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A mathematical justification of the eddy
current model

The aim of this chapter is to analyze in which sense the eddy current model is a proper
approximation of the full Maxwell system. As explained in the previous chapter, the
eddy current problem is a simplified model derived from the full system of Maxwell
equations by neglecting the displacement currents, namely, the term iωεE. Therefore
it can be seen either as the low electric permittivity limit or as the low-frequency limit
of the full Maxwell system. The analysis is mainly based on the E-based formulation
of Maxwell equations obtained by eliminating the magnetic field.

2.1 The E-based formulation of Maxwell equations

In this chapter we are not concerned with the problem of well-posedness of the eddy
current model, an aspect that is dealt with in Chapter 3. We simply assume that a solu-
tion of the eddy current equations exists, and that a solution of the fullMaxwell system
exists as well, both solutions being smooth enough to justify all the computations we
will perform. Moreover, we focus on the magnetic boundary value problem (1.22),
leaving to the reader the modifications needed for treating the electric boundary value
case (1.20).
The geometrical situation is that described in Section 1.3. Moreover, as already

indicated, in agreement with well-known physical considerations we suppose that the
matrixμ is symmetric and uniformly positive definite inΩ, with entries inL∞(Ω), the
matrix εI is symmetric and uniformly positive definite inΩI , with entries in L∞(ΩI),
and the matrix σ is symmetric and uniformly positive definite in ΩC , with entries in
L∞(ΩC), whereas it is vanishing in ΩI . Finally, the current density Je ∈ (L2(Ω))3

satisfies the necessary conditions (1.23).
In the Maxwell system, and also in the eddy current model, it is possible to elim-

inate either the electric field (as it will be done in the first part of Chapter 3) or the
magnetic field. For the full Maxwell system the two formulations are quite similar, but
this is not the case for the eddy current model. In particular, in order to compare the
two problems it is convenient to use the electric approach, eliminating the magnetic
field.
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From the Faraday law in (1.22) one has μ−1 curlE = −iωH, then substituting in
the Ampère law we obtain the E-based formulation of the eddy current problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlE) + iωσE = −iωJe in Ω
div(εIEI ) = 0 in ΩI

μ−1 curlE× n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI ·πk,I = 0 ∀ k = 1, . . . , n∂Ω .

(2.1)

To help the reader, we remark that if the boundary of the conductor ΩC is con-
nected then pΓ = 0, and that if Ω is simply-connected then n∂Ω = 0. An example
of this simplified geometry is that of a connected conductor (possibly with “handles”)
contained in a computational domain similar to a “box”.
Using integration by parts it is easily seen that a solutionE to (2.1) satisfies∫

Ω
μ−1 curlE · curl z +iω

∫
ΩC

σEC · zC
+c∗0

∫
ΩI
div(εIEI ) div(εIzI) = −iω

∫
Ω

Je · z (2.2)

for all z ∈ H(curl;Ω) with div(εIzI ) ∈ L2(ΩI ), where c∗0 > 0 is an arbitrarily
chosen dimensional constant.
Let us consider the space

WεI (ΩI ;Ω) := {z∈H(curl;Ω) | zI∈H0,∂Ω(εI , div;ΩI),
zI⊥εIHεI (Γ, ∂Ω;ΩI)} (2.3)

where the symbol ⊥εI denotes the orthogonality with respect to the scalar product

(wI , zI)εI ,ΩI :=
∫
ΩI

εIwI · zI

(for the other notations see Sections 1.4 and A.1). InWεI (ΩI ;Ω) we define the norm

‖z‖WεI
(ΩI ;Ω) :=

(
‖ curl z‖20,Ω + ‖z‖20,Ω + ‖ div(εIzI)‖20,ΩI

)1/2
.

Recalling that, as shown in Section 1.5, the integral conditions in (2.1) are orthog-
onality conditions with respect to the space of harmonic fields HεI (Γ, ∂Ω;ΩI), with
respect to the scalar product (·, ·)εI,ΩI , we have in particular that E ∈WεI (ΩI ;Ω).
In the spaceWεI (ΩI ;Ω) let us define the sesquilinear form

a∗e(w, z) :=
∫
Ω

μ−1 curlw · curl z + iω
∫
ΩC

σwC · zC
+c∗0

∫
ΩI
div(εIwI) div(εIzI ) .

