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Preface

Continuamente nascono i fatti
a confusione delle teorie |
Carlo Dossi 2

Electromagnetism is without any doubt a fascinating area of physics, engineering and
mathematics. Since the early pioneering works of Ampere, Faraday, and Maxwell, the
scientific literature on this subject has become immense, and books devoted to almost
all of its aspects have been published in the meantime.

However, we believe that there is still some place for new books dealing with elec-
tromagnetism, particularly if they are focused on more specific models, or try to mix
different levels of analysis: rigorous mathematical results, sound numerical approxi-
mation schemes, real-life examples from physics and engineering.

The complete mathematical description of electromagnetic problems is provided
by the celebrated Maxwell equations, a system of partial differential equations ex-
pressed in terms of physical quantities like the electric field, the magnetic field and the
current density. Maxwell’s contribution to the formulation of these equations is related
to the introduction of a specific term, called displacement current, that he proposed to
add to the set of equations generally assumed to hold at that time, in order to ensure
the conservation of the electric charge.

The presence of the displacement current permits to describe one of the most im-
portant phenomenon in electromagnetism, namely, wave propagation; however, in
many interesting applications the propagation speed of the wave is very high with
respect to the ratio of some typical length and time scale of the considered device, and
therefore the dominant aspect becomes the diffusion of the electromagnetic fields.

When the focus is on diffusion instead of propagation, from the modeling point of
view this corresponds to neglecting the time derivative of the electric induction (i.e.,
the displacement current introduced by Maxwell) or, alternatively, neglecting the time
derivative of the magnetic induction.

! Constantly facts arise to muddle theories.
2 Carlo Dossi, 1849-1910, Italian writer.
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This book is devoted to the former model. The resulting equations are usually called
magneto-quasistatic equations, or else eddy current equations, and can be seen as a
low-frequency approximation of the full Maxwell system. In the following we are in-
deed concerned with the time-harmonic case, in which the data and the electromagnetic
fields are assumed to be sinusoidal in time. This model is very often used in electrical
engineering (for some examples, see Section 1.2 and Chapter 9). Indeed, for the typ-
ical problems in this field alternating currents are applied, the electromagnetic wave
propagation can be neglected, but the variation of the magnetic field is still significa-
tive: in fact, in conducting media this variation generates current densities that have to
be taken into account. Summing up, the term that can be dropped is the displacement
current.

In our opinion, the reasons for the interest in the time-harmonic eddy current model
are manifold. In fact, it is not only an important topic in electromagnetism, but also
an intriguing mathematical problem in which one has to face some delicate aspects
that can also be present in other situations. Therefore, the study of this problem can be
useful for understanding general techniques that can be applied in other contexts, as
well.

One of these peculiar aspects is that the time-harmonic eddy current problem
presents differential constraints: the magnetic field is curl-free and the electric field
is divergence-free in the insulating region, and the magnetic induction is divergence-
free in the whole physical domain (insulator plus conductor).

There are several mathematical approaches that allow us to treat these constraints.
In this book we refer to the following:

e saddle-point formulations with Lagrange multipliers;
e introduction of vector and scalar potentials;
e penalization methods.

Each of these approaches gives rise to different finite element approximations: mixed
finite element methods are used when considering saddle-point formulations, and in
these cases edge elements are needed for describing the discrete magnetic and electric
fields; nodal vector elements and nodal scalar elements are used for approximating
vector and scalar potentials, respectively; nodal vector elements are employed when
dealing with penalization methods. Our aim is to give a presentation in which all these
different approaches are considered and analyzed.

One could ask why it is necessary to introduce many different methods for solv-
ing the same problem. Let us quote from the well-known book by Silvester and Fer-
rari [227], p. 345: “Inrecent years, a considerable literature dealing with the numerical
solution of problems relating to eddy currents has accumulated. Practical configura-
tions are invariably irreducibly three-dimensional. No clear consensus appears to have
emerged as to the best method of attack, although in many cases some finite element
approach or other is used.”
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In fact, as hopefully it will be clear by the end of the book, each method has assets
and drawbacks:

e saddle-pointand Lagrange multipliers. Plus: physical fields as principal unknowns;
no difficulty with the topology of the conducting domain. Minus: many degrees of
freedom; algebraic problem with a more complex structure;

e magnetic scalar potential. Plus: few degrees of freedom; “positive definite” alge-
braic problem. Minus: some difficulties coming from the topology of the computa-
tional domain, in particular of the conductor; need to compute in advance a vector
potential of the current density;

e magnetic vector potential and penalization. Plus: standard nodal finite elements
for all the unknowns; no difficulty with the topology of the conducting domain;
“positive definite” algebraic problem. Minus: many degrees of freedom; lack of
convergence for re-entrant corners of the computational domain.

Therefore, it is not an easy task to devise the best method for all seasons: this is also
apparent looking at the literature, especially the part related mainly to engineering
applications, in which new methods are proposed in each issue.

Nevertheless, let us note that, as far as we know, there are no books where eddy
current problems are widely treated from both the mathematical and the engineering
point of view. In fact, various monographs are devoted to modeling through partial
differential equations and their numerical approximation (just to quote a couple of the
most known, see Eriksson et al. [102] and Quarteroni [198]), but in general they do
not cover electromagnetism and its mathematical theory.

On the other hand, among classical texts on electromagnetism only Silvester and
Ferrari [227] and especially Bossavit [58], [59] devote some pages to this topic. The
eddy current model is also briefly presented in K#iZek and Neittaanméki [158], though
only for conductive media, and in Bondeson et al. [55]. Finally, a chapter in Gross and
Kotiuga [115] is concerned with eddy current problems, but more specifically with
those topological issues that are relevant for their numerical approximation.

In the engineering literature we recall the books by Tegopoulos and Kriezis [233]
and Mayergoyz [173], where analytical methods are systematically employed for de-
termining the explicit solution of eddy current problems, but only in simple geometrical
configurations, the former for linear materials, the latter in the nonlinear case.

This book is the story of a falling in love. When in the mid 1990s we started to
study eddy current problems, we even did not know the usual way these equations
are referred to (indeed, we wrote a paper on “heterogeneous low-frequency Maxwell
equations”). However, we were quickly attracted by their peculiar aspects:

e varjational formulations set in somehow unusual spaces like H(div;(2) and
H (curl; £2), for which some basic results were not completely clarified (for in-
stance, the characterization of the space of tangential traces of functions belonging
to H (curl; 2));

e the presence of differential constraints, which give rise to some difficulties in de-
vising efficient finite element numerical approximation schemes;
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e the strong interplay between the topological shape of the computational domain
and the well-posedness of the problem, involving delicate arguments of algebraic
topology not surprisingly already considered by Maxwell himself, but not always
addressed in a correct way in the more recent literature;

e the problem of determining meaningful boundary conditions, or else realistic exci-
tation terms associated to significative physical quantities such as voltage or current
intensity;

e the breaking of the symmetry between the electric and the magnetic fields, which
is specific in this context, and does not take place in the case of the full Maxwell
equations;

e the unusually large number of different methods proposed for finding the approx-
imate solution, some of them based on various choices of vector and scalar poten-
tials, mainly already present in classical works in electromagnetism but not com-
pletely understood in the framework of eddy current problems;

e theloss of convergence of nodal finite element approximation schemes in the pres-
ence of re-entrant corners or edges.

This book is the story of an obsession. Having to face such a large number of dif-
ferent aspects, and their even larger possible interplays, our research work on eddy
current problems has soon become a never-ending wandering among formulations,
approximation methods, analyses of convergence, topological obstructions, choices of
boundary conditions, and so on. Trying to write in a structured way all these topics has
been a way to exit the labyrinth and to stop looking for a further result. (As a matter
of fact, we have in mind another possible approach, but the margin of the page is too
narrow for writing it here.*) We hope we succeeded in giving a map to people inter-
ested in the mathematical theory of low-frequency electromagnetism and the related
numerical approximation schemes.

We have tried to write a self-contained book. Starting from the Maxwell equations
we derive the eddy current model, and we make clear in which sense it is an approx-
imation of the full Maxwell system. The existence and uniqueness of the solution are
proved for all the described formulations, and stability and convergence of the finite
element numerical schemes are presented. Some useful tools from functional analysis
and finite element theory are collected in the Appendix.

Due to the structure described above, this monograph is addressed to researchers
and Ph.D. students in mathematical electromagnetism, as well as to electrical engineers
and practitioners, who can find here a sound mixture of theory, numerical approxima-
tion schemes and implementation issues, with a limited need of prerequisites.

The book is organized as follows.

In Chapter 1 we introduce the eddy current problem and we present its mathemat-
ical formulation, for the time-harmonic case and for three alternative sets of boundary
conditions. Particular attention is devoted to the description of certain spaces of har-
monic fields, which are related to the topological shape of the computational domain
and must be taken into account in order to devise a well-posed problem.

3 Hanc marginis exiguitas non caperet.
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The second chapter deals with a mathematical justification of the eddy current
model in a domain composed by a conductor and an insulator. It is obtained through
two different asymptotic limits of the full Maxwell equations: in the first case the elec-
tric permittivity vanishes, and in the second case the frequency vanishes.

The analysis of well-posedness of eddy current problems is performed in Chapter 3:
the existence and uniqueness of the solution is proved, and, moreover, an important re-
mark is presented, concerning the verification of the Faraday equation on the so-called
“cutting” surfaces contained in the insulator. This fact has been sometimes overlooked
in the existing literature, leading to incorrect results for the numerical computations
based on formulations where the principal unknown is the magnetic field.

In Chapter 4 we describe and analyze some coupled formulations that employ La-
grange multipliers for imposing the differential constraints on the magnetic and electric
fields. The advantage of these approaches is that they involve no restrictions originat-
ing from the topology of the conductor, and that the used meshes do not need to match
on the interface. To test the performance of the methods we present some numerical
computations for domains of general shape, in particular some results for problem 7
of the TEAM workshop and for a conducting domain given by the trefoil knot.

Two formulations based on the introduction of a scalar magnetic potential in the
insulator are illustrated in the fifth chapter: the unknown used in the conductor is the
magnetic field in the first case, and the electric field in the second case. These methods
use a small number of degrees of freedom (the unknowns are a vector function in the
conductor and a scalar function in the insulator, plus a few degrees of freedom associ-
ated to the topological shape), but require some pre-processing, like the determination
of the “cutting” surfaces and that of a vector potential of the applied current density.

The classical approaches using vector potentials are presented in Chapter 6, mainly
for the case of a magnetic vector potential. The gauge conditions, needed for finding
a unique potential, are analyzed in depth, in particular in the case of the Coulomb
gauge and the Lorenz gauge. The advantage of these formulations lies in the fact that
classical nodal finite elements are employed, so that the same discrete basis functions
can be used for all the unknowns. Moreover, no difficulty comes from the topology of
the conductor.

In Chapter 7 we set the problem in the whole space and we introduce some coupled
finite element/boundary element methods, which, by using potential theory, allow to
reduce the degrees of freedom in the insulator to degrees of freedom on the interface.
In particular, we present in more detail the coupled approach based on the magnetic
vector potential and the scalar electric potential in the conductor: this method has the
characteristic of being stable with respect to the frequency, hence can be also used
without modification for the static case.

The eighthg; chapter deals with the case of excitation terms given by a voltage
drop or a current intensity, a situation that can be interesting when the coupling with
circuit problems has to be considered. In order to devise a well-posed problem it is
necessary to choose suitable boundary conditions. For other boundary conditions the
solution can be found only if the voltage or the current intensity are interpreted as an
excitation term giving rise to a specific current density.
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In Chapter 9 we present some real-life problems that are based on the eddy cur-
rent equations. The description is not fully detailed, the aim being only to show the
importance of eddy current problems in applications.

The book ends with an appendix, devoted to the functional framework, to nodal
and edge finite elements, to some orthogonal decomposition results, and to a more
complete characterization of the spaces of harmonic fields.

This book would not have been written without the help of some friends and col-
leagues. First of all, we want to thank Paolo Fernandes, Ralf Hiptmair, Oszkar Bir6 and
Rafael Vazquez Hernandez, who worked with us on some eddy current problems, and
with whom we had many enlightening and pleasant scientific conversations. Special
thanks are due to Alfredo Bermudez, Rodolfo Rodriguez, Pilar Salgado and Virginia
Selgas, who provided us with many of their numerical results and figures, enriching
the content and the final aspect of our book. We have learnt many interesting things
about harmonic fields, homology theory and algebraic topology from our colleagues
Domenico Luminati and, especially, Riccardo Ghiloni, and it is a pleasure to acknowl-
edge their help.

We are grateful to Jarke J. van Wijk (Eindhoven University of Technology), Vic-
tor Valcarcel (Universidade de Santiago de Compostela) and Elekta, who have per-
mitted us to reproduce and insert in the book some figures and photographs. We also
thank Gianpaolo Demarchi and Elisa Leonardelli: the former showed us some of the
technological devices installed at CIMeC (Centro Interdipartimentale Mente/Cervello,
University of Trento), explaining their fascinating operation; the latter permitted us to
take some pictures of the EEG recording cap system. Our official photographer has
been Luca Manini: thanks a lot!

Finally, we express our gratitude to the Editors (Tom Hou, Claude Le Bris, An-
thony T. Patera, and Enrique Zuazua) and to Alfio Quarteroni for having accepted to
publish this monograph in the MS&A Series and for their several suggestions that have
contributed to improve the final result; to Peter Laurence, who helped us with the En-
glish language; and to Francesca Bonadei from Springer, who with great expertise and
attention has taken care of the realization of this book.

Povo (Trento), April 2010 Ana Alonso Rodriguez
Alberto Valli
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1

Setting the problem

In this chapter, starting from the classical Maxwell equations, we describe and motivate
the problem we are going to consider.

In particular, we derive the full Maxwell system, for both the time-dependent and
the time-harmonic case, and we explain how eddy currents are generated and why they
are the most relevant aspect in a series of engineering problems. Then we introduce
the eddy current approximation of the Maxwell equations, often used in low-frequency
electromagnetism, presenting the complete set of equations together with some suitable
choices of boundary conditions.

It is worth noting that, in order to properly formulate the problem, we need to
introduce certain spaces of vector fields: the so-called harmonic fields. These spaces
are strongly related to the topological properties of the insulator, namely, the domain
where the electric conductivity vanishes, and their characterization is an important tool
for proving well-posedness of the problem and devising efficient numerical approxi-
mation schemes.

1.1 Maxwell equations and time-harmonic Maxwell equations

The study of the propagation and the diffusion of electromagnetic fields is an important
topic in physical sciences. The first attempt to describe in a rigorous mathematical way
these phenomena dates back to the beginning of the nineteenth century, when Ampeére
and Faraday, among others, started to make experiments on electricity and magnetism.

The physical quantities that have to be taken into account are the magnetic field H,
the electric field £, the magnetic induction 3, the electric induction D and the electric
current density 7. The electric field and the magnetic induction can be defined at the
microscopic level, and at this level D and H are simply a multiple of £ and B, re-
spectively. At the macroscopic level, where the properties of the material media play a
significant role, all these fields are in some sense averaged quantities, related through
some constitutive equations. A linear dependence of the form D = €&, B = puH is
usually assumed; here € and p are called the electric permittivity and magnetic perme-

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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ability, respectively (for a complete presentation of the physics of electromagnetism,
see, e.g., Jackson [137]).

In most interesting physical and engineering problems, the region of interest is
composed of a non-homogeneous and non-isotropic medium: namely, € and g are not
constant, but are symmetric and uniformly positive definite matrices (with entries that
are bounded functions of the space variable x). In general, a nonlinear dependence
between D and &, B and H can also be taken into account (for instance, for hysteresis
problems). However, in this book we only consider the linear case.

The basic equations relating the electromagnetic fields are derived by some ex-
perimental results. The first one, that takes the name of Ampere, states that, in the
steady case, the electric current I° passing through a surface is equal to the line inte-
gral (with the counterclockwise orientation) of the magnetic field 7 on the boundary
of that surface. A second relation, which is due to Faraday, comes from the observa-
tion that a time-variation of the magnetic field generates an electric field: precisely, the
time derivative of the flux of the magnetic induction through a given surface is equal
to the line integral (with the clockwise orientation) of that induced electric field on the
boundary of that surface.

These relations can be easily written in a differential form: first of all, the Ampere

law reads
IO:/j~n: H-T,
s as

where n is the unit normal vector on S and 7 is the unit tangent vector on 9.5 (oriented
counterclockwise with respect to n). Therefore, from the Stokes theorem we find

/j~n:/curlH-n.
s s

Since the surface .S is arbitrarily placed in the space, it follows that
J =curl K.

On the other hand, the Faraday law can be written as

i,
— [ B-n=-— E-T,
dt Js as

hence by the Stokes theorem

i/l&n:f/curhﬂn,

oB

ot

The celebrated contribution of Maxwell was the observation that the Ampere law
was not completely satisfactory in the time-dependent case, and that it has to be cor-
rected by adding another term. It is possible to devise its form by taking into consid-
eration two facts: the first is the Gauss electrical equation, stating that the total charge

and thus

= —curl&.
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contained in a volume V' is equal to the external flux of the electric induction through
the boundary of that volume, namely,

/P: D'Il,
14 ov

where p is the volume electric charge density (supposed to vanish in any non-conduct-
ing region) and n is the unit outward normal vector on 0V'; the second is the charge

conservation law J
—_ e — . n
dt /V P v Jom,

similar to the mass conservation law in fluid dynamics. As a consequence one has
d
- D.n=— J-n,
dt Jov ov

and then, by the divergence theorem and since the volume V' is arbitrary,

div(aa—lthrJ) =0.

Being divergence-free, %—? + J has to be equal to the curl of a suitable vector field:

since in the time-independent case the Ampere law J = curl H holds, for time-
dependent fields Maxwell proposed the following generalization of the Ampere law
oD
N + J =curl H.

Maxwell himself called the added term %—? the displacement current.
Summing up, the complete Maxwell system of electromagnetism reads

oD

v +J =curllH Maxwell-Ampere equation

oB .

o +curl€ =0 Faraday equation (1.1)
divD =p Gauss electrical equation

divB=0 Gauss magnetic equation ,

where the Gauss magnetic equation is a consequence of the experimental fact that
magnetic charges do not exist.

To close the system, another relation is introduced, which expresses the current
density in a conductor in terms of the electric field: the classic Ohm law, based on
physical observations about electrical circuits, states that /7 = o &, where o is the
electric conductivity, which, in conducting regions, is assumed to be a symmetric and
uniformly positive definite matrix (with entries that are bounded functions of the space
variable x), while it is vanishing in insulators.

When the problem is driven by an applied current density 7., one needs to consider
the generalized Ohm law J = o€+, . Let us note that, as a consequence of Maxwell—
Ampere and Gauss electrical equations, it is necessary to assume that div 7. = 0 in
any non-conducting region.
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Though more general situations are also of interest, in this book we focus on prob-
lems where the physical quantities vary periodically with time': typically, this happens
when the applied current density . is an alternating current, having the form

Je(x,1) = Ju(x) cos(wt + 9)

where J..(x) is a real-valued vector function, w # 0 is the angular frequency and ¢ is
the phase angle. This is equivalent to the representation

Je(x,t) = Re {J*(X)ei(wt+¢):| — Re [Je(x)eiwt} ’

where we have introduced the complex-valued vector function J.(x) := J,(x)e'?.
Accordingly, we look for a time-periodic (or else, time-harmonic) solution given
by
E(x,t) = Re[B(x)e!]
H(x,t) = Re [H(x)e™!] |

where E and H are complex-valued vector functions (often called “phasors”).
The time-harmonic Maxwell equations are directly derived from the complete sys-
tem under these assumptions, and read

curlE +iwpH =0, (1.2)

{ curl H — (iwe + o)E = J,
determining the electric charge density by setting, separately in the conducting and
non-conducting regions,

p(x,t) = div (e(x)€(x, 1)) = div (Re[e(x)E(x)e™"]) .

Note that the Gauss magnetic equation div(uH) = 0 is a consequence of the Fara-
day equation; moreover, the Maxwell-Ampere equation and the assumption that div 7,
is vanishing in any non-conducting region imply that the charge density is vanishing
there, too.

1.2 Eddy currents and eddy current approximation

As observed in experiments and stated by the Faraday law, a time-variation of the
magnetic field generates an electric field. Therefore, in each conductor a current density

! We believe that most of the methods proposed in this book, very likely all of them, can be
adapted to the time-dependent case: for instance, it should be possible to prove existence
and uniqueness of the solution, and stability and convergence of suitable numerical schemes.
However in this treatise we limit ourselves to the important case of time-periodic models. For
some additional issues on the time-dependent problem see, e.g., the books by Silvester and
Ferrari [227], Bossavit [59] and van Rienen [238], the papers by Nicolet and Delincé [189],
Clemens and Weiland [84] and Weiland [243].
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Jeaay = oE arises; this term expresses the presence in conducting media of the so-
called eddy currents. This phenomenon, and the related heating of the conductor, was
observed and studied by the French physicist L. Foucault in the mid of the nineteenth
century, and in fact the generated currents are also known as Foucault currents.

The heat () generated by the current density in a conductor is given by the Joule
law

Q=0"'7-7.

Moreover, eddy currents also generate Lorentz forces

fl:jXB.

Let us have a deeper look at these two aspects.

The Joule effect can have a good use, as it is the basis of induction furnaces, widely
used in the metallurgic industry. Probably melting systems were the first industrial
application of eddy currents. Basically a induction furnace for melting consists of a
conducting crucible charged with the metal to be melted and of a helical coil, turning
around the crucible, carrying an alternating current. This alternating current produces
an oscillating magnetic field, which generates eddy currents in the crucible and in its
load. These currents, due to the Joule effect, heat the metal until it melts. However, at
the same time, they can also generate very high temperatures in the crucible, damaging
it and reducing its lifetime. Some parameters, as the frequency and intensity of the ap-
plied current, the thermal and electrical conductivity of the crucible or its distance from
the coil, affect the temperature profile in the furnace and must be taken into account
in the construction of the melting system. Moreover, Lorentz forces act on the molten
metal and cannot be ignored in melting processes, as the stirring effect modifies the
properties of the final product. A more detailed description of this application of eddy
currents is given in Section 9.1.1.

Joule heating can also produces undesirable power losses and overheating of elec-
trical devices. For instance it is an important aspect in the design of power transformers.
Transformers are used to produce an alternating current with low intensity and high
voltage starting from another one with high intensity and low voltage, and vice-versa.
They basically consist in two windings wrapped around an iron core. An alternating
current passing through the primary winding generates a time-varying magnetic field
in the core that induces a current in the secondary winding. The ratio between the volt-
ages of the current in the primary and the secondary winding is proportional to the
ratio between the number of their turns. In theory, a transformer would have no energy
losses; in practice, energy is dissipated in the windings, the core, and the other metallic
components of the transformer. Very soon it was observed that cores constructed from
solid iron have extremely high eddy current losses, so later designs are based on a core
made up of thin steel layers in order to reduce losses. The overheating of the clamp-
ing structure that maintains the core and the coils properly assembled can affect the
reliability and the operating life of large power transformers. Numerical simulations
are very useful for the optimal design of transformers; Section 9.4 includes a more
extended presentation of this kind of simulations.

Lorentz forces can be used, for instance, for levitation or for the design of elec-
tromagnetic braking systems. A simple way to illustrate magnetic levitation principles
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is to consider a toroidal inductor carrying an alternating current J. placed below a
conducting sheet. By the Ampere law the tangential current in the inductor generates
a time-varying magnetic flux. By the Faraday law this changing magnetic flux induces
an electric field in the conducting plate. The dominant current component in the plate is
along the direction of J.. This current interacts with the radial component of the mag-
netic field to generate (by the Lorentz law) a lift perpendicular to the plate. Section 9.3
is devoted to give a more precise description of magnetic levitation phenomena.

Eddy currents are also used as a non-destructive technique to detect the flaws in
conductive objects: a coil fed by an alternating current is placed near the object, thus
eddy currents arise inside, and flaws are located by a suitable measure of the varia-
tion of the impedance. A more detailed presentation of non-destructive techniques for
defect detection is in Section 9.5.

Summing up, the computation of the eddy current distribution and of the related
energy loss is an important task for engineering applications in electromagnetism.

In all these applications, it can be checked that the time of propagation of the elec-
tromagnetic wave is very small with respect to the inverse of the angular frequency
w, therefore one can think that the speed of propagation is infinite, and take into ac-
count only the diffusion of the electromagnetic fields: if one wants to express this fact
with a mathematical recipe, one has not to face a “hyperbolic” problem but rather a
“parabolic” problem.

Rephrasing this concept, one can also say that, when considering time-dependent
problems in electromagnetism, one can distinguish between “fast” varying fields and
“slowly” varying fields. In the latter case, one is led to simplify the set of equations,
neglecting time derivatives, or, depending on the specific situation at hand, one time
derivative, either %—? or %—f. Typically, problems of this type arise in electrical engi-
neering, where low frequencies are involved, but not in electronic engineering, where
the frequency ranges in much larger bands.

When neglecting both the time derivative terms, one obtains the electro-magneto-
static model: an approximation of the Maxwell system for which diffusion of the elec-
tromagnetic fields is not considered and eddy currents and their effects are not taken
into account.

If the time derivative of the magnetic induction is disregarded, the governing equa-
tions are called electro-quasistatic equations, and describe “slowly” varying fields for
which the electric field is somehow independent of the magnetic field and the dis-
placement current makes a significant contribution. These equations can be used for
modeling problems in electrical engineering where the frequency is relatively low but
the voltage is high (for a more detailed description, see, e.g., van Rienen [238]).

In this book we focus on the case in which the displacement current term %—? can
be disregarded, while the time-variation of the magnetic induction is still important. In
particular, as already noted, this means that the electromagnetic waves are neglected,
as their time of propagation is very small with respect to 1/w, or, equivalently, their
wave length is much larger than the diameter of the physical domain.

Let us make more precise this statement, referring, e.g., to Haus and Melcher [119],
Bossavit [59] and van Rienen [238] for a more detailed discussion concerning the
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physical validity of this assumption. Clearly, the point is that should be small in
comparison with curl H and J = o€+ J.. A thumb rule can be formulated as follows:
if L is a typical length in {2 (say, its diameter), and we choose w™! as a typical time,
it is possibile to disregard the displacement current term provided that

Dl < [HIL™Y | [Dllw| < [o¢].
Using the Faraday equation, we can write £ in terms of H, finding
€127 ~ [l [1H]
Hence, recalling that D = € and putting everything together, one should have

,u'rnax‘C:rnaxWQL2 <1, €max|w| <1,

rnln

where fimax and €y,x are uniform upper bounds in {2 for the maximum eigenvalues
of pu(x) and e(x), respectively, and o denotes a uniform lower bound in {2¢ for
the minimum eigenvalues of o (x). Since the magnitude of the velocity of the electro-
magnetic wave can be estimated by (fmaxEmax ) 1/2 the first relation is requiring that
the wave length is large compared to L. Let us also note that for industrial electrical
applications some typical values of the parameters involved are jio = 47 x 10~ H/m,
g0 = 8.9%x 10712 F/m, Ocopper = 9.7 X 107 S/m, w = 27 x 50rad/s (power frequency
of 50 Hz), hence in that case

1
JHogolw]

and dropping the displacement current term looks appropriate. Though less apparent,
the same is true for a typical conductivity in a physiological problem, say, oiissue ~
10~ S/m, for which o1 eo|w| & 2.8 x 1078,

The system of equations obtained when the displacement current term 92 (or
equivalently, iweE) is disregarded is called eddy current approximation (or magneto-
quasistatic approximation) of the Maxwell equations. In the time-harmonic case, the
resulting set of equations is therefore

~ 6 17
~ 10°m ; Ucopper€0|w| ~4.9x10"

curlH-ocE =J, in 2
curllE+iwpH =0 in{? (1.3)
div(eE) =0 in (27,

where we have denoted by (2 the physical domain and by (?2; the insulator.
A few remarks are in order: first, as in the case of the full Maxwell system we have
to assume that the condition
divJ, =0 1in 2y (1.4)

is satisfied. Then, note that again the constraint div(uH) = 0 has been dropped from
system (1.3), as it follows from the Faraday equation. Finally, note that in the eddy
current approximation the equation div(eE) = 0 in {2;, ensuring that the electric
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charge is vanishing in the insulator, is no longer a consequence of the Ampere equation
and of the assumption (1.4). This is why we have kept it (1.3).

However, in the problem above something is still missing (clearly, beside the
boundary conditions). In Alonso and Valli [7] it has been proved that other equations,
related with the geometry of the domain (27, have to be added in order to close the
system. We present the complete model in Section 1.5; moreover, in Chapter 2 we
give its rigorous mathematical justification, showing in particular that the difference
between the solution of the full Maxwell system (1.2) and the solution of the complete
eddy current model is vanishing as the angular frequency w goes to 0.

1.3 Geometrical setting and boundary conditions

Let us make precise the geometrical context we consider in the sequel (with the ex-
ception of Chapter 8): the physical domain (2 is a bounded connected open set in R?,
with a Lipschitz boundary 0f2. We assume that an open subset {2¢, the conductor, is
strictly contained in {2, namely, Q0 C 02, and, as before, we denote by 2; := 2\ Q¢
the insulator (see Figure 1.1). For the sake of simplicity, we also suppose that (2; is
connected: we believe that the interested reader will not find difficult to extend the re-
sults presented in this book to the case of a non-connected insulator {27, though some
formal changes are needed since in that case at least one connected component of {2;
has empty intersection with the boundary 0(2.

We denote by I' := 0£2; N f2¢ the interface between the two subdomains, and
we assume that it is a Lipschitz surface; note that, in the present situation, 92¢c = I
and 002 = 90N U T

The unit outward normal vector on 92 is denoted by n, while nc = —nj denotes
the unit normal vector on the interface I, pointing towards {2;.

Let us present now some suitable boundary conditions for the eddy current model.
If the boundary 02 can be considered as a perfect conductor, say, a fictitious medium

Fig. 1.1. The geometry of the problem: 1 conductors, 2 a region not included in the domain {2
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where the electric conductivity is infinite, then the boundary condition is the so-called
electric boundary condition

Exn=0 onodf?. (1.5)

It is easily checked that a boundary condition for the magnetic field follows from this:
in fact, from the Faraday equation,

pH-n=—(iw) 'curlE-n= —(iw) 'div,(Exn) =0 ondf

(see Section A.1 for the definition and the properties of the tangential divergence op-
erator div.,).

If the boundary 0f2 can be considered as an infinitely permeable medium (say,
iron), then the so-called magnetic boundary condition can be imposed

Hxn=0 ondf. (1.6)

Proceeding as above, and recalling that the conductivity o vanishes near the boundary,
from the Ampere equation this implies that the following compatibility condition has
to be satisfied

Jeon=curlH -n=div,(Hxn)=0 ondf2. (1.7)

However, the magnetic boundary condition is not enough for the determination of the
electric field in the insulator. Recalling that for the solution of the full Maxwell system
(1.2) one would have

O=curlH -n=iweE-n+J.-n ondf?,

one is led to require
eE-n=0 ondf?2. (1.8)

Summing up, when the magnetic boundary condition (1.6) is considered, one has also
to impose (1.8) and to assume that (1.7) is satisfied.

A third set of boundary conditions has been proposed in the literature (see, e.g.,
Bossavit [61], Bermudez et al. [43]), especially for voltage and current excitation prob-
lems (see Chapter 8). They are usually called no-flux boundary conditions, and look
like a mixture of the preceding boundary conditions, namely,

{uH-nzO on 0f2

eE-n=0 on 0f2 . (1.9)

In this book we mainly focus on the magnetic and the electric boundary conditions,
and we present a more specific analysis of condition (1.9) in Section 3.5 and Chapter
8 only. Instead, we are not treating the impedance (or absorbing) condition

nxHxn+aExn=0, acC,

which for eddy current problems has a correct physical meaning mainly as an interface
condition on " (and not on 9f?2), provided that the penetration depth is small enough
(see, e.g., MacCamy and Stephan [171], Ammari et al. [24], Sterz and Schwab [229]).
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1.4 Harmonic fields in electromagnetism

Harmonic fields are those vector fields v satisfying curlv = 0 and divv = 0 (or,
more generally, div(nv) = 0, where 17 = 1(x) is a symmetric and uniformly positive
definite matrix, with bounded entries). In other words, if the physical domain under
consideration is the entire space R?, they are the gradient of a harmonic function.

Suppose now that the physical domain is a bounded domain O, and assume that
its boundary is divided into two non-overlapping Lipschitz surfaces I'p and I'y (it is
possible that one of the two could be empty).

A couple of questions are in order. If we also require that the boundary conditions
vxn=0on/Ipandv- -n=0on I} are satisfied, do non-trivial harmonic fields
exist (here “non-trivial” means “not vanishing everywhere”)? In that case, do harmonic
fields appear in electromagnetism?

Both questions have an affermative answer. Let us start from the first question. If
the domain O is homeomorphic to a three-dimensional ball, a curl-free vector field v
must be a gradient of a scalar function 1, that must be harmonic due to the constraint
on the divergence. If the boundary conditionis v x n = 0 on O, which in this case
is a connected surface, then it follows ) = const. on 0O, and therefore 1) = const. in
O and v = 0 in O. On the other hand, if the boundary conditionis v - n = 0 on 00,
then v satisfies a homogeneous Neumann boundary condition and thus @) = const. in
O and v = 01in O. The same result follows if the boundary conditions are v x n = 0
onlpandv-n = 0on Iy, and I'p is a connected surface: in fact, we still have
1) = const. on I'p and grady - n = 0 on Iy, hence 1) satisfies a mixed boundary
value problem and we obtain ¢ = const.in O and v = 0 in O.

However, the problem is different in a more general geometry. In fact, take the
magnetic field generated in the vacuum by a current of constant intensity I° passing
along the x3-axis: as it is well-known, for 22 + 23 > 0 it is given by

10 T2 T
H(x17x27x3)%(x%+x§’x%+x§’0 !

It is easily checked that, as Maxwell equations require, curl H = 0 and divH = 0.
Let us consider now the torus 7 obtained by rotating around the x3-axis the disk of
centre (a, 0, 0) and radius b, with 0 < b < a. One sees at once that H-n = 0 on 97 ;
hence we have found a non-trivial harmonic field H in 7 satisfying H-n = 0 on 07 .

On the other hand, consider now the electric field generated in the vacuum by a
pointwise charge pg placed at the origin. For x # 0 it is given by

po X
E(z1,z2,23) = —
( 1,42, 3) 4reg |X|3’
where ¢q is the electric permittivity of the vacuum. It satisfies divE = 0 and

curl E = 0, and moreover E X n = 0 on the boundary of C := Bg, \ Bg,, where
0 < Ry < Ry and Bp := {x € R®||x| < R} is the ball of centre 0 and radius R. We
have thus found a non-trivial harmonic field E in C satisfying E x n = 0 on 9C.
These two examples show that the geometry of the domain and the type of bound-
ary conditions play an essential role when considering harmonic fields. What are the
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relevant differences between the set O, homeomorphic to a ball, and the sets 7 and C?
For the former, the point is that in 7 we have a non-bounding cycle, namely, a cycle
that is not the boundary of a surface contained in 7 (take for instance the circle of
centre O and radius a in the (z1, z2)-plane). In the latter case, the boundary of C is not
connected.

In eddy current problems we have not only the constraint on the divergence of the
electric and the magnetic fields, but also the one on the curl of the magnetic field in
the insulator. As a consequence, we will see in the sequel that the formulation and
the analysis of these problems require the introduction of several spaces of harmonic
fields.

These spaces are presented, e.g., in Bossavit [59], Hiptmair [126], Cantarella et
al. [73] and Gross and Kotiuga [115]; however, the most complete description and
analysis is given by Ghiloni [110]. Here we introduce their basis functions; a more
detailed description of them is given in Section A.4.

We need to make precise the geometry of the domains (2, {2 and (2; (see Fig-
ures 1.2, 1.3, 1.4, 1.5 and 1.6). We indicate by I';, 7 = 1,...,pr + 1, the connected
components of I', and by (0(2),.,» = 0,1,..., pgn, the connected components of 912
(in particular, we have denoted by (0{2), the external one).

We also denote by ng, the number of independent non-bounding cycles in {2y,
and similarly by n, the number of independent non-bounding cycles in (2. Here, we
say that a finite family F of disjoint cycles of {2; is formed by independent cycles if,
for each non-empty sub-family 7’ of JF, the union of the cycles of F’ cannot be equal
to the boundary of a surface contained in {2;. A similar definition applies for cycles in
£2. We recall that ng,, is a topological invariant of {27, namely, using the terminology
of algebraic topology, its first Betti number, or, equivalently, the dimension of the first
homology space of {27. One can also show that n,, is the number of “cutting” surfaces
=7 such that every curl-free vector in {27 has a global potential in !~21 =021\ U E7
(this does not mean that Qs simply-connected nor that it is homologically trivial: an
example is furnished by 2; = (2 \Q_C where (2 is a cube and {2¢ is the trefoil knot,
see Benedetti et al. [36]).

Finally, np is the number of Jf2-independent non-bounding cycles in {2;. Simi-
larly, nog, is the number of I'-independent non-bounding cycles in {2;. Here, we say
that a finite family G of disjoint cycles of {27 is formed by 02-independent cycles (I -
independent cycles, respectively) if, for each non-empty sub-family G’ of G, the union
of the cycles of G’ cannot be equal to 95 \ «, S being a surface contained in {2; and
-~ a disjoint union of cycles, possibly empty, contained in 942 (in I, respectively). For
instance, in Figure 1.3 we have two non-bounding cycles on I', but both of them can
be brought on 042, therefore they are not Jf2-independent, hence nr = 0. Similarly,
there are two non-bounding cycles on 9f2, but none of them is I™-independent and
Ngn — 0.

In order to help the reader to become acquainted with these notations, let us refer
to Figure 1.1: there one has pr = 2, pao =1, np, =3, no =0,nr = 3, ngn = 0.
For Figures 1.2, 1.3, 1.4, 1.5 and 1.6, see the captions there.
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Fig. 1.2. An example of the geometry of the problem: the conductoris dark (here onehas pr = 0,
pog =0,ng; =1L ng =0,nr =1,ns0 =0)

Fig. 1.3. An example of the geometry of the problem: the conductoris dark (here onehas pr = 0,
poe = 0,ng; =2,ng =1,nr =0,ns0 =0)

Fig. 1.4. An example of the geometry of the problem: the trefoil knot is the conductor (here one
haspr =0, pae = 0, ne;, =1, nge =0,nr = 1,ngn = 0)
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Fig. 1.5. An example of the geometry of the problem: the three rings are the conductor (here
onehas pr = 2,panp =0,ne, =3,n0 =0,nr =3, nae =0)

Fig. 1.6. An example of the geometry of the problem: the three Borromean rings are the con-
ductor (here one has pr = 2, pae =0, 1o, =3,ne =0,nr = 3, non = 0)

We set v := V|p,, V¢ = V|, and similary for all the other functions and
matrices. The first space we introduce is

He, (I,002; 2r) = {vr € (L*(27))?| curl vy = 0,div(e;vy) = 0,

V]aniﬂonf,s]vl.n:00n89}7 (1.10)

whose dimension is equal to ngo + pr. We denote a basis by 7 and gradwj 1,
k=1,...,np0,5 =1,...,pr. The fields 7}, r are more precisely described in Sec-
tion A.4, and their construction requires the determination of a suitable set of “cutting”
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surfaces; the functions w;, r are the solutions of the elliptic problems

div(ergradw; ;) =0 inf2;

ergradw;r-n =0 on 012
wjr =0 onI'\Ij
wj’jil onFj.

Itis worth noting that the determination of wj 1 is easier than that of 7y, 1, as the latter
needs the identification of the “cutting” surface.
A second space is given by

H,up (002,15 27) == {vr € (L*>(21))?| curl vi = 0,div(p;vy) = 0,

vixn=00nd2,u;vi-ny=0o0nIl}, (.11

and its dimension is equal to ny + pg. A basis is denoted by Py and grad z,. 1,
I=1,...;np,7 =1,...,pan, where p, ; are explicitly characterized in Section A.4,
while z,. 1 is the solution of the elliptic problem

div(prgradz. 1) =0 in £2f
pregradz, r-nr =0 onl’

zr7 =0 on 992\ (092),
zrg =1 on (042),. .

Note that the dimension of the space H,,, (0f2, I'; 2r) is equal to 1 for both the exam-
ples shown in Figures 1.2 and 1.4. The difference resides in the basis function p; ;: as
described in (A.34), it is associated to a “cutting” surface. For the torus in Figure 1.2
this surface is the one “filling” the “hole”, for the trefoil knot in Figure 1.4 is the surface
illustrated in Figure 4.2.

Another space is

He,(e;2;1) = {vr € (L*(27))?| curlv; = 0,div(e;vy) = 0,

vixny=0onI' UJN}, (1.12)

*

whose dimension is equal to ps . +pr+1, and which has the basis functions grad w S

v=0,...,pa0 + pr, where wfh ; is the solution of the elliptic problem

div(er gradwy ;) =0 in§2;
wl ;=0 on (0R2UI)\ O,
wl =1 on@O, ,

having set @, := (942), fory = 0,...,pap and O, = I,_,,, for v =
pan + 1,...,pan + pr. Note that the dimension of this space is one less than the
number of connected components of 1" U 02, the boundary of 2;.

A fourth space is defined by

Hyp (m; 2r) == {vy € (L*(921))?| curl v; = 0,div(p;vr) =0,

prvr-n=0onI"UdS}, (1.13)
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and its dimension is equal to ng,. A basis is given by p¥ ;,, a = 1,...,ng, (for
a precise characterization see Section A.4). Note that its dimension is the number of
independent non-bounding cycles of {2;; therefore, itis equal to 3 for both the examples
shown in Figures 1.5 and 1.6. Again, the difference is in the basis functions p}, ;,
o = 1,2, 3, which are associated to three “cutting” surfaces. For the three rings in
Figure 1.5 these surfaces are disjoint, for the Borromean rings in Figure 1.6 they have
non-empty intersection.

When e; = Id or u; = Id, where Id is the identity matrix, we simply write
H(I,002; 2r), H(002, I'; 1), H(e; 2r) and H(m; 2r), respectively.

Finally, we introduce two last spaces: the first is

H(e; 2) :={v € (L*(2))?| curlv = 0,divv =0,

vxn=0ondN}, (1.14)

whose dimension is equal to py,, one less than the number of connected components
of 02, and that admits the basis functions grad 2., r = 1,...,pgq, wWhere Z,. is the
solution of the elliptic problem

Az, =0 in{?
2. =0 on 912\ (012),
Zr =1 on (002), .

The second is

H(m; 2) :={v € (L*(2))?| curlv = 0,divv = 0,

v-n=_0o0n0}, (1.15)

whose dimension is equal to ng,, the number of independent non-bounding cycles of
{2, and for which a basis is denoted by 74, t = 1,...,ngp.

Remark 1.1. We note that n g, the number of independent non-bounding cycles of (2
or, equivalently, the Betti number of (2, is equal to O if and only if the domain (2 is
simply-connected. There appears to be some confusion concerning this point in the
literature devoted to electromagnetism (see, e.g., the discussion in Bossavit et al. [64]
and Kotiuga et al. [155]; see also Kettunen et al. [150]). Its proof can be found in
Benedetti et al. [36]. O

1.5 The complete eddy current model

In this section we finally introduce the complete set of equations describing the eddy
current problem. Beside the Ampere and Faraday equations, the vanishing of the elec-
tric charge in {2; and a suitable choice of the boundary conditions, we show that, in
order to obtain a well-posed problem, other equations related to the specific geometry
of 2 must be considered. In fact, if E is a solution of this set of equations, it is still
a solution if we add to it in {2; a harmonic field hy with h;y x n; = 0 on I" and the
same boundary condition of E; on 0{2.
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The further conditions to impose can be determined in several ways. A heuristic
argument suggests to devise these equations just checking which relations are satisfied
by the solution of the full Maxwell system (1.2) but are not satisfied by the solution of
the eddy current model (1.3).

From the Stokes theorem, a solution of the eddy current problem (1.3) must satisfy

O:/curaln:/Je,pn, (1.16)
s s

for each connected components .S of I" U 9f2, the boundary of {2;: this is a necessary
condition to be verified by the current density.
Denoting by EM and HY the solutions of (1.2), in {27 one has

curlH}w = iwe;E}w +Jer s

thus from the Stokes theorem
/(iws;E}w +Je,[) -n=0.
s

Therefore, it is natural to assume that the electric field E;, solution of the eddy
current problem, satisfies

/51E1~n:0, (1.17)
S

as would be the case for the solution of the full Maxwell system (1.2) under the as-
sumption (1.16).

For the electric boundary condition E x n = 0 on {2 these equations are enough.
Instead, for the magnetic boundary conditions H x n = 0 and €E - n = 0 on {2 one
has to proceed further. First of all, it is useful to observe that equations (1.17) reduce to
those associated with the connected components /’; only, as on df2 one haseE-n = 0.
Moreover, considering the basis functions 7y, ; of H., (I", 042; £21), from (1.3) in 27
we have

fQIJE,I'ﬂ-k,I :fQIClll'lH]~ﬂ'k’I
:fQIH]~Curl7l'k’[+an]><H]~7l'k’[ (1.18)
+ fponxHy mp =0,

a new set of necessary conditions for the current density.
Similarly, from the Maxwell equations (1.2) in {2; we find

fQI(iWEIEfw +Jer) T = fs’h curlH}W cmpr =0

Thus, as in the case the solution of the full Maxwell problem (1.2) under the con-
ditions (1.18), one is led to require

o, €1Brmi s =0, (1.19)

foreach k =1,...,n90.
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Summing up, in the case of the electric boundary condition the complete set of

equations is

curlH-ocE =J, in 2
curlE+iwpH =0 in {2
diV(E[E[) =0 in Q]
E;xn=0 on 012 (1.20)
fijIEI'nIZO Vi=1,...,pr
f(aQ%vE]E['Il:O VTZO,l,...,paQ,
with the necessary assumptions
divJ. ;=0 in (27
Jr,der-mr=0  Vj=1...pr (1.21)
f(amr‘]e,pn:O Vr=0,1,...,pa0 .

Instead, in the case of the magnetic boundary conditions the complete set of equa-
tions is

curlH - ocE =1J, in 2
curlE +iwpH =0 in {2
div(e;Ef) =0 in 2,
Hxn=0 on Of2 (122)
erEr-mn=0 on 912
fFJEIEI'nIZO Vi=1,...,pr
fQIEIEI'ﬂ'k,]:O Vk=1,...,n80,
with the necessary assumptions
divJ. ;=0 in (2;
Jer-m=0 on 0?2
fije,I'n]:() Vi=1,...,pr (1.23)

fQIJe,I'ﬂ'k,]:O Vk=1,...,n90.

Note that, as a consequence of the Gauss divergence theorem, the solution to (1.20)

also satisfies
/ EZ]E] Ny = 0.
I, r+1

P

Therefore this equation could be added to (1.20). However, in general we have pre-
ferred to drop from the final problem all the equations that are not independent of the
others. The same remark applies to the problem (1.22) or to problem (1.24) here below.

Remark 1.2. The conditions fQI erE; - =0 (as well as fQI Je -7 = 0)have
a physical interpretation.

In fact, as explained in Section A.4, the basis functions 7 ; can be written in
a more explicit way. Precisely, let us start recalling that in {2; there exist ngp sur-
faces Xy, with 0%, C 0f2, each one “cutting” a I'-independent non-bounding
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cycle in £2;. The functions 7 ; are the (L?(£27))3-extension of grad gy ;, where
qk.1 € HY (27 \ X)) are the solutions to

div(ergradg,1) =0 in 27\ Xy
ergradgrr-n=20 on 92\ Xy
qr,; =0 onl

[er grad qp 1 - n;]xk =0

lak.1]g, =1,

having denoted by [ -], the jump across the surface X and by ny the unit normal
vector on Y.
Integration by parts gives

Jo, €rBr - mi g = [\ 5, €rBr - grad qp, s
= - fQI\Ek div(e/Er) qr,1 + fan\axk erEr-nggr
+ fp erEr -mnyqpr+ ka erEr -nx [Qk,I]Ek
= [y, erEr-ng,

thus conditions (1.22)7 are equivalent to require that the flux of the electric induction
is vanishing on each “cutting” surface. 0

Though in this book we are mainly concerned with problems (1.20) and (1.22), for
the sake of completeness we also present the eddy current problem with the no-flux
boundary conditions (1.9).

The detailed procedure for devising this problem needs some preliminaries, and is
fully described in Section 3.5: here we limit ourselves to present the final result.

The complete problem reads

curlH—-ocE =1J, in 2
curl E 4+ iwpH =0 in (2
diV(E]E]) =0 in Q]
pH-n=20 on 0?2
ertEr - n=20 on 0f2 (1.24)
fFjE]E]'Il]:O Vjil,...,pp
fQIE]E]'ﬂ'k,[:O Vkil,...,nag
JooErxn-ph ;=0 Va=1,...np,

with the necessary assumptions (1.21). Here p}, ;,a« =1, ..., ng,, are the basis func-

tions of the space of harmonic fields H,,, (m; fl;); the number nj, is defined in Re-
mark 1.3 here below and satisfies 0 < n*QI < ng,.

Remark 1.3. Conditions (1.24)g have a physical interpretation. In fact, as made explicit
in Section A.4, we recall that in {27 we have a collection of “cutting” surfaces =7,
a=1,...,ng, with 057 C 02 U I'. The basis functions p, ; are the (L2(82r))3-
extension of grad pz 1> Where p; 1> defined in £2; \ =7, is the solution, determined up
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to an additive constant, to

div(py gradpy, ;) =0 in 21\ E%
prgradp?, ;-ny =0 on (02U TI)\ 0=%
[H} gradpzﬁl ) nE*} . =0 (1.25)
[pzﬁl} =x =1 )
having denoted by [ -] = the jump across the surface =7, and by n=- the unit normal

vector on =7.
Letus denote by n,, the number of “cutting” surfaces =, such that 05,102 # 0.
Clearly one has 0 < nf, < ng,.Ifny, >1,fora=1,...,n%, one has
I I I

JooEr xn-pl = fan\az; E; x n-gradp}, ;
== fan\as; div-(Er x n)py, ; + fag; (Er xn) nz- [pzﬁl} ==
== fan\as; curl Er -npf ; + faz; E;-(nxnz-)
=iw [yonpz: WrHI 0P} + [oz. By -dr
= faz; E;-dr,

hence with (1.24)g we are imposing that the line integral of the electric field is vanish-
ing on the boundary of each “cutting” surface intersecting 0f2. ]

It is worth noting that the conditions stemming from the geometrical properties
of the domain (2; (with the exception of (1.24)g) are orthogonality conditions of E;
to a suitable space of harmonic fields. More precisely, the additional conditions for
the magnetic boundary value problem (1.22) or for problem (1.24) are orthogonality
conditions to H, (I, 912; £21), whereas those appearing in the electric boundary value
problem (1.20) are orthogonality conditions to H., (e; §2;), in all cases with respect to
the scalar product

(WI,21)e;.0, = / EIW “Z] ,
27
where z7 denotes the complex conjugate of z;. In fact,

fQI erE; - gradw; s
= 7‘[9[ diV(E]E])wj’]%»fFE]E] ~n1wj,1+f8951E1 "NWj 1
:fijIEI'nIv

as the function w;  satisfiesw; y = lonIjandw;; =0onl;,i# 5,5 =1,...,pr
(see Section 1.4). Similarly,

fQI erEr - gradw? ;
= —fQI div(erEr) w? ; + JrerEr-ng w’ p+ JooerEr nw’ g,

and the result follows as, taking y equal to a value from O to pp; + pr, the function
w] ; has boundary value 0 on I3,.41, value 1 on only one connected component of
I" U 02 and value 0 on all the remaining components.
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A mathematical justification of the eddy
current model

The aim of this chapter is to analyze in which sense the eddy current model is a proper
approximation of the full Maxwell system. As explained in the previous chapter, the
eddy current problem is a simplified model derived from the full system of Maxwell
equations by neglecting the displacement currents, namely, the term iweE. Therefore
it can be seen either as the low electric permittivity limit or as the low-frequency limit
of the full Maxwell system. The analysis is mainly based on the E-based formulation
of Maxwell equations obtained by eliminating the magnetic field.

2.1 The E-based formulation of Maxwell equations

In this chapter we are not concerned with the problem of well-posedness of the eddy
current model, an aspect that is dealt with in Chapter 3. We simply assume that a solu-
tion of the eddy current equations exists, and that a solution of the full Maxwell system
exists as well, both solutions being smooth enough to justify all the computations we
will perform. Moreover, we focus on the magnetic boundary value problem (1.22),
leaving to the reader the modifications needed for treating the electric boundary value
case (1.20).

The geometrical situation is that described in Section 1.3. Moreover, as already
indicated, in agreement with well-known physical considerations we suppose that the
matrix p is symmetric and uniformly positive definite in {2, with entries in L°°((2), the
matrix €7 is symmetric and uniformly positive definite in {2;, with entries in L™ ({2;),
and the matrix o is symmetric and uniformly positive definite in {2, with entries in
L>(£2¢), whereas it is vanishing in £2;. Finally, the current density J. € (L?(£2))?
satisfies the necessary conditions (1.23).

In the Maxwell system, and also in the eddy current model, it is possible to elim-
inate either the electric field (as it will be done in the first part of Chapter 3) or the
magnetic field. For the full Maxwell system the two formulations are quite similar, but
this is not the case for the eddy current model. In particular, in order to compare the
two problems it is convenient to use the electric approach, eliminating the magnetic
field.

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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From the Faraday law in (1.22) one has .~ ! curl E = —iwH, then substituting in
the Ampere law we obtain the E-based formulation of the eddy current problem

curl(p=tcurl E) + iwoE = —iwJ.  in 2

diV(E]E]) =0 in Q]

pteurlExn=0 on 0?2

eftEr ' n=0 on 0?2 2D
fijIEI'HIZO Vi=1,....pr
fQIEIEI'ﬂ'k,I:O Vkil,...,nag.

To help the reader, we remark that if the boundary of the conductor {2¢ is con-
nected then pr = 0, and that if {2 is simply-connected then ng, = 0. An example
of this simplified geometry is that of a connected conductor (possibly with “handles’)
contained in a computational domain similar to a “box”.

Using integration by parts it is easily seen that a solution E to (2.1) satisfies

Jo pteurlE - curlz +iw Jo. 0Ec -Zg
v 400 0 o ‘ IO Y))
+¢5 [, div(erEr) div(eszr) = —iw [, J. - Z
for all z € H(curl; 2) with div(e;z;) € L*(£2r), where ¢ > 0 is an arbitrarily
chosen dimensional constant.
Let us consider the space

We, (£21;2) :={ze€ H(curl; 2) | zr € Hy p0(er, div; £21),

21 L5t H (T, 00; Op)} 2:3)

where the symbol 17 denotes the orthogonality with respect to the scalar product

(WlazI)EI,QI ::/ EIWT " Z]
2r

(for the other notations see Sections 1.4 and A.1). In W¢, (£2; §2) we define the norm

. 1/2
lzllw., (2r2) = (Ilcurlz|[§ o + ||2lI5 o + || divierzn)|§ o,)

Recalling that, as shown in Section 1.5, the integral conditions in (2.1) are orthog-
onality conditions with respect to the space of harmonic fields H., (I, 942; £2;), with
respect to the scalar product (-, -), ,, we have in particular that E € W, (£2r; 2).

In the space W, (£2r; £2) let us define the sesquilinear form

al(w,z) == [,p " eurlw - curlZ + iw JooowWe - Zc

. . ek 24
+c5 [, div(erwr) div(erzr) . 24

With the aim of analyzing the asymptotic behaviour of the solution E as the electric
permittivity € tends to O or the angular frequency w tends to 0, an important point is to
show that the sesquilinear form a} (-, -) is coercive in W¢, (£2r; £2).

We need some preliminary results. It is known that there are several ways of writ-
ing a vector function belonging to (L2(£27))? as the sum of a curl, a gradient and a
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harmonic field. In particular, let us recall (see Theorem A.6) that z; € (L?(£27))? can
be represented as
ZI:eflcurquJrgradga]Jrh] , 2.5)

where q; € Hy go(curl; 27) N HY (div; Q1) NH(OL, T; 20)*, or € HE 1(£2r)
and h; € H.,(I,002; 2;). Moreover, we also know that if z; 151 H_, (I, 012; 2;)
we have hy = 0.

A second useful result is the following one.

Lemma 2.1. There exists a constant C > 0 such that

Iz1ll0.0, < C(|l curlzs]|o, 2, + || div(erz)]lo,e,
+lzr X 01l g-1/2 (i, .y + €121 11l 21 )2,00)

Sforall zr € H(curl; 2r) N H(eg, div; 27) withzp L5 H, (I, 082; £21).
Proof. Since z; L°"H,(I", 042; £21), from (2.5) we can write
Z; = e;l curlqy + grad ¢y .

Then we estimate the norm of the two terms on the right hand side. Looking at
problem (A.14), we start by considering | o, 21" curl q7. Integrating by parts we have

'ffh z1~curlm’ = “91 curlzy - Q7 + [ 27 x ng @’

< C(|[curlzrlo,0, + zr X 01l g-1/2(giv,;ry)(larllo,2, + [ curlarllo,e,)

where we have used the duality estimate

/zfxnr@
r

(see Section A.1) and the tangential trace inequality (A.11)

< Cllzr x nI”H*l/?(divT;F)”nI X qr X nI||H*1/2(curlT;F)

s x ar xnyl[g-12un;ry) < Cllarllo,e, + [l curlarlo.e,) -

On the other hand, from the Poincaré-like inequality (A.15) and taking also into ac-
count that divq; = 0 in {27 we find

[tk <c [ (eaf+jdiva?) = ¢ [ eral.
27 27 27

Summing up, choosing p; = qy in (A.14) gives
le™ curlallo,2, < C(| curlzrllo,0, + |12 X nsllg-1/2(div, ;) -
Another integration by parts in the right hand side of (A.17) furnishes

‘fm €121 ~grad@‘ = ‘ffm div(erzr) o1 + [, €r21 - n@‘
< C(lldiv(erzi)llo,o, + llerzr - nill-1/2.00)(lerllo,e, + | graderllo,e;,)
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having used the duality estimate

/ EIZ] NPT
a0

(see Section A.1) and the trace inequality (A.8)

< Cllerzr - n||-1/2,00ller00l1 /2,00

leroalli/z00 < Clerllo,e, + |l graderllo.o;) -

Since the Poincaré inequality (A.18)

/ o1 ]? < c/ | grad 2
QI QI

holds in H&F(QI), choosing n; = ¢y in (A.17) we have
| grad ¢rllo,e, < C(||div(erzr)llo,e, + lerzr - nrll-1/2,00)
and the thesis follows. O

As a consequence we have the following lemma, that is the main point for proving
the coerciveness of the sesquilinear form a* (-, -).

Lemma 2.2. There exists a constant C > 0 such that for each z € W, (£2r; £2)
I2ll0.0, < C(Ileurlzllo.0 + || divierzr) o.c, + lzcllo.co)

Proof. First we recall that z € H(curl; £2) if and only if zc € H(curl; 2¢), z; €

H(curl; ;) and zc x ncg = —z; xnyon .

From Lemma 2.1 we have

|zrllo.e; < C (|| curlzrljo,, + || div(erzr)|o,e; + |21 X nrllg-1r2aiv,:1))
= C (|lcurlzrllo,@, + [|div(erzr)llo,o, + lZzc X nellg-1r2aiv, )

Taking into account the tangential trace inequality (A.10), namely,
|zc % nC”H*l/?(div,;F) < kllzelmEewioc)
the proof is complete. 0
Now we are in condition to prove the main result on this section.

Theorem 2.3. The sesquilinear form a (-, -) is coercive in W, (£21; £2), i.e., there ex-
ists a constant Cy > 0 such that

|as(z,z)| > COHZH%/VaI(QI;Q) forallz € W, (£21;02) . (2.6)
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Proof. As a consequence of Lemma 2.2 we have, for all z € W, (£2; 2)

213y, (2r0) < C1 (lleurlz|§ o + llzcl§ o + I divierzn)lf o) . @)

for some positive constant C;. Since v := pu~! and o are symmetric and uniformly

positive definite in {2 and {2¢, respectively, we have

2
la}(z,2)|? = (fQ p~teurlz - curlz + ¢ [, div(erzr) div(e;z_l))

2
+ (wfnc owWe ﬁ)
. 2 2
> (Vinl| curlz]|§ ;, + c5lldiv(erzn)[§ o,)” + (Wommnllzel§ o)
. 2
> Oy (|| eurlz|§ o, + || div(erzn)ll§ o, + lzclf o.)

)
> C2C1 |2l (0,0

where Vp,iy is a uniform lower bound in (2 for the minimum eigenvalues of v(x),
Omin 18 a uniform lower bound in {2¢ for the minimum eigenvalues of o (x), and
Cy = f min(v2,,, ¢, w?o2;,). O

min» min

Remark 2.4. The proof of the coerciveness of the sesquilinear form a (-, ) is the cru-
cial point in showing, via the Lax—Milgram lemma, that the weak problem

Find E € W,, (£21; £2) such that

Joun tcurlE - curlZ + iw ch cEc - Z¢
+c fQI div(e;Ey) div(erzr) = —iw fQ J. Z

foreach z € W, (£21; 02)

is well-posed.

Starting from this result, some additional work gives that also the solution to (2.1)
exists and is unique. However, we do not want to consider this aspect here, and we
refer to Chapter 3 for a systematic approach to the existence and uniqueness theory
for eddy current problems, where the result is based on a simpler weak formulation in
terms of the magnetic field H only, and to Section 6.1.5 for a complete analysis of the
E-based formulation (2.1). O

2.2 The eddy current model as the low electric permittivity limit

By eliminating the magnetic field in the time-harmonic Maxwell equations we obtain
the following boundary value problem for the electric field E* (with the magnetic
boundary condition)

{ curl(p=t curl EM) — w2eEM +iwoEM = —iwJ, in 2 2.8)

pteurlEM xn=0 on 042 .

Here € is a symmetric tensor, uniformly positive definite in {2, with coefficients in
L*°(£2) and, as usual, E|n, = €I As we have already explained in Section 1.2, the
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eddy current model is obtained by neglecting the term w2 EY, that corresponds to the
displacement currents.

In this section we consider an electric permittivity of the form s := de, where
0 > 0 is a real number. Clearly, the physical problem described by the full Maxwell
system corresponds to the case § = 1. We want to show that the eddy current model is
the limit as J tends to O of the problem with electric permittivity €. This is the notion
of eddy current limit presented in Bossavit [58], Chap. 4.

We will show that the norm in H (curl; 2) of the difference between the electric
field solution of the full Maxwell system and the electric field solution of the eddy
current problem is of order §. This result has been proved in Costabel et al. [90] who
impose the electric boundary condition E x n = 0 on 0{2. Here we report a proof of
this result in the case of the magnetic boundary condition H X n = 0 on 0{2, that, in
terms of the electric field, is the boundary condition considered in (2.1) and (2.8).

Let us denote by E the solution of the eddy current problem (2.1) and by EY the
solution of the full Maxwell system

{ curl(p=t curlEY) — w26eEM + iwo EM = —iwJ, in 2 2.9)

pleurlEY xn=0 on 92 .

For the existence and uniqueness of solution of (2.9) see, for instance, Alonso and
Valli [8], Alonso and Raffetto [15].

As shown in Section 1.5, the current density J. has to satisfy conditions (1.23),
that are necessary conditions for the solvability of the eddy current problem. Let us
rewrite them here

diVJe,I:() in .Q]
Jerrn=0 on 012
fije,I'nIZO Vi=1,...,pr
fQIJe,I'ﬂ'k,I:O Vk=1,...,n90 .

(2.10)

We notice that from these conditions it follows that J. ; € H,,(I,082; 1)+
and that the solution E} of (2.9) belongs to W¢, (21; £2). In fact, by a direct com-
putation from (2.10) we have div(EIE%) = 0, and moreover EIE% ‘n = 0on

042, as from the boundary condition g~ curl E¥ x n = 0 on 942 it follows that
curl(p=tcurl EX) - n = 0 on 042. Finally, it is clear that E%LEIHEI (I,082; £21),
since for all hy € H,, (I', 042; £21) we have

Jo, erE} - h; = =5 o, curl(p; ! curl E§Y,) - hy + % Jo, Jer-hr
= 35 o, py ' curl Y - curlhy
+=5w [1Up0 DI X u;lcurlE% -h;=0.
We are thus in a position to prove the main result of this section.
Theorem 2.5. There exists §* > 0 such that if 0 < § < 0* one has
1B — B3| rcuniy < €4,

for some constant C' > 0 independent of é.
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Proof. Taking the difference between the first equations in (2.1) and (2.9), multiplying
by a test function z € H (curl; 2) and integrating by parts one obtains

/ H71 curl(EfEénycurlE«I»iw/ o(Ec fE ) 7o = — w2 / EE(I;VI'E-
2 Rc 0

Since div(er(Er — E(I;VII)) = 0 in {27, from the coerciveness of the sesquilinear form

aX(-,-) in W, (§21; £2) it follows that there exists a constant Cp > 0, independent of

4, such that
CollE ~ By Iy eunsy < laz(E ~E}")| = |6u? [, B}’ - (B - E}T)

< la
S ow 5max||EIVI||O Q”E EIV ||0(27

where £y, s a uniform upper bound in {2 for the maximum eigenvalues of e(x).
Therefore

w2
1 €max
”E - Eé\/[”H(curl;Q) < o CO ||E ||0 2 - (211)

Now we need to show that |[E}||o ¢ is bounded uniformly with respect to ¢. To
do that we proceed as follows: first of all EX satisfies

/ plcurl EY - curlz + Z'w/ oEM. 7c = / (—iwJ, + 6w’eEM) . Z
o) 2c ’ o)

for all z € H (curl; £2). Then, since div(sIE(I;V,II) = 0 in {27, using again the coercive-
ness of a(-,-) in W, (§2r; £2) we have

CollE§" rrcuri) < lwllTello,2 + 0w emax] E5 o, -

Now, taking for instance J, = s—2—, for all § < ¢, we find

C
2w3e
w
”EéI”H curl;$2) < | 0| ||Je||0¢(2 5

and by substituting in (2.11) we obtain the desired result. g

2.3 The eddy current model as the low-frequency limit

The eddy current model can also be considered as the low-frequency limit of the full
Maxwell system. This statement must be properly understood, since the limit problem
obtained by formally taking the frequency equal to 0 is in fact the magneto-electrostatic
problem, where induced eddy currents are not present. The interpretation of the limit
procedure we are interested in is that the difference between the solution of the full
Maxwell system and the solution of the eddy current model is vanishing as the fre-
quency is going to 0. A different asymptotic analysis is performed when focusing on
the difference between the eddy current solution and the magneto-electrostatic solu-
tion: this problem is considered in Section 7.4.
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In this section we assume that all the material parameters are fixed and we consider
the asymptotic behaviour as the frequency goes to 0 of the difference between the
solution of the full Maxwell system (2.8), denoted by E , and the solution of the eddy
current problem (2.1), denoted by E. We focus on the magnetic boundary condition
H x n = 0 on 9{2, but we recall that this result also holds true when considering the
electric boundary condition E x n = EM x n = 0in 942, as proved in Alonso [5].

We show that the norm in L?(£2) of the difference E — EM is of order |w|. We
also give an estimate in terms of w of the L?(£2)-norm of the difference between the
magnetic fields.

As a first step we obtain an estimate of the energy norm of E — E in terms of a
power of |w| times the L?(§2)-norm of EM. Since the solution E* depends on w, a
second step is the proof that the L?(§2)-norm of EM is uniformly bounded in |w|.

Lemma 2.6. There exists a constant C' > 0, independent of w, such that
| curl(E — EM)|[18 , + [w[[Ec — EY 1§ 0n < Clwl*(Jwl + DIEY|E o, -

Proof. As we have seen in the previous section, from (2.10) we know that (E—E*) €
W (£2r; £2) and that

/uflcurl(EfEM)~curlZ+iw/ a‘(chEgyE:wa/ eEM .z
2 20 Q

forall z € H(curl; £2).
Taking z = E — EM we have

[ uteurl(E — EM) - curl(E — EM) ) +iw [, o(BEc — EY) - (Ec — EM)
:—wZIQEEM (E EM)

hence

mln

||Clll'l(E EM)||4Q+w Um1n||EC 7EM||O c
< wlehax IEY[E ol E - EMF o

max

Sincediv(e;(E;—EM)) = 0in {2/, from (2.7) we know that there exists a constant
C > 0, independent of w, such that

|E—EY|2, < (|eurl(B - B2, + [Be —EXZ,). @12
therefore we find, for a constant C's > 0 independent of w,

|| curl(E — EM)||0 o+ w?|Ec —EY |3 Q¢
< C3w!|[EM |5 o[ curl(E = EM)[IF o + [[Ec — E¥ 5 o) -

Using that for each § > 0 it holds AB < 2—15142 + gBZ, we have

[ eurl(E — EM)|§ ¢ +w?[|Be — BY[5 o < (g7 + 25;) CES M5 o
%ll curl(E — EM)|§ o + %[|Ec — BY 5 o, ,
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for §; > 0 and &, > 0. Taking in particular §; = 1 and 6 = w? one finds
| curl(E — EM)|[§ o + | B — E¢f [[g, 0, < CF(w? + WP |[EM o,
hence the desired result. g

The following result provides a bound for ||[EM||o , that is uniform with respect
to |w|.

Lemma 2.7. There exists a constant w*, 0 < w* < 1, such that for |w| < w* one has
IEY o0 < C,
for some constant C > 0 independent of w.
Proof. Multiplying the first equation of (2.8) by E* and integrating by parts we obtain
Jon ' curl EM - curl EM + jw Jo, 7B -EY
=—iw [, Je -EM 4,2 [, eEM -EM |

hence o
|Cll1'1E ||O(Z+w mln”E ||O Qc

< 2W2||Je||o,(z||EM||o,(z + 2wte

rnln |

IEY5.¢2 »

max
or simply, for a suitable constant C> 0, independent of w,

| curl EM[E ;, + w1 1E e,
< C(wllTello.clEM llo,0 + W IIEMF ) -

Since div(e;/E¥) = 0in {2/, as in (2.12) we have
IEY3 o < Cr (I eunt BYF o + IBE G o) -
Then, for |w| < 1,

IEMI3 o < Crp (Il curl EM 1B o + |w[[|EX (13 o)
< CCL (W[ Tello,2EM[lo, + w* [EM[F ) (2.13)
< 3C°CHIelf o + SIEM|E o + COrlw||EM|E 4 -

To finish the proof we have only to choose |w| < min{1, —— 4CC }.

In conclusion, we have obtained the following result.

Theorem 2.8. There exists a constant w*, 0 < w* < 1, such that for |w| < w* one

has ,
IE = EM]lo.e < Clw]

I~ HMlo,0 < Clw|'/?,

for some constant C > 0 independent of w.
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Proof. From Lemma 2.6 and Lemma 2.7 for |w| < w* we have
[eurl(E — EM)[F o + [w]|Ec — BE§ o < Culwl(lw] + 1) (2.14)

for some constant C', > 0 independent of w. Hence proceeding as in (2.13), for |w| <
w* we find
|E—EY|5 5 < C10w (Jw| + 1) < 201Cuw?.

From (2.14) it also follows that
| curl(E — EM)|jp.0 < C|w|?/2.
Finally, from the Faraday law curl(E—EM ) = —iwu(H—HM ) we have also obtained
I —HY |0, < Clw]'/?,

which ends the proof. g

2.3.1 Higher order convergence

Under suitable additional assumptions the order of convergence can be improved. The
following result can be found in Schmidt et al. [223], where the eddy current modeling
error has been investigated under different points of view.

Lemma 2.9. Suppose that divJ. = 0 in {2 and that (2¢ is simply-connected. There
exists a constant w*, 0 < w* < 1, such that for |w| < w* one has

IEM 0,0 < Clw|, 2.15)
for some constant C' > 0, independent of w.

Proof. For a while, let us proceed without making use of the assumptions that
divJ. = 0in {2 and {2¢ is simply-connected.

Since from Theorem 2.8 we have ||E — EM ||y o < C|w|,itis enough to show that
IE]l0,» < C|w|. From the Ampere equation we have div(cE + J.) = 0in (2, hence

div(ceEc 4+ Jec) =0 in ¢

and
(6Ec +Jcc) ng=—-Jer-ng onl .

Proceeding as in Lemma 2.1 we obtain

[Ecllo,ec < C(ll curl Ec 0,020 + || div(eEc)|lo,0c
+leEc -nc| 12, + ZZZ? Jo. oEc - PZ,C‘ )

< (|l eurl Be lo.ce + Il divIe.cllo,oc
| Je,o o +Jer-ngl|—1j2.r + ZZZ?

frzc oE¢ 'pZ,C‘ )>
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where pf; o, 3 = 1,...,ng,, are the basis functions of the space of harmonic fields
H,(m; 2¢) defined as follows

Ho(m; 2c) = {zc € (L*(£2¢))?| curlz¢ = 0, div(ozc) = 0,
ozc-nc=0onl'}.

Moreover, from Lemma 2.2 we know that
[Erllo,2, < C(||curlEfjo,o + [|Ecllo,0c)

so that we end up with

[Elo.0 < (]l curl Ello,co + | div Ie.clo,
H|Je,o - ne+Jer-nr|—1/2r (2.16)
+ 3555 | fop 7B - P

From the Ampere equation we obtain by integration by parts

/uflcurleurlEJriw/ a‘EC~E_C:fz'w/Je~E,
i) Q¢ i)

hence
2
[ curl E[|§ o < Clw|[[Jello,2 [Elo,s0 -

In conclusion, assuming that divJ, c = 0in f2c and Jo ¢ -n¢ + Je, 7 -ny = Oon
I" (which is equivalent to require that divJ. = 0 in {2, as we have already assumed
divJ. ; = 01in £2;) and that {2¢ is simply-connected (so that the space H, (m; £2¢)
is trivial), from (2.16) it follows

1/2 1/2
IEllo. < C|lcurlEllo.q < Clwl*/2|| 3]s/ IEN o |

hence
1El[o,2 < Clw[|[Tello,e2 »

which ends the proof. g
Corollary 2.10. Under the assumptions of Lemma 2.9, for |w| < w* one has

|E = EY|lo,0 < Clw/?
, (2.17)
IH —HM|lo,0 < Clw]*?.
Proof. From (2.15) and Lemma 2.6 we find
| curl(E — EM)|[S o + [w|[Ec — E&/ |13 0, < Clol®,

and consequently, proceeding as in Theorem 2.8, the thesis follows. g
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Remark 2.11. If we were able to prove that o E¢ is L? (2¢)-orthogonal to H,, (m; £2¢),
in Lemma 2.9 we could avoid to require that {2 is simply-connected.

In Ammari et al. [23] an attempt is made to devise the necessary and sufficient
conditions on J. ensuring that oE¢ is orthogonal to H,, (m; {2¢); however, their ar-
gument is not conclusive, and to our knowledge a characterization of this orthogonality
property in terms of J. is not known. d

The estimate for the difference between the magnetic fields can be improved even
if we do not impose additional conditions on J. and {2¢.

Theorem 2.12. Suppose that the domain (2 is simply-connected. There exists a con-
stant w*, 0 < w* < 1, such that for |w| < w* one has

IH—-HY o0 <Clu| . (2.18)
Moreover, if estimate (2.15) is satisfied one has

IH—H o0 < Cw?. (2.19)
In both cases the constant C' > 0 is independent of w.

Proof. To prove this result we use the formulation of the eddy current model in terms
of a magnetic vector potential A and a electric scalar potential Vi (see Chapter 6).
This means that we consider A and V such that

curlA=pH and Eqo = —iwAg —grad Vo .

Since {2 is simply-connected, we can also do the same for the Maxwell equations, and
introduce AM and V2 such that

curl AM = pHM and EY = —iwAY — grad VA .

Setting now (Z, N¢) := (A — AM Vi — VM), it is easily seen that it satisfies the
problem

curl(u=t curl Z) — p; ! grad divZ
+iwoZ + o grad No = —iweEM  in 2

div(iwoZc + o grad N¢) = —iw div(eEM) in 2¢

(iwoZc + o grad N¢) - nco (2.20)
= —iw(ecEY nc+e/EM -n;) onl

Z-n=0 on 012

(utcurlZ) xn=0 on 02,

where N¢ is determined up to an additive constant in each connected component of
2¢. The corresponding weak formulation is the same than that presented in (6.12),
with J. replaced by —iwe EM.

Proceeding as in Section 6.1.2 (see in particular (6.36), (6.37), (6.38) and (6.39)),
it can be proved that

leurl Z[[§ ¢ + | divZ|3 o + | ZIF o + [w ' 7IINC T o — CalwlTIZ3 o
< CulwllleEM 0.2l Zll0.c + CaleEY 0.0 Nel .0



2.3 The eddy current model as the low-frequency limit 33

for each 0 < 7 < 1/2 and a suitable positive constant Cy, independent of w. Then for
each 91 > 0and d2 > 0

(1= Calw|DNZIE o + [ curd ZI[§ ¢ + || div Z[If o, + || 7| Nelf g

1 [ 1 [
< 55, Ci? B[ o + F1Z13 o + 55, CEIEEM I3 o + ZINC . -

Taking 7 such that 1 — Cy|w|7 > 0 and choosing §; = 1 — C4|w|T and §y = |w| 7,
we obtain that

[l HINGIR o < O3 e B 3 o + CRIwl LB

If we choose 7 = min{3, m} for |w| < 1 it is straightforward to verify that

INcl.c < CslwlleEY o, ,

for some positive constant C'5, independent of w.
Coming back to the weak formulation, we see that in particular we have

Jo (pteurlZ - curl Z + it div Z|?) + iw Joo0Zc E_

= —iw [,eEM . Z — f(zc ograd No - Z¢ . 221
Hence, taking again into account (6.39), from (2.21) it is easy to see that
H-HM = || curl Z
I lo.e = llcurl Z]o.o .

< C(Jwl[[EM]jo, + [[Nell1,00) < Cslw|[EM |0,
for some positive constant Cg, independent of w. Thus, from Lemma 2.7,
IH—HY|o,0 = O(|w]) .

If we assume moreover that |[EM|g, < Cluw| is satisfied (see for instance
Lemma 2.9), from (2.22) one readily obtains (2.19). O

Remark 2.13. The geometrical assumption in Theorem 2.12 can be relaxed.

First, the solution of the Maxwell equations can be written in terms of AM and
VAT in more general geometric situations; for instance, it is surely true if the domain
(¢ is contained in a simply-connected domain (2 which is contained in 2 (hence, for
example, if {2 is simply-connected).

Moreover, the results in Section 6.1.2 hold under the quite general geometri-
cal assumptions that are described there by requiring that (6.2) is satisfied and that
ngn = ng (in particular, these assumptions hold true if {2 is simply-connected). [J

Remark 2.14. In Ammari et al. [23], the full Maxwell problem and eddy current prob-
lem are considered in R? with the following asymptotic conditions at infinity: for the

full Maxwell system (HM X ‘—i‘ — EM)) tends to 0 uniformly as |x| goes to infinity,
and for the eddy current problem H(x) = O(1/|x|) and E(x) = O(1/|x|) uniformly
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as |x| tends to infinity (see Chapter 7 for a more detailed presentation of the eddy
current problem in the whole space R?).

Formally expanding the solutions of both problems in power series with respect
to w, they show that the eddy current model is a first order approximation of the full

Maxwell system
IE - EY 0.0, < Clw

”H - HM”O,QR < C|w| )

where 25 := (R \ £2¢) N Bgr and By, is the open ball of radius R and center 0. In
that paper the electric permittivity and the magnetic permeability are assumed to be
constant outside Brg.

If additional conditions on the current source J. and on {2¢ are fulfilled, they show
that the eddy current model is in fact a second order approximation of the full Maxwell

system
IE = EMlo,0, < Cw?

IH-HM||§ o, < Cuw?.

More precisely, having expanded J. in the formal series

J. = ilei ,

>0

where as usual for all [ > 0 one has required that div Jle’I = (0 and fp_ Jle’I -ny =0

forall j = 1,...,pr + 1, the additional assumption on the leading term J? is the one
we have already devised before for the complete field J., namely, divJ? = 0 in R3.
Moreover, to complete the proof of the second order approximation, the conductor {2¢
is assumed to be simply-connected.

Let us also note that in this case {2 = R3 is simply-connected, therefore the
asymptotic behaviours obtained by Ammari et al. [23] are in perfect agreement with
those established by resorting to the vector potentials A and A™: namely, first or-
der approximation under general geometrical assumptions, in particular when (2 is
simply-connected, and second order approximation under the additional assumptions
that divJ,. = 0 in {2 and the conductor {2¢ is simply-connected. d
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Existence and uniqueness of the solution

The proof of the existence and uniqueness of the solution to problems (1.22), (1.20)
and (1.24) is quite similar. In this chapter, following Alonso Rodriguez et al. [11], we
mainly focus on the magnetic boundary value problem (1.22), adding in Section 3.5 a
few comments on the electric boundary value problem (1.20) and the no-flux boundary
value problem (1.24).

The simplest way for obtaining the existence result is passing to a suitable weak
formulation in terms of the sole magnetic field H, and applying the Lax—Milgram
lemma. Then the determination of the electric field is straightforward in {2¢, while in
(21 it requires the solution of the first order curl-div system. The solvability of this
last problem is ensured if some compatibility conditions are satisfied, and these can be
verified by writing in an explicit way the strong formulation of the eddy current model
in terms of H. Having determined E7, it is easy to prove the existence and uniqueness
result for the complete eddy current model in its strong form (1.22).

It has to be noted that the existence and uniqueness of the solution of the eddy
current problem can be proved in many different ways. In Chapter 2 we have essentially
given the proof for the E-based formulation (see Remark 2.4); in Chapters 4, 5, and
6 we derive a well-posedness analysis for some hybrid formulations, for the scalar
potential formulation and for the vector potential formulation, respectively.

However, we think that the simplest proof is the one we present in this chapter,
by focusing on the H-based formulation. This permits also to clarify the problem to
solve for the electric field E; in the insulator, and at the same time to obtain the com-
plete strong formulation in terms of the magnetic field only: a problem that was not
completely understood in the literature (see Sections 3.3 and 3.3.1).

We also observe that the theoretical results we prove in Chapters 4, 5, and 6, though
not specifically needed for showing well-posedness of the eddy current problem, are
however useful for analyzing the convergence of the finite element schemes there pro-
posed.

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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3.1 Weak formulation, existence and uniqueness for the magnetic
field

In this chapter the geometrical situation is the one described in Section 1.3, and, as
was the case there, we assume that the matrix g is symmetric and uniformly positive
definite in {2, with entries belonging to L>°({2), the matrix £; is symmetric and uni-
formly positive definite in {2;, with entries belonging to L>°({2;), and the matrix o is
symmetric and uniformly positive definite in 2¢, with entries belonging to L>°(£2¢),
whereas it vanishes in §2;.

Moreover, we suppose that the current density J. € (L?(£2))? and satisfies the
(necessary) conditions

divJ.r=0inf2; , Jo;-n=00n012. 3.1

However, this is not enough: in fact, as shown in Section 1.5, two additional necessary
conditions, related to the topology of (2, have to be assumed, namely,

fije,I'nI:E V]il,,pr (32)
fQIJe,I'ﬂ'k,I*O Vk—l,...,nag,
where 7y,  are basis functions of the space of harmonic fields H., (I, 9§2; £21) (to be
precise, the basis functions of that space that are not expressed as the gradient of a
potential: see Section 1.4).
As a consequence, Theorem 4.2 in Alonso and Valli [6] shows that there exists a
vector field H, ; € H (curl; £21) satisfying

(Bt mon, @
and we can also construct a vector field H, ¢ € H (curl; £2¢) such that
Hecxnc+Herxny=0 onl'. (3.4)
We finally define H, € Ho(curl; {2) as
s {1 o
it can also be shown that H, continuously depends on J..
Let us introduce the (complex) vector space
V= {v e Hy(curl; 2) | curl vy = 0in 2/}, (3.6)

endowed with the norm

1/2
vy = (/ |curlvc|2+/ |v|2> .
Rc (%
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Following the presentation in Bossavit [59], multiplying the Faraday equation by Vv,
with v € V, integrating in {2 and integrating by parts we find

/ Ec~curlﬁ+/ E1~curlv_1+/ an~V+/iwuH~V:0, (3.7)
Q¢ 27 on 2

thus

/ Ec~curlw+/ wpH - v =0, (3.8)
Q¢ Q

ascurlvy = 0in {27 and v x n = 0 on 9f2. Using the Ampere equation in {2¢ to
express E¢, we end up with the following problem

Find (H - H,) € V :
ch o~ 'curlHe - curlvg + [, iwpH -V = ch o . c-cullvg  (3.9)
foreachv eV .

This formulation is shown to be well-posed via the Lax—Milgram lemma (see, e.g.,
Bossavit [59], p. 313; Dautray and Lions [94], Chap. VI, Sect. 3, Theor. 7 and Rem.
8; Quarteroni and Valli [199], p. 133). In fact:

Theorem 3.1. The sesquilinear form
a(u,v) := / o 'eurluc - curl vg + / iwpu -V (3.10)
2c o)

is continuous and coercive in'V .

