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Preface

Continuamente nascono i fatti
a confusione delle teorie 1

Carlo Dossi 2

Electromagnetism is without any doubt a fascinating area of physics, engineering and
mathematics. Since the early pioneering works of Ampère, Faraday, and Maxwell, the
scientific literature on this subject has become immense, and books devoted to almost
all of its aspects have been published in the meantime.
However, we believe that there is still some place for new books dealing with elec-

tromagnetism, particularly if they are focused on more specific models, or try to mix
different levels of analysis: rigorous mathematical results, sound numerical approxi-
mation schemes, real-life examples from physics and engineering.
The complete mathematical description of electromagnetic problems is provided

by the celebrated Maxwell equations, a system of partial differential equations ex-
pressed in terms of physical quantities like the electric field, the magnetic field and the
current density. Maxwell’s contribution to the formulation of these equations is related
to the introduction of a specific term, called displacement current, that he proposed to
add to the set of equations generally assumed to hold at that time, in order to ensure
the conservation of the electric charge.
The presence of the displacement current permits to describe one of the most im-

portant phenomenon in electromagnetism, namely, wave propagation; however, in
many interesting applications the propagation speed of the wave is very high with
respect to the ratio of some typical length and time scale of the considered device, and
therefore the dominant aspect becomes the diffusion of the electromagnetic fields.
When the focus is on diffusion instead of propagation, from the modeling point of

view this corresponds to neglecting the time derivative of the electric induction (i.e.,
the displacement current introduced by Maxwell) or, alternatively, neglecting the time
derivative of the magnetic induction.

1 Constantly facts arise to muddle theories.
2 Carlo Dossi, 1849–1910, Italian writer.
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This book is devoted to the formermodel. The resultingequations are usually called
magneto-quasistatic equations, or else eddy current equations, and can be seen as a
low-frequency approximation of the full Maxwell system. In the following we are in-
deed concerned with the time-harmonic case, in which the data and the electromagnetic
fields are assumed to be sinusoidal in time. This model is very often used in electrical
engineering (for some examples, see Section 1.2 and Chapter 9). Indeed, for the typ-
ical problems in this field alternating currents are applied, the electromagnetic wave
propagation can be neglected, but the variation of the magnetic field is still significa-
tive: in fact, in conductingmedia this variation generates current densities that have to
be taken into account. Summing up, the term that can be dropped is the displacement
current.
In our opinion, the reasons for the interest in the time-harmonic eddy current model

are manifold. In fact, it is not only an important topic in electromagnetism, but also
an intriguing mathematical problem in which one has to face some delicate aspects
that can also be present in other situations. Therefore, the study of this problem can be
useful for understanding general techniques that can be applied in other contexts, as
well.
One of these peculiar aspects is that the time-harmonic eddy current problem

presents differential constraints: the magnetic field is curl-free and the electric field
is divergence-free in the insulating region, and the magnetic induction is divergence-
free in the whole physical domain (insulator plus conductor).
There are several mathematical approaches that allow us to treat these constraints.

In this book we refer to the following:

• saddle-point formulations with Lagrange multipliers;
• introduction of vector and scalar potentials;
• penalization methods.

Each of these approaches gives rise to different finite element approximations: mixed
finite element methods are used when considering saddle-point formulations, and in
these cases edge elements are needed for describing the discrete magnetic and electric
fields; nodal vector elements and nodal scalar elements are used for approximating
vector and scalar potentials, respectively; nodal vector elements are employed when
dealing with penalization methods. Our aim is to give a presentation in which all these
different approaches are considered and analyzed.
One could ask why it is necessary to introduce many different methods for solv-

ing the same problem. Let us quote from the well-known book by Silvester and Fer-
rari [227], p. 345: “In recent years, a considerable literature dealing with the numerical
solution of problems relating to eddy currents has accumulated. Practical configura-
tions are invariably irreducibly three-dimensional. No clear consensus appears to have
emerged as to the best method of attack, although in many cases some finite element
approach or other is used.”
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In fact, as hopefully it will be clear by the end of the book, each method has assets
and drawbacks:

• saddle-point and Lagrangemultipliers.Plus: physical fields as principal unknowns;
no difficulty with the topology of the conducting domain. Minus: many degrees of
freedom; algebraic problem with a more complex structure;

• magnetic scalar potential. Plus: few degrees of freedom; “positive definite” alge-
braic problem.Minus: some difficulties coming from the topology of the computa-
tional domain, in particular of the conductor; need to compute in advance a vector
potential of the current density;

• magnetic vector potential and penalization. Plus: standard nodal finite elements
for all the unknowns; no difficulty with the topology of the conducting domain;
“positive definite” algebraic problem. Minus: many degrees of freedom; lack of
convergence for re-entrant corners of the computational domain.

Therefore, it is not an easy task to devise the best method for all seasons: this is also
apparent looking at the literature, especially the part related mainly to engineering
applications, in which new methods are proposed in each issue.
Nevertheless, let us note that, as far as we know, there are no books where eddy

current problems are widely treated from both the mathematical and the engineering
point of view. In fact, various monographs are devoted to modeling through partial
differential equations and their numerical approximation (just to quote a couple of the
most known, see Eriksson et al. [102] and Quarteroni [198]), but in general they do
not cover electromagnetism and its mathematical theory.
On the other hand, among classical texts on electromagnetism only Silvester and

Ferrari [227] and especially Bossavit [58], [59] devote some pages to this topic. The
eddy current model is also briefly presented in Křížek and Neittaanmäki [158], though
only for conductive media, and in Bondeson et al. [55]. Finally, a chapter in Gross and
Kotiuga [115] is concerned with eddy current problems, but more specifically with
those topological issues that are relevant for their numerical approximation.
In the engineering literature we recall the books by Tegopoulos and Kriezis [233]

and Mayergoyz [173], where analytical methods are systematically employed for de-
termining the explicit solutionof eddy current problems, but only in simple geometrical
configurations, the former for linear materials, the latter in the nonlinear case.

This book is the story of a falling in love. When in the mid 1990s we started to
study eddy current problems, we even did not know the usual way these equations
are referred to (indeed, we wrote a paper on “heterogeneous low-frequency Maxwell
equations”). However, we were quickly attracted by their peculiar aspects:

• variational formulations set in somehow unusual spaces like H(div;Ω) and
H(curl;Ω), for which some basic results were not completely clarified (for in-
stance, the characterization of the space of tangential traces of functions belonging
toH(curl;Ω));

• the presence of differential constraints, which give rise to some difficulties in de-
vising efficient finite element numerical approximation schemes;
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• the strong interplay between the topological shape of the computational domain
and the well-posedness of the problem, involving delicate arguments of algebraic
topology not surprisingly already considered by Maxwell himself, but not always
addressed in a correct way in the more recent literature;

• the problem of determiningmeaningful boundary conditions, or else realistic exci-
tation terms associated to significativephysical quantities such as voltage or current
intensity;

• the breaking of the symmetry between the electric and the magnetic fields, which
is specific in this context, and does not take place in the case of the full Maxwell
equations;

• the unusually large number of different methods proposed for finding the approx-
imate solution, some of them based on various choices of vector and scalar poten-
tials, mainly already present in classical works in electromagnetism but not com-
pletely understood in the framework of eddy current problems;

• the loss of convergence of nodal finite element approximation schemes in the pres-
ence of re-entrant corners or edges.

This book is the story of an obsession. Having to face such a large number of dif-
ferent aspects, and their even larger possible interplays, our research work on eddy
current problems has soon become a never-ending wandering among formulations,
approximationmethods, analyses of convergence, topological obstructions, choices of
boundary conditions, and so on. Trying to write in a structured way all these topics has
been a way to exit the labyrinth and to stop looking for a further result. (As a matter
of fact, we have in mind another possible approach, but the margin of the page is too
narrow for writing it here.3) We hope we succeeded in giving a map to people inter-
ested in the mathematical theory of low-frequency electromagnetism and the related
numerical approximation schemes.
We have tried to write a self-contained book. Starting from the Maxwell equations

we derive the eddy current model, and we make clear in which sense it is an approx-
imation of the full Maxwell system. The existence and uniqueness of the solution are
proved for all the described formulations, and stability and convergence of the finite
element numerical schemes are presented. Some useful tools from functional analysis
and finite element theory are collected in the Appendix.
Due to the structure described above, this monograph is addressed to researchers

and Ph.D. students inmathematical electromagnetism, as well as to electrical engineers
and practitioners, who can find here a sound mixture of theory, numerical approxima-
tion schemes and implementation issues, with a limited need of prerequisites.

The book is organized as follows.
In Chapter 1 we introduce the eddy current problem and we present its mathemat-

ical formulation, for the time-harmonic case and for three alternative sets of boundary
conditions. Particular attention is devoted to the description of certain spaces of har-
monic fields, which are related to the topological shape of the computational domain
and must be taken into account in order to devise a well-posed problem.

3 Hanc marginis exiguitas non caperet.
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The second chapter deals with a mathematical justification of the eddy current
model in a domain composed by a conductor and an insulator. It is obtained through
two different asymptotic limits of the fullMaxwell equations: in the first case the elec-
tric permittivity vanishes, and in the second case the frequency vanishes.
The analysis of well-posedness of eddy current problems is performed inChapter 3:

the existence and uniqueness of the solution is proved, and, moreover, an important re-
mark is presented, concerning the verification of the Faraday equation on the so-called
“cutting” surfaces contained in the insulator. This fact has been sometimes overlooked
in the existing literature, leading to incorrect results for the numerical computations
based on formulations where the principal unknown is the magnetic field.
In Chapter 4 we describe and analyze some coupled formulations that employ La-

grangemultipliers for imposing the differential constraints on themagnetic and electric
fields. The advantage of these approaches is that they involve no restrictions originat-
ing from the topology of the conductor, and that the used meshes do not need to match
on the interface. To test the performance of the methods we present some numerical
computations for domains of general shape, in particular some results for problem 7
of the TEAM workshop and for a conducting domain given by the trefoil knot.
Two formulations based on the introduction of a scalar magnetic potential in the

insulator are illustrated in the fifth chapter: the unknown used in the conductor is the
magnetic field in the first case, and the electric field in the second case. These methods
use a small number of degrees of freedom (the unknowns are a vector function in the
conductor and a scalar function in the insulator, plus a few degrees of freedom associ-
ated to the topological shape), but require some pre-processing, like the determination
of the “cutting” surfaces and that of a vector potential of the applied current density.
The classical approaches using vector potentials are presented in Chapter 6, mainly

for the case of a magnetic vector potential. The gauge conditions, needed for finding
a unique potential, are analyzed in depth, in particular in the case of the Coulomb
gauge and the Lorenz gauge. The advantage of these formulations lies in the fact that
classical nodal finite elements are employed, so that the same discrete basis functions
can be used for all the unknowns. Moreover, no difficulty comes from the topology of
the conductor.
In Chapter 7 we set the problem in the whole space and we introduce some coupled

finite element/boundary element methods, which, by using potential theory, allow to
reduce the degrees of freedom in the insulator to degrees of freedom on the interface.
In particular, we present in more detail the coupled approach based on the magnetic
vector potential and the scalar electric potential in the conductor: this method has the
characteristic of being stable with respect to the frequency, hence can be also used
without modification for the static case.
The eighthğ¡ chapter deals with the case of excitation terms given by a voltage

drop or a current intensity, a situation that can be interesting when the coupling with
circuit problems has to be considered. In order to devise a well-posed problem it is
necessary to choose suitable boundary conditions. For other boundary conditions the
solution can be found only if the voltage or the current intensity are interpreted as an
excitation term giving rise to a specific current density.
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In Chapter 9 we present some real-life problems that are based on the eddy cur-
rent equations. The description is not fully detailed, the aim being only to show the
importance of eddy current problems in applications.
The book ends with an appendix, devoted to the functional framework, to nodal

and edge finite elements, to some orthogonal decomposition results, and to a more
complete characterization of the spaces of harmonic fields.

This book would not have been written without the help of some friends and col-
leagues. First of all, we want to thank Paolo Fernandes, Ralf Hiptmair, Oszkár Bíró and
Rafael Vázquez Hernández, who worked with us on some eddy current problems, and
with whom we had many enlightening and pleasant scientific conversations. Special
thanks are due to Alfredo Bermúdez, Rodolfo Rodríguez, Pilar Salgado and Virginia
Selgas, who provided us with many of their numerical results and figures, enriching
the content and the final aspect of our book. We have learnt many interesting things
about harmonic fields, homology theory and algebraic topology from our colleagues
Domenico Luminati and, especially, Riccardo Ghiloni, and it is a pleasure to acknowl-
edge their help.
We are grateful to Jarke J. van Wijk (Eindhoven University of Technology), Vic-

tor Valcarcel (Universidade de Santiago de Compostela) and Elekta, who have per-
mitted us to reproduce and insert in the book some figures and photographs. We also
thank Gianpaolo Demarchi and Elisa Leonardelli: the former showed us some of the
technological devices installed at CIMeC (Centro InterdipartimentaleMente/Cervello,
University of Trento), explaining their fascinating operation; the latter permitted us to
take some pictures of the EEG recording cap system. Our official photographer has
been Luca Manini: thanks a lot!
Finally, we express our gratitude to the Editors (Tom Hou, Claude Le Bris, An-

thony T. Patera, and Enrique Zuazua) and to Alfio Quarteroni for having accepted to
publish thismonograph in theMS&A Series and for their several suggestions that have
contributed to improve the final result; to Peter Laurence, who helped us with the En-
glish language; and to Francesca Bonadei from Springer, who with great expertise and
attention has taken care of the realization of this book.

Povo (Trento), April 2010 Ana Alonso Rodríguez
Alberto Valli
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1

Setting the problem

In this chapter, starting from the classical Maxwell equations, we describe andmotivate
the problem we are going to consider.
In particular, we derive the full Maxwell system, for both the time-dependent and

the time-harmonic case, and we explain how eddy currents are generated and why they
are the most relevant aspect in a series of engineering problems. Then we introduce
the eddy current approximation of theMaxwell equations, often used in low-frequency
electromagnetism, presenting the complete set of equations togetherwith some suitable
choices of boundary conditions.
It is worth noting that, in order to properly formulate the problem, we need to

introduce certain spaces of vector fields: the so-called harmonic fields. These spaces
are strongly related to the topological properties of the insulator, namely, the domain
where the electric conductivityvanishes, and their characterization is an important tool
for proving well-posedness of the problem and devising efficient numerical approxi-
mation schemes.

1.1 Maxwell equations and time-harmonic Maxwell equations

The study of the propagation and the diffusionof electromagnetic fields is an important
topic in physical sciences. The first attempt to describe in a rigorousmathematical way
these phenomena dates back to the beginning of the nineteenth century, when Ampère
and Faraday, among others, started to make experiments on electricity and magnetism.
The physical quantities that have to be taken into account are the magnetic fieldH,

the electric field E , the magnetic induction B, the electric inductionD and the electric
current density J . The electric field and the magnetic induction can be defined at the
microscopic level, and at this level D and H are simply a multiple of E and B, re-
spectively. At the macroscopic level, where the properties of the material media play a
significant role, all these fields are in some sense averaged quantities, related through
some constitutive equations. A linear dependence of the form D = εE , B = μH is
usually assumed; here ε andμ are called the electric permittivity and magnetic perme-

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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ability, respectively (for a complete presentation of the physics of electromagnetism,
see, e.g., Jackson [137]).
In most interesting physical and engineering problems, the region of interest is

composed of a non-homogeneous and non-isotropicmedium: namely, ε and μ are not
constant, but are symmetric and uniformly positive definite matrices (with entries that
are bounded functions of the space variable x). In general, a nonlinear dependence
between D and E , B andH can also be taken into account (for instance, for hysteresis
problems). However, in this book we only consider the linear case.
The basic equations relating the electromagnetic fields are derived by some ex-

perimental results. The first one, that takes the name of Ampère, states that, in the
steady case, the electric current I0 passing through a surface is equal to the line inte-
gral (with the counterclockwise orientation) of the magnetic field H on the boundary
of that surface. A second relation, which is due to Faraday, comes from the observa-
tion that a time-variation of the magnetic field generates an electric field: precisely, the
time derivative of the flux of the magnetic induction through a given surface is equal
to the line integral (with the clockwise orientation) of that induced electric field on the
boundary of that surface.
These relations can be easily written in a differential form: first of all, the Ampère

law reads

I0 =
∫
S

J · n =
∫
∂S

H · τ ,

where n is the unit normal vector on S and τ is the unit tangent vector on ∂S (oriented
counterclockwise with respect to n). Therefore, from the Stokes theorem we find∫

S

J · n =
∫
S

curlH · n .

Since the surface S is arbitrarily placed in the space, it follows that

J = curlH .

On the other hand, the Faraday law can be written as

d

dt

∫
S

B · n = −
∫
∂S

E · τ ,

hence by the Stokes theorem

d

dt

∫
S

B · n = −
∫
S

curlE · n ,

and thus
∂B
∂t

= − curl E .

The celebrated contribution of Maxwell was the observation that the Ampère law
was not completely satisfactory in the time-dependent case, and that it has to be cor-
rected by adding another term. It is possible to devise its form by taking into consid-
eration two facts: the first is the Gauss electrical equation, stating that the total charge
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contained in a volume V is equal to the external flux of the electric induction through
the boundary of that volume, namely,∫

V

ρ =
∫
∂V

D · n ,

where ρ is the volume electric charge density (supposed to vanish in any non-conduct-
ing region) and n is the unit outward normal vector on ∂V ; the second is the charge
conservation law

d

dt

∫
V

ρ = −
∫
∂V

J · n ,

similar to the mass conservation law in fluid dynamics. As a consequence one has

d

dt

∫
∂V

D · n = −
∫
∂V

J · n ,

and then, by the divergence theorem and since the volume V is arbitrary,

div

(
∂D
∂t

+ J
)

= 0 .

Being divergence-free, ∂D∂t + J has to be equal to the curl of a suitable vector field:
since in the time-independent case the Ampère law J = curlH holds, for time-
dependent fields Maxwell proposed the following generalization of the Ampère law

∂D
∂t

+ J = curlH .

Maxwell himself called the added term ∂D
∂t the displacement current.

Summing up, the complete Maxwell system of electromagnetism reads⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂D
∂t

+ J = curlH Maxwell–Ampère equation

∂B
∂t

+ curl E = 0 Faraday equation

divD = ρ Gauss electrical equation
divB = 0 Gauss magnetic equation ,

(1.1)

where the Gauss magnetic equation is a consequence of the experimental fact that
magnetic charges do not exist.
To close the system, another relation is introduced, which expresses the current

density in a conductor in terms of the electric field: the classic Ohm law, based on
physical observations about electrical circuits, states that J = σE , where σ is the
electric conductivity, which, in conducting regions, is assumed to be a symmetric and
uniformly positive definite matrix (with entries that are bounded functions of the space
variable x), while it is vanishing in insulators.
When the problem is driven by an applied current densityJe, one needs to consider

thegeneralized Ohm lawJ = σE+Je . Let us note that, as a consequence ofMaxwell–
Ampère and Gauss electrical equations, it is necessary to assume that divJe = 0 in
any non-conducting region.
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Though more general situations are also of interest, in this book we focus on prob-
lems where the physical quantities vary periodically with time1: typically, this happens
when the applied current density Je is an alternating current, having the form

Je(x, t) = J∗(x) cos(ωt + φ) ,

where J∗(x) is a real-valued vector function, ω �= 0 is the angular frequency and φ is
the phase angle. This is equivalent to the representation

Je(x, t) = Re
[
J∗(x)ei(ωt+φ)

]
= Re

[
Je(x)eiωt

]
,

where we have introduced the complex-valued vector function Je(x) := J∗(x)eiφ.
Accordingly, we look for a time-periodic (or else, time-harmonic) solution given

by
E(x, t) = Re

[
E(x)eiωt

]
H(x, t) = Re

[
H(x)eiωt

]
,

where E andH are complex-valued vector functions (often called “phasors”).
The time-harmonic Maxwell equations are directly derived from the complete sys-

tem under these assumptions, and read{
curlH− (iωε + σ)E = Je
curlE + iωμH = 0 ,

(1.2)

determining the electric charge density by setting, separately in the conducting and
non-conducting regions,

ρ(x, t) = div
(
ε(x)E(x, t)

)
= div

(
Re[ε(x)E(x)eiωt]

)
.

Note that the Gauss magnetic equation div(μH) = 0 is a consequence of the Fara-
day equation;moreover, theMaxwell–Ampère equation and the assumption that divJe
is vanishing in any non-conducting region imply that the charge density is vanishing
there, too.

1.2 Eddy currents and eddy current approximation

As observed in experiments and stated by the Faraday law, a time-variation of the
magnetic field generates an electric field. Therefore, in each conductor a current density

1 We believe that most of the methods proposed in this book, very likely all of them, can be
adapted to the time-dependent case: for instance, it should be possible to prove existence
and uniqueness of the solution, and stability and convergence of suitable numerical schemes.
However in this treatise we limit ourselves to the important case of time-periodic models. For
some additional issues on the time-dependent problem see, e.g., the books by Silvester and
Ferrari [227], Bossavit [59] and van Rienen [238], the papers by Nicolet and Delincé [189],
Clemens and Weiland [84] and Weiland [243].
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Jeddy = σE arises; this term expresses the presence in conducting media of the so-
called eddy currents. This phenomenon, and the related heating of the conductor, was
observed and studied by the French physicist L. Foucault in the mid of the nineteenth
century, and in fact the generated currents are also known as Foucault currents.
The heat Q generated by the current density in a conductor is given by the Joule

law
Q = σ−1J · J .

Moreover, eddy currents also generate Lorentz forces

fl = J × B .

Let us have a deeper look at these two aspects.
The Joule effect can have a good use, as it is the basis of induction furnaces, widely

used in the metallurgic industry. Probably melting systems were the first industrial
application of eddy currents. Basically a induction furnace for melting consists of a
conducting crucible charged with the metal to be melted and of a helical coil, turning
around the crucible, carrying an alternating current. This alternating current produces
an oscillating magnetic field, which generates eddy currents in the crucible and in its
load. These currents, due to the Joule effect, heat the metal until it melts. However, at
the same time, they can also generate very high temperatures in the crucible, damaging
it and reducing its lifetime. Some parameters, as the frequency and intensity of the ap-
plied current, the thermal and electrical conductivityof the crucible or its distance from
the coil, affect the temperature profile in the furnace and must be taken into account
in the construction of the melting system. Moreover, Lorentz forces act on the molten
metal and cannot be ignored in melting processes, as the stirring effect modifies the
properties of the final product. A more detailed description of this application of eddy
currents is given in Section 9.1.1.
Joule heating can also produces undesirable power losses and overheating of elec-

trical devices. For instance it is an important aspect in the design of power transformers.
Transformers are used to produce an alternating current with low intensity and high
voltage starting from another one with high intensity and low voltage, and vice-versa.
They basically consist in two windings wrapped around an iron core. An alternating
current passing through the primary winding generates a time-varying magnetic field
in the core that induces a current in the secondary winding. The ratio between the volt-
ages of the current in the primary and the secondary winding is proportional to the
ratio between the number of their turns. In theory, a transformer would have no energy
losses; in practice, energy is dissipated in the windings, the core, and the other metallic
components of the transformer. Very soon it was observed that cores constructed from
solid iron have extremely high eddy current losses, so later designs are based on a core
made up of thin steel layers in order to reduce losses. The overheating of the clamp-
ing structure that maintains the core and the coils properly assembled can affect the
reliability and the operating life of large power transformers. Numerical simulations
are very useful for the optimal design of transformers; Section 9.4 includes a more
extended presentation of this kind of simulations.
Lorentz forces can be used, for instance, for levitation or for the design of elec-

tromagnetic braking systems. A simple way to illustratemagnetic levitation principles
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is to consider a toroidal inductor carrying an alternating current Je placed below a
conducting sheet. By the Ampère law the tangential current in the inductor generates
a time-varying magnetic flux. By the Faraday law this changing magnetic flux induces
an electric field in the conducting plate. The dominant current component in the plate is
along the direction of Je. This current interacts with the radial component of the mag-
netic field to generate (by the Lorentz law) a lift perpendicular to the plate. Section 9.3
is devoted to give a more precise description of magnetic levitation phenomena.
Eddy currents are also used as a non-destructive technique to detect the flaws in

conductive objects: a coil fed by an alternating current is placed near the object, thus
eddy currents arise inside, and flaws are located by a suitable measure of the varia-
tion of the impedance. A more detailed presentation of non-destructive techniques for
defect detection is in Section 9.5.
Summing up, the computation of the eddy current distribution and of the related

energy loss is an important task for engineering applications in electromagnetism.

In all these applications, it can be checked that the time of propagation of the elec-
tromagnetic wave is very small with respect to the inverse of the angular frequency
ω, therefore one can think that the speed of propagation is infinite, and take into ac-
count only the diffusion of the electromagnetic fields: if one wants to express this fact
with a mathematical recipe, one has not to face a “hyperbolic” problem but rather a
“parabolic” problem.
Rephrasing this concept, one can also say that, when considering time-dependent

problems in electromagnetism, one can distinguish between “fast” varying fields and
“slowly” varying fields. In the latter case, one is led to simplify the set of equations,
neglecting time derivatives, or, depending on the specific situation at hand, one time
derivative, either ∂D∂t or

∂B
∂t . Typically, problems of this type arise in electrical engi-

neering, where low frequencies are involved, but not in electronic engineering, where
the frequency ranges in much larger bands.
When neglecting both the time derivative terms, one obtains the electro-magneto-

static model: an approximation of the Maxwell system for which diffusion of the elec-
tromagnetic fields is not considered and eddy currents and their effects are not taken
into account.
If the time derivative of the magnetic induction is disregarded, the governing equa-

tions are called electro-quasistatic equations, and describe “slowly” varying fields for
which the electric field is somehow independent of the magnetic field and the dis-
placement current makes a significant contribution. These equations can be used for
modeling problems in electrical engineering where the frequency is relatively low but
the voltage is high (for a more detailed description, see, e.g., van Rienen [238]).
In this book we focus on the case in which the displacement current term ∂D

∂t can
be disregarded, while the time-variation of the magnetic induction is still important. In
particular, as already noted, this means that the electromagnetic waves are neglected,
as their time of propagation is very small with respect to 1/ω, or, equivalently, their
wave length is much larger than the diameter of the physical domain.
Let usmake more precise this statement, referring, e.g., to Haus andMelcher [119],

Bossavit [59] and van Rienen [238] for a more detailed discussion concerning the
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physical validity of this assumption. Clearly, the point is that ∂D∂t should be small in
comparisonwith curlH andJ = σE+Je. A thumb rule can be formulated as follows:
if L is a typical length in Ω (say, its diameter), and we choose ω−1 as a typical time,
it is possibile to disregard the displacement current term provided that

|D||ω| � |H|L−1 , |D||ω| � |σE| .

Using the Faraday equation, we can write E in terms ofH, finding

|E|L−1 ≈ |ω||μH| .

Hence, recalling that D = εE and putting everything together, one should have

μmaxεmaxω
2L2 � 1 , σ−1

minεmax|ω| � 1 ,

where μmax and εmax are uniform upper bounds in Ω for the maximum eigenvalues
of μ(x) and ε(x), respectively, and σmin denotes a uniform lower bound in ΩC for
the minimum eigenvalues of σ(x). Since the magnitude of the velocity of the electro-
magnetic wave can be estimated by (μmaxεmax)−1/2, the first relation is requiring that
the wave length is large compared to L. Let us also note that for industrial electrical
applications some typical values of the parameters involved are μ0 = 4π×10−7 H/m,
ε0 = 8.9×10−12 F/m, σcopper = 5.7×107 S/m, ω = 2π×50 rad/s (power frequency
of 50 Hz), hence in that case

1√
μ0ε0|ω|

≈ 106m , σ−1
copperε0|ω| ≈ 4.9× 10−17 ,

and dropping the displacement current term looks appropriate. Though less apparent,
the same is true for a typical conductivity in a physiological problem, say, σtissue ≈
10−1 S/m, for which σ−1

tissueε0|ω| ≈ 2.8× 10−8.
The system of equations obtained when the displacement current term ∂D

∂t
(or,

equivalently, iωεE) is disregarded is called eddy current approximation (or magneto-
quasistatic approximation) of the Maxwell equations. In the time-harmonic case, the
resulting set of equations is therefore⎧⎨⎩

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εE) = 0 in ΩI ,

(1.3)

where we have denoted by Ω the physical domain and by ΩI the insulator.
A few remarks are in order: first, as in the case of the full Maxwell system we have

to assume that the condition
divJe = 0 in ΩI (1.4)

is satisfied. Then, note that again the constraint div(μH) = 0 has been dropped from
system (1.3), as it follows from the Faraday equation. Finally, note that in the eddy
current approximation the equation div(εE) = 0 in ΩI , ensuring that the electric
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charge is vanishing in the insulator, is no longer a consequence of theAmpère equation
and of the assumption (1.4). This is why we have kept it (1.3).
However, in the problem above something is still missing (clearly, beside the

boundary conditions). In Alonso and Valli [7] it has been proved that other equations,
related with the geometry of the domain ΩI , have to be added in order to close the
system. We present the complete model in Section 1.5; moreover, in Chapter 2 we
give its rigorous mathematical justification, showing in particular that the difference
between the solution of the full Maxwell system (1.2) and the solution of the complete
eddy current model is vanishing as the angular frequency ω goes to 0.

1.3 Geometrical setting and boundary conditions

Let us make precise the geometrical context we consider in the sequel (with the ex-
ception of Chapter 8): the physical domain Ω is a bounded connected open set in R3,
with a Lipschitz boundary ∂Ω. We assume that an open subset ΩC , the conductor, is
strictly contained inΩ, namely, ΩC ⊂ Ω, and, as before, we denote byΩI := Ω \ΩC

the insulator (see Figure 1.1). For the sake of simplicity, we also suppose that ΩI is
connected: we believe that the interested reader will not find difficult to extend the re-
sults presented in this book to the case of a non-connected insulatorΩI , though some
formal changes are needed since in that case at least one connected component of ΩI

has empty intersection with the boundary ∂Ω.
We denote by Γ := ∂ΩI ∩ ∂ΩC the interface between the two subdomains, and

we assume that it is a Lipschitz surface; note that, in the present situation, ∂ΩC = Γ
and ∂ΩI = ∂Ω ∪ Γ .
The unit outward normal vector on ∂Ω is denoted by n, while nC = −nI denotes

the unit normal vector on the interface Γ , pointing towards ΩI .
Let us present now some suitable boundary conditions for the eddy current model.

If the boundary ∂Ω can be considered as a perfect conductor, say, a fictitious medium

Fig. 1.1. The geometry of the problem: 1 conductors, 2 a region not included in the domain Ω
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where the electric conductivity is infinite, then the boundary condition is the so-called
electric boundary condition

E× n = 0 on ∂Ω . (1.5)

It is easily checked that a boundary condition for the magnetic field follows from this:
in fact, from the Faraday equation,

μH · n = −(iω)−1 curlE · n = −(iω)−1divτ(E× n) = 0 on ∂Ω

(see Section A.1 for the definition and the properties of the tangential divergence op-
erator divτ ).
If the boundary ∂Ω can be considered as an infinitely permeable medium (say,

iron), then the so-called magnetic boundary condition can be imposed

H× n = 0 on ∂Ω . (1.6)

Proceeding as above, and recalling that the conductivityσ vanishes near the boundary,
from the Ampère equation this implies that the following compatibility condition has
to be satisfied

Je · n = curlH · n = divτ (H× n) = 0 on ∂Ω . (1.7)

However, the magnetic boundary condition is not enough for the determination of the
electric field in the insulator. Recalling that for the solution of the fullMaxwell system
(1.2) one would have

0 = curlH · n = iωεE · n + Je · n on ∂Ω ,

one is led to require
εE · n = 0 on ∂Ω . (1.8)

Summing up, when the magnetic boundary condition (1.6) is considered, one has also
to impose (1.8) and to assume that (1.7) is satisfied.
A third set of boundary conditions has been proposed in the literature (see, e.g.,

Bossavit [61], Bermúdez et al. [43]), especially for voltage and current excitation prob-
lems (see Chapter 8). They are usually called no-flux boundary conditions, and look
like a mixture of the preceding boundary conditions, namely,{

μH · n = 0 on ∂Ω
εE · n = 0 on ∂Ω .

(1.9)

In this bookwe mainly focus on themagnetic and the electric boundary conditions,
and we present a more specific analysis of condition (1.9) in Section 3.5 and Chapter
8 only. Instead, we are not treating the impedance (or absorbing) condition

n×H× n + αE× n = 0 , α ∈ C ,

which for eddy current problems has a correct physical meaning mainly as an interface
condition on Γ (and not on ∂Ω), provided that the penetration depth is small enough
(see, e.g., MacCamy and Stephan [171], Ammari et al. [24], Sterz and Schwab [229]).
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1.4 Harmonic fields in electromagnetism

Harmonic fields are those vector fields v satisfying curlv = 0 and divv = 0 (or,
more generally, div(ηv) = 0, where η = η(x) is a symmetric and uniformly positive
definite matrix, with bounded entries). In other words, if the physical domain under
consideration is the entire space R3, they are the gradient of a harmonic function.
Suppose now that the physical domain is a bounded domain O, and assume that

its boundary is divided into two non-overlapping Lipschitz surfaces ΓD and ΓN (it is
possible that one of the two could be empty).
A couple of questions are in order. If we also require that the boundary conditions

v × n = 0 on ΓD and v · n = 0 on ΓN are satisfied, do non-trivial harmonic fields
exist (here “non-trivial”means “not vanishing everywhere”)? In that case, do harmonic
fields appear in electromagnetism?
Both questions have an affermative answer. Let us start from the first question. If

the domain O is homeomorphic to a three-dimensional ball, a curl-free vector field v
must be a gradient of a scalar function ψ, that must be harmonic due to the constraint
on the divergence. If the boundary condition is v × n = 0 on ∂O, which in this case
is a connected surface, then it follows ψ = const. on ∂O, and therefore ψ = const. in
O and v = 0 in O. On the other hand, if the boundary condition is v · n = 0 on ∂O,
then ψ satisfies a homogeneous Neumann boundary condition and thus ψ = const. in
O and v = 0 in O. The same result follows if the boundary conditions are v×n = 0
on ΓD and v · n = 0 on ΓN , and ΓD is a connected surface: in fact, we still have
ψ = const. on ΓD and gradψ · n = 0 on ΓN , hence ψ satisfies a mixed boundary
value problem and we obtain ψ = const. in O and v = 0 in O.
However, the problem is different in a more general geometry. In fact, take the

magnetic field generated in the vacuum by a current of constant intensity I0 passing
along the x3-axis: as it is well-known, for x2

1 + x2
2 > 0 it is given by

H(x1, x2, x3) =
I0

2π

(
− x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

, 0
)

.

It is easily checked that, as Maxwell equations require, curlH = 0 and divH = 0.
Let us consider now the torus T obtained by rotating around the x3-axis the disk of
centre (a, 0, 0) and radius b, with 0 < b < a. One sees at once thatH · n = 0 on ∂T ;
hence we have found a non-trivial harmonic fieldH in T satisfyingH ·n = 0 on ∂T .
On the other hand, consider now the electric field generated in the vacuum by a

pointwise charge ρ0 placed at the origin. For x �= 0 it is given by

E(x1, x2, x3) =
ρ0

4πε0

x
|x|3 ,

where ε0 is the electric permittivity of the vacuum. It satisfies divE = 0 and
curlE = 0, and moreover E × n = 0 on the boundary of C := BR2 \ BR1 , where
0 < R1 < R2 andBR := {x ∈ R3 | |x| < R} is the ball of centre 0 and radiusR. We
have thus found a non-trivial harmonic field E in C satisfyingE× n = 0 on ∂C.
These two examples show that the geometry of the domain and the type of bound-

ary conditions play an essential role when considering harmonic fields. What are the
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relevant differences between the setO, homeomorphic to a ball, and the sets T and C?
For the former, the point is that in T we have a non-bounding cycle, namely, a cycle
that is not the boundary of a surface contained in T (take for instance the circle of
centre 0 and radius a in the (x1, x2)-plane). In the latter case, the boundary of C is not
connected.
In eddy current problems we have not only the constraint on the divergence of the

electric and the magnetic fields, but also the one on the curl of the magnetic field in
the insulator. As a consequence, we will see in the sequel that the formulation and
the analysis of these problems require the introduction of several spaces of harmonic
fields.
These spaces are presented, e.g., in Bossavit [59], Hiptmair [126], Cantarella et

al. [73] and Gross and Kotiuga [115]; however, the most complete description and
analysis is given by Ghiloni [110]. Here we introduce their basis functions; a more
detailed description of them is given in Section A.4.
We need to make precise the geometry of the domains Ω, ΩC and ΩI (see Fig-

ures 1.2, 1.3, 1.4, 1.5 and 1.6). We indicate by Γj , j = 1, . . . , pΓ + 1, the connected
components of Γ , and by (∂Ω)r , r = 0, 1, . . . , p∂Ω, the connected components of ∂Ω
(in particular, we have denoted by (∂Ω)0 the external one).
We also denote by nΩI the number of independent non-bounding cycles in ΩI ,

and similarly by nΩ the number of independent non-bounding cycles in Ω. Here, we
say that a finite family F of disjoint cycles of ΩI is formed by independent cycles if,
for each non-empty sub-familyF ′ of F , the union of the cycles of F ′ cannot be equal
to the boundary of a surface contained inΩI . A similar definition applies for cycles in
Ω. We recall that nΩI is a topological invariant of ΩI , namely, using the terminology
of algebraic topology, its first Betti number, or, equivalently, the dimension of the first
homology space ofΩI . One can also show that nΩI is the number of “cutting” surfaces
Ξ∗
α such that every curl-free vector inΩI has a global potential in Ω̃I := ΩI \ ∪αΞ∗

α

(this does not mean that Ω̃I is simply-connected nor that it is homologically trivial: an
example is furnished by ΩI = Ω \ΩC , whereΩ is a cube and ΩC is the trefoil knot,
see Benedetti et al. [36]).
Finally, nΓ is the number of ∂Ω-independent non-bounding cycles in ΩI . Simi-

larly, n∂Ω is the number of Γ -independent non-bounding cycles in ΩI . Here, we say
that a finite family G of disjoint cycles ofΩI is formed by ∂Ω-independent cycles (Γ -
independent cycles, respectively) if, for each non-empty sub-family G′ of G, the union
of the cycles of G′ cannot be equal to ∂S \ γ, S being a surface contained in ΩI and
γ a disjoint union of cycles, possibly empty, contained in ∂Ω (in Γ , respectively). For
instance, in Figure 1.3 we have two non-bounding cycles on Γ , but both of them can
be brought on ∂Ω, therefore they are not ∂Ω-independent, hence nΓ = 0. Similarly,
there are two non-bounding cycles on ∂Ω, but none of them is Γ -independent and
n∂Ω = 0.
In order to help the reader to become acquainted with these notations, let us refer

to Figure 1.1: there one has pΓ = 2, p∂Ω = 1, nΩI = 3, nΩ = 0, nΓ = 3, n∂Ω = 0.
For Figures 1.2, 1.3, 1.4, 1.5 and 1.6, see the captions there.
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Fig. 1.2.An example of the geometry of the problem: the conductor is dark (here one haspΓ = 0,
p∂Ω = 0, nΩI = 1, nΩ = 0, nΓ = 1, n∂Ω = 0)

Fig. 1.3.An example of the geometry of the problem: the conductor is dark (here one haspΓ = 0,
p∂Ω = 0, nΩI = 2, nΩ = 1, nΓ = 0, n∂Ω = 0)

Fig. 1.4. An example of the geometry of the problem: the trefoil knot is the conductor (here one
has pΓ = 0, p∂Ω = 0, nΩI = 1, nΩ = 0, nΓ = 1, n∂Ω = 0)
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Fig. 1.5. An example of the geometry of the problem: the three rings are the conductor (here
one has pΓ = 2, p∂Ω = 0, nΩI = 3, nΩ = 0, nΓ = 3, n∂Ω = 0)

Fig. 1.6. An example of the geometry of the problem: the three Borromean rings are the con-
ductor (here one has pΓ = 2, p∂Ω = 0, nΩI = 3, nΩ = 0, nΓ = 3, n∂Ω = 0)

We set vI := v|ΩI
, vC := v|ΩC

and similary for all the other functions and
matrices. The first space we introduce is

HεI (Γ, ∂Ω;ΩI) := {vI ∈ (L2(ΩI))3 | curlvI = 0, div(εIvI) = 0,
vI × nI = 0 on Γ, εIvI · n = 0 on ∂Ω} ,

(1.10)

whose dimension is equal to n∂Ω + pΓ . We denote a basis by πk,I and gradwj,I ,
k = 1, . . . , n∂Ω, j = 1, . . . , pΓ . The fields πk,I are more precisely described in Sec-
tionA.4, and their construction requires the determination of a suitable set of “cutting”
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surfaces; the functionswj,I are the solutions of the elliptic problems⎧⎪⎪⎨⎪⎪⎩
div(εI gradwj,I) = 0 inΩI

εI gradwj,I · n = 0 on ∂Ω
wj,I = 0 on Γ \ Γj
wj,I = 1 on Γj .

It is worth noting that the determination of wj,I is easier than that of πk,I , as the latter
needs the identification of the “cutting” surface.
A second space is given by

HμI (∂Ω, Γ ;ΩI) := {vI ∈ (L2(ΩI))3 | curlvI = 0, div(μIvI) = 0,
vI × n = 0 on ∂Ω,μIvI · nI = 0 on Γ } ,

(1.11)

and its dimension is equal to nΓ + p∂Ω . A basis is denoted by ρl,I and grad zr,I ,
l = 1, . . . , nΓ , r = 1, . . . , p∂Ω, where ρl,I are explicitly characterized in Section A.4,
while zr,I is the solution of the elliptic problem⎧⎪⎪⎨⎪⎪⎩

div(μI grad zr,I ) = 0 in ΩI

μI grad zr,I · nI = 0 on Γ
zr,I = 0 on ∂Ω \ (∂Ω)r
zr,I = 1 on (∂Ω)r .

Note that the dimension of the space HμI (∂Ω, Γ ;ΩI) is equal to 1 for both the exam-
ples shown in Figures 1.2 and 1.4. The difference resides in the basis functionρ1,I: as
described in (A.34), it is associated to a “cutting” surface. For the torus in Figure 1.2
this surface is the one “filling” the “hole”, for the trefoil knot in Figure 1.4 is the surface
illustrated in Figure 4.2.
Another space is

HεI (e;ΩI) := {vI ∈ (L2(ΩI))3 | curlvI = 0, div(εIvI) = 0,
vI × nI = 0 on Γ ∪ ∂Ω} ,

(1.12)

whose dimension is equal to p∂Ω+pΓ +1, and which has the basis functions gradw∗
γ,I ,

γ = 0, . . . , p∂Ω + pΓ , where w∗
γ,I is the solution of the elliptic problem⎧⎨⎩

div(εI gradw∗
γ,I) = 0 in ΩI

w∗
γ,I = 0 on (∂Ω ∪ Γ ) \Θγ

w∗
γ,I = 1 on Θγ ,

having set Θγ := (∂Ω)γ for γ = 0, . . . , p∂Ω and Θγ := Γγ−p∂Ω for γ =
p∂Ω + 1, . . . , p∂Ω + pΓ . Note that the dimension of this space is one less than the
number of connected components of Γ ∪ ∂Ω, the boundary of ΩI .
A fourth space is defined by

HμI (m;ΩI) := {vI ∈ (L2(ΩI))3 | curlvI = 0, div(μIvI) = 0,
μIvI · n = 0 on Γ ∪ ∂Ω} ,

(1.13)
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and its dimension is equal to nΩI . A basis is given by ρ∗
α,I , α = 1, . . . , nΩI (for

a precise characterization see Section A.4). Note that its dimension is the number of
independentnon-boundingcycles ofΩI ; therefore, it is equal to 3 for both the examples
shown in Figures 1.5 and 1.6. Again, the difference is in the basis functions ρ∗

α,I ,
α = 1, 2, 3, which are associated to three “cutting” surfaces. For the three rings in
Figure 1.5 these surfaces are disjoint, for the Borromean rings in Figure 1.6 they have
non-empty intersection.
When εI = Id or μI = Id, where Id is the identity matrix, we simply write

H(Γ, ∂Ω;ΩI), H(∂Ω, Γ ;ΩI), H(e;ΩI) andH(m;ΩI), respectively.
Finally, we introduce two last spaces: the first is

H(e;Ω) := {v ∈ (L2(Ω))3 | curlv = 0, divv = 0,
v × n = 0 on ∂Ω} ,

(1.14)

whose dimension is equal to p∂Ω, one less than the number of connected components
of ∂Ω, and that admits the basis functions grad ẑr, r = 1, . . . , p∂Ω, where ẑr is the
solution of the elliptic problem⎧⎨⎩

Δẑr = 0 in Ω
ẑr = 0 on ∂Ω \ (∂Ω)r
ẑr = 1 on (∂Ω)r .

The second is

H(m;Ω) := {v ∈ (L2(Ω))3 | curlv = 0, divv = 0,
v · n = 0 on ∂Ω} ,

(1.15)

whose dimension is equal to nΩ , the number of independent non-bounding cycles of
Ω, and for which a basis is denoted by π̂t, t = 1, . . . , nΩ .

Remark 1.1. We note that nΩ , the number of independent non-bounding cycles of Ω
or, equivalently, the Betti number of Ω, is equal to 0 if and only if the domain Ω is
simply-connected. There appears to be some confusion concerning this point in the
literature devoted to electromagnetism (see, e.g., the discussion in Bossavit et al. [64]
and Kotiuga et al. [155]; see also Kettunen et al. [150]). Its proof can be found in
Benedetti et al. [36]. �

1.5 The complete eddy current model

In this section we finally introduce the complete set of equations describing the eddy
current problem. Beside the Ampère and Faraday equations, the vanishing of the elec-
tric charge in ΩI and a suitable choice of the boundary conditions, we show that, in
order to obtain a well-posed problem, other equations related to the specific geometry
of ΩI must be considered. In fact, if E is a solution of this set of equations, it is still
a solution if we add to it in ΩI a harmonic field hI with hI × nI = 0 on Γ and the
same boundary condition of EI on ∂Ω.
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The further conditions to impose can be determined in several ways. A heuristic
argument suggests to devise these equations just checking which relations are satisfied
by the solution of the full Maxwell system (1.2) but are not satisfied by the solution of
the eddy current model (1.3).
From the Stokes theorem, a solution of the eddy current problem (1.3) must satisfy

0 =
∫
S

curlHI · n =
∫
S

Je,I · n , (1.16)

for each connected components S of Γ ∪ ∂Ω, the boundary of ΩI : this is a necessary
condition to be verified by the current density.
Denoting by EM andHM the solutions of (1.2), inΩI one has

curlHM
I = iωεIEM

I + Je,I ,

thus from the Stokes theorem∫
S

(iωεIEM
I + Je,I) · n = 0 .

Therefore, it is natural to assume that the electric field EI , solution of the eddy
current problem, satisfies ∫

S

εIEI · n = 0 , (1.17)

as would be the case for the solution of the full Maxwell system (1.2) under the as-
sumption (1.16).
For the electric boundary conditionE×n = 0 on ∂Ω these equations are enough.

Instead, for the magnetic boundary conditionsH×n = 0 and εE · n = 0 on ∂Ω one
has to proceed further. First of all, it is useful to observe that equations (1.17) reduce to
those associated with the connected components Γj only, as on ∂Ω one has εE·n = 0.
Moreover, considering the basis functions πk,I of HεI (Γ, ∂Ω;ΩI), from (1.3) in ΩI

we have ∫
ΩI

Je,I · πk,I =
∫
ΩI
curlHI · πk,I

=
∫
ΩI

HI · curlπk,I +
∫
Γ

nI ×HI · πk,I

+
∫
∂Ω n×HI ·πk,I = 0 ,

(1.18)

a new set of necessary conditions for the current density.
Similarly, from the Maxwell equations (1.2) inΩI we find∫

ΩI
(iωεIEM

I + Je,I) · πk,I =
∫
ΩI
curlHM

I · πk,I = 0 .

Thus, as in the case the solution of the full Maxwell problem (1.2) under the con-
ditions (1.18), one is led to require∫

ΩI
εIEI · πk,I = 0 , (1.19)

for each k = 1, . . . , n∂Ω.
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Summing up, in the case of the electric boundary condition the complete set of
equations is ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εIEI) = 0 in ΩI

EI × n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
(∂Ω)r

εIEI · n = 0 ∀ r = 0, 1, . . . , p∂Ω ,

(1.20)

with the necessary assumptions

divJe,I = 0 in ΩI∫
Γj

Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫
(∂Ω)r

Je,I · n = 0 ∀ r = 0, 1, . . . , p∂Ω .
(1.21)

Instead, in the case of the magnetic boundary conditions the complete set of equa-
tions is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εIEI) = 0 in ΩI

H× n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI · πk,I = 0 ∀ k = 1, . . . , n∂Ω ,

(1.22)

with the necessary assumptions

divJe,I = 0 in ΩI

Je,I · n = 0 on ∂Ω∫
Γj

Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

Je,I · πk,I = 0 ∀ k = 1, . . . , n∂Ω .

(1.23)

Note that, as a consequence of the Gauss divergence theorem, the solution to (1.20)
also satisfies ∫

ΓpΓ +1

εIEI · nI = 0 .

Therefore this equation could be added to (1.20). However, in general we have pre-
ferred to drop from the final problem all the equations that are not independent of the
others. The same remark applies to the problem (1.22) or to problem (1.24) here below.

Remark 1.2. The conditions
∫
ΩI

εIEI ·πk,I = 0 (as well as
∫
ΩI

Je,I ·πk,I = 0) have
a physical interpretation.
In fact, as explained in Section A.4, the basis functions πk,I can be written in

a more explicit way. Precisely, let us start recalling that in ΩI there exist n∂Ω sur-
faces Σk, with ∂Σk ⊂ ∂Ω, each one “cutting” a Γ -independent non-bounding



18 1 Setting the problem

cycle in ΩI . The functions πk,I are the (L2(ΩI))3-extension of grad qk,I , where
qk,I ∈ H1(ΩI \Σk) are the solutions to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div(εI grad qk,I) = 0 inΩI \Σk

εI grad qk,I · n = 0 on ∂Ω \ ∂Σk

qk,I = 0 on Γ
[εI grad qk,I · nΣ]Σk

= 0
[qk,I]Σk

= 1 ,

having denoted by [ · ]Σk the jump across the surface Σk and by nΣ the unit normal
vector on Σk.
Integration by parts gives∫

ΩI
εIEI ·πk,I =

∫
ΩI\Σk

εIEI · grad qk,I
= −

∫
ΩI\Σk

div(εIEI ) qk,I +
∫
∂Ω\∂Σk

εIEI · n qk,I
+
∫
Γ

εIEI · nI qk,I +
∫
Σk

εIEI · nΣ [qk,I]Σk

=
∫
Σk

εIEI · nΣ ,

thus conditions (1.22)7 are equivalent to require that the flux of the electric induction
is vanishing on each “cutting” surface. �

Though in this book we are mainly concerned with problems (1.20) and (1.22), for
the sake of completeness we also present the eddy current problem with the no-flux
boundary conditions (1.9).
The detailed procedure for devising this problem needs some preliminaries, and is

fully described in Section 3.5: here we limit ourselves to present the final result.
The complete problem reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εIEI) = 0 in ΩI

μH · n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI · πk,I = 0 ∀ k = 1, . . . , n∂Ω∫
∂Ω

EI × n · ρ∗
α,I = 0 ∀ α = 1, . . . , n∗

ΩI
,

(1.24)

with the necessary assumptions (1.21). Here ρ∗
α,I , α = 1, . . . , nΩI , are the basis func-

tions of the space of harmonic fields HμI (m;ΩI); the number n∗
ΩI
is defined in Re-

mark 1.3 here below and satisfies 0 ≤ n∗
ΩI
≤ nΩI .

Remark 1.3. Conditions (1.24)8 have a physical interpretation. In fact, as made explicit
in Section A.4, we recall that in ΩI we have a collection of “cutting” surfaces Ξ∗

α,
α = 1, . . . , nΩI , with ∂Ξ∗

α ⊂ ∂Ω ∪ Γ . The basis functions ρ∗
α,I are the (L2(ΩI))3-

extension of grad p∗α,I , where p
∗
α,I , defined inΩI \Ξ∗

α, is the solution, determined up
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to an additive constant, to⎧⎪⎪⎪⎨⎪⎪⎪⎩
div(μI grad p

∗
α,I) = 0 in ΩI \ Ξ∗

α

μI grad p
∗
α,I · nI = 0 on (∂Ω ∪ Γ ) \ ∂Ξ∗

α[
μI grad p

∗
α,I · nΞ∗

]
Ξ∗

α

= 0[
p∗α,I

]
Ξ∗

α

= 1 ,

(1.25)

having denoted by [ · ]Ξ∗
α
the jump across the surface Ξ∗

α and by nΞ∗ the unit normal
vector on Ξ∗

α.
Let us denote byn∗

ΩI
the number of “cutting” surfacesΞ∗

α such that∂Ξ
∗
α∩∂Ω �= ∅.

Clearly one has 0 ≤ n∗
ΩI
≤ nΩI . If n

∗
ΩI
≥ 1, for α = 1, . . . , n∗

ΩI
one has∫

∂Ω
EI × n · ρ∗

α,I =
∫
∂Ω\∂Ξ∗

α
EI × n · grad p∗α,I

= −
∫
∂Ω\∂Ξ∗

α
divτ(EI × n) p∗α,I +

∫
∂Ξ∗

α
(EI × n) · nΞ∗

[
p∗α,I

]
Ξ∗

α

= −
∫
∂Ω\∂Ξ∗

α
curlEI · n p∗α,I +

∫
∂Ξ∗

α
EI · (n× nΞ∗)

= iω
∫
∂Ω\∂Ξ∗

α
μIHI · n p∗α,I +

∫
∂Ξ∗

α
EI · dτ

=
∫
∂Ξ∗

α
EI · dτ ,

hence with (1.24)8 we are imposing that the line integral of the electric field is vanish-
ing on the boundary of each “cutting” surface intersecting ∂Ω. �

It is worth noting that the conditions stemming from the geometrical properties
of the domain ΩI (with the exception of (1.24)8) are orthogonality conditions of EI

to a suitable space of harmonic fields. More precisely, the additional conditions for
the magnetic boundary value problem (1.22) or for problem (1.24) are orthogonality
conditions toHεI (Γ, ∂Ω;ΩI), whereas those appearing in the electric boundary value
problem (1.20) are orthogonality conditions toHεI (e;ΩI), in all cases with respect to
the scalar product

(wI , zI)εI ,ΩI :=
∫
ΩI

εIwI · zI ,

where zI denotes the complex conjugate of zI . In fact,∫
ΩI

εIEI · gradwj,I

= −
∫
ΩI
div(εIEI )wj,I +

∫
Γ

εIEI · nI wj,I +
∫
∂Ω

εIEI · nwj,I

=
∫
Γj

εIEI · nI ,

as the functionwj,I satisfies wj,I = 1 on Γj and wj,I = 0 on Γi, i �= j, j = 1, . . . , pΓ
(see Section 1.4). Similarly,∫

ΩI
εIEI · gradw∗

γ,I

= −
∫
ΩI
div(εIEI )w∗

γ,I +
∫
Γ

εIEI · nI w∗
γ,I +

∫
∂Ω

εIEI · nw∗
γ,I ,

and the result follows as, taking γ equal to a value from 0 to p∂Ω + pΓ , the function
w∗
γ,I has boundary value 0 on ΓpΓ +1, value 1 on only one connected component of

Γ ∪ ∂Ω and value 0 on all the remaining components.
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A mathematical justification of the eddy
current model

The aim of this chapter is to analyze in which sense the eddy current model is a proper
approximation of the full Maxwell system. As explained in the previous chapter, the
eddy current problem is a simplified model derived from the full system of Maxwell
equations by neglecting the displacement currents, namely, the term iωεE. Therefore
it can be seen either as the low electric permittivity limit or as the low-frequency limit
of the full Maxwell system. The analysis is mainly based on the E-based formulation
of Maxwell equations obtained by eliminating the magnetic field.

2.1 The E-based formulation of Maxwell equations

In this chapter we are not concerned with the problem of well-posedness of the eddy
current model, an aspect that is dealt with in Chapter 3. We simply assume that a solu-
tion of the eddy current equations exists, and that a solution of the fullMaxwell system
exists as well, both solutions being smooth enough to justify all the computations we
will perform. Moreover, we focus on the magnetic boundary value problem (1.22),
leaving to the reader the modifications needed for treating the electric boundary value
case (1.20).
The geometrical situation is that described in Section 1.3. Moreover, as already

indicated, in agreement with well-known physical considerations we suppose that the
matrixμ is symmetric and uniformly positive definite inΩ, with entries inL∞(Ω), the
matrix εI is symmetric and uniformly positive definite inΩI , with entries in L∞(ΩI),
and the matrix σ is symmetric and uniformly positive definite in ΩC , with entries in
L∞(ΩC), whereas it is vanishing in ΩI . Finally, the current density Je ∈ (L2(Ω))3

satisfies the necessary conditions (1.23).
In the Maxwell system, and also in the eddy current model, it is possible to elim-

inate either the electric field (as it will be done in the first part of Chapter 3) or the
magnetic field. For the full Maxwell system the two formulations are quite similar, but
this is not the case for the eddy current model. In particular, in order to compare the
two problems it is convenient to use the electric approach, eliminating the magnetic
field.

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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From the Faraday law in (1.22) one has μ−1 curlE = −iωH, then substituting in
the Ampère law we obtain the E-based formulation of the eddy current problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlE) + iωσE = −iωJe in Ω
div(εIEI ) = 0 in ΩI

μ−1 curlE× n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI ·πk,I = 0 ∀ k = 1, . . . , n∂Ω .

(2.1)

To help the reader, we remark that if the boundary of the conductor ΩC is con-
nected then pΓ = 0, and that if Ω is simply-connected then n∂Ω = 0. An example
of this simplified geometry is that of a connected conductor (possibly with “handles”)
contained in a computational domain similar to a “box”.
Using integration by parts it is easily seen that a solutionE to (2.1) satisfies∫

Ω
μ−1 curlE · curl z +iω

∫
ΩC

σEC · zC
+c∗0

∫
ΩI
div(εIEI ) div(εIzI) = −iω

∫
Ω

Je · z (2.2)

for all z ∈ H(curl;Ω) with div(εIzI ) ∈ L2(ΩI ), where c∗0 > 0 is an arbitrarily
chosen dimensional constant.
Let us consider the space

WεI (ΩI ;Ω) := {z∈H(curl;Ω) | zI∈H0,∂Ω(εI , div;ΩI),
zI⊥εIHεI (Γ, ∂Ω;ΩI)} (2.3)

where the symbol ⊥εI denotes the orthogonality with respect to the scalar product

(wI , zI)εI ,ΩI :=
∫
ΩI

εIwI · zI

(for the other notations see Sections 1.4 and A.1). InWεI (ΩI ;Ω) we define the norm

‖z‖WεI
(ΩI ;Ω) :=

(
‖ curl z‖20,Ω + ‖z‖20,Ω + ‖ div(εIzI)‖20,ΩI

)1/2
.

Recalling that, as shown in Section 1.5, the integral conditions in (2.1) are orthog-
onality conditions with respect to the space of harmonic fields HεI (Γ, ∂Ω;ΩI), with
respect to the scalar product (·, ·)εI,ΩI , we have in particular that E ∈WεI (ΩI ;Ω).
In the spaceWεI (ΩI ;Ω) let us define the sesquilinear form

a∗e(w, z) :=
∫
Ω

μ−1 curlw · curl z + iω
∫
ΩC

σwC · zC
+c∗0

∫
ΩI
div(εIwI) div(εIzI ) .

(2.4)

With the aim of analyzing the asymptotic behaviour of the solution E as the electric
permittivityε tends to 0 or the angular frequency ω tends to 0, an important point is to
show that the sesquilinear form a∗e(·, ·) is coercive inWεI (ΩI ;Ω).
We need some preliminary results. It is known that there are several ways of writ-

ing a vector function belonging to (L2(ΩI))3 as the sum of a curl, a gradient and a
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harmonic field. In particular, let us recall (see Theorem A.6) that zI ∈ (L2(ΩI))3 can
be represented as

zI = ε−1
I curlqI + gradϕI + hI , (2.5)

where qI ∈ H0,∂Ω(curl;ΩI) ∩ H0
0,Γ (div;ΩI) ∩ H(∂Ω, Γ ;ΩI)⊥, ϕI ∈ H1

0,Γ(ΩI )
and hI ∈ HεI (Γ, ∂Ω;ΩI). Moreover, we also know that if zI⊥εIHεI (Γ, ∂Ω;ΩI)
we have hI = 0.
A second useful result is the following one.

Lemma 2.1. There exists a constant C > 0 such that

‖zI‖0,ΩI ≤ C
(
‖ curl zI‖0,ΩI + ‖ div(εIzI)‖0,ΩI

+‖zI × nI‖H−1/2(divτ ;Γ) + ‖εIzI · nI‖−1/2,∂Ω

)
for all zI ∈ H(curl;ΩI) ∩H(εI , div;ΩI) with zI⊥εIHεI (Γ, ∂Ω;ΩI).

Proof. Since zI⊥εIHεI (Γ, ∂Ω;ΩI), from (2.5) we can write

zI = ε−1
I curlqI + gradϕI .

Then we estimate the norm of the two terms on the right hand side. Looking at
problem (A.14), we start by considering

∫
ΩI

zI · curlqI . Integrating by parts we have∣∣∣∫ΩI
zI · curlqI

∣∣∣ =
∣∣∣∫ΩI

curl zI · qI +
∫
Γ

zI × nI · qI
∣∣∣

≤ C(‖ curl zI‖0,ΩI + ‖zI × nI‖H−1/2(divτ ;Γ))(‖qI‖0,ΩI + ‖ curlqI‖0,ΩI) ,

where we have used the duality estimate∣∣∣∣∫
Γ

zI × nI · qI
∣∣∣∣ ≤ C‖zI × nI‖H−1/2(divτ ;Γ)‖nI × qI × nI‖H−1/2(curlτ ;Γ)

(see Section A.1) and the tangential trace inequality (A.11)

‖nI × qI × nI‖H−1/2(curlτ ;Γ) ≤ C(‖qI‖0,ΩI + ‖ curlqI‖0,ΩI ) .

On the other hand, from the Poincaré-like inequality (A.15) and taking also into ac-
count that divqI = 0 inΩI we find∫

ΩI

|qI |2 ≤ C

∫
ΩI

(| curlqI |2 + | divqI |2) = C

∫
ΩI

| curlqI |2 .

Summing up, choosing pI = qI in (A.14) gives

‖ε−1 curlqI‖0,ΩI ≤ C(‖ curl zI‖0,ΩI + ‖zI × nI‖H−1/2(divτ ;Γ)) .

Another integration by parts in the right hand side of (A.17) furnishes∣∣∣∫ΩI
εIzI · gradϕI

∣∣∣ =
∣∣∣− ∫ΩI

div(εIzI )ϕI +
∫
∂Ω

εIzI · nϕI

∣∣∣
≤ C(‖ div(εIzI)‖0,ΩI + ‖εIzI · nI‖−1/2,∂Ω)(‖ϕI‖0,ΩI + ‖ gradϕI‖0,ΩI ) ,
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having used the duality estimate∣∣∣∣∫
∂Ω

εIzI · nϕI

∣∣∣∣ ≤ C‖εIzI · n‖−1/2,∂Ω‖ϕI|∂Ω‖1/2,∂Ω

(see Section A.1) and the trace inequality (A.8)

‖ϕI|∂Ω‖1/2,∂Ω ≤ C(‖ϕI‖0,ΩI + ‖ gradϕI‖0,ΩI ) .

Since the Poincaré inequality (A.18)∫
ΩI

|ϕI |2 ≤ C

∫
ΩI

| gradϕI |2

holds inH1
0,Γ(ΩI), choosing ηI = ϕI in (A.17) we have

‖ gradϕI‖0,ΩI ≤ C(‖ div(εIzI)‖0,ΩI + ‖εIzI · nI‖−1/2,∂Ω) ,

and the thesis follows. �

As a consequence we have the following lemma, that is the main point for proving
the coerciveness of the sesquilinear form a∗e(·, ·).

Lemma 2.2. There exists a constant C > 0 such that for each z ∈WεI (ΩI ;Ω)

‖zI‖0,ΩI ≤ C
(
‖ curl z‖0,Ω + ‖ div(εIzI)‖0,ΩI + ‖zC‖0,ΩC

)
.

Proof. First we recall that z ∈ H(curl;Ω) if and only if zC ∈ H(curl;ΩC), zI ∈
H(curl;ΩI) and zC × nC = −zI × nI on Γ .
From Lemma 2.1 we have

‖zI‖0,ΩI ≤ C
(
‖ curl zI‖0,ΩI + ‖ div(εIzI)‖0,ΩI + ‖zI × nI‖H−1/2(divτ ;Γ)

)
= C

(
‖ curl zI‖0,ΩI + ‖ div(εIzI)‖0,ΩI + ‖zC × nC‖H−1/2(divτ ;Γ)

)
.

Taking into account the tangential trace inequality (A.10), namely,

‖zC × nC‖H−1/2(divτ ;Γ) ≤ κ ‖zC‖H(curl;ΩC) ,

the proof is complete. �

Now we are in condition to prove the main result on this section.

Theorem 2.3. The sesquilinear form a∗e(·, ·) is coercive in WεI (ΩI ;Ω), i.e., there ex-
ists a constant C0 > 0 such that

|a∗e(z, z)| ≥ C0‖z‖2WεI
(ΩI ;Ω) for all z ∈WεI (ΩI ;Ω) . (2.6)
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Proof. As a consequence of Lemma 2.2 we have, for all z ∈WεI (ΩI ;Ω)

‖z‖2WεI
(ΩI ;Ω) ≤ C1

(
‖ curl z‖20,Ω + ‖zC‖20,ΩC

+ ‖ div(εIzI)‖20,ΩI

)
, (2.7)

for some positive constant C1. Since ν := μ−1 and σ are symmetric and uniformly
positive definite in Ω and ΩC , respectively, we have

|a∗e(z, z)|2 =
(∫

Ω
μ−1 curl z · curl z + c∗0

∫
ΩI
div(εIzI) div(εIzI)

)2

+
(
ω
∫
ΩC

σwC · zC
)2

≥
(
νmin‖ curl z‖20,Ω + c∗0‖ div(εIzI)‖20,ΩI

)2 +
(
ωσmin‖zC‖20,ΩC

)2
≥ C2

(
‖ curl z‖20,Ω + ‖ div(εIzI)‖20,ΩI

+ ‖zC‖20,ΩC

)2
≥ C2C

−2
1 ‖z‖4WεI

(ΩI ;Ω) ,

where νmin is a uniform lower bound in Ω for the minimum eigenvalues of ν(x),
σmin is a uniform lower bound in ΩC for the minimum eigenvalues of σ(x), and
C2 = 1

2 min(ν2
min, c

∗2
0 , ω2σ2

min). �

Remark 2.4. The proof of the coerciveness of the sesquilinear form a∗e(·, ·) is the cru-
cial point in showing, via the Lax–Milgram lemma, that the weak problem

FindE ∈ WεI (ΩI ;Ω) such that∫
Ω

μ−1 curlE · curl z + iω
∫
ΩC

σEC · zC
+c∗0

∫
ΩI
div(εIEI) div(εIzI) = −iω

∫
Ω

Je · z
for each z ∈WεI (ΩI ;Ω)

is well-posed.
Starting from this result, some additional work gives that also the solution to (2.1)

exists and is unique. However, we do not want to consider this aspect here, and we
refer to Chapter 3 for a systematic approach to the existence and uniqueness theory
for eddy current problems, where the result is based on a simpler weak formulation in
terms of the magnetic fieldH only, and to Section 6.1.5 for a complete analysis of the
E-based formulation (2.1). �

2.2 The eddy current model as the low electric permittivity limit

By eliminating the magnetic field in the time-harmonic Maxwell equations we obtain
the following boundary value problem for the electric field EM (with the magnetic
boundary condition){

curl(μ−1 curlEM )− ω2εEM + iωσEM = −iωJe in Ω
μ−1 curlEM × n = 0 on ∂Ω .

(2.8)

Here ε is a symmetric tensor, uniformly positive definite in Ω, with coefficients in
L∞(Ω) and, as usual, ε|ΩI

= εI . As we have already explained in Section 1.2, the
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eddy current model is obtained by neglecting the termω2εEM , that corresponds to the
displacement currents.
In this section we consider an electric permittivity of the form εδ := δε, where

δ > 0 is a real number. Clearly, the physical problem described by the full Maxwell
system corresponds to the case δ = 1. We want to show that the eddy current model is
the limit as δ tends to 0 of the problem with electric permittivity εδ . This is the notion
of eddy current limit presented in Bossavit [58], Chap. 4.
We will show that the norm in H(curl;Ω) of the difference between the electric

field solution of the full Maxwell system and the electric field solution of the eddy
current problem is of order δ. This result has been proved in Costabel et al. [90] who
impose the electric boundary conditionE× n = 0 on ∂Ω. Here we report a proof of
this result in the case of the magnetic boundary conditionH× n = 0 on ∂Ω, that, in
terms of the electric field, is the boundary condition considered in (2.1) and (2.8).
Let us denote by E the solution of the eddy current problem (2.1) and by EM

δ the
solution of the full Maxwell system{

curl(μ−1 curlEM
δ ) − ω2δεEM

δ + iωσEM
δ = −iωJe inΩ

μ−1 curlEM
δ × n = 0 on ∂Ω .

(2.9)

For the existence and uniqueness of solution of (2.9) see, for instance, Alonso and
Valli [8], Alonso and Raffetto [15].
As shown in Section 1.5, the current density Je has to satisfy conditions (1.23),

that are necessary conditions for the solvability of the eddy current problem. Let us
rewrite them here

divJe,I = 0 in ΩI

Je,I · n = 0 on ∂Ω∫
Γj

Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

Je,I · πk,I = 0 ∀ k = 1, . . . , n∂Ω .

(2.10)

We notice that from these conditions it follows that Je,I ∈ HεI (Γ, ∂Ω;ΩI)⊥

and that the solution EM
δ of (2.9) belongs to WεI (ΩI ;Ω). In fact, by a direct com-

putation from (2.10) we have div(εIEM
δ,I) = 0, and moreover εIEM

δ,I · n = 0 on
∂Ω, as from the boundary condition μ−1 curlEM

δ × n = 0 on ∂Ω it follows that
curl(μ−1 curlEM

δ ) · n = 0 on ∂Ω. Finally, it is clear that EM
δ,I⊥εIHεI (Γ, ∂Ω;ΩI),

since for all hI ∈ HεI (Γ, ∂Ω;ΩI) we have∫
ΩI

εIEM
δ,I · hI = 1

ω2δ

∫
ΩI
curl(μ−1

I curlEM
δ,I ) · hI + i

ωδ

∫
ΩI

Je,I · hI
= 1

ω2δ

∫
ΩI

μ−1
I curlEM

δ,I · curlhI
+ 1
ω2δω

∫
Γ∪∂Ω nI ×μ−1

I curlEM
δ,I · hI = 0 .

We are thus in a position to prove the main result of this section.

Theorem 2.5. There exists δ∗ > 0 such that if 0 < δ ≤ δ∗ one has

‖E− EM
δ ‖H(curl;Ω) ≤ Cδ ,

for some constant C > 0 independent of δ.
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Proof. Taking the difference between the first equations in (2.1) and (2.9), multiplying
by a test function z ∈ H(curl;Ω) and integrating by parts one obtains∫
Ω

μ−1 curl(E−EM
δ ) · curl z + iω

∫
ΩC

σ(EC − EM
δ,C) · zC = −δω2

∫
Ω

εEM
δ · z .

Since div(εI(EI − EM
δ,I )) = 0 in ΩI , from the coerciveness of the sesquilinear form

a∗e(·, ·) inWεI (ΩI ;Ω) it follows that there exists a constant C0 > 0, independent of
δ, such that

C0‖E−EM
δ ‖2H(curl;Ω) ≤ |a∗e(E− EM

δ ,E−EM
δ )| =

∣∣∣δω2
∫
Ω εEM

δ · (E−EM
δ )
∣∣∣

≤ δω2εmax‖EM
δ ‖0,Ω‖E−EM

δ ‖0,Ω ,

where εmax is a uniform upper bound in Ω for the maximum eigenvalues of ε(x).
Therefore

‖E− EM
δ ‖H(curl;Ω) ≤ δ

ω2εmax

C0
‖EM

δ ‖0,Ω . (2.11)

Now we need to show that ‖EM
δ ‖0,Ω is bounded uniformly with respect to δ. To

do that we proceed as follows: first of all EM
δ satisfies∫

Ω

μ−1 curlEM
δ · curl z + iω

∫
ΩC

σEM
δ,C · zC =

∫
Ω

(−iωJe + δω2εEM
δ ) · z

for all z ∈ H(curl;Ω). Then, since div(εIEM
δ,I ) = 0 in ΩI , using again the coercive-

ness of a∗e(·, ·) inWεI (ΩI ;Ω) we have

C0‖EM
δ ‖H(curl;Ω) ≤ |ω|‖Je‖0,Ω + δω2εmax‖EM

δ ‖0,Ω .

Now, taking for instance δ∗ = C0
2ω2εmax

, for all δ ≤ δ∗ we find

‖EM
δ ‖H(curl;Ω) ≤

2|ω|
C0

‖Je‖0,Ω ,

and by substituting in (2.11) we obtain the desired result. �

2.3 The eddy current model as the low-frequency limit

The eddy current model can also be considered as the low-frequency limit of the full
Maxwell system. This statement must be properly understood, since the limit problem
obtained by formally taking the frequency equal to 0 is in fact themagneto-electrostatic
problem, where induced eddy currents are not present. The interpretation of the limit
procedure we are interested in is that the difference between the solution of the full
Maxwell system and the solution of the eddy current model is vanishing as the fre-
quency is going to 0. A different asymptotic analysis is performed when focusing on
the difference between the eddy current solution and the magneto-electrostatic solu-
tion: this problem is considered in Section 7.4.
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In this section we assume that all the material parameters are fixed and we consider
the asymptotic behaviour as the frequency goes to 0 of the difference between the
solution of the fullMaxwell system (2.8), denoted byEM , and the solution of the eddy
current problem (2.1), denoted by E. We focus on the magnetic boundary condition
H× n = 0 on ∂Ω, but we recall that this result also holds true when considering the
electric boundary conditionE× n = EM × n = 0 in ∂Ω, as proved in Alonso [5].
We show that the norm in L2(Ω) of the difference E − EM is of order |ω|. We

also give an estimate in terms of ω of the L2(Ω)-norm of the difference between the
magnetic fields.
As a first step we obtain an estimate of the energy norm of E− EM in terms of a

power of |ω| times the L2(Ω)-norm of EM . Since the solution EM depends on ω, a
second step is the proof that the L2(Ω)-norm of EM is uniformly bounded in |ω|.

Lemma 2.6. There exists a constant C > 0, independent of ω, such that

‖ curl(E− EM )‖20,Ω + |ω|‖EC −EM
C ‖20,ΩC

≤ C|ω|3(|ω|+ 1)‖EM‖20,Ω .

Proof. Aswe have seen in the previous section, from (2.10) we know that (E−EM ) ∈
Wε(ΩI ;Ω) and that∫

Ω

μ−1 curl(E−EM ) · curl z + iω

∫
ΩC

σ(EC −EM
C ) · zC = −ω2

∫
Ω

εEM · z

for all z ∈ H(curl;Ω).
Taking z = E−EM we have∫
Ω

μ−1 curl(E− EM ) · curl(E− EM ) + iω
∫
ΩC

σ(EC − EM
C ) · (EC − EM

C )
= −ω2

∫
Ω

εEM · (E− EM ) ,

hence
ν2
min‖ curl(E−EM )‖40,Ω + ω2σ2

min‖EC −EM
C ‖40,ΩC

≤ ω4ε2
max‖EM‖20,Ω‖E−EM‖20,Ω .

Since div(εI(EI−EM
I )) = 0 inΩI , from(2.7) we know that there exists a constant

C1 > 0, independent of ω, such that

‖E−EM‖20,Ω ≤ C1

(
‖ curl(E− EM )‖20.Ω + ‖EC −EM

C ‖20,ΩC

)
, (2.12)

therefore we find, for a constant C3 > 0 independent of ω,

‖ curl(E− EM )‖40,Ω + ω2‖EC − EM
C ‖40,ΩC

≤ C3ω
4‖EM‖20,Ω(‖ curl(E−EM )‖20,Ω + ‖EC − EM

C ‖20,ΩC
) .

Using that for each δ > 0 it holdsAB ≤ 1
2δ

A2 + δ
2
B2, we have

‖ curl(E− EM )‖40,Ω + ω2‖EC − EM
C ‖40,ΩC

≤
(

1
2δ1

+ 1
2δ2

)
C2

3ω
8‖EM‖40,Ω

+ δ1
2 ‖ curl(E−EM )‖40,Ω + δ2

2 ‖EC − EM
C ‖40,ΩC

,
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for δ1 > 0 and δ2 > 0. Taking in particular δ1 = 1 and δ2 = ω2 one finds

‖ curl(E− EM )‖40,Ω + ω2‖EC − EM
C ‖40,ΩC

≤ C2
3 (ω2 + 1)ω6‖EM‖40,Ω ,

hence the desired result. �

The following result provides a bound for ‖EM‖0,Ω that is uniform with respect
to |ω|.

Lemma 2.7. There exists a constant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one has

‖EM‖0,Ω ≤ C ,

for some constant C > 0 independent of ω.

Proof. Multiplyingthe first equation of (2.8) byEM and integratingby parts we obtain∫
Ω μ−1 curlEM · curlEM + iω

∫
ΩC

σEM
C · EM

C

= −iω
∫
Ω

Je · EM + ω2
∫
Ω

εEM · EM ,

hence
ν2
min‖ curlEM‖40.Ω + ω2σ2

min‖EM
C ‖40,ΩC

≤ 2ω2‖Je‖20,Ω‖EM‖20,Ω + 2ω4ε2
max‖EM‖40,Ω ,

or simply, for a suitable constant Ĉ > 0, independent of ω,

‖ curlEM‖20.Ω + |ω|‖EM
C ‖20,ΩC

≤ Ĉ(|ω|‖Je‖0,Ω‖EM‖0,Ω + ω2‖EM‖20,Ω) .

Since div(εIEM
I ) = 0 in ΩI , as in (2.12) we have

‖EM‖20,Ω ≤ C1

(
‖ curlEM ‖20.Ω + ‖EM

C ‖20,ΩC

)
.

Then, for |ω| ≤ 1,

‖EM‖20,Ω ≤ C1
1
|ω| (‖ curlEM ‖20,Ω + |ω|‖EM

C ‖20,ΩC
)

≤ ĈC1
1
|ω| (|ω|‖Je‖0,Ω‖EM‖0,Ω + ω2‖EM‖20,Ω)

≤ 1
2
Ĉ2C2

1‖Je‖20,Ω + 1
2
‖EM‖20,Ω + ĈC1|ω|‖EM‖20,Ω .

(2.13)

To finish the proof we have only to choose |ω| ≤ min{1, 1
4ĈC1

}. �

In conclusion, we have obtained the following result.

Theorem 2.8. There exists a constant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one
has

‖E− EM‖0,Ω ≤ C|ω|
‖H−HM‖0,Ω ≤ C|ω|1/2 ,

for some constant C > 0 independent of ω.
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Proof. From Lemma 2.6 and Lemma 2.7 for |ω| ≤ ω∗ we have

‖ curl(E− EM )‖20,Ω + |ω|‖EC −EM
C ‖20,ΩC

≤ C∗|ω|3(|ω|+ 1) (2.14)

for some constant C∗ > 0 independent of ω. Hence proceeding as in (2.13), for |ω| ≤
ω∗ we find

‖E−EM ‖20,Ω ≤ C1C∗ω
2(|ω|+ 1) ≤ 2C1C∗ω

2 .

From (2.14) it also follows that

‖ curl(E− EM )‖0,Ω ≤ C|ω|3/2 .

Finally, from the Faraday law curl(E−EM ) = −iωμ(H−HM )we have also obtained

‖H−HM‖0,Ω ≤ C|ω|1/2 ,

which ends the proof. �

2.3.1 Higher order convergence

Under suitable additional assumptions the order of convergence can be improved. The
following result can be found in Schmidt et al. [223], where the eddy current modeling
error has been investigated under different points of view.

Lemma 2.9. Suppose that divJe = 0 in Ω and that ΩC is simply-connected. There
exists a constant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one has

‖EM‖0,Ω ≤ C|ω| , (2.15)

for some constant C > 0, independent of ω.

Proof. For a while, let us proceed without making use of the assumptions that
divJe = 0 in Ω and ΩC is simply-connected.
Since from Theorem 2.8 we have ‖E−EM‖0,Ω ≤ C|ω|, it is enough to show that

‖E‖0,Ω ≤ C|ω|. From the Ampère equation we have div(σE + Je) = 0 inΩ, hence

div(σEC + Je,C) = 0 in ΩC

and
(σEC + Je,C) · nC = −Je,I · nI on Γ .

Proceeding as in Lemma 2.1 we obtain

‖EC‖0,ΩC ≤ C
(
‖ curlEC‖0,ΩC + ‖ div(σEC )‖0,ΩC

+‖σEC · nC‖−1/2,Γ +
∑nΩC

β=1

∣∣∣∫ΩC
σEC · ρ∗

β,C

∣∣∣ )
≤ C

(
‖ curlEC‖0,ΩC + ‖ divJe,C‖0,ΩC

+‖Je,C · nC + Je,I · nI‖−1/2,Γ +
∑nΩC

β=1

∣∣∣∫ΩC
σEC · ρ∗

β,C

∣∣∣ ),



2.3 The eddy current model as the low-frequency limit 31

where ρ∗
β,C , β = 1, . . . , nΩC , are the basis functions of the space of harmonic fields

Hσ(m;ΩC) defined as follows

Hσ(m;ΩC) := {zC ∈ (L2(ΩC ))3 | curl zC = 0, div(σzC) = 0,
σzC · nC = 0 on Γ } .

Moreover, from Lemma 2.2 we know that

‖EI‖0,ΩI ≤ C(‖ curlE‖0,Ω + ‖EC‖0,ΩC) ,

so that we end up with

‖E‖0,Ω ≤ C
(
‖ curlE‖0,Ω + ‖ divJe,C‖0,ΩC

+‖Je,C · nC + Je,I · nI‖−1/2,Γ

+
∑nΩC

β=1

∣∣∣∫ΩC
σEC · ρ∗

β,C

∣∣∣ ) .

(2.16)

From the Ampère equation we obtain by integration by parts∫
Ω

μ−1 curlE · curlE + iω

∫
ΩC

σEC ·EC = −iω

∫
Ω

Je ·E ,

hence
‖ curlE‖20,Ω ≤ C|ω|‖Je‖0,Ω ‖E‖0,Ω .

In conclusion, assuming that divJe,C = 0 in ΩC and Je,C · nC + Je,I · nI = 0 on
Γ (which is equivalent to require that divJe = 0 in Ω, as we have already assumed
divJe,I = 0 in ΩI ) and that ΩC is simply-connected (so that the space Hσ(m;ΩC)
is trivial), from (2.16) it follows

‖E‖0,Ω ≤ C‖ curlE‖0,Ω ≤ C|ω|1/2‖Je‖1/20,Ω ‖E‖
1/2
0,Ω ,

hence
‖E‖0,Ω ≤ C|ω|‖Je‖0,Ω ,

which ends the proof. �

Corollary 2.10. Under the assumptions of Lemma 2.9, for |ω| ≤ ω∗ one has

‖E− EM‖0,Ω ≤ C|ω|2

‖H−HM‖0,Ω ≤ C|ω|3/2 .
(2.17)

Proof. From (2.15) and Lemma 2.6 we find

‖ curl(E− EM )‖20,Ω + |ω|‖EC −EM
C ‖20,ΩC

≤ C|ω|5 ,

and consequently, proceeding as in Theorem 2.8, the thesis follows. �
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Remark 2.11. If wewere able to prove thatσEC isL2(ΩC)-orthogonal toHσ(m;ΩC),
in Lemma 2.9 we could avoid to require that ΩC is simply-connected.
In Ammari et al. [23] an attempt is made to devise the necessary and sufficient

conditions on Je ensuring that σEC is orthogonal to Hσ(m;ΩC); however, their ar-
gument is not conclusive, and to our knowledge a characterization of this orthogonality
property in terms of Je is not known. �
The estimate for the difference between the magnetic fields can be improved even

if we do not impose additional conditions on Je and ΩC .

Theorem 2.12. Suppose that the domain Ω is simply-connected. There exists a con-
stant ω∗, 0 < ω∗ ≤ 1, such that for |ω| ≤ ω∗ one has

‖H−HM‖0,Ω ≤ C|ω| . (2.18)

Moreover, if estimate (2.15) is satisfied one has

‖H−HM‖0,Ω ≤ Cω2 . (2.19)

In both cases the constant C > 0 is independent of ω.

Proof. To prove this result we use the formulation of the eddy current model in terms
of a magnetic vector potential A and a electric scalar potential VC (see Chapter 6).
This means that we considerA and VC such that

curlA = μH and EC = −iωAC − gradVC .

SinceΩ is simply-connected, we can also do the same for the Maxwell equations, and
introduceAM and V M

C such that

curlAM = μHM and EM
C = −iωAM

C − gradVM
C .

Setting now (Z, NC) := (A −AM , VC − V M
C ), it is easily seen that it satisfies the

problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlZ) − μ−1
∗ grad divZ

+iωσZ + σ gradNC = −iωεEM in Ω
div(iωσZC + σ gradNC) = −iω div(εEM ) in ΩC

(iωσZC + σ gradNC) · nC
= −iω(εCEM

C · nC + εIEM
I · nI) on Γ

Z · n = 0 on ∂Ω
(μ−1 curlZ)× n = 0 on ∂Ω ,

(2.20)

where NC is determined up to an additive constant in each connected component of
ΩC . The corresponding weak formulation is the same than that presented in (6.12),
with Je replaced by−iωεEM .
Proceeding as in Section 6.1.2 (see in particular (6.36), (6.37), (6.38) and (6.39)),

it can be proved that

‖ curlZ‖20,Ω + ‖ divZ‖20,Ω + ‖Z‖20,Ω + |ω|−1τ‖NC‖21,ΩC
−C4|ω|τ‖Z‖20,Ω

≤ C4|ω|‖εEM‖0,Ω‖Z‖0,Ω + C4‖εEM ‖0,Ω‖NC‖1,ΩC
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for each 0 < τ ≤ 1/2 and a suitable positive constant C4, independent of ω. Then for
each δ1 > 0 and δ2 > 0

(1−C4|ω|τ )‖Z‖20,Ω + ‖ curlZ‖20,Ω + ‖ divZ‖20,Ω + |ω|−1τ‖NC‖21,ΩC

≤ 1
2δ1

C2
4ω

2‖εEM‖20,Ω + δ1
2 ‖Z‖20,Ω + 1

2δ2
C2

4‖εEM ‖20,Ω + δ2
2 ‖NC‖21,ΩC

.

Taking τ such that 1−C4|ω|τ > 0 and choosing δ1 = 1− C4|ω|τ and δ2 = |ω|−1τ ,
we obtain that

|ω|−1τ‖NC‖21,ΩC
≤ C2

4ω
2 1

1−C4|ω|τ ‖εE
M‖20,Ω + C2

4 |ω| 1τ ‖εEM‖20,Ω .

If we choose τ = min{ 1
2 ,

1
2C4|ω|}, for |ω| ≤ 1 it is straightforward to verify that

‖NC‖1,ΩC ≤ C5|ω|‖εEM ‖0,Ω ,

for some positive constant C5, independent of ω.
Coming back to the weak formulation, we see that in particular we have∫

Ω

(
μ−1 curlZ · curlZ + μ−1

∗ | divZ|2
)

+ iω
∫
ΩC

σZC · ZC
= −iω

∫
Ω

εEM · Z−
∫
ΩC

σ gradNC · ZC .
(2.21)

Hence, taking again into account (6.39), from (2.21) it is easy to see that

‖μ(H−HM )‖0,Ω = ‖ curlZ‖0,Ω
≤ C(|ω|‖EM‖0,Ω + ‖NC‖1,ΩC) ≤ C6|ω|‖EM‖0,Ω

(2.22)

for some positive constant C6, independent of ω. Thus, from Lemma 2.7,

‖H−HM ‖0,Ω = O(|ω|) .

If we assume moreover that ‖EM‖0,Ω ≤ C|ω| is satisfied (see for instance
Lemma 2.9), from (2.22) one readily obtains (2.19). �

Remark 2.13. The geometrical assumption in Theorem 2.12 can be relaxed.
First, the solution of the Maxwell equations can be written in terms of AM and

VM
C in more general geometric situations; for instance, it is surely true if the domain

ΩC is contained in a simply-connected domain Ω̂ which is contained inΩ (hence, for
example, if Ω is simply-connected).
Moreover, the results in Section 6.1.2 hold under the quite general geometri-

cal assumptions that are described there by requiring that (6.2) is satisfied and that
n∂Ω = nΩ (in particular, these assumptions hold true if Ω is simply-connected). �

Remark 2.14. In Ammari et al. [23], the full Maxwell problem and eddy current prob-
lem are considered in R3 with the following asymptotic conditions at infinity: for the

full Maxwell system
(
HM × x

|x| − EM
)
tends to 0 uniformly as |x| goes to infinity,

and for the eddy current problemH(x) = O(1/|x|) and E(x) = O(1/|x|) uniformly
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as |x| tends to infinity (see Chapter 7 for a more detailed presentation of the eddy
current problem in the whole space R3).
Formally expanding the solutions of both problems in power series with respect

to ω, they show that the eddy current model is a first order approximation of the full
Maxwell system

‖E− EM‖0,ΩR ≤ C|ω|
‖H−HM‖0,ΩR ≤ C|ω| ,

where ΩR := (R3 \ΩC) ∩BR and BR is the open ball of radius R and center 0. In
that paper the electric permittivity and the magnetic permeability are assumed to be
constant outside BR.
If additional conditions on the current source Je and onΩC are fulfilled, they show

that the eddy current model is in fact a second order approximation of the fullMaxwell
system

‖E− EM‖0,ΩR ≤ Cω2

‖H−HM‖0,ΩR ≤ Cω2 .

More precisely, having expanded Je in the formal series

Je =
∞∑
l≥0

ωlJle ,

where as usual for all l ≥ 0 one has required that divJle,I = 0 and
∫
Γj

Jle,I · nI = 0
for all j = 1, . . . , pΓ + 1, the additional assumption on the leading term J0

e is the one
we have already devised before for the complete field Je, namely, divJ0

e = 0 in R3.
Moreover, to complete the proof of the second order approximation, the conductorΩC

is assumed to be simply-connected.
Let us also note that in this case Ω = R3 is simply-connected, therefore the

asymptotic behaviours obtained by Ammari et al. [23] are in perfect agreement with
those established by resorting to the vector potentials A and AM : namely, first or-
der approximation under general geometrical assumptions, in particular when Ω is
simply-connected, and second order approximation under the additional assumptions
that divJe = 0 in Ω and the conductorΩC is simply-connected. �
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Existence and uniqueness of the solution

The proof of the existence and uniqueness of the solution to problems (1.22), (1.20)
and (1.24) is quite similar. In this chapter, followingAlonso Rodríguez et al. [11], we
mainly focus on the magnetic boundary value problem (1.22), adding in Section 3.5 a
few comments on the electric boundary value problem (1.20) and the no-flux boundary
value problem (1.24).
The simplest way for obtaining the existence result is passing to a suitable weak

formulation in terms of the sole magnetic field H, and applying the Lax–Milgram
lemma. Then the determination of the electric field is straightforward in ΩC , while in
ΩI it requires the solution of the first order curl–div system. The solvability of this
last problem is ensured if some compatibility conditions are satisfied, and these can be
verified by writing in an explicit way the strong formulation of the eddy current model
in terms ofH. Having determinedEI , it is easy to prove the existence and uniqueness
result for the complete eddy current model in its strong form (1.22).
It has to be noted that the existence and uniqueness of the solution of the eddy

current problemcan be proved inmany differentways. In Chapter 2 we have essentially
given the proof for the E-based formulation (see Remark 2.4); in Chapters 4, 5, and
6 we derive a well-posedness analysis for some hybrid formulations, for the scalar
potential formulation and for the vector potential formulation, respectively.
However, we think that the simplest proof is the one we present in this chapter,

by focusing on the H-based formulation. This permits also to clarify the problem to
solve for the electric field EI in the insulator, and at the same time to obtain the com-
plete strong formulation in terms of the magnetic field only: a problem that was not
completely understood in the literature (see Sections 3.3 and 3.3.1).
We also observe that the theoretical results we prove in Chapters 4, 5, and 6, though

not specifically needed for showing well-posedness of the eddy current problem, are
however useful for analyzing the convergence of the finite element schemes there pro-
posed.

