownian motion.

Proof. By assumption α ∈ L2 and so B is a continuous martingale. Further,
we have that

〈B〉t =
∫ t

0

|αs|2ds = t.

Therefore the hypotheses of Theorem 5.34 are verified and this concludes the
proof. �

Definition 5.36 Let us consider an (N × d)-dimensional matrix α, whose
components αij = αij

t are progressively measurable processes and whose rows
αi are such that

|αi
t| = 1 t ≥ 0, a.s.

The process

Bt =
∫ t

0

αsdWs

is called correlated Brownian motion.

By Corollary 5.35, every component of B is a real Brownian motion and by
Lemma 5.22

〈Bi, Bj〉t =
∫ t

0

�ij
s ds

where �t = αtα
∗
t is called correlation matrix of B. Further, we have

Cov(Bt) =
∫ t

0

E [�s] ds,

since

cov(Bi
t, B

j
t ) = E

[
Bi

tB
j
t

]
= E

[
d∑

k=1

∫ t

0

αik
s dW k

s

d∑
h=1

∫ t

0

αjh
s dW h

s

]
=

(by Lemma 5.18)

= E

[
d∑

k=1

∫ t

0

αik
s dW k

s

∫ t

0

αjk
s dW k

s

]
=

(by Itô isometry)

= E

[∫ t

0

d∑
k=1

αik
s αjk

s ds

]
=
∫ t

0

E
[
�ij

s

]
ds.

If α is an orthogonal6 matrix, then B is a standard Brownian motion, accor-
ding to Definition 5.15. �

6 I.e. such that α∗ = α−1. Consequently αi · αj = δij for every pair of rows.
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5.3 Generalized Itô formulas

In this paragraph we are going to examine some extensions of the Itô formula
(5.34): in particular we are interested in weakening the assumptions on the
regularity of the function f .

The first generalization is an Itô formula for weakly differentiable fun-
ctions. We will use this result in the study of American options since, as
we saw in Section 2.5.5, the price of such derivatives is a function be-
longing to a suitable Sobolev space and does not belong, in general, to
C1,2.

Secondly, we want to extend the Itô formula to the payoff function of a
Call option

f(x) = (x−K)+, x ∈ R, (5.42)

where K is a fixed number. In this case7 f does not possess a classical deriva-
tive in x = K, but it does admit first weak derivative

Df = 1]K,+∞[, (5.43)

and has second derivative only in the distributional sense: precisely

D2f = δK (5.44)

where δK is Dirac’s delta concentrated at K. In Section 5.3.4 we use an ex-
tension of Itô formula valid for f in (5.42) to get an interesting representation
of the price of a European Call option.

5.3.1 Itô formula and+weak derivatives

The main result of the section is the following Itô formula for weakly diffe-
rentiable functions. Hereafter W is an N -dimensional Brownian motion and
W 2,p (resp. W 2,p

loc ) denotes the Sobolev space of Lp (resp. Lp
loc) functions

with first and second order weak derivatives in Lp (resp. Lp
loc), see Appendix

A.9.2.

Theorem 5.37 Let f ∈W 2,p
loc (RN ) with p > 1 + N

2 . Then we have

f(Wt) = f(0) +
∫ t

0

∇f(Ws) · dWs +
1
2

∫ t

0

�f(Ws)ds. (5.45)

The proof of the theorem is based upon the following lemmas.

Lemma 5.38 Let

Γ (t, x) =
1

(2πt)
N
2

exp
(
−|x|

2

2t

)
, t > 0, x ∈ RN ,

7 We refer to the Appendix, Paragraph A.9, where we present the main results of
the theory of distributions and weak derivatives.
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be the density of the N -dimensional Brownian motion. Then

Γ ∈ Lq(]0, T [×RN )

for every q ∈
]
0, 1 + 2

N

[
and T > 0.

Proof. We have∫ T

0

∫
RN

Γ q(t, x)dxdt =
∫ T

0

∫
RN

1

(2πt)
Nq
2

exp
(
−q|x|2

2t

)
dxdt =

(by the change of variables y = x√
2t

)

=
1

(π)
Nq
2

∫ T

0

1

(2t)
N
2 (q−1)

dt

∫
RN

e−q|y|2dy,

which is finite for N(q−1)
2 < 1 and q > 0, i.e. 0 < q < 1 + 2

N . �

Lemma 5.39 Assume that f ∈ W 2,p(RN ), with p > 1 + N
2 . Then f is

(Hölder) continuous and we have:

i) if p ≤ N then |∇f |2 ∈ Lq(RN ) for some q > 1 + N
2 ;

ii) if p > N then ∇f ∈ C(RN ) ∩ L∞(RN ).

Proof. If p ≥ N the thesis follows from the Sobolev-Morrey embedding Theo-
rem A.168. If 1 + N

2 < p < N then necessarily N > 2 and, again by Theorem
A.168, we have ∇f ∈ L2q(RN ) with

2q =
pN

N − p
=

N
N
p − 1

>

(since p > 1 + N
2 )

>
N

N
1+ N

2
− 1

=
N(N + 2)

N − 2
> N + 2.

This proves that |∇f |2 ∈ Lq(RN ) for some q > 1 + N
2 and consequently, by

Theorem A.168, f is Hölder continuous. �

Proof (of Theorem 5.37). By using a localization argument as in the proof
of the standard Itô formula, Theorem 5.5, it is not restrictive to assume that
f ∈W 2,p(RN ).

We first consider the case N > 2. Let (fn) be a regularizing sequence
for f , obtained by convolution with the usual mollifiers. Then, by Theorem
A.176-v), fn ∈ C∞(RN ) and (fn) converges to f in W 2,p. Moreover, by the
continuity of f proved in Lemma 5.39, we also have that (fn) converges to f
(uniformly on compacts) so that

lim
n→∞

fn(Wt) = f(Wt)

for any t ≥ 0.
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By the standard Itô formula we have

fn(Wt) = fn(W0) +
∫ t

0

∇fn(Ws) · dWs +
1
2

∫ t

0

�fn(Ws)ds.

Further, by Itô isometry,

E

[(∫ t

0

(∇fn(Ws)−∇f(Ws)) · dWs

)2
]

=
∫ t

0

E
[
|∇fn(Ws)−∇f(Ws)|2

]
ds

=
∫ t

0

∫
RN

|∇fn(x)−∇f(x)|2 Γ (s, x)dxds =: In.

If p > N then, we have
lim

n→∞
In = 0

by the dominated convergence theorem, since by Lemma 5.39 ∇f ∈ C ∩ L∞,
and so the integrand converges to zero pointwise and is dominated by the
integrable function ‖∇fn −∇f‖2L∞(RN )Γ .

On the other hand, if 1 + N
2 < p ≤ N , by Lemma 5.39 we have

|∇f |2 ∈ Lq(RN ) for some q > 1 + N
2 . Let q′ be the conjugate exponent

of q: then we have

q′ = 1 +
1

p− 1
< 1 +

2
N

and therefore, by Lemma 5.38, Γ ∈ Lq′(]0, T [×RN ). By Hölder’s inequality,
we get

In ≤
∥∥∥|∇fn −∇f |2

∥∥∥
Lq(]0,T [×RN )

‖Γ‖Lq′ (]0,T [×RN ) −−−−→n→∞
0.

Finally

E

[∣∣∣∣∫ t

0

(�fn(Ws)−�f(Ws)) ds

∣∣∣∣]
≤
∫ t

0

E [|�fn(Ws)−�f(Ws)|] ds

=
∫ t

0

∫
RN

|�fn(x)−�f(x)|Γ (s, x)dxds ≤

(by Hölder’s inequality, with p′ conjugate exponent of p)

≤ ‖�fn −�f‖Lp(]0,T [×RN ) ‖Γ‖Lp′ (]0,T [×RN ) −−−−→n→∞
0
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since (fn) converges to f in W 2,p(RN ) and the assumption p > 1+ N
2 implies

p′ < 1 + 2
N : so, by Lemma 5.38, we have

‖Γ‖Lp′ (]0,T [×RN ) <∞.

In conclusion, we proved that (5.45) holds a.s. for every t > 0, and by Propo-
sition 3.25, this is enough to conclude.

In the case N ≤ 2, the hypothesis p > 1+ N
2 implies p > N and the thesis

can be proved as before. �

Remark 5.40 The previous proof can easily be adapted to the case in which
f depends also on time, i.e. the Itô formula holds for f in the parabolic Sobolev
space S2,p

loc (RN+1) with p > 1 + N+2
2 . Moreover the generalized Itô formula

holds can be proved for a class of processes more general than Brownian
motion (see Theorem 9.47). A crucial tool in the proof of Theorem 5.37 is
the integrability estimate of the transition density in Lemma 5.38: in Chapter
8 we prove an analogous estimate for a wide class of Itô processes, solutions
of stochastic differential equations. In Chapter 11 we adapt the arguments
used in this section to study the optimal stopping problem for American
options. �

5.3.2 Tanaka formula+and local times

We consider the payoff function of a Call option

f(x) = (x−K)+, x ∈ R.

By applying formally the Itô formula to the process f(W ), where W is a
real Brownian motion, and recalling the expression (5.43) and (5.44) of the
derivatives of f , we get

(Wt −K)+ = (W0 −K)+ +
∫ t

0

1[K,+∞[(Ws)dWs +
1
2

∫ t

0

δK(Ws)ds. (5.46)

The relation (5.46), known as the Tanaka formula, besides a rigorous proof,
requires also an explanation of the meaning of every term that appears in it. In
particular, the last integral in (5.46), containing the distribution δK , must be
interpreted in a formal way at this level: as we shall see, that term is indeed
interesting from both a theoretical and a practical point of view, above all
in financial applications. In order to give a precise meaning to that integral,
it is necessary to introduce the concept of local time of a Brownian motion,
after some preliminary considerations. In the next definition | · | denotes the
Lebesgue measure.

Definition 5.41 (Occupation time) Let t ≥ 0 and H ∈ B. The occupa-
tion time of H by time t of a Brownian motion W , is defined by

JH
t := |{s ∈ [0, t] |Ws ∈ H}| . (5.47)
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Intuitively, for every ω ∈ Ω, JH
t (ω) measures the time W has spent in the

Borel set H before t. The next properties of the occupation time follow directly
from the definition:

i) we have

JH
t =

∫ t

0

1H(Ws)ds; (5.48)

ii) for every H ∈ B,
(
JH

t

)
is an adapted and continuous stochastic pro-

cess;
iii) for every ω ∈ Ω and H ∈ B, the function t �→ JH

t (ω) is increasing
and

0 ≤ JH
t (ω) ≤ t;

iv) for every t, ω, the map H �→ JH
t (ω) is a measure on B and JRt (ω) =

t;
v) by (5.48), we have

E(JH
t ) =

∫ t

0

P (Ws ∈ H)ds =
∫ t

0

∫
H

Γ (s, x)dxds,

where Γ is the Gaussian density in (A.7). Consequently

|H| = 0 ⇐⇒ JH
t = 0 P -a.s. (5.49)

In particular it follows that the occupation time of a single point in R by
a Brownian motion is null.

Formally (5.49) suggests that H �→ JH
t is a measure equivalent to the

Lebesgue measure, and so, by the Radon-Nikodym theorem it possesses a
density:

JH
t =

∫
H

Lt(x)dx. (5.50)

Actually the situation is more delicate since JH
t is a random variable: anyway,

(5.50) holds true in the sense of the following:

Theorem 5.42 There exists a two-parameter stochastic process

L = {Lt(x) = Lt(x, ω) : R≥0 × R×Ω −→ R≥0}

with the following properties:

i) Lt(x) is Ft-measurable for every t, x;
ii) (t, x) �→ Lt(x) is an a.s. continuous function and, for every x, t �→ Lt(x)

is a.s. increasing;
iii) (5.50) holds for every t and H a.s.

The process L is called Brownian local time.

For the proof of Theorem 5.42 we refer, for example, to Karatzas-Shreve [201],
p. 207.
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Remark 5.43 Combining (5.50) with (5.48) we get∫ t

0

1H(Ws)ds =
∫

H

Lt(x)dx, H ∈ B, a.s. (5.51)

and, by Dynkin’s Theorem A.9, this is equivalent to the fact that∫ t

0

ϕ(Ws)ds =
∫
R

ϕ(x)Lt(x)dx, a.s. (5.52)

for every bounded and measurable function ϕ. �

Remark 5.44 As a consequence of the a.s. continuity property of Lt(x), we
have that, almost surely

Lt(x) = lim
ε→0+

1
2ε

∫ x+ε

x−ε

Lt(y)dy =

(by (5.51))

= lim
ε→0+

1
2ε
|{s ∈ [0, t] | |Ws − x| ≤ ε}| . (5.53)

This is the definition of local time originally introduced by P. Lévy: in-
tuitively Lt(x) measures the time (up to t) spent by W “around” the
point x. �

We prove now a representation formula for Brownian local time.

Theorem 5.45 (Tanaka formula) For every K ∈ R we have

(Wt −K)+ = (W0 −K)+ +
∫ t

0

1[K,+∞[(Ws)dWs +
1
2
Lt(K). (5.54)

Remark 5.46 If we choose ϕ = �n in (5.52), where (�n) is a regularizing
sequence8 for δK and if we take the limit in n, we get, by the a.s. continuity
of L,

lim
n→∞

∫ t

0

�n(Ws)ds = lim
n→∞

∫
R

�n(x)Lt(x)dx = Lt(K), a.s.

So it is natural to use the notation∫ t

0

δK(Ws)ds := Lt(K). (5.55)

Plugging (5.55) into (5.54), we get the Tanaka formula in the version given
by (5.46).

We point out that the Itô formula was generalized under the only assump-
tion of convexity of f by Meyer [254] and Wang [336]: concerning this topic,
we refer the reader to Karatzas-Shreve [201], Chapter 3.6-D. �

8 See Appendix A.9.4.
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Proof (of Theorem 5.45). We construct a regularizing sequence for f(x) =
(x−K)+ using the mollifiers �n:

fn(x) =
∫
R

�n(x− y)(y −K)+dy.

We recall that, by Theorem A.176-v), we have

f ′n(x) = (Df)n(x) =
∫
R

�n(x− y)1[K,+∞[(y)dy, (5.56)

f ′′n (x) = (D2f)n(x) =
∫
R

�n(x− y)δK(dy) = �n(x−K). (5.57)

Since fn ∈ C∞, applying the Itô formula we get

Fn(Wt) = fn(W0) +
∫ t

0

f ′n(Ws)dWs︸ ︷︷ ︸
=:I

(1)
t

+
1
2

∫ t

0

f ′′n (Ws)ds︸ ︷︷ ︸
=:I

(2)
t

.

By (5.57) we have

I
(2)
t =

∫ t

0

�n(Ws −K)ds =

(by (5.52))

=
∫
R

�n(x−K)Lt(x)dx −−−−→
n→∞

Lt(K), a.s.

Further,

E

[(
I
(1)
t −

∫ t

0

1[K,+∞[(Ws)dWs

)2
]

=

(by Itô isometry)

= E

[∫ t

0

(
f ′n(Ws)− 1[K,+∞[(Ws)

)2
ds

]
−−−−→
n→∞

0

by the dominated convergence theorem, since the integrand converges to zero
a.s. and it is bounded. This proves the Tanaka formula (5.54) (m ⊗ P )-
a.e.: on the other hand, by continuity, (5.54) holds true indeed for every t
a.s. �

5.3.3 Tanaka+formula for Itô processes

In view of financial applications, we state the generalization of Theorem 5.42
for Itô processes in the form

Xt = X0 +
∫ t

0

μsds +
∫ t

0

σsdWs, (5.58)
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with μ ∈ L1
loc and σ ∈ L2

loc. The main difference with respect to the
Brownian case lies in the fact that the local time is a continuous pro-
cess in t rather than in the pair (t, x) and the term d〈X〉t substitutes the
term dt.

Theorem 5.47 There exists a two-parameter stochastic process, called local
time of the process X,

L = {Lt(x) = Lt(x, ω) : R≥0 × R×Ω −→ R≥0}

with the following properties:

i) (t, x, ω) �→ Lt(x, ω) is measurable and Lt(x) is Ft-measurable for every
t, x;

ii) t �→ Lt(x, ω) is a continuous and increasing function for every x a.s.;
iii) for every ϕ ∈ Bb we have the identity∫ t

0

ϕ(Xs)d〈X〉s =
∫
R

ϕ(x)Lt(x)dx, a.s.

Further, if we put ∫ t

0

δK(Xs)d〈X〉s := Lt(K), K ∈ R,

the Tanaka formula holds:

(Xt−K)+ = (X0−K)+ +
∫ t

0

1[K,+∞[(Xs)dXs +
1
2

∫ t

0

δK(Xs)d〈X〉s. (5.59)

For the proof of the theorem, we refer, for example, to Karatzas-Shreve
[201].

5.3.4 Local+time and Black-Scholes formula

The material in this section is partially taken from [298]. We consider a
financial model in which the dynamics of the price of a risky asset is
described by a geometric Brownian motion and for the sake of simplic-
ity we assume that the expected return μ and the interest rate r are
null:

dSt = σStdWt.

Applying the Tanaka formula we get

(ST −K)+ = (S0 −K)+ +
∫ T

0

1{St≥K}dSt +
1
2

∫ T

0

σ2S2
t δK(St)dt, (5.60)

and we have a representation for the payoff of a Call option with strike K as
the sum of three terms:
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• (S0 −K)+ represents the intrinsic value of the option;
•
∫ T

0
1{St≥K}dSt is the final value of a self-financing strategy that consists

in holding one unit of the asset when its price is greater than the strike
and no units when the price is smaller than the strike. This is what we
call a “stop-loss strategy”;

• 1
2

∫ T

0
σ2S2

t δK(St)dt is the local time around the strike: this non-negative
term gives the error that one makes by replicating the strategy with
the stop-loss strategy. Intuitively, if S does not hit the strike, the stop-
loss replication is perfect. On the other hand, if S hits the strike we
have to buy or sell the underlying asset. Since the paths of S are
very irregular, this happens very often and in such a way that, intu-
itively, we are not able to buy (or sell) in the exact moment that S is
worth K: in other terms we are forced to sell (buy) for a value which
is a little bit smaller (greater) than the strike. This causes a replica-
tion error that is not due to transaction costs but is indeed a fea-
ture of the model based upon Brownian motion whose paths are irreg-
ular.

Taking the mean in formula (5.60) and using the property of null expectation
of the stochastic integral we get

E
[
(ST −K)+

]
= (S0 −K)+ +

1
2

∫ T

0

E
[
σ2S2

t δK(St)
]
dt

= (S0 −K)+ +
1
2

∫ T

0

∫
R

σ2S2Ψ(S0; t, S)δK(dS)dt

= (S0 −K)+ +
σ2K2

2

∫ T

0

Ψ(S0; t,K)dt, (5.61)

where Ψ(S0; t, ·) is the log-normal density of St in (5.22) with μ = 0. Formula
(5.61) expresses the mean of the payoff (intuitively the risk-neutral price of
the Call option) as a sum of the intrinsic value of the option with the integral
with respect to the time variable of the density of the underlying asset, where
the density is evaluated at K.

Remark 5.48 Formula (5.61) can also be obtained in a easier way by using
PDE arguments. We first note that Ψ(S0; t, x) is the fundamental solution of
the Black-Scholes differential operator (cf. (2.113)) that, in the case r = 0,
reads

LBS =
σ2S2

0

2
∂S0S0 + ∂t.

Therefore, for any t < T and S, S0 > 0, we have LBSΨ(S0;T − t, S) = 0
and

L∗BSΨ(S0;T − t, S) = ∂SS

(
σ2S2

2
Ψ(S0;T − t, S)

)
− ∂T Ψ(S0;T − t, S) = 0

(5.62)
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where L∗BS is the adjoint operator of LBS: these identities follow by a direct
computation. Moreover, formally we have

Ψ(S0; 0, ·) = δS0

where δS0 denotes the Dirac’s delta centered at S0. Hence we have

Ψ(S0;T, S) = δS0(S) +
∫ T

0

∂tΨ(S0; t, S)dt =

(by (5.62))

= δS0(S) +
∫ T

0

∂SS

(
σ2S2

2
Ψ(S0; t, S)

)
dt.

Multiplying by the payoff function (S − K)+ and integrating over R>0, we
obtain the following representation of the Call price:

E
[
(ST −K)+

]
=

= (S0 −K)+ +
∫ +∞

K

∫ T

0

(S −K) ∂SS

(
σ2S2

2
Ψ(S0; t, S)

)
dtdS =

(by parts)

= (S0 −K)+ −
∫ +∞

K

∫ T

0

∂S

(
σ2S2

2
Ψ(S0; t, S)

)
dtdS =

= (S0 −K)+ +
σ2K2

2

∫ T

0

Ψ(S0; t,K)dt,

that proves (5.61). �

Proposition 5.49 Formula (5.61) is equivalent to the Black-Scholes formula
(2.108) with interest rate r = 0.

Proof. For the sake of simplicity we consider only the at-the-money case
S0 = K and we leave it to the reader as an exercise to verify the general case.
If C is the Black-Scholes price, by (2.108) we have

C = S0Φ(d1)−Ke−rT Φ(d2),

where d1, d2 are defined in (2.105) and Φ is the standard normal distri-
bution function in (2.104). In the particular case S0 = K and r = 0 we
have

C = K
(
Φ
(
σ
√

T/2
)
− Φ

(
−σ
√

T/2
))

= 2K

∫ σ
√

T
2

0

1√
2π

e−
x2
2 dx.
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On the other hand, by (5.61), we have

E
[
(ST −K)+

]
=

σ2K2

2

∫ T

0

Ψ(t,K)dt =

(substituting the expression of Ψ given by (5.22))

=
σK

2

∫ T

0

1√
2πt

exp
(
−σ2t

8

)
dt

whence the claim, by the change of variables x = σ
√

t
2 . �

We conclude by pointing out that the results in this section can be ap-
plied more generally to every model in which the underlying asset is an Itô
process.



6

Parabolic PDEs with variable coefficients:
uniqueness

In this chapter we consider elliptic-parabolic equations with variable coeffi-
cients of the form

Lau := Lu− au = 0, (6.1)

where L is the second order operator

L =
1
2

N∑
j,k=1

cjk∂xjxk
+

N∑
j=1

bj∂xj − ∂t, (t, x) ∈ RN+1. (6.2)

In the whole chapter we assume:

Hypothesis 6.1 The coefficients cij = cij(t, x), bi = bi(t, x) and a = a(t, x)
are real-valued functions. The matrix C(t, x) = (cij(t, x)) is symmetric and
positive semi-definite for any (t, x). The coefficient a is bounded from below:

inf a =: a0 ∈ R. (6.3)

Hereafter we use systematically the following:

Notation 6.2 For fixed T > 0, we set

ST = ]0, T [×RN .

We are interested in studying conditions that guarantee the uniqueness of the
solution of the Cauchy problem{

Lu− au = f, in ST ,

u(0, ·) = ϕ, on RN .
(6.4)

Such results, besides the apparent theoretical interest, are crucial in the study
of the derivatives pricing problem: indeed, as we have already pointed out in
the discrete-time setting, the arbitrage price of an option can be defined in
terms of the solution of a problem of the form (6.4). The uniqueness for (6.4)

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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translates into terms of absence of arbitrage opportunities and is equivalent
to the uniqueness of the arbitrage price.

In general, problem (6.4) admits more than one solution: the classical
Tychonov’s example [327] shows that there exist classical non-null solutions
of the Cauchy problem{

1
2�u− ∂tu = 0, in R>0 × R,

u(0, ·) = 0, on R.

For this reason the study of uniqueness for (6.4) consists in determining suit-
able families of functions in which there exists at most one classical solution:
such families are usually called uniqueness classes for L. In what follows we
specify two of them related to the main results of this chapter, Theorems 6.15
and 6.19.

In the first part, Paragraphs 6.1 and 6.2, we show a classical result, the so-
called weak maximum principle, that allows proving the uniqueness for (6.4)
within the class of functions verifying the following growth estimate at infinity:

|u(t, x)| ≤ CeC|x|2 , (t, x) ∈ ST , (6.5)

for some constant C. This result, contained in Theorem 6.15, is very general
and holds true under extremely weak conditions. More precisely, Hypothesis
6.1 suffices to prove uniqueness results on bounded domains (cf. Paragraph
6.1); when we study problems on unbounded domains (as the Cauchy prob-
lem), we also assume the following growth conditions on the coefficients:

Hypothesis 6.3 There exists a constant M such that

|cij(t, x)| ≤M, |bi(t, x)| ≤M(1 + |x|), |a(t, x)| ≤M(1 + |x|2), (6.6)

for every (t, x) ∈ ST and i, j = 1, . . . , N .

In this chapter we only study the problem of uniqueness of the solution: we
point out that Hypotheses 6.1 and 6.3 are so weak that are generally not
sufficient to guarantee the existence of classical solutions. As we shall see in
the following chapters, the growth condition (6.6) is usually quite natural in
the financial applications.

In Paragraph 6.3 we present other more general uniqueness results, never-
theless requiring the much stronger assumption of existence of a fundamental
solution of L and so, basically, the solvability of the Cauchy problem. We
recall the following:

Definition 6.4 A fundamental solution of the operator La, with pole in the
point (s, y) in RN+1, is a function Γ (·, ·; s, y) defined on ]s,+∞[×RN such
that, for every ϕ ∈ Cb(RN ), the function

u(t, x) =
∫
RN

Γ (t, x; s, y)ϕ(y)dy (6.7)
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is a classical solution of the Cauchy problem{
Lau = 0, in ]s,+∞[×RN ,

u(s, ·) = ϕ, on RN .
(6.8)

In Paragraph 6.3 we prove that the family of non-negative (or, more generally,
bounded from below) functions is a uniqueness class for La: we will use this
result in Chapter 7 to define the arbitrage price of a derivative; in particular
we shall see that a solution of (6.8) represents the value of a self-financing
strategy: the non-negativity condition translates, in economic terms, into an
admissibility assumption for the strategies, necessary in order to avoid arbi-
trage opportunities.

We now state precisely the assumptions that will be in force in Paragraph
6.3. For a fixed positive constant λ, let

Γλ(t, x) =
1

(2πλt)
N
2

e−
|x|2
2tλ , t > 0, x ∈ RN , (6.9)

be the fundamental solution, with pole at the origin, of the heat operator in
RN+1

λ

2
�− ∂t.

Hypothesis 6.5 The operator La has a fundamental solution Γ . Moreover,
there exists λ > 0 such that, for every T > 0, k = 1, . . . , N , t ∈ ]s, s + T [ and
x, y ∈ RN , the following estimates hold:

1
M

Γ 1
λ
(t− s, x− y) ≤ Γ (t, x; s, y) ≤MΓλ(t− s, x− y) (6.10)

|∂yk
Γ (t, x; s, y)| ≤ M√

t− s
Γλ(t− s, x− y), (6.11)

with M positive constant depending on T .

Hypothesis 6.6 The operator La admits the adjoint operator

L∗au =
1
2

N∑
j,k=1

cjk∂xjxk
u +

N∑
j=1

b∗j∂xj u− a∗u + ∂tu (6.12)

and the coefficients

b∗i = −bi +
N∑

j=1

∂xicij , a∗ = a− 1
2

N∑
i,j=1

∂xixj cij +
N∑

j=1

∂xj bj , (6.13)

verify growth conditions analogous to (6.6).

Remark 6.7 We note explicitly that all the previous assumptions are satis-
fied if La belongs to the class of parabolic operators with constant coefficients
(cf. Appendix A.3) or, more generally, to the class of uniformly parabolic op-
erators with variable coefficients considered in Chapter 8. �
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6.1 Maximum principle and Cauchy-Dirichlet problem

In this paragraph we study the uniqueness problem on bounded domains. In
this section we suppose that La in (6.1)-(6.2) verifies Hypothesis 6.1 and that
Q is a bounded open set in RN .

Remark 6.8 Given α ∈ R, we set

v(t, x) = eαtu(t, x). (6.14)

Then we have
La(eαtu) = eαt(Lau− αu)

that is
L(a−α)v = eαtLau. (6.15)

In particular, if α < a0 then inf(a− α) > 0. �

For T > 0, we denote by
QT = ]0, T [×Q,

the open cylinder with basis Q and height T : moreover Q̄T is the closure of
QT and ∂pQT is the parabolic boundary defined by

∂pQT = ∂QT \ ({T} ×Q).

Definition 6.9 Let f ∈ C(QT ) and ϕ ∈ C(∂pQT ). A classical solution of the
Cauchy-Dirichlet problem for La in QT with boundary datum ϕ is a function
u ∈ C1,2(QT ) ∩ C(QT ∪ ∂pQT ) such that{

Lau = f, in QT ,

u = ϕ, on ∂pQT .
(6.16)

Theorem 6.10 (Weak maximum principle) Let u ∈ C1,2(QT )∩C(QT ∪
∂pQT ) such that Lau ≥ 0 on QT . If u ≤ 0 on ∂pQT , then u ≤ 0 on QT .

Proof. First of all, by Remark 2.57 it is not restrictive to assume a0 > 0,
since we may prove the thesis for v in (6.14) with α < a0 and then use the
fact that u and v have the same sign.

By contradiction, we assume that u(t0, x0) > 0 at some point (t0, x0) ∈
QT : then for some (t1, x1) ∈ Q̄t0 \ ∂pQt0 we have

u(t1, x1) = max
Q̄t0

u ≥ u(t0, x0) > 0,

and

D2u(t1, x1) := (∂xixj u(t1, x1)) ≤ 0, ∂xk
u(t1, x1) = 0, ∂tu(t1, x1) ≥ 0,
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for every k = 1, . . . , N . Then there exists a symmetric and positive semi-
definite matrix M = (mij) such that

−D2u(t1, x1) = M2 =

(
N∑

h=1

mihmhj

)
i,j

=

(
N∑

h=1

mihmjh

)
i,j

and therefore we have

Lau(t1, x1) = −1
2

N∑
i,j=1

cij(t1, x1)
N∑

h=1

mihmjh +
N∑

j=1

bj(t1, x1)∂xj u(t1, x1)

− a(t1, x1)u(t1, x1)− ∂tu(t1, x1)

= −1
2

N∑
h=1

N∑
i,j=1

cij(t1, x1)mihmjh︸ ︷︷ ︸
≥0 since C≥0

−a(t1, x1)u(t1, x1)− ∂tu(t1, x1)

≤ −a(t1, x1)u(t1, x1) < 0,

and this contradicts the assumption Lau ≥ 0. �

The previous result is called weak maximum principle since it does not
rule out the possibility that a solution may attain its maximum also inside
the cylinder: the strong maximum principle states on the contrary that the
only solution attaining its maximum internally is the constant one.

Corollary 6.11 (Comparison principle) Let u, v ∈ C1,2(QT ) ∩ C(QT ∪
∂pQT ) such that Lau ≤ Lav in QT and u ≥ v in ∂pQT . Then u ≥ v in QT . In
particular there exists at most one classical solution of the Cauchy-Dirichlet
problem (6.16).

Proof. It suffices to apply the maximum principle to the function v − u. �

Now we prove an a priori1 estimate of the maximum of a solution to (6.16).

Theorem 6.12 Let u ∈ C1,2(QT ) ∩ C(QT ∪ ∂pQT ) and let us set

a1 := max{0,−a0}.

Then

sup
QT

|u| ≤ ea1T

(
sup

∂pQT

|u|+ T sup
QT

|Lau|
)

. (6.17)

1 An a priori estimate is an estimate that is valid for all the possible solutions of
a family of differential equations even though the assumptions on the equations
do not guarantee the existence of such solutions. In the classical theory of par-
tial differential equations, these a priori estimates are a basic tool to prove the
existence and the regularity of solutions.
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Proof. We first suppose that a0 ≥ 0 and also that u and Lau are bounded in
∂pQT and QT respectively, otherwise there is nothing to prove. We consider
the function

w(t, x) = sup
∂pQT

|u|+ t sup
QT

|Lau|;

we have

Law = −aw − sup
QT

|Lau| ≤ Lau, La(−w) = aw + sup
QT

|Lau| ≥ Lau,

and −w ≤ u ≤ w in ∂pQT . Then estimate (6.17), with a1 = 0, follows from
the comparison principle, Corollary 6.11.

On the other hand, if a0 < 0 we consider v in (6.14) with α = a0 and by
estimate (6.17) we infer

sup
QT

|v| ≤ sup
∂pQT

|v|+ sup
QT

|L(a−a0)v|.

Consequently, since a0 < 0, we get

ea0T sup
QT

|u| ≤ sup
(t,x)∈QT

|ea0tu(t, x)| ≤ sup
∂pQT

|v|+ sup
QT

|L(a−a0)v| ≤

(by (6.15))

≤ sup
(t,x)∈∂pQT

|ea0tu(t, x)|+ T sup
(t,x)∈QT

|ea0tLau(t, x)| ≤

(since a0 < 0)
≤ sup

∂pQT

|u|+ T sup
QT

|Lau|,

from which the thesis follows. �

Under suitable regularity assumptions, existence results for the Cauchy-
Dirichlet problem can be proved by using the classical theory of Fourier series:
we refer to Chapter V in DiBenedetto [97] for a clear presentation of this topic.

6.2 Maximum principle and Cauchy problem

In this paragraph we prove uniqueness results for the Cauchy problem. The
standard Cauchy problem differs from the Cauchy-Dirichlet problem studied
in the previous section, in that it is posed on a strip of RN+1, that is on an
unbounded domain where only the initial conditions is given, but no lateral
conditions. In what follows we assume that the operator La in (6.1)-(6.2)
verifies Hypotheses 6.1 and 6.3. We recall the notation

ST = ]0, T [×RN .
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Theorem 6.13 (Weak maximum principle) Let u ∈ C1,2(ST ) ∩ C(ST )
such that {

Lau ≤ 0, in ST ,

u(0, ·) ≥ 0, on RN .

If
u(t, x) ≥ −CeC|x|2 , (t, x) ∈ ST , (6.18)

for some positive constant C, then u ≥ 0 on ST .

Before Theorem 6.13, we prove first the following:

Lemma 6.14 Let u ∈ C1,2(ST ) ∩ C(ST ) such that{
Lau ≤ 0, in ST ,

u(0, ·) ≥ 0, on RN ,

and

lim inf
|x|→∞

(
inf

t∈ ]0,T [
u(t, x)

)
≥ 0. (6.19)

Then u ≥ 0 on ST .

Proof. By the same argument used in the proof of Theorem 6.10 and based on
Remark 2.57, it is not restrictive to assume a0 ≥ 0. Then, for fixed (t0, x0) ∈
ST and ε > 0, we have{

La(u + ε) ≤ 0, in ST ,

u(0, ·) + ε > 0, on RN ,

and, by assumption (6.19), there exists a large enough R > |x0| such that

u(t, x) + ε > 0, t ∈ ]0, T [, |x| = R.

Then we can apply the maximum principle, Theorem 6.10, on the cylinder

QT = ]0, T [×{|x| ≤ R}

to infer that u(t0, x0) + ε ≥ 0 and, by the arbitrariness of ε, u(t0, x0) ≥ 0. �

Proof (of Theorem 6.13). We observe that it suffices to prove that u ≥ 0
on a strip ST0 with T0 > 0: once we have proved this, by applying the result
repeatedly we get the claim on the entire strip ST .

We prove first the remarkable case of the heat operator

L =
1
2
�− ∂t,
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and a = 0, i.e. L = La. For fixed γ > C, we set T0 = 1
4γ and we consider the

function

v(t, x) =
1

(1− 2γt)
N
2

exp
(

γ|x|2
1− 2γt

)
, (t, x) ∈ ST0 .

A direct computation shows that

Lv(t, x) = 0 and v(t, x) ≥ eγ|x|2 (t, x) ∈ ST0 .

Moreover, for every ε > 0, Lemma 6.14 ensures that the function

w = u + εv

is non-negative: since ε is arbitrary, this suffices to conclude the proof.
The general case is only technically more complicated and it is based

upon the crucial Hypothesis 6.3 on the growth at infinity of the coefficients
of the operator. For fixed γ > C and two parameters α, β ∈ R to be chosen
appropriately, we consider the function

v(t, x) = exp
(

γ|x|2
1− αt

+ βt

)
, 0 ≤ t ≤ 1

2α
.

We have

Lav

v
=

2γ2

(1− αt)2
〈Cx, x〉+ γ

1− αt
tr C +

2γ

1− αt

N∑
i=1

bixi − a− αγ|x|2
(1− αt)2

− β.

Using Hypothesis 6.3, we see that, if α, β are large enough, then

Lav

v
≤ 0. (6.20)

Now we consider the function w = u
v : by assumption (6.18), we have

lim inf
|x|→∞

(
inf

t∈ ]0,T [
w(t, x)

)
≥ 0;

furthermore w satisfies the equation

1
2

N∑
i,j=1

cij∂xixj w +
N∑

i=1

b̃i∂xiw − ãw − ∂tw =
Lau

v
≤ 0,

where

b̃i = bi +
N∑

j=1

cij

∂xj v

v
, ã = −Lav

v
.

Since ã ≥ 0 by (6.20), we can apply Lemma 6.14 to infer that w (and so u) is
non-negative. �
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The following uniqueness result is a direct consequence of Theorem 6.13.
We emphasize that La verifies only the very general Hypotheses 6.1 and 6.3:
for example, La can be a first-order operator.

Theorem 6.15 There exists at most one classical solution u ∈ C1,2(ST ) ∩
C(ST ) of the problem {

Lau = f, in ST ,

u(0, ·) = ϕ, on RN ,

such that
|u(t, x)| ≤ CeC|x|2 , (t, x) ∈ ST , (6.21)

for some positive constant C.

Remark 6.16 Let us suppose that La also verifies Hypothesis 6.5. Then L
has a fundamental solution Γ and, given ϕ ∈ C(RN ) such that

|ϕ(y)| ≤ cec|y|γ , y ∈ RN , (6.22)

with c, γ positive constants and γ < 2, then the function

u(t, x) :=
∫
RN

Γ (t, x; 0, y)ϕ(y)dy, (t, x) ∈ ST , (6.23)

is a classical solution of the Cauchy problem{
Lau = 0, in ST ,

u(0, ·) = ϕ, on RN ,
(6.24)

for every T > 0.
By using the upper estimate of Γ in (6.10), it is not hard to prove that

for every T > 0 there exists a constant cT such that

|u(t, x)| ≤ cT e2c|x|γ , (t, x) ∈ ST . (6.25)

Then, by Theorem 6.15, u in (6.23) is the unique solution of the Cauchy
problem (6.24) verifying estimate (6.22).

Now we prove (6.25) assuming, without loss of generality, that γ ≥ 1. By
(6.22) we have

|u(t, x)| ≤ cM

(2πλt)
N
2

∫
RN

e−
|x−y|2

2tλ +c|y|γ dy =

(by the change of variable η = x−y√
2λt

)

=
cM

π
N
2

∫
RN

e−|η|
2+c|x−η

√
2λt|γ dη ≤
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(by the elementary inequality (a+ b)γ ≤ 2γ−1 (aγ + bγ) that holds for a, b > 0
and γ ≥ 1)

≤ cT e2c|x|γ ,

where

cT =
cM

π
N
2

∫
RN

e−η2+2c|η
√

2λT |γ dη. �

Remark 6.17 Let us suppose that the operator La in (6.1)-(6.2) satisfies
Hypotheses 6.1, 6.3 and 6.5. Then its fundamental solution Γ satisfies the
reproduction (or semigroup) property: for every t0 < t < T and x, y ∈ RN we
have ∫

RN

Γ (T, x; t, η)Γ (t, η; t0, y)dη = Γ (T, x; t0, y). (6.26)

Formula (6.26) is an immediate consequence of the representation formula
(6.23) and of the uniqueness of the solution of the Cauchy problem{

Lau = 0, in ]t, T [×RN ,

u(t, ·) = Γ (t, ·; t0, y), on RN .

Further, if a = 0, then Γ is a density, i.e.∫
RN

Γ (T, x; t, y)dy = 1, (6.27)

for every t < T and x, y ∈ RN . Also (6.27) follows from the uniqueness of
the representation (6.23) of the solution of the Cauchy problem with initial
datum identically equal to one.

More generally, for a generic a, we have∫
RN

Γ (t, x; t0, y)dy ≤ e−a0(t−t0). (6.28)

Indeed (6.28) follows from the maximum principle, Theorem 6.13, applied to
the function

u(t, x) = e−a0(t−t0) −
∫
RN

Γ (t, x; t0, y)dy, t ≥ t0, x ∈ RN .

Indeed we have u(t0, x) = 1 and

Lau(t, x) = Lae−a0(t−t0) = −(a(t, x)− a0)e−a0(t−t0) ≤ 0. �
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We conclude the paragraph proving a maximum estimate that is analogous
to that of Theorem 6.12.

Theorem 6.18 Under Hypotheses 6.1 and 6.3, let u ∈ C1,2(ST ) ∩ C(ST )
such that

|u(t, x)| ≤ CeC|x|2 , (t, x) ∈ ST ,

for some constant C. Then, setting

a1 := max{0,−a0},
we have

sup
ST

|u| ≤ ea1T

(
sup
RN

|u(0, ·)|+ T sup
ST

|Lau|
)

. (6.29)

Proof. If a0 ≥ 0, then, setting

w± = sup
RN

|u(0, ·)|+ t sup
ST

|Lau| ± u, in ST ,

we have ⎧⎨⎩Law± ≤ − sup
ST

|Lau| ± Lau ≤ 0, in ST ,

w±(0, ·) ≥ 0, on RN ,

and it is apparent that w± verify estimate (6.18) in ST . Therefore, by Theorem
6.13, ω± ≥ 0 in ST and this proves the claim.

If a0 < 0, then we proceed as in the proof of Theorem 6.12. �

We will see in Chapter 12, that a priori estimates such as (6.29) play a
crucial part in the proof of stability results of numerical schemes. Moreover,
as a consequence of (6.29), if u, v ∈ C1,2(ST ) ∩ C(ST ) verify the exponential
growth estimate, then

sup
ST

|u− v| ≤ ea1T

(
sup
RN

|u(0, ·)− v(0, ·)|+ T sup
ST

|Lau− Lav|
)

.

This formula gives an estimate of the sensitivity of the solution of the Cauchy
problem (6.4) with respect to variations of the initial datum and f .

6.3 Non-negative solutions of the Cauchy problem

In this paragraph we assume that La has a fundamental solution and we
prove that the family of non-negative functions (or, more generally, functions
bounded from below) is a uniqueness class for La.

Theorem 6.19 Under Hypotheses 6.1, 6.3, 6.5 and 6.6, there exists at most
one function u ∈ C1,2(ST )∩C(ST ) that is bounded from below and solves the
problem {

Lau = 0, in ST ,

u(0, ·) = ϕ, on RN .



214 6 Parabolic PDEs with variable coefficients: uniqueness

We defer the proof to the end of the paragraph: it is based on the follow-
ing result that generalizes Theorem 6.15, weakening the exponential growth
condition.

Theorem 6.20 Under Hypotheses 6.1, 6.3, 6.5 and 6.6, there exists at most
one solution u ∈ C1,2(ST ) ∩ C(ST ) of the problem{

Lau = f, in ST ,

u(0, ·) = ϕ, on RN ,

for which there exists a constant C such that∫
RN

|u(t, x)|e−C|x|2dx <∞, (6.30)

for every 0 ≤ t ≤ T .

Before proving the theorem, we dwell on a few remarks. First of all, it is
apparent that condition (6.21) is stronger than (6.30). Moreover, Theorem
6.21 below shows that the non-negative solutions verify estimate (6.30) and
consequently we have uniqueness within the class of non-negative functions.
For uniformly parabolic operators this result was proven by Widder [338]
for N = 1 and it was subsequently generalized by Kato [203] and Aronson
[12], among others. The uniqueness results in Polidoro [284], Di Francesco
and Pascucci [94] further examine the more general case of non-uniformly
parabolic operators that arise in some financial models.

Theorem 6.21 Under Hypotheses 6.1, 6.3 and 6.5, if u ∈ C1,2(ST ) is a
non-negative function such that Lau ≤ 0, then∫

RN

Γ (t, x; s, y)u(s, y)dy ≤ u(t, x), (6.31)

for every x ∈ RN and 0 < s < t < T .

Proof. We consider a decreasing function h ∈ C(R) such that h(r) = 0 for
r ≥ 2 and h(r) = 1 for r ≤ 1. For fixed s ∈ ]0, T [, we set

gn(s, y) = u(s, y)h
( |y|

n

)
, n ∈ N,

and

un(t, x) :=
∫
RN

Γ (t, x; s, y)gn(s, y)dy, (t, x) ∈ ]s, T [×RN , n ∈ N.

Since y �→ gn(s, y) is a continuous bounded function on RN , we have{
La(u− un) ≤ 0, in ]s, T [×RN ,

(u− un)(s, ·) = (u− gn)(s, ·) ≥ 0, on RN .
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Moreover, since gn is bounded and has compact support, we have

lim
|x|→∞

(
sup

t∈ ]s,T [

un(t, x)

)
= 0.

Therefore we can apply Lemma 6.14 to the function u− un to get

u(t, x) ≥
∫
RN

Γ (t, x; s, y)gn(s, y)dy ≥ 0, (t, x) ∈ ]s, T [×RN ,

for every n ∈ N. Since gn is an increasing sequence of non-negative functions
tending to u, the claim follows by taking the limit in n and using Beppo Levi
theorem.

We point out that in the proof we used only one part of Hypothesis 6.5,
precisely the fact that La has a non-negative fundamental solution. �

Now we prove a corollary of Theorem 6.21 that, as we shall see in Section
7.3.2, has a very interesting financial interpretation.

Corollary 6.22 Let Hypotheses 6.1, 6.3 and 6.5 hold and suppose that a = 0.
If u ∈ C1,2(ST ) is a function that is bounded from below such that Lu ≤ 0,
then (6.31) holds, i.e.∫

RN

Γ (t, x; s, y)u(s, y)dy ≤ u(t, x), (6.32)

for every x ∈ RN and 0 < s < t < T .

Proof. Let u0 = inf
ST

u. Then, since a = 0, we have L(u− u0) = Lu ≤ 0 and,

by Theorem 6.21,∫
RN

Γ (t, x; s, y) (u(s, y)− u0) dy ≤ u(t, x)− u0.

The claim follows from (6.27). �

Proof (of Theorem 6.20). In view of the linearity of the problem, it suffices
to prove that, if Lau = 0 and u(0, ·) = 0, then u = 0. Let us consider an
arbitrary point (t0, x0) ∈ ST and let us show that u(t0, x0) = 0. To this end,
we use the classical Green’s identity:

vLau− uL∗av =
N∑

i=1

∂xi

⎛⎝ N∑
j=1

(cij

2
(
v∂xj u− u∂xj v

)
− uv

2
∂xj cij

)
+ uvbi

⎞⎠
− ∂t(uv),

(6.33)
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that follows directly from the definition of adjoint operator L∗a in (6.12). We
use identity (6.33) with

v(s, y) = hR(y)Γ (t0, x0; s, y), (s, y) ∈ St0−ε,

where ε > 0 and hR ∈ C2(RN ) is such that

0 ≤ hR ≤ 1, hR(y) =

{
1, if |y − x0| ≤ R,

0, if |y − x0| ≥ 2R,

and
|∇hR| ≤

1
R

, |∂yiyj hR| ≤
2

R2
, i, j = 1, . . . , N. (6.34)

Let BR denote the ball in RN with center x0 and radius R: integrating Green’s
identity over the domain ]0, t0 − ε[×B2R, by the divergence theorem we get

JR,ε :=
∫ t0−ε

0

∫
B2R

u(s, y)L∗a (hR(y)Γ (t0, x0; s, y)) dyds

=
∫

B2R

hR(y)Γ (t0, x0; t0 − ε, y)u(t0 − ε, y)dy =: IR,ε.

(6.35)

Here we have used the fact that Lau = 0, u(0, ·) = 0 and some integral over
the boundary cancels since h is zero (with its derivatives) on the boundary of
B2R.

Now, by condition (6.30) and by the estimate from above of Γ in (6.10),
if ε is small enough we have

Γ (t0, x0; t0 − ε, ·)u(t0 − ε, ·) ∈ L1(RN ).

So, by the dominated convergence theorem,

lim
R→∞

IR,ε =
∫
RN

Γ (t0, x0; t0 − ε, y)u(t0 − ε, y)dy. (6.36)

On the other hand, since L∗aΓ (t0, x0; ·, ·) = 0 in ]0, t0 − ε[×B2R, we get

JR,ε =
∫ t0−ε

0

∫
B2R\BR

u(s, y)
[ N∑

i,j=1

cij

2
(
Γ (t0, x0; s, y)∂yiyj hR(y)

+2∂yj Γ (t0, x0; s, y)∂yihR(y)
)

+
N∑

i=1

b∗i Γ (t0, x0; s, y)∂yihR(y)
]
dyds,

(6.37)

with b∗i in (6.13). Now we use estimates (6.34) on the derivatives of hR, the
estimate from above of Γ in (6.10), estimate (6.11) of the first order derivatives
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of Γ and the assumption of linear growth of b∗ and we obtain

|JR,ε| ≤ const
∫ t0−ε

0

1
t0 − s

∫
B2R\BR

|y|
R

Γλ(t0, x0; s, y)|u(s, y)|dyds

≤ const
ε

∫ t0−ε

0

∫
B2R\BR

e−
|y|2
2λε |u(s, y)|dyds.

Therefore, by condition (6.30), if ε > 0 is small enough, we have

lim
R→∞

JR,ε = 0.

In conclusion, gathering (6.35), (6.36) and the previous result, we get∫
RN

Γ (t0, x0; t0 − ε, y)u(t0 − ε, y)dy = 0.

Taking the limit as ε→ 0+ we infer that u(t0, x0) = 0. �

We conclude the paragraph with the

Proof (of Theorem 6.19). If u is non-negative, it suffices to observe that
u verifies a condition analogous to (6.30) that can be obtained easily by using
the estimate from below of Γ in (6.10) and by Theorem 6.21 that ensures that∫

RN

Γ (t, 0; s, y)u(s, y)dy <∞.

If u is bounded from below, we can easily go back to the previous case by
a substitution v = u + C: we observe that we can always perform a further
substitution v(t, x) = eαtu(t, x), so it is not restrictive to assume a ≥ 0. �



7

Black-Scholes model

In this chapter we present some of the fundamental ideas of arbitrage pricing
in continuous time, illustrating Black-Scholes theory from a point of view that
is, as far as possible, elementary and close to the original ideas in the papers by
Merton [250], Black and Scholes [49]. In Chapter 10 the topic will be treated
in a more general fashion, fully exploiting martingale and PDEs theories.

In the Black-Scholes model the market consists of a non-risky asset, a bond
B and of a risky asset, a stock S. The bond price verifies the equation

dBt = rBtdt

where r is the short-term (or locally risk-free) interest rate, assumed to be
a constant. Therefore the bond follows a deterministic dynamics: if we set
B0 = 1, then

Bt = ert. (7.1)

The price of the risky asset is a geometric Brownian motion, verifying the
equation

dSt = μStdt + σStdWt, (7.2)

where μ ∈ R is the average rate of return and σ ∈ R>0 is the volatility. In (7.2),
(Wt)t∈[0,T ] is a real Brownian motion on the probability space (Ω,F , P, (Ft)).
Recall that the explicit expression of the solution of (7.2) is

St = S0e
σWt+

(
μ−σ2

2

)
t
. (7.3)

In what follows we study European-style derivatives in a Markovian setting
and we consider payoffs of the form F (ST ), where T is the maturity and F
is a function defined on R>0. The most important example is the European
Call option with strike K and maturity T :

F (ST ) = (ST −K)+.

In Section 7.6 we study Asian-style derivatives, whose payoff depends on an
average of the prices of the underlying asset.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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7.1 Self-financing strategies

Let us introduce some definitions that extend in a natural way the concepts
analyzed in discrete time in Chapter 2.

Definition 7.1 A strategy (or portfolio) is a stochastic process (αt, βt) where
α ∈ L2

loc and β ∈ L1
loc. The value of the portfolio (α, β) is the stochastic process

defined by
V

(α,β)
t = αtSt + βtBt. (7.4)

As usual α, β are to be interpreted as the amount of S and B held by the
investor in the portfolio: let us point out that short-selling is allowed, so α, β
can take negative values. Where there is no risk of ambiguity, we simply write
V instead of V (α,β).

Intuitively the assumption that α, β have to be progressively measurable1

describes the fact that the investment strategy depends only on the amount
of information available at that moment.

Definition 7.2 A strategy (αt, βt) is self-financing if

dV
(α,β)
t = αtdSt + βtdBt (7.5)

holds, that is

V
(α,β)
t = V

(α,β)
0 +

∫ t

0

αsdSs +
∫ t

0

βsdBs. (7.6)

We observe that, since S is a continuous and adapted stochastic process we
have that αS ∈ L2

loc and then the stochastic integral in (7.6) is well defined.
Equation (7.5) is the continuous version2 of the relation

ΔV = αΔS + βΔB

valid for discrete self-financing portfolios (cf. (2.7)): from a purely intuitive
point of view, this expresses the fact that the instantaneous variation of the
value of the portfolio is caused uniquely by the changes of the prices of the
assets, and not by injecting or withdrawing funds from outside.

Let us now take a strategy (α, β) and define the discounted prices

S̃t = e−rtSt, Ṽt = e−rtVt.

1 In the discrete case we considered predictable strategies: for the sake of simplicity,
in the continuous case we prefer to assume the condition (not really restrictive
indeed) that α, β are progressively measurable.

2 If α, β are Itô processes, by the two-dimensional Itô formula we have

dV
(α,β)

t = αtdSt + βtdBt + Stdαt + Btdβt + d〈α, S〉t,
and the condition that (α, β) is self-financing is equivalent to

Stdαt + Btdβt + d〈α, S〉t = 0.
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The following proposition gives a remarkable characterization of the self-
financing condition.

Proposition 7.3 A strategy (α, β) is self-financing if and only if

dṼ
(α,β)
t = αtdS̃t

holds, that is

Ṽ
(α,β)
t = V

(α,β)
0 +

∫ t

0

αsdS̃s. (7.7)

Remark 7.4 Thanks to (7.7), the value of a self-financing strategy (α, β) is
determined uniquely by its initial value V

(α,β)
0 and by the process α that is the

amount of risky stock held by the investor in the portfolio. The integral in
(7.7) equals the difference between the final and initial discounted values and
therefore represents the gain of the strategy.

When an initial value V0 ∈ R and a process α ∈ L2
loc are given, we can

construct a strategy (α, β) by putting

Ṽt = V0 +
∫ t

0

αsdS̃s, βt =
Vt − αtSt

Bt
.

By construction (α, β) is a self-financing strategy with initial value V
(α,β)
0 =

V0. In other words, a self-financing strategy can be indifferently set by speci-
fying the processes α, β or the initial value V0 and the process α. �

Proof (of Proposition 7.3). Given a strategy (α, β), we obviously have

βtBt = V
(α,β)
t − αtSt. (7.8)

Furthermore

dS̃t = −re−rtStdt + e−rtdSt (7.9)

= (μ− r)S̃tdt + σS̃tdWt. (7.10)

Then (α, β) is self-financing if and only if

dṼ
(α,β)
t = −rṼ

(α,β)
t dt + e−rtdVt

= −rṼ
(α,β)
t dt + e−rt (αtdSt + βtdBt) =

(since dBt = rBtdt and by (7.8))

= −rṼ
(α,β)
t dt + e−rt

(
αtdSt + rV

(α,β)
t dt− rαtStdt

)
= e−rtαt (dSt − rStdt) =

(by (7.9))
= αtdS̃t,

and this concludes the proof. �
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Remark 7.5 Thanks to (7.10), condition (7.7) takes the more explicit form

Ṽ
(α,β)
t = Ṽ

(α,β)
0 + (μ− r)

∫ t

0

αsS̃sds + σ

∫ t

0

αsS̃sdWs. (7.11)

This extends the result, proved in discrete time, according to which, if the
discounted prices of the assets are martingales, then also the self-financing
discounted portfolios built upon those assets are martingales.

Indeed, by (7.10), the discounted price S̃t of the underlying asset is a
martingale3 if and only if μ = r in (7.2). Under this condition S̃ is a martingale
and we have

dS̃t = σS̃tdWt; (7.12)

moreover (7.11) becomes

dṼ
(α,β)
t = σS̃t∂sf(t, St)dWt,

and therefore Ṽ (α,β) is a (local) martingale. �

7.2 Markovian strategies and Black-Scholes equation

Definition 7.6 A strategy (αt, βt) is Markovian if

αt = α(t, St), βt = β(t, St)

where α, β are functions in C1,2([0, T [×R>0).

The value of a Markovian strategy (α, β) is a function of time and of the price
of the underlying asset:

f(t, St) := V
(α,β)
t = α(t, St)St + β(t, St)ert, t ∈ [0, T [, (7.13)

with f ∈ C1,2([0, T [×R>0).
We point out that the function f in (7.13) is uniquely determined by (α, β):

if
V

(α,β)
t = f(t, St) = g(t, St) a.s.

then f = g in [0, T [×R>0. This follows from Proposition A.59 and by the fact
that St has a strictly positive (log-normal) density on R>0. As we are going
to use Proposition A.59 often, for the reader’s convenience we recall it here:

3 In this chapter we are not going to introduce the concept of EMM: we defer
the rigorous justification of the steps above to Chapter 10, where we prove the
existence of a probability measure equivalent to P , under which the dynamics of
S is given by (7.2) with μ = r.
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Proposition 7.7 Let X be a random variable with strictly positive density
on H ∈ B. If g ∈ mB is such that g(X) = 0 a.s. (g(X) ≥ 0 a.s.) then
g = 0 (g ≥ 0) almost everywhere with respect to Lebesgue measure on H. In
particular if g is continuous then g = 0 (g ≥ 0) on H.

The following result characterizes the self-financing condition of a Marko-
vian portfolio in differential terms.

Theorem 7.8 Suppose that (α, β) is a Markovian strategy and set f(t, St) =
V

(α,β)
t . The following two conditions are equivalent:

i) (α, β) is self-financing;
ii) f is solution to the partial differential equation

σ2s2

2
∂ssf(t, s) + rs∂sf(t, s) + ∂tf(t, s) = rf(t, s), (7.14)

with (t, s) ∈ [0, T [×R>0, and we have that4

α(t, s) = ∂sf(t, s). (7.15)

Equation (7.14) is called Black-Scholes partial differential equation.

We have already seen Black-Scholes partial differential equation in Section
2.3.6 as the asymptotic version of the binomial algorithm.

Theorem 7.8 relates the self-financing condition to a partial differential
equation whose coefficients depend on the volatility σ of the risky asset and
on the risk-free rate r, but they do not depend on the average rate of return
μ. After examining the elementary example of Section 1.2 and the discrete
case in Section 2.1, this fact should not come as a surprise: as we have already
pointed out, arbitrage pricing does not depend on the subjective estimate of
the future value of the risky asset.

We remark that, for a portfolio based upon formulas (7.14)-(7.15), a inac-
curate estimate of the parameters σ and r of the model might affect the self-
financing property of the strategy: for example, this means that if we change
those parameters in itinere (e.g. after a re-calibration of the model), then the
strategy might need more funds than the ones earmarked at the initial time.
This might cause unwanted effects when we are using that strategy to hedge
a derivative: if we modify the value of σ, hedging might actually cost more
than expected at the beginning on the basis of the self-financing condition.

Proof (of Theorem 7.8). [i) ⇒ ii)] By the self-financing condition and
expression (7.2) of S, we have that

dV
(α,β)
t = (αtμSt + βtrBt)dt + αtσStdWt. (7.16)

4 Let us recall that the expression of the process β can be obtained from α and
V

(α,β)
0 , by Remark 7.4. More precisely:

β(t, s) = e−rt (f(t, s)− s∂sf(t, s)) .



224 7 Black-Scholes model

Then, by the Itô formula and putting for brevity f = f(t, St), we have that

dV
(α,β)
t = ∂tfdt + ∂sfdSt +

1
2
∂ssfd〈S〉t

=
(

∂tf + μSt∂sf +
σ2S2

t

2
∂ssf

)
dt + σSt∂sfdWt.

(7.17)

From the uniqueness of the representation of an Itô process (cf. Proposition
5.3) we infer the equality of the terms in dt and dWt in (7.16) and (7.17).
Then, concerning the terms in dWt, since σSt is strictly positive, we obtain

αt = ∂sf(t, St) a.s. (7.18)

hence, by Proposition 7.7, we get relation (7.15).
Concerning now the terms in dt, by (7.18), we get

∂tf +
σ2S2

t

2
∂ssf − rβtBt = 0 a.s. (7.19)

Substituting the expression

βtBt = f − St∂sf a.s.

in (7.19), we get

∂tf(t, St) + rSt∂sf(t, St) +
σ2S2

t

2
∂ssf(t, St)− rf(t, St) = 0, a.s. (7.20)

therefore, by Proposition 7.7, f is a solution of the deterministic differential
equation (7.14).

[ii)⇒ i)] By the Itô formula, we have

dV
(α,β)
t = df(t, St) = ∂sf(t, St)dSt +

(
σ2S2

t

2
∂ssf(t, St) + ∂tf(t, St)

)
dt =

(since, by assumption, f is a solution of equation (7.14))

= ∂sf(t, St)dSt + r(f(t, St)− St∂sf(t, St))dt = (7.21)

(by (7.15) and since dBt = rBtdt)

= αtdSt + βtdBt,

therefore (α, β) is self-financing. �

There is an intimate connection between the Black-Scholes equation (7.14)
and the heat differential equation. To see this, let us consider the change of
variables

t = T − τ, s = eσx,
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and let us put

u(τ, x) = eax+bτf(T − τ, eσx), τ ∈ [0, T ], x ∈ R, (7.22)

where a, b are constants to be chosen appropriately afterwards. We obtain

∂τu = eax+bτ (bf − ∂tf) ,

∂xu = eax+bτ (af + σeσx∂sf) ,

∂xxu = eax+bτ
(
a2f + 2aσeσx∂sf + σ2eσx∂sf + σ2e2σx∂ssf

)
,

(7.23)

hence

1
2
∂xxu−∂τu = eax+bτ

(
σ2s2

2
∂ssf +

(
σa +

σ2

2

)
s∂sf + ∂tf +

(
a2

2
− b

)
f

)
=

(if f solves (7.14))

= eax+bτ

((
σa +

σ2

2
− r

)
s∂sf +

(
a2

2
− b + r

)
f

)
.

We have thus proved the following result.

Proposition 7.9 Let

a =
r

σ
− σ

2
, b = r +

a2

2
. (7.24)

Then the function f is a solution of the Black-Scholes equation (7.14) in
[0, T [×R>0 if and only if the function u = u(τ, x) defined by (7.22) satisfies
the heat equation

1
2
∂xxu− ∂τu = 0, in ]0, T ]× R. (7.25)

7.3 Pricing

Let us consider a European derivative with payoff F (ST ). As in the discrete
case, the arbitrage price equals by definition the value of a replicating stra-
tegy. In order to guarantee the well-posedness of such a definition, we ought
to prove that there exists at least one replicating strategy (problem of mar-
ket completeness) and that, if there exist more than one, all the replicating
strategies have the same value (problem of absence of arbitrage).

In analytic terms, completeness and absence of arbitrage in the Black-
Scholes model correspond to the problem of existence and uniqueness of the
solution of a Cauchy problem for the heat equation. To make use of the results
on differential equations, it is necessary to impose some conditions on the
payoff function F (to ensure the existence of a solution) and narrow the family
of admissible replicating strategies to a class of uniqueness for the Cauchy
problem (to guarantee the uniqueness of the solution).
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Hypothesis 7.10 The function F is locally integrable on R>0, lower bounded
and there exist two positive constants a < 1 and C such that

F (s) ≤ CeC| log s|1+a

, s ∈ R>0. (7.26)

Condition (7.26) is not really restrictive: the function

e(log s)1+a

= s(log s)a

, s > 1,

grows, as s → +∞, less than an exponential but more rapidly than any
polynomial function. This allows us to deal with the majority (if not all) of
European-style derivatives actually traded on the markets.

Condition (7.26) is connected to the existence results of Appendix A.3: if
we put ϕ(x) = F (ex), we obtain that ϕ is lower bounded and we have that

ϕ(x) ≤ CeC|x|1+a

, x ∈ R,

that is a condition analogous to (A.57).

Definition 7.11 A strategy (α, β) is admissible if it is bounded from below,
i.e. there exists a constant C such that

V
(α,β)
t ≥ C, t ∈ [0, T ], a.s. (7.27)

We denote by A the family of Markovian, self-financing admissible strategies.

The financial interpretation of (7.27) is that investment strategies which re-
quest unlimited debt are not allowed. This condition is indeed realistic because
banks or control institutions generally impose a limit to the investor’s losses.
We comment further on condition (7.27) in Section 7.3.2.

If f(t, St) = V
(α,β)
t with (α, β) ∈ A, then by Proposition 7.7, f is lower

bounded so it belongs to the uniqueness class for the parabolic Cauchy pro-
blem studied in Section 6.3.

Definition 7.12 A European derivative F (ST ) is replicable if there exists an
admissible portfolio (α, β) ∈ A such that5

V
(α,β)
T = F (ST ) in R>0. (7.28)

We say that (α, β) is a replicating portfolio for F (ST ).

5 Let f(t, St) = V
(α,β)

t . If F is a continuous function, then (7.28) simply has to be
understood in the pointwise sense: the limit

lim
(t,s)→(T,s̄)

f(t, s) = F (s̄),

exists for every s̄ > 0, which is tantamount to saying that f , defined on [0, T [×R>0

can be prolonged by continuity on [0, T ]×R>0 and, by Proposition 7.7, f(T, ·) =
F . More generally, if F is locally integrable then (7.28) is to be understood in the
L1

loc sense, cf. Section A.3.3.
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The following theorem is the central result in Black-Scholes theory and gives
the definition of arbitrage price of a derivative.
Theorem 7.13 The Black-Scholes market model is complete and arbitrage-
free, this meaning that every European derivative F (ST ), with F verifying
Hypothesis 7.10, is replicable in a unique way. Indeed there exists a unique
strategy h = (αt, βt) ∈ A replicating F (ST ), that is given by

αt = ∂sf(t, St), βt = e−rt (f(t, St)− St∂sf(t, St)) , (7.29)

where f is the lower bounded solution of the Cauchy problem
σ2s2

2
∂ssf + rs∂sf + ∂tf = rf, in [0, T [×R>0, (7.30)

f(T, s) = F (s), s ∈ R>0. (7.31)

By definition, f(t, St) = V
(α,β)
t is the arbitrage price of F (ST ).

Proof. A strategy (α, β) replicates F (ST ) if and only if:

i) (α, β) is Markovian and admissible, so there exists f ∈ C1,2([0, T [×R>0)
that is lower bounded and such that V

(α,β)
t = f(t, St);

ii) (α, β) is self-financing, so, by Theorem 7.8, f is solution of the differential
equation (7.30), the first of formulas (7.29) holds and the second one follows
by Remark 7.4;

iii) (α, β) is replicating so, by Proposition 7.7, f verifies the final condition
(7.31).

To prove that (α, β) exists and is unique, let us transform problem (7.30)-
(7.31) into a parabolic Cauchy problem in order to apply the results of exis-
tence and uniqueness of Appendices A.3 and 6.3. If we put

u(τ, x) = e−r(T−τ)f(T − τ, ex), τ ∈ [0, T ], x ∈ R, (7.32)

we obtain that f is solution of (7.30)-(7.31) if and only if u is solution of the
Cauchy problem{

σ2

2 (∂xxu− ∂xu) + r∂xu− ∂τu = 0, (t, x) ∈]0, T ]× R,

u(0, x) = e−rT F (ex), x ∈ R.

By Hypothesis 7.10 and the lower boundedness of F , Theorem A.77 guarantees
the existence of a lower bounded solution u. Furthermore, by Theorem 6.19,
u is the only solution belonging to the class of lower bounded functions. Thus
the existence of a replicating strategy and its uniqueness within the class of
lower bounded functions follow immediately. �

Remark 7.14 The admissibility condition (7.27) can be replaced by the
growth condition

|f(t, s)| ≤ CeC(log s)2 , s ∈ R>0, t ∈]0, T [.

In this case, by the uniqueness of the solution guaranteed by Theorem 6.15,
we obtain a result that is analogous to that of Theorem 7.13. �
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Corollary 7.15 (Black-Scholes Formula) Let us assume the Black-
Scholes dynamics for the underlying asset

dSt = μStdt + σStdWt,

and let us denote by r the short rate. Then, if K is the strike price and T is
the maturity, the following formulas for the price of European Call and Put
options hold:

ct = StΦ(d1)−Ke−r(T−t)Φ(d2),

pt = Ke−r(T−t)Φ(−d2)− StΦ(−d1),
(7.33)

where
Φ(x) =

1√
2π

∫ x

−∞
e−

y2

2 dy

is the standard normal distribution function and

d1 =
log
(

St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t =
log
(

St

K

)
+
(
r − σ2

2

)
(T − t)

σ
√

T − t
.

Proof. The claim follows directly from the representation formula for the
solution of the Cauchy problem (7.30)-(7.31) for the Black-Scholes equation
(or for the heat equation, by transformation (7.22)). We are not going through
the explicit computations, already carried out in Section 2.3.5. �

7.3.1 Dividends and time-dependent parameters

Black-Scholes pricing formulas can be adapted to treat the case of a dividend-
paying underlying asset. The simplest case is when we suppose a continuous
payment with constant return q, i.e. we suppose that in the amount of time dt
the dividend paid equals qStdt. In this case, since dividends paid by a stock
reduce its value, we assume the following dynamics

dSt = (μ− q)Stdt + σStdWt. (7.34)

Moreover we modify the self-financing condition (7.5) as follows:

dV
(α,β)
t = αt (dSt + qStdt) + βtdBt. (7.35)

Then, proceeding as in the proof of Theorem 7.8, we obtain6 the modified
Black-Scholes equation

σ2s2

2
∂ssf(t, s) + (r − q)s∂sf(t, s) + ∂tf(t, s) = rf(t, s).

6 On one hand, inserting (7.34) in the self-financing condition (7.35), we get (cf.
(7.16))

dV
(α,β)

t = (αtμSt + βtrBt)dt + αtσStdWt;
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Therefore the Black-Scholes formula for the price of a dividend-paying Call
option becomes

ct = e−q(T−t)StΦ(d̄1)−Ke−r(T−t)Φ(d̄1 − σ
√

T − t),

where

d̄1 =
log
(

St

K

)
+
(
r − q + σ2

2

)
(T − t)

σ
√

T − t
.

We can obtain explicit pricing formulas even when the parameters r, μ, σ
are time-dependent deterministic functions:

dBt = r(t)Btdt,

dSt = μ(t)Stdt + σ(t)StdWt.

Let us suppose, for example, that r, μ, σ are continuous functions on [0, T ].
Then we have

Bt = e
∫ t
0 r(s)ds,

St = S0 exp
(∫ t

0

σ(s)dWs +
∫ t

0

(
μ(s)− σ2(s)

2

)
ds

)
.

Following the same arguments we obtain formulas that are analogous to the
ones of Corollary 7.15 where the terms r(T − t) and σ

√
T − t must be re-

placed by ∫ T

t

r(s)ds and

(∫ T

t

σ2(s)ds

) 1
2

,

respectively.

7.3.2 Admissibility and absence of arbitrage

In this section, we comment on the concept of admissibility of a strategy and
on its relation with the absence of arbitrage in the Black-Scholes model.

As in the discrete case, an arbitrage is an investment strategy that requires
a null initial investment, with nearly no risk, and that has the possibility of
taking a future positive value. Let us formalize the concept into the following:

on the other hand, by the Itô formula for V
(α,β)

t = f(t, St), we have (cf. (7.17))

dV
(α,β)

t =

(
∂tf + (μ− q)St∂sf +

σ2S2
t

2
∂ssf

)
dt + σSt∂sfdWt,

and the modified Black-Scholes equation follows from the uniqueness of the re-
presentation of an Itô process.
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Definition 7.16 An arbitrage is a self-financing strategy (α, β) whose value
V (α,β) is such that

i) V
(α,β)
0 = 0 a.s.;

and there exists t0 ∈ ]0, T ] such that

ii) V
(α,β)
t0 ≥ 0 a.s.;

iii)P (V (α,β)
t0 > 0) > 0.

In the binomial model the absence of arbitrage strategies is guaranteed under
straightforward and intuitive assumptions summed up by condition (2.39)
which expresses a relation between the return of the risky asset and the return
of the bond. On the contrary, in the continuous-time models, the problem of
existence of arbitrage opportunities is a very delicate matter. Indeed, without
imposing an admissibility condition, even in the Black-Scholes market model
it is possible to construct arbitrage portfolios, i.e. one can invest in the assets
(7.1) and (7.3) with a self-financing strategy of null initial cost to obtain a
risk-free profit.

In very loose terms7, the idea is to use a strategy consisting in doubling the
bet in case of loss: this is well known in gambling games. To fix the ideas, let
us consider a coin-tossing game in which if we bet $1 we get $2 if the outcome
is head, and nothing if the outcome is tail. In this case the doubling strategy
consists in beginning by betting $1 and keeping on gambling, doubling the
bet every time one loses and then stopping the first time one wins. Thus,
if one wins for the first time at the n-th game, the amount of money gained
equals the difference between what one invested and lost in the game, precisely
1 + 2 + 4 + · · · + 2n−1, and what one won at the n-th game, i.e. 2n: so, the
total wealth is positive and equals $1. In this way one is sure to win if the
following two conditions hold:

i) one can gamble an infinite number of times;
ii) one has at his/her disposal an infinite wealth.

In a discrete market with finite horizon, these strategies are automatically
ruled out by i), cf. Proposition 2.12. In a continuous-time market, even in the
case of finite horizon, it is necessary to impose some restrictions in order to
rule out the “doubling strategies” which constitute an arbitrage opportunity:
this motivates the admissibility condition of Definition 7.11.

The choice of the family of admissible strategies must be made in a suitable
way: we have to be careful not to choose a family that is too wide (this might
generate arbitrage opportunities), but also not too narrow (this to guarantee
a certain degree of freedom in building replicating portfolios that make the
market complete). In the literature different notions of admissibility can be
found, not all of them being expressed in an explicit fashion: Definition 7.11
looks a simple and intuitive choice. In order to compare our notion of ad-

7 For further details we refer, for example, to Steele [315], Chapter 14.
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missibility to other ones, let us prove now that the class A does not contain
arbitrage opportunities.

Proposition 7.17 (No-arbitrage principle) The family A does not con-
tain arbitrage strategies.

Proof. The claim follows directly from Corollary 6.22. By contradiction, let
(α, β) ∈ A, with V

(α,β)
t = f(t, St), be an arbitrage strategy: then f is lower

bounded, it is a solution of the PDE (7.30) and we have that f(0, S0) = 0.
Moreover there exist t ∈]0, T ] and s̄ > 0 such that f(t, s̄) > 0 and f(t, s) ≥ 0
for every s > 0. To use Corollary 6.22, let us transform the Black-Scholes
PDE into a parabolic equation by substitution(7.32)

u(τ, x) = e−r(T−τ)f(T − τ, ex), τ ∈ [0, T ], x ∈ R.

Then u is a solution of the equation

σ2

2
(∂xxu− ∂xu) + r∂xu− ∂τu = 0, (7.36)

and Corollary 6.22 leads to the absurd inequality:

0 = f(0, S0) = u(T, log S0) ≥
∫
R

Γ (T, log S0, T − t, y)u(T − t, y)dy > 0,

since u(T − t, y) = e−rtf(t, ey) ≥ 0 for every y ∈ R, u(T − t, log s̄) =
e−rtf(t, s̄) > 0 and Γ (T, ·, τ, ·), the fundamental solution of (7.36) is strictly
positive when τ < T . �

7.3.3 Black-Scholes analysis: heuristic approaches

We present now some alternative ways to obtain the Black-Scholes equation
(7.14). The following approaches are heuristic; their good point is that they
are intuitive, while their flaw is they are not completely rigorous. Furthermore
they share the fact that they assume the no-arbitrage principle as a starting
point, rather than a result: we will comment briefly on this at the end of the
section, in Remark 7.18. What follows is informal and not rigorous.

In the first approach, we aim at pricing a derivative H with maturity T
assuming that its price at a time t in the form Ht = f(t, St) with f ∈ C1,2. To
this end we consider a self-financing portfolio (α, β) and impose the replication
condition

V
(α,β)
T = HT a.s.

By the no-arbitrage principle, it must also hold that

V
(α,β)
t = Ht a.s.

for t ≤ T . Proceeding as in the proof of Theorem 7.8, we impose that the
stochastic differentials dV

(α,β)
t and df(t, St) are equal to get (7.14) and the

hedging strategy (7.15). The result thus obtained is formally identical: never-
theless in this way one could erroneously think that the Black-Scholes equa-
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tion (7.14) is a consequence of the absence of arbitrage opportunities rather
than a characterization of the self-financing condition.

Concerning the second approach, let us consider the point of view of a bank
that sells an option and wants to determine a hedging strategy by investing in
the underlying asset. Let us consider a portfolio consisting of a certain amount
of the risky asset St and of a short position on a derivative with payoff F (ST )
whose price, at the time t, is denoted by f(t, St):

V (t, St) = αtSt − f(t, St).

In order to determine αt, we want to render V neutral with respect to the
variation of St, or, in other terms, V immune to the variation of the price of
the underlying asset by imposing the condition

∂sV (t, s) = 0.

By the equality V (t, s) = αts− f(t, s), we get8

αt = ∂sf(t, s), (7.37)

and this is commonly known as the Delta hedging9 strategy. By the self-
financing condition we have

dV (t, St) = αtdSt − df(t, St)

=
(

(αt − ∂sf)μSt − ∂tf −
σ2S2

t

2
∂ssf

)
dt + (αt − ∂sf)σStdWt.

Therefore the choice (7.37) wipes out the riskiness of V , represented by the
term in dWt, and cancels out also the term containing the return μ of the
underlying asset. Summing up we get

dV (t, St) = −
(

∂tf +
σ2S2

t

2
∂ssf

)
dt. (7.38)

Now since the dynamics of V is deterministic, by the no-arbitrage principle V
must have the same return of the non-risky asset:

dV (t, St) = rV (t, St)dt = r (St∂sf − f) dt, (7.39)

so, equating formulas (7.38) and (7.39) we obtain again the Black-Scholes
equation.

The idea that an option can be used to hedge risk is very intuitive and
many arbitrage pricing techniques are based upon such arguments.
8 The attentive reader may wonder why, even though αt is function of s, ∂sαt does

not appear in the equation.
9 In common terminology, the derivative ∂sf is usually called Delta.
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Remark 7.18 In the approaches we have just presented, the no-arbitrage
principle, under different forms, is assumed as a hypothesis in the Black-
Scholes model: this certainly helps intuition, but a rigorous justification of
this might be hard to find. Indeed we have seen that in the Black-Scholes
model arbitrage strategies actually exist, albeit they are pathological. In our
presentation, as in other more probabilistic ones based upon the notion of
EMM, all the theory is built upon the self-financing condition: in this ap-
proach, the absence of arbitrage opportunities is the natural consequence of
the self-financing property. Intuitively this corresponds to the fact that if a
strategy is adapted and self-financing, then it cannot reasonably generate a
risk-free profit greater than the bond: in other words it cannot be an arbitrage
opportunity. �

7.3.4 Market price of risk

Let us go back to the ideas of Section 1.2.4 and analyze the pricing and hedging
of a derivative whose underlying asset is not exchanged on the market, sup-
posing though that another derivative on the same underlying asset is traded.
A noteworthy case is that of a derivative on the temperature: even though
it is possible to construct a probabilistic model for the value of temperature,
it is not possible to build up a replicating strategy that uses the underlying
asset since this cannot be bought or sold; consequently we cannot exploit the
argument of Theorem 7.13. Nevertheless, if on the market there already exists
an option on the temperature, we can try to price and hedge a new derivative
by means of that option.

Let us assume that the underlying asset follows the geometric Brownian
motion dynamics

dSt = μStdt + σStdWt, (7.40)

even if the following results do not depend on the particular model considered.
We suppose that a derivative on S is exchanged on the market, and that its
price at time t is known. We assume also that this price can be written as
f(t, St), with f ∈ C1,2([0, T [×R>0). Finally we request that

∂sf 
= 0

and that suitable assumptions hold in order to guarantee the existence and the
uniqueness of the solution of the Cauchy problem (7.49)-(7.50) below. Since
we go through such conditions in Chapters 6 and 8, it seems unnecessary to
recall them here.

By the Itô formula, we have

df(t, St) = Lf(t, St)dt + σSt∂sf(t, St)dWt, (7.41)

where

Lf(t, s) = ∂tf(t, s) + μs∂sf(t, s) +
σ2s2

2
∂ssf(t, s). (7.42)
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Our aim is to price a derivative with payoff G(ST ). We imitate the technique
of the preceding sections and build a Markovian self-financing portfolio on the
bond and on the derivative f . We denote by g(t, St) the value of such portfolio
at time t,

g(t, St) = αtf(t, St) + βtBt, (7.43)

and we impose the self-financing condition:

dg(t, St) = αtdf(t, St) + βtdBt =

(by (7.41))

= (αtLf(t, St) + rβtBt) dt + αtσSt∂sf(t, St)dWt =

(since βtBt = g(t, St)− αtf(t, St))

= (αt(Lf(t, St)− rf(t, St)) + rg(t, St)) dt + αtσSt∂sf(t, St)dWt. (7.44)

Now we compare this expression with the stochastic differential obtained by
the Itô formula

dg(t, St) = Lg(t, St)dt + σSt∂sg(t, St)dWt.

By the uniqueness of the representation for an Itô process, we deduce the
equality of the terms in dt and dWt:

αt =
∂sg(t, St)
∂sf(t, St)

, (7.45)

αt(Lf(t, St)− rf(t, St)) = Lg(t, St)− rg(t, St). (7.46)

Substituting (7.45) into (7.46) and reordering the terms, we obtain

Lg(t, St)− rg(t, St) = σStλf∂sg(t, St), (7.47)

where

λf = λf (t, St) =
Lf(t, St)− rf(t, St)

σSt∂sf(t, St)
. (7.48)

Finally, substituting expression (7.42) for L into (7.47), we have proved the
following generalization of Theorems 7.8 and 7.13.

Theorem 7.19 The portfolio given by (7.43) is self-financing if and only if
g is solution of the differential equation

σ2s2

2
∂ssg(t, s) + (μ− σλf (t, s)) s∂sg(t, s) + ∂tg(t, s) = rg(t, s), (7.49)

with (t, s) ∈ [0, T [×R>0. Under the assumptions of Theorem 7.13, there exists
a unique replicating portfolio for G(ST ), given by the solution of the Cauchy
problem for (7.49) with terminal condition

g(T, s) = G(s), s ∈ R>0. (7.50)

The value (g(t, St))t≤T is the arbitrage price of G(ST ) and the replicating
strategy is given by (7.45).
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By Theorem 7.19, the replication of an option (and then the completeness
of the market) is guaranteed even if the underlying asset is not exchanged,
provided that on the market there exists another derivative on the same un-
derlying asset.

If the underlying asset is traded, we can choose f(t, s) = s: in this case we
simply denote λ = λf and we observe that

λ =
μ− r

σ
. (7.51)

Substituting (7.51) into (7.49) we obtain exactly the Black-Scholes equation.
The coefficient λ represents the difference between the expected return μ

and the riskless return r, that the investors request when buying S in order to
take the risk represented by the volatility σ. For this very reason, λ is usually
called market price of risk and it measures the investors’ propensity to risk.

The market price of risk can be determined by the underlying asset (if
exchanged) or by another derivative. Let us point out that (7.41) can be
rewritten in a formally similar way to (7.40):

df(t, St) = μff(t, St)dt + σff(t, St)dWt,

where

μf =
Lf(t, St)
f(t, St)

, σf =
σSt∂sf(t, St)

f(t, St)
,

so, by definition (7.48), we have that

λf =
μf − r

σf
,

in analogy to (7.51).
We can now interpret the Black-Scholes differential equation (7.49) in a

remarkable way: it is indeed equivalent to relation (7.47) that can be simply
rewritten as

λf = λg. (7.52)

To put this in another terms, the self-financing condition imposes that g and f
share the same market price of risk. And since f and g are generic derivatives,
(7.52) is actually a market consistency condition:

• all the traded assets (or self-financing strategies) must have the same mar-
ket price of risk.

In the case of an incomplete market, where the only exchanged asset is the
bond, the theoretical prices of the derivatives must verify a Black-Scholes
equation similar to (7.49) but in this case the value of the market price of risk
is not known, i.e. the coefficient λf that appears in the differential equation
is unknown. Therefore the arbitrage price of an option is not unique, just as
we have seen in the discrete case for the trinomial model.
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7.4 Hedging

From a theoretical point of view the Delta-hedging strategy (7.37) guarantees
a perfect replication of the payoff. So there would be no need to further study
the hedging problem. However, in practice the Black-Scholes model poses some
problems: first of all, the strategy (7.29) requires a continuous rebalancing
of the portfolio, and this is not always possible or convenient, for example
because of transition costs. Secondly, the Black-Scholes model is commonly
considered too simple to describe the market realistically: the main issue lies
in the hypothesis of constant volatility that appears to be definitely too strong
if compared with actual data (see Paragraph 7.5).

The good point of the Black-Scholes model is that it yields explicit formu-
las for plain vanilla options. Furthermore, even though it has been severely
criticized, it is still the reference model. At a first glance this might seem
paradoxical but, as we are going to explain, it is not totally groundless.

The rest of the paragraph is structured as follows: in Section 7.4.1 we in-
troduce the so-called sensitivities or Greeks: they are the derivatives of the
Black-Scholes price with respect to the risk factors, i.e. the price of the un-
derlying and the parameters of the model. In Section 7.4.2 we analyze the
robustness of the Black-Scholes model, i.e. the effects its use might cause if
it is not the “correct” model. In Section 7.4.3 we use the Greeks to get more
effective hedging strategies than the mere Delta-hedging.

7.4.1 The Greeks

In the Black-Scholes model the value of a strategy is a function of several
variables: the price of the underlying asset, the time to maturity and the
parameters of the model, the volatility σ and the short-term rate r. From a
practical point of view it is useful to be able to evaluate the sensitivity of the
portfolio with respect to the variation of these factors: this means that we are
able to estimate, for example, how the value of the portfolio behaves when
we are getting closer to maturity or we are varying the risk-free rate or the
volatility. The natural sensitivity indicators are the partial derivatives of the
value of the portfolio with respect to the corresponding risk factors (price of
the underlying asset, volatility, etc...). A Greek letter is commonly associated
to every partial derivative, and for this reason these sensitivity measurements
are usually called the Greeks.

Notation 7.20 We denote by f(t, s, σ, r) the value of a self-financing Marko-
vian strategy in the Black-Scholes model, as a function of time t, of the price
of the underlying s, of the volatility σ and of the short-term rate r. We put:

Δ = ∂sf (Delta),
Γ = ∂ssf (Gamma),
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V = ∂σf (Vega),
� = ∂rf (Rho),
Θ = ∂tf (Theta).

We say that a strategy is neutral with respect to one of the risk factors if
the corresponding Greek is null, i.e. if the value of the portfolio is insensitive
to the variation of such factor. For example, the Delta-hedging strategy is
constructed in such a way that the portfolio becomes neutral to the Delta, i.e.
insensitive with respect to the variation of the price of the underlying.

We can get an explicit expression for the Greeks of European Put and Call
options, just by differentiating the Black-Scholes formula: some computations
must be carried out, but with a little bit of shrewdness they are not particu-
larly involved. In what follows we treat in detail only the call-option case. For
the reader’s convenience we recall the expression of the price at the time t of
a European Call with strike K and maturity T :

ct = g(d1),

where g is the function defined by

g(d) = StΦ(d)−Ke−r(T−t)Φ(d− σ
√

T − t), d ∈ R,

and

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy, d1 =
log
(

St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√

T − t
.

The graph of the price of a Call option is shown in Figure 7.1. Sometimes it
is convenient to use the following notation:

d2 = d1 − σ
√

T − t =
log
(

St

K

)
+
(
r − σ2

2

)
(T − t)

σ
√

T − t
,

and the following lemma serves the purpose of simplifying the computations.

Lemma 7.21 We have
g′(d1) = 0, (7.53)

and consequently

StΦ
′(d1) = Ke−r(T−t)Φ′(d1 − σ

√
T − t). (7.54)

Proof. It is enough to observe that

Φ′(x) =
e−

x2
2

√
2π

.
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Fig. 7.1. Graph of the price of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility σ = 0.3, risk-free rate r = 0.05

Then

g′(d) = St
e−

d2
2

√
2π
−Ke−r(T−t) e

− (d−σ
√

T−t)2

2

√
2π

=
e−

d2
2

√
2π

(
St −Ke

−
(

r+ σ2
2

)
(T−t)

edσ
√

T−t

)
and the claim follows immediately by the definition of d1. �

Let us examine now every single Greek of a Call option.

Delta: we have
Δ = Φ(d1). (7.55)

Indeed
Δ = ∂sct = Φ(d1) + g′(d1)∂sd1,

and (7.55) follows by (7.53).
The graph of the Delta is shown in Figure 7.2. Let us point out that the
Delta of the Call option is positive and less than one, because Φ is such:

0 < Δ < 1.
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Fig. 7.2. Graph of the Delta of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility σ = 0.3, risk-free rate r = 0.05

Since the Delta has to be interpreted as the amount of risky asset to be
held in the Delta-hedging portfolio, this corresponds to the intuitive fact
that we must buy the underlying asset in order to hedge a short position
on a Call option. Let us note that

lim
s→0+

d1 = −∞, lim
s→+∞

d1 = +∞,

so the following asymptotic expressions for price and Delta hold:

lim
s→0+

ct = 0, lim
s→+∞

ct = +∞,

lim
s→0+

Δ = 0, lim
s→+∞

Δ = 1.

Gamma:we have

Γ =
Φ′(d1)

σSt

√
T − t

.

Indeed
Γ = ∂sΔ = Φ′(d1)∂sd1.

The graph of the Gamma is shown in Figure 7.3. We note that the Gamma
of a Call option is positive and therefore the price and the Delta are a
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Fig. 7.3. Graph of the Gamma of a European Call option in the Black-Scholes
model, as a function of the price of the underlying asset (0.5 ≤ S ≤ 1.5) and of time
to maturity (0.05 ≤ T ≤ 1). The parameters are: strike K = 1, volatility σ = 0.3,
risk-free rate r = 0.05

convex function and an increasing function with respect to the underlying
asset, respectively. Furthermore we have that

lim
s→0+

Γ = lim
s→+∞

Γ = 0.

Vega: we have
V = St

√
T − t Φ′(d1).

Indeed

V = ∂σct = g′(d1)∂σd1 + Ke−r(T−t)Φ′(d1 − σ
√

T − t)
√

T − t =

(by (7.53))
= Ke−r(T−t)Φ′(d1 − σ

√
T − t)

√
T − t =

(by (7.54))
= St

√
T − t Φ′(d1).

The graph of the Vega is shown in Figure 7.4. The Vega is positive, so
the price of a Call option is a strictly increasing function of the volatility
(cf. Figure 7.5). Intuitively this is due to the fact that an option is a
contract giving a right, not an obligation: therefore one takes advantage of
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Fig. 7.4. Graph of the Vega of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility σ = 0.3, risk-free rate r = 0.05

the greater riskiness of the underlying asset. It also follows that the price
of the option is an invertible function of the volatility: in other terms, all
other parameters being fixed, there is a unique value of the volatility that,
plugged into the Black-Scholes formula, produces a given option price.
This value is called implied volatility.
We show that

lim
σ→0+

ct =
(
St −Ke−r(T−t)

)+

, lim
σ→+∞

ct = St (7.56)

and so (
St −Ke−r(T−t)

)+

< ct < St,

in accordance with the estimates of Corollary 1.2, based upon arbitrage
arguments. Indeed if we put

λ = log
(

St

K

)
+ r(T − t),

we have that λ = 0 if and only if

St = Ke−r(T−t),
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Fig. 7.5. Graph of the price of a European Call option in the Black-Scholes model,
as a function of the price of the volatility (0 ≤ σ ≤ 5) and of time to maturity
(0.05 ≤ T ≤ 1). The parameters are: S = K = 1, risk-free rate r = 0.05

and furthermore

lim
σ→0+

d1 =

⎧⎪⎨⎪⎩
+∞, if λ > 0,

0, if λ = 0,

−∞, if λ < 0.

So

lim
σ→0+

ct =

{
St −Ke−r(T−t), if λ > 0,

0, if λ ≤ 0,

and this proves the first limit in (7.56). Then

lim
σ→+∞

d1 = +∞, lim
σ→+∞

d2 = −∞,

so that also the second limit in (7.56) follows easily.
Theta: we have

Θ = −rKe−r(T−t)Φ(d2)−
σSt

2
√

T − t
Φ′(d1). (7.57)

Indeed

Θ = ∂tct = g′(d1)∂td1 − rKe−r(T−t)Φ(d2)−Ke−r(T−t)Φ′(d2)
σ

2
√

T − t
,
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Fig. 7.6. Graph of the Theta of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset (0.5 ≤ S ≤ 1.5) and of time to
maturity (0.05 ≤ T ≤ 1). The parameters are: strike K = 1, volatility σ = 0.3,
risk-free rate r = 0.05

and (7.57) follows from (7.54). The graph of the Theta is shown in Figure
7.6. Let us note that Θ < 0 so the price of a Call option decreases when
we get close to maturity: intuitively this is due to the lowering of the effect
of the volatility, that is indeed multiplied in the expression for the price
by a

√
T − t factor.

Rho: we have

� = K(T − t)e−r(T−t)Φ(d2).

Indeed

� = ∂rct = g′(d1)∂rd1 + K(T − t)e−r(T−t)Φ(d2),

and the claim follows from (7.53). The graph of the Rho is shown in Figure
7.7. Let us note that ρ > 0 and so the price of a Call option increases when
the risk-free rate does so: this is due to the fact that if the Call is exercised,
this imposes the payment of the strike K whose discounted value decreases
as r increases.



244 7 Black-Scholes model

0.5

1

1.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

S
0

T

Fig. 7.7. Graph of the Rho of a European Call option in the Black-Scholes model,
as a function of the price of the underlying asset and of time to maturity. The
parameters are: strike K = 1, volatility σ = 0.3, risk-free rate r = 0.05

Let us mention without proof the expressions for the Greeks of a European
Put option:

Δ = ∂spt = Φ(d1)− 1,

Γ = ∂sspt =
Φ′(d1)

σSt

√
T − t

,

V = ∂σpt = St

√
T − t Φ′(d1),

Θ = ∂tpt = rKe−r(T−t) (1− Φ(d2))−
σSt

2
√

T − t
Φ′(d1),

ρ = ∂rpt = K(T − t)e−r(T−t) (Φ(d2)− 1) .

We point out that the Delta of a Put option is negative. Gamma and Vega have
the same expression for both Put and Call options: in particular, the Vega is
positive and so also the price of the Put option increases when the volatility
does so. The Theta of a Put option may assume positive and negative values.
The Rho of the Put is negative.
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7.4.2 Robustness of the model

We assume the Black-Scholes dynamics for the underlying asset

dSt = μStdt + σStdWt (7.58)

where μ, σ are constant parameters and we denote by r the short-term rate.
Then the price f(t, St) of an option with payoff F (ST ) is given by the solution
of the Cauchy problem

σ2s2

2
∂ssf + rs∂sf + ∂tf = rf, in [0, T [×R>0, (7.59)

f(T, s) = F (s), s ∈ R>0. (7.60)

Moreover
f(t, St) = αtSt + βtBt

is the value of the Delta-hedging strategy given by αt = ∂sf(t, St) and βt =
f(t, St)− St∂sf(t, St).

Let us suppose now that the actual dynamics of the underlying asset is
different from (7.58) and are described by an Itô process of the form

dS̄t = μtS̄tdt + σtS̄tdWt, (7.61)

with μt ∈ L1
loc and σt ∈ L2

loc. On the basis of the final condition (7.60), the
Delta-hedging strategy replicates the payoff F (S̄T ) on any trajectory of the
underlying asset. However the fact that the actual dynamics (7.61) is different
from the Black-Scholes’ ones causes the loss of the self-financing property: in
practice, this means that hedging has a different cost (possibly greater) with
respect to the Black-Scholes price f(0, S̄0). Indeed we have

df(t, S̄t) = ∂sfdS̄t +
(

∂tf +
σ2

t S̄2
t

2
∂ssf

)
dt =

(by (7.59))

= ∂sfdS̄t +
(

rf − rS̄t∂sf −
(σ2 − σ2

t )S̄2
t

2
∂ssf

)
dt

= ∂sfdS̄t +
(
f − S̄t∂sf

)
dBt −

(σ2 − σ2
t )S̄2

t

2
∂ssfdt. (7.62)

More explicitly we have the following integral expression of the payoff

F (S̄T ) = f(T, S̄T ) = I1 + I2 + I3

where

I1 = f(0, S̄0)
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is the Black-Scholes price,

I2 =
∫ T

0

∂sf(t, S̄t)dS̄t +
∫ T

0

(
f(t, S̄t)− S̄t∂sf(t, S̄t)

)
dBt

is the gain of the Delta-hedging strategy,

I3 = −1
2

∫ T

0

(σ2 − σ2
t )S̄2

t ∂ssf(t, S̄t)dt (7.63)

is a correction term due to the erroneous specification of the model for the
underlying asset. Clearly I3 = 0 if σ = σt and only in that case the strategy
is self-financing.

We remark that I3 depends only on the misspecification of the volatility
term and not on the drift. More precisely I3, which also represents the replica-
tion error of the Delta-hedging strategy, depends on the Vega which measures
the convexity of the Black-Scholes price as a function of the price of the un-
derlying asset. In particular the error is small if ∂ssf is small. Furthermore,
if the price is convex, ∂ssf ≥ 0, as in the case of Call and Put options, then
the Black-Scholes strategy (whose final value is I1 + I2) super-replicates the
derivative for any dynamics of the underlying asset as long as we choose the
volatility sufficiently large, σ ≥ σt, since in this case I3 ≤ 0.

In this sense the Black-Scholes model is robust and, if used with all due
precautions, can be effectively employed to hedge derivatives. Let us note
finally that there exist options whose price is not a convex function of the
underlying asset and so the Vega is not necessarily positive: this is the case of
the digital option, corresponding to the Delta of a Call (see Figure 7.2), and
also of some barrier options. Consequently in some cases in order to super-
replicate it may be necessary to decrease the volatility.

7.4.3 Gamma and Vega-hedging

The Greeks can be used to determine more efficient hedging strategies than
Delta-hedging. Here we consider the replication problem from a practical point
of view: it is clear that theoretically the Delta-hedging approach offers perfect
replication; nevertheless we have already mentioned some substantial pro-
blems we might have to face:

• the strategies are discrete and there are transition costs;
• the volatility is not constant.

As an example, in this section we consider the Delta-Gamma and Delta-Vega-
hedging strategies whose purpose is to reduce the replication error due to the
fact that rebalancing is not continuous in the first case and to the variation
of the volatility in the second.

The reason why it is necessary to rebalance the Black-Scholes hedging
portfolio is that the Delta changes as the underlying price varies. So, to mini-
mize the number of times we have to rebalance (and the relative costs, of
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course), it seems natural to create a strategy that is neutral not only to the
Delta but also to the Gamma. With all due adjustments, the procedure is simi-
lar to the Delta-hedging one in Section 7.3.3. Nevertheless in order to impose
two neutrality conditions, one unknown is no longer sufficient, so it is necessary
to build a portfolio with three assets. The situation is analogous to that of an
incomplete market (cf. Section 2.4.1): indeed if continuous rebalancing is not
allowed, not all derivatives are replicable and the Black-Scholes model loses
its completeness property.

Let us suppose that we have sold a derivative f(t, St) and we try to hedge
the short position by investing on the underlying asset and on another deriva-
tive g(t, St): the typical situation is when f is an exotic derivative and g is
a plain vanilla option and we suppose it is exchanged on the market. We
consider

V (t, St) = −f(t, St) + αtSt + βtg(t, St), (7.64)

and we determine α, β by imposing the neutrality conditions

∂sV = 0, ∂ssV = 0.

We get the system of equations{
−∂sf + αt + βt∂sg = 0,

−∂ssf + βt∂ssg = 0,

hence we deduce the Delta-Gamma-hedging strategy

βt =
∂ssf(t, St)
∂ssg(t, St)

, αt = ∂sf(t, St)−
∂ssf(t, St)
∂ssg(t, St)

∂sg(t, St).

We use a similar argument to reduce the uncertainty risk of the vola-
tility parameter. The main assumption of the Black-Scholes model is that
the volatility is constant, therefore the Delta-Vega-hedging strategy that we
present in what follows is, in a certain sense, “beyond” the model. In this
case also, the underlying asset is not sufficient and so we suppose there exists
a second derivative which is exchanged on the market. Let us consider the
portfolio (7.64) and let us impose the neutrality conditions

∂sV = 0, ∂σV = 0.

We get the system of equations{
−∂sf + αt + βt∂sg = 0,

−∂σf + αt∂σSt + βt∂σg = 0,

and then we can obtain easily the hedging strategy by observing that ∂σSt =
St(Wt − σt).
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7.5 Implied volatility

In the Black-Scholes model the price of a European Call option is a function
of the form

CBS = CBS (σ, S,K, T, r)

where σ is the volatility, S is the current price of the underlying asset, K is
the strike, T is the maturity and r is the short-term rate. Actually the price
can also be expressed in the form

CBS := Sϕ

(
σ,

S

K
, T, r

)
,

where ϕ is a function whose expression can be easily deduced from the Black-
Scholes formula (7.33). The number m = S

K is usually called “moneyness” of
the option: if S

K > 1, we say that that the Call option is “in the money”, since
we are in a situation of potential profit; if S

K < 1, the Call option is “out of
the money” and has null intrinsic value; finally, if S

K = 1 i.e. S = K, we say
that the option is “at the money”.

Of all the parameters determining the Black-Scholes price, the volatility σ
is the only one that is not directly observable. We recall that

σ �→ CBS (σ, S,K, T, r)

is a strictly increasing function and therefore invertible: having fixed all the
other parameters, a Black-Scholes price of the option corresponds to every
value of σ; conversely, a unique value of the volatility σ∗ is associated to every
value C∗ on the interval ]0, S[ (the interval to which the price must belong by
arbitrage arguments). We set

σ∗ = VI (C∗, S,K, T, r) ,

where σ∗ is the unique value of the volatility parameter such that

C∗ = CBS (σ∗, S,K, T, r) .

The function
C∗ �→ VI (C∗, S,K, T, r)

is called implied volatility function.
The first problem when we price an option in the Black-Scholes model is

the choice of the parameter σ that, as we have already said, is not directly
observable. The first idea could be to use a value of σ obtained from an esti-
mate on the historical data on the underlying asset, i.e. the so-called historical
volatility. Actually, the most widespread and simple approach is that of using
directly, where it is available, the implied volatility of the market: we see,
however, that this approach is not free from problems.
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The concept of implied volatility is so important and widespread that, in
financial markets, the plain vanilla options are commonly quoted in terms of
implied volatility, rather than explicitly by giving their price. As a matter of
fact, using the implied volatility is convenient for various reasons. First of all,
since the Put and Call prices are increasing functions of the volatility, the
quotation in terms of the implied volatility immediately gives the idea of the
“cost” of the option. Analogously, using the implied volatility makes it easy
to compare the prices of options on the same asset, but with different strikes
and maturities.

For fixed S and r, and given a family of prices

{C∗i | i = 1, . . . M} (7.65)

where C∗i denotes the price of the Call with strike Ki and maturity T i, the
implied volatility surface relative to (7.65) is the graph of the function(

Ki, T i
)
�→ VI

(
C∗i , S,Ki, T i, r

)
.

If we assume the Black-Scholes dynamics for the underlying asset

dSt = μStdt + σStdWt

and
(
Ci

BS

)
i∈I

is a family of Black-Scholes prices relative to the strikes Ki

and maturities T i, then the corresponding implied volatilities must obviously
coincide:

VI
(
Ci

BS, S,Ki, T i, r
)

= σ for any i ∈ I.

In other terms, the implied volatility surface relative to the prices obtained by
the Black-Scholes model is flat and coincides with the graph of the function
that is constant and equal to σ.

On the contrary, for an empirical implied volatility surface, inferred from
quoted prices in real markets, the result is generally quite different: it is well
known that the market prices of European options on the same underlying
asset have implied volatilities that vary with strike and maturity. By way of
example, in Figure 7.8 we depict the implied volatility surface of options on
the London FTSE index on March 31st 2006.

Typically every section, with T fixed, of the implied volatility surface takes
a particular form that is usually called “smile” (in the case of Figure 7.9) or
“skew” (in the case of Figure 7.8). Generally we can say that market quotation
tends to give more value (greater implied volatility) to the extreme cases “in”
or “out of the money”. This reflects that some situations in the market are
perceived as more risky, in particular the case of extreme falls or rises of the
quotations of the underlying asset.

Also the dependence on T , the time to maturity, is significant in the ana-
lysis of the implied volatility: this is called the term-structure of the implied
volatility. Typically when we get close to maturity (T → 0+), we see that the
smile or the skew become more marked.
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Fig. 7.8. Implied-volatility surface of options on the FTSE index on March 31st
2006

Other characteristic features make definitely different the implied volatility
surface of the market from the constant Black-Scholes volatility: for example,
in Figure 7.9 we show the dependence of the implied volatility of options on
the S&P500 index, with respect to the so-called “deviation from trend” of
the underlying asset, defined as the difference between the current price and
a weighted mean of historical prices. Intuitively this parameter indicates if
there have been sudden large movements of the quotation of the underlying
asset.

Finally we note that the implied volatility depends also on time in absolute
terms: indeed, it is well known that the shape of the implied volatility surface
on the S&P500 index has significantly changed from the beginning of the
eighties until today. The market crash of 19 October 1987 may be taken as
the date marking the end of flat volatility surfaces.

This also reflects the fact that, though based on the same mathematical
and probabilistic tools, the modeling of financial and, for instance, physical
phenomena are essentially different: indeed, the financial dynamics strictly
depends on the behaviour and beliefs of investors and therefore, differently
from the general laws in physics, may vary drastically over time.

The analysis of the implied volatility surface makes it evident that the
Black-Scholes model is not realistic: more precisely, we could say that nowa-
days Black-Scholes is the language of the market (since prices are quoted in
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Fig. 7.9. Effect of the deviation from trend on the implied volatility. The volatility
smiles for options on the S&P500 index are grouped for different values of the
deviation, as indicated on top of each box

terms of implied volatility), but usually it is not the model really used by
investors to price and hedge derivatives. Indeed the use of the Black-Scholes
model poses some not merely theoretical problem: for instance, let us suppose
that, despite all the evidence against the Black-Scholes model, we wish to use
it anyway. Then we have seen that we have to face the problem of the choice
of the volatility parameter for the model. If we use the historical volatility, we
might get quotations that are “out of the market”, especially when compared
with those obtained from the market-volatility surface in the extreme “in”
and “out of money” regions. On the other hand, if we want to use the implied
volatility, we have to face the problem of choosing one value among all the
values given by the market, since the volatility surface is not “flat”. Evidently,
if our goal is to price and hedge a plain vanilla option, with strike, say, K and
maturity, say, T , the most natural idea is to use the implied volatility corre-
sponding to (K,T ). But the problem does not seem to be easily solvable if we
are interested in the pricing and hedging of an exotic derivative: for example,
if the derivative does not have a unique maturity (e.g. a Bermudan option)
or if a fixed strike does not appear in the payoff (e.g., an Asian option with
floating strike).

These problems make it necessary to introduce more sophisticated models
than the Black-Scholes one, that can be calibrated in such a way that it is
possible to price plain vanilla options in accordance with the implied volatility
surface of the market. In this way such models can give prices to exotic deriva-
tives that are consistent with the market Call and Put prices. This result is
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not particularly difficult and can be obtained by various models with non-
constant volatility such as those in Chapter 10.5. A second goal that poses
many more delicate questions and is still a research topic consists in finding
a model that gives the “best” solution to the hedging problem and that is
stable with respect to perturbations of the value of the parameters involved
(see for instance Schoutens, Simons, and Tistaert [302] and Cont [75]).

7.6 Asian options

An Asian option is a derivative whose payoff depends on an average of the
prices of the underlying asset. This kind of derivative is quite often used,
for example in the currencies or commodities markets: one of the reasons to
introduce this derivative is to limit speculation on plain vanilla options. Indeed
it is known that the European Call and Put option prices close to maturity
can be influenced by the investors through manipulations on the underlying
asset.

Asian options can be classified by the payoff function and by the particular
average that is used. As usual we assume that the underlying asset follows a
geometric Brownian motion S verifying equation (7.2) and we denote by Mt

the value of the average at time t: for an Asian option with arithmetic average
we have

Mt =
At

t
with At =

∫ t

0

Sτdτ ; (7.66)

for an Asian option with geometric average we have

Mt = e
Gt
t with Gt =

∫ t

0

log (Sτ ) dτ. (7.67)

Even though arithmetic Asian options are more commonly traded in real
markets, in the literature geometric Asian options have been widely studied
because they are more tractable from a theoretical point of view and, un-
der suitable conditions, they can be used to approximate the corresponding
arithmetic version.

Concerning the payoff, the most common versions are the Asian Call with
fixed strike K

F (ST ,MT ) = (MT −K)+ ,

the Asian Call with floating strike

F (ST ,MT ) = (ST −MT )+ ,

and the corresponding Asian Puts.
Formally, the pricing and hedging problems for Asian options have a lot

in common with their standard European counterparts: the main difference
is that an Asian option depends not only on the spot price of the underlying
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asset but also on its entire trajectory. Nevertheless, as already mentioned in
the discrete case in Section 2.3.3, it is possible to preserve the Markovian
property of the model by using a technique now standard: this consists in
augmenting the space by introducing an additional state variable related to
the average process At in (7.66) or Gt in (7.67).

7.6.1 Arithmetic average

In order to make the previous ideas precise, let us examine first the arithmetic
average case. We say that (αt, βt)t∈[0,T ] is a Markovian portfolio if

αt = α(t, St, At), βt = β(t, St, At), t ∈ [0, T ],

where α, β are functions in C1,2([0, T [×R>0 ×R>0) ∩C([0, T ]×R>0 ×R>0),
and we denote by

f(t, St, At) = αtSt + βtBt, t ∈ [0, T ],

the corresponding value. The following result extends Theorems 7.8 and 7.13:

Theorem 7.22 The following conditions are equivalent:

i) (αt, βt)t∈[0,T ] is self-financing, i.e. we have

df(t, St, At) = αtdSt + βtdBt;

ii) f is a solution of the partial differential equation

σ2s2

2
∂ssf(t, s, a) + rs∂sf(t, s, a) + s∂af(t, s, a) + ∂tf(t, s, a) = rf(t, s, a),

(7.68)
for (t, s, a) ∈ [0, T [×R>0 × R>0, and we have that

α(t, s, a) = ∂sf(t, s, a).

The arbitrage price f = f(t, St, At) of an Asian arithmetic option with payoff
function F is the solution of the Cauchy problem for equation (7.68) with final
datum

f(T, s, a) = F
(
s,

a

T

)
, s, a ∈ R>0.

For example, in the case of a fixed strike Asian Call, the final condition for
equation (7.68) is

f(T, s, a) =
( a

T
−K

)+

, s, a ∈ R>0. (7.69)

For the floating strike Asian Call, the final condition becomes

f(T, s, a) =
(
s− a

T

)+

, s, a ∈ R>0. (7.70)
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The proof of Theorem 7.22 is formally analogous to the ones of Theorems
7.8 and 7.13. Let us observe that equation (7.68) cannot be transformed into
a parabolic equation by a change of variables as in the European case. In
particular the results of existence and uniqueness for the Cauchy problem of
Appendix A.3 and Section 6.2 are not sufficient to prove the completeness
of the market and the existence and uniqueness of the arbitrage price: these
results have been recently proved, for a generic payoff function, by Barucci,
Polidoro and Vespri [33].

Equation (7.68) is degenerate parabolic, because the matrix of the second-
order part of the equation is singular and only positive semi-definite: indeed,
in the standard notation (A.45) of Appendix A.3, the matrix C corresponding
to (7.68) is

C =
(

σ2s2 0
0 0

)
and has rank one for every (s, a) ∈ R>0 × R>0. This does not have to come
as a surprise: equation (7.68) was deduced by using the Itô formula and the
second-order derivative appearing in it is “produced” by the Brownian motion
of the process S. The average A brings an additional state variable in, thus
augmenting the dimension of the problem, setting it in R3, but it does not
bring a new Brownian motion in (nor second-order derivative with respect to
the variable a).

In some particular cases there exists a suitable transformation to take
back the problem to two dimensions. In the floating strike case, Ingersoll [178]
suggests the change of variable x = a

s : if we put

f(t, s, a) = su
(
t,

a

s

)
(7.71)

we have

∂tf = s∂tu, ∂sf = u− a

s
∂xu, ∂ssf =

a2

s3
∂xxu, ∂af = ∂xu.

So f solves the Cauchy problem (7.68)-(7.70) if and only if the function u =
u(t, x) defined in (7.71) is a solution of the Cauchy problem in R2{

σ2x2

2 ∂xxu + (1− rx)∂xu + ∂tu = 0, t ∈ [0, T [, x > 0,

u(T, x) =
(
1− x

T

)+
, x > 0.

More generally, transformation (7.71) allows to reduce the dimension of the
problem in case the payoff is a homogeneous function of degree one, that is

F (s, a) = sF
(
1,

a

s

)
, s, a > 0.

For the fixed strike Asian option, Rogers and Shi [291] suggest the change
of variable

x =
a
T −K

s
.
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If we put

f(t, s, a) = su

(
t,

a
T −K

s

)
(7.72)

we have

∂sf = u−
a
T −K

s
∂xu, ∂ssf =

(
a
T −K

)2
s3

∂xxu, ∂af =
∂xu

T
.

So f solves the Cauchy problem (7.68)-(7.69) if and only if the function u =
u(t, x) defined in (7.72) is a solution of the Cauchy problem in R2{

σ2x2

2 ∂xxu +
(

1
T − rx

)
∂xu + ∂tu = 0, t ∈ [0, T [, x ∈ R,

u(T, x) = x+, x ∈ R.

Note that the reduction of the dimension of the problem is possible only in
particular cases and assuming the Black-Scholes dynamics for the underlying
asset.

7.6.2 Geometric average

We consider a geometric average Asian option: in this case the value f =
f(t, s, g) of the replicating portfolio is function of t, St and Gt in (7.67). Fur-
thermore a result analogous to Theorem 7.22 holds, where (7.68) is replaced
by the differential equation

σ2s2

2
∂ssf(t, s, g)+ rs∂sf(t, s, g)+ (log s)∂gf(t, s, g)+∂tf(t, s, g) = rf(t, s, g),

(7.73)
with (t, s, g) ∈ [0, T [×R>0 × R.

Similarly to Proposition 7.9, we change the variables by putting

t = T − τ, s = eσx, g = σy,

and

u(τ, x, y) = eax+bτf(T − τ, eσx, σy), τ ∈ [0, T ], x, y ∈ R, (7.74)

where a, b are constants to be determined appropriately later. Let us recall
formulas (7.23) and also that

∂yu = eax+bτσ∂gf ;

it follows that

1
2
∂xxu + x∂yu− ∂τu =

eax+bτ

(
σ2s2

2
∂ssf +

(
σa +

σ2

2

)
s∂sf + (log s)∂gf + ∂tf +

(
a2

2
− b

)
f

)
=
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(if f solves (7.73))

=
(

σa +
σ2

2
− r

)
s∂sf +

(
a2

2
− b + r

)
f.

This proves the following result.

Proposition 7.23 By choosing the constants a and b as in (7.24), the fun-
ction f is a solution of the equation (7.73) in [0, T [×R>0 × R if and only if
the function u = u(τ, x, y) defined in (7.74) satisfies the equation

1
2
∂xxu + x∂yu− ∂τu = 0, in ]0, T ]× R2. (7.75)

(7.75) is a degenerate parabolic equation, called Kolmogorov equation which
will be studied in Section 9.5 and whose fundamental solution will be con-
structed explicitly in Example 9.53.