Proof. The continuity follows at once from the boundedness of o' and p. The co-
erciveness reads

2
( curlvc~curlﬁ) + w? (fnuv~v)2

(3.11)
2
max (fQ |Cll1'1VC| ) +w2:u’?nin (fQ|V|2)

\/

where 0 p,.x is a uniform upper bound in {2 for the maximum eigenvalues of o (x)
and fimin is a uniform lower bound in {2 for the minimum eigenvalues of u(x). O

Since the anti-linear forms
v — ch o .o curlvg
v = fo, o 'eurlHe ¢ - curlve + [, iwpH, - ¥
are clearly continuous in V, from the Lax—Milgram lemma we have:
Theorem 3.2. There exists a unique solution to problem (3.9).

This result is the basis of the existence and uniqueness theory for the complete eddy
current problem. However, let us note from the very beginning that it is not straight-
forward to devise a numerical algorithm based on this formulation, as the space V'
contains the differential constraint curl vy = 0 in {2;.
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3.2 Determination of the electric field

In the preceding section we have determined the magnetic field H solution to prob-
lem (3.9). The electric field in the conductor can be directly found by setting

Ec =0 '(curlHe — J. o) in 0 . (3.12)
Therefore, we only need to find E;, that has to satisfy

curlE; = —iwp  Hy in {21

div(e/Er) =0 in £2;

erEr-n=0 on 91?2

Jr,erBr-n; =0 Vi=1,....pr (3.13)
fQIEIEI'ﬂ-k,I:O szl,...,nag

E; xn;=—-Ec xnc onl'.

We recall that the problem above becomes simpler if the boundary of the conductor
¢ is connected, so that p = 0, and the domain (2 is simply-connected, so that
nagn = 0: as an example, the reader can think to a connected conductor, possibly with
some “handles”, contained in a “box”. This simplified geometrical situation is not very
restrictive, as we require that the computational domain {2 (and not the conductor) has
a simple shape, and indeed in many engineering applications {2 can be chosen freely.

It has to be noted that in solving equations (3.13)1, (3.13)g some compatibility
conditions on the data must be satisfied. In fact, one has

div(iwpHr) = —diveurl Ef =0 in 27,

div,(E¢ x ng) = —div,(E; x ny)
=—curlEr -n; =iwpHy -ny onl,

/ iquHpn:f/ curlE; - n=0 Vr=1,...,p90 .
(092)r (092)r

This is not enough: for any function v; € H(curl; £2;) with curlv; = 0 in 2; and
vr X n = 0 on 0f2 we have

fiwfm wH -V = fa’h curlE; - v7
= [rn; xE;-vi= [ Ec xn¢g - V7.

In particular, one can take vy = PLr l=1,...,np, thebasis functions of the space of
harmonic fields H,,, (042, I'; £21) (precisely, the basis functions of that space that are
not gradient of a potential: see Section 1.4). With that choice the latter compatibility
conditions read

iw/ MIHI'PUZ*/ECXHC'PU Vi=1,...,np.
QI r
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Therefore, for determining the electric field E satisfying the Faraday equation in
the whole domain {2 we need to satisfy

div(iwp;Hy) =0 in £2;
iwuHy -ny =div,(Ec xng)  on I’
Jioq, iwnHr -n=0 Vr=1,...,ps0 (3.14)

fQI iw“IHI'pl,I
=— [p(BEc xng)-p g Vi=1,...,np.

What we are facing here is not a problem related to a point of secondary importance,
namely, determining the electric field in the insulator {2;; it is instead a basic aspect in
the solution of the eddy current problem in {2. A formulation in terms of the magnetic
field H alone (and with Ec = o1 (curlHe — Je ) is not correct if any of these
compatibility conditions is missing.

In particular, we want to focus on the conditions

/ z‘quprU:f/(Ecxnc)~pu Vi=1,...,nr,
27 r

related to the topology of (2;. The fact that these are necessary conditions for find-
ing the correct physical solution has been often overlooked in previous works on the
subject. We will see in Section 3.3.1 that these conditions can be interpreted as the
Faraday equation on the surfaces in {2; that are “cutting” the 0f2-independent non-
bounding cycles in {2;. We also analyze in Section 3.3.2 whether these conditions are
satisfied when the eddy current problem is described through some other frequently
used formulations.

It has been shown that conditions (3.14) are also sufficient for proving the exis-
tence and uniqueness of the solution of (3.13) (see, for example, Saranen [218], [219],
Alonso and Valli [6]). More precisely, we have:

Theorem 3.3. Assume that the electric field Ec and the magnetic field Hy satisfy the
compatibility conditions (3.14). Then there exists a unique solution Er to (3.13).

Proof. As already shown in Section 1.5, for any basis function
gradw; 1 € He, (I,00;021), j=1,...,pr,
we have
fQI erE; - gradw; s
= —fQI div(erEr) wjr + [y, erBr -nwjr+ [ erBr -nywj

= fpj efEr-ng,

as div(e;E;) = 0in §2; and €;E; - n = 0 on 9f2. Therefore a solution E; to
(3.13) is orthogonal to the space H., (I", 0§2; £2;) with respect to the scalar product
(WI,21)e;, 0, = fQI erwr - z7. At the same time, when H;y = 0 = E, we have

E; € He, (I, 002; £21), hence uniqueness follows in a straightforward way.
We look for a solution of the form E; = 5;1 curl q;. To construct it, let us intro-
duce the space

Yy = {p, € Ho.po(curl; 1) N Ho p(div; 2r) | pr LH(002, T'; 91)} RNERE)
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and consider the problem

Findq; € Y7 :

fQI(E;1 curlq; - curl p7 + divq; divpy) (3.16)
:ffmiquH1~ﬁfprc><nc~ﬁ ’
foreach p; € Y7 .

As reported in (A.15), the following Poincaré-like inequality holds
/ |p1|2§C/ (|curlpz|* + | divpr|?) VpreYr.
Qr Qr

Therefore, the existence of a unique solution g to (3.16) is a consequence of the Lax—
Milgram lemma.

We can prove that q; satisfies (3.16) also for each p; € Hy pq(curl; £27) N
Hy, r(div; £21), namely, withoutrequiring p; L H (042, I'; 21). To this aim, writep; =
(pr — Ppr) + Ppi, where Pp; is the (L?(§2))3-orthogonal projection of p; over
H(O82,I'; £21). Thus we have

fQI(Efl curl qr - curl p7 +divqy divpy)
= fa’h [e; curlqz - curl(p7 — Pp7) + divay div(pr — Pp1)]
= — [, iwp,Hr - (p7 — PP1) — [ Ec xn¢ - (P7 — PPI) ,

and, to conclude, we need to prove that
/ iquHI-Pﬁ+/EanC-Pﬁ:O.
QI r

It can be easily seen that each basis function of H (042, I'; £2;) differs from a basis
function of H,,, (962, I'; 21) by a gradient of a function belonging to Hj 50 (£2r).
Therefore we can write

Pon nr
Ppr = Za“ grad 2, 1 + Zbl,l/’l,l + grad x7 ,
r=1 =1

where 7 is a suitable function belonging to H, 3’ 90(£2r), and we finally have

fQIiquH1~gradX1+fFEc><nc~gradX1 (3.17)
= [piwpHr -0y x; — [ div,(Ec x ng) x; =0 '
fa’h iwpHy - grad z.; + [ Ec x ne - grad z,. 1
= [hoiwpHr -0z + [piwpHp -ng 20 — [dive(Ec x ne) 21
:f(amriquHpn:O Vr=1,...,ps0
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and

/ iw“IHI'pl,I+/ECXnC'pl,IZO Vl:].,...,n[',
27 r

having used (3.14)3 and (3.14),.

It can be also proved that divgq; = 0 in {2;. In fact, let us consider the function
vy € H'(§27) solutionto Av; = divqy in £2;, withv; = 0on 9f2 and gradv;-n; = 0
on I'. It is readily seen that grad vr belongs to Ho s (curl; £27) N Ho, r(div; £2r), thus
using p;y = grad v as a test function in (3.16), taking into consideration (3.14); and
(3.14), we find by integration by parts

2 *f(z[ iwpH; - gradv; — [ Ec x ng - grad o7

= — [piwpHp 0777 + [ dive(Eg x ng)77 =0,

fQI | divq;

hence divq; = 0 in §2;. Therefore q; satisfies
f(h e;tcurlqy - curlpy = — fQI iwpHr -P7 — [ Ec xng - Pr (3.18)

forall p;r € Hy pp(curl; £27) N Ho p(div; £21).

As a further step, we want to prove that q; indeed satisfies (3.18) as well for every
p; € Hoaqn(curl; Q7). Define v € H'(§2r) to be the (weak) solution of Avy =
divp7in §2;, with v; = 0 on 042 and grad v} - n; = p} - n; on I'. We easily check
that (p; — grad v}) € Ho gn(curl; £21) N Ho p(div; £21), and using it as a test function
in (3.18) gives

o, e; 'curlqr - curl p} B o B o
=— [, iwpHy (_p}‘ — gradv}) — IFEC X n¢ - (p§ — gradv})

=~ Jo, iwpH; - p; — [ Ec xnc - pj,

having used the fact that v} € H{ ,,({2r) and proceeding as in (3.17).

Taking now in (3.18) a test function p} € (C§°(£2r))3, by integration by parts
we find curl(es;1 curlq;) = —itwpHy in 2r; similarly, taking a test function p} €
Hy an(curl; £21) we have (E;l curlg;) xny = —E¢ xngon [,

Setting E; := e;l curl q7, we have found the solution to (3.13)1, (3.13)2 and
(3.13)g. Moreover,

erfEr-n=-curlg; -n=div,(q; xn) =0 on I’

fQI erEr T, T = fQI CurlOU T, = fQI qr ~curl7rk71
+f8(2nxq1'7rk51+fp7rk,1Xn]'qI:() Vk:].,...,nag

/EI]E]~II]:/ curlqg; -ny =0 Vi=1,...,pr,
r. r.

J J

this last equation being the Stokes theorem for a closed surface. g
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Remark 3.4. The weak problem (3.16) is not suitable for numerical approximation, due
to the constraint of orthogonality to H (92, I'; {2;) that appears in the definition of the
space Y7; note also that this condition clearly depends on the topology of the conductor
¢ In Section 5.5 and Remark 6.12 we will propose a couple of weak formulations
for the determination of E; that are more convenient for numerical computations. [J

Remark 3.5. In many real-life problems, the determination of E; is not mandatory, as
the knowledge of the magnetic field H in {2 and of the electric field E¢ in {2¢ is often
sufficient to simulate the physical process. In those cases, solving (3.16) is therefore
not necessary. 0

Remark 3.6. In particular, we have proved that the solution to (3.16) satisfies

curl(zs;1 curlqr) = —iwp  Hy in 2r

divgr =0 in {21

qaxn=0 on 0?2

qr-n; =20 onl’ (3.19)
(E}lcurlqj) xny=—-Ecxnc onl’

q]J_H(aQ, F; Q]) .

Similar existence results are an important step for proving the orthogonal decomposi-
tions of (L?(£27))? that are presented in Section A.3. O

Let us come now to show that the solution H to (3.9), with
Ec- = a‘fl(curl He —Jeo),

indeed satisfies (3.14). To do that, we only need to choose suitable test functions v
in the weak formulation (3.9). First, take v = grad x, where x € C§°(£2). Clearly
grad x € V, and then

/ pH - grady =0.
Q
Integrating by parts we find

div(pH) =0 in 2,

in particular
div(u;Hr) =0 in {27, (3.20)

and
pwH nr+pu-He -nc=0 onl. (3.21)

The second relation in (3.14) needs a preliminary result. Choosing in (3.9) a test
function v € V such that ve € (C§°(£2¢))? and v = 0, we find

/ (e~ curlHe - curl v + iwpHe - Vo) = / a'*lJe,C ~curl v .
Qc QC

Thus by integration by parts

curl(o ™t curl He) + iwpoHe = curl(o !, o) in Q¢ . (3.22)
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In conclusion, from (3.22) and (3.21) it follows

div,(Ec X n¢) = divT([o" (curlHe — Je )] X ne)
= curlle ! (curl He — J. ¢)] - ne
= —wpcHe -ne =iwpHr -ny on .

Coming to (3.14)s, for each basis function grad z,. ; of the space of harmonic fields
Hu (002, 1821), 1 = 1,...,pan, let us denote by v, o a function belonging to
H(curl; £2¢) and satisfying v, ¢ X n¢ + grad 2z, x ny = 0 on I". Then, the function

grad z,. ;1 in {2;
vV, = .
V. in 2¢

belongs to V. By proceeding as before and using also (3.21), we easily find
/ puH -n=0 Vr=1,...,psq .
(092)r

Finally, denote by R; ¢ € H(curl; {2c) a function satisfying R; ¢ x n¢ +
pir x ny = 0 on I', where the function p; ;, I = 1,...,np, is a basis function
of the space of harmonic fields H,,, (82, I"; £2). The functlon

v, = Pi1 in 21
’ Rl,C inQC

belongs to V'; thus choosing it as a test function in (3.9), integrating by parts and taking
into account (3.22) one obtains at once

fQI iwﬂjHI plI
= [o o (curl He — Jec) - curl Ry ¢ + iwpcHe - Ryl
= _ fF[a (curlHe — Je,c)] xnc - Ryc

— fF[a curl He —Jec) xne-py g

:ffF(Eanc P Vi=1,....,nr,

namely, (3.14)4.

3.3 Strong formulation for the magnetic field

The results in Section 3.2 also furnish the complete strong formulation for the magnetic
field.

In fact, since (H — H,) € V, the solution to (3.9) satisfies curl H; = curlH, 1 =
Jerin 2, Hr xn=00n0f2, and Hc X nc + H; xn; = 0 on I'. Hence we have
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obtained
curl(c~tcurl He) + iwpHe
= curl(e =, 0) in Q¢
curlHy =J. 1 in 2
div(p,Hy) =0 in 2;
f(&Q)T,/’l’IHI'HZO Vr=1,...,p50 (3.23)
fQI iwp Hr - py g )
:*fr[ail(curlHC*Je,C)] Xnc-p;y Vi=1,...np
H; xn=0 on Of?
pHr -nr+p-He ne=0 onl’
H; xn;+HexXxneg=0 onl.

A simpler situation occurs when the computational domain (2 has a connected
boundary, so that ps, = 0, and when the conductor {2¢ is simply-connected, so that
nr = 0. However, the latter is an assumption on the shape of the conductor and it can
be rather restrictive, as in many relevant engineering applications {2 has a complex
topology.

Problem (3.23) has a unique solution: existence has been just proved, and unique-
ness follows from the fact that, taking the solution H to (3.23) together with the electric
field E constructed as in Section 3.2, we can repeat the arguments in Section 3.1 and
hence are able to prove that H is a solution to the weak problem (3.9). Since this last
problem has a unique solution, the solution to (3.23) is also unique, and the strong
problem (3.23) is therefore equivalent to the weak problem (3.9).

Equations (3.23)4 and (3.23); take into account the topology of {2;. The physical
interpretation of (3.23)4 is simply that there is no “magnetic charge” hidden in the
“holes” of {2 (namely, in the regions surrounded by (012),, r = 1,...,pan). The
interpretation of (3.23)5 will be given in Section 3.3.1.

It should be noted that the matching condition (3.23) is weaker than the continuity
of the tangential component of E, namely,

E;xn;+Ecxnc=0 onl'. (3.24)

In fact, (3.23)7 can be obtained from (3.24) taking the tangential divergence and using
the Faraday equation separately in {27 and {2¢, but the converse is not guaranteed in
general topological situations.

Remark 3.7. We emphasize that, if we drop condition (3.23)5 from problem (3.23), the

remaining problem is not well-posed. In fact, uniqueness does not hold, as it can be

seen from the following argument. Let us assume for simplicity that n; = 1 (namely,

in this case {2¢ is a torus, and there is only one basis cycle 7; in §2;: see Figure 3.1).
Consider the space

Vo i= {VEHo(curl;Q)|cuer1Oin(h,/ V]~dT0} .
Y1
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N _ 2c

Fig. 3.1. The geometry of the problem

Using the Lax—Milgram lemma, for each complex number ¢ # 0 one can find a unique
solution of the problem

Wely : a(W,vo) =—qa(py,vo) YVvoeVy,

having defined p; € Hy(curl; £2) as

P in 21
PUZ Y Ry inf2c,

where p, ; is the basis function of the space of harmonic fields H,,, (042, I'; £21) such
that f'Yl pILI -d7 =1, and the function Ry ¢ € H(curl; 2¢) satisfies Ry ¢ X n¢ +
pi1rxnr=0onI.

“On the other hand, setting H := W + ¢gp,, by proceeding as in Section 3.2 it
is easily proved that, for each choice of the complex number g, H is a solution to
(3.23)1—(3.23)4, (3.23)6—(3.23)s for J. = 0 (itis enough to note that the test functions
used in the proofs are always a gradient in (27, therefore they satisfy the constraint

VI dT = 0). Since f'Yl H; - dr = ¢ # 0, it is apparent that H # 0, thus
uniqueness does not hold for (3.23);—(3.23)y4, (3.23)6—(3.23)s.

It is clear that by dropping (3.23)5 we have lost the information determining the
circulation of H; along the basis cycle ;. By adding one equation for the circulation
on ; one could recover uniqueness (see Reissel [205]). But this would not yield a
solution of the eddy current problem, as from the physical point of view what is really
missing here is the Faraday equation for the surface which “cuts” ~; (see the following
Section 3.3.1). O
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Remark 3.8. In terms of the magnetic field H and of the electric field E~ introduced
in (3.12), we can obviously rewrite (3.23) as

curlEc +iwp-He =0 in 2¢
curlHe —oEc =J. ¢ in 2¢
curlHy = J. s in {21
div(u;Hr) =0 in 27
Jiogy, piHI n=0 Vr=1,...p00 (325
fQIiWMIHI'Pz,I:*prC><IIC'P1,1 Vi=1,...,npr
H; xn=0 on 012
pHr -nr+p-He ng =0 onl’
H; xn;+He xneg=0 onl",
a formulation that will be useful in Chapters 6 and 7. O

3.3.1 The Faraday equation for the ‘““cutting” surfaces

We want to clarify the physical meaning of the conditions

fQI iwp Hy “PuLr
= ffp[a"l(curlHC —Jec) xne-pp Vi=1,...,nr.

The Faraday law, in its integral form, relates the flux of iwpH through a surface
with the line integral of E along the boundary of the surface. Since in (3.23) the Faraday
equation is imposed in differential form in {2¢, it is satisfied in integral form for any
surface contained in {2 with boundary contained in Q¢. Moreover, in formulation
(3.23) the electric field in {2; is not yet available, and will be determined through
(3.13). Thus we need not worry about the Faraday equation for surfaces in {2; with
boundary in the interior of {2;.

But, since the electric field Ec = a"l(curl H¢ — J. ) has already been deter-
mined in 2, and thus on I", we have indeed to take into consideration each surface
X in {27 with boundary 0% on I

If the boundary 0% is also the boundary of a surface ¥ contained in 2¢, we can
argue in this way: due to the divergence-free condition for «wpH in {2, the flux of
iwp Hy through X' is the same than the flux of iwp~Hc through Y, and, due to the
Faraday equation in {2¢, this flux equals the line integral of Ec on 0% = 9. There-
fore, we have verified that the Faraday equation is satisfied for this type of surfaces
(see Figure 3.2).

Having reached this point, the final question is: are there surfaces X in {2; with
boundary on I” such that 9% is not the boundary of any surface contained in £2o? If
the answer is “yes”, for this type of surfaces we have not yet imposed the Faraday
equation, even if all the equations in (3.23);—(3.23)4, (3.23)—(3.23)5 are satisfied.

In general topological situations, these surfaces exist: they are the “cutting” sur-
faces =;, 1 = 1,...,np, described in Section A.4. In fact, it is known that there is a
kind of “duality” between “cutting” surfaces and non-bounding cycles: each “cutting”
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X
3 ax
b f2¢ + 5

Fig. 3.2. A surface for which the Faraday equation is satisfied

Fig. 3.3. A surface for which the Faraday equation is not satisfied

surface “cuts” a 9f2-independent non-bounding cycle in {27, and, at the same time, its
boundary is a non-bounding cycle in £2¢ (see Figure 3.3).

We want thus to prove that conditions (3.23)5 are equivalent, for a (regular enough)
solution to (3.23)1—(3.23)y4, (3.23)6—(3.23)s, to imposing the integral form of the Fara-
day equation for the surfaces =; and their boundaries 0=].

From Section A.4 (see in particular (A.34)), we know that the basis functions p; ;
can be represented as the (L2 (12 I)S-extensions of grad p; 1, where p; r are the solutions
to

div(prgradp; 1) =0 in 27\ 5
pregradp; r-ny =0 onI"\ 05
pir =0 on 012
[preradpir -mylz, =0

prils, =1,

having denoted by n; the unit normal vector on =, and by [ -]z, the jump across the
surface =; (say, [pi,1(x)]z, = im, o+ [pi,1(x — sny) — prr(x + sng))).
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For a solution to (3.23)1—(3.23)4, (3.23)6—(3.23)s, regular enough to give a mean-
ing to the integrals we are planning to write, using integration by parts we have

Jo, wp M p = [ = iwpHy - gradp g
=_ fQI\El iwdiv(pHy) prr + [oqiwpHr -np g
+ fp\agl iwpHr -nrpr 7+ fEl iwpHy -1y [pr 1]
= oz wpHr nppy + [ iwp Hp -y,

and

— Jr(Ec xnc) - p ;= — fI“\aEl (Ec xng) - gradp; 1
= fr\agl div,(Ec x n¢) pi,r — fc’)EmF(EC X ne) - ng[pi]
= fr\aa curlEc -neprr — fc’)EmF(EC xng)-n
= — Iz wrcHe nopir = Jyz,qr Bo - (ne x )
= fF\aEZ iwpHr -nrpir — [oz,q0 Eo - (ne xny) .

Since 0= C I', we see that (3.23)5 are equivalent to

/iquHpnl:f/ EC~(nC><nl):f/ Ec -dr,
= 95, 95,

namely, the Faraday equation for the surface =;.

Remark 3.9. We note that the additional conditions (3.23)5 are not needed if the time-
harmonic full Maxwell equations are considered. In fact, in that case the problem reads

curlH — (iwe + o)E=J, in{?
curl E +iwpH =0 in (2
Hxn=0 on 012 .

Since the matrix 17 := iwe + o is non-singular, we can rewrite the problem in terms
of H only

—1 . o —1 :
{ curl(n™! curl H) + iwpH = curl(n=1J,) in (3.26)

Hxn=0 on 0f2 .

Problem (3.26) is uniquely solvable (see, for instance, Alonso and Valli [8], Alonso
and Raffetto [15]), and setting E = n’l(curl H — J.) one verifies at once that the
Faraday equation is satisfied in all of {2: no additional condition related the geometry
of 27 is coming into play. O

3.3.2 Suitability of other formulations

We want to investigate whether or not some frequently-used formulations for eddy
current problems furnish a magnetic field H that satisfies (3.23)5, namely,

Jo, iwp M- py g
= ffp[a"l(curlHC —Jec) xne-pp Yi=1,...,nr.
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(i) The Af, — Ay formulation.

This formulation, reported in Biré [48], is based on the unknowns Af, and A such
that
iwAs =—E¢ , curlAr = p;Hy

with the interface conditions on I’

cxnec+Arxnr=0
(po'curl AL) xne + (p;'curl A7) x ny = 0.

By integration by parts we have

Jo,iwpnHr - p = [ iweurl Ar - py ;= iw [.(nf < Ar) - py

) iy (3.27)
=w fr(Ac Xng):p ;= — fp(EC Xne)-pr s

therefore condition (3.23)5 is satisfied.
(ii) The (A¢, Vo) — A formulation.
This formulation, reported in Bir6 [48] and presented in detail in Chapter 6, is based
on the unknowns (A, V) and A such that
wAc +gradVo = —-E¢ , curl A = pu;Hy
with the interface conditions on I

Acxnc+Arxny=0
(po'curl Ac) x ne + (p;'curl A7) x ny = 0.

With respect to the preceding case, on the right-hand side of (3.27) the only additional
term is

- / (grad Vo xng) - PL1s
r

however, (3.23)5 is still satisfied, as the term above indeed vanishes. In fact, by inte-
gration by parts we have

Jr (grad Vo x ne) PL1
= fr(pl,l x ny) - grad Vo
= ffpdivT(pu xnr) Ver
=— Jpeurlp, ;-0 Vo r =0,

ascurlp, ; = 0.

(iii) The (T%, @) — A formulation.
This formulation, reported in Biré [48] and described in Section 6.3, is based on the
unknowns (T, §¢) and A such that

T +grad®c =He , curlAr = pu;Hyp
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with the interface conditions on I’

[Uﬁl(cursz - JE,C)] Xng — ZCL)A] X ny = 0
(T¢ + grad®c) x ne + (u;lcurlAI) xny=0.

Therefore,

Jo,iwpuBr-p ;= [o iweurl Ay - py ;= iw [.(nf x A1) - py
=— fp[a’l(cursz —Jeo)] Xne-py g
— [plo™curlHe — Je0)] X ne - py g

that is (3.23)s.
(iv) The (H¢, J¢o) — H; formulation.

Kanayama and Kikuchi [146] reported (and used in numerical computations) a for-
mulation in which the unknowns are the magnetic field and the eddy current Jo =
ocEc + J. ¢, and the interface conditions on [ are given by

He xng+Hryxnyp=0

ucHe ne+pHr onp=0. (3.28)

In this case condition (3.23)5 is not imposed; therefore, this formulation cannot be
employed for a general domain {2 without explicitly adding (3.23)s, that, with respect
to Jo and Hy, reads

/Q iwprHr - p g+ / [0 (Je =Je0)] xne - prr =0
. r

forl=1,...,nr.
Clearly, the same considerations also apply to the (H¢, Ec) — H; formulation
(3.25), which is formally equivalent to the one here considered.

(v) The formulation considered by Reissel.

Reissel [205] considered the formulation given by (3.23);—(3.23)3, (3.23)7—(3.23)s,
namely, without (3.23)5 (more precisely, the domain {2 is assumed to be an exterior
domain, hence 9{?2 is empty, and conditions (3.23)4 and (3.23)g are eliminated; on
the other hand, the magnetic field H; is assumed to vanish as |x| goes to co). The
uniqueness of the magnetic field is obtained by imposing the additional conditions

/HI-dT:IP,W:l,...,nF, (3.29)
s

where ; are the non-bounding cycles in {2; (see Section 1.4).

Concerning this formulation, a remark is in order: as we will see in the following
Section 3.4, the solution to the eddy current problem (1.22) is unique, therefore we are
not free to impose another condition like (3.29). As a matter of fact, from a physical
viewpoint f"/z H; - dr is the total intensity current crossing any surface having ~; as
a boundary (by the Ampere law): hence, in the present context, it is a quantity to be
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determined by solving the problem and not a datum that can be arbitrarily prescribed.
(For problems in which the total intensity current is imposed, see Chapter 8: there the
boundary conditions are different from those considered here, or else the given current
density J. is not a datum but an additional unknown that must be determined.)

Letus set I} := fw H; - d1, where H is the solution of the eddy current problem
(1.22). Clearly, if the datum I? is different from I} the solution of the problem pro-
posed by Reissel is not the solution of the eddy current problem. Since all the other
equations hold, what is wrong about the Reissel solution is that it does not satisfy the
topological condition (3.23)5: in other words, it does not satisfy the Faraday law on
the surface =; which “cuts” the 0f2-independent non-bounding cycle ;.

Other potential formulations for eddy current problems will be presented and ana-
lyzed in Section 6.3; in particular, there we will verify whether for those formulations
condition (3.23)5 is automatically satisfied or has to be explicitly imposed.

3.4 Existence and uniqueness for the complete eddy current model

This section is devoted to verify that the results of the preceding sections easily give
the unique solution of the complete eddy current model.

First of all, let us show that putting together (3.13) and (3.25) is somehow redun-
dant. In fact, (3.25)4 and (3.25)5 are a consequence of (3.13); (the latter one by means
of the Stokes theorem for closed surfaces). Also, from (3.13)g we have

div,(Ef xn;+Ec xng)=0 onl,

thus
curlE; -n; +curlEc -nc =0 onl';

hence from (3.13); and (3.25); we obtain at once (3.25)s. Finally, from (3.13); and
(3.13)g we obtain

fQI wpHr - p = — fQI curlEr - p; 1 = fam E; xnr-py;
= *prC XNC - P,

namely, (3.25);.
Therefore, we can rewrite the global problem in the non-redundant form (1.22),
namely,
curlH—-cE =J, in {2
curlE +iwpH =0 in (2

diV(E[E[) =0 in Q]
Hxn=0 on 12 (3.30)
eftEr n=0 on 012

fpj€1E1'111:0 Vi=1,...,pr
fQIEIErﬂ‘k,]:O Vk=1,...,n90.
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Notice that all the equations of problem (3.13) are present, while those we have
dropped are essentially the compatibility conditions of problem (3.13).
We conclude this section with the following theorem.

Theorem 3.10. Problem (3.30) has a unique solution. Moreover, (E, H) is the solu-
tion to (3.30) if and only if H is the solution to (3.23), E¢ is obtained by (3.12) and
E; is the solution to (3.13).

Proof. We have already seen that a solution to (3.30) is given by H, the solution to
(3.9) (or, equivalently, to (3.23)), by E¢ defined in (3.12) and by the solution E;
to (3.13). On the other hand, since any solution to (3.30) gives the solution to (3.9),
the magnetic field H is uniquely determined. Consequently, using (3.12) also E¢ is
unique. Finally, uniqueness of E; follows from that of problem (3.13).

The second statement follows straightforwordly noting that, if (E, H) is the solu-
tion to (3.30), then H is the unique solution to (3.23). O

Remark 3.11. The regularity of the solution of the eddy current problem (3.30) is not
easy to be determined. In fact, due to the jump of the conductivity o through I, (3.30)
is essentially an interface problem, and in principle its solution is not very regular even
if the coefficients u, £; and o are smooth scalar functions. Moreover, if {2- and 2
are polyhedral domains the solution can exhibit corner and edge singularities.

Since the general regularity result is rather technical, we do not state it here and
refer to Costabel et al. [90] for a detailed presentation and a thorough analysis of this
issue. O

3.5 Other boundary conditions

Analogous results to those presented in Sections 3.1, 3.2, 3.3 and 3.4 can be obtained
for the eddy current problem in which the electric field E is subjected to the electric
boundary condition

Exn=0 onodf?, 3.31)

or to the no-flux boundary conditions

{ pH-n=0 ondf? (332)

eE-n=0 on 0f2 .

Let us underline what we have to modify in the formulations and in the proofs,
starting from the electric boundary condition (3.31). The first remark concerns the (nec-
essary) assumptions on the current density. As before, we require that J. € (L?(£2))3
and satisfies divJ. ; = 0 in {27, but now, instead of (3.1)2 and (3.2), we need

fFjJe,I'nIZO ijl,...,pp

3.33
‘[(8!2),,']611'11:0 VT‘:O,...,paQ ( )

(see Section 1.5).
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The existence of a vector field H ; € H (curl; £27) such that
curl HY ; = Je 1 in 2r (3.34)

is then ensured by well-known results (see, e.g., Alonso and Valli [6], Rem. 4.3),
and we can also find a vector field H} € H(curl; {2¢) such that Hf o x n¢ +

H? ; x n; = 0 on I'. Summing up, we have constructed a vector field H €
H (curl; £2), continuously dependent on J 7, given by
% HZ T in Q]
H; := { Yo info (3.35)

Concerning the weak problem for the magnetic field H, it becomes
Find (H — H}) € V* such that
a(H,v*) = [, 07 Jec-curll vy (3.36)
for each v* € V*,

where
V*:={v* € H(curl; 2) | curlvi = 0in {27} . (3.37)

As before, the unique solvability of this problem is ensured by the Lax—Milgram
lemma.

Looking for the strong formulation, the electric field E¢ in §2¢ is defined as usual
by setting E¢ = o ! (curlHe — J. o), while the electric field E; now has to verify

curlE; = —iwp  Hy in 21

diV(E]E[) =0 in Q[

E;xn=0 on 912

[p eBr-np=0 Vi=1,....pr (3.38)
f(aQ)TEIEI.n:O Vr=0,1,...,pse

Er xny=-Ec Xne onl'.

This problem is simpler if the boundaries of {2 and (2 are connected, so that ps, = 0
and pr = 0: say, the computational domain and the conductor are connected and have
no “holes” (but possibly have “handles”).

It can be shown that there exists a unique solution E; to (3.38), given by E; :=
5;1 curl g7, where q; € Y;* is the solution to the problem

Jo,(e7 " curlq; - curl pj + divq; divp))

; ey — 3.39
:7fQIZWHIHI'p;7fFECXnC'p; foreach p7 € Y7, ( )

where
Y= {p}‘ € H(curl; ;) N Ho(div; 27) | piLH(m; 9,)} , (3.40)

and the space of harmonic fields H(m; £27) has been introduced in Section 1.4.
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The compatibility conditions ensuring the solvability of problem (3.39) are now

div(iwpHr) =0 in £2;
iwuHy -ny =div,(Ec xng) onl’
iwpuHr -n=20 on 92 (3.41)
fQI iwpHr - pg g
:7fF(EC><nC)'pZ,I VOLZL...,TLQI,

where pj, ; are the basis functions of the space of harmonic fields H,,, (m; 25) (see
Section 1.4). This space has dimension equal to ny,,, the number of independent non-
bounding cycles of {2;. Note also that each condition (3.41)4 is equivalent to the Fara-
day equation on =7, the “cutting” surface of a non-bounding cycle.

To verify that conditions (3.41) are satisfied, one has to proceed in several steps.
First of all, (3.41); and (3.41)2 can be proved exactly as for the magnetic boundary
value problem. Moreover, if one takes in (3.36) the test function

" { gradx, ; in$;

vy o= .
n 0 in Q¢ ,

where x; ; € HY(02r), Xy = 0onI"and x7 ; = non 0f2, with 1) an arbitrary
complex function defined on 942, as an easy consequence one finds pt;Hr -n = 0 on
0f2. Finally, by taking as a test function in (3.36) a function whose restriction to {27 is
equal to the basis function p, ; of H,,, (m; 1), « = 1,...,ng,, itis easily seen that
conditions (3.41), are satisfied.

In conclusion, the strong problem for the magnetic field reads

curl(c™ curl He) + iwpHe
= curl(e™1J. ¢) in Q¢
curlHy =J. s in {21
div(iuHr) =0 in 27
Jo, iwpHr - p (3.42)
+ [ploHeurlHo = J. o)l xng-p, ;=0 Va=1,...,ng,
pHr -n=0 on 0f?
pwHr nr+pu-He -ne =0 onl’
H; xn;+Hexng=0 onl .

This problem simplifies if the conductor §2¢ and the computational domain 2 are both
simply-connected, so that ng, = 0. As already remarked, this assumption on {2¢ can
be rather restrictive in many engineering problems.

Putting together (3.42) and (3.38), one finds the complete eddy current problem
with electric boundary condition (1.20), namely,

curlH-ocE =1J, in 2

curlE +iwpH =0 in 2

diV(E]E]) =0 in Q]

E; xn=0 on 912 (3.43)
fijIEI'nIZO Vi=1,...,pr

f(ag)TvEIEI'HZO Vr=0,1,...,pa0 .
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All the existence and uniqueness results proved in the preceding sections for the
magnetic boundary value problem can be proved also for the electric boundary value
problem (3.43).

Let us come now to the eddy current problem subject to the no-flux boundary con-
ditions (3.32).

The (necessary) assumptions on the current density are the same as for the electric
boundary condition, namely, J. belongs to (L?(£2))? and satisfies divJ. ; = 0 in 2;
and (3.33); also the vector field H} € H(curl; £2) can be constructed as in that case.

To obtain the weak formulation for the magnetic field we need some preliminaries.

First of all, as explained in Remark 1.3, we recall that in {2; we have a collection
of “cutting” surfaces =%, a = 1,...,ngn,, with 0=} C 02U I'. We have denoted by
ng, < ng, the number of the surfaces =, such that 0= N 912 # (). Since the basis
functions p}, ; can be expressed as pj, ; = gradpj, ;in 7\ =7, fora > nf, +1 one
has pj, ; = gradpj, ; in a neighborhood of 9(2. Hence for o > ny, +1

faQE xn-pj ;= faQE xn-gradp}, ; = ffandivT(E xn)p} g (3.44)
= ffancurlE~nsz :iwfaguH~np;J =0.

Suppose now that H and E are solutions of the Faraday and Ampere equations.
Looking for a weak formulation, multiply the Faraday equation by v*, with v* € V*,
the space introduced in (3.37), integrate in {2 and integrate by parts. Using also the
Ampere equation in {2¢ it follows

Jo, o ' eurl He ~cu_rl%+ [ iwpH - v* o
= [boExn-vF+ ch o' J. o curlvy,
as curlvi = 0 in {2;. On the other hand, from the orthogonality result presented in

Theorem A.8 we can write
’I’IQI

vi=gradxj+ > 07 ,ph -

a=1

Repeating the arguments leading to (3.44) we have

/ E; xn-gradx; =0.
20
Hence, using (3.44)

JooExn v = [ B xn-gradxj + 02 05, [,oBr xn-pl
=3, 919* o oo Br xn-p} ;.

If we assume that the electric field also satisfies the conditions
/ E;xn-p ;=0 Va=1,...,ng,, (3.45)
o0 ’

then we conclude that H is the solution of the weak problem (3.36).
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We can now start from (3.36) in order to determine the complete set of equations
constituting the strong problem. First of all, we have already seen that the unique solv-
ability of (3.36) is ensured by the Lax—Milgram lemma. The magnetic field H clearly
satisfies (3.22) and curl H; = J. 1 in §2;. Then the electric field E¢ in {2¢ is defined
as usual by (3.12), while the electric field E; is given by the solution to (3.13).

Conditions (3.14), that are necessary and sufficient for the solvability of problem
(3.13), are verified. In fact, we have seen here above that the solution H of problem
(3.36) satisfies conditions (3.41). Moreover, it is easily shown that H and E¢ also
satisfy

Jo,iwpuEr - p =~ [[(Ec xnc)-p; Yi=1,... nr.

In fact we can write

’nQI

pr = gradx; + Z 0 aPo1s

a=1
and
fQI iwpHy - grad x| = —iw fQI div(p Hr) X7

+iw [0 wHr -nx; +iw [ pH -npx;
= [ div;(Ec xn¢)x; = — [ Ec xng - grad x; .

In conclusion, the strong formulation for the magnetic field H and the electric field
E¢ reads

curl Ec + iwp-He =0 in 2¢

cutlHe — oEc =J. ¢ in 2¢

curlHy =J. 1 in {21

div(u,Hr) =0 in 27 (3.46)
Jo,iwnHr-p} 1+ [ Ec xne-pl ;=0 Va=1,...,ng, :
puHr -n=0 on 0f2

pwHr -nr+pu-He -ne =0 onl’

H; xn;+Hexneg=0 onl'.

Putting together (3.46) and (3.13) one obtains the problem

curlH—-ocE =1J, in 2

curllE +iwpH =0 in 2

diV(E]E]) =0 in Q]

pH - n=0 on 0?2
ertEr-n=0 on 012
fFjE]E]'Il]:O Vjil,...,pp
fQIEIEI'ﬂ'k,I:O Vkil,...,nag
Jo,iwpuHr-pl + [ Ec xnc-p ;=0 Ya=1,...,ng,.
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Let us note that the last equations can be written in a different way: in fact, using the
Faraday equation in {2; we have

fQI iwpHr - p}, = 7‘[91 curl Ey - pf, ;
=~ [ponxEr-pl;— [pnr xEr-p}
=~ [oonxEr-p,;— [ Ec xnc-p} ,

thus they can be expressed as

/ E;xn-p, ;=0 Va=1,...,ng,.
Gle) '

However, some of these relations are redundant: precisely, as proved in (3.44), those
corresponding to & > ny, + 1. We have thus obtained that the eddy current problem
with no-flux boundary conditions reads

curlH-ocE =J, in 2

curl E +iwpH =0 in {2

diV(E[E[) =0 in Q]

pH-n=20 on 0?2

eftEr - n=20 on 012 (3.47)
fpj€1E1~n[:0 Vjil,...,pp
fQIEIEI'ﬂ'k,I:O Vkil,...,nag
JooErxn-ph ;=0 Ya=1,...n5 .

The problem becomes simpler if the boundary of the conductor {2¢ is connected, so
that pr = 0, and the computational domain {2 is simply-connected, so that ng = 0
and ny, = 0. An example of this situation is a connected conductor (possibly with
“handles”) inside a “box”.

Let us show that problem (3.47) is well-posed. Taking the solution H of (3.36),
E¢ defined in (3.12) and the solution E; of (3.13) we have just proved the existence
of a solution to (3.47). Concerning uniqueness, it is enough to show that the magnetic
field H is uniquely determined. The arguments before have shown that, starting from
the Faraday and Ampere equations, we can construct a solution H of (3.36) provided
that (3.45) are satisfied. Hence a solution H to (3.47) furnishes a solution to the weak
problem (3.36), for which uniqueness holds.

Remark 3.12. By adapting the arguments reported in Remark 3.7, it is readily shown
that conditions (3.47)g are necessary for obtaining the uniqueness of the solution to
(3.47). O



4

Hybrid formulations for the electric and
magnetic fields

The classical approaches to Maxwell and eddy current equations are often based on the
introduction of a magnetic vector potential and an electric scalar potential, the latter
being used only in the conducting region, or on the use of a magnetic scalar potential in
the insulating region (see, e.g., Jackson [137], Silvester and Ferrari [227]). We present
these formulations in Chapters 6 and 5 respectively.

Here we follow a less investigated path (at least for eddy currents), and we analyze
the problem in terms of the original unknowns, namely, the electric and magnetic fields.
This can yield some advantages at the numerical level, as we do not need to determine
the fields by means of differentiation, a procedure that can lead to a loss of accuracy.

Moreover, we focus on hybrid formulations of the eddy current problem. As seen
in the previous chapters, it is possible to reformulate the complete eddy current model
by eliminating either the electric field or the magnetic field. We name “hybrid” those
formulations where the eliminated field in the conducting region is different from the
one eliminated in the insulating region, therefore the unknowns are the electric field in
one subdomain and the magnetic field in the other one. These kind of formulations are
particularly interesting in the context of a finite element approximation: for instance,
since the two vector fields do not need to match on the interface I, it is possible to use
independent meshes in {2¢ and {2;.

We have already noted that a particular feature of the eddy current model is the
presence of differential constraints in the non-conducting region. In this chapter we
propose to use a saddle-point approach to take these constraints into account.

In Sections 4.1 and 4.2 we start by considering the hybrid formulation that uses
as main unknowns the electric field in the conductor and the magnetic field in the
insulator. Hence we have to deal with the constraint curlH; = J, ; in {27, that is
enforced introducing a Lagrange multiplier. This multiplier turns out to be the electric
field in the insulator, which is subjected to the differential constraint div(e;E;) = 0
in (2, so that we have to introduce a second Lagrange multiplier to enforce it.

The other hybrid formulation, the one based on the magnetic field in the conductor
and the electric field in the insulator, is analyzed in Sections 4.4 and 4.5. Since its finite
element discretization presents some difficulties, we also consider a modified problem,
more suitable for numerical approximation, that instead of the electric field on {2;

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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provides a magnetic vector potential E; with the condition divE; = 0 in 2;. Also
in this case we propose an augmented variational formulation introducing a (scalar)
Lagrange multiplier to take into account this constraint.

Clearly, the saddle-point approach is not specific to hybrid formulations and it can
be also used for the more classical formulations in terms of the magnetic field or the
electric field. In Section 4.3 we use Lagrange multipliers to enforce the differential
constraints in the H-based formulation, adapting the arguments used for the Ec /H;
problem, while in Section 4.6 we analyze a saddle-point approach for the E-based
formulation, analogous to the one adopted for the H¢ /E; case.

In this chapter we address the eddy current model with the magnetic boundary
conditions (1.22). For the electric boundary condition (1.20) we only provide a series
of remarks where the weak formulations of the corresponding problems are presented.

If not otherwise specified, the geometric situation is the same as that described in
Section 1.3. However, let us note at once that for the He/E; formulation we have
not been able to avoid the assumption that the computational domain (2 is simply-
connected. Moreover, but in this case for the sake of simplicity, the same assump-
tion has been made for the finite element approximation of the E/H; formulation.
With respect to this problem, the reader interested in the general geometrical case can
adapt the arguments presented in Section 5.5, where a mixed finite element method
is proposed for the approximation of the electric field in the non-conducting region,
assuming that the electric field in the conductor is already known.

Concerning the material properties, as in the preceding chapters we suppose that the
matrix g is symmetric and uniformly positive definite in {2, with entries in L°°({2), the
matrix £ is symmetric and uniformly positive definite in {2;, with entries in L>°({2;),
and the matrix o is symmetric and uniformly positive definite in {2¢, with entries in
L*°({2¢), whereas it is vanishing in {2;. Finally, the current density is assumed to
satisfy J. € (L%(£2))? and (1.23).

The reader mainly interested in numerical approximation and implementation can
focus on problems (4.18), (4.22) and Remark 4.13 (E¢/H; formulation), on prob-
lems (4.35) and (4.36) (H formulation), on problems (4.49), (4.64) and Remark 4.26
(H¢/E; formulation), on problems (4.78), (4.84) and Remark 4.38 (E formulation),
and on Section 4.5.2.

4.1 Hybrid formulation using the magnetic field in the insulator

The first hybrid formulation we consider, following Alonso Rodriguez et al. [12], is
obtained by eliminating the magnetic field in the conductor and the electric field in the
insulator. It is the so-called Ec/H; formulation.

From the Faraday equation we know that the magnetic field can be written as

H=—(iw) 'p ! curlE,

and substituting it in the Ampere law we obtain an equation for the electric field that
in the conductor {2~ reads

curl(ug1 curl E¢) +iwocEc = —iwJ. ¢ .
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Multiplying by a test function z¢ € H (curl; £2¢) one finds, by integration by parts,

ch(ual curl E¢ - curlzg + iwoEc - Zc) — [, ugl curlEc X ne - zo
= 72'wa0 Jec 20 -

Using the Faraday law and the tangential continuity of the magnetic field across the
boundary I" of {2c we have

ual curl Ec X ng = —iwHg X ng = —iwH; X n¢e,
therefore

ch(ual curl E¢ - curlZg + iwoE¢ - Z¢) + iw [ H; x n¢ - Z¢
:7iwacJe’C~ﬁ.

On the other hand, multiplying the Faraday equation in {2; by a test function v;
such that curl vy = 0in {27 and v; x n = 0 on 0{2, by integration by parts one has

iw/ ;I,IH[~V_[:7/ curlE1~v_1:f/Ec><nc~v_1,
2 27 r

where we have used the tangential continuity of the electric field across the interface
I.
Let us now consider the spaces

Vi(Jer) :={vr € Hoon(curl; 21) | curl vy = J. rin £2;}, 4.1)

and
Vi(0) := {vr € Hopn(curl; 21) | curlv; = 0in £2;}.

We have thus obtained the following formulation

Find (Ec,Hy) € H(curl; 2¢) x Vi(Je.r) :
ch (pg' curl Ec - curl zg + iwoEc - z¢)
—iw [ Ze xne -Hy = —iw [, Jec-Zc (4.2)
- — 1,2 o _
—iw [ B¢ Xng - V7 +w fQI[J,IH]'V] =0
forall (z¢,vy) € H(curl; 2¢) x V7(0).
Problem (4.2) is associated to the sesquilinear form
C((we,uy), (zc,vr)) == ch (pgo' curlwe - curl Zg + iwowe - Zo)
—iw [, Zo X ng-u; —iw [ we xng -7 (4.3)

2 R
+w? [, prur- V7,

that is coercive in H (curl; £2c) x V(0). In fact we have the following result.
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Theorem 4.1. There exists a positive constant k such that
C((we,up), (we, un)| = & ([ eulwe [§ o + Iwell§ o + lurllf o))
foreach (weo,uy) € H(curl; 2¢) x V;(0).
Proof. We have

|ReC((wC,u1),(wC,u1))|
=/, ”51 curl we - curl wg + w? fa’h pouy -uy
> fimax o, [curlwel? + w? i [o Turl?,

where fimax and pimin are a uniform upper bound in (2 for the maximum eigenval-
ues of p(x) and a uniform lower bound in {2 of the minimum eigenvalues for (%),
respectively. Moreover, for each 0 < v < 1 it holds

|ImC((wC,u1), (Wc,ll]))|
= |w| fQC‘TWC -W¢ — 2Re [ weo X ng u_j‘

> vlw] ch owWC ~w—072fy|w|‘ Jrwe x ng u_j‘

From the duality estimate

/WCXIIC'U_]
r

and the trace inequalities (A.10) and (A.11), taking into account that curl u; = 0 we

find
1/2 1/2
/ we X ne - ug| < ko (/ (jwe)? + |curlwc|2)> </ |u1|2> .
r Rc 21

Moreover, since for each § > 0 the inequality 2| AB| < § A%2+46~! B? holds, we finally
have

< Clwe x nC'”H*l/?(div.,;F)”nI xuy X nI||H*1/2(curlT;F)

|ImC((wC,u1),(wC,u1))|
> Y|wlomin [o, [Wol® = lwlkod [o, [wel®
—wlkod [, |curl wo|? — |w|kod 1 Jo, lur|?,

where o,y is a uniform lower bound in {2¢ for the minimum eigenvalues of o (x).
The proof follows by taking at first § small enough and then ~ small enough. g

4.2 A saddle-point approach for the E- /H; formulation

A finite element method for approximating the solution to problem (4.2) has to deal
with the constrained space V;(0). In this chapter we focus on approaches based on
augmented variational equations; the more direct approach that incorporates the con-
straints into the variational space will be considered in Chapter 5. It is worth noting
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that adding extra equations can be a defect, because the finite element approximation
of the resulting formulation presents more degrees of freedom. However this saddle-
point approach avoids the construction of “cutting” surfaces in the insulating region,
a procedure that on one side is indispensable for the approximation of the scalar mag-
netic potential used in the direct approach, on the other side can be cumbersome in
complex geometry configurations.

To enforce the constraint curlH; = J. ; one can consider the following aug-
mented problem

Find (Ec, Hy, Aj) € H(curl; 2¢) x Ho go(curl; £27) x (L2(£27))3
C((Ec,Hy), (zc,vr)) + [, curl V7 - Ar = L(zc)

— 4.4
fQI curlH1~N1:G(N1) ( )
for all (z¢, vy, Ny) € H(curl; 2¢) x Ho go(curl; 27) x (L2(21))?
where
L(zc) := fz'w/ Jec-zc , GINy) = / Jer-Nr. (4.5)
Qc QI

It is readily seen that for this problem uniqueness does not hold, as it is possible to add
to A; any function belonging to H{ j~(curl; £2;) (for notation, see Section A.1).

Choosing as v; a smooth vector function with compact support in £2; and z¢
and N; equal 0, we find that any solution of problem (4.4) satisfies curl A; =
—w?p;Hr (= —iwcurl E7) in 7. A similar choice of test functions with v; vanish-
ing only in a neighborhood of 912 gives A; X ng = —iwE¢ X ng(= —iwE; X n¢)
on I'. In order to deal with a well-posed saddle-point problem it is natural to look for
A in the space W given by the functions N; € (L?(§27)? that satisfy

diV(E]N]) =0 in Q]
erfN;-n=0 on 012
fijINI'IU:O Vi=1,...,pr
fQIEINI'Wk,IZO VkE=1,...,n90 .

(4.6)

It is clear that in this way the Lagrange multiplier A turns out to be equal to —iwE;
(recall that the electric field in the insulator is the unique solution of the system of
equations (3.13)).

Therefore, let us consider the space

Wi := {Ny € (L*(£2r))® | Ny satisfies (4.6)} .

Since the current density J. ; satisfies the necessary conditions (1.23), the space
Vi(Je 1) can also be defined in the following way

V](Je’]) = {V] € HoﬁaQ(Curl; Q]A L
fQI curlvy - Ny = fQI Je’] -N;y VN;eW; }

This is easily seen by taking N; = e;l(curl vi —Jer1).
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Let us introduce the space
A = H(curl; 2¢) x Ho go(curl; £21),

endowed with the norm ||(z¢, v)|4 = (HZC”?{(curl;Qc) + ||VI||?{(cur1;QI))1/2~ In-
stead of (4.4), we are thus led to consider the following problem
Find (Ec,HI) eA, AreW;:

C(Ec,Hy), (zc,vr)) + ff?z curl vy - Ay = L(zc¢)
Jo, curl Hy N7 = G(Ny)

forall (z¢,vy) € A, Ny € Wy.

4.7

It can be proved that this problem has a unique solution (E¢, Hy, A ;). However,
the space W7 is not easily approximated by finite element spaces. We obtain an alter-
native formulation by expressing in a different way conditions (4.6). First of all, (4.6);
and (4.6), give that

/ E]N]~gl'adW:0 VQD] EH&F(QI).
27

Moreover, as shown at the end of Section 1.5, taking into account (4.6); and (4.6)2 we
see that conditions (4.6)3 and (4.6)4 imply that

/EIN1~h_1:0 Vhy € H., (I, 00; ;).
27

Finally, using the orthogonality result presented in Theorem A.6, we have
grad H&F(QI) ® He, (I,002; 021) = Hg’p(curl; 2r). 4.8)

We have thus seen that N; € Wi if and only if €;N7 is (L?(§27))3-orthogonal to
HY p(curl; £21).
We can therefore introduce another Lagrange multiplier and consider the problem

Find (Ec,HI) e, Ar e (LZ(QI))S, ry € H&F(Curl; Q[) :
C((Ec,Hy), (zc¢,vr)) + fQI curl vi - Ay = L(z¢)
fQI curlH1~N_1+ fQI E]N_]~I‘]:G(N]) 4.9)
fQI EIAI ! ﬁ =0

forall (zc,vr) € A, Ny € (L*(27))*, pr € HY p(curl; £21).

In order to analyze this formulation we can use the following result, which is
Lemma 4.1 in Chen et al. [81] extended to complex Hilbert spaces.
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Theorem 4.2. Let X, (), M be three complex Hilbert spaces and a : X x X — C,
b: X xQ — C, c:Qx M — C be three sesquilinear forms. Given f € X', g € Q'
andl € M, let us consider the saddle-point problem

Find (Z,A,;r) € X xQ x M :

a(Z,V) + b(va) = <f7 V>
b(Z,N) + ¢(N,r) = (g9,N) (4.10)
C(Av p) = <l7 p>

Sforall (v,N,p) € X xQ x M.

Assume that a(-,-), b(-,) and c(-,-) are continuous, i.e., there exists three positive
constants ¢y, ca, c3 such that

la(v, W) <l vlx|wlx Vv,weX
b(v, N)| < cof[v][x[[Nlo  VveXNeQ (4.11)
|c(N, p)| < es[[Nllgllplly VNeQ,peM.

Moreover, setting
Q" ={NeQ|c(N,p)=0Vpe M}
X0 :={veX|bv,N)=0VN e Q"},

assume that a(-, ) is coercive in X 0 je. there exists a positive constant o such that
la(v,v)| > a|v]% VveX?, (4.12)

and that the following inf-sup conditions hold

. |b(v, N)|
inf sup ————-—>f (4.13)
NeQ*vex ||v]x[[Nl[q
N
inf sup LSRRI (4.14)

peM Neq [Nllelpllar —
for some positive constants (3 and . Then problem (4.10) has a unique solution.
Now we are in position to prove the following result.

Theorem 4.3. Problem (4.9) has a unique solution.

Proof. We apply Theorem 4.2, with obvious notation. First of all, let us recall that the
spaces W and V(0) can be characterized as

Wi = {N; € (L*(121))*| e/N;-Pr =0Vp;r € HY p(curl; 21)}
27

and

V1(0) = {v; € Hopqn(curl; £21) | / curlv; -N;=0VN; € Wr}.
27
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Since the bilinear form C(-, -) is coercive in H (curl; 2¢) x V;(0), we need only to
show that the two inf—sup conditions are satisfied. More precisely, we have to prove
that there exist two positive constants (3 and - such that

| ff?z curl vy - Ny|

sup > BIIN1lo,0, VIN; e Wy
(zc,vi)EA ||(ZC>VI)||A
and
| [, €eIN1 - P1l
sup e >1lpslloe,  Vpr € HY p(curl; 2r).
Nre2(2)?  IN1llo,2;

Recalling that, from the orthogonal decomposition results (A.12) and (4.8), N; € W;
can be written as N; = 5;1 curlqr, with qr € Hygp(curl; 27) N Hgﬁp(div; Q2r),
ar L H(0R, I'; 2r), choosing (z¢, vr) = (0,qr) € A we have

| [, curlar Ny L Jo, curlar - e;teurlqr]  enls Jo, | curl q7|?

”qI”H(curl;QI) B ”qI”H(curl;QI) - ||q]||H(curl;QI)

)

where £, is a uniform upper bound in (2; for the eigenvalues of £;(x). We know
that the Poincaré-like inequality

/ |curlq1|2 > Co/ (|q1|2 + |curlq1|2) (4.15)
27

I

holds true for all q; € Ho aqn(curl; £27) N Hgﬁp(div; 2, qr L H(ONR,T;2p) (see
(A.15); for notation see Section A.1). Thus we can choose 3 := Cosglixsmin, where
Emin 18 @ uniform lower bound in §2; for the eigenvalues of e (x).

Concerning (4.14), it is enough to take N; = pr and v = eyin- O

Remark 4.4. 1t is worth noting that in (4.9) the Lagrange multiplier r; is equal to 0. In
fact, we have proved in Chapter 3 that the eddy current problem (3.30) has a unique
solution (E, H) € A. It is easy to see that (E|q., H|o,, —iwEq,,0) is a solution to
(4.9), and, since this problem has a unique solution, it follows r; = 0. O

Remark 4.5. When considering the electric boundary condition (1.20), the problem to
be solved reads

Find (Ec,H;) € A*, As € (L3(21))3, v} € HY(curl; 2)) :
C((Ec,Hy), (zc,vr)) + [, curlv7 - A = L(zc)
Jq, curlHy - N7 + [, e/Nj-rj = G(N}) (4.16)
Jo,erAT-P1 =0

forall (z¢,vy) € A*, N3 € (L?(£27))3, p}y € H)(curl; £27),

where
A* = H(curl; 2¢) x H(curl; £2;) .

It is not difficult to adapt to this problem the analysis performed above. g
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4.2.1 Finite element discretization

Our aim is to find a Galerkin finite element approximation of (4.9). In order to ap-
proximate the space Hg pleurl; 2r) = grad Hy 1(921) © He, (I, 052; £21), we recall
that the dimension of HEI (I,002; (2p) is equal to pr + napqn, where pr + 1 is the
number of connected components of I and ngy, is the number of I"-independent non-
bounding cycles in 2;. A basis of H.,(I', 0(2; {21) is given by grad w; ; and 7y 1,

j=1,...,pr,k = 1,...,np0. In particular w; ; belongs to H*(£27), wj; = 0 on
I'’'\I'jandwj;r =1onl},j=1,...,pr, where I'; are the connected components
of I' (see Sections 1.4 and A.1).

Setting

H! (1) :={& € H'(21) | &y is constant Vj = 1,..., pr,

Enry . =0}, @.17)

we have
H&F(curl; Qr) = grad Hiﬁ[‘(Q[) & Span{my, 1} .29

Note that, if {2¢ is connected or, equivalently, I" is connected, then H i r(2r) =
H &,F(QI )-

If we assume that the computational domain (2 is simply-connected, then we have
nose = 0 and any function belonging to HY) (curl; £27) is the gradient of a function in
H! 1(£2;). On the other hand, if the computational domain {2 is not simply-connected,
the number ngy, can be different from 0, and in this case one needs the construction
of a suitable set of “cutting” surfaces in order to approximate the basis functions 7, r,
k=1,...,napq (more details about this general geometrical situation can be found in
Section 5.5).

In order to simplify the presentation, in the following we assume that the com-
putational domain {2 is simply-connected, so that ng, = 0 and HgAF(curl; 2 =
grad H! /(£2r). Hence, problem (4.9) in fact reads

Find (Ec,H]) € /1, A e (LQ(Q]))B, or € Hif(“of) :
C((E¢,Hy), (zc,vr)) + fQI curl vi - Ay = L(z¢)
fQI curlH1~N1+fQI /Ny - grad¢; = G(Ny) (4.18)
fQI erAr-gradé; =0
forall (zc,vr) € A, Ny € (L*(2r))*, & € H} ().
As noted in Remark 4.4, the Lagrange multiplier r; is equal to O: here, therefore, we
have that the Lagrange multiplier ¢ is 0, too.
We assume that (2, {2, {27 are Lipschitz polyhedral domains and consider two
families of regular tetrahedral meshes 7¢ , and 77 5, of {2¢ and (27, respectively. To

approximate the functions in H (curl; £21,), L = I, C, we employ the complex-valued
Nédélec curl-conforming edge elements of the lowest order

Ni’h ={vn € H(curl; 21) | vi(X)|x = ax +br xx VK € Tp 4},
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where ax and b i are constant complex vectors (see Section A.2). The homogeneous
boundary conditions on 02 are incorporated by setting the degrees of freedom on 04?2
equal to 0, leading to the space

Xj =N}, N Hooo(curl; £2) .

We also set Ay, := Né’h X X}’h.

Let us denote by Py, the standard space of complex polynomials of total degree
less than or equal to k with respect to the real variable x. To discretize the Lagrange
multiplier A; € (L?(£2;))® we choose piecewise-constant vector functions in the
space

Qf,h = (C?,h)s ;
where
Cln={arn € L*(20) | arx €Po VK €Ty} .

In order to approximate the space H! -(§27), we start from the non-conforming
Crouzeix—Raviart elements defined as follows

Urp = {&n € L2(921) | §rnx € P1 VK € 77 and &7 5, is continuous at
the centroid of any face f common to two elements in 77, } .

Then the discrete £ ;, are chosen in the space M7 ;, defined as

Mrp = {&1.n € Urp | &1.5 takes the same value at all centroids
of facesof I;, j=1,...,pr,and {1, =0 (4.19)
at all centroids of faces of Iy, 41} .

It is worth noting that we have limited ourselves to consider the lowest order finite
element spaces because, to our knowledge, a stability and convergence analysis for
higher order elements has not been performed.

Since functions in Uy j, are no longer continuous, they are no longer in H'(§2;).
Therefore we must define a sesquilinear form Sy, (-, -) acting also on H i r(82r)+Mj p,

and a norm on Hi’F(QI) -+ M p,. This can be done as follows: first, for each & €
[Hi’F(QI) + M7y 1] we denote by grad ; the function in (L?(82r))? defined as

(grad &7) s == grad(ég1x) VK € Trp.

If& e Hi’F(QI). Clearly one has gfr\zﬁfj = grad £;. Then, we define the norm in
Hi,F(QI) + My, as

ez =3 / | grad ;|2 = grad ;|2 g, -
K K
Forall N; € (L?(£27))* and &; € [H] [(£27) + My 5] we set

Sh(N7,&5) 5:/ /Ny - grad & . (4.20)

27
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Introducing also the sesquilinear form
R(vr,Nj) ::/ curl vy - N7, 4.21)
27

the finite element approximation of (4.18) can be formulated as follows
Find (Ecn,Hrn) € An, Arn € Qron, &1, € My

C(Ecn,Hrp), (2en, vin) +R(Vin, Arp) = L(zc,n)
R(MHrp,Nip)+Sh(Nin, ¢rn) = G(IN1R) (4.22)
Sn(Arn,&rn) =0

forall (zc.n,vin) € Ans Nrp € Qrn, &r,n € Mrp, -

The following results will be crucial in the proof of existence and uniqueness of a
solution to problem (4.22). The proof follows the one in Monk [178].

Lemma 4.6. We have the L*(§2;)-orthogonal decomposition
Q1 = curl X}, @ grad My, .

Proof. The proof has two parts. In the first part we show that for all v j € X}, 5, and
&rn € My p, itholds fQI curl vrp, - gfr\aﬁ&,h = 0. In the second part we establish that
dim(Qr,n) = dim(curl X} ;) + dim(grad M; p).

Forany vy € X},h and {75, € My, integration by parts yields

fQI cutl vy p, - grad &7 = Y [ curl vy, - grad &7 p,
=> K faK curl vy p - ng &g
=Y rery, Jyeulvin ng€rnly
+Zf€]_-m ff curl vrp -nér

1
+Z§i1+ Zfe]—'pj ff curl vip -nr&rn

where Fiy; is the set of internal faces of the triangulation 77 5, Fap and F r,; denote
the set of faces of 77, on 042 and I';, respectively, and [£7 5] denotes the jump of
&1 n across the face f. Note that, for all f € Fiy, (curl vy, - nf)‘f is constant and
ff [&1,n]F = 0, since [€7 4] 7 is a linear function and it is equal to O at the centroid of f.
Moreover (curl vy j,-n)|; = Oforall f € Fyp,and, usingthatforallj = 1,...,pp+1
and for all faces f € F; one has ff &r,n = &meas(f), where &; is the value at the
centroid of f, independent of f € I';, we finally find

> ferr, ff curl vip - nr&rn =3 e, (curlvyy -mp) p§meas(f)

=¢; fl“,- curlvyp, -ny =0,

hence
/ curl vy - grad€y, = 0.
27
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Let us introduce the Raviart—-Thomas finite element space (see, e.g., Brezzi and
Fortin [65], Chap. III)

RT}, := {Vh € H(diV; Q]) | Vh(X)‘K —ag +bgx VKEe ’T]’h},
where a is a constant complex vector and b is a complex number, and the subspaces
RTy00 := RT, N Hopo(div, 21), RIY 50 = RT, N HY 50(div, £21).

By arguments from discrete cohomology, it can be proved (see Bossavit [59]) that, as
vector spaces on C,

dim (curl X}’h) = dim(RTg,arz) —Dpr.

Let us denote by # K the number of tetrahedra of 77 p,, by #F the total number of
faces of 77 j,, and by #Fap and #F the number of faces of 77, on 0(2 and on I,
respectively. It is not difficult to prove that

dim(RTY ) = dim(RTp 00) — dim(div(RTp 00))

= (#F — #Fo0) — #K -
dim(Mj ) = (#F — #Fr) + pr = dim(grad (M 1))
dim(QLh) = 3#K

Since 4# K = 2#F — (#Foq + #Fr), then

dim(curl X7 ) + dim(grad My p)
= [(#F — #Foq) — #K — pr| + [(#F — #Fr) + pr]
=2#F — (#Foo +#Fr) — #K
_UHK — HE
= dim(Qr,n).

Since, as it can be trivially checked, curl X}’h C Qr,n and gfr\aEIMLh C Q1,1 the
proof is complete. 0

The following lemma is the discrete counterpart of (4.15).

Lemma 4.7. Let Vﬁh = X}’h N Vr(0) and
(V2 ={prne X, | / Prh-Vin=0Yvin € V0,}.
2r

There exists a constant Cy > 0, independent of h, such that forall py ;, € (VIO’h)J‘ the
following inequality holds

IP1.nllo,2; < Collcurlpr pllo,e; -
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Proof. Given pr, € (VP),)= C (L*(§21))?, taking p; = Id in the orthogonal de-
composition result presented in Theorem A.7 we can write

pr,n = curl Qr + grad x7 + k7,
with
Qr € Ho,r(curl; 21) N HG yo(div; 2r) NH(T,002; 21)*
X1 € Hg po(£21)

and
ky € H(002,T; 82;).

Setting U7 = curl Qy, we have curl Uy = curl pr s, divU; =0, Uy -ny =0on I
and Uy x n = 0 on 9f2. Hence U € Hy pq(curl; £27) N Ho, r(div; £21), a space that
is continuously embedded in (H*(£2;))? for some s > 1/2 (see Amrouche et al. [27]),
so that there exists a positive constant C' such that

1U:lls.; < C(IU1llo.2r + [l curl Usllo, 2, ) -

Since itis easily verified that Uy € H(992, I'; 1)+, the Poincaré-like inequality(A.15)
gives
1UL .0, < Cill curl Usllo.c, (423)

Moreover, since curl Uy = curl py 5 € (L>(§2))3, the interpolant I7,U; in N},h is
well-defined (see Amrouche et al. [27]). Note that

Inprn =prn = Ur + I (grad x1 + ki)
and ITp,(grad x1 +kz) € V), hence
||P1,h||(2)¢91 = fQI Prh PrLh o
= Jo, Pr- WU + I (grad X7 + k1))

= fQI prn- 11,U;
< lpr.rllo.e 11 Urll0,;-

On the other hand, for all K € 77,

(4.24)

[11,Ur — Urllo.x < Coh*(|Uy|s,x + || curl Uyl[s i)
Coh* (U5, + || curl proalls )

C3 (W ||Uyls,c + || curl propflo.x) s

ININAIA

where we have used the local inverse estimate

[ curl pralls,x < Ch™*|| curl pr,pllo,x -
Using (4.23), this yields
111, U llo,.2; < [Urllo,2; + [[{IxUr — Urllo,0,

< Cy ([U1lls,; + |l curlpr nllo,e;)
< Cs | curlprpllo.e;

thus the thesis follows from (4.24). O

N
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Now we are in a position to prove the main result of this section.

Theorem 4.8. Assume that € is a piecewise-constant matrix in {21 and that Ty po is a
triangulation such that €| is a constant matrix for each K € 71 po. Assuming that
the triangulation Tt 1, is a refinement of Ty yo, problem (4.22) has a unique solution.

Proof. As in the continuous case we use Theorem 4.2. Since for each K € 77 j, we
know that €|k is a constant matrix, e;N; , € @, and E}lNLh € Qr,p for any
Nr7.» € Qr . From Lemma 4.6 one has that ()7 ;, = curl X} n @ grad M7 j,, thus the
space QY , defined by

QY p = ANrn € Qrn|Sh(Nrp, &) =0 Vérn € Mrn}

= {NrreQrnl fQI erNyy-gradlr, =0 V& p € My}
is equal to s;l curl X}’h. Let us set
/12 = {(Zc’h,V]’h) € Ay | R(V]’h,N]’h) =0 VN, € Q?,h}' (4.25)

If (zo,n, vin) € AY, taking in particular in (4.25) N, = 5;1 curlvyy € Q%h it
follows that curl vy 5, = 0 in {27, hence /12 = Né’h X VIO’h C H(curl; £2¢) x Vi(0),
and (4.12) follows from Theorem 4.1.

Moreover, if N7 € Q?,h we have N j, = ;' curl wy j, for some wy j, € X}’h.
Taking the orthogonal projection wy , of wy , on (VIO’h)J-, one clearly has Ny ; =
e; ' curl w7 - Hence, choosing (zc n, vi,n) = (0, w7 ;,), by proceeding as in the con-
tinuous case and using Lemma 4.7 we obtain that the inf—sup condition (4.13) holds.

Concerning the inf-sup condition (4.14), let us note that for all 7, € M7y ;, one

has gfr\zzl &r.n € Q1.1 hence from the definition of the norm || - |5,

sup |Sh(N1 1, E1.0)] > |Sh(§Eld€I,h>€I,h)|
N7, n€Q1,n ”NI,h”O,QI ||grad§1,h||0,gl

Jo, ergrad & p, - grad & 1,
— 1 — > 5min||€1,h||h7
l|lgradr nllo,;

and the proof is complete. g

We denote by ¢; and c» the continuity constants of the sesquilinear forms C(-, -)
and R (-, -), respectively, by « the coerciveness constant in A) of the sesquilinear form
C(-,-), and by (3 and ~ the two positive constants related to the discrete inf-sup con-
ditions proved to hold in Theorem 4.8. It is easily shown that all these constants are
independent of k. Then the convergence of the finite element approximation method
can be proved.

Theorem 4.9. Let the assumptions of Theorem 4.8 be satisfied. Suppose that (E¢, Hy)
€ A A € (L%(2))? and ¢; = 0 are the solution of problem (4.18) and that
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(Ec,n, Hrp) € Ap, Arn € Qrnand ér.n € My p, are the solution of problem (4.22).
Then the following error estimates hold
[(Ec — Ec.n, Hy *CHI,h)IIA
<(1+3H)+2 inf Ec —zcp, Hy — vr, (4.26)
o ( « )( ﬂ) (zc,n,vrI,n)EAR ”( © Cohy 20 I'h)”A

C2 .
- , 21> a - , ,
A = Arplloo,< (1+—=)  inf  [A; = Npullo,e,
B N7n€QY
. : 427)
+E”(EC —Ecn, Hr —Hip)lla
C
lor — drnlln = llr,nlln< 72||(Ec —Econ, Hr —Hrp)l|a - (4.28)

In particular, the finite element approximation method is convergent.

Proof. The proof follows the lines of the results in Brezzi and Fortin [65], Chap. II.
For all (z¢ 1,, Vi ,)s (Zoh, Vin) € Ap and Ny € Qr p itholds

C((Ec,n — 25, Hin —Vig), (Zon, Vi) + R(Vin, Arn — Nig)
= L(zc,n) — C((25 0, VIn), (Zoen, vin)) — R(Vin, Nin)

=C((Ec — 255, Hr = Vi 4,), (Zon, vin)) + R(Vin, Ar —Nprp).

In particular, if (zc p, Vi) € /12 then we know that curl v j, = 0 in {27, hence

CU(Ec,h — 255, Hin — Vi), (Zon, Vi)
=C((Ec — 25, Hr = Vi), (Zo,h, Vi) -

Let us define
A = {(zcp,vin) € A | R(vin,Nig) = G(Np ) VN7, € QY ).

Clearly we have (Ec,Hy ) € A, then for each (Z&h, Vin) € A§ we obtain
(Ecn — 28 p,, Hin — Vi) € A} and

C((Ec,n — z¢p, Hin = vi ), (Bon — 28, Hrn = vi )
=C((Ec —zg,, Hr = vi ), (Ecn — 28, Hin — vi ) -

From the continuity and the coerciveness of the sesquilinear form C(-,-) in A9 we
conclude

|(Ec — Ecn, Hr — Hru)la
<|[[(Ec —2z5 . Hr = vipla+ [(Ecn — 28 . Hin —vig)lla - (4.29)
<(1+2) I(Be — 25, Hr —vi4)la

forall (zf, ,, vy ;) € A
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From the inf-sup condition (4.13), for all v;; € X}’ ,, there exists a unique
(ucn, wrn) € (A%)+ = {0} x (VIO’h)J- such that for all Ny, € Q?,h one has
R(Wrn, Nrn)=R(MHr — vrn, Nr ) and moreover

c
< 2

B
Setting v;h i=wyrn+ vy forall Ny € Q?,h we have

R(vin Nrp) =RMH,Npp)
=R(H;,Nypn) + [, €rNrp - gradgr = G(Nr ),

”WI,hHH(curl;QI) ||HI - VI,h”H(curl;QI) .

as ¢ = 0. Therefore, for each (zc n, vrn) € A we have (zop, Vi) € AS and

[(Ec —zc,n, Hr — Vi, )la
< |[(Ec — zcn, Hr = vip)la + |lWrn | mieuen) (4.30)
< (1 + %") [(Ec — zcn, Hr —vin)la-
Hence (4.26) follows from (4.29) and (4.30).

To obtain (4.27) we use the inf—sup condition (4.13). For each N € Q?,h we
find

||AI,h o NI,h”O,!ZI S l sup |R(V1,h> AI,h - NI,h)|
(zc,h VI, n)EAL ||(ZC’h,V]’h)||A
On the other hand
R(vin, Ar,n —Nrp)
= L(zc,n) = C((BEc,n, Hin), (2oh, vin)) — R(Vin, Nin)
= C((Ec,Hy), (zo,n, vin)) + R(Vin, Ag)
—C((Ec,n,Hrn), (2o,ns Vi) — R(Vin, Nig),

then
ALk = Ninllo,2,
= %H(EC —Ecn, Hr —Hpp)|la+ %”AI —Nrwllo,ar s
which yields (4.27).
To obtain (4.28) we use the inf—sup condition (4.14), that in particular gives

1 Sh(N7h,
loralln <+ sup  ISRLmOLA]
YNrweQrn  INznllo,2;
On the other hand
Sh(N7n¢1,n) = G(N7p) — R(Hpp, Nig)

=R(MH;,Nrs)+S(Nin, ér) — RMH A, Nip)
=RMH; —H;n, Nig),

then e
lérnlln < 7||H1 —H7 |zt o)) -

Since smooth functions are dense in A x (L?(£2;))?, the interpolation estimates in
Section A.2 yield the convergence of the finite element approximation method. g
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Assuming that the solution is more regular (for notation see Section A.1), the in-
terpolation results in Section A.2 yield a precise error estimate.

Corollary 4.10. Let the assumptions of Theorem 4.8 be satisfied. If the solution
(Ec,Hy, A;,0) of problem (4.18) is smooth enough, namely, Ec € H"(curl; 2¢),
H; € H"(curl; ;) withr > 1/2 and A; € (H*(§21))3 with s > 0, the following
error estimates hold

I(Bc — Eop, Hy —Hpp)|la < Ch™0 (D
lAr — Arnllon, < O pymin (r,s,1) s
lprnlln < Ch™n (1)

Remark 4.11. We note that problem (4.9) can be written as a more standard saddle-
point problem. Setting

A, := H(curl; 2¢) x Ho pn(curl; £21) x Hgﬁp(curl; 2,

and defining

R(): Au x (L2(21)* = C

R((zc,vr, p1),N1) := [, (curl v - Ny +&/N; - pr)
and

Cl,): Ay x A, > C

C((Wc, ur, SI)v (ch Vi, pl)) = C((Wc, 11]), (ch VI)) )
problem (4.9) reads

Find [(Ec,HI,I‘]),A]] in /1* X (IJQ(f?]))‘3 :

C((Ec, Hy, 1), (zc,v1,p1)) + R((zc, v, P1), A1) = L(zc)

R((Echlvrf)vNI) = G(NI)
for all [(z¢, vr, pr), N1] € A. x (L?(821))% .

(4.32)

This problem and its finite element approximation can be analyzed using the gen-
eral theory of variational saddle-point problems (see Brezzi and Fortin [65]). However,
with that approach we are able to prove the discrete inf—sup condition only if e is a
scalar constant. ]

Remark 4.12. We do not address here the problem of determining a finite element ap-
proximation of the electric field E; in {27, referring instead to Section 5.5, where this
problem is considered in a more general geometrical setting. ]
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Remark 4.13. For the electric boundary condition (1.20) the finite element problem is

Find (EC,h,HI,h) € AZ, A?,h € Q],h, I‘;h € gl‘adMI*’h :

C((Ec.h,Hrp), (Zzon, vin)) + fa’h curl vig, - A, = L(zcp)
Jo, cull Hy j, - N7, + [, erN7 ), -r7, = G(N7 ) (4.33)
fQI erA7, m =0
forall (zcn, vin) € A5, N7, € Qrn, PT, € gfr\EEIMI*’h ,
where
hi= Né‘,h X Nll,h
and

M7y, = {&, € Urn | &, takes the same value at all centroids
of faces of I';, j =1,...,pr,and of
(082)r, 7 =0,...,pon,and §7 ;, =0
at all centroids of faces of I, 41} .

Note that, in this case, we have no need to assume that the computational domain (2 is
simply-connected. 0

4.3 A saddle-point approach for the H-based formulation

A saddle-point approach similar to the one analyzed in the previous section can also be
used for the H-based formulation of the eddy current problem, as presented in Alonso
Rodriguez et al. [13] (see also Guermond and Minev [116], who face the H-based
formulation of the time-dependent eddy current problem by means of an analogous
approach).

Let us consider the vector spaces

V(Je.r) :={v € Ho(curl; 2) | curl vy = J. rin 2;},
and, already introduced in (3.6),
Vi:={v e Hy(curl; 2) | curl vy =01in 27} .
The weak form (3.9) of the H-based problem also reads

Find H € V(Je’[) :
o lcurlHe - curlve + [ iwpH -V = o .o curllvg  (4.34)
Qc o WH Qc :

forallve V.
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It can be reformulated in non-constrained vector spaces by introducing Lagrange
multipliers. It is easy to see that (4.34) is equivalent to the following three fields for-
mulation

Find (H, A7, ;) in Ho(curl; £2) x (L?(827))3 x H&F(curl; 2r):
a(H,v) + [, curlvi - A = L*(vc)
Jq, curtHy - Ny + [, e/Ny-rp = G(N;) (4.35)
fQI efA;r-pr=0

forall (v,Ny,pr) € Ho(curl; £2) x (L?(£27))* x HY p(curl; £27)

where

a(u,v) ::/ a'*lcurlucwcuerJr/ iwpu -V,
Q¢ o)

G(N[) ::/ J6’1~N_[
27

have been introduced in (3.10) and (4.5), respectively, and
L*(ve) := / a'*lJe,c ~curl v .
Nc

Proceeding as in the case of the hybrid E-/H; formulation of the previous sec-
tion, it can be proved that problem (4.35) has a unique solution. It is in fact given
by (H,E|,,0), where (H, E) is the unique solution of (3.30), hence the Lagrange
multiplier A is indeed the electric field E;, and the Lagrange multiplier r; is equal
to 0.

Concerning the finite element approximation of (4.35), as in the previous sec-
tion we will assume for simplicity that {2 is simply-connected. In this way the space
HY ,(curl; £2) is given by the gradients of functions belonging to H! (£27). To ap-
proximate the magnetic field we employ the (complex-valued) Nédélec curl-conform-
ing edge elements of the lowest order N} (see Section A.2). In particular, we con-
sider the space X} := N}! N Hy(curl; £2). The finite elements spaces for the Lagrange
multipliers A7 and ¢; are the same spaces used in the hybrid case: the space M7 j,
of discontinuous piecewise-linear functions defined in (4.19), and the space Q)1 5 of
piecewise-constant vector functions.

The finite element approximation of (4.35) can be formulated as follows

Find (Hp, A1 p, é1.5) in X}ll X Qr.n X My, -
a(Hp,vi) +R(Vin, Arn) = L* (Vo)
R(Hrn, Nrp) +Sh(Nih, é14) = G(Np ) (4.36)
Si(Arn,&rn) =0

forall (v, Ny p,&rn) € X} X Qrp x My,

where R(-,-) and Sy, (-, -) have been defined in (4.21) and (4.20), respectively.
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Using again Theorem 4.2 and proceeding as in the hybrid E/H; case we have
the following result.

Theorem 4.14. Under the assumptions of Theorem 4.8, problem (4.36) has a unique
solutionHy, € X}, Ar, € Qr.p, and 1., € My p. Moreover, let H € Hy(curl; £2),
A € (L?(£2r))? be the solution of problem (4.35). Then the following error estimates
hold

C C .
||H - Hh”H(curl;Q) S (1 + El) (1 + 52) lnf 1 ”H o Vh”H(curl;Q)

Vh h

|Ar = Arplloe, < (1+ %) infn, eqq, 1AT = Ninllo.o
+%”H - HhHH(Curl;Q)

C
lérnlln < ;ZHH — Hy | 5t 2) »

where all the constants are independent of h. In particular, the finite element method is
convergent and, if H € H" (curl; 2) withr > 1/2 and A € (H*(£2r))3 with s > 0,
it follows

||H - Hh ||H(curl;Q) S Chmin (r.1)

||AI — AI,hHO,QI S Chmin (r,s,1)
| 1.n]ln < Ch™IR D)

4.4 Hybrid formulation using the electric field in the insulator

For the formulations using the magnetic field in the insulator as the main unknown,
the saddle-point approach computes also the electric field in the insulator, because it
is the Lagrange multiplier for H;. However, in many applications the electric field in
the insulator is not an interesting physical quantity. In this case it would be convenient
to avoid its approximation. This can be done using a second type of hybrid coupling,
the He/E; formulation, in which the main unknowns are the magnetic field in the
conductor {2¢ and a vector magnetic potential E; in the insulating region {2;.

Here and in the next section we follow the presentation given in Alonso Rodriguez
et al. [14]. The starting point is the hybrid formulation that has as main unknowns the
magnetic field in the conductor and the electric field in the insulator.

For each v € H(curl; £2¢), from the Faraday equation in {2 one finds by inte-
gration by parts

fQC(EC -eurl Vo + iwpcHe - Vo) — [ Ec X ne - Ve = 0.
Using the interface conditions for the electric field and the Ampere law in {2¢ leads to

fd,zc(a"1 curl He - curl vg + iwpcHe - ve) — [ Er X ne - Vo
= o, o . ¢ curlvg.
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On the other hand, in the insulator one has —iw curl Hy = —iwJ, s, thus for each
z; € H(curl, 2;) one finds by integration by parts

—iw [, Hy-curlzr +iw [ Hy xny - 27 = —iw [, Jer-2r1.

Using the Faraday law in {2; and the interface conditions one has

/ u;lcurlEpcurlz_[fz'w/chncwz_]:fz'w/ Jer-Z7.
Q[ r QI

Setting
Zr = {zr € H(curl; 21) | z1 satisfies (4.6)} ,

the weak formulation of the hybrid H /E; formulation reads

Find (He, Er) € H(curl; 2¢) x Zp -
ch(o"1 curl He - curl ve + iwpoHe - V)
+ [ Vo xng-Ep = F(ve) (4.37)
JrHe xne-z1 +iw! [, p;teurl Ef - curlz7 = G(z1)

for all (ve,zr) € H(curl; 2¢) x Zr,

where
F(ve) ::/ a'*lJe,c -curl v,
Nc

and, as in (4.5),
G(Z[) ::/ J6’1~Z_[.
27

It can be shown, via the standard theory for saddle-point problems, that problem
(4.37) has a unique solution.