(2.4)

With the aim of analyzing the asymptotic behaviour of the solution E as the electric
permittivityε tends to 0 or the angular frequency ω tends to 0, an important point is to
show that the sesquilinear form a∗e(·, ·) is coercive inWεI (ΩI ;Ω).
We need some preliminary results. It is known that there are several ways of writ-

ing a vector function belonging to (L2(ΩI))3 as the sum of a curl, a gradient and a
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harmonic field. In particular, let us recall (see Theorem A.6) that zI ∈ (L2(ΩI))3 can
be represented as

zI = ε−1
I curlqI + gradϕI + hI , (2.5)

where qI ∈ H0,∂Ω(curl;ΩI) ∩ H0
0,Γ (div;ΩI) ∩ H(∂Ω, Γ ;ΩI)⊥, ϕI ∈ H1

0,Γ(ΩI )
and hI ∈ HεI (Γ, ∂Ω;ΩI). Moreover, we also know that if zI⊥εIHεI (Γ, ∂Ω;ΩI)
we have hI = 0.
A second useful result is the following one.

Lemma 2.1. There exists a constant C > 0 such that

‖zI‖0,ΩI ≤ C
(
‖ curl zI‖0,ΩI + ‖ div(εIzI)‖0,ΩI

+‖zI × nI‖H−1/2(divτ ;Γ) + ‖εIzI · nI‖−1/2,∂Ω

)
for all zI ∈ H(curl;ΩI) ∩H(εI , div;ΩI) with zI⊥εIHεI (Γ, ∂Ω;ΩI).

Proof. Since zI⊥εIHεI (Γ, ∂Ω;ΩI), from (2.5) we can write

zI = ε−1
I curlqI + gradϕI .

Then we estimate the norm of the two terms on the right hand side. Looking at
problem (A.14), we start by considering

∫
ΩI

zI · curlqI . Integrating by parts we have∣∣∣∫ΩI
zI · curlqI

∣∣∣ =
∣∣∣∫ΩI

curl zI · qI +
∫
Γ

zI × nI · qI
∣∣∣

≤ C(‖ curl zI‖0,ΩI + ‖zI × nI‖H−1/2(divτ ;Γ))(‖qI‖0,ΩI + ‖ curlqI‖0,ΩI) ,

where we have used the duality estimate∣∣∣∣∫
Γ

zI × nI · qI
∣∣∣∣ ≤ C‖zI × nI‖H−1/2(divτ ;Γ)‖nI × qI × nI‖H−1/2(curlτ ;Γ)

(see Section A.1) and the tangential trace inequality (A.11)

‖nI × qI × nI‖H−1/2(curlτ ;Γ) ≤ C(‖qI‖0,ΩI + ‖ curlqI‖0,ΩI ) .

On the other hand, from the Poincaré-like inequality (A.15) and taking also into ac-
count that divqI = 0 inΩI we find∫

ΩI

|qI |2 ≤ C

∫
ΩI

(| curlqI |2 + | divqI |2) = C

∫
ΩI

| curlqI |2 .

Summing up, choosing pI = qI in (A.14) gives

‖ε−1 curlqI‖0,ΩI ≤ C(‖ curl zI‖0,ΩI + ‖zI × nI‖H−1/2(divτ ;Γ)) .

Another integration by parts in the right hand side of (A.17) furnishes∣∣∣∫ΩI
εIzI · gradϕI

∣∣∣ =
∣∣∣− ∫ΩI

div(εIzI )ϕI +
∫
∂Ω

εIzI · nϕI

∣∣∣
≤ C(‖ div(εIzI)‖0,ΩI + ‖εIzI · nI‖−1/2,∂Ω)(‖ϕI‖0,ΩI + ‖ gradϕI‖0,ΩI ) ,
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having used the duality estimate∣∣∣∣∫
∂Ω

εIzI · nϕI

∣∣∣∣ ≤ C‖εIzI · n‖−1/2,∂Ω‖ϕI|∂Ω‖1/2,∂Ω

(see Section A.1) and the trace inequality (A.8)

‖ϕI|∂Ω‖1/2,∂Ω ≤ C(‖ϕI‖0,ΩI + ‖ gradϕI‖0,ΩI ) .

Since the Poincaré inequality (A.18)∫
ΩI

|ϕI |2 ≤ C

∫
ΩI

| gradϕI |2

holds inH1
0,Γ(ΩI), choosing ηI = ϕI in (A.17) we have

‖ gradϕI‖0,ΩI ≤ C(‖ div(εIzI)‖0,ΩI + ‖εIzI · nI‖−1/2,∂Ω) ,

and the thesis follows. �

As a consequence we have the following lemma, that is the main point for proving
the coerciveness of the sesquilinear form a∗e(·, ·).

Lemma 2.2. There exists a constant C > 0 such that for each z ∈WεI (ΩI ;Ω)

‖zI‖0,ΩI ≤ C
(
‖ curl z‖0,Ω + ‖ div(εIzI)‖0,ΩI + ‖zC‖0,ΩC

)
.