8

Parabolic PDEs with variable coefficients:
existence

The Black-Scholes model is based upon the results of existence and uniqueness
for parabolic equations with constant coefficients, in particular for the heat
equation. The study of more sophisticated diffusion models requires analogous
results for differential operators with variable coefficients.

In this chapter we consider a parabolic operator of the form

Lu =
1
2

N∑
i,j=1

cij∂xixj u +
N∑

i=1

bi∂xiu− au− ∂tu, (8.1)

where (t, x) is an element of R × RN and (cij) is a symmetric matrix. We
suppose that the coefficients cij = cij(t, x), bj = bj(t, x) and a = a(t, x) are
bounded and Hölder continuous functions. As already noted in Chapter 6,
these assumptions are less general than those introduced in the study of the
uniqueness problem.

We aim at studying on one hand the existence and the properties of the
fundamental solution of L and on the other hand the free-boundary obstacle
problem. The first issue is deeply connected to the solvability of the Cauchy
problem and therefore to the pricing and hedging of European options. The
second topic, as we had pointed out already in Section 2.5.5, has to deal with
the study of American-style derivatives: in this setting, the obstacle function
plays the part of the payoff of the option.

A thorough treatment of these topics is definitely beyond the scope of the
present book: these central subjects in the theory of partial differential equa-
tions are studied in several classical monographs such as Friedman’s [139],
[141], Ladyzhenskaya, Ural’tseva and Solonnikov’s [222], Olěınik and Rad-
kevič’s [274], Lieberman’s [238] and Evans’ [124].

Section 8.1 describes in general terms the construction of the fundamental
solution by the so-called parametrix method introduced by E. E. Levi in [236].
In Section 8.2, using some known a priori estimates for the solutions of L in
Hölder and Sobolev spaces, we give a detailed proof of the existence of strong
solutions to the obstacle problem.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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8.1 Cauchy problem and fundamental solution

We suppose that the operator L in (8.1) is uniformly parabolic, i.e. the fol-
lowing condition holds:

Hypothesis 8.1 There exists a positive constant λ such that

λ−2|ξ|2 ≤
N∑

i,j=1

cij(t, x)ξiξj ≤ λ|ξ|2, t ∈ R, x, ξ ∈ RN . (8.2)

The prototype for the class of uniformly parabolic operators is the heat opera-
tor with constant coefficients, that has the identity matrix as (cij).

In the theory of parabolic equations, it is natural to give the time variable
t “double weight” with respect to the space variables x. In order to make this
concept rigorous, we define the parabolic Hölder spaces.

Definition 8.2 Let α ∈]0, 1] and O be a domain in RN+1. We denote by
Cα

P (O) the space of bounded functions u on O, such that

|u(t, x)− u(s, y)| ≤ C
(
|t− s|α2 + |x− y|α

)
, (t, x), (s, y) ∈ O, (8.3)

for some positive constant C. We define the norm

‖u‖Cα
P (O) = sup

(t,x)∈O

|u(t, x)|+ sup
(t,x),(s,y)∈O

(t,x) 
=(s,y)

|u(t, x)− u(s, y)|
|t− s|α2 + |x− y|α .

Moreover we denote by C1+α
P (O) and C2+α

P (O) the Hölder spaces defined by
the following norms:

‖u‖C1+α
P (O) = ‖u‖Cα

P (O) +
N∑

i=1

‖∂xiu‖Cα
P (O),

‖u‖C2+α
P (O) = ‖u‖C1+α

P (O) +
N∑

i,j=1

‖∂xixj u‖Cα
P (O) + ‖∂tu‖Cα

P (O),

respectively. We write u ∈ Ck+α
P,loc(O), k = 0, 1, 2, if u ∈ Ck+α

P (M) for every
compact domain M such that M ⊆ O.

In the sequel we assume the following regularity condition on the coefficients
of the operator:

Hypothesis 8.3 The coefficients are bounded and Hölder continuous:

cij , bj , a ∈ Cα
P (RN+1)

for some α ∈]0, 1] and for every 1 ≤ i, j ≤ N .
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We now consider the Cauchy problem{
Lu = f, in ST :=]0, T [×RN ,

u(0, ·) = ϕ, on RN ,
(8.4)

where ϕ and f are given functions.

Definition 8.4 A classical solution of the Cauchy problem (8.4) is a function
u ∈ C1,2(ST ) ∩ C(ST ) that satisfies equations in (8.4) pointwise.

As we have already seen in the case of the heat equation, it is natural to
assume the following growth and regularity conditions:

Hypothesis 8.5 The functions ϕ and f are continuous and there exist some
positive constants c, γ, with γ < 2, such that

|ϕ(x)| ≤ cec|x|γ , x ∈ RN , (8.5)

|f(t, x)| ≤ cec|x|γ , (t, x) ∈ ST . (8.6)

Moreover f is locally Hölder continuous in x, uniformly in t, i.e. for every
compact set M in RN we have that

|f(t, x)− f(t, y)| ≤ C|x− y|β , x, y ∈M, t ∈]0, T [, (8.7)

with β ∈]0, 1] and C > 0.

The main result of this section is the following:

Theorem 8.6 Under Hypotheses 8.1 and 8.3, the operator L has a fun-
damental solution Γ = Γ (t, x; s, y) that is a positive function, defined for
x, y ∈ RN and t > s, such that for every ϕ, f verifying Hypothesis 8.5, the
function u defined by

u(t, x) =
∫
RN

Γ (t, x; 0, y)ϕ(y)dy −
∫ t

0

∫
RN

Γ (t, x; s, y)f(s, y)dyds, (8.8)

with (t, x) ∈ ST and by u(0, x) = ϕ(x), is a classical solution of the Cauchy
problem (8.4).

Remark 8.7 By Theorem 6.15, the function u in (8.8) is the unique solution
of (8.4) such that

|u(t, x)| ≤ cec|x|2 , (t, x) ∈ ST ,

with c positive constant.
Conditions (8.5)-(8.6) can be weakened: we could take

|ϕ(x)| ≤ c1 exp(c2|x|2), x ∈ RN ,

|f(t, x)| ≤ c1 exp(c2|x|2), (t, x) ∈ ST ,

with c1, c2 positive constants. In such a case the solution u in (8.8) is defined
on ST for T < 1

2λc2
.

Finally analogous results to those of Section A.3.3 hold if the initial datum
is a locally integrable function. �
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8.1.1 Levi’s parametrix method

The classical proof of Theorem 8.6 is rather lengthy and involved. Here we give
only the main ideas here and for further details we refer to Friedman [139].
For a more recent presentation and in a more general setting including also
non-uniform parabolic operators as those that arise in the pricing problem
for Asian options, we refer the reader to Di Francesco and Pascucci [94] and
Polidoro [283]. For a more practical presentation, we also refer to Corielli,
Foschi and Pascucci [77] where the parametrix method is used to obtain nume-
rical approximations of the fundamental solution (and so also of the price of
an option, expressed as the solution of a Cauchy problem) by an expansion of
fundamental solutions of parabolic operators with constant coefficients whose
explicit expression is known. In particular, analytical approximations of local
volatility models are provided. Recently Gatheral, Hsu, Laurence, Ouyang and
Wang [151] use a heat kernel expansion to obtain asymptotic approximations
for call prices and implied volatility in local-stochastic volatility models.

In what follows we assume Hypotheses 8.1, 8.3 and for the sake of brevity
we denote generic points in RN+1 by z = (t, x) and ζ = (s, y) . Furthermore,
for fixed w ∈ RN+1, we denote by

Γw(z; ζ)

the fundamental solution of the parabolic operator with constant coefficients

Lw =
1
2

N∑
i,j=1

cij(w)∂xixj − ∂t,

obtained from L by freezing the second-order coefficients in w and by can-
celling the lower-order terms, with the exception of the time derivative, obvi-
ously. The explicit expression of Γw is given in Section A.3.1.

The parametrix method is a constructive technique that allows us to prove
the existence and some estimates of the fundamental solution Γ (t, x; s, y) of
L: for the sake of simplicity, in the sequel we treat only the case s = 0. The
method is based mainly upon two ideas: the first is to approximate Γ (z; ζ) by
the so-called parametrix defined by

Z(z; ζ) = Γζ(z; ζ).

The second idea is to suppose that the fundamental solution takes the form
(let us recall that ζ = (0, y)):

Γ (z; ζ) = Z(z; ζ) +
∫ t

0

∫
RN

Z(z;w)G(w; ζ)dw. (8.9)

In order to find the unknown function G, we impose that Γ is the solution to
the equation LΓ (·; ζ) = 0 in R>0 × RN : we wish to point out one more time,
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to make this totally transparent, that the operator L acts on the variable z
while the point ζ is fixed. Then formally we obtain

0 = LΓ (z; ζ) = LZ(z; ζ) + L

∫ t

0

∫
RN

Z(z;w)G(w; ζ)dw

= LZ(z; ζ) +
∫ t

0

∫
RN

LZ(z;w)G(w; ζ)dw −G(z; ζ),

hence

G(z; ζ) = LZ(z; ζ) +
∫ t

0

∫
RN

LZ(z;w)G(w; ζ)dw. (8.10)

Therefore G is a solution of an integral equation equivalent to a fixed-point
problem that can be solved by the method of successive approximations:

G(z; ζ) =
+∞∑
k=1

(LZ)k(z; ζ), (8.11)

where

(LZ)1(z; ζ) = LZ(z; ζ),

(LZ)k+1(z; ζ) =
∫ t

0

∫
RN

LZ(z;w)(LZ)k(w; ζ)dw, k ∈ N.

The previous ideas are formalized by the following (cf. Proposition 4.1 in [94]):

Theorem 8.8 There exists k0 ∈ N such that, for all T > 0 and ζ = (0, y) ∈
RN+1, the series

+∞∑
k=k0

(LZ)k(·; ζ)

converges uniformly on the strip ST . Furthermore, the function G(·, ζ) defined
by (8.11) is a solution to the integral equation (8.10) in ST and Γ in (8.9) is
a fundamental solution to L.

Remark 8.9 The fundamental solution can be constructed in a formally
analogous way also by using the backward parametrix defined by

Z(z; ζ) = Γz(z; ζ). �

8.1.2 Gaussian estimates and adjoint operator

By the parametrix method it is possible to obtain also some noteworthy esti-
mates of the fundamental solution and its derivatives in terms of the fun-
damental solution of the heat operator. These estimates play a basic role in
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several frameworks, for instance the uniqueness results of Section 6.3 and the
Feynman-Kač representation Theorem 9.48. Given a positive constant λ, we
denote by

Γλ(t, x) =
1

(2πλt)
N
2

e−
|x|2
2tλ , t > 0, x ∈ RN ,

the fundamental solution, with pole at the origin, of the heat operator in
RN+1

λ

2
�− ∂t.

Theorem 8.10 Under Hypotheses 8.1 and 8.3, for all T, ε > 0 there exists
a positive constant C, dependent only on ε, λ, T and on the Cα

P -norm of the
coefficients of the operator, such that

Γ (t, x; s, y) ≤ C Γλ+ε(t− s, x− y), (8.12)

|∂xiΓ (t, x; s, y)|+ |∂yiΓ (t, x; s, y)| ≤ C√
t− s

Γλ+ε(t− s, x− y), (8.13)∣∣∂xixj Γ (t, x; s, y)
∣∣+ |∂tΓ (t, x; s, y)|+ (8.14)∣∣∂yiyj Γ (t, x; s, y)
∣∣+ |∂sΓ (t, x; s, y)| ≤ C

t− s
Γλ+ε(t− s, x− y), (8.15)

for all x, y ∈ RN , t ∈]s, s + T [ and i, j = 1, . . . , N .

Corollary 8.11 Under Hypotheses 8.1, 8.3 and 8.5, let u be the solution of
the problem (8.4) defined in (8.8). Then there exists a positive constant C
such that

|u(t, x)| ≤ CeC|x|2 , (8.16)

|∂xiu(t, x)| ≤ CeC|x|2
√

t
, (8.17)

∣∣∂xixj u(t, x)
∣∣+ |∂tu(t, x)| ≤ CeC|x|2

t
, (8.18)

for all (t, x) ∈ ST and i, j = 1, . . . , N .

Example 8.12 Without any further regularity assumption on the initial da-
tum ϕ, we have ∂xiu(t, x) = O

(
1√
t

)
as t → 0+, consistently with estimate

(8.17). Indeed, for the 2-dimensional heat equation and initial datum ϕ(x) = 0
when x ≥ 0 and ϕ(x) = 1 when x < 0, we have

∂xu(0, t) =
1√
2πt

∫ 0

−∞

y

t
exp
(
−y2

2t

)
dy =

(by the change of variable z = −y2

2t )

= − 1√
2πt

∫ 0

−∞
ezdz = − 1√

2πt
. �
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Hereafter we assume:

Hypothesis 8.13 The derivatives ∂xicij , ∂xixj cij , ∂xibi exist for all i, j =
1, . . . , N and they belong to the space Cα

P (RN+1).

We recall the expression of the adjoint operator of L (cf. (6.12)), formally
defined by the equality ∫

RN+1
vLu =

∫
RN+1

uL∗v.

We have

L∗u =
1
2

N∑
j,k=1

cjk∂xjxk
u +

N∑
j=1

b∗j∂xj u− a∗u + ∂tu

where

b∗i = −bi +
N∑

j=1

∂xicij , a∗ = a− 1
2

N∑
i,j=1

∂xixj cij +
N∑

j=1

∂xj bj .

The parametrix method allows to prove also the following result.

Theorem 8.14 Under Hypotheses 8.1, 8.3, 8.5 and 8.13, there exists the
fundamental solution Γ ∗ of L∗ and we have

Γ ∗(t, x;T, y) = Γ (T, y; t, x),

when x, y ∈ RN and t < T .

8.2 Obstacle problem

We consider problem{
max{Lu,ϕ− u} = 0, in ST =]0, T [×RN ,

u(0, ·) = ϕ, on RN ,
(8.19)

where L is a parabolic operator of the form (8.1) and ϕ is a locally Lipschitz-
continuous function which is also convex in a weak sense that will be made
precise later (cf. Hypothesis 8.19). In Chapter 11 we shall prove that the price
of an American option with payoff ϕ can be expressed in terms of the solution
u of (8.19).

The first equation in (8.19) asserts that u ≥ ϕ so the strip ST is divided
in two parts:

i) the exercise region where u = ϕ;
ii) the continuation region where u > ϕ and Lu = 0 i.e. the price of the

derivative verifies a PDE that is analogous to the Black-Scholes differential
equation.
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Fig. 8.1. Exercise and continuation regions of an American Put option

Problem (8.19) is equivalent1 to:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu ≤ 0, in ST ,

u ≥ ϕ, in ST ,

(u− ϕ) Lu = 0, in ST ,

u(0, x) = ϕ(0, x), x ∈ RN .

(8.20)

This kind of problem is usually called obstacle problem. The solution is a
function such that:

i) it is super-solution2 of L (i.e. Lu ≤ 0);
ii) it is greater or equal to the obstacle, represented by the function ϕ;
iii) it solves the equation Lu = 0 when u > ϕ;
iv) it assumes the initial condition.

1 We use here the equivalence

max{F (x), G(x)} = 0 ⇔

⎧⎪⎨⎪⎩
F (x) ≤ 0,

G(x) ≤ 0,

F (x)G(x) = 0.

2 The term “super-solution” comes from the classical theory of differential equa-
tions. More precisely, let O be a L-regular domain, that is a domain for which
the Dirichlet problem for L, with boundary datum u, i.e.{

LH = 0, in O,

H|∂O = u,
(8.21)

is solvable: in that case, we denote the solution by H = HO
u . Then, by the

maximum principle Lu ≤ 0 if and only if u ≥ HO
u for every L-regular domain O.
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Actually we can verify that u is the smallest super-solution greater than the
obstacle, by analogy with the notion of Snell envelope.

One of the main features of problem (8.19) is that, in general, it does not
admit a classical solution in C1,2 even if ϕ is a smooth function. Therefore it is
necessary to introduce a weak formulation of the problem that may be based
upon different notions of generalized solution. A general theory of existence
and regularity has been developed by many authors since the seventies: in
the literature we can find techniques to prove the existence of solutions in the
variational sense (cf., for example, Bensoussan and Lions [42], Kinderlehrer
and Stampacchia [209]), in the strong sense (cf., for example, Friedman [140],
[141]) and, more recently, in the viscosity sense (cf., for example, Barles [21],
Fleming and Soner [132], Varadhan [331]). For a general presentation of the
theory of optimal stopping and free-boundary problems, see also Peskir and
Shiryaev [278].

The variational approach to problem (8.20) consists of looking for the so-
lution as the minimum of a functional within a suitable space of functions
admitting first order weak derivatives (we refer to [141] for a general pre-
sentation of the topic). The notions of variational solution and, above all, of
viscosity solution are very weak and allow one to get existence results under
very general assumptions. Strong solutions, even though requiring more re-
strictive assumptions (that are indeed verified in all the practical cases) seem
to be preferable in the financial applications because of their better regu-
larity properties. For this reason, we aim at studying problem (8.19) in the
framework of the theory of strong solutions, following the presentation by Di
Francesco, Pascucci and Polidoro [95].

8.2.1 Strong solutions

We introduce the definition of parabolic Sobolev spaces used in the study of
the obstacle problem and we present some preliminary results to prove the
existence of a strong solution. The proof of such results can be found, for
example, in Lieberman [238]; in Appendix A.9 we briefly recall the elements
of the theory of weak derivatives and Sobolev spaces.

Definition 8.15 Let O be a domain in R× RN and 1 ≤ p ≤ ∞. We denote
by Sp(O) the space of the functions u ∈ Lp(O) for which the weak derivatives

∂xiu, ∂xixj u, ∂tu ∈ Lp(O)

exist for every i, j = 1, . . . , N . We write u ∈ Sp
loc(O) if u ∈ Sp(O1) for every

bounded domain O1 such that O1 ⊆ O.

In the definition of the parabolic Sobolev spaces, the time derivative has dou-
ble weight, in the sense that Definition 8.15 involves the second order spatial
derivatives of u but only the first order derivative in time. This is in line with
Definition 8.2 of parabolic Hölder space.
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Now we state the parabolic version of the Sobolev-Morrey imbedding The-
orem A.168: in the following statements O1, O2 denote bounded domains in
R× RN with O1 ⊆ O2.

Theorem 8.16 (Sobolev-Morrey imbedding theorem) For every p >
N + 2 there exists a positive constant C, depending on p,N,O1 and O2 only,
such that

‖u‖C1+α
P (O1)

≤ C‖u‖Sp(O2), α = 1− N + 2
p

,

for all u ∈ Sp(O2).

Let us state now some a priori estimates

Theorem 8.17 (Interior estimates in Sp) Let L be uniformly parabolic
(Hypothesis 8.1). For every p ∈]1,∞[ there exists a positive constant C, de-
pending on p,N,L,O1 and O2 only, such that

‖u‖Sp(O1) ≤ C
(
‖u‖Lp(O2) + ‖Lu‖Lp(O2)

)
,

for all u ∈ Sp(O2).

Theorem 8.18 (Schauder interior estimates) Under Hypotheses 8.1 and
8.3, there exists a positive constant C, depending on N,L,O1 and O2 only,
such that

‖u‖C2+α
P (O1)

≤ C

(
sup
O2

|u|+ ‖Lu‖Cα
P (O2)

)
,

for all u ∈ C2+α
P (O2).

We now lay down the hypotheses on the obstacle function:

Hypothesis 8.19 The function ϕ is continuous on ST , locally Lipschitz-
continuous and for every bounded open set O, O ⊆ ST , there exists a constant
C such that

N∑
i,j=1

ξiξj∂xixj ϕ ≥ C|ξ|2 in O, ξ ∈ RN , (8.22)

in the sense of distributions, i.e.
N∑

i,j=1

ξiξj

∫
O

ϕ∂xixj ψ ≥ C|ξ|2
∫

O

ψ,

for all ξ ∈ RN and ψ ∈ C∞0 (O) with ψ ≥ 0.

Condition (8.22) gives the local lower boundedness of the matrix of the second
order spatial distributional derivatives. We point out that any C2 function
verifies Hypothesis 8.19: moreover any locally Lipschitz continuous and convex
function verifies Hypothesis 8.19, including the payoff functions of the Call
and Put options. On the contrary the function ϕ(x) = −x+ does not satisfy
condition (8.22) since its second order distributional derivative is a Dirac’s
delta with negative sign that is “not bounded from below”.

We give now the definition of strong solution.
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Definition 8.20 A strong solution of problem (8.19) is a function u ∈
S1

loc(ST ) ∩ C(ST ) satisfying the equation

max{Lu,ϕ− u} = 0

almost everywhere in ST and taking the initial datum pointwise. We say that
ū is a strong super-solution of (8.19) if ū ∈ S1

loc(ST ) ∩ C(ST ) and it verifies{
max{Lū, ϕ− ū} ≤ 0, a.e. in ST ,

ū(0, ·) ≥ ϕ, on RN .
(8.23)

The main result of this section is the following:

Theorem 8.21 (Existence of a strong solution) Assume Hypotheses 8.1,
8.3 and 8.19. If there exists a strong super-solution ū to problem (8.19), then
there exists also a strong solution u such that u ≤ ū in ST . Moreover u ∈
Sp

loc(ST ) for every p ≥ 1 and consequently, by the imbedding Theorem 8.16,
u ∈ C1+α

P,loc(ST ) for all α ∈]0, 1[.

Theorem 8.21 will be proved in the following section.

Remark 8.22 In typical financial applications, the obstacle corresponds to
the option payoff ψ: for example, in the case of a Call option, N = 1 and

ψ(S) = (S −K)+, S > 0.

In general, if ψ is a Lipschitz-continuous function, then there exists a positive
constant C such that

|ψ(S)| ≤ C(1 + S), S > 0,

and by the transformation

ϕ(t, x) = ψ(t, ex),

we have that
|ϕ(t, x)| ≤ C(1 + ex), x ∈ R.

In this case a super-solution of the obstacle problem is

ū(t, x) = Ceγt (1 + ex) , t ∈ [0, T ], x ∈ R,

where γ is a suitable positive constant: indeed it is evident that ū ≥ ϕ and
moreover, when N = 1,

Lū = Ceγt (−a− γ) + Cex+γt

(
1
2
c11 + b1 − a− γ

)
≤ 0,

when γ is large enough. �
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Remark 8.23 Theorem 8.21 gives an existence result: the uniqueness of the
strong solution in the class of non-rapidly increasing functions will be proved
in Section 9.4.5 as a consequence of the Feynman-Kač representation formula
of Theorem 9.48. �

Remark 8.24 Concerning the regularity of the solution, we notice that on
the grounds of Definition 8.2 of the space C1+α

P,loc, the solution u is a lo-
cally Hölder continuous function, together with its first spatial derivatives
∂x1u, . . . , ∂xN of exponent α for any α ∈]0, 1[. Moreover, the strong solution
found in Theorem 8.21 is also a solution in the weak and viscosity senses
(for a proof of this claim see Di Francesco, Pascucci and Polidoro [95]). This
means that the other weaker notions on generalized solution gain the stronger
regularity properties of the strong solutions. �

Remark 8.25 Besides the regularity of the solution, another important the-
oretical issue is to determine the regularity of the free boundary, that is the
boundary of the exercise region. In the classical case of a single asset follow-
ing a geometric Brownian motion, that is the standard Black&Scholes [49]
and Merton [250] framework, the C∞-smoothness of the free boundary of the
American put option was proved by Friedman [140] and van Moerbeke [330].
In the multi-dimensional Black&Scholes setting and for a quite general class
of convex payoffs, the smoothness of the free boundary problem has been
recently proved by Laurence and Salsa in [232]. In the case of variable co-
efficients, for the one-dimensional parabolic obstacle problem Blanchet [51],
Blanchet, Dolbeault and Monneau [50] prove that the free boundary is Hölder
continuous. In more general settings, only qualitative properties of the free
boundary and of the exercise region are known: see for instance Jacka [182],
Myneni [262], Broadie and Detemple [64], Villeneuve [334]. The asymptotic
behaviour of the free boundary near maturity has been studied by Barles, Bur-
deau, Romano and Samsœn [23], Lamberton [224], Lamberton and Villeneuve
[229], Shahgholian [306]. �

8.2.2 Penalization method

In this section we prove the existence and uniqueness of a strong solution of
the obstacle problem{

max{Lu,ϕ− u} = 0, in B(T ) :=]0, T [×B,

u|∂P B(T ) = g,
(8.24)

where B is the Euclidean ball with radius R, R > 0 being fixed in the whole
section,

B = {x ∈ RN | |x| < R},
and ∂P B(T ) denotes the parabolic boundary of B(T ):

∂P B(T ) := ∂B(T ) \ ({T} ×B).
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We impose a condition analogous to Hypothesis 8.19 on the obstacle:

Hypothesis 8.26 The function ϕ is Lipschitz continuous on B(T ) and the
weak-convexity condition (8.22) holds with O = B(T ). Furthermore g ∈
C(∂P B(T )) and we have that g ≥ ϕ.

We say that u ∈ S1
loc(B(T )) ∩C(B(T )) is a strong solution of problem (8.24)

if the differential equation is verified a.e. on B(T ) and the boundary datum
is taken pointwise. The main result of this section is the following:

Theorem 8.27 Under the Hypotheses 8.1, 8.3 and 8.26 there exists a strong
solution u to the problem (8.24). Moreover, for every p ≥ 1 and O such that
O ⊆ B(T ), there exists a positive constant c, depending only on L,O,B(T ), p
and on the L∞-norms of g and ϕ, such that

‖u‖Sp(O) ≤ c. (8.25)

We prove Theorem 8.27 by using a classical penalization technique. Let us
consider a family (βε)ε∈ ]0,1[ of functions in C∞(R): for every ε > 0, βε is a
bounded, increasing function with bounded first order derivative such that

βε(0) = 0, βε(s) ≤ ε, s > 0.

Moreover we require that

lim
ε→0

βε(s) = −∞, s < 0.

When δ ∈ ]0, 1[, we denote by ϕδ the regularization of ϕ obtained with the
usual mollifiers (cf. Appendix A.9.4). Since g ≥ ϕ on ∂P B(T ), we have that

gδ := g + λδ ≥ ϕδ, in ∂P B(T ),

where λ is the Lipschitz constant of ϕ.

Fig. 8.2. Penalization function βε
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Let us consider the penalized problem{
Lu = βε(u− ϕδ), in B(T ),
u|∂P B(T ) = gδ,

(8.26)

and at a first stage we prove that it admits a classical solution. The proof
consists in determining the solution of the non-linear differential equation
internally and then in verifying that it is a continuous function up to the
boundary. To study the behaviour of the solution close to the boundary, we
use a standard tool in PDE theory, the barrier functions.

Definition 8.28 Given a point (t, x) ∈ ∂P B(T ), a barrier function for L at
(t, x) is a function w ∈ C2(V ∩B(T );R), where V is a neighborhood of (t, x),
such that

i) Lw ≤ −1 in V ∩B(T );
ii) w > 0 in V ∩B(T ) \ {(t, x)} and w(t, x) = 0.

Lemma 8.29 There exists a barrier function for L at any point (t, x) ∈
∂P B(T ).

Proof. If the point belongs to the basis of the cylinder B(T ), i.e. it is of the
form (0, x̄), then a barrier function is given by

w(t, x) = et‖a‖∞ (|x− x̄|2 + Ct
)
,

with C a sufficiently large constant.
If the point belongs to the lateral boundary of the cylinder, (t̄, x̄) ∈ ∂P B(T )

with t̄ ∈]0, T [, then we put

w(t, x) = Cet‖a‖∞
(

1
|x̄− x̃|p −

1
Rp

)
,

where (t̄, x̃) is the centre of a sphere which is externally tangent to the cylinder
in (t̄, x̄) and

R =
(
|x− x̃|2 + (t− t̄)2

) 1
2 .

Then we have

Lw =
Cp

Rp+4
e‖a‖∞t

(
− p + 2

2

N∑
i,j=1

cij(xi − x̃i)(xj − x̃j)

+
R2

2

N∑
i=1

cii + R2
N∑

i=1

bi(xi − x̃i)− (t− t̄)R2

)
+ (a− ‖a‖∞)w.

Since L is uniformly parabolic, the expression within the parentheses is nega-
tive when p is large enough and then Lw < 0: by taking a suitably large C,
we prove property i) and we conclude that w is a barrier function. �
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Theorem 8.30 Assume Hypotheses 8.1 and 8.3. If g ∈ C (∂P B(T )) and
h = h(z, u) ∈ Lip

(
B(T )× R

)
, then there exists a classical solution u ∈

C2+α
P (B(T )) ∩ C(B(T )) of the problem{

Lu = h(·, u), in B(T ),
u|∂P B(T ) = g.

Moreover there exists a positive constant c, depending on h and B(T ) only,
such that

sup
B(T )

|u| ≤ ecT (1 + ‖g‖L∞). (8.27)

Proof. It is not restrictive to take a = 0 since, after regularizing it, we can
always include this term in the function h. We use a monotone iteration
technique based upon the maximum principle. Let us put

u0(x, t) = ect(1 + ‖g‖L∞)− 1,

where c is a positive constant such that

|h(t, x, u)| ≤ c(1 + |u|), (t, x, u) ∈ B(T )× R.

Then we define recursively the sequence (uj)j∈N by means of{
Luj − λuj = h(·, uj−1)− λuj−1, in B(T ),
uj |∂P B(T ) = g,

(8.28)

where λ is the Lipschitz constant of the function h. Here we use the classical
theory (cf. for example, Chapter 3 in Friedman [139]) which assures that the
linear problem (8.28) possesses a unique solution C2,α

P (B(T )) ∩ C(B(T )) for
every α ∈]0, 1].

Now we prove by induction that (uj) is a decreasing sequence. By the
maximum principle, Theorem 6.10, we have u1 ≤ u0: indeed (recalling that
a = 0)

L(u1 − u0)− λ(u1 − u0) = h(·, u0)− Lu0 = h(·, u0) + c(1 + u0) ≥ 0,

and u1 ≤ u0 on ∂P B(T ). For a fixed j ∈ N, let us assume the inductive
hypothesis uj ≤ uj−1; then, recalling that λ is the Lipschitz constant of h, we
have that

L(uj+1 − uj)− λ(uj+1 − uj) = h(·, uj)− h(·, uj−1)− λ(uj − uj−1) ≥ 0.

Furthermore uj+1 = uj on ∂P B(T ) and so the maximum principle implies
that uj+1 ≤ uj . With an analogous argument we show that uj is bounded
from below by −u0. Summing up, for j ∈ N, we have

−u0 ≤ uj+1 ≤ uj ≤ u0. (8.29)
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We denote by u the pointwise limit of the sequence (uj) on B(T ). Since uj

is solution to (8.28) and by the uniform estimate (8.29), we can apply the
a priori estimates in Sp and the imbedding theorems, Theorems 8.17 and
8.16, in order to prove that, on every open set O included with its closure in
B(T ) and for every α ∈]0, 1[, the norm ‖uj‖C1+α

P (O) is bounded by a constant
depending on L, B(T ), O, α and λ only. Then by the Schauder estimates,
Theorem 8.18, we infer that the norm ‖uj‖C2+α

P (O) is uniformly bounded with
respect to j ∈ N. It follows that, by the Ascoli-Arzelà theorem, there exists
a subsequence of (uj)j∈N (that, for the sake of simplicity, we still denote by
(uj)j∈N) converging locally in C2+α

P . Taking the limit in (8.28) as j →∞, we
get

Lu = h(·, u), in B(T ),

and u|∂pB(T ) = g.
Finally, to prove that u ∈ C(B(T )), we use the barrier functions. Given

z̄ = (t̄, x̄) ∈ ∂P B(T ) and ε > 0, we consider an open neighborhood V of z̄
such that

|g(z)− g(z̄)| ≤ ε, z = (t, x) ∈ V ∩ ∂P B(T ),

and suppose there exists a barrier function w for L in V ∩B(T ). We put

v±(z) = g(z̄)± (ε + kεw(z))

where kε is a sufficiently large constant, not depending on j, such that

L(uj − v+) ≥ h(·, uj−1)− λ (uj−1 − uj) + kε ≥ 0,

and uj ≤ v+ on ∂(V ∩B(T )). By the maximum principle we have that uj ≤ v+

on V ∩B(T ).
Analogously we have uj ≥ v− on V ∩B(T ) and, when j →∞, we get

g(z̄)− ε− kεw(z) ≤ u(z) ≤ g(z̄) + ε + kεw(z), z ∈ V ∩B(T ).

Then

g(z̄)− ε ≤ lim inf
z→z̄

u(z) ≤ lim sup
z→z̄

u(z) ≤ g(z̄) + ε, z ∈ V ∩B(T ),

and this proves the claim by the arbitrariness of ε. Finally the estimate (8.27)
can be justified by the maximum principle and by (8.29). �

Proof (of Theorem 8.27). We apply Theorem 8.30 with

h(·, u) = βε(u− ϕδ),

in order to infer the existence of a classical solution uε,δ ∈ C2+α
P (B(T )) ∩

C(B(T )) of the penalized problem (8.26). After the simple change of variable
v(t, x) = et‖a‖∞u(t, x), we can always assume that a ≥ 0.
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First of all we prove that we have

|βε(uε,δ − ϕδ)| ≤ c̃ (8.30)

for some constant c̃ not depending on ε and δ. Since βε ≤ ε we have to
prove only the estimate from below. We denote by ζ a minimum point of the
function βε(uε,δ−ϕδ) ∈ C(B(T )) and we suppose that βε(uε,δ(ζ)−ϕδ(ζ)) ≤ 0,
otherwise there is nothing to prove. If ζ ∈ ∂P B(T ) then

βε(gδ(ζ)− ϕδ(ζ)) ≥ βε(0) = 0.

Conversely, if ζ ∈ B(T ), then, since βε is an increasing function, also uε,δ−ϕδ

assumes the (negative) minimum at ζ and therefore

(L + a)uε,δ(ζ)− (L + a)ϕδ(ζ) ≥ 0 ≥ a(ζ)
(
uε,δ(ζ)− ϕδ(ζ)

)
,

that is
Luε,δ(ζ) ≥ Lϕδ(ζ). (8.31)

Now, by Hypothesis 8.26, Lϕδ(ζ) is bounded from below by a constant not
depending on δ. So by (8.31) we get

βε(uε,δ(ζ)− ϕδ(ζ)) = Luε,δ(ζ) ≥ Lϕδ(ζ) ≥ c̃,

with c̃ independent on ε, δ thus proving the estimate (8.30).
By the maximum principle, Theorem 6.12, we have

‖uε,δ‖∞ ≤ ‖g‖L∞ + T c̃. (8.32)

Then by the a priori estimates in Sp, Theorems 8.17, and the estimates (8.30),
(8.32) we infer that the norm ‖uε,δ‖Sp(O) is uniformly bounded with respect
to ε and δ, for every open set O included with its closure in B(T ) and for every
p ≥ 1. It follows that there exists a subsequence of (uε,δ) weakly convergent
as ε, δ → 0 in Sp (and in C1+α

P ) on compact subsets of B(T ) to a function u.
Furthermore,

lim sup
ε,δ→0

βε(uε,δ − ϕδ) ≤ 0,

so that Lu ≤ 0 a.e. in B(T ). Finally, Lu = 0 a.e. on the set {u > ϕ}.
We can eventually conclude that u ∈ C(B(T )) and u = g on ∂P B(T ) by

using the argument of the barrier functions, just as in the proof of Theorem
8.30. �

We now prove a comparison principle for the obstacle problem.

Proposition 8.31 Let u be a strong solution to the problem (8.24) and v a
super-solution, i.e. v ∈ S1

loc(B(T )) ∩ C(B(T )). If{
max{Lv, ϕ− v} ≤ 0, a.e. in B(T ),
v|∂P B(T ) ≥ g,

then u ≤ v in B(T ). In particular the solution to (8.24) is unique.



274 8 Parabolic PDEs with variable coefficients: existence

Proof. By contradiction, we suppose that the open set defined by

D := {z ∈ B(T ) | u(z) > v(z)}

is not empty. Then, since u > v ≥ ϕ in D, we have that

Lu = 0, Lv ≤ 0 in D,

and u = v on ∂D. The maximum principle implies u ≤ v in D and we get a
contradiction. �

Proof (of Theorem 8.21). We prove the thesis by solving a sequence of
obstacle problems on a family of cylinders that cover the strip ST , namely

Bn(T ) =]0, T [×{|x| < n}, n ∈ N.

For every n ∈ N, we consider a function χn ∈ C(RN ; [0, 1]) such that χn(x) = 1
if |x| ≤ n− 1

2 and χn(x) = 0 if |x| ≥ n, and we set

gn(t, x) = χn(x)ϕ(t, x) + (1− χn(x))ū(t, x), (t, x) ∈ ST .

By Theorem 8.27, for every n ∈ N, there exists a strong solution un of problem{
max{Lu,ϕ− u} = 0, in Bn(T ),
u|∂P Bn(T ) = gn.

By Proposition 8.31 we have

ϕ ≤ un+1 ≤ un ≤ ū, in Bn(T ),

and we can conclude the proof by using again the arguments of Theorems 8.27
and 8.30, based on the a priori estimates in Sp

loc and the barrier functions. �
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Stochastic differential equations

In this chapter we present some basic results on stochastic differential equa-
tions, hereafter shortened to SDEs, and we examine the connection to the
theory of parabolic partial differential equations.

We consider Z ∈ RN and two measurable functions

b = b(t, x) : [0, T ]× RN −→ RN , σ = σ(t, x) : [0, T ]× RN −→ RN×d.

In the sequel, we refer to b and σ as the drift and diffusion coefficient, respec-
tively.

Definition 9.1 Let W a d-dimensional Brownian motion on the filtered pro-
bability space (Ω,F , P, (Ft)) on which the usual hypotheses hold. A solution
relative to W of the SDE with coefficients Z, b, σ is a Ft-adapted continuous
process (Xt)t∈[0,T ] such that

i) b(t,Xt) ∈ L1
loc and σ(t,Xt) ∈ L2

loc;
ii) we have that

Xt = Z +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], (9.1)

that is
dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = Z.

Next we introduce the notions of solution to (9.1).

Definition 9.2 The SDE with coefficients Z, b, σ is solvable in the weak sense
if a standard Brownian motion exists with respect to which the SDE admits a
solution.

The SDE with coefficients Z, b, σ is solvable in the strong sense if, for every
fixed standard Brownian motion W, there exists a solution relative to W .

On the basis of the previous definition, a strong solution is constructed on
a given probability space and with respect to a given Brownian motion W .

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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On the contrary, for weak solutions, the Brownian motion and the probability
space are not assigned a priori and actually they are part of the solution rather
than the statement of the problem.

Also for the concept of uniqueness, it is natural to introduce two different
notions depending on whether we consider a strong or a weak solution.

Definition 9.3 For the SDE with coefficients Z, b, σ we have uniqueness

• in the weak sense (or in law) if two solutions are equivalent processes, i.e.
they have the same law;

• in the strong sense (or pathwise) if two solutions defined on the same
probability space are indistinguishable.

In general it is possible to assign a stochastic initial datum. When we con-
sider strong solutions and we suppose that we have fixed a priori the pro-
bability space with filtration (Ft), we assume that the initial datum Z is a
F0-measurable random variable: by (9.1), we have X0 = Z. When we study
the solvability in the weak sense, we merely assign the initial distribution μ
of the solution: X0 ∼ μ, i.e. if the solution is defined on the space (Ω,F , P )
we have that

P (X0 ∈ H) = μ(H), H ∈ B(RN ).

9.1 Strong solutions

In the case σ = 0 and Z ∈ RN , equation (9.1) reduces to the deterministic
Volterra equation

Xt = Z +
∫ t

0

b(s,Xs)ds, (9.2)

and assuming that b is a continuous function, (9.2) is equivalent to the ordi-
nary Cauchy problem

d

dt
Xt = b(t,Xt), X0 = Z.

In the theory of existence and uniqueness for strong solutions of SDEs, many
results are analogous to those for ordinary differential equations. In particular,
it is known that, in order to obtain results of existence and uniqueness for the
solution of (9.2) it is necessary to assume some regularity assumption on
the coefficient b: typically it is assumed that b = b(t, x) is locally Lipschitz
continuous with respect to the variable x. For example, the equation

Xt =
∫ t

0

|Xs|αds (9.3)
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has as unique solution the null function if α ≥ 1, while if α ∈ ]0, 1[ there exist
infinitely many solutions1 of the form

Xt =

⎧⎨⎩0, 0 ≤ t ≤ s,(
t−s
β

)β

, s ≤ t ≤ T,

where β = 1
1−α and s ∈ [0, T ].

Furthermore it is known that, in order to guarantee the global existence of
a solution it is necessary to impose conditions on the growth of the coefficient
b(t, x) as |x| → ∞: typically it is assumed a linear growth. For example, for
fixed x > 0, the equation

Xt = x +
∫ t

0

X2
s ds

has a (unique) solution Xt = x
1−xt which diverges for t→ 1

x .
On the grounds of these examples, we introduce the so-called “standard

hypotheses” for a SDE. Since we are interested in studying strong solutions,
in this section we assume that a d-dimensional Brownian motion W is fixed
on the filtered probability space (Ω,F , P, (Ft)).

Definition 9.4 The SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = Z,

verifies the standard hypotheses if

i) Z ∈ L2(Ω,P ) and it is F0-measurable;
ii) b, σ are locally Lipschitz continuous in x uniformly with respect to t, i.e.

for every n ∈ N there exists a constant Kn such that

|b(t, x)− b(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ Kn|x− y|2, (9.5)

for |x|, |y| ≤ n, t ∈ [0, T ];
iii) b, σ have at most linear growth in x, i.e.

|b(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2) x ∈ RN , t ∈ [0, T ], (9.6)

for a positive constant K.

1 On the other hand, for the problem with stochastic perturbation

Xt = Z +

∫ t

0

b(Xs)ds + Wt, (9.4)

where W is a Brownian motion, a remarkable result was proved by Zvonkin [350]
and Veretennikov [333]: they proved pathwise uniqueness for (9.4) when b is only
bounded and measurable.
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9.1.1 Uniqueness

A classical tool for the study of the properties of differential equations is the
following:

Lemma 9.5 (Gronwall’s lemma) Let ϕ ∈ C([0, T ]) be such that

ϕ(t) ≤ a +
∫ t

0

f(s)ϕ(s)ds, t ∈ [0, T ],

where a ∈ R and f is a continuous, non-negative function. Then we have

ϕ(t) ≤ ae
∫ t
0 f(s)ds, t ∈ [0, T ].

Proof. We put

F (t) = a +
∫ t

0

f(s)ϕ(s)ds.

By assumption, ϕ ≤ F and since f is non-negative we have

d

dt

(
e−
∫ t
0 f(s)dsF (t)

)
= e−

∫ t
0 f(s)ds (−f(t)F (t) + f(t)ϕ(t)) ≤ 0.

Integrating we get
e−
∫ t
0 f(s)dsF (t) ≤ a,

hence the claim:
ϕ(t) ≤ F (t) ≤ ae

∫ t
0 f(s)ds.

�

As in the case of deterministic equations, the uniqueness of the solution is
consequence of the Lipschitz continuity on the coefficients. More precisely we
have

Theorem 9.6 If the standard conditions i) and ii) hold, then the solution of
the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = Z,

is pathwise unique, i.e. two strong solutions are indistinguishable.

Proof. Let X, X̃ be strong solutions with initial datum Z and Z̃, respectively.
For n ∈ N and ω ∈ Ω, we put

sn(ω) = T ∧ inf{t ∈ [0, T ] | |Xt(ω)| ≥ n}

and we define s̃n analogously. By Theorem 3.52, sn, s̃n are stopping times.
Therefore also

τn := sn ∧ s̃n
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is a stopping time and

lim
n→∞

τn(ω) = T, a.s.

Recalling Proposition 4.22, which defines the Itô integral with a stopping time
as integration limit, we have

Xt∧τn − X̃t∧τn = Z − Z̃ +
∫ t∧τn

0

(b(s,Xs)− b(s, X̃s))ds

+
∫ t∧τn

0

(σ(s,Xs)− σ(s, X̃s))dWs.

By the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) (cf. (9.9)), we have

E

[∣∣∣Xt∧τn − X̃t∧τn

∣∣∣2] ≤ 3E
[
|Z − Z̃|2

]
+ 3E

[∣∣∣∣∫ t∧τn

0

(b(s,Xs)− b(s, X̃s)ds

∣∣∣∣2
]

+ 3E

[∣∣∣∣∫ t∧τn

0

(σ(s,Xs)− σ(s, X̃s))dWs

∣∣∣∣2
]
≤

(by Hölder’s inequality and Itô isometry, Corollary 4.23, since (σ(s,Xs) −
σ(s, X̃s))1{s≤t∧τn} ∈ L2)

≤ 3E
[
|Z − Z̃|2

]
+3tE

[∫ t∧τn

0

|b(s,Xs)− b(s, X̃s)|2ds

]
+3E

[∫ t∧τn

0

|σ(s,Xs)− σ(s, X̃s)|2ds

]
≤

(by the assumption of Lipschitz continuity of the coefficients)

≤ 3
(

E
[
|Z − Z̃|2

]
+ Kn(T + 1)

∫ t

0

E

[∣∣∣Xs∧τn − X̃s∧τn

∣∣∣2] ds

)
.

By applying Gronwall’s inequality, we infer that

E

[∣∣∣Xt∧τn − X̃t∧τn

∣∣∣2] ≤ 3E
[
|Z − Z̃|2

]
e3Kn(T+1)t.

In particular, if Z = Z̃ a.s., then by Fatou’s lemma we have

E

[∣∣∣Xt − X̃t

∣∣∣2] = E

[
lim

n→∞

∣∣∣Xt∧τn − X̃t∧τn

∣∣∣2]
≤ lim inf

n→∞
E

[∣∣∣Xt∧τn − X̃t∧τn

∣∣∣2] = 0,

and therefore X, X̃ are modifications. Finally, since X, X̃ are continuous pro-
cesses, it follows that they are indistinguishable, by Proposition 3.25. �
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9.1.2 Existence

As in the deterministic case, existence of a solution of an SDE can be reduced
to a fixed-point problem: formally the process X is solution of the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = Z, (9.7)

if and only if it is a fixed point for the functional Ψ defined by

Ψ(X)t = Z +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ]. (9.8)

To present the proper setting in which we look for the strong solution of the
SDE (9.7), we introduce the following:

Notation 9.7 Ac is the space of continuous Ft-adapted processes (Xt)t∈[0,T ]

such that

[[X]]2T := E

[
sup

0≤t≤T
|Xt|2

]
<∞.

The following result can be proved just as Lemma 3.43.

Lemma 9.8 (Ac, [[·]]T ) is a semi-normed complete space.

In what follows we repeatedly use the following inequalities:

Lemma 9.9 For all n ∈ N and a1, . . . , an ∈ R we have

(a1 + · · ·+ an)2 ≤ n(a2
1 + · · ·+ a2

n). (9.9)

For all X ∈ Ac we have that

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

Xudu

∣∣∣∣2
]
≤ t

∫ t

0

[[X]]2sds, (9.10)

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

XudWu

∣∣∣∣2
]
≤ 4
∫ t

0

[[X]]2sds. (9.11)

Proof. We have

(a1 + · · ·+ an)2 = a2
1 + · · ·+ a2

n + 2
∑
i<j

aiaj

≤ a2
1 + · · ·+ a2

n +
∑
i<j

(a2
i + a2

j )

= n(a2
1 + · · ·+ a2

n).

By Hölder’s inequality we get

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

Xudu

∣∣∣∣2
]
≤ E

[
sup

0≤s≤t
s

∫ s

0

|Xu|2du

]
= tE

[∫ t

0

|Xu|2du

]
≤ t

∫ t

0

[[X]]2udu.

Finally (9.11) is a consequence of Doob’s inequality and Itô isometry. �
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Lemma 9.10 Under the standard hypotheses i) and iii) of Definition 9.4,
the functional Ψ in (9.8) is well defined from Ac to Ac. Further, there exists
a constant C1 depending on T and K only, such that

[[Ψ(X)]]2t ≤ C1

(
1 + E

[
|Z|2

]
+
∫ t

0

[[X]]2sds

)
, t ∈ [0, T ]. (9.12)

Proof. By the assumption of linear growth on the coefficients, we have

E

[
sup

0≤s≤t
|b(s,Xs)|2

]
+ E

[
sup

0≤s≤t
|σ(s,Xs)|2

]
≤ K(1 + [[X]]2t ) t ∈ [0, T ],

(9.13)
and so b(t,Xt), σ(t,Xt) ∈ Ac when X ∈ Ac. Then we get

[[Ψ(X)]]2t = E

[
sup

0≤s≤t

∣∣∣∣Z +
∫ s

0

b(u,Xu)du +
∫ s

0

σ(u,Xu)du

∣∣∣∣2
]
≤

(by (9.9), (9.10) and (9.11))

≤ 3
(

E
[
|Z|2

]
+ t

∫ t

0

E

[
sup

0≤u≤s
|b(u,Xu)|2

]
ds

+ 4
∫ t

0

E

[
sup

0≤u≤s
|σ(u,Xu)|2

]
ds

)
≤

(by (9.13))

≤ 3
(

E
[
|Z|2

]
+ K(4 + t)

(
t +
∫ t

0

[[X]]2sds

))
. �

The following classical theorem gives sufficient conditions for the existence
of a unique strong solution of the SDE (9.1): although it is not the most general
result, it is satisfactory for many applications.

Theorem 9.11 Under the standard hypotheses of Definition 9.4 the SDE

Xt = Z +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], (9.14)

has a strong solution in the space Ac. Such a solution is unique modulo indis-
tinguishability and it verifies the estimate

[[X]]2t ≤ C(1 + E
[
|Z|2

]
)eCt, t ∈ [0, T ], (9.15)

where C is a constant depending on K in (9.6) and T only.

Proof. The uniqueness of the solution has already been proved in Theo-
rem 9.6. Concerning its existence, for the sake of simplicity we consider the
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standard hypotheses with Kn ≡ K, not depending on n: the general case can
be proved by a localization argument, just as in the proof of Theorem 9.6.

As in the deterministic case, the proof is based upon the Banach-Cacciop-
poli fixed-point theorem: we have already proved that Ψ is well-defined from
Ac to Ac (cf. Lemma 9.10) and that (Ac, [·]T ) is a semi-normed complete
space (cf. Lemma 3.43). What is left to prove is then the existence of an
integer n ∈ N such that

Ψn = Ψ ◦ · · · ◦ Ψ︸ ︷︷ ︸
n times

is a contraction, that is

[[Ψn(X)− Ψn(Y )]]T ≤ C0[[X − Y ]]T , X, Y ∈ Ac,

for a constant C0 ∈ ]0, 1[. More precisely, we prove by induction that for every
n ∈ N we have that

[[Ψn(X)− Ψn(Y )]]2t ≤
(C2t)n

n!
[[X − Y ]]2t , X, Y ∈ Ac, t ∈ [0, T ], (9.16)

where C2 = 2K(T + 4).
We have

[[Ψn+1(X)− Ψn+1(Y )]]2t =E

[
sup

0≤s≤t

∣∣∣ ∫ s

0

(b(u, Ψn(X)u)− b(u, Ψn(Y )u))du

+
∫ s

0

(σ(u, Ψn(X)u)− σ(u, Ψn(Y )u))dWu

∣∣∣2] ≤
(by (9.9), (9.10) and (9.11))

≤ 2t

∫ t

0

E

[
sup

0≤u≤s
|b(u, Ψn(X)u)− b(u, Ψn(Y )u)|2

]
ds

+8
∫ t

0

E

[
sup

0≤u≤s
|σ(u, Ψn(X)u)− σ(u, Ψn(Y )u)|2

]
ds ≤

(by the hypothesis of Lipschitz continuity)

≤ C2

∫ t

0

[[Ψn(X)− Ψn(Y )]]2sds ≤

(by the inductive hypothesis)

≤ Cn+1
2

∫ t

0

sn

n!
ds[[X − Y ]]2t ,

hence (9.16) follows. We infer that Ψ admits a unique fixed point X in Ac.
Since X = Ψ(X) the estimate (9.12) becomes

[[X]]2t ≤ C1

(
1 + E

[
|Z|2

]
+
∫ t

0

[[X]]2sds

)
, t ∈ [0, T ],

and, by applying Gronwall’s inequality, we directly obtain (9.15). �
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Remark 9.12 The previous proof implicitly contains a uniqueness result in-
dependent of Theorem 9.6: indeed, since Ψn is a contraction, it admits a
unique fixed point in the space Ac. On the other hand the uniqueness result
in Theorem 9.6 is stronger because it gives the uniqueness not only within
the class Ac: in particular under the standard hypotheses, every solution to
(9.14) belongs to the class Ac. �

Remark 9.13 As in the deterministic case, the solution of a SDE can be
determined by successive approximations. More precisely, let (Xn) be the
sequence in Ac defined by{

X0 = Z,

Xn = Ψ(Xn−1), n ∈ N,

where Ψ is the functional in (9.8). Then, under the standard hypotheses and
denoting by X the solution, we have that

lim
n→∞

[[X −Xn]]T = 0. �

9.1.3 Properties of solutions

In this section we prove some remarkable growth estimates and results on
regularity, comparison and dependence on the data for the solution of a SDE.
This kind of estimates plays a crucial role, for instance, in the study of the
numerical solution of stochastic equations.

Theorem 9.14 Let X be solution of the SDE

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ]. (9.17)

If the standard hypotheses of Definition 9.4 hold and E
[
|X0|2p

]
is finite for

some p ≥ 1, then there exists a constant C depending only on T , p and K in
(9.6), such that

E

[
sup

t0≤s≤t
|Xs|2p

]
≤ C

(
1 + E

[
|Xt0 |2p

])
eC(t−t0), (9.18)

E

[
sup

t0≤s≤t
|Xs −Xt0 |2p

]
≤ C

(
1 + E

[
|Xt0 |2p

])
(t− t0)p, (9.19)

with 0 ≤ t0 < t ≤ T .

Proof. We prove the claim in the case p = 1, N = 1 and t0 = 0. The case
p > 1 is analogous and can be proved by using the fact that X2p is a solution
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of the SDE

X2p
t = X2p

0 +
∫ t

0

(
2pX2p−1

s b(s,Xs) + p(2p− 1)X2p−2
s σ2(s,Xs)

)
ds

+
∫ t

0

2pX2p−1
s σ(s,Xs)dWs.

For further details we refer, for example, to Kloeden and Platen [210], Theo-
rem 4.5.4.

The inequality (9.18) for p = 1 is equivalent to (9.15) of Theorem 9.11.
Concerning (9.19), by Lemma 9.9 and the condition of linear growth of the
coefficients, we have

[[X −X0]]2t ≤ 2K(t + 4)
∫ t

0

(1 + [[X]]2s)ds ≤

(by (9.18))
≤ Ct

(
1 + E

[
|X0|2

])
. �

We now prove a result on the continuous dependence on the parameters
of a SDE. First of all we introduce the following:

Notation 9.15 We put

Lt0,tX := Xt−Xt0−
∫ t

t0

b(s,Xs)ds−
∫ t

t0

σ(s,Xs)dWs, t ∈ [t0, T ], (9.20)

and, for the sake of simplicity, L0,tX = LtX. Further, when we write Lt0,tX
we implicitly assume that (Xt)t∈[t0,T ] is an adapted process such that

b(t,Xt) ∈ L1
loc and σ(t,Xt) ∈ L2

loc.

Clearly X is a solution to the SDE (9.17) if LtX = 0.

Theorem 9.16 Consider Lt0,t in (9.20) for 0 ≤ t0 < t ≤ T and assume
that the coefficients of the SDE are Lipschitz continuous in x uniformly with
respect to t, that is

|b(t, x)− b(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ K|x− y|2, t ∈ [t0, T ], x, y ∈ RN ,

for some positive constant K. Then there exists a constant C depending on
K, T and p ≥ 1 only, such that for every pair of processes X,Y , we have that

E

[
sup

t0≤s≤t
|Xs − Ys|2p

]
≤ CeC(t−t0)

(
E
[
|Xt0 − Yt0 |2p

]
+E

[
sup

t0≤s≤t
|Lt0,sX − Lt0,sY |2p

])
.

(9.21)
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Proof. We only consider the case p = 1 and t0 = 0. Using Lemma 9.9 we get

[[X − Y ]]2t ≤4
(

E
[
(X0 − Y0)2

]
+ t

∫ t

0

[[b(·,X)− b(·, Y )]]2sds

+4
∫ t

0

[[σ(·,X)− σ(·, Y )]]2sds + [[LX − LY ]]2t

)
≤

(by the assumption of Lipschitz continuity on the coefficients)

≤ 4
(

E
[
(X0 − Y0)2

]
+ K(t + 4)

∫ t

0

[[X − Y ]]2sds + [[LX − LY ]]2t

)
.

The claim follows by Gronwall’s Lemma. �

Remark 9.17 If X,Y are solutions of the SDE (9.17), then by (9.21) we
have that

[[X − Y ]]2t ≤ 4E
[
|X0 − Y0|2

]
eCt.

By examining the proof, we can improve the previous estimate by using an
elementary inequality such as

(a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2, ε > 0,

and so we get
[[X − Y ]]2t ≤ (1 + ε)E

[
|X0 − Y0|2

]
eC̄t, (9.22)

with C̄ depending on ε, K and T . Inequality (9.22) provides us with a sen-
sitivity (or stability) estimate of the solution in terms of dependence on the
initial datum. Formula (9.22) can be useful if one wants to estimate the error
made by an erroneous specification of the initial datum due, for instance, to
incomplete information. �

We conclude this section mentioning a comparison result for solutions of SDE:
for the proof we refer, for example, to [201], Theorem 5.2.18.

Theorem 9.18 Let X1,X2 be solutions of the SDEs

Xj
t = Zj +

∫ t

0

bj(s,Xj
s )ds +

∫ t

0

σ(s,Xj
s )dWs, t ∈ [0, T ], j = 1, 2,

with the coefficients verifying the standard hypotheses. If

i) Z1 ≤ Z2 a.s.;
ii) b1(t, x) ≤ b2(t, x) for every x ∈ R and t ∈ [0, T ];

then
P (X1

t ≤ X2
t , t ∈ [0, T ]) = 1.
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9.2 Weak solutions

In this section we present some classical theorems on existence and unique-
ness of weak solutions of SDEs with continuous and bounded coefficients. The
material in this section summarizes very classical results: a more detailed
exposition can be found, for instance, in the monographs by Stroock and
Varadhan [321], Karatzas and Shreve [201].

We begin by presenting a SDE solvable in the weak sense but not in the
strong sense. The following example shows also that a SDE can have solutions
that are equivalent in law but not indistinguishable: in this sense uniqueness
in law does not imply pathwise uniqueness.

9.2.1 Tanaka’s example

The following example is due to Tanaka [324] (see also Zvonkin [350]). Let us
consider the scalar SDE (N = d = 1) with coefficients Z = 0 = b and

σ(x) = sgn(x) =

{
1 x ≥ 0,

−1 x < 0.

First of all we prove that, for such a SDE, we have uniqueness in the weak
sense. Indeed, if X is a solution relative to a Brownian motion W , then

Xt =
∫ t

0

sgn(Xs)dWs,

and by Corollary 5.35, X is a Brownian motion. Therefore we have uniqueness
in law. On the other hand, −X is a solution relative to W as well, we do not
have pathwise uniqueness.

Let us now prove the existence of a weak solution. We consider a standard
Brownian motion W on the probability space (Ω,F , P, (Ft)) and we put

Bt =
∫ t

0

sgn(Ws)dWs.

Again by Corollary 5.35, B is a Brownian motion on (Ω,F , P, (Ft)). Further,
we have that

dWt = (sgn(Wt))
2
dWt = sgn(Wt)dBt,

i.e. W is solution relative to the Brownian motion B.
Eventually we prove that the SDE does not admit a strong solution. By

contradiction, let X be a solution relative to a Brownian motion W defined
on (Ω,F , P,FW

t ) where
(
FW

t

)
denotes the standard filtration2 of W . Then

we have
dWt = (sgn(Xt))

2
dWt = sgn(Xt)dXt. (9.23)

2 Theorem 3.47, p. 118.
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Since X is a Brownian motion on (Ω,F , P,FW
t ), applying Tanaka’s formula3,

we obtain

|Xt| =
∫ t

0

sgn(Xs)dXs + 2LX
t (0) (9.24)

where, by (5.53),

LX
t (0) = lim

ε→0+

1
2ε
|{s ∈ [0, t] | |Xs| ≤ ε}|

is the local time of X at zero. Putting (9.23) and (9.24) together we get

Wt = |Xt| − 2LX
t (0)

and this implies that W is adapted to the standard filtration F |X|t of |X|.
On the other hand, by its very definition, X is FW

t -adapted: so the following
inclusion holds

FX
t ⊆ F

|X|
t ,

where FX
t is the standard filtration of X, and this is absurd.

We would like to mention also Barlow’s work [24] where the author gives
an example of a SDE with continuous coefficients which does not admit a
strong solution.

9.2.2 Existence: the martingale problem

In this section we give an overview of the classical results of Stroock and
Varadhan [319; 320] on the existence and uniqueness of weak solutions to
SDEs with bounded and continuous coefficients. Instead of confronting the
question of solvability directly, Stroock and Varadhan formulate and solve an
equivalent problem, called the martingale problem.

To introduce the martingale problem, let us consider a SDE with bounded
and continuous coefficients

b ∈ Cb(R≥0 × RN ;RN ), σ ∈ Cb(R≥0 × RN ;RN×d).

We suppose there exists a solution X to the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, (9.25)

relative to a d-dimensional Brownian motion W defined on the probability
space (Ω,F , P, (Ft)).

Applying the Itô formula (5.34), for every f ∈ C2
0 (RN ) we have

df(Xt) = Atf(Xt)dt +∇f(Xt) · σ(t,Xt)dWt,

3 Formula (5.54), p. 196 con K = 0, recalling that |X| = X+ + (−X)+.
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where

Atf(x) :=
1
2

N∑
i,j=1

cij(t, x)∂xixj f(x) +
N∑

j=1

bj(t, x)∂xj f(x), (9.26)

and (cij) = σσ∗.

Definition 9.19 The operator At is called characteristic operator of the SDE
(9.25).

Since by assumption ∇f and σ are bounded, we have that ∇f(Xt)σ(t,Xt) ∈
L2 and consequently the process

Mf
t := f(Xt)− f(X0)−

∫ t

0

Asf(Xs)ds (9.27)

is a Ft-continuous martingale.
Now, in order to state the martingale problem, instead of considering the

stochastic equation we start directly from a differential operator of the form
(9.26), we assume that the coefficients cij , bj ∈ Cb(R≥0 × RN ) and that the
matrix (cij) is symmetric and positive semi-definite.

We recall briefly the results of Section 3.2.1: on the space

C(R≥0) = C(R≥0;RN )

endowed with the Borel σ-algebra B(C(R≥0)), we define the “canonical” pro-
cess

Xt(w) = w(t), w ∈ C(R≥0),

and the related standard filtration4 Bt(C(R≥0)). In the following we prefer
to use the more intuitive notation w(t) instead of Xt(w).

Definition 9.20 A solution of the martingale problem associated to operator
At is a probability measure P on the space

(C(R≥0),B(C(R≥0)))

such that, for every f ∈ C2
0 (RN ), the process

Mf
t (w) = f(w(t))− f(w(0))−

∫ t

0

Asf(w(s))ds,

is a P -martingale, with respect to the filtration Bt(C(R≥0)).

4 Obtained by completing the natural filtration B̃t(C(R≥0)) in (3.17), in accordance
with Definition 3.45.
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If the SDE (9.25) has a solution X, then the martingale problem for At in
(9.26) is solvable: a solution is the law of X. Actually, it turns out that the
problems are equivalent since, according to Theorem 9.22, the existence of a
solution of the martingale problem implies the solvability in the weak sense
of the associated SDE.

Let us point out that the SDE appears only indirectly in the formulation
of the martingale problem, i.e. only through the coefficients of the equation
defining the operator At. The martingale-problem approach turns out to give
a great deal of advantage in the study of SDEs for many reasons: for instance,
one can use the results of convergence for Markov chains to diffusion processes
which play a crucial part in the proof of the existence of the solution. With
these techniques it is possible to prove weak existence results under mild
assumptions. The question of uniqueness in law is in general more delicate:
in Section 9.2.3 we present a theorem based upon the results of existence for
the parabolic Cauchy problem of Chapter 8.

In order to state the equivalence between the martingale problem and
SDEs we have to introduce the notion of extension of a probability space.

Remark 9.21 (Extension of a probability space) Let X be an adapted
process on the space (Ω,F , P, (Ft)). In general it is not possible to construct
a Brownian motion on Ω, since the space could not be sufficiently “rich”
to support it. On the other hand, if W is a Brownian motion on the space
(Ω̃, F̃ , P̃ , F̃t), we can consider the product space(

Ω × Ω̃,F ⊗ F̃ , P ⊗ P̃
)

endowed with the standard filtration F̄t obtained from Ft ⊗ F̃t, and extend
in a natural fashion the processes X and W by putting

X̄(ω, ω̃) = X(ω), W̄ (ω, ω̃) = W (ω̃).

Then we have that, on the product space, W̄ is a F̄t-Brownian motion inde-
pendent of X̄. �

The following result, that we merely mention, establishes the equivalence be-
tween the martingale problem and the weak formulation of the associated
SDE. The proof is based upon the representation of continuous martingales
in terms of Brownian integrals: we refer to, for example, Karatzas and Shreve
[201], Proposition 5.4.11 and Corollary 5.4.9.

Theorem 9.22 Let ζ be a distribution on RN . There exists a solution P of
the martingale problem associated to At with initial datum ζ (i.e. such that
P (w(0) ∈ H) = ζ(H) for every H ∈ B(RN )) if and only if there exists a
d-dimensional Brownian motion W , defined on an extension of

(C(R≥0),B(C(R≥0)), P,Bt(C(R≥0))) ,
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such that the extension of the process Xt(w) = w(t) is a solution of the SDE
(9.25) relative to W with initial datum ζ.

Further, the uniqueness of the solution of the martingale problem with
initial datum ζ is equivalent to the uniqueness in law for the SDE with initial
datum ζ.

We conclude the section stating the main existence result. The proof is based
on the discretization of the SDE and on a limiting procedure for the sequence
(Pn) of solutions of the martingale problem associated to the discrete SDEs
(we refer, for instance, to Stroock and Varadhan [321], Theorem 6.1.7, or
Karatzas and Shreve [201], Theorem 5.4.22).

Theorem 9.23 Let us consider the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, (9.28)

with continuous coefficients, satisfying the linear growth condition

|b(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2) x ∈ RN , t ∈ [0, T ],

for a positive constant K. Then, for any x ∈ RN , (9.28) admits at least one
weak solution with initial datum x.

9.2.3 Uniqueness

As already mentioned, the weak uniqueness is generally more involved to deal
with, compared to the mere existence. It is enough to consider the deter-
ministic equation (9.3) to notice that the only assumption of continuity and
boundedness of the coefficients is not sufficient to guarantee this property. In
this section we show that the formulation in terms of the martingale problem
allows one to obtain a very natural condition for uniqueness: the existence of
a solution of the Cauchy problem relative to the elliptic-parabolic operator
At + ∂t. As we have seen in Chapter 8, under suitable assumptions, for such
an operator a well-established theory is available.

Let us recall that5 two measures P,Q on (C(R≥0),B(C(R≥0))) are equal
if and only they have the same finite-dimensional distributions, i.e. if

P (w(t1) ∈ H1, . . . , w(tn) ∈ Hn) = Q (w(t1) ∈ H1, . . . , w(tn) ∈ Hn)

for every n ∈ N, 0 ≤ t1 < · · · < tn and H1, . . . ,Hn ∈ B(RN ).
The following result gives a sufficient condition for which two solutions P

and Q of the martingale problem with the same initial datum have the same
one-dimensional distributions, i.e.

P (w(t) ∈ H) = Q (w(t) ∈ H)

for every t ≥ 0 and H ∈ B(RN ).
5 Proposition 3.22, p. 105.
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Proposition 9.24 Let P,Q be solutions of the martingale problem associated
to At with initial datum x0 ∈ RN , i.e. such that

P (w(0) = x0) = Q(w(0) = x0) = 1.

Suppose that for every T > 0 and for every ϕ ∈ Cb(RN ) there exists a bounded
classical solution

u ∈ C1,2(]0, T [×RN ) ∩ Cb([0, T ]× RN ),

to the Cauchy problem with final datum{
Atu(t, x) + ∂tu(t, x) = 0, in ]0, T [×RN ,

u(T, ·) = ϕ, on RN .
(9.29)

Then P and Q have the same one-dimensional distributions.

Proof. By Theorem 9.22, the process Xt(w) = w(t) is solution to the SDE
(9.25) on some extension of the space of continuous functions endowed with the
probability measure P and the same result holds for Q. It follows that, if u is a
solution of the problem (9.29), then the process u(t, w(t)) is a local martingale,
by the Itô formula. On the other hand, u(t, w(t)) is a strict martingale because
u is bounded and therefore we have

EP [ϕ(w(T ))] = EP [u(T,w(T ))] = u(0, x0)

= EQ [u(T,w(T ))] = EQ [ϕ(w(T ))] .
(9.30)

Now it is fairly easy to conclude by using Dynkin’s Theorem: indeed if H is a
bounded open set in RN , we construct the increasing sequence of non-negative,
continuous and bounded functions

ϕn(x) = nmin
{

1
n

, inf
y/∈H
|x− y|

}
,

approximating the characteristic function of H as n tends to infinity. By the
theorem of monotone convergence and (9.30), we get

P (w(T ) ∈ H) = Q(w(T ) ∈ H),

and the claim follows easily by Proposition A.6. �

Now we are interested to go from the uniqueness of the one-dimensional
distributions to the uniqueness of all finite-dimensional distributions. We men-
tion the following result, due to Stroock and Varadhan [321], Theorem 6.2.3.

Proposition 9.25 Suppose that the solutions of the martingale problem as-
sociated to At with initial condition x0 ∈ RN have the same one-dimensional
distributions. Then the solution of the martingale problem with initial datum
x0 is unique.
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Remark 9.26 A similar result is proved in Karatzas and Shreve [201], Propo-
sition 5.4.27, by using the Markov property in a way not dissimilar, for exam-
ple, to the ideas in the proof of Proposition 3.23, which characterized the finite-
dimensional distributions of Brownian motion. Nevertheless, this approach re-
quires the hypothesis of autonomous coefficients, b = b(x) and σ = σ(x), since
it has to be proven first that P,Q have the Markov property. �

We can eventually state a remarkable result of weak uniqueness for SDEs.

Theorem 9.27 Consider a SDE with measurable and bounded coefficients
b and σ. As usual, we denote by At the related differential operator defined
in (9.26). If, for all T > 0 and for all ϕ ∈ Cb(RN ), there exists a bounded
classical solution of the Cauchy problem (9.29), then for the SDE we have
uniqueness in law.

Sufficient conditions for the solvability of problem (9.29), as requested in The-
orem 9.27, were given in Chapter 8. If the coefficients cij , bj are Hölder con-
tinuous bounded functions and the matrix (cij) is uniformly positive definite,
then the operator At + ∂t has a fundamental solution Γ such that

u(t, x) =
∫
RN

Γ (t, x;T, y)ϕ(y)dy

is a classical solution of the Cauchy problem (9.29). Further, u is the only
bounded solution:

|u(t, x)| ≤ ‖ϕ‖∞
∫
RN

Γ (t, x;T, y)dy = ‖ϕ‖∞.

In Section 9.5.2 we treat also the case of non-uniformly parabolic PDEs
that appear in some financial models: in the case of constant coefficients, the
prototype of such a class is the Kolmogorov equation (7.75)

∂xx + x∂y + ∂t, (t, x, y) ∈ R3,

introduced in the study of Asian options.

9.3 Maximal estimates

We consider the solution X of a SDE. In order to prove some fundamental
results, as the Feynman-Kač formula of Section 9.4.2 on unbounded domains,
it is necessary to estimate “how far from the starting point the process X
has gone in a given time interval”. We loosely use the adjective “maximal” to
denote an estimate of the upper bound

sup
0≤t≤T

Xt.
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9.3.1 Maximal estimates for martingales

We have already seen in the proof of Doob’s inequality, Theorem 3.38, that for
martingales it is possible to obtain uniform estimates with respect to time. The
following result is the natural “uniform in t” version of the Markov inequality.

Theorem 9.28 (Maximal martingale inequalities) Let X be a right-
continuous super-martingale. For every λ > 0 we have

P

(
sup

0≤t≤T
Xt ≥ λ

)
≤ E [X0] + E

[
X−

T

]
λ

, (9.31)

P

(
inf

0≤t≤T
Xt ≤ −λ

)
≤ E [|XT |]

λ
, (9.32)

where X−
T = max{−XT , 0}. In particular

P

(
sup

0≤t≤T
|Xt| ≥ λ

)
≤ E [X0] + 2E [|XT |]

λ
. (9.33)

Proof. We use the notation

X̂t = sup
0≤s≤t

Xs,

and, for fixed λ > 0, we put

τ(ω) = inf{t ≥ 0 | Xt(ω) ≥ λ} ∧ T, ω ∈ Ω.

Then τ is a bounded stopping time and, by Theorem 3.56, we have that

E [X0] ≥ E [Xτ ] =
∫
{X̂T≥λ}

XτdP +
∫
{X̂T <λ}

XT dP

≥ λP
(
X̂T ≥ λ

)
− E

[
X−

T

]
,

and this proves (9.31).
Now we put

X̌t = inf
0≤s≤t

Xs,

and
τ = inf{t ≥ 0 | Xt ≤ −λ} ∧ T.

By Theorem 3.56 we have

E [XT ] ≤ E [Xτ ] =
∫
{X̌T≤−λ}

XτdP +
∫
{X̌T >−λ}

XτdP

= λP
(
X̌T ≤ −λ

)
+
∫
{X̌T >−λ}

XT dP,

hence (9.32) follows. Finally, (9.33) follows because we have

P

(
sup

0≤s≤t
|Xs| ≥ λ

)
≤ P

(
sup

0≤s≤t
Xs ≥ λ

)
+ P

(
inf

0≤s≤t
Xs ≤ −λ

)
. �
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Now we use Theorem 9.28 to get a maximal estimate for integral processes.

Corollary 9.29 (Exponential inequality) Let W be a real Brownian mo-
tion and σ ∈ L2 such that ∫ T

0

σ2
sds ≤ k a.s.

for a constant k. Then, if we put

Xt =
∫ t

0

σsdWs,

for every λ > 0 we have that

P

(
sup

0≤t≤T
|Xt| ≥ λ

)
≤ 2e−

λ2
2k . (9.34)

Proof. We consider the quadratic variation process

〈X〉t =
∫ t

0

σ2
sds,

and we recall that6

Z
(α)
t = exp

(
αXt −

α2

2
〈X〉t

)
is a continuous super-martingale for every α ∈ R. Further, we point out that,
for every λ, α > 0, we have

{Xt ≥ λ} = {exp(αXt) ≥ exp(αλ)}

⊆
{

Z
(α)
t ≥ exp

(
αλ− α2k

2

)}
.

Then, by applying the maximal inequality (9.31), we get

P

(
sup

0≤t≤T
Xt ≥ λ

)
≤ P

(
sup

0≤t≤T
Z

(α)
t ≥ eαλ−α2k

2

)
≤ e−αλ+ α2k

2 .

By choosing α = λ
k we maximize the last term of the previous inequality and

we get

P

(
sup

0≤t≤T
Xt ≥ λ

)
≤ e−

λ2
2k .

An analogous argument applied to the process −X gives the estimate

P

(
inf

0≤t≤T
Xt ≤ −λ

)
≤ e−

λ2
2k ;

hence the claim follows. �

6 Cf. Example 5.12.
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Remark 9.30 With the technique of Corollary 9.29 we can also prove the
following inequality: let W be a d-dimensional Brownian motion and σ ∈ L2

an (N × d)-matrix such that∫ T

0

〈σsσ
∗
sθ, θ〉ds ≤ k (9.35)

for some θ ∈ RN , |θ| = 1, and a constant k. Then, if we put

Xt =
∫ t

0

σsdWs,

for every λ > 0 we have that

P

(
sup

0≤t≤T
|〈θ,Xt〉| ≥ λ

)
≤ 2e−

λ2
2k . (9.36)

�

Now we prove the multi-dimensional version of Corollary 9.29.

Corollary 9.31 Let W be a d-dimensional Brownian motion and σ ∈ L2 an
(N × d)-matrix such that7 ∫ T

0

|σsσ
∗
s |ds ≤ k

for a constant k. Then, if we put

Xt =
∫ t

0

σsdWs,

for every λ > 0 we have that

P

(
sup

0≤t≤T
|Xt| ≥ λ

)
≤ 2Ne−

λ2
2kN .

Proof. Let us notice that, if

sup
0≤t≤T

|Xt(ω)| ≥ λ,

then
sup

0≤t≤T

∣∣Xi
t(ω)

∣∣ ≥ λ√
N

7 We recall that, if A = (aij) is a matrix, we have that

|A| :=
√∑

i,j

a2
ij ≥ max

|θ|=1
|Aθ| =: ‖A‖.
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for some i = 1, . . . , N, where Xi denotes the i-th component of the vector X.
Consequently

P

(
sup

0≤t≤T
|Xt| ≥ λ

)
≤

N∑
i=1

P

(
sup

0≤t≤T

∣∣Xi
t

∣∣ ≥ λ√
N

)
≤ 2Ne−

λ2
2kN ,

where the last inequality follows from (9.36), by choosing θ among the vectors
of the canonical basis. �

9.3.2 Maximal estimates for diffusions

The following maximal estimates play a crucial part in the proof of the rep-
resentation formulas for the Cauchy problem of Section 9.4.4 that extend, by
a localization technique, the results of Section 9.4.2. In this section we prove
maximal estimates for solutions of SDE with bounded diffusion coefficient
(cf. Theorem 9.32) or with diffusion coefficient growing at most linearly (cf.
Theorem 9.33).

Theorem 9.32 Let us consider the SDE in RN

Xt = x0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dWs. (9.37)

We suppose that σ is a bounded and measurable (N × d)-matrix: in particular
we have that

|σσ∗(t, x)| ≤ k, t ∈ [0, T ], x ∈ RN ; (9.38)

further, we suppose that b is measurable with at most linear growth,

|b(t, x)| ≤ K(1 + |x|), t ∈ [0, T ], x ∈ RN . (9.39)

Then there exists a positive constant α depending only on k,K, T and N such
that, if X is a solution of (9.37), then we have

E
[
eαX̄2

T

]
<∞, (9.40)

where
X̄T = sup

0≤t≤T
|Xt|.

Proof. By Proposition A.56 we have

E
[
eαX̄2

T

]
= 1 +

∫ +∞

0

2αλeαλ2
P
(
X̄T ≥ λ

)
dλ,

so it is enough to have a suitable estimate of P
(
X̄T ≥ λ

)
when λ 1. If we

put

Mt =
∫ t

0

σ(s,Xs)dWs,
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by Corollary 9.31 we have that

P

(
sup

0≤t≤T
|Mt| ≥ R

)
≤ 2Ne−

R2
2kNT , R > 0.

On the other hand on the event{
sup

0≤t≤T
|Mt| < R

}
,

we have

|Xt| ≤ |x0|+
∫ t

0

K(1 + |Xs|)ds + R

hence, by Gronwall’s lemma, we get

|Xt| ≤ (|x0|+ KT + R) eKT , t ∈ [0, T ].

Summing up

P
(
X̄T ≥ (|x0|+ KT + R) eKT

)
≤ 2Ne−

R2
2kNT ,

that is, for λ large enough,

P
(
X̄T ≥ λ

)
≤ 2N exp

(
−
(
e−KT λ− |x0| −KT

)2
2kNT

)
, (9.41)

hence the claim by choosing

α <
e−2KT

2kNT
. �

If the diffusion coefficients have linear growth, we can get a result of maxi-
mal integrability of polynomial type: the following result generalizes the esti-
mate (9.18).

Theorem 9.33 Suppose that the coefficients of the SDE (9.37) are measur-
able and satisfy the estimate (9.6) of linear growth. Then if X is a solution
of (9.37), for every p ≥ 1 we have

E

[
sup

0≤t≤T
|Xt|p

]
<∞. (9.42)

Proof. We resort to a trick to go back to the case of a SDE with bounded
coefficients. We consider the function f(x) = log(1 + |x|2) and compute the
derivatives of first and second order:

∂xif(x) =
2xi

1 + |x|2 , ∂xixj f(x) =
2δij

1 + |x|2 −
4xixj

(1 + |x|2)2 .
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Since

∂xif(x) = O
(
|x|−1

)
, ∂xixj f(x) = O

(
|x|−2

)
, as |x| → +∞,

by the assumption of linear growth on the coefficients, it is immediate to
verify, by applying the Itô formula (5.35), that the coefficients of the stochastic
differential of the process

Yt = log
(
1 + |Xt|2

)
are bounded. Therefore by proceeding as in the proof of Theorem 9.32 we get

P

(
sup

0≤t≤T
Yt ≥ λ

)
≤ ce−cλ2

, λ > 0,

for some positive constant depending on x0, T,N and on the growth constant
K in (9.6): this is tantamount to writing that

P

(
sup

0≤t≤T
|Xt| ≥ λ

)
= P

(
sup

0≤t≤T
Yt ≥ log(1 + λ2)

)
≤ ce−c log2(1+λ2) ≤ c

λc log λ
, λ > 0. (9.43)

The claim follows from Proposition A.56, since

E

[
sup

0≤t≤T
|Xt|p

]
=
∫ ∞

0

pλp−1P

(
sup

0≤t≤T
|Xt| ≥ λ

)
dλ,

and the last integral converges by the estimate (9.43). �

9.4 Feynman-Kač representation formulas

In this section we examine the deep connection between SDEs and PDEs,
where the trait d’union is the Itô formula. To face the problem in a systematic
way, we treat first the stationary8 (or ellipic) case, which does not have direct
financial applications but is nevertheless introductory to the study of evolution
(or parabolic) problems that typically arise in the study of American and
European derivatives.

Let us fix some notations and assumptions that will hold in the entire
section. We consider the SDE in RN

dXt = b(t,Xt)dt + σ(t,Xt)dWt, (9.44)

we denote by D a bounded domain9 in RN and we assume that:
8 The coefficients do not depend on time.
9 Open and connected set.
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i) the coefficients are locally bounded: b, σ ∈ L∞loc(R≥0 × RN );
ii) for every t ≥ 0 and x ∈ D there exists a solution Xt,x of (9.44) such that

Xt,x
t = x, relative to a d-dimensional Brownian motion W on the space

(Ω,F , P, (Ft)).

In the following, τ(t,x) denotes the first exit time of Xt,x from D: for the sake of
simplicity, we write X0,x = Xx and τ(0,x) = τx. Further, putting (cij) = σσ∗,

Atf(x) :=
1
2

N∑
i,j=1

cij(t, x)∂xixj f(x) +
N∑

j=1

bj(t, x)∂xj f(x) (9.45)

denotes the characteristic operator of the SDE (9.44).
The main results of this section, commonly known as Feynman-Kač theo-

rems, give a representation of the solution u of the Cauchy-Dirichlet, Cauchy
and obstacle problems relative to (9.45) in terms of expectation of u(t,Xt).
For example, let us consider u ∈ C2(RN+1), solution of the equation

Atu + ∂tu = 0. (9.46)

By the Itô formula we have

u(T,Xt,x
T ) = u(t, x) +

∫ T

t

∇u(s,Xt,x
s ) · σ(s,Xt,x

s )dWs, (9.47)

and if the stochastic integral on the right hand side is a martingale, by taking
expectations we get

u(t, x) = E
[
u(T,Xt,x

T )
]
. (9.48)

This formula has a remarkable financial meaning, since it shows the connection
between the notions of risk-neutral price and arbitrage price of a derivative. As
a matter of fact, on one hand (9.48) is the usual risk-neutral pricing formula for
a financial instrument, for example a European option with payoff u(T,Xt,x

T ).
On the other hand, if u represents the value of an investment strategy, the
PDE (9.46) expresses the self-financing condition (cf. Section 7.1) that, put
together with the final replicating condition, determines the arbitrage price of
a European derivative as the solution of the corresponding Cauchy problem.

Note however that the stochastic integral on the right hand side of (9.47) is
in general only a local martingale, as the following remarkable example shows
(cf., for instance, Example 7.19 in [259]).

Example 9.34 Consider the radially symmetric function defined on Rd \{0}

u(x) =

{
log |x| for d = 2,

|x|−d+2 for d ≥ 3,

which is a harmonic function, that is a solution of the Laplace equation

�u(x) =
d∑

i=1

∂xixiu(x) = 0, x ∈ Rd \ {0}.
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The function u is usually called fundamental solution of the Laplace equation
since it plays a role analogous to the Gaussian function for the heat equation.
For a given a d-dimensional Brownian motion W and x0 ∈ Rd \ {0}, we set
B = W +x0 and denote by τ the first time when B hits the origin: it is known
(cf. Corollary 2.26 in [259]) that, for d ≥ 2, we have

P ({ω | Bs = 0 for some s ≤ t}) = 0, t > 0, (9.49)

that is, a Brownian motion in Rd, with d ≥ 2, does not hit almost surely
singletons and therefore τ = ∞ a.s. Consequently the process Xt = u(Bt) is
well defined and Xt = u(Bt∧τ ) a.s. Now we show that X is a local, but not
strict, martingale.

First of all, we consider an increasing sequence (Kn) of compacts whose
union is Rd \ {0} and a sequence of functions un ∈ C∞0 (Rd). We also denote
by τn the exit time of B from Kn. Then by Itô formula and assuming that
un = u on Kn, we have

Xt∧τn = un(Bt∧τn) = un(x0) +
∫ t∧τn

0

∇un(Bs) · dWs.

Since∇un(B) ∈ L2, by the Optional sampling theorem (Xt∧τn) is a martingale
for any n and this proves that X is a local martingale.

Next we show that X is not a strict martingale by proving that its expec-
tation is not constant in time. We only consider the case d ≥ 3: we have

E [Xt] =
∫
Rd

1

|x|d−2 (2πt)
d
2

exp
(
−|x− x0|2

2t

)
dx =

(by the change of variable y = x−x0
2t )

=
1

π
d
2

∫
Rd

e−|y|
2

|2ty + x0|d−2
dy

and therefore, by the dominated convergence theorem, E [Xt] tends to zero as
t→∞. �

The rest of the paragraph is structured as follows: in the first three sections
we study the representation of the solution of the Cauchy-Dirichlet problem on
a bounded domain. Section 9.3.2 is devoted to the proof of some preliminary
estimates, necessary to the study of the Cauchy problem in Section 9.4.4. In
Section 9.4.5 we represent the solution of the obstacle problem in terms of the
solution of an optimal stopping problem.

9.4.1 Exit time from a bounded domain

In this section we study some simple conditions that guarantee that the first
exit time from a bounded domain D

τx = inf{t | Xx
t /∈ D}
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of the solution of the SDE (9.44) is integrable and therefore, in particular,
finite a.s.

Proposition 9.35 If there exists a function f ∈ C2(RN ), non-negative over
D and such that

Atf ≤ −1, in D, t ≥ 0, (9.50)

then E [τx] is finite for every x ∈ D.

Before proving the proposition, we examine a remarkable example. Let us
suppose there exists λ > 0 such that

c11(t, ·) ≥ λ, over D, t ≥ 0. (9.51)

Then there exists f ∈ C2(RN ), non-negative over D, such that (9.50) holds:
indeed it is enough to put

f(x) = α(eβR − eβx1)

where α, β are suitable positive constants and R is large enough to make
the Euclidean ball of radius R, centered in the origin include D. Indeed f is
non-negative over D and we have

Atf(x) = −αeβx1

(
1
2
c11(t, x)β2 + b1(t, x)β

)
≤ −αβe−βR

(
λβ

2
− ‖b‖L∞(D)

)
hence the claim, by choosing α, β large enough.

Condition (9.51) ensures that At is not totally degenerate and is obviously
fulfilled when (cij) is uniformly positive definite.

Proof (of Proposition 9.35). For fixed t, by the Itô formula we have that

f(Xx
t∧τx

) = f(x) +
∫ t∧τx

0

Asf(Xx
s )ds +

∫ t∧τx

0

∇f(Xx
s ) · σ(s,Xx

s )dWs.

Since ∇f and σ(s, ·) are bounded in D when s ≤ t, the stochastic integral has
null expectation and by (9.50) we have

E
[
f(Xx

t∧τx
)
]
≤ f(x)− E [t ∧ τx] ;

hence, since f ≥ 0, we have

E [t ∧ τx] ≤ f(x).

Finally, taking the limit as t→∞, by Beppo Levi’s theorem we get

E [τx] ≤ f(x). �
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Remark 9.36 Similar arguments yield a condition on the first-order (drift)
term: if |b1(t, ·)| ≥ λ in D for t ≥ 0, with λ positive constant, then E [τx] is
finite. Indeed, let us suppose for example that b1(t, x) ≥ λ (the case b1(t, x) ≤
−λ is analogous): then by applying the Itô formula to the function f(x) = x1

we have

(
Xx

t∧τx

)
1

= x1 +
∫ t∧τx

0

b1(s,Xx
s )ds +

d∑
i=1

∫ t∧τx

0

σ1i(s,Xx
s )dW i

s ,

and in mean
E
[(

Xx
t∧τx

)
1

]
≥ x1 + λE [t ∧ τx] ,

hence the claim, taking the limit as t→∞. �

9.4.2 Elliptic-parabolic equations and Dirichlet problem

In this section we assume that the coefficients of the SDE (9.44) are au-
tonomous, i.e. b = b(x) and σ = σ(x). In many cases this assumption is
not restrictive since time-dependent problems can be treated analogously by
including time in the state variables (cf. Example 9.42). In addition to the
assumptions that we stated at the beginning of the paragraph, we suppose
that E [τx] is finite for every x ∈ D and we denote the characteristic operator
of (9.44) by

A :=
1
2

N∑
i,j=1

cij∂xixj +
N∑

j=1

bj∂xj . (9.52)

The following result gives a representation formula (and so, in particular, a
uniqueness result) for the classical solutions of the Dirichlet problem relative
to the elliptic-parabolic operator A:{

Au− au = f, in D,

u|∂D = ϕ,
(9.53)

where f, a, ϕ are given functions.

Theorem 9.37 Let f ∈ L∞(D), ϕ ∈ C(∂D) and a ∈ C(D) such that a ≥ 0.
If u ∈ C2(D)∩C(D̄) is solution to the Dirichlet problem (9.53) then, for fixed
x ∈ D and writing for the sake of simplicity τ = τx, we have

u(x) = E

[
e−
∫ τ
0 a(Xx

t )dtϕ(Xx
τ )−

∫ τ

0

e−
∫ t
0 a(Xx

s )dsf(Xx
t )dt

]
. (9.54)

Proof. For ε > 0 small enough, let Dε be a domain such that

x ∈ Dε, D̄ε ⊆ D, dist (∂Dε, ∂D) ≤ ε.
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We denote the exit time of Xx from Dε by τε and we observe that, since Xx

is continuous,
lim
ε→0

τε = τ.

We put
Zt = e−

∫ t
0 a(Xx

s )ds,

and we notice that, by assumption, Zt ∈ ]0, 1]. Further, if uε ∈ C2
0 (RN ) is such

that uε = u in Dε, by the Itô formula we get

d(Ztuε(Xx
t )) = Zt ((Auε − auε) (Xx

t )dt +∇uε(Xx
t ) · σ(Xx

t )dWt)

hence

Zτεu(Xx
τε

) = u(x) +
∫ τε

0

Ztf(Xx
t )dt +

∫ τε

0

Zt∇u(Xx
t ) · σ(Xx

t )dWt.

Since ∇u and σ are bounded in D, by taking expectations we get

u(x) = E

[
Zτεu(Xx

τε
)−
∫ τε

0

Ztf(Xx
t )dt

]
.

The claim follows by passing to the limit as ε→ 0, by the dominated conver-
gence theorem: indeed, recalling that Zt ∈ ]0, 1], we get∣∣Zτεu(Xx

τε
)
∣∣ ≤ ‖u‖L∞(D),

∣∣∣∣∫ τε

0

Ztf(Xx
t )dt

∣∣∣∣ ≤ τ‖f‖L∞(D),

where, by assumption, τ is integrable. �

By the techniques of Section 9.4.5 it is possible to get a similar result for the
strong solutions of the Dirichlet problem, i.e. for solutions u ∈W 2,p

loc (D)∩C(D̄)
that satisfy the equation Au− au = f almost everywhere.

From the numerical point of view, formula (9.54) is relevant since it allows
the use of Monte Carlo-type methods for approximating the solution of the
Dirichlet problem (9.53).

x

X ( )
x

�1

X ( )
x

�
�

D

Fig. 9.1. Dirichlet problem and paths of the corresponding SDE



304 9 Stochastic differential equations

Remark 9.38 The hypothesis a ≥ 0 is essential: the function

u(x, y) = sin x sin y

is a solution of the problem{
Δu + 2u = 0, in D = ]0, 2π[× ]0, 2π[ ,
u|∂D = 0,

but it does not satisfy (9.54). �

Existence results for problem (9.53) are well known in the uniformly elliptic
case: we mention the following classical theorem (we refer, e.g., to Gilbarg and
Trudinger [157], Theorem 6.13).

Theorem 9.39 Under the following assumptions

i) A is a uniformly elliptic operator, i.e. there exists a constant λ > 0 such
that

N∑
i,j=1

cij(x)ξiξj ≥ λ|ξ|2, x ∈ D, ξ ∈ RN ;

ii) the coefficients are Hölder-continuous functions, cij , bj , a, f ∈ Cα(D). Fur-
ther, the functions cij , bj , f are bounded and a ≥ 0;

iii) for every y ∈ ∂D there exists10 an Euclidean ball B contained in the
complement of D and such that y ∈ B̄;

iv) ϕ ∈ C(∂D);

there exists a classical solution u ∈ C2+α(D) ∩ C(D̄) of problem (9.53).

Let us now consider some remarkable examples.

Example 9.40 (Expectation of an exit time) If the problem{
Au = −1, in D,

u|∂D = 0,

has a solution, then by (9.54) we have that u(x) = E [τx]. �

Example 9.41 (Poisson kernel) If a = f = 0, (9.54) can be rewritten in
terms of a mean value formula. More precisely, we denote the distribution of
the random variable Xx

τx
by μx: then μx is a probability measure on ∂D and

by (9.54) we have

u(x) = E
[
u(Xx

τx
)
]

=
∫

∂D

u(y)μx(dy).

10 This is a regularity condition of the boundary of D, verified if, for example, ∂D
is a C2-manifold.
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X( )�
�

X( )�
�

x

D

Fig. 9.2. Cauchy-Dirichlet problem and paths of the corresponding SDE

The law μx is usually called harmonic measure of A over ∂D. In particular,
let us consider the case of a Brownian motion Xx with initial point x ∈ RN :
then A = 1

2Δ and if D = B(0, R) is the Euclidean ball with radius R, μx has
a density (with respect to the surface measure) whose explicit expression is
known and is given by the so-called Poisson kernel

1
RωN

R− |x|2
|x− y|N ,

where ωN is the measure of the unit sphere in RN . �

Example 9.42 (Heat equation) The process Xt = (Wt,−t), where W is
a real Brownian motion, is solution of the SDE{

dX1
t = dWt,

dX2
t = −dt,

and the corresponding characteristic operator

A =
1
2
∂x1x1 − ∂x2

is the heat operator in R2. Let us consider formula (9.54) in a rectangular
domain

D = ]a1, b1[× ]a2, b2[ .

By examining the explicit expression of the paths of X (see also Figure 9.2),
it is clear that the value u(x̄1, x̄2) of a solution of the heat equation depends
only on the values of u on the portion of the boundary of D contained in
{x2 < x̄2}. In general the value of u in D depends only on the values of u over
the parabolic boundary of D, defined as

∂pD = ∂D \ ( ]a1, b1[×{b2}).
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This fact is consistent with the results on the Cauchy-Dirichlet problem of
Section 6.1. ∂pD is also called regular boundary of D since it is the part of ∂D
where it is allowed to impose the boundary condition of the Dirichlet problem
for the heat equation: indeed, if Au = 0 in D then by (9.54) the values of
u on ]a1, b1[×{b2} are determined by the values of u on ∂pD and cannot be
imposed arbitrarily. �

Example 9.43 (Method of characteristics) If σ = 0, the characteristic
operator is a first-order differential operator

A =
N∑

i=1

bi∂xi .

The corresponding SDE is actually deterministic and becomes

Xx
t = x +

∫ t

0

b(Xx
s )ds,

i.e. X is an integral curve of the vector field b:
d

dt
Xt = b(Xt).

Note that
d

dt
u(Xt) = 〈b(Xt),∇u(Xt)〉 = Au(Xt)

and therefore a solution of Au = 0 is constant along the integral curves of b.
By Theorem 9.37, if the exit time of X from D is finite (cf. Remark 9.36),

we have the representation

u(x) = e−
∫ τx
0 a(Xx

t )dtϕ(Xx
τx

)−
∫ τx

0

e−
∫ t
0 a(Xx

s )dsf(Xx
t )dt, (9.55)

for the solution of the problem{
〈b,∇u〉 − au = f in D,

u|∂D = ϕ.

Formula (9.55) is related to the classical it method of characteristics which
can be used to solve the initial value problem for general first order (only
contain first order partial derivatives) PDEs: for a description of the method
we refer, for instance, to Evans [124], Chapter 3.2.

For example, let us consider b(x, y) = (1,−x) on the (unbounded) domain
D = R × R>0. For a fixed point (x, y) ∈ D, the integral curve of b starting
from (x, y) is given by {

d
dtXt = 1, X0 = x,
d
dtYt = −Xt, Y0 = y,

that is (Xt, Yt) =
(
x + t, y − xt− t2

2

)
. Putting Yt = 0 we find the time t at

which the curve reaches the boundary of D: we have t = −x±
√

x2 + 2y and
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imposing t > 0, we obtain t̄ = −x +
√

x2 + 2y. Thus

(Xt̄, Yt̄) = (
√

x2 + 2y, 0)

is the point at which the integral curve starting from (x, y) reaches the bounda-
ry. Note that (Xt̄, Yt̄) ∈ R>0×{0} for any (x, y) ∈ D and therefore R>0×{0}
is the regular boundary of D for the operator A = ∂x − x∂y. Moreover, by
(9.55), the solution of the problem{

∂xu(x, y)− x∂yu(x, y) = 0, in R× R>0,

u(x, 0) = ϕ(x), x > 0,

is u(x, y) = ϕ(
√

x2 + 2y) at least if ϕ is a sufficiently regular function: note
indeed that, in the case of a first order equation, the solution in (9.55) inherits
the regularity of the boundary datum and there is no smoothing effect due
to the expectation (i.e. convolution with the density) as in the diffusive case
(9.54). �

9.4.3 Evolution equations and Cauchy-Dirichlet problem

In this section we state the parabolic version of Theorem 9.37. Let the assump-
tions we imposed at the beginning of the paragraph hold and let us denote
the characteristic operator of the SDE (9.44) by

Au(t, x) =
1
2

N∑
i,j=1

cij(t, x)∂xixj u(t, x) +
N∑

j=1

bj(t, x)∂xj u(t, x). (9.56)

Further, we consider the cylinder

Q = ]0, T [×D,

whose backward11 parabolic boundary is defined by

∂pQ = ∂Q \ ({0} ×D).

The following theorem gives a representation formula for the classical solutions
of the Cauchy-Dirichlet problem:{

Au− au + ∂tu = f, in Q,

u|∂pQ = ϕ,
(9.57)

where f, a, ϕ are given functions.

11 In this section we consider backward operators such as �+ ∂t.
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Theorem 9.44 Let f ∈ L∞(Q), ϕ ∈ C(∂pQ) and a ∈ C(Q) such that

a0 := inf a

is finite. If u ∈ C2(Q) ∩ C(Q̄) is a solution of the problem (9.57) then, for
any (t, x) ∈ Q, we have

u(t, x) =E
[
e−
∫

τ∧T
t

a(s,Xs)dsϕ(τ ∧ T,Xτ∧T )
]

−E

[∫ τ∧T

t

e−
∫ s

t
a(r,Xr)drf(s,Xs)ds

]
,

where, for the sake of simplicity, we put X = Xt,x and τ = τ(t,x).

Proof. The proof is analogous to that of Theorem 9.37. �

9.4.4 Fundamental solution and transition density

In this section we prove a representation formula for the classical solution of
the Cauchy problem{

Au− au + ∂tu = f, in ST := ]0, T [×RN ,

u(T, ·) = ϕ,
(9.58)

where f, a, ϕ are given functions, (cij) = σσ∗ and

A =
1
2

N∑
i,j=1

cij∂xixj +
N∑

j=1

bj∂xj (9.59)

is the characteristic operator of the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt. (9.60)

We assume that

i) the coefficients b, σ are measurable and have at most linear growth in x;
ii) for every (t, x) ∈ ST , there exists a solution Xt,x of the SDE (9.60) relative

to a d-dimensional Brownian motion W on the space (Ω,F , P, (Ft)).

Theorem 9.45 (Feynman-Kač formula) Let u ∈ C2(ST ) ∩ C(S̄T ) be a
solution of the Cauchy problem (9.58) where a ∈ C(ST ) is such that a0 =
inf a > −∞. Assume that i), ii) and at least one of the following conditions
are in force:

1) there exist two positive constants M,p such that

|u(t, x)|+ |f(t, x)| ≤M(1 + |x|p), (t, x) ∈ ST ;



9.4 Feynman-Kač representation formulas 309

2) the matrix σ is bounded and there exist two positive constants M and α,
with α small enough12, such that

|u(t, x)|+ |f(t, x)| ≤Meα|x|2 , (t, x) ∈ ST .

Then for every (t, x) ∈ ST , we have the representation formula

u(t, x) = E

[
e−
∫ T

t
a(s,Xs)dsϕ(XT )−

∫ T

t

e−
∫ s

t
a(r,Xr)drf(s,Xs)ds

]
,

where, for the sake of simplicity, X = Xt,x.

Proof. If τR denotes the exit time of X from the Euclidean ball with radius
R, by Theorem 9.44 we have

u(t, x) =E
[
e−
∫ T∧τR

t a(s,Xs)dsu(T ∧ τR,XT∧τR)
]

− E

[∫ T∧τR

t

e−
∫ s

t
a(r,Xr)drf(s,Xs)ds

]
.

(9.61)

Since
lim

R→∞
T ∧ τR(ω) = T,

for every ω ∈ Ω, the claim follows by taking the limit in R in (9.61) by the
dominated convergence theorem. Indeed we have pointwise convergence of the
integrands and under condition 1), we have that

e−
∫ T∧τR

t a(s,Xs)ds |u(T ∧ τR,XT∧τR)| ≤Me|a0|T (1 + X̄p
T

)
,∣∣∣∣∣

∫ T∧τR

t

e−
∫ s

t
a(r,Xr)drf(s,Xs)ds

∣∣∣∣∣ ≤ Te|a0|T M
(
1 + X̄p

T

)
,

where
X̄T = sup

0≤t≤T
|Xt|

is integrable by the maximal estimate of Theorem 9.33.
Under condition 2) we can proceed in an analogous way, by using the

integrability estimate (9.40) in Theorem 9.32. �

The Feynman-Kač representation formula allows us to generalize the re-
sults of Paragraph 3.1.1 on the transition density of Brownian motion. More
12 It is sufficient to take

α <
e−2KT

2kNT
,

where |σσ∗| ≤ k and K is the growth constant in (9.39), so that we can apply
Theorem 9.32.
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precisely, if13 the operator A+∂t has a fundamental solution Γ (t, x;T, y) then,
for every ϕ ∈ Cb(RN ), the function

u(t, x) =
∫
RN

ϕ(y)Γ (t, x;T, y)dy

is the classical bounded solution of the Cauchy problem (9.58) with a = f = 0
and so, by the Feynman-Kač formula, we have that

E
[
ϕ(Xt,x

T )
]

=
∫
RN

ϕ(y)Γ (t, x;T, y)dy.

By the arbitrariness of ϕ, this means that, for fixed x ∈ RN and t < T , the
function

y �→ Γ (t, x;T, y)

is the density of the random variable Xt,x
T : we express this fact by saying that

Γ is the transition density of the SDE (9.60). This fundamental result unveils
the deep connection between PDEs and SDEs:

Theorem 9.46 If there exists the fundamental solution of the differential
operator A+ ∂t with A in (9.59), then it is equal to the transition density of
the SDE (9.60).

9.4.5 Obstacle problem and optimal stopping

In this section we prove a representation formula for the strong solution of
the obstacle problem{

max{Au− au + ∂tu, ϕ− u}, in ST := ]0, T [×RN ,

u(T, ·) = ϕ,
(9.62)

where a and ϕ are given functions and, if we put (cij) = σσ∗,

A =
1
2

N∑
i,j=1

cij∂xixj +
N∑

j=1

bj∂xj (9.63)

is the characteristic operator of the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt. (9.64)

We assume that the operator

Lu := Au− au + ∂tu

is uniformly parabolic (Hypothesis 8.1) and has bounded and Hölder conti-
nuous coefficients (Hypothesis 8.3). We sum up here some of the main conse-
quences of those hypotheses:
13 As we have seen in Chapter 8, typical conditions that guarantee the existence of

the fundamental solution are the uniform parabolicity, the boundedness and the
Hölder continuity of the coefficients.
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• by Theorem 8.6, L has a fundamental solution Γ ;
• by Theorem 8.10, the Gaussian estimate

Γ (t, x; s, y) ≤ C Γ0(t, x; s, y), s ∈]t, T [,

holds for every T > t and x, y ∈ RN , where Γ0 is a Gaussian function,
fundamental solution of a suitable parabolic operator with constant coef-
ficients. In particular, as a consequence of Lemma 5.38, we have

Γ (t, x; ·, ·) ∈ Lq̄(]t, T [×RN ), q̄ ∈ [1, 1 + 2/N [ , (9.65)

for every (t, x) ∈ RN+1 and T > t;
• by Theorem 9.27, for every (t, x) ∈ ST , there exists a unique solution

Xt,x of the SDE (9.64), with initial datum Xt = x ∈ RN , relative to a d-
dimensional Brownian motion W on the space (Ω,F , P, (Ft)). By Theorem
9.46, Γ (t, x; ·, ·) is the transition density of Xt,x;

• under Hypothesis 8.19 on the regularity of the function ϕ, Theorem 8.21
guarantees that the obstacle problem (9.62) has a strong solution u ∈
Sp

loc(ST ) ∩ C(ST ) for every p ≥ 1; in particular u ∈ C1+α
P,loc(ST ) for every

α ∈]0, 1[. We recall that the Hölder spaces Cα
P and the Sobolev spaces Sp

were introduced in Definitions 8.2 and 8.15, respectively.

Moreover, the following weak Itô formula can be proved by using the same
arguments as in the proof of Theorem 5.37.

Theorem 9.47 (Itô formula) If f = f(t, x) ∈ Sp([0, T ]×RN ) and (∇f)2 ∈
Lq([0, T ]× RN ) with p, q > 1 + N

2 , then we have

f(t,Xt) = f(0,X0) +
∫ t

0

Lf(s,Xs)ds +
∫ t

0

∇f(s,Xs) · σ(s,Xs)dWs.

The main result of this section is a representation theorem for the obstacle
problem in terms of a solution of the optimal stopping problem for the diffusion
X. Recalling the results in discrete time in Paragraph 2.5, the connection with
the problem of pricing American options is evident: in the continuous time
case, this connection will be made precise in Chapter 11.

Theorem 9.48 (Feynman-Kač formula) Under Hypotheses 8.1 and 8.3,
let u be a strong solution of the obstacle problem (9.62) and let us assume that
there exist two positive constants C and λ, with λ small enough, such that

|u(t, x)| ≤ Ceλ|x|2 , (t, x) ∈ ST . (9.66)

Then, for every (t, x) ∈ ST , we have the representation formula

u(t, x) = sup
τ∈Tt,T

E
[
e−
∫ τ

t
a(s,Xt,x

s )dsϕ(τ,Xt,x
τ )
]
,

where Tt,T denotes the family of stopping times with values in [t, T ].
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Proof. As for the standard Feynman-Kač formula, the proof is based on the
Itô formula: since a strong solution is generally not in C2, then we have to
apply the generalized Itô formula of Theorem 9.47 by means of a localization
argument. For more clarity, we only treat the case a = 0.

We set BR = {x ∈ RN | |x| < R}, R > 0, and for a fixed x ∈ BR we
denote by τR the first exit time of Xt,x from BR. Under our assumptions, it
is well-known that E [τR] is finite.

We show that for any (t, x) ∈ ]0, T [×BR and τ ∈ Tt,T such that τ ≤ τR

a.s., it holds

u(t, x) = E

[
u(τ,Xt,x

τ )−
∫ τ

t

Lu(s,Xt,x
s )ds

]
. (9.67)

Since u ∈ Sp
loc(ST ) for any p ≥ 1 then, for any positive and suitably small

ε, there exists a function uε,R such that uε,R ∈ Sp(RN+1) for any p ≥ 1 and
uε,R = u in ]t, T − ε[×BR.

We next apply Itô formula to uε,R and using the fact that uε,R = u in
]t, T − ε[×BR, we get

u(τ,Xt,x
τ ) = u(t, x) +

∫ τ

t

Lu(s,Xt,x
s )ds +

∫ τ

t

∇u(s,Xt,x
s ) · σ(s,Xt,x

s )dWs,

(9.68)
for any τ ∈ Tt,T such that τ ≤ τR ∧ (T − ε). Since u ∈ C1+α

P,loc then (∇u)σ is a
bounded function on ]t, T − ε[×BR so that

E

[∫ τ

t

∇u(s,Xt,x
s ) · σ(s,Xt,x

s )dWs

]
= 0.

Thus, taking expectations in (9.68), we conclude the proof of formula (9.67),
since ε > 0 is arbitrary.

Next we recall that Lu ≤ 0 a.e.: since the law of Xt,x is absolute continuous
with respect to the Lebesgue measure, we have

E

[∫ τ

t

Lu(s,Xt,x
s )ds

]
≤ 0, τ ∈ Tt,T ,

so that from (9.67) we deduce

u(t, x) ≥ E
[
u(τ ∧ τR,Xt,x

τ∧τR
)
]
, τ ∈ Tt,T . (9.69)

Now we pass to the limit as R→ +∞: it holds

lim
R→+∞

τ ∧ τR = τ

and, by the growth condition (9.66), we have∣∣u(τ ∧ τR,Xt,x
τ∧τR

)
∣∣ ≤ C exp

(
λ sup

t≤s≤T

∣∣Xt,x
s

∣∣2) .
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By the maximal estimates of Theorem 9.32, the random variable on the right
hand side is integrable, thus by the dominated convergence theorem, passing
to the limit in (9.69) as R→ +∞, we infer

u(t, x) ≥ E
[
u(τ,Xt,x

τ )
]
≥ E

[
ϕ(τ,Xt,x

τ )
]
.

This proves that
u(t, x) ≥ sup

τ∈Tt,T

E
[
ϕ(τ,Xt,x

τ )
]
.

We conclude the proof by setting

τ0 = inf{s ∈ [t, T ] | u(s,Xt,x
s ) = ϕ(s,Xt,x

s )}.

Since Lu = 0 a.e. on {u > ϕ}, it holds

E

[∫ τ0∧τR

t

Lu(s,Xt,x
s )ds

]
= 0,

so that by (9.67) we have

u(t, x) = E
[
u(τ0 ∧ τR,Xt,x

τ0∧τR
)
]
.

Using the previous argument to pass to the limit as R → +∞, we finally
deduce

u(t, x) = E
[
u(τ0,X

t,x
τ0

)
]

= E
[
ϕ(τ0,X

t,x
τ0

)
]
. �

From the Feynman-Kač representation it is possible to obtain useful in-
formation about the solution of the obstacle problem under more specific
assumptions. For example, if we suppose that the function ϕ is Lipschitz con-
tinuous in x uniformly in t, i.e. there exists a constant C such that

|ϕ(t, x)− ϕ(t, y)| ≤ C|x− y|, (t, x), (t, y) ∈ ST ,

then we can prove that the spatial gradient ∇u is bounded over ST . More
precisely we have the following:

Proposition 9.49 Under the assumptions of Theorem 9.48, suppose that the
function ϕ and the coefficients of the SDE (9.64) are Lipschitz continuous in x
uniformly with respect to t over ST . Further, let the coefficient a be a constant
or ϕ be bounded. Then the strong solution u of the obstacle problem (9.62)
satisfies

∇u ∈ L∞(ST ).

Proof. Let us first consider the case a is a constant. The claim follows from
the general inequality∣∣∣∣sup

τ
F (τ)− sup

τ
G(τ)

∣∣∣∣ ≤ sup
τ
|F (τ)−G(τ)| ,
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that holds true for every function F,G. By the Feynman-Kač representation
formula we have

|u(t, x)− u(t, y)| ≤ sup
τ∈Tt,T

E
[
e−a(τ−t)

∣∣ϕ(τ,Xt,x
τ )− ϕ(τ,Xt,y

τ )
∣∣] ≤

(by the assumption of Lipschitz continuity, for a suitable positive constant c)

≤ c sup
τ∈Tt,T

E
[∣∣Xt,x

τ −Xt,y
τ

∣∣] ≤
(by the result on the dependence on the initial datum, Theorem 9.16)

≤ c1|x− y|,

where the constant c1 depends only on T and on the Lipschitz constants of ϕ
and of the coefficients.

If ϕ is bounded, the claim follows in an analogous way by using the fact
that the product of two bounded Lipschitz-continuous functions

(t, x) �→ e−
∫ τ

t
a(s,Xt,x

s )dsϕ(τ,Xt,x
τ )

is itself a Lipschitz-continuous function. �

9.5 Linear equations

In this paragraph we study the simplest and most important class of stochastic
equations, namely those whose coefficients are linear functions of the solution,
and we introduce the corresponding class of second-order differential opera-
tors, the Kolmogorov operators. Such operators arise in some classical physical
and financial models, and mostly possess all the good properties of the heat
operator, even though they are not, in general, uniformly parabolic.

Let us consider the following linear SDE in RN

dXt = (B(t)Xt + b(t))dt + σ(t)dWt (9.70)

where b,B and σ are L∞loc-functions with values in the space of (N×1), (N×N)
and (N × d)-dimensional matrices respectively, and W is a d-dimensional
Brownian motion with d ≤ N . Since the standard hypotheses of Definition
9.4 hold, a strong solution of (9.70) exists and is unique. Further, just as in the
case of deterministic linear equations, it is also possible to obtain the explicit
expression for the solution.

Let us denote by Φ = Φ(t) the solution of the ordinary Cauchy problem{
Φ′(t) = B(t)Φ(t),
Φ(t0) = IN ,

where IN is the (N ×N) identity matrix.



9.5 Linear equations 315

Proposition 9.50 The solution of the SDE (9.70) with initial condition
Xx

0 = x is given by

Xx
t = Φ(t)

(
x +

∫ t

0

Φ−1(s)b(s)ds +
∫ t

0

Φ−1(s)σ(s)dWs

)
. (9.71)

Further, Xx
t has multi-normal distribution with mean

E [Xx
t ] = Φ(t)

(
x +

∫ t

0

Φ−1(s)b(s)ds

)
(9.72)

and covariance matrix

cov(Xx
t ) = Φ(t)

(∫ t

0

Φ−1(s)σ(s)
(
Φ−1(s)σ(s)

)∗
ds

)
Φ∗(t). (9.73)

Proof. Hereafter we use the notation

mx(t) = E [Xx
t ] , C(t) = cov(Xx

t ). (9.74)

To prove that Xx in (9.71) is the solution, we merely have to use the Itô
formula: we put

Yt = x +
∫ t

0

Φ−1(s)b(s)ds +
∫ t

0

Φ−1(s)σ(s)dWs

and we have

dXx
t = d(Φ(t)Yt) = Φ′(t)Ytdt + Φ(t)dYt = (B(t)Xx

t + b(t))dt + σ(t)dWt.