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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3.1 Weak formulation, existence and uniqueness for the magnetic
field

In this chapter the geometrical situation is the one described in Section 1.3, and, as
was the case there, we assume that the matrix μ is symmetric and uniformly positive
definite in Ω, with entries belonging to L∞(Ω), the matrix εI is symmetric and uni-
formly positive definite inΩI , with entries belonging to L∞(ΩI), and the matrix σ is
symmetric and uniformly positive definite inΩC , with entries belonging to L∞(ΩC),
whereas it vanishes inΩI .
Moreover, we suppose that the current density Je ∈ (L2(Ω))3 and satisfies the

(necessary) conditions

divJe,I = 0 in ΩI , Je,I · n = 0 on ∂Ω . (3.1)

However, this is not enough: in fact, as shown in Section 1.5, two additional necessary
conditions, related to the topology of ΩI , have to be assumed, namely,∫

Γj
Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫

ΩI
Je,I · πk,I = 0 ∀ k = 1, . . . , n∂Ω ,

(3.2)

where πk,I are basis functions of the space of harmonic fieldsHεI (Γ, ∂Ω;ΩI) (to be
precise, the basis functions of that space that are not expressed as the gradient of a
potential: see Section 1.4).
As a consequence, Theorem 4.2 in Alonso and Valli [6] shows that there exists a

vector fieldHe,I ∈ H(curl;ΩI) satisfying{
curlHe,I = Je,I in ΩI

He,I × n = 0 on ∂Ω ,
(3.3)

and we can also construct a vector field He,C ∈ H(curl;ΩC) such that

He,C × nC + He,I × nI = 0 on Γ . (3.4)

We finally defineHe ∈ H0(curl;Ω) as

He :=
{

He,I in ΩI

He,C in ΩC ; (3.5)

it can also be shown thatHe continuously depends on Je.
Let us introduce the (complex) vector space

V := {v ∈ H0(curl;Ω) | curlvI = 0 in ΩI} , (3.6)

endowed with the norm

‖v‖V :=
(∫

ΩC

| curlvC |2 +
∫
Ω

|v|2
)1/2

.
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Following the presentation in Bossavit [59], multiplying the Faraday equation by v,
with v ∈ V , integrating inΩ and integrating by parts we find∫

ΩC

EC · curlvC +
∫
ΩI

EI · curlvI +
∫
∂Ω

n× E · v +
∫
Ω

iωμH · v = 0 , (3.7)

thus ∫
ΩC

EC · curlvC +
∫
Ω

iωμH · v = 0 , (3.8)

as curlvI = 0 in ΩI and v × n = 0 on ∂Ω. Using the Ampère equation in ΩC to
express EC , we end up with the following problem

Find (H−He) ∈ V :∫
ΩC

σ−1 curlHC · curlvC +
∫
Ω

iωμH · v =
∫
ΩC

σ−1Je,C · curlvC
for each v ∈ V .

(3.9)

This formulation is shown to be well-posed via the Lax–Milgram lemma (see, e.g.,
Bossavit [59], p. 313; Dautray and Lions [94], Chap. VI, Sect. 3, Theor. 7 and Rem.
8; Quarteroni and Valli [199], p. 133). In fact:

Theorem 3.1. The sesquilinear form

a(u,v) :=
∫
ΩC

σ−1 curluC · curlvC +
∫
Ω

iωμu · v (3.10)

is continuous and coercive in V .

Proof. The continuity follows at once from the boundedness of σ−1 and μ. The co-
erciveness reads

|a(v,v)|2 =
(∫

ΩC
σ−1 curlvC · curlvC

)2

+ ω2
(∫
Ω

μv · v
)2

≥ σ−2
max

(∫
ΩC
| curlvC |2

)2

+ ω2μ2
min

(∫
Ω
|v|2

)2
,

(3.11)

where σmax is a uniform upper bound in ΩC for the maximum eigenvalues of σ(x)
and μmin is a uniform lower bound in Ω for the minimum eigenvalues of μ(x). �

Since the anti-linear forms

v →
∫
ΩC

σ−1Je,C · curlvC
v →

∫
ΩC

σ−1 curlHe,C · curlvC +
∫
Ω

iωμHe · v

are clearly continuous in V , from the Lax–Milgram lemma we have:

Theorem 3.2. There exists a unique solution to problem (3.9).

This result is the basis of the existence and uniqueness theory for the complete eddy
current problem. However, let us note from the very beginning that it is not straight-
forward to devise a numerical algorithm based on this formulation, as the space V
contains the differential constraint curlvI = 0 inΩI .
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3.2 Determination of the electric field

In the preceding section we have determined the magnetic field H solution to prob-
lem (3.9). The electric field in the conductor can be directly found by setting

EC = σ−1(curlHC − Je,C) inΩC . (3.12)

Therefore, we only need to find EI , that has to satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curlEI = −iωμIHI in ΩI

div(εIEI ) = 0 in ΩI

εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI ·πk,I = 0 ∀ k = 1, . . . , n∂Ω
EI × nI = −EC × nC on Γ .

(3.13)

We recall that the problem above becomes simpler if the boundary of the conductor
ΩC is connected, so that pΓ = 0, and the domain Ω is simply-connected, so that
n∂Ω = 0: as an example, the reader can think to a connected conductor, possibly with
some “handles”, contained in a “box”. This simplified geometrical situation is not very
restrictive, as we require that the computational domainΩ (and not the conductor) has
a simple shape, and indeed in many engineering applicationsΩ can be chosen freely.
It has to be noted that in solving equations (3.13)1, (3.13)6 some compatibility

conditions on the data must be satisfied. In fact, one has

div(iωμIHI ) = − div curlEI = 0 in ΩI ,

divτ (EC × nC) = − divτ (EI × nI)
= − curlEI · nI = iωμIHI · nI on Γ ,∫

(∂Ω)r

iωμIHI · n = −
∫

(∂Ω)r

curlEI · n = 0 ∀ r = 1, . . . , p∂Ω .

This is not enough: for any function vI ∈ H(curl;ΩI) with curlvI = 0 in ΩI and
vI × n = 0 on ∂Ω we have

−iω
∫
ΩI

μIHI · vI =
∫
ΩI
curlEI · vI

=
∫
Γ nI ×EI · vI =

∫
Γ EC × nC · vI .

In particular, one can take vI = ρl,I , l = 1, . . . , nΓ , the basis functions of the space of
harmonic fields HμI (∂Ω, Γ ;ΩI) (precisely, the basis functions of that space that are
not gradient of a potential: see Section 1.4). With that choice the latter compatibility
conditions read

iω

∫
ΩI

μIHI · ρl,I = −
∫
Γ

EC × nC · ρl,I ∀ l = 1, . . . , nΓ .



3.2 Determination of the electric field 39

Therefore, for determining the electric field E satisfying the Faraday equation in
the whole domain Ω we need to satisfy

div(iωμIHI) = 0 inΩI

iωμIHI · nI = divτ (EC × nC) on Γ∫
(∂Ω)r

iωμIHI · n = 0 ∀ r = 1, . . . , p∂Ω∫
ΩI

iωμIHI · ρl,I
= −

∫
Γ
(EC × nC) · ρl,I ∀ l = 1, . . . , nΓ .

(3.14)

What we are facing here is not a problemrelated to a point of secondary importance,
namely, determining the electric field in the insulatorΩI ; it is instead a basic aspect in
the solution of the eddy current problem inΩ. A formulation in terms of the magnetic
field H alone (and with EC = σ−1(curlHC − Je,C)) is not correct if any of these
compatibility conditions is missing.
In particular, we want to focus on the conditions∫

ΩI

iωμIHI · ρl,I = −
∫
Γ

(EC × nC) · ρl,I ∀ l = 1, . . . , nΓ ,

related to the topology of ΩI . The fact that these are necessary conditions for find-
ing the correct physical solution has been often overlooked in previous works on the
subject. We will see in Section 3.3.1 that these conditions can be interpreted as the
Faraday equation on the surfaces in ΩI that are “cutting” the ∂Ω-independent non-
bounding cycles inΩI . We also analyze in Section 3.3.2 whether these conditions are
satisfied when the eddy current problem is described through some other frequently
used formulations.
It has been shown that conditions (3.14) are also sufficient for proving the exis-

tence and uniqueness of the solution of (3.13) (see, for example, Saranen [218], [219],
Alonso and Valli [6]). More precisely, we have:

Theorem 3.3. Assume that the electric field EC and the magnetic field HI satisfy the
compatibility conditions (3.14). Then there exists a unique solution EI to (3.13).

Proof. As already shown in Section 1.5, for any basis function

gradwj,I ∈ HεI (Γ, ∂Ω;ΩI), j = 1, . . . , pΓ ,

we have∫
ΩI

εIEI · gradwj,I

= −
∫
ΩI
div(εIEI )wj,I +

∫
∂Ω

εIEI · nwj,I +
∫
Γ

εIEI · nI wj,I

=
∫
Γj

εIEI · nI ,

as div(εIEI ) = 0 in ΩI and εIEI · n = 0 on ∂Ω. Therefore a solution EI to
(3.13) is orthogonal to the space HεI (Γ, ∂Ω;ΩI) with respect to the scalar product
(wI , zI)εI ,ΩI :=

∫
ΩI

εIwI · zI . At the same time, when HI = 0 = EC , we have
EI ∈ HεI (Γ, ∂Ω;ΩI), hence uniqueness follows in a straightforward way.
We look for a solution of the form EI = ε−1

I curlqI . To construct it, let us intro-
duce the space

YI :=
{
pI ∈ H0,∂Ω(curl;ΩI) ∩H0,Γ (div;ΩI) |pI⊥H(∂Ω, Γ ;ΩI)

}
, (3.15)
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and consider the problem

Find qI ∈ YI :∫
ΩI

(ε−1
I curlqI · curlpI + divqI divpI)

= −
∫
ΩI

iωμIHI · pI −
∫
Γ

EC × nC · pI
for each pI ∈ YI .

(3.16)

As reported in (A.15), the following Poincaré-like inequality holds∫
ΩI

|pI|2 ≤ C

∫
ΩI

(| curlpI |2 + | divpI |2) ∀ pI ∈ YI .

Therefore, the existence of a unique solutionqI to (3.16) is a consequence of the Lax–
Milgram lemma.
We can prove that qI satisfies (3.16) also for each pI ∈ H0,∂Ω(curl;ΩI) ∩

H0,Γ (div;ΩI), namely, without requiringpI⊥H(∂Ω, Γ ;ΩI). To this aim, writepI =
(pI − PpI) + PpI , where PpI is the (L2(Ω))3-orthogonal projection of pI over
H(∂Ω, Γ ;ΩI). Thus we have∫

ΩI
(ε−1
I curlqI · curlpI + divqI divpI)

=
∫
ΩI

[ε−1
I curlqI · curl(pI − PpI) + divqI div(pI −PpI)]

= −
∫
ΩI

iωμIHI · (pI −PpI)−
∫
Γ

EC × nC · (pI − PpI) ,

and, to conclude, we need to prove that∫
ΩI

iωμIHI · PpI +
∫
Γ

EC × nC · PpI = 0 .

It can be easily seen that each basis function of H(∂Ω, Γ ;ΩI) differs from a basis
function of HμI (∂Ω, Γ ;ΩI) by a gradient of a function belonging to H1

0,∂Ω(ΩI).
Therefore we can write

PpI =
p∂Ω∑
r=1

aI,r grad zr,I +
nΓ∑
l=1

bI,lρl,I + gradχI ,

where χI is a suitable function belonging toH1
0,∂Ω(ΩI ), and we finally have∫

ΩI
iωμIHI · gradχI +

∫
Γ

EC × nC · gradχI
=
∫
Γ

iωμIHI · nI χI −
∫
Γ
divτ (EC × nC)χI = 0

(3.17)

∫
ΩI

iωμIHI · grad zr,I +
∫
Γ EC × nC · grad zr,I

=
∫
∂Ω

iωμIHI · n zr,I +
∫
Γ

iωμIHI · nI zr,I −
∫
Γ
divτ (EC × nC) zr,I

=
∫
(∂Ω)r

iωμIHI · n = 0 ∀ r = 1, . . . , p∂Ω
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and ∫
ΩI

iωμIHI · ρl,I +
∫
Γ

EC × nC · ρl,I = 0 ∀ l = 1, . . . , nΓ ,

having used (3.14)3 and (3.14)4.
It can be also proved that divqI = 0 in ΩI . In fact, let us consider the function

vI ∈ H1(ΩI) solution toΔvI = divqI inΩI , with vI = 0 on ∂Ω and grad vI ·nI = 0
on Γ . It is readily seen that grad vI belongs toH0,∂Ω(curl;ΩI)∩H0,Γ (div;ΩI), thus
using pI = grad vI as a test function in (3.16), taking into consideration (3.14)1 and
(3.14)2 we find by integration by parts∫

ΩI
| divqI |2 = −

∫
ΩI

iωμIHI · grad vI −
∫
Γ

EC × nC · grad vI
= −

∫
Γ

iωμIHI · nI vI +
∫
Γ
divτ(EC × nC) vI = 0 ,

hence divqI = 0 in ΩI . Therefore qI satisfies∫
ΩI

ε−1
I curlqI · curlpI = −

∫
ΩI

iωμIHI · pI −
∫
Γ

EC × nC · pI (3.18)

for all pI ∈ H0,∂Ω(curl;ΩI) ∩H0,Γ (div;ΩI).
As a further step, we want to prove that qI indeed satisfies (3.18) as well for every

p∗
I ∈ H0,∂Ω(curl;ΩI). Define v∗I ∈ H1(ΩI) to be the (weak) solution of Δv∗I =
divp∗

I in ΩI , with v∗I = 0 on ∂Ω and grad v∗I · nI = p∗
I · nI on Γ . We easily check

that (p∗
I−grad v∗I ) ∈ H0,∂Ω(curl;ΩI)∩H0,Γ (div;ΩI), and using it as a test function

in (3.18) gives∫
ΩI

ε−1
I curlqI · curlp∗

I

= −
∫
ΩI

iωμIHI · (p∗
I − grad v∗I )−

∫
Γ EC × nC · (p∗

I − grad v∗I )
= −

∫
ΩI

iωμIHI · p∗
I −

∫
Γ EC × nC · p∗

I ,

having used the fact that v∗I ∈ H1
0,∂Ω(ΩI) and proceeding as in (3.17).

Taking now in (3.18) a test function p∗
I ∈ (C∞

0 (ΩI))3, by integration by parts
we find curl(ε−1

I curlqI) = −iωμIHI in ΩI ; similarly, taking a test function p∗
I ∈

H0,∂Ω(curl;ΩI) we have (ε−1
I curlqI )× nI = −EC × nC on Γ .

Setting EI := ε−1
I curlqI , we have found the solution to (3.13)1, (3.13)2 and

(3.13)6. Moreover,

εIEI · n = curlqI · n = divτ(qI × n) = 0 on Γ∫
ΩI

εIEI · πk,I =
∫
ΩI
curlqI · πk,I =

∫
ΩI

qI · curlπk,I

+
∫
∂Ω

n× qI · πk,I +
∫
Γ

πk,I × nI · qI = 0 ∀ k = 1, . . . , n∂Ω

and ∫
Γj

εIEI · nI =
∫
Γj

curlqI · nI = 0 ∀ j = 1, . . . , pΓ ,

this last equation being the Stokes theorem for a closed surface. �
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Remark 3.4. Theweak problem (3.16) is not suitable for numerical approximation, due
to the constraint of orthogonality toH(∂Ω, Γ ;ΩI) that appears in the definition of the
space YI ; note also that this condition clearly depends on the topologyof the conductor
ΩC . In Section 5.5 and Remark 6.12 we will propose a couple of weak formulations
for the determination of EI that are more convenient for numerical computations. �

Remark 3.5. In many real-life problems, the determination of EI is not mandatory, as
the knowledge of the magnetic fieldH inΩ and of the electric fieldEC inΩC is often
sufficient to simulate the physical process. In those cases, solving (3.16) is therefore
not necessary. �

Remark 3.6. In particular, we have proved that the solution to (3.16) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl(ε−1
I curlqI) = −iωμIHI in ΩI

divqI = 0 in ΩI

qI × n = 0 on ∂Ω
qI · nI = 0 on Γ
(ε−1
I curlqI)× nI = −EC × nC on Γ

qI⊥H(∂Ω, Γ ;ΩI) .

(3.19)

Similar existence results are an important step for proving the orthogonal decomposi-
tions of (L2(ΩI))3 that are presented in Section A.3. �

Let us come now to show that the solutionH to (3.9), with

EC = σ−1(curlHC − Je,C),

indeed satisfies (3.14). To do that, we only need to choose suitable test functions v
in the weak formulation (3.9). First, take v = gradχ, where χ ∈ C∞

0 (Ω). Clearly
gradχ ∈ V , and then ∫

Ω

μH · gradχ = 0 .

Integrating by parts we find

div(μH) = 0 in Ω ,

in particular
div(μIHI ) = 0 in ΩI , (3.20)

and
μIHI · nI + μCHC · nC = 0 on Γ . (3.21)

The second relation in (3.14) needs a preliminary result. Choosing in (3.9) a test
function v ∈ V such that vC ∈ (C∞

0 (ΩC))3 and vI = 0, we find∫
ΩC

(σ−1 curlHC · curlvC + iωμCHC · vC) =
∫
ΩC

σ−1Je,C · curlvC .

Thus by integration by parts

curl(σ−1 curlHC) + iωμCHC = curl(σ−1Je,C) in ΩC . (3.22)
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In conclusion, from (3.22) and (3.21) it follows

divτ(EC × nC) = divτ([σ−1(curlHC − Je,C)]× nC)
= curl[σ−1(curlHC − Je,C)] · nC
= −iωμCHC · nC = iωμIHI · nI on Γ .

Coming to (3.14)3, for each basis function grad zr,I of the space of harmonic fields
HμI (∂Ω, Γ ;ΩI), r = 1, . . . , p∂Ω, let us denote by vr,C a function belonging to
H(curl;ΩC) and satisfying vr,C ×nC + grad zr,I ×nI = 0 on Γ . Then, the function

vr :=
{
grad zr,I in ΩI

vr,C in ΩC

belongs to V . By proceeding as before and using also (3.21), we easily find∫
(∂Ω)r

μIHI · n = 0 ∀ r = 1, . . . , p∂Ω .

Finally, denote by Rl,C ∈ H(curl;ΩC) a function satisfying Rl,C × nC +
ρl,I × nI = 0 on Γ , where the function ρl,I , l = 1, . . . , nΓ , is a basis function
of the space of harmonic fields HμI (∂Ω, Γ ;ΩI). The function

vl :=
{

ρl,I in ΩI

Rl,C in ΩC

belongs toV ; thus choosing it as a test function in (3.9), integrating by parts and taking
into account (3.22) one obtains at once∫

ΩI
iωμIHI · ρl,I
= −

∫
ΩC

[σ−1(curlHC − Je,C) · curlRl,C + iωμCHC ·Rl,C ]
= −

∫
Γ
[σ−1(curlHC − Je,C)]× nC ·Rl,C

= −
∫
Γ
[σ−1(curlHC − Je,C)]× nC · ρl,I

= −
∫
Γ
(EC × nC) · ρl,I ∀ l = 1, . . . , nΓ ,

namely, (3.14)4.

3.3 Strong formulation for the magnetic field

The results in Section 3.2 also furnish the complete strong formulation for the magnetic
field.
In fact, since (H−He) ∈ V , the solution to (3.9) satisfies curlHI = curlHe,I =

Je,I inΩI ,HI ×n = 0 on ∂Ω, andHC ×nC + HI ×nI = 0 on Γ . Hence we have
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obtained⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(σ−1 curlHC) + iωμCHC

= curl(σ−1Je,C) inΩC

curlHI = Je,I inΩI

div(μIHI) = 0 inΩI∫
(∂Ω)r

μIHI · n = 0 ∀ r = 1, . . . , p∂Ω∫
ΩI

iωμIHI · ρl,I
= −

∫
Γ
[σ−1(curlHC − Je,C)]× nC · ρl,I ∀ l = 1, . . . , nΓ

HI × n = 0 on ∂Ω
μIHI · nI + μCHC · nC = 0 on Γ
HI × nI + HC × nC = 0 on Γ .

(3.23)

A simpler situation occurs when the computational domain Ω has a connected
boundary, so that p∂Ω = 0, and when the conductor ΩC is simply-connected, so that
nΓ = 0. However, the latter is an assumption on the shape of the conductor and it can
be rather restrictive, as in many relevant engineering applications ΩC has a complex
topology.
Problem (3.23) has a unique solution: existence has been just proved, and unique-

ness follows from the fact that, taking the solutionH to (3.23) together with the electric
field E constructed as in Section 3.2, we can repeat the arguments in Section 3.1 and
hence are able to prove thatH is a solution to the weak problem (3.9). Since this last
problem has a unique solution, the solution to (3.23) is also unique, and the strong
problem (3.23) is therefore equivalent to the weak problem (3.9).
Equations (3.23)4 and (3.23)5 take into account the topology of ΩI . The physical

interpretation of (3.23)4 is simply that there is no “magnetic charge” hidden in the
“holes” of Ω (namely, in the regions surrounded by (∂Ω)r , r = 1, . . . , p∂Ω). The
interpretation of (3.23)5 will be given in Section 3.3.1.
It should be noted that the matching condition (3.23)7 is weaker than the continuity

of the tangential component ofE, namely,

EI × nI + EC × nC = 0 on Γ . (3.24)

In fact, (3.23)7 can be obtained from (3.24) taking the tangential divergence and using
the Faraday equation separately in ΩI and ΩC , but the converse is not guaranteed in
general topological situations.

Remark 3.7. We emphasize that, if we drop condition (3.23)5 from problem (3.23), the
remaining problem is not well-posed. In fact, uniqueness does not hold, as it can be
seen from the following argument. Let us assume for simplicity that nΓ = 1 (namely,
in this case ΩC is a torus, and there is only one basis cycle γ1 in ΩI : see Figure 3.1).
Consider the space

V0 :=
{
v ∈ H0(curl;Ω) | curlvI = 0 inΩI ,

∫
γ1

vI · dτ = 0
}

.
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Fig. 3.1. The geometry of the problem

Using the Lax–Milgram lemma, for each complex number q �= 0 one can find a unique
solution of the problem

W ∈ V0 : a(W,v0) = −qa(ρ1,v0) ∀ v0 ∈ V0 ,

having defined ρ1 ∈ H0(curl;Ω) as

ρ1 :=
{

ρ1,I in ΩI

R1,C in ΩC ,

where ρ1,I is the basis function of the space of harmonic fieldsHμI (∂Ω, Γ ;ΩI) such
that

∫
γ1

ρ1,I · dτ = 1, and the functionR1,C ∈ H(curl;ΩC) satisfies R1,C × nC +
ρ1,I × nI = 0 on Γ .
On the other hand, setting H := W + qρ1, by proceeding as in Section 3.2 it

is easily proved that, for each choice of the complex number q, H is a solution to
(3.23)1–(3.23)4, (3.23)6–(3.23)8 for Je = 0 (it is enough to note that the test functions
used in the proofs are always a gradient in ΩI , therefore they satisfy the constraint∫
γ1

vI · dτ = 0). Since
∫
γ1

HI · dτ = q �= 0, it is apparent that H �= 0, thus
uniqueness does not hold for (3.23)1–(3.23)4, (3.23)6–(3.23)8.
It is clear that by dropping (3.23)5 we have lost the information determining the

circulation ofHI along the basis cycle γ1 . By adding one equation for the circulation
on γ1 one could recover uniqueness (see Reissel [205]). But this would not yield a
solution of the eddy current problem, as from the physical point of view what is really
missing here is the Faraday equation for the surface which “cuts” γ1 (see the following
Section 3.3.1). �
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Remark 3.8. In terms of the magnetic field H and of the electric field EC introduced
in (3.12), we can obviously rewrite (3.23) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlEC + iωμCHC = 0 in ΩC

curlHC − σEC = Je,C in ΩC

curlHI = Je,I in ΩI

div(μIHI ) = 0 in ΩI∫
(∂Ω)r

μIHI · n = 0 ∀ r = 1, . . . , p∂Ω∫
ΩI

iωμIHI · ρl,I = −
∫
Γ

EC × nC · ρl,I ∀ l = 1, . . . , nΓ
HI × n = 0 on ∂Ω
μIHI · nI + μCHC · nC = 0 on Γ
HI × nI + HC × nC = 0 on Γ ,

(3.25)

a formulation that will be useful in Chapters 6 and 7. �

3.3.1 The Faraday equation for the “cutting” surfaces

We want to clarify the physical meaning of the conditions∫
ΩI

iωμIHI · ρl,I
= −

∫
Γ
[σ−1(curlHC − Je,C)]× nC · ρl,I ∀ l = 1, . . . , nΓ .

The Faraday law, in its integral form, relates the flux of iωμH through a surface
with the line integral ofE along the boundary of the surface. Since in (3.23) the Faraday
equation is imposed in differential form in ΩC , it is satisfied in integral form for any
surface contained in ΩC with boundary contained in ΩC . Moreover, in formulation
(3.23) the electric field in ΩI is not yet available, and will be determined through
(3.13). Thus we need not worry about the Faraday equation for surfaces in ΩI with
boundary in the interior of ΩI .
But, since the electric field EC = σ−1(curlHC − Je,C) has already been deter-

mined in ΩC , and thus on Γ , we have indeed to take into consideration each surface
Σ inΩI with boundary ∂Σ on Γ .
If the boundary ∂Σ is also the boundary of a surface Σ̂ contained in ΩC , we can

argue in this way: due to the divergence-free condition for iωμH in Ω, the flux of
iωμIHI throughΣ is the same than the flux of iωμCHC through Σ̂, and, due to the
Faraday equation inΩC , this flux equals the line integral of EC on ∂Σ̂ = ∂Σ. There-
fore, we have verified that the Faraday equation is satisfied for this type of surfaces
(see Figure 3.2).
Having reached this point, the final question is: are there surfaces Σ in ΩI with

boundary on Γ such that ∂Σ is not the boundary of any surface contained in ΩC? If
the answer is “yes”, for this type of surfaces we have not yet imposed the Faraday
equation, even if all the equations in (3.23)1–(3.23)4, (3.23)6–(3.23)8 are satisfied.
In general topological situations, these surfaces exist: they are the “cutting” sur-

faces Ξl, l = 1, . . . , nΓ , described in Section A.4. In fact, it is known that there is a
kind of “duality” between “cutting” surfaces and non-bounding cycles: each “cutting”
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Fig. 3.2. A surface for which the Faraday equation is satisfied

Fig. 3.3. A surface for which the Faraday equation is not satisfied

surface “cuts” a ∂Ω-independent non-bounding cycle inΩI , and, at the same time, its
boundary is a non-bounding cycle inΩC (see Figure 3.3).
Wewant thus to prove that conditions (3.23)5 are equivalent, for a (regular enough)

solution to (3.23)1–(3.23)4, (3.23)6–(3.23)8, to imposing the integral form of the Fara-
day equation for the surfaces Ξl and their boundaries ∂Ξl.
From Section A.4 (see in particular (A.34)), we know that the basis functions ρl,I

can be represented as the (L2(ΩI)3-extensions of grad pl,I , where pl,I are the solutions
to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div(μI grad pl,I ) = 0 in ΩI \ Ξl

μI grad pl,I · nI = 0 on Γ \ ∂Ξl

pl,I = 0 on ∂Ω
[μI gradpl,I · nl]Ξl

= 0
[pl,I ]Ξl

= 1 ,

having denoted by nl the unit normal vector on Ξl, and by [ · ]Ξl the jump across the
surface Ξl (say, [pl,I(x)]Ξl = lims→0+ [pl,I(x − snl)− pl,I(x + snl)]).
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For a solution to (3.23)1–(3.23)4, (3.23)6–(3.23)8, regular enough to give a mean-
ing to the integrals we are planning to write, using integration by parts we have∫

ΩI
iωμIHI · ρl,I =

∫
ΩI\Ξl

iωμIHI · grad pl,I
= −

∫
ΩI\Ξl

iω div(μIHI ) pl,I +
∫
∂Ω iωμIHI · n pl,I

+
∫
Γ\∂Ξl

iωμIHI · nI pl,I +
∫
Ξl

iωμIHI · nl [pl,I ]
=
∫
Γ\∂Ξl

iωμIHI · nI pl,I +
∫
Ξl

iωμIHI · nl,

and

−
∫
Γ
(EC × nC) · ρl,I = −

∫
Γ\∂Ξl

(EC × nC) · gradpl,I
=
∫
Γ\∂Ξl

divτ (EC × nC) pl,I −
∫
∂Ξl∩Γ (EC × nC) · nl [pl,I ]

=
∫
Γ\∂Ξl

curlEC · nC pl,I −
∫
∂Ξl∩Γ (EC × nC) · nl

= −
∫
Γ\∂Ξl

iωμCHC · nC pl,I −
∫
∂Ξl∩Γ EC · (nC × nl)

=
∫
Γ\∂Ξl

iωμIHI · nI pl,I −
∫
∂Ξl∩Γ EC · (nC × nl) .

Since ∂Ξl ⊂ Γ , we see that (3.23)5 are equivalent to∫
Ξl

iωμIHI · nl = −
∫
∂Ξl

EC · (nC × nl) = −
∫
∂Ξl

EC · dτ ,

namely, the Faraday equation for the surface Ξl.

Remark 3.9. We note that the additional conditions (3.23)5 are not needed if the time-
harmonic fullMaxwell equations are considered. In fact, in that case the problem reads⎧⎨⎩ curlH− (iωε + σ)E = Je in Ω

curlE + iωμH = 0 in Ω
H× n = 0 on ∂Ω .

Since the matrix η := iωε + σ is non-singular, we can rewrite the problem in terms
ofH only {

curl(η−1 curlH) + iωμH = curl(η−1Je) inΩ
H× n = 0 on ∂Ω .

(3.26)

Problem (3.26) is uniquely solvable (see, for instance, Alonso and Valli [8], Alonso
and Raffetto [15]), and setting E = η−1(curlH − Je) one verifies at once that the
Faraday equation is satisfied in all of Ω: no additional condition related the geometry
ofΩI is coming into play. �

3.3.2 Suitability of other formulations

We want to investigate whether or not some frequently-used formulations for eddy
current problems furnish a magnetic fieldH that satisfies (3.23)5, namely,∫

ΩI
iωμIHI · ρl,I

= −
∫
Γ
[σ−1(curlHC − Je,C)]× nC · ρl,I ∀ l = 1, . . . , nΓ .
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(i) TheA∗
C −AI formulation.

This formulation, reported in Bíró [48], is based on the unknowns A∗
C and AI such

that
iωA∗

C = −EC , curlAI = μIHI ,

with the interface conditions on Γ

A∗
C × nC + AI × nI = 0

(μ−1
C curlA∗

C) × nC + (μ−1
I curlAI)× nI = 0 .

By integration by parts we have∫
ΩI

iωμIHI · ρl,I =
∫
ΩI

iω curlAI · ρl,I = iω
∫
Γ
(nI ×AI) · ρl,I

= iω
∫
Γ
(A∗

C × nC) · ρl,I = −
∫
Γ
(EC × nC) · ρl,I ,

(3.27)

therefore condition (3.23)5 is satisfied.

(ii) The (AC , VC) −AI formulation.

This formulation, reported in Bíró [48] and presented in detail in Chapter 6, is based
on the unknowns (AC , VC) andAI such that

iωAC + gradVC = −EC , curlAI = μIHI ,

with the interface conditions on Γ

AC × nC + AI × nI = 0
(μ−1

C curlAC) × nC + (μ−1
I curlAI)× nI = 0 .

With respect to the preceding case, on the right-hand side of (3.27) the only additional
term is

−
∫
Γ

(gradVC × nC) · ρl,I ;

however, (3.23)5 is still satisfied, as the term above indeed vanishes. In fact, by inte-
gration by parts we have∫

Γ (gradVC × nC) · ρl,I
=
∫
Γ
(ρl,I × nI) · gradVC

= −
∫
Γ
divτ (ρl,I × nI)VC|Γ

= −
∫
Γ curlρl,I · nI VC|Γ = 0 ,

as curlρl,I = 0.

(iii) The (T∗
C , ΦC) −AI formulation.

This formulation, reported in Bíró [48] and described in Section 6.3, is based on the
unknowns (T∗

C , ΦC) and AI such that

T∗
C + gradΦC = HC , curlAI = μIHI ,
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with the interface conditions on Γ

[σ−1(curlT∗
C − Je,C)]× nC − iωAI × nI = 0

(T∗
C + gradΦC)× nC + (μ−1

I curlAI)× nI = 0 .

Therefore,∫
ΩI

iωμIHI · ρl,I =
∫
ΩI

iω curlAI · ρl,I = iω
∫
Γ (nI ×AI) · ρl,I

= −
∫
Γ
[σ−1(curlT∗

C − Je,C)]× nC · ρl,I
= −

∫
Γ
[σ−1(curlHC − Je,C)]× nC · ρl,I ,

that is (3.23)5.

(iv) The (HC , JC) −HI formulation.

Kanayama and Kikuchi [146] reported (and used in numerical computations) a for-
mulation in which the unknowns are the magnetic field and the eddy current JC =
σEC + Je,C , and the interface conditions on Γ are given by

HC × nC + HI × nI = 0
μCHC · nC + μIHI · nI = 0 .

(3.28)

In this case condition (3.23)5 is not imposed; therefore, this formulation cannot be
employed for a general domainΩ without explicitly adding (3.23)5, that, with respect
to JC andHI , reads∫

ΩI

iωμIHI · ρl,I +
∫
Γ

[σ−1(JC − Je,C)]× nC · ρl,I = 0

for l = 1, . . . , nΓ .
Clearly, the same considerations also apply to the (HC ,EC) − HI formulation

(3.25), which is formally equivalent to the one here considered.

(v) The formulation considered by Reissel.

Reissel [205] considered the formulation given by (3.23)1–(3.23)3, (3.23)7–(3.23)8,
namely, without (3.23)5 (more precisely, the domain ΩI is assumed to be an exterior
domain, hence ∂Ω is empty, and conditions (3.23)4 and (3.23)6 are eliminated; on
the other hand, the magnetic field HI is assumed to vanish as |x| goes to ∞). The
uniqueness of the magnetic field is obtained by imposing the additional conditions∫

γl

HI · dτ = I0
l , ∀ l = 1, . . . , nΓ , (3.29)

where γl are the non-bounding cycles in ΩI (see Section 1.4).
Concerning this formulation, a remark is in order: as we will see in the following

Section 3.4, the solution to the eddy current problem (1.22) is unique, therefore we are
not free to impose another condition like (3.29). As a matter of fact, from a physical
viewpoint

∫
γl

HI · dτ is the total intensity current crossing any surface having γl as
a boundary (by the Ampère law): hence, in the present context, it is a quantity to be
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determined by solving the problem and not a datum that can be arbitrarily prescribed.
(For problems in which the total intensity current is imposed, see Chapter 8: there the
boundary conditions are different from those considered here, or else the given current
density Je is not a datum but an additional unknown that must be determined.)
Let us set I∗l :=

∫
γl

HI · dτ , whereH is the solution of the eddy current problem

(1.22). Clearly, if the datum I0
l is different from I∗l the solution of the problem pro-

posed by Reissel is not the solution of the eddy current problem. Since all the other
equations hold, what is wrong about the Reissel solution is that it does not satisfy the
topological condition (3.23)5: in other words, it does not satisfy the Faraday law on
the surface Ξl which “cuts” the ∂Ω-independent non-bounding cycle γl.

Other potential formulations for eddy current problems will be presented and ana-
lyzed in Section 6.3; in particular, there we will verify whether for those formulations
condition (3.23)5 is automatically satisfied or has to be explicitly imposed.

3.4 Existence and uniqueness for the complete eddy current model

This section is devoted to verify that the results of the preceding sections easily give
the unique solution of the complete eddy current model.
First of all, let us show that putting together (3.13) and (3.25) is somehow redun-

dant. In fact, (3.25)4 and (3.25)5 are a consequence of (3.13)1 (the latter one by means
of the Stokes theorem for closed surfaces). Also, from (3.13)6 we have

divτ (EI × nI + EC × nC) = 0 on Γ ,

thus
curlEI · nI + curlEC · nC = 0 on Γ ;

hence from (3.13)1 and (3.25)1 we obtain at once (3.25)8. Finally, from (3.13)1 and
(3.13)6 we obtain∫

ΩI
iωμIHI · ρl,I = −

∫
ΩI
curlEI · ρl,I =

∫
∂ΩI

EI × nI · ρl,I
= −

∫
Γ

EC × nC · ρl,I ,

namely, (3.25)6.
Therefore, we can rewrite the global problem in the non-redundant form (1.22),

namely, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εIEI) = 0 in ΩI

H× n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI · πk,I = 0 ∀ k = 1, . . . , n∂Ω .

(3.30)
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Notice that all the equations of problem (3.13) are present, while those we have
dropped are essentially the compatibility conditions of problem (3.13).
We conclude this section with the following theorem.

Theorem 3.10. Problem (3.30) has a unique solution. Moreover, (E,H) is the solu-
tion to (3.30) if and only if H is the solution to (3.23), EC is obtained by (3.12) and
EI is the solution to (3.13).

Proof. We have already seen that a solution to (3.30) is given by H, the solution to
(3.9) (or, equivalently, to (3.23)), by EC defined in (3.12) and by the solution EI

to (3.13). On the other hand, since any solution to (3.30) gives the solution to (3.9),
the magnetic field H is uniquely determined. Consequently, using (3.12) also EC is
unique. Finally, uniqueness ofEI follows from that of problem (3.13).
The second statement follows straightforwordly noting that, if (E,H) is the solu-

tion to (3.30), thenH is the unique solution to (3.23). �

Remark 3.11. The regularity of the solution of the eddy current problem (3.30) is not
easy to be determined. In fact, due to the jump of the conductivityσ throughΓ , (3.30)
is essentially an interface problem, and in principle its solution is not very regular even
if the coefficients μ, εI and σ are smooth scalar functions. Moreover, if ΩC and Ω
are polyhedral domains the solution can exhibit corner and edge singularities.
Since the general regularity result is rather technical, we do not state it here and

refer to Costabel et al. [90] for a detailed presentation and a thorough analysis of this
issue. �

3.5 Other boundary conditions

Analogous results to those presented in Sections 3.1, 3.2, 3.3 and 3.4 can be obtained
for the eddy current problem in which the electric field E is subjected to the electric
boundary condition

E× n = 0 on ∂Ω , (3.31)

or to the no-flux boundary conditions{
μH · n = 0 on ∂Ω
εE · n = 0 on ∂Ω .

(3.32)

Let us underline what we have to modify in the formulations and in the proofs,
starting from the electric boundary condition (3.31).The first remark concerns the (nec-
essary) assumptions on the current density. As before, we require that Je ∈ (L2(Ω))3

and satisfies divJe,I = 0 in ΩI , but now, instead of (3.1)2 and (3.2), we need∫
Γj

Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫
(∂Ω)r

Je,I · n = 0 ∀ r = 0, . . . , p∂Ω
(3.33)

(see Section 1.5).
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The existence of a vector fieldH∗
e,I ∈ H(curl;ΩI) such that

curlH∗
e,I = Je,I in ΩI (3.34)

is then ensured by well-known results (see, e.g., Alonso and Valli [6], Rem. 4.3),
and we can also find a vector field H∗

e,C ∈ H(curl;ΩC) such that H∗
e,C × nC +

H∗
e,I × nI = 0 on Γ . Summing up, we have constructed a vector field H∗

e ∈
H(curl;Ω), continuously dependent on Je,I , given by

H∗
e :=

{
H∗
e,I inΩI

H∗
e,C inΩC .

(3.35)

Concerning the weak problem for the magnetic fieldH, it becomes

Find (H−H∗
e) ∈ V ∗ such that

a(H,v∗) =
∫
ΩC

σ−1Je,C · curlv∗
C

for each v∗ ∈ V ∗,

(3.36)

where
V ∗ := {v∗ ∈ H(curl;Ω) | curlv∗

I = 0 in ΩI} . (3.37)

As before, the unique solvability of this problem is ensured by the Lax–Milgram
lemma.
Looking for the strong formulation, the electric fieldEC inΩC is defined as usual

by settingEC = σ−1(curlHC − Je,C), while the electric field EI now has to verify⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curlEI = −iωμIHI in ΩI

div(εIEI ) = 0 in ΩI

EI × n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
(∂Ω)r

εIEI · n = 0 ∀ r = 0, 1, . . . , p∂Ω
EI × nI = −EC × nC on Γ .

(3.38)

This problem is simpler if the boundaries ofΩ andΩC are connected, so that p∂Ω = 0
and pΓ = 0: say, the computational domain and the conductor are connected and have
no “holes” (but possibly have “handles”).
It can be shown that there exists a unique solution EI to (3.38), given by EI :=

ε−1
I curlq∗

I , where q∗
I ∈ Y ∗

I is the solution to the problem∫
ΩI

(ε−1
I curlq∗

I · curlp∗
I + divq∗

I divp
∗
I)

= −
∫
ΩI

iωμIHI · p∗
I −

∫
Γ

EC × nC · p∗
I for each p∗

I ∈ Y ∗
I ,

(3.39)

where

Y ∗
I :=

{
p∗
I ∈ H(curl;ΩI) ∩H0(div;ΩI) |p∗

I⊥H(m;ΩI )
}

, (3.40)

and the space of harmonic fieldsH(m;ΩI ) has been introduced in Section 1.4.
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The compatibility conditions ensuring the solvability of problem (3.39) are now

div(iωμIHI) = 0 inΩI

iωμIHI · nI = divτ (EC × nC) on Γ
iωμIHI · n = 0 on ∂Ω∫
ΩI

iωμIHI · ρ∗
α,I

= −
∫
Γ
(EC × nC) · ρ∗

α,I ∀ α = 1, . . . , nΩI ,

(3.41)

where ρ∗
α,I are the basis functions of the space of harmonic fields HμI (m;ΩI) (see

Section 1.4). This space has dimension equal to nΩI , the number of independent non-
bounding cycles ofΩI . Note also that each condition (3.41)4 is equivalent to the Fara-
day equation on Ξ∗

α, the “cutting” surface of a non-bounding cycle.
To verify that conditions (3.41) are satisfied, one has to proceed in several steps.

First of all, (3.41)1 and (3.41)2 can be proved exactly as for the magnetic boundary
value problem. Moreover, if one takes in (3.36) the test function

v∗
η :=

{
gradχ∗

η,I in ΩI

0 in ΩC ,

where χ∗
η,I ∈ H1(ΩI ), χ∗

η,I = 0 on Γ and χ∗
η,I = η on ∂Ω, with η an arbitrary

complex function defined on ∂Ω, as an easy consequence one finds μIHI · n = 0 on
∂Ω. Finally, by taking as a test function in (3.36) a function whose restriction toΩI is
equal to the basis function ρ∗

α,I ofHμI (m;ΩI), α = 1, . . . , nΩI , it is easily seen that
conditions (3.41)4 are satisfied.
In conclusion, the strong problem for the magnetic field reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(σ−1 curlHC) + iωμCHC

= curl(σ−1Je,C) in ΩC

curlHI = Je,I in ΩI

div(μIHI) = 0 in ΩI∫
ΩI

iωμIHI · ρ∗
α,I

+
∫
Γ
[σ−1(curlHC − Je,C)]× nC · ρ∗

α,I = 0 ∀ α = 1, . . . , nΩI

μIHI · n = 0 on ∂Ω
μIHI · nI + μCHC · nC = 0 on Γ
HI × nI + HC × nC = 0 on Γ .

(3.42)

This problem simplifies if the conductorΩC and the computational domainΩ are both
simply-connected, so that nΩI = 0. As already remarked, this assumption on ΩC can
be rather restrictive in many engineering problems.
Putting together (3.42) and (3.38), one finds the complete eddy current problem

with electric boundary condition (1.20), namely,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εIEI) = 0 in ΩI

EI × n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
(∂Ω)r

εIEI · n = 0 ∀ r = 0, 1, . . . , p∂Ω .

(3.43)
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All the existence and uniqueness results proved in the preceding sections for the
magnetic boundary value problem can be proved also for the electric boundary value
problem (3.43).

Let us come now to the eddy current problem subject to the no-flux boundary con-
ditions (3.32).
The (necessary) assumptions on the current density are the same as for the electric

boundary condition, namely, Je belongs to (L2(Ω))3 and satisfies divJe,I = 0 in ΩI

and (3.33); also the vector fieldH∗
e ∈ H(curl;Ω) can be constructed as in that case.

To obtain the weak formulation for the magnetic field we need some preliminaries.
First of all, as explained in Remark 1.3, we recall that in ΩI we have a collection

of “cutting” surfaces Ξ∗
α, α = 1, . . . , nΩI , with ∂Ξ∗

α ⊂ ∂Ω ∪Γ . We have denoted by
n∗
ΩI
≤ nΩI the number of the surfaces Ξ

∗
α such that ∂Ξ

∗
α ∩ ∂Ω �= ∅. Since the basis

functionsρ∗
α,I can be expressed as ρ∗

α,I = gradp∗α,I inΩI \Ξ∗
α, for α ≥ n∗

ΩI
+1 one

has ρ∗
α,I = grad p∗α,I in a neighborhood of ∂Ω. Hence for α ≥ n∗

ΩI
+ 1∫

∂Ω
E× n · ρ∗

α,I =
∫
∂Ω

E× n · grad p∗α,I = −
∫
∂Ω
divτ(E× n) p∗α,I

= −
∫
∂Ω
curlE · n p∗α,I = iω

∫
∂Ω

μH · n p∗α,I = 0 .
(3.44)

Suppose now that H and E are solutions of the Faraday and Ampère equations.
Looking for a weak formulation, multiply the Faraday equation by v∗, with v∗ ∈ V ∗,
the space introduced in (3.37), integrate in Ω and integrate by parts. Using also the
Ampère equation in ΩC it follows∫

ΩC
σ−1 curlHC · curlv∗

C +
∫
Ω

iωμH · v∗

=
∫
∂Ω

E× n · v∗ +
∫
ΩC

σ−1Je,C · curlv∗
C ,

as curlv∗
I = 0 in ΩI . On the other hand, from the orthogonality result presented in

Theorem A.8 we can write

v∗
I = gradχ∗

I +
nΩI∑
α=1

θ∗I,αρ∗
α,I .

Repeating the arguments leading to (3.44) we have∫
∂Ω

EI × n · gradχ∗
I = 0 .

Hence, using (3.44)∫
∂Ω E× n · v∗ =

∫
∂Ω EI × n · gradχ∗

I +
∑nΩI

α=1 θ∗I,α
∫
∂Ω EI × n · ρ∗

α,I

=
∑n∗

ΩI
α=1 θ∗I,α

∫
∂Ω

EI × n · ρ∗
α,I .

If we assume that the electric field also satisfies the conditions∫
∂Ω

EI × n · ρ∗
α,I = 0 ∀ α = 1, . . . , n∗

ΩI
, (3.45)

then we conclude thatH is the solution of the weak problem (3.36).
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We can now start from (3.36) in order to determine the complete set of equations
constituting the strong problem. First of all, we have already seen that the unique solv-
ability of (3.36) is ensured by the Lax–Milgram lemma. The magnetic fieldH clearly
satisfies (3.22) and curlHI = Je,I inΩI . Then the electric field EC in ΩC is defined
as usual by (3.12), while the electric field EI is given by the solution to (3.13).
Conditions (3.14), that are necessary and sufficient for the solvability of problem

(3.13), are verified. In fact, we have seen here above that the solutionH of problem
(3.36) satisfies conditions (3.41). Moreover, it is easily shown that H and EC also
satisfy ∫

ΩI
iωμIHI · ρl,I = −

∫
Γ
(EC × nC) · ρl,I ∀ l = 1, . . . , nΓ .

In fact we can write

ρl,I = gradχ∗
l +

nΩI∑
α=1

θ∗l,αρ∗
α,I ,

and∫
ΩI

iωμIHI · gradχ∗
l = −iω

∫
ΩI
div(μIHI )χ∗

l

+iω
∫
∂Ω μIHI · nχ∗

l + iω
∫
Γ μIHI · nI χ∗

l

=
∫
Γ
divτ (EC × nC)χ∗

l = −
∫
Γ

EC × nC · gradχ∗
l .

In conclusion, the strong formulation for the magnetic fieldH and the electric field
EC reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlEC + iωμCHC = 0 in ΩC

curlHC − σEC = Je,C in ΩC

curlHI = Je,I in ΩI

div(μIHI) = 0 in ΩI∫
ΩI

iωμIHI · ρ∗
α,I +

∫
Γ

EC × nC · ρ∗
α,I = 0 ∀ α = 1, . . . , nΩI

μIHI · n = 0 on ∂Ω
μIHI · nI + μCHC · nC = 0 on Γ
HI × nI + HC × nC = 0 on Γ .

(3.46)

Putting together (3.46) and (3.13) one obtains the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlH− σE = Je inΩ
curlE + iωμH = 0 inΩ
div(εIEI ) = 0 inΩI

μH · n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI · πk,I = 0 ∀ k = 1, . . . , n∂Ω∫
ΩI

iωμIHI · ρ∗
α,I +

∫
Γ

EC × nC · ρ∗
α,I = 0 ∀ α = 1, . . . , nΩI .
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Let us note that the last equations can be written in a different way: in fact, using the
Faraday equation in ΩI we have∫

ΩI
iωμIHI · ρ∗

α,I = −
∫
ΩI
curlEI · ρ∗

α,I

= −
∫
∂Ω

n× EI · ρ∗
α,I −

∫
Γ

nI ×EI · ρ∗
α,I

= −
∫
∂Ω

n× EI · ρ∗
α,I −

∫
Γ

EC × nC · ρ∗
α,I ,

thus they can be expressed as∫
∂Ω

EI × n · ρ∗
α,I = 0 ∀ α = 1, . . . , nΩI .

However, some of these relations are redundant: precisely, as proved in (3.44), those
corresponding to α ≥ n∗

ΩI
+ 1. We have thus obtained that the eddy current problem

with no-flux boundary conditions reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εIEI) = 0 in ΩI

μH · n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI · πk,I = 0 ∀ k = 1, . . . , n∂Ω∫
∂Ω EI × n · ρ∗

α,I = 0 ∀ α = 1, . . . , n∗
ΩI

.

(3.47)

The problem becomes simpler if the boundary of the conductor ΩC is connected, so
that pΓ = 0, and the computational domain Ω is simply-connected, so that n∂Ω = 0
and n∗

ΩI
= 0. An example of this situation is a connected conductor (possibly with

“handles”) inside a “box”.
Let us show that problem (3.47) is well-posed. Taking the solution H of (3.36),

EC defined in (3.12) and the solutionEI of (3.13) we have just proved the existence
of a solution to (3.47). Concerning uniqueness, it is enough to show that the magnetic
fieldH is uniquely determined. The arguments before have shown that, starting from
the Faraday and Ampère equations, we can construct a solutionH of (3.36) provided
that (3.45) are satisfied. Hence a solutionH to (3.47) furnishes a solution to the weak
problem (3.36), for which uniqueness holds.

Remark 3.12. By adapting the arguments reported in Remark 3.7, it is readily shown
that conditions (3.47)8 are necessary for obtaining the uniqueness of the solution to
(3.47). �



4

Hybrid formulations for the electric and
magnetic fields

The classical approaches toMaxwell and eddy current equations are often based on the
introduction of a magnetic vector potential and an electric scalar potential, the latter
being used only in the conducting region, or on the use of a magnetic scalar potential in
the insulating region (see, e.g., Jackson [137], Silvester and Ferrari [227]). We present
these formulations in Chapters 6 and 5 respectively.
Here we follow a less investigated path (at least for eddy currents), and we analyze

theproblem in terms of the original unknowns, namely, the electric andmagnetic fields.
This can yield some advantages at the numerical level, as we do not need to determine
the fields by means of differentiation, a procedure that can lead to a loss of accuracy.
Moreover, we focus on hybrid formulations of the eddy current problem. As seen

in the previous chapters, it is possible to reformulate the complete eddy current model
by eliminating either the electric field or the magnetic field. We name “hybrid” those
formulations where the eliminated field in the conducting region is different from the
one eliminated in the insulating region, therefore the unknowns are the electric field in
one subdomain and the magnetic field in the other one. These kind of formulations are
particularly interesting in the context of a finite element approximation: for instance,
since the two vector fields do not need to match on the interface Γ , it is possible to use
independent meshes in ΩC and ΩI .
We have already noted that a particular feature of the eddy current model is the

presence of differential constraints in the non-conducting region. In this chapter we
propose to use a saddle-point approach to take these constraints into account.
In Sections 4.1 and 4.2 we start by considering the hybrid formulation that uses

as main unknowns the electric field in the conductor and the magnetic field in the
insulator. Hence we have to deal with the constraint curlHI = Je,I in ΩI , that is
enforced introducing a Lagrange multiplier. This multiplier turns out to be the electric
field in the insulator, which is subjected to the differential constraint div(εIEI ) = 0
inΩI , so that we have to introduce a second Lagrange multiplier to enforce it.
The other hybrid formulation, the one based on the magnetic field in the conductor

and the electric field in the insulator, is analyzed in Sections 4.4 and 4.5. Since its finite
element discretization presents some difficulties, we also consider a modified problem,
more suitable for numerical approximation, that instead of the electric field on ΩI

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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provides a magnetic vector potential ẼI with the condition div ẼI = 0 in ΩI . Also
in this case we propose an augmented variational formulation introducing a (scalar)
Lagrange multiplier to take into account this constraint.
Clearly, the saddle-point approach is not specific to hybrid formulations and it can

be also used for the more classical formulations in terms of the magnetic field or the
electric field. In Section 4.3 we use Lagrange multipliers to enforce the differential
constraints in the H-based formulation, adapting the arguments used for the EC/HI

problem, while in Section 4.6 we analyze a saddle-point approach for the E-based
formulation, analogous to the one adopted for theHC/ẼI case.
In this chapter we address the eddy current model with the magnetic boundary

conditions (1.22). For the electric boundary condition (1.20) we only provide a series
of remarks where the weak formulations of the corresponding problems are presented.
If not otherwise specified, the geometric situation is the same as that described in

Section 1.3. However, let us note at once that for the HC/ẼI formulation we have
not been able to avoid the assumption that the computational domain Ω is simply-
connected. Moreover, but in this case for the sake of simplicity, the same assump-
tion has been made for the finite element approximation of the EC/HI formulation.
With respect to this problem, the reader interested in the general geometrical case can
adapt the arguments presented in Section 5.5, where a mixed finite element method
is proposed for the approximation of the electric field in the non-conducting region,
assuming that the electric field in the conductor is already known.
Concerning thematerial properties, as in the preceding chapterswe suppose that the

matrixμ is symmetric and uniformly positive definite inΩ, with entries inL∞(Ω), the
matrix εI is symmetric and uniformly positive definite inΩI , with entries in L∞(ΩI),
and the matrix σ is symmetric and uniformly positive definite in ΩC , with entries in
L∞(ΩC), whereas it is vanishing in ΩI . Finally, the current density is assumed to
satisfy Je ∈ (L2(Ω))3 and (1.23).
The reader mainly interested in numerical approximation and implementation can

focus on problems (4.18), (4.22) and Remark 4.13 (EC/HI formulation), on prob-
lems (4.35) and (4.36) (H formulation), on problems (4.49), (4.64) and Remark 4.26
(HC/ẼI formulation), on problems (4.78), (4.84) and Remark 4.38 (E formulation),
and on Section 4.5.2.

4.1 Hybrid formulation using the magnetic field in the insulator

The first hybrid formulation we consider, following Alonso Rodríguez et al. [12], is
obtained by eliminating the magnetic field in the conductor and the electric field in the
insulator. It is the so-called EC/HI formulation.
From the Faraday equation we know that the magnetic field can be written as

H = −(iω)−1μ−1 curlE ,

and substituting it in the Ampère law we obtain an equation for the electric field that
in the conductor ΩC reads

curl(μ−1
C curlEC) + iωσEC = −iωJe,C .



4.1 Hybrid formulation using the magnetic field in the insulator 61

Multiplying by a test function zC ∈ H(curl;ΩC) one finds, by integration by parts,∫
ΩC

(μ−1
C curlEC · curl zC + iωσEC · zC) −

∫
Γ

μ−1
C curlEC × nC · zC

= −iω
∫
ΩC

Je,C · zC .

Using the Faraday law and the tangential continuity of the magnetic field across the
boundary Γ of ΩC we have

μ−1
C curlEC × nC = −iωHC × nC = −iωHI × nC ,

therefore∫
ΩC

(μ−1
C curlEC · curl zC + iωσEC · zC) + iω

∫
Γ HI × nC · zC

= −iω
∫
ΩC

Je,C · zC .

On the other hand, multiplying the Faraday equation in ΩI by a test function vI
such that curlvI = 0 in ΩI and vI × n = 0 on ∂Ω, by integration by parts one has

iω

∫
ΩI

μIHI · vI = −
∫
ΩI

curlEI · vI = −
∫
Γ

EC × nC · vI ,

where we have used the tangential continuity of the electric field across the interface
Γ .
Let us now consider the spaces

VI (Je,I) := {vI ∈ H0,∂Ω(curl;ΩI) | curlvI = Je,I in ΩI}, (4.1)

and
VI (0) := {vI ∈ H0,∂Ω(curl;ΩI) | curlvI = 0 in ΩI} .

We have thus obtained the following formulation

Find (EC ,HI) ∈ H(curl;ΩC) × VI(Je,I) :∫
ΩC

(μ−1
C curlEC · curl zC + iωσEC · zC)

−iω
∫
Γ

zC × nC ·HI = −iω
∫
ΩC

Je,C · zC
−iω

∫
Γ

EC × nC · vI + ω2
∫
ΩI

μIHI · vI = 0

for all (zC ,vI) ∈ H(curl;ΩC) × VI(0) .

(4.2)

Problem (4.2) is associated to the sesquilinear form

C((wC ,uI), (zC ,vI)) :=
∫
ΩC

(μ−1
C curlwC · curl zC + iωσwC · zC )

−iω
∫
Γ

zC × nC · uI − iω
∫
Γ

wC × nC · vI
+ω2

∫
ΩI

μIuI · vI ,
(4.3)

that is coercive inH(curl;ΩC)× VI(0). In fact we have the following result.
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Theorem 4.1. There exists a positive constant κ such that

|C((wC ,uI), (wC ,uI))| ≥ κ (‖ curlwC‖20,ΩC
+ ‖wC‖20,ΩC

+ ‖uI‖20,ΩI
)

for each (wC ,uI) ∈ H(curl;ΩC)× VI (0).

Proof. We have

|Re C((wC ,uI), (wC ,uI))|
=
∫
ΩC

μ−1
C curlwC · curlwC + ω2

∫
ΩI

μIuI · uI
≥ μ−1

max

∫
ΩC
| curlwC |2 + ω2μmin

∫
ΩI
|uI|2 ,

where μmax and μmin are a uniform upper bound in Ω for the maximum eigenval-
ues of μ(x) and a uniform lower bound in Ω of the minimum eigenvalues for μ(x),
respectively. Moreover, for each 0 < γ ≤ 1 it holds

|Im C((wC ,uI), (wC ,uI))|
= |ω|

∣∣∣ ∫ΩC
σwC ·wC − 2Re

∫
Γ wC × nC · uI

∣∣∣
≥ γ|ω|

∫
ΩC

σwC ·wC − 2γ|ω|
∣∣∣ ∫Γ wC × nC · uI

∣∣∣ .
From the duality estimate∣∣∣∣∫

Γ

wC × nC · uI
∣∣∣∣ ≤ C‖wC × nC‖H−1/2(divτ ;Γ)‖nI × uI × nI‖H−1/2(curlτ ;Γ)

and the trace inequalities (A.10) and (A.11), taking into account that curluI = 0 we
find∣∣∣∣∫

Γ

wC × nC · uI
∣∣∣∣ ≤ k0

(∫
ΩC

(|wC |2 + | curlwC |2)
)1/2(∫

ΩI

|uI|2
)1/2

.

Moreover, since for each δ > 0 the inequality 2|AB| ≤ δA2+δ−1B2 holds, we finally
have

|Im C((wC ,uI), (wC ,uI))|
≥ γ|ω|σmin

∫
ΩC
|wC |2 − γ|ω|k0δ

∫
ΩC
|wC |2

−γ|ω|k0δ
∫
ΩC
| curlwC |2 − γ|ω|k0δ

−1
∫
ΩI
|uI|2 ,

where σmin is a uniform lower bound in ΩC for the minimum eigenvalues of σ(x).
The proof follows by taking at first δ small enough and then γ small enough. �

4.2 A saddle-point approach for the EC /HI formulation

A finite element method for approximating the solution to problem (4.2) has to deal
with the constrained space VI(0). In this chapter we focus on approaches based on
augmented variational equations; the more direct approach that incorporates the con-
straints into the variational space will be considered in Chapter 5. It is worth noting
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that adding extra equations can be a defect, because the finite element approximation
of the resulting formulation presents more degrees of freedom. However this saddle-
point approach avoids the construction of “cutting” surfaces in the insulating region,
a procedure that on one side is indispensable for the approximation of the scalar mag-
netic potential used in the direct approach, on the other side can be cumbersome in
complex geometry configurations.
To enforce the constraint curlHI = Je,I one can consider the following aug-

mented problem

Find (EC ,HI ,AI) ∈ H(curl;ΩC)×H0,∂Ω(curl;ΩI) × (L2(ΩI))3 :

C((EC ,HI), (zC ,vI)) +
∫
ΩI
curlvI ·AI = L(zC )∫

ΩI
curlHI ·NI = G(NI)

for all (zC ,vI ,NI) ∈ H(curl;ΩC)×H0,∂Ω(curl;ΩI) × (L2(ΩI ))3 ,

(4.4)

where

L(zC ) := −iω

∫
ΩC

Je,C · zC , G(NI) :=
∫
ΩI

Je,I ·NI . (4.5)

It is readily seen that for this problem uniqueness does not hold, as it is possible to add
toAI any function belonging toH0

0,Γ(curl;ΩI) (for notation, see Section A.1).
Choosing as vI a smooth vector function with compact support in ΩI and zC

and NI equal 0, we find that any solution of problem (4.4) satisfies curlAI =
−ω2μIHI (= −iω curlEI) in ΩI . A similar choice of test functions with vI vanish-
ing only in a neighborhood of ∂Ω givesAI ×nC = −iωEC ×nC(= −iωEI ×nC)
on Γ . In order to deal with a well-posed saddle-point problem it is natural to look for
AI in the spaceWI given by the functionsNI ∈ (L2(ΩI)3 that satisfy⎧⎪⎪⎨⎪⎪⎩

div(εINI ) = 0 in ΩI

εINI · n = 0 on ∂Ω∫
Γj

εINI · nI = 0 ∀j = 1, . . . , pΓ∫
ΩI

εINI ·πk,I = 0 ∀k = 1, . . . , n∂Ω .

(4.6)

It is clear that in this way the Lagrange multiplierAI turns out to be equal to −iωEI

(recall that the electric field in the insulator is the unique solution of the system of
equations (3.13)).
Therefore, let us consider the space

WI := {NI ∈ (L2(ΩI))3 |NI satisfies (4.6)} .

Since the current density Je,I satisfies the necessary conditions (1.23), the space
VI(Je,I) can also be defined in the following way

VI (Je,I) = {vI ∈ H0,∂Ω(curl;ΩI) |∫
ΩI
curlvI ·NI =

∫
ΩI

Je,I ·NI ∀ NI ∈WI } .

This is easily seen by takingNI = ε−1
I (curlvI − Je,I).
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Let us introduce the space

Λ := H(curl;ΩC)×H0,∂Ω(curl;ΩI) ,

endowed with the norm ‖(zC ,vI)‖Λ := (‖zC‖2H(curl;ΩC) + ‖vI‖2H(curl;ΩI ))
1/2. In-

stead of (4.4), we are thus led to consider the following problem

Find (EC ,HI) ∈ Λ , AI ∈WI :

C((EC ,HI), (zC ,vI)) +
∫
ΩI
curlvI ·AI = L(zC)∫

ΩI
curlHI ·NI = G(NI)

for all (zC ,vI) ∈ Λ , NI ∈WI .

(4.7)

It can be proved that this problem has a unique solution (EC ,HI ,AI). However,
the spaceWI is not easily approximated by finite element spaces. We obtain an alter-
native formulation by expressing in a different way conditions (4.6). First of all, (4.6)1
and (4.6)2 give that∫

ΩI

εINI · gradϕI = 0 ∀ϕI ∈ H1
0,Γ (ΩI) .

Moreover, as shown at the end of Section 1.5, taking into account (4.6)1 and (4.6)2 we
see that conditions (4.6)3 and (4.6)4 imply that∫

ΩI

εINI · hI = 0 ∀hI ∈ HεI (Γ, ∂Ω;ΩI) .

Finally, using the orthogonality result presented in Theorem A.6, we have

gradH1
0,Γ (ΩI)⊕HεI (Γ, ∂Ω;ΩI) = H0

0,Γ (curl;ΩI) . (4.8)

We have thus seen that NI ∈ WI if and only if εINI is (L2(ΩI))3-orthogonal to
H0

0,Γ(curl;ΩI).
We can therefore introduce another Lagrange multiplier and consider the problem

Find (EC ,HI) ∈ Λ , AI ∈ (L2(ΩI))3 , rI ∈ H0
0,Γ (curl;ΩI) :

C((EC ,HI), (zC ,vI)) +
∫
ΩI
curlvI ·AI = L(zC )∫

ΩI
curlHI ·NI +

∫
ΩI

εINI · rI = G(NI)∫
ΩI

εIAI · pI = 0

for all (zC ,vI) ∈ Λ , NI ∈ (L2(ΩI))3 , pI ∈ H0
0,Γ (curl;ΩI) .

(4.9)

In order to analyze this formulation we can use the following result, which is
Lemma 4.1 in Chen et al. [81] extended to complex Hilbert spaces.
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Theorem 4.2. Let X, Q, M be three complex Hilbert spaces and a : X × X → C,
b : X ×Q→ C, c : Q×M → C be three sesquilinear forms. Given f ∈ X′ , g ∈ Q′

and l ∈M ′, let us consider the saddle-point problem

Find (Z,A, r) ∈ X ×Q×M :
a(Z,v) + b(v,A) = 〈f,v〉
b(Z,N) + c(N, r) = 〈g,N〉

c(A,p) = 〈l,p〉
for all (v,N,p) ∈ X ×Q×M .

(4.10)

Assume that a(·, ·), b(·, ·) and c(·, ·) are continuous, i.e., there exists three positive
constants c1, c2, c3 such that

|a(v,w)| ≤ c1‖v‖X‖w‖X ∀ v,w ∈ X
|b(v,N)| ≤ c2‖v‖X‖N‖Q ∀ v ∈ X,N ∈ Q
|c(N,p)| ≤ c3‖N‖Q‖p‖M ∀N ∈ Q,p ∈M .

(4.11)

Moreover, setting

Q0 := {N ∈ Q | c(N,p) = 0 ∀p ∈M}

X0 := {v ∈ X | b(v,N) = 0 ∀N ∈ Q0} ,
assume that a(·, ·) is coercive in X0, i.e., there exists a positive constant α such that

|a(v,v)| ≥ α‖v‖2X ∀v ∈ X0 , (4.12)

and that the following inf–sup conditions hold

inf
N∈Q0

sup
v∈X

|b(v,N)|
‖v‖X‖N‖Q

≥ β (4.13)

inf
p∈M

sup
N∈Q

|c(N,p)|
‖N‖Q‖p‖M

≥ γ , (4.14)

for some positive constants β and γ. Then problem (4.10) has a unique solution.

Now we are in position to prove the following result.

Theorem 4.3. Problem (4.9) has a unique solution.

Proof. We apply Theorem 4.2, with obvious notation. First of all, let us recall that the
spacesWI and VI(0) can be characterized as

WI = {NI ∈ (L2(ΩI))3 |
∫
ΩI

εINI · pI = 0 ∀pI ∈ H0
0,Γ (curl;ΩI)}

and

VI (0) = {vI ∈ H0,∂Ω(curl;ΩI) |
∫
ΩI

curlvI ·NI = 0 ∀NI ∈ WI} .
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Since the bilinear form C(·, ·) is coercive in H(curl;ΩC) × VI(0), we need only to
show that the two inf–sup conditions are satisfied. More precisely, we have to prove
that there exist two positive constants β and γ such that

sup
(zC ,vI)∈Λ

|
∫
ΩI
curlvI ·NI |

‖(zC ,vI)‖Λ
≥ β‖NI‖0,ΩI ∀NI ∈WI

and

sup
NI∈(L2(ΩI))3

|
∫
ΩI

εINI · pI|
‖NI‖0,ΩI

≥ γ‖pI‖0,ΩI ∀pI ∈ H0
0,Γ (curl;ΩI) .

Recalling that, from the orthogonal decomposition results (A.12) and (4.8),NI ∈ WI

can be written as NI = ε−1
I curlqI , with qI ∈ H0,∂Ω(curl;ΩI) ∩ H0

0,Γ (div;ΩI),
qI ⊥ H(∂Ω, Γ ;ΩI), choosing (zC ,vI) = (0,qI) ∈ Λ we have

|
∫
ΩI
curlqI ·NI |

‖qI‖H(curl;ΩI )
=
|
∫
ΩI
curlqI · ε−1

I curlqI |
‖qI‖H(curl;ΩI )

≥
ε−1
max

∫
ΩI
| curlqI |2

‖qI‖H(curl;ΩI )
,

where εmax is a uniform upper bound in ΩI for the eigenvalues of εI(x). We know
that the Poincaré-like inequality∫

ΩI

| curlqI |2 ≥ C0

∫
ΩI

(|qI |2 + | curlqI |2) (4.15)

holds true for all qI ∈ H0,∂Ω(curl;ΩI) ∩H0
0,Γ (div;ΩI), qI ⊥ H(∂Ω, Γ ;ΩI) (see

(A.15); for notation see Section A.1). Thus we can choose β := C0ε
−1
maxεmin, where

εmin is a uniform lower bound in ΩI for the eigenvalues of εI(x).
Concerning (4.14), it is enough to takeNI = pI and γ = εmin . �

Remark 4.4. It is worth noting that in (4.9) the Lagrange multiplier rI is equal to 0. In
fact, we have proved in Chapter 3 that the eddy current problem (3.30) has a unique
solution (E,H) ∈ Λ. It is easy to see that (E|ΩC

,H|ΩI
,−iωE|ΩI

, 0) is a solution to
(4.9), and, since this problem has a unique solution, it follows rI = 0. �

Remark 4.5. When considering the electric boundary condition (1.20), the problem to
be solved reads

Find (EC ,HI) ∈ Λ∗ , A∗
I ∈ (L2(ΩI))3 , r∗I ∈ H0

0 (curl;ΩI) :

C((EC ,HI), (zC,vI)) +
∫
ΩI
curlvI ·A∗

I = L(zC )∫
ΩI
curlHI ·N∗

I +
∫
ΩI

εIN∗
I · r∗I = G(N∗

I)∫
ΩI

εIA∗
I · p∗

I = 0

for all (zC ,vI) ∈ Λ∗ , N∗
I ∈ (L2(ΩI))3 , p∗

I ∈ H0
0 (curl;ΩI) ,

(4.16)

where
Λ∗ := H(curl;ΩC) ×H(curl;ΩI) .

It is not difficult to adapt to this problem the analysis performed above. �
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4.2.1 Finite element discretization

Our aim is to find a Galerkin finite element approximation of (4.9). In order to ap-
proximate the space H0

0,Γ (curl;ΩI) = gradH1
0,Γ(ΩI ) ⊕ HεI (Γ, ∂Ω;ΩI), we recall

that the dimension of HεI (Γ, ∂Ω;ΩI) is equal to pΓ + n∂Ω, where pΓ + 1 is the
number of connected components of Γ and n∂Ω is the number of Γ -independent non-
bounding cycles in ΩI . A basis of HεI (Γ, ∂Ω;ΩI) is given by gradwj,I and πk,I ,
j = 1, . . . , pΓ , k = 1, . . . , n∂Ω. In particular wj,I belongs to H1(ΩI), wj,I = 0 on
Γ \ Γj and wj,I = 1 on Γj , j = 1, . . . , pΓ , where Γj are the connected components
of Γ (see Sections 1.4 and A.1).
Setting

H1
∗,Γ (ΩI) := {ξI ∈ H1(ΩI ) | ξI|Γj

is constant ∀ j = 1, . . . , pΓ ,
ξI|ΓpΓ +1 = 0} , (4.17)

we have
H0

0,Γ (curl;ΩI) = gradH1
∗,Γ (ΩI)⊕ Span{πk,I}n∂Ω

k=1 .

Note that, if ΩC is connected or, equivalently, Γ is connected, then H1
∗,Γ (ΩI) =

H1
0,Γ(ΩI).
If we assume that the computational domainΩ is simply-connected, then we have

n∂Ω = 0 and any function belonging toH0
0,Γ (curl;ΩI) is the gradient of a function in

H1
∗,Γ (ΩI). On the other hand, if the computational domainΩ is not simply-connected,

the number n∂Ω can be different from 0, and in this case one needs the construction
of a suitable set of “cutting” surfaces in order to approximate the basis functionsπk,I ,
k = 1, . . . , n∂Ω (more details about this general geometrical situation can be found in
Section 5.5).
In order to simplify the presentation, in the following we assume that the com-

putational domain Ω is simply-connected, so that n∂Ω = 0 and H0
0,Γ(curl;ΩI) =

gradH1
∗,Γ (ΩI ). Hence, problem (4.9) in fact reads

Find (EC ,HI) ∈ Λ , AI ∈ (L2(ΩI ))3 , φI ∈ H1
∗,Γ (ΩI) :

C((EC ,HI), (zC ,vI)) +
∫
ΩI
curlvI ·AI = L(zC)∫

ΩI
curlHI ·NI +

∫
ΩI

εINI · gradφI = G(NI )∫
ΩI

εIAI · grad ξI = 0

for all (zC ,vI) ∈ Λ , NI ∈ (L2(ΩI ))3 , ξI ∈ H1
∗,Γ (ΩI ) .

(4.18)

As noted in Remark 4.4, the Lagrange multiplier rI is equal to 0: here, therefore, we
have that the Lagrange multiplier φI is 0, too.
We assume that Ω, ΩC , ΩI are Lipschitz polyhedral domains and consider two

families of regular tetrahedral meshes TC,h and TI,h of ΩC and ΩI , respectively. To
approximate the functions inH(curl;ΩL), L = I, C , we employ the complex-valued
Nédélec curl-conforming edge elements of the lowest order

N1
L,h := {vh ∈ H(curl;ΩL) | vh(x)|K = aK + bK × x ∀K ∈ TL,h},
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where aK and bK are constant complex vectors (see Section A.2). The homogeneous
boundary conditions on ∂Ω are incorporated by setting the degrees of freedom on ∂Ω
equal to 0, leading to the space

X1
I,h := N1

I,h ∩H0,∂Ω(curl;ΩI) .

We also set Λh := N1
C,h ×X1

I,h.
Let us denote by Pk the standard space of complex polynomials of total degree

less than or equal to k with respect to the real variable x. To discretize the Lagrange
multiplier AI ∈ (L2(ΩI))3 we choose piecewise-constant vector functions in the
space

QI,h := (C0
I,h)

3 ,

where
C0
I,h := {qI,h ∈ L2(ΩI) | qI,h|K ∈ P0 ∀K ∈ TI,h} .

In order to approximate the space H1
∗,Γ (ΩI), we start from the non-conforming

Crouzeix–Raviart elements defined as follows

UI,h := {ξI,h ∈ L2(ΩI) | ξI,h|K ∈ P1 ∀K ∈ TI,h and ξI,h is continuous at
the centroid of any face f common to two elements in TI,h} .

Then the discrete ξI,h are chosen in the spaceMI,h defined as

MI,h := {ξI,h ∈ UI,h | ξI,h takes the same value at all centroids
of faces of Γj, j = 1, . . . , pΓ , and ξI,h = 0
at all centroids of faces of ΓpΓ +1} .

(4.19)

It is worth noting that we have limited ourselves to consider the lowest order finite
element spaces because, to our knowledge, a stability and convergence analysis for
higher order elements has not been performed.
Since functions in UI,h are no longer continuous, they are no longer in H1(ΩI).

Therefore wemust define a sesquilinear form Sh(·, ·) acting also onH1
∗,Γ (ΩI)+MI,h,

and a norm on H1
∗,Γ (ΩI) + MI,h. This can be done as follows: first, for each ξI ∈

[H1
∗,Γ(ΩI) + MI,h] we denote by g̃rad ξI the function in (L2(ΩI ))3 defined as

(g̃rad ξI)|K := grad(ξI|K ) ∀K ∈ TI,h.

If ξI ∈ H1
∗,Γ (ΩI ). Clearly one has g̃rad ξI = grad ξI . Then, we define the norm in

H1
∗,Γ (ΩI) + MI,h as

‖ξI‖2h :=
∑
K

∫
K

| grad ξI |2 = ‖g̃rad ξI‖20,ΩI
.

For allNI ∈ (L2(ΩI))3 and ξI ∈ [H1
∗,Γ (ΩI) + MI,h] we set

Sh(NI , ξI) :=
∫
ΩI

εINI · g̃rad ξI . (4.20)



4.2 A saddle-point approach for the EC/HI formulation 69

Introducing also the sesquilinear form

R(vI ,NI) :=
∫
ΩI

curlvI ·NI , (4.21)

the finite element approximation of (4.18) can be formulated as follows

Find (EC,h,HI,h) ∈ Λh,AI,h ∈ QI,h, φI,h ∈MI,h :

C((EC,h,HI,h), (zC,h,vI,h) +R(vI,h,AI,h) = L(zC,h)

R(HI,h,NI,h) + Sh(NI,h, φI,h) = G(NI,h)
Sh(AI,h, ξI,h) = 0

for all (zC,h,vI,h) ∈ Λh,NI,h ∈ QI,h, ξI,h ∈ MI,h .

(4.22)

The following results will be crucial in the proof of existence and uniqueness of a
solution to problem (4.22). The proof follows the one in Monk [178].

Lemma 4.6. We have the L2(ΩI)-orthogonal decomposition

QI,h = curlX1
I,h ⊕ g̃radMI,h .

Proof. The proof has two parts. In the first part we show that for all vI,h ∈ X1
I,h and

ξI,h ∈MI,h it holds
∫
ΩI
curlvI,h · g̃rad ξI,h = 0. In the second part we establish that

dim(QI,h) = dim(curlX1
I,h) + dim(g̃radMI,h).

For any vI,h ∈ X1
I,h and ξI,h ∈MI,h integration by parts yields∫

ΩI
curlvI,h · g̃rad ξI,h =

∑
K

∫
K
curlvI,h · grad ξI,h

=
∑

K

∫
∂K
curlvI,h · nK ξI,h

=
∑

f∈Fint

∫
f
curlvI,h · nf [ξI,h]f

+
∑

f∈F∂Ω

∫
f curlvI,h · n ξI,h

+
∑pΓ +1

j=1

∑
f∈FΓj

∫
f curlvI,h · nI ξI,h ,

where Fint is the set of internal faces of the triangulation TI,h, F∂Ω and FΓj denote
the set of faces of TI,h on ∂Ω and Γj , respectively, and [ξI,h]f denotes the jump of
ξI,h across the face f . Note that, for all f ∈ Fint, (curlvI,h · nf)|f is constant and∫
f
[ξI,h]f = 0, since [ξI,h]f is a linear function and it is equal to 0 at the centroid of f .

Moreover (curlvI,h·n)|f = 0 for all f ∈ F∂Ω, and, using that for all j = 1, . . . , pΓ+1
and for all faces f ∈ FΓj one has

∫
f ξI,h = ξjmeas(f), where ξj is the value at the

centroid of f , independent of f ∈ Γj , we finally find∑
f∈FΓj

∫
f
curlvI,h · nI ξI,h =

∑
f∈FΓj

(curlvI,h · nI)|f ξjmeas(f)

= ξj
∫
Γj
curlvI,h · nI = 0 ,

hence ∫
ΩI

curlvI,h · g̃rad ξI,h = 0 .
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Let us introduce the Raviart–Thomas finite element space (see, e.g., Brezzi and
Fortin [65], Chap. III)

RTh := {vh ∈ H(div;ΩI) | vh(x)|K = aK + bK x ∀K ∈ TI,h},

where aK is a constant complex vector and bK is a complex number, and the subspaces

RT0,∂Ω := RTh ∩H0,∂Ω(div, ΩI), RT 0
0,∂Ω := RTh ∩H0

0,∂Ω(div, ΩI).

By arguments from discrete cohomology, it can be proved (see Bossavit [59]) that, as
vector spaces on C,

dim(curlX1
I,h) = dim(RT 0

0,∂Ω)− pΓ .

Let us denote by #K the number of tetrahedra of TI,h, by #F the total number of
faces of TI,h, and by #F∂Ω and #FΓ the number of faces of TI,h on ∂Ω and on Γ ,
respectively. It is not difficult to prove that

dim(RT 0
0,∂Ω) = dim(RT0,∂Ω)− dim(div(RT0,∂Ω))

= (#F −#F∂Ω)−#K

dim(MI,h) = (#F −#FΓ ) + pΓ = dim(g̃rad (MI,h))
dim(QI,h) = 3#K.

Since 4#K = 2#F − (#F∂Ω + #FΓ ), then

dim(curlX1
I,h) + dim(g̃radMI,h)

= [(#F −#F∂Ω) −#K − pΓ ] + [(#F −#FΓ ) + pΓ ]
= 2#F − (#F∂Ω + #FΓ ) −#K
= 4#K −#K
= dim(QI,h).

Since, as it can be trivially checked, curlX1
I,h ⊂ QI,h and g̃radMI,h ⊂ QI,h, the

proof is complete. �

The following lemma is the discrete counterpart of (4.15).

Lemma 4.7. Let V 0
I,h := X1

I,h ∩ VI (0) and

(V 0
I,h)

⊥ := {pI,h ∈ X1
I,h |

∫
ΩI

pI,h · vI,h = 0 ∀vI,h ∈ V 0
I,h} .

There exists a constant C0 > 0, independent of h, such that for all pI,h ∈ (V 0
I,h)

⊥ the
following inequality holds

‖pI,h‖0,ΩI ≤ C0‖ curlpI,h‖0,ΩI .



4.2 A saddle-point approach for the EC/HI formulation 71

Proof. Given pI,h ∈ (V 0
I,h)

⊥ ⊂ (L2(ΩI))3, taking μI = Id in the orthogonal de-
composition result presented in Theorem A.7 we can write

pI,h = curlQI + gradχI + kI ,

with
QI ∈ H0,Γ (curl;ΩI) ∩H0

0,∂Ω(div;ΩI) ∩H(Γ, ∂Ω;ΩI)⊥ ,

χI ∈ H1
0,∂Ω(ΩI)

and
kI ∈ H(∂Ω, Γ ;ΩI) .

SettingUI = curlQI , we have curlUI = curlpI,h, divUI = 0,UI · nI = 0 on Γ
andUI ×n = 0 on ∂Ω. HenceUI ∈ H0,∂Ω(curl;ΩI) ∩H0,Γ (div;ΩI), a space that
is continuously embedded in (Hs(ΩI))3 for some s > 1/2 (see Amrouche et al. [27]),
so that there exists a positive constant C such that

‖UI‖s,ΩI ≤ C(‖UI‖0,ΩI + ‖ curlUI‖0,ΩI) .

Since it is easily verified thatUI ∈ H(∂Ω, Γ ;ΩI)⊥, the Poincaré-like inequality(A.15)
gives

‖UI‖s,ΩI ≤ C1‖ curlUI‖0,ΩI . (4.23)

Moreover, since curlUI = curlpI,h ∈ (L∞(ΩI))3, the interpolantΠhUI in N1
I,h is

well-defined (see Amrouche et al. [27]). Note that

ΠhpI,h = pI,h = ΠhUI + Πh(gradχI + kI)

andΠh(gradχI + kI ) ∈ V 0
I,h, hence

‖pI,h‖20,ΩI
=
∫
ΩI

pI,h · pI,h
=
∫
ΩI

pI,h · [ΠhUI + Πh(gradχI + kI)]
=
∫
ΩI

pI,h ·ΠhUI

≤ ‖pI,h‖0,ΩI‖ΠhUI‖0,ΩI .

(4.24)

On the other hand, for allK ∈ TI,h
‖ΠhUI −UI‖0,K ≤ C2 hs(‖UI‖s,K + ‖ curlUI‖s,K)

≤ C2 hs(‖UI‖s,K + ‖ curlpI,h‖s,K)
≤ C3 (hs‖UI‖s,K + ‖ curlpI,h‖0,K) ,

where we have used the local inverse estimate

‖ curlpI,h‖s,K ≤ Ch−s‖ curlpI,h‖0,K .

Using (4.23), this yields

‖ΠhUI‖0,ΩI ≤ ‖UI‖0,ΩI + ‖ΠhUI −UI‖0,ΩI

≤ C4 (‖UI‖s,ΩI + ‖ curlpI,h‖0,ΩI)
≤ C5 ‖ curlpI,h‖0,ΩI ,

thus the thesis follows from (4.24). �
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Now we are in a position to prove the main result of this section.

Theorem 4.8. Assume that εI is a piecewise-constant matrix in ΩI and that TI,h0 is a
triangulation such that εI|K is a constant matrix for each K ∈ TI,h0 . Assuming that
the triangulation TI,h is a refinement of TI,h0 , problem (4.22) has a unique solution.

Proof. As in the continuous case we use Theorem 4.2. Since for each K ∈ TI,h we
know that εI|K is a constant matrix, εINI,h ∈ QI,h and ε−1

I NI,h ∈ QI,h for any

NI,h ∈ QI,h. From Lemma 4.6 one has that QI,h = curlX1
I,h ⊕ g̃radMI,h, thus the

space Q0
I,h defined by

Q0
I,h := {NI,h ∈ QI,h | Sh(NI,h, ξI,h) = 0 ∀ ξI,h ∈MI,h}

= {NI,h ∈ QI,h |
∫
ΩI

εINI,h · g̃rad ξI,h = 0 ∀ ξI,h ∈MI,h}

is equal to ε−1
I curlX1

I,h. Let us set

Λ0
h := {(zC,h,vI,h) ∈ Λh | R(vI,h,NI,h) = 0 ∀NI,h ∈ Q0

I,h} . (4.25)

If (zC,h,vI,h) ∈ Λ0
h, taking in particular in (4.25) NI,h = ε−1

I curlvI,h ∈ Q0
I,h it

follows that curlvI,h = 0 in ΩI , hence Λ0
h = N1

C,h × V 0
I,h ⊂ H(curl;ΩC)× VI(0),

and (4.12) follows from Theorem 4.1.
Moreover, ifNI,h ∈ Q0

I,h we haveNI,h = ε−1
I curlwI,h for somewI,h ∈ X1

I,h.
Taking the orthogonal projection w∗

I,h of wI,h on (V 0
I,h)

⊥, one clearly has NI,h =
ε−1
I curlw∗

I,h. Hence, choosing (zC,h,vI,h) = (0,w∗
I,h), by proceeding as in the con-

tinuous case and using Lemma 4.7 we obtain that the inf–sup condition (4.13) holds.
Concerning the inf–sup condition (4.14), let us note that for all ξI,h ∈ MI,h one

has g̃rad ξI,h ∈ QI,h, hence from the definition of the norm ‖ · ‖h

sup
NI,h∈QI,h

|Sh(NI,h, ξI,h)|
‖NI,h‖0,ΩI

≥ |Sh(g̃rad ξI,h, ξI,h)|
‖g̃rad ξI,h‖0,ΩI

=

∫
ΩI

εI g̃rad ξI,h · g̃rad ξI,h
‖g̃radξI,h‖0,ΩI

≥ εmin‖ξI,h‖h ,

and the proof is complete. �

We denote by c1 and c2 the continuity constants of the sesquilinear forms C(·, ·)
andR(·, ·), respectively, by α the coerciveness constant inΛ0

h of the sesquilinear form
C(·, ·), and by β and γ the two positive constants related to the discrete inf–sup con-
ditions proved to hold in Theorem 4.8. It is easily shown that all these constants are
independent of h. Then the convergence of the finite element approximation method
can be proved.

Theorem 4.9. Let the assumptions of Theorem 4.8 be satisfied. Suppose that (EC ,HI)
∈ Λ, AI ∈ (L2(ΩI))3 and φI = 0 are the solution of problem (4.18) and that
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(EC,h,HI,h) ∈ Λh, AI,h ∈ QI,h andφI,h ∈MI,h are the solution of problem (4.22).
Then the following error estimates hold

‖(EC − EC,h,HI −HI,h)‖Λ
≤
(
1 +

c1
α

)(
1 +

c2
β

)
inf

(zC,h,vI,h)∈Λh

‖(EC − zC,h,HI − vI,h)‖Λ (4.26)

‖AI −AI,h‖0,ΩI≤
(
1 +

c2
β

)
inf

NI,h∈Q0
I,h

‖AI −NI,h‖0,ΩI

+
c1
β
‖(EC −EC,h,HI −HI,h)‖Λ

(4.27)

‖φI − φI,h‖h = ‖φI,h‖h≤
c2
γ
‖(EC −EC,h,HI −HI,h)‖Λ . (4.28)

In particular, the finite element approximation method is convergent.

Proof. The proof follows the lines of the results in Brezzi and Fortin [65], Chap. II.
For all (z∗C,h,v

∗
I,h), (zC,h,vI,h) ∈ Λh and NI,h ∈ QI,h it holds

C((EC,h − z∗C,h,HI,h − v∗
I,h), (zC,h,vI,h)) +R(vI,h,AI,h −NI,h)

= L(zC,h)− C((z∗C,h ,v∗
I,h), (zC,h,vI,h))−R(vI,h,NI,h)

= C((EC − z∗C,h,HI − v∗
I,h), (zC,h,vI,h)) +R(vI,h,AI −NI,h) .

In particular, if (zC,h,vI,h) ∈ Λ0
h then we know that curlvI,h = 0 in ΩI , hence

C((EC,h − z∗C,h,HI,h − v∗
I,h), (zC,h,vI,h))

= C((EC − z∗C,h,HI − v∗
I,h), (zC,h,vI,h)) .

Let us define

ΛGh := {(zC,h,vI,h) ∈ Λh | R(vI,h,NI,h) = G(NI,h) ∀NI,h ∈ Q0
I,h} .

Clearly we have (EC,h,HI,h) ∈ ΛGh , then for each (z∗C,h,v
∗
I,h) ∈ ΛGh we obtain

(EC,h − z∗C,h,HI,h − v∗
I,h) ∈ Λ0

h and

C((EC,h − z∗C,h,HI,h − v∗
I,h), (EC,h − z∗C,h,HI,h − v∗

I,h))
= C((EC − z∗C,h,HI − v∗

I,h), (EC,h − z∗C,h,HI,h − v∗
I,h)) .

From the continuity and the coerciveness of the sesquilinear form C(·, ·) in Λ0
h we

conclude

‖(EC − EC,h,HI −HI,h)‖Λ
≤ ‖(EC − z∗C,h,HI − v∗

I,h)‖Λ + ‖(EC,h − z∗C,h,HI,h − v∗
I,h)‖Λ

≤
(
1 + c1

α

)
‖(EC − z∗C,h,HI − v∗

I,h)‖Λ
(4.29)

for all (z∗C,h,v
∗
I,h) ∈ ΛGh .
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From the inf–sup condition (4.13), for all vI,h ∈ X1
I,h there exists a unique

(uC,h,wI,h) ∈ (Λ0
h)

⊥ = {0} × (V 0
I,h)

⊥ such that for all NI,h ∈ Q0
I,h one has

R(wI,h,NI,h) = R(HI − vI,h,NI,h) and moreover

‖wI,h‖H(curl;ΩI ) ≤
c2
β
‖HI − vI,h‖H(curl;ΩI ) .

Setting v∗
I,h := wI,h + vI,h, for allNI,h ∈ Q0

I,h we have

R(v∗
I,h,NI,h) = R(HI ,NI,h)

= R(HI ,NI,h) +
∫
ΩI

εINI,h · gradφI = G(NI,h) ,

as φI = 0. Therefore, for each (zC,h,vI,h) ∈ Λh we have (zC,h,v∗
I,h) ∈ ΛGh and

‖(EC − zC,h,HI − v∗
I,h)‖Λ

≤ ‖(EC − zC,h,HI − vI,h)‖Λ + ‖wI,h‖H(curl;ΩI)

≤
(
1 + c2

β

)
‖(EC − zC,h,HI − vI,h)‖Λ .

(4.30)

Hence (4.26) follows from (4.29) and (4.30).
To obtain (4.27) we use the inf–sup condition (4.13). For each NI,h ∈ Q0

I,h we
find

‖AI,h −NI,h‖0,ΩI ≤
1
β

sup
(zC,h,vI,h)∈Λh

|R(vI,h,AI,h −NI,h)|
‖(zC,h,vI,h)‖Λ

.

On the other hand

R(vI,h,AI,h −NI,h)
= L(zC,h) − C((EC,h,HI,h), (zC,h,vI,h))−R(vI,h,NI,h)
= C((EC ,HI), (zC,h,vI,h)) +R(vI,h,AI)

−C((EC,h ,HI,h), (zC,h,vI,h)) −R(vI,h,NI,h) ,

then
‖AI,h −NI,h‖0,ΩI

≤ c1
β ‖(EC −EC,h,HI −HI,h)‖Λ + c2

β ‖AI −NI,h‖0,ΩI ,

which yields (4.27).
To obtain (4.28) we use the inf–sup condition (4.14), that in particular gives

‖φI,h‖h ≤
1
γ

sup
NI,h∈QI,h

|Sh(NI,h, φI,h)|
‖NI,h‖0,ΩI

.