Unfortunately, in the discrete setting it is not clear how to obtain an inf—sup condi-
tion for the pairing (1, w) — [,.(u x n¢) -Won H~Y/2(div,, I') x H=/2(div,, I")
which is uniform with respect to the mesh size h. For a detailed account of this problem
see Christiansen and Nédélec [82], Sect. 3.

A remedy is offered by considering a different approach, in which one works on a
smaller constrained space. The drawback is that in the alternative approach the solu-
tion obtained in {2; is not the physical electric field E; but a suitable magnetic vector
potential E;.

In the following we assume for simplicity that J. ;-n; = O on I" (for less restrictive
assumptions on J. ; see Remark 4.18). By tangential continuity of H we can infer that

div,(Ho xng) =curlH; nc=0 onl'.
Let us define the spaces

X¢ = {ve € H(eurl; 2¢) | div.(ve x ng) = 0on I'},
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and
Zy = {z; € H(curl; 2;) | / zy-gradé; = Oforall & € HY (027)} .
27

Note that they are closed subspaces of H (curl; {2¢) and H (curl; §2;), respectively.

Moreover, Z; is the space of z; € H (curl; £2;) such thatdivz; = 0in 2 andz;-n =
Oond2UI.
We consider the following problem

Find (He, E;) € Xo x 21
ch (o~ curl He - curl Vo + iwpHe - Vo)
+ [ V& x n¢ - Er = F(ve) (4.38)
JrHe xno 77 +iw! [, pytcurl By - curlzr = G(zr)

forall (vo,zr) € Xo x 7Zr.

In order to analyze this new problem we need some preliminary results. First of all
we recall that, choosing pt; = Id in Theorem A.8, any function v; € (L?(£27))? can
be written as

vy =curl Qf + grad x7 + k7 , (4.39)

where Q3 € Ho(curl; 2;), x5 € H*(£2r) and k} € H(m; £21), the finite dimensional
space of harmonic vector fields in {27 introduced in Section 1.4. We also know that
grad x7 = 0in {27 ifand only if divv; = 0in 2y and vy -m=0on 02 U I".

It is readily seen that curl[Ho(curl; £27)] € H(curl; £2;)%; moreover, from (4.39)
one sees indeed that curl[Ho(curl; £27)] = H°(curl; £27)*. Thus the following orthog-
onal decomposition holds

(L*(2r))* = H (curl; 7)* @ grad H'(2r) @ H(m; 2r) . (4.40)
Moreover,
H (curl; £21) 441
= [H (curl; 27) N HO(curl; £27)+] & grad H(2;) & H(m; 2;) , (@.41)
and N
Zr = [H(curl; 2;) N HO(curl; 27)4] @ H(m; 2;) . (4.42)

We also recall the following Poincaré-like inequality (see, e.g., Fernandes and Gi-
lardi [104]): there exists a constant C; > 0 such that

/ lvi|? < C1/ (| curl vy | + | divv;|?) (4.43)
2r

I

forall v; € H(curl; £21) N Ho(div; 27) N H(m; 27)*.
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If vi € H(curl; 2;) N H%curl; £2;)* then, from the orthogonal decomposition
(4.41), it follows that v; € H (curl; £2;) N [grad H (£2;)]+ N H(m; 2;)*. As a con-
sequence, divvy; = 0in 27 and vy - n = 0 on 92 U I'. In conclusion, for each
v € H(curl; £2;) N HO(curl; £2;)* we have

/ lvi? < C’l/ |curlvy|?. (4.44)
2 21

We are now in a position to prove that the H¢/ E; formulation is well-posed.

Theorem 4.15. Assume that {2 is simply-connected. The variational problem (4.38)
has a unique solution.

Proof. The proof is based on the classical saddle-point theory. Let us denote Z o=
H (curl; £2;) N HO(curl; £2;)*. Since we have the direct sum decomposition (4.42),
namely, B B

Zr = Z; @ H(m; 1) , (4.45)

we can rewrite (4.38) in equivalent form as
Find (He, Ef) € X¢ x Zf and BN € H(m; 1)
D((He,Ef), (vo,21)) + [ Ve x ne - EJf = F(ve) + G(zr)
JrHe x ne -2}t = G(2])
for all (Vc,z}-) € )Z'C X Zf- and z}{ € H(m; 2r).
The sesquilinear form D(+, -) is the sum of the two left-hand sides of (4.37), namely,

D((UC,W]), (Vc,Z]))
= [ (@ eurlue - curl Ve +iwpcuc - Vo)
+fFW><nc~W1+fFuc Xng -z
+iw™ ! fQI p; ' curlwy - curl z7 .

(4.46)

It can be proved that D(-, -) is coercive in X, c X Z f‘ In fact, based on (4.44), the proof
is analogous to that presented for the sesquilinear form C(-, -) in the analysis of the
Ec/H; formulation.

Now, we only need to check the inf—sup condition

3 8 > 0 such that
vz € H(m; ;) Ive € Xo, ve #0: (4.47)

Jrve xne 77| 2 Blvel ewoc 12 o0 -

For simplicity we start assuming that {2¢ is a torus, a set which has only one inde-
pendent non-bounding cycle, or, equivalently, whose first Betti number is equal to 1.
Since (2 is simply-connected, the non-bounding cycle of {2; are on I". We know that
for L = I,C we can find an orientable two-dimensional surface X'y, such that both
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2, \ X', have trivial first homology group. Setting 0¥« = ~¢ and 0X; = ~;, we
choose the orientation of these two cycles in such a way that, if the normal vector on
Y has the same direction of 7, then ¢ is oriented counterclockwise.

Denote by p% a harmonic function in H*(§2;, \ X1.) that has a jump of height 1
across X7 (namely, the line integral of grad p{, along 7 has value 1, and similarly

for grad p%), so that grad p} is the basis function of H(m; §2,). Then z} = ¢ gfr\aﬁp;

with ¢ € C. Then we can use as special candidate for vo € X the harmonic vector
field ¢ grad p: in fact we have

[ cgradpf x ne -zt = Cff\"/c gradpf, X ne -z

= Cff\ﬁz dive (2} xnc) +c [ zft - dr

=cf 2t -dr=|c? [ _eradp;-dr=|c[.

Since ||z% 0., = |c|||§11p7||0,91, we obtain the inf-sup condition with § =

(llgrad p¢:flo,ec lgrad pj llo,, )~
For the sake of simplicity, here below the first Betti number n,, of £2¢ will be sim-

ply denoted by nc. If nc > 1, since §2 is simply-connected the non-bounding cycles
of {21 are on I" and we can find 2n¢ independent non-bounding cycles v1, . . ., Y2nc
that represent generators of the first homology group on I". They can be chosen such
that v, = 0%, k = 1,...,n¢ (see, e.g., Hiptmair and Ostrowski [128]). Moreover,
Yne+1s - - -5 Y2ne can be chosen dual to 71, . . ., Y, Which implies

/ gradp’ - dT = 0j, k.je{l,...,nc}. (4.48)
Tne+k

By proceeding in a similar way, one can easily see that the constant 3 in the inf—sup
condition is given by

min [ef*
cecc,c0 (MCc-€)V/2(Mlc-c)l/2’

8=

where M, L = I, C, is the matrix given by Mij = fQL gfr\inpZ’L . gfr\aﬁp;L, k,j=
1,...,710. O

Remark 4.16. 1t is worth noting that the solution E; to (4.38) is not the physical
electric field we are looking for. In fact, what we have determined satisfies the in-
terface condition E; - n; = 0 on I', which is not the case for the correct electric
field. Therefore, it has to be interpreted as a vector potential for the magnetic field
H; = iw’lujl curl Eg.

In order to be sure that we have really solved the eddy current problem, we have
thus to check that the magnetic field (H¢, Hy) satisfies (3.23).

Choosing as v a smooth vector function with compact support we find (3.23),
the Faraday equation in {2¢. Moreover, (3.23)s and (3.23)4 are trivial from the
definition of H;. In order to verify (3.23)2, the Ampere equation in (27, we no-
tice that the second equation of (4.38) holds true also for z; = grad{; with



4.5 A saddle-point approach for the Hc/ E; formulation 83

&r € HY(82;). In fact fr H¢ x ne - grad &7 = 0 because div,(He x ng) = 0 on
I, and fQI Jer ~grad§_1 = 0 because divJ. ; = 0and J. ;- n; = 0 on 9f2;. There-
fore, using the orthogonal decomposition (4.41), we conclude that the second equation
in (4.38) holds for each z; € H(curl; §2;). Taking now as z; a smooth vector function
with compact support we obtain (3.23)2, and then a similar choice with z; vanishing
only in the neighborhood of I" gives H; x n = 0 on 9{2, hence (3.23);.

Concerning the interface conditions, the choice vo = grad n¢, where ¢ is an
arbitrary function in H'(£2¢) (so that div,(gradnc x ne) = curlgradne - ne = 0
on I"), gives easily that iwpu-Hc - ng + curl E; -ng = 0 on I, hence (3.23)7.
On the other hand, choosing z; € H(curl;{2;) and using the Ampere equa-
tion in (27 and the boundary condition H; x n = 0 on 0f2 one finds at once
He x ne —iw 'p; !t curl Ef x ng = 0 on I, namely, (3.23)s.

The last condition (3.23)5 follows by taking v = Ry, ¢, an extension of the trace
P X nein 2¢. Clearly Ry ¢ € )Z’C, as div. (R ¢ x n¢g) = div-(p;; X n¢) =
curl p.r -ne = 0on I'. This choice and the Faraday equation in {2¢ yielld

0= ch [ (curl He — J. ) -curl Ry o + iwpcHe - Ry c]
+ [ Ric xne - Ef N
= [plo N eurlHe — Je ) — Ef] xne - Ry o,

and therefore (3.23)s, recalling that Rjc x ng = Py X nc on I' and
curlEI = —iwpHy in £2;. O

4.5 A saddle-point approach for the H. / E, formulation

In order to get rid of the constrained space Xo % Z; appearing in (4.38), we can make
use of the fact that both the constraints can be included in an augmented variational
problem as extra linear conditions. Let us define the space

X} = {vc € H(curl; 2¢) | div,(ve x ng) € L*(IN)},
endowed with the graph norm
Ivellxy = lIvelluews ooy + || dive (ve x ne)llo,r
(which coincides with ||Vl g(cwt;20) When ve € )Z'C). Let us also set
pr+1

() = ] €ry)/o).

j=1
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The unconstrained variational problem that we consider is

Find He € X§,E; € H(curl; 27),Q € L3(I), ¢ € H'(£2;)/C -
D((Hc,EI),(Vc,Z]))
— [ div. (Vo x n0) Q — [, 71 - grad ¢ = F(ve) + G(zr)
fF diVT(HC X nc)ﬁ =0
fs’h E; - gradé; =0
forallve € X%, zr € H(cutl; £27), P € Lg(F),fl € H'(92r)/C.

(4.49)

Note that, since fp_ div,(ve xng) =0foreachve € XZandj =1,...,pr + 1,
this problem is indeed well-defined for @, P € Lg (I"), namely, adding on I’; a con-
stant to () or P does not change the problem. In particular, any function belonging to
L?(I') can be chosen as test function P.

Theorem 4.17. Assume that (2 is simply-connected. Problem (4.49) has a unique so-
lution (He, Er, Q, ¢1) in X§ x H(curl; £27) x L2( ) x HY(£2;)/C, and (H¢, Ef)
is the solution to problem (4.38). Moreover, the Lagrange multiplier ¢y is 0.

Proof. Choosing P = div,(H¢ X n¢), it is clear that the two last equations in (4.49)
imply that (Ho, E;) € X¢ x Z;, thus (He, E;) is the solution to problem (4.38).
From Theorem 4.15 and the classical theory of saddle-point problems (see Brezzi and
Fortin [65]) we also see that, to prove existence and uniqueness of a solution to problem
(4.49), it is sufficient to verify the inf—sup condition

3 6* > 0 such that
v (P,&r) € Lg(F) x HY(2r)/C J(ve,zr) € X} x H(curl; 1),
(ve,zr) #(0,0) :
‘fpdivT Vo X Do F+fn Zr- gradg_j‘
= B (lvellxg + |zl eusen)
(Z”Jr 1Pl 22y e + €0l g /o) -

(4.50)

Since we can assume that fF_ Pr, = Oforeach j = 1,...,pr + 1, we can take
J

ve such that div,(ve X ng) = P. More precisely, this can be done by using
the Laplace-Beltrami operator A, (see Section A.l) and considering the solution
Aj € HY(I;)/C of A;\j = PpyonI, j =1,...,pr+ 1, a solution that satis-
fies || grad Ajllo,r; < CollPr;llo,r;- Then we take for vo a continuous extension
in H(curl; 2¢) of grad \; € H~ 1/ 2(div,; I';), namely, a function v¢ satisfying
(ve x ng)|r, = grad_A;. In particular vo € X and

pr+1
Ivelixs <1 Y (lgrad, Allo,r; + 1Piry llo,r,) < CallPllo,r-

Jj=1
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Choosing z; = grad ; (where, without restriction, we can also assume that f o &r =
0), we have

‘deIVT Vo X ne PJrfQ zr - grad&‘ fF|P|2+fQ | grad 7|2
2 C2C3||VC||X Z 1P, llo,r; + |21l mrcurts2n) || grad Erllo,e2;

since Z ||Hp llo,r; < C3||Pllo,r- Recalling that ||Hp ||L2 /C = ||Hp llo,r; as

fF,- Py, = 0, and moreover that |1l g1 (2,)/c = |€1]|1,0; if fQI &r = 0 (see Sec-
tion A.1), the inf—sup condition (4.50) follows from the Poincaré inequality

[ lemag zeo [ (el + gmagl?), “51)
Q[ QI

which is valid for £, € H'(§2;) with ffh &1 = 0 (see, e.g., Dautray and Lions [94],
Chap. IV, Sect. 7, Prop. 2).

To show that the Lagrange multiplier ¢; is 0, we take as test functions in (4.49)
ve = 0,z; = grad ¢7, P = 0 and ¢; = 0. Then we have

JrHe xne - gradér — [, | grad ¢ = Jo, Jer - grad o;
- fQI leJe,I d)f + fagup e, " nd)l = 0
and also, from (4.49),

/chncwgradE:f/divT(Hcxnc)E:O,
r r

so that grad ¢; = 0. g

Remark 4.18. 1f J. 1 - n; # 0 on I', we can consider the function H, € Ho(curl; £2)
defined in (3.5) and, setting W = He — H, ¢, reformulate problem (4.37) as

Find (W¢, Er) € H(curl; 2¢) x Zp -
Jo (ot eurl We - curl Ve + iwpcWe - Vo)
+ [, ¥ xne By = F(ve) (4.52)
JrWe xne-zr +iw™ [, pytcurl E; - curl zr = G(z1)
for all (vg,zr) € H(curl; 2¢) x Zr,

where

F(ve) = /Q [0_71(‘]6’0 —curlH, o) - curl vg —iwp-He ¢ W)} ,
C

and
z ) :fQIJe,I'Z_I*fFHe’C XNg - Zr
:fQIcurlHe,pEJr JpHer xng 77
:fQIHe,pcurlZ,

since He ; x n = 0 on 9{2.
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The new unknown W ¢ belongs to X¢ and we can proceed as in the case in which
we have assumed J., - n; = 0 on [". In particular, the unconstrained variational prob-
lem reads

Find W¢ € X;},EI € Hcurl; £2/),Q € L?(F),gﬁj e H'(£2;)/C:
D((W07E1)7 (VC,Z])) - fF leT(W X nc) Q
— [, %1 - grad g1 = F(vc) + G(zr)
fpdivT(WC xnc)P =0
fs’h EI ~grad§_1:0
forall ve € X}, zr € H(cutl; £27), P € Lg(F),{I € H'(2;)/C.

(4.53)

IfJ.r-ns€ L?(I'), then in fact He € X ¢ and it is possible to avoid the use of
H., considering the problem

Find He € X§, Er € H(curl; 27),Q € L3 (I'), ¢; € H(£2;)/C -

D((Hc, Er), (vo,zr)) — [, div, (¥ x ne) Q
- fQI z7 -grad¢; = F(ve) + G(z1)

fpdiVT(HCch)FiffFJe’['n]F (4.54)
ff?z E;- grad&; = 0
forall ve € X¢, 27 € H(curl; 2;), P € L3(I"),&; € H'(£21)/C.
Both problems (4.53) and (4.54) have the same structure of (4.49). O

Remark 4.19. For the electric boundary condition (1.20) the variational problem is
Find He € X§, Er € Hopolcurl; 27),Q* € L3(I')
¢1 € Hy po($21) :
D((HC> EI)? (VC'a ZI))
— [ div, (Vo x ne) Q* — [, 71 - grad ¢7 = F(ve) + G(zr)
fF diVT(HC X nc)ﬁ =0
Jo, E;-grad&f =0
forall ve € X}, zr € Hypo(curl; £2;), P* € Lg(F),
&€ H(%,&Q(QI%

(4.55)

where, as for the magnetic boundary conditions, E; is a vector potential of —iwp  H.
It is easy to verify, by proceeding as in Remark 4.16, that Ho and H; =
—(iw) ™1 u;l curl E; are a solution of the strong problem (3.42).

It can be shown that in the present case it is not necessary to assume that (2 is
simply-connected. g
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4.5.1 Finite element discretization

Let P, be the set of complex polynomials of degree less than or equal to k in x1, x2,
x3, and P the set of homogeneous complex polynomials of degree k. Then for k > 1
we consider the (complex-valued) Nédélec curl-conforming edge elements

Ny = {z), € H(cur; 2) | zp,;c € Rp V K € Ty}, (4.56)

where Ry, := (Pr_1)* @ Sy and Sy, := {p € (P1)? | p(x) - x = 0} (see Section A.2).
In order to obtain a finite element approximation of the variational problem (4.38),
we introduce the finite element spaces

Xeg o= {ven € NE, | dive(ven x ne) =0on I}, (4.57)

and
Z],h = {Z[}h GNIk,h | zrp - gradér, =0V Ery GLI;,h}, (4.58)
27

where N’é’ n and N I’“ ,, are the Nédélec curl-conforming edge elements related to the
domains (2¢ and (27, respectively. We also denote by

Lllc,h = {&rn € CO2) | ér e €P VY K € Trp}

the standard piecewise-polynomial Lagrange nodal elements (see Section A.2).
We consider the following finite element approximation of the hybrid He /E;
formulation

Find (Hen, Er ) € Xen X Zip,
Jo, (e~ eurlHe p, - curl Ve, + iwpcHen - Vor)
+ [ Ver xnc-Erp=F(ven)  (4.59)
JrHen xne - Zrp +iw ! fQI u;l curl]T]Lh ~curlzry, = G(zr,)
forall (ven,2zr,n) € )Z’C,h X ,Zth .

Theorem 4.20. Assume that §2 is simply-connected and that the families of triangula-
tions Tc. y, and 11 j, are obtained as a refinement of coarse triangulations Tc po and
T o for a fixed h®. Then the variational problem (4.59) has a unique solution in

XC,h X Z],h.

Proof. First we note that the space Z 1,n can be decomposed similarly to A 71n (4.45).
In fact, we have grad L’},h C H%curl; 2;) N N I’“ 5, (note that in general geometrical

configurations these two spaces do not coincide). Consequently, the functions in NV Ik h
that are (L?(£2r))3-orthogonal to H°(curl; £2;) N N}“’h are included in ,Zth’ namely,
[H(curl; 27) N NF, ]+ C Z; 1, Denoting by

H],h = Ho(curl; Q]) n FZv],h
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(in the discrete case this corresponds to the space of harmonic vector fields H(m; £2;),
though it is not a subspace of it), we finally have

Zrp = [HO(curl; 1) N NF, Y @My, (4.60)

It is also checked easily that dim H(m; 2;) = dim Hy p.
Based on (4.60) we can rewrite (4.59) in equivalent form as

FlndHCh € XC h> I n € [HO(CHI‘I Q[) ﬂNIkh] , E%h € H],h :

D((HC,h>E1,h)> (Ve 21)) + [pVen x ne - EI,h = F(von) + G(z1,)
JrHeon xne - z}i’h = G(z}{’h)

forall vep, € X’C’h, th € [H(curl; £27) N Nf’h]l-, z}{’h € Hrn-

To prove that D(-, -) is uniformly coercive in )Z'C’h x [HO(curl; 21) N NF, ]+ we
can proceed as in the continuous case, since there exists a constant Cs, independent of
h, such that

Ivinlloe, < Collcurlvisllo,e, ¥ vin € [H(curl; 21) NN, ]+

(the proof is similar to that of Lemma 4.7).
Now we need to check the discrete inf—sup condition

35 > O such that
szh €Hrn3Iven € Xep,ven#0: 4.61)

‘fp Vo,n X e - z}-fh > /BHVC,h”H(curl;Qc) ”z}-thO,!ZI .

For the sake of simplicity, we start assuming that {2 is a torus, so its first Betti
number ng,, is equal to 1. Since {2 is simply-connected, the non-bounding cycles
of 21 are on I" and the first Betti number nyg,, of {2; is also equal to 1. As in the
proof of Theorem 4.15, we can consider the “cutting” surfaces X'z, L = I, C. Let us
denote by II;, the piecewise-linear function, defined on a coarse mesh 77, »0, which
takes value 1 at the nodes on one side of X'z, and O at all the other nodes. Then, if the
family of triangulations 77, ;, are obtained by refining the coarse mesh 77, j0, grad 11y
belongs to HO(curl; £2;) N N}’h (thus to H(curl; 2;) N th), but clearly, due to

the jump of II; on X7y, gfr\zEIH 7 ¢ grad L1 . Any function z}{’h can be written as
z}{h =c grad Il + grad &1 ), for some ¢ € (C and {7, € L 5~ Therefore we choose

Vo =c¢ grad Ilc € X c,h» and we can proceed as in the contlnuous case. At first, we
have to note that for grad{; j, the line integral on a closed cycle is always vanishing.
Moreover, we have

”z}—fh”g,!h fQI ZI h ZI h = Cfg ZI h gradHI
< |e||lgrad II1 0,0, | 275, 0.2, -

so that ||z}{’h llo.2; < ¢ ||g,r\zzi II1||0, 02, - Therefore, the proof ends as in the continuous
case.
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For the Betti number n, = nc > 1, one arrives at the inf-sup constant

~ _ lc|?
b= mi — ~ )
ceCC o0 (MCC,E)UQ(MIC.E)MQ

where ML, I = 1, C,is the matrix given by J\A/.flg = fQL gfr\ailﬂu ~gfr\2EIHj,L,l,j =
1,...,71(;. O

Remark 4.21. From the arguments of Theorem 4.20 we readily derive that for all
(Fn,Gnr) € (Xcn) % (Z5,) there exists a unique solution of the problem

Find (uc,p, wrpn) € Xc,h X Zl,h :

D((uc,h, Wr,n), (Vo zrn)) = (Fu,ven) + (Gh, 215) (4.62)

for all (Vc’h, Z],h) S )?C,h X Z],h,
where (-, -) denotes the duality pairing. Moreover, the solution is bounded as follows
lucnlla(eusee) + IWrnlaEuie) < CllFnll ., +1Gallz, )

The constant C, depends on the continuity constant of the bilinear form D(-,-) in
Xo x (HO(curl; £27))%, on its coerciveness constantin X ¢ j, x [HO (curl; £2;)NX ]+,
and on the constant B in (4.61), hence it is independent of h. As a consequence, it is
easily shown that

Ja > 0, independent of h, such that
V(uch, Wwin) € Xon X Zrn3(Vonzr,n) € Xen X Z1h
(ven, z1,n) # (0,0) (4.63)
D((uc,n, Wr,n), (Vo,n, 21,n))
2 Q(HVC,h”H(curl;Qc) + ||Z1,h||H(curl;QI))
X(”uC,h”H(curl;Qc) + ||w1,h||H(curl;QI))7

that is a uniform inf—sup condition. g

For devising a suitable conforming finite element approximation of the uncon-
strained problem (4.49) we need another discrete space. We start from

Crop = A{Pnj € L*(I) | Pujir €Pra VT € Try 1},
where ’ij i is the restriction to I'; of the mesh 7¢ 5, and then we define
pr+1

vi= Tl Crh/o).

j=1
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We consider the following problem
FindH¢ ), € Ngh,EI,h € NIk’h,Qh € Yﬁ;lyﬁﬁl,h S L’}’h/(C :

D((Hen, Ern), von,zin) — [ div-(Vom x ne) Qn
r
— Jo, Zrn - grad o1 = F(ven) + G(z1,n)
fF diVT(HC’h X Ilc)?h =0
Ja, Erp - grad€r, =0
forall vg j, € Né:v’h,ZI’h € th,Ph € Yﬁ;l,&,h € L’f’h/(C.

(4.64)

Theorem 4.22. Under the assumptions of Theorem 4.20, problem (4.64) has a unique
solution (He,p, By, Qn, d1.0) in N5, x N x Yt < Ly, /C, and (He,n, Ep p)
is the solution to problem (4.59). Moreover, the Lagrange multiplier ¢ p, is 0.

Proof. Since div.(Hen X ne)r, € CF > Choosing Py, = div,(Hep X ne) we

have that (Hc p,, EI n) € XC n X ZI », and we conclude at once that (Hc¢ 5, EI R) is
the solution to (4.59). Moreover, estimate (4.63) holds, and, as in the proof of Theo-
rem 4.17, we only need to verify the uniform discrete inf-sup condition

35, > 0, independent of A, such that
VP, € Y €n € L, /C 3 (Von, zrn) € NE, x NE,,
(VC,hsz,h) 7£ (0,0) :
‘f div-(von X ne) Py + [ 21n - gradm‘
> Be(llvenllxz, + |1z1nll #eurnor))
><(Z”+ 1Pair;lL2cry) e + 1€ mll a2 ) -

(4.65)

Without restriction we can assume that f . Pnr; = 0 and f a &rn = 0. Then we
J

choosezr j, = grad 1, and v, such thatdiv, (v, Xne) = Pp,. More precisely, let
us denote by X1, ;, the space of tangential traces on I'; of NE , (namely, the Raviart—

Thomas finite elements on I7;) and by X’ IQj ., the kernel of the div, operator in X7, 5,
j: 17---7PF+1.Since

div, X1, p = {Ph,j € Cfffﬂ / P = 0},
T

there exists a function ry ; € (X IQj h)J- such that div, rp, ; = Py ;- We can take for

v, a uniformly continuous extension in Ng n of vy ; (see Alonso and Valli [9]), so
that (vo,n X ne) |, = ra,;.
It can be shown that there exists a constant Cy > 0, independent of h, such that

sty llo,r; < Colldivey spryllo,r;  Vsur, € ()(IQJ-,h)L

In fact, let us consider the Laplace-Beltrami operator A, (see Section A.1) and denote
by p; € H'(I';)/C the solution of Ap; = divy sy, on I}, j =1,...,pr + 1. This
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solution satisfies || grad, p;l|s,r; < Col div+ spr; o, r; for a suitable § > 0. We have

Isnir;llo,r; < lIsnir; — grad, pjllo,r; + |l grad p;llo,r; ;

moreover, denoting by Ij ; the interpolation operator in X, 5, from the fact that
(snjr; — In,r; grad, pj) € qujﬁh we have

Isnir; — grad, pyI3 1,
= 1, (Snir; — grad,p;) - (snir, — In.r, grad,p;)
+ fF,- (swir; — grad, p;) - (In,r; grad, p; — grad p;)
= fl“,- (Sh‘['j — grad_p;) - (In,r, grad p; — grad_p;)
< |Isnir; — grad.pjllo,r; | Xn,r; grad,p; — grad_ pjlo,r; -

Finally, following Buffa et al. [72], Theor. 4.2, we find that

| Xn,r;grad . p; — grad. pjllo,r;

can be estimated by || div sy, ||o,r;-
In conclusion,

= ||VC,h||H(curl;Qc) + || diVT(VC,h X nC)”OJ"
< Gy Uengllory + 1Py llo,ry)
< Col|Prllo,r,

[venllxe

and, by proceeding as in the continuous case, we have (4.65).

The proof that the Lagrange multiplier ¢; », € L%, \C is equal to 0 is easily done.
In fact, we have already noted that from the second equation in (4.64) it follows that
div-(Hen xng) = 0on . Now taking (0, grad ¢1,1,) € N§ j, X N, as test function
in the first equation of (4.64) we have that l

/Hcﬁhxnc~grad¢>1,hf/ |grad¢>1,h|2:/ Je.r-grad ¢,
r 27

I

Since divJ,. ; =0in 27 and J. ;-n = 0 on 92U I', integrating by parts the first and
third term we find ffh | grad ¢o7. 5% = 0, hence ¢7,, = 0 in L’I“,h\(C. O

The convergence of the solution of problem (4.64) to the solution of problem
(4.49) is a consequence of the standard theory of saddle-point problems (see Brezzi
and Fortin [65]). An usual density argument and the interpolation estimates in Sec-
tion A.2 yields the following convergence theorem (see Section A.1 for notation).

Theorem 4.23. Let the assumptions of Theorem 4.20 be satisfied. Let Hc, E;, Q and
¢1 = 0 be the solution of problem (4.49) and He p, Er n, Qn and ¢rp, = 0 be the
solution of problem (4.64). The finite element approximation method is convergent
and, if He € H"(curl; 2¢), By € H"(curl; 2;) and Q € H*(I') withr > 1/2 and
s > 0, the following error estimate holds

||IjC *~HC,h||H(curl;Qc) S Chmin (k)
|Er — EI,h”H(curl;(ZI) < Chin (k) (4.66)
1Q — Qnllo,r < CR™m (k)
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Remark 4.24. A suitable finite element basis of the constrained space X cnfork=1
is presented in Section 7.6.2, and could be used for avoiding the introduction of the
Lagrange multiplier Qp,. O

Remark 4.25. Since in (4.49) the vector field E; is not the physical electric field, the
numerical solution Ey 5, is not a correct approximation of E;. If interested in that, see
Section 5.5. O

Remark 4.26. For the electric boundary condition (1.20) the discrete variational prob-
lem is

FindH¢, € Ngh»EI,h € X?,MQZ = Yllf,gl’
Ot € Lfy NVHG oo(L21) -
'D((Hc’h, E],h), (VC,]'H ZI,h)) - fF diVT(VC’h X nC) Q;
_ f!h Zrn - grad ¢y, = F(ven)+ G(zr,n)
[rdiv.(Hon x ng) Pf =0
Jo, Brn - grad& =0
forall vep, € Né,h,zf,h € X}C,mpff € Yllf,gl’
& €Ll NHY ,o(S2),

(4.67)

where X}“ h= NIkh N Ho s (curl; £21). Note that it is not necessary to assume that
2 is simply-connected. O

4.5.2 Some remarks on implementation

In this section, following Alonso Rodriguez and Vazquez Hernandez [21], we focus on
the resolution of the linear system arising from (4.64) in the case k£ = 1. Let us consider
the following bases {ng’h }°< , basis of Né’h, {zlj’h}f\g1 ,basis of N}’h, {P}}E | basis

0 1 M . 1 . . .
of Y7, and {7, };21, basis of L ;, /C. We also consider the following matrices
_ C C . J i
Mo = {m”} , My = w/ KV Vo
Nc
— {C C o -1 J i
Sc={si;} , sij= / o curlvy, -curlvy,
Nc
1l I, -1 ~1 J ;
Sr={s;;}, sij=w / p~ curlzy - curlz
2r
— — J i
D =A{di;} , dij:= /FVC,h XN Zpp

Be = {b,} , be; ::/FdivT(vé’h x ng)Pj
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Br = {bfj} , bi{j = /Q z?h ~grada,

I
and finally we set A¢ := S¢ + iM¢ and A; = iS7.
System (4.64) can be written as

AC DT Bg HC FC

D A[ B? E] o GI

Be ol=10ol (4.68)
By b 0

The complex vectors He, EI, @ and &7 are the coefficients of H¢ , E; n, @n and
o1, in the chosen bases of NC hs N[ o ngh and LI 1 \C, respectively. The complex
vectors F and G; are obtained by applying the functionals F and G to the elements of
the basis of Nc,h and Nl_h, respectively. All the matrices S¢, S;, M¢c, D, B¢ and By
are real. S¢ and S; are symmetric and positive semi-definite, while M is symmetric
and positive definite.

Problem (4.68) is an indefinite system that arises from a saddle-point problem. It

has the form
ABT | [z] [f
=7 )-[0)

with A and B block-structured matrices. A is a complex matrix with symmetric and
positive semi-definite real and imaginary parts. It can be solved using, for instance,
the method presented in Hu and Zou [135] (see also Benzi et al. [37] for a review
of numerical methods for the solution of saddle-point problems). However, to take
advantage of the fact that the system arises from an eddy current problem with two
different subdomains, we rearrange system (4.68) in the following way

PRI RE
Be Q1| |0
D A BT |E|T|a (4.69)
By b 0
o . Ac BLT .
Proceeding as in Theorem 4.22, it is easy to see that the block B is non-
c

singular.
Since we know that ¢; = 0, it is possible to eliminate this unknown considering
the reduced system

Ac BL DT He Fe
Be Q = 0 , (4.70)
D A] -+ ZVB?B] Er Gy

where the parameter  is any positive real number, and we have taken into account the
equation By E; = 0.

Lemma 4.27. System (4.69) and system (4.70) are equivalent.
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Proof. Since system (4.69) has a unique solution (H¢, @, E 1,®r) with @; = 0, and
in particular By E; = 0, it is clear that (H¢, @, Ey) is solution of (4.70). Hence it is
enough to show that (4.70) has a unique solution. Let (V¢, P, Z) be a solution to

Ac Bg DT Ve 0
Be P|l=10];
D Ar+ i’yB?B] Zr 0

recalling that Ac = S¢ + iM¢ and A; = iSy, we have

(Sc +iMc)Ve Vo + BEP - Vo + DT 21 - Vo =0
BeVe P =0 o 4.71)
DVe - Zy = 72‘(51 +’}/B?B])Z] A

Replacing BgP Ve = BeVe - Pand DTZ; - Vo = DV - Z; in the first equation
of (4.71) by the values given by the second and third equation we get

ScVe - Vo +i(McVe - Vo + St Zr - Zr +yBY B1Z; - Z1) = 0.

In particular, since M¢ is symmetric and positive definite and S is symmetric and
positive semi-definite, it follows that By Z; = 0. This means that

Ac Bg DT Ve 0
Be P 10
D A BIT Zr| {0}
Br 0 0
hence we have found a solution to the homogeneous system (4.69). O

Even if for any value of v > 0 systems (4.69) and (4.70) are equivalent, the com-
puted solutions for small values of -y could be different, because in the limitcase v = 0
the reduced system is singular. On the other hand, for big values of - the matrix of the
reduced system is ill-conditioned. The convergence rate of the resolution algorithms
depends on the choice of this parameter, more precisely v should be chosen such that
the matrices S7 and fyBIT By are balanced in norm.

Remark 4.28. 1t is worth noting that the matrix Ay + ifyBIT By = i(S; + fyBITBI)
is invertible if and only if (27 is simply-connected. In fact, let us consider the space
Zr 5, introduced in (4.58), that, as shown in Theorem 4.20, can be decomposed as the
following direct sum

ZI’h = [H%(curl; 2;) N N}’h]l‘ O Hrn,

where B
H],h = Ho(curl; Q[) N Z]’h .

Given Z; € C", let us denote by zy; the function in [V, } 5, With coefficients Z;.
From the definitions of S; and B; we see that (S} + fyBITB 1) Zr = 0 if and only
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ifcurlzr = Oand z7 ) € FZV[,h, which means that z;;, € Hy . Moreover it can
be proved that dim H; j, = dimH(m; §2;), which is 0 if and only if {27 is simply-
connected.

On the other hand, let us consider the perturbed matrix S; +vB¥ B; +eDDT . It
is possible to prove that this matrix is non-singular for each € > 0, and this result is
true in any geometrical configuration. In fact, if (S + vBY By + eDD™T) Z; = 0 we
have in particular (S; +vB¥ B;) Z; = 0 and DT Z; = 0, hence z; 5, € H; 1, and

/VC,h XN¢ - Z1n =0
r

forall vgy, € Nclj’ 5,- From the discrete inf-sup condition (4.61) it follows that z7 , =
0, hence Z7 = 0. O

We present now two different algorithms for solving system (4.70), both of them
taking advantage from the fact that the problem is formulated in two subdomains.

Modified SOR method

It is a block-version of the SOR method. If the domain (25 is not simply-connected,
the subproblem in the insulating region is modified by adding the term ie DD™, so
that we have non-singular matrices on the diagonal of the block decomposition (see
Remark 4.28). In Kanayama et al. [147] a similar idea has been used to solve the
problem formulated in terms of a magnetic vector potential in the whole domain (2. In
that paper the problem is perturbed by adding a term of the form e M, where M is the
mass matrix in {2, namely, the matrix that corresponds to the scalar product |, oW Z.
In our experience, using in the insulator the matrix DD instead of the mass matrix
M improves the convergence of the method. The algorithm reads

Algorithm 4.29. Given H2,, Q° and E?,for m > 0 solve

52 ] [Ges] - [ ]

Beo Qm+1/2 0
set _— . mt1/2
|G| =0 |G ro[Ghn]
then solve
i(Sr + BT Br + eDDT)ET '/ — G — DHZ' + ieDDTEY",
and finally set

ErH = (1—0)Ey +0ET /2

The real number 6 is the relaxation parameter of the SOR method and has to satisfy
0 < 6 < 2. The parameter € is taken equal to O if the subdomain (2; is simply-
connected; otherwise we choose a suitable e > 0. The performance of the algorithm
depends on the appropriate selection of both parameters (see Table 4.2).
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At each iteration of the algorithm one needs to solve a linear system in each sub-
domain. To solve the subproblem in the insulator we use the preconditioned conju-
gate gradient method, taking as preconditioner an incomplete Cholesky factorization
of St + ’}/B?B] +eDDT.

For the subproblem in the conductor we take into account its saddle-point structure,
and solve it with an inexact Uzawa algorithm with variable relaxation parameters (see
Hu and Zou [134] for the real case). For a system of the general form

[ e =12

the algorithm reads: given h° and ¢°, for j > 0 set
Wt =h +w;AZY [f — (Ach? + BEG)] |
and _ _ . _
¢t =¢ +7Pg BT,
where AC is a preconditioner for Ac and PC is a preconditioner for BCAZ«lBg. In

particular, we take as AC an incomplete LU factorization of A¢, and as }50 an in-
complete LU factorization of B¢ AalBg, where A¢ is the diagonal matrix with the
elements of the diagonal of Ac. The parameters w; and 7; are computed dynamically
at each iteration, as it is done in Hu and Zou [134].

Uzawa-like method

An alternative approach for the solution of (4.70) is to consider an Uzawa-like method.
Since this kind of method does not require the (2,2)-block of the matrix (in our case the
block i(S; ++vBYT Br)) to be invertible, it can be used without penalization even in the
case of a conductor with general topology. In particular, we consider a preconditioned
Uzawa method with variable relaxation parameter. We formally adapt to system (4.70)

the algorithm analyzed in Hu and Zou [134] for a real system with null (2,2)-block,
T

g , with K symmetric and positive definite. The

algorithm that we propose reads as follows

i.e., areal system of the form

Algorithm 4.30. Given EY, for m > 0 solve
Ac BE1[HEZHY]  [Fo—DTER
BC Qm+1 - 0 )
then compute _
rm = DHZE'Y +i(Sp + B B)ET — Gy,
Ay = N Ly ,

and _
T * A

Ag'DTd,, - DTd,, —i(Sr +~BY Br)dm - dm

Tm = )
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and set _ _
EP*Y = EP + i Tind,

Here 7,,, is a parameter that, for an exact Uzawa algorithm, has to satisfy 0 < 7,,, <
%; the matrix N is a preconditioner for

Ac BE1 7' [ DT
N[DO}[BE OC} [0

} —i(Sr +7Bf Br), (4.72)

and AC is a preconditioner for A¢.

In all the numerical tests presented in Section 4.5.3 we have set 7, = 1/2, and
we have taken as preconditioner Ac an incomplete LU factorization of the matrix A¢,
and as preconditioner N an incomplete LU factorization of the matrix S; + vBY By
(the first term in (4.72) has a structure that is not easy to treat, therefore in the choice
of the preconditioner we have taken into account only the second term).

4.5.3 Numerical results

The finite element methods and the algorithms introduced in the previous section have
been implemented in MATLAB by Alonso Rodriguez and Vazquez Herndndez [21]. In
the following we present some numerical tests illustrating how the algorithms perform.
In the first set of numerical experiments we solve a problem with a known analytical
solution to validate the computer code and test the convergence properties of the meth-
ods. In the second and third numerical test we consider a torus-shaped coil inducing
eddy currents in a conductor which is a torus in the second test problem and a tre-
foil knot in the third one. The last case concerns the benchmark problem number 7 in
the TEAM Workshop, which deals with an asymmetrical conductor with a hole (see
Fujiwara and Nakata [107], Kanayama et al. [147]).

All the simulations have been run on a single processor Intel Xeon QuadCore 5430
2.66GHz. The stopping test for the modified SOR and the Uzawa-like solvers of the
linear system (4.70) (written here as Ax = b) is

max; |b1 — (AX)1| < 1076 )

max; |b1|
A problem with a known analytical solution

In this set of tests the conductor {2~ and the domain {2 are two cubes centered at the
origin and with edge length equal to 2 and 10, respectively. We shall construct an
analytical solution (H¢, E;) which will consist of two C2-functions with compact
supports in {2 and (27, respectively.

Let us suppose thatw, p and 7, are positive constants equal to 1, and that 0|, =
0. Given a closed ball centered at xy € (2 and with radius ry, we define the function
p(x) with support in this ball as follows

|x—xo| :
p(x) = q (T) , if |x — x¢| < 7o,
0, if |x — xo| > ro,
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q being the unique eighth degree polynomial such that ¢(0) = 1, ¢(1) = ¢(—1) =0
and with its first three derivatives vanishing at the points 1 and —1. It is easily seen
that q is given by the expression

q(t) =% — 4t + 6t* — 4t + 1.

Now, let ©¢ be the closed ball centered at the origin with radius ry = 0.9, and Oy
the ball with center at xo = (0, 3, 0) and radius ro = 1.9. Obviously, the two balls are
disjoint and they are strictly contained in {2¢ and (2, respectively. Let us denote by pc
and p; the functions corresponding to the balls ©¢ and O7, and define the “electric”
field in the insulator as

EI :=curl(0,0,p;) = (%—IZ,%,O> )

and the electric field and the magnetic field in the conductor as

Ec = curl(0,0,pc) = (%, ~2,0

. _ (e 9*pc _ d*pc _ d%pc
H¢ :=icurl(curl(0,0,pc)) =i (8282, oydz) a2 oy ) -

Now one can easily compute J. ¢ and J. 7, and check that the excitation current den-
sity J. satisfies the three compatibility conditions.

The program has been tested by solving this academic problem with four succes-
sively refined meshes, with grid sizes corresponding to h, h/2, h/3 and h/4 and setting
the parameter v = 1 in the four cases. In Table 4.1 we present the relative error be-
tween the computed and the exact solutions. More precisely, we set

”HC - HC,h”H(curl;Qc) ||EI - EI,h”H(curl;QI)

)

eH =

||HC||H(CUYI§QC) ||EI||H(curl;QI)

Figure 4.1 shows the plots in a log—log scale of the relative errors of exy and eg versus
the mesh size h. As it can be seen, the error is reduced when the mesh is refined, and
linear convergence can be observed for the computations on the last meshes. However,
the relative error for the finest mesh is still quite large. One of the reasons for these
large errors is that the solution of our problem is a polynomial of seventh degree, and
the support is concentrated in a small part of the domain.

In Table 4.1 we also present the number of iterations and the computational time
needed for solving system (4.70) using the SOR method with relaxation parameter
0 = 0.6 and using the Uzawa method. For this test case, since {2 is simply-connected,
in the SOR method we take the perturbation parameter € = 0. The computational time
includes the calculation of the preconditioners.
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Fig. 4.1. Relative errors versus mesh size h

Table 4.1. Results for problem with known analytical solution

SOR (6 =0.6) Uzawa
Elements DoF eH eE iterations time [s] iterations time [s]
1155 1721 0.9710 0.8128 16 2.0 18 1.2
9240 12245 0.6668 0.5163 16 38.4 24 24.2
31185 39656 0.5377 0.3399 16 317.1 73 201.0
73920 92039 0.4253 0.2607 16 2118.6 239 1089.9

Two tori

In the second test the computational domain is a cube with edge length 27 cm. We
consider two coaxial tori of square section with edge length 1 cm and radius 6.5 cm: the
upper torus is a coil, included in the insulating region {27, where we impose a clockwise
current density J . ; of magnitude 10° A/m?, whereas the second torus is the conductor.
We are taking jt = p19 = 4m x 10~7 H/m, i.e., the magnetic permeability of the air, the
electric conductivity o = 107 S/m and the angular frequency w = 27 x 50 rad/s. The
parameter 7 is set equal to 10%/(wp). In this case, since the insulating region {27 is not
simply-connected (precisely, there is one non-bounding cycle in {2;), the parameter €
in the SOR method must be positive.

We present in Table 4.2 the convergence results for different choices of e and € for
a non-uniform mesh with 27152 elements (the mesh is finer in the coil and the conduc-
tor). Then we take the best values found for both parameters (6 = 0.5, ¢ = 10°) and use
them in three different meshes to compare the behavior of the modified SOR and the
Uzawa methods. The results are summarized in Table 4.3. We also include in Table 4.4
the results obtained with a different choice of , specifically v = ||.S;||2/|| Br||3. Notice
that the cost of one iteration of the SOR method depends on +, because the condition
number of S; + vBT By + eDDT is quite sensitive to it.
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Table 4.2. Two tori. Results for the SOR method with several values of 6 and € (NC: not con-
vergent)

e=10° e=10° e=107
iterations time [s] iterations time [s] iterations time [s]
0 =0.25 51 552.1 195 975.7 1749 4693.5
0=0.5 22 340.7 96 574.4 873 24359
0 =0.75 NC NC 63 436.9 581 1701.3
=1 NC NC 47 367.9 435 1321.3
0=1.25 NC NC NC NC 358 11274

Table 4.3. Two tori. Comparison of SOR and Uzawa methods (y = 10°/(wp) = 2.5 x 10%)

SOR (6 = 0.5, ¢ = 10°) Uzawa
Elements DoF iterations time [s] iterations time [s]
3394 4763 24 20.9 137 18.6
27152 34795 22 340.7 59 250.8
91638 113853 25 2230.6 136 1928.0

Table 4.4. Two tori. Comparison of SOR and Uzawa methods (y = ||St|2/|| Bz|3)

SOR (0 = 0.5, ¢ = 10°) Uzawa
Elements DoF ¥ iterations time [s] iterations time [s]
3394 4763 2.3108 34 17.4 95 12.8
27152 34795 9.610% 26 352.8 92 274.3
91638 113853 1.810° 29 2275.0 221 2262.7

The trefoil knot

We want to show how the (H¢, E ;1) formulation performs for problems with com-
plicated geometries. In particular, we consider a problem in which the conductor is
a trefoil knot. It is well known (see, e.g., Bossavit [59], Hiptmair [126], Gross and
Kotiuga [115]) that there exists one surface which “cuts” the basic non-bounding cy-
cle in {27, but its construction, on a given mesh, can be a non-trivial task. We show in
Figure 4.2 a visualization of this surface (known as the Seifert surface associated to
the trefoil knot).

We suppose that {2¢ is a trefoil knot formed joining cubes of edge length 1 cm. A
torus-shaped coil is placed above the conductor. The sizes of the coil and the compu-
tational domain {2 are the same that in the previous test case. The physical magnitudes
and the source current are also taken as in the two tori test case.

In Table 4.5, having chosen v = 10°/(wy), we present the number of iterations
and the CPU time for the modified SOR method, with relaxation parameter § = 1 and
€ = 10 (that we have verified to be a reasonable choice for this example), and for the
Uzawa-like scheme.
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Fig. 4.2. Seifert surface for the trefoil knot (courtesy of J.J. van Wijk, Eindhoven University of
Technology)

Table 4.5. Results for the trefoil knot

SOR (0 =1, e=109) Uzawa
Elements DoF iterations CPU time [s] iterations CPU time [s]
37057 51665 402 3456.7 392 2114.7

In Figure 4.3 and Figure 4.4 we show the real part and the imaginary part of the
current density Jo = curl He on the surface of the knot, respectively.

Re()) [A/m"2]
1.519¢=003

1.139¢+003
7.594e+002
3.797¢+002
0.000¢ 1000

Fig. 4.3. The current density in the trefoil knot: real part
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Im(J) [A/m"2]
1.770e+000

1.328e~000
8.852¢-001
4.426¢-001
0.000¢ 1000

Fig. 4.4. The current density in the trefoil knot: imaginary part

Benchmark problem 7 in the TEAM Workshop

Our last test corresponds to benchmark problem number 7 in the TEAM workshop
(see Fujiwara and Nakata [107]). It consists of a conductor {2¢ given by a thick alu-
minum plate with an eccentrically placed hole, subjected to an asymmetric magnetic
field. The field is produced by an exciting current traversing a coil above the plate (see
Figures 4.5, 4.6).

The plate and the coil are strictly inside the computational domain, which is a
hexahedron with edges length 460 x 460 x 309 mm. The conductor is centered in the
horizontal plane and it is 80 mm far from the bottom of the computational domain,
while the coil is 80 mm far from the top of the computational domain. The magnetic

100

aalA1 B1
1ol _ "

o 288 X

19| 30

Fig. 4.5. Geometry of the TEAM model: elevation
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Fig. 4.6. Geometry of the TEAM model: plan

permeability is y1 = puo = 47 x 10~7 H/m, the electric conductivity is o = 3.526 x 107
S/m, the angular frequency is w = 27 x 50 rad/s, and the absolute value of the real
part (respectively, imaginary part) of the excitation current density J s is 1.0968 x 105
(respectively, 0) A/m?. The parameter 7 is set equal to 5 x 10°/(wpu).

In Table 4.6 we present the number of iterations and CPU time for the modified
SOR method with relaxation parameter § = 1 and ¢ = 109, and for the Uzawa-like
scheme.

Table 4.6. Results for problem 7 in the TEAM Workshop

SOR (0 =1, =10 Uzawa
Elements DoF iterations CPU time [s] iterations CPU time [s]
98857 131434 134 10950.7 167 11222.3

We also present a comparison of our numerical results with the experimental data
reported in Fujiwara and Nakata [107]. The 2z component of the magnetic induction
B, (= Z curl Ej) along a straight line in the insulating region, with y = 72 mm and
z = 34 mm, is represented in Figure 4.7. The y component of the current density J ¢
(= curl H¢) along a straight line on the surface of the conductor, with y = 72 mm and
z = 19 mm, is represented in Figure 4.8.

We notice that the results for the magnetic induction in the insulator are not com-
pletely satisfactory. This is due to the fact that By is calculated from the curl of the
computed E; and, since we are using first order edge elements, this curl is constant on
each element. The oscillations are due to the relative position of the elements of the
mesh where we compute the numerical values, with respect to the line where the field
is measured.
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Fig. 4.7. z component of B; along line A1-B1
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Fig. 4.8. y component of J ¢ along line A3-B3

4.6 A saddle-point approach for the E-based formulation

To conclude this chapter we consider, as in Alonso Rodriguez and Valli [17], the E-
based formulation of the magnetic eddy current problem

curl(p=t curl E) + iwoE = —iwJ.  in 2

diV(E[E[) =0 in Q]

pleurlExn=0 on 012

ertEr-n=0 on 012 (4.73)
fFJ_E[E['IlI:O Vjil,...,pp

fQIEIEI'ﬂ'k,I:O Vkil,...,nag.
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As already noted, the problem is simpler if the boundary of the conductor {2 is con-
nected, so that p = 0, and the domain {2 is simply-connected, so that ng, = O.
Since in many cases the computational domain {2 can be chosen freely, this simplified
geometrical situation often occurs in applications.

In Remark 2.4 (see also Section 6.1.5) we have considered a weak formulation
of this problem, where the condition div(e ;E;) = 0 is imposed by penalization. An
alternative approach, similar to the one that we have used for the hybrid formulations,
is to impose the set of conditions (4.73)2, (4.73)4, (4.73)5 and (4.73)g by means of
Lagrange multipliers. We consider the space

7 :={z € H(curl; 2) | zs satisfies (4.6)}, (4.74)
and the following weak formulation
FindE € Z :
Jop tcurlE - curl Z + iw ch oEc 7o =—iw [T Z (4.75)
forallz € Z .

Let us introduce the sesquilinear form

ae(w,z) = / pteurlw - curl z + iw/ owWC - Zc . 4.76)
n Qc
Using that z € Z if and only if z € H(curl; {2) and fQI erzy -pr = Oforall p; €
H{ p(curl; £27), we have the equivalent formulation
Find (E,r;) € H(curl; £2) x H{ p(curl; £27) :
ac(B,2) + [, erzr vy = —iw [, J. - Z
fQI erEr-pr=0
for all (z,pr) € H(curl; 2) x H&F(curl; 2r) .

4.77)

If the computational domain {2 is simply-connected, then
Hgﬁp(curl; £2r) = grad HiﬁF(QI),
where the space H i (£27) has been introduced in (4.17); hence the space Z can be
expressed as
Z ={z € H(curl; 2) | / erzr-grad&r =0 forall & € H! (921)} .
02r ’
Therefore, problem (4.77) can be rewritten in the following form, that is suitable for
finite element approximation
Find (B, ¢r) € H(curl; 2) x H} (1) :
0c(E,2) + [, €171 - grad 61 = —iw [o I -7
fQI erEr-gradé; =0
forall (z,&r) € H(curl; £2) x H} -(£27).

(4.78)
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Proceeding as in Lemma 2.2 it is easy to prove that the sesquilinear form a.(-, -) is
coercive in the space Z. On the other hand, the inf—sup condition is satisfied. In fact,
given & € HY -(£21), the function z* defined as

« | grad&r in £2r
Z 70 in Q¢

belongs to H (curl; {2) and satisfies

fQI erz; - grad & = fQI erz; -z > Cl”ﬁ”%,m
= CIHZ* ||H(curl;Q) ” grang”O,QI
> Collz* || mcwrts) €2 |1, 221 5

having used the Poincaré¢ inequality

/ (€12 + | grad s ?) < Co /Q | grad s |? 4.79)

27
which is valid in Hi’F(QI) (see, e.g., Dautray and Lions [94], Chap. IV, Sect. 7,
Rem. 4).

As a consequence, the well known theory of saddle-point problems (see, e.g.,
Brezzi and Fortin [65]) tells us that for each J. € (L2(£2))3 there exists a unique
solution to (4.78).

We can also prove that the Lagrange multiplier ¢; is equal to 0. In fact, let us take
as test function in (4.78) z € H (curl; 2) given by

| grad¢r in £21
270 in Q¢ .

Since the current density J. satisfies the necessary assumptions (3.1) and (3.2), one
finds

/ Eﬂ'gradéf’I:U,
27
hence ¢; = 0.

Remark 4.31. For the electric boundary condition E x n = 0 on 9{? the problem can
be written in strong form as

curl(p=tcurl E) + iwoE = —iwJ.  in 2

diV(E]E]) =0 in Q]

Exn=0 on 02 (4.80)
fFJ_E]E]'Il]:O Vjil,...,pp
f(aQ)TEIEI'n:O Vr=0,1,...,pa0,

and in weak form as
Find (E, ¢;) € Ho(curl; 2) x H}(027) :
a.(E,z) + ff?z erzr - grad ¢y = —iw [, Je - Z
[o, erBr - gradér =0
forall (z,&7) € Ho(curl; 2) x HX(2)),

(4.81)
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where

HI(Qr):={& € H' (1) | &y isconstant Vj = 1,...,pr,
&11(092), isconstant Vr = 0,1,..., pagn, (4.82)
gl‘FpF+1 =0}.

Note that no assumption is needed on the geometry of {2, as conditions (4.80)o—
(4.80)5 can always be expressed as orthogonality conditions to grad H(§2;).

Moreover, if the boundaries of the conductor {2¢ and of the computational domain
{2 are both connected, the last two equations in (4.80) reduce to f 90 € Er-n=0,and
the space H!(§2;) is simply constituted by the functions vanishing on I" and constant
on 0f2. g

To approximate the electric field we employ the Nédélec curl-conforming edge ele-
ments and to approximate the Lagrange multiplier ¢; we employ piecewise-polynomial
continuous functions.

Let (2, {2¢, 21 be Lipschitz polyhedra and consider a family of regular tetrahedral
meshes {7}, },, of {2 such that each element K € 7, is contained either in Q¢ or in
;. We denote Tc.n, T1,1, the restriction of 7, to {2¢ and {2, respectively.

We consider the (complex-valued) Nédélec curl-conforming edge elements de-
fined in Section A.2, the standard Lagrange nodal elements

Lllc,h ={&n €C(2) | érpx EPe VK €Trp},
and the finite element space
Hj =L, nH! (2r). (4.83)
The finite element discretization of problem (4.78) reads
Find (Ep, ¢1,n) € NF x H}“,h :

ae(Ehvzh) + fQ[ Elm' gradd)l,h = —iw fQJe “Zp
fQI E]E],h . grad&,h =0
for all (zp,, &) € NJF x H}“h

(4.84)

The analysis of this problem is based on the standard theory of mixed finite element
methods.

We start recalling the following interpolation error estimate for the curl-conforming
edge elements (see Alonso and Valli [9], Monk [179], Lemma 5.38 and Theor. 5.41).

Lemmad.32. If zx € (HY/?*"(K))3 0 < r < 1/2, and curlzjic € (Pr_1)® @
Pj,_1x, then the interpolation operator I,z is well-defined and

|z — Myzllo,x < O3> |2l jotr e + hic| curlzllo x).

Since I' N 92 = (), a straightforward consequence of Theorem 4.3 and Theorem
4.4 in Alonso and Valli [9] is that the following regularity result holds true.
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Lemma 4.33. Let (2; be a Lipschitz polyhedron. Then for each § > 0 and small
enough the space

XS(Q]) = {Z] € H(Curl; Q]) N Hoﬁag(div; Q]) | (Z] X Il])‘p € (Hé([‘))s},
is continuously imbedded in (H/?>9(£2;1))3.

Now we are in position to verify that problem (4.84) satisfies the assumptions of
the theory of discrete saddle-point problems. Defining

Zy, =z € N,lf | / EIZIp - gradm =0V, € H}“’h},
27

the following theorem holds.

Theorem 4.34. Assuming that £ is a scalar constant and that {7}, induces on I’
a quasi-uniform family of triangulations, there exist positive constants C and Co,
independent of h, such that

|ae(zh’ zh)| Z Cl||zh||?{(curl;f2) V Zp S Zh (485)
‘fQI ErZp - gradm .
sup > Collérnllie, Vén € Hyy . (4.86)
zhENF ”zh”H(Curl;Q)

Proof. From (A.12), taking into account that 2 is simply-connected we know that
Zrn € Z}‘O can be written as

pr
Zrh = 5;1 curl qr + grad oy + ch,j gradw; s,
j=1

where q; € Hy gp(curl; £27) and pr € H[%’F(QI).
Let us set vy := ¢y + Z;’il crjwjrand Uy :=zrj —gradvy = 5;1 curlqy. It

is readily seen that v; € Hi’F(QI) and that Uy x n; = zy;, x ny on I'. Therefore
the function given by

L U] in Q[
U:= { ZC,h in QC

belongs to Z. Moreover, since curl Uy = curl z; 5, from the coerciveness of ae (-, -)
in Z we have

(0e(Zh,20)] = |0 (U, U)| = o Ul e

_ 2 2
= co (llzc ey + 101l -

Thus it remains to show that there exists a positive constant C', independent of h, such
that

1z1kll0,2; < CUIUrllB(curt0n + 1Z2em] B cusoc)) - (4.87)
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Having assumed that £; is a scalar constant in {27, it follows that divU; = 0 in {27,
and thus Uy € X°(82;) C (HY/?+%(£2;))? for some 6 > 0 and small enough. More-
over curlU; = curlzy 5, and curl ZrhK € (Pk,1)3, hence by Lemma 4.32 the in-
terpolant I7;, U is well-defined and then also II;, grad vy is well-defined. Moreover,
since curl(ITj, grad vr) = 0 and ITj, gradvy x ny = 0 on I, there exists vy j, € H}“_h
such that I, grad vy = grad vy j, (see, e.g., Monk [179], Lemma 5.28). Then l

Zrh = HhZ[,h = I11I,,Ur + 11}, gradzq = II,Ur + gradyl,h,

and

||Zl,h||(2)¢91 < C/ erzrpy - zry =C erzrpy - I, U7,
Q[ QI

therefore
Cer|[ 11, U ]l0,0,

Zz1nll0,0; <
< Cer(|1nUr — Ugllo,2, + 1Urllo,2,)-

By combining Lemma 4.32 and Lemma 4.33 we have

[11,U1 — Ugllo,02,
< ChY2H(||Uylo,0, + || curl Uglo,0, + [|Ur x nzllsr) -

Since 73, induces a quasi—uniform family of triangulations on I, the following inverse
inequality holds true (see Alonso and Valli [9])

WYL g ls.r = WY 2 x s r

< Cllzrn X nrllg-1/2giv, . ry = Cllzen x nellg-1/2giv, )

H~'/2(div,, I") being the space of tangential traces on I" of H(curl; 2¢) and
H (curl; £27) (see section A.1).
Then

111,U1 — Uillo,0,
< C [RV2(|[U o0, + | curl Ugllo,,) + 1Zon X nellg-12 @iv, . r)

and from the trace inequality (A.10) it follows that (4.87) holds.
For what is concerned with the inf-sup condition, given &7, € H¥, the function
z; defined by l
2 { grad &y, in 21
=700 in ¢

belongs to NV, k and we conclude as in the continuous case. O

Well known results provide the existence and uniqueness of the solution (see, e.g.,
Brezzi and Fortin [65]). Moreover, by adapting the proof used for problem (4.78) it is
easy to show that ¢7 j, = 0.

A standard density argument and the interpolation estimates in Section A.2 permit
to obtain the following convergence result (see Section A.1 for notation).
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Corollary 4.35. Let the assumptions of Theorem 4.34 be satisfied. The finite element
approximation method is convergent and, if the solution E of problem (4.78) is smooth
enough, namely, E € H" (curl; 2) with r > 1/2, the following error estimate holds

||E - Eh”H(curl;Q) S Chmin (r:k) .

Remark 4.36. Golias et al. [112] has proposed an E-based formulation which has the
same form of (4.75), but with the space Z replaced by H (curl; (2).

The problem turns out to be singular, as the electric field is not uniquely deter-
mined in {2;. However, some numerical experiments show that its finite element ap-
proximation via edge elements is furnishing reasonable results (in this respect, see also
Remark 6.10). O

Remark 4.37. The numerical approximation of (4.78) by a discontinuous Galerkin fi-
nite element scheme has been proposed and analyzed by Houston et al. [133]. g

Remark 4.38. The discrete problem for the electric boundary condition (1.20) reads

Find (Ep, ¢1,n) € XF ¥ ﬁﬁh :

ac(En,zn) + fm@'gradéfn,h = —iw [, Je-Zn
fQI E]E]’h . grad&,h =0
for all (zp,,&rp) € XK x ﬁ}“’h,

(4.88)

where X} := NF N Hy(curl; £2) and PAI}“h := L, N H}(£2;) (for the definition of
H(02r) see (4.82)). O
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Formulations via scalar potentials

As we have already remarked in the preceding chapters, a specific feature of eddy
current problems is the presence of differential constraints acting in the non-conducting
part of the domain: namely, curl H; = J. 7 in {27 and div(e;E;) = 0 in (2;.

The use of Lagrangian multipliers to take into account these constraints has been
illustrated in Chapter 4. Here we want to describe a different approach, which on one
hand is very natural and on the other hand leads the introduction of a scalar unknown
instead of a vector-valud one, thus yielding a cheaper algorithm for numerical approx-
imation.

The starting point is to rewrite the constraint on curl H; as an irrotationality con-
straint: for instance, in the case of the magnetic boundary value problem we construct
the vector function H, 7 defined in (3.3), and consider H; — H, ;, which is curl-free.
The other boundary value problems are treated in a similar way.

If the topology of the domain (2; is simple, say, {2; is simply-connected, we know
that a curl-free vector function can be expressed as the gradient of a scalar function,
called a scalar potential. Therefore, we reduce the problem to a new unknown ¢'; such
that grady; = H;y — H, ; in {27 (when the vector function H. ; is non-vanishing,
in the engineering literature the scalar function s is often called a reduced scalar
magnetic potential; instead, even if the relation between H; and 7 is not exactly
H; = grad 7, we will simply call ¥; a scalar magnetic potential).

However, some problems arise when the insulator {2; has a more complicated
topology (and this is very often the case in real-life problems). In fact, in this case
a curl-free vector function is no longer guaranteed to be a gradient of a potential, and
some additional terms have to be taken into account: more precisely, harmonic fields
are coming into play.

In this chapter, mainly following Alonso Rodriguez et al. [10], we address this
problem, showing how to determine these harmonic fields and devising some weak
formulations that are related to this approach. We also propose domain decomposition
algorithms for the effective solution of the problem, in which one alternates between
a solution step in the conductor and another solution step in the insulator.

We start by describing a first method, in which the chosen unknowns are the mag-
netic field H¢ in the conductor and the scalar magnetic potential ¢7, plus a harmonic

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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field in the insulator. We also present an alternative approach in terms of the electric
field E¢< in the conductor: this has the advantage that the matching between the un-
knowns on the interface I is of weak type, thus in numerical computations independent
meshes could be used in {2¢ and (2;.

The basic points in the proof are the (L?(§27))3-orthogonal decomposition results
in Section A.3, which, in addition to the weak formulations presented in Chapter 3, lead
to the weak formulations in terms of the scalar magnetic potentials. In Sections 5.1
and 5.3 we also describe some alternative weak formulations, proposed by Leonard
and Rodger [167] and Alonso Rodriguez et al. [10], that do not require the knowledge
of the harmonic fields but only use some easily computable interpolants; the latter
formulations are the most suited for numerical approximation.

Based on the weak formulations thus obtained, the numerical approximation of
the weak problems is performed by means of edge finite elements in the conductor
and (scalar) nodal finite elements in the insulator. The positiveness of the associated
sesquilinear forms leads in a straightforward way to the proof of an optimal error es-
timate. However, as already recalled, a preliminary step is the explicit construction of
the vector function H, r; this is not always easily achieved, hence in some case one
must slightly modify the approach in order to devise a viable numerical approximation
scheme.

Motivated by the fact that, when using a scalar magnetic potential, the electric field
in the insulator is computed in a second step, we end the chapter with the presentation
of a finite element approximation scheme for the electric field E; in {2;. The starting
point is a saddle-point formulation similar to that used in Section 4.6 for describing
the eddy current problem in terms of the electric field E.

In the whole chapter the geometrical assumptions on {2, {2¢ and {2; are the same
as those of Section 1.3. Moreover, we again assume that the matrix g is symmetric and
uniformly positive definite in {2, with entries belonging to L°°({2), the matrix &7 is
symmetric and uniformly positive definite in {27, with entries belonging to L ({2;),
and the matrix o is symmetric and uniformly positive definite in {2¢, with entries
belonging to L™ ({2¢), whereas it is vanishing in {2;.

To a reader interested in numerical approximation and implementation we suggest
to focus on problems (5.21) and (5.71) (H¢/ LZ 1 formulation), on problems (5.67) and
(5.75) (He /4% formulation), on problems (5.58) and (5.80) (E¢/¢} formulation),
and on the domain decomposition procedures described in Sections 5.2.1 and 5.3.1.

5.1 The weak formulation in terms of H- and v;

From Section 3.1 let us recall that, if we are considering the magnetic boundary value

problem, the following necessary assumptions have to be imposed on the current den-
sity J. € (L%(12))3

divJer=0 inf2;,J.r-n=0 ondf2 (5.1

fFjJe,I'nIZO Vj:17...,pp

fQIJe,I'ﬂ'k,I:O Vkil,...,nag. (5.2)
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As noted there, these assumptions ensure that there exist two vector fields H, ; €
H(curl; £27) and H, ¢ € H(curl; £2¢) satisfying the properties described in (3.3) and
(3.4), namely,

curlHe ; = J. 1 in §21
{ H.rxn=0 onodf, (5:3)
and
H.cxnc+H,;xn;=0 onl. 5.4
As in (3.5) we will denote by H. € Hy(curl; §2) the vector field defined by
L He’] in Q]
He T {He’c in QC . (5'5)

In Chapter 3 we have obtained and proved the well-posedness of the following
weak problem

Find (H — H.) € V such that
ch o teurlHe - curl vo + [ iwpH -V = f(zc o . c-cullvg  (5.6)

foreachv e V |

where
V:={v e Hy(curl; 2) | curl vy =0 in 27} . (5.7

We want to rewrite this problem using the orthogonal decomposition presented in
Theorem A.7. First of all, define in H (curl; 2) x H (curl; §2) the sesquilinear form
al-,-) as

a(u,v) :=ac(uc,ve) +ar(ur,vr), (5-8)
where
ac(uc,ve) = / (o~ curluc - curl vg + iwpouc - Vo), 5.9
Nc
and
ar(uy,vy) := iw/ pupuag vy . (5.10)
27

Up to the factor iw, the sesquilinear form a; (-, -) is the scalar product (-, )., o, for
complex valued vector functions, see (A.20).

For the sake of simplicity, let us also introduce the notation Z := H — H,. The
restriction Z; can be written as

Pon nr
H; —H.;=2; =gradyy + Y ar,gradz. + Y Bripyr (5.11)
r=1 =1

where the complex valued function 17 and the complex constants a ., 37, are defined
asin (A.23) and (A.24), respectively, replacing v; with Z;. Note here that this formula
simplifies if ps» = 0 and np = 0. The first relation means that the boundary of {2 is
connected, the second is satisfied if {2¢ is simply-connected.
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In a similar way, for any v € V' we have

Pon nr
vy :gradX1+Za1,rgradzM+Zb”pu . (5.12)
r=1 =1

To simplify the notation, we will denote by n;, € CV, N = ps, + nr, the complex

vector with components 07, = ar .7 =1,..., P00, M.pso+l = Bri,1 =1,...,np,
and similarly denote by 0; € CN the complex vector with components 07, = ay ,,
r=1,...,000, Orpsroti = bry, I = 1,...,np. Moreover, the basis functions of
the space H,,, (042, I'; £21) will be indicated by wq 7, ¢ = 1,..., N, where w, ; =
gradz. 1, 7 = 1,...,paq, and wp, 111 = Py, l = 1,...,np. Finally, we will
denote by [, -] the scalar product in CV.

We have:

Theorem 5.1. Let Z be the solution to (5.6), and decompose Zp as in (5.11), namely,
Zy = gradvy; + Zf]\;l Nr,qWq,1- Then (Zc, Y1, m;) is the unique solution to

Find (Z¢,yr,m;) € W such that

ac(Zc,ve) + ar(grad vy, grad x ;) + iw[An;, 0]
= —ac(He,c,ve) —ar(He, 1, grad x7) (5.13)

N -1 N
—ay (He,I, Zq:1 Or.q Wq’]) + ch o Je ¢ -curlve

foreach (vo, xr1,01) € W,
where the matrix A is defined in (A.25) and

W= {(vec, x1,61) € H(curl; 2¢) x H(% GQ(QI) x CN |
N (5.14)
vo X ne + grad xy X ny + Zq:1 Orqwgr xnr=0onI}.
Proof. From (5.12) we have v; = grad x; + Zf]\;l 01 qwq,1; therefore, recalling the
orthogonality result given in Theorem A.7, it is easily seen that the solution to problem
(5.6) gives a solution (Z¢, 11, m7) to (5.13). On the other hand, the sesquilinear form
at the left hand side of (5.13) is clearly continuous and coercive in W, endowed with

the natural norm. Therefore, from Lax—Milgram lemma, there exists a unique solution
to (5.13). O

A conforming finite element approximation based directly on (5.13) is not a vi-
able option, as it would require that the functions wy 7, ¢ = 1,..., N, be explicitly
known. An alternative approach, that overcomes this difficulty and has been proposed
by Leonard and Rodger [167] and Alonso Rodriguez et al. [10], is based on a different
decomposition of Hy. Let us suppose that {2 is a polyhedral domain, and that there
is a triangulation 75,0 such that 2 = U KeT,, K, where K is a tetrahedron or a par-
allelepiped and h? > 0 is the (fixed) mesh size. From Bossavit [59], Hiptmair [126],
Gross and Kotiuga [115] we know that in {2 there exists a system of “cutting” surfaces
=, l=1,...,np, with 5] C I, such that every function z; € Hg’(rm(curl; Qr) re-
stricted to §2; \ U}Z} =7 is the gradient of a function belonging to H*(£2; \ UL, =;).
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It is not restrictive to assume that the triangulation 73,0 induces a triangulation on each
surface =j. Let us denote by I, the piecewise-polynomial function taking value 1 at
the nodes on (942), and 0 at all the other nodes for ¢ = 1, . . ., ps, and taking value 1

at the nodes on one side of =,_,,,,, say =, qtp P and O at all the other nodes (including
thoseon =", . the other side of Z¢_p,,,) for ¢ = pao +1,..., pso + np. Set also

gradIl, forqg=1,...,pao0

=< 5.15
4 {graqu forq=poo+1,...,p00+nr, ( )

where grad I1, denotes the (L?(§2;))3-extension of grad IT, computed in 27 \ =,.
It is verified at once that for each ¢ = 1,..., N the vector function A, belongs to
(L2(£2r))? and satisfies
{ curl A, = 0 in {27
Agxn=0 ondf?.

Denoting by g, € H'(£2;) the solution to
div(pe; grad gq) = div(p;Ag) in £2;

prgradgy -ny = pAg-ny onl’ (5.16)
gq =10 on 02 ,

one can easily check that the basis functions wg,; of the space H,,, (042, I'; {21) can
be written as
Wg 1 = Ag—gradg, . (5.17)

Using this result in the representation formula (5.11) one finds

Z; = grad by + Yo,0 nrgwe,r = gradtor + 300 1r,4(Ag — grad g,)

N N (5.18)
= grad ¢y + Zq:l N1.qAq 5
having defined
R N
Vri=%r =Y nregy - (5.19)
q=1
If we set
R R N N
ar(Cr, v Xr, 0r) = az(gradcf + D YrgAg grad s+ Y 91,qu) , (5.20)
g=1 q=1

the weak problem (5.13) can thus be rewritten as follows
Find (Z¢, ¢r,n;) € W such that

ac(Ze,ve) +ar(Yr,my: X1, 0r)
= —ac(He,c,ve) —ar(He 1, grad Xr) (5.21)

—ag (HS,I, 25:1 Or.q )\q) + ch o . ¢ curlvg

for each (v, X1, 071) € w,
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where

W = {(ve, X1, 0r) € H(curl; Q) x H 5o(£27) x CV |

5.22
VC><nc+grad)?1><n1+ZfIV:101,q)\q><n1:00nF}. ( )

It is clear that the two problems (5.13) and (5.21) are equivalent, therefore (5.21)
is well-posed. Moreover, it is worth noting that the sesquilinear form at the left hand

side in (5.21) is continuous in W, and it can also be seen that it is coercive in W. In
fact,

ac(ve,ve) +ar(Xr, 0r;Xr,0r) = a(v,v),

where v; = grad X + Zf]\;l 01,qAg, and a(-, -) is coercive in V', namely,

la(v, V)| ZF&(/ (|vc|2+|curlvc|2)+/ N]VI'VI)

c 2r
(see Theorem 3.1). Thus the following lemma, that will be also useful in the sequel,
permits to complete the proof.

Lemma 5.2. The function vi = grad X1 + Zé\;l 01,q\q satisfies
/ wyvr V> CO(/ | grad {7]% + |01|2) . (5.23)
QI QI

Proof. Since Ay = grad g4 + wq 1, we have vy = grad X + Zf]\;l Or,qgradg, +
Zf]\;l 01 qwgq,1. Due to the orthogonality properties presented in Theorem A.7 and the
fact that the matrix A defined in (A.25) is positive definite, we have

_ ~ N
Jo, Brvi Vi = Cu [, ngfadXI +_Zq:1 07,4 grad gg|?
2 pg=1 01.400p [, 1we,r - wp.1

> Co( [, | erad Xy + 30, 01,q grad gg|* + |07]) .
Recalling that for each 0 < § < 1 one has |2ab| < ]a|* + 6 1[b|?, we find

fQI | grad X1 + 25:1 01,4 grad go|?
— _ N
> (1-0) [, leradXr|* — (1= 0)6~" [, |34 01,q grad gg|*
> (1-10) [q, | gradxi|* — C3(1 = 8)6~ 10> .
Thus the proof is complete by choosing ¢ such that C5/(1 + C3) < 6 < 1. O

From Lemma 5.2 the proof of the coerciveness of the sesquilinear form at the left
hand side in (5.21) follows at once from the Poincaré inequality

/ IXz]? gc/ | grad 7|2, (5.24)
QI QI

which holds in H&ag((h) (see, e.g., Dautray and Lions [94], Chap. IV, Sect. 7,
Rem. 4). In particular, we have also proved that the sesquilinear form a;(-; -) intro-
duced in (5.20) is coercive in H 5, (£2r) x CcN.
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Remark 5.3. The unknowns 17,041 = Bri. ! = 1,...,np, in (5.13) or (5.21) are
related to the current intensity through suitable sections of {2¢. Solving (5.13) or (5.21)
permits to determine these in such a way that the complete eddy current problem is
satisfied.

Instead, imposing them as data for the problem leads to the violation of the Faraday
equation on the “cutting” surfaces =;, I = 1, ..., np (see Section 3.3.2, (v)). In this
respect, see also the considerations presented in Section 6.3, where the (T, ¥¢) — ;1
formulation is described.

Addressing the eddy current problem with assigned current intensity or voltage
needs a particular geometrical setting and specific boundary conditions: for this, see
Chapter 8. g

5.2 The strong formulation in terms of H. and v,

As proved in Chapter 3, the strong formulation of the eddy current problem in terms
of the magnetic field reads

curl(c =t curl He) + iwp-He

= curl(c~1J. ) in Q¢
curl Hy = J. s in 27
div(u;Hr) =0 in {27
f(aQ),,“IHI'HZO Vr=1,...,ps0

‘ 5.25
fQI iwpHy - Pl 1 629

=—[rlo curchfJe,c)]xnc~pu Vi=1,...,nr

H; xn=0 on 912
puHr -nr+p-He -ne =0 onl’
H; xn;+Hexng=0 onl.

It must be noted that the conditions (5.25)4 and (5.25)5 are necessary for determin-
ing the correct projection of the solution Z; = H; — H, ; over the space of harmonic
fields H,,, (042, I'; £21) (see the orthogonal decomposition formula (5.11)).

We are now interested in rewriting this problem in an equivalent form, in term of

Hc, ¢y and n; = (o, By) (see (5.11).

Theorem 5.4. Problem (5.25) is equivalent to the following one
curl(oc ™t curlHe ) + iwpcHe = curl(c ™. ) in Q¢

He X ng = —grad¢; x ny (5.26)
72(]1\]:1 Ni,qWq,I Xny — He’] Xny onl’

div(p;grader) = —div(u;He 1) in (2

prgradyr -ny = —p-He ne—puHer -ny onI’ (5.27)
Yy =0 on 012

iw(An;), *ffp YeurlHe — Je o)) X ne - wq, 1

5.28
7aI(He,Iaqu) Vq:1,,N ( )
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Proof. Equations (5.26) and (5.27) are easily obtained from (5.25); and (5.25)s,
(5.25)3 and (5.25)7, respectively, and the representation formula (5.11). We are there-
fore left with the proof of (5.28).

Recalling that z,,; = 1 on (042), and z,, 1 = 0on 002\ (002),,forr =1,...,pan.
and taking into account (5.25)s, (5.25)4, (5.25)7 and (5.25);, by integrating by parts
we find that

iwaI puH; - gradz,; =iw [ puHr -np 2
= iwaNch ne 2z g

= [, curllo (curl He —Jeo)] -nezeg (5.29)
=/, leT YeurlHe — Je o)) X ne) 21
=—[rlo YeurlHe — Je¢)] x ne - grad 2,1 .

In other words, putting together (5.25)5 and (5.29), we have
iw/ pHr wer= 7/ [a'*l(curlHC —Jeo)] xne-wgr (5.30)
QI r

foreachq=1,..., N.

Recalling the definition of the matrix A in (A.25), the representation formula
(5.11) and the orthogonality of grad+; and w, ; with respect to the scalar product
(ur, vi)ur,0; = [o, #rur - vy, we finally find

iw(Anp)y = iw fQ mrys p= 1771,17“‘"17,1 Wq,1
= wan /J’I H] He [) Wy, I (531)
= ffp YeurlHe — Je o)) X ne - wy 1
—iw fs’h wHe - wgr,
which ends the proof. d
An alternative strong formulation derives from the representation formula (5.18).

Theorem 5.5. Problem (5.25) is equivalent to the following one

curl(c =t curlHe) +iwpHe = curl(o~1J. o) in Q¢
He X ng = —grad¢; x ny (5.32)
722\,:177]’q)\q><n]7He’]><n] onl’

div(pe; giad 7;1) = —div(pHe,r) - 25:1 N1,q div(pAg) in £2;
pmrgradyr -ny = —pcHe -ne — pHe 1 -y

R 722\;1 Mg Wi Ag - 01 onl
1/)] =0 on 0f2

(5.33)

iw A7l1 = — [ple " curlHe — Je0)] X ne - Ag

B (5.34)
—ar(He, 1, Aq) — ar(grad 1, Ag) Vg=1,...,N,

where the matrix A is defined as

o~

Apg ::/ BiXp-Ag , D,g=1,...,N. (5.35)

I
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Proof. Equations (5.32) and (5.33) follow by inserting the relations (5.17) and (5.19)
in (5.26) and (5.27), respectively.
In order to obtain the last equation, we start by noting that

z'waI pHp - gradg, = —iw f(h div(p;Hr) g4 +iwpr1HI'nng
*iwprcHC ‘NoYq,

having used (5.25)3 and (5.25)7. Moreover, by integration by parts

[plo™ (curlHe — J. ¢)] X ne - grad g,
= — [ div ([ (curlHe — J. 0)] X ne) gq
= — [peurljoe (curlHe — Je )] - ne gq

=iw [ncHe ncgq

having used (5.25);. Therefore, putting (5.17) in (5.30) we have found
iw/ pHr Ay =— / [0 (curlHe — Je0)] x ne - Ay (5.36)
Q[ r

foreachq=1,..., N.
From this relation and the representation formula (5.18) we obtain

iw(Ang)g = iw fQI Ky Z;],V:1 NIpAp - Ag R
iw [ pr(Hr —Hep —gradyr) - A (5.37)
— [ple ™ HcurlHe — Je0)] X ne - A,

—iw [ uHe s Ag —iw [, pygradir - Ag,

the result we have to prove. g

It is easily seen that the matrix Ais symmetric and positive definite, as the vectors
A4 are linearly independent.

Remark 5.6. The scalar magnetic potential can be introduced also when considering
the electric boundary condition E X n = 0 on {2 (see Alonso Rodriguez et al. [10]).
We are not considering this formulation here; instead, for this boundary value problem
we present in the next section a formulation in terms of a scalar magnetic potential in
(21 and of the electric field E¢ in £2¢. O

5.2.1 A domain decomposition procedure

The strong formulations presented in Theorems 5.4 and 5.5 can suggest some iterative
procedures for solving (5.26)—(5.28) and (5.32)—(5.34). To give an idea of the proce-
dure, let us focus on the second case. The iteration-by-subdomain algorithm reads as
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follows: given e‘}ld on [, first solve

div(p, gradzzj) + Zgzl nr,q div(pyAg) = —div(p;He 1) in £2;

iw(Anp), + ar(graddr, A,)
= fpecfld')‘q*al(He,I,Aq) Vg=1,...,N

T (5.38)
ppgradyy -ny + Zé\’:1 Ni,qKrAg - 01

= —iw ldiv,e®d — u;H. s -ny onl
Yr=0 on 92 ,

which is well-posed since its weak formulation is expressed in terms of the sesquilinear
form @y (-; -), that is coercive in Hj 5,(£27) x CN. Then solve (5.32), namely

curl(o ™ curl He) + iwpHe = curl(e ™1, o) in Q¢
He X ne = —gradyy x ny (5.39)
—Zé\’:lm,q)\qxnj—He,IxnI onl .