Since Xx
t is the sum of integrals of deterministic functions, by Proposition

5.32 we have that Xt has multi-normal distribution with mean and covariance
given by (9.72) and (9.73) respectively. For the sake of clarity, we repeat the
computation of the covariance matrix: we have

cov(Xx
t ) = E

[
(Xt −mx(t)) (Xt −mx(t))∗

]
= Φ(t)E

[∫ t

0

Φ−1(s)σ(s)dWs

(∫ t

0

Φ−1(s)σ(s)dWs

)∗]
Φ∗(t)

and the thesis follows by Itô isometry. �

We explicitly note that, since d ≤ N , in general the matrix C(t) is only
positive semi-definite. The case C(t) > 0 is particularly important: indeed in
this case Xx

t has density y �→ Γ (0, x; t, y), where

Γ (0, x; t, y) =
(2π)−

N
2√

det C(t)
exp
(
−1

2
〈C−1(t)(y −mx(t)), (y −mx(t))〉

)
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for x, y ∈ RN and t > 0. Moreover, by the results in Section 9.4.4, Γ is the
fundamental solution of the differential operator in RN+1 associated to the
linear SDE:

L =
1
2

N∑
i,j=1

cij(t)∂xixj +
N∑

i=1

bi(t)∂xi +
N∑

i=1

Bij(t)xi∂xj + ∂t

=
1
2

N∑
i,j=1

cij(t)∂xixj + 〈b(t) + B(t)x,∇〉+ ∂t

(9.75)

where (cij) = σσ∗ and ∇ = (∂x1 , . . . , ∂xN ).

Remark 9.51 The case constant coefficients, b(t) ≡ b, B(t) ≡ B and σ(t) ≡
σ, is utterly important. First of all, let us recall that in this case we have
Φ(t) = etB where

etB =
∞∑

n=0

(tB)n

n!
. (9.76)

Note that the series in (9.76) is absolutely convergent, since
∞∑

n=0

‖tnBn‖
n!

≤
∞∑

n=0

|t|n
n!
‖B‖n = e|t|‖B‖.

Moreover we have(
etB
)∗

= etB∗ , etBesB = e(t+s)B, t, s ∈ R.

In particular, etB is not degenerate and we have that(
etB
)−1

= e−tB.

Then, by Proposition 9.50, the solution of the linear SDE

dXt = (b + BXt)dt + σdWt (9.77)

with initial datum x, is given by

Xx
t = etB

(
x +

∫ t

0

e−sBbds +
∫ t

0

e−sBσdWs

)
and we have

mx(t) = E [Xx
t ] = etB

(
x +

∫ t

0

e−sBbds

)
= etBx +

∫ t

0

esBbds (9.78)

and

C(t) = cov(Xx
t ) = etB

∫ t

0

e−sBσ
(
e−sBσ

)∗
ds etB∗ =

∫ t

0

(
esBσ

) (
esBσ

)∗
ds.

(9.79)
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In this case we also have that

Xt0,x
t = Xx

t−t0 , t ≥ t0, (9.80)

is the solution of (9.77) with initial condition Xt0,x
t0 = x. �

Example 9.52 If N = d, B = 0 and b, σ are constant with σ non degenerate,
L in (9.75) is the parabolic operator with constant coefficients

L =
1
2

N∑
i,j=1

(σσ∗)ij∂xixj +
N∑

i=1

bi∂xi + ∂t.

Then, since etB is the identity matrix, by (9.78)-(9.79) we have

mx(t) = x + tb, C(t) = tσσ∗,

and by (9.80) the fundamental solution of L is given by (see also Appendix
A.3.2)

Γ (t, x;T, y) =
(2π(T − t))−

N
2

|det σ| exp

(
−
∣∣σ−1(y − x− (T − t)b)

∣∣2
2(T − t)

)
(9.81)

for x, y ∈ RN and t < T . �

Example 9.53 The SDE in R2{
dX1

t = dWt,

dX2
t = X1

t dt,

is the simplified version of the Langevin equation [231] that describes the
motion of a particle in the phase space: X1

t and X2
t represent the velocity and

the position of the particle, respectively. In this case d = 1 < N = 2 and we
have

B =
(

0 0
1 0

)
, σ =

(
1
0

)
.

Since B2 = 0, the matrix B is nilpotent and

etB =
(

1 0
t 1

)
.

Moreover, if we put x = (x1, x2), using notation (9.78)-(9.79) we have

mx(t) = etBx = (x1, x2 + tx1),

and

C(t) =
∫ t

0

esBσσ∗esB∗ds =
∫ t

0

(
1 0
s 1

)(
1 0
0 0

)(
1 s
0 1

)
ds =

(
t t2

2
t2

2
t3

3

)
.
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We note that C(t) is positive definite for every t > 0 and so the associated
differential operator

L =
1
2
∂x1x1 + x1∂x2 + ∂t (9.82)

has the following fundamental solution

Γ (t, x;T, y) =
√

3
π(T − t)2

·

· exp
(
−1

2
〈C−1(T − t)(y − e(T−t)Bx), (y − e(T−t)Bx)〉

)
for x, y ∈ R2 and t < T , where

C−1(t) =
(

4
t − 6

t2

− 6
t2

12
t3

)
.

More explicitly we have

Γ (t, x;T, y) =
√

3
π(T − t)2

·

· exp
(
− (y1 − x1)2

2(T − t)
− 3(2y2 − 2x2 − (T − t)(y1 + x1))2

2(T − t)3

)
.

(9.83)

We emphasize that L in (9.82) it is not a uniformly parabolic operator since
the matrix of the second-order part of L

σσ∗ =
(

1 0
0 0

)
is degenerate. Nevertheless L has a Gaussian fundamental solution as the
heat equation. Kolmogorov [214] was the first to determine the fundamental
solution of L in (9.82): for further details we refer to the introduction in
Hörmander’s paper [170].

From a financial point of view, the operator L arises in the problem of
pricing Asian options with geometric average and Black-Scholes dynamics (cf.
Section 7.6.2). �

9.5.1 Kalman condition

The distribution of Xt, solution of a linear SDE, is multi-normal and in general
it is degenerate. In this section we give some necessary and sufficient conditions
that make the covariance matrix of Xt positive definite so that Xt has a
density.

For the sake of simplicity and clarity of exposition, in the sequel we take
B and σ constant. To avoid trivial situations, we also suppose that the matrix
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σ has maximum rank d: then, after a suitable linear transformation, we can
assume that the columns of σ are the first d elements of the canonical basis,
i.e. σ assumes the block form

σ =
(

Id

0

)
,

where Id is the (d× d) identity matrix. As usual B is a (N ×N)-dimensional
generic matrix. Note that by (9.73) the co-variance matrix of Xt does not
depend on b.

The first result that we present gives a condition in terms of controllability
in the setting of linear-system theory; for further details we refer, for instance,
to Lee and Markus [233] or Zabczyk [341]. We first recall the following clas-
sical:

Definition 9.54 The pair (B, σ) is controllable over [0, T ] if for every x, y ∈
RN there exists a function v ∈ C([0, T ];Rd) such that the problem{

γ′(t) = Bγ(t) + σv(t), t ∈]0, T [,
γ(0) = x, γ(T ) = y,

has a solution. The function v is called a control for (B, σ).

Theorem 9.55 Given T > 0, the matrix

C(T ) =
∫ T

0

(
etBσ

) (
etBσ

)∗
dt (9.84)

is positive definite if and only if the pair (B, σ) is controllable over [0, T ]. In
that case a control is given by

v(t) = G∗(t)M−1(T )(e−TBy − x), t ∈ [0, T ], (9.85)

where

M(T ) =
∫ T

0

G(t)G∗(t)dt. (9.86)

Before proving the theorem, we dwell on some remarks. First of all we intro-
duce the notation

G(t) = e−tBσ

that will be used systematically in what follows. Then, for fixed x ∈ RN , as a
particular case of formula (9.71), we have that

γ(t) = etB

(
x +

∫ t

0

G(s)v(s)ds

)
(9.87)

is the solution of the linear Cauchy problem{
γ′(t) = Bγ(t) + σv(t), t ∈]0, T [,
γ(0) = x.

(9.88)
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If (B, σ) is controllable over [0, T ], then for every y ∈ RN there exists a control
v such that the trajectory γ in (9.87) hits the target y at time T . The existence
of a control is not guaranteed in general since v in (9.88) multiplies the matrix
σ that “reduces” the influence of the control: this is obvious in the case σ = 0.
In general, the differential equation in (9.88) can be rewritten in the following
way:

γ′ = Bγ +
d∑

i=1

viσ
i,

where the vectors σi, i = 1, . . . , d, denote the columns of σ, i.e. the first d
vectors of the canonical basis of RN . The physical interpretation is that the
“speed” γ′ equals Bγ plus a linear combination of the vectors σi, i = 1, . . . , d:
the coefficients of this linear combination are the components of the control v.
Therefore v allows us to control the speed of the trajectory γ in RN only in the
first d directions. Evidently if σ is the identity matrix, then the columns of σ
constitute the canonical basis of RN and (B, σ) is controllable for any matrix
B. Nevertheless there are cases in which the contribution of B is crucial, as
in the following:

Example 9.56 Let B and σ be as in Example 9.53: then v has real values
and problem (9.88) becomes ⎧⎪⎨⎪⎩

γ′1(t) = v(t),
γ′2(t) = γ1(t),
γ(0) = x.

(9.89)

The control v acts directly only on the first component of γ, but influences
also γ2 through the second equation: in this case we can directly verify that
(B, σ) is controllable over [0, T ] for every positive T by using the control in
(9.85) (see Figure 9.3). �

Proof (of Theorem 9.55). We recall that by (9.79) we have

C(T ) = eTBM(T )eTB∗ ,

with M as in (9.86). Since the exponential matrices are non-degenerate, C(T )
is positive definite if and only if M(T ) is as such.

We suppose M(T ) > 0 and prove that (B, σ) is controllable over [0, T ]. For
fixed x ∈ RN , we consider the curve γ in (9.87), solution of problem (9.88):
given y ∈ RN , we have that γ(T ) = y if and only if∫ T

0

G(t)v(t)dt = e−TBy − x =: z, (9.90)

and therefore, using the non-degeneracy assumption on M(T ), a control is
simply given as in (9.85) by

v(t) = G∗(t)M−1(T )z, t ∈ [0, T ].
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Fig. 9.3. Graph of the optimal trajectory γ(t) = (6(t− t2), 3t3−2t3) solution of the
problem (9.89) with γ(0) = x = (0, 0) and such that it satisfies the final condition
γ(1) = y = (0, 1)

Conversely, let (B, σ) be controllable over [0, T ] and, by contradiction, let us
suppose that M(T ) is degenerate. Then there exists w ∈ RN \ {0} such that

0 = 〈M(T )w,w〉 =
∫ T

0

|w∗G(t)|2dt,

and consequently we have

w∗G(t) = 0, t ∈ [0, T ].

By assumption, (B, σ) is controllable over [0, T ] and so for every x, y ∈ RN

there exists a suitable control v such that (9.90) holds. Multiplying by w∗, we
have

w∗z =
∫ T

0

w∗G(s)v(s)ds = 0,

and this leads to a contradiction. �

Remark 9.57 The control v in (9.85) is optimal in the sense that it mini-
mizes the “cost functional”

U(v) := ‖v‖2L2([0,T ]) =
∫ T

0

v(t)∗v(t)dt.

This can be proved by the Lagrange-Ljusternik theorem (cf. for instance [322])
that extends to the functional setting the standard Lagrange multipliers the-
orem. Indeed, in order to minimize U subject to the constraint (9.90), we
consider the Lagrange functional

L(v, λ) = ‖v‖2L2([0,T ]) − λ∗
(∫ T

0

G(t)v(t)dt− z

)
,
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where λ ∈ RN is the Lagrange multiplier. Taking the Fréchet differential of
L, we impose that v is a stationary point of L and we get

∂vL(u) = 2
∫ T

0

v(t)∗u(t)dt− λ∗
∫ T

0

G(t)u(t)dt = 0, u ∈ L2([0, T ]).

Then we find v = 1
2λG∗ where λ is determined by the constraint (9.90),

λ = 2M−1(T )z, according with (9.85). �

The following result gives a practical criterion to check whether the co-
variance matrix is non-degenerate.

Theorem 9.58 (Kalman rank condition) The matrix C(T ) in (9.84) is
positive definite for T > 0 if and only if the pair (B, σ) verifies the Kalman
condition, i.e. the

(
N × (Nd)

)
-dimensional block matrix, defined by(

σ Bσ B2σ · · · BN−1σ
)
, (9.91)

has maximum rank, equal to N .

We point out explicitly that the Kalman condition does not depend on T and
consequently C(T ) is positive definite for some positive T if and only if it is
positive definite for every positive T .

Example 9.59 In Example 9.53, we have

σ =
(

1
0

)
, Bσ =

(
0 0
1 0

)(
1
0

)
=
(

0
1

)
,

therefore (σ Bσ) is the identity matrix and evidently the Kalman condition
is satisfied. �

Proof (of Theorem 9.58). We recall the Cayley-Hamilton theorem: let

p(λ) = det(A− λIN ) = λN + a1λ
N−1 + · · ·+ aN−1λ + aN

be the characteristic polynomial of an (N ×N)-dimensional matrix A. Then
we have p(A) = 0 and so every power Ak with k ≥ N can be expressed as a
linear combination of IN , A, . . . , AN−1.

Now we observe that the matrix (9.91) does not have maximum rank if
and only if there exists w ∈ RN \ {0} such that

w∗σ = w∗Bσ = · · · = w∗BN−1σ = 0. (9.92)

Then, assuming that the matrix (9.91) does not have maximum rank, by (9.92)
and the Cayley-Hamilton theorem, we have

w∗Bkσ = 0, k ∈ N0,
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hence we infer
w∗etBσ = 0, t ≥ 0.

Consequently

〈C(T )w,w〉 =
∫ T

0

∣∣w∗etBσ
∣∣2 dt = 0, (9.93)

and C(T ) is degenerate for every T > 0.
Conversely, if C(T ) is degenerate for some T > 0 then there exists w ∈

RN \ {0} such that (9.93) holds, hence

f(t) := w∗etBσ = 0, t ∈ [0, T ].

Differentiating we get

0 =
dk

dtk
f(t) |t=0= w∗Bkσ, k ∈ N0,

so we infer that the matrix (9.91) does not have maximum rank, by (9.92).�

9.5.2 Kolmogorov equations and Hörmander condition

Let us consider the linear SDE

dXt = (BXt + b)dt + σdWt, (9.94)

with B, b, σ constant, σ given by

σ =
(

Id

0

)
,

and let us assume that the Kalman condition holds true:

rank
(
σ Bσ B2σ · · · BN−1σ

)
= N.

Definition 9.60 We say that the differential operator in RN+1

L =
1
2
�Rd + 〈b + Bx,∇〉+ ∂t, (9.95)

associated to the SDE (9.94), is a Kolmogorov-type operator with constant
coefficients. Here we use the notation

�Rd =
d∑

i=1

∂xixi .
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We recall the definition of C and mx in (9.78)-(9.79). By the Kalman condition
C(t) is positive definite for t > 0, hence it follows that L has a fundamental
solution whose explicit expression is

Γ (t, x;T, y) =
(2π)−

N
2√

det C(T − t)
e−

1
2 〈C

−1(T−t)(y−mx(T−t)),(y−mx(T−t))〉,

for x, y ∈ RN and t < T .
Now we prove that the Kalman condition is equivalent to the Hörman-

der condition which is a non-degeneracy criterion, well known in the theory
of partial differential equations. By convention, we identify every first-order
differential operator Z in RN given by

Zf(x) =
N∑

k=1

αk(x)∂xk
f(x),

with the vector field of its coefficients and so we also write

Z = (α1, . . . , αN ).

The commutator of Z with

U =
N∑

k=1

βk∂xk

is defined by

[Z,U ] = ZU − UZ =
N∑

k=1

(Zβk − Uαk) ∂xk
.

Hörmander’s theorem [170] (see also Stroock [318] for a more recent exposi-
tion) is a very general result that, in the particular case of the Kolmogorov
operator with constant coefficients in (9.95), states that L has a fundamental
solution if and only if, at any point x ∈ RN , the vector space spanned by the
differential operators (vector fields)

∂x1 , . . . , ∂xd
and Y := 〈Bx,∇〉,

and by their commutators of every order, computed at x, coincides with RN .
This is the so-called Hörmander condition.

Example 9.61 �

i) If the operator is parabolic we have d = N therefore the Hörmander
condition is obviously satisfied, without resorting to commutators, since
∂x1 , . . . , ∂xN form the canonical basis of RN .
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ii) In Example 9.53 we simply have Y = x1∂x2 . So

∂x1 ∼ (1, 0) and [∂x1 , Y ] = ∂x2 ∼ (0, 1)

span R2.
iii) Let us consider the differential operator

∂x1x1 + x1∂x2 + x2∂x3 + ∂t.

Here N = 3, d = 1 and Y = x1∂x2 +x2∂x3 : also in this case the Hörmander
condition is verified since

∂x1 , [∂x1 , Y ] = ∂x2 , [[∂x1 , Y ], Y ] = ∂x3 ,

span R3.

�

Proposition 9.62 Kalman and Hörmander conditions are equivalent.

Proof. It is enough to notice that, for i = 1, . . . , d,

[∂xi , Y ] =
N∑

k=1

bki∂xk

is the i-th column of the matrix B. Further, [[∂xi , Y ], Y ] is the i-th column of
the matrix B2 and an analogous representation holds for higher-order com-
mutators.

On the other hand, for k = 1, . . . , N , Bkσ in (9.91) is the (N × d)-
dimensional matrix whose columns are the first d columns of Bk. �

Let us now introduce the definition of Kolmogorov operator with variable
coefficients. We consider the SDE in RN

dXt = (BXt + b(t,Xt))dt + σ(t,Xt)dWt, (9.96)

where as usual W is a d-dimensional Brownian motion and we assume:

i) the matrix σ takes the form

σ =
(

σ0

0

)
,

where σ0 = σ0(t, x) is a d × d-dimensional matrix such that (cij) = σ0σ
∗
0

is uniformly positive definite, i.e. there exists a positive constant Λ such
that

d∑
i,j=1

cij(t, x)ηiηj ≥ Λ2|η|2, η ∈ Rd, (t, x) ∈ RN+1;
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ii) B and
(

Id

0

)
verify the Kalman condition or, in other terms,

1
2
�Rd + 〈Bx,∇〉+ ∂t

is a Kolmogorov operator with constant coefficients;
iii) bd+1, . . . , bN are functions of the variable t only.

The first condition weakens the uniform parabolicity in (8.2). The second as-
sumption is a non-degeneracy condition that makes up for the possible absence
of parabolicity: if the coefficients are constant, this guarantees the existence
of a fundamental solution. The third condition aims at preserving the second
one: if b could be a generic function, then the linear term BXt in the stochastic
equation would be superfluous. In particular the Kalman condition, which is
based upon the particular structure of the matrix B, would be lost.

Definition 9.63 We say that the differential operator in RN+1

L =
1
2

d∑
i,j=1

cij(t, x)∂xi∂xj +
d∑

i=1

bi(t, x)∂xi + 〈Bx,∇〉+ ∂t,

associated to the SDE (9.96), is a Kolmogorov-type operator with variable
coefficients.

A theory, analogous to the classical one for uniformly parabolic operators,
presented in Chapter 8, has been developed by various authors for the gen-
eral class of Kolmogorov operators with variable coefficients: we mention
the results in Lanconelli and Polidoro [230], Polidoro [283], [284], [285], Di
Francesco and Pascucci [94]. Recently in [95] and [276] the obstacle problem
for Kolmogorov operators was studied, and with this the corresponding opti-
mal stopping problem that arises in the pricing problem for American Asian
options.

9.5.3 Examples

We examine a couple of interesting examples of linear SDEs.

Example 9.64 (Brownian bridge) Let b ∈ R. We consider the 1-dimensional
SDE

dB =
b−Bt

1− t
dt + dWt,

whose solution, at least for t < 1, is given by

Bt = B0(1− t) + bt + (1− t)
∫ t

0

dWs

1− s
.

Then we have
E [Bt] = B0(1− t) + bt,
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and, by Itô isometry,

var(Bt) = (1− t)2
∫ t

0

ds

(1− s)2
= t(1− t).

We note that

lim
t→1−

E [Bt] = b, and lim
t→1−

var(Bt) = 0.

As a matter of fact, we can prove that

lim
t→1−

Bt = b, a.s.

since, for t < 1, we have

E
[
(Bt − b)2

]

= (1− t)2

⎛⎜⎜⎝(b−B0)2 − 2(b−B0)E

[∫ t

0

dWs

1− s

]
︸ ︷︷ ︸

=0

+E

[(∫ t

0

dWs

1− s

)2
]⎞⎟⎟⎠ =

= (1− t)2
(

(b−B0)2 +
∫ t

0

ds

(1− s)2

)
=

= (1− t)2
(

(b−B0)2 +
1

1− t
− 1
)
−−−−→
t→1−

0. �

Example 9.65 (Ornstein and Uhlenbeck [328], Langevin [231]) We
consider the following model for the motion of a particle with friction: speed
and position are described by the pair Xt = (Vt, Pt), solution of the linear
SDE {

dVt = −μVtdt + σdWt

dPt = Vtdt,

where W is a real Brownian motion, μ and σ are the positive friction and
diffusion coefficients. Equivalently we have

dXt = BXtdt + σ̄dWt

where

B =
(
−μ 0
1 0

)
, σ̄ =

(
σ
0

)
.

We can easily check that the Kalman condition is verified. Further, it is im-
mediate to prove by induction that, for every n ∈ N, we have that

Bn =
(

(−μ)n 0
(−μ)n−1 0

)
,
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and so

etB = I2 +
N∑

n=1

(tB)n

n!
=

(
e−μt 0

1−e−μt

μ 1

)
.

We know that Xt has normal distribution. To conclude, we compute the ex-
pectation and covariance matrix:

E [Xt] =
(

E [Vt]
E [Pt]

)
= etB

(
V0

P0

)
=
(

V0e
−μt

P0 + V0
μ (1− e−μt)

)
;

further,

C(t) =
(

var(Vt) cov(Vt, Pt)
cov(Vt, Pt) var(Pt)

)
=
∫ t

0

(
esBσ̄σ̄∗

)
esB∗ds

= σ2

∫ t

0

(
e−μs 0

1−e−μs

μ 0

)(
e−μs 1−e−μs

μ

0 1

)
ds

= σ2

∫ t

0

⎛⎝ e−2μs e−μs−e−2μs

μ

e−μs−e−2μs

μ

(
1−e−μs

μ

)2

⎞⎠ ds

= σ2

( 1
2μ

(
1− e−2μt

)
1

2μ2

(
1− 2e−μt + e−2μt

)
1

2μ2

(
1− 2e−μt + e−2μt

)
1

μ3

(
μt + 2e−μt − e−2μt−3

2

) ) . �
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Continuous market models

In this chapter we present the theory of derivative pricing and hedging for
continuous-time diffusion models. As in the discrete-time case, the concept of
martingale measure plays a central role: we prove that any equivalent martin-
gale measure (EMM) is associated to a market price of risk and determines a
risk-neutral price for derivatives, that avoids the introduction of arbitrage op-
portunities. In this setting we generalize the theory in discrete time of Chapter
2 and extend the Markovian formulation of Chapter 7, based upon parabolic
equations.

Our presentation follows essentially the probabilistic approach introduced
in the papers by Harrison and Kreps [163], Harrison and Pliska [164]. In the
first two paragraphs we give the theoretical results on the change of proba-
bility measure and on the representation of Brownian martingales. Then, we
introduce the market models in continuous time and we study the existence of
an EMM and its relation with the absence of arbitrage opportunities. At first
we discuss pricing and hedging of options in a general framework; afterwards
we treat the Markovian case that is based upon the parabolic PDE theory
developed in the previous chapters: this case is particularly significant, since
it allows the use of efficient numerical methods to determine the price and the
hedging strategy of a derivative. We next give a coincise description of the
well-known technique of the change of numeraire: in particular, we examine
some remarkable applications to the fixed-income markets and prove a quite
general pricing formula.

10.1 Change of measure

10.1.1 Exponential martingales

We consider a d-dimensional Brownian motion (Wt)t∈[0,T ] on the space
(Ω,F , P, (Ft)). Let λ ∈ L2

loc be a d-dimensional process: we define the ex-

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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ponential martingale associated to λ (cf. Example 5.12) as

Zλ
t = exp

(
−
∫ t

0

λs · dWs −
1
2

∫ t

0

|λs|2ds

)
, t ∈ [0, T ]. (10.1)

We recall that the symbol “·” denotes the scalar product in Rd. By the Itô
formula we have

dZλ
t = −Zλ

t λt · dWt, (10.2)

so that Zλ is a local martingale. Since Zλ is positive, by Proposition 4.40 it
is also a super-martingale:

E
[
Zλ

t

]
≤ E

[
Zλ

0

]
= 1, t ∈ [0, T ],

and (Zλ
t )t∈[0,T ] is a strict martingale if and only if E

[
Zλ

T

]
= 1.

Lemma 10.1 If there exists a constant C such that∫ T

0

|λt|2dt ≤ C a.s. (10.3)

then Zλ in (10.1) is a martingale such that

E

[
sup

0≤t≤T

(
Zλ

t

)p]
<∞, p ≥ 1. (10.4)

In particular Zλ ∈ Lp(Ω,P ) for every p ≥ 1.

Proof. We put
ẐT = sup

0≤t≤T
Zλ

t .

For every ζ > 0, we have

P
(
ẐT ≥ ζ

)
≤ P

(
sup

0≤t≤T
exp
(
−
∫ t

0

λs · dWs

)
≥ ζ

)
= P

(
sup

0≤t≤T

(
−
∫ t

0

λs · dWs

)
≥ log ζ

)
≤

(by Corollary 9.31, using condition (10.3) with c1, c2 positive constants)

≤ c1e
−c2(log ζ)2 .

Then, by Proposition A.56 we have

E
[
Ẑp

T

]
= p

∫ ∞

0

ζp−1P
(
ẐT ≥ ζ

)
dζ <∞.

In particular for p = 2 we have that λZλ ∈ L2 and so, by (10.2), that Zλ is a
martingale. �
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Remark 10.2 Given z = (z1, . . . , zd) ∈ Cd, we set

z2 =
d∑

k=1

z2
k and |z|2 =

d∑
k=1

|zk|2.

If λ = (λ1, . . . , λd) takes complex values, λk
t ∈ C, k = 1, . . . , d, then by

proceeding as in the proof of Lemma 10.1, we can prove that, if∫ T

0

|λt|2 dt ≤ C P -a.s.,

then

Zλ
t := exp

(
−
∫ t

0

λs · dWs −
1
2

∫ t

0

λ2
sds

)
, t ∈ [0, T ],

is a (complex) martingale in Lp(Ω,P ) for every p ≥ 1. �

We now suppose that Zλ in (10.1) is a martingale and define the measure
Q on (Ω,F) by

dQ

dP
= Zλ

T , (10.5)

i.e.
Q(F ) =

∫
F

Zλ
T dP, F ∈ F .

We recall Bayes’ formula, Theorem A.113: for every X ∈ L1(Ω,Q) we have

EQ [X | Ft] =
EP
[
XZλ

T | Ft

]
EP
[
Zλ

T | Ft

] t ∈ [0, T ]. (10.6)

Consequently we get the following:

Lemma 10.3 Assume that Zλ in (10.1) is a P -martingale and Q is the
probability measure defined in (10.5). Then a process (Mt)t∈[0,T ] is a Q-
martingale if and only if (MtZ

λ
t )t∈[0,T ] is a P -martingale.

Proof. Since Zλ is strictly positive and adapted, it is clear that M is adapted
if and only if MZλ is adapted. Moreover, since Zλ is a P -martingale, M is
Q-integrable if and only if MZλ is P -integrable: indeed

EQ [|Mt|] = EP
[
|Mt|Zλ

T

]
= EP

[
EP
[
|Mt|Zλ

T | Ft

]]
=

(since M is adapted)

= EP
[
|Mt|EP

[
Zλ

T | Ft

]]
= EP

[
|Mt|Zλ

t

]
.

Analogously, for s ≤ t we have

EP
[
MtZ

λ
T | Fs

]
= EP

[
EP
[
MtZ

λ
T | Ft

]
| Fs

]
= EP

[
MtZ

λ
t | Fs

]
.
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Then by (10.6) with X = Mt we have

EQ [Mt | Fs] =
EP
[
MtZ

λ
T | Fs

]
EP
[
Zλ

T | Fs

] =
EP
[
MtZ

λ
t | Fs

]
Zλ

s

,

hence the claim. �

Remark 10.4 Under the assumptions of Lemma 10.3, the process

(
Zλ

t

)−1
= exp

(∫ t

0

λs · dWs +
1
2

∫ t

0

|λs|2ds

)
is a Q-martingale since Zλ

(
Zλ
)−1 is clearly a P -martingale. Further, for every

integrable random variable X, we have

EP [X] = EP
[
X
(
Zλ

T

)−1
Zλ

T

]
= EQ

[
X
(
Zλ

T

)−1
]

and so
dP

dQ
=
(
Zλ

T

)−1
.

In particular P,Q are equivalent measures since they reciprocally have strictly
positive densities.

Finally, by proceeding as in Lemma 10.1, we can prove that, if condition
(10.3) holds, then

(
Zλ
)−1 ∈ Lp(Ω,P ) for every p ≥ 1. �

10.1.2 Girsanov’s theorem

Girsanov’s theorem shows that it is possible to substitute “arbitrarily” the
drift of an Itô process by modifying appropriately the considered probability
measure and Brownian motion, while keeping unchanged the diffusion coeffi-
cient. In this section (Wt)t∈[0,T ] denotes a d-dimensional Brownian motion on
the space (Ω,F , P, (Ft)). The main result is the following:

Theorem 10.5 (Girsanov’s theorem) Let Zλ in (10.1) be the exponential
martingale associated to the process λ ∈ L2

loc. We assume that Zλ is a P -
martingale and we consider the measure Q defined by

dQ

dP
= Zλ

T . (10.7)

Then the process

Wλ
t = Wt +

∫ t

0

λsds, t ∈ [0, T ], (10.8)

is a Brownian motion on (Ω,F , Q, (Ft)).
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Proof. We use the Brownian motion characterization Theorem 5.33. We have
to prove that, for every ξ ∈ Rd, the process

Y ξ
t = eiξ·W λ

t + |ξ|
2

2 t, t ∈ [0, T ],

is a Q-martingale or, equivalently, by Lemma 10.3, that the process

Y ξ
t Zt = exp

(
iξ ·Wt + i

∫ t

0

ξ · λsds +
|ξ|2t

2
−
∫ t

0

λs · dWs −
1
2

∫ t

0

|λs|2ds

)
= exp

(
−
∫ t

0

(λs − iξ) · dWs −
1
2

d∑
k=1

∫ t

0

(
λk

s − iξk
)2

ds

)

is a P -martingale. If ∫ T

0

|λt|2dt ≤ C P -a.s.,

then the claim follows from Lemma 10.1 that holds true also for complex-
valued processes and in particular for λ− iξ (cf. Remark 10.2).

In general we have to use a localization argument: we consider the sequence
of stopping times

τn = T ∧ inf
{

t |
∫ t

0

|λs|2ds ≥ n

}
, n ∈ N.

By Lemma 10.1, the process (Y ξ
t∧τn

Zt∧τn) is a P -martingale and we have

EP
[
Y ξ

t∧τn
Zt∧τn | Fs

]
= Y ξ

s∧τn
Zs∧τn , s ≤ t, n ∈ N.

Therefore, in order to prove that Y ξZ is a martingale, it is enough to show
that (Y ξ

t∧τn
Zt∧τn) converges to (Y ξ

t Zt) in L1-norm as n tends to infinity. Since

lim
n→∞

Y ξ
t∧τn

= Y ξ
t a.s.

and 0 ≤ Y ξ
t∧τn

≤ e
|ξ|2T

2 , it is enough to prove that

lim
n→∞

Zt∧τn = Zt in L1(Ω,P ).

Putting
Mn = min{Zt∧τn , Zt},

we have 0 ≤Mn ≤ Zt and, by the dominated convergence theorem

lim
n→∞

E [Mn] = E [Zt] .

On the other hand,

E [|Zt − Zt∧τn |] = E [Zt −Mn] + E [Zt∧τn −Mn] =
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(since E [Zt] = E [Zt∧τn ] = 1)

= 2E [Zt −Mn]

hence the claim. �

The main assumption of the Girsanov’s theorem is the martingale property
of the process Zλ. In financial applications we frequently assume that λ is a
bounded process: in that case the martingale property of Zλ follows from
Lemma 10.1. Nevertheless in general the fact that λ is bounded may not be
verified directly, so the following Novikov condition [266] can be very useful:
we merely state it here.

Theorem 10.6 (Novikov condition) If λ ∈ L2
loc is such that

E

[
exp

(
1
2

∫ T

0

|λs|2ds

)]
<∞

then the exponential martingale Zλ in (10.1) is a strict martingale.

10.1.3 Representation of Brownian martingales

Let (Wt)t∈[0,T ] be a d-dimensional Brownian motion on the space (Ω,F , P )
endowed with the Brownian filtration FW = (FW

t )t∈[0,T ]. We know (cf. The-
orem 5.20) that, for every d-dimensional process u ∈ L2(FW ) and M0 ∈ R,
the real-valued integral process

Mt = M0 +
∫ t

0

us · dWs, t ∈ [0, T ], (10.9)

is a FW -martingale. In this paragraph we prove that, conversely, every real
FW -martingale can be represented in the form (10.9).

Theorem 10.7 For every real random variable X ∈ L2(Ω,FW
T ) there exists

a unique1 u ∈ L2(FW ) such that

X = E [X] +
∫ T

0

ut · dWt. (10.10)

For the sake of simplicity, we consider only the 1-dimensional case d = 1 even
though the arguments that follow can be adapted to the general case. The
proof of Theorem 10.7 is based upon the following preliminary results.

Lemma 10.8 The collection of random variables of the form

ϕ(Wt1 , . . . ,Wtn)

with ϕ ∈ C∞0 (Rn), tk ∈ [0, T ] for k = 1, . . . , n and n ∈ N, is dense in
L2(Ω,FW

T ).
1 In the sense of the (m⊗ P )-equivalence, cf. Definition 3.28.
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Proof. We consider a countable dense subset {tn}n∈N of [0, T ] and we define
the discrete filtration

Fn := σ(Wt1 , . . . ,Wtn), n ∈ N;

we observe that FW
T = σ(Fn, n ∈ N). Given X ∈ L2(Ω,FW

T ), we consider the
discrete martingale defined by

Xn = E [X | Fn] , n ∈ N.

By Corollary A.134 we have

lim
n→∞

Xn = X, in L2;

further, by Corollary A.10, for every n ∈ N there exists a measurable function
ϕ(n) such that

Xn = ϕ(n)(Wt1 , . . . ,Wtn).

By density, ϕ(n) can be approximated in L2(Rn) by a sequence (ϕ(n)
k )k∈N in

C∞0 (Rn): it follows that

lim
k→∞

ϕ
(n)
k (Wt1 , . . . ,Wtn) = Xn, in L2(Ω,P ),

and this concludes the proof. �

Lemma 10.9 The space of the linear combinations of random variables of
the form

Zλ = exp

(
−
∫ T

0

λ(t) · dWt −
1
2

∫ T

0

|λ(t)|2dt

)
,

where λ is a function in L∞([0, T ];Rd), is dense in L2(Ω,FW
T , P ).

Proof. We prove the claim by verifying that, if

〈X,Zλ〉L2(Ω) =
∫

Ω

XZλdP = 0, (10.11)

for every λ ∈ L∞([0, T ]), then X = 0 a.s. As before, we consider only the case
d = 1.

By choosing a suitable piecewise constant function λ, from (10.11) we infer

F (ξ) :=
∫

Ω

eξ1Wt1+···+ξnWtn XdP = 0, (10.12)

for every ξ ∈ Rn, t1, . . . , tn ∈ [0, T ] and n ∈ N. Now we consider the extension
of F on Cn:

F (z) =
∫

Ω

ez1Wt1+···+znWtn XdP, z ∈ Cn,
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and we observe that, by the analytic continuation principle and (10.12), F ≡ 0.
Then, on the grounds of the inverse Fourier transform Theorem A.65, for every
ϕ ∈ C∞0 (Rn) we have∫

Ω

ϕ(Wt1 , . . . ,Wtn)XdP =
∫

Ω

(
1

(2π)n

∫
Rn

eξ1Wt1+···+ξnWtn ϕ̂(−ξ)dξ

)
XdP

=
1

(2π)n

∫
Rn

ϕ̂(−ξ)
∫

Ω

eξ1Wt1+···+ξnWtn XdPdξ = 0,

and, by Lemma 10.8, this proves the claim. �

Proof (of Theorem 10.7). Concerning the uniqueness, if u, v ∈ L2 satisfy
(10.10), then ∫ T

0

(ut − vt) · dWt = 0

and therefore, by Corollary 4.13, u and v are (m⊗ P )-equivalent.
Concerning the existence, first of all we consider the case in which X is of

the form

X = Zλ
T = exp

(
−
∫ T

0

λ(t) · dWt −
1
2

∫ T

0

|λ(t)|2dt

)
(10.13)

with λ ∈ L∞([0, T ]) deterministic function. By the Itô formula we have

dZλ
t = −Zλ

t λ(t) · dWt

hence

X = 1−
∫ T

0

Zλ
t λ(t) · dWt.

Further, by Lemma 10.1, since λ is a bounded function we have λZλ ∈ L2;
this proves (10.10) for X in (10.13).

Now, by Lemma 10.9 every X ∈ L2(Ω,FW
T , P ) can be approximated in

L2 by a sequence (Xn) of linear combinations of random variables of the type
(10.13): therefore we have the representation

Xn = E [Xn] +
∫ T

0

un
t · dWt (10.14)

with un ∈ L2. By Itô isometry we have

E
[
(Xn −Xm)2

]
= (E [Xn −Xm])2 + E

[∫ T

0

|un
t − um

t |2 dt

]
,

hence (un) is a Cauchy sequence in L2(FW ) and therefore it is convergent.
Taking the limit in (10.14) as n→∞ we have the claim. �
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Remark 10.10 By using Malliavin calculus, in Section 16.2.1 we obtain the
expression of the process u in (10.10) in terms of conditional expectation of
the stochastic derivative of X. �

Theorem 10.11 Let (Mt)t∈[0,T ] be a FW -martingale such that

MT ∈ L2(Ω,FW
T ).

Then there exists a unique (up to (m ⊗ P )-equivalence) process u ∈ L2(FW )
such that

Mt = M0 +
∫ t

0

us · dWs a.s. (10.15)

for any t ∈ [0, T ]. In particular, every square integrable FW -martingale admits
a continuous modification.

Proof. Since MT ∈ L2(Ω,FW
T ), by Theorem 10.7 there exists u ∈ L2(FW )

such that

MT = M0 +
∫ T

0

us · dWs.

For a fixed t ≤ T , taking the conditional expectation, we have

Mt = E
[
MT | FW

t

]
= M0 +

∫ t

0

us · dWs, t ∈ [0, T ].

�

Theorem 10.12 Let (Mt)t∈[0,T ] be a FW -local martingale. Then there exists
a unique (up to (m⊗ P )-equivalence) process u ∈ L2

loc(FW ) such that

Mt = M0 +
∫ t

0

us · dWs, t ∈ [0, T ]. (10.16)

Proof. Uniqueness follows from Proposition 5.3, that is from the uniqueness
of the representation of an Itô process. Regarding the existence, we assume at
first that M is continuous: by Remark 4.38, there exists a localizing sequence
(τn) such that (Mτn) is a sequence of continuous and bounded martingales.
Then, by Theorem 10.11, there exists a sequence (un) in L2(FW ) such that

Mτn
t = Mt∧τn = M0 +

∫ t

0

un
s · dWs, t ∈ [0, T ]. (10.17)

Now
Mτn

t = M
τn+1
t on {t ≤ τn},

and so, by the uniqueness result of the Theorem 10.11 and by using an argu-
ment analogous to that in Paragraph 4.4, the definition

ut1{t≤τn} = un
t , t ∈ [0, T ]

is well-posed; furthermore u ∈ L2
loc and by (10.17) we get (10.16).
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Now we prove that every local martingale M admits a continuous modifi-
cation. Initially we consider the case of a martingale M : since MT ∈ L1(Ω,P )
and L2(Ω,P ) is dense in L1(Ω,P ), there exists a sequence (Xn) of FW

T -
measurable and square-integrable random variables such that

‖Xn −MT ‖L1 ≤
1
2n

, n ∈ N.

By Theorem 10.11 the sequence of martingales

Mn
t := E

[
Xn | FW

t

]
, t ∈ [0, T ],

admits a continuous modification. By the maximal inequality (cf. Theorem
9.28), applied to the super-martingale − |Mt −Mn

t | , we have

P

(
sup

t∈[0,T ]

|Mt −Mn
t | ≥

1
k

)
≤ kE [|MT −Xn|] ≤

k

2n
,

and so by the Borel-Cantelli lemma2 we infer that (Mn) converges uniformly
a.s. to M which therefore is continuous a.s.

Finally, if M is a local martingale, we consider a localizing sequence (τn):
as we have just seen, Mτn admits a continuous modification, hence

M = Mτn on {t ≤ τn},

is continuous and, since n ∈ N is arbitrary, we have proved the claim. �

We conclude the paragraph by proving that the representation result for
Brownian martingales holds true also after a Girsanov type change of measure.

Theorem 10.13 Under the assumptions of Girsanov’s Theorem 10.5, if M
is a local martingale in (Ω,F , Q, (FW

t )), then there exists a unique (up to
(m⊗ P )-equivalence) u ∈ L2

loc(FW ) such that

Mt = M0 +
∫ t

0

us · dWλ
s , t ∈ [0, T ],

where Wλ is the Q-Brownian motion defined in (10.8).

2 Given a sequence (An) of events and putting

A =
⋂
n≥1

⋃
k≥n

Ak,

if ∑
n≥1

P (An) < ∞,

then P (A) = 0.
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Proof. As usual we can always use the localization argument as in the proof
of Theorem 10.12, so it is enough to consider the case M is a martingale. We
note that, since M is a Q-martingale with respect to FW which is the natural
filtration for W and not for Wλ, we cannot apply Theorem 10.12 directly.

By Lemma 10.3, the process Y := MZ, where Z = Zλ is the exponential
martingale defining Q, is a P -martingale and so

Yt = M0 +
∫ t

0

vs · dWs, t ∈ [0, T ],

where v ∈ L2
loc. We observe that3

dZ−1
t = d exp

(∫ t

0

λs · dWs +
1
2

∫ t

0

|λs|2 ds

)
= Z−1

t

(
λt · dWt + |λt|2 dt

)
= Z−1

t λt · dWλ
t , (10.18)

and so by the Itô formula we have

dMt = d
(
YtZ

−1
t

)
= YtdZ

−1
t + Z−1

t dYt + d〈Y,Z−1〉t
= Z−1

t

(
Ytλt · dWλ

t + vt · dWt + vt · λtdt
)

= Z−1
t (Ytλt + vt) · dWλ

t .

Therefore we have proved the claim with

u = Z−1 (Y λ + v) . �

10.1.4 Change of drift

Let W be a d-dimensional standard Brownian motion on a probability space
(Ω,F , P ) endowed with the Brownian filtration

(
FW

t

)
. We combine the results

of the previous sections and examine how a change of measure from P to an
equivalent measure Q, modifies the coefficients of an Itô process.

Theorem 10.14 (Change of drift) Let Q be a probability measure equi-
valent to P . The Radon-Nikodym derivative of Q with respect to P is an
exponential martingale

dQ

dP
|FW

t
= Zλ

t , dZλ
t = −Zλ

t λt · dWt,

with λ ∈ L2
loc and the process Wλ, defined by

dWt = dWλ
t − λtdt, (10.19)

is a Brownian motion on (Ω,F , Q, (FW
t )).

3 Note the analogy between formulas (10.18) and (10.2).
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Proof. We denote by Z the density process of Q with respect to P (cf. Exam-
ple 3.34):

Zt = EP

[
dQ

dP
| FW

t

]
=

dQ

dP
|FW

t
, t ∈ [0, T ].

Since Q ∼ P , the process Z is a positive P -martingale. Then, by the mar-
tingale representation Theorem 10.12, there exists a unique d-dimensional
process u ∈ L2

loc(FW ) such that

dZt = ut · dWt,

or equivalently
dZt = −Ztλt · dWt,

where λ is the process defined by

λt = − ut

Zt
, t ∈ [0, T ]. (10.20)

Note that λ belongs to L2
loc because u ∈ L2

loc and Z is positive and continuous.
Hence Z is the exponential martingale associated to λ. Moreover, since by
construction Z is a strict martingale, by Girsanov’s theorem we infer that
Wλ in (10.19) is a Brownian motion on (Ω,F , Q, (FW

t )). �

Remark 10.15 Let X be an N -dimensional Itô process of the form

dXt = btdt + σtdWt.

Under the assumptions of Theorem 10.14, the Q-dynamics of X is given by

dXt = (bt − σtλt) dt + σtdWλ
t . (10.21)

We emphasize the fundamental feature of the changes of measure: a change
of measure only affects the drift coefficient of the process X; the diffusion
coefficient (or volatility) does not vary. �

10.2 Arbitrage theory

In this paragraph we study the problem of pricing European derivatives in a
continuous-time market model. First of all, we fix the assumptions that are
going to hold in the rest of the chapter: we consider a market with N risky
assets and d sources of risk that are represented by a d-dimensional correlated
Brownian motion W =

(
W 1, . . . ,W d

)
on the probability space (Ω,F , P ),

endowed with the Brownian filtration (FW
t ). For simplicity, we only consider

the case of constant correlation matrix even if all the following results can be
extended to the more general case of stochastic correlation (see Remark 10.23
below). Thus, we assume that

Wt = AW̄t (10.22)
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where W̄ is a standard d-dimensional Brownian motion and A =
(
Aij
)
i,j=1,...,d

is a non-singular d×d constant matrix. We denote by � = AA∗ the correlation
matrix and, for any i = 1, . . . , d, we assume that

�ii
t =

d∑
j=1

(
Aij

t

)2

= 1, t ∈ [0, T ] a.s.

Then, by Corollary 5.35,

W i
t =

d∑
j=1

Aij
t W̄ j

t , i = 1, . . . , d,

is a standard 1-dimensional Brownian motion and the covariance processes
are given by

d〈W i,W j〉t = �ijdt, i, j = 1, . . . , d.

Example 10.16 In the case d = 2, we typically assume

A =
(

1 0
�̄
√

1− �̄2

)
where �̄ ∈] − 1, 1[. Then Wt = AW̄t is a correlated Brownian motion with
non-singular correlation matrix

� =
(

1 �̄
�̄ 1

)
.

In general, for d ≥ 3, A can be obtained from � by the Cholesky decomposition
algorithm (see, for example, [263]). �

We assume that the number N of risky assets is less or equal to the number
d of risk factors, that is

N ≤ d.

We give grounds for this last choice in Example 10.36 and the argument pre-
ceding it. Intuitively the idea is that, if N > d then we have two possibilities:
the market admits arbitrage opportunities or some assets are “redundant”,
i.e. they can be replicated by using only d “primitive” assets among the N
traded assets.

We denote by S =
(
S1, . . . , SN

)
the price process where Si

t is the price at
time t ∈ [0, T ] of the i-th risky asset. We suppose that

Si
t = eXi

t

where Xi is an Itô process of the form

dXi
t = bi

tdt + σi
tdW i

t , i = 1, . . . , N, (10.23)

with b ∈ L1
loc and σi is a positive process in L2

loc.
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Remark 10.17 By assumption, the processes b and σ are progressively
measurable with respect to the Brownian filtration FW : in particular, the
dynamics of the N assets depends on the d-dimensional Brownian motion W
and, apart from trivial cases, the filtration FS of the assets coincides with
FW . �

Equation (10.23) can be rewritten in compact form as

dXt = btdt + σtdWt

where b = (b1, . . . , bN ) and σ is the (N × d)-matrix valued process

σt =

⎛⎜⎜⎜⎜⎜⎝
σ1

t 0 · · · 0 0 0 · · · 0
0 σ2

t · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · σN−1

t 0 0 · · · 0
0 0 · · · 0 σN

t 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ . (10.24)

By the Itô formula we have

dSi
t = μi

tS
i
tdt + σi

tS
i
tdW i

t , i = 1, . . . , N, (10.25)

where μi = bi + (σi)2

2 , or equivalently

Si
t = Si

0 exp

(∫ t

0

σi
sdW i

s +
∫ t

0

(
μi

s −
(
σi

s

)2
2

)
ds

)
. (10.26)

Concerning the locally non-risky asset B, we suppose it satisfies the equa-
tion

dBt = rtBtdt, B0 = 1,

with r ∈ L1
loc, that is we have

Bt = e
∫ t
0 rsds, t ∈ [0, T ]. (10.27)

We remark that, although B represents the “non-risky” asset, it is a stochastic
process because r is FW -progressively measurable: however B has bounded
variation (cf. Example 3.60-iii)) and null quadratic variation so, intuitively,
it possesses a smaller degree of randomness with respect to the other risky
assets.

To simplify the exposition, we also assume some further integrability con-
dition on the coefficients: we assume that r and σi, i = 1, . . . , N , verify the
estimate (10.3); more explicitly, we suppose that∫ T

0

r2
t dt +

N∑
i=1

∫ T

0

(
σi

t

)2
dt ≤ C a.s. (10.28)

for some positive constant C.



10.2 Arbitrage theory 343

Remark 10.18 Under condition (10.28), the process B is bounded and
strictly positive since, by Hölder’s inequality, we have∣∣∣∣∫ t

0

rsds

∣∣∣∣ ≤ √t

(∫ t

0

r2
sds

) 1
2

≤
√

CT, t ∈ [0, T ], a.s. �

Summing up, we consider a market model where:

Hypothesis 10.19

• There are N risky assets S1, . . . , SN and one no-risky asset B whose dy-
namics is given by (10.25) and (10.27) respectively;

• W is a d-dimensional Brownian motion with constant correlation matrix
� and d ≥ N ;

• the processes σ, r satisfy the integrability condition (10.28) and the pro-
cesses σi are positive.

10.2.1 Change of drift with correlation

We provide some results on the change of measure that are preliminary to the
discussion of the concept of equivalent martingale measure. Specifically, we
extend the results of Section 10.1.4 on the change of drift, to the case of the
correlated Brownian motion in (10.22).

Theorem 10.20 (Change of drift with correlation) For any probability
measure Q equivalent to P there exists a process λ ∈ L2

loc such that

dQ

dP
|FW

t
= Zt and dZt = −Ztλt · dWt.

Moreover the process Wλ defined by

dWt = dWλ
t − �λtdt (10.29)

is a Brownian motion on (Ω,F , Q, (FW
t )) with correlation matrix �.

Proof. By the martingale representation Theorem 10.12 for the standard
Brownian motion W̄ , there exists a d-dimensional process λ̄ ∈ L2

loc(FW ) such
that dQ

dP |FW
t

= Zt and

dZt = −Ztλ̄t · dW̄t = −Ztλ̄t ·
(
A−1dWt

)
= −Ztλt · dWt,

where4 λt =
(
A−1

)∗
λ̄t. We remark that, by the Itô formula we have

Zt = exp
(
−
∫ t

0

λs · dWs −
1
2

∫ t

0

〈�λs, λs〉ds

)
. (10.30)

4 Note that
〈λ̄t, A

−1dWt〉 = 〈(A−1)∗ λ̄t, dWt〉.
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By Girsanov’s theorem, the process W̄ λ̄ defined by

dW̄ λ̄
t = dW̄t + λ̄tdt, t ∈ [0, T ],

is a standard Q-Brownian motion: since λ̄ = A∗λ, multiplying by A in the
previous equation we infer that

dW λ
t := AdW̄ λ̄

t = dWt + �λtdt

is a correlated Q-Brownian motion with correlation matrix �. �

Remark 10.21 Under the assumptions of Theorem 10.20, let X be an N -
dimensional Itô process of the form

dXt = btdt + σtdWt. (10.31)

Then the Q-dynamics of X is given by

dXt = (bt − σt�λt) dt + σtdWλ
t . (10.32)

�

Remark 10.22 It is sometimes useful to rephrase Theorem 10.20 as follows:
if Q is a probability measure equivalent to P then there exists a process λ ∈ L2

loc

such that

dQ

dP
|FW

t
= Zt and dZt = −Zt

(
�−1λt

)
· dWt.

Moreover the process Wλ defined by

dWt = dWλ
t − λtdt (10.33)

is a Brownian motion on (Ω,F , Q, (FW
t )) with correlation matrix �. �

Remark 10.23 It is possible to extend the previous results to the case of a
stochastic correlation matrix: specifically, if we assume that � has bounded
variation, that is

d�t = θtdt (10.34)

with θ ∈ L1
loc, then we have the following formula for the change of drift

dWt = dWλ
t −

(
�tλt + θt

∫ t

0

λsds

)
dt (10.35)

that generalizes formula (10.29). In particular, for the Itô process X in (10.31),
we have

dXt =
(

bt − σt

(
�tλt + θt

∫ t

0

λsds

))
dt + σtdWλ

t . �
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10.2.2 Martingale measures and market prices of risk

The concept of EMM plays a central role in the theory of financial derivatives.
As already seen in the discrete case, it gives a characterization of arbitrage-
free markets and allows us to introduce the risk-neutral or arbitrage price of
replicable derivatives (see Section 10.2.5).

Definition 10.24 An equivalent martingale measure Q with numeraire B is
a probability measure on (Ω,F) such that

i) Q is equivalent to P ;
ii) the process of discounted prices

S̃t = e−
∫ t
0 rsdsSt, t ∈ [0, T ],

is a strict5 Q-martingale. In particular, the risk-neutral pricing formula

St = EQ
[
e−
∫

T
t

rsdsST | FW
t

]
, t ∈ [0, T ], (10.36)

holds.

Now we consider an EMM Q and we use Theorem 10.20, in the form of
Remark 10.22, to find the Q-dynamics of the price process: we recall that
there exists a process λ =

(
λ1, . . . , λd

)
∈ L2

loc such that

dQ

dP
|FW

t
= Zt (10.37)

where Z solves
dZt = −Zt

(
�−1λt

)
· dWt, Z0 = 1. (10.38)

Moreover the process Wλ =
(
Wλ,1, . . . ,Wλ,d

)
defined by

dWt = dWλ
t − λtdt (10.39)

is a Q-Brownian motion with correlation matrix �. Therefore, for i = 1, . . . , N
we have

dS̃i
t =
(
μi

t − rt

)
S̃i

tdt + σi
tS̃

i
tdW i

t

=
(
μi

t − rt

)
S̃i

tdt + σi
tS̃

i
t

(
dWλ,i

t − λi
tdt
)

=
(
μi

t − rt − σi
tλ

i
t

)
S̃i

tdt + σi
tS̃

i
tdWλ,i

t . (10.40)

5 We assume that S̃ is a strict, not simply a local, Q-martingale. This subtle dis-
tinction is necessary because pathologies may arise when the discounted prices
process is a local martingale: we refer to Sin [312] where interesting examples are
analyzed.
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Now we recall that an Itô process is a local martingale if and only if it has
null drift (cf. Remark 5.4); since Q is an EMM, the following drift condition
necessarily holds6

λi
t =

μi
t − rt

σi
t

, i = 1, . . . , N. (10.41)

Due to the strong analogy with the concept of market price of risk introduced
in Section 7.3.4 (see in particular formula (7.51)), we give the following:

Definition 10.25 A market price of risk is a d-dimensional process λ ∈ L2
loc

such that:

i) the first N components of λ are given by (10.41);
ii) the solution Z to the SDE (10.38) is a strict P -martingale.

The drift condition (10.41) fixes the first N components of the d-dimensional
process λ: when N < d, it is clear that the market price of risk is not uniquely
determined. The following result shows the strict relationship between EMMs
and market prices of risk.

Theorem 10.26 Formulas (10.37)-(10.38) establish a one-to-one correspon-
dence between EMMs and market prices of risk. The dynamics, under an EMM
Q, of the asset prices is given by

dSi
t = rtS

i
tdt + σi

tS
i
tdWλ,i

t , (10.42)

where Wλ =
(
Wλ,1, . . . ,Wλ,d

)
is the Q-Brownian motion in (10.39). More-

over

EQ

[
sup

0≤t≤T
|St|p

]
<∞, (10.43)

for every p ≥ 1.

Proof. We have already proved, by using Theorem 10.20, that any EMM Q
defines a market price of risk λ such that (10.42) holds.

Conversely, if λ is a market price of risk, we consider the process Z in
(10.38) and using that Z is a P -martingale, we define the measure Q by putting
dQ
dP = ZT . Then Q is an EMM: indeed, by Girsanov’s theorem for correlated
Brownian motions (cf. Remark 10.22), Wλ in (10.39) is a correlated Brownian
motion on (Ω,F , Q, (FW

t )) and, by Remark 10.4, P and Q are equivalent.
Further, by (10.41) we directly get (10.42) and therefore S̃i is the exponential
martingale

S̃i
t = exp

(∫ t

0

σi
sdWλ,i

s −
∫ t

0

(
σi

s

)2
2

ds

)
. (10.44)

6 More precisely, we have

λi
t(ω) =

μi
t(ω)− rt(ω)

σi
t(ω)

for almost all (t, ω) ∈ [0, T ]×Ω.
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Since σi and r verify the integrability condition (10.28), by Lemma 10.1 and
Remark 10.18, we infer that S̃i is a strict martingale and verifies (10.43). �

Theorem 10.26 shows that the notions of EMM and market price of risk are
equivalent. However, while the EMM is mainly a theoretical concept, on the
contrary the market price of risk is of essential importance from the practical
point of view: indeed, by the change of drift formula (10.39), it determines ex-
plicitly the change of measure and the dynamics of the assets as Itô processes.
Moreover, the market price of risk is also an essential tool in the proof of the
existence of an EMM. In the following theorem we give a simple condition on
the coefficients μ, σ, r which guarantees the existence of a market price of risk
and of the related EMM.

Theorem 10.27 (Existence of an EMM) Assume that the processes

λi
t =

μi
t − rt

σi
t

, i = 1, . . . , N,

verify the integrability condition (10.3), that is∫ T

0

∣∣λi
t

∣∣2 dt ≤ C a.s., (10.45)

for some positive constant C. Then an EMM Q exists.

Proof. By Theorem 10.26, in order to show that an EMM exists, it suffices to
construct a market price of risk. Let λ ∈ L2 be any d-dimensional process with
the first N components defined by (10.41) and such that estimate (10.45) holds
for any i = 1, . . . , d. By Lemma 10.1, Z in (10.38) is a strict P -martingale
and therefore λ is a market price of risk. �

Notation 10.28 We denote by Q the family of EMMs whose corresponding
process of market prices of risk λ verify estimate (10.45) for any i = 1, . . . , d.

Remark 10.29 The class Q will play a central role in the sequel (see, for
instance, Proposition 10.41). We remark that if Q ∈ Q, then the Radon-
Nikodym derivative of Q with respect to P belongs to Lp(Ω,P ) for every p ≥ 1:
more precisely, let us recall that

dQ

dP
= ZT

where
dZt = −Zt

(
�−1λt

)
· dWt, Z0 = 1,

and λ is the market price of risk associated to Q. If λ is is such that∫ T

0

|λt|2dt ≤ C a.s.
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then, by Lemma 10.1, Z is a P -martingale and

E

[
sup

0≤t≤T
Zp

t

]
<∞, p ≥ 1.

Clearly, under the assumptions of Theorem 10.27, the class Q is not empty.�

Remark 10.30 The following condition is stronger than (10.45), but simpler
to check: the process r is bounded and the processes σi, i = 1, . . . , N , are
bounded and uniformly positive, i.e. there exists C ∈ R>0 such that

|rt| ≤ C,
1
C
≤
∣∣σi

t

∣∣ ≤ C, i = 1, . . . , N, t ∈ [0, T ],

almost surely. �

10.2.3 Examples

Example 10.31 In the Black-Scholes market model N = d = 1 and the
coefficients r, μ, σ are constant. In this case the market price of risk is uniquely
determined by equation (10.41) and we have

λ =
μ− r

σ

which corresponds to the value found in Section 7.3.4. By Theorem 10.26, the
process

Wλ
t = Wt + λt, t ∈ [0, T ],

is a Brownian motion under the measure Q defined by

dQ

dP
= exp

(
−λWT −

λ2

2
T

)
, (10.46)

and the dynamics of the risky asset is

dSt = rStdt + σStdWλ
t .

Moreover the discounted price process S̃t = e−rtSt is a Q-martingale and we
have

St = e−r(T−t)EQ
[
ST | FW

t

]
, t ∈ [0, T ]. �

Example 10.32 In a market model where the number of risky assets is equal
to the dimension of the Brownian motion, i.e. N = d, the drift condition
(10.41) determines the process λ univocally. Therefore, under the assumptions
of Theorem 10.27 we have that the EMM Q exists and is unique. As usual the
Q-dynamics of the discounted prices is

dS̃i
t = σi

tS̃
i
tdWλ,i

t , i = 1, . . . , N,

where Wλ is the Q-Brownian motion defined by dWt = dWλ
t − λtdt. �
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Example 10.33 In the Heston stochastic volatility model [165], there is an
underlying asset (N = 1) whose volatility is a stochastic process that is driven
by a second real Brownian motion (d = 2). More precisely, we assume that

dSt = μStdt +
√

νtStdW 1
t , (10.47)

dνt = k(ν̄ − νt)dt + η
√

νtdW 2
t , (10.48)

where μ, k, ν̄, η are constant parameters and W is a two-dimensional correlated
Brownian motion. As in Example 10.16, we set

A =
(

1 0
�̄
√

1− �̄2

)
and

W 1
t = W̄ 1

t , W 2
t = �̄W̄ 1

t +
√

1− �̄2W̄ 2
t ,

where
(
W̄ 1, W̄ 2

)
is a two-dimensional standard Brownian motion and �̄ ∈

]−1, 1[ is the (constant) correlation parameter. The interest rate r is supposed
to be constant.

Equation (10.48) was previously suggested by Cox, Ingersoll and Ross [80]
as a model for the short rate dynamics in a fixed-income market (cf. Section
10.3.1): here the process ν represents the variance of S. By the Itô formula,
the solution of (10.47) is

St = S0 exp
(∫ t

0

√
νsdW 1

s +
∫ t

0

(
μ− νs

2

)
ds

)
.

On the other hand, we remark that the existence and uniqueness results for
SDEs in Chapter 9 do not apply to (10.48) because the diffusion coefficient
is only Hölder continuous. However we have the following result (see, for in-
stance, [177] p.168).

Theorem 10.34 For any ν0 ≥ 0, there exists a unique non-negative strong
solution to (10.48) starting from ν0.

A solution to (10.48) is called a mean reverting square root process. For k > 0,
the drift is positive if νt < ν̄ and it is negative if νt > ν̄ and so the process
νt is “pushed” towards the value ν̄ that can be interpreted as a long-term
mean. The other parameters represent respectively: μ the drift of St, k the
speed of mean reversion and η the volatility of the variance. We remark that
in general the solution ν can reach the origin: more precisely, let us denote by
τ the stopping time defined by

τ = inf{t ≥ 0 | νt = 0}

and τ(ω) = ∞ if νt(ω) > 0 for any t. Then we have (see Feller [129] or
Proposition 6.2.3 in [226]):



350 10 Continuous market models

Proposition 10.35 Assume that ν0 > 0. Then we have:

• if kν̄ ≥ η2

2 then τ =∞ a.s.;
• if 0 ≤ kν̄ < η2

2 and k < 0 then 0 < P (τ <∞) < 1;
• if 0 ≤ kν̄ < η2

2 and k ≥ 0 then τ <∞ a.s.

In the notations introduced at the beginning of the paragraph, σt in (10.24)
is the (1× 2)-dimensional matrix

σt =
(√

νt 0
)
.

A market price of risk is a two-dimensional process λ = (λ1, λ2) ∈ L2
loc such

that, by (10.41),

λ1
t =

μ− r√
νt

, (10.49)

while there is no restriction on the second component λ2 except for the fact
that Z in (10.38) must be a martingale. If this is the case, we consider the
corresponding EMM Q with respect to which the process Wλ, defined by (cf.
(10.39))

dWt = dWλ
t − λtdt = dWλ

t −
(μ−r√

νt

λ2
t

)
dt,

is a 2-dimensional Brownian motion: then the Q-dynamics of the risky asset
is given by

dSt = rStdt +
√

νtStdWλ,1
t , (10.50)

dνt =
(
k(ν̄ − νt)− η

√
νtλ

2
t

)
dt + η

√
νtdWλ,2

t . (10.51)

This is the dynamics to be used in order to compute a risk neutral price in the
form EQ [f(ST )], for instance by Monte Carlo simulation (cf. Section 12.4):
clearly, the result depends on the choice of the process λ2, that is on the
market price of risk. We also remark that, by taking the process λ2 of the
form λ2

t = aνt+b√
νt

with a, b ∈ R, then (10.51) reduces to

dνt = k̃(ν̃ − νt)dt + η
√

νtdWλ,2
t , (10.52)

where
k̃ = k + ηa, ν̃ =

kν̄ − ηb

k + ηa
, (10.53)

and therefore ν is a square root process under Q as well.
Since the log-characteristic function of S

E
[
eiξ log ST

]
can be computed explicitly, analytical approximations of the price of Euro-
pean Calls and Puts are available by Fourier inversion techniques: this will be
discussed in Examples 15.15 and 15.20.
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From the economical point of view, the price of risk λ is determined by
the market: in other terms, λ must be chosen on the basis of observations,
by calibrating the parameters of the model to the available data. Once λ and
the corresponding EMM Q have been selected, the risk neutral price of a
derivative on S is defined as in Section 10.2.5 by a risk neutral formula under
Q. Note that it is not possible in general to construct a hedging strategy based
only on the underlying asset and the bond and therefore the Heston model is
incomplete. �

By Theorem 10.26, the existence of an EMM implies that a market price of
risk λ exists and verifies the drift condition (10.41): since λ is a d-dimensional
process and (10.41) gives N constraints on λ, it is natural to assume N ≤ d. If
this is not the case, the market might admit arbitrage opportunities: the proof
of this claim in a general setting goes beyond the scope of this exposition. This
result, which is part of the first fundamental theorem of asset pricing, has been
proved by many authors and under different hypotheses: we mention, among
others, Stricker [317], Ansel and Stricker [10], Delbaen [85], Schweizer [304],
Lakner [223], Delbaen and Schachermayer [86; 87; 88; 89; 90; 91], Frittelli and
Lakner [143]. Here we confine ourselves to examine a simple example in which
the arbitrage strategy can be constructed explicitly.

Example 10.36 We consider a market which consists of two geometric Brow-
nian motions

dSi
t = μiSi

tdt + σiSi
tdWt, i = 1, 2,

where W is a real Brownian motion: in this case N = 2 > d = 1. The drift
condition (10.41) takes the form:{

σ1λ = μ1 − r,

σ2λ = μ2 − r,

and the system is solvable if and only if

μ1 − r

σ1
=

μ2 − r

σ2
. (10.54)

This is in line with what we had observed in Section 7.3.4, in particular with
formula (7.52) which states that, in an arbitrage-free market, all the assets
must have the same market price of risk. If (10.54) is not satisfied, the market
admits arbitrage opportunities: indeed, let us suppose that

k :=
μ1 − r

σ1
− μ2 − r

σ2
> 0,

and let us consider the self-financing (cf. Definition 10.37 and Corollary 10.40)
portfolio (α1, α2, β) with null initial value, defined by

αi =
1

Si
tσ

i
, i = 1, 2.
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Then the value V of the portfolio verifies

dVt = α1
t dS1

t + α2
t dS2

t + r
(
Vt − α1

t S
1
t − α2

t S
2
t

)
dt

=
μ1 − r

σ1
dt + dWt −

μ2 − r

σ2
dt− dWt + rVtdt

= (rVt + k) dt,

and therefore it gives rise to an arbitrage opportunity since it produces a
certain profit that is strictly greater than the bond. �

10.2.4 Admissible strategies and arbitrage opportunities

We consider a standard market (S,B) under Hypothesis 10.19, where

dSi
t = μi

tS
i
tdt + Si

tσ
i
tdW i

t , i = 1, . . . , N,

with W d-dimensional correlated Brownian motion. Moreover the coefficients
μ, σ satisfy condition (10.45) of Theorem 10.27 that guarantees the existence
of an EMM.

We introduce the family of self-financing strategies.

Definition 10.37 A strategy (or portfolio) is a process (α, β) where α, β ∈
L1

loc have values in RN and in R, respectively. The value of the strategy (α, β)
is the real-valued process

V
(α,β)
t = αt · St + βtBt =

N∑
i=1

αi
tS

i
t + βtBt, t ∈ [0, T ].

A strategy (α, β) is self-financing if

dVt = αt · dSt + βtdBt. (10.55)

Remark 10.38 In the definition of self-financing strategy (α, β), we implic-
itly assume that

αiσi ∈ L2
loc, i = 1, . . . , N. (10.56)

This condition ensures that the stochastic integrals

αt · dSt =
N∑

i=1

αi
tσ

i
tS

i
tdW i

t

are well-defined. �

The following result extends a useful characterization of self-financing
strategies already proved in the Black-Scholes framework. As usual, we de-
note the discounted values by S̃ and Ṽ .
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Proposition 10.39 A strategy (α, β) is self-financing if and only if

dṼ
(α,β)
t = αt · dS̃t. (10.57)

Moreover, a self-financing strategy (α, β) is determined by its initial value V0

and by the process α of the amount of risky assets held in portfolio: indeed, for
any V0 ∈ R and α ∈ L1

loc verifying (10.56), there exists a unique self-financing
strategy (α, β) such that V

(α,β)
0 = V0.

Proof. We have

dṼ
(α,β)
t = e−

∫ t
0 rsds

(
−rtV

(α,β)
t dt + dV

(α,β)
t

)
=

(by the self-financing property (10.55))

= e−
∫ t
0 rsds

(
−rtV

(α,β)
t dt + αt · dSt + rtβtBtdt

)
=

(since V
(α,β)
t − βtBt = αt · St)

= e−
∫ t
0 rsds (−rtαt · Stdt + αt · dSt) = αt · dS̃t,

and this proves (10.57).
To prove the second part of the thesis we proceed as in the Black-Scholes

case and, for any V0 ∈ R and α ∈ L1
loc such that (10.56) holds, we define the

processes V and β by putting

e−
∫ t
0 rsdsVt = V0 +

∫ t

0

αs · dS̃s, βt = B−1
t (Vt − αt · St) , t ∈ [0, T ].

Then, by (10.57), (α, β) is a self-financing strategy such that V
(α,β)
t = Vt for

t ∈ [0, T ]. �

A simple consequence of Proposition 10.39 is the following:

Corollary 10.40 Let Q be an EMM with associated Q-Brownian motion
Wλ =

(
Wλ,1, . . . ,Wλ,d

)
defined by (10.37)-(10.39). For any self-financing

strategy (α, β), we have

Ṽ
(α,β)
t = V

(α,β)
0 +

N∑
i=1

∫ t

0

αi
sS̃

i
sσ

i
sdWλ,i

s , (10.58)

and in particular Ṽ (α,β) is a local Q-martingale.

Proof. The thesis follows from (10.57) and Theorem 4.42. �

The following proposition gives very natural conditions under which Ṽ (α,β)

is a strict Q-martingale. The result is non trivial since the integrability condi-
tion (10.59), which replaces (10.56), is given under the objective probability P
and therefore is independent on the selected EMM. Let us first recall Notation
10.28 of the family Q of EMMs.
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Proposition 10.41 If Q is an EMM in Q and (α, β) be a self-financing
strategy such that

αiσi ∈ L2(Ω,P ), i = 1, . . . , N, (10.59)

then Ṽ (α,β) is a strict Q-martingale. In particular the following risk-neutral
pricing formula holds:

V
(α,β)
t = EQ

[
e−
∫ T

t
rsdsV

(α,β)
T | FW

t

]
, t ∈ [0, T ]. (10.60)

Proof. By (10.58) and Corollary 4.48, if

EQ

⎡⎣(∫ T

0

(
αi

tσ
i
tS̃

i
t

)2

dt

) 1
2
⎤⎦ <∞,

for every i = 1, . . . , N , then Ṽ (α,β) is a Q-martingale. We recall that under
our main Hypothesis 10.19, B and B−1 are bounded processes (cf. Remark
10.18); therefore in order to prove the thesis it is enough to verify that

EQ
[
Y

1
2

i

]
<∞, i = 1, . . . , N,

where

Yi =
∫ T

0

(
αi

tσ
i
tS

i
t

)2
dt.

Now we use the fact that Q ∈ Q and therefore, by Remark 10.29, the Radon-
Nikodym derivative Z of Q with respect to P belongs to Lp(Ω,P ) for every
p ≥ 1. Given two conjugate exponents q, q′ with 1 < q < 2, by Hölder’s
inequality we get

EQ
[
Y

1
2

i

]
= EP

[
Y

1
2

i ZT

]
≤ EP

[
Y

q
2

i

] 1
q

EP
[
Zq′

T

] 1
q′

,

and we conclude by verifying that

EP
[
Y

q
2

i

]
<∞.

We have

EP
[
Y

q
2

i

]
≤ EP

⎡⎣(∫ T

0

(
αi

tσ
i
t

)2
dt

) q
2

sup
t∈[0,T ]

|St|q
⎤⎦ ≤

(by Hölder’s inequality)

≤ EP

[∫ T

0

(
αi

tσ
i
t

)2
dt

] q
2

EP

[
sup

t∈[0,T ]

|St|
2q

2−q

] 2−q
2

<∞

by the assumption on α and estimate (10.43). �
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Definition 10.42 A self-financing strategy (α, β) such that Ṽ (α,β) is a Q-
martingale for every Q ∈ Q, is called an admissible strategy. We denote by A
the collection of all admissible strategies.

Proposition 10.41 guarantees that the family A is not empty: indeed, any
self-financing strategy (α, β) verifying condition (10.59) is admissible.

As in the discrete case, it is immediate to verify that an admissible strategy
cannot be an arbitrage: in particular, the collection of self-financing strategies
(α, β) with α ∈ L2(Ω,P ) does not contain arbitrage portfolios. Indeed we
have the following version of the no-arbitrage principle.

Corollary 10.43 (No-arbitrage principle) If an EMM in Q exists and
(α, β), (α′, β′) are admissible self-financing strategies such that

V
(α,β)
T = V

(α′,β′)
T P -a.s.

then V (α,β) and V (α′,β′) are indistinguishable.

Proof. If Q ∈ Q exists and (α, β), (α′, β′) are admissible, then Ṽ (α,β), Ṽ (α′,β′)

are Q-martingales with the same final value Q-a.s. (because Q ∼ P ) and the
thesis follows. �

Remark 10.44 Consider the following alternative definition of admissibility:
a self-financing strategy (α, β) is admissible if there exists at least one Q ∈ Q
such that Ṽ (α,β) is a Q-martingale. With this definition, we are not able to
prove the thesis of Corollary 10.43: indeed, in general Ṽ (α,β), Ṽ (α′,β′) are only
local martingales with respect to a generic EMM but it could be the case that
they are not strict martingales with respect to the same EMM. This explains
why we adopted the stronger Definition 10.42 and spent some effort in the
proof of Proposition 10.41. �

10.2.5 Arbitrage pricing

We consider a standard market (S,B) under Hypothesis 10.19 and we assume
condition (10.45) of Theorem 10.27 for the existence of an EMM in Q. By
arguments that are substantially analogous to those used in discrete time (cf.
Section 2.1), we analyze the problem of pricing of a European derivative.

Definition 10.45 A European derivative X with maturity T is a FW
T -

measurable random variable such that X ∈ Lp(Ω,P ) for some p > 1. A
derivative X is called replicable if there is an admissible strategy (α, β) ∈ A
such that

X = V
(α,β)
T P -a.s. (10.61)

The random variable X represents the payoff of the derivative. The FW
T -

measurability condition describes the fact that X depends on the risk factors
given by (Wt)t≤T : note that replicable payoffs are necessarily FW

T -measurable

since so is V
(α,β)
T . An admissible strategy (α, β) such that (10.61) holds, is

called a replicating strategy for X.
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Definition 10.46 The risk-neutral price of a European derivative X with
respect to the EMM Q ∈ Q, is defined as

HQ
t = EQ

[
e−
∫ T

t
rsdsX | FW

t

]
, t ∈ [0, T ]. (10.62)

Remark 10.47 The assumption X ∈ Lp(Ω,P ) for some p > 1, guarantees
that X is Q-integrable for any Q ∈ Q, so that definition (10.62) is well-posed.
Indeed, for a fixed Q ∈ Q, let us denote by Z the Radon-Nikodym derivative
of Q with respect to P and recall that (cf. Remark 10.29) Z ∈ Lq(Ω,P ) for
every q ≥ 1. Then, by Hölder’s inequality, we have

EQ [|X|] = EP [|X|ZT ] ≤ ‖X‖Lp(Ω,P )‖ZT ‖Lq(Ω,P ) <∞

where p, q are conjugate exponents and this shows that X ∈ L1(Ω,Q). On
the other hand, by Remark 10.18 the discount factor appearing in (10.62) is
a bounded process. �

Next we introduce the collections of super and sub-replicating strategies:

A+
X = {(α, β) ∈ A | V (α,β)

T ≥ X, P -a.s.},
A−X = {(α, β) ∈ A | V (α,β)

T ≤ X, P -a.s.}.

For a given (α, β) ∈ A+
X (resp. (α, β) ∈ A−X), the value V

(α,β)
0 represents

the initial wealth sufficient to build a strategy that super-replicates (resp.
sub-replicates) the payoff X at maturity. The following result confirms the
natural consistency relation among the initial values of the sub and super-
replicating strategies and the risk-neutral price: this relation must necessarily
hold true in any arbitrage-free market.

Lemma 10.48 Let X be a European derivative. For every EMM Q ∈ Q and
t ∈ [0, T ] we have

sup
(α,β)∈A−X

V
(α,β)
t ≤ EQ

[
e−
∫ T

t
rsdsX | FW

t

]
≤ inf

(α,β)∈A+
X

V
(α,β)
t .

Proof. If (α, β) ∈ A−X , then Ṽ (α,β) is a Q-martingale for any Q ∈ Q: thus we
have

V
(α,β)
t = EQ

[
e−
∫ T

t
rsdsV

(α,β)
T | FW

t

]
≤

(since V
(α,β)
T ≤ X, P -a.s.)

≤ EQ
[
e−
∫ T

t
rsdsX | FW

t

]
and an analogous estimate holds for (α, β) ∈ A+

X . �
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Lemma 10.48 ensures that any risk-neutral price does not give rise to ar-
bitrage opportunities since it is greater than the price of every sub-replicating
strategy and smaller than the price of every super-replicating strategy. By
definition, HQ depends on the selected EMM Q; however, this is not the case
if X is replicable. Indeed the following result shows that the risk-neutral price
of a replicable derivative is uniquely defined and independent of Q ∈ Q.

Theorem 10.49 Let X be a replicable European derivative. For every repli-
cating strategy (α, β) ∈ A and for every EMM Q ∈ Q, we have

Ht := V
(α,β)
t = EQ

[
e−
∫ T

t
rsdsX | FW

t

]
. (10.63)

The process H is called risk-neutral (or arbitrage) price of X.

Proof. If (α, β) ∈ A replicates X, then (α, β) ∈ A−X ∩ A+
X and by Lemma

10.48 we have

EQ
[
e−
∫ T

t
rsdsX | FW

t

]
= V

(α,β)
t , t ∈ [0, T ],

for every EMM Q ∈ Q. �

10.2.6 Complete markets

We consider a standard market (S,B) and, as usual, we assume Hypothesis
10.19 and condition (10.45) of Theorem 10.27 for the existence of an EMM.

In this section we show that, if the number of risky assets is equal to the
dimension of the underlying Brownian motion, i.e. N = d, then the market
is complete and the martingale measure is unique. Roughly speaking, in a
complete market every European derivative X is replicable and by Theorem
10.49 it can be priced in a unique way by arbitrage arguments: the price of X
coincides with the value of any replicating strategy and with the risk-neutral
price under the unique EMM.

Theorem 10.50 When N = d, the market model (S,B) in (10.25)-(10.27)
is complete, that is every European derivative is replicable. Moreover there
exists only one EMM.

Proof. The uniqueness of the EMM has been already pointed out in Example
10.32: it follows from the fact that, when N = d, the drift condition (10.41)
determines uniquely the market price of risk.

Next we denote by Q the EMM and by Wλ the associated Q-Brownian
motion. We define the Q-martingale7

Mt = EQ
[
e−
∫ T
0 rtdtX | FW

t

]
, t ∈ [0, T ].

7 Let us recall that X ∈ L1(Ω, Q) by Remark 10.47.
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By Theorem 10.13 we have the representation

Mt = EQ
[
e−
∫ T
0 rtdtX

]
+
∫ t

0

us · dWλ
s

with u ∈ L2
loc(FW ): in other terms we have

Mt = EQ
[
e−
∫

T
0 rtdtX

]
+

N∑
i=1

∫ t

0

ui
sdWλ,i

s

= EQ
[
e−
∫ T
0 rtdtX

]
+

N∑
i=1

∫ t

0

αi
sσ

i
sS̃

i
sdWλ,i

s ,

where

αi =
ui

σiS̃i
, i = 1, . . . , N.

Note that αiσi = ui

S̃i
∈ L2

loc because Si is positive and continuous, so that
condition (10.56) is fulfilled. By Proposition 10.39, α and M0 define a self-
financing strategy (α, β) such that

Ṽ
(α,β)
t = Mt, t ∈ [0, T ].

The strategy (α, β) is admissible, (α, β) ∈ A, because M is a Q-martingale.
Moreover we have

Ṽ
(α,β)
T = MT = e−

∫ T
0 rtdtX,

and therefore (α, β) is a replicating strategy for X. �

10.2.7 Parity formulas

By the risk-neutral pricing formula (10.62), the price of a derivative is defined
as the expectation of the discounted payoff and therefore it depends linearly
on the payoff. Let us denote by HX the risk-neutral price of a derivative X,
under a fixed EMM Q: then we have

Hc1X1+c2X2
= c1H

X1
+ c2H

X2
, (10.64)

for every c1, c2 ∈ R. This fact may be useful to decompose complex payoffs in
simpler ones: for instance, the payoff of a straddle on the underlying asset S,
with strike K and maturity T , is given by

X =

{
(ST −K), if ST ≥ K,

(K − ST ), if 0 < ST < K.

By (10.64), we simply have HX = c + p where c and p denote the prices
of a European Call and a Put option, respectively, with the same strike and
maturity.
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Using (10.64), we can also obtain a generalization of the Put-Call parity
formula of Corollary 1.1. Indeed, let us consider the following payoffs:

X1 = (ST −K)+, (Call option),

X2 = 1, (bond),

X3 = ST , (underlying asset).

Then we have

HX2

t = EQ
[
e−
∫ T

t
rsds | FW

t

]
, HX3

t = St.

Now we observe that the payoff of a Put option is a linear combination of
X1,X2 and X3:

(K − ST )+ = KX2 −X3 + X1.

Then, by (10.64), we get the Put-Call parity formula

pt = KEQ
[
e−
∫ T

t
rsds | FW

t

]
− St + ct, t ∈ [0, T ], (10.65)

that is obviously equivalent to (1.4) if the short rate is deterministic.

10.3 Markovian models: the PDE approach

In this section we examine a typical Markovian realization of the general
market model analyzed in Paragraph 10.2. Specifically, we consider a model
of the form

dSi
t = μi

tS
i
tdt + Si

tσ
i
tdW i

t , i = 1, . . . , N, (10.66)

dνj
t = mj

tdt + ηj
t dWN+j

t , j = 1, . . . , d−N, (10.67)

where W =
(
W 1, . . . ,W d

)
is a d-dimensional correlated Brownian motion,

S = (S1, . . . , SN ) is the stochastic process of the risky assets that are sup-
posed to be traded on the market and ν = (ν1, . . . , νd−N ) is the vector of
additional stochastic factors (e.g. the stochastic volatility in the Heston model
of Example 10.33). We assume that

μt = μ(t, St, νt), σt = σ(t, St, νt), mt = m(t, St, νt), ηt = η(t, St, νt)

where μ, σ,m, η are deterministic functions:

• μ, σ : [0, T ]×Rd −→ RN are the drift and volatility functions, respectively,
of the assets;

• m, η : [0, T ] × Rd −→ Rd−N are the drift and volatility functions, respec-
tively, of the stochastic factors.
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The locally non-risky asset is given by

Bt = e
∫ t
0 rsds, t ∈ [0, T ],

where rt = r(t, St, νt) for some (deterministic) bounded function r.
Under suitable conditions on μ, σ,m, η, the results in Chapter 9 guarantee

that a unique solution to the system of SDEs (10.66)-(10.67) exists: for every
(t, s̄, ν̄) ∈ [0, T [×Rd we denote by (St,s̄,ν̄ , νt,s̄,ν̄) the solution of (10.66)-(10.67)
such that St,s̄,ν̄

t = s̄ and νt,s̄,ν̄
t = ν̄. Moreover there exists a d-dimensional

process of the market price of risk (cf. Definition 10.25) of the form

λt = λ(t, St, νt).

Let Q be the EMM associated to λ and Wλ denote the correlated Q-Brownian
motion defined by

dWt = dWλ
t − λtdt.

Then we have the following risk-neutral dynamics under Q:

dSi
t = rtS

i
tdt + Si

tσ
i
tdWλ,i

t , i = 1, . . . , N, (10.68)

dνj
t =

(
mj

t − ηj
t λ

j
t

)
dt + ηj

t dWλ,N+j
t , j = 1, . . . , d−N. (10.69)

Next we consider a derivative of the form X = F (ST , νT ), where F is the
deterministic payoff function. In this Markovian setting, the risk-neutral price
of X (cf. (10.62)), under the selected EMM Q, is equal to HQ

t = f(t, St, νt)
where

f(t, s, ν) = EQ
[
e−
∫ t
0 r(u,St,s,ν

u ,νt,s,ν
u )duF

(
St,s,ν

T , νt,s,ν
T

)]
.

Under the hypotheses of the Feynman-Kač representation Theorem 9.45, the
price function f is the solution of the Cauchy problem for the differential
operator associated to the system of SDEs (10.68)-(10.69), with final con-
dition f(T, s, ν) = F (s, ν): this is in perfect analogy with what we proved
in the Black-Scholes framework. On the other hand, we emphasize that the
non-uniqueness of the risk-neutral price reflects on the fact that the pricing
differential operator depends on the fixed EMM: indeed, the market price of
risk λ enters as a coefficient of the differential operator and therefore we have
a different pricing PDE for each EMM.

To facilitate a deeper comprehension of these facts, we now examine three
remarkable examples:

• the Heston model where N = 1 and d = 2;
• a model for interest rate derivatives where N = 0 and d ≥ 1;
• a general complete model where N = d ≥ 1: in this case the PDE approach

has also the great advantage of providing the hedging strategy.

Example 10.51 We consider the Heston stochastic volatility model of Exam-
ple 10.33. The price of the risky asset S is given by the system of SDEs
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(10.47)-(10.48). In this case the market price of risk is a 2-dimensional pro-
cess λ =

(
λ1, λ2

)
with λ1

t determined by the drift condition (10.41):

λ1
t =

μ− r√
νt

. (10.70)

As already mentioned, λ is generally not unique and a natural choice for the
second component of the market price of risk is

λ2
t =

aνt + b√
νt

(10.71)

with a, b ∈ R: then the risk-neutral dynamics, under the EMM Q related to
λ, is given by equations (10.50)-(10.52), that is

dSt = rStdt +
√

νtStdWλ,1
t ,

dνt = mtdt + ηtdWλ,2
t ,

where Wλ is a 2-dimensional Brownian motion with correlation

d〈Wλ,1,Wλ,2〉 = �dt, � ∈]− 1, 1[,

and
mt = m(t, St, νt) = k̃ (ν̃ − νt) , ηt = η(t, St, νt) = η

√
νt,

where k̃, ν̃, η are real constants (cf. (10.53)).
The Q-risk-neutral price of the derivative F (ST , νT ) is equal to f(t, St, νt)

where f = f(t, s, ν) is solution to the Cauchy problem{
Lλf − rf = 0, in ]0, T [×R2

>0,

f(T, s, ν) = F (s, ν), (s, ν) ∈ R2
>0,

(10.72)

and Lλ is the pricing operator related to λ in (10.70)-(10.71):

Lλf =
νs2

2
∂ssf + η�sν∂sνf +

η2ν

2
∂ννf + rs∂sf + k̃ (ν̃ − ν) ∂νf + ∂tf.

As already mentioned, in the Heston model semi-analytical approximations
for the price of European Calls and Puts are available (cf. Section 15): these
formulas are generally preferable due to precision and computational efficiency
with respect to the solution of problem (10.72) by standard numerical tech-
niques. �

10.3.1 Martingale models for the short rate

We consider a Markovian market model in the very particular case when
N = 0 (no risky asset) and d ≥ 1 (d risk factors). In this case the money
market account

Bt = e
∫ t
0 rsds, t ∈ [0, T ],
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is the only traded asset. If the function r = r(t, ν) is smooth, then the short
rate rt = r(t, νt) is an Itô process whose stochastic differential can be easily
computed by the Itô formula starting from the dynamics (10.67) of the risk
factor ν. For simplicity, we consider the case d = 1 and directly assume that
r solves the SDE

drt = μ(t, rt)dt + σ(t, rt)dWt, (10.73)

where W is a standard 1-dimensional Brownian motion. This kind of model
can be used to describe the primary objects of a so-called fixed-income market.

Definition 10.52 A zero coupon bound with maturity T (or, simply, a T -
bond) is a contract paying to its holder one unit of cash at time T . We denote
by p(t, T ) the price at time t of the T -bond.

Since the final value (payoff) of a T -bond is known, p(T, T ) = 1, it seems
natural to view bonds as interest rate derivatives, that is derivatives with
“underlying” the short rate r. However, since r is not an asset traded in the
market, the corresponding market model is incomplete. Indeed, even if we can
invest in the money market account B, in general we cannot hope to replicate
a T -bond with certainty. On one hand, this is due to the fact that a self-
financing strategy involving only the asset B is necessarily constant; on the
other hand, we remark that r is only “locally” riskless, but in the long run
it is stochastic. Indeed, the wealth needed at time t to replicate a T -bond at
maturity is equal to the discount factor

D(t, T ) = e−
∫ T

t
rsds,

that is unknown at time t since r is a progressively measurable stochastic
process: mathematically, D(t, T ) is a FW

T -random variable. Note the concep-
tual difference between p(t, T ) and D(t, T ): at maturity they have the same
value p(T, T ) = D(T, T ) = 1; but while p(t, T ) is a price and, as such, it is
observable at time t (i.e. FW

t -measurable), on the contrary the discount factor
is FW

T -measurable and unobservable at time t < T .
By the definition of risk-neutral price of a T -bond, under the selected

EMM Q, we have

p(t, T ) = EQ
[
e−
∫ T

t
rsdsp(T, T ) | FW

t

]
= EQ

[
D(t, T ) | FW

t

]
. (10.74)

Remark 10.53 By definition (10.74), the Put-Call parity formula (10.65)
becomes

pt = Kp(t, T )− St + ct, t ∈ [0, T ].

�

In this framework, the existence of an EMM Q is a trivial fact: indeed,
the only traded asset that, when discounted, has to be a Q-martingale is the
money market account B. But obviously B̃ ≡ 1 and therefore any probability
measure Q, that is equivalent to P , is an EMM. Analogously, in order for
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a process λ to be a market price of risk (cf. Definition 10.25) it is sufficient
that the exponential martingale defined by dZt = −ZtλtdWt is a strict P -
martingale: indeed, the martingale (or drift adjustment) condition (10.41) is
automatically satisfied because there are no traded risky assets. This is the
reason why, instead of specifying μ and λ under the real-world probability
measure P , it is common practice to specify the dynamics of the short rate
directly under the martingale measure Q: in other terms, we suppose that
(10.73) describes the dynamics of r under the EMM Q. This procedure is
known as martingale modeling. In the literature there is a large number of
proposed models for the Q-dynamics of r: Vasiček [332], Cox, Ingersoll and
Ross [80], Black, Derman and Toy [48], Ho and Lee [168], Hull and White
[176] were among the first proposed models. We refer to Bjork [47] for an
effective introduction to the subject and to Brigo and Mercurio [63], Part II,
for a deep and exhaustive account of short rate modeling.

Assuming the Q-dynamics (10.73) for the short rate r, by the pricing
formula (10.74) and Feynman-Kač representation, we obtain that p(t, T ) =
F (t, rt;T ) where (t, r) �→ F (t, r;T ) solves the so-called term structure equation{

σ2(t,r)
2 ∂rrF + μ(t, r)∂rF + ∂tF − rF = 0,

F (T, r;T ) = 1.
(10.75)

Contrary to the Black-Scholes equation, the PDE in (10.75) depends on the
drift coefficient μ of the underlying process, because it takes into account the
fixed EMM. Therefore, in the framework of martingale modeling, the selection
of the EMM among all probability measures equivalent to P is an important
task: essentially, it can be considered a problem equivalent to the calibration
of the model, that is the problem of determining the coefficients μ and σ of
the SDE (10.73). More precisely, since we know that the diffusion coefficient
remains unchanged through a change of measure à la Girsanov, selecting Q is
equivalent to estimating μ. Note however that μ represents the drift coefficient
in the risk-neutral dynamics (i.e. under an EMM) and therefore we cannot
adopt standard statistical procedures to find μ starting from the historical
dynamics of the process r: indeed, the historical data describe the real-world
dynamics and not the risk-neutral ones that we are trying to estimate.

Alternatively, this problem is typically approached by calibrating the
model to the set of today’s prices of the T -bonds and other liquid interest
rate derivatives: more precisely, we assume that the so called empirical term
structure, that is the set {p∗(0, T ) | T > 0} of the initial prices of T -bonds, is
observable. Then we can estimate μ and σ by imposing that the theoretical
prices p(0, T ), T > 0, given by the model via the term structure equation
(10.75), agree with the empirical data, that is

p(0, T ) = p∗(0, T ), T > 0.

This procedure is particularly efficient for the so-called affine models, where
μ(t, r) = α(t)r + β(t) and σ(t, r) =

√
γ(t)r + δ(t) with α, β, γ, δ deterministic
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functions. These models are of particular interest since the term structure
equation can be solved semi-analytically in terms of first order differential
equations of Riccati type: for more details we refer to Bjork [47], Filipović [131]
and the more comprehensive studies by Duffie, Filipović and Schachermayer
[103] and Keller-Ressel [204].

The short rate models examined so far, are also called one-factor models
since the risk factor ν is one-dimensional (d = 1). As a matter of fact, it is
straightforward to extend the previous analysis to models with two or more
risk factors: these models are more appealing for the practical applications
and still widely used. We refer, for instance, to [63], Chapter 4, for a practice-
oriented account of two-factors short rate models.

10.3.2 Pricing and hedging in a complete model

We have already commented on the fact that Theorem 10.50 is indeed an
interesting result from a theoretical point of view but it is not constructive and
it does not provide the expression of the hedging strategy for the derivative.
By using Malliavin calculus, in Section 16.2.1 we will prove the Clark-Ocone
formula that, under suitable assumptions, expresses the replicating strategy
in terms of the so-called stochastic derivative of the payoff. Without using the
advanced tools of Malliavin calculus, the most interesting and general results
can be obtained in the Markovian setting, employing the theory of parabolic
PDEs.

In this section we consider a Markovian model of the form (10.66)-(10.67)
which, under the assumption N = d, reduces to

dSi
t = μi

tS
i
tdt + Si

tσ
i
tdW i

t , i = 1, . . . , N, (10.76)

where μt = μ(t, St), σt = σ(t, St) and W =
(
W 1, . . . ,WN

)
is Brownian

motion with constant correlation matrix �:

d〈W i,W j〉t = �ijdt.

We also assume that rt = r(t, St) and the following:

Hypothesis 10.54 The coefficients μ, σ, r are Hölder continuous and bounded
functions. The matrix (cij) =

(
�ijσiσj

)
is uniformly positive-definite: there

exists a constant C > 0 such that

N∑
i,j=1

cij(t, s)ξiξj ≥ C|ξ|2, t ∈ [0, T ], s ∈ RN
>0, ξ ∈ RN .

The arguments presented in Chapter 7 for the study of the Black-Scholes
model can be easily adapted to the general case of a market with N risky
assets. In particular it is possible to characterize the self-financing property
in terms of a parabolic PDE of Black-Scholes type: moreover, the price and
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the hedging strategy are given in terms of the solution of a suitable Cauchy
problem. Without going through the details that were already seen in Chapter
7, we can directly establish the connection between PDE and arbitrage pricing
theories, by using the Feynman-Kač representation Theorem 9.45.

We recall that the results in Paragraphs 9.2 and 8.1 guarantee the existence
of a weak solution S of (10.76). Further, by Theorem 10.27 (see also Remark
10.30), there exists a unique EMM Q: we denote by WQ =

(
WQ,1, . . . ,WQ,N

)
the Brownian motion associated to Q, under which the risk-neutral dynamics
of the prices is

dSi
t = rtS

i
tdt + Si

tσ
i
tdWQ,i

t , i = 1, . . . , N. (10.77)

As usual, for every (t, s) ∈ [0, T [×RN
>0, we denote by St,s the solution of

(10.77) such that
St,s

t = s.

We consider a European derivative with payoff F (ST ), where F is a locally
integrable function on RN

>0 such that

|F (s)| ≤ CeC| log s|γ , s ∈ RN
>0,

with C, γ positive constants and γ < 2.

Theorem 10.55 Let f be the solution of the Cauchy problem{
Lf = 0, in ]0, T [×RN

>0,

f(T, ·) = F, on RN
>0,

where

Lf(t, s) =
1
2

N∑
i,j=1

cij(t, s)sisj∂sisj f(t, s)

+ r(t, s)
N∑

j=1

sj∂sj f(t, s) + ∂tf(t, s)− r(t, s)f(t, s).

Then

f(t, s) = EQ
[
e−
∫ T

t
r(a,St,s

a )daF (St,s
T )
]
, (t, s) ∈ [0, T ]× RN

>0, (10.78)

and Ht = f(t, St) is the arbitrage price, at time t, of the derivative F (ST ).
Further, a replicating strategy (α, β) is given by8

V
(α,β)
t = f(t, St), αt = ∇f(t, St), t ∈ [0, T ]. (10.79)

8 Here
∇f = (∂s1f, . . . , ∂sN f).
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Proof. The claim is a consequence of the existence results for the Cauchy
problem in Paragraph 8.1 and of the Feynman-Kač formula: they can be ap-
plied directly after the transformation s = ex. More precisely, for i = 1, . . . , N ,
we set

Xi
t = log Si

t , σ̃(t, x) = σ (t, ex) , r̃(t, x) = r (t, ex) , c̃(t, x) = c (t, ex) .

Then, by the Itô formula, we have

dXi
t =

(
r̃(t,Xt)−

(
σ̃i(t,Xt)

)2
2

)
dt + σ̃i(t,Xt)dWQ,i

t , i = 1, . . . , N.

(10.80)
The characteristic operator associated to the system of SDEs (10.80) is

Au(t, x) =
1
2

N∑
i,j=1

c̃ij(t, x)∂xixj u(t, x) +
N∑

j=1

(
r̃(t, x)−

(
σ̃i(t, x)

)2
2

)
∂xj u(t, x).

Since, by assumption, A + ∂t is a uniformly parabolic operator, Theorem 8.6
ensures the existence of a classical smooth solution of the Cauchy problem{

Au− r̃u + ∂tu = 0, in ]0, T [×RN ,

u(T, x) = F (ex), on RN ,
(10.81)

and (10.78) follows by the Feynman-Kač formula. By definition f is the arbi-
trage price of the derivative; moreover, by Proposition 10.39, formula (10.79)
defines an admissible strategy (α, β) that, by construction, replicates the
derivative. �

10.4 Change of numeraire

We consider a market model (S,B) of the form (10.25)-(10.27), introduced in
Paragraph 10.2. Throughout the paragraph we assume that the class Q (cf.
Notation 10.28) of EMMs is not empty.

Definition 10.56 Let Q ∈ Q be an EMM with numeraire B. A process U is
called a “Q-price process” if:

i) U is strictly positive;
ii) the discounted process defined by Ũt = Ut

Bt
, t ≤ T , is a strict Q-martingale.

In economic terms, a Q-price process is a stochastic process with the main
features of a “true price”: it is positive and it verifies the risk-neutral pricing
formula under the EMM Q. Indeed, the martingale property is equivalent to

Ut = EQ
[
D(t, T )UT | FW

t

]
, t ∈ [0, T ],
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where
D(t, T ) = e−

∫ T
t

rsds

is the standard discount factor. By definition of martingale measure, any risky
asset Si, i = 1, . . . , N , is a Q-price process; further, the value of any admissible
(cf. Definition 10.42) and positive self-financing strategy (α, β) is a Q-price
process.

We already noted in the framework of discrete market models (see in par-
ticular Section 2.1.5) that it is sometimes convenient to use a numeraire dif-
ferent from the standard money market account. The Q-price processes of
Definition 10.56 are exactly the kind of processes which we might choose as
numeraire, i.e. as a basic standard by which prices of all other assets are
measured.

Definition 10.57 Let U be a Q-price process. A probability measure QU on
(Ω,F) is called an EMM with numeraire U if:

i) QU is equivalent to P ;
ii) the processes of the U -discounted prices St

Ut
and Bt

Ut
are strict QU -martin-

gales. In particular, the risk-neutral pricing formulas

St = EQU [
DU (t, T )ST | FW

t

]
,

Bt = EQU [
DU (t, T )BT | FW

t

]
, t ∈ [0, T ],

hold, where DU (t, T ) = Ut

UT
is the U -discount factor.

Next we prove the first basic result on the change of numeraire: any Q-price
process U can be chosen as numeraire, that is for any Q-price process U there
exists an EMM QU with numeraire U . Moreover we have an explicit formula
for the change of measure between EMMs in terms of their Radon-Nikodym
derivative. The following result is essentially equivalent to Lemma 10.3.

Theorem 10.58 Let Q be an EMM with numeraire B and let U be a Q-price
process. Consider the probability measure QU on (Ω,F) defined by9

dQU

dQ
=

UT B0

BT U0
. (10.82)

Then for any X ∈ L1 (Ω,Q) we have

EQ
[
D(t, T )X | FW

t

]
= EQU [

DU (t, T )X | FW
t

]
, t ∈ [0, T ]. (10.83)

Consequently QU is an EMM with numeraire U and the Q-risk-neutral price
of a European derivative X is also equal to

EQU [
DU (t, T )X | FW

t

]
, t ∈ [0, T ]. (10.84)

9 Or equivalently, by
D(0, T )dQ = DU (0, T )dQU .
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Proof. We first prove that for any X ∈ L1
(
Ω,QU

)
we have

EQU [
X | FW

t

]
= EQ

[
D(t, T )

DU (t, T )
X | FW

t

]
, t ∈ [0, T ]. (10.85)

We set
Zt =

UtB0

BtU0
, t ∈ [0, T ].

Since U is a Q-price process, Z is a strictly positive Q-martingale. By the
Bayes’ formula in Theorem A.113, we have

EQU [
X | FW

t

]
=

EQ
[
XZT | FW

t

]
EQ
[
ZT | FW

t

] =

(since Z is a Q-martingale)

= EQ

[
X

ZT

Zt
| FW

t

]
= EQ

[
X

D(t, T )
DU (t, T )

| FW
t

]
,

where in the last equality we have used the following identity:

ZT

Zt
=

UT B0

U0BT

U0Bt

UtB0
=

UT Bt

UtBT
=

D(t, T )
DU (t, T )

.

This proves (10.85) and now (10.83) simply follows from

EQ
[
D(t, T )X | FW

t

]
=EQ

[
D(t, T )

DU (t, T )
(
DU (t, T )X

)
| FW

t

]
(by (10.85))

=EQU [
DU (t, T )X | FW

t

]
.

Moreover, QU ∼ Q because dQU

dQ > 0 and therefore QU is equivalent to P .
Finally

St = EQ
[
D(t, T )ST | FW

t

]
= (10.86)

(by (10.83))

= EQU [
DU (t, T )ST | FW

t

]
, (10.87)

and an analogous result holds for B. Thus QU is an EMM with numeraire U
and this concludes the proof. �

As a consequence of the previous result, we also have the following useful:
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Corollary 10.59 Let U, V be Q-price processes with corresponding EMMs
QU and QV . Then we have

dQV

dQU
|FW

t
=

VtU0

UtV0
. (10.88)

As the following example shows, the change of numeraire is a very powerful
tool when dealing with stochastic interest rates: Geman [152] and Jamshidian
[186] first put it to a systematic use for facilitating the computation of option
prices.

Example 10.60 (Forward measure) As in Section 10.3.1, we denote by
p(t, T ) the price at time t, under a fixed EMM Q with numeraire B, of the
zero coupon bond with maturity T (cf. (10.74)):

p(t, T ) = EQ
[
e−
∫ T

t
rsds | FW

t

]
, t ≤ T.

Clearly p(·, T ) is a Q-price process and we may consider the associated EMM
QT , usually called T -forward measure. By (10.84) the risk neutral price H of
a European derivative X is equal to

Ht = EQT

[
p(t, T )
p(T, T )

X | FW
t

]
= p(t, T )EQT [

X | FW
t

]
. (10.89)

In this formula the price is given in terms of the QT -expectation of X and
therefore, at least formally, it appears much simpler than the standard ex-
pression

EQ
[
e−
∫ T

t
rsdsX | FW

t

]
where the Q-expectation also involves the stochastic discount factor. On the
other hand, in order to use formula (10.89) (for instance, for a Monte Carlo
simulation) we need to determine the distribution of X under QT . Let us
mention how this can be done: to fix ideas, we assume that X = XT is the
final value of an Itô process and recall that a change of measure simply affects
the drift of Xt (not the diffusion coefficient). Now Theorem 10.20 gives us the
expression of the change of drift in terms of the Radon-Nikodym derivative
dQT

dQ ; in turn, this Radon-Nikodym derivative is known explicitly by Theorem
10.58:

dQT

dQ
=

B0

p(0, T )BT
.

We will come back to this matter in a more comprehensive way in Section
10.4.2 where we will give more direct formulas for the change of measure/drift
for Itô processes. �
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10.4.1 LIBOR market model

As a second meaningful example of application of Theorem 10.58, we analyze
the construction of the so-called LIBOR market model that is a widespread
model in fixed-income markets introduced by Miltersen [257], Brace [58],
Jamshidian [187]. At first our discussion will be informal, trying to determine
the main feature of the model we aim at setting up.

We denote as usual by p(t, T ) the price at time t of the T -bond. The simple
forward rate (or, more commonly, LIBOR rate) L = L(t;T, S) is defined by
the formula

p(t, T ) = p(t, S) (1 + (S − T )L) , t ≤ T ≤ S.

Then L(t;T, S) is the simple interest rate, contracted at t, for the period
[T, S], which agrees with the quoted prices of zero-coupon bonds.

We consider a fixed set of increasing maturities T0, T1, . . . , TN and we put
δi = Ti − Ti−1 for i = 1, . . . , N . Moreover, to shorten notations we set pi

t =
p(t, Ti) and we denote by Li

t = L(t;Ti−1, Ti) the LIBOR rates corresponding
to the given maturities: then we have

Li
t =

1
δi

(
pi−1

t

pi
t

− 1
)

, i = 1, . . . , N. (10.90)

Now we aim at constructing a mathematical model for the fixed-income mar-
ket where an EMM Q exists (i.e. the model is arbitrage-free) and the prices pi

of T -bonds are Q-price processes (i.e. they are positive processes that can be
used as numeraire). In this model, we denote by Qi the EMM with numeraire
pi and we remark that the processes pj

pi are Qi-martingales for any j ≤ N :
consequently, by formula (10.90), Li is a Qi-martingale as well, i.e. it is a
driftless process.

Keeping in mind the previous considerations, we look for the processes Li

in the form

dLi
t = μi

tL
i
tdt + σi

tL
i
tdWN,i

t , i = 1, . . . , N, (10.91)

where WN =
(
WN,1, . . . ,WN,d

)
, with N ≤ d, is a correlated d-dimensional

Brownian motion with correlation matrix � and the (scalar) volatilities σi
t

may be positive constants such as in the standard LIBOR market model or
positive processes depending on some additional stochastic factors driven by
the last d − N components of WN , such as in a typical stochastic volatility
model. We suppose that (10.91) gives the dynamics of the LIBOR rates under
the TN -forward measure QN (cf. Example 10.60) and we try to determine, if
they exist, the processes μi such that Li is a martingale under the forward
measure Qi with numeraire pi, for any i = 1, . . . , N : more precisely,

dLi
t = σi

tL
i
tdW i,i

t , i = 1, . . . , N, (10.92)
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where W i,j denotes the j-th component of the Qi-Brownian motion W i, for
i = 1, . . . , N and j = 1, . . . , d, in agreement with the fact that Li must be a
Qi-martingale.

As in [47], in order to find μi, we perform the change of measure from QN

to Qi and impose that the Qi-drift is null. More precisely, by Corollary 10.59,
we have

dQi−1

dQi
|Ft =

pi−1
t

pi
t

pi
0

pi−1
0

:= γi
t , (10.93)

and we note that, by (10.90),

γi
t =

pi
0

pi−1
0

(
1 + δiL

i
t

)
. (10.94)

Therefore, assuming the dynamics (10.91), we get

dγi
t =

pi
0

pi−1
0

δiL
i
tσ

i
tdWN,i

t = γi
tσ

i
t

δiL
i
t

1 + δiLi
t

dWN,i
t .

Now that we have obtained explicitly the Radon-Nikodym derivative dQi−1

dQi as
an exponential martingale, we can apply directly the result about the change
of drift with correlation, Theorem 10.20 (see in particular formula (10.29)),
to get

dW i,j
t = dW i−1,j

t + �jiσi
t

δiL
i
t

1 + δiLi
t

dt.

Applying this inductively, we also obtain

dWN,j
t = dW i,j

t +
N∑

k=i+1

�jkσk
t

δkLk
t

1 + δkLk
t

dt, i < N. (10.95)

Plugging (10.95) into (10.91), we conclude that, in order to get (10.92), we
necessarily have to put

μi
t = −σi

t

N∑
k=i+1

�jkσk
t

δkLk
t

1 + δkLk
t

, i < N, (10.96)

and obviously μN = 0 because LN is a QN -martingale.
We conclude that, if a LIBOR market model with all the desired features

exists, it must be of the form (10.91)-(10.96). Actually, the argument can be
now reverted and we have the following existence result.

Theorem 10.61 Let WN be a correlated d-dimensional Brownian motion on
a space (Ω,F , QN ) endowed with the Brownian filtration (FW

t ). We define the
processes L1, . . . , LN by

dLi
t = −Li

t

N∑
k=i+1

�jkσi
tσ

k
t

δkLk
t

1 + δkLk
t

dt + σi
tL

i
tdWN,i

t , i = 1, . . . , N − 1,

dLN
t = σN

t LN
t dWN,N

t ,



372 10 Continuous market models

where σi ∈ L2
loc are positive processes and � is the correlation matrix of WN .

Then, for any i = 1, . . . , N , the process Li is a positive martingale under
the forward measure Qi defined by (10.93)-(10.94) and it satisfies equation
(10.92).

10.4.2 Change of numeraire for Itô processes

In this section we examine the change of measure induced by numeraires
that are Itô processes. As usual Q is a fixed EMM with numeraire B. As a
preliminary result, we compute the diffusion coefficient of the ratio of two Itô
processes: since we are only interested in the diffusion coefficient, we use the
symbol (· · · ) to denote a generic drift term.

Lemma 10.62 Let U, V be two positive Itô processes of the form

dUt = (· · · )dt + σU
t · dWt,

dVt = (· · · )dt + σV
t · dWt,

where W is a correlated d-dimensional Brownian motion and σU , σV ∈ L2
loc

are the Rd-valued diffusion coefficients. Then V
U is an Itô process of the form

d
Vt

Ut
= (· · · )dt +

Vt

Ut

(
σV

t

Vt
− σU

t

Ut

)
· dWt. (10.97)

Proof. The thesis follows directly by the Itô formula, since we have

d
Vt

Ut
=

dVt

Ut
− VtdUt

U2
t

+
Vt

U3
t

d〈U,U〉t −
1

U2
t

d〈U, V 〉t. �

Remark 10.63 Since W is a correlated Brownian motion we may assume (cf.
(10.22)) that it takes the form W = AW̄ where W̄ is a standard d-dimensional
Brownian motion. Then � = AA∗ is the correlation matrix of W . Under the
assumptions of Lemma 10.62, we set

σ̂t = A∗
(

σV
t

Vt
− σU

t

Ut

)
,

and from (10.97) we get

d
Vt

Ut
= (· · · )dt +

Vt

Ut
σ̂t · dW̄t

= (· · · )dt +
Vt

Ut
|σ̂t| dŴt, (10.98)

where
dŴt =

σ̂t

|σ̂t|
· dW̄t.
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We remark explicitly that, by Corollary 5.35, Ŵ is a one-dimensional standard
Brownian motion. Note also that

|σ̂t| =
√
〈�
(

σV
t

Vt
− σU

t

Ut

)
,

(
σV

t

Vt
− σU

t

Ut

)
〉. (10.99)

�

The following example is due to Margrabe [247] who first used explicitly a
change of numeraire in order to value an exchange option.

Example 10.64 (Exchange option) We consider an exchange option
whose payoff is (

S1
T − S2

T

)+
where the two stocks S1, S2 are modeled as geometric Brownian motions:

dSi
t = μiSi

tdt + σiSi
tdW i

t , i = 1, 2.

Here W =
(
W 1,W 2

)
is a 2-dimensional Brownian motion with correlation �̄:

d〈W 1,W 2〉t = �̄dt, �̄ ∈]− 1, 1[.

By the results in Section 10.2.6 the market is complete, the martingale mea-
sure is unique and by the pricing formula (10.84) of Theorem 10.58, the arbi-
trage price H of the exchange option under the EMM Q2 with numeraire S2,
is given by

Ht = EQ2
[

S2
t

S2
T

(
S1

T − S2
T

)+ | FW
t

]
= S2

t EQ2

[(
S1

T

S2
T

− 1
)+

| FW
t

]
.

Hence the price of the exchange option is equal to the price of a Call option
with underlying asset Y = S1

S2 and strike 1.
Next we find the Q2-law of the process Y : we first remark that Y is driftless

since it is a Q2-martingale and therefore its dynamics is only determined by the
diffusion coefficient that is independent on the change of measure. Therefore,
by (10.97) we have10

dYt = Yt

(
σ1dW 1

t − σ2dW 2
t

)
=

(by (10.98))

= YtσdŴt,

10 In the notations of (10.97) we have

V = S1, U = S2, σV
t =

(
σ1S1

t , 0
)
, σU

t =
(
0, σ2S2

t

)
.
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where Ŵ is a one-dimensional standard Brownian motion and, as in (10.99),

σ =
√

(σ1)2 + (σ2)2 − 2�̄σ1σ2.

We have thus proved that Y is a geometric Brownian motion with volatility σ
and therefore an explicit Black-Scholes type formula for the exchange option
holds. �

Combining Corollary 10.59 with Lemma 10.62 and Theorem 10.20, we get
the following:

Theorem 10.65 (Change of numeraire) Let U, V be Q-price processes of
the form

dUt = (· · · )dt + σU
t · dWt,

dVt = (· · · )dt + σV
t · dWt,

(10.100)

where W is a d-dimensional Brownian motion with correlation matrix �. Let
QU , QV be the EMMs related to U, V respectively and WU ,WV be the related
Brownian motions. Then the following formula for the change of drift holds:

dWU
t = dWV

t + �

(
σV

t

Vt
− σU

t

Ut

)
dt. (10.101)

Example 10.66 In the Black-Scholes model, let us denote by WB and WS

the Brownian motions with numeraires B and S respectively. Then by (10.101)
we have

dW B
t = dWS

t + σdt.