Proof. First we recall that z ∈ H(curl;Ω) if and only if zC ∈ H(curl;ΩC), zI ∈
H(curl;ΩI) and zC × nC = −zI × nI on Γ .
From Lemma 2.1 we have

‖zI‖0,ΩI ≤ C
(
‖ curl zI‖0,ΩI + ‖ div(εIzI)‖0,ΩI + ‖zI × nI‖H−1/2(divτ ;Γ)

)
= C

(
‖ curl zI‖0,ΩI + ‖ div(εIzI)‖0,ΩI + ‖zC × nC‖H−1/2(divτ ;Γ)

)
.

Taking into account the tangential trace inequality (A.10), namely,

‖zC × nC‖H−1/2(divτ ;Γ) ≤ κ ‖zC‖H(curl;ΩC) ,

the proof is complete. �

Now we are in condition to prove the main result on this section.

Theorem 2.3. The sesquilinear form a∗e(·, ·) is coercive in WεI (ΩI ;Ω), i.e., there ex-
ists a constant C0 > 0 such that

|a∗e(z, z)| ≥ C0‖z‖2WεI
(ΩI ;Ω) for all z ∈WεI (ΩI ;Ω) . (2.6)
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Proof. As a consequence of Lemma 2.2 we have, for all z ∈WεI (ΩI ;Ω)

‖z‖2WεI
(ΩI ;Ω) ≤ C1

(
‖ curl z‖20,Ω + ‖zC‖20,ΩC

+ ‖ div(εIzI)‖20,ΩI

)
, (2.7)

for some positive constant C1. Since ν := μ−1 and σ are symmetric and uniformly
positive definite in Ω and ΩC , respectively, we have

|a∗e(z, z)|2 =
(∫

Ω
μ−1 curl z · curl z + c∗0

∫
ΩI
div(εIzI) div(εIzI)

)2

+
(
ω
∫
ΩC

σwC · zC
)2

≥
(
νmin‖ curl z‖20,Ω + c∗0‖ div(εIzI)‖20,ΩI

)2 +
(
ωσmin‖zC‖20,ΩC

)2
≥ C2

(
‖ curl z‖20,Ω + ‖ div(εIzI)‖20,ΩI

+ ‖zC‖20,ΩC

)2
≥ C2C

−2
1 ‖z‖4WεI

(ΩI ;Ω) ,

where νmin is a uniform lower bound in Ω for the minimum eigenvalues of ν(x),
σmin is a uniform lower bound in ΩC for the minimum eigenvalues of σ(x), and
C2 = 1

2 min(ν2
min, c

∗2
0 , ω2σ2

min). �

Remark 2.4. The proof of the coerciveness of the sesquilinear form a∗e(·, ·) is the cru-
cial point in showing, via the Lax–Milgram lemma, that the weak problem

FindE ∈ WεI (ΩI ;Ω) such that∫
Ω

μ−1 curlE · curl z + iω
∫
ΩC

σEC · zC
+c∗0

∫
ΩI
div(εIEI) div(εIzI) = −iω

∫
Ω

Je · z
for each z ∈WεI (ΩI ;Ω)

is well-posed.
Starting from this result, some additional work gives that also the solution to (2.1)

exists and is unique. However, we do not want to consider this aspect here, and we
refer to Chapter 3 for a systematic approach to the existence and uniqueness theory
for eddy current problems, where the result is based on a simpler weak formulation in
terms of the magnetic fieldH only, and to Section 6.1.5 for a complete analysis of the
E-based formulation (2.1). �

2.2 The eddy current model as the low electric permittivity limit

By eliminating the magnetic field in the time-harmonic Maxwell equations we obtain
the following boundary value problem for the electric field EM (with the magnetic
boundary condition){

curl(μ−1 curlEM )− ω2εEM + iωσEM = −iωJe in Ω
μ−1 curlEM × n = 0 on ∂Ω .

(2.8)

Here ε is a symmetric tensor, uniformly positive definite in Ω, with coefficients in
L∞(Ω) and, as usual, ε|ΩI

= εI . As we have already explained in Section 1.2, the
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eddy current model is obtained by neglecting the termω2εEM , that corresponds to the
displacement currents.
In this section we consider an electric permittivity of the form εδ := δε, where

δ > 0 is a real number. Clearly, the physical problem described by the full Maxwell
system corresponds to the case δ = 1. We want to show that the eddy current model is
the limit as δ tends to 0 of the problem with electric permittivity εδ . This is the notion
of eddy current limit presented in Bossavit [58], Chap. 4.
We will show that the norm in H(curl;Ω) of the difference between the electric

field solution of the full Maxwell system and the electric field solution of the eddy
current problem is of order δ. This result has been proved in Costabel et al. [90] who
impose the electric boundary conditionE× n = 0 on ∂Ω. Here we report a proof of
this result in the case of the magnetic boundary conditionH× n = 0 on ∂Ω, that, in
terms of the electric field, is the boundary condition considered in (2.1) and (2.8).
Let us denote by E the solution of the eddy current problem (2.1) and by EM

δ the
solution of the full Maxwell system{

curl(μ−1 curlEM
δ ) − ω2δεEM

δ + iωσEM
δ = −iωJe inΩ

μ−1 curlEM
δ × n = 0 on ∂Ω .