Finally set
eV =(1- 5)e%1d + 6o curl He — Jec)] xne onl, (5.40)

and iterate until convergence (here § > 0 is an acceleration parameter). Clearly, in the
limit one has € = [~} (curl He — J..¢)] x n¢ = Ec x ncon I

The possible advantage of this approach is that, when passing to the numerical
approximation, the single reduced problems (5.38) and (5.39) can be easier to solve
than the global problem (5.32)—(5.34). In fact, first of all they have a smaller size,
and moreover they have a more classical nature (for a simple topological situation,
namely, when NV = 0, (5.38) is a mixed Dirichlet-Neumann problem for a uniformly
elliptic operator, whereas (5.39) is a standard Dirichlet boundary value problem for a
curl curl-like operator).

An analogous iterative scheme can be proposed for formulation (5.26)—(5.28). In
this case, a further interesting point s that the problems (5.27) and (5.28) can be solved
in parallel, as they are independent.

We will not dwell on these iterative schemes here, referring the interested reader to
Alonso Rodriguez et al. [10]. However, in next section we will focus on an iteration-
by-subdomain procedure for a problem where, instead of the magnetic field H¢, the
unknown in the conductor is the electric field E¢.

5.3 The formulation in terms of Ec and 7

In this section we want to present a formulation in terms of the electric field E¢ in (2¢
and of a magnetic potential in {2;. For the sake of variety, we focus here on the electric
boundary value problem, namely, we impose E X n = 0 on 9.

Let us start recalling the necessary conditions that have to be imposed to the current
density J. € (L?(£2))? in this case

divJ.; =0 inf2; (5.41)
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fpj‘]e,]'nlzo Vj:].,...,p['

542
f(amr‘]eﬁpn:O Vr=0,...,p90 - (5.42)

The existence of a vector field H ; € H(curl; £27) such that
curl HY ; = Je 1 in 27 (5.43)

is then ensured by well-known results (see, e.g., Alonso and Valli [6], Rem. 4.3).

In order to devise the formulation in terms of E~ and a scalar magnetic potential,
the weak form of the eddy current problem in terms of E~ and Hj is the right starting
point: adapting to the electric boundary condition what we have derived in Chapter 4,
it reads

Find (Ec,Hy) € H(curl; 2¢) x Vi (Je.1) -
ch(ual curl E¢ - curl zg + iwoEc - Zo)
,iwfpﬂz.ﬁxnc:—iwacJe’C.ﬁ (5.44)
—iw [ Ec XnC'V_?J“WQfQIH[HI =0

forall (z¢,v}) € H(curl; 2¢) x V(0),

where
Vi(Je,r) :={vi € H(curl; £21) | curl vi =J. rin 2},

and similarly for V;*(0).

Now we could use the decomposition result (A.26), but, as we have already ex-
plained, for numerical approximation it is better to consider a decomposition for which
the harmonic fields p7, ; are not employed. Therefore, as in the preceding section, let
us suppose that £2 is a polyhedral domain, and that there is a triangulation 7,0 such that
2=U KeT, o K, where K is a tetrahedron or a parallelepiped and h° > 0is the (fixed)
mesh size. From Bossavit [59], Hiptmair [126], Gross and Kotiuga [115] we know that
in {27 there exists a system of “cutting” surfaces =", o« = 1, ..., ngp,, such that every
function z; € HO(curl; £2;) restricted to 2; \ U2 5 is the gradient of a function
belonging to H'(£2; \ U2, Z*). It is not restrictive to suppose that the triangulation
Tro induces a triangulation on these surfaces. Fora = 1, ..., ngp, let us denote by I7%
the piecewise-polynomial function taking value 1 at the nodes on one side of =, say
(%)™, and 0 at all the other nodes (including those on (=)™, the other side of =7*).
Set also

A i=grad II7 fora=1,...,ng0, , (5.45)

where grad IT* denotes the (L?(£27))3-extension of grad IT* computed in §2; \ 5.
It is verified at once that for each o = 1,...,ngp, the vector function X, belongs to
(L2(£2r))? and satisfies

curl A, =0 in {2 .

Denoting by g € H'(£2;)/C the solution to

div(p; grad g7) = div(p L) in 27 (5.46)
prgradgs -n=pA,-n  onlUOQ, '
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one can easily check that the basis functions p7, ; of the space H,,, (m; £21) can be
written as

Por =A; —gradgy, . (5.47)

In Theorem A.8 we have proved the following representation formula for the vector

field Z7 = Hy — H:’I (where H:’I is defined in (5.43))

’nQI

H; —H} ;= Z7 = grad¢] + Y 7} opi s - (5.48)

Note that this formula simplifies if ng,, = 0. This means that {2; is simply-connected
(in particular, that {2¢ is simply-connected).
Using (5.47) one finds

Z? - grad 11[1] + Zoz 1 77] oz()‘ gradga)

) (5.49)
= grad ¥} + Lo 17 o NG
having defined
nQI
i = =D Mg (5.50)
a=1
Similarly, each test function vi € V;*(0) can be written as vi = gradX} +

S 07 oAs- Inserting these expressions for H; = Zj + HY ; and v in (5.44),
we find

ch (ugt curl Eg - curl Zg + iwoEc - 7o)
—iw [, grad )} - Zg X ne — iw Y ach 0f o [ AL ZE xne (5.51)

= fiwaCJe,c~ﬁ+iwpr:’I-ﬁ><nc,

—iw [ Ec x n¢ - grad X} + w? Jo, 11 grad ¢} - grad X}
0 302 1] 0 g, AL - grad Xy (5.52)
= -’ fQI 758 = Wy grad)?_;
and
—iw Zngl %IF Ec xng- Aj+ w? Zgziﬂfm Wy grad@} A
1 S0 (S e N3 )7 o B (5.53)
= —w? ZgQI 07 .5 fg pHE )‘ﬁ

The variational space where we are looking for the solution is clearly

U* := H(curl; 2¢) x H'(£2;)/C x C™1 . (5.54)
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This shows that we have no longer strong matching on the interface I", hence the choice
of finite elements for numerical approximation will be easier than that we will propose
for problems (5.13) and (5.21).

Setting

te,c(We, 20) 1= / (HEl curl we - curlzg + iwowe - zZo) (5.55)
Nc
the sesquilinear form at the left hand side of (5.51), (5.52) and (5.53) is given by

K((we. (i), (2, 15, 60)))
= Ge,0(We, z0) —iw 1, gradZ}‘ “Zo X no
—iw > 1fylafp A, Z¢ x n¢ — iw [ grad Xy - we X ne
+w? [, py grad GG - grad X + w? Y0 47 o [, L - gradX;
fzwz o 9* o P AL - We xne

22 m 9* fm AL grad(l +w [A ~%,07] ,

(5.56)

where the matrix A* is defined as
Azﬁ ::/ HI)‘;)‘Z; ) O‘aﬁ:]-v"'anfhv (5.57)
27

and [+, -] denotes the scalar product in C™¢r.
The weak formulation of the eddy current problem reads

Find (Ec, ¢%,n3) € U* such that

K((Ecvw;vn;)v (ZCWS(\;?Q;))
= —w Je’cﬂﬁ%»iw HZ “Zo X Ngo
Jac A_‘[F ! (5.58)
—w? fQI HIHZ ;- grad X7
— Z nep e*anI ”’IH )‘a
for each (z¢, X7,607) € U™,

The well-posedness of this weak problemis a consequence of Lax—Milgram lemma,
as the following coerciveness result holds:

Proposition 5.7. The sesquilinear form K (-, -) is coercive in U*, namely, there exists
a constant kg > 0 such that

(e G0 e T D) o
> o Jo (120 + [eurlzo ) + [o, (K1 +| erad R31%) + |671%)

foreach (zc, X5, 07) € U* satisfying ffh X;=0.
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Proof. We have already proved in Theorem 4.1 that the sesquilinear form C(-, -) at the
right hand side of (5.44) is coercive in H (curl; {2¢) x V;(0), where

V1(0) :={vr € Hogn(curl; 21) | curl vy = 0in 27} .

However, the fact that v; € V;(0) satisfies vi x n = 0 on 9{2 does not play any role
in the proof, hence the same result holds for H (curl; {2c) x V;*(0). On the other hand,
writing v = grad {5 + >0k 07 o A% We can repeat the proof of Lemma 5.2 and we

obtain
| owviviz e [ leaziP < 6i)
QI QI
From the Poincaré inequality (4.51) the proof is thus complete. g

Concerning the strong formulation, from the decomposition result (5.49) for the
magnetic field H; we easily find that E¢, ¢} (determined up to an additive constant)
and 07 satisfy the strong problem

curl(ug1 curl E¢) +iwocEc = —iwd. ¢ in 2¢
(ual curl E¢) X ng = iw grad 72? X ny (5.59)
Fiw Yot 0t o A x np +iwH? ; xny on I’

div(pe; giad 7;?) = —div(pH7 ;) - >ald N7, div(p Ay) in 82

ngradwf~n1:fiw’lcurlEC~ncfuIHe’I ny (5.60)
DD NI WY, on I '
pygradiy -n=—pHE o= S 005 Al on on 01?2
ZW(A*'”I fF EC X Ng - )‘ﬁ (561)

*aI(H:,Ia)‘ﬁ) (gradd]]a)‘ﬁ) VB=1,....,ng, .
5.3.1 A domain decomposition procedure

Starting from (5.59)—(5.61) it is easy to devise an iteration-by-subdomain procedure
for solving the eddy current problem (for this type of domain decomposition approach,
in different contexts, see, e.g., Quarteroni and Valli [200]). Here we focus on the strong
forms of the problems: the corresponding weak formulations can be easily determined.

Given €% on I, find the solution (7;?, ny) (Jf determined up to an additive con-
stant) of the coupled problem

div(jer grad ) + S0 07 o div(pu NG) = — div(pagHE ) in 0
ar(grad g, Xj) + iw(A*n})s

77fpeold )\Z*GI(H:,D)‘Z) VB8=1,...,n0, 5.62)
peg grad 77[’1 ‘nr+ Y02 N7k Ae
old

= —iw ! div, €94 — p,H? g onl

ppgrad 05 n+ YAl ng Ny on = —pHL o ond
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then solve
curl(ua1 curlE¢) + iwoEc = —iwJ. ¢ in 2¢
(ugl curl E¢) X ng = iw grad {/J\f X ny (5.63)
Hiw Yo n; o, Ah xny +iwH; ; xn; onl,
finally set

eV = (1-6)ed+6Ecxneg onl, (5.64)

and iterate until convergence (again, § > 0 is an acceleration parameter). In the limit
one has e® = Ec X nc on I'. Note that the solvability of problem (5.62) is ensured
from the fact that the sesquilinear form associated to it is coercive, as a consequence
of Lemma 5.2 (for this, see the last part of the proof of Proposition 5.7). Moreover,
problem (5.63) is a standard Neumann boundary value problem for a curl curl-like
operator.

This algorithm has been analyzed by Alonso and Valli [7], in the case in which {2
and {2 are topologically simple (namely, n, = 0). There it is proved that the itera-
tive procedure converges, provided that the parameter ¢ is chosen in a suitable interval
(0, 09). Moreover, when considering a finite element approximation, the convergence
is proved to be independent of the mesh size h. In the next section we present some
numerical results concerned with this domain decomposition procedure.

As we have already noted when we have considered the formulation in terms of
Hc and {/J\ 1, the advantage of this approach is that, at the numerical level, the reduced
problems (5.62) and (5.63) can be easier to solve than the global coupled problem
(5.59)—(5.61), as they have a smaller size and, moreover, they have a standard structure
(at least, for a simple topological situation, that is, when n;, = 0; when instead np, #
0, we can anyway see that (5.62) is a simple variant of a classical elliptic problem).
Therefore, at each step we can employ our favourite solvers for elliptic problems, and,
if the number of iterations is not too large, this procedure could be computationally
more efficient than the one based on a direct discretization of (5.59)—(5.61).

5.4 Numerical approximation

The weak formulations of the problems presented in the preceding sections are based
on sesquilinear forms that are coercive in a suitable Hilbert space, say, X. Therefore,
the numerical approximation is somehow standard: choose an internal approximation
of the space X, and estimate the error between the exact solution and the discrete
solution by means of the Céa lemma.

However, a preliminary question to be faced is the determination of the vector
fields H ; and HZ ; (see (5.3) and (5.43), respectively), that appear at the right hand
side of the weak formulations, and that are also needed to find the right magnetic field.



126 5 Formulations via scalar potentials
5.4.1 The determination of a vector potential for the density current J. r

A first obvious remark is that we have nothing to do if J. ; = 0 in {2;: for some real-
life problems this is indeed the case (see, e.g., Sections 9.2 and 9.4). On the contrary,
when J. 1 # 0, we can use the Biot—Savart law and define for each x € (2;

H (%) = curl [, gy e (v) dy)

B (5.65)
= fQI ﬁ X Je,I(Y) dy .

However, this has some flaws. In fact, one has

curl H} ; = curl curl (fa?z m Je1(y) dY)
=~ A( o, gy ea(y) dy)
+ grad div (fa?z m Je1(y) dY) )

hence curl HY ; = J. 1 in {27 provided that

1
div(/ L d):o in 2, .
o, T —y] Pl !

Since divJ. ; = 0 in {27, this is ensured when the conditions J. 7 - n; = 0 on I
and J. ; - n = 0 on 04?2 are satisfied, so that one can extend J. ; by O outside (2;
still keeping a divergence-free vector field. In this respect, note that J.; - n; = 0
on [ is not a necessary condition for solvability of the eddy current problem, while
Je.r-n = 0 on 02 is a necessary condition only for the magnetic boundary value
problem: therefore, for the sake of completeness, we have to take into account also
the case in which these conditions are not satisfied. In this latter situation, one has to
extend the vector field J. 1 to a domain Q} as small as possible but containing 0, in
such a way that it is still divergence-free, but now with vanishing normal component
on the boundary of Q} and then use the Biot—Savart formula in Q} for this extended
current density field.

The extension of J. ; can be achieved by taking the gradient of the solutions @5,
and @ of the Neumann problems

Ay =0 in i\ 2
grad®po-n=J.7-n ondf2
grad®po-n=0 on 8(2} N(R3\ 2)
Adr =0 in 21 N Q¢
grad®r -ny=Jcr-n;y onl
grad®r-n=20 onaﬂ}ﬂﬂc,

(solutions determined up to an additive constant in each connected component of
Q} \ {2 and Q} N ¢, respectively), and at the discrete level this procedure has a
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small computational cost. Note that the solvability conditions for the Neumann prob-
lems here above are satisfied for both the magnetic and the electric boundary value
problem, as follows from (5.1), (5.2); and (5.41), (5.42), respectively.

For the electric boundary value problem we have thus obtained the vector field
H? ;. Instead, for the magnetic boundary value problem we have not yet completed
the construction, as the vector H, r has to satisfy not only curl H, ; = J. ; in {27, but
also He 1 X n = 0 on 942, and this last condition does not hold for H} ; defined as in
(5.65).

Here we have some different alternatives: the first one could be interesting for prac-
titioners, and consists in dropping the boundary condition H. ; x n = 0 on 9{2, just
keeping HY ;. Clearly, this does not introduce a too large error provided that Hf ; X n
is small enough on 0f2. Denoting by S,  the support of J. 7, namely, the region where
Je 1 is different from 0, and setting [ = dist (Se, 1, 912), from (5.65) we readily have

1/2
1
/Wmme s—mmwmmf|hm
o0 ’ 4’/Tl2 S ’

e, I

hence this approach can be followed if the quantity at the right hand side is small
enough.

Another possibility is to forget the Biot—Savart law (5.65) and to look for H, 1 =
curlqe, 1, where g ; € H (curl; £2;) N H(div; £2) is the solution to

curlcurlqer = Je ;. inf2;

divge,r =0 in 21
Qe Xny; =0 onl’
Qe,r-n =0 on 0f2 (5.66)

curlge; xn=20 on 912
qe’]J_H(F, 89, Q]) .

This problem, which is similar to (A.14) or to (A.22), can be formulated as a penal-
ization problem, by adding the term — grad div q. s at the left hand side of (5.66), or
else as a saddle point problem, where the constraint on the divergence is imposed by
means of a Lagrange multiplier. Focusing on this latter choice, the numerical approx-
imation of (5.66) is performed using edge elements for q. ; and nodal elements for
the Lagrange multiplier, and, though the whole procedure is standard, it has however
a computational cost that is not negligible.

A third possibility consists in considering H ; defined as in (5.65), and writing
H; — H{ ; in terms of the orthogonal decomposition (5.49), namely,

’I’IQI

H; —H; ;= grad v} + > nj AL -

a=1

Note that, though (H; — HZI) x n # 0 on 02, the terms Q7 in (A.26) is vanishing,
ascurl(H; —HJ ;) = 0in {2;.
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Denotingby H? ., € H (curl; £2¢) a vector field such that H; o xnc+H] ;xn; =
0 on I', we are now looking for the solution to the following problem

Find (Z},, 72?, n;) € W* such that
gradwj xn+4 S 1Mo Ae X n=—H; ; xnondf2

aC(Zzavé) +a1(¢]77l775€770?) (5.67)
=—ac(H; ¢, ve) — ar(HZ ;, grad X7)

—ar (1 02050 XL ) + Jgp 0 o curl v
for each (v, X7, 05) € Wi,

where we have introduced the spaces

o~

W = {(vén 1, 8}) € H(curl; 2c) x HY(27)/C x T | 568)
Vi xne+grad X xng+ 302 05 AL xny=0onT} ’
Wi = {(v, X}, 05) € W* |

5.6
gradxjxn+2910* AL, xn = 0ondf2}, (5.69)

and the sesquilinear form

’nQI ’nQI

@GR 0)) = az(gradq‘ + ) A grad Ry + ai,axz) . (5.70)
a=1 a=1

With respect to (5.21), what is new here is that we have to satisfy the additional con-
straint gradwj xn+ Sy N7 o An X 0= —HZ ; x non df2. In the next section,
following Bermudez et al. [42], we Wlll descrlbe an efficient way to devise a finite
element approximation of this problem, based on the introduction of a Lagrange mul-
tiplier for taking into account the boundary condition on 0(2.

Remark 5.8. A method for determining a suitable approximation of the vector fields
H. ; and HY ; has been proposed by Webb and Forghani [241]. To be precise, an

edge element vector field H 1,5 1s constructed, such that curl H 1,5 1s equal to a suit-
able interpolant of the current density J. ;. In a simple topological configuration the
proposed algorithm leads to a uniquely determined edge element. Instead, in the gen-
eral case some degrees of freedom remain undefined: one for each non-bounding cycle
contained in £2;. O

5.4.2 Finite element approximation

A finite element numerical approximation of (5.13), (5.21), (5.58) or (5.67) must be
clearly based on (scalar) nodal elements in {2; and edge elements in {2¢.

However, any approximation procedure starting from the weak formulation (5.13)
has some drawbacks, as it is also necessary either compute explicitly w, ; (and in
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general this is not feasible), or to approximate them through the problems described in
Section A 4, see (A.33) and (A.34), and this is rather expensive, especially for large V.
Moreover, the matching condition on I, that is included in the definition of the space
W, cannot be satisfied at the discrete level, as wq ; X nry is not a discrete function on
I'. Therefore one should consider the matching condition for a suitable interpolant (or
projection) of wg r on I', thus resulting in a non-conforming finite element approxi-
mation.

Instead, the numerical approximation based on (5.21), (5.58) or (5.67) is much
easier to implement, as the construction of each A, and A} is straightforward, once
the “cutting” surfaces are available; moreover, if the finite element triangulation 7},
is a refinement of the triangulation 7,0 used in the construction of A4, the matching
condition on I can be imposed directly, as in this case Ay X n is a discrete function
also in any finer mesh.

Remark 5.9. 1t is worth noting that the determination of the vector fields A, and X},
requires the explicit construction of the “cutting” surfaces =; or =7, which can be
troublesome in general topological configurations. Some algorithms have been pro-
posed by Kotiuga [152], [153], [154], Leonard et al. [165], Gross and Kotiuga [114],
Ren [207]. A detailed presentation of one of these algorithm can be found in Gross
and Kotiuga [115], Chap. 6. An up-to-date review of the methods used for construct-
ing “cutting” surfaces, together with the proposal of a new algorithm, are presented in

Dtotko et al. [97]. O

In the sequel we focus on the numerical approximation of (5.21), (5.67) and (5.58),
and we assume that {2; and {2¢ are polyhedrical domains, and that 77 and 7¢ p,
are two regular families of triangulations of {2; and (2¢, respectively; for the sake of
simplicity, we suppose that each element K of 77 and 7¢ j, is a tetrahedron. When
considering the numerical approximation of (5.21) and (5.67), we also assume that
these triangulations match on I', and that they are a refinement of the triangulation
Tho used in the construction of A.

In 2c we employ the Nédélec curl-conforming edge element space N’é’h, that is
defined as

N& = {zon € H(curl; 20) | 2onx € Re VK € Ton},

where Ry, := (Pr_1)3 @ Sy and Sj, := {p € (Px)? | p(x) - x = 0}. Other choices
would be possible, for instance the second family of curl-conforming finite element
spaces introduced and analyzed by Nédélec [186] (for notation and a detailed descrip-
tion of these spaces see Section A.2). We also consider N, , the correspondent space
in (27, and the trace space l

Xrp = A{(vipxnr)r | vin € Nipt = {(venr x no)ir | von € N&y} -
Finally, we consider the space of scalar Lagrange nodal elements

LIIC.,h = {x1,n € CO21) | Xrnxw €EPe VK € Ty 1}
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Remark 5.10. Note that one has gradxs; € Nf’h for all xrn € L’f’h and that
Aq € NIkh forg =1,...,N. Moreover, if vy ) € NIkh is such that curl vy 5, = 0 in
27 andv’],h xn = 0on 02, from Theorem A.7 and (5.1’7) there exist X7 € Hé’(rm((lj)
and @; € CV such that vy = gradxr + Zf]\;l 01, qNg. Since Ay € NIk’h, then
also grady; € Nf’h and thus grad X7 € Ry for each K € 7. From Gi-
rault and Raviart [111], Chap. III, Lemma 5.5, it follows that X 1k € P, hence
X1 € Ly VHG 50(821). 0

Let us now consider the space

Wi = {(von Xn,01) € NEj, x L ), x CV [ R1njon = 0,
v, X Do + grad Xy, X 0y + Zf]\;l OrqAg xny=0onI}.

It is well-defined, since v¢,, X ne, grad X7, X ny and Zf]\;l 01,4 Ag X ny are in the
same space X ;. The matching condition on the interface can be imposed by elimi-
nating the degrees of freedom of v ;, associated to the edges and faces on " in terms

of those of grad X7 5 + Zf]\;l 01,4 Ag- Moreover, /Wh is clearly contained in w.
Assuming that we have explicitly constructed H, ; and H, ¢, the numerical ap-
proximation of (5.21) reads

Find (ZC,h> llf;],h, "I,h) € /V(?h such that

ac(Zop,von) +ar(drn, Nr.05 X0, 01)
= —ac(He,c,ven) —ar(He 1, grad X1.n) (5.71)

—ary (He’j, Zé\’:l 01’q )\q) + f!’?c 0‘71.]6’0 ~curl ve
for each (v, X1, 01) € /Wh .
The following theorem can be easily proved.

Theorem 5.11. Assume that the families of triangulations 1c ;, and Tt j, are obtained

as a refinement of the coarse triangulation Tpo. The solution (Zc n,Vr,n, My p) of
problem (5.71) exists and is unique. If the solution of problem (5.21) satisfies Z¢ €
H" (curl; 2¢) and 1y € H"(92r) withr > 1/2, the following error estimate holds

1Zc = Zen | mcu.oe) + 1Y — Yrnllie + 0 —np4l

min(r b (572)
<cih ( ’k)(”ZC”HT'(curl;Qc) FYrlhrer) -

Proof. Existence and uniqueness of the solution follow from the fact that the sesquilin-

ear form ac (-, -) +ay(-;-) is continuous and coercive in w.
Using the Céa lemma (see, e.g., Ciarlet [83], p. 104; Quarteroni and Valli [199],
p- 137) one finds at once

1Zc — Zow | gcun.oc) + 101 = Yrpllie + 10 — np4l

. LA (5.73)
< c*(|Zc = venllgeu ooy + 101 = Xenllie, + |np — 61])

for any choice of (ve p, X1.h,01) in /V[7h.
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We note that, since Z; = gradﬁ}\[ + Zévzl N1, \g, the interpolant r; (Z7) =

rrn(grad &1\1) + Zévzl N1, \q is well-defined, and moreover

th(gradzE]) = gradm,h(zz;l)

holds, where 77 5, is the interpolation operator in L’}, 5 (see Monk [179], Theor. 5.49).
Hence in (5.73) one can choose v¢;, the interpolant of Z¢ in N’é’ e X1, the inter-
polant of 171\ 7in L’I“, ,, and @7 = 7, since with this choice the matching condition on I

is satisfied. Thus, as a consequence of the corresponding interpolation estimates (see
Alonso and Valli [9] and Section A.2) one readily finds (5.72). O

The difficulties that can arise in the construction of the vector field H, ; have lead
us to propose the weak formulation (5.67) for the magnetic boundary value problem.
Now we are interested in its finite element approximation. As before, we employ the
edge finite element spaces N’é’ pin 2c and N Ik 5 1n {27, and the space of scalar nodal
elements L’}_h in {2;.

Since at the discrete level the boundary condition cannot be satisfied exactly, we
need to consider an approximation of the boundary data —H{ ; x n in the finite di-
mensional space

Voo ={(vin xn)jgo | vin € Nf, N H(curl; £27)} .

Proceeding as in Remark 5.10 it is easy to see that each function vy, € NF, such
that curl vr j, = 0 in {27 can be decomposed as

’I’IQI

vin =grad X7, + Y 074 A (5.74)

a=1

for some X3, € L%, and 7 € C"?r. Let us set

Lgn = {vn € C%00) | vy € PrV K € Ty},

where 75 5, is the triangulation induced by 77 ;, on (2. Then by (5.74) §;, € ngAh

ifand only if n x &, = grad vy + 3024 0% n x X}, x n for some v, € LE, , and

07 € C™1 (see Section A.1 for the definition of the operator grad, in H'/ 2(80)).
From well-known results of potential theory (see, e.g., Dautray and Lions [93],

Chap. II, Sect. 3), since J.; € (L?(£2;))® (and also its extension belongs to
(L2(£2}))3), then H; ; € (H'(£21))". Moreover curl HY ; = J. 1, hence assuming
that J. ; € (LP(£2))? for some p > 2 the interpolant r j, (H} ;) is well-defined (see
Monk [179], Lemma 5.38). Our aim is to choose the value — (th(H;I) X n)

discrete boundary datum belonging to )9 Q.h

In this respect, let us note that, if there exists a function Gy € (H'/?+9(02;))3,
0 > 0, such that curl G; = J. ;in 27 and G; x n = 0 on 942, then it is easy to see
that — (ry, n(HE 1) x n) . isan element of V) o.p- In fact, one readily verifies that

00 38

EXe;
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I‘]’h(G[ — H:,I) € NIk’h, Curl(r[’h(G] — H:,I)) = 01in {27 and I‘]’h(G]) xn=0
on Jf2. In the following we assume that such a function G exists (for instance, it is
enough to know that the solution H; belongs to (H/2+9(£2;))3).

We thus consider the following discrete problem

Find (Z, ), 72? woMrn) € W such that
grad¢1h ><n+Za (N7 .1)a AL xn=—rr,(H; 1) X1 ondf

ac(Zg . vE,) + aI(lbI,h’nI,h;?AC?,me?) (5.75)
= *aC(HZ C?VE' )~ aI(H:,b grad)??,h)
—ay ( : I,Znnf 07 )\Z) + fQC o J.co- curl v, ,

for each (v{, ;,, X7, 07) € Wék,h )
where

Wi = {(vin Xips 07) € Né',h X L’f’h/Ci Crer |
Vi Xne+grad Xy, xngp 4+ 3,205 AL xny =0on I},

and
noer
Won = (V& X7 07) € Wi |grad 7y, x n+ Y 67 o AL xn=0o0n 902} .
a=1

It is straightforward to obtain the following result.

Theorem 5.12. Assume that the families of triangulations 1c ;, and Tt j, are obtained
as a refinement of the coarse triangulation Tyo and that vy p(H: ;) x n € V5, ;.

Then there exists a unique solution (Zg, ,,, Jf’h, n7.) to problem (5.75). Moreover,

if the solution to problem (5.67) satisfies Z§, € H"(curl; £2¢) and LZ? € HF ()
withr > 1/2, the following error estimate holds

1Z¢ — Zij',h”H(curl;a’Zc) + [l — ,IIZ]?,]'L”HI(QI)/C +|n7 — 7]?h|

min(r * T (576)
< e ONZE |y curt00) + | grad ¥ lney) -

Proof. The sesquilinear form ac (-, -) + a}(-, -) is clearly continuous in W™, and pro-
ceedlng as i in Propos1t10n 5.7 it is easily seen that it is also coercive in W*. Since

WO n C WO C W* and r; wHI ) xn € ym n» well-posedness of the discrete
problem follows at once. Moreover, by using Céa lemma we find that

128 = Z& pll mrcurtioe) + 197 = U7 pllan e + 07 =07 4l
< (126 = vEnlluunae) + 197 = Xt nlla @0 c + 107 = 071)

for any choice of test functions (V¢ ,, X7 1, 07) € /Wék such that grad X7 ;, x n +
Shen 07 o Xa xn = —rr;(H? ;) x non 0f2. Since Hy = HY ; + grad@f +
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Shen N7 aNa»> Wecan choose v, ;, = ro n(Ze), grad X7 5, = rip(gradyy) and 07 =
n;, where r¢ j, and r; j, are the interpolation operators in N , and N¥, , respectively;

therefore, employing the standard interpolation results, we obtain at once the error
estimate (5.76). O

To complete our analysis, let us specify how to impose the non-homogeneous mag-
netic boundary condition. First, we note now that n, > np, nr being the number of
0f2-independent non-bounding cycles in §2;. Therefore, we can arrange the indepen-
dent non-bounding cycles in {27 in such a way that the 9f2-independent non-bounding
cycles are numbered with o from 1 to np.

Let us also assume that the system of “cutting” surfaces = is such that 0= C I

fora = 1,...,npand 057 C 02 fora = np + 1,...,ng,; note that this is not
true, for instance, in the case in which {2 and (2¢ are two co-axial tori. Then, for
a=nr+1,...,nn,, the coefficient (1} )~ can be computed in advance from the

data of the problem. In fact, denoting by Z7 ;, := grad 121\7}1 + Zznﬁ(nl n)a Mg it s
easy to see that

(U?ﬁ)a :/ Z;,h dT,

e

hence fora =npr +1,...,ng, one has
(NT.n)a = f/ (nxrrp(HS ) xn)-dr. (5.77)
Moreover, for &« = 1,...,np, itholds A}, X n = 0 on 92, hence (5.75); is in fact a

boundary condition for grad ¢ ,

’I’IQI

gradzﬁih Xn=— (rl,h(HZ,I) + Z (M7,n)a )‘*> X, (5.78)

a=npr+1

with (97 1,) o obtained in (5.77).

An efficient procedure for imposing this boundary condition has been proposed
by Bermudez et al. [42] and it is based on the use of Lagrange multipliers. Since
rrn(H: ) X0 € Vg (ﬂ?,h)a = — [, (m xrrp(H; ;) x n) - dr for a =
np+ 1,...,np, and A}, xn = 0 on 92 fora = 1,...,np, it follows that
n x (m( 0+ u (0] )aXs) X 1= grad g, for some 7, € L,
Hence it is clear that (5.78) holds if and only if

/ n x gradi)j , x n - grad, 7, = — / grad, 1y, - grad, 77,
o] i o]

forall vy, € LgQ,h/(C.
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Therefore we consider the following problem

Find (2 ., 05 . Mf.0) € Wit kin € Ll ,/C such that

(U;h)a = - f@a (n X I'I,h(H:’I) X n) -dt
fora=nr+1,...,n0,

0 Zp VEn) + @505 1o M55 X O7)
+ [ grad, K, - gradTW’h
= *aC(H:,aVah) - aI(H:,bgrad)/C\?,h) (5.79)
—ay (H; 1, 302007 o AL + [, 07 e o curl v,

Jop grad, ¥7 ;, - grad, 7,
= — Jpon xrra(H; ) x n-grad, 7

n N
- fzm n X Zaizpﬂ(nih)a)\(i X n-grad, vp

for each (V¢ ;,, X745 07) € W p,, v € Lgn’h/(c )

The following theorem shows that this problem is well-posed and that it is equiv-
alent to problem (5.75).

Theorem 5.13. Let the assumptions of Theorem 5.12 be satisfied and let the system of
“cutting” surfaces =}, be such that 0= C I' fora = 1,...,np and 0=}, C 012
fora = np + 1,...,n0,. Under these assumptions problem (5.79) has a unique

solution. Moreover if we consider the unique solution (szj,m Jf’h, nfﬁh) € /W;f of
problem (5.75), then (¢, ;,, @?’h, N7.0:0) € /W;f x L 1,/ C is the solution of (5.79).

Proof. To prove the existence and uniqueness of the solution it is enough to show
that the homogeneous problem has only the trivial solution. Assuming that H? ; = 0,
H - =0and J.c = 0, from (5.79); it follows that (W?,h)a = 0 fora = nr +

1,...,ng, and from (5.79)3 we see that grad.. @fh = 0 on 9f2. Taking in (5.79)2
(Z*C, > 72? ho M7 ,) as test function, from the coerciveness of the sesquilinear form
ac(+,-) +az(-,-) we also have Z, , = 0in {2 and gradzgf’h + S (M7 1)a Ay =

a=1
grad 7;? > (17 n)a As = 0in 7. Integrating this last equation along the cycle
Yo, @ =1,...,npr, we easily find (V?,h)a = 0, and therefore also grad @fh =0in
02r.
The second part of the theorem follows from (5.77) and (5.78). O
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Let us finally focus on the numerical approximation of (5.58). It reads
Find (Ec., ¥ 5, 4) € Uy such that

K((Ec,hv l/};hv n;,h)v (ZC,h, 5(7,}17 0;))
:*Z.WchJe,C'ZC,h*FZ.Wpr;]'ZC,h X ngo (5.80)
—w? f(z[ purHE ;- grad YIF h

*WQZ Q[ 9* fQ /‘I’IH Aa
for each (zc n, X7.,,07) € Uy ,

where the finite element space U C U™ is given by
Uf = Ng’h x L’},h/(C x Cner |

Since no matching condition is required on I, the meshes induced on I" by 77 ;, and
7T¢ 1, can be independent.

Since the sesquilinear form KC(+, -) is coercive in U* and smooth functions are dense
in U*, we can repeat the same arguments presented before and we end up with the
following result.

Theorem 5.14. Assume that the families of triangulations Tc p, and Tty are ob-
tained as a refinement of coarse triangulations Tc po and Tt po. Then the solution

(Ec.p, z//;;h, n7.5,) of (5.80) exists, is unique and converges to the solution (Ec, 121\7, ny)

of problem (5.58). Moreover, if Ec € H"(curl; {2¢) and QZ}\; € HY(02y) for
r > 1/2, it follows

Ec — ECh”H curlne) T ||7/’1 7/’1 pllE (2 )/C + 7 — 174l
< cy pmin( Tk (||EC||H7 (curl;2¢) + |l grad?/ﬁ”r o) -

Remark 5.15. The weak formulations (5.21) and (5.67) are somehow different from
those presented in Bermidez et al. [42], even in the case of homogeneous boundary
conditions, as we explicitly construct the part of the magnetic field that is not a gradient
(namely, Zé\]:l N1,qAq in (5.18)), while Bermiidez et al. [42] work with a multivalued
potential. For other ways in which the magnetic scalar potential in multiply-connected
regions is dealt with, see also Leonard and Rodger [167], [168] and the references
therein. |

(5.81)

Remark 5.16. Following the approach described in Remark 5.8, one could decompose
the discrete magnetic field as H;; = H;j; + grad¥;;, where Hy , is an edge
element with the property that curl H 1, 1s an interpolant of J. ;. Using this repre-
sentation, instead of Hy, = H.; + grad{/;],h + Zé\]:1(771,h)q)‘q as in (5.71) or
H;, =H; ;+grad wl P ] (17 1)aAg asin (5.79) and (5.80), can lead to devise
suitable numerical approximation schemes. This procedure is adopted by Webb and
Forghani [242], though a way for determining the degrees of freedom in Hy j, that are
associated to the non-bounding cycles contained in {2; is not clearly described. g
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We end this section by presenting some numerical results obtained by using the
domain decomposition procedure described in Section 5.3.1 (a more detailed presen-
tation can be found in Alonso Rodriguez and Valli [16]).

For testing the iterative algorithm (5.62), (5.63) and (5.64) we consider a model
problem with scalar constant parameters p and o. The computational domain is the
parallelepiped {2 = (0, 2) x (0,1) x (0, 1) and we take £2; := (0, z) x (0,1) x (0, 1)
and 2¢ = (zr,2) x (0,1) x (0,1) (for the sake of geometric simplicity, in this
example we have chosen a conductor {2¢ not strictly contained in (2; moreover, we
have no harmonic fields into play, namely, n, = 0). The numerical mesh is uniform,
and each element of the grid is a cube of side h. The employed finite elements are the
first order curl-conforming hexahedral edge elements of Nédélec (see Nédélec [185]
and Section A.2).

Aim of these numerical experiments is to verify the effectiveness of the iteration-
by-subdomain procedure. Therefore it is not restrictive to study a model problem with
current density J. = 0 and, starting with a non-zero initial datum, analyze the conver-
gence of the solution to 0.

For each index m the iterations can be rewritten in the following way: given e’ ),
the first step furnishes &7, := zw,wﬁ;" the finite element approximate solution of
the problem

AL =0 in 21

Y . m
5 =div- e, on [’

% — o on 902 N AL .

Then the second step gives E,, the approximate solution of

curlcurl EY + iwpocEd =0 in ¢

curl EG X ne = grad &y, xny on I’

curlEY xn =20 on 92N oS¢ .
Finally, the new datum on I is defined as

elnf’zl =(1- 5)e1”3’h +dE¢, xng onl'.

The iterations are interrupted when the stopping test

1 1 _
|| grad{??;r - gradg?}h”%,&?; + ||E2'1,J]g - Egl,h”?{(curl;ﬂc) S 10 8

is satisfied.
The initial datum €Y. , is a finite element approximation of (E, x n¢) \r» for suit-
able vector fields EY.. In the test case 1 we take a real function EJ, given by

0 .
EC test1 = (€7sin(zy), €*(y + 2), cos(z2)),
whereas in the test case 2 the initial value is complex:

E%’tesﬂ = (e* + isin(zy), yz + ie”, i cos(xz)).
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In Table 5.1 and Table 5.2 we show the number of iterations for the test case 1
and for the test case 2, respectively, with different values of i and = . The coefficient
K := wopu, the only active parameter in this test problem, is set equal to 50 and the
relaxation parameter 0 is equal to 1. It can be seen that the number of iterations required
to achieve convergence is almost constant with respect to h (in fact, it decreases slightly
as the mesh size decreases).

Table 5.1. Number of iterations. Test case 1,5 = 1

Tr \ h 1/4 1/6 1/8 1/10 1/12

12 5 4 4 4 3
1 4 4 4 4 3
32 4 4 4 4 3

Table 5.2. Number of iterations. Test case 2,5 = 1

Tr \ h 1/4 1/6 1/8 1/10 1/12

12 5 4 4 4 4
1 4 4 3 3 3
32 4 4 4 4 4

From Table 5.3 we can see that the choice of the relaxation parameter § = 1 seems
to be optimal.

Table 5.3. Number of iterations. Test case 1, h = 1/8

zr\6 09 095 1 105 LI
1”2 4 5
I 4 6
31 4 6

Finally, we consider different values of the coefficient x and we observe (see Ta-
ble 5.4) that the number of iterations required to achieve convergence does not change
with k.

Table 5.4. Number of iterations. Testcase 2,6 = 1, h = 1/8

ERE 10 10°  10°
12
1 3

32

B W oA~
W
(O8]
W
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In the second set of numerical experiments we construct the data in the following
way: we take a function Ec € H (curl; {2¢), we compute its interpolant E¢ 5, in the
finite element space, and using this function we determine &7 5, by solving the discrete
Neumann problem for the Laplace operator in {27, where the only non-vanishing datum
isdiv-(Ec,, x n¢) on I'. Then we calculate the data of the problem (5.63) (namely,
—twpde o in Q¢, iwpHT ; x nyon I' and, in the particular geometry we are consid-
ering for the numerical tests, E¢ , X n on 0f2¢ N 0f2) in such a way that E¢ 5, is the
discrete solution of the electric field problem. Precisely, this means that —iwuJ. c =
curlcurl E¢ + iwpuoE¢, iwaZ’I xnr =curllEc ) X ng — grad&r; X ny.

In particular, we consider

Ec(z,y,2) = (iy(1 —y)z(1 — 2)sin(zy), 2(1 — 2)e”, y(1 — y)(1 +icos z))

(sothat Ec xn=0o0ony =0,y =1, 2z = 0 and z = 1), and constant coefficients
w =50, u = 1079, ¢ = 106. In this set of experiments we initialize the iterations
with e}, = 0 and we study the convergence to 0 of the relative difference between two
subsequent iterates

1 +1
I gradﬁ?”;r — grad{?}hﬂagl IIE?h - g,h”%[(curl;ﬂc)
1 1 '
|| gradﬁ??;r ”8,!21 ||E2'1,Jlg ”%I(curl;!?c)

In Figure 5.1 we see the convergence histories for x; = 1 and different values
of h, whereas in Figure 5.2 and in Figure 5.3 we set h = 1/10 and consider different
values of z .

It can be thus concluded that this algorithm for solving the eddy current problem
is efficient: its convergence is fast and it seems to converge even better for smaller

- h=1/5
\\ B——8  h=1/10
-+ \ ——  h=1/i5
10 \ 1
\f\
M,

FRelative diffarence
g,

]
Number of iterations

Fig. 5.1. Convergence history for z = 1 and different values of h
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Fig. 5.2. Convergence history for h = 1/10 and different values of z
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Fig. 5.3. Convergence history for h = 1/10 and different values of z (continued)

values of the mesh size. The iteration-by-subdomain procedure is quite insensitive to
the position of the interface; it converges faster when the two subdomains are of the
same size but the performance of the method is good in other cases as well. Finally,
at least in the case of constant coefficients, the algorithm is rather insensitive to the
coefficients of the problem.
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5.5 The finite element approximation of E;

If the magnetic field is known, the electric field in the conductor {2 can be directly
found by setting

Ec = o Ycurl He — Je ).

Instead, the electric field in the insulator is determined by solving (3.38) (for the electric
boundary condition) or (3.13) (for the magnetic boundary conditions). However, for
numerical computations it is better to consider a different problem.

Focusing, for the sake of definiteness, on the magnetic boundary value problem,
we easily see that the electric field E; is a solution to the system of equations

curl(u;1 curlEy) = —iwJy in £2f

diV(E]E]) =0 in Q]

plcurlEr xn=0 on 02

ertEr -n=0 on 012 (5.82)
fFjE]E]'Il]:O Vjil,...,pp
fQIEIEI'ﬂ'k,I:O Vkil,...,nag

Er xnr=-E¢ X n¢ onl'.

We already noted that this problem simplifies if the boundary of the conductor {2« is
connected and the domain {2 is simply-connected , as pr = 0 and ng = 0. This
happens, for instance, if one considers a connected conductor, possibly with some
“handles”, contained in a “box’: a situation which is often verified in applications.

Problem (5.82) can be written in a weak form, following a saddle-point approach
similar to the one used for the E-based formulation in Section 4.6. Let us consider the
spaces

Zr = {zr € H(curl; £21) | z1 satisfies (4.6)},
and Zr o := Z1 N Ho,r(curl; £27). The weak formulation of (5.82) reads

FindE; € Z; :
E; xn;=—-Eg xng onl’

5.83
fmujlcurlEpcurlZ:fiwaIJe,pﬂ (5.83)

forallzr € Zy .

From Lemma 2.1 it follows at once that the sesquilinear form

ae,1(Wr,27) ::/ u;lcurle -curl z7 (5.84)
27

is coercive in Z o, therefore (5.83) has a unique solution.
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Recalling that z; € Z; if and only if z; € H(curl; £27) and fQI erzr -pr = 0 for
allpy € Hgﬁ r(curl; £27) (see Section 4.2), we have the equivalent formulation

Find (E7,r;) € H(curl; £27) x HY p(curl; £27) :
E; xn;=—-Egc xXxng onl’
Jo, urtcul By - curlzr + [, erzr-vr = —iw [ Je 171 (5.85)
Jo,€rBr-P1=0

forall (z;,pr) € Ho,r(curl; £21) x HE p(curl; £27).

The inf-sup condition for this saddle-point problem is trivially verified: given r; €
H&F(curl; £21), one chooses z; = r; and obtains

Jo, €rZr rr = f%I EIT] - I
2 €I,min||r1||()¢(2[ = €I,min||r1||H(curl;QI)||ZI||H(curl;QI) )

where €7 min is a uniform lower bound for the eigenvalues of e7(x) in {2;.
Therefore, problem (5.85) has a unique solution. Moreover, if E; is the solution
of problem (5.83), it is seen at once that (E;, 0) is a solution to (5.85); hence in (5.85)
one hasr; = 0.
In order to find a finite element approximation of the space H{ (curl; £2;) we
recall that '
HY p(curl; 27) = grad Hy (2r) & He, (I, 002; 2p)

(see (4.8)) and that a basis of H., (I", 0§2; §2;) is given by

{grad w‘j’[}?il U{me )28

(see Sections 1.4 and A.4). Hence any function py € H&F(curl; £2r) can be decom-

posed as
pr no

pr = grad s + ch:j gradw; 1 + Zd],kﬂ'k,],
j=1 k=1

where oy € H) »(2r) and ¢y j,dr g, j = 1,...,pr, k = 1,...,ngg, are complex
numbers. '

As proved in Bossavit [59], Hiptmair [126], Gross and Kotiuga [115], in £2; we
can consider a system of “cutting” surfaces Xy, k = 1,...,nggn, with X C {27 and
0X, C 012, such that every curl-free vector field in {2; with vanishing tangential
component on I” has a global potential in £2; \ U X, (for their explicit construction,
which is needed for numerical approximation, see Remark 5.9). Let us suppose that (2;
is a polyhedral domain and that there is a triangulation 77 o0 of {2/, where h® > 0 is the
(fixed) mesh size, that induces a triangulation on the surfaces Y. Fork =1,...,ngn
let us denote by II; the piecewise-polynomial function taking value 1 at the nodes
on one side of Y and 0 at all the other nodes (including those on the other side of

k). Notice that ITyr = 0 since 90X NI = (. Let us set 7r2 = gfr\aEIHk, where
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grad IT;, denotes the (L?(82r))3-extension of grad IT, computed in 27 \ . It follows
that 7r2 € Ho, r(curl, 2r) and that 7wy, ; = 7r2 + grad g, with g, € H&ﬁF(QI).
Any functionp; € H, 8’ r(curl; £21) can be thus written as

no

pr = grad§; + Z dr gy,
k=1

with &5 = r + Y80 erjwj 1+ Y025 drkgr and &5 € HY 1(92r) (see (4.17)).
For the finite element approximation we write (5.85) in the following equivalent
way
Find (E;, ¢1r,my) € H(curl; £21) X Hi’F(QI) x Crog .
E;xn;=—-Eg xng onl’
ff?z prtcurl E - curl z7
+ o, erzr - grad r + 3702 my . [ €177 - w0 =Li(z1)  (5.86)
ff?z /By -gradé; =0
Xl dry [o, erBr - ml =0

for all (Z],f],d]) € HO’F(CHI'I; Q]) X Hi,F(QI) x Cnroe s

where

L[(Z]) = 71‘(4}/ Je’]~ﬂ.
27

It is worth noting that grad ¢; + Y25 my ) = 0. This is easily verified by
choosing in (5.86) the test function

no

z; = grad ¢y + Z mr ETYy
k=1

and recalling that J.  satisfies (5.1) and (5.2).

We employ the Nédélec curl-conforming edge elements NV Ik ;, (see Section A.2)
to approximate the electric field and the piecewise-polynomial continuous functions
H }“ 5 (see (4.83)) to approximate the Lagrange multiplier ¢ ;. Let us also set

Y/, = NJp, 0 Ho p(curl; £27) .

We assume that a suitable finite element approximation of the tangential trace of the
electric field on the interface I" is known. Denoting it by E¢ j, X nc, we suppose that
EC,h X ng € Xp,h = {(Z]’h X n])‘p | Zi,n € NIk’h}
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The discrete problem reads
Find (Erp, ¢1.n, m}) € N, x Hf ), x Croo
Ernxnr=—-EcyXxnec onl
Jo, prtcurl Epp, - curlzry,
+ [, erzrn - grad o + Y202 miy [ erZig - m = Li(zrn)  (5.87)
f(h erErp -gradér, =0
S A1k [y €1 B = 0
forall (z7 1, &0, dr) € Y/, x Hfj, x Coe

Similarly to the result proved for problem (5.86), we can observe that grad ¢y +
noe . h (L 0
k=1 M7 Tk .
Our aim now is to apply the standard theory of mixed finite elements. For that, we
need to introduce the space Z ?}0 of functions zy j, € YI’fh such that

no
/ erzrn- |gradérn + Y digml| =0
27 k=1

for all (é.],h, d[) € H}c,h x Cnog,
The following result is the key point for the proof of well-posedness and conver-
gence of the finite element approximation scheme.

Lemma 5.17. Assuming that €1 is a scalar constant and that the triangulation 1t p, is
a refinement of the coarse triangulation It po, there exist positive constants C1, Co,
independent of h, such that

/ H;l curl ZI,h - Curlm 2 Cl ||Z17h||§—l(curl;f21) (588)
27

forallzy ), € Z?,o’ and

. Jo, erzrn - [grad &y + 30025 dp )]
21hEYE, |21l E (curt; 2r) (5.89)
> Co(€1.mll1,0, + |drl)
Sforall (&1.5,dr) € H}“’h x Cnoe,

Proof. The discrete inf—sup condition (5.89) is easily obtained by taking z;; =
grad&r p, + > 127 dr i) and using Lemma 5.2 (suitably adapted to the present situ-
ation).

In order to prove that (5.88) holds, we recall that from (A.12) any function in
(L?(£27))?, and in particular any function z; , € Z}', can be written as

no

Zrn = 5;1 curlqr + grad &7 + Z d1,k7r2 ,
k=1

where qr € Ho aq(curl; 21), &r € H) [(£2;) and 7)) = grad I,
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Let us set Uy := 5;1 curlqz. Since zg,;, € Ho r(curl; £27), we have Uy € Zp .
As already recalled, we know from Lemma 2.1 that the sesquilinear form a. r(-,-)
introduced in (5.84) is continuous and coercive in Zj o, i.e., there exists a positive
constant ¢; such that

/ u;l curl Uz - curl Uy > c|lUrl| meurts ;) -
21

Taking into account that curlz; ;, = curl Uy, to obtain (5.88) we have only to show
that there exists a constant c; > 0, independent of h, such that

|zr,nllo,2, < c2l|Urll H(ewnr) -

The procedure is similar to the one presented in the saddle-point approach for the E-
based formulation (see Section 4.6). Since £; is a scalar constant, from Lemma 4.33
we know that Z; o C (H'/?%%(£2;))? for some § > 0 small enough. Moreover
curl Uy g = curlzy g € (Pr._1)3, hence, by Lemma 4.32, the interpolant I7; , U
is well-defined.

Since ) € N Ik ;- this means that also IT; ,(grad &) is well-defined. We have

curl[I1; p(grad&;)] = 0in 2, IT7 p(gradér) x ny =0on I,

and f% IIr p(gradér) - dr =0 for all I'-independent non-bounding cycles -y,

k=1,...,np0. Hence Il p(grad{;) = grad{g,y, for some &1y, € H}“’h (see, e.g.,
Monk [179], Lemma 5.28).
Since zy, € Z

fQI EIZ]’h . zI,h = fQI EIZI,h . [H]’]—E_]+ gradm+ Z’Zi? mﬂ'g]
= fQI erzrn - I pUr,
hence
1Z1 1llo,.2; < C 1 nUrllo,e; < C(11,nUr — Ugllo,e, + |Urllo,2;) -

Since divU; = 0 in {2;, by combining Lemma 4.32 and Lemma 4.33 we find

177401 = Utllo.a, < ChY2(|Uglly245.0, + || curl Urllo.q,)
< C([[Urllo,; + [feurlUtllo,2,) ,

that concludes the proof. 0

Remark 5.18. For the electric boundary condition the strong problem reads

curl (p; ! curl Ef) = —iwd; in 2;
div(e;Er) =0 in £2;

E;xn=0 on 02

Jr,€rEr -0y =0 Vi=1,....pr (5.90)
f(ag)TvEIEI'IIZO vr:0,17...7p89

E; xn;=—-E¢z X ngo onl’,
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(which simplifies if the boundaries of {2 and {2 are connected, so thatpr = pg = 0),
while the weak problem is

Find (Er, ¢%) € Ho o0(curl; £27) x H!($2) :
E; xn;=—-Egc xXxng onl’
fQI u;l curl Ef - curlz7 + fQI ez - grad 3 = Ly(zg) (5.91)
fQI e/E;-grad&; =0
forall (z7,&F) € Ho(curl; 27) x HL(£27),
where H!(£2;) has been defined in (4.82).
The finite element approximation is given by
Find (Er 4, ¢5,) € X5, x HY, -
Ernxnr=-EcyXxnec onl
Ja, pytcurl By, - curlzry, + [o, €17y - grad ¢, = Li(z1,5) (5.92)
Jo, erErn - grada =0
for all (zI,h,f}‘,h) e )?}“h X ﬁ}“’h,

where X}“.h = th N Ho p0(curl; £27), )?}“h = th N Ho(curl; £27) and ﬁ}“h =
Ly, 0V H(02r).

" As for the magnetic boundary value problem, it is readily shown that one has o7 =
0in(5.91) and ¢7 ;, = 0in (5.92). O

Remark 5.19. Another algorithm for computing the finite element approximation of
the electric field E; is presented in Remark 6.12; it is based on a vector magnetic
potential formulation of the eddy current problem. ]
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Formulations via vector potentials

Motivated by the fact that the magnetic induction B = pH is divergence-free in (2, a
classical approach to the Maxwell equations and to eddy current problems is based on
the introduction of a vector magnetic potential A such that curl A = pH. Often, this
is also accompanied by the use of a scalar electric potential V¢ in the conductor 2¢,
satisfying iwA ¢ + grad Vo = —E¢ (see Silvester and Ferrari [227]; for the engineer-
ing literature, see, e.g., Chari et al. [79], Biddlecombe et al. [47], Morisue [180], Biré
and Preis [49]).

This approach opens up the problem of determining correct gauge conditions,
namely, some conditions ensuring the uniqueness of A and V. Although in principle
all that needs to be required is only that curl A and E< be uniquely determined, the
choice of suitable gauge conditions may also be necessary when considering numerical
approximation, in order to avoid that the discrete problem becomes singular.

Writing H = g~ ! curl A and Ec = —iwA ¢ — grad Vo one sees that the Faraday
equation in {2¢ is straightforwardly satisfied, whereas the Ampére law in {2 becomes
a second order partial differential equation for the vector potential A, thus leading to
a variational problem with a nice structure.

Since curl A is assigned, a natural gauge condition for A is to impose its diver-
gence. In early papers on this subject this choice was accompanied by the remark that
—AA = curlcurl A — graddiv A, so that for a constant magnetic permeability . the
Ampere equation reduces to a vector Poisson problem for A. However, at the vari-
ational level this is not a true advantage, as the boundary conditions for A remain
those associated to the first order curl-div system, that are different from the Dirichlet
condition, for which the entire vector A is assigned on 9f2. Therefore the variational
problem cannot be written in terms of a sesquilinear form like [, =, ; DizDiw;, but
it has to keep the structure [, (curlz - curl W + div z divw).

In Sections 6.1 and 6.2 we present two different gauge conditions for the approach
based on the vector magnetic potential: the Coulomb gauge and the Lorenz gauge. In
both cases, the divergence of A is required to satisfy a suitable equation. In Section 6.3
we conclude the chapter by describing some other vector potential formulations for
eddy current problems.

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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Although all these methods have been used in many engineering applications, up
to now their analysis has not been fully performed. In general, only uniqueness results
were presented (see, e.g., Biré and Preis [49]). Our aim here is to furnish a complete
theory concerning well-posedness of these formulations and convergence of their finite
element numerical approximations.

Concerning the material coefficients, in this chapter we will assume that the matrix
w is symmetric and uniformly positive definite in {2, with entries belonging to L°°({2),
the matrix €7 is symmetric and uniformly positive definite in {27, with entries belong-
ing to L>°({2;), and the matrix o is symmetric and uniformly positive definite in {2¢,
with entries belonging to L ({2¢), whereas it is vanishing in {2;.

The reader mainly interested in numerical approximation and implementation can
focus on problems (6.12) and (6.45) (magnetic boundary conditions for the (A, V)
formulation), on problems (6.32) and (6.47) (electric boundary condition for the
(A, Vi) formulation), on problem (6.50) (penalized E formulation), on problem (6.92)
((A, Vo) — 4y formulation), on problem (6.102) ((T¢, ¥¢) — ¢ formulation), on
problem (6.108) (T}, ¢¢) — A1 formulation) and on Section 6.1.4.

6.1 Formulation for the Coulomb gauge and its numerical
approximation

Let us suppose that {2, {2 and {2; satisfy the assumptions of Section 1.3, and, for the
sake of definiteness, let us consider the magnetic boundary value problem (1.22). As
usual the current density J. € (L?(£2))? is assumed to satisfy the necessary conditions
(1.23).

In this section, following Biré and Valli [54], we present and analyze the formula-
tion in which one looks for a magnetic vector potential A and a scalar electric potential
Ve such that

Ec = —iwAgc —gradVe , pH =curl A . 6.1)

Let us verify which equations in (3.25) are satisfied, and which instead have to
be imposed. We see at once that curlEc = —iwcurl A¢ = —iwp~He, and there-
fore (3.25)1, namely, the Faraday equation in {2¢, is satisfied. Moreover, uH is equal
to curl A in (2, therefore it is a solenoidal vector field in {2 and has a vanishing flux
through any closed surface in 2: hence equations (3.25)4, (3.25)5 and (3.25)g are sat-
isfied. We also know that from (6.1)5 the topological conditions (3.25)¢ are satisfied
(see Section 3.3.2).

Hence we have only to require that the Ampére equation is satisfied in {2, so that
(3.25)2, (3.25)3 and (3.25)9 are satisfied, and to impose the magnetic boundary condi-
tion (3.25)7.

However, if we want to devise a well-posed problem, this is not enough: in fact,
we also have to consider the fact that the introduction of the new additional unknown
Ve and the necessity of obtaining a unique vector potential A lead us to impose some
additional conditions, usually called gauge conditions. The most frequently used is the
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Coulomb gauge
divA =0 in (2,

with the boundary condition
A-n=0 on 0f2 .

In a general geometrical situation, even these additional conditions can be not
enough for determining a unique vector potential A in 2. In fact, there exist non-
trivial irrotational, solenoidal and tangential vector fields, namely, the elements of the
finite dimensional space of harmonic fields

H(m; Q) :={w € (L*(2))*| curlw = 0,divw = 0,w - n = 0 on 92} .

In Section 1.4 we have denoted by ny, the dimension of this vector space: it is
a topological invariant, the so-called first Betti number of the domain {2, namely,
the number of independent non-bounding cycles in {2 (see, e.g., Bossavit [59], Hipt-
mair [126], Gross and Kotiuga [115]). In particular, it is proved that in (2 there exist
ng, connected orientable Lipschitz surfaces ZA‘L with &3, C 82 and such that every
curl-free vector in {2 has a global potential in 2 := 2\ U, 5.

In other words, each surface ﬁ't, t=1,...,np, “cuts” a cycle on 9f?2 that is not
bounding a surface contained in (2. Let us note that the explicit construction of these
“cutting” surfaces in general topological situation is not a trivial task: some algorithms
have been proposed by Kotiuga [152], [153], [154], Leonard et al. [165], Gross and
Kotiuga [114], Ren [207].

In this context, we are in a position to make precise the additional conditions that we
have to impose in order to determine a unique vector potential A in {2. To achieve this,
first of all we need to introduce the family of ngy, “cuts” Y that are more precisely
defined in Section A.4. Then we require that the following geometrical condition is
satisfied.

It is assumed that ng, < ng. Moreover, the family of “cuts” i‘t

coincides with the family of “cuts” X} fort,k = 1,...,npq (in
particular, ﬁ‘t C 27 foreach t = 1,...,ny5), whereas i‘t N (6.2)
¢ # 0 foreach t = ngn + 1,...,ng. Finally, the “cuts” i‘t

are assumed to be disjointfort = 1,...,ngn.

Let us note that we do not know any example in which this assumption fails to hold;
on the other hand, we have not found a proof that it always holds.

When ngo = ng, this is telling us that we can choose the “cuts” in {2 associated
to the vector space H(m; {2) without intersecting {2¢ (see Figure 6.1). Conversely,
when ngn < ng some of the “cuts” have to intersect the conductor {2¢: for example,
this happens in Figure 6.2, where (2 and {2¢ are two coaxial tori (ngo = 0, np = 1),
and in Figure 6.3, where (2 is a double torus and (¢ is a torus, co-axial to one of the
two handles of {2 (ngo = 1, np = 2).

We are going to prove that the number of the needed additional conditions to be
imposed to the vector field A is nyy,. Let us temporarily formulate these conditions in
the abstract form

gk(A):O Vkil,...,nag,
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Fig. 6.1. The computational domain: the dark rectangle is the “cutting” surface =5

Fig. 6.2. The computational domain: the dark rectangle is the “cutting” surface p3N

Fig. 6.3. The computational domain: the dark rectangles are the “cutting” surfaces 1 =2
on the right, X2 on the left)
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where G;(-),t = 1,...,ng, are a suitable set of linear functionals that we will make
precise in the sequel (see (6.29) and (6.30)).
In conclusion, we are left with the problem

curl(ptcurl A) + iwo A + o grad Ve = J.  in §2

divA =0 in {2

Ge(A)=0 Vk=1,...,n90 (6.3)
A-n=0 on Jf2

(ptcurlA) xn=0 on 912 ,

where the notation o grad V¢ means

o grad Ve 1= { Siac gad Vo in flo

and clearly V(- is determined up to an additive constant in each connected component
Ncj0f2c,57=1,...,pr+1.

Problem (6.3) simplifies if ng, = 0: this is true, for instance, if the computational
domain (2 is simply-connected, an assumption that is not very restrictive in engineering
computations.

The necessity of introducing a gauge on the vector magnetic potential A leads to
the presence in (6.3) of the differential constraint div A = 0 in (2. Like the constraint
on the magnetic vector field curlH; = J. ; in {27, that appears in the eddy current
problem (1.22), this equation is not easy to treat at the discrete level, as it is not sim-
ple to construct a suitable space of finite elements which are divergence-free. In the
preceding Chapters 4 and 5 we have seen two different approaches to help us treat
differential constraints: the introduction of Lagrange multipliers in Chapter 4, and the
use of a scalar magnetic potential in Chapter 5.

Here we use a different idea: the addition of a penalization term. This can be done
as follows (see, e.g., Coulomb [91], Morisue [180], Biré and Preis [49]): introducing
the constant ;.. > 0, representing a suitable average in {2 of the entries of the matrix
u, the Coulomb gauge condition div A = 0 in {2 can be incorporated in the Ampere
equation, which becomes

curl(p™ curl A) — p; t graddiv A + iwo A + o grad Vo = J. in{2;
moreover one adds the two equations

div(iwocAc + o grad Vo) = div]. ¢ in 20
(iwocAc +ogradVe) ng=Jec - nec+Jer-ny onl,

being necessary as, due to the modification in the Ampere equation, it is no longer
guaranteed now that the electric field Ec = —iwA ¢ — grad V- satisfies the necessary

conditions div(cE¢) = —divJ.cin 2c and 0Ec -ng = —Je o -ne —Je 1 -0y
onl'.
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The complete (A, Vi) formulation is therefore

curl(p=tcurl A) — p;t graddiv A
+iwocA +ogradVo =J. in (2

div(iwoAc + o grad Vo) = divl. ¢ in 2¢

(iwocAc + ograd Vo) -ne (6.4)
=Jeoc-nc+Jer-ng onl" ’

gk(A):O Vkil,...,nag

A - n=0 on 012

(wlcurlA) xn=0 on (2,

where, as before, V- is determined up to an additive constant in each connected com-
ponent 2c j of 2c,j =1,...,pr + L.

In the next section, starting from (6.4), we obtain a suitable weak problem, which
is shown to be equivalent to (6.3). Hence it is not strictly necessary to prove that from
(6.4) we can recover (6.3). However, for the sake of completeness, here is the result:

Lemma 6.1. For any solution (A, V¢) to (6.4) one has div A = 0 in {2, therefore
(A, V) is indeed a solution to (6.3).

Proof. Taking the divergence of (6.4); and using (6.4); we have —AdivAc = 0in
{2¢. Moreover, recalling that the current density J. by assumption satisfies divJ,. ; =
0 in {2, one also obtains —Adiv A; = 0 in §2;. On the other hand, using (6.4)3, on
the interface I" we have

—p;tgraddivAc -ne = —Je 7 ny —curl(pg' curl Ac) - ne
’ ; i (6.5)
= —Jer-n;—div.[(ps curlAc) X n¢f
and also
—u; teraddivA; -n; = Jor-nr —curl(p;  curl Ar) -ng 66)

=Jer-n7 —div.[(pu; curl Af) x ng] .
Moreover, a solution to (6.4); satisfies on the interface I

(ug' curlAc) x ne + pyt divAc ne
+ (uyteurl Ar) xny + p;tdivArnr =0,

therefore, due to orthogonality,
(ual curl Ag) X ng + (u;lcurlAI) xny =0, divAg =divA;.
Hence from (6.5) and (6.6) we also have
graddivA¢c -ng +graddivA; -ny =0 onl .

This last condition and the matching of div A on I" furnish that div A is a harmonic
function in all of {2. Moreover, using (6.4)g, its Neumann value on the boundary 052
satisfies

—p; graddivA -n = J.r-n —curl(p~'curlA) - n
=Jer-n—div,[(ptcurlA) xn] =0,
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as by assumption the current density satisfies J. ; - n = 0 on 9f2. As a consequence,
we find that div A is a constant ¢ in (2, and finally

comeas(Q):/divA: A-n=0,
o) EJe)

having used (6.4)5. O

In conclusion, we have proved that any solution to (6.4) yields a solution to (6.3),
and consequently, by virtue of (6.1), it is the solution to the eddy current problem
(3.25).

Remark 6.2. Tt is worth noting that, after having solved the Coulomb gauged problem
(6.3), hence having determined A and Vi from the data of the problem, we are also in
a condition to find the electric field E; in §27.

In fact first we solve the mixed boundary value problem

—div(ey grad VIT) =iwdiv(efAr) inf2;

VIJr =V onl (6.7)
e;gradVIT~n:fz‘we[A1~n ondf? .
Then we determine the vector (c}j, d}k),j =1,....,pr,k=1,...,n50, the solution
of the linear system ' '
At ch B fQI er(iwAj + grad VIT) ~gradwg,
T : T ) (6.83)
dy k Jo, er(iwAr + grad Vi) - m; 1

: : Dt BfY\ .
g=1,....,pr.i=1,...,n50, where, as in (A.19), AT := ( (BT)T ot ) with
DTj = fQI ergradw;j 1 - gradwg 1
Bik = fQI ermi,r - gradwg (6.9)
Cle = Jo, €rmi ™1,

and the harmonic vector fields grad w; ; and 7, ; are the basis functions of the space
He, (I, 082; £21) introduced in Section 1.4.

It is easily proved that the matrix A is symmetric and positive definite, as the
matrix €;(x) is symmetric and positive definite, uniformly with respect to x, and the
functions 7y, ; and grad w; r are linearly independent.

Then, defining h} := pulll c},j gradw; 1 + > 129 d},kﬂ‘k,] and
E; = —iwAj — gradVIJr + h},

taking into account (6.1) it is easily checked that curlE; = —iwp;Hy in (2,
diV(E]E]) =0in Q],

E;r xny = —iwA; xny fgradVIJr X Ny
=iwAc Xng+gradVo xng = —-E¢ Xng onl,
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etEr-n=00n91, [, e/B; -n; = fs’h erEr-gradwyr =0forallg=1,...,pr
and ff?z erEr-m; 1 =0foralli =1,...,npn, therefore E; is the electric field in 27
(see (3.13)). O

6.1.1 The weak formulation

We are now interested in finding a suitable weak formulation of (6.4).
First of all, taking a test function w € H (curl; £2)N Ho(div; £2), multiplying (6.4),
by W and integrating in {2, we obtain by integration by parts

Jo(p teurl A - curlw + p;t div A divw)
+ fnc(iwo‘AC -Wo + o grad Vo - wg)
-

where we have used (6.4)g. L
Let us now multiply (6.4) by iw™'Qc, where Qc € H'(£2¢), and integrate in
{2¢: by integration by parts we find

ch (—oAc - grad Q¢ + iw to grad Vo - grad Qc)

. - . — 6.10
:ZW71 fQC Je,C'gradQC+ZW71 pre,I'nIQC'a ( )
having used (6.4)s.
Introducing the sesquilinear form
A[(Z, UC)7 (W, QC)]
= [o(p~teurlz - curl w + p; ' divz divw)
+fQC(iwa'zc~w—c+a'gradUC~w—C) 611
+ fgc(fo'zc -grad Q¢ + iw o grad U - grad Qc) (6.11)
= [o(pteurlz - curl W + pu;t divz divw) o
+iw ™! Joo oliwze + gradUc) - (—iwWe + grad Qc)
we have finally rewritten (6.4) as
Find (A, Vi) € Wy x H} (£2¢) such that
A[(A, Vo), (W, Qc)] :fQJe'W _ (6.12)
+iw! fQCJe,C~gradQc+iw’1 Jpder -nrQc )
forall (w,Qc) € Wy x H;(QC) ,
where
Wy :={w € H/(curl; £2) N Hy(div; £2) | 6.13)
gk(W):OVkil,...,nag}, ’
and

pr+1
Hi(92c) = [[ H'(%2,)/C. (6.14)
j=1
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Before starting the proof that the weak problem (6.12) has a unique solution (for
that, see Section 6.1.2), it is useful to show that a solution to (6.12) is indeed a solution
to (6.3).

Let us first introduce a couple of assumptions on the linear functional G;. The first
one reads

For w,,, € H(m; (2), the conditions G;(w,,) = 0 for each ¢ =
. . (6.15)
1,...,np give w,,, = 0in 2.

The second one requires some preliminaries: we recall that a set of basis functions
of H(m; £2) is givenby 7y, t = 1,..., nq, the (L*(£2))?-extension of grad g;, where
s, defined in 2\ Xy, is the real-valued function, determined up to an additive constant,
solution of

Ag =0 in2\ %,

gradg; -m=20 onﬁﬂ\ﬁﬁt 6.16)
[gradg; -nxlg =0 '
[(jt]fjt =1 ;

having denoted by [ -] 5, the jump across the surface 5 (see, e.g., Foias and Temam
[106]; see also Section A.4). Moreover, when (6.15) is satisfied we can introduce the
real-valued vector functions 7),, the basis functions of the space H(m; (2) such that
Gq(ny) = 0tq (the Kronecker symbol).

The second assumption on the functionals G, is given by

The basis 1, associated to the linear functionals G, (-) can be ex-
pressed in terms of the basis 7, by means of a matrix {3},
t,q = 1,...,ngp, such that its principal minor for t,q
non +1,...,ng is non-singular.

(6.17)

At the end of this section we present some possible choices of the functionals G,
satisfying these conditions.

Theorem 6.3. Let J. € (L?(§2))? satisfy the necessary conditions (1.23). If ngg > 0,
assume that the geometrical condition (6.2) is verified and that the linear functionals
G satisfy the conditions (6.15) and (6.17) (this last one when 0 < npq < ng). Then
any solution to the weak problem (6.12) is a solution to the strong problem (6.3).

Proof. Let us first prove that a solution to (6.12) satisfies

A[(Av VC)? (W, QC)] = fQ Je W

+iw ™ [ Jec-gradQe +iw ! [ Jer-nr Qe (6.18)

also for any test function (w, Q¢) such that w € H (curl; £2) N Ho(div; £2) and Q¢ €
H'(£¢), namely, without any additional constraint.

First of all, equation (6.12) does not change if we add to ()¢ a different constant
in each connected component {2¢ ; of {2¢. In fact, we know that f r; Je,r-ny = 0for

eachj =1,...,ppr, and moreover divJ. ; = 0in {2; and J. ; - n = 0 on 0{2, so that
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fp_ Jer-ny =0forj = pr+ 1, too. Hence a solution (A, Vi) of (6.12) satisfies the

integral equation not only for every Q¢ € H. ﬁl (£2¢) butalso for each Q¢ € H(2¢).
As a consequence, taking w = 0 a first general result is that any solution to (6.12)
satisfies

{ div(iwoAc + o grad Vo) = divd. ¢ in 2¢ 6.19)

(iwocAc +ogradVe) ng=Jec-nec+Jer-ny onl.

Setting
7o —iwoAc —ogradVeo +J.c inf2c
T Je’[ in Q[ ’

the assumptions divJd. ; = 0in 2y and J, ;-n = 0 on 0f? are telling us thatdivJ = 0
inf2and J -n = 0on Jf2.

In the case ng, = 0 we have finished the proof that (6.18) is satisfied for any
w € H(curl; 2) N Hy(div; 2) and Q¢ € H'(2¢). Instead, if npo > 0 we need
additional informations.

Due to assumption (6.15), for any w € H(curl; £2) N Ho(div; £2) we can define
by w,,, the harmonic field in H(m; §2) satisfying G,(w.,,,) = G;(w) for each ¢ =
1,...,ng. Clearly, the difference w — w,, belongs to W;. Hence

A[(A7 VC)7 (waQC)]
= A[(A> VC)> (W — W, QC)] + A[(A> VC)a(_Wma 0)]
= [pde (W—Wy) +iw! ch JecgradQc

+iw™ [ Jer nrQc + ch (iwocAc + o grad Vo) - W0 (6.20)
= [, de- W+ w1t ch Jec-gradQc
+iw*1 pre,I'nIQC — fQJ “ Wi, -
Therefore, the only result that remains to be proved is
/J.Wzo, (6.21)
Q
or, equivalently, that
/J~ﬁ't:0 Vi=1,...,n0, (6.22)
Q

where 7r; are the basis function of H(m; {2) introduced in (6.16).
We have not yet used the assumptions

/ Je,I'ﬂ'k,[:O Vk=1,...,n00,
2r

where 7y, 1 are basis functions of the space Hc, (I, 962; {21) that are not gradients.
Similarly to what was done for the basis functions 7r; in (6.16) (see also Section A.4), it
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is possible to express 7y, s as the (L?(£2;))3-extension of grad gy ;, where gy 1, defined
in £2; \ X}, is the real-valued function solution of (A.32), namely,

div(ergradqi,1) =0 in 27 \ Xy
ergradgy r-ny =0 on 002\ Xy
a1 =0 onl’

[EI gradgy,r-nx)s, =0

lqr1)s, =1,

having denoted by [ - ], the jump across the surface X,. Therefore, since divJ. ; = 0
in 2; and J. ; - n = 0 on 02, we have

0= fQI Jer - Tp1 = fQI\Ek Jer-grad g s
== Jonz @WivIenanr + [o0 o5, Jed - D1 k1
+ fzk Je.r -0y [qr.1] 5,
= fEk Je’] Ny .

On the other hand, proceeding in the same way and recalling that divJ = 0 in §2,
J-n = 0on J{2 and that from assumption (6.2) fork = 1,..., ngy the “cuts” X are
coincident with Y, we find that

OszkJe,an:fEk‘Tng

- 6.23
:ff,‘k‘]nfj:fn‘]ﬂ'k Vk:].,...,nan, ( )

This result ends the proof in the case 0 < ngpn = ng. On the other hand, if
0 < nan < ng itis easily seen that the basis functions 7, introduced in (6.17) satisfy
1, € Wy fort =ngo +1,...,ng. Using these test functions (and Q¢ = 0) in (6.12)
we find

/J~T]t:0 Vt=ngo+1,...,n0. (6.24)
Q
We can write the basis 77, in terms of the basis 7,
no
N = Zﬂtqfrq :
q=1

Hence, using (6.23) and (6.24), fort = ngo + 1,...,ngp one has

O:/J T]t—Zﬂtq/J~ﬂ‘q— > 6tq/QJ~7i'q. (6.25)

As a consequence, from (6.23), (6.25) and condition (6.17) it follows that (6.22) holds,
and we have finally proved that any solution to (6.12) indeed satisfies equation (6.18)
for any test function (w, Q¢) such that w € H(curl; £2) N Hy(div; 2) and Q¢ €
HY(02¢).

Now an additional step is to prove that any solution to (6.12) satisfies div A = O in
2. In fact, let us denote by n € H*(§2)/C the solution of the Neumann problem An =
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div A in 2 and gradn-n = 0 on 2. Clearly w = gradn € H (curl; £2) N Hy(div; £2),
and nc € H'(£2¢). Using w and —iwnc as test functions in (6.18) gives

pot fQ|divA|2 = fQJe~gradﬁ—fQC Jec-gradfe — [ Jer-n7c
= fs’h Jer-grad7y — fFJe,I ‘nrnec =0,
as L . . _
fQI Je,r-gradmy = —fQI(dlee,I) nr+ f(rmup Jer-nrnr
= [pJer-nr7E,
hence divA = 0in (2.

We have thus proved that a solution (A, V) to problem (6.12) satisfies div A = 0
in {2,

Jou teurl A - curlw+ fnc(iwaAC -Wo + o grad Ve - W¢)

3w (6.26)
= [, Je

forall w € H (curl; £2) N Hy(div; £2), and
ch (iwoAc - grad Qc + o grad Vi - grad Q) 627)

= Jo.dec-gradQc + [ e nr Qo

for each Qc € H'(f2¢). Indeed, we can prove something more: namely, equation
(6.26) is satisfied for any function w* € H (curl; £2). In fact, take the solution n* €
H'(£2)/C of An* = divw* in §2 and grad n* - n = w* - n on 942. Using in (6.26) the
test functionw = (w* — gradn*) € H (curl; £2) N Hy(div; £2), we have

Jou teurl A cull W™ + [, (iwoAc - wg + o grad Ve - wi,)
= /o u’lcurlA~cuer+_fQC(iwa'AC ~w—c+igradVC “Wo)
+ ch (iwo Ac - grad nf, +ograd Ve - gradn_é)
= fQJe ~W+fnc Je,c~grad772+fp.]e,1~n1né,

(6.28)

having used (6.27). Since

fQJe . gradF = fQC Je,C . grad@+ fQI Je,I . grad_n_? .
= ch Je,o grad@f fQI (diVJe,IM? + JoqurJer - m1]
= fQC Je,o-gradni + [ Jer-nrng,

the right hand side in (6.28) is [, J. - w*.
Taking now in (6.26) a test function w* € (C§°(£2))3, by integration by parts we
find at once that

curl(p ' curl A) + iwoA +ogradVo =J,. in 0.

Repeating the same argument for w* € H (curl; £2) gives (u~'curl A) x n = 0 on
of2.

Therefore we have concluded our proof: any solution (A, V=) of the weak problem
(6.12) is a solution of the strong problem (6.3). O
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Let us finish this section by showing some examples of choices of the linear func-
tionals G; () for which conditions (6.15) and (6.17) are satisfied.

e Casel:npn=0

This is the simplest case: no constraint has to be imposed in (6.4) (or, equivalently,
we are working in the space H (curl; £2) N Hy(div; £2)), and no condition has to be
verified.

A geometrical example of this situation is the case in which (2 is a ball-like set
(non = 0,no = 0),or {2 and {2¢ two co-axial tori (ng; = 0,npn = 1: see Figure 6.2).

o Case2:0<ngn=ng
Also this case is simple: in fact, we claim that condition (6.15) is satisfied with
anyone of the following choices

gk(w): W 1Ny ; gk /W ﬂ‘k, gk /W !pk (629)

Xk

Here W, is the (L2(2))3-extension of gradi);, where 1 is any (continuous and
piecewise-regular) real-valued function, multivalued on i‘k that satisfies [z/}k] 5, = 1
(for instance, one can take the finite element Lagrange interpolant having 0 value ev-
erywhere, except at the nodes on i‘k where it has the double value O and 1).

Using the fact that both 7rj, and W, are the extensions of the gradient of a function
having jump equal to 1 on . itis easily seen that, for a divergence-free and tangential
vector field w, the three functionals above are the same, and for all of them the set of
constraints G (w) = 0 express the orthogonality of w to H(m; §2). Condition (6.15)
is thus satisfied.

Let us note that the solution A to (6.12) is the same for any choice of G (+) in (6.29)
(asitis a divergence-free and tangential vector field). The only difference will be, when
approximating the solution by means of finite elements, the algebraic structure of the
stiffness matrix associated to (6.12). In this respect, it can be also noted that the choice
Gr(w) = f oW 7} is not suitable for numerical approximation, as the basis functions
7}, are not explicitly available: in the discrete case it is thus better to focus on one of
the two other alternatives.

A geometrical example of this situation is the case in which (2 is a torus and 2¢
is either a ball-like set or a torus, but with a different axis (ngp, = 1, np = 1: see
Figure 6.1).

e Case3:0<ngn <ng
Also in this case we propose the following three alternative choices of the linear
functionals G; (), t = 1,...,ng

Gi(w) =  wW-ny; Ge(w /W 75 Ge(w /W !Pt. (6.30)
P

Proceeding as in the case before, we easily verify that (6.15) holds. To show that
(6.17) is satisfied, let us introduce the matrix {74} given by v4 := fQ Tty - 7, and
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denote by {0qt} its inverse matrix. Since, as we already noted, the functionals above
are the same for a divergence-free and tangential vector field, we can always write
Yqt = gt(ﬁ'q)

We can now easily check that

no
= Z‘gtpﬁ'p :
p=1
In fact,
no ngo no
Gq ( Z 9tp7A"p) = Z O1pGq(Tp) = Z Otp¥pg = Otq -
p=1 p=1 p=1

Therefore, the matrix {3} appearing in condition (6.17) is given by {6;,}. Since
{"tq} is symmetric and positive definite, the same holds for the inverse matrix {64},
and also for all the principal minors of it. Condition (6.17) is thus satisfied.

A geometrical example of this situation is the case in which (2 is a double torus
and (2¢ is a torus, co-axial to one of the two handles of {2 (ngn = 1, no = 2: see
Figure 6.3).

Remark 6.4. Let us also present, without giving further details, the strong and weak
vector potential formulations for the eddy current problem subject to the electric
boundary condition (1.5).

The strong formulation reads

curl(u=tcurl A) — p; ! graddiv A
+iwocA +ogradVo =J. in (2

div(iwoAc + o grad Vo) = div. ¢ in ¢

(iwocAc + ogradVe) - ne 6.31)
=Jec nec+Jer-ng onl’ ’

f(fm),,A'n:O Vr=1,...,ps0

divA =0 on 012

Axn=0 on 0f2 ,

having already inserted in the first equation the penalization term assuring that div A =
01in 2. It can be noted that, if the vector field A satisfies div A = 0in {2, the conditions
f(amr A-n=0,r=1,...,pan, are equivalent to the orthogonality to the space of
harmonic fields

Hie; 2) := {w € (L*(2))?| curlw = 0,divw = 0,w x n = 0 on 982} ;

in fact, a basis for this space is given by grad Z,., r = 1,...,psn, Where Z, is the
solution to
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Note also that problem (6.31) simplifies if ps; = 0: namely, if the computational
domain 2 has a connected boundary, which is very often the case in engineering prob-
lems.

The weak formulation is given by

Find (A, Vo) € W) x H/(£2c) such that
A[(Av VC)v (W, QC)] = fQ Jeo-w

+iw™?! f(zc Jeo-gradQc + iw! fr Jer-nQc (32
forall (w, Qc) € Wy x H}($2¢)
where
Wi = {w € Ho(curl; 2) N H(div; 22) | (6.33)

f(89)7vA~n:0Vr:1,...,pag}.

In comparison with the magnetic boundary value problem this case is simpler to
treat, as we do not need to distinguish between different geometrical configurations.
O

6.1.2 Existence and uniqueness of the solution to the weak formulation

The proof of existence and uniqueness is different in the three cases considered at the
end of Section 6.1.1. Let us recall that here and in the sequel we assume that (6.2) is
satisfied and the functionals G, (+) are as in (6.29) or (6.30).

e Casengn =ng (Case 2 and Case 1 withng = 0)

In these cases, the existence and uniqueness result derives from the Lax—Milgram
lemma. Since the sesquilinear form A[-, -] is clearly continuous in Wy x H}(2¢),
we have only to check that the right hand side in (6.12) is a continuous (antilinear)
functional in Wy x Hj(£2c) and that A[-, ] is coercive in Wy x H(£2c), namely,
that there exists a constant o > 0 such that for each (w, Q) € Wy x H'(2¢) with
ch’j Qcioc,; =0,j=1,...,pr +1,itholds

IAl(w, Qc), (W, Qc)]| > no(f9(|w|2 + | curl w? + | divw|?)