In particular the dynamics of S under WS is given by

dSt = rStdt + σStdWB
t

= rStdt + σSt

(
dWS

t + σdt
)

=
(
r + σ2

)
Stdt + σStdWS

t . �

10.4.3 Pricing with stochastic interest rate

The aim of this section is to give a fairly general formula for the pricing of
a European call option in a model with stochastic interest rate. This formula
is particularly suitable for the use of Fourier inversion techniques in the case
r is not deterministic. The following result is a special case of a systematic
study of general changes of numeraire that has been carried out by Geman,
El Karoui and Rochet [154]. As already mentioned, in the context of interest
rate theory, changes of numeraires were previously used by Geman [152] and
Jamshidian [186]; this technique was also used by Harrison and Kreps [163],
Harrison and Pliska [164] and even earlier by Merton [250].
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We consider a general market model of the type introduced in Paragraph
10.2 with N = 1 (only one asset S) and d ≥ 1. We assume the existence of an
EMM Q with numeraire B. The main idea is to write the Q-neutral price C
as follows:

C0 = EQ
[
e−
∫

T
0 rsds(ST −K)+

]
= EQ

[
e−
∫ T
0 rsds(ST −K)1{ST≥K}

]
= I1 + I2

where, by (10.83) of Theorem 10.58, we have

I1 = EQ
[
e−
∫ T
0 rsdsST1{ST≥K}

]
= S0E

QS [
1{ST≥K}

]
,

I2 = KEQ
[
e−
∫

T
0 rsds1{ST≥K}

]
= Kp(0, T )EQT [

1{ST≥K}
]
,

by the change the numeraire where in the first term above we use the measure
QS with numeraire S, and for the second term we use the T -forward measure
QT with numeraire the T -bond p(·, T ). Thus we get the following general
pricing formula.

Theorem 10.67 The Q-risk neutral price of a Call option with underlying
S, strike K and maturity T is given by

C0 = S0Q
S (ST ≥ K)−Kp(0, T )QT (ST ≥ K) , (10.102)

where QS and QT denote the EMMs obtained from Q by the change of nu-
meraire S and p(·, T ) respectively.

For the practical use of this formula we have to determine the distribution
of S under the new martingale measures. We first recall the dynamics of S
under the EMM Q with numeraire B and related Brownian motion WQ =(
WQ,1, . . . ,WQ,d

)
with correlation matrix �:

dSt = rtStdt + σtStdWQ,1
t .

Moreover we introduce the d-dimensional process σ̄t = (σt, 0, . . . , 0), and we
assume that

dp(t, T ) = rtp(t, T )dt + p(t, T )σT
t · dWQ

t ,

where σT denotes the d-dimensional volatility process of p(·, T ). Then by
Theorem 10.65 we have that the processes W S and WT , defined by

dWS
t = dWQ

t − �σ̄tdt

and

dWT
t = dWQ

t − �σT
t dt,
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are Brownian motions with correlation matrix �, under the measures QS and
QT respectively. Hence we have

dSt =
(
rt + σ2

t

)
Stdt + σtStdWS,1

t

and

dSt =
(
rt + σt

(
�σT

t

)1)
Stdt + σtStdWT,1

t ,

where
(
�σT

t

)1 denotes the first component of the vector �σT
t .

Remark 10.68 When the short rate r = r(t) is deterministic, as in most
models for equity derivatives, we have p(t, T ) = e−

∫ T
t

r(s)ds and σT = 0: thus
the dynamics of S under Q and QT coincide. �

Finally, we also give the expression of the Radon-Nikodym derivatives for
the changes of measure: by Corollary 10.59, for t ∈ [0, T ] we have

dQS

dQ
|FW

t
=

StB0

BtS0
=

e−
∫ t
0 rsdsSt

S0
,

and

dQT

dQ
|FW

t
=

p(t, T )B0

Btp(0, T )
=

e−
∫ t
0 rsds

p(0, t)
.

10.5 Diffusion-based volatility models

This section is devoted to the analysis of volatility risk with special focus on
the most popular extensions of the Black-Scholes models in the diffusion-based
framework, from local to stochastic volatility models. In order to explain the
systematic differences between the market prices and the theoretical Black-
Scholes prices (cf. Paragraph 7.5), various approaches to model volatility have
been introduced. The general idea is to modify the dynamics of the under-
lying asset, thus obtaining a stochastic process that is more flexible than
the standard geometric Brownian motion. Broadly speaking, the models with
non-constant volatility can be divided in two groups:

• in the first one, the volatility is endogenous, i.e. it is described by a process
that depends on the same risk factors of the underlying asset. In this case,
the completeness of the market is generally preserved;

• in the second one, the volatility is exogenous, i.e. it is described by a
process that is driven by some additional risk factors: for example other
Brownian motions and/or jump processes. In this case the corresponding
market model is generally incomplete.
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10.5.1 Local and path-dependent volatility

Among the models with endogenous volatility, the most popular ones are the
so-called local-volatility models for which σ is assumed to be function of time
and of the price of the underlying asset: the dynamics of the underlying asset
is simply that of a diffusion process

dSt = μ(t, St)Stdt + σ(t, St)StdWt. (10.103)

Under the assumptions of Section 10.3.2 such a model is complete and it is
possible to determine the price and the hedging strategy by solving numeri-
cally a Cauchy problem as in Theorem 10.55.

Actually the dependence of σ on St does not seem to be easily justified from
an intuitive point of view. Nevertheless, local-volatility models have enough
flexibility to give the theoretical price of an option in accordance (at least
approximately) with the implied volatility surface of the market. In order to
replicate an implied volatility surface, the model must be calibrated; in other
terms, a so-called inverse problem must be solved: this consists in determining
the function σ = σ(t, S) such that the theoretical prices match the quoted
market prices. The calibration of the local volatility is an extremely delicate
matter that made several authors in the literature question the effectiveness
and the validity of the model: we refer, for example, to Dumas, Fleming and
Whaley [106] and Cont [75].

Starting from Breeden and Litzenberger’s work [59], Dupire [107] has
shown how, at least theoretically, it is possible to solve the inverse prob-
lem for a local volatility model. In what follows, for the sake of simplicity we
consider the one-dimensional case, with r = 0 and we denote by Γ (0, S;T, ·)
the transition density of the process of the underlying asset, with initial value
S at time 0. In view of the risk-neutral pricing formula, we have that the price
C = C(0, S, T,K) of a European Call option with strike K and maturity T is
equal to

C(0, S, T,K) = EQ
[
(ST −K)+

]
=
∫
R>0

(s−K)+Γ (0, S;T, s)ds.

Now, the second-order distributional derivative, with respect to K, of the
payoff is

∂KK(s−K)+ = δK(s),

where δK is the Dirac’s delta and so, at least formally, we get

∂KKC(0, S, T,K) = Γ (0, S;T,K). (10.104)

By (10.104), as soon as we know all the market prices of the Call options for
all the strikes and maturities, it is theoretically possible to obtain the density
of ST : in other terms, knowing exactly the implied volatility surface means
knowing the transition density of the underlying asset.
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Now let us recall (cf. Theorem 9.46) that the transition density, as a fun-
ction of T,K, satisfies the adjoint PDE associated to the SDE (10.103) and
so

∂T Γ (0, S;T,K) =
1
2
∂KK

(
σ2(T,K)K2Γ (0, S;T,K)

)
. (10.105)

Substituting (10.104) into (10.105) we have

∂TKKC(0, S;T,K) =
1
2
∂KK

(
σ2(T,K)K2∂KKC(0, S;T,K)

)
and integrating in K we get

∂T C(0, S;T,K)− 1
2
σ2(T,K)K2∂KKC(0, S;T,K) = A(T )K + B(T ),

(10.106)
where A,B are arbitrary functions of T . Since, at least formally, the right-
hand side of (10.106) tends to zero as K → +∞, we must have A = B = 0
and so

∂T C(0, S;T,K) =
1
2
σ2(T,K)K2∂KKC(0, S;T,K), K, T > 0. (10.107)

In principle, ∂T C(0, S;T,K) and ∂KKC(0, S;T,K) can be computed once the
implied volatility surface is known: therefore from (10.107) we get

σ2(T,K) =
2∂T C(0, S;T,K)

K2∂KKC(0, S;T,K)
, (10.108)

which is the expression of the volatility function to plug as a coefficient into the
SDE (10.103) in order for the local-volatility model to replicate the observed
volatility surface.

Unfortunately formula (10.108) cannot be used in practice since the im-
plied volatility surface is known only at a finite number of strikes and maturi-
ties: more precisely, the computation of the derivatives ∂T C, ∂KKC strongly
depends on the interpolation scheme used to build a continuous surface start-
ing from discrete data, this scheme being necessary to compute the derivatives
of the price. This makes formula (10.108) and the corresponding volatility sur-
face highly unstable.

The true interest in equation (10.107) lies in the fact that, by solving the
Cauchy problem for (10.107) with initial datum C(0, S; 0,K) = (S − K)+,
it is possible to obtain the prices of the Call options for all the strikes and
maturities in one go.

A variant of the local volatility is the so-called path-dependent volati-
lity, introduced by Hobson and Rogers [169] and generalized by Foschi and
Pascucci [135]. Path-dependent volatility describes the dependence of the vo-
latility on the movements of the asset in terms of deviation from trend (cf.
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Figure 7.9). The model is very simple: we consider a function ψ that is non-
negative, piecewise continuous and integrable over ]−∞, T ]. We assume that
ψ is strictly positive on [0, T ] and we set

Ψ(t) =
∫ t

−∞
ψ(s)ds.

We define the weighted average process of the underlying asset as

Mt =
1

Ψ(t)

∫ t

−∞
ψ(s)Zsds, t ∈ ]0, T ],

where Zt = log(e−rtSt) is the logarithm of the discounted price. The Hobson-
Rogers model corresponds to the choice ψ(t) = eαt with α a positive param-
eter. By the Itô formula we have

dMt =
ϕ(t)
Φ(t)

(Zt −Mt) dt.

Assuming the following dynamics for the logarithm of the price

dZt = μ(Zt −Mt)dt + σ(Zt −Mt)dWt,

with suitable functions μ, σ, we get the pricing PDE

σ2(z −m)
2

(∂zzf − ∂zf)+
ϕ(t)
Φ(t)

(z−m)∂mf + ∂tf = 0, (t, z,m) ∈ ]0, T [×R2.

(10.109)
Equation (10.109) is a Kolmogorov equation, similar to the ones that arise in
the pricing problem for Asian options: as we have seen in Section 9.5.2, for such
equations an existence and uniqueness theory for the Cauchy problem, similar
to that for uniformly parabolic PDEs, is available. Further, since no additional
risk factor is introduced, the path-dependent volatility model is complete. As
shown by Foschi and Pascucci [136], a suitable choice of the function σ allows
to replicate the volatility surface of the market and reproduce some typical
feature like the rapid increase of implied volatility corresponding to large
decreases of the underlying asset.

10.5.2 CEV model

We consider a local volatility model where the volatility depends on the un-
derlying asset according to a power law

σ(t, St) = σ(t)Sβ−1
t (10.110)

with σ(t) deterministic function of time and 0 < β < 1. This model was first
proposed in Cox [79] where it was called the constant elasticity of variance
(CEV) model.
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Fig. 10.1. CEV-implied volatilities for T − t = 1
2
, r = 5%, σ(t) ≡ 30% and different

values of β

The function in (10.110) does not satisfy the standard assumption for the
coefficient of a SDE which guarantee the strong uniqueness of the solution:
more precisely, by the classical results on one-dimensional SDEs (see, for in-
stance, Section 5.5.5 in Karatzas and Shreve [201]), it is known that there
exists a pathwise unique solution of the SDE

dSt = σ(t)Sβ
t dWt (10.111)

for any β ≥ 1
2 , while uniqueness fails to hold for any β ∈]0, 1/2[; further, the

point 0 is an attainable state for the process S. On the other hand, Delbaen
and Shirakawa [92] studied the arbitrage free option pricing problem and
proved that, for any 0 < β < 1, there exists a unique EMM measure under
which the risk-neutral dynamics of the asset is given by

dSt = rStdt + σ(t)Sβ
t dWt.

Thus the model is complete and the arbitrage price of a European Call option,
with strike K and maturity T , is equal to C(t, St) = e−r(T−t)u(t, St) where

u(t, s) = E
[(

St,s
T −K

)+]
and, by the Feynman-Kac formula, u solves the Cauchy problem{

∂tu(t, s) + σ2(t)s2β

2 ∂ssu(t, s) + rs∂su(t, s) = 0, t ∈]0, T [, s > 0,

u(T, s) = (s−K)+ , s > 0.

(10.112)
Notice that for β = 1, (10.112) yields the standard Black-Scholes model.

A main feature of the CEV model is that volatility changes inversely with
the price, and this reproduces a well documented characteristic of actual price
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movements, recognized by several econometric studies. From the point of view
of volatility modeling, the CEV model introduces the skew pattern that is
commonly observed in some markets (see Figure 10.1) but it seems incapable
of reproducing realistic smiles. Moreover, a time dependent parameter σ(t) is
required to accommodate the observed term structure of implied volatility.

The transition density of the price in the CEV model can be explicitly
represented in terms of special functions: in particular, Cox [79] expressed the
price of a Call option as the sum of a series of Gamma cumulative distribution
functions. It is known that these formulae give a good local (at-the-money)
approximation of the option price. For instance, Figure 10.2 shows the Cox
option prices in the case β = 3

4 and T = 1
3 with a number n of terms in the

series expansion equal to n = 400, 420, 440, 460: it is evident that for far from
the money options this approximation gives wrong prices unless we consider
a high number of terms in the series expansion. This is particularly sensible
for short times to maturity.

On the other hand, the approximation by Shaw [307] (see also Schroder
[303] and Lipton [239]) expresses the payoff random variable in terms of Bessel
functions and then uses numerical integration to provide the option price.
Since it is an adaptive method, the representation of prices is valid globally
even if the method may become computationally expensive when we have to
compute deep out-of or in-the money option prices.

Here we present another approach due to Hagan and Woodward [160] who
employed singular perturbation techniques to obtain an analytical approxi-
mation formula for the implied volatility in the CEV model. Singular pertur-
bation methods were largely originated by workers in fluid dynamics but their
use has spread throughout other fields of applied mathematics: Kevorkian and
Cole [205], [206] are reference texts on the subject. We present this approach
in some detail since it is quite general and can be applied in different settings
(an example is given by the SABR stochastic volatility model).

We recall that the implied volatility is defined as the value of the volatility
to be inserted in the classical Black-Scholes formula to obtain a given Call or
Put option price (cf. Section 7.5). The main result in [160] is the following:

Theorem 10.69 The implied volatility generated by the CEV model (10.111),
with β ∈]0, 1[, is approximated by the following formula:

σCEV(St, T,K) =
√

αt,T

F 1−β
t

(
1 +

(1− β)(2 + β)
6

(
Ft −K

Ft

)2

+
(1− β)2(T − t)αt,T

24F
2(1−β)
t

) (10.113)

where

αt,T =
1

T − t

∫ T

t

e2r(T−τ)(1−β)σ2(τ)dτ
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Fig. 10.2. CEV-expansion option price by Cox [79], in the case β = 3
4

and T = 1
3

with a number n of terms in the series expansion equal to n = 400, 420, 440, 460

and

Ft =
er(T−s)St + K

2
.

Proof. The proof proceeds in some steps.

First step. We consider the pricing problem

{
∂tu(t, s) + σ2(t)A2(s)

2 ∂ssu(t, s) + rs∂su(t, s) = 0, t ∈]0, T [, s > 0,

u(T, s) = (s−K)+ , s > 0,

(10.114)
where, for greater convenience, we put A(s) = sβ . We also set ε = A(K) and

τ(t) =
∫ T

t

(
er(T−�)σ(�)A

(
e−r(T−�)

))2

d�, x(t, s) =
er(T−t)s−K

ε
.

(10.115)
By the change of variable

u(t, s) = εQ(τ(t), x(t, s)), (10.116)

problem (10.114) is equivalent to

{
∂τQ(τ, x)− A2(K+εx)

2ε2 ∂xxQ(τ, x) = 0, τ > 0, x > −K
ε ,

Q(0, x) = x+, x > −K
ε .

(10.117)
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Next we consider the Taylor expansion

A(K + εx) = A(K)
(

1 + εxν1 +
1
2
ε2x2ν2 + O(ε3)

)
(10.118)

as ε→ 0, where

ν1 =
A′(K)
A(K)

, ν2 =
A′′(K)
A(K)

. (10.119)

Plugging (10.118) into (10.117), we get{
∂τQ− 1

2∂xxQ = εxν1∂xxQ + ε2(ν2
1+ν2)
2 ∂xxQ + O(ε3), τ > 0, x > −K

ε ,

Q(0, x) = x+, x > −K
ε .

(10.120)

Second step. Let

Γ (t, x) =
1√
2πt

e−
x2
2t

be the fundamental solution of the heat equation. We set

Q̃ = G + εG1 + ε2G2

where
G(t, x) = x

∫ x

−∞
Γ (t, y)dy + tΓ (t, x) (10.121)

is the positive solution to the Cauchy problem{
∂tG(t, x)− 1

2∂xxG(t, x) = 0, t > 0, x ∈ R,

G(0, x) = x+, x ∈ R,
(10.122)

while the functions G1, G2 are defined recursively by{
∂tG1 − 1

2∂xxG1 = ν1x∂xxG, t > 0, x ∈ R,

G1(0, x) = 0, x ∈ R,
(10.123){

∂tG2 − 1
2∂xxG2 = ν1x∂xxG1 + 1

2

(
ν2
1 + ν2

)
x2∂xxG, t > 0, x ∈ R,

G2(0, x) = 0, x ∈ R.

(10.124)

A direct computation shows that{
∂tQ̃− 1

2∂xxQ̃ = εxν1∂xxQ̃ + ε2(ν2
1+ν2)
2 ∂xxQ̃ + O(ε3), τ > 0, x > −K

ε ,

Q̃(0, x) = x+, x > −K
ε ,

and therefore, by comparison with problem (10.120), we take Q̃ as an approx-
imation of the solution Q.
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Third step. Now we derive the explicit expression of Q̃. We first remark that,
as a simple consequence of the following identities

∂xΓ (t, x) = −x

t
Γ (t, x), (10.125)

∂tΓ (t, x) =
1
2
∂xxΓ (t, x) =

x2 − t

2t2
Γ (t, x), (10.126)

we have

∂tG(t, x) =
1
2
Γ (t, s), ∂xG(t, x) =

∫ x

−∞
Γ (t, y)dy, (10.127)

∂ttG(t, x) =
x2 − t

4t2
Γ (t, x), ∂xtG(t, x) = − x

2t
Γ (t, x), ∂xxG(t, x) = Γ (t, x),

(10.128)

∂tttG(t, x) =
x4 − 6x2t + 3t2

8t4
Γ (t, x). (10.129)

Now we prove that

G1(t, x) = ν1tx∂tG(t, x). (10.130)

Indeed by the classical representation formula (A.67) for solutions of the
Cauchy problem, we have

G1(t, x) = ν1

∫ t

0

∫
R

Γ (t− s, x− y)y∂yyG(s, y)dyds =

(by (10.128))

= −ν1

∫ t

0

∫
R

Γ (t− s, x− y)s∂yΓ (s, y)dyds =

(integrating by parts and since ∂yΓ (·, x− y) = −∂xΓ (·, x− y))

= −ν1

∫ t

0

s∂x

∫
R

Γ (t− s, x− y)Γ (s, y)dyds =

(by the reproduction property (6.26) and then again by (10.128))

= −ν1t
2

2
∂xΓ (t, x) = ν1tx∂tG(t, x)

and this proves (10.130). A similar argument yields

G2 = ν2
1

(
t4∂tttG +

8t3

3
∂ttG +

t2

2
∂tG

)
+ ν2

(
2t3

2
∂ttG +

t2

2
∂tG

)
=
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(by (10.128) and (10.129))

=
t

12
(
x2(4ν2 + ν2

1) + t(2ν2 − ν2
1)
)
∂tG +

ν2
1 t2x2

2
∂ttG. (10.131)

Summing up, we have

Q̃(τ, x) = G(τ, x) + εG1(τ, x) + ε2G2(τ, x)

= G(τ, x) +
(

εν1τx +
ε2τ

12
(
x2(4ν2 + ν2

1) + τ(2ν2 − ν2
1)
))

∂τG(τ, x)

+
ε2ν2

1τ2x2

2
∂ττG(τ, x),

and therefore

Q̃(τ, x) = G(τ̃ , x) + O(ε3), as ε→ 0,

where

τ̃ = τ

(
1 + εν1x +

ε2

12
(
x2(4ν2 + ν2

1) + τ(2ν2 − ν2
1)
))

.

Thus, ignoring the errors of order greater than or equal to three, by (10.116)
we get the following approximation formula for the price of the Call option:

C(t, St) = e−r(T−t)u(t, St) = e−r(T−t)A(K)G
(

τ̃ ,
er(T−t)St −K

A(K)

)
=

(since εG(t, x) = G(ε2t, εx) for ε > 0)

= e−r(T−t)G
(
A2(K)τ̃ , er(T−t)St −K

)
(10.132)

with G as in (10.121) and

τ̃ = τ

(
1 + ν1

(
er(T−t)St −K

)
+

1
12

(
er(T−t)St −K

)2

(4ν2 + ν2
1)

+ τ
A2(K)

12
(2ν2 − ν2

1)
)

,

(10.133)

where

τ =
∫ T

t

(
er(T−�)σ(�)A

(
e−r(T−�)

))2

d�.

Fourth step. We finally prove the approximation formula (10.113) for the
implied volatility. For the special case of the Black-Scholes model, that is with
A(s) = s and σ(t) = σimpl, the approximation formula (10.132)-(10.133) reads

CBS(t, St) = e−r(T−t)G
(
K2τBS, e

r(T−t)St −K
)
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with G as in (10.121) and

τBS = σ2
impl(T − t)

(
1 +

1
K

(
er(T−t)St −K

)
+

1
12K2

(
er(T−t)St −K

)2

− 1
12

σ2
impl(T − t)

)
.

(10.134)

Since G(τ, x) is an increasing function of τ , the Black-Scholes price matches
the CEV price if and only if τ̃ in (10.133) equals τ in (10.134): solving this
equation with respect to σimpl, we find formula (10.113) for the implied vola-
tility in the CEV model. �

10.5.3 Stochastic volatility and the SABR model

Local volatility, and more generally complete market models, are commonly
considered unrealistic and unable to hedge the volatility risk. Hagan, Kumar,
Lesniewski and Woodward [159] argued that local volatility models have an
inherent flaw of predicting the wrong dynamics of the implied volatility. More-
over several studies support the fact that the stock price volatility should be
modeled by an autonomous stochastic process; the presence of jumps in the
dynamics of risky assets and/or their volatilities is another well documented
characteristic (see, for instance, the accounts given by Musiela and Rutkowski
[261], Cont and Tankov [76] and the bibliographies therein).

Typically, a stochastic volatility model is a Markovian model of the form
examined in Section 10.3: in the one-dimensional case, the stock price S is
given by

dSt = μ(t, St)Stdt + σtStdW 1

where σt is a stochastic process, solution to the SDE

dσt = a(t, σt)dt + b(t, σt)dW 2
t ,

and
(
W 1,W 2

)
is a two-dimensional correlated Brownian motion. Many diffe-

rent specifications of stochastic volatility have been proposed in the literature:
among others we mention Hull and White [175], Johnson and Shanno [189],
Stein and Stein [316], Heston [165], Ball and Roma [18], Renault and Touzi
[290]. The Heston model, that is one of the classical and most widely used
models, was already presented in Example 10.33: the related numerical issues
will be discussed in Chapter 15.

Another popular model, also used in the modelling of fixed income mar-
kets, is the so called SABR model proposed and analyzed by Hagan, Kumar,
Lesniewski and Woodward [159]. The SABR model is the natural extension
of the classical CEV model to stochastic volatility: the risk-neutral dynamics
of the forward price Ft = er(T−t)St is given by

dFt = αtF
β
t dW 1

t ,

dαt = ναtdW 2
t ,
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where
(
W 1,W 2

)
is a Brownian motion with constant correlation �. The sin-

gular perturbation techniques presented in Section 10.5.2 can be employed
to prove the following approximation formula of the implied volatility in the
SABR model:

σ(K,T,F0, r) =
α0

(F0K)
1−β

2

(
1 + (1−β)2

24 log2
(

F0
K

)
+ (1−β)4

1920 log4
(

F0
K

)) z

x(z)
·

·
(

1 +
(

(1− β)2α2
0

24(F0K)1−β
+

ρβνα0

4(F0K)(1−β)/2
+

(2− 3ρ2)ν2

24

)
T

)
,

where
z =

ν

α0
(F0K)(1−β)/2 log

F0

K

and

x(z) = log

√
1− 2�z + z2 + z − �

1− �
.

We mention that Kahl and Jackel [193], Rogers and Veraart [292] have
recently proposed stochastic-local volatility models alternative to SABR, in
which option prices for European plain vanilla options have accurate closed-
form expressions. Moreover, Benhamou, Gobet and Miri in [39] and [40] pro-
posed a recent methodology based on stochastic analysis and Malliavin cal-
culus to derive tractable approximations of option prices in various stochastic
volatility models.

A common feature of stochastic volatility models is the market incomplete-
ness: typically, in a market model with stochastic volatility and/or jumps, it
is not possible to replicate all the payoffs and the arbitrage price is not unique
because it depends on the market price of risk. On the other hand, in practice
these models can be effectively used by employing a procedure of market com-
pletion, analogous to that we presented in the Gamma and Vega hedging (cf.
Section 7.4.3). The parameters of the model are usually calibrated to market
data in order to determine the market price of risk: then, in some cases a
hedging strategy for an exotic derivative can be constructed by using a plain
vanilla option, besides the bond and the underlying assets.

It is well known that stochastic volatility models account for long term
smiles and skews but they cannot give rise to realistic short-term implied
volatility patterns. To cope with these and other problems, more recently
models with jumps have become increasingly popular. Financial modeling
with jump processes will be discussed in Chapters 13, 14 and 15.
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American options

We present the main results on the pricing and hedging of American deriva-
tives by extending to continuous time the ideas introduced in the discrete-
market setting in Section 2.5. Even in the simplest case of the Black-Scholes
market model, the hedging and pricing problems for American options need
very refined mathematical tools. In the complete-market setting, Bensous-
san [41] and Karatzas [198], [199] developed a probabilistic approach based
upon the notion of Snell envelope in continuous time and upon the Doob-
Meyer decomposition. The problem was also studied by Jaillet, Lamberton
and Lapeyre [185] who employed variational techniques, and by Oksendal
and Reikvam [273], Gatarek and Świech [149] in the framework of the theory
of viscosity solutions. American options for models with jumps were studied
among others by Zhang [345], Mulinacci [260], Pham [279], Levendorskii [235],
Ekström [119], Ivanov [181], Lamberton and Mikou [227], Bayraktar and Xing
[36].

In this chapter we present an analytical Markovian approach, based on the
existence results for the obstacle problem proved in Section 8.2 and on the
Feynman-Kač representation Theorem 9.48. In order to avoid technicalities
and to show the main ideas in a clear fashion, we consider first the Black-
Scholes model and then in Section 11.3 we treat the case of a complete market
model with d risky assets.

11.1 Pricing and hedging in the Black-Scholes model

We consider the Black-Scholes model with risk-free rate r on a bounded time
interval [0, T ]. Since in the theory of American options dividends play an es-
sential role, we assume the following risk-neutral dynamics for the underlying
asset under the EMM Q:

dSt = (r − q)Stdt + σStdWt, (11.1)

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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where as usual, σ is the volatility parameter, q ≥ 0 is the dividend yield and
W is a real Brownian motion on the filtered space (Ω,F , Q,Ft). Let us point
out that the discounted price S̃t = e−rtSt follows the dynamics

dS̃t = −qS̃tdt + σS̃tdWt. (11.2)

Definition 11.1 An American option is a process of the form

(ψ(t, St))t∈[0,T ]

where ψ is a convex Lipschitz continuous function on [0, T ] × R>0: ψ(t, St)
represents the premium obtained by exercising the option at time t.

An early-exercise strategy is a stopping time on (Ω,F , Q,Ft) taking values
in [0, T ]: we denote by TT the family of all exercise strategies. We say that
τ0 ∈ TT is an optimal strategy if we have that

EQ
[
e−rτ0ψ(τ0, Sτ0)

]
= sup

τ∈TT

EQ
[
e−rτψ(τ, Sτ )

]
.

The following result relates the parabolic obstacle problem to the correspond-
ing problem for the Black-Scholes differential operator

LBSf(t, S) =
σ2S2

2
∂SSf(t, S) + (r − q)S∂Sf(t, S) + ∂tf(t, S)− rf(t, S).

We recall Definition 8.20 of strong solution of an obstacle problem and that any
strong solution belongs to the parabolic Hölder space C1+α

P,loc, for any α ∈]0, 1[.

Theorem 11.2 There exists a unique strong solution f of the obstacle prob-
lem {

max{LBSf, ψ − f} = 0, in ]0, T [×R>0,

f(T, ·) = ψ(T, ·), on R>0,
(11.3)

satisfying the following properties:

i) for every (t, y) ∈ [0, T [×R>0, we have

f(t, y) = sup
τ∈TT
τ∈[t,T ]

EQ
[
e−r(τ−t)ψ(τ, St,y

τ )
]
, (11.4)

where St,y is a solution of the SDE (11.1) with initial condition St = y;
ii) f admits first-order partial derivative with respect to S in the classical

sense and we have

∂Sf ∈ C ∩ L∞(]0, T [×R>0). (11.5)

Proof. With the change of variables

u(t, x) = f(t, ex), ϕ(t, x) = ψ(t, ex)
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problem (11.3) is equivalent to the obstacle problem{
max{Lu,ϕ− u} = 0, in ]0, T [×R,

u(T, ·) = ϕ(T, ·), on R,

for the parabolic operator with constant coefficients

Lu =
σ2

2
∂xxu +

(
r − q − σ2

2

)
∂xu + ∂tu− ru.

The existence of a strong solution is guaranteed by Theorem 8.21 and Re-
mark 8.22. Furthermore, again by Remark 8.22, u is bounded from above by
a super-solution and from below by ϕ so that an exponential-growth estimate
similar to (9.66) holds: then we can apply the Feynman-Kač representation
theorem, Theorem 9.48, which justifies formula (11.4). Finally, the uniqueness
of the solution follows from (11.4). Moreover, by proceeding as in the proof
of Proposition 9.49, we get the global boundedness of the gradient. �

We now consider a strategy h = (αt, βt), with α ∈ L2
loc and β ∈ L1

loc, with
value

Vt(h) = αtSt + βtBt.

We recall that h is self-financing if and only if

dVt(h) = αt (dSt + qStdt) + βtdBt.

If we set
Ṽt(h) = e−rtVt(h),

we have:

Proposition 11.3 A strategy h = (α, β) is self-financing if and only if

dṼt(h) = αt

(
dS̃t + qS̃tdt

)
,

i.e.

Ṽt(h) = V0(h) +
∫ t

0

αsdS̃s +
∫ t

0

αsqS̃sds

= V0(h) +
∫ t

0

αsσS̃sdWs. (11.6)

In particular every self-financing strategy is uniquely determined by its initial
value and its α-component. Furthermore, Ṽ (h) is a Q-local martingale.

Proof. The proof is analogous to that of Proposition 7.3, the only difference
being the term due to the dividend. Formula (11.6) follows from (11.2). �
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On the grounds of the previous proposition, the discounted value of any
self-financing strategy is a Q-local martingale. In what follows we are interested
in the strategies whose value is a strict martingale. Then we denote by A
the family of self-financing strategies h = (α, β) such that α ∈ L2(P ): a
noteworthy example is represented by the strategies where α is a bounded
process. We recall that, by Proposition 10.41, the discounted value of every
h ∈ A is a Q-martingale. Let us now prove a version of the no-arbitrage
principle.

Lemma 11.4 Let h1, h2 ∈ A be two self-financing strategies such that

Vτ (h1) ≤ Vτ (h2) (11.7)

for some τ ∈ TT . Then
V0(h1) ≤ V0(h2).

Proof. The claim is an immediate consequence of (11.7), of the martingale
property of both Ṽ (h1) and Ṽ (h2) and of Doob’s optional sampling theorem,
Theorem 3.56. �

Just as in the discrete case, we define the rational price of an American
option by comparing it from above and below with the value of suitable self-
financing strategies. This kind of argument is necessary because, differently
from the European case, the payoff ψ(t, St) of an American option is not
replicable in general, i.e. no self-financing strategy assumes the same value
of the payoff at every single time. Indeed by Proposition 11.3 the discounted
value of a self-financing strategy is a local martingale (or, in analytical terms,
a solution of a parabolic PDE) while ψ(t, St) is a generic process.

Let us denote by

A+
ψ = {h ∈ A | Vt(h) ≥ ψ(t, St), t ∈ [0, T ] a.s.},

the family of self-financing strategies that super-replicate the payoff ψ(t, St).
Intuitively, in order to avoid arbitrage opportunities, the initial price of the
American option must be less than or equal to the initial value V0(h) for every
h ∈ A+

ψ .
Furthermore, we set

A−ψ = {h ∈ A | there exists τ ∈ TT s.t. ψ(τ, Sτ ) ≥ Vτ (h) a.s.}.

We can think of h ∈ A−ψ as a strategy on which we assume a short position to
obtain funds to invest in the American option. In other words, V0(h) represents
the amount that we can initially borrow to buy the option that has to be
exercised, exploiting the early-exercise feature, at time τ to obtain the payoff
ψ(τ, Sτ ) which is greater or equal to Vτ (h), amount necessary to close the
short position on the strategy h. To avoid arbitrage opportunities, intuitively
the initial price of the American option must be greater than or equal to V0(h)
for all h ∈ A−ψ .
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These remarks are formalized by the following results. In particular, as an
immediate consequence of Lemma 11.4, we have the following:

Proposition 11.5 If h1 ∈ A−ψ and h2 ∈ A+
ψ then we have

V0(h1) ≤ V0(h2).

Further, for every h1, h2 ∈ A−ψ ∩ A+
ψ we have

V0(h1) = V0(h2).

By Theorem 11.7, there exists a strategy h̄ ∈ A+
ψ ∩A−ψ : then, by Proposition

11.5 the following definition is well-posed.

Definition 11.6 The arbitrage price of the American option ψ(t, St) is the
initial value of any strategy h̄ ∈ A+

ψ ∩ A−ψ :

V0(h̄) = inf
h∈A+

ψ

V0(h) = sup
h∈A−ψ

V0(h).

Theorem 11.7 Let f be the strong solution to the obstacle problem (11.3).
The self-financing strategy h = (α, β) defined by

V0(h) = f(0, S0), αt = ∂Sf(t, St)

belongs to A+
ψ ∩ A−ψ . Consequently f(0, S0) is the arbitrage price of ψ(t, St).

Furthermore an optimal exercise strategy is defined by

τ0 = inf{t ∈ [0, T ] | f(t, St) = ψ(t, St)}, (11.8)

and we have that

V0(h) = EQ
[
e−rτ0ψ(τ0, Sτ0)

]
= sup

τ∈TT

EQ
[
e−rτψ(τ, Sτ )

]
,

where
St = S0e

σWt+
(

r−q−σ2
2

)
t

is the solution of the SDE (11.1) with initial condition S0.

Proof. The idea is to use the Itô formula to compute the stochastic differen-
tial of f(t, St) and to separate the martingale part from the drift part of the
process. We recall that, by definition of strong solution, (cf. Definition 8.20),
f ∈ Sp

loc([0, T ]×R>0) and so it does not belong in general to C2. Consequently
we have to use a weak version of the Itô formula: however, since we do not
have a global estimate of the second derivatives1 of f (and therefore of LBSf),
1 It is possible to prove (cf. for example [225]) the following global estimate

‖∂tf(t, ·)‖L∞(R>0) + ‖∂SSf(t, ·)‖L∞(R>0) ≤ C√
T − t

and then we could use it as in Remark 5.40 in order to prove the validity of the
Itô formula for f .
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but only a local one, we cannot use Theorem 5.37 directly, and we must use
a localization argument. After fixing R > 0, let us consider the stopping time

τR = T ∧ inf{t | St ∈]0, 1/R[∪]R,+∞[}.

By the standard regularization argument used in the proof of Theorems 5.37
and 9.48, we can prove that, for all τ ∈ TT , we have

e−r(τ∧τR)f(τ ∧ τR, Sτ∧τR) = f(0, S0) +
∫ τ∧τR

0

σS̃s∂Sf(s, Ss)dWs

+
∫ τ∧τR

0

e−rsLBSf(s, Ss)ds

(11.9)

or equivalently, by (11.6),

e−r(τ∧τR)f(τ ∧ τR, Sτ∧τR) = Ṽτ∧τR +
∫ τ∧τR

0

e−rsLBSf(s, Ss)ds, (11.10)

where Ṽ is the discounted value of the self-financing strategy h̄ = (α, β)
defined by the initial value f(0, S0) and αt = ∂Sf(t, St). Let us point out the
analogy with the hedging strategy and the Delta of a European option (cf.
Theorem 7.13).

We observe that Ṽ is a martingale since ∂Sf is a continuous, bounded
function by (11.5), and therefore h̄ ∈ A. Let us prove that, for all τ ∈ TT , we
have that

lim
R→∞

Ṽτ∧τR = Ṽτ . (11.11)

Indeed

E

[(∫ τ

τ∧τR

σS̃s∂Sf(s, Ss)dWs

)2
]

=E

⎡⎣(∫ T

0

σS̃t∂Sf(t, St)1{τ∧τR≤t≤τ}dWt

)2
⎤⎦ =

(by Itô isometry, since the integrand belongs to L2)

= E

[∫ T

0

(
σS̃t∂Sf(t, St)1{τ∧τR≤t≤τ}

)2

dt

]
−−−−→
R→∞

0

by the dominated convergence theorem, being ∂Sf ∈ L∞.

Now we can prove that h̄ ∈ A+
ψ ∩A−ψ . First of all, since LBSf ≤ 0 a.e. and

St has positive density, by (11.10), we have

Vt∧τR ≥ f(t ∧ τR, St∧τR)
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for all t ∈ [0, T ] and R > 0. Taking the limit in R, by (11.11) and the continuity
of f , we get

Vt ≥ f(t, St) ≥ ψ(t, St), t ∈ [0, T ],

and this proves that h̄ ∈ A+
ψ .

Secondly, since LBSf(t, St) = 0 a.s. on {τ0 ≥ t} with τ0 defined by (11.8),
again by (11.10) we have

Vτ0∧τR = f(τ0 ∧ τR, Sτ0∧τR)

for all R > 0. Taking the limit in R as above, we get

Vτ0 = f(τ0, Sτ0) = ψ(τ0, Sτ0).

This proves that h̄ ∈ A−ψ and concludes the proof. �

11.2 American Call and Put options in the Black-Scholes
model

By Theorem 11.7 we have the following expressions for the prices of Call and
Put American options in the Black-Scholes model, with risk-neutral dynamics
(11.1) for the underlying asset:

C(T, S0,K, r, q) = sup
τ∈TT

E

[
e−rτ

(
S0e

σWτ+
(

r−q−σ2
2

)
τ −K

)+
]

,

P (T, S0,K, r, q) = sup
τ∈TT

E

[
e−rτ

(
K − S0e

σWτ+
(

r−q−σ2
2

)
τ
)+
]

.

In the preceding expressions, C(T, S0,K, r, q) and P (T, S0,K, r, q) represent
the prices at time 0 of Call and Put American options respectively, with
maturity T , initial price of the underlying asset S0, strike K, interest rate r and
dividend yield q. For American options explicit formulas as in the European
case are not known, and in order to compute the prices and the hedging
strategies we have to resort to numerical methods.

The following result establishes a symmetry relation between the prices of
American Call and Put options.

Proposition 11.8 We have

C(T, S0,K, r, q) = P (T,K, S0, q, r). (11.12)

Proof. We set
Zt = eσWt−σ2

2 t,

and recall that Z is a Q-martingale with unitary mean. Moreover, the process

W̃t = Wt − σt
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is a Brownian motion with respect to the measure Q̃ defined by

dQ̃

dQ
= ZT .

Then we have

C(T, S0,K, r, q) = sup
τ∈TT

EQ

[
Zτe−qτ

(
S0 −Ke

−σWτ+
(

q−r+ σ2
2

)
τ
)+
]

= sup
τ∈TT

EQ

[
ZT e−qτ

(
S0 −Ke

−σWτ+
(

q−r+ σ2
2

)
τ
)+
]

= sup
τ∈TT

EQ̃

[
e−qτ

(
S0 −Ke

−σW̃τ+
(

q−r−σ2
2

)
τ
)+
]

.

The claim follows because, by symmetry, −W̃ is a Q̃-Brownian motion. �

Now we state a Put-Call parity formula for American options, analogous
to Corollaries 1.1 and 1.2. The proof is a general consequence of the absence
of arbitrage opportunities and is left as an exercise.

Proposition 11.9 (Put-Call parity for American options) Let C,P
be the arbitrage prices of American Call and Put options, respectively, with
strike K and maturity T . The following relations hold:

St −K ≤ Ct − Pt ≤ St −Ke−r(T−t), (11.13)

and
(K − St)+ ≤ Pt ≤ K. (11.14)

Now we study some qualitative properties of the prices: in view of Propo-
sition 11.8 it is enough to consider the case of the American Put option. In
the following result we denote by

P (T, S) = sup
τ∈TT

E

[
e−rτ

(
K − Se

σWτ+
(

r−q−σ2
2

)
τ
)+
]

, (11.15)

the price of the American Put option.

Proposition 11.10 The following properties hold:

i) for all S ∈ R>0, the function T �→ P (T, S) is increasing. In other words,
if we fix the parameters of the option, the price of the Put option decreases
as we get closer to maturity;

ii) for all T ∈ [0, T ], the function S �→ P (T, S) is decreasing and convex;
iii) for all (T, S) ∈ [0, T [×R>0 we have that

−1 ≤ ∂SP (T, S) ≤ 0.
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Proof. i) is trivial. ii) is an immediate consequence of (11.15), of the mono-
tonicity and convexity properties of the payoff function and of the fact that
those properties are preserved by taking the supremum over all stopping times:
indeed, if (gτ ) is a family of increasing and convex functions then also

g := sup
τ

gτ

is increasing and convex.
Then ∂SP (T, S) ≤ 0 since S �→ P (T, S) is decreasing. Furthermore, if

ψ(S) = (K − S)+ then we have

|ψ(S)− ψ(S′)| ≤ |S − S′|,

and so the third property follows from the argument used in the proof of
Proposition 9.49, by observing that∣∣∣∣E [e−rτψ

(
S0e

σWτ+
(

r−q−σ2
2

)
τ
)
− e−rτψ

(
S′0e

σWτ+
(

r−q−σ2
2

)
τ
)]∣∣∣∣

≤ |S0 − S′0|E
[
e

σWτ−
(

q+ σ2
2

)
τ
]
≤

(since q ≥ 0)

≤ |S0 − S′0|E
[
eσWτ−σ2

2 τ
]

=

(since the exponential martingale has unitary mean)

= |S0 − S′0|. �

In the last part of this section, we study the relation between the prices
of the European Put option and American Put option by introducing the
concept of early exercise premium. In the sequel we denote by f = f(t, S) the
solution of the obstacle problem (11.3) relative to the payoff function of the
Put option

ψ(t, S) = (K − S)+.

For t ∈ [0, T ], we define

S∗(t) = inf{S > 0 | f(t, S) > ψ(t, S)}.

S∗(t) is called critical price at time t and it corresponds to the point where f
“touches” the payoff ψ.

Lemma 11.11 For all (t, S) ∈ [0, T [×R>0, we have that

LBSf(t, S) = (qS − rK)1{S≤S∗(t)}. (11.16)

In particular LBSf is a bounded function.
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Proof. First of all let us observe that S∗(t) < K: indeed if we had S∗(t) ≥ K
then it should hold that

f(t,K) = ψ(t,K) = 0

and this is absurd (since f > 0 by (11.4)). Then by the convexity of S �→
f(t, S) (that follows from Proposition 11.10-ii)) we infer that

i) f(t, S) = K − S for S ≤ S∗(t);
ii) f(t, S) > ψ(t, S) for S > S∗(t).

So we have that

LBSf(t, S) =

{
(qS − rK), for S ≤ S∗(t),
0, a.e. for S > S∗(t). �

Now we go back to formula (11.9) with τ = T : since LBSf is bounded, we
can take the limit as R→ +∞ and then get

e−rT f(T, ST ) = f(0, S0) +
∫ T

0

e−rtLBSf(t, St)dt +
∫ T

0

σS̃t∂Sf(t, St)dWt,

and taking expectation, by (11.16),

p(T, S0) = P (T, S0) +
∫ T

0

e−rtEQ
[
(qSt − rK)1{St≤S∗(t)}

]
dt, (11.17)

where p(T, S0) and P (T, S0) denote the price at time 0 of the European and
American options respectively, with maturity T . The expression (11.17) gives
the difference P (T, S0) − p(T, S0), usually called early exercise premium: it
quantifies the value of the possibility of exercising before maturity. Formula
(11.17) has been proved originally by Kim [208].

11.3 Pricing and hedging in a complete market

Let us consider a market model consisting of d risky assets Si
t , i = 1, . . . , d,

and one non-risky asset Bt, t ∈ [0, T ]. We suppose that

Si
t = eXi

t , i = 1, . . . , d,

where X = (X1, . . . ,Xd) is solution of the system of SDEs

dXi
t = bi(t,Xt)dt + σi(t,Xt)dW i

t , i = 1, . . . , d, (11.18)

and W =
(
W 1, . . . ,W d

)
is Brownian motion on the space (Ω,F , P, (Ft)),

with constant correlation matrix �:

d〈W i,W j〉t = �ijdt.
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We will specify in Hypothesis 11.12 the regularity conditions on the coefficients
that guarantee the existence of a strong solution to (11.18). By the Itô formula
we have

dSi
t = μi

tS
i
tdt + σi

tS
i
tdW i

t , i = 1, . . . , d, (11.19)

where μi
t = bi(t,Xt) + (σi(t,Xt))

2

2 . We also assume that the price of the non-
risky asset is

Bt = e
∫ t
0 rsds, t ∈ [0, T ],

where rt = r(t,Xt), with r a suitable function, and that the i-th asset pays
continuous dividends at the rate qi

t = qi(t,Xt).

Hypothesis 11.12 The functions b, σ, r and q are bounded and locally Hölder
continuous on ]0, T [×Rd. The matrix (cij) =

(
�ijσiσj

)
is uniformly positive

definite: there exists a positive constant Λ such that

Λ−1|ξ|2 ≤
d∑

i,j=1

cij(t, x)ξiξj ≤ Λ|ξ|2, t ∈]0, T [, x, ξ ∈ Rd.

Under these conditions, by Theorem 10.27 (see also Remark 10.30), there
exists a unique EMM Q: we denote by WQ =

(
WQ,1, . . . ,WQ,d

)
the Brow-

nian motion associated to Q, under which the risk-neutral dynamics of the
discounted prices

S̃i
t = e−

∫ t
0 rsdsSi

t

is given by
dS̃i

t = −qi
tS̃

i
tdt + S̃i

tσ
i
tdWQ,i

t , i = 1, . . . , d. (11.20)

The definitions of American option and exercise strategy are analogous to the
ones in the Black-Scholes case. An American option is a process of the form

(ψ(t, St))t∈[0,T ]

where ψ is a convex Lipschitz continuous function on [0, T ]× Rd
>0.

We denote by TT the family of the Ft-stopping times with values in [0, T ]
and we say that τ ∈ TT is an early-exercise strategy. Furthermore τ0 ∈ TT is
an optimal strategy if we have

EQ
[
e−
∫ τ0
0 rsdsψ(τ0, Sτ0)

]
= sup

τ∈TT

EQ
[
e−
∫ τ
0 rsdsψ(τ, Sτ )

]
.

The following result generalizes Theorem 11.2. In the following statement
(t, S) is an element of [0, T ]×Rd

>0 and L is the parabolic operator associated
to the process (St):

Lf =
1
2

d∑
i,j=1

c̃ijS
iSj∂SiSj f +

d∑
i=1

(r̃ − q̃i)Si∂Sif + ∂tf − r̃f,
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where, after setting log S = (log S1, . . . , log Sd),

c̃ij = cij(t, log S), r̃ = r(t, log S) and q̃i = qi(t, log S).

Theorem 11.13 There exists a unique strong solution f of the obstacle prob-
lem {

max{Lf, ψ − f} = 0, in ]0, T [×Rd
>0,

f(T, ·) = ψ(T, ·), on Rd
>0,

(11.21)

satisfying the following properties:

i) for all (t, y) ∈ [0, T [×Rd
>0, we have

f(t, y) = sup
τ∈TT
τ∈[t,T ]

EQ
[
e−
∫ τ

t
rt,y

s dsψ(τ, St,y
τ )
]
,

where St,y is the price process with initial value St = y, and rt,y
s =

r(s, log St,y
s );

ii) f admits spatial gradient ∇f = (∂S1f, . . . , ∂Sdf) in the classical sense and

∇f ∈ C(]0, T [×Rd
>0).

Furthermore, assume that the functions b, σ and q are globally Lipschitz con-
tinuous in x, uniformly with respect to t, on ]0, T [×Rd: if ψ is bounded or the
coefficient r is constant2 then

∇f ∈ L∞(]0, T [×Rd
>0).

Proof. By the change of variable S = ex, the claim is direct consequence of
Theorems 8.21, 9.48 and of Proposition 9.49. �

Let us now consider a strategy h = (αt, βt), α ∈ L2
loc and β ∈ L1

loc, with
value

Vt(h) = αt · St + βtBt,

and let us recall the self-financing condition:

dVt(h) =
d∑

i=1

αi
t

(
dSi

t + qi
tS

i
tdt
)

+ βtdBt.

If we set
Ṽt(h) = e−

∫ t
0 rsdsVt(h),

the following holds:

2 In general, without the assumptions on the boundedness of ψ or the fact that r
is constant, proceeding as in Proposition 9.49 we can prove that ∇f has at most
linear growth in S.
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Proposition 11.14 The strategy h = (α, β) is self-financing if and only if

Ṽt(h) = V0(h) +
d∑

i=1

∫ t

0

αi
sdS̃i

s +
d∑

i=1

∫ t

0

αi
sq

i
sS̃

i
sds

= V0(h) +
d∑

i=1

∫ t

0

αi
sS̃

i
sσ

i
sdWQ,i

t .

(11.22)

Proof. The proof is analogous to that of Proposition 7.3. The second equality
in (11.22) follows from (11.20). �

The definition of arbitrage price of the American Option is based upon
the same arguments already used in the Black-Scholes market setting.

Notation 11.15 We recall Definition 10.42 and we set

A+
ψ = {h ∈ A | Vt(h) ≥ ψ(t, St), t ∈ [0, T ] a.s.},
A−ψ = {h ∈ A | there exists τ0 ∈ TT s.t. ψ(τ0, Sτ0) ≥ Vτ0(h) a.s.}.

A+
ψ and A−ψ denote the families of self-financing strategies super- and sub-

replicating respectively. By the martingale property, it follows that

V0(h−) ≤ V0(h+)

for any h− ∈ A−ψ and h+ ∈ A+
ψ . Furthermore, in order not to introduce

arbitrage opportunities, the price of the American option ψ(t, St) must be
less or equal to the initial value V0(h) for all h ∈ A+

ψ and greater or equal to
the initial value V0(h) for all h ∈ A−ψ .

The following result, analogous to Theorem 11.7, gives the definition of
the arbitrage price of the American option by showing that

inf
h∈A+

ψ

V0(h) = sup
h∈A−ψ

V0(h).

Theorem 11.16 Let f be the solution to the obstacle problem (11.21). The
self-financing strategy h̄ = (α, β) defined by

V0(h̄) = f(0, S0), αt = ∇f(t, St),

belongs to A+
ψ ∩ A−ψ . By definition

f(0, S0) = V0(h̄) = inf
h∈A+

ψ

V0(h) = sup
h∈A−ψ

V0(h)

is the arbitrage price of ψ(t, St). Furthermore, an optimal exercise strategy is
defined by

τ0 = inf{t ∈ [0, T ] | f(t, St) = ψ(t, St)},
and we have that

V0(h̄) = EQ
[
e−
∫ τ0
0 rsdsψ(τ0, Sτ0)

]
= sup

τ∈TT

EQ
[
e−
∫ τ
0 rsdsψ(τ, Sτ )

]
.
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Numerical methods

In this chapter we present some methods for the numerical solution of deter-
ministic and stochastic differential equations. The numerical approximation
is necessary when it is not possible to determine explicitly the solution of an
equation (i.e. nearly always).

What underlies many numerical methods for differential equations is sim-
ply the approximation of the derivatives (the integrals) with incremental ra-
tios (with sums). We will follow this approach in the whole chapter, trying
to present the methods for different kinds of equations (ordinary, with partial
derivatives, deterministic or stochastic) in the same common setting. Broadly
speaking, the main ingredients we will use in order for a solution X of a
differential equation LX = 0 to be approximated by a solution Xδ of the
“discretized” equation are three:

• the regularity of the solution X, that is derived from the properties of
the differential equation and is in general a consequence of the regularity
hypotheses on the coefficients;

• the consistency of the discretization (or numerical scheme), i.e. the fact
that L − Lδ −−−−→

δ→0+
0 in an appropriate sense: this is in general a con-

sequence of the approximation by a Taylor series expansion and of the
regularity of the solution in the previous point;

• the stability of the numerical scheme, in general a consequence of a max-
imum principle for Lδ that gives an estimate of a function (or a process)
Y in terms of the initial datum Y0 and of LδY .

12.1 Euler method for ordinary equations

Let us consider the ordinary differential equation

dXt

dt
= μ(t,Xt), t ∈ [0, T ], (12.1)

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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where
μ : [0, T ]× R −→ R

is a continuous function. For the sake of simplicity and clarity, we confine
ourselves to the 1-dimensional case, but the following results can be extended
without difficulties. We assume the linear-growth condition

|μ(t, x)| ≤ K(1 + |x|), x ∈ R, t ∈ [0, T ], (12.2)

and, further, we assume Lipschitz continuity with respect to both variables
(so a slightly stronger assumption than the standard Lipschitz continuity in
x):

|μ(t, x)− μ(s, y)| ≤ K(|t− s|+ |x− y|), x, y ∈ R, t, s ∈ [0, T ]. (12.3)

For fixed N ∈ N, we divide the interval [0, T ] into N intervals [tn−1, tn]
whose length is δ := T

N , so that tn = nδ for n = 0, . . . , N . We denote by
δ the discretization step. By approximating the derivative in (12.1) by the
incremental ratio relative to it (or, equivalently, by truncating the Taylor
expansion of the function X with initial point tn to the first order), we get
the following discretization of (12.1):

Xδ
tn+1

= Xδ
tn

+ μ(tn,Xδ
tn

)δ, n = 1, . . . , N. (12.4)

By imposing Xδ
0 = X0, (12.4) defines recursively the values of Xδ

tn
for n =

1, . . . , N, giving an algorithm for the determination of an approximation of
the solution X.

It can be useful to consider the equivalent integral version of (12.1):

LtX = 0, t ∈ [0, T ], (12.5)

where Lt is the operator defined by

LtX := Xt −X0 −
∫ t

0

μ(s,Xs)ds, t ∈ [0, T ]. (12.6)

For fixed tn as before, equation (12.5) can be discretized by making the in-
tegrand μ(s,Xs) ! μ(tn−1,Xtn−1) constant over the interval [tn−1, tn]. More
precisely, we define the discretized operator Lδ by putting

Lδ
tX := Xt−X0−

∫ t

0

N∑
n=1

μ(tn−1,Xtn−1)1]tn−1,tn](s)ds, t ∈ [0, T ]. (12.7)

The equation
Lδ

tX
δ = 0, t ∈ [0, T ],

is equivalent to

Xδ
t = X0 −

∫ t

0

N∑
n=1

μ(tn−1,X
δ
tn−1

)1]tn−1,tn](s)ds, t ∈ [0, T ], (12.8)
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and it defines recursively the same (at the points t = tn) approximation Xδ

of the solution X introduced earlier with formula (12.4): more precisely the
function Xδ is defined by linear interpolation of the values Xδ

tn
, n = 0, . . . , N .

In order to study the convergence of the Euler numerical scheme, first we
prove an a-priori estimate of the regularity of the solutions to the differential
equation.

Proposition 12.1 (Regularity) The solution X in (12.6) is such that

|Xt −Xs| ≤ K1|t− s|, t, s ∈ [0, T ], (12.9)

with K1 depending on K in (12.2), T and X0 only.

Proof. By definition, if s < t, we have

|Xt −Xs| =
∣∣∣∣∫ t

s

μ(u,Xu)du

∣∣∣∣ ≤ (t− s) max
u∈[0,T ]

|μ(u,Xu)|.

The claim follows by the assumption of linear growth on μ and from the
following estimate

|Xt| ≤ eKt (|X0|+ KT ) , t ∈ [0, T ], (12.10)

that can be proved using Gronwall’s Lemma and the inequality

|Xt| ≤ |X0|+
∫ t

0

|μ(s,Xs)| ds ≤

(by the linear-growth assumption on μ)

≤ |X0|+ KT + K

∫ t

0

|Xs| ds. �

Now we verify the consistency of the discretized operator Lδ with L.

Proposition 12.2 (Consistency) Let Y be a Lipschitz continuous function
on [0, T ] with Lipschitz constant K1. For every t ∈ [0, T ]∣∣LtY − Lδ

tY
∣∣ ≤ Cδ, (12.11)

where the constant C depends only on K,K1 and T .

Proof. It suffices to consider the case t = tn. We have

∣∣LtnY − Lδ
tn

Y
∣∣ = ∣∣∣∣∣

n∑
k=1

∫ tk

tk−1

(
μ(s, Ys)− μ

(
tk−1, Ytk−1

))
ds

∣∣∣∣∣ ≤
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(by the Lipschitz-continuity assumption on μ)

≤ K
n∑

k=1

∫ tk

tk−1

(
s− tk−1 + |Ys − Ytk−1 |

)
ds

(by (12.9))

≤ K (1 + K1)
n∑

k=1

∫ tk

tk−1

(s− tk−1) ds

≤ K (1 + K1)Tδ.
�

The third step is the proof of a maximum principle for the discrete operator
Lδ.

Proposition 12.3 (Stability - Maximum principle) Let X,Y be conti-
nuous functions on [0, T ]. Then

max
t∈[0,T ]

|Xt − Yt| ≤ eKT

(
|X0 − Y0|+ max

t∈[0,T ]
|Lδ

tX − Lδ
tY |
)

. (12.12)

Proof. Since

Xt − Yt =X0 − Y0 + Lδ
tX − Lδ

tY

+
∫ t

0

N∑
n=1

(
μ(tn−1,Xtn−1)− μ(tn−1, Ytn−1)

)
1]tn−1,tn](s)ds

by the Lipschitz-continuity assumption on μ, we have

max
s∈[0,t]

|Xs − Ys| ≤ |X0 − Y0|+ max
s∈[0,T ]

∣∣Lδ
sX − Lδ

sY
∣∣+K

∫ t

0

max
u∈[0,s]

|Xu − Yu| ds.

The claim follows from Gronwall’s Lemma. �

Remark 12.4 The previous result is sometimes called “maximum principle”
because, if Yt ≡ 0 and the differential equation is linear and homogeneous, i.e.
of the form μ(t, x) = a(t)x, then (12.12) becomes

max
t∈[0,T ]

|Xt| ≤ eKT

(
|X0|+ max

t∈[0,T ]
|LtX|

)
,

and this expresses the fact that the maximum of the solution to the equation
LtX = f can be estimated in terms of the initial value X0 and the known
function f . This kind of result guarantees the stability of a numerical scheme:
this means that, for two solutions Xδ, Y δ of LδX = 0, (12.12) becomes

max
t∈[0,T ]

|Xδ
t − Y δ

t | ≤ eKt|Xδ
0 − Y δ

0 |

and this gives an estimate of the sensitivity of the solution with respect to
some perturbation of the initial datum. �



12.1 Euler method for ordinary equations 407

Now we prove that the order of convergence of the Euler discretization
scheme is one.

Theorem 12.5 Let X and Xδbe the solutions of LtX = 0 and Lδ
tX

δ = 0,
respectively, with the same initial datum X0 = Xδ

0 . There exists a constant C
depending only on T,K in (12.2) and X0 such that

max
t∈[0,T ]

∣∣Xt −Xδ
t

∣∣ ≤ Cδ. (12.13)

Proof. By the maximum principle we have

max
t∈[0,T ]

∣∣Xt −Xδ
t

∣∣ ≤ eKT max
t∈[0,T ]

|Lδ
tX − Lδ

tX
δ| = eKT max

t∈[0,T ]
|Lδ

tX − LtX| ≤

(by the consistency results, Proposition 12.2, and by the regularity results,
Proposition 12.1)

≤ Cδ

where C depends only on T,K and X0. �

12.1.1 Higher order schemes

The Euler discretization is extremely simple and intuitive, nevertheless it gives
satisfying results only if the coefficient μ can be well-approximated by linear
functions. In general it is preferable to use higher order numerical schemes.
We briefly touch upon the main ideas. In what follows we assume that the
coefficient μ is sufficiently regular and we consider the equation

X ′
t = μ(t,Xt), t ∈ [0, T ].

Differentiating the previous equation and omitting the arguments of the fun-
ction μ and of its derivatives, we get

X ′′ = μt + μxX ′ = μt + μxμ,

X ′′′ = μtt + 2μtxX ′ + μxx (X ′)2 + μxX ′′,

where μt, μx denote the partial derivatives of the function μ = μ(t, x). Sub-
stituting these expressions in the Taylor expansion of the p-th order, we have

Xtn+1 = Xtn + X ′
tn

δ + · · ·+ 1
p!

X
(p)
tn

δp

and we obtain the p-th order Euler scheme. For example, the second order
scheme is

Xδ
tn+1

= Xδ
tn

+ μ(tn,Xδ
tn

)δ +
δ2

2
(
μt(tn,Xδ

tn
) + μx(tn,Xδ

tn
)μ(tn,Xδ

tn
)
)
.

Under suitable regularity assumptions on the coefficient μ, it is possible to
prove that the order of convergence of the p-th order Euler scheme is p, i.e.

max
t∈[0,T ]

∣∣Xt −Xδ
t

∣∣ ≤ Cδp.
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12.2 Euler method for stochastic differential equations

We examine the problem of numerical approximation of a stochastic differ-
ential equation. We refer to the monographs by Kloeden and Platen [210],
Bouleau and Lépingle [54] for the presentation of the general theory.

We use the notations of Paragraph 9.1 and we define the operator

LtX := Xt −X0 −
∫ t

0

μ(s,Xs)ds−
∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], (12.14)

where X0 is a given F0-measurable random variable in L2(Ω,P ) and the
coefficients

μ = μ(t, x) : [0, T ]× R −→ R, σ = σ(t, x) : [0, T ]× R −→ R,

verify the following assumption

|μ(t, x)− μ(s, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ K
(
|t− s|+ |x− y|2

)
, (12.15)

for x, y ∈ R and t, s ∈ [0, T ]. Notice that (12.15) is slightly stronger than the
standard assumptions (cf. Definition 9.4), since it is equivalent to global Lips-
chitz continuity in the x variable and to Hölder continuity with exponent 1/2
in t: in particular (12.15) contains the usual linear-growth condition. Under
these assumptions, Theorem 9.11 ensures the existence of a strong solution
X ∈ Ac of the equation

LtX = 0, t ∈ [0, T ].

We recall (cf. Notation 9.7) that Ac denotes the space of continuous Ft-
adapted processes such that

[[X]]T =

√
E

[
sup

0≤t≤T
X2

t

]
is finite.

We divide the interval [0, T ] into N intervals [tn−1, tn] whose length is
δ := T

N and we define the discretized operator Lδ obtained by making the
integrands in (12.14) piecewise constant:

Lδ
tX := Xt −X0−

∫ t

0

N∑
n=1

μ(tn−1,Xtn−1)1]tn−1,tn](s)ds

−
∫ t

0

N∑
n=1

σ(tn−1,Xtn−1)1]tn−1,tn](s)dWs,

(12.16)

for t ∈ [0, T ]. The equation

Lδ
tX

δ = 0, t ∈ [0, T ], (12.17)



12.2 Euler method for stochastic differential equations 409

defines the discretized process Xδ: for t = tn (12.17) is equivalent to the
formula

Xδ
tn+1

= Xδ
tn

+ μ(tn,Xδ
tn

)δ + σ(tn,Xδ
tn

)
(
Wtn+1 −Wtn

)
, (12.18)

that determines the discretized process Xδ recursively, starting from the initial
datum Xδ

0 = X0.

The first tool we need in order to prove the convergence of the Euler
scheme is the following result on the regularity of the solutions of the stochastic
equation, contained in Theorem 9.14:

Proposition 12.6 (Regularity) The solution X of LtX = 0 is such that

E

[
sup

s∈[t,t′]
|Xs −Xt|2

]
≤ K1(t′ − t), 0 ≤ t < t′ ≤ T, (12.19)

where K1 is a constant that depends only on T , E
[
X2

0

]
and K in (12.15).

The second step consists in verifying the consistency of the discretized
operator Lδ with L: the next result is analogous to Proposition 12.2.

Proposition 12.7 (Consistency) Let Y ∈ Ac such that

E

[
sup

s∈[t,t′]
|Ys − Yt|2

]
≤ K1(t′ − t), 0 ≤ t < t′ ≤ T. (12.20)

Then
[[LY − LδY ]]T ≤ C

√
δ, (12.21)

where the constant C depends only on K,K1 and T .

Proof. We have

LtY − Lδ
tY =

∫ t

0

N∑
n=1

(
μ(tn−1, Ytn−1)− μ(s, Ys)

)
1]tn−1,tn](s)︸ ︷︷ ︸

:=Zμ
s

ds

+
∫ t

0

N∑
n=1

(
σ(tn−1, Ytn−1)− σ(s, Ys)

)
1]tn−1,tn](s)︸ ︷︷ ︸

:=Zσ
s

dWs,

and so, by Lemma 9.9,

[[LY − LδY ]]2T ≤ 2
∫ T

0

(
T [[Zμ]]2t + 4[[Zσ]]2t

)
dt.
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To conclude the proof, we observe that

[[Zμ]]2t = E

[
sup
s≤t

N∑
n=1

(
μ(s, Ys)− μ(tn−1, Ytn−1)

)2
1]tn−1,tn](s)

]
≤

(by the Lipschitz-continuity assumption (12.15))

≤ KE

[
sup
s≤t

N∑
n=1

(
|s− tn−1|+ |Ys − Ytn−1 |2

)
1]tn−1,tn](s)

]
≤ Cδ

in view of the regularity assumption (12.20), and an analogous estimate holds
for [[Zμ]]2t . �

The third tool is a maximum principle for the discrete operator Lδ.

Proposition 12.8 (Stability - Maximum principle) There exists a con-
stant C0, depending only on K and T such that, for every pair of processes
X,Y ∈ Ac, we have

[[X − Y ]]2T ≤ C0

(
E
[
|X0 − Y0|2

]
+ [[LδX − LδY ]]2T

)
. (12.22)

Proof. Since

Xt − Yt =Lδ
tX − Lδ

tY + X0 − Y0

+
∫ t

0

N∑
n=1

(
μ(tn−1,Xtn−1)− μ(tn−1, Ytn−1)

)
1]tn−1,tn](s)︸ ︷︷ ︸

:=Zμ
s

ds

+
∫ t

0

N∑
n=1

(
σ(tn−1,Xtn−1)− σ(tn−1, Ytn−1)

)
1]tn−1,tn](s)︸ ︷︷ ︸

:=Zσ
s

dWs,

using Lemma 9.9 we get

[[X − Y ]]2t ≤4
(

E
[
(X0 − Y0)2

]
+ [[LδX − LδY ]]2T

+ t

∫ t

0

[[Zμ]]2sds + 4
∫ t

0

[[Zσ]]2sds

)
.

On the other hand we have

[[Zμ]]2t = E

[
sup
s≤t

N∑
n=1

(
μ(tn−1,Xtn−1)− μ(tn−1, Ytn−1)

)2
1]tn−1,tn](s)

]
≤
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(by the Lipschitz-continuity assumption on μ)

≤ KE

[
sup
s≤t

N∑
n=1

|Xtn−1 − Ytn−1 |21]tn−1,tn](s)

]
≤ K[[X − Y ]]2t ,

and an analogous estimate holds for [[Zσ]]2t . So putting the previous estimates
together, we get

[[X − Y ]]2t ≤ 4E
[
(X0 − Y0)2

]
+ 4[[LδX − LδY ]]2T + 4K(T + 4)

∫ t

0

[[X − Y ]]2sds

and the claim follows from Gronwall’s Lemma. �

We can now prove the following result that states that the order of strong
convergence of the Euler scheme is 1

2 .

Theorem 12.9 There exists a constant C depending only on K,T and
E
[
X2

0

]
, such that

[[X −Xδ]]T ≤ C
√

δ.

Proof. By the maximum principle, Proposition 12.8, we have

[[X −Xδ]]2T ≤ C0[[LδX − LδXδ]]2T = C0[[LδX − LX]]2T ≤ Cδ

where C depends only on T,K and E
[
X2

0

]
, and the last inequality follows

from the consistency and regularity results, Propositions 12.7 and 12.6. �

12.2.1 Milstein scheme

Analogously to the deterministic case, it is possible to introduce higher-order
schemes for the discretization of stochastic equations. One of the simplest is
the Milstein scheme, which uses a first-order approximation of the diffusion
term with respect to the variable x:∫ tn+1

tn

σ(t,Xt)dWt ∼
∫ tn+1

tn

(σ(tn,Xtn) + ∂xσ(tn,Xtn)(Wt −Wtn)) dWt.

By simple computation we get∫ tn+1

tn

(Wt −Wtn)dWt =

(
Wtn+1 −Wtn

)2 − (tn+1 − tn)
2

.

Then, putting δ = tn+1−tn and denoting a standard Normal random variable
by Z, we get the natural extension of the iterative scheme (12.18):

Xtn+1 = Xtn + μ(tn,Xtn)δ + σ(tn,Xtn)
√

δZ + ∂xσ(tn,Xtn)
δ(Z2 − 1)

2
.
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It is known that the order of strong convergence of the Milstein scheme is one.
By way of example, for the discretization of a geometric Brownian motion

dSt = μStdt + σStdWt,

we have

Stn+1 = Stn

(
1 + δ

(
μ +

σ2

2
(Z2 − 1)

)
+ σ
√

δZ

)
.

12.3 Finite-difference methods for parabolic equations

In this section we present some simple finite-difference schemes for parabolic
differential operators in R2. Finite-difference methods give superior results, in
terms of accuracy and speed of computation of the price and the Greeks of an
option, with respect to other numerical schemes (binomial and Monte Carlo),
even though their application is limited to low dimensional problems.

Among the monographs that study in depth finite-difference schemes ap-
plied to financial problems, we mention Zhu, Wu and Chern [349], Tavella
and Randall [325]. The monographs by Mitchell and Griffiths [258], Raviart
and Thomas [289], Smith [314], Hall and Porsching [161] investigate finite-
difference methods for partial differential equations on a more advanced and
general level.

Let us consider an operator of the form A + ∂t, where

Au(t, x) := a(t, x)∂xxu(t, x) + b(t, x)∂xu(t, x)− r(t, x)u(t, x), (12.23)

and (t, x) ∈ R2. We suppose that A verifies the standard hypotheses in Para-
graph 8.1: the coefficients a, b and r are bounded Hölder continuous functions
and there exists a positive constant μ such that

μ−1 ≤ a(t, x) ≤ μ, (t, x) ∈ R2.

If we assume the dynamics

dXt = μ(t,Xt)dt + σ(t,Xt)dWt, (12.24)

for the logarithm of the price of a risky asset S and if r is the short-term rate,
in Section 10.3.2 we have expressed the arbitrage price of a derivative with
payoff F (ST ) in terms of a solution of the Cauchy problem{

∂tu(t, x) + Au(t, x) = 0, (t, x) ∈ ]0, T [×R,

u(T, x) = ϕ(x), x ∈ R,
(12.25)

where A is the differential operator in (12.23) with

a =
σ2

2
, b = r − σ2

2
,

and ϕ(x) = F (ex).
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12.3.1 Localization

In order to construct a discretization scheme and to implement it, the first
step is to localize the problem (12.25) on a bounded domain. More precisely,
for fixed R > 0, we introduce the Cauchy-Dirichlet problem⎧⎪⎨⎪⎩

∂tu + Au = 0, in ]0, T [×]−R,R[,
u(t,−R) = ϕ−R(t), u(t, R) = ϕR(t), t ∈ [0, T ],
u(T, x) = ϕ(x), |x| < R,

(12.26)

where ϕ±R are functions that express the data on the lateral boundary and
have to be chosen in a suitable way: the simplest choice is ϕ±R = 0 and other
typical choices are

ϕ±R(t) = ϕ(±R), or ϕ±R(t) = e−
∫ T

t
r(s,±R)dsϕ(±R), t ∈ [0, T ].

Instead of lateral Cauchy-Dirichlet-type conditions, it is possible to assign
Neumann-type ones: for example, in the case of a Put option,

∂xu(t,−R) = ∂xu(t, R) = 0, t ∈ [0, T ].

By using the Feynman-Kač probabilistic representation of Theorems 9.44
and 9.45, it is possible to easily obtain an estimate of the difference between
the solution uR of (12.26) and u. For the sake of simplicity we consider only
the case ϕ±R = 0: an analogous result can be proved without major difficulties
when ϕ±R are bounded functions. We have

u(t, x) = E
[
e−
∫ T

t
r(s,Xt,x

s )dsϕ(Xt,x
T )
]
,

uR(t, x) = E
[
e−
∫ T

t
r(s,Xt,x

s )dsϕ
(
Xt,x

T

)
1{τx≥T}

]
,

where τx is the exit time of the process Xt,x, solution of the SDE (12.24) with
μ = b, from the interval ]−R,R[. Then

|u(t, x)− uR(t, x)| ≤ E
[
e−
∫

T
t

r(s,Xt,x
s )ds

∣∣ϕ (Xt,x
T

)∣∣1{τx<T}
]
≤

(since r is bounded)

≤ e‖r‖L∞ (T−t)‖ϕ‖L∞P

(
sup

t≤s≤T

∣∣Xt,x
s

∣∣ ≥ R

)
≤

(by the maximal estimate (9.41))

≤ 2‖ϕ‖L∞ exp

(
−
(
e−K(T−t)R− |x| −K(T − t)

)2
2k(T − t)

+ ‖r‖L∞(T − t)

)
,

(12.27)
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where k,K are positive constants depending explicitly on the coefficients of
the stochastic equations (cf. (9.38)-(9.39)). Formula (12.27) proves that uR

converges uniformly on compact sets to u for R → +∞ and gives an explicit
estimate, quite coarse indeed, of the approximation error. More precise sup-
norm estimates for the truncation error in terms of the maximal error at the
boundary are given by Kangro and Nicolaides [197].

12.3.2 θ-schemes for the Cauchy-Dirichlet problem

For a fixed discretization step δ > 0, we introduce the following first-order
finite differences:

D+
δ v(y) =

v(y + δ)− v(y)
δ

, “forward”,

D−δ v(y) =
v(y)− v(y − δ)

δ
, “backward”,

Dδv(y) =
1
2
(
D+

δ v(y) + D−δ v(y)
)

=
v(y + δ)− v(y − δ)

2δ
, “central”.

Further, we define the second-order central ratio

D2
δv(y) =

D+
δ v(y)−D−δ v(y)

δ
=

v(y + δ)− 2v(y) + v(y − δ)
δ2

.

We prove the consistency of the previous finite differences with the corre-
sponding derivatives: the order of approximation of the backward and forward
differences is one, whilst for the central differences the order is two.

Lemma 12.10 If v is four times differentiable in a convex neighborhood of
the point y, then the following estimates hold:∣∣D+

δ v(y)− v′(y)
∣∣ ≤ δ

sup |v′′|
2

, (12.28)∣∣D−δ v(y)− v′(y)
∣∣ ≤ δ

sup |v′′|
2

, (12.29)

|Dδv(y)− v′(y)| ≤ δ2 sup |v′′′|
3

+ δ3 sup |v′′′′|
12

, (12.30)∣∣D2
δv(y)− v′′(y)

∣∣ ≤ δ2 sup |v′′′′|
12

. (12.31)

Proof. Taking the Taylor series expansion of v with initial point y, we get

v(y + δ) = v(y) + v′(y)δ +
1
2
v′′(ŷ)δ2, (12.32)

v(y − δ) = v(y)− v′(y)δ +
1
2
v′′(y̌)δ2, (12.33)
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with ŷ, y̌ ∈ ]y− δ, y + δ[. Then (12.28) follows from (12.32) and (12.29) follows
from (12.33).

Now let us consider the fourth-order expansion:

v(y + δ) = v(y) + v′(y)δ +
1
2
v′′(y)δ2 +

1
3!

v′′′(y)δ3 +
1
4!

v′′′′(ŷ)δ4, (12.34)

v(y − δ) = v(y)− v′(y)δ +
1
2
v′′(y)δ2 − 1

3!
v′′′(y)δ3 +

1
4!

v′′′′(y̌)δ4 (12.35)

with ŷ, y̌ ∈ ]y−δ, y+δ[. Summing (subtracting) (12.34) and (12.35), we obtain
immediately (12.30) ((12.31)). �

For fixed M,N ∈ N, we define the space-discretization and the time-discre-
tization steps

δ =
2R

M + 1
, τ =

T

N
,

and on the domain [0, T ]× [−R,R] we construct the grid of points

G(τ,δ) = {(tn, xi) = (nτ,−R+ iδ) | n = 0, . . . , N, i = 0, . . . ,M +1}. (12.36)

For every function g = g(t, x) and for every t ∈ [0, T ], we denote by g(t) the
RM -vector with components

gi(t) = g(t, xi), i = 1, . . . ,M ; (12.37)

further, on the grid G(τ,δ) we define the function

gn,i = gi(tn) = g(tn, xi),

for n = 0, . . . , N and i = 0, . . . ,M + 1.
Using the finite differences described earlier, we introduce the discretiza-

tion in the space variable of the Cauchy-Dirichlet problem: we define the linear
operator Aδ = Aδ(t) approximating A in (12.23) and acting on u(t), vector in
RM defined as in (12.37), in the following way

(Aδu)i(t) :=ai(t)
ui+1(t)− 2ui(t) + ui−1(t)

δ2

+ bi(t)
ui+1(t)− ui−1(t)

2δ
− ri(t)ui(t)

=αi(t)ui−1(t)− βi(t)ui(t) + γi(t)ui+1(t), i = 1, . . . ,M,

where

αi(t) =
ai(t)
δ2
− bi(t)

2δ
, βi(t) =

2ai(t)
δ2

+ ri(t), γi(t) =
ai(t)
δ2

+
bi(t)
2δ

.
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In other terms, incorporating the null Dirichlet condition at the boundary,
the operator Aδ(t) is represented by the tridiagonal matrix

Aδ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1(t) γ1(t) 0 0 · · · 0

α2(t) β2(t) γ2(t) 0 · · · 0

0 α3(t) β3(t) γ3(t) · · · 0

...
...

. . . . . . . . .
...

0 0 · · · αM−1(t) βM−1(t) γM−1(t)

0 0 · · · 0 αM (t) βM (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the discretized version of problem (12.26) with null lateral-boundary data
is {

d
dtu(t) + Aδu(t) = 0, t ∈]0, T [,
ui(T ) = ϕ(xi), i = 1, . . . ,M.

(12.38)

Finally we approximate the time derivative by a forward finite difference:

d

dt
ui(tn) ∼ un+1,i − un,i

τ
.

Definition 12.11 For fixed θ ∈ [0, 1], the finite-difference θ-scheme for the
problem (12.26) with null lateral-boundary data consists of the final condition

uN,i(t) = ϕ(xi), i = 1, . . . ,M, (12.39)

associated to the following equation to be solved iteratively for n decreasing
from n = N − 1 to n = 0:

un+1,i − un,i

τ
+ θ(Aδu)n,i +(1− θ)(Aδu)n+1,i = 0, i = 1, . . . ,M. (12.40)

The finite-difference θ-scheme is called explicit if θ = 0: in this case the
computation of (un,i) starting from (un+1,i) in (12.40) is immediate, since

un,i = un+1,i + τ(Aδu)n+1,i, i = 1, . . . ,M.

In general, we note that (12.40) is equivalent to

((I − τθAδ)u)n,i = ((I + τ(1− θ)Aδ)u)n+1,i , i = 1, . . . ,M.

So, if θ > 0, in order to solve this equation it is necessary to invert the matrix
I − τθAδ: algorithms to solve tri-diagonal linear systems can be found, for
example, in Press, Teukolsky, Vetterling and Flannery [286]. For θ = 1 we say
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that the scheme is totally implicit, whilst for θ = 1
2 it is called Crank-Nicolson

scheme [81]. It is evident that the simplest choice seems θ = 0, nevertheless
the greater complexity of implicit schemes gives better convergence results
(cf. Remark 12.14).

We also give the expression of the operator Aδ(t) if null Neumann-type
conditions are assumed at the boundary:

Aδ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1(t) + β1(t) γ1(t) 0 0 · · · 0

α2(t) β2(t) γ2(t) 0 · · · 0

0 α3(t) β3(t) γ3(t) · · · 0

...
...

. . . . . . . . .
...

0 0 · · · αM−1(t) βM−1(t) γM−1(t)

0 0 · · · 0 αM (t) βM (t) + γM (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case (12.38) is the discretized version of the problem⎧⎪⎨⎪⎩
∂tu + Au = 0, in ]0, T [×]−R,R[,
∂xu(t,−R) = ∂xu(t, R) = 0, t ∈ [0, T ],
u(T, x) = ϕ(x), |x| < R.

By way of example, now we study the explicit scheme (θ = 0) for an
equation with constant coefficients: more simply, with a change of variables
as in (7.22), we can consider the heat equation directly, i.e. a = 1 and b = r = 0
in (12.23). Setting

Lu = ∂tu + ∂xxu,

(L(τ,δ)u)n,i =
un+1,i − un,i

τ
+

un+1,i+1 − un+1,i + un+1,i−1

δ2
,

the Cauchy-Dirichlet problem⎧⎪⎨⎪⎩
Lu = 0, in ]0, T [×]−R,R[,
u(t,−R) = ϕ−R(t), u(t, R) = ϕR(t), t ∈ [0, T ],
u(T, x) = ϕ(x), |x| < R,

(12.41)

is discretized by the system of equations⎧⎪⎨⎪⎩
L(τ,δ)u = 0, in G(τ,δ),

un,0 = ϕ−R(tn), un,M+1 = ϕR(tn), n = 0, . . . , N,

uN,i = ϕ(xi), i = 1, . . . ,M.

(12.42)

The next result extends the weak maximum principle proved in Paragraph 6.1.
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Proposition 12.12 (Discrete maximum principle) Let g be a function
defined on the grid G(τ,δ) such that⎧⎪⎨⎪⎩

L(τ,δ)g ≥ 0, on G(τ,δ),

gn,0 ≤ 0, gn,M+1 ≤ 0, n = 0, . . . , N,

gN,i ≤ 0, i = 1, . . . ,M.

If the condition

τ ≤ δ2

2
(12.43)

is satisfied, then g ≤ 0 on G(τ,δ).

Proof. We observe that L(τ,δ)g ≥ 0 on G(τ,δ) if and only if

gn,i ≤ gn+1,i

(
1− 2τ

δ2

)
+ (gn+1,i+1 + gn+1,i−1)

τ

δ2

for n = 0, . . . , N − 1 and i = 1, . . . ,M . Then the claim follows from the fact
that, in view of condition (12.43), the coefficients on the right-hand side of the
previous inequality are non-negative: consequently, since the boundary data
are less or equal to zero, we have that gn+1,i ≤ 0 implies gn,i ≤ 0. �

The following theorem proves that the explicit finite-difference scheme
converges with speed proportional to δ2.

Theorem 12.13 Let u be a solution of problem (12.41) and let us suppose
that ∂xxxxu and ∂ttu are bounded. If condition (12.43) holds, then there exists
a positive constant C such that, for every δ > 0

max
G(τ,δ)

|u− u(τ,δ)| ≤ Cδ2,

where u(τ,δ) is the solution of the discretized problem (12.42).

Proof. Firstly we observe that, by Lemma 12.10 combined with condition
(12.43), we have

|(L(τ,δ)u)n,i| = |(L(τ,δ)u)n,i − (Lu)n+1,i| ≤ Cδ2, (12.44)

with C = ‖∂ttu‖∞
4 + ‖∂xxxxu‖∞

12 .
Then, on the grid G(τ,δ) we define the functions

w+ = u− u(τ,δ) − C(T − t)δ2, w− = u(τ,δ) − u− C(T − t)δ2,

and we observe that w± ≤ 0 on the parabolic boundary of G(τ,δ). Further,
since L(τ,δ)t = 1,

L(τ,δ)w+ = L(τ,δ)(u− u(τ,δ)) + Cδ2 = L(τ,δ)u + Cδ2 ≥ 0,

by the estimate (12.44). Analogously we have L(τ,δ)w− ≥ 0 and so, by Propo-
sition 12.12, we get w± ≤ 0 on G(τ,δ), hence the claim. �
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Remark 12.14 Inequality (12.43) is usually called stability condition and it
is in general necessary for the convergence of a θ-scheme if 0 ≤ θ < 1

2 : if
(12.43) is not satisfied, the claim of the previous proposition does not hold
true. For this reason the θ-schemes are called conditionally convergent for
θ < 1

2 . On the contrary, if 1
2 ≤ θ ≤ 1, the θ-schemes are called unconditionally

convergent because they converge when τ, δ tend to zero. �

We conclude the section by stating a general convergence result for finite-
difference θ-schemes; for the proof we refer to Raviart and Thomas [289].

Theorem 12.15 Let u and u(τ,δ) be the solutions of problem (12.26) and of
the corresponding problem discretized by a θ-scheme, respectively. Then

• if 0 ≤ θ < 1
2 and the stability condition

lim
τ,δ→0+

τ

δ2
= 0

holds, we have

lim
τ,δ→0+

u(τ,δ) = u, in L2(]0, T [×]−R,R[);

• if 1
2 ≤ θ ≤ 1, we have

lim
τ,δ→0+

u(τ,δ) = u, in L2(]0, T [×]−R,R[).

12.3.3 Free-boundary problem

The finite-difference schemes can be easily adapted to the pricing problem
of options with early exercise. Basically the idea consists in approximating
an American option with the corresponding Bermudan option that admits a
finite number of possible exercise dates. Using the notations in the preceding
section and in particular having fixed the time discretization

tn = nτ, τ =
T

N
,

we employ the usual θ-scheme in (12.40) to compute the “European” price
(ũn,i)i=1,...,M at time tn starting from (un+1,i)i=1,...,M and then we apply the
early-exercise condition

un,i = max {ũn,i, ϕ(tn, xi)} , i = 1, . . . ,M,

to determine the approximation of the price of the American option. In this
way also an approximation of the free boundary is obtained.

In the last years many numerical methods for American options have been
proposed in the literature. Brennan and Schwartz [61] were the first to use
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analytic methods (i.e. based on the solution of the corresponding obstacle
problem) for options with early exercise: Jaillet, Lamberton and Lapeyre [185]
and Han-Wu [162] gave a rigorous justification of the method and Zhang [346]
studied its convergence and its extension to jump models. In Barraquand
and Martineau [31], Barraquand and Pudet [32], Dempster and Hutton [93]
the previous techniques have been improved to price exotic options. Among
the other methods that have been proposed, we mention the finite elements
in Achdou and Pironneau [1], the methods ADI in Villeneuve and Zanette
[335] and the methods based on wavelets in Matache, Nitsche and Schwab
[248]. MacMillan [242], Barone-Adesi and Whaley [30], Carr and Faguet [66],
Jourdain and Martini [190; 191] give semi-explicit approximation formulas for
the price of American derivatives.

12.4 Monte Carlo methods

The Monte Carlo method is a simple technique of numerical approximation
of the mean of a random variable X. It is used in many circumstances in
mathematical finance and in particular in the pricing problem and in the
computation of the Greeks of derivatives. More generally, the Monte Carlo
method allows approximating the value of an integral numerically: indeed we
recall that, if Y ∼ Unif[0,1] is uniformly distributed on [0, 1] and X = f(Y ),
then we have

E [X] =
∫ 1

0

f(x)dx.

The Monte Carlo method is based on the strong law of large numbers (cf.
Section A.7.1): if (Xn) is a sequence of integrable i.i.d. random variables and
such that E [X1] = E [X], then

lim
n→∞

1
n

n∑
k=1

Xk = E [X] a.s.

Consequently, if we are able to draw samples X̄1, . . . , X̄n from X in an inde-
pendent way, then the mean

1
n

n∑
k=1

X̄k

gives an a.s. approximation of E [X].
In order to analyze some of the main features of this technique, we consider

the problem of numerical approximation of the following integral over the
unitary cube in Rd: ∫

[0,1]d
f(x)dx. (12.45)

The most natural way to approximate the value of the integral consists in
considering a discretization by Riemann sums: for fixed n ∈ N, on [0, 1]d we
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build a grid of points with coordinates of the form k
n , k = 0, . . . , n. Then we

rewrite the integral in the form∫
[0,1]d

f(x)dx =
n−1∑
k1=0

· · ·
n−1∑
kd=0

∫ k1+1
n

k1
n

· · ·
∫ kd+1

n

kd
n

f(x1, . . . , xd)dx1 · · · dxd

and we approximate the right-hand side by

n−1∑
k1=0

· · ·
n−1∑
kd=0

∫ k1+1
n

k1
n

· · ·
∫ kd+1

n

kd
n

f

(
k1

n
, . . . ,

kd

n

)
dx1 · · · dxd (12.46)

=
1
nd

n−1∑
k1=0

· · ·
n−1∑
kd=0

f

(
k1

n
, . . . ,

kd

n

)
=: Sn(f).

If f is Lipschitz continuous, with Lipschitz constant L, then∣∣∣∣∣
∫

[0,1]d
f(x)dx− Sn(f)

∣∣∣∣∣ ≤ L

n
.

Further, if f ∈ Cq([0, 1]d), we can easily obtain an n−q-order scheme, by
substituting f

(
k1
n , . . . , kd

n

)
in (12.46) with the q-th order Taylor expansion of

f with initial point
(

k1
n , . . . , kd

n

)
.

In principle, this kind of approximation gives better results than the Monte
Carlo method. However, we wish to highlight the following aspects concerning
the regularity assumption and the computational complexity:

1) the convergence of the scheme depends heavily on the regularity of f . For
example, the measurable function

f(x) = 1[0,1]d\Qd (12.47)

has integral equal to 1, but Sn(f) = 0 for every n ∈ N;
2) the computation of the approximation term Sn(f) necessary to get an error

of the order of 1
n involves the valuation of f in nd points; so the number of

points increases exponentially with the dimension of the problem. It follows
that, in practice, only if d is small enough it is possible to implement the
method in an effective way. In other terms, if the number of points taken in
the discretization is fixed, say, equal to n, the quality of the approximation
gets worse when the dimension d of the problem increases: the order of the
error is n−

1
d .

Now we consider the approximation with the Monte Carlo method. If (Yn)
is a sequence of i.i.d random variables with uniform distribution on [0, 1]d, we
have ∫

[0,1]d
f(x)dx = E [f(Y1)] = lim

n→∞
1
n

n∑
k=1

f(Yk) a.s. (12.48)
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We observe that, in order for the integral to converge, it suffices that f is inte-
grable on [0, 1]d and no further regularity assumption is required: for example,
for the function f in (12.47) we have f(Yk) = 1 a.s. and so the approximation
is correct a.s.

Concerning the computational complexity, we can give a first estimate
of the error of the Monte Carlo method directly by the Markov inequality
proceeding as in Remark A.144. We consider a sequence of real i.i.d. random
variables (Xn) with μ = E [X1] and σ2 = var(X1) finite. Furthermore, we set

Mn =
1
n

n∑
k=1

Xk.

By Markov’s inequality, for every ε > 0, we have

P (|Mn − μ| ≥ ε) ≤ var(Mn)
ε2

=

(by the independence)

=
nvar

(
X1
n

)
ε2

=
σ2

nε2
,

that can be rewritten in a more appealing way as follows:

P (|Mn − μ| ≤ ε) ≥ p, where p := 1− σ2

nε2
. (12.49)

First of all we note that, being the technique based on the generation of
random numbers, the result and the error of the Monte Carlo method are
random variables. Formula (12.49) gives an estimate of the error in terms of
three parameters:

i) n, the number of samples, i.e. how many random numbers we have gener-
ated;

ii) ε, the maximum approximation error;
iii) p, the minimum probability that the approximated value Mn belongs to

the confidence interval [μ− ε, μ + ε].

According to (12.49), for fixed n ∈ N and p ∈]0, 1[, the maximum approxima-
tion error of the Monte Carlo method is

ε =
σ√

n(1− p)
. (12.50)

In the example of the computation of the integral (12.45), we have X = f(Y )
with Y uniformly distributed on [0, 1]d and in this case the maximum error
of the method can be estimated by√

var(f(Y ))
n(1− p)

.



12.4 Monte Carlo methods 423

In other terms the error is of the order of 1√
n

regardless of the dimension
of the problem: for comparison, we recall that the order of the error of the
deterministic scheme that we examined earlier was n−

1
d .

Summing up, if the dimension is low and some suitable regularity assump-
tions are verified, then it is not difficult to implement deterministic algorithms
performing better than Monte Carlo. However, when the dimension of the
problem increases, these deterministic algorithms become burdensome and
the Monte Carlo method is, for now, the only viable alternative.

We also observe that, by (12.50), the standard deviation σ is directly
proportional to the approximation error: as a matter of fact, from a compu-
tational point of view σ is a crucial parameter which influences significantly
the efficiency of the approximation. Typically σ is not known; nevertheless it
is possible to use the random numbers that we have generated to construct
an estimator of σ:

σ2
n :=

1
n− 1

n∑
k=1

(Xk − μn)2 , μn :=
1
n

n∑
k=1

Xk.

In other words, we can use the realizations of X to have simultaneously the
approximation of E [X] and of the error that we commit, in terms of confidence
intervals. Evidently σn is just an approximation of σ, even though in general
it is sufficiently accurate to estimate the error satisfactorily.

Usually, in order to improve the effectiveness of the Monte Carlo method,
variance-reduction methods are used. These techniques, elementary in some
cases, employ the specific features of the problem to reduce the value of σn

and consequently increase the speed of convergence: for the description of such
techniques, we refer to Chapter 4 in [158].

In the next sections we will briefly deal with some questions on the im-
plementation of the Monte Carlo method. In Section 12.4.1 we analyze the
problem of the simulation of X, i.e. how to generate independent realizations
of X; further, we discuss the application of the Monte Carlo method to the
problem of derivative pricing. In Section 12.4.2 we present some techniques
to compute the Greeks. Finally in Section 12.4.3 we go back to the problem
of the error analysis and of the determination of confidence intervals by mak-
ing use of the central limit theorem. A complete presentation of Monte Carlo
methods and their applications to mathematical finance, can be found in the
reference text by Glasserman [158].

12.4.1 Simulation

The first step to approximate E [X] by the Monte Carlo method consists in
generating n independent realizations of the random variable X: this poses
some practical problems.

First of all n must be large enough and so the generation of the simula-
tions cannot be made by hand (for example, by tossing a coin): therefore we
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must use the power of a computer to perform the computation. This rather
obvious remark introduces the first serious problem: a computer can gener-
ate “random” values only by using deterministic algorithms. So, in order to
implement the Monte Carlo method, actually we have at our disposal only
“pseudo-random” numbers, i.e. numbers that have the same statistical prop-
erties as the actual random values but, when the number of times we simulate
increases, are not generated in a really independent way. This translates into
an additional error that cannot be easily estimated in the approximated re-
sult. Therefore it should always be borne in mind the fact that the quality of
the random-number generator influences the numerical result significantly.

After shedding some light on this first matter, for the vast majority of the
well-known distributions, and in particular for the Normal standard distribu-
tion, it is not difficult to find a pseudo-random number generator. Having this
at our disposal, pricing of a European option with payoff F is indeed an easy
task. For example, in the Black-Scholes model, where the final price of the
underlying asset is1

ST = S0 exp
(

σWT +
(

r − σ2

2

)
T

)
,

the procedure is as follows:

(A.1) we draw n independent samples Z̄1, . . . , Z̄n, from the standard Normal
distribution;

(A.2) we consider the corresponding realizations of the final value of the un-
derlying asset

S̄
(k)
T = S0 exp

(
σ
√

T Z̄k +
(

r − σ2

2

)
T

)
;

(A.3) we compute the approximation of the price of the derivative

e−rT

n

n∑
k=1

F
(
S̄

(k)
T

)
≈ e−rT E [F (ST )] .

Because of its easy applications to a wide range of problems, the Monte
Carlo is one of the most popular numerical methods. Now we see how it can
be used in conjunction with the Euler scheme. We consider a local-volatility
model in which the dynamics of the underlying asset under the EMM is given
by

dSt = rStdt + σ(t, St)dWt.

In this case the distribution of the final price ST is not known explicitly. In
order to obtain some realizations of ST we use a Euler-type scheme: it is clear
that, in this way, the discretization error of the SDE must be added to the
error of the Monte Carlo method. The procedure is as follows:
1 Here σ is, as usual, the volatility coefficient.
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(B.1) we produce nm independent realizations Z̄k,i, for k = 1, . . . , n and
i = 1, . . . ,m, of the Normal standard distribution N0,1;

(B.2) using the iterative formula

S̄
(k)
ti

= S̄
(k)
ti−1

(1 + r(ti − ti−1)) + σ(ti−1, S̄
(k)
ti−1

)
√

ti − ti−1Z̄k,i

we determine the corresponding realizations of the final value of the un-
derlying asset S̄

(1)
T , . . . , S̄

(n)
T ;

(B.3) we compute the approximation of the price of the derivative as in (A.3).

Finally we consider an Up&Out contract with barrier B and payoff

HT = F (ST )1{
max

0≤t≤T
St≤B

}.
Since it is a path-dependent option, also in this case the Euler-Monte Carlo
method is suitable in order to simulate the full path of the underlying asset
and not only the final price. For the sake of simplicity we set r = 0. In this
case the steps are as follows:

(C.1) as in (B.1);
(C.2) using (B.2) we determine the realizations of the final value of the un-

derlying asset S̄
(k)
T and of the maximum M̄ (k) := max

i=1,...,m
S̄

(k)
ti

;

(C.3) we compute the approximation of the price of the derivative

1
n

n∑
k=1

F
(
S̄

(k)
T

)
1[0,B]

(
M̄ (k)

)
≈ E [HT ] .

12.4.2 Computation of the Greeks

With some precautions, the Monte Carlo method can be used also to compute
the sensitivities. We consider in particular the problem of computing the Delta
of an option: we denote by St(x) the price of the underlying asset with initial
value x and F the payoff function of a European derivative. In the sequel the
mean is computed with respect to an EMM.

The simplest approach to compute the Delta

Δ = e−rT ∂xE [F (ST (x))]

consists in approximating the derivative by an incremental ratio:

Δ ≈ e−rT E

[
F (ST (x + h))− F (ST (x))

h

]
. (12.51)

The mean in (12.51) can be approximated by the Monte Carlo method, by
choosing a suitable h and taking care to use the same realizations of the Nor-
mal standard variables to simulate ST (x+h) and ST (x). It is often preferable
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to use a central incremental ratio or also a higher-order one to get a more
accurate result. Nevertheless it is important to note that this approach is
efficient only if F is sufficiently regular: in general extra care must be taken.

We also touch upon an alternative method that will be presented in greater
detail in Chapter 16. The following technique uses the fact that, in the Black-
Scholes model, we have an explicit expression of the density of the underlying
asset as a function of the initial price x:

ST (x) = eY , Y ∼ N
log x+

(
r−σ2

2

)
T,σ2T

.

The price of the option is

H(x) = e−rT E [F (ST (x))] = e−rT

∫
R

F (ey)Γ (x, y)dy,

where

Γ (x, y) =
1√

2πσ2T
exp

⎛⎜⎝−
(
y − log x−

(
r − σ2

2

)
T
)2

2σ2T

⎞⎟⎠ .

Then, under suitable assumptions justifying the exchange of the derivative-
integral sign, we have

Δ = ∂xH(x) = e−rT

∫
R

F (ey)∂xΓ (x, y)dy

= e−rT

∫
R

F (ey)Γ (x, y)
y − log x−

(
r − σ2

2

)
T

σ2Tx
dy

=
e−rT

σ2Tx
E

[
F (ST (x))

(
log ST (x)− log x−

(
r − σ2

2

)
T

)]
(12.52)

=
e−rT

σTx
E [F (ST )WT ] . (12.53)

We observe that (12.52) expresses the Delta in terms of the price of a new
option: the same result can be obtained by means of Malliavin calculus tech-
niques (cf. (16.19)). What is peculiar about formula (12.52) is that the deriva-
tive of F does not appear anymore: indeed the partial derivative ∂x was applied
directly to the density of the underlying asset. The advantage from a numer-
ical point of view is remarkable above all if F is not regular: the typical case
is that of the digital option, in which the derivative of the payoff function
F = 1[K,+∞[ is (in the distributional sense) a Dirac delta.

With the same technique it is also possible to get similar expressions of the
other Greeks in the Black-Scholes model. For more general models, or when
the explicit expression of the density is not known, analogous results can be
proved by using the more sophisticated tools of Malliavin calculus, which will
be presented in Chapter 16.
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12.4.3 Error analysis

We consider a sequence (Xn) of i.i.d. random variables with finite expectation
and variance:

μ = E [X1] , σ2 = var(X1).

By the strong Law of large numbers, the sequence

Mn :=
X1 + · · ·+ Xn

n

converges a.s. to μ. Now we show that the central limit theorem provides an
estimate of the speed of convergence and the error distribution. Indeed, by
Theorem A.146 we have

√
n

(
Mn − μ

σ

)
−−−−→
n→∞

Z ∼ N0,1,

and so, asymptotically for n→∞, for every x ∈ R we have

P

(√
n

(
Mn − μ

σ

)
≤ x

)
≈ Φ(x),

where Φ is the standard Normal distribution function as in (A.25). Conse-
quently, for every x > 0,

P

(
Mn ∈

[
μ− σx√

n
, μ +

σx√
n

])
≈ p, where p = 2Φ(x)− 1. (12.54)

Therefore, for a fixed p ∈]0, 1[, the distance between the exact value and the
approximated one is with probability p (asymptotically) less than

σ√
n

Φ−1

(
p + 1

2

)
.

For example, Φ−1(p+1
2 ) ≈ 1, 96 for p = 95%.

From a theoretical point of view, it is apparent that the previous esti-
mates are inconsistent, since they hold asymptotically, for n → ∞ and we
cannot control the speed of convergence. However, in practice they give a
more accurate estimate than (12.49). This fact can be justified rigorously
by the Berry-Esseen Theorem. This result gives the speed of convergence in
the central limit theorem, thus allowing us to obtain rigorous estimates for
the confidence intervals. In the next statement we assume, for the sake of
simplicity, that E [X] = 0: we can always make this assumption satisfied by
substituting X with X − E [X].
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Theorem 12.16 (Berry-Esseen) Let (Xn) be a sequence of i.i.d. random
variables such that E [X1] = 0 and σ2 = var(X1), � = E

[
|X1|3

]
are finite. If

Φn is the distribution function of
√

nMn

σ , then

|Φn(x)− Φ(x)| ≤ �

σ3
√

n

for every x ∈ R.

For the proof we refer to, for example, Durrett [109].
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Introduction to Lévy processes
(with Rossella Agliardi)

The classical Black-Scholes model employs the Brownian motion as the driving
stochastic process of asset prices. Empirical evidence has pointed out that such
an assumption does not provide an accurate description of financial data and
has promoted the development of more flexible models. This chapter presents
the fundamentals of Lévy processes and option pricing under such stochastic
processes. Since this chapter is intended as an informal introduction to Lévy
processes, many of the proofs are omitted: for a complete treatment of the
theory we refer to the classical monographs by Bertoin [44], Sato [297], Jacod
and Shiryaev [184].

13.1 Beyond Brownian motion

The classical Black-Scholes model assumes that the price S of the risky un-
derlying asset follows a geometric Brownian motion. In other words, the asset
price returns behave according to a normal distribution and the paths of asset
prices are continuous functions of time: more precisely, by (7.3), we have

St = S0e
Xt where Xt ∼ N(μ−σ2

2

)
t,σ2t

.

However, empirical evidence has brought to the light several stylized facts
which are in contrast with this simple assumption and are now recognized as
essential ingredients of any mathematical model of financial assets. A list of
such empirical facts and their implications on the modeling of market moves
is included in the monograph by Cont and Tankov [76] (see also the recent
account by Tankov and Voltchkova [115]) and here we give a short outline.

The presence of jumps in the stock price trajectories, which appear as
discontinuities in the price path, is a well-documented evidence. One rem-
edy is proposed by Merton [251] who adopted a jump-diffusion model, that is
a mixture of independent Brownian motion and Poisson processes. A closed

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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form solution to the option pricing problem is available under specific as-
sumptions on the distribution of jumps. However some criticisms have been
raised towards the use of jump-diffusions: tractable jump-diffusion models re-
quire special assumptions, they do not allow for too many jumps, empirical
analysis of high-frequency data supports purely discontinuous processes, etc.

Another important feature that has led to adopting more flexible distribu-
tions than the normal one is the widely recognized non-Gaussian behaviour
of the log-returns. As we know, the normal distribution has zero skewness
(cf. (A.79)). Moreover the kurtosis is 3 for the normal distribution, while it is
greater (less) than 3 for the distributions with a higher (flatter) peak. Excess
kurtosis is related to fat tails, that is, large movements are more frequent
than a normal distribution may predict. The empirical analysis of stock re-
turns typically exhibits some significant (usually negative) skewness and an
excess kurtosis. For example, the kurtosis of S&P 500 index in the period
1970-2001 is 7.17 if the pathological data of the crash of October 19, 1987
are expelled, and is 43.36 if the complete dataset is considered (see Schoutens
[301]).

While extreme stock market movements are relatively rare (for example,
the −20% stock market crash of October 19, 1987 was the only daily move-
ment in the post World War II era to exceed 10% in magnitude), persistent
deviations from the normal distribution have been noticed, especially after
the October 1987 crash. Indeed the classical models tend to under-estimate
the probability of large drops of stock prices, thus leading to under-pricing
of financial risk. The use of alternative distributions to capture outliers dates
back to Mandelbrot [245] who pointed out that “the empirical distributions of
price changes are usually too peaked to be relative to samples from Gaussian
populations” and the adoption of the stable Paretian distribution was pro-
posed as an alternative. The Gaussian assumption was rejected also in Fama
[125]. Stable distributions (cf. Section 13.4.2) are defined in terms of an index
α ∈]0, 2]: the case α = 2 corresponds to the normal distribution, which is
the only stable distribution with a finite variance. Since stable distributions
with α < 2 are more peaked and have fatter tails than the normal one, they
have been proposed as a more realistic description of price returns. A stable
random variable X satisfies:

P (|X| > x) = O
(
x−α

)
, as x→∞,

while
P (|X| > x) = O

(
x−1e−

x2
2

)
, as x→∞,

in the standard Gaussian case. Therefore the tails are heavier when a sta-
ble non-normal distribution is employed. However further empirical studies
suggested a faster decrease at infinity than predicted in this framework. For
example, Officer [271] found evidence of thinner tails for large sums of daily
returns; moreover, he found an increase in α for daily returns and concluded
that it would be more appropriate to consider a modified model with a finite
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second moment distribution and semi-heavy tails, that is such that

P (|X| > x) = O
(
|x|α±e−λ±|x|

)
, as x −→ ±∞,

for some positive constants λ±.
Madan and Seneta [243] introduced an alternative distribution, the Varian-

ce-Gamma (VG), and tested the goodness-of-fit on several Australian stocks:
the best performance was attained by the VG model, while the stable model
out-performed in two cases out of 19 and the normal distribution in none. Sev-
eral other models have been proposed to overcome the inconsistency of the
Gaussian assumption with empirical data. Examples of such models are the
truncated Lévy flights proposed by Mantegna and Stanley [246], the Normal
Inverse Gaussian (NIG) employed by Barndorff-Nielsen [25], the Hyperbolic
distribution adopted by Eberlein and Keller [113] and the more general Gener-
alized Hyperbolic (GH) model (see Eberlein [110], Eberlein and Prause [117],
the Meixner process (see Schoutens [300]), the CGMY model introduced by
Carr, Geman, Madan and Yor [67] and generalized to a six-parameter model
in [68].

The above listed processes belong to the wide family of the Lévy processes
that will be the object of the following sections. The Lévy class has gained in-
creasing favor in the financial literature thanks to its flexibility which allows to
capture some features of the empirical distributions as sharp peaks and semi-
heavy tails. Another qualitative features of empirical price trajectories which
is not captured in a purely Brownian framework is the non-self-similarity, that
is, dramatic changes occur in the distributions of returns if one looks at them
on different time scales, as already pointed out in Fama [126]. On the contrary,
a Wiener process has the self-similarity property: Wλ2t = λWt for any scaling
factor λ > 0. The only self-similar Lévy processes are the Brownian motion
(without drift) and the symmetric α-stable Lévy process. The deviation from
the normal distribution is investigated also in Eberlein and Keller [113] in
details. Note that it is significant especially if prices are considered on a daily
or an intraday time grid, which has become of major interest for the nowadays
trading on electronic platforms and availability of high-frequency data.

Another interesting property of some Lévy processes proposed in the finan-
cial literature is that they can be obtained as time-changed Brownian motions:
that is, Xt = WSt where St is a stochastic time change or a “stochastic clock”.
As Geman [153] points out, such a “stochastic time change is in fact a mea-
sure of the economic activity” and accounts for the asset price reaction to the
arrival of information. “Some days, very little news, good or bad, is released;
trading is typically slow and prices barely fluctuate. In contrast, when new
information arrives and traders adjust their expectation accordingly, trad-
ing becomes brisk and the price evolution accelerates”. This point of view is
related to the problem of handling stochastic volatility. In [68] a stochastic
volatility effect is obtained by letting the price process be subordinated by
a second stochastic process, a “stochastic clock”: periods with high volatility
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are obtained letting time run faster than in periods with low volatility. As
Cont and Tankov [76] emphasize, “unlike the Brownian model where realized
volatility has a deterministic continuous-time limit, model based on Lévy pro-
cesses lead to a realized volatility which remains stochastic when computed
on fine time grids” and a stochastic volatility effect may be achieved without
employing any additional random factors.

Another major issue that has driven beyond the classical Black-Scholes
theory is the calibration to the market option prices. The discrepancy between
the Black-Scholes prices and the empirical prices results in the shape of the
implied volatility surface. The problem of fitting of the implied volatility and
the study of the stability of the solution to this inverse problem has generated
several diffusion-based models, either of the level dependent volatility type
or in the stochastic volatility approach. The main drawback of stochastic
volatility models is their inability to reproduce the variation in moneyness
of the volatility surfaces at shorter term. As we shall see in Chapter 14, the
combination of stochastic volatility models with jump processes seems to offer
more powerful tools to face the problem, both in terms of greater flexibility
in generating smile/skew patterns and in giving a convincing explanation.

13.2 Poisson process

The Poisson process is a fundamental example of stochastic process with dis-
continuous paths and serves as the basic building block for jump processes. To
construct a Poisson process, we consider a sequence (τn)n≥1 of independent
random variables with exponential distribution with parameter λ > 0:

τn ∼ Expλ, n ≥ 1.

We refer to Example A.29 for a review of the main properties of the expo-
nential distribution. We consider a model where jumps occur randomly and
τn denotes the time distance of the n-th jump from the preceding one: thus,
the first jump occurs at time τ1, the second jump occurs τ2 time units after
τ1 and so forth: then, for any n ∈ N,

Tn :=
n∑

k=1

τk (13.1)

is the time of the n-th jump. We remark that

E [Tn − Tn−1] = E [τn] =
1
λ

, n ∈ N,

that is 1
λ is the average distance among subsequent jumps: this can also be

expressed by saying that λ jumps are expected in a unit time interval; for this
reason, λ is also called the intensity parameter.
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Lemma 13.1 For any n ∈ N, the random variable Tn has probability density

fTn(t) = λe−λt (λt)n−1

(n− 1)!
1R≥0(t), t ∈ R. (13.2)

Proof. We prove the thesis by induction. For n = 1 it is obvious. Next we
assume that Tn has probability density given by (13.2): by the independence
of the variables {τn} and Corollary A.54, we have

fTn+1(t) = fTn+τn+1(t) =
∫
R

fTn(s)fτn+1(t− s)ds

=
∫ ∞

0

λe−λs (λs)n−1

(n− 1)!
λe−λ(t−s)1{t−s>0}ds

=
λn+1e−λt

(n− 1)!

∫ t

0

sn−1ds

and the thesis easily follows. �

Definition 13.2 (Poisson process) The Poisson process with intensity λ
is the process

Nt =
∑
n≥1

n1[Tn,Tn+1[(t), t ∈ R≥0,

with Tn as in (13.1).

The Poisson process Nt counts the number of jumps that occur at or before
time t. In particular Nt takes only non-negative integer values. Figure 13.1
shows a path of the Poisson process. Notice that by definition the trajectories
of N are right-continuous functions:

Nt = Nt+ := lim
s↓t

Ns, t ≥ 0.

The following proposition shows some other important properties of the Pois-
son process and also helps in understanding the difference between the notions
of pathwise continuous and stochastically continuous process.

Proposition 13.3 Let (Nt)t≥0 be a Poisson process. Then:

i) the trajectories t �→ Nt(ω) are right continuous with finite left limits, that
is N is a càdlàg1 process;

ii) for any positive t, almost all trajectories are continuous at t, that is

Nt = Nt− = lim
s↑t

Ns a.s.;

iii)N is stochastically continuous that is, for all ε > 0 and for all t ≥ 0, we
have

lim
h→0

P (|Nt+h −Nt| ≥ ε) = 0.
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Fig. 13.1. One path of a Poisson process with λ = 1. The dashed line is the expected
value E [Nt] = λt

Proof. Property i) follows from the definition of Poisson process. Secondly,
the discontinuities of N are at the jump times Tn, n ∈ N: however, by Lemma
13.1 for any t > 0 we have

P (Tn = t) = 0,

and therefore, with probability one, t is not a discontinuity point. This proves
ii). Finally iii) follows directly from ii) because the almost sure convergence
implies the convergence in probability (cf. Theorem A.136). �

Next we study the distribution of the Poisson process.

Proposition 13.4 Let (Nt)t≥0 be a Poisson process with intensity λ. Then:

i) for any t ≥ 0, Nt has the distribution

P (Nt = n) = e−λt (λt)n

n!
, n ∈ N, (13.3)

and in particular

E [Nt] = λt, var(Nt) = λt;

ii) N has independent increments, that is for any 0 ≤ t1 < · · · < tn the
random variables Nt1 , Nt2 −Nt1 ,. . . ,Ntn −Ntn−1 are independent;

iii)N has stationary increments, that is

Nt −Ns=
d

Nt−s, t ≥ s ≥ 0.

Proof. We only prove i): for the other properties, that are consequence of
the absence of memory of the exponential distribution (cf. Example A.29), we

1 Càdlàg is the French shortening for “right-continuous with finite left limits at all
t” (continue à droite et limité à gauche).
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Fig. 13.2. One path of a compensated Poisson process with λ = 1

refer for instante to [76]. We first observe that by (13.2) we have

P (t ≥ Tn+1) =
∫ t

0

λe−λs (λs)n

n!
ds =

(by parts)

= −
[
e−λs (λs)n

n!

]s=t

s=0

+
∫ t

0

λe−λs (λs)n−1

(n− 1)!
ds

= −e−λt (λt)n

n!
+ P (t ≥ Tn) .

Hence we have

P (Nt = n) = P (t ≥ Tn)− P (t ≥ Tn+1) = e−λt (λt)n

n!
.

�

Remark 13.5 Notice that, by Proposition 13.4-i) and iii), we have

E [Nt+1 −Nt] = E [N1] =
∑
n≥1

nP (N1 = n) = e−λ
∑
n≥1

λn

(n− 1)!
= λ,

which confirms that the intensity λ represents the number of jumps expected
in a unit time interval. �

Remark 13.6 It is known that any counting process with stationary inde-
pendent increments is a Poisson process (see, for instance, Protter [287]). �

Remark 13.7 Let (Ft) be the filtration generated by a Poisson process N .
By the independence of increments, for any t > s ≥ 0 we have

E [Nt | Fs] = E [Nt −Ns] + Ns = λ(t− s) + Ns.

