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Selected applications

In this chapter we present some real-life problems that can be modeled by the eddy
current equations. In some of these examples the time-harmonic eddy current system
is used for numerical simulations, and a rich bibliography on the subject is available.
However, we also include some applicationswhere, to our knowledge, the eddy current
model has not yet been used. We believe that it could be a more accurate description
than the ones actually employed, and, using themethod proposed in this book, it should
be suitable for numerical simulations.
In the following we focus on the illustration of the physical phenomena; the de-

scriptions do not pretend to be complete and fully detailed, but just to give a flavour of
different technological problems that are related to low-frequency electromagnetism.

9.1 Metallurgical thermoelectrical problems

We consider in this section two kind of electromagnetic furnaces used in the metal-
lurgical industry: induction heating systems and electric reduction furnaces. There is
an increasing interest in numerical simulations as means to optimize the design and to
improve the performances of these kind of electromagnetic devices. In an induction
furnace the eddy currents generated within conductors and resistances lead to Joule
heating; in an electric reduction furnace the charged material is directly exposed to
an electric arc. In both cases the mathematical model for the behaviour of the furnace
involves thermal and electromagnetic phenomena, that can be described through the
coupling of the Maxwell equations and the heat transfer equation.
Normally the electromagnetic submodel is solved in the frequency domain and the

effect of displacement currents can be neglected, thus leading to the time-harmonic
eddy current problem analyzed in this book. The electromagnetic and the thermal prob-
lem are coupled for two reasons: the electromagnetic properties of the different mate-
rials, in particular the electric conductivity, depend on the temperature, and the Joule
effect is one of the source terms in the heat transfer equation. Other phenomena can
be also taken into account; for instance, hydrodynamic phenomena must be consid-
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ered when melting a metal in an induction furnace, while mechanical effects play an
important role on the design of the electrodes of a reduction furnace.
In the following we present two different industrial applications. The first is the

modelization of a coreless induction furnace designed for melting and stirring, and the
second the modelization of an electric reduction furnace for the production of silicon.

9.1.1 Induction furnaces

In this section we follow the presentation of the problem given by Bermúdez et al. [41]
and Vázquez [240]. Induction furnaces are widely used in metallurgical industry for
hardening, melting or casting. An induction heating system is basically composed by
an inductor, fed by an alternating electrical current, and a conducting object that has to
be heated. More precisely, a coreless induction furnace formelting consists of a helical
copper coil, connected to a power supply, and a workpiece formed by the crucible
and the load within (see Figure 9.1). The alternating current traversing the inductor
produces an oscillatingmagnetic field, which generates eddy currents. These currents,
due to the Joule effect, produce heat in the conducting crucible, and the metal inside
is also heated until it melts. The crucible is surrounded by refractory and insulating
materials, and the inductor coil is water-cooled to avoid overheating due to Ohmic
losses. The operating frequencies of the supplied alternating current may vary from
utility frequency (50 or 60 Hz) to few kHz.
Numerical simulations are a valuable help in the shape optimization of this kind

of system. There are many different aspects that must be taken into account for the
design: the frequency and intensity of the applied current affect the temperature profile
in the furnace and the stirring action within the molten metal, thus influencing the
quality of the final product; ohmic losses could generate very high temperatures in
the crucible, damaging it and reducing its lifetime; some physical parameters, such as
the thermal and electrical conductivity of the refractory layer, and some geometrical
parameters, as the crucible thickness or its distance from the coil, are also important
for the performance of the device.

Fig. 9.1. An induction furnace (left, courtesy of V. Valcarcel, Ceramic Institute, Universidade
de Santiago de Compostela) and a sketch of the computational geometry (right)



9.1 Metallurgical thermoelectrical problems 277

Melting systems were probably the first industrial application of eddy currents.
Their modelization involves three main coupled phenomena: the electromagnetic field
provides Joule heating and give rise to Lorentz forces that act on the molten metal.
Since the inductor is fed by an alternating current and the effect of the displacement

current can be disregarded, the problem is modeled by the time-harmonic eddy current
system

curlH = J
curlE + iωμH = 0 .

The heating of the conductor due to the Joule effect is governed by the transient
heat transfer equation with change of phase

ρ
(∂e

∂t
+ u · grad e

)
− div(k gradT ) = J · E ,

where the heating due to viscous terms has been neglected, and e is the energy per unit
mass, T the temperature, ρ the density, and k the thermal conductivity. The energy
can be expressed as a multivalued function of the temperature, depending on different
physical parameters. The right-hand sideJ (t,x)·E(t,x) is the heat generated by eddy
currents (J (t,x) and E(t,x) are the time-dependent total current density and electric
field, respectively). The term u · grad e corresponds to the convective heat transfer; u
is the velocity of the molten metal and it is given by the Navier-Stokes equations

ρ

(
∂u
∂t

+ (u · grad)u
)
− div(2ηD(u)) + gradp = fg + fl

divu = 0 ,

where η is the viscosity, p the pressure of the molten metal, and D(u) the symmetric
part of gradu, namely,

D(u) :=
gradu + (gradu)T

2
.

The forces at the right-hand side of theNavier-Stokes equations are the buoyancy force
fg, given by

fg = ρg ,

where g is the acceleration of gravity, and the Lorentz force fl, given by

fl = J × B ,

where B(t,x) is the time dependent magnetic induction.
The heat source and the Lorentz force are determined taking the mean value on a

cycle. Taking into account that J (t,x) = Re[eiωtJ(x)] and analogously E(t,x) =
Re[eiωtE(x)] and B(t,x) = Re[eiωtB(x)], an easy computation gives

ω
2π

∫ 2π

0
J (t,x) · E(t,x) dt

= 1
2 (ReJ(x) ·ReE(x) + ImJ(x) · ImE(x)) ,
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and
ω
2π

∫ 2π

0
J (t,x) ×B(t,x) dt

= 1
2 (ReJ(x) ×ReB(x) + Im J(x)× ImB(x)) .

It should be noted that the Ohm law for a moving conductor reads

J = σ(E + u×B) .

However, when working with molten metals on a laboratory scale, the term σ(u×B)
can be neglected.
In most numerical schemes the coupled problem is solved using an iterative time

stepping procedure, in which the electromagnetic field is first determined for tempera-
turedependent conductivityand permeability, then themomentum and the temperature
equations are advanced using the resulting Lorentz force and Joule loss distribution,
and finally the material properties are updated and another step can be applied. Pro-
ceeding in this way, at each time step it is necessary to solve an eddy current problem
like the one analyzed in the previous chapters of this book.
There is a very rich literature on numerical modeling of induction heating, and we

refer to Lavers [163] for an extensive bibliographic review on this subject. More of-
ten, taking advantage of some geometrical symmetries, in many works concerning the
coupling of electromagnetic and thermal problems the computational domain is two-
dimensional. For instance, Chaboudez et al. [78] consider a two-dimensional problem
involved in inductionheating of longworkpieces; Chaboudez et al. [77] do the same for
an axisymmetric configuration; Bermúdez et al. [40] study the thermo-electromagnetic
problem in induction furnaces used for melting, proposing and analyzing a FEM/BEM
method for the approximation of the electromagnetic subproblem; Bay et al. [35] con-
sider a model which couples electromagnetic, thermal and mechanical effects in ax-
isymmetrical induction heating processes; Henneberger et al. [124], Natarajan and El-
Kaddah [183] deal with the magneto-hydrodynamic problem in the context of induc-
tion melting systems with axisymmetric geometry, but they do not take explicitly into
account thermal effects. Let us also mention Rappaz and Touzani [203] for the numer-
ical analysis of a two-dimensional magneto-hydrodynamic problem.
By contrast, there are few works concerning the numerical approximation of the