(6.34)
+ oo (1Qcf* + | grad Qo2))

On the right hand side of (6.12) the only term to check is the third one. We have

“FJeJ'IlI@' < CilJe,r ngl—12.r|1Qclli/2,r (6.35)
< C2|Jexllo, e lQcll o0

having used the trace theorems from H (div; £2;) onto H~'/2(I") and from H'(£2¢)
onto H'/2(I") (see (A.9) and (A.8), respectively).
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Concerning (6.34), we have

Al(w, Qo), (w, Qo)
= [t curl w - curl W + it divw|?) (6.36)
+iw ™! [, o(iwwe + grad Qc) - (—iwWe + grad Q) -

Given a pair of real numbers @ and b, for each 0 < § < 1 there holds
|2ab| < §a” + 5 1b%;
hence one has

w1 ch o(iwwe + grad Q¢ ) - (—iwwe + grad Q¢)
> [w| " omin [ [l grad Qc* + w?|wel?
+2Re(iwwe - grad Q¢ )] (6.37)
> |W|710min(1 —9) fQC | gradQC|2
—|wlomin(1 = 8)0~" [, wel?,

where o ;, is a uniform lower bound in {2¢ for the minimum eigenvalues of o (x).

Using the Poincaré inequality (see, for instance, Dautray and Lions [94], Chap. IV,
Sect. 7, Prop. 2), one can conclude that there exists a constant X; > 0 such that for
each Q¢ € H'(2¢) with [, | , Qclac, = 0 wehave

ch |grad Qc|? = pFH ch gradQcmcﬂ2
> K ST, (endQein, P 4 Qe ) ©39)
=K ch |gradQC|2 +1Qc)?) -

Moreover, and this is the point in which Case 2 (or Case 1 with 0 = ngo = ng)
differs from the other cases, there exists a constant K5 > 0 such that for any function
w € W; one has the Poincaré-like inequality

fn(u’lcurlw curlw + p | divw|?)
> [ (fmas | curl w|? + 71| divw|?) (6.39)
> K [,(|curlw|? + [ divw|? + |w|?) ,

where [ty is a uniformupper bound in {2 for the maximum eigenvalues of p(x) (see,
for instance, Girault and Raviart [111], Chap. I, Lemma 3.6; the proof can be easily
extended to the present geometrical situation, by proceeding as in Alonso and Valli [6],
Lemma 3.3, and noting that, for a divergence-free and tangential vector field and for
G(+) defined as in (6.29), the conditions Gi(w) = 0 fork = 1,...,ngp = ng, are
equivalent to the orthogonality to H(m; £2)).

Choosing (1 — ) so small that |w|omin (1 — ) < K24, from (6.36)—(6.39) we find
at once (6.34).
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o Casengn < ng (Case 3 and Case 1 withng > 0)

In this case coerciveness of A[-,-] in Wy x Hﬁl(QC) is questionable, as we
do not know if estimate (6.39) holds (the conditions Gi(w) = 0 for k& =
1,...,npq are not equivalent to the orthogonality to H(m; {2)). However, we find

that A[(w, Qc), (W, Qc)] = 0 for (w,Qc) € Wy x Hﬁl(QC) implies w = 0 and
Q¢ = 0, or, in other words, that

|A[(W, QC)7 (W, QC)” >0

for (w, Qc) € Wy x Hﬁl(QC) (w,Qc) # (0,0).

This can be achieved as follows: assuming that A[(w, Q¢), (w, Q¢)] = 0, from
(6.11) we have that curlw = 0 and divw = 0 in {2, and iww¢e + grad Q¢ = 0 in
£2¢. Therefore w € H(m; {2) and we can express it in terms of the basis functions of
H(m; 2), say, w = >_'° a7y In particular, in 2c we have wo = > 1'% o =
iw™! grad Qc, and taking the line integral along the non-bounding cycle contained in

¢ and associated to the “cutting” surface Y, ¢ = ngo + 1, ..., ngo, we find that the
coefficient o4 is vanishing for ¢ = noo +1,...,ng.

Moreover, taking into account the definition of G;(-) in (6.30) and the relation
Gr(w)=0fork =1,...,n90, we also have

no

ne
0= gk(w) = Zatgk(ﬁ't) = ZOéi"}/ki ,k=1,...,ns0 .
t=1 i=1

Since the matrix {Gq(7;)} = {v¢q} is symmetric and positive definite, the same holds
for its principal minor {~k;}, k,i = 1, ..., napq, therefore it follows «; = 0 for each
1=1,...,n90. In conclusion, w = 0 in {2 and consequently grad Q¢ = 0 in {2¢.

This concludes the proof of the uniqueness of the solution. Its existence can be
demonstrated as follows. For the sake of definiteness, the reader can refer to the geo-
metric situation illustrated in Figure 6.4.

We employ a procedure that will be used in Section 6.2.2 for showing the well-
posedness of the formulation based on the Lorenz gauge. We start from the electric
field E and the magnetic field H, the solutions of the eddy current problem we know

B L

Fig. 6.4. A computational domain for which npge =1, ne =2, ng, =4

L .
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to exist, and we first solve

divA =0 in 2 (6.40)

{curlAuH in 2
A-n=0 on 02 .

Since {2 is not simply-connected, this solution is not unique. However, for each choice
of A one has that E 4 iwA is curl-free in {2. Denote by Psc- B =1,...,n0., the
basis functions of the space of harmonic fields

H(m; 2c) = {zc € (L*(2¢))?| curlze = 0,divzce = 0,
zc -ng=0onI},

We know that ng,, is the first Betti number of {2, namely, the number of independent
non-bounding cycles in {2¢.
Proceeding as in Theorem A.8 we can write in 2¢

’nQC

Ec +iwAc = grad x& + Z 0C.5P5.0 5
B=1

where 0, ; represent the line integrals of E¢ + iwA ¢ along the non-bounding cycles
75 of L2¢.

Among the independent non-bounding cycles of {2¢ there are those that are non-
bounding cycles also in {2 and those that are the boundary of a surface contained in {2
(in Figure 6.4 the number of the cycles in the first group is 2, the number of the cycles
in the second group is 2). For the latter set we clearly have 67, ; = 0, as E + iwA
is curl-free in 2. The former set can be subdivided between those cycles that form
an independent set of non-bounding cycles in (2, and the remaining ones; the number
of the non-bounding cycles of {2¢ that are independent non-bounding cycles in {2 is
ngo — nggo (in Figure 6.4 this number is 1).

We impose that 0, ; = 0 for all the indices (3 corresponding to these non-bounding
cycles of £2¢ that form an independent set of non-bounding cycles in {2. We are thus
imposing no — npg conditions, and these conditions ensure that 92’ 5 = 0 for all
B8 =1,...,n0,:infact, if we take an index 3 not belonging to the set of indices related
to the non-bounding cycles independent in 2, it is associated either to a bounding cycle
of {2 or to a non-bounding cycle of {2 that is dependent on the cycles for which the
circulation vanishes. As an example, in Figure 6.4 the non-bounding cycles in {2¢ are
4, those that are non-bounding also in {2 are 2, but in {2 they are dependent: hence we
set 0, 5 = 0 only for one of them.

In conclusion, having shown that ¢, 5 = 0 forall 3 =1,...,ng., we see that in
2c the field E¢ + iwA is the gradient of some potential, say x¢, = —V¢.

We have not yet indicated how to select a unique solution A to (6.40). Applying
Theorem A.8 in the domain (2, we know that a solution of problem (6.40) has the form

non nao
iwA = —E + gradd + Z QR + Z Tt

k=1 t=npo+1
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and @ is uniquely determined by E. Moreover, oy, t = ngo + 1, ..., ng, are the line
integrals of «wA + E along the non-bounding cycles of {2 that are also non-bounding
cycles in {2¢, hence they are the quantities 07, ; we have imposed to vanish. We thus
finish requiring that
gi(A):O Viil,...,nag,

and from these conditions the coefficients oy, are uniquely determined for all k =
1, o0

The potentials A and V> we have constructed are clearly the solutions to problem
(6.3), hence to the weak problem (6.12).

Remark 6.5. Tt should be noted that, even if the constraints Gp(A) = 0 for k =
1,...,nag are not imposed, from A[(A, Vi), (A, V)] = 0 and (6.11) we always ob-
tain A € H(m; 2) and iwA ¢ +grad Vo = 0in ¢. Therefore, H = = curl A = 0
in 2 and E¢c = —iwA¢ — grad Vo = 0 in {2¢, and the uniqueness of the magnetic
and electric fields is in any case verified.

In other words, the constraints G, (A) = 0 seem not to play any role in determining
the right physical solution. This is true, but, since they are needed for well-posedness,
they can have a role in the efficiency of the numerical algorithm used for approxima-
tion.

Indeed, as reported in Remark 6.8, it will be clear that for the finite element approx-
imation well-posedness is satisfied even without imposing these constraints. However,
the numerical computations presented in Section 6.1.4 are showing that in fact the ef-
ficiency of the numerical algorithm is better when the constraints are satisfied. 0

6.1.3 Numerical approximation

In this section we present the finite element numerical approximation of problem
(6.12). It is naturally based on nodal finite elements, as imposing matching conditions
on the interelements for both A x n and A - n is equivalent to requiring the continuity
of the whole vector A.

In the sequel we assume that {2, {2 and (2; are Lipschitz polyhedra, and that 77 5,
and 7¢ j, are two regular families of triangulations of {2; and {2, respectively. For the
sake of simplicity, we suppose that each element K of 77 ;, and 7¢ , is a tetrahedron;
however, the results below also hold for hexahedral elements (and for second order
hexahedral “serendipity” elements). We also assume that these triangulations match
on I, so that they furnish a family of triangulations 7}, of {2.

Let Py, £ > 1, be the space of polynomials of degree less than or equal to k. For
r > 1and s > 1 we introduce the discrete spaces of Lagrange nodal elements defined
as

Wi = {wn € (C°(2))° | wyii € (P,)° VK € T,

wp, -n = 0on 0}, 6:41)

and
Ly = {Qcn € C°(2c) | Qonk €PV K € Ton}, (6.42)

and we employ
(Wi =W, nWy (6.43)
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(Lgn)s := L, N HY (2¢), (6.44)

hence we are considering a conforming finite element approximation.
The discrete problem is given by
Find (A, Vo) € (Wy)g x (L ),)y such that
Al(An, Vo), (Wh, Qon)l = [ode - Wn
+iw! ch Jeo-gadQeon +iw™! [ Jer -n1 Qe
forall (wn, Qc,n) € (Wi)g x (Lgp, )t -

(6.45)

Here below we establish the well-posedness of this discrete problem and investi-
gate the convergence of the discrete solution to the exact solution.

e Casengn = ng (Case 2 and Case 1 withng = 0)

Since the sesquilinear form A[-, -] is continuous and coercive, we have that the
discrete solution exists and is unique; moreover, via Céa lemma for each wy, € (Wff )ﬁ
and Q¢ € (LE )4 we have

ro( Jo(1A = A2+ curl(A = A2 + | div(A — Ap)?)

1/2
+ ch | grad(Ve — VC,h)|2)

< Co( Jo (1A = wal? + [curl(A — w) [ + | div(A —wy,)[?)

) 1/2
+ [ | rad(Ve = Qen)?)

where Cp > 0 is the continuity constant of A[-, -].

Therefore, at least when the constraints are expressed by the relations G, (w) =
I s, W-ny = 0, and provided that the solutions A and V¢ are regular enough, by
means of well-known interpolation results it is possible to find the error estimate

(follA — Anf> + [curl(A = AP + [ div(A — Ap)[2)

1/2
+ Jo | erad(Vo — Vo) 2) (6:46)
< Chmin(r,s) )

In fact, in (6.12) and in (6.45) we can take Q¢ € L¢ ;,, thus we can choose as
Q¢ the interpolant of V. Instead, the interpolant I, A of A cannot be selected as
wy,, as this test function has to satisfy the constraints Gi(w,) = 0 for each k =
1,...,n50. Then one proceeds in the following way: since in (6.2) we have assumed
that for £ = 1,...,ngpn the surfaces X are disjoint, one can easily find a set of
discrete functions vy, (defined on a fixed coarse mesh 770) such that G;(vi) = dix
(the Kronecker symbol). Choosing the triangulation 7}, as a refinement of 750 and
wy = I, A =37, Gi(InA)vy, one clearly finds G;(wy,) = Oforeachi = 1,...,np0,
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and moreover

[A —=wnllw = [[A—-T,A+ >, Ge(InA)villw
<A =ThAllw + > _p G A) Vi — Gr(A)vi||w
<A = ThAllw + > [Gr(A — I A) || vi|lw
<A =IxAllw + Ok IGkllcovo) [Vilw) A = T Allw ,

having denoted by || - ||y the norm in H (curl; £2) N H (div; £2) and by || - || z(wc) the
norm of a linear functional from W to C.

Remark 6.6. Concerning this convergence result, it has to be noted that the regularity
of A is not ensured if {2 has reentrant corners or edges, namely, if it is a non-convex
polyhedron (see Costabel and Dauge [87], Costabel et al. [90]). More important, in
that case the space H1(£2) := (H'(£2))3 N Ho(div; {2) turns out to be a proper closed
subspace of H (curl; 2) N Ho(div; £2) (H1(§2) and H (curl; £2) N Ho(div; £2) coincide
if and only if {2 is convex). Hence the nodal finite element approximate solution A}, €
W} C H}(£2) cannot approach an exact solution A € H (curl; £2) N Ho(div; £2) with
A ¢ H!(£2), and convergence in H (curl; £2) N H(div; 2) is lost: this is a general
problem for the nodal finite element approximation of Maxwell equations.

However, the result we have proved here above ensures that for the Coulomb
gauged vector potential formulation of the eddy current problem the nodal finite el-
ement approximation is convergent either if the solution is regular (and this informa-
tion could be available even for a non-convex polyhedron (2) or if the domain {2 is a
convex polyhedron, as in this case the space of smooth tangential vector fields is dense
in H1(2) = H(curl; 2) N Hy(div; £2), and one can apply Céa lemma in the standard
way.

Let us also note that the assumption that {2 is convex is not a severe restriction,
as in most real-life applications 042 arises from a somehow arbitrary truncation of the
whole space. Hence, reentrant corners and edges of {2 can be easily avoided. g

Remark 6.7. Tt is worth noting that a cure for the lack of convergence of nodal finite
element approximations in the presence of re-entrant corners and edges has been pro-
posed by Costabel and Dauge [88]. They introduce a special weight in the grad div
penalization term, thus making it possible to use standard nodal finite elements in a
numerically efficient way. ]

o Casenpn < ng (Case 3 and Case I withng > 0)

In this case, we limit ourselves to the proof of the existence and uniqueness of the
solution, without providing an error estimate. Since the problem is finite dimensional,
the proof of uniqueness is enough.

Thus, let us consider a solution (Ay, Ve p,) to (6.45) with a vanishing right hand
side. As in the infinite dimensional case, from (6.11) we find that A}, € H(m; {2) and
’iWAh‘QC +grad Vg j, = 01in 2¢.

Since the harmonic fields in H(m; £2) are C> vector functions in {2, we deduce
that the piecewise-polynomial A}, is indeed a global polynomial (P,.)? in 2. Conse-
quently, curl Ay, is a global polynomial (P,_1)? in 2, and there it is vanishing. Thus
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we have curl A, = 0in R3, and A;, = grad U in R®. In particular, A;, = grad Ua
in £2, and the conditions divA; = 0in {2 and A - n = 0 on Of? tell us that Uyg is
a harmonic function with vanishing normal derivative on the boundary, therefore is a
constant. In conclusion, Ay, = 0 in {2 and therefore grad Vo j, = 0 in (2¢.

Remark 6.8. It can be noted that at the discrete level, in all the geometrical Cases 1, 2
and 3, one could formulate the problem by replacing (W} )y with W}, namely, work-
ing in the unconstrained space H (curl; £2) N Hy(div; £2), still obtaining existence and
uniqueness.

In fact, if the right hand side of the discrete equation is vanishing, from (6.11)
one always finds A, € H(m; (2) and iwAp o, + gradVg , = 0in {2¢. Therefore,
proceeding as before, one shows that Aj, = grad U|, in {2, and the uniqueness of the
discrete solution again follows.

A natural question therefore arises: from the computational point of view, the
constrained discrete approximation in the space Wy is more efficient than the uncon-
strained one in the space H (curl; £2) N Hy(div; £2)? One argument in favour of the
constrained formulation is that, at least in the case ngn = ny and for a regular exact
solution, we are able to prove an error estimate, therefore convergence is ensured.

In the next section we are going to present some numerical results that confirm this
assertion. O

Remark 6.9. In the numerical implementation, imposing the boundary condition
A, -n=0o0n0 (orelse A, x n = 0 on 9f2, as in the approximation of prob-
lem (6.32)) is clearly straightforward if the boundary of the computational domain (2
is formed by planar surfaces, parallel to the reference planes.

If this is not the case, for each node p on 0f2 it is possible to introduce a local
system of coordinates with one axis aligned with n,, a suitable average of the normals
to the surface elements containing p, and to express, through a rotation, the vector A,
with respect to that system: the condition Ay, - n, = 0 is then trivially imposed. The
details of this procedure can be found in Rodger and Eastham [212].

Another possible approach, which avoids the arbitrariness inherent in the averaging
process of the normals at corner points, is described (and at the same time criticized) by
Bossavit [60]. It is based on imposing A, - n = 0 at the center of the element faces on
0f2: the drawback is that it results in a constrained problem, requiring the introduction
of as many Lagrange multipliers as the number of surface elements on 0f2. 0

Remark 6.10. The need for imposing the gauge condition div A = 0 in {2 in order to
obtain a unique vector potential A has led to the use of nodal finite elements for numer-
ical approximation. A possible alternative has been described by Biré [48] (see also
Fujiwara et al. [108], Ren [206], Kameari and Koganezawa [145], Ren and Ida [209],
Ren and Razek [210], Hollaus and Bir6 [132]): edge elements are employed for the
approximation of the potential A, without requiring that the gauge condition is satis-
fied.

Clearly, in this way the resulting linear system is singular: however, in many cases
the right-hand sides turn out to be compatible, so that suitable iterative algebraic solvers
can still be convergent, though, to the best of our knowledge, a complete theory assur-
ing the effectiveness of this procedure is not available. g
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Remark 6.11. In Jin [140], Chap. 5, Sect. 5.7.4, it is underlined that a finite element
approximation based on a weak form in which the term |, a w1 divzdivw is present
can be inefficient if the coefficient x has jumps. In this respect, it should be noted that in
(6.12) the sesquilinear form .A[-, -] contains fQ py b divz divw, but ju, is an auxiliary
constant which is not required to be equal to the physical magnetic permeability g, so
that jumps are avoided. ]

Remark 6.12. The procedure presented in Remark 6.2 can be used for computing the
numerical approximation of the electric field E; in a way different from that described
in Section 5.5.

Infact, itis sufficient toinsert A ;, and Vo j, at the righthand side of (6.7) and com-

pute the finite element approximation of VIT.h, using standard scalar nodal elements.

Then, putting Ay ; and VIT. , at the right hand side of (6.8), one finds the complex

numbers (C},j,h, d?k’h), ji=1,...,pr, k = 1,...,ny0, from which one is led to
define
pr no
E;) = —iwAr) — gradVIth + Zc}j’hgradwj,l + Z d}k’hﬂ‘k,].
j=1 k=1

As described in Section 5.1, it is also possible to avoid the use of the basis functions
grad w; r and 7y, 1, by replacing them with the gradients of suitable interpolants. In that
case, problems (6.7) and (6.8) are no longer decoupled, but, using Lemma 5.2, it can
be seen that the coupled problem generated from these problems is still associated to
a coercive sesquilinear form. Thus it is solvable. ]

Remark 6.13. Houston et al. [133] have proposed and analyzed an approximation al-
gorithm for (6.3) based on the discontinuous Galerkin finite element method. O

Remark 6.14. For the electric boundary condition, the numerical approximation of the
vector potential formulation reads

Find (Ap, Von) € (W)); x (Lg )¢ such that

Al(An, Ver), (wWh, Qen) = [ode - Wn
+iw™! ch Jeo-gradQep +iw ™ [ Jer -7 Qo

for all (wp, Qc,n) € (Wi); x (L&)t

(6.47)

where
(W{);{ =WinN Wﬁ* ,

and Wy, Wy and (L 1,)¢ have been introduced in (6.33), (6.41) and (6.44), respec-
tively. g
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6.1.4 Numerical results

The numerical results we present here have been obtained in Bir6 and Valli [54], where
the numerical approximation of problem (6.12) in Case 2, withngo = no = 1 (§2is
a torus and {2¢ is a ball-like set) has been considered.

Aim of these numerical tests is to analyze the influence of the constraints G, (w) =
0 on the efficiency of the computational algorithm. The finite elements employed are
second order hexahedral “serendipity” elements, with 20 nodes (8 at the vertices and
12 at the midpoints of each edge), for all the components of A}, and for V}, (see, e.g.,
Ciarlet [83]).

The values of the physical coefficients are as follows: pt = ju, = 47 x 10~7 H/m,
c="57%x10"S/m, w = 27 x f = 100x rad/s, i.e., f = 50 Hz.

The CG iterations are stopped when the norm of the residual (normalized by the
norm of the right hand side) is under a given tolerance. For the first two examples
below, this tolerance is 10710, while for the third example is 106,

In the first example, half of the domain is described in Figure 6.5. The coils (the
support of J. 1) are the yellow sets on the left, while the conductor {2¢ is the red half-
cylinder on the right; the “cutting” surface 3; is green. We remark that all the results
presented in this chapter still hold true even if the basis of the conducting domain (2¢
is touching the boundary 02 as in Figure 6.5.

The difference between the constrained and the unconstrained finite element spaces
resides only in one degree of freedom, the one associated to the “cut” X, “cutting”
the equator of the torus {2. More precisely, in the constrained case we are assuming
that trial and test functions satisfy || 5. Wy -y = 0. This can be achieved very easily;
in fact, let us denote by ¢, the basis function of the unconstrained finite element space
and set ¢; := f 5 ¢; -nx. If ¢; = 0 for each index ¢, there is nothing to do, as the
unconstrained and the constrained space coincide. Conversely, if for some index, say
i =1, one has ¢; # 0, for i > 2 define @Z i= ¢; — ¢-¢;. These functions are easily
proved to be the basis functions of the constrained space.

The current density is given by Jo. c = 0 and J. ;1 = J. req, where ey is the
azymuthal unit vector in the cylindrical system centered at the point (100,0,0), oriented

Fig. 6.5. The computational domain for the first example
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Izo :
5 100
20 20 20 40 20 20 20 60 20

Fig. 6.6. The dimensions of the computational domain for the first example (projection on the
(z, z)-plane)

counterclockwise, and

10% A/m? if60 <7 <80, 60 < z< 80
Jer=1{ —10° A/m*>  if60 <7 <80, 20 < z < 40
0 otherwise

(see Figure 6.6 for a precise description of the geometry of (2).

The solution has been computed for seven meshes, the coarsest one with 290 el-
ements, the finest one with 99470 elements. With respect to the grid size, the seven
meshes correspond to the choices h, h/2, ..., h/7.

For finding a reference solution, the problem has been also solved by means of edge
elements on the finest grid: this solution s called Acgge, Vi cdge- For this computation,
the so-called quadratic 36-edge elements proposed by Kameari [144] have been used,
writing the problem in terms of a ungauged magnetic vector potential and an electric
scalar potential, namely, using the functional in (6.11) but dropping the term containing
the divergence (see also Remark 6.10).

In Table 6.1, for each of the meshes described above, the error between the com-
puted solution Ay, V5, and the reference solution is presented. More precisely, we
have set

ey 1= ||JC,h — JC,EdgEHO,QC - ||Bh - Bedge”O,Q
[ edgello,oe Bedgello,o
where J ¢ edge 1= —iwoAcdge|ne — 0 grad Vo edge, Bedge := curl Aeqge, and simi-

larly for J ¢, and By,. The number of conjugate gradient iterations needed to compute
the approximate solution is also indicated. The computations are repeated twice, at
first for the unconstrained approximate solution (namely, we have not imposed that
the flux of the vector potential is vanishing on the “cutting” surface), and then for the
constrained approximate solution. Clearly, in the latter case there is one degree of
freedom less.

It can be seen that the CG iterations are always approximately 10% fewer when
computing the constrained solution, while the accuracy is quite similar in both cases.
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Table 6.1. Relatives errors ey and ep for the first example (see the text for further explanations)

Elements DoF Iterations ey eB
3,939 108 16021071 7.8121072
290 3,938 97 1.6021071 7.8121072
31,337 206 56341072 2.1251072
2,320 31,336 185 56591072 2.1251072

105,571 325 27861072 1.0151072

7.830 105,570 294 27831072 1.0151072
18,560 250,017 448 1.605102 7.2281073
’ 250,016 419 1.6021072 7.2251073
3650 488,051 597 1.0541072 5.2861073
’ 488,050 540 1.0521072 5.284 1073
62,640 843,049 739 7.603107% 4.7291073
’ 843,048 666 7.588 1073 4.7271073
1,338,387 885 5959102 42211073

99,470

1,338,386 793 59481072 4.2191073

In Figures 6.7 and 6.8 some details of the computed solution for the finest mesh
are presented, and these pictures show a good agreement with the expected physical
behaviour of the solution.

The second example is an academic one, useful for illustrating the rate of conver-
gence of the method. It is based on the applied current density J. computed starting
from the smooth exact solution

curl(0,0,exp(r?/Q)) where Q < 0
A = .
0 otherwise

max|B| [107 T)]
11.95

8.965

5.977

2.988

0.000

Fig. 6.7. Magnitude of the computed flux density B for the first example
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max|J| [103 A/m?]
462.9

347.1
231.4F
115.7
0.000
z
Y| x
Fig. 6.8. Magnitude of the computed current density J¢ := —iwo A ¢ — o grad V¢ for the first
example
iw gradexp(r?/Q)  where Q < 0
d = .
grad Vo,ex { 0 otherwise ,
where

Q:=(z—20)’+(y—yo)*+ (z—2)* —r?,

and (zo, Yo, 20) € 2, 7 > 0 can be chosen freely. Clearly, if the ball {) < 0}
is contained in {27, as it will be the case here below, we have grad Vo ox = 0 and
E¢ ex := —iwAcx 0. — grad Vo,ex = 0. In particular, in this case the coil is the ball
{Q@ <0}

The same domains (2, {2 and (2; of the first example (illustrated in Figure 6.5)
are considered, but now the coil is the ball {@) < 0}, where we choose (x¢, o, 20) =
(60/+/2 + 100, 60/+/2, 60) and = 19 (see Figure 6.9).

In Table 6.2 the error between the computed solution Ay, Vo, and the exact
solution is presented, setting Ec,p, = —iwAy o, — gradVg p, By = curl Ay,
By :=curl A, and

”Bh - BeXHO,Q
”BeXHO,Q

This time the coarsest mesh is of size h and is constituted by 150 elements, and then
the mesh size is taken equal to h/3, h/5, h/7 and h/9. The computations are repeated
two times: for the unconstrained algorithm and for the constrained algorithm.

This second example shows again that the CG iterations for the constrained al-
gorithm are less than in the other case; moreover, the accuracy of the constrained al-
gorithm is much better than that of the unconstrained algorithm. In particular, when
using the unconstrained approximation the absolute error for the electric field is not

ee .= [|[Ecnlo.oc » eB =
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Fig. 6.9. The position of the coil (yellow) and of the conductor (red) for the second example:
projection on the (x, y)-plane

Table 6.2. Absolute error ég and relative error eg for the second example (see the text for
further explanations)

Elements DoF Iterations eE Rate eB Rate
2,080 67 6.061 10* - 1.95510° -

150 2,079 59 7.485 10° - 1.68010° -

55,192 199 1434 10> —0.78 3.10510° —0.42

4,050 55,191 181 1.72710° 133 9.784107' 049

254,536 357 1.022101 516 7.89810°' 2.67

18,750 254,535 319 38931071 291 63431071 0.84
697,264 553 3.48810° 3.19 5.743107' 094
51,450 697,263 459 1.8401071 222 4.870107' 0.78
1,480,528 674 2.02210° 216 4.81510' 0.70
109,350

1,480,527 591 50531072 5.14 3.85610~! 0.93

at all satisfactory even on the finest grid. Therefore, the advantage of the constrained
algorithm is evident from this example.

It must be noted that for the magnetic field both algorithms are still far from being
satisfactory; in our opinion, this is due to the fact that the coil is quite small, and even
on the finest mesh it is not represented in a good way.

The estimated convergence rate, when passing from a mesh to the subsequent one,
does not seem to be constant (for some other computations we have verified even larger
oscillations in the errors). However, it appears to be asymptotically quadratic for the
electric field, though not even linear for the magnetic field (whereas the theoretical
estimate is quadratic, see (6.46)): in fact, passing from the coarsest to the finest mesh
the global rate of convergence for the electric field is 1.54 for the unconstrained algo-
rithm and 2.27 for the constrained one, while for the magnetic field itis 0.63 and 0.67,
respectively. In this respect, we note that a better order of convergence is achieved in
the next example.
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The third example is related to the exact solution of the form we described before,
but for a different domain, described in Figures 6.10, 6.11.

As indicated in these figures, this time we choose (¢, Yo, 20) = (0,0,0),r = 0.29.
The main difference with respect to the preceding situation is that now the coil is larger
(and the eddy current region is smaller), so that the numerical approximation does
not need very fine meshes for being satisfactory. The coarsest mesh is of size h and
is constituted by 66 elements, and then mesh size is taken equal to h/2, h/4, h/8
and h/16. As before, the computations are repeated two times: for the unconstrained
algorithm and for the constrained algorithm. The results are presented in Table 6.3.

Table 6.3. Absolute error €ég and relative error eg for the third example (see the text for further
explanations)

Elements DoF Iterations eE Rate eB Rate
” 927 46 6.524 10* - 75951071 -
926 41 6.424 10* - 7.676 1071 -

528 6,922 74 1.654 10* 1.98 1.064 10° —0.49

6,921 63 1.071 10* 2.58 9372107  —0.29

ey 53,322 135 7.186 10° 1.20 6.489 107! 0.71

’ 53,321 117 6.649 10° 0.69 6.207 107! 0.59

3379 418,162 256 1415107t 5.67 2222107! 1.54

’ 418,161 227 1415107t 5.55 2222107! 1.48

270,336 3,311,202 401 22441072 2.66 6.885 1072 1.69

’ 3,311,201 237 22251072 2.67 6.884 1072 1.69

In this last case, the accuracy of the unconstrained and constrained approximations
is similar, and is good enough. The rate of convergence now appears to be asymptoti-
cally quadratic also for the magnetic field approximation. The number of CG iterations
is lower for the constrained algorithm than for the unconstrained one, and the differ-
ence is particularly significative for the finest mesh.

In order to compare the performance of (constrained) nodal element and edge el-
ement approximations, in the second and third examples we have also computed the
solution by means of edge elements, employing a ungauged formulation as described
in Remark 6.10.

The results are presented in Table 6.4. For each choice of the number of elements,
the first row represents the nodal case, the second row the edge case. As a consequence
of the fact that for the edge element approximation the linear system to solve is singu-
lar, it can be observed that the CG iterations for the nodal approximation are almost
always less than for the edge approximation. In the second example the number of CG
iterations is about 7% lower, in the third example the difference becomes much more
significative as the mesh is finer.
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0.29
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Fig. 6.10. The computational domain for the third example (the conductor is red and the coil is
yellow): projection on the (z, y)-plane

0.7

A 025

0.29

03

03

0.1 0.1

03

Fig. 6.11. The computational domain for the third example (the conductor is red and the coil is
yellow): projection on the (z, z)-plane
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Table 6.4. Number of iterations for the second example (left) and the third example (right). First
row: nodal elements; second row: edge elements

Elements DoF Iterations Elements DoF Iterations
2,079 59 926 41
150 1,640 57 66 789 25
55,191 181 6,921 63
4,050 43,164 195 528 5,539 62
254,535 319 53,321 117
18,750 198,640 346 4,224 41,373 137
697,263 459 418,161 227
31,450 543,620 490 33,792 319,513 283
1,480,527 591 3,311,201 237
109,350 1,153,656 635 270,336 2,510,769 583

6.1.5 A penalized formulation for the electric field

The procedure based on the introduction of a magnetic vector potential A can be
adapted in order to devise a formulation of the eddy current problem (2.1), in which
the constraint div(e;E;) = 0in §2; is imposed via a penalization term acting only in
2r. The problem reads

curl(ua1 curlE¢) + iwocEc = —iwJ. ¢ in 2¢
curl(p; ' curl Ep)
—cjergraddiv(erEr) = —iwJe 1 in 2
(p;'curlE;) x n =0 on 0f2
eftEr -n=0 on 012
Jr, €rEr ;=0 vi=1....pr ©®
fQIE‘]E]'ﬂ‘k,]:O Vkil,...,nag
div(e;Er) =0 onl[
Ecxnoc+E; xn;=0 on [’
(po'curlEc) x ne + (u;'curlEf) x ny =0 onl,

where ¢; > 0 is a dimensional constant. Note that, due to the presence of the penaliza-
tion term in (6.48)s, the constraint div(e;E;) = 0 has to be kept only on the interface
I, namely, it is necessary to impose equation (6.48)7.

We have already noted that p; = 0 and ng; = 0 if the boundary of the conductor
(¢ is connected and the computational domain {2 is simply-connected: for example,
a connected conductor (possibly with “handles”) contained in a “box”.

In order to arrive at a weak formulation that leads to a more efficient numerical
approximation, it is better to reformulate the conditions f o, € 1Er - w1 = 0. From
the Appendix we know that in {27 \ X, one can write 7y, ; = grad i 1 (see problem



178 6 Formulations via vector potentials

(A.32)). Therefore, taking into account the properties of E; and g, 7, we have

Jo, €rBr - mier = sz\Ek erEr - grad gy
- fnl\xk div(erEr) qx,1r + f(’)Q\c’)Ek erEr -ngp s
+fp erEr 'IIQk,I+fEk erEr -nx
:kaEIEI'nx.

Define the space

o~

We, (215 82) :={ze€ H(curl; 2) | zr € Hy p0(er, div; £21),
Jr,erzr np=0vj=1,...pr, (6.49)
fEkE]Z]'Ilz‘:OVk:1,...,7139}.

Then it is readily verified that the solution E to (6.48) satisfies the weak formulation

Find E € /WEI(QI; {2) such that

Jou teurlE - curlZ + iw fQC ocEc -7Z¢
+CS fQI diV(E]E]) diV(EIE) = —jw fQ J. -z

for each z € /WEI(QI; 2).

(6.50)

In Section 2.1 it has been proved that the sesquilinear form

at(w,z) == [, p " eurlw - curlZ + iw JooowWe - Zc
+¢5 Jg, diverwr) div(erzr)

is coercive in W, (£2r; £2), where W¢, (£2r; §2) has been introduced in (2.3), and reads

We, (9215 82) :={z€ H(curl; 2) | zr € Ho p0(er, div; £21),

21 L5 H_ (I, 00; Op)} . 6.51)

We now show that the same result is true in the space W. ,(£21; £2). The crucial point
is proving something similar to Lemma 2.1. We have:

Lemma 6.15. There exists a constant C' > 0 such that

|zrllo,0, < C(H curlzz|o,o, + || div(erzr)|lo,e, + 21 X 01l g-1/2giv, ;)

50 | fry e | + 5502 | [, er2 - m)

Sforall zr € H(curl; 2r) N Ho p0(er, div; £21).
Proof. From the representation formula (A.12), namely,

zZr = 5;1 curlqr +gradp; + hy,
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and from Lemma 2.1 we realize that the only term to be estimated is h;. Since
it belongs to the finite dimensional space H., (I, 02; £2;) and depends linearly on
f(h erzy - gradw,  and fQI €17y - ), 1, we have at once

pr noo
||h[||().’QI SC E / €1z1~gradwj,1 + E / E1Z] - Tk 1
j=1 170 k=117921

On the other hand we have e;z; -n = 0 on df2 and wj; = Oon I’ \ I';,wj;=1on
I';, thus integration by parts gives

/ €1z1~gradwj,1:f/ div(e;z;)wj,IJr/ €rzy-ny.
25 2r I;

Moreover, proceeding as in (6.1.5), since €;z7 - n = 0 on 92 we find
fQI ErZy - T = — fQI\Ek div(erzr) qr,1 + fzk €1Z7 -Ny.

Since the functions w; r and g r only depend on {27 and €7, the Holder inequality thus
gives

Isllo., < € (1l div(erznllo.o,

+ ?il‘fpj51Z1~n[‘+ZZirf‘fzkﬁ‘]Z[.nE‘),
and the proof is complete. g

Showing that the sesquilinear form a(-, ) is coercive in st (215 £2) is now an
easy task, by repeating the arguments presented in Lemma 2.2 and Theorem 2.3: hence
there exists a unique solution E to (6.50).

We also know from Section 3.4 that there exists a unique solution to the eddy
current problem (1.22), and moreover it is straightforward to verify that the electric
field determined there satisfies (6.48), and consequently also (6.50). Since for all these
problems we have proved that uniqueness holds, we can thus conclude that the electric
field in (1.22), (6.48) and (6.50) is always the same. Thus we deduce that for the so-
lution to (6.48) and (6.50) the constraint div(e;E;) = 0 in (2; is indeed satisfied. (A
direct proof of this fact could also be obtained by adapting the arguments in the proof
of Lemma 6.1.)

Concerning numerical approximation, when €; is a matrix with smooth entries a
finite element scheme based on the formulation (6.50) can be easily devised, using
nodal elements in {2; and edge elements in {2c. The constraints on the fluxes on I’
and X, of the test functions can be satisfied by proceeding as in Section 6.1.4, by
explicitly constructing basis functions with vanishing fluxes.

On the other hand, if £ is not smooth, even a smooth z; could violate the condition
div(esz;) € L*(£2;), and also for a piecewise-smooth € it is not easy to construct
finite elements satisfying the necessary matching condition [e;zr 5 - n] = 0 on the
interelements.
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In any case, the approximation scheme here described could have a major draw-
back, even for a scalar constant £;: in fact, as noted in Remark 6.6, it can happen that
the space

H,Il.’aQ(Q]) = {z; € (H (2))®|2; -n =0o0n 02}

is a proper subspace of H (curl; £2;1) N Hy oo (div; £21), and that the solution E; lies in
H (curl; £21) N Ho po(div; 21) butnotin H ,,(2r). If H ,(£2r) is a closed proper
subspace of H (curl; £21) N Ho p(div; £21), the nodal finite element approximate so-
lution E; ;, (which clearly is always contained in [ i 90(£2r)) cannot converge to the
exact solution.

This problem occurs if the domain (2 has re-entrant corners (see Costabel and
Dauge [87], Costabel et al. [90]). Instead, if {2 is convex, the convergence could be
achieved, though there are always re-entrant corners for the insulator {2; on the inter-
face I'. In fact, since no boundary condition is imposed on [, it is likely that the space
of smooth tangential vector fields is dense in the space

W (£2) :={z € H(curl; 2) | z; € Hy p0(div; 2;), z x n € (L*(I'))*}

(see Nicaise [188]). Therefore, provided that for the solution E it holds E x n €
(L?(I"))?, which does not seem to be a very restrictive assumption, Céa lemma and a
density argument would ensure that the Galerkin method is convergent.

Remark 6.16. A hp discontinuous Galerkin approximation of the eddy current prob-
lem (6.48) has been proposed by Perugia and Schétzau [191]. With that approach the
discrete solution does not belong to H (curl; £2) N H (div; £2); however, in that paper
it is proved that the finite element scheme is convergent, no matter if the exact solu-
tion does not belong to (H'(£2))3. The price to pay is a larger number of degrees of
freedom. O

6.2 Formulation for the Lorenz gauge and its numerical
approximation

In this section we suppose that {2, {2- and {2; satisfy the assumptions of Section 1.3,
and moreover we assume that (2 is simply-connected and that {2¢ is connected (some
informations regarding more general geometrical configurations are presented in Re-
mark 6.24). For the sake of definiteness, we also limit ourselves to considering the
magnetic boundary value problem (1.22).

Following the analysis presented in Fernandes and Valli [105], we deal with a
different gauge condition for the magnetic vector potential A: the so-called Lorenz
gauge

divAg + p0"Ve =0 in ¢ , divAr =0 in {27, (6.52)

where o* is assumed to be a scalar function, satisfying 0 < o} < o*(x) < o3 in
Q¢ and 0*(x) = 01in 27, and p,. > 0 is a dimensional constant. (For instance, one
can think that p, is a suitable average in {2 of the entries of the matrix p, and that
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* K

o* = & trace(o) for a suitable non-dimensional constant x > 0, so that 07 = KO min,
05 = KOmax, Where opmin and omax are a uniform lower bound for the minimum
eigenvalues of o (x) in {2¢ and a uniform upper bound for the maximum eigenvalues
of o(x) in £2¢, respectively.)

The Lorenz gauge has been originally proposed with the aim of decoupling the
equation for A from the equation for V-, substituting o grad V¢ with

—o grad[(pu.o*) "1 divAc] .

In particular, an additional feature of this approach is that, for a scalar con-
stant 0|, = o* and a scalar constant puc = s, the latter term simplifies to
—p; ' graddiv A ¢, which, added to p ! curl curl A, gives at last —u; ' AAc.

However, as also noted by Bir6 and Preis [51], in Section 6.2.1 we will see that
this decoupling is difficult to handle for a non-constant conductivity o |, , as one ends
up facing a problem which looks hard to solve. Moreover, in the opposite situation,
namely, when T10c is a scalar constant, we will see that, when the current density
satisfies the standard assumption divJ. = 0 in {2, decoupling is always leading to a
problem for which div A = 0 and Vo = 0 in {2¢, hence to a formulation in terms of
the sole electric field Ec = —iwAc.

In other words, when considering an approach based on “genuine” magnetic vec-
tor potentials and scalar electric potentials, the Lorenz gauge is never furnishing a
formulation which is at the same time well-posed and decoupled, and it has simply to
be thought as a variant of the Coulomb gauge. However, it is also worth noting that
sometimes the Lorenz gauged formulation has shown better performances in numerical
computations (see, e.g., Bryant et al. [67], Morisue [181]).

Let us now go on in completing the setting. Besides the gauging condition (6.52),
we have to add a boundary condition, which, when considering the magnetic boundary
condition H x n = 0, is given by

A-n=0 on Jf?2 . (6.53)

Moreover, we have also to impose an additional condition on the interface I". In
fact, differently from the Coulomb gauge, the constraints on the divergence have been
given separately in {2¢ and (2;. We consider three possible alternatives, that have been
frequently proposed in the literature devoted to this subject (see, e.g., Fernandes [103]):
the first one is the “slip” condition

Ac -ng=0 onl"; (6.54)
the second one is the Dirichlet condition
Ve =0 onl; (6.55)
the last one is the matching condition
A n;+Ag -nec=0 onl. (6.56)

The interface conditions (6.54) and (6.55) were indeed proposed with the aim of
decoupling the equations for A from that for Vi-: however, as we have just noted, for
anon-constant o, the decoupled problem turns out to be hard to handle, while for a
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scalar constant 0|, and for divJ, = 0in {2 itreduces to an electric field formulation.
Hence, the use of these interface conditions has to be looked at as a possible alternative
to the more natural condition (6.56), most often leading to a coupled problem (similar
to the one we will present in Section 6.2.3 for the interface condition (6.56)).

The matching condition A -nc = k?V¢ on I has been also proposed (see Bryant
et al. [68]). We could adapt the following presentation also to this case, but in our
opinion, for a non-constant o, its use leads to a less simple algorithm for numeri-
cal approximation, due to the necessity of constructing finite elements satisfying that
matching on I". Besides, for a scalar constant 00 and for divJ, = 01in {2 it also
reduces to an electric field formulation with A - nc =0on I

We are now in a position to formulate the problem. Let us start specifying in detail
the formulation associated to the matching condition (6.56). First, note that (6.52)a,
(6.53) and (6.56) imply that | A; -n; =0= A¢ - ng, hence divAes = 0.
As a consequence, v&i}(]:an alsfg impose fF fQC

/ oV =0 (6.57)
Nc

without actually introducing any further constraint.
In conclusion, writing the eddy current equations in terms of these unknowns we
are left with the problem

curl(p=tcurl A) + iwo A + o gradVe =J. in 2
diVAc+,LL*O'*VC =0 in ¢

diVA] =0 in Q[

A n;+Ag - nc=0 onl’ (6.58)
fQC c*Vo =0

A;-n=0 on 012
(u;'curlA7) xn=0 ondf?2

where, as in (6.3), the notation o grad V- means

_ J oo gradVe  in ¢
o grad Vo .{0 in O .

If we replace the interface condition (6.58)4 (i.e., (6.56)) with (6.54), we obtain
another problem, that will be denoted by (6.58)*. Moreover, if we replace (6.58)4 with

(6.55) and we drop the average condition (6.58)5, we obtain a third problem, that will

be denoted by (6.58)**.
Defining
 fJec—twoAc —ogradVe in {2c
J = {Je,I in 2 (6.59)
as a consequence of (6.58) (or (6.58)*, or (6.58)**) we also have
curl(p=tcurlA) = J in (2,
therefore
div(iwoAc +ogradVe —J.c) =0 in 2¢ (6.60)
(iwocAc+ogradVe —J.c) - ng=Jer-ny on I'. )
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Remark 6.17. As we have already noted, the condition f 2 c*Ve = 0 follows from
the gauge conditions (6.58)2, (6.58)3, (6.58)4 and (6.58)¢. Therefore, we could omit it
in (6.58). However, this vanishing average condition is useful in Section 6.2.3 when
we analyze the weak formulation of the Lorenz gauged eddy current problem; hence
we prefer to keep it in formulation (6.58). The same remark applies to the formulation
(6.58)*. O

6.2.1 Decoupled weak formulations and alternative gauge conditions

As a starting point, with the aim of making clear the superiority of our choice in Section
6.2.3, in this section we discuss in detail some of the weak formulations that have been
previously proposed for problem (6.58) (or (6.58)*, or (6.58)**). Let us point out that
we are not assuming that o is smooth, but only that each of its entries belongs to
L™ (020).

In the following, in order to give a meaning to the integrals we are going to con-
sider, we assume, as will be proved in Section 6.2.2, that there exists a solution to
(6.58) (or (6.58)*, or (6.58)*%), satisfying (A, V) € Uy x H'(£2¢), where

Up :={w € H(curl; ) | divwe € L*(£2¢), divw; € L?(£2;),
wr-n=0o0n0f2},

and moreover we consider the space of test functions

Wo = {w € H(curl; 2) | div(owc) € L3(Q2¢), divw; € L(2y),
wr-n=0ond?}

(for a smooth scalar conductivity 0. we have Uy = Wp).
Multiply (6.58); by atest function w € Wy and integrate in {2. Integration by parts
yields

Jolpteurl A - curl W + [, [iwo Ac - We — Vo div(ewo)]
+f1“ Veowe - n¢ (6.61)
= [ode-W.

Using the Lorenz gauge in {2c permits to replace the unknown V¢ and, taking also
into account that div A; = 0 in {27, we end up with

Jop teul A cullw + [, (u.0%)~"divAc div(ewe)
+ch woAc - wWo + f(h u;ldivAI divwy
+ [ VeoWe -ne

Jode W VweW.

(6.62)

To conclude, let us obtain the weak formulation for the scalar electric potential.
From (6.60), we see that V- satisfies

0=-— ch div(iwoAc + o grad Ve — J. ) Qc
= [, (iwoAc + o grad Vo — I, c) - grad Q¢
— JpliwoAc +ograd Ve —J.c) - ne Q¢
= ch(iwaAc +ogradVo —J.¢) - grad Qc — fr Jer-n;Qc
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foreach Q¢ € H'(2¢), namely,

fa’Zc ograd Ve - grad Qc = — fa’Zc iwoAc - grad Qo

Z i 6.63
+ Joodeo-gradQc + [ Jer-nr Qe VQco € H' (Q0) . (€09

Now, in order to obtain a formulation which looks feasible and for which the un-
knowns A and Vi are decoupled, we have to eliminate the term containing V¢ in
(6.62). This can be done either assuming that the test function w belongs to Wy,
where

Woo ::{WEVVO|0‘WC~IICZOOIIF}7

or else using the interface condition (6.55),i.e., Vo =0on I.
In the first case the final problem, associated to the interface conditions (6.54) or
(6.56), is

AcU: [op teurlA - curlw + [, (u.0*)~!divAc div(owe)
+ fa’Zc iwoc Ao - Wo + fa’h ptdiv Ay divwy (6.64)
= QJ6~W Vwe Wy,

followed by

Vo € HTI(QC) : fa’Zc o grad Vg - grad Q¢ o
=— fa’Zc iwo A - grad Q¢

+IQC Joc- gﬂ% (6.65)
+ [pJer-nrQc VQc € H(2c) ,
where
1}(20) = {Qe e H'(@0)| [ o"Qc =0} (6.66)
Nc

In the latter case the problem, associated to the interface condition (6.55), is

AcU : [op teurlA - curlw+ [, (u.0*)"!divAc div(owe)
+ [, iwoAc - We + [ pit divArdivwr (6.67)
= QJE W VweW,,

followed by

Vo € HY (2¢) - fa’Zc o grad Vi - grad Q¢ o
=— [, iwoAc - grad Qc (6.68)
+ Joodec-gradQc YV Qe € Hy(2c) .

While problems (6.65) and (6.68) are classical elliptic boundary value problems,
without additional assumptions the formulations (6.64) or (6.67) are not easy to han-
dle. A favourable situation appears when o is a scalar constant in 2¢, as, first of
all, in this case one has Uy = W, and, moreover, for the interface condition (6.54)
we know that A € Wy. Therefore, in problems (6.64) (for the interface condition
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(6.54)) and (6.67) (for the interface condition (6.55)), the space of trial functions and
the space of test functions are the same (on the contrary, even for 0|, = const
this is not the case for the interface condition (6.56)). Furthermore, if in addition one
chooses 0* = 0|, = constin {2c, one also has ch (pso*) "t div Ac diviowe) =
/, 00 Hx Ldiv A¢ divwg, so that the first order terms in the sesquilinear forms at the
left hand side of (6.64) and (6.67) are hermitian and positive definite.

An analysis of these two formulations for 0|, = const and 0™ = 0|, is pre-
sented here below, for a slightly generalized form of the Lorenz gauge proposed by
Bossavit [60], that indeed for 0|0, = const coincides with the usual one. However,
in the general case of a non-constant | ¢, the formulations (6.64) and (6.67) are not
suitable: for instance, it is not clear that a uniqueness result holds for them, even if in
(6.64) we use the additional information that the solution satisfies (6.54) or (6.56).

For arriving to a decoupled and well-suited formulation even in the case of a non-
constant o a change of the point of view is thus in order. Bossavit [60], assuming that
o is a scalar function, proposed to modify the Lorenz gauge in {2¢ in the following
way

div(cA¢) + p0?Vo =0 in ¢, (6.69)

which, as we already noted, for a scalar constant value of T10c reduces to the usual
Lorenz gauge (6.52) (for the choice 0* = o.). Accordingly, instead of the inter-
face condition (6.54) one has to consider cA¢ - ng = 0 on I, while the condition
(6.55) is kept unchanged (in the following, the interface condition (6.56) or its vari-
ant cAc -neo + A7 -ny =0 on I' will not be considered, as they do not lead to a
decoupled problem).

Let us suppose that there exists a solution (A, Vo) € Woo x H(£2¢) (for the
interface condition cAc - ng = 0 on I') or (A, Vo) € Wy x H}(02¢) (for the
interface condition (6.55)) to these Bossavit—Lorenz gauged problems; without giving
further details, we note that we could adapt the proofs reported in Section 6.2.2 to show
that these existence results are in fact true.

Proceeding as before, for the interface condition c A - ng = 0 on I the corre-
sponding weak formulation now reads

AeWy : [ou tcurl A cullw
+ [ 1w to T2 div(eAe) div(ewe)

+ [ iwoAc W + [, pit divArdivwy (6.70)
= [ode-W Vw e Wy .
Similarly, for the interface condition (6.55) one can write
AeW, : [,p tcurl A cullw
+ [ wi o2 div(eAe) div(owe) 671

+ [, iwoAc WG + [, pi ! divAdivwr
= [ode-W YweW.

Indeed these weak problems look easier to handle. First of all, it is easy to prove
that they are well-posed, namely, that uniqueness holds. In fact, for J. = 0 it follows



186 6 Formulations via vector potentials

atonce that A = 0in {2¢; consequently, A satisfiescurl Ay = 0in {27, divA; =0
in2;,A;-n=0o0n0f2 and finally A; xn; = —A¢c Xng =0on [, hence A; =0
in 2 I

Another relevant result is the following: the solution A to (6.70) or (6.71) en-
joys the property that pu 'oc~2div(cA¢) has a distributional gradient belonging to
(L?(£2¢))? and, moreover, that div A; = 0 in §2;. (Since, as we have already noted,
it is possible to show that there exists a solution to the Bossavit—Lorenz gauged vector
potential problems, these results are indeed trivial, as ‘o2 div(cAg) = —Vo €
mt (2¢), and div A = 0 is the gauge condition in {2;; however, it is useful to show
that they follow directly from the intrinsic structure of the weak problems (6.70) or
(6.71).)

In fact, take qc € (C§°(£2¢))3 and let uc € H(£2c) be the solution of the
Neumann problem

div(o grad uc) + iwp.0?uc = divge  in ¢
(6.72)
ograduc -nc =0 on I’
(for the interface condition c A - nc = 0 on I") or of the Dirichlet problem
div(o grad uc) + iwp.0?uc = divqe  in ¢ 6.73)
uc =0 on I' ’

(for the interface condition (6.55)). Then, for g; € L?(£2;) letu; € H'(§2r) be the
solution of the mixed problem

uy = uc on I’ (6.74)

{ Aup = pagr in 2r
gradur-n=0 on 0f2.

Setting

L uc in QC
u = {uI in 2 (6.75)

we have gradu € Wy (respectively, gradu € Wjy) for the interface condition
0Ac -no = 0on I' (respectively, for the interface condition (6.55)). Choosing the
test function w = grad » in (6.70) or in (6.71) gives

ch iwocAg - gradtic = — ch iwdiv(cAc)Tuc + [ iwocAc -neTuc
= — [, iwdiv(cAc)uc,

and
JoJe-gradu = ch Je o gradug + ff?z Je 1 graduy
= ch Je o graduc + fp Jer-nruy,
therefore
ch prto=2div(cAc)divge + fs’h divArgr

6.76
:fQCJe,C'grad%+pre,I'HIW- ( )

Taking qc = 0 we have uc = 0 in {2¢, hence the right hand side in (6.76) is
vanishing, and we conclude that divA; = 0in {2;.
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The map q¢c — ch Je.c-graduc + fr J..r-nyuc is anti-linear and continuous
with respect to the norm in (L?(£2¢))3. Therefore, it can be extended by density to
dc € (L?(£2¢))3, and then, by the Riesz theorem, represented as |, 2 G¢ - qg for
a suitable Go € (L%(£2¢))3. In conclusion, we have grad[u; lo =2 div(cAc)] =
—G¢ € (LQ(Qc))B in 2c.

However, the most interesting property of the solution A to the weak problems
(6.70) or (6.71) arises when the current density satisfies the assumptiondivJ, = 0in {2
(namely, in addition to the necessary assumptiondivJ. ; = 0in {27, alsodivJ. c =0
in2cand J. ¢ -nc +Je 1 -ny = 0on I'). In this case the formulations (6.70) and
(6.71) are not related to a “genuine” Lorenz gauged problem, as we find div(c A¢) = 0
and Vo = 01in (2¢.

In fact, by integrating by parts one easily sees that the right hand side of (6.76) is
vanishing, and, repeating the arguments above by replacing div q¢ in (6.72) and (6.73)
with p.02gc, where go € L?(£2¢), we end up with

ch div(cA¢)ge =0,

hence div(cA¢) = 0 in ¢. Furthermore, from the weak problem (6.65) (with
H{(Q2c) replaced by H{(2¢) = {Qc € H'(2¢)| [, 0°Qc = 0}, in order to
be consistent with the gauge condition (6.69)) or from the weak problem (6.68) it fol-
lows that Vo = 0 in {2¢.

In conclusion, under the very common assumption divJ, = 0 in {2 the formula-
tions (6.70) and (6.71) are not “genuine” Lorenz gauged formulations, since they both
essentially reduce to a formulation in terms of the modified magnetic vector potential
A = iw™'Ec¢ in £2¢, keeping the vector potential A in £2;.

For numerical approximation, which has to be performed by means of nodal ele-
ments, these formulations could be interesting only for smooth 0| ¢, , as in the opposite
case itis not ensured that div(ocw¢ ) belongs to L?(§2¢) even for a smooth we. A better
situation occurs when o/, is piecewise-smooth, but also in that case it is not an easy
task to construct finite elements w 5, such that the matching condition [ow¢ p,-n] = 0
is satisfied on the interelements where o is jumping.

Moreover, the usual difficulties coming from the presence of re-entrant corners oc-
cur. In this respect, convergence for formulations (6.70) and (6.71) is ensured provided
that {2 is convex and, for formulation (6.70) only, that {2 is convex, too.

In conclusion, an approach in terms of the electric field E like (6.50) looks similar
but generally better suited than (6.70) or (6.71): first of all, solving (6.50) one also
finds H = —(iwp) ™! curl E, while the solution of (6.70) or (6.71) does not furnish
the electric field E; (and for divJ,. # 0 it also needs the computation of the electric
scalar potential V); secondly, in (6.50) it is not assumed that o is a scalar function;
finally, in real-life problems it is more likely that £ is smooth than that o, is smooth.

Remark 6.18. The assumption divJ,. = 0 in {2 is not needed to solve the eddy current
problem, as the necessary and sufficient conditions for solving it are divJ. ; = 0 in
27 and J. - n = 0 on 0f2. However, this divergence-free condition is not particularly
restrictive, and is very often satisfied from current densities used in real-life applica-
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tions. As a matter of fact, it is automatically satisfied whenever the support of J. is
contained in {27 (and, clearly, divJ. ; = 0 in {2). O

6.2.2 Well-posed formulations based on the Lorenz gauge

In this section, following a general approach proposed in Fernandes [103] and devel-
oped in Fernandes and Valli [105], we present a “genuine” Lorenz gauged formulation
for which we are able to prove well-posedness. However, it must be noted that we do
not obtain a decoupled problem for A and V. Let us also underline that here we are
only assuming that the conductivity o is a symmetric matrix, with entries belonging
to L>°({2), uniformly positive definite in {2 and vanishing in {2;.

For the sake of simplicity, in the following we focus on the interface condition
(6.56), namely, Ac - nc + Ay -ny = 0on I'. The reader interested in the alternative
interface conditions (6.54) and (6.55) is referred to Fernandes and Valli [105] (where
however the problems are considered for {2 and {2¢ having the simplest geometrical
shape). There one can also find some motivations, related to numerical approximation,
that lead to the consideration of this choice of the interface condition and find it to be
the most suitable Lorenz gauged magnetic vector potential formulation to use.

With the aim of obtaining a more general result, the existence theory we are going
to develop in this section does not follow the same guidelines of that we have pre-
sented in Section 6.1.2 for the Coulomb gauge: in this way we can prove the existence
and uniqueness of the solution to the Lorenz gauged problem for any choice of the
function ¢* (see Theorem 6.21). On the other hand, the proof of the coerciveness of
the sesquilinear form associated to the weak problem and the convergence of a finite
element approximation will require a suitable choice of o* (see Proposition 6.23 and
Section 6.2.4).

We start from the unique solution (H, E) € H (curl; 2) x H (curl; {2) of the eddy
current problem (1.22) (the existence of such a solution is proved in Section 3.4).

The first step of the procedure consists in solving

—AV +iwp,o*V =divE  in (2
Vv
o —E-n on 0f? (6.77)
f 2 c*Ve =0,
to be intended in the weak sense made precise in the following Proposition 6.19. The
second step is finding the solution to
curl A = uH in (2
divA = —p,0*V in 2 (6.78)
A-n=0 on 0?2

(note that this implicitly says that Ac - nc + Ay -ny =0on I).

The necessary solvability conditions for (6.78) are div(uH) = 0 in {2 and
f(amr pH -n = 0 foreach r = 1,...,psn, as usual following from the Fara-
day equation and the Stokes theorem for closed surfaces, and f o o*V = 0, namely,
fa’Zc o*Veo = 0, that is satisfied due to (6.77)s.
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Hence, it remains to show that (6.77) is well-posed.
Proposition 6.19. There exists a unique solution of the Neumann problem (6.77).

Proof. We start showing that the following weak problem has a unique solution: find
Ve H'(2) with [, o*Ve = 0 such that

/gradV~grad%+z’w/u*a*V%:f/Egrad% (6.79)
Q Q Q

forall ny € H!(£2) with ch o*no.c = 0.
The existence and uniqueness of the solution to (6.79) is a consequence of the
Lax—Milgram lemma, as it is easy to prove that the Poincaré inequality

/Q | grad [ > K /Q (Inol? + | gradmol?) (6.80)

holds for functions no € H'(£2) with |, 0o @ Mo,c = 0 (one can adapt, for instance,
the proof reported in Dautray and Lions [94], Chap. IV, Sect. 7, Prop. 2, where the
function 79 is assumed to satisfy || o Mo = 0 instead of /, 00 @ Mo,c = 0). Taking now

n € H'(£2), we set
-1
Mo i=1— (/ 0*) (/ 0*770) ;
Qc QC

clearly, 79 can be used as a test function in (6.79). Therefore we have
/ grad V - grad 7 + iw/ w0V = f/ E - grad7,
Q Q Q

as grad o = gradn and [, 0"V = [, o*Ve = 0.

Integrating by parts, one gets easily that div(grad V + E) = iwp.o*V in {2 and
(gradV + E) - n = 0 on 912, namely, V is the solution to (6.77).

The uniqueness of the solution to (6.77) follows from the fact that each solution V'
to (6.77) is clearly a solution to (6.79). O

We can thus obtain:

Proposition 6.20. There exists a unique solution (A, V) € H(curl; 2) x H'(§2) to
the problem
curl A = pH in (2
iwA +gradV =-E in(2
divA + pu 0™V =0 in{?
A-n=0 on 012 ,

(6.81)

and it is given by the solution to (6.77), (6.78).
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Proof. For the existence of the solution we only need to show that (6.81)5 is satisfied.
Setting N := iwA + grad V' + E, from the Faraday equation, (6.77) and (6.78) we
have curl N = 0in {2, divIN = 0in {2 and N - n = 0 on 90f2, therefore N = 0 in {2
(remember that we have assumed that {2 is simply-connected).

To prove the uniqueness it is enough to observe that, putting H = 0and E = 0 in

(6.81), V satisfies
—AV +iwp,o*V =0 in {2

a—V:O on 02
on
fQCU*VCZO,
hence V =01in {2 and A = 0 in (2. O

We finally have an existence result in terms of the current density J. alone.

Theorem 6.21. There exists a solution (A, V) € H(curl; 2) x H'(§2) to the Lorenz
gauged problem

curl(p=tcurl A) + iwo A + o gradV =J, in (2

divA + o™V =0 in 2

Joo o Ve =0 (6.82)
A-n=0 on 012

(wlcurlA) xn=0 on 012 ,

and it is given by the solutionto (6.81). In particular, A and Vo := V|, are a solution
to the Lorenz gauged problem (6.58). Moreover, the solution (A, Vc) to (6.58) is
uniquely determined.

Proof. The proof of the existence is trivial, as one has only to write the eddy current
problem in terms of the solutions to (6.81). The uniqueness of the solution (A, Vi) of
problem (6.58) is proved as follows. Assume that J. = 0 in {2, multiply (6.58); by
A and integrate in 2: by integration by parts one obtains

/uflcurlA~curlK+iw/ UAC~A_C+/ a‘gradVC~A_C:O.
2 Nc Qc

Since div curl(~! curl A) = 0 in {2, one also has
curl(pg' curl Ag) - ne = —curl(p; ' curl A7) -nr = 0 onl;
thus, multiplying by (iw)~! grad V- the equation (6.58); (restricted to {2¢) and inte-

grating by parts in {2¢, one finds

/ oAc - grad Vo + (iw)™! / ogradV, -grad Vo = 0.

Qc QC

Therefore, Re( [, oAc - grad Vo) = 0 and Re( [, ogradVo - Ag) = 0, hence
/, o p~teurl A - curl A = 0 and consequently curl A = 0 in £2. In addition, inserting
this result in (6.58), we obtain iwoc A + o grad Vo = 0 in {2¢.
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Since we have assumed that (2 is simply-connected, the curl-free condition guar-
antees the existence of a function Y € H'({2) such that iwA = —gradl{ in 2,
moreover, since {2¢ is connected, it is not restrictive to suppose that e = Vo in (2¢.
Hence we have

—AU =iwdivA = —iwp.o" Vo = —iwp,o™U  in (2

and grad/ - n = —iwA -n = 0 on 0{2, therefore I/ is a solution to the homogeneous
Neumann problem (6.77). We thus have ¢/ = 0 in {2, and consequently A = 0 in {2
and Vo = 01in (2¢. O

6.2.3 Weak formulations and positiveness

In order to devise a finite element approximation scheme, we are now interested in
deriving the weak formulation of the Lorenz gauged magnetic vector potential problem
(6.58).

Using the boundary and interface conditionsin (6.58), the usual integration by parts
gives

Joun teurl A curlw + ch(iwaAc “Wo + ograd Vo - We)
= [,de-W Vw € Hcurl, £2) .

Due to the Lorenz gauge, one can add three other terms, finding

Jop teurl A curlw
+ [ it divAc divwe + [, p !t divArdiviwr
+ch(iwaAc -We +ograd Ve - We + o* Ve divwg)
= [ode-W Vw € Hcurl; 2) N H(div; 2) .

(6.83)

For a solution satisfying the Lorenz gauge, this equation is formally equivalent to
(6.62); however, its structure is unlike, and moreover the functional framework is now
different, as we are requiring that w € H (curl; £2) N H (div; £2) and not that w € W,
On the other hand, using the Lorenz gauge equation in (6.63) and multiplying by
iw™! yields
ch (iw tograd Vo — o Ac) - grad Q¢
+ ch o*(divAc + p0*Ve) Qc

= jw ! ch Je.cgrad Qe
+iw™ ! fFJe’] ~n1% VQc € Hl(Qc) .

(6.84)

The two additional terms that are present here and are not contained in (6.63) are useful
for obtaining a symmetric problem.
Let us consider the variational spaces H. Tl (£2¢), introduced in (6.66), and

W := H(curl; £2) N Hy(div; 2), (6.85)
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the sesquilinear form

Bl(z,Uc), (w,Qc)] := [, p *curlz - curl W
+f!21 My d1vz1d1vw1
+ ch i H(divze + peo*Uo) (divwe + po*Qc)
iw™t Joo oliwze + grad Uc) - (—iwWe + grad Qc)
= [ou teurlz cullw+ [, ptdivadivw
+ ch (iwozc - W + o gradUc - Wo + 0*Uc divwg)
+ ch (iw™to grad Ug - grad Q¢ + i« (0*)2Uc Q)
+ ch (o*divze Qc — ozc - grad Q)

(6.86)

defined (and continuous) in [H (curl; £2) N H (div; 2)] x H'(£2¢), and the anti-linear
functional

f(W,Qc) ::/ Je 'W+iuj71 (/ Je,C grad@+ / Je,I . Il]%)
Q Q2c r
defined (and continuous) in L2(2) x H'(02¢).

Theorem 6.22. There exists a unique solution to the weak problem

(A, Vo) e W x H{(2¢c) = Bl(A, Vo), (w,Qc)] = F(w,Qc)

V(w, Qo) eW x Hi(2e). O

Proof. Following the procedure just described, the existence is an easy consequence
of the fact that, as proved in Theorem 6.21, problem (6.58) is well-posed.

Uniqueness follows from the fact that, if B[(A, Ve), (w,Qc)] = 0 for each
(W, Qc) € W x HTl(QC) by choosing w = A, Q¢ = V(- one finds

Jop teurl A - curl A + Ja, ps 't div Az|?
+ [, w1 divAC + po*Vel?
w1 Joo oiwAc + grad Vo) - (—iwAc + gradVe) = 0.

Therefore one has obtained a solution to the homogeneous problem (6.58). Since this
problems has a unique solution (see Theorem 6.21), the thesis follows. 0

For numerical approximation, it is useful to check that the sesquilinear form 5[, ]
is coercive in W x H. Tl((lc) Before starting, let us recall that the Poincaré-like in-
equality (6.39) is valid in W, as for no = ngp = 0 we have W = W;. Moreover, by
proceeding as done for inequality (6.80), taking into account that {2¢ is connected we
also have that

/Q | grad Qc|? 2K4/Q (IQc|* +|gradQcl?) ¥V Qc € H (2¢). (6.88)

Proposition 6.23. The sesquilinear form B|-, -] is coercive in W x H %(QC) provided
that the maximum value o of the scalar function o is small enough. In particular, if
one has chosen o* = % trace(o ), B[, -] is coercive provided that k is small enough.
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Proof. From (6.86) we have

Bl(w,Qc), (w,Qc)] = [ eurlw - curlw + pt [, [divwy]?
+u* 1 Jo. | leWc + 10" Qc?
-1 fQ (iwwe + grad Q¢) - (—iwwe + grad Q¢ ) .

Let us denote by fimax a uniform bound in {2 for the maximum eigenvalues of p(x),
and by op,in a uniform lower bound in (2¢ for the minimum eigenvalues of o (x).
Remember also that the auxiliary function o* is assumed to satisfy 0 < o < 0*(x) <
0% in £2¢. Proceeding as in the proof of the coerciveness of the sesquilinear form A, -]
in Section 6.1.2, we have

[ReB[(w, Qc), (w, Qc)]|
> i Jo [ curlwi* + it [ | divw1|2
2:“*1fn |d1VWC| — s ( 02 fQC|QC|2

and, foreach 0 < § < 1,
|Im8[(W7QC)7 (W, QC)”

> || " omin(1 — ) [y, | 2rad Qc|? — [w]omin(1 — 6)57" [, [wel?.

Taking into account the Poincaré inequalities (6.39) and (6.88), the coerciveness of
B|-, -] easily follows by choosing at first (1 —4) small enough and then o small enough.
a

Remark 6.24. The existence of a unique solution to the Lorenz gauged problem (6.58)
can be proved also in a more general geometrical setting, namely, without assum-
ing that {2 is simply-connected. To be precise, we suppose that (6.2) is satisfied and
that ng, = ng, which means that we can choose the surfaces i‘k “cutting” the non-
bounding cycles on 0f2 without intersecting {2¢.

In this situation, we proceed as for the Coulomb gauged problem, considering a
variational formulation in the space W} (see (6.13)). Since the Poincaré-like inequal-
ity (6.39) holds, the coerciveness of the sesquilinear form B[, -] in Wy x HTI(QC)
follows as before, provided that the maximum value o3 of the scalar function o* is
small enough. Hence, there exists a unique solution of the weak problem

(Av VC) € Wﬁ X H%(QC) : B[(Av VC)? (W, QC)] = ‘F(wv QC)
YV (w,Qc) € Wy x HTI(Q(;) .

In Section 6.1.1 we have considered three possible choices of the linear contraints Gy, (-)
appearing in the definition of Wj: since div A is not vanishing in {2, these choices
are not equivalent and do not furnish the same solution A. The proof that the weak
solution is indeed a solution of the strong problem (6.58) is easily done only when
Gr(w) = [, W - 7}, where 7}, are the basis functions of H(m; {2). As already noted,
this choice is not the best suited for numerical approximation.

On the other hand, concerning the assumption on the geometry of the conductor,
it can be proved that if {2¢ is not connected than the solution to (6.58) is not unique,
even for a simply-connected domain {2. More precisely, there exist solutions (A, V)
of (6.58) with J. = 0 satisfying A # 0 and grad Vo # 0 (the proof is left to the
reader). O
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6.2.4 Numerical approximation

Assume that {2, {2 and {2; are Lipschitz polyhedra, and that 77 ;, and 7¢;, are two
regular families of triangulations of {2; and (2¢, respectively. For the sake of simplic-
ity, we suppose that each element K of 77 ;, and 7¢ j, is a tetrahedron. We also assume
that these triangulations match on I, so that they furnish a family of triangulations 7},
of £2.

Numerical approximation of problem (6.87) via conforming finite elements can be
easily devised. In fact, it is enough to choose suitable finite element subspaces W, C
Wand (L¢ )t C H%(QC) and rewrite (6.87) in Wy x (Lg, ;,)+. The uniqueness of
the discrete solution follows as in Theorem 6.22; its existence is then a consequence
of the uniqueness result.

Moreover, in Section 6.2.3 we have proved that, assuming that the maximum value
o3 of the scalar function o* is small enough, the sesquilinear form B[, -] is continuous
and coercive. Therefore, the convergence analysis is easily performed as follows.

Denoting by P, & > 1, the space of polynomials of degree less than or equal
to k, forr > 1 and s > 1 we choose the discrete spaces of Lagrange nodal ele-
ments

W= {wh € (C°(2))* |wpk € (P)* VK €T, Wy -n = Oon@(l} ,
and
(Lep)t = {QC,h € C%02c) | Qopx EPsVK € Ty, Joo 7" Qe = 0}

(for this last space, the construction of the basis functions satisfying the average con-
strainton {2¢ can be done as at the beginning of Section 6.1.4, where the basis functions
of the constrained space (W} )4 have been determined).

Via Céa lemma for each w;, € W} and Q¢ € (LSC’h)Jr we have

(SollA — Anf> + curl(A = AP + [ div(A — Ap)2)

1/2
+ oo (Vo = Veul? + | grad(Ve = Ven)?))

< ‘,f—g(fQ(IA — wp|? + | curl(A — wp)[* + [ div(A — wy)[?)
1/2
2 2
+ o (Ve = Qeul? + | grad(Ve = Qo))
where ko > 0 and Cy > 0 are the coerciveness and the continuity constant of B[, -],

respectively. Therefore, provided that {2 has no reentrant corners or edges and that the
solutions A and V¢ are regular enough, by means of well-known interpolation results
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we find the error estimate
(fQ(|A — Anl? + | curl(A — Ap)? + | div(A — Ap)[?)

1/2
+ Jou (Ve = Veu|* + | grad(Ve — VC’h)|2)) (6.89)
< Chmin(r,s) )

Remark 6.25. As for the Coulomb gauged problem (see Remark 6.6), convergence is
questionable if {2 is a non-convex polyhedron. In any case, the speed of convergence
of the finite element approximation depends on the smoothness of A and V¢, and the
smoothness of A cannot be high, as, due to the particular structure of the Lorenz gauge,
div A has a jump on I" (unless the electric potential satisfies Vo = 0). O

6.3 Other potential formulations

In this section we briefly present some other potential formulations that have been often
used in engineering applications (again, for the sake of definiteness, let us consider the
magnetic boundary value problem (1.22)).

Let us start from two that are strictly related: the first, proposed by Pillsbury [193]
(see also Rodger and Eastham [211], Emson and Simkin [100], Silvester and Fer-
rari [227]) is based on the potentials A and V¢ in {2¢, combined with a scalar mag-
netic potential 7 in {2; (and, when the topology of {2; is not simple, with an addi-
tional harmonic field in {27, as seen in Chapter 5); the second, proposed by Leonard
and Rodger [166] (for a similar approach see also Kameari [143]), is based on A¢
and V¢ in £2¢, on a vector magnetic potential A; in a suitable subset {24 \ 0c of
the insulator {2;, and on the scalar magnetic potential ¢; in {2 \ 24 (here, we have
assumed that the open connected set {24 satisfies 0Qc C Nyand 24 C N).

We refer to Section 7.1 for a presentation of the first method: there, to avoid the
technicalities required by the determination of the harmonic field, it is assumed that the
conductor {2 is simply-connected, the interface I” is connected and 27 = R? \Q_C

Instead, we describe here the second formulation, assuming that the auxiliary do-
main {24 is the union of a finite number of disjoint simply-connected domains with
connected boundary, and that the physical domain {2 is simply-connected with con-
nected boundary 0¢2. Note that these geometrical assumptions are not concerned with
the conductor (2¢, therefore they are not very restrictive for engineering applications.

In particular, as a consequence of these geometrical assumptions, in £2 \ 24 we
can write H;y — H, ; = grad ¢ s, the vector field H. ; being defined in (3.3). We thus
have

EC = 7Z'WAC - grad VC in QC
pH =curl A in 24 (6.90)

H; =grady; + H. 1 in2\ 4.

Setting I'4 := 0124, we have 9(2\ 24) = I'4US2. Inserting the Coulomb gauge
in the Ampere equation by means of the usual penalization argument, it is easily seen
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that the eddy current problem reads

curl(p=tcurl A) — p; !t graddiv A

+iwo A + o grad Ve = J, in 24
div(iwoAc + o grad Vo) = divl. ¢ in 2¢
div(p, grad¢r) = —div(p,He 1) in2\ 24
(iwocAc+ogradVe) -ng=Jec-nec+Jer-ny onl (6.91)
A nyg=0 only
(utcurlA) xny —gradyyy xng =H. 1 X ny onl'y
curlA -ng — prgradyr -my = puHer-ng onl'y
Y =0 on 012 ,

where V- is determined up to an additive constant in each connected component {2¢ ;
of 2c,j=1,...,pr+1.

The analysis of this problem has been performed by Acevedo and Rodriguez [1].
We briefly present here the main points of their proof of the existence and uniqueness
of the solution, and of its numerical approximation.

A couple of remarks are in order. First of all, the topological conditions (3.25)g
are satisfied: in fact, since div(wH) = 0 in {2 and {2 has a connected boundary, there
exists a vector field P such that curl P = pH in 2. Therefore, since {24 is the union
of a finite number of disjoint simply-connected domains, we have A — P = grad{ in
{2 4 for a suitable function &, and also

Ec = —iwA¢ —grad Vo = —iwPeo —iwgradéc — grad Vo in ¢ .

We thus have

Jo, iwpuHr-pp = [ iweurlPr-p; =~ [iwnc x Po-py g
= [rne x Ec - p;+ [pne x grad(iwée + Ve)] - pyg
=— [rEc xng-p 1+ [p(p; xne) - grad(iwée + Vo)
= ffp Ec xn¢-p;; — deiVT(pl’I X ne) (iwée + Vo)

—JrEcxng-p; Yi=1,...,nr,

as div,(p,; xng) =curlp, ; -ng =0on I

As a second remark, by adapting the arguments in the proof of Lemma 6.1 it can
be shown that div A = 0 in {24 and therefore that, through (6.90), a solution to (6.91)
indeed provides a solution of the eddy current problem.
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By integration by parts, and using the interface conditionsin (6.91), itis easily seen
that the weak formulation corresponding to (6.91) is

Find (A, Vo, ¢1) € Wa x H} (20) X Hj 5,(£2\ £24) such that
Jo, (pteurl A curl W + ;! div A divw)
+ch(iwaAc -W¢o +ograd Ve - We)
+fFA ny x gradyy - w
=Jo, Je-W— [p naxH W
ch(fo'Ac -grad Q¢ + iw~ ‘o grad Vi - grad Q)
= Z.W71 ch Je,C : grad%+ Z.wil f[v Je,] . HI%
fQ\Q_A py gradir - grad X7 — [, na x gradX7 - A
== fQ\Q_A prHe g - grad X7
for all (w, Qc, x1) € Wa x Hy (Q2¢) x Hg 50(92 \ 24),

(6.92)

where
W4 := H(curl; £24) N Ho(div; £24) ,

and, as in (6.14),
pr+1

H}(92c) = [ H'(2c;)/C.

Let us denote by A+[-, -] the sesquilinear form at the left hand side in (6.92). The
proof that it is coercive has been given by Acevedo and Rodriguez [1], and can be
also obtained by adapting the proof of the coerciveness of the sesquilinear form A[-, -]
presented in Section 6.1.2. In this respect, it is useful to note that

RGAT[(W, QC?XI)? (W, QC?XI)]
= [, (p eurl w - curl W + pi [ divw]?) + Jonay b grad xr - grad X7

and
ImAT[(wv QC?XI)v(wv Q07XI)] L
=w! [y, oliwwe + grad Qc) - (—iwwWe + grad Qc)
+2Im( [, na x gradxs - W) .

In Acevedo and Rodriguez [1] one can also find a detailed analysis of the numer-
ical approximation of (6.92) via Lagrange nodal elements. The convergence of the
approximation scheme suffers as usual if at least one of the connected components of
the domain (24 is a non-convex polyhedron (for similar remarks, see Section 6.1.3).
However, since {24 is an auxiliary domain that has not a precise physical meaning, in
numerical computations we can assume that it is the union of a finite number of dis-
joint convex polyhedral domains, assuring in this way the convergence of the Galerkin
finite element approximation scheme.

In is also worth noting that some numerical experiments described by Leonard
and Rodger [168] show that the computational efficiency of this approach is less than
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that of the schemes based on the introduction of “cutting” surfaces, like the methods
introduced in Sections 5.1 and 5.3.

Another potential formulation is the so-called (T ¢, ¢¢) — ¢ formulation (see, for
instance, Carpenter [74], Preston and Reece [197]). Let us describe it for the following
geometrical situation: the physical domain (2 is a “box” (namely, a bounded simply-
connected domain with a connected boundary 042), while the conductor (2¢ is a torus.
Consequently, the space of harmonic fields H,,, (0f2, I'; £21) has dimension 1, and as
usual we denote its basis function by p, ;. Let us also introduce a function Ry ¢ €
H (curl; £2¢) that satisfies R1,c x ng + py ; x nf =0on I'.

When considering the (T, ¥¢) — ¥ formulation, we are looking for T¢, ¥,
v and 871 € C such that

H;r —H. = gradyr + /31,1/01,1 in £2;
He —H.c = Tc + gradye + BriRic  inf2c,

with the interface conditions on I’

(6.93)

Toxng =0
d}C - ¢I =0 )

the vector field H, being defined in (3.5).
Let us first show that itis possible to satisfy the relations (6.93) and (6.94). From the
results in Section 5.1 we know that ¢ and (7 ; satisfying (6.93); are straightforwardly

determined from H; and H. ;. Imposing the Coulomb-like gauge conditiondiv T¢ =
0in £2¢ we also find T¢ as the solution to

{ curl Te = curlHe — He o — Sr1R1¢) in ¢

(6.94)

divTec =0 in ¢ (6.95)
TeXneg=0 onl.

Note that the solvability conditions for this problem are satisfied: in fact, first we have
diveurl(He —He o — Br,1R1,0) =0 in ¢,

and
curl(He — He ¢ — f11R1,¢) - ne
= —curl(H; —He s — Br1p11) - nr =0 onl.

Moreover, denote by pj - the basis function of the space of harmonic fields H(m; £2¢);
referring to the related results presented in the Appendix, we know that it can be writ-
ten as the (L*(£2¢))3-extension of grad pi ., where pi . is the harmonic function,
determined up to an additive constant, satisfying gradp - nc = 0 on I" and having
a jump equal to 1 through a section .S of the torus {2¢. Then one also has

JoocutlHe —He o = BriRic) - pic
= ch\S curl(He — He o — fraRa¢) - grad p
= [geurl(He — He o — 81,1R1,0) - ng
= fas(HC - He,C - ﬂ],lRl,C) -dt
= f(’)s’(HI - He,I - /61,1/)1,1) -dt
= [yggradey -dT =0,
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namely, the last compatibility condition on the data that has to be satisfied for solving
(6.95).
Having determined T, we find ¢ as the solution to

div(p gradyc)
=div[pe(He — He e — B11R1,c — Te)] in L2¢ (6.96)
Yo =; onl.

Itis easily shown that Ho — H. ¢ = T¢ +gradyc + Br,1R1,¢ in £2¢, as the left
hand side and the right hand side of this formula have the same curl, p-divergence
and tangential component; in conclusion, (6.93) and (6.94) are verified.

Let us write now the eddy current problemin terms of T¢, ¥ ¢, ¥r and B; ;. Setting

Eq- = a‘fl[curl(He,C +Teo + ﬂ[,lRLC) — Je’c] in ¢,

the Ampere equation in {2 is clearly satisfied, hence we only need to impose the Fara-
day equation in {2¢ and the Gauss magnetic equation in {2, plus the topological con-
dition (3.25)¢.

Take x € H(£2); since div(p;p; ;) = 0in 27 and prp, ;-0 = Oon I, we
have

/ kP r-gradx7 = 0.
27

Therefore the weak form of the Gauss magnetic equation reads (having multiplied by
w)

Joiwpgradiy - gradX + [, iwpcTe - gradXo

. - . o (6.97)
=— fQ iwpH, - grady — 811 ch iwpeRy o - gradXc .

Instead, the weak form of the Faraday equation in {2, where we have already
inserted the penalization term associated to the divergence-free condition for T, is
given by

ch o lteurl Te - curl vg + ot ch divTe divve
+ Joo iwncTe Vo + [ iwpe graddo - Vo
=— ch o teurlHe ¢ - curl ve — fBr 4 ch o~ tcurl Ry ¢ -curl v (6.98)
— Jop iwncHe o Ve = Bra [, iwpcRic - Ve
+ch o 1. ¢ curlvg,

where v € Ho(curl; £2¢) N H(div; £2¢) and o, > 0 is a dimensional constant (say,
a suitable average in (2 of the entries of the matrix o (x)).