As a consequence the process Nt − λt is a martingale and is usually called
compensated Poisson process. Figure 13.2 shows a path of a compensated
Poisson process: note that Nt − λt is not an integer valued process. �
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Fig. 13.3. One path of a compound Poisson process with λ = 1 and η = N0,1

Definition 13.8 (Compound Poisson process) Let N be a Poisson pro-
cess with intensity λ and assume that Z = (Zn) is a sequence of i.i.d. random
variables in Rd with distribution η, i.e. Zn ∼ η for n ≥ 1, and which are
independent of N . The compound Poisson process is defined as2

Xt =
Nt∑

n=1

Zn, t ≥ 0. (13.4)

The jumps of the compound Poisson process X in (13.4) occur at the same
times as the jumps of N and X is a càdlàg process: however, while the jumps
of N are of fixed size equal to one, the jumps of X are of random size with
distribution η. Figure 13.3 shows a path of a 1-dimensional compound Poisson
process with λ = 1 and η = N0,1.

A compound Poisson process has independent and stationary increments.
Moreover, if we set3

m = E [Z1] ∈ Rd, (13.5)

then we have

E [Xt] =
∑
n≥1

E

[
1{Nt=n}

n∑
k=1

Zk

]
=

(by the independence of N and Z)

=
∑
n≥1

nE [Z1]P (Nt = n) =

2 By convention, Xt = 0 when Nt = 0.
3 Hereafter, we shall always implicitly assume that

E [Z1] =

∫
Rd

xη(dx) < ∞.
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(by (13.3))

= me−λt
∑
n≥1

(λt)n

(n− 1)!
= mλt.

Definition 13.9 (Compensated compound Poisson process) Let X be
a compound Poisson process with intensity λ and distribution of jumps η. The
process

X̃t = Xt − E [Xt] = Xt −mλt,

where

m =
∫
Rd

x η(dx) = E [Z1] ,

is called compensated compound Poisson process.

A compensated compound Poisson process is a martingale with respect to the
filtration generated by N and Z.

13.3 Lévy processes

In this section Lévy processes are introduced and their main properties are
presented. They are named after the French mathematician Paul Lévy (1886-
1971) who is one of the founding fathers of the theory of stochastic processes.
The class of Lévy processes includes Brownian motion and Poisson process
and retains the property of the independence and stationarity of the incre-
ments. An important consequence is the infinite divisibility of distributions,
which implies that Xt at a fixed time, say t = 1, can be expressed as the sum
of a finite number of i.i.d. random variables: this provides a motivation for
modeling price changes as resulting from a large number of shocks in the econ-
omy. The Brownian motion is a very special example, since it is the only Lévy
process with continuous trajectories; on the other hand, the presence of jumps
is one main motivation that has led to consider Lévy processes in finance. A
part of this section is devoted to introducing the characteristic exponent which
is a convenient concept for handling Lévy processes. Moreover we revise the
most popular Lévy processes that have been used in finance. Hereafter, we
assume given a filtered probability space (Ω,F , P, (Ft)) satisfying the usual
hypotheses (cf. Section 3.3.3).

Definition 13.10 A Lévy process is an adapted stochastic process X =
(Xt)t≥0 defined on the space (Ω,F , P, (Ft)) with values in Rd, such that
X0 = 0 a.s. and

L-i) X has increments independent of the past, that is Xt−Xs is independent
of Fs for 0 ≤ s < t;
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L-ii) X has stationary increments, that is Xt −Xs has the same distribution
of Xt−s:

Xt −Xs=
d

Xt−s, 0 ≤ s < t;

L-iii) X is stochastically continuous that is, for all ε > 0 and for all t ≥ 0, we
have

lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0.

Remark 13.11 In Protter [287], Chapter 1, it is shown that every Lévy pro-
cess has a unique càdlàg modification that is itself a Lévy process. Therefore
we will incorporate such property in the definition of Lévy process: we shall
assume that sample paths of a Lévy process are almost surely continuous from
the right and have finite limits from the left. Note that a càdlàg function

f : R≥0 −→ Rd

can only have jump discontinuities: if t is a discontinuity point then we denote
by

Δf(t) := f(t)− f(t−) ∈ Rd \ {0} (13.6)

the jump of f at t; we also set Δf(0) = 0. Intuitively the value f(t) is not
foreseeable by an observer approaching t from the past, which amounts to
saying that càdlàg paths have unpredictable jumps. �

Lemma 13.12 Let f be a càdlàg function defined on a compact interval
[0, T ]. Then, for any n ∈ N, the number of jumps of f of size greater than 1

n
is finite:

#{t ∈]0, T ] | |Δf(t)| ≥ 1
n
} <∞.

In particular, f has at most a countable number of jumps.

Proof. By contradiction, assume that for some n ∈ N the number of jumps of
size greater than 1

n is infinite: then, since the domain is compact, there exists
a sequence (tk) in [0, T ], strictly increasing or decreasing, which converges to
t̄ ∈ [0, T ] as k →∞ and is such that

|Δf(tk)| ≥ 1
n

, k ∈ N. (13.7)

We only consider the case when (tk) is strictly increasing, the other case being
analogous. Since f has finite left limits, we have that f(tk) converges to f(t̄−)
as k →∞ and this contradicts (13.7). �

Remark 13.13 Let X be a Lévy process and consider T > 0 and H ∈ B(Rd)
such that 0 /∈ H so that

dist(H, 0) = inf{|x| | x ∈ H} > 0.
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As a consequence of Lemma 13.12 we have that, with probability one,
(Xt)t∈[0,T ] has only a finite number of jumps of size belonging to H: we ex-
press this by saying that a Lévy process can only have a finite number of large
jumps. On the other hand, X can have infinitely (countably) many small
jumps.

If a Lévy process has only a finite number of jumps in any bounded time
interval (like the compound Poisson process) we say that it is a finite activity
Lévy process, otherwise we say that it has infinite activity. �

Remark 13.14 Theorem 3.47 on the completion of the Brownian filtration
extends to the case of Lévy processes. More precisely, let X be a Lévy process
and consider the natural filtration of X completed by the negligible events:

FX
t = σ

(
F̃X

t ∪N
)

.

Then
(
FX

t

)
is right-continuous and therefore it satisfies the usual hypotheses

(see, for instance, Theorem I-31 in [287]); moreover X is a Lévy process with
respect to FX . �

13.3.1 Infinite divisibility and characteristic function

Since most option pricing theory under Lévy processes builds on Fourier
transform methods, now we examine the characteristic function (cf. Appendix
A.7.1)

ϕXt(ξ) = E
[
eiξ·Xt

]
, ξ ∈ Rd, t ≥ 0,

of a Lévy process X. A remarkable property of the characteristic function of a
Lévy process is that it can be expressed in the form etψ(ξ) for some continuous
function ψ. More precisely, we have

Theorem 13.15 If X is a Lévy process, then there exists and is unique a
function ψ ∈ C

(
Rd,C

)
such that ψ(0) = 0 and

ϕXt(ξ) = etψ(ξ), t ≥ 0, ξ ∈ Rd. (13.8)

The function ψ is called the characteristic (or Lévy) exponent of X.

Let us recall that the distribution of a random variable is determined by its
characteristic function: a consequence of Theorem 13.15 is that the law of Xt

is only determined by the characteristic exponent ψ or equivalently by the
law of X1. Therefore in order to specify the distribution of a Lévy process X,
it is sufficient to specify the distribution of Xt for a single time.

To give a sketch of the proof of Theorem 15.16, we show some preliminary
result and introduce the notion of infinite divisibility.

Definition 13.16 A random value Y is said to be infinitely divisible if, for
any n ≥ 2, there exist i.i.d. random variables Y

(n)
1 , . . . , Y

(n)
n such that

Y =
d

Y
(n)
1 + · · ·+ Y (n)

n .
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In other words, an infinitely divisible random variable can be decomposed into
the sum of an arbitrary number of i.i.d. variables: for example, if Y ∼ Nμ,σ2

then we can take independent variables Y
(n)
i ∼ Nμ

n , σ2
n

, i = 1, . . . , n.

Lemma 13.17 If X is Lévy process, then Xt is infinitely divisible for each
t ≥ 0 and we have

ϕXt(ξ) =
(
ϕX t

n

(ξ)
)n

, t ≥ 0, n ∈ N. (13.9)

Proof. The thesis follows by the properties L-i) and L-ii) of Definition 13.10:
indeed, for any n ≥ 2 we set

Y
(n)
i := X it

n
−X (i−1)t

n
=
d

X t
n
, i = 1, . . . , n, (13.10)

and we remark that Y
(n)
i are i.i.d. by L-ii). Then it suffices to observe that

Xt = Y
(n)
1 + · · ·+ Y (n)

n . (13.11)

Formula (13.9) follows from (13.10)-(13.11) and the independence of the va-
riables Y

(n)
i , i = 1, . . . , n. �

Lemma 13.18 If (Xt)t≥0 is stochastically continuous, then the map t �→
ϕXt(ξ) is continuous for each ξ ∈ Rd.

Proof. Let ξ ∈ Rd be fixed: for any ε > 0 we consider δε > 0 such that

sup
|y|≤δε

∣∣eiξ·y − 1
∣∣ < ε

2
.

If X is stochastically continuous, there exists δ′ε > 0 such that

P (|Xt −Xs| > δε) <
ε

4

whenever |t− s| ≤ δ′ε. Hence we have

|ϕXt(ξ)− ϕXs(ξ)| =E
[∣∣∣eiξ·(Xt−Xs) − 1

∣∣∣]
=E
[∣∣∣eiξ·(Xt−Xs) − 1

∣∣∣1{|Xt−Xs|≤δε}
]

+ E
[∣∣∣eiξ·(Xt−Xs) − 1

∣∣∣1{|Xt−Xs|>δε}
]

≤ε

2
+ 2P (|Xt −Xs| > δε) ≤ ε

for |t− s| ≤ δ′ε. �
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The following non trivial lemma is another consequence of the infinite divisi-
bility property of Lévy processes.

Lemma 13.19 If (Xt)t≥0 is a Lévy process, then ϕXt(ξ) 
= 0 for any ξ ∈ Rd

and t ≥ 0.

Proof. See Sato [297], Lemma 7.5. �

Lemma 13.20 Let ϕ ∈ C(Rd,C) such that ϕ(0) = 1 and ϕ(ξ) 
= 0 for any
ξ ∈ Rd. Then there exists a unique continuous function g ∈ C(Rd,C) such
that g(0) = 0 and ϕ(ξ) = eg(ξ) for any ξ ∈ Rd.

Proof. See Sato [297], Lemma 7.6. �

We improperly write
g(ξ) = log ϕ(ξ)

and we call g the distinguished complex logarithm of ϕ. We recall that the
complex logarithm is a multi-valued function (see also Section 15.1); therefore
it is important to remark that g is not the composition of ϕ with a fixed branch
of the complex logarithm function: in particular, ϕ(ξ) = ϕ(ξ′) does not imply
g(ξ) = g(ξ′).

We are now in position to prove Theorem 15.16.

Proof (of Theorem 13.15). Let us denote by gt the distinguished complex
logarithm of ϕXt that is well-defined for any Lévy process by Lemmas 13.19
and 13.20. By (13.9) with t = m ∈ N, we have

egm(ξ) = ϕXm(ξ) =
(
ϕX m

n
(ξ)
)n

= e
ng m

n
(ξ)

and this implies

gm(ξ) = ngm
n

(ξ) + 2πik(ξ), ξ ∈ Rd,

where ξ �→ k(ξ) is, by definition, a continuous function with values in Z and
therefore is a constant function: more precisely, k(ξ) = k(0) = 0 because
gt(0) = 0 for any t. Thus we have

gm = ngm
n

, m, n ∈ N. (13.12)

By (13.12), we also have

gm
n

=
1
n

gm =

(by (13.12) with n = m)

=
m

n
g1, m, n ∈ N. (13.13)
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By Lemma 13.18, t �→ gt(ξ) is a continuous function for any ξ ∈ Rd: therefore,
if t ≥ 0 and (qn) is a sequence of positive rational numbers approximating t,
we have

gt(ξ) = lim
n→∞

gqn(ξ) =

(by (13.13))

= lim
n→∞

qng1(ξ) = tg1(ξ), ξ ∈ Rd, t ≥ 0.

Therefore the thesis is proved with ψ = g1. �

Example 13.21 (Brownian motion with drift) Let Xt = μt+σWt where
W is a standard real Brownian motion: as a consequence of Example A.60 and
Lemma A.70, we have

E
[
eiξXt

]
= eiμtξE

[
eiξσWt

]
= eiμtξ+ 1

2 (iξσ)2t,

that is

ψ(ξ) = iμξ − σ2ξ2

2
.

In the d-dimensional case when μ ∈ Rd and σ is an d × N constant matrix,
we have

ψ(ξ) = iμ · ξ − 1
2
〈Cξ, ξ〉,

where C = σσ∗. �

Example 13.22 (Poisson process) Let Nt denote a Poisson process with
intensity λ (cf. Definition 13.2). We have

ϕNt(ξ) = E
[
eiξNt

]
=
∑
n≥0

E
[
eiξn1{Nt=n}

]
=

(by (13.3))

= e−λt
∑
n≥0

(
eiξλt

)n
n!

= e−λteλteiξ

.

Hence in this case the characteristic exponent is given by

ψ(ξ) = λ
(
eiξ − 1

)
. (13.14)

�
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Example 13.23 (Compound Poisson process) Let

Xt =
Nt∑

n=1

Zn, t ≥ 0,

be a d-dimensional compound Poisson process (cf. Definition 13.8) with in-
tensity λ and distribution of jumps η. We denote by

η̂(ξ) = E
[
eiξ·Z1

]
=
∫
Rd

eiξ·xη(dx), ξ ∈ Rd,

the characteristic function of Z1. Then we have

ϕXt(ξ) =
∑
n≥0

E

[
e

iξ·
n∑

k=1
Zk

1{Nt=n}

]
=

(by the independence of Nt, Z1, . . . , Zn, n ∈ N)

=
∑
n≥0

(
E
[
eiξ·Z1

])n
P (Nt = n) =

(by (13.3))

= e−λt
∑
n≥0

(λtη̂(ξ))n

n!
= e−λteλtη̂(ξ).

Hence the characteristic exponent is given by

ψ(ξ) = λ (η̂(ξ)− 1) =
∫
Rd

(
eiξ·x − 1

)
λη(dx). (13.15)

Note that the measure λη is equal to the product of the intensity λ, that is the
expected number of jumps in a unit time interval, with the distribution of the
size of the jumps η: hence, for any Borel set H, λη(H) can be interpreted as
the intensity of jumps with size in H, that is λη(H) is the number of jumps,
with size in H, that are expected in a unit time interval. We also remark that
(13.14) is a special case of (13.15) with η = δ1 (the Dirac distribution centered
at 1). �

Example 13.24 (Compensated compound Poisson process) Let

X̃t = Xt −mλt, m =
∫
Rd

xη(dx),

be a compensated compound Poisson process with intensity λ and distribution
of jumps η (cf. Definition 13.9). Then we have

ϕX̃t
(ξ) = ϕXt(ξ)e

−iλtξ·m;
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therefore the characteristic exponent has the form

ψ(ξ) = λ (η̂(ξ)− 1− iξ ·m) =
∫
Rd

(
eiξ·x − 1− iξ · x

)
λη(dx). (13.16)

�

Remark 13.25 Let X and Y be independent Lévy processes with characte-
ristic exponents ψX and ψY respectively. Then the sum X + Y is a Lévy
process with characteristic exponent ψX + ψY . Indeed, by independence we
have

etψX+Y (ξ) = E
[
eiξ·(Xt+Yt)

]
= ϕX(ξ)ϕY (ξ) = et(ψX(ξ)+ψY (ξ)). �

Example 13.26 (Jump-diffusion process) Consider the jump-diffusion
process

Xt = μt + Bt +
Nt∑

n=1

Zn

which is the independent sum of a correlated Brownian motion with drift and
covariance matrix C, and a compound Poisson process. Then

ψ(ξ) = iμ · ξ − 1
2
〈Cξ, ξ〉+

∫
Rd

(eix·ξ − 1)λη(dx),

where λ is the intensity and η is the distribution of jumps. In particular, if Z1

is one-dimensional and normal, Z1 ∼ Nα,δ2 then

ψ(ξ) = iμξ − 1
2
σ2ξ2 + λ

(
eiαξ− 1

2 δ2ξ2 − 1
)

.

The first model for risky assets in finance which employed a jump-diffusion is
the Merton model [251]. �

13.3.2 Jump measures of compound Poisson processes

In this section we consider a jump-diffusion process X in Rd of the form

Xt = μt + Bt +
Nt∑

n=1

Zn (13.17)

where μ ∈ Rd, B is a d-dimensional correlated Brownian motion with cor-
relation matrix4 C, N is a Poisson process with intensity λ and (Zn)n≥1 are
i.i.d. random variables in Rd with distribution η. As usual, the Brownian and
Poisson components are independent.
4 In terminology used here Bt ∼ N0,tC.
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We denote by (Tn) the increasing sequence of jump times. For any I×H ∈
B([0,+∞[×Rd), we put

J(I ×H) :=
∑
n≥1

δTn(I)δZn(H) (13.18)

where δ denotes the Dirac delta. In particular, note that for I = [0, t] we have

J([0, t]×H) =
Nt∑

n=1

δZn(H).

In other terms, J([0, t] × H) counts the number of jumps occurring in the
time interval [0, t] and such that their size is in H. Since, with probability
one, only a finite number of jumps occurs on any bounded time interval, the
sum in (13.18) has a finite number of terms and J is well-defined. Moreover,
J is a finite sum of Dirac deltas and therefore it is a σ-finite measure on
B([0,+∞[×Rd) taking values in the set of non-negative integers N0: notice
that J also depends on ω ∈ Ω and thus it is a measure taking random values,
i.e. it is a random measure. We refer to Kallenberg [194] or Jacod and Shiryaev
[184], Chapter II, for a presentation of the general theory of random measures.

Definition 13.27 The random measure J in (13.18) is called jump measure
of X.

The expectation of J is given by

E [J ([0, t]×H)] = E

[
Nt∑

k=1

δZk
(H)

]

=
∑
n≥1

E

[
n∑

k=1

δZk
(H)1{Nt=n}

]

=
∑
n≥1

P (Nt = n)
n∑

k=1

P (δZk
(H))

= e−λt
∑
n≥1

(λt)n

n!
nη(H) = tλη(H).

In particular we have

E [J ([0, t]×H)] = tE [J ([0, 1]×H)] ,

and
ν(H) := E [J ([0, 1]×H)] = λη(H), H ∈ B(Rd), (13.19)

defines a finite measure on B(Rd) such that

ν(Rd) = λ.
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Definition 13.28 The measure ν in (13.19) is called the intensity (or Lévy)
measure of X.

The intensity measure ν(H) determines the expected number, per unit time,
of jumps of X whose amplitude belongs to H. Note that, differently from J ,
ν is not integer-valued.

Remark 13.29 We recall (13.15) of Example 13.23 and note that the cha-
racteristic exponent of the jump part of X in (13.17) (i.e. the compound

Poisson process
Nt∑

n=1
Zn), can be expressed in terms of the Lévy measure as

follows:
ψ(ξ) =

∫
Rd

(
eiξ·x − 1

)
ν(dx), ξ ∈ Rd.

Since the characteristic exponent determines the distribution of the process,
we have that the Lévy measure characterizes the jump part of X. More gene-
rally, the Lévy process X in (13.17) is completely identified by the triplet
(μ, C, ν) where:

• μ is the coefficient of the drift part;
• C is the covariance matrix of the diffusion part;
• ν is the intensity measure of the jump part.

As we shall see later, a similar characterization holds for the general class of
Lévy processes. �

Next we prove a crucial result which allows to obtain a representation of
X in terms of its jump measure J .

Theorem 13.30 Let X be the jump-diffusion process in (13.17) with jump
measure J and Lévy measure ν. For any function f = f(t, x) we have∑

0<s≤t
ΔXs �=0

f(s,ΔXs) =
∫ t

0

∫
Rd

f(s, x)J (ds, dx) . (13.20)

Further, assume that f ∈ L1
(
[0,+∞[×Rd, ds⊗ ν

)
and let

Mt =
∫ t

0

∫
Rd

f(s, x)J̃ (ds, dx)

=
∫ t

0

∫
Rd

f(s, x)J (ds, dx)−
∫ t

0

∫
Rd

f(s, x)ν(dx)ds (13.21)

where
J̃ (dt, dx) := J (dt, dx)− dtν(dx) (13.22)

is called the compensated jump measure of X. Then M is a martingale and
E [Mt] = 0, that is

E

[∫ t

0

∫
Rd

f(s, x)J (ds, dx)
]

=
∫ t

0

∫
Rd

f(s, x)ν(dx)ds. (13.23)
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Moreover, if f ∈ L2
(
[0,+∞[×Rd, ds⊗ ν

)
then we have

var(Mt) = E

[(∫ t

0

∫
Rd

f(s, x)J̃ (ds, dx)
)2
]

=
∫ t

0

∫
Rd

f2(s, x)ν(dx)ds.

(13.24)

Proof. For simplicity, we only consider the case f = f(x). We first remark
that, for a jump-diffusion process X, we have

∑
0<s≤t
ΔXs �=0

f(ΔXs) =
Nt∑

n=1

f (Zn) , (13.25)

where, as usual, ΔXs = Xs−Xs−. Clearly both sums in (13.25) have the same
finite number of terms, that is Nt, and therefore they are finite. Moreover we
have

Nt∑
n=1

f (Zn) =
∑
n≥1

∫ t

0

∫
Rd

f(x)δZn(dx)δTn(ds) =
∫ t

0

∫
Rd

f(x)J(ds, dx),

which proves (13.20).
Next we remark that

E

[
Nt∑

n=1

f (Zn)

]
=
∑
n≥1

E

[
n∑

k=1

f (Zk)1{Nt=n}

]

=
∑
n≥1

P (Nt = n)
n∑

k=1

E [f (Zk)]

= e−λt
∑
n≥1

(λt)n

n!
nE [f (Z1)]

= λtE [f(Z1)] = [Ntf (Z1)] . (13.26)

Now assume that f ∈ L1
(
Rd, ν

)
: then M in (13.21) is integrable because

E

[∣∣∣∣∫ t

0

∫
Rd

f(x)J (ds, dx)
∣∣∣∣] ≤ E

[
Nt∑

n=1

|f (Zn)|
]

(by (13.26))

= E [Nt |f (Z1)|]

= λtE [|f (Z1)|] = t

∫
Rd

|f(x)| ν(dx).
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Moreover, M is adapted by definition and we have

E

[∫ t

s

∫
Rd

f(x)J (ds, dx) | Fs

]
= E

⎡⎣ ∑
Ns<n≤Nt

f(Zn)

⎤⎦
(by (13.26))

= E [(Nt −Ns) f(Z1)]

= λ(t− s)E [f(Z1)] = (t− s)
∫
Rd

f(x)ν(dx),

and this proves that M is a martingale.
Finally, assume that f ∈ L2

(
Rd, ν

)
: we have

E

⎡⎣( Nt∑
k=1

f (Zk)− t

∫
Rd

f(x)ν(dx)

)2
⎤⎦

=
∑
n≥1

E

⎡⎣( n∑
k=1

f (Zk)− t

∫
Rd

f(x)ν(dx)

)2

1{Nt=n}

⎤⎦
=e−λt

∑
n≥1

(λt)n

n!

(
E

⎡⎣( n∑
k=1

f (Zk)

)2
⎤⎦− 2t

∫
Rd

f(x)ν(dx)E

[
n∑

k=1

f (Zk)

]

+
(

t

∫
Rd

f(x)ν(dx)
)2
)

=e−λt
∑
n≥1

(λt)n

n!
E

⎡⎣( n∑
k=1

f (Zk)

)2
⎤⎦− (t

∫
Rd

f(x)ν(dx)
)2

=e−λt
∑
n≥1

(λt)n

n!

⎛⎝E

[
n∑

k=1

f2 (Zk)

]
+ E

⎡⎣∑
h
=k

f (Zk) f (Zh)

⎤⎦⎞⎠
−
(

t

∫
Rd

f(x)ν(dx)
)2

=e−λt
∑
n≥1

(λt)n

n!

(
nE
[
f2 (Z1)

]
+ n(n− 1)E [f (Z1)]

2
)
−
(

t

∫
Rd

f(x)ν(dx)
)2

=λtE
[
f2 (Z1)

]
= t

∫
Rd

f2(x)ν(dx),

and this concludes the proof of (13.24). �
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Remark 13.31 Combining (13.20) with (13.23), we have

E

⎡⎢⎣ ∑
0<s≤t
ΔXs �=0

f(s,ΔXs)

⎤⎥⎦ =
∫ t

0

∫
Rd

f(s, x)ν(dx)ds. (13.27)

Combining (13.23) with (13.24), we obtain the interesting isometry

E

[(∫ t

0

∫
Rd

f(s, x)J̃(ds, dx)
)2
]

= E

[∫ t

0

∫
Rd

f2(s, x)J(ds, dx)
]

. (13.28)

�

By (13.20) with f(x) = x, we get the following remarkable representation
of the process X in (13.17):

Xt = μt + Bt +
∫ t

0

∫
Rd

xJ(ds, dx); (13.29)

this is a particular case of the fundamental Lévy-Itô decomposition of Theo-
rem 13.35. Moreover, if f(x) = x is η-integrable (and therefore ν-integrable)
then we have

E [Xt] = t

(
μ +

∫
Rd

xν(dx)
)

. (13.30)

Remark 13.32 We consider a compound Poisson process

Xt =
Nt∑

n=1

Zn. (13.31)

By Theorem 13.30, we have the following representations of X and of its
compensated version (cf. Definition 13.9):

Xt =
∫ t

0

∫
Rd

xJ(ds, dx), (13.32)

X̃t = Xt − E [Xt] =
∫ t

0

∫
Rd

xJ̃(ds, dx). (13.33)

Moreover by taking f(x) = |x| in Theorem 13.30, we deduce that the first
variation5 of X on [0, t] is given by

V[0,t](X) =
Nt∑

n=1

|Zn| =
∫ t

0

∫
Rd

|x|J(ds, dx);

5 See Definition 3.59.
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taking the expectation, we also have

E
[
V[0,t](X)

]
= t

∫
Rd

|x|ν(dx)

which may be infinite. Concerning the quadratic variation (cf. Definition 3.72),
taking f(x) = |x|2 in Theorem 13.30, we get

V 2
t (X) =

Nt∑
n=1

|Zn|2 =
∫ t

0

∫
Rd

|x|2J(ds, dx), (13.34)

E
[
V 2

t (X)
]

= t

∫
Rd

|x|2ν(dx) ≤ ∞. (13.35)

We emphasize that the quadratic variation process V 2
t (X) in (13.34) is well-

defined and finite for any compound Poisson process X: indeed identity (13.20)
holds for any function f . On the contrary, the expected quadratic variation
E
[
V 2

t (X)
]

in (13.35) is finite if and only if f(x) = |x|2 is ν-integrable. �

13.3.3 Lévy-Itô decomposition

In Section 13.3.2 we saw that every jump-diffusion process can be represented
as

Xt = μt + Bt +
∫ t

0

∫
Rd

xJ(ds, dx), (13.36)

where J is the jump measure of X. We recall that J([0, t] × H) takes only
non-negative integer values and counts the number of jumps of X occurring
in the time interval [0, t] and whose amplitude belongs to H ∈ B(Rd): for any
jump-diffusion process X, the measure J([0, t] × Rd) is finite a.s. because X
has a finite number of jumps in any bounded time interval.

We may ask if every Lévy process X admits a representation of the form
(13.36). Actually, the first question concerns the definition of the jump mea-
sure J : for a compound Poisson process the definition is well-posed because
the sum in (13.18) has only a finite number of terms. However, if X has infi-
nite activity (cf. Remark 9.85), i.e. X has infinitely many jumps in finite time,
then J may become infinite. On the other hand, as already noted in Remark
13.13, a Lévy process X can only have a finite number of “large” jumps: more
precisely, if H ∈ B(Rd) and 0 /∈ H, where H denotes the closure of H, then
X has only a finite number of jumps with size in H. This allows to define
J(I ×H) for any I ×H ∈ B([0,+∞[×Rd) with I bounded and H such that
0 /∈ H:

J(I ×H) := #{t ∈ I | ΔXt ∈ H}.
Then, by the general results of measure theory, J can be extended to a σ-finite
(in general, not finite) random measure on6 B

(
[0,+∞[×Rd \ {0}

)
. Once we

6 J can be extended to B
(
[0, +∞[×Rd

)
by setting J({0} × Rd) = 0.
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have defined the jump measure of a generic Lévy process X, we may also
consider its Lévy measure:

ν(H) := E [J ([0, 1]×H)] , H ∈ B(Rd).

The Lévy measure ν(H) gives the expected number, per unit time, of jumps
of X whose amplitude belongs to H. We remark that ν is a measure on B(Rd)
but it is not a probability measure nor it is necessarily finite7.

Lemma 13.33 Let X be a Lévy process with jump measure J and Lévy mea-
sure ν. Then

i) if H ∈ B(Rd) is such that 0 /∈ H then the process

t �→ Jt(H) := J([0, t]×H) = #{s ∈]0, t] | ΔXs ∈ H} (13.37)

is a Poisson process with intensity ν(H) and the compensated process

t �→ J̃t(H) = Jt(H)− tν(H)

is a martingale;
ii) if H ∈ B(Rd) is such that 0 /∈ H and f is a measurable function, then the

process

t �→ Jt(H, f) :=
∫ t

0

∫
H

f(s, x)J(ds, dx) =
∑

0<s≤t

f(s,ΔXs)1H(ΔXs)

(13.38)
is a compound Poisson process;

iii) if f, g are measurable functions and H,K are disjoint Borel sets such that
0 /∈ H ∪K, then the processes Jt(H, f), Jt(K, g) are independent.

Proof. Part i) can be verified directly using the definition of Poisson process:
see, for instance, Protter [287], p. 26. Part ii) can be proved via the characteri-
stic function: see Corollary 13.42 below or Theorem 2.3.9 in Applebaum [11].
Concerning part iii), we refer for instance to Kallenberg [195], Lemma 13.6.�

Let X be a Lévy process with jump measure J and Lévy measure ν. For
any Borel function f = f(t, x) on R≥0 × Rd one can construct, ω by ω, the
integral ∫ t

0

∫
Rd

f(s, x)J(ds, dx) (13.39)

with respect to the random measure J proceeding as in the deterministic
case (see Appendix A.1.4 and also Cont and Tankov [76], Section 2.6.4): this
definition coincides with that given by (13.20) or (13.38) in case the number
of jumps is finite.

The following result generalizes Theorem 13.30 and is one of the funda-
mental results about Lévy processes.
7 However it is σ-finite.
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Theorem 13.34 Let (Xt)t≥0 be a d-dimensional Levy process with Levy mea-
sure ν and jump measure J . For any measurable function f such that∫ t

0

∫
|x|≤ε

|f(s, x)|ν(dx)ds <∞ (13.40)

for some ε > 0, we have∫ t

0

∫
Rd

f(s, x)J(ds, dx) =
∑

0<s≤t
ΔXs �=0

f (s,ΔXs) <∞ a.s. (13.41)

Moreover, if f ∈ L1
(
[0,+∞[×Rd, ds⊗ ν

)
, then the process

Mt =
∫ t

0

∫
Rd

f(s, x)J̃ (ds, dx)

=
∫ t

0

∫
Rd

f(s, x) (J (ds, dx)− ν(dx)ds) (13.42)

is a martingale and E [Mt] = 0 or equivalently

E

[∫ t

0

∫
Rd

f(s, x)J (ds, dx)
]

=
∫ t

0

∫
Rd

f(s, x)ν(dx)ds. (13.43)

If f ∈ L2
(
[0,+∞[×Rd, ds⊗ ν

)
then Mt ∈ L2 and we have

var(Mt) = E

[(∫ t

0

∫
Rd

f(s, x)J̃ (ds, dx)
)2
]

=
∫ t

0

∫
Rd

f2(s, x)ν(dx)ds.

(13.44)

Proof. Formulas (13.43) and (13.44) follows from (13.23)-(13.24) by limit
arguments (for further details, see Section 2.4 in Applebaum [11] and Section
I-4 in Protter [287]).

Now assume that f satisfies condition (13.40). The idea is that “large
jumps” contribute with only a finite number of terms in the series in (13.41),
while “small jumps” can be infinitely many but the local integrability condi-
tion (13.40) on f and formula (13.43) guarantee that the series is absolutely
convergent. Indeed, by (13.43) we have

E

[∫ t

0

∫
|x|≤ε

|f(s, x)|J(ds, dx)

]
=
∫ t

0

∫
|x|≤ε

f(s, x)ν(dx)ds

which is finite by assumption. �

Next we state the first fundamental result on the structure of the paths
of a Lévy process (for the proof, consult Applebaum [11] Section 2.4, Bertoin
[44] or Jacod and Shiryaev [184]).
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Theorem 13.35 (Lévy-Itô decomposition) Let (Xt)t≥0 be a d-dimensio-
nal Lévy process with jump measure Jt and Lévy measure ν. Then the Lévy
measure ν satisfies ∫

|x|≥1

ν(dx) <∞, (13.45)∫
|x|<1

|x|2ν(dx) <∞. (13.46)

Moreover, there exists a d-dimensional correlated Brownian motion B and,
for any R > 0, there exists μR ∈ Rd such that

Xt = μRt + Bt + XR
t + MR

t (13.47)

where

XR
t =

∫ t

0

∫
|x|≥R

xJ(ds, dx), (13.48)

MR
t =

∫ t

0

∫
|x|<R

xJ̃(ds, dx), (13.49)

and J̃ denotes the compensated jump measure (cf. (13.22)). The terms in
(13.47) are independent.

The first two terms in (13.47) correspond to a Brownian motion with drift
and form the continuous part of X. The other two terms are discontinuous
processes incorporating the jumps of X and only depend on the jump measure.
In particular, by (13.41)

XR
t =

∑
0<s≤t

ΔXs1{|ΔXs|≥R}, (13.50)

and by Lemma 13.33-ii), XR is a compound Poisson process that is responsible
for the large jumps of X: indeed, XR has a finite number of jumps in [0, t],
which correspond to the jumps of X with absolute value larger than R.

Analogously, by (13.46) and Theorem 13.34, MR is a L2-martingale which
is responsible for the small jumps: indeed,

MR
t = lim

ε→0+
X̃R,ε

t

where

X̃ε,R
t =

∫ t

0

∫
ε≤|x|<R

x (J(ds, dx)− ν(dx)ds) (13.51)

=
∑

0<s≤t
ε≤|ΔXs|<R

ΔXs − tE
[
ΔX11{ε≤|ΔX1|<R}

]
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is the compensated compound Poisson process of the jumps of X with size
between ε and R. As ε goes to zero, the number of jumps may become infinite
and this prevents us from considering directly the limit of

Xε,R
t =

∫ t

0

∫
ε≤|x|<R

xJ(ds, dx)

in the Lévy-Itô decomposition: indeed, in order to guarantee the convergence
of the last term, we have to adjust the drift of Xε,R by considering its com-
pensated version that is a L2-martingale by (13.46) and Theorem 13.34; then
the isometry (13.44) can be applied to show convergence. Intuitively, this ad-
justment does not affect the convergence to the original process X because it
is balanced by the change in the drift coefficient μR.

Let us remark explicitly that, for 0 < S ≤ R, we have

μS = μR −
∫

S<|x|≤R

xν(dx). (13.52)

Indeed, by (13.47) we have

μRt + XR
t + X̃S,R

t = μSt + XS
t

that is

μRt +
∫ t

0

∫
S≤|x|<R

xJ̃(ds, dx) = μSt +
∫ t

0

∫
S<|x|≤R

xJ(ds, dx),

and (13.52) follows by taking expectations, using (13.27) and the fact the last
term in the left-hand side is a martingale with null expectation.

By the Lévy-Itô decomposition, every Lévy process is determined by the
triplet (μR, C, ν) where μR is the drift coefficient in (13.47), C is the covariance
matrix of the Brownian motion and ν is the Lévy measure.

Definition 13.36 (μR, C, ν) is called the characteristic R-triplet of X.

The specification of R is necessary to avoid ambiguities caused by the fact
that the drift coefficient μR depends on the truncation range R which is an
arbitrary positive number. Indeed at least the following three different choices
of R will be used in the sequel:

• the choice R = 1 is common in the literature: in this case (μ1, C, ν) is
simply called the characteristic triplet of X;

• if8 ∫
|x|≤1

|x|ν(dx) <∞, (13.53)

8 We shall show in Proposition 13.43 that condition (13.53) amounts to assume
that the jump part of X has bounded variation.
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such as for the compound Poisson process, we can pass to the limit and
take S = 0 in (13.52). Then X has 0-triplet (μ0, C, ν) where

μ0 = μ1 −
∫
|x|≤1

xν(dx), (13.54)

and we get the following Lévy-Itô decomposition

Xt = μ0t + Bt +
∫ t

0

∫
Rd

xJ(ds, dx) (13.55)

= μ0t + Bt +
∑

0<s≤t

ΔXs.

The second equality follows by letting R go to zero in (13.48)-(13.50).
Note that the last term in (13.55) is a pure jump process containing all
the jumps of X and has its own drift and martingale parts;

• if9 ∫
|x|≥1

|x|ν(dx) <∞, (13.56)

we can let R go to infinity in (13.52) and we get

μ∞ := lim
R→∞

μR = μS +
∫
|x|>S

xν(dx). (13.57)

Then X has ∞-triplet (μ∞, C, ν) and the alternative Lévy-Itô decomposi-
tion

Xt = μ∞t + Bt +
∫ t

0

∫
Rd

xJ̃(ds, dx)

= μ∞t + Bt +

⎛⎝ ∑
0<s≤t

ΔXs − tE [ΔX1]

⎞⎠ .

(13.58)

Note that in this case the last term in (13.58) is a martingale (it is a
process with a jump part that is compensated by a continuous part) and
therefore the drift of X is entirely contained in the term μ∞t: in Remark
13.46 we shall see that E [Xt] = tμ∞ and in particular μ∞ = E [X1].

To sum up:

• by using the 0-triplet, we separate the jump part from the continuous part
of the process;

• by the ∞-triplet, we separate the martingale from the drift part.

9 We shall show in Proposition 13.45 that condition (13.56) amounts to assume
that X has finite expectation or, more precisely, that E [|Xt|] < ∞ for any t. This
condition is satisfied in almost all the financial applications.
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Example 13.37 Let

Xt = μt + Bt +
Nt∑

n=1

Zn

be a jump-diffusion process: μ ∈ Rd, B is d-dimensional correlated Brownian
motion with correlation matrix C, N is a Poisson process with intensity λ and
(Zn)n≥1 are i.i.d. random variables in Rd with distribution η. Then conditions
(13.53) and (13.56) are satisfied and we have:

• the 0-triplet of X is (μ, C, λη);
• 1-triplet of X is (μ1, C, λη) where

μ1 = μ + λ

∫
|x|≤1

xη(dx);

• the ∞-triplet of X is (μ + λ, C, λη) (see also (13.73)).

�

We remark that the second and fourth terms in (13.47) (i.e. Brownian
motion and compensated small jumps) form the martingale part of X, while
the first and third terms (i.e. drift term and large jumps) govern the drift of
the process. More precisely, it is always possible to split a Lévy process into
the sum of a martingale with bounded jumps and a process with bounded
variation.

Corollary 13.38 Let X be a Lévy process. Then X = M + Z where M and
Z are Lévy processes, M is a martingale such that Mt ∈ Lp(Ω) for any p ≥ 1
and Z has (locally in time) bounded variation.

Proof. By the Lévy-Ito decomposition (13.47), it is suffices to set

Zt = μRt + XR
t = μRt +

∫ t

0

∫
|x|≥R

xJ(ds, dx),

Mt = Bt + MR
t = Bt +

∫ t

0

∫
|x|<R

xJ̃(ds, dx).

Clearly the process Z has bounded variation because XR is a compound
Poisson process. On the other hand, M is a martingale by Theorem 13.35:
moreover Bt ∈ Lp(Ω) for any p ≥ 1 and, since MR has jumps bounded by
one, by Proposition 13.45, we also have MR

t ∈ Lp(Ω) for any p ≥ 1 . �

Remark 13.39 It is also possible to show, but this is a very deep result (cf.
Theorem III-29 in Protter [287]), that any local martingale X can be written
X = M + Z where M is a local martingale with bounded jumps and Z has
(locally in time) bounded variation. �
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Now we consider the function f(x) = |x|2: by the general property (13.46)
of Lévy measures, f is ν-integrable in a neighborhood of the origin and there-
fore by (13.41) in Theorem 13.34 we have∑

0<s≤t

|ΔXs|2 =
∫ t

0

∫
Rd

|x|2J(ds, dx) <∞ a.s. (13.59)

Note that, for a pure jump process, the sum in (13.59) represents the quadratic
variation (cf. Section 14.2.2). Indeed, having a closer look to the properties
of ν stated in Theorem 13.35, we see that (13.45) is a consequence of the
fact that X can only have a finite number of large jumps because it is càdlàg
(cf. Lemma 13.12). Property (13.46) is more subtle and is related to the fact
that the quadratic variation process of X is well-defined: we recall that, for
a Brownian motion W , the quadratic variation process coincides with the
variance, 〈W 〉t = var(Wt) = t. On the contrary, for a jump process, the
variance is not necessarily finite10 but the quadratic variation process is always
well-defined by (13.59). Basically, the main difficulties about Lévy processes
come from the fact that it is possible to have∑

0<s≤t

|ΔXs| =∞ a.s.

however, many of these difficulties are overcome by using the fact that∑
0<s≤t

|ΔXs|2 <∞ a.s.

Finally, we also remark that by the Lévy-Itô decomposition, every Lévy
process can be approximated with arbitrary precision by a jump diffusion
process which is an independent sum of a Brownian motion with drift and
a compound Poisson process. This fact has important practical implications,
for instance in the simulation of Lévy processes.

13.3.4 Lévy-Khintchine representation

From Theorem 13.35 we obtain the most general form for the characteristic
exponent of a Lévy process: this is provided by the celebrated Lévy-Khintchine
formula.

Theorem 13.40 (Lévy-Khintchine representation) Let X be a Lévy
process in Rd with characteristic triplet (μ1, C, ν). Then we have

ϕXt(ξ) = E
[
eiξ·Xt

]
= etψX(ξ)

10 Because of the contribution of large jumps which are almost surely a finite number
but whose expectation may be infinite such as in the case of a stable process in
Example 13.47.
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where the characteristic exponent ψX is equal to

ψX(ξ) = iμ1 · ξ −
1
2
〈Cξ, ξ〉+

∫
Rd

(
eiξ·x − 1− iξ · x1{|x|<1}

)
ν(dx). (13.60)

Proof. By the Lévy-Itô decomposition Xt can be represented as the indepen-
dent sum of is the a.s. limit of the sum of μ1t + Bt, X1

t and X̃ε,1
t in (13.51),

as ε → 0+. Since these terms are independent, by Remark 13.25, Examples
13.23 and 13.24, we have

ψμ1t+Bt+X1
t +X̃ε,1

t
(ξ) =ψμ1t+Bt(ξ) + ψX1

t
(ξ) + ψX̃ε,1

t
(ξ)

=iμ1 · ξ −
1
2
〈Cξ, ξ〉+

∫
|x|≥1

(
eiξ·x − 1

)
ν(dx)

+
∫

ε≤|x|<1

(
eiξ·x − 1− iξ · x

)
ν(dx). (13.61)

By the integrability condition (13.46) and the fact that, for fixed ξ,

eiξ·x − 1− iξ · x = O
(
|x|2
)
, as |x| → 0,

we infer that the expression in (13.61) converges to the characteristic exponent
in (13.60) as ε→ 0+. We conclude recalling that the a.s. convergence implies
the convergence of the corresponding characteristic functions (cf. Theorems
A.136 and A.141). �

An equivalent Lévy-Khintchine representation may be obtained by using
the Lévy-Itô decomposition with a generic R > 0:

ψX(ξ) = iμR · ξ −
1
2
〈Cξ, ξ〉+

∫
|x|≥R

(
eiξ·x − 1

)
ν(dx)

+
∫
|x|<R

(
eiξ·x − 1− iξ · x

)
ν(dx),

(13.62)

where
μR = μ1 +

∫
Rd

x
(
1|x|≤R − 1|x|≤1

)
ν(dx). (13.63)

Remark 13.41 Under the integrability condition∫
|x|≤1

|x|ν(dx) <∞, (13.64)

we can avoid to truncate the small jumps and we may represent X in terms
of its 0-triplet. Indeed, by (13.53) and (13.45), we can let R go to 0 in (13.62)
and we get the following simplified Lévy-Khintchine representation

ψX(ξ) = iμ0 · ξ −
1
2
〈Cξ, ξ〉+

∫
Rd

(
eiξ·x − 1

)
ν(dx). (13.65)

�
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Formula (13.65) was obtained in Example 13.26 in the particular case of jump-
diffusion processes: in that case, μ0 = μ and ν = λη where λ is the intensity of
the Poisson process and η is the distribution of jumps. Actually, we are now
able to show that any finite activity process is a jump-diffusion.

Corollary 13.42 Let X be a Lévy process with characteristic triplet (μ1, C, ν)
and Lévy measure ν such that

ν(Rd) <∞. (13.66)

Then X is a jump-diffusion process with intensity λ = ν(Rd) and distribution
of jumps η = λ−1ν.

Proof. Under condition (13.66), we can let R go to zero in the Lévy-
Khintchine representation (13.62): we get

ψX(ξ) = iμ0 · ξ −
1
2
〈Cξ, ξ〉+

∫
Rd

(
eiξ·x − 1

)
ν(dx)

which is the characteristic exponent of a jump-diffusion process with intensity
λ = ν(Rd) and distribution of jumps η = λ−1ν (cf. Example 13.26). �

Condition (13.64) is of particular importance because it characterizes the
Lévy process that (up the Brownian term) have the trajectories with bounded
variation. Indeed, we have:

Proposition 13.43 Let X be a Lévy process with triplet (μ1, C, ν). Then X
has (locally in time) bounded variation if and only if

C = 0 and
∫
|x|≤1

|x|ν(dx) <∞.

Proof. We only prove the “if” part. By the Lévy-Itô decomposition we have

Xt = μt + X1
t + lim

ε→0+
X̃ε

t

where

X1
t =

∫
|x|≥1

xJ(ds, dx), X̃ε
t =

∫
ε≤|x|<1

xJ̃t(dx).

We first note that the drift term μt and the processes X1 and X̃ε have bounded
variation11. Thus it is sufficient to prove that the variation of X̃ε is bounded
uniformly in ε > 0: by Remark 13.32, we have

E
[
V[0,t]

(
X̃ε
)]
≤ 2t

∫
ε≤|x|<1

|x|ν(dx) ≤ 2t

∫
|x|<1

|x|ν(dx) <∞, ε > 0,

by the integrability hypothesis on ν and this concludes the proof. �

11 Any compound Poisson process has bounded variation since it has piecewise con-
stant trajectories.
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By the previous results, we have the following classification of Lévy processes:

• Lévy processes with finite activity and bounded variation: by Corollary
13.42 and Proposition 13.43, these are necessarily compound Poisson pro-
cesses with drift;

• Lévy processes with finite activity and unbounded variation: by Corollary
13.42, these are necessarily jump-diffusions;

• Lévy processes with infinite activity and bounded variation: for instance,
a α-stable process (cf. Example 13.47) with α ∈]0, 1[;

• Lévy processes with infinite activity and unbounded variation for instance,
a α-stable process with α ∈ [1, 2[;

We close this section by collecting the main results on Lévy processes with
bounded variation. Incidentally we observe that, for a Lévy process X with
bounded variation, often it is more convenient to use the 0-triplet (μ0, C, ν)
rather than standard triplet (μ1, C, ν).

Corollary 13.44 Let X be a Lévy process with (locally in time) bounded
variation and characteristic triplet (μ1, 0, ν). Then we have the Lévy-Itô de-
composition

Xt = μ0t +
∫
Rd

xJ(ds, dx),

where
μ0 = μ1 −

∫
|x|≤1

xν(dx). (13.67)

Moreover the characteristic exponent takes the form

ψX(ξ) = iμ0 · ξ +
∫
Rd

(
eiξ·x − 1

)
ν(dx).

13.3.5 Cumulants and Lévy martingales

The Lévy-Khintchine formula allows to compute easily the cumulants of a
one dimensional Lévy process: let us recall (cf. (A.78)) that the n-cumulant
is defined as

cn(Xt) = t
dn

dξn
ψ(−iξ)|ξ=0 =

t

in
dn

dξn
ψ(ξ)|ξ=0 (13.68)

where ψ is the characteristic exponent of X. Thus if X is a real Lévy process
with characteristic triplet (μ1, σ

2, ν), differentiating (13.60), formally we get

c1(Xt) = E [Xt] = t

(
μ1 +

∫
|x|≥1

xν(dx)

)
, (13.69)

c2(Xt) = var(Xt) = t

(
σ2 +

∫
|x|≥1

x2ν(dx)

)
, (13.70)
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and more generally

cn(Xt) = t

∫
|x|≥1

xnν(dx), n ≥ 3. (13.71)

More precisely, it turns out that the finiteness of the moments depends only on
the large jumps of the process, i.e. on the tail behaviour of the Lévy measure.
Indeed, we have (for the proof see, for instance, Sato [297] Section 25):

Proposition 13.45 Let X be a Lévy process on R with characteristic triplet
(μ1, σ

2, ν). The n-absolute moment E [|Xt|n] is finite if and only if∫
|x|≥1

|x|nν(dx) <∞.

In this case, formulas (13.69), (13.70) and (13.71) hold true and in particular
we have

cn(Xt) = t cn(X1), n ≥ 1. (13.72)

Remark 13.46 Let (Xt)t≥0 be a real Lévy process with triplet (μ1, σ
2, ν)

and finite expectation, that is by Proposition 13.45∫
|x|≥1

|x|ν(dx) <∞.

Then, letting R go to infinity in (13.52), we get (cf. the definition of μ∞ in
(13.57))

μ∞ := lim
R→∞

μR = μ1 +
∫
|x|≥1

xν(dx) = E [X1] , (13.73)

where the last equality follows from (13.69). Thus we get the alternative Lévy-
Khintchine representation in terms of the ∞-triplet (μ∞, σ2, ν):

ψX(ξ) = iμ∞ξ − σ2ξ2

2
+
∫
R

(
eiξx − 1− iξx

)
ν(dx), (13.74)

with μ∞ = E [X1] and more generally tμ∞ = E [Xt] .
In particular, if X has also bounded variation then by Corollary 13.44 we

also have

Xt = μ0t +
∫
Rd

xJ(ds, dx),

ψX(ξ) = iμ0ξ +
∫
R

(
eiξ·x − 1

)
ν(dx),

where
μ0 = μ∞ −

∫
R

xν(dx) = E [X1]−
∫
R

xν(dx),

which follows combining (13.73) with (13.67). In other words, μ0 is the drift
coefficient which only takes into account the deterministic drift part of the
process; while μ∞ is a drift coefficient which contains the contributions of the
deterministic and jump parts of the process. �
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Example 13.47 The Lévy measure of a stable distribution is of the form:

ν(dx) =
(

C1

x1+α
1{x>0} +

C2

(−x)1+α
1{x<0}

)
dx,

where C1, C2 > 0. By conditions (13.45) and (13.46), we necessarily have
α ∈]0, 2[. Moreover ∫

|x|≥1

|x|nν(dx) <∞

if and only if n < α: this entails that the corresponding Lévy process has no
finite variance and the expectation is finite for 1 < α < 2. �

Remark 13.48 Proposition 13.45 shows that the contribution to infinite mo-
ments may come only from large jumps. We also remark that the skewness
and kurtosis (cf. (A.79)) are given by

s(Xt) =
c3(Xt)
c2(Xt)

3
2

=
s(X1)√

t
, k(Xt) =

c4(Xt)
c2(Xt)2

=
k(X1)

t
.

Therefore Lévy processes typically exhibit skewness and kurtosis (i.e. fat tails):
however these parameters decay as time increases at the rates of t−

1
2 and t−1

respectively. �

We also state an important result on the exponential moments (for the
proof see, for instance, Sato [297] Theorem 25.17).

Proposition 13.49 Let X be a Lévy process on R with characteristic triplet
(μ1, σ

2, ν). The exponential moment E
[
eξXt

]
, ξ ∈ R, is finite if and only if∫

|x|≥1

eξxν(dx) <∞.

In this case
E
[
eξXt

]
= etψ(−iξ), (13.75)

where ψ is the characteristic exponent of X.

We close this section by showing some martingales that can be constructed
from Lévy processes.

Theorem 13.50 Let X be a real valued Lévy process with characteristic
triplet (μ1, σ

2, ν). We have:

i) if E [|X1|] <∞ then (Xt − E [Xt])t≥0 is a martingale;
ii) X is a martingale if and only if∫

|x|≥1

|x|ν(dx) <∞

and

μ1 +
∫
|x|≥1

xν(dx) = 0;
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iii) if E
[
eξX1

]
<∞ for some ξ ∈ R then

(
eξXt

E[eξXt ]

)
t≥0

is a martingale;

iv)
(
eXt
)
t≥0

is a martingale if and only if∫
|x|≥1

exν(dx) <∞

and

μ1 +
σ2

2
+
∫
R

(
ex − 1− x1{|x|≤1}

)
ν(dx) = 0.

Proof. i) Since E [Xt] = tE [X1] (cf. (13.72)), if E [|X1|] <∞ then Xt−E [Xt]
is integrable. Moreover, by the independence of increments we have

E [Xt −Xs | Fs] = E [Xt]− E [Xs] ,

and therefore Xt − E [Xt] is a martingale.
ii) By i), X is a martingale if and only if E [X1] = 0: then the thesis follows

from (13.69).
iii) By (13.75), we have that the process

Mt :=
eξXt

E [eξXt ]
= eξXt−tψ(−iξ)

is integrable: here ψ denotes the characteristic exponent of X. Moreover we
have

E [Mt −Ms | Fs] = MsE
[
eξ(Xt−Xs)−(t−s)ψ(−iξ) − 1 | Fs

]
=

(by the independence and stationarity of the increments of X)

= Ms

(
e−(t−s)ψ(−iξ)E

[
eξXt−s

]
− 1
)

= 0.

iv) By iii), eXt is a martingale if and only if 1 = E
[
eXt
]

= etψ(−i), i.e.
if ψ(−i) = 0. The thesis follows from formula (13.60) of the Lévy-Khintchine
representation. �

13.4 Examples of Lévy processes

In this section we examine several examples of Lévy processes used in the
financial modeling both with finite or infinite activity (i.e. with a finite or
infinite number of jumps in every time interval). By Corollary 13.42, finite
activity models are based on jump-diffusion processes that are independent
sums of a Brownian motion with drift and a compound Poisson process: in this
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case, the jumps are “rare” events and the evolution of the process is similar to
that of a diffusion. On the contrary, for an infinite activity process, we have
ν(Rd) =∞, where ν is the Lévy measure of the process, and it is known that
the set of jumps times of every trajectory is countable and dense in R≥0 (cf.,
for instance, Sato [297]): in this case, jumps arrive infinitely often and the
dynamics of jumps can be considered rich enough to avoid the introduction
of the Brownian component.

Concerning the construction of Lévy processes, the simplest way to define
a Lévy process is via the Lévy-Khintchine representation, that is by giving
the characteristic triplet of the process. Alternatively, one can directly specify
the distribution of the process (see, for instance, Section 13.4.5 on hyperbolic
Lévy processes) even if in this way the structure of jumps is less transparent
because the Lévy measure is not given explicitly. We shall also examine an-
other important technique for constructing new Lévy processes from known
ones, called the subordination method: a new process is built out of two inde-
pendent stochastic processes where the first one is a Lévy process (Yt)t≥0 and
the time t is made stochastic by employing another stochastic process (St)t≥0

(a “stochastic clock”). The new process is defined as Xt = YSt . In other
words, the first process is subordinated (i.e. time-changed) by a stochastic
clock, which is called the subordinator.

13.4.1 Jump-diffusion processes

A Lévy jump-diffusion process X in R has the form

Xt = μt + σWt +
Nt∑

n=1

Zn (13.76)

where μ ∈ R, W is a standard real Brownian motion, N is a Poisson process
with intensity λ and (Zn) are i.i.d. real random variables with distribution η.
Recalling formula (13.71), we see that the cumulants, and therefore the tail
behaviour of the process, depend on the Lévy measure ν = λη.

Example 13.51 (Merton model) In the Merton model [251], the log-
price is modeled by a process of the form (13.76) where η = Nm,δ2 . Thus the
0-triplet is (μ, σ2, ν) with Lévy measure

ν(dx) =
λ√
2πδ2

exp
(
− (x−m)2

2δ2

)
dx.

As already proved in Example 13.26, the characteristic exponent is

ψ(ξ) = iμξ − 1
2
σ2ξ2 + λ

(
eimξ− 1

2 δ2ξ2 − 1
)

.

In this case, the density of the process admits a series expansion: indeed, we
have

P (Xt ∈ H) =
∑
n≥0

P (Xt ∈ H | Nt = n)P (Nt = n), H ∈ B,
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and since, by independence, μt+σWt +
n∑

k=1

Zk ∼ Nμt+nm,σ2t+nδ2 , the density

ΦXt is given by

ΦXt(x) = eλt
∞∑

n=0

(λt)n

n!
√

2π(σ2t + nδ2)
e
− (x−μt−nm)2

2(σ2t+nδ2) .

Analogously, a series expansion in terms of Black&Scholes prices is available
for plain vanilla options. By (13.68), the first four cumulants are equal to

c1(Xt) = E [Xt] = t (μ + λm) ,

c2(Xt) = var(Xt) = t
((

m2 + δ2
)
λ + σ2

)
,

c3(Xt) = mλt
(
m2 + 3δ2

)
,

c4(Xt) = λt
(
m4 + 6m2δ2 + 3δ4

)
. �

Example 13.52 (Kou model) In the Kou model [217], the distribution of
jumps is defined in terms of an asymmetric double exponential density: more
precisely, we have

η(dx) =
(
pλ1e

−λ1x1{x>0} + (1− p)λ2e
λ2x1{x<0}

)
dx,

where λ1, λ2 > 0 and p ∈ [0, 1] represents the probability of upward jumps.
Since, for ν = λη, we have ∫

|x|≤1

|x|ν(dx) <∞,

by Corollary 13.44, we have the simplified Lévy-Khintchine representation:

ψX(ξ) = iμξ − σ2ξ2

2
+
∫
R

(
eiξx − 1

)
ν(dx)

= iμξ − σ2ξ2

2
+ iλξ

(
p

λ1 − iξ
− 1− p

λ2 + iξ

)
.

Moreover the first cumulants are given by

c1(Xt) = E [Xt] = t

(
μ +

pλ

λ1
− (1− p)λ

λ2

)
,

c2(Xt) = var(Xt) = t

(
2pλ

λ2
1

+
2(1− p)λ

λ2
2

+ σ2

)
,

c3(Xt) = 6tλ
(

p

λ3
1

− 1− p

λ3
2

)
,

c4(Xt) = 24tλ
(

p

λ4
1

+
1− p

λ4
2

)
.
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The density fXt of the Kou process is not known in closed form; however, it
is known that it has semi-heavy tails and more precisely

fXt(x) = O
(
e−λ1x

)
, as x→ +∞,

fXt(x) = O
(
e−λ2|x|

)
, as x→ −∞. �

13.4.2 Stable processes

The stable distribution was suggested as a potential model for stock returns
in Mandelbrot [245]. A random variable X in Rd is stable if for each n ≥ 2
there exist cn > 0, dn ∈ Rd such that

X1 + · · ·+ Xn=
d

cnX + dn (13.77)

where X1, . . . ,Xn are i.i.d. copies of X. For example, if X ∼ N0,σ2 then

X1 + · · ·+ Xn ∼ N0,nσ2 ∼
√

nX.

In terms of characteristic functions, the stability property is equivalent to

(ϕX(ξ))n = eiξ·dnϕX(cnξ).

If (13.77) holds with dn = 0 the term strictly stable is used. Due to the
particular form (13.8) of the characteristic function, a Lévy process (Xt)t≥0

is (strictly) stable if and only if X1 is (strictly) stable.
It can be shown (see Sato [297], Theorems 13.11 and 13.15) that for any

stable random variable there exists a constant α ∈]0, 2] such that cn = n
1
α ;

thus the class of Lévy stable processes is defined in terms of the exponent α and
the expression α-stable process is used to denote a stable process with index
α. The Lévy triplet of a stable process can be obtained from the following
result (see Sato [297], Theorem 14.3).

Proposition 13.53 Let X be a non-trivial Lévy process with characteristic
triplet (μ1, C, ν) and let α ∈]0, 2[. Then X is α-stable if and only if C = 0 and

ν(H) = r−αν(r−1H)

for every H ∈ B and r > 0.

In the special case d = 1, we have the following explicit representation of the
Lévy measure of an α-stable Lévy process:

ν(dx) =
C1

x1+α
1{x>0}dx +

C2

|x|1+α
1{x<0}dx (13.78)

for some positive constants C1, C2.
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Fig. 13.4. Graph of the Euler Gamma function in (13.79) for α ∈ [−3, 5]

Let us compute the characteristic exponent of a α-stable process with
C2 = 0 in (13.78). If α ∈]0, 1[ the process has bounded variation and by
Corollary 13.44 we only need to compute:∫ ∞

0

(
eiξx − 1

) 1
x1+α

dx = |ξ|αΓ (−α)
(
cos

πα

2
− isgn(ξ) sin

πα

2

)
,

where
Γ (α) =

∫ ∞

0

tα−1e−tdt (13.79)

is the Euler Gamma function (see Figure 13.4) and sgn(x) = |x|
x , x 
= 0. Thus

the characteristic exponent is given by

ψ(ξ) = iμξ − Cα|ξ|α
(
1− isgn(ξ) tan

πα

2

)
where

Cα = −C1Γ (−α) cos
πα

2
> 0.

If α ∈]1, 2[ one has to calculate∫ 1

0

(
eixξ − 1− ixξ

)
ν(dx) = C1

∫ 1

0

(
eixξ − 1− ixξ

) 1
x1+α

dx,

and this can be done explicitly integrating by parts. We omit further details
and give the general expression of the characteristic exponent of a real-valued
α-stable Lévy process:

ψ(ξ) = iμξ − σα|ξ|α
(
1− iθsgn(ξ) tan

(πα

2

))
, if α 
= 1,

ψ(ξ) = iμξ − σ|ξ| (1 + iθsgn(ξ) log |ξ|) , if α = 1, (13.80)

where σ is positive and θ is real and such that |θ| ≤ 1. A stable distribution
in this parameterization is usually denoted by Sα(σ, θ, μ).
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Fig. 13.5. Density of the α-stable distribution for α = 0.5, 1.1, 2 and σ = 0.15, μ =
0, θ = 0

If X ∼ Sα(σ, θ, μ) then X + b ∼ Sα(σ, θ, μ + b) and we have

λX ∼ Sα (|λ|σ, sgn(λ)θ, λμ) if α 
= 1,

λX ∼ S1

(
|λ|σ, sgn(λ)θ, λμ− 2

π
λσθ log |λ|

)
if α = 1.

(13.81)

Therefore μ is a shift parameter, while σ is a scale parameter. Moreover, θ is
a skewness parameter, because the density is symmetric if and only if θ = 0
(see also Figure 13.6). The distribution S0(σ, 0, 0), that is with μ = θ = 0, is
called symmetric stable distribution: in this case, the characteristic exponent
is given by

ψ(ξ) = −σα|ξ|α. (13.82)

We point out that in the case α = 2 and θ = 0 the expression for ψ(ξ)
collapses into iμξ−σ2ξ2 which is the characteristic exponent of the Gaussian
distribution, that is

S2(σ, 0, μ) = Nμ,2σ2 .

The explicit expression of the Lévy measure and Proposition 13.45 show that
α-stable distributions on R never admit a second moment, and they only
admit a first moment if α > 1. Moreover a real α-stable Lévy process has
bounded variation only if α < 1.

Finally we point out that explicit formulas for the densities of stable dis-
tributions are known only in few cases:

• the normal distribution S2(σ, 0, μ) with density

1
2σ
√

π
exp
(
− (x− μ)2

4σ2

)
, x ∈ R;
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Fig. 13.6. Density of the α-stable distribution for θ = 0, 1
2
, 1 and α = 0.5, μ =

0, σ = 0.15

• the Cauchy distribution S1(σ, 0, μ) (see Example 14.51) with density

σ

π((x− μ)2 + σ2)
, x ∈ R;

• the Lévy-Smirnov distribution S 1
2
(σ, 1, μ) with density

√
σ√

2π(x− μ)
3
2

exp
(
− σ

2(x− μ)

)
, x > μ.

Figures 13.5 and 13.6 show the α-stable densities for different choices of the
parameters α and θ: these graphs have been plotted by using the Fourier-
cosine approximation method illustrated in Section 15.3.

13.4.3 Tempered stable processes

A tempered12 stable process X is obtained from a one-dimensional stable
process by “tempering” the large jumps, i.e. by damping exponentially the
tails of the Lévy measure. This class of Lévy processes was introduced by
Koponen [216]. The characteristic triplet of X is of the form (μ1, 0, ν) where

ν(dx) = C1
e−λ1x

x1+α1
1{x>0}dx + C2

e−λ2|x|

|x|1+α2
1{x<0}dx, (13.83)

where C1, C2 ≥ 0, λ1, λ2 > 0 and α1, α2 < 2. The parameters λ1 and λ2

govern the exponential decay of the tails for the distribution of positive and
negative jump sizes. The parameters C1 and C2 determine the overall fre-
quency of positive and negative jumps respectively. Due to the presence of
12 The term “generalized tempered stable processes” is also used in the literature.
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the exponential damping and contrary to the case of stable processes, ν in
(13.83) is a well-defined Lévy measure for all α1, α2 < 2, and by Proposition
13.45 the cumulants of any order exist. However, negative values of α1, α2 lead
to a compound Poisson process by Corollary 13.42 and therefore the interest-
ing case is when α1, α2 ∈ [0, 2[, that is when the process has infinite activity.
Notice that small jumps have a stable-like behaviour; however in (13.83) we
allow a greater flexibility by a possibly asymmetric distribution of positive
and negative jumps.

Now we give the characteristic exponent of a tempered stable process X.
We remark that

μ∞ = E [X1] = μ1 +
∫
|x|≥1

xν(dx)

is finite because of the exponential decay of the tails of the Lévy measure.
Therefore we can avoid considering separately the bounded (0 ≤ α < 1)
and unbounded (1 ≤ α < 2) variation cases, by using the Lévy-Khintchine
representation in the form (13.74), i.e. in terms of the ∞-triplet (μ∞, 0, ν):

ψX(ξ) = iμ∞ξ +
∫
R

(
eiξx − 1− iξx

)
ν(dx).

We have

• if α1, α2 /∈ {0, 1} then

ψX(ξ) = iμ∞ξ + C1

(
(λ1 − iξ)α1 − λα1−1

1 (λ1 − iα1ξ)
)
Γ (−α1)

+ C2

(
(λ2 + iξ)α2 − λα2−1

2 (λ2 + iα2ξ)
)
Γ (−α2) ;

• if α1 = α2 = 1 then

ψX(ξ) = iμ∞ξ + C1

(
iξ + (λ1 − iξ) log

(
1− iξ

λ1

))
+ C2

(
−iξ + (λ2 + iξ) log

(
1 +

iξ

λ2

))
;

• if α1 = α2 = 0 then

ψX(ξ) = iμ∞ξ − C1

(
iξ

λ1
+ log

(
1− iξ

λ1

))
+ C2

(
iξ

λ2
− log

(
1 +

iξ

λ2

))
.

Concerning the cumulants, in general we have c1(Xt) = E (Xt) = tμ∞. More-
over, for α1 
= 0 and α2 
= 0, we have

c2(Xt) = var(Xt) = tC1λ
−2+α1
1 Γ (2− α1) + C2λ

−2+α2
2 Γ (2− α2),

c3(Xt) = C1λ
−3+α1
1 Γ (3− α1)− C2λ

−3+α2
2 Γ (3− α2)),

c4(Xt) = C1λ
−4+α1
1 Γ (4− α1) + C2λ

−4+α2
2 Γ (4− α2).
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For α1 = α2 = 1, the previous expressions simplify to

c2(Xt) =
C1

λ1
+

C2

λ2
, c3(Xt) =

C1

λ2
1

− C2

λ2
2

, c4(Xt) =
2C1

λ3
1

+
2C2

λ3
2

,

and, for α1 = α2 = 0, to

c2(Xt) =
C1

λ2
1

+
C2

λ2
2

, c3(Xt) =
2C1

λ3
1

− 2C2

λ3
2

, c4(Xt) =
6C1

λ4
1

+
6C2

λ4
2

.

Example 13.54 (CGMY model) The CGMY model is based on a partic-
ular tempered stable process with Lévy measure as in (13.83) and parameters

C := C1 = C2, G := λ2, M := λ1, Y := α1 = α2.

This model was proposed by Carr, Geman, Madan and Yor [67] who denoted
the parameters according the four authors’ names. We remark that, contrary
to the general class of tempered stable processes, the CGMY processes have
symmetric small jumps. For a further analysis of the model we refer to Exam-
ple 15.22. �

13.4.4 Subordination

As already mentioned, a general method for constructing new Lévy processes
from known ones is the subordination method. A new process is built out of
two independent stochastic processes: the first is a Lévy process (Yt)t≥0 and
the time t is made stochastic by employing another stochastic process (St)t≥0,
a “stochastic clock” also called subordinator. Since S provides a random model
of time evolution, it needs to be non-negative and increasing a.s.

Definition 13.55 A 1-dimensional Lèvy process (St)t≥0 is called a subordi-
nator if it is a.s increasing, that is

t1 ≤ t2 =⇒ St1 ≤ St2 a.s.

Since increasing processes have bounded variation and cannot have negative
jumps, by using Proposition 13.43, it is not difficult prove the following cha-
racterization of subordinators.

Proposition 13.56 A Lévy process S is a subordinator if and only if its
0-triplet (b, C, �) satisfies

b ≥ 0, C = 0, �(R≤0) = 0,
∫ 1

0

x�(dx) <∞.

In this case the characteristic exponent of S takes the form

ψS(ξ) = ibξ +
∫ ∞

0

(
eiξx − 1

)
�(dx).
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Example 13.57 A Poisson processes is a subordinator. A compound Poisson
process is a subordinator if and only if all the Zn (cf. Definition 13.8) take
only non-negative values. �

Since a subordinator S takes only non-negative values, it is convenient to
characterize it by the Laplace transform instead of the Fourier transform: if
ψS denotes as usual the characteristic exponent of S, by Proposition 13.49
the Laplace exponent

�S(ξ) := ψS(−iξ) (13.84)

is well-defined for ξ ≤ 0 and we have

E
[
eξSt
]

= et�S(ξ), ξ ≤ 0.

More explicitly, we have

�S(ξ) = bξ +
∫ ∞

0

(
eξx − 1

)
�(dx).

We also note that the cumulants of S (see (13.68)), when they exist, are
defined in term of the Laplace exponent by

cn(S1) =
dn

dξn
�S(ξ)|ξ=0.

Next we state the fundamental result on subordination of Lévy processes (see
Sato [297], Theorem 30.1).

Theorem 13.58 (Lévy subordination) Let Y be a Lévy process with
triplet (μ1, C, ν), characteristic exponent ψY and density function fYt , t ≥ 0.
Let S be a subordinator with 0-triplet (b, 0, �) and Laplace exponent �S. Then
the process Xt := YSt is a Lévy process with characteristic exponent

ψX(ξ) = �S (ψX(ξ)) , ξ ∈ Rd,

and triplet (μX
1 , CX , νX) where

μX
1 = bμ1 +

∫ ∞

0

∫
|x|≤1

xfYt(dx)dt,

CX = bC,

νX(H) = bν(H) +
∫ ∞

0

fYt(H)�(dt), H ∈ B(Rd).

Example 13.59 (Stable subordinators) A stable subordinator S is an
α-stable process with α ∈]0, 1[, and 0-triplet (b, 0, �) with b ≥ 0 and Lévy
measure � such that �(R≤0) = 0: by Proposition 13.56, these conditions on
the parameters guarantee that S is a subordinator. The Lévy measure is of
the form

�(dx) =
C1

x1+α
1{x>0}dx
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and the Laplace exponent is given by

�(ξ) = bξ + C1

∫ ∞

0

(
exξ − 1

) 1
x1+α

dx = bξ + C1Γ (−α)(−ξ)α, ξ < 0.

We remark explicitly that if Y is symmetric β-stable (cf. (13.82)) with cha-
racteristic exponent ψY (ξ) = −σβ |ξ|β and S is an α-stable subordinator with
null drift coefficient, b = 0, then the subordinate process Xt = YSt is αβ-
stable: indeed, by Theorem 13.58, we have

ψX(ξ) = C1Γ (−α)
(
σβ |ξ|β

)α
= −C|ξ|αβ

where C = −C1σ
αβΓ (−α). A remarkable example is given by the Brownian

motion (β = 2): in this case the subordinate process is 2α-stable. �

The main disadvantage of stable subordinators is that they don’t have
finite cumulants: for this reason their tempered version is much more com-
monly used in the literature. Let S be a general tempered stable process with
triplet (β, 0, �) and Lévy measure of the form (13.83): by Proposition 13.56,
for S to be a subordinator it is necessary that β ≥ 0, C2 = 0 and α := α1 < 1;
hereafter we only consider the infinite activity case α ∈ [0, 1[. Thus

�(dx) = C
e−λx

x1+α
1{x>0}dx,

with C and λ positive parameters, and the Laplace exponent is

ψS(ξ) = βξ + C

∫ ∞
0

(
eξx − 1

) e−λx

x1+α
dx = (−λα + (λ− ξ)α)Γ (−α),

for ξ < 0 and α ∈]0, 1[. Since the probability density of tempered stable
subordinators is known for α = 0 (Gamma subordinator) and α = 1

2 (inverse
Gaussian subordinator), we examine in details these two cases.

Example 13.60 (Gamma subordinator) We use slightly different nota-
tions and consider a Lévy process S with 0-triplet (0, 0, �) and Lévy measure

�(dx) =
ae−bx

x
1{x>0}dx,

where a, b are positive parameters: we call S a Gamma subordinator. In this
case the characteristic function is given by

ϕSt(ξ) =
(

1− iξ

b

)−at

,

and the Laplace exponent is

�(ξ) = −a log
(

1− ξ

b

)
, ξ < 0.
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The density of St can be recovered from the characteristic function by Fourier
inversion:

fSt(x) =
1
2π

∫
R

e−ixξϕSt(ξ)dξ =
e−bx(bx)at

xΓ (at)
, x > 0,

which shows that St has a Gamma distribution. By (13.68), the first four
cumulants are equal to13

c1(S1) = E [S1] =
a

b
, c2(S1) = var(S1) =

a

b2
,

c3(S1) =
2a

b3
, c4(S1) =

6a

b4
.

Due to the scaling property of stable processes (cf. (13.81)), it is not restric-
tive to consider stable subordinators such that E [St] = t: for the Gamma
subordinator, imposing c1(S1) = 1 and c2(S1) = v, we find a = b = 1

v . Thus
a Gamma subordinator can be parameterized in terms of its variance v. �

Example 13.61 (Variance-Gamma process) By subordinating a Brow-
nian motion with drift μ and volatility σ by a Gamma process S with variance
v (and unitary mean), we obtain the so-called Variance-Gamma (VG) process

Xt = μSt + σWSt .

This is a three-parameter process: the variance v of the subordinator, the
drift μ and the volatility σ of the Brownian motion. By Theorem 13.58, the
characteristic exponent of X is

ψX(ξ) = −1
v

log
(

1− ivμξ +
vξ2σ2

2

)
.

By (13.68), the first four cumulants are equal to

c1(X1) = E [X1] = μ, c2(X1) = var(X1) = vμ2 + σ2,

c3(X1) = vμ
(
2vμ2 + 3σ2

)
, c4(X1) = 3v

(
2v2μ4 + 4vμ2σ2 + σ4

)
.

(13.85)

Examining the characteristic exponent, one recognizes that a VG process is
a particular tempered stable process (cf. Section 13.4.3): its 0-triplet is (0, 0, ν)
with Lévy measure

ν(dx) =
1
v

e−λ1x

x
1{x>0}(x)dx +

1
v

eλ2x

|x| 1{x<0}(x)dx,

where

λ1 =

(√
μ2v2

4
+

σ2v

2
+

μv

2

)−1

, λ2 =

(√
μ2v2

4
+

σ2v

2
− μv

2

)−1

.

(13.86)
13 We recall that by (13.72) it is sufficient to give the expression of cn(St) for t = 1.
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Fig. 13.7. VG density with σ = 0.2, μ = 0.1 and different values of the variance of
the subordinator: v = 0.01, v = 0.5 and v = 1

Notice that the VG process has bounded variation and infinite activity. The
characteristic exponent can be expressed in terms of λ1 and λ2, as follows

ψX(ξ) = −1
v

(
log
(

1− iξ

λ1

)
+ log

(
1 +

iξ

λ2

))
.

The density function of Xt is

fXt(x) =
C0

Γ
(

t
v

) |x| tv− 1
2 e

(λ1+λ2)x
2 K t

v− 1
2

(
λ2 − λ1

2
|x|
)

where

C0 =
((

μ2v + 2σ2
) 1

4−
μ
2v

)√σ2v

2π
,

and K is the modified Bessel function of the second kind14. In Figure 13.7 we
plot the probability density of a VG distribution for different choices of the
variance v of the subordinator. �

Example 13.62 (Inverse Gaussian subordinator) The Inverse Gaus-
sian (IG) subordinator S is a tempered stable subordinator with α = 1

2 : thus
S has 0-triplet (0, 0, �) and Lévy measure

�(dx) =
ae−bx

x
3
2

1{x>0}dx,

where a, b are positive parameters. The characteristic function is given by

ϕSt(ξ) = e2at
√

π(
√

b−
√

b−iξ),
14 See, for instance,

mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html
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and the Laplace exponent is

�(ξ) = 2a
√

π
(√

b−
√

b− ξ
)

, ξ < 0.

The density of St can be recovered from the characteristic function by Fourier
inversion:

fSt(x) =
1
2π

∫
R

e−ixξϕSt(ξ)dξ =
at

x3/2
exp

⎛⎜⎝−
(
at
√

π − x
√

b
)2

x

⎞⎟⎠ , x > 0.

The first four cumulants are equal to

c1(S1) = E [S1] =
a
√

π√
b

, c2(S1) = var(S1) =
a
√

π

2b3/2
,

c3(S1) =
3a
√

π

4b5/2
, c4(S1) =

15a
√

π

8b7/2
.

As in the case of the Gamma subordinator, also the IG subordinator with
unitary mean can be parameterized in terms of its variance: imposing c1(S1) =
1 and c2(S1) = v, we find

a =
1√
2πv

, b =
1
2v

. (13.87)

�

Example 13.63 (Normal inverse Gaussian process) The Normal In-
verse Gaussian (NIG) distribution has been introduced by Barndorff-Nielsen
[25]. It is obtained by subordinating a Brownian motion with drift through an
IG process S with variance v and unitary mean (i.e. with a, b as in (13.87)):

Xt = μSt + σWSt .

The three parameters of the model are the variance v of the subordinator, the
drift μ and the volatility σ of the Brownian motion. By Theorem 13.58, the
characteristic exponent of X is15

ψX(ξ) =
1−
√

1 + vξ (−2iμ + ξσ2)
v

, (13.88)

and by (13.68), the first four cumulants are equal to

c1(X1) = E [X1] = μ, c2(X1) = var(X1) = vμ2 + σ2,

c3(X1) = 3vμ
(
vμ2 + σ2

)
, c4(X1) = 3v

(
vμ2 + σ2

) (
5vμ2 + σ2

)
.

(13.89)

15 Often the NIG characteristic exponent is written in the form (equivalent to
(13.88))

ψX(ξ) = δ
(√

α2 − β2 −
√

α2 − (β + iξ)2
)

where β = μ
σ2 , δ = σ√

υ
and α2 = 1

υσ2 + β2.



13.4 Examples of Lévy processes 477
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Fig. 13.8. NIG density with σ = 0.2, μ = 0.1 and different values of the variance
of the subordinator: v = 0.01, v = 1 and v = 2

The Lévy measure of a NIG process is

ν(dx) =
C

|x|e
λxK1 (γ|x|) dx,

where K is the modified Bessel function of the second kind and

C =

√
μ2 + σ2

v

2πσ
√

v
, λ =

μ

σ2
, γ =

√
μ2 + σ2

v

σ2
.

From the known properties of K, we have the following asymptotic behaviour
of the Lévy measure:

ν(x) = O
(

1
x2

)
as x→ 0,

that is, the NIG process has unbounded variation and infinite activity (1-
stable like behaviour of small jumps); moreover

ν(x) = O
(

e−λ±|x|

x
3
2

)
as x→ ±∞,

where

λ± =
1
σ2

(√
μ2 +

σ2

v
∓ μ

)
,

that is, the NIG process has asymmetric semi-heavy tails. Finally, the density
function of Xt is

fXt(x) =
t

π

√
μ2

vσ2
+

1
v2

eλx+ t
v√

x2 + t2σ2

v

K1

(
γ

√
x2 +

t2σ2

v

)
.
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In Figure 13.8 we plot the probability density of a NIG distribution for diffe-
rent choices of the variance v of the subordinator. �

13.4.5 Hyperbolic processes

The hyperbolic distribution was first introduced by Barndorff-Nielsen [26]
to model the distribution of grain size in wind-blown sand deposits. It was
employed in finance by Eberlein and Keller [113]. It takes the attribute “hy-
perbolic” from the shape of the logarithm of the density function which is an
hyperbola, in contrast to the Gaussian case, which follows a parabola. The
density function of the hyperbolic distribution is of the form:√

α2 − β2

2αδK1(δ
√

α2 − β2)
exp
(
−α
√

δ2 + (x− μ)2 + β(x− μ)
)

where Kν denotes the modified Bessel function of the second kind and the
parameters satisfy: μ ∈ R, δ ≥ 0, |β| < α. Here μ is a shift parameter, δ a
scale parameter and β is related to the skewness since the distribution is sym-
metric about μ for β = 0. Barndorff-Nielsen and Halgren [26] proved that the
hyperbolic distribution is infinitely divisible. Therefore one can define Lèvy
processes whose increments follow the hyperbolic distribution. The hyperbolic
distribution can be viewed as a special case of the generalized hyperbolic dis-
tribution (GH) that has been studied by Eberlein, Keller and Prause [114],
Eberlein and Prause [117] (see also Eberlein [110]). Its density function is:

(α2 − β2)
ν
2 (δ2 + (x− μ)2)

ν
2− 1

4

√
2παν− 1

2 δνKν(δ
√

α2 − β2)
eβ(x−μ)Kν− 1

2

(
α
√

δ2 + (x− μ)2
)

where μ ∈ R and

δ ≥ 0, |β| < α if ν > 0,

δ > 0, |β| < α if ν = 0,

δ > 0, |β| ≤ α if ν < 0.

(13.90)

Note that the hyperbolic distribution is a particular case of the GH distribu-
tion with ν = 1, in view of the property: K 1

2
(x) =

√
π
2xe−x. The tails of the

density of GH distributions behave like

|x|ν−1e(β±α)x as x −→ ∓∞

that is, they possess the semi-heaviness property which is in keeping with a
stylized feature observed in financial data. Also the GH distribution is in-
finitely divisible and its characteristic exponent is:

ψ(x) = iμξ +
ν

2
log

α2 − β2

α2 − (β + iξ)2
+ log

Kν

(
δ
√

α2 − (β + iξ)2
)

Kν

(
δ
√

α2 − β2
) .
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Fig. 13.9. GH density with μ = 0, δ = 1, α = 1, β = 0.5 and different values of the
parameter ν: ν = −1, ν = 0 and ν = 1
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Fig. 13.10. GH density with μ = 0, δ = 1, α = 1, ν = 1 and different values of the
parameter β: β = 0, β = 0.5 and β = 0.9

Put ζ = δ
√

α2 − β2: then the mean of the GH distribution is

μ +
βδ√

α2 − β2

Kν+1 (ζ)
Kν (ζ)

and the variance is

δ2

(
Kν+1(ζ)
ζKν(ζ)

+
β2

α2 − β2

(
Kν+2(ζ)
Kν(ζ)

− K2
ν+1(ζ)

K2
ν(ζ)

))
.

The other cumulants can be computed explicitly as well, but they have a quite
complicated expression. Some known processes are special cases or limiting
cases of the GH process. The NIG process is obtained with ν = −1

2 ; the
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Student-t process is obtained for ν < 0, α = β = μ = 0; the VG process

is a limiting case for δ → 0 and α =
√

β2 + 2
ν ; the normal distribution is a

limiting case δ →∞ and δ
α → σ2.

A disadvantage of GH Lévy processes is that the Lévy measure is only
known in implicit form (see, for instance, Schoutens [301] Section 5.3.11) and
therefore the structure of jumps is unclear and it may not be easy to see, for
instance, whether the process has finite/infinite activity. Moreover the sum
of independent GH variables is not a GH variables (that is, the class of GH
distributions is not closed under convolution).

In Figures 13.9 and 13.10 we plot the probability density of a GH distri-
bution for different choices of the parameters ν and β.

13.5 Option pricing under exponential Lévy processes

The aim of this section is to introduce the basic notions of option pricing
theory for contingent claims of European type when the underlying asset is
assumed to follow a Lévy process. The classical modeling of stock prices as a
geometric Brownian motion is replaced by a geometric Lévy motion, that is,
the stock price St is eXt , where Xt is a Lévy process.

13.5.1 Martingale modeling in Lévy markets

A general Lévy market is a model of financial market with a deterministic
saving account Bt = ert, r ≥ 0, and d ≥ 1 risky assets (say stocks) with
stochastic price process S

(j)
t = S

(j)
0 eX

(j)
t where X = (X(1), . . . ,X(d)) is a Lévy

process. The riskless account is used for discounting. As usual, the information
flow is given by a filtration (Ft)t∈[0,T ]. In what follows we will restrict ourselves
to the case d = 1, because our main concern will be the pricing of options on
a single asset.

Since our aim is to price contingent claims on a stock, it is convenient to
adopt the martingale modeling approach of Section 10.3.1. Thus, we assume
that the dynamics of the risky assets is given directly under an equivalent
martingale measure (EMM) Q: this means that, by definition, the discounted
price process is a martingale under Q. Moreover, if F (XT ) denotes the termi-
nal payoff (at time T ) of a contingent claim on the stock, following Section
10.2.5, we define the risk-neutral price of the contingent claim as follows:

HQ
t = e−r(T−t)EQ [F (XT ) | Ft] t ∈ [0, T ].

In general, if the risky asset is driven by a Lévy process then Q is not unique
and the market is incomplete: from the practical point of view, this corre-
sponds to the fact that there are several possible choices for the values of the
parameters of the model under consideration. It is important to note that the
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martingale condition imposes some restrictions on the possible specifications
of the parameters: indeed, our first result is a characterization of the EMMs
in terms of a condition on the characteristic exponent of the process (and
therefore on the parameters of the model).

Proposition 13.64 Assume that X is a Lévy process with characteristic ex-
ponent ψQ under Q. The discounted price process S̃t = S0e

Xt−rt is a Q-
martingale if and only if

EQ [St] = EQ
[
S0e

XT
]

<∞ (13.91)

and the following drift condition holds:

ψQ(−i) = r. (13.92)

Proof. It suffices to recall that, by Theorem 13.50-iii), S̃t = S0e
Xt−rt is a

martingale if and only if 1 = e−rtEQ
[
eXt
]

= et(ψQ(−i)−r). �

If X is a Lévy process with triplet (μQ
1 , σ2, ν) under Q, the drift condition

(13.92) can be rewritten more explicitly as follows

μQ
1 = r − σ2

2
−
∫
R

(
ex − 1− x1{|x|<1}

)
ν(dx). (13.93)

Moreover, under assumption

EQ [|Xt|] <∞,

condition (13.93) is also equivalent to

μQ
∞ = r − σ2

2
−
∫
R

(ex − 1− x) ν(dx). (13.94)

For greater convenience, now we give the risk neutral dynamics and a
coincise summary of some tractable example of exponential Lévy models. In
Chapter 15 we discuss the related numerical issues and examine the implied
volatility surfaces generated by several Lévy models. As usual, we assume that
the asset process is of the form

St = S0e
Xt

where X is a Lévy process verifying the integrability condition (13.91). Since
in all the models considered, X has also finite expectation, that is condition
(13.56) is satisfied, we will directly give the∞-triplet of the process: we recall
the expression of μQ

∞ in (13.94) and that the characteristic exponent of X is
equal to

ψ(ξ) = iμQ
∞ξ − σ2ξ2

2
+
∫
R

(
eiξx − 1− iξx

)
ν(dx).
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If, in addition, the jump part of X has bounded variation, i.e. if (13.53) holds,
then we also give the drift coefficient μQ

0 of the 0-triplet. The generic R-triplet
can be derived from the relation

μQ
S = μQ

R −
∫

S<|x|≤R

xν(dx), 0 ≤ S ≤ R.

• Black&Scholes: the characteristic triplet is (μQ, σ2, 0) with

μQ = r − σ2

2
,

and the characteristic exponent is

ψQ(ξ) = iμQξ − σ2ξ2

2
. (13.95)

There is only one parameter, the volatility σ, that is positive.
• Merton: the ∞-triplet is (μQ

∞, σ2, ν) where

ν(dx) =
λ√
2πδ2

exp
(
− (x−m)2

2δ2

)
dx,

μQ
0 = r − σ2

2
− λ
(
em+ δ2

2 − 1
)

,

μQ
∞ = μQ

0 + λm.

The characteristic exponent is

ψQ(ξ) = iμQ
∞ξ − σ2ξ2

2
+ λ

(
eimξ− δ2ξ2

2 − 1− imξ

)
. (13.96)

The parameters are: σ (diffusion coefficient, non-negative), λ (jump inten-
sity, positive), m (mean jump size, real), δ (standard deviation of jump
size, positive).

• Kou: the ∞-triplet is (μQ
∞, σ2, ν) where

ν(dx) = λ
(
pλ1e

−λ1x1{x>0} + (1− p)λ2e
λ2x1{x<0}

)
dx.

The expectation E
[
eXt
]

is finite if λ1 > 1 and in that case

μQ
0 = r − σ2

2
+ λ

(
p

1− λ1
+

1− p

1 + λ2

)
,

μQ
∞ = μQ

0 + λ

(
p

λ1
+

p− 1
λ2

)
.

The characteristic exponent is

ψQ(ξ) = iμQ
∞ξ − σ2ξ2

2
+ λξ2

(
p− 1

λ2(λ2 + iξ)
− p

λ2
1 − iλ1ξ

)
.
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The parameters are: σ (diffusion coefficient, non-negative), λ (jump in-
tensity, positive), p (probability of upward jump, p ∈]0, 1[), λ1, λ2 (decay
parameters of the jump distribution, λ1 > 1, λ2 > 0).

• Generalized tempered stable: the ∞-triplet is (μQ
∞, σ2, ν) where

ν(dx) = C1
e−λ1x

x1+α1
1{x>0}dx + C2

e−λ2|x|

|x|1+α2
1{x<0}dx, (13.97)

and

# if α1, α2 /∈ {0, 1} then

μQ
∞ = r − σ2

2
+ C1

(
λα1

1 − (λ1 − 1)α1 − α1λ
α1−1
1

)
Γ (−α1)

+ C2

(
λα2−1

2 (α2 + λ2)− (λ2 + 1)α2
)
Γ (−α2) ,

where Γ denotes the Euler Gamma function;

# if α1 = α2 = 0 then

μQ
∞ = r − σ2

2
+C1

(
1
λ1

+ log
(

1− 1
λ1

))
+C2

(
− 1

λ2
+ log

(
1 +

1
λ2

))
;

# if α1 = α2 = 1 then

μQ
∞ = r − σ2

2
− C1

(
1 + (λ1 − 1) log

(
1− 1

λ1

))
+ C2

(
1− (λ2 + 1) log

(
1 +

1
λ2

))
.

The characteristic exponent is given in Section 13.4.3. The parameters are
such that C1, C2 ≥ 0, λ1 > 1, λ2 > 0 and α1, α2 ∈ [0, 2[.

• Variance Gamma (VG): it is a particular tempered stable process with
Lévy measure (cf. Example 13.61)

ν(dx) =
1
v

(
e−λ1x

x
1{x>0}dx +

e−λ2|x|

|x| 1{x<0}dx

)
,

and risk neutral drift

μQ
0 = r − σ2

2
+

1
v

log
(

1− 1
λ1

)(
1 +

1
λ2

)
,

μQ
∞ = μQ

0 +
1
v

(
1
λ1
− 1

λ2

)
.
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The characteristic exponent is

ψQ(ξ) = iξμQ
∞ +

iξ

v

(
1
λ2
− 1

λ1

)
− σ2ξ2

2
− 1

v
log
(

1− iξ

λ1

)(
1 +

iξ

λ2

)
.

The parameters are: v (the variance of the subordinator, positive), λ (jump
intensity, positive) and λ1, λ2 (decay parameters of the jump distribution,
λ1 > 1, λ2 > 0): λ1, λ2 can be expressed in terms of the drift μ and
volatility σ of the subordinated Brownian motion by formula (13.86).

• CGMY: it is a particular tempered stable process with Lévy measure

ν(dx) = C

(
e−Mx

x1+Y
1{x>0}dx +

e−G|x|

|x|1+Y
1{x<0}dx

)
,

and risk neutral drift

μQ
∞ = r + CΓ (−Y )

(
GY − (1 + G)Y + MY − (M − 1)Y

+ Y
(
G−1+Y −M−1+Y

) )
,

(13.98)

where Γ denotes the Euler Gamma function. The characteristic exponent
is

ψQ(ξ) = iμQ
∞ξ + C

(
(M − iξ)Y −MY + (G + iξ)Y −GY

+ iξY
(
MY−1 −GY−1

) )
Γ (−Y ).

(13.99)

The parameters verify the conditions: C > 0, M > 1, G > 0, Y < 2.
• Normal Inverse Gaussian (NIG): a NIG process X is a Brownian mo-

tion with drift and volatility σ > 0, subordinated by an Inverse Gaussian
process with variance v > 0 and unitary mean. The characteristic exponent
is

ψQ(ξ) =
1−
√

1 + vξ (−2iμ + ξσ2)
v

,

where the drift coefficient μ = μQ
∞ = EQ [X1] is determined by the mar-

tingale condition ψQ(−i) = r: under the assumption vr ≤ 1, we get

μQ
∞ = r − r2v

2
− σ2

2
.

The Lévy measure is equal to

ν(dx) =
C

|x|e
λxK1 (γ|x|) dx,

where K is the modified Bessel function of the second kind and

C =

√(
μQ
∞
)2

+ σ2

v

2πσ
√

v
, λ =

μQ
∞

σ2
, γ =

√(
μQ
∞
)2

+ σ2

v

σ2
.



13.5 Option pricing under exponential Lévy processes 485

• Generalized hyperbolic (GH): the characteristic exponent is

ψQ(x) = iμξ +
ν

2
log

α2 − β2

α2 − (β + iξ)2
+ log

Kν

(
δ
√

α2 − (β + iξ)2
)

Kν

(
δ
√

α2 − β2
) ,

where K is the modified Bessel function of the second kind and the drift
coefficient μ = μQ

∞ = EQ [X1] is determined by the martingale condition
ψQ(−i) = r:

μQ
∞ = r − ν

2
log

α2 − β2

α2 − (1 + β)2
+ log

Kν

(
δ
√

α2 − (1 + β)2
)

Kν

(
δ
√

α2 − β2
) .

The parameters α, β, δ, ν satisfy the conditions (13.90) and α > |1 + β|.

13.5.2 Incompleteness and choice of an EMM

As it was explained in Section 10.2, option pricing in the absence of arbitrage
can be reduced to calculating the expected values of the discounted payoff
with respect to an EMM Q which is also called a risk-neutral measure, be-
cause the expected returns of the risky asset under Q equals the risk-free
interest rate. We saw in Section 10.2.6 that uniqueness of the EMM amounts
to the fact that any contingent claim can be priced in a unique way, that
is, every contingent claim can be replicated by a dynamic trading strategy.
While the Black-Scholes model is complete, typically a generic Lévy mar-
ket is incomplete. The incompleteness of Lévy models (with the exception of
the Brownian motion and of the Poisson process, which however makes no
sense economically) can be proved in view of the “predictable representation
property” (see Nualart and Schoutens [268]) which is possessed only by few
processes.

The incompleteness property means that there exist infinitely many mar-
tingale measures compatible with the no-arbitrage requirement. Indeed the
no-arbitrage assumption provides an interval of arbitrage-free prices: Eber-
lein and Jacod [112], Bellamy and Jeanblanc [38] showed, in the case of a
pure-jump model and of jump-diffusions respectively, that the option values
computed under different EMMs span the entire trivial no-arbitrage interval.
This implies that if a trader charges a (super-hedging) price to option buyers
in order to eliminate all risks, then this price would be forbiddingly high, that
is, super-hedging is not a realistic strategy. A more realistic approach is to
charge a reasonable price for partial hedging the risks and bearing some resi-
dual risk. Consequently, one is faced with the problem of selecting an EMM
which is “optimal” in some sense. We will not enter into the details of such a
challenging question and we will present only the popular choices for an EMM
which is based on the Esscher transform. There are many papers devoted to
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the guiding criterion in this choice. One economic criterion is to maximize the
utility function describing the traders’ preferences and is also related to the
minimization of relative entropy. One argument is to choose the EMM which
is closest to the historic measure P in an entropy sense, that is, it minimizes∫

log
(

dQ

dP

)
dQ.

The minimal entropy martingale measure for Lévy models is studied in Chan
[71], Fujiwara and Miyahara [145], Hubalek and Sgarra [174], where it is re-
lated to the Esscher transform method. We conclude with the remark that
however it is not clear what kind of measure transform the market chooses in
reality.

In practice, in the framework of option pricing, the parameter fitting (cali-
bration) for EMM from a given class seems to be a more reasonable procedure,
that is, financial intermediaries first decide a specific model for the underlying
price process, then they calibrate the parameters of the model to market data
(e.g., prices of vanilla options) to determine the probability measure chosen by
the market, and finally use it for the pricing and hedging of other derivatives.
The existence of many EMMs leads to a great flexibility of Lévy models for
calibrating market prices of options. In other words, market incompleteness
“may not seem to be a desirable property at first sight”, but “it is a realistic
property that these models share with real markets” (Cont and Tankov [76]).

13.5.3 Esscher transform

From the theoretical point of view, a method for the construction of mar-
tingale measures starting from the real-world measure P , is based on the
Esscher transformation. It has been used in actuarial practice since Esscher’s
paper [123] and then applied in finance by Gerber and Shiu [155]. Kallsen
and Shiryaev [196] introduced the Esscher martingale measure for exponen-
tial processes and for linear processes: the Esscher transform of a probability
measure P is defined as follows.

Definition 13.65 Let (Ω,P,F) be a probability space, X a random variable
and θ ∈ R. The Esscher transform P θ is defined by

dP θ

dP
=

eθX

E [eθX ]
,

provided that the expectation E
[
eθX
]

exists.

Notice that the measure P θ is equivalent to P . Similarly one can define the
Esscher transform for a Lévy process (Xt)t∈[0,T ]. Suppose that θ ∈ R and
E
[
eθXT

]
<∞. Let �(z) denote the Laplace exponent (cf. (13.84)) of the Lévy

process: more precisely, we set

�(z) = ψ(−iz) = μz +
σ2z2

2
+
∫
R

(
eizx − 1− zx1{|x|<1}

)
ν(dx).
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Since �(iξ) = ψ(ξ) for all real ξ, then �(z) is well defined at least for z ∈ C
with Re(z) = 0 and E

[
ezXt

]
= et�(z). By Theorem 13.50, the process

Zθ
t = eθXt−t�(θ)

is a real-valued and strictly positive martingale, while eiθXt−tψ(θ) is a complex-
valued martingale. That is why it is convenient to work with Laplace expo-
nents in order to define a new probability measure by means of Zθ. Let us
set

dP θ
T

dP
= eθXT−T�(θ). (13.100)

Theorem 13.66 Let X = (Xt)t∈[0,T ] be a Lévy process. Then X is a Lévy
process also with respect to P θ

T in (13.100) and its Laplace exponent �θ under
P θ

T is given by

�θ(z) = �(z + θ)− �(θ). (13.101)

Proof. In view of Bayes’s formula (Theorem A.113), for all 0 ≤ s ≤ t ≤ T
we have

EP θ
T

[
ez(Xt−Xs) | Fs

]
=

EP
[
ez(Xt−Xs)Zθ

T | Fs

]
EP
[
Zθ

T | Fs

]
=

1
Zθ

s

EP
[
EP
[
ez(Xt−Xs)Zθ

T | Ft

]
| Fs

]
=

1
Zθ

s

EP
[
ez(Xt−Xs)Zθ

t | Fs

]
= EP

[
e(z+θ)(Xt−Xs)−(t−s)�(θ) | Fs

]
= e(t−s)(�(z+θ)−�(θ)).

Then the process (Xt)t∈[0,T ] has stationary, independent increments and
(13.101) holds. �

Theorem 13.67 Let (μ, σ2, ν) be the triplet of a Lévy process X with respect
to the measure P . Then the triplet (μθ, σ

2
θ , νθ) of X with respect to the measure

P θ
T in (13.100) is determined as follows:

μθ = μ + θσ2 +
∫
R

(eθx − 1)x1{|x|<1}ν(dx),

σ2
θ = σ2,

νθ(dx) = eθxν(dx).

(13.102)
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Proof. In view of (13.101) we have:

�θ(z) =μz +
σ2

2
(
(z + θ)2 − θ2

)
+
∫
R

(
(ezx − 1)eθx − zx1{|x|<1}

)
ν(dx)

=
(
μ + θσ2

)
z +

σ2z2

2
+
∫
R

(
ezx − 1− z1{|x|<1}

)
eθxν(dx)

+ z

∫
R

(eθx − 1)x1{|x|<1}ν(dx)

=μθz +
σ2

θz2

2
+
∫
R

(
ezx − 1− zx1|x|≤1(x)

)
νθ(dx). �

Now we are interested in a condition making the discounted stock price
S̃t = S0e

Xt−rt a martingale under P θ
T . We have

EP θ
T

[
S̃t | Fs

]
= S̃s

if and only if

e(t−s)�θ(1) = EP θ
T
[
eXt−Xs | Fs

]
= er(t−s),

or equivalently �θ(1) = r. In view of (13.101), we get the following result.

Theorem 13.68 Suppose that θ∗ is a solution to

�(1 + θ∗)− �(θ∗) = r. (13.103)

If EP
[
eθ∗XT

]
< ∞ (to assure that P θ∗

T exists) and EP
[
e(θ∗+1)XT

]
< ∞ (so

that EP θ∗
T [ST ] exists), then P θ∗

T is an equivalent martingale measure.

Under the assumptions of Theorem 13.68, P θ∗
T is called the Esscher martingale

transform of the objective measure P . Let us denote P θ∗
T by Q: in view of

(13.101), with obvious notation we have

�Q(z) = �P (z + θ∗)− �P (θ∗). (13.104)

In terms of the characteristic exponent we have that if θ∗ ∈ R solves

ψP (−iθ∗)− ψP (−iθ∗ − i) = r,

then the characteristic exponent under the EMM Q is given by

ψQ(ξ) = ψP (ξ − iθ∗)− ψP (−iθ∗).

Note that ψQ(−i) = ψP (−i − iθ∗) − ψP (−iθ∗) = −r, which is the EMM-
condition (13.92).
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Example 13.69 (Brownian motion with drift) Let �P (z) = μz+ σ2z2

2 be
the Laplace exponent under the historic measure P . The solution to (13.103)
is

θ∗ =
1
σ2

(
r − μ− σ2

2

)
,

and by (13.102) the characteristic exponent is

ψQ(ξ) = i

(
r − σ2

2

)
ξ − σ2ξ2

2
.

It is clear that in this case the Esscher transform is equivalent to the Girsanov
transform. �

Example 13.70 (Shifted Poisson process) Let Nt be a Poisson process
with intensity parameter λ and let Xt = αNt − βt with α, β > 0. Since

�P (z) = −βz + λ(eαz − 1),

the solution to (13.103) is θ∗ = 1
α log r+β

λ(eα−1) . Thus

�Q(z) = −βz + λ∗(eαz − 1)

with λ∗ = λeθ∗y = r+β
ey−1 . In terms of the characteristic exponent we have:

ψQ(z) = −iβξ + λ∗
(
eiαξ − 1

)
. �

Example 13.71 (NIG process) Let

�P (z) = μz + δ
(
(α2 − β2)

1
2 − (α2 − (β + z)2)

1
2

)
with −α − β ≤ Re z ≤ α − β, |β| < α. Note that both �P (θ) and �P (1 + θ)
exist if α ≥ 1

2 and −α−β ≤ θ ≤ α−β−1. Moreover (13.103) has a solution16

θ∗ = −1
2
− β − μ− r

2δ

√
4α2

1 +
(

μ−r
δ

)2 − 1

if |μ− r| ≤ δ
√

4α2 − 1. Then (13.104) yields

�Q(z) = μz + δ
(
(α2 − β∗2)1/2 − (α2 − (β∗ + z)2)1/2

)
with β∗ = −1

2 −
μ−r
2δ

√
4α2

1+(μ−r
δ )2 − 1. �

16 Equation (13.103) can be easily solved for the unknown x = (β + θ∗)(β + θ∗ + 1)
and then θ∗ is obtained.
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Exercise 13.72 Consider the VG process whose Laplace exponent can be
represented as follows

�P (z) = μz − C log
GM

GM + (M −G)z − z2

with −G < Re z < M . Show that if G + M > 1 an Esscher parameter exists
and compute �Q(z). �

Exercise 13.73 Consider a Lévy process based on a generalized hyperbolic
distribution and such that

�P (z) = μz +
ν

2
log

α2 − β2

α2 − (β + z)2
+ log

Kν(δ
√

α2 − (β + z)2)

Kν(δ
√

α2 − β2)
.

Show that an Esscher transform with parameter θ∗ ∈] − α − β, α− β[ corre-
sponds to a shift of parameter β → β + θ∗, where θ∗ solves the equation

μθ − ν

2
log

α2 − (β + θ + 1)2

α2 − (β + θ)2
+ log

Kν(δ
√

α2 − (β + θ + 1)2)
Kν(δ

√
α2 − (β + θ)2)

= r. �

The Esscher transform method can be viewed as a special case of more
general methods for constructing EMMs. Let us first characterize all structure
preserving EMMs Q under which X remains a Lévy process.

Theorem 13.74 Let X be a Lévy process with triplet (μ, σ2, ν) under some
probability measure P . Then the following two conditions are equivalent:

i) there is a probability measure Q, equivalent to P , such that X is a Lévy
process with triplet (μ̃, σ̃2, ν̃) under Q;

ii) all of the following conditions hold:

ii.a) ν̃(dx) = H(x)ν(dx) for some Borel function H : R −→ R>0;
ii.b) σ̃ = σ;
ii.c) μ̃ = μ +

∫
|x|<1

x(H(x)− 1)ν(dx) + ση for some η ∈ R;

ii.d)
∫
R

(
1−
√

H(x)
)2

ν(dx) <∞.

Proof. See Sato [297], Theorem 33.1. �

We emphasize that Eberlein and Jacod [112] have shown that if there exists
a non-structure preserving EMM, there exists always a structure preserving
EMM Q under which X is a Lévy process. Now let us impose to a generic
equivalent and structure preserving measure that the discounted stock price
S̃t = eXt−rt is a martingale: in view of Corollary 5.2.2. in Applebaum [11] and
of the previous theorem, we obtain the following condition:

μ +
σ2

2
− r + ση +

∫
R

(
H(x)(ex − 1)− x1{|x|<1}

)
ν(dx) = 0
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under the condition ∫
|x|≥1

H(x)(ex − 1)ν(dx) <∞.

Note that there are infinitely many solutions pairs (η,H) of this equation. If
(η,H) is a solution and f is ν-integrable, then (η̂, Ĥ) with

η̂ = η +
1
σ

∫
R

f(x)ν(dx), Ĥ(x) = H(x) +
f(x)

ex − 1

is a solution as well.
We show here two trivial examples of Lévy processes that admit a unique

solution (η,H) and in fact give a complete market.

Example 13.75 (Brownian motion) In this case ν ≡ 0 and σ > 0. The
unique solution is η = r−μ

σ − σ
2 . This implies that the new drift and volatility

parameters under Q are: μ̃ = r − σ2

2 and σ̃ = σ. �

Example 13.76 (Shifted Poisson process) Let Xt = αNt+μt with μ < r
and α > 0. For simplicity, we take α > 1. In this case σ = 0 and ν = λδα

where λ is the intensity parameter. Then H is constant

H =
r − μ

λ(eα − 1)

and the new Lévy measure under Q is ν̃ = λ∗δα with λ∗ = r−μ
eα−1 ; moreover

μ̃ = μ. �

13.5.4 Exotic option pricing

Exotic derivatives have gained an increasing importance as financial instru-
ments. Especially path-dependent options are traded in large volumes in the
OTC markets. In this section we give a short survey of the literature on Eu-
ropean exotic options under a Lévy market. Exotics of American style and
multi-asset options are omitted. We will deal only with Asian options in detail
and refer to Agliardi [4], Hubalek [172], Kyprianou, Schoutens and Wilmott
[221] for the valuation formulas for other classes of options.

Asian options. In Section 7.6 we studied Asian options in the classical
Gaussian framework. Here we give a generalization to the Lévy framework
in the case of geometric Asian options. We confine ourselves to forward-start
fixed strike Asian options and refer to Fusai and Meucci [146] for the floating-
strike case and an approximation method for arithmetic Asian options. We
also mention Albrecher [5], Albrecher and Predota [6], Eberlein and Papapan-
toleon [116].

Let K denote the strike price. At first we consider discrete Asian options,
whose payoff depends on a discrete average of the asset price at M monitoring
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times, T1 < ... < TM . Then the payoff is

max{w(GM −K), 0}, GM =

⎛⎝ M∏
j=1

STj

⎞⎠ 1
M

,

where w is the binary indicator (w = ±1). In terms of Xt = log St the payoff
is:

w

⎛⎝ ∏
j=1,...,M

exp
(

XTj

M

)
−K

⎞⎠1
{ w

M

M∑
j=1

XTj
≥w log K}

.

Let us compute the characteristic exponent of

Y =
M∑

m=1

Xm

M
,

where Xm denotes XTm , for brevity’s sake. Since

Y =
M∑

m=1

X0

M
+

M∑
j=1

(Xj −Xj−1)
M∑

m=j

1
M

with X0 = log St, the independence of the increments of Xt yields:

E
[
eiξY | log St

]
= eiξX0

M∏
j=1

E

[
exp
(

iξ(Xj −Xj−1)
M − j + 1

M

)
| log St

]

= exp

⎛⎝iξ log St +
M∑

j=1

(Tj − Tj−1)ψ
(

M − j + 1
M

ξ

)⎞⎠ ,

where ψ is the characteristic exponent of X. Now we assume that the Lévy
measure satisfies: ∫ −1

−∞
eλ+xν(dx) +

∫ +∞

1

e−λ−xν(dx) <∞

for some constants λ− < 0 < λ+. Then the current value of an option whose
payoff is

1{
w
M

M∑
j=1

XTj
≥w log(K)

}

is given by the formula (cf. Proposition 15.6)

we−r(TM−t)

π

(
St

K

)αw ∫ +∞

0

F (ξ)
wα− iξ

dξ
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where

F (ξ) := exp

⎛⎝−iξ log
St

K
+

M∑
j=1

(Tj − Tj−1)ψ
(
−M − j + 1

M
(ξ + iαw)

)⎞⎠
and T0 = t, α > 0 and M−j+1

M wα ∈] − λ+,−λ−[ for j = 1, ...,M . More
generally, the current value of an option whose payoff is

exp

(
M∑

m=1

γmXm

)
1{

w
M

M∑
j=1

XTj
≥w log K

}

is given by:

we−r(TM−t)

π
S

M∑
m=1

γm

t (
St

K
)αw

∫ +∞

0

e−iξ log
St
K

F (ξ)
wα− iξ

dξ

where

F (ξ) := exp

⎛⎝ M∑
j=1

(Tj − Tj−1)ψ

⎛⎝−M − j + 1
M

(ξ + iαw)− i
M∑

m=j

γm

⎞⎠⎞⎠
and M−j+1

M wα+ γm ∈]− λ+,−λ−[ for j = 1, ...,M. Thus the current value of
the (discretely monitored) fixed strike geometric Asian option is:

e−r(TM−t)

π
Sαw

t K1−αw

∫ +∞

0

F (ξ)
(iξ − wα)(iξ − wα + 1)

dξ

where

F (ξ) = exp

⎛⎝−iξ log
St

K
+

M∑
j=1

(Tj − Tj−1)ψ
(
−M − j

M
(ξ + iαw)

)⎞⎠ ,

with T0 = t, α ∈]1,−λ−[ if w = 1, and α ∈]0, λ+[ if w = −1. The pricing
formula for the continuous-time monitoring case, where the geometric average
is

exp

(
1

T − T ′

∫ T

T ′
log Stdt

)
,

follows from the discrete pricing formula just letting M → ∞. In particular,
for the continuous case, one has:

Ke−r(T−t)

π
Sαw

t K1−αw

∫ +∞

0

F (ξ)
(iξ − wα)(iξ − wα + 1)

dξ,

where

F (ξ) = exp
(
−iξ log

St

K
+
∫ 1

0

ψ((ξ + iαw)(y − 1))dy

)
.
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Exercise 13.77 Compute the price of a geometric Asian option in the Gaus-
sian framework, as a special case. �

Barrier options. The right of the holder of a barrier option is conditioned
on the underlying asset crossing (or not crossing) a prespecified barrier be-
fore the expiry date. There exists eight barrier options types, depending on
the barrier being above or below the initial value (up or down), on the barrier
knocking in (activating) or out (extinguishing), and on the Call/Put attribute.
Barrier options in a Lévy framework are studied in Boyarchenko and Leven-
dorskii [56], Nguyen and Yor [265]. Discretely monitored barrier options were
priced by Heynen and Kat [167] in the traditional Gaussian framework and in
Feng and Linetsky [130] in Lévy process models. A survey on discrete barrier
options is found in Kou [218].

Lookback options. The payoff of a lookback option depends on the extremal
price of the underlying asset over the life of the option. Floating strike lookback
Call and Put options have payoffs of the form

ST − min
0≤t≤T

St and max
0≤t≤T

St − ST

respectively, while fixed strike lookback Call and Put options have payoffs(
max

0≤t≤T
St −K

)
and

(
K − min

0≤t≤T
St

)+

respectively, where K denotes the strike price. The valuation of lookback op-
tions is a hard problem, because the distribution of the supremum or infimum
of a Lévy process is not known explicitly. Explicit formulas are known in
the Gaussian case. The Lévy case is studied in Nguyen and Yor [265]. Dis-
crete lookback options in a Lévy framework are considered in Agliardi [4] and
Hubalek [172]. The Gaussian case was studied in Heynen and Kat [166].

Compound options. Compound options are options on options. An exten-
sion of Geske’s formula (see Geske [156]) to a more general Lévy environment
is obtained in Agliardi [3]: see also [4] for the N -fold compound options.

Chooser options. These options give their holder the right to decide at a
prespecified date before the maturity whether they would like the option to be
a Call or a Put option. A valuation formula in a Lévy framework is obtained
in [4].

13.5.5 Beyond Lévy processes

We sketch some directions of development of the theory of Lévy processes in
finance towards further generalizations. A crucial property of Lévy processes is
the assumption of stationary increments. For financial markets, it is not clear
whether this condition is valid. Some recent empirical analysis tends to reject
such an assumption. For example, Bassler, McCauley and Gunaratne [34] find
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evidence of non-stationary increments in return for the Euro-Dollar exchange
rate through an analysis of intraday increments. Moreover, time inhomoge-
neous jump-diffusions (possibly depending also on the state variable) seem
to provide a good fit for some financial markets. Therefore some extension
of Lévy modeling relaxes the stationarity of increments, just assuming addi-
tive processes, i.e. càdlàg stochastic processes with independent increments
and stochastic continuity. Nevertheless, as observed by Cont and Tankov [76],
“additive processes have the same drawback as local volatility models: they
require time dependent parameters to accommodate the observed term struc-
ture of implied volatility. More importantly, when the risk-neutral dynamics
of the log-price is given by a Lévy process or an additive process, the implied
volatility surface follows a deterministic evolution: there is no Vega risk in
such models.”