thermal-magneto-hydrodynamic problem: we mention the results by Henneberger and
Obrecht [123], Katsumura et al. [149], and in particular the more recent paper by
Bermúdez et al. [41] (see also Vázquez [240]); in all these works the axisymmetric
geometry is assumed. More specifically, in Bermúdez et al. [41] and Vázquez [240] a
BEM/FEMmethod is used for the approximation of the solutionof the electromagnetic
problem. The problem is formulated in terms of a magnetic vector potential and the
input data of the problem are the current intensities through the inductor coils. Some
numerical simulations for an industrial furnace are presented, and show a good agree-
ment with experimental data. In thismodelization, the induction coil has been replaced
by a suitable set of rings, each one having toroidal geometry (see Figure 9.2).
As far as we know, there are no three-dimensional simulations of the thermal-

magneto-hydrodynamic problem for the more realistic situation in which the coil is a
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Fig. 9.2. Axisymmetric induction furnace: 1 metal, 2 crucible, 3 coils

simply-connected helix with two electric ports (for this type of coils in Section 8.1 we
have presented a complete analysis of the eddy current problem).

9.1.2 Metallurgical electrodes

The time-harmonic eddy current model is also used in modeling the thermoelectrical
behaviour of electrodes for electric reduction furnaces. Although the model is rather
general, we focus on metallurgical electric furnaces for silicon metal and ferro-silicon
production, following the presentation in Bermúdez et al. [43] (see also Bermúdez et
al. [45], Salgado [217]). This kind of furnace basically consists of a cylindrical pot
containing charged material and three electrodes symmetrically disposed. The pot is
a steel cylinder charged with quartz and quartzite, as silicon oxide source, and car-
bonaceous substance, as coal and coke. At temperatures over 1900 degrees the carbon
reduces the silica to silicon by the chemical reaction SiO2 + 2C→ Si + 2CO. The elec-
trodes are made of carbon materials and they serve to conduct the electric current to
the center of the furnace. Different transformers change the high-voltage current usu-
ally supplied into the low-voltage high-intensity current suitable for the process. The
electric current enters each electrode through a metal ring, which completely embraces
the electrode above the charge level. The ring is composed by several copper sections,
called contact clamps; bus bars connect the transformers to the contact clamps. At the
tip of each electrode an electric arc is produced, generating the high temperatures that
activate the chemical reaction. In Figure 9.3 we give a sketch of a reduction furnace.
The electrodes can be of different kinds, depending on the type of production,

namely, silicon metal or ferro-silicon. Traditionally, in furnaces for silicon metal pro-
duction two types of electrodes are mainly used: the pure graphite electrodes, com-
posed by graphite bars joined by threated graphite connecting pieces, called nipples;
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Fig. 9.3. Sketch of a reduction furnace (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

the prebaked electrodes, composed by a mixture of carbonaceous substance known as
paste, which has been previously baked to eliminate volatile substances.
Instead, themost used electrode in ferro-silicon industry is the Søderberg one, com-

posed by a mixture of petroleum coke and coal-tar pitch contained into a steel cylinder.
This paste is put in the cylinder at the top of the electrode, and it bakes in the zone of
the contact clamps, employing the heat generated by the Joule effect. In this process
the initially non-conductive paste at the top of the electrode becomes a solid carbon
conductor. The baked electrode is consumed during the reaction that takes place at the
tip of the pot, and has to be continuously replaced by pushing the carbon body down.
This is done by moving the casing, but this procedure has the drawback that the steel
melts and pollutes silicon. For this reason the Søderberg electrodes, that can be built in
larger size and cost less than pure graphite or prebaked electrodes, are only used in the
production of ferro-silicon, which can contain a large percentage of iron, but cannot
be used to obtain pure silicon metal.
For many years graphite or prebaked electrodes have been the only kind of elec-

trodes used in silicon metal production. In the early 1990s, the Spanish company Fer-
roatlántica S.L. built a new type of electrode named ELSA, that serves for the produc-
tion of silicon metal at a lower cost. It consists of a central column of baked carbona-
ceous material, graphite or similar, surrounded by a Søderberg-like paste. There is a
steel casing that contains the paste until it is baked, but the carbon core is responsible
for slipping, so the casing does not move with the baked electrode and it does not melt.
In this way it is possible to produce silicon with metallurgical quality. In Figure 9.4
we see a sketch of the ELSA electrode.



9.1 Metallurgical thermoelectrical problems 281

Fig. 9.4. Sketch of an ELSA electrode (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

During the last decades many models and codes have been developed to simulate
the working conditions of electric reduction furnaces. They compute the temperature
distribution, the electromagnetic fields and the stress distribution inside the electrodes
by solving the heat equation, the Maxwell equations and the elasticity equations. The
system is coupled since the heat source depends on the electromagnetic fields, and the
conductivity and stresses depend on the temperature. The alternating current and the
low frequency (50 Hz) used make the eddy current model a good approximation for
the electromagnetic submodel.
The early works concerning the modeling of a single electrode assume cylindrical

symmetry (see, for instance, Bermúdez et al. [39]). The problem is solved in a vertical
section of the electrode, writing the equations in cylindrical coordinates. Clearly, the
two-dimensional model reduces the computational cost, but introduces some simplifi-
cations. Axisymmetric boundary conditions are assumed, but these are not realistic in
industrial applications, for which the current enters the electrode through the contact
clamps, and in each electrode half of the clamps is connected to one transformer while
the others are connected to a second transformer. Moreover, the conductivity is not
axisymmetric in the electrode, since it depends on the temperature, which is greater in
the central part of the furnace containing the electrode.
There are few works concerning three dimensional simulation of metallurgical

electrodes. The mathematical analysis of the continuous and the discrete problems in
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the case of a single electrode can be found in Bermúdez et al. [46] for the H-based
formulation, and Bermúdez et al. [44] for the E-based one. Notice that, in this case,
the conductivity is assumed to be uniformly positive definite in the whole domain, and
an insulating region is not present: the computational domain simply corresponds to
the electrode and to the contact clamps. The problem is not axisymmetric, because it
takes into account the non-symmetric boundary conditions that are typical in industrial
applications.
Here we show some numerical simulationsdue to Bermúdez et al. [43] for an ELSA

electrode. In Figures 9.5 we describe the geometrical configuration; in Figures 9.6, 9.7,
9.8 and 9.9 we show the magnitude of the current density in different sections of the
electrode.
A delicate issue of the model that only considers one single electrode is the deter-

mination of the boundary conditions, as explained in Bermúdez et al. [44]. On the tip
of the electrode, where the electric arc arises, the current exits freely, henceE×n = 0.
Also on the contacts, namely, the cross-sections of the bus bars throughwhich the elec-
tric current enters the domain, the conditionE×n = 0 is imposed, and moreover the
current intensity through each bus bar is known. Then one has J ·n = 0 outside the tip
of the electrode and the contacts, since there is no current flux through this part of the
boundary. Finally,μH ·n is set equal to 0 on the whole boundary, though this assump-
tion is not valid in general: for instance, it is exactly true in the axisymmetric case, and
it is admissible when the number of external bus bars feeding the electrode is large and
they are arranged radially, because in this case the normal magnetic fluxes that they
generate tend to cancel out. In more general situations one could take a larger domain
around the electrode and the bus bars, and assign the boundary conditionμH·n = 0 on

