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Coupled FEM–BEM approaches

In this chapter we focus on some procedures for solving eddy current problems that
are based on a strategy which couples the finite element method (FEM) and the bound-
ary element method (BEM). This kind of coupling allows the numerical approxima-
tion of the solution in unbounded domains, a typical situation in electromagnetism.
The boundary element method is used for the approximation in the complement of a
bounded domain: either the conductor ΩC or else an artificial computational domain
Ω, containing ΩC but in general not very large. Instead, in the bounded domain the
solution is approximated using the finite element method. Compared with the formula-
tions presented in the previous chapters, the coupled FEM–BEM approaches compute
the FEM approximation of the solution in a smaller region (say, the conductor), not
required to be so large that the use of homogeneous boundary conditions is justified.
This can be done because the BEM method takes into account the behaviour of the
solution in the external region.
The idea of coupling a variational approach in one regionwith a potential approach

in another region of the computational domain has been first proposed by engineers for
the Laplace operator (see, e.g., Zienkiewicz et al. [248], Jami and Lenoir [138]), and
then widely analyzed from the mathematical point of view, starting from the pioneer-
ing works of Brezzi and Johnson [66] and Johnson and Nédélec [141]. An important
improvement has been furnished by the papers of Costabel [85], [86], that, for ellip-
tic boundary value problems, show how to obtain a symmetric (or else to a positive
definite) problem. Extensions to the full Maxwell equations are due to Ammari and
Nédélec [25], [26].
Coming to the eddy current problem, the first FEM–BEMcouplings have been pro-

posed by Bossavit and Vérité [62], [63] (for the magnetic field, and using the Steklov–
Poincaré operator) and Mayergoyz et al. [174] (for the electric field, and using special
basis functions near Γ ). A more recent result in FEM–BEM coupling, for axisymmet-
ric problems associated to the modeling of induction furnaces, is due to Bermúdez et
al. [40].
The approach of Bossavit and Vérité [62], [63] has led them to devise a very pop-

ular numerical code, named TRIFOU, that has been often used in engineering com-
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putations. A complete presentation of this approach can be found in Bossavit [59],
Sect. 8.2; we describe its basic ideas in Section 7.6.1.
Symmetric formulations à la Costabel have been proposed for eddy current prob-

lems by Hiptmair [127] (unknowns: EC in ΩC , H× n on Γ ) and Meddahi and Sel-
gas [176] (unknowns: HC in ΩC , μH · n on Γ ), and are briefly presented in Sec-
tions 7.6.3 and 7.6.2, respectively.
The chapter begins with Sections 7.1–7.5, where we describe a FEM–BEM for-

mulation proposed by Alonso Rodríguez and Valli [19], based on a vector magnetic
potential and a scalar electric potential in the conductor, and on a scalar magnetic po-
tential in the external part. An approach in terms of magnetic vector potentials has been
also proposed for magnetostatics by Kuhn et al. [159] and Kuhn and Steinbach [160];
with respect to the choice of potentials, the presentation in Sections 7.1–7.5 is close to
these last ones.
The reader mainly interested in numerical approximation and implementation can

focus on problems (7.12), (7.30) and (7.31) ((AC , VC , q) formulation), on problem
(7.36) (TRIFOU formulation), on problem (7.42) ((HC , λ) formulation), and on prob-
lem (7.52) ((EC ,pΓ ) formulation).
Let us focus now on a different aspect: not all the known methods devised for

studying the Maxwell equations are robust enough to be used, without any modifica-
tion, for both the time-harmonic case and the static case (namely, the case in which the
electric and magnetic inductions are assumed to be time-independent; in other words,
in the equations one has to set ω = 0). In Sections 7.1–7.5 we show how one can
treat without distinction the cases ω �= 0 and ω = 0. Moreover, the numerical approx-
imation there proposed is quite simple, since we use standard Lagrange nodal finite
elements in the conductor, while a cheap formulation based on boundary elements is
proposed in the external insulator.
Being simple, robust and cheap, this method can be therefore a suitable direct

solver for some inverse problems in electromagnetism, for instance in electroen-
cephalography (EEG) or magnetoencephalography (MEG) (see Section 9.2). In this
respect, though in many papers devoted to these topics only the static case is consid-
ered (see, e.g., Sarvas [220], Hämäläinen et al. [117]), recently some researchers have
focused on the time-harmonic case, which is a more precise model for describing the
electric and magnetic activities in the brain (see Ammari et al. [22]). Clearly, the static
case is much easier to solve, as, due to the irrotationality condition, one can reduce
the problem to the sole determination of a scalar potential of the electric field in ΩC

(a suitable Neumann condition on Γ is the correct boundary condition to add). How-
ever, in no way that simple approach can be extended to the time-harmonic case, as
irrotationality no longer holds.
In this chapter the geometrical assumptions on the conductorΩC are more restric-

tive than in the preceding chapters. In fact, we consider a bounded simply-connected
open set ΩC ⊂ R3, with a Lipschitz boundary Γ (for EEG and MEG applications,
ΩC represents the human head). For simplicity, as in the preceding chapters we also
assume thatΩI := R3\ΩC is connected, so thatΓ is connected, too. The unit outward
normal vector on Γ will be denoted by nC = −nI .
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As usual, we assume that the electric conductivityσ and themagnetic permeability
μC are uniformlypositivedefinite symmetric matrices inΩC , with entries belonging to
L∞(ΩC). The electric conductivityσ and the applied current densityJe ∈ (L2(R3))3

are vanishing inΩI . Moreover, the magnetic permeability μI and the electric permit-
tivity εI are assumed to be a positive constant in ΩI , say μ0 > 0 and ε0 > 0.

7.1 The (AC , VC ) − ψI formulation

In the present situation the eddy current problem in terms of the magnetic fieldH and
the electric field EC reads (see (3.25))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlEC + iωμCHC = 0 in ΩC

curlHC − σEC = Je,C in ΩC

curlHI = 0 in ΩI

div(μ0HI ) = 0 in ΩI

μCHC · nC + μ0HI · nI = 0 on Γ
HC × nC + HI × nI = 0 on Γ
HI (x) = O(|x|−1) as |x| → ∞ .

(7.1)

If needed, but here we are not dealing with this aspect, the electric field EI can be
computed after having determinedHI and EC in (7.1), by solving⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curlEI = −iωμ0HI in ΩI

div(ε0EI) = 0 in ΩI

EI × nI = −EC × nC on Γ∫
Γ

ε0EI · nI = 0
EI (x) = O(|x|−1) as |x| → ∞ .

(7.2)

SinceΩI is unbounded, note that we have to impose the no-flux conditiononΓ , though
it is a connected surface.
As proposed by Pillsbury [193], Rodger and Eastham [211], Emson and Simkin

[100], we look for a vector magnetic potentialAC , a scalar electric potential VC and
a scalar magnetic potential ψI such that

μCHC = curlAC , EC = −iωAC − gradVC , HI = gradψI . (7.3)

In this way one has curlEC = −iω curlAC = −iωμCHC , and therefore the
Faraday equation in ΩC is satisfied. Note that, in particular, when ω = 0 one finds
EC = − gradVC , therefore for the static case the usual formulation in terms of a
scalar electric potential is recovered.
As usual, in order to have a unique vector potentialAC , it is necessary to impose

some gauge conditions: here we are considering the Coulomb gauge divAC = 0 in
ΩC , withAC · nC = 0 on Γ . Moreover, we also impose that

|ψI(x)| = O(|x|−1) as |x| → ∞ .



208 7 Coupled FEM–BEM approaches

In conclusion, we are left with the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
C curlAC)

+iωσAC + σ gradVC = Je,C in ΩC

ΔψI = 0 in ΩI

divAC = 0 in ΩC

AC · nC = 0 on Γ
curlAC · nC + μ0 gradψI · nI = 0 on Γ
(μ−1

C curlAC)× nC + gradψI × nI = 0 on Γ
|ψI(x)|+ | gradψI(x)| = O(|x|−1) as |x| → ∞ ,

(7.4)

where VC is determined up to an additive constant.
In order to obtain a problem which is stable also in the case ω = 0, and for

which Lagrange nodal finite elements can be used for approximation, it is well-known
(see, e.g., Coulomb [91], Morisue [180], Bìrò and Preis [49] and Chapter 6) that the
Coulomb gauge condition divAC = 0 in ΩC can be incorporated as a penalization
term in the Ampère equation. Introducing the constant μ∗ > 0, that for physical con-
sistency can be chosen, for example, as a suitable average in ΩC of the entries of the
matrix μC , one considers⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
C curlAC)− μ−1

∗ grad divAC

+iωσAC + σ gradVC = Je,C in ΩC

ΔψI = 0 in ΩI

div(iωσAC + σ gradVC) = divJe,C in ΩC

(iωσAC + σ gradVC) · nC = Je,C · nC on Γ
AC · nC = 0 on Γ
curlAC · nC + μ0 gradψI · nI = 0 on Γ

(μ−1
C curlAC)× nC + gradψI × nI = 0 on Γ

|ψI(x)|+ | gradψI(x)| = O(|x|−1) as |x| → ∞ ,

(7.5)

the two additional equations appearing in (7.5) being necessary as the modification in
the Ampère equation does not ensure now thatEC = −iωAC − gradVC satisfies the
necessary conditions div(σEC) = − divJe,C in ΩC and σEC · nC = −Je,C · nC
on Γ .
Moreover, taking the divergence of (7.5)1 and using (7.5)3, we haveΔ divAC = 0

inΩC , and, taking the scalar product of (7.5)1 by nC , using (7.5)4 and (7.5)7, we find

μ−1
∗ grad divAC · nC = curl(μ−1 curlAC) · nC

= divτ [(μ−1 curlAC)× nC] = − divτ (gradψI × nI)
= − curl gradψI · nI = 0 on Γ .