On the other hand

Sh(NI,h, φI,h) = G(NI,h)−R(HI,h,NI,h)
= R(HI ,NI,h) + S(NI,h, φI)−R(HI,h,NI,h)
= R(HI −HI,h,NI,h) ,

then
‖φI,h‖h ≤

c2
γ
‖HI −HI,h‖H(curl;ΩI) .

Since smooth functions are dense inΛ× (L2(ΩI ))3, the interpolation estimates in
Section A.2 yield the convergence of the finite element approximation method. �
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Assuming that the solution is more regular (for notation see Section A.1), the in-
terpolation results in Section A.2 yield a precise error estimate.

Corollary 4.10. Let the assumptions of Theorem 4.8 be satisfied. If the solution
(EC ,HI ,AI, 0) of problem (4.18) is smooth enough, namely, EC ∈ Hr(curl;ΩC),
HI ∈ Hr(curl;ΩI) with r > 1/2 and AI ∈ (Hs(ΩI))3 with s > 0, the following
error estimates hold

‖(EC − EC,h,HI −HI,h)‖Λ ≤ Chmin (r,1)

‖AI −AI,h‖0,ΩI ≤ Chmin (r,s,1)

‖φI,h‖h ≤ Chmin (r,1) .

(4.31)

Remark 4.11. We note that problem (4.9) can be written as a more standard saddle-
point problem. Setting

Λ∗ := H(curl;ΩC)×H0,∂Ω(curl;ΩI)×H0
0,Γ(curl;ΩI) ,

and defining

R̂(·, ·) : Λ∗ × (L2(ΩI))3 → C

R̂((zC ,vI,pI),NI) :=
∫
ΩI

(curlvI ·NI + εINI · pI) ,

and

Ĉ(·, ·) : Λ∗ × Λ∗ → C

Ĉ((wC ,uI, sI), (zC,vI ,pI)) := C((wC ,uI), (zC ,vI)) ,

problem (4.9) reads

Find [(EC ,HI , rI),AI ] in Λ∗ × (L2(ΩI))3 :

Ĉ((EC ,HI , rI), (zC ,vI,pI)) + R̂((zC ,vI ,pI),AI) = L(zC)

R̂((EC ,HI , rI),NI) = G(NI)

for all [(zC ,vI ,pI),NI ] ∈ Λ∗ × (L2(ΩI))3 .

(4.32)

This problem and its finite element approximation can be analyzed using the gen-
eral theory of variational saddle-point problems (see Brezzi and Fortin [65]). However,
with that approach we are able to prove the discrete inf–sup condition only if εI is a
scalar constant. �

Remark 4.12. We do not address here the problem of determining a finite element ap-
proximation of the electric field EI inΩI , referring instead to Section 5.5, where this
problem is considered in a more general geometrical setting. �
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Remark 4.13. For the electric boundary condition (1.20) the finite element problem is

Find (EC,h,HI,h) ∈ Λ∗
h , A∗

I,h ∈ QI,h , r∗I,h ∈ g̃radM∗
I,h :

C((EC,h ,HI,h), (zC,h,vI,h)) +
∫
ΩI
curlvI,h ·A∗

I,h = L(zC,h)∫
ΩI
curlHI,h ·N∗

I,h +
∫
ΩI

εIN∗
I,h · r∗I,h = G(N∗

I,h)∫
ΩI

εIA∗
I,h · p∗

I,h = 0

for all (zC,h,vI,h) ∈ Λ∗
h , N∗

I,h ∈ QI,h , p∗
I,h ∈ g̃radM∗

I,h ,

(4.33)

where

Λ∗
h := N1

C,h ×N1
I,h

and

M∗
I,h := {ξ∗I,h ∈ UI,h | ξ∗I,h takes the same value at all centroids

of faces of Γj, j = 1, . . . , pΓ , and of
(∂Ω)r , r = 0, . . . , p∂Ω, and ξ∗I,h = 0
at all centroids of faces of ΓpΓ +1} .

Note that, in this case, we have no need to assume that the computational domain Ω is
simply-connected. �

4.3 A saddle-point approach for the H-based formulation

A saddle-point approach similar to the one analyzed in the previous section can also be
used for theH-based formulation of the eddy current problem, as presented in Alonso
Rodríguez et al. [13] (see also Guermond and Minev [116], who face the H-based
formulation of the time-dependent eddy current problem by means of an analogous
approach).
Let us consider the vector spaces

V (Je,I) := {v ∈ H0(curl;Ω) | curlvI = Je,I inΩI},

and, already introduced in (3.6),

V := {v ∈ H0(curl;Ω) | curlvI = 0 inΩI} .

The weak form (3.9) of theH-based problem also reads

FindH ∈ V (Je,I) :∫
ΩC

σ−1 curlHC · curlvC +
∫
Ω iωμH · v =

∫
ΩC

σ−1Je,C · curlvC
for all v ∈ V .

(4.34)
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It can be reformulated in non-constrained vector spaces by introducing Lagrange
multipliers. It is easy to see that (4.34) is equivalent to the following three fields for-
mulation

Find (H,AI , rI) inH0(curl;Ω)× (L2(ΩI))3 ×H0
0,Γ(curl;ΩI) :

a(H,v) +
∫
ΩI
curlvI ·AI = L∗(vC)∫

ΩI
curlHI ·NI +

∫
ΩI

εINI · rI = G(NI )∫
ΩI

εIAI · pI = 0

for all (v,NI ,pI) ∈ H0(curl;Ω)× (L2(ΩI ))3 ×H0
0,Γ (curl;ΩI) ,

(4.35)

where

a(u,v) :=
∫
ΩC

σ−1 curluC · curlvC +
∫
Ω

iωμu · v,

and

G(NI) :=
∫
ΩI

Je,I ·NI

have been introduced in (3.10) and (4.5), respectively, and

L∗(vC) :=
∫
ΩC

σ−1Je,C · curlvC .

Proceeding as in the case of the hybrid EC/HI formulation of the previous sec-
tion, it can be proved that problem (4.35) has a unique solution. It is in fact given
by (H,E|ΩI

, 0), where (H,E) is the unique solution of (3.30), hence the Lagrange
multiplierAI is indeed the electric field EI , and the Lagrange multiplier rI is equal
to 0.
Concerning the finite element approximation of (4.35), as in the previous sec-

tion we will assume for simplicity that Ω is simply-connected. In this way the space
H0

0,Γ(curl;ΩI) is given by the gradients of functions belonging toH1
∗,Γ (ΩI). To ap-

proximate the magnetic field we employ the (complex-valued) Nédélec curl-conform-
ing edge elements of the lowest order N1

h (see Section A.2). In particular, we con-
sider the space X1

h := N1
h ∩H0(curl;Ω). The finite elements spaces for the Lagrange

multipliers AI and φI are the same spaces used in the hybrid case: the space MI,h

of discontinuous piecewise-linear functions defined in (4.19), and the space QI,h of
piecewise-constant vector functions.
The finite element approximation of (4.35) can be formulated as follows

Find (Hh,AI,h, φI,h) inX1
h ×QI,h ×MI,h :

a(Hh,vh) +R(vI,h,AI,h) = L∗(vC,h)

R(HI,h,NI,h) + Sh(NI,h, φI,h) = G(NI,h)
Sh(AI,h, ξI,h) = 0

for all (vh,NI,h, ξI,h) ∈ X1
h ×QI,h ×MI,h ,

(4.36)

whereR(·, ·) and Sh(·, ·) have been defined in (4.21) and (4.20), respectively.
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Using again Theorem 4.2 and proceeding as in the hybrid EC/HI case we have
the following result.

Theorem 4.14. Under the assumptions of Theorem 4.8, problem (4.36) has a unique
solution Hh ∈ X1

h, AI,h ∈ QI,h and φI,h ∈ MI,h. Moreover, let H ∈ H0(curl;Ω),
AI ∈ (L2(ΩI ))3 be the solution of problem (4.35). Then the following error estimates
hold

‖H−Hh‖H(curl;Ω) ≤
(
1 +

c1
α

)(
1 +

c2
β

)
inf

vh∈X1
h

‖H− vh‖H(curl;Ω)

‖AI −AI,h‖0,ΩI ≤
(
1 + c2

β

)
infNI,h∈Q0

I,h
‖AI −NI,h‖0,ΩI

+ c1
β ‖H−Hh‖H(curl;Ω)

‖φI,h‖h ≤
c2
γ
‖H−Hh‖H(curl;Ω) ,

where all the constants are independent of h. In particular, the finite element method is
convergent and, if H ∈ Hr(curl;Ω) with r > 1/2 and AI ∈ (Hs(ΩI))3 with s > 0,
it follows

‖H−Hh‖H(curl;Ω) ≤ Chmin (r,1)

‖AI −AI,h‖0,ΩI ≤ Chmin (r,s,1)

‖φI,h‖h ≤ Chmin (r,1) .

4.4 Hybrid formulation using the electric field in the insulator

For the formulations using the magnetic field in the insulator as the main unknown,
the saddle-point approach computes also the electric field in the insulator, because it
is the Lagrange multiplier forHI . However, in many applications the electric field in
the insulator is not an interesting physical quantity. In this case it would be convenient
to avoid its approximation. This can be done using a second type of hybrid coupling,
the HC/ẼI formulation, in which the main unknowns are the magnetic field in the
conductorΩC and a vector magnetic potential ẼI in the insulating region ΩI .
Here and in the next section we follow the presentation given in Alonso Rodríguez

et al. [14]. The starting point is the hybrid formulation that has as main unknowns the
magnetic field in the conductor and the electric field in the insulator.
For each vC ∈ H(curl;ΩC), from the Faraday equation in ΩC one finds by inte-

gration by parts∫
ΩC

(EC · curlvC + iωμCHC · vC)−
∫
Γ EC × nC · vC = 0 .

Using the interface conditions for the electric field and the Ampère law inΩC leads to∫
ΩC

(σ−1 curlHC · curlvC + iωμCHC · vC)−
∫
Γ

EI × nC · vC
=
∫
ΩC

σ−1Je,C · curlvC .
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On the other hand, in the insulator one has −iω curlHI = −iωJe,I , thus for each
zI ∈ H(curl, ΩI) one finds by integration by parts

−iω
∫
ΩI

HI · curl zI + iω
∫
Γ HI × nI · zI = −iω

∫
ΩI

Je,I · zI .

Using the Faraday law inΩI and the interface conditions one has∫
ΩI

μ−1
I curlEI · curl zI − iω

∫
Γ

HC × nC · zI = −iω

∫
ΩI

Je,I · zI .

Setting
ZI := {zI ∈ H(curl;ΩI) | zI satisfies (4.6)} ,

the weak formulation of the hybridHC/EI formulation reads

Find (HC ,EI) ∈ H(curl;ΩC) × ZI :∫
ΩC

(σ−1 curlHC · curlvC + iωμCHC · vC)
+
∫
Γ

vC × nC · EI = F (vC)∫
Γ

HC × nC · zI + iω−1
∫
ΩI

μ−1
I curlEI · curl zI = G(zI)

for all (vC , zI) ∈ H(curl;ΩC)× ZI ,

(4.37)

where

F (vC) :=
∫
ΩC

σ−1Je,C · curlvC ,

and, as in (4.5),

G(zI) :=
∫
ΩI

Je,I · zI .

It can be shown, via the standard theory for saddle-point problems, that problem
(4.37) has a unique solution.
Unfortunately, in the discrete setting it is not clear how to obtain an inf–sup condi-

tion for the pairing (u,w)→
∫
Γ
(u×nC) ·w onH−1/2(divτ , Γ )×H−1/2(divτ , Γ )

which is uniformwith respect to themesh size h. For a detailed account of this problem
see Christiansen and Nédélec [82], Sect. 3.
A remedy is offered by considering a different approach, in which one works on a

smaller constrained space. The drawback is that in the alternative approach the solu-
tion obtained inΩI is not the physical electric field EI but a suitable magnetic vector
potential ẼI .
In the followingwe assume for simplicity thatJe,I ·nI = 0 onΓ (for less restrictive

assumptions on Je,I see Remark 4.18). By tangential continuity ofHwe can infer that

divτ (HC × nC) = curlHI · nC = 0 on Γ .

Let us define the spaces

X̃C := {vC ∈ H(curl;ΩC) | divτ (vC × nC) = 0 on Γ },
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and

Z̃I := {zI ∈ H(curl;ΩI) |
∫
ΩI

zI · grad ξI = 0 for all ξI ∈ H1(ΩI)} .

Note that they are closed subspaces of H(curl;ΩC) and H(curl;ΩI), respectively.
Moreover, Z̃I is the space of zI ∈ H(curl;ΩI) such that divzI = 0 inΩI and zI ·n =
0 on ∂Ω ∪ Γ .
We consider the following problem

Find (HC , ẼI) ∈ X̃C × Z̃I :∫
ΩC

(σ−1 curlHC · curlvC + iωμCHC · vC)

+
∫
Γ

vC × nC · ẼI = F (vC)∫
Γ HC × nC · zI + iω−1

∫
ΩI

μ−1
I curl ẼI · curl zI = G(zI)

for all (vC , zI) ∈ X̃C × Z̃I .

(4.38)

In order to analyze this new problemwe need some preliminary results. First of all
we recall that, choosing μI = Id in Theorem A.8, any function vI ∈ (L2(ΩI))3 can
be written as

vI = curlQ∗
I + gradχ∗

I + k∗
I , (4.39)

whereQ∗
I ∈ H0(curl;ΩI), χ∗

I ∈ H1(ΩI) and k∗
I ∈ H(m;ΩI ), the finite dimensional

space of harmonic vector fields in ΩI introduced in Section 1.4. We also know that
gradχ∗

I = 0 in ΩI if and only if divvI = 0 inΩI and vI · n = 0 on ∂Ω ∪ Γ .
It is readily seen that curl[H0(curl;ΩI)] ⊂ H0(curl;ΩI)⊥; moreover, from (4.39)

one sees indeed that curl[H0(curl;ΩI)] = H0(curl;ΩI)⊥. Thus the following orthog-
onal decomposition holds

(L2(ΩI))3 = H0(curl;ΩI)⊥ ⊕ gradH1(ΩI )⊕H(m;ΩI) . (4.40)

Moreover,

H(curl;ΩI)
= [H(curl;ΩI) ∩H0(curl;ΩI)⊥]⊕ gradH1(ΩI )⊕H(m;ΩI) ,

(4.41)

and
Z̃I = [H(curl;ΩI) ∩H0(curl;ΩI)⊥]⊕H(m;ΩI) . (4.42)

We also recall the following Poincaré-like inequality (see, e.g., Fernandes and Gi-
lardi [104]): there exists a constant C1 > 0 such that∫

ΩI

|vI |2 ≤ C1

∫
ΩI

(| curlvI |2 + | divvI |2) (4.43)

for all vI ∈ H(curl;ΩI) ∩H0(div;ΩI) ∩H(m;ΩI)⊥.



4.4 Hybrid formulation using the electric field in the insulator 81

If vI ∈ H(curl;ΩI) ∩ H0(curl;ΩI)⊥ then, from the orthogonal decomposition
(4.41), it follows that vI ∈ H(curl;ΩI) ∩ [gradH1(ΩI)]⊥ ∩H(m;ΩI )⊥. As a con-
sequence, divvI = 0 in ΩI and vI · n = 0 on ∂Ω ∪ Γ . In conclusion, for each
vI ∈ H(curl;ΩI) ∩H0(curl;ΩI)⊥ we have∫

ΩI

|vI|2 ≤ C1

∫
ΩI

| curlvI |2 . (4.44)

We are now in a position to prove that theHC/ẼI formulation is well-posed.

Theorem 4.15. Assume that Ω is simply-connected. The variational problem (4.38)
has a unique solution.

Proof. The proof is based on the classical saddle-point theory. Let us denote Z̃⊥
I :=

H(curl;ΩI) ∩ H0(curl;ΩI)⊥. Since we have the direct sum decomposition (4.42),
namely,

Z̃I = Z̃⊥
I ⊕H(m;ΩI ) , (4.45)

we can rewrite (4.38) in equivalent form as

Find (HC , Ẽ⊥
I ) ∈ X̃C × Z̃⊥

I and ẼH
I ∈ H(m;ΩI ) :

D((HC , Ẽ⊥
I ), (vC , z⊥I )) +

∫
Γ

vC × nC · ẼH
I = F (vC) + G(z⊥I )∫

Γ HC × nC · zHI = G(zHI )

for all (vC , z⊥I ) ∈ X̃C × Z̃⊥
I and zHI ∈ H(m;ΩI ) .

The sesquilinear form D(·, ·) is the sum of the two left-hand sides of (4.37), namely,

D((uC,wI), (vC , zI))
:=
∫
ΩC

(σ−1 curluC · curlvC + iωμCuC · vC)
+
∫
Γ vC × nC ·wI +

∫
Γ uC × nC · zI

+iω−1
∫
ΩI

μ−1
I curlwI · curl zI .

(4.46)

It can be proved thatD(·, ·) is coercive in X̃C × Z̃⊥
I . In fact, based on (4.44), the proof

is analogous to that presented for the sesquilinear form C(·, ·) in the analysis of the
EC/HI formulation.
Now, we only need to check the inf–sup condition

∃ β > 0 such that
∀ zHI ∈ H(m;ΩI ) ∃ vC ∈ X̃C , vC �= 0 :∣∣∣∫Γ vC × nC · zHI

∣∣∣ ≥ β‖vC‖H(curl;ΩC)‖zHI ‖0,ΩI .

(4.47)

For simplicity we start assuming thatΩC is a torus, a set which has only one inde-
pendent non-bounding cycle, or, equivalently, whose first Betti number is equal to 1.
Since Ω is simply-connected, the non-bounding cycle of ΩI are on Γ . We know that
for L = I, C we can find an orientable two-dimensional surface ΣL such that both
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ΩL \ ΣL have trivial first homology group. Setting ∂ΣC = γC and ∂ΣI = γI , we
choose the orientation of these two cycles in such a way that, if the normal vector on
ΣC has the same direction of γI , then γC is oriented counterclockwise.
Denote by p∗L a harmonic function in H1(ΩL \ ΣL) that has a jump of height 1

across ΣL (namely, the line integral of grad p∗C along γI has value 1, and similarly

for grad p∗I ), so that g̃rad p
∗
L is the basis function ofH(m;ΩL). Then zHI = c g̃radp∗I ,

with c ∈ C. Then we can use as special candidate for vC ∈ X̃C the harmonic vector
field c g̃rad p∗C : in fact we have∫

Γ
c g̃radp∗C × nC · zHI = c

∫
Γ\γC

grad p∗C × nC · zHI
= c

∫
Γ\γC

p∗C divτ(z
H
I × nC) + c

∫
γC

zHI · dτ

= c
∫
γC

zHI · dτ = |c|2
∫
γC
g̃rad p∗I · dτ = |c|2 .

Since ‖zHI ‖0,ΩI = |c|‖g̃radp∗I‖0,ΩI , we obtain the inf–sup condition with β =
(‖g̃radp∗C‖0,ΩC‖g̃radp∗I‖0,ΩI )−1.
For the sake of simplicity, here below the first Betti numbernΩC ofΩC will be sim-

ply denoted by nC . If nC > 1, since Ω is simply-connected the non-bounding cycles
of ΩI are on Γ and we can find 2nC independent non-bounding cycles γ1, . . . , γ2nC

that represent generators of the first homology group on Γ . They can be chosen such
that γk = ∂Σk , k = 1, . . . , nC (see, e.g., Hiptmair and Ostrowski [128]). Moreover,
γnC+1, . . . , γ2nC can be chosen dual to γ1, . . . , γnC , which implies∫

γnC +k

g̃radp∗j,I · dτ = δkj, k, j ∈ {1, . . . , nC} . (4.48)

By proceeding in a similar way, one can easily see that the constant β in the inf–sup
condition is given by

β = min
c∈CnC , c �=0

|c|2
(MCc · c)1/2(M Ic · c)1/2 ,

whereML, L = I, C , is the matrix given byML
kj =

∫
ΩL
g̃radp∗k,L · g̃radp∗j,L, k, j =

1, . . . , nC . �

Remark 4.16. It is worth noting that the solution ẼI to (4.38) is not the physical
electric field we are looking for. In fact, what we have determined satisfies the in-
terface condition ẼI · nI = 0 on Γ , which is not the case for the correct electric
field. Therefore, it has to be interpreted as a vector potential for the magnetic field
HI = iω−1μ−1

I curl ẼI .
In order to be sure that we have really solved the eddy current problem, we have

thus to check that the magnetic field (HC ,HI) satisfies (3.23).
Choosing as vC a smooth vector function with compact support we find (3.23)1,

the Faraday equation in ΩC . Moreover, (3.23)3 and (3.23)4 are trivial from the
definition of HI . In order to verify (3.23)2, the Ampère equation in ΩI , we no-
tice that the second equation of (4.38) holds true also for zI = grad ξI with
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ξI ∈ H1(ΩI). In fact
∫
Γ

HC × nC · grad ξI = 0 because divτ(HC × nC) = 0 on
Γ , and

∫
ΩI

Je,I · grad ξI = 0 because divJe,I = 0 and Je,I · nI = 0 on ∂ΩI . There-
fore, using the orthogonal decomposition (4.41), we conclude that the second equation
in (4.38) holds for each zI ∈ H(curl;ΩI). Taking now as zI a smooth vector function
with compact support we obtain (3.23)2, and then a similar choice with zI vanishing
only in the neighborhood of Γ givesHI × n = 0 on ∂Ω, hence (3.23)6.
Concerning the interface conditions, the choice vC = grad ηC , where ηC is an

arbitrary function in H1(ΩC) (so that divτ (grad ηC × nC) = curl grad ηC · nC = 0
on Γ ), gives easily that iωμCHC · nC + curl ẼI · nC = 0 on Γ , hence (3.23)7.
On the other hand, choosing zI ∈ H(curl;ΩI) and using the Ampère equa-
tion in ΩI and the boundary condition HI × n = 0 on ∂Ω one finds at once
HC × nC − iω−1μ−1

I curl ẼI × nC = 0 on Γ , namely, (3.23)8.
The last condition (3.23)5 follows by taking vC = Rl,C , an extension of the trace

ρl,I × nC in ΩC . Clearly Rl,C ∈ X̃C , as divτ(Rl,C × nC) = divτ (ρl,I × nC) =
curlρl,I · nC = 0 on Γ . This choice and the Faraday equation inΩC yield

0 =
∫
ΩC

[σ−1(curlHC − Je,C) · curlRl,C + iωμCHC ·Rl,C ]
+
∫
Γ

Rl,C × nC · ẼI

=
∫
Γ [σ−1(curlHC − Je,C)− ẼI ]× nC ·Rl,C ,

and therefore (3.23)5, recalling that Rl,C × nC = ρl,I × nC on Γ and

curl ẼI = −iωμIHI in ΩI . �

4.5 A saddle-point approach for the HC /ẼI formulation

In order to get rid of the constrained space X̃C × Z̃I appearing in (4.38), we can make
use of the fact that both the constraints can be included in an augmented variational
problem as extra linear conditions. Let us define the space

X∗
C := {vC ∈ H(curl;ΩC) | divτ (vC × nC) ∈ L2(Γ )} ,

endowed with the graph norm

‖vC‖X∗
C

:= ‖vC‖H(curl;ΩC ) + ‖ divτ (vC × nC)‖0,Γ

(which coincides with ‖vC‖H(curl;ΩC) when vC ∈ X̃C ). Let us also set

L2
�(Γ ) :=

pΓ +1∏
j=1

(L2(Γj)/C) .
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The unconstrained variational problem that we consider is

FindHC ∈ X∗
C , ẼI ∈ H(curl;ΩI), Q ∈ L2

�(Γ ), φI ∈ H1(ΩI )/C :

D((HC , ẼI), (vC , zI))
−
∫
Γ divτ (vC × nC)Q−

∫
ΩI

zI · gradφI = F (vC) + G(zI)∫
Γ
divτ(HC × nC)P = 0∫

ΩI
ẼI · grad ξI = 0

for all vC ∈ X∗
C , zI ∈ H(curl;ΩI), P ∈ L2

� (Γ ), ξI ∈ H1(ΩI )/C .

(4.49)

Note that, since
∫
Γj
divτ (vC × nC) = 0 for each vC ∈ X∗

C and j = 1, . . . , pΓ + 1,
this problem is indeed well-defined for Q, P ∈ L2

� (Γ ), namely, adding on Γj a con-
stant to Q or P does not change the problem. In particular, any function belonging to
L2(Γ ) can be chosen as test function P .

Theorem 4.17. Assume that Ω is simply-connected. Problem (4.49) has a unique so-
lution (HC , ẼI , Q, φI) in X∗

C ×H(curl;ΩI)× L2
� (Γ )×H1(ΩI)/C, and (HC , ẼI)

is the solution to problem (4.38). Moreover, the Lagrange multiplier φI is 0.

Proof. Choosing P = divτ (HC ×nC), it is clear that the two last equations in (4.49)
imply that (HC , ẼI) ∈ X̃C × Z̃I , thus (HC , ẼI) is the solution to problem (4.38).
From Theorem 4.15 and the classical theory of saddle-point problems (see Brezzi and
Fortin [65])we also see that, to prove existence and uniqueness of a solution to problem
(4.49), it is sufficient to verify the inf–sup condition

∃ β∗ > 0 such that
∀ (P, ξI) ∈ L2

�(Γ )×H1(ΩI )/C ∃ (vC , zI) ∈ X∗
C ×H(curl;ΩI) ,

(vC , zI) �= (0, 0) :∣∣∣∫Γ divτ(vC × nC)P +
∫
ΩI

zI · grad ξI
∣∣∣

≥ β∗(‖vC‖X∗
C

+ ‖zI‖H(curl;ΩI))
×(
∑pΓ +1

j=1 ‖P|Γj
‖L2(Γj)/C + ‖ξI‖H1(ΩI )/C) .

(4.50)

Since we can assume that
∫
Γj

P|Γj
= 0 for each j = 1, . . . , pΓ + 1, we can take

vC such that divτ (vC × nC) = P . More precisely, this can be done by using
the Laplace–Beltrami operator Δτ (see Section A.1) and considering the solution
λj ∈ H1(Γj)/C of Δτλj = P|Γj

on Γ , j = 1, . . . , pΓ + 1, a solution that satis-
fies ‖ gradτλj‖0,Γj ≤ C0‖P|Γj

‖0,Γj . Then we take for vC a continuous extension
in H(curl;ΩC) of gradτλj ∈ H−1/2(divτ ;Γj), namely, a function vC satisfying
(vC × nC)|Γj

= gradτλj . In particular vC ∈ X∗
C and

‖vC‖X∗
C
≤ C1

pΓ +1∑
j=1

(‖ gradτλj‖0,Γj + ‖P|Γj
‖0,Γj) ≤ C2‖P ‖0,Γ .
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Choosing zI = grad ξI (where, without restriction, we can also assume that
∫
ΩI

ξI =
0), we have∣∣∣∫Γ divτ (vC × nC)P +

∫
ΩI

zI · grad ξI
∣∣∣ =

∫
Γ
|P |2 +

∫
ΩI
| grad ξI |2

≥ 1
C2C3

‖vC‖X∗
C

∑
j ‖P|Γj

‖0,Γj + ‖zI‖H(curl;ΩI)‖ grad ξI‖0,ΩI ,

since
∑

j ‖P|Γj
‖0,Γj ≤ C3‖P ‖0,Γ . Recalling that ‖P|Γj

‖L2(Γj)/C = ‖P|Γj
‖0,Γj , as∫

Γj
P|Γj

= 0, and moreover that ‖ξI‖H1(ΩI)/C = ‖ξI‖1,ΩI if
∫
ΩI

ξI = 0 (see Sec-
tion A.1), the inf–sup condition (4.50) follows from the Poincaré inequality∫

ΩI

| grad ξI |2 ≥ c0

∫
ΩI

(|ξI |2 + | grad ξI |2) , (4.51)

which is valid for ξI ∈ H1(ΩI) with
∫
ΩI

ξI = 0 (see, e.g., Dautray and Lions [94],
Chap. IV, Sect. 7, Prop. 2).
To show that the Lagrange multiplier φI is 0, we take as test functions in (4.49)

vC = 0, zI = gradφI , P = 0 and ξI = 0. Then we have∫
Γ HC × nC · gradφI −

∫
ΩI
| gradφI|2 =

∫
ΩI

Je,I · gradφI
= −

∫
ΩI
divJe,I φI +

∫
∂Ω∪Γ Je,I · n φI = 0 ,

and also, from (4.49)2,∫
Γ

HC × nC · gradφI = −
∫
Γ

divτ(HC × nC)φI = 0 ,

so that gradφI = 0. �

Remark 4.18. If Je,I · nI �= 0 on Γ , we can consider the functionHe ∈ H0(curl;Ω)
defined in (3.5) and, settingWC = HC −He,C , reformulate problem (4.37) as

Find (WC ,EI) ∈ H(curl;ΩC) × ZI :∫
ΩC

(σ−1 curlWC · curlvC + iωμCWC · vC)

+
∫
Γ

vC × nC · EI = F̃ (vC)∫
Γ

WC × nC · zI + iω−1
∫
ΩI

μ−1
I curlEI · curl zI = G̃(zI)

for all (vC , zI) ∈ H(curl;ΩC)× ZI ,

(4.52)

where

F̃ (vC) :=
∫
ΩC

[
σ−1(Je,C − curlHe,C) · curlvC − iωμCHe,C · vC)

]
,

and
G̃(zI ) =

∫
ΩI

Je,I · zI −
∫
Γ

He,C × nC · zI
=
∫
ΩI
curlHe,I · zI +

∫
Γ He,I × nI · zI

=
∫
ΩI

He,I · curl zI ,
sinceHe,I × n = 0 on ∂Ω.
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The new unknownWC belongs to X̃C and we can proceed as in the case in which
we have assumed JeI ·nI = 0 on Γ . In particular, the unconstrained variational prob-
lem reads

FindWC ∈ X∗
C , ẼI ∈ H(curl;ΩI), Q ∈ L2

� (Γ ), φI ∈ H1(ΩI )/C :

D((WC , ẼI), (vC , zI)) −
∫
Γ
divτ(vC × nC)Q

−
∫
ΩI

zI · gradφI = F̃ (vC) + G̃(zI)∫
Γ divτ (WC × nC)P = 0∫
ΩI

ẼI · grad ξI = 0

for all vC ∈ X∗
C , zI ∈ H(curl;ΩI), P ∈ L2

� (Γ ), ξI ∈ H1(ΩI)/C .

(4.53)

If Je,I · nI ∈ L2(Γ ), then in fact HC ∈ X∗
C and it is possible to avoid the use of

He, considering the problem

FindHC ∈ X∗
C , ẼI ∈ H(curl;ΩI), Q ∈ L2

� (Γ ), φI ∈ H1(ΩI)/C :

D((HC , ẼI), (vC , zI))−
∫
Γ
divτ (vC × nC)Q

−
∫
ΩI

zI · gradφI = F (vC) + G(zI)∫
Γ
divτ (HC × nC)P = −

∫
Γ

Je,I · nI P∫
ΩI

ẼI · grad ξI = 0

for all vC ∈ X∗
C , zI ∈ H(curl;ΩI), P ∈ L2

� (Γ ), ξI ∈ H1(ΩI)/C .

(4.54)

Both problems (4.53) and (4.54) have the same structure of (4.49). �

Remark 4.19. For the electric boundary condition (1.20) the variational problem is

FindHC ∈ X∗
C , ẼI ∈ H0,∂Ω(curl;ΩI), Q∗ ∈ L2

� (Γ )
φ∗
I ∈ H1

0,∂Ω(ΩI ) :

D((HC , ẼI), (vC , zI))
−
∫
Γ divτ (vC × nC)Q∗ −

∫
ΩI

zI · gradφ∗
I = F (vC) + G(zI)∫

Γ
divτ (HC × nC)P ∗ = 0∫

ΩI
ẼI · grad ξ∗I = 0

for all vC ∈ X∗
C , zI ∈ H0,∂Ω(curl;ΩI), P ∗ ∈ L2

� (Γ ),
ξ∗I ∈ H1

0,∂Ω(ΩI) ,

(4.55)

where, as for the magnetic boundary conditions, ẼI is a vector potential of−iωμIHI .
It is easy to verify, by proceeding as in Remark 4.16, that HC and HI =
−(iω)−1μ−1

I curlEI are a solution of the strong problem (3.42).
It can be shown that in the present case it is not necessary to assume that Ω is

simply-connected. �
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4.5.1 Finite element discretization

Let Pk be the set of complex polynomials of degree less than or equal to k in x1, x2,
x3, and P̃k the set of homogeneous complex polynomials of degree k. Then for k ≥ 1
we consider the (complex-valued) Nédélec curl-conforming edge elements

Nk
h := {zh ∈ H(curl;Ω) | zh|K ∈ Rk ∀ K ∈ Th} , (4.56)

whereRk := (Pk−1)3⊕Sk and Sk := {p ∈ (P̃k)3 | p(x) ·x = 0} (see Section A.2).
In order to obtain a finite element approximation of the variational problem (4.38),

we introduce the finite element spaces

X̃C,h := {vC,h ∈ Nk
C,h | divτ (vC,h × nC) = 0 on Γ }, (4.57)

and

Z̃I,h := {zI,h ∈ Nk
I,h |

∫
ΩI

zI,h · grad ξI,h = 0 ∀ ξI,h ∈ LkI,h} , (4.58)

where Nk
C,h and Nk

I,h are the Nédélec curl-conforming edge elements related to the
domains ΩC and ΩI , respectively. We also denote by

LkI,h := {ξI,h ∈ C0(ΩI) | ξI,h|K ∈ Pk ∀ K ∈ TI,h}

the standard piecewise-polynomial Lagrange nodal elements (see Section A.2).
We consider the following finite element approximation of the hybrid HC/EI

formulation

Find (HC,h, ẼI,h) ∈ X̃C,h × Z̃I,h :∫
ΩC

(σ−1 curlHC,h · curlvC,h + iωμCHC,h · vC,h)
+
∫
Γ

vC,h × nC · ẼI,h = F (vC,h)∫
Γ HC,h × nC · zI,h + iω−1

∫
ΩI

μ−1
I curl ẼI,h · curl zI,h = G(zI,h)

for all (vC,h, zI,h) ∈ X̃C,h × Z̃I,h .

(4.59)

Theorem 4.20. Assume that Ω is simply-connected and that the families of triangula-
tions TC,h and TI,h are obtained as a refinement of coarse triangulations TC,h0 and
TI,h0 for a fixed h0. Then the variational problem (4.59) has a unique solution in

X̃C,h × Z̃I,h.

Proof. First we note that the space Z̃I,h can be decomposed similarly to Z̃I in (4.45).
In fact, we have gradLkI,h ⊂ H0(curl;ΩI) ∩ Nk

I,h (note that in general geometrical
configurations these two spaces do not coincide). Consequently, the functions inNk

I,h

that are (L2(ΩI))3-orthogonal toH0(curl;ΩI) ∩Nk
I,h are included in Z̃I,h, namely,

[H0(curl;ΩI) ∩Nk
I,h]

⊥ ⊂ Z̃I,h. Denoting by

HI,h := H0(curl;ΩI) ∩ Z̃I,h
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(in the discrete case this corresponds to the space of harmonic vector fieldsH(m;ΩI),
though it is not a subspace of it), we finally have

Z̃I,h = [H0(curl;ΩI) ∩Nk
I,h]

⊥ ⊕HI,h . (4.60)

It is also checked easily that dimH(m;ΩI ) = dimHI,h.
Based on (4.60) we can rewrite (4.59) in equivalent form as

FindHC,h ∈ X̃C,h, Ẽ⊥
I,h ∈ [H0(curl;ΩI) ∩Nk

I,h]
⊥, ẼH

I,h ∈ HI,h :

D((HC,h, Ẽ⊥
I,h), (vC,h, z

⊥
I,h)) +

∫
Γ

vC,h × nC · ẼH
I,h = F (vC,h) + G(z⊥I,h)∫

Γ
HC,h × nC · zHI,h = G(zHI,h)

for all vC,h ∈ X̃C,h, z⊥I,h ∈ [H0(curl;ΩI) ∩Nk
I,h]

⊥, zHI,h ∈ HI,h .

To prove thatD(·, ·) is uniformly coercive in X̃C,h × [H0(curl;ΩI) ∩Nk
I,h]

⊥ we
can proceed as in the continuous case, since there exists a constant C2, independent of
h, such that

‖vI,h‖0,ΩI ≤ C2‖ curlvI,h‖0,ΩI ∀ vI,h ∈ [H0(curl;ΩI) ∩Nk
I,h]

⊥

(the proof is similar to that of Lemma 4.7).
Now we need to check the discrete inf–sup condition

∃ β̃ > 0 such that
∀ zHI,h ∈ HI,h ∃vC,h ∈ X̃C,h ,vC,h �= 0 :∣∣∣∫Γ vC,h × nC · zHI,h

∣∣∣ ≥ β̃‖vC,h‖H(curl;ΩC) ‖zHI,h‖0,ΩI .

(4.61)

For the sake of simplicity, we start assuming that ΩC is a torus, so its first Betti
number nΩC is equal to 1. Since Ω is simply-connected, the non-bounding cycles
of ΩI are on Γ and the first Betti number nΩI of ΩI is also equal to 1. As in the
proof of Theorem 4.15, we can consider the “cutting” surfaces ΣL, L = I, C . Let us
denote by ΠL the piecewise-linear function, defined on a coarse mesh TL,h0 , which
takes value 1 at the nodes on one side of ΣL and 0 at all the other nodes. Then, if the
family of triangulations TL,h are obtained by refining the coarse mesh TL,h0 , g̃radΠI

belongs to H0(curl;ΩI) ∩ N1
I,h (thus to H0(curl;ΩI) ∩ Nk

I,h), but clearly, due to

the jump of ΠI on ΣI , g̃radΠI �∈ gradL1
I,h. Any function zHI,h can be written as

zHI,h = c g̃radΠI + grad ξI,h for some c ∈ C and ξI,h ∈ LkI,h. Therefore we choose

vC,h = c g̃radΠC ∈ X̃C,h, and we can proceed as in the continuous case. At first, we
have to note that for grad ξI,h the line integral on a closed cycle is always vanishing.
Moreover, we have

‖zHI,h‖20,ΩI
=
∫
ΩI

zHI,h · zHI,h = c
∫
ΩI

zHI,h · g̃radΠI

≤ |c|‖g̃radΠI‖0,ΩI‖zHI,h‖0,ΩI ,

so that ‖zHI,h‖0,ΩI ≤ |c|‖g̃radΠI‖0,ΩI . Therefore, the proof ends as in the continuous
case.
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For the Betti number nΩC = nC > 1, one arrives at the inf–sup constant

β̃ = min
c∈CnC ,c �=0

|c|2

(M̃Cc · c)1/2(M̃ Ic · c)1/2
,

where M̃L, L = I, C , is the matrix given by M̃L
lj =

∫
ΩL g̃radΠl,L · g̃radΠj,L, l, j =

1, . . . , nC . �

Remark 4.21. From the arguments of Theorem 4.20 we readily derive that for all
(Fh,Gh) ∈ (X̃C,h)′ × (Z̃I,h)′ there exists a unique solution of the problem

Find (uC,h,wI,h) ∈ X̃C,h × Z̃I,h :

D((uC,h,wI,h), (vC,h, zI,h)) = 〈Fh,vC,h〉+ 〈Gh, zI,h〉

for all (vC,h, zI,h) ∈ X̃C,h × Z̃I,h ,

(4.62)

where 〈·, ·〉 denotes the duality pairing. Moreover, the solution is bounded as follows

‖uC,h‖H(curl;ΩC) + ‖wI,h‖H(curl;ΩI ) ≤ C∗(‖Fh‖( ˜XC,h)′ + ‖Gh‖( ˜ZI,h)′) .

The constant C∗ depends on the continuity constant of the bilinear form D(·, ·) in
X̃C×(H0(curl;ΩI))⊥, on its coerciveness constant in X̃C,h×[H0(curl;ΩI)∩XI,h]⊥,
and on the constant β̃ in (4.61), hence it is independent of h. As a consequence, it is
easily shown that

∃α > 0, independent of h, such that
∀ (uC,h,wI,h) ∈ X̃C,h × Z̃I,h ∃ (vC,h, zI,h) ∈ X̃C,h × Z̃I,h ,
(vC,h, zI,h) �= (0, 0) :
D((uC,h,wI,h), (vC,h, zI,h))
≥ α(‖vC,h‖H(curl;ΩC) + ‖zI,h‖H(curl;ΩI ))

×(‖uC,h‖H(curl;ΩC) + ‖wI,h‖H(curl;ΩI )) ,

(4.63)

that is a uniform inf–sup condition. �

For devising a suitable conforming finite element approximation of the uncon-
strained problem (4.49) we need another discrete space. We start from

Ck−1
Γj ,h

:= {Ph,j ∈ L2(Γj) | Ph,j|T ∈ Pk−1 ∀T ∈ TΓj ,h} ,

where TΓj ,h is the restriction to Γj of the mesh TC,h, and then we define

Y k−1
Γ,h :=

pΓ +1∏
j=1

(Ck−1
Γj,h

/C) .
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We consider the following problem

FindHC,h ∈ Nk
C,h, ẼI,h ∈ Nk

I,h, Qh ∈ Y k−1
Γ,h , φI,h ∈ LkI,h/C :

D((HC,h, ẼI,h),vC,h, zI,h)) −
∫
Γ
divτ(vC,h × nC)Qh

−
∫
ΩI

zI,h · gradφI,h = F (vC,h) + G(zI,h)∫
Γ divτ (HC,h × nC)Ph = 0∫
ΩI

ẼI,h · grad ξI,h = 0

for all vC,h ∈ Nk
C,h, zI,h ∈ Nk

I,h, Ph ∈ Y k−1
Γ,h , ξI,h ∈ LkI,h/C .

(4.64)

Theorem 4.22. Under the assumptions of Theorem 4.20, problem (4.64) has a unique
solution (HC,h, ẼI,h, Qh, φI,h) in Nk

C,h×Nk
I,h×Y k−1

Γ,h ×LkI,h/C, and (HC,h, ẼI,h)
is the solution to problem (4.59). Moreover, the Lagrange multiplier φI,h is 0.

Proof. Since divτ (HC,h × nC)|Γj
∈ Ck−1

Γj,h
, choosing Ph = divτ (HC,h × nC) we

have that (HC,h, ẼI,h) ∈ X̃C,h× Z̃I,h, and we conclude at once that (HC,h, ẼI,h) is
the solution to (4.59). Moreover, estimate (4.63) holds, and, as in the proof of Theo-
rem 4.17, we only need to verify the uniform discrete inf–sup condition

∃β∗ > 0, independent of h, such that
∀Ph ∈ Y k−1

Γ,h , ξI,h ∈ LkI,h/C ∃ (vC,h, zI,h) ∈ Nk
C,h ×Nk

I,h ,

(vC,h, zI,h) �= (0, 0) :∣∣∣∫Γ divτ(vC,h × nC)Ph +
∫
ΩI

zI,h · grad ξI,h
∣∣∣

≥ β∗(‖vC,h‖X∗
C

+ ‖zI,h‖H(curl;ΩI))
×(
∑pΓ +1

j=1 ‖Ph|Γj
‖L2(Γj)/C + ‖ξI,h‖H1(ΩI)/C) .

(4.65)

Without restriction we can assume that
∫
Γj

Ph|Γj
= 0 and

∫
ΩI

ξI,h = 0. Then we
choose zI,h = grad ξI,h and vC,h such that divτ (vC,h×nC) = Ph. More precisely, let
us denote by XΓj,h the space of tangential traces on Γj ofNk

C,h (namely, the Raviart–
Thomas finite elements on Γj) and by X 0

Γj,h
the kernel of the divτ operator in XΓj,h,

j = 1, . . . , pΓ + 1. Since

divτ XΓj ,h =
{
Ph,j ∈ Ck−1

Γj ,h
|
∫
Γj

Ph,j = 0
}

,

there exists a function rh,j ∈ (X 0
Γj,h

)⊥ such that divτ rh,j = Ph|Γj
. We can take for

vC,h a uniformly continuous extension in Nk
C,h of rh,j (see Alonso and Valli [9]), so

that (vC,h × nC)|Γj
= rh,j .

It can be shown that there exists a constant C0 > 0, independent of h, such that

‖sh|Γj
‖0,Γj ≤ C0‖ divτ sh|Γj

‖0,Γj ∀ sh|Γj
∈ (X 0

Γj,h)
⊥ .

In fact, let us consider the Laplace–Beltrami operatorΔτ (see Section A.1) and denote
by pj ∈ H1(Γj)/C the solution ofΔτpj = divτ sh|Γj

on Γj , j = 1, . . . , pΓ +1. This
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solution satisfies ‖ gradτpj‖δ,Γj ≤ C0‖ divτ sh|Γj
‖0,Γj for a suitable δ > 0. We have

‖sh|Γj
‖0,Γj ≤ ‖sh|Γj

− gradτpj‖0,Γj + ‖ gradτpj‖0,Γj ;

moreover, denoting by Ih,Γj the interpolation operator in XΓj,h, from the fact that
(sh|Γj

− Ih,Γj gradτpj) ∈ X 0
Γj,h

we have

‖sh|Γj
− gradτpj‖20,Γj

=
∫
Γj

(sh|Γj
− gradτpj) · (sh|Γj

− Ih,Γj gradτpj)
+
∫
Γj

(sh|Γj
− gradτpj) · (Ih,Γj gradτpj − gradτpj)

=
∫
Γj

(sh|Γj
− gradτpj) · (Ih,Γj gradτpj − gradτpj)

≤ ‖sh|Γj
− gradτpj‖0,Γj‖Ih,Γj gradτpj − gradτpj‖0,Γj .

Finally, following Buffa et al. [72], Theor. 4.2, we find that

‖Ih,Γj gradτpj − gradτpj‖0,Γj

can be estimated by ‖ divτ sh|Γj
‖0,Γj .

In conclusion,

‖vC,h‖X∗
C

= ‖vC,h‖H(curl;ΩC) + ‖ divτ (vC,h × nC)‖0,Γ
≤ C1

∑
j(‖rh,j‖0,Γj + ‖Ph|Γj

‖0,Γj)
≤ C2‖Ph‖0,Γ ,

and, by proceeding as in the continuous case, we have (4.65).
The proof that the Lagrange multiplier φI,h ∈ LkI,h\C is equal to 0 is easily done.

In fact, we have already noted that from the second equation in (4.64) it follows that
divτ(HC,h×nC) = 0 onΓ . Now taking (0, gradφI,h) ∈ Nk

C,h×Nk
I,h as test function

in the first equation of (4.64) we have that∫
Γ

HC,h × nC · gradφI,h −
∫
ΩI

| gradφI,h|2 =
∫
ΩI

Je,I · gradφI,h .

Since divJe,I = 0 inΩI and Je,I ·n = 0 on ∂Ω ∪Γ , integrating by parts the first and
third term we find

∫
ΩI
| gradφI,h|2 = 0, hence φI,h = 0 in LkI,h\C. �

The convergence of the solution of problem (4.64) to the solution of problem
(4.49) is a consequence of the standard theory of saddle-point problems (see Brezzi
and Fortin [65]). An usual density argument and the interpolation estimates in Sec-
tion A.2 yields the following convergence theorem (see Section A.1 for notation).

Theorem 4.23. Let the assumptions of Theorem 4.20 be satisfied. Let HC , ẼI , Q and
φI = 0 be the solution of problem (4.49) and HC,h, ẼI,h, Qh and φI,h = 0 be the
solution of problem (4.64). The finite element approximation method is convergent
and, if HC ∈ Hr(curl;ΩC), ẼI ∈ Hr(curl;ΩI) and Q ∈ Hs(Γ ) with r > 1/2 and
s > 0, the following error estimate holds

‖HC −HC,h‖H(curl;ΩC) ≤ Chmin (r,k)

‖ẼI − ẼI,h‖H(curl;ΩI) ≤ Chmin (r,k)

‖Q−Qh‖0,Γ ≤ Chmin (r,s,k) .

(4.66)
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Remark 4.24. A suitable finite element basis of the constrained space X̃C,h for k = 1
is presented in Section 7.6.2, and could be used for avoiding the introduction of the
Lagrange multiplierQh. �

Remark 4.25. Since in (4.49) the vector field ẼI is not the physical electric field, the
numerical solution ẼI,h is not a correct approximation ofEI . If interested in that, see
Section 5.5. �

Remark 4.26. For the electric boundary condition (1.20) the discrete variational prob-
lem is

FindHC,h ∈ Nk
C,h, ẼI,h ∈ Xk

I,h, Q
∗
h ∈ Y k−1

Γ,h ,

φ∗
I,h ∈ LkI,h ∩H1

0,∂Ω(ΩI) :

D((HC,h, ẼI,h), (vC,h, zI,h))−
∫
Γ
divτ (vC,h × nC)Q∗

h

−
∫
ΩI

zI,h · gradφ∗
I,h = F (vC,h) + G(zI,h)∫

Γ
divτ(HC,h × nC)P ∗

h = 0∫
ΩI

ẼI,h · grad ξ∗I,h = 0

for all vC,h ∈ Nk
C,h, zI,h ∈ Xk

I,h, P
∗
h ∈ Y k−1

Γ,h ,

ξ∗I,h ∈ LkI,h ∩H1
0,∂Ω(ΩI) ,

(4.67)

where Xk
I,h := Nk

I,h ∩H0,∂Ω(curl;ΩI). Note that it is not necessary to assume that
Ω is simply-connected. �

4.5.2 Some remarks on implementation

In this section, followingAlonso Rodríguezand Vázquez Hernández [21], we focus on
the resolution of the linear system arising from (4.64) in the case k = 1. Let us consider
the followingbases {vlC,h}NC

l=1, basis ofN
1
C,h, {zlI,h}NI

l=1 , basis ofN
1
I,h, {P l

h}Kl=1, basis

of Y 0
Γ,h and {ξlI,h}MI

l=1, basis of L
1
I,h/C. We also consider the following matrices

MC = {mC
i,j} , mC

i,j := ω

∫
ΩC

μvjC,h · viC,h

SC = {sCi,j} , sCi,j :=
∫
ΩC

σ−1 curlvjC,h · curlviC,h

SI = {sIi,j} , sIi,j := ω−1

∫
ΩI

μ−1 curl zjI,h · curl ziI,h

D = {di,j} , di,j :=
∫
Γ

vjC,h × nC · ziI,h

BC = {bCi,j} , bCi,j :=
∫
Γ

divτ (v
j
C,h × nC)P i

h
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BI = {bIi,j} , bIi,j :=
∫
ΩI

zjI,h · grad ξiI,h ,

and finally we set AC := SC + iMC and AI = iSI .
System (4.64) can be written as⎡⎢⎢⎣

AC DT BT
C

D AI BT
I

BC

BI

⎤⎥⎥⎦
⎡⎢⎢⎣

HC

ẼI

Q
ΦI

⎤⎥⎥⎦ =

⎡⎢⎢⎣
FC
GI

0
0

⎤⎥⎥⎦ . (4.68)

The complex vectors HC , ẼI , Q and ΦI are the coefficients of HC,h, ẼI,h, Qh and
φI,h in the chosen bases of N1

C,h, N
1
I,h, Y

0
Γ,h and L1

I,h\C, respectively. The complex
vectorsFC andGI are obtained by applying the functionalsF andG to the elements of
the basis ofN1

C,h andN1
I,h, respectively. All the matrices SC , SI ,MC ,D,BC andBI

are real. SC and SI are symmetric and positive semi-definite, whileMC is symmetric
and positive definite.
Problem (4.68) is an indefinite system that arises from a saddle-point problem. It

has the form [
A BT

B

] [
x
y

]
=
[
f
0

]
,

with A and B block-structured matrices. A is a complex matrix with symmetric and
positive semi-definite real and imaginary parts. It can be solved using, for instance,
the method presented in Hu and Zou [135] (see also Benzi et al. [37] for a review
of numerical methods for the solution of saddle-point problems). However, to take
advantage of the fact that the system arises from an eddy current problem with two
different subdomains, we rearrange system (4.68) in the following way⎡⎢⎢⎣

AC BT
C DT

BC

D AI BT
I

BI

⎤⎥⎥⎦
⎡⎢⎢⎣

HC

Q

ẼI

ΦI

⎤⎥⎥⎦ =

⎡⎢⎢⎣
FC
0
GI

0

⎤⎥⎥⎦ . (4.69)

Proceeding as in Theorem 4.22, it is easy to see that the block

[
AC BT

C

BC

]
is non-

singular.
Since we know that ΦI = 0, it is possible to eliminate this unknown considering

the reduced system⎡⎣AC BT
C DT

BC

D AI + iγBT
I BI

⎤⎦⎡⎣HC

Q

ẼI

⎤⎦ =

⎡⎣ FC
0
GI

⎤⎦ , (4.70)

where the parameter γ is any positive real number, and we have taken into account the
equationBIẼI = 0.

Lemma 4.27. System (4.69) and system (4.70) are equivalent.



94 4 Hybrid formulations for the electric and magnetic fields

Proof. Since system (4.69) has a unique solution (HC, Q, ẼI, ΦI) with ΦI = 0, and
in particular BI ẼI = 0, it is clear that (HC , Q, ẼI) is solution of (4.70). Hence it is
enough to show that (4.70) has a unique solution. Let (VC , P, ZI) be a solution to⎡⎣AC BT

C DT

BC

D AI + iγBT
I BI

⎤⎦⎡⎣ VC
P
ZI

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ ;

recalling that AC = SC + iMC and AI = iSI , we have

(SC + iMC )VC · VC + BT
CP · VC + DTZI · VC = 0

BCVC · P = 0
DVC · ZI = −i(SI + γBT

I BI)ZI · ZI .
(4.71)

Replacing BT
CP · VC = BCVC · P and DTZI · VC = DVC · ZI in the first equation

of (4.71) by the values given by the second and third equation we get

SCVC · VC + i(MCVC · VC + SIZI ·ZI + γBT
I BIZI · ZI) = 0 .

In particular, since MC is symmetric and positive definite and SI is symmetric and
positive semi-definite, it follows that BIZI = 0. This means that⎡⎢⎢⎣

AC BT
C DT

BC

D AI BT
I

BI

⎤⎥⎥⎦
⎡⎢⎢⎣

VC
P
ZI
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ ,

hence we have found a solution to the homogeneous system (4.69). �

Even if for any value of γ > 0 systems (4.69) and (4.70) are equivalent, the com-
puted solutions for small values of γ could be different, because in the limit case γ = 0
the reduced system is singular. On the other hand, for big values of γ the matrix of the
reduced system is ill-conditioned. The convergence rate of the resolution algorithms
depends on the choice of this parameter, more precisely γ should be chosen such that
the matrices SI and γBT

I BI are balanced in norm.

Remark 4.28. It is worth noting that the matrix AI + iγBT
I BI = i(SI + γBT

I BI )
is invertible if and only if ΩI is simply-connected. In fact, let us consider the space
Z̃I,h introduced in (4.58), that, as shown in Theorem 4.20, can be decomposed as the
following direct sum

Z̃I,h = [H0(curl;ΩI) ∩N1
I,h]

⊥ ⊕HI,h ,

where
HI,h := H0(curl;ΩI) ∩ Z̃I,h .

Given ZI ∈ Cn, let us denote by zI,h the function in N1
I,h with coefficients ZI .

From the definitions of SI and BI we see that (SI + γBT
I BI )ZI = 0 if and only
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if curl zI,h = 0 and zI,h ∈ Z̃I,h, which means that zI,h ∈ HI,h. Moreover it can
be proved that dimHI,h = dimH(m;ΩI ), which is 0 if and only if ΩI is simply-
connected.
On the other hand, let us consider the perturbed matrix SI + γBT

I BI + εDDT . It
is possible to prove that this matrix is non-singular for each ε > 0, and this result is
true in any geometrical configuration. In fact, if (SI + γBT

I BI + εDDT )ZI = 0 we
have in particular (SI + γBT

I BI )ZI = 0 andDTZI = 0, hence zI,h ∈ HI,h and∫
Γ

vC,h × nC · zI,h = 0

for all vC,h ∈ N1
C,h. From the discrete inf–sup condition (4.61) it follows that zI,h =

0, hence ZI = 0. �

We present now two different algorithms for solving system (4.70), both of them
taking advantage from the fact that the problem is formulated in two subdomains.

Modified SOR method

It is a block-version of the SOR method. If the domain ΩI is not simply-connected,
the subproblem in the insulating region is modified by adding the term iεDDT , so
that we have non-singular matrices on the diagonal of the block decomposition (see
Remark 4.28). In Kanayama et al. [147] a similar idea has been used to solve the
problem formulated in terms of a magnetic vector potential in the whole domainΩ. In
that paper the problem is perturbed by adding a term of the form εM , whereM is the
mass matrix inΩ, namely, the matrix that corresponds to the scalar product

∫
Ω

w · z.
In our experience, using in the insulator the matrix DDT instead of the mass matrix
MI improves the convergence of the method. The algorithm reads

Algorithm 4.29. Given H0
C , Q0 and Ẽ0

I , for m ≥ 0 solve[
AC BT

C

BC

] [
H
m+1/2
C

Qm+1/2

]
=
[
FC −DT Ẽm

I

0

]
,

set [
Hm+1
C

Qm+1

]
= (1− θ)

[
Hm
C

Qm

]
+ θ

[
H
m+1/2
C

Qm+1/2

]
,

then solve

i(SI + γBT
I BI + εDDT )Ẽm+1/2

I = GI −DHm+1
C + iεDDT Ẽm

I ,

and finally set
Ẽm+1
I = (1− θ)Ẽm

I + θẼ
m+1/2
I .

The real number θ is the relaxation parameter of the SORmethod and has to satisfy
0 < θ < 2. The parameter ε is taken equal to 0 if the subdomain ΩI is simply-
connected; otherwise we choose a suitable ε > 0. The performance of the algorithm
depends on the appropriate selection of both parameters (see Table 4.2).
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At each iteration of the algorithm one needs to solve a linear system in each sub-
domain. To solve the subproblem in the insulator we use the preconditioned conju-
gate gradient method, taking as preconditioner an incomplete Cholesky factorization
of SI + γBT

I BI + εDDT .
For the subproblem in the conductorwe take into account its saddle-point structure,

and solve it with an inexact Uzawa algorithmwith variable relaxation parameters (see
Hu and Zou [134] for the real case). For a system of the general form[

AC BT
C

BC

] [
h
q

]
=
[
f
0

]
the algorithm reads: given h0 and q0, for j ≥ 0 set

hj+1 = hj + ωjÂ
−1
C

[
f − (AChj + BT

Cqj)
]
,

and
qj+1 = qj + τj P̂

−1
C BChj+1,

where ÂC is a preconditioner for AC and P̂C is a preconditioner for BCÂ−1
C BT

C . In
particular, we take as ÂC an incomplete LU factorization of AC , and as P̂C an in-
complete LU factorization of BCΛ−1

C BT
C , where ΛC is the diagonal matrix with the

elements of the diagonal of AC . The parameters ωj and τj are computed dynamically
at each iteration, as it is done in Hu and Zou [134].

Uzawa-like method

An alternative approach for the solution of (4.70) is to consider an Uzawa-like method.
Since this kind of method does not require the (2,2)-block of the matrix (in our case the
block i(SI +γBT

I BI)) to be invertible, it can be used without penalization even in the
case of a conductor with general topology. In particular, we consider a preconditioned
Uzawa method with variable relaxation parameter. We formally adapt to system (4.70)
the algorithm analyzed in Hu and Zou [134] for a real system with null (2,2)-block,

i.e., a real system of the form

[
K DT

D

]
, withK symmetric and positive definite. The

algorithm that we propose reads as follows

Algorithm 4.30. Given Ẽ0
I , for m ≥ 0 solve[

AC BT
C

BC

][
Hm+1
C

Qm+1

]
=
[
FC −DT Ẽm

I

0

]
,

then compute
rm = DHm+1

C + i(SI + γBT
I BI )Ẽm

I −GI ,

dm = N̂−1rm ,

and

τm =
rm · dm

Â−1
C DT dm ·DT dm − i(SI + γBT

I BI)dm · dm
,
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and set
Ẽm+1
I = Ẽm

I + ηmτmdm .

Here ηm is a parameter that, for an exact Uzawa algorithm, has to satisfy 0 < ηm ≤
1
2
; the matrix N̂ is a preconditioner for

N =
[
D 0

] [AC BT
C

BC 0

]−1 [
DT

0

]
− i(SI + γBT

I BI) , (4.72)

and ÂC is a preconditioner forAC .
In all the numerical tests presented in Section 4.5.3 we have set ηm = 1/2, and

we have taken as preconditioner ÂC an incomplete LU factorization of the matrixAC ,
and as preconditioner N̂ an incomplete LU factorization of the matrix SI + γBT

I BI

(the first term in (4.72) has a structure that is not easy to treat, therefore in the choice
of the preconditioner we have taken into account only the second term).

4.5.3 Numerical results

The finite element methods and the algorithms introduced in the previous section have
been implemented in MATLAB by Alonso Rodríguez and Vázquez Hernández [21]. In
the followingwe present some numerical tests illustratinghow the algorithms perform.
In the first set of numerical experiments we solve a problem with a known analytical
solution to validate the computer code and test the convergence properties of the meth-
ods. In the second and third numerical test we consider a torus-shaped coil inducing
eddy currents in a conductor which is a torus in the second test problem and a tre-
foil knot in the third one. The last case concerns the benchmark problem number 7 in
the TEAM Workshop, which deals with an asymmetrical conductor with a hole (see
Fujiwara and Nakata [107], Kanayama et al. [147]).
All the simulations have been run on a single processor Intel Xeon QuadCore 5430

2.66GHz. The stopping test for the modified SOR and the Uzawa-like solvers of the
linear system (4.70) (written here as Ax = b) is

maxi |bi − (Ax)i|
maxi |bi|

< 10−6 .

A problem with a known analytical solution

In this set of tests the conductor ΩC and the domain Ω are two cubes centered at the
origin and with edge length equal to 2 and 10, respectively. We shall construct an
analytical solution (HC , ẼI) which will consist of two C2-functions with compact
supports inΩC and ΩI , respectively.
Let us suppose thatω, μ and σ|ΩC

are positive constants equal to 1, and that σ|ΩI
=

0. Given a closed ball centered at x0 ∈ Ω and with radius r0, we define the function
p(x) with support in this ball as follows

p(x) =

{
q
(

|x−x0|
r0

)
, if |x− x0| ≤ r0,

0, if |x− x0| > r0,
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q being the unique eighth degree polynomial such that q(0) = 1, q(1) = q(−1) = 0
and with its first three derivatives vanishing at the points 1 and −1. It is easily seen
that q is given by the expression

q(t) = t8 − 4t6 + 6t4 − 4t2 + 1 .

Now, letΘC be the closed ball centered at the origin with radius r0 = 0.9, andΘI

the ball with center at x0 = (0, 3, 0) and radius r0 = 1.9. Obviously, the two balls are
disjoint and they are strictly contained inΩC andΩI , respectively. Let us denote by pC
and pI the functions corresponding to the balls ΘC and ΘI , and define the “electric”
field in the insulator as

ẼI := curl(0, 0, pI) =
(

∂pI
∂y

,−∂pI
∂x

, 0
)

,

and the electric field and the magnetic field in the conductor as

EC := curl(0, 0, pC) =
(
∂pC

∂y ,−∂pC

∂x , 0
)

HC := i curl(curl(0, 0, pC)) = i
(
∂2pC

∂x∂z ,
∂2pC

∂y∂z ,−
∂2pC

∂x2 − ∂2pC

∂y2

)
.

Now one can easily compute Je,C and Je,I , and check that the excitation current den-
sity Je satisfies the three compatibility conditions.
The program has been tested by solving this academic problem with four succes-

sively refined meshes, with grid sizes corresponding to h, h/2, h/3 and h/4 and setting
the parameter γ = 1 in the four cases. In Table 4.1 we present the relative error be-
tween the computed and the exact solutions.More precisely, we set

eH =
‖HC −HC,h‖H(curl;ΩC)

‖HC‖H(curl;ΩC)
, eE =

‖ẼI − ẼI,h‖H(curl;ΩI )

‖ẼI‖H(curl;ΩI )

.

Figure 4.1 shows the plots in a log–log scale of the relative errors of eH and eE versus
the mesh size h. As it can be seen, the error is reduced when the mesh is refined, and
linear convergence can be observed for the computations on the last meshes. However,
the relative error for the finest mesh is still quite large. One of the reasons for these
large errors is that the solution of our problem is a polynomial of seventh degree, and
the support is concentrated in a small part of the domain.
In Table 4.1 we also present the number of iterations and the computational time

needed for solving system (4.70) using the SOR method with relaxation parameter
θ = 0.6 and using the Uzawa method. For this test case, sinceΩI is simply-connected,
in the SOR method we take the perturbation parameter ε = 0. The computational time
includes the calculation of the preconditioners.
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Fig. 4.1. Relative errors versus mesh size h

Table 4.1. Results for problem with known analytical solution

SOR (θ = 0.6) Uzawa

Elements DoF eH eE iterations time [s] iterations time [s]

1155 1721 0.9710 0.8128 16 2.0 18 1.2

9240 12245 0.6668 0.5163 16 38.4 24 24.2

31185 39656 0.5377 0.3399 16 317.1 73 201.0

73920 92039 0.4253 0.2607 16 2118.6 239 1089.9

Two tori

In the second test the computational domain is a cube with edge length 27 cm. We
consider two coaxial tori of square sectionwith edge length 1 cm and radius 6.5 cm: the
upper torus is a coil, included in the insulating regionΩI , where we impose a clockwise
current densityJe,I ofmagnitude 106A/m2, whereas the second torus is the conductor.
We are taking μ = μ0 = 4π×10−7 H/m, i.e., the magnetic permeability of the air, the
electric conductivity σ = 107 S/m and the angular frequency ω = 2π × 50 rad/s. The
parameter γ is set equal to 106/(ωμ). In this case, since the insulating regionΩI is not
simply-connected (precisely, there is one non-bounding cycle inΩI ), the parameter ε
in the SOR method must be positive.
We present in Table 4.2 the convergence results for different choices of ε and θ for

a non-uniformmesh with 27152 elements (the mesh is finer in the coil and the conduc-
tor).Then we take the best values found for both parameters (θ = 0.5, ε = 105) and use
them in three different meshes to compare the behavior of the modified SOR and the
Uzawa methods. The results are summarized in Table 4.3.We also include in Table 4.4
the results obtainedwith a different choice ofγ, specifically γ = ‖SI‖2/‖BI‖22. Notice
that the cost of one iteration of the SOR method depends on γ, because the condition
number of SI + γBT

I BI + εDDT is quite sensitive to it.
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Table 4.2. Two tori. Results for the SOR method with several values of θ and ε (NC: not con-
vergent)

ε = 105 ε = 106 ε = 107

iterations time [s] iterations time [s] iterations time [s]

θ = 0.25 51 552.1 195 975.7 1749 4693.5

θ = 0.5 22 340.7 96 574.4 873 2435.9

θ = 0.75 NC NC 63 436.9 581 1701.3

θ = 1 NC NC 47 367.9 435 1321.3

θ = 1.25 NC NC NC NC 358 1127.4

Table 4.3. Two tori. Comparison of SOR and Uzawa methods (γ = 106/(ωμ) = 2.5× 109)

SOR (θ = 0.5, ε = 105) Uzawa

Elements DoF iterations time [s] iterations time [s]

3394 4763 24 20.9 137 18.6

27152 34795 22 340.7 59 250.8

91638 113853 25 2230.6 136 1928.0

Table 4.4. Two tori. Comparison of SOR and Uzawa methods (γ = ‖SI‖2/‖BI‖2
2)

SOR (θ = 0.5, ε = 105) Uzawa

Elements DoF γ iterations time [s] iterations time [s]

3394 4763 2.3 108 34 17.4 95 12.8

27152 34795 9.6 108 26 352.8 92 274.3

91638 113853 1.8 109 29 2275.0 221 2262.7

The trefoil knot

We want to show how the (HC , ẼI) formulation performs for problems with com-
plicated geometries. In particular, we consider a problem in which the conductor is
a trefoil knot. It is well known (see, e.g., Bossavit [59], Hiptmair [126], Gross and
Kotiuga [115]) that there exists one surface which “cuts” the basic non-bounding cy-
cle inΩI , but its construction, on a given mesh, can be a non-trivial task. We show in
Figure 4.2 a visualization of this surface (known as the Seifert surface associated to
the trefoil knot).
We suppose thatΩC is a trefoil knot formed joining cubes of edge length 1 cm. A

torus-shaped coil is placed above the conductor. The sizes of the coil and the compu-
tational domainΩ are the same that in the previous test case. The physical magnitudes
and the source current are also taken as in the two tori test case.
In Table 4.5, having chosen γ = 106/(ωμ), we present the number of iterations

and the CPU time for the modified SOR method, with relaxation parameter θ = 1 and
ε = 106 (that we have verified to be a reasonable choice for this example), and for the
Uzawa-like scheme.
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Fig. 4.2. Seifert surface for the trefoil knot (courtesy of J.J. van Wijk, Eindhoven University of
Technology)

Table 4.5. Results for the trefoil knot

SOR (θ = 1, ε = 106) Uzawa

Elements DoF iterations CPU time [s] iterations CPU time [s]

37057 51665 402 3456.7 392 2114.7

In Figure 4.3 and Figure 4.4 we show the real part and the imaginary part of the
current density JC = curlHC on the surface of the knot, respectively.

Fig. 4.3. The current density in the trefoil knot: real part
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Fig. 4.4. The current density in the trefoil knot: imaginary part

Benchmark problem 7 in the TEAM Workshop

Our last test corresponds to benchmark problem number 7 in the TEAM workshop
(see Fujiwara and Nakata [107]). It consists of a conductor ΩC given by a thick alu-
minum plate with an eccentrically placed hole, subjected to an asymmetric magnetic
field. The field is produced by an exciting current traversing a coil above the plate (see
Figures 4.5, 4.6).
The plate and the coil are strictly inside the computational domain, which is a

hexahedron with edges length 460× 460× 309mm. The conductor is centered in the
horizontal plane and it is 80 mm far from the bottom of the computational domain,
while the coil is 80 mm far from the top of the computational domain. The magnetic

Fig. 4.5. Geometry of the TEAM model: elevation
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Fig. 4.6. Geometry of the TEAM model: plan

permeability is μ = μ0 = 4π×10−7 H/m, the electric conductivity isσ = 3.526×107

S/m, the angular frequency is ω = 2π × 50 rad/s, and the absolute value of the real
part (respectively, imaginary part) of the excitation current density Je,I is 1.0968×106

(respectively, 0) A/m2. The parameter γ is set equal to 5× 106/(ωμ).
In Table 4.6 we present the number of iterations and CPU time for the modified

SOR method with relaxation parameter θ = 1 and ε = 106, and for the Uzawa-like
scheme.

Table 4.6. Results for problem 7 in the TEAMWorkshop

SOR (θ = 1, ε = 106) Uzawa

Elements DoF iterations CPU time [s] iterations CPU time [s]

98857 131434 134 10950.7 167 11222.3

We also present a comparison of our numerical results with the experimental data
reported in Fujiwara and Nakata [107]. The z component of the magnetic induction
BI (= i

ω curl ẼI ) along a straight line in the insulating region, with y = 72mm and
z = 34mm, is represented in Figure 4.7. The y component of the current density JC
(= curlHC ) along a straight line on the surface of the conductor, with y = 72mm and
z = 19mm, is represented in Figure 4.8.
We notice that the results for the magnetic induction in the insulator are not com-

pletely satisfactory. This is due to the fact that BI is calculated from the curl of the
computed ẼI and, since we are using first order edge elements, this curl is constant on
each element. The oscillations are due to the relative position of the elements of the
mesh where we compute the numerical values, with respect to the line where the field
is measured.
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Fig. 4.7. z component ofBI along line A1–B1

Fig. 4.8. y component of JC along line A3–B3

4.6 A saddle-point approach for the E-based formulation

To conclude this chapter we consider, as in Alonso Rodríguez and Valli [17], the E-
based formulation of the magnetic eddy current problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlE) + iωσE = −iωJe in Ω
div(εIEI ) = 0 in ΩI

μ−1 curlE× n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI · πk,I = 0 ∀ k = 1, . . . , n∂Ω .

(4.73)
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As already noted, the problem is simpler if the boundary of the conductorΩC is con-
nected, so that pΓ = 0, and the domain Ω is simply-connected, so that n∂Ω = 0.
Since in many cases the computational domainΩ can be chosen freely, this simplified
geometrical situation often occurs in applications.
In Remark 2.4 (see also Section 6.1.5) we have considered a weak formulation

of this problem, where the condition div(εIEI) = 0 is imposed by penalization. An
alternative approach, similar to the one that we have used for the hybrid formulations,
is to impose the set of conditions (4.73)2, (4.73)4, (4.73)5 and (4.73)6 by means of
Lagrange multipliers.We consider the space

Z := {z ∈ H(curl;Ω) | zI satisfies (4.6)}, (4.74)

and the following weak formulation

FindE ∈ Z :∫
Ω μ−1 curlE · curl z + iω

∫
ΩC

σEC · zC = −iω
∫
Ω Je · z

for all z ∈ Z .

(4.75)

Let us introduce the sesquilinear form

ae(w, z) :=
∫
Ω

μ−1 curlw · curl z + iω

∫
ΩC

σwC · zC . (4.76)

Using that z ∈ Z if and only if z ∈ H(curl;Ω) and
∫
ΩI

εIzI · pI = 0 for all pI ∈
H0

0,Γ(curl;ΩI), we have the equivalent formulation

Find (E, rI) ∈ H(curl;Ω)×H0
0,Γ (curl;ΩI) :

ae(E, z) +
∫
ΩI

εIzI · rI = −iω
∫
Ω

Je · z∫
ΩI

εIEI · pI = 0

for all (z,pI) ∈ H(curl;Ω)×H0
0,Γ (curl;ΩI) .

(4.77)

If the computational domain Ω is simply-connected, then

H0
0,Γ(curl;ΩI) = gradH1

∗,Γ (ΩI),

where the space H1
∗,Γ (ΩI) has been introduced in (4.17); hence the space Z can be

expressed as

Z = {z ∈ H(curl;Ω) |
∫
ΩI

εIzI · grad ξI = 0 for all ξI ∈ H1
∗,Γ (ΩI)} .

Therefore, problem (4.77) can be rewritten in the following form, that is suitable for
finite element approximation

Find (E, φI) ∈ H(curl;Ω)×H1
∗,Γ (ΩI) :

ae(E, z) +
∫
ΩI

εIzI · gradφI = −iω
∫
Ω Je · z∫

ΩI
εIEI · grad ξI = 0

for all (z, ξI) ∈ H(curl;Ω)×H1
∗,Γ (ΩI) .

(4.78)
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Proceeding as in Lemma 2.2 it is easy to prove that the sesquilinear form ae(·, ·) is
coercive in the space Z. On the other hand, the inf–sup condition is satisfied. In fact,
given ξI ∈ H1

∗,Γ (ΩI), the function z∗ defined as

z∗ :=
{
grad ξI inΩI

0 inΩC

belongs toH(curl;Ω) and satisfies∫
ΩI

εIz∗I · grad ξI =
∫
ΩI

εIz∗I · z∗I ≥ C1‖z∗I‖20,ΩI

= C1‖z∗‖H(curl;Ω)‖ grad ξI‖0,ΩI

≥ C2‖z∗‖H(curl;Ω)‖ξI‖1,ΩI ,

having used the Poincaré inequality∫
ΩI

(|ξI |2 + | grad ξI |2) ≤ C0

∫
ΩI

| grad ξI |2 (4.79)

which is valid in H1
∗,Γ (ΩI) (see, e.g., Dautray and Lions [94], Chap. IV, Sect. 7,

Rem. 4).
As a consequence, the well known theory of saddle-point problems (see, e.g.,

Brezzi and Fortin [65]) tells us that for each Je ∈ (L2(Ω))3 there exists a unique
solution to (4.78).
We can also prove that the Lagrange multiplier φI is equal to 0. In fact, let us take

as test function in (4.78) z ∈ H(curl;Ω) given by

z :=
{
gradφI in ΩI

0 in ΩC .

Since the current density Je satisfies the necessary assumptions (3.1) and (3.2), one
finds ∫

ΩI

εzI · gradφI = 0 ,

hence φI = 0.

Remark 4.31. For the electric boundary conditionE× n = 0 on ∂Ω the problem can
be written in strong form as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curl(μ−1 curlE) + iωσE = −iωJe in Ω
div(εIEI) = 0 in ΩI

E× n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
(∂Ω)r

εIEI · n = 0 ∀ r = 0, 1, . . . , p∂Ω,

(4.80)

and in weak form as

Find (E, φI) ∈ H0(curl;Ω)×H1
∗(ΩI ) :

ae(E, z) +
∫
ΩI

εIzI · gradφI = −iω
∫
Ω Je · z∫

ΩI
εIEI · grad ξI = 0

for all (z, ξI) ∈ H0(curl;Ω)×H1
∗ (ΩI) ,

(4.81)
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where

H1
∗ (ΩI) := {ξI ∈ H1(ΩI) | ξI|Γj

is constant ∀ j = 1, . . . , pΓ ,
ξI|(∂Ω)r

is constant ∀ r = 0, 1, . . . , p∂Ω,
ξI|ΓpΓ +1 = 0} .

(4.82)

Note that no assumption is needed on the geometry of Ω, as conditions (4.80)2–
(4.80)5 can always be expressed as orthogonality conditions to gradH1

∗(ΩI ).
Moreover, if the boundaries of the conductorΩC and of the computational domain

Ω are both connected, the last two equations in (4.80) reduce to
∫
∂Ω

εIEI ·n = 0, and
the space H1

∗(ΩI ) is simply constituted by the functions vanishing on Γ and constant
on ∂Ω. �

To approximate the electric field we employ the Nédélec curl-conforming edge ele-
ments and to approximate the LagrangemultiplierφI we employ piecewise-polynomial
continuous functions.
LetΩ, ΩC ,ΩI be Lipschitz polyhedra and consider a family of regular tetrahedral

meshes {Th}h of Ω such that each element K ∈ Th is contained either in ΩC or in
ΩI . We denote TC,h, TI,h the restriction of Th toΩC and ΩI , respectively.
We consider the (complex-valued) Nédélec curl-conforming edge elements de-

fined in Section A.2, the standard Lagrange nodal elements

LkI,h := {ξI,h ∈ C0(ΩI) | ξI,h|K ∈ Pk ∀K ∈ TI,h} ,

and the finite element space

Hk
I,h := LkI,h ∩H1

∗,Γ (ΩI) . (4.83)

The finite element discretization of problem (4.78) reads

Find (Eh, φI,h) ∈ Nk
h ×Hk

I,h :

ae(Eh, zh) +
∫
ΩI

εIzI,h · gradφI,h = −iω
∫
Ω Je · zh∫

ΩI
εIEI,h · grad ξI,h = 0

for all (zh, ξI,h) ∈ Nk
h ×Hk

I,h.

(4.84)

The analysis of this problem is based on the standard theory ofmixed finite element
methods.
We start recalling the followinginterpolationerror estimate for the curl-conforming

edge elements (see Alonso and Valli [9], Monk [179], Lemma 5.38 and Theor. 5.41).

Lemma 4.32. If z|K ∈ (H1/2+r(K))3, 0 < r ≤ 1/2, and curl z|K ∈ (Pk−1)3 ⊕
P̃k−1x, then the interpolation operator Πhz is well-defined and

‖z −Πhz‖0,K ≤ C(h1/2+r
K ‖z‖1/2+r,K + hK‖ curl z‖0,K).

Since Γ ∩ ∂Ω = ∅, a straightforward consequence of Theorem 4.3 and Theorem
4.4 in Alonso and Valli [9] is that the following regularity result holds true.
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Lemma 4.33. Let ΩI be a Lipschitz polyhedron. Then for each δ > 0 and small
enough the space

X δ(ΩI) := {zI ∈ H(curl;ΩI) ∩H0,∂Ω(div;ΩI) | (zI × nI)|Γ ∈ (Hδ(Γ ))3},

is continuously imbedded in (H1/2+δ(ΩI ))3.

Now we are in position to verify that problem (4.84) satisfies the assumptions of
the theory of discrete saddle-point problems. Defining

Zh := {zh ∈ Nk
h |

∫
ΩI

εIzI,h · grad ξI,h = 0 ∀ ξI,h ∈ Hk
I,h} ,

the following theorem holds.

Theorem 4.34. Assuming that εI is a scalar constant and that {Th}h induces on Γ
a quasi-uniform family of triangulations, there exist positive constants C1 and C2,
independent of h, such that

|ae(zh, zh)| ≥ C1‖zh‖2H(curl;Ω) ∀ zh ∈ Zh (4.85)

sup
zh∈Nk

h

∣∣∣∫ΩI
εIzh · grad ξI,h

∣∣∣
‖zh‖H(curl;Ω)

≥ C2‖ξI,h‖1,ΩI ∀ ξI,h ∈ Hk
I,h . (4.86)

Proof. From (A.12), taking into account that Ω is simply-connected we know that
zI,h ∈ Zh

I,0 can be written as

zI,h = ε−1
I curlqI + gradϕI +

pΓ∑
j=1

cI,j gradwj,I ,

where qI ∈ H0,∂Ω(curl;ΩI) and ϕI ∈ H1
0,Γ(ΩI ).

Let us set νI := ϕI +
∑pΓ

j=1 cI,jwj,I and UI := zI,h − grad νI = ε−1
I curlqI . It

is readily seen that νI ∈ H1
∗,Γ (ΩI) and that UI × nI = zI,h × nI on Γ . Therefore

the function given by

U :=
{

UI in ΩI

zC,h in ΩC

belongs to Z. Moreover, since curlUI = curl zI,h, from the coerciveness of ae(·, ·)
in Z we have

|ae(zh, zh)| = |ae(U,U)| ≥ c0‖U‖2H(curl;Ω)

= c0

(
‖zC,h‖2H(curl;ΩC) + ‖UI‖2H(curl;ΩI)

)
.

Thus it remains to show that there exists a positive constantC , independent of h, such
that

‖zI,h‖0,ΩI ≤ C(‖UI‖H(curl;ΩI) + ‖zC,h‖H(curl;ΩC)) . (4.87)
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Having assumed that εI is a scalar constant in ΩI , it follows that divUI = 0 in ΩI ,
and thusUI ∈ X δ(ΩI) ⊂ (H1/2+δ(ΩI))3 for some δ > 0 and small enough. More-
over curlUI = curl zI,h and curl zI,h|K ∈ (Pk−1)3, hence by Lemma 4.32 the in-
terpolant ΠhUI is well-defined and then also Πh grad νI is well-defined. Moreover,
since curl(Πh grad νI) = 0 and Πh grad νI × nI = 0 on Γ , there exists νI,h ∈ Hk

I,h

such that Πh grad νI = grad νI,h (see, e.g., Monk [179], Lemma 5.28). Then

zI,h = ΠhzI,h = ΠhUI + Πh grad νI = ΠhUI + grad νI,h,

and

‖zI,h‖20,ΩI
≤ C

∫
ΩI

εIzI,h · zI,h = C

∫
ΩI

εIzI,h ·ΠhUI ,

therefore
‖zI,h‖0,ΩI ≤ CεI‖ΠhUI‖0,ΩI

≤ CεI(‖ΠhUI −UI‖0,ΩI + ‖UI‖0,ΩI).

By combining Lemma 4.32 and Lemma 4.33 we have

‖ΠhUI −UI‖0,ΩI

≤ Ch1/2+δ(‖UI‖0,ΩI + ‖ curlUI‖0,ΩI + ‖UI × nI‖δ,Γ ) .

Since Th induces a quasi–uniform family of triangulations on Γ , the following inverse
inequality holds true (see Alonso and Valli [9])

h1/2+δ‖UI × nI‖δ,Γ = h1/2+δ‖zI,h × nI‖δ,Γ
≤ C‖zI,h × nI‖H−1/2(divτ ,Γ) = C‖zC,h × nC‖H−1/2(divτ ,Γ) ,

H−1/2(divτ , Γ ) being the space of tangential traces on Γ of H(curl;ΩC) and
H(curl;ΩI) (see section A.1).
Then

‖ΠhUI −UI‖0,ΩI

≤ C
[
h1/2+δ(‖UI‖0,ΩI + ‖ curlUI‖0,ΩI ) + ‖zC,h × nC‖H−1/2(divτ ,Γ)

]
,

and from the trace inequality (A.10) it follows that (4.87) holds.
For what is concerned with the inf–sup condition, given ξI,h ∈ Hk

I,h the function
z∗h defined by

z∗h :=
{
grad ξI,h inΩI

0 inΩC

belongs to Nk
h , and we conclude as in the continuous case. �

Well known results provide the existence and uniqueness of the solution (see, e.g.,
Brezzi and Fortin [65]). Moreover, by adapting the proof used for problem (4.78) it is
easy to show that φI,h = 0.
A standard density argument and the interpolation estimates in Section A.2 permit

to obtain the following convergence result (see Section A.1 for notation).
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Corollary 4.35. Let the assumptions of Theorem 4.34 be satisfied. The finite element
approximation method is convergent and, if the solutionE of problem (4.78) is smooth
enough, namely, E ∈ Hr(curl;Ω) with r > 1/2, the following error estimate holds

‖E− Eh‖H(curl;Ω) ≤ Chmin (r,k) .

Remark 4.36. Golias et al. [112] has proposed an E-based formulation which has the
same form of (4.75), but with the space Z replaced byH(curl;Ω).
The problem turns out to be singular, as the electric field is not uniquely deter-

mined in ΩI . However, some numerical experiments show that its finite element ap-
proximation via edge elements is furnishing reasonable results (in this respect, see also
Remark 6.10). �

Remark 4.37. The numerical approximation of (4.78) by a discontinuous Galerkin fi-
nite element scheme has been proposed and analyzed by Houston et al. [133]. �

Remark 4.38. The discrete problem for the electric boundary condition (1.20) reads

Find (Eh, φI,h) ∈ Xk
h × Ĥk

I,h :

ae(Eh, zh) +
∫
ΩI

εIzI,h · gradφI,h = −iω
∫
Ω

Je · zh∫
ΩI

εIEI,h · grad ξI,h = 0

for all (zh, ξI,h) ∈ Xk
h × Ĥk

I,h ,

(4.88)

where Xk
h := Nk

h ∩ H0(curl;Ω) and Ĥk
I,h := LkI,h ∩H1

∗ (ΩI) (for the definition of
H1

∗(ΩI) see (4.82)). �
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Formulations via scalar potentials

As we have already remarked in the preceding chapters, a specific feature of eddy
current problems is the presence of differential constraints acting in the non-conducting
part of the domain: namely, curlHI = Je,I in ΩI and div(εIEI) = 0 inΩI .
The use of Lagrangian multipliers to take into account these constraints has been

illustrated in Chapter 4. Here we want to describe a different approach, which on one
hand is very natural and on the other hand leads the introduction of a scalar unknown
instead of a vector-valud one, thus yielding a cheaper algorithm for numerical approx-
imation.
The starting point is to rewrite the constraint on curlHI as an irrotationality con-

straint: for instance, in the case of the magnetic boundary value problem we construct
the vector functionHe,I defined in (3.3), and considerHI −He,I , which is curl-free.
The other boundary value problems are treated in a similar way.
If the topology of the domainΩI is simple, say, ΩI is simply-connected, we know

that a curl-free vector function can be expressed as the gradient of a scalar function,
called a scalar potential. Therefore, we reduce the problem to a new unknownψI such
that gradψI = HI − He,I in ΩI (when the vector function He,I is non-vanishing,
in the engineering literature the scalar function ψI is often called a reduced scalar
magnetic potential; instead, even if the relation between HI and ψI is not exactly
HI = gradψI , we will simply call ψI a scalar magnetic potential).
However, some problems arise when the insulator ΩI has a more complicated

topology (and this is very often the case in real-life problems). In fact, in this case
a curl-free vector function is no longer guaranteed to be a gradient of a potential, and
some additional terms have to be taken into account: more precisely, harmonic fields
are coming into play.
In this chapter, mainly following Alonso Rodríguez et al. [10], we address this

problem, showing how to determine these harmonic fields and devising some weak
formulations that are related to this approach. We also propose domain decomposition
algorithms for the effective solution of the problem, in which one alternates between
a solution step in the conductor and another solution step in the insulator.
We start by describing a first method, in which the chosen unknowns are the mag-

netic fieldHC in the conductor and the scalar magnetic potential ψI , plus a harmonic

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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field in the insulator. We also present an alternative approach in terms of the electric
field EC in the conductor: this has the advantage that the matching between the un-
knownson the interfaceΓ is of weak type, thus in numerical computations independent
meshes could be used inΩC and ΩI .
The basic points in the proof are the (L2(ΩI))3-orthogonal decomposition results

in SectionA.3, which, in addition to theweak formulationspresented inChapter 3, lead
to the weak formulations in terms of the scalar magnetic potentials. In Sections 5.1
and 5.3 we also describe some alternative weak formulations, proposed by Leonard
and Rodger [167] and Alonso Rodríguez et al. [10], that do not require the knowledge
of the harmonic fields but only use some easily computable interpolants; the latter
formulations are the most suited for numerical approximation.
Based on the weak formulations thus obtained, the numerical approximation of

the weak problems is performed by means of edge finite elements in the conductor
and (scalar) nodal finite elements in the insulator. The positiveness of the associated
sesquilinear forms leads in a straightforward way to the proof of an optimal error es-
timate. However, as already recalled, a preliminary step is the explicit construction of
the vector functionHe,I ; this is not always easily achieved, hence in some case one
must slightlymodify the approach in order to devise a viable numerical approximation
scheme.
Motivated by the fact that, when using a scalar magnetic potential, the electric field

in the insulator is computed in a second step, we end the chapter with the presentation
of a finite element approximation scheme for the electric field EI in ΩI . The starting
point is a saddle-point formulation similar to that used in Section 4.6 for describing
the eddy current problem in terms of the electric field E.
In the whole chapter the geometrical assumptions on Ω, ΩC and ΩI are the same

as those of Section 1.3. Moreover, we again assume that the matrixμ is symmetric and
uniformly positive definite in Ω, with entries belonging to L∞(Ω), the matrix εI is
symmetric and uniformly positive definite in ΩI , with entries belonging to L∞(ΩI),
and the matrix σ is symmetric and uniformly positive definite in ΩC , with entries
belonging to L∞(ΩC), whereas it is vanishing inΩI .
To a reader interested in numerical approximation and implementation we suggest

to focus on problems (5.21) and (5.71) (HC/ψ̂I formulation), on problems (5.67) and
(5.75) (HC/ψ̂∗

I formulation), on problems (5.58) and (5.80) (EC/ψ̂∗
I formulation),

and on the domain decomposition procedures described in Sections 5.2.1 and 5.3.1.