(2.9)

For the existence and uniqueness of solution of (2.9) see, for instance, Alonso and
Valli [8], Alonso and Raffetto [15].
As shown in Section 1.5, the current density Je has to satisfy conditions (1.23),

that are necessary conditions for the solvability of the eddy current problem. Let us
rewrite them here

divJe,I = 0 in ΩI

Je,I · n = 0 on ∂Ω∫
Γj

Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

Je,I · πk,I = 0 ∀ k = 1, . . . , n∂Ω .

(2.10)

We notice that from these conditions it follows that Je,I ∈ HεI (Γ, ∂Ω;ΩI)⊥

and that the solution EM
δ of (2.9) belongs to WεI (ΩI ;Ω). In fact, by a direct com-

putation from (2.10) we have div(εIEM
δ,I) = 0, and moreover εIEM

δ,I · n = 0 on
∂Ω, as from the boundary condition μ−1 curlEM

δ × n = 0 on ∂Ω it follows that
curl(μ−1 curlEM

δ ) · n = 0 on ∂Ω. Finally, it is clear that EM
δ,I⊥εIHεI (Γ, ∂Ω;ΩI),

since for all hI ∈ HεI (Γ, ∂Ω;ΩI) we have∫
ΩI

εIEM
δ,I · hI = 1

ω2δ

∫
ΩI
curl(μ−1

I curlEM
δ,I ) · hI + i

ωδ

∫
ΩI

Je,I · hI
= 1

ω2δ

∫
ΩI

μ−1
I curlEM

δ,I · curlhI
+ 1
ω2δω

∫
Γ∪∂Ω nI ×μ−1

I curlEM
δ,I · hI = 0 .

We are thus in a position to prove the main result of this section.

Theorem 2.5. There exists δ∗ > 0 such that if 0 < δ ≤ δ∗ one has

‖E− EM
δ ‖H(curl;Ω) ≤ Cδ ,

for some constant C > 0 independent of δ.
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Proof. Taking the difference between the first equations in (2.1) and (2.9), multiplying
by a test function z ∈ H(curl;Ω) and integrating by parts one obtains∫
Ω

μ−1 curl(E−EM
δ ) · curl z + iω

∫
ΩC

σ(EC − EM
δ,C) · zC = −δω2

∫
Ω

εEM
δ · z .

Since div(εI(EI − EM
δ,I )) = 0 in ΩI , from the coerciveness of the sesquilinear form

a∗e(·, ·) inWεI (ΩI ;Ω) it follows that there exists a constant C0 > 0, independent of
δ, such that

C0‖E−EM
δ ‖2H(curl;Ω) ≤ |a∗e(E− EM

δ ,E−EM
δ )| =

∣∣∣δω2
∫
Ω εEM

δ · (E−EM
δ )
∣∣∣

≤ δω2εmax‖EM
δ ‖0,Ω‖E−EM

δ ‖0,Ω ,

where εmax is a uniform upper bound in Ω for the maximum eigenvalues of ε(x).
Therefore

‖E− EM
δ ‖H(curl;Ω) ≤ δ

ω2εmax

C0
‖EM

δ ‖0,Ω . (2.11)

Now we need to show that ‖EM
δ ‖0,Ω is bounded uniformly with respect to δ. To

do that we proceed as follows: first of all EM
δ satisfies∫

Ω

μ−1 curlEM
δ · curl z + iω

∫
ΩC

σEM
δ,C · zC =

∫
Ω

(−iωJe + δω2εEM
δ ) · z

for all z ∈ H(curl;Ω). Then, since div(εIEM
δ,I ) = 0 in ΩI , using again the coercive-

ness of a∗e(·, ·) inWεI (ΩI ;Ω) we have

C0‖EM
δ ‖H(curl;Ω) ≤ |ω|‖Je‖0,Ω + δω2εmax‖EM

δ ‖0,Ω .