Therefore divAC is constant inΩC , and this constant is 0 as a consequence of (7.5)5.
In conclusion, any solution to (7.5) satisfies divAC = 0 in ΩC , and thus (7.4) and
(7.5) are equivalent.
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7.2 The (AC , VC ) − ψΓ weak formulation

In this chapter we have assumed that μI is a positive constant μ0 and we are looking
for a scalar magnetic potential ψI . Therefore for determining this potential we have to
solve the Laplace equation inΩI . This allows us to use potential theory, transforming
the problem for ψI into a problem on the interface Γ and reducing in a significative
way the number of unknowns in numerical computations.
Referring for notation to Section A.1, it is well-known from potential theory (see,

e.g., McLean [175], Nédélec [187]) that we can introduce on Γ the single layer and
double layer potentials

S : H−1/2(Γ ) → H1/2(Γ ) , S(ξ)(x) :=
∫
Γ

1
4π|x− y| ξ(y)dSy (7.6)

D : H1/2(Γ )→ H1/2(Γ ) , D(η)(x) :=
∫
Γ

x− y
4π|x− y|3 · η(y)nC(y)dSy, (7.7)

and the hypersingular integral operator

H : H1/2(Γ )→ H−1/2(Γ ) ,

H(η)(x) := − grad
(∫

Γ
x−y

4π|x−y|3 · η(y)nC(y)dSy
)
· nC(x) .

(7.8)

We also recall that the adjoint operatorD′ : H−1/2(Γ )→ H−1/2(Γ ) reads

D′(ξ)(x) =
(∫

Γ

y − x
4π|x− y|3 ξ(y)dSy

)
· nC(x) . (7.9)

Since we have that ΔψI = 0 inΩI and gradψI · nI = − 1
μ0
curlAC · nC on Γ , a

first result is that the trace ψΓ := ψI|Γ satisfies

1
2
ψΓ − D(ψΓ ) +

1
μ0
S(curlAC · nC) = 0 on Γ (7.10)

1
2μ0

curlAC · nC +
1
μ0
D′(curlAC · nC) +H(ψΓ ) = 0 on Γ (7.11)

(see, e.g., McLean [175], Nédélec [187]).
As a second step, we can devise a weak formulation in terms of (AC , VC) − ψΓ .

A standard integration by parts yields∫
Γ

nI × gradψI ·wC =
∫
Γ

ψΓ curlwC · nC .

Moreover, multiplying (7.5)1, (7.5)3 and (7.11) by suitable test functions (wC , QC, η)
withwC · nC = 0 on Γ , integrating in ΩC and Γ , and integrating by parts, from the
other matching condition

μ−1
C curlAC × nC + gradψI × nI = 0 on Γ,
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and the interface equation (7.10) we end up with the following weak problem∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC )
+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
Γ
[−1

2
ψΓ − D(ψΓ ) + 1

μ0
S(curlAC · nC)] curlwC · nC

=
∫
ΩC

Je,C ·wC∫
ΩC

(iωσAC · gradQC + σ gradVC · gradQC)
=
∫
ΩC

Je,C · gradQC∫
Γ [ 12 curlAC · nC +D′(curlAC · nC) + μ0H(ψΓ )]η = 0 .

We note that, for the ease of notation, as usual here above we have written the integra-
tion symbol on Γ instead of the pairing between H−1/2(Γ ) and H1/2(Γ ); the same
notation will be used in the sequel.
Since the hypersingular operator H(·) is coercive in the constrained space

H1/2(Γ )/C, it is convenient to rewrite the preceding problem for test functions
η ∈ H1/2(Γ )/C, looking for q ∈ H1/2(Γ )/C, which differs from ψΓ by an addi-
tive constant.
We know thatH(1) = 0 andD(1) = −1

2 (see, e.g., McLean [175], Nédélec [187]),
and that

∫
Γ
H(η) = 0 for each η ∈ H1/2(Γ ) (see, e.g., Nédélec [187], Theor. 3.3.2).

Hence H(ψΓ + c0) = H(ψΓ ),

−1
2
(ψΓ + c0)− D(ψΓ + c0) = −1

2
ψΓ −D(ψΓ ),

and ∫
Γ [ 12 curlAC · nC +D′(curlAC · nC) + μ0H(ψΓ )]

=
∫
Γ [ 12 curlAC · nC + curlAC · nC D(1) + μ0H(ψΓ )] = 0 .

In conclusion, introducing the space

WC := H(curl;ΩC) ∩H0(div;ΩC)

we are looking for the solution of the following coupled problem

Find (AC , VC, q) ∈ WC ×H1(ΩC)/C×H1/2(Γ )/C such that∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC)
+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
Γ
[−1

2
q −D(q) + 1

μ0
S(curlAC · nC)] curlwC · nC

=
∫
ΩC

Je,C ·wC∫
ΩC

(iωσAC · gradQC + σ gradVC · gradQC)
=
∫
ΩC

Je,C · gradQC∫
Γ [ 12 curlAC · nC +D′(curlAC · nC) + μ0H(q)]η = 0

for all (wC , QC, η) ∈WC ×H1(ΩC)/C ×H1/2(Γ )/C .

(7.12)
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Now we want to prove that from a solution to (7.12) we can construct a solution to
the strong problem (7.4). Let us note that the conditionAC · nC = 0 on Γ in (7.4) is
already contained in the definition of the spaceWC .

Lemma 7.1. Suppose that (AC , VC, q) is a solution to (7.12). Then divAC = 0 in
ΩC .

Proof. Since
∫
ΩC
divAC =

∫
Γ

AC · nC = 0, we can consider the solution vC ∈
H1(ΩC)/C to the Neumann problem{

ΔvC = divAC inΩC

grad vC · nC = 0 on Γ .

SettingwC = grad vC , clearly we have wC ∈ WC . Using in (7.12)1 and (7.12)2 the
test function (wC , vC) we find

∫
ΩC
| divAC |2 = 0, therefore divAC = 0 in ΩC . �

Concerning the interface equations (7.10) and (7.11) we have:

Lemma 7.2. Suppose that (AC , VC, q) is a solution to (7.12). Then

1
2
q −D(q) +

1
μ0
S(curlAC · nC) = const on Γ (7.13)

1
2μ0

curlAC · nC +
1
μ0
D′(curlAC · nC) +H(q) = 0 on Γ . (7.14)

Proof. As already seen, we have
∫
Γ H(η) = 0 for each η ∈ H1/2(Γ ) andD(1) = −1

2 ,
thus ∫

Γ
[ 12 curlAC · nC + D′(curlAC · nC) + μ0H(q)]

=
∫
Γ
[ 12 curlAC · nC + curlAC · nC D(1) + μ0H(q)] = 0 .

Therefore equation (7.12)3 is satisfied not only for all η ∈ H1/2(Γ )/C, but also for
all η ∈ H1/2(Γ ), and equation (7.14) follows at once.
Consequently, it is well-known from potential theory that we also obtain (7.13).�

We need now to introduce the single layer and double layer operators in the interior
ofΩI (namely, the exterior ofΩC ). Forx ∈ ΩI we can define (see, e.g., McLean [175],
Nédélec [187])

SI : H−1/2(Γ )→ W 1(ΩI) , SI (ξ)(x) :=
∫
Γ

1
4π|x− y| ξ(y)dSy (7.15)

DI : H1/2(Γ )/C→W 1(ΩI) ,

DI(η)(x) :=
∫
Γ

(x−y)
4π|x−y|3 · η(y)nC(y)dSy ,

(7.16)

where

W 1(ΩI ) := {χI ∈ (C∞
0 (ΩI))′ |

(1 + |x|2)−1/2χI ∈ L2(ΩI), gradχI ∈ (L2(ΩI ))3} .
(7.17)
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We conclude our argument by showing that:

Lemma 7.3. Suppose that (AC , VC, q) is a solution to (7.12). In the domain ΩI define
the function ψI := DI(q) − 1

μ0
SI (curlAC · nC). Then∫

ΩC
(μ−1

C curlAC · curlw∗
C + iωσAC ·w∗

C + σ gradVC ·w∗
C )

+
∫
Γ nC × gradψI ·w∗

C =
∫
ΩC

Je,C ·w∗
C

(7.18)

for all w∗
C ∈ H(curl;ΩC). Therefore,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl(μ−1

C curlAC) + iωσAC + σ gradVC = Je,C in ΩC

ΔψI = 0 in ΩI

curlAC · nC + μ0 gradψI · nI = 0 on Γ

(μ−1
C curlAC) × nC + gradψI × nI = 0 on Γ

|ψI(x)| + | gradψI(x)| = O(|x|−1) as |x| → ∞ .