Fig. 9.5. The geometric configuration of the ELSA electrode: A graphite, B paste, C casing,
D water, E contact clamp
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Fig. 9.6. Magnitude of the current density (A/cm2): horizontal section at the top of contact
clamps (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.7.Magnitude of the current density (A/cm2): horizontal section at the bottom of contact
clamps (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.8.Magnitude of the current density (A/cm2): horizontal section 25 cm below the contact
clamps (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)
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Fig. 9.9. Magnitude of the current density (A/cm2): vertical section (courtesy of A. Bermúdez,
R. Rodríguez and P. Salgado)

the external boundary: however, in this way a non-conductive air region is introduced
(see Bermúdez et al. [45], Alonso Rodríguez et al. [20]).
When considering a single electrode the proximity effect is neglected: though the

magnetic field generated by each electrode induces eddy currents in the other elec-
trodes, this is not considered in the simulations. A first attempt at taking into account
this effect has been carried out by Bermúdez et al. [38] for ELSA electrodes, solving
numerically the electromagnetic problem on a horizontal section of the three elec-
trodes. A drawback is that these two-dimensional models are valid only in the lower
part of the electrode, where it can be assumed that the electric current is orthogonal to
the considered two-dimensional section.
The more realistic modeling of the reduction furnace requires to consider a three-

dimensional non-symmetric computational domain, formed by a conducting region
and an insulating region. We conclude this section by presenting some numerical sim-
ulations due to Bermúdez et al. [43] for this model of the furnace, with three ELSA
compound electrodes. The contact clamps and the casing are not explicitly consid-
ered in the modelization, and the Søderberg paste is assumed to be baked in the whole
domain. The electric current enters the electrodes through copper bars of rectangular
section. In Figures 9.10 and 9.11 we show the geometrical data of the problem.
The numerical method used for the simulations illustrated in Figures 9.12 and 9.13

is the finite element discretization analyzed in Bermúdez et al. [45], and presented in
Section 5.4.2. The problem is formulated in terms of themagnetic field in the conductor
and of the scalar magnetic potential in the insulator, and the finite elements used are
first order edge elements in the conductor and first order nodal elements in the insulator.
Numerical results for the same problem, but formulated in terms of the electric

field in the conductor and of the scalar magnetic potential in the insulator, have been
also presented in Section 8.1.5.
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Fig. 9.10. Sketch of the model domain (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.11.Geometrical data corresponding to a vertical section of each electrode (courtesy of A.
Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.12. Magnitude of the current density (A/cm2): horizontal section (courtesy of A.
Bermúdez, R. Rodríguez and P. Salgado)
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Fig. 9.13.Magnitude of the current density (A/cm2): vertical section (courtesy of A. Bermúdez,
R. Rodríguez and P. Salgado)

9.2 Bioelectromagnetism: EEG and MEG

Electroencephalography (EEG) and magnetoencephalography (MEG) are two non-
invasive techniques used to localize electric activity in the brain frommeasurements of
external electromagnetic signals. Electroencephalography measures the scalp electric
potential, while magnetoencephalography measures the external magnetic flux.
The electromagnetic activity of the brain is due to the movements of ions within

activated regions of the cortex sheet, the so-called impressed currents (or primary cur-
rents). In addition, Ohmic currents are generated in the surrounding medium, the so-
called return currents. The measures of EEG and MEG correspond to both impressed
and return currents, but the source of interest are the impressed currents, as they rep-
resent the area of neural activity associated to a sensory stimulus.
The first EEG recording in man (and the name Electroenkephalogram) is due to

H. Berger in 1924. He measured electric potential differences between pairs of elec-
trodes placed on the scalp. Nowadays these electrodes can be directly glued to the skin
or fitted in an elastic cap, and tipically up to 256 electrodes are used (see in Figure 9.14
a cap with 128 electrodes).
The first magnetoencephalograms date back at the late 1960s by D. Cohen. The

magnetic signal related to brain activity is extremely weak, about 108 times lower than
the earth’s geomagnetic field. Its measurement only becames possiblewith the SQUID
(SuperconductingQUantum Interface Devices) magnetometer introduced by Zimmer-
man [249]. This kind of instrumentation measures some component of the magnetic
induction on different locations, nowadays up to 100, close but external to the head
(see Figure 9.15).
For a comprehensive introduction to theory and instrumentation in MEG see

Hämäläinen et al. [117]. A complete description of the models used in EEG/MEG



9.2 Bioelectromagnetism: EEG and MEG 287

Fig. 9.14. The distribution of the sensors for EEG

Fig. 9.15. The distribution of the sensors for MEG (courtesy of Elekta)

source localization is provided in Baillet et al. [34] (see also Mosher et al. [182]). Let
us give here a concise presentation of the topic.
Source localization is an inverse problem: knowing the value of the magnetic field

or of the electric field on the surface of the head (or, possibly, external to the head, but
close to its surface), the aim is to determine the position and some physical character-
istics of the current density that has given rise to that value.
Since the current distribution inside a conductor cannot be retrieved uniquely from

knowledge of the electromagnetic field outside the conductor, the mathematical prob-
lem does not have a unique solution if some additional conditions on the source model
are not assumed (see Sarvas [220]). Two different approaches are mainly used to re-
construct the brain neural sources: equivalent dipole and distributed source models.
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Fig. 9.16. The Elekta Neuromag MEG system (left, courtesy of Elekta) and the second author
in the CIMeC Laboratory, University of Trento (right)

Moreover, see for instance Kaipio and Somersalo [142] for statistical approaches that
we do not consider here.
In the dipolarmodel theprimary current distributionis represented as a point source

located at xq with moment q, namely,

Je(x) = q δ(x− xq) ,

where δ(·) is the Dirac delta distribution. The dipole is a convenient representation for
a unidirectional impressed current due to the activation of a large number of pyramidal
cells, that in real situations may indeed extend over several square centimeters of the
cortex.More generally, it is assumed that a primary current source can be decomposed
as the sum of (few) current dipoles. In the standard dipolar method the parameters
of the dipoles (location, amplitude and orientation) are found using a nonlinear least-
squares search.
The distributed source model (also called imaging approach) assumes that a lot of

dipoles are located perpendicularly to the cortical surface. The geometry of the cortical
surface can be extracted from brain magnetic resonance imaging (MRI) data. A tes-
sellation of this surface is constructed and a current dipole is placed on each element
with itsorientation normal to the surface. The inverse problem in this case turns out
to be linear: only the magnitudes of the dipole moments have to be reconstructed, and
not the location nor the orientation. Proceeding in this way the number of unknowns is
typically greater than the number of measured data and the inverse problem is solved
using regularization schemes, such as a truncated singular value decomposition of the
Tikhonov regularization.
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In both cases, a preliminary step for the solution of the inverse problem is an effi-
cient resolution of the forward problem. In fact, the procedure is essentially the follow-
ing: given a source Je, solve the forward problem, thus determining the electric and
magnetic fields generated by Je, and then minimize in a suitable way the difference
between the computed and the measured data. The current density J∗

e which achieves
the minimum is the source we are trying to determine.
Let us focus nowon the forward problem.For biological tissues, the linear constitu-

tive equationsD = εE and B = μH can be assumed (see Plonsey and Heppner [194]).
Due to its complicated detailed structure, the human brain must be modeled as a het-
erogeneous anisotropic medium, with physical parameters that depend on the spatial
variable and that may be tensors. The frequency spectrum for electrophysiological sig-
nals inMEG is tipically below 1000Hz, and most studies deal with frequency between
0.1 and 100 Hz.
As far as we know, in almost all the studies concerning the neural generation of

electromagnetic fields the static approximation of Maxwell equations is considered

curlH = J
divB = 0
curlE = 0 ,

(9.1)

neglecting not only the displacement current but also the electromagnetic diffusion.
FromOhm law the total current density J is the sum of the impressed currents plus

the return currents
J = Je + σE = Je − σ gradV ,

where V is the electric scalar potential. From the first equation in (9.1) it follows that

0 = divJ = div(Je − σ gradV ) .