5.1 The weak formulation in terms of HC and ψI

From Section 3.1 let us recall that, if we are considering the magnetic boundary value
problem, the following necessary assumptions have to be imposed on the current den-
sity Je ∈ (L2(Ω))3

divJe,I = 0 inΩI , Je,I · n = 0 on ∂Ω (5.1)∫
Γj

Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

Je,I ·πk,I = 0 ∀ k = 1, . . . , n∂Ω .
(5.2)
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As noted there, these assumptions ensure that there exist two vector fieldsHe,I ∈
H(curl;ΩI) andHe,C ∈ H(curl;ΩC) satisfying the properties described in (3.3) and
(3.4), namely, {

curlHe,I = Je,I in ΩI

He,I × n = 0 on ∂Ω,
(5.3)

and
He,C × nC + He,I × nI = 0 on Γ . (5.4)

As in (3.5) we will denote byHe ∈ H0(curl;Ω) the vector field defined by

He :=
{

He,I in ΩI

He,C in ΩC .
(5.5)

In Chapter 3 we have obtained and proved the well-posedness of the following
weak problem

Find (H−He) ∈ V such that∫
ΩC

σ−1 curlHC · curlvC +
∫
Ω iωμH · v =

∫
ΩC

σ−1Je,C · curlvC
for each v ∈ V ,

(5.6)

where
V := {v ∈ H0(curl;Ω) | curlvI = 0 in ΩI} . (5.7)

We want to rewrite this problem using the orthogonal decomposition presented in
Theorem A.7. First of all, define in H(curl;Ω) × H(curl;Ω) the sesquilinear form
a(·, ·) as

a(u,v) := aC(uC ,vC) + aI(uI ,vI) , (5.8)

where

aC(uC,vC) :=
∫
ΩC

(σ−1 curluC · curlvC + iωμCuC · vC), (5.9)

and

aI(uI ,vI) := iω

∫
ΩI

μIuI · vI . (5.10)

Up to the factor iω, the sesquilinear form aI(·, ·) is the scalar product (·, ·)μI ,ΩI for
complex valued vector functions, see (A.20).
For the sake of simplicity, let us also introduce the notation Z := H −He . The

restrictionZI can be written as

HI −He,I = ZI = gradψI +
p∂Ω∑
r=1

αI,r grad zr,I +
nΓ∑
l=1

βI,lρl,I , (5.11)

where the complex valued functionψI and the complex constantsαI,r, βI,l are defined
as in (A.23) and (A.24), respectively, replacing vI withZI . Note here that this formula
simplifies if p∂Ω = 0 and nΓ = 0. The first relation means that the boundary of Ω is
connected, the second is satisfied if ΩC is simply-connected.
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In a similar way, for any v ∈ V we have

vI = gradχI +
p∂Ω∑
r=1

aI,r grad zr,I +
nΓ∑
l=1

bI,lρl,I . (5.12)

To simplify the notation, we will denote by ηI ∈ CN , N = p∂Ω + nΓ , the complex
vector with components ηI,r = αI,r, r = 1, . . . , p∂Ω, ηI,p∂Ω+l = βI,l, l = 1, . . . , nΓ ,
and similarly denote by θI ∈ CN the complex vector with components θI,r = aI,r,
r = 1, . . . , p∂Ω, θI,p∂Ω+l = bI,l, l = 1, . . . , nΓ . Moreover, the basis functions of
the space HμI (∂Ω, Γ ;ΩI) will be indicated by ωq,I , q = 1, . . . , N , where ωr,I =
grad zr,I , r = 1, . . . , p∂Ω, and ωp∂Ω+l,I = ρl,I , l = 1, . . . , nΓ . Finally, we will
denote by [·, ·] the scalar product in CN .
We have:

Theorem 5.1. Let Z be the solution to (5.6), and decompose ZI as in (5.11), namely,
ZI = gradψI +

∑N
q=1 ηI,q ωq,I . Then (ZC , ψI ,ηI) is the unique solution to

Find (ZC , ψI ,ηI ) ∈W such that

aC(ZC ,vC) + aI(gradψI , gradχI) + iω[AηI , θI ]
= −aC (He,C ,vC) − aI(He,I , gradχI)
−aI

(
He,I ,

∑N
q=1 θI,q ωq,I

)
+
∫
ΩC

σ−1Je,C · curlvC
for each (vC , χI, θI) ∈W ,

(5.13)

where the matrix A is defined in (A.25) and

W := {(vC , χI, θI) ∈ H(curl;ΩC)×H1
0,∂Ω(ΩI )× CN |

vC × nC + gradχI × nI +
∑N

q=1 θI,q ωq,I × nI = 0 on Γ } .
(5.14)

Proof. From (5.12) we have vI = gradχI +
∑N

q=1 θI,qωq,I ; therefore, recalling the
orthogonality result given in Theorem A.7, it is easily seen that the solution to problem
(5.6) gives a solution (ZC , ψI ,ηI) to (5.13). On the other hand, the sesquilinear form
at the left hand side of (5.13) is clearly continuous and coercive inW , endowed with
the natural norm. Therefore, from Lax–Milgram lemma, there exists a unique solution
to (5.13). �

A conforming finite element approximation based directly on (5.13) is not a vi-
able option, as it would require that the functions ωq,I , q = 1, . . . , N , be explicitly
known. An alternative approach, that overcomes this difficulty and has been proposed
by Leonard and Rodger [167] and Alonso Rodríguez et al. [10], is based on a different
decomposition of HI . Let us suppose that Ω is a polyhedral domain, and that there
is a triangulation Th0 such that Ω = ∪K∈Th0 K, where K is a tetrahedron or a par-
allelepiped and h0 > 0 is the (fixed) mesh size. From Bossavit [59], Hiptmair [126],
Gross and Kotiuga [115] we know that inΩI there exists a system of “cutting” surfaces
Ξl, l = 1, . . . , nΓ , with ∂Ξl ⊂ Γ , such that every function zI ∈ H0

0,∂Ω(curl;ΩI) re-
stricted to ΩI \ ∪nΓ

l=1Ξl is the gradient of a function belonging to H1(ΩI \ ∪nΓ

l=1Ξl).
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It is not restrictive to assume that the triangulationTh0 induces a triangulation on each
surface Ξl. Let us denote by Πq the piecewise-polynomial function taking value 1 at
the nodes on (∂Ω)q and 0 at all the other nodes for q = 1, . . . , p∂Ω, and taking value 1
at the nodes on one side ofΞq−p∂Ω , sayΞ+

q−p∂Ω
, and 0 at all the other nodes (including

those on Ξ−
q−p∂Ω

, the other side ofΞq−p∂Ω ) for q = p∂Ω + 1, . . . , p∂Ω + nΓ . Set also

λq :=
{
gradΠq for q = 1, . . . , p∂Ω
g̃radΠq for q = p∂Ω + 1, . . . , p∂Ω + nΓ ,

(5.15)

where g̃radΠq denotes the (L2(ΩI))3-extension of gradΠq computed in ΩI \ Ξq.
It is verified at once that for each q = 1, . . . , N the vector function λq belongs to
(L2(ΩI))3 and satisfies {

curlλq = 0 in ΩI

λq × n = 0 on ∂Ω .

Denoting by gq ∈ H1(ΩI) the solution to⎧⎨⎩ div(μI grad gq) = div(μIλq) in ΩI

μI grad gq · nI = μIλq · nI on Γ
gq = 0 on ∂Ω ,

(5.16)

one can easily check that the basis functions ωq,I of the space HμI (∂Ω, Γ ;ΩI) can
be written as

ωq,I = λq − grad gq . (5.17)

Using this result in the representation formula (5.11) one finds

ZI = gradψI +
∑N

q=1 ηI,qωq,I = gradψI +
∑N

q=1 ηI,q(λq − grad gq)

= grad ψ̂I +
∑N

q=1 ηI,qλq ,
(5.18)

having defined

ψ̂I := ψI −
N∑
q=1

ηI,qgq . (5.19)

If we set

âI(ζ̂I , γI ; χ̂I , θI) := aI

(
grad ζ̂I +

N∑
q=1

γI,qλq, grad χ̂I +
N∑
q=1

θI,qλq

)
, (5.20)

the weak problem (5.13) can thus be rewritten as follows

Find (ZC , ψ̂I,ηI) ∈ Ŵ such that

aC(ZC ,vC) + âI(ψ̂I ,ηI ; χ̂I , θI)
= −aC(He,C ,vC) − aI(He,I , grad χ̂I)
−aI

(
He,I ,

∑N
q=1 θI,q λq

)
+
∫
ΩC

σ−1Je,C · curlvC
for each (vC , χ̂I, θI) ∈ Ŵ ,

(5.21)
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where

Ŵ := {(vC , χ̂I , θI) ∈ H(curl;ΩC)×H1
0,∂Ω(ΩI) ×CN |

vC × nC + grad χ̂I × nI +
∑N

q=1 θI,q λq × nI = 0 on Γ } .
(5.22)

It is clear that the two problems (5.13) and (5.21) are equivalent, therefore (5.21)
is well-posed. Moreover, it is worth noting that the sesquilinear form at the left hand
side in (5.21) is continuous in Ŵ , and it can also be seen that it is coercive in Ŵ . In
fact,

aC(vC ,vC) + âI(χ̂I , θI ; χ̂I, θI) = a(v,v) ,

where vI = grad χ̂I +
∑N

q=1 θI,qλq, and a(·, ·) is coercive in V , namely,

|a(v,v)| ≥ κ
( ∫

ΩC

(|vC|2 + | curlvC |2) +
∫
ΩI

μIvI · vI
)

(see Theorem 3.1). Thus the following lemma, that will be also useful in the sequel,
permits to complete the proof.

Lemma 5.2. The function vI = grad χ̂I +
∑N

q=1 θI,qλq satisfies∫
ΩI

μIvI · vI ≥ C0

(∫
ΩI

| grad χ̂I |2 + |θI |2
)

. (5.23)

Proof. Since λq = grad gq + ωq,I , we have vI = grad χ̂I +
∑N

q=1 θI,q grad gq +∑N
q=1 θI,qωq,I . Due to the orthogonalityproperties presented in Theorem A.7 and the

fact that the matrix A defined in (A.25) is positive definite, we have∫
ΩI

μIvI · vI ≥ C1

∫
ΩI
| grad χ̂I +

∑N
q=1 θI,q grad gq|2

+
∑N

p,q=1 θI,qθI,p
∫
ΩI

μIωq,I ·ωp,I

≥ C2(
∫
ΩI
| grad χ̂I +

∑N
q=1 θI,q grad gq|2 + |θI |2) .

Recalling that for each 0 < δ < 1 one has |2ab| ≤ δ|a|2 + δ−1|b|2, we find∫
ΩI
| grad χ̂I +

∑N
q=1 θI,q grad gq |2

≥ (1− δ)
∫
ΩI
| grad χ̂I |2 − (1− δ)δ−1

∫
ΩI
|∑N

q=1 θI,q grad gq|2
≥ (1− δ)

∫
ΩI
| grad χ̂I |2 − C3(1− δ)δ−1|θI |2 .

Thus the proof is complete by choosing δ such that C3/(1 + C3) < δ < 1. �

From Lemma 5.2 the proof of the coerciveness of the sesquilinear form at the left
hand side in (5.21) follows at once from the Poincaré inequality∫

ΩI

|χ̂I |2 ≤ C

∫
ΩI

| grad χ̂I |2 , (5.24)

which holds in H1
0,∂Ω(ΩI) (see, e.g., Dautray and Lions [94], Chap. IV, Sect. 7,

Rem. 4). In particular, we have also proved that the sesquilinear form âI(·; ·) intro-
duced in (5.20) is coercive in H1

0,∂Ω(ΩI)× CN .
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Remark 5.3. The unknowns ηI,p∂Ω+l = βI,l, l = 1, . . . , nΓ , in (5.13) or (5.21) are
related to the current intensity through suitable sections ofΩC . Solving (5.13) or (5.21)
permits to determine these in such a way that the complete eddy current problem is
satisfied.
Instead, imposing them as data for the problem leads to the violation of the Faraday

equation on the “cutting” surfaces Ξl, l = 1, . . . , nΓ (see Section 3.3.2, (v)). In this
respect, see also the considerations presented in Section 6.3, where the (TC , ψC)−ψI
formulation is described.
Addressing the eddy current problem with assigned current intensity or voltage

needs a particular geometrical setting and specific boundary conditions: for this, see
Chapter 8. �

5.2 The strong formulation in terms of HC and ψI

As proved in Chapter 3, the strong formulation of the eddy current problem in terms
of the magnetic field reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(σ−1 curlHC) + iωμCHC

= curl(σ−1Je,C) inΩC

curlHI = Je,I inΩI

div(μIHI) = 0 inΩI∫
(∂Ω)r

μIHI · n = 0 ∀ r = 1, . . . , p∂Ω∫
ΩI

iωμIHI · ρl,I
= −

∫
Γ
[σ−1(curlHC − Je,C)]× nC · ρl,I ∀ l = 1, . . . , nΓ

HI × n = 0 on ∂Ω
μIHI · nI + μCHC · nC = 0 on Γ
HI × nI + HC × nC = 0 on Γ .

(5.25)

It must be noted that the conditions (5.25)4 and (5.25)5 are necessary for determin-
ing the correct projection of the solutionZI = HI −He,I over the space of harmonic
fieldsHμI (∂Ω, Γ ;ΩI) (see the orthogonal decomposition formula (5.11)).
We are now interested in rewriting this problem in an equivalent form, in term of

HC , ψI and ηI = (αI ,βI) (see (5.11)).

Theorem 5.4. Problem (5.25) is equivalent to the following one⎧⎨⎩
curl(σ−1 curlHC ) + iωμCHC = curl(σ−1Je,C) in ΩC

HC × nC = − gradψI × nI
−∑N

q=1 ηI,q ωq,I × nI −He,I × nI on Γ
(5.26)

⎧⎨⎩ div(μI gradψI) = − div(μIHe,I) in ΩI

μI gradψI · nI = −μCHC · nC − μIHe,I · nI on Γ
ψI = 0 on ∂Ω

(5.27)

iω(AηI)q = −
∫
Γ
[σ−1(curlHC − Je,C)]× nC · ωq,I

−aI (He,I ,ωq,I) ∀ q = 1, . . . , N .
(5.28)
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Proof. Equations (5.26) and (5.27) are easily obtained from (5.25)1 and (5.25)8,
(5.25)3 and (5.25)7, respectively, and the representation formula (5.11). We are there-
fore left with the proof of (5.28).
Recalling that zr,I = 1 on (∂Ω)r and zr,I = 0 on ∂Ω\(∂Ω)r , for r = 1, . . . , p∂Ω,

and taking into account (5.25)3, (5.25)4, (5.25)7 and (5.25)1, by integrating by parts
we find that

iω
∫
ΩI

μIHI · grad zr,I = iω
∫
Γ

μIHI · nI zr,I
= −iω

∫
Γ

μCHC · nC zr,I
=
∫
Γ curl[σ

−1(curlHC − Je,C)] · nC zr,I
=
∫
Γ divτ ([σ

−1(curlHC − Je,C)]× nC) zr,I
= −

∫
Γ
[σ−1(curlHC − Je,C)]× nC · grad zr,I .

(5.29)

In other words, putting together (5.25)5 and (5.29), we have

iω

∫
ΩI

μIHI · ωq,I = −
∫
Γ

[σ−1(curlHC − Je,C)]× nC ·ωq,I (5.30)

for each q = 1, . . . , N .
Recalling the definition of the matrix A in (A.25), the representation formula

(5.11) and the orthogonality of gradψI and ωq,I with respect to the scalar product
(uI,vI)μI ,ΩI :=

∫
ΩI

μIuI · vI , we finally find

iω(AηI)q = iω
∫
ΩI

μI

∑N
p=1 ηI,pωp,I · ωq,I

= iω
∫
ΩI

μI(HI −He,I) · ωq,I

= −
∫
Γ [σ−1(curlHC − Je,C)]× nC · ωq,I

−iω
∫
ΩI

μIHe,I ·ωq,I ,

(5.31)

which ends the proof. �
An alternative strong formulation derives from the representation formula (5.18).

Theorem 5.5. Problem (5.25) is equivalent to the following one⎧⎨⎩
curl(σ−1 curlHC ) + iωμCHC = curl(σ−1Je,C) in ΩC

HC × nC = − grad ψ̂I × nI
−
∑N

q=1 ηI,q λq × nI −He,I × nI on Γ

(5.32)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
div(μI grad ψ̂I) = − div(μIHe,I) −

∑N
q=1 ηI,q div(μIλq) in ΩI

μI grad ψ̂I · nI = −μCHC · nC − μIHe,I · nI
−∑N

q=1 ηI,q μIλq · nI on Γ

ψ̂I = 0 on ∂Ω

(5.33)

iω(ÂηI)q = −
∫
Γ [σ−1(curlHC − Je,C)]× nC · λq
−aI (He,I ,λq) − aI(grad ψ̂I ,λq) ∀ q = 1, . . . , N ,

(5.34)

where the matrix Â is defined as

Âpq :=
∫
ΩI

μIλp · λq , p, q = 1, . . . , N . (5.35)
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Proof. Equations (5.32) and (5.33) follow by inserting the relations (5.17) and (5.19)
in (5.26) and (5.27), respectively.
In order to obtain the last equation, we start by noting that

iω
∫
ΩI

μIHI · grad gq = −iω
∫
ΩI
div(μIHI ) gq + iω

∫
Γ

μIHI · nI gq
= −iω

∫
Γ

μCHC · nC gq ,

having used (5.25)3 and (5.25)7. Moreover, by integration by parts∫
Γ
[σ−1(curlHC − Je,C)]× nC · grad gq

= −
∫
Γ
divτ ([σ−1(curlHC − Je,C)]× nC) gq

= −
∫
Γ curl[σ

−1(curlHC − Je,C)] · nC gq
= iω

∫
Γ

μCHC · nC gq ,

having used (5.25)1. Therefore, putting (5.17) in (5.30) we have found

iω

∫
ΩI

μIHI · λq = −
∫
Γ

[σ−1(curlHC − Je,C)]× nC · λq (5.36)

for each q = 1, . . . , N .
From this relation and the representation formula (5.18) we obtain

iω(ÂηI)q = iω
∫
ΩI

μI

∑N
p=1 ηI,pλp · λq

= iω
∫
ΩI

μI(HI −He,I − grad ψ̂I) · λq
= −

∫
Γ
[σ−1(curlHC − Je,C)]× nC · λq

−iω
∫
ΩI

μIHe,I · λq − iω
∫
ΩI

μI grad ψ̂I · λq ,

(5.37)

the result we have to prove. �

It is easily seen that the matrix Â is symmetric and positive definite, as the vectors
λq are linearly independent.

Remark 5.6. The scalar magnetic potential can be introduced also when considering
the electric boundary conditionE× n = 0 on ∂Ω (see Alonso Rodríguez et al. [10]).
We are not considering this formulation here; instead, for this boundary value problem
we present in the next section a formulation in terms of a scalar magnetic potential in
ΩI and of the electric field EC inΩC . �

5.2.1 A domain decomposition procedure

The strong formulations presented in Theorems 5.4 and 5.5 can suggest some iterative
procedures for solving (5.26)–(5.28) and (5.32)–(5.34). To give an idea of the proce-
dure, let us focus on the second case. The iteration-by-subdomain algorithm reads as
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follows: given eold
Γ on Γ , first solve⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

div(μI grad ψ̂I ) +
∑N

q=1 ηI,q div(μIλq) = − div(μIHe,I) in ΩI

iω(ÂηI)q + aI(grad ψ̂I ,λq)
= −

∫
Γ

eold
Γ · λq − aI(He,I ,λq) ∀ q = 1, . . . , N

μI grad ψ̂I · nI +
∑N

q=1 ηI,q μIλq · nI
= −iω−1divτeold

Γ − μIHe,I · nI on Γ

ψ̂I = 0 on ∂Ω ,

(5.38)

which iswell-posed since its weak formulation is expressed in terms of the sesquilinear
form âI(·; ·), that is coercive inH1

0,∂Ω(ΩI) ×CN . Then solve (5.32), namely⎧⎨⎩
curl(σ−1 curlHC) + iωμCHC = curl(σ−1Je,C) in ΩC

HC × nC = − grad ψ̂I × nI
−∑N

q=1 ηI,q λq × nI −He,I × nI on Γ .

(5.39)

Finally set

enew
Γ = (1− δ)eold

Γ + δ [σ−1(curlHC − Je,C)]× nC on Γ , (5.40)

and iterate until convergence (here δ > 0 is an acceleration parameter). Clearly, in the
limit one has e∞Γ = [σ−1(curlHC − Je,C)]× nC = EC × nC on Γ .
The possible advantage of this approach is that, when passing to the numerical

approximation, the single reduced problems (5.38) and (5.39) can be easier to solve
than the global problem (5.32)–(5.34). In fact, first of all they have a smaller size,
and moreover they have a more classical nature (for a simple topological situation,
namely, when N = 0, (5.38) is a mixed Dirichlet–Neumann problem for a uniformly
elliptic operator, whereas (5.39) is a standard Dirichlet boundary value problem for a
curl curl-like operator).
An analogous iterative scheme can be proposed for formulation (5.26)–(5.28). In

this case, a further interesting point is that the problems (5.27) and (5.28) can be solved
in parallel, as they are independent.
We will not dwell on these iterative schemes here, referring the interested reader to

Alonso Rodríguez et al. [10]. However, in next section we will focus on an iteration-
by-subdomain procedure for a problem where, instead of the magnetic field HC , the
unknown in the conductor is the electric field EC .

5.3 The formulation in terms of EC and ψ∗I

In this section we want to present a formulation in terms of the electric fieldEC inΩC

and of a magnetic potential inΩI . For the sake of variety, we focus here on the electric
boundary value problem, namely, we impose E× n = 0 on ∂Ω.
Let us start recalling the necessary conditions that have to be imposed to the current

density Je ∈ (L2(Ω))3 in this case

divJe,I = 0 in ΩI (5.41)
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Γj
Je,I · nI = 0 ∀ j = 1, . . . , pΓ∫

(∂Ω)r
Je,I · n = 0 ∀ r = 0, . . . , p∂Ω .

(5.42)

The existence of a vector fieldH∗
e,I ∈ H(curl;ΩI) such that

curlH∗
e,I = Je,I in ΩI (5.43)

is then ensured by well-known results (see, e.g., Alonso and Valli [6], Rem. 4.3).
In order to devise the formulation in terms of EC and a scalar magnetic potential,

the weak form of the eddy current problem in terms ofEC andHI is the right starting
point: adapting to the electric boundary condition what we have derived in Chapter 4,
it reads

Find (EC ,HI) ∈ H(curl;ΩC) × V ∗
I (Je,I) :∫

ΩC
(μ−1

C curlEC · curl zC + iωσEC · zC )
−iω

∫
Γ

HI · zC × nC = −iω
∫
ΩC

Je,C · zC
−iω

∫
Γ

EC × nC · v∗
I + ω2

∫
ΩI

μIHI · v∗
I = 0

for all (zC ,v∗
I) ∈ H(curl;ΩC)× V ∗

I (0) ,

(5.44)

where
V ∗
I (Je,I) := {v∗

I ∈ H(curl;ΩI) | curlv∗
I = Je,I in ΩI} ,

and similarly for V ∗
I (0).

Now we could use the decomposition result (A.26), but, as we have already ex-
plained, for numerical approximation it is better to consider a decomposition for which
the harmonic fields ρ∗

α,I are not employed. Therefore, as in the preceding section, let
us suppose thatΩ is a polyhedral domain, and that there is a triangulationTh0 such that
Ω = ∪K∈Th0K, whereK is a tetrahedron or a parallelepiped and h0 > 0 is the (fixed)
mesh size. FromBossavit [59], Hiptmair [126], Gross and Kotiuga [115] we know that
inΩI there exists a system of “cutting” surfaces Ξ∗

α, α = 1, . . . , nΩI , such that every
function zI ∈ H0(curl;ΩI) restricted to ΩI \ ∪nΩI

α=1Ξ
∗
α is the gradient of a function

belonging toH1(ΩI \ ∪
nΩI

α=1Ξ
∗
α). It is not restrictive to suppose that the triangulation

Th0 induces a triangulation on these surfaces. For α = 1, . . . , nΩI let us denote byΠ∗
α

the piecewise-polynomial function taking value 1 at the nodes on one side of Ξ∗
α, say

(Ξ∗
α)+, and 0 at all the other nodes (including those on (Ξ∗

α)−, the other side of Ξ∗
α).

Set also
λ∗
α := g̃radΠ∗

α for α = 1, . . . , nΩI , (5.45)

where g̃radΠ∗
α denotes the (L2(ΩI))3-extension of gradΠ∗

α computed in ΩI \ Ξ∗
α.

It is verified at once that for each α = 1, . . . , nΩI the vector function λ∗
α belongs to

(L2(ΩI))3 and satisfies
curlλ∗

α = 0 inΩI .

Denoting by g∗α ∈ H1(ΩI)/C the solution to{
div(μI grad g

∗
α) = div(μIλ

∗
α) in ΩI

μI grad g
∗
α · n = μIλ

∗
α · n on Γ ∪ ∂Ω ,

(5.46)
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one can easily check that the basis functions ρ∗
α,I of the space HμI (m;ΩI) can be

written as
ρ∗
α,I = λ∗

α − grad g∗α . (5.47)

In TheoremA.8we have proved the following representation formula for the vector
field Z∗

I = HI −H∗
e,I (whereH∗

e,I is defined in (5.43))

HI −H∗
e,I = Z∗

I = gradψ∗
I +

nΩI∑
α=1

η∗I,αρ∗
α,I . (5.48)

Note that this formula simplifies if nΩI = 0. This means thatΩI is simply-connected
(in particular, thatΩC is simply-connected).
Using (5.47) one finds

Z∗
I = gradψ∗

I +
∑nΩI

α=1 η∗I,α(λ∗
α − grad g∗α)

= grad ψ̂∗
I +

∑nΩI

α=1 η∗I,αλ∗
α ,

(5.49)

having defined

ψ̂∗
I := ψ∗

I −
nΩI∑
α=1

η∗I,αg
∗
α . (5.50)

Similarly, each test function v∗
I ∈ V ∗

I (0) can be written as v∗
I = grad χ̂∗

I +∑nΩI

α=1 θ∗I,αλ∗
α. Inserting these expressions for HI = Z∗

I + H∗
e,I and v∗

I in (5.44),
we find∫

ΩC
(μ−1

C curlEC · curl zC + iωσEC · zC)

−iω
∫
Γ
grad ψ̂∗

I · zC × nC − iω
∑nΩI

α=1 η∗I,α
∫
Γ

λ∗
α · zC × nC

= −iω
∫
ΩC

Je,C · zC + iω
∫
Γ

H∗
e,I · zC × nC ,

(5.51)

−iω
∫
Γ

EC × nC · grad χ̂∗
I + ω2

∫
ΩI

μI grad ψ̂
∗
I · grad χ̂∗

I

+ω2
∑nΩI

α=1 η∗I,α
∫
ΩI

μIλ
∗
α · grad χ̂∗

I

= −ω2
∫
ΩI

μIH
∗
e,I · grad χ̂∗

I ,

(5.52)

and

−iω
∑nΩI

β=1 θ∗I,β
∫
Γ EC × nC · λ∗

β + ω2
∑nΩI

β=1 θ∗I,β
∫
ΩI

μI grad ψ̂
∗
I · λ∗

β

+ω2
∑nΩI

α,β=1

(∫
ΩI

μIλ
∗
α · λ∗

β

)
η∗I,α θ∗I,β

= −ω2
∑nΩI

β=1 θ∗I,β
∫
ΩI

μIH
∗
e,I · λ∗

β .

(5.53)

The variational space where we are looking for the solution is clearly

U∗ := H(curl;ΩC)×H1(ΩI)/C ×CnΩI . (5.54)
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This shows thatwe have no longer strongmatching on the interfaceΓ , hence the choice
of finite elements for numerical approximationwill be easier than that we will propose
for problems (5.13) and (5.21).
Setting

ae,C(wC , zC) :=
∫
ΩC

(μ−1
C curlwC · curl zC + iωσwC · zC) , (5.55)

the sesquilinear form at the left hand side of (5.51), (5.52) and (5.53) is given by

K((wC , ζ̂∗I , γ
∗
I), (zC , χ̂∗

I , θ
∗
I))

:= ae,C(wC , zC) − iω
∫
Γ
grad ζ̂∗I · zC × nC

−iω
∑nΩI

α=1 γ∗
I,α

∫
Γ λ∗

α · zC × nC − iω
∫
Γ grad χ̂

∗
I ·wC × nC

+ω2
∫
ΩI

μI grad ζ̂
∗
I · grad χ̂∗

I + ω2
∑nΩI

α=1 γ∗
I,α

∫
ΩI

μIλ
∗
α · grad χ̂∗

I

−iω
∑nΩI

α=1 θ∗I,α
∫
Γ

λ∗
α ·wC × nC

+ω2
∑nΩI

α=1 θ∗I,α
∫
ΩI

μIλ
∗
α · grad ζ̂∗I + ω2[Â∗γ∗

I , θ
∗
I ] ,

(5.56)

where the matrix Â∗ is defined as

Â∗
αβ :=

∫
ΩI

μIλ
∗
α · λ∗

β , α, β = 1, . . . , nΩI , (5.57)

and [·, ·] denotes the scalar product in CnΩI .
The weak formulation of the eddy current problem reads

Find (EC , ψ̂∗
I ,η

∗
I) ∈ U∗ such that

K((EC , ψ̂∗
I ,η

∗
I), (zC , χ̂∗

I , θ
∗
I))

= −iω
∫
ΩC

Je,C · zC + iω
∫
Γ

H∗
e,I · zC × nC

−ω2
∫
ΩI

μIH
∗
e,I · grad χ̂∗

I

−ω2
∑nΩI

α=1 θ∗I,α
∫
ΩI

μIH
∗
e,I · λ∗

α

for each (zC , χ̂∗
I , θ

∗
I) ∈ U∗ ,

(5.58)

Thewell-posedness of thisweak problem is a consequence ofLax–Milgram lemma,
as the following coerciveness result holds:

Proposition 5.7. The sesquilinear form K(·, ·) is coercive in U∗, namely, there exists
a constant κ0 > 0 such that

|K((zC , χ̂∗
I, θ

∗
I), (zC , χ̂∗

I , θ
∗
I))|

≥ κ0

( ∫
ΩC

(|zC |2 + | curl zC |2) +
∫
ΩI

(|χ̂∗
I|2 + | grad χ̂∗

I |2) + |θ∗
I |2
)

for each (zC , χ̂∗
I , θ

∗
I) ∈ U∗ satisfying

∫
ΩI

χ̂∗
I = 0.
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Proof. We have already proved in Theorem 4.1 that the sesquilinear form C(·, ·) at the
right hand side of (5.44) is coercive inH(curl;ΩC)× VI(0), where

VI(0) := {vI ∈ H0,∂Ω(curl;ΩI) | curlvI = 0 in ΩI} .

However, the fact that vI ∈ VI(0) satisfies vI ×n = 0 on ∂Ω does not play any role
in the proof, hence the same result holds forH(curl;ΩC)×V ∗

I (0). On the other hand,
writingv∗

I = grad χ̂∗
I +

∑nΩI

α=1 θ∗I,αλ∗
α, we can repeat the proof of Lemma 5.2 and we

obtain ∫
ΩI

μIv
∗
I · v∗

I ≥ C0

( ∫
ΩI

| grad χ̂∗
I |2 + |θ∗

I |2
)

.

From the Poincaré inequality (4.51) the proof is thus complete. �

Concerning the strong formulation, from the decomposition result (5.49) for the
magnetic fieldHI we easily find that EC , ψ̂∗

I (determined up to an additive constant)
and η∗

I satisfy the strong problem⎧⎪⎪⎨⎪⎪⎩
curl(μ−1

C curlEC ) + iωσEC = −iωJe,C in ΩC

(μ−1
C curlEC)× nC = iω grad ψ̂∗

I × nI

+iω
∑nΩI

α=1 η∗I,α λ∗
α × nI + iωH∗

e,I × nI on Γ

(5.59)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
div(μI grad ψ̂

∗
I ) = − div(μIH

∗
e,I)−

∑nΩI

α=1 η∗I,α div(μIλ
∗
α) in ΩI

μI grad ψ̂
∗
I · nI = −iω−1 curlEC · nC −μIH

∗
e,I · nI

−
∑nΩI

α=1 η∗I,αμIλ
∗
α · nI on Γ

μI grad ψ̂
∗
I · n = −μIH

∗
e,I · n−

∑nΩI

α=1 η∗I,αμIλ
∗
α · n on ∂Ω

(5.60)

iω(Â∗η∗
I)β = −

∫
Γ EC × nC · λ∗

β

−aI(H∗
e,I ,λ

∗
β)− aI(grad ψ̂∗

I ,λ
∗
β) ∀ β = 1, . . . , nΩI .

(5.61)

5.3.1 A domain decomposition procedure

Starting from (5.59)–(5.61) it is easy to devise an iteration-by-subdomain procedure
for solving the eddy current problem (for this type of domain decomposition approach,
in different contexts, see, e.g., Quarteroni and Valli [200]). Here we focus on the strong
forms of the problems: the correspondingweak formulations can be easily determined.
Given eold

Γ on Γ , find the solution (ψ̂∗
I ,η

∗
I) (ψ̂

∗
I determined up to an additive con-

stant) of the coupled problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(μI grad ψ̂
∗
I ) +

∑nΩI
α=1 η∗I,α div(μIλ

∗
α) = − div(μIH

∗
e,I) inΩI

aI(grad ψ̂∗
I ,λ

∗
β) + iω(Â∗η∗

I)β

= −
∫
Γ eold

Γ · λ∗
β − aI(H∗

e,I ,λ
∗
β) ∀ β = 1, . . . , nΩI

μI grad ψ̂
∗
I · nI +

∑nΩI
α=1 η∗I,αμIλ

∗
α · nI

= −iω−1 divτ eold
Γ − μIH

∗
e,I · nI on Γ

μI grad ψ̂
∗
I · n +

∑nΩI

α=1 η∗I,αμIλ
∗
α · n = −μIH

∗
e,I · n on ∂Ω ,

(5.62)
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then solve⎧⎪⎪⎨⎪⎪⎩
curl(μ−1

C curlEC ) + iωσEC = −iωJe,C in ΩC

(μ−1
C curlEC) × nC = iω grad ψ̂∗

I × nI

+iω
∑nΩI

α=1 η∗I,α λ∗
α × nI + iωH∗

e,I × nI on Γ ,

(5.63)

finally set

enew
Γ = (1− δ)eold

Γ + δ EC × nC on Γ , (5.64)

and iterate until convergence (again, δ > 0 is an acceleration parameter). In the limit
one has e∞Γ = EC × nC on Γ . Note that the solvability of problem (5.62) is ensured
from the fact that the sesquilinear form associated to it is coercive, as a consequence
of Lemma 5.2 (for this, see the last part of the proof of Proposition 5.7). Moreover,
problem (5.63) is a standard Neumann boundary value problem for a curl curl-like
operator.
This algorithm has been analyzed by Alonso and Valli [7], in the case in which Ω

and ΩC are topologically simple (namely, nΩI = 0). There it is proved that the itera-
tive procedure converges, provided that the parameter δ is chosen in a suitable interval
(0, δ0). Moreover, when considering a finite element approximation, the convergence
is proved to be independent of the mesh size h. In the next section we present some
numerical results concerned with this domain decomposition procedure.
As we have already noted when we have considered the formulation in terms of

HC and ψ̂I , the advantage of this approach is that, at the numerical level, the reduced
problems (5.62) and (5.63) can be easier to solve than the global coupled problem
(5.59)–(5.61), as they have a smaller size and, moreover, they have a standard structure
(at least, for a simple topological situation, that is, when nΩI = 0; when instead nΩI �=
0, we can anyway see that (5.62) is a simple variant of a classical elliptic problem).
Therefore, at each step we can employ our favourite solvers for elliptic problems, and,
if the number of iterations is not too large, this procedure could be computationally
more efficient than the one based on a direct discretization of (5.59)–(5.61).

5.4 Numerical approximation

The weak formulations of the problems presented in the preceding sections are based
on sesquilinear forms that are coercive in a suitable Hilbert space, say, X. Therefore,
the numerical approximation is somehow standard: choose an internal approximation
of the space X, and estimate the error between the exact solution and the discrete
solution by means of the Céa lemma.
However, a preliminary question to be faced is the determination of the vector

fieldsHe,I andH∗
e,I (see (5.3) and (5.43), respectively), that appear at the right hand

side of the weak formulations, and that are also needed to find the right magnetic field.
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5.4.1 The determination of a vector potential for the density current Je,I

A first obvious remark is that we have nothing to do if Je,I = 0 inΩI : for some real-
life problems this is indeed the case (see, e.g., Sections 9.2 and 9.4). On the contrary,
when Je,I �= 0, we can use the Biot–Savart law and define for each x ∈ ΩI

H∗
e,I(x) := curl

( ∫
ΩI

1
4π|x−y| Je,I(y) dy

)
=
∫
ΩI

y−x
4π|x−y|3 × Je,I(y) dy .

(5.65)

However, this has some flaws. In fact, one has

curlH∗
e,I = curl curl

(∫
ΩI

1
4π|x−y| Je,I(y) dy

)
= −Δ

(∫
ΩI

1
4π|x−y| Je,I(y) dy

)
+ grad div

(∫
ΩI

1
4π|x−y| Je,I(y) dy

)
,

hence curlH∗
e,I = Je,I in ΩI provided that

div
( ∫

ΩI

1
4π|x− y| Je,I(y) dy

)
= 0 in ΩI .

Since divJe,I = 0 in ΩI , this is ensured when the conditions Je,I · nI = 0 on Γ
and Je,I · n = 0 on ∂Ω are satisfied, so that one can extend Je,I by 0 outside ΩI

still keeping a divergence-free vector field. In this respect, note that Je,I · nI = 0
on Γ is not a necessary condition for solvability of the eddy current problem, while
Je,I · n = 0 on ∂Ω is a necessary condition only for the magnetic boundary value
problem: therefore, for the sake of completeness, we have to take into account also
the case in which these conditions are not satisfied. In this latter situation, one has to
extend the vector field Je,I to a domainΩ†

I , as small as possible but containingΩI , in
such a way that it is still divergence-free, but now with vanishing normal component
on the boundary of Ω†

I , and then use the Biot–Savart formula in Ω†
I for this extended

current density field.
The extension of Je,I can be achieved by taking the gradient of the solutionsΦ∂Ω

and ΦΓ of the Neumann problems⎧⎨⎩ΔΦ∂Ω = 0 in Ω†
I \Ω

gradΦ∂Ω · n = Je,I · n on ∂Ω

gradΦ∂Ω · n = 0 on ∂Ω†
I ∩ (R3 \Ω)⎧⎨⎩ΔΦΓ = 0 in Ω†
I ∩ΩC

gradΦΓ · nI = Je,I · nI on Γ

gradΦΓ · n = 0 on ∂Ω†
I ∩ΩC ,

(solutions determined up to an additive constant in each connected component of
Ω†
I \ Ω and Ω†

I ∩ ΩC , respectively), and at the discrete level this procedure has a
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small computational cost. Note that the solvability conditions for the Neumann prob-
lems here above are satisfied for both the magnetic and the electric boundary value
problem, as follows from (5.1), (5.2)1 and (5.41), (5.42), respectively.
For the electric boundary value problem we have thus obtained the vector field

H∗
e,I . Instead, for the magnetic boundary value problem we have not yet completed

the construction, as the vectorHe,I has to satisfy not only curlHe,I = Je,I inΩI , but
alsoHe,I ×n = 0 on ∂Ω, and this last condition does not hold forH∗

e,I defined as in
(5.65).
Here we have some different alternatives: the first one could be interesting for prac-

titioners, and consists in dropping the boundary conditionHe,I × n = 0 on ∂Ω, just
keepingH∗

e,I . Clearly, this does not introduce a too large error provided thatH
∗
e,I×n

is small enough on ∂Ω. Denoting bySe,I the support ofJe,I , namely, the regionwhere
Je,I is different from 0, and setting l = dist (Se,I , ∂Ω), from (5.65) we readily have

(∫
∂Ω

|H∗
e,I × n|2

)1/2

≤ 1
4πl2

(meas(∂Ω))1/2
∫
Se,I

|Je,I| ,

hence this approach can be followed if the quantity at the right hand side is small
enough.
Another possibility is to forget the Biot–Savart law (5.65) and to look forHe,I =

curlqe,I , where qe,I ∈ H(curl;ΩI) ∩H(div;ΩI) is the solution to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl curlqe,I = Je,I inΩI

divqe,I = 0 inΩI

qe,I × nI = 0 on Γ
qe,I · n = 0 on ∂Ω
curlqe,I × n = 0 on ∂Ω
qe,I⊥H(Γ, ∂Ω;ΩI) .

(5.66)

This problem, which is similar to (A.14) or to (A.22), can be formulated as a penal-
ization problem, by adding the term − grad divqe,I at the left hand side of (5.66)1, or
else as a saddle point problem, where the constraint on the divergence is imposed by
means of a Lagrange multiplier. Focusing on this latter choice, the numerical approx-
imation of (5.66) is performed using edge elements for qe,I and nodal elements for
the Lagrange multiplier, and, though the whole procedure is standard, it has however
a computational cost that is not negligible.
A third possibility consists in considering H∗

e,I defined as in (5.65), and writing
HI −H∗

e,I in terms of the orthogonal decomposition (5.49), namely,

HI −H∗
e,I = grad ψ̂∗

I +
nΩI∑
α=1

η∗I,αλ∗
α .

Note that, though (HI −H∗
e,I)× n �= 0 on ∂Ω, the terms Q∗

I in (A.26) is vanishing,
as curl(HI −H∗

e,I) = 0 in ΩI .
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DenotingbyH∗
e,C ∈ H(curl;ΩC) a vector field such thatH∗

e,C×nC+H∗
e,I×nI =

0 on Γ , we are now looking for the solution to the following problem

Find (Z∗
C , ψ̂∗

I ,η
∗
I ) ∈ Ŵ ∗ such that

grad ψ̂∗
I × n +

∑nΩI

α=1 η∗I,α λ∗
α × n = −H∗

e,I × n on ∂Ω

aC(Z∗
C ,v∗

C) + â∗I(ψ̂
∗
I ,η

∗
I ; χ̂

∗
I, θ

∗
I)

= − aC(H∗
e,C ,v∗

C)− aI(H∗
e,I , grad χ̂

∗
I)

− aI

(
H∗
e,I ,

∑nΩI

α=1 θ∗I,α λ∗
α

)
+
∫
ΩC

σ−1Je,C · curlv∗
C

for each (v∗
C , χ̂∗

I , θ
∗
I) ∈ Ŵ ∗

0 ,

(5.67)

where we have introduced the spaces

Ŵ ∗ := {(v∗
C , χ̂∗

I, θ
∗
I) ∈ H(curl;ΩC) ×H1(ΩI)/C× CnΩI |

v∗
C × nC + grad χ̂∗

I × nI +
∑nΩI

α=1 θ∗I,α λ∗
α × nI = 0 on Γ } (5.68)

Ŵ ∗
0 := {(v∗

C , χ̂∗
I , θ

∗
I) ∈ Ŵ ∗ |

grad χ̂∗
I × n +

∑nΩI
α=1 θ∗I,α λ∗

α × n = 0 on ∂Ω}, (5.69)

and the sesquilinear form

â∗I(ζ̂
∗
I , γ

∗
I ; χ̂

∗
I , θ

∗
I) := aI

(
grad ζ̂∗I +

nΩI∑
α=1

γ∗
I,αλ∗

α, grad χ̂
∗
I +

nΩI∑
α=1

θ∗I,αλ∗
α

)
. (5.70)

With respect to (5.21), what is new here is that we have to satisfy the additional con-
straint grad ψ̂∗

I × n +
∑nΩI

α=1 η∗I,α λ∗
α × n = −H∗

e,I × n on ∂Ω. In the next section,
following Bermúdez et al. [42], we will describe an efficient way to devise a finite
element approximation of this problem, based on the introduction of a Lagrange mul-
tiplier for taking into account the boundary condition on ∂Ω.

Remark 5.8. A method for determining a suitable approximation of the vector fields
He,I and H∗

e,I has been proposed by Webb and Forghani [241]. To be precise, an

edge element vector field ĤI,h is constructed, such that curl ĤI,h is equal to a suit-
able interpolant of the current density Je,I . In a simple topological configuration the
proposed algorithm leads to a uniquely determined edge element. Instead, in the gen-
eral case some degrees of freedom remain undefined: one for each non-boundingcycle
contained in ΩI . �

5.4.2 Finite element approximation

A finite element numerical approximation of (5.13), (5.21), (5.58) or (5.67) must be
clearly based on (scalar) nodal elements in ΩI and edge elements in ΩC .
However, any approximation procedure starting from the weak formulation (5.13)

has some drawbacks, as it is also necessary either compute explicitly ωq,I (and in
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general this is not feasible), or to approximate them through the problems described in
SectionA.4, see (A.33) and (A.34), and this is rather expensive, especially for largeN .
Moreover, the matching condition on Γ , that is included in the definition of the space
W , cannot be satisfied at the discrete level, as ωq,I × nI is not a discrete function on
Γ . Therefore one should consider the matching condition for a suitable interpolant (or
projection) of ωq,I on Γ , thus resulting in a non-conforming finite element approxi-
mation.
Instead, the numerical approximation based on (5.21), (5.58) or (5.67) is much

easier to implement, as the construction of each λq and λ∗
α is straightforward, once

the “cutting” surfaces are available; moreover, if the finite element triangulation Th
is a refinement of the triangulation Th0 used in the construction of λq, the matching
condition on Γ can be imposed directly, as in this case λq × n is a discrete function
also in any finer mesh.

Remark 5.9. It is worth noting that the determination of the vector fields λq and λ∗
α

requires the explicit construction of the “cutting” surfaces Ξl or Ξ∗
α, which can be

troublesome in general topological configurations. Some algorithms have been pro-
posed by Kotiuga [152], [153], [154], Leonard et al. [165], Gross and Kotiuga [114],
Ren [207]. A detailed presentation of one of these algorithm can be found in Gross
and Kotiuga [115], Chap. 6. An up-to-date review of the methods used for construct-
ing “cutting” surfaces, together with the proposal of a new algorithm, are presented in
Dłotko et al. [97]. �

In the sequel we focus on the numerical approximation of (5.21), (5.67) and (5.58),
and we assume that ΩI and ΩC are polyhedrical domains, and that TI,h and TC,h
are two regular families of triangulations of ΩI and ΩC , respectively; for the sake of
simplicity, we suppose that each element K of TI,h and TC,h is a tetrahedron. When
considering the numerical approximation of (5.21) and (5.67), we also assume that
these triangulations match on Γ , and that they are a refinement of the triangulation
Th0 used in the construction of λq.
In ΩC we employ the Nédélec curl-conforming edge element space Nk

C,h, that is
defined as

Nk
C,h := {zC,h ∈ H(curl;ΩC) | zC,h|K ∈ Rk ∀K ∈ TC,h} ,

where Rk := (Pk−1)3 ⊕ Sk and Sk := {p ∈ (P̃k)3 | p(x) · x = 0}. Other choices
would be possible, for instance the second family of curl-conforming finite element
spaces introduced and analyzed by Nédélec [186] (for notation and a detailed descrip-
tion of these spaces see Section A.2). We also consider Nk

I,h, the correspondent space
inΩI , and the trace space

XΓ,h := {(vI,h × nI)|Γ | vI,h ∈ Nk
I,h} = {(vC,h × nC)|Γ | vC,h ∈ Nk

C,h} .

Finally, we consider the space of scalar Lagrange nodal elements

LkI,h := {χI,h ∈ C0(ΩI ) | χI,h|K ∈ Pk ∀ K ∈ TI,h} .
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Remark 5.10. Note that one has gradχI,h ∈ Nk
I,h for all χI,h ∈ LkI,h and that

λq ∈ Nk
I,h for q = 1, . . . , N . Moreover, if vI,h ∈ Nk

I,h is such that curlvI,h = 0 in
ΩI andvI,h×n = 0 on∂Ω, fromTheoremA.7 and (5.17) there exist χ̂I ∈ H1

0,∂Ω(ΩI)
and θI ∈ CN such that vI,h = grad χ̂I +

∑N
q=1 θI,qλq. Since λq ∈ Nk

I,h, then
also grad χ̂I ∈ Nk

I,h and thus grad χ̂I|K ∈ Rk for each K ∈ TI,h. From Gi-
rault and Raviart [111], Chap. III, Lemma 5.5, it follows that χ̂I|K ∈ Pk, hence
χ̂I ∈ LkI,h ∩H1

0,∂Ω(ΩI ). �
Let us now consider the space

Ŵh := {(vC,h, χ̂I,h, θI) ∈ Nk
C,h × LkI,h ×CN | χ̂I,h|∂Ω = 0,

vC,h × nC + grad χ̂I,h × nI +
∑N

q=1 θI,q λq × nI = 0 on Γ } .

It is well-defined, since vC,h ×nC , grad χ̂I,h ×nI and
∑N

q=1 θI,q λq ×nI are in the
same space XΓ,h. The matching condition on the interface can be imposed by elimi-
nating the degrees of freedom of vC,h associated to the edges and faces on Γ in terms
of those of grad χ̂I,h +

∑N
q=1 θI,q λq. Moreover, Ŵh is clearly contained in Ŵ .

Assuming that we have explicitly constructed He,I and He,C , the numerical ap-
proximation of (5.21) reads

Find (ZC,h, ψ̂I,h,ηI,h) ∈ Ŵh such that

aC(ZC,h,vC,h) + âI(ψ̂I,h,ηI,h; χ̂I,h, θI)
= −aC(He,C ,vC,h)− aI(He,I , grad χ̂I,h)
−aI

(
He,I ,

∑N
q=1 θI,q λq

)
+
∫
ΩC

σ−1Je,C · curlvC,h
for each (vC,h, χ̂I,h, θI) ∈ Ŵh .

(5.71)

The following theorem can be easily proved.

Theorem 5.11. Assume that the families of triangulations TC,h and TI,h are obtained
as a refinement of the coarse triangulation Th0 . The solution (ZC,h, ψ̂I,h,ηI,h) of
problem (5.71) exists and is unique. If the solution of problem (5.21) satisfies ZC ∈
Hr(curl;ΩC) and ψ̂I ∈ H1+r(ΩI) with r > 1/2, the following error estimate holds

‖ZC −ZC,h‖H(curl;ΩC) + ‖ψ̂I − ψ̂I,h‖1,ΩI + |ηI − ηI.h|
≤ c∗hmin(r,k)(‖ZC‖Hr(curl;ΩC) + ‖ψ̂I‖1+r,ΩI ) .

(5.72)

Proof. Existence and uniqueness of the solution follow from the fact that the sesquilin-
ear form aC(·, ·) + âI(·; ·) is continuous and coercive in Ŵ .
Using the Céa lemma (see, e.g., Ciarlet [83], p. 104; Quarteroni and Valli [199],

p. 137) one finds at once

‖ZC −ZC,h‖H(curl;ΩC) + ‖ψ̂I − ψ̂I,h‖1,ΩI + |ηI − ηI.h|
≤ c∗(‖ZC − vC,h‖H(curl;ΩC ) + ‖ψ̂I − χ̂I,h‖1,ΩI + |ηI − θI |)

(5.73)

for any choice of (vC,h, χ̂I,h, θI) in Ŵh.
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We note that, since ZI = grad ψ̂I +
∑N

q=1 ηI,qλq , the interpolant rI,h(ZI ) =
rI,h(grad ψ̂I) +

∑N
q=1 ηI,qλq is well-defined, and moreover

rI,h(grad ψ̂I) = grad πI,h(ψ̂I)

holds, where πI,h is the interpolation operator in LkI,h (see Monk [179], Theor. 5.49).
Hence in (5.73) one can choose vC,h the interpolant of ZC in Nk

C,h, χ̂I,h the inter-

polant of ψ̂I in LkI,h and θI = ηI , since with this choice the matching condition on Γ
is satisfied. Thus, as a consequence of the corresponding interpolation estimates (see
Alonso and Valli [9] and Section A.2) one readily finds (5.72). �

The difficulties that can arise in the construction of the vector fieldHe,I have lead
us to propose the weak formulation (5.67) for the magnetic boundary value problem.
Now we are interested in its finite element approximation. As before, we employ the
edge finite element spaces Nk

C,h in ΩC and Nk
I,h in ΩI , and the space of scalar nodal

elements LkI,h in ΩI .
Since at the discrete level the boundary condition cannot be satisfied exactly, we

need to consider an approximation of the boundary data −H∗
e,I × n in the finite di-

mensional space

Y0
∂Ω,h := {(vI,h × n)|∂Ω | vI,h ∈ Nk

I,h ∩H0(curl;ΩI)} .

Proceeding as in Remark 5.10 it is easy to see that each function vI,h ∈ Nk
I,h such

that curlvI,h = 0 inΩI can be decomposed as

vI,h = grad χ̂∗
I,h +

nΩI∑
α=1

θ∗I,α λ∗
α , (5.74)

for some χ̂∗
I,h ∈ LkI,h and θ∗

I ∈ CnΩI . Let us set

Lk∂Ω,h := {νh ∈ C0(∂Ω) | νh|T ∈ Pk ∀ K ∈ T∂Ω,h} ,

where T∂Ω,h is the triangulation induced by TI,h on ∂Ω. Then by (5.74) ξh ∈ Y0
∂Ω,h

if and only if n× ξh = gradτνh +
∑nΩI

α=1 θ∗I,αn×λ∗
α × n for some νh ∈ Lk∂Ω,h and

θ∗
I ∈ CnΩI (see Section A.1 for the definition of the operator gradτ inH1/2(∂Ω)).
From well-known results of potential theory (see, e.g., Dautray and Lions [93],

Chap. II, Sect. 3), since Je,I ∈ (L2(ΩI ))3 (and also its extension belongs to
(L2(Ω†

I))
3), then H∗

e,I ∈ (H1(ΩI ))3. Moreover curlH∗
e,I = Je,I , hence assuming

that Je,I ∈ (Lp(Ω))3 for some p > 2 the interpolant rI,h(H∗
e,I ) is well-defined (see

Monk [179], Lemma 5.38). Our aim is to choose the value−
(
rI,h(H∗

e,I) × n
)
|∂Ω as

discrete boundary datum belonging to Y0
∂Ω,h.

In this respect, let us note that, if there exists a function GI ∈ (H1/2+δ(ΩI ))3,
δ > 0, such that curlGI = Je,I in ΩI andGI × n = 0 on ∂Ω, then it is easy to see
that −

(
rI,h(H∗

e,I) × n
)
|∂Ω is an element of Y

0
∂Ω,h. In fact, one readily verifies that
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rI,h(GI −H∗
e,I) ∈ Nk

I,h, curl(rI,h(GI −H∗
e,I)) = 0 in ΩI and rI,h(GI) × n = 0

on ∂Ω. In the following we assume that such a functionGI exists (for instance, it is
enough to know that the solutionHI belongs to (H1/2+δ(ΩI))3).
We thus consider the following discrete problem

Find (Z∗
C,h, ψ̂

∗
I,h,η

∗
I,h) ∈ Ŵ ∗

h such that

grad ψ̂∗
I,h × n +

∑nΩI

α=1(η
∗
I,h)α λ∗

α × n = −rI,h(H∗
e,I) × n on ∂Ω

aC(Z∗
C,h,v

∗
C,h) + â∗I(ψ̂

∗
I,h,η

∗
I,h; χ̂

∗
I,h, θ

∗
I)

= −aC(H∗
e,C ,v∗

C,h)− aI(H∗
e,I , grad χ̂

∗
I,h)

− aI
(
H∗
e,I ,

∑nΩI

α=1 θ∗I,α λ∗
α

)
+
∫
ΩC

σ−1Je,C · curlv∗
C,h

for each (v∗
C,h, χ̂

∗
I,h, θ

∗
I) ∈ Ŵ ∗

0,h ,

(5.75)

where

Ŵ ∗
h := {(v∗

C,h, χ̂
∗
I,h, θ

∗
I) ∈ Nk

C,h × LkI,h/C× CnΩI |
v∗
C,h × nC + grad χ̂∗

I,h × nI +
∑nΩI

α=1 θ∗I,α λ∗
α × nI = 0 on Γ },

and

Ŵ ∗
0,h := {(v∗

C,h, χ̂
∗
I,h, θ

∗
I) ∈ Ŵ ∗

h | grad χ̂∗
I,h × n +

nΩI∑
α=1

θ∗I,α λ∗
α × n = 0 on ∂Ω} .

It is straightforward to obtain the following result.

Theorem 5.12. Assume that the families of triangulations TC,h and TI,h are obtained
as a refinement of the coarse triangulation Th0 and that rI,h(H∗

e,I) × n ∈ Y0
∂Ω,h.

Then there exists a unique solution (Z∗
C,h, ψ̂

∗
I,h,η

∗
I,h) to problem (5.75). Moreover,

if the solution to problem (5.67) satisfies Z∗
C ∈ Hr(curl;ΩC) and ψ̂∗

I ∈ H1+r(ΩI )
with r > 1/2, the following error estimate holds

‖Z∗
C − Z∗

C,h‖H(curl;ΩC) + ‖ψ̂∗
I − ψ̂∗

I,h‖H1(ΩI)/C + |η∗
I − η∗

I.h|
≤ c∗h

min(r,k)(‖Z∗
C‖Hr(curl;ΩC) + ‖ grad ψ̂∗

I‖r,ΩI ) .
(5.76)

Proof. The sesquilinear form aC(·, ·)+ â∗I(·, ·) is clearly continuous in Ŵ ∗, and pro-
ceeding as in Proposition 5.7 it is easily seen that it is also coercive in Ŵ ∗. Since
Ŵ ∗

0,h ⊂ Ŵ ∗
0 ⊂ Ŵ ∗ and rI,h(H∗

e,I) × n ∈ Y0
∂Ω,h, well-posedness of the discrete

problem follows at once. Moreover, by using Céa lemma we find that

‖Z∗
C − Z∗

C,h‖H(curl;ΩC) + ‖ψ̂∗
I − ψ̂∗

I,h‖H1(ΩI )/C + |η∗
I − η∗

I,h|
≤ c∗(‖Z∗

C − v∗
C,h‖H(curl;ΩC) + ‖ψ̂∗

I − χ̂∗
I,h‖H1(ΩI)/C + |η∗

I − θ∗
I |)

for any choice of test functions (v∗
C,h, χ̂

∗
I,h, θ

∗
I) ∈ Ŵ ∗

0 such that grad χ̂
∗
I,h × n +∑nΩI

α=1 θ∗I,α λ∗
α × n = −rI,h(H∗

e,I) × n on ∂Ω. Since HI = H∗
e,I + grad ψ̂∗

I +
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α=1 η∗I,αλ∗

α, we can choosev
∗
C,h = rC,h(Z∗

C ), grad χ̂∗
I,h = rI,h(grad ψ̂∗

I ) and θ∗
I =

η∗
I , where rC,h and rI,h are the interpolationoperators inNk

C,h andNk
I,h, respectively;

therefore, employing the standard interpolation results, we obtain at once the error
estimate (5.76). �

To complete our analysis, let us specify how to impose the non-homogeneousmag-
netic boundary condition. First, we note now that nΩI ≥ nΓ , nΓ being the number of
∂Ω-independent non-bounding cycles in ΩI . Therefore, we can arrange the indepen-
dent non-bounding cycles inΩI in such a way that the ∂Ω-independent non-bounding
cycles are numbered with α from 1 to nΓ .
Let us also assume that the system of “cutting” surfaces Ξ∗

α is such that ∂Ξ
∗
α ⊂ Γ

for α = 1, . . . , nΓ and ∂Ξ∗
α ⊂ ∂Ω for α = nΓ + 1, . . . , nΩI ; note that this is not

true, for instance, in the case in which Ω and ΩC are two co-axial tori. Then, for
α = nΓ + 1, . . . , nΩI , the coefficient (η∗I,h)α can be computed in advance from the
data of the problem. In fact, denoting by Z∗

I,h := grad ψ̂∗
I,h +

∑nΩI

α=1(η
∗
I,h)α λ∗

α, it is
easy to see that

(η∗I,h)α =
∫
ϕα

Z∗
I,h · dτ ,

hence for α = nΓ + 1, . . . , nΩI one has

(η∗I,h)α = −
∫
ϕα

(n× rI,h(H∗
e,I) × n) · dτ . (5.77)

Moreover, for α = 1, . . . , nΓ , it holds λ∗
α × n = 0 on ∂Ω, hence (5.75)1 is in fact a

boundary condition for grad ψ̂∗
I,h

grad ψ̂∗
I,h × n = −

(
rI,h(H∗

e,I) +
nΩI∑

α=nΓ +1

(η∗I,h)αλ∗
α

)
× n , (5.78)

with (η∗I,h)α obtained in (5.77).
An efficient procedure for imposing this boundary condition has been proposed

by Bermúdez et al. [42] and it is based on the use of Lagrange multipliers. Since
rI,h(H∗

e,I) × n ∈ Y0
∂Ω,h, (η∗I,h)α = −

∫
ϕα

(n × rI,h(H∗
e,I) × n) · dτ for α =

nΓ + 1, . . . , nΩI and λ∗
α × n = 0 on ∂Ω for α = 1, . . . , nΓ , it follows that

n ×
(
rI,h(H∗

e,I) +
∑nΩI

α=nΓ +1(η
∗
I,h)αλ∗

α

)
× n = gradτηh for some ηh ∈ Lk∂Ω,h.

Hence it is clear that (5.78) holds if and only if∫
∂Ω

n× grad ψ̂∗
I,h × n · gradτνh = −

∫
∂Ω

gradτηh · gradτνh ,

for all νh ∈ Lk∂Ω,h/C.
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Therefore we consider the following problem

Find (Z∗
C,h, ψ̂

∗
I,h,η

∗
I,h) ∈ Ŵ ∗

h , κh ∈ Lk∂Ω,h/C such that

(η∗I,h)α = −
∫
ϕα

(
n× rI,h(H∗

e,I)× n
)
· dτ

for α = nΓ + 1, . . . , nΩI

aC(Z∗
C,h,v

∗
C,h) + â∗I(ψ̂

∗
I,h,η

∗
I,h; χ̂

∗
I,h, θ

∗
I,h)

+
∫
∂Ω

gradτ κh · gradτ χ̂∗
I,h

= −aC(H∗
e,C ,v∗

C,h) − aI(H∗
e,I , grad χ̂

∗
I,h)

− aI
(
H∗
e,I ,

∑nΩI

α=1 θ∗I,α λ∗
α

)
+
∫
ΩC

σ−1Je,C · curlv∗
C,h∫

∂Ω
gradτ ψ̂∗

I,h · gradτ νh

= −
∫
∂Ω

n× rI,h(H∗
e,I)× n · gradτ νh

−
∫
∂Ω n×∑nΩI

α=nΓ +1(η
∗
I,h)αλ∗

α × n · gradτ νh

for each (v∗
C,h, χ̂

∗
I,h, θ

∗
I) ∈ Ŵ ∗

0,h, νh ∈ Lk∂Ω,h/C .

(5.79)

The following theorem shows that this problem is well-posed and that it is equiv-
alent to problem (5.75).

Theorem 5.13. Let the assumptions of Theorem 5.12 be satisfied and let the system of
“cutting” surfaces Ξ∗

α be such that ∂Ξ∗
α ⊂ Γ for α = 1, . . . , nΓ and ∂Ξ∗

α ⊂ ∂Ω
for α = nΓ + 1, . . . , nΩI . Under these assumptions problem (5.79) has a unique
solution. Moreover if we consider the unique solution (Z∗

C,h, ψ̂
∗
I,h,η

∗
I,h) ∈ Ŵ ∗

h of

problem (5.75), then (Z∗
C,h, ψ̂

∗
I,h,η

∗
I,h, 0) ∈ Ŵ ∗

h ×Lk∂Ω,h/C is the solution of (5.79).

Proof. To prove the existence and uniqueness of the solution it is enough to show
that the homogeneous problem has only the trivial solution. Assuming thatH∗

e,I = 0,
H∗
e,C = 0 and Je,C = 0, from (5.79)1 it follows that (η∗I,h)α = 0 for α = nΓ +

1, . . . , nΩI and from (5.79)3 we see that gradτ ψ̂∗
I,h = 0 on ∂Ω. Taking in (5.79)2

(Z∗
C,h, ψ̂

∗
I,h, η

∗
I,h) as test function, from the coerciveness of the sesquilinear form

aC(·, ·)+ â∗I(·, ·)we also have Z∗
C,h = 0 inΩC and grad ψ̂∗

I,h +
∑nΩI

α=1(η
∗
I,h)α λ∗

α =
grad ψ̂∗

I,h+
∑nΓ

α=1(η
∗
I,h)α λ∗

α = 0 inΩI . Integrating this last equation along the cycle

ϕα, α = 1, . . . , nΓ , we easily find (η∗I,h)α = 0, and therefore also grad ψ̂∗
I,h = 0 in

ΩI .
The second part of the theorem follows from (5.77) and (5.78). �
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Let us finally focus on the numerical approximation of (5.58). It reads

Find (EC,h, ψ̂
∗
I,h,η

∗
I,h) ∈ U∗

h such that

K((EC,h, ψ̂
∗
I,h,η

∗
I,h), (zC,h, χ̂

∗
I,h, θ

∗
I ))

= −iω
∫
ΩC

Je,C · zC,h + iω
∫
Γ H∗

e,I · zC,h × nC

−ω2
∫
ΩI

μIH
∗
e,I · grad χ̂∗

I,h

−ω2
∑nΩI

α=1 θ∗I,α
∫
ΩI

μIH
∗
e,I · λ∗

α

for each (zC,h, χ̂∗
I,h, θ

∗
I) ∈ U∗

h ,

(5.80)

where the finite element space U∗
h ⊂ U∗ is given by

U∗
h := Nk

C,h × LkI,h/C×CnΩI .

Since no matching condition is required on Γ , the meshes induced on Γ by TI,h and
TC,h can be independent.
Since the sesquilinear formK(·, ·) is coercive inU∗ and smooth functions are dense

in U∗, we can repeat the same arguments presented before and we end up with the
following result.

Theorem 5.14. Assume that the families of triangulations TC,h and TI,h are ob-
tained as a refinement of coarse triangulations TC,h0 and TI,h0 . Then the solution

(EC,h, ψ̂
∗
I,h, η

∗
I,h) of (5.80) exists, is unique and converges to the solution (EC , ψ̂∗

I ,η
∗
I)

of problem (5.58). Moreover, if EC ∈ Hr(curl;ΩC) and ψ̂∗
I ∈ H1+r(ΩI) for

r > 1/2, it follows

‖EC − EC,h‖H(curl;ΩC) + ‖ψ̂∗
I − ψ̂∗

I,h‖H1(ΩI)/C + |η∗
I − η∗

I.h|
≤ c∗hmin(r,k)(‖EC‖Hr(curl;ΩC) + ‖ grad ψ̂∗

I‖r,ΩI ) .
(5.81)

Remark 5.15. The weak formulations (5.21) and (5.67) are somehow different from
those presented in Bermúdez et al. [42], even in the case of homogeneous boundary
conditions, as we explicitly construct the part of themagnetic field that is not a gradient
(namely,

∑N
q=1 ηI,qλq in (5.18)), while Bermúdez et al. [42] work with a multivalued

potential. For other ways in which the magnetic scalar potential in multiply-connected
regions is dealt with, see also Leonard and Rodger [167], [168] and the references
therein. �

Remark 5.16. Following the approach described in Remark 5.8, one could decompose
the discrete magnetic field as HI,h = ĤI,h + gradΨI,h, where ĤI,h is an edge
element with the property that curl ĤI,h is an interpolant of Je,I . Using this repre-
sentation, instead of HI,h = He,I + grad ψ̂I,h +

∑N
q=1(ηI,h)qλq as in (5.71) or

HI,h = H∗
e,I+grad ψ̂

∗
I,h+

∑nΩI

α=1(η
∗
I,h)αλ∗

α as in (5.79) and (5.80), can lead to devise
suitable numerical approximation schemes. This procedure is adopted by Webb and
Forghani [242], though a way for determining the degrees of freedom in ĤI,h that are
associated to the non-bounding cycles contained in ΩI is not clearly described. �
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We end this section by presenting some numerical results obtained by using the
domain decomposition procedure described in Section 5.3.1 (a more detailed presen-
tation can be found in Alonso Rodríguez and Valli [16]).
For testing the iterative algorithm (5.62), (5.63) and (5.64) we consider a model

problem with scalar constant parameters μ and σ. The computational domain is the
parallelepipedΩ = (0, 2)×(0, 1)×(0, 1) and we takeΩI := (0, xΓ )×(0, 1)×(0, 1)
and ΩC := (xΓ , 2) × (0, 1) × (0, 1) (for the sake of geometric simplicity, in this
example we have chosen a conductor ΩC not strictly contained in Ω; moreover, we
have no harmonic fields into play, namely, nΩI = 0). The numerical mesh is uniform,
and each element of the grid is a cube of side h. The employed finite elements are the
first order curl-conforming hexahedral edge elements of Nédélec (see Nédélec [185]
and Section A.2).
Aim of these numerical experiments is to verify the effectiveness of the iteration-

by-subdomain procedure. Therefore it is not restrictive to study a model problem with
current density Je = 0 and, starting with a non-zero initial datum, analyze the conver-
gence of the solution to 0.
For each indexm the iterations can be rewritten in the followingway: given emΓ,h,

the first step furnishes ξmI,h := iωμψ̂∗,m
I,h , the finite element approximate solution of

the problem ⎧⎪⎪⎨⎪⎪⎩
ΔξmI = 0 in ΩI

∂ξm
I

∂n = divτ emΓ,h on Γ

∂ξm
I

∂n = 0 on ∂Ω ∩ ∂ΩI .

Then the second step gives Em
C,h, the approximate solution of⎧⎪⎪⎨⎪⎪⎩

curl curlEm
C + iωμσEm

C = 0 in ΩC

curlEm
C × nC = grad ξmI,h × nI on Γ

curlEm
C × n = 0 on ∂Ω ∩ ∂ΩC .

Finally, the new datum on Γ is defined as

em+1
Γ,h = (1− δ)emΓ,h + δ Em

C,h × nC on Γ .

The iterations are interrupted when the stopping test

‖ grad ξm+1
I,h − grad ξmI,h‖20,ΩI

+ ‖Em+1
C,h −Em

C,h‖2H(curl;ΩC) ≤ 10−8

is satisfied.
The initial datum e0

Γ,h is a finite element approximation of (E
0
C ×nC)|Γ , for suit-

able vector fields E0
C . In the test case 1 we take a real function E0

C given by

E0
C,test 1 = (ez sin(xy), ex(y + z), cos(xz)) ,

whereas in the test case 2 the initial value is complex:

E0
C,test 2 = (ez + i sin(xy), yz + iex, i cos(xz)).
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In Table 5.1 and Table 5.2 we show the number of iterations for the test case 1
and for the test case 2, respectively, with different values of h and xΓ . The coefficient
κ := ωσμ, the only active parameter in this test problem, is set equal to 50 and the
relaxation parameter δ is equal to 1. It can be seen that the number of iterations required
to achieve convergence is almost constantwith respect toh (in fact, it decreases slightly
as the mesh size decreases).

Table 5.1. Number of iterations. Test case 1, δ = 1

xΓ \ h 1/4 1/6 1/8 1/10 1/12

1/2 5 4 4 4 3

1 4 4 4 4 3

3/2 4 4 4 4 3

Table 5.2. Number of iterations. Test case 2, δ = 1

xΓ \ h 1/4 1/6 1/8 1/10 1/12

1/2 5 4 4 4 4

1 4 4 3 3 3

3/2 4 4 4 4 4

From Table 5.3 we can see that the choice of the relaxation parameter δ = 1 seems
to be optimal.

Table 5.3. Number of iterations. Test case 1, h = 1/8

xΓ \ δ 0.9 0.95 1 1.05 1.1

1/2 5 4 4 5 5

1 5 5 4 5 6

3/2 5 5 4 5 6

Finally, we consider different values of the coefficient κ and we observe (see Ta-
ble 5.4) that the number of iterations required to achieve convergence does not change
with κ.

Table 5.4. Number of iterations. Test case 2, δ = 1, h = 1/8

xΓ \ κ 10−1 1 10 10 2 10 3

1/2 4 4 4 4 4

1 3 3 3 3 3

3/2 4 4 4 4 4
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In the second set of numerical experiments we construct the data in the following
way: we take a function EC ∈ H(curl;ΩC), we compute its interpolant EC,h in the
finite element space, and using this function we determine ξI,h by solving the discrete
Neumann problem for the Laplace operator inΩI , where the only non-vanishingdatum
is divτ (EC,h × nC) on Γ . Then we calculate the data of the problem (5.63) (namely,
−iωμJe,C inΩC , iωμH∗

e,I ×nI on Γ and, in the particular geometry we are consid-
ering for the numerical tests, EC,h × n on ∂ΩC ∩ ∂Ω) in such a way that EC,h is the
discrete solution of the electric field problem. Precisely, this means that −iωμJe,C =
curl curlEC + iωμσEC , iωμH∗

e,I × nI = curlEC,h × nC − grad ξI,h × nI .
In particular, we consider

EC(x, y, z) = (i y(1 − y)z(1 − z) sin(xy), z(1 − z)ex, y(1− y)(1 + i cos z))

(so that EC × n = 0 on y = 0, y = 1, z = 0 and z = 1), and constant coefficients
ω = 50, μ = 10−6, σ = 106. In this set of experiments we initialize the iterations
with e0

Γ = 0 and we study the convergence to 0 of the relative difference between two
subsequent iterates

‖ grad ξm+1
I,h − grad ξmI,h‖20,ΩI

‖ grad ξm+1
I,h ‖20,ΩI

+
‖Em+1

C,h − Em
C,h‖2H(curl;ΩC)

‖Em+1
C,h ‖2H(curl;ΩC)

.

In Figure 5.1 we see the convergence histories for xΓ = 1 and different values
of h, whereas in Figure 5.2 and in Figure 5.3 we set h = 1/10 and consider different
values of xΓ .
It can be thus concluded that this algorithm for solving the eddy current problem

is efficient: its convergence is fast and it seems to converge even better for smaller

Fig. 5.1. Convergence history for xΓ = 1 and different values of h
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Fig. 5.2. Convergence history for h = 1/10 and different values of xΓ

Fig. 5.3. Convergence history for h = 1/10 and different values of xΓ (continued)

values of the mesh size. The iteration-by-subdomain procedure is quite insensitive to
the position of the interface; it converges faster when the two subdomains are of the
same size but the performance of the method is good in other cases as well. Finally,
at least in the case of constant coefficients, the algorithm is rather insensitive to the
coefficients of the problem.
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5.5 The finite element approximation of EI

If the magnetic field is known, the electric field in the conductor ΩC can be directly
found by setting

EC = σ−1(curlHC − Je,C) .

Instead, the electric field in the insulator is determined by solving (3.38) (for the electric
boundary condition) or (3.13) (for the magnetic boundary conditions). However, for
numerical computations it is better to consider a different problem.
Focusing, for the sake of definiteness, on the magnetic boundary value problem,

we easily see that the electric field EI is a solution to the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
I curlEI ) = −iωJI in ΩI

div(εIEI ) = 0 in ΩI

μ−1 curlEI × n = 0 on ∂Ω
εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI ·πk,I = 0 ∀ k = 1, . . . , n∂Ω
EI × nI = −EC × nC on Γ .

(5.82)

We already noted that this problem simplifies if the boundary of the conductorΩC is
connected and the domain Ω is simply-connected , as pΓ = 0 and n∂Ω = 0. This
happens, for instance, if one considers a connected conductor, possibly with some
“handles”, contained in a “box”: a situation which is often verified in applications.
Problem (5.82) can be written in a weak form, following a saddle-point approach

similar to the one used for the E-based formulation in Section 4.6. Let us consider the
spaces

ZI := {zI ∈ H(curl;ΩI) | zI satisfies (4.6)},

and ZI,0 := ZI ∩H0,Γ (curl;ΩI). The weak formulation of (5.82) reads

Find EI ∈ ZI :

EI × nI = −EC × nC on Γ∫
ΩI

μ−1
I curlEI · curl zI = −iω

∫
ΩI

Je,I · zI
for all zI ∈ ZI,0 .

(5.83)

From Lemma 2.1 it follows at once that the sesquilinear form

ae,I(wI , zI) :=
∫
ΩI

μ−1
I curlwI · curl zI (5.84)

is coercive in ZI,0, therefore (5.83) has a unique solution.
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Recalling that zI ∈ ZI if and only if zI ∈ H(curl;ΩI) and
∫
ΩI

εIzI · pI = 0 for
all pI ∈ H0

0,Γ(curl;ΩI) (see Section 4.2), we have the equivalent formulation

Find (EI , rI) ∈ H(curl;ΩI)×H0
0,Γ(curl;ΩI) :

EI × nI = −EC × nC on Γ∫
ΩI

μ−1
I curlEI · curl zI +

∫
ΩI

εIzI · rI = −iω
∫
ΩI

Je,I · zI∫
ΩI

εIEI · pI = 0

for all (zI ,pI) ∈ H0,Γ (curl;ΩI) ×H0
0,Γ (curl;ΩI) .

(5.85)

The inf–sup condition for this saddle-point problem is trivially verified: given rI ∈
H0

0,Γ(curl;ΩI), one chooses zI = rI and obtains∫
ΩI

εIzI · rI =
∫
ΩI

εIrI · rI
≥ εI,min‖rI‖20,ΩI

= εI,min‖rI‖H(curl;ΩI )‖zI‖H(curl;ΩI) ,

where εI,min is a uniform lower bound for the eigenvalues of εI(x) in ΩI .
Therefore, problem (5.85) has a unique solution. Moreover, if EI is the solution

of problem (5.83), it is seen at once that (EI , 0) is a solution to (5.85); hence in (5.85)
one has rI = 0.
In order to find a finite element approximation of the space H0

0,Γ (curl;ΩI) we
recall that

H0
0,Γ (curl;ΩI) = gradH1

0,Γ(ΩI) ⊕HεI (Γ, ∂Ω;ΩI) ,

(see (4.8)) and that a basis ofHεI (Γ, ∂Ω;ΩI) is given by

{gradwj,I}pΓ

j=1 ∪ {πk,I}n∂Ω

k=1

(see Sections 1.4 and A.4). Hence any function pI ∈ H0
0,Γ (curl;ΩI) can be decom-

posed as

pI = gradϕI +
pΓ∑
j=1

cI,j gradwj,I +
n∂Ω∑
k=1

dI,kπk,I ,

where ϕI ∈ H1
0,Γ (ΩI) and cI,j , dI,k, j = 1, . . . , pΓ , k = 1, . . . , n∂Ω, are complex

numbers.
As proved in Bossavit [59], Hiptmair [126], Gross and Kotiuga [115], in ΩI we

can consider a system of “cutting” surfaces Σk , k = 1, . . . , n∂Ω, with Σk ⊂ ΩI and
∂Σk ⊂ ∂Ω, such that every curl-free vector field in ΩI with vanishing tangential
component on Γ has a global potential in ΩI \ ∪kΣk (for their explicit construction,
which is needed for numerical approximation, see Remark 5.9). Let us suppose thatΩI

is a polyhedral domain and that there is a triangulationTI,h0 ofΩI , where h0 > 0 is the
(fixed) mesh size, that induces a triangulation on the surfaces Σk . For k = 1, . . . , n∂Ω
let us denote by Πk the piecewise-polynomial function taking value 1 at the nodes
on one side of Σk and 0 at all the other nodes (including those on the other side of
Σk). Notice that Πk|Γ = 0 since ∂Σk ∩ Γ = ∅. Let us set π0

k = g̃radΠk, where
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g̃radΠk denotes the (L2(ΩI ))3-extension of gradΠk computed inΩI \Σk . It follows
that π0

k ∈ H0,Γ (curl, ΩI) and that πk,I = π0
k + grad gk, with gk ∈ H1

0,Γ(ΩI ).
Any function pI ∈ H0

0,Γ(curl;ΩI) can be thus written as

pI = grad ξI +
n∂Ω∑
k=1

dI,kπ
0
k ,

with ξI = ϕI +
∑pΓ

j=1 cI,jwj,I +
∑n∂Ω

k=1 dI,kgk, and ξI ∈ H1
∗,Γ (ΩI ) (see (4.17)).

For the finite element approximation we write (5.85) in the following equivalent
way

Find (EI , φI,mI) ∈ H(curl;ΩI)×H1
∗,Γ (ΩI)× Cn∂Ω :

EI × nI = −EC × nC on Γ∫
ΩI

μ−1
I curlEI · curl zI
+
∫
ΩI

εIzI · gradφI +
∑n∂Ω

k=1 mI,k

∫
ΩI

εIzI ·π0
k = LI(zI )∫

ΩI
εIEI · grad ξI = 0∑n∂Ω

k=1 dI,k
∫
ΩI

εIEI · π0
k = 0

for all (zI , ξI ,dI) ∈ H0,Γ (curl;ΩI)×H1
∗,Γ (ΩI)× Cn∂Ω ,

(5.86)

where

LI (zI) := −iω

∫
ΩI

Je,I · zI .

It is worth noting that gradφI +
∑n∂Ω

k=1 mI,kπ
0
k = 0. This is easily verified by

choosing in (5.86) the test function

zI = gradφI +
n∂Ω∑
k=1

mI,kπ
0
k ,

and recalling that Je,I satisfies (5.1) and (5.2).
We employ the Nédélec curl-conforming edge elements Nk

I,h (see Section A.2)
to approximate the electric field and the piecewise-polynomial continuous functions
Hk
I,h (see (4.83)) to approximate the Lagrange multiplier φI . Let us also set

Y k
I,h := Nk

I,h ∩H0,Γ (curl;ΩI) .

We assume that a suitable finite element approximation of the tangential trace of the
electric field on the interface Γ is known. Denoting it byEC,h ×nC , we suppose that
EC,h × nC ∈ XΓ,h := {(zI,h × nI)|Γ | zI,h ∈ Nk

I,h}.
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The discrete problem reads

Find (EI,h, φI,h,mh
I ) ∈ Nk

I,h ×Hk
I,h × Cn∂Ω :

EI,h × nI = −EC,h × nC on Γ∫
ΩI

μ−1
I curlEI,h · curl zI,h

+
∫
ΩI

εIzI,h · gradφI,h +
∑n∂Ω

k=1 mh
I,k

∫
ΩI

εIzI,h · π0
k = LI(zI,h)∫

ΩI
εIEI,h · grad ξI,h = 0∑n∂Ω

k=1 dI,k
∫
ΩI

εIEI,h · π0
k = 0

for all (zI,h, ξI,h,dI) ∈ Y k
I,h ×Hk

I,h ×Cn∂Ω .

(5.87)

Similarly to the result proved for problem (5.86), we can observe that gradφI,h +∑n∂Ω

k=1 mh
I,kπ

0
k = 0.

Our aim now is to apply the standard theory of mixed finite elements. For that, we
need to introduce the space Zh

I,0 of functions zI,h ∈ Y k
I,h such that∫

ΩI

εIzI,h ·
[
grad ξI,h +

n∂Ω∑
k=1

dI,kπ
0
k

]
= 0

for all (ξI,h,dI) ∈ Hk
I,h ×Cn∂Ω .

The following result is the key point for the proof of well-posedness and conver-
gence of the finite element approximation scheme.

Lemma 5.17. Assuming that εI is a scalar constant and that the triangulation TI,h is
a refinement of the coarse triangulation TI,h0 , there exist positive constants C1, C2,
independent of h, such that∫

ΩI

μ−1
I curl zI,h · curl zI,h ≥ C1‖zI,h‖2H(curl;ΩI) (5.88)

for all zI,h ∈ Zh
I,0, and

sup
zI,h∈Y k

I,h

∫
ΩI

εIzI,h ·
[
grad ξI,h +

∑n∂Ω

k=1 dI,kπ
0
k

]
‖zI,h‖H(curl;ΩI )

≥ C2(‖ξI,h‖1,ΩI + |dI |)
(5.89)

for all (ξI,h,dI) ∈ Hk
I,h × Cn∂Ω .

Proof. The discrete inf–sup condition (5.89) is easily obtained by taking zI,h =
grad ξI,h +

∑n∂Ω

k=1 dI,kπ
0
k and using Lemma 5.2 (suitably adapted to the present situ-

ation).
In order to prove that (5.88) holds, we recall that from (A.12) any function in

(L2(ΩI))3, and in particular any function zI,h ∈ Zh
I,0, can be written as

zI,h = ε−1
I curlqI + grad ξI +

n∂Ω∑
k=1

dI,kπ
0
k ,

where qI ∈ H0,∂Ω(curl;ΩI), ξI ∈ H1
∗,Γ (ΩI) and π0

k = g̃radΠk.
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Let us set UI := ε−1
I curlqI . Since zI,h ∈ H0,Γ (curl;ΩI), we have UI ∈ ZI,0.

As already recalled, we know from Lemma 2.1 that the sesquilinear form ae,I(·, ·)
introduced in (5.84) is continuous and coercive in ZI,0, i.e., there exists a positive
constant c1 such that∫

ΩI

μ−1
I curlUI · curlUI ≥ c1‖UI‖H(curl;ΩI ) .

Taking into account that curl zI,h = curlUI , to obtain (5.88) we have only to show
that there exists a constant c2 > 0, independent of h, such that

‖zI,h‖0,ΩI ≤ c2‖UI‖H(curl;ΩI ) .

The procedure is similar to the one presented in the saddle-point approach for the E-
based formulation (see Section 4.6). Since εI is a scalar constant, from Lemma 4.33
we know that ZI,0 ⊂ (H1/2+δ(ΩI ))3 for some δ > 0 small enough. Moreover
curlUI|K = curl zI,h|K ∈ (Pk−1)3, hence, by Lemma 4.32, the interpolantΠI,hUI

is well-defined.
Since π0

k ∈ Nk
I,h, this means that also ΠI,h(grad ξI) is well-defined. We have

curl[ΠI,h(grad ξI)] = 0 in ΩI , ΠI,h(grad ξI)× nI = 0 on Γ ,

and
∫
γk

ΠI,h(grad ξI ) · dτ = 0 for all Γ -independent non-bounding cycles γk,

k = 1, . . . , n∂Ω. Hence ΠI,h(grad ξI) = grad ξI,h for some ξI,h ∈ Hk
I,h (see, e.g.,

Monk [179], Lemma 5.28).
Since zI,h ∈ ZI,h∫

ΩI
εIzI,h · zI,h =

∫
ΩI

εIzI,h · [ΠI,hUI + grad ξI,h +
∑n∂Ω

k=1 dI,kπ
0
k]

=
∫
ΩI

εIzI,h ·ΠI,hUI ,

hence

‖zI,h‖0,ΩI ≤ C ‖ΠI,hUI‖0,ΩI ≤ C (‖ΠI,hUI −UI‖0,ΩI + ‖UI‖0,ΩI ) .

Since divUI = 0 in ΩI , by combining Lemma 4.32 and Lemma 4.33 we find

‖ΠI,hUI −UI‖0,ΩI ≤ Ch1/2+δ(‖UI‖1/2+δ,ΩI
+ ‖ curlUI‖0,ΩI)

≤ Ĉ(‖UI‖0,ΩI + ‖ curlUI‖0,ΩI ) ,

that concludes the proof. �

Remark 5.18. For the electric boundary condition the strong problem reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
I curlEI ) = −iωJI in ΩI

div(εIEI ) = 0 in ΩI

EI × n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
(∂Ω)r

εIEI · n = 0 ∀ r = 0, 1, . . . , p∂Ω
EI × nI = −EC × nC on Γ ,

(5.90)
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(which simplifies if the boundaries ofΩC andΩ are connected, so that pΓ = p∂Ω = 0),
while the weak problem is

Find (EI , φ
∗
I) ∈ H0,∂Ω(curl;ΩI) ×H1

∗ (ΩI) :

EI × nI = −EC × nC on Γ∫
ΩI

μ−1
I curlEI · curl zI +

∫
ΩI

εIzI · gradφ∗
I = LI(zI )∫

ΩI
εIEI · grad ξ∗I = 0

for all (zI , ξ∗I ) ∈ H0(curl;ΩI) ×H1
∗ (ΩI) ,

(5.91)

whereH1
∗ (ΩI) has been defined in (4.82).

The finite element approximation is given by

Find (EI,h, φ
∗
I,h) ∈ Xk

I,h × Ĥk
I,h :

EI,h × nI = −EC,h × nC on Γ∫
ΩI

μ−1
I curlEI,h · curl zI,h +

∫
ΩI

εIzI,h · gradφ∗
I,h = LI(zI,h)∫

ΩI
εIEI,h · grad ξ∗I,h = 0

for all (zI,h, ξ∗I,h) ∈ X̂k
I,h × Ĥk

I,h ,

(5.92)

where Xk
I,h := Nk

I,h ∩H0,∂Ω(curl;ΩI), X̂k
I,h := Nk

I,h ∩H0(curl;ΩI) and Ĥk
I,h :=

LkI,h ∩H1
∗ (ΩI).

As for the magnetic boundary value problem, it is readily shown that one has φ∗
I =

0 in (5.91) and φ∗
I,h = 0 in (5.92). �

Remark 5.19. Another algorithm for computing the finite element approximation of
the electric field EI is presented in Remark 6.12; it is based on a vector magnetic
potential formulation of the eddy current problem. �
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Formulations via vector potentials

Motivated by the fact that the magnetic inductionB = μH is divergence-free in Ω, a
classical approach to the Maxwell equations and to eddy current problems is based on
the introduction of a vector magnetic potentialA such that curlA = μH. Often, this
is also accompanied by the use of a scalar electric potential VC in the conductor ΩC ,
satisfying iωAC +gradVC = −EC (see Silvester and Ferrari [227]; for the engineer-
ing literature, see, e.g., Chari et al. [79], Biddlecombe et al. [47], Morisue [180], Bíró
and Preis [49]).
This approach opens up the problem of determining correct gauge conditions,

namely, some conditions ensuring the uniqueness ofA and VC . Although in principle
all that needs to be required is only that curlA and EC be uniquely determined, the
choice of suitable gauge conditionsmay also be necessary when considering numerical
approximation, in order to avoid that the discrete problem becomes singular.
WritingH = μ−1 curlA and EC = −iωAC − gradVC one sees that the Faraday

equation in ΩC is straightforwardly satisfied, whereas the Ampère law in Ω becomes
a second order partial differential equation for the vector potentialA, thus leading to
a variational problem with a nice structure.
Since curlA is assigned, a natural gauge condition for A is to impose its diver-

gence. In early papers on this subject this choice was accompanied by the remark that
−ΔA = curl curlA− grad divA, so that for a constant magnetic permeability μ the
Ampère equation reduces to a vector Poisson problem for A. However, at the vari-
ational level this is not a true advantage, as the boundary conditions for A remain
those associated to the first order curl–div system, that are different from the Dirichlet
condition, for which the entire vectorA is assigned on ∂Ω. Therefore the variational
problem cannot be written in terms of a sesquilinear form like

∫
Ω

∑
i,j DizjDiwj , but

it has to keep the structure
∫
Ω

(curl z · curlw + divz divw).
In Sections 6.1 and 6.2 we present two different gauge conditions for the approach

based on the vector magnetic potential: the Coulomb gauge and the Lorenz gauge. In
both cases, the divergence ofA is required to satisfy a suitable equation. In Section 6.3
we conclude the chapter by describing some other vector potential formulations for
eddy current problems.

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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Although all these methods have been used in many engineering applications, up
to now their analysis has not been fully performed. In general, only uniqueness results
were presented (see, e.g., Bíró and Preis [49]). Our aim here is to furnish a complete
theory concerningwell-posedness of these formulations and convergence of their finite
element numerical approximations.
Concerning thematerial coefficients, in this chapter we will assume that the matrix

μ is symmetric and uniformly positivedefinite inΩ, with entries belonging toL∞(Ω),
the matrix εI is symmetric and uniformly positive definite inΩI , with entries belong-
ing to L∞(ΩI), and the matrix σ is symmetric and uniformly positive definite inΩC ,
with entries belonging to L∞(ΩC), whereas it is vanishing in ΩI .
The reader mainly interested in numerical approximation and implementation can

focus on problems (6.12) and (6.45) (magnetic boundary conditions for the (A, VC)
formulation), on problems (6.32) and (6.47) (electric boundary condition for the
(A, VC) formulation),on problem (6.50) (penalizedE formulation), on problem (6.92)
((A, VC) − ψI formulation), on problem (6.102) ((TC , ψC) − ψI formulation), on
problem (6.108) ((T∗

C , ΦC)−AI formulation) and on Section 6.1.4.

6.1 Formulation for the Coulomb gauge and its numerical
approximation

Let us suppose thatΩ, ΩC andΩI satisfy the assumptions of Section 1.3, and, for the
sake of definiteness, let us consider the magnetic boundary value problem (1.22). As
usual the current densityJe ∈ (L2(Ω))3 is assumed to satisfy the necessary conditions
(1.23).
In this section, following Bíró and Valli [54], we present and analyze the formula-

tion in which one looks for a magnetic vector potentialA and a scalar electric potential
VC such that

EC = −iωAC − gradVC , μH = curlA . (6.1)

Let us verify which equations in (3.25) are satisfied, and which instead have to
be imposed. We see at once that curlEC = −iω curlAC = −iωμCHC , and there-
fore (3.25)1, namely, the Faraday equation inΩC , is satisfied. Moreover, μH is equal
to curlA in Ω, therefore it is a solenoidal vector field in Ω and has a vanishing flux
through any closed surface inΩ: hence equations (3.25)4, (3.25)5 and (3.25)8 are sat-
isfied. We also know that from (6.1)2 the topological conditions (3.25)6 are satisfied
(see Section 3.3.2).
Hence we have only to require that the Ampère equation is satisfied in Ω, so that

(3.25)2, (3.25)3 and (3.25)9 are satisfied, and to impose the magnetic boundary condi-
tion (3.25)7.
However, if we want to devise a well-posed problem, this is not enough: in fact,

we also have to consider the fact that the introduction of the new additional unknown
VC and the necessity of obtaining a unique vector potentialA lead us to impose some
additional conditions, usually called gauge conditions. The most frequently used is the
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Coulomb gauge
divA = 0 in Ω ,

with the boundary condition

A · n = 0 on ∂Ω .

In a general geometrical situation, even these additional conditions can be not
enough for determining a unique vector potential A in Ω. In fact, there exist non-
trivial irrotational, solenoidal and tangential vector fields, namely, the elements of the
finite dimensional space of harmonic fields

H(m;Ω) := {w ∈ (L2(Ω))3 | curlw = 0, divw = 0,w · n = 0 on ∂Ω} .

In Section 1.4 we have denoted by nΩ the dimension of this vector space: it is
a topological invariant, the so-called first Betti number of the domain Ω, namely,
the number of independent non-bounding cycles in Ω (see, e.g., Bossavit [59], Hipt-
mair [126], Gross and Kotiuga [115]). In particular, it is proved that in Ω there exist
nΩ connected orientable Lipschitz surfaces Σ̂t with ∂Σ̂t ⊂ ∂Ω and such that every
curl-free vector in Ω has a global potential in Ω̃ := Ω \ ∪tΣ̂t.
In other words, each surface Σ̂t, t = 1, . . . , nΩ, “cuts” a cycle on ∂Ω that is not

bounding a surface contained in Ω. Let us note that the explicit construction of these
“cutting” surfaces in general topological situation is not a trivial task: some algorithms
have been proposed by Kotiuga [152], [153], [154], Leonard et al. [165], Gross and
Kotiuga [114], Ren [207].
In this context, we are in a position tomake precise the additional conditions thatwe

have to impose in order to determine a unique vector potentialA inΩ. To achieve this,
first of all we need to introduce the family of n∂Ω “cuts” Σk that are more precisely
defined in Section A.4. Then we require that the following geometrical condition is
satisfied.