(7.19)

Proof. Well-known results of potential theory imply that ψI is a harmonic function
with |ψI(x)| and | gradψI(x)| decaying at infinity asO(|x|−1). Moreover,ψI satisfies
the trace relations

ψI|Γ =
1
2
q + D(q) − 1

μ0
S(curlAC · nC), (7.20)

and

gradψI · nI = H(q) + μ−1
0

[
− 1

2
curlAC · nC + D′(curlAC · nC)

]
(7.21)

(see, e.g., McLean [175], Nédélec [187]).
From (7.14) and (7.21)we see that the interface condition (7.19)3 is satisfied.More-

over, from Lemma 7.1, (7.12)1 and (7.20) we find that∫
ΩC

(μ−1
C curlAC · curlwC + iωσAC ·wC + σ gradVC ·wC )

−
∫
Γ

ψI|Γ curlwC · nC =
∫
ΩC

Je,C ·wC .

Since we have−
∫
Γ

ψI|Γ curlwC · nC =
∫
Γ

nC × gradψI ·wC , for each wC ∈WC

we have obtained∫
ΩC

(μ−1
C curlAC · curlwC + iωσAC ·wC + σ gradVC ·wC )

+
∫
Γ

nC × gradψI ·wC =
∫
ΩC

Je,C ·wC .
(7.22)

If w∗
C ∈ H(curl;ΩC), consider the solution v∗C ∈ H1(ΩC)/C of the Neumann

problem Δv∗C = divw∗
C in ΩC with grad v∗C · nC = w∗

C · nC on Γ . Setting
wC = w∗

C − grad v∗C , we havewC ∈ WC , and using it in (7.22) we obtain∫
ΩC

(μ−1
C curlAC · curlw∗

C + iωσAC ·w∗
C + σ gradVC ·w∗

C)
+
∫
Γ nC × gradψI ·w∗

C

=
∫
ΩC

(μ−1
C curlAC · curlwC + iωσAC ·wC + σ gradVC ·wC)

+
∫
Γ

nC × gradψI ·wC

+
∫
ΩC

(iωσAC · grad v∗C + σ gradVC · grad v∗C)
+
∫
Γ

nC × gradψI · grad v∗C
=
∫
ΩC

Je,C ·wC +
∫
ΩC

Je,C · grad v∗C =
∫
ΩC

Je,C ·w∗
C ,
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having used (7.12)2 and the fact that∫
Γ

nC × gradψI · grad v∗C = −
∫
Γ
divτ(nC × gradψI) v∗C

= −
∫
Γ
curl gradψI · nI v∗C = 0 .

Taking a test function w∗
C ∈ (C∞

0 (ΩC))3 and integrating by parts we verify that
(7.19)1 is satisfied; repeating the same argument for w∗

C ∈ H(curl;ΩC), we see that
the interface condition (7.19)4 is satisfied as well. �

Remark 7.4. The function q ∈ H1/2(Γ )/C determined in (7.12) is defined up to an
additive constant. It is easily seen that, as functions inH1/2(Γ )/C, q and the trace on
Γ of the harmonic scalar potential ψI , namely, what we have called ψΓ , are the same
function. Indeed, from (7.13) and (7.20) we see that ψΓ + const = q. �

7.3 Existence and uniqueness of the weak solution

In order to prove the existence and uniqueness of the solution to (7.12), let us introduce
the following sesquilinear forms: for ω �= 0

A(ω �=0)[(AC, VC , q), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC)
+iω−1

∫
ΩC

σ(iωAC + gradVC) · (−iωwC + gradQC)
+
∫
Γ
[−1

2
q −D(q)] curlwC · nC

+
∫
Γ
[ 1
2
curlAC · nC + D′(curlAC · nC)]η

+
∫
Γ
[ 1
μ0
S(curlAC · nC) curlwC · nC + μ0H(q) η] ,

(7.23)

and for ω = 0

A(ω=0)[(AC , VC, q), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC)
+
∫
ΩC

(σ gradVC ·wC + βσ gradVC · gradQC)
+
∫
Γ [−1

2q −D(q)] curlwC · nC
+
∫
Γ [ 12 curlAC · nC + D′(curlAC · nC)]η

+
∫
Γ [ 1

μ0
S(curlAC · nC) curlwC · nC + μ0H(q) η] .

(7.24)

These forms are obtained by adding the left hand sides in (7.12): however, in the case
ω �= 0 we have multiplied the second equation by iω−1, obtainingA(ω �=0)[·, ·], while
in the case ω = 0 we have multiplied the second equation by β > 0, to be chosen in
the sequel, obtainingA(ω=0)[·, ·].
The main result of this section is:

Theorem 7.5. The sesquilinear form A(ω �=0)[·, ·] is coercive in the space WC ×
H1(ΩC)/C×H1/2(Γ )/C, uniformlyas ω→ 0; namely, there exists a constantκ > 0,
independent of ω, such that for each (wC , QC, η) ∈ WC ×H1(ΩC)×H1/2(Γ ) with
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QC = 0 and
∫
Γ

η = 0 one has

|A(ω �=0)[(wC , QC, η), (wC , QC, η)]|
≥ κ

( ∫
ΩC

(|wC |2 + | curlwC |2 + | divwC |2)
+||η||21/2,Γ + χ(ω)

∫
ΩC

(|QC|2 + | gradQC |2)
)

,

(7.25)

where the constant χ(ω) > 0 is equal to |ω|−1 in the case 0 < |ω| < 1 and is equal
to ω−2 in the case |ω| ≥ 1.

Moreover, the sesquilinear form A(ω=0)[·, ·] is coercive in the space WC ×
H1(ΩC)/C×H1/2(Γ )/C, namely, there exists a constant κ0 > 0 such that for each
(wC , QC, η) ∈ WC ×H1(ΩC) ×H1/2(Γ ) with

∫
ΩC

QC = 0 and
∫
Γ η = 0 one has

|A(ω=0)[(wC , QC, η), (wC , QC, η)]|
≥ κ0

( ∫
ΩC

(|wC |2 + | curlwC |2 + | divwC |2)
+||η||21/2,Γ +

∫
ΩC

(|QC|2 + | gradQC |2)
)

.

(7.26)

As a consequence, for each Je,C ∈ (L2(ΩC))3, existence and uniqueness of the
solution to (7.12) follow from the Lax–Milgram lemma.

Proof. First of all, let us recall that the operators S and H are continuous from
H−1/2(Γ ) into H1/2(Γ ) and from H1/2(Γ ) into H−1/2(Γ ), respectively, and sat-
isfy ∫

Γ

S(ξ) ξ ≥ κ1||ξ||2−1/2,Γ ,

∫
Γ

H(η) η ≥ κ2||η||21/2,Γ (7.27)

for each ξ ∈ H−1/2(Γ ) and η ∈ H1/2(Γ )with
∫
Γ η = 0, andmoreover that the opera-

torD is continuous fromH1/2(Γ ) into itself (see, e.g., McLean [175], Nédélec [187]).
The sesquilinear formA(ω �=0)[·, ·] satisfies

A(ω �=0)[(wC , QC, η), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlwC · curlwC + μ−1

∗ | divwC |2)
+iω−1

∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC)
+
∫
Γ [−1

2η − D(η)] curlwC · nC
+
∫
Γ [ 12 curlwC · nC +D′(curlwC · nC)]η

+
∫
Γ [ 1

μ0
S(curlwC · nC) curlwC · nC + μ0H(η) η] .

Since ∫
Γ

D′(curlwC · nC)]η =
∫
Γ

D(η) curlwC · nC ,

and
[−1

2
η − D(η)] curlwC · nC + curlwC · nC [ 1

2
η + D(η)]

= −2 i Im
(
[ 12η + D(η)] curlwC · nC

)
,



7.3 Existence and uniqueness of the weak solution 215

we have

ReA(ω �=0)[(wC , QC, η), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlwC · curlwC + μ−1

∗ | divwC |2)
+
∫
Γ
[ 1
μ0
S(curlwC · nC) curlwC · nC + μ0H(η) η],

and
ImA(ω �=0)[(wC , QC, η), (wC , QC, η)]

= ω−1
∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC)
−2 Im

∫
Γ [ 12η +D(η)] curlwC · nC .

Hence, for a suitable constant κ3 > 0, independent of ω, we find

ReA(ω �=0)[(wC , QC, η), (wC, QC , η)]
≥ κ3

( ∫
ΩC

(| curlwC |2 + | divwC |2) + || curlwC · nC ||2−1/2,Γ + ||η||21/2,Γ
)

,

and moreover, taking into account that the operator D is continuous from H1/2(Γ )
into itself, for a suitable constant C1 > 0, independent of ω, we obtain∣∣2 Im

∫
Γ [ 12η +D(η)] curlwC · nC

∣∣ ≤ C1 ||η||1/2,Γ || curlwC · nC ||−1/2,Γ

≤ C1
2 ||η||21/2,Γ + C1

2 || curlwC · nC ||2−1/2,Γ .