Hence V can be obtained by solving the Poisson equation

div(σ gradV ) = divJe , (9.2)

usually with the boundary conditionσ gradV ·n = Je ·n, which is a consequence of
the fact that outside the head the magnetic field is supposed to be curl-free (the source
Je is located inside the head, and the conductivity is vanishing outside the head, so
that J = 0).
For EEG this is the point: solving this elliptic problem gives the electric field, and

the inverse problem of source localization can be dealt with.
For MEG, one has to go further. Since the magnetic permeability can be assumed

to be homogeneous and equal to μ0, the free-space permeability, B is given by the
Biot-Savart law

B(x) =
μ0

4π

∫
R3

J(y)× x− y
|x− y|3 dy . (9.3)

Here the integration is indeed carried out on a bounded domain Ω, representing the
head, as J is vanishing outside Ω. Note that this formula furnishes a direct way to
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compute the magnetic induction B, but only after we have determined the electric
scalar potential V through (9.2).
However, in some cases solving the elliptic problem (9.2) can be avoided. In fact,

the typical (though simplified) head model assumes that the head can be described by
three (scalp, skull and brain) to five (scalp, skull, cerebrospinal fluid, gray matter and
white matter) contiguous layers Ωj , j = 1, . . . , n. The different layers of the head and
the air region are separated by the surfaces Sj , j = 1, . . . , n, S1 being the outermost
one. Assuming that the conductivity of each layer is a scalar constant, by employing
classical results of potential theory it is possible to derive a surface integral equation
for Vk := V|Sk

, k = 1, . . . , n,

σ−
k + σ+

k

2
Vk(x)

= V∞(x) − 1
4π

n∑
j=1

(σ−
j − σ+

j )
∫
Sj

Vj(y)nj(y) · x− y
|x− y|3 dSy

(9.4)

(see Sarvas [220]), where

V∞(x) :=
1
4π

∫
Ω

Je(y) · x− y
|x− y|3 dy ,

nj is the unit outward normal vector to Sj , σ−
j is the inside conductivity and σ+

j is the
outside conductivity, with σ+

1 = 0 and, clearly, σ−
j = σ+

j+1, j = 1, . . . , n− 1. Note
that, in the particular case of a current dipole, one has

V∞(x) =
1
4π

q · x − xq
|x− xq|3

.

For constant conductivities integrationby parts in (9.3) shows that also the Biot–Savart
law can be written as a sum of surface integrals on the interfaces between layers, ob-
taining the formula due to Geselowitz [109]

B(x) = B∞(x) − μ0

4π

n∑
j=1

(σ−
j − σ+

j )
∫
Sj

Vj(y)nj(y)× x− y
|x− y|3 dSy , (9.5)

where the vector field

B∞(x) :=
μ0

4π

∫
Ω

Je(y)× x − y
|x− y|3 dy

is called the primary field. In the case of a current dipole it becomes

B∞(x) =
μ0

4π
q× x− xq

|x− xq |3
.

At this stage, for MEG themain point turns out to be the determination of the functions
Vj on the surfaces Sj , which furnish the magnetic inductionB via the explicit formula
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(9.5). Hence a boundary element approach can be introduced, with the aim of finding
a solution to the discrete approximation of (9.4), then inserting the obtained results in
(9.5).
In some particular cases one can even avoid solving (9.4). Indeed, a simplified

model assumes that the head consists of a set of nested concentric spheres, each layer
with a scalar constant conductivity. In the special case of a current dipole and of a
MEG system that measures only the radial component of the magnetic induction B,
the contribution of the return currents vanishes, as for y ∈ Sj and x �= y one has(

nj(y)× x−y
|x−y|3

)
· x
|x|

=
(

y
|y| × x

|x−y|3
)
· x
|x| −

(
y
|y| ×

y
|x−y|3

)
· x
|x| = 0 .

Therefore, the radial component of B(x) reduces to

Br(x) =
x
|x| ·B(x) =

x
|x| ·B∞(x) =

μ0

4π
x× xq

|x||x− xq |3
· q (9.6)

(note the linear dependence of Br on the moment q and the nonlinear dependence on
the position xq). Hence, the radial component ofB turns out to be independent of the
potential V , and in this case the solution of the inverse MEG problem does not require
the previous computation of V , and simply uses the explicit formula (9.6).
These spherical models work reasonably well and are routinely used in most appli-

cations of EEG and MEG source localization. However, it seems clear that, in order to
improve the source reconstruction,more accurate solutions to the forward problem are
needed, and a more realistic model must be considered. Anatomical information can
be obtained from brain magnetic resonance imaging or X-ray computed tomography
imaging (see, for instance, Khan et al. [151]). From these images it is possible to con-
struct a realistic headmodel (see, e.g., Van Uiter et al. [239], Kybic et al. [162],Wolters
et al. [245]) and extract precise informations about surface boundaries for scalp, skull
and brain. On the other hand, recent studies of Marin et al. [172], Wolters et al. [244],
and Haueisen et al. [118] show that the anisotropy of the conductivity in the skull and
brain must be taken into account and in particular the conductivity cannot be assumed
to be piecewise-constant. From a numerical point of view thismeans that one has to go
back to the numerical solution of (9.2), and this can be done by using a finite element
scheme.
However, a modelization through the elliptic equation (9.2) is not completely sat-

isfactory. In fact, as already remarked, the physiological frequency involved in the
problem ranges between 0.1 and 100 Hz, and in general cannot be assumed to vanish.
Therefore the static model (9.1) has to be replaced by the eddy current model. To the
best of our knowledge, the latter has not been used yet for brain activity reconstruction
from MEG data, but this could be an important direction for further researches.
In this respect, since it is necessary to reduce as far as possible the computational

cost of the forward solver, the approach presented in Sections 7.1–7.5 could be a useful
tool.

Remark 9.1. The necessity of taking into account a non-vanishing frequency has been
underlined by He and Romanov [122], Ammari et al. [22], who use the full Maxwell
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system as forward problem. They consider the inverse source problem that arises in
determining the location of an epileptic focus, i.e., the localization of a single dipole
in a homogeneous or even heterogeneous medium. Unlike many inverse methods, the
proposed algorithm is non-iterative. Following Ammari et al. [22], in this case the
considered forward problem is the time-harmonic full Maxwell system in R3

curlH− iωεE = σE + q δ(x − xq)
curlE + iωμH = 0 ,

(9.7)

with the Silver–Müller radiation condition

lim
|x|→+∞

|x|
(√

μ0 H× x
|x| −

√
ε0 E

)
= 0 ,

ε0 being the free-space electric permittivity.
As usual, letΩC denote the conductor (the human head). If ϕ is a scalar harmonic

function in ΩC and u is a solution to

curl(μ−1
0 curlu) = iσ gradϕ ,

then it can be proved that

q · gradϕ(xq) =
∫
∂ΩC

H× n · gradϕ + i

∫
∂ΩC

μ−1
0 curlu · E× n + O(ω) .