It is assumed that n∂Ω ≤ nΩ . Moreover, the family of “cuts” Σ̂t

coincides with the family of “cuts” Σk for t, k = 1, . . . , n∂Ω (in
particular, Σ̂t ⊂ ΩI for each t = 1, . . . , n∂Ω), whereas Σ̂t ∩
ΩC �= ∅ for each t = n∂Ω + 1, . . . , nΩ. Finally, the “cuts” Σ̂t

are assumed to be disjoint for t = 1, . . . , n∂Ω.

(6.2)

Let us note that we do not know any example in which this assumption fails to hold;
on the other hand, we have not found a proof that it always holds.
When n∂Ω = nΩ , this is telling us that we can choose the “cuts” in Ω associated

to the vector space H(m;Ω) without intersecting ΩC (see Figure 6.1). Conversely,
when n∂Ω < nΩ some of the “cuts” have to intersect the conductorΩC : for example,
this happens in Figure 6.2, where Ω and ΩC are two coaxial tori (n∂Ω = 0, nΩ = 1),
and in Figure 6.3, where Ω is a double torus and ΩC is a torus, co-axial to one of the
two handles of Ω (n∂Ω = 1, nΩ = 2).
We are going to prove that the number of the needed additional conditions to be

imposed to the vector fieldA is n∂Ω. Let us temporarily formulate these conditions in
the abstract form

Gk(A) = 0 ∀ k = 1, . . . , n∂Ω ,
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Fig. 6.1. The computational domain: the dark rectangle is the “cutting” surface Σ̂1 = Σ1

Fig. 6.2. The computational domain: the dark rectangle is the “cutting” surface Σ̂1

Fig. 6.3. The computational domain: the dark rectangles are the “cutting” surfaces (Σ̂1 = Σ1

on the right, Σ̂2 on the left)
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where Gt(·), t = 1, . . . , nΩ , are a suitable set of linear functionals that we will make
precise in the sequel (see (6.29) and (6.30)).
In conclusion, we are left with the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl(μ−1 curlA) + iωσA + σ gradVC = Je in Ω
divA = 0 in Ω
Gk(A) = 0 ∀ k = 1, . . . , n∂Ω
A · n = 0 on ∂Ω
(μ−1 curlA) × n = 0 on ∂Ω ,

(6.3)

where the notation σ gradVC means

σ gradVC :=
{

σ|ΩC
gradVC in ΩC

0 in ΩI ,

and clearly VC is determined up to an additive constant in each connected component
ΩC,j of ΩC , j = 1, . . . , pΓ + 1.
Problem (6.3) simplifies if n∂Ω = 0: this is true, for instance, if the computational

domainΩ is simply-connected, an assumption that is not very restrictive in engineering
computations.
The necessity of introducing a gauge on the vector magnetic potentialA leads to

the presence in (6.3) of the differential constraint divA = 0 inΩ. Like the constraint
on the magnetic vector field curlHI = Je,I in ΩI , that appears in the eddy current
problem (1.22), this equation is not easy to treat at the discrete level, as it is not sim-
ple to construct a suitable space of finite elements which are divergence-free. In the
preceding Chapters 4 and 5 we have seen two different approaches to help us treat
differential constraints: the introduction of Lagrange multipliers in Chapter 4, and the
use of a scalar magnetic potential in Chapter 5.
Here we use a different idea: the addition of a penalization term. This can be done

as follows (see, e.g., Coulomb [91], Morisue [180], Bíró and Preis [49]): introducing
the constant μ∗ > 0, representing a suitable average in Ω of the entries of the matrix
μ, the Coulomb gauge condition divA = 0 in Ω can be incorporated in the Ampère
equation, which becomes

curl(μ−1 curlA)− μ−1
∗ grad divA + iωσA + σ gradVC = Je inΩ ;

moreover one adds the two equations{
div(iωσAC + σ gradVC ) = divJe,C in ΩC

(iωσAC + σ gradVC ) · nC = Je,C · nC + Je,I · nI on Γ ,

being necessary as, due to the modification in the Ampère equation, it is no longer
guaranteed now that the electric field EC = −iωAC −gradVC satisfies the necessary
conditions div(σEC) = − divJe,C in ΩC and σEC · nC = −Je,C · nC − Je,I · nI
on Γ .
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The complete (A, VC) formulation is therefore⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlA)− μ−1
∗ grad divA

+iωσA + σ gradVC = Je in Ω
div(iωσAC + σ gradVC) = divJe,C in ΩC

(iωσAC + σ gradVC) · nC
= Je,C · nC + Je,I · nI on Γ

Gk(A) = 0 ∀ k = 1, . . . , n∂Ω
A · n = 0 on ∂Ω
(μ−1 curlA) × n = 0 on ∂Ω ,

(6.4)

where, as before, VC is determined up to an additive constant in each connected com-
ponentΩC,j of ΩC , j = 1, . . . , pΓ + 1.
In the next section, starting from (6.4), we obtain a suitable weak problem, which

is shown to be equivalent to (6.3). Hence it is not strictly necessary to prove that from
(6.4) we can recover (6.3). However, for the sake of completeness, here is the result:

Lemma 6.1. For any solution (A, VC) to (6.4) one has divA = 0 in Ω, therefore
(A, VC) is indeed a solution to (6.3).

Proof. Taking the divergence of (6.4)1 and using (6.4)2 we have −Δ divAC = 0 in
ΩC . Moreover, recalling that the current density Je by assumption satisfies divJe,I =
0 in ΩI , one also obtains −Δ divAI = 0 in ΩI . On the other hand, using (6.4)3, on
the interface Γ we have

−μ−1
∗ grad divAC · nC = −Je,I · nI − curl(μ−1

C curlAC) · nC
= −Je,I · nI − divτ [(μ−1

C curlAC)× nC] ,
(6.5)

and also

−μ−1
∗ grad divAI · nI = Je,I · nI − curl(μ−1

I curlAI) · nI
= Je,I · nI − divτ [(μ−1

I curlAI)× nI] .
(6.6)

Moreover, a solution to (6.4)1 satisfies on the interface Γ

(μ−1
C curlAC)× nC + μ−1

∗ divAC nC
+ (μ−1

I curlAI) × nI + μ−1
∗ divAI nI = 0 ,

therefore, due to orthogonality,

(μ−1
C curlAC)× nC + (μ−1

I curlAI)× nI = 0 , divAC = divAI .

Hence from (6.5) and (6.6) we also have

grad divAC · nC + grad divAI · nI = 0 on Γ .

This last condition and the matching of divA on Γ furnish that divA is a harmonic
function in all of Ω. Moreover, using (6.4)6, its Neumann value on the boundary ∂Ω
satisfies

−μ−1
∗ grad divA · n = Je,I · n− curl(μ−1 curlA) · n

= Je,I · n− divτ [(μ−1 curlA)× n] = 0 ,
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as by assumption the current density satisfies Je,I · n = 0 on ∂Ω. As a consequence,
we find that divA is a constant c0 in Ω, and finally

c0 meas(Ω) =
∫
Ω

divA =
∫
∂Ω

A · n = 0 ,

having used (6.4)5. �

In conclusion, we have proved that any solution to (6.4) yields a solution to (6.3),
and consequently, by virtue of (6.1), it is the solution to the eddy current problem
(3.25).

Remark 6.2. It is worth noting that, after having solved the Coulomb gauged problem
(6.3), hence having determinedA and VC from the data of the problem, we are also in
a condition to find the electric field EI inΩI .
In fact first we solve the mixed boundary value problem⎧⎨⎩

− div(εI gradV †
I ) = iω div(εIAI) inΩI

V †
I = VC on Γ

εI gradV
†
I · n = −iωεIAI · n on ∂Ω .

(6.7)

Thenwe determine the vector (c†I,j, d
†
I,k), j = 1, . . . , pΓ , k = 1, . . . , n∂Ω, the solution

of the linear system

A†
(

c†I,j
d†I,k

)
=

( ∫
ΩI

εI(iωAI + gradV †
I ) · gradwg,I∫

ΩI
εI(iωAI + gradV †

I ) ·πi,I

)
, (6.8)

g = 1, . . . , pΓ , i = 1, . . . , n∂Ω, where, as in (A.19), A† :=
(

D† B†

(B†)T C†

)
with

D†
gj :=

∫
ΩI

εI gradwj,I · gradwg,I

B†
gk :=

∫
ΩI

εIπk,I · gradwg,I

C†
ik :=

∫
ΩI

εIπk,I · πi,I ,

(6.9)

and the harmonic vector fields gradwj,I and πk,I are the basis functions of the space
HεI (Γ, ∂Ω;ΩI) introduced in Section 1.4.
It is easily proved that the matrix A† is symmetric and positive definite, as the

matrix εI(x) is symmetric and positive definite, uniformly with respect to x, and the
functionsπk,I and gradwj,I are linearly independent.
Then, defining h†

I :=
∑pΓ

j=1 c†I,j gradwj,I +
∑n∂Ω

k=1 d†I,kπk,I and

EI := −iωAI − gradV †
I + h†

I ,

taking into account (6.1) it is easily checked that curlEI = −iωμIHI in ΩI ,
div(εIEI) = 0 inΩI ,

EI × nI = −iωAI × nI − gradV †
I × nI

= iωAC × nC + gradVC × nC = −EC × nC on Γ ,
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εIEI ·n = 0 on ∂Ω,
∫
Γg

εIEI ·nI =
∫
ΩI

εIEI · gradwg,I = 0 for all g = 1, . . . , pΓ
and

∫
ΩI

εIEI ·πi,I = 0 for all i = 1, . . . , n∂Ω, thereforeEI is the electric field inΩI

(see (3.13)). �

6.1.1 The weak formulation

We are now interested in finding a suitable weak formulation of (6.4).
First of all, taking a test functionw ∈ H(curl;Ω)∩H0(div;Ω), multiplying (6.4)1

byw and integrating in Ω, we obtain by integration by parts∫
Ω

(μ−1 curlA · curlw + μ−1
∗ divA divw)

+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
=
∫
Ω Je ·w ,

where we have used (6.4)6.
Let us now multiply (6.4)2 by iω−1QC , where QC ∈ H1(ΩC), and integrate in

ΩC : by integration by parts we find∫
ΩC

(−σAC · gradQC + iω−1σ gradVC · gradQC)
= iω−1

∫
ΩC

Je,C · gradQC + iω−1
∫
Γ

Je,I · nI QC ,
(6.10)

having used (6.4)3.
Introducing the sesquilinear form

A[(z, UC), (w, QC)]
:=
∫
Ω(μ−1 curl z · curlw + μ−1

∗ divz divw)
+
∫
ΩC

(iωσzC ·wC + σ gradUC ·wC)
+
∫
ΩC

(−σzC · gradQC + iω−1σ gradUC · gradQC)
=
∫
Ω

(μ−1 curl z · curlw + μ−1
∗ divz divw)

+iω−1
∫
ΩC

σ(iωzC + gradUC) · (−iωwC + gradQC) ,

(6.11)

we have finally rewritten (6.4) as

Find (A, VC) ∈W� ×H1
� (ΩC) such that

A[(A, VC), (w, QC)] =
∫
Ω

Je ·w
+iω−1

∫
ΩC

Je,C · gradQC + iω−1
∫
Γ Je,I · nI QC

for all (w, QC) ∈ W� ×H1
� (ΩC) ,

(6.12)

where
W� := {w ∈ H(curl;Ω) ∩H0(div;Ω) |

Gk(w) = 0 ∀ k = 1, . . . , n∂Ω} ,
(6.13)

and

H1
� (ΩC) :=

pΓ +1∏
j=1

H1(ΩC,j)/C . (6.14)
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Before starting the proof that the weak problem (6.12) has a unique solution (for
that, see Section 6.1.2), it is useful to show that a solution to (6.12) is indeed a solution
to (6.3).
Let us first introduce a couple of assumptions on the linear functional Gt. The first

one reads

For wm ∈ H(m;Ω), the conditions Gt(wm) = 0 for each t =
1, . . . , nΩ givewm = 0 inΩ.

(6.15)

The second one requires some preliminaries: we recall that a set of basis functions
ofH(m;Ω) is given by π̂t, t = 1, . . . , nΩ , the (L2(Ω))3-extension of grad q̂t, where
q̂t, defined inΩ\Σ̂t, is the real-valued function, determined up to an additive constant,
solution of ⎧⎪⎪⎨⎪⎪⎩

Δq̂t = 0 in Ω \ Σ̂t

grad q̂t · n = 0 on ∂Ω \ ∂Σ̂t

[grad q̂t · nΣ]Σ̂t
= 0

[q̂t]Σ̂t
= 1 ,

(6.16)

having denoted by [ · ]Σ̂t
the jump across the surface Σ̂t (see, e.g., Foias and Temam

[106]; see also Section A.4). Moreover, when (6.15) is satisfied we can introduce the
real-valued vector functions ηt, the basis functions of the space H(m;Ω) such that
Gq(ηt) = δtq (the Kronecker symbol).
The second assumption on the functionals Gt is given by

The basis ηt associated to the linear functionals Gt(·) can be ex-
pressed in terms of the basis π̂q by means of a matrix {βtq},
t, q = 1, . . . , nΩ, such that its principal minor for t, q =
n∂Ω + 1, . . . , nΩ is non-singular.

(6.17)

At the end of this section we present some possible choices of the functionals Gt
satisfying these conditions.

Theorem 6.3. Let Je ∈ (L2(Ω))3 satisfy the necessary conditions (1.23). If n∂Ω > 0,
assume that the geometrical condition (6.2) is verified and that the linear functionals
Gt satisfy the conditions (6.15) and (6.17) (this last one when 0 < n∂Ω < nΩ). Then
any solution to the weak problem (6.12) is a solution to the strong problem (6.3).

Proof. Let us first prove that a solution to (6.12) satisfies

A[(A, VC), (w, QC)] =
∫
Ω

Je ·w
+iω−1

∫
ΩC

Je,C · gradQC + iω−1
∫
Γ

Je,I · nI QC
(6.18)

also for any test function (w, QC) such thatw ∈ H(curl;Ω)∩H0(div;Ω) andQC ∈
H1(ΩC), namely, without any additional constraint.
First of all, equation (6.12) does not change if we add to QC a different constant

in each connected componentΩC,j ofΩC . In fact, we know that
∫
Γj

Je,I ·nI = 0 for
each j = 1, . . . , pΓ , and moreover divJe,I = 0 inΩI and Je,I ·n = 0 on ∂Ω, so that
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Γj

Je,I ·nI = 0 for j = pΓ + 1, too. Hence a solution (A, VC) of (6.12) satisfies the
integral equation not only for every QC ∈ H1

� (ΩC) but also for each QC ∈ H1(ΩC).
As a consequence, takingw = 0 a first general result is that any solution to (6.12)

satisfies{
div(iωσAC + σ gradVC) = divJe,C in ΩC

(iωσAC + σ gradVC) · nC = Je,C · nC + Je,I · nI on Γ .
(6.19)

Setting

J :=
{
−iωσAC − σ gradVC + Je,C in ΩC

Je,I in ΩI
,

the assumptions divJe,I = 0 inΩI and Je,I ·n = 0 on ∂Ω are telling us that divJ = 0
inΩ and J · n = 0 on ∂Ω.
In the case n∂Ω = 0 we have finished the proof that (6.18) is satisfied for any

w ∈ H(curl;Ω) ∩ H0(div;Ω) and QC ∈ H1(ΩC). Instead, if n∂Ω > 0 we need
additional informations.
Due to assumption (6.15), for any w ∈ H(curl;Ω) ∩H0(div;Ω) we can define

by wm the harmonic field in H(m;Ω) satisfying Gt(wm) = Gt(w) for each t =
1, . . . , nΩ. Clearly, the difference w−wm belongs toW�. Hence

A[(A, VC), (w, QC)]
= A[(A, VC), (w−wm, QC)] +A[(A, VC), (wm, 0)]
=
∫
Ω

Je · (w −wm) + iω−1
∫
ΩC

Je,C · gradQC

+iω−1
∫
Γ Je,I · nI QC +

∫
ΩC

(iωσAC + σ gradVC) ·wm,C

=
∫
Ω

Je ·w + iω−1
∫
ΩC

Je,C · gradQC

+iω−1
∫
Γ Je,I · nI QC −

∫
Ω J ·wm .

(6.20)

Therefore, the only result that remains to be proved is∫
Ω

J ·wm = 0 , (6.21)

or, equivalently, that ∫
Ω

J · π̂t = 0 ∀ t = 1, . . . , nΩ , (6.22)

where π̂t are the basis function ofH(m;Ω) introduced in (6.16).
We have not yet used the assumptions∫

ΩI

Je,I · πk,I = 0 ∀ k = 1, . . . , n∂Ω ,

where πk,I are basis functions of the space HεI (Γ, ∂Ω;ΩI) that are not gradients.
Similarly to what was done for the basis functions π̂t in (6.16) (see also Section A.4), it
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is possible to expressπk,I as the (L2(ΩI ))3-extension of grad qk,I, where qk,I , defined
inΩI \Σk, is the real-valued function solution of (A.32), namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩

div(εI grad qk,I) = 0 inΩI \Σk

εI grad qk,I · nI = 0 on ∂Ω \ ∂Σk

qk,I = 0 on Γ
[εI grad qk,I · nΣ]Σk = 0
[qk,I]Σk = 1 ,

having denoted by [ · ]Σk the jump across the surfaceΣk . Therefore, since divJe,I = 0
inΩI and Je,I · n = 0 on ∂Ω, we have

0 =
∫
ΩI

Je,I ·πk,I =
∫
ΩI\Σk

Je,I · grad qk,I
= −

∫
ΩI\Σk

(divJe,I)qk,I +
∫
∂ΩI\∂Σk

Je,I · nI qk,I
+
∫
Σk

Je,I · nΣ [qk,I]Σk

=
∫
Σk

Je,I · nΣ .

On the other hand, proceeding in the same way and recalling that divJ = 0 in Ω,
J ·n = 0 on ∂Ω and that from assumption (6.2) for k = 1, . . . , n∂Ω the “cuts” Σ̂k are
coincident withΣk , we find that

0 =
∫
Σk

Je,I · nΣ =
∫
Σk

J · nΣ
=
∫
Σ̂k

J · nΣ̂ =
∫
Ω

J · π̂k ∀ k = 1, . . . , n∂Ω .
(6.23)

This result ends the proof in the case 0 < n∂Ω = nΩ . On the other hand, if
0 < n∂Ω < nΩ it is easily seen that the basis functions ηt introduced in (6.17) satisfy
ηt ∈W� for t = n∂Ω + 1, . . . , nΩ. Using these test functions (and QC = 0) in (6.12)
we find ∫

Ω

J · ηt = 0 ∀ t = n∂Ω + 1, . . . , nΩ . (6.24)

We can write the basis ηt in terms of the basis π̂t

ηt =
nΩ∑
q=1

βtqπ̂q .

Hence, using (6.23) and (6.24), for t = n∂Ω + 1, . . . , nΩ one has

0 =
∫
Ω

J · ηt =
nΩ∑
q=1

βtq

∫
Ω

J · π̂q =
nΩ∑

q=n∂Ω+1

βtq

∫
Ω

J · π̂q . (6.25)

As a consequence, from (6.23), (6.25) and condition (6.17) it follows that (6.22) holds,
and we have finally proved that any solution to (6.12) indeed satisfies equation (6.18)
for any test function (w, QC) such that w ∈ H(curl;Ω) ∩ H0(div;Ω) and QC ∈
H1(ΩC).
Now an additional step is to prove that any solution to (6.12) satisfies divA = 0 in

Ω. In fact, let us denote by η ∈ H1(Ω)/C the solution of the Neumann problemΔη =
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divA inΩ and grad η ·n = 0 on ∂Ω. Clearlyw = grad η ∈ H(curl;Ω)∩H0(div;Ω),
and ηC ∈ H1(ΩC). Usingw and −iωηC as test functions in (6.18) gives

μ−1
∗
∫
Ω | divA|2 =

∫
Ω Je · grad η −

∫
ΩC

Je,C · grad ηC −
∫
Γ Je,I · nI ηC

=
∫
ΩI

Je,I · grad ηI −
∫
Γ

Je,I · nI ηC = 0 ,

as ∫
ΩI

Je,I · grad ηI = −
∫
ΩI

(divJe,I) ηI +
∫
∂Ω∪Γ Je,I · nI ηI

=
∫
Γ

Je,I · nI ηC ,

hence divA = 0 in Ω.
We have thus proved that a solution (A, VC) to problem (6.12) satisfies divA = 0

inΩ, ∫
Ω μ−1 curlA · curlw +

∫
ΩC

(iωσAC ·wC + σ gradVC ·wC )
=
∫
Ω

Je ·w
(6.26)

for all w ∈ H(curl;Ω) ∩H0(div;Ω), and∫
ΩC

(iωσAC · gradQC + σ gradVC · gradQC)
=
∫
ΩC

Je,C · gradQC +
∫
Γ

Je,I · nI QC
(6.27)

for each QC ∈ H1(ΩC). Indeed, we can prove something more: namely, equation
(6.26) is satisfied for any function w∗ ∈ H(curl;Ω). In fact, take the solution η∗ ∈
H1(Ω)/C ofΔη∗ = divw∗ inΩ and grad η∗ ·n = w∗ ·n on ∂Ω. Using in (6.26) the
test functionw = (w∗ − grad η∗) ∈ H(curl;Ω) ∩H0(div;Ω), we have∫

Ω
μ−1 curlA · curlw∗ +

∫
ΩC

(iωσAC ·w∗
C + σ gradVC ·w∗

C )
=
∫
Ω

μ−1 curlA · curlw +
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
ΩC

(iωσAC · grad η∗C + σ gradVC · grad η∗C)
=
∫
Ω

Je ·w +
∫
ΩC

Je,C · grad η∗C +
∫
Γ

Je,I · nI η∗C ,

(6.28)

having used (6.27). Since∫
Ω Je · grad η∗ =

∫
ΩC

Je,C · grad η∗C +
∫
ΩI

Je,I · grad η∗I
=
∫
ΩC

Je,C · grad η∗C −
∫
ΩI

(divJe,I) η∗I +
∫
∂Ω∪Γ Je,I · nI η∗I

=
∫
ΩC

Je,C · grad η∗C +
∫
Γ

Je,I · nI η∗C ,

the right hand side in (6.28) is
∫
Ω

Je ·w∗.
Taking now in (6.26) a test functionw∗ ∈ (C∞

0 (Ω))3, by integration by parts we
find at once that

curl(μ−1 curlA) + iωσA + σ gradVC = Je in Ω .

Repeating the same argument for w∗ ∈ H(curl;Ω) gives (μ−1 curlA) × n = 0 on
∂Ω.
Therefore we have concluded our proof: any solution (A, VC) of theweak problem

(6.12) is a solution of the strong problem (6.3). �
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Let us finish this section by showing some examples of choices of the linear func-
tionals Gt(·) for which conditions (6.15) and (6.17) are satisfied.

• Case 1: n∂Ω = 0
This is the simplest case: no constraint has to be imposed in (6.4) (or, equivalently,

we are working in the space H(curl;Ω) ∩ H0(div;Ω)), and no condition has to be
verified.
A geometrical example of this situation is the case in which Ω is a ball-like set

(n∂Ω = 0, nΩ = 0), orΩ andΩC two co-axial tori (n∂Ω = 0,nΩ = 1: see Figure 6.2).

• Case 2: 0 < n∂Ω = nΩ
Also this case is simple: in fact, we claim that condition (6.15) is satisfied with

anyone of the following choices

Gk(w) =
∫
Σk

w · nΣ ; Gk(w) =
∫
Ω

w · π̂k ; Gk(w) =
∫
Ω

w · Ψ̂k . (6.29)

Here Ψ̂k is the (L2(Ω))3-extension of grad ψ̂k , where ψ̂k is any (continuous and
piecewise-regular) real-valued function, multivalued on Σ̂k , that satisfies [ψ̂k]Σ̂k

= 1
(for instance, one can take the finite element Lagrange interpolant having 0 value ev-
erywhere, except at the nodes on Σ̂k , where it has the double value 0 and 1).
Using the fact that both π̂k and Ψ̂k are the extensions of the gradient of a function

having jump equal to 1 on Σ̂k , it is easily seen that, for a divergence-free and tangential
vector fieldw, the three functionals above are the same, and for all of them the set of
constraints Gk(w) = 0 express the orthogonality ofw toH(m;Ω). Condition (6.15)
is thus satisfied.
Let us note that the solutionA to (6.12) is the same for any choice ofGk(·) in (6.29)

(as it is a divergence-free and tangential vector field). The only difference will be, when
approximating the solution by means of finite elements, the algebraic structure of the
stiffness matrix associated to (6.12). In this respect, it can be also noted that the choice
Gk(w) =

∫
Ω

w · π̂k is not suitable for numerical approximation, as the basis functions
π̂k are not explicitly available: in the discrete case it is thus better to focus on one of
the two other alternatives.
A geometrical example of this situation is the case in which Ω is a torus and ΩC

is either a ball-like set or a torus, but with a different axis (n∂Ω = 1, nΩ = 1: see
Figure 6.1).

• Case 3: 0 < n∂Ω < nΩ
Also in this case we propose the following three alternative choices of the linear

functionals Gt(·), t = 1, . . . , nΩ

Gt(w) =
∫
Σ̂t

w · nΣ ; Gt(w) =
∫
Ω

w · π̂t ; Gt(w) =
∫
Ω

w · Ψ̂ t . (6.30)

Proceeding as in the case before, we easily verify that (6.15) holds. To show that
(6.17) is satisfied, let us introduce the matrix {γqt} given by γqt :=

∫
Ω

π̂q · π̂t, and
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denote by {θqt} its inverse matrix. Since, as we already noted, the functionals above
are the same for a divergence-free and tangential vector field, we can always write
γqt = Gt(π̂q).
We can now easily check that

ηt =
nΩ∑
p=1

θtpπ̂p .

In fact,

Gq
( nΩ∑
p=1

θtpπ̂p

)
=

nΩ∑
p=1

θtpGq(π̂p) =
nΩ∑
p=1

θtpγpq = δtq .

Therefore, the matrix {βtq} appearing in condition (6.17) is given by {θtq}. Since
{γtq} is symmetric and positive definite, the same holds for the inverse matrix {θtq},
and also for all the principal minors of it. Condition (6.17) is thus satisfied.
A geometrical example of this situation is the case in which Ω is a double torus

and ΩC is a torus, co-axial to one of the two handles of Ω (n∂Ω = 1, nΩ = 2: see
Figure 6.3).

Remark 6.4. Let us also present, without giving further details, the strong and weak
vector potential formulations for the eddy current problem subject to the electric
boundary condition (1.5).
The strong formulation reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlA) − μ−1
∗ grad divA

+iωσA + σ gradVC = Je in Ω
div(iωσAC + σ gradVC) = divJe,C in ΩC

(iωσAC + σ gradVC) · nC
= Je,C · nC + Je,I · nI on Γ∫

(∂Ω)r
A · n = 0 ∀ r = 1, . . . , p∂Ω

divA = 0 on ∂Ω
A× n = 0 on ∂Ω ,

(6.31)

having already inserted in the first equation the penalization term assuring that divA =
0 inΩ. It can be noted that, if the vector fieldA satisfies divA = 0 inΩ, the conditions∫
(∂Ω)r

A · n = 0, r = 1, . . . , p∂Ω, are equivalent to the orthogonality to the space of
harmonic fields

H(e;Ω) := {w ∈ (L2(Ω))3 | curlw = 0, divw = 0,w× n = 0 on ∂Ω} ;

in fact, a basis for this space is given by grad ẑr , r = 1, . . . , p∂Ω, where ẑr is the
solution to ⎧⎨⎩

Δẑr = 0 in Ω
ẑr = 0 on ∂Ω \ (∂Ω)r
ẑr = 1 on (∂Ω)r .
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Note also that problem (6.31) simplifies if p∂Ω = 0: namely, if the computational
domainΩ has a connected boundary, which is very often the case in engineering prob-
lems.
The weak formulation is given by

Find (A, VC) ∈W ∗
� ×H1

� (ΩC) such that

A[(A, VC), (w, QC)] =
∫
Ω

Je ·w
+iω−1

∫
ΩC

Je,C · gradQC + iω−1
∫
Γ

Je,I · nI QC

for all (w, QC) ∈ W ∗
� ×H1

� (ΩC) ,

(6.32)

where
W ∗
� := {w ∈ H0(curl;Ω) ∩H(div;Ω) |∫

(∂Ω)r
A · n = 0 ∀ r = 1, . . . , p∂Ω} .

(6.33)

In comparison with the magnetic boundary value problem this case is simpler to
treat, as we do not need to distinguish between different geometrical configurations.

�

6.1.2 Existence and uniqueness of the solution to the weak formulation

The proof of existence and uniqueness is different in the three cases considered at the
end of Section 6.1.1. Let us recall that here and in the sequel we assume that (6.2) is
satisfied and the functionals Gt(·) are as in (6.29) or (6.30).

• Case n∂Ω = nΩ (Case 2 and Case 1 with nΩ = 0)

In these cases, the existence and uniqueness result derives from the Lax–Milgram
lemma. Since the sesquilinear form A[·, ·] is clearly continuous in W� × H1

� (ΩC),
we have only to check that the right hand side in (6.12) is a continuous (antilinear)
functional in W� × H1

� (ΩC) and that A[·, ·] is coercive in W� × H1
� (ΩC), namely,

that there exists a constant κ0 > 0 such that for each (w, QC) ∈ W� ×H1(ΩC ) with∫
ΩC,j

QC|ΩC,j
= 0, j = 1, . . . , pΓ + 1, it holds

|A[(w, QC), (w, QC)]| ≥ κ0

(∫
Ω(|w|2 + | curlw|2 + | divw|2)

+
∫
ΩC

(|QC|2 + | gradQC |2)
)

.
(6.34)

On the right hand side of (6.12) the only term to check is the third one. We have∣∣∣ ∫Γ Je,I · nI QC

∣∣∣ ≤ C1‖Je,I · nI‖−1/2,Γ ‖QC‖1/2,Γ
≤ C2‖Je,I‖0,ΩI‖QC‖1,ΩC ,

(6.35)

having used the trace theorems from H(div;ΩI) onto H−1/2(Γ ) and from H1(ΩC)
ontoH1/2(Γ ) (see (A.9) and (A.8), respectively).
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Concerning (6.34), we have

A[(w, QC), (w, QC)]
=
∫
Ω

(μ−1 curlw · curlw + μ−1
∗ | divw|2)

+iω−1
∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC) .
(6.36)

Given a pair of real numbers a and b, for each 0 < δ < 1 there holds

|2ab| ≤ δa2 + δ−1b2 ;

hence one has

|ω|−1
∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC)
≥ |ω|−1σmin

∫
ΩC

[| gradQC |2 + ω2|wC |2
+2 Re(iωwC · gradQC)]

≥ |ω|−1σmin(1− δ)
∫
ΩC
| gradQC |2

−|ω|σmin(1− δ)δ−1
∫
ΩC
|wC |2 ,

(6.37)

where σmin is a uniform lower bound inΩC for the minimum eigenvalues of σ(x).
Using the Poincaré inequality (see, for instance, Dautray and Lions [94], Chap. IV,

Sect. 7, Prop. 2), one can conclude that there exists a constant K1 > 0 such that for
each QC ∈ H1(ΩC) with

∫
ΩC,j

QC|ΩC,j
= 0 we have∫

ΩC
| gradQC |2 =

∑pΓ +1
j=1

∫
ΩC,j

| gradQC|ΩC,j
|2

≥ K1

∑pΓ +1
j=1

∫
ΩC,j

(| gradQC|ΩC,j
|2 + |QC|ΩC,j

|2)
= K1

∫
ΩC

(| gradQC |2 + |QC |2) .

(6.38)

Moreover, and this is the point in which Case 2 (or Case 1 with 0 = n∂Ω = nΩ)
differs from the other cases, there exists a constantK2 > 0 such that for any function
w ∈W� one has the Poincaré-like inequality∫

Ω(μ−1 curlw · curlw + μ−1
∗ | divw|2)

≥
∫
Ω

(μ−1
max| curlw|2 + μ−1

∗ | divw|2)
≥ K2

∫
Ω

(| curlw|2 + | divw|2 + |w|2) ,
(6.39)

where μmax is a uniformupper bound inΩ for the maximum eigenvalues ofμ(x) (see,
for instance, Girault and Raviart [111], Chap. I, Lemma 3.6; the proof can be easily
extended to the present geometrical situation, by proceeding as in Alonso andValli [6],
Lemma 3.3, and noting that, for a divergence-free and tangential vector field and for
Gk(·) defined as in (6.29), the conditions Gk(w) = 0 for k = 1, . . . , n∂Ω = nΩ are
equivalent to the orthogonality toH(m;Ω)).
Choosing (1− δ) so small that |ω|σmin(1− δ) < K2δ, from (6.36)–(6.39) we find

at once (6.34).
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• Case n∂Ω < nΩ (Case 3 and Case 1 with nΩ > 0)

In this case coerciveness of A[·, ·] in W� × H1
� (ΩC) is questionable, as we

do not know if estimate (6.39) holds (the conditions Gk(w) = 0 for k =
1, . . . , n∂Ω are not equivalent to the orthogonality to H(m;Ω)). However, we find
that A[(w, QC), (w, QC)] = 0 for (w, QC) ∈ W� × H1

� (ΩC ) implies w = 0 and
QC = 0, or, in other words, that

|A[(w, QC), (w, QC)]| > 0

for (w, QC) ∈ W� ×H1
� (ΩC), (w, QC) �= (0, 0).

This can be achieved as follows: assuming that A[(w, QC), (w, QC)] = 0, from
(6.11) we have that curlw = 0 and divw = 0 in Ω, and iωwC + gradQC = 0 in
ΩC . Therefore w ∈ H(m;Ω) and we can express it in terms of the basis functions of
H(m;Ω), say,w =

∑nΩ

t=1 αtπ̂t. In particular, inΩC we havewC =
∑nΩ

t=1 αtπ̂t,C =
iω−1 gradQC , and taking the line integral along the non-bounding cycle contained in
ΩC and associated to the “cutting” surface Σ̂q , q = n∂Ω +1, . . . , nΩ , we find that the
coefficient αq is vanishing for q = n∂Ω + 1, . . . , nΩ .
Moreover, taking into account the definition of Gt(·) in (6.30) and the relation

Gk(w) = 0 for k = 1, . . . , n∂Ω, we also have

0 = Gk(w) =
nΩ∑
t=1

αtGk(π̂t) =
n∂Ω∑
i=1

αiγki , k = 1, . . . , n∂Ω .

Since the matrix {Gq(π̂t)} = {γtq} is symmetric and positive definite, the same holds
for its principal minor {γki}, k, i = 1, . . . , n∂Ω, therefore it follows αi = 0 for each
i = 1, . . . , n∂Ω. In conclusion,w = 0 inΩ and consequently gradQC = 0 inΩC .
This concludes the proof of the uniqueness of the solution. Its existence can be

demonstrated as follows. For the sake of definiteness, the reader can refer to the geo-
metric situation illustrated in Figure 6.4.
We employ a procedure that will be used in Section 6.2.2 for showing the well-

posedness of the formulation based on the Lorenz gauge. We start from the electric
field E and the magnetic fieldH, the solutions of the eddy current problem we know

Fig. 6.4. A computational domain for which n∂Ω = 1, nΩ = 2, nΩC = 4
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to exist, and we first solve {
curlA = μH inΩ
divA = 0 inΩ
A · n = 0 on ∂Ω .

(6.40)

SinceΩ is not simply-connected, this solution is not unique. However, for each choice
of A one has that E + iωA is curl-free in Ω. Denote by ρ∗

β,C , β = 1, . . . , nΩC , the
basis functions of the space of harmonic fields

H(m;ΩC ) := {zC ∈ (L2(ΩC))3 | curl zC = 0, divzC = 0,
zC · nC = 0 on Γ } ,

We know that nΩC is the first Betti number ofΩC , namely, the number of independent
non-bounding cycles in ΩC .
Proceeding as in Theorem A.8 we can write inΩC

EC + iωAC = gradχ∗
C +

nΩC∑
β=1

θ∗C,βρ∗
β,C ,

where θ∗C,β represent the line integrals ofEC + iωAC along the non-bounding cycles
γ∗
β of ΩC .
Among the independent non-bounding cycles of ΩC there are those that are non-

bounding cycles also inΩ and those that are the boundary of a surface contained inΩ
(in Figure 6.4 the number of the cycles in the first group is 2, the number of the cycles
in the second group is 2). For the latter set we clearly have θ∗C,β = 0, as E + iωA
is curl-free in Ω. The former set can be subdivided between those cycles that form
an independent set of non-bounding cycles in Ω, and the remaining ones; the number
of the non-bounding cycles of ΩC that are independent non-bounding cycles in Ω is
nΩ − n∂Ω (in Figure 6.4 this number is 1).
We impose that θ∗C,β = 0 for all the indices β corresponding to these non-bounding

cycles of ΩC that form an independent set of non-bounding cycles in Ω. We are thus
imposing nΩ − n∂Ω conditions, and these conditions ensure that θ∗C,β = 0 for all
β = 1, . . . , nΩC : in fact, ifwe take an indexβ not belonging to the set of indices related
to the non-boundingcycles independent inΩ, it is associated either to a boundingcycle
of Ω or to a non-bounding cycle of Ω that is dependent on the cycles for which the
circulation vanishes. As an example, in Figure 6.4 the non-bounding cycles inΩC are
4, those that are non-bounding also inΩ are 2, but in Ω they are dependent: hence we
set θ∗C,β = 0 only for one of them.
In conclusion, having shown that θ∗C,β = 0 for all β = 1, . . . , nΩC , we see that in

ΩC the field EC + iωAC is the gradient of some potential, say χ∗
C = −VC .

We have not yet indicated how to select a unique solutionA to (6.40). Applying
Theorem A.8 in the domainΩ, we know that a solution of problem (6.40) has the form

iωA = −E + gradΦ +
n∂Ω∑
k=1

αkπ̂k +
nΩ∑

t=n∂Ω+1

αtπ̂t ,
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and Φ is uniquely determined by E. Moreover, αt, t = n∂Ω + 1, . . . , nΩ, are the line
integrals of iωA + E along the non-bounding cycles of Ω that are also non-bounding
cycles in ΩC , hence they are the quantities θ∗C,β we have imposed to vanish. We thus
finish requiring that

Gi(A) = 0 ∀ i = 1, . . . , n∂Ω ,

and from these conditions the coefficients αk are uniquely determined for all k =
1, . . . , n∂Ω.
The potentialsA and VC we have constructed are clearly the solutions to problem

(6.3), hence to the weak problem (6.12).

Remark 6.5. It should be noted that, even if the constraints Gk(A) = 0 for k =
1, . . . , n∂Ω are not imposed, fromA[(A, VC), (A, VC)] = 0 and (6.11) we always ob-
tainA ∈ H(m;Ω) and iωAC+grad VC = 0 inΩC . Therefore,H = μ−1 curlA = 0
in Ω and EC = −iωAC − gradVC = 0 in ΩC , and the uniqueness of the magnetic
and electric fields is in any case verified.
In other words, the constraintsGk(A) = 0 seem not to play any role in determining

the right physical solution. This is true, but, since they are needed for well-posedness,
they can have a role in the efficiency of the numerical algorithm used for approxima-
tion.
Indeed, as reported in Remark 6.8, it will be clear that for the finite element approx-

imationwell-posedness is satisfied even without imposing these constraints. However,
the numerical computations presented in Section 6.1.4 are showing that in fact the ef-
ficiency of the numerical algorithm is better when the constraints are satisfied. �

6.1.3 Numerical approximation

In this section we present the finite element numerical approximation of problem
(6.12). It is naturally based on nodal finite elements, as imposing matching conditions
on the interelements for bothA×n andA ·n is equivalent to requiring the continuity
of the whole vector A.
In the sequel we assume thatΩ, ΩC and ΩI are Lipschitz polyhedra, and that TI,h

and TC,h are two regular families of triangulationsofΩI andΩC , respectively. For the
sake of simplicity, we suppose that each elementK of TI,h and TC,h is a tetrahedron;
however, the results below also hold for hexahedral elements (and for second order
hexahedral “serendipity” elements). We also assume that these triangulations match
on Γ , so that they furnish a family of triangulations Th of Ω.
Let Pk , k ≥ 1, be the space of polynomials of degree less than or equal to k. For

r ≥ 1 and s ≥ 1 we introduce the discrete spaces of Lagrange nodal elements defined
as

W r
h := {wh ∈ (C0(Ω))3 | wh|K ∈ (Pr)3 ∀ K ∈ Th,

wh · n = 0 on ∂Ω} ,
(6.41)

and
LsC,h := {QC,h ∈ C0(ΩC) | QC,h|K ∈ Ps ∀ K ∈ TC,h} , (6.42)

and we employ
(W r

h )� := W r
h ∩W� (6.43)
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(LsC,h)� := LsC,h ∩H1
� (ΩC) , (6.44)

hence we are considering a conforming finite element approximation.
The discrete problem is given by

Find (Ah, VC,h) ∈ (W r
h )� × (LsC,h)� such that

A[(Ah, VC,h), (wh, QC,h)] =
∫
Ω

Je ·wh

+iω−1
∫
ΩC

Je,C · gradQC,h + iω−1
∫
Γ

Je,I · nI QC,h

for all (wh, QC,h) ∈ (W r
h )� × (LsC,h)� .

(6.45)

Here below we establish the well-posedness of this discrete problem and investi-
gate the convergence of the discrete solution to the exact solution.

• Case n∂Ω = nΩ (Case 2 and Case 1 with nΩ = 0)

Since the sesquilinear form A[·, ·] is continuous and coercive, we have that the
discrete solution exists and is unique; moreover, via Céa lemma for each wh ∈ (W r

h)�
and QC,h ∈ (LsC,h)� we have

κ0

( ∫
Ω(|A−Ah|2 + | curl(A−Ah)|2 + | div(A−Ah)|2)

+
∫
ΩC
| grad(VC − VC,h)|2

)1/2

≤ C0

( ∫
Ω(|A−wh|2 + | curl(A−wh)|2 + | div(A −wh)|2)

+
∫
ΩC
| grad(VC −QC,h)|2

)1/2

,

where C0 > 0 is the continuity constant of A[·, ·].
Therefore, at least when the constraints are expressed by the relations Gk(w) =∫

Σk
w · nΣ = 0, and provided that the solutions A and VC are regular enough, by

means of well-known interpolation results it is possible to find the error estimate(∫
Ω

(|A−Ah|2 + | curl(A −Ah)|2 + | div(A −Ah)|2)

+
∫
ΩC
| grad(VC − VC,h)|2

)1/2

≤ Chmin(r,s) .

(6.46)

In fact, in (6.12) and in (6.45) we can take QC,h ∈ LsC,h, thus we can choose as
QC,h the interpolant of VC . Instead, the interpolant IhA of A cannot be selected as
wh, as this test function has to satisfy the constraints Gk(wh) = 0 for each k =
1, . . . , n∂Ω. Then one proceeds in the following way: since in (6.2) we have assumed
that for k = 1, . . . , n∂Ω the surfaces Σk are disjoint, one can easily find a set of
discrete functions vk (defined on a fixed coarse mesh Th0 ) such that Gi(vk) = δik
(the Kronecker symbol). Choosing the triangulation Th as a refinement of Th0 and
wh = IhA−

∑
k Gk(IhA)vk , one clearly finds Gi(wh) = 0 for each i = 1, . . . , n∂Ω,
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and moreover

‖A −wh‖W = ‖A− IhA +
∑

k Gk(IhA)vk‖W
≤ ‖A− IhA‖W +

∑
k ‖Gk(IhA)vk − Gk(A)vk‖W

≤ ‖A− IhA‖W +
∑

k |Gk(A − IhA)|‖vk‖W
≤ ‖A− IhA‖W + (

∑
k ‖Gk‖L(W ;C)‖vk‖W )‖A − IhA‖W ,

having denoted by ‖ · ‖W the norm inH(curl;Ω)∩H(div;Ω) and by ‖ · ‖L(W ;C) the
norm of a linear functional fromW to C.

Remark 6.6. Concerning this convergence result, it has to be noted that the regularity
ofA is not ensured if Ω has reentrant corners or edges, namely, if it is a non-convex
polyhedron (see Costabel and Dauge [87], Costabel et al. [90]). More important, in
that case the space H1

τ (Ω) := (H1(Ω))3 ∩H0(div;Ω) turns out to be a proper closed
subspace ofH(curl;Ω)∩H0(div;Ω) (H1

τ (Ω) andH(curl;Ω)∩H0(div;Ω) coincide
if and only ifΩ is convex). Hence the nodal finite element approximate solutionAh ∈
W r
h ⊂ H1

τ (Ω) cannot approach an exact solutionA ∈ H(curl;Ω)∩H0(div;Ω) with
A �∈ H1

τ (Ω), and convergence in H(curl;Ω) ∩ H(div;Ω) is lost: this is a general
problem for the nodal finite element approximation of Maxwell equations.
However, the result we have proved here above ensures that for the Coulomb

gauged vector potential formulation of the eddy current problem the nodal finite el-
ement approximation is convergent either if the solution is regular (and this informa-
tion could be available even for a non-convex polyhedron Ω) or if the domain Ω is a
convex polyhedron, as in this case the space of smooth tangential vector fields is dense
inH1

τ (Ω) = H(curl;Ω)∩H0(div;Ω), and one can apply Céa lemma in the standard
way.
Let us also note that the assumption that Ω is convex is not a severe restriction,

as in most real-life applications ∂Ω arises from a somehow arbitrary truncation of the
whole space. Hence, reentrant corners and edges of Ω can be easily avoided. �

Remark 6.7. It is worth noting that a cure for the lack of convergence of nodal finite
element approximations in the presence of re-entrant corners and edges has been pro-
posed by Costabel and Dauge [88]. They introduce a special weight in the grad div
penalization term, thus making it possible to use standard nodal finite elements in a
numerically efficient way. �

• Case n∂Ω < nΩ (Case 3 and Case 1 with nΩ > 0)
In this case, we limit ourselves to the proof of the existence and uniqueness of the

solution, without providing an error estimate. Since the problem is finite dimensional,
the proof of uniqueness is enough.
Thus, let us consider a solution (Ah, VC,h) to (6.45) with a vanishing right hand

side. As in the infinite dimensional case, from (6.11) we find thatAh ∈ H(m;Ω) and
iωAh|ΩC

+ gradVC,h = 0 in ΩC .
Since the harmonic fields in H(m;Ω) are C∞ vector functions in Ω, we deduce

that the piecewise-polynomialAh is indeed a global polynomial (Pr)3 in Ω. Conse-
quently, curlAh is a global polynomial (Pr−1)3 in Ω, and there it is vanishing. Thus
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we have curlAh = 0 in R3, and Ah = gradU in R3. In particular, Ah = gradU|Ω
in Ω, and the conditions divAh = 0 in Ω and Ah · n = 0 on ∂Ω tell us that U|Ω is
a harmonic function with vanishing normal derivative on the boundary, therefore is a
constant. In conclusion,Ah = 0 in Ω and therefore gradVC,h = 0 in ΩC .

Remark 6.8. It can be noted that at the discrete level, in all the geometrical Cases 1, 2
and 3, one could formulate the problem by replacing (W r

h )� withW r
h , namely, work-

ing in the unconstrained space H(curl;Ω)∩H0(div;Ω), still obtaining existence and
uniqueness.
In fact, if the right hand side of the discrete equation is vanishing, from (6.11)

one always finds Ah ∈ H(m;Ω) and iωAh|ΩC
+ gradVC,h = 0 in ΩC . Therefore,

proceeding as before, one shows thatAh = gradU|Ω in Ω, and the uniqueness of the
discrete solution again follows.
A natural question therefore arises: from the computational point of view, the

constrained discrete approximation in the spaceW� is more efficient than the uncon-
strained one in the space H(curl;Ω) ∩ H0(div;Ω)? One argument in favour of the
constrained formulation is that, at least in the case n∂Ω = nΩ and for a regular exact
solution, we are able to prove an error estimate, therefore convergence is ensured.
In the next section we are going to present some numerical results that confirm this

assertion. �
Remark 6.9. In the numerical implementation, imposing the boundary condition
Ah · n = 0 on ∂Ω (or else Ah × n = 0 on ∂Ω, as in the approximation of prob-
lem (6.32)) is clearly straightforward if the boundary of the computational domain Ω
is formed by planar surfaces, parallel to the reference planes.
If this is not the case, for each node p on ∂Ω it is possible to introduce a local

system of coordinates with one axis aligned with na, a suitable average of the normals
to the surface elements containingp, and to express, through a rotation, the vectorAh

with respect to that system: the conditionAh · na = 0 is then trivially imposed. The
details of this procedure can be found in Rodger and Eastham [212].
Another possible approach, which avoids the arbitrariness inherent in the averaging

process of the normals at corner points, is described (and at the same time criticized) by
Bossavit [60]. It is based on imposingAh ·n = 0 at the center of the element faces on
∂Ω: the drawback is that it results in a constrained problem, requiring the introduction
of as many Lagrange multipliers as the number of surface elements on ∂Ω. �
Remark 6.10. The need for imposing the gauge condition divA = 0 in Ω in order to
obtain a unique vector potentialA has led to the use of nodal finite elements for numer-
ical approximation. A possible alternative has been described by Bíró [48] (see also
Fujiwara et al. [108], Ren [206], Kameari and Koganezawa [145], Ren and Ida [209],
Ren and Razek [210], Hollaus and Bíró [132]): edge elements are employed for the
approximation of the potentialA, without requiring that the gauge condition is satis-
fied.
Clearly, in this way the resulting linear system is singular: however, in many cases

the right-handsides turn out to be compatible, so that suitable iterative algebraic solvers
can still be convergent, though, to the best of our knowledge, a complete theory assur-
ing the effectiveness of this procedure is not available. �
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Remark 6.11. In Jin [140], Chap. 5, Sect. 5.7.4, it is underlined that a finite element
approximation based on a weak form in which the term

∫
Ω

μ−1 divz divw is present
can be inefficient if the coefficient μ has jumps. In this respect, it should be noted that in
(6.12) the sesquilinear formA[·, ·] contains

∫
Ω μ−1

∗ divz divw, but μ∗ is an auxiliary
constant which is not required to be equal to the physical magnetic permeabilityμ, so
that jumps are avoided. �

Remark 6.12. The procedure presented in Remark 6.2 can be used for computing the
numerical approximation of the electric field EI in a way different from that described
in Section 5.5.
In fact, it is sufficient to insertAI,h andVC,h at the right hand side of (6.7) and com-

pute the finite element approximation of V †
I,h, using standard scalar nodal elements.

Then, putting AI,h and V †
I,h at the right hand side of (6.8), one finds the complex

numbers (c†I,j,h, d
†
I,k,h), j = 1, . . . , pΓ , k = 1, . . . , n∂Ω, from which one is led to

define

EI,h := −iωAI,h − gradV †
I,h +

pΓ∑
j=1

c†I,j,h gradwj,I +
n∂Ω∑
k=1

d†I,k,hπk,I .

As described in Section 5.1, it is also possible to avoid the use of the basis functions
gradwj,I andπk,I , by replacing themwith the gradients of suitable interpolants. In that
case, problems (6.7) and (6.8) are no longer decoupled, but, using Lemma 5.2, it can
be seen that the coupled problem generated from these problems is still associated to
a coercive sesquilinear form. Thus it is solvable. �

Remark 6.13. Houston et al. [133] have proposed and analyzed an approximation al-
gorithm for (6.3) based on the discontinuous Galerkin finite element method. �

Remark 6.14. For the electric boundary condition, the numerical approximation of the
vector potential formulation reads

Find (Ah, VC,h) ∈ (W r
h )∗� × (LsC,h)� such that

A[(Ah, VC,h), (wh, QC,h)] =
∫
Ω

Je ·wh

+iω−1
∫
ΩC

Je,C · gradQC,h + iω−1
∫
Γ

Je,I · nI QC,h

for all (wh, QC,h) ∈ (W r
h )∗� × (LsC,h)� ,

(6.47)

where
(W r

h )∗� := W r
h ∩W ∗

� ,

and W ∗
� , W

r
h and (LsC,h)� have been introduced in (6.33), (6.41) and (6.44), respec-

tively. �
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6.1.4 Numerical results

The numerical results we present here have been obtained in Bíró andValli [54], where
the numerical approximation of problem (6.12) in Case 2, with n∂Ω = nΩ = 1 (Ω is
a torus and ΩC is a ball-like set) has been considered.
Aim of these numerical tests is to analyze the influence of the constraintsGk(w) =

0 on the efficiency of the computational algorithm. The finite elements employed are
second order hexahedral “serendipity” elements, with 20 nodes (8 at the vertices and
12 at the midpoints of each edge), for all the components ofAh and for Vh (see, e.g.,
Ciarlet [83]).
The values of the physical coefficients are as follows: μ = μ∗ = 4π× 10−7 H/m,

σ = 5.7× 107 S/m, ω = 2π × f = 100π rad/s, i.e., f = 50 Hz.
The CG iterations are stopped when the norm of the residual (normalized by the

norm of the right hand side) is under a given tolerance. For the first two examples
below, this tolerance is 10−10, while for the third example is 10−6.
In the first example, half of the domain is described in Figure 6.5. The coils (the

support of Je,I) are the yellow sets on the left, while the conductorΩC is the red half-
cylinder on the right; the “cutting” surface Σ1 is green. We remark that all the results
presented in this chapter still hold true even if the basis of the conducting domain ΩC

is touching the boundary ∂Ω as in Figure 6.5.
The difference between the constrained and the unconstrainedfinite element spaces

resides only in one degree of freedom, the one associated to the “cut” Σ1, “cutting”
the equator of the torus Ω. More precisely, in the constrained case we are assuming
that trial and test functions satisfy

∫
Σ1

wh ·nΣ = 0. This can be achieved very easily;
in fact, let us denote by φi the basis function of the unconstrained finite element space
and set ci :=

∫
Σ1

φi · nΣ . If ci = 0 for each index i, there is nothing to do, as the
unconstrained and the constrained space coincide. Conversely, if for some index, say
i = 1, one has c1 �= 0, for i ≥ 2 define φ̂i := φi − ci

c1
φ1. These functions are easily

proved to be the basis functions of the constrained space.
The current density is given by Je,C = 0 and Je,I = Je,Ieφ, where eφ is the

azymuthal unit vector in the cylindrical system centered at the point (100,0,0), oriented

Fig. 6.5. The computational domain for the first example
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Fig. 6.6. The dimensions of the computational domain for the first example (projection on the
(x, z)-plane)

counterclockwise, and

Je,I =

⎧⎨⎩ 106 A/m2 if 60 < r < 80 , 60 < z < 80
−106 A/m2 if 60 < r < 80 , 20 < z < 40
0 otherwise

(see Figure 6.6 for a precise description of the geometry of Ω).
The solution has been computed for seven meshes, the coarsest one with 290 el-

ements, the finest one with 99470 elements. With respect to the grid size, the seven
meshes correspond to the choices h, h/2, ..., h/7.
For finding a reference solution, the problemhas been also solved bymeans of edge

elements on the finest grid: this solution is calledAedge, VC,edge. For this computation,
the so-called quadratic 36-edge elements proposed by Kameari [144] have been used,
writing the problem in terms of a ungauged magnetic vector potential and an electric
scalar potential, namely, using the functional in (6.11) but dropping the term containing
the divergence (see also Remark 6.10).
In Table 6.1, for each of the meshes described above, the error between the com-

puted solutionAh, VC,h and the reference solution is presented. More precisely, we
have set

eJ :=
‖JC,h − JC,edge‖0,ΩC

‖JC,edge‖0,ΩC

, eB :=
‖Bh −Bedge‖0,Ω
‖Bedge‖0,Ω

,

where JC,edge := −iωσAedge|ΩC
− σ gradVC,edge, Bedge := curlAedge, and simi-

larly for JC,h andBh. The number of conjugate gradient iterations needed to compute
the approximate solution is also indicated. The computations are repeated twice, at
first for the unconstrained approximate solution (namely, we have not imposed that
the flux of the vector potential is vanishing on the “cutting” surface), and then for the
constrained approximate solution. Clearly, in the latter case there is one degree of
freedom less.
It can be seen that the CG iterations are always approximately 10% fewer when

computing the constrained solution, while the accuracy is quite similar in both cases.
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Table 6.1. Relatives errors eJ and eB for the first example (see the text for further explanations)

Elements DoF Iterations eJ eB

3,939 108 1.602 10−1 7.812 10−2

290
3,938 97 1.602 10−1 7.812 10−2

31,337 206 5.634 10−2 2.125 10−2

2,320
31,336 185 5.659 10−2 2.125 10−2

105,571 325 2.786 10−2 1.015 10−2

7,830
105,570 294 2.783 10−2 1.015 10−2

250,017 448 1.605 10−2 7.228 10−3

18,560
250,016 419 1.602 10−2 7.225 10−3

488,051 597 1.054 10−2 5.286 10−3

36,250
488,050 540 1.052 10−2 5.284 10−3

843,049 739 7.603 10−3 4.729 10−3

62,640
843,048 666 7.588 10−3 4.727 10−3

1,338,387 885 5.959 10−3 4.221 10−3

99,470
1,338,386 793 5.948 10−3 4.219 10−3

In Figures 6.7 and 6.8 some details of the computed solution for the finest mesh
are presented, and these pictures show a good agreement with the expected physical
behaviour of the solution.

The second example is an academic one, useful for illustrating the rate of conver-
gence of the method. It is based on the applied current density Je computed starting
from the smooth exact solution

Aex =
{
curl(0, 0, exp(r2/Q)) whereQ < 0
0 otherwise

Fig. 6.7. Magnitude of the computed flux densityB for the first example
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Fig. 6.8.Magnitude of the computed current density JC := −iωσAC − σ gradVC for the first
example

gradVC,ex =
{

iω grad exp(r2/Q) where Q < 0
0 otherwise ,

where
Q := (x− x0)2 + (y − y0)2 + (z − z0)2 − r2 ,

and (x0, y0, z0) ∈ Ω, r > 0 can be chosen freely. Clearly, if the ball {Q < 0}
is contained in ΩI , as it will be the case here below, we have gradVC,ex = 0 and
EC,ex := −iωAex|ΩC

− gradVC,ex = 0. In particular, in this case the coil is the ball
{Q < 0}.
The same domains Ω, ΩC and ΩI of the first example (illustrated in Figure 6.5)

are considered, but now the coil is the ball {Q < 0}, where we choose (x0, y0, z0) =
(60/

√
2 + 100, 60/

√
2, 60) and r = 19 (see Figure 6.9).

In Table 6.2 the error between the computed solution Ah, VC,h and the exact
solution is presented, setting EC,h := −iωAh|ΩC

− gradVC,h, Bh := curlAh,
Bex := curlAex, and

êE := ‖EC,h‖0,ΩC , eB :=
‖Bh −Bex‖0,Ω
‖Bex‖0,Ω

.

This time the coarsest mesh is of size h and is constituted by 150 elements, and then
the mesh size is taken equal to h/3, h/5, h/7 and h/9. The computations are repeated
two times: for the unconstrained algorithm and for the constrained algorithm.
This second example shows again that the CG iterations for the constrained al-

gorithm are less than in the other case; moreover, the accuracy of the constrained al-
gorithm is much better than that of the unconstrained algorithm. In particular, when
using the unconstrained approximation the absolute error for the electric field is not
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Fig. 6.9. The position of the coil (yellow) and of the conductor (red) for the second example:
projection on the (x, y)-plane

Table 6.2. Absolute error êE and relative error eB for the second example (see the text for
further explanations)

Elements DoF Iterations êE Rate eB Rate

2,080 67 6.061 101 - 1.955 100 -
150

2,079 59 7.485 100 - 1.680 100 -

55,192 199 1.434 102 −0.78 3.105 100 −0.42
4,050

55,191 181 1.727 100 1.33 9.784 10−1 0.49

254,536 357 1.022 101 5.16 7.898 10−1 2.67
18,750

254,535 319 3.893 10−1 2.91 6.343 10−1 0.84

697,264 553 3.488 100 3.19 5.743 10−1 0.94
51,450

697,263 459 1.840 10−1 2.22 4.870 10−1 0.78

1,480,528 674 2.022 100 2.16 4.815 10−1 0.70
109,350

1,480,527 591 5.053 10−2 5.14 3.856 10−1 0.93

at all satisfactory even on the finest grid. Therefore, the advantage of the constrained
algorithm is evident from this example.
It must be noted that for the magnetic field both algorithms are still far from being

satisfactory; in our opinion, this is due to the fact that the coil is quite small, and even
on the finest mesh it is not represented in a good way.
The estimated convergence rate, when passing from a mesh to the subsequent one,

does not seem to be constant (for some other computationswe have verified even larger
oscillations in the errors). However, it appears to be asymptotically quadratic for the
electric field, though not even linear for the magnetic field (whereas the theoretical
estimate is quadratic, see (6.46)): in fact, passing from the coarsest to the finest mesh
the global rate of convergence for the electric field is 1.54 for the unconstrained algo-
rithm and 2.27 for the constrained one, while for the magnetic field it is 0.63 and 0.67,
respectively. In this respect, we note that a better order of convergence is achieved in
the next example.
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The third example is related to the exact solution of the form we described before,
but for a different domain, described in Figures 6.10, 6.11.
As indicated in these figures, this timewe choose (x0, y0, z0) = (0, 0, 0),r = 0.29.

Themain difference with respect to the preceding situation is that now the coil is larger
(and the eddy current region is smaller), so that the numerical approximation does
not need very fine meshes for being satisfactory. The coarsest mesh is of size h and
is constituted by 66 elements, and then mesh size is taken equal to h/2, h/4, h/8
and h/16. As before, the computations are repeated two times: for the unconstrained
algorithm and for the constrained algorithm. The results are presented in Table 6.3.

Table 6.3. Absolute error êE and relative error eB for the third example (see the text for further
explanations)

Elements DoF Iterations êE Rate eB Rate

927 46 6.524 101 - 7.595 10−1 -
66

926 41 6.424 101 - 7.676 10−1 -

6,922 74 1.654 101 1.98 1.064 100 −0.49
528

6,921 63 1.071 101 2.58 9.372 10−1 −0.29
53,322 135 7.186 100 1.20 6.489 10−1 0.71

4,224
53,321 117 6.649 100 0.69 6.207 10−1 0.59

418,162 256 1.415 10−1 5.67 2.222 10−1 1.54
33,792

418,161 227 1.415 10−1 5.55 2.222 10−1 1.48

3,311,202 401 2.244 10−2 2.66 6.885 10−2 1.69
270,336

3,311,201 237 2.225 10−2 2.67 6.884 10−2 1.69

In this last case, the accuracy of the unconstrained and constrained approximations
is similar, and is good enough. The rate of convergence now appears to be asymptoti-
cally quadratic also for the magnetic field approximation. The number of CG iterations
is lower for the constrained algorithm than for the unconstrained one, and the differ-
ence is particularly significative for the finest mesh.

In order to compare the performance of (constrained) nodal element and edge el-
ement approximations, in the second and third examples we have also computed the
solution by means of edge elements, employing a ungauged formulation as described
in Remark 6.10.
The results are presented in Table 6.4. For each choice of the number of elements,

the first row represents the nodal case, the second row the edge case. As a consequence
of the fact that for the edge element approximation the linear system to solve is singu-
lar, it can be observed that the CG iterations for the nodal approximation are almost
always less than for the edge approximation. In the second example the number of CG
iterations is about 7% lower, in the third example the difference becomes much more
significative as the mesh is finer.
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Fig. 6.10. The computational domain for the third example (the conductor is red and the coil is
yellow): projection on the (x, y)-plane

Fig. 6.11. The computational domain for the third example (the conductor is red and the coil is
yellow): projection on the (x, z)-plane
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Table 6.4.Number of iterations for the second example (left) and the third example (right). First
row: nodal elements; second row: edge elements

Elements DoF Iterations

2,079 59
150

1,640 57

55,191 181
4,050

43,164 195

254,535 319
18,750

198,640 346

697,263 459
51,450

543,620 490

1,480,527 591
109,350

1,153,656 635

Elements DoF Iterations

926 41
66

789 25

6,921 63
528

5,539 62

53,321 117
4,224

41,373 137

418,161 227
33,792

319,513 283

3,311,201 237
270,336

2,510,769 583

6.1.5 A penalized formulation for the electric field

The procedure based on the introduction of a magnetic vector potential A can be
adapted in order to devise a formulation of the eddy current problem (2.1), in which
the constraint div(εIEI) = 0 in ΩI is imposed via a penalization term acting only in
ΩI . The problem reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
C curlEC ) + iωσEC = −iωJe,C in ΩC

curl(μ−1
I curlEI )
−c∗0εI grad div(εIEI ) = −iωJe,I in ΩI

(μ−1
I curlEI)× n = 0 on ∂Ω

εIEI · n = 0 on ∂Ω∫
Γj

εIEI · nI = 0 ∀ j = 1, . . . , pΓ∫
ΩI

εIEI ·πk,I = 0 ∀ k = 1, . . . , n∂Ω
div(εIEI ) = 0 on Γ
EC × nC + EI × nI = 0 on Γ
(μ−1

C curlEC)× nC + (μ−1
I curlEI)× nI = 0 on Γ ,

(6.48)

where c∗0 > 0 is a dimensional constant. Note that, due to the presence of the penaliza-
tion term in (6.48)2, the constraint div(εIEI) = 0 has to be kept only on the interface
Γ , namely, it is necessary to impose equation (6.48)7.
We have already noted that pΓ = 0 and n∂Ω = 0 if the boundary of the conductor

ΩC is connected and the computational domain Ω is simply-connected: for example,
a connected conductor (possibly with “handles”) contained in a “box”.
In order to arrive at a weak formulation that leads to a more efficient numerical

approximation, it is better to reformulate the conditions
∫
ΩI

εIEI · πk,I = 0. From
the Appendix we know that in ΩI \Σk one can write πk,I = grad qk,I (see problem
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(A.32)). Therefore, taking into account the properties of EI and qk,I , we have∫
ΩI

εIEI · πk,I =
∫
ΩI\Σk

εIEI · grad qk,I
= −

∫
ΩI\Σk

div(εIEI) qk,I +
∫
∂Ω\∂Σk

εIEI · n qk,I
+
∫
Γ

εIEI · n qk,I +
∫
Σk

εIEI · nΣ
=
∫
Σk

εIEI · nΣ .

Define the space

ŴεI (ΩI ;Ω) := {z∈H(curl;Ω) | zI∈H0,∂Ω(εI , div;ΩI),∫
Γj

εIzI · nI = 0 ∀ j = 1, . . . , pΓ ,∫
Σk

εIzI · nΣ = 0 ∀ k = 1, . . . , n∂Ω} .
(6.49)

Then it is readily verified that the solutionE to (6.48) satisfies the weak formulation

FindE ∈ ŴεI (ΩI ;Ω) such that∫
Ω

μ−1 curlE · curl z + iω
∫
ΩC

σEC · zC
+c∗0

∫
ΩI
div(εIEI) div(εIzI ) = −iω

∫
Ω

Je · z

for each z ∈ ŴεI (ΩI ;Ω) .

(6.50)

In Section 2.1 it has been proved that the sesquilinear form

a∗e(w, z) :=
∫
Ω

μ−1 curlw · curl z + iω
∫
ΩC

σwC · zC
+c∗0

∫
ΩI
div(εIwI) div(εIzI )

is coercive inWεI (ΩI ;Ω), whereWεI (ΩI ;Ω) has been introduced in (2.3), and reads

WεI (ΩI ;Ω) := {z∈H(curl;Ω) | zI∈H0,∂Ω(εI , div;ΩI),
zI⊥εIHεI (Γ, ∂Ω;ΩI)} . (6.51)

We now show that the same result is true in the space ŴεI (ΩI ;Ω). The crucial point
is proving something similar to Lemma 2.1. We have:

Lemma 6.15. There exists a constant C > 0 such that

‖zI‖0,ΩI ≤ C
(
‖ curl zI‖0,ΩI + ‖ div(εIzI )‖0,ΩI + ‖zI × nI‖H−1/2(divτ ;Γ)

+
∑pΓ

j=1

∣∣∣∫Γj
εIzI · nI

∣∣∣+∑n∂Ω

k=1

∣∣∣∫Σk
εIzI · nΣ

∣∣∣ )
for all zI ∈ H(curl;ΩI) ∩H0,∂Ω(εI , div;ΩI).

Proof. From the representation formula (A.12), namely,

zI = ε−1
I curlqI + gradϕI + hI ,
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and from Lemma 2.1 we realize that the only term to be estimated is hI . Since
it belongs to the finite dimensional space HεI (Γ, ∂Ω;ΩI) and depends linearly on∫
ΩI

εIzI · gradwj,I and
∫
ΩI

εIzI ·πk,I , we have at once

‖hI‖0,ΩI ≤ C

⎛⎝ pΓ∑
j=1

∣∣∣∣∫
ΩI

εIzI · gradwj,I

∣∣∣∣+ n∂Ω∑
k=1

∣∣∣∣∫
ΩI

εIzI · πk,I

∣∣∣∣
⎞⎠ .

On the other hand we have εIzI · n = 0 on ∂Ω and wj,I = 0 on Γ \ Γj , wj,I = 1 on
Γj , thus integration by parts gives∫

ΩI

εIzI · gradwj,I = −
∫
ΩI

div(εIzI )wj,I +
∫
Γj

εIzI · nI .

Moreover, proceeding as in (6.1.5), since εIzI · n = 0 on ∂Ω we find∫
ΩI

εIzI ·πk,I = −
∫
ΩI\Σk

div(εIzI) qk,I +
∫
Σk

εIzI · nΣ .

Since the functionswj,I and qk,I only depend onΩI and εI , the Hölder inequality thus
gives

‖hI‖0,ΩI ≤ C
(
‖ div(εIzI)‖0,ΩI

+
∑pΓ

j=1

∣∣∣∫Γj
εIzI · nI

∣∣∣+∑n∂Ω

k=1

∣∣∣∫Σk
εIzI · nΣ

∣∣∣ ) ,

and the proof is complete. �

Showing that the sesquilinear form a∗e(·, ·) is coercive in ŴεI (ΩI ;Ω) is now an
easy task, by repeating the arguments presented in Lemma 2.2 and Theorem 2.3: hence
there exists a unique solutionE to (6.50).
We also know from Section 3.4 that there exists a unique solution to the eddy

current problem (1.22), and moreover it is straightforward to verify that the electric
field determined there satisfies (6.48), and consequently also (6.50). Since for all these
problems we have proved that uniqueness holds, we can thus conclude that the electric
field in (1.22), (6.48) and (6.50) is always the same. Thus we deduce that for the so-
lution to (6.48) and (6.50) the constraint div(εIEI) = 0 in ΩI is indeed satisfied. (A
direct proof of this fact could also be obtained by adapting the arguments in the proof
of Lemma 6.1.)
Concerning numerical approximation, when εI is a matrix with smooth entries a

finite element scheme based on the formulation (6.50) can be easily devised, using
nodal elements in ΩI and edge elements in ΩC . The constraints on the fluxes on Γj
and Σk of the test functions can be satisfied by proceeding as in Section 6.1.4, by
explicitly constructing basis functions with vanishing fluxes.
On the other hand, if εI is not smooth, even a smooth zI could violate the condition

div(εIzI) ∈ L2(ΩI), and also for a piecewise-smooth εI it is not easy to construct
finite elements satisfying the necessary matching condition [εIzI,h · n] = 0 on the
interelements.
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In any case, the approximation scheme here described could have a major draw-
back, even for a scalar constant εI : in fact, as noted in Remark 6.6, it can happen that
the space

H1
τ,∂Ω(ΩI) = {zI ∈ (H1(ΩI))3 | zI · n = 0 on ∂Ω}

is a proper subspace ofH(curl;ΩI)∩H0,∂Ω(div;ΩI), and that the solutionEI lies in
H(curl;ΩI)∩H0,∂Ω(div;ΩI) but not inH1

τ,∂Ω(ΩI). IfH1
τ,∂Ω(ΩI) is a closed proper

subspace of H(curl;ΩI) ∩H0,∂Ω(div;ΩI), the nodal finite element approximate so-
lutionEI,h (which clearly is always contained in H1

τ,∂Ω(ΩI)) cannot converge to the
exact solution.
This problem occurs if the domain Ω has re-entrant corners (see Costabel and

Dauge [87], Costabel et al. [90]). Instead, if Ω is convex, the convergence could be
achieved, though there are always re-entrant corners for the insulator ΩI on the inter-
face Γ . In fact, since no boundary condition is imposed on Γ , it is likely that the space
of smooth tangential vector fields is dense in the space

Ŵτ (Ω) := {z ∈ H(curl;Ω) | zI ∈ H0,∂Ω(div;ΩI), z × n ∈ (L2(Γ ))3}

(see Nicaise [188]). Therefore, provided that for the solution E it holds E × n ∈
(L2(Γ ))3, which does not seem to be a very restrictive assumption, Céa lemma and a
density argument would ensure that the Galerkin method is convergent.

Remark 6.16. A hp discontinuous Galerkin approximation of the eddy current prob-
lem (6.48) has been proposed by Perugia and Schötzau [191]. With that approach the
discrete solution does not belong to H(curl;Ω) ∩H(div;Ω); however, in that paper
it is proved that the finite element scheme is convergent, no matter if the exact solu-
tion does not belong to (H1(Ω))3. The price to pay is a larger number of degrees of
freedom. �

6.2 Formulation for the Lorenz gauge and its numerical
approximation

In this section we suppose that Ω, ΩC and ΩI satisfy the assumptions of Section 1.3,
and moreover we assume that Ω is simply-connected and that ΩC is connected (some
informations regarding more general geometrical configurations are presented in Re-
mark 6.24). For the sake of definiteness, we also limit ourselves to considering the
magnetic boundary value problem (1.22).
Following the analysis presented in Fernandes and Valli [105], we deal with a

different gauge condition for the magnetic vector potential A: the so-called Lorenz
gauge

divAC + μ∗σ
∗VC = 0 inΩC , divAI = 0 in ΩI , (6.52)

where σ∗ is assumed to be a scalar function, satisfying 0 < σ∗
1 ≤ σ∗(x) ≤ σ∗

2 in
ΩC and σ∗(x) = 0 in ΩI , and μ∗ > 0 is a dimensional constant. (For instance, one
can think that μ∗ is a suitable average in Ω of the entries of the matrix μ, and that
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σ∗ = κ
3 trace(σ) for a suitable non-dimensional constant κ > 0, so that σ∗

1 = κσmin,
σ∗

2 = κσmax, where σmin and σmax are a uniform lower bound for the minimum
eigenvalues of σ(x) in ΩC and a uniform upper bound for the maximum eigenvalues
of σ(x) in ΩC , respectively.)
The Lorenz gauge has been originally proposed with the aim of decoupling the

equation forA from the equation for VC , substitutingσ gradVC with

−σ grad[(μ∗σ
∗)−1 divAC ] .

In particular, an additional feature of this approach is that, for a scalar con-
stant σ|ΩC

= σ∗ and a scalar constant μC = μ∗, the latter term simplifies to
−μ−1

∗ grad divAC , which, added to μ−1
∗ curl curlAC , gives at last −μ−1

∗ ΔAC .
However, as also noted by Bíró and Preis [51], in Section 6.2.1 we will see that

this decoupling is difficult to handle for a non-constant conductivityσ|ΩC
, as one ends

up facing a problem which looks hard to solve. Moreover, in the opposite situation,
namely, when σ|ΩC

is a scalar constant, we will see that, when the current density
satisfies the standard assumption divJe = 0 in Ω, decoupling is always leading to a
problem for which divAC = 0 and VC = 0 inΩC , hence to a formulation in terms of
the sole electric field EC = −iωAC .
In other words, when considering an approach based on “genuine” magnetic vec-

tor potentials and scalar electric potentials, the Lorenz gauge is never furnishing a
formulation which is at the same time well-posed and decoupled, and it has simply to
be thought as a variant of the Coulomb gauge. However, it is also worth noting that
sometimes the Lorenz gauged formulationhas shown better performances in numerical
computations (see, e.g., Bryant et al. [67], Morisue [181]).
Let us now go on in completing the setting. Besides the gauging condition (6.52),

we have to add a boundary condition,which, when considering themagnetic boundary
conditionH× n = 0, is given by

A · n = 0 on ∂Ω . (6.53)

Moreover, we have also to impose an additional condition on the interface Γ . In
fact, differently from the Coulomb gauge, the constraints on the divergence have been
given separately inΩC andΩI . We consider three possible alternatives, that have been
frequentlyproposed in the literaturedevoted to this subject (see, e.g., Fernandes [103]):
the first one is the “slip” condition

AC · nC = 0 on Γ ; (6.54)

the second one is the Dirichlet condition

VC = 0 on Γ ; (6.55)

the last one is the matching condition

AI · nI + AC · nC = 0 on Γ . (6.56)

The interface conditions (6.54) and (6.55) were indeed proposed with the aim of
decoupling the equations forA from that for VC : however, as we have just noted, for
a non-constantσ|ΩC

the decoupled problem turns out to be hard to handle, while for a
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scalar constant σ|ΩC
and for divJe = 0 inΩ it reduces to an electric field formulation.

Hence, the use of these interface conditions has to be looked at as a possible alternative
to the more natural condition (6.56), most often leading to a coupled problem (similar
to the one we will present in Section 6.2.3 for the interface condition (6.56)).
Thematching conditionAC ·nC = k2VC on Γ has been also proposed (see Bryant

et al. [68]). We could adapt the following presentation also to this case, but in our
opinion, for a non-constant σ|ΩC

, its use leads to a less simple algorithm for numeri-
cal approximation, due to the necessity of constructing finite elements satisfying that
matching on Γ . Besides, for a scalar constant σ|ΩC

and for divJe = 0 in Ω it also
reduces to an electric field formulation withAC · nC = 0 on Γ .
We are now in a position to formulate the problem. Let us start specifying in detail

the formulation associated to the matching condition (6.56). First, note that (6.52)2,
(6.53) and (6.56) imply that

∫
Γ

AI · nI = 0 =
∫
Γ

AC · nC , hence
∫
ΩC
divAC = 0.

As a consequence, we can also impose∫
ΩC

σ∗VC = 0 (6.57)

without actually introducing any further constraint.
In conclusion, writing the eddy current equations in terms of these unknowns we

are left with the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlA) + iωσA + σ gradVC = Je in Ω
divAC + μ∗σ∗VC = 0 in ΩC

divAI = 0 in ΩI

AI · nI + AC · nC = 0 on Γ∫
ΩC

σ∗VC = 0
AI · n = 0 on ∂Ω
(μ−1

I curlAI) × n = 0 on ∂Ω ,

(6.58)

where, as in (6.3), the notationσ gradVC means

σ gradVC :=
{

σ|ΩC
gradVC in ΩC

0 in ΩI .

If we replace the interface condition (6.58)4 (i.e., (6.56)) with (6.54), we obtain
another problem, that will be denoted by (6.58)*.Moreover, if we replace (6.58)4 with
(6.55) and we drop the average condition (6.58)5, we obtain a third problem, that will
be denoted by (6.58)**.
Defining

J :=
{

Je,C − iωσAC − σ gradVC in ΩC

Je,I in ΩI ,
(6.59)

as a consequence of (6.58) (or (6.58)*, or (6.58)**) we also have

curl(μ−1 curlA) = J in Ω ,

therefore {
div(iωσAC + σ gradVC − Je,C) = 0 in ΩC

(iωσAC + σ gradVC − Je,C) · nC = Je,I · nI on Γ .
(6.60)
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Remark 6.17. As we have already noted, the condition
∫
ΩC

σ∗VC = 0 follows from
the gauge conditions (6.58)2, (6.58)3, (6.58)4 and (6.58)6. Therefore, we could omit it
in (6.58). However, this vanishing average condition is useful in Section 6.2.3 when
we analyze the weak formulation of the Lorenz gauged eddy current problem; hence
we prefer to keep it in formulation (6.58). The same remark applies to the formulation
(6.58)*. �

6.2.1 Decoupled weak formulations and alternative gauge conditions

As a starting point,with the aim ofmaking clear the superiority of our choice in Section
6.2.3, in this section we discuss in detail some of the weak formulations that have been
previously proposed for problem (6.58) (or (6.58)*, or (6.58)**). Let us point out that
we are not assuming that σ is smooth, but only that each of its entries belongs to
L∞(ΩC).
In the following, in order to give a meaning to the integrals we are going to con-

sider, we assume, as will be proved in Section 6.2.2, that there exists a solution to
(6.58) (or (6.58)*, or (6.58)**), satisfying (A, VC) ∈ U0 ×H1(ΩC), where

U0 := {w ∈ H(curl;Ω) | divwC ∈ L2(ΩC), divwI ∈ L2(ΩI ),
wI · n = 0 on ∂Ω} ,

and moreover we consider the space of test functions

W0 := {w ∈ H(curl;Ω) | div(σwC) ∈ L2(ΩC), divwI ∈ L2(ΩI),
wI · n = 0 on ∂Ω}

(for a smooth scalar conductivity σ|ΩC
we have U0 = W0).

Multiply (6.58)1 by a test functionw ∈W0 and integrate inΩ. Integration by parts
yields ∫

Ω
[μ−1 curlA · curlw +

∫
ΩC

[iωσAC ·wC − VC div(σwC)]
+
∫
Γ

VCσwC · nC
=
∫
Ω

Je ·w .

(6.61)

Using the Lorenz gauge in ΩC permits to replace the unknown VC and, taking also
into account that divAI = 0 in ΩI , we end up with∫

Ω
μ−1 curlA · curlw +

∫
ΩC

(μ∗σ∗)−1 divAC div(σwC )
+
∫
ΩC

iωσAC ·wC +
∫
ΩI

μ−1
∗ divAI divwI

+
∫
Γ

VCσwC · nC
=
∫
Ω

Je ·w ∀ w ∈W0 .

(6.62)

To conclude, let us obtain the weak formulation for the scalar electric potential.
From (6.60), we see that VC satisfies

0 = −
∫
ΩC
div(iωσAC + σ gradVC − Je,C)QC

=
∫
ΩC

(iωσAC + σ gradVC − Je,C) · gradQC

−
∫
Γ
(iωσAC + σ gradVC − Je,C) · nC QC

=
∫
ΩC

(iωσAC + σ gradVC − Je,C) · gradQC −
∫
Γ

Je,I · nI QC
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for each QC ∈ H1(ΩC), namely,∫
ΩC

σ gradVC · gradQC = −
∫
ΩC

iωσAC · gradQC

+
∫
ΩC

Je,C · gradQC +
∫
Γ Je,I · nI QC ∀ QC ∈ H1(ΩC) .

(6.63)

Now, in order to obtain a formulation which looks feasible and for which the un-
knowns A and VC are decoupled, we have to eliminate the term containing VC in
(6.62). This can be done either assuming that the test function w belongs to W00,
where

W00 := {w ∈W0 | σwC · nC = 0 on Γ } ,

or else using the interface condition (6.55), i.e., VC = 0 on Γ .
In the first case the final problem, associated to the interface conditions (6.54) or

(6.56), is

A ∈ U0 :
∫
Ω

μ−1 curlA · curlw +
∫
ΩC

(μ∗σ∗)−1 divAC div(σwC)
+
∫
ΩC

iωσAC ·wC +
∫
ΩI

μ−1
∗ divAI divwI

=
∫
Ω

Je ·w ∀w ∈W00 ,

(6.64)

followed by

VC ∈ H1
† (ΩC) :

∫
ΩC

σ gradVC · gradQC

= −
∫
ΩC

iωσAC · gradQC

+
∫
ΩC

Je,C · gradQC

+
∫
Γ

Je,I · nI QC ∀ QC ∈ H1
† (ΩC ) ,

(6.65)

where

H1
† (ΩC) :=

{
QC ∈ H1(ΩC) |

∫
ΩC

σ∗QC = 0
}

. (6.66)

In the latter case the problem, associated to the interface condition (6.55), is

A ∈ U0 :
∫
Ω

μ−1 curlA · curlw +
∫
ΩC

(μ∗σ∗)−1 divAC div(σwC)
+
∫
ΩC

iωσAC ·wC +
∫
ΩI

μ−1
∗ divAI divwI

=
∫
Ω Je ·w ∀w ∈W0 ,

(6.67)

followed by

VC ∈ H1
0 (ΩC) :

∫
ΩC

σ gradVC · gradQC

= −
∫
ΩC

iωσAC · gradQC

+
∫
ΩC

Je,C · gradQC ∀ QC ∈ H1
0(ΩC ) .

(6.68)

While problems (6.65) and (6.68) are classical elliptic boundary value problems,
without additional assumptions the formulations (6.64) or (6.67) are not easy to han-
dle. A favourable situation appears when σ is a scalar constant in ΩC , as, first of
all, in this case one has U0 = W0 and, moreover, for the interface condition (6.54)
we know that A ∈ W00. Therefore, in problems (6.64) (for the interface condition
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(6.54)) and (6.67) (for the interface condition (6.55)), the space of trial functions and
the space of test functions are the same (on the contrary, even for σ|ΩC

= const
this is not the case for the interface condition (6.56)). Furthermore, if in addition one
chooses σ∗ = σ|ΩC

= const in ΩC , one also has
∫
ΩC

(μ∗σ∗)−1 divAC div(σwC ) =∫
ΩC

μ−1
∗ divAC divwC , so that the first order terms in the sesquilinear forms at the

left hand side of (6.64) and (6.67) are hermitian and positive definite.
An analysis of these two formulations for σ|ΩC

= const and σ∗ = σ|ΩC
is pre-

sented here below, for a slightly generalized form of the Lorenz gauge proposed by
Bossavit [60], that indeed for σ|ΩC

= const coincides with the usual one. However,
in the general case of a non-constant σ|ΩC

, the formulations (6.64) and (6.67) are not
suitable: for instance, it is not clear that a uniqueness result holds for them, even if in
(6.64) we use the additional information that the solution satisfies (6.54) or (6.56).
For arriving to a decoupled and well-suited formulation even in the case of a non-

constant σ a change of the point of view is thus in order. Bossavit [60], assuming that
σ is a scalar function, proposed to modify the Lorenz gauge in ΩC in the following
way

div(σAC) + μ∗σ
2VC = 0 inΩC , (6.69)

which, as we already noted, for a scalar constant value of σ|ΩC
reduces to the usual

Lorenz gauge (6.52) (for the choice σ∗ = σ|ΩC
). Accordingly, instead of the inter-

face condition (6.54) one has to consider σAC · nC = 0 on Γ , while the condition
(6.55) is kept unchanged (in the following, the interface condition (6.56) or its vari-
ant σAC · nC + AI · nI = 0 on Γ will not be considered, as they do not lead to a
decoupled problem).
Let us suppose that there exists a solution (A, VC) ∈ W00 × H1(ΩC) (for the

interface condition σAC · nC = 0 on Γ ) or (A, VC) ∈ W0 × H1
0 (ΩC) (for the

interface condition (6.55)) to these Bossavit–Lorenz gauged problems; without giving
further details, we note that we could adapt the proofs reported in Section 6.2.2 to show
that these existence results are in fact true.
Proceeding as before, for the interface condition σAC · nC = 0 on Γ the corre-

sponding weak formulation now reads

A ∈ W00 :
∫
Ω

μ−1 curlA · curlw
+
∫
ΩC

μ−1
∗ σ−2 div(σAC) div(σwC )

+
∫
ΩC

iωσAC ·wC +
∫
ΩI

μ−1
∗ divAI divwI

=
∫
Ω

Je ·w ∀w ∈W00 .

(6.70)

Similarly, for the interface condition (6.55) one can write

A ∈ W0 :
∫
Ω

μ−1 curlA · curlw
+
∫
ΩC

μ−1
∗ σ−2 div(σAC) div(σwC )

+
∫
ΩC

iωσAC ·wC +
∫
ΩI

μ−1
∗ divAI divwI

=
∫
Ω

Je ·w ∀w ∈W0 .

(6.71)

Indeed these weak problems look easier to handle. First of all, it is easy to prove
that they are well-posed, namely, that uniqueness holds. In fact, for Je = 0 it follows
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at once thatAC = 0 inΩC ; consequently,AI satisfies curlAI = 0 inΩI , divAI = 0
inΩI ,AI ·n = 0 on ∂Ω and finallyAI×nI = −AC×nC = 0 on Γ , henceAI = 0
inΩI .
Another relevant result is the following: the solution A to (6.70) or (6.71) en-

joys the property that μ−1
∗ σ−2 div(σAC ) has a distributional gradient belonging to

(L2(ΩC))3 and, moreover, that divAI = 0 in ΩI . (Since, as we have already noted,
it is possible to show that there exists a solution to the Bossavit–Lorenz gauged vector
potential problems, these results are indeed trivial, as μ−1

∗ σ−2 div(σAC) = −VC ∈
H1(ΩC), and divAI = 0 is the gauge condition in ΩI ; however, it is useful to show
that they follow directly from the intrinsic structure of the weak problems (6.70) or
(6.71).)
In fact, take qC ∈ (C∞

0 (ΩC))3 and let uC ∈ H1(ΩC) be the solution of the
Neumann problem{

div(σ grad uC) + iωμ∗σ2uC = divqC in ΩC

σ grad uC · nC = 0 on Γ
(6.72)

(for the interface condition σAC · nC = 0 on Γ ) or of the Dirichlet problem{
div(σ grad uC) + iωμ∗σ2uC = divqC in ΩC

uC = 0 on Γ
(6.73)

(for the interface condition (6.55)). Then, for gI ∈ L2(ΩI ) let uI ∈ H1(ΩI ) be the
solution of the mixed problem{

ΔuI = μ∗gI in ΩI

uI = uC on Γ
grad uI · n = 0 on ∂Ω .

(6.74)

Setting

u :=
{

uC in ΩC

uI in ΩI ,
(6.75)

we have grad u ∈ W00 (respectively, gradu ∈ W0) for the interface condition
σAC · nC = 0 on Γ (respectively, for the interface condition (6.55)). Choosing the
test functionw = gradu in (6.70) or in (6.71) gives∫

ΩC
iωσAC · grad uC = −

∫
ΩC

iω div(σAC)uC +
∫
Γ iωσAC · nC uC

= −
∫
ΩC

iω div(σAC)uC ,

and ∫
Ω

Je · grad u =
∫
ΩC

Je,C · graduC +
∫
ΩI

Je,I · graduI
=
∫
ΩC

Je,C · graduC +
∫
Γ

Je,I · nI uI ,

therefore ∫
ΩC

μ−1
∗ σ−2 div(σAC ) divqC +

∫
ΩI
divAI gI

=
∫
ΩC

Je,C · grad uC +
∫
Γ Je,I · nI uC .

(6.76)

Taking qC = 0 we have uC = 0 in ΩC , hence the right hand side in (6.76) is
vanishing, and we conclude that divAI = 0 in ΩI .
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The map qC →
∫
ΩC

Je,C · graduC +
∫
Γ

Je,I ·nI uC is anti-linear and continuous
with respect to the norm in (L2(ΩC))3. Therefore, it can be extended by density to
qC ∈ (L2(ΩC))3, and then, by the Riesz theorem, represented as

∫
ΩC

GC · qC for
a suitable GC ∈ (L2(ΩC))3. In conclusion, we have grad[μ−1

∗ σ−2 div(σAC)] =
−GC ∈ (L2(ΩC))3 in ΩC .
However, the most interesting property of the solution A to the weak problems

(6.70) or (6.71) arises when the current density satisfies the assumption divJe = 0 inΩ
(namely, in addition to the necessary assumption divJe,I = 0 inΩI , also divJe,C = 0
in ΩC and Je,C · nC + Je,I · nI = 0 on Γ ). In this case the formulations (6.70) and
(6.71) are not related to a “genuine” Lorenz gauged problem, as we find div(σAC ) = 0
and VC = 0 in ΩC .
In fact, by integrating by parts one easily sees that the right hand side of (6.76) is

vanishing, and, repeating the arguments above by replacing divqC in (6.72) and (6.73)
with μ∗σ2gC , where gC ∈ L2(ΩC), we end up with∫

ΩC
div(σAC)gC = 0 ,

hence div(σAC) = 0 in ΩC . Furthermore, from the weak problem (6.65) (with
H1

† (ΩC) replaced by H1
‡ (ΩC) := {QC ∈ H1(ΩC ) |

∫
ΩC

σ2QC = 0}, in order to
be consistent with the gauge condition (6.69)) or from the weak problem (6.68) it fol-
lows that VC = 0 inΩC .
In conclusion, under the very common assumption divJe = 0 in Ω the formula-

tions (6.70) and (6.71) are not “genuine” Lorenz gauged formulations, since they both
essentially reduce to a formulation in terms of the modified magnetic vector potential
A∗
C = iω−1EC inΩC , keeping the vector potentialAI in ΩI .
For numerical approximation, which has to be performed by means of nodal ele-

ments, these formulations could be interesting only for smooth σ|ΩC
, as in the opposite

case it is not ensured that div(σwC ) belongs toL2(ΩC) even for a smoothwC . A better
situation occurs when σ|ΩC

is piecewise-smooth, but also in that case it is not an easy
task to construct finite elementswC,h such that the matching condition [σwC,h ·n] = 0
is satisfied on the interelements where σ is jumping.
Moreover, the usual difficulties coming from the presence of re-entrant corners oc-

cur. In this respect, convergence for formulations (6.70) and (6.71) is ensured provided
thatΩ is convex and, for formulation (6.70) only, that ΩC is convex, too.
In conclusion, an approach in terms of the electric field E like (6.50) looks similar

but generally better suited than (6.70) or (6.71): first of all, solving (6.50) one also
finds H = −(iωμ)−1 curlE, while the solution of (6.70) or (6.71) does not furnish
the electric field EI (and for divJe �= 0 it also needs the computation of the electric
scalar potential VC ); secondly, in (6.50) it is not assumed that σ is a scalar function;
finally, in real-life problems it ismore likely thatεI is smooth than that σ|ΩC

is smooth.