Hence, proceeding as in the proof of the coerciveness of the sesquilinear form A[·, ·]
in Section 6.1.2, we find, for each 0 < τ ≤ 1,

|ImA(ω �=0)[(wC , QC, η), (wC , QC, η)]|
≥ τ |ImA(ω �=0)[(wC , QC , η), (wC, QC , η)]|
≥ 1

2 τ |ω|−1σmin

∫
ΩC
| gradQC |2 − τ |ω|σmin

∫
ΩC
|wC |2

−τ C1
2
||η||21/2,Γ − τ C1

2
|| curlwC · nC||2−1/2,Γ ,

where σmin is a uniform lower bound inΩC for the minimum eigenvalues of σ(x).
Let us recall now the Poincaré inequalities (6.38) and (6.39): there exist constants

κ5 > 0 and κ6 > 0 such that∫
ΩC
| gradQC|2 ≥ κ5

∫
ΩC

(| gradQC |2 + |QC|2)

for all QC ∈ H1(ΩC) with
∫
ΩC

QC = 0, and∫
ΩC

(| curlwC |2 + | divwC |2)
≥ κ6

∫
ΩC

(| curlwC |2 + | divwC |2 + |wC |2)

for all wC ∈ WC . Coerciveness follows by choosing τ small enough to have
τ |ω|σmin < κ3κ6 and τ C1

2 < κ3. In particular, we have τ = O(1) for 0 < |ω| < 1
and τ = O(|ω|−1) for |ω| ≥ 1. Thus the constant κ in (7.25) can be clearly chosen
independent of ω, and the constant χ(ω) isO(|ω|−1) for 0 < |ω| < 1 andO(ω−2) for
|ω| ≥ 1.
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In the case ω = 0, the sesquilinear form satisfies

A(ω=0)[(wC , QC, η), (wC , QC, η)]

=
∫
ΩC

(μ−1
C curlwC · curlwC + μ−1

∗ | divwC |2

+σ gradQC ·wC + βσ gradQC · gradQC)

+
∫
Γ
[−1

2
η −D(η)] curlwC · nC

+
∫
Γ
[ 1
2
curlwC · nC + D′(curlwC · nC)]η

+
∫
Γ
[ 1
μ0
S(curlwC · nC) curlwC · nC + μ0H(η) η] .

We split
∫
ΩC

σ gradQC ·wC into its real and imaginary part, and, for each δ > 0 and
suitable constants κ7 > 0 and C2 > 0, we end up with

∣∣ReA(ω=0)[(wC , QC, η), (wC , QC, η)]
∣∣

≥ κ7

( ∫
ΩC

(| curlwC |2 + | divwC |2 + β| gradQC |2)
+|| curlwC · nC ||2−1/2,Γ + ||η||21/2,Γ

)
−C2δ

−1
∫
ΩC
| gradQC |2 − δ

∫
ΩC
|wC |2 ,

thus the conclusion follows by choosing δ so small that κ7κ6−δ > 0, and then β large
enough to have κ7β −C2δ

−1 > 0. �

7.4 Stability as ω goes to 0

We are now interested in showing that the solution to problem (7.12) is stable with re-
spect to ω, namely, if we denote by (Aω

C , V ω
C , qω) the solution to (7.12) corresponding

to the angular frequency ω, we have (Aω
C , V ω

C , qω)→ (A0
C , V 0

C, q0) as ω → 0.

Theorem 7.6. There exists a constant K > 0, independent of ω, such that for each ω
with 0 < |ω| < 1, the solutions to (7.12) satisfy∫

ΩC
(|Aω

C −A0
C |2 + | curlAω

C − curlA0
C |2) ≤ K ω2

∫
ΩC

(|V ω
C − V 0

C |2 + | gradV ω
C − gradV 0

C |2) ≤ K ω2

||qω − q0||21/2,Γ ≤ K ω2 ,

having chosen V ω
C , V 0

C , qω and q0 such that
∫
ΩC

V ω
C =

∫
ΩC

V 0
C = 0 and

∫
Γ qω =∫

Γ
q0 = 0.
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Proof. By linearity, the difference (ZC , NC , p) := (Aω
C , V ω

C , qω) − (A0
C , V 0

C , q0)
satisfies∫

ΩC
(μ−1

C curlZC · curlwC + μ−1
∗ divZC divwC )

+
∫
ΩC

(iωσZC ·wC + σ gradNC ·wC )
+
∫
Γ
[−1

2
p−D(p) + 1

μ0
S(curlZC · nC)] curlwC · nC

= −
∫
ΩC

iωσA0
C ·wC∫

ΩC
(−σZC · gradQC + iω−1σ gradNC · gradQC)
=
∫
ΩC

σA0
C · gradQC∫

Γ [ 12 curlZC · nC +D′(curlZC · nC) + μ0H(p)]η = 0

(7.28)

(here, we have divZC = 0 in ΩC by Lemma 7.1; however, we prefer to write every-
thing in terms of the sesquilinear formA(ω �=0)[·, ·]).
Therefore, from the coerciveness of A(ω �=0)[·, ·] and taking into account that 0 <

|ω| < 1, from (7.25) we obtain at once that∫
ΩC

(|ZC |2 + | curlZC |2 + | divZC |2)
+||p||21/2,Γ + χ(ω)

∫
ΩC

(|NC |2 + | gradNC |2)
≤ κ−1c1

[
|ω|
( ∫

ΩC
|A0

C|2
)1/2( ∫

ΩC
|ZC |2

)1/2
+
( ∫

ΩC
|A0

C |2
)1/2( ∫

ΩC
| gradNC |2

)1/2]
≤ κ−1c2|ω|2α−1

1

∫
ΩC
|A0

C |2 + κ−1c2α
−1
2

∫
ΩC
|A0

C |2
+α1

∫
ΩC
|ZC |2 + α2

∫
ΩC
| gradNC |2

(7.29)

for each α1 > 0 and α2 > 0. Choosing α1 = 1/2 and α2 = χ(ω)/2 = O(|ω|−1) (see
Theorem 7.5), we have that the left hand side in (7.29) is O(|ω|). In particular,∫

ΩC

(|NC |2 + | gradNC |2) = [χ(ω)]−1O(|ω|) = O(ω2),

and ∫
ΩC

(|ZC |2 + | curlZC |2 + | divZC |2) + ||p||21/2,Γ = O(|ω|) .

Rewriting the first equation in (7.28) as∫
ΩC

(μ−1
C curlZC · curlwC + μ−1

∗ divZC divwC)
+
∫
Γ [−1

2p−D(p) + 1
μ0
S(curlZC · nC)] curlwC · nC

= −
∫
ΩC

(iωσZC ·wC + σ gradNC ·wC) −
∫
ΩC

iωσA0
C ·wC ,

using (7.28)3 and proceeding as in the proof of Theorem 7.5, we obtain that the
sesquilinear form at the left hand side is coercive (with coerciveness constantK0 > 0
independent of ω). Hence we have∫

ΩC
(|ZC |2 + | curlZC |2 + | divZC |2) + || curlZC · nC||2−1/2,Γ + ||p||21/2,Γ
≤ K−1

0 c3

[
|ω|

∫
ΩC
|ZC |2 +

( ∫
ΩC
| gradNC |2

)1/2( ∫
ΩC
|ZC |2

)1/2
+|ω|

( ∫
ΩC
|A0

C|2
)1/2( ∫

ΩC
|ZC |2

)1/2]
= O(ω2) + O(|ω|)

( ∫
ΩC
|ZC |2

)1/2 ≤ O(ω2) + 1
2

∫
ΩC
|ZC |2 .

The result thus follows. �
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Remark 7.7. As we recalled in Section 2.3.1, an analysis of the asymptotic behaviour
of the solution of the eddy current model with respect to ω → 0 has been presented in
Ammari et al. [23]. In particular they prove, by a formal asymptotic expansion, that the
electric and themagnetic fields solutionsof the eddy current problem converge linearly
to the corresponding solutions of the static problem in the L2-norm. Expressing the
electric and magnetic fields in terms of AC , VC and ψI , it can be easily checked that
Theorem 7.6 is in agreement with their result. �

7.5 Numerical approximation

In this section we deal with the numerical approximation of problem (7.12). In the
sequel we assume that ΩC is a Lipschitz polyhedral domain, and that TC,h and TΓ,h
are two regular families of triangulations of ΩC and Γ , respectively. For the sake of
simplicity, we suppose that each elementK of TC,h is a tetrahedron and each element
T of TΓ,h is a triangle; however, the results below also hold for hexahedral and rect-
angular elements, respectively. Let us note that the mesh induced on Γ by TC,h is not
assumed to coincide with TΓ,h.
Let Pk , k ≥ 1, be the space of polynomials of degree less than or equal to k. For

r ≥ 1, s ≥ 1 and t ≥ 1 we employ the discrete spaces given by Lagrange nodal
elements

W r
C,h := {wC,h ∈ (C0(ΩC))3

| wC,h|K ∈ (Pr)3 ∀K ∈ Th , wC,h · nC = 0 on Γ } ,

LsC,h := {QC,h ∈ C0(ΩC) | QC,h|K ∈ Ps ∀ K ∈ TC,h} ,

and
LtΓ,h := {ηh ∈ C0(Γ ) | ηh|T ∈ Pt ∀ T ∈ TΓ,h} .

Clearly, we haveW r
C,h ⊂WC , LsC,h ⊂ H1(ΩC) and LtΓ,h ⊂ H1/2(Γ ), therefore we

are ready to consider a conforming finite element approximation.
The discrete problem is given by

Find (AC,h, VC,h, qh) ∈W r
C,h × LsC,h/C× LtΓ,h/C such that∫

ΩC
(μ−1

C curlAC,h · curlwC,h + μ−1
∗ divAC,h divwC,h

+iωσAC,h ·wC,h + σ gradVC,h ·wC,h)
+
∫
Γ
[−1

2qh −D(qh) + 1
μ0
S(curlAC,h · nC)] curlwC,h · nC

=
∫
ΩC

Je,C ·wC,h∫
ΩC

(iωσAC,h · gradQC,h + σ gradVC,h · gradQC,h)
=
∫
ΩC

Je,C · gradQC,h∫
Γ
[ 1
2
curlAC,h · nC + D′(curlAC,h · nC) + μ0H(qh)]ηh = 0

for all (wC,h, QC,h, ηh) ∈W r
C,h × LsC,h/C× LtΓ,h/C .