Now, taking for instance δ∗ = C0
2ω2εmax

, for all δ ≤ δ∗ we find

‖EM
δ ‖H(curl;Ω) ≤

2|ω|
C0

‖Je‖0,Ω ,

and by substituting in (2.11) we obtain the desired result. �

2.3 The eddy current model as the low-frequency limit

The eddy current model can also be considered as the low-frequency limit of the full
Maxwell system. This statement must be properly understood, since the limit problem
obtained by formally taking the frequency equal to 0 is in fact themagneto-electrostatic
problem, where induced eddy currents are not present. The interpretation of the limit
procedure we are interested in is that the difference between the solution of the full
Maxwell system and the solution of the eddy current model is vanishing as the fre-
quency is going to 0. A different asymptotic analysis is performed when focusing on
the difference between the eddy current solution and the magneto-electrostatic solu-
tion: this problem is considered in Section 7.4.
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In this section we assume that all the material parameters are fixed and we consider
the asymptotic behaviour as the frequency goes to 0 of the difference between the
solution of the fullMaxwell system (2.8), denoted byEM , and the solution of the eddy
current problem (2.1), denoted by E. We focus on the magnetic boundary condition
H× n = 0 on ∂Ω, but we recall that this result also holds true when considering the
electric boundary conditionE× n = EM × n = 0 in ∂Ω, as proved in Alonso [5].
We show that the norm in L2(Ω) of the difference E − EM is of order |ω|. We

also give an estimate in terms of ω of the L2(Ω)-norm of the difference between the
magnetic fields.
As a first step we obtain an estimate of the energy norm of E− EM in terms of a

power of |ω| times the L2(Ω)-norm of EM . Since the solution EM depends on ω, a
second step is the proof that the L2(Ω)-norm of EM is uniformly bounded in |ω|.

Lemma 2.6. There exists a constant C > 0, independent of ω, such that

‖ curl(E− EM )‖20,Ω + |ω|‖EC −EM
C ‖20,ΩC

≤ C|ω|3(|ω|+ 1)‖EM‖20,Ω .

Proof. Aswe have seen in the previous section, from (2.10) we know that (E−EM ) ∈
Wε(ΩI ;Ω) and that∫

Ω

μ−1 curl(E−EM ) · curl z + iω

∫
ΩC

σ(EC −EM
C ) · zC = −ω2

∫
Ω

εEM · z

for all z ∈ H(curl;Ω).
Taking z = E−EM we have∫
Ω

μ−1 curl(E− EM ) · curl(E− EM ) + iω
∫
ΩC

σ(EC − EM
C ) · (EC − EM

C )
= −ω2

∫
Ω

εEM · (E− EM ) ,

hence
ν2
min‖ curl(E−EM )‖40,Ω + ω2σ2

min‖EC −EM
C ‖40,ΩC

≤ ω4ε2
max‖EM‖20,Ω‖E−EM‖20,Ω .

Since div(εI(EI−EM
I )) = 0 inΩI , from(2.7) we know that there exists a constant

C1 > 0, independent of ω, such that

‖E−EM‖20,Ω ≤ C1

(
‖ curl(E− EM )‖20.Ω + ‖EC −EM

C ‖20,ΩC

)
, (2.12)

therefore we find, for a constant C3 > 0 independent of ω,

‖ curl(E− EM )‖40,Ω + ω2‖EC − EM
C ‖40,ΩC

≤ C3ω
4‖EM‖20,Ω(‖ curl(E−EM )‖20,Ω + ‖EC − EM

C ‖20,ΩC
) .

Using that for each δ > 0 it holdsAB ≤ 1
2δ

A2 + δ
2
B2, we have

‖ curl(E− EM )‖40,Ω + ω2‖EC − EM
C ‖40,ΩC

≤
(

1
2δ1

+ 1
2δ2

)
C2

3ω
8‖EM‖40,Ω

+ δ1
2 ‖ curl(E−EM )‖40,Ω + δ2

2 ‖EC − EM
C ‖40,ΩC

,
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for δ1 > 0 and δ2 > 0. Taking in particular δ1 = 1 and δ2 = ω2 one finds

‖ curl(E− EM )‖40,Ω + ω2‖EC − EM
C ‖40,ΩC

≤ C2
3 (ω2 + 1)ω6‖EM‖40,Ω ,

hence the desired result. �

The following result provides a bound for ‖EM‖0,Ω that is uniform with respect
to |ω|.

Lemma 2.7. There exists a constant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one has

‖EM‖0,Ω ≤ C ,

for some constant C > 0 independent of ω.