Let us assume, for the time being, that the conductor (¢, instead of being a torus,
is a simply-connected domain with a connected boundary. This means that in (6.93)
the terms p; ; and R; ¢ disappear: formally, we can suppose that 37 ; = 0. Moreover,
also the topological condition (3.25)¢ has to be discarded. Hence, in this case we are
only looking for ¢ and T'¢, solutions to (6.97) and (6.98), where we have set 571 = 0.
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For a domain {2¢ as above, the Poincaré-like inequality

Jo. (|cutlve|? + |divvel]?)

¢ > Ko [, (Jcutlve|? + [divvel]? + [vel?) (6.99)

- QC

is satisfied for any vo € Hy(curl; 2¢) N H(div; 2¢) (see, e.g., Girault and Raviart
[111], Chap. I, Lemma 3.4). Then, by adapting the proof of the coerciveness of
the sesquilinear form A[-, -] presented in Section 6.1.2, it is not difficult to show
that the sesquilinear form at the left hand sides of (6.97) and (6.98) is coercive in
HL(2) x [Ho(curl; 2¢) N H(div; £2¢)]. Therefore the solution to the weak problem
(6.97), (6.98) is unique, and it is the right physical solution (¢, T ) obtained from the
eddy current solution through (6.93) and (6.94).

This fact has led some researchers to use the (T, ¢¥¢) —1; formulation for solving
the eddy current problem with assigned total current intensity: coming back to the case
in which £2¢ is a torus, we know that the current intensity I° through a section S of
¢ is given by |, gcurl He - ng, therefore, by the Stokes theorem, by I 9s Hr - dT.
Using (6.93);, we can write

19 = [y Hy-dr
- fas He-dt+ b fas pyg-dr (6.100)
= [osHe-dT £ 011,

where the sign depends on the orientation of 35 and on the choice of the basis function
p1,1- Hence it seems enough to insert this value of 35 1 in the right hand sides of (6.97)
and (6.98): as before, the problem has a unique solution, and it would appear that we
are done (in this regard, see also the formulation proposed by Reissel [205], reported
and commented in Section 3.3.2).

Instead, what is wrong is that the right value of 3 ; is not the one determined
in (6.100), but the one that allows us to solve (3.25)g, namely, as we have seen in
Section 3.3.1, the Faraday equation on the surface, contained in 27, that “cuts” the
non-bounding cycle 05S.

Indeed, we know that the solution of the eddy current problem (1.22) or (1.20) is
unique, therefore it is not possible to impose additional conditions, like, for instance,
the total current intensity through S. We will see in Chapter 8 which type of boundary
conditions and which type of geometrical configuration allow us to impose the current
intensity or the voltage (in particular, in Section 8.1.3 we will adopt the (T, ¥¢) — 11
formulation).

Let us now analyze the correct formulation of the eddy current problem in the case
in which {2¢ is a torus. The unknowns are T, ¢, ¥r and (1,1, and, beside equations
(6.97) and (6.98), one has also to impose the Faraday equation on the surface “cutting”
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05, namely equation (3.25)g. We have

JrEc xne-p; ;= [ Ecxne-Ric
=— ch curlEc - Ry o+ ch Ec - curl Ry ¢
= ch iwpcHe - Ry o+ ch o YeurlHe — J. ) -curl Ry ¢
= [, whcTc Ric+ [ iwpegradye - Ric
+0r,1 ch iwpcRi,c-Ric+ ch iwpcHe o - Ric

201

+ ch o leurl T - curl Ry ¢ + Bra1 ch o1 curl Ry ¢ - curl Ry ¢

+ ch o tcurlHe o -curl Ry ¢ — ch o .o cullRy .

Hence (3.25)¢ reads

0; ch iWHC'EC ‘Ric+0; ch iwp e gradz/;_c ‘Ri ¢
+B1,101 [g. iwpcRic - Ric+ Bra0r [, iwppy - pur
+0; ch o teurl Te - curl Ry o
+Br.10r ch o tcurl Ry ¢ - curl Ry ¢
=07 ch o . c-curlRy o —0r ch iwpcHe o - Rico
-0, ch o tcurlHe ¢ - curl Ry ¢ — e_lf(z[ iwpHe 1 - py g

for each 0; € C.
Thus the global problem can be written as

ch ot curl(Te + BraRac) - curl(Vg + 0rRy o)
+o.! [, divTe divve +iw [, pygradyy - grad X7
+iw [ (T + gradio + BriRa o)
(Ve + grad Yo + 0;R1 ¢)

+iw Br1 Efgl BiPi 1 P1I

= ch o J.c-curl(Va + 0:R1 )
— ch o teurl He ¢ - curl(Ve + 07Rq )
—iw [, mcHec - (Vo + 0/R1 )
—iw [ pH, - gradX — iwl; [, pHer-py;,

(6.101)

(6.102)

and we are looking for Tc: € Hy(curl; 2¢) N H(div; 2¢), 1 € H(£2), and also

Br,1 € C, taking the test functions v, X in the same spaces and 07 in C.

Let us denote by S(-, -) the sesquilinear form at the left hand side of (6.102). We

have
|RQS((V07X,9]), (V07X761))|
> Opax o lcurl(ve + 01R1 0)|2 + o7t [, |divvel?,

and

|II’l’lS((V07 X 6])7 (V07 X 0]))'

> |wlpmin [o, | grad x1|* + || pmin [, [Vo + grad xo + 0rR1 o

+Hwll0r® [, Py P
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where 0y,x is a uniform upper bound for the maximum eigenvalues of o (x) in £2¢
and [ty is a uniform lower bound for the minimum eigenvalues of p(x) in £2.

Proceeding as in the proof of the coerciveness of the sesquilinear form A[-, -] in
Section 6.1.2, we see that for each 0 < § < 1 we have

Jo |curl(ve +6:R10)|?
> (1-19) fa’Zc |curlve|? — (1 —6)510;]? fa’Zc |curl Ry ¢f?.

Similarly, for each 0 < n < 1 we find

Jo. Vo +grad xc + 01R1 |
> (1=n) [, leradxc|® =21 —n)n~" [, |vel?
—2(L=n)n"0r* [, Rl

Since the Poincaré-like inequality (6.99) holds, choosing 1 — 6 = 7,1 —n = 72 and
7 small enough it is now easy to prove that S(+, -) is coercive in

[Ho(curl; 2c) N H(div; 2¢)] x Hy(£2) x C,

and therefore problem (6.102) has a unique solution via the Lax—Milgram lemma.

Concerning the numerical approximation, the use of Lagrange nodal elements can
be a viable option. As usual for nodal finite elements (see Section 6.1.3), the conver-
gence of the Galerkin finite element approximation scheme can be ensured only if {2¢
is a convex polyhedral domain (which is never the case if {2¢ is a torus). However, we
want to mention that the analysis of the convergence in the case of smooth boundaries
012 and I can be found in Tsukerman [236].

In conclusion, in a general topological case (say, if {2¢ is a polyhedral torus) the
(T, ¥e) — 1 approach has some defects: if used as described in (6.102), the conver-
gence of the associated nodal finite element scheme is not ensured; if used prescribing
the total current intensity through a suitable section .S of the torus {2¢, it leads to a
wrong result since, as we have clarified before, the Faraday equation is violated on the
surface which “cuts” the non-bounding cycle 0S. This remark should sound interest-
ing, as sometimes in the engineering literature the use the (T'¢, ¥ ¢) — 11 approach
has been proposed particularly for the case in which {2¢ is a torus and the total current
intensity is assigned.

Remark 6.26. As usual, for numerical implementation it is better to replace the basis
function p; ; with the function A; introduced in (5.15). The corresponding variational
formulation is easily devised by proceeding as was done in obtaining (6.102). d

Remark 6.27. Instead of the Coulomb-like gauge condition divT¢c = 0 in {2¢, a
Lorenz-like gauge condition div T¢ + iwpucoyc = 0 in {2¢ has been also proposed
(see Tang et al. [232]). As for the (A, Vo) — A formulation, in general this approach
leads to a problem which is not positive definite, hence it does not seem to be the best
choice for numerical approximation. g
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Remark 6.28. For a non-simply connected conductor, Ren [207] has proposed a un-
gauged T — 1) formulation where the vector potential T is approximated by edge ele-
ments in {2¢ and by curl-free edge elements in a one-layer domain around the “cutting”
surface =7. The presented numerical results are in good agreement with the physical
problem; however, for ungauged vector potential formulations a complete analysis of
the convergence is not available (see also Remark 6.10). O

We conclude this section presenting another vector potential formulation, the so-
called (T¢, @¢) — A formulation, proposed by Biré and Preis [50], [51]. We assume
again, for simplicity, that (2 is a “box” and that {2¢ is a torus. The starting point is to
decompose the magnetic field H, known in {2, as

He =T +grad®c  in ¢, Hr = p; ' curl A7 in O, (6.103)

where T}, @ and A satisfy the interface conditions on I”

T*C ‘No = 0
o (curl T, — Je0)] x ng —iwA; xn; =0, (6.104)
and the gauge conditions
divTs =0 inf2c,divA; =0 inf2;, A;r-n=0 ondf2. (6.105)

The existence of T and ¢ satisfying (6.103)1, (6.104),, and (6.105); follows from
Theorem A.8, having replaced (2; with £2c and p; with Id. Then, proceeding as in
Section 3.2, in the present geometrical configuration it is easily seen that the solvability
conditions for determining A  are satisfied, and we conclude that there exists a unique
solution Ay of (6.103)s, (6.104)2, (6.105)2, and (6.105)s.

Clearly, from the Ampere equation the electric field in the conductor can be written

as
Ec =0 '(curl T, —J.c) in 0, (6.106)

and the following interface conditions on [ are also satisfied

& xne +gradPe x ne + (u;l curlAj) xn; =0

pueTq ne 4+ peograd®e -ne +curlAy-ny =0. (6.107)

Taking into account the Ampere equation in (27, the Faraday equation in {2¢, the
Gauss magnetic equation in {2, and using the interface conditionsit is easily seen that
for the functions T, $¢ and A thus determined the following variational formula-
tion holds

ch o~ teurl T - curl ve + ot ch divT; divve

+iw [, pe(TE + grad@c) - (Vo + grad7c)
+iw fQI pytcurl Ay - curl Wy + dwp ! fQI div A divwy (6.108)
+iw [(T& - W1 xnp — Ap xng-vg) '
+iw [p(curl A7 -n; e — P curl W7 - nj)

_ 1 — —
7cha' Je,c~curlvc+zwaIJe,1~w1,
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with ve € H(curl; 2¢) N Ho(div; 2¢), ne € HY(2¢)/C, w; € H(curl; 2;) N
Hy s0(div; £21). Here we have made use of the facts that T¢, xne-Wr = T§ - W7 xng
and that

/grad@cxnc~w_1:f/divT(w_IxnI)@C:f/curlw_1~n1450.
r r r

To our knowledge, it is not known whether the sesquilinear form Q(-,-) at the
left hand side of (6.108) is coercive or not. However, the solution can be shown to be
unique (@ ¢ up to an additive constant).

In fact, by choosing the test functions v = graduc, n¢ = —uc and wy = 0,
where Auc = divT§ in £2¢ and graduc - nc = 0 on I, from (6.108) it follows at
once that div T, = 0 in {2¢. Similarly, choosing ve = 0, 7¢ = 0 and w; = grad uy,
where Au; = divAj in 27, graduy - n = 0 on 92, and u; = 0 on I, we find
diVA] =01in Q].

Then one verifies that the terms

iw/(TE-A_IXHI*AIXHI'T—E%
r

and
iw/(curlAI n;®c — D¢ curl A7 -nj)
I

are real numbers, therefore setting J. = 0 in (6.108) gives at once T, + grad @ = 0
in 2c, and curl A; = 0 in {2;. From div T, = 0in £2¢c and T{, - nc = O on I" we
obtain that grad ¢ = 0 in {2¢, hence T = 0.

To conclude the proof of the uniqueness it is enough to note that problem (6.108)
has become

/A]XH[~W:0
r

for each test function v, therefore Ay x ny = 0 on I’ and thus Ay = 0 in {2;.
Though a finite element discretization based on this method has not been com-
pletely analyzed, this scheme has been used and has performed well in several numeri-
cal computations. The same can be said for a modified version, the (T}, &c)—A;—P;
approach, in which the magnetic field is written as Hy = H, ; + grad @ in a simply-
connected domain contained in {2; (see Biré and Preis [50], [51], Biré6 et al. [53]).



7
Coupled FEM-BEM approaches

In this chapter we focus on some procedures for solving eddy current problems that
are based on a strategy which couples the finite element method (FEM) and the bound-
ary element method (BEM). This kind of coupling allows the numerical approxima-
tion of the solution in unbounded domains, a typical situation in electromagnetism.
The boundary element method is used for the approximation in the complement of a
bounded domain: either the conductor {2¢ or else an artificial computational domain
2, containing {2 but in general not very large. Instead, in the bounded domain the
solution is approximated using the finite element method. Compared with the formula-
tions presented in the previous chapters, the coupled FEM-BEM approaches compute
the FEM approximation of the solution in a smaller region (say, the conductor), not
required to be so large that the use of homogeneous boundary conditions is justified.
This can be done because the BEM method takes into account the behaviour of the
solution in the external region.

The idea of coupling a variational approach in one region with a potential approach
in another region of the computational domain has been first proposed by engineers for
the Laplace operator (see, e.g., Zienkiewicz et al. [248], Jami and Lenoir [138]), and
then widely analyzed from the mathematical point of view, starting from the pioneer-
ing works of Brezzi and Johnson [66] and Johnson and Nédélec [141]. An important
improvement has been furnished by the papers of Costabel [85], [86], that, for ellip-
tic boundary value problems, show how to obtain a symmetric (or else to a positive
definite) problem. Extensions to the full Maxwell equations are due to Ammari and
Nédélec [25], [26].

Coming to the eddy current problem, the first FEM-BEM couplings have been pro-
posed by Bossavit and Vérité [62], [63] (for the magnetic field, and using the Steklov—
Poincaré operator) and Mayergoyz et al. [174] (for the electric field, and using special
basis functions near I"). A more recent result in FEM—BEM coupling, for axisymmet-
ric problems associated to the modeling of induction furnaces, is due to Bermudez et
al. [40].

The approach of Bossavit and Vérité [62], [63] has led them to devise a very pop-
ular numerical code, named TRIFOU, that has been often used in engineering com-

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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putations. A complete presentation of this approach can be found in Bossavit [59],
Sect. 8.2; we describe its basic ideas in Section 7.6.1.

Symmetric formulations a la Costabel have been proposed for eddy current prob-
lems by Hiptmair [127] (unknowns: E¢ in 2¢, H x n on I') and Meddahi and Sel-
gas [176] (unknowns: H¢e in 2, pH - n on I'), and are briefly presented in Sec-
tions 7.6.3 and 7.6.2, respectively.

The chapter begins with Sections 7.1-7.5, where we describe a FEM-BEM for-
mulation proposed by Alonso Rodriguez and Valli [19], based on a vector magnetic
potential and a scalar electric potential in the conductor, and on a scalar magnetic po-
tential in the external part. An approach in terms of magnetic vector potentials has been
also proposed for magnetostatics by Kuhn et al. [159] and Kuhn and Steinbach [160];
with respect to the choice of potentials, the presentation in Sections 7.1-7.5 is close to
these last ones.

The reader mainly interested in numerical approximation and implementation can
focus on problems (7.12), (7.30) and (7.31) ((A¢, Vo, ¢) formulation), on problem
(7.36) (TRIFOU formulation), on problem (7.42) ((H¢, A) formulation), and on prob-
lem (7.52) ((E¢, pr) formulation).

Let us focus now on a different aspect: not all the known methods devised for
studying the Maxwell equations are robust enough to be used, without any modifica-
tion, for both the time-harmonic case and the static case (namely, the case in which the
electric and magnetic inductions are assumed to be time-independent; in other words,
in the equations one has to set w = 0). In Sections 7.1-7.5 we show how one can
treat without distinction the cases w # 0 and w = 0. Moreover, the numerical approx-
imation there proposed is quite simple, since we use standard Lagrange nodal finite
elements in the conductor, while a cheap formulation based on boundary elements is
proposed in the external insulator.

Being simple, robust and cheap, this method can be therefore a suitable direct
solver for some inverse problems in electromagnetism, for instance in electroen-
cephalography (EEG) or magnetoencephalography (MEG) (see Section 9.2). In this
respect, though in many papers devoted to these topics only the static case is consid-
ered (see, e.g., Sarvas [220], Himildinen et al. [117]), recently some researchers have
focused on the time-harmonic case, which is a more precise model for describing the
electric and magnetic activities in the brain (see Ammari et al. [22]). Clearly, the static
case is much easier to solve, as, due to the irrotationality condition, one can reduce
the problem to the sole determination of a scalar potential of the electric field in 2¢
(a suitable Neumann condition on I is the correct boundary condition to add). How-
ever, in no way that simple approach can be extended to the time-harmonic case, as
irrotationality no longer holds.

In this chapter the geometrical assumptions on the conductor {2¢ are more restric-
tive than in the preceding chapters. In fact, we consider a bounded simply-connected
open set 2 C R®, with a Lipschitz boundary I" (for EEG and MEG applications,
¢ represents the human head). For simplicity, as in the preceding chapters we also
assume that 2; := R3 \Q_C is connected, so that " is connected, too. The unit outward
normal vector on " will be denoted by nc = —nj.
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As usual, we assume that the electric conductivity o and the magnetic permeability
1 are uniformly positive definite symmetric matrices in {2¢, with entries belonging to
L (£2¢). The electric conductivity o and the applied current density J. € (L?(R?))?
are vanishing in {2;. Moreover, the magnetic permeability g; and the electric permit-
tivity € are assumed to be a positive constant in {27, say po > 0 and 9 > 0.

7.1 The (A¢, Vi) — v, formulation

In the present situation the eddy current problem in terms of the magnetic field H and
the electric field E¢ reads (see (3.25))

curl E¢ +iwp-He =0 in 2¢

curlHe —oEc = J. ¢ in 2¢

curlH; =0 in 21

div(uoH;) =0 in 27 (7.1)
uwcHe ne +poHr ony=0 onl

He xneg+Hypxnyp=0 onl’

H;(x) = O(]x|™1) as x| — oo

If needed, but here we are not dealing with this aspect, the electric field E; can be
computed after having determined H; and E¢ in (7.1), by solving

curl E; = —iwpoH; in 21

diV(EoE[) =0 in Q]

E;xn;=—-Ecxne onl’ (7.2)
fF {:‘()E] Ny = 0

E;(x) = O(|x|™1) as |x| — oo .

Since {27 is unbounded, note that we have to impose the no-flux conditionon I”, though
it is a connected surface.

As proposed by Pillsbury [193], Rodger and Eastham [211], Emson and Simkin
[100], we look for a vector magnetic potential A, a scalar electric potential V- and
a scalar magnetic potential ¢); such that

pucHe =curlAc , Ec = —iwAc —gradVe , Hy = grad ¢ . (7.3)

In this way one has curlE¢ = —iwcurl A¢ = —iwp-He, and therefore the
Faraday equation in {2¢ is satisfied. Note that, in particular, when w = 0 one finds
Ec = —grad Vo, therefore for the static case the usual formulation in terms of a
scalar electric potential is recovered.

As usual, in order to have a unique vector potential A -, it is necessary to impose
some gauge conditions: here we are considering the Coulomb gauge divA¢c = 0 in
¢, with A¢ - ne = 0 on I'. Moreover, we also impose that

|1 (x)| = O(|X|71) as |x| — oo .
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In conclusion, we are left with the problem

curl(p' curl Ag)
+iwoAc +ogradVo =J. ¢ in ¢
AI/J] =0 in Q]
div AC =0 in QC
Ac -ng=0 onl’ 7.4
curl Ac - ne + po gradyr -ny =0 onl[’
(ualcurlAC) Xxng+gradyy xny =0 onl
or(x)| + | grad ()| = O(|x| ") as [x| — o0 ,

where V¢ is determined up to an additive constant.

In order to obtain a problem which is stable also in the case w = 0, and for
which Lagrange nodal finite elements can be used for approximation, it is well-known
(see, e.g., Coulomb [91], Morisue [180], Bird and Preis [49] and Chapter 6) that the
Coulomb gauge condition divAc = 0 in {2¢ can be incorporated as a penalization
term in the Ampere equation. Introducing the constant p,. > 0, that for physical con-
sistency can be chosen, for example, as a suitable average in {2¢ of the entries of the
matrix ft, one considers

curl(pg' curl Ag) — py !t graddivAc
+iwoAc +ogradVo =J. ¢ in ¢
AI/J] =0 in Q]
div(iwocAc + o grad Vo) = div. ¢ in ¢
(iwoAc +ogradVeo) -ne = Jec-ne on I’ (7.5)
Ac -ng=0 onl’
curl Ac - ne + po gradyr -ny =0 onl’
(ualcurlAC) Xxng+gradyy xny =0 onl
{61 (0] + | grad 1 ()] = O(|x]~1) as x| = 00,

the two additional equations appearing in (7.5) being necessary as the modification in

the Ampere equation does not ensure now that Ec = —iwA ¢ — grad V- satisfies the
necessary conditions div(cE¢) = —divJ. ¢ in 2¢c and cE¢ - ng = —J. ¢ - ne
onl'.

Moreover, taking the divergence of (7.5); and using (7.5)3, we have AdivAs =0
in {2¢, and, taking the scalar product of (7.5); by n¢, using (7.5)4 and (7.5)7, we find

pytegraddivAc -ne = curl(pteurl Ag) - ne
=div,[(u " curl Ac) x n¢| = —div,(grad¢; x ny)
= —curlgradyy -n;y =0 onl' .

Therefore div A is constant in {2¢, and this constant is 0 as a consequence of (7.5)s.
In conclusion, any solution to (7.5) satisfies divA¢c = 0 in {2¢, and thus (7.4) and
(7.5) are equivalent.
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7.2 The (A¢, Vi) — ¢ weak formulation

In this chapter we have assumed that p4; is a positive constant jp and we are looking
for a scalar magnetic potential ¢);. Therefore for determining this potential we have to
solve the Laplace equation in {2;. This allows us to use potential theory, transforming
the problem for v; into a problem on the interface I" and reducing in a significative
way the number of unknowns in numerical computations.

Referring for notation to Section A.1, it is well-known from potential theory (see,
e.g., McLean [175], Nédélec [187]) that we can introduce on I the single layer and
double layer potentials

S:H Y1) — HY*(I) , S(¢)(x) ;:/ :

e — &(y)dS,y (7.6)

D HVAT) — HVAT) . D)) = [ s ayne)ds,. @7

and the hypersingular integral operator
H:HY?(I') — H-Y(I) |

M) () = — grad ([ 255 - n(yne(v)ds,) ne) . 7Y

We also recall that the adjoint operator D’ : H~'/2(I") — H~'/?(I") reads

D00 = ([ 2 s, ) not . 19)

Am|x — y?
Since we have that Ay = 0in (2; and gradv; - n; = 7#—10 curl Ac -ngonl,a
first result is that the trace v, := vy satisfies
1 1
51/}[‘ —D(¢r)+ —S(curlA¢c -ng) =0 on I (7.10)
Ho
1 1
oY curl Ag -ng + —D'(curl A¢ - ne) + H(Yr) =0 on I (7.11)
Ho Ho

(see, e.g., McLean [175], Nédélec [187]).
As a second step, we can devise a weak formulation in terms of (A¢, Vo) — 9.
A standard integration by parts yields

/nlxgradw1~w—cz/wpcurlw—c~nc.
r r

Moreover, multiplying (7.5)1, (7.5)3 and (7.11) by suitable test functions (w¢, Qc, 1)
with wo - ne = 0 on I, integrating in {2 and I', and integrating by parts, from the
other matching condition

ugl curlAg X ng + grad¢y xny =0on I
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and the interface equation (7.10) we end up with the following weak problem

ch (potcurl Ag - curl W + py !t div Ac divwe)
+ ch (iwo Ao - We + o grad Ve - W)

+ fp[f%sz —Dr) + %S(Curl Ac -ng)|curl we - ne

= [ Je.c - W

ch (iwoA¢ - grad @ia‘ grad Vo - grad Q)
= [, Je.c - grad Qc
[p[tcurlAc -ne + D'(curl A - ne) + poH(yr)n=0.

We note that, for the ease of notation, as usual here above we have written the integra-
tion symbol on I” instead of the pairing between H~'/2(I") and H'/?(I"); the same

notation will be used in the sequel.

Since the hypersingular operator () is coercive in the constrained space
H'/2(I')/C, it is convenient to rewrite the preceding problem for test functions
n € H'Y?(I')/C, looking for ¢ € H'/?(I")/C, which differs from ¢/ by an addi-

tive constant.

We know that H(1) = Oand D(1) = fé (see, e.g., McLean [175], Nédélec [187]),
and that [, H(n) = 0 for each n € H'/?(I") (see, e.g., Nédélec [187], Theor. 3.3.2).

Hence H(vr + ¢o) = H(Yr),

*%(%ﬁr +co) = DWr +co) = *%%ﬁr —D(Yr),
and

[rl3culAc -ng + D'(curl A - n¢) + poH(¢r))

= [pl3curl Ac -ne +curl A -ne D(1) + poH(Yr)] = 0.

In conclusion, introducing the space
We = H(curl; 2¢) N Ho(div; £2¢)
we are looking for the solution of the following coupled problem

Find (Ac, Ve, q) € We x HY(2¢)/C x HY?(I")/C such that

ch (ual curl Ag - curl wg + p;tdivAc divwe)
+ ch (iwoc Ao - We + o grad Ve - W)
+ fp[féq —D(q) + M—loS(Curl Ac -ng)|curl we - ne
= [oodec W
ch (iwoAc - grad Q¢ + o grad Vi - grad Q)
= oo Je.c - grad Qc
[pldcurl A -ne + D'(curl Ac - ne) + poH(q)[ =0
for all (we, Qeo,n) € We x HY(2¢)/C x HY*(I")/C .

(7.12)
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Now we want to prove that from a solution to (7.12) we can construct a solution to
the strong problem (7.4). Let us note that the condition A - nc = 0on I in (7.4) is
already contained in the definition of the space Wc.

Lemma 7.1. Suppose that (Ac, Ve, q) is a solution to (7.12). Then divAc = 0 in
c.

Proof. Since ch divAc = [, Ac -ng = 0, we can consider the solution ve €
H'(£2¢)/C to the Neumann problem

A’UC = div AC in QC
gradve -nc =0 onl'.

Setting wo = grad ve, clearly we have weo € We. Using in (7.12); and (7.12)5 the
test function (w¢, veo) we find ch |divAc|? = 0, therefore div Ac = 0in 2¢. O

Concerning the interface equations (7.10) and (7.11) we have:

Lemma 7.2. Suppose that (Ac, Ve, q) is a solution to (7.12). Then

1 1
54~ D(q) + —S(curl A¢ - n¢) = const on I’ (7.13)
Ho
1 1,
—ocurlAc -nc+ —D'(curlAc -ne) +H(g) =0 on I (7.14)
240 )

Proof. Asalready seen, we have [, H(n) = 0foreachn € H'Y2(I')and D(1) = 7%’
thus
[pl3curl Ac -ne + D' (curl Ac - ne) + poH(q)]
= fp[% curl Ag -n¢ +curl Ag -ne D(1) + poH(g)] = 0.

Therefore equation (7.12); is satisfied not only for all € H'/?(I")/C, but also for
ally € H'Y/?(I"), and equation (7.14) follows at once.
Consequently, it is well-known from potential theory that we also obtain (7.13). [

We need now to introduce the single layer and double layer operators in the interior
of £2; (namely, the exterior of {2¢). For x € (2; we can define (see, e.g., McLean [175],
Nédélec [187])

Sy H Y2 - WHr) , S1(6)(x) ;:/ ! &(y)dS, — (7.15)

r4rx —y|
Dr: HY(I'))C — WY(2r)

o 7.16
Di(m)(x) i= [ 25 y(y)no(y)ds,,

where

W(82r) == {x1 € (C§°($21))’ |

(1+ |X|2)’1/2X1 € L?(92r),grad x1 € (L%(27))%} . (7.17)
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We conclude our argument by showing that:

Lemma 7.3. Suppose that (A, Ve, q) is a solutionto (7.12). In the domain (2 define
the function vy := Di(q) — ulo Si(curl A¢ - n¢). Then

ch (ual curl Ag - curlw_<*j +iwocAc - w_é + o grad Vi - w_é)

c _ 7.18
+fpncXgrad¢1~w2:fQCJe,c~w2 (7.18)
Sforall w§, € H(curl; 2¢). Therefore,
curl(ug1 curl Ag) + iwocAc +ograd Vo = J. ¢ in 2¢
AI/J] =0 in Q[
curl Ac -ne + po grad ¢y -ny =0 onl’ (7.19)
(ual curl Ag) X ng + grady; x ny =0 onl
[vr(x)] + | grad r(x)] = O(|x| ") as x| — 0o .

Proof. Well-known results of potential theory imply that ¢); is a harmonic function
with |17 (x)| and | grad 1 (x)| decaying at infinity as O(|x|~!). Moreover, ¢/ satisfies
the trace relations
1 1
Yrr = 54+ D(q) — %S(Curl Ac-ne), (7.20)

and
1
grady; -ny = H(q) + ,ugl ~3 curl Ag - ne + D' (curl Ag - nc)} (7.21)

(see, e.g., McLean [175], Nédélec [187]).
From (7.14) and (7.21) we see that the interface condition (7.19)5 is satisfied. More-
over, from Lemma 7.1, (7.12); and (7.20) we find that

ch (ual curl Ag - curl We + iwo Ac - Wo + o grad Ve - Wo)
— [ Y cullwWe - ng = ch Jeo WG .

Since we have — [ ¥ p curl Wg - ne = [ ne x grad+; - Wg, for each we € We
we have obtained
ch (ual curl Ag - curl we + iwoAg - W + o grad Ve - Wo)

_ _ 7.22
+fpnc><grad¢1~w0:fQCJe,C~wC. (7.22)

If w, € H(curl; 2c), consider the solution v}, € H'(£¢)/C of the Neumann
problem Avy, = divw{, in {2¢ with gradvf, - nc¢ = w{ - nc¢ on I. Setting
we = w§ — grad v, we have wo € W, and using it in (7.22) we obtain

ch (ual curl Ac - curlw_zkj +iwo Ao w_é + o grad Vg w_é)
+ [ ne x gradiy CWE
= ch (ual curl A¢ - curl We + iwo Ac - Wo + o grad Vi - We)
+ [-ne x gradyr - Wo
+ [ (iwoAc - grad v}, + o grad Vi - gradv;)
+ [pne x gradyy - grad vf,
= fnc Je,o-Wo + fnc Jec - grad% = fgc Je,o 'W_Z,
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having used (7.12), and the fact that

Jpne x grad ;- grad v, = = Jpdive(ne x gradir) vf
= — [pcurlgrade; -nyof = 0.

Taking a test function wi, € (C§°(f2¢))? and integrating by parts we verify that
(7.19); is satisfied; repeating the same argument for w}, € H(curl; £2¢), we see that
the interface condition (7.19)4 is satisfied as well. O

Remark 7.4. The function ¢ € H'/?(I")/C determined in (7.12) is defined up to an
additive constant. It is easily seen that, as functions in H'/?(I")/C, q and the trace on
I of the harmonic scalar potential ¥);, namely, what we have called 11, are the same
function. Indeed, from (7.13) and (7.20) we see that ) + const = q. O

7.3 Existence and uniqueness of the weak solution

In order to prove the existence and uniqueness of the solutionto (7.12), let us introduce
the following sesquilinear forms: for w # 0

A(wyéO) [(A07 VCv Q)v (Wc, ch 77)]
= ch (po' curl Ac - curl we + ppt div Ae divwe)
+iw™t [ o(iwAc + grad Vo) - (—iwWe + grad Qc)

7.23
+ [p[=37 — D(g)] curl We - nc e
+ [pl5curl Ag -ng + D'(curl Ac - ne)]7
+ fp[#—loS(curl Ac -ne) curlwe -ne + poH(q) 7],
and forw =0
Aw=o)(Ac, Ve, @), (we, Qe )]
= [o, (ug' curl Ac - curlwe + 2 ' div Ac diviwe)
+ [, (0 grad Vo - WG + fo grad Ve - grad Qc) (1.24)
+ =3¢ — D(g)] curlwe - ne .
+ Jplzcurl A -no + D'(curl Ac - ne)|7
+ fp[#—loS(curl Ac ne) curl we - ne + puoH(q) 7] -

These forms are obtained by adding the left hand sides in (7.12): however, in the case
w # 0 we have multiplied the second equation by iw ™!, obtaining A0y, -], while
in the case w = 0 we have multiplied the second equation by 3 > 0, to be chosen in
the sequel, obtaining A,—o) [, ‘]

The main result of this section is:

Theorem 7.5. The sesquilinear form A(,.)[-, | is coercive in the space Wg x
HY(2c)/Cx HY?(I') /C, uniformlyas w — 0; namely, there exists a constant . > 0,
independent of w, such that for each (wc, Qo,n) € We x H(2¢) x HY?(I') with
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Jo. Qe =0and [.1 =0 one has

|Awz0)[(We, Qe,n), (We, Qe,n)|
Z K fQC(|WC|2+ |CuerC|2+|diVWC|2) (725)

11 o, + X(@) [ (1Qcl? + | grad Qcl?) )

where the constant x(w) > 0 is equal to |w|~' in the case 0 < |w| < 1 and is equal
to w2 in the case |w| > 1.

Moreover, the sesquilinear form A,—o)-, | is coercive in the space W¢ X
H(02¢)/C x HY?(I')/C, namely, there exists a constant rq > 0 such that for each
(wo,Qe,n) € Wo x HY(2¢) x HY*(I) with [, Q¢ =0 and [ = 0 one has

|Aw=0)[(We, Qc,n), (We, Qe,n)|
> 1o [, (IWol? + | curlwo ? + | divwol?) (7.26)

I o+ Joo (1Qcl? + | grad Qe ?)) -

As a consequence, for each J. o € (L?(£2¢))3, existence and uniqueness of the
solution to (7.12) follow from the Lax—-Milgram lemma.

Proof. First of all, let us recall that the operators S and H are continuous from
H~Y2(I') into H'/?(I") and from HY/?(I") into H~/2(I"), respectively, and sat-
isfy

/FS(ﬁ)ZZ rillEll? 1o r /FH(W)WZ ralnl[3 2.0 (7.27)

foreach ¢ € H~Y/2(I')andn € HY/?(I") with [, 7 = 0, and moreover that the opera-
tor D is continuous from H1/2 (I) into itself (see, e.g., McLean [175], Nédélec [187]).
The sesquilinear form A 0|, -] satisfies

A(w;zSO) [(WC> Qc, 77)7 (WC> Qc, 77)]
= ch (pgt curl we - curl W + py | divwe|?)
+iw™! [, oliwwe + grad Qo) - (—iwWe + grad Qc)
+ [pl=51 — D(n)] curl e - nc
+ fp[% curl weo - ne + D' (curl we - ne)|y
+ fF[M—loS(curl we - ne) curlwe - ne + poH(n) 7] -

Since

/ D' (curlwe - ne)|7 = / D) curl we - ng,
r r

and
[—3n —D(n)] curl We - ne + curlwe - ne [%ﬁ + D(7)]
=—2¢Im ([%77 + D(n)] curl wg - nc) ,
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we have
Re A(wyéO) [(Wc, Qo 77)7 (Wc, Qc, 77)]
= oo (po' curl we - curlwe + py b divwe|?)
+ [plsS(eurlwe - ne) eurl We - ne + poH(n) 7],
and

Im A(‘*’?éo) [(Wc, ch 7’)7 (Wc, QC? 7’)] L
=w™! ch o(iwwe + grad Q¢) - (—iwwe + grad Q¢)
—2Im [[5n +D(n)] curl We - nc .

Hence, for a suitable constant x3 > 0, independent of w, we find

Re A(W¢0) [(WC, QCa 7’)7 (Wc, ch 7’)]

215

> r3( [o, (lcurlwe |* + [divwe |?) + || curlwe -nel | 5 o+ ||n||§/2ﬁp) ;

and moreover, taking into account that the operator D is continuous from H'/?(I")

into itself, for a suitable constant C; > 0, independent of w, we obtain

2Im [p.[5n + D(n)] curlWe - ne| < Ct|[nll1je,r || curlwe -nel 12,1

C C
< Gl o p+ Gl cwwe nell2y 5 -

Hence, proceeding as in the proof of the coerciveness of the sesquilinear form A[-, -]

in Section 6.1.2, we find, foreach 0 < 7 < 1,

Im A0y [(We, Qe, n), (We, Qc, )|
> qIImAwm[(Wc, Qc,n), (VZVC, Qc,n)l| ,
> 27wl omin Joo lerad Qc|? — 7lw|owmin [, [we|

C C
TSGR o, = T [eurlwe el 2o

where oy, is a uniform lower bound in £2¢ for the minimum eigenvalues of o (x).
Let us recall now the Poincaré inequalities (6.38) and (6.39): there exist constants

k5 > 0 and kg > 0 such that
Joo, lerad Qcl? > ks [, (| erad Qcl* + |Qcl?)
forall Qc € H'(02¢) with ch Qc =0, and

Jou( curlwe|? + |divwe|?)
> k6 [, (] curlwe|? + | divwe|? + |[wel?)

for all we € Wg. Coerciveness follows by choosing 7 small enough to have
T|w|Omin < K3ke and T% < kg. In particular, we have 7 = O(1) for 0 < |w| < 1
and 7 = O(|w|™!) for |w| > 1. Thus the constant & in (7.25) can be clearly chosen
independent of w, and the constant x (w) is O(|w| 1) for0 < |w| < 1 and O(w~2) for

|w] > 1.
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In the case w = 0, the sesquilinear form satisfies

Aw=o)[(we, Qe ), (we, Qc, m))
= Jo. (pot curl we - curl W + py | divwel?
+o grad Q¢ - Wo + Bo grad Q¢ - grad Q)
+ fp[f%n —D(n)] curl wg - n¢e
+ [p[3 curlwe - e + D' (curlwe - ne)|y
+ fp[ﬂ—loS(curl we - ng) curl wo - ne + poH(n) 7] -

We split |, 0 @ grad Q¢ - We into its real and imaginary part, and, for each 0 > 0and
suitable constants k7 > 0 and C'y > 0, we end up with

‘Re A(w:O) [(WC> Qc, 77)7 (WC'a Qc, 77)”
> I<L7(fQC(| curl we |2 + | divwe|? + 8] grad Q¢ |?)
+[| curl we 'nC||31/2,F + ||77||?/2,F)

—Cy6 1 ch | grad Qc|? — 5f!2c lwel?,

thus the conclusion follows by choosing ¢ so small that k7x¢ —0 > 0, and then (3 large
enough to have k73 — Co6~1 > 0. O

7.4 Stability as w goes to 0
We are now interested in showing that the solution to problem (7.12) is stable with re-
spect to w, namely, if we denote by (A, V¥, ¢) the solution to (7.12) corresponding

to the angular frequency w, we have (A%, V¥, ¢*) — (A2, V3, ¢%) asw — 0.

Theorem 7.6. There exists a constant K > 0, independent of w, such that for each w
with0 < |w| < 1, the solutions to (7.12) satisfy

Joo (|AE — A2+ |curl AL — curl AYJ?) < K w?
fQC(|V5’ — VEI2 + |grad V¥ — grad VI|?) < K w?
||qw - q0||?/2,p < Kuw? s

having chosen V&, VO, ¢* and ¢° such that [, V& = [, VO = 0and [1.¢* =
0
Jrd®=o.
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Proof. By linearity, the difference (Zc, No,p) == (A%, VE,¢%) — (AL, V0, ¢%)
satisfies
ch (po' curl Ze - curlwe + py b divZe divwe)
+ ch(inZC -Wo + o grad No - W¢)
+ [p[=3p—D(p )+ 7=S(curlZ¢ - ne)] curl We - ne
=~ [0, iwo AL - W (7.28)
ch(fo'Zc -grad Q¢ + iw o grad N¢ - grad Q)
= fn oA - grad Qo
[rl3eurlZe - ne + D' (curl Ze - ne) + poH(p)]g = 0
(here, we have divZ¢c = 0 in {2c by Lemma 7.1; however, we prefer to write every-
thing in terms of the sesquilinear form A,0)[-, ).

Therefore, from the coerciveness of A, 0|, -] and taking into account that 0 <
|w| < 1, from (7.25) we obtain at once that

ch(|Zc|2 + |curl Zg|? + | divZc|?)
+||p||1/2p+X ch |NC|2+ |gradNC| )
1/2 1/2
< wten [0l (S 1AP)*(fo 12cP?)

1/2 1/2

(f9c|A ) (ffzc grad N¢ |) }

<k leg|w|?art fQ A% + k™ cza21f90|A
Jr0‘1ffzc|zc| +042f9 | grad N¢|?

foreach a; > 0 and az > 0. Choosing vy = 1/2 and as = x(w)/2 = O(Jw| 1) (see
Theorem 7.5), we have that the left hand side in (7.29) is O(|w|). In particular,

/ (INc|? + | grad Ne|*) = [x(@)] ' O(|w]) = O(w?),

Nc

(7.29)

and
/(Ich2+|Curlzcl2+|dinc|)+||p||1/2rf O(|wl) -

Nc
Rewriting the first equation in (7.28) as

Joo (pc! curl Ze - curl Wi + pi ! divZc diveve)
+ [rl—3p — D) + L S(curl Z¢ - nc)] curl We - ne
= — o liwoZc WG + o grad Ne - W) — [, iwor AL - WG,

using (7.28)3 and proceeding as in the proof of Theorem 7.5, we obtain that the
sesquilinear form at the left hand side is coercive (with coerciveness constant Ky > 0
independent of w). Hence we have

oo (1Zol? + |unl Ze | + | divZo|?) + || curl Zo o2 1+ ([P35 1
_ 1/2 1/2
< Kq e[\l [, 1Zol? + ([o, |erad Nof2) ([, 1Zcl?)
1/2 1/2
Heol (S 1AL ( fop 1Zf2) 7]

1/2
= O(w?) + O(|w|) (fQC|ZC| ) < O(w?) +§fQC|ZC|2.
The result thus follows. O
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Remark 7.7. As we recalled in Section 2.3.1, an analysis of the asymptotic behaviour
of the solution of the eddy current model with respect to w — 0 has been presented in
Ammari et al. [23]. In particular they prove, by a formal asymptotic expansion, that the
electric and the magnetic fields solutions of the eddy current problem converge linearly
to the corresponding solutions of the static problem in the L?-norm. Expressing the
electric and magnetic fields in terms of A, Vo and vy, it can be easily checked that
Theorem 7.6 is in agreement with their result. g

7.5 Numerical approximation

In this section we deal with the numerical approximation of problem (7.12). In the
sequel we assume that {2 is a Lipschitz polyhedral domain, and that 7¢ 5, and 715,
are two regular families of triangulations of {2 and I, respectively. For the sake of
simplicity, we suppose that each element K of 7, is a tetrahedron and each element
T of 1, is a triangle; however, the results below also hold for hexahedral and rect-
angular elements, respectively. Let us note that the mesh induced on I” by 7¢ j, is not
assumed to coincide with 7 p,.

Let Px, £ > 1, be the space of polynomials of degree less than or equal to k. For
r > 1,s > land t > 1 we employ the discrete spaces given by Lagrange nodal
elements

We g = A{wen € (C°(020))?
| Wonk € (Pr)PVK€eT,, wonr-nc=0onI},

L, ={Qcn € C°(20) | Qong €Ps VK € Ton},

and
Ltr,h i={nn € CO(I) | nnr €EPeVT € Trp} .

Clearly, we have W7, , C We, Lg, ), C H'(¢) and Ly, C H'/?(I), therefore we
are ready to consider a conforming finite element approximation.
The discrete problem is given by

Find (Ac,n, Von, qn) € Wiy, X L, /C X Ltp’h/(C such that

ch (ual curl Acp, - curlwoy, + pytdivAc, divwe
+iwoAc,, - Won, +ogradVe, - Won)
+ fp[f%qh —Dlqn) + M—loS(curl Acp-ne)|curlwey, - ne

= Joo Jec-Wen (7.30)

Jo iwoAc, - grad Qc, + o grad Vo, - grad Q)
= [, Je.c - gradQc,n

fp[% curl Agp, -ne + D'(curl Agp, - ne) + poH(qn)|Tn =0
for all (we , Qc,n, nn) € Wi, x L, /C x L, /C.
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Existence and uniqueness of the discrete solution follow by the Lax—Milgram
lemma, applied in W¢, , x L¢, ,/C x L, /C.
We also have

Theorem 7.8. Assume that (2 is a convex polyhedron, or else that the solution
(A, Ve, q) is smooth enough. Then the discrete solution (Ac n, Vo.n, qn) converges
inWe x H'(2¢)/C x HY?(I")/C to the exact solution (A, Ve, q).

Proof. Let us start noting that, as proved in Lemma 7.2, (A¢,Ve,q) and
(Ac.n, Vo,n, qn) are solutions to problems (7.12) and (7.30), respectively, also for
all test functions n € H'/?(I") and 1y, € L%, . Similarly, it is obvious that (7.12) and
(7.30) also hold for all test functions Q¢ € H(2¢) and Q¢ € L¢ -

Therefore, finite element interpolants can be used as test functions, and, if the so-
lution (A, Vi, q) is smooth enough, the convergence follows by applying Céa lemma
and standard interpolation results.

If the domain 2¢ is convex, it is known (see Costabel et al. [89]) that smooth
functions with vanishing normal component are dense in W, and the same arguments
can be applied. ]

Remark 7.9. As noted in Remark 6.6, if {2 is a non-convex polyhedral domain it
can happen that the solution A is non-smooth, namely, not even an element of
(HY(02¢))3, and that H!(2¢) := (H'(2¢))? N Ho(div; 2¢) is a closed proper sub-
space of Wc. Since the finite element space W, ;, is contained in H 1(£2¢), in that
case a convergence result in W cannot hold. For non-convex domains, an alternative
approch is presented in Section 7.5.1. g

The determination of a precise order of convergence requires the knowledge of
the regularity of the solution: as usual, if (A¢, Ve, q) € H*1(2¢) x HE Y (020) x
H**+1/2(T), where the integer k > 1 is equal to 7 = s = ¢, the degree of polynomial
approximation, we have

(f_%(|AC —Acp? + |eurl(Ac — Acp)? + |div(Ac — Acp)[?)
1/2
+ o (Vo = Vol + | grad(Vo — Vo) ?) + [lg - (Jh||7“f/2¢p) =O0(h*),

having chosen Ve, Vi,n, ¢ and gy such that [, Vo = [, Vo, = 0and [q =
Jran=0.

On the other hand, in EEG and MEG applications a typical assumption for o, the
human head conductivity, is that it is a piecewise-smooth (but not globally continuous)
positivedefinite symmetric matrix. In this case, itis not clear if the solution is regular as
required above. In general, one could expect that the solution belongs to H 7 (02¢) x
H(0¢) x HY?+7(I) for some y with 0 < v < 1/2; however, we do not know a
proof of this result.

It is worth noting that the same difficulty arises if one assumes w = 0, namely,
one just considers the problem of electrostatics. In this case one has to approximate
the solution V> (determined up to an additive constant) of

div(o grad Vo) = divJ..c in 20
ogradVo -nc=Jcc-nc onl,
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and the regularity of V¢ is not easily determined for a piecewise-smooth positive defi-
nite symmetric matrix o . Therefore, also in this case the rate of convergence of a finite
element approximation scheme is not easily determined.

Concerning the behaviour with respect to the angular frequency w, in the discrete
case we can repeat the proof of Theorem 7.6 and obtain (with obvious notation):

Theorem 7.10. There exists a constant K > 0, independent of w and h, such that for
each w with 0 < |w| < 1, the solutions to (7.30) satisfy

fQC(|AuC}',h - A?j,h|2 + [curl AE, ;, — CurlAOC,h|2
+|div AZ , — divAOC’h|2) < K w?

Joo (IVE R = VELIP + |grad Ve, — grad VE, |?) < K w?

||q(f: - qg”?/z,p < Kuw? s

having chosen V&, V& ;.. ¢j; and g, such that ch V&, = ch VEa, =0and [, qf =
Ir a; = 0.

An important point of the above result is that the behaviour in w is uniform with
respect to h; it is not evident that this is true for other finite element approximation
schemes, as it is not always possible to show that the associated sesquilinear form
is coercive uniformly with respect to w (for our approach, this has been proved in
Theorem 7.5).

Remark 7.11. A delicate point of the discretization is the efficient computation of the
terms involving the single layer and double layer potentials and the hypersingular in-
tegral operator: an extensive literature is devoted to analyze this problem.

By integration by parts it is possible to restrict the problem to the computation of
terms of the form

1
p(y)q(x) dS,dS,
o g P00 45

or
/ =2 n(y) py)a(x) dS,dS,
rxr |X =Yl

where p, g are polynomials and 7', T" are triangles of the mesh 7. f T NT" = {)
the integrands are regular functions and standard cubature methods can be used. On
the other hand, if 7 = T’ or T'N 7" is an edge or a vertex the integrands have a
singular behavior. As indicated in Borm and Hackbusch [56], different techniques can
be applied to evaluate these terms. One possibility is to use quadrature rules adapted
to the singularity of the kernel (see Schwab and Wendland [224]). Another possibility
is to apply a suitable regularizing coordinate transformation that renders regular the
integrand, and then to use standard cubature formulas (see Duffy [98], Erichsen and
Sauter [101], Sauter and Lage [221]). Finally, semi-analytical approaches apply an
exact integration at least for the inner integral (see Sauter and Schwab [222], Gray et
al. [113]). O
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7.5.1 The non-convex case

As we noted in Remark 7.9, if the conductor {2¢ is a polyhedral non-convex set it
can happen that the convergence of the finite element approximation does not hold.
Therefore, it is suitable to follow an alternative approach.

We start by recalling that, when the conductor has a complex geometry, it is usual
to enclose it into a “‘simpler” set, and in this new region to look for a vector potential of
the magnetic induction. This procedure, that is generally called the (A ¢, Vo )— A —v;
formulation, has been described in Section 6.3.

In our case, we assume that the conductor {2¢ is included into a polyhedral convex
bounded open set {24, as small as possible. Setting now 27 := R3 \Q_A Iy := 0024,

W4 := H(curl; £24) N Ho(div; £24) ,
and denoting by n 4 the unit outward normal vector on I'4, the weak formulation reads
Find (A, Vo, q) € Wa x H'(2¢)/C x H'/?(I'4)/C such that

Jo, (pcurl A - curl W + pi ! div A divw)
+ ch (iwoAc -We + o grad Vo - Wo)
+ fFA[f%q —D(q) + #—{)S(curlA ‘ny4)|curl W-ny
= Joo Jec - WG (7.31)
ch(iwaAc -grad Q¢ + o grad Vi - grad Q¢)
- ch Je,C : grad%
Jr [seurl A-ny+ D' (curl A - na) + poH(q) =0
for all (w, Qc,m) € Wa x H(£2¢)/C x HY?(I'4)/C .

The results presented in Section 7.3, as well as those in Sections 7.4 and 7.5, can be
easily obtained also for this formulation, with essentially the same proofs. In particular,
the finite element approximation scheme converges, as stated in Theorem 7.8, since
the domain (24 is convex. All the details concerning this approach have been given in
Alonso Rodriguez and Valli [19].

7.6 Other FEM-BEM approaches

Among the FEM-BEM formulations that we mentioned at the beginning of this chap-
ter, in this section we briefly present those due to Bossavit and Vérité [62], [63], Med-
dahi and Selgas [176] and Hiptmair [127].

7.6.1 The code TRIFOU

The first authors who proposed a coupled FEM-BEM formulation of the eddy current
problem are Bossavit and Vérité [62], [63]. Based on this coupled approach, they have
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also developed a popular numerical code, named TRIFOU, widely used at Electricité
de France since 1980.

We recall that, for the sake of simplicity, we are assuming that 2¢ is simply-
connected and that 2; = R3 \ ¢ is connected, so that the boundary I" = 0(2¢ is
connected. As a consequence, as in Chapter 5 we can write H; = grad ;.

Asin (3.9), for each test functionv € H (curl; R?) with curl v = 0 in £2; we have

/ o lcurlHe - curl v + / wpH -V = / a'*lJe,C -eurlve . (7.32)
Qc R3 QC

On the other hand, writing v; = grad x; and remembering that ¢; is a harmonic
function vanishing at infinity, we find by integration by parts

Jo, iwnoHy - V7 = [, iwpo grad<r - grad X7

) _— 7.33
= [ iwpo gradpr -0 X7 - (7.33)
We introduce the linear and continuous Steklov—Poincaré operator R as
R:HY*(I') - HY*I') , R(xr):=gradx; -n; onl, (7.34)

where x 1 belongs to the space wi (£21) introduced in (7.17) and satisfies Ax; = 0 in
27 and x 7 = xr. We also set

W = {(ve, xr) € H(curl; 2¢) x HY/2(I')

7.35
|ve xne +grad_xr xny=0onl'}. (7:35)

We can thus rewrite the eddy current problem as

Find (H¢, ¢r) € W such that

ch o tcurlHe - curl vg + ch iwpcHe - Vo
+iwpo [ R(Ur) XT (7.36)
= ch o 1J.c curlvg

for each (v, xr) € W .

By the trace inequality (A.8) and the Poincaré inequality in W (§27) (see, e.g., Nédélec
[187], Theor. 2.5.13) we have

[ RO = [t e = ol
r 27
hence the sesquilinear form ar (-, -) at the left hand side of (7.36) is clearly coercive

in W, and the problem is well-posed.
If one is interested in finding also the magnetic field in {27, one has to set

b1 = Di(vr) — iSI(NcHC ‘no)

where the operators S; and D; have been introduced in (7.15) and (7.16).
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When considering numerical approximation we assume that {2~ is a Lipschitz
polyhedral domain, and we denote by 7¢ , a regular family of triangulations of {2¢
and by 7,5, the mesh induced on I” by 7¢ ;. We also suppose that each element K of
Tc.p is a tetrahedron. We consider

Wi == { (Ve xrn) € N&j, x COUL) [ xpnr €PLY T € Top,
von X ne +grad_xrp xnyr=0on I},

where N/, , is the space of Nédélec curl-conforming edge elements of the lowest order
in 2c (see Section A.2). .
Due to the constraint on I", any function (v i, X1,5) in W, can be clearly written

Voh= Y. @bt Y, apgrade, , Xrh= >

eeé'g’h vEVr,h vEVr K

as

where 58’ , s the set of edges e € 7¢  that are internal to 2c, Vr, is the set of
vertices v € 7T j,, and we have denoted by q. the edge basis function defined in {2¢
and associated to the edge e, and by ¢, the nodal basis function defined in {2~ and
associated to the vertex v.

For a suitable implementation it is necessary to find a sound and computationally
cheap approximation of the Steklov—Poincaré operator R. Recalling the definition of
the operators S in (7.6) and Sy in (7.15), we can write vy = S;(Ap) and ¢ = S(Ar),
where, as a consequence of well-known results in potential theory, A\ € H~'/?(I)
satisfies

1
grady; -ny = §>\F7,D/(>\[') onl
(see, e.g., McLean [175], Nédélec [187]). Passing to a variational formulation, we are
looking for ¢yp € HY/?(I") and A\ € H~'/?(I") such that
[rSOr)ér = [pvrér
[rR@r)XT = [pl5Ar = D'O\r)IXr

forall xp € H'/?(I') and ¢ € H-Y/2(I).
In matrix form we can write, with obvious notation,

SAr = Bl
Ry = %B]")\[‘ —D'Ar,

where the vector unknowns are complex-valued, while the matrices are real-valued (as
we can choose real-valued finite element basis functions). We also see at once that the
matrix S is symmetric and positive definite, hence we can rewrite

R= (%Bp - D’)S*lBIT .
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Unfortunately, this matrix is not symmetric, though the Steklov—Poincaré operator R
is hermitian. Therefore, in the TRIFOU code the following symmetric matrix

Rg:%m+Rﬂ

has been proposed as an approximation of the operator R.

Though a complete analysis of the convergence of the method is not available,
the TRIFOU code has been used in many engineering applications with satisfactory
results (for a deeper insight and additional comments, see Bossavit and Vérité [62],
[63], Bossavit [57]; in particular, note that the matrix R, may even happen to be sin-
gular: see Bossavit [59], p. 214).

7.6.2 An approach based on the magnetic field H-

In Meddahi and Selgas [176], following an approach that is close to that presented in
the preceding section, the authors choose as unknowns H¢ in 2¢ and p-He - ne on
I', and derive a symmetric formulation. Again we assume, for the sake of simplicity,
that {2¢ is simply-connected and that the boundary I" = 0f2¢ is connected (for the
general not simply-connected case, see Meddahi and Selgas [176]). Consequently, we
can write H; = grad ¢ .

As before, we obtain (7.32) and (7.33), and, using the interface condition
pueHe -ne + po gradyr -ny = 0 on I, we also find

Jo, iwpoHr - VT = [piwpo grad¢r - nr X7
= — [piwpcHe -ne X7

Furthermore, we can rewrite (7.10) and (7.11) as
1 1
J¥r —=D(r) + %S(NCHC ‘n¢)=0onl (7.37)

1 1
0 0

Thus, setting xr := x 111> WE easily find

fa’Zc o lcurlHe - curl vo + fa’Zc iwpcHe - Vo
Fiw [ol~bpcHe mo + D (peHe - no) + R XF - (7:39)
= fa’Zc o 1. curlvg,

and for any test function £ on I" we also have
1 1 —
/[-%ﬁr —DWr)+—S(ucHe ne)|£=0. (7.40)
r2 o

Let us set A := p1 'ucHe - ne. From the Stokes theorem for closed surfaces we
have \ € H[l/Z(F), where

Hﬁ”gqﬁ{geHﬂﬂUULAg:o}
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Moreover, as in Section 4.4, define
X¢ = {ve € H(eurl; 2¢) | div.(ve x ng) =0on I},

and set

Xr:={(ve xne)r|ve € Xc} (7.41)
Introducing the operator
Curlxpr :=grad x5 X ny

(see also Section A.1), it is straightforward to verify that Curl, xr € X r.
We have seen in Section 7.2 that D(1) = —1, so that

Jrl=ipcHe - ne + D (peHe -ne)] = o [[—2A+D/(V)]
= po [p[=3A + XD(1)] = —po [ X =0.

Moreover, it holds [, H(n) = 0foreachn € H/(I") and H(1) = 0, hence equation
(7.39) does not change if we add a constant to 1 and x . Instead, adding a constant
to ¢ we have

%(7/)1“ +co) = D(Wr +co) = %Zbr —Dr)+ co,

therefore equation (7.40) does not change if we choose the test function§ € Hy 12 ().
Meddahi and Selgas [176] proved that Curl, is an isomorphism from H'/2(I")/C
onto )Z’p. Since Ho X ng = —grady; x ny = —Curl, ¥ on I', in (7.39) we can
replace ;- and the test function y with Curl, ' (H¢ x ng) and Curl- ' (ve x ne),
respectively, and we finally obtain that the eddy current problem can be rewritten as

Find (Hc, \) € X¢ X Hﬁfl/z(]“) such that

ch o lcurl He - curl v + ch iwpcHe - Vo
+iwpo [;.[AX —D'(N)] Curl (Ve x ne)
+iwpo [, H(Curl ' (He x ne)) Curl; (¥ x nc)

ch o .o curllvg (7.42)

iwpo fr[f%Curl;l(Hc x n¢) 4+ D(Curl. ' (He x ne))| €

+iwpo fFS(A)g =0
for each (v, &) € Xo x Hﬁil/Q(F) .

Note that

iwpo [[3€ —D'(€)] Curl (Ve x ne)
+iwpo [,[—3Curl-! (ve x ne) + D(Curl;  (ve x ne))] €
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is a real number, namely, it is equal to
1 / —1/—
—2wiip Im ( [55 —D'(¢)] Curl, " (Vg x nc)) .
r

Moreover, taking into account that the operator D is continuous from H'/?(I") into
itself and that the operator Curl" is continuous from X - into H'/2(I")/C, it follows
that for each 0 < § < 1 one has

20wl | [[3€ — D'(€)] Curl, (V6 x no)
< elléll-1/2,r([vello.ac + | curlvello,ec)
< 8|l curlvell3 o, + CudHEN2 o+ Cellvell o -

Then, recalling (7.27) and adapting the proof of Theorem 7.5, by choosing § small
enough itis not difficult to show that the sesquilinear form a5 (-, -) at the left hand side

of (7.42) is coercive in )Z'C x H [ 1/ 2(F). Problem (7.42) is therefore well-posed.
Having solved (7.42), one can determine 7 in {27 by setting

Y7 = =Dy (Curl; '(He x ng)) — Sr(A) .

The numerical approximation needs some remarks, as a conforming discretization
requires that the finite element functions v j, satisfy the constraintdiv, (ve , Xne) =
0 on I'. Instead of introducing a Lagrange multiplier, as done in Section 4.5, here we
present an alternative approach, based on the explicit construction of a basis for the
space

)Z'C’h ={ven € Né’h | div,(ven, xne)=0on1'},

where N}, , is the space of Nédélec curl-conforming edge elements of the lowest or-
der (see Section A.2). Note that this construction could be used also for the approach
presented in Section 4.5.

As in the preceding section, we assume that {2¢ is a Lipschitz polyhedral domain,
and we denote by 7¢ 5, and 7, two regular families of triangulations of {2¢ and I,
respectively. We suppose that each element K of 7¢ j, is a tetrahedron and that each
element T" of 7, is a triangle. Let us also denote by 7 ;, the mesh induced on I" by
Tc s it is not assumed to coincide with 7. Finally, £2 ;, denotes the set of edges
e € T¢ , that are internal to {2¢, Vrj, the set of vertices v € 75,1, qc the lowest-order
edge basis function defined in {2¢ and associated to the edge e, and ¢, the piecewise-
linear nodal basis function defined in {2~ and associated to the vertex v.

Proposition 7.12. Let vy € I be a fixed vertex of Vr y,. The set
B :={qc|ec Sg’h} U{gradp, |v € Vrp, v # v}

is a basis of Xc p.
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Proof. Let us start by showing that the elements of B), are linearly independent. Sup-

pose that
Z Qeqe + Z ay, gradp, =0.
eeé’g N veVrh
) wrtog

Then on I" we have

O:( Z aeqe + Z avgradgav) xnC:grad( Z aﬂgaﬂ) X nge,

ec&l VeV h vEVP h
Cih vtvg vtvg
so that
§ Qypy = kgon I,
vEVP
wrtog

where kg is a constant. Since @, (vg) = 0 for each v # vy, we have kg = 0 and
therefore o, = O foreach v € V5, v # vg. Then we are left with Zeesg L QXeQe = 0,
which gives a, = 0 foreach e € 58‘,h~ ’

On the other hand, the inclusion gh C )Z'C,h is clearly true. Moreover, take
ve,n € )Z’C,h: since div,(ve,, X ne) = 0 on I, recalling that I" is simply-
connected it is possible to find a piecewise-linear function ¢r 5, defined on I", such
that grad_ ¢ X ng = ve,, X ne on I'. The function ¢, is uniquely determined
by requiring ¢, (vg) = 0. The extension of ¢, in {2¢, obtained by setting all
its internal nodal values equal to 0, will be denoted by ;. Clearly, grad ¢;, belongs
to the space spanned by the set of functions {grad v, |v € Vprn,v # vo}. Since
von, X ne = gradpp, X ne on I, it follows that (v, — grad ¢p,) is an edge element
belonging to the space spanned by the set of functions {q. | e € 58’ 1}, and the thesis
follows. ]

Thus we have a viable description of the finite element space )Z'C, n, and, since we
know that X¢;, C X¢, a conforming approximation scheme is readily devised. The

finite element space used for approximating functions in H t; 1/2 (I') is typically

Mry, = {&, € L*(I) |épr €POVT € Tryp, [ 60 =0},

and the convergence of the scheme is a straightforward consequence of Céa lemma.

It should also be noted that, in the implementation of the finite element scheme,
the inverse of the tangential operator Curl, does not appear. In fact, let bo € By, be
a basis function. If bo = q., one has bo X ncg = 0 on I';if b = grad ¢,, it
holds Curl,p, = —grady, X nc = —be X n¢ on I, thus in the finite element
approximation of (7.42) we can replace Curl_ ! (bc x ng) with —py .

To illustrate the performance of this method, let us exhibit some numerical results
presented in Selgas Buznego [226] for a couple of academic problems. In the first one
the computational domain is the cube 2 = (—1, 1)3, all the physical parameters are
set equal to 1, and the current density J. is computed starting from the exact solution
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Table 7.1. Absolute errors for He and )\ in the first example (courtesy of V. Selgas)

h |[He —HenllaEewsoq) 1A= Aullor «
0.7733 34.8247 0.3136 -
0.5330 25.0762 0.1634 0.8825
0.2989 14.0539 0.0257 1.0010
0.2337 11.4203 0.0131 0.8433

E = curl(f, f, f), where

=21 -2 - 22)* in e
&) '{0 1 i ’ inrzf:RS\Q_c.

In Table 7.1 and Figure 7.1 we report the absolute error and the convergence rate for
H and ) for different value of the mesh size h. We have defined

H(curl;Qc)/”HC - HC,hi+1 ||H(Cur1§Qc))
log(hi/hi+1) ’

h; and h;; 1 being the mesh sizes of two consecutive computations.
In the second example the conductor {2¢ is the torus given by

log(|[He — Hep,
Q=

0c:=[(-1,1) x (=1,1) x (=1/2,1/2)]\ (-1/2,1/2)°,
contained in the computational domain
2:=(-3/2,3/2) x (=3/2,3/2) x (—1,1)

(see Figure 7.2).

Absolute error
=
T
o

~
/@'( ©— Absolute error
10|.I L /
< , Lo

06 05

Fig. 7.1. Convergence rate for Hc in the first example (courtesy of V. Selgas)

0.3 0.2

1o 10
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Fig. 7.2. The computational domain {2 for the second example (courtesy of V. Selgas)

In order to avoid the technical difficulties arising from the fact that {2¢ is not
simply-connected, the variational formulation has been modified: to be precise, in
R3 \ 2 the usual approach based on the potential theory is used for reducing the con-
tribution of the magnetic field H; = grad ¢1 to suitable integrals on the boundary 0{2,
while the eddy current problem is solved in {2 by adopting the H-based formulation
described in Section 4.3.

Again, all the physical parameters are equal to 1, and the current density J. is
computed starting from the exact solution E = curl(g, g, g), where

0. [ —1x?* inBO1)
9 )'_{0 in 2 =R*\ B(0,1) ,

where B(0, 1) is the ball of center 0 and radius 1. Note that in 2\ ¢ the curl of
the magnetic field is not vanishing and consequently H is not the gradient of a scalar
potential, while this is true outside (2.

In Table 7.2 and Figure 7.3 the absolute error and the convergence rate for He and
A are presented for different value of the mesh size h.

Table 7.2. Absolute errors for He and A in the second example (courtesy of V. Selgas)

h IHe — Hen || 2 eurli2e) [IX = Arllo,r a
0.9299 56.1051 0.7107 -
0.6601 39.3998 0.1413 1.0315
0.4572 28.6757 0.0620 0.8651

0.3653 22.0725 0.0173 1.1663
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Fig. 7.3. Convergence rate for H¢ in the second example (courtesy of V. Selgas)

7.6.3 An approach based on the electric field E~

Another FEM-BEM approach can be devised if one keeps the electric field Ex as
principal unknown. Again, for the sake of simplicity, we assume that {2¢ is simply-
connected and that the boundary I" = 0f2¢ is connected. Starting from the Ampere
equation and inserting in it the Faraday equation, for a test function z that decays
sufficiently fast at infinity we find

—iw fQC cEc -Z2¢ —iw ch Jeo 20 = —iw [z curl H-Z
= —iw [ps H-curlz = [, ptcurl E - curl Z .

Since we know that /1, L curl curl E 1 = —iwcurl Hy = 0 in {27, we also have
/ yglcurlEpcurlﬂ:/uglcurlEI><n1~ﬂ,
.QI r

therefore we are left with

fs’Zc pgt curl Eic -curl zg + iw fs’Zc cEc -Z¢
+g fF curlE; x ny-z7 (7.43)
= 7”‘[!20 Je,C'%-

Let us go on without giving all the details about the functional framework, but just
presenting the main idea. Denote by R the vectorial Steklov—Poincaré operator given

by

R(q) :=curle; X n; on I,
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where q - n; = 0 on [ and ey is the solution to

curlcurle; = 0 in 21
div(eper) =0 in 21
n; xerxny=q onl (7.44)

IF gop€r -ny = 0
er(x) =0(x|71) as|x| — 0.

We thus have curl E; x n; = R(n¢ X E¢ X n¢) on I, and we can rewrite (7.43)
as
ch ual curl E¢ - curlzg + iw ch ocEq -z2¢
+uo " [pR(ne x B¢ x ne) - 21 (7.45)
= —w ch Je’c “ZC .

Bossavit [57] has extended the TRIFOU approach to this formulation, which is
based on the electric field. We do not dwell on this here, referring the interested reader
to the paper just quoted (see also Ren et al. [208]).

Instead, we present an alternative approach, proposed and analyzed by Hipt-
mair [127], which leads to a symmetric formulation (we also note that in that paper
no restrictive assumption on the geometrical shape of the conducting domain (2¢ is
imposed). First of all, as in (A.1), (A.3) and (A.4) introduce the trace spaces

HY*(I) = {(n x v xn)|ve(H(2)}

H 2 (divy; I') = {(ve x ne)r|ve € H(eurl; 2¢)},

and
H™'2(curl; I') = {(n¢ x ve x ne)r|ve € H(curl; 2¢)} ;

note that the last two spaces are one the dual space of the other.
Let us define now on I the vectorial single layer and double layer potentials

S (Hy (1)) — H*(D) (7.46)
S(P)(x) := Jr =g P(V)dSy
D:H 'Y?(curl,; ") — H'/?(curl,; I) , (7.47)
D(a)(x) == [ my X la(y) x ne(y)]ds, | '
the hypersingular integral operator
H:H 'Y2%(curl,; ") — H'/?(div,; ") |
H(@)(x) = —curl ([ 12555 * [aly) x ne(y)]dS, ) xne(o), 4
q Ea I In|x—y? qly cly y c )
and the adjoint operator
D/ : Xp — Xp ,
(7.49)

D'(p)(x) 1= (J; 525 X PY)AS, ) x ne(x)
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where the space X1 has been introduced in (7.41), and is given by the vector functions
p belonging to H~'/?(div,; I") and such that div, p = 0 on I".

In Hiptmair [127] (see also Reissel [205], Hiptmair and Ostrowski [129]) it has
been shown that these operators are continuous, and moreover that the solution E T
satisfiesng X Ef xneg =ne X Eg X n¢ € H’1/2(curlT;F), curlE; x nge € Xr

and also

%fpnchC><nc~ﬁ/7fFD(nc><Ec><nc)~ﬁl

= 7.50
+ [ S(curlEf xng) - p'=0  Vp'eXp, (750)

and
—/

%fpcurlEI xng-q + [ D'(curlE; x n¢) -

(7.51)
+ /-Hmne xE¢ xne)-@ =0 Vo € H Y?(curl; T) .

Setting pr := curl E; X n¢, the term on " in equation (7.43) can be written as

-1 — —1 — —1 —
o /curlE1><n1~z1:fuO /pp~z1:7u0 /pp~nc><zc><nc.
r r r

Therefore, inserting (7.51) in (7.43), we see that the eddy current problem can be for-
mulated as follows

Find (Ec, pr) € H(curl; 2¢) x X such that
ch ual curl E¢ - curl zg + iw ch ocEcq -z¢
*%uglfppr'nCXﬁch
+uo " [ D'(Pr) -ne x 2o x ne
+u61 fF Hnc x Ec X n¢g) - ne X Zg X ne (7.52)
= —iw fQC Je,C “Ze
%ualfpnchC ><Ilc~5/7,u071fFD(nC x Eo ch)~5/
+ug" [ S(pr) D =0
for each (z¢, p’) € H(curl; Q¢) x X .
Note that

—%fpp’~ncx%xnc+fFD’(p’)~nc><ﬁ><nc
—

+1 [rne xze xne P — [ D(ng Xz xne) - p

is a purely imaginary number, and it is equal to

1
2iIm(—/nC><zC><nC~§’—/D(ncxzcxnc)~ﬁ’).
2 Jr r
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Moreover, the boundedness of the operator D and the trace inequality for H (curl; 2¢)
(see (A.11)) give that, foreach 0 < § < 1,

|3 Jpne x zc xne P — [ D(nc x z¢ x nc) - Pl

< cllp'll =172 aiv, ) (I2ello,00 + [ curl ze lo,ac)

< dllzcll o0 + o0~ P 1312 aiv 5 F Csll curlza|[f o, -

div,;

Finally, in Hiptmair [127] it is shown that the operators S and H satisfies

/ H(nc X zc xng)-ng xzg xng >0, / S(p')-p > /<zo||p’||§{71/2(divﬂz) .
r r

Thus, adapting the proof of Theorem 7.5, by choosing § small enough it is not difficult
to prove that the sesquilinear form ag o (+, -) at the left hand side of (7.52) is coercive

in H(curl; 2¢) % X7, and we conclude that problem (7.52) is well-posed.
Having determined E¢ and pyr = curl E; X ng = iwwpugH; X nj, one can also
find the magnetic field in {2;. In fact, setting

S1(p)(x) = [

S — as, , xe 2,
P — p(y)dS, 1

Di(@)(x) 1= [ 7= x laly) x ne)lds, . x€ 2.

from well-known results of potential theory we easily obtain by integration by parts
the representation formula

E](X):D](Ec)fs](pp)fgradS[(E]~Ilc) , (753)

where the operator Sy has been introduced in (7.15). Then the magnetic field Hy =
—(iwpo) "t curl E; can be written as

H; = —(iwpo) ' (curl D (E¢) — curl Sy (pr)) -

Instead, since we do not know the value of the normal component E; - ng on I, the
electric field E; cannot be computed through (7.53), and one has to solve (7.2).

The numerical approximation is quite similar to that presented in Section 7.6.2. In
fact, Nédélec curl-conforming edge element of the lowest order can be used in 2¢;
instead, the conforming approximation of X is given by the space spanned by

{Curl; @, |v € Vrp,v# v},

where Vr, is the set of vertices v € 7 ;,, the mesh induced on I" by 7¢ 5, @, is the
piecewise-linear nodal basis function defined on /" and associated to the vertex v, and
v € I'is a fixed vertex of V.

In Hiptmair [127] the convergence of the approximation scheme, based on Céa
lemma and suitable interpolation estimates, is completely proved. Moreover, the dis-
crete problem is analyzed also when (2 is not simply-connected: this geometric situ-
ation has the drawback that the boundary element space for approximating X i is more
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complicated. Finally, some remarks on implementation are also added: in particular,
it is shown that the operators S, D and H can be expressed in terms of the analogous
operators constructed for the Laplace operator. For example, one has

/ S(Curl ¢ry) - Curl X1, = / H(Yrn) XTon
r r

JrD'(Prn) -ne XZon xng = [ prn - D(ne X 2o, X ne)
+ [ Iy Ty - mo(x) X Zah (%) X ne(X)[(pra(y) - ne(x))dsS:dS,

/H(nchC’thc)~nc><ZC’h><nC:/S(diVT(EC’hch))diVT(ZC’thc),
r r

where S, D and ‘H are the operators introduced in (7.6), (7.7) and (7.8), respectively.
Therefore, the techniques developed for Galerkin boundary element methods for the
Laplace operator can be used in this framework (in this respect, see also Remark 7.11).



8

Voltage and current intensity excitation

In many electromagnetic phenomena it is useful to couple formulations in terms of
electrical circuits with more general formulations based on Maxwell equations or on
some reduced model like the eddy current system. On the common interface between
the two models, the boundary data for the domain where the eddy current model is
considered are current intensities or voltages.

In its simplest configuration, in these cases the computational domain is a simply-
connected bounded open set (2. The conducting region {2¢, unlike in the previous
chapters, is not strictly contained in the computational domain and the region where it
touches the boundary of (2 has at least two disjoint connected components, the elec-
tric ports. Our aim is to model the electromagnetic problem in the case of an electric
current passing inside the conductor connecting the electric ports; this electric current
is imposed by assigning its intensity or a potential difference.

A critical point is which kind of boundary conditions can be considered outside
the electric ports. In fact, for certain boundary conditions the eddy current problem is
well-posed even if no additional condition like voltage or current intensity is imposed.
The same occurs, for any type of boundary conditions, in the case of a device where
the conductor is strictly contained in the computational domain. To overcome this
apparent contradiction it is necessary to focus on the modeling of the problem, and
devise a formulation for which it becomes possible to impose the voltage or current
intensity, but without giving up Maxwell equations.

In this chapter we propose a systematic approach to eddy current problems driven
by voltage or current intensity. In Section 8.1 we start by making precise for which
set of boundary conditions the voltage excitation and the current intensity excitation
problems in the presence of electric ports are well-posed. Then, following Alonso Ro-
driguez et al. [20], we present a hybrid approach in terms of the electric field in {2 and
the scalar magnetic potential in {2;. We also briefly describe two other approaches that
have been proposed for addressing the eddy current problem in the presence of elec-
tric ports (see Meunier et al. [177], Biré et al. [52], Bermudez et al. [45]). Finally, we
propose a finite element method for the approximation of the hybrid problem, obtain
the error estimates and illustrate the performance of the methods with some numerical
results. In Section 8.2, as in Alonso Rodriguez and Valli [18], we discuss how to take

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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into account voltage and current intensity excitation in the case of a conductor strictly
contained in the computational domain (a similar point of view can also be adopted
for the problem with electric ports, when subjected to electric or magnetic boundary
conditions on 92 N Jf2y).

To a reader interested in numerical approximation and implementation we suggest
to concentrate on problems (8.38) and (8.40) (voltage excitation), on problems (8.39)
and (8.42) (current intensity excitation), on Section 8.1.2 ((H¢, ¢7) formulation), on
Section 8.1.3 ((T¢, v*) formulation) and on Section 8.1.5.

8.1 The eddy current problem in the presence of electric ports

The computational domain is a simply-connected bounded open set 2 C R3, with
a connected and Lipschitz boundary 0f2. It is split into two Lipschitz subdomains, a
conducting region £2¢ and a non-conducting region £2; = 2\ {2¢; the latter is assumed
to be connected. The conducting region {2¢ is not strictly contained in (2, i.e., 2 N
002¢ # . For the sake of simplicity, we assume that it is simply-connected; for more
general geometrical situations, which could be more interesting for applications, see
Remark 8.8. As usual, we denote the interface between the two regions by I', while
the different parts of the boundary 0f2 are indicated by ['c = 92 N 0f2¢c and I'T =
082 N 02;. Moreover, we suppose that ['c = 'y U Iy, where 'y and I'; are two
disjointand connected surfaces on I ¢ (‘electric ports’). Therefore, with these notations
we have 02c = I'g UT'; U, 002 = I'1 U (see Figure 8.1).

Concerning the material coefficients, as usual we assume that the matrix g is sym-
metric and uniformly positive definite in {2, with entries belonging to L°>°({2), the
matrix e is symmetric and uniformly positive definite in {2, with entries belonging
to L°°(£2;), and the matrix o is symmetric and uniformly positive definite in {2, with
entries belonging to L°°({2¢), whereas it vanishes in {2;.

I I r J
! /‘/

2

— Q(__‘
A ; - F_,

I : -

S /
.

Fig. 8.1. The computational domain
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The eddy current equations as usual read

curlH—-ocE =J, in 2
curlE+iwpH =0 in{? (8.1)
diV(E]E[):O in Q] .

We want to model the electromagnetic problem in the case of an electric current pass-
ing along the ‘cylinder’ 2, and to impose this electric current as a potential difference
between ['r and Iy, or as a certain given intensity through ;.

A first point in the modelization is to require that the electric field is normal to
the boundary on the two electric ports, namely, Ec X nc = 0 on I'g U I';. Then,
following Bossavit [61], we consider the no-flux boundary conditions

Ecxnec=0 onlgUIYy
E]E[~Il]:0 OI’IFI (82)
pH-n=0 ondf?.

Since pH - n = 0 on 9{2, from the Faraday law one has div,(E x n) = 0 on 942,
which is a simply-connected surface; hence there exists a surface potential v € H'(2)
such that E x n = gradv x n on 92. Moreover E¢ x ng = 0 on I'g U Iy, then the
function v must be constant on I'g and I';. Since v is defined up to a constant, we can
take it equal to O on ['g.

In the voltage excitation problem, given IV € C we look for a solution of the eddy
current problem with the boundary condition

E xn=gradv x non 92, withvp, =V and v, =0, (8.3)
pluse;E; -n; = 0 on I'7 (in particular, all the conditions (8.2) are satisfied).

Remark 8.1. It is worth noting that the quantity V' is given by
V:/E~dr, (8.4)
27

where 7 is any curve lying on I'7 and joining the electric port I'g to the electric port I';.
Hence the voltage excitation problem can also be written as the eddy current problem
with the boundary conditions (8.2) and the additional condition (8.4). O

In the current intensity excitation problem, given I° € C we impose the eddy
current equations, the boundary conditions (8.2) and moreover

/ curl He -ne = I1°. (8.5)
Iy

We notice that the set of boundary conditions (8.2) allows us to assign the voltage
or the current intensity. This is not the case for other boundary conditions such as the
electric boundary condition

Exn=0 onodf2 (8.6)
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or the magnetic boundary conditions

Ecxng=0 onlgUlYy,
E]E]~Il]:0 OIIF], (87)
H1><n1:0 OIIF].

In fact, the following result holds:

Proposition 8.2. Let us consider the solutions H and E of the eddy current problem

curlH—-ocE =J,. in{?

curl E + iwpH =0 in (2 . (8.8)

The magnetic field H in (2 and the electric field E¢ in (2 are uniquely determined
Sfor each one of the boundary condition (8.6) and (8.7).

Proof. Assume that J, = 0 in £2. Multiply the Faraday equation by H and integrate
in £2. Integration by parts gives

0= J,curlE-H+ [,iwpH -H
= [(E-corlH+ [, iwpH H— [, ,Exn-H.

Recalling that curl H; = 0 in (27 and replacing curl Ho by o Ec we have

0:/ UEC-E_C+/iwuH~ﬁf Exn-H.
Q¢ 1) Yo}

It is clear that the boundary integral vanishes for both choices (8.6) and (8.7), and then
it follows that H = 0 and E~ = 0. O

If we repeat the computation here above with the set of boundary conditions (8.2),
writing Ec = o~ ! curl He we find

fa’Zc o 'curlHe - curlHe + [, iwpH - H
= [yogradvxn-H=— [, Hxn-gradv (8.9)
= [pocul H-nv = v, [, culHo -m.

In this case a degree of freedom is indeed still free, either the voltage v, or else the
current intensity | r, curl He - n.

8.1.1 Hybrid formulations in term of Ec and v}

In this section, following Alonso Rodriguez et al. [20], we introduce a weak formu-
lation of problem (8.8) with boundary conditions (8.2) and assigned voltage (8.3) or
assigned current intensity (8.5). It is a hybrid formulation since the main unknowns
are the electric field in the conductor and the magnetic field in the insulator (see Chap-
ter 4). The latter is decomposed as the sum of the gradient of a function in H'(§2;)
plus a harmonic field (see Chapter 5, in particular Section 5.3, where a formulation in
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terms of the electric field in {2 and of a scalar magnetic potential in (2; is devised for
the internal conductor case). When the input current intensity is given, this harmonic
field is uniquely determined, hence the unknowns of the problem reduce to the electric
field in the conductor and a scalar magnetic potential in the insulator. On the other
hand, when the voltage is given the unknowns of the problem are the electric field in
the conductor, a scalar magnetic potential in the insulator and the current intensity.

We recall the following orthogonal decomposition of (L?(£2;))? presented in The-
orem A.8: any given vector function v; € (L?(£2;))? can be decomposed as

vi = py eurl Qf + grad xj 4k,

with QF € H(curl; 1), x; € H'(27)/C and k} € H,,(m; 2;); in particular,
7=0ifcurlvy = 0in {25.

Since the conductor {2¢ touches the boundary of the computational domain in the
two electric ports, the non-conducting region {2; is not simply-connected; its first Betti
number, which coincides with the dimension of the space H,,, (m; £21), is equal to one.
Moreover, there exists one “cutting” surface =7 such that =7 C {27, 057 C 02; and
the open set {27\ =7 is simply-connected (see Figure 8.2). Let p} denote the solution
(determined up to an additive constant) of the following elliptic problem

div(p; gradpy) =0 in 2,\=Z;
prgradpy -ny =0 on 92 \ 055
[y gradp} -nz:]_. =0 (8.10)

=1

[pﬂ;; =1,

where [p7] =+ denotes the jump of p} across =7 and nz: denotes the unit normal vector
on =5. Then p} := grad pj is a basis function of H,,, (m; £27), grad p} denoting the
(L?(£2r))3-extension of grad p} computed in £2;\ =} (see Section A.4), and we can
choose the definition of the jump of p} on =7 in such a way that [ or, P1 -t =1,
where t is the tangential vector counterclockwise oriented with respect to n¢ on ;.
We also choose, for the sake of definiteness, the orientation of nz: on Z7 equal to that
of t.