(7.30)
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Existence and uniqueness of the discrete solution follow by the Lax–Milgram
lemma, applied inW r

C,h × LsC,h/C× LtΓ,h/C.
We also have

Theorem 7.8. Assume that ΩC is a convex polyhedron, or else that the solution
(AC , VC, q) is smooth enough. Then the discrete solution (AC,h, VC,h, qh) converges
in WC ×H1(ΩC)/C×H1/2(Γ )/C to the exact solution (AC , VC , q).

Proof. Let us start noting that, as proved in Lemma 7.2, (AC , VC , q) and
(AC,h, VC,h, qh) are solutions to problems (7.12) and (7.30), respectively, also for
all test functions η ∈ H1/2(Γ ) and ηh ∈ LtΓ,h. Similarly, it is obvious that (7.12) and
(7.30) also hold for all test functionsQC ∈ H1(ΩC) and QC,h ∈ LsC,h.
Therefore, finite element interpolants can be used as test functions, and, if the so-

lution (A, VC, q) is smooth enough, the convergence follows by applying Céa lemma
and standard interpolation results.
If the domain ΩC is convex, it is known (see Costabel et al. [89]) that smooth

functionswith vanishing normal component are dense inWC , and the same arguments
can be applied. �
Remark 7.9. As noted in Remark 6.6, if ΩC is a non-convex polyhedral domain it
can happen that the solution AC is non-smooth, namely, not even an element of
(H1(ΩC))3, and thatH1

τ (ΩC) := (H1(ΩC))3 ∩H0(div;ΩC) is a closed proper sub-
space of WC . Since the finite element space W r

C,h is contained in H1
τ (ΩC), in that

case a convergence result inWC cannot hold. For non-convex domains, an alternative
approch is presented in Section 7.5.1. �
The determination of a precise order of convergence requires the knowledge of

the regularity of the solution: as usual, if (AC , VC , q) ∈ Hk+1(ΩC)×Hk+1(ΩC) ×
Hk+1/2(Γ ), where the integer k ≥ 1 is equal to r = s = t, the degree of polynomial
approximation, we have( ∫

ΩC
(|AC −AC,h|2 + | curl(AC −AC,h)|2 + | div(AC −AC,h)|2)

+
∫
ΩC

(|VC − VC,h|2 + | grad(VC − VC,h)|2) + ||q− qh||21/2,Γ
)1/2

= O(hk) ,

having chosen VC , VC,h, q and qh such that
∫
ΩC

VC =
∫
ΩC

VC,h = 0 and
∫
Γ
q =∫

Γ
qh = 0.
On the other hand, in EEG and MEG applications a typical assumption for σ, the

human head conductivity, is that it is a piecewise-smooth (but not globally continuous)
positivedefinite symmetric matrix. In this case, it is not clear if the solution is regular as
required above. In general, one could expect that the solution belongs toH1+γ(ΩC)×
H1+γ(ΩC)×H1/2+γ(Γ ) for some γ with 0 < γ < 1/2; however, we do not know a
proof of this result.
It is worth noting that the same difficulty arises if one assumes ω = 0, namely,

one just considers the problem of electrostatics. In this case one has to approximate
the solution VC (determined up to an additive constant) of{

div(σ gradVC) = divJe,C in ΩC

σ gradVC · nC = Je,C · nC on Γ ,
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and the regularity of VC is not easily determined for a piecewise-smooth positive defi-
nite symmetric matrix σ. Therefore, also in this case the rate of convergence of a finite
element approximation scheme is not easily determined.

Concerning the behaviour with respect to the angular frequency ω, in the discrete
case we can repeat the proof of Theorem 7.6 and obtain (with obvious notation):

Theorem 7.10. There exists a constant K > 0, independent of ω and h, such that for
each ω with 0 < |ω| < 1, the solutions to (7.30) satisfy∫

ΩC
(|Aω

C,h −A0
C,h|2 + | curlAω

C,h − curlA0
C,h|2

+| divAω
C,h − divA0

C,h|2) ≤ K ω2

∫
ΩC

(|V ω
C,h − V 0

C,h|2 + | gradV ω
C,h − gradV 0

C,h|2) ≤ K ω2

||qωh − q0
h||21/2,Γ ≤ K ω2 ,

having chosen V ω
C,h,V

0
C,h, q

ω
h and q

0
h such that

∫
ΩC

V ω
C,h =

∫
ΩC

V 0
C,h = 0 and

∫
Γ

qωh =∫
Γ q0

h = 0.
An important point of the above result is that the behaviour in ω is uniform with

respect to h; it is not evident that this is true for other finite element approximation
schemes, as it is not always possible to show that the associated sesquilinear form
is coercive uniformly with respect to ω (for our approach, this has been proved in
Theorem 7.5).

Remark 7.11. A delicate point of the discretization is the efficient computation of the
terms involving the single layer and double layer potentials and the hypersingular in-
tegral operator: an extensive literature is devoted to analyze this problem.
By integration by parts it is possible to restrict the problem to the computation of

terms of the form ∫
T×T ′

1
|x− y| p(y)q(x) dSydSx

or ∫
T×T ′

x − y
|x− y|3 · n(y) p(y)q(x) dSydSx ,

where p, q are polynomials and T , T ′ are triangles of the mesh TΓ,h. If T ∩ T ′ = ∅
the integrands are regular functions and standard cubature methods can be used. On
the other hand, if T = T ′ or T ∩ T ′ is an edge or a vertex the integrands have a
singular behavior. As indicated in Börm and Hackbusch [56], different techniques can
be applied to evaluate these terms. One possibility is to use quadrature rules adapted
to the singularity of the kernel (see Schwab and Wendland [224]). Another possibility
is to apply a suitable regularizing coordinate transformation that renders regular the
integrand, and then to use standard cubature formulas (see Duffy [98], Erichsen and
Sauter [101], Sauter and Lage [221]). Finally, semi-analytical approaches apply an
exact integration at least for the inner integral (see Sauter and Schwab [222], Gray et
al. [113]). �
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7.5.1 The non-convex case

As we noted in Remark 7.9, if the conductor ΩC is a polyhedral non-convex set it
can happen that the convergence of the finite element approximation does not hold.
Therefore, it is suitable to follow an alternative approach.
We start by recalling that, when the conductor has a complex geometry, it is usual

to enclose it into a “simpler” set, and in this new region to look for a vector potential of
themagnetic induction.This procedure, that is generally called the (AC , VC)−AI−ψI
formulation, has been described in Section 6.3.
In our case, we assume that the conductorΩC is included into a polyhedral convex

bounded open setΩA, as small as possible. Setting nowΩI := R3 \ΩA, ΓA := ∂ΩA,

WA := H(curl;ΩA) ∩H0(div;ΩA) ,

and denoting by nA the unit outward normal vector on ΓA, the weak formulation reads

Find (A, VC, q) ∈ WA ×H1(ΩC)/C×H1/2(ΓA)/C such that∫
ΩA

(μ−1 curlA · curlw + μ−1
∗ divA divw)

+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
ΓA

[−1
2
q −D(q) + 1

μ0
S(curlA · nA)] curlw · nA

=
∫
ΩC

Je,C ·wC∫
ΩC

(iωσAC · gradQC + σ gradVC · gradQC)
=
∫
ΩC

Je,C · gradQC∫
ΓA

[ 12 curlA · nA +D′(curlA · nA) + μ0H(q)]η = 0

for all (w, QC, η) ∈ WA ×H1(ΩC)/C×H1/2(ΓA)/C .

(7.31)

The results presented in Section 7.3, as well as those in Sections 7.4 and 7.5, can be
easily obtained also for this formulation,with essentially the same proofs. In particular,
the finite element approximation scheme converges, as stated in Theorem 7.8, since
the domainΩA is convex. All the details concerning this approach have been given in
Alonso Rodríguez and Valli [19].

7.6 Other FEM–BEM approaches

Among the FEM–BEM formulations that we mentioned at the beginning of this chap-
ter, in this section we briefly present those due to Bossavit and Vérité [62], [63], Med-
dahi and Selgas [176] and Hiptmair [127].

7.6.1 The code TRIFOU

The first authors who proposed a coupled FEM–BEM formulation of the eddy current
problem are Bossavit and Vérité [62], [63]. Based on this coupled approach, they have
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also developed a popular numerical code, named TRIFOU, widely used at Electricité
de France since 1980.
We recall that, for the sake of simplicity, we are assuming that ΩC is simply-

connected and that ΩI = R3 \ ΩC is connected, so that the boundary Γ = ∂ΩC is
connected. As a consequence, as in Chapter 5 we can writeHI = gradψI .
As in (3.9), for each test functionv ∈ H(curl;R3)with curlvI = 0 inΩI we have∫
ΩC

σ−1 curlHC · curlvC +
∫
R3

iωμH · v =
∫
ΩC

σ−1Je,C · curlvC . (7.32)

On the other hand, writing vI = gradχI and remembering that ψI is a harmonic
function vanishing at infinity, we find by integration by parts∫

ΩI
iωμ0HI · vI =

∫
ΩI

iωμ0 gradψI · gradχI
=
∫
Γ
iωμ0 gradψI · nI χI .