Proof. Multiplyingthe first equation of (2.8) byEM and integratingby parts we obtain∫
Ω μ−1 curlEM · curlEM + iω

∫
ΩC

σEM
C · EM

C

= −iω
∫
Ω

Je · EM + ω2
∫
Ω

εEM · EM ,

hence
ν2
min‖ curlEM‖40.Ω + ω2σ2

min‖EM
C ‖40,ΩC

≤ 2ω2‖Je‖20,Ω‖EM‖20,Ω + 2ω4ε2
max‖EM‖40,Ω ,

or simply, for a suitable constant Ĉ > 0, independent of ω,

‖ curlEM‖20.Ω + |ω|‖EM
C ‖20,ΩC

≤ Ĉ(|ω|‖Je‖0,Ω‖EM‖0,Ω + ω2‖EM‖20,Ω) .

Since div(εIEM
I ) = 0 in ΩI , as in (2.12) we have

‖EM‖20,Ω ≤ C1

(
‖ curlEM ‖20.Ω + ‖EM

C ‖20,ΩC

)
.

Then, for |ω| ≤ 1,

‖EM‖20,Ω ≤ C1
1
|ω| (‖ curlEM ‖20,Ω + |ω|‖EM

C ‖20,ΩC
)

≤ ĈC1
1
|ω| (|ω|‖Je‖0,Ω‖EM‖0,Ω + ω2‖EM‖20,Ω)

≤ 1
2
Ĉ2C2

1‖Je‖20,Ω + 1
2
‖EM‖20,Ω + ĈC1|ω|‖EM‖20,Ω .

(2.13)

To finish the proof we have only to choose |ω| ≤ min{1, 1
4ĈC1

}. �

In conclusion, we have obtained the following result.

Theorem 2.8. There exists a constant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one
has

‖E− EM‖0,Ω ≤ C|ω|
‖H−HM‖0,Ω ≤ C|ω|1/2 ,

for some constant C > 0 independent of ω.
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Proof. From Lemma 2.6 and Lemma 2.7 for |ω| ≤ ω∗ we have

‖ curl(E− EM )‖20,Ω + |ω|‖EC −EM
C ‖20,ΩC

≤ C∗|ω|3(|ω|+ 1) (2.14)

for some constant C∗ > 0 independent of ω. Hence proceeding as in (2.13), for |ω| ≤
ω∗ we find

‖E−EM ‖20,Ω ≤ C1C∗ω
2(|ω|+ 1) ≤ 2C1C∗ω

2 .

From (2.14) it also follows that

‖ curl(E− EM )‖0,Ω ≤ C|ω|3/2 .

Finally, from the Faraday law curl(E−EM ) = −iωμ(H−HM )we have also obtained

‖H−HM‖0,Ω ≤ C|ω|1/2 ,

which ends the proof. �

2.3.1 Higher order convergence

Under suitable additional assumptions the order of convergence can be improved. The
following result can be found in Schmidt et al. [223], where the eddy current modeling
error has been investigated under different points of view.

Lemma 2.9. Suppose that divJe = 0 in Ω and that ΩC is simply-connected. There
exists a constant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one has

‖EM‖0,Ω ≤ C|ω| , (2.15)

for some constant C > 0, independent of ω.

Proof. For a while, let us proceed without making use of the assumptions that
divJe = 0 in Ω and ΩC is simply-connected.
Since from Theorem 2.8 we have ‖E−EM‖0,Ω ≤ C|ω|, it is enough to show that

‖E‖0,Ω ≤ C|ω|. From the Ampère equation we have div(σE + Je) = 0 inΩ, hence

div(σEC + Je,C) = 0 in ΩC

and
(σEC + Je,C) · nC = −Je,I · nI on Γ .

Proceeding as in Lemma 2.1 we obtain

‖EC‖0,ΩC ≤ C
(
‖ curlEC‖0,ΩC + ‖ div(σEC )‖0,ΩC

+‖σEC · nC‖−1/2,Γ +
∑nΩC

β=1

∣∣∣∫ΩC
σEC · ρ∗

β,C

∣∣∣ )
≤ C

(
‖ curlEC‖0,ΩC + ‖ divJe,C‖0,ΩC

+‖Je,C · nC + Je,I · nI‖−1/2,Γ +
∑nΩC

β=1

∣∣∣∫ΩC
σEC · ρ∗

β,C

∣∣∣ ),
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where ρ∗
β,C , β = 1, . . . , nΩC , are the basis functions of the space of harmonic fields

Hσ(m;ΩC) defined as follows

Hσ(m;ΩC) := {zC ∈ (L2(ΩC ))3 | curl zC = 0, div(σzC) = 0,
σzC · nC = 0 on Γ } .