We assume that the current density J. € (L?(£2))3 and, for the sake of simplicity,
in the sequel we also assume that J. ; = 0 in {27 (the general case is considered
in Remark 8.3). Therefore, it follows that curl Hy = 0 in {2; and as a consequence
H; = grad ¢} + K pj for some ¢} € H'(£2;) and K € C.

From the Stokes theorem

IO:/ curl He - ng = Heo  t = H t=K P t=K.
Iy ary ary ary
Hence, when the current intensity is assigned, the main unknowns in our formulation
are in fact E¢ and the magnetic scalar potential 17 only.

Computing the magnetic field from the Faraday equation and inserting it in the
Ampere law, we obtain

curl(ua1 curl E¢) + iwoEc = —iwJ. c.
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Fig. 8.2. The “cutting” surface

For each z¢ € H (curl; {2¢), by integration by parts one finds

1 . _ -1
ch e curl Ee - curlzg +zwaC oE¢ 70 — [ pe curlEg x ne - Zg
:fzwaCJe,Cmc.

From the Faraday equation and the interface condition
He xng+Hyp xnyp=0 onl’

one has that
ual curlEc x ng =iwH; xn;y onl,

therefore,

1 . . _
fQC Ho curlEC~curlzC+zwaC oEc -Z¢ —iw [ Z0c X ne - Hy

. L 8.11
:fzwaCchzC. ®.11)

On the other hand, multiplying the Faraday equation by a test function v; =
grad x5, with x5 € H'(£2;), by integration by parts one has

iw/ uIHpgradX_f:f/ curlEI~gradX_7:/ E; xny - grad x7.
2r 27 o021

Denoting by x* any extension of % in H*({2), from the interface condition
Ecxng+E; xn;=0 onl’
we have

f(,mI E; x ny - grad x
= [ooExmn-gradx* + [ E; xnj - grad X} ffFEUFJ Ec x nc - grad x*
=— [ Ec xn¢ - grad x7j,
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because div,(E x n) =0on 9f2 and Ec x nc = 0on ['g U I';. Hence
iw/ pH; - grad x§ = f/ Ec X n¢ - grad x5 . (8.12)
27 r

In a similar way, taking p7 as test function one obtains

iw/ uIH1~p}‘:f/ curlE1~p}‘:/ E; xnr-p7,
27 27 901

and denoting by R* any extension of pj in H (curl; §2) it follows

/ Elxnpp}‘:/ Exn~R*f/Ec><nc~p}‘.
a0r a9 r

Using that E x n = gradv X n on 02 we have

/Exn~R*:/ gradvxn-R* = — R*xn~gradv:/ curl R* nwv.
o0 o0 o0 a0

Since curl R} = curl p7 = 0in {27, v = V on I';y and v = 0 on I'g, using the Stokes
theorem on /'; we obtain that

/ curlR* - nv=V curlR* - nec =V pr-t=V.
o2 Iy ooy

Hence
iw/ ;I,IH]~/);:V*/E0XHC'/);. (8.13)
Q[ r

As we noticed before, H; = grad ¢} + I°p% where ¢; € H*(£27) and I° € C is
the current intensity. Moreover, this decomposition is orthogonal in the sense that

Jo, wi(grad v} + Kpp) - (grad X7 +Qpp)
= [o, by grad ¢} - grad X + KQ [, prp5 - P

for all ¥F, x3 € H'(£2;) and K, Q € C. Hence, from (8.11), (8.12) and (8.13),
multiplying these two last equations by —iw, we have that Ec and H; = grad v} +
I°p7 are such that for each z¢ € Hy . (curl; 2¢), x5 € H'(£2;) and Q € Citholds

ch (pg' curl Ec - curlzg + iwoEc - z¢)
—iw [ Zo X n¢ - grad Y} — iwI® JrZc x n¢ - p}
=i [oo Jec 20 (8.14)
—iw [ Ec x n¢ - grad x] + w? Jo, pr gradyy gradxi =0

—iw@ [ Ec xnc - p; +w?1°Q [, pyp;-p;=—iwVQ.

When the voltage V is given and the current intensity I° is unknown, these three
equations determine Ec, 17 and [ 0. On the other hand, when the current intensity
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19 is given, the first two equations are enough to determine the two unknowns of the
problem E¢ and 7. The voltage V' can be computed using the third equation.
In conclusion, the voltage excitation problem reads

Find (Ec:, 7, I°) € Ho 1. (curl; Qc) x H'(£2;)/C x C :

ch (ual curl E¢ - curl zg + iwoE¢ - Zo)
—iw [Z¢ X n¢ - grad ) — iwl® [.Z¢ X ne - p}
= —iw [, Jec ZC (8.15)
—iw [ Ec x nc - grad xj + w? Jo, 1y grad ¢ ~gradx} =0
—iwQ [ Ec xnc - p; +?1°0 [, pypi-p; = —iwVQ
for all (zc, x%, Q) € Ho, . (curl; 2¢) x HY(£2)/C x C,
while the current intensity excitation problem is given by

Find (Ec, ¢7) € Ho,r.(curl; £2¢) x HY(2r)/C :

ch (po' curl Eg - curl Zg + iwoEc - 7o)
—iw [ Z¢ X n¢ - grad¢;

. . _ 8.16
:fzwaCJe,C~zC+zwIOszc><nc~p7 (8.16)

—iw [ Ec x nc - grad xj + w? Jo, 1 grad ¢} - grad x7 = 0
for all (z¢, x%) € Ho ro(curl; 2c) x HY(27)/C.

If (Ec, ¢7) is the solution of the current intensity excitation problem then

V:/Ecxnc-p7+iwlo/ B p1-PI- (8.17)
r Q21

Remark 8.3. When J. ; is not vanishing, it has to satisfy the necessary condition
divJ.; = 01in §2;. Therefore, since the boundary of {2; is connected, there exists
a vector field H} ; € H(curl; £27) such that curl HY ; = J. ; in £2; (for its explicit
construction, see Section 5.4.1). We can thus repeat the arguments of this section for
H; — H! ; = grad ¢y} + I°p3.

In par’ticular, it can be easily checked that we have only to modify the right hand
sides of (8.15) or (8.16), (8.17). To be more specific, at the right hand side of (8.15)1,
(8.15)2 and (8.15)3 we have to add iw [ Wg x n¢ - Hj, —w? fs’h p H - grad xF and
—w?Q /. o, M H7 - p}, respectively. In a similar way one has to proceed for equations
(8.16), (8.17). O

In order to analyze these two problems, let us recall the sesquilinear form and the
anti-linear functional introduced in (4.3) and (4.5), respectively

C((wc, uy), (zc, V])) = ch (ual curl we - curlzg + iwowe - z¢)

+uw? fQI/,l,Ill]'V_jfiw[fFEXIlc'll]+fFWC X ne - vy
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L(z¢) = —iw ch JecZc;

moreover, define the antilinear functionals

Sv(V]) :
S]O (Zc) :

—iweoV [ MpPT VT
iwI® fpﬁ X ne - p7,

where V and I° are given complex constants and cg := ( /. o, M1 p;-pr)~ L. Recall that
any v € HO(curl; £2) can be univocally decomposed as v; = grad x} + Qp%, with
X; € H(2;)/Cand Q € C, and that grad x} and p} are orthogonal with respect
to the scalar product (uy, V[)#IA’QI = f(h prur - vy. Then for those v we have
Sv(V[) = 7iwva.

Using this orthogonal decomposition of H°(curl; £27), itis easy to see that problem
(8.15) is equivalent to the following one

Find (Ec, H;) € Ho . (curl; 2c) x HO(curl; £27) :
C((Ec,Hy), (zc,v1)) = L(zc) + Sv(vr) (8.18)
for all (zc, vy) € Ho r(curl; 2¢) x HO(curl; £2;),

whereas problem (8.16) is equivalent to

Find (Ec, v}) € Ho,r.(curl; 2¢) x H(£2;)/C :
C((Ec, gradyy), (zc, grad x7)) = L(zc) + Sro(zc) (8.19)
forall (z¢, x}) € Hor, (curl; 2¢) x HY($27)/C.

The antilinear functionals L(-) and Spo(-) are clearly continuous in the space
H(curl; 2¢), whereas Sy (-) is continuous in H(curl; £27). The sesquilinear form
C(-,-) is continuous in Hy_ r(curl; 2¢) x HO(curl; £2;); moreover in Theorem 4.1
we proved that it is coercive, hence from the Lax—Milgram lemma we have obtained:

Theorem 8.4. There exists a unique solution of both problems (8.18) and (8.19).

Proceeding as in Section 3.2, it is easy to see that the weak solutions Ec and H; =
grad ¢} + I°p% of problems (8.18) or (8.19), together with

He = —(iw) 'pg! curl Ec, (8.20)

furnish indeed a solution of the strong eddy current problem

curlEc +iwp-He =0 in 2¢

curlH — cEc = J, in {2

div(u;Hy) =0 in 27

Ecxng=0 onlgpUIlYy ®21)
pH - n=0 on 0?2

wHr -nr+pcHe -ng=0 onl,
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with in addition, for the assigned voltage problem,

/Ecxnc~p§+iw/ uH; - p; =V, (8.22)
I QI

or, for the assigned current intensity,
/ curlHe -ne = 1°. (8.23)
Iy

Remark 8.5. Taking into account that p} := gfr\zzl p7, where p7 is defined in (8.10), it
is easy to see that (8.22) formally corresponds to

/Ec~dT+iW/ /,l,]H]~Il5}f:V,
7 5

where ¥ = 0=57 N I, oriented from I'g to I';. Hence, if we find an electric field E;
satisfying the Faraday equation on the surface =7, we have

/E[~dT:V,
5

where 4 = 0= N Iy, oriented from the electric port I'g to the electric port I'y. O

Now we need to find the electric field E; in {2;. Clearly we have to solve
the Faraday equation curl E; + iwp;H;r = 0 in §2; and the interface condition
E; xn;+Ec Xxne =0on I', where H; and E- can be seen as given data. This
problem has infinitely many solutions, depending on the type of “gauge” conditions
we choose for E; (but none of these solutions has a vanishing tangential component
on 0f2: see Proposition 8.2). For instance, as we see here below, it is possible to solve
the following problem:

curlE; = —iwp  Hy in 21

diV(E]E]) =0 in Q[
E; xn;=—-Eg xng onl’ (8.24)
E]E]~Il]:0 OIIF],

that is similar to (3.13).
Theorem 8.6. There exists a unique solution Er of problem (8.24).
Proof. 1t is easy to see that the solution of (8.24) is unique since the space

He, (I, 1 21) = {vr € (L*>(21))?| curlv; = 0, div(e;vy) = 0,
ervi-ny=0onI}, vixny=0onIl}

is trivial in the geometrical situation under consideration. In fact, given a function
vi € He, (I, I'1; £2), one has curl vy = 0 in 27\ =7, that is a simply-connected
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subset. Hence there exists Uy € H'(£2;\Z7%) such that grad U; = v and

div(er gradUy) =0 in 21\=7,

er gradUy -my =0 on I\ 0=7,
Ur = k* on '\ 0=7, (8.25)
[UI]E; =c,

ler grad Uy - n[]E; =0,

x* and ¢* being constants. Since I' N =} # (), it follows that the constant ¢* must be
zero; therefore the unique solution of (8.25) is Uy = x* and consequently v; = 0.

The existence of the solution to (8.24) can be proved as in Theorem 3.3, noting
that, similarly to what shown here above, the space of harmonic fields

H(Iy, I 2p) == {vy € (L*(21))3| curl v; = 0, divv; =0,
vi-ny=0on/l, vy xn;=0onI}}

is trivial. O

This ends the proof of the existence of a solution to the current intensity excitation
problem (8.1), (8.2) and (8.5): it is enough to take the solution (E¢, ¢}) of problem
(8.19), H;y = grad ¢} + Iop}‘, He = f(z‘w)’lual curl E¢ and the solution E; of
problem (8.24).

Concerning the voltage excitation problem, one takes the solution (E¢c, Hy) of
problem (8.18) (or, equivalently, the solution (E¢, 97, 1°) of problem (8.15), with
H; = grad ¢} + I°p%), He = —(iw) ' pug' curl E¢ and the solution E; of problem
(8.24). Since with this choice the Faraday equation is satisfied in all of {2, we obtain
that

div,(Exn)=curlE-n=—iwpgH -n=0 ond?,

hence E x n = grad U x n on 02, where the boundary potential U is constant on Iy
and vanishes on I 5. By proceeding as was done for obtaining (8.13) it is readily seen
that E¢ and Hy satisfies (8.13) with V replaced by U, . Comparing this last equation
with (8.15)3 it follows U| -, = V, hence (E, H) satisfies (8.1), (8.2) and (8.3).

Remark 8.7. Let us underline an important difference between the eddy current prob-
lem for an internal conductor (with magnetic or electric boundary conditions) and the
eddy current problem with the electric port boundary conditions (8.2) and assigned
voltage (8.3) or current intensity (8.5). In the former case the spaces of harmonic fields
H,., (012, I; £21) (relevant for the magnetic boundary conditions) or H,,, (m; £2r) (rel-
evant for the electric boundary condition) are non-trivial, therefore the strong form of
the eddy current problem in terms of the magnetic field H contains the topological
conditions (3.23)y4, (3.23)5 (for the magnetic boundary conditions) or (3.42), (for the
electric boundary condition). In the electric port case with the no-flux boundary condi-
tions the space of harmonic fields H,,, (I, I'; {2r) is trivial, therefore no topological
conditions are present in the strong formulation in terms of H: one has only to im-
pose the Faraday equation in {2, the Ampere equation in {2 and the Gauss magnetic
equation in (2. g
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Ie

Fig. 8.3. A conductor which is not simply-connected

Remark 8.8. The two formulations (8.18) and (8.19) can be adapted to the case of
a connected but not simply-connected conductor {2 with two electric ports 02 N
0f2 = I'y U I'y (see Figure 8.3). In this case the space H,,, (m; £27) has dimension
ng, > 1, the first Betti number of {27, or, equivalently, the number of independent
non-bounding cycles in §2;. Given a basis of H,,, (m; 2r), {p},. 7heer any function
vy € HO(curl; £27) can be written as v; = grad x} + 3.} Qap, 1 for some x7 €
H'(27)/Cand Qo € C, o = 1,...,ng,. If the basis functions p?, ; are suitably
chosen, we can find ng,, connected orientable Lipschitz surfaces {I',c, ..., In,,,c}
contained in {2¢ such that v, := 0T, ¢ are independent non-bounding cycles in 27
for which

/ Por t=0ap, a,f=1,...ng
v8

(see, e.g., Hiptmair and Ostrowski [128]). Since the magnetic field H; can be written
as Hy = grad ¢} + > .20 K, P, 1» from the Stokes theorem we have

Ka:/ H1~t:/ Hc~t:/ curl He -n, = 10,
I'n,c

o o a4

where n,, is the unit normal vector to I, ¢ such that t is counterclockwise oriented
with respect to n,, on I’ . The quantity 10 is the current intensity through the surface
I'yc.

Multiplying the Faraday equation by the function pj; ; and proceeding as in the
case of a simply-connected conductor, we obtain

’iw/ uIHrpE,I:V/ pZ,1~t—/Ec><nc~pZ,z~
2r or'y I
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So we have obtained that Ec and Hy = grad¢f + Y021 Igp;l are such that for

each z¢ € Ho r(curl; 2¢), x5 € H'(£27) and Q € C™?1 it holds
ch(ual curl E¢ - curl zg + iwocEc %T)l
—iw [ Zc x ne - grad ¢ —iw .0 IS [ 7o x e - Pl
= —iw ch Je,C “ZC

) bV — 8.26
—iw [ Ec x n¢ - grad X} + w? fQI p; grad ¢} - grad i = 0 (8.26)
—iwQp [ Ec xne - pjr + Wiaﬁ S ali I0 [o, b1 P s Ph

= 7Z.wQﬁvfa['J p;;A,I -t ) vﬂ - 1, . .,HQI .
On the other hand, if £2c has ¢ connected components {2¢ ;, j = 1,..., g, each

one with two electric ports, then there are ¢ different voltages V;. In fact, on 02 we
have E x n = gradv x n, and, setting 0f2¢c ;N 9S2 = I'; ;UI'g j, with I';; and I'g
disjoint and connected surfaces, we have vy, = le and v I, = Vjo, where le and
Vjo are complex constants; then the voltages are defined as V; = le - Vjo.

Multiplying the Faraday equation by pj ;, abasis function of the space H,,, (m; £21),
by integration by parts one has

Z(.U/ IJ’IHI'p;;J:/ EIXUI'PEA,[:/ EXII~RZ;7/ECXIIC'pZ;J,
Qr a0 a0 r

where R} is any extension of pj; ; in H (curl; §2). Moreover

Joo E x n-Rj = fagcurlRE~nv
= Z?Zl (le fFM_ curl R - ne + Vjo fFE,,- curl Rj 'Ilc)

=1V fFM_ curl R - nc
_ N4 *
= 225=1Vi Jor,, Port

since, denoting by I'; = 0£2¢; \ (I'y; U I'e ;), from the Stokes theorem for closed
surfaces we have

I curlRj - n¢
E,j
= fafzc,j curl R} - n¢ — fFM_ curl R -ne — fF,- curl R - n¢
= —fFM_ curl R - n¢ — fF,- curl pfy ;- o = *frj’j curl R - nc .

So, the third equation in (8.26) becomes

fiu@ﬁ fp Ec x HC;PEJ + WQ@Q 22211 Ig fQI 1295 P;I 'Pfu
= —iwQg zgzlvj faFJ,,- Pt VB=1,....nq,.

In the voltage excitation problem the ¢ voltages V; are given; the unknowns of
the problem are the electric field in the conductor, the function 17 appearing in the
orthogonal decomposition of H; and the n, intensities 9.

In the current intensity problem the n,, current intensities I are given and there-
fore the unknowns of the problem are the electric field in the conductor and the function



248 8 Voltage and current intensity excitation

7. For this problem the ¢ voltages V; can be then computed in the following way: for
eachj=1,...,q,let pz(j) ; be a basis function of H,,, (m; £2) corresponding to a
non-bounding cycle y3(;y = 0I3(;y,c such that I'g(;) ¢ C {2¢c ;. For this basis func-
tion one has in particular that fan, ' pZ(j) ;-t=0fors=1,...,q,5# j. Then

_ JrEe xnc - pl g +iw alh I8 Jo, b1 Pl Py

V; ;
J t

fc’)FJ,j pZ(j)J '

and this value depends on j but not on the choice of 5(j), as it can be checked that it
is equal to the line integral of E on a curve lying on 042 and connecting I’z j to I'; ;.

Let us also note that, when {2¢ has ¢ > 1 connected components, the electric field
E; determined in (8.24) is not unique, unless one also requires that f r,€ Er-ny=0

foreach j =1,...,q— 1.
For the sake of simplicity, in the following we limit ourselves to the case of a
simply-connected conductor. g

8.1.2 Formulations in terms of Ho and 7

In this section we follow Bermudez et al. [45]. We again assume that J. ; = 0 in
21 (otherwise, we can proceed as in Remark 8.3). If E and H are the solutions of the
eddy current problem subject to voltage or current intensity excitation, whose existence
and uniqueness have been proved in the preceding section, multiplying the Faraday
equation by a test function v* satisfying curl vi = 0 in £2; and integrating by parts

we find
/Ec~curlﬁ+/iwuH~W7/ Exn-v¥=0.
o) o) a9

Knowing that E x n = grad v x n on {2 we have
JooExn-v¥= [ gradvxn-v:=— [, gradv-v¥ xn

= [yovdivi(vi xn) = [joveulvi-n=V [ curl v - m.

Moreover, we can write vi = grad x} + Qp} in 27, where x5 € H'(£2;)/C and
@ € C, hence from the Stokes theorem we obtain

Jp, curlve - n = fam%'t_: faFLV_?'t _
:faFJgradxj-t+QfapJp7-t:Q.

In conclusion, recalling that H; = grad 1)} + I°p% in (2; and that
Ec = o !(curl Hp — Je.0)
in £2c, we have seen that He, ¢7, T Oand V satisfy

Joo (o™ eurl He - curl v, +iwpcHe - vE)
+iw [, prgrad vy - gradxy +iwl®Q [, upi-p; —VQ  (827)
= fa’Zc o' J. o curlvy
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for each v}, € H(curl; 2¢), x5 € H'(£2;) and Q € C satisfying
v Xne+gradx; xnr+Qp; xny =0 onl'.
When the current intensity /° is given, one has to solve

Find (He, ¢}) € W*(1°) such that

Jo, (@7  curlHe - curl v, + iquHiﬁ)
+iw fiQI py grad 1)y - grad xj (8.28)
= ch o J.ccurl vy

forall (vi., x7) € W*(0).
where

W(Q) := {(v&, x7) € Hcurl; Q0) x H($21)/C]
vi xne+gradx; xny = —Qpf xnronl'}.

Itis easily seen that for each I° € C the set W* (1) is non-empty: in fact, it is enough
toset X7 = 0 and choose for v, a vector field in H (curl; £2¢), continuously dependent
on 1Y, with v xng = —1 0 p7 xnyonI'. Moreover, the sesquilinear form at the left
hand side of (8.28) is clearly coercive in W*(0), thus there exists a unique solution to
(8.28).

Having determined H¢ and 17, the voltage V' is obtained by setting v, = Hc,
X5 =% and Q = I° in (8.27), namely,

v=10" ch (o~ LcurlHe - curl He + iwpHe - He)
. 751 * E . * *
+iwl® [ ppgradyi - grad; +iwl® [, prpi- pi
! ch o 'J.c-curlHe .
Instead, when the voltage V' is assigned one has to consider

Find (Hc, ¥, I°) € W** such that

Jo, (0 curl He - curl v, + iquHiﬁ) B
+iw [g, prgrad gy ~grad x7 + WwI®Q [, w7 -p; (829
= ch o Jec-cull vy +VQ

for all (vi, X}, Q) € W™,

where

W = {(vE, X3, Q) € H(curl; 2¢) x H(£27)/C x C|
Vi Xne+gradxt xnr+Qpy xny =0onl}.

Again, the sesquilinear form at the left hand side of (8.29) is coercive in W**, thus
ensuring existence and uniqueness of the solution.
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For a more detailed presentation of the (H¢, 1}) approach and of its finite element
approximation we refer to Bermidez et al. [43], [45]. Here, we only note that the con-
strainton I that is present in the definition of W* (1), W*(0) and W ** has to be kept
at the finite dimensional level, and this leads to the requirement that the meshes in 2¢
and {27 match on I, and that the finite elements satisfy the constraint. These technical
aspects are also described in Section 5.4.2.

Remark 8.9. The voltage excitation problem is also addressed in Hiptmair and Sterz
[130]. As in Bermudez et al. [43], [45], the problem is written in terms of the mag-
netic field, and then the electric field is computed by imposing a different boundary
condition; more precisely, it is assumed to satisfy

E xn=Vgradvxn ondf?,

where v € HY/2(882),v = 1on I';,v = 0on 32\ (I'; UO), and O is a transition
zone around [';. In particular, E X n = 0on 92\ © and E x n # 0 on ©. Thus the
model depends on the choices of the set © and the function v, and it can be seen that,
though the magnetic field does not depend on © and v, the electric field does depend
on them.

The current intensity excitation problem is also considered in Hiptmair and Sterz
[130], and it is formulated in terms of the electric field; again, the solution depends
on the choice of © and v, and, moreover, a complete analysis of well-posedness is not
furnished. O

8.1.3 Formulations in terms of T~ and ¢*

In this section we present a formulation proposed by Meunier et al. [177], Biré et
al. [52]. We assume as before that J. ; = 0 in {27 (otherwise, one can proceed as in
Remark 8.3); therefore, we have H; = grad ¢} + I° p} in £2;. Let us start by denoting
by R avector field that belongs to H (curl; {2¢) and satisfies RE xnc+pf xny =0
on I'. Following the same arguments used in Section 6.3 for a similar situation, the first
step is to see that we can formulate the eddy current problem by means of a couple
(T, ¢*) such that

HI:grad¢?+IOp7 in .Q] (8 30)
Ho :Tc+grad¢<*j+IOR2 in ¢, ’
with the interface conditions
Toxnc=0 onl’ (831)

Y& —Y7; =0 onl.

Let us verify that (8.30)5 and (8.31) can be satisfied. First, the vector field T~ can
be determined as the solution to
curl T = curl(He — IORE) in 2¢
div TC =0 in QC
Toxng =0 onl’
Te -ng=0 onlgpUIly.

(8.32)
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This problem is well-posed. Indeed, uniqueness is straightforward, as, in the geomet-
rical situation under consideration, the space of harmonic fields

H(T, I'o; Q2c):={ve € (L3(92¢))? | curlve = 0,divve = 0,
voe-ng=0onI¢, vo xnc=0onT1}.

is trivial. Concerning existence, we can easily show that the right hand side G¢ :=
curl(He —I°RY, ) satisfies the necessary solvability conditions. In fact, we clearly have
divGe = 0in ¢, and also Go-ne = 0on I',as G¢ - ne = curl(H; — I%p%) -ne
on I'. Finally, let us define ¢¢ to be the solution to

AQDCZO in QC
o =1 onl'y
o =0 onl'g

gradpc -ngc=0 onl,
so that grad (¢ is a basis function of the (one-dimensional) space of harmonic fields

H(Ic, I'; 2c):= {vc € (L*(2¢))? | curlve = 0,divve =0,
voe-ng=0onIl, vo xng=0onIl¢}.

Integrating by parts and using the Stokes theorem we have that the last solvability
condition is satisfied

f(zc Ge - gradpe = fFJ Gc-nec = fr, curlHe — I°RY) - ne
= Jor,Ho —I°Ry) -dr = [, (H; —I°p}) -dr =0.

Having determined T¢, we find 9¢. as the solution to

div(pe gradvy) = divips(He — IR — Te)]  in ¢
vt =" on I’ (8.33)
e grad vy -ne = —puc (I°RE + Te) - ne onl'pUIYy.

Now it is easily checked that Ho — T — grad v, — I°R}, belongs to the space

Hyue (I, e 20):= {ve € (L*(2¢))? | curl ve = 0,div(peve) =0,
ucve -ng=0onl¢, voe xngc=0onl},

and this space is trivial, so that (8.30)- is satisfied.
We can thus write the eddy current problem in terms of T'~ and ¢*. First of all we
set
Ec = o Ycurl(Te + I°RE) — Joc] in 20,

so that the Ampere equation in {2 is clearly satisfied. Hence, as explained in Re-
mark 8.7, we only need to impose the Faraday equation in {2¢ and the Gauss magnetic
equation in (2. Proceeding as in Section 6.3, we find

Joiwp gradyp* - grad x* + [, iwpcTe - grad x5

< 8.34
+1° Joo iwncRE - grad xi =0 (8:34)
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for each x* € H'({2), and moreover (having already inserted the penalization term
associated to the divergence-free condition for T')

ch o teurl T - curlvg + ot fa’Zc divT¢ divve

+ ch wpcTc - Vo + ch iwpe grad g, - vo 8.35)

+1° [, o el RE, - curlve + I° [, iwpcRE - Vo .
= [, 07 Je 0 - curl v,

where v € Hy r(curl; 2¢) N Ho . (div; 2¢) and o, > 0 is a dimensional constant
(say, a suitable average in {2¢ of the entries of the matrix o).

When the current intensity I° is assigned, moving the terms containing it to the
right hand side in (8.34) and (8.35) leaves on the left hand side the sesquilinear form

ch o teurl T - curl vg + ot ch divT¢ divve
+ o, wpcTe Vo + [g, iwpe grad g - Vo
+ [ iwp grad * - grad X* + [, iwpcTe - grad X, -

As in Section 6.3, it can be proved that it is coercive in
(Ho.r(curl; 2c) N Ho. 1. (div; 20)) x HY(2)/C ,

therefore problem (8.34), (8.35) has a unique solution (T¢, 1/*) for each assigned I°
and J. c.

Instead, when the voltage V' is prescribed another suitable equation comes from
(8.17). We have

fFEcxnc-pjszEc ><Ilc~R2
— Jo. curlEc -RE + [, Ec - curl RE
= ch iwpcHe - RE + ch o YeurlHe — J. ¢) - curl R
= [oo iwncTe RE + [ iwpe grad ¢ - RG + 10 Joo iwncRE -RE
+f!'?c o tcurl Te - curl R + I° ch o taurl R - curl R,
1 *
~ Jo, 0 Jeccul R

Therefore (8.17) can be rewritten as

Q [, iwpcTo -RE+Q [, iwpe gradv - RE
+1°Q [, iwncRE - RE +1°Q [ iwpyp} - p}
+Q [, o curl T - curl R, (8.36)
+1°Q [, o~ curl R - curl R
=VQ+ @fnc o 1 J.c-cul R
foreach @ € C.
Putting together (8.34), (8.35) and (8.36), we end up with the final variational for-

mulation for the voltage problem in terms of T, ¢* and I (that now is an unknown
to be determined).
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This variational problem is well-posed. In fact, the existence of the solution follows
from our procedure, as we have shown how to construct T and 9¢, starting from the
solutions He = (—iwpe) ! curl Ec, 4% and I° of the eddy current problem (8.15).
Concerning the uniqueness of the solution, the first step consists in rewriting the prob-
lem as

Jo, o teull(Te + I°RE) - curl(Ve + QRE)
+o. ! [, divTe divie +iw [, pygradiy - grad x7
+iw [ po(To + grad gy + I°RY) - (Vo + grad i + QRY)  (8.37)
+iwl®Q [, 1P} - P
— ch o o cullvg +VQ + @fnc o Jeccull R .

Let us denote by S, (-, -) the sesquilinear form at the left hand side in (8.37). Similarly
to what proved in Section 6.3, we have

|ReS*((ch X*v Q)v (V07 X*v Q))'

> O oo, leurl(ve + QRE)[P + o7t [, |divvel?,

and
|IIHS*((V07 X*v Q)v (V07 X*v Q))'
> |wlptmin [o, | grad X312 + |w|pmin [ [Ve + grad x& + QRE [
+HwlQF [, #1P7 - PT
where 0. is an uniform upper bound for the maximum eigenvalues of o (x) in £2¢

and iy is an uniform lower bound for the minimum eigenvalues of p4(x) in {2. More-
over, for each 0 < § < 1 we obtain

Joo leurl(ve + QRE)[?
> (1=10) [q leulvel? = (1= 0) QP [, IREI?,

and foreach0 < n <1

Joo Ve + grad xi + QRE
> (1 =) [q lgradxg > —2(1 —n)n~" [ [vel®
=21 =) HQP [, IRGI.

Since in the present topological situation the Poincaré-like inequality
Jo, (leurlve|? + [divve|?) > Ko [, (Jcurlve|* + [divvel® + [vel?)

holdstruein Hy, r(curl; 2c)NHo, . (div; £2¢) (see, e.g., Fernandes and Gilardi [104]),
choosing 1 —6& = 7,1—7 = 72 and 7 small enough it is now easy to prove that S, (-, -)
is coercive in [Hy, r(curl; 2¢) N Ho 1. (div; 2¢)] x H(2)/C x C.

Remark 8.10. The use of the vector potential T~ and the scalar magnetic potential ¢)*
for solving eddy current problems coupled with circuits has been also proposed by
Specogna et al. [228]. They consider an approach based on the integral form of the
Faraday, Gauss magnetic and Ampere equations, and homology theory is deeply used
in order to devise the complete formulation of the problem. g
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8.1.4 Finite element approximation

In this section we present some finite element approximation schemes based on the
hybrid approaches described in Section 8.1.1.

Let us start noting that the variational formulations (8.15) and (8.16) are not suit-
able for numerical approximation. In fact, a conforming finite element discretization
based directly on them requires that p7 is explicitly known. An alternative approach,
that overcomes this difficulty, is based on a different decomposition of H;.

Let ¢; be the generalized gradient of a function n € H'(£2;\Z}) such that
[n]=; = 1. Then curl {; = 0 and fan, ¢; -t =1, butin general {; ¢ H(div; {2;).
However, since curl(p} —¢;) = 0in 27 and fan, (p5—C)-t =0, one easily verifies
that p} = ¢; + grad g¢, for some g¢, € H'(£27). Hence

H; = grad )} + I°p = grad v} + I°(C; + grad g,) = grad o)} + 1°C

with 72? € H*'(£2)/C that depends of the choice of ¢;. This alternative decomposi-
tion is not orthogonal with respect to the scalar product (-, -),,.«,, and this has as a
consequence that the corresponding weak formulation has some additional terms. In
fact the voltage excitation problem now reads

Find (Ec, %, 1°) € Ho, . (curl; 2¢) x H(£2;)/C x C :

ch (uot curl E¢ - curl Zg + iwoEc - Z0)

—iw [ Z¢ X n¢ - gradi} —iwl® [.Z¢ x ne -
= —iw fQC Jec 20

—iw [ Ec xne - gradx +w? [, p; grad o5 - grad (8.38)
+w?1° ff?z pr ;- gradx; =0

~iwQ [ Ec xnc- ¢ +w°Q [, 1y grad vy - ¢;
+W2[0§fgl pir-Cr = —iwVQ

forall (z¢, x5, Q) € Ho. 1. (curl; 2c) x HY(£27)/C x C,
while the current intensity excitation problem reads

Find (Ec, ¢%) € Ho. . (curl; 2¢) x HY(£2;)/C :

ch (ual curl E¢ - curl zg + iwoE¢ - Zo)
—iw [ Zg X n¢ - grad ¢}
= —iw [, Je.c Zc +iwl’® [ 76 xne - (; (8.39)
—iw [ Ec x nc - grad xj + w? Jo, 11 grad % - grad x}
= —w?I’ Jo, i€ - grad X7
for all (zc, x}) € Ho r,(curl; 2¢) x HY(£27)/C.
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Here below, in the framework of finite element approximation, we present a pos-
sible choice of ¢;, depending on the mesh size h. An alternative choice, for which ¢
is not dependent on £, is proposed in Alonso Rodriguez et al. [20].

Let us now describe our finite element approximation schemes. We assume that
£2¢ and {27 are Lipschitz polyhedral domains, and that 7¢ 5, and 77 j, are two families
of tetrahedral meshes of {2¢ and (27, respectively. In particular, let us underline that we
do not need that the finite elements match on I', and therefore the compatibility of the
meshes is not necessary. We employ N’é’ 1> the Nédélec curl-conforming edge elements
of degree k, to approximate the functionsin H (curl; £2c) and L% , , the Lagrange nodal
elements of degree k, to approximate the functions in H'(§2;) (see Section A.2). Let
us also set Y(’/?’h = N’é’h N Ho, . (curl; £2¢).

The choice of the function ¢ is carried out as follows. Let us start denotingby =7 ,,
a discrete “cutting” surface that depends on the mesh 77 ;, and by 7y 5, the piecewise-
linear function taking value 1 at the nodes on one side of E}‘_’ h SAY E}‘Tl and 0 at
all the other nodes including those on =77, the other side of =7 ;. Then define by
the (L?(£2r))3-extension of the gradient of 7, computed in £2; \ =7, , and choose
¢ = )\?. This approach is similar to the one analyzed in Bermudez et al. [45] for the
current intensity excitation problem.

The sesquilinear form associated to problem (8.38) depends on h, and it is given
by

C;((WCW 1/177 K)v (Z07 X;v Q))
= ch(ual curl we - curl zg + z'wo'wc; Zo)
+w? [ py grad ey - grad X +w?KQ [ pA] - Af
fiw[fpﬁ xnc - gradyf + [ we xng - grad X
7Z'w[KfFﬁ X nge - A}Il +GIFWC X ng - Aﬂ
+w? [K [, pur grad X - A} +Q [, gy grad gy - A7)
However

Ci((we, ¥}, K), (20, X5, Q) = C((we, grad b} + KA}), (zc, grad xj + QA])),

where C(-, -) has been introduced in (4.3). Hence the finite element approximation of
the voltage excitation problem (8.38) reads

Find (Ec,p, V5, I9) € Y5, x L%, /C x C -

C((Ec,n, grad v} j, + IRAT), (zc,n, grad X7y, + QX)) (8.40)
= —iw ch Jec 2Zcn —wVQ
for all (ZC,haX}F,ha Q) € Y(’/?’h X L’I“,h/(C x C.
Let us consider the error estimate. Setting
H;p = gradzz;;h + I\ € HO(curl; 02;)
from (8.38) and (8.40) we have the following equation for the error
C((Ec —Ecn, Hr — Hyp), (zen, grad X7 ), + QA7) =0
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forall zcp, € Y5, x5, € L%, /C and Q € C. Hence

||EC - EC,h”H(curl;Qc) + ”HI - HI,h”O,QIA
= |Bc — Ecnllacurtioe) + |Hr — grad ¢F , — INA} 0.,

C inf EC — Zc .
(Zen Vi n)EYE X ZE (I all i)

(8.41)

IN |

+H; = vinlloe),

where
Z}“’h := grad Llf’h @ span{A"} .

An error estimate for the intensity is obtained by noting that

| it =80 pi = 0= 1) [ i i
QI QI
as Hy = grady; + [9p3, Hyyp = gradzZ;h + Ig)\]} and )\’} = p} — gradgyn.
Since from the assumptions on g there exist two positive constants ji, and p* such
that .|| v/[[§ o, < fs’h prvr Vi < p||vill o, forall vy € (L?(£2r))3, it follows
at once

110 = | < (" /eo) (1 Hr = Hrplo,e

where co := ([, HrPT - )L

The convergence of the approximation scheme is an easy consequence of (8.41).
Let us denote by N Ik ,, the space of Nédélec curl-conforming edge elements of degree
k in 77 j, and by 7 p, the interpolation operator. If Hy is so regular that 7w ,Hy is
well-defined, then in (8.41) we can choose vy, = 77 ,Hy, asindeed 7y, Hy € Z}“’h.

This assertion can be demonstrated as follows: since curl(7; ,Hy — I 0)\?) = 0in
2 and faFJ(WI,hHI — IO)\?) -t = 0, then m; ,H; — IO)\? = grad&; for some
&1 € H(£2r). Knowing that mrnHr — IO)\? € th, from Girault and Raviart [111],
Chap. 111, Lemma 5.3, it follows that {7 is a polynomial of degree k for each K €
71 1, therefore £ € L’f’h.

As a consequence, from standard interpolation estimates, for a regular solution
(Ec, Hy) it is straightforward to specify the order of convergence of the approxima-
tion method.

Instead, if one has no information about the regularity of the solution, by a density
argument it is possible to prove the convergence of the finite element scheme if the
permeability coefficient gt is regular enough in {27 (say, a constant as in the usual
physical case) or if the family of meshes 77 5, is obtained by refining a coarse mesh
Tr po-

In fact, when g7 is constant we know that the harmonic field p7 is regular enough
to define the interpolant 77 5, p7 (see Amrouche et al. [27], Alonso and Valli [9]). Since
H; = grad ¢} +1°p?, a density argument applied to ¢} permits to conclude the proof.

In the other case, first we note that we can write p; = grad gx, + A7, where At
is defined as )\?, but on the fixed coarse mesh 77 ;0. Then, knowing that 77 5 is a
refinement of 77 jo, it follows that A; € th, hence A\; = 77 A7, and a density
argument for i¢); + g, gives the result.
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For the current intensity excitation problem (8.39) the finite element approach reads
Find (Ec,, 4} ) € Y&, x Lk, /C -

C((Ec,n, grad ¥y 1,), (zo,h, grad X7 4,))

= —iw [, Jec-Zon +iwl® [ Zon X no - A} (8.42)
—w2]0 ffh ;I,IA? -grad x7 ,
for all (zc,n, X7 5) € YC]JC,h X Lllc,h/(c'
Recalling that H; = grad {/1\7 + IO)\? and setting Hy 5, := grad 121\7}1 + IO)\?, from
(8.39) and (8.42) we have the following equation for the error
C((Ec — Ec,n, Hr — Hy ), (zon, grad 7 1,))
=C((Ec — Ec,n, grad] — grady7 ), (zc,n, grad x7 5,)) = 0

for each (zc,n, X7 5,) € Yclf’h X L’I“,h/(C. Therefore, the coerciveness of C(-, -) gives

||EC - EC,h”H(curl;Qc) + ||HI - HI,h”O/?\QI N
= |Ec — EC,h”H(curl;Qc) + || gradv,/;?: gradd}?,h”om
< C(”EC - ZC,h”H(curl;Qc) + || grad ¢} — gradx;,h”OA,-QI)

foreach (zc.n, X7 ) € YC’?’ , X L%, /C. Consequently, we find the error estimate

|Ec — Ecnll#(curtsc) + IHr — Hrpllo,o,
<C inf Ec—1z . + |Hr — vrullo.
o (ZC,;LA,VI,;L)GYC’“’,LXZ}"}L(IO) (” ¢ C’h”H(CurLQC) ” ! I'h”O'QI) ’

where
Z}“}h(IO) = gradL’},h + IO)\? .

The convergence of the approximation scheme can be proved following the arguments
presented for the voltage problem (the only difference is that now we work with the
space Z }“ ,(1°) instead of Z }“ 1> and this fact gives no problems to the procedure).

Once we have obtained E¢ ;, and 121\7}1 from (8.39), we can compute

Vi, ::/Ec’h ch~A?+iw/ /,qu]};f)\?.
r 2

We can show that this quantity is an approximation of the voltage, that, from (8.13),
can be written as

V:/Ec XHC'P7+iw/ wHr - p7.
r 2
In fact, let us introduce the auxiliary quantity

‘7;1 ::/Ec,hxnc~p}+z’w/ wHry - p7.
r 2r
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We easily have
|V = Vil < Ci(l[Ec — Ec plla(curt.00) + IHr — Hrpllo,o,) -

On the other hand, taking z¢ , = 0 in (8.42), it is easy to see that
Vi, = / Ecn x ng (grad x7 5, + )\]}) + iw/ wHyp - (grad X7 p, + )\]})
I 27
forall x7,, € L’}’h/(C. Thus

Vi = Vil < Ca (Bl mreunsoe) + 1Hrnllo.e,) lef — (gradxj ., + Ao

forall x7,, € L’}’h/(C. Therefore, since (grad x7 ;, + A e Z’f’h(l) (namely, the line
integral of this vector function along 0Is is equal to 1), we have

|V - Vh| <y (”EC - EC,h”H(curl;Qc) + ||HI - HI,h”O,QI)
+C2 ([Ecnll mrewn o) + ||H1,h||0,!zz)v inf ( )llpfr = vl
IL,hS4r g
< (C1 +C;  inf - p7 - VI,h”O,!ZI)
vI,h€ZT (1)
X (”EC - EC,h”H(curl;Qc) + ”HI - HI,hHO,QI)
+C: (|Ecllr(eutiee) + [Hilloe,)  inf ) 1pT = vinllo,e; -

VI,h€E th(

If the permeability coefficient pt; is smooth enough or if the family of meshes 77 p, is a
refinement of a coarse mesh 77 50, the convergence can be proved as in the preceding
cases.

Remark 8.11. Suitable finite element approximation schemes can be devised starting
from the variational formulations (8.28) and (8.29), related to the (H¢, 1} )-approach,
or (8.34), (8.35), (8.36), related to the (T, 10*)-approach.

In the former case, we have already noted that the meshes in {2¢ and {2; must be
compatible on I', while this is not the case for the hybrid (E¢, ¢7) formulations.

In the latter case, the use of Lagrange nodal elements is the natural choice, but in
Section 6.1.3 we have seen that the convergence of the Galerkin finite element approx-
imation scheme can be ensured only if {2¢ is a convex polyhedral domain (which is
not the most interesting case in real-life applications). Moreover, since the scalar po-
tential ¢* is present also in {2, the total number of degrees of freedom is higher than
in the hybrid formulations. g

8.1.5 Numerical results

The finite element method presented in the preceding section has been implemented in
MATLAB, using Nédélec edge elements of first order Y/}, for the electric field in the
conductor, and scalar Lagrange nodal elements of first order for the magnetic potential
in the insulator.
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The method has been tested by solving a problem with a known analytical solution
presented in Bermudez et al. [42]. The conducting domain (2¢ and the whole domain
{2 are two coaxial cylinders of radii Rc and Ry, respectively, with height L. An al-
ternating current of intensity I(t) = I° cos(wt) is traversing the conductor in the axial
direction. Supposing that the physical parameters o and p are constant scalars, the
solution of the problem in cylindrical coordinates is given by

K Zo(kr) )

E 0,z) = —— e, 2
6.2 = SR e TiwRe) & MY
I°  Zy(kr)

H 0,z) = — in {2
c(r0.2) = o R TikRe) & %%
IO
H;(r,0,z) = 57 €0 in 27,

where Zy and Z; denote the modified Bessel functions of the first kind and order 0
and 1, respectively, and k = \/iwpo. Moreover, for this particular geometry it holds
p; = ﬁ eq, thus Hy = I%p%.

Once the fields and the function p7 are known, the value of V' is computed from

the expression (8.17), obtaining

0 0
. Iio(HRC) + iwui lnﬁ.

- 2m0Rc I1 (kRe) 27 Reo

For our particular case we have used the following geometry and data

Re = 0.25m,
R] = 0.5 m,
L = 0.25m,

o = 151565.8 S/m,
p = 4w x 1077 H/m,
w = 27 x 50 rad/s,

and either assigned current intensity or voltage,
I°=10*A, or V =0.08979 + 0.146801,

where the value of V' has been computed for an intensity of 10* A.

To test the order of convergence, the problem has been solved in four successively
refined meshes, for either assigned current intensity or voltage. We present in Ta-
bles 8.1 and 8.2 the relative errors of our numerical solutions against the analytical
solution, that have been set as follows

ep = ”EC - EC,h”H(curl;Qc) v = |V — Vh|
”EC”H(curl;Qc) ’ |V|
_ IHr —Hralloe -5
€H = —_— .

ejo =
R 1]
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Table 8.1. Relative errors for assigned intensity

Elements DoF e eH ev
2304 1684 0.2341 0.1693 0.0312
18432 11240 0.1132 0.0847 0.0089
62208 35580 0.0750 0.0567 0.00438

147456 81616 0.0561 0.0425 0.0018

Table 8.2. Relative errors for assigned voltage

Elements DoF e eH ero
2304 1685 0.2336 0.1685 0.0274
18432 11241 0.1132 0.0847 0.0085
62208 35581 0.0750 0.0566 0.0041

147456 81617 0.0561 0.0425 0.0024

Finally, Figures 8.4 and 8.5 show the plotsin a log-log scale of the relative errors versus
the degrees of freedom. A linear dependence on the mesh size is obtained for the errors
of electric and magnetic fields, either for assigned intensity or voltage. The voltage
and intensity errors turn out to be quadratic with respect to h; to our knowledge, this
superconvergence result has not been theoretically proved, but it looks quite evident
from these numerical computations.
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Fig. 8.4. Relative errors versus number of DoF (assigned intensity)
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Fig. 8.5. Relative errors versus number of DoF (assigned voltage)

The method has been also applied to a more realistic problem which was presented
in Bermudez et al. [43]. In this case the domain is a cylindrical electric furnace with
three ELSA electrodes equally distanced. The dimensions of the furnace are the fol-
lowing: furnace height: 2 m; furnace diameter: 8.88 m; electrodes height: 1.25 m; elec-
trodes diameter: 1 m; distance from the center of the electrodes to the wall: 3 m.

The three ELSA electrodes inside the furnace are formed by a graphite core of 0.4
m of diameter, and an outer part of Sgderberg paste. The electric current enters the
electrodes through horizontal copper bars of rectangular section (0.07 m x 0.25 m),
connecting the top of the electrode with the external boundary.

For the simulation we have considered the angular frequency w = 27 x 50 rad/s,
the magnetic permeability ;1 = 47 x 107 H/m, and the electric conductivities ¢ =
105 S/m for graphite, o = 10* S/m for Sgderberg paste, and ¢ = 5 x 105 S/m for
copper. We have imposed an intensity of IJQ = 7 x 10*A for each electrode, using
the approach that has been explained in Remark 8.8 for the case of a non-connected
conductor. With the same notation used there, the boundaries I'r ; correspond to the
contacts of the copper bars on the boundary of the furnace, and I';; to the bottom of
the electrodes.

In Figure 8.6 we present the absolute value of the magnetic potential, i.e.,

Z? 1 j , where 77 ; 5, are the piecewise-linear functions with a jump of height
1 on the “cuttmg surfaces ZipIn Figures 8.7 and 8.8 the magnitude of the cur-
rent density J;, = oE¢j on a horlzontal and a vertical section of one electrode is
shown.
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Fig. 8.6. Magnetic potential in the dielectric
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Fig. 8.7. Magnitude of the current density J; (A/m?) on a horizontal section of one electrode
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Fig. 8.8. Magnitude of the current density J;, (A/m?) on a vertical section of one electrode

8.2 Voltage and current intensity excitation for an internal
conductor

In this section, following Alonso Rodriguez and Valli [18], where a more complete
analysis is presented, we consider the question of how to impose a current intensity
or a voltage when the conductor is strictly contained in the computational domain.
For the sake of simplicity we assume that {2 is a simply-connected bounded open set,
with a connected boundary 02, and that the conductor {2¢ is a torus-like domain. We
consider three different kinds of boundary conditions: the electric boundary condition

Exn=0 ondf?2, (8.43)
the magnetic boundary conditions

Hxn=0 ondf?

eE-n on 02, (8.44)
and the no-flux boundary conditions
pH -n=0 ondf2 (8.45)

eE -n on 0f2.

First we notice that for each one of these boundary conditions the solution of the eddy
current problem is unique. In fact we have the following result (similar to Proposi-
tion 8.2).

Proposition 8.12. Let us consider the solutions H and E of the eddy current problem

curlH—ocE=J, in{?
curl E+ iwpH =0 in (2 .
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The magnetic field H in (2 and the electric field Ec in (2 are uniquely determined
Sfor each one of the boundary condition (8.43), (8.44) and (8.45).

Proof. Assuming that J. = 0 and proceeding as in the proof of Proposition 8.2 we
obtain that

O:/ UEC-E_C+/iwuH~ﬁf Exn-H.
Q¢ 1) Yo}

The uniqueness of H and E¢ follows at once if we prove that the boundary integral
vanishes. This is clear in the case of the boundary conditions (8.43) and (8.44). For the
case (8.45) we have div,(E x n) = curl E- n = —iwpuH - n = 0 on 942, hence there
exists a scalar function v such that E x n = grad v x n on 942. Therefore

JooExn-H=— [, Hxn-gradv = [,,div,(Hxn)v
= [ocurlH -nv=0,

ascurl Hy = 0in {27 and 02 C 842;. O

Since the eddy current problem has a unique solution for each of the boundary
conditions described in (8.43), (8.44) and (8.45), it is not possible to impose an addi-
tional condition, say, voltage or current intensity, if we do not relax some of the other
equations. However we cannot renounce to Maxwell equations, namely, to Faraday
and Ampere equations.

The point is therefore to devise a different interpretation, and this will be the object
of our presentation in the sequel. We revisit what was done in Section 8.1, and analyze
again the electric port case with boundary conditions (8.2). Indeed, this is the case in
which it is clear how to impose voltage or current intensity. First of all, it is worthwhile
to recall that, assuming J. = 0, as in (8.9) one has

/ a'*lcurlHC~curlH_C+/iwuH~ﬁ:V[_0.
Q¢ Q

On the other hand, given a complex number ¢ € C take J.; = O and J. ¢ =
qo grad ¢, where ¢¢ is the unique solution to

div(e gradgc) =0 in f2¢

¢c =1 on Iy
A o (8.46)
ogradgc -n=0 onl'.
Then - -
fa’Zc o lcurlHe - curl He + zwﬁ uH _H
= fo. o 'J.c-curlHe + V 0
= quC grad pc - curl Hg + V 10
Moreover,

f Qc grad ¢ - curl He o -
=~ Jop c diveud He + [;, o b0 clHe ne (847)
= [, curlHo -,
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aspc =0onlg, ¢c=1onIlyandcurl He - ne = curlHy - ng = 0 on I'. Hence
/ a'*lcurlHC~curlH_c+z'w/ pH - H= (¢ +V)I0. (8.48)
Q¢ i)

This is telling us that, when considering the electric port case with boundary con-
ditions (8.2), assigning a voltage V' is in some sense equivalent to impose a current
density J. ¢ = Vo grad ¢c in {2¢.

More precisely, let us consider the electric port eddy current problem with J. ¢ =
—Vo grad ¢c, J., 1 = 0 and assigned voltage equal to V', namely,

curl H-oE = Vo grad¢c in {2
curlﬁ+iwuﬁ =0 in {2
div(e;Ef) =0 in £2;
E]E[~Il]:0 OI’IFI
Exn:gradvxn on 0?2
v, =V onl'y
vy =0 onlg.

From (8.48) it follows at once that H-= 0, and it is also easily seen that E-= V grad v,
where v is equal to ¢¢ in {2¢ and to vy in {27, v being the unique solution to

div(ergradvy) =0  in £2;
v = ¢o on [’ (8.49)
ergradvy -n=20 onlTy.

This will lead us to propose a suitable formulation for the eddy current problem
with an internal conductor subjected to a given voltage or current intensity excitation:
the key point will be that these excitations have to be interpreted as a particular applied
current density.

Note that the function grad ¢ ¢ is the basis function of the space of harmonic fields

Ho (o, I'; Q20):= {ve € (L*(£2¢))? | curlve = 0,div(ave) = 0,
ove-ng=0onIl, vo xnc=0onI¢},

normalized with the condition

/grad¢c~d7': 1,

o

where 7 is a curve lying in £2¢ and joining I'g to I';. Thus, for the internal conductor
case we are led to introduce the space of harmonic fields

Ho(m; 20) = {ve € (L*(2¢))? | curl ve = 0,div(eve) = 0,
ove-ng=0onl},

denoting by p¢, its basis function normalized with the condition

/pgd’r:lv
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where 7, is a non-bounding cycle internal to {2 (whose orientation has been freely
chosen).

The voltage and current intensity excitation problems are therefore formulated as
follows.

Voltage rule. When the voltage V' is imposed, modify the Ohm law in {2¢ by adding
to the current density cEc the “applied” current density J.. c = Vo pf. Thus the
Ampeére equation reads

curlHe — oE¢ = Vopf .

Our convention is that the voltage passes from 0 to'V along the basic cycle ..

Current intensity rule. When the current intensity I° is imposed, modify the Ohm
law in 2¢ by adding to the current density cEc the “applied” current density J. ¢ =
Vopg. Thus the Ampere equation reads

curlHe — oEc — Vopi =0,
where V' has to be determined by imposing the additional constraint
/ curlHe - n, = 1°.
E&

Here Z¢. is a section of {2c and the unit normal vector n, has the same orientation of
the basic cycle .

Let us show that, when adopting these two rules, we are respecting the following
power law

P = o'*lcurlHC~curlH_C+iw/ uH~ﬁ:VI_0.
Qc Q
In fact, for J. ¢ = Vo p¢ and J. 1 = 0, we have as usual
/ o'*lcurlHC~curlH_C+iw/ uH~ﬁ:V pZ~curlH_C.
Qc 2 QC
Recalling that the basis function p}, is the L?(§2¢)-extension of the gradient of a suit-
able scalar function p,, defined in £2¢ \ = and having a jump equal to 1 across =¢,
we obtain,
Jou PE curlHo = ch\Eg grad p, - curl He
=— ch\Eg p*ciivcurlHC + [p & curlHe - ne
+ [=. curlHe - n,
gy O
= [z. curlHe -, |
e

(8.50)

ascurlHe - ng = curlHy - ne = 0 on I” and the jump of pf on =¢ is equal to 1.
Hence we end up with
P = ch o tcurlHe - curl He + iw [, nH -H
=V o, P& ccurlHg =V IO,
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8.2.1 Variational formulations

We can consider H-based formulations, E-based formulations or hybrid formulations.
In our opinion, the simplest approach is in terms of H, thus we start using the latter.

Concerning the voltage excitation problem we have already made explicit the fol-
lowing rule: applying a voltage is equivalent to consider a current density J. o =
Vopf. Hence the weak H-based formulation of the voltage excitation problem is
similar to the formulation considered in Chapter 3: given V' € C,

Find H € X such that:
ch o 'curlHe - curlvg + [, iwpH -V = Vch pe - curl v (8.51)
foreach v € X |

where
X :={ve H(curl; 2)| curlvy = 0in 27} (8.52)

in the case of the electric boundary condition or the no-flux boundary conditions, while
X :={v € Ho(curl; £2) | curl vy = 0in 27} (8.53)

in the case of the magnetic boundary conditions.
Thenset E¢ := o~ ' curl He — V p& in £2¢, and in §2 define E; to be the solution

to
curlE; = —iwp  Hy in 21
diV(E[E[) =0 in Q]
E;xnyj=—-Ecxne onl’ (8.54)
fanE[E['Il:O
E;xn=0 on 012

when considering the electric boundary condition, or to

curl Ey = —iwp  Hy in {21
diV(E[E[) =0 in Q]
E;xn;=—-Ecxne onl’

ertEr - n=20 on 012

(8.55)

when considering the magnetic or the no-flux boundary conditions.

The well-posedness of problem (8.51) comes from the coerciveness in X of the
sesquilinear form a(u, v) := ch o~ tcurluc - curl v + fQ twpu - V. Instead, a del-
icate point here is the unique solvability of problem (8.54) and problem (8.55). In fact,
as itis well-known, boundary-value problems for the curl-div system in general require
that some compatibility conditions be satisfied in order to ensure the existence of a so-
lution, and that suitable additional conditions are imposed to guarantee its uniqueness;
some of these conditions are related to the non-trivial topology of {2;. We refer the
reader to Chapter 3, where this analysis has been performed for both the electric and
the magnetic boundary conditions. In the case of no-flux boundary conditions the ver-
ification of the compatibility conditions for the well-posedness of problem (8.55) is
similar to the magnetic boundary condition case.
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Fig. 8.9. The “cutting” surface = for the internal conductor case

Remark 8.13. Let us also recall that the same variational formulation (8.51) has been
proposed in Dular et al. [99], Rappaz et al. [202] and Hiptmair and Sterz [130]. How-
ever, there it has been set E¢ := o~ ! curl He, leading to the violation of the Faraday
equation on the surface =7 “cutting” the basic non-bounding cycle v of (2; (see Fig-
ure 8.9).

Let us show that this is in fact the case, and that all the other equations are veri-
fied. Since V' [, 2 pecurlve =V [ 1 P& X o - Ve and this term is vanishing for a
test function v with compact support in {2¢, from (8.51) one verifies that the Fara-
day equation in {2 is satisfied. Defining Ec = o~ ! curl He, the Ampere equation
without sources is clearly satisfied in the whole (2. However, in Section 3.3.1 we have
shown that the Faraday law on =7 can be written as

/ iquprI:f/(EC Xne)-p;r, (8.56)
2r r

where p; is the (L?(£21))3-extension of the gradient of a function p; € H' (27 \ =)
such that

div(p, gradpr) =0 in2r\ =1

prgradpr-nr =0 onI"\ 05

iy gradpy -nf]2, = 0

[pI]EI = 17

plus a boundary condition on 9f2 that depends on the boundary conditions for H and E
under consideration. Precisely, for the magnetic boundary conditions one has p; = 0
on 0f2, while for the electric and the no-flux boundary conditions p; gradpr -ny =0
on 042 (and in this case py is defined up to an additive constant).

From (8.51) we find at once

fs’h iwpHy - p; = — ch iwpHe - R — ch o tcurlHe - curl Re
+V [o, P& - culRe

where R¢ is any extension of p; in {2¢ giving a global function belonging to X.
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Setting Ec = o~ ! curl He and integrating by parts one has

fQI iwpHy - p; = foc z‘wuHc~Rcfoc curlEc - Re
— [ (Bc xng) - pr+V [(pe xne) - p;
= 7fF(EC ch)'p1+v,

having used the Faraday equation in {2¢ and the result |’ r(p& xng) - pr = 1. Since
V' # 0, the Faraday equation on the surface =; does not hold.

In other words, taking Ec = o~ ! curl H¢ has as a consequence that there is no
electric field in {27 solving the Faraday equation curl E; = —iwp;Hy withE; xn; =
—E¢ X ne on I': the necessary compatibility condition on the data

/ iwpHy - pr = */(EC xnc) - p;
27 r

is not satisfied. O

Now we consider the current intensity excitation problem. It can be expressed in
this way: given I° € C,

Find (H, V') € X x C such that

ch o 'curlHe - curl vg + [, iwpH -V — Vch pe -curlve =0
[o, P& -curlHe = 1°
foreachv € X,

(8.57)

where X is as in (8.52) or (8.53). Then one sets E¢ := o~ curl Hp — Vpé in 2¢
and determines E; as in (8.54) or (8.55).

The well-posedness of problem (8.57) comes from the theory of saddle-point
problems. In fact, we have already noted that the sesquilinear form a(u,v) :=
ch o lcurlue - curl g + fQ iwpu -V is coercive in X; moreover, since the un-
known V' € C is a number, for showing that the inf—sup condition is satisfied it is
enough to find w* € X such that

/ pe - curl wi
Nc

This can be achieved as follows: w* € X is any extension of w(., the solution to

>0.

curl wi, = opé in ¢
divwy =0 in {2¢
W& X Do = ¢yp; X ng onl',

where ¢, := |, 00 P pe-Note that the existence of the solution w is a consequence
of the relation [.(p¢& x n¢) - pr = 1.

The variational formulations (8.51) and (8.57) can be used as starting points for
devising finite element methods for approximating the solution.



270 8 Voltage and current intensity excitation

In fact, the voltage excitation reduces to a standard problem with a given current
density Vo pg, therefore any method used for eddy current problems can be applied.

It is worth noting that the construction of the function p¢, is not required. Indeed,
one can proceed as in Section 5.1: consider a fixed (and coarse) mesh in {2¢ that in-
duces a triangulation of the “cutting” surface Z¢.. The first step is to denote by I/ the
piecewise-linear function taking value 1 at the nodes on one side of =, say = gr, and
0 at all the other nodes (including those on =7;"). Then define gc € H'(£2¢) to be
the solution (determined up to an additive constant) to

div(o grad gc) = — div(o grad I1) in £2¢
ogradgeo-n=—ogradllc-n onl'.

Thus pf, = grad IT¢ + grad g¢, where grad IT- denotes the (L?(82¢))3-extension of
grad IT computed in 2c\=F,. If v € X one has

ch pi - curlvg = ch\Eg grad I - curl vg + ch grad g¢ - curl vg
= fQC\:* grad IT¢ - curl v
=C

asdiveurlvg =0 and curlve -n=0on [

Therefore, we have verified thatin (8.51) one can substitute p7, by the easily com-
putable grad I1, and the solution H remains the same. Clearly, the need to compute
p¢ comes again into play if one wants to recover E¢, which is given by

Ec =o 'curlHe — Vpt = o teurl He — ngr\zEIHC —Vgradge .

If the current intensity is given, the constraint |, 2 P - curlHe = I° has to be
added. In (8.57), the voltage V plays the role of a Lagrange multiplier associated to
this constraint, and the global problem is a saddle-point problem. For any type of con-
forming finite element discretization using edge elements in {2, the presence of this
Lagrange multiplier requires that an inf—sup condition like

/ pe - cutl we
Nc

be satisfied for a constant 3 > 0, independent of h, and a suitable discrete vector
function wj .

> Bllwillx

This can be achieved as follows: expressing p¢- in terms of gfr\zzl 11, as done be-
fore, we have by integration by parts and the Stokes theorem

* * _ *
Joo PC - cutlwi, ), = ch\Eg grad I - curl Wi, ,
= o curllwy,, -n= [_,curlw}, -n
f(’)(ﬂc\:c) c C,h f:c C,h
— * — *
= faig Wy, - dT = fE)Eg Wi, - dT .

Now let us consider a fixed (and coarse) mesh in §2; that induces a triangulation of
the “cutting” surface =7 (see Figure 8.10). Proceeding as in the conductor region we
denote by II; the piecewise-linear function taking value 1 at the nodes on one side of
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Y+
=6

Fig. 8.10. The “cutting” surfaces =¢ and = for the internal conductor case

=7 and O at all the other nodes. From now on we consider triangulations that are all
obtained as a refinement of the basic coarse mesh, in such a way that a discrete function
on the coarse mesh is also a discrete function on all the other meshes. Then choose as
w7, the (L2(£2r))3-extension of grad 17, computed in £2; \ =7. Finally, take as W
the edge element interpolant, on the coarse mesh in {2¢, of the value wj , x nronI".
Clearly |, 9=s Wi d7T = 1and the norm [|wi|| x does not depend on h, therefore the

uniform inf-sup condition is satisfied.

Up to now, in this section we have focused on the H-based formulation; however,
the E-based formulation of voltage and current intensity excitation problems can also
be considered.

The “voltage rule” is telling us that we have just to consider a current density
Je.c = Vopg, hence the E-based formulationis devised proceeding as in Section 4.6,
where the magnetic boundary conditions have been considered.

The variational formulation is that described in (4.75), and the only point that needs
to be clarified is the choice of the variational space Z in which the problem is formu-
lated.

In the case of the magnetic boundary conditions one takes Z as in (4.74), which in
the present geometrical situation reads

7 :={z € H(curl; 2) | div(erz;) = 0in {2,

erzr-n=0ond}; (8.58)
for the electric boundary condition one has
Z :={z € H(curl; 2)| div(eszr) = 0in §2;,
zxn=00n0R, [, erz;-n=0}; (8.59)
for the no-flux boundary conditions one chooses
Z :={z € H(curl; 2)| div(eszr) = 0in §2;, (8.60)

erzr-n=0o0n0d2,div,(z x n) = 0 on 92} .

Passing to the “current intensity rule”, it says that the given current intensity I° is
generating not only the electric field but also a current density V o p7,. Moreover, we
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have curl He = 0E¢ + Vo p}. Then, the problem is: for each given I° € C,
Find (E, V') € Z x C such that
Jon tcurlE - curlz + fa’Zc iwocE¢c -zZg + iwV fa’Zc opt-zZc =0

Joe P& 0B +V [ ops - po=1°
foreachz € 7,

(8.61)

where Z is as in (8.58) for the magnetic boundary conditions, as in (8.59) for the
electric boundary condition, and as in (8.60) for the no-flux boundary conditions.

The existence of solution is a consequence of what was already proved for the
H-based formulation. On the other hand, uniqueness needs some work. First of all,
multiplying (8.61), by iw@, where Q € C, we find

Joun tcurlE- curlz B B
+iw [, 0(Ec +Vpg) - (Zc +Qpg) = wl’ Q..

Thus, putting I° = 0 and choosing z = E and Q = V/, we obtain curl E = 0 in §2
and Ec + Vpi = 01in {2¢. Since {2 is simply-connected, we also have E = grad U
in §2. Therefore, integrating E¢ on the cycle v, we find

Ozf,y*gradUC.dT:f"/*EC.dT:7]"‘/*sz'.de7V7

thus V' = 0, and consequently Ec = 0 in {2¢. Finally, the interface condition
E;r xny = —E¢ X n¢ on I'is sufficient to conclude that E; = 0 in §2;.
Solved (8.61), the magnetic field in {2 is as usual defined as H = f%u’l curl E.

Remark 8.14. A formulation similar to (8.61) has been proposed in Hiptmair and
Sterz [130] Bermudez et al. [40] (in the former paper, replacing the source VpC by

Vgrad ®¢, where O is a function j jumping by 1 on the “cutting” surface =7 and

grad d¢ denotes the (L2(£2¢))3-extension of grad ®¢ computed in £2¢ \ Z(). How-
ever, in these papers the electric field is not the solution E¢ to (8.61), but it is corrected
in {2¢ by adding the source term. In this way the Faraday law is no longer verified
across the interface I". g

Remark 8.15. We note that the E-based formulation (8.61) takes a non-standard form:
in fact, it is questionable if the sesquilinear forms at the left hand sides of (8.61) are
coercive, and, on the other hand, the current intensity condition is not a pure constraint,
so that a formulation using Lagrange multipliers is not suitable. Therefore, a complete
analysis of a finite element approximation method could be a delicate task. However,
this approach has been used in Bermudez et al. [40] for an axisymmetric problem, with
good numerical performances. g

Remark 8.16. The two rules presented at the beginning of this section can also be used
to derive a model for the voltage and current intensity excitation problems in the pres-
ence of electric ports, in the case in which the electric boundary condition E x n = 0
on 02 is imposed.
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The procedure is quite simple: in fact, to adapt the voltage and the current intensity
rules one has only to replace pf~ with grad ¢, with ¢¢ defined in (8.46).
Thus, the voltage excitation problem reads: given V' € C,

Find H € X such that
ch o 'curlHe - curl v + [, iwpH -V

=V ch grad ¢¢ - curl vg (8.62)
foreach v € X |
where X := {v € H(curl; {2)| curlv; = 0in 27 }. Then set
Ec =0 'curlHe — Vgradoo in 2,
and in {27 define E; to be the solution to
curlE; = —iwp Hy in 21
Bt Eoxne onl (863)
E;xn=20 onlf.

The current intensity excitation problem reads: given I° € C,
Find (H, V) € X x C such that

ch o tcurlHe - curl vo + [, iwpH -V
~V [ grad¢c - curl Vo = 0 (8.64)
ch grad ¢¢ - curl He = I°

foreachv e X .

Then E¢ and E; are determined in the same way as before.
The corresponding E-based formulations can be found in Alonso Rodriguez and
Valli [18]. |

Remark 8.17. Let us also discuss the case of electric ports with the magnetic boundary
conditions Ec x ng = 0on I[gU Iy, e;Ef -n; = 0and Hy x n; = 0 on I7.
The crucial remark is that in this case the current intensity cannot be assigned freely,
because

IO:/ curl Ho - n = He -dr = H; -dr=0,
Iy oIy ory
as H; x ny = 0 on I and thus on O1;.

Imposing I° = 0 is thus the only possible case. Though it does not seem very
interesting, let us have a deeper look at the problem.

First of all, for each v € H (curl; {2) satisfying curl vy = 0in 2y and v; xn; = 0
on /7 it holds

ch grad ¢¢ - curl v
= f[‘u[‘Eu['J ¢c curlve -ne = frJ curl vo - ne (8.65)

:farjw'dT:farJV_I'deo-
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Considering now the Faraday equation, integration by parts gives

fiw/uH~ﬁ:/curlE~ﬁ:/E~curlﬁf Exn-H.
Q Q Q a0

SinceExn=0onIgUIyand H x n = 0 on I}, using the Ampere equation we
obtain

fQE~curlﬁff(,mE><n~ﬁ
— fQC Ec -curlHe = fd,zc(a"1 curl Ho — V grad ¢¢) - curl Hp .

From (8.65) we have f 2 grad ¢¢ - curl He = 0, thus we conclude that
/ o tcurlHe ~CurlH_C+iw/ pH-H=0, (8.66)
Q¢ Q

hence H = 0in 2. Moreover, setting Ec = —V grad ¢¢ in 2c and E; = —V grad vy
in {27, where vy is the solution to (8.49), we find infinitely many electric fields solution
of the eddy current problem with vanishing current intensity: one for each choice of
the voltage V' € C.
On the other hand, following the voltagerule fora given V' € C we have to consider

the problem

curlH - ocE =Vograd¢c in{?

curl E +iwpH =0 in (2.

Repeating the same arguments described above, one arrives to (8.66). This means that,
for any assigned voltage V' € C, the voltage excitation problem with the magnetic
boundary conditions leads to H = 0 in (2, and, moreover, one also finds that the
electric field in {2 is given by E = —V grad v, where v = ¢¢ in f2¢ and v = vy
in £2;. O
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Selected applications

In this chapter we present some real-life problems that can be modeled by the eddy
current equations. In some of these examples the time-harmonic eddy current system
is used for numerical simulations, and a rich bibliography on the subject is available.
However, we also include some applications where, to our knowledge, the eddy current
model has not yet been used. We believe that it could be a more accurate description
than the ones actually employed, and, using the method proposed in this book, it should
be suitable for numerical simulations.

In the following we focus on the illustration of the physical phenomena; the de-
scriptions do not pretend to be complete and fully detailed, but just to give a flavour of
different technological problems that are related to low-frequency electromagnetism.

9.1 Metallurgical thermoelectrical problems

We consider in this section two kind of electromagnetic furnaces used in the metal-
lurgical industry: induction heating systems and electric reduction furnaces. There is
an increasing interest in numerical simulations as means to optimize the design and to
improve the performances of these kind of electromagnetic devices. In an induction
furnace the eddy currents generated within conductors and resistances lead to Joule
heating; in an electric reduction furnace the charged material is directly exposed to
an electric arc. In both cases the mathematical model for the behaviour of the furnace
involves thermal and electromagnetic phenomena, that can be described through the
coupling of the Maxwell equations and the heat transfer equation.

Normally the electromagnetic submodel is solved in the frequency domain and the
effect of displacement currents can be neglected, thus leading to the time-harmonic
eddy current problem analyzed in this book. The electromagnetic and the thermal prob-
lem are coupled for two reasons: the electromagnetic properties of the different mate-
rials, in particular the electric conductivity, depend on the temperature, and the Joule
effect is one of the source terms in the heat transfer equation. Other phenomena can
be also taken into account; for instance, hydrodynamic phenomena must be consid-

A. Alonso Rodriguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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ered when melting a metal in an induction furnace, while mechanical effects play an
important role on the design of the electrodes of a reduction furnace.

In the following we present two different industrial applications. The first is the
modelization of a coreless induction furnace designed for melting and stirring, and the
second the modelization of an electric reduction furnace for the production of silicon.

9.1.1 Induction furnaces

In this section we follow the presentation of the problem given by Bermuidez et al. [41]
and Vazquez [240]. Induction furnaces are widely used in metallurgical industry for
hardening, melting or casting. An induction heating system is basically composed by
an inductor, fed by an alternating electrical current, and a conducting object that has to
be heated. More precisely, a coreless induction furnace for melting consists of a helical
copper coil, connected to a power supply, and a workpiece formed by the crucible
and the load within (see Figure 9.1). The alternating current traversing the inductor
produces an oscillating magnetic field, which generates eddy currents. These currents,
due to the Joule effect, produce heat in the conducting crucible, and the metal inside
is also heated until it melts. The crucible is surrounded by refractory and insulating
materials, and the inductor coil is water-cooled to avoid overheating due to Ohmic
losses. The operating frequencies of the supplied alternating current may vary from
utility frequency (50 or 60 Hz) to few kHz.

Numerical simulations are a valuable help in the shape optimization of this kind
of system. There are many different aspects that must be taken into account for the
design: the frequency and intensity of the applied current affect the temperature profile
in the furnace and the stirring action within the molten metal, thus influencing the
quality of the final product; ohmic losses could generate very high temperatures in
the crucible, damaging it and reducing its lifetime; some physical parameters, such as
the thermal and electrical conductivity of the refractory layer, and some geometrical
parameters, as the crucible thickness or its distance from the coil, are also important
for the performance of the device.

~—

Fig. 9.1. An induction furnace (left, courtesy of V. Valcarcel, Ceramic Institute, Universidade
de Santiago de Compostela) and a sketch of the computational geometry (right)
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Melting systems were probably the first industrial application of eddy currents.
Their modelization involves three main coupled phenomena: the electromagnetic field
provides Joule heating and give rise to Lorentz forces that act on the molten metal.

Since the inductor is fed by an alternating current and the effect of the displacement
current can be disregarded, the problem is modeled by the time-harmonic eddy current
system

curl H=J
curl E 4+ iwpH =0.

The heating of the conductor due to the Joule effect is governed by the transient
heat transfer equation with change of phase

p(% +u- grade) —div(k gradT) =7 - &,
where the heating due to viscous terms has been neglected, and e is the energy per unit
mass, 1" the temperature, p the density, and k the thermal conductivity. The energy
can be expressed as a multivalued function of the temperature, depending on different
physical parameters. The right-hand side 7 (¢, x)- (¢, x) is the heat generated by eddy
currents (J (¢, x) and £(t, x) are the time-dependent total current density and electric
field, respectively). The term u - grad e corresponds to the convective heat transfer; u
is the velocity of the molten metal and it is given by the Navier-Stokes equations

o <aa—ltl + (u- grad)u) —div(2nD(u)) + gradp = f, + 1
divu=0,

where 7 is the viscosity, p the pressure of the molten metal, and D(u) the symmetric
part of grad u, namely,

_ gradu + (gradu)”

D(u): 5

The forces at the right-hand side of the Navier-Stokes equations are the buoyancy force
f,, given by
fg =pPg,

where g is the acceleration of gravity, and the Lorentz force f;, given by
fl = j x B s

where B(t, x) is the time dependent magnetic induction.

The heat source and the Lorentz force are determined taking the mean value on a
cycle. Taking into account that 7 (¢,x) = Re[e’!J(x)] and analogously &(t,x) =
Re[e™!E(x)] and B(t, x) = Re[e“'B(x)], an easy computation gives

© (2T 7(t %) E(tx)dt

27 Jo

= 2 (ReJ(x) - ReE(x) + ImJ(x) - Im E(x)),
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and
227 7(t,%) x B(t,x) dt

= 1 (ReJ(x) x ReB(x) +Im J(x) x InB(x)) .
It should be noted that the Ohm law for a moving conductor reads

J=0(E+uxB).

However, when working with molten metals on a laboratory scale, the term o (u x B)
can be neglected.

In most numerical schemes the coupled problem is solved using an iterative time
stepping procedure, in which the electromagnetic field is first determined for tempera-
ture dependent conductivity and permeability, then the momentum and the temperature
equations are advanced using the resulting Lorentz force and Joule loss distribution,
and finally the material properties are updated and another step can be applied. Pro-
ceeding in this way, at each time step it is necessary to solve an eddy current problem
like the one analyzed in the previous chapters of this book.

There is a very rich literature on numerical modeling of induction heating, and we
refer to Lavers [163] for an extensive bibliographic review on this subject. More of-
ten, taking advantage of some geometrical symmetries, in many works concerning the
coupling of electromagnetic and thermal problems the computational domain is two-
dimensional. For instance, Chaboudez et al. [78] consider a two-dimensional problem
involvedin induction heating of long workpieces; Chaboudez et al. [77] do the same for
an axisymmetric configuration; Bermudez et al. [40] study the thermo-electromagnetic
problem in induction furnaces used for melting, proposing and analyzing a FEM/BEM
method for the approximation of the electromagnetic subproblem; Bay et al. [35] con-
sider a model which couples electromagnetic, thermal and mechanical effects in ax-
isymmetrical induction heating processes; Henneberger et al. [124], Natarajan and EI-
Kaddah [183] deal with the magneto-hydrodynamic problem in the context of induc-
tion melting systems with axisymmetric geometry, but they do not take explicitly into
account thermal effects. Let us also mention Rappaz and Touzani [203] for the numer-
ical analysis of a two-dimensional magneto-hydrodynamic problem.

By contrast, there are few works concerning the numerical approximation of the
thermal-magneto-hydrodynamic problem: we mention the results by Henneberger and
Obrecht [123], Katsumura et al. [149], and in particular the more recent paper by
Bermudez et al. [41] (see also Vazquez [240]); in all these works the axisymmetric
geometry is assumed. More specifically, in Bermidez et al. [41] and Vazquez [240] a
BEM/FEM method is used for the approximation of the solution of the electromagnetic
problem. The problem is formulated in terms of a magnetic vector potential and the
input data of the problem are the current intensities through the inductor coils. Some
numerical simulations for an industrial furnace are presented, and show a good agree-
ment with experimental data. In this modelization, the induction coil has been replaced
by a suitable set of rings, each one having toroidal geometry (see Figure 9.2).

As far as we know, there are no three-dimensional simulations of the thermal-
magneto-hydrodynamic problem for the more realistic situation in which the coil is a
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Fig. 9.2. Axisymmetric induction furnace: 1 metal, 2 crucible, 3 coils

simply-connected helix with two electric ports (for this type of coils in Section 8.1 we
have presented a complete analysis of the eddy current problem).

9.1.2 Metallurgical electrodes

The time-harmonic eddy current model is also used in modeling the thermoelectrical
behaviour of electrodes for electric reduction furnaces. Although the model is rather
general, we focus on metallurgical electric furnaces for silicon metal and ferro-silicon
production, following the presentation in Bermudez et al. [43] (see also Bermidez et
al. [45], Salgado [217]). This kind of furnace basically consists of a cylindrical pot
containing charged material and three electrodes symmetrically disposed. The pot is
a steel cylinder charged with quartz and quartzite, as silicon oxide source, and car-
bonaceous substance, as coal and coke. At temperatures over 1900 degrees the carbon
reduces the silica to silicon by the chemical reaction SiOs + 2C — Si + 2CO. The elec-
trodes are made of carbon materials and they serve to conduct the electric current to
the center of the furnace. Different transformers change the high-voltage current usu-
ally supplied into the low-voltage high-intensity current suitable for the process. The
electric current enters each electrode through a metal ring, which completely embraces
the electrode above the charge level. The ring is composed by several copper sections,
called contact clamps; bus bars connect the transformers to the contact clamps. At the
tip of each electrode an electric arc is produced, generating the high temperatures that
activate the chemical reaction. In Figure 9.3 we give a sketch of a reduction furnace.
The electrodes can be of different kinds, depending on the type of production,
namely, silicon metal or ferro-silicon. Traditionally, in furnaces for silicon metal pro-
duction two types of electrodes are mainly used: the pure graphite electrodes, com-
posed by graphite bars joined by threated graphite connecting pieces, called nipples;



280 9 Selected applications

Electrodes

Contact clamps:
current entrance

__—f"‘//'
\\*- Pot

Fig. 9.3. Sketch of a reduction furnace (courtesy of A. Bermidez, R. Rodriguez and P. Salgado)

the prebaked electrodes, composed by a mixture of carbonaceous substance known as
paste, which has been previously baked to eliminate volatile substances.

Instead, the most used electrode in ferro-silicon industry is the Sgderberg one, com-
posed by a mixture of petroleum coke and coal-tar pitch contained into a steel cylinder.
This paste is put in the cylinder at the top of the electrode, and it bakes in the zone of
the contact clamps, employing the heat generated by the Joule effect. In this process
the initially non-conductive paste at the top of the electrode becomes a solid carbon
conductor. The baked electrode is consumed during the reaction that takes place at the
tip of the pot, and has to be continuously replaced by pushing the carbon body down.
This is done by moving the casing, but this procedure has the drawback that the steel
melts and pollutes silicon. For this reason the Sgderberg electrodes, that can be built in
larger size and cost less than pure graphite or prebaked electrodes, are only used in the
production of ferro-silicon, which can contain a large percentage of iron, but cannot
be used to obtain pure silicon metal.

For many years graphite or prebaked electrodes have been the only kind of elec-
trodes used in silicon metal production. In the early 1990s, the Spanish company Fer-
roatlantica S.L. built a new type of electrode named ELSA, that serves for the produc-
tion of silicon metal at a lower cost. It consists of a central column of baked carbona-
ceous material, graphite or similar, surrounded by a Sgderberg-like paste. There is a
steel casing that contains the paste until it is baked, but the carbon core is responsible
for slipping, so the casing does not move with the baked electrode and it does not melt.
In this way it is possible to produce silicon with metallurgical quality. In Figure 9.4
we see a sketch of the ELSA electrode.
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Fig. 9.4. Sketch of an ELSA electrode (courtesy of A. Bermudez, R. Rodriguez and P. Salgado)

During the last decades many models and codes have been developed to simulate
the working conditions of electric reduction furnaces. They compute the temperature
distribution, the electromagnetic fields and the stress distribution inside the electrodes
by solving the heat equation, the Maxwell equations and the elasticity equations. The
system is coupled since the heat source depends on the electromagnetic fields, and the
conductivity and stresses depend on the temperature. The alternating current and the
low frequency (50 Hz) used make the eddy current model a good approximation for
the electromagnetic submodel.

The early works concerning the modeling of a single electrode assume cylindrical
symmetry (see, for instance, Bermudez et al. [39]). The problem is solved in a vertical
section of the electrode, writing the equations in cylindrical coordinates. Clearly, the
two-dimensional model reduces the computational cost, but introduces some simplifi-
cations. Axisymmetric boundary conditions are assumed, but these are not realistic in
industrial applications, for which the current enters the electrode through the contact
clamps, and in each electrode half of the clamps is connected to one transformer while
the others are connected to a second transformer. Moreover, the conductivity is not
axisymmetric in the electrode, since it depends on the temperature, which is greater in
the central part of the furnace containing the electrode.

There are few works concerning three dimensional simulation of metallurgical
electrodes. The mathematical analysis of the continuous and the discrete problems in
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the case of a single electrode can be found in Bermidez et al. [46] for the H-based
formulation, and Bermudez et al. [44] for the E-based one. Notice that, in this case,
the conductivity is assumed to be uniformly positive definite in the whole domain, and
an insulating region is not present: the computational domain simply corresponds to
the electrode and to the contact clamps. The problem is not axisymmetric, because it
takes into account the non-symmetric boundary conditions that are typical in industrial
applications.

Here we show some numerical simulations due to Bermudez et al. [43] for an ELSA
electrode. In Figures 9.5 we describe the geometrical configuration; in Figures 9.6, 9.7,
9.8 and 9.9 we show the magnitude of the current density in different sections of the
electrode.