Choosing in this formula six particular harmonic functions (ϕk = xk for k = 1, 2, 3
and ϕk = eiξk−3·x for k = 4, 5, 6, where ξj ∈ C3, j = 1, 2, 3, are such that∑3

i=1 ξ2
j,i = 0), the six components of q and xq can be approximated. It is worth

noting that this reconstruction is carried out without a priori knowledge of the angular
frequency ω. �

Remark 9.2. A related forward problem, where the eddy current system or else the
full Maxwell equations have been adopted, is the numerical simulation of transcranial
magnetic stimulation (TMS): see, e.g., Ueno et al. [237], Sekino et al. [225]. This is a
non-invasivemethod for stimulating neurons in the brain, and it is widely used in neu-
roscience, in order to study the functional organization of human brain, and in the diag-
nosis and the treatement of neurological diseases. A transcranial magnetic stimulation
system consists in a coil placed on the scalp, that produces a time-harmonic magnetic
field which induces eddy currents in the brain. The operating frequency ranges from 1
to 4 kHz. It is also possible to use more than one coil to stimulate different parts of the
brain simultaneously: this is the so-called multichannel transcranial magnetic stimu-
lation, that has recently attracted particular interest (see Lu et al. [170] and references
therein).
Accurate numerical simulations of the induced fields inside the brain are necessary

for optimizing the design of the coils that have to generate the desired stimulation. �
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9.3 Magnetic levitation

Due to the relatively low frequencies involved, magnetic levitation problems are an
interesting field of application for eddy current models: in fact, “the magnetic energy
storage is dominant (as compared to energy stored in the electric field) and wave phe-
nomena are small enough to be ignored” (Thompson [234]; see also, e.g., Kriezis et
al. [157]).
Let us start this section with a brief presentation of problem28 of the TEAMwork-

shop, a simple electrodynamic levitation problemwhich can serve as a model problem
for more complex computations in moving domains. It is an axisymmetric transient
problem with electromechanical coupling (see Karl et al. [148] and Kurz et al. [161]).
The device is described as follows: a cylindrical aluminium plate is located above
two cylindrical coils, formed by electric wires, all the parts with the same axis (see
Figures 9.17 and 9.18). At the initial instant the plate is above the coils at a certain dis-
tance, then an applied current density is imposed. Both coils are connected in series,
with different sense of winding.

Fig. 9.17. The geometry in problem 28 of the TEAM workshop

Fig. 9.18. The dimensions in problem 28 of the TEAM workshop
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Due to the induced eddy currents, a repulsive Lorentz force

FL(u,E,B) :=
∫
ΩC

[σ(E + u×B)]×B

acts on theplateΩC , which reaches, after a transient time, a stationary levitationheight.
Here u denotes the velocity of the plate, which depends on mechanical as well as
electromagnetic forces, in particular on B and E.
From the mathematical point of view, the problem is described by the time-

dependent eddy current equations⎧⎨⎩
curlH− σE = Je + σ(u×B) in Ω

curlE + ∂B
∂t = 0 in Ω

div(εIEI ) = 0 in ΩI ,
(9.8)

whereΩ is a “box” containing the plate and the support of the coils, and Je is supported
only in the coils.
The constitutive relation between B andH in general is given by B = μH + M,

whereM is the magnetization; however, as always done in this book, here below we
assume thatM = 0.
Employing an implicit time-discretization scheme and computing the nonlinear

term u×B at the previous time level leads at each time step to the solution of⎧⎨⎩
curlHn+1 − σEn+1 = Jn+1

e + σ(un ×Bn) in Ω
curlEn+1 + Bn+1/Δt = Bn/Δt in Ω
div(εIEn+1

I ) = 0 in ΩI .
(9.9)

Then at the time step n + 1 the velocity u and the position r of the center of gravity
of the plate are obtained by setting

un+1 = un + g + m−1ΔtFL(un,En+1,Bn+1),

and
rn+1 = rn + Δtun+1 ,

where g is the acceleration of gravity, m the mass of the plate and FL the Lorentz
force.
Most of the results that we have presented for time-harmonic eddy current

problems can be adapted to the system of equations (9.9). For instance, Kurz et
al. [161] have computed the levitation height by using a FEM–BEM approach for
the (AC , VC)−AI vector potential formulation. Moreover, Rapetti [201] has used
an approach based on the vector potential A and on an overlapping mortar element
technique for taking into account the movement of the plate.
In particular, in the TEAM workshop problem 28 the data of the problem are as

follows: the mass of the plate ism = 0.107 kg, the initial distance of the plate from the
coils is 3.8 mm, the applied current density is given by Je(t) = (−1)kJkI0 sin(ωt)eφ,
where eφ is the (counterclockwise) azymuthal unit vector in the cylindrical system,
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k = 1 refers to the outer coil and k = 2 to the inner coil, I0 = 20A, ω = 2π×50 rad/s,
J1 = N1/S1 and J2 = N2/S2, where N1 = 576 and N2 = 960 are the number of
turns of the electric wires in the coils, and S1 and S2 are the cross sections. Finally, the
conductivityand the permeability are given byσ = 3.4×107 S/m, μ = 4π×10−7 H/m.
The results obtained by Kurz et al. [161] and Rapetti [201] are in very good agree-

ment with the experimental data: after a transient time of about 1.6 ms, a stationary
levitation height of about 11.3 mm is reached.

TEAM workshop problem 28 is clearly a very simplified model for realistic phe-
nomena based on magnetic levitation. In order to give a more detailed description of
the effective technological problems related to this topic, below we briefly outline a
presentation of magnetic levitation trains.
Since the 1960s some industrial companies attempted to design a train without

wheels, suspended over a specialized track by magnetic levitation and with a propul-
sion system based on magnetic forces (for more details about these early projects, see,
e.g., the review papers by Thornton [235], Yamamura [246], Rogg [213], Powell and
Danby [195]).
Two related but different techniques have been mainly used to reach this goal: elec-

trodynamic levitation with superconducting magnets and electromagnetic levitation
with normal conductive magnets (for an up-to-date presentation of these technologies,
see, e.g., Cassat and Jufer [75], Lee et al. [164], Yan [247]).
In electrodynamic levitation the train is lifted and guided by means of repulsive

forces between superconducting coils placed on the vehicle and coils inserted in the
guideway (see Figure 9.19). The repulsive forces are produced only when themagnets
are moving, hence the train does not levitate at low speed and it still needs wheels for
“take-off and landing”. The air gap (the distance between the vehicle and the ground)
can be larger that 10 cm, and the system turns out to be magnetically stable: if the
levitation height becomes lower than the equilibriumposition, the magnetic repulsion