An alternative stream of research considers some Feller processes which are
natural generalizations of Lévy processes and employs pseudo-differential me-
thods to derive approximate valuation formulas. Such methods are the natural
extension to the Lévy framework of the Black-Scholes models with variable
coefficients, which are used to reproduce the smiles. A presentation of the the-
ory of Feller process can be found in Jacob [183]. We refer to Barndorff-Nielsen
and Levendorskii [27], Boyarchenko and Levendorskii [56] for a description of
financial applications of Feller processes.

Another direction of research is followed by the stochastic volatility models
which allow to reproduce a realistic implied volatility term structure. In a more
general framework, solutions to stochastic differential equations with jumps
can be considered: indeed, combining jumps (which are needed for the short-
term behaviour) and stochastic volatility (which works especially for long-term
smiles) allows for a better calibration of the implied volatility surface. To this
end, in Chapter 14 we introduce the basics of stochastic calculus for jumps
processes and in Section 14.3 we examine some stochastic volatility model
with jumps.
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Stochastic calculus for jump processes

In this chapter we introduce the basics of stochastic calculus for jump pro-
cesses. We follow the approaches proposed by Protter [287] for the general
theory of stochastic integration and by Applebaum [11] for the presentation
of Lévy-type stochastic integrals. We extend to this framework, the analysis
performed in the previous chapters for continuous processes: in particular,
we prove Itô formula and a Feynman-Kač type representation theorem for
solutions to SDEs with jumps. For simplicity, most statements are given in
the one-dimensional case. Then we show how to derive the integro-differential
equation for a quite general exponential model driven by the solution of a
SDE with jumps: these results open the way for the use of deterministic and
probabilistic numerical methods, such as finite difference schemes (see, for
instance, Cyganowski, Grüne and Kloeden [82]), Galerkin schemes (see, for
instance, Platen and Bruti-Liberati [281]) and Monte Carlo methods (see, for
instance, Glasserman [158]). In the last part of the chapter, we examine some
stochastic volatility models with jumps: in particular, we present the Bates
and the Barndorff-Nielsen and Shephard models.

14.1 Stochastic integrals

On a filtered probability space (Ω,F , P, (Ft)) satisfying the usual hypotheses,
we consider a stochastic process S = (St)t∈[0,T ] representing a financial asset.
Hereafter we assume that S is càdlàg (i.e. right continuous with finite left
limits), the typical example being a Lévy processes. As in Paragraph 3.4, we
are naturally interested in the study of sums of the type

N∑
k=1

ek

(
STk
− STk−1

)
that represent the gain of the self-financing strategy which consists in holding
the quantity ek of the asset during the k-th period ]Tk−1, Tk]. Typically S has

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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unbounded variation, such as in the case of Brownian motion: for this reason,
in Chapter 4 we developed a theory of stochastic integration based on the
key idea, due to Itô, of restricting the class of integrands to the progressively
measurable processes, that is to the strategies that cannot see into the future
increments.

We now remark that if the integrator S is discontinuous, then we need to
further restrict the class of integrands for which the stochastic integral makes
sense both from the mathematical and financial point of view. To give reasons
for this last claim, we analyze some simple example.

Example 14.1 Let T1 > 0 and consider the deterministic function

t �→ St = 1[T1,∞[(t).

Then, as in Example 3.68, for any continuous function u, the Riemann-Stieltjes
integral is well-defined and∫ t

0

usdSs =

{
0 if t < T1,

uT1 if t ≥ T1.
(14.1)

�

Example 14.2 The integral with respect to S in Example 14.1 can be ex-
tended to discontinuous functions in the Lebesgue-Stieltjes sense. Let us
briefly recall that if g is an increasing function and we set

μg(]a, b[) = g(b−)− g(a+), a, b ∈ R, a < b,

then μg can be extended to a measure on B(R) called the Lebesgue-Stieltjes
measure induced by g: for instance, in the case g(t) = t we find the Lebesgue
measure; in the case of g = S in Example 14.1, we find the Dirac delta
centered at T1, that is μS = δT1 . Hence, for any deterministic function u, the
Lebesgue-Stieltjes integral is given by∫

[0,t]

usdSs =
∫

[0,t]

usδT1(ds) =

{
0 if t < T1,

uT1 if t ≥ T1,

and, if u is continuous, it coincides with the Riemann-Stieltjes integral in
(14.1). �

Example 14.3 We now examine the convergence of Riemann-Stieltjes sums
in case u is discontinuous and S as in Example 14.1. We consider t ≥ T1 and
a sequence of partitions ςn = (tn0 , . . . , tnNn

) of [0, t] such that T1 ∈ ςn for any
n (say, T1 = tnkn

) and |ςn| → 0 as n goes to infinity. Let

N∑
k=1

uτn
k

(
Stn

k
− Stn

k−1

)
= uτn

kn
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be the Riemann-Stieltjes sum where as usual τn
k ∈ [tnk−1, t

n
k ] for k = 1, . . . , Nn

and in particular τn
kn
∈ [tnkn−1, T1]. Passing to the limit as n→∞, the above

Riemann-Stieltjes sum converges to uT1− if τn
kn
∈ [tnkn−1, T1[ and to uT1 if

τn
kn

= T1. Thus the Riemann-Stieltjes integral is well-defined (and independent
on the choice of the points τn

k ) if and only if u is left-continuous1. Moreover,
in that case it coincides with the Lebesgue-Stieltjes integral. �

Example 14.4 Let St = λt−Nt where N is a Poisson process with intensity
λ. Then S is a martingale because −S is a compensated Poisson process:
intuitively, S is a fair investment giving zero gain in average, because the
deterministic increase λt is compensated by the sudden falls −Nt which occur
randomly and represent the source of risk. We denote by Tn the jump times
of S and consider the strategy

ut = 1[0,T1](t) (14.2)

which consists in buying (at zero price) the asset at t = 0 and selling it at
the time of the first jump. Note that u is left-continuous and therefore, as
we have seen before, the integral of u with respect to S is well-defined: in
the Riemann-Stieltjes sense (that is, by considering the integral as a limit of
Riemann-Stieltjes sums) we have

Gt :=
∫ t

0

usdSs = ST1∧t − S0

= λ(t ∧ T1)−NT1∧t

= λ(t ∧ T1)− 1{t≥T1}.

We obtain the same value by integrating in the Lebesgue-Stieltjes sense (that
is, by integrating with respect to the Lebesgue-Stieltjes measure induced
by S): ∫

[0,t]

usdSs = λ

∫
[0,t]

usds−
∫

[0,t]

usdNs

= λ(t ∧ T1)−
∑
n≥1

uTn1{t≥Tn}

= λ(t ∧ T1)− 1{t≥T1}, (14.3)

where the last equality follows from the fact that uT1 = 1 because u is left-
continuous. The common value G represents the gain of the strategy u: pre-
cisely, the first term in (14.3) represents the gain due to the deterministic
positive drift λt, while the second term represents the losses due to negative
1 We remark that in Example 3.67 we showed that the continuity if the integrand

is necessary for the Riemann-Stieltjes integral to be well-defined with respect to
a generic BV function S: however, in that pathological example the function S
was not càdlàg.
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jumps caused by the Poisson process. Losses compensate gains so there are no
arbitrage opportunities: mathematically, this is expressed by the fact that G
is a martingale. This can be seen more easily by using the Riemann-Stieltjes
definition of integral:

E [Gt −Gs | Fs] = E [ST1∧t − ST1∧s | Fs] = 0, s ≤ t,

as a consequence of the optional sampling theorem and the fact that S is a
martingale. �

Example 14.5 Let S be as in Example 14.4. We consider the strategy

ut = 1[0,T1[(t) (14.4)

which consists in buying (at zero price) the asset at t = 0 and selling it
“right before” it crashes (see Protter [287], p. 65, Cont and Tankov [76],
Example 8.1). Note that u is càdlàg (right-continuous) instead of càglàd (left-
continuous) as in (14.2). Now the Riemann-Stieltjes of u with respect to S
is not well-defined as explained in Example 14.3; however we may try to use
instead the Lebesgue-Stieltjes definition and we get

Gt :=
∫

[0,t]

usdSs = λ

∫
[0,t]

usds−
∫

[0,t]

usdNs

= λ(t ∧ T1)−
∑
n≥1

uTn1{t≥Tn}

= λ(t ∧ T1), (14.5)

where the last equality follows from the fact that uT1 = 0 because u is right-
continuous. Now the gain Gt is strictly positive for any t > 0: this means
that u is an arbitrage strategy and G is not a martingale anymore. It is clear
that such a strategy is not acceptable from the financial point of view; also
mathematically we lose the fundamental property that the stochastic integral
with respect to a martingale is again a martingale.

Intuitively, in order to exploit the strategy in (14.4) we would need to know
when the price is going to fall just before it happens: in other terms, assuming
that u is right-continuous amounts to say that we are able to predict the jumps
of the Poisson process so to avoid the risk of crashes. Notice also that this
situation is peculiar of financial models with jumps: indeed this example is
based on the fact that the process S is discontinuous. �

14.1.1 Predictable processes

We consider a process of the form

ut =
N∑

k=1

ek1]Tk−1,Tk ](t), t ∈ [0, T ], (14.6)
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where 0 = T1 < · · · < TN = T and, for 1 ≤ k ≤ N , ek is a bounded random
variable that is FTk−1-measurable. In order to treat more conveniently the case
of jump processes, where jumps occur at random times, it seems natural to
assume that Tk, 1 ≤ k ≤ N , are stopping times and not simply deterministic
times as we did in the Brownian case, cf. Section 4.2. Then we say that
ς = (T1, . . . , TN ) is a random partition of the interval [0, T ] and that u in
(14.6) is a simple predictable process.

We remark explicitly that the process in (14.6) is càglàd by definition, i.e.
it is left-continuous with finite right limits. The importance of this simple fact
could not be appreciated in the framework of continuous processes. Never-
theless in Examples 14.1-14.5, we showed that this is really a crucial point
when dealing with jump processes: if we assume that the asset S is a càdlàg
(right-continuous) process, then the simple trading strategies should be càglàd
(left-continuous) processes as in (14.6) to rule out arbitrage opportunities.

In order to describe more generally the hypotheses we are going to assume,
we give the following:

Definition 14.6 We let L denote the space of càglàd (left-continuous) a-
dapted processes and D denote the space of càdlàg (right-continuous) adapted
processes. The predictable σ-algebra P is the smallest σ-algebra on [0, T ]×Ω
making all processes in L measurable. The optional σ-algebra O is the smallest
σ-algebra on [0, T ]×Ω making all processes in D measurable.

Let us consider a stochastic process X as a mapping (t, ω) �→ Xt(ω) from
[0, T ] × Ω to R. We say that X is predictable if it is P-measurable; we say
that X is optional if it is O-measurable. Clearly, by definition, every process
in L is predictable: in particular, the simple predictable processes of the form
(14.6) are predictable. For example, ut = Xt− where X is a compound Poisson
process is simple predictable. However, not all predictable processes are left-
continuous. Analogously, every process in D is optional but an optional process
is not necessarily right-continuous.

Now we recall that the Brownian integral was defined for progressively
measurable integrands, that is for processes X such that the mapping (s, ω) �→
Xs(ω) of [0, t]×Ω into R, is B([0, t])⊗Ft-measurable for any t ≤ T . In general,
one has the following relationships (see, for instance, Chapter III in Protter
[287]):

P ⊆ O ⊆ A

where A denotes the σ-algebra on [0, T ] × Ω generated by all progressively
measurable processes. Thus predictable processes form a particular subclass
of the family of all progressively measurable processes.

We remark explicitly that

L ⊂ L2
loc
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where (cf. Definition 4.33) L2
loc denotes the family of processes (ut)t∈[0,T ] that

are progressively measurable and such that∫ T

0

u2
t dt <∞ a.s.

Definition 14.7 Let S be càdlàg adapted, S ∈ D, and let u ∈ L be a simple
predictable process of the form (14.6). The stochastic integral of u with respect
to S is defined as2

Xt =
∫ t

0

usdSs :=
N∑

k=1

ek

(
St

Tk
− St

Tk−1

)
, t ∈ [0, T ]. (14.7)

We also use the “differential” notation

dXt = utdSt.

The stochastic integral of a simple predictable process has three remarkable
properties which follows directly from the definition. Let X be as in (14.7),
then we have:

i) X is càdlàg adapted, i.e. X ∈ D. In particular X is an integrator and the
associativity property holds, i.e. for any simple predictable process v we
have ∫ t

0

vsdXs =
∫ t

0

usvsdSs.

In differential terms, this can be expressed as follows:

dYt = vtdXt and dXt = utdSt =⇒ dYt = utvtdSt; (14.8)

ii) if S is a martingale then X is also a martingale;
iii) the jump process ΔXt = Xt −Xt− is indistinguishable from utΔSt.

In particular, ii) generalizes property (5) of Theorem 4.5 for the Brownian
integral and also the proof is essentially analogous: for completeness, we repeat
it here. First of all, X is integrable because u is bounded and S is integrable.
Moreover, in order to show that E [XT | Ft] = Xt it is sufficient to prove that

E
[
ek

(
STk
− STk−1

)
| Ft

]
= ek

(
STk∧t − STk−1∧t

)
,

for each k. Now we have

E
[
ek

(
STk
− STk−1

)
| Ft

]
= E1 + E2 + E3

2 We recall the notation St
T = ST∧t.
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where3

E1 = E
[
1{t>Tk}ek

(
STk
− STk−1

)
| Ft

]
= 1{t>Tk}ek

(
STk
− STk−1

)
,

E2 = E
[
1{Tk−1<t≤Tk}ek

(
STk
− STk−1

)
| Ft

]
= 1{Tk−1<t≤Tk}ekE

[
STk
− STk−1 | Ft

]
= 1{Tk−1<t≤Tk}ek

(
St − STk−1

)
,

and

E3 = E
[
1{t≤Tk−1}ek

(
STk
− STk−1

)
| Ft

]
= 1{t≤Tk−1}E

[
E
[
ek

(
STk
− STk−1

)
| FTk−1

]
| Ft

]
= 1{t≤Tk−1}E

[
ekE

[(
STk
− STk−1

)
| FTk−1

]
| Ft

]
= 0.

Therefore we have

E
[
ek

(
STk
− STk−1

)
| Ft

]
=1{t>Tk}ek

(
STk
− STk−1

)
+ 1{Tk−1<t≤Tk}ek

(
St − STk−1

)
=ek

(
STk∧t − STk−1∧t

)
.

Example 14.8 Let N be a Poisson process with jump times (Tn)n≥1 (we
also set T0 = 0). Then

Nt = n for t ∈ [Tn, Tn+1[, n ≥ 0,

and N ∈ D. We already noted that

Nt− = n for t ∈]Tn, Tn+1], n ≥ 0,

is simple predictable. If we set N t
T = NT∧t as usual, then we have∫ t

0

Ns−dNs =
∑
k≥1

(k − 1)
(
N t

Tk
−N t

Tk−1

)
=

(for t ∈ [Tn−1, Tn[)

=
n−1∑
k=1

(k − 1)
(
NTk
−NTk−1

)
=

n−1∑
k=1

(k − 1) =
(n− 1)(n− 2)

2
.

Therefore we have ∫ t

0

Ns−dNs =
Nt(Nt − 1)

2
, t ≥ 0. (14.9)

�

3 Note that 1{t>Tk}, 1{Tk−1<t≤Tk} and 1{t≤Tk−1} are Ft-measurable because Tk

and Tk−1 are stopping times.
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14.1.2 Semimartingales

In Section 14.1.1 we have defined the stochastic integral∫ T

0

usdSs

for u simple predictable and S ∈ D. In order to extend the definition of integral
to the class L, we need two ingredients:

• the density (under some suitable norm) of the simple predictable processes
in the space L;

• some continuity property of the stochastic integral: roughly speaking, if
the sequence (un) converges to u, then the stochastic integral of un must
approximate the stochastic integral of u. In order to get this continuity
property, we have to restrict the class of integrators. Actually, the “good
integrators” will be exactly the processes in D which ensure the continuity
of the integral: those processes will be called semimartingales.

Definition 14.9 A process S = (St)t∈[0,T ] in D is called a semimartingale
if, for any sequence (un) of simple predictable processes such that

lim
n→∞

sup
[0,T ]×Ω

|un| = 0,

we have

lim
n→∞

∫ T

0

un
t dSt = 0 in probability.

The following examples show that many familiar classes of processes are semi-
martingales.

Example 14.10 If a process S ∈ D has bounded variation a.s. then it is a
semimartingale. Indeed, for any simple predictable process u, we have∣∣∣∣∣

∫ T

0

utdSt

∣∣∣∣∣ ≤ V[0,T ] (S) sup
[0,T ]×Ω

|u| ,

where V[0,T ] (S) denotes the first variation of S over [0, T ] which, by assump-
tion, is finite a.s. The thesis follows from the fact that a.s. convergence implies
convergence in probability (cf. Theorem A.136). In particular, the Poisson
process is a semimartingale. �

Example 14.11 Every square integrable martingale S ∈ D is a semimartin-
gale. Indeed, for any simple predictable process u, we have

E

⎡⎣(∫ T

0

utdSt

)2
⎤⎦ = E

⎡⎣( N∑
k=1

ek

(
STk
− STk−1

))2
⎤⎦ =
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(by the orthogonality of the increments of L2-martingales, cf. (4.31))

= E

[
N∑

k=1

e2
k

(
STk
− STk−1

)2]

≤ E

[
N∑

k=1

(
STk
− STk−1

)2] sup
[0,T ]×Ω

u2

= E

[
N∑

k=1

(
S2

Tk
− S2

Tk−1

)]
sup

[0,T ]×Ω

u2

= E
[
S2

TN
− S2

0

]
sup

[0,T ]×Ω

u2 ≤

(by Doob’s inequality)

≤ 8E
[
S2

T

]
sup

[0,T ]×Ω

u2.

The thesis follows since L2-convergence implies convergence in probability. In
particular, a Brownian motion is a semimartingale. �

Example 14.12 A Lévy process is a semimartingale. Indeed, by the decom-
position in Corollary 13.38, every Lévy process is the sum of a càdlàg L2-
martingale with a BV process. Since the set of semimartingales forms a vector
space, the thesis is a consequence of the two examples above. �

More generally, it can be proved, but this is a deep and difficult result (cf.
Theorem III-1 in Protter [287]), that a process X ∈ D is a semimartingale if
and only there exist processes M and Z, with M0 = Z0 = 0, such that

Xt = X0 + Mt + Zt

where M is a local martingale and Z has bounded variation.
The continuity property of Definition 14.9 involves the convergence of ran-

dom variables, namely Xn
t =

∫ t

0
un

s dSs with t = T fixed. As in Section 4.3,
in order to define properly the stochastic integral as a process t �→ Xt for
t ∈ [0, T ], it is necessary to show that the integral is also continuous as an
operator that maps processes into processes. To be more specific, we introduce
the notion of uniform convergence in probability.

Definition 14.13 We say that a sequence of processes (un
t )t∈[0,T ] converges

to a process u uniformly in probability if

lim
n→∞

sup
t∈[0,T ]

|un
t − ut| = 0 in probability. (14.10)

We are now in position to extend the class of integrands from simple pre-
dictable processes to L by continuity with respect to the uniform convergence
in probability.
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Theorem 14.14 The space of simple predictable processes is dense in L un-
der the uniform convergence in probability: for any u ∈ L there exists a
sequence (un) of simple predictable processes such that (14.10) holds. The
stochastic integral with respect to a semimartingale S is continuous under the
uniform convergence in probability: if (un) is a sequence of simple predictable
processes such that

lim
n→∞

sup
t∈[0,T ]

|un
t | = 0 in probability,

then

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

un
s dSs

∣∣∣∣ = 0 in probability.

For any semimartingale S, the continuous linear mapping from L to D ob-
tained as the extension of the integral of Definition 14.7 is called stochastic
integral: for any u ∈ L, we denote it by

Xt =
∫ t

0

usdSs, t ∈ [0, T ],

and also write
dXt = utdSt.

Proof. See Protter [287], Theorems II-10 and II-11. �

By limit arguments, the main properties of the stochastic integral of simple
processes extend to L. Let u ∈ L, S be a semimartingale and

Xt =
∫ t

0

usdSs.

Then we have

i) X is a semimartingale and the associativity property holds, i.e. for any
v ∈ L we have ∫ t

0

vsdXs =
∫ t

0

usvsdSs;

ii) if S is a square integrable martingale and u ∈ L is bounded, then X is also
a square integrable martingale. More generally, if S is a local martingale
and u ∈ L then X is also a local martingale;

iii) the jump process ΔXt = Xt −Xt− is indistinguishable from utΔSt.

We recall Example 14.4 where we showed in a very particular case that
the notions of Riemann-Stieltjes and Lebesgue-Stieltjes integral coincide if the
integrand is left-continuous. Now we state a remarkable theorem which claims
that a similar result holds for the stochastic integral of a process u in L or
in D (in this case, by taking its left-continuous version ut−). In the following
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statement ςn =
(
Tn

1 , . . . , Tn
Nn

)
denotes a sequence of random4 partitions of

the interval [0, T ] such that

lim
n→∞

|ςn| = 0 a.s., where |ςn| := max
1≤k≤Nn

∣∣Tn
k − Tn

k−1

∣∣ . (14.11)

Theorem 14.15 Let S be a semimartingale and u be a process in D or in L.
Then the Riemann-Stieltjes sum5

Nn∑
k=1

uT n
k−1

(
St

T n
k
− St

T n
k−1

)
converges uniformly in probability as n→∞ to the stochastic integral∫ t

0

us−dSs.

Proof. See Theorem II-21 in Protter [287]. �

Remark 14.16 Stochastic integration of L processes is sufficient to prove Itô
formula, Girsanov-Meyer theorem and other important results in mathemati-
cal finance. On the other hand, the general theory allows to define the stochas-
tic integral of any predictable processes (not necessarily left-continuous): this
further non-trivial extension is required in the study of more advanced topics
such as martingale representation theorems and local times. �

14.1.3 Integrals with respect to jump measures

Let S be a Lévy process with jump measure J and Lévy measure ν. In Section
13.3.3 (cf. (13.42)) we defined the integral

Mt =
∫ t

0

∫
Rd

f(s, x)J̃(ds, dx)

of a deterministic function f with respect to the compensated random measure
J̃ : that type of integrals played a crucial role in the Lévy-Itô decomposition
and in particular in the representation of small jumps of a Lévy process.

In this section, we extend the definition to the case of stochastic functions.
This generalization allows to get a clearer expression and a deeper compre-
hension of the stochastic integral ∫ t

0

usdSs

when the integrator S is a Lévy process.
4 (T n

k )n,k∈N are stopping times.
5 As usual St

T = ST∧t.
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As usual, we introduce the definition gradually, starting from “simple”
stochastic functions. By analogy with simple predictable processes, we say
that a function

ϕ : [0, T ]× R×Ω −→ R

is a simple predictable function with respect to J if it is of the form

ϕ(t, x) =
N∑

k=1

m∑
i=1

eki1]Tk−1,Tk]×Hi
(t, x)

where 0 = T1 < · · · < TN = T are stopping times, (eki)k=1,...,N are bounded
FTk−1-measurable random variables and (Hi)i=1,...,m are disjoint Borel subsets
of R such that J([0, T ]×Hi) <∞. Then we define the stochastic integral∫ T

0

∫
R

ϕ(t, x)J(dt, dx) :=
N∑

k=1

m∑
i=1

ekiJ (]Tk−1, Tk]×Hi)

:=
N∑

k=1

m∑
i=1

eki

(
JTk

(Hi)− JTk−1(Hi)
)

where Jt(H) = J([0, t] × H) is the process defined in Lemma 13.33. More
generally, we define the integral as a stochastic process by setting

t �→ Xt :=
∫ t

0

∫
R

ϕ(s, x)J(ds, dx) =
N∑

k=1

m∑
i=1

eki

(
JTk∧t(Hi)− JTk−1∧t(Hi)

)
.

By construction, (Xt)t∈[0,T ] is a càdlàg adapted process; next we show that its
compensated version is a L2-martingale: the following result extends Theorem
13.34. As in Lemma 13.33, we set

J̃t(H) = Jt(H)− tν(H).

Proposition 14.17 For any simple predictable function ϕ, the stochastic in-
tegral

Mt =
∫ t

0

∫
R

ϕ(s, x)J̃(ds, dx)

=
N∑

k=1

m∑
i=1

eki

(
J̃Tk∧t(Hi)− J̃Tk−1∧t(Hi)

)
is a L2-martingale and it verifies the isometry

var(Mt) = E
[
M2

t

]
= E

[∫ t

0

∫
R

ϕ2(t, x)ν(dx)ds

]
. (14.12)
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Proof. By Lemma 13.33, the processes Si
t := J̃t(Hi), i = 1, . . . ,m, are inde-

pendent martingales. Moreover M can be rewritten as a stochastic integral of
the type introduced in Section 14.1.1, as follows

Mt =
m∑

i=1

∫ t

0

ei
sdSi

s,

where

ei
t =

N∑
k=1

eki1]Tk−1,Tk](t), i = 1, . . . ,m,

are simple predictable processes: in particular, M is a martingale with null
expectation.

Finally, we prove (14.12) for simplicity only in the case t = T : since
(Si)i=1,...,m are independent, we have

var(MT ) =
N∑

k=1

m∑
i=1

E

[
e2

ki

(
Si

Tk
− Si

Tk−1

)2
]

=
N∑

k=1

m∑
i=1

E

[
e2

kiE

[(
Si

Tk
− Si

Tk−1

)2

| FTk−1

]]
=

(by (13.44))

=
N∑

k=1

m∑
i=1

E
[
e2

ki(Tk − Tk−1)ν(Hi)
]

which yields (14.12). �

By means of the isometry (14.12), the class of integrands for

Mt =
∫ t

0

∫
R

ϕ(s, x)J̃(ds, dx) (14.13)

can be enlarged by a procedure which is analogous to that adopted in the
Brownian case and based on the Itô isometry. To be more specific, we first
extend the notion of predictability (see Definition 14.6).

Definition 14.18 We denote by L̂ the class of the stochastic functions

ϕ : [0, T ]× R×Ω −→ R

such that

i) for each t ∈ [0, T ], the mapping (x, ω) �→ ϕ(t, x, ω) is B ⊗Ft-measurable;
ii) for each (x, ω) ∈ R × Ω, the mapping t �→ ϕ(t, x, ω) is càglàd (left-

continuous with finite right-limits).
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Let ν be the Lévy measure of a Lévy process S: we denote by

• L2
ν the class of stochastic functions ϕ ∈ L̂ such that

E

[∫ T

0

∫
R

ϕ2(t, x)ν(dx)dt

]
<∞; (14.14)

• L2
ν,loc the class of stochastic functions ϕ ∈ L̂ such that∫ T

0

∫
R

ϕ2(t, x)ν(dx)dt <∞ a.s. (14.15)

It turns out that L2
ν , equipped with the norm (14.14), is a Banach space and

the simple predictable functions are dense in L2
ν (see, for instance, Lemmas

4.1.3 and 4.1.4 in Applebaum [11]). Therefore the integral in (14.13) can be
extended to L2

ν by means of the isometry (14.12) and we have

Proposition 14.19 For any ϕ ∈ L2
ν , the process M in (14.13) is a square-

integrable martingale such that

E [Mt] = 0, var(Mt) = E

[∫ t

0

∫
R

ϕ2(t, x)ν(dx)ds

]
.

Proof. The thesis follows from Proposition 14.17 by a limit argument: for
full details see, for instance, Theorem 4.2.3 in Applebaum [11]. �

The integral can be further extended to the class L2
ν,loc and in this case

we have

Proposition 14.20 For any ϕ ∈ L2
ν,loc, the integral process M in (14.13) is

a local martingale.

Proof. See, for instance, Theorem 4.2.12 in Applebaum [11]. �

Notation 14.21 We use the differential notation and we write indifferently

Mt =
∫ t

0

∫
Rd

ϕ(s, x)J̃(ds, dx) or dMt =
∫
Rd

ϕ(t, x)J̃(dt, dx).

Remark 14.22 By definition of jump measure, for any stochastic function
ϕ and R > 0, we have∫ t

0

∫
|y|≥R

ϕ(s, y)J(ds, dy) =
∑

0<s≤t

ϕ(s,ΔSs)1{|ΔSs|≥R} (14.16)

where the sum is finite because it has a.s. only a finite number of terms. More
generally, as in Theorem 13.34, if∫ t

0

∫
|x|≤ε

|ϕ(s, x)|ν(dx)ds <∞ a.s.
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for some ε > 0, then there exists a.s. the limit, as R → 0+, of the integral in
(14.16) and the series on the right hand side of (14.16) converges absolutely
a.s. so that∫ t

0

∫
Rd

ϕ(s, x)J(ds, dx) =
∑

0<s≤t
ΔXs �=0

ϕ (s,ΔXs) <∞ a.s. (14.17)

�

Remark 14.23 The “extended predictable σ-algebra” P̂ is the σ-algebra
on [0, T ] × R × Ω generated by all the stochastic functions in L̂. We say
that a stochastic function ϕ is predictable if it is P̂-measurable: note that a
predictable stochastic function ϕ is not necessarily left-continuous. By analogy
with the stochastic integral (cf. Remark 14.16), the notion of integral∫ t

0

∫
Rd

ϕ(s, x)J̃(ds, dx)

can be extended to the class of predictable stochastic functions ϕ verifying
(14.15). We refer to Applebaum [11] for details. �

14.1.4 Lévy-type stochastic integrals

In this section we obtain an explicit representation of the stochastic integral
of a process in L with respect to a Lévy process. We recall that L denotes the
class of càglàd adapted processes (cf. Definition 14.6).

Proposition 14.24 Let S be a one dimensional Lévy process with Lévy-Itô
decomposition

St = μRt + σWt + SR
t + MR

t (14.18)

where W is a standard Brownian motion and

SR
t =

∫ t

0

∫
|y|≥R

yJ(ds, dy), MR
t =

∫ t

0

∫
|y|<R

yJ̃(ds, dy).

Then for any u ∈ L we have∫ t

0

usdSs = At + Mt (14.19)

where

At = μR

∫ t

0

usds +
∫ t

0

∫
|y|≥R

usyJ(ds, dy) (14.20)

and

Mt = σ

∫ t

0

usdWs +
∫ t

0

∫
|y|<R

usyJ̃(ds, dy). (14.21)
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The process A has bounded variation and M is a local martingale. Further, if

E

[∫ T

0

u2
t dt

]
<∞

then M is a square integrable martingale with null expectation.

Remark 14.25 Proposition 14.24 extends the associativity property (14.8)
of the stochastic integral. The above result can be written in the convenient
shorthand form: if u ∈ L and

dSt = μRdt + σdWt +
∫
|y|≥R

yJ(dt, dy) +
∫
|y|<R

yJ̃(dt, dy),

then

utdSt = μRutdt+σutdWt+
∫
|y|≥R

utyJ(dt, dy)+
∫
|y|<R

utyJ̃(dt, dy). (14.22)

�

Proof. Any u ∈ L is progressively measurable and such that∫ T

0

u2
t dt <∞ a.s.

or in other terms u ∈ L2
loc (cf. Definition 4.1) so that the Brownian integral

in (14.21) is well-defined and it is a local martingale. Moreover,

ϕ(t, y) := uty1{|y|<R} ∈ L2
ν,loc (14.23)

and therefore also the second integral in (14.21) is well-defined and, by Propo-
sition 14.20, it is a local martingale. On the other hand, by (14.16) we have∫ t

0

∫
|y|≥R

usyJ(ds, dy) =
∑

0<s≤t

usΔSs1{|ΔSs|≥R}

where the sum has a.s. only a finite number of terms: then it is clear that A
in (14.20) has bounded variation.

Now by the Lévy-Itô decomposition (14.18) and by linearity, we have∫ t

0

usdSs =μR

∫ t

0

usds + σ

∫ t

0

usdWs

+
∫ t

0

usdSR
s +

∫ t

0

usdMR
s .
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Moreover, if u is a simple predictable process of the form (14.6), we have

∫ t

0

usdMR
s =

N∑
k=1

ek

(
MR

Tk∧t −MR
Tk−1∧t

)
=

N∑
k=1

ek

∫ Tk∧t

Tk−1∧t

∫
|y|<R

yJ̃(ds, dy)

=
∫ t

0

∫
|y|<R

usyJ̃(ds, dy),

and analogously ∫ t

0

usdSR
s =

∫ t

0

∫
|y|≥R

usyJ(ds, dy).

Then the proof can be completed by a limit argument. �

In some particular cases, it is possible to put R = 0 or R =∞ in (14.20)-
(14.21) (cf. Section 13.3.3):

• if the jump part of S has bounded variation, that is if∫
|x|≤1

|x|ν(dx) <∞,

then S admits the Lévy-Itô decomposition (cf. (13.55))

St = μ0t + Bt +
∫ t

0

∫
Rd

xJ(ds, dx),

and formula (14.19) holds with

At = μ0

∫ t

0

usds +
∫ t

0

∫
R

usyJ(ds, dy)

Mt = σ

∫ t

0

usdWs,

where, as in (13.54),

μ0 = μR −
∫
|x|≤R

xν(dx).

In this case, the contribution of the jump part of S is completely included
in the BV part of the integral. For instance, this is the case of a compound
Poisson process or a α-stable process with α ∈]0, 1[;
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• if S is integrable, that is ∫
|y|≥1

|y|ν(dy) <∞, (14.24)

then formula (14.19) holds with

At = μ∞

∫ t

0

usds

Mt = σ

∫ t

0

usdWs +
∫ t

0

∫
R

usyJ̃(ds, dy),

where μ∞ = E [S1]. We remark explicitly that the second integral in the
expression of M is well defined because it can be rewritten as the sum
I1 + I2 + I3 where

I1 =
∫ t

0

∫
|y|<1

usyJ̃(ds, dy)

is well defined by (14.23),

I2 =
∫ t

0

∫
|y|≥1

usyJ(ds, dy) =
∑

0<s≤t

usΔSs1{|ΔSs|≥1}

is a sum with a finite number of terms a.s. and

I3 = −
∫ t

0

∫
|y|≥1

usyν(dy)ds

is finite a.s. by the integrability assumption (14.24).

14.2 Stochastic differentials

14.2.1 Itô formula for discontinuous functions

In Section 3.4.2 we defined the Riemann-Stieltjes integral∫ t

0

usdXs, (14.25)

for u ∈ C([0, t]) and s �→ Xs deterministic function with bounded variation.
We also proved the standard Itô formula for continuous BV functions (cf.
Theorem 3.70): if f ∈ C1(R) and X ∈ BV ∩ C([0, t]) then

f(Xt)− f(X0) =
∫ t

0

f ′(Xs)dXs. (14.26)

The main result of this section is the following generalization of formula
(14.26) to discontinuous BV functions.
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Theorem 14.26 (Deterministic Itô formula) Let f ∈ C1(R) and X be a
càdlàg (deterministic) function with bounded variation. Then we have

f(Xt)− f(X0) =
∫ t

0

f ′(Xs−)dXs

+
∑

0<s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)ΔXs) .
(14.27)

Proof. We show that the series in (14.27) is convergent: first of all, it has a
countable number of terms because X ∈ BV. For the same reason, ‖X‖∞ =
sup

t∈[0,T ]

|Xt| <∞ and therefore we have

∑
0<s≤t

|f(Xs)− f(Xs−)− f ′(Xs−)ΔXs| ≤ 2 sup
|y|≤‖X‖∞

|f ′(y)|
∑

0<s≤t

|ΔXs|

≤ 2 sup
|y|≤‖X‖∞

|f ′(y)|V[0,t](X) <∞.

(14.28)

Next we consider the case when X has only a discontinuity at the point t:
hence, if we set X̂s = Xs− and X̂0 = X0, then we have X̂s = Xs for s < t
and X̂t = Xt −ΔXt with ΔXt = Xt −Xt− 
= 0. Since X̂ ∈ BV∩C([0, t]), by
the standard Itô formula (14.26), we have

f(X̂t)− f(X̂0) =
∫ t

0

f ′(X̂s)dX̂s =

(as in Example 14.1)

=
∫ t

0

f ′(X̂s)dXs − f ′(X̂t)ΔXt

=
∫ t

0

f ′(Xs−)dXs − f ′(Xt−)ΔXt,

and therefore we have

f(Xt)− f(X0) =
∫ t

0

f ′(Xs−)dXs + f(Xt)− f(Xt−)− f ′(Xt−)ΔXt.

Now the general case can be proved by using a limit argument combined with
estimate (14.28). �

14.2.2 Quadratic variation

In this section we generalize the notion of quadratic variation process given in
Section 4.3.3. The quadratic variation plays a crucial role in the Itô formula
for semimartingales which will be presented in Section 14.2.3.



516 14 Stochastic calculus for jump processes

Definition 14.27 The quadratic variation process of a semimartingale S =
(St)t∈[0,T ] is defined by

〈S〉t = S2
t − 2

∫ t

0

Ss−dSs, t ∈ [0, T ]. (14.29)

The next theorem gives some elementary properties of 〈S〉 and shows that
Definition 14.27 extends the classical notion of quadratic variation of deter-
ministic functions given in Definition 3.72.

Theorem 14.28 If S is a semimartingale, then 〈S〉 is a càdlàg, adapted and
increasing process such that 〈S〉0 = S2

0 and6

Δ〈S〉t = (ΔSt)
2
, t ∈ [0, T ]. (14.30)

Moreover, if ςn =
(
Tn

1 , . . . , Tn
Nn

)
is a sequence of random partitions of the

interval [0, T ] verifying (14.11), then we have

〈S〉t = S2
0 + lim

n→∞

Nn∑
k=1

(
St

T n
k
− St

T n
k−1

)2

(14.31)

uniformly in probability (cf. Definition 14.13).

Proof. We use repeatedly the elementary equality

(b− a)2 = b2 − a2 − 2a(b− a), a, b ∈ R. (14.32)

It is clear that, by definition of stochastic integral, 〈S〉 ∈ D. Moreover, by
(14.32) we have

(ΔSt)
2 = (St − St−)2 = S2

t − S2
t− − 2St− (St − St−) = ΔS2

t − 2St−ΔSt,

and (14.30) follows from the fact that

Δ

∫ t

0

Ss−dSs = St−ΔSt.

Again by (14.32), we have

Nn∑
k=1

(
ST n

k ∧t − ST n
k−1∧t

)2

=
Nn∑
k=1

(
S2

T n
k ∧t − S2

T n
k−1∧t

)
− 2

Nn∑
k=1

ST n
k−1∧t

(
ST n

k ∧t − ST n
k−1∧t

)
=S2

t − S2
0 − 2

Nn∑
k=1

ST n
k−1

(
ST n

k ∧t − ST n
k−1∧t

)
6 As usual, for any càdlàg process X, we set ΔXt = Xt −Xt−.
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and (14.31) follows from Theorem 14.15. Finally, 〈S〉 is an increasing process
because by (14.31) it is the limit of increasing processes: in particular, note
that 〈S〉 is a semimartingale with bounded variation (cf. Example 14.10). �

Remark 14.29 Let S be a semimartingale. Since 〈S〉 is an increasing pro-
cess, it has at most a countable number of positive jumps and, by (14.30), we
have ∑

0<s≤t

(ΔSs)
2 =

∑
0<s≤t

Δ〈S〉s ≤ 〈S〉t (14.33)

where the last inequality follows from the fact that 〈S〉 is increasing. The
process

〈S〉ct := 〈S〉t − S2
0 −

∑
0<s≤t

(ΔSs)
2

is called continuous part of 〈S〉. Note that 〈S〉c0 = 0. Moreover, by (14.30) the
process 〈S〉 is continuous, i.e. 〈S〉 = 〈S〉c, if and only if S is continuous. �

Example 14.30 By (14.31) and Theorem 3.74, for a real Brownian motion
W we have

〈W 〉t = 〈W 〉ct = t.

By (14.31) and Proposition 4.24, the quadratic variation of a Brownian inte-
gral

Xt =
∫ t

0

usdWs,

with u ∈ L2
loc, is given by

〈X〉t = 〈X〉ct =
∫ t

0

u2
sds. �

Example 14.31 If N is a Poisson process, then by definition of quadratic
variation and Example 14.8, we have

〈N〉t = Nt.

Moreover
〈N〉ct = Nt −

∑
0<s≤t

(ΔNs)
2 = 0. �

Example 14.32 If S is a continuous semimartingale with bounded variation
then 〈S〉t = S2

0 , t ∈ [0, T ]. The proof is the same as in the deterministic case
(cf. Proposition 3.73) and uses the characterization (14.31) of the quadratic
variation process. In particular the quadratic variation of St = μt, μ ∈ R, is
〈S〉t = 0.

More generally, if S is càdlàg, adapted and has bounded variation then
〈S〉ct = 0 (see Theorem II-26 in Protter [287]), that is

〈S〉t = S2
0 +

∑
0<s≤t

(ΔSs)
2
.

�
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Example 14.33 If S is a one-dimensional Lévy process with characteristic
triplet (μ1, σ, ν) then

〈S〉t = σ2t +
∑

0<s≤t

(ΔSs)
2 = σ2t +

∫
R

x2J(ds, dx), (14.34)

where Jt denotes the jump measure of S (cf. (13.59)). Moreover

〈S〉ct = σ2t. (14.35)

As already remarked in Section 13.3.3, the quadratic variation of a Lévy pro-
cess is always well-defined, even if the variance may be infinite. �

14.2.3 Itô formula for semimartingales

Theorem 14.34 (Itô formula) Let f = f(t, x) ∈ C1,2(R2) and let X be a
semimartingale. Then f(t,Xt) is a semimartingale and we have

f(t,Xt)− f(0,X0) =
∫ t

0

∂sf (s,Xs−) ds +
∫ t

0

∂xf (s,Xs−) dXs

+
1
2

∫ t

0

∂xxf (s,Xs−) d〈X〉cs

+
∑

0<s≤t

(f (s,Xs)− f (s,Xs−)− ∂xf (s,Xs−)ΔXs)

(14.36)

or in differential form

df(t,Xt) =∂tf (t,Xt−) dt + ∂xf (t,Xt−) dXt +
1
2
∂xxf (t,Xt−) d〈X〉ct

+ (f (t,Xt)− f (t,Xt−)− ∂xf (t,Xt−) ΔXt) .
(14.37)

Sketch of the proof. We only consider the case f = f(x). We first remark
that ∫ t

0

f ′′ (Xs−) d〈X〉s =
∫ t

0

f ′′ (Xs−) d〈X〉cs +
∑

0<s≤t

f ′′ (Xs−) (ΔXs)
2

where the last series is convergent by (14.33). Therefore the Itô formula can
be rewritten as follows

f(Xt)− f(X0) =
∫ t

0

f ′ (Xs−) dXs +
1
2

∫ t

0

f ′′ (Xs−) d〈X〉s

+
∑

0<s≤t

(
f (Xs)− f (Xs−)− f ′ (Xs−)ΔXs −

1
2
f ′′ (Xs−) (ΔXs)

2

)
.

(14.38)
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In this form it can be obtained by writing f(Xt) as the sum of its increments
and then using a second order Taylor expansion to get a Riemann-Stieltjes
sum. With respect to the proof in the continuous case (cf. Theorem 5.5), we
have to control the influence of jumps, especially when infinitely many of them
occur. To this end, given ε > 0, we split the set of jump times of X in [0, t]
as the disjoint union Aε ∪Bε where Aε is finite and∑

s∈Bε

(ΔXs)
2 ≤ ε.

This is possible because of (14.33). Next, we consider a sequence of random
partitions ςn =

(
Tn

1 , . . . , Tn
Nn

)
of the interval [0, t], such that |ςn| → 0 as

n→∞. We have

f(Xt)−f(X0) =
Nn∑
k=1

(
f(XT n

k
)− f(XT n

k−1
)
)

=
Nn∑
k=1

f ′(XT n
k−1

)(XT n
k
−XT n

k−1
) +

1
2

Nn∑
k=1

f ′′(XT n
k−1

)(XT n
k
−XT n

k−1
)2

+
∑

Ae∩]T n
k−1,T n

k ]
=∅

(
f(XT n

k
)− f(XT n

k−1
)− f ′(XT n

k−1
)(XT n

k
−XT n

k−1
)

− 1
2
f ′′(XT n

k−1
)(XT n

k
−XT n

k−1
)2
)

+ Rt (n, ε) ,

where Rt (n, ε) is a remainder term. By Theorem 14.15, the first two sums on
the right hand side above converge to the following expressions as n→∞:

Nn∑
k=1

f ′(XT n
k−1

)(XT n
k
−XT n

k−1
) −→

∫ t

0

f ′(Xs−)dXs

1
2

Nn∑
k=1

f ′′(XT n
k−1

)(XT n
k
−XT n

k−1
)2 −→ 1

2

∫ t

0

f ′′(Xs−)d〈X〉s.

The third sum converges to∑
s∈Aε

(
f (Xs)− f (Xs−)− f ′ (Xs−) ΔXs −

1
2
f ′′ (Xs−) (ΔXs)

2

)
.

Finally, the proof can be completed by showing that

lim sup
n→∞

Rt (n, ε) ≤ r(ε)〈X〉t

where r(ε)→ 0 as ε→ 0+. For further details we refer, for instance, to Protter
[287], Theorem II-32. �
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Example 14.35 We apply the Itô formula with f(x) = x2 and Xt = Nt,
Poisson process. We get

N2
t = 2

∫ t

0

Ns−dNs +
∑

0<s≤t

(
N2

s −N2
s− − 2Ns−ΔNs

)
= 2
∫ t

0

Ns−dNs +
Nt∑

k=1

(
k2 − (k − 1)2 − 2(k − 1)

)
= 2
∫ t

0

Ns−dNs + Nt,

and therefore ∫ t

0

Ns−dNs =
Nt (Nt − 1)

2

as we already found in Example 14.8 by using directly the definition of stochas-
tic integral of simple processes. �

14.2.4 Itô formula for Lévy processes

Generally speaking, one major reason why the Itô formula is so important in
finance is that it allows decomposing any smooth function of a semimartin-
gale (typically representing the price of an asset) in its drift and martingale
parts. In this section, by means of the representation of Lévy-type stochastic
integrals in Proposition 14.24, we obtain an alternative version of the general
Itô formula (14.36) for Lévy processes: since there are several variants of this
formula, we try to put more emphasis on the version that is suitable to be
used more easily in financial applications.

Lemma 14.36 Let X be a one dimensional Lévy process with R-triplet
(μR, σ2, ν) and f = f(t, x) ∈ C1,2([0, T ]× R). Then we have

df(t,Xt) =(AR + ∂t)f (t,Xt−) dt + σ∂xf (t,Xt−) dWt

+
∫
|y|<R

(f(t,Xt− + y)− f(t,Xt−)) J̃(dt, dy)

+
∫
|y|≥R

(f(t,Xt− + y)− f(t,Xt−)) J(dt, dy)

(14.39)

where

ARf(t, x) =μR∂xf(t, x) +
σ2

2
∂xxf(t, x)

+
∫
|y|<R

(f(t, x + y)− f(t, x)− y∂xf(t, x)) ν(dy).
(14.40)
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Proof. First of all we show that each term in (14.39) and (14.40) is well
defined. Let us recall that (cf. (13.46))∫

|y|<1

y2ν(dy) <∞, (14.41)

and let us denote by
D(z,R) = ]z −R, z + R[

the interval centered at z, with radius R. Then the first integral in (14.39) is
well defined because the stochastic function

ϕ(t, y) := (f(t, y + Xt−)− f(t,Xt−))1D(0,R)(y)

belongs to L2
ν,loc (cf. Definition 14.18). Indeed we have

|ϕ(t, y)| ≤ |y| sup
t∈[0,T ]

sup
z∈D(Xt−,R)

|∂xf(t, z)|

and the claim follows from (14.41). On the other hand, the last integral in
(14.39) is equal to a sum with a finite number of terms corresponding to large
jumps. Further, we have

|f(t, x + y)− f(t, x)− y∂xf(t, x)|1{|y|<R} ≤ y2 sup
[0,T ]×D(x,R)

|∂xxf | ,

and therefore, again by (14.41), the last integral in (14.40) is convergent for
any x ∈ R.

Next, by the general Itô formula (14.36), using the expression (14.35) of the
continuous part of the quadratic variation of a Lévy process, formula (14.17)
and the identity Xt = Xt− + ΔXt, we have

df(t,Xt) =
(

∂tf +
σ2

2
∂xxf

)
(t,Xt−) dt + ∂xf (t,Xt−) dXt

+
∫
R

(f(t, y + Xt−)− f(t,Xt−)− y∂xf(t,Xt−)) J(dt, dy).

(14.42)

Now, by Proposition 14.24 (see also (14.22)), we have

∂xf (t,Xt−) dXt =μR∂xf (t,Xt−) dt + ∂xf (t,Xt−)σdWt

+
∫
|y|<R

∂xf (t,Xt−) yJ̃(dt, dy)

+
∫
|y|≥R

∂xf (t,Xt−) yJ(dt, dy).

(14.43)

Plugging (14.43) into (14.42) and recalling that

J̃(dt, dy) = J(dt, dy)− ν(dy)dt,

after some cancellation, we get (14.39). �
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Under some additional assumption, we can easily obtain an Itô formula
where the drift and martingale parts are detached and have an explicit rep-
resentation.

Theorem 14.37 (Itô formula) Let X be a one dimensional Lévy process
with R-triplet (μR, σ2, ν) and f = f(t, x) ∈ C1,2([0, T ] × R). If f is bounded
then we have

df(t,Xt) =(AR + ∂t)f (t,Xt−) dt + σ∂xf (t,Xt−) dWt

+
∫
R

(f(t, y + Xt−)− f(t,Xt−)) J̃(dt, dy)
(14.44)

where

ARg(x) =μR∂xg(x) +
σ2

2
∂xxg(x)

+
∫
R

(
g(x + y)− g(x)− ∂xg(x)y1{|y|<R}

)
ν(dy).

(14.45)

The integro-differential operator AR in (14.45) is called the R-characteristic
operator of the Lévy process X.

Proof. Formulas (14.44)-(14.45) follow directly by adding to (14.40), and
subtracting from (14.39), the integral term∫

|y|≥R

(f(t, y + Xt−)− f(t,Xt−)) ν(dy)dt

that is well defined because f is bounded and∫
|y|≥R

ν(dy) <∞

for any R > 0, by the general properties of Lévy measures. �

Remark 14.38 The boundedness assumptions in Theorem 14.37 can be
weakened and the Itô formula (14.44) holds true under more general hypothe-
ses on f that guarantee that the stochastic function

ϕ(t, y) = f(t, y + Xt−)− f(t,Xt−)

belongs to L2
ν,loc. �

Remark 14.39 Assume that f and ∂xf are bounded functions: then the
term ∫ t

0

σ∂xf (s,Xs−) dWs

in (14.44) is a martingale because ∂xf (t,Xt−) ∈ L2. Moreover, we have

|f (t,Xt− + y)− f(t,Xt−)| ≤
{
‖∂xf‖∞|y| for |y| ≤ 1,

2‖f‖∞ for |y| > 1,
(14.46)
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so that f (t,Xt− + y)− f(t,Xt−) ∈ L2
ν and also the term∫ t

0

∫
R

(f(s, y + Xs−)− f(s,Xs−)) J̃(ds, dy)

is a martingale. �

Example 14.40 (Lévy exponential) Let X be a one dimensional Lévy
process with R-triplet (μR, σ2, ν) and characteristic exponent ψX . We assume
that ∫

|y|≥1

e2yν(dy) <∞. (14.47)

By Proposition 13.49, condition (14.47) is equivalent to the existence of the
second moment of X:

E
[
e2Xt

]
= etψX(−2i). (14.48)

We consider the function f(t, x) = ex that typically arises in exponential Lévy
models. If AR is the differential operator in (14.45), we have

(AR + ∂t) f(t, x) =
(

μR +
σ2

2
+
∫
R

(
ey − 1− y1{|y|<R}

)
ν(dy)

)
f(t, x)

=ψ
X (−i)f(t, x).

Therefore, if St := eXt , by the Itô formula (14.44) we get

dSt = ψX (−i)St−dt + σSt−dWt + St−

∫
R

(ey − 1) J̃ (dt, dy) . (14.49)

We remark explicitly that S ∈ L2 because

E

[∫ T

0

S2
t dt

]
=
∫ T

0

E
[
e2Xt

]
dt =

∫ T

0

etψX(−2i)dt

which is finite by (14.47)-(14.48): in particular, the Brownian integral in
(14.49) is a square-integrable martingale. On the other hand, the stochastic
function

ϕ(t, y) := (ey − 1)St−

belongs to L2
ν ; indeed we have

E

[∫ T

0

ϕ2(t, y)ν(dy)dt

]
= E

[∫ T

0

S2
t dt

]∫
R

(ey − 1)2 ν(dy)

that is finite because (ey − 1)2 behaves like y2 close to the origin and like e2y

for positive large values of y: thus, by (14.47), (ey − 1)2 is ν-integrable. By
Proposition 14.19 we conclude that also the last term in (14.49) is a square-
integrable martingale. �
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Under the assumptions of Theorem 14.37, we consider two remarkable cases:

• if the jump part of X has bounded variation, that is if∫
|y|≤1

|y|ν(dy) <∞, (14.50)

then we can let R go to infinity in (14.45): indeed, for any x ∈ R, the
function

FR,t,x(y) := f(t, x + y)− f(t, x)− y∂xf(t, x)1D(0,R)(y) (14.51)

can be dominated, uniformly in t ∈ [0, T ] and R ∈]0, 1[, by a ν-integrable
function as follows:

|FR,t,x(y)| ≤

⎧⎨⎩2|y| sup
[0,T ]×D(x,1)

|∂xf | for |y| ≤ 1,

2 sup |f | for |y| > 1.

Hence the Itô formula (14.44) holds true with R = 0, that is with the
following simplified version of the characteristic operator:

A0g(x) =μ0∂xg(x) +
σ2

2
∂xxg(x) +

∫
R

(g(x + y)− g(x)) ν(dy), (14.52)

where, as in (13.54),

μ0 = μ1 −
∫
|x|≤1

xν(dx).

In particular, if X has bounded variation so that σ = 0 (cf. Proposition
13.43) then A0 reduces to a first order integro-differential operator;

• if X is integrable, that is ∫
|y|≥1

|y|ν(dy) <∞, (14.53)

then we can let R go to infinity in (14.45): indeed, for any x ∈ R, the
function FR,t,x(y) in (14.51) can be dominated, uniformly in t ∈ [0, T ] and
R ≥ 1, by a ν-integrable function as follows:

|FR,t,x(y)| ≤

⎧⎪⎨⎪⎩
y2 sup

[0,T ]×D(x,1)

|∂xxf | for |y| ≤ 1,

2 sup |f |+ |y| sup
t∈[0,T ]

|∂xf(t, x)| for |y| > 1.

Hence the Itô formula (14.44) holds true with R = ∞, that is with the
following simplified version of the characteristic operator:

A∞g(x) =μ∞∂xg(x) +
σ2

2
∂xxg(x)

+
∫
R

(g(x + y)− g(x)− y∂xg(x)) ν(dy),
(14.54)

where μ∞ = E [X1].
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14.2.5 SDEs with jumps and Itô formula

In this section we turn to the study of stochastic differential equations with
jumps: our presentation follows Applebaum [11], Section 6.2, to which we refer
for a complete treatment of the theory.

Equation (14.49) is the simplest and non trivial example of SDE with
jumps. Here we consider a Lévy process with Lévy measure ν defined on a
filtered probability space (Ω,F , P, (Ft)) that satisfies the usual hypotheses:
we also denote by W and J the related independent Brownian motion and
jump measure respectively. Moreover, we consider Z ∈ R and some locally
bounded and measurable mappings

b̄ = b̄(t, x) : [0, T ]× R −→ R, (drift coefficient)
σ = σ(t, x) : [0, T ]× R −→ R, (diffusion coefficient)
ã = ã(t, x, y) : [0, T ]× R× {|y| < 1} −→ R, (small jumps coefficient)
ā = ā(t, x, y) : [0, T ]× R× {|y| ≥ 1} −→ R, (large jumps coefficient).

Definition 14.41 A solution relative to W and J of the SDE with coefficients
Z, b̄, σ, ã, ā is a process (Xt)t∈[0,T ] ∈ D such that

i) σ(t,Xt−) ∈ L2
loc;

ii) ã(t,Xt−, y)1{|y|<1} ∈ L2
ν,loc;

iii) we have that

Xt = Z +
∫ t

0

b̄(s,Xs−)ds +
∫ t

0

σ(s,Xs−)dWs

+
∫ t

0

∫
|y|<1

ã(s,Xs−, y)J̃(ds, dy)

+
∫ t

0

∫
|y|≥1

ā(s,Xs−, y)J(ds, dy), t ∈ [0, T ].

In differential form, we write

dXt = b̄(t,Xt−)dt + σ(t,Xt−)dWt

+
∫
|y|<1

ã(t,Xt−, y)J̃(dt, dy)

+
∫
|y|≥1

ā(t,Xt−, y)J(dt, dy), X0 = Z.

(14.55)

Example 14.42 By the Lévy-Itô decomposition, a Lévy process X with
triplet (μ1, σ

2, ν) can be written as

dXt = μ1dt + σdWt +
∫
|y|<1

yJ̃(dt, dy) +
∫
|y|≥1

yJ(dt, dy)

and therefore it can be considered as a solution of a SDE of type (14.55) where

b̄(t, x) = μ1, σ(t, x) = σ, ã(t, x, y) = ā(t, x, y) = y. �
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Many results for SDEs based on Brownian motion can be extended to the
case of SDEs with jumps. Concerning strong solutions (i.e. solutions of SDEs
where W and J are specified in advance) we have the following classical exis-
tence and uniqueness result that can be proved as in Section 9.1 by Gronwall’s
inequality and a fixed-point technique.

Theorem 14.43 Assume the following Lipschitz and growth conditions:

i) for every n ∈ N there exists a constant Kn such that∣∣b̄(t, x1)− b̄(t, x2)
∣∣2 + |σ(t, x1)− σ(t, x2)|2

+
∫
|y|<1

|ã(t, x1, y)− ã(t, x2, y)|2 ν(dy) ≤ Kn|x1 − x2|2,

for |x1|, |x2| ≤ n, t ∈ [0, T ];
ii) there exists a positive constant K such that

b̄2(t, x)+σ2(t, x)+
∫
|y|<1

ã2(t, x, y)ν(dy) ≤ K(1+|x|2) x ∈ R, t ∈ [0, T ];

iii) the function (t, x) �→ ā(t, x, y) is continuous for any y, |y| ≥ 1.

Then there exists a pathwise unique solution X to (14.55).

The following Itô formula extends that of Lemma 14.36.

Lemma 14.44 Under the hypotheses of Theorem 14.43, let X be a strong
solution of the SDE (14.55) and f = f(t, x) ∈ C1,2([0, T ]×R). Then we have

df(t,Xt) = (A+ ∂t) f(t,Xt−)dt + σ(t,Xt−)∂xf (t,Xt−) dWt

+
∫
|y|<1

(f (t, ã(t,Xt−, y) + Xt−)− f(t,Xt−)) J̃(dt, dy)

+
∫
|y|≥1

(f (t, ā(t,Xt−, y) + Xt−)− f(t,Xt−)) J(dt, dy)

(14.56)

where A is the integro-differential operator with variable coefficients

Af(t, x) = b̄(t, x)∂xf(t, x) +
σ2(t, x)

2
∂xxf(t, x)

+
∫
|y|<1

(f(t, x + ã(t, x, y))− f(t, x)− ã(t, x, y)∂xf(t, x)) ν(dy).

(14.57)

As we already mentioned, in the financial applications it is important to
separate the drift from the martingale part of the solution of a SDE with
jumps. Under suitable integrability conditions7, this can be easily done by
7 Which guarantee that the integral∫

|y|≥1

ā(t, x, y)ν(dy)

converges: for instance, see condition (14.47) in the case of an exponential Lévy
process.
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rewriting the SDE (14.55) in the more convenient form

dXt =b(t,Xt−)dt + σ(t,Xt−)dWt +
∫
R

a(t,Xt−, y)J̃(dt, dy), (14.58)

with initial datum X0 = Z, where

b(t, x) = b̄(t, x) +
∫
|y|≥1

ā(t, x, y)ν(dy),

a(t, x, y) = ã(t, x, y)1{|y|<1} + ā(t, x, y)1{|y|≥1}.

For an SDE of the form (14.58), Theorem 14.43 can be reformulated as follows.

Theorem 14.45 Assume the following Lipschitz and growth conditions:

i) for every n ∈ N there exists a constant Kn such that

|b(t, x1)− b(t, x2)|2 + |σ(t, x1)− σ(t, x2)|2

+
∫
R

|a(t, x1, y)− a(t, x2, y)|2 ν(dy) ≤ Kn|x1 − x2|2,
(14.59)

for |x1|, |x2| ≤ n, t ∈ [0, T ];
ii) there exists a positive constant K such that

b2(t, x) + σ2(t, x) +
∫
R

a2(t, x, y)ν(dy) ≤ K(1 + |x|2) x ∈ R, t ∈ [0, T ].

(14.60)

Then there exists a pathwise unique solution X to (14.58). Moreover, there
exists a positive constant C, depending on K,Kn and T only, such that

E
[
X2

t

]
≤ C

(
1 + X2

0

)
, t ∈ [0, T ]. (14.61)

Example 14.46 The SDE (14.49) for an exponential Lévy process St = eXt

is of the form (14.58), that is

dSt = b(t, St−)dt + σ(t, St−)dWt +
∫
R

a (t, St−, y) J̃ (dt, dy)

where

b(t, s) = sψX (−i), σ(t, s) = σs, a(t, s, y) = s (ey − 1) .

Under condition (14.47) on the Lévy measure ν, the Lipschitz and growth
conditions (14.59)-(14.60) are satisfied. �
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Theorem 14.47 (Itô formula for SDEs with jumps) Under the hy-
potheses of Theorem 14.45, let X be a solution of the SDE (14.58) and f be
a bounded function in C1,2([0, T ]× R). Then we have

df(t,Xt) = (A+ ∂t) f(t,Xt−)dt + σ(t,Xt−)∂xf (t,Xt−) dWt

+
∫
R

(f (t,Xt− + a(t,Xt−, y))− f(t,Xt−)) J̃(dt, dy)
(14.62)

where A is the integro-differential operator with variable coefficients

Af(t, x) = b(t, x)∂xf(t, x) +
σ2(t, x)

2
∂xxf(t, x)

+
∫
R

(f(t, x + a(t, x, y))− f(t, x)− a(t, x, y)∂xf(t, x)) ν(dy).

(14.63)

Remark 14.48 If f and ∂xf are bounded functions then the term∫ t

0

σ(s,Xs−)∂xf (s,Xs−) dWs

in (14.62) is a square-integrable martingale: indeed

σ(t,Xt−)∂xf (t,Xt−) ∈ L2

because, by (14.60) we have

|σ(t,Xt)∂xf (t,Xt)|2 ≤ ‖∂xf‖L∞K
(
1 + X2

t

)
and the claim follows from estimate (14.61).

On the other hand, consider the stochastic function

ϕ(t, y) = f (t, a(t,Xt−, y) + Xt−)− f(t,Xt−).

We have

|ϕ(t, y)| ≤
{
‖∂xf‖∞ |a(t,Xt−, y)| for |y| < 1,

2‖f‖∞ for |y| ≥ 1,

so that

E

[∫ T

0

∫
R

ϕ2(t, y)ν(dy)dt

]

≤ 4T‖f‖2∞ + ‖∂xf‖2∞E

[∫ T

0

∫
|y|<1

a2(t,Xt−, y)ν(dy)dt

]
≤

(by (14.60))

≤ 4T‖f‖2∞ + ‖∂xf‖2∞KE

[∫ T

0

(
1 + X2

t−
)
dt

]
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which is finite by (14.61). Hence ϕ ∈ L2
ν and also the term∫ t

0

∫
R

(f (s,Xs− + a(s,Xs−, y))− f(s,Xs−)) J̃(ds, dy)

is a square-integrable martingale. �

14.2.6 PIDEs and Feynman-Kač representation

As in the diffusive case, the Itô formula establishes a deep connection between
SDEs with jumps and partial integro-differential equations (PIDEs). Under
the assumptions of the previous section, we consider a SDE with jumps of the
form (14.58), that is

dXt = b(t,Xt−)dt + σ(t,Xt−)dWt +
∫
R

a(t,Xt−, y)J̃(dt, dy),

and, for any t ∈ [0, T [ and x ∈ R, we denote by (Xt,x
s )s∈[t,T ] the corresponding

solution with initial condition Xt,x
t = x. We denote by A the characteristic

operator of X defined in (14.63):

Af(t, x) = b(t, x)∂xf(t, x) +
σ2(t, x)

2
∂xxf(t, x)

+
∫
R

(f(t, x + a(t, x, y))− f(t, x)− a(t, x, y)∂xf(t, x)) ν(dy).

Notice that A reduces to an elliptic-parabolic differential operator with vari-
able coefficients when ν = 0.

Definition 14.49 Let ϕ and r be bounded continuous functions, ϕ = ϕ(x) ∈
Cb(R) and r = r(t, x) ∈ Cb(R2). A classical solution of the (backward)
Cauchy problem for A + ∂t with final datum ϕ, is a bounded function f ∈
C1,2([0, T [×R) ∩ C([0, T ]× R) such that{

Af(t, x) + ∂tf(t, x) = r(t, x)f(t, x), (t, x) ∈ [0, T [×R,

f(T, x) = ϕ(x) x ∈ R.
(14.64)

The following remarkable result is a direct consequence of the Itô formula
(14.62).

Theorem 14.50 (Feynman-Kač representation) If a classical solution
f to problem (14.64) exists and is such that f, ∂xf ∈ L∞(]0, T [×R) then it
has the stochastic representation

f(t, x) = E
[
e−
∫ T

t
r(s,Xt,x

s )dsϕ
(
Xt,x

T

)]
, t ∈ [0, T [, x ∈ R.
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Proof. For simplicity, we only consider the case r = 0. If f is a classical
solution to (14.64), then by the Itô formula we have

f(T,Xt,x
T )− f(t, x) =

∫ T

t

σ(s,Xt,x
s− )∂xf

(
s,Xt,x

s−
)
dWs

+
∫ T

t

∫
R

(
f
(
s,Xt,x

s− + a(s,Xt,x
s− , y)

)
− f(s,Xt,x

s− )
)
J̃(ds, dy).

By Remark 14.48 and the hypothesis f, ∂xf ∈ L∞(]0, T [×R), the right-hand
side of the above equation is a square-integrable martingale with null expec-
tation. Thus the thesis follows by taking expectations and using the final
condition. �

Theorem 14.50 is a uniqueness result: comparing it with the standard
Feynman-Kač representation for diffusions in Theorem 9.45, it is clear that
the above result is not optimal and the assumptions on the solution can be
refined to determine more explicitly (as in Chapter 6) the uniqueness classes
of the PIDE. Existence and uniqueness of classical solutions to PIDEs are
discussed in Garroni and Menaldi [148], Bensoussan and Lions [42] for the
case σ > 0 and in Mikulevičius and Pragarauskas [255], [256], Cancelier [65]
for the case σ = 0. Regularity of elliptic (s > 0) PIDEs is studied in Garroni
and Menaldi [147], [148] and for pure jump processes (σ = 0) in Eskin [122],
Bismut [46], Bichteler and Jacod [45], Cancelier [65]. A Feynman-Kač formula
for backward stochastic differential equations related to Lévy processes was
proved by Nualart and Schoutens [269].

More recently, PIDEs have been studied in the framework of the theory of
weak solutions in the viscosity sense: the notion of viscosity solution was gener-
alized to integro-differential equations by Fleming and Soner [132] and Sayah
[15] for first order operators and by Alvarez and Tourin [8], Barles Buckdahn
and Pardoux [22], Pham [280], Amadori [9] for second order operators.

The Feynman-Kač representation formula allows us to generalize the re-
sults of Paragraph 9.4.4 on the transition density of a diffusion. Let us discuss
this matter in a heuristic way: by analogy with the classical PDEs theory, we
say that the operator A + ∂t has a fundamental solution Γ (t, x;T, y) if, for
every ϕ ∈ Cb(R), the function

f(t, x) =
∫
R

ϕ(y)Γ (t, x;T, y)dy

is the classical bounded solution of the Cauchy problem (14.64). If a funda-
mental solution exists, by the Feynman-Kač formula, we have that

E
[
ϕ(Xt,x

T )
]

=
∫
RN

ϕ(y)Γ (t, x;T, y)dy.
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Since ϕ is arbitrary, we infer that the function

y �→ Γ (t, x;T, y)

is the density of the random variable Xt,x
T , that is Γ is the transition density of

X. In other words, if the integro-differential operator A+∂t has a fundamental
solution Γ , then Γ is the transition density of X.

Now let us assume that X is a Lévy process with triplet (μ1, σ
2, ν) and

characteristic operator

Ag(x) =μ1∂xg(x) +
σ2

2
∂xxg(x)

+
∫
R

(
g(x + y)− g(x)− y∂xg(x)1{|y|<1}

)
ν(dy).

(14.65)

PIDEs associated to Lévy processes can be considered the natural extension of
constant coefficients parabolic PDEs, the heat equation being the prototype.
Thus we may try to employ the classical procedure, illustrated in Appendix
A.3 and based on the Fourier transform, to construct explicitly the funda-
mental solution. We proceed formally (i.e. without a rigorous justification of
the steps) and we apply the Fourier transform operator F , acting only in the
spatial variable x, to the Cauchy problem (14.64) for A as in (14.65). We have

F(Af(t, ·))(ξ) = −iμ1ξf̂(t, ξ)− σ2

2
ξ2f̂(t, ξ)

+
∫
R

eiξx

∫
R

(
f(t, x + y)− f(t, x)− y∂xf(t, x)1{|y|<1}

)
ν(dy)dx

= −iμ1ξf̂(t, ξ)− σ2

2
ξ2f̂(t, ξ) + f̂(t, ξ)

∫
R

(
e−iyξ − 1 + iyξ1{|y|<1}

)
ν(dy)

= ψX(−ξ)f̂(t, ξ)

where ψX is the characteristic exponent of X appearing in the Lévy-Khintchine
representation (cf. (13.60)). Hence, for any ξ ∈ R, the function t �→ f̂(t, ξ)
solves the ordinary Cauchy problem with final condition{

∂tf̂(t, ξ) = −ψX(−ξ)f̂(t, ξ) t ∈ [0, T [,
f̂(T, ξ) = ϕ̂(ξ),

and therefore we have

f̂(t, ξ) = ϕ̂(ξ)e(T−t)ψX(−ξ).

Denoting by F−1 the inverse Fourier transform operator, we get

f(t, ·) = F−1
(
ϕ̂(ξ)e(T−t)ψX(−ξ)

)
(14.66)

= ϕ ∗ F−1
(
e(T−t)ψX(−ξ)

)
, (14.67)
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where “∗” denotes the convolution operation. We conclude that, if the anti-
transform in (14.67) is well defined, then the fundamental solution exists and
is given by

Γ (t, x, T, y) = F−1
(
e(T−t)ψX(−ξ)

)
(x− y).

Example 14.51 (Cauchy distribution) We consider a α-stable process
with α = 1: this is a pure jump process with no diffusion component, see
Section 13.4.2. By (13.80), the characteristic exponent takes the form

ψ(ξ) = iμξ − σ|ξ| (1 + iθsgn(ξ) log |ξ|) ,

and in the case θ = 0 we get

Γ (t, x, T, y) = F−1
(
e(T−t)ψX(−ξ)

)
(x− y)

=
(T − t)σ

π ((x− y + (T − t)μ)2 + (T − t)2σ2)

which is the density of the Cauchy distribution. �

Even if the expression of ψX is known, in most cases it is not possible to
compute explicitly Γ by Fourier inversion. However, formula (14.66) is used8

in the practical applications because it can be inverted numerically in various
efficient ways: numerical methods in option pricing based on Fourier methods
are analyzed thoroughly in Chapter 15.

14.2.7 Linear SDEs with jumps

Given a Lévy process Z and B ∈ R, B 
= 0, we consider the one-dimensional
SDE with jumps

dXt = −BXtdt + dZt (14.68)

which is the non-Gaussian analogue of the linear SDE (9.70). Using the Lévy-
Itô decomposition of Z, equation (14.68) can be written in the canonical
form (14.55) and the existence of a pathwise unique solution is guaranteed
by Theorem 14.43. On the other hand, by the Itô formula it is easy to verify
directly that the solution to (14.68) is given explicitly by

Xt = e−Bt

(
X0 +

∫ t

0

eBsdZs

)
. (14.69)

The characteristic function of X can be computed explicitly as the following
result shows.

8 Notice that (14.66) is equivalent to the pricing formula (15.7) derived in Chap-
ter 15.
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Proposition 14.52 Let Z be a Lévy process with characteristic exponent ψ.
Then the characteristic function of X in (14.69) is equal to

ϕXt(ξ) = E
[
eiξXt

]
= exp

(
iξX0e

−Bt +
∫ t

0

ψ
(
ξeB(s−t)

)
ds

)
, ξ ∈ R.

(14.70)

Proof. The thesis is a consequence of the identity

E
[
ei
∫ t
0 f(s)dZs

]
= e

∫ t
0 ψ(f(s))ds (14.71)

which holds for any continuous function f : [0, T ] −→ R. Let us prove (14.71):
if f is simple, that is

f(t) =
N∑

k=1

fk1]Tk−1,Tk](t),

then we have

E
[
ei
∫ t
0 f(s)dZs

]
=

N∏
k=1

E
[
eifk(ZTk

−ZTk−1)
]

=
N∏

k=1

e(Tk−Tk−1)ψ(fk) = e
∫ t
0 ψ(f(s))ds.

Then (14.71) follows by approximation. �

Example 14.53 If Zt = μt + σWt is a Brownian motion with drift and
characteristic exponent

ψZ(ξ) = iμξ − σ2ξ2

2
,

then, by (14.70), the characteristic function of the solution X in (14.68) is
equal to

ϕXt(ξ) = exp
(

iξμ̄t −
σ̄2

t ξ2

2

)
,

where

μ̄t =

(
X0e

−Bt +
μ
(
1− e−Bt

)
B

)
, σ̄t =

√
1− e−2Bt

2B
.

In this case, as we already showed in Section 9.5, Xt is a Gaussian random
variable. �

A case of particular interest in finance is when the process Z is a sub-
ordinator, i.e. Z is an increasing Lévy process (cf. Section 13.4.4). Indeed,
in this case and if X0 > 0, we have that the process X is positive a.s. by
definition. Positive solutions of linear SDEs with jumps have been proposed
by Barndorff-Nielsen and Shephard [28] as a model for the square volatility
process: for more details, we refer to Section 14.3.3.
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Example 14.54 If Z is a Gamma subordinator with characteristic exponent

ψZ(ξ) = −a log
(

1− iξ

b

)
,

then the characteristic function of X in (14.68) is equal to

ϕXt(ξ) = exp
(

ie−BtX0ξ +
a

B

(
Li2

(
iξ

b

)
− Li2

(
ie−Btξ

b

)))
,

where Lin(x) is the polylogarithm function defined by

Lin(x) =
∞∑

k=1

xk

kn
.

�

14.3 Lévy models with stochastic volatility

14.3.1 Lévy-driven models and pricing PIDEs

In this section, we introduce a generalization of the exponential pricing models
studied in Chapter 10. We only consider the one-dimensional case and assume
that the price of the underlying asset is of the form

St = S0e
Xt , (14.72)

where X is the solution of the SDE with jumps

dXt = b̄(t,Xt−)dt + σ̄(t,Xt−)dWt +
∫
R

ā(t,Xt−, y)J̃(dt, dy) (14.73)

with initial condition X0 = 1. Under the hypotheses of Theorem 14.45, which
we assume hereafter, X is uniquely defined and its characteristic operator is
given by

Āf(t, x) = b̄(t, x)∂xf(t, x) +
σ̄2(t, x)

2
∂xxf(t, x)

+
∫
R

(f(t, x + ā(t, x, y))− f(t, x)− ā(t, x, y)∂xf(t, x)) ν(dy).

Concerning the locally non-risky asset, we assume that it is given by

Bt = e
∫ t
0 r̄(s,Xs)ds, t ∈ [0, T ],

where r̄ is a (deterministic) bounded and measurable function.
Applying operator Ā to the exponential function, we get

Āex = exΨ(t, x)
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where

Ψ(t, x) = b̄(t, x) +
σ̄2(t, x)

2
+
∫
R

(
eā(t,x,y) − 1− ā(t, x, y)

)
ν(dy). (14.74)

Therefore, by the Itô formula (14.62), we have

dSt = Ψ(t,Xt−)St−dt

+ σ̄(t,Xt−)St−dWt + St−

∫
R

(
eā(t,Xt−,y) − 1

)
J̃(dt, dy).

In particular, for the discounted price process S̃t = St

Bt
to be a martingale, the

following drift condition must necessarily hold true:

Ψ(t, x) = r̄(t, x). (14.75)

Thus the dynamics of S under an EMM becomes

dSt = r(t, St−)St−dt

+ σ(t, St−)St−dWt + St−

∫
R

(
ea(t,St−,y) − 1

)
J̃(dt, dy),

(14.76)

where

r(t, S) = r̄ (t, g(S)) , σ(t, S) = σ̄ (t, g(S)) , a(t, S, y) = ā (t, g(S), y) ,

and g(S) = log S
S0

.

Example 14.55 In an exponential Lévy model (cf. Example 14.40), the un-
derlying asset is of the form (14.72) where X is a Lévy process satisfying the
SDE

dXt = μ∞dt + σdWt +
∫
R

yJ̃(dt, dy)

under condition ∫
|y|≥1

e2yν(dy) <∞. (14.77)

We assume that the interest rate r is constant. In this case, the function Ψ in
(14.74) takes the explicit form

Ψ(t, x) = μ∞ +
σ2

2
+
∫
R

(ey − 1− y) ν(dy) = ψX(−i)

where ψX is the characteristic exponent of X. Hence, the drift condition
(14.75) becomes

ψX(−i) = r. (14.78)
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More precisely, as in Example 14.40, we have that S̃ is a martingale if and
only if (14.78) is satisfied. Thus, under an EMM the drift parameter μ∞ is
determined by (14.78):

μ∞ = r − σ2

2
−
∫
R

(ey − 1− y) ν(dy).

We recall that the drift condition (14.78) was obtained independently in
Proposition 13.64 by means of the Lévy-Khintchine formula for X.

As already proved in Example 14.40, by (14.76) the dynamics of S under
an EMM is given by

dSt = rSt−dt + σSt−dWt + St−

∫
R

(ey − 1)J̃(dt, dy),

that is usually written in the shorthand form

dSt

St−
= rdt + σdWt +

∫
R

(ey − 1)J̃(dt, dy). (14.79)

�

Now we use the Feynman-Kač Theorem 14.50 to obtain the expression
of the risk neutral price of a derivative in terms of the solution of a Cauchy
problem for a PIDE. We consider a derivative of the form H = ϕ(ST ), where ϕ
is the deterministic payoff function. Moreover we assume that the risk neutral
dynamics of the underlying asset, under the selected EMM, is given by the
SDE with jumps (14.76): we denote by (St,s

τ )τ∈[t,T ] the solution of (14.76)
with initial condition St,s

t = s, and by

Af(t, s) = r(t, s)s∂sf(t, s) +
σ2(t, s)s2

2
∂ssf(t, s)

+
∫
R

(
f(t, sea(t,s,y))− f(t, s)− s

(
ea(t,s,y) − 1

)
∂sf(t, s)

)
ν(dy)

the characteristic operator of S.

Theorem 14.56 If the Cauchy problem{
(A+ ∂t) f(t, s) = r(t, s)f(t, s), (t, s) ∈ [0, T [×R>0,

f(T, s) = ϕ(s), s ∈ R>0,

has a classical solution f (cf. Definition 14.49), then

f(t, s) = E
[
e−
∫ T

t
r(τ,St,s

τ )dτϕ
(
St,s

T

)]
is the risk-neutral price of H under the selected EMM.
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For the exponential Lévy model in (14.79), the pricing operator is given
by

Af(t, s) = rs∂sf(t, s) +
σ2s2

2
∂ssf(t, s)

+
∫
R

(f(t, sey)− f(t, s)− s (ey − 1) ∂sf(t, s)) ν(dy).

Apart from the Black&Scholes’ type drift and diffusion parts, A contains a
new integral term which depends on the Lévy measure ν. In this particular
case, the non-uniqueness of the martingale measure is reflected in the pricing
PIDE which is defined in terms of the jump component of the underlying.

Clearly, the models analyzed in this section are the natural extension of
standard local volatility models to the framework of jump processes. Stochas-
tic volatility with jumps can be considered as well and in the next sections we
examine two remarkable examples, the Bates model and the Barndorf-Nielsen
and Shepard model. Essentially, stochastic volatility appears to be needed to
explain the variation in strike at longer time, but it is well known that it per-
forms poorly across different maturities, especially at shorter term. Adding
jumps to the price and/or the volatility gives a greater flexibility and allows
to explain the variation in strike at shorter term which is difficulty captured
by standard stochastic volatility models like the Heston and SABR models.

14.3.2 Bates model

The Bates [35] model for currency options combines the Heston stochastic
volatility model with the Merton jump-diffusion model. Let use recall that
in the Heston model the dynamics of the asset and its variance is given by
(15.4), that is

dSt = μStdt +
√

vtStdW 1
t ,

dvt = k(v∞ − vt)dt + η
√

vtdW 2
t ,

where W = (W 1,W 2) is a correlated Brownian motion with correlation pa-
rameter �. By Itô formula, the process Xt = log St

S0
verifies

dXt =
(
μ− vt

2

)
dt +

√
vtdW 1

t .

In the Bates model, the log-price X satisfies the SDE with jumps

dXt = −vt

2
dt +

√
vtdW 1

t + dZt

=
(
μ∞ −

vt

2

)
dt +

√
vtdW 1

t +
∫
R

yJ̃(dt, dy),

where Z is a compound Poisson process with intensity λ and distribution
of jumps Nm,δ2 : as usual, J̃ denotes the compensated jump measure. The
processes W and Z are assumed to be independent.



538 14 Stochastic calculus for jump processes

Implied vol, Ρ��0.6, Λ�0 �Heston�

80
90

100
110

120S0

0.2
0.4

0.6
0.8 1.0T

0.10

0.15

0.20

0.25

Implied vol, Ρ��0.6, m��0.1

80
90

100
110

120
S0

0.2
0.4

0.6
0.8

1.0
T

0.15

0.20

0.25

0.30

Implied vol, Ρ��0.6, m�0.1

80
90

100
110

120
S0

0.2
0.4

0.6
0.8

1.0
T

0.15

0.20

0.25

0.30

Implied vol, Ρ�0.6, m�0

80
90

100
110

120S0

0.2
0.4

0.6
0.8

1.0
T

0.15

0.20

0.25

0.30

Fig. 14.1. Volatility surfaces in the Bates model for different values of � and m:
the other parameters are v0 = 0.04, v∞ = 0.02, k = 1, η = 1, λ = 0.2, δ = 1

Imposing the drift condition (14.75), we get

r =
(
μ∞ −

vt

2

)
+

vt

2
+ λ

∫
R

(ey − 1− y)Nm,δ2(dy)

and therefore the drift coefficient under an EMM is determined by

μ∞ = r − λ
(
em+ δ2

2 − 1−m
)

.

The model has eight parameters: � (correlation), k (speed of mean reversion),
v∞ (long-term mean of the variance v), v0 (initial variance), η (volatility of
the variance), λ (jump intensity), m (mean of the jumps of the log-price), δ
(volatility of the jumps of the log-price).

Since jumps are independent from the continuous part, the characteristic
function of X can be obtained multiplying the characteristic functions of the
Heston and Merton models: more precisely, by (13.96) and (15.24), we have

ϕXT (ξ) = exp
(

v0

η2

(
1− e−D(ξ)T

1−G(ξ)e−D(ξ)T

)
(k − iρηξ −D(ξ))

)
·

· exp
(

kv∞
η2

(
T (k − iρηξ −D(ξ))− 2 log

(
1−G(ξ)e−D(ξ)T

1−G(ξ)

)))
·

· exp
(

iξT
(
r − λ

(
em+ δ2

2 − 1
))

+ Tλ

(
eimξ− ξ2δ2

2

))
.

(14.80)
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Since the characteristic function is available in explicit form, European option
prices in the Bates model can be computed by using one of the Fourier trans-
form methods of Chapter 15. Moreover the short and long-term smile and
skew can be adjusted separately by fine-tuning the stochastic volatility and
jump parameters. It turns out that the Bates model is one of the simplest and
effective models for reproducing the typical patterns of the implied volatility
surfaces. Figure 14.1 depicts the implied volatility surface in the Bates model
for typical values of the parameters.

14.3.3 Barndorff-Nielsen and Shephard model

Barndorff-Nielsen and Shephard propose in [29] a stochastic volatility model
where the variance is the solution of a linear SDE with jumps of the form
(14.68). They assume that the driving Lévy process is a subordinator in order
to guarantee that the variance is positive. Specifically, the model is of the
form

St = S0e
Xt ,

dXt = btdt +
√

vtdWt + �dZt,

dvt = −λvtdt + dZt,

where � is a non-positive correlation parameter, λ > 0, W is a standard
Brownian motion and Z is a subordinator with Lévy measure ν and Laplace
exponent

�(ξ) =
∫ ∞

0

(
eξy − 1

)
ν(dy).

Rewriting Z in terms of its jump measure, we have (cf. (13.58))

dZt = μ∞dt +
∫ ∞

0

yJ̃(dt, dy), μ∞ = E [Z1] ,

and
dXt = (bt + �μ∞) dt +

√
vtdWt + �

∫ ∞

0

yJ̃(dt, dy).

Imposing the drift condition (14.75), we get

r = bt + μ∞ +
vt

2
+
∫ ∞

0

(e�y − 1− y) ν(dy)

= bt +
vt

2
+
∫ ∞

0

(e�y − 1) ν(dy)

= bt +
vt

2
+ �(�).

Thus the generic risk-neutral dynamics is given by

dXt =
(
r − vt

2
− �(�)

)
dt +

√
vtdWt + �dZt,

dvt = −λvtdt + dZt.
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Also in this case, it is possible to have the explicit expression of the cha-
racteristic function of X, so that Fourier methods for option pricing apply:
specifically, we have

ϕXT (ξ) = exp
(

iξ(r − �(�))T +
v0ξ

2λ
(1− iξ)

(
1− e−λT

))
·

· exp

(∫ T

0

�

(
i�ξ − ξ

2λ
(i + ξ)

(
1− e−λ(T−t)

))
dt

)
.

Several experiments on the calibration of stochastic volatility models with
jumps in the asset and/or the variance can be found, for instance, in Sepp
[305], Schoutens [301], Carr, Geman, Madan, and Yor [68], Zhu [348].
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Fourier methods

As already explained in the previous chapters, in order to reproduce the real
market dynamics it is necessary to introduce more sophisticated models than
the Black-Scholes one. These models have to be calibrated to the market in
order to approximate the quoted implied volatility surfaces: once this is done,
they can give prices to exotic derivatives that are consistent with plain vanilla
options.

Now it is worth mentioning that the calibration, as well as other risk
management processes, poses severe restrictions on the class of feasible models.
Indeed, the numerical procedures involved in a calibration process are very
demanding and time-consuming: a typical optimization algorithm requires,
at each step of minimization of the error, the computation of several option
prices for different strikes and maturities: this is practicable only if closed form
solutions or accurate analytical approximations of option prices are available.
From this perspective, Fourier inversion is the computational method of choice
for a fast calculation of option prices in models with an analytically tractable
characteristic function.

The main idea is that, while the probability density of many relevant asset
processes is not known explicitly, on the contrary its Fourier transform (i.e.
the characteristic function) in some relevant case is available. Therefore, in
the Fourier space it is possible to price options analytically: thus, by means of
a Fourier inversion algorithm (for instance, the fast Fourier transform, FFT)
the original option prices can be computed efficiently.

In this chapter we present two methods for the approximation of option
prices by means of Fourier methods. Specifically, we establish pricing formulas
based on the Fourier transform and on the Fourier-cosine series expansion. We
analyze the main features of the two approaches and compare their numerical
precision and efficiency.

To the best of our knowledge, Fourier transform applications in option
pricing where initiated by Heston [165]. Starting from Carr and Madan [69],
several authors have proposed extensions and analysis of valuation formulas
with Fourier transform methods. The focus of Carr and Madan is on the ap-

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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plication of the FFT algorithm to Call options: one of the key points is that
the Fourier transform is taken with respect to the log-strike. The approach by
Lewis [237] and Raible [288] is similar, except that their transform is taken
with respect to log-prices. Other price representations were proposed by Zhu
[347], Attari [13] and more recently by Eberlein, Glau and Papapantoleon
[111]. Fourier transform valuation formulas for exotic options were considered
by Borovkov and Novikov [52]. These methods were also applied for hedging
purposes by Hubalek, Kallsen and Krawczyk [173], and in insurance math-
ematics by Dufresne, Garrido and Morales [105]. The books by Schoutens
[301], Cont and Tankov [76], Boyarchenko and Levendorskii[56] also discuss
Fourier transform methods in option pricing. We also quote the recent mono-
graphs by Zhu [348], Cherubini, Della Lunga, Mulinacci and Rossi [72] and the
book on Fourier methods for interest rate derivatives by Bouziane [55]. In his
Ph.D. thesis [323] Surkov develops a generic framework based on the Fourier
transform for pricing and hedging of various options in equity, commodity,
currency, and insurance markets.

The alternative approach, presented in Paragraph 15.3 on Fourier-cosine
series expansion, is very recent and was proposed by Fang and Oosterlee [127]
who also studied the case of options with the early-exercise feature in [128].

15.1 Characteristic functions and branch cut

Hereafter we consider a rather general setting where the interest rate r is
constant1 and there is only one risky asset of the form

ST = S0e
XT , (15.1)

where S0 > 0 and XT is a random variable; for convenience, sometimes we
also write ST = eXT +x0 with x0 = log S0. We assume that the characteristic
function of XT , under the selected EMM Q, is well defined as

ϕXT (ξ) = EQ
[
eiξXT

]
=
∫
R

eiξxQXT (dx), (15.2)

where, as usual, QXT denotes the distribution of XT under Q.

Notation 15.1 In this chapter, we let ξ ∈ C in (15.2) whenever the integral
defining ϕXT (ξ) converges: therefore, we might more properly call ϕXT the
extended characteristic function of XT .

Example 15.2 In the Black-Scholes model, we have

ST = S0e
XT , XT =

(
r − σ2

2

)
T + σWT ,

1 When the interest rate is stochastic such as in the case of interest rate derivatives,
one should use the techniques of this chapter applied to the general pricing formula
(10.102) of Section 10.4.3.
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and
ϕXT (ξ) = e

i
(

r− σ2
2

)
Tξ−σ2ξ2

2 T
.

�

Fourier methods in option pricing are based on the explicit knowledge of the
characteristic function in (15.2). Typically ϕXT is given in terms of the solu-
tion of first order differential equations or may have an explicit representation
in terms of elementary functions. In any case, the expression of the ϕXT in-
volves functions whose argument is a complex number that must be handled
carefully in the implementation.

Indeed, as a preliminary remark, let us recall that, by the definition (15.2),
ϕXT is a continuous function. As we shall see in a moment, even simple func-
tions such as the logarithm or the square root (that typically occur in some
representation of ϕXT ) when defined on the complex plane become multi-
valued functions. Now, the most common mathematical softwares such as
Matlab or Mathematica automatically select the principal branch of these
multi-valued functions: this may generate discontinuities and, as a matter
of fact, a wrong representation of the characteristic function2. The result is
that the Fourier inversion may give completely incorrect option prices.

To be more specific, let us recall that a complex number

z = x + iy, x = Re(z), y = Im(z),

can be represented in polar form as

z = |z|ei(θ+2kπ), k ∈ Z, (15.3)

where |z| =
√

x2 + y2 is the modulus of z and θ = Arg(z) ∈] − π, π] is the
principal argument of z: for x, y > 0, we have θ = arctan y

x . More generally, we
recall that the software Mathematica has the built-in command ArcTan[x, y]
(atan2(y, x) in Matlab) that gives the arc-tangent of y

x taking into account
which quadrant the point (x, y) is, so that the results are always in the range
]− π, π]: thus we have Arg(z) = ArcTan[Re(z), Im(z)].

Now, formally we have

log z = log
(
|z|ei(θ+2kπ)

)
= log |z|+ i (θ + 2kπ) , k ∈ Z,

and similarly
zα = |z|αeiα(θ+2kπ);

thus the logarithm and the square root are functions whose value depends
on k, that is on the argument of the complex number z in the representation
(15.3).

2 From a theoretical point of view, the characteristic function is correctly repre-
sented in terms of the distinguished complex logarithm defined in Lemma 13.20.



544 15 Fourier methods

�10
�5

0
5

10

Ξ

0

5

10

T

�0.1
0.0
0.1
0.2

Fig. 15.1. Discontinuities in the integrand of the Fourier pricing formula (15.11) for
a Call option in the Heston model with the formulation (15.5) of the characteristic
function

As an illustrative example, we consider the Heston model where the asset
price S and its variance ν satisfy the system of SDEs

dSt = rStdt +
√

νtStdW 1
t ,

dνt = k(ν∞ − νt)dt + η
√

νtdW 2
t .

(15.4)

In the original formulation by Heston [165], also found in the papers by Lee
[234], Kahl and Jäckel [192], the characteristic function is given by

ϕXT (ξ) = exp
(

iξrT +
ν0

η2

(
1− e−D(ξ)T

1−G(ξ)e−D(ξ)T

)
(k − iρηξ −D(ξ))

)
·

· exp

⎛⎝kν∞
η2

⎛⎝T (k − iρηξ + D(ξ))− 2 log

⎛⎝1− eD(ξ)T

G(ξ)

1− 1
G(ξ)

⎞⎠⎞⎠⎞⎠
(15.5)

where ν0 is the initial variance, � is the correlation parameter of the Brownian
motions and

D(ξ) =
√

(k − iρηξ)2 + (ξ + i) ξη2, G(ξ) =
k − iρηξ −D(ξ)
k − iρηξ + D(ξ)

. (15.6)

Figure 15.1 shows the discontinuities of the integrand appearing in the Fourier
representation of the price of a Call option (see (15.11) below) in the Heston
model: here the formulation (15.5) of ϕXT has been used and the complex
logarithm is automatically restricted to its principal branch by the numerical
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software, producing the discontinuities. The parameters of the model are taken
from the paper of Lord and Kahl [241]:

r = 0, k = 1.5768, ν∞ = 0.0398, ν0 = 0.0175, ρ = −0.5711, η = 0.5751.

For the Heston model, an alternative representation of ϕXT (cf. (15.24)) has
been given by Bakshi, Cao and Chen [17] (see also Duffie, Pan and Singleton
[104] and Gatheral [150]). Lord and Kahl [241] recently proved that this second
formulation, although algebraically equivalent to the previous one, does not
produce discontinuities when the main argument of the complex numbers is
used. For more details, we refer to Example 15.15 where the Fourier integral
method in the Heston model is analyzed.

The problem of the discontinuous representation of characteristic functions
was first mentioned by Schöbel and Zhu [299] since similar problems arise
in the stochastic volatility model named after these authors. Recently, Lord
and Kahl [241] also provided a continuous representation of the characteristic
function for the Schöbel-Zhu model.

15.2 Integral pricing formulas

We denote by f the payoff function of a derivative and by

H(S0, T ) = e−rT EQ [f(XT + log S0)]

the corresponding Q-risk-neutral price under the assumptions (15.1)-(15.2) on
S. For example, for a Call option with strike K, we set

fCall(x) = (ex −K)+ , x ∈ R,

so that the Call price for the maturity T is given by

HCall(S0,K, T ) = e−rT EQ
[
fCall(XT + log S0)

]
.

Analogously, we set

fPut(x) = (K − ex)+ , x ∈ R.

The general idea of Fourier methods in option pricing is rather simple: let
us assume, for simplicity, that r = 0 = log S0; then the option price is formally
given by

EQ [f(XT )] =
∫
R

f(x)QXT (dx) =

(by the Fourier inversion formula in Remark A.66)

=
∫
R

(
1
π

∫ ∞

0

e−ixξf̂(ξ)dξ

)
QXT (dx) =
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(changing the order of integration)

=
1
π

∫ ∞

0

f̂(ξ)
∫
R

e−ixξQXT (dx)dξ

=
1
π

∫ ∞

0

f̂(ξ)ϕXT (−ξ)dξ. (15.7)

Assuming that the functions f̂ and ϕXT are known explicitly, the pricing for-
mula (15.7) lends itself to an application of the fast Fourier transform (FFT)
or direct numerical integration methods. We recall that a pricing formula
equivalent to (15.7) was found in Section 14.2.6, starting from the pricing
partial integro-differential equation obtained by means of the Itô formula for
Lévy processes.

Actually, the previous arguments are not rigorous and some points need to
be fixed. First of all, the classical Fourier transform f̂ is defined for f ∈ L1(R)
and also in the simplest case of a Call or a Put option this fails to be true.
Secondly, the classical inversion formula requires that f̂ ∈ L1(R), but if this
is case, f is necessarily continuous and this rules out several interesting payoff
functions (e.g. the digital option). Finally, the change the order of integration
needs to be rigorously justified. In the following sections we analyze these and
other related issues.

15.2.1 Damping method

A classical tool in Fourier analysis for the inversion of non-integrable function,
is the damping method (cf., for instance, Dubner and Abate [101]): for a given
α ∈ R, we define the penalized (or damped) function

fα(x) = e−αxf(x), x ∈ R.

The following example shows the effect of the penalization on the payoff func-
tions of plain vanilla options.

Example 15.3 We have

fCall
α (x) = e−αx (ex −K)+ , fPut

α (x) = e−αx (K − ex)+ ,

and therefore fCall
α ∈ L1(R) for any α > 1 and fPut

α ∈ L1(R) for any α < 0.�

Since we are going to use the inversion formula, we are also interested in
the integrability properties of the Fourier transform of the damped function:
the following lemma provides a simple and quite general integrability criterion.

Lemma 15.4 If g ∈ W 1,2(R), that is g ∈ L2(R) and the weak derivative
Dg ∈ L2(R), then ĝ ∈ L1(R).
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Proof. It is well known that if g ∈W 1,2(R) then g, ĝ ∈ L2(R) and

D̂g(ξ) = −iξĝ(ξ).

Then we have∫
R

(
|ĝ(ξ)|2 +

∣∣∣D̂g(ξ)
∣∣∣2) dξ =

∫
R

|ĝ(ξ)|2
(
1 + |ξ|2

)
dξ,

and by the Hölder’s inequality, we get∫
R

|ĝ(ξ)| dξ =
∫
R

|ĝ(ξ)| 1 + |ξ|
1 + |ξ|dξ

≤
(∫

R

|ĝ(ξ)|2 (1 + |ξ|)2 dξ

) 1
2
(∫

R

1
(1 + |ξ|)2

) 1
2

<∞.

�

Example 15.5 By Lemma 15.4, fCall
α , f̂Call

α ∈ L1(R) for any α > 1. Indeed
fCall

α ∈W 1,2(R) because fCall
α ∈ L2 and

DfCall
α (x) =

{
0 if x < log K,

(1− α)e(1−α)x + αKe−αx if x > log K,

is a square integrable function for α > 1. Analogously, fPut
α , f̂Put

α ∈ L1(R) for
any α < 0, since we have

DfPut
α (x) =

{
−αKe−αx − (1− α)e(1−α)x if x < log K,

0 if x > log K.

�

15.2.2 Pricing formulas

Our first result is a valuation formula for options with continuous payoff fun-
ction, like Call and Put options.

Proposition 15.6 Assume that there exists α ∈ R such that

i) fα, f̂α ∈ L1(R);
ii) EQ [Sα

T ] is finite.

Then the following pricing formula holds:

H(S0, T ) =
e−rT Sα

0

π

∫ ∞
0

e−iξ log S0ϕXT (−(ξ + iα))f̂(ξ + iα)dξ. (15.8)
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Proof. First of all we show that conditions i) and ii) guarantee that the
integral in (15.8) converges. Indeed, by i) we have that ξ �→ f̂(ξ + iα) is
integrable because

f̂(ξ + iα) =
∫
R

ei(ξ+iα)xf(x)dx =
∫
R

eiξxfα(x)dx = f̂α(ξ). (15.9)

On the other hand, by ii), the function ξ �→ S
−i(ξ+iα)
0 ϕXT (−(ξ + iα)) is

bounded because∣∣∣S−i(ξ+iα)
0 ϕXT (−(ξ + iα))

∣∣∣ ≤ ∣∣∣S−i(ξ+iα)
0

∣∣∣ ∫
R

∣∣∣e−ix(ξ+iα)
∣∣∣QXT (dx)

= Sα
0

∫
R

eαxQXT (dx) = EQ [Sα
T ] <∞.

For simplicity, we set x0 = log S0: then we have

H(S0, T ) = e−rT EQ [f(XT + x0)]

= e−rT

∫
R

eα(x+x0)fα (x + x0)QXT (dx) =

(by the Fourier inversion formula, since fα, f̂α ∈ L1(R) by i))

= e−rT Sα
0

∫
R

eαx

(
1
π

∫ ∞

0

e−iξ(x+x0)f̂α(ξ)dξ

)
QXT (dx) =

(changing the order of integration, by Fubini’s theorem3)

=
e−rT Sα

0

π

∫ ∞
0

e−iξx0

(∫
R

e−i(ξ+iα)xQXT (dx)
)

f̂α(ξ)dξ =

(by (15.9))

=
e−rT Sα

0

π

∫ ∞
0

e−iξx0ϕXT (−(ξ + iα))f̂(ξ + iα)dξ,

and this concludes the proof. �

Remark 15.7 Condition i) of Proposition 15.6 is an assumption on the pay-
off function f and implies that f is a continuous function (because f̂α ∈ L1).
Theorem 15.10 below provides a valuation formula for discontinuous payoff
functions.
3 Again by i) and ii), we have∫

R

eαx

∫ ∞
0

∣∣∣e−iξ(x+x0)f̂α(ξ)
∣∣∣ dξQXT (dx) = ‖f̂α‖L1EQ

[
eαXT

]
< ∞.
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Condition ii) is an assumption on the Q-distribution of XT and is equiva-
lent to

EQ [Sα
T ] = Sα

0 EQ
[
eαXT

]
= Sα

0

∫
R

eαxQXT (dx) <∞

that is, the measure eαxQXT (dx) is finite. Also this condition can be weakened
in order to deal with particular distributions. We also remark that it is not
difficult to generalize Proposition 15.6 to the multi-dimensional case. �

As a corollary of Proposition 15.6, we also give the Fourier formula for the
Delta of an option: similar formulas can be easily obtained for all the other
Greeks.

Corollary 15.8 (Delta) Under the assumptions of Proposition 15.6, if in
addition one of the functions ξ �→ (1 + |ξ|) ϕXT (−(ξ + iα)) or D̂fα is inte-
grable, then we have

Delta(S0, T ) :=∂S0H(S0, T )

=
e−rT Sα−1

0

π

∫ ∞

0

e−iξ log S0(α− iξ)ϕXT (−(ξ + iα))f̂(ξ + iα)dξ.

(15.10)

Proof. The thesis follows by differentiating formula (15.8) with respect to
S0: the additional assumptions guarantee that we can exchange the integral
and differential signs. �

Theorem 15.9 (Call option) For any α > 1 such that EQ [Sα
T ] is finite,

we have the following pricing formula for a Call option with strike K and
maturity T :

Call(S0,K, T ) =
e−rT Sα

0 K1−α

π

∫ ∞

0

e−iξ log
S0
K

ϕXT (−(ξ + iα))
(iξ − α)(iξ − α + 1))

dξ.

(15.11)
The same formula for α < 0 gives the price of the Put option4. Moreover,
under the assumptions of Corollary 15.8, the Delta is given by

DeltaCall(S0,K, T ) = −e−rT Sα−1
0 K1−α

π

∫ ∞

0

e−iξ log
S0
K

ϕXT (−(ξ + iα))
iξ − α + 1

dξ.

(15.12)

4 Under the assumption that EQ [Sα
T ] is finite.



550 15 Fourier methods

Proof. We recall Example 15.5 and use the pricing formula (15.8) of Propo-
sition 15.6. To this end, we compute f̂Call(ξ + iα): by (15.9), we have

f̂Call(ξ + iα) = f̂Call
α (ξ) =

∫ ∞

log K

e(iξ−α)x (ex −K) dx

= − Kiξ−α+1

iξ − α + 1
+ K

Kiξ−α

iξ − α

=
K1−αeiξ log K

(iξ − α)(iξ − α + 1))
. (15.13)

Moreover, a direct computation shows that f̂Call
α = f̂Put

α . Then the thesis
follows plugging (15.13) into formulas (15.8) and (15.10). �

Next we state a valuation formula for discontinuous payoff functions. The
proof is a slight modification of the argument used in Proposition 15.6 and is
based on the Dirichlet-Jordan inversion Theorem A.67.

Note that, from the point of view of the numerical implementation, formu-
las (15.8) and (15.14) are equivalent since the numerical integration is always
performed on a bounded domain.

Theorem 15.10 Assume that there exists α ∈ R such that

i) fα ∈ L1(R);
ii) EQ [Sα

T ] is finite;
iii) the map x �→ EQ [f(XT + x)] is continuous at x0 = log S0 and has bounded

variation (cf. Definition 3.59) in a neighborhood of x0.

Then the following pricing formula holds:

H(S0, T ) =
e−rT Sα

0

π
lim

R→+∞

∫ R

0

e−iξ log S0ϕXT (−(ξ+iα))f̂(ξ+iα)dξ. (15.14)

In the financial literature, several alternative Fourier representation for-
mulas for the price of a Call option have been proposed: Heston [165] first
used a general Black-Scholes type formula based on the results of Theorem
10.67. This method is analyzed and broadened by Zhu [348]. The approach of
Carr and Madan [69] is closer in spirit to that of (15.11): they first introduced
in the area of option pricing the idea of damping functions in order to get the
L1-integrability of the payoff. The focus of Carr and Madan was on the use
of the fast Fourier transform to retrieve the option values for a wide range of
strikes and maturities in a single run. Similar representations were provided
by Raible [288] and Lewis [237] who took the Fourier transform with respect
to the log-price instead of the log-strike price as in [69]; moreover the formulas
by Lewis are expressed in terms of contour integral in the complex plane.

We close this section by giving a short list of payoff functions of exotic
options to which the previous Fourier pricing formulas apply. To shorten the
notation, we set z = ξ+iα: for any option, we give the payoff function with its
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extended Fourier transform and the interval of allowed values of the damping
parameter α.

# Digital:

f(x) = 1{ex>K}, f̂(z) = −Kiz

iz
, α > 0.

# Asset or nothing:

f(x) = ex1{ex>K}, f̂(z) = −K1+iz

1 + iz
, α > 1.

# Double digital (K1 < K2):

f(x) = 1{K1<ex<K2}, f̂(z) =
Kiz

2 −Kiz
1

iz
, α 
= 0.

# Self-quanto:

f(x) = ex (ex −K)+ , f̂(z) =
K2+iz

(1 + iz)(2 + iz)
, α > 2.

# Power:

f(x) =
(
(ex −K)+

)2

, f̂(z) =
2K2+iz

iz(1 + iz)(2 + iz)
, α > 2.

15.2.3 Implementation

In the representation formula (15.11), the price of a Call option is given in
terms of a direct Fourier transform: indeed, (15.11) can be rewritten as

Call(S0,K, T ) =
Aα(S0,K)

π

∫ ∞

0

e−iξ log MFα(ξ)dξ, (15.15)

where M = S0
K is the moneyness,

Aα(S0,K) = e−rT Sα
0 K1−α and Fα(ξ) =

ϕXT (−(ξ + iα))
(iξ − α)(iξ − α + 1))

. (15.16)

As discussed by Carr and Madan [69], this representation lends itself to an
application of the fast Fourier transform (FFT). Chourdakis [73] also proposed
the use of the fractional FFT algorithm. We refer to Cerny [70] and Matsuda
[249] for an elementary introduction to FFT methods in option pricing.

More recently several authors (cf., for instance, Kilin [207], Zhu [348],
Lord and Kahl [240]) criticized the use of FFT methods for computing option
prices. Indeed, a direct integration (DI) can also be used to evaluate the pricing
formula (15.15) and it turns out that in most cases DI outperforms FFT and
fractional FFT methods in terms of accuracy and speed (see, for instance, the
comparison in [348], Section 4.5).
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Remark 15.11 It has to be noticed that the function Fα in (15.16), which
contains the characteristic function and is the computationally expensive part,
does not depend on S0 and K: therefore, it is sufficient to evaluate Fα only
once to compute the Call prices with different strikes. This simple observation
allows the use of cache techniques that speed up considerably the computation
of option prices and the related Greeks. Kilin [207] states that using cache
technique makes the calibration with the direct integration method at least
seven times faster than the calibration with the fractional FFT method. In
the case of Call options, “a vector input” of strikes can be dealt with in an
efficient way: so, we have a vector of input strikes which gives us a vector of
output values. This speeds up the calibration process significantly. �

The following experiments have been performed on an Intel(R) Core(TM)2
CPU 2.40 GHz, using the built-in numerical integration command NIntegrate
of Mathematica R© based on an adaptive algorithm. The CPU time to compute
one price or a Greek, regardless of the model, is of the order of 0.01 seconds.

Remark 15.12 When pricing Call options, in order to reduce the error in the
truncation of the integration domain, it is preferable to compute Put prices
and then recover the Calls via the Put-Call parity:

HCall(S0,K, T ) = HPut(S0,K, T )−Ke−rT + S0.

This allows the exploit the boundedness of the payoff function of the Put. �

To test the efficiency of the pricing formulas (15.11) and (15.12), we first
consider the case of the standard Black-Scholes model in Example 15.2 and
compare the Fourier prices with the closed form solution given by the Black-
Scholes formula of Corollary 7.15. Figure 15.2 shows the relative errors of Call
prices and Deltas, defined as

RelErrCall =
Call(S0,K, T )− CallBS(S0,K, T )

CallBS(S0,K, T )
,

RelErrDelta =
Delta(S0,K, T )−DeltaBS(S0,K, T )

DeltaBS(S0,K, T )
,

where Call and Delta are the Fourier prices computed by (15.11)-(15.12),
and CallBS and DeltaBS are the exact values obtained by the Black-Scholes
formula; we set the relative error equal to zero whenever the CallBS price is
less that one basis point of the underlying price, that is CallBS(S0,K, T ) <
S0
104 : this is the value under which it is commonly agreed that the option is
worthless. Parameters selected for this test are

K = 100, S0 ∈ [50, 150], r = 5%, σ = 30%, α = 2; (15.17)

moreover the maturity ranges from T = 1
52 (one week) to T = 1 (one year). As

the figures show, the relative errors for both Call price and Delta are negligible,
since they are of the order of 10−8 for any moneyness and maturity.
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Fig. 15.2. Relative errors for Call price and Delta in the Black-Scholes model, with
the parameters as in (15.17)

15.2.4 Choice of the damping parameter

Before considering other more general models, let us briefly discuss the prob-
lem of the choice of the damping parameter α. Theoretically, the pricing for-
mula (15.15) is exact for any α > 1 such that E [Sα

T ] is finite: on the other
hand, it has been recognized by many authors that the integrand in (15.15)
can become either strongly peaked when α gets close to 1 or highly oscilla-
tory when α reaches the maximum allowed value. From the numerical point
of view, this fact is of extreme importance. For instance, the accuracy of the
prices calculated with the FFT or fractional FFT strongly depends on the
choice α since the FFT algorithm is heavily affected by the oscillations.

In the financial literature there has not been much work in the study of the
optimal value of α. Some “empirical” recommendation are given by Carr and
Madan [69], Schoutens, Simons and Tistaert [302]. Lee [234] suggests to choose
α so that it minimizes the errors in the approximation of the Fourier integral
by the discrete Fourier transform. A more general approach has been proposed
by Lord and Kahl [240] who suggest the minimization of the variation (cf.



554 15 Fourier methods

Definition 3.59) of the integrand in (15.11) as a criterion for selecting α: the
idea is to try to control and reduce the oscillations.

In Figure 15.3 we represent the integrand function of formula (15.11) in
the Black-Scholes model, that is

I (ξ, α,M, T ) := e−iξ log M ϕXT (−(ξ + iα))
(iξ − α)(iξ − α + 1))

, (15.18)

where α is the damping parameter, M = S0
K is the moneyness, T is the time

to maturity and ϕXT is the Gaussian characteristic function of Example 15.2.
In the left picture we set M = 0.8, T = 1 and we represent I as a function of
ξ ≥ 0 and α > 1; in the right picture we set M = 0.8, α = 2 and we represent
I as a function of ξ ≥ 0 and T ≥ 0. Notice the shape of I that is peaked for
α close to 1 and oscillatory for large α. Figure 15.4 shows the behaviour of I
for α close to 1 and for large α: in this case, oscillations are much pronounced
(of the order of 109).

By examining the graph of I, it is possible to select a range of values of
α which exclude large oscillations and can be used for the numerical inte-
gration of the Fourier pricing formulas (15.11)-(15.12). For instance, in the
Black&Scholes model with the specified parameters, α = 2 seems a good
choice for any moneyness and any maturity, as already confirmed by the re-
sults in Figure 15.2.

In general the optimal choice of α depends on the maturity T , the mo-
neyness M and, what is really important, on the parameters of the model.
In Figure 15.5 we plot the graph of the integrand I in (15.18) for the Black-
Scholes model, with α = 2, T = 1

12 (left) and T = 10 (right), as a function of
ξ ∈ [0, 10] and M ∈ [0.5, 1.5].

Next we examine other popular non-Gaussian models.
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Fig. 15.3. The function I = I (ξ, α, M, T ) in (15.18) for the Black-Scholes model
with r = 5% and σ = 30%. In the left picture ξ ∈ [0, 10], α ∈ [1.1, 10], M = 0.8, T =
1; in the right picture ξ ∈ [0, 10], T ∈ [0, 20], M = 0.8 and α = 2
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Fig. 15.4. The function (ξ, α) �→ I (ξ, α, M, T ) in (15.18) for the Black-Scholes
model with r = 5%, σ = 30%, T = 1 and M = 0.8. In the left picture ξ ∈
[0, 0.05], α ∈ [1.01, 1.2]; in the right picture ξ ∈ [0, 10], α ∈ [24, 25]
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Example 15.13 (Merton model) In the Merton jump-diffusion model (cf.
Example 13.51), the asset price is of the form (15.1) where

Xt = μt + σWt +
Nt∑

n=1

Zn

is the sum of a Brownian motion with drift and a compound Poisson pro-
cess. Assuming that the Zn are normally distributed Zn ∼ Nm,δ2 , the drift
coefficient under an EMM takes the form

μ = r − σ2

2
+ λ
(
1− em+ δ2

2

)
,
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Fig. 15.6. The function I = I (ξ, α, M, T ) in (15.18) for the Merton model with the
parameters as in (15.20). In the left picture ξ ∈ [0, 10], α ∈ [1.1, 2.5], M = 0.8, T =
1; in the right picture ξ ∈ [0, 0.5], T ∈ [0, 10], M = 0.8 and α = 2

and the characteristic function in (15.2) is given by

ϕXT (ξ) = exp
(

iμTξ − σ2ξ2

2
T + λT

(
eimξ− δ2ξ2

2 − 1
))

. (15.19)

Thus, we have four parameters: the diffusion volatility σ, the jump intensity
λ, the mean jump size m and the standard deviation of jump size δ.