Remark 6.18. The assumption divJe = 0 inΩ is not needed to solve the eddy current
problem, as the necessary and sufficient conditions for solving it are divJe,I = 0 in
ΩI and Je ·n = 0 on ∂Ω. However, this divergence-free condition is not particularly
restrictive, and is very often satisfied from current densities used in real-life applica-
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tions. As a matter of fact, it is automatically satisfied whenever the support of Je is
contained in ΩI (and, clearly, divJe,I = 0 in ΩI ). �

6.2.2 Well-posed formulations based on the Lorenz gauge

In this section, following a general approach proposed in Fernandes [103] and devel-
oped in Fernandes and Valli [105], we present a “genuine” Lorenz gauged formulation
for which we are able to prove well-posedness. However, it must be noted that we do
not obtain a decoupled problem for A and VC . Let us also underline that here we are
only assuming that the conductivity σ is a symmetric matrix, with entries belonging
to L∞(Ω), uniformly positive definite in ΩC and vanishing in ΩI .
For the sake of simplicity, in the following we focus on the interface condition

(6.56), namely,AC · nC + AI · nI = 0 on Γ . The reader interested in the alternative
interface conditions (6.54) and (6.55) is referred to Fernandes and Valli [105] (where
however the problems are considered for Ω and ΩC having the simplest geometrical
shape). There one can also find some motivations, related to numerical approximation,
that lead to the consideration of this choice of the interface condition and find it to be
the most suitable Lorenz gauged magnetic vector potential formulation to use.
With the aim of obtaining a more general result, the existence theory we are going

to develop in this section does not follow the same guidelines of that we have pre-
sented in Section 6.1.2 for the Coulomb gauge: in this way we can prove the existence
and uniqueness of the solution to the Lorenz gauged problem for any choice of the
function σ∗ (see Theorem 6.21). On the other hand, the proof of the coerciveness of
the sesquilinear form associated to the weak problem and the convergence of a finite
element approximation will require a suitable choice of σ∗ (see Proposition 6.23 and
Section 6.2.4).
We start from the unique solution (H,E) ∈ H(curl;Ω)×H(curl;Ω) of the eddy

current problem (1.22) (the existence of such a solution is proved in Section 3.4).
The first step of the procedure consists in solving⎧⎪⎨⎪⎩

−ΔV + iωμ∗σ∗V = divE inΩ
∂V

∂n
= −E · n on ∂Ω∫

ΩC
σ∗VC = 0 ,

(6.77)

to be intended in the weak sense made precise in the following Proposition 6.19. The
second step is finding the solution to{

curlA = μH in Ω
divA = −μ∗σ∗V in Ω
A · n = 0 on ∂Ω

(6.78)

(note that this implicitly says thatAC · nC + AI · nI = 0 on Γ ).
The necessary solvability conditions for (6.78) are div(μH) = 0 in Ω and∫

(∂Ω)r
μH · n = 0 for each r = 1, . . . , p∂Ω, as usual following from the Fara-

day equation and the Stokes theorem for closed surfaces, and
∫
Ω

σ∗V = 0, namely,∫
ΩC

σ∗VC = 0, that is satisfied due to (6.77)3.



6.2 Formulation for the Lorenz gauge and its numerical approximation 189

Hence, it remains to show that (6.77) is well-posed.

Proposition 6.19. There exists a unique solution of the Neumann problem (6.77).

Proof. We start showing that the following weak problem has a unique solution: find
V ∈ H1(Ω) with

∫
ΩC

σ∗VC = 0 such that∫
Ω

gradV · grad η0 + iω

∫
Ω

μ∗σ
∗V η0 = −

∫
Ω

E · grad η0 (6.79)

for all η0 ∈ H1(Ω) with
∫
ΩC

σ∗η0,C = 0.
The existence and uniqueness of the solution to (6.79) is a consequence of the

Lax–Milgram lemma, as it is easy to prove that the Poincaré inequality∫
Ω

| grad η0|2 ≥ K3

∫
Ω

(|η0|2 + | grad η0|2) (6.80)

holds for functions η0 ∈ H1(Ω) with
∫
ΩC

σ∗η0,C = 0 (one can adapt, for instance,
the proof reported in Dautray and Lions [94], Chap. IV, Sect. 7, Prop. 2, where the
function η0 is assumed to satisfy

∫
Ω

η0 = 0 instead of
∫
ΩC

σ∗η0,C = 0). Taking now
η ∈ H1(Ω), we set

η0 := η −
(∫

ΩC

σ∗
)−1(∫

ΩC

σ∗ηC

)
;

clearly, η0 can be used as a test function in (6.79). Therefore we have∫
Ω

gradV · grad η + iω

∫
Ω

μ∗σ
∗V η = −

∫
Ω

E · grad η ,

as grad η0 = grad η and
∫
Ω σ∗V =

∫
ΩC

σ∗VC = 0.
Integrating by parts, one gets easily that div(gradV + E) = iωμ∗σ∗V in Ω and

(gradV + E) · n = 0 on ∂Ω, namely, V is the solution to (6.77).
The uniqueness of the solution to (6.77) follows from the fact that each solution V

to (6.77) is clearly a solution to (6.79). �

We can thus obtain:

Proposition 6.20. There exists a unique solution (A, V ) ∈ H(curl;Ω) × H1(Ω) to
the problem ⎧⎪⎨⎪⎩

curlA = μH in Ω
iωA + gradV = −E in Ω
divA + μ∗σ

∗V = 0 in Ω
A · n = 0 on ∂Ω ,

(6.81)

and it is given by the solution to (6.77), (6.78).
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Proof. For the existence of the solution we only need to show that (6.81)2 is satisfied.
Setting N := iωA + gradV + E, from the Faraday equation, (6.77) and (6.78) we
have curlN = 0 in Ω, divN = 0 in Ω and N · n = 0 on ∂Ω, thereforeN = 0 in Ω
(remember that we have assumed thatΩ is simply-connected).
To prove the uniqueness it is enough to observe that, puttingH = 0 andE = 0 in

(6.81), V satisfies ⎧⎪⎨⎪⎩
−ΔV + iωμ∗σ∗V = 0 in Ω
∂V

∂n
= 0 on ∂Ω∫

ΩC
σ∗VC = 0 ,

hence V = 0 inΩ andA = 0 inΩ. �

We finally have an existence result in terms of the current density Je alone.

Theorem 6.21. There exists a solution (A, V ) ∈ H(curl;Ω)×H1(Ω) to the Lorenz
gauged problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl(μ−1 curlA) + iωσA + σ gradV = Je in Ω
divA + μ∗σ∗V = 0 in Ω∫
ΩC

σ∗VC = 0
A · n = 0 on ∂Ω
(μ−1 curlA)× n = 0 on ∂Ω ,

(6.82)

and it is given by the solution to (6.81). In particular,A andVC := V|ΩC
are a solution

to the Lorenz gauged problem (6.58). Moreover, the solution (A, VC) to (6.58) is
uniquely determined.

Proof. The proof of the existence is trivial, as one has only to write the eddy current
problem in terms of the solutions to (6.81). The uniqueness of the solution (A, VC) of
problem (6.58) is proved as follows. Assume that Je = 0 in Ω, multiply (6.58)1 by
A and integrate in Ω: by integration by parts one obtains∫

Ω

μ−1 curlA · curlA + iω

∫
ΩC

σAC ·AC +
∫
ΩC

σ gradVC ·AC = 0 .

Since div curl(μ−1 curlA) = 0 in Ω, one also has

curl(μ−1
C curlAC) · nC = − curl(μ−1

I curlAI) · nI = 0 on Γ ;

thus, multiplying by (iω)−1 grad VC the equation (6.58)1 (restricted to ΩC ) and inte-
grating by parts in ΩC , one finds∫

ΩC

σAC · gradVC + (iω)−1

∫
ΩC

σ gradV C · gradVC = 0 .

Therefore, Re(
∫
ΩC

σAC · gradVC) = 0 and Re(
∫
ΩC

σ gradVC · AC) = 0, hence∫
Ω

μ−1 curlA · curlA = 0 and consequently curlA = 0 in Ω. In addition, inserting
this result in (6.58)1, we obtain iωσAC + σ gradVC = 0 in ΩC .
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Since we have assumed that Ω is simply-connected, the curl-free condition guar-
antees the existence of a function U ∈ H1(Ω) such that iωA = − gradU in Ω;
moreover, sinceΩC is connected, it is not restrictive to suppose that UC = VC inΩC .
Hence we have

−ΔU = iω divA = −iωμ∗σ
∗VC = −iωμ∗σ

∗U inΩ

and gradU · n = −iωA · n = 0 on ∂Ω, therefore U is a solution to the homogeneous
Neumann problem (6.77). We thus have U = 0 in Ω, and consequently A = 0 in Ω
and VC = 0 in ΩC . �

6.2.3 Weak formulations and positiveness

In order to devise a finite element approximation scheme, we are now interested in
deriving the weak formulationof the Lorenz gauged magnetic vector potential problem
(6.58).
Using the boundary and interface conditions in (6.58), the usual integrationby parts

gives ∫
Ω

μ−1 curlA · curlw +
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
=
∫
Ω

Je ·w ∀ w ∈ H(curl, Ω) .

Due to the Lorenz gauge, one can add three other terms, finding∫
Ω μ−1 curlA · curlw

+
∫
ΩC

μ−1
∗ divAC divwC +

∫
ΩI

μ−1
∗ divAI divwI

+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC + σ∗VC divwC)
=
∫
Ω

Je ·w ∀w ∈ H(curl;Ω) ∩H(div;Ω) .

(6.83)

For a solution satisfying the Lorenz gauge, this equation is formally equivalent to
(6.62); however, its structure is unlike, and moreover the functional framework is now
different, as we are requiring thatw ∈ H(curl;Ω)∩H(div;Ω) and not thatw ∈ W0.
On the other hand, using the Lorenz gauge equation in (6.63) and multiplying by

iω−1 yields ∫
ΩC

(iω−1σ gradVC − σAC) · gradQC

+
∫
ΩC

σ∗(divAC + μ∗σ∗VC)QC

= iω−1
∫
ΩC

Je,C · gradQC

+iω−1
∫
Γ

Je,I · nI QC ∀ QC ∈ H1(ΩC) .

(6.84)

The two additional terms that are present here and are not contained in (6.63) are useful
for obtaining a symmetric problem.
Let us consider the variational spaces H1

† (ΩC), introduced in (6.66), and

W := H(curl;Ω) ∩H0(div;Ω) , (6.85)
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the sesquilinear form

B[(z, UC), (w, QC)] :=
∫
Ω

μ−1 curl z · curlw
+
∫
ΩI

μ−1
∗ divzI divwI

+
∫
ΩC

μ−1
∗ (divzC + μ∗σ

∗UC)(divwC + μ∗σ
∗QC)

+iω−1
∫
ΩC

σ(iωzC + gradUC ) · (−iωwC + gradQC)
=
∫
Ω

μ−1 curl z · curlw +
∫
Ω

μ−1
∗ divz divw

+
∫
ΩC

(iωσzC ·wC + σ gradUC ·wC + σ∗UC divwC )
+
∫
ΩC

(iω−1σ gradUC · gradQC + μ∗(σ∗)2UC QC)
+
∫
ΩC

(σ∗ divzC QC − σzC · gradQC)

(6.86)

defined (and continuous) in [H(curl;Ω)∩H(div;Ω)]×H1(ΩC), and the anti-linear
functional

F(w, QC) :=
∫
Ω

Je ·w + iω−1

(∫
ΩC

Je,C · gradQC +
∫
Γ

Je,I · nI QC

)
defined (and continuous) in L2(Ω) ×H1(ΩC).

Theorem 6.22. There exists a unique solution to the weak problem

(A, VC) ∈W ×H1
† (ΩC ) : B[(A, VC), (w, QC)] = F(w, QC)

∀ (w, QC) ∈W ×H1
† (ΩC) .

(6.87)

Proof. Following the procedure just described, the existence is an easy consequence
of the fact that, as proved in Theorem 6.21, problem (6.58) is well-posed.
Uniqueness follows from the fact that, if B[(A, VC), (w, QC)] = 0 for each

(w, QC) ∈W ×H1
† (ΩC), by choosingw = A, QC = VC one finds∫

Ω
μ−1 curlA · curlA +

∫
ΩI

μ−1
∗ | divAI |2

+
∫
ΩC

μ−1
∗ | divAC + μ∗σ∗VC |2

+iω−1
∫
ΩC

σ(iωAC + gradVC) · (−iωAC + gradVC ) = 0 .

Therefore one has obtained a solution to the homogeneous problem (6.58). Since this
problems has a unique solution (see Theorem 6.21), the thesis follows. �

For numerical approximation, it is useful to check that the sesquilinear form B[·, ·]
is coercive in W × H1

† (ΩC). Before starting, let us recall that the Poincaré-like in-
equality (6.39) is valid inW , as for nΩ = n∂Ω = 0 we haveW = W�. Moreover, by
proceeding as done for inequality (6.80), taking into account thatΩC is connected we
also have that∫

ΩC

| gradQC |2 ≥ K4

∫
ΩC

(|QC |2 + | gradQC|2) ∀ QC ∈ H1
† (ΩC) . (6.88)

Proposition 6.23. The sesquilinear form B[·, ·] is coercive in W ×H1
† (ΩC ), provided

that the maximum value σ∗
2 of the scalar function σ∗ is small enough. In particular, if

one has chosen σ∗ = κ
3
trace(σ), B[·, ·] is coercive provided that κ is small enough.
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Proof. From (6.86) we have

B[(w, QC), (w, QC)] =
∫
Ω μ−1 curlw · curlw + μ−1

∗
∫
ΩI
| divwI |2

+μ−1
∗
∫
ΩC
| divwC + μ∗σ∗QC |2

+iω−1
∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC) .

Let us denote by μmax a uniform bound in Ω for the maximum eigenvalues of μ(x),
and by σmin a uniform lower bound in ΩC for the minimum eigenvalues of σ(x).
Remember also that the auxiliary function σ∗ is assumed to satisfy 0 < σ∗

1 ≤ σ∗(x) ≤
σ∗

2 inΩC . Proceeding as in the proof of the coerciveness of the sesquilinear formA[·, ·]
in Section 6.1.2, we have

|ReB[(w, QC), (w, QC)]|
≥ μ−1

max

∫
Ω
| curlw|2 + μ−1

∗
∫
ΩI
| divwI |2

+1
2
μ−1
∗
∫
ΩC
| divwC |2 − μ∗(σ∗

2)2
∫
ΩC
|QC|2

and, for each 0 < δ < 1,

|ImB[(w, QC), (w, QC)]|
≥ |ω|−1σmin(1− δ)

∫
ΩC
| gradQC |2 − |ω|σmin(1− δ)δ−1

∫
ΩC
|wC|2 .

Taking into account the Poincaré inequalities (6.39) and (6.88), the coerciveness of
B[·, ·]easily followsby choosing at first (1−δ) small enough and then σ∗

2 small enough.
�

Remark 6.24. The existence of a unique solution to the Lorenz gauged problem (6.58)
can be proved also in a more general geometrical setting, namely, without assum-
ing that Ω is simply-connected. To be precise, we suppose that (6.2) is satisfied and
that n∂Ω = nΩ , which means that we can choose the surfaces Σ̂k “cutting” the non-
bounding cycles on ∂Ω without intersectingΩC .
In this situation, we proceed as for the Coulomb gauged problem, considering a

variational formulation in the space W� (see (6.13)). Since the Poincaré-like inequal-
ity (6.39) holds, the coerciveness of the sesquilinear form B[·, ·] in W� × H1

† (ΩC)
follows as before, provided that the maximum value σ∗

2 of the scalar function σ∗ is
small enough. Hence, there exists a unique solution of the weak problem

(A, VC) ∈ W� ×H1
† (ΩC ) : B[(A, VC), (w, QC)] = F(w, QC)

∀ (w, QC) ∈W� ×H1
† (ΩC) .

In Section 6.1.1 we have considered three possible choices of the linear contraintsGk(·)
appearing in the definition of W�: since divA is not vanishing in Ω, these choices
are not equivalent and do not furnish the same solution A. The proof that the weak
solution is indeed a solution of the strong problem (6.58) is easily done only when
Gk(w) =

∫
Ω

w · π̂k, where π̂k are the basis functions ofH(m;Ω). As already noted,
this choice is not the best suited for numerical approximation.
On the other hand, concerning the assumption on the geometry of the conductor,

it can be proved that if ΩC is not connected than the solution to (6.58) is not unique,
even for a simply-connected domainΩ. More precisely, there exist solutions (A, VC)
of (6.58) with Je = 0 satisfying A �= 0 and grad VC �= 0 (the proof is left to the
reader). �
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6.2.4 Numerical approximation

Assume that Ω, ΩC and ΩI are Lipschitz polyhedra, and that TI,h and TC,h are two
regular families of triangulations ofΩI and ΩC , respectively. For the sake of simplic-
ity, we suppose that each elementK of TI,h and TC,h is a tetrahedron.We also assume
that these triangulationsmatch on Γ , so that they furnish a family of triangulations Th
ofΩ.
Numerical approximation of problem (6.87) via conforming finite elements can be

easily devised. In fact, it is enough to choose suitable finite element subspacesW r
h ⊂

W and (LsC,h)† ⊂ H1
† (ΩC), and rewrite (6.87) inW r

h × (LsC,h)†. The uniqueness of
the discrete solution follows as in Theorem 6.22; its existence is then a consequence
of the uniqueness result.
Moreover, in Section 6.2.3 we have proved that, assuming that the maximum value

σ∗
2 of the scalar function σ

∗ is small enough, the sesquilinear form B[·, ·] is continuous
and coercive. Therefore, the convergence analysis is easily performed as follows.
Denoting by Pk , k ≥ 1, the space of polynomials of degree less than or equal

to k, for r ≥ 1 and s ≥ 1 we choose the discrete spaces of Lagrange nodal ele-
ments

W r
h :=

{
wh ∈ (C0(Ω))3 | wh|K ∈ (Pr)3 ∀K ∈ Th , wh · n = 0 on ∂Ω

}
,

and

(LsC,h)† :=
{
QC,h ∈ C0(ΩC) | QC,h|K ∈ Ps ∀ K ∈ TC,h ,

∫
ΩC

σ∗QC,h = 0
}

(for this last space, the construction of the basis functions satisfying the average con-
straint onΩC can be done as at the beginningof Section 6.1.4, where thebasis functions
of the constrained space (W r

h)� have been determined).
Via Céa lemma for each wh ∈W r

h and QC,h ∈ (LsC,h)† we have

( ∫
Ω

(|A−Ah|2 + | curl(A −Ah)|2 + | div(A −Ah)|2)

+
∫
ΩC

(|VC − VC,h|2 + | grad(VC − VC,h)|2)
)1/2

≤ C0
κ0

(∫
Ω

(|A−wh|2 + | curl(A −wh)|2 + | div(A−wh)|2)

+
∫
ΩC

(|VC −QC,h|2 + | grad(VC −QC,h)|2)
)1/2

,

where κ0 > 0 and C0 > 0 are the coerciveness and the continuity constant of B[·, ·],
respectively. Therefore, provided thatΩ has no reentrant corners or edges and that the
solutionsA and VC are regular enough, by means of well-known interpolation results
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we find the error estimate( ∫
Ω

(|A−Ah|2 + | curl(A−Ah)|2 + | div(A−Ah)|2)

+
∫
ΩC

(|VC − VC,h|2 + | grad(VC − VC,h)|2)
)1/2

≤ Chmin(r,s) .

(6.89)

Remark 6.25. As for the Coulomb gauged problem (see Remark 6.6), convergence is
questionable if Ω is a non-convex polyhedron. In any case, the speed of convergence
of the finite element approximation depends on the smoothness of A and VC , and the
smoothness ofA cannot be high, as, due to the particular structure of the Lorenz gauge,
divA has a jump on Γ (unless the electric potential satisfies VC|Γ = 0). �

6.3 Other potential formulations

In this sectionwe briefly present some other potential formulations that have been often
used in engineering applications (again, for the sake of definiteness, let us consider the
magnetic boundary value problem (1.22)).
Let us start from two that are strictly related: the first, proposed by Pillsbury [193]

(see also Rodger and Eastham [211], Emson and Simkin [100], Silvester and Fer-
rari [227]) is based on the potentialsAC and VC inΩC , combined with a scalar mag-
netic potential ψI in ΩI (and, when the topology of ΩI is not simple, with an addi-
tional harmonic field in ΩI , as seen in Chapter 5); the second, proposed by Leonard
and Rodger [166] (for a similar approach see also Kameari [143]), is based on AC

and VC in ΩC , on a vector magnetic potential AI in a suitable subset ΩA \ ΩC of
the insulator ΩI , and on the scalar magnetic potential ψI in Ω \ ΩA (here, we have
assumed that the open connected set ΩA satisfies ΩC ⊂ ΩA and ΩA ⊂ Ω).
We refer to Section 7.1 for a presentation of the first method: there, to avoid the

technicalities required by the determination of the harmonic field, it is assumed that the
conductorΩC is simply-connected, the interface Γ is connected and ΩI = R3 \ΩC .
Instead, we describe here the second formulation, assuming that the auxiliary do-

main ΩA is the union of a finite number of disjoint simply-connected domains with
connected boundary, and that the physical domain Ω is simply-connected with con-
nected boundary ∂Ω. Note that these geometrical assumptions are not concerned with
the conductorΩC , therefore they are not very restrictive for engineering applications.
In particular, as a consequence of these geometrical assumptions, in Ω \ ΩA we

can writeHI −He,I = gradψI , the vector fieldHe,I being defined in (3.3). We thus
have

EC = −iωAC − gradVC in ΩC

μH = curlA in ΩA

HI = gradψI + He,I inΩ \ΩA .

(6.90)

SettingΓA := ∂ΩA, we have ∂(Ω\ΩA) = ΓA∪∂Ω. Inserting theCoulomb gauge
in the Ampère equation by means of the usual penalization argument, it is easily seen
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that the eddy current problem reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlA)− μ−1
∗ grad divA

+iωσA + σ gradVC = Je inΩA

div(iωσAC + σ gradVC) = divJe,C inΩC

div(μI gradψI) = − div(μIHe,I) inΩ \ΩA

(iωσAC + σ gradVC) · nC = Je,C · nC + Je,I · nI on Γ

A · nA = 0 on ΓA

(μ−1 curlA) × nA − gradψI × nA = He,I × nA on ΓA

curlA · nA − μI gradψI · nA = μIHe,I · nA on ΓA

ψI = 0 on ∂Ω ,

(6.91)

where VC is determined up to an additive constant in each connected componentΩC,j

ofΩC , j = 1, . . . , pΓ + 1.
The analysis of this problem has been performed by Acevedo and Rodríguez [1].

We briefly present here the main points of their proof of the existence and uniqueness
of the solution, and of its numerical approximation.
A couple of remarks are in order. First of all, the topological conditions (3.25)6

are satisfied: in fact, since div(μH) = 0 in Ω and Ω has a connected boundary, there
exists a vector field P such that curlP = μH in Ω. Therefore, since ΩA is the union
of a finite number of disjoint simply-connected domains, we haveA−P = grad ξ in
ΩA for a suitable function ξ, and also

EC = −iωAC − gradVC = −iωPC − iω grad ξC − gradVC in ΩC .

We thus have∫
ΩI

iωμIHI · ρl,I =
∫
ΩI

iω curlPI · ρl,I = −
∫
Γ

iω nC ×PC · ρl,I
=
∫
Γ

nC × EC · ρl,I +
∫
Γ
[nC × grad(iωξC + VC)] · ρl,I

= −
∫
Γ EC × nC · ρl,I +

∫
Γ (ρl,I × nC) · grad(iωξC + VC)

= −
∫
Γ

EC × nC · ρl,I −
∫
Γ
divτ (ρl,I × nC) (iωξC + VC)

= −
∫
Γ

EC × nC · ρl,I ∀ l = 1, . . . , nΓ ,

as divτ(ρl,I × nC) = curlρl,I · nC = 0 on Γ .
As a second remark, by adapting the arguments in the proof of Lemma 6.1 it can

be shown that divA = 0 inΩA and therefore that, through (6.90), a solution to (6.91)
indeed provides a solution of the eddy current problem.
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By integration by parts, and using the interface conditions in (6.91), it is easily seen
that the weak formulation corresponding to (6.91) is

Find (A, VC , ψI) ∈WA ×H1
� (ΩC)×H1

0,∂Ω(Ω \ΩA) such that∫
ΩA

(μ−1 curlA · curlw + μ−1
∗ divA divw)

+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
ΓA

nA × gradψI ·w
=
∫
ΩA

Je ·w−
∫
ΓA

nA ×He,I ·w∫
ΩC

(−σAC · gradQC + iω−1σ gradVC · gradQC)
= iω−1

∫
ΩC

Je,C · gradQC + iω−1
∫
Γ

Je,I · nI QC∫
Ω\ΩA

μI gradψI · gradχI −
∫
ΓA

nA × gradχI ·A
= −

∫
Ω\ΩA

μIHe,I · gradχI
for all (w, QC , χI) ∈WA ×H1

� (ΩC)×H1
0,∂Ω(Ω \ΩA) ,

(6.92)

where
WA := H(curl;ΩA) ∩H0(div;ΩA) ,

and, as in (6.14),

H1
� (ΩC) :=

pΓ +1∏
j=1

H1(ΩC,j)/C .

Let us denote by A†[·, ·] the sesquilinear form at the left hand side in (6.92). The
proof that it is coercive has been given by Acevedo and Rodríguez [1], and can be
also obtained by adapting the proof of the coerciveness of the sesquilinear formA[·, ·]
presented in Section 6.1.2. In this respect, it is useful to note that

ReA†[(w, QC, χI), (w, QC, χI)]
=
∫
ΩA

(μ−1 curlw · curlw + μ−1
∗ | divw|2) +

∫
Ω\ΩA

μI gradχI · gradχI

and
ImA†[(w, QC, χI), (w, QC, χI)]

= ω−1
∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC)
+2 Im

( ∫
ΓA

nA × gradχI ·w
)
.

In Acevedo and Rodríguez [1] one can also find a detailed analysis of the numer-
ical approximation of (6.92) via Lagrange nodal elements. The convergence of the
approximation scheme suffers as usual if at least one of the connected components of
the domain ΩA is a non-convex polyhedron (for similar remarks, see Section 6.1.3).
However, since ΩA is an auxiliary domain that has not a precise physical meaning, in
numerical computations we can assume that it is the union of a finite number of dis-
joint convex polyhedral domains, assuring in this way the convergence of the Galerkin
finite element approximation scheme.
In is also worth noting that some numerical experiments described by Leonard

and Rodger [168] show that the computational efficiency of this approach is less than
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that of the schemes based on the introduction of “cutting” surfaces, like the methods
introduced in Sections 5.1 and 5.3.

Another potential formulation is the so-called (TC , ψC)−ψI formulation (see, for
instance, Carpenter [74], Preston and Reece [197]). Let us describe it for the following
geometrical situation: the physical domain Ω is a “box” (namely, a bounded simply-
connected domain with a connected boundary ∂Ω), while the conductorΩC is a torus.
Consequently, the space of harmonic fields HμI (∂Ω, Γ ;ΩI) has dimension 1, and as
usual we denote its basis function by ρ1,I . Let us also introduce a function R1,C ∈
H(curl;ΩC) that satisfies R1,C × nC + ρ1,I × nI = 0 on Γ .
When considering the (TC , ψC) − ψI formulation, we are looking for TC , ψC ,

ψI and βI,1 ∈ C such that

HI −He,I = gradψI + βI,1ρ1,I in ΩI

HC −He,C = TC + gradψC + βI,1R1,C in ΩC ,
(6.93)

with the interface conditions on Γ

TC × nC = 0
ψC − ψI = 0 ,

(6.94)

the vector fieldHe being defined in (3.5).
Let us first show that it is possible to satisfy the relations (6.93) and (6.94). From the

results in Section 5.1 we know thatψI and βI,1 satisfying (6.93)1 are straightforwardly
determined fromHI andHe,I . Imposing the Coulomb-likegauge condition divTC =
0 inΩC we also find TC as the solution to{

curlTC = curl(HC −He,C − βI,1R1,C) in ΩC

divTC = 0 in ΩC

TC × nC = 0 on Γ .

(6.95)

Note that the solvability conditions for this problem are satisfied: in fact, first we have

div curl(HC −He,C − βI,1R1,C) = 0 in ΩC ,

and
curl(HC −He,C − βI,1R1,C) · nC

= − curl(HI −He,I − βI,1ρ1,I) · nI = 0 on Γ .

Moreover, denote byρ∗
1,C the basis functionof the space of harmonicfieldsH(m;ΩC );

referring to the related results presented in the Appendix, we know that it can be writ-
ten as the (L2(ΩC))3-extension of grad p∗1,C , where p∗1,C is the harmonic function,
determined up to an additive constant, satisfying grad p∗1,C · nC = 0 on Γ and having
a jump equal to 1 through a section S of the torusΩC . Then one also has∫

ΩC
curl(HC −He,C − βI,1R1,C) · ρ∗

1,C

=
∫
ΩC\S curl(HC −He,C − βI,1R1,C) · grad p∗1,C

=
∫
S curl(HC −He,C − βI,1R1,C) · nS

=
∫
∂S(HC −He,C − βI,1R1,C) · dτ

=
∫
∂S

(HI −He,I − βI,1ρ1,I) · dτ
=
∫
∂S
gradψI · dτ = 0 ,
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namely, the last compatibility condition on the data that has to be satisfied for solving
(6.95).
Having determined TC , we find ψC as the solution to⎧⎪⎨⎪⎩

div(μC gradψC)
= div[μC(HC −He,C − βI,1R1,C −TC)] in ΩC

ψC = ψI on Γ .

(6.96)

It is easily shown thatHC −He,C = TC +gradψC +βI,1R1,C inΩC , as the left
hand side and the right hand side of this formula have the same curl, μC -divergence
and tangential component; in conclusion, (6.93) and (6.94) are verified.
Let uswrite now the eddy current problem in terms ofTC ,ψC ,ψI and βI,1. Setting

EC = σ−1[curl(He,C + TC + βI,1R1,C)− Je,C ] inΩC ,

the Ampère equation inΩ is clearly satisfied, hence we only need to impose the Fara-
day equation in ΩC and the Gauss magnetic equation in Ω, plus the topological con-
dition (3.25)6.
Take χ ∈ H1

0(Ω); since div(μIρ1,I) = 0 in ΩI and μIρ1,I · nI = 0 on Γ , we
have ∫

ΩI

μIρ1,I · gradχI = 0 .

Therefore the weak form of the Gauss magnetic equation reads (having multiplied by
iω) ∫

Ω
iωμ gradψ · gradχ +

∫
ΩC

iωμCTC · gradχC
= −

∫
Ω

iωμHe · gradχ− βI,1
∫
ΩC

iωμCR1,C · gradχC .
(6.97)

Instead, the weak form of the Faraday equation in ΩC , where we have already
inserted the penalization term associated to the divergence-free condition for TC , is
given by∫

ΩC
σ−1 curlTC · curlvC + σ−1

∗
∫
ΩC
divTC divvC

+
∫
ΩC

iωμCTC · vC +
∫
ΩC

iωμC gradψC · vC
= −

∫
ΩC

σ−1 curlHe,C · curlvC − βI,1
∫
ΩC

σ−1 curlR1,C · curlvC
−
∫
ΩC

iωμCHe,C · vC − βI,1
∫
ΩC

iωμCR1,C · vC
+
∫
ΩC

σ−1Je,C · curlvC ,

(6.98)

where vC ∈ H0(curl;ΩC) ∩H(div;ΩC) and σ∗ > 0 is a dimensional constant (say,
a suitable average in ΩC of the entries of the matrix σ(x)).
Let us assume, for the time being, that the conductorΩC , instead of being a torus,

is a simply-connected domain with a connected boundary. This means that in (6.93)
the terms ρ1,I andR1,C disappear: formally, we can suppose that βI,1 = 0. Moreover,
also the topological condition (3.25)6 has to be discarded. Hence, in this case we are
only looking for ψ andTC , solutions to (6.97) and (6.98), where we have set βI,1 = 0.
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For a domain ΩC as above, the Poincaré-like inequality∫
ΩC

(| curlvC |2 + | divvC |2)
≥ K0

∫
ΩC

(| curlvC |2 + | divvC |2 + |vC |2) (6.99)

is satisfied for any vC ∈ H0(curl;ΩC) ∩H(div;ΩC) (see, e.g., Girault and Raviart
[111], Chap. I, Lemma 3.4). Then, by adapting the proof of the coerciveness of
the sesquilinear form A[·, ·] presented in Section 6.1.2, it is not difficult to show
that the sesquilinear form at the left hand sides of (6.97) and (6.98) is coercive in
H1

0(Ω) × [H0(curl;ΩC) ∩H(div;ΩC)]. Therefore the solution to the weak problem
(6.97), (6.98) is unique, and it is the right physical solution (ψ,TC) obtained from the
eddy current solution through (6.93) and (6.94).
This fact has led some researchers to use the (TC , ψC)−ψI formulation for solving

the eddy current problemwith assigned total current intensity: coming back to the case
in which ΩC is a torus, we know that the current intensity I0 through a section S of
ΩC is given by

∫
S
curlHC · nS , therefore, by the Stokes theorem, by

∫
∂S

HI · dτ .
Using (6.93)1, we can write

I0 =
∫
∂S

HI · dτ

=
∫
∂S

He,I · dτ + βI,1
∫
∂S

ρ1,I · dτ

=
∫
∂S He,I · dτ ± βI,1 ,

(6.100)

where the sign depends on the orientation of ∂S and on the choice of the basis function
ρ1,I . Hence it seems enough to insert this value of βI,1 in the right hand sides of (6.97)
and (6.98): as before, the problem has a unique solution, and it would appear that we
are done (in this regard, see also the formulation proposed by Reissel [205], reported
and commented in Section 3.3.2).
Instead, what is wrong is that the right value of βI,1 is not the one determined

in (6.100), but the one that allows us to solve (3.25)6, namely, as we have seen in
Section 3.3.1, the Faraday equation on the surface, contained in ΩI , that “cuts” the
non-bounding cycle ∂S.
Indeed, we know that the solution of the eddy current problem (1.22) or (1.20) is

unique, therefore it is not possible to impose additional conditions, like, for instance,
the total current intensity through S. We will see in Chapter 8 which type of boundary
conditions and which type of geometrical configuration allow us to impose the current
intensity or the voltage (in particular, in Section 8.1.3 wewill adopt the (TC , ψC)−ψI
formulation).
Let us now analyze the correct formulation of the eddy current problem in the case

in whichΩC is a torus. The unknowns areTC , ψC , ψI and βI,1, and, beside equations
(6.97) and (6.98), one has also to impose the Faraday equation on the surface “cutting”
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∂S, namely equation (3.25)6. We have∫
Γ

EC × nC · ρ1,I =
∫
Γ

EC × nC ·R1,C

= −
∫
ΩC
curlEC ·R1,C +

∫
ΩC

EC · curlR1,C

=
∫
ΩC

iωμCHC ·R1,C +
∫
ΩC

σ−1(curlHC − Je,C) · curlR1,C

=
∫
ΩC

iωμCTC ·R1,C +
∫
ΩC

iωμC gradψC ·R1,C

+βI,1
∫
ΩC

iωμCR1,C ·R1,C +
∫
ΩC

iωμCHe,C ·R1,C

+
∫
ΩC

σ−1 curlTC · curlR1,C + βI,1
∫
ΩC

σ−1 curlR1,C · curlR1,C

+
∫
ΩC

σ−1 curlHe,C · curlR1,C −
∫
ΩC

σ−1Je,C · curlR1,C .

Hence (3.25)6 reads

θI
∫
ΩC

iωμCTC ·R1,C + θI
∫
ΩC

iωμC gradψC ·R1,C

+βI,1θI
∫
ΩC

iωμCR1,C ·R1,C + βI,1θI
∫
ΩI

iωμIρ1,I · ρ1,I

+θI
∫
ΩC

σ−1 curlTC · curlR1,C

+βI,1θI
∫
ΩC

σ−1 curlR1,C · curlR1,C

= θI
∫
ΩC

σ−1Je,C · curlR1,C − θI
∫
ΩC

iωμCHe,C ·R1,C

−θI
∫
ΩC

σ−1 curlHe,C · curlR1,C − θI
∫
ΩI

iωμIHe,I · ρ1,I ,

(6.101)

for each θI ∈ C.
Thus the global problem can be written as∫

ΩC
σ−1 curl(TC + βI,1R1,C) · curl(vC + θIR1,C)

+σ−1
∗
∫
ΩC
divTC divvC + iω

∫
ΩI

μI gradψI · gradχI
+iω

∫
ΩC

μC(TC + gradψC + βI,1R1,C)

·(vC + gradχC + θIR1,C)

+iω βI,1 θI
∫
ΩI

μIρ1,I · ρ1,I

=
∫
ΩC

σ−1Je,C · curl(vC + θIR1,C)

−
∫
ΩC

σ−1 curlHe,C · curl(vC + θIR1,C)

−iω
∫
ΩC

μCHe,C · (vC + θIR1,C)

−iω
∫
Ω μHe · gradχ− iωθI

∫
ΩI

μIHe,I · ρ1,I ,

(6.102)

and we are looking for TC ∈ H0(curl;ΩC) ∩ H(div;ΩC), ψ ∈ H1
0 (Ω), and also

βI,1 ∈ C, taking the test functions vC , χ in the same spaces and θI in C.
Let us denote by S(·, ·) the sesquilinear form at the left hand side of (6.102). We

have
|ReS((vC , χ, θI), (vC , χ, θI))|

≥ σ−1
max

∫
ΩC
| curl(vC + θIR1,C)|2 + σ−1

∗
∫
ΩC
| divvC |2,

and

|ImS((vC , χ, θI), (vC, χ, θI))|
≥ |ω|μmin

∫
ΩI
| gradχI |2 + |ω|μmin

∫
ΩC
|vC + gradχC + θIR1,C|2

+|ω||θI|2
∫
ΩI

μIρ1,I · ρ1,I ,
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where σmax is a uniform upper bound for the maximum eigenvalues of σ(x) in ΩC

and μmin is a uniform lower bound for the minimum eigenvalues of μ(x) inΩ.
Proceeding as in the proof of the coerciveness of the sesquilinear form A[·, ·] in

Section 6.1.2, we see that for each 0 < δ < 1 we have∫
ΩC
| curl(vC + θIR1,C)|2
≥ (1− δ)

∫
ΩC
| curlvC |2 − (1− δ)δ−1|θI |2

∫
ΩC
| curlR1,C|2 .

Similarly, for each 0 < η < 1 we find∫
ΩC
|vC + gradχC + θIR1,C|2
≥ (1 − η)

∫
ΩC
| gradχC |2 − 2(1− η)η−1

∫
ΩC
|vC |2

−2(1− η)η−1|θI |2
∫
ΩC
|R1,C|2 .

Since the Poincaré-like inequality (6.99) holds, choosing 1 − δ = τ , 1− η = τ2 and
τ small enough it is now easy to prove that S(·, ·) is coercive in

[H0(curl;ΩC) ∩H(div;ΩC)]×H1
0(Ω) ×C,

and therefore problem (6.102) has a unique solution via the Lax–Milgram lemma.
Concerning the numerical approximation, the use of Lagrange nodal elements can

be a viable option. As usual for nodal finite elements (see Section 6.1.3), the conver-
gence of the Galerkin finite element approximation scheme can be ensured only ifΩC

is a convex polyhedral domain (which is never the case ifΩC is a torus). However, we
want to mention that the analysis of the convergence in the case of smooth boundaries
∂Ω and Γ can be found in Tsukerman [236].
In conclusion, in a general topological case (say, if ΩC is a polyhedral torus) the

(TC , ψC)−ψI approach has some defects: if used as described in (6.102), the conver-
gence of the associated nodal finite element scheme is not ensured; if used prescribing
the total current intensity through a suitable section S of the torus ΩC , it leads to a
wrong result since, as we have clarified before, the Faraday equation is violated on the
surface which “cuts” the non-bounding cycle ∂S. This remark should sound interest-
ing, as sometimes in the engineering literature the use the (TC , ψC) − ψI approach
has been proposed particularly for the case in whichΩC is a torus and the total current
intensity is assigned.

Remark 6.26. As usual, for numerical implementation it is better to replace the basis
functionρ1,I with the functionλ1 introduced in (5.15). The corresponding variational
formulation is easily devised by proceeding as was done in obtaining (6.102). �

Remark 6.27. Instead of the Coulomb-like gauge condition divTC = 0 in ΩC , a
Lorenz-like gauge condition divTC + iωμCσψC = 0 in ΩC has been also proposed
(see Tang et al. [232]). As for the (AC , VC)−AI formulation, in general this approach
leads to a problem which is not positive definite, hence it does not seem to be the best
choice for numerical approximation. �
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Remark 6.28. For a non-simply connected conductor, Ren [207] has proposed a un-
gaugedT−ψ formulation where the vector potentialT is approximated by edge ele-
ments inΩC and by curl-free edge elements in a one-layer domain around the “cutting”
surface Ξ1. The presented numerical results are in good agreement with the physical
problem; however, for ungauged vector potential formulations a complete analysis of
the convergence is not available (see also Remark 6.10). �

We conclude this section presenting another vector potential formulation, the so-
called (T∗

C , ΦC)−AI formulation, proposed by Bíró and Preis [50], [51]. We assume
again, for simplicity, that Ω is a “box” and that ΩC is a torus. The starting point is to
decompose the magnetic field H, known in Ω, as

HC = T∗
C + gradΦC in ΩC , HI = μ−1

I curlAI in ΩI , (6.103)

whereT∗
C , ΦC andAI satisfy the interface conditions on Γ

T∗
C · nC = 0

[σ−1(curlT∗
C − Je,C)]× nC − iωAI × nI = 0 ,

(6.104)

and the gauge conditions

divT∗
C = 0 in ΩC , divAI = 0 inΩI , AI · n = 0 on ∂Ω . (6.105)

The existence ofT∗
C and ΦC satisfying (6.103)1, (6.104)1, and (6.105)1 follows from

Theorem A.8, having replaced ΩI with ΩC and μI with Id. Then, proceeding as in
Section 3.2, in the present geometrical configuration it is easily seen that the solvability
conditions for determiningAI are satisfied, and we conclude that there exists a unique
solutionAI of (6.103)2, (6.104)2, (6.105)2, and (6.105)3.
Clearly, from the Ampère equation the electric field in the conductor can be written

as
EC = σ−1(curlT∗

C − Je,C) in ΩC , (6.106)

and the following interface conditions on Γ are also satisfied

T∗
C × nC + gradΦC × nC + (μ−1

I curlAI) × nI = 0
μCT∗

C · nC + μC gradΦC · nC + curlAI · nI = 0 .
(6.107)

Taking into account the Ampère equation in ΩI , the Faraday equation in ΩC , the
Gauss magnetic equation inΩC , and using the interface conditions it is easily seen that
for the functionsT∗

C , ΦC andAI thus determined the following variational formula-
tion holds∫

ΩC
σ−1 curlT∗

C · curlvC + σ−1
∗
∫
ΩC
divT∗

C divvC
+iω

∫
ΩC

μC(T∗
C + gradΦC) · (vC + grad ηC)

+iω
∫
ΩI

μ−1
I curlAI · curlwI + iωμ−1

∗
∫
ΩI
divAI divwI

+iω
∫
Γ
(T∗

C ·wI × nI −AI × nI · vC)
+iω

∫
Γ
(curlAI · nI ηC − ΦC curlwI · nI)

=
∫
ΩC

σ−1Je,C · curlvC + iω
∫
ΩI

Je,I ·wI ,

(6.108)
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with vC ∈ H(curl;ΩC) ∩ H0(div;ΩC), ηC ∈ H1(ΩC)/C, wI ∈ H(curl;ΩI) ∩
H0,∂Ω(div;ΩI). Here we havemade use of the facts thatT∗

C×nC ·wI = T∗
C ·wI×nI

and that∫
Γ

gradΦC × nC ·wI = −
∫
Γ

divτ (wI × nI)ΦC = −
∫
Γ

curlwI · nI ΦC .

To our knowledge, it is not known whether the sesquilinear form Q(·, ·) at the
left hand side of (6.108) is coercive or not. However, the solution can be shown to be
unique (ΦC up to an additive constant).
In fact, by choosing the test functions vC = graduC , ηC = −uC and wI = 0,

where ΔuC = divT∗
C in ΩC and graduC · nC = 0 on Γ , from (6.108) it follows at

once that divT∗
C = 0 inΩC . Similarly, choosing vC = 0, ηC = 0 andwI = grad uI ,

where ΔuI = divAI in ΩI , graduI · n = 0 on ∂Ω, and uI = 0 on Γ , we find
divAI = 0 in ΩI .
Then one verifies that the terms

iω

∫
Γ

(T∗
C ·AI × nI −AI × nI ·T∗

C),

and

iω

∫
Γ

(curlAI · nI ΦC − ΦC curlAI · nI)

are real numbers, therefore setting Je = 0 in (6.108) gives at onceT∗
C +gradΦC = 0

in ΩC , and curlAI = 0 in ΩI . From divT∗
C = 0 in ΩC and T∗

C · nC = 0 on Γ we
obtain that gradΦC = 0 in ΩC , hence T∗

C = 0.
To conclude the proof of the uniqueness it is enough to note that problem (6.108)

has become ∫
Γ

AI × nI · vC = 0

for each test function vC , thereforeAI × nI = 0 on Γ and thusAI = 0 inΩI .
Though a finite element discretization based on this method has not been com-

pletely analyzed, this scheme has been used and has performed well in several numeri-
cal computations.The same can be said for amodified version, the (T∗

C , ΦC)−AI−ΦI
approach, in which the magnetic field is written asHI = He,I + gradΦI in a simply-
connected domain contained in ΩI (see Bíró and Preis [50], [51], Bíró et al. [53]).
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Coupled FEM–BEM approaches

In this chapter we focus on some procedures for solving eddy current problems that
are based on a strategy which couples the finite element method (FEM) and the bound-
ary element method (BEM). This kind of coupling allows the numerical approxima-
tion of the solution in unbounded domains, a typical situation in electromagnetism.
The boundary element method is used for the approximation in the complement of a
bounded domain: either the conductor ΩC or else an artificial computational domain
Ω, containing ΩC but in general not very large. Instead, in the bounded domain the
solution is approximated using the finite element method. Compared with the formula-
tions presented in the previous chapters, the coupled FEM–BEM approaches compute
the FEM approximation of the solution in a smaller region (say, the conductor), not
required to be so large that the use of homogeneous boundary conditions is justified.
This can be done because the BEM method takes into account the behaviour of the
solution in the external region.
The idea of coupling a variational approach in one regionwith a potential approach

in another region of the computational domain has been first proposed by engineers for
the Laplace operator (see, e.g., Zienkiewicz et al. [248], Jami and Lenoir [138]), and
then widely analyzed from the mathematical point of view, starting from the pioneer-
ing works of Brezzi and Johnson [66] and Johnson and Nédélec [141]. An important
improvement has been furnished by the papers of Costabel [85], [86], that, for ellip-
tic boundary value problems, show how to obtain a symmetric (or else to a positive
definite) problem. Extensions to the full Maxwell equations are due to Ammari and
Nédélec [25], [26].
Coming to the eddy current problem, the first FEM–BEMcouplings have been pro-

posed by Bossavit and Vérité [62], [63] (for the magnetic field, and using the Steklov–
Poincaré operator) and Mayergoyz et al. [174] (for the electric field, and using special
basis functions near Γ ). A more recent result in FEM–BEM coupling, for axisymmet-
ric problems associated to the modeling of induction furnaces, is due to Bermúdez et
al. [40].
The approach of Bossavit and Vérité [62], [63] has led them to devise a very pop-

ular numerical code, named TRIFOU, that has been often used in engineering com-

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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putations. A complete presentation of this approach can be found in Bossavit [59],
Sect. 8.2; we describe its basic ideas in Section 7.6.1.
Symmetric formulations à la Costabel have been proposed for eddy current prob-

lems by Hiptmair [127] (unknowns: EC in ΩC , H× n on Γ ) and Meddahi and Sel-
gas [176] (unknowns: HC in ΩC , μH · n on Γ ), and are briefly presented in Sec-
tions 7.6.3 and 7.6.2, respectively.
The chapter begins with Sections 7.1–7.5, where we describe a FEM–BEM for-

mulation proposed by Alonso Rodríguez and Valli [19], based on a vector magnetic
potential and a scalar electric potential in the conductor, and on a scalar magnetic po-
tential in the external part. An approach in terms of magnetic vector potentials has been
also proposed for magnetostatics by Kuhn et al. [159] and Kuhn and Steinbach [160];
with respect to the choice of potentials, the presentation in Sections 7.1–7.5 is close to
these last ones.
The reader mainly interested in numerical approximation and implementation can

focus on problems (7.12), (7.30) and (7.31) ((AC , VC , q) formulation), on problem
(7.36) (TRIFOU formulation), on problem (7.42) ((HC , λ) formulation), and on prob-
lem (7.52) ((EC ,pΓ ) formulation).
Let us focus now on a different aspect: not all the known methods devised for

studying the Maxwell equations are robust enough to be used, without any modifica-
tion, for both the time-harmonic case and the static case (namely, the case in which the
electric and magnetic inductions are assumed to be time-independent; in other words,
in the equations one has to set ω = 0). In Sections 7.1–7.5 we show how one can
treat without distinction the cases ω �= 0 and ω = 0. Moreover, the numerical approx-
imation there proposed is quite simple, since we use standard Lagrange nodal finite
elements in the conductor, while a cheap formulation based on boundary elements is
proposed in the external insulator.
Being simple, robust and cheap, this method can be therefore a suitable direct

solver for some inverse problems in electromagnetism, for instance in electroen-
cephalography (EEG) or magnetoencephalography (MEG) (see Section 9.2). In this
respect, though in many papers devoted to these topics only the static case is consid-
ered (see, e.g., Sarvas [220], Hämäläinen et al. [117]), recently some researchers have
focused on the time-harmonic case, which is a more precise model for describing the
electric and magnetic activities in the brain (see Ammari et al. [22]). Clearly, the static
case is much easier to solve, as, due to the irrotationality condition, one can reduce
the problem to the sole determination of a scalar potential of the electric field in ΩC

(a suitable Neumann condition on Γ is the correct boundary condition to add). How-
ever, in no way that simple approach can be extended to the time-harmonic case, as
irrotationality no longer holds.
In this chapter the geometrical assumptions on the conductorΩC are more restric-

tive than in the preceding chapters. In fact, we consider a bounded simply-connected
open set ΩC ⊂ R3, with a Lipschitz boundary Γ (for EEG and MEG applications,
ΩC represents the human head). For simplicity, as in the preceding chapters we also
assume thatΩI := R3\ΩC is connected, so thatΓ is connected, too. The unit outward
normal vector on Γ will be denoted by nC = −nI .



7.1 The (AC , VC) − ψI formulation 207

As usual, we assume that the electric conductivityσ and themagnetic permeability
μC are uniformlypositivedefinite symmetric matrices inΩC , with entries belonging to
L∞(ΩC). The electric conductivityσ and the applied current densityJe ∈ (L2(R3))3

are vanishing inΩI . Moreover, the magnetic permeability μI and the electric permit-
tivity εI are assumed to be a positive constant in ΩI , say μ0 > 0 and ε0 > 0.

7.1 The (AC , VC ) − ψI formulation

In the present situation the eddy current problem in terms of the magnetic fieldH and
the electric field EC reads (see (3.25))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlEC + iωμCHC = 0 in ΩC

curlHC − σEC = Je,C in ΩC

curlHI = 0 in ΩI

div(μ0HI ) = 0 in ΩI

μCHC · nC + μ0HI · nI = 0 on Γ
HC × nC + HI × nI = 0 on Γ
HI (x) = O(|x|−1) as |x| → ∞ .

(7.1)

If needed, but here we are not dealing with this aspect, the electric field EI can be
computed after having determinedHI and EC in (7.1), by solving⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curlEI = −iωμ0HI in ΩI

div(ε0EI) = 0 in ΩI

EI × nI = −EC × nC on Γ∫
Γ

ε0EI · nI = 0
EI (x) = O(|x|−1) as |x| → ∞ .

(7.2)

SinceΩI is unbounded, note that we have to impose the no-flux conditiononΓ , though
it is a connected surface.
As proposed by Pillsbury [193], Rodger and Eastham [211], Emson and Simkin

[100], we look for a vector magnetic potentialAC , a scalar electric potential VC and
a scalar magnetic potential ψI such that

μCHC = curlAC , EC = −iωAC − gradVC , HI = gradψI . (7.3)

In this way one has curlEC = −iω curlAC = −iωμCHC , and therefore the
Faraday equation in ΩC is satisfied. Note that, in particular, when ω = 0 one finds
EC = − gradVC , therefore for the static case the usual formulation in terms of a
scalar electric potential is recovered.
As usual, in order to have a unique vector potentialAC , it is necessary to impose

some gauge conditions: here we are considering the Coulomb gauge divAC = 0 in
ΩC , withAC · nC = 0 on Γ . Moreover, we also impose that

|ψI(x)| = O(|x|−1) as |x| → ∞ .
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In conclusion, we are left with the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
C curlAC)

+iωσAC + σ gradVC = Je,C in ΩC

ΔψI = 0 in ΩI

divAC = 0 in ΩC

AC · nC = 0 on Γ
curlAC · nC + μ0 gradψI · nI = 0 on Γ
(μ−1

C curlAC)× nC + gradψI × nI = 0 on Γ
|ψI(x)|+ | gradψI(x)| = O(|x|−1) as |x| → ∞ ,

(7.4)

where VC is determined up to an additive constant.
In order to obtain a problem which is stable also in the case ω = 0, and for

which Lagrange nodal finite elements can be used for approximation, it is well-known
(see, e.g., Coulomb [91], Morisue [180], Bìrò and Preis [49] and Chapter 6) that the
Coulomb gauge condition divAC = 0 in ΩC can be incorporated as a penalization
term in the Ampère equation. Introducing the constant μ∗ > 0, that for physical con-
sistency can be chosen, for example, as a suitable average in ΩC of the entries of the
matrix μC , one considers⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
C curlAC)− μ−1

∗ grad divAC

+iωσAC + σ gradVC = Je,C in ΩC

ΔψI = 0 in ΩI

div(iωσAC + σ gradVC) = divJe,C in ΩC

(iωσAC + σ gradVC) · nC = Je,C · nC on Γ
AC · nC = 0 on Γ
curlAC · nC + μ0 gradψI · nI = 0 on Γ

(μ−1
C curlAC)× nC + gradψI × nI = 0 on Γ

|ψI(x)|+ | gradψI(x)| = O(|x|−1) as |x| → ∞ ,

(7.5)

the two additional equations appearing in (7.5) being necessary as the modification in
the Ampère equation does not ensure now thatEC = −iωAC − gradVC satisfies the
necessary conditions div(σEC) = − divJe,C in ΩC and σEC · nC = −Je,C · nC
on Γ .
Moreover, taking the divergence of (7.5)1 and using (7.5)3, we haveΔ divAC = 0

inΩC , and, taking the scalar product of (7.5)1 by nC , using (7.5)4 and (7.5)7, we find

μ−1
∗ grad divAC · nC = curl(μ−1 curlAC) · nC

= divτ [(μ−1 curlAC)× nC] = − divτ (gradψI × nI)
= − curl gradψI · nI = 0 on Γ .

Therefore divAC is constant inΩC , and this constant is 0 as a consequence of (7.5)5.
In conclusion, any solution to (7.5) satisfies divAC = 0 in ΩC , and thus (7.4) and
(7.5) are equivalent.
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7.2 The (AC , VC ) − ψΓ weak formulation

In this chapter we have assumed that μI is a positive constant μ0 and we are looking
for a scalar magnetic potential ψI . Therefore for determining this potential we have to
solve the Laplace equation inΩI . This allows us to use potential theory, transforming
the problem for ψI into a problem on the interface Γ and reducing in a significative
way the number of unknowns in numerical computations.
Referring for notation to Section A.1, it is well-known from potential theory (see,

e.g., McLean [175], Nédélec [187]) that we can introduce on Γ the single layer and
double layer potentials

S : H−1/2(Γ ) → H1/2(Γ ) , S(ξ)(x) :=
∫
Γ

1
4π|x− y| ξ(y)dSy (7.6)

D : H1/2(Γ )→ H1/2(Γ ) , D(η)(x) :=
∫
Γ

x− y
4π|x− y|3 · η(y)nC(y)dSy, (7.7)

and the hypersingular integral operator

H : H1/2(Γ )→ H−1/2(Γ ) ,

H(η)(x) := − grad
(∫

Γ
x−y

4π|x−y|3 · η(y)nC(y)dSy
)
· nC(x) .

(7.8)

We also recall that the adjoint operatorD′ : H−1/2(Γ )→ H−1/2(Γ ) reads

D′(ξ)(x) =
(∫

Γ

y − x
4π|x− y|3 ξ(y)dSy

)
· nC(x) . (7.9)

Since we have that ΔψI = 0 inΩI and gradψI · nI = − 1
μ0
curlAC · nC on Γ , a

first result is that the trace ψΓ := ψI|Γ satisfies

1
2
ψΓ − D(ψΓ ) +

1
μ0
S(curlAC · nC) = 0 on Γ (7.10)

1
2μ0

curlAC · nC +
1
μ0
D′(curlAC · nC) +H(ψΓ ) = 0 on Γ (7.11)

(see, e.g., McLean [175], Nédélec [187]).
As a second step, we can devise a weak formulation in terms of (AC , VC) − ψΓ .

A standard integration by parts yields∫
Γ

nI × gradψI ·wC =
∫
Γ

ψΓ curlwC · nC .

Moreover, multiplying (7.5)1, (7.5)3 and (7.11) by suitable test functions (wC , QC, η)
withwC · nC = 0 on Γ , integrating in ΩC and Γ , and integrating by parts, from the
other matching condition

μ−1
C curlAC × nC + gradψI × nI = 0 on Γ,
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and the interface equation (7.10) we end up with the following weak problem∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC )
+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
Γ
[−1

2
ψΓ − D(ψΓ ) + 1

μ0
S(curlAC · nC)] curlwC · nC

=
∫
ΩC

Je,C ·wC∫
ΩC

(iωσAC · gradQC + σ gradVC · gradQC)
=
∫
ΩC

Je,C · gradQC∫
Γ [ 12 curlAC · nC +D′(curlAC · nC) + μ0H(ψΓ )]η = 0 .

We note that, for the ease of notation, as usual here above we have written the integra-
tion symbol on Γ instead of the pairing between H−1/2(Γ ) and H1/2(Γ ); the same
notation will be used in the sequel.
Since the hypersingular operator H(·) is coercive in the constrained space

H1/2(Γ )/C, it is convenient to rewrite the preceding problem for test functions
η ∈ H1/2(Γ )/C, looking for q ∈ H1/2(Γ )/C, which differs from ψΓ by an addi-
tive constant.
We know thatH(1) = 0 andD(1) = −1

2 (see, e.g., McLean [175], Nédélec [187]),
and that

∫
Γ
H(η) = 0 for each η ∈ H1/2(Γ ) (see, e.g., Nédélec [187], Theor. 3.3.2).

Hence H(ψΓ + c0) = H(ψΓ ),

−1
2
(ψΓ + c0)− D(ψΓ + c0) = −1

2
ψΓ −D(ψΓ ),

and ∫
Γ [ 12 curlAC · nC +D′(curlAC · nC) + μ0H(ψΓ )]

=
∫
Γ [ 12 curlAC · nC + curlAC · nC D(1) + μ0H(ψΓ )] = 0 .

In conclusion, introducing the space

WC := H(curl;ΩC) ∩H0(div;ΩC)

we are looking for the solution of the following coupled problem

Find (AC , VC, q) ∈ WC ×H1(ΩC)/C×H1/2(Γ )/C such that∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC)
+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
Γ
[−1

2
q −D(q) + 1

μ0
S(curlAC · nC)] curlwC · nC

=
∫
ΩC

Je,C ·wC∫
ΩC

(iωσAC · gradQC + σ gradVC · gradQC)
=
∫
ΩC

Je,C · gradQC∫
Γ [ 12 curlAC · nC +D′(curlAC · nC) + μ0H(q)]η = 0

for all (wC , QC, η) ∈WC ×H1(ΩC)/C ×H1/2(Γ )/C .

(7.12)
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Now we want to prove that from a solution to (7.12) we can construct a solution to
the strong problem (7.4). Let us note that the conditionAC · nC = 0 on Γ in (7.4) is
already contained in the definition of the spaceWC .

Lemma 7.1. Suppose that (AC , VC, q) is a solution to (7.12). Then divAC = 0 in
ΩC .

Proof. Since
∫
ΩC
divAC =

∫
Γ

AC · nC = 0, we can consider the solution vC ∈
H1(ΩC)/C to the Neumann problem{

ΔvC = divAC inΩC

grad vC · nC = 0 on Γ .

SettingwC = grad vC , clearly we have wC ∈ WC . Using in (7.12)1 and (7.12)2 the
test function (wC , vC) we find

∫
ΩC
| divAC |2 = 0, therefore divAC = 0 in ΩC . �

Concerning the interface equations (7.10) and (7.11) we have:

Lemma 7.2. Suppose that (AC , VC, q) is a solution to (7.12). Then

1
2
q −D(q) +

1
μ0
S(curlAC · nC) = const on Γ (7.13)

1
2μ0

curlAC · nC +
1
μ0
D′(curlAC · nC) +H(q) = 0 on Γ . (7.14)

Proof. As already seen, we have
∫
Γ H(η) = 0 for each η ∈ H1/2(Γ ) andD(1) = −1

2 ,
thus ∫

Γ
[ 12 curlAC · nC + D′(curlAC · nC) + μ0H(q)]

=
∫
Γ
[ 12 curlAC · nC + curlAC · nC D(1) + μ0H(q)] = 0 .

Therefore equation (7.12)3 is satisfied not only for all η ∈ H1/2(Γ )/C, but also for
all η ∈ H1/2(Γ ), and equation (7.14) follows at once.
Consequently, it is well-known from potential theory that we also obtain (7.13).�

We need now to introduce the single layer and double layer operators in the interior
ofΩI (namely, the exterior ofΩC ). Forx ∈ ΩI we can define (see, e.g., McLean [175],
Nédélec [187])

SI : H−1/2(Γ )→ W 1(ΩI) , SI (ξ)(x) :=
∫
Γ

1
4π|x− y| ξ(y)dSy (7.15)

DI : H1/2(Γ )/C→W 1(ΩI) ,

DI(η)(x) :=
∫
Γ

(x−y)
4π|x−y|3 · η(y)nC(y)dSy ,

(7.16)

where

W 1(ΩI ) := {χI ∈ (C∞
0 (ΩI))′ |

(1 + |x|2)−1/2χI ∈ L2(ΩI), gradχI ∈ (L2(ΩI ))3} .
(7.17)
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We conclude our argument by showing that:

Lemma 7.3. Suppose that (AC , VC, q) is a solution to (7.12). In the domain ΩI define
the function ψI := DI(q) − 1

μ0
SI (curlAC · nC). Then∫

ΩC
(μ−1

C curlAC · curlw∗
C + iωσAC ·w∗

C + σ gradVC ·w∗
C )

+
∫
Γ nC × gradψI ·w∗

C =
∫
ΩC

Je,C ·w∗
C

(7.18)

for all w∗
C ∈ H(curl;ΩC). Therefore,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl(μ−1

C curlAC) + iωσAC + σ gradVC = Je,C in ΩC

ΔψI = 0 in ΩI

curlAC · nC + μ0 gradψI · nI = 0 on Γ

(μ−1
C curlAC) × nC + gradψI × nI = 0 on Γ

|ψI(x)| + | gradψI(x)| = O(|x|−1) as |x| → ∞ .

(7.19)

Proof. Well-known results of potential theory imply that ψI is a harmonic function
with |ψI(x)| and | gradψI(x)| decaying at infinity asO(|x|−1). Moreover,ψI satisfies
the trace relations

ψI|Γ =
1
2
q + D(q) − 1

μ0
S(curlAC · nC), (7.20)

and

gradψI · nI = H(q) + μ−1
0

[
− 1

2
curlAC · nC + D′(curlAC · nC)

]
(7.21)

(see, e.g., McLean [175], Nédélec [187]).
From (7.14) and (7.21)we see that the interface condition (7.19)3 is satisfied.More-

over, from Lemma 7.1, (7.12)1 and (7.20) we find that∫
ΩC

(μ−1
C curlAC · curlwC + iωσAC ·wC + σ gradVC ·wC )

−
∫
Γ

ψI|Γ curlwC · nC =
∫
ΩC

Je,C ·wC .

Since we have−
∫
Γ

ψI|Γ curlwC · nC =
∫
Γ

nC × gradψI ·wC , for each wC ∈WC

we have obtained∫
ΩC

(μ−1
C curlAC · curlwC + iωσAC ·wC + σ gradVC ·wC )

+
∫
Γ

nC × gradψI ·wC =
∫
ΩC

Je,C ·wC .
(7.22)

If w∗
C ∈ H(curl;ΩC), consider the solution v∗C ∈ H1(ΩC)/C of the Neumann

problem Δv∗C = divw∗
C in ΩC with grad v∗C · nC = w∗

C · nC on Γ . Setting
wC = w∗

C − grad v∗C , we havewC ∈ WC , and using it in (7.22) we obtain∫
ΩC

(μ−1
C curlAC · curlw∗

C + iωσAC ·w∗
C + σ gradVC ·w∗

C)
+
∫
Γ nC × gradψI ·w∗

C

=
∫
ΩC

(μ−1
C curlAC · curlwC + iωσAC ·wC + σ gradVC ·wC)

+
∫
Γ

nC × gradψI ·wC

+
∫
ΩC

(iωσAC · grad v∗C + σ gradVC · grad v∗C)
+
∫
Γ

nC × gradψI · grad v∗C
=
∫
ΩC

Je,C ·wC +
∫
ΩC

Je,C · grad v∗C =
∫
ΩC

Je,C ·w∗
C ,
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having used (7.12)2 and the fact that∫
Γ

nC × gradψI · grad v∗C = −
∫
Γ
divτ(nC × gradψI) v∗C

= −
∫
Γ
curl gradψI · nI v∗C = 0 .

Taking a test function w∗
C ∈ (C∞

0 (ΩC))3 and integrating by parts we verify that
(7.19)1 is satisfied; repeating the same argument for w∗

C ∈ H(curl;ΩC), we see that
the interface condition (7.19)4 is satisfied as well. �

Remark 7.4. The function q ∈ H1/2(Γ )/C determined in (7.12) is defined up to an
additive constant. It is easily seen that, as functions inH1/2(Γ )/C, q and the trace on
Γ of the harmonic scalar potential ψI , namely, what we have called ψΓ , are the same
function. Indeed, from (7.13) and (7.20) we see that ψΓ + const = q. �

7.3 Existence and uniqueness of the weak solution

In order to prove the existence and uniqueness of the solution to (7.12), let us introduce
the following sesquilinear forms: for ω �= 0

A(ω �=0)[(AC, VC , q), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC)
+iω−1

∫
ΩC

σ(iωAC + gradVC) · (−iωwC + gradQC)
+
∫
Γ
[−1

2
q −D(q)] curlwC · nC

+
∫
Γ
[ 1
2
curlAC · nC + D′(curlAC · nC)]η

+
∫
Γ
[ 1
μ0
S(curlAC · nC) curlwC · nC + μ0H(q) η] ,

(7.23)

and for ω = 0

A(ω=0)[(AC , VC, q), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlAC · curlwC + μ−1

∗ divAC divwC)
+
∫
ΩC

(σ gradVC ·wC + βσ gradVC · gradQC)
+
∫
Γ [−1

2q −D(q)] curlwC · nC
+
∫
Γ [ 12 curlAC · nC + D′(curlAC · nC)]η

+
∫
Γ [ 1

μ0
S(curlAC · nC) curlwC · nC + μ0H(q) η] .

(7.24)

These forms are obtained by adding the left hand sides in (7.12): however, in the case
ω �= 0 we have multiplied the second equation by iω−1, obtainingA(ω �=0)[·, ·], while
in the case ω = 0 we have multiplied the second equation by β > 0, to be chosen in
the sequel, obtainingA(ω=0)[·, ·].
The main result of this section is:

Theorem 7.5. The sesquilinear form A(ω �=0)[·, ·] is coercive in the space WC ×
H1(ΩC)/C×H1/2(Γ )/C, uniformlyas ω→ 0; namely, there exists a constantκ > 0,
independent of ω, such that for each (wC , QC, η) ∈ WC ×H1(ΩC)×H1/2(Γ ) with
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ΩC

QC = 0 and
∫
Γ

η = 0 one has

|A(ω �=0)[(wC , QC, η), (wC , QC, η)]|
≥ κ

( ∫
ΩC

(|wC |2 + | curlwC |2 + | divwC |2)
+||η||21/2,Γ + χ(ω)

∫
ΩC

(|QC|2 + | gradQC |2)
)

,

(7.25)

where the constant χ(ω) > 0 is equal to |ω|−1 in the case 0 < |ω| < 1 and is equal
to ω−2 in the case |ω| ≥ 1.

Moreover, the sesquilinear form A(ω=0)[·, ·] is coercive in the space WC ×
H1(ΩC)/C×H1/2(Γ )/C, namely, there exists a constant κ0 > 0 such that for each
(wC , QC, η) ∈ WC ×H1(ΩC) ×H1/2(Γ ) with

∫
ΩC

QC = 0 and
∫
Γ η = 0 one has

|A(ω=0)[(wC , QC, η), (wC , QC, η)]|
≥ κ0

( ∫
ΩC

(|wC |2 + | curlwC |2 + | divwC |2)
+||η||21/2,Γ +

∫
ΩC

(|QC|2 + | gradQC |2)
)

.

(7.26)

As a consequence, for each Je,C ∈ (L2(ΩC))3, existence and uniqueness of the
solution to (7.12) follow from the Lax–Milgram lemma.

Proof. First of all, let us recall that the operators S and H are continuous from
H−1/2(Γ ) into H1/2(Γ ) and from H1/2(Γ ) into H−1/2(Γ ), respectively, and sat-
isfy ∫

Γ

S(ξ) ξ ≥ κ1||ξ||2−1/2,Γ ,

∫
Γ

H(η) η ≥ κ2||η||21/2,Γ (7.27)

for each ξ ∈ H−1/2(Γ ) and η ∈ H1/2(Γ )with
∫
Γ η = 0, andmoreover that the opera-

torD is continuous fromH1/2(Γ ) into itself (see, e.g., McLean [175], Nédélec [187]).
The sesquilinear formA(ω �=0)[·, ·] satisfies

A(ω �=0)[(wC , QC, η), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlwC · curlwC + μ−1

∗ | divwC |2)
+iω−1

∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC)
+
∫
Γ [−1

2η − D(η)] curlwC · nC
+
∫
Γ [ 12 curlwC · nC +D′(curlwC · nC)]η

+
∫
Γ [ 1

μ0
S(curlwC · nC) curlwC · nC + μ0H(η) η] .

Since ∫
Γ

D′(curlwC · nC)]η =
∫
Γ

D(η) curlwC · nC ,

and
[−1

2
η − D(η)] curlwC · nC + curlwC · nC [ 1

2
η + D(η)]

= −2 i Im
(
[ 12η + D(η)] curlwC · nC

)
,
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we have

ReA(ω �=0)[(wC , QC, η), (wC , QC, η)]
=
∫
ΩC

(μ−1
C curlwC · curlwC + μ−1

∗ | divwC |2)
+
∫
Γ
[ 1
μ0
S(curlwC · nC) curlwC · nC + μ0H(η) η],

and
ImA(ω �=0)[(wC , QC, η), (wC , QC, η)]

= ω−1
∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC)
−2 Im

∫
Γ [ 12η +D(η)] curlwC · nC .

Hence, for a suitable constant κ3 > 0, independent of ω, we find

ReA(ω �=0)[(wC , QC, η), (wC, QC , η)]
≥ κ3

( ∫
ΩC

(| curlwC |2 + | divwC |2) + || curlwC · nC ||2−1/2,Γ + ||η||21/2,Γ
)

,

and moreover, taking into account that the operator D is continuous from H1/2(Γ )
into itself, for a suitable constant C1 > 0, independent of ω, we obtain∣∣2 Im

∫
Γ [ 12η +D(η)] curlwC · nC

∣∣ ≤ C1 ||η||1/2,Γ || curlwC · nC ||−1/2,Γ

≤ C1
2 ||η||21/2,Γ + C1

2 || curlwC · nC ||2−1/2,Γ .

Hence, proceeding as in the proof of the coerciveness of the sesquilinear form A[·, ·]
in Section 6.1.2, we find, for each 0 < τ ≤ 1,

|ImA(ω �=0)[(wC , QC, η), (wC , QC, η)]|
≥ τ |ImA(ω �=0)[(wC , QC , η), (wC, QC , η)]|
≥ 1

2 τ |ω|−1σmin

∫
ΩC
| gradQC |2 − τ |ω|σmin

∫
ΩC
|wC |2

−τ C1
2
||η||21/2,Γ − τ C1

2
|| curlwC · nC||2−1/2,Γ ,

where σmin is a uniform lower bound inΩC for the minimum eigenvalues of σ(x).
Let us recall now the Poincaré inequalities (6.38) and (6.39): there exist constants

κ5 > 0 and κ6 > 0 such that∫
ΩC
| gradQC|2 ≥ κ5

∫
ΩC

(| gradQC |2 + |QC|2)

for all QC ∈ H1(ΩC) with
∫
ΩC

QC = 0, and∫
ΩC

(| curlwC |2 + | divwC |2)
≥ κ6

∫
ΩC

(| curlwC |2 + | divwC |2 + |wC |2)

for all wC ∈ WC . Coerciveness follows by choosing τ small enough to have
τ |ω|σmin < κ3κ6 and τ C1

2 < κ3. In particular, we have τ = O(1) for 0 < |ω| < 1
and τ = O(|ω|−1) for |ω| ≥ 1. Thus the constant κ in (7.25) can be clearly chosen
independent of ω, and the constant χ(ω) isO(|ω|−1) for 0 < |ω| < 1 andO(ω−2) for
|ω| ≥ 1.
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In the case ω = 0, the sesquilinear form satisfies

A(ω=0)[(wC , QC, η), (wC , QC, η)]

=
∫
ΩC

(μ−1
C curlwC · curlwC + μ−1

∗ | divwC |2

+σ gradQC ·wC + βσ gradQC · gradQC)

+
∫
Γ
[−1

2
η −D(η)] curlwC · nC

+
∫
Γ
[ 1
2
curlwC · nC + D′(curlwC · nC)]η

+
∫
Γ
[ 1
μ0
S(curlwC · nC) curlwC · nC + μ0H(η) η] .

We split
∫
ΩC

σ gradQC ·wC into its real and imaginary part, and, for each δ > 0 and
suitable constants κ7 > 0 and C2 > 0, we end up with

∣∣ReA(ω=0)[(wC , QC, η), (wC , QC, η)]
∣∣

≥ κ7

( ∫
ΩC

(| curlwC |2 + | divwC |2 + β| gradQC |2)
+|| curlwC · nC ||2−1/2,Γ + ||η||21/2,Γ

)
−C2δ

−1
∫
ΩC
| gradQC |2 − δ

∫
ΩC
|wC |2 ,

thus the conclusion follows by choosing δ so small that κ7κ6−δ > 0, and then β large
enough to have κ7β −C2δ

−1 > 0. �

7.4 Stability as ω goes to 0

We are now interested in showing that the solution to problem (7.12) is stable with re-
spect to ω, namely, if we denote by (Aω

C , V ω
C , qω) the solution to (7.12) corresponding

to the angular frequency ω, we have (Aω
C , V ω

C , qω)→ (A0
C , V 0

C, q0) as ω → 0.

Theorem 7.6. There exists a constant K > 0, independent of ω, such that for each ω
with 0 < |ω| < 1, the solutions to (7.12) satisfy∫

ΩC
(|Aω

C −A0
C |2 + | curlAω

C − curlA0
C |2) ≤ K ω2

∫
ΩC

(|V ω
C − V 0

C |2 + | gradV ω
C − gradV 0

C |2) ≤ K ω2

||qω − q0||21/2,Γ ≤ K ω2 ,

having chosen V ω
C , V 0

C , qω and q0 such that
∫
ΩC

V ω
C =

∫
ΩC

V 0
C = 0 and

∫
Γ qω =∫

Γ
q0 = 0.
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Proof. By linearity, the difference (ZC , NC , p) := (Aω
C , V ω

C , qω) − (A0
C , V 0

C , q0)
satisfies∫

ΩC
(μ−1

C curlZC · curlwC + μ−1
∗ divZC divwC )

+
∫
ΩC

(iωσZC ·wC + σ gradNC ·wC )
+
∫
Γ
[−1

2
p−D(p) + 1

μ0
S(curlZC · nC)] curlwC · nC

= −
∫
ΩC

iωσA0
C ·wC∫

ΩC
(−σZC · gradQC + iω−1σ gradNC · gradQC)
=
∫
ΩC

σA0
C · gradQC∫

Γ [ 12 curlZC · nC +D′(curlZC · nC) + μ0H(p)]η = 0

(7.28)

(here, we have divZC = 0 in ΩC by Lemma 7.1; however, we prefer to write every-
thing in terms of the sesquilinear formA(ω �=0)[·, ·]).
Therefore, from the coerciveness of A(ω �=0)[·, ·] and taking into account that 0 <

|ω| < 1, from (7.25) we obtain at once that∫
ΩC

(|ZC |2 + | curlZC |2 + | divZC |2)
+||p||21/2,Γ + χ(ω)

∫
ΩC

(|NC |2 + | gradNC |2)
≤ κ−1c1

[
|ω|
( ∫

ΩC
|A0

C|2
)1/2( ∫

ΩC
|ZC |2

)1/2
+
( ∫

ΩC
|A0

C |2
)1/2( ∫

ΩC
| gradNC |2

)1/2]
≤ κ−1c2|ω|2α−1

1

∫
ΩC
|A0

C |2 + κ−1c2α
−1
2

∫
ΩC
|A0

C |2
+α1

∫
ΩC
|ZC |2 + α2

∫
ΩC
| gradNC |2

(7.29)

for each α1 > 0 and α2 > 0. Choosing α1 = 1/2 and α2 = χ(ω)/2 = O(|ω|−1) (see
Theorem 7.5), we have that the left hand side in (7.29) is O(|ω|). In particular,∫

ΩC

(|NC |2 + | gradNC |2) = [χ(ω)]−1O(|ω|) = O(ω2),

and ∫
ΩC

(|ZC |2 + | curlZC |2 + | divZC |2) + ||p||21/2,Γ = O(|ω|) .

Rewriting the first equation in (7.28) as∫
ΩC

(μ−1
C curlZC · curlwC + μ−1

∗ divZC divwC)
+
∫
Γ [−1

2p−D(p) + 1
μ0
S(curlZC · nC)] curlwC · nC

= −
∫
ΩC

(iωσZC ·wC + σ gradNC ·wC) −
∫
ΩC

iωσA0
C ·wC ,

using (7.28)3 and proceeding as in the proof of Theorem 7.5, we obtain that the
sesquilinear form at the left hand side is coercive (with coerciveness constantK0 > 0
independent of ω). Hence we have∫

ΩC
(|ZC |2 + | curlZC |2 + | divZC |2) + || curlZC · nC||2−1/2,Γ + ||p||21/2,Γ
≤ K−1

0 c3

[
|ω|

∫
ΩC
|ZC |2 +

( ∫
ΩC
| gradNC |2

)1/2( ∫
ΩC
|ZC |2

)1/2
+|ω|

( ∫
ΩC
|A0

C|2
)1/2( ∫

ΩC
|ZC |2

)1/2]
= O(ω2) + O(|ω|)

( ∫
ΩC
|ZC |2

)1/2 ≤ O(ω2) + 1
2

∫
ΩC
|ZC |2 .

The result thus follows. �
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Remark 7.7. As we recalled in Section 2.3.1, an analysis of the asymptotic behaviour
of the solution of the eddy current model with respect to ω → 0 has been presented in
Ammari et al. [23]. In particular they prove, by a formal asymptotic expansion, that the
electric and themagnetic fields solutionsof the eddy current problem converge linearly
to the corresponding solutions of the static problem in the L2-norm. Expressing the
electric and magnetic fields in terms of AC , VC and ψI , it can be easily checked that
Theorem 7.6 is in agreement with their result. �

7.5 Numerical approximation

In this section we deal with the numerical approximation of problem (7.12). In the
sequel we assume that ΩC is a Lipschitz polyhedral domain, and that TC,h and TΓ,h
are two regular families of triangulations of ΩC and Γ , respectively. For the sake of
simplicity, we suppose that each elementK of TC,h is a tetrahedron and each element
T of TΓ,h is a triangle; however, the results below also hold for hexahedral and rect-
angular elements, respectively. Let us note that the mesh induced on Γ by TC,h is not
assumed to coincide with TΓ,h.
Let Pk , k ≥ 1, be the space of polynomials of degree less than or equal to k. For

r ≥ 1, s ≥ 1 and t ≥ 1 we employ the discrete spaces given by Lagrange nodal
elements

W r
C,h := {wC,h ∈ (C0(ΩC))3

| wC,h|K ∈ (Pr)3 ∀K ∈ Th , wC,h · nC = 0 on Γ } ,

LsC,h := {QC,h ∈ C0(ΩC) | QC,h|K ∈ Ps ∀ K ∈ TC,h} ,

and
LtΓ,h := {ηh ∈ C0(Γ ) | ηh|T ∈ Pt ∀ T ∈ TΓ,h} .

Clearly, we haveW r
C,h ⊂WC , LsC,h ⊂ H1(ΩC) and LtΓ,h ⊂ H1/2(Γ ), therefore we

are ready to consider a conforming finite element approximation.
The discrete problem is given by

Find (AC,h, VC,h, qh) ∈W r
C,h × LsC,h/C× LtΓ,h/C such that∫

ΩC
(μ−1

C curlAC,h · curlwC,h + μ−1
∗ divAC,h divwC,h

+iωσAC,h ·wC,h + σ gradVC,h ·wC,h)
+
∫
Γ
[−1

2qh −D(qh) + 1
μ0
S(curlAC,h · nC)] curlwC,h · nC

=
∫
ΩC

Je,C ·wC,h∫
ΩC

(iωσAC,h · gradQC,h + σ gradVC,h · gradQC,h)
=
∫
ΩC

Je,C · gradQC,h∫
Γ
[ 1
2
curlAC,h · nC + D′(curlAC,h · nC) + μ0H(qh)]ηh = 0

for all (wC,h, QC,h, ηh) ∈W r
C,h × LsC,h/C× LtΓ,h/C .

(7.30)
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Existence and uniqueness of the discrete solution follow by the Lax–Milgram
lemma, applied inW r

C,h × LsC,h/C× LtΓ,h/C.
We also have

Theorem 7.8. Assume that ΩC is a convex polyhedron, or else that the solution
(AC , VC, q) is smooth enough. Then the discrete solution (AC,h, VC,h, qh) converges
in WC ×H1(ΩC)/C×H1/2(Γ )/C to the exact solution (AC , VC , q).

Proof. Let us start noting that, as proved in Lemma 7.2, (AC , VC , q) and
(AC,h, VC,h, qh) are solutions to problems (7.12) and (7.30), respectively, also for
all test functions η ∈ H1/2(Γ ) and ηh ∈ LtΓ,h. Similarly, it is obvious that (7.12) and
(7.30) also hold for all test functionsQC ∈ H1(ΩC) and QC,h ∈ LsC,h.
Therefore, finite element interpolants can be used as test functions, and, if the so-

lution (A, VC, q) is smooth enough, the convergence follows by applying Céa lemma
and standard interpolation results.
If the domain ΩC is convex, it is known (see Costabel et al. [89]) that smooth

functionswith vanishing normal component are dense inWC , and the same arguments
can be applied. �
Remark 7.9. As noted in Remark 6.6, if ΩC is a non-convex polyhedral domain it
can happen that the solution AC is non-smooth, namely, not even an element of
(H1(ΩC))3, and thatH1

τ (ΩC) := (H1(ΩC))3 ∩H0(div;ΩC) is a closed proper sub-
space of WC . Since the finite element space W r

C,h is contained in H1
τ (ΩC), in that

case a convergence result inWC cannot hold. For non-convex domains, an alternative
approch is presented in Section 7.5.1. �
The determination of a precise order of convergence requires the knowledge of

the regularity of the solution: as usual, if (AC , VC , q) ∈ Hk+1(ΩC)×Hk+1(ΩC) ×
Hk+1/2(Γ ), where the integer k ≥ 1 is equal to r = s = t, the degree of polynomial
approximation, we have( ∫

ΩC
(|AC −AC,h|2 + | curl(AC −AC,h)|2 + | div(AC −AC,h)|2)

+
∫
ΩC

(|VC − VC,h|2 + | grad(VC − VC,h)|2) + ||q− qh||21/2,Γ
)1/2

= O(hk) ,

having chosen VC , VC,h, q and qh such that
∫
ΩC

VC =
∫
ΩC

VC,h = 0 and
∫
Γ
q =∫

Γ
qh = 0.
On the other hand, in EEG and MEG applications a typical assumption for σ, the

human head conductivity, is that it is a piecewise-smooth (but not globally continuous)
positivedefinite symmetric matrix. In this case, it is not clear if the solution is regular as
required above. In general, one could expect that the solution belongs toH1+γ(ΩC)×
H1+γ(ΩC)×H1/2+γ(Γ ) for some γ with 0 < γ < 1/2; however, we do not know a
proof of this result.
It is worth noting that the same difficulty arises if one assumes ω = 0, namely,

one just considers the problem of electrostatics. In this case one has to approximate
the solution VC (determined up to an additive constant) of{

div(σ gradVC) = divJe,C in ΩC

σ gradVC · nC = Je,C · nC on Γ ,
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and the regularity of VC is not easily determined for a piecewise-smooth positive defi-
nite symmetric matrix σ. Therefore, also in this case the rate of convergence of a finite
element approximation scheme is not easily determined.

Concerning the behaviour with respect to the angular frequency ω, in the discrete
case we can repeat the proof of Theorem 7.6 and obtain (with obvious notation):

Theorem 7.10. There exists a constant K > 0, independent of ω and h, such that for
each ω with 0 < |ω| < 1, the solutions to (7.30) satisfy∫

ΩC
(|Aω

C,h −A0
C,h|2 + | curlAω

C,h − curlA0
C,h|2

+| divAω
C,h − divA0

C,h|2) ≤ K ω2

∫
ΩC

(|V ω
C,h − V 0

C,h|2 + | gradV ω
C,h − gradV 0

C,h|2) ≤ K ω2

||qωh − q0
h||21/2,Γ ≤ K ω2 ,

having chosen V ω
C,h,V

0
C,h, q

ω
h and q

0
h such that

∫
ΩC

V ω
C,h =

∫
ΩC

V 0
C,h = 0 and

∫
Γ

qωh =∫
Γ q0

h = 0.
An important point of the above result is that the behaviour in ω is uniform with

respect to h; it is not evident that this is true for other finite element approximation
schemes, as it is not always possible to show that the associated sesquilinear form
is coercive uniformly with respect to ω (for our approach, this has been proved in
Theorem 7.5).

Remark 7.11. A delicate point of the discretization is the efficient computation of the
terms involving the single layer and double layer potentials and the hypersingular in-
tegral operator: an extensive literature is devoted to analyze this problem.
By integration by parts it is possible to restrict the problem to the computation of

terms of the form ∫
T×T ′

1
|x− y| p(y)q(x) dSydSx

or ∫
T×T ′

x − y
|x− y|3 · n(y) p(y)q(x) dSydSx ,

where p, q are polynomials and T , T ′ are triangles of the mesh TΓ,h. If T ∩ T ′ = ∅
the integrands are regular functions and standard cubature methods can be used. On
the other hand, if T = T ′ or T ∩ T ′ is an edge or a vertex the integrands have a
singular behavior. As indicated in Börm and Hackbusch [56], different techniques can
be applied to evaluate these terms. One possibility is to use quadrature rules adapted
to the singularity of the kernel (see Schwab and Wendland [224]). Another possibility
is to apply a suitable regularizing coordinate transformation that renders regular the
integrand, and then to use standard cubature formulas (see Duffy [98], Erichsen and
Sauter [101], Sauter and Lage [221]). Finally, semi-analytical approaches apply an
exact integration at least for the inner integral (see Sauter and Schwab [222], Gray et
al. [113]). �
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7.5.1 The non-convex case

As we noted in Remark 7.9, if the conductor ΩC is a polyhedral non-convex set it
can happen that the convergence of the finite element approximation does not hold.
Therefore, it is suitable to follow an alternative approach.
We start by recalling that, when the conductor has a complex geometry, it is usual

to enclose it into a “simpler” set, and in this new region to look for a vector potential of
themagnetic induction.This procedure, that is generally called the (AC , VC)−AI−ψI
formulation, has been described in Section 6.3.
In our case, we assume that the conductorΩC is included into a polyhedral convex

bounded open setΩA, as small as possible. Setting nowΩI := R3 \ΩA, ΓA := ∂ΩA,

WA := H(curl;ΩA) ∩H0(div;ΩA) ,

and denoting by nA the unit outward normal vector on ΓA, the weak formulation reads

Find (A, VC, q) ∈ WA ×H1(ΩC)/C×H1/2(ΓA)/C such that∫
ΩA

(μ−1 curlA · curlw + μ−1
∗ divA divw)

+
∫
ΩC

(iωσAC ·wC + σ gradVC ·wC)
+
∫
ΓA

[−1
2
q −D(q) + 1

μ0
S(curlA · nA)] curlw · nA

=
∫
ΩC

Je,C ·wC∫
ΩC

(iωσAC · gradQC + σ gradVC · gradQC)
=
∫
ΩC

Je,C · gradQC∫
ΓA

[ 12 curlA · nA +D′(curlA · nA) + μ0H(q)]η = 0

for all (w, QC, η) ∈ WA ×H1(ΩC)/C×H1/2(ΓA)/C .

(7.31)

The results presented in Section 7.3, as well as those in Sections 7.4 and 7.5, can be
easily obtained also for this formulation,with essentially the same proofs. In particular,
the finite element approximation scheme converges, as stated in Theorem 7.8, since
the domainΩA is convex. All the details concerning this approach have been given in
Alonso Rodríguez and Valli [19].

7.6 Other FEM–BEM approaches

Among the FEM–BEM formulations that we mentioned at the beginning of this chap-
ter, in this section we briefly present those due to Bossavit and Vérité [62], [63], Med-
dahi and Selgas [176] and Hiptmair [127].

7.6.1 The code TRIFOU

The first authors who proposed a coupled FEM–BEM formulation of the eddy current
problem are Bossavit and Vérité [62], [63]. Based on this coupled approach, they have
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also developed a popular numerical code, named TRIFOU, widely used at Electricité
de France since 1980.
We recall that, for the sake of simplicity, we are assuming that ΩC is simply-

connected and that ΩI = R3 \ ΩC is connected, so that the boundary Γ = ∂ΩC is
connected. As a consequence, as in Chapter 5 we can writeHI = gradψI .
As in (3.9), for each test functionv ∈ H(curl;R3)with curlvI = 0 inΩI we have∫
ΩC

σ−1 curlHC · curlvC +
∫
R3

iωμH · v =
∫
ΩC

σ−1Je,C · curlvC . (7.32)

On the other hand, writing vI = gradχI and remembering that ψI is a harmonic
function vanishing at infinity, we find by integration by parts∫

ΩI
iωμ0HI · vI =

∫
ΩI

iωμ0 gradψI · gradχI
=
∫
Γ
iωμ0 gradψI · nI χI .

(7.33)

We introduce the linear and continuous Steklov–Poincaré operatorR as

R : H1/2(Γ )→ H−1/2(Γ ) , R(χΓ ) := gradχI · nI on Γ , (7.34)

where χI belongs to the spaceW 1(ΩI) introduced in (7.17) and satisfies ΔχI = 0 in
ΩI and χI|Γ = χΓ . We also set

W̃ := {(vC , χΓ ) ∈ H(curl;ΩC)×H1/2(Γ )
|vC × nC + gradτχΓ × nI = 0 on Γ } .

(7.35)

We can thus rewrite the eddy current problem as

Find (HC , ψΓ ) ∈ W̃ such that∫
ΩC

σ−1 curlHC · curlvC +
∫
ΩC

iωμCHC · vC
+iωμ0

∫
Γ
R(ψΓ )χΓ

=
∫
ΩC

σ−1Je,C · curlvC
for each (vC , χΓ ) ∈ W̃ .