Fig. 9.19. Scheme of the electrodynamic levitation system: 1 vehicle, 2 propulsion windings,
3 superconducting magnets, 4 levitation and guidance windings
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force increases, restoring equilibrium; if the levitation height turns out to be too large,
then gravity prevails and the air gap is reduced. For this stabilityproperty, this system is
themost indicated for high speeds and for use in regions that can be subjected to strong
earthquakes. The electrodynamic levitation system, originally proposed by Danby and
Powell [92], has been adopted by Japanese National Railways, that since the 1970s
have produced the series of MLU trains and more recently the last prototype MLX,
that in 2003 obtained the train speed record of 581 km/h.
By contrast, electromagnetic levitationmakes use of attracting forces between nor-

mal conducting electromagnets situated on board and an iron-core armature winding
on the rail. The attracting forces produces an inherently unstable levitation system, and
the air gap, which is about 1 cm and is nearly velocity-independent,has to be controlled
via a high-precision device. Sensors measure the air gap and accelerometers measure
the acceleration of the magnets, and information about both of these are passed to the
control system. Levitation and guidance can be either integrated in a single system (see
Figure 9.20), or else separated (see Figure 9.21). The first choice has been adopted for
the Japanese HSST train, operating in public service since 2005 in Nagoya (short dis-
tance and medium speed), the second one for the German Transrapid train, operating
since 2004 in Shanghai (long distance and high speed).
Concerning propulsion, in both levitation systems the power to the coils at the

guideway is supplied by a linear synchronous motor, whose structure is simpler than
that of a standard rotating electric motor, not requiring the use of mechanical coupling:
plainly-speaking, it is like a conventional rotating motor in which stator, rotor and
windings have been unrolled and stretched along the guideway. The working principle
is the same: an alternatingcurrent inside themotor windingson the guideway generates
a space–time depending magnetic field in the air gap, and it induces an electromotive
force in the secondary part, a conducting sheet with (standard or superconducting)

Fig. 9.20. Scheme of the electromagnetic levitation system (levitation and guidance integrated):
1 vehicle, 2 iron-core rail windings, 3 levitation and guidance magnets
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magnets placed on the vehicle. This electromotive force generates the eddy currents,
whose interaction with the flux in the air gap produces the thrust force. The speed is
regulated by varying the frequency of the alternating current, and, if the direction of the
traveling field is reversed, the motor becomes a generator and the the train is braked,
without contact. The advantage given by a linear motor is that, in the case of a (more
or less) rectilinear motion, its efficiency is higher than that of a rotatingmotor, because
of the minor amount of vibration and noise.
Also guidance is based on magnetic forces. In the MLX prototype, the levitation

coils on the sideways are connected in such a way that, if a train is closer to one side,
then induced currents are produced and this generates a guiding force (in other words,
the coils work as a guide system, based on a repulsive force). For the Transrapid train,
electromagnets are placed on both sides of the vehicle, and reaction rails on the guide-
way interact with them maintaining the train suitably centered on the track.
Summing up, the magnetic levitation train is a technological problem of low-

frequency electromagnetism coupled with dynamics. To our knowledge, a complete
modeling of the whole process has not been performed, due to its high complexity.
However, some of its parts have been considered in detail and analyzed by means of
the finite element method, though mainly for simplified mathematical models derived
from the eddy current equations: as examples we recall the calculation of the magnetic
field around the HSST train magnet (see Aoki [28]) or that of induced currents and
forces for an hybrid levitation magnet (see Albertz et al. [4]), the investigation of the
stability of repulsive forces (see He et al. [121]), the analysis of the heating problem
arising in superconducting magnets (see Saito et al. [216]), the design of high temper-
ature superconducting coils (see Jenkins et al. [139]). Finally, the analysis of the MLX
train levitation system and some of its variants has been investigated only by means
of the dynamic circuit theory (see He et al. [120], Davey [96]), and would give more
precise results if the analysis relied on the complete eddy current model.

Fig. 9.21. Scheme of the electromagnetic levitation system (levitation and guidance separated):
1 vehicle, 2 guidance magnets, 3 levitation and propulsion magnets, 4 rail guidance windings,
5 iron-core rail windings
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Fig. 9.22. The Transrapid magnetic levitation train in Shanghai (left) and the first author before
take-off (right)

9.4 Power transformers

As it is well-known, power transformers are used to produce an alternating current with
low intensity and high voltage starting from an alternating current with high intensity
and low voltage, and viceversa.
In its most common form a transformer is constituted by two windings, wrapped

around an iron core. A time-dependent current through the primary winding generates
a time-varying magnetic field in the core, and by mutual induction this field induces a
voltage in the secondary winding.
The ratio between the voltage in the secondary winding and the voltage in the

primarywinding is proportional to the ratio between their respective winding numbers.
Therefore, tweaking on the number of turns makes it possible to tune the electromotive
force at the exit of a transformer, hence to reduce the resistive loss in the conducting
wires employed for the transmission of electric power from the power plant to the user.
In 1831M. Faraday was the first to discover the electromagnetic induction between

coils, but the first transformer for commercial use, based on an alternating current for
creating the flux variations necessary for induction, was designed by W. Stanley in
1886 (see Figure 9.23).
Nowadays, transformers are in general polyphase; the most common used in elec-

tric power distributions are three-phase transformers (see Figures 9.24 and 9.25).
Looking in more detail, their structure can be rather complicated, as they include

the coils and the core, an oil tank for refrigeration and insulation,pressing and clamping
plates around the coils, shields at the walls of the tank.
With the increase of the power, stray losses become more and more important,

lowering the efficiency of transformers and producing significative local overheating
in the metallic components: by Joule effect the current in the windings generates a
resistive heating, eddy currents are responsible of the increasing of the heat in the
core, and the rise of the temperature also occurs in plates and shields. The reduction of
these unintended effects, which influences the reliability and decreases the operating
life of transformers, is one of the most important points for optimal design.
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Fig. 9.23. The Stanley transformer (1886, U.S. Patent and Trademark Office)
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Fig. 9.24. A three-phase, five-leg transformer

Fig. 9.25. A detail of a transformer: 1 iron core, 2 high winding, 3 low winding, 4 shielding, 5
clamping plate, 6 pressing plate

A thorough modeling of a power transformer based on the eddy current equations,
possibly coupled with the heat equation, has been proposed by many authors.
Chen et al. [80] have considered the finite element approximation of a three-phase,

five-leg transformer, using an approach based on a suitably modifiedTC −ψ method,
preferred to others since the current potential TC only appears in the conductor, a
rather small region in power transformers. Considering, for the sake of definiteness, the
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magnetic boundary value problemH×n = 0 on ∂Ω, the magnetic field is represented
as

H =
{
gradψI + KI in ΩI

TC + gradψC + KC in ΩC ,

where KI ∈ HμI (∂Ω, Γ ;ΩI), KC ∈ H(curl;ΩC) and satisfies KC × nC +
KI × nI = 0 on Γ , and ψI = ψC and TC × nC = 0 on Γ . Note that the terms
KI and KC are related to the topology of the domain, and cannot be discarded if the
conductorΩC is not simply-connected.
The windings are modeled as a conducting region, and the conductivityσ assumes

twodifferent constant values in thewindings and in the core. Therefore,ΩC has several
connected components, and at least one of them (the core) is not simply-connected.
The magnetic permeability μ is assumed to be a positive constant in the whole

transformer, and, moreover, a Lorenz-like gauge

divTC = −iωσμCψC in ΩC

is used, in order to resort to the problem

−ΔTC + iωμCσTC = curl Je,C − curl curlKC − iωμCσKC .