Moreover, from Lemma 2.2 we know that

‖EI‖0,ΩI ≤ C(‖ curlE‖0,Ω + ‖EC‖0,ΩC) ,

so that we end up with

‖E‖0,Ω ≤ C
(
‖ curlE‖0,Ω + ‖ divJe,C‖0,ΩC

+‖Je,C · nC + Je,I · nI‖−1/2,Γ

+
∑nΩC

β=1

∣∣∣∫ΩC
σEC · ρ∗

β,C

∣∣∣ ) .

(2.16)

From the Ampère equation we obtain by integration by parts∫
Ω

μ−1 curlE · curlE + iω

∫
ΩC

σEC ·EC = −iω

∫
Ω

Je ·E ,

hence
‖ curlE‖20,Ω ≤ C|ω|‖Je‖0,Ω ‖E‖0,Ω .

In conclusion, assuming that divJe,C = 0 in ΩC and Je,C · nC + Je,I · nI = 0 on
Γ (which is equivalent to require that divJe = 0 in Ω, as we have already assumed
divJe,I = 0 in ΩI ) and that ΩC is simply-connected (so that the space Hσ(m;ΩC)
is trivial), from (2.16) it follows

‖E‖0,Ω ≤ C‖ curlE‖0,Ω ≤ C|ω|1/2‖Je‖1/20,Ω ‖E‖
1/2
0,Ω ,

hence
‖E‖0,Ω ≤ C|ω|‖Je‖0,Ω ,

which ends the proof. �

Corollary 2.10. Under the assumptions of Lemma 2.9, for |ω| ≤ ω∗ one has

‖E− EM‖0,Ω ≤ C|ω|2

‖H−HM‖0,Ω ≤ C|ω|3/2 .
(2.17)

Proof. From (2.15) and Lemma 2.6 we find

‖ curl(E− EM )‖20,Ω + |ω|‖EC −EM
C ‖20,ΩC

≤ C|ω|5 ,

and consequently, proceeding as in Theorem 2.8, the thesis follows. �
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Remark 2.11. If wewere able to prove thatσEC isL2(ΩC)-orthogonal toHσ(m;ΩC),
in Lemma 2.9 we could avoid to require that ΩC is simply-connected.
In Ammari et al. [23] an attempt is made to devise the necessary and sufficient

conditions on Je ensuring that σEC is orthogonal to Hσ(m;ΩC); however, their ar-
gument is not conclusive, and to our knowledge a characterization of this orthogonality
property in terms of Je is not known. �
The estimate for the difference between the magnetic fields can be improved even

if we do not impose additional conditions on Je and ΩC .

Theorem 2.12. Suppose that the domain Ω is simply-connected. There exists a con-
stant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one has

‖H−HM‖0,Ω ≤ C|ω| . (2.18)

Moreover, if estimate (2.15) is satisfied one has

‖H−HM‖0,Ω ≤ Cω2 . (2.19)

In both cases the constant C > 0 is independent of ω.

Proof. To prove this result we use the formulation of the eddy current model in terms
of a magnetic vector potential A and a electric scalar potential VC (see Chapter 6).
This means that we considerA and VC such that

curlA = μH and EC = −iωAC − gradVC .

SinceΩ is simply-connected, we can also do the same for the Maxwell equations, and
introduceAM and V M

C such that

curlAM = μHM and EM
C = −iωAM

C − gradVM
C .

Setting now (Z, NC) := (A −AM , VC − V M
C ), it is easily seen that it satisfies the

problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlZ) − μ−1
∗ grad divZ

+iωσZ + σ gradNC = −iωεEM in Ω
div(iωσZC + σ gradNC) = −iω div(εEM ) in ΩC

(iωσZC + σ gradNC) · nC
= −iω(εCEM

C · nC + εIEM
I · nI) on Γ

Z · n = 0 on ∂Ω
(μ−1 curlZ)× n = 0 on ∂Ω ,

(2.20)

where NC is determined up to an additive constant in each connected component of
ΩC . The corresponding weak formulation is the same than that presented in (6.12),
with Je replaced by−iωεEM .
Proceeding as in Section 6.1.2 (see in particular (6.36), (6.37), (6.38) and (6.39)),

it can be proved that

‖ curlZ‖20,Ω + ‖ divZ‖20,Ω + ‖Z‖20,Ω + |ω|−1τ‖NC‖21,ΩC
−C4|ω|τ‖Z‖20,Ω

≤ C4|ω|‖εEM‖0,Ω‖Z‖0,Ω + C4‖εEM ‖0,Ω‖NC‖1,ΩC
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for each 0 < τ ≤ 1/2 and a suitable positive constant C4, independent of ω. Then for
each δ1 > 0 and δ2 > 0

(1−C4|ω|τ )‖Z‖20,Ω + ‖ curlZ‖20,Ω + ‖ divZ‖20,Ω + |ω|−1τ‖NC‖21,ΩC

≤ 1
2δ1

C2
4ω

2‖εEM‖20,Ω + δ1
2 ‖Z‖20,Ω + 1

2δ2
C2

4‖εEM ‖20,Ω + δ2
2 ‖NC‖21,ΩC

.