Figure 15.6 shows the graph the Fourier integrand I = I(ξ, α,M, T ) in
(15.18). In the left picture, we set the moneyness M = S0

K = 0.8, the maturity
T = 1 and we consider I as a function of ξ ∈ [0, 1] and α ∈ [1.1, 2.5]: the
values of the other parameters are

r = 5%, σ = 15%, λ = m = 10%, δ = 1. (15.20)

This suggests that α in a neighborhood of 2 can be a good choice of the
damping parameter. Indeed, as the right picture in Figure 15.6 shows, for
α = 2 the integrand I is quite stable for all the maturities T ∈ [0, 10].

To confirm our result, we analyze the percentage differences of Call prices
obtained by using different values of α. More precisely, we denote by Cα(T ) the
price of a Call option with maturity T , computed by numerically integrating
formula (15.15) with α > 1: Figure 15.7 shows the graph of the percentage
differences

α �→ Cα(T )− C2(T )
C2(T )

, α ∈ [1.1, 2.6], (15.21)

for T = 1
52 , 1

12 , 1, 5 and moneyness M = 0.8. In all cases, the percentage
differences are almost negligible. Other experiments that we do not report
here, show that similar results are also valid for different moneyness and for
a wide range of values of the parameters of the model. This last fact is par-
ticularly important when considering the calibration of the model: indeed, in
this case the Fourier pricing formulas are used for different sets of parameters
and therefore the stability with respect to the damping parameter is crucial.
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Fig. 15.8. Implied volatility surface in the Merton model with the parameters as
in (15.20)

Finally, Figure 15.8 depicts the implied volatility surface computed in the
Merton model with the parameters as in (15.20). �

Example 15.14 (VG model) We examine the Variance-Gamma (VG)
model which belongs to the class of models with infinite activity Lévy pro-
cesses (see Example 13.61). The log-price process is defined by a Brownian
motion with drift μ and volatility σ, subordinated (i.e. time-changed) by a
Gamma process with unit mean and variance ν. The (risk-neutral) characte-



558 15 Fourier methods

Integrand

0

2

4
Ξ

5
10

15
20

Α

0

5

10

Integrand

0

2

4
Ξ

0
5

10
15

20

T

0
10
20
30
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ristic function in (15.2) takes the form

ϕXT (ξ) = eimTξ

(
1

1− iξμν + 1
2νξ2σ2

)T
ν

(15.22)

where

m = r +
1
ν

log
(

1− μν − σ2ν

2

)
.

In our experiment we set

μ = 4%, σ = 12%, ν = 20%, r = 10%. (15.23)

As for the other models, we first represent the Fourier integrand I =
I(ξ, α,M, T ) in (15.18). In the left picture in Figure 15.9, we consider I as a
function of ξ ∈ [0, 1] and α ∈ [1.1, 2.5], with the moneyness M = 0.8 and the
maturity T = 1. Also in this case, for α close to 2 the integrand I is stable
for long maturities (cf. the right picture in Figure 15.9). However, for small
maturities I oscillates and the numerical efficiency of the Fourier inversion is
limited by cancellation errors: indeed, since the integrand I assumes positive
and negative values, the integral of the absolute value of I may be much
larger than the integral of I (which gives the option price). As an illustration,
in Figure 15.10 we depict the graph of ξ �→ I(ξ, α,M, T ) for T = 1

52 , M = 0.8
and α = 2, 5, 10, 20.

It turns out that for short maturities, the outcome of the Fourier pricing
formulas is sensitive to the choice of the parameter α. Indeed, only for maturi-
ties greater than one month we obtain results which are stable with respect to
the choice of α, for different moneyness and values of the parameters of the VG
model. More precisely, in Figure 15.11 we report the percentage differences
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Fig. 15.11. Percentage differences (cf. (15.21)) of prices in the VG model, computed
with α ∈ [1.1, 20], of Call options with moneyness M = 0.9 and maturities T =
1
24

, 2
12

, 1, 5

(defined as in (15.21)) of Call prices computed with moneyness M = 0.9 and
maturities T = 1

24 , 2
12 , 1, 5. The same results are obtained for the percentage

differences of the values of the Delta. Note that, for the maturity of two weeks
(i.e. T = 1

24 ), the maximum percentage difference is of the order of 4% for α
ranging in [1.1, 20]. On the other hand, for maturities greater than one month,
the result are quite stable and independent on the choice of+α.
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Fig. 15.12. Implied volatility surface in the VG model with the parameters as in
(15.23)

Finally, Figure 15.12 depicts the implied volatility surface computed in the
VG model with the parameters as in (15.23). �

Example 15.15 (Heston model) We consider another example where the
option prices are sensitive to the choice of the damping parameter α. In the
Heston stochastic volatility model (cf. Example 10.33) the risk-neutral dy-
namics of the asset and its variance is given by (15.4), that is

dSt = rStdt +
√

νtStdW 1
t ,

dνt = k(ν∞ − νt)dt + η
√

νtdW 2
t ,

where r is the short rate, k is the speed of mean reversion, ν∞ is the long-
term mean of ν and η is the volatility of the variance. Moreover W is a
two-dimensional correlated Brownian motion with

d〈W 1,W 2〉t = �dt.

To avoid complex discontinuities (cf. Paragraph 15.1), we use the risk-neutral
characteristic function given by Bakshi, Cao and Chen [17], which takes the
form

ϕXT (ξ) = exp
(

iξrT +
ν0

η2

(
1− e−D(ξ)T

1−G(ξ)e−D(ξ)T

)
(k − iρηξ −D(ξ))

)
·

· exp
(

kν∞
η2

(
T (k − iρηξ −D(ξ))− 2 log

(
1−G(ξ)e−D(ξ)T

1−G(ξ)

)))
,

(15.24)
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Fig. 15.13. The function I (ξ, α, M, T ) in (15.18) for the Heston model with the
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where ν0 is the initial variance and D,G are the functions in (15.6), that is

D(ξ) =
√

(k − iρηξ)2 + (ξ + i) ξη2, G(ξ) =
k − iρηξ −D(ξ)
k − iρηξ + D(ξ)

. (15.25)

We consider the following values of the parameters:

r = 5%, k = 0.5, ν0 = 0.04, ν∞ = 0.02, η = 1.5, � = −0.4. (15.26)

As in the previous examples, we represent the integrand function I in (15.18)
as a function of ξ and α, with moneyness M = 0.8 and maturity T = 1
(left picture in Figure 15.13), and as a function of ξ and T , with moneyness
M = 0.8 and α = 2 (right picture in Figure 15.13). We see that, when the
maturity T equals 1, a choice of α ∈ [1.1, 3.5] is acceptable for a wide range
of the parameters of the Heston model (see also Figure 15.14). However, as
the maturity increases, we need to choose α closer to 1.1 in order to avoid
singularities: the right picture in Figure 15.13 shows the oscillations of I for
α = 2, T = 4 and the parameters as in (15.26).

Finally, in Figure 15.14 we report the percentage differences

α �→ Cα(T )− C1.5(T )
C1.5(T )

of Call prices computed with moneyness M = 0.8 and maturities T =
1
24 , 1

12 , 1, 5. Similar results are obtained for the percentage differences of the
values of the Delta and for different values of the parameters. For options with
moneyness greater than 0.9, the percentage differences are almost negligible
for any maturity. Figure 15.15 depicts the implied volatility surface computed
in the Heston model with the parameters as in (15.26).

Recently, a time-dependent Heston model was considered by Benhamou,
Gobet and Miri in [40] who derived an accurate analytical formula for the
price of vanilla options. �
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Fig. 15.14. Percentage differences of prices in the Heston model, computed with
α ∈ [1.1, 3], of Call options with moneyness M = 0.8 and maturities T = 1
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Fig. 15.15. Implied volatility surface in the Heston model with the parameters as
in (15.26)

15.3 Fourier-cosine series expansions

An interesting pricing method based on Fourier series expansions was recently
proposed by Fang and Oosterlee [127]. In order to present this alternative
approach, we first recall some classical result about Fourier series. Let

f : [−π, π] −→ R
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be an integrable function: the Fourier series of f is defined by

Sf (x) =
a0

2
+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) , x ∈ R,

where

ak =
1
π

∫ π

−π

f(ξ) cos(kξ)dξ, k ≥ 0,

bk =
1
π

∫ π

−π

f(ξ) sin(kξ)dξ, k ≥ 1.

Notice that if f is an even function, then bk = 0 for any k ≥ 1. A classical
result on the convergence of Fourier series which encompasses all the standard
situations in option pricing, is the following5:

Theorem 15.16 (Jordan) If f has bounded variation in [−π, π], then its
Fourier series converges for any x and its sum equals6

f(x+) + f(x−)
2

.

Clearly, if f has bounded variation and it is continuous at x0, then Sf (x0) =
f(x0): for simplicity, in the sequel we shall always assume that the Fourier
series of f converges and its sum equals f .

Through a simple change of variables, we may also consider functions
supported on any other finite interval. Indeed, if

f : [a, b] −→ R,

then we consider the change of variables θ = kπ x−a
b−a : more precisely, we set

g(θ) = f

(
b− a

π
θ + a

)
, θ ∈ [0, π],

and by symmetry we extend g to [−π, π] so that it is an even function. Then
we get the following Fourier-cosine series expansion of f :

f(x) =
a0

2
+

N∑
k=1

ak cos
(

kπ
x− a

b− a

)
, (15.27)

where

ak =
2

b− a

∫ b

a

f(ξ) cos
(

kπ
ξ − a

b− a

)
dξ, k ≥ 0.

It is known that the Fourier-cosine expansion of f in x equals the Chebyshev
series expansion of f

(
cos−1(t)

)
in t.

Next we split the problem of the Fourier approximation of option prices
in two steps:
5 For the proof see, for instance, Boyd [57].
6 See also Remark 3.65.



564 15 Fourier methods

First step. We consider f ∈ L1(R) and assume that we know explicitly its
Fourier transform f̂ . We choose an interval [a, b] and approximate the
coefficients of the Fourier-cosine expansion of f as follows:

ak =
2

b− a

∫ b

a

f(ξ)Re
(
eikπ ξ−a

b−a

)
dξ

=
2

b− a
Re

(
e−ikπ a

b−a

∫ b

a

f(ξ)eikπ ξ
b−a dξ

)

≈ 2
b− a

Re
(

e−ikπ a
b−a f̂

(
kπ

b− a

))
=: Ak, (15.28)

where we used the approximation

f̂(ξ) =
∫
R

eixξf(x)dx ≈
∫ b

a

eixξf(x)dx.

By truncating the series summation in (15.27) to a suitably large index
N , we get the following Fourier-cosine type approximation:

f(x) ≈ A0

2
+

N∑
k=1

Ak cos
(

kπ
x− a

b− a

)
, x ∈ [a, b], (15.29)

with Ak as in (15.28).
Second step. We consider a pricing model where there is only one risky

asset S which, under the selected EMM Q, takes the form

ST = eXT +x0 .

Here x0 = log S0, S0 > 0, and XT is a random variable whose characteristic
function ϕXT (cf. (15.2)) is known. As usual, we denote by H(S0, T ) the
price of a European option with maturity T and payoff function f : for
instance, f(x) = (ex −K)+ for a Call option with strike K.
Then, we assume that XT has a density function ΦXT and we have

H(S0, T ) = e−rT EQ [f(XT + x0)]

= e−rT

∫
R

f(x + x0)ΦXT (x)dx ≈

(we truncate the infinite integration range)

≈ e−rT

∫ b

a

f(x + x0)ΦXT (x)dx ≈
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(we use the Fourier-cosine approximation (15.29) of ΦXT , with Ak as in
(15.31) below)

≈ e−rT A0

2

∫ b

a

f(x + x0)dx

+ e−rT
N∑

k=1

Ak

∫ b

a

f(x + x0) cos
(

kπ
x− a

b− a

)
dx.

Hence we have the following approximation of the option price

H(S0, T ) ≈ e−rT

(
A0B0(S0)

2
+

N∑
k=1

AkBk(S0)

)
, (15.30)

where

Ak =
2

b− a
Re
(

e−ikπ a
b−a ϕXT

(
kπ

b− a

))
, (15.31)

Bk(S0) =
∫ b

a

f(x + log S0) cos
(

kπ
x− a

b− a

)
dx. (15.32)

Note that, up to a multiplicative factor, Bk is the coefficient of the Fourier-
cosine expansion of f that, in several interesting cases, can be computed
explicitly.

It is worth mentioning that the specification of the pricing model only enters
in the A-coefficients that depend on the characteristic function of XT , but
are independent on S0 and on the payoff function f . Therefore, options with
different payoff functions (e.g. Call options with different moneyness) can be
computed simultaneously. In particular, as described in Remark 15.11 (see also
[127]), we can give “a vector input” of strikes to obtain a vector of output
values: from the practical point of view, this speeds up the calibration process
significantly.

An error analysis of the Fourier-cosine approximation, based on classical
results from Fourier analysis, is performed in [127]: here we confine ourselves
to an illustration of the method by some examples. Firstly, we provide the
coefficients of the Fourier-cosine expansions of the prices and the Deltas of
Call and Put options. More generally, the Fourier coefficients of the Greeks
or other exotic payoff functions can be easily obtained by using a symbolic
computation software.

Example 15.17 (Call price and Delta) For a Call option we have

BCall
0 (S0) =

∫ b

a

(
ex+log S0 −K

)+
dx =
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(assuming a < − log S0
K )

=
∫ b

− log
S0
K

(
ex+log S0 −K

)
dx = ebS0 −K

(
1 + b + log

S0

K

)
,

and, for k ≥ 1,

BCall
k (S0) =

∫ b

a

(
ex+log S0 −K

)+
cos
(

kπ
x− a

b− a

)
dx =

(assuming a < − log S0
K )

=
∫ b

− log
S0
K

(
ex+log S0 −K

)
cos
(

kπ
x− a

b− a

)
dx

=
(b− a)2

(
(−1)kebkπS0 − kKπ cos γ + (b− a)K sin γ

)
(b− a)2kπ + k3π3

,

with

γ =
kπ
(
a + log S0

K

)
a− b

. (15.33)

The coefficients of the Delta of a Call option can be obtained by differentiating
with respect to S0:

BDelta
0 (S0) =

d

dS0
BCall

0 (S0) = eb − K

S0
,

and, for k ≥ 1,

BDelta
k (S0) =

d

dS0
BCall

k (S0)

=
(a− b)

(
(−1)k(a− b)ebS0 + (b− a)K cos γ + kKπ sin γ

)
((b− a)2 + k2π2) S0

with γ as in (15.33). �

Example 15.18 (Put price and Delta) For a Put option we have

BPut
0 (S0) = eaS0 −K

(
1 + a + log

S0

K

)
and, for k ≥ 1,

BPut
k (S0) =

(b− a)2 (eaS0kπ − kKπ cos γ + (b− a)K sin γ)
(b− a)2kπ + k3π3

,
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with γ as in (15.33). The coefficients of the Delta of a Put option are given
by:

BDelta-Put
0 (S0) = ea − K

S0
,

and, for k ≥ 1,

BDelta-Put
k (S0) =

(a− b)K ((a− b)eaS0 + (b− a)K cos γ + kKπ sin γ)
K ((b− a)2 + k2π2)S0

.

�

15.3.1 Implementation

The implementation of the Fourier-cosine method is straightforward, even if
some further indication is needed for the choice of the truncation range [a, b].
A natural choice for a, b has been proposed in [127] based on the observation
that the shape of the density functions can be estimated using the cumulants
of the process. We recall (cf. Appendix A.4) that the n-th cumulant cn of XT

is defined by

cn =
1
in

dn

dξn
g(ξ)|ξ=0, g(ξ) = log ϕXT (ξ) = log EQ

[
eiξXT

]
.

For instance, in the Black-Scholes model of Example 15.2 where

ϕXT (ξ) = e
i
(

r− σ2
2

)
Tξ−σ2ξ2

2 T
,

we have

c1 =
(

r − σ2

2

)
T, c2 = σ2T, (15.34)

that are the mean and the variance of XT . Though the expression of the
cumulants can be very lengthy in some cases (cf. for instance the Heston
model), generally it can be obtained explicitly using a symbolic computation
software.

Coming back to the choice of a and b, Fang and Oosterlee [127] propose
the following:

a = c1 − L
√

c2 +
√

c4, b = c1 + L
√

c2 +
√

c4, (15.35)

with L = 10. The cumulant c4 gives a contribution in controlling the sharp
peaks and fat tails that the density of some models (typically, associated to
Lévy processes) exhibits. The choice of L = 10 seems appropriate for some
models even if this parameter can be adjusted to improve the precision: in
general, when increasing the value of L, a larger value of N must be chosen
to get the same accuracy, as the following examples show. In some cases we
simply put

a = c1 − L
√

c2, b = c1 + L
√

c2 (15.36)

since this seems to be sufficient to get fairly good results.
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Fig. 15.16. Relative errors for Call price and Delta in the Black-Scholes model,
with the parameters K = 100, S0 ∈ [50, 150], r = 5% and σ = 30%. Moreover, a, b
are as in (15.36)-(15.34) and N = 50

Remark 15.19 In order to reduce the sensitivity of the method regarding
the choice of the parameter L, it is often preferable to price Call options via
the Put-Call parity formula as in Remark 15.12. �

In the first test, we consider the Black-Scholes model and compute the
relative errors defined as in Section 15.2.3, that is:

RelErrCall =
Call(S0,K, T )− CallBS(S0,K, T )

CallBS(S0,K, T )
,

RelErrDelta =
Delta(S0,K, T )−DeltaBS(S0,K, T )

DeltaBS(S0,K, T )
,

where Call and Delta are the prices computed by the Fourier-cosine approx-
imation with a, b as in (15.36) and N = 50. CallBS and DeltaBS denote
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Fig. 15.17. Percentage difference of Fourier-cosine approximation of the Call price
in the Heston model: S0 = K = 100, T = 1, L = 10, 20, 30, 40 and N ∈ [200, 300].
The reference value RV = 5.785155434

the exact values obtained by the Black-Scholes formula. The parameters are
r = 5%, σ = 30%, K = 100 and we consider S0 ∈ [50, 150] and maturities from
one week, T = 1

52 , to ten years, T = 10. In this case, the Fourier-cosine ex-
pansion reaches a higher level of accuracy with respect to the Fourier integral
approximation, while using significantly less CPU time.

A detailed analysis and several tests to evaluate the efficiency and accu-
racy of the Fourier-cosine expansion in comparison with other Fourier integral
approximations have been performed in [127]: the results are basically in ac-
cord with other tests we performed on the variety of models considered in
Chapter 10.5 and show that the Fourier-cosine expansion is very fast and ro-
bust, also under extreme conditions. Fang and Oosterlee [127] claim that in
some cases (eg. the Heston model) the Fourier-cosine method appears to be
approximately a factor 20 faster than the FFT method for the same level of
accuracy. We also quote the interesting paper [342] where the use of graphics
processing units with the Fourier-cosine method is studied.

Let us recall that the method has been proposed in literature only for one-
dimensional problems (i.e. one underlying asset): however the generalization
to high dimensional option pricing problems seems at hand.

Next we briefly discuss the dependence of the Fourier-cosine expansion on
choice of the parameters L in (15.35) and N in the approximation formula
(15.30). We consider three models (Heston, VG and CGMY) with the values
of the parameters taken by [127].
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Fig. 15.18. Percentage difference of Fourier-cosine approximation of the Call price
in the Heston model: S0 = 90, K = 100, T = 1
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, L = 10, 20, 30, 40 and N ∈

[200, 300]. The reference value RV = 1.156269518× 10-3

200 250 300 350 400
N

5.8485� 10�9

5.849� 10�9

5.8495� 10�9

5.85� 10�9

L�10

320 340 360 380 400
N

1.� 10�10

2.� 10�10

3.� 10�10

L�20

320 340 360 380 400
N

�0.00005

0.00005

0.0001

L�30

320 340 360 380 400
N

�1.0

�0.5

0.5

L�40

Fig. 15.19. Percentage difference of Fourier-cosine approximation of the Call price
in the Heston model: S0 = 130, K = 100, T = 5, L = 10, 20, 30, 40 and N ∈
[300, 400]. The reference value RV = 38.14326939



15.3 Fourier-cosine series expansions 571

Example 15.20 (Heston) We consider the Heston model (cf. Example
15.15) with

r = 0, k = 1.5768, ν0 = 0.0175, ν∞ = 0.0398, η = 0.5751, � = −0.5711.

We analyze the Fourier-cosine approximation with a, b as in (15.36) and dif-
ferent choices of L and N . The first two cumulants are given by

c1 =e−kT −u + u0 + ekT (u− u0 − Tuk + 2kTμ)
2k

,

c2 =
e−2kT

8k3
(u(8ekT k2

(
1 + ekT (Tk − 1)

)
+ η2

(
1 + ekT

(
4 + 4kT + ekT (−5 + 2kT )

))
− 8ekT ηk

(
2 + kT + ekT (−2 + kT )

)
ρ)

+ 2u0(−η2 + e2kT
(
η2 + 4k2 − 4ηkρ

)
+ 2ekT k(−2k + 2ηρ− Tη(η − 2kρ)))).

We consider the percentage difference, defined as

CallL,N − RV
RV

(15.37)

where RV is the reference value and CallL,N is the Fourier-cosine approxima-
tion of the Call price with integral truncation range L and series truncation
index N .

In particular, we compute the price of a Call with S0 = K = 100 and matu-
rity T = 1: for L = 10, 20, 30, 40 and N = 1000, we obtain the same price that
is our reference value RV = 5.785155434. Figure 15.17 shows the percentage
difference (15.37) between RV and the prices obtained by the Fourier-cosine
approximation for N ∈ [200, 300]. We see that, as already mentioned, if we
truncate the integration domain with a larger interval, then we need to in-
crease the value of N to maintain the accuracy of the approximation. Note
that for L = 10, the difference is negligible but not identically zero, due to the
integration range truncation error: on the contrary, in the other three cases
the difference tends to zero as N increases.

We repeat the experiment in other two cases, for short and long maturities.
Figure 15.18 presents the percentage differences when S0 = 90, K = 100 and
T = 1

12 : the reference value is 1.156269518 × 10-3 which is obtained with
N = 1000 and is independent on L.

Finally, we consider the case S0 = 130, K = 100 and T = 5: the refe-
rence value is 38.14326939 which is obtained with N = 10000: the percentage
difference is represented in Figure 15.19. �

Example 15.21 (Variance-Gamma) We consider the VG model (cf.
Example 15.14) with parameters

r = 0.1, σ = 0.12, μ = −0.14, ν = 0.2. (15.38)
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Fig. 15.20. Percentage difference of Fourier-cosine approximation of the Call price
in the VG model with parameters as in (15.38). Moreover, S0 = 130, K = 100,
T = 5, L = 10, 20, 30, 40 and N ∈ [300, 400]. The reference value RV = 4.424162989

We assume a, b of the form (15.35) for typical values of L: the cumulants are
given by (see (13.85))

c1 = T

(
r + μ +

log
(
1− 1

2ν
(
2μ + σ2

))
ν

)
,

c2 = T
(
μ2ν + σ2

)
,

c4 = 3Tν
(
2μ4ν2 + 4μ2νσ2 + σ4

)
.

(15.39)

In Figure 15.20 we plot the percentage differences among Fourier-cosine
approximations of the Call prices for L = 10, 20, 30, 40 and N ranging from
200 to 400. Here S0 = 100, K = 90 and T = 1: the reference value, computed
with N = 1000, is 19.099354724. �
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Fig. 15.21. Implied volatility surface in the CGMY model with the parameters as
in (15.40) and Y = C = 0.5 (left) and Y = 1.5, C = 0.15 (right)

Example 15.22 (CGMY) The CGMY model is based on a particular
tempered stable process (cf. Section 13.4.3) and encompasses the VG and
Black-Scholes models: as usual, the underlying asset is in the form ST = S0e

XT

and by (13.98)-(13.99) the risk-neutral characteristic exponent given by

ψ(ξ) = iμQ
∞ξ + C

(
(M − iξ)Y −MY + (G + iξ)Y −GY

+ iξY
(
MY−1 −GY−1

) )
Γ (−Y ),

μQ
∞ = r + CΓ (−Y )

(
GY − (1 + G)Y + MY − (M − 1)Y

+ Y
(
G−1+Y −M−1+Y

) )
,

where Γ is the Euler Gamma function. In general, the parameters satisfy
C > 0, G > 0, M > 1 and Y < 2. For σ = Y = 0 we get the VG model.

In the following, we set

r = 5%, M = 5, G = 2, (15.40)

and we consider different values of Y and C. Figure 15.15 shows the implied
volatility surface computed in the CGMY model with the parameters as in
(15.40) and Y = C = 0.5 (left picture), Y = 1.5, C = 0.15 (right picture),
obtained by the Fourier-cosine expansion with L = 10 and N = 200.

As in the previous examples, we examine the effect of the choice of the
truncation parameters L and N on the quality of the approximation. We
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Fig. 15.22. Percentage differences in the Fourier-cosine approximation of the
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a function of L ∈ [1, 20] with fixed N = 200 (right). The parameters are as in
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Fig. 15.23. Same as in Figure 15.22 but with Y = 1.5 and C = 0.15

assume a, b of the form (15.35) where the cumulants are given by

c1 =T

(
r − σ2

2
+ CΓ (−Y )

(
− (1 + G)Y

+ G−1+Y (G + Y )− (−1 + M)Y + M−1+Y (−Y + M)
))

,

c2 =CT (Y − 1)Y Γ (−Y )
(
GY−2 + MY−2

)
,

c4 =CT
(
G−4+Y + M−4+Y

)
Γ (4− Y ).

In Figure 15.22 we plot the percentage differences (15.37) among Fourier-
cosine approximations of the Call price as a function of N ∈ [30, 100] with fixed
L = 10 (left picture) and as a function of L ∈ [1, 20] with fixed N = 200 (right
picture). The parameters are as in (15.40), Y = C = 0.5, S0 = 80, K = 100
and T = 1: the reference value, computed with L = 10 and N = 10000, is
6.112730405.

In Figure 15.23 we repeat the same experiment in the case Y = 1.5 and
C = 0.15: the reference value, computed with L = 10 and N = 10000, is
11.82598063. For L ∈ [5, 15], the Fourier-cosine method converges quickly and
gives accurate results with a relatively small value of N . As noted in [127],
the convergence rate for Y = 1.5 is faster than for Y = 0.5 since fat-tailed
densities can often be well represented by cosine basis functions. In particular
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Fig. 15.24. Implied volatility in the CGMY model for different maturities

the method seems to be robust with values of the parameters (for instance, Y
close to 2) for which others numerical methods, like partial integro-differential
equation methods, have reported to have some difficulty (see [7] and [337]).

In some further experiments, we examine how the implied volatility varies
for different choices of the parameters. Figure 15.24 shows the implied vo-
latility in the CGMY model for different maturities (T = 1

12 , 2
12 , 4

14 , 6
12 ).

Figure 15.25 shows the implied volatility in the CGMY model for diffe-
rent values of the parameter M = 2, 5, 10, 20. Figure 15.26 shows the im-
plied volatility in the CGMY model for different values of the parameter
Y = 0.1, 0.3, 0.5, 0.7, 1.1, 1.3, 1.5, 1.7. �
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Elements of Malliavin calculus

This chapter offers a brief introduction to Malliavin calculus and its applica-
tions to mathematical finance, in particular the computation of the Greeks by
the Monte Carlo method. As we have seen in Section 12.4.2, the simplest way
to compute sensitivities by the Monte Carlo method consists in approxima-
ting the derivatives by incremental ratios obtained by simulating the payoffs
corresponding to close values of the underlying asset. If the payoff function
is not regular (for example, in the case of a digital option with strike K and
payoff function 1[K,+∞[) this technique is not efficient since the incremental
ratio has typically a very large variance. In Section 12.4.2 we have seen that
the problem can be solved by integrating by parts and differentiating the den-
sity function of the underlying asset, provided it is sufficiently regular: if the
underlying asset follows a geometric Brownian motion, this is possible since
the explicit expression of the density is known.

In a more general setting, the Malliavin calculus allows obtaining explicit
integration-by-parts formulas even if the density of the underlying asset is not
known and so it provides an effective tool to approximate the Greeks nume-
rically (see, for example, the experiments in [137] where different methods of
approximating the Greeks are compared).

The applications of Malliavin calculus to mathematical finance are rela-
tively recent: Malliavin’s results [244] initially attracted great interest in view
of the proof and extension of Hörmander’s hypoellipticity theorem [170] (cf.
Section 9.5.2). From a theoretical point of view, a remarkable financial ap-
plication is the Clark-Ocone formula [270], proved in Paragraph 16.2.1, that
improves the martingale representation theorem and allows expressing the
hedging strategy of an option in terms of the stochastic derivative of its price.

We also recall that Malliavin calculus was recently used to approximate
numerically the price of American options by the Monte Carlo method: see, for
instance, Fournié, Lasry, Lebuchoux, Lions and Touzi [138], Fournié, Lasry,
Lebuchoux and Lions [137], Kohatsu-Higa and Pettersson [212], Bouchard,
Ekeland and Touzi [53], Bally, Caramellino and Zanette [20].

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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In this chapter we give some basic ideas of Malliavin calculus by analyz-
ing several examples of the applications to the computation of the Greeks.
We confine ourselves to the one-dimensional case, choosing simplicity instead
of generality; furthermore, some proofs will only be sketched for the sake
of brevity. For an organic presentation of the theory, we refer to the mono-
graphs by Nualart [267], Shigekawa [308], Sanz-Solé [296], Bell [37], Da Prato
[83], Di Nunno, Oksendal and Proske [96]. We mention also some more coin-
cise presentations, mainly application-oriented, that are available on the web:
Kohatsu-Higa and Montero [211], Friz [144], Bally [19], Oksendal [272] and
Zhang [343].

16.1 Stochastic derivative

In this paragraph we introduce the concept of stochastic (or Malliavin) deriva-
tive: the idea is to define the notion of differentiability within the family of
random variables that are equal to (or can be approximated by) functions
of independent increments of Brownian motion. Under suitable assumptions,
we see that this family is wide enough to contain the solution of stochastic
differential equations.

Unfortunately the notations that are necessary to introduce Malliavin cal-
culus are a bit burdensome: at the beginning courage must not be lost and a
little patience is needed to get acquainted with the notation. On first reading
we advise the reader not to dwell too much on the details.

Let us consider a real Brownian motion W on the probability space
(Ω,F , P ), endowed with the Brownian filtration FW =

(
FW

t

)
t∈[0,T ]

. For the
sake of simplicity, since this is not really restrictive, we suppose that T = 1
and, for n ∈ N, let

tkn :=
k

2n
, k = 0, . . . , 2n

be the (k + 1)-th element of the n-th order dyadic partition of the interval
[0, T ]. Let

Ik
n := ]tk−1

n , tkn], Δk
n := Wtk

n
−Wtk−1

n
,

be the k-th interval of the partition and the k-th increment of the Brownian
motion, for k = 1, . . . , 2n, respectively. Furthermore, we denote by

Δn :=
(
Δ1

n, . . . ,Δ2n

n

)
the R2n

-vector of the n-th order Brownian increments and by C∞pol the family
of smooth functions that, together with their derivatives of any order, have
at most polynomial growth.

Definition 16.1 Given n ∈ N, the family of simple n-th order functionals is
defined by

Sn := {ϕ(Δn) | ϕ ∈ C∞pol(R
2n

;R)}.
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We denote by
xn = (x1

n, . . . , x2n

n ) (16.1)

the point in R2n

. It is apparent that WT = ϕ(Δn) ∈ Sn for every n ∈ N with
ϕ(x1

n, . . . , x2n

n ) = x1
n + · · ·+ x2n

n .
We also remark that

Sn ⊆ Sn+1, n ∈ N,

and we define
S :=

⋃
n∈N
Sn,

the family of simple functionals. By the growth assumption on ϕ, S is a
subspace of Lp(Ω,FW

T ) for every p ≥ 1. Further, S is dense1 in Lp(Ω,FW
T ).

We introduce now a very handy notation, that will be often used:

Notation 16.2 For every t ∈ ]0, T ], let kn(t) be the only element k ∈
{1, . . . , 2n} such that t ∈ Ik

n.

Definition 16.3 For every X = ϕ(Δn) ∈ S, the stochastic derivative of X
at time t is defined by

DtX :=
∂ϕ

∂x
kn(t)
n

(Δn).

Remark 16.4 Definition 16.3 is well-posed i.e. it is independent of n: indeed
it is not difficult to see that, if we have for n,m ∈ N

X = ϕn(Δn) = ϕm(Δm) ∈ S,

with ϕn, ϕm ∈ C∞pol, then, for every t ≤ T , we have

∂ϕn

∂x
kn(t)
n

(Δn) =
∂ϕm

∂x
km(t)
m

(Δm).

�

Now we endow S with the norm

‖X‖1,2 :=E
[
X2
] 1

2 + E

[∫ T

0

(DsX)2ds

] 1
2

=‖X‖L2(Ω) + ‖DX‖L2([0,T ]×Ω).

Definition 16.5 The space D1,2 of the Malliavin-differentiable random vari-
ables is the closure of S with respect to the norm ‖ · ‖1,2.

In other terms, X ∈ D1,2 if and only if there exists a sequence (Xn) in S such
that
1 Since we are considering the Brownian filtration!
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i) X = lim
n→∞

Xn in L2(Ω);

ii) the limit lim
n→∞

DXn exists in L2([0, T ]×Ω).

In this case it seems natural to define the Malliavin derivative of X as

DX := lim
n→∞

DXn, L2([0, T ]×Ω).

This definition is well-posed in view of the following:

Lemma 16.6 Let (Xn) be a sequence in S such that

i) lim
n→∞

Xn = 0 in L2(Ω);

ii) there exists U := lim
n→∞

DXn in L2([0, T ]×Ω).

Then U = 0 a.e.2

Remark 16.7 The proof of Lemma 16.6 is not obvious since the differenti-
ation operator D is linear but not bounded, i.e.

sup
X∈S

‖DX‖L2

‖X‖L2
= +∞.

Indeed it is quite simple to find an example of a sequence (Xn) bounded in
L2(Ω) and such that (DXn) is not bounded in L2([0, T ]×Ω): for fixed n̄ ∈ N,
it suffices to consider Xn = ϕn(Δn̄) with (ϕn) converging in L2(R2n̄

) to a
suitable non-regular function. �

We defer the proof of Lemma 16.6 to Paragraph 16.2 and now we analyze
some fundamental examples.

16.1.1 Examples

Example 16.8 For fixed t, let us prove that Wt ∈ D1,2 and3

DsWt = 1[0,t](s). (16.2)

Indeed, recalling Notation 16.2, we consider the sequence

Xn =
kn(t)∑
k=1

Δk
n, n ∈ N.

We have Xn = W
t
kn(t)
n

∈ Sn and so

DsXn =

{
1 if s ≤ t

kn(t)
n ,

0 if s > t
kn(t)
n ,

i.e. DsXn = 1
[0,t

kn(t)
n ]

. Then (16.2) follows from the fact that

2 In B ⊗ FW
T .

3 The stochastic derivative is defined as an L2-limit, up to sets with null Lebesgue
measure: thus, DsWt is also equal to 1]0,t[(s) or to 1[0,t](s).
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i) lim
n→∞

W
t
kn(t)
n

= Wt in L2(Ω);

ii) lim
n→∞

1
[0,t

kn(t)
n ]

= 1(0,t) in L2([0, T ]×Ω).

�

Remark 16.9 If X ∈ D1,2 is FW
t -measurable, then

DsX = 0, s > t.

Indeed, up to approximation, it suffices to consider the case X = ϕ(Δn) ∈ Sn

for some n: if X is FW
t -measurable, then it is independent4 from Δk

n for
k > kn(t). Therefore, for fixed s > t,

∂ϕ

∂x
kn(s)
n

(Δn) = 0,

at least if n is large enough, in such a way that t and s belong to disjoint
intervals of the n-th order dyadic partition. �

Example 16.10 Let u ∈ L2(0, T ) be a (deterministic) function and

X =
∫ t

0

u(r)dWr.

Then X ∈ D1,2 and

DsX =

{
u(s) for s ≤ t,

0 for s > t.

Indeed the sequence defined by

Xn =
kn(t)∑
k=1

u(tk−1
n )Δk

n

is such that
DsXn = ϕ(tkn(s)

n )

if s ≤ t
kn(t)
n and DsXn = 0 for s > t

kn(t)
n . Further, Xn and DsXn approximate

X and u(s)1[0,t](s) in L2(Ω) and L2([0, T ]×Ω) respectively. �

4 Recalling Remark A.43, since t ∈]t
kn(t)−1
n , t

kn(t)
n ] we have:

i) if t < t
kn(t)
n , then X is a function of Δ1

n, . . . , Δ
kn(t)−1
n only;

ii) if t = t
kn(t)
n , then X is a function of Δ1

n, . . . , Δ
kn(t)
n only.
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16.1.2 Chain rule

If X,Y ∈ D1,2, then the product XY in general is not square integrable and
so it does not belong to D1,2. For this reason, sometimes it is worthwhile to
use, instead of D1,2 the slightly smaller space (but closed under products):

D1,∞ =
⋂
p≥2

D1,p

where D1,p is the closure of S with respect to the norm

‖X‖1,p = ‖X‖Lp(Ω) + ‖DX‖Lp([0,T ]×Ω).

We observe that X ∈ D1,p if and only if there exists a sequence (Xn) in S
such that

i) X = lim
n→∞

Xn in Lp(Ω);

ii) the limit lim
n→∞

DXn exists in Lp([0, T ]×Ω).

If p ≤ q, by Hölder’s inequality we get

‖ · ‖Lp([0,T ]×Ω) ≤ T
q−p
pq ‖ · ‖Lp([0,T ]×Ω),

and so
D1,p ⊇ D1,q.

In particular, for every X ∈ D1,p, with p ≥ 2, and an approximating sequence
(Xn) in Lp, we have

lim
n→∞

DXn = DX, in L2([0, T ]×Ω).

Example 16.11 By using the approximating sequence in Example 16.8, it
is immediate to verify that Wt ∈ D1,∞ for every t. �

Proposition 16.12 (Chain rule) Let5 ϕ ∈ C∞pol(R). Then:

i) if X ∈ D1,∞, then ϕ(X) ∈ D1,∞ and

Dϕ(X) = ϕ′(X)DX; (16.3)

ii) if X ∈ D1,2 and ϕ,ϕ′ are bounded, then ϕ(X) ∈ D1,2 and (16.3) holds.

Further, if ϕ ∈ C∞pol(R
N ) and X1, . . . ,XN ∈ D1,∞, then ϕ(X1, . . . ,XN ) ∈

D1,∞ and we have

Dϕ(X1, . . . ,XN ) =
N∑

i=1

∂xiϕ(X1, . . . ,XN )DXi.

5 Actually it suffices that ϕ ∈ C1 and that both ϕ and its first-order derivative
have at most polynomial growth.
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Proof. We prove only ii) since the other parts can be proved essentially in
an analogous way. If X ∈ S, ϕ ∈ C1 and both ϕ and its first-order derivative
are bounded, then ϕ(X) ∈ S and the claim is obvious.

If X ∈ D1,2, then there exists a sequence (Xn) in S converging to X in
L2(Ω) and such that (DXn) converges to DX in L2([0, T ] × Ω). Then, by
the dominated convergence theorem, ϕ(Xn) tends to ϕ(X) in L2(Ω). Further,
Dϕ(Xn) = ϕ′(Xn)DXn and

‖ϕ′(Xn)DXn − ϕ′(X)DX‖L2 ≤ I1 + I2,

where
I1 = ‖(ϕ′(Xn)− ϕ′(X))DX‖L2 −−−−→

n→∞
0

by the dominated convergence theorem and

I1 = ‖ϕ′(Xn)(DX −DXn)‖L2 −−−−→
n→∞

0

since (DXn) converges to DX and ϕ′ is bounded. �

Example 16.13 By the chain rule, (Wt)2 ∈ D1,∞ and

DsW
2
t = 2Wt1[0,t](s). �

Example 16.14 Let u ∈ L2 such that ut ∈ D1,2 for every t. Then

X :=
∫ t

0

urdWr ∈ D1,2

and for s ≤ t

Ds

∫ t

0

urdWr = us +
∫ t

s

DsurdWr.

Indeed, for fixed t, we consider the sequence defined by

Xn :=
kn(t)∑
k=1

utk−1
n

Δk
n, n ∈ N,

approximating X in L2(Ω). Then Xn ∈ D1,2 and, by the chain rule, we get

DsXn = u
t
kn(s)−1
n

+
kn(t)∑
k=1

Dsutk−1
n

Δk
n =

(since u is adapted and so, by Remark 16.9, Dsutk
n

= 0 if s > tkn)

= u
t
kn(s)−1
n

+
kn(t)∑

k=kn(s)+1

Dsutk−1
n

Δk
n −−−−→

n→∞
us +

∫ t

s

DsurdWr

in L2([0, T ]×Ω). �
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Example 16.15 If u ∈ D1,2 for every t, then we have

Ds

∫ t

0

urdr =
∫ t

s

Dsurdr.
�

Example 16.16 Let us consider the solution (Xt) of the SDE

Xt = x +
∫ t

0

b(r,Xr)dr +
∫ t

0

σ(r,Xr)dWr, (16.4)

with x ∈ R and the coefficients b, σ ∈ C1
b . Then Xt ∈ D1,2 for every t and we

have

DsXt = σ(s,Xs) +
∫ t

s

∂xb(r,Xr)DsXrdr +
∫ t

s

∂xσ(r,Xr)DsXrdWr. (16.5)

We do not go into the details of the proof of the first claim. The idea is to use
an approximation argument based on the Euler scheme (cf. Paragraph 12.2):
more precisely, the claim follows from the fact that (Xt) is the limit of the
sequence of piecewise constant processes defined by

Xn
t = Xn

tk−1
n

1Ik
n
(t), t ∈ [0, T ],

with Xn
tk
n

defined recursively by

Xn
tk
n

= Xn
tk−1
n

+ b(tk−1
n ,Xn

tk−1
n

)
1
2n

+ σ(tk−1
n ,Xn

tk−1
n

)Δk
n,

for k = 1, . . . , 2n. Once we have proved that Xt ∈ D1,2, (16.5) is an immediate
consequence of Examples 16.14, 16.15 and of the chain rule. �

Now we use the classical method of variation of constants to get an explicit
expression of DsXt. Under the assumptions of Example 16.16, we consider the
process

Yt = ∂xXt, (16.6)

solution of the SDE

Yt = 1 +
∫ t

0

∂xb(r,Xr)Yrdr +
∫ t

0

∂xσ(r,Xr)YrdWr. (16.7)

Lemma 16.17 Let Y be as in (16.7) and Z be solution of the SDE

Zt = 1 +
∫ t

0

((∂xσ)2 − ∂xb)(r,Xr)Zrdr −
∫ t

0

∂xσ(r,Xr)ZrdWr. (16.8)

Then YtZt = 1 for every t.
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Proof. We have Y0Z0 = 1 and, omitting the arguments, by the Itô formula
we have

d(YtZt) =YtdZt + ZtdYt + d〈Y,Z〉t
=YtZt

( (
(∂xσ)2 − (∂xb)

)
dt− ∂xσdWt

+ ∂xbdt + ∂xσdWt − (∂xσ)2dt
)

= 0,

and the claim follows by the uniqueness of the representation for an Itô pro-
cess, Proposition 5.3. �

Proposition 16.18 Let X,Y,Z be the solutions of the SDEs (16.4), (16.7)
and (16.8), respectively. Then

DsXt = YtZsσ(s,Xs). (16.9)

Proof. We recall that, for fixed s, the process DsXt verifies the SDE (16.5)
over [s, T ] and we prove that At := YtZsσ(s,Xs) verifies the same equation:
the claim will then follow from the uniqueness results for SDE.

By (16.7) we have

Yt = Ys +
∫ t

s

∂xb(r,Xr)Yrdr +
∫ t

s

∂xσ(r,Xr)YrdWr;

multiplying by Zsσ(s,Xs) and using Lemma 16.17

YtZsσ(s,Xs)︸ ︷︷ ︸
=At

= YsZs︸ ︷︷ ︸
=1

σ(s,Xs) +
∫ t

s

∂xb(r,Xr)YrZsσ(s,Xs)︸ ︷︷ ︸
=Ar

dr

+
∫ t

s

∂xσ(r,Xr)YrZsσ(s,Xs)︸ ︷︷ ︸
=Ar

dWr,

whence the claim. �

Remark 16.19 The concept of stochastic derivative and the results that we
proved up to now can be extended to the multi-dimensional case without
major difficulties, but for the heavy notation. If W = (W 1, . . . ,W d) is a d-
dimensional Brownian motion and we denote the derivative with respect to
the i-th component of W by Di, then we can prove that, for s ≤ t

Di
sW

j
t = δij

where δij is Kronecker’s delta. More generally, if X is a random variable
depending only on the increments of W j , then DiX = 0 for i 
= j. Further,
for u ∈ L2

Di
s

∫ t

0

urdWr = ui
s +
∫ t

s

Di
surdWr. �
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16.2 Duality

In this paragraph we introduce the adjoint operator of the Malliavin derivative
and we prove a duality result that is the core tool to demonstrate the stochastic
integration-by-parts formula.

Definition 16.20 For fixed n ∈ N, the family Pn of the n-th order simple
processes consists of the processes U of the form

Ut =
2n∑

k=1

ϕk(Δn)1Ik
n
(t), (16.10)

with ϕk ∈ C∞pol(R
2n

;R) for k = 1, . . . , 2n.

Using Notation 16.2, formula (16.10) can be rewritten more simply as

Ut = ϕkn(t)(Δn).

We observe that
Pn ⊆ Pn+1, n ∈ N,

and we define
P :=

⋃
n∈N
Pn

the family of simple functionals. It is apparent that

D : S −→ P

i.e. DX ∈ P for X ∈ S. By the growth assumption on the functions ϕk in
(16.10), P is a subspace of Lp([0, T ]×Ω) for every p ≥ 1 and furthermore P
is dense in Lp([0, T ]×Ω,B ⊗FW

T ).
Now we recall notation (16.1) and we define the adjoint operator of D.

Definition 16.21 Given a simple process U ∈ P of the form (16.10), we set

D∗U =
2n∑

k=1

(
ϕk(Δn)Δk

n − ∂xk
n
ϕk(Δn)

1
2n

)
. (16.11)

D∗U is called Skorohod integral [313] of U : in the sequel we also write

D∗U =
∫ T

0

Ut # dWt. (16.12)

We observe that Definition (16.11) is well-posed since it does not depend on
n. Further, we note that, differently from the Itô stochastic integral, for the
Skorohod integral we do not require the process U to be adapted. For this
reason D∗ is also called anticipative stochastic integral.
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Remark 16.22 If U is adapted, then ϕk in (16.10) is FW
tk−1
n

-measurable and
so, by Remark 16.9, ∂xk

n
ϕk = 0. Consequently we have∫ T

0

Ut # dWt =
2n∑

k=1

ϕk(Δn)Δk
n =

∫ T

0

UtdWt.

In other terms, for an adapted stochastic process, the Skorohod integral coin-
cides with the Itô integral. �

A central result in Malliavin calculus is the following:

Theorem 16.23 (Duality relation) For every X ∈ S and U ∈ P we have

E

[∫ T

0

(DtX)Utdt

]
= E

[
X

∫ T

0

Ut # dWt

]
. (16.13)

Remark 16.24 (16.13) can be written equivalently in the form

〈DX,U〉L2([0,T ]×Ω) = 〈X,D∗U〉L2(Ω)

that justifies calling the Skorohod integral the adjoint operator of D.

Proof. Let U be in the form (16.10) and let X = ϕ0(Δm) with ϕ ∈
C∞pol(R

2m

;R): evidently it is not restrictive to assume m = n. We put δ = 1
2n

and for every j ∈ {1, . . . , 2n} and k ∈ {0, . . . , 2n},

ϕ
(j)
k (x) = ϕk(Δ1

n, . . . ,Δj−1
n , x,Δj+1

n , . . . ,Δ2n

n ), x ∈ R.

Then we have

E

[∫ T

0

(DtX)Utdt

]
= δE

[
2n∑

k=1

∂xk
n
ϕ0(Δn)ϕk(Δn)

]
=

(since the Brownian increments are independent and identically distributed,
Δk

n ∼ N0,δ)

= δ
2n∑

k=1

E

[∫
R

(
d

dx
ϕ

(k)
0 (x)

)
ϕ

(k)
k (x)

e−
x2
2δ

√
2πδ

dx

]
=

(integrating by parts)

= δ
2n∑

k=1

E

[∫
R

ϕ
(k)
0 (x)

(
x

δ
ϕ

(k)
k (x)− d

dx
ϕ

(k)
k (x)

)
e−

x2
2δ

√
2πδ

dx

]
=

= E

[
ϕ0(Δn)

2n∑
k=1

(
ϕk(Δn)Δk

n − ∂xk
n
ϕk(Δn)δ

)]
,

and this, in view of the definition of the Skorohod integral, concludes the
proof. �
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As a consequence of the duality relation, we prove Lemma 16.6.

Proof (of Lemma 16.6). Let (Xn) be a sequence in S such that

i) lim
n→∞

Xn = 0 in L2(Ω);

ii) there exists U := lim
n→∞

DXn in L2([0, T ]×Ω).

To prove that U = 0, we consider V ∈ P: we have, by ii),

E

[∫ T

0

UtVtdt

]
= lim

n→∞
E

[∫ T

0

(DtXn)Vtdt

]
=

(by the duality relation and then by i))

= lim
n→∞

E

[
Xn

∫ T

0

Vt # dWt

]
= 0.

The claim follows from the density of P in L2([0, T ]×Ω,B ⊗FW
T ). �

Remark 16.25 In an analogous way we prove that, if (Un) is a sequence in
P such that

i) lim
n→∞

Un = 0 in L2([0, T ]×Ω);

ii) there exists X := lim
n→∞

D∗Un in L2(Ω),

then X = 0 a.s. Then, if p ≥ 2 and U is such that there exists a sequence
(Un) in P such that

i) U = lim
n→∞

Un in Lp([0, T ]×Ω);

ii) the limit lim
n→∞

D∗Un exists in Lp(Ω),

we say that U is p-th order Skorohod-integrable and the following definition
of Skorohod integral is well-posed:

D∗U =
∫ T

0

Ut # dWt := lim
n→∞

D∗Un, in L2(Ω).

Further, the following duality relation

E

[∫ T

0

(DtX)Utdt

]
= E

[
X

∫ T

0

Ut # dWt

]
holds, for every X ∈ D1,2 and U which is Skorohod-integrable of order two.�

16.2.1 Clark-Ocone formula

The martingale representation theorem asserts that, for every X ∈ L2(Ω,FW
T ),

there exists u ∈ L2 such that

X = E [X] +
∫ T

0

usdWs. (16.14)
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If X is Malliavin differentiable, using Example 16.14 we are able to obtain the
expression of u: indeed, formally6 we have

DtX = ut +
∫ T

t

DtusdWs

and so, taking conditional expectation, we can conclude that

E
[
DtX | FW

t

]
= ut. (16.15)

(16.14)-(16.15) are known as Clark-Ocone formula. Now we proceed to prove
it rigorously.

Theorem 16.26 (Clark-Ocone formula) If X ∈ D1,2, then

X = E [X] +
∫ T

0

E
[
DtX | FW

t

]
dWt.

Proof. It is not restrictive to suppose E [X] = 0. For every simple adapted
process U ∈ P we have, by the duality relation of Theorem 16.23,

E [XD∗U ] = E

[∫ T

0

(DtX)Utdt

]
=

(since U is adapted)

= E

[∫ T

0

E
[
DtX | FW

t

]
Utdt

]
.

On the other hand, the Skorohod integral of the adapted process U coincides
with the Itô integral and by (16.14) we get

E [XD∗U ] = E

[∫ T

0

utdWt

∫ T

0

UtdWt

]
=

(by Itô isometry)

= E

[∫ T

0

utUtdt

]
.

The claim follows by density, since U is arbitrary. �

Remark 16.27 As an interesting consequence of the Clark-Ocone formula
we have that, if X ∈ D1,2 and DX = 0, then X is a.s. constant. �

6 Assuming that ut ∈ D1,2 for every t.
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Now we dwell on the financial interpretation of the Clark-Ocone formula:
we suppose that X ∈ L2(Ω,FW

T ) is the payoff of a European option on an
asset S. We assume that the dynamics of the discounted price under the EMM
is given by

dS̃t = σtS̃tdWt.

Then, if (α, β) is a replicating strategy for the option, we have (cf. (10.57))

X̃ = E
[
X̃
]

+
∫ T

0

αtdS̃t = E
[
X̃
]

+
∫ T

0

αtσtS̃tdWt.

On the other hand, by the Clark-Ocone formula we get

X̃ = E
[
X̃
]

+
∫ T

0

E
[
DtX̃ | FW

t

]
dWt,

and so we obtain the expression of the replicating strategy:

αt =
E
[
DtX̃ | FW

t

]
σtS̃t

, t ∈ [0, T ].

16.2.2 Integration by parts and computation of the Greeks

In this section we prove a stochastic integration-by-parts formula and by
means of some remarkable examples, we illustrate its application to the com-
putation of the Greeks by the Monte Carlo method. As we have already said in
the introduction, the techniques based on Malliavin calculus can be effective
also when poor regularity properties are assumed on the payoff function F , i.e.
just where the direct application of the Monte Carlo method gives unsatisfac-
tory results, even if the underlying asset follows a simple geometric Brownian
motion.

The stochastic integration by parts allows removing the derivative of the
payoff function, thus improving the numerical approximation: more precisely,
let us suppose that we want to determine ∂αE [F (ST )Y ] where ST denotes
the final price of the underlying asset depending on a parameter α (e.g. α is
S0 in the case of the Delta, α is the volatility in the case of the Vega) and Y
is some random variable (e.g. a discount factor). The idea is to try to express
∂αF (ST )Y in the form ∫ T

0

DsF (ST )Y Usds,

for some adapted integrable process U . By using the duality relation, formally
we obtain

∂αE [F (ST )Y ] = E [F (ST )D∗(Y U)] ,

that, as we shall see in the following examples, can be used to get a good
numerical approximation.
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In this section we want to show how to apply a technique, rather than
dwelling on the mathematical details, so the presentation will be somewhat
informal, starting already from the next statement.

Theorem 16.28 (Stochastic integration by parts) Let F ∈ C1
b and let

X ∈ D1,2. Then the following integration by parts holds:

E [F ′(X)Y ] = E

[
F (X)

∫ T

0

utY∫ T

0
usDsXds

# dWt

]
, (16.16)

for every random variable Y and for every stochastic process u for which
(16.16) is well-defined.

Sketch of the proof. By the chain rule we have

DtF (X) = F ′(X)DtX;

multiplying by utY and integrating from 0 to T we get∫ T

0

utY DtF (X)dt = F ′(X)Y
∫ T

0

utDtXdt,

whence, provided that
1∫ T

0
utDtXdt

has good integrability properties, we have

F ′(X)Y =
∫ T

0

DtF (X)
utY∫ T

0
usDsXds

dt,

and, taking the mean

E [F ′(X)Y ] = E

[∫ T

0

DtF (X)
utY∫ T

0
usDsXds

dt

]
=

(by the duality relation)

= E

[
F (X)

∫ T

0

utY∫ T

0
usDsXds

# dWt

]
.

�

Remark 16.29 The regularity assumptions on the function F can be greatly
weakened: by using a standard regularization procedure, it is possible to prove
the validity of the integration-by-parts formula for weakly differentiable (or
even differentiable in a distributional sense) functions.
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The process u in (16.16) can be often chosen in a suitable way in order to
simplify the expression of the integral on the right-hand side (cf. Examples
16.36 and 16.37).

If u = 1 and Y = ∂αX, (16.16) becomes

E [∂αF (X)] = E

[
F (X)

∫ T

0

∂αX∫ T

0
DsXds

# dWt

]
. (16.17)

�

In the following Examples 16.30, 16.33 and 16.34, we consider the Black-
Scholes dynamics for the underlying asset of an option under the EMM and
we apply the integration-by-parts formula with X = ST where

ST = x exp
(

σWT +
(

r − σ2

2

)
T

)
. (16.18)

Example 16.30 (Delta) We observe that DsST = σST and ∂xST = ST

x .
Then, by (16.17) we have the following expression for the Black-Scholes Delta

Δ = e−rT ∂xE [F (ST )]

= e−rT E

[
F (ST )

∫ T

0

∂xST∫ T

0
DsST ds

# dWt

]

= e−rT E

[
F (ST )

∫ T

0

1
σTx

dWt

]

=
e−rT

σTx
E [F (ST )WT ] . (16.19)

�

We know that in general it is not allowed to “take out” a random variable
from an Itô integral (cf. Section 4.3.2): let us see now how this can be made
in the case of the anticipative stochastic integral.

Proposition 16.31 Let X ∈ D1,2 and let U be a second-order Skorohod-
integrable process. Then∫ T

0

XUt # dWt = X

∫ T

0

Ut # dWt −
∫ T

0

(DtX) Utdt. (16.20)

Proof. For every Y ∈ S, by the duality relation, we have

E [Y D∗(XU)] = E

[∫ T

0

(DtY )XUtdt

]
=

(by the chain rule)

= E

[∫ T

0

(Dt(Y X)− Y DtX) Utdt

]
=
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(by the duality relation)

= E

[
Y

(
XD∗U −

∫ T

0

DtXUtdt

)]
,

and the claim follows by density. �

Formula (16.20) is crucial for the computation of Skorohod integrals. The
typical case is when U is adapted: then (16.20) becomes∫ T

0

XUt # dWt = X

∫ T

0

UtdWt −
∫ T

0

(DtX)Utdt,

and so it is possible to express the Skorohod integral as the sum of an Itô
integral and of a Lebesgue integral.

Example 16.32 By a direct application of (16.20), we have∫ T

0

WT # dWt = W 2
T − T.

�

Example 16.33 (Vega) Let us compute the Vega of a European option with
payoff function F in the Black-Scholes model: we first notice that

∂σST = (WT − 2σT )ST , DsST σST .

Then

V = e−rT ∂σE [F (ST )] =

(by the integration-by-parts formula (16.17))

= e−rT E

[
F (ST )

∫ T

0

WT − σT

σT
# dWt

]
=

(by (16.20))

= e−rT E

[
F (ST )

(
WT − σT

σT
WT −

1
σ

)]
.

�

Example 16.34 (Gamma) We compute the Gamma of a European option
with payoff function F in the Black-Scholes model:

Γ = e−rT ∂xxE [F (ST )] =
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(by Example 16.30)

=
e−rT

σT
E

[
∂x

(
F (ST )

x

)
WT

]
= − e−rT

σTx2
E [F (ST )WT ] +

e−rT

σTx
J,

where
J = E [∂xF (ST )WT ] = E [F ′(ST )∂xST WT ] =

(applying (16.16) with u = 1 and Y = (∂xST )WT = ST WT

x )

= E

[
F (ST )

∫ T

0

WT

σTx
# dWT

]
=

(by (16.20))

=
1

σTx
E
[
F (ST )(W 2

T − T )
]
.

In conclusion

Γ =
e−rT

σTx2
E

[
F (ST )

(
W 2

T − T

σT
−WT

)]
.

�

16.2.3 Examples

Example 16.35 We give the expression of the Delta of an arithmetic Asian
option with Black-Scholes dynamics (16.18) for the underlying asset. We de-
note the average by

X =
1
T

∫ T

0

Stdt

and we observe that ∂xX = X
x and∫ T

0

DsXds =
∫ T

0

∫ T

0

DsStdtds = σ

∫ T

0

∫ t

0

Stdsdt = σ

∫ T

0

tStdt. (16.21)

Then we have

Δ = e−rT ∂xE [F (X)] =
e−rT

x
E [F ′(X)X] =

(by (16.17) and (16.21))

=
e−rT

σx
E

[
F (X)

∫ T

0

∫ T

0
Ssds∫ T

0
sSsds

# dWt

]
.

Now formula (16.20) can be used to compute the anticipative integral: some
calculation leads to the following formula (cf., for example, [211]):

Δ =
e−rT

x
E

[
F (X)

(
1
I1

(
WT

σ
+

I2

I1

)
− 1
)]

,
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where

Ij =

∫ T

0
tjStdt∫ T

0
Stdt

, j = 1, 2.
�

Example 16.36 (Bismut-Elworthy formula) We extend Example 16.30
to the case of a model with local volatility

St = x +
∫ t

0

b(s, Ss)ds +
∫ t

0

σ(s, Ss)dWs.

Under suitable assumptions on the coefficients, we prove the following Bismut-
Elworthy formula:

E [∂xF (ST )G] =
1
T

E

[
F (ST )

(
G

∫ T

0

∂xSt

σ(t, St)
dWt −

∫ T

0

DtG
∂xSt

σ(t, St)
dt

)]
,

(16.22)
for every G ∈ D1,∞.

We recall that, by Proposition 16.18, we have

DsST = YT Zsσ(s, Ss), (16.23)

since
Yt := ∂xSt =: Z−1

t .

Let us apply (16.16) after choosing

X = ST , Y = GYT , ut =
Yt

σ(t, St)
,

to get

E [∂xF (ST )G] = E [F ′(ST )YT G]

= E

⎡⎣F (ST )
∫ T

0

GYT Yt

σ(t, St)
1∫ T

0
DsST

Ys

σ(s,Ss)ds
# dWt

⎤⎦
(by (16.23))

= E

[
F (ST )

∫ T

0

GYt

σ(t, St)
# dWt

]

and (16.22) follows from Proposition 16.31, since Yt

σ(t,St)
is adapted. �
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Example 16.37 In this example, taken from [19], we consider the Heston
model {

dSt =
√

νtStdB1
t ,

dνt = k(ν̄ − νt)dt + η
√

νtdB2
t ,

where (B1, B2) is a correlated Brownian motion

B1
t =

√
1− �2W 1

t + �W 2
t , B2

t = W 2
t ,

with W a standard 2-dimensional Brownian motion and � ∈]− 1, 1[. We want
to compute the sensitivity of the price of an option with payoff F with respect
to the correlation parameter �.

First of all we observe that

ST = S0 exp

(√
1− �2

∫ T

0

√
νtdW 1

t + �

∫ T

0

√
νtdW 2

t −
1
2

∫ T

0

νtdt

)
,

and so

∂�ST = ST G, G := − �√
1− �2

∫ T

0

√
νtdW 1

t +
∫ T

0

√
νtdW 2

t . (16.24)

Further, if we denote by D1 the Malliavin derivative relative to the Brownian
motion W 1, by Remark 16.19, we get D1

sνt = 0 and

D1
sST = ST

√
1− �2

√
νs. (16.25)

Then

∂�E [F (ST )] = E [F ′(ST )∂�ST ] =

(by integrating by parts and choosing X = ST , Y = ∂�ST and7 ut = 1√
νt

in
(16.16))

= E

⎡⎣F (ST )
∫ T

0

∂�ST
√

νt

∫ T

0
D1

sST√
νs

ds
# dW 1

t

⎤⎦ =

(by (16.24) and (16.25))

=
1

T
√

1− �2
E

[
F (ST )

∫ T

0

G√
νt
# dW 1

t

]
=

(by Proposition 16.31 and since ν is adapted)

=
1

T
√

1− �2
E

[
F (ST )

(
G

∫ T

0

1√
νt

dW 1
t −

∫ T

0

D1
t G√
νt

dt

)]
=
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(since D1
t G = −�

√
νt

1−�2 )

=
1

T
√

1− �2
E

[
F (ST )

(
G

∫ T

0

1√
νt

dW 1
t +

�T√
1− �2

)]
. �



Appendix: a primer in probability and
parabolic PDEs

In this Appendix we gather the rudiments of probability theory and we show
the connections to parabolic differential equations with constant coefficients.
The goal is to collect some background material, assuming the knowledge of
standard differential and integral calculus in one or more variables. Some of
the classical results are presented without proof and references to the literature
are provided.

A.1 Probability spaces

Let Ω be a non-empty set. A σ-algebra F is a collection of subsets of Ω such
that:

i) Ω ∈ F ;
ii) if F ∈ F then1 F c := (Ω \ F ) ∈ F ;

iii) for every sequence (Fn)n∈N of elements of F ,
∞⋃

n=1
Fn ∈ F .

Let M be a collection of subsets of Ω. The smallest σ-algebra containing M
is denoted by

σ(M ) :=
⋂

F σ−algebra
F⊇M

F .

We say that σ(M ) is the σ-algebra generated by M . Note that the intersection
of σ-algebras is still a σ-algebra.

Example A.1 The Borel σ-algebra B(RN ) is the σ-algebra generated by the
Euclidean topology of RN , i.e.

B(RN ) = σ({A | A open set in RN}).

1 When we write A := B we mean that A is equal by definition to B.
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Where no confusion can arise, we simply write B = B(RN ). If H is a Borel
subset of RN , we set also B(H) = {H ∩B | B ∈ B}. Note that

B(R) = σ(I) = σ(J ),

where I = { ]a, b[ | a, b ∈ Q, a < b} and J = { ]−∞, b] | b ∈ Q}. �

An element of a σ-algebra F is called a measurable set. A measure P on
F is a map

P : F → R≥0

such that:

i) P (∅) = 0;
ii) P is countably additive that is, for every sequence (Fn)n∈N of pairwise

disjoint elements of F , we have

P

( ⋃
n≥1

Fn

)
=
∑
n≥1

P (Fn).

If P (Ω) <∞, we say that P is a finite measure. Further, if

iii) P (Ω) = 1,

then we say that P is a probability measure.
A measure space is a triple (Ω,F , P ) with F a σ-algebra on Ω and P a

measure on F . If P is a probability measure then (Ω,F , P ) is called probability
space and the set Ω is called sample space. A function f : Ω −→ RN is F-
measurable (or, simply, measurable) if f−1(H) ∈ F for any H ∈ B.

We can think of every element ω of Ω as the result of an experiment or
the state of a phenomenon: for example, the spatial position of a particle or
the price of a stock. An element E of F is also called event and P (E) is called
the probability of the event E. To fix the ideas, if Ω = R>0 := ]0,+∞[ is the
sample space representing the possible prices of a risky asset, then P (]a, b[)
represents the probability that the price is greater than a and smaller than b.
We say that E ∈ F is a negligible event (certain) if P (E) = 0 (P (E) = 1). We
denote by NP the collection of the P -negligible events.

It is not restrictive2 to assume that P is complete, that is for any A ⊆ E
with E ∈ NP , we have A ∈ NP .

2 If P is not complete, we may consider

N = {A ∈ F | A ⊆ E for some E ∈ NP },
and extend P on F̄ = σ(F ∪N ) in a trivial way by using the fact that

F̄ = {B ⊆ Ω | B = E ∪A with E ∈ F , A ∈ N}.
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A.1.1 Dynkin’s theorems

Dynkin’s theorems are quite technical results that are indeed useful or even
essential tools for our analysis. Typically they allow proving the validity of
some property for a wide family of measurable sets (or functions), provided
that the property is verified for the elements of a particular sub-family: for
example, the open intervals in the case of Borel sets, or the characteristic
functions of intervals in the case of measurable functions. Dynkin’s theorems
are based on the following convergence property of measures of monotone
sequence of measurable sets.

Lemma A.2 Let (Ω,F , P ) be a measurable space and (An)n∈N an increas-
ing3 sequence in F . Then

P

( ⋃
n≥1

An

)
= lim

n→∞
P (An) . (A.1)

Proof. Since P is countably additive, we have

lim
n→∞

P (An) = lim
n→∞

P

(
A1 +

n−1⋃
k=1

(Ak+1 \Ak)
)

= lim
n→∞

(
P (A1) +

n−1∑
k=1

P (Ak+1 \Ak)
)

= P (A1) +
∞∑

k=1

P (Ak+1 \Ak) = P

( ⋃
n≥1

An

)
.

�

Definition A.3 A family M of subsets of Ω is called monotone if

i) Ω ∈ M;
ii) if A,B ∈M with A ⊆ B then B \A ∈M;
iii) given an increasing sequence (An)n∈N of elements of M we have that

∞⋃
n=1

An ∈M.

The only differences between the definitions of σ-algebra and monotone family
are in properties ii) and iii): in particular, a monotone family is “stable” only
under countable unions of increasing sequences of measurable sets. Clearly
any σ-algebra is monotone. It is also clear that any σ-algebra F is ∩-stable,
that is the intersections of elements of F still belongs to F . Conversely, we
have:

3 (An)n∈N is an increasing sequence if An ⊆ An+1, for every n ∈ N.
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Lemma A.4 Every monotone and ∩-stable family is a σ-algebra.

Proof. Clearly if M is monotone, then it verifies the first two conditions of
the definition of σ-algebra. It remains to show that the countable union of
elements ofM belongs toM. First of all we observe that, if A and B belong
to M, then their union belongs toM as well: in fact it suffices to note that

A ∪B = (Ac ∩Bc)c.

Now, if (An) is a sequence of elements of M, we set

Bn =
n⋃

k=1

Ak.

In view of what we have seen earlier, we have that (Bn) is an increasing
sequence of elements of M. So, by the third condition in the definition of
monotone family, we get

+∞⋃
n=1

An =
+∞⋃
n=1

Bn ∈M.

�

Theorem A.5 (Dynkin’s first theorem) Let M(A) be the monotone
family generated4 by A, where A is a family of subsets of Ω. If A is ∩-stable,
then

M(A) = σ(A). (A.2)

Proof. In view of the previous lemma, it suffices to prove thatM(A), denoted
by M for the sake of brevity, is ∩-stable. Then it will follow that M is a σ-
algebra and so σ(A) ⊆ M. On the other hand, since every σ-algebra is a
monotone family, we have that M⊆ σ(A) hence (A.2).

We set
M1 = {A ∈M | A ∩ I ∈M, ∀ I ∈ A}.

We prove that M1 is a monotone family: since A ⊆ M1, it will follow that
M⊆M1 and consequentlyM =M1. We have:

i) Ω ∈M1;
ii) for any A,B ∈M1 with A ⊆ B, we have

(B \A) ∩ I = (B ∩ I) \ (A ∩ I) ∈M, I ∈ A,

so that B \A ∈M1;

4 M(A) is the smallest monotone family containing A.
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iii) let (An) be an increasing sequence inM1 and let us denote by A the union
of the An. Then we have

A ∩ I =
⋃
n≥1

(An ∩ I) ∈M, I ∈ A,

so that A ∈M1.

This proves that M =M1. Now we put

M2 = {A ∈M | A ∩ I ∈M, ∀ I ∈M}.

In view of what we have shown above, we have that A ⊆ M2. Moreover,
following the lines above, we can prove that M2 is a monotone family: it
follows thatM⊆M2 and so M is ∩-stable. �

As a consequence we prove the following useful uniqueness result:

Proposition A.6 Let A be a ∩-stable family of subsets of Ω. Let P,Q be
measures defined on σ(A) such that P (Ω) = Q(Ω) and

P (M) = Q(M), M ∈ A.

Then P = Q.

Proof. We set
M = {M ∈ σ(A) | P (M) = Q(M)},

and we show that M is a monotone family. Indeed P (Ω) = Q(Ω) by assump-
tion, i.e. Ω ∈M , and for any E,F ∈M with E ⊆ F , we have

P (F \ E) = P (F )− P (E) = Q(F )−Q(E) = Q(F \ E),

so that (F \E) ∈M . Finally, if (Mn) is an increasing sequence in M and M
denotes the union of (Mn), then by Lemma A.2

P (M) = lim
n→∞

P (Mn) = lim
n→∞

Q(Mn) = Q(M),

and so M ∈ M . Since M is a monotone family containing A and contained
(by construction) in σ(A), from Theorem A.5 it follows immediately that
M = σ(A). �

Example A.7 The families I and J in Example A.1 are ∩-stable and gen-
erate B. As a consequence of Proposition A.6, in order to prove that two
probability measures P,Q on B are equal it is enough to verify that

P (]a, b[) = Q(]a, b[), a, b ∈ Q, a < b,

or that
P (]−∞, b]) = Q(]−∞, b]), b ∈ Q.

An analogous result holds in higher dimension. �
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Definition A.8 (Monotone family of functions) Let H be a family of
bounded functions on Ω with real values. We say that H is a monotone family
of functions if

i) H is a (real) linear space;
ii) H contains the constant function equal to 1;
iii) if (fn) is an increasing sequence of non-negative functions in H, whose

pointwise limit is a bounded function f , then f ∈ H.

Theorem A.9 (Dynkin’s second theorem) Let H be a monotone family
of functions. If H contains the indicator functions of the elements of a ∩-stable
family A, then it contains also every bounded σ(A)-measurable5 function.

Proof. Let us denote by 1A the indicator function of the set A, defined by

1A(x) =

{
1, x ∈ A,

0, x /∈ A.

First of all we prove that

1A ∈ H, ∀A ∈ σ(A). (A.3)

To this end, we set
M = {A ∈ σ(A) | 1A ∈ H}.

Then A ⊆ M by assumption. Moreover M is a monotone family: indeed we
have

i) Ω ∈M since 1 = 1Ω ∈ H;
ii) if A,B ∈ M with A ⊆ B, then the B \ A ∈ M because 1B\A =

(1B − 1A) ∈ H;
iii) if (An)n∈N is an increasing sequence in M then (1An)n∈N is an increasing

sequence of non-negative functions converging to the bounded function 1A

where A is the union of (An). Then 1A ∈ H so that A ∈M .

In view of Theorem A.5 we haveM = σ(A) and this proves (A.3). The proof
can be concluded now by using the standard results of pointwise approxi-
mation of measurable functions: in particular it is well known that, if f is a
non-negative bounded and σ(A)-measurable function there exists an increas-
ing sequence (fn) of simple non-negative and σ(A)-measurable functions (and
so in H) converging to f . So by iii) in Definition A.8 we have that f ∈ H.
Finally if f , σ(A)-measurable and bounded, takes both positive and negative
values it suffices to decompose it into the difference of its positive and negative
parts. �

5 f is called σ(A)-measurable if f−1(H) ∈ σ(A) for any H ∈ B.
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As an example of application of the previous theorem we give the following:

Corollary A.10 Let X,Y be random variables on (Ω,F). Then X is σ(Y )-
measurable if and only if there exists a B-measurable function f such that
X = f(Y ).

Proof. It suffices to consider the case X is bounded, otherwise one can con-
sider the composition of X with a bounded measurable function (e.g. Arc-
tangent). Further, it suffices to prove that, if X is σ(Y )-measurable, then
X = f(Y ) for some bounded and B-measurable function f , since the con-
verse is obvious.

We use Dynkin’s second theorem and we set

H = {f(Y ) | f bounded and B-measurable}.
Then H is a monotone family of functions, in fact it is apparent that H is
a linear space containing the constant functions. Further, if (fn(Y ))n∈N is a
monotone increasing sequence of non-negative functions in H and such that

fn(Y ) ≤ C

for some constant C, then, if we put f = sup
n∈N

fn we have that f is bounded,

B-measurable and
fn(Y ) ↑ f(Y ) as n→∞.

To conclude, we show that H contains the characteristic functions of ele-
ments of σ(Y ). If F ∈ σ(Y ) = Y −1(B), then there exists H ∈ B such that
F = Y −1(H) and so

1F = 1H(Y )
whence we infer that 1F ∈ H for every F ∈ σ(Y ). �

A.1.2 Distributions

Probability measures defined on the Euclidean space play an essential role.
Definition A.11 A probability measure on (RN ,B) is called distribution.

The next result is a direct consequence of the well-known properties of the
Lebesgue integral: it shows how simple it is to construct a distribution by
means of Lebesgue measure.
Proposition A.12 Let g : RN −→ R≥0 be a non-negative B-measurable
function such that ∫

RN

g(x)dx = 1.

Then P defined by

P (H) =
∫

H

g(x)dx, H ∈ B, (A.4)

is a distribution. We say that g is the density of P with respect to Lebesgue
measure.
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Example A.13 (Uniform distribution) Let a, b ∈ R with a < b: the
distribution with density

g(x) =
1

b− a
1[a,b](x), x ∈ R, (A.5)

is called uniform distribution on [a, b] and denoted by Unif[a,b]. In what follows
we denote the Lebesgue measure of the Borel set H indifferently by |H| or
m(H). Then we have

Unif[a,b](H) =
1

b− a
|H ∩ [a, b]| , H ∈ B.

Intuitively, Unif[a,b] assigns the probability that a “particle” (or the price of
an asset) lies in [a, b] uniformly over [a, b]: on the contrary, it is impossible
that the particle lies outside of [a, b]. �

For a distribution P of the form (A.4) we necessarily have

|H| = 0 =⇒ P (H) = 0. (A.6)

When (A.6) holds, we say that P is absolutely continuous with respect to
Lebesgue measure. Not all the distributions are of the form (A.4), i.e. not
all the distributions have a density with respect to Lebesgue measure as the
following example shows.

Example A.14 (Dirac’s delta) Let x0 ∈ RN : the Dirac distribution con-
centrated at x0 is defined by

δx0(H) = 1H(x0) =

{
1, x0 ∈ H,

0, x0 /∈ H,

for H ∈ B. Intuitively this distribution represents the certainty of “locating
the particle” at the point x0. This distribution does not have a density with
respect to m, since it is not null on the event {x0} that has null Lebesgue
measure, so (A.6) is not satisfied for P = δx0 . �

We consider now other examples of distributions defined by specifying
their density with respect to Lebesgue measure.

Example A.15 (Exponential distribution) For any λ > 0, the distribu-
tion with density

gλ(t) = λe−λt1]0,+∞[(t), t ∈ R,

is called exponential distribution with parameter λ and denoted by Expλ. �

Example A.16 (Cauchy distribution) The distribution with density

g(x) =
1
π

1
1 + x2

, x ∈ R,

is called Cauchy distribution.
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Fig. A.1. Graph of the Gaussian density Γ (t, x)

�

Example A.17 (Real normal distribution) We set

Γ (t, x) =
1√
2πt

exp
(
−x2

2t

)
, x ∈ R, t > 0. (A.7)

For any μ ∈ R and σ > 0, the distribution Nμ,σ2 with density

g(x) = Γ (σ2, x− μ)

is called real normal or Gaussian distribution with parameters μ, σ. Then we
have

Nμ,σ2(H) =
∫

H

Γ (σ2, x− μ)dx

=
1

σ
√

2π

∫
H

exp

(
−1

2

(
x− μ

σ

)2
)

dx, H ∈ B.

We also extend the definition to σ = 0 by setting Nμ,0 = δμ. �

Let us remark explicitly that all the functions in the previous examples
are densities, i.e. they are B-measurable, non-negative and their integral over
R equals one.
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A.1.3 Random variables

A random variable (briefly r.v.) on the probability space (Ω,F , P ), is a mea-
surable function X from Ω with values in RN , i.e. a function

X : Ω → RN such that X−1(H) ∈ F , H ∈ B.

Notation A.18 We denote by mB (and mBb) the collection of functions on
RN with real values that are B-measurable (and bounded and B-measurable).

Let X be a random variable: we define the map

PX : B → [0, 1]

by putting
PX(H) = P (X−1(H)), H ∈ B.

Then PX is a distribution that is called distribution (or law) of X and we
write

X ∼ PX .

Since
X−1(H) = {ω ∈ Ω | X(ω) ∈ H},

hereafter we write more intuitively P (X ∈ H) to denote P (X−1(H)). There-
fore

PX(H) = P (X ∈ H)

is the probability that the r.v. X belongs to the Borel set H.

Example A.19 In the classical example of dice rolling, we set

Ω = {(m,n) ∈ N× N | 1 ≤ m,n ≤ 6},

F = P(Ω) and we define the measure P by P ({(m,n)}) = 1
36 for every

(m,n) ∈ Ω. We consider the r.v. X(m,n) = m + n: then we have

PX({7}) = P (X = 7) = P (X−1({7})) =
6
36

,

since there are 6 combinations of throws by which we can obtain 7 among all
the possible 36 throws. Analogously we have

P (3 ≤ X < 6) = P
(
X−1 ([3, 6[)

)
=

2 + 3 + 4
36

=
1
4
. �

Note that different random variables X,Y (possibly defined on different pro-
bability spaces as well) can have the same distribution: in that case we write

X=
d

Y.
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For instance a r.v. X defined on the probability space (Ω,F , P ) has the same
distribution PX of the identity r.v. id, id(y) ≡ y, defined on (R,B, PX). More-
over, if A,B ∈ F have the same probability, P (A) = P (B), then 1A=

d

1B. As
a matter of fact, many financial models are based on the knowledge of the dis-
tribution of a r.v. X rather than of its explicit expression and the probability
space on which it is defined.

Remark A.20 Let
X : (Ω,F) −→ (Ω̃, F̃),

and suppose that F̃ = σ(M ) where M is (any) collection of subsets of Ω̃. We
observe that, if

X−1(M ) ⊆ F ,

then X is measurable, i.e. X−1(F̃) ⊆ F . A particularly interesting case is
Ω̃ = R and M = {[a, b] | a < b}.

Indeed
G = {F ∈ F̃ | X−1(F ) ∈ F}

is a σ-algebra, since

X−1(F )c = X−1(F c) and X−1

( ⋃
n≥1

Fn

)
=
⋃
n≥1

X−1 (Fn) .

Further, M is included in G and consequently also F̃ = σ(M ) ⊆ G, i.e. X is
measurable. �

Let X be a r.v. on (Ω,F , P ) with values in RN . The distribution function
of X is the function

ΦX : RN → [0, 1]

defined by
ΦX(y) := P (X ≤ y) , y ∈ RN ,

where X ≤ y means that Xi ≤ yi for every i = 1, . . . , N.
If X is a real r.v. then the distribution function ΦX is (not necessarily

strictly) monotone increasing and right-continuous. In particular all distribu-
tion functions are càdlàg6 functions. Furthermore, we have

lim
x→−∞

ΦX(x) = 0, lim
x→+∞

ΦX(x) = 1.

Remark A.21 By Proposition A.6 the distribution function ΦX determines
the distribution PX uniquely. In the case N = 1, if PX has a density f then

ΦX(y) =
∫ y

−∞
f(x)dx.

6 Right continuous with left limits, from the French “continue à droite, limitée à
gauche”.
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In particular, if f is continuous at x0, then ΦX is differentiable at x0 and we
have

d

dy
ΦX(x0) = f(x0). (A.8)

More generally, if f is merely integrable, (A.8) holds in a weak sense (cf.
Proposition A.162). �

A.1.4 Integration

One of the fundamental concepts associated to a r.v. X is the mean or expec-
tation: intuitively it corresponds to an average of the values of X, weighted
by the probability P . To make all this rigorous, we have to define the integral
of X over the space (Ω,F , P ): ∫

Ω

XdP. (A.9)

The construction of the integral in (A.9) is analogous to that of the Lebesgue
integral over RN . Here we only give a succinct outline of the main ideas:

First step. We start by defining the integral of simple random variables.
We say that a r.v. X : Ω → R is simple if X(Ω) has finite cardinality, i.e.

X(Ω) = {α1, . . . , αn}.
In this case, if we set Ak = X−1(αk) ∈ F for k = 1, . . . , n, we have

X =
n∑

k=1

αk1Ak
(A.10)

that is, X is a linear combination of indicator functions. In order to have∫
Ω

1AdP = P (A), A ∈ F ,

and to make the integral a linear functional, it is natural to define∫
Ω

XdP :=
n∑

k=1

αkP (Ak) =
n∑

k=1

αkP (X = αk). (A.11)

This definition is similar to that of the Riemann integral: as a matter of
fact, the concept of simple random variables is analogous to that of piecewise
constant functions in R. It is also remarkable that by definition we have∫

Ω

f(X)dP =
n∑

k=1

f (αk) P (X = αk)

=
n∑

k=1

f (αk) PX(f = f(αk)) =
∫
R

fdPX ,

(A.12)

for any measurable function f : R→ R.



A.1 Probability spaces 611

Second step. For any non-negative real r.v. X we set∫
Ω

XdP = sup
{∫

Ω

Y dP | Y simple r.v., 0 ≤ Y ≤ X

}
. (A.13)

Clearly, the definition (A.13) coincides with (A.11) for simple non-negative
random variables, but in general

∫
Ω

XdP ≤ +∞, this meaning that the inte-
gral of X may not converge.

Third step. For any real r.v. X, we set

X+ = max{0,X} and X− = max{0,−X}.
Then X+ and X− are non-negative random variables and we have X = X+−
X−. If at least one of the two integrals

∫
Ω

X+dP and
∫

Ω
X−dP (defined in

the second step) are finite, we say that X is P -semi-integrable and we define∫
Ω

XdP =
∫

Ω

X+dP −
∫

Ω

X−dP.

In general
∫

Ω
XdP can be finite or infinite (±∞). If both

∫
Ω

X+dP and∫
Ω

X−dP are finite, we say that X is P -integrable and we write X ∈ L1(Ω,P ):
in this case ∫

Ω

|X|dP =
∫

Ω

X+dP +
∫

Ω

X−dP <∞.

Fourth step. Finally, if X : Ω → RN is a r.v. and X = (X1, . . . ,XN ), we
set ∫

Ω

XdP =
(∫

Ω

X1dP, . . . ,

∫
Ω

XNdP

)
.

With this definition of the integral, all the main results of Lebesgue inte-
gration theory over RN hold true: in particular the fundamental Beppo Levi
theorem, Fatou lemma and Lebesgue’s dominated convergence theorem.

Notation A.22 To write explicitly the variable of integration, sometimes we
use the notation ∫

Ω

XdP =
∫

Ω

X(ω)P (dω).

In particular, denoting as usual by m the Lebesgue measure, we write indif-
ferently ∫

RN

f dm =
∫
RN

f(x)m(dx) =
∫
RN

f(x)dx.

For any p ≥ 1, we denote by Lp = Lp(Ω,F , P ) the space of real F-measurable
and p-th order P -integrable functions, i.e. such that

‖X‖p :=
(∫

Ω

|X|pdP

) 1
p

<∞.

We note that ‖ · ‖p is a seminorm7 in Lp.
7 In particular ‖X‖p = 0 if and only if X = 0 a.s.
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Theorem A.23 Let X : Ω → RN be a r.v. on the probability space (Ω,F , P )
and f : RN → Rn a measurable function. Then

f ◦X ∈ L1(Ω,P ) ⇐⇒ f ∈ L1(RN , PX)

and in this case we have ∫
Ω

f(X)dP =
∫
RN

f dPX . (A.14)

Proof. We only consider the case N = n = 1. We set

H = {f ∈ mBb | f satisfies (A.14)}.

Then H contains the indicator functions f = 1H with H ∈ B: indeed we have∫
Ω

1H(X)dP =
∫

X−1(H)

dP = P (X ∈ H)

= PX(H) =
∫

H

dPX =
∫
R

1HdPX .

Moreover, by Beppo Levi theorem, H is a monotone family (cf. Definition
A.8). Then by Dynkin’s Theorem A.9, (A.14) holds for any f ∈ mBb. Again by
Beppo Levi theorem we pass on to measurable and non-negative f . Eventually
we decompose f into its negative and positive parts and, again by linearity,
we conclude the proof. �

Remark A.24 Let us suppose that the distribution of X is absolutely conti-
nuous with respect to Lebesgue measure and so PX is of the form (A.4) with
density g. Then by applying Dynkin’s Theorem A.9 as above we can show
that, for f ∈ L1(RN , PX), we have∫

Ω

f(X)dP =
∫
RN

f(x)g(x)dx. (A.15)

For example, if X has exponential distribution Expλ, then∫
Ω

f(X)dP = λ

∫ +∞

0

f(x)e−λxdx.

�

A.1.5 Mean and variance

Let X : Ω → R be an integrable r.v.: the mean (or expectation) and the
variance of X are defined by

E [X] =
∫

Ω

XdP and var(X) = E
[
(X − E [X])2

]
,
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respectively. The variance estimates how much X differs in average from its
expectation. The covariance of two real random variables X,Y is defined by

cov(X,Y ) = E [(X − E [X])(Y − E [Y ])] , (A.16)

provided that (X − E [X])(Y − E [Y ]) is integrable. We point out that

var(X) = E
[
X2
]
− E [X]2 , (A.17)

and
var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ). (A.18)

If X = (X1, . . . ,XN ) is a r.v. with values in RN , the covariance matrix is
defined by

Cov(X) = (cov(Xi,Xj))i,j=1,...,N

and, in matrix form,

Cov(X) = E [(X − E [X])(X − E [X])∗] .

Remark A.25 If X is a real r.v. and α, β ∈ R, then by linearity we have

E [αX + β] = αE [X] + β, var(αX + β) = α2var(X).

More generally, if X is a r.v. in RN , α is a (d×N)-matrix and β ∈ Rd, then

E [αX + β] = αE [X] + β, Cov(αX + β) = α Cov(X)α∗. (A.19)

�

Next we use Theorem A.23 in order to compute mean, variance and dis-
tribution function of the distributions examined previously.

Example A.26 (Uniform distribution) Let U be a r.v. with uniform dis-
tribution over [a, b]:

U ∼ Unif[a,b].

The mean of U is

E [U ] =
∫

Ω

UdP =
∫
R

yPU (dy) =
∫
R

y

b− a
1[a,b](y)dy =

a + b

2
.

Further, we have

var(U) =
∫

Ω

(U − E [U ])2dP =
∫
R

(
y − a + b

2

)2

PU (dy) =
(a− b)2

12
.

Moreover

ΦU (x) = P (U ≤ x) =

⎧⎪⎨⎪⎩
0 x < a,
x−a
b−a a ≤ x < b,

1 x ≥ b,

and in particular
ΦU (x) = x, x ∈ [0, 1], (A.20)

if U ∼ Unif[0,1]. �
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Example A.27 (Dirac distribution) If X ∼ δx0 , then

E [X] =
∫
R

yδx0(dy) =
∫
{x0}

yδx0(dy) = x0 δx0 ({x0}) = x0,

var(X) =
∫
R

(y − x0)2δx0(dy) = 0,

P (X ≤ x) =

{
0 x < x0,

1 x ≥ x0.
�

Remark A.28 (Inverse transform method) Given a r.v. X, we consider
the inverse

(
ΦX
)−1 of the distribution function of X. Clearly

(
ΦX
)−1 is well

defined if ΦX is strictly increasing; on the other hand, if ΦX(x) = y for more
that one value of x, we may set(

ΦX
)−1

(y) = inf{x | ΦX(x) = y}.

Note that, if ΦX is constant over [a, b], then

0 = ΦX(b)− ΦX(a) = P (a < X ≤ b) ,

that is X assumes the values in [a, b] with null probability. We show that

X=
d (

ΦX
)−1

(U), U ∼ Unif[0,1], (A.21)

that is, X and
(
ΦX
)−1 (U) have the same distribution: in particular, the pro-

blem of simulating the r.v. X can be reduced to the simulation of a standard
uniformly distributed variable.

In order to prove (A.21), by Remark A.21 it suffices to prove that X and(
ΦX
)−1 (U) have the same distribution function:

P
((

ΦX
)−1

(U) ≤ x
)

= P
(
U ≤ ΦX(x)

)
= ΦX(x),

by (A.20). �

Example A.29 (Exponential distribution) If T ∼ Expλ then

E [T ] =
∫ +∞

0

tλe−λtdt =
1
λ

, var(T ) =
1
λ2

.

Moreover we have

ΦT (t) = P (T ≤ t) = 1− e−λt and P (T > t) = e−λt, t ≥ 0.

The r.v. T can be interpreted as the random time at which a particular event
occurs. The following important property of “absence of memory” holds:

P (T > t + s | T > t) =
e−λ(t+s)

eλt
= P (T > s), t, s ≥ 0,
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that is, the distribution of T − t, knowing that T > t, is the same as the
distribution of T itself.

The distribution function ΦT is invertible and its inverse is given by(
ΦT
)−1

(y) = − 1
λ

log(1− y), y ∈ [0, 1[.

Then, by the inverse transform method of Remark A.28, we have

T=
d − 1

λ
log U, U ∼ Unif[0,1], (A.22)

because U and 1 − U have the same distribution. This result is useful to
simulate random variables with exponential distribution arising in models
with jumps. �

Example A.30 (Cauchy distribution) Since the function g(y) = y is not
integrable with respect to the Cauchy distribution, the mean of a r.v. with
Cauchy distribution is not defined. �

Example A.31 (Normal distribution) If X ∼ Nμ,σ2 , then

E [X] =
∫
R

yNμ,σ2(dy) =
∫
R

y

σ
√

2π
exp
(
− (y − μ)2

2σ2

)
dy =

(with the change of variables z = y−μ

σ
√

2
)

=
1√
π

∫
R

ze−z2
dz +

μ√
π

∫
R

e−z2
dy = μ.

Further,

var(X) =
∫

Ω

(X − μ)2dP =
∫
R

(y − μ)2

σ
√

2π
exp
(
− (y − μ)2

2σ2

)
dy =

(with the change of variables z = y−μ

σ
√

2
)

= σ2

∫
R

2z2

√
π

e−z2
dz = σ2.

As an exercise, the reader should verify the last equality by integrating by
parts. �

Remark A.32 Given X ∼ Nμ, σ2 and α, β ∈ R, we have

(αX + β) ∼ Nαμ+β, α2σ2 .

Indeed, for α = 0 the result is obvious, and if α 
= 0, then, by Theorem A.23,
for every H ∈ B we have

P ((αX + β) ∈ H) =
∫

Ω

1H(αX + β)dP =
∫
R

1H(αy + β)
σ
√

2π
e−

(y−μ)2

2σ2 dy =
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(with the change of variables z = αy + β)

=
∫

H

1
σα
√

2π
e−

(z−αμ−β)2

2α2σ2 dz = Nαμ+β,α2σ2(H).

In particular
X − μ

σ
∼ N0,1 (A.23)

where N0,1 is called standard normal distribution. Further,

P (X ≤ y) = P

(
X − μ

σ
≤ y − μ

σ

)
= Φ

(
y − μ

σ

)
(A.24)

where
Φ(x) =

1√
2π

∫ x

−∞
e−

y2

2 dy, (A.25)

is called standard normal distribution function. It is easy to verify the following
useful property of Φ:

Φ(−x) = 1− Φ(x), x ∈ R. (A.26)

�

Remark A.33 (Change of density) Let Z be a real random variable with
density f and F ∈ C1(R) a strictly increasing function. Then the random
variable X = F (Z) has density

f(G(x))G′(x), x ∈ F (R),

where G = F−1 is the inverse function of F . Indeed, for every ϕ ∈ mBb, we
have

E [ϕ(Y )] = E [ϕ(F (Z))] =
∫
R

ϕ(F (z))f(z)dz =

(with the change of variables z = G(x))

=
∫

F (R)

ϕ(x)f(G(x))G′(x)dx. �

Example A.34 (Log-normal distribution) If X = eZ with Z ∼ Nμ,σ2 ,
then we say that X has a log-normal distribution. If W ∼ N0,1 then we have

E
[
eσW

]
=

1√
2π

∫
R

eσx− x2
2 dx =

e
σ2
2

√
2π

∫
R

e−
(x−σ)2

2 dx = e
σ2
2 ,

and so
E [X] = eμ+ σ2

2 , (A.27)
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and
var(X) = E

[
X2
]
− E [X]2 = e2μ+σ2

(
eσ2 − 1

)
. (A.28)

Using Remark A.33, we derive the expression of the log-normal density: in
this case F (z) = ez and G(x) = F−1(x) = log x, x ∈ F (R) = R>0. Therefore
the density of X is

1

x
√

2πσ2
exp
(
− (μ− log x)2

2σ2

)
, x > 0.

We also refer to Section 5.1.4. �

Example A.35 (Chi-square distribution) Let X ∼ N0,1. The chi-square
distribution is the distribution of the r.v. X2. Clearly, for y ≤ 0, we have

P (X2 ≤ 0) = 0;

and for y > 0 we have

P (X2 ≤ y) = P (−√y ≤ X ≤ √y)

=
1√
2π

∫ √
y

−√y

e−
x2
2 dx =

1√
2π

∫ √
y

0

2e−
x2
2 dx =

(with the change of variables ξ = x2)

=
1√
2π

∫ y

0

e−
ξ
2

√
ξ

dξ.

In conclusion, recalling (A.8), the chi-square density is given by

f(y) =

{
0, y ≤ 0,

1√
2πy

e−
y
2 , y > 0.

If Y has a chi-square distribution, then

E [Y ] = E
[
X2
]

= 1

and
var(Y ) = E

[
Y 2
]
− E [Y ]2 = E

[
X4
]
− 1 = 2. �

Exercise A.36 Consider a r.v. X having as a distribution a linear combina-
tion of Dirac’s deltas:

X ∼ pδu + (1− p)δd,

where p ∈ ]0, 1[ and u, d ∈ R, d < u. Therefore X can assume only two values:
u with probability p and d with probability 1− p. By (A.11), we have

E [X] = pu + (1− p)d.



618 Appendix: a primer in probability and parabolic PDEs

Prove that

var(X) = (u− d)2p(1− p) = (u− E [X])(E [X]− d), (A.29)

and
E
[
X2
]

= (u + d)E [X]− ud. (A.30)

A.1.6 σ-algebras and information

Given a r.v. X on the probability space (Ω,F , P ), we denote by σ(X) the
σ-algebra generated by X, i.e. the σ-algebra generated by the inverse images
under X of the Borel sets:

σ(X) = σ
(
{X−1(H) | H ∈ B}

)
.

Clearly σ(X) ⊆ F and we have

σ(X) = X−1(B) = {X−1(H) | H ∈ B}.

In many applications and especially in mathematical finance, σ-algebras are
routinely used to represent the concept of information. To clear up this state-
ment, that might sound a little obscure, let us consider the following simple
example.

Example A.37 We aim to study the probability that, rolling a die, the out-
come is an even or an odd number. Thus we let Ω = {n ∈ N | 1 ≤ n ≤ 6}, F
the collection of all subsets of Ω and

X(n) =

{
1, if n is even,

−1, if n is odd.

We have
σ(X) = {∅, Ω, {2, 4, 6}, {1, 3, 5}}

which is strictly contained in F : in order to study the phenomenon described
by X, it is necessary to know the probability of the events in σ(X). In this
sense σ(X) contains the information on X. �

Moreover, let X,Y be two random variables on (Ω,F): to fix the ideas,
we can think of X and Y as the price of two risky assets. The condition “X
is σ(Y )-measurable” is often understood as “X depends on the information
on Y ” (or simply on Y ). From a mathematical point of view, this is justified
by Corollary A.10, stating that X is σ(Y )-measurable if and only if X is
function of Y or, more precisely, there exists a B-measurable function f such
that X = f(Y ). More generally, if G is a σ-algebra and X is G-measurable,
then we say that X depends on the information contained in G.
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Example A.38 If X is measurable with respect to the trivial σ-algebra F =
{∅, Ω}, then X is constant. Indeed, for a fixed ω̄ ∈ Ω we put a = X(ω̄). Then
X−1({a}) 
= ∅ but, by assumption, X−1({a}) ∈ F and so X−1({a}) = Ω i.e.
X(ω) = a for every ω ∈ Ω.

More generally, if X is measurable with respect to the σ-algebra σ(N ) that
contains only negligible and certain events, then X is almost surely constant.
Proving this fact in detail is a little bit more tricky: since

Ω =
⋃
n≥1

X−1([−n, n])

and X is σ(N )-measurable by assumption, there exists n̄ ∈ N such that
P (X−1([−n̄, n̄])) = 1. Now we can construct two sequences an, bn such that

−n̄ ≤ an ≤ an+1 < bn+1 ≤ bn ≤ n̄, n ∈ N,

and
lim

n→∞
an = lim

n→∞
bn =: �

with P (An) = 1 for every n ∈ N where An := X−1([an, bn]). Finally P (A) = 1
where

A = X−1({�}) =
⋂
n≥1

An

and this proves the claim. �

A.1.7 Independence

Given a probability space (Ω,F , P ) and a non-negligible event B, the con-
ditional probability P (· | B) given B is the probability measure on (Ω,F)
defined by

P (A|B) =
P (A ∩B)

P (B)
, A ∈ F .

Intuitively the conditional probability P (A|B) represents the probability that
the event A occurs, if B has occurred as well. It is easy to verify that P (· | B)
is a probability measure on (Ω,F).

Definition A.39 We say that two events A,B ∈ F are independent if:

P (A ∩B) = P (A)P (B). (A.31)

If P (B) > 0, (A.31) is equivalent to P (A|B) = P (A), i.e. the probability
of the event A is independent of the fact that B has or has not occurred.
We observe that the property of independence depends on the probability
measure that we consider: in other words, two events may be independent
under a measure but not independent under another one. As an exercise, prove
that, if two events A,B are independent, then their complements Ac, Bc are
independent as well. Further, also Ac and B are independent.
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Definition A.40 We say that the two collections G,H of events in Ω are
independent if

P (A ∩B) = P (A)P (B), A ∈ G, B ∈ H.

We say that two random variables X,Y on (Ω,F , P ) are independent if the
correspondent σ-algebras σ(X) and σ(Y ) are independent.

We observe that it is not possible to establish whether two random variables
are independent knowing only their distribution. In practice, to verify that
two σ-algebras or two random variables are independent, one can use the
following result that is a useful consequence of Dynkin’s first Theorem A.5.

Lemma A.41 Consider the σ-algebras G = σ(I) and H = σ(J ) generated
by the collections of events I,J and suppose that I,J are ∩-stable. Then G
and H are independent if and only if I and J are independent.

Proof. Let us suppose that I,J are independent. For fixed I ∈ I, the mea-
sures

H �→ P (I ∩H), H �→ P (I)P (H),

are equal for H ∈ J , they satisfy the assumptions of Proposition A.6 and so
they coincide on H = σ(J ). Since I is arbitrary, we have thus proved that

P (I ∩H) = P (I)P (H), I ∈ I, H ∈ H.

Now, for a fixed H ∈ H, we apply Proposition A.6 again, in order to prove
that the measures

G �→ P (G ∩H), G �→ P (G)P (H), G ∈ G,

coincide and this concludes the proof. �

As a consequence of Lemma A.41, we have that two real random variables
X,Y on (Ω,F , P ) are independent if and only if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y), x, y ∈ R.

Indeed the families I = {X−1(]−∞, x]) | x ∈ R} and J = {Y −1(]−∞, y]) |
y ∈ R} are ∩-stable and moreover σ(X) = σ(I) and σ(Y ) = σ(J ).

The next exercise will be useful later on, so we strongly suggest that the
reader does it now.

Exercise A.42 Let X,Y be independent random variables. Prove that:
i) if Z is a σ(Y )-measurable r.v., then X and Z are independent;
ii) if f, g are real B-measurable functions, then the random variables f(X)

and g(Y ) are independent.
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Remark A.43 If X,Y are independent random variables and X is σ(Y )-
measurable, then X is a.s. constant. Indeed

P (A ∩B) = P (A)P (B), A ∈ σ(X), B ∈ σ(Y ),

and since σ(X) ⊆ σ(Y ), then we have

P (A) = P (A)2, A ∈ σ(X).

This is only possible if σ(X) ⊆ σ(N ) and therefore the claim follows from
Exercise A.38. �

We now prove an important property of independent random variables:
the expectation of the product of independent random variables is equal to
the product of their expectations.

Theorem A.44 If X,Y ∈ L1(Ω,P ) are real independent random variables,
then

XY ∈ L1(Ω,P ), E [XY ] = E [X] E [Y ] .

Proof. By an argument analogous to that used in the proof of Theorem A.23,
it is enough to prove the statement in the case of indicator functions: X = 1E ,
Y = 1F with E,F ∈ F . By assumption, X,Y are independent, and so E,F
are independent as well (please, check this!). Then we have∫

Ω

XY dP =
∫

E∩F

dP = P (E ∩ F ) = P (E)P (F ) = E [X] E [Y ] . �

Exercise A.45 Give an example of random variables X,Y ∈ L1(Ω,P ) such
that XY /∈ L1(Ω,P ).

As a consequence of the previous theorem, if X,Y are independent, then

cov(X,Y ) = 0.

In particular, recalling (A.18), we have

var(X + Y ) = var(X) + var(Y ).

Note that the converse is not generally true: if two random variables X,Y are
such that cov(X,Y ) = 0, then they are not necessarily independent.

The concept of independence can be extended to the case of N random
variables in a natural way. We say that the collections of events H1, . . . ,HN

are independent if

P (Hn1 ∩ · · · ∩Hnk
) = P (Hn1) · · ·P (Hnk

),

for any choice of Hni ∈ Hni with different indexes 1 ≤ n1, . . . , nk ≤ N .
We say that the random variables X1, . . . ,XN are independent if their σ-
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algebras σ(X1), . . . , σ(XN ) are independent. For example, three events E,F,G
are independent if

i) they are pairwise independent;
ii) P (E ∩ F ∩G) = P (E)P (F )P (G).

In particular we note that E,F,G can be pairwise independent without being
necessarily independent. The next result generalizes Theorem A.44.

Theorem A.46 If X1, . . . ,XN ∈ L1(Ω,P ) are real independent random va-
riables then

X1 · · ·XN ∈ L1(Ω,P ) and E [X1 · · ·XN ] = E [X1] · · ·E [XN ] .

Consequently we have

var(X1 + · · ·+ XN ) = var(X1) + · · ·+ var(XN ).

A.1.8 Product measure and joint distribution

Consider two random variables

X : Ω −→ RN , Y : Ω −→ RM ,

on the space (Ω,F). In this section we examine the relation among the dis-
tributions of X, Y and of the r.v.

(X,Y ) : Ω −→ RN × RM .

The distribution of (X,Y ) is usually called joint distribution of X and Y ;
conversely, the distributions of X and Y are called marginal distributions of
(X,Y ). As a remarkable example, we shall prove in Proposition A.94 that the
marginal distributions of a multi-normal r.v. are multi-normal.

In order to treat the topic with a higher degree of generality, we recall
the definition and some basic properties of the product of two measures. The
results in this section can be extended to the case of more than two measures
in a natural fashion.

Definition A.47 Given two finite-measure spaces

(Ω1,G1, μ1) and (Ω2,G2, μ2),

we define
G = G1 ⊗ G2 := σ({H ×K | H ∈ G1, K ∈ G2}),

the product σ-algebra of G1 and G2.

Clearly G is a σ-algebra on the Cartesian product Ω := Ω1 ×Ω2.
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Exercise A.48 Prove that B(R2) = B(R)⊗B(R).

The following theorem contains the definition of the product measure of μ1

and μ2.

Theorem A.49 There exists a unique probability measure μ on G such that

μ(H ×K) = μ1(H)μ2(K), H ∈ G1, K ∈ G2. (A.32)

μ is called product measure of μ1 and μ2 and we write μ = μ1 ⊗ μ2.

For the existence, one can see, for example, Chapter 8 in Williams [339]. The
uniqueness follows from Proposition A.6 and from the fact that the collection
{H ×K | H ∈ G1, K ∈ G2} is ∩-stable and generates G.

Now we state the classical Fubini-Tonelli theorem.

Theorem A.50 (Fubini-Tonelli theorem) Let

f = f(ω1, ω2) : Ω1 ×Ω2 −→ RN

be a G-measurable function. If f ≥ 0 or if f ∈ L1(O,μ) then we have

i) for every ω1 ∈ Ω1 the function ω2 �→ f(ω1, ω2) is G2-measurable and the
function ω1 �→

∫
Ω2

f(ω1, ω2)μ2(dω2) is G1-measurable (and an analogous
result holds if we exchange ω1 with ω2);

ii) ∫
Ω

fdμ =
∫

Ω1

(∫
Ω2

f(ω1, ω2)μ2(dω2)
)
μ1(dω1)

=
∫

Ω2

(∫
Ω1

f(ω1, ω2)μ1(dω1)
)
μ2(dω2).

Remark A.51 Theorems A.49 and A.50 remain true more generally if the
measures are σ-finite. We recall that a measure μ on (Ω,F) is σ-finite if there
exists a sequence (Ωn)n∈N in F such that

Ω =
⋃
n∈N

Ωn and μ(Ωn) <∞, n ∈ N.

For example, the Lebesgue measure on RN is σ-finite but it is not finite. �

Corollary A.52 Suppose that the joint distribution P (X,Y ) of the random
variables X,Y has a density f(X,Y ). Then

fX(z) :=
∫
RN

f(X,Y )(z, ζ)dζ and fY (ζ) :=
∫
RM

f(X,Y )(z, ζ)dz

are the densities of the distributions of X and Y , respectively.

Proof. The thesis is a consequence of Theorem A.50. �
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The following proposition solves the important problem of reconstruct-
ing the joint distribution of independent random variables from the marginal
distributions.

Proposition A.53 The following statements are equivalent8:

i) X and Y are independent on (Ω,F , P );
ii) P (X,Y ) = PX ⊗ PY ;
iii)Φ(X,Y ) = ΦXΦY .

Further, if X,Y have a joint density f(X,Y ) then i) is equivalent to

iv) f(X,Y ) = fXfY .

Proof. We only prove that i) implies ii): the rest is left as an exercise. For
every H,K ∈ B we have

P (X,Y )(H ×K) = P ((X,Y ) ∈ H ×K) = P (X−1(H) ∩ Y −1(K)) =

(since X,Y are independent random variables)

= P (X ∈ H)P (Y ∈ K) = PX(H)PY (K).

The claim follows then from the uniqueness of the product measure. �

As an application of the previous proposition, we have the following result
on the density of the sum of two independent random variables.

Corollary A.54 Let X,Y : Ω −→ R be two random variables with joint
density f(X,Y ). Then the r.v. X + Y has density

fX+Y (z) =
∫
R

f(X,Y )(ζ, z − ζ)dζ.

In particular, if X and Y are independent, then

fX+Y (z) = (fX ∗ fY ) (z) :=
∫
R

fX(ζ)fY (z − ζ)dζ. (A.33)

Proof. For every z ∈ R, we have

P (X + Y ≤ z) =
∫∫

{x+y≤z}

f(X,Y )(x, y)dxdy =

(by the change of variables ζ = x + y and by Fubini’s theorem)

=
∫ z

−∞

(∫
R

f(X,Y )(x, x− ζ)dx

)
dζ.

Since the family {]−∞, z] | z ∈ R} is ∩-stable and generates B, by Dynkin’s
Theorem A.5 we have the claim. Moreover (A.33) follows from Proposi-
tion A.53. �

8 We recall that P X and ΦX denote the distribution and the distribution function
of the r.v. X, respectively.
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Exercise A.55 Determine the density of the sum of two independent normal
random variables.

A.1.9 Markov inequality

The following result is sometimes useful to study the integrability properties
of a random variable.

Proposition A.56 Let X be a r.v. and let f ∈ C1(R≥0) such that f ′ ≥ 0 or
f ′ ∈ L1(R≥0, P

|X|). Then

E [f(|X|)] = f(0) +
∫ +∞

0

f ′(λ)P (|X| ≥ λ)dλ. (A.34)

Proof. We have

E [f(|X|)] =
∫ +∞

0

f(y)P |X|(dy) =

=
∫ +∞

0

(
f(0) +

∫ y

0

f ′(λ)dλ

)
P |X|(dy) =

(reversing the order of integration, by Fubini’s Theorem A.50)

= f(0) +
∫ +∞

0

f ′(λ)
∫ +∞

λ

P |X|(dy)dλ =

= f(0) +
∫ +∞

0

f ′(λ)P (|X| ≥ λ)dλ. �

Example A.57 If f(x) = xp, p ≥ 1, by (A.34) we have

E [|X|p] = p

∫ +∞

0

λp−1P (|X| ≥ λ) dλ.

Consequently, to prove the p-th order integrability of X it is enough to have
an estimate of P (|X| ≥ λ), at least for sufficiently large λ. �

The next classical Markov inequality gives an estimate in the opposite
direction.

Proposition A.58 (Markov inequality) Let X be a random variable and
let λ ∈ R>0, 1 ≤ p < +∞. Then

P (|X| ≥ λ) ≤ E [|X|p]
λp

. (A.35)

In particular, if X is a integrable real r.v., we have

P (|X − E [X] | ≥ λ) ≤ var(X)
λ2

. (A.36)
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Proof. We prove (A.35) only. We have

E [|X|p] ≥
∫

{|X|≥λ}

|X|pdP ≥ λpP (|X| ≥ |λ|). �

In the same order of ideas we also prove the following useful “identity
principle”.

Proposition A.59 Let X be a r.v. with strictly positive density on H ∈ B.
If g ∈ mB is such that g(X) = 0 a.s. (g(X) ≥ 0 a.s.) then g = 0 (g ≥ 0)
almost everywhere (with respect to Lebesgue measure) on H. In particular if
g is continuous, then g = 0 (g ≥ 0) on H.

Proof. We set

Hn =
{

x ∈ H | |g(x)| ≥ 1
n

}
, n ∈ N,

and we denote the density of X by f. Assuming that g(X) = 0 a.s., we have

0 = E [|g(X)|] ≥ 1
n

P (X ∈ Hn) =
1
n

∫
Hn

f(x)dx

and so, since by assumption f is strictly positive, Hn must have null Lebesgue
measure. We conclude by observing that

{g 
= 0} =
⋃
n∈N

Hn.

If g(X) ≥ 0 a.s., we proceed in an analogous way, by considering the sequence
of sets Hn = {g < − 1

n}, n ∈ N. �

A.2 Fourier transform

The Fourier transform of a function f ∈ L1(RN ) is defined as follows:

f̂ : RN −→ C, f̂(ξ) :=
∫
RN

ei〈ξ,x〉f(x)dx, ξ ∈ RN . (A.37)

Sometimes the notation F(f) = f̂ will be used.

Example A.60 We compute the Fourier transform of f(x) = e−λx2
, x ∈ R,

where λ is a positive constant. We note that

ixξ − λx2 = −λ

(
x− iξ

2λ

)2

− ξ2

4λ
,



A.2 Fourier transform 627

so that we have

f̂(ξ) = e−
ξ2

4λ

∫
R

e−λ(x− iξ
2λ )2

dx.

Formally, by the change of variable y = x− iξ
2λ , we get

f̂(ξ) = e−
ξ2

4λ

∫
R

e−λy2
dy =

√
π

λ
e−

ξ2

4λ , (A.38)

where we used the fact that
∫
R

e−y2
dy =

√
π. Actually, we cannot directly

perform the above change of variable since y would be a complex variable.
However the argument can be made rigorous by means of Cauchy’s residue
theorem: for more details see, for instance, Rudin [293]. �

Given a finite measure μ on (RN ,B), we define the Fourier transform of μ as
follows:

F(μ) = μ̂ : RN −→ C, μ̂(ξ) :=
∫
RN

ei〈ξ,x〉μ(dx), ξ ∈ RN . (A.39)

Example A.61 If δx0 is the Dirac delta centered at x0 ∈ RN , then

δ̂x0(ξ) =
∫
R

ei〈ξ,x〉δx0(dx) = ei〈x0,ξ〉, ξ ∈ RN . �

Example A.62 Consider the normal distribution Nμ,σ2 where now μ ∈ R
and σ > 0. Then we have

F
(
Nμ,σ2

)
(ξ) =

1√
2πσ2

∫
R

eixξ− (x−μ)2

2σ2 dx =

(by the change of variable y = x− μ)

=
eiμξ

√
2πσ2

∫
R

eixξ− y2

2σ2 dy =

(by (A.38) with λ = 1
2σ2 )

= eiμξ− (σξ)2

2 .

Note that, for σ = 0, we find the Fourier transform of the Dirac delta centered
at μ, in accord with Example A.61. �

As a straightforward consequence of the definition of Fourier transform, we
have the following:
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Proposition A.63 If f ∈ L1(RN ) and μ is a finite measure, then

i) |f̂(ξ)| ≤ ‖f‖L1(RN ) and |μ̂(ξ)| ≤ μ(RN );
ii) f̂ , μ̂ ∈ C(RN );
iii) lim

|ξ|→+∞
f̂(ξ) = lim

|ξ|→+∞
μ̂(ξ) = 0.

We remark that in general the Fourier transform of an integrable function
(or of a finite measure) is not integrable: for example, consider the Fourier
transform of the indicator function of the interval [−1, 1].

We recall that the operation of convolution of two functions f, g ∈ L1(RN )
is defined by

(f ∗ g)(x) =
∫
RN

f(x− y)g(y)dy, x ∈ RN , (A.40)

and f ∗ g ∈ L1(RN ). Indeed

‖f ∗ g‖L1(RN ) ≤
∫
RN

∫
RN

|f(x− y)g(y)|dydx =

(changing the order of integration)

=
∫
RN

∫
RN

|f(x− y)g(y)|dxdy = ‖f‖L1(RN )‖g‖L1(RN ).

The following theorem sums up some other remarkable property of the Fourier
transform.