Chen et al. [80] have computed the distribution of the eddy current density on the
metallic parts of the tank, with the aim of determining the best design for their shape.
In particular, they have shown that the maximum reduction of stray losses is obtained
with the use of vertical magnetic shunts instead of aluminium screens.
The same approach has been proposed by Tang et al. [230] for computing the mag-

netic field on pressing plates, yoke-clamps and the tank wall when both windings and
heavy current leads are taken into account, with the aim of optimizing the shape and
dimension of a copper shield employed for minimizing overheating in the wall.
The TC − ψ method has been also used by Preis et al. [196], for computing the

electromagnetic field and the temperature rise in bushing adapters carrying eddy cur-
rents due to high-current low-voltage leads. In that paper the coupling with the heat
equation has been taken into account, considering the Joule effect due to the eddy cur-
rents and assuming that the conductivity σ is a positive scalar function depending in a
nonlinear way on the temperature. An iterative coupling strategy has been proposed,
with the choice of recalculating the magnetic field in the conductor only, in order to
avoid the heavy computations related to the solution of the complete electromagnetic
problem.
However, as explained in Chapter 6, theTC −ψ approach has various flaws, as it

does not include the Faraday equation on the “cutting” surfaces, that are indeed present
in multi-phase power transformers, as the conductor is not simply-connected. More-
over, the use of nodal elements, which is natural for this formulation, is not the best
choice for the approximation of a problem where the conductor is a polyhedral non-
convex domain, as the convergence of the approximate solutions could fail. Therefore,
a better modeling of power transformers could be achieved by resorting to one of the
formulations that are more suitable for problems with complex topology (for instance,
those presented in Chapters 4 and 5).
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Tang et al. [231] and Ho et al. [131], employing the (A, VC) − AI formulation
with Coulomb gauge, has considered the numerical simulation of transient eddy cur-
rent fields in power transformers connected to voltage source through electric circuits.
The windings are modeled as coils included in the insulatorΩI , and there the current
density is written in the form Je,I(t) = N

S
I(t) t, where t is the unit coil direction vec-

tor, tangential to thewindings,N is the number of turns in the coil,S is its cross section
and I(t) is the unknown current intensity. Outside the windings and in the conductor
the applied current density is assumed to vanish.
Since the total induced electromotive force in windings can be expressed in term

of the vector magnetic potential as follows

emf =
N

S

d

dt

∫
Ωw

A · t ,

where Ωw is the space filled by windings, the problem is closed by adding a suitable
equation, representing a circuit model of power transformers. Summing up, for the
magnetic boundary value problem H × n = 0 on ∂Ω and a domain Ω of simple
shape, the global problem reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlA)− μ−1
∗ grad divA

+σ ∂
∂tA + σ gradVC − N

S I t = 0 in Ω × (0, T )
div(σ ∂

∂tAC + σ gradVC ) = 0 in ΩC × (0, T )
(σ ∂

∂tAC + σ gradVC) · nC = 0 on Γ × (0, T )
A · n = 0 on ∂Ω × (0, T )
(μ−1 curlA) × n = 0 on ∂Ω × (0, T )
N
S

d
dt

∫
Ωw

A · t + L dI
dt

+ R I = V on (0, T ),

(9.10)

plus suitable initial conditions forA and I, where L is the inductance,R the resistance,
and V the voltage source of the circuit modeling the transformer. Here, the current
density N

S I t is intended to vanish outside the windingsΩw.
In particular, Tang et al. [231] and Ho et al. [131] have computed the transient

performance of a single-phase, three-leg power transformer, focusing in particular on
the magnetic flux density on the surface of the iron core and in the windings. For a
three-phase, five-leg transformer they have determined the distribution of torsional
forces acting on the coils, in order to control their robustness and stability, as well as
the eddy current losses in the clamping plates, checking in this way the efficiency of a
magnetic by-pass plate designed for reducing overheating.
Alternative approaches to the simulation of power transformers coupled with cir-

cuits are those described in Chapter 8. In these cases, the windings are modeled as
conductors, each one with two electric ports, where the voltage drop can be assigned.
The topology of the insulatorΩI becomes more complex, but the total number of de-
grees of freedom in formulation (8.15) is much less than that in (9.10), therefore its
numerical accuracy and efficiency should be better.
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9.5 Defect detection

In this section we present non-destructive evaluation (NDE) techniques based on elec-
tromagnetic methods. The aim of these techniques is to detect and characterize defects
in conducting materials without causing damage.
In eddy current non-destructive testing, a coil supplied with alternating current is

placed near the conductive object being inspected. Thus eddy currents are induced and
generate a secondary magnetic field. Flaws are detected by monitoring changes in this
magnetic field. The measured quantity is usually the impedance of the exciting coil or
of a receipt coil. One can distinguish between absolute probes, where the same coil is
source and receiver, and differential probes with source coils and receptive coils. This
kind of techniques is widely employed in aerospace, transportation energy, nuclear
and other industries. It is used, for instance, for the in-service inspection of steam
generator tubes in power plants, or for the verification of aging aircraft structures. For
instance, problem 27 of the TEAMworkshop concerns the detection of deep flaws in a
riveted assembly of aluminum sheets with a filler between the sheets, held together by
titanium fasteners (see Figure 9.26). This is an example of the kind of structures that
are subjected to control in aeronautical industry.
Numerical simulations are needed for the design of the probe coil and for the qual-

ification of monitoring device. In order to develop more reliable instruments it is im-
portant to clarify the correlation between the flaws and the changes in the generated
eddy currents, and numerical simulations can be used in place of more expensive ex-
periments. From the numerical point of view a great effort has been made in the last
years to obtain efficient computational schemes to simulate probe-defect interactions:
see, for instance, the pioneeringworks of Lord [169] and Ida and Lord [136], Rasolon-
janahary et al. [204], Badics et al. [33], Sabariego and Dular [214], [215], Henneron

Fig. 9.26. A typical screwed assembled structure that needs to be to controlled (from problem
27 of the TEAM workshop): 1 sensor, 2 rivets, 3 sheets, 4 filler, 5 flaw to detect
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et al. [125], Krebs et al. [156]; see also the review by Auld and Moulder [32] and the
references therein.
Let us consider a computational domain Ω that contains the conductor ΩC to be

inspected. The electromagnetic fields generated in the case of no-flaw can be assumed
to be known; in particular, they satisfy the eddy current approximation of Maxwell
equations

curlHu − σuEu = Je inΩ
curlEu + iωμuHu = 0 inΩ ,

(9.11)

where the superscript u denotes unflawed quantities.
The impedance of the unflawed configuration is given by

Zu =
1
|I0|2

(∫
ΩC

σuEu · Eu + iω

∫
Ω

μuHu ·Hu

)
, (9.12)

where I0 is the applied current intensity (see, e.g., Jackson [137], p. 266).
Let us now assume that a flaw Ωf (typically, a non-conducting region) is present

in ΩC , the object to be inspected. The conductivity and permeability of the flaw are
different than those of the host material, thus the electromagnetic fields in the flawed
arrangement satisfy

curlHf − σfEf = Je in Ω
curlEf + iωμfHf = 0 in Ω ,

where the superscript f denotes the quantities when the flaw is present. For the sake of
simplicity, in the followingwe assume that the permeability is the same in the unflawed
and flawed arrangements, and that the conductivity of the flaw is equal to 0, while
outside it coincides with σu, namely,

σf =
{

σu inΩC \Ωf

0 inΩf .