(7.36)

By the trace inequality (A.8) and the Poincaré inequality inW 1(ΩI ) (see, e.g., Nédélec
[187], Theor. 2.5.13) we have∫

Γ

R(χΓ )χΓ =
∫
ΩI

gradχI · gradχI ≥ κ0‖χΓ‖1/2,Γ ,

hence the sesquilinear form aT (·, ·) at the left hand side of (7.36) is clearly coercive
in W̃ , and the problem is well-posed.
If one is interested in finding also the magnetic field inΩI , one has to set

ψI = DI(ψΓ )− 1
μ0
SI (μCHC · nC) ,

where the operators SI and DI have been introduced in (7.15) and (7.16).
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When considering numerical approximation we assume that ΩC is a Lipschitz
polyhedral domain, and we denote by TC,h a regular family of triangulations of ΩC

and by T∂,h the mesh induced on Γ by TC,h. We also suppose that each elementK of
TC,h is a tetrahedron. We consider

W̃h := {(vC,h, χΓ,h) ∈ N1
C,h × C0(Γ ) |χΓ,h|T ∈ P1 ∀ T ∈ T∂,h,
vC,h × nC + gradτχΓ,h × nI = 0 on Γ } ,

whereN1
C,h is the space of Nédélec curl-conforming edge elements of the lowest order

inΩC (see Section A.2).
Due to the constraint on Γ , any function (vC,h, χΓ,h) in W̃h can be clearly written

as
vC,h =

∑
e∈E0

C,h

αeqe +
∑

v∈VΓ,h

αv gradϕv , χΓ,h =
∑

v∈VΓ,h

αvϕv ,

where E0
C,h is the set of edges e ∈ TC,h that are internal to ΩC , VΓ,h is the set of

vertices v ∈ T∂,h, and we have denoted by qe the edge basis function defined in ΩC

and associated to the edge e, and by ϕv the nodal basis function defined in ΩC and
associated to the vertex v.
For a suitable implementation it is necessary to find a sound and computationally

cheap approximation of the Steklov–Poincaré operator R. Recalling the definition of
the operators S in (7.6) and SI in (7.15), we can writeψI = SI(λΓ ) and ψΓ = S(λΓ ),
where, as a consequence of well-known results in potential theory, λΓ ∈ H−1/2(Γ )
satisfies

gradψI · nI =
1
2
λΓ −D′(λΓ ) on Γ

(see, e.g., McLean [175], Nédélec [187]). Passing to a variational formulation, we are
looking for ψΓ ∈ H1/2(Γ ) and λΓ ∈ H−1/2(Γ ) such that∫

Γ
S(λΓ ) ξΓ =

∫
Γ

ψΓ ξΓ∫
Γ
R(ψΓ )χΓ =

∫
Γ
[ 12λΓ −D′(λΓ )]χΓ

for all χΓ ∈ H1/2(Γ ) and ξΓ ∈ H−1/2(Γ ).
In matrix form we can write, with obvious notation,

SλΓ = BT
Γ ψΓ

RψΓ = 1
2BΓλΓ −D′λΓ ,

where the vector unknowns are complex-valued, while the matrices are real-valued (as
we can choose real-valued finite element basis functions).We also see at once that the
matrix S is symmetric and positive definite, hence we can rewrite

R =
(1

2
BΓ −D′

)
S−1BT

Γ .
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Unfortunately, this matrix is not symmetric, though the Steklov–Poincaré operatorR
is hermitian. Therefore, in the TRIFOU code the following symmetric matrix

R� :=
1
2
(R + RT )

has been proposed as an approximation of the operatorR.
Though a complete analysis of the convergence of the method is not available,

the TRIFOU code has been used in many engineering applications with satisfactory
results (for a deeper insight and additional comments, see Bossavit and Vérité [62],
[63], Bossavit [57]; in particular, note that the matrix R� may even happen to be sin-
gular: see Bossavit [59], p. 214).

7.6.2 An approach based on the magnetic field HC

In Meddahi and Selgas [176], following an approach that is close to that presented in
the preceding section, the authors choose as unknownsHC inΩC and μCHC ·nC on
Γ , and derive a symmetric formulation. Again we assume, for the sake of simplicity,
that ΩC is simply-connected and that the boundary Γ = ∂ΩC is connected (for the
general not simply-connected case, see Meddahi and Selgas [176]). Consequently, we
can writeHI = gradψI .
As before, we obtain (7.32) and (7.33), and, using the interface condition

μCHC · nC + μ0 gradψI · nI = 0 on Γ , we also find∫
ΩI

iωμ0HI · vI =
∫
Γ iωμ0 gradψI · nI χI

= −
∫
Γ iωμCHC · nC χI .

Furthermore, we can rewrite (7.10) and (7.11) as

1
2
ψΓ −D(ψΓ ) +

1
μ0
S(μCHC · nC) = 0 on Γ (7.37)

1
2μ0

μCHC · nC +
1
μ0
D′(μCHC · nC) +H(ψΓ ) = 0 on Γ . (7.38)

Thus, setting χΓ := χI|Γ , we easily find∫
ΩC

σ−1 curlHC · curlvC +
∫
ΩC

iωμCHC · vC
+iω

∫
Γ
[−1

2μCHC · nC +D′(μCHC · nC) + μ0H(ψΓ )]χΓ
=
∫
ΩC

σ−1Je,C · curlvC ,

(7.39)

and for any test function ξ on Γ we also have∫
Γ

[
1
2
ψΓ −D(ψΓ ) +

1
μ0
S(μCHC · nC)] ξ = 0 . (7.40)

Let us set λ := μ−1
0 μCHC · nC . From the Stokes theorem for closed surfaces we

have λ ∈ H
−1/2
� (Γ ), where

H
−1/2
� (Γ ) :=

{
ξ ∈ H−1/2(Γ ) |

∫
Γ

ξ = 0
}

.
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Moreover, as in Section 4.4, define

X̃C := {vC ∈ H(curl;ΩC) | divτ (vC × nC) = 0 on Γ } ,

and set
X̃Γ := {(vC × nC)|Γ |vC ∈ X̃C} . (7.41)

Introducing the operator
CurlτχΓ := gradχI × nI

(see also Section A.1), it is straightforward to verify that CurlτχΓ ∈ X̃Γ .
We have seen in Section 7.2 thatD(1) = −1

2 , so that∫
Γ
[−1

2μCHC · nC +D′(μCHC · nC)] = μ0

∫
Γ
[−1

2λ + D′(λ)]

= μ0

∫
Γ [−1

2λ + λD(1)] = −μ0

∫
Γ λ = 0 .

Moreover, it holds
∫
Γ H(η) = 0 for each η ∈ H1/2(Γ ) andH(1) = 0, hence equation

(7.39) does not change if we add a constant to ψΓ and χΓ . Instead, adding a constant
to ψΓ we have

1
2
(ψΓ + c0)− D(ψΓ + c0) =

1
2
ψΓ − D(ψΓ ) + c0 ,

therefore equation (7.40) does not change ifwe choose the test functionξ ∈ H
−1/2
� (Γ ).

Meddahi and Selgas [176] proved that Curlτ is an isomorphism fromH1/2(Γ )/C
onto X̃Γ . Since HC × nC = − gradψI × nI = −CurlτψΓ on Γ , in (7.39) we can
replace ψΓ and the test function χΓ with Curl

−1
τ (HC × nC) and Curl−1

τ (vC × nC),
respectively, and we finally obtain that the eddy current problem can be rewritten as

Find (HC , λ) ∈ X̃C ×H
−1/2
� (Γ ) such that∫

ΩC
σ−1 curlHC · curlvC +

∫
ΩC

iωμCHC · vC
+iωμ0

∫
Γ
[ 1
2
λ −D′(λ)]Curl−1

τ (vC × nC)
+iωμ0

∫
Γ
H(Curl−1

τ (HC × nC))Curl−1
τ (vC × nC)

=
∫
ΩC

σ−1Je,C · curlvC
iωμ0

∫
Γ
[−1

2Curl
−1
τ (HC × nC) + D(Curl−1

τ (HC × nC))] ξ
+iωμ0

∫
Γ
S(λ) ξ = 0

for each (vC , ξ) ∈ X̃C ×H
−1/2
� (Γ ) .

(7.42)

Note that

iωμ0

∫
Γ
[ 1
2
ξ − D′(ξ)]Curl−1

τ (vC × nC)
+iωμ0

∫
Γ
[−1

2Curl
−1
τ (vC × nC) +D(Curl−1

τ (vC × nC))] ξ
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is a real number, namely, it is equal to

−2ωμ0 Im
(∫

Γ

[
1
2
ξ −D′(ξ)]Curl−1

τ (vC × nC)
)
.

Moreover, taking into account that the operator D is continuous from H1/2(Γ ) into
itself and that the operator Curl−1

τ is continuous from X̃Γ intoH1/2(Γ )/C, it follows
that for each 0 < δ < 1 one has

2|ω|μ0

∣∣∫
Γ
[ 12ξ − D′(ξ)]Curl−1

τ (vC × nC)
∣∣

≤ c∗‖ξ‖−1/2,Γ (‖vC‖0,ΩC + ‖ curlvC‖0,ΩC)
≤ δ‖ curlvC‖20,ΩC

+ C∗δ−1‖ξ‖2−1/2,Γ + C∗‖vC‖20,ΩC
.

Then, recalling (7.27) and adapting the proof of Theorem 7.5, by choosing δ small
enough it is not difficult to show that the sesquilinear form aΓC(·, ·) at the left hand side
of (7.42) is coercive in X̃C ×H

−1/2
� (Γ ). Problem (7.42) is therefore well-posed.

Having solved (7.42), one can determine ψI in ΩI by setting

ψI = −DI (Curl−1
τ (HC × nC))− SI(λ) .

The numerical approximation needs some remarks, as a conforming discretization
requires that the finite element functionsvC,h satisfy the constraint divτ (vC,h×nC) =
0 on Γ . Instead of introducing a Lagrange multiplier, as done in Section 4.5, here we
present an alternative approach, based on the explicit construction of a basis for the
space

X̃C,h := {vC,h ∈ N1
C,h | divτ(vC,h × nC) = 0 on Γ } ,

where N1
C,h is the space of Nédélec curl-conforming edge elements of the lowest or-

der (see Section A.2). Note that this construction could be used also for the approach
presented in Section 4.5.
As in the preceding section, we assume thatΩC is a Lipschitz polyhedral domain,

and we denote by TC,h and TΓ,h two regular families of triangulations of ΩC and Γ ,
respectively. We suppose that each element K of TC,h is a tetrahedron and that each
element T of TΓ,h is a triangle. Let us also denote by T∂,h the mesh induced on Γ by
TC,h; it is not assumed to coincide with TΓ,h. Finally, E0

C,h denotes the set of edges
e ∈ TC,h that are internal toΩC , VΓ,h the set of vertices v ∈ T∂,h, qe the lowest-order
edge basis function defined inΩC and associated to the edge e, and ϕv the piecewise-
linear nodal basis function defined inΩC and associated to the vertex v.

Proposition 7.12. Let v0 ∈ Γ be a fixed vertex of VΓ,h. The set

B̃h := {qe | e ∈ E0
C,h} ∪ {gradϕv | v ∈ VΓ,h, v �= v0}

is a basis of X̃C,h.
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Proof. Let us start by showing that the elements of B̃h are linearly independent. Sup-
pose that ∑

e∈E0
C,h

αeqe +
∑

v∈VΓ,h
v �=v0

αv gradϕv = 0 .

Then on Γ we have

0 =
( ∑
e∈E0

C,h

αeqe +
∑

v∈VΓ,h
v �=v0

αv gradϕv
)
× nC = grad

( ∑
v∈VΓ,h

v �=v0

αvϕv

)
× nC ,

so that ∑
v∈VΓ,h

v �=v0

αvϕv = k0 on Γ ,

where k0 is a constant. Since ϕv(v0) = 0 for each v �= v0, we have k0 = 0 and
thereforeαv = 0 for each v ∈ VΓ,h, v �= v0. Then we are left with

∑
e∈E0

C,h
αeqe = 0,

which gives αe = 0 for each e ∈ E0
C,h.

On the other hand, the inclusion B̃h ⊂ X̃C,h is clearly true. Moreover, take
vC,h ∈ X̃C,h: since divτ (vC,h × nC) = 0 on Γ , recalling that Γ is simply-
connected it is possible to find a piecewise-linear function ϕΓ,h, defined on Γ , such
that gradτ ϕΓ,h × nC = vC,h × nC on Γ . The function ϕΓ,h is uniquely determined
by requiring ϕΓ,h(v0) = 0. The extension of ϕΓ,h in ΩC , obtained by setting all
its internal nodal values equal to 0, will be denoted by ϕh. Clearly, gradϕh belongs
to the space spanned by the set of functions {gradϕv | v ∈ VΓ,h, v �= v0}. Since
vC,h×nC = gradϕh×nC on Γ , it follows that (vC,h− gradϕh) is an edge element
belonging to the space spanned by the set of functions {qe | e ∈ E0

C,h}, and the thesis
follows. �

Thus we have a viable description of the finite element space X̃C,h, and, since we
know that X̃C,h ⊂ X̃C , a conforming approximation scheme is readily devised. The

finite element space used for approximating functions inH
−1/2
� (Γ ) is typically

MΓ,h := {ξh ∈ L2(Γ ) | ξh|T ∈ P0 ∀ T ∈ TΓ,h ,
∫
Γ ξh = 0} ,

and the convergence of the scheme is a straightforward consequence of Céa lemma.
It should also be noted that, in the implementation of the finite element scheme,

the inverse of the tangential operator Curlτ does not appear. In fact, let bC ∈ B̃h be
a basis function. If bC = qe, one has bC × nC = 0 on Γ ; if bC = gradϕv , it
holds Curlτϕv = − gradϕv × nC = −bC × nC on Γ , thus in the finite element
approximation of (7.42) we can replace Curl−1

τ (bC × nC) with−ϕv|Γ .
To illustrate the performance of this method, let us exhibit some numerical results

presented in Selgas Buznego [226] for a couple of academic problems. In the first one
the computational domain is the cube ΩC = (−1, 1)3, all the physical parameters are
set equal to 1, and the current density Je is computed starting from the exact solution
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Table 7.1. Absolute errors forHC and λ in the first example (courtesy of V. Selgas)

h ‖HC −HC,h‖H(curl;ΩC) ‖λ − λh‖0,Γ α

0.7733 34.8247 0.3136 -

0.5330 25.0762 0.1634 0.8825

0.2989 14.0539 0.0257 1.0010

0.2337 11.4203 0.0131 0.8433

E = curl(f, f, f), where

f(x) :=
{

(1− x2
1)4(1− x2

2)4(1− x2
3)4 inΩC

0 inΩI = R3 \ΩC .

In Table 7.1 and Figure 7.1 we report the absolute error and the convergence rate for
HC and λ for different value of the mesh size h. We have defined

α :=
log(‖HC −HC,hi‖H(curl;ΩC)/‖HC −HC,hi+1‖H(curl;ΩC))

log(hi/hi+1)
,

hi and hi+1 being the mesh sizes of two consecutive computations.
In the second example the conductorΩC is the torus given by

ΩC := [(−1, 1)× (−1, 1)× (−1/2, 1/2)] \ (−1/2, 1/2)3 ,

contained in the computational domain

Ω := (−3/2, 3/2)× (−3/2, 3/2)× (−1, 1)

(see Figure 7.2).

Fig. 7.1. Convergence rate forHC in the first example (courtesy of V. Selgas)
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Fig. 7.2. The computational domainΩ for the second example (courtesy of V. Selgas)

In order to avoid the technical difficulties arising from the fact that ΩC is not
simply-connected, the variational formulation has been modified: to be precise, in
R3 \Ω the usual approach based on the potential theory is used for reducing the con-
tributionof the magnetic fieldHI = gradψI to suitable integrals on the boundary ∂Ω,
while the eddy current problem is solved in Ω by adopting the H-based formulation
described in Section 4.3.
Again, all the physical parameters are equal to 1, and the current density Je is

computed starting from the exact solutionE = curl(g, g, g), where

g(x) :=
{

(1− |x|2)4 inB(0, 1)
0 inΩI = R3 \B(0, 1) ,

where B(0, 1) is the ball of center 0 and radius 1. Note that in Ω \ ΩC the curl of
the magnetic field is not vanishing and consequentlyHI is not the gradient of a scalar
potential, while this is true outsideΩ.
In Table 7.2 and Figure 7.3 the absolute error and the convergence rate forHC and

λ are presented for different value of the mesh size h.

Table 7.2. Absolute errors forHC and λ in the second example (courtesy of V. Selgas)

h ‖HC − HC,h‖H(curl;ΩC) ‖λ − λh‖0,Γ α

0.9299 56.1051 0.7107 -

0.6601 39.3998 0.1413 1.0315

0.4572 28.6757 0.0620 0.8651

0.3653 22.0725 0.0173 1.1663
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Fig. 7.3. Convergence rate forHC in the second example (courtesy of V. Selgas)

7.6.3 An approach based on the electric field EC

Another FEM–BEM approach can be devised if one keeps the electric field EC as
principal unknown. Again, for the sake of simplicity, we assume that ΩC is simply-
connected and that the boundary Γ = ∂ΩC is connected. Starting from the Ampère
equation and inserting in it the Faraday equation, for a test function z that decays
sufficiently fast at infinity we find

−iω
∫
ΩC

σEC · zC − iω
∫
ΩC

Je,C · zC = −iω
∫
R3 curlH · z

= −iω
∫
R3 H · curl z =

∫
R3 μ−1 curlE · curl z .

Since we know that μ−1
0 curl curlEI = −iω curlHI = 0 inΩI , we also have∫

ΩI

μ−1
0 curlEI · curl zI =

∫
Γ

μ−1
0 curlEI × nI · zI ,

therefore we are left with∫
ΩC

μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC
+μ−1

0

∫
Γ
curlEI × nI · zI

= −iω
∫
ΩC

Je,C · zC .
(7.43)

Let us go on without giving all the details about the functional framework, but just
presenting the main idea. Denote by R the vectorial Steklov–Poincaré operator given
by

R(q) := curleI × nI on Γ ,
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where q · nI = 0 on Γ and eI is the solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl curl eI = 0 in ΩI

div(ε0eI) = 0 in ΩI

nI × eI × nI = q on Γ∫
Γ

ε0eI · nI = 0
eI(x) = O(|x|−1) as |x| → ∞ .

(7.44)

We thus have curlEI ×nI = R(nC ×EC ×nC) on Γ , and we can rewrite (7.43)
as ∫

ΩC
μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC
+μ−1

0

∫
Γ

R(nC ×EC × nC) · zI
= −iω

∫
ΩC

Je,C · zC .
(7.45)

Bossavit [57] has extended the TRIFOU approach to this formulation, which is
based on the electric field. We do not dwell on this here, referring the interested reader
to the paper just quoted (see also Ren et al. [208]).
Instead, we present an alternative approach, proposed and analyzed by Hipt-

mair [127], which leads to a symmetric formulation (we also note that in that paper
no restrictive assumption on the geometrical shape of the conducting domain ΩC is
imposed). First of all, as in (A.1), (A.3) and (A.4) introduce the trace spaces

H
1/2
T (Γ ) := {(n× v × n)|Γ |v ∈ (H1(Ω))3}

H−1/2(divτ ;Γ ) = {(vC × nC)|Γ |vC ∈ H(curl;ΩC)},
and

H−1/2(curlτ ;Γ ) = {(nC × vC × nC)|Γ |vC ∈ H(curl;ΩC)} ;

note that the last two spaces are one the dual space of the other.
Let us define now on Γ the vectorial single layer and double layer potentials

S : (H1/2
T (Γ ))′ → H

1/2
T (Γ )

S(p)(x) :=
∫
Γ

1
4π|x−y| p(y)dSy

(7.46)

D : H−1/2(curlτ ;Γ )→ H−1/2(curlτ ;Γ ) ,
D(q)(x) :=

∫
Γ

x−y
4π|x−y|3 × [q(y)× nC(y)]dSy ,

(7.47)

the hypersingular integral operator

H : H−1/2(curlτ ;Γ )→ H−1/2(divτ ;Γ ) ,

H(q)(x) := − curl
(∫

Γ
x−y

4π|x−y|3 × [q(y)× nC(y)]dSy
)
× nC(x), (7.48)

and the adjoint operator

D′ : X̃Γ → X̃Γ ,

D′(p)(x) :=
(∫

Γ
y−x

4π|x−y|3 × p(y)dSy
)
× nC(x) ,

(7.49)
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where the space X̃Γ has been introduced in (7.41), and is given by the vector functions
p belonging toH−1/2(divτ ;Γ ) and such that divτ p = 0 on Γ .
In Hiptmair [127] (see also Reissel [205], Hiptmair and Ostrowski [129]) it has

been shown that these operators are continuous, and moreover that the solution EI

satisfies nC ×EI × nC = nC ×EC × nC ∈ H−1/2(curlτ ;Γ ), curlEI × nC ∈ X̃Γ

and also
1
2

∫
Γ nC × EC × nC · p′ −

∫
Γ D(nC × EC × nC) · p′

+
∫
Γ S(curlEI × nC) · p′ = 0 ∀ p′ ∈ X̃Γ ,

(7.50)

and

1
2

∫
Γ
curlEI × nC · q′ +

∫
Γ

D′(curlEI × nC) · q′

+
∫
Γ

H(nC ×EC × nC) · q′ = 0 ∀ q′ ∈ H−1/2(curlτ ;Γ ) .
(7.51)

Setting pΓ := curlEI × nC , the term on Γ in equation (7.43) can be written as

μ−1
0

∫
Γ

curlEI × nI · zI = −μ−1
0

∫
Γ

pΓ · zI = −μ−1
0

∫
Γ

pΓ · nC × zC × nC .

Therefore, inserting (7.51) in (7.43), we see that the eddy current problem can be for-
mulated as follows

Find (EC ,pΓ ) ∈ H(curl;ΩC)× X̃Γ such that∫
ΩC

μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC
−1

2μ
−1
0

∫
Γ

pΓ · nC × zC × nC
+μ−1

0

∫
Γ D′(pΓ ) · nC × zC × nC

+μ−1
0

∫
Γ

H(nC ×EC × nC) · nC × zC × nC
= −iω

∫
ΩC

Je,C · zC
1
2μ

−1
0

∫
Γ nC × EC × nC · p′ − μ−1

0

∫
Γ D(nC ×EC × nC) · p′

+μ−1
0

∫
Γ

S(pΓ ) · p′ = 0

for each (zC ,p′) ∈ H(curl;ΩC) × X̃Γ .

(7.52)

Note that

−1
2

∫
Γ p′ · nC × zC × nC +

∫
Γ D′(p′) · nC × zC × nC

+1
2

∫
Γ

nC × zC × nC · p′ −
∫
Γ

D(nC × zC × nC) · p′

is a purely imaginary number, and it is equal to

2 i Im
(1

2

∫
Γ

nC × zC × nC · p′ −
∫
Γ

D(nC × zC × nC) · p′
)
.
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Moreover, the boundedness of the operatorD and the trace inequality forH(curl;ΩC)
(see (A.11)) give that, for each 0 < δ < 1,∣∣ 1

2

∫
Γ

nC × zC × nC · p′ −
∫
Γ

D(nC × zC × nC) · p′∣∣
≤ c∗‖p′‖H−1/2(divτ ;Σ)(‖zC‖0,ΩC + ‖ curl zC‖0,ΩC)

≤ δ‖zC‖20,ΩC
+ C∗δ−1‖p′‖2

H−1/2(divτ ;Σ)
+ C∗‖ curl zC‖20,ΩC

.

Finally, in Hiptmair [127] it is shown that the operators S and H satisfies∫
Γ

H(nC × zC ×nC) ·nC × zC ×nC ≥ 0 ,

∫
Γ

S(p′) ·p′ ≥ κ0‖p′‖2H−1/2(divτ ;Σ) .

Thus, adapting the proof of Theorem 7.5, by choosing δ small enough it is not difficult
to prove that the sesquilinear form aΓe,C(·, ·) at the left hand side of (7.52) is coercive
inH(curl;ΩC) × X̃Γ , and we conclude that problem (7.52) is well-posed.
Having determined EC and pΓ = curlEI × nC = iωμ0HI × nI , one can also

find the magnetic field in ΩI . In fact, setting

SI(p)(x) :=
∫
Γ

1
4π|x− y| p(y)dSy , x ∈ ΩI ,

DI(q)(x) :=
∫
Γ

x − y
4π|x− y|3 × [q(y)× nC(y)]dSy , x ∈ ΩI ,

from well-known results of potential theory we easily obtain by integration by parts
the representation formula

EI (x) = DI(EC )− SI(pΓ ) − gradSI(EI · nC) , (7.53)

where the operator SI has been introduced in (7.15). Then the magnetic field HI =
−(iωμ0)−1 curlEI can be written as

HI = −(iωμ0)−1 (curlDI(EC )− curlSI(pΓ )) .

Instead, since we do not know the value of the normal component EI · nC on Γ , the
electric field EI cannot be computed through (7.53), and one has to solve (7.2).
The numerical approximation is quite similar to that presented in Section 7.6.2. In

fact, Nédélec curl-conforming edge element of the lowest order can be used in ΩC ;
instead, the conforming approximation of X̃Γ is given by the space spanned by

{Curlτϕv | v ∈ VΓ,h, v �= v0} ,

where VΓ,h is the set of vertices v ∈ T∂,h, the mesh induced on Γ by TC,h, ϕv is the
piecewise-linear nodal basis function defined on Γ and associated to the vertex v, and
v0 ∈ Γ is a fixed vertex of VΓ,h.
In Hiptmair [127] the convergence of the approximation scheme, based on Céa

lemma and suitable interpolation estimates, is completely proved. Moreover, the dis-
crete problem is analyzed also when ΩC is not simply-connected: this geometric situ-
ation has the drawback that the boundary element space for approximating X̃Γ is more
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complicated. Finally, some remarks on implementation are also added: in particular,
it is shown that the operators S, D and H can be expressed in terms of the analogous
operators constructed for the Laplace operator. For example, one has∫

Γ

S(CurlτψΓ,h) · CurlτχΓ,h =
∫
Γ

H(ψΓ,h)χΓ,h ,

∫
Γ

D′(pΓ,h) · nC × zC,h × nC =
∫
Γ

pΓ,h · D(nC × zC,h × nC)
+
∫
Γ

∫
Γ

x−y
4π|x−y|3 · [nC(x) × zC,h(x) × nC(x)](pΓ,h(y) · nC(x))dSxdSy ,∫

Γ

H(nC×EC,h×nC)·nC×zC,h×nC =
∫
Γ

S(divτ (EC,h×nC)) divτ(zC,h×nC) ,

where S, D and H are the operators introduced in (7.6), (7.7) and (7.8), respectively.
Therefore, the techniques developed for Galerkin boundary element methods for the
Laplace operator can be used in this framework (in this respect, see also Remark 7.11).



8

Voltage and current intensity excitation

In many electromagnetic phenomena it is useful to couple formulations in terms of
electrical circuits with more general formulations based on Maxwell equations or on
some reduced model like the eddy current system. On the common interface between
the two models, the boundary data for the domain where the eddy current model is
considered are current intensities or voltages.
In its simplest configuration, in these cases the computational domain is a simply-

connected bounded open set Ω. The conducting region ΩC , unlike in the previous
chapters, is not strictly contained in the computational domain and the region where it
touches the boundary of Ω has at least two disjoint connected components, the elec-
tric ports. Our aim is to model the electromagnetic problem in the case of an electric
current passing inside the conductor connecting the electric ports; this electric current
is imposed by assigning its intensity or a potential difference.
A critical point is which kind of boundary conditions can be considered outside

the electric ports. In fact, for certain boundary conditions the eddy current problem is
well-posed even if no additional condition like voltage or current intensity is imposed.
The same occurs, for any type of boundary conditions, in the case of a device where
the conductor is strictly contained in the computational domain. To overcome this
apparent contradiction it is necessary to focus on the modeling of the problem, and
devise a formulation for which it becomes possible to impose the voltage or current
intensity, but without giving up Maxwell equations.
In this chapter we propose a systematic approach to eddy current problems driven

by voltage or current intensity. In Section 8.1 we start by making precise for which
set of boundary conditions the voltage excitation and the current intensity excitation
problems in the presence of electric ports are well-posed. Then, followingAlonso Ro-
dríguez et al. [20], we present a hybrid approach in terms of the electric field inΩC and
the scalar magnetic potential inΩI . We also briefly describe two other approaches that
have been proposed for addressing the eddy current problem in the presence of elec-
tric ports (see Meunier et al. [177], Bíró et al. [52], Bermúdez et al. [45]). Finally, we
propose a finite element method for the approximation of the hybrid problem, obtain
the error estimates and illustrate the performance of the methods with some numerical
results. In Section 8.2, as in Alonso Rodríguez and Valli [18], we discuss how to take

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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into account voltage and current intensity excitation in the case of a conductor strictly
contained in the computational domain (a similar point of view can also be adopted
for the problem with electric ports, when subjected to electric or magnetic boundary
conditions on ∂Ω ∩ ∂ΩI ).
To a reader interested in numerical approximation and implementation we suggest

to concentrate on problems (8.38) and (8.40) (voltage excitation), on problems (8.39)
and (8.42) (current intensity excitation), on Section 8.1.2 ((HC , ψ∗

I ) formulation), on
Section 8.1.3 ((TC , ψ∗) formulation) and on Section 8.1.5.

8.1 The eddy current problem in the presence of electric ports

The computational domain is a simply-connected bounded open set Ω ⊂ R3, with
a connected and Lipschitz boundary ∂Ω. It is split into two Lipschitz subdomains, a
conducting regionΩC and a non-conducting regionΩI = Ω\ΩC ; the latter is assumed
to be connected. The conducting region ΩC is not strictly contained in Ω, i.e., ∂Ω ∩
∂ΩC �= ∅. For the sake of simplicity, we assume that it is simply-connected; for more
general geometrical situations, which could be more interesting for applications, see
Remark 8.8. As usual, we denote the interface between the two regions by Γ , while
the different parts of the boundary ∂Ω are indicated by ΓC = ∂Ω ∩ ∂ΩC and ΓI =
∂Ω ∩ ∂ΩI . Moreover, we suppose that ΓC = ΓE ∪ ΓJ , where ΓE and ΓJ are two
disjointand connected surfaces onΓC (‘electric ports’).Therefore, with these notations
we have ∂ΩC = ΓE ∪ ΓJ ∪ Γ , ∂ΩI = ΓI ∪ Γ (see Figure 8.1).
Concerning thematerial coefficients, as usual we assume that the matrix μ is sym-

metric and uniformly positive definite in Ω, with entries belonging to L∞(Ω), the
matrix εI is symmetric and uniformly positive definite in ΩI , with entries belonging
toL∞(ΩI), and the matrixσ is symmetric and uniformly positive definite inΩC , with
entries belonging to L∞(ΩC), whereas it vanishes in ΩI .

Fig. 8.1. The computational domain
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The eddy current equations as usual read

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω
div(εIEI ) = 0 in ΩI .

(8.1)

We want to model the electromagnetic problem in the case of an electric current pass-
ing along the ‘cylinder’ΩC , and to impose this electric current as a potential difference
between ΓE and ΓJ , or as a certain given intensity through ΓJ .
A first point in the modelization is to require that the electric field is normal to

the boundary on the two electric ports, namely, EC × nC = 0 on ΓE ∪ ΓJ . Then,
following Bossavit [61], we consider the no-flux boundary conditions

EC × nC = 0 on ΓE ∪ ΓJ
εIEI · nI = 0 on ΓI
μH · n = 0 on ∂Ω .

(8.2)

Since μH · n = 0 on ∂Ω, from the Faraday law one has divτ (E × n) = 0 on ∂Ω,
which is a simply-connected surface; hence there exists a surface potential v ∈ H1(Ω)
such that E× n = grad v × n on ∂Ω. Moreover EC × nC = 0 on ΓE ∪ ΓJ , then the
function v must be constant on ΓE and ΓJ . Since v is defined up to a constant, we can
take it equal to 0 on ΓE .
In the voltage excitation problem, given V ∈ C we look for a solution of the eddy

current problem with the boundary condition

E× n = grad v × n on ∂Ω , with v|ΓJ
= V and v|ΓE

= 0 , (8.3)

plus εIEI · nI = 0 on ΓI (in particular, all the conditions (8.2) are satisfied).

Remark 8.1. It is worth noting that the quantity V is given by

V =
∫
γ̂

E · dτ , (8.4)

where γ̂ is any curve lying onΓI and joining the electric portΓE to the electric portΓJ .
Hence the voltage excitation problem can also be written as the eddy current problem
with the boundary conditions (8.2) and the additional condition (8.4). �

In the current intensity excitation problem, given I0 ∈ C we impose the eddy
current equations, the boundary conditions (8.2) and moreover∫

ΓJ

curlHC · nC = I0 . (8.5)

We notice that the set of boundary conditions (8.2) allows us to assign the voltage
or the current intensity. This is not the case for other boundary conditions such as the
electric boundary condition

E× n = 0 on ∂Ω (8.6)
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or the magnetic boundary conditions

EC × nC = 0 on ΓE ∪ ΓJ ,
εIEI · nI = 0 on ΓI ,
HI × nI = 0 on ΓI .

(8.7)

In fact, the following result holds:

Proposition 8.2. Let us consider the solutions H and E of the eddy current problem

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω .

(8.8)

The magnetic field H in Ω and the electric field EC in ΩC are uniquely determined
for each one of the boundary condition (8.6) and (8.7).

Proof. Assume that Je = 0 in Ω. Multiply the Faraday equation by H and integrate
inΩ. Integration by parts gives

0 =
∫
Ω
curlE ·H +

∫
Ω

iωμH ·H
=
∫
Ω

E · curlH +
∫
Ω

iωμH ·H−
∫
∂Ω

E× n ·H .

Recalling that curlHI = 0 in ΩI and replacing curlHC by σEC we have

0 =
∫
ΩC

σEC · EC +
∫
Ω

iωμH ·H−
∫
∂Ω

E× n ·H .

It is clear that the boundary integral vanishes for both choices (8.6) and (8.7), and then
it follows thatH = 0 and EC = 0. �

If we repeat the computation here above with the set of boundary conditions (8.2),
writingEC = σ−1 curlHC we find∫

ΩC
σ−1 curlHC · curlHC +

∫
Ω

iωμH ·H
=
∫
∂Ω
grad v × n ·H = −

∫
∂Ω

H× n · grad v
=
∫
∂Ω curlH · n v = v|ΓJ

∫
ΓJ
curlHC · n .

(8.9)

In this case a degree of freedom is indeed still free, either the voltage v|ΓJ
or else the

current intensity
∫
ΓJ
curlHC · n.

8.1.1 Hybrid formulations in term of EC and ψ∗I

In this section, following Alonso Rodríguez et al. [20], we introduce a weak formu-
lation of problem (8.8) with boundary conditions (8.2) and assigned voltage (8.3) or
assigned current intensity (8.5). It is a hybrid formulation since the main unknowns
are the electric field in the conductor and the magnetic field in the insulator (see Chap-
ter 4). The latter is decomposed as the sum of the gradient of a function in H1(ΩI )
plus a harmonic field (see Chapter 5, in particular Section 5.3, where a formulation in
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terms of the electric field inΩC and of a scalar magnetic potential inΩI is devised for
the internal conductor case). When the input current intensity is given, this harmonic
field is uniquely determined, hence the unknowns of the problem reduce to the electric
field in the conductor and a scalar magnetic potential in the insulator. On the other
hand, when the voltage is given the unknowns of the problem are the electric field in
the conductor, a scalar magnetic potential in the insulator and the current intensity.
We recall the following orthogonal decomposition of (L2(ΩI))3 presented in The-

orem A.8: any given vector function vI ∈ (L2(ΩI))3 can be decomposed as

vI = μ−1
I curlQ∗

I + gradχ∗
I + k∗

I ,

with Q∗
I ∈ H(curl;ΩI), χ∗

I ∈ H1(ΩI)/C and k∗
I ∈ HμI (m;ΩI); in particular,

Q∗
I = 0 if curlvI = 0 in ΩI .
Since the conductorΩC touches the boundary of the computational domain in the

two electric ports, the non-conducting regionΩI is not simply-connected; its first Betti
number, which coincides with the dimension of the spaceHμI (m;ΩI), is equal to one.
Moreover, there exists one “cutting” surface Ξ∗

I such that Ξ
∗
I ⊂ ΩI , ∂Ξ∗

I ⊂ ∂ΩI and
the open set ΩI\Ξ∗

I is simply-connected (see Figure 8.2). Let p
∗
I denote the solution

(determined up to an additive constant) of the following elliptic problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
div(μI grad p

∗
I) = 0 in ΩI\Ξ∗

I

μI grad p
∗
I · nI = 0 on ∂ΩI \ ∂Ξ∗

I[
μI gradp

∗
I · nΞ∗

I

]
Ξ∗

I

= 0
[p∗I ]Ξ∗

I
= 1 ,

(8.10)

where [p∗I]Ξ∗
I
denotes the jump of p∗I acrossΞ

∗
I and nΞ∗

I
denotes the unit normal vector

on Ξ∗
I . Then ρ∗

I := g̃rad p∗I is a basis function of HμI (m;ΩI), g̃rad p∗I denoting the
(L2(ΩI))3-extension of grad p∗I computed in ΩI\Ξ∗

I (see Section A.4), and we can
choose the definition of the jump of p∗I on Ξ∗

I in such a way that
∫
∂ΓJ

ρ∗
I · t = 1,

where t is the tangential vector counterclockwise oriented with respect to nC on ΓJ .
We also choose, for the sake of definiteness, the orientation of nΞ∗

I
onΞ∗

I equal to that
of t.
We assume that the current density Je ∈ (L2(Ω))3 and, for the sake of simplicity,

in the sequel we also assume that Je,I = 0 in ΩI (the general case is considered
in Remark 8.3). Therefore, it follows that curlHI = 0 in ΩI and as a consequence
HI = gradψ∗

I + Kρ∗
I for some ψ∗

I ∈ H1(ΩI) andK ∈ C.
From the Stokes theorem

I0 =
∫
ΓJ

curlHC · nC =
∫
∂ΓJ

HC · t =
∫
∂ΓJ

HI · t = K

∫
∂ΓJ

ρ∗
I · t = K .

Hence, when the current intensity is assigned, the main unknowns in our formulation
are in fact EC and the magnetic scalar potential ψ∗

I only.
Computing the magnetic field from the Faraday equation and inserting it in the

Ampère law, we obtain

curl(μ−1
C curlEC) + iωσEC = −iωJe,C .
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Fig. 8.2. The “cutting” surface

For each zC ∈ H(curl;ΩC), by integration by parts one finds∫
ΩC

μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC −
∫
Γ

μ−1
C curlEC × nC · zC

= −iω
∫
ΩC

Je,C · zC .

From the Faraday equation and the interface condition

HC × nC + HI × nI = 0 on Γ

one has that
μ−1
C curlEC × nC = iωHI × nI on Γ ,

therefore,∫
ΩC

μ−1
C curlEC · curl zC + iω

∫
ΩC

σEC · zC − iω
∫
Γ

zC × nC ·HI

= −iω
∫
ΩC

JC · zC .
(8.11)

On the other hand, multiplying the Faraday equation by a test function vI =
gradχ∗

I , with χ∗
I ∈ H1(ΩI ), by integration by parts one has

iω

∫
ΩI

μIHI · gradχ∗
I = −

∫
ΩI

curlEI · gradχ∗
I =

∫
∂ΩI

EI × nI · gradχ∗
I .

Denoting by χ∗ any extension of χ∗
I inH1(Ω), from the interface condition

EC × nC + EI × nI = 0 on Γ

we have∫
∂ΩI

EI × nI · gradχ∗
I

=
∫
∂Ω

E× n · gradχ∗ +
∫
Γ

EI × nI · gradχ∗
I −

∫
ΓE∪ΓJ

EC × nC · gradχ∗

= −
∫
Γ EC × nC · gradχ∗

I ,
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because divτ (E× n) = 0 on ∂Ω and EC × nC = 0 on ΓE ∪ ΓJ . Hence

iω

∫
ΩI

μHI · gradχ∗
I = −

∫
Γ

EC × nC · gradχ∗
I . (8.12)

In a similar way, taking ρ∗
I as test function one obtains

iω

∫
ΩI

μIHI · ρ∗
I = −

∫
ΩI

curlEI · ρ∗
I =

∫
∂ΩI

EI × nI · ρ∗
I ,

and denoting byR∗ any extension of ρ∗
I inH(curl;Ω) it follows∫

∂ΩI

EI × nI · ρ∗
I =

∫
∂Ω

E× n ·R∗ −
∫
Γ

EC × nC · ρ∗
I .

Using that E× n = grad v × n on ∂Ω we have∫
∂Ω

E×n ·R∗ =
∫
∂Ω

grad v×n ·R∗ = −
∫
∂Ω

R∗×n ·grad v =
∫
∂Ω

curlR∗ ·n v .

Since curlR∗
I = curlρ∗

I = 0 in ΩI , v = V on ΓJ and v = 0 on ΓE , using the Stokes
theorem on ΓJ we obtain that∫

∂Ω

curlR∗ · n v = V

∫
ΓJ

curlR∗ · nC = V

∫
∂ΓJ

ρ∗
I · t = V .

Hence

iω

∫
ΩI

μIHI · ρ∗
I = V −

∫
Γ

EC × nC · ρ∗
I . (8.13)

As we noticed before,HI = gradψ∗
I + I0ρ∗

I where ψ∗
I ∈ H1(ΩI ) and I0 ∈ C is

the current intensity. Moreover, this decomposition is orthogonal in the sense that∫
ΩI

μI(gradψ
∗
I + Kρ∗

I) · (gradχ∗
I + Qρ∗

I)
=
∫
ΩI

μI gradψ
∗
I · gradχ∗

I + KQ
∫
ΩI

μIρ
∗
I · ρ∗

I

for all ψ∗
I , χ

∗
I ∈ H1(ΩI) and K, Q ∈ C. Hence, from (8.11), (8.12) and (8.13),

multiplying these two last equations by −iω, we have that EC and HI = gradψ∗
I +

I0ρ∗
I are such that for each zC ∈ H0,ΓC (curl;ΩC), χ∗

I ∈ H1(ΩI) andQ ∈ C it holds∫
ΩC

(μ−1
C curlEC · curl zC + iωσEC · zC)
−iω

∫
Γ

zC × nC · gradψ∗
I − iωI0

∫
Γ

zC × nC · ρ∗
I

= −iω
∫
ΩC

Je,C · zC
−iω

∫
Γ

EC × nC · gradχ∗
I + ω2

∫
ΩI

μI gradψ
∗
I · gradχ∗

I = 0

−iωQ
∫
Γ

EC × nC · ρ∗
I + ω2I0Q

∫
ΩI

μI ρ∗
I · ρ∗

I = −iωV Q .

(8.14)

When the voltage V is given and the current intensity I0 is unknown, these three
equations determine EC , ψ∗

I and I0. On the other hand, when the current intensity
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I0 is given, the first two equations are enough to determine the two unknowns of the
problemEC and ψ∗

I . The voltage V can be computed using the third equation.
In conclusion, the voltage excitation problem reads

Find (EC , ψ∗
I , I

0) ∈ H0,ΓC (curl;ΩC)×H1(ΩI)/C× C :∫
ΩC

(μ−1
C curlEC · curl zC + iωσEC · zC)
−iω

∫
Γ zC × nC · gradψ∗

I − iωI0
∫
Γ zC × nC · ρ∗

I

= −iω
∫
ΩC

Je,C · zC
−iω

∫
Γ

EC × nC · gradχ∗
I + ω2

∫
ΩI

μI gradψ
∗
I · gradχ∗

I = 0

−iωQ
∫
Γ

EC × nC · ρ∗
I + ω2I0Q

∫
ΩI

μI ρ∗
I · ρ∗

I = −iωV Q

for all (zC , χ∗
I, Q) ∈ H0,ΓC (curl;ΩC)×H1(ΩI)/C ×C ,

(8.15)

while the current intensity excitation problem is given by

Find (EC , ψ∗
I ) ∈ H0,ΓC(curl;ΩC)×H1(ΩI )/C :∫

ΩC
(μ−1

C curlEC · curl zC + iωσEC · zC)
−iω

∫
Γ

zC × nC · gradψ∗
I

= −iω
∫
ΩC

Je,C · zC + iωI0
∫
Γ

zC × nC · ρ∗
I

−iω
∫
Γ EC × nC · gradχ∗

I + ω2
∫
ΩI

μI gradψ
∗
I · gradχ∗

I = 0

for all (zC , χ∗
I) ∈ H0,ΓC(curl;ΩC)×H1(ΩI)/C .

(8.16)

If (EC , ψ∗
I ) is the solution of the current intensity excitation problem then

V =
∫
Γ

EC × nC · ρ∗
I + iωI0

∫
ΩI

μI ρ∗
I · ρ∗

I . (8.17)

Remark 8.3. When Je,I is not vanishing, it has to satisfy the necessary condition
divJe,I = 0 in ΩI . Therefore, since the boundary of ΩI is connected, there exists
a vector field H∗

e,I ∈ H(curl;ΩI) such that curlH∗
e,I = Je,I in ΩI (for its explicit

construction, see Section 5.4.1). We can thus repeat the arguments of this section for
HI −H∗

e,I = gradψ∗
I + I0ρ∗

I .
In particular, it can be easily checked that we have only to modify the right hand

sides of (8.15) or (8.16), (8.17). To be more specific, at the right hand side of (8.15)1,
(8.15)2 and (8.15)3 we have to add iω

∫
Γ wC ×nC ·H∗

I ,−ω2
∫
ΩI

μIH
∗
I ·gradχ∗

I and

−ω2Q
∫
ΩI

μIH
∗
I ·ρ∗

I , respectively. In a similar way one has to proceed for equations
(8.16), (8.17). �

In order to analyze these two problems, let us recall the sesquilinear form and the
anti-linear functional introduced in (4.3) and (4.5), respectively

C
(
(wC ,uI), (zC ,vI)

)
:=

∫
ΩC

(μ−1
C curlwC · curl zC + iωσwC · zC)

+ω2
∫
ΩI

μIuI · vI − iω
[ ∫

Γ zC × nC · uI +
∫
Γ wC × nC · vI

]
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L(zC ) := −iω
∫
ΩC

Je,C · zC ;

moreover, define the antilinear functionals

SV (vI ) := −iωc0V
∫
ΩI

μIρ
∗
I · vI

SI0 (zC) := iωI0
∫
Γ zC × nC · ρ∗

I ,

where V and I0 are given complex constants and c0 := (
∫
ΩI

μIρ
∗
I ·ρ∗

I)
−1. Recall that

any vI ∈ H0(curl;ΩI) can be univocally decomposed as vI = gradχ∗
I + Qρ∗

I , with
χ∗
I ∈ H1(ΩI)/C and Q ∈ C, and that gradχ∗

I and ρ∗
I are orthogonal with respect

to the scalar product (uI ,vI)μI ,ΩI :=
∫
ΩI

μIuI · vI . Then for those vI we have
SV (vI) = −iωV Q.
Using this orthogonal decomposition ofH0(curl;ΩI), it is easy to see that problem

(8.15) is equivalent to the following one

Find (EC ,HI) ∈ H0,ΓC(curl;ΩC) ×H0(curl;ΩI) :

C
(
(EC ,HI), (zC ,vI)

)
= L(zC ) + SV (vI )

for all (zC ,vI) ∈ H0,ΓC(curl;ΩC) ×H0(curl;ΩI) ,

(8.18)

whereas problem (8.16) is equivalent to

Find (EC , ψ∗
I ) ∈ H0,ΓC(curl;ΩC) ×H1(ΩI)/C :

C
(
(EC , gradψ∗

I ), (zC , gradχ∗
I)
)

= L(zC) + SI0 (zC)

for all (zC , χ∗
I) ∈ H0,ΓC (curl;ΩC)×H1(ΩI )/C .

(8.19)

The antilinear functionals L(·) and SI0(·) are clearly continuous in the space
H(curl;ΩC), whereas SV (·) is continuous in H0(curl;ΩI). The sesquilinear form
C(·, ·) is continuous in H0,ΓC(curl;ΩC) × H0(curl;ΩI); moreover in Theorem 4.1
we proved that it is coercive, hence from the Lax–Milgram lemma we have obtained:

Theorem 8.4. There exists a unique solution of both problems (8.18) and (8.19).

Proceeding as in Section 3.2, it is easy to see that the weak solutionsEC andHI =
gradψ∗

I + I0ρ∗
I of problems (8.18) or (8.19), together with

HC = −(iω)−1μ−1
C curlEC , (8.20)

furnish indeed a solution of the strong eddy current problem

curlEC + iωμCHC = 0 in ΩC

curlH− σEC = Je in Ω
div(μIHI ) = 0 in ΩI

EC × nC = 0 on ΓE ∪ ΓJ
μH · n = 0 on ∂Ω
μIHI · nI + μCHC · nC = 0 on Γ ,

(8.21)
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with in addition, for the assigned voltage problem,∫
Γ

EC × nC · ρ∗
I + iω

∫
ΩI

μIHI · ρ∗
I = V , (8.22)

or, for the assigned current intensity,∫
ΓJ

curlHC · nC = I0 . (8.23)

Remark 8.5. Taking into account that ρ∗
I := g̃radp∗I , where p∗I is defined in (8.10), it

is easy to see that (8.22) formally corresponds to∫
γ̃

EC · dτ + iω

∫
Ξ∗

I

μIHI · nΞ∗
I

= V ,

where γ̃ = ∂Ξ∗
I ∩ Γ , oriented from ΓE to ΓJ . Hence, if we find an electric field EI

satisfying the Faraday equation on the surface Ξ∗
I , we have∫

γ̂

EI · dτ = V ,

where γ̂ = ∂Ξ∗
I ∩ ΓI , oriented from the electric port ΓE to the electric port ΓJ . �

Now we need to find the electric field EI in ΩI . Clearly we have to solve
the Faraday equation curlEI + iωμIHI = 0 in ΩI and the interface condition
EI × nI + EC × nC = 0 on Γ , where HI and EC can be seen as given data. This
problem has infinitely many solutions, depending on the type of “gauge” conditions
we choose for EI (but none of these solutions has a vanishing tangential component
on ∂Ω: see Proposition 8.2). For instance, as we see here below, it is possible to solve
the following problem: ⎧⎪⎪⎨⎪⎪⎩

curlEI = −iωμIHI inΩI

div(εIEI) = 0 inΩI

EI × nI = −EC × nC on Γ
εIEI · nI = 0 on ΓI ,

(8.24)

that is similar to (3.13).

Theorem 8.6. There exists a unique solution EI of problem (8.24).

Proof. It is easy to see that the solution of (8.24) is unique since the space

HεI (Γ, ΓI;ΩI) := {vI ∈ (L2(ΩI))3| curlvI = 0, div(εIvI) = 0,
εIvI · nI = 0 on ΓI, vI × nI = 0 on Γ }

is trivial in the geometrical situation under consideration. In fact, given a function
vI ∈ HεI (Γ, ΓI;ΩI), one has curlvI = 0 in ΩI\Ξ∗

I , that is a simply-connected
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subset. Hence there exists UI ∈ H1(ΩI\Ξ∗
I ) such that gradUI = vI and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div(εI gradUI) = 0 in ΩI\Ξ∗
I ,

εI gradUI · nI = 0 on ΓI \ ∂Ξ∗
I ,

UI = κ∗ on Γ \ ∂Ξ∗
I ,

[UI ]Ξ∗
I

= c∗ ,

[εI gradUI · nI ]Ξ∗
I

= 0 ,

(8.25)

κ∗ and c∗ being constants. Since Γ ∩ Ξ∗
I �= ∅, it follows that the constant c∗ must be

zero; therefore the unique solution of (8.25) is UI = κ∗ and consequently vI = 0.
The existence of the solution to (8.24) can be proved as in Theorem 3.3, noting

that, similarly to what shown here above, the space of harmonic fields

H(ΓI , Γ ;ΩI) := {vI ∈ (L2(ΩI))3| curlvI = 0, divvI = 0,
vI · nI = 0 on Γ, vI × nI = 0 on ΓI}

is trivial. �

This ends the proof of the existence of a solution to the current intensity excitation
problem (8.1), (8.2) and (8.5): it is enough to take the solution (EC , ψ∗

I ) of problem
(8.19), HI = gradψ∗

I + I0ρ∗
I , HC = −(iω)−1μ−1

C curlEC and the solution EI of
problem (8.24).
Concerning the voltage excitation problem, one takes the solution (EC ,HI) of

problem (8.18) (or, equivalently, the solution (EC , ψ∗
I , I

0) of problem (8.15), with
HI = gradψ∗

I + I0ρ∗
I ),HC = −(iω)−1μ−1

C curlEC and the solutionEI of problem
(8.24). Since with this choice the Faraday equation is satisfied in all of Ω, we obtain
that

divτ (E× n) = curlE · n = −iωμH · n = 0 on ∂Ω ,

hence E×n = gradU × n on ∂Ω, where the boundary potentialU is constant on ΓJ
and vanishes on ΓE . By proceeding as was done for obtaining (8.13) it is readily seen
thatEC andHI satisfies (8.13) with V replaced byU|ΓJ

. Comparing this last equation
with (8.15)3 it follows U|ΓJ

= V , hence (E,H) satisfies (8.1), (8.2) and (8.3).

Remark 8.7. Let us underline an important difference between the eddy current prob-
lem for an internal conductor (with magnetic or electric boundary conditions) and the
eddy current problem with the electric port boundary conditions (8.2) and assigned
voltage (8.3) or current intensity (8.5). In the former case the spaces of harmonic fields
HμI (∂Ω, Γ ;ΩI) (relevant for themagnetic boundary conditions)orHμI (m;ΩI) (rel-
evant for the electric boundary condition) are non-trivial, therefore the strong form of
the eddy current problem in terms of the magnetic field H contains the topological
conditions (3.23)4, (3.23)5 (for the magnetic boundary conditions) or (3.42)4 (for the
electric boundary condition). In the electric port case with the no-flux boundary condi-
tions the space of harmonic fields HμI (ΓI, Γ ;ΩI) is trivial, therefore no topological
conditions are present in the strong formulation in terms of H: one has only to im-
pose the Faraday equation in ΩC , the Ampère equation in Ω and the Gauss magnetic
equation in Ω. �
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Fig. 8.3. A conductor which is not simply-connected

Remark 8.8. The two formulations (8.18) and (8.19) can be adapted to the case of
a connected but not simply-connected conductor ΩC with two electric ports ∂ΩC ∩
∂Ω = ΓE ∪ ΓJ (see Figure 8.3). In this case the space HμI (m;ΩI) has dimension
nΩI > 1, the first Betti number of ΩI , or, equivalently, the number of independent
non-bounding cycles in ΩI . Given a basis of HμI (m;ΩI), {ρ∗

α,I}
nΩI

α=1, any function

vI ∈ H0(curl;ΩI) can be written as vI = gradχ∗
I +

∑nΩI
α=1 Qαρ∗

α,I for some χ∗
I ∈

H1(ΩI)/C and Qα ∈ C, α = 1, . . . , nΩI . If the basis functions ρ∗
α,I are suitably

chosen, we can find nΩI connected orientable Lipschitz surfaces {Γ1,C, . . . , ΓnΩI
,C}

contained in ΩC such that γα := ∂Γα,C are independent non-bounding cycles in ΩI

for which ∫
γβ

ρ∗
α,I · t = δαβ , α, β = 1, . . . , nΩI

(see, e.g., Hiptmair and Ostrowski [128]). Since the magnetic fieldHI can be written
asHI = gradψ∗

I +
∑nΩI

α=1 Kαρ∗
α,I , from the Stokes theorem we have

Kα =
∫
γα

HI · t =
∫
γα

HC · t =
∫
Γα,C

curlHC · nα = I0
α ,

where nα is the unit normal vector to Γα,C such that t is counterclockwise oriented
with respect tonα on Γα,C . The quantity I0

α is the current intensity through the surface
Γα,C.
Multiplying the Faraday equation by the function ρ∗

β,I and proceeding as in the
case of a simply-connected conductor, we obtain

iω

∫
ΩI

μIHI · ρ∗
β,I = V

∫
∂ΓJ

ρ∗
β,I · t−

∫
Γ

EC × nC · ρ∗
β,I .
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So we have obtained that EC and HI = gradψ∗
I +

∑nΩI
α=1 I0

αρ∗
α,I are such that for

each zC ∈ H0,ΓC(curl;ΩC), χ∗
I ∈ H1(ΩI ) and Q ∈ CnΩI it holds∫

ΩC
(μ−1

C curlEC · curl zC + iωσEC · zC )
−iω

∫
Γ

zC × nC · gradψ∗
I − iω

∑nΩI

α=1 I0
α

∫
Γ

zC × nC · ρ∗
α,I

= −iω
∫
ΩC

Je,C · zC
−iω

∫
Γ

EC × nC · gradχ∗
I + ω2

∫
ΩI

μI gradψ
∗
I · gradχ∗

I = 0

−iωQβ

∫
Γ

EC × nC · ρ∗
β,I + ω2Qβ

∑nΩI
α=1 I0

α

∫
ΩI

μI ρ∗
α,I · ρ∗

β,I

= −iωQβV
∫
∂ΓJ

ρ∗
β,I · t , ∀β = 1, . . . , nΩI .

(8.26)

On the other hand, if ΩC has q connected components ΩC,j , j = 1, . . . , q, each
one with two electric ports, then there are q different voltages Vj . In fact, on ∂Ω we
haveE×n = grad v×n, and, setting ∂ΩC,j ∩∂Ω = ΓJ,j ∪ΓE,j , with ΓJ,j and ΓE,j
disjoint and connected surfaces, we have v|ΓJ,j

= V 1
j and v|ΓE,j

= V 0
j , where V

1
j and

V 0
j are complex constants; then the voltages are defined as Vj = V 1

j − V 0
j .

Multiplyingthe Faraday equation byρ∗
β,I , a basis functionof the spaceHμI (m;ΩI ),

by integration by parts one has

iω

∫
ΩI

μIHI ·ρ∗
β,I =

∫
∂ΩI

EI ×nI ·ρ∗
β,I =

∫
∂Ω

E×n ·R∗
β−

∫
Γ

EC ×nC ·ρ∗
β,I ,

whereR∗
β is any extension of ρ

∗
β,I inH(curl;Ω). Moreover∫

∂Ω
E× n ·R∗

β =
∫
∂Ω
curlR∗

β · n v

=
∑q

j=1

(
V 1
j

∫
ΓJ,j

curlR∗
β · nC + V 0

j

∫
ΓE,j

curlR∗
β · nC

)
=
∑q

j=1 Vj
∫
ΓJ,j

curlR∗
β · nC

=
∑q

j=1 Vj
∫
∂ΓJ,j

ρ∗
β,I · t ,

since, denoting by Γj = ∂ΩC,j \ (ΓJ,j ∪ ΓE,j), from the Stokes theorem for closed
surfaces we have∫

ΓE,j
curlR∗

β · nC
=
∫
∂ΩC,j

curlR∗
β · nC −

∫
ΓJ,j

curlR∗
β · nC −

∫
Γj
curlR∗

β · nC
= −

∫
ΓJ,j

curlR∗
β · nC −

∫
Γj
curlρ∗

β,I · nC = −
∫
ΓJ,j

curlR∗
β · nC .

So, the third equation in (8.26) becomes

−iωQβ

∫
Γ EC × nC · ρ∗

β,I + ω2Qβ

∑nΩI

α=1 I0
α

∫
ΩI

μI ρ∗
α,I · ρ∗

β,I

= −iωQβ

∑q
j=1 Vj

∫
∂ΓJ,j

ρ∗
β,I · t , ∀β = 1, . . . , nΩI .

In the voltage excitation problem the q voltages Vj are given; the unknowns of
the problem are the electric field in the conductor, the function ψ∗

I appearing in the
orthogonal decomposition ofHI and the nΩI intensities I

0
α.

In the current intensity problem the nΩI current intensities I
0
α are given and there-

fore the unknownsof the problemare the electric field in the conductor and the function
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ψ∗
I . For this problem the q voltages Vj can be then computed in the followingway: for
each j = 1, . . . , q, let ρ∗

β(j),I be a basis function of HμI (m;ΩI) corresponding to a
non-bounding cycle γβ(j) = ∂Γβ(j),C such that Γβ(j),C ⊂ ΩC,j . For this basis func-
tion one has in particular that

∫
∂ΓJ,s

ρ∗
β(j),I · t = 0 for s = 1, . . . , q, s �= j. Then

Vj =

∫
Γ EC × nC · ρ∗

β(j),I + iω
∑nΩI

α=1 I0
α

∫
ΩI

μI ρ∗
α,I · ρ∗

β(j),I∫
∂ΓJ,j

ρ∗
β(j),I · t

,

and this value depends on j but not on the choice of β(j), as it can be checked that it
is equal to the line integral of E on a curve lying on ∂Ω and connecting ΓE,j to ΓJ,j .
Let us also note that, whenΩC has q > 1 connected components, the electric field

EI determined in (8.24) is not unique, unless one also requires that
∫
Γj

εIEI ·nI = 0
for each j = 1, . . . , q − 1.
For the sake of simplicity, in the following we limit ourselves to the case of a

simply-connected conductor. �

8.1.2 Formulations in terms of HC and ψ∗I

In this section we follow Bermúdez et al. [45]. We again assume that Je,I = 0 in
ΩI (otherwise, we can proceed as in Remark 8.3). If E andH are the solutions of the
eddy current problem subject to voltageor current intensityexcitation,whose existence
and uniqueness have been proved in the preceding section, multiplying the Faraday
equation by a test function v∗ satisfying curlv∗

I = 0 in ΩI and integrating by parts
we find ∫

Ω

EC · curlv∗
C +

∫
Ω

iωμH · v∗ −
∫
∂Ω

E× n · v∗ = 0 .

Knowing that E× n = grad v × n on ∂Ω we have∫
∂Ω

E× n · v∗ =
∫
∂Ω
grad v × n · v∗ = −

∫
∂Ω
grad v · v∗ × n

=
∫
∂Ω

v divτ (v∗ × n) =
∫
∂Ω

v curlv∗ · n = V
∫
ΓJ
curlv∗

C · n .

Moreover, we can write v∗
I = gradχ∗

I + Qρ∗
I in ΩI , where χ∗

I ∈ H1(ΩI)/C and
Q ∈ C, hence from the Stokes theorem we obtain∫

ΓJ
curlv∗

C · n =
∫
∂ΓJ

v∗
C · t =

∫
∂ΓJ

v∗
I · t

=
∫
∂ΓJ

gradχ∗
I · t + Q

∫
∂ΓJ

ρ∗
I · t = Q.

In conclusion, recalling thatHI = gradψ∗
I + I0ρ∗

I in ΩI and that

EC = σ−1(curlHC − Je,C)

inΩC , we have seen thatHC , ψ∗
I , I

0 and V satisfy∫
ΩC

(σ−1 curlHC · curlv∗
C + iωμCHC · v∗

C)
+iω

∫
ΩI

μI gradψ
∗
I · gradχ∗

I + iωI0 Q
∫
ΩI

μIρ
∗
I · ρ∗

I − V Q

=
∫
ΩC

σ−1Je,C · curlv∗
C

(8.27)
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for each v∗
C ∈ H(curl;ΩC), χ∗

I ∈ H1(ΩI) and Q ∈ C satisfying

v∗
C × nC + gradχ∗

I × nI + Qρ∗
I × nI = 0 on Γ .

When the current intensity I0 is given, one has to solve

Find (HC , ψ∗
I ) ∈W ∗(I0) such that∫

ΩC
(σ−1 curlHC · curlv∗

C + iωμCHC · v∗
C)

+iω
∫
ΩI

μI gradψ
∗
I · gradχ∗

I

=
∫
ΩC

σ−1Je,C · curlv∗
C

for all (v∗
C , χ∗

I) ∈W ∗(0) ,

(8.28)

where

W ∗(Q) := {(v∗
C , χ∗

I) ∈ H(curl;ΩC)×H1(ΩI )/C |
v∗
C × nC + gradχ∗

I × nI = −Qρ∗
I × nI on Γ } .

It is easily seen that for each I0 ∈ C the setW ∗(I0) is non-empty: in fact, it is enough
to set χ∗

I = 0 and choose for v∗
C a vector field inH(curl;ΩC), continuouslydependent

on I0 , with v∗
C ×nC = −I0ρ∗

I ×nI on Γ . Moreover, the sesquilinear form at the left
hand side of (8.28) is clearly coercive inW ∗(0), thus there exists a unique solution to
(8.28).
Having determined HC and ψ∗

I , the voltage V is obtained by setting v∗
C = HC ,

χ∗
I = ψ∗

I and Q = I0 in (8.27), namely,

V = I0
−1 ∫

ΩC
(σ−1 curlHC · curlHC + iωμCHC ·HC)

+iωI0
−1 ∫

ΩI
μI gradψ

∗
I · gradψ∗

I + iωI0
∫
ΩI

μIρ
∗
I · ρ∗

I

−I0
−1 ∫

ΩC
σ−1Je,C · curlHC .

Instead, when the voltage V is assigned one has to consider

Find (HC , ψ∗
I , I

0) ∈W ∗∗ such that∫
ΩC

(σ−1 curlHC · curlv∗
C + iωμCHC · v∗

C)
+iω

∫
ΩI

μI gradψ
∗
I · gradχ∗

I + iωI0 Q
∫
ΩI

μIρ
∗
I · ρ∗

I

=
∫
ΩC

σ−1Je,C · curlv∗
C + V Q

for all (v∗
C , χ∗

I, Q) ∈W ∗∗ ,

(8.29)

where

W ∗∗ := {(v∗
C , χ∗

I , Q) ∈ H(curl;ΩC)×H1(ΩI )/C×C |
v∗
C × nC + gradχ∗

I × nI + Qρ∗
I × nI = 0 on Γ } .

Again, the sesquilinear form at the left hand side of (8.29) is coercive in W ∗∗, thus
ensuring existence and uniqueness of the solution.
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For a more detailed presentation of the (HC , ψ∗
I ) approach and of its finite element

approximationwe refer to Bermúdez et al. [43], [45]. Here, we only note that the con-
straint on Γ that is present in the definition ofW ∗(I0),W ∗(0) andW ∗∗ has to be kept
at the finite dimensional level, and this leads to the requirement that the meshes in ΩC

andΩI match on Γ , and that the finite elements satisfy the constraint. These technical
aspects are also described in Section 5.4.2.

Remark 8.9. The voltage excitation problem is also addressed in Hiptmair and Sterz
[130]. As in Bermúdez et al. [43], [45], the problem is written in terms of the mag-
netic field, and then the electric field is computed by imposing a different boundary
condition; more precisely, it is assumed to satisfy

E× n = V grad v × n on ∂Ω ,

where v ∈ H1/2(∂Ω), v = 1 on ΓJ , v = 0 on ∂Ω \ (ΓJ ∪Θ), and Θ is a transition
zone around ΓJ . In particular, E× n = 0 on ∂Ω \Θ and E× n �= 0 on Θ. Thus the
model depends on the choices of the set Θ and the function v, and it can be seen that,
though the magnetic field does not depend on Θ and v, the electric field does depend
on them.
The current intensity excitation problem is also considered in Hiptmair and Sterz

[130], and it is formulated in terms of the electric field; again, the solution depends
on the choice ofΘ and v, and, moreover, a complete analysis of well-posedness is not
furnished. �

8.1.3 Formulations in terms of TC and ψ∗

In this section we present a formulation proposed by Meunier et al. [177], Bíró et
al. [52]. We assume as before that Je,I = 0 in ΩI (otherwise, one can proceed as in
Remark 8.3); therefore, we haveHI = gradψ∗

I + I0ρ∗
I inΩI . Let us start by denoting

byR∗
C a vector field that belongs toH(curl;ΩC) and satisfiesR∗

C×nC+ρ∗
I×nI = 0

onΓ . Following the same arguments used in Section 6.3 for a similar situation, the first
step is to see that we can formulate the eddy current problem by means of a couple
(TC , ψ∗) such that

HI = gradψ∗
I + I0ρ∗

I in ΩI

HC = TC + gradψ∗
C + I0R∗

C in ΩC ,
(8.30)

with the interface conditions

TC × nC = 0 on Γ
ψ∗
C − ψ∗

I = 0 on Γ .
(8.31)

Let us verify that (8.30)2 and (8.31) can be satisfied. First, the vector fieldTC can
be determined as the solution to⎧⎪⎨⎪⎩

curlTC = curl(HC − I0R∗
C) in ΩC

divTC = 0 in ΩC

TC × nC = 0 on Γ
TC · nC = 0 on ΓE ∪ ΓJ .

(8.32)
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This problem is well-posed. Indeed, uniqueness is straightforward, as, in the geomet-
rical situation under consideration, the space of harmonic fields

H(Γ, ΓC;ΩC):= {vC ∈ (L2(ΩC))3 | curlvC = 0, divvC = 0,
vC · nC = 0 on ΓC, vC × nC = 0 on Γ } .

is trivial. Concerning existence, we can easily show that the right hand side GC :=
curl(HC−I0R∗

C) satisfies the necessary solvability conditions. In fact, we clearly have
divGC = 0 inΩC , and alsoGC ·nC = 0 on Γ , asGC ·nC = curl(HI − I0ρ∗

I) ·nC
on Γ . Finally, let us define ϕC to be the solution to⎧⎪⎪⎨⎪⎪⎩

ΔϕC = 0 in ΩC

ϕC = 1 on ΓJ
ϕC = 0 on ΓE
gradϕC · nC = 0 on Γ ,

so that gradϕC is a basis function of the (one-dimensional) space of harmonic fields

H(ΓC , Γ ;ΩC):= {vC ∈ (L2(ΩC))3 | curlvC = 0, divvC = 0,
vC · nC = 0 on Γ, vC × nC = 0 on ΓC} .

Integrating by parts and using the Stokes theorem we have that the last solvability
condition is satisfied∫

ΩC
GC · gradϕC =

∫
ΓJ

GC · nC =
∫
ΓJ
curl(HC − I0R∗

C) · nC
=
∫
∂ΓJ

(HC − I0R∗
C) · dτ =

∫
∂ΓJ

(HI − I0ρ∗
I) · dτ = 0 .

Having determined TC , we find ψ∗
C as the solution to⎧⎨⎩ div(μC gradψ

∗
C) = div[μC(HC − I0R∗

C −TC)] inΩC

ψ∗
C = ψI

∗ on Γ
μC gradψ

∗
C · nC = −μC(I0R∗

C + TC) · nC on ΓE ∪ ΓJ .
(8.33)

Now it is easily checked thatHC −TC − gradψ∗
C − I0R∗

C belongs to the space

HμC (Γ, ΓC;ΩC):= {vC ∈ (L2(ΩC))3 | curlvC = 0, div(μCvC) = 0,
μCvC · nC = 0 on ΓC , vC × nC = 0 on Γ } ,

and this space is trivial, so that (8.30)2 is satisfied.
We can thus write the eddy current problem in terms ofTC and ψ∗. First of all we

set
EC = σ−1[curl(TC + I0R∗

C) − Je,C] in ΩC ,

so that the Ampère equation in Ω is clearly satisfied. Hence, as explained in Re-
mark 8.7, we only need to impose the Faraday equation inΩC and the Gauss magnetic
equation in Ω. Proceeding as in Section 6.3, we find∫

Ω
iωμ gradψ∗ · gradχ∗ +

∫
ΩC

iωμCTC · gradχ∗
C

+I0
∫
ΩC

iωμCR∗
C · gradχ∗

C = 0
(8.34)



252 8 Voltage and current intensity excitation

for each χ∗ ∈ H1(Ω), and moreover (having already inserted the penalization term
associated to the divergence-free condition for TC )∫

ΩC
σ−1 curlTC · curlvC + σ−1

∗
∫
ΩC
divTC divvC

+
∫
ΩC

iωμCTC · vC +
∫
ΩC

iωμC gradψ
∗
C · vC

+I0
∫
ΩC

σ−1 curlR∗
C · curlvC + I0

∫
ΩC

iωμCR∗
C · vC

=
∫
ΩC

σ−1Je,C · curlvC ,

(8.35)

where vC ∈ H0,Γ (curl;ΩC)∩H0,ΓC(div;ΩC) and σ∗ > 0 is a dimensional constant
(say, a suitable average in ΩC of the entries of the matrix σ).
When the current intensity I0 is assigned, moving the terms containing it to the

right hand side in (8.34) and (8.35) leaves on the left hand side the sesquilinear form∫
ΩC

σ−1 curlTC · curlvC + σ−1
∗
∫
ΩC
divTC divvC

+
∫
ΩC

iωμCTC · vC +
∫
ΩC

iωμC gradψ
∗
C · vC

+
∫
Ω iωμ gradψ∗ · gradχ∗ +

∫
ΩC

iωμCTC · gradχ∗
C .

As in Section 6.3, it can be proved that it is coercive in

(H0,Γ (curl;ΩC) ∩H0,ΓC (div;ΩC)) ×H1(Ω)/C ,

therefore problem (8.34), (8.35) has a unique solution (TC , ψ∗) for each assigned I0

and Je,C .
Instead, when the voltage V is prescribed another suitable equation comes from

(8.17). We have∫
Γ

EC × nC · ρ∗
I =

∫
Γ

EC × nC ·R∗
C

= −
∫
ΩC
curlEC ·R∗

C +
∫
ΩC

EC · curlR∗
C

=
∫
ΩC

iωμCHC ·R∗
C +

∫
ΩC

σ−1(curlHC − Je,C) · curlR∗
C

=
∫
ΩC

iωμCTC ·R∗
C +

∫
ΩC

iωμC gradψ
∗
C ·R∗

C + I0
∫
ΩC

iωμCR∗
C ·R∗

C

+
∫
ΩC

σ−1 curlTC · curlR∗
C + I0

∫
ΩC

σ−1 curlR∗
C · curlR∗

C

−
∫
ΩC

σ−1Je,C · curlR∗
C .

Therefore (8.17) can be rewritten as

Q
∫
ΩC

iωμCTC ·R∗
C + Q

∫
ΩC

iωμC gradψ
∗
C ·R∗

C

+I0Q
∫
ΩC

iωμCR∗
C ·R∗

C + I0Q
∫
ΩI

iωμIρ
∗
I · ρ∗

I

+Q
∫
ΩC

σ−1 curlTC · curlR∗
C

+I0Q
∫
ΩC

σ−1 curlR∗
C · curlR∗

C

= V Q + Q
∫
ΩC

σ−1Je,C · curlR∗
C

(8.36)

for each Q ∈ C.
Putting together (8.34), (8.35) and (8.36), we end up with the final variational for-

mulation for the voltage problem in terms ofTC , ψ∗ and I0 (that now is an unknown
to be determined).
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This variational problem iswell-posed. In fact, the existence of the solution follows
from our procedure, as we have shown how to constructTC and ψ∗

C starting from the
solutionsHC = (−iωμC)−1 curlEC , ψ∗

I and I0 of the eddy current problem (8.15).
Concerning the uniqueness of the solution, the first step consists in rewriting the prob-
lem as∫

ΩC
σ−1 curl(TC + I0R∗

C) · curl(vC + QR∗
C)

+σ−1
∗
∫
ΩC
divTC divvC + iω

∫
ΩI

μI gradψ
∗
I · gradχ∗

I

+iω
∫
ΩC

μC(TC + gradψ∗
C + I0R∗

C) · (vC + gradχ∗
C + QR∗

C)

+iωI0 Q
∫
ΩI

μIρ
∗
I · ρ∗

I

=
∫
ΩC

σ−1Je,C · curlvC + V Q + Q
∫
ΩC

σ−1Je,C · curlR∗
C .

(8.37)

Let us denote by S∗(·, ·) the sesquilinear form at the left hand side in (8.37). Similarly
to what proved in Section 6.3, we have

|ReS∗((vC , χ∗, Q), (vC, χ∗, Q))|
≥ σ−1

max

∫
ΩC
| curl(vC + QR∗

C)|2 + σ−1
∗
∫
ΩC
| divvC |2,

and

|ImS∗((vC , χ∗, Q), (vC, χ∗, Q))|
≥ |ω|μmin

∫
ΩI
| gradχ∗

I |2 + |ω|μmin

∫
ΩC
|vC + gradχ∗

C + QR∗
C |2

+|ω||Q|2
∫
ΩI

μIρ
∗
I · ρ∗

I ,

where σmax is an uniform upper bound for the maximum eigenvalues of σ(x) in ΩC

andμmin is an uniform lower bound for theminimum eigenvalues ofμ(x) inΩ. More-
over, for each 0 < δ < 1 we obtain∫

ΩC
| curl(vC + QR∗

C)|2
≥ (1− δ)

∫
ΩC
| curlvC |2 − (1− δ)δ−1|Q|2

∫
ΩC
|R∗

C|2 ,

and for each 0 < η < 1∫
ΩC
|vC + gradχ∗

C + QR∗
C|2

≥ (1 − η)
∫
ΩC
| gradχ∗

C |2 − 2(1− η)η−1
∫
ΩC
|vC |2

−2(1− η)η−1|Q|2
∫
ΩC
|R∗

C|2 .

Since in the present topological situation the Poincaré-like inequality∫
ΩC

(| curlvC |2 + | divvC |2) ≥ K0

∫
ΩC

(| curlvC |2 + | divvC |2 + |vC |2)
holds true inH0,Γ (curl;ΩC)∩H0,ΓC(div;ΩC) (see, e.g., Fernandes andGilardi [104]),
choosing 1−δ = τ , 1−η = τ2 and τ small enough it is now easy to prove that S∗(·, ·)
is coercive in [H0,Γ (curl;ΩC) ∩H0,ΓC(div;ΩC)]×H1(Ω)/C× C.
Remark 8.10. The use of the vector potentialTC and the scalar magnetic potential ψ∗

for solving eddy current problems coupled with circuits has been also proposed by
Specogna et al. [228]. They consider an approach based on the integral form of the
Faraday, Gauss magnetic and Ampère equations, and homology theory is deeply used
in order to devise the complete formulation of the problem. �
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8.1.4 Finite element approximation

In this section we present some finite element approximation schemes based on the
hybrid approaches described in Section 8.1.1.
Let us start noting that the variational formulations (8.15) and (8.16) are not suit-

able for numerical approximation. In fact, a conforming finite element discretization
based directly on them requires that ρ∗

I is explicitly known. An alternative approach,
that overcomes this difficulty, is based on a different decomposition ofHI .
Let ζI be the generalized gradient of a function η ∈ H1(ΩI\Ξ∗

I ) such that
[η]Ξ∗

I
= 1. Then curl ζI = 0 and

∫
∂ΓJ

ζI · t = 1, but in general ζI �∈ H(div;ΩI).
However, since curl(ρ∗

I−ζI) = 0 inΩI and
∫
∂ΓJ

(ρ∗
I−ζI) ·t = 0, one easily verifies

that ρ∗
I = ζI + grad gζI for some gζI ∈ H1(ΩI). Hence

HI = gradψ∗
I + I0ρ∗

I = gradψ∗
I + I0(ζI + grad gζI ) = grad ψ̂∗

I + I0ζI ,

with ψ̂∗
I ∈ H1(ΩI)/C that depends of the choice of ζI . This alternative decomposi-

tion is not orthogonal with respect to the scalar product (·, ·)μI,ΩI , and this has as a
consequence that the corresponding weak formulation has some additional terms. In
fact the voltage excitation problem now reads

Find (EC , ψ̂∗
I , I

0) ∈ H0,ΓC(curl;ΩC) ×H1(ΩI)/C× C :∫
ΩC

(μ−1
C curlEC · curl zC + iωσEC · zC )

−iω
∫
Γ zC × nC · grad ψ̂∗

I − iωI0
∫
Γ zC × nC · ζI

= −iω
∫
ΩC

Je,C · zC
−iω

∫
Γ

EC × nC · gradχ∗
I + ω2

∫
ΩI

μI grad ψ̂
∗
I · gradχ∗

I

+ω2I0
∫
ΩI

μI ζI · gradχ∗
I = 0

−iωQ
∫
Γ

EC × nC · ζI + ω2Q
∫
ΩI

μI grad ψ̂
∗
I · ζI

+ω2I0Q
∫
ΩI

μIζI · ζI = −iωV Q

for all (zC , χ∗
I , Q) ∈ H0,ΓC(curl;ΩC)×H1(ΩI)/C× C ,

(8.38)

while the current intensity excitation problem reads

Find (EC , ψ̂∗
I ) ∈ H0,ΓC(curl;ΩC)×H1(ΩI )/C :∫

ΩC
(μ−1

C curlEC · curl zC + iωσEC · zC)

−iω
∫
Γ

zC × nC · grad ψ̂∗
I

= −iω
∫
ΩC

Je,C · zC + iωI0
∫
Γ

zC × nC · ζI
−iω

∫
Γ

EC × nC · gradχ∗
I + ω2

∫
ΩI

μI grad ψ̂
∗
I · gradχ∗

I

= −ω2I0
∫
ΩI

μIζI · gradχ∗
I

for all (zC , χ∗
I) ∈ H0,ΓC(curl;ΩC)×H1(ΩI)/C .

(8.39)
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Here below, in the framework of finite element approximation, we present a pos-
sible choice of ζI , depending on the mesh size h. An alternative choice, for which ζI
is not dependent on h, is proposed in Alonso Rodríguez et al. [20].

Let us now describe our finite element approximation schemes. We assume that
ΩC and ΩI are Lipschitz polyhedral domains, and that TC,h and TI,h are two families
of tetrahedral meshes ofΩC andΩI , respectively. In particular, let us underline thatwe
do not need that the finite elements match on Γ , and therefore the compatibility of the
meshes is not necessary. We employNk

C,h, theNédélec curl-conformingedge elements
of degree k, to approximate the functions inH(curl;ΩC) andLkI,h, the Lagrange nodal
elements of degree k, to approximate the functions inH1(ΩI) (see Section A.2). Let
us also set Y k

C,h := Nk
C,h ∩H0,ΓC(curl;ΩC).

The choice of the functionζI is carried out as follows.Let us start denoting byΞ
∗
I,h

a discrete “cutting” surface that depends on the mesh TI,h and by ηI,h the piecewise-
linear function taking value 1 at the nodes on one side of Ξ∗

I,h, say Ξ∗+
I,h, and 0 at

all the other nodes including those on Ξ∗−
I,h, the other side of Ξ

∗
I,h. Then define λhI

the (L2(ΩI ))3-extension of the gradient of ηI,h computed in ΩI \ Ξ∗
I,h, and choose

ζI = λhI . This approach is similar to the one analyzed in Bermúdez et al. [45] for the
current intensity excitation problem.
The sesquilinear form associated to problem (8.38) depends on h, and it is given

by
C∗h((wC , ψ∗

I , K), (zC, χ∗
I , Q))

:=
∫
ΩC

(μ−1
C curlwC · curl zC + iωσwC · zC)

+ω2
∫
ΩI

μI gradψ
∗
I · gradχ∗

I + ω2KQ
∫
ΩI

μIλ
h
I · λhI

−iω
[ ∫

Γ
zC × nC · gradψ∗

I +
∫
Γ

wC × nC · gradχ∗
I

]
−iω

[
K
∫
Γ

zC × nC · λhI + Q
∫
Γ

wC × nC · λhI
]

+ω2
[
K
∫
ΩI

μI gradχ
∗
I · λhI + Q

∫
ΩI

μI gradψ
∗
I · λhI

]
.

However

C∗h((wC , ψ∗
I , K), (zC, χ∗

I , Q)) = C((wC , gradψ∗
I + KλhI ), (zC , gradχ∗

I + QλhI )) ,

where C(·, ·) has been introduced in (4.3). Hence the finite element approximation of
the voltage excitation problem (8.38) reads

Find (EC,h, ψ̂
∗
I,h, I

0
h) ∈ Y k

C,h × LkI,h/C×C :

C((EC,h, grad ψ̂∗
I,h + I0

hλhI ), (zC,h, gradχ
∗
I,h + QλhI ))

= −iω
∫
ΩC

Je,C · zC,h − iωV Q

for all (zC,h, χ∗
I,h, Q) ∈ Y k

C,h × LkI,h/C×C .

(8.40)

Let us consider the error estimate. Setting

HI,h := grad ψ̂∗
I,h + I0

hλ
h
I ∈ H0(curl;ΩI) ,

from (8.38) and (8.40) we have the following equation for the error

C((EC −EC,h,HI −HI,h), (zC,h, gradχ∗
I,h + QλhI )) = 0
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for all zC,h ∈ Y k
C,h, χ

∗
I,h ∈ LkI,h/C and Q ∈ C. Hence

‖EC − EC,h‖H(curl;ΩC) + ‖HI −HI,h‖0,ΩI

= ‖EC −EC,h‖H(curl;ΩC ) + ‖HI − grad ψ̂∗
I,h − I0

hλ
h
I ‖0,ΩI

≤ C inf
(zC,h,vI,h)∈Y k

C,h×Zk
I,h

(
‖EC − zC,h‖H(curl;ΩC)

+ ‖HI − vI,h‖0,ΩI

)
,

(8.41)

where
Zk
I,h := gradLkI,h ⊕ span{λhI } .

An error estimate for the intensity is obtained by noting that∫
ΩI

μI(HI −HI,h) · ρ∗
I = (I0 − I0

h)
∫
ΩI

μIρ
∗
I · ρ∗

I ,

as HI = gradψ∗
I + I0ρ∗

I , HI,h = grad ψ̂∗
I,h + I0

hλ
h
I and λhI = ρ∗

I − grad gλh
I
.

Since from the assumptions on μ there exist two positive constants μ∗ and μ∗ such
that μ∗‖vI‖20,ΩI

≤
∫
ΩI

μIvI · vI ≤ μ∗‖vI‖20,ΩI
for all vI ∈ (L2(ΩI))3, it follows

at once
|I0 − I0

h| ≤ (μ∗/c0)1/2‖HI −HI,h‖0,ΩI ,

where c0 := (
∫
ΩI

μIρ
∗
I · ρ∗

I)
−1.

The convergence of the approximation scheme is an easy consequence of (8.41).
Let us denote by Nk

I,h the space of Nédélec curl-conforming edge elements of degree
k in TI,h and by πI,h the interpolation operator. If HI is so regular that πI,hHI is
well-defined, then in (8.41) we can choose vI,h = πI,hHI , as indeed πI,hHI ∈ Zk

I,h.

This assertion can be demonstrated as follows: since curl(πI,hHI − I0λhI ) = 0 in
ΩI and

∫
∂ΓJ

(πI,hHI − I0λhI ) · t = 0, then πI,hHI − I0λhI = grad ξI for some

ξI ∈ H1(ΩI). Knowing that πI,hHI − I0λhI ∈ Nk
I,h, from Girault and Raviart [111],

Chap. III, Lemma 5.3, it follows that ξI|K is a polynomial of degree k for each K ∈
TI,h, therefore ξI ∈ LkI,h.
As a consequence, from standard interpolation estimates, for a regular solution

(EC ,HI) it is straightforward to specify the order of convergence of the approxima-
tion method.
Instead, if one has no information about the regularity of the solution, by a density

argument it is possible to prove the convergence of the finite element scheme if the
permeability coefficient μI is regular enough in ΩI (say, a constant as in the usual
physical case) or if the family of meshes TI,h is obtained by refining a coarse mesh
TI,h0 .
In fact, when μI is constant we know that the harmonic field ρ∗

I is regular enough
to define the interpolantπI,hρ∗

I (see Amrouche et al. [27], Alonso and Valli [9]). Since
HI = gradψ∗

I +I0ρ∗
I , a density argument applied toψ

∗
I permits to conclude the proof.

In the other case, first we note that we can write ρ∗
I = grad gλI + λI , where λI

is defined as λhI , but on the fixed coarse mesh TI,h0 . Then, knowing that TI,h is a
refinement of TI,h0 , it follows that λI ∈ Nk

I,h, hence λI = πI,hλI , and a density
argument for ψI + gλI gives the result.
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For the current intensityexcitationproblem (8.39) thefinite element approach reads

Find (EC,h, ψ̂
∗
I,h) ∈ Y k

C,h × LkI,h/C :

C((EC,h , grad ψ̂∗
I,h), (zC,h, gradχ

∗
I,h))

= −iω
∫
ΩC

Je,C · zC,h + iωI0
∫
Γ

zC,h × nC · λhI
−ω2I0

∫
ΩI

μIλ
h
I · gradχ∗

I,h

for all (zC,h, χ∗
I,h) ∈ Y k

C,h × LkI,h/C .

(8.42)

Recalling thatHI = grad ψ̂∗
I + I0λhI and settingHI,h := grad ψ̂∗

I,h + I0λhI , from
(8.39) and (8.42) we have the following equation for the error

C((EC −EC,h,HI −HI,h), (zC,h, gradχ∗
I,h))

= C((EC −EC,h, grad ψ̂∗
I − grad ψ̂∗

I,h), (zC,h, gradχ
∗
I,h)) = 0

for each (zC,h, χ∗
I,h) ∈ Y k

C,h × LkI,h/C. Therefore, the coerciveness of C(·, ·) gives

‖EC −EC,h‖H(curl;ΩC) + ‖HI −HI,h‖0;ΩI

= ‖EC − EC,h‖H(curl;ΩC) + ‖ grad ψ̂∗
I − grad ψ̂∗

I,h‖0,ΩI

≤ C
(
‖EC − zC,h‖H(curl;ΩC) + ‖ grad ψ̂∗

I − gradχ∗
I,h‖0,ΩI

)
for each (zC,h, χ∗

I,h) ∈ Y k
C,h × LkI,h/C. Consequently, we find the error estimate

‖EC − EC,h‖H(curl;ΩC) + ‖HI −HI,h‖0,ΩI

≤ C inf
(zC,h,vI,h)∈Y k

C,h×Zk
I,h(I0)

(
‖EC − zC,h‖H(curl;ΩC) + ‖HI − vI,h‖0,ΩI

)
,

where
Zk
I,h(I

0) := gradLkI,h + I0λhI .

The convergence of the approximation scheme can be proved following the arguments
presented for the voltage problem (the only difference is that now we work with the
space Zk

I,h(I
0) instead of Zk

I,h, and this fact gives no problems to the procedure).

Once we have obtained EC,h and ψ̂∗
I,h from (8.39), we can compute

Vh :=
∫
Γ

EC,h × nC · λhI + iω

∫
ΩI

μIHI,h · λhI .

We can show that this quantity is an approximation of the voltage, that, from (8.13),
can be written as

V =
∫
Γ

EC × nC · ρ∗
I + iω

∫
ΩI

μIHI · ρ∗
I .

In fact, let us introduce the auxiliary quantity

V̂h :=
∫
Γ

EC,h × nC · ρ∗
I + iω

∫
ΩI

μIHI,h · ρ∗
I .
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We easily have

|V − V̂h| ≤ C1(‖EC − EC,h‖H(curl;ΩC) + ‖HI −HI,h‖0,ΩI) .

On the other hand, taking zC,h = 0 in (8.42), it is easy to see that

Vh =
∫
Γ

EC,h × nC (gradχ∗
I,h + λhI ) + iω

∫
ΩI

μIHI,h · (gradχ∗
I,h + λhI )

for all χ∗
I,h ∈ LkI,h/C. Thus

|V̂h − Vh| ≤ C2

(
‖EC,h‖H(curl;ΩC) + ‖HI,h‖0,ΩI

)
‖ρ∗

I − (gradχ∗
I,h + λhI )‖0,ΩI ,

for all χ∗
I,h ∈ LkI,h/C. Therefore, since (gradχ∗

I,h + λhI ) ∈ ZkI,h(1) (namely, the line
integral of this vector function along ∂ΓJ is equal to 1), we have

|V − Vh| ≤ C1

(
‖EC −EC,h‖H(curl;ΩC) + ‖HI −HI,h‖0,ΩI

)
+C2

(
‖EC,h‖H(curl;ΩC) + ‖HI,h‖0,ΩI

)
inf

vI,h∈Zk
I,h(1)

‖ρ∗
I − vI,h‖0,ΩI

≤
(
C1 + C2 inf

vI,h∈Zk
I,h(1)

‖ρ∗
I − vI,h‖0,ΩI

)
×
(
‖EC − EC,h‖H(curl;ΩC) + ‖HI −HI,h‖0,ΩI

)
+C2

(
‖EC‖H(curl;ΩC) + ‖HI‖0,ΩI

)
inf

vI,h∈Zk
I,h(1)

‖ρ∗
I − vI,h‖0,ΩI .

If the permeability coefficient μI is smooth enough or if the family of meshes TI,h is a
refinement of a coarse mesh TI,h0 , the convergence can be proved as in the preceding
cases.

Remark 8.11. Suitable finite element approximation schemes can be devised starting
from the variational formulations (8.28) and (8.29), related to the (HC , ψ∗

I )-approach,
or (8.34), (8.35), (8.36), related to the (TC , ψ∗)-approach.
In the former case, we have already noted that the meshes in ΩC and ΩI must be

compatible on Γ , while this is not the case for the hybrid (EC , ψ∗
I ) formulations.