(7.33)

We introduce the linear and continuous Steklov–Poincaré operatorR as

R : H1/2(Γ )→ H−1/2(Γ ) , R(χΓ ) := gradχI · nI on Γ , (7.34)

where χI belongs to the spaceW 1(ΩI) introduced in (7.17) and satisfies ΔχI = 0 in
ΩI and χI|Γ = χΓ . We also set

W̃ := {(vC , χΓ ) ∈ H(curl;ΩC)×H1/2(Γ )
|vC × nC + gradτχΓ × nI = 0 on Γ } .

(7.35)

We can thus rewrite the eddy current problem as

Find (HC , ψΓ ) ∈ W̃ such that∫
ΩC

σ−1 curlHC · curlvC +
∫
ΩC

iωμCHC · vC
+iωμ0

∫
Γ
R(ψΓ )χΓ

=
∫
ΩC

σ−1Je,C · curlvC
for each (vC , χΓ ) ∈ W̃ .

(7.36)

By the trace inequality (A.8) and the Poincaré inequality inW 1(ΩI ) (see, e.g., Nédélec
[187], Theor. 2.5.13) we have∫

Γ

R(χΓ )χΓ =
∫
ΩI

gradχI · gradχI ≥ κ0‖χΓ‖1/2,Γ ,

hence the sesquilinear form aT (·, ·) at the left hand side of (7.36) is clearly coercive
in W̃ , and the problem is well-posed.
If one is interested in finding also the magnetic field inΩI , one has to set

ψI = DI(ψΓ )− 1
μ0
SI (μCHC · nC) ,

where the operators SI and DI have been introduced in (7.15) and (7.16).
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When considering numerical approximation we assume that ΩC is a Lipschitz
polyhedral domain, and we denote by TC,h a regular family of triangulations of ΩC

and by T∂,h the mesh induced on Γ by TC,h. We also suppose that each elementK of
TC,h is a tetrahedron. We consider

W̃h := {(vC,h, χΓ,h) ∈ N1
C,h × C0(Γ ) |χΓ,h|T ∈ P1 ∀ T ∈ T∂,h,
vC,h × nC + gradτχΓ,h × nI = 0 on Γ } ,

whereN1
C,h is the space of Nédélec curl-conforming edge elements of the lowest order

inΩC (see Section A.2).
Due to the constraint on Γ , any function (vC,h, χΓ,h) in W̃h can be clearly written

as
vC,h =

∑
e∈E0

C,h

αeqe +
∑

v∈VΓ,h

αv gradϕv , χΓ,h =
∑

v∈VΓ,h

αvϕv ,

where E0
C,h is the set of edges e ∈ TC,h that are internal to ΩC , VΓ,h is the set of

vertices v ∈ T∂,h, and we have denoted by qe the edge basis function defined in ΩC

and associated to the edge e, and by ϕv the nodal basis function defined in ΩC and
associated to the vertex v.
For a suitable implementation it is necessary to find a sound and computationally

cheap approximation of the Steklov–Poincaré operator R. Recalling the definition of
the operators S in (7.6) and SI in (7.15), we can writeψI = SI(λΓ ) and ψΓ = S(λΓ ),
where, as a consequence of well-known results in potential theory, λΓ ∈ H−1/2(Γ )
satisfies

gradψI · nI =
1
2
λΓ −D′(λΓ ) on Γ

(see, e.g., McLean [175], Nédélec [187]). Passing to a variational formulation, we are
looking for ψΓ ∈ H1/2(Γ ) and λΓ ∈ H−1/2(Γ ) such that∫

Γ
S(λΓ ) ξΓ =

∫
Γ

ψΓ ξΓ∫
Γ
R(ψΓ )χΓ =

∫
Γ
[ 12λΓ −D′(λΓ )]χΓ

for all χΓ ∈ H1/2(Γ ) and ξΓ ∈ H−1/2(Γ ).
In matrix form we can write, with obvious notation,

SλΓ = BT
Γ ψΓ

RψΓ = 1
2BΓλΓ −D′λΓ ,

where the vector unknowns are complex-valued, while the matrices are real-valued (as
we can choose real-valued finite element basis functions).We also see at once that the
matrix S is symmetric and positive definite, hence we can rewrite

R =
(1

2
BΓ −D′

)
S−1BT

Γ .
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Unfortunately, this matrix is not symmetric, though the Steklov–Poincaré operatorR
is hermitian. Therefore, in the TRIFOU code the following symmetric matrix

R� :=
1
2
(R + RT )

has been proposed as an approximation of the operatorR.
Though a complete analysis of the convergence of the method is not available,

the TRIFOU code has been used in many engineering applications with satisfactory
results (for a deeper insight and additional comments, see Bossavit and Vérité [62],
[63], Bossavit [57]; in particular, note that the matrix R� may even happen to be sin-
gular: see Bossavit [59], p. 214).

7.6.2 An approach based on the magnetic field HC

In Meddahi and Selgas [176], following an approach that is close to that presented in
the preceding section, the authors choose as unknownsHC inΩC and μCHC ·nC on
Γ , and derive a symmetric formulation. Again we assume, for the sake of simplicity,
that ΩC is simply-connected and that the boundary Γ = ∂ΩC is connected (for the
general not simply-connected case, see Meddahi and Selgas [176]). Consequently, we
can writeHI = gradψI .
As before, we obtain (7.32) and (7.33), and, using the interface condition

μCHC · nC + μ0 gradψI · nI = 0 on Γ , we also find∫
ΩI

iωμ0HI · vI =
∫
Γ iωμ0 gradψI · nI χI

= −
∫
Γ iωμCHC · nC χI .

Furthermore, we can rewrite (7.10) and (7.11) as

1
2
ψΓ −D(ψΓ ) +

1
μ0
S(μCHC · nC) = 0 on Γ (7.37)

1
2μ0

μCHC · nC +
1
μ0
D′(μCHC · nC) +H(ψΓ ) = 0 on Γ . (7.38)

Thus, setting χΓ := χI|Γ , we easily find∫
ΩC

σ−1 curlHC · curlvC +
∫
ΩC

iωμCHC · vC
+iω

∫
Γ
[−1

2μCHC · nC +D′(μCHC · nC) + μ0H(ψΓ )]χΓ
=
∫
ΩC

σ−1Je,C · curlvC ,

(7.39)

and for any test function ξ on Γ we also have∫
Γ

[
1
2
ψΓ −D(ψΓ ) +

1
μ0
S(μCHC · nC)] ξ = 0 . (7.40)

Let us set λ := μ−1
0 μCHC · nC . From the Stokes theorem for closed surfaces we

have λ ∈ H
−1/2
� (Γ ), where

H
−1/2
� (Γ ) :=

{
ξ ∈ H−1/2(Γ ) |

∫
Γ

ξ = 0
}

.
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Moreover, as in Section 4.4, define

X̃C := {vC ∈ H(curl;ΩC) | divτ (vC × nC) = 0 on Γ } ,

and set
X̃Γ := {(vC × nC)|Γ |vC ∈ X̃C} . (7.41)

Introducing the operator
CurlτχΓ := gradχI × nI

(see also Section A.1), it is straightforward to verify that CurlτχΓ ∈ X̃Γ .
We have seen in Section 7.2 thatD(1) = −1

2 , so that∫
Γ
[−1

2μCHC · nC +D′(μCHC · nC)] = μ0

∫
Γ
[−1

2λ + D′(λ)]

= μ0

∫
Γ [−1

2λ + λD(1)] = −μ0

∫
Γ λ = 0 .

Moreover, it holds
∫
Γ H(η) = 0 for each η ∈ H1/2(Γ ) andH(1) = 0, hence equation

(7.39) does not change if we add a constant to ψΓ and χΓ . Instead, adding a constant
to ψΓ we have

1
2
(ψΓ + c0)− D(ψΓ + c0) =

1
2
ψΓ − D(ψΓ ) + c0 ,

therefore equation (7.40) does not change ifwe choose the test functionξ ∈ H
−1/2
� (Γ ).

Meddahi and Selgas [176] proved that Curlτ is an isomorphism fromH1/2(Γ )/C
onto X̃Γ . Since HC × nC = − gradψI × nI = −CurlτψΓ on Γ , in (7.39) we can
replace ψΓ and the test function χΓ with Curl

−1
τ (HC × nC) and Curl−1

τ (vC × nC),
respectively, and we finally obtain that the eddy current problem can be rewritten as

Find (HC , λ) ∈ X̃C ×H
−1/2
� (Γ ) such that∫

ΩC
σ−1 curlHC · curlvC +

∫
ΩC

iωμCHC · vC
+iωμ0

∫
Γ
[ 1
2
λ −D′(λ)]Curl−1

τ (vC × nC)
+iωμ0

∫
Γ
H(Curl−1

τ (HC × nC))Curl−1
τ (vC × nC)

=
∫
ΩC

σ−1Je,C · curlvC
iωμ0

∫
Γ
[−1

2Curl
−1
τ (HC × nC) + D(Curl−1

τ (HC × nC))] ξ
+iωμ0

∫
Γ
S(λ) ξ = 0

for each (vC , ξ) ∈ X̃C ×H
−1/2
� (Γ ) .

(7.42)

Note that

iωμ0

∫
Γ
[ 1
2
ξ − D′(ξ)]Curl−1

τ (vC × nC)
+iωμ0

∫
Γ
[−1

2Curl
−1
τ (vC × nC) +D(Curl−1

τ (vC × nC))] ξ
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is a real number, namely, it is equal to

−2ωμ0 Im
(∫

Γ

[
1
2
ξ −D′(ξ)]Curl−1

τ (vC × nC)
)
.