We also set μ := μf = μu and σ := σu. Hence when the flaw is present the
impedance is given by

Zf =
1
|I0|2

(∫
ΩC\Ωf

σEf · Ef + iω

∫
Ω

μHf ·Hf

)
. (9.13)

The direct approach computes the difference between the impedance values with
and without flaws, determined as in (9.12) and (9.13). The change of the observed
quantity is very small, usually under 1% of the unflawed impedance value, so very
high accuracy is needed in the finite element approximation of the fields. Sometimes
the unperturbed configuration has symmetries that make it possible to simplify the
computation, however the approximation of the perturbed problem requires a very fine
three-dimensional mesh and can be extremely expensive for complicated geometrical
situations.
In order to minimize this computational cost a different approach is based on per-

turbation techniques, that lead to the computationof the impedance variationas an inte-
gral on the flaw, thusmaking it possible to obtain sufficiently high accuracy by refining
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the mesh only in the suspect region. These techniques can be described as follows. The
computational domain Ω is assumed to have a simply-connected boundary ∂Ω, and
to be given by Ω = ΩC ∪Ωcoil ∪ ΩI , where the conductive coil Ωcoil is an absolute
probe, with two contacts ∂Ωcoil ∩∂Ω = ΓE ∪ΓJ . The excitation is given by a current
intensity I0 (and not by a current density as in (9.11)). From the Ampère law, this as-
signed current intensity can be expressed as I0 =

∫
ΓJ
curlHf · n =

∫
ΓJ
curlHu · n.

Finally, let us also assume that the no-flux boundary conditions

Eu × n = 0 on ΓE ∪ ΓJ
μHu · n = 0 on ∂Ω

are satisfied (see (8.2)).
For each v ∈ H(curl;Ω) such that curlv = 0 in Ω \ (ΩC ∪ Ωcoil) one has, as in

Section 8.1,

−iω
∫
Ω μHu · v =

∫
Ω curlE

u · v
=
∫
Ω

Eu · curlv −
∫
∂Ω

Eu × n · v
=
∫
ΩC∪Ωcoil

σ−1 curlHu · curlv − V u
∫
ΓJ
curlv · n .

(9.14)

Analogously, assuming that also when the flaw is present the electromagnetic fields
satisfy no-flux boundary conditions, one finds

−iω
∫
Ω μHf · v =

∫
Ω curlE

f · v
=
∫
Ω Ef · curlv −

∫
∂Ω Ef × n · v

=
∫
(ΩC\Ωf )∪Ωcoil

σ−1 curlHf · curlv
+
∫
Ωf

Ef · curlv − V f
∫
ΓJ
curlv · n .

(9.15)

Taking v = Hf in (9.14) and v = Hu in (9.15), and recalling that I0 =∫
ΓJ
curlHf · n =

∫
ΓJ
curlHu · n, one has

V uI0 =
∫
ΩC∪Ωcoil

σ−1 curlHu · curlHf + iω

∫
Ω

μHu ·Hf

and

V fI0 =
∫
Ωf

Ef · curlHu +
∫
(ΩC\Ωf)∪Ωcoil

σ−1 curlHf · curlHu

+iω
∫
Ω

μHf ·Hu ,

hence

(V f − V u)I0 =
∫
Ωf

Ef · curlHu −
∫
Ωf

σ−1 curlHu · curlHf

=
∫
Ωf

Ef · curlHu ,

since curlHf = 0 in Ωf .
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Proceeding as in (8.9) and taking into account the relations (9.12) and (9.13) we
see that Zu = V u/I0 and Zf = V f/I0, hence the impedance variation is given by

(Zf − Zu) =
V f − V u

I0
=

1
(I0)2

∫
Ωf

Ef · curlHu .

For the finite element approximation different formulations have been considered.
More often the problem is formulated in terms of a magnetic vector potentialAC and
an electric scalar potential VC in the conductor, and a magnetic scalar potential ψI
in the insulator (see Section 6.3). The first three-dimensional simulations, due to Ida
and Lord [136], use this formulation and isoparametric hexahedral finite elements for
the approximation of the impedance, given a source current density Je. They verify
the validity of the formulation for a problem related to the non-destructive testing of
a nuclear plant steam generator. In particular, the test problem consists of an Inconel
600 (a nickel-chromium allotrope of iron) tube and a carbon steel support plate; two
conical defects are located on the outer surface of the tube.
Rasolonjanahary et al. [204] consider the problem of the inspection of flaws in a

riveted aircraft structure. They use a (AC , VC) formulation in the conductor to be in-
spected and themagnetic scalar potentialψI in the surroundingnon-conducting region.
They compare the results obtained using in the flaw domain a formulation in terms of
either the vector magnetic potentialA or the scalar magnetic potential ψ, and obtain
more accurate results with the former formulation.
Badics et al. [33] use perturbation techniques in terms of the vector potentialAC

and the electric scalar potential VC in the conductor, the vector magnetic potential
A in the flaw and the magnetic scalar potential ψI in the air region. They compute
the solution of the unperturbed model and the field distortion due to a flaw. Setting
H := Hf −Hu andE := Ef −Eu inΩ and assuming as before that the permeability
is the same in the unflawed and flawed arrangements and that the conductivity of the
flaw is equal to 0, one has

curlH− σfE = J∗ in Ω
curlE + iωμH = 0 in Ω ,

where

J∗ := (σf − σ)Eu =
{

0 in Ω \Ωf

−σEu in Ωf .

Hence, for calculating the impedance perturbation it is necessary to know the value of
the unflawed electromagnetic fields only in the flaw.
The efficiency of the formulation is verified by solving the TEAMworkshop prob-

lem 15 (see Figure 9.27 for a sketched description of the arrangement). The test spec-
imen is an aluminum alloy plate of 260 mm of side (2d) and 12.22 mm of thickness
(t). The defect is a parallelepipedal slot of length 12.60 mm (2c), depth 5 mm (h) and
width 0.28 mm (w). The probe is a circular air-cored coil with inner radius 9.34 mm,
outer radius 18.40 mm and 9 mm of length. The frequency of the applied current is
equal to 7 kHz and the lift-off of the probe is 2.03 mm.
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Fig. 9.27. Sketch of problem 15 of the TEAM workshop

They also solve two other test problems where the host specimen is a stainless steel
tube and the probe is again a circular air-cored coil. The defect is a long axial slot in
the first case and a short circumferential slot in the second case.
Sabariego and Dular [214], [215] propose a perturbation approach using the H-

based formulation and edge finite elements for its numerical approximation. The per-
turbed field is not computed in the whole domain but only in a reduced domain sur-
rounding the flaw. The mesh of this reduced subdomain is independent of the mesh
used for the unflawed problem and can be adapted to the dimensions of the flaw. To
demonstrate the performance of the proposed method they consider the second eddy
current benchmark problem proposed by the World Federation of NDE Centers, an
Inconel tube with a defect on the outer surface and a circular coil that scans the inner
surface.
In Henneron et al. [125] the (A, VC) formulation and the (TC , ψ) formulation are

considered, and are compared in terms of numerical results and computational time.
The numerical experiments concern the qualification process of testing devices used
in heat exchanger tubes. Two different probes are considered. The first one consists in
two coils with a ferrite core used as source and receptive coils, simultaneously. The
second one has a source coil and two different receptive coils. Also Krebs et al. [156]
use these two formulations to obtain a-posteriori error estimators within an adaptive
meshing procedure.
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