Taking τ such that 1−C4|ω|τ > 0 and choosing δ1 = 1− C4|ω|τ and δ2 = |ω|−1τ ,
we obtain that

|ω|−1τ‖NC‖21,ΩC
≤ C2

4ω
2 1

1−C4|ω|τ ‖εE
M‖20,Ω + C2

4 |ω| 1τ ‖εEM‖20,Ω .

If we choose τ = min{ 1
2 ,

1
2C4|ω|}, for |ω| ≤ 1 it is straightforward to verify that

‖NC‖1,ΩC ≤ C5|ω|‖εEM ‖0,Ω ,

for some positive constant C5, independent of ω.
Coming back to the weak formulation, we see that in particular we have∫

Ω

(
μ−1 curlZ · curlZ + μ−1

∗ | divZ|2
)

+ iω
∫
ΩC

σZC · ZC
= −iω

∫
Ω

εEM · Z−
∫
ΩC

σ gradNC · ZC .
(2.21)

Hence, taking again into account (6.39), from (2.21) it is easy to see that

‖μ(H−HM )‖0,Ω = ‖ curlZ‖0,Ω
≤ C(|ω|‖EM‖0,Ω + ‖NC‖1,ΩC) ≤ C6|ω|‖EM‖0,Ω

(2.22)

for some positive constant C6, independent of ω. Thus, from Lemma 2.7,

‖H−HM ‖0,Ω = O(|ω|) .

If we assume moreover that ‖EM‖0,Ω ≤ C|ω| is satisfied (see for instance
Lemma 2.9), from (2.22) one readily obtains (2.19). �

Remark 2.13. The geometrical assumption in Theorem 2.12 can be relaxed.
First, the solution of the Maxwell equations can be written in terms of AM and

VM
C in more general geometric situations; for instance, it is surely true if the domain

ΩC is contained in a simply-connected domain Ω̂ which is contained inΩ (hence, for
example, if Ω is simply-connected).
Moreover, the results in Section 6.1.2 hold under the quite general geometri-

cal assumptions that are described there by requiring that (6.2) is satisfied and that
n∂Ω = nΩ (in particular, these assumptions hold true if Ω is simply-connected). �

Remark 2.14. In Ammari et al. [23], the full Maxwell problem and eddy current prob-
lem are considered in R3 with the following asymptotic conditions at infinity: for the

full Maxwell system
(
HM × x

|x| − EM
)
tends to 0 uniformly as |x| goes to infinity,

and for the eddy current problemH(x) = O(1/|x|) and E(x) = O(1/|x|) uniformly
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as |x| tends to infinity (see Chapter 7 for a more detailed presentation of the eddy
current problem in the whole space R3).
Formally expanding the solutions of both problems in power series with respect

to ω, they show that the eddy current model is a first order approximation of the full
Maxwell system

‖E− EM‖0,ΩR ≤ C|ω|
‖H−HM‖0,ΩR ≤ C|ω| ,

where ΩR := (R3 \ΩC) ∩BR and BR is the open ball of radius R and center 0. In
that paper the electric permittivity and the magnetic permeability are assumed to be
constant outside BR.
If additional conditions on the current source Je and onΩC are fulfilled, they show

that the eddy current model is in fact a second order approximation of the fullMaxwell
system

‖E− EM‖0,ΩR ≤ Cω2

‖H−HM‖0,ΩR ≤ Cω2 .

More precisely, having expanded Je in the formal series

Je =
∞∑
l≥0

ωlJle ,

where as usual for all l ≥ 0 one has required that divJle,I = 0 and
∫
Γj

Jle,I · nI = 0
for all j = 1, . . . , pΓ + 1, the additional assumption on the leading term J0

e is the one
we have already devised before for the complete field Je, namely, divJ0

e = 0 in R3.
Moreover, to complete the proof of the second order approximation, the conductorΩC

is assumed to be simply-connected.
Let us also note that in this case Ω = R3 is simply-connected, therefore the

asymptotic behaviours obtained by Ammari et al. [23] are in perfect agreement with
those established by resorting to the vector potentials A and AM : namely, first or-
der approximation under general geometrical assumptions, in particular when Ω is
simply-connected, and second order approximation under the additional assumptions
that divJe = 0 in Ω and the conductorΩC is simply-connected. �
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