Moreover, taking into account that the operator D is continuous from H1/2(Γ ) into
itself and that the operator Curl−1

τ is continuous from X̃Γ intoH1/2(Γ )/C, it follows
that for each 0 < δ < 1 one has

2|ω|μ0

∣∣∫
Γ
[ 12ξ − D′(ξ)]Curl−1

τ (vC × nC)
∣∣

≤ c∗‖ξ‖−1/2,Γ (‖vC‖0,ΩC + ‖ curlvC‖0,ΩC)
≤ δ‖ curlvC‖20,ΩC

+ C∗δ−1‖ξ‖2−1/2,Γ + C∗‖vC‖20,ΩC
.

Then, recalling (7.27) and adapting the proof of Theorem 7.5, by choosing δ small
enough it is not difficult to show that the sesquilinear form aΓC(·, ·) at the left hand side
of (7.42) is coercive in X̃C ×H

−1/2
� (Γ ). Problem (7.42) is therefore well-posed.

Having solved (7.42), one can determine ψI in ΩI by setting

ψI = −DI (Curl−1
τ (HC × nC))− SI(λ) .

The numerical approximation needs some remarks, as a conforming discretization
requires that the finite element functionsvC,h satisfy the constraint divτ (vC,h×nC) =
0 on Γ . Instead of introducing a Lagrange multiplier, as done in Section 4.5, here we
present an alternative approach, based on the explicit construction of a basis for the
space

X̃C,h := {vC,h ∈ N1
C,h | divτ(vC,h × nC) = 0 on Γ } ,

where N1
C,h is the space of Nédélec curl-conforming edge elements of the lowest or-

der (see Section A.2). Note that this construction could be used also for the approach
presented in Section 4.5.
As in the preceding section, we assume thatΩC is a Lipschitz polyhedral domain,

and we denote by TC,h and TΓ,h two regular families of triangulations of ΩC and Γ ,
respectively. We suppose that each element K of TC,h is a tetrahedron and that each
element T of TΓ,h is a triangle. Let us also denote by T∂,h the mesh induced on Γ by
TC,h; it is not assumed to coincide with TΓ,h. Finally, E0

C,h denotes the set of edges
e ∈ TC,h that are internal toΩC , VΓ,h the set of vertices v ∈ T∂,h, qe the lowest-order
edge basis function defined inΩC and associated to the edge e, and ϕv the piecewise-
linear nodal basis function defined inΩC and associated to the vertex v.

Proposition 7.12. Let v0 ∈ Γ be a fixed vertex of VΓ,h. The set

B̃h := {qe | e ∈ E0
C,h} ∪ {gradϕv | v ∈ VΓ,h, v �= v0}

is a basis of X̃C,h.
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Proof. Let us start by showing that the elements of B̃h are linearly independent. Sup-
pose that ∑

e∈E0
C,h

αeqe +
∑

v∈VΓ,h
v �=v0

αv gradϕv = 0 .

Then on Γ we have

0 =
( ∑
e∈E0

C,h

αeqe +
∑

v∈VΓ,h
v �=v0

αv gradϕv
)
× nC = grad

( ∑
v∈VΓ,h

v �=v0

αvϕv

)
× nC ,

so that ∑
v∈VΓ,h

v �=v0

αvϕv = k0 on Γ ,

where k0 is a constant. Since ϕv(v0) = 0 for each v �= v0, we have k0 = 0 and
thereforeαv = 0 for each v ∈ VΓ,h, v �= v0. Then we are left with

∑
e∈E0

C,h
αeqe = 0,

which gives αe = 0 for each e ∈ E0
C,h.

On the other hand, the inclusion B̃h ⊂ X̃C,h is clearly true. Moreover, take
vC,h ∈ X̃C,h: since divτ (vC,h × nC) = 0 on Γ , recalling that Γ is simply-
connected it is possible to find a piecewise-linear function ϕΓ,h, defined on Γ , such
that gradτ ϕΓ,h × nC = vC,h × nC on Γ . The function ϕΓ,h is uniquely determined
by requiring ϕΓ,h(v0) = 0. The extension of ϕΓ,h in ΩC , obtained by setting all
its internal nodal values equal to 0, will be denoted by ϕh. Clearly, gradϕh belongs
to the space spanned by the set of functions {gradϕv | v ∈ VΓ,h, v �= v0}. Since
vC,h×nC = gradϕh×nC on Γ , it follows that (vC,h− gradϕh) is an edge element
belonging to the space spanned by the set of functions {qe | e ∈ E0

C,h}, and the thesis
follows. �

Thus we have a viable description of the finite element space X̃C,h, and, since we
know that X̃C,h ⊂ X̃C , a conforming approximation scheme is readily devised. The

finite element space used for approximating functions inH
−1/2
� (Γ ) is typically

MΓ,h := {ξh ∈ L2(Γ ) | ξh|T ∈ P0 ∀ T ∈ TΓ,h ,
∫
Γ ξh = 0} ,

and the convergence of the scheme is a straightforward consequence of Céa lemma.
It should also be noted that, in the implementation of the finite element scheme,

the inverse of the tangential operator Curlτ does not appear. In fact, let bC ∈ B̃h be
a basis function. If bC = qe, one has bC × nC = 0 on Γ ; if bC = gradϕv , it
holds Curlτϕv = − gradϕv × nC = −bC × nC on Γ , thus in the finite element
approximation of (7.42) we can replace Curl−1

τ (bC × nC) with−ϕv|Γ .
To illustrate the performance of this method, let us exhibit some numerical results

presented in Selgas Buznego [226] for a couple of academic problems. In the first one
the computational domain is the cube ΩC = (−1, 1)3, all the physical parameters are
set equal to 1, and the current density Je is computed starting from the exact solution
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Table 7.1. Absolute errors forHC and λ in the first example (courtesy of V. Selgas)

h ‖HC −HC,h‖H(curl;ΩC) ‖λ − λh‖0,Γ α

0.7733 34.8247 0.3136 -

0.5330 25.0762 0.1634 0.8825

0.2989 14.0539 0.0257 1.0010

0.2337 11.4203 0.0131 0.8433

E = curl(f, f, f), where

f(x) :=
{

(1− x2
1)4(1− x2

2)4(1− x2
3)4 inΩC

0 inΩI = R3 \ΩC .

In Table 7.1 and Figure 7.1 we report the absolute error and the convergence rate for
HC and λ for different value of the mesh size h. We have defined

α :=
log(‖HC −HC,hi‖H(curl;ΩC)/‖HC −HC,hi+1‖H(curl;ΩC))

log(hi/hi+1)
,

hi and hi+1 being the mesh sizes of two consecutive computations.
In the second example the conductorΩC is the torus given by

ΩC := [(−1, 1)× (−1, 1)× (−1/2, 1/2)] \ (−1/2, 1/2)3 ,

contained in the computational domain

Ω := (−3/2, 3/2)× (−3/2, 3/2)× (−1, 1)

(see Figure 7.2).

Fig. 7.1. Convergence rate forHC in the first example (courtesy of V. Selgas)
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Fig. 7.2. The computational domainΩ for the second example (courtesy of V. Selgas)

In order to avoid the technical difficulties arising from the fact that ΩC is not
simply-connected, the variational formulation has been modified: to be precise, in
R3 \Ω the usual approach based on the potential theory is used for reducing the con-
tributionof the magnetic fieldHI = gradψI to suitable integrals on the boundary ∂Ω,
while the eddy current problem is solved in Ω by adopting the H-based formulation
described in Section 4.3.
Again, all the physical parameters are equal to 1, and the current density Je is

computed starting from the exact solutionE = curl(g, g, g), where

g(x) :=
{

(1− |x|2)4 inB(0, 1)
0 inΩI = R3 \B(0, 1) ,

where B(0, 1) is the ball of center 0 and radius 1. Note that in Ω \ ΩC the curl of
the magnetic field is not vanishing and consequentlyHI is not the gradient of a scalar
potential, while this is true outsideΩ.
In Table 7.2 and Figure 7.3 the absolute error and the convergence rate forHC and

λ are presented for different value of the mesh size h.

Table 7.2. Absolute errors forHC and λ in the second example (courtesy of V. Selgas)

h ‖HC − HC,h‖H(curl;ΩC) ‖λ − λh‖0,Γ α

0.9299 56.1051 0.7107 -

0.6601 39.3998 0.1413 1.0315

0.4572 28.6757 0.0620 0.8651

0.3653 22.0725 0.0173 1.1663
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Fig. 7.3. Convergence rate forHC in the second example (courtesy of V. Selgas)

7.6.3 An approach based on the electric field EC

Another FEM–BEM approach can be devised if one keeps the electric field EC as
principal unknown. Again, for the sake of simplicity, we assume that ΩC is simply-
connected and that the boundary Γ = ∂ΩC is connected. Starting from the Ampère
equation and inserting in it the Faraday equation, for a test function z that decays
sufficiently fast at infinity we find

−iω
∫
ΩC

σEC · zC − iω
∫
ΩC

Je,C · zC = −iω
∫
R3 curlH · z

= −iω
∫
R3 H · curl z =

∫
R3 μ−1 curlE · curl z .