A delicate issue of the model that only considers one single electrode is the deter-
mination of the boundary conditions, as explained in Bermudez et al. [44]. On the tip
of the electrode, where the electric arc arises, the current exits freely, hence E xn = 0.
Also on the contacts, namely, the cross-sections of the bus bars through which the elec-
tric current enters the domain, the condition E x n = 0 is imposed, and moreover the
current intensity through each bus bar is known. Then one has J - n = 0 outside the tip
of the electrode and the contacts, since there is no current flux through this part of the
boundary. Finally, nH - n is set equal to 0 on the whole boundary, though this assump-
tion is not valid in general: for instance, it is exactly true in the axisymmetric case, and
itis admissible when the number of external bus bars feeding the electrode is large and
they are arranged radially, because in this case the normal magnetic fluxes that they
generate tend to cancel out. In more general situations one could take a larger domain
around the electrode and the bus bars, and assign the boundary condition f#H-n = 0 on
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Fig. 9.5. The geometric configuration of the ELSA electrode: A graphite, B paste, C casing,
D water, E contact clamp
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Fig. 9.6. Magnitude of the current density (A/cm?): horizontal section at the top of contact
clamps (courtesy of A. Bermudez, R. Rodriguez and P. Salgado)
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Fig. 9.7. Magnitude of the current density (A/cm?): horizontal section at the bottom of contact
clamps (courtesy of A. Bermudez, R. Rodriguez and P. Salgado)
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Fig. 9.8. Magnitude of the current density (A/cm?): horizontal section 25 cm below the contact
clamps (courtesy of A. Bermudez, R. Rodriguez and P. Salgado)
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Fig. 9.9. Magnitude of the current density (A/cm?): vertical section (courtesy of A. Bermidez,
R. Rodriguez and P. Salgado)

the external boundary: however, in this way a non-conductive air region is introduced
(see Bermuidez et al. [45], Alonso Rodriguez et al. [20]).

When considering a single electrode the proximity effect is neglected: though the
magnetic field generated by each electrode induces eddy currents in the other elec-
trodes, this is not considered in the simulations. A first attempt at taking into account
this effect has been carried out by Bermidez et al. [38] for ELSA electrodes, solving
numerically the electromagnetic problem on a horizontal section of the three elec-
trodes. A drawback is that these two-dimensional models are valid only in the lower
part of the electrode, where it can be assumed that the electric current is orthogonal to
the considered two-dimensional section.

The more realistic modeling of the reduction furnace requires to consider a three-
dimensional non-symmetric computational domain, formed by a conducting region
and an insulating region. We conclude this section by presenting some numerical sim-
ulations due to Bermudez et al. [43] for this model of the furnace, with three ELSA
compound electrodes. The contact clamps and the casing are not explicitly consid-
ered in the modelization, and the Sgderberg paste is assumed to be baked in the whole
domain. The electric current enters the electrodes through copper bars of rectangular
section. In Figures 9.10 and 9.11 we show the geometrical data of the problem.

The numerical method used for the simulations illustrated in Figures 9.12 and 9.13
is the finite element discretization analyzed in Bermudez et al. [45], and presented in
Section 5.4.2. The problemis formulated in terms of the magnetic field in the conductor
and of the scalar magnetic potential in the insulator, and the finite elements used are
first order edge elements in the conductor and first order nodal elements in the insulator.

Numerical results for the same problem, but formulated in terms of the electric
field in the conductor and of the scalar magnetic potential in the insulator, have been
also presented in Section 8.1.5.
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Fig. 9.10. Sketch of the model domain (courtesy of A. Bermudez, R. Rodriguez and P. Salgado)
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Fig. 9.11. Geometrical data corresponding to a vertical section of each electrode (courtesy of A.
Bermiidez, R. Rodriguez and P. Salgado)

Fig. 9.12. Magnitude of the current density (A/cm?): horizontal section (courtesy of A.
Bermidez, R. Rodriguez and P. Salgado)



286 9 Selected applications

|'N

Fig. 9.13. Magnitude of the current density (A/cm?): vertical section (courtesy of A. Bermidez,
R. Rodriguez and P. Salgado)

9.2 Bioelectromagnetism: EEG and MEG

Electroencephalography (EEG) and magnetoencephalography (MEG) are two non-
invasive techniques used to localize electric activity in the brain from measurements of
external electromagnetic signals. Electroencephalography measures the scalp electric
potential, while magnetoencephalography measures the external magnetic flux.

The electromagnetic activity of the brain is due to the movements of ions within
activated regions of the cortex sheet, the so-called impressed currents (or primary cur-
rents). In addition, Ohmic currents are generated in the surrounding medium, the so-
called return currents. The measures of EEG and MEG correspond to both impressed
and return currents, but the source of interest are the impressed currents, as they rep-
resent the area of neural activity associated to a sensory stimulus.

The first EEG recording in man (and the name Electroenkephalogram) is due to
H. Berger in 1924. He measured electric potential differences between pairs of elec-
trodes placed on the scalp. Nowadays these electrodes can be directly glued to the skin
or fitted in an elastic cap, and tipically up to 256 electrodes are used (see in Figure 9.14
a cap with 128 electrodes).

The first magnetoencephalograms date back at the late 1960s by D. Cohen. The
magnetic signal related to brain activity is extremely weak, about 10® times lower than
the earth’s geomagnetic field. Its measurement only becames possible with the SQUID
(Superconducting QUantum Interface Devices) magnetometer introduced by Zimmer-
man [249]. This kind of instrumentation measures some component of the magnetic
induction on different locations, nowadays up to 100, close but external to the head
(see Figure 9.15).

For a comprehensive introduction to theory and instrumentation in MEG see
Hiaméldinen et al. [117]. A complete description of the models used in EEG/MEG
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Fig. 9.14. The distribution of the sensors for EEG

Fig. 9.15. The distribution of the sensors for MEG (courtesy of Elekta)

source localization is provided in Baillet et al. [34] (see also Mosher et al. [182]). Let
us give here a concise presentation of the topic.

Source localization is an inverse problem: knowing the value of the magnetic field
or of the electric field on the surface of the head (or, possibly, external to the head, but
close to its surface), the aim is to determine the position and some physical character-
istics of the current density that has given rise to that value.

Since the current distribution inside a conductor cannot be retrieved uniquely from
knowledge of the electromagnetic field outside the conductor, the mathematical prob-
lem does not have a unique solution if some additional conditions on the source model
are not assumed (see Sarvas [220]). Two different approaches are mainly used to re-
construct the brain neural sources: equivalent dipole and distributed source models.
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Fig. 9.16. The Elekta Neuromag MEG system (left, courtesy of Elekta) and the second author
in the CIMeC Laboratory, University of Trento (right)

Moreover, see for instance Kaipio and Somersalo [142] for statistical approaches that
we do not consider here.

In the dipolar model the primary current distributionis represented as a point source
located at x, with moment q, namely,

Je(x) = q5(X - Xq) P

where 4(+) is the Dirac delta distribution. The dipole is a convenient representation for
aunidirectional impressed current due to the activation of a large number of pyramidal
cells, that in real situations may indeed extend over several square centimeters of the
cortex. More generally, it is assumed that a primary current source can be decomposed
as the sum of (few) current dipoles. In the standard dipolar method the parameters
of the dipoles (location, amplitude and orientation) are found using a nonlinear least-
squares search.

The distributed source model (also called imaging approach) assumes that a lot of
dipoles are located perpendicularly to the cortical surface. The geometry of the cortical
surface can be extracted from brain magnetic resonance imaging (MRI) data. A tes-
sellation of this surface is constructed and a current dipole is placed on each element
with itsorientation normal to the surface. The inverse problem in this case turns out
to be linear: only the magnitudes of the dipole moments have to be reconstructed, and
not the location nor the orientation. Proceeding in this way the number of unknowns is
typically greater than the number of measured data and the inverse problem is solved
using regularization schemes, such as a truncated singular value decomposition of the
Tikhonov regularization.
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In both cases, a preliminary step for the solution of the inverse problem is an effi-
cient resolution of the forward problem. In fact, the procedure is essentially the follow-
ing: given a source J., solve the forward problem, thus determining the electric and
magnetic fields generated by J., and then minimize in a suitable way the difference
between the computed and the measured data. The current density J which achieves
the minimum is the source we are trying to determine.

Let us focus now on the forward problem. For biological tissues, the linear constitu-
tive equations D = € and B = pH can be assumed (see Plonsey and Heppner [194]).
Due to its complicated detailed structure, the human brain must be modeled as a het-
erogeneous anisotropic medium, with physical parameters that depend on the spatial
variable and that may be tensors. The frequency spectrum for electrophysiological sig-
nals in MEG is tipically below 1000 Hz, and most studies deal with frequency between
0.1 and 100 Hz.

As far as we know, in almost all the studies concerning the neural generation of
electromagnetic fields the static approximation of Maxwell equations is considered

curlH=1J
divB =0 9.1
curlE=0,

neglecting not only the displacement current but also the electromagnetic diffusion.
From Ohm law the total current density J is the sum of the impressed currents plus
the return currents
J=J.+cE=J,—0ogradV,

where V is the electric scalar potential. From the first equation in (9.1) it follows that
0=divJ =div(J. — ograd V).
Hence V' can be obtained by solving the Poisson equation
div(o grad V) =divJ,, 9.2)

usually with the boundary condition o grad V' - n = J. - n, which is a consequence of
the fact that outside the head the magnetic field is supposed to be curl-free (the source
J. is located inside the head, and the conductivity is vanishing outside the head, so
that J = 0).

For EEG this is the point: solving this elliptic problem gives the electric field, and
the inverse problem of source localization can be dealt with.

For MEG, one has to go further. Since the magnetic permeability can be assumed
to be homogeneous and equal to p, the free-space permeability, B is given by the

Biot-Savart law
_ ko

X-Yy
= i /H£3J(y) X P—E dy . 9.3)

Here the integration is indeed carried out on a bounded domain (2, representing the
head, as J is vanishing outside (2. Note that this formula furnishes a direct way to

B(x)
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compute the magnetic induction B, but only after we have determined the electric
scalar potential V' through (9.2).

However, in some cases solving the elliptic problem (9.2) can be avoided. In fact,
the typical (though simplified) head model assumes that the head can be described by
three (scalp, skull and brain) to five (scalp, skull, cerebrospinal fluid, gray matter and
white matter) contiguous layers (2;, j = 1, ..., n. The different layers of the head and
the air region are separated by the surfaces S;, j = 1,...,n, S| being the outermost
one. Assuming that the conductivity of each layer is a scalar constant, by employing
classical results of potential theory it is possible to derive a surface integral equation
forVp :=Vig,k=1,...,n

N
wv;@(x)
V) 1 / Viy X—y s, (9.4)
T 47r x—y?

(see Sarvas [220]), where

1 X—y
Voo(x) 1= E/QJe(Y) : mdy,

n; is the unit outward normal vector to S, 0’; is the inside conductivity and U;T is the
outside conductivity, with Uf = 0 and, clearly, 0 7 =1,...,n— 1. Note
that, in the particular case of a current dipole, one has

J+1’

1 X —X
V(X)) = —q - ——L .
o(X)=-a Py

For constant conductivities integration by parts in (9.3) shows that also the Biot—Savart
law can be written as a sum of surface integrals on the interfaces between layers, ob-
taining the formula due to Geselowitz [109]

B(x) = Boo(x) 7@ / Vi(y)n;(y %ds 9.5)

where the vector field

B (x) = @/QJe(y) x =Y g

4m x—yP
is called the primary field. In the case of a current dipole it becomes

ﬂo X — Xq

B —_—.
(x) = x4 Ix —xq[3

At this stage, for MEG the main point turns out to be the determination of the functions
V; on the surfaces S}, which furnish the magnetic induction B via the explicit formula
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(9.5). Hence a boundary element approach can be introduced, with the aim of finding
a solution to the discrete approximation of (9.4), then inserting the obtained results in
9.5).

In some particular cases one can even avoid solving (9.4). Indeed, a simplified
model assumes that the head consists of a set of nested concentric spheres, each layer
with a scalar constant conductivity. In the special case of a current dipole and of a
MEG system that measures only the radial component of the magnetic induction B,
the contribution of the return currents vanishes, as for y € S; and x # y one has

X
Y X X (X X )X =
vT \xfyw) B (\y\ x \xfyw) =0
Therefore, the radial component of B(x) reduces to

x . = X Box) =1 X X Xq
|

(note the linear dependence of B,. on the moment q and the nonlinear dependence on
the position x,). Hence, the radial component of B turns out to be independent of the
potential V', and in this case the solution of the inverse MEG problem does not require
the previous computation of 1/, and simply uses the explicit formula (9.6).

These spherical models work reasonably well and are routinely used in most appli-
cations of EEG and MEG source localization. However, it seems clear that, in order to
improve the source reconstruction, more accurate solutions to the forward problem are
needed, and a more realistic model must be considered. Anatomical information can
be obtained from brain magnetic resonance imaging or X-ray computed tomography
imaging (see, for instance, Khan et al. [151]). From these images it is possible to con-
struct a realistic head model (see, e.g., Van Uiter et al. [239], Kybic et al. [162], Wolters
et al. [245]) and extract precise informations about surface boundaries for scalp, skull
and brain. On the other hand, recent studies of Marin et al. [172], Wolters et al. [244],
and Haueisen et al. [118] show that the anisotropy of the conductivity in the skull and
brain must be taken into account and in particular the conductivity cannot be assumed
to be piecewise-constant. From a numerical point of view this means that one has to go
back to the numerical solution of (9.2), and this can be done by using a finite element
scheme.

However, a modelization through the elliptic equation (9.2) is not completely sat-
isfactory. In fact, as already remarked, the physiological frequency involved in the
problem ranges between 0.1 and 100 Hz, and in general cannot be assumed to vanish.
Therefore the static model (9.1) has to be replaced by the eddy current model. To the
best of our knowledge, the latter has not been used yet for brain activity reconstruction
from MEG data, but this could be an important direction for further researches.

In this respect, since it is necessary to reduce as far as possible the computational
cost of the forward solver, the approach presented in Sections 7.1-7.5 could be a useful
tool.

—f0_=7% . 6
17 X% — %7 00

Remark 9.1. The necessity of taking into account a non-vanishing frequency has been
underlined by He and Romanov [122], Ammari et al. [22], who use the full Maxwell
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system as forward problem. They consider the inverse source problem that arises in
determining the location of an epileptic focus, i.e., the localization of a single dipole
in a homogeneous or even heterogeneous medium. Unlike many inverse methods, the
proposed algorithm is non-iterative. Following Ammari et al. [22], in this case the
considered forward problem is the time-harmonic full Maxwell system in R?

curl H — iweE = cE + qd(x — xq) ©.7)
curl E +iwpH =0, ’

with the Silver—Miiller radiation condition

lim |x| <w/u0H>< ﬁﬁE) =0,
x

|x|—+o0

€o being the free-space electric permittivity.
As usual, let £2¢ denote the conductor (the human head). If ¢ is a scalar harmonic
function in 2 and u is a solution to

curl(pg ! curlu) = o grad

then it can be proved that

q~gradgo(xq):/ H><n~gradg0+i/ po teurlu - E x n 4 O(w).
GYer

Qc

Choosing in this formula six particular harmonic functions (¢ = xj for k = 1,2,3
and o, = e“r-3 for k = 4,5,6, where £ € C3,j = 1,2,3, are such that
2?21 5122 = 0), the six components of q and x, can be approximated. It is worth
noting that this reconstruction is carried out without a priori knowledge of the angular
frequency w. g

Remark 9.2. A related forward problem, where the eddy current system or else the
full Maxwell equations have been adopted, is the numerical simulation of transcranial
magnetic stimulation (TMS): see, e.g., Ueno et al. [237], Sekino et al. [225]. Thisis a
non-invasive method for stimulating neurons in the brain, and it is widely used in neu-
roscience, in order to study the functional organization of human brain, and in the diag-
nosis and the treatement of neurological diseases. A transcranial magnetic stimulation
system consists in a coil placed on the scalp, that produces a time-harmonic magnetic
field which induces eddy currents in the brain. The operating frequency ranges from 1
to 4 kHz. It is also possible to use more than one coil to stimulate different parts of the
brain simultaneously: this is the so-called multichannel transcranial magnetic stimu-
lation, that has recently attracted particular interest (see Lu et al. [170] and references
therein).

Accurate numerical simulations of the induced fields inside the brain are necessary
for optimizing the design of the coils that have to generate the desired stimulation. [J



9.3 Magnetic levitation 293

9.3 Magnetic levitation

Due to the relatively low frequencies involved, magnetic levitation problems are an
interesting field of application for eddy current models: in fact, “the magnetic energy
storage is dominant (as compared to energy stored in the electric field) and wave phe-
nomena are small enough to be ignored” (Thompson [234]; see also, e.g., Kriezis et
al. [157]).

Let us start this section with a brief presentation of problem 28 of the TEAM work-
shop, a simple electrodynamic levitation problem which can serve as a model problem
for more complex computations in moving domains. It is an axisymmetric transient
problem with electromechanical coupling (see Karl et al. [148] and Kurz et al. [161]).
The device is described as follows: a cylindrical aluminium plate is located above
two cylindrical coils, formed by electric wires, all the parts with the same axis (see
Figures 9.17 and 9.18). At the initial instant the plate is above the coils at a certain dis-
tance, then an applied current density is imposed. Both coils are connected in series,
with different sense of winding.

==

Fig. 9.17. The geometry in problem 28 of the TEAM workshop
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Fig. 9.18. The dimensions in problem 28 of the TEAM workshop
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Due to the induced eddy currents, a repulsive Lorentz force

Fr(u,E,B) ::/J,2 [c(E+uxB)xB

acts on the plate {2, which reaches, after a transient time, a stationary levitation height.
Here u denotes the velocity of the plate, which depends on mechanical as well as
electromagnetic forces, in particular on B and E.

From the mathematical point of view, the problem is described by the time-
dependent eddy current equations

crlH—ocE=J.+0(uxB) in{?
curl E + %—? =0 in £2 9.8)
diV(E]E]) =0 in Q] ,

where (2 is a “box” containing the plate and the support of the coils, and J . is supported
only in the coils.

The constitutive relation between B and H in general is given by B = pH + M,
where M is the magnetization; however, as always done in this book, here below we
assume that M = 0.

Employing an implicit time-discretization scheme and computing the nonlinear
term u x B at the previous time level leads at each time step to the solution of

curl H* ™! — gE" ! = Jotl 4 g(u® x B") in {2
curl En*l + BTl /At = B/ At in 2 9.9)
div(e;E}™) =0 in 27 .

Then at the time step n + 1 the velocity u and the position r of the center of gravity
of the plate are obtained by setting

u"tt =u" g+ mAtFL(ut, BV B,

and
r"h =" Atu™?,

where g is the acceleration of gravity, m the mass of the plate and F, the Lorentz
force.

Most of the results that we have presented for time-harmonic eddy current
problems can be adapted to the system of equations (9.9). For instance, Kurz et
al. [161] have computed the levitation height by using a FEM—-BEM approach for
the (A, Vo) — A vector potential formulation. Moreover, Rapetti [201] has used
an approach based on the vector potential A and on an overlapping mortar element
technique for taking into account the movement of the plate.

In particular, in the TEAM workshop problem 28 the data of the problem are as
follows: the mass of the plate is m = 0.107 kg, the initial distance of the plate from the
coils is 3.8 mm, the applied current density is given by J.(t) = (—1)¥J, I° sin(wt)ey,
where ey is the (counterclockwise) azymuthal unit vector in the cylindrical system,
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k = 1refers to the outer coil and & = 2 to the inner coil, I9 = 20 A, w = 27 x 50 rad/s,
J1 = N1/S71 and Jo = No/Ss, where N1 = 576 and No = 960 are the number of
turns of the electric wires in the coils, and S; and S5 are the cross sections. Finally, the
conductivity and the permeability are givenby o = 3.4x107 S/m, u = 47 x10~7 H/m.

The results obtained by Kurz et al. [161] and Rapetti [201] are in very good agree-
ment with the experimental data: after a transient time of about 1.6 ms, a stationary
levitation height of about 11.3 mm is reached.

TEAM workshop problem 28 is clearly a very simplified model for realistic phe-
nomena based on magnetic levitation. In order to give a more detailed description of
the effective technological problems related to this topic, below we briefly outline a
presentation of magnetic levitation trains.

Since the 1960s some industrial companies attempted to design a train without
wheels, suspended over a specialized track by magnetic levitation and with a propul-
sion system based on magnetic forces (for more details about these early projects, see,
e.g., the review papers by Thornton [235], Yamamura [246], Rogg [213], Powell and
Danby [195]).

Two related but different techniques have been mainly used to reach this goal: elec-
trodynamic levitation with superconducting magnets and electromagnetic levitation
with normal conductive magnets (for an up-to-date presentation of these technologies,
see, e.g., Cassat and Jufer [75], Lee et al. [164], Yan [247]).

In electrodynamic levitation the train is lifted and guided by means of repulsive
forces between superconducting coils placed on the vehicle and coils inserted in the
guideway (see Figure 9.19). The repulsive forces are produced only when the magnets
are moving, hence the train does not levitate at low speed and it still needs wheels for
“take-off and landing”. The air gap (the distance between the vehicle and the ground)
can be larger that 10 cm, and the system turns out to be magnetically stable: if the
levitation height becomes lower than the equilibrium position, the magnetic repulsion

Fig. 9.19. Scheme of the electrodynamic levitation system: 1 vehicle, 2 propulsion windings,
3 superconducting magnets, 4 levitation and guidance windings
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force increases, restoring equilibrium; if the levitation height turns out to be too large,
then gravity prevails and the air gap is reduced. For this stability property, this system is
the most indicated for high speeds and for use in regions that can be subjected to strong
earthquakes. The electrodynamic levitation system, originally proposed by Danby and
Powell [92], has been adopted by Japanese National Railways, that since the 1970s
have produced the series of MLU trains and more recently the last prototype MLX,
that in 2003 obtained the train speed record of 581 km/h.

By contrast, electromagnetic levitation makes use of attracting forces between nor-
mal conducting electromagnets situated on board and an iron-core armature winding
on the rail. The attracting forces produces an inherently unstable levitation system, and
the air gap, which is about 1 cm and is nearly velocity-independent, has to be controlled
via a high-precision device. Sensors measure the air gap and accelerometers measure
the acceleration of the magnets, and information about both of these are passed to the
control system. Levitation and guidance can be either integrated in a single system (see
Figure 9.20), or else separated (see Figure 9.21). The first choice has been adopted for
the Japanese HSST train, operating in public service since 2005 in Nagoya (short dis-
tance and medium speed), the second one for the German Transrapid train, operating
since 2004 in Shanghai (long distance and high speed).

Concerning propulsion, in both levitation systems the power to the coils at the
guideway is supplied by a linear synchronous motor, whose structure is simpler than
that of a standard rotating electric motor, not requiring the use of mechanical coupling:
plainly-speaking, it is like a conventional rotating motor in which stator, rotor and
windings have been unrolled and stretched along the guideway. The working principle
is the same: an alternating current inside the motor windings on the guideway generates
a space—time depending magnetic field in the air gap, and it induces an electromotive
force in the secondary part, a conducting sheet with (standard or superconducting)

Fig. 9.20. Scheme of the electromagnetic levitation system (levitation and guidance integrated):
1 vehicle, 2 iron-core rail windings, 3 levitation and guidance magnets
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magnets placed on the vehicle. This electromotive force generates the eddy currents,
whose interaction with the flux in the air gap produces the thrust force. The speed is
regulated by varying the frequency of the alternating current, and, if the direction of the
traveling field is reversed, the motor becomes a generator and the the train is braked,
without contact. The advantage given by a linear motor is that, in the case of a (more
or less) rectilinear motion, its efficiency is higher than that of a rotating motor, because
of the minor amount of vibration and noise.

Also guidance is based on magnetic forces. In the MLX prototype, the levitation
coils on the sideways are connected in such a way that, if a train is closer to one side,
then induced currents are produced and this generates a guiding force (in other words,
the coils work as a guide system, based on a repulsive force). For the Transrapid train,
electromagnets are placed on both sides of the vehicle, and reaction rails on the guide-
way interact with them maintaining the train suitably centered on the track.

Summing up, the magnetic levitation train is a technological problem of low-
frequency electromagnetism coupled with dynamics. To our knowledge, a complete
modeling of the whole process has not been performed, due to its high complexity.
However, some of its parts have been considered in detail and analyzed by means of
the finite element method, though mainly for simplified mathematical models derived
from the eddy current equations: as examples we recall the calculation of the magnetic
field around the HSST train magnet (see Aoki [28]) or that of induced currents and
forces for an hybrid levitation magnet (see Albertz et al. [4]), the investigation of the
stability of repulsive forces (see He et al. [121]), the analysis of the heating problem
arising in superconducting magnets (see Saito et al. [216]), the design of high temper-
ature superconducting coils (see Jenkins et al. [139]). Finally, the analysis of the MLX
train levitation system and some of its variants has been investigated only by means
of the dynamic circuit theory (see He et al. [120], Davey [96]), and would give more
precise results if the analysis relied on the complete eddy current model.

Fig. 9.21. Scheme of the electromagnetic levitation system (levitation and guidance separated):
1 vehicle, 2 guidance magnets, 3 levitation and propulsion magnets, 4 rail guidance windings,
5 iron-core rail windings
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Fig. 9.22. The Transrapid magnetic levitation train in Shanghai (left) and the first author before
take-off (right)

9.4 Power transformers

Asitis well-known, power transformers are used to produce an alternating current with
low intensity and high voltage starting from an alternating current with high intensity
and low voltage, and viceversa.

In its most common form a transformer is constituted by two windings, wrapped
around an iron core. A time-dependent current through the primary winding generates
a time-varying magnetic field in the core, and by mutual induction this field induces a
voltage in the secondary winding.

The ratio between the voltage in the secondary winding and the voltage in the
primary winding is proportional to the ratio between their respective winding numbers.
Therefore, tweaking on the number of turns makes it possible to tune the electromotive
force at the exit of a transformer, hence to reduce the resistive loss in the conducting
wires employed for the transmission of electric power from the power plant to the user.

In 1831 M. Faraday was the first to discover the electromagnetic induction between
coils, but the first transformer for commercial use, based on an alternating current for
creating the flux variations necessary for induction, was designed by W. Stanley in
1886 (see Figure 9.23).

Nowadays, transformers are in general polyphase; the most common used in elec-
tric power distributions are three-phase transformers (see Figures 9.24 and 9.25).

Looking in more detail, their structure can be rather complicated, as they include
the coils and the core, an oil tank for refrigeration and insulation, pressing and clamping
plates around the coils, shields at the walls of the tank.

With the increase of the power, stray losses become more and more important,
lowering the efficiency of transformers and producing significative local overheating
in the metallic components: by Joule effect the current in the windings generates a
resistive heating, eddy currents are responsible of the increasing of the heat in the
core, and the rise of the temperature also occurs in plates and shields. The reduction of
these unintended effects, which influences the reliability and decreases the operating
life of transformers, is one of the most important points for optimal design.
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Fig. 9.23. The Stanley transformer (1886, U.S. Patent and Trademark Office)
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Fig. 9.24. A three-phase, five-leg transformer

\ "x..\ 3

Fig. 9.25. A detail of a transformer: 1 iron core, 2 high winding, 3 low winding, 4 shielding, 5
clamping plate, 6 pressing plate

A thorough modeling of a power transformer based on the eddy current equations,
possibly coupled with the heat equation, has been proposed by many authors.

Chen et al. [80] have considered the finite element approximation of a three-phase,
five-leg transformer, using an approach based on a suitably modified T« — ¥ method,
preferred to others since the current potential T~ only appears in the conductor, a
rather small region in power transformers. Considering, for the sake of definiteness, the
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magnetic boundary value problem H x n = 0 on 0{2, the magnetic field is represented
as
H— grad v + Ky in £2;
| Te + gradyec + K¢ in ¢,

where K; € H,, (092, I';21), Kc € H(curl; £2c) and satisfies Ko X ng +
K; x nf =0on [, and ¥y = ¥o and T X ng = 0 on I'. Note that the terms
K; and K¢ are related to the topology of the domain, and cannot be discarded if the
conductor {2¢ is not simply-connected.

The windings are modeled as a conducting region, and the conductivity o assumes
two different constant values in the windings and in the core. Therefore, {2¢ has several
connected components, and at least one of them (the core) is not simply-connected.

The magnetic permeability  is assumed to be a positive constant in the whole
transformer, and, moreover, a Lorenz-like gauge

div TC = 72&)0’#0”@/}0 in QC
is used, in order to resort to the problem
—AT¢ + iwpcoTeo =curlJ. ¢ — curlcurl Ko — iwpcoKe .

Chen et al. [80] have computed the distribution of the eddy current density on the
metallic parts of the tank, with the aim of determining the best design for their shape.
In particular, they have shown that the maximum reduction of stray losses is obtained
with the use of vertical magnetic shunts instead of aluminium screens.

The same approach has been proposed by Tang et al. [230] for computing the mag-
netic field on pressing plates, yoke-clamps and the tank wall when both windings and
heavy current leads are taken into account, with the aim of optimizing the shape and
dimension of a copper shield employed for minimizing overheating in the wall.

The T — ¢ method has been also used by Preis et al. [196], for computing the
electromagnetic field and the temperature rise in bushing adapters carrying eddy cur-
rents due to high-current low-voltage leads. In that paper the coupling with the heat
equation has been taken into account, considering the Joule effect due to the eddy cur-
rents and assuming that the conductivity o is a positive scalar function depending in a
nonlinear way on the temperature. An iterative coupling strategy has been proposed,
with the choice of recalculating the magnetic field in the conductor only, in order to
avoid the heavy computations related to the solution of the complete electromagnetic
problem.

However, as explained in Chapter 6, the T« — ¢ approach has various flaws, as it
does not include the Faraday equation on the “cutting” surfaces, that are indeed present
in multi-phase power transformers, as the conductor is not simply-connected. More-
over, the use of nodal elements, which is natural for this formulation, is not the best
choice for the approximation of a problem where the conductor is a polyhedral non-
convex domain, as the convergence of the approximate solutions could fail. Therefore,
a better modeling of power transformers could be achieved by resorting to one of the
formulations that are more suitable for problems with complex topology (for instance,
those presented in Chapters 4 and 5).
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Tang et al. [231] and Ho et al. [131], employing the (A, V) — A formulation
with Coulomb gauge, has considered the numerical simulation of transient eddy cur-
rent fields in power transformers connected to voltage source through electric circuits.
The windings are modeled as coils included in the insulator {27, and there the current
density is written in the form J.. ;(t) = & I(¢) t, where t is the unit coil direction vec-
tor, tangential to the windings, /N is the number of turns in the coil, .S is its cross section
and I(t) is the unknown current intensity. Outside the windings and in the conductor
the applied current density is assumed to vanish.

Since the total induced electromotive force in windings can be expressed in term
of the vector magnetic potential as follows

where (2,, is the space filled by windings, the problem is closed by adding a suitable
equation, representing a circuit model of power transformers. Summing up, for the
magnetic boundary value problem H X n = 0 on 92 and a domain (2 of simple
shape, the global problem reads

curl(p=tcurl A) — p; !t graddiv A

+U%A+a‘gradvcf%]lt:0 in 2 x (0,7)

div(c ZAc + o gradVe) =0 in ¢ x (0,7)

(U%AC +ogradVe) -ne =0 onI"x (0,T) (9.10)
A-n=0 on 92 x (0,T)
(wtcurlA) xn=0 on 912 x (0,T)

L[, A t+LE +RI=V on (0,7),

plus suitable initial conditions for A and I, where L is the inductance, R the resistance,
and V' the voltage source of the circuit modeling the transformer. Here, the current
density % I't is intended to vanish outside the windings (2.

In particular, Tang et al. [231] and Ho et al. [131] have computed the transient
performance of a single-phase, three-leg power transformer, focusing in particular on
the magnetic flux density on the surface of the iron core and in the windings. For a
three-phase, five-leg transformer they have determined the distribution of torsional
forces acting on the coils, in order to control their robustness and stability, as well as
the eddy current losses in the clamping plates, checking in this way the efficiency of a
magnetic by-pass plate designed for reducing overheating.

Alternative approaches to the simulation of power transformers coupled with cir-
cuits are those described in Chapter 8. In these cases, the windings are modeled as
conductors, each one with two electric ports, where the voltage drop can be assigned.
The topology of the insulator {2; becomes more complex, but the total number of de-
grees of freedom in formulation (8.15) is much less than that in (9.10), therefore its
numerical accuracy and efficiency should be better.
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9.5 Defect detection

In this section we present non-destructive evaluation (NDE) techniques based on elec-
tromagnetic methods. The aim of these techniques is to detect and characterize defects
in conducting materials without causing damage.

In eddy current non-destructive testing, a coil supplied with alternating current is
placed near the conductive object being inspected. Thus eddy currents are induced and
generate a secondary magnetic field. Flaws are detected by monitoring changes in this
magnetic field. The measured quantity is usually the impedance of the exciting coil or
of a receipt coil. One can distinguish between absolute probes, where the same coil is
source and receiver, and differential probes with source coils and receptive coils. This
kind of techniques is widely employed in aerospace, transportation energy, nuclear
and other industries. It is used, for instance, for the in-service inspection of steam
generator tubes in power plants, or for the verification of aging aircraft structures. For
instance, problem 27 of the TEAM workshop concerns the detection of deep flaws in a
riveted assembly of aluminum sheets with a filler between the sheets, held together by
titanium fasteners (see Figure 9.26). This is an example of the kind of structures that
are subjected to control in aeronautical industry.

Numerical simulations are needed for the design of the probe coil and for the qual-
ification of monitoring device. In order to develop more reliable instruments it is im-
portant to clarify the correlation between the flaws and the changes in the generated
eddy currents, and numerical simulations can be used in place of more expensive ex-
periments. From the numerical point of view a great effort has been made in the last
years to obtain efficient computational schemes to simulate probe-defect interactions:
see, for instance, the pioneering works of Lord [169] and Ida and Lord [136], Rasolon-
janahary et al. [204], Badics et al. [33], Sabariego and Dular [214], [215], Henneron
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Fig. 9.26. A typical screwed assembled structure that needs to be to controlled (from problem
27 of the TEAM workshop): 1 sensor, 2 rivets, 3 sheets, 4 filler, 5 flaw to detect
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et al. [125], Krebs et al. [156]; see also the review by Auld and Moulder [32] and the
references therein.

Let us consider a computational domain (2 that contains the conductor {2¢ to be
inspected. The electromagnetic fields generated in the case of no-flaw can be assumed
to be known; in particular, they satisfy the eddy current approximation of Maxwell
equations

curl H* — o“E* = J, in 2

curl E* +iwpHY =0  in (2, 9.11)

where the superscript u denotes unflawed quantities.
The impedance of the unflawed configuration is given by

1 _ JE—
C

where 0 is the applied current intensity (see, e.g., Jackson [137], p. 266).

Let us now assume that a flaw (2 (typically, a non-conducting region) is present
in {2¢, the object to be inspected. The conductivity and permeability of the flaw are
different than those of the host material, thus the electromagnetic fields in the flawed
arrangement satisfy

curlH/ — o/Ef =17, in {2

curl Bf +iwp/Hf =0  in 02,
where the superscript f denotes the quantities when the flaw is present. For the sake of
simplicity, in the following we assume that the permeability is the same in the unflawed
and flawed arrangements, and that the conductivity of the flaw is equal to 0, while
outside it coincides with o, namely,

a_f{a'“ inﬂc\ﬂf

0 in 2f.
We also set pu := pu/ = p* and o := o*. Hence when the flaw is present the
impedance is given by
1 — —
f= — / aEf~Ef+iw/ pH -HF | | (9.13)
11°] Qc\ 2y Q

The direct approach computes the difference between the impedance values with
and without flaws, determined as in (9.12) and (9.13). The change of the observed
quantity is very small, usually under 1% of the unflawed impedance value, so very
high accuracy is needed in the finite element approximation of the fields. Sometimes
the unperturbed configuration has symmetries that make it possible to simplify the
computation, however the approximation of the perturbed problem requires a very fine
three-dimensional mesh and can be extremely expensive for complicated geometrical
situations.

In order to minimize this computational cost a different approach is based on per-
turbation techniques, that lead to the computation of the impedance variation as an inte-
gral on the flaw, thus making it possible to obtain sufficiently high accuracy by refining
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the mesh only in the suspect region. These techniques can be described as follows. The
computational domain {2 is assumed to have a simply-connected boundary 02, and
to be given by 2 = 2¢ U (2.0 U 21, where the conductive coil {2.; is an absolute
probe, with two contacts 2., N OS2 = I'5 U I';y. The excitation is given by a current
intensity 7° (and not by a current density as in (9.11)). From the Ampere law, this as-
signed current intensity can be expressed as 10 = / r, curl H/ .n= I r, curl HY -n
Finally, let us also assume that the no-flux boundary conditions

EYxn=0 onlgUly
pHY -n =0 ondf?

are satisfied (see (8.2)). L
For each v € H (curl; §2) such that curlv = 0in §2 \ (£2c U £2.0:1) one has, as in
Section 8.1,

—iw [ pH" -V = [, curl E* . ¥
= [(EY-culv — [, E* xn-¥ (9.14)

— -1 u v _ u <.
*fflcuflcona curl H* - curlv — V fFqurlv n.

Analogously, assuming that also when the flaw is present the electromagnetic fields
satisfy no-flux boundary conditions, one finds

—iw [, pH -V = [, curlE/ - ¥
= fQEf~curIfo89Ef Xn-v
= f(QC\Qf)UQc _10"1 curl HY - curl v
+f9f Ef~curIVfofFJ curlv-n.

9.15)

Taking v = H/ in (9.14) and v = H¥ in (9.15), and recalling that I =
fFJ curl HY - n = fFJ curl H* - n, one has

yuro = / o 'curlH" - curl H + z'w/ pH" - Hf
RcUNcoil 2

and

VI :f(z Ef - curl H" +f9 \27)0U%0n @ “leurl HY - curl H*
+zwaqu H,

hence

(VI —vr fQ Ef . curl H® — fo o tcurl H* - curl HY
f. U
= fo E/ . curlH

since curl Hf = 0 in 2.
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Proceeding as in (8.9) and taking into account the relations (9.12) and (9.13) we
see that Z% = V% /1% and Zf = V'/ /I°, hence the impedance variation is given by

vIi—ye 1
(z —z%) = = / E/ . curl H .
2y

70 (10)2

For the finite element approximation different formulations have been considered.
More often the problem is formulated in terms of a magnetic vector potential A and
an electric scalar potential V¢ in the conductor, and a magnetic scalar potential 1)y
in the insulator (see Section 6.3). The first three-dimensional simulations, due to Ida
and Lord [136], use this formulation and isoparametric hexahedral finite elements for
the approximation of the impedance, given a source current density J.. They verify
the validity of the formulation for a problem related to the non-destructive testing of
a nuclear plant steam generator. In particular, the test problem consists of an Inconel
600 (a nickel-chromium allotrope of iron) tube and a carbon steel support plate; two
conical defects are located on the outer surface of the tube.

Rasolonjanahary et al. [204] consider the problem of the inspection of flaws in a
riveted aircraft structure. They use a (A, Vo) formulation in the conductor to be in-
spected and the magnetic scalar potential ¢; in the surrounding non-conducting region.
They compare the results obtained using in the flaw domain a formulation in terms of
either the vector magnetic potential A or the scalar magnetic potential v, and obtain
more accurate results with the former formulation.

Badics et al. [33] use perturbation techniques in terms of the vector potential A~
and the electric scalar potential V¢ in the conductor, the vector magnetic potential
A in the flaw and the magnetic scalar potential ¢; in the air region. They compute
the solution of the unperturbed model and the field distortion due to a flaw. Setting
H:=H/ —H" and E := Ef — E* in {2 and assuming as before that the permeability
is the same in the unflawed and flawed arrangements and that the conductivity of the
flaw is equal to O, one has

curlH-—e/E=J, inf
curlE +iwpH =0 in {2,

where

0 in2\
— (o) — U f
.= (07 —o)E" = { —oE" in 025 .

Hence, for calculating the impedance perturbation it is necessary to know the value of
the unflawed electromagnetic fields only in the flaw.

The efficiency of the formulation is verified by solving the TEAM workshop prob-
lem 15 (see Figure 9.27 for a sketched description of the arrangement). The test spec-
imen is an aluminum alloy plate of 260 mm of side (2d) and 12.22 mm of thickness
(t). The defect is a parallelepipedal slot of length 12.60 mm (2c), depth 5 mm (h) and
width 0.28 mm (w). The probe is a circular air-cored coil with inner radius 9.34 mm,
outer radius 18.40 mm and 9 mm of length. The frequency of the applied current is
equal to 7 kHz and the lift-off of the probe is 2.03 mm.
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Fig. 9.27. Sketch of problem 15 of the TEAM workshop

They also solve two other test problems where the host specimen is a stainless steel
tube and the probe is again a circular air-cored coil. The defect is a long axial slot in
the first case and a short circumferential slot in the second case.

Sabariego and Dular [214], [215] propose a perturbation approach using the H-
based formulation and edge finite elements for its numerical approximation. The per-
turbed field is not computed in the whole domain but only in a reduced domain sur-
rounding the flaw. The mesh of this reduced subdomain is independent of the mesh
used for the unflawed problem and can be adapted to the dimensions of the flaw. To
demonstrate the performance of the proposed method they consider the second eddy
current benchmark problem proposed by the World Federation of NDE Centers, an
Inconel tube with a defect on the outer surface and a circular coil that scans the inner
surface.

In Henneron et al. [125] the (A, Vo) formulation and the (T ¢, ) formulation are
considered, and are compared in terms of numerical results and computational time.
The numerical experiments concern the qualification process of testing devices used
in heat exchanger tubes. Two different probes are considered. The first one consists in
two coils with a ferrite core used as source and receptive coils, simultaneously. The
second one has a source coil and two different receptive coils. Also Krebs et al. [156]
use these two formulations to obtain a-posteriori error estimators within an adaptive
meshing procedure.
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A.1 Functional spaces and notation

In this section we introduce some definitions and notations which have been often used
in the preceding chapters. For more detailed presentations and descriptions of the func-
tional spaces useful in electromagnetism, see, e.g., Necas [184], Adams [2], Adams
and Fournier [3], Girault and Raviart [111], Dautray and Lions [94], Cessenat [76],
Bossavit [59], Monk [179].

Let us consider an open, connected and bounded set {2 contained in R3, with a Lip-
schitz continuous boundary 042, and let X' be a Lipschitz continuous surface contained
in 0f2. The unit outward normal vector on 042 is indicated by n.

We denote by C5°(£2) the space of infinitely differentiable functions having com-
pact support in {2, i.e., vanishing outside an open set {2’ C {2 which has a positive
distance from the boundary 042 of (2.

The space of functions that are bounded in {2 (with the possible exception of a
subset of measure equal to 0) is denoted by L°°({2), with norm || - || L ().

For a function defined in {2, for any s € R the Sobolev space of order s is denoted
by H*(2). The norm in this space is indicated by || - || s, s>. For functions defined on the
surface X, for any ¢ € [—1, 1] the Sobolev space of order ¢ is denoted by H*(Y), with
norm || - ||+ s. As usual, the space H(£2) (respectively, H°(X)) is always denoted by
L?(£2) (respectively, L?(X)). We also recall that the space H'/?(X) is the space of
the values on X (or, equivalently, the traces on X) of functions belonging to H'((2),
and that H (X)) is the dual space of H*(X), t € [0, 1].

The space Hj 5;(£2) consists of those H ' (£2)-functions that have a vanishing value
on X. When X' = 912, we simply write H{ (£2) instead of HJ 5,(2).

For a real number s with 0 < s < 1 and a domain D = 2 or D = ¥, ¥ a closed
surface, we are also interested in the space H®(D)/C, whose elements are identified
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if they differ by a (complex) constant. This space is endowed with the following norm

1/2
(fD|v7vD|2) fors =0
vl s (D) /c = 1/2
(fD|v7vD|2+|v|§’D) for0<s<1,
where vp := (meas D)~' [}, v is the mean value of v and |v|s,p denotes the semi-
norm of v in H*(D). In particular, if the function v € H?(D)/C is chosen withvp =
0, we have ||v| g (py/c = ||[v]|s,p. Moreover, due to the Poincaré inequality (see, e.g.,

Dautray and L10ns [94], Chap. 1V, Sect. 7, Prop. 2), we have that in H'(£2)/C the
semi-norm || grad v||o, ; is indeed an equivalent norm.
When considering vector-valued functions v : £2 — R3, the space

H(div; 2) := {v € (L*(2))* | divv € L*(2)}
is often used. It is endowed with the graph norm, i.e.,

VIl vy = (V1[5 + Il div [ )2
Similarly, we employ the space
H(curl; 2) := {v € (L*(2))*| curl v € (L*(£2))*},

with the norm
IVl a2y == (V1[5 + [l curl v[[§ o)'/2.

Moreover, we set
Hy »(div; 2) :={v € H(div; 2)|v-n=0on X}
Ho s(curl; 2) :={v € H(curl; 2) | v xn=0on X}
HO(div; 2) := {v € H(div; 2)| divv = 0in 2}
HO(curl; 2) := {v € H(curl; 2)| curlv = 0 in 2}
H{ 5(div; 2) == Ho s (div; 2) N H°(div; 2)
Hg’x(curl; Q) := Hy s (curl; 2) N H(curl; 2) .

When X' = 012, we simply write Hy(div; 2) instead of Hy g (div; £2), and similarly
for the other cases.
For a symmetric matrix 7 = 7(x), uniformly positive definite in {2 and with entries

belonging to L™ ({2), we also set
H(n,div; 2) i= {v € (L2(2))* | div(nv) € L*(2)}

Hy »(n,div; 2) :={v € H(n,div; 2) |npv-n=0o0n X} .

To characterize the tangential boundary value of a vector belonging to H (curl; {2)
we need some preliminaries concerning tangential differential operators. The standard
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definition of the tangential gradient and the tangential curl on the flat surface {3 = 0},
having chosen the unit outward normal vector n = (0,0, 1), is

grad'rd) = (ald)a an)a 0) , Curl; QS = grad’rd) Xn= (82¢7 78191)7 0) .

Starting from this, if 3 C 042 is a closed surface (namely, a surface without boundary),
using local coordinates (see, e.g., NeCas [184]) it is possible to define the operators
grad_ and Curl, for functions belonging to H!(X), and one obtains grad, ¢ € L2(X)
and Curl, ¢ € £(X), where

L2(X):={ve(I*X)?|v-n=0}.
By a duality argument, the adjoint operators
div, : L2(X) — HY(X)
and
curl, : £3(X) - H'(X)
are also introduced, and the Laplace-Beltrami operator
A HYY) — H YD)

is defined as A, := div, grad_ = — curl, Curl,.
These operators can be restricted to other spaces: in particular, one can verify that
the following relation holds

grad_¢ = (n x gradgx n)s, ¢ H3/2(E),

where we have set H%/2(X) := {¢|s|¢ € H*(12)} and ¢ is any extension of ¢ to
H?(£2). Similarly, it holds

Curl,¢p =grad_ ¢ xn , ¢ € H3/2(E).

Clearly, in this case we have grad_¢ € H ;/ 2 (X)), where

Hy*(2) = {(n x v xn)z | v € (H'(2))*}. (A1)

and Curl, ¢ € Hi/Q(E), where
H/(5) = {(vxn)z|v e (H' (@)} (a2)
and moreover for each A € H%/Q(E) we have (A x n) € Hi/Q(E), and viceversa

foreach A € Hi/Q(Z‘) we have (A X n) € H;/Q(E). Let us also note that the spaces

H%/Q(E) and Hi/Q(Z‘) are both equal to the space
H2(2) = {xe HY*(Z)|X-n=0}

if X' is a smooth surface, while a characterization of them for a polyhedral domain is
given in Buffa and Ciarlet [70].

The dual operators div, and curl, now read (all the integrals should be intended as
duality pairings)

/(leT)\)d) = 7/ )\'grad,rgf) , pV= (]'{711/2(Zx))/7 ¢€H3/2(E)
P b))
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/ (curl, A) ¢ := / X-Cutll,¢ , Ae (HYA(®)) , ¢ e HY*(5),
b b
and clearly one has that div, A € (H%/2(%))’ and curl, A € (H3/2(X))’. It can also

be checked that A € (Hi/Z(E))’ if and only if (A x n) € (H}/Z(E))’, and moreover
that div (A x n) = curl, X for each X € (Hi/Z(E))’.

We can now state the result concerning the characterization of the space of tan-
gential traces on X' or of tangential components on Y of functions belonging to
H (curl; £2). In Buffa and Ciarlet [69], Buffa et al. [71] it has been proved that the
space of tangential traces (v x n)|x on X' for v € H(curl; £2) is given by

H™2(div,; X) i= {X € (HYX(D)) | div,iA e HY2(D)),  (A3)
with the graph norm
IM =172 @i, ) 1= (AN sz 5, + dive |2 )",
while the space of tangential components (n x v xmn) g onXforve Hcurl; 2)is
given by
H2(curl,; ) :={X € (HY*(X)) | curl, A € HV/2(2)}, (A4)
with the graph norm
X 5172 cunt ) = (I w2y Tl curl: A2, )5 )2

It can be also shown that two these spaces are in duality, and that one has A €
H~'/?(curl,; ) if and only if (A x n) € H~'/2(div,; ¥). Moreover, it holds
div (X x n) = curl, X for each A € H~'/?(curl,; ). Let us finally note that, when
2’ is a smooth surface, these trace spaces can be described as

H™Y%(div,; £) :={x € H2(2)|A-n=0,div,A € H/?(%)}
HY%(curl,; ) := {Ae HY2X) | A -n=0,curl, A € HV2(2)}

(see Paquet [190], Alonso and Valli [6], Cessenat [76]).
In this functional framework it is thus possible to extend the operators grad_ and
Curl, on H'/?(X) as

/ grad_¢ - X = —/(divT)\)gZ) . Ae H V2%(div,; %),
z z
and
/CurlT¢~)\:/(curlT)\)¢ . Ae H V?(curl,; X)),
z by

obtaining by duality grad_¢ € H~'/?(curl,; ¥) and Curl,¢ € H~'/2(div,; ).
Again, Curl,¢ = grad_¢ x n for each ¢ € H 1/2(5). In particular, we have also
obtained

/ grad (¢|x) - uxn= f/ div-(u x n)p s (A.5)
b b

foreach u € H(curl; 2) and p € H'(02).
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Foreach u € H(curl; §2), v € Hy g\ x(curl; £2) it can be proved that the follow-
ing formula of integration by parts holds true

/curlu~V:/u~curlvf/(u><n)~v (A.6)
o) o) b

(where the last integral is indeed the duality pairing between (uxn) € H~/?(div,; X))
and (n x v x n) € H~'/?(curl,; X)).

Taking v = grad ¢, with ¢ € H&QQ\E(Q), from (A.6), (A.5) and the Gauss
divergence theorem it follows ’

[y curlu-nyp = — [, (diveurlu) p + [ curlu-ng s
= [,curlu-gradp = [, u-curlgrad ¢ — [, (u x n) - grad ¢
=— [y(uxmn)-grad (¢ x) = [y div;(uxn) g5,

hence
curlu-n =div,(u x n) on ¥ (A7)

for each u € H (curl; £2).
We finally recall that the following trace inequalities hold true (in the second, third
and fourth inequality we are assuming that ' is a closed surface)

lpislliye,s < klldlie Ve H (2 (A8)
(v n)sl-1/2,2 < & |[VllH@ive) Vv e Hdv; ) (A9)
(v xn)sllg-1/2w1v,:2) < £ IIVIHEW ) Vv E H(curl; £2) (A.10)

||(Il XV X n)\E||H*1/2(curlT;2) <K ||V||H(Curl;.Q) Vve H(Cllrl; “Q)v (A1D)

where x > 0 is a suitable constant only depending on {2 and Y. Moreover, in all
these cases there exist linear continuous extension operators form the trace space to
the corresponding space of functions defined in 2.

A.2 Nodal and edge finite elements

We present in this section a brief description of the finite element spaces used for the
approximation of the spaces H!(£2) and H (curl; {2). A more comprehensive presen-
tation can be found, e.g., in Ciarlet [83], Quarteroni and Valli [199], Monk [179].

Let £2 C R? be a Lipschitz polyhedral domain and let us consider a finite decom-
position of {2 given by

where, denoting by int(K') and diam(K) the internal part and the diameter of K, re-
spectively,
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- each K is a (closed) polyhedron with positive volume;

- if K and K are distinct elements in 7}, then int(K; ) N int(Ky) = (;

- if K; and K> are distinct elements in 7, and F' = K1 N Ky # 0,
common face, side, or vertex of K1 and Ks;

- diam(K) < hforeach K € 7y,

then F'is a

Under these conditions, 7}, is called a triangulation of {2. In the sequel we will con-
sider triangulations where each element /K can be obtained as an affine trasforma-
tion of a reference element K ,le, K = Tk (K’ ), where Tk is an invertible affine
map Tk (X) = Bxx + bk, Bk being a non-singular matrix. The reference element
can be the tetrahedron K of vertices (0, 0,0), (1,0, 0), (0,1,0), (0,0, 1) or the cube
K =1[0,1]%

Finite element spaces are based on piecewise-polynomial functions, hence some
notations for polynomial spaces are necessary. Let us denote by Py, £ > 0, the space
of polynomials of degree less than or equal to k in the three variables z1, 22, 23, and by
), the space of homogeneous polynomials of degree k. Let Q; ., », be the polynomial
space given by polynomials of maximum degree [ in z;, m in x3, and n in x3. In
particular @, denotes the space of polynomials that are of degree less than or equal to
k with respect to each variable.

For the definition of finite elements in H (curl; {2) the following space of vector
polynomials is used

Ry, = (Py_1)* ® Sy,
where k£ > 1 and
Sk i={a e (Pr)’ | a(x) - x =0},

Another space of incomplete vector polynomials is (for & > 1)
Dy = (Pk,1)3 D I@k X.

We also use polynomial spaces defined on planes and lines. If e is a segment we
denote by Py (e) the space of polynomials of maximum degree k with respect to the arc
length on e. If £ is a plane subdomain in R?, P4 (f) denotes the space of polynomials
of maximum degree k in two variables using an orthogonal coordinate system in the
plane.

A.2.1 Grad-conforming finite elements

Let us first recall that a function ¢ : 2 — R belongs to H'(£2) if and only if ¢|x €
H'(K) for each K € T;, and for each common face f = K N K, K1, Ky € Ty, the
value of ¢, and ¢|x, on f is the same.

Therefore, for any k£ > 1 the space

Ly :={¢n € C°N2) | ¢nx €EPx VK €T3}

is a subspace of H'(2).
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In order to identify a basis of this finite dimensional subspace it is necessary to
choose a set of degrees of freedom that are unisolvent on P, namely, such that their
values uniquely determine a polynomial belonging to P.

Let us first assume that 7}, is a triangulation of {2 composed by tetrahedra. Fol-
lowing Monk [179], for a regular enough function ¢ we consider the following set of
degrees of freedom on a generic tetrahedron K:

- vertex degrees of freedom
my(¢) := {¢(a) for all vertices a of K } ;

- edge degrees of freedom (for k > 2)

me(@) = {@/@d)quVq € Py _o(e) for all edgeseofK} ;

- face degrees of freedom (for k£ > 3)
1
= — d Py _: for all f: fKp;
ms(9) {area(f)/fgbq 0 € Py (f) forall Fces £ of K}

- volume degrees of freedom (for k > 4)

1
mg (¢) :{m/Kgquvvqu“}.

It is easy to check that the total number of degrees of freedom in a tetrahedron
concides with the dimension of P;; moreover it can be verified that a polynomial ¢ €
IP;, is vanishing in K provided that all its degrees of freedom are equal to 0. Hence
these degrees of freedom are unisolvent on P.

It can be also proved that, if all vertex, edge and face degrees of freedom of ¢ € Py,
vanish for a particular face f of a tetrahedron, then ¢ = 0 on that face. This means
that, using these degrees of freedom for identifying a piecewise-polynomial functions
that locally belongs to [P, we define a continuous function, hence an element of L;“l.
A basis of L} is thus given by the collection of those functions that are locally in Py,
and that have one degree of freedom equal to 1 and all the others equal to 0.

Remark A.1. A different and more often used set of degrees of freedom, consisting
of the values of the function on different points of the tetrahedron, can be employed
in order to describe these finite element spaces. Being expressed in terms of point
values, this kind of finite dimensional spaces are often called nodal finite elements
(see, e.g., Ciarlet [83], Quarteroni and Valli [199]). For instance, if & = 2 the values
of the function ¢ at the vertices a;, 1 < ¢ < 4, and in the middle point of each edge
constitutes another set of grad-conforming and unisolvent set of degrees of freedom;
if £ = 3 an analogous set of conditions is given by the values of ¢ at the 20 different
points of the form %ai + %aj + %ak, with1 <1, 75,k < 4.

Here we have preferred to adopt the vertex, edge, face and volume degrees of
freedom for the sake of similarity with the curl-conforming finite elements introduced
in Section A.2.2. |
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For any ¢ € H3/>%(K), § > 0, we can now define an interpolation operator 7
by requiring that

My (¢ — T ) = me(dp — K ) =myf(¢p — Trd) = mK (¢ — TrP) =0

for all the vertices, edges and faces of K; the corresponding global interpolation op-
erator
T H32T0(Q) — L

is defined by (71,¢)|x := Tx ¢k for each K € 7j,. Note that the assumption on the
regularity of ¢ ensures that ¢ is continuous in K, hence vertex values are well-defined.

We recall that a family of triangulations 7}, is called regular if there exists a constant
o > 0 such that

h
maX—K§U Vh >0,
KeT, pK

where
pk = sup{diam(R) | R is a ball contained in K} .

The following interpolation error estimate holds:

Theorem A.2. Let T, be a regular family of triangulations of 2. Then if € H*1(2),
1/2+ 6 < s < k, there exists a constant C' > 0, independent of h, such that

¢ — mhdllo.2 + Al — ol < CR T ¢llsy1,0-

It is also possible to construct a finite element space analogous to L¥ when con-
sidering a triangulation of {2 consisting of parallelepipeds. In this case one works with
piecewise-polynomial functions ¢y, such that ¢ i o T)x € Q. The space of nodal
finite elements for a mesh composed by parallelepipeds and for & > 1 is

LE = {¢n € CO2) | gnx 0Tk € Q. VK € Tp}.

On the reference element K the degrees of freedom, unisolvent on Qy, are:

- vertex degrees of freedom
My (QZ)) = {gf)(é) for all vertices a of R} :
- edge degrees of freedom (for k > 2)
me(¢) = {[ééds Vg € P_o(é) for all edges é of K} ;

- face degrees of freedom (for k£ > 2)

mf(gf)) = {/qu;(deth € Qkfz(f) forallfacesfoff(} :
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- volume degrees of freedom (for & > 2)
mic(3) = {/ dqdv vie ka} .
K

The degrees of freedom on a general element K can be obtained from those on K
using the transformation ¢ o T = ng

For these finite element spaces the interpolation error estimate described in Theo-
rem A.2 still holds.

Remark A.3. Let usassume k > 0. A finite element subspace of L?({2) is easily defined
by
C;]f ={qn € LQ(Q) | qn|K € P, VK € 7p}

when the elements K € 7}, are tetrahedra, and by
Ch={qn € L*(2) | qur o T € Qu YK € T}

when the elements K € 7}, are parallelepipeds.
If Py : L?(£2) — CF denotes the L?(£2)-projection, then one has

16— Pondllo,e < Ch*H|¢lls41,0,
forall ¢ € H*T1(£2),0 < s < k. The same holds true for the L?({2)-projection
POA,h : LQ(Q) — C}]f O
A.2.2 Curl-conforming finite elements

Here we introduce the finite element spaces used for the approximation of the space
H (curl; £2). We present the two families of elements proposed by Nédélec in [185]
and [186], which are also called edge elements.

We start by considering a triangulation of {2 composed by tetrahedra. For & > 1,
the first family is defined as

Nj = {zp € H(cur; Q) | zpx € R VK €T} .

We have the following set of degrees of freedom:

- edge degrees of freedom

€

me(z) := {/z~7’quVq € Pr_i(e) foralledgeseofK} ;

- face degrees of freedom (for k£ > 2)

my(z) = {/fz x v-qdSVq e (Py_o(f))? for all faces fofK} ;
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- volume degrees of freedom (for & > 3)

my(z) = {/Kz.qdvvqe (Pk3)3} .

Here 7 denotes a unit vector with the direction of e, while v is the unit normal vector
on f.

The total number of degrees of freedom on a tetrahedron K is equal to the di-
mension of Ry, and it can be shown that, if all the degrees of freedom are 0, then a
polynomial z € Ry, is identically vanishing in K. Hence this set of degrees of freedom
is unisolvent on Ry.

We recall that, if K, K5 are two different elements of 7;, with a common face
f = Ki N K,,definingz € L?(K; U K3) by

Zq inK1
z = .
Zs in Ky,

where z; € H(curl; K3) and zo € H(curl; K3), it follows z € H (curl; K1 U K3)
providedthat z; X v =z X v on f.

It can also be proved that, if a vector functionz € Ry, has all its degrees of freedom
vanishing on a face f of K and on the three edges contained in f, then the tangential
component of z vanishes on f. This means that, using these degrees of freedom for
identifying a piecewise-polynomial functions that locally belongs to Ry, we obtain an
element of H (curl; {2), hence an element of NJ.

We can introduce a natural interpolation operator. Assuming that z is sufficiently
regular, the interpolant r,z € N/ is the unique function in N/ that has the same
degrees of freedom of z, that is

Me(z —rpz) = my(z —rpz) = mp(z —rpz) =0

for all the edges, faces and tetrahedra of 7;,.

We notice that the degrees of freedom m,(z) are not defined for a general function
in H (curl; £2). However they are well-defined if z € (H*(£2))? for some s > 1/2 and
curlz € (LP(2))3 for some p > 2. For the proof of this result see Monk [179] (see
also Amrouche et al. [27], where a more general result is proved).

In particular, the following interpolation error estimate holds (see Alonso and
Valli [9]):

Theorem A.4. Let Ty, be a regular family of triangulations of 2. If z € (H*($2))? and
curlz € (H*(02))3, 1/2 < s < k, then there exists a constant C' > 0, independent of
h, such that

1z = razlo,e + [l curl(z — rpz)[lo,0 < Ch*([2]ls,0 + || curlz]]s,0) .

It is also possible to define an analogous family of curl-conforming finite element
spaces when considering a triangulation of {2 consisting of parallelepipeds. For the ref-
erence element K = [0, 1]3 the polynomial space is Qx—1 1.6 X Qk k—1,5 X Qk k.k—1,
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with & > 1, and the degrees of freedom are given on edges ¢ with unit tangent 7,
on faces f with unit normal  and in the interior of K. In particular we consider the
following set of degrees of freedom, unisolventon Q—1 1 % X Qr r—1,% X Q. k—1:

- edge degrees of freedom
me(z) := {/2 -TqdsV q € Pr_1(é) for all edges é off{} ;
- face degrees of freedom (for k£ > 2)

my(z) = {ffz X0 -qdSV e € Qrak1(f) x Quorh-2(f)
for all faces fof K} ;

- volume degrees of freedom (for & > 2)

mi(2) = {sz.qdv
Vae€ Quatp—2,k-2%X Qr_gp—1r-2 X Qk72¢k72¢k71} .

They are well-defined if z € (H*(k))® for some s > 1/2 and curlz € (LP(K))3
for some p > 2. The basis functions on a general element K can be obtained from
those on K using the transformation z o T = (BL)~'2. In this way the curl of z is
expressed in terms of the curl of z by

1
curlzo T = WBK curl z .
For £ > 1 we can thus consider the following curl-conforming finite element
spaces defined on parallelepipeds

N;’f = {zn € H(cur; 2) |z 0Tk € Q1,06 X Qre—1,6 X Q-1
VK eT,}.

The interpolation error estimate reported in Theorem A.4 still holds.

We notice that, for the curl-conforming finite elements presented here above, when
using elements of degree k the interpolation error in the L?({2)-norm is O(h*). A
second family of curl-conforming elements has been introduced by Nédélec in [186],
in order to obtain an O(h**1)-error estimate in L?((2).

Let us first consider the case of a tetrahedral mesh. For &k > 1, the discrete functions
locally belong to the polynomial space (IP;)3, and the degrees of freedom, are the
following:

- edge degrees of freedom

me(z) := {/z~7’quVq € Pr(e) foralledgeseofK} ;
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- face degrees of freedom (for k£ > 2)
my(z) = {/z -qdSVq € Dy_1(f) for all faces f ofK} ;
f

- volume degrees of freedom (for & > 3)

m(z) = {/Kz~quVq€Dk2} .

Here Dy,_1(f) is the analogue of Dj_; in two dimensions.
This set of degrees of freedom has been proved to be curl-conforming and unisol-
vent on (PP, )3. Thus for k& > 1 we can consider the discrete space

Nf’h = {zy, € H(curl; 2) | zyic € (Pr)® VK € Tp},

and, for a function z which is regular enough, we can define the interpolant r, ;,z €
NE,.
Concerning the interpolation error the following estimate holds:

Theorem A.5. Let T;, be a regular family of triangulations of 2. If z € (H*11(£2))3,
1 < s <k, then there exists a constant C' > 0, independent of h, such that

|1z = rsnzll0,0 + hfl curl(z — s 12)[lo,0 < Ch* 2|51,

Comparing the interpolation errors in N}¥ and N* ', We see that L?(£2)-norms of

the curl are of the same order with respect to h, while the L?(§2)-norms of the fields
are O(h®) for Nf and O(h**1) for N, f »- On the other hand, the number of degrees of

freedom of N¥ ‘1, 1s greater than that of NE.

It is also possible to define a second family of Nédélec curl-conforming finite el-
ements when considering a trlangulatlon of (2 consisting of paralleleplpeds For the
reference element K = [0,1]3 and k > 1 the polynomial space is (Q)® and the
degrees of freedom, unisolvent on (Qy,)?, are given by:

- edge degrees of freedom
me(z) := {/2 - T §ds ¥V § € Pr(é) for all edges é off(} ;
- face degrees of freedom (for k£ > 2)
my(z) == {/fi -4 dSVé € Qui2(f) x Qi_2k(f) for all faces fOfK} ;
- volume degrees of freedom (for & > 2)
mg(2) == {/Ki -qdVVaqe Qpr—ai—2*xQr_zir—2 X QkZ,kZ,k} .

The corresponding discrete space is given by

NP, == {zy € H(curl; Q) | zy 0 Txc € (Q)> VK € Ty} .
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A.3 Orthogonal decomposition results

We prove in this section some orthogonal decomposition results that are useful for
splitting the magnetic field H; or the electric field E; into the sum of suitable terms
(for a more detailed presentation, see also, e.g., Dautray and Lions [95], Saranen [218],
[219], Auchmuty [29], Cantarella et al. [73]).

Here the geometrical assumptions on {2, {2 and {25 are those of Section 1.3. More-
over, we again assume that the matrix g is symmetric and uniformly positive definite
in {2, with entries belonging to L°>°({2) and that the matrix £; is symmetric and uni-
formly positive definite in {27, with entries belonging to L>°({2;). Finally, the spaces
of harmonic fields are introduced in Section 1.4 (see also Section A.4).

A.3.1 First decomposition result

Let us start by introducing the scalar product

(Wr,21)e;,0, 1:/ EIW] 27,
27

where z7 indicates the complex conjugate of z;, and by denoting with the symbol L7
the orthogonality with respect to this scalar product. Instead, | denotes the orthog-
onality with respect to the standard L?({2;)-scalar product. We have the following
theorem:

Theorem A.6. Any vector function z; € (L?(£2;))? can be written as
zjzeflcurquJrgradga[Jrh] , (A.12)

where qr € Hg po(curl; 27) N HY (div; Q) NH(O2, T 20)*, or € HE 1(£2r)
andhy € H.,(I',082; 1), and each term of the decomposition (A.12) is orthogonal
to the others, with respect to the scalar product (-, )<, 0,

Moreover, if curlz; = 0 in 27 and z; X ny = 0 on I it follows q;f = O,
if div(ierzy) = 0in 2 and erz; - n = 0 on 012 one has ¢y = 0, and if
zr LS H (I, 082; 21) one finds hy = 0.

Proof. To prove this result, let us start showing how qz, ¢ and h; can be determined

in terms of zg.
First of all, setting

Yy = {p, € Ho.po(curl; 1) N Ho p(div; 27) | prLH (92, I'; 91)} C(A13)

the vector field q; € Y7 is the solution to

/ (5;1 curlq; - curl py + divq; divpy) = / z7 - curl py (A.14)
Q[ QI
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for all p; € Y;. Concerning the solvability of this problem, note that using the
compactness of Y7 in LZ(QI) (see, e.g., Fernandes and Gilardi [104]), the following
Poincaré-like inequality is easily proved

/ lprl2 < C [ (curlps|? + |divps|?) VpreYr. (A.15)
27 27

Therefore, the existence of a unique solution g to (A.14) is a consequence of the Lax—
Milgram lemma. It can be also verified that, if curlz; = 0 in 27 and z; X n; = 0 on
I', then the right-hand side of (A.14) vanishes, thus q; = 0.

Since equation (A.14) is trivially satisfied for each test function belonging to
H(D82,I'; §21), there we can select the test functions p; not only in Y7 but also in
Hy po(curl; £21) N Ho p(div; £21), namely, without imposing the orthogonality con-
straint.

We also see that divq; = 0 in {27, as in (A.14) we can choose p;y = grad vy,
where the function vy € H'(£2;) satisfies Av; = divqy in 27, v; = 0 on 912 and
gradv; - ny = 0 on I, thus obtaining fs’h |divgr|? = 0.

We have therefore shown that q; satisfies

/ E}lcurlqpcurlﬁ:/ zy - curlpy (A.16)
QI QI

forall pr € Ho an(curl; £2;) N Ho r(div; £21). We can indeed prove something more,
namely, that equation (A.16) is satisfied for each test function p} € Hy s (curl; £25).
In fact, denoting by v} € H'(£2r) the solution of Av; = divpjin 27, v; = 0on 0f?
and gradv} -n; = p} -nyon I', we have p; = (p} — grad vy) € Hy gn(curl; £21) N
Hy, r(div; £21), and the result follows from the fact that curl p = curlp;.

Hence, choosing in (A.16) a test function p} € (C§°(£27))3, we find by integration
by parts that

Curl(ejlcurlqj —z7)=0 in 27 ;

finally, repeating the same computation for p} € Ho s (curl; £21) gives
(E}lcurlquzj) xny=0 onl.
The function ¢ € H&F(QI) is such that
/ ergrad ¢y - gradny = / erzr - gradmr (A17)
QI QI

foralln; € H, 3’ (£27), and also this problem is uniquely solvable by the Lax—Milgram
lemma, as the Poincaré inequality

/ IWIZSC/ | grad7r|? (A.18)
2r 27

holds in H&F(QI) (see, e.g., Dautray and Lions [94], Chap. IV, Sect. 7, Rem. 4). It is
readily seen that, if div(e;z;) = 0in 27 and €;z; - n = 0 on 942, then the right-hand
side of (A.17) vanishes, and consequently ¢y = 0.
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Then, selecting n; € C§°({2;), an integration by parts in (A.17) yields
div[er(grad o —z1)] =0 in {27,
and the choice 7y € Hjj 1(£2r) gives
er(gradypr —z;) - n=0 on 9f2.
Finally, hy € H., (I", 042; {2) satisfies

/e;hpgradwj,[:/ 51z1~gradwj,1,/ E]h[~7‘l‘k,]:/ E1Z] - Tk, T
27 27 2 2r

foreachj =1,...,prand k = 1,...,ng0, the harmonic vector fields grad w; r and
7,1 being the basis functions of the space H,, (I', 042; £21). In other words, h; can
be written as

pr non
h; = E cI,jgradwj,IJr E dk,]ﬂ‘k,],
j=1 k=1

where (c;,;, di, 1) are the solution of the linear system

Al (%) _ (fm €121 'gradwgff) : (A.19)

dr €121 - .1
27

T T

g=1,...,pr,i=1,...,n90, where AT := ((BDT)T gT) with

DTj = fQI ergradw;j ;- gradwg 1

Bik 1= [, €rmy,r - gradwg 1

Cik = fQI EITk, T - T4,I -
It is easily proved that the matrix A' is symmetric and positive definite, as the matrix
€7(x) is symmetric and positive definite, uniformly with respect to x, and the functions
7,7 and grad w; 5 are linearly independent. Therefore (A.17) is uniquely solvable; its
right-hand side vanishes if z; 1 ¢/ 'H,, (I, 42; {21), so that in that case one has h; = 0.

The three terms 5;1 curlqy, grad ¢ and h; are orthogonal with respect to the
scalar product (-, )¢, 0, in fact

/ sj(eflcurlq1)~gradﬁz/ curlg; -n;pr =0,
2 anur

ascurlg; -n =div,(q; x n) =0on df2 and p; = 0 on I". Then

/ 51h1~gradﬁz/ erhy -nrpr =0,
2 anur

asdiv(eshy) =0in 2, e/hy -ny = 0on 92 and and p; = 0 on I'. Finally,

/ 61(5f10ur10U)'h_1:/ n;xqr-h; =0,
Ion PYela

ascurlh; =0in 27, h; x n; =0on I and q; X n = 0 on 0{2.
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The decomposition result (A.12) is then straightforwardly verified. In fact, let us
set Uy := Z]*E;l curlq; —grad ¢y —h;. Sincecurl g;-n = div,(q; xn) = 0on 942
and grad o; x ny = 0 on [, from the results proved above we verify at once that U;
belongs to H, (I", 042; £21). On the other hand, by construction hy is the orthogonal
projection of z on H, (I, 042; £21) withrespect to the scalar product (-, -), ,, hence
Uy is orthogonal to H,, (I, 042; £21) with respect to the scalar product (-, )¢, ¢,, and
the conclusion Uy = 0 follows at once. O

A.3.2 Second decomposition result

Let us define the scalar product

(ar, vi)ur .o 5:/ ppur vy (A.20)
27

and denote by the symbol L7 the orthogonality with respect to this scalar product. By
interchanging the role of I" and 02 and by replacing e with g, by proceeding as in
Section A.3.1 it is easy to obtain the following theorem, whose proof is presented for
the ease of the reader.

Theorem A.7. Any given vector function vi € (L?(£2;))® can be decomposed into
the following sum

Pon nr
vy = p; ' curl Qr + grad x1 + Zam grad z, 1 + Zbl,l/’l,l , (A.21)
r=1 =1

where Qp € Hy, r(curl; £21) N Hgﬁém(div; Q) NH(L,082; Q1)+ are introduced in
(A.22), x1 € H&an(ﬂj) in (A.23), and arr br,r=1,...,p00, L =1,...,np,
in (A.24). Settingky := Y "> ay ., grad z, 1 + 1) brpy ;. each of the three terms
u;l curl Qy, grad x 1 and k; of the decomposition (A.21) is orthogonal to the others,
with respect to the scalar product (-, ) ;0

Moreover, if curl vy = 0in 27 and vi x n = 0 on 912 it follows Q; = 0,
if div(yvy) = 0in 25 and pyvy -my = 0 on I' one has x; = 0, and if
viLl#TH,, (092, 2) one finds arr = 0andbr; = 0,7 = 1,...,papn, | =
1, ooy

Proof. For the sake of variety with respect to the proof of Theorem A.6, let us
present the result by resorting to the strong formulations. The vector function Q; €
H (curl; £2r) N H(div; §21) is the solution to

curl(u;1 curl Q) = curlvy in £2f

diVQ]ZO inQ]
Q;xn;=0 onI’
Qr-n=0 on 02 (A.22)

(u;'curlQr) x n=vy; x n ondf
Q]J_H(F, 8(2, Q]) .
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The existence and uniqueness of the solution Q; can be proved by proceeding as was
done for problem (A.14). It is readily verified that one has Q; = 0 if curlv;y = 0 in
27 and vi x n = 0 on 0f2.
The scalar function x; € H'(£2;) is the solution to the elliptic mixed boundary
value problem
div(p, grad xr) = div(p,vr) in £2;
pregradxr -ny = pyvy-ny onl’ (A.23)
xr =0 on 02 .

The existence and uniqueness of the solution ) is well-known from the classical
theory on elliptic boundary value problems. Clearly, if div(u;vy) = 0 in {2; and
prvr-ny =0on it follows x; = 01in £2;.

Finally, the vector (as,,br1), v = 1,...,pa0,l = 1,...,np, is the solution of
the linear system
A (al,r) _ (fQI HIVI'gfadZs.,I) 7 (A24)
br fQI KRV P 1

D B .
s=1,...,pa0,m=1,...,np, where A := (BT C’) with

D, = f(h pyerad z, 1 - grad zg g
By = [, oy ;- grad zs 1 (A.25)
Cmi = fQI KHiPy1 P T s

and the harmonic vector fields grad z, ; and p,; ; are the basis functions of the space
H,,, (092, T'; ). As in the preceeding Theorem A.6, it is easily proved that the matrix
A is symmetric and positive definite, and that a;, = 0, b;; = 0forr = 1,...,psq,
= ]., ...,nr ivaJJ”HM(@Q,F; Q])

The verification that the three terms in the decomposition are orthogonal with re-
spect to the scalar product (-, -),,,, ¢, is readily carried out by proceeding as in Theo-
rem A.6. Moreover, defining

Poq nr

Vi:=v;—p; curlQr — grad s — Z ar,-grad z, 1 — Z bripir

r=1 =1
it can be directly verified that
V]GH#I(QQ,F;Q]) , V]J_#IH#I(QQ,F;Q]),

and the thesis follows. O
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A.3.3 Third decomposition result

Another decomposition result, based on different harmonic fields, is the following one

Theorem A.8. Any vector function vy € (L?(£2;))® can be decomposed into the fol-

lowing sum
’nQI

vi =y eurl Q) + grad xj + Y 07 .6 s (A26)
a=1
where Q% € Ho(curl; 2;) N HO(div; QI) NH(e; 1)L is introduced in (A.27), x5 €
H'Y(2r)/C in (A.28) and 03 ,, o = 1,...,ng,, in (A.29), and each term of the
decomposition (A.26) is orthogonal to the others with respect to the scalar product
('7 )MI,QI'
Moreover, if curl vy = 0 in {21 it follows QF = 0, if div(p;vr) = 0in 21 and
pvr-ngr =0onI'UOS2 one has grad x7 = 0, and if vi LFH,,, (m; 1) one finds
07 a=0a=1...ng,.

Proof. Since the proof is similar to that of Theorems A.6 and A.7, let us just sketch it.
For any vector function v; € (L?(£27))3, construct the solution QF € H (curl; £2;) N
H(div; £21) to
curl(p;t curl Q) = curlv; in §2;
divQ; =0 in 27
Qi xnr=0 onI'U oS
Q7 LH(e; £21) .

The existence and uniqueness of the solution Q7 can be proved as done for problem
(A.14). Note that Q7 = O if curl vy = O in {2;.

The scalar function s € H!(£2;)/Cis the solution to the elliptic Neumann bound-
ary value problem

(A.27)

div(pe; grad x7) = div(p,vr) in 27 (A28)
preradx; -ny=p;vy-ny onl UOS2. ’

Itis clear that grad x7 = 0 in {27 provided thatdiv(p;vy) = 0in 2y and p;vi-ny =0
onI"UdS2.
Finally, the vector 9?,04’ a=1,...,ng,,1is the solution of the linear system

’nQI

ZAZOée?,Oé = /!:2 KrVvr - pZ,I ) /6 =1,.. R LXoTan (A.29)
— I

where

Af, = fQI K1Ph 1 PhI s (A.30)
and the harmonic vector fields pj, ; are the basis functions of the space H,,, (m; £2).
Hence 07 , =0fora =1,...,no, when vy LFH,, (m;25).

The proof of the theorem is now easily done by following the same procedure used
in Theorems A.6 and A.7. O
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A.4 More on harmonic fields

In this section we give an explicit construction of the basis functions of the spaces of
harmonic fields presented in Section 1.4. Useful references about this topic are, e.g., the
papers by Foias and Temam [106], Picard [192], Amrouche et al. [27], Fernandes and
Gilardi [104], Hiptmair [126], Cantarella et al. [73], Auchmuty and Alexander [30],
[31], and the books by Bossavit [59], Gross and Kotiuga [115]. The most complete
results are in Ghiloni [110].

Let us start from the space Hc, (I, 9¢2; §21), defined as

He, (I',082; 02) := {v; € (L?(£2;))?| curlv; = 0,div(e;vy) = 0,
vixny=0onIl,evi-n=0o0ndN}.

The determination of the basis functions gradw; 7, j = 1,...,pr, is easily done as
follows: w; 1 € H'(2r) is the solution of the elliptic problem

div(ergradwj ;) =0 in{2;

ergradw;r-n =0 on 012
wj; =0 onI'\Ij (A31)
wjr =1 onlj.

Instead, the basis functions 7, 7, k = 1,...,ngp, need some preliminary notation.

It is known that in {2; there exist ng, connected orientable Lipschitz surfaces X,
with 90X, C 042, such that every curl-free vector field in §2; with vanishing tan-
gential component on I” has a global potential in {27 \ Uy Y. These surfaces, usually
called Seifert surfaces, are “cutting” surfaces: each one of them “cuts” a I"-independent
non-bounding cycle in {2; (for notation, see Section 1.4). We can now introduce the
functions g, ; € H' (21 \ X%), solutions to

div(ergradqi,1) =0 in 27 \ X

ergradgrr-n=20 on 92\ 0Xy

=0 onl’ (A.32)
lergradgy,r-nxly =0

[qk,1]s, =1,

having denoted by [ -], the jump across the surface X and by ny the unit normal
vector on Xj,. We finally define 7y ; as the (L?(2;))-extension of grad g ; (com-
puted in £2; \ X%).

The basis functions for the other harmonic spaces can be defined in a similar way:
let us go on with H,,, (0£2, I'; {2r), defined as

Hpu (002,15 02r) :={vr € (L2(027))?| curl v = 0,div(p;vy) = 0,
vixn=00nd2,u;vi-ny=0o0nIl}.
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The basis functions grad z,. 1, 7 = 1, . . ., paq, are the gradients of the solutions z,.; €
Hl(QI) to
div(p,gradz. 1) =0  in £2f
prgradz, r-nr =0 onl[’
zp7 =0 on 992\ (092),
zrg =1 on (942), .

(A33)

Moreover, similarly to the preceding case, in {2; there exist n connected orientable
Lipschitz surfaces =j, [ = 1,...,np, with 9=; C I, such that every curl-free vector
field in £2; with vanishing tangential component on 9f2 has a global potential in 2 \
U;=7. These “cutting” surfaces “cuts” the 0f2-independent non-boundingcycles in (2.
Then introduce the functions p;,; € H'(£2; \ =;), solutions to

div(p, gradp; 1) =0 in 2/ \ =}

pregradp,r-nr =0 onI"\ 05,

pir =0 on 012 (A.34)
[y gradpy; - mz]2 =0

l

[PI,I]EL =1 P

having denoted by [ - | z, the jump across the surface =; and by n = the unit normal vec-
tor on =;. The basis functions p; ; are the (L?(£2;))3-extension of grad p; ; (computed
in Q] \ El).

For the space H, (e; £21), defined as

He,(e;2;1) = {vr € (L*(27))?| curlv; = 0,div(e;vy) = 0,
vixny=0onI' UdN},

*

the basis functions are grad w o,

solution to

v =0,...,paq + pr, where w? ; € H'(§2r) is the

div(esgradw’ ;) =0 in {2y

wl =0 on (02U1I)\ O, (A.35)
wl =1 on@, .

Here the surfaces ©. are defined as ©., := (942), fory = 0,...,ppe and O, :=

Iy —poq fory =poa+1,...,p00 +pr.
When considering the space H,,, (m; {21), defined as

Hyup (ms; 2r) == {vy € (L3(21))3| curl v; = 0,div(p;vr) =0,
prvr-n=0onI"UdN},
one has first to introduce the “cutting” surfaces =} C {25, = 1,...,ng,, each one
“cutting” an independent non-bounding cycle in {2;. They are connected orientable
Lipschitz surfaces with =" C 02 U I, such that every curl-free vector field in {27
has a global potential in §2; \ U,Z=7;. The basis functions p, ; are the (L2(£21))3-
extension of grad p, ;, where p}, ; € H'(£2; \ 5}, is the solution, determined up to
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an additive constant, to

div(py gradpy, ;) =0 in2r\ E%
pygradpy ;-nr =0 on (02U TI)\ 0=
[H} gradpzﬁl ) nE*} . =0 (A.36)
[pzl} E; = ]‘ b
having denoted by |- ]=- the jump across the surface =7, and by n=- the unit normal
vector on =7.
The basis functions grad 2, r = 1, . .., paq, of the space

H(e; 2) :={v € (L*(2))?| curl v = 0,divv =0,
vxn=0ondN},

and 74, t = 1,...,ngp, of the space

H(m; 2) :={v € (L*(2))?| curlv = 0,divv = 0,
v-n=_0o0n0N},

are determined in a similar way to those of the spaces H., (e; £2r) and H,,, (m; £2r),
respectively.
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