Theorem A.64 Let f, g ∈ L1(RN ). Then

i) F(f ∗ g) = F(f)F(g);
ii) if ∂xk

f ∈ L1(RN ) then

F(∂xk
f)(ξ) = −iξkF(f)(ξ); (A.41)

iii) if (xkf) ∈ L1(RN ), then ∂ξk
f̂ exists and

∂ξk
f̂(ξ) = iF(xkf)(ξ). (A.42)

Proof. i) We have

f̂(ξ)ĝ(ξ) =
∫
RN

ei〈ξ,w〉f(w)dw

∫
RN

ei〈ξ,y〉g(y)dy

=
∫
RN

∫
RN

ei〈ξ,w+y〉f(w)g(y)dwdy =

(by the change of variable x = y + w)

=
∫
RN

ei〈ξ,x〉
∫
RN

f(x− y)g(y)dydx.
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ii) For the sake of simplicity, we prove (A.41) only if N = 1:

F(f ′)(ξ) =
∫
R

eixξf ′(x)dx =

(integrating by parts9)

= −
∫
R

d

dx
eixξf(x)dx = −iξF(f)(ξ).

iii) Again in the case N = 1, we consider the incremental ratio

R(ξ, δ) =
f̂(ξ + δ)− f̂(ξ)

δ
, δ ∈ R \ {0}.

We have to prove that

lim
δ→0

R(ξ, δ) = F(ixf)(ξ).

We observe that

R(ξ, δ) =
∫
R

eixξ eixδ − 1
δ

f(x)dx

and that, by the mean-value theorem, we have∣∣∣∣eixξ eixδ − 1
δ

f(x)
∣∣∣∣ ≤ |xf(x)| ∈ L1(R)

by assumption. We can apply now the dominated convergence theorem and
since lim

δ→0

eixδ−1
δ = ix, we get

lim
δ→0

R(ξ, δ) =
∫
R

eixξixf(x)dx

whence the claim. �

We state without proof a classical result on the inversion of the Fourier
transform.

Theorem A.65 Let f ∈ L1(RN ) and let μ be a finite measure. If f̂ ∈
L1(RN ), then

f(x) =
1

(2π)N

∫
RN

e−i〈x,ξ〉f̂(ξ)dξ. (A.43)

Analogously if μ̂ ∈ L1(RN ), then μ has density g ∈ C(RN ) and

g(x) =
1

(2π)N

∫
RN

e−i〈x,ξ〉μ̂(ξ)dξ. (A.44)

9 This step can be justified approximating f by functions belonging to C∞0 .
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Remark A.66 If f, f̂ ∈ L1(R) and f is a real function, then10 f̂(−ξ) = f̂(ξ)
and consequently ξ �→ e−i〈x,ξ〉f̂(ξ) is an even function. Then we have

f(x) =
1
2π

∫
R

e−ixξf̂(ξ)dξ =
1
π

∫ ∞

0

e−ixξf̂(ξ)dξ. �

Eventually, we state a result on the Fourier inversion of discontinuous
functions in one dimension (for the proof and a multi-dimensional extension
see Taylor [326]).

Theorem A.67 (Dirichlet-Jordan) If f ∈ L1(R) has bounded variation
(cf. Definition 3.59 and Notation 3.49) in a neighborhood of x ∈ R, then we
have

lim
R→+∞

1
2π

∫ R

−R

e−ixξf̂(ξ)dξ =
f(x+) + f(x−)

2
.

A.3 Parabolic equations with constant coefficients

We denote by (t, x) the point in R×RN and we consider the following partial
differential equation

Lu :=
1
2

N∑
j,k=1

cjk∂xjxk
u +

N∑
j=1

bj∂xj u− au− ∂tu = 0. (A.45)

Hereafter we always assume that C = (cjk) is a symmetric and positive definite
N ×N matrix (we write C > 0), that is

〈Cx, x〉 > 0, x ∈ RN \ {0}. (A.46)

Moreover b = (b1, . . . , bN ) ∈ RN and a ∈ R. The factor 1
2 in the second-

order part of L appears only in order to obtain an expression consistent with
the probabilistic notations (in particular in connection with the multi-normal
distribution, cf. Paragraph A.4). Since in this section we assume that cjk, bj , a
are real and constant, we say that (A.45) is a partial differential equation
of parabolic type with constant coefficients. The prototype of this kind of
equations is the heat equation, corresponding to the case in which C is the
identity matrix, b and a are null:

1
2
�u− ∂tu = 0, (A.47)

where

� =
N∑

j=1

∂xjxj

10 Here z̄ denotes the conjugate of the complex number z.
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is the Laplace differential operator. The heat equation is well known in physics
since it models the diffusion process of heat in a physical body.

We consider the classical Cauchy problem for the operator L in (A.45){
Lu = 0, in ]0,+∞[×RN ,

u(0, x) = ϕ(x), x ∈ RN ,
(A.48)

where ϕ is a given continuous bounded function on RN , ϕ ∈ Cb(RN ), that is
called initial datum of the problem.

Notation A.68 We denote by C1,2 the class of functions with continuous
second-order derivatives in the x variables and continuous first-order deriva-
tive in the t variable.

A classical solution of the Cauchy problem is a function

u ∈ C1,2(R>0 × RN ) ∩ C(R≥0 × RN )

satisfying (A.48). If L is the heat operator, u(t, x) represents the temperature,
at time t and at the point x, of a physical body whose initial temperature at
initial time t = 0 is equal to ϕ.

Definition A.69 Fundamental solution of L is a function Γ (t, x), defined
on ]0,+∞[×RN , such that, for every ϕ ∈ Cb(RN ), the function defined by

u(t, x) =

{∫
RN Γ (t, x− y)ϕ(y)dy, t > 0, x ∈ RN ,

ϕ(x), t = 0, x ∈ RN ,
(A.49)

is a classical solution of the Cauchy problem (A.48).

We present now a standard method, based on the use of the Fourier transform,
to construct a fundamental solution of L.

A.3.1 A special case

We consider first the case in which the coefficients b, a are null. As we shall
see, in general we can go back to this case by a suitable change of variables.

We proceed formally (i.e. without a rigorous justification of the steps) to
obtain a solution formula that will be verified a posteriori. By applying the
Fourier transform only in the x variables to equation (A.45) and by using
(A.41), we get:

F
(

1
2

N∑
j,k=1

cjk∂xjxk
u(t, x)− ∂tu(t, x)

)
(ξ)

= −1
2

N∑
j,k=1

cjkξjξkû(t, ξ)− ∂tû(t, ξ) = 0,
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or, in other terms,

∂tû(t, ξ) = −1
2
〈Cξ, ξ〉û(t, ξ), (A.50)

to which we associate the initial condition

û(0, ξ) = ϕ̂(ξ), ξ ∈ RN . (A.51)

The ordinary Cauchy problem (A.50)-(A.51) has solution

û(t, ξ) = ϕ̂(ξ)e−
t
2 〈Cξ,ξ〉.

Therefore, by using i) in Theorem A.64, we get11:

u(t, x) = F−1
(
ϕ̂(ξ)e−

t
2 〈Cξ,ξ〉

)
=
(
F−1

(
e−

t
2 〈Cξ,ξ〉

)
∗ ϕ
)

(x), (A.52)

where “∗” denotes the convolution operation in (A.40). Now we use the fol-
lowing lemma whose proof is postponed to the end of the section.

Lemma A.70 Consider the function

Γ (t, x) =
1√

(2πt)N det C
exp
(
− 1

2t
〈C−1x, x〉

)
, (A.53)

defined for x ∈ RN and t > 0. We have

F(Γ (t, ·))(ξ) = e−
t
2 〈Cξ,ξ〉. (A.54)

In Lemma A.70, the assumption (A.46), i.e. C > 0, plays a crucial role. We
also remark explicitly that, for N = 1 and C = 1, Γ is the density of the
normal distribution in (A.7). By (A.54), (A.52) becomes

u(t, x) =
∫
RN

Γ (t, x− y)ϕ(y)dy

=
1√

(2πt)N det C

∫
RN

exp
(
− 1

2t
〈C−1(x− y), (x− y)〉

)
ϕ(y)dy,

(A.55)

for x ∈ RN and t > 0.

Remark A.71 Until now we have assumed ϕ ∈ Cb, but in the actual appli-
cations we need to consider more general initial data, possibly unbounded. As
a matter of fact, the convergence of the integral in (A.55) requires much less
than the boundedness of ϕ: it is enough to impose a suitable growth condition
on ϕ at infinity. Indeed, for every fixed (t, x) ∈ R>0 × RN , we have

exp
(
− 1

2t
〈C−1(x− y), (x− y)〉

)
≤ e−c|x−y|2 , y ∈ RN ,

11 Here we write formally u = F−1(v) to indicate that v = F(u).
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where c = λ
2t > 0 and λ is the smallest eigenvalue of C−1. Therefore it is

enough12 to assume that there exist some positive constants c1, c2, γ with
γ < 2 such that

|ϕ(y)| ≤ c1e
c2|y|γ , y ∈ RN , (A.57)

to guarantee that the integral in (A.55) converges for every t > 0 and x ∈ RN .
�

Next we aim at proving rigorously that (A.55) gives a representation formula
for the classical solution of the Cauchy problem (A.48).

Theorem A.72 If ϕ is continuous and verifies condition (A.57), then the
function u defined by (A.55) for t > 0 and by u(0, ·) = ϕ, is a classical solution
of the Cauchy problem (A.48). In particular Γ in (A.53) is a fundamental
solution of L in (A.45) with a = 0 and b = 0.

Proof. For the sake of simplicity we only consider the case of the heat oper-
ator. First of all, we verify that the function

Γ (t, x) =
1

(2πt)
N
2

exp
(
−|x|

2

2t

)
, x ∈ RN , t > 0,

is a solution of the heat equation: for k = 1, . . . , N , we have

∂xk
Γ (t, x) = −xk

t
Γ (t, x),

∂xkxk
Γ (t, x) =

(
x2

k

t2
− 1

t

)
Γ (t, x),

∂tΓ (t, x) =
1
2

( |x|2
t2
− N

t

)
Γ (t, x),

(A.58)

and so it follows immediately that 1
2�Γ (t, x) = ∂tΓ (t, x).

In order to prove that u in (A.55) is solution of the heat equation, it is
enough to use a standard result on differentiation under the integral sign and
verify that(

1
2
�− ∂t

)
u(t, x) =

∫
RN

(
1
2
�− ∂t

)
Γ (t, x− y)ϕ(y)dy = 0, (A.59)

for every x ∈ RN and t > 0. Now, for a fixed x̄ ∈ RN and t, δ > 0, we have

∂xk
Γ (t, x− y)ϕ(y) = −

(
xk − yk

t
Γ (t, x− y)e

|y|2
δ

)(
ϕ(y)e−

|y|2
δ

)
12 Actually we can assume the existence of two positive constants c1, c2 such that

|ϕ(y)| ≤ c1e
c2|y|2 , y ∈ RN , (A.56)

to make sure that the integral in (A.55) is finite, at least for t < λ
2c2

.



634 Appendix: a primer in probability and parabolic PDEs

where ϕ(y)e−
|y|2

δ is integrable over RN by condition (A.57). Then assuming
that δ > 4t and x belongs to a bounded neighborhood of the point x̄, the
function

y �→ xk − yk

t
Γ (t, x− y)e

|y|2
δ

is bounded. Hence the dominated convergence theorem guarantees that

∂xk
u(t, x̄) =

∫
RN

∂xk
Γ (t, x̄− y)ϕ(y)dy.

Analogously we show that

∂xkxk
u(t, x) =

∫
RN

∂xkxk
Γ (t, x− y)ϕ(y)dy,

∂tu(t, x) =
∫
RN

∂tΓ (t, x− y)ϕ(y)dy,

for every x ∈ RN and t > 0. This concludes the proof of (A.59).
It remains to prove that the function u is continuous up to t = 0: more

precisely, we show that, for every fixed x0 ∈ RN , we have

lim
(t,x)→(0,x0)

u(t, x) = ϕ(x0).

Since ∫
RN

Γ (t, x− y)dy = 1, x ∈ RN , t > 0,

we have

|u(t, x)− ϕ(x0)| ≤
1

(2πt)
N
2

∫
RN

exp
(
−|x− y|2

2t

)
|ϕ(y)− ϕ(x0)|dy =

(by the change of variables η = x−y√
2t

)

=
1

π
N
2

∫
RN

e−|η|
2 |ϕ(x− η

√
2t)− ϕ(x0)|dη. (A.60)

By condition (A.57), for every (t, x) in a neighborhood of (0, x0), we have

e−|η|
2 |ϕ(x− η

√
2t)− ϕ(x0)| ≤ ce−

|η|2
2 , η ∈ RN ,

for some positive constant c. Then the claim follows by taking the limit in
(A.60) as (t, x)→ (0, x0) and applying the dominated convergence theorem. �

Example A.73 We consider the Cauchy problem in R2{
1
2∂xxu(t, x)− ∂tu(t, x) = 0, (t, x) ∈ R>0 × R,

u(0, x) = ex x ∈ R.
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By formula (A.55) we have

u(t, x) =
1√
2πt

∫
R

e−
(x−y)2

2t +ydy =

(by the change of variables η = x−y√
2t

)

=
ex+ t

2

√
π

∫
R

e−(η+ t
2 )

2

dη = ex+ t
2 . �

Exercise A.74 Determine the solution of the Cauchy problem{
1
2∂xxu(t, x)− ∂tu(t, x) = 0, (t, x) ∈ R>0 × R,

u(0, x) = (ex − 1)+ , x ∈ R,

where ϕ+ = max{0, ϕ} is the positive part of the function ϕ.

We close this section by giving the:

Proof (of Lemma A.70). In the case N = 1, the thesis is a consequence of
Example A.60. In general we use the following trick: we set

Γ̃ (t, ξ) = F(Γ (t, ·))(ξ)

with Γ as in (A.53). Denoting by ∇ξ = (∂ξ1 , . . . , ∂ξN ) the gradient in RN , by
property (A.42) we have

∇ξΓ̃ (t, ξ) = iF (xΓ (t, x)) (ξ) = −itF
(
−C C

−1x

t
Γ (t, x)

)
(ξ) =

(since ∇x〈C−1x, x〉 = 2C−1x)

= −itF (C∇xΓ (t, x)) (ξ) =

(by property (A.41))
= −t Cξ Γ̃ (t, ξ).

In conclusion, for every positive t, Γ̃ (t, ·) is solution of the Cauchy problem{
∇ξΓ̃ (t, ξ) = −t Cξ Γ̃ (t, ξ),
Γ̃ (t, 0) =

∫
RN Γ (t, x)dx = 1,

and consequently, because of the uniqueness of the solution, we get the claim:

Γ̃ (t, ξ) = e−
t
2 〈Cξ,ξ〉. �



636 Appendix: a primer in probability and parabolic PDEs

A.3.2 General case

Now we consider the operator L in its most general form

Lu =
1
2

N∑
j,k=1

cjk∂xjxk
u +

N∑
j=1

bj∂xj u− au− ∂tu.

We prove that by a simple substitution we can go back to the previous case:
indeed by setting

u0(t, x) = eatu(t, x− tb),

we have

∂tu0(t, x) = eat(au(t, x− tb) + (∂tu) (t, x− tb)− 〈b, (∇u)(t, x− tb)〉),
∂xj u0(t, x) = eat

(
∂xj u

)
(t, x− tb),

∂xjxk
u0(t, x) = eat

(
∂xjxk

u
)
(t, x− tb), j, k = 1, . . . , N.

Therefore, if we set

L0 =
1
2

N∑
j,k=1

cjk∂xjxk
− ∂t

we get

L0u0(t, x) = eat
(
(L0u)(t, x− tb) + 〈b, (∇u)(t, x− tb)〉 − au(t, x− tb)

− (∂tu) (t, x− tb)
)

= eat(Lu)(t, x− tb).

In conclusion we obtain that the fundamental solution of L is given by

Γ (t, x) = e−atΓ0(t, x− tb), (t, x) ∈ R>0 × RN ,

where Γ0 is the fundamental solution of L0. More explicitly

Γ (t, x) =
1√

(2πt)N det C
exp
(
− 1

2t
〈C−1(x− tb), x− tb〉 − at

)
. (A.61)

Next we note that, for every s ∈ R and ϕ ∈ Cb, the function

u(t, x) =
∫
RN

Γ (t− s, x− y)ϕ(y)dy, t > s, x ∈ RN ,

is a classical solution of the Cauchy problem{
Lu = 0, in ]s,+∞[×RN ,

u(s, x) = ϕ(x), x ∈ RN .
(A.62)
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This justifies the following:

Definition A.75 The function

Γ (t, x; s, y) = Γ (t− s, x− y), x, y ∈ RN , t > s,

is called fundamental solution of L with pole in (s, y) and computed at (t, x).

The explicit expression of Γ is

Γ (t, x; s, y) =
1√

(2π(t− s))N det C
·

· exp
(
− 1

2(t− s)
〈C−1(x− y − (t− s)b), x− y − (t− s)b〉 − a(t− s)

)
.

A.3.3 Locally integrable initial datum

Formula

u(t, x) =
∫
RN

Γ (t, x; s, y)ϕ(y)dy, t > s, x ∈ RN , (A.63)

defines a solution of the Cauchy problem (A.62) even under weaker regularity
conditions on the initial datum: let us assume that ϕ ∈ L1

loc(R
N ) and there

exist some positive constants c,R, β with γ < 2 such that

|ϕ(x)| ≤ cec|x|γ , (A.64)

for almost all x ∈ RN with |x| ≥ R. This extension can be useful for example
if we want to price digital options, where the initial datum is a discontinuous
function of the form

ϕ(x) =

{
1, x ≥ 0,

0, x < 0.

Definition A.76 We say that u ∈ C1,2(]s,+∞[×RN ) assumes the initial
datum ϕ in the sense of L1

loc if, for every compact set K in RN , we have that

lim
t→s+

‖u(t, ·)− ϕ‖L1(K) = lim
t→s+

∫
K

|u(t, x)− ϕ(x)|dx = 0.

We confine ourselves to stating the following existence result: the proof can
be found, for example, in DiBenedetto [97], p. 240.

Theorem A.77 If ϕ ∈ L1
loc(R

N ) satisfies condition (A.64), then the function
u in (A.63) is a classical solution of the equation Lu = 0 in ]s,+∞[×RN and
assumes the initial datum ϕ in the sense of L1

loc.
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Remark A.78 Convergence in the sense of L1
loc implies pointwise conver-

gence
lim

t→s+
u(t, x) = ϕ(x),

for almost all x ∈ RN . Nevertheless, if the initial datum is assumed in the sense
of pointwise convergence, this is not sufficient to guarantee the uniqueness of
the solution of the Cauchy problem. Consider for instance the function

u(t, x) =
x

t
3
2
e−

x2
2t , (t, x) ∈ ]0,+∞[×R.

Then u satisfies the heat equation and for every x ∈ R we have

lim
t→0+

u(t, x) = 0.

Moreover u is strictly positive and verifies (A.64) with γ = 2. This exam-
ple does not contradict the uniqueness results of Chapter 6 since u is not
continuous on R≥0 × R and does not take the initial datum in the classical
sense.

Note also that the fundamental solution of the heat equation Γ (t, x) in
(A.7) tends to zero as t→ 0+ in RN \ {0}. However, for every R > 0, we have∫

|x|<R

Γ (t, x)dx = π−
N
2

∫
|y|< R√

2t

e−|y|
2
dy −−−−→

t→0+
1;

therefore Γ does not satisfies the null initial condition in the sense of L1
loc. �

A.3.4 Non-homogeneous Cauchy problem

We consider the non-homogeneous Cauchy problem{
Lu = f, in ]0, T [×RN ,

u(0, ·) = ϕ, on RN ,
(A.65)

where ϕ ∈ L1
loc(R

N ) satisfies condition (A.64) and f is continuous and verifies
the growth condition

|f(t, x)| ≤ cec|x|γ , (t, x) ∈]0, T [×RN , (A.66)

where c, γ are positive constants and γ < 2. Furthermore, we assume that f
is locally Hölder continuous in x, uniformly with respect to t, i.e. for every
compact set K in RN we have that

|f(t, x)− f(t, y)| ≤ cK |x− y|β , t ∈]0, T [, x, y ∈ K,

with β, cK positive constants. Then we have the following:
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Theorem A.79 The function defined on ]0, T [×RN by

u(t, x) =
∫
RN

Γ (t, x; 0, y)ϕ(y)dy −
∫ t

0

∫
RN

Γ (t, x; s, y)f(s, y)dyds, (A.67)

belongs to C1,2(]0, T [×RN ), solves the equation Lu = f in ]0, T [×RN and
assumes the initial datum ϕ in the sense of L1

loc.

Proof (Outline). If we set

F (t, x) =
∫ t

0

∫
RN

Γ (t, x; s, y)f(s, y)dyds,

the claim is proved as soon as we have verified that

lim
(t,x)→(0,x0)

F (t, x) = 0, x0 ∈ RN , (A.68)

LF (t, x) = −f(t, x), (t, x) ∈]0, T [×RN . (A.69)

The limit (A.68) is straightforward since we have the estimate∣∣∣∣∫
RN

Γ (t, x; s, y)f(s, y)dy

∣∣∣∣ ≤ CeC|x|2 ,

that can be proved by proceeding as in Remark 6.16. Concerning (A.69),
formally we have

LF (t, x) =
∫ t

0

∫
RN

LΓ (t, x; s, y)︸ ︷︷ ︸
=0

f(s, y)dyds

−
∫
RN

Γ (t, x; t, y)︸ ︷︷ ︸
=δx(y)

f(t, y)dy = −f(t, x).

In order to justify the previous steps it is necessary a careful study of some
singular integrals in which the second-order derivatives of the fundamental so-
lution appear: the proof is not trivial and is based on the crucial hypothesis of
Hölder continuity of f . For instance, we refer to DiBenedetto [97], Chapter V,
for all the details. �

A.3.5 Adjoint operator

Let L be the differential operator in (A.45), that is

L =
1
2

N∑
j,k=1

cjk∂xjxk
+

N∑
j=1

bj∂xj − a− ∂t, (t, x) ∈ RN+1.
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For every u, v ∈ C2(RN+1) with compact support, integrating by parts we
obtain the following relation∫

RN+1
uLv =

∫
RN+1

vL∗u,

where

L∗ =
1
2

N∑
j,k=1

cjk∂xjxk
−

N∑
j=1

bj∂xj − a + ∂t (A.70)

is called adjoint operator of L. For example, the adjoint of the heat operator
is simply

1
2
Δ + ∂t.

Definition A.80 A fundamental solution of the operator L∗ is a function
Γ ∗(t, x;T, y) defined for every x, y ∈ RN and t < T , such that, for every
ϕ ∈ Cb(RN ), the function

v(t, x) =
∫
RN

Γ ∗(t, x;T, y)ϕ(y)dy, t < T, x ∈ RN ,

is a classical solution of the backward Cauchy problem{
L∗v = 0, in ]−∞, T [×RN ,

v(T, x) = ϕ(x), x ∈ RN .
(A.71)

We note that L∗ is a backward operator and the related Cauchy problem
(A.71) involves a final datum. The following result establishes the duality
relation between the fundamental solutions of L and L∗.

Theorem A.81 For any x, y ∈ RN and t < T , we have

Γ ∗(t, x;T, y) = Γ (T, y; t, x). (A.72)

Proof. We construct Γ ∗ by using the technique in the proof of Theorem A.72,
based on the Fourier transform. Then we check directly the validity of formula
(A.72). �

Remark A.82 By a simple change of variables, the backward problem for
the heat operator is equivalent to the correspondent direct problem: indeed u
is solution of {

1
2Δu− ∂tu = 0, in ]0,+∞[×RN ,

u(0, x) = ϕ(x), x ∈ RN ,

if and only if v(t, x) = u(T − t, x) is solution of{
1
2Δv + ∂tv = 0, in ]−∞, T [×RN ,

v(T, x) = ϕ(x), x ∈ RN . �
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Remark A.83 The problem for the heat equation with final datum{
1
2Δu(t, x)− ∂tu(t, x) = 0, (t, x) ∈ ]0, T [×RN ,

u(T, x) = ϕ(x) x ∈ RN ,
(A.73)

is in general ill-posed and not solvable. More precisely, even if we have a final
datum ϕ which is bounded and smooth, the solution may become irregular
for T arbitrarily small. Indeed, it is enough to consider the solution of (A.73)
with ϕ(x) = Γ (T − ε, x), ε > 0, where Γ the fundamental solution of the heat
operator. This fact corresponds to the physical phenomenon of heat diffusion
that is not in general reversible, i.e. it is not possible to derive the initial state
from the knowledge of the temperature at final time. �

A.4 Characteristic function and normal distribution

Definition A.84 The characteristic function of the r.v. X, with values in
RN , is the function

ϕX : RN −→ C

defined by

ϕX(ξ) = E
[
ei〈ξ,X〉

]
, ξ ∈ RN .

In other terms, since

ϕX(ξ) =
∫
RN

ei〈ξ,y〉PX(dy), ξ ∈ RN ,

ϕX is simply the Fourier transform of the distribution PX of X. In particular,
if PX has a density f , then ϕX = F(f).

The distribution of a r.v. is determined by its characteristic function: in-
deed the following generalized version of the Fourier inversion theorem holds
(for the proof we refer, for example, to Chung [74], Chapter 6.2).

Theorem A.85 Two random variables with the same characteristic function
are identically distributed: more precisely, ϕX(ξ) = ϕY (ξ) for every ξ ∈ RN if
and only if X=

d

Y . Further, if ϕX ∈ L1(RN ) then the distribution of the r.v.
X has a density f ∈ C(RN ) defined by

f(x) =
1

(2π)N

∫
RN

e−i〈x,ξ〉ϕX(ξ)dξ. (A.74)

As a consequence of Proposition A.63 and of Theorem A.64 (see also
Lemma A.142), the following simple properties of the characteristic function
hold; their proof is left as a useful exercise.
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Lemma A.86 If X is a r.v. in RN , then ϕX is a continuous function such
that ϕX(0) = 1 and

|ϕX(ξ)| ≤ 1, ξ ∈ RN .

If X is a real r.v. in Lp(Ω,P ), with p ∈ N, then ϕX is differentiable p times
and

dp

dξp
ϕX(ξ)|ξ=0 = ipE [Xp] . (A.75)

If X is a real random variable in Lp(Ω,P ), then

mp(X) = E [Xp] =
1
ip

dp

dξp
ϕX(ξ)|ξ=0 (A.76)

is called the p-th moment of X, while

m̄p(X) = E [(X − E [X])p]

is called the p-th centered moment of X.
Since ϕX(0) = 1 and ϕX is a continuous function, it is possible to prove

that
ϕX(ξ) = eψX(ξ) (A.77)

in a neighborhood of the origin, for some continuous function ψX such that
ψX(0) = 0 (cf. Sato [297], Lemma 7.6.). This result is not trivial since ϕX is
a complex-valued function: ψX is called the distinguished complex logarithm
of ϕX . The function ψX is also called the cumulant generating function of X
because, by analogy with (A.76), the cumulants of X are defined by

cp(X) =
1
ip

dp

dξp
ψX(ξ)|ξ=0. (A.78)

Differentiating (A.77), the p-th cumulant can be expressed as a polynomial
function of the moments mk or m̄k with k = 1, . . . , p: for instance, we have

c1(X) = m1(X) = E [X] ,

c2(X) = m̄2(X) = m2(X)−m1(X)2 = var(X),

c3(X) = m̄3(X) = m3(X)− 3m2(X)m1(X) + 2m1(X)3,
c4(X) = m̄4(X)− 3m̄2(X).

For example, if X ∼ Nμ,σ2 then, by Example A.62, we have

ϕX(ξ) = eψX(ξ) with ψX(ξ) = iμξ − (σξ)2

2
.

In this case, ψX is a second order polynomial and therefore cp(X) = 0 for
any p ≥ 3. Usually, the cumulants cp(X) with p ≥ 3 are considered measures
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Fig. A.2. Variance-Gamma (thick line) and normal (dashed line) densities (left).
Plot of the log-densities (right)

of deviation from normality. In particular, the third and fourth cumulants,
scaled by the standard deviation,

s(X) =
c3(X)
c2(X)

3
2
, k(X) =

c4(X)
c2(X)2

, (A.79)

are called the skewness and kurtosis coefficients of X, respectively: if s(X) > 0
then X is said to be positively skewed; if k(X) > 0 then X is said to be
leptokurtic or fat-tailed.

Figure A.2 compares the normal density with the density of X1 where
(Xt)t≥0 is a Variance-Gamma process with parameters as in Example 15.21:
the cumulants c1(Xt), c2(Xt) and c4(Xt) are given in (15.39); we also have

c3(Xt) = tμν
(
2μ2ν + 3σ2

)
.

The left picture shows the skewness of Xt. The right picture shows the graphs
of the logarithms of the densities: the normal log-density behaves as x �→ −x2

as |x| → +∞, while the VG log-density exhibits skewness and fat tails.

A.4.1 Multi-normal distribution

We say that a r.v. X on (Ω,F , P ) with values in RN , is multi-normal if it has
a density of the form

1√
(2π)N det C

exp
(
−1

2
〈C−1(x− μ), (x− μ)〉

)
, x ∈ RN , (A.80)

where μ is a given vector in RN and C = (cjk) is a symmetric and positive
definite (N ×N)-matrix: in this case we use the notation X ∼ Nμ, C (see also
Remark A.90 below).

As in Example A.31, a direct computation shows that

E [X] = μ, cov(Xj ,Xk) := E [(Xj − μj)(Xk − μk)] = cjk,
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for j, k = 1, . . . , N, where X = (X1, . . . ,XN ). So μ is the expectation of X
and C is the (N ×N)-dimensional covariance matrix of X:

C = E
[
(X − μ) (X − μ)∗

]
. (A.81)

Remark A.87 Let ϕ be a bounded continuous function on RN . By the rep-
resentation formula (A.55) and by Theorem A.72, the classical solution of the
Cauchy problem⎧⎪⎨⎪⎩

1
2

N∑
j,k=1

cjk∂xjxk
u− ∂tu = 0, (t, x) ∈ ]0,+∞[×RN ,

u(0, x) = ϕ(x), x ∈ RN ,

has the following probabilistic representation

u(t, x) =
∫
RN

ϕ(y)Γ (t, x− y)dy = E
[
ϕ(Xt,x)

]
where Xt,x ∼ Nx, tC . Probabilistic numerical methods (Monte Carlo) for the
heat equation are based on representations of this kind. �

Example A.88 If X ∼ Nμ,σ2 then, by Example A.62, we have

ϕX(ξ) = eiμξ− (σξ)2

2 . (A.82)

In particular, if X ∼ δμ then ϕX(ξ) = eiμξ: notice that, in this case |ϕX(ξ)| =
1 and so ϕX is not integrable13. �

Theorem A.89 The r.v. X is multi-normal, X ∼ Nμ, C, if and only if

ϕX(ξ) = exp
(

i〈ξ, μ〉 − 1
2
〈Cξ, ξ〉

)
, ξ ∈ RN . (A.83)

Proof. The claim is a direct consequence of Theorem A.85 and can be proved
exactly as (A.54). �

Remark A.90 Formula (A.83) gives a characterization of the multi-normal
distribution that makes sense also if C is symmetric and positive semi-
definite14. We can therefore generalize the definition of a multi-normal random
variable: we say that X ∼ Nμ, C , with μ ∈ RN and C = (cjk) symmetric and
positive semi-definite, if (A.83) holds. For example, if C = 0 then X ∼ δμ

since ϕX(ξ) = F(δμ)(ξ) = exp (i〈ξ, μ〉) for ξ ∈ RN . �

13 Compare this remark with Theorem A.65.
14 An (N ×N)-dimensional matrix C is positive semi-definite (we write C ≥ 0) if

〈Cx, x〉 ≥ 0, x ∈ RN .
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Corollary A.91 The random variables X1, . . . ,Xm are independent if and
only if

ϕ(X1,...,Xm)(ξ1, . . . , ξm) = ϕX1(ξ) · · ·ϕXm(ξ), ξ1, . . . , ξm ∈ RN .

Proof. We prove the claim only in the case m = 2. By Proposition A.53,
X,Y are independent if and only if P (X,Y ) = PX ⊗ PY . Now, for ξ, η ∈ RN ,
we have

ϕ(X,Y )(ξ, η) =
∫∫

RN×RN

ei(〈ξ,x〉+〈η,y〉)P (X,Y )(dx dy),

ϕX(ξ)ϕY (η) =
∫∫

RN×RN

ei(〈ξ,x〉+〈η,y〉)PX ⊗ PY (dx dy),

and so the claim follows from Theorem A.85. �

Exercise A.92 Let X,Y be real independent normally-distributed random
variables: X ∼ Nμ, σ2 and Y ∼ Nν,�2 . Prove that

X + Y ∼ Nμ+ν, σ2+�2 .

Solution. Since X, Y are independent, by Lemma A.86, we have

ϕX+Y (ξ) = ϕX(ξ)ϕY (ξ) = ei(μ+ν)ξ− ξ2
2 (σ2+�2)

by (A.82) and the claim follows from Theorem A.89. �

Remark A.93 We extend Remark A.32: let X ∼ Nμ, C , β ∈ Rd and let
α = (αij) be a generic constant (d×N)-matrix. Then the r.v. αX +β is multi-
normal with mean αμ+β and covariance matrix αCα∗, where α∗ denotes the
transpose matrix of α, i.e.:

αX + β ∼ Nαμ+β, αCα∗ .

As an exercise, verify that αCα∗ is a (d × d)-symmetric and positive semi-
definite matrix. �

We give another characterization of multi-normal random variables.

Proposition A.94 The r.v. X is multi-normal if and only if 〈λ,X〉 is nor-
mal for every λ ∈ RN . More precisely, X ∼ Nμ, C if and only if

〈λ,X〉 =
N∑

j=1

λjXj ∼ N〈λ,μ〉,〈Cλ,λ〉, (A.84)

for every λ ∈ RN .
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Proof. If X ∼ Nμ, C , then for every ξ ∈ R we have

ϕ〈λ,X〉(ξ) = E
[
eiξ〈λ,X〉

]
= eiξ〈λ,μ〉− ξ2

2 〈Cλ,λ〉,

therefore, by Theorem A.89, 〈λ,X〉 ∼ N〈λ,μ〉, 〈Cλ,λ〉.
Conversely, if 〈λ,X〉 ∼ Nm, σ2 then, by (A.82), we have

ϕX(λ) = E
[
ei〈λ,X〉

]
= ϕ〈λ,X〉(1) = eim−σ2

2

where m = 〈λ,E [X]〉 and, putting μi = E [Xi], we have

σ2 = E
[
(〈λ,X〉 − 〈λ,E [X]〉)2

]
= E

[
(〈λ,X − E [X]〉)2

]
=

N∑
i,j=1

λiλjE [(Xi − μi) (Xj − μj)] ,

so X has multi-normal distribution, by Theorem A.89. �

A.5 Conditional expectation

In financial applications the price of an asset is generally modeled by a r.v.
X and the amount of information available is described by a σ-algebra G: as
a consequence, it is natural to introduce the notion of conditional expectation
of X given G, usually denoted by

E [X | G]

to describe the best estimate of the price X based on the information G.

A.5.1 Radon-Nikodym theorem

Given any two measures P,Q on (Ω,F), we say that Q is P -absolutely conti-
nuous on F if, for every A ∈ F such that P (A) = 0, we have Q(A) = 0. In this
case we write Q � P or Q �F P if we want to highlight the σ-algebra that
we are considering; indeed it is apparent that the notion of absolute continuity
depends on the σ-algebra under consideration: if G ⊆ F are σ-algebras, then
Q�G P does not necessarily imply that Q�F P .

If Q � P and P � Q, then we say that the measures P and Q are
equivalent and we write P ∼ Q. In case P,Q are probability measures, Q�F
P implies that the P -negligible events in F are also Q-negligible, but the
converse may not be true. Obviously, if Q�F P , then for every A ∈ F such
that P (A) = 1 we have Q(A) = 1, i.e. the certain events for P are certain also
for Q, but the converse is not generally true.
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Example A.95 We have already seen that, for σ > 0, Nμ,σ2 is absolutely
continuous with respect to Lebesgue measure m in (R,B). As an exercise
prove the converse, that is m�B Nμ,σ2 . Note that the distribution δx0 is not
absolutely continuous with respect to Lebesgue measure, since m ({x0}) = 0
but δx0({x0}) = 1. �

If P is a distribution of the type (A.4), i.e. with a density with respect
to Lebesgue measure m, then P �B m. We may wonder whether all the
measures P such that P � m have the form (A.4). The following classical
result gives an affirmative answer. For its proof, we refer to Williams [339].

Theorem A.96 (Radon-Nikodym theorem) Let (Ω,F , P ) be a finite-
measure space. If Q is a finite measure on (Ω,F) and Q �F P , then there
exists L : Ω → R, L ≥ 0, such that

i) L is F-measurable;
ii) L is P -integrable;
iii)Q(A) =

∫
A

LdP for every A ∈ F .

Further, L is P -almost surely unique (i.e. if L′ verifies the same properties of
L, then P (L = L′) = 1). We say that L is the density of Q with respect to P
on F or also the Radon-Nikodym derivative of Q with respect to P on F and
we write without distinction L = dQ

dP or dQ = LdP . In order to emphasize the
dependence on F , we also write

L =
dQ

dP
|F . (A.85)

Remark A.97 Let P,Q be probability measures on the space (Ω,F) with
Q� P and set L = dQ

dP . Using Dynkin’s theorem as in the proof of Theorem
A.23, we can show that X ∈ L1(Ω,Q) if and only if XL ∈ L1(Ω,P ) and in
that case

EQ [X] = EP [XL] , (A.86)

where EP and EQ denote the expectations under the probability measures P
and Q respectively. In other words∫

Ω

XdQ =
∫

Ω

X

(
dQ

dP

)
dP

and this justifies the notation (A.85). �

Theorem A.96 can be extended to the case of P,Q σ-finite, with the exception
of the second point. It follows in particular that the distributions with density
with respect to Lebesgue measure m are only those that are m-absolutely
continuous.
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A.5.2 Conditional expectation

The goal of this paragraph is to introduce gradually the rigorous definition
of conditional expectation. Those who are familiar with this notion, can skip
the paragraph and proceed to Definition A.99 directly.

Given a real integrable r.v. X and an event B with positive probability,
we define the conditional expectation of X given the event B as the mean of
X with respect to the measure P (· | B) defined in Section A.1.7 and more
precisely

E [X|B] =
1

P (B)

∫
B

XdP. (A.87)

Given B ∈ F such that 0 < P (B) < 1, we denote by G the σ-algebra generated
by B:

G = {∅, Ω,B,Bc}. (A.88)

The conditional expectation of X given G, E [X | G], is defined by

E [X|G] (ω) =

{
E [X|B] , ω ∈ B,

E [X|Bc] , ω ∈ Bc.
(A.89)

We remark explicitly that E [X | G] is a random variable.

Remark A.98 We can prove directly that

i) E [X|G] is G-measurable;
ii)
∫

G
XdP =

∫
G

E [X| G] dP for every G ∈ G.
Further, if Y is a r.v. verifying such properties, then Y = E [X|G] P -a.s., that
is properties i) and ii) characterize E [X|G] P -almost surely. Indeed G = {Y >
E [X | G]} is a G-measurable event and by ii) we get∫

G

(Y − E [X | G])dP = 0,

this implying that P (G) = 0. �

We point out that E [X|G] is G-measurable even if X is not. Intuitively
E [X|G] represents the “expectation of X based on the knowledge of the infor-
mation in G”, i.e. the best approximation of X on the basis of the information
in G.

We can generalize the previous definition to the case of a generic σ-algebra
in the following way.

Definition A.99 Let X be a real integrable r.v. on the probability space
(Ω,F , P ) and let G be a σ-algebra contained in F . Let Y be a r.v. such that

i) Y is integrable and G-measurable;
ii)
∫

A
XdP =

∫
A

Y dP for every A ∈ G.
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Then we say that Y is a version of the conditional expectation (or, more
simply, the conditional expectation) of X given G and we write Y = E [X | G] .

In order for Definition A.99 to be well-posed, we have to prove existence and
“uniqueness” of the conditional expectation.

Theorem A.100 Let X be a real integrable r.v. on the probability space
(Ω,F , P ) and let G be a σ-algebra contained in F . Then there exists a r.v.
Y satisfying i),ii) in Definition A.99. Further, those properties characterize
Y in the sense that, if Z is another r.v. satisfying i), ii) in Definition A.99,
then Y = Z a.s.

Proof. A simple but indirect15 proof is based upon the Radon-Nikodym the-
orem. First of all it is enough to prove the claim in the case that X is a real
non-negative r.v. Since X ∈ L1(Ω,P ), the equation

Q(G) =
∫

G

XdP, G ∈ G,

defines a finite measure Q on G. Further, Q � P on G and so by Theorem
A.96 there exists a G-measurable r.v. Y such that Q(G) =

∫
G

Y dP for every
G ∈ G. In order to conclude and prove the uniqueness we can proceed as in
Remark A.98. �

Notation A.101 If Y = E [X | G] and Z is a G-measurable16 r.v. such that
Z = Y a.s. then also Z = E [X | G]. So the conditional expectation of X is
defined up to a negligible event: the expression Y = E [X | G] does not have
to be understood as an equality of random variables, but as a notation to say
that Y is a r.v. having the properties i) and ii) of the previous definition. By
convention, when we write

E [X | G] = E [Y | G] (respectively E [X | G] ≤ E [Y | G])

we mean that, if A = E [X | G] and B = E [Y | G], then

A = B a.s. (respectively A ≤ B a.s.).

Given two random variables X,Y and F ∈ F , we denote by

E [X | Y ] := E [X | σ(Y )] and P (F | Y ) := E [1F | Y ]

the conditional expectation of X and the conditional probability of F , with
respect to Y , respectively. Moreover, when B = {Y = Y (ω)} in (A.87), we
simply write E [X | Y = Y (ω)] instead of E [X | {Y = Y (ω)}]. �

15 We defer a more direct proof to Section A.5.5.
16 We note that, if Z = Y a.s. and Y = E [X | G], not necessarily Z is G-measurable

and so we do not necessarily have Z = E [X | G].
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Remark A.102 As a consequence of Dynkin’s Theorem A.9, property ii) in
Definition A.99 is equivalent to the fact that

E [XW ] = E [Y W ] , (A.90)

for every bounded and G-measurable r.v. W . �

Remark A.103 If Y is G-measurable and∫
A

Y dP ≥
∫

A

XdP, A ∈ G, (A.91)

then
Y ≥ E [X | G] .

Indeed, if Z = E [X | G] and, by contradiction, A := {Y < Z} ∈ G is not a
negligible event, then we would have∫

A

Y dP <

∫
A

ZdP =
∫

A

XdP,

contradicting assumption (A.91). �

Exercise A.104 Let X be an integrable real r.v. on the probability space
(Ω,F , P ) and let G be a σ-algebra contained in F . Proceeding as in the proof
of Proposition A.6, prove that Y = E [X | G] if and only if:

i) Y is G-measurable;
ii)
∫

A
XdP =

∫
A

Y dP for every A ∈ A where A is a ∩-stable collection,
containing Ω and such that G = σ(A).

A.5.3 Conditional expectation and discrete random variables

In this section we assume that X,Y are discrete random variables on (Ω,F , P ),
that is

X(Ω) = {x1, . . . , xn} Y (Ω) = {y1, . . . , ym}, (A.92)

for some n,m ∈ N.

Proposition A.105 We have

E [X | Y ] (ω) = E [X | Y = Y (ω)] , ω ∈ Ω, (A.93)

E [X | Y ] =
n∑

k=1

xkP (X = xk | Y ). (A.94)

Proof. We set Z(ω) = E [X | Y = Y (ω)] for ω ∈ Ω. By definition of condi-
tional expectation, (A.93) follows from the fact that:

i) Z is σ(Y )-measurable, since Z = zi := E [X | Y = yi] on {Y = yi}, i =
1, . . . ,m, and Z(Ω) = {z1, . . . , zm};
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ii) for any i = 1, . . . ,m, we have∫
{Y =yi}

ZdP =
∫
{Y =yi}

E [X | Y = yi] dP

(by (A.87))

=
∫
{Y =yi}

(
1

P (Y = yi)

∫
{Y =yi}

XdP

)
dP

=
∫
{Y =yi}

XdP,

and therefore we also have∫
A

ZdP =
∫

A

XdP, A ∈ σ(Y ).

Next we prove (A.94): let Y (ω) = yi, then we have

E [X | Y ] (ω) = E [X | Y = yi] =
1

P (Y = yi)

∫
{Y =yi}

XdP

=
1

P (Y = yi)

n∑
k=1

xkP ((X = xk) ∩ (Y = yi))

=
n∑

k=1

xkP (X = xk | Y = yi).

�

Proposition A.106 Let X,Y be discrete random variables such that (A.92)
holds. Then X,Y are independent if and only if the random variable P (X =
xk | Y ) is constant (independent on ω ∈ Ω) for any k = 1, . . . , n.

Proof. The “only if” part is trivial. Conversely, assume that, for any k =
1, . . . , n,

pk := P (X = xk | Y ) = P (X = xk | Y = yi)

is constant and does not depend on i = 1, . . . ,m. Then we have

P ((X = xk) ∩ (Y = yi)) = pkP (Y = yi) (A.95)

and summing for i = 1, . . . ,m, we get

P (X = xk) = pk.

Inserting this last identity back in (A.95), we deduce

P ((X = xk) ∩ (Y = yi)) = P (X = xk)P (Y = yi)

that proves that X,Y are independent. �
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A.5.4 Properties of the conditional expectation

The following properties are a direct consequence of the definition and con-
struction of the conditional expectation. For every X,Y ∈ L1(Ω,F , P ) and
a, b ∈ R we have:

(1) if X is G-measurable, then X = E [X|G];
(2) if X and G are independent (i.e. σ(X) and G are independent), then

E [X] = E [X|G]. In particular E [X] = E [X|σ(N )];
(3) E [X] = E [E [X|G]];
(4) [linearity] aE [X|G] + bE [Y |G] = E [aX + bY |G];
(4-b) [linearity] EλP+(1−λ)Q [X|G] = λEP [X|G]+ (1−λ)EQ [X|G] for all pro-

bability measures P,Q and λ ∈ [0, 1];
(5) [monotonicity] if X ≤ Y a.s., then E [X|G] ≤ E [Y |G].

The following proposition contains other properties of the conditional ex-
pectation. Many of them have an analogous counterpart in the properties of
the usual integral operator.

Proposition A.107 Let X,Y ∈ L1(Ω,F , P ) and let G,H ⊆ F be σ-algebras
of Ω. Then we have:

(6) if Y is independent of σ(X,G), then E [XY |G] = E [X|G]E [Y ];
(7) if Y is G-measurable and bounded, then Y E [X|G] = E [XY |G];
(8) if H ⊆ G, then E [E [X|G] |H] = E [X|H];
(9) [Beppo Levi] if (Xn)n∈N, with 0 ≤ Xn ∈ L1(Ω,P ), is a monotone in-

creasing sequence converging pointwise to X a.s. and Zn = E [Xn|G],
then lim

n→+∞
Zn = E [X|G];

(10) [Fatou] let (Xn)n∈N be a sequence of non-negative random variables in
L1(Ω,P ); then, setting Zn = E [Xn|G] and X = lim inf

n→+∞
Xn, we have

lim inf
n→+∞

Zn ≥ E [X|G];
(11) [Dominated convergence] let (Xn)n∈N be a sequence converging pointwise

to X a.s. and let us suppose that there exists Y ∈ L1(Ω,P ) such that
|Xn| ≤ Y a.s. Setting Zn = E [Xn|G], then lim

n→+∞
Zn = E [X|G];

(12) [Jensen’s inequality] if ϕ is a convex function such that ϕ(X) ∈ L1(Ω,P ),
then

E [ϕ(X) | G] ≥ ϕ (E [X | G]) .

Proof. (6) E [X|G] E [Y ] is G-measurable and, for every bounded and G-
measurable W , we have

E [WE [X|G] E [Y ]] = E [WE [X|G]]E [Y ] =

(by Remark A.102)

= E [WX] E [Y ] =
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(by the independence assumption)

= E [WXY ] ,

and this proves the claim.
(7) Y E [X|G] is G-measurable by assumption and, for every bounded and

G-measurable W , we have

E [(WY )E [X|G]] = E [WY X] ,

by Remark A.102, since WY is G-measurable and bounded.
(8) E [E [X|G] |H] is H-measurable and for every bounded and H-measu-

rable (and therefore also G-measurable) r.v. W , we have

E [WE [E [X|G] |H]] = E [WE [X|G]] = E [WX] .

(9) By (5) we have that (Zn) is an increasing sequence of G-measurable
non-negative random variables, so Z := sup

n∈N
Zn is a G-measurable r.v. Further,

for every G ∈ G, applying twice Beppo Levi’s theorem, we have∫
G

ZdP = lim
n→∞

∫
G

ZndP = lim
n→∞

∫
G

XndP =
∫

G

XdP.

(10-11) The proof is analogous to that of (9).
(12) We can proceed as in the proof of the classical Jensen’s inequality.

We recall that every convex function ϕ coincides with the upper envelope of
the linear functions � ≤ ϕ, i.e.

ϕ(x) = sup
�∈L

�(x), x ∈ R,

where
L = {� : R→ R | �(x) = ax + b, � ≤ ϕ}.

Then we have:

E [ϕ(X) | G] = E

[
sup
�∈L

�(X) | G
]
≥

(by (5))

≥ sup
�∈L

E [�(X) | G] =

(by (4))

= sup
�∈L

� (E [X | G]) = ϕ ([X | G]) . �
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Lemma A.108 Let X,Y be random variables on (Ω,F , P ). Let G ⊆ F be a
σ-algebra such that

i) X is independent of G;
ii) Y is G-measurable.

Then, for every B-measurable bounded (or non-negative) function h we have

E [h(X,Y ) | G] = g(Y ), where g(y) = E [h(X, y)] . (A.96)

We write (A.96) in a more compact form as

E [h(X,Y ) | G] = E [h(X, y) | G] |y=Y . (A.97)

Proof. We have to prove that the r.v. g(Y ) is a version of the conditional
expectation of h(X,Y ). Using the notation PW to denote the distribution of
a given r.v. W , we have

g(y) =
∫
R

h(x, y)PX(dx).

Then, by Fubini’s theorem, g is a B-measurable function: consequently, by
assumption ii), g(Y ) is G-measurable.

Further, given G ∈ G and putting Z = 1G, we get∫
G

h(X,Y )dP =
∫

Ω

h(X,Y )ZdP =
∫∫∫

h(x, y)z P (X,Y,Z)(d(x, y, z)) =

(by the independence assumption i) and Proposition A.53)

=
∫∫∫

h(x, y)z PX(dx)P (Y,Z)(d(y, z)) =

(by Fubini’s theorem)

=
∫∫

g(y)z P (Y,Z)(d(y, z)) =
∫

G

g(Y )dP. �

Remark A.109 Under the assumptions of Lemma A.108, by (A.96) we also
have

E [h(X,Y ) | G] = E [h(X,Y ) | Y ] .

Indeed, if Z = E [h(X,Y ) | G], since the function g in (A.96) is B-measurable,
we have that Z is σ(Y )-measurable. Further,∫

G

ZdP =
∫

G

h(X,Y )dP, G ∈ σ(Y ),

by definition of Z and since σ(Y ) ⊆ G. �
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We conclude the section with the following useful:

Proposition A.110 Let X be a r.v. in RN and G ⊆ F a σ-algebra. Then X
and G are independent if and only if

E
[
ei〈ξ,X〉

]
= E

[
ei〈ξ,X〉 | G

]
, ξ ∈ RN . (A.98)

Proof. We prove that, if (A.98) holds, then X is independent of every r.v.
Y ∈ mG. For every ξ, η ∈ RN we have

ϕ(X,Y )(ξ, η) = E
[
ei(〈ξ,X〉+〈η,Y 〉)

]
= E

[
ei〈η,Y 〉E

[
ei〈ξ,X〉 | G

]]
=

(by assumption)

= E
[
ei〈ξ,X〉

]
E
[
ei〈η,Y 〉

]
.

The claim follows from Corollary A.91. �

Exercise A.111 Prove that

var(E [X | G]) ≤ var(X)

i.e. by conditioning the variance gets smaller. Furthermore, prove that, if
Xn → X as n→∞ in L1(Ω,P ), then

lim
n→∞

E [Xn | G] = E [X | G] in L1(Ω,P ).

A.5.5 Conditional expectation in L2

We consider the space Lp(F) := Lp(Ω,F , P ) with p ≥ 1. If G is a sub-σ-
algebra of F , then Lp(G) is a linear subspace of Lp(F) and for every X ∈
Lp(F)

‖E [X | G] ‖p ≤ ‖X‖p. (A.99)

Indeed, by Jensen’s inequality with ϕ(x) = |x|p, we have

E [|E [X | G]|p] ≤ E [E [|X|p | G]] = E [|X|p] .

By (A.99), the conditional expectation E [· | G] is a linear bounded operator
from Lp(F) to Lp(G): in other terms, if lim

n→∞
Xn = X in Lp, i.e. if

lim
n→∞

‖Xn −X‖p = 0,

then we have
lim

n→∞
‖Yn − Y ‖p = 0,
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where Y = E [X | G] and Yn = E [Xn | G]. The case p = 2 is of particular
interest. Let us denote by

〈X,Y 〉L2 =
∫

Ω

XY dP, X, Y ∈ L2,

the scalar product17 in L2.

Proposition A.112 For every X ∈ L2(F) and W ∈ L2(G), we have

〈X − E [X | G] ,W 〉L2 = 0. (A.100)

Proof. By (A.90), equation (A.100) holds for every bounded G-measurable
W . The claim follows from a standard density argument. �

By (A.100), X −E [X | G] is orthogonal to the subspace L2(G) and there-
fore, the conditional expectation E [X | G] is the projection of X on L2(G).
Indeed, if Z = E [X | G], we have that Z ∈ L2(G) and for every W ∈ L2(G)

‖X −W‖22 = 〈X − Z + Z −W,X − Z + Z −W 〉L2

= ‖X − Z‖22 + ‖Z −W‖22 + 2 〈X − Z,Z −W 〉L2︸ ︷︷ ︸
=0

≥

(the last term is null since X − Z is orthogonal to Z −W ∈ L2(G))

≥ ‖X − Z‖22.

So E [X | G] minimizes the distance of X from L2(G) and geometrically it
represents the best approximation of X in L2(G). The characterization of the
conditional expectation in terms of projection on the space L2 can be used
in order to give a direct and constructive proof of Theorem A.100 (see, for
example, Williams [339]).

A.5.6 Change of measure

On the probability space (Ω,F , P ) we consider a sub-σ-algebra G of F and
a probability measure Q �F P (therefore also Q �G P ). We denote by LF

(resp. LG) the Radon-Nikodym derivative of Q with respect to P on F (resp.
on G). In general LF 
= LG since LF may not be G-measurable. On the other
hand, we have

LG = EP
[
LF | G

]
. (A.101)

Indeed LG is integrable and G-measurable and we have∫
G

LGdP = Q(G) =
∫

G

LFdP, G ∈ G,

since G ⊆ F .
17 Since 〈X, X〉L2 = 0 if and only if X = 0 a.s., 〈·, ·〉L2 is a scalar product provided

that we identify random variables that are a.s. equal.
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A result on the change of probability measure for conditional expectations,
analogous to formula (A.86), is given by the following:

Theorem A.113 (Bayes’ formula) Let P,Q be probability measures on
(Ω,F) with Q�F P . If X ∈ L1(Ω,Q), G is a sub-σ-algebra of F and we set
L = dQ

dP |F , then we have

EQ [X | G] =
EP [XL | G]
EP [L | G] .

Proof. We put V = EQ [X | G] and W = EP [L | G]. We have to prove that

i) Q(W > 0) = 1;
ii) V W = EP [XL | G].
Concerning i), since {W = 0} ∈ G, we have

Q(W = 0) =
∫
{W=0}

LdP =
∫
{W=0}

WdP = 0.

Concerning ii), V W is obviously G-measurable and for every G ∈ G we have∫
G

V WdP =
∫

G

EP [V L | G] dP =
∫

G

V LdP

=
∫

G

EQ [X | G] dQ =
∫

G

XdQ =
∫

G

XLdP. �

A.6 Stochastic processes in discrete time

We recall the notation N0 = N ∪ {0} for the set of non-negative integer num-
bers.

Definition A.114 A discrete stochastic process in RN is a collection X =
(Xn)n∈N0 of random variables defined on a probability space (Ω,F , P ) with
values in RN :

Xn : Ω −→ RN , n ∈ N0.

The collection of σ-algebras (FX
n )n∈N0 , defined by

FX
n = σ(Xk, 0 ≤ k ≤ n),

is called natural filtration for X. In general, a filtration on the probability space
(Ω,F , P ) is an increasing collection (Fn)n∈N0 (i.e. Fn ⊆ Fn+1 for every n)
of sub-σ-algebras of F . We say that the process X is adapted to the filtration
(Fn) if Xn is Fn-measurable, or equivalently FX

n ⊆ Fn, for every n ∈ N0. We
say that X is an integrable process if Xn ∈ L1(Ω,P ) for every n ∈ N0.
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In many applications, stochastic processes are used to describe the evolu-
tion in time of a random phenomenon and the index “n” represents the time
variable. Since n ∈ N0, we often refer to X in the preceding definition as a
“stochastic process in discrete time”.

To fix the ideas, we can think of Xn as the price of a risky asset at time n.
Intuitively FX

n represents the information available on the asset X at time n
and the filtration FX := (FX

n ) represents the “increasing flow” of information.
In probability theory and in financial applications, the following classes of

processes play a central role.

Definition A.115 Let M = (Mn)n∈N0 be an integrable adapted stochastic
process on the filtered probability space (Ω,F , P,Fn). We say that M is

• a discrete martingale (or, simply, a martingale) if

Mn = E [Mn+1 | Fn] , n ∈ N0;

• a super-martingale if

Mn ≥ E [Mn+1 | Fn] , n ∈ N0;

• a sub-martingale if

Mn ≤ E [Mn+1 | Fn] , n ∈ N0.

It is apparent that the martingale property depends on the filtration and
on the probability P that are considered. By the linearity of the conditional ex-
pectation, martingales form a linear space. Further, linear combinations with
non-negative coefficients of super-martingales (sub-martingales) are super-
martingales (sub-martingales).

If M is a martingale and 0 ≤ k < n, we have

E [Mn | Fk] = E [E [Mn | Fn−1] | Fk] = E [Mn−1 | Fk] = · · · = Mk, (A.102)

as a consequence of property (8) of conditional expectation. Further, for every
n, we have

E [Mn] = E [E [Mn | F0]] = E [M0] , (A.103)

hence it follows that the expectation of a martingale is constant. Analogously
a super-martingale is a stochastic process that “decreases in mean” and a
sub-martingale is a stochastic process that “increases in mean”.

Remark A.116 If M is a martingale and ϕ is a convex function on R such
that ϕ(M) is integrable, then ϕ(M) is a sub-martingale. Indeed

E [ϕ(Mn+1) | Fn] ≥

(by Jensen’s inequality)

≥ ϕ(E [Mn+1 | Fn]) = ϕ(Mn).
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Further, if M is a sub-martingale and ϕ is a convex and increasing function on
R such that ϕ(M) is integrable, then ϕ(M) is a sub-martingale. As remarkable
cases, if M is a martingale, then |M | and M2 are sub-martingales. We point
out that the fact that M is a sub-martingale is not enough to conclude that
also |M | and M2 are sub-martingales since the functions x �→ |x| and x �→ x2

are convex but not increasing. �

Example A.117 Let X be an integrable random variable on the filtered
probability space (Ω,F , P,Fn). Then, the process M defined by

Mn = E [X | Fn]

is a martingale: indeed M is clearly adapted, integrable and we have

E [Mn+1 | Fn] = E [E [X | Fn+1] | Fn] = E [X | Fn] = Mn. �

A.6.1 Doob’s decomposition

Definition A.118 We say that a stochastic process A, on a filtered proba-
bility space (Ω,F , P,Fn), is predictable if An is Fn−1-measurable for every
n ≥ 1.

The following result, which is crucial in the study of American options, sheds
some light on the structure of adapted stochastic processes.

Theorem A.119 (Doob’s decomposition theorem) Every adapted and
integrable stochastic process X can be decomposed uniquely18 in the sum

X = M + A (A.104)

where M is a martingale such that M0 = X0 and A is a predictable stochastic
process such that A0 = 0. Further, X is a super-martingale (sub-martingale)
if and only if A is decreasing19 (increasing).

Proof. We define the processes M and A recursively by putting{
M0 = X0,

Mn = Mn−1 + Xn − E [Xn | Fn−1] , n ≥ 1,
(A.105)

and {
A0 = 0,

An = An−1 − (Xn−1 − E [Xn | Fn−1]) , n ≥ 1.
(A.106)

18 Up to a negligible event.
19 A process A is decreasing if An ≥ An+1 a.s. for every n. A stochastic process A

is increasing if −A is decreasing.
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More explicitly we have

Mn = Xn +
n∑

k=1

(Xk−1 − E [Xk | Fk−1]) , (A.107)

and

An = −
n∑

k=1

(Xk−1 − E [Xk | Fk−1]) . (A.108)

Then it is easy to verify that M is a martingale, A is predictable and (A.104)
holds.

Concerning the uniqueness of the decomposition, if (A.104) holds then we
have also

Xn −Xn−1 = Mn −Mn−1 + An −An−1,

and taking the conditional expectation (under the assumption that M is a
martingale and A is predictable), we have

E [Xn | Fn−1]−Xn−1 = An −An−1,

hence M,A must be defined by (A.105) and (A.106), respectively.
Finally, by (A.106) it is apparent that An ≥ An−1 a.s. if and only if X is

a super-martingale. �

Definition A.120 Let α and M be two discrete processes. The transform of
M by α is the stochastic process (Gn(α,M))n≥1 defined as

Gn(α,M) =
n∑

k=1

αk(Mk −Mk−1), n ∈ N. (A.109)

The process G(α,M) is the discrete counterpart of the stochastic integral
introduced in Chapter 4.

Proposition A.121 If M is a martingale and α is bounded and predictable,
then G(α,M) is a martingale with null expectation. Conversely, if for every
predictable and bounded process α, we have

E [Gn(α,M)] = 0, n ≥ 1, (A.110)

then M is a martingale. Moreover if α ≥ 0 and M is a super-martingale
(resp. sub-martingale) then also G(α,M) is a super-martingale (resp. sub-
martingale).

Proof. Clearly G(α,M) is an adapted and integrable process. Further, for
every n, we have

Gn+1(α,M) = Gn(α,M) + αn+1(Mn+1 −Mn),
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and so

E [Gn+1(α,M) | Fn] = Gn(α,M) + E [αn+1(Mn+1 −Mn) | Fn] =

(since α is predictable)

= Gn(α,M) + αn+1E [Mn+1 −Mn | Fn] =

(since M is a martingale)
= Gn(α,M).

So G(α,M) is a martingale and

E [Gn(α,M)] = E [G1(α,M)]
= E [α1(M1 −M0)] = E [α1E [M1 −M0 | F0]] = 0.

Conversely, we have to prove that Mn−1 = E [Mn | Fn−1]: since M is
adapted, it suffices to prove that

E [Mn1A] = E [Mn−11A] , A ∈ Fn−1.

Then, for a fixed A ∈ Fn−1, we set

αk =

{
1A, k = n,

0, k 
= n.

Since the process α is predictable, the claim follows by applying (A.110). �

A.6.2 Stopping times

Definition A.122 In a filtered space (Ω,F , P,Fn), a random variable

ν : Ω −→ N0 ∪ {∞}
such that

{ν = n} ∈ Fn, n ∈ N0, (A.111)

is called stopping time.

Intuitively, we can think of a stopping time as the moment in which we make
a decision about a random phenomenon (e.g. the decision of exercising an
American option). By assuming condition (A.111), we require that the decision
depends only on the information available at the moment.

Example A.123 (Exit time) Let X be an adapted process and H ∈ B.
We define the exit time of X from H as

ν(ω) = min{n | Xn(ω) /∈ H}, ω ∈ Ω,

or ν(ω) =∞ if Xn(ω) ∈ H for any n. Then ν is a stopping time since

{ν = n} = {X0 ∈ H} ∩ {X1 ∈ H} ∩ · · · ∩ {Xn−1 ∈ H} ∩ {Xn /∈ H} ∈ Fn.

�
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Remark A.124 Condition (A.111) has the following simple consequences:

{ν ≤ n} =
n⋃

k=0

{ν = k} ∈ Fn, (A.112)

{ν ≥ n} = {ν > n− 1} = {ν ≤ n− 1}c ∈ Fn−1. (A.113)

�

Let X and ν be a stochastic process and a stopping time, respectively: the
stopped process of X by ν is defined by

Xν
n(ω) = Xn∧ν(ω)(ω), ω ∈ Ω, (A.114)

where
a ∧ b = min{a, b}.

In what follows we write Xν∧n as well instead of Xν
n. The next lemma gives

some simple properties of stopped processes.

Lemma A.125 Suppose that X is a stochastic process and ν is a stopping
time, then:

i) if X is adapted then also Xν is adapted;
ii) if X is a martingale then also Xν is a martingale;
iii) if X is a super-martingale (sub-martingale) then also Xν is a super-

martingale (sub-martingale).

Proof. We have

Xν∧n = X0 +
n∑

k=1

(Xk −Xk−1)1{k≤ν}, n ≥ 1, (A.115)

or in other terms, recalling Definition A.120, Xν is the transform of X by the
process α = (αn) :=

(
1{ν≥n}

)
. Since α is predictable by (A.113), then Xν is

adapted if X is adapted and the thesis follows by Proposition A.121. �

Given a process X and an a.s. finite stopping time ν, up to a negligible
event A, we define the random variable Xν by setting

Xν(ω) = Xν(ω)(ω), ω ∈ Ω \A.

The following result extends the martingale property to random times.

Corollary A.126 (Optional sampling) If X is a martingale and ν is a
stopping time such that n ≤ ν ≤ N a.s. then we have

E [Xν | Fn] = Xn.

In particular we also have

E [Xν ] = E [X0] . (A.116)
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Proof. We have

Xn = Xν
n =

(by Lemma A.125-ii))

= E [Xν
N | Fn] = E [Xν | Fn] . �

Remark A.127 Identity (A.116) remains valid under the assumption that ν
is a.s. finite and X is a uniformly integrable martingale (cf. Definition A.148).
Indeed, by Lemma A.125 we have

E [Xν∧n] = E [X0] , n ∈ N,

and the claim follows by taking the limit as n→∞, by Theorem A.149. �

We denote by

Fν := {F ∈ F | F ∩ {ν ≤ n} ∈ Fn for every n ∈ N} (A.117)

the σ-algebra associated to the stopping time ν. Definition (A.117) is consi-
stent with the standard notation Fn used for filtrations: in other terms, if ν
is the constant stopping time equal to k ∈ N, then Fν = Fk. Indeed F ∈ Fν

if and only if F ∈ F and

F ∩ {k ≤ n} ∈ Fn, n ∈ N,

i.e. if and only if
F ∈ Fn, n ≥ k,

that is, F ∈ Fk.
We also remark that, for every k ∈ N and stopping time ν, we have

{ν = k} ∈ Fν ,

since the event

{ν = k} ∩ {ν ≤ n} =

{
{ν = k} for k ≤ n,

∅ for k > n,

belongs to Fn for every n ∈ N.

Lemma A.128 If X is an adapted stochastic process and ν is an a.s. finite
stopping time, then Xν is Fν-measurable.

Proof. Since

Xν =
∞∑

n=0

Xn1{ν=n},
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it is enough to prove that Xn1{ν=n} is Fν-measurable for every n ∈ N0, i.e.

{Xn1{ν=n} ∈ H} ∈ Fν , H ∈ B, n ∈ N0.

If H ∈ B and 0 /∈ H we have

A := {Xn1{ν=n} ∈ H} = {Xn ∈ H} ∩ {ν = n},

and so A ∩ {ν ≤ k} ∈ Fk for every k, since

A ∩ {ν ≤ k} =

{
A if n ≤ k,

∅ if n > k.

On the other hand, if H = {0} we have

B := {Xn1{ν=n} = 0} =
⋃
i
=n

{ν = i} ∪ ({Xn = 0} ∩ {ν = n}) .

So B ∈ Fν since

B ∩ {ν ≤ k} =
⋃

i
=n, i≤k

{ν = i}︸ ︷︷ ︸
∈Fk

∪ ({Xn = 0} ∩ {ν = n} ∩ {ν ≤ k})︸ ︷︷ ︸
∈Fk

for every k. �

The following result extends Corollary A.126.

Theorem A.129 (Doob’s optional sampling theorem) Let ν1, ν2 be
stopping times such that

ν1 ≤ ν2 ≤ N a.s.

for some N ∈ N. If X is a super-martingale then

Xν1 ≥ E [Xν2 | Fν1 ] . (A.118)

Consequently, if X is a martingale then

Xν1 = E [Xν2 | Fν1 ] .

Proof. We first remark that the random variables Xν1 ,Xν2 are integrable:
indeed

|Xνi | ≤
N∑

k=0

|Xk|, i = 1, 2.

In order to prove (A.118), we use Remark A.103: since, by Lemma A.128, Xν1

is Fν1-measurable, we have to prove that∫
A

Xν1dP ≥
∫

A

Xν2dP, A ∈ Fν1 . (A.119)
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Firstly, we consider the case of constant ν2, i.e. ν2 = N . If A ∈ Fν1 we have
A ∩ {ν1 = n} ∈ Fn and so∫

A∩{ν1=n}
Xν1dP =

∫
A∩{ν1=n}

XndP

≥
∫

A∩{ν1=n}
E [XN | Fn] dP =

∫
A∩{ν1=n}

XNdP.

It follows that∫
A

Xν1dP =
N∑

n=0

∫
A∩{ν1=n}

Xν1dP ≥
N∑

n=0

∫
A∩{ν1=n}

XNdP =
∫

A

XNdP.

(A.120)

Now we consider the general case in which ν2 ≤ N a.s. By Lemma A.125, Xν2

is a super-martingale and so by applying (A.120) we get∫
A

Xν1dP =
∫

A

Xν2
ν1

dP ≥
∫

A

Xν2
N dP =

∫
A

Xν2dP. �

A.6.3 Doob’s maximal inequality

Among the many noteworthy results of martingale theory, we prove the fol-
lowing Doob’s inequality that plays a crucial role in the construction of the
stochastic integral.

Theorem A.130 (Doob’s maximal inequality) Let M be a martingale
on the filtered space (Ω,F , P,Fn). For every N ∈ N and p ∈ R, p > 1, we
have

E

[
max

0≤n≤N
|Mn|p

]
≤ qpE [|MN |p] , (A.121)

where q = p
p−1 is the conjugate exponent of p.

Remark A.131 The reverse inequality for (A.121) is trivial:

E [|MN |p] ≤ max
0≤n≤N

E [|Mn|p] ≤ E

[
max

0≤n≤N
|Mn|p

]
. (A.122)

Indeed, for k ≤ N we have

|Mk|p ≤ max
0≤n≤N

|Mn|p

so that

E [|Mk|p] ≤ E

[
max

0≤n≤N
|Mn|p

]
and (A.122) follows. �



666 Appendix: a primer in probability and parabolic PDEs

Proof (of Theorem A.130). We prove a slightly more general statement:
if X is a non-negative sub-martingale then

E

[
max

0≤n≤N
Xp

n

]
≤ qpE [Xp

N ] , (A.123)

for every N ∈ N and p > 1. Estimate (A.121) is an immediate consequence of
(A.123), applied to the non-negative sub-martingale X = |M |.

For fixed N ∈ N and λ > 0, we set

νλ(ω) = min{n ≤ N | Xn(ω) ≥ λ}

and νλ(ω) = N + 1 if that set is empty. By Example A.123, νλ is a stopping
time. Moreover setting

Wn,λ = 1{νλ=n}, n = 0, . . . , N,

we have obviously
λWn,λ ≤ XnWn,λ,

and, taking expectation,

λE [Wn,λ] ≤ E [XnWn,λ] ≤

(since, by assumption, X is a sub-martingale)

≤ E [E [XN | Fn]Wn,λ] =

(by Remark A.102, since Wn,λ is Fn-measurable and bounded)

= E [XNWn,λ] . (A.124)

Now we set Y = max
0≤n≤N

Xn and we observe that

1{Y≥λ} =
N∑

n=0

Wn,λ.

Taking expectations and using the estimate (A.124), we get

λP (Y ≥ λ) = λ

N∑
n=0

E [Wn,λ] ≤ E
[
XN1{Y≥λ}

]
. (A.125)

Further, by Example A.57, for every p > 0

E [Y p] = p

∫ +∞

0

λp−1P (Y ≥ λ) dλ ≤
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(by (A.125))

≤ pE

[
XN

∫ +∞

0

λp−21{Y≥λ}dλ

]
=

p

p− 1
E
[
XNY p−1

]
≤

(by Hölder’s inequality20)

≤ p

p− 1
E [Xp

N ]
1
p E [Y p]1−

1
p ,

and this concludes the proof. �

We state another classical result according to which, under very general
assumptions, a martingale (Mn) converges almost surely as n → ∞. For the
proof, we refer to [339].

Theorem A.132 Let (Xn)n∈N be a super-martingale such that

sup
n

E
[
X−

n

]
< +∞ (A.126)

where X− = max{0,−X}. Then there exists the limit

lim
n→∞

Xn <∞ a.s.

We point out that, if (Mn)n∈N is a bounded martingale in Lp for some p > 1,
i.e. it is such that

λ := sup
n∈N

E [|Mn|p] <∞,

then by Theorem A.130, we have

E

[
sup
n∈N
|Mn|p

]
≤ qpλ,

and condition (A.126) is satisfied. Therefore (Mn) converges a.s. as n → ∞
to a random variable M such that |M | ≤ sup

n
|Mn|. Further, since

|Mn −M |p ≤ 2p−1 (|Mn|p + |M |p) ≤ 2p sup
n
|Mn|p,

by the dominated convergence theorem we have

lim
n→∞

E [|Mn −M |p] = 0.

20 For every conjugate exponents p, q ≥ 1, we have

E [|XY |] ≤ E [|X|p]
1
p E [|Y |q] 1

q .
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Therefore we have proved the following:

Corollary A.133 Every Lp-bounded martingale (Mn)n∈N, with p > 1, con-
verges a.s. and in Lp-norm.

We also prove another useful consequence of the previous result.

Corollary A.134 Let (Ω,F , P,Fn) be a filtered space and X ∈ Lp(Ω,P ),
with p > 1. Then we have

lim
n→∞

E [X | Fn] = E [X | F∞] , in Lp,

where F∞ denotes the σ-algebra generated by (Fn)n∈N.

Proof. The position

Xn = E [X | Fn] , n ∈ N,

defines a bounded martingale in Lp with p > 1 and so there exists the limit

M := lim
n→∞

Xn, in Lp.

Then it is enough to prove that

M = E [X | F∞] . (A.127)

We set
Mn = E [M | Fn] , n ∈ N,

and we observe that

E [|Xn −Mn|] = E [|Xn − E [M | Fn]|] ≤ E [|Xn −M |] −−−−→
n→∞

0.

Now we fix n̄ ∈ N: for every F ∈ Fn̄ and n ≥ n̄ we have∫
F

(X −M)dP =
∫

F

E [X −M | Fn] dP =
∫

F

(Xn −Mn)dP −−−−→
n→∞

0.

We infer that ∫
F

MdP =
∫

F

XdP, F ∈ F∞,

and since M ∈ mF∞ we obtain (A.127). �

Remark A.135 By using the notion of uniform integrability, (cf. Sec-
tion A.7.2), it is possible to extend the convergence result in Corollary A.134
also to the case p = 1. �
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A.7 Convergence of random variables

We recall the main notions of convergence of random variables. We consider
a sequence (Xn)n∈N of random variables on a probability space (Ω,F , P ):

i) (Xn) converges almost surely to X if

P
(

lim
n→∞

Xn = X
)

= 1,

i.e., if the event
{ω | lim

n→∞
Xn(ω) = X(ω)}

is certain. In this case we write

Xn
a.s.−−−→ X;

ii) (Xn) converges in probability to X if

lim
n→∞

P (|Xn −X| > ε) = 0

for every ε > 0. In this case we write

Xn
P−−→ X;

iii) (Xn) converges in Lp to X if

lim
n→∞

E [|Xn −X|p] = 0.

In this case we write
Xn

Lp

−−−→ X.

The following result sums up the relations among different types of con-
vergence.

Theorem A.136 The following implications hold:

i) if Xn
a.s.−−−→ X then Xn

P−−→ X;

ii) if Xn
Lp

−−−→ X then Xn
P−−→ X;

iii) if Xn
P−−→ X then there exists a subsequence (Xkn) such that Xkn

a.s.−−−→
X.

In general no other relations hold.

Now we consider a sequence (Xn) of random variables and we denote
the distribution of Xn by μXn . We recall that, by definition, a sequence of
distributions (μn) converges to the distribution μ if

lim
n→∞

∫
RN

ϕdμn =
∫
RN

ϕdμ, ϕ ∈ Cb(RN ),

where Cb(RN ) denotes the family of continuous and bounded functions.
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Definition A.137 A sequence of random variables (Xn) converges in distri-
bution (or in law) to a random variable X if the corresponding sequence of
distributions (μn) converges to μX . In this case we write

Xn
d−−→ X.

Remark A.138 The convergence in distribution of random variables is de-
fined only in terms of the convergence of the respective distributions and
consequently it is not necessary that the random variables are defined on the
same probability space. If we denote by (Ωn, Pn,Fn) the probability space on
which the random variable Xn is defined and (Ω,P,F) the probability space
on which X is defined, then Xn

d−−→ X if and only if

lim
n→∞

EPn [ϕ(Xn)] = EP [ϕ(X)] , ϕ ∈ Cb(RN ), (A.128)

where EPn and EP denote the expected values computed under the respective
measures. �

The following proposition states that convergence in distribution is the weak-
est form of convergence.

Proposition A.139 If Xn
P−−→ X then Xn

d−−→ X.

Exercise A.140 Let (Xn) be a sequence of random variables on the space
(Ω,F , P ) converging in distribution to a constant r.v. X, i.e. Xn

d−−→ X.
Prove that Xn

P−−→ X.

Hint. By contradiction, suppose that (Xn) does not converge to X in probability:
then, given ε > 0, there exist δ > 0 and a subsequence (Xkn) such that

P (|Xkn −X| > ε) ≥ δ, n ∈ N.

By assumption
lim

n→∞
E [ϕ(Xn)] = ϕ(X), ϕ ∈ Cb.

In particular, consider a positive and monotone increasing ϕ ∈ Cb: then, for n large
enough, we have

ϕ(X) + 1 ≥ E [ϕ(Xkn)] ≥
∫
{|Xkn−X|>ε}

ϕ(Xkn)dP

≥ ϕ(X − ε)P (|Xkn −X| > ε) ≥ δϕ(X − ε),

and this is absurd, since ϕ is arbitrary. �

A.7.1 Characteristic function and convergence of variables

Let us denote by
ϕX(ξ) = E

[
ei〈ξ,X〉

]
, ξ ∈ RN ,
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the characteristic function of the random variable X. We state without proof21

the following important result that establishes that convergence in distribution
of a sequence of random variables is equivalent to pointwise convergence of
the corresponding characteristic functions.

Theorem A.141 (Lévy’s theorem) Let (Xn) and (ϕXn) be a sequence
of random variables in RN and the corresponding sequence of characteristic
function, respectively:

i) if Xn
d−−→ X where X is some random variable, then

lim
n→∞

ϕXn(ξ) = ϕX(ξ), ξ ∈ RN ;

ii) if lim
n→∞

ϕXn(ξ) exists for every ξ ∈ RN and the function ϕ defined by

ϕ(ξ) = lim
n→∞

ϕXn(ξ), ξ ∈ RN ,

is continuous at the origin, then ϕ is the characteristic function of a ran-
dom variable X such that Xn

d−−→ X.

The previous theorem can be used to prove some well-known results. We
first give a preliminary

Lemma A.142 Let X be a real random variable such that E [|X|p] <∞ for
some p ∈ N. Then the following asymptotic expansion holds:

ϕX(ξ) =
p∑

k=0

(iξ)k

k!
E
[
Xk
]
+ o(ξp), as ξ → 0. (A.129)

For the definition of the symbol o(·), see the note on p. 52.

Proof. The thesis is a direct consequence of Lemma A.86, nevertheless we
give an alternative proof. By using the Taylor series expansion about ξ = 0
with the Lagrange form of the remainder, we have

eiξX =
p−1∑
k=0

(iξ)k

k!
Xk +

(iξX)p

p!
eiθξX =

(where θ is a random variable such that |θ| ≤ 1)

=
p−1∑
k=0

(iξ)k

k!
Xk +

(iξ)p

p!
(Xp + Wp(ξ)),

setting Wp(ξ) = Xp(eiθξX − 1). Taking expectations, we get

ϕX(ξ)−
p∑

k=0

(iξ)k

k!
E
[
Xk
]

=
(iξ)p

p!
E [Wp] = o(ξp) as ξ → 0,

21 See, for example, Shiryaev [309], Chapter III-3, or Williams [339], Chapter 18.
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since
lim
ξ→0

E [Wp(ξ)] = 0. (A.130)

Then (A.130) follows from Lebesgue’s dominated convergence theorem: in fact

Wp(ξ) = Xp(eiθξX − 1)→ 0 as ξ → 0

and
|Wp(ξ)| ≤ 2|X|p ∈ L1(Ω,P )

by assumption. �

Theorem A.143 (Law of large numbers) Let (Xn) be a sequence of i.i.d.
integrable random variables. Let μ = E [X1] and

Mn =
X1 + · · ·+ Xn

n
;

then we have
Mn

P−−→ μ.

Proof. We use Lévy’s theorem and we consider the sequence of characteristic
functions

ϕMn(η) = E
[
eiηMn

]
=

(since the random variables Xn are i.i.d.)

=
(
E
[
ei

ηX1
n

])n

=

(by Lemma A.142, in which we take p = 1 and ξ = η
n )

=
(

1 +
iημ

n
+ o
(

1
n

))n

−→ eiημ,

as n → ∞. Since η �→ eiημ is the Fourier transform of the Dirac’s delta δμ

concentrated at μ, Lévy’s theorem implies that Mn
d−−→ μ. The claim follows

from Exercise A.140. �

Remark A.144 If we further assume that X1 ∈ L2(Ω), we can give a di-
rect and elementary proof of the law of large numbers based on Markov’s
inequality, Proposition A.58. For the sake of simplicity, let us consider only
the 1-dimensional case and we set σ2 = var(X1). We have

P (|Mn − μ| ≥ ε) ≤ var(Mn)
ε2

=
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(since the random variables are i.i.d.)

=
nvar

(
X1
n

)
ε2

=
σ2

nε2
. (A.131)

Formula (A.131) gives also an explicit estimate of the speed of convergence:
indeed it can be rewritten in the equivalent form

P (|Mn − μ| ≤ ε) ≥ 1− σ2

nε2
.

Then, for a fixed a probability p ∈]0, 1[, we have

P

(
|Mn − μ| ≤ σ√

n(1− p)

)
≥ p.

In other terms, for every n, the difference between Mn and μ is, with proba-
bility greater than p, smaller than C√

n
where C = σ√

1−p
. �

Remark A.145 We recall that the strong law of large numbers establishes
that, under the hypotheses of Theorem A.143, the sequence converges in a
stronger sense:

lim
n→∞

Mn = μ

almost surely and in L1-norm. �

We have seen that, if X1 has finite variance, then Mn − μ tends to zero
as n→∞ with rate of speed equal to 1√

n
. Now one may wonder whether the

limit
lim

n→∞

√
n (Mn − μ)

exists and, if it does, what its value is. The answer is given by the following:

Theorem A.146 (Central limit theorem) Let (Xn) be a sequence of real
i.i.d. random variables with σ2 = var(X1) <∞. As usual we put

Mn =
X1 + · · ·+ Xn

n
, μ = E [X1] ,

and we consider the sequence defined by

Gn =
√

n

(
Mn − μ

σ

)
, n ∈ N.

Then
Gn

d−−→ Z, Z ∼ N0,1.

In particular, for every x ∈ R,

lim
n→∞

P (Gn ≤ x) = Φ(x),

where Φ is the standard normal distribution function in (A.25).
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Proof. We use Lévy’s theorem and we study the convergence of the sequence
of characteristic functions

ϕGn(η) = E
[
eiηGn

]
=

(since the random variables Gn are i.i.d.)

=
(
E
[
e

iη
X1−μ

σ
√

n

])n

=

(applying Lemma A.142 with ξ = η√
n

and p = 2)

=
(

1− η2

2n
+ o
(

1
n

))
−→ e−

η2

2 , as n→∞,

for η ∈ R. Since e−
η2

2 is the characteristic function of a standard normal
random variable, the claim follows from Theorem A.141. �

Remark A.147 The N -dimensional version of the previous theorem states
that, if (Xn) is a sequence of i.i.d. random variables in RN with finite covari-
ance matrix C, then

√
n (Mn − μ) d−−→ Z

with Z multi-normal random variable, Z ∼ N0,C . �

A.7.2 Uniform integrability

We introduce the concept of uniformly integrable family of random variables.
This notion allows characterizing L1-convergence and it is a natural tool for
the study of convergence of martingale sequences.

Definition A.148 A family X of integrable random variables on a space
(Ω,F , P ) is called uniformly integrable if

lim
R→+∞

sup
X∈X

∫
{|X|≥R}

|X|dP = 0.

A family consisting in one random variable only, X ∈ L1(Ω,P ), is uniformly
integrable since ∫

{|X|≥R}
|X|dP ≥ RP (|X| ≥ R)

whence

P (|X| ≥ R) ≤ ‖X‖1
R
−−−−−→
R→+∞

0,
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and, by the dominated convergence theorem,∫
{|X|≥R}

|X|dP −−−−−→
R→+∞

0.

Analogously every family X of random variables for which there exists Z ∈
L1(Ω,P ) such that |X| ≤ Z, X ∈ X , is uniformly integrable.

The following noteworthy result extends Lebesgue’s dominated conver-
gence theorem.

Theorem A.149 Let (Xn) be a sequence of random variables in L1(Ω,P ),
a.s. converging pointwise to a random variable X. Then (Xn) converges in
L1-norm to X if and only if it is uniformly integrable.

For the proof of Theorem A.149 and of the following proposition see, for
example, Shiryaev [309].

Proposition A.150 A family of integrable random variables X is uniformly
integrable if and only if there exists an increasing, convex and positive function

g : R>0 −→ R

such that

lim
x→∞

g(x)
x

= +∞, and sup
X∈X

E [g(|X|)] <∞.

From Proposition A.150 it follows that, in particular, every bounded family22

in Lp, for some p > 1, is uniformly integrable. On the other hand, it is quite
easy to construct a sequence of random variables with L1-norm equal to one,
not converging in L1.

The following result has important applications in martingale theory.

Corollary A.151 Let X ∈ L1(Ω,P ). The family consisting of

X = {E [X | G] | G sub-σ-algebra of F}

is uniformly integrable.

Proof. The family consisting only on X is uniformly integrable and therefore
there exists a function g for which the properties in Proposition A.150 hold.
Then, by Jensen’s inequality, we get

E [g(|E [X | G] |)] ≤ E [E [g(|X|) | G]] = E [g(|X|)] <∞,

and the claim follows from Proposition A.150. �

22 The family X is bounded in Lp if

sup
X∈X

E [|X|p] < ∞.
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A.8 Topologies and σ-algebras

In this paragraph we recall some essential results on topological spaces, dealing
in particular with the case of spaces with countable basis and, as a remarkable
example, the space of continuous functions on a compact interval.

Definition A.152 Let Ω be a non-empty set. A topology on Ω is a family
T of subsets of Ω with the following properties:

i) ∅, Ω ∈ T ;
ii) T is closed23 under unions (not necessarily countable unions);
iii)T is closed under finite intersections.

We say that the pair (Ω,T ) is a topological space: the elements of T are
called open sets.

Given a family M of subsets of Ω, the intersection of all the topologies that
contain M is a topology that is called topology generated by M and denoted
by T (M ).

Example A.153 Let (Ω, d) be a metric space: we recall that the function

d : Ω ×Ω −→ R≥0

is a metric (or distance) if it verifies the following properties for every
x, y, z ∈ Ω:

i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x);
iii) d(x, y) ≤ d(x, z) + d(z, y).

If M is the family of open balls

M = {D(x, r) | x ∈ Ω, r > 0},

where
D(x, r) = {y ∈ Ω | d(x, y) < r},

then
Td := T (M )

is called topology generated by the distance d. We consider two remarkable
examples:

1) if Ω = RN and d(x, y) = |x− y| is the Euclidean distance, then Td is the
Euclidean topology;

2) if
Ω = C([a, b];RN ) = {w : [a, b] −→ RN | w continuous},

23 The union of elements of T belongs to T .
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the uniform topology on Ω is the topology generated by the uniform dis-
tance

d(w1, w2) = max
t∈[a,b]

|w1(t)− w2(t)|.

The ball in the metric d is defined as

D(w0, r) = {w ∈ Ω | |w(t)− w0(t)| < r, t ∈ [a, b]}. �

Topological spaces in which the union of open sets can be expressed as
countable unions are of utmost importance.

Definition A.154 A topological space (Ω,T ) has a countable basis if there
exists a countable family A such that T = T (A).

Theorem A.155 If (Ω,T ) has a countable basis, then every cover of Ω by
open sets admits a finite or countable subcover.

Proof. Let {Ui} be a cover of Ω by open sets, i.e. a family of open sets
whose union is Ω and let A = {An}n∈N be a countable basis for T . Then
every ω ∈ Ω belongs to an open set Ui of the cover and there exists An(ω) ∈ A
such that ω ∈ An(ω) ⊆ Ui. The family {An(ω)}ω∈Ω is finite or countable, so
by choosing for every An(ω) an open set Ui containing it, we get a countable
or finite subcover. �

If (Ω, d) is a metric space, it is very simple to verify the existence of a
countable basis for Td. First of all, we say that a subset A is dense in Ω if,
for every x ∈ Ω and n ∈ N, there exists yn ∈ A such that d(x, yn) ≤ 1

n , i.e.

x = lim
n→∞

yn.

We say that (Ω, d) is separable if there exists a countable dense subset A in
Ω. In this case

A = {D (x, 1/n) | x ∈ A, n ∈ N} (A.132)

is a countable basis for Td and we have the following:

Theorem A.156 A metric space has a countable basis if and only if it is
separable.

Example A.157 The space C([a, b];RN ) is separable since the polynomials
with rational coefficients are a countable dense subset (by Weierstrass’ theo-
rem24). Let B denote the Borel σ-algebra i.e. the σ-algebra generated by the
uniform topology: then, since the uniform topology has a countable basis, we
have

B = σ ({D (w, 1/n) | w rational polynomial, n ∈ N}) .

�

24 See, for example, Chapter 4 in Folland [133].
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A.9 Generalized derivatives

In this paragraph we briefly recall the concepts of weak and distributional
derivative. These extensions of the concept of derivative appear naturally in
arbitrage-pricing theory. For example, in order to hedge an option, we have
to study the derivatives of the pricing function: even in the simplest case of a
European option with strike K, the payoff (x−K)+ is a continuous function,
but not differentiable in the classical sense at the point x = K. For an in-depth
analysis of the material in this paragraph we refer, for example, to Brezis [62],
Folland [133] and Adams [2].

A.9.1 Weak derivatives in R

Let I = ]a, b[⊆ R be an open, not necessarily bounded, interval. We denote by
L1

loc = L1
loc(I) the space of locally integrable functions u over I, i.e. the space

of the measurable functions u such that∫
H

|u(x)|dx <∞

for every compact subset H of I. The space C∞0 (I) of functions on I with
compact support25 and with continuous derivatives of every order, is usually
called test-function space.

We say that u ∈ L1
loc(I) is weakly differentiable if there exists a function

h ∈ L1
loc(I), called weak derivative of u, such that∫

I

u(x)ϕ′(x)dx = −
∫

I

h(x)ϕ(x)dx, (A.133)

for every ϕ ∈ C∞0 (I). In other words the integration-by-parts formula must
hold for every test function.

Lemma A.158 If u ∈ L1
loc(I) and∫
I

uϕ = 0, ϕ ∈ C∞0 (I),

then u = 0 a.e.

In view of the previous lemma, h is defined by (A.133) up to a set whose
Lebesgue measure is null: therefore, by identifying functions that are equal
a.e., we write26 h = Du to denote that h is the function in L1

loc verifying
(A.133). Let us point out that the definition of classical derivative is given
pointwise, whilst the notion of weak derivative is “global”.
25 The support of a continuous function u is the closure of the set {x | u(x) �= 0}

and it is denoted by the symbol supp(u).
26 We denote the weak derivative by Du in order to distinguish it from the classical

derivative u′.



A.9 Generalized derivatives 679

Example A.159 We consider

u(x) = (x−K)+, x ∈ R. (A.134)

For any ϕ ∈ C∞0 , we have∫
R

u(x)ϕ′(x)dx =
∫ +∞

K

(x−K)ϕ′(x)dx =

(by the standard integration-by-parts formula)

=
[
(x−K)ϕ(x)

]+∞
x=K

−
∫ +∞

K

ϕ(x)dx =

(since ϕ has compact support)

=
∫ +∞

K

ϕ(x)dx.

Thus we conclude that the function

h(x) =

{
1 x > K,

0 x < K,
(A.135)

is the weak derivative of u. �

Notation A.160 We denote by W 1,1
loc (I) the space of weakly differentiable

functions over I. For any k ∈ N and p ∈ [1,+∞], we denote by W k,p(I) the
space of functions u ∈ Lp(I) that admit weak derivatives up to order k in
Lp(I). The spaces W k,p are called Sobolev spaces.

As a consequence of the classical integration-by-parts formula, if a function
is continuously differentiable in the classical sense, then it is also differentiable
in the weak sense and the two notions of derivative coincide: more precisely,
C1 ⊂W 1,1

loc and u′ = Du for every u ∈ C1.
A remarkable class of weakly differentiable functions is that of locally

Lipschitz continuous functions: we recall that u is locally Lipschitz continuous
on I, and we write u ∈ Liploc(I) if, for every compact subset H of I, there
exists a constant lH such that

|u(x)− u(y)| ≤ lH |x− y|, x, y ∈ H. (A.136)

If the estimate (A.136) holds for a constant l that is independent of H, then
we say that u is globally Lipschitz continuous on I, or simply Lipschitz conti-
nuous, and we write u ∈ Lip(I). For example, the function u(x) = (x−K)+

is Lipschitz continuous on R with constant l = 1. By the mean value theorem,
every function C1 with bounded derivative is Lipschitz continuous.
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Proposition A.161 If u ∈ Liploc, then u is differentiable in the classical
sense almost everywhere. Moreover u ∈W 1,1

loc and u′ = Du.

Proof. The first part of the claim is a classical result: we refer, for instance,
to Chapter VI in Fomin-Kolmogorov [215]. The second part is a simple conse-
quence of the dominated convergence theorem: in fact, for every test function
ϕ, we have ∫

R

u(x)ϕ′(x)dx = lim
δ→0

∫
R

u(x)
ϕ(x + δ)− ϕ(x)

δ
dx

= lim
δ→0

∫
R

u(x− δ)− u(x)
δ

ϕ(x)dx =

(by the dominated convergence theorem, using the fact that u is differen-
tiable almost everywhere and that, by (A.136), the incremental ratio is locally
bounded)

= −
∫
R

u′(x)ϕ(x)dx.

�

Now we state some classical results of differential calculus that can be
extended to the case of weakly differentiable functions. The next proposition
generalizes the fundamental theorem of integral calculus.

Proposition A.162 Let h ∈ L1
loc(I) and x0 ∈ I. The function27

u(x) :=
∫ x

x0

h(y)dy, x ∈ I,

belongs to W 1,1
loc ∩ C(I) and h = Du.

The next proposition essentially states that a function u in W 1,1
loc is a

“primitive” of its weak derivative.

Proposition A.163 Every u ∈W 1,1
loc (I) is equal almost everywhere to a con-

tinuous function28: if u ∈W 1,1
loc ∩ C(I) we have

u(x) = u(x0) +
∫ x

x0

Du(y)dy, x, x0 ∈ I.

27 By convention we assume that∫ x

x0

h(y)dy = −
∫ x0

x

h(y)dy,

for x < x0.
28 If u is continuous almost everywhere, then it may not be equal almost everywhere

to a continuous function: one can think of the weak derivative of the function
(x−K)+. Furthermore, if u is equal almost everywhere to a continuous function it
may not be continuous almost everywhere: one can think of the Dirichlet function
that is equal to 0 on Q and to 1 on R \Q.
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In particular, if Du = 0 then u is constant.

By the previous result, in functional analysis it is customary to identify any
element in W 1,1

loc with its continuous representative.
Now we state an extension of the integration-by-parts formula.

Proposition A.164 Let u, v ∈W 1,1
loc ∩C(I). The uv ∈W 1,1

loc (I) and we have∫ x

x0

uDv = u(x)v(x)− u(x0)v(x0)−
∫ x

x0

vDu, x, x0 ∈ I.

Moreover, if f ∈ C1(R), then f(u) ∈W 1,1
loc (I) and Df(u) = f ′(u)Du.

A.9.2 Sobolev spaces and embedding theorems

Let O be an open set in RN and 1 ≤ p ≤ ∞.

Definition A.165 The Sobolev space W 1,p(O) is the space of functions u ∈
Lp(O) for which there exist h1, . . . , hN ∈ Lp(O) such that∫

O

u∂xiϕ = −
∫

O

hiϕ, ϕ ∈ C∞0 (O), i = 1, . . . , N.

By Lemma A.158, the functions h1, . . . , hN are uniquely determined a.e.: thus
we set Diu := hi for i = 1, . . . , N and we say that Du = (h1, . . . , hN ) is the
gradient of u.

The space W 1,p(O), endowed with the norm

‖u‖W 1,p := ‖u‖Lp + ‖Du‖Lp ,

is a Banach space. If u ∈ C1 ∩ Lp and ∂xiu ∈ Lp for every i = 1, . . . , N , then
u ∈ W 1,p and ∂xiu = Diu. The higher-order Sobolev spaces can be defined
recursively as follows.

Definition A.166 For any k ∈ N, k ≥ 2, we set

W k,p(O) = {u ∈W k−1,p(O) | Du ∈W k−1,p(O)}.

To give a more explicit representation of the space W k,p, we introduce the
following:

Notation A.167 Given a multi-index α = (α1, . . . , αN ) ∈ NN
0 , we put

∂α
x = ∂α1

x1
. . . ∂αN

xN

and we say that the number

|α| =
N∑

i=1

αi

is the weight of α.
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Then u ∈W k,p(O) if and only if, for every multi-index α, with |α| ≤ k, there
exists a function hα ∈ Lp(O) such that∫

O

u∂α
x ϕ = (−1)|α|

∫
O

hαϕ, ϕ ∈ C∞0 (O).

In that case we write hα = Dαu. The space W k,p, endowed with the norm

‖u‖W k,p :=
∑

0≤|α|≤k

‖Dαu‖Lp ,

is a Banach space. We state now the fundamental:

Theorem A.168 (Sobolev-Morrey embedding theorem) There exists
a constant C, depending on p and N only, such that, for every u ∈W 1,p(RN )
we have:

i) if 1 ≤ p < N ,

‖u‖Lq(RN ) ≤ C‖u‖W 1,p(RN ), p ≤ q ≤ pN

N − p
;

ii) if p > N , then u ∈ L∞(RN ) and

|u(x)− u(y)| ≤ C‖Du‖Lp(RN )|x− y|δ for almost all x, y ∈ RN ,

with δ = 1− N
p .

Further, if p = N , then

‖u‖Lq(RN ) ≤ cq‖u‖W 1,N (RN ), q ∈ [p,∞[,

with cq constant depending on p, q,N only and such that cq → +∞ as q →∞.

A.9.3 Distributions

The following example is preliminary to the concept of distribution or gene-
ralized function.

Example A.169 The function u in (A.134) does not admit a second-order
derivative in the weak sense. Indeed if there existed g = Dh for h in (A.135),
then we would have∫

R

gϕ = −
∫
R

hϕ′ = −
∫ +∞

K

ϕ′ = ϕ(K), ϕ ∈ C∞0 (R). (A.137)

In particular ∫
R

gϕ = 0, ϕ ∈ C∞0 (R \ {K}),

whence, in view of Lemma A.158, g = 0 almost everywhere, contradicting
(A.137). �
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As we have just shown, the derivative, even in the weak sense, of a function
may not always exist if we think of it as a function in the classical sense. In
distribution theory the concept of function is extended by interpreting every
u ∈ L1

loc as a functional29 associating the integral of uϕ to ϕ ∈ C∞0 , rather
than, as usual, a map associating u(x) to the number x. For the sake of
simplicity, in this section we consider only the 1-dimensional case.

If u is infinitely differentiable (in the weak sense), then∫
D(k)uϕ = (−1)k

∫
uϕ(k), ϕ ∈ C∞0 , k ∈ N. (A.138)

On the other hand, regardless of the fact that u is differentiable, the right-hand
side of (A.138) defines a linear functional on C∞0 to which we can attribute
the meaning of “k-th order derivative of u”. This consideration is made precise
in the following:

Definition A.170 A distribution Λ on a non-empty open interval I of R is
a linear functional

Λ : C∞0 (I) −→ R

such that, for every compact set H ⊂ I, there exist a positive constant M and
m ∈ N such that

|Λ(ϕ)| ≤M‖ϕ‖m, (A.139)

for every ϕ ∈ C∞0 (I) with support contained in H, where

‖ϕ‖m =
m∑

k=0

max
H
|ϕ(k)|. (A.140)

The space of distributions on I is denoted by D′(I) and generally the following
notation is used:

〈Λ,ϕ〉 := Λ(ϕ).

Remark A.171 Inequality (A.139) expresses the continuity property of Λ
with respect to a suitable topology over C∞0 (I): we refer to Rudin [294], Part
II, Chapter 6 for further details. Here we observe that, if (ϕn) is a sequence
in C∞0 (I) with support included in a compact set H for every n ∈ N, then by
(A.139)

lim
n→∞

‖ϕn − ϕ‖m = 0

implies that
lim

n→∞
〈Λ,ϕn〉 = 〈Λ,ϕ〉.

�

29 In general the term “function” is used to denote a map between numerical sets
(e.g., a function from R

N to R), whilst the term “functional” is used to denote a
map between function spaces.
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Every locally integrable function defines a distribution in a natural way:
indeed, given u ∈ L1

loc(I), we set

〈Λu, ϕ〉 =
∫

I

u(x)ϕ(x)dx, ϕ ∈ C∞0 (I).

Obviously Λu is a linear functional and for every compact set H in I, we have

|〈Λu, ϕ〉| ≤ ‖ϕ‖0
∫

H

|u(x)|dx, ϕ ∈ C∞0 (H).

For this reason, it is common practice to identify u with Λu and then write
L1

loc ⊂ D′.
Analogously, if μ is a probability measure on (R,B) then, setting

〈Λμ, ϕ〉 =
∫
R

u(x)μ(dx), ϕ ∈ C∞0 (R),

we have that Λμ is a linear functional and

|〈Λμ, ϕ〉| ≤ ‖ϕ‖0 μ(H), ϕ ∈ C∞0 (H).

In other words, Λμ is a distribution that is usually identified with μ.
At this point we remark that Definition A.170 is in accordance with

Definition A.11 and generalizes the notion of distribution given in Section
A.1.2. More generally, it is apparent that every measure on (R,B), such that
μ(H) <∞ for every compact set H in R, is a distribution.

Definition A.172 If Λ ∈ D′(I) and k ∈ N, the k-th order derivative of Λ is
defined by

〈D(k)Λ,ϕ〉 := (−1)k〈Λ,ϕ(k)〉, ϕ ∈ C∞0 (I).

We note that D(k)Λ ∈ D′(I), indeed D(k)Λ is a linear functional and, for a
fixed a compact set H, for every ϕ ∈ C∞0 (H), we have

|〈D(k)Λ,ϕ〉| = |〈Λ,ϕ(k)〉| ≤

(since supp(ϕ(k)) ⊆ supp(ϕ))

≤M‖ϕ(k)‖m ≤M‖ϕ‖m+k.

Therefore a distribution admits the derivatives of all orders that are them-
selves distributions and that, in general, are not functions in the classical
sense.

Going back to Example A.169, the function x �→ (x − K)+ admits first-
order weak derivative but not the second-order one. Nevertheless, by (A.137)
the second-order distributional derivative is defined by∫

R

ϕ(x)D(2)(x−K)+dx = ϕ(K) = δK(ϕ), ϕ ∈ C∞0 (R).
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In other terms D(2)(x − K)+ coincides with Dirac’s Delta concentrated at
K: this is the typical example of a distribution that is not a function in the
classical sense.

Now we introduce the notion of translation and convolution in a distribu-
tional setting. If ϕ is a function defined on R and x ∈ R, we put

Txϕ(y) = ϕ(y − x), ϕ̌(y) = ϕ(−y), y ∈ R. (A.141)

We note that∫
R

ψTxϕ =
∫
R

ψ(y)ϕ(y − x)dy =
∫
R

ψ(y + x)ϕ(y)dy =
∫
R

(T−xψ) ϕ. (A.142)

Moreover
(Txϕ̌) (y) = ϕ̌(y − x) = ϕ(x− y),

and so
(ψ ∗ ϕ)(x) =

∫
R

ψ(y) (Txϕ̌) (y)dy. (A.143)

By analogy we give the following:

Definition A.173 Let Λ ∈ D′(R). The translation TxΛ is the distribution in
D′(R) defined by

〈TxΛ,ϕ〉 = 〈Λ, T−xϕ〉, ϕ ∈ C∞0 (R). (A.144)

The convolution of Λ with ϕ ∈ C∞0 (R) is the function defined by

(Λ ∗ ϕ) (x) = 〈Λ, Txϕ̌〉, x ∈ R. (A.145)

We emphasize that the convolution in (A.145) is a function. Further, if Λ is
a locally integrable function, definitions (A.144) and (A.145) are in line with
(A.142) and (A.143), respectively.

Theorem A.174 If Λ ∈ D′(R) and ϕ,ψ ∈ C∞0 (R), then

i) Λ ∗ ϕ ∈ C∞(R) and, for every k ∈ N, we have

(Λ ∗ ϕ)(k) = (D(k)Λ) ∗ ϕ = Λ ∗ (ϕ(k)); (A.146)

ii) if Λ has compact support30 then Λ ∗ ϕ ∈ C∞0 (R);
iii) (Λ ∗ ϕ) ∗ ψ = Λ ∗ (ϕ ∗ ψ).

30 We recall the definition of the support of a distribution: we say that Λ ∈ D′(I) is
null on an open set O in I if 〈Λ, ϕ〉 = 0 for every ϕ ∈ C∞0 (O). If W is the union
of all the open sets on which Λ is null, then by definition

supp(Λ) = I \W.
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Preliminarily we prove the following:

Lemma A.175 For every Λ ∈ D′(R) and ϕ ∈ C∞0 (R) we have

Tx (Λ ∗ ϕ) = (TxΛ) ∗ ϕ = Λ ∗ (Txϕ) , x ∈ R. (A.147)

Proof. The claim follows from the following equalities:

Tx (Λ ∗ ϕ) (y) = (Λ ∗ ϕ) (y − x) = 〈Λ, Ty−xϕ̌〉,
((TxΛ) ∗ ϕ) (y) =〈TxΛ, Tyϕ̌〉 = 〈Λ, T−xTyϕ̌〉 = 〈Λ, Ty−xϕ̌〉,
(Λ ∗ (Txϕ)) (y) =〈Λ, Ty (Txϕ)̌ 〉 = 〈Λ, TyT−xϕ̌〉 = 〈Λ, Ty−xϕ̌〉. �

Proof (of Theorem A.174).
i) We set

δh =
T0 − Th

h
, h 
= 0.

For every ϕ ∈ C∞0 (R) and m ∈ N, we have

lim
h→0
‖δhϕ− ϕ′‖m = 0,

with ‖ · ‖m defined in (A.140); so

lim
h→0
‖Tx ((δhϕ)̌ )− Tx ((ϕ′)̌ ) ‖m = 0.

Now, by Lemma A.175 we have

δh (Λ ∗ ϕ) (x) = (Λ ∗ (δhϕ)) (x) =

(by the definition of convolution)

= 〈Λ, Tx ((δhϕ)̌ )〉(x).

Taking the limit as h goes to zero and recalling Remark A.171, we get

d

dx
(Λ ∗ ϕ) (x) = (Λ ∗ ϕ′)(x).

On the other hand, applying Λ to both sides of the following equality

Tx ((ϕ′)̌ ) = − (Txϕ̌)′ ,

we get
(Λ ∗ ϕ′)(x) = −〈Λ, (Txϕ̌)′〉 =

(by definition of derivative of Λ)

= (DΛ ∗ ϕ) (x).
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An inductive procedure concludes the proof of the first point.

ii) We let
K = supp(Λ), H = supp(ϕ)

and we observe that
supp(Txϕ̌) = x−H.

Then it suffices to remark that, by definition,

(Λ ∗ ϕ) (x) = 〈Λ, T−xϕ̌〉 = 0

if K ∩ (x−H) = ∅, i.e. if

x /∈ (supp(Λ) + supp(ϕ)) . (A.148)

iii) If Λ = Λu with u ∈ L1
loc, the claim follows immediately by Fubini’s

theorem. For the general case, we refer to Rudin [294], Theorem 6.30. �

A.9.4 Mollifiers

Every distribution can be approximated by smooth functions using the so-
called mollifiers. More precisely, let us consider the function

�(x) =

{
c exp

(
− 1

1−x2

)
if |x| < 1,

0 if |x| ≥ 1,

where c is a constant chosen in a way that∫
R

�(x)dx = 1.

Moreover, we set
�n(x) = n� (nx) , n ∈ N.

The sequence (�n) has the typical properties of the so-called approximations
of identity: in particular, for every n ∈ N we have

i) �n ∈ C∞0 (R);
ii) �n(x) = 0 when |x| ≥ 1

n ;
iii)
∫
R

�n(x)dx = 1.

The functions �n are also called Friedrichs’ mollifiers [142]: if Λ ∈ D′(R), the
convolution

Λn(x) = (Λ ∗ �n)(x), x ∈ R,

is called regularization or mollification of Λ. The following theorem sums
up the basic properties of mollification: in the statement Λn, un denote the
mollifications of Λ and u, respectively.
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Theorem A.176 If Λ ∈ D′, then

i) Λn ∈ C∞;
ii) we have

supp(Λn) ⊆ {x | dist(x, supp(Λ)) ≤ 1/n} , (A.149)

and in particular, if Λ has compact support, then Λn ∈ C∞0 ;
iii) if u ∈ C, then ‖un‖∞ ≤ ‖u‖∞ and (un) converges uniformly on compact

sets to u;
iv) if u ∈ Lp, with 1 ≤ p < ∞, then ‖un‖p ≤ ‖u‖p and (un) converges in

Lp-norm to u;
v) for every n, k ∈ N we have

Λ(k)
n =

(
DkΛ

)
n

(A.150)

and consequently

v-a) if u ∈ Ck, then u
(k)
n converges to u(k) uniformly on compact sets;

v-b) if u ∈W k,p, then Dkun converges in Lp-norm to Dku;

vi) Λn converges to Λ in the sense of distributions, i.e.

lim
n→∞

〈Λn, ϕ〉 = 〈Λ,ϕ〉,

for every ϕ ∈ C∞0 .

Proof. Properties i) and ii) follow directly from Theorem A.174: in particular
(A.149) follows from (A.148).

iii) Let u ∈ C with ‖u‖∞ < +∞ : we have

|un(x)| ≤
∫
R

�n(x− y)|u(y)|dy ≤ ‖u‖∞
∫
R

�n(x− y)dy = ‖u‖∞.

Moreover, if x belongs to a compact set, we have

|un(x)− u(x)| ≤
∫
R

�n(x− y)|u(y)− u(x)|dy

≤ max
|x−y|≤1/n

|u(y)− u(x)|
∫
R

�n(x− y)dy

= max
|x−y|≤1/n

|u(y)− u(x)|.

iv) If u ∈ Lp we have

|un(x)| ≤
∫
R

�n(x− y)|u(y)|dy ≤
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(by Hölder’s inequality, with p, q conjugate exponents)

≤
(∫

R

�n(x− y)dy

) 1
q
(∫

R

�n(x− y)|u(y)|pdy

) 1
p

=
(∫

R

�n(x− y)|u(y)|pdy

) 1
p

,

hence it follows that

‖un‖pp ≤
∫
R

∫
R

�n(x− y)|u(y)|pdydx =
∫
R

|u(y)|pdy.

Similarly we can prove that

‖un − u‖pp ≤
∫
R

(∫
R

�n(x− y)|u(y)− u(x)|dy

)p

dx ≤

(by Hölder’s inequality)

≤
∫
R

∫
R

�n(x− y)|u(y)− u(x)|pdydx =
∫
R

�n(z)
∫
R

|u(x− z)− u(x)|pdzdx,

and the claim follows from Lebesgue’s dominated convergence theorem and
from the Lp-mean continuity, i.e. from the fact31 that

lim
z→0

∫
R

|u(x− z)− u(x)|pdz = 0.

v) (A.150) follows from (A.146).

vi) We have

〈Λ, ϕ̌〉 = (Λ ∗ ϕ)(0) =

(by v)-a)

= lim
n→∞

(Λ ∗ (�n ∗ ϕ))(0) =

(by Theorem A.174-iii))

= lim
n→∞

((Λ ∗ �n) ∗ ϕ)(0) = lim
n→∞

〈Λn, ϕ̌〉.

�

31 The Lp-mean continuity can be easily proved using the density of test functions
in Lp: for all the details we refer, for example, to Brezis [62].
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A.10 Separation of convex sets

In this section we prove a simple result of separation of convex sets in finite
dimension that is used in the proof of the fundamental theorems of asset
pricing.

Theorem A.177 Let C be a closed convex subset in RN that does not contain
the origin. Then, there exists ξ ∈ C such that

|ξ|2 ≤ 〈x, ξ〉, x ∈ C .

Proof. Since C is closed, there exists ξ ∈ C such that

|ξ| ≤ |x|, x ∈ C .

Moreover C is a convex set and therefore we have

ξ + t(x− ξ) ∈ C , t ∈ [0, 1],

and so
|ξ|2 ≤ |ξ + t(x− ξ)|2 = |ξ|2 + 2t〈ξ, x− ξ〉+ t2|x− ξ|2.

Then for t > 0 we get

0 ≤ 2〈ξ, x− ξ〉+ t|x− ξ|2,

and taking the limit as t→ 0+, we prove the claim. �

Corollary A.178 Let K be a convex compact subset of RN . Let V be a
linear subspace of RN such that V ∩K = ∅. Then there exists ξ ∈ RN such
that

〈ξ, x〉 = 0, x ∈ V , and 〈ξ, x〉 > 0, x ∈ K .

Proof. The set
K − V = {x− y | x ∈ K , y ∈ V }

is closed32, convex and it does not contain the origin. Then, by Theorem A.177
there exists ξ ∈ RN \ {0} such that

|ξ|2 ≤ 〈x− y, ξ〉, x ∈ K , y ∈ V .

Since V is a linear space, it follows that

|ξ|2 ≤ 〈x, ξ〉 − t〈y, ξ〉

for every x ∈ K , y ∈ V and t ∈ R. This is possible only if 〈y, ξ〉 = 0 for every
y ∈ V and this concludes the proof. �

32 To prove that K − V is closed we use the assumption that K is a compact set:
we leave the details of the proof to the reader as an exercise.
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[11] Applebaum, D. Lévy processes and stochastic calculus, second ed.,
vol. 116 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, 2009.



692 References

[12] Aronson, D. G. Bounds for the fundamental solution of a parabolic
equation. Bull. Amer. Math. Soc. 73 (1967), 890–896.

[13] Attari, M. Option pricing using Fourier transforms: A
numerically efficient simplification. Available at SSRN:
http://ssrn.com/abstract=520042 (2004), 1–7.

[14] Avellaneda, M., and Laurence, P. Quantitative modeling of derivative
securities. Chapman & Hall/CRC, Boca Raton, FL, 2000. From theory
to practice.
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de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques,
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