Since we know that μ−1
0 curl curlEI = −iω curlHI = 0 inΩI , we also have∫

ΩI

μ−1
0 curlEI · curl zI =

∫
Γ

μ−1
0 curlEI × nI · zI ,

therefore we are left with∫
ΩC

μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC
+μ−1

0

∫
Γ
curlEI × nI · zI

= −iω
∫
ΩC

Je,C · zC .
(7.43)

Let us go on without giving all the details about the functional framework, but just
presenting the main idea. Denote by R the vectorial Steklov–Poincaré operator given
by

R(q) := curleI × nI on Γ ,
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where q · nI = 0 on Γ and eI is the solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl curl eI = 0 in ΩI

div(ε0eI) = 0 in ΩI

nI × eI × nI = q on Γ∫
Γ

ε0eI · nI = 0
eI(x) = O(|x|−1) as |x| → ∞ .

(7.44)

We thus have curlEI ×nI = R(nC ×EC ×nC) on Γ , and we can rewrite (7.43)
as ∫

ΩC
μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC
+μ−1

0

∫
Γ

R(nC ×EC × nC) · zI
= −iω

∫
ΩC

Je,C · zC .
(7.45)

Bossavit [57] has extended the TRIFOU approach to this formulation, which is
based on the electric field. We do not dwell on this here, referring the interested reader
to the paper just quoted (see also Ren et al. [208]).
Instead, we present an alternative approach, proposed and analyzed by Hipt-

mair [127], which leads to a symmetric formulation (we also note that in that paper
no restrictive assumption on the geometrical shape of the conducting domain ΩC is
imposed). First of all, as in (A.1), (A.3) and (A.4) introduce the trace spaces

H
1/2
T (Γ ) := {(n× v × n)|Γ |v ∈ (H1(Ω))3}

H−1/2(divτ ;Γ ) = {(vC × nC)|Γ |vC ∈ H(curl;ΩC)},
and

H−1/2(curlτ ;Γ ) = {(nC × vC × nC)|Γ |vC ∈ H(curl;ΩC)} ;

note that the last two spaces are one the dual space of the other.
Let us define now on Γ the vectorial single layer and double layer potentials

S : (H1/2
T (Γ ))′ → H

1/2
T (Γ )

S(p)(x) :=
∫
Γ

1
4π|x−y| p(y)dSy

(7.46)

D : H−1/2(curlτ ;Γ )→ H−1/2(curlτ ;Γ ) ,
D(q)(x) :=

∫
Γ

x−y
4π|x−y|3 × [q(y)× nC(y)]dSy ,

(7.47)

the hypersingular integral operator

H : H−1/2(curlτ ;Γ )→ H−1/2(divτ ;Γ ) ,

H(q)(x) := − curl
(∫

Γ
x−y

4π|x−y|3 × [q(y)× nC(y)]dSy
)
× nC(x), (7.48)

and the adjoint operator

D′ : X̃Γ → X̃Γ ,

D′(p)(x) :=
(∫

Γ
y−x

4π|x−y|3 × p(y)dSy
)
× nC(x) ,

(7.49)
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where the space X̃Γ has been introduced in (7.41), and is given by the vector functions
p belonging toH−1/2(divτ ;Γ ) and such that divτ p = 0 on Γ .
In Hiptmair [127] (see also Reissel [205], Hiptmair and Ostrowski [129]) it has

been shown that these operators are continuous, and moreover that the solution EI

satisfies nC ×EI × nC = nC ×EC × nC ∈ H−1/2(curlτ ;Γ ), curlEI × nC ∈ X̃Γ

and also
1
2

∫
Γ nC × EC × nC · p′ −

∫
Γ D(nC × EC × nC) · p′

+
∫
Γ S(curlEI × nC) · p′ = 0 ∀ p′ ∈ X̃Γ ,

(7.50)

and

1
2

∫
Γ
curlEI × nC · q′ +

∫
Γ

D′(curlEI × nC) · q′

+
∫
Γ

H(nC ×EC × nC) · q′ = 0 ∀ q′ ∈ H−1/2(curlτ ;Γ ) .
(7.51)

Setting pΓ := curlEI × nC , the term on Γ in equation (7.43) can be written as

μ−1
0

∫
Γ

curlEI × nI · zI = −μ−1
0

∫
Γ

pΓ · zI = −μ−1
0

∫
Γ

pΓ · nC × zC × nC .

Therefore, inserting (7.51) in (7.43), we see that the eddy current problem can be for-
mulated as follows

Find (EC ,pΓ ) ∈ H(curl;ΩC)× X̃Γ such that∫
ΩC

μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC
−1

2μ
−1
0

∫
Γ

pΓ · nC × zC × nC
+μ−1

0

∫
Γ D′(pΓ ) · nC × zC × nC

+μ−1
0

∫
Γ

H(nC ×EC × nC) · nC × zC × nC
= −iω

∫
ΩC

Je,C · zC
1
2μ

−1
0

∫
Γ nC × EC × nC · p′ − μ−1

0

∫
Γ D(nC ×EC × nC) · p′

+μ−1
0

∫
Γ

S(pΓ ) · p′ = 0

for each (zC ,p′) ∈ H(curl;ΩC) × X̃Γ .

(7.52)

Note that

−1
2

∫
Γ p′ · nC × zC × nC +

∫
Γ D′(p′) · nC × zC × nC

+1
2

∫
Γ

nC × zC × nC · p′ −
∫
Γ

D(nC × zC × nC) · p′

is a purely imaginary number, and it is equal to

2 i Im
(1

2

∫
Γ

nC × zC × nC · p′ −
∫
Γ

D(nC × zC × nC) · p′
)
.
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Moreover, the boundedness of the operatorD and the trace inequality forH(curl;ΩC)
(see (A.11)) give that, for each 0 < δ < 1,∣∣ 1

2

∫
Γ

nC × zC × nC · p′ −
∫
Γ

D(nC × zC × nC) · p′∣∣
≤ c∗‖p′‖H−1/2(divτ ;Σ)(‖zC‖0,ΩC + ‖ curl zC‖0,ΩC)

≤ δ‖zC‖20,ΩC
+ C∗δ−1‖p′‖2

H−1/2(divτ ;Σ)
+ C∗‖ curl zC‖20,ΩC

.

Finally, in Hiptmair [127] it is shown that the operators S and H satisfies∫
Γ

H(nC × zC ×nC) ·nC × zC ×nC ≥ 0 ,

∫
Γ

S(p′) ·p′ ≥ κ0‖p′‖2H−1/2(divτ ;Σ) .

Thus, adapting the proof of Theorem 7.5, by choosing δ small enough it is not difficult
to prove that the sesquilinear form aΓe,C(·, ·) at the left hand side of (7.52) is coercive
inH(curl;ΩC) × X̃Γ , and we conclude that problem (7.52) is well-posed.
Having determined EC and pΓ = curlEI × nC = iωμ0HI × nI , one can also

find the magnetic field in ΩI . In fact, setting

SI(p)(x) :=
∫
Γ

1
4π|x− y| p(y)dSy , x ∈ ΩI ,

DI(q)(x) :=
∫
Γ

x − y
4π|x− y|3 × [q(y)× nC(y)]dSy , x ∈ ΩI ,

from well-known results of potential theory we easily obtain by integration by parts
the representation formula

EI (x) = DI(EC )− SI(pΓ ) − gradSI(EI · nC) , (7.53)

where the operator SI has been introduced in (7.15). Then the magnetic field HI =
−(iωμ0)−1 curlEI can be written as

HI = −(iωμ0)−1 (curlDI(EC )− curlSI(pΓ )) .

Instead, since we do not know the value of the normal component EI · nC on Γ , the
electric field EI cannot be computed through (7.53), and one has to solve (7.2).
The numerical approximation is quite similar to that presented in Section 7.6.2. In

fact, Nédélec curl-conforming edge element of the lowest order can be used in ΩC ;
instead, the conforming approximation of X̃Γ is given by the space spanned by

{Curlτϕv | v ∈ VΓ,h, v �= v0} ,

where VΓ,h is the set of vertices v ∈ T∂,h, the mesh induced on Γ by TC,h, ϕv is the
piecewise-linear nodal basis function defined on Γ and associated to the vertex v, and
v0 ∈ Γ is a fixed vertex of VΓ,h.
In Hiptmair [127] the convergence of the approximation scheme, based on Céa

lemma and suitable interpolation estimates, is completely proved. Moreover, the dis-
crete problem is analyzed also when ΩC is not simply-connected: this geometric situ-
ation has the drawback that the boundary element space for approximating X̃Γ is more
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complicated. Finally, some remarks on implementation are also added: in particular,
it is shown that the operators S, D and H can be expressed in terms of the analogous
operators constructed for the Laplace operator. For example, one has∫

Γ

S(CurlτψΓ,h) · CurlτχΓ,h =
∫
Γ

H(ψΓ,h)χΓ,h ,

∫
Γ

D′(pΓ,h) · nC × zC,h × nC =
∫
Γ

pΓ,h · D(nC × zC,h × nC)
+
∫
Γ

∫
Γ

x−y
4π|x−y|3 · [nC(x) × zC,h(x) × nC(x)](pΓ,h(y) · nC(x))dSxdSy ,∫

Γ

H(nC×EC,h×nC)·nC×zC,h×nC =
∫
Γ

S(divτ (EC,h×nC)) divτ(zC,h×nC) ,

where S, D and H are the operators introduced in (7.6), (7.7) and (7.8), respectively.
Therefore, the techniques developed for Galerkin boundary element methods for the
Laplace operator can be used in this framework (in this respect, see also Remark 7.11).
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