In the latter case, the use of Lagrange nodal elements is the natural choice, but in
Section 6.1.3 we have seen that the convergence of the Galerkin finite element approx-
imation scheme can be ensured only if ΩC is a convex polyhedral domain (which is
not the most interesting case in real-life applications). Moreover, since the scalar po-
tential ψ∗ is present also inΩC , the total number of degrees of freedom is higher than
in the hybrid formulations. �

8.1.5 Numerical results

The finite element method presented in the preceding section has been implemented in
MATLAB, using Nédélec edge elements of first order Y 1

C,h for the electric field in the
conductor, and scalar Lagrange nodal elements of first order for the magnetic potential
in the insulator.
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The method has been tested by solving a problemwith a known analytical solution
presented in Bermúdez et al. [42]. The conducting domain ΩC and the whole domain
Ω are two coaxial cylinders of radii RC and RI , respectively, with height L. An al-
ternating current of intensity I(t) = I0 cos(ωt) is traversing the conductor in the axial
direction. Supposing that the physical parameters σ and μ are constant scalars, the
solution of the problem in cylindrical coordinates is given by

EC(r, θ, z) =
κ

2πRCσ

I0(κr)
I1(κRC)

ez in ΩC

HC(r, θ, z) =
I0

2πRC

I1(κr)
I1(κRC)

eθ inΩC

HI (r, θ, z) =
I0

2πr
eθ in ΩI ,

where I0 and I1 denote the modified Bessel functions of the first kind and order 0
and 1, respectively, and κ =

√
iωμσ. Moreover, for this particular geometry it holds

ρ∗
I = 1

2πr
eθ, thusHI = I0ρ∗

I .
Once the fields and the function ρ∗

I are known, the value of V is computed from
the expression (8.17), obtaining

V =
κLI0

2πσRC

I0(κRC)
I1(κRC)

+ iωμ
LI0

2π
ln

RI

RC
.

For our particular case we have used the following geometry and data

RC = 0.25m,

RI = 0.5m,

L = 0.25m,

σ = 151565.8 S/m,

μ = 4π × 10−7 H/m,

ω = 2π × 50 rad/s,

and either assigned current intensity or voltage,

I0 = 104 A, or V = 0.08979 + 0.14680i,

where the value of V has been computed for an intensity of 104 A.
To test the order of convergence, the problem has been solved in four successively

refined meshes, for either assigned current intensity or voltage. We present in Ta-
bles 8.1 and 8.2 the relative errors of our numerical solutions against the analytical
solution, that have been set as follows

eE =
‖EC −EC,h‖H(curl;ΩC )

‖EC‖H(curl;ΩC)
, eV =

|V − Vh|
|V |

eH =
‖HI −HI,h‖0,ΩI

‖HI‖0,ΩI

, eI0 =
|I0 − I0

h|
|I0| .
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Table 8.1. Relative errors for assigned intensity

Elements DoF eE eH eV

2304 1684 0.2341 0.1693 0.0312

18432 11240 0.1132 0.0847 0.0089

62208 35580 0.0750 0.0567 0.0048

147456 81616 0.0561 0.0425 0.0018

Table 8.2. Relative errors for assigned voltage

Elements DoF eE eH eI0

2304 1685 0.2336 0.1685 0.0274

18432 11241 0.1132 0.0847 0.0085

62208 35581 0.0750 0.0566 0.0041

147456 81617 0.0561 0.0425 0.0024

Finally, Figures 8.4 and 8.5 show the plots in a log-logscale of the relative errors versus
the degrees of freedom. A linear dependence on themesh size is obtained for the errors
of electric and magnetic fields, either for assigned intensity or voltage. The voltage
and intensity errors turn out to be quadratic with respect to h; to our knowledge, this
superconvergence result has not been theoretically proved, but it looks quite evident
from these numerical computations.

Fig. 8.4. Relative errors versus number of DoF (assigned intensity)
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Fig. 8.5. Relative errors versus number of DoF (assigned voltage)

The method has been also applied to a more realistic problemwhich was presented
in Bermúdez et al. [43]. In this case the domain is a cylindrical electric furnace with
three ELSA electrodes equally distanced. The dimensions of the furnace are the fol-
lowing: furnace height: 2 m; furnace diameter: 8.88 m; electrodes height: 1.25 m; elec-
trodes diameter: 1 m; distance from the center of the electrodes to the wall: 3 m.
The three ELSA electrodes inside the furnace are formed by a graphite core of 0.4

m of diameter, and an outer part of Søderberg paste. The electric current enters the
electrodes through horizontal copper bars of rectangular section (0.07 m× 0.25 m),
connecting the top of the electrode with the external boundary.
For the simulation we have considered the angular frequency ω = 2π × 50 rad/s,

the magnetic permeability μ = 4π × 10−7 H/m, and the electric conductivities σ =
106 S/m for graphite, σ = 104 S/m for Søderberg paste, and σ = 5 × 106 S/m for
copper. We have imposed an intensity of I0

j = 7 × 104A for each electrode, using
the approach that has been explained in Remark 8.8 for the case of a non-connected
conductor. With the same notation used there, the boundaries ΓE,j correspond to the
contacts of the copper bars on the boundary of the furnace, and ΓJ,j to the bottom of
the electrodes.
In Figure 8.6 we present the absolute value of the magnetic potential, i.e., |ψ̂∗

I,h +∑3
j=1 I0

j ηI,j,h|, where ηI,j,h are the piecewise-linear functions with a jump of height
1 on the “cutting” surfaces Ξ∗

j,h. In Figures 8.7 and 8.8 the magnitude of the cur-
rent density Jh = σEC,h on a horizontal and a vertical section of one electrode is
shown.
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Fig. 8.6. Magnetic potential in the dielectric

Fig. 8.7. Magnitude of the current density Jh (A/m2) on a horizontal section of one electrode
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Fig. 8.8. Magnitude of the current density Jh (A/m2) on a vertical section of one electrode

8.2 Voltage and current intensity excitation for an internal
conductor

In this section, following Alonso Rodríguez and Valli [18], where a more complete
analysis is presented, we consider the question of how to impose a current intensity
or a voltage when the conductor is strictly contained in the computational domain.
For the sake of simplicity we assume that Ω is a simply-connected bounded open set,
with a connected boundary ∂Ω, and that the conductorΩC is a torus-like domain. We
consider three different kinds of boundary conditions: the electric boundary condition

E× n = 0 on ∂Ω , (8.43)

the magnetic boundary conditions

H× n = 0 on ∂Ω
εE · n on ∂Ω,

(8.44)

and the no-flux boundary conditions

μH · n = 0 on ∂Ω
εE · n on ∂Ω .

(8.45)

First we notice that for each one of these boundary conditions the solution of the eddy
current problem is unique. In fact we have the following result (similar to Proposi-
tion 8.2).

Proposition 8.12. Let us consider the solutions H and E of the eddy current problem

curlH− σE = Je in Ω
curlE + iωμH = 0 in Ω .
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The magnetic field H in Ω and the electric field EC in ΩC are uniquely determined
for each one of the boundary condition (8.43), (8.44) and (8.45).

Proof. Assuming that Je = 0 and proceeding as in the proof of Proposition 8.2 we
obtain that

0 =
∫
ΩC

σEC · EC +
∫
Ω

iωμH ·H−
∫
∂Ω

E× n ·H .

The uniqueness of H and EC follows at once if we prove that the boundary integral
vanishes. This is clear in the case of the boundary conditions (8.43) and (8.44). For the
case (8.45) we have divτ(E×n) = curlE · n = −iωμH · n = 0 on ∂Ω, hence there
exists a scalar function v such that E× n = grad v × n on ∂Ω. Therefore∫

∂Ω E× n ·H = −
∫
∂Ω H× n · grad v =

∫
∂Ω divτ (H× n) v

=
∫
∂Ω
curlH · n v = 0 ,

as curlHI = 0 in ΩI and ∂Ω ⊂ ∂ΩI . �
Since the eddy current problem has a unique solution for each of the boundary

conditions described in (8.43), (8.44) and (8.45), it is not possible to impose an addi-
tional condition, say, voltage or current intensity, if we do not relax some of the other
equations. However we cannot renounce to Maxwell equations, namely, to Faraday
and Ampère equations.
The point is therefore to devise a different interpretation, and this will be the object

of our presentation in the sequel. We revisit what was done in Section 8.1, and analyze
again the electric port case with boundary conditions (8.2). Indeed, this is the case in
which it is clear how to impose voltage or current intensity. First of all, it is worthwhile
to recall that, assuming Je = 0, as in (8.9) one has∫

ΩC

σ−1 curlHC · curlHC +
∫
Ω

iωμH ·H = V I0 .

On the other hand, given a complex number q ∈ C take Je,I = 0 and Je,C =
qσ gradφC , where φC is the unique solution to⎧⎪⎪⎨⎪⎪⎩

div(σ gradφC) = 0 in ΩC

φC = 1 on ΓJ
φC = 0 on ΓE
σ gradφC · n = 0 on Γ .

(8.46)

Then ∫
ΩC

σ−1 curlHC · curlHC + iω
∫
Ω

μH ·H
=
∫
ΩC

σ−1Je,C · curlHC + V I0

= q
∫
ΩC
gradφC · curlHC + V I0 .

Moreover,∫
ΩC
gradφC · curlHC

= −
∫
ΩC

φC div curlHC +
∫
ΓE∪ΓJ∪Γ φC curlHC · nC

=
∫
ΓJ
curlHC · n ,

(8.47)
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as φC = 0 on ΓE , φC = 1 on ΓJ and curlHC · nC = curlHI · nC = 0 on Γ . Hence∫
ΩC

σ−1 curlHC · curlHC + iω

∫
Ω

μH ·H = (q + V ) I0 . (8.48)

This is telling us that, when considering the electric port case with boundary con-
ditions (8.2), assigning a voltage V is in some sense equivalent to impose a current
density Je,C = V σ gradφC in ΩC .
More precisely, let us consider the electric port eddy current problem with Je,C =

−V σ gradφC , Je,I = 0 and assigned voltage equal to V , namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl Ĥ− σÊ = −V σ gradφC in Ω

curl Ê + iωμĤ = 0 in Ω

div(εIÊI) = 0 in ΩI

εIÊI · nI = 0 on ΓI
Ê× n = grad v × n on ∂Ω
v|ΓJ

= V on ΓJ
v|ΓE

= 0 on ΓE .

From (8.48) it follows at once that Ĥ = 0, and it is also easily seen that Ê = V grad v,
where v is equal to φC in ΩC and to vI in ΩI , vI being the unique solution to⎧⎨⎩ div(εI grad vI ) = 0 in ΩI

vI = φC on Γ
εI grad vI · n = 0 on ΓI .

(8.49)

This will lead us to propose a suitable formulation for the eddy current problem
with an internal conductor subjected to a given voltage or current intensity excitation:
the key point will be that these excitations have to be interpreted as a particular applied
current density.
Note that the function gradφC is the basis function of the space of harmonic fields

Hσ(ΓC , Γ ;ΩC):= {vC ∈ (L2(ΩC))3 | curlvC = 0, div(σvC) = 0,
σvC · nC = 0 on Γ, vC × nC = 0 on ΓC} ,

normalized with the condition ∫
γ̃

gradφC · dτ = 1 ,

where γ̃ is a curve lying inΩC and joiningΓE to ΓJ . Thus, for the internal conductor
case we are led to introduce the space of harmonic fields

Hσ(m;ΩC) := {vC ∈ (L2(ΩC))3 | curlvC = 0, div(σvC) = 0,
σvC · nC = 0 on Γ } ,

denoting by ρ∗
C its basis function normalized with the condition∫

γ∗
ρ∗
C · dτ = 1 ,
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where γ∗ is a non-bounding cycle internal to ΩC (whose orientation has been freely
chosen).
The voltage and current intensity excitation problems are therefore formulated as

follows.

Voltage rule. When the voltageV is imposed, modify the Ohm law in ΩC by adding
to the current density σEC the “applied” current density Je,C = V σρ∗

C . Thus the
Ampère equation reads

curlHC − σEC = V σρ∗
C .

Our convention is that the voltage passes from 0 to V along the basic cycle γ∗.

Current intensity rule. When the current intensity I0 is imposed, modify the Ohm
law in ΩC by adding to the current density σEC the “applied” current density Je,C =
V σρ∗

C . Thus the Ampère equation reads

curlHC − σEC − V σρ∗
C = 0 ,

where V has to be determined by imposing the additional constraint∫
Ξ∗

C

curlHC · n∗ = I0 .

Here Ξ∗
C is a section of ΩC and the unit normal vector n∗ has the same orientation of

the basic cycle γ∗.

Let us show that, when adopting these two rules, we are respecting the following
power law

P :=
∫
ΩC

σ−1 curlHC · curlHC + iω

∫
Ω

μH ·H = V I0 .

In fact, for Je,C = V σρ∗
C and Je,I = 0, we have as usual∫

ΩC

σ−1 curlHC · curlHC + iω

∫
Ω

μH ·H = V

∫
ΩC

ρ∗
C · curlHC .

Recalling that the basis function ρ∗
C is the L

2(ΩC)-extension of the gradient of a suit-
able scalar function p∗C , defined in ΩC \Ξ∗

C and having a jump equal to 1 across Ξ
∗
C ,

we obtain,∫
ΩC

ρ∗
C · curlHC =

∫
ΩC\Ξ∗

C
grad p∗C · curlHC

= −
∫
ΩC\Ξ∗

C
p∗C div curlHC +

∫
Γ

p∗C curlHC · nC
+
∫
Ξ∗

C
curlHC · n∗

=
∫
Ξ∗

C
curlHC · n∗ ,

(8.50)

as curlHC · nC = curlHI · nC = 0 on Γ and the jump of p∗C on Ξ∗
C is equal to 1.

Hence we end up with

P =
∫
ΩC

σ−1 curlHC · curlHC + iω
∫
Ω

μH ·H
= V

∫
ΩC

ρ∗
C · curlHC = V I0 .



8.2 Voltage and current intensity excitation for an internal conductor 267

8.2.1 Variational formulations

We can considerH-based formulations,E-based formulations or hybrid formulations.
In our opinion, the simplest approach is in terms ofH, thus we start using the latter.
Concerning the voltage excitation problem we have already made explicit the fol-

lowing rule: applying a voltage is equivalent to consider a current density Je,C =
V σρ∗

C . Hence the weak H-based formulation of the voltage excitation problem is
similar to the formulation considered in Chapter 3: given V ∈ C,

Find H ∈ X such that:∫
ΩC

σ−1 curlHC · curlvC +
∫
Ω

iωμH · v = V
∫
ΩC

ρ∗
C · curlvC

for each v ∈ X ,

(8.51)

where
X := {v ∈ H(curl;Ω) | curlvI = 0 in ΩI} (8.52)

in the case of the electric boundary condition or the no-flux boundary conditions, while

X := {v ∈ H0(curl;Ω) | curlvI = 0 in ΩI} (8.53)

in the case of the magnetic boundary conditions.
Then setEC := σ−1 curlHC−V ρ∗

C inΩC , and inΩI defineEI to be the solution
to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curlEI = −iωμIHI in ΩI

div(εIEI) = 0 in ΩI

EI × nI = −EC × nC on Γ∫
∂Ω

εIEI · n = 0
EI × n = 0 on ∂Ω

(8.54)

when considering the electric boundary condition, or to⎧⎪⎪⎨⎪⎪⎩
curlEI = −iωμIHI in ΩI

div(εIEI) = 0 in ΩI

EI × nI = −EC × nC on Γ
εIEI · n = 0 on ∂Ω

(8.55)

when considering the magnetic or the no-flux boundary conditions.
The well-posedness of problem (8.51) comes from the coerciveness in X of the

sesquilinear form a(u,v) :=
∫
ΩC

σ−1 curluC · curlvC +
∫
Ω

iωμu ·v. Instead, a del-
icate point here is the unique solvability of problem (8.54) and problem (8.55). In fact,
as it is well-known, boundary-valueproblems for the curl-div system in general require
that some compatibility conditions be satisfied in order to ensure the existence of a so-
lution, and that suitable additional conditions are imposed to guarantee its uniqueness;
some of these conditions are related to the non-trivial topology of ΩI . We refer the
reader to Chapter 3, where this analysis has been performed for both the electric and
the magnetic boundary conditions. In the case of no-flux boundary conditions the ver-
ification of the compatibility conditions for the well-posedness of problem (8.55) is
similar to the magnetic boundary condition case.
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Fig. 8.9. The “cutting” surfaceΞI for the internal conductor case

Remark 8.13. Let us also recall that the same variational formulation (8.51) has been
proposed in Dular et al. [99], Rappaz et al. [202] and Hiptmair and Sterz [130]. How-
ever, there it has been set EC := σ−1 curlHC , leading to the violation of the Faraday
equation on the surface ΞI “cutting” the basic non-bounding cycle γ of ΩI (see Fig-
ure 8.9).
Let us show that this is in fact the case, and that all the other equations are veri-

fied. Since V
∫
ΩC

ρ∗
C · curlvC = V

∫
Γ

ρ∗
C × nC · vC and this term is vanishing for a

test function vC with compact support in ΩC , from (8.51) one verifies that the Fara-
day equation in ΩC is satisfied. Defining EC = σ−1 curlHC , the Ampère equation
without sources is clearly satisfied in the wholeΩ. However, in Section 3.3.1 we have
shown that the Faraday law on ΞI can be written as∫

ΩI

iωμIHI · ρI = −
∫
Γ

(EC × nC) · ρI , (8.56)

where ρI is the (L2(ΩI ))3-extension of the gradient of a function pI ∈ H1(ΩI \ΞI)
such that ⎧⎪⎪⎨⎪⎪⎩

div(μI grad pI) = 0 in ΩI \ ΞI

μI grad pI · nI = 0 on Γ \ ∂ΞI

[μI gradpI · nI ]ΞI
= 0

[pI ]ΞI
= 1 ,

plus a boundary conditionon ∂Ω that depends on the boundary conditions forH andE
under consideration. Precisely, for the magnetic boundary conditions one has pI = 0
on ∂Ω, while for the electric and the no-flux boundary conditionsμI grad pI ·nI = 0
on ∂Ω (and in this case pI is defined up to an additive constant).
From (8.51) we find at once∫

ΩI
iωμHI · ρI = −

∫
ΩC

iωμHC ·RC −
∫
ΩC

σ−1 curlHC · curlRC

+V
∫
ΩC

ρ∗
C · curlRC ,

whereRC is any extension of ρI in ΩC giving a global function belonging toX.
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SettingEC = σ−1 curlHC and integrating by parts one has∫
ΩI

iωμHI · ρI = −
∫
ΩC

iωμHC ·RC −
∫
ΩC
curlEC ·RC

−
∫
Γ (EC × nC) · ρI + V

∫
Γ (ρ∗

C × nC) · ρI
= −

∫
Γ (EC × nC) · ρI + V ,

having used the Faraday equation in ΩC and the result
∫
Γ
(ρ∗

C × nC) · ρI = 1. Since
V �= 0, the Faraday equation on the surface ΞI does not hold.
In other words, taking EC = σ−1 curlHC has as a consequence that there is no

electric field inΩI solving the Faraday equation curlEI = −iωμIHI withEI×nI =
−EC × nC on Γ : the necessary compatibility condition on the data∫

ΩI

iωμIHI · ρI = −
∫
Γ

(EC × nC) · ρI

is not satisfied. �

Now we consider the current intensity excitation problem. It can be expressed in
this way: given I0 ∈ C,

Find (H, V ) ∈ X × C such that∫
ΩC

σ−1 curlHC · curlvC +
∫
Ω

iωμH · v − V
∫
ΩC

ρ∗
C · curlvC = 0∫

ΩC
ρ∗
C · curlHC = I0

for each v ∈ X ,

(8.57)

where X is as in (8.52) or (8.53). Then one sets EC := σ−1 curlHC − V ρ∗
C in ΩC

and determines EI as in (8.54) or (8.55).
The well-posedness of problem (8.57) comes from the theory of saddle-point

problems. In fact, we have already noted that the sesquilinear form a(u,v) :=∫
ΩC

σ−1 curluC · curlvC +
∫
Ω

iωμu · v is coercive in X; moreover, since the un-
known V ∈ C is a number, for showing that the inf–sup condition is satisfied it is
enough to findw∗ ∈ X such that∣∣∣∣∫

ΩC

ρ∗
C · curlw∗

C

∣∣∣∣ > 0 .

This can be achieved as follows:w∗ ∈ X is any extension ofw∗
C , the solution to⎧⎨⎩ curlw

∗
C = σρ∗

C in ΩC

divw∗
C = 0 in ΩC

w∗
C × nC = c∗0ρI × nC on Γ ,

where c∗0 :=
∫
ΩC

σρ∗
C ·ρ∗

C . Note that the existence of the solutionw
∗
C is a consequence

of the relation
∫
Γ
(ρ∗

C × nC) · ρI = 1.

The variational formulations (8.51) and (8.57) can be used as starting points for
devising finite element methods for approximating the solution.
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In fact, the voltage excitation reduces to a standard problem with a given current
density V σρ∗

C , therefore any method used for eddy current problems can be applied.
It is worth noting that the construction of the function ρ∗

C is not required. Indeed,
one can proceed as in Section 5.1: consider a fixed (and coarse) mesh in ΩC that in-
duces a triangulation of the “cutting” surface Ξ∗

C . The first step is to denote byΠC the
piecewise-linear function taking value 1 at the nodes on one side ofΞ∗

C , say Ξ∗+
C , and

0 at all the other nodes (including those on Ξ∗−
C ). Then define gC ∈ H1(ΩC) to be

the solution (determined up to an additive constant) to{
div(σ grad gC) = − div(σ gradΠC) inΩC

σ grad gC · n = −σ gradΠC · n on Γ .

Thus ρ∗
C = g̃radΠC + grad gC , where g̃radΠC denotes the (L2(ΩC))3-extension of

gradΠC computed in ΩC\Ξ∗
C . If v ∈ X one has∫

ΩC
ρ∗
C · curlvC =

∫
ΩC\Ξ∗

C
gradΠC · curlvC +

∫
ΩC
grad gC · curlvC

=
∫
ΩC\Ξ∗

C
gradΠC · curlvC ,

as div curlvC = 0 and curlvC · n = 0 on Γ .
Therefore, we have verified that in (8.51) one can substitute ρ∗

C by the easily com-
putable gradΠC , and the solutionH remains the same. Clearly, the need to compute
ρ∗
C comes again into play if one wants to recover EC , which is given by

EC = σ−1 curlHC − V ρ∗
C = σ−1 curlHC − V g̃radΠC − V grad gC .

If the current intensity is given, the constraint
∫
ΩC

ρ∗
C · curlHC = I0 has to be

added. In (8.57), the voltage V plays the role of a Lagrange multiplier associated to
this constraint, and the global problem is a saddle-point problem. For any type of con-
forming finite element discretization using edge elements in ΩC , the presence of this
Lagrange multiplier requires that an inf–sup condition like∣∣∣∣∫

ΩC

ρ∗
C · curlw∗

C,h

∣∣∣∣ ≥ β||w∗
h||X

be satisfied for a constant β > 0, independent of h, and a suitable discrete vector
functionw∗

h.

This can be achieved as follows: expressing ρ∗
C in terms of g̃radΠC , as done be-

fore, we have by integration by parts and the Stokes theorem∫
ΩC

ρ∗
C · curlw∗

C,h =
∫
ΩC\Ξ∗

C
gradΠC · curlw∗

C,h

=
∫
∂(ΩC\Ξ∗

C)
ΠC curlw∗

C,h · n =
∫
Ξ∗

C
curlw∗

C,h · n
=
∫
∂Ξ∗

C
w∗
C,h · dτ =

∫
∂Ξ∗

C
w∗
I,h · dτ .

Now let us consider a fixed (and coarse) mesh in ΩI that induces a triangulation of
the “cutting” surface ΞI (see Figure 8.10). Proceeding as in the conductor region we
denote byΠI the piecewise-linear function taking value 1 at the nodes on one side of
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Fig. 8.10. The “cutting” surfacesΞ∗
C and ΞI for the internal conductor case

ΞI and 0 at all the other nodes. From now on we consider triangulations that are all
obtained as a refinement of the basic coarse mesh, in such a way that a discrete function
on the coarse mesh is also a discrete function on all the other meshes. Then choose as
w∗
I,h the (L2(ΩI))3-extension of gradΠI , computed inΩI \ΞI . Finally, take asw∗

C,h

the edge element interpolant, on the coarse mesh inΩC , of the valuew∗
I,h×nI on Γ .

Clearly
∫
∂Ξ∗

C
w∗
I,h ·dτ = 1 and the norm ||w∗

h||X does not depend on h, therefore the

uniform inf–sup condition is satisfied.

Up to now, in this section we have focused on theH-based formulation; however,
theE-based formulation of voltage and current intensity excitation problems can also
be considered.
The “voltage rule” is telling us that we have just to consider a current density

Je,C = V σρ∗
C , hence theE-based formulation is devised proceeding as in Section 4.6,

where the magnetic boundary conditions have been considered.
The variational formulation is that described in (4.75), and the only point that needs

to be clarified is the choice of the variational space Z in which the problem is formu-
lated.
In the case of the magnetic boundary conditions one takes Z as in (4.74), which in

the present geometrical situation reads

Z := {z ∈ H(curl;Ω) | div(εIzI) = 0 in ΩI ,
εIzI · n = 0 on ∂Ω} ; (8.58)

for the electric boundary condition one has

Z := {z ∈ H(curl;Ω) | div(εIzI ) = 0 in ΩI ,
z× n = 0 on ∂Ω,

∫
∂Ω

εIzI · n = 0} ; (8.59)

for the no-flux boundary conditions one chooses

Z := {z ∈ H(curl;Ω) | div(εIzI ) = 0 in ΩI ,
εIzI · n = 0 on ∂Ω, divτ (z× n) = 0 on ∂Ω} . (8.60)

Passing to the “current intensity rule”, it says that the given current intensity I0 is
generating not only the electric field but also a current density V σρ∗

C . Moreover, we
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have curlHC = σEC + V σρ∗
C . Then, the problem is: for each given I0 ∈ C,

Find (E, V ) ∈ Z × C such that∫
Ω

μ−1 curlE · curl z +
∫
ΩC

iωσEC · zC + iωV
∫
ΩC

σρ∗
C · zC = 0∫

ΩC
ρ∗
C · σEC + V

∫
ΩC

σρ∗
C · ρ∗

C = I0

for each z ∈ Z ,

(8.61)

where Z is as in (8.58) for the magnetic boundary conditions, as in (8.59) for the
electric boundary condition, and as in (8.60) for the no-flux boundary conditions.
The existence of solution is a consequence of what was already proved for the

H-based formulation. On the other hand, uniqueness needs some work. First of all,
multiplying (8.61)2 by iωQ, where Q ∈ C, we find∫

Ω
μ−1 curlE · curl z

+iω
∫
ΩC

σ(EC + V ρ∗
C) · (zC + Qρ∗

C) = iωI0 Q .

Thus, putting I0 = 0 and choosing z = E and Q = V , we obtain curlE = 0 in Ω
and EC + V ρ∗

C = 0 in ΩC . Since Ω is simply-connected, we also have E = gradU
inΩ. Therefore, integratingEC on the cycle γ∗ we find

0 =
∫
γ∗ gradUC · dτ =

∫
γ∗ EC · dτ = −

∫
γ∗ V ρ∗

C · dτ = −V ,

thus V = 0, and consequently EC = 0 in ΩC . Finally, the interface condition
EI × nI = −EC × nC on Γ is sufficient to conclude that EI = 0 inΩI .
Solved (8.61), the magnetic field inΩ is as usual defined asH = − 1

iωμ−1 curlE.

Remark 8.14. A formulation similar to (8.61) has been proposed in Hiptmair and
Sterz [130], Bermúdez et al. [40] (in the former paper, replacing the source V ρ∗

C by

V g̃rad Φ̃C , where Φ̃C is a function jumping by 1 on the “cutting” surface Ξ∗
C and

g̃rad Φ̃C denotes the (L2(ΩC ))3-extension of grad Φ̃C computed in ΩC \ Ξ∗
C). How-

ever, in these papers the electric field is not the solutionEC to (8.61), but it is corrected
in ΩC by adding the source term. In this way the Faraday law is no longer verified
across the interface Γ . �

Remark 8.15. We note that theE-based formulation (8.61) takes a non-standard form:
in fact, it is questionable if the sesquilinear forms at the left hand sides of (8.61) are
coercive, and, on the other hand, the current intensity condition is not a pure constraint,
so that a formulation using Lagrange multipliers is not suitable. Therefore, a complete
analysis of a finite element approximation method could be a delicate task. However,
this approach has been used in Bermúdez et al. [40] for an axisymmetric problem, with
good numerical performances. �

Remark 8.16. The two rules presented at the beginning of this section can also be used
to derive a model for the voltage and current intensity excitation problems in the pres-
ence of electric ports, in the case in which the electric boundary conditionE×n = 0
on ∂Ω is imposed.
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The procedure is quite simple: in fact, to adapt the voltage and the current intensity
rules one has only to replace ρ∗

C with gradφC , with φC defined in (8.46).
Thus, the voltage excitation problem reads: given V ∈ C,

FindH ∈ X such that∫
ΩC

σ−1 curlHC · curlvC +
∫
Ω

iωμH · v
= V

∫
ΩC
gradφC · curlvC

for each v ∈ X ,

(8.62)

whereX := {v ∈ H(curl;Ω) | curlvI = 0 in ΩI}. Then set
EC := σ−1 curlHC − V gradφC inΩC ,

and in ΩI define EI to be the solution to⎧⎪⎪⎨⎪⎪⎩
curlEI = −iωμIHI in ΩI

div(εIEI ) = 0 in ΩI

EI × nI = −EC × nC on Γ
EI × n = 0 on ΓI .

(8.63)

The current intensity excitation problem reads: given I0 ∈ C,
Find (H, V ) ∈ X × C such that∫

ΩC
σ−1 curlHC · curlvC +

∫
Ω iωμH · v

−V
∫
ΩC
gradφC · curlvC = 0∫

ΩC
gradφC · curlHC = I0

for each v ∈ X .

(8.64)

Then EC and EI are determined in the same way as before.
The corresponding E-based formulations can be found in Alonso Rodríguez and

Valli [18]. �
Remark 8.17. Let us also discuss the case of electric ports with the magnetic boundary
conditions EC × nC = 0 on ΓE ∪ ΓJ , εIEI · nI = 0 and HI × nI = 0 on ΓI .
The crucial remark is that in this case the current intensity cannot be assigned freely,
because

I0 =
∫
ΓJ

curlHC · n =
∫
∂ΓJ

HC · dτ =
∫
∂ΓJ

HI · dτ = 0 ,

asHI × nI = 0 on ΓI and thus on ∂ΓJ .
Imposing I0 = 0 is thus the only possible case. Though it does not seem very

interesting, let us have a deeper look at the problem.
First of all, for each v ∈ H(curl;Ω) satisfying curlvI = 0 inΩI and vI×nI = 0

on ΓI it holds ∫
ΩC
gradφC · curlvC
=
∫
Γ∪ΓE∪ΓJ

φC curlvC · nC =
∫
ΓJ
curlvC · nC

=
∫
∂ΓJ

vC · dτ =
∫
∂ΓJ

vI · dτ = 0 .

(8.65)
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Considering now the Faraday equation, integration by parts gives

−iω

∫
Ω

μH ·H =
∫
Ω

curlE ·H =
∫
Ω

E · curlH−
∫
∂Ω

E× n ·H .

Since E× n = 0 on ΓE ∪ ΓJ and H× n = 0 on ΓI , using the Ampère equation we
obtain∫

Ω
E · curlH−

∫
∂Ω

E× n ·H
=
∫
ΩC

EC · curlHC =
∫
ΩC

(σ−1 curlHC − V gradφC) · curlHC .

From (8.65) we have
∫
ΩC
gradφC · curlHC = 0, thus we conclude that∫

ΩC

σ−1 curlHC · curlHC + iω

∫
Ω

μH ·H = 0 , (8.66)

henceH = 0 inΩ.Moreover, settingEC = −V gradφC inΩC andEI = −V grad vI
inΩI , where vI is the solution to (8.49), we find infinitelymany electric fields solution
of the eddy current problem with vanishing current intensity: one for each choice of
the voltage V ∈ C.
On theother hand, followingthe voltage rule for a givenV ∈ Cwehave to consider

the problem
curlH− σE = V σ gradφC inΩ
curlE + iωμH = 0 inΩ .

Repeating the same arguments described above, one arrives to (8.66). This means that,
for any assigned voltage V ∈ C, the voltage excitation problem with the magnetic
boundary conditions leads to H = 0 in Ω, and, moreover, one also finds that the
electric field in Ω is given by E = −V grad v, where v = φC in ΩC and v = vI
inΩI . �
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Selected applications

In this chapter we present some real-life problems that can be modeled by the eddy
current equations. In some of these examples the time-harmonic eddy current system
is used for numerical simulations, and a rich bibliography on the subject is available.
However, we also include some applicationswhere, to our knowledge, the eddy current
model has not yet been used. We believe that it could be a more accurate description
than the ones actually employed, and, using themethod proposed in this book, it should
be suitable for numerical simulations.
In the following we focus on the illustration of the physical phenomena; the de-

scriptions do not pretend to be complete and fully detailed, but just to give a flavour of
different technological problems that are related to low-frequency electromagnetism.

9.1 Metallurgical thermoelectrical problems

We consider in this section two kind of electromagnetic furnaces used in the metal-
lurgical industry: induction heating systems and electric reduction furnaces. There is
an increasing interest in numerical simulations as means to optimize the design and to
improve the performances of these kind of electromagnetic devices. In an induction
furnace the eddy currents generated within conductors and resistances lead to Joule
heating; in an electric reduction furnace the charged material is directly exposed to
an electric arc. In both cases the mathematical model for the behaviour of the furnace
involves thermal and electromagnetic phenomena, that can be described through the
coupling of the Maxwell equations and the heat transfer equation.
Normally the electromagnetic submodel is solved in the frequency domain and the

effect of displacement currents can be neglected, thus leading to the time-harmonic
eddy current problem analyzed in this book. The electromagnetic and the thermal prob-
lem are coupled for two reasons: the electromagnetic properties of the different mate-
rials, in particular the electric conductivity, depend on the temperature, and the Joule
effect is one of the source terms in the heat transfer equation. Other phenomena can
be also taken into account; for instance, hydrodynamic phenomena must be consid-

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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ered when melting a metal in an induction furnace, while mechanical effects play an
important role on the design of the electrodes of a reduction furnace.
In the following we present two different industrial applications. The first is the

modelization of a coreless induction furnace designed for melting and stirring, and the
second the modelization of an electric reduction furnace for the production of silicon.

9.1.1 Induction furnaces

In this section we follow the presentation of the problem given by Bermúdez et al. [41]
and Vázquez [240]. Induction furnaces are widely used in metallurgical industry for
hardening, melting or casting. An induction heating system is basically composed by
an inductor, fed by an alternating electrical current, and a conducting object that has to
be heated. More precisely, a coreless induction furnace formelting consists of a helical
copper coil, connected to a power supply, and a workpiece formed by the crucible
and the load within (see Figure 9.1). The alternating current traversing the inductor
produces an oscillatingmagnetic field, which generates eddy currents. These currents,
due to the Joule effect, produce heat in the conducting crucible, and the metal inside
is also heated until it melts. The crucible is surrounded by refractory and insulating
materials, and the inductor coil is water-cooled to avoid overheating due to Ohmic
losses. The operating frequencies of the supplied alternating current may vary from
utility frequency (50 or 60 Hz) to few kHz.
Numerical simulations are a valuable help in the shape optimization of this kind

of system. There are many different aspects that must be taken into account for the
design: the frequency and intensity of the applied current affect the temperature profile
in the furnace and the stirring action within the molten metal, thus influencing the
quality of the final product; ohmic losses could generate very high temperatures in
the crucible, damaging it and reducing its lifetime; some physical parameters, such as
the thermal and electrical conductivity of the refractory layer, and some geometrical
parameters, as the crucible thickness or its distance from the coil, are also important
for the performance of the device.

Fig. 9.1. An induction furnace (left, courtesy of V. Valcarcel, Ceramic Institute, Universidade
de Santiago de Compostela) and a sketch of the computational geometry (right)
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Melting systems were probably the first industrial application of eddy currents.
Their modelization involves three main coupled phenomena: the electromagnetic field
provides Joule heating and give rise to Lorentz forces that act on the molten metal.
Since the inductor is fed by an alternating current and the effect of the displacement

current can be disregarded, the problem is modeled by the time-harmonic eddy current
system

curlH = J
curlE + iωμH = 0 .

The heating of the conductor due to the Joule effect is governed by the transient
heat transfer equation with change of phase

ρ
(∂e

∂t
+ u · grad e

)
− div(k gradT ) = J · E ,

where the heating due to viscous terms has been neglected, and e is the energy per unit
mass, T the temperature, ρ the density, and k the thermal conductivity. The energy
can be expressed as a multivalued function of the temperature, depending on different
physical parameters. The right-hand sideJ (t,x)·E(t,x) is the heat generated by eddy
currents (J (t,x) and E(t,x) are the time-dependent total current density and electric
field, respectively). The term u · grad e corresponds to the convective heat transfer; u
is the velocity of the molten metal and it is given by the Navier-Stokes equations

ρ

(
∂u
∂t

+ (u · grad)u
)
− div(2ηD(u)) + gradp = fg + fl

divu = 0 ,

where η is the viscosity, p the pressure of the molten metal, and D(u) the symmetric
part of gradu, namely,

D(u) :=
gradu + (gradu)T

2
.

The forces at the right-hand side of theNavier-Stokes equations are the buoyancy force
fg, given by

fg = ρg ,

where g is the acceleration of gravity, and the Lorentz force fl, given by

fl = J × B ,

where B(t,x) is the time dependent magnetic induction.
The heat source and the Lorentz force are determined taking the mean value on a

cycle. Taking into account that J (t,x) = Re[eiωtJ(x)] and analogously E(t,x) =
Re[eiωtE(x)] and B(t,x) = Re[eiωtB(x)], an easy computation gives

ω
2π

∫ 2π

0
J (t,x) · E(t,x) dt

= 1
2 (ReJ(x) ·ReE(x) + ImJ(x) · ImE(x)) ,
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and
ω
2π

∫ 2π

0
J (t,x) ×B(t,x) dt

= 1
2 (ReJ(x) ×ReB(x) + Im J(x)× ImB(x)) .

It should be noted that the Ohm law for a moving conductor reads

J = σ(E + u×B) .

However, when working with molten metals on a laboratory scale, the term σ(u×B)
can be neglected.
In most numerical schemes the coupled problem is solved using an iterative time

stepping procedure, in which the electromagnetic field is first determined for tempera-
turedependent conductivityand permeability, then themomentum and the temperature
equations are advanced using the resulting Lorentz force and Joule loss distribution,
and finally the material properties are updated and another step can be applied. Pro-
ceeding in this way, at each time step it is necessary to solve an eddy current problem
like the one analyzed in the previous chapters of this book.
There is a very rich literature on numerical modeling of induction heating, and we

refer to Lavers [163] for an extensive bibliographic review on this subject. More of-
ten, taking advantage of some geometrical symmetries, in many works concerning the
coupling of electromagnetic and thermal problems the computational domain is two-
dimensional. For instance, Chaboudez et al. [78] consider a two-dimensional problem
involved in inductionheating of longworkpieces; Chaboudez et al. [77] do the same for
an axisymmetric configuration; Bermúdez et al. [40] study the thermo-electromagnetic
problem in induction furnaces used for melting, proposing and analyzing a FEM/BEM
method for the approximation of the electromagnetic subproblem; Bay et al. [35] con-
sider a model which couples electromagnetic, thermal and mechanical effects in ax-
isymmetrical induction heating processes; Henneberger et al. [124], Natarajan and El-
Kaddah [183] deal with the magneto-hydrodynamic problem in the context of induc-
tion melting systems with axisymmetric geometry, but they do not take explicitly into
account thermal effects. Let us also mention Rappaz and Touzani [203] for the numer-
ical analysis of a two-dimensional magneto-hydrodynamic problem.
By contrast, there are few works concerning the numerical approximation of the

thermal-magneto-hydrodynamic problem: we mention the results by Henneberger and
Obrecht [123], Katsumura et al. [149], and in particular the more recent paper by
Bermúdez et al. [41] (see also Vázquez [240]); in all these works the axisymmetric
geometry is assumed. More specifically, in Bermúdez et al. [41] and Vázquez [240] a
BEM/FEMmethod is used for the approximation of the solutionof the electromagnetic
problem. The problem is formulated in terms of a magnetic vector potential and the
input data of the problem are the current intensities through the inductor coils. Some
numerical simulations for an industrial furnace are presented, and show a good agree-
ment with experimental data. In thismodelization, the induction coil has been replaced
by a suitable set of rings, each one having toroidal geometry (see Figure 9.2).
As far as we know, there are no three-dimensional simulations of the thermal-

magneto-hydrodynamic problem for the more realistic situation in which the coil is a
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Fig. 9.2. Axisymmetric induction furnace: 1 metal, 2 crucible, 3 coils

simply-connected helix with two electric ports (for this type of coils in Section 8.1 we
have presented a complete analysis of the eddy current problem).

9.1.2 Metallurgical electrodes

The time-harmonic eddy current model is also used in modeling the thermoelectrical
behaviour of electrodes for electric reduction furnaces. Although the model is rather
general, we focus on metallurgical electric furnaces for silicon metal and ferro-silicon
production, following the presentation in Bermúdez et al. [43] (see also Bermúdez et
al. [45], Salgado [217]). This kind of furnace basically consists of a cylindrical pot
containing charged material and three electrodes symmetrically disposed. The pot is
a steel cylinder charged with quartz and quartzite, as silicon oxide source, and car-
bonaceous substance, as coal and coke. At temperatures over 1900 degrees the carbon
reduces the silica to silicon by the chemical reaction SiO2 + 2C→ Si + 2CO. The elec-
trodes are made of carbon materials and they serve to conduct the electric current to
the center of the furnace. Different transformers change the high-voltage current usu-
ally supplied into the low-voltage high-intensity current suitable for the process. The
electric current enters each electrode through a metal ring, which completely embraces
the electrode above the charge level. The ring is composed by several copper sections,
called contact clamps; bus bars connect the transformers to the contact clamps. At the
tip of each electrode an electric arc is produced, generating the high temperatures that
activate the chemical reaction. In Figure 9.3 we give a sketch of a reduction furnace.
The electrodes can be of different kinds, depending on the type of production,

namely, silicon metal or ferro-silicon. Traditionally, in furnaces for silicon metal pro-
duction two types of electrodes are mainly used: the pure graphite electrodes, com-
posed by graphite bars joined by threated graphite connecting pieces, called nipples;
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Fig. 9.3. Sketch of a reduction furnace (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

the prebaked electrodes, composed by a mixture of carbonaceous substance known as
paste, which has been previously baked to eliminate volatile substances.
Instead, themost used electrode in ferro-silicon industry is the Søderberg one, com-

posed by a mixture of petroleum coke and coal-tar pitch contained into a steel cylinder.
This paste is put in the cylinder at the top of the electrode, and it bakes in the zone of
the contact clamps, employing the heat generated by the Joule effect. In this process
the initially non-conductive paste at the top of the electrode becomes a solid carbon
conductor. The baked electrode is consumed during the reaction that takes place at the
tip of the pot, and has to be continuously replaced by pushing the carbon body down.
This is done by moving the casing, but this procedure has the drawback that the steel
melts and pollutes silicon. For this reason the Søderberg electrodes, that can be built in
larger size and cost less than pure graphite or prebaked electrodes, are only used in the
production of ferro-silicon, which can contain a large percentage of iron, but cannot
be used to obtain pure silicon metal.
For many years graphite or prebaked electrodes have been the only kind of elec-

trodes used in silicon metal production. In the early 1990s, the Spanish company Fer-
roatlántica S.L. built a new type of electrode named ELSA, that serves for the produc-
tion of silicon metal at a lower cost. It consists of a central column of baked carbona-
ceous material, graphite or similar, surrounded by a Søderberg-like paste. There is a
steel casing that contains the paste until it is baked, but the carbon core is responsible
for slipping, so the casing does not move with the baked electrode and it does not melt.
In this way it is possible to produce silicon with metallurgical quality. In Figure 9.4
we see a sketch of the ELSA electrode.
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Fig. 9.4. Sketch of an ELSA electrode (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

During the last decades many models and codes have been developed to simulate
the working conditions of electric reduction furnaces. They compute the temperature
distribution, the electromagnetic fields and the stress distribution inside the electrodes
by solving the heat equation, the Maxwell equations and the elasticity equations. The
system is coupled since the heat source depends on the electromagnetic fields, and the
conductivity and stresses depend on the temperature. The alternating current and the
low frequency (50 Hz) used make the eddy current model a good approximation for
the electromagnetic submodel.
The early works concerning the modeling of a single electrode assume cylindrical

symmetry (see, for instance, Bermúdez et al. [39]). The problem is solved in a vertical
section of the electrode, writing the equations in cylindrical coordinates. Clearly, the
two-dimensional model reduces the computational cost, but introduces some simplifi-
cations. Axisymmetric boundary conditions are assumed, but these are not realistic in
industrial applications, for which the current enters the electrode through the contact
clamps, and in each electrode half of the clamps is connected to one transformer while
the others are connected to a second transformer. Moreover, the conductivity is not
axisymmetric in the electrode, since it depends on the temperature, which is greater in
the central part of the furnace containing the electrode.
There are few works concerning three dimensional simulation of metallurgical

electrodes. The mathematical analysis of the continuous and the discrete problems in
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the case of a single electrode can be found in Bermúdez et al. [46] for the H-based
formulation, and Bermúdez et al. [44] for the E-based one. Notice that, in this case,
the conductivity is assumed to be uniformly positive definite in the whole domain, and
an insulating region is not present: the computational domain simply corresponds to
the electrode and to the contact clamps. The problem is not axisymmetric, because it
takes into account the non-symmetric boundary conditions that are typical in industrial
applications.
Here we show some numerical simulationsdue to Bermúdez et al. [43] for an ELSA

electrode. In Figures 9.5 we describe the geometrical configuration; in Figures 9.6, 9.7,
9.8 and 9.9 we show the magnitude of the current density in different sections of the
electrode.
A delicate issue of the model that only considers one single electrode is the deter-

mination of the boundary conditions, as explained in Bermúdez et al. [44]. On the tip
of the electrode, where the electric arc arises, the current exits freely, henceE×n = 0.
Also on the contacts, namely, the cross-sections of the bus bars throughwhich the elec-
tric current enters the domain, the conditionE×n = 0 is imposed, and moreover the
current intensity through each bus bar is known. Then one has J ·n = 0 outside the tip
of the electrode and the contacts, since there is no current flux through this part of the
boundary. Finally,μH ·n is set equal to 0 on the whole boundary, though this assump-
tion is not valid in general: for instance, it is exactly true in the axisymmetric case, and
it is admissible when the number of external bus bars feeding the electrode is large and
they are arranged radially, because in this case the normal magnetic fluxes that they
generate tend to cancel out. In more general situations one could take a larger domain
around the electrode and the bus bars, and assign the boundary conditionμH·n = 0 on

Fig. 9.5. The geometric configuration of the ELSA electrode: A graphite, B paste, C casing,
D water, E contact clamp
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Fig. 9.6. Magnitude of the current density (A/cm2): horizontal section at the top of contact
clamps (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.7.Magnitude of the current density (A/cm2): horizontal section at the bottom of contact
clamps (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.8.Magnitude of the current density (A/cm2): horizontal section 25 cm below the contact
clamps (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)
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Fig. 9.9. Magnitude of the current density (A/cm2): vertical section (courtesy of A. Bermúdez,
R. Rodríguez and P. Salgado)

the external boundary: however, in this way a non-conductive air region is introduced
(see Bermúdez et al. [45], Alonso Rodríguez et al. [20]).
When considering a single electrode the proximity effect is neglected: though the

magnetic field generated by each electrode induces eddy currents in the other elec-
trodes, this is not considered in the simulations. A first attempt at taking into account
this effect has been carried out by Bermúdez et al. [38] for ELSA electrodes, solving
numerically the electromagnetic problem on a horizontal section of the three elec-
trodes. A drawback is that these two-dimensional models are valid only in the lower
part of the electrode, where it can be assumed that the electric current is orthogonal to
the considered two-dimensional section.
The more realistic modeling of the reduction furnace requires to consider a three-

dimensional non-symmetric computational domain, formed by a conducting region
and an insulating region. We conclude this section by presenting some numerical sim-
ulations due to Bermúdez et al. [43] for this model of the furnace, with three ELSA
compound electrodes. The contact clamps and the casing are not explicitly consid-
ered in the modelization, and the Søderberg paste is assumed to be baked in the whole
domain. The electric current enters the electrodes through copper bars of rectangular
section. In Figures 9.10 and 9.11 we show the geometrical data of the problem.
The numerical method used for the simulations illustrated in Figures 9.12 and 9.13

is the finite element discretization analyzed in Bermúdez et al. [45], and presented in
Section 5.4.2. The problem is formulated in terms of themagnetic field in the conductor
and of the scalar magnetic potential in the insulator, and the finite elements used are
first order edge elements in the conductor and first order nodal elements in the insulator.
Numerical results for the same problem, but formulated in terms of the electric

field in the conductor and of the scalar magnetic potential in the insulator, have been
also presented in Section 8.1.5.
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Fig. 9.10. Sketch of the model domain (courtesy of A. Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.11.Geometrical data corresponding to a vertical section of each electrode (courtesy of A.
Bermúdez, R. Rodríguez and P. Salgado)

Fig. 9.12. Magnitude of the current density (A/cm2): horizontal section (courtesy of A.
Bermúdez, R. Rodríguez and P. Salgado)
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Fig. 9.13.Magnitude of the current density (A/cm2): vertical section (courtesy of A. Bermúdez,
R. Rodríguez and P. Salgado)

9.2 Bioelectromagnetism: EEG and MEG

Electroencephalography (EEG) and magnetoencephalography (MEG) are two non-
invasive techniques used to localize electric activity in the brain frommeasurements of
external electromagnetic signals. Electroencephalography measures the scalp electric
potential, while magnetoencephalography measures the external magnetic flux.
The electromagnetic activity of the brain is due to the movements of ions within

activated regions of the cortex sheet, the so-called impressed currents (or primary cur-
rents). In addition, Ohmic currents are generated in the surrounding medium, the so-
called return currents. The measures of EEG and MEG correspond to both impressed
and return currents, but the source of interest are the impressed currents, as they rep-
resent the area of neural activity associated to a sensory stimulus.
The first EEG recording in man (and the name Electroenkephalogram) is due to

H. Berger in 1924. He measured electric potential differences between pairs of elec-
trodes placed on the scalp. Nowadays these electrodes can be directly glued to the skin
or fitted in an elastic cap, and tipically up to 256 electrodes are used (see in Figure 9.14
a cap with 128 electrodes).
The first magnetoencephalograms date back at the late 1960s by D. Cohen. The

magnetic signal related to brain activity is extremely weak, about 108 times lower than
the earth’s geomagnetic field. Its measurement only becames possiblewith the SQUID
(SuperconductingQUantum Interface Devices) magnetometer introduced by Zimmer-
man [249]. This kind of instrumentation measures some component of the magnetic
induction on different locations, nowadays up to 100, close but external to the head
(see Figure 9.15).
For a comprehensive introduction to theory and instrumentation in MEG see

Hämäläinen et al. [117]. A complete description of the models used in EEG/MEG



9.2 Bioelectromagnetism: EEG and MEG 287

Fig. 9.14. The distribution of the sensors for EEG

Fig. 9.15. The distribution of the sensors for MEG (courtesy of Elekta)

source localization is provided in Baillet et al. [34] (see also Mosher et al. [182]). Let
us give here a concise presentation of the topic.
Source localization is an inverse problem: knowing the value of the magnetic field

or of the electric field on the surface of the head (or, possibly, external to the head, but
close to its surface), the aim is to determine the position and some physical character-
istics of the current density that has given rise to that value.
Since the current distribution inside a conductor cannot be retrieved uniquely from

knowledge of the electromagnetic field outside the conductor, the mathematical prob-
lem does not have a unique solution if some additional conditions on the source model
are not assumed (see Sarvas [220]). Two different approaches are mainly used to re-
construct the brain neural sources: equivalent dipole and distributed source models.
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Fig. 9.16. The Elekta Neuromag MEG system (left, courtesy of Elekta) and the second author
in the CIMeC Laboratory, University of Trento (right)

Moreover, see for instance Kaipio and Somersalo [142] for statistical approaches that
we do not consider here.
In the dipolarmodel theprimary current distributionis represented as a point source

located at xq with moment q, namely,

Je(x) = q δ(x− xq) ,

where δ(·) is the Dirac delta distribution. The dipole is a convenient representation for
a unidirectional impressed current due to the activation of a large number of pyramidal
cells, that in real situations may indeed extend over several square centimeters of the
cortex.More generally, it is assumed that a primary current source can be decomposed
as the sum of (few) current dipoles. In the standard dipolar method the parameters
of the dipoles (location, amplitude and orientation) are found using a nonlinear least-
squares search.
The distributed source model (also called imaging approach) assumes that a lot of

dipoles are located perpendicularly to the cortical surface. The geometry of the cortical
surface can be extracted from brain magnetic resonance imaging (MRI) data. A tes-
sellation of this surface is constructed and a current dipole is placed on each element
with itsorientation normal to the surface. The inverse problem in this case turns out
to be linear: only the magnitudes of the dipole moments have to be reconstructed, and
not the location nor the orientation. Proceeding in this way the number of unknowns is
typically greater than the number of measured data and the inverse problem is solved
using regularization schemes, such as a truncated singular value decomposition of the
Tikhonov regularization.
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In both cases, a preliminary step for the solution of the inverse problem is an effi-
cient resolution of the forward problem. In fact, the procedure is essentially the follow-
ing: given a source Je, solve the forward problem, thus determining the electric and
magnetic fields generated by Je, and then minimize in a suitable way the difference
between the computed and the measured data. The current density J∗

e which achieves
the minimum is the source we are trying to determine.
Let us focus nowon the forward problem.For biological tissues, the linear constitu-

tive equationsD = εE and B = μH can be assumed (see Plonsey and Heppner [194]).
Due to its complicated detailed structure, the human brain must be modeled as a het-
erogeneous anisotropic medium, with physical parameters that depend on the spatial
variable and that may be tensors. The frequency spectrum for electrophysiological sig-
nals inMEG is tipically below 1000Hz, and most studies deal with frequency between
0.1 and 100 Hz.
As far as we know, in almost all the studies concerning the neural generation of

electromagnetic fields the static approximation of Maxwell equations is considered

curlH = J
divB = 0
curlE = 0 ,

(9.1)

neglecting not only the displacement current but also the electromagnetic diffusion.
FromOhm law the total current density J is the sum of the impressed currents plus

the return currents
J = Je + σE = Je − σ gradV ,

where V is the electric scalar potential. From the first equation in (9.1) it follows that

0 = divJ = div(Je − σ gradV ) .

Hence V can be obtained by solving the Poisson equation

div(σ gradV ) = divJe , (9.2)

usually with the boundary conditionσ gradV ·n = Je ·n, which is a consequence of
the fact that outside the head the magnetic field is supposed to be curl-free (the source
Je is located inside the head, and the conductivity is vanishing outside the head, so
that J = 0).
For EEG this is the point: solving this elliptic problem gives the electric field, and

the inverse problem of source localization can be dealt with.
For MEG, one has to go further. Since the magnetic permeability can be assumed

to be homogeneous and equal to μ0, the free-space permeability, B is given by the
Biot-Savart law

B(x) =
μ0

4π

∫
R3

J(y)× x− y
|x− y|3 dy . (9.3)

Here the integration is indeed carried out on a bounded domain Ω, representing the
head, as J is vanishing outside Ω. Note that this formula furnishes a direct way to
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compute the magnetic induction B, but only after we have determined the electric
scalar potential V through (9.2).
However, in some cases solving the elliptic problem (9.2) can be avoided. In fact,

the typical (though simplified) head model assumes that the head can be described by
three (scalp, skull and brain) to five (scalp, skull, cerebrospinal fluid, gray matter and
white matter) contiguous layers Ωj , j = 1, . . . , n. The different layers of the head and
the air region are separated by the surfaces Sj , j = 1, . . . , n, S1 being the outermost
one. Assuming that the conductivity of each layer is a scalar constant, by employing
classical results of potential theory it is possible to derive a surface integral equation
for Vk := V|Sk

, k = 1, . . . , n,

σ−
k + σ+

k

2
Vk(x)

= V∞(x) − 1
4π

n∑
j=1

(σ−
j − σ+

j )
∫
Sj

Vj(y)nj(y) · x− y
|x− y|3 dSy

(9.4)

(see Sarvas [220]), where

V∞(x) :=
1
4π

∫
Ω

Je(y) · x− y
|x− y|3 dy ,

nj is the unit outward normal vector to Sj , σ−
j is the inside conductivity and σ+

j is the
outside conductivity, with σ+

1 = 0 and, clearly, σ−
j = σ+

j+1, j = 1, . . . , n− 1. Note
that, in the particular case of a current dipole, one has

V∞(x) =
1
4π

q · x − xq
|x− xq|3

.

For constant conductivities integrationby parts in (9.3) shows that also the Biot–Savart
law can be written as a sum of surface integrals on the interfaces between layers, ob-
taining the formula due to Geselowitz [109]

B(x) = B∞(x) − μ0

4π

n∑
j=1

(σ−
j − σ+

j )
∫
Sj

Vj(y)nj(y)× x− y
|x− y|3 dSy , (9.5)

where the vector field

B∞(x) :=
μ0

4π

∫
Ω

Je(y)× x − y
|x− y|3 dy

is called the primary field. In the case of a current dipole it becomes

B∞(x) =
μ0

4π
q× x− xq

|x− xq |3
.

At this stage, for MEG themain point turns out to be the determination of the functions
Vj on the surfaces Sj , which furnish the magnetic inductionB via the explicit formula
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(9.5). Hence a boundary element approach can be introduced, with the aim of finding
a solution to the discrete approximation of (9.4), then inserting the obtained results in
(9.5).
In some particular cases one can even avoid solving (9.4). Indeed, a simplified

model assumes that the head consists of a set of nested concentric spheres, each layer
with a scalar constant conductivity. In the special case of a current dipole and of a
MEG system that measures only the radial component of the magnetic induction B,
the contribution of the return currents vanishes, as for y ∈ Sj and x �= y one has(

nj(y)× x−y
|x−y|3

)
· x
|x|

=
(

y
|y| × x

|x−y|3
)
· x
|x| −

(
y
|y| ×

y
|x−y|3

)
· x
|x| = 0 .

Therefore, the radial component of B(x) reduces to

Br(x) =
x
|x| ·B(x) =

x
|x| ·B∞(x) =

μ0

4π
x× xq

|x||x− xq |3
· q (9.6)

(note the linear dependence of Br on the moment q and the nonlinear dependence on
the position xq). Hence, the radial component ofB turns out to be independent of the
potential V , and in this case the solution of the inverse MEG problem does not require
the previous computation of V , and simply uses the explicit formula (9.6).
These spherical models work reasonably well and are routinely used in most appli-

cations of EEG and MEG source localization. However, it seems clear that, in order to
improve the source reconstruction,more accurate solutions to the forward problem are
needed, and a more realistic model must be considered. Anatomical information can
be obtained from brain magnetic resonance imaging or X-ray computed tomography
imaging (see, for instance, Khan et al. [151]). From these images it is possible to con-
struct a realistic headmodel (see, e.g., Van Uiter et al. [239], Kybic et al. [162],Wolters
et al. [245]) and extract precise informations about surface boundaries for scalp, skull
and brain. On the other hand, recent studies of Marin et al. [172], Wolters et al. [244],
and Haueisen et al. [118] show that the anisotropy of the conductivity in the skull and
brain must be taken into account and in particular the conductivity cannot be assumed
to be piecewise-constant. From a numerical point of view thismeans that one has to go
back to the numerical solution of (9.2), and this can be done by using a finite element
scheme.
However, a modelization through the elliptic equation (9.2) is not completely sat-

isfactory. In fact, as already remarked, the physiological frequency involved in the
problem ranges between 0.1 and 100 Hz, and in general cannot be assumed to vanish.
Therefore the static model (9.1) has to be replaced by the eddy current model. To the
best of our knowledge, the latter has not been used yet for brain activity reconstruction
from MEG data, but this could be an important direction for further researches.
In this respect, since it is necessary to reduce as far as possible the computational

cost of the forward solver, the approach presented in Sections 7.1–7.5 could be a useful
tool.

Remark 9.1. The necessity of taking into account a non-vanishing frequency has been
underlined by He and Romanov [122], Ammari et al. [22], who use the full Maxwell
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system as forward problem. They consider the inverse source problem that arises in
determining the location of an epileptic focus, i.e., the localization of a single dipole
in a homogeneous or even heterogeneous medium. Unlike many inverse methods, the
proposed algorithm is non-iterative. Following Ammari et al. [22], in this case the
considered forward problem is the time-harmonic full Maxwell system in R3

curlH− iωεE = σE + q δ(x − xq)
curlE + iωμH = 0 ,

(9.7)

with the Silver–Müller radiation condition

lim
|x|→+∞

|x|
(√

μ0 H× x
|x| −

√
ε0 E

)
= 0 ,

ε0 being the free-space electric permittivity.
As usual, letΩC denote the conductor (the human head). If ϕ is a scalar harmonic

function in ΩC and u is a solution to

curl(μ−1
0 curlu) = iσ gradϕ ,

then it can be proved that

q · gradϕ(xq) =
∫
∂ΩC

H× n · gradϕ + i

∫
∂ΩC

μ−1
0 curlu · E× n + O(ω) .

Choosing in this formula six particular harmonic functions (ϕk = xk for k = 1, 2, 3
and ϕk = eiξk−3·x for k = 4, 5, 6, where ξj ∈ C3, j = 1, 2, 3, are such that∑3

i=1 ξ2
j,i = 0), the six components of q and xq can be approximated. It is worth

noting that this reconstruction is carried out without a priori knowledge of the angular
frequency ω. �

Remark 9.2. A related forward problem, where the eddy current system or else the
full Maxwell equations have been adopted, is the numerical simulation of transcranial
magnetic stimulation (TMS): see, e.g., Ueno et al. [237], Sekino et al. [225]. This is a
non-invasivemethod for stimulating neurons in the brain, and it is widely used in neu-
roscience, in order to study the functional organization of human brain, and in the diag-
nosis and the treatement of neurological diseases. A transcranial magnetic stimulation
system consists in a coil placed on the scalp, that produces a time-harmonic magnetic
field which induces eddy currents in the brain. The operating frequency ranges from 1
to 4 kHz. It is also possible to use more than one coil to stimulate different parts of the
brain simultaneously: this is the so-called multichannel transcranial magnetic stimu-
lation, that has recently attracted particular interest (see Lu et al. [170] and references
therein).
Accurate numerical simulations of the induced fields inside the brain are necessary

for optimizing the design of the coils that have to generate the desired stimulation. �
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9.3 Magnetic levitation

Due to the relatively low frequencies involved, magnetic levitation problems are an
interesting field of application for eddy current models: in fact, “the magnetic energy
storage is dominant (as compared to energy stored in the electric field) and wave phe-
nomena are small enough to be ignored” (Thompson [234]; see also, e.g., Kriezis et
al. [157]).
Let us start this section with a brief presentation of problem28 of the TEAMwork-

shop, a simple electrodynamic levitation problemwhich can serve as a model problem
for more complex computations in moving domains. It is an axisymmetric transient
problem with electromechanical coupling (see Karl et al. [148] and Kurz et al. [161]).
The device is described as follows: a cylindrical aluminium plate is located above
two cylindrical coils, formed by electric wires, all the parts with the same axis (see
Figures 9.17 and 9.18). At the initial instant the plate is above the coils at a certain dis-
tance, then an applied current density is imposed. Both coils are connected in series,
with different sense of winding.

Fig. 9.17. The geometry in problem 28 of the TEAM workshop

Fig. 9.18. The dimensions in problem 28 of the TEAM workshop
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Due to the induced eddy currents, a repulsive Lorentz force

FL(u,E,B) :=
∫
ΩC

[σ(E + u×B)]×B

acts on theplateΩC , which reaches, after a transient time, a stationary levitationheight.
Here u denotes the velocity of the plate, which depends on mechanical as well as
electromagnetic forces, in particular on B and E.
From the mathematical point of view, the problem is described by the time-

dependent eddy current equations⎧⎨⎩
curlH− σE = Je + σ(u×B) in Ω

curlE + ∂B
∂t = 0 in Ω

div(εIEI ) = 0 in ΩI ,
(9.8)

whereΩ is a “box” containing the plate and the support of the coils, and Je is supported
only in the coils.
The constitutive relation between B andH in general is given by B = μH + M,

whereM is the magnetization; however, as always done in this book, here below we
assume thatM = 0.
Employing an implicit time-discretization scheme and computing the nonlinear

term u×B at the previous time level leads at each time step to the solution of⎧⎨⎩
curlHn+1 − σEn+1 = Jn+1

e + σ(un ×Bn) in Ω
curlEn+1 + Bn+1/Δt = Bn/Δt in Ω
div(εIEn+1

I ) = 0 in ΩI .
(9.9)

Then at the time step n + 1 the velocity u and the position r of the center of gravity
of the plate are obtained by setting

un+1 = un + g + m−1ΔtFL(un,En+1,Bn+1),

and
rn+1 = rn + Δtun+1 ,

where g is the acceleration of gravity, m the mass of the plate and FL the Lorentz
force.
Most of the results that we have presented for time-harmonic eddy current

problems can be adapted to the system of equations (9.9). For instance, Kurz et
al. [161] have computed the levitation height by using a FEM–BEM approach for
the (AC , VC)−AI vector potential formulation. Moreover, Rapetti [201] has used
an approach based on the vector potential A and on an overlapping mortar element
technique for taking into account the movement of the plate.
In particular, in the TEAM workshop problem 28 the data of the problem are as

follows: the mass of the plate ism = 0.107 kg, the initial distance of the plate from the
coils is 3.8 mm, the applied current density is given by Je(t) = (−1)kJkI0 sin(ωt)eφ,
where eφ is the (counterclockwise) azymuthal unit vector in the cylindrical system,



9.3 Magnetic levitation 295

k = 1 refers to the outer coil and k = 2 to the inner coil, I0 = 20A, ω = 2π×50 rad/s,
J1 = N1/S1 and J2 = N2/S2, where N1 = 576 and N2 = 960 are the number of
turns of the electric wires in the coils, and S1 and S2 are the cross sections. Finally, the
conductivityand the permeability are given byσ = 3.4×107 S/m, μ = 4π×10−7 H/m.
The results obtained by Kurz et al. [161] and Rapetti [201] are in very good agree-

ment with the experimental data: after a transient time of about 1.6 ms, a stationary
levitation height of about 11.3 mm is reached.

TEAM workshop problem 28 is clearly a very simplified model for realistic phe-
nomena based on magnetic levitation. In order to give a more detailed description of
the effective technological problems related to this topic, below we briefly outline a
presentation of magnetic levitation trains.
Since the 1960s some industrial companies attempted to design a train without

wheels, suspended over a specialized track by magnetic levitation and with a propul-
sion system based on magnetic forces (for more details about these early projects, see,
e.g., the review papers by Thornton [235], Yamamura [246], Rogg [213], Powell and
Danby [195]).
Two related but different techniques have been mainly used to reach this goal: elec-

trodynamic levitation with superconducting magnets and electromagnetic levitation
with normal conductive magnets (for an up-to-date presentation of these technologies,
see, e.g., Cassat and Jufer [75], Lee et al. [164], Yan [247]).
In electrodynamic levitation the train is lifted and guided by means of repulsive

forces between superconducting coils placed on the vehicle and coils inserted in the
guideway (see Figure 9.19). The repulsive forces are produced only when themagnets
are moving, hence the train does not levitate at low speed and it still needs wheels for
“take-off and landing”. The air gap (the distance between the vehicle and the ground)
can be larger that 10 cm, and the system turns out to be magnetically stable: if the
levitation height becomes lower than the equilibriumposition, the magnetic repulsion

Fig. 9.19. Scheme of the electrodynamic levitation system: 1 vehicle, 2 propulsion windings,
3 superconducting magnets, 4 levitation and guidance windings
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force increases, restoring equilibrium; if the levitation height turns out to be too large,
then gravity prevails and the air gap is reduced. For this stabilityproperty, this system is
themost indicated for high speeds and for use in regions that can be subjected to strong
earthquakes. The electrodynamic levitation system, originally proposed by Danby and
Powell [92], has been adopted by Japanese National Railways, that since the 1970s
have produced the series of MLU trains and more recently the last prototype MLX,
that in 2003 obtained the train speed record of 581 km/h.
By contrast, electromagnetic levitationmakes use of attracting forces between nor-

mal conducting electromagnets situated on board and an iron-core armature winding
on the rail. The attracting forces produces an inherently unstable levitation system, and
the air gap, which is about 1 cm and is nearly velocity-independent,has to be controlled
via a high-precision device. Sensors measure the air gap and accelerometers measure
the acceleration of the magnets, and information about both of these are passed to the
control system. Levitation and guidance can be either integrated in a single system (see
Figure 9.20), or else separated (see Figure 9.21). The first choice has been adopted for
the Japanese HSST train, operating in public service since 2005 in Nagoya (short dis-
tance and medium speed), the second one for the German Transrapid train, operating
since 2004 in Shanghai (long distance and high speed).
Concerning propulsion, in both levitation systems the power to the coils at the

guideway is supplied by a linear synchronous motor, whose structure is simpler than
that of a standard rotating electric motor, not requiring the use of mechanical coupling:
plainly-speaking, it is like a conventional rotating motor in which stator, rotor and
windings have been unrolled and stretched along the guideway. The working principle
is the same: an alternatingcurrent inside themotor windingson the guideway generates
a space–time depending magnetic field in the air gap, and it induces an electromotive
force in the secondary part, a conducting sheet with (standard or superconducting)

Fig. 9.20. Scheme of the electromagnetic levitation system (levitation and guidance integrated):
1 vehicle, 2 iron-core rail windings, 3 levitation and guidance magnets
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magnets placed on the vehicle. This electromotive force generates the eddy currents,
whose interaction with the flux in the air gap produces the thrust force. The speed is
regulated by varying the frequency of the alternating current, and, if the direction of the
traveling field is reversed, the motor becomes a generator and the the train is braked,
without contact. The advantage given by a linear motor is that, in the case of a (more
or less) rectilinear motion, its efficiency is higher than that of a rotatingmotor, because
of the minor amount of vibration and noise.
Also guidance is based on magnetic forces. In the MLX prototype, the levitation

coils on the sideways are connected in such a way that, if a train is closer to one side,
then induced currents are produced and this generates a guiding force (in other words,
the coils work as a guide system, based on a repulsive force). For the Transrapid train,
electromagnets are placed on both sides of the vehicle, and reaction rails on the guide-
way interact with them maintaining the train suitably centered on the track.
Summing up, the magnetic levitation train is a technological problem of low-

frequency electromagnetism coupled with dynamics. To our knowledge, a complete
modeling of the whole process has not been performed, due to its high complexity.
However, some of its parts have been considered in detail and analyzed by means of
the finite element method, though mainly for simplified mathematical models derived
from the eddy current equations: as examples we recall the calculation of the magnetic
field around the HSST train magnet (see Aoki [28]) or that of induced currents and
forces for an hybrid levitation magnet (see Albertz et al. [4]), the investigation of the
stability of repulsive forces (see He et al. [121]), the analysis of the heating problem
arising in superconducting magnets (see Saito et al. [216]), the design of high temper-
ature superconducting coils (see Jenkins et al. [139]). Finally, the analysis of the MLX
train levitation system and some of its variants has been investigated only by means
of the dynamic circuit theory (see He et al. [120], Davey [96]), and would give more
precise results if the analysis relied on the complete eddy current model.

Fig. 9.21. Scheme of the electromagnetic levitation system (levitation and guidance separated):
1 vehicle, 2 guidance magnets, 3 levitation and propulsion magnets, 4 rail guidance windings,
5 iron-core rail windings
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Fig. 9.22. The Transrapid magnetic levitation train in Shanghai (left) and the first author before
take-off (right)

9.4 Power transformers

As it is well-known, power transformers are used to produce an alternating current with
low intensity and high voltage starting from an alternating current with high intensity
and low voltage, and viceversa.
In its most common form a transformer is constituted by two windings, wrapped

around an iron core. A time-dependent current through the primary winding generates
a time-varying magnetic field in the core, and by mutual induction this field induces a
voltage in the secondary winding.
The ratio between the voltage in the secondary winding and the voltage in the

primarywinding is proportional to the ratio between their respective winding numbers.
Therefore, tweaking on the number of turns makes it possible to tune the electromotive
force at the exit of a transformer, hence to reduce the resistive loss in the conducting
wires employed for the transmission of electric power from the power plant to the user.
In 1831M. Faraday was the first to discover the electromagnetic induction between

coils, but the first transformer for commercial use, based on an alternating current for
creating the flux variations necessary for induction, was designed by W. Stanley in
1886 (see Figure 9.23).
Nowadays, transformers are in general polyphase; the most common used in elec-

tric power distributions are three-phase transformers (see Figures 9.24 and 9.25).
Looking in more detail, their structure can be rather complicated, as they include

the coils and the core, an oil tank for refrigeration and insulation,pressing and clamping
plates around the coils, shields at the walls of the tank.
With the increase of the power, stray losses become more and more important,

lowering the efficiency of transformers and producing significative local overheating
in the metallic components: by Joule effect the current in the windings generates a
resistive heating, eddy currents are responsible of the increasing of the heat in the
core, and the rise of the temperature also occurs in plates and shields. The reduction of
these unintended effects, which influences the reliability and decreases the operating
life of transformers, is one of the most important points for optimal design.
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Fig. 9.23. The Stanley transformer (1886, U.S. Patent and Trademark Office)
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Fig. 9.24. A three-phase, five-leg transformer

Fig. 9.25. A detail of a transformer: 1 iron core, 2 high winding, 3 low winding, 4 shielding, 5
clamping plate, 6 pressing plate

A thorough modeling of a power transformer based on the eddy current equations,
possibly coupled with the heat equation, has been proposed by many authors.
Chen et al. [80] have considered the finite element approximation of a three-phase,

five-leg transformer, using an approach based on a suitably modifiedTC −ψ method,
preferred to others since the current potential TC only appears in the conductor, a
rather small region in power transformers. Considering, for the sake of definiteness, the
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magnetic boundary value problemH×n = 0 on ∂Ω, the magnetic field is represented
as

H =
{
gradψI + KI in ΩI

TC + gradψC + KC in ΩC ,

where KI ∈ HμI (∂Ω, Γ ;ΩI), KC ∈ H(curl;ΩC) and satisfies KC × nC +
KI × nI = 0 on Γ , and ψI = ψC and TC × nC = 0 on Γ . Note that the terms
KI and KC are related to the topology of the domain, and cannot be discarded if the
conductorΩC is not simply-connected.
The windings are modeled as a conducting region, and the conductivityσ assumes

twodifferent constant values in thewindings and in the core. Therefore,ΩC has several
connected components, and at least one of them (the core) is not simply-connected.
The magnetic permeability μ is assumed to be a positive constant in the whole

transformer, and, moreover, a Lorenz-like gauge

divTC = −iωσμCψC in ΩC

is used, in order to resort to the problem

−ΔTC + iωμCσTC = curl Je,C − curl curlKC − iωμCσKC .

Chen et al. [80] have computed the distribution of the eddy current density on the
metallic parts of the tank, with the aim of determining the best design for their shape.
In particular, they have shown that the maximum reduction of stray losses is obtained
with the use of vertical magnetic shunts instead of aluminium screens.
The same approach has been proposed by Tang et al. [230] for computing the mag-

netic field on pressing plates, yoke-clamps and the tank wall when both windings and
heavy current leads are taken into account, with the aim of optimizing the shape and
dimension of a copper shield employed for minimizing overheating in the wall.
The TC − ψ method has been also used by Preis et al. [196], for computing the

electromagnetic field and the temperature rise in bushing adapters carrying eddy cur-
rents due to high-current low-voltage leads. In that paper the coupling with the heat
equation has been taken into account, considering the Joule effect due to the eddy cur-
rents and assuming that the conductivity σ is a positive scalar function depending in a
nonlinear way on the temperature. An iterative coupling strategy has been proposed,
with the choice of recalculating the magnetic field in the conductor only, in order to
avoid the heavy computations related to the solution of the complete electromagnetic
problem.
However, as explained in Chapter 6, theTC −ψ approach has various flaws, as it

does not include the Faraday equation on the “cutting” surfaces, that are indeed present
in multi-phase power transformers, as the conductor is not simply-connected. More-
over, the use of nodal elements, which is natural for this formulation, is not the best
choice for the approximation of a problem where the conductor is a polyhedral non-
convex domain, as the convergence of the approximate solutions could fail. Therefore,
a better modeling of power transformers could be achieved by resorting to one of the
formulations that are more suitable for problems with complex topology (for instance,
those presented in Chapters 4 and 5).
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Tang et al. [231] and Ho et al. [131], employing the (A, VC) − AI formulation
with Coulomb gauge, has considered the numerical simulation of transient eddy cur-
rent fields in power transformers connected to voltage source through electric circuits.
The windings are modeled as coils included in the insulatorΩI , and there the current
density is written in the form Je,I(t) = N

S
I(t) t, where t is the unit coil direction vec-

tor, tangential to thewindings,N is the number of turns in the coil,S is its cross section
and I(t) is the unknown current intensity. Outside the windings and in the conductor
the applied current density is assumed to vanish.
Since the total induced electromotive force in windings can be expressed in term

of the vector magnetic potential as follows

emf =
N

S

d

dt

∫
Ωw

A · t ,

where Ωw is the space filled by windings, the problem is closed by adding a suitable
equation, representing a circuit model of power transformers. Summing up, for the
magnetic boundary value problem H × n = 0 on ∂Ω and a domain Ω of simple
shape, the global problem reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl(μ−1 curlA)− μ−1
∗ grad divA

+σ ∂
∂tA + σ gradVC − N

S I t = 0 in Ω × (0, T )
div(σ ∂

∂tAC + σ gradVC ) = 0 in ΩC × (0, T )
(σ ∂

∂tAC + σ gradVC) · nC = 0 on Γ × (0, T )
A · n = 0 on ∂Ω × (0, T )
(μ−1 curlA) × n = 0 on ∂Ω × (0, T )
N
S

d
dt

∫
Ωw

A · t + L dI
dt

+ R I = V on (0, T ),

(9.10)

plus suitable initial conditions forA and I, where L is the inductance,R the resistance,
and V the voltage source of the circuit modeling the transformer. Here, the current
density N

S I t is intended to vanish outside the windingsΩw.
In particular, Tang et al. [231] and Ho et al. [131] have computed the transient

performance of a single-phase, three-leg power transformer, focusing in particular on
the magnetic flux density on the surface of the iron core and in the windings. For a
three-phase, five-leg transformer they have determined the distribution of torsional
forces acting on the coils, in order to control their robustness and stability, as well as
the eddy current losses in the clamping plates, checking in this way the efficiency of a
magnetic by-pass plate designed for reducing overheating.
Alternative approaches to the simulation of power transformers coupled with cir-

cuits are those described in Chapter 8. In these cases, the windings are modeled as
conductors, each one with two electric ports, where the voltage drop can be assigned.
The topology of the insulatorΩI becomes more complex, but the total number of de-
grees of freedom in formulation (8.15) is much less than that in (9.10), therefore its
numerical accuracy and efficiency should be better.
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9.5 Defect detection

In this section we present non-destructive evaluation (NDE) techniques based on elec-
tromagnetic methods. The aim of these techniques is to detect and characterize defects
in conducting materials without causing damage.
In eddy current non-destructive testing, a coil supplied with alternating current is

placed near the conductive object being inspected. Thus eddy currents are induced and
generate a secondary magnetic field. Flaws are detected by monitoring changes in this
magnetic field. The measured quantity is usually the impedance of the exciting coil or
of a receipt coil. One can distinguish between absolute probes, where the same coil is
source and receiver, and differential probes with source coils and receptive coils. This
kind of techniques is widely employed in aerospace, transportation energy, nuclear
and other industries. It is used, for instance, for the in-service inspection of steam
generator tubes in power plants, or for the verification of aging aircraft structures. For
instance, problem 27 of the TEAMworkshop concerns the detection of deep flaws in a
riveted assembly of aluminum sheets with a filler between the sheets, held together by
titanium fasteners (see Figure 9.26). This is an example of the kind of structures that
are subjected to control in aeronautical industry.
Numerical simulations are needed for the design of the probe coil and for the qual-

ification of monitoring device. In order to develop more reliable instruments it is im-
portant to clarify the correlation between the flaws and the changes in the generated
eddy currents, and numerical simulations can be used in place of more expensive ex-
periments. From the numerical point of view a great effort has been made in the last
years to obtain efficient computational schemes to simulate probe-defect interactions:
see, for instance, the pioneeringworks of Lord [169] and Ida and Lord [136], Rasolon-
janahary et al. [204], Badics et al. [33], Sabariego and Dular [214], [215], Henneron

Fig. 9.26. A typical screwed assembled structure that needs to be to controlled (from problem
27 of the TEAM workshop): 1 sensor, 2 rivets, 3 sheets, 4 filler, 5 flaw to detect
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et al. [125], Krebs et al. [156]; see also the review by Auld and Moulder [32] and the
references therein.
Let us consider a computational domain Ω that contains the conductor ΩC to be

inspected. The electromagnetic fields generated in the case of no-flaw can be assumed
to be known; in particular, they satisfy the eddy current approximation of Maxwell
equations

curlHu − σuEu = Je inΩ
curlEu + iωμuHu = 0 inΩ ,

(9.11)

where the superscript u denotes unflawed quantities.
The impedance of the unflawed configuration is given by

Zu =
1
|I0|2

(∫
ΩC

σuEu · Eu + iω

∫
Ω

μuHu ·Hu

)
, (9.12)

where I0 is the applied current intensity (see, e.g., Jackson [137], p. 266).
Let us now assume that a flaw Ωf (typically, a non-conducting region) is present

in ΩC , the object to be inspected. The conductivity and permeability of the flaw are
different than those of the host material, thus the electromagnetic fields in the flawed
arrangement satisfy

curlHf − σfEf = Je in Ω
curlEf + iωμfHf = 0 in Ω ,

where the superscript f denotes the quantities when the flaw is present. For the sake of
simplicity, in the followingwe assume that the permeability is the same in the unflawed
and flawed arrangements, and that the conductivity of the flaw is equal to 0, while
outside it coincides with σu, namely,

σf =
{

σu inΩC \Ωf

0 inΩf .

We also set μ := μf = μu and σ := σu. Hence when the flaw is present the
impedance is given by

Zf =
1
|I0|2

(∫
ΩC\Ωf

σEf · Ef + iω

∫
Ω

μHf ·Hf

)
. (9.13)

The direct approach computes the difference between the impedance values with
and without flaws, determined as in (9.12) and (9.13). The change of the observed
quantity is very small, usually under 1% of the unflawed impedance value, so very
high accuracy is needed in the finite element approximation of the fields. Sometimes
the unperturbed configuration has symmetries that make it possible to simplify the
computation, however the approximation of the perturbed problem requires a very fine
three-dimensional mesh and can be extremely expensive for complicated geometrical
situations.
In order to minimize this computational cost a different approach is based on per-

turbation techniques, that lead to the computationof the impedance variationas an inte-
gral on the flaw, thusmaking it possible to obtain sufficiently high accuracy by refining
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the mesh only in the suspect region. These techniques can be described as follows. The
computational domain Ω is assumed to have a simply-connected boundary ∂Ω, and
to be given by Ω = ΩC ∪Ωcoil ∪ ΩI , where the conductive coil Ωcoil is an absolute
probe, with two contacts ∂Ωcoil ∩∂Ω = ΓE ∪ΓJ . The excitation is given by a current
intensity I0 (and not by a current density as in (9.11)). From the Ampère law, this as-
signed current intensity can be expressed as I0 =

∫
ΓJ
curlHf · n =

∫
ΓJ
curlHu · n.

Finally, let us also assume that the no-flux boundary conditions

Eu × n = 0 on ΓE ∪ ΓJ
μHu · n = 0 on ∂Ω

are satisfied (see (8.2)).
For each v ∈ H(curl;Ω) such that curlv = 0 in Ω \ (ΩC ∪ Ωcoil) one has, as in

Section 8.1,

−iω
∫
Ω μHu · v =

∫
Ω curlE

u · v
=
∫
Ω

Eu · curlv −
∫
∂Ω

Eu × n · v
=
∫
ΩC∪Ωcoil

σ−1 curlHu · curlv − V u
∫
ΓJ
curlv · n .

(9.14)

Analogously, assuming that also when the flaw is present the electromagnetic fields
satisfy no-flux boundary conditions, one finds

−iω
∫
Ω μHf · v =

∫
Ω curlE

f · v
=
∫
Ω Ef · curlv −

∫
∂Ω Ef × n · v

=
∫
(ΩC\Ωf )∪Ωcoil

σ−1 curlHf · curlv
+
∫
Ωf

Ef · curlv − V f
∫
ΓJ
curlv · n .

(9.15)

Taking v = Hf in (9.14) and v = Hu in (9.15), and recalling that I0 =∫
ΓJ
curlHf · n =

∫
ΓJ
curlHu · n, one has

V uI0 =
∫
ΩC∪Ωcoil

σ−1 curlHu · curlHf + iω

∫
Ω

μHu ·Hf

and

V fI0 =
∫
Ωf

Ef · curlHu +
∫
(ΩC\Ωf)∪Ωcoil

σ−1 curlHf · curlHu

+iω
∫
Ω

μHf ·Hu ,

hence

(V f − V u)I0 =
∫
Ωf

Ef · curlHu −
∫
Ωf

σ−1 curlHu · curlHf

=
∫
Ωf

Ef · curlHu ,

since curlHf = 0 in Ωf .



306 9 Selected applications

Proceeding as in (8.9) and taking into account the relations (9.12) and (9.13) we
see that Zu = V u/I0 and Zf = V f/I0, hence the impedance variation is given by

(Zf − Zu) =
V f − V u

I0
=

1
(I0)2

∫
Ωf

Ef · curlHu .

For the finite element approximation different formulations have been considered.
More often the problem is formulated in terms of a magnetic vector potentialAC and
an electric scalar potential VC in the conductor, and a magnetic scalar potential ψI
in the insulator (see Section 6.3). The first three-dimensional simulations, due to Ida
and Lord [136], use this formulation and isoparametric hexahedral finite elements for
the approximation of the impedance, given a source current density Je. They verify
the validity of the formulation for a problem related to the non-destructive testing of
a nuclear plant steam generator. In particular, the test problem consists of an Inconel
600 (a nickel-chromium allotrope of iron) tube and a carbon steel support plate; two
conical defects are located on the outer surface of the tube.
Rasolonjanahary et al. [204] consider the problem of the inspection of flaws in a

riveted aircraft structure. They use a (AC , VC) formulation in the conductor to be in-
spected and themagnetic scalar potentialψI in the surroundingnon-conducting region.
They compare the results obtained using in the flaw domain a formulation in terms of
either the vector magnetic potentialA or the scalar magnetic potential ψ, and obtain
more accurate results with the former formulation.
Badics et al. [33] use perturbation techniques in terms of the vector potentialAC

and the electric scalar potential VC in the conductor, the vector magnetic potential
A in the flaw and the magnetic scalar potential ψI in the air region. They compute
the solution of the unperturbed model and the field distortion due to a flaw. Setting
H := Hf −Hu andE := Ef −Eu inΩ and assuming as before that the permeability
is the same in the unflawed and flawed arrangements and that the conductivity of the
flaw is equal to 0, one has

curlH− σfE = J∗ in Ω
curlE + iωμH = 0 in Ω ,

where

J∗ := (σf − σ)Eu =
{

0 in Ω \Ωf

−σEu in Ωf .

Hence, for calculating the impedance perturbation it is necessary to know the value of
the unflawed electromagnetic fields only in the flaw.
The efficiency of the formulation is verified by solving the TEAMworkshop prob-

lem 15 (see Figure 9.27 for a sketched description of the arrangement). The test spec-
imen is an aluminum alloy plate of 260 mm of side (2d) and 12.22 mm of thickness
(t). The defect is a parallelepipedal slot of length 12.60 mm (2c), depth 5 mm (h) and
width 0.28 mm (w). The probe is a circular air-cored coil with inner radius 9.34 mm,
outer radius 18.40 mm and 9 mm of length. The frequency of the applied current is
equal to 7 kHz and the lift-off of the probe is 2.03 mm.
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Fig. 9.27. Sketch of problem 15 of the TEAM workshop

They also solve two other test problems where the host specimen is a stainless steel
tube and the probe is again a circular air-cored coil. The defect is a long axial slot in
the first case and a short circumferential slot in the second case.
Sabariego and Dular [214], [215] propose a perturbation approach using the H-

based formulation and edge finite elements for its numerical approximation. The per-
turbed field is not computed in the whole domain but only in a reduced domain sur-
rounding the flaw. The mesh of this reduced subdomain is independent of the mesh
used for the unflawed problem and can be adapted to the dimensions of the flaw. To
demonstrate the performance of the proposed method they consider the second eddy
current benchmark problem proposed by the World Federation of NDE Centers, an
Inconel tube with a defect on the outer surface and a circular coil that scans the inner
surface.
In Henneron et al. [125] the (A, VC) formulation and the (TC , ψ) formulation are

considered, and are compared in terms of numerical results and computational time.
The numerical experiments concern the qualification process of testing devices used
in heat exchanger tubes. Two different probes are considered. The first one consists in
two coils with a ferrite core used as source and receptive coils, simultaneously. The
second one has a source coil and two different receptive coils. Also Krebs et al. [156]
use these two formulations to obtain a-posteriori error estimators within an adaptive
meshing procedure.
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A.1 Functional spaces and notation

In this section we introduce some definitions and notationswhich have been often used
in the preceding chapters. Formore detailed presentations and descriptions of the func-
tional spaces useful in electromagnetism, see, e.g., Nečas [184], Adams [2], Adams
and Fournier [3], Girault and Raviart [111], Dautray and Lions [94], Cessenat [76],
Bossavit [59], Monk [179].
Let us consider an open, connected and bounded setΩ contained inR3, with a Lip-

schitz continuousboundary ∂Ω, and letΣ be a Lipschitz continuous surface contained
in ∂Ω. The unit outward normal vector on ∂Ω is indicated by n.
We denote by C∞

0 (Ω) the space of infinitely differentiable functions having com-
pact support in Ω, i.e., vanishing outside an open set Ω′ ⊂ Ω which has a positive
distance from the boundary ∂Ω of Ω.
The space of functions that are bounded in Ω (with the possible exception of a

subset of measure equal to 0) is denoted by L∞(Ω), with norm ‖ · ‖L∞(Ω).
For a function defined inΩ, for any s ∈ R the Sobolev space of order s is denoted

byHs(Ω). The norm in this space is indicated by ‖ ·‖s,Ω. For functions defined on the
surfaceΣ, for any t ∈ [−1, 1] the Sobolev space of order t is denoted byHt(Σ), with
norm ‖ · ‖t,Σ. As usual, the spaceH0(Ω) (respectively,H0(Σ)) is always denoted by
L2(Ω) (respectively, L2(Σ)). We also recall that the space H1/2(Σ) is the space of
the values on Σ (or, equivalently, the traces on Σ) of functions belonging to H1(Ω),
and thatH−t(Σ) is the dual space ofHt(Σ), t ∈ [0, 1].
The spaceH1

0,Σ(Ω) consists of thoseH1(Ω)-functions that have a vanishing value
onΣ. When Σ = ∂Ω, we simply writeH1

0(Ω) instead ofH1
0,∂Ω(Ω).

For a real number s with 0 ≤ s ≤ 1 and a domain D = Ω orD = Σ, Σ a closed
surface, we are also interested in the space Hs(D)/C, whose elements are identified

A. Alonso Rodríguez, A. Valli: Eddy Current Approximation of Maxwell Equations.
© Springer-Verlag Italia, Milan 2010
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if they differ by a (complex) constant. This space is endowed with the following norm

‖v‖Hs(D)/C :=

⎧⎪⎨⎪⎩
(∫

D
|v − vD|2

)1/2

for s = 0( ∫
D
|v − vD|2 + |v|2s,D

)1/2

for 0 < s ≤ 1 ,

where vD := (measD)−1
∫
D v is the mean value of v and |v|s,D denotes the semi-

norm of v inHs(D). In particular, if the function v ∈ Hs(D)/C is chosen with vD =
0, we have ‖v‖Hs(D)/C = ‖v‖s,D. Moreover, due to the Poincaré inequality (see, e.g.,
Dautray and Lions [94], Chap. IV, Sect. 7, Prop. 2), we have that in H1(Ω)/C the
semi-norm ‖ grad v‖0,Ω is indeed an equivalent norm.
When considering vector-valued functions v : Ω → R3, the space

H(div;Ω) :=
{
v ∈ (L2(Ω))3 | divv ∈ L2(Ω)

}
is often used. It is endowed with the graph norm, i.e.,

‖v‖H(div;Ω) := (‖v‖20,Ω + ‖ divv‖20,Ω)1/2 .

Similarly, we employ the space

H(curl;Ω) :=
{
v ∈ (L2(Ω))3 | curlv ∈ (L2(Ω))3

}
,

with the norm
‖v‖H(curl;Ω) := (‖v‖20,Ω + ‖ curlv‖20,Ω)1/2 .

Moreover, we set

H0,Σ(div;Ω) := {v ∈ H(div;Ω) |v · n = 0 on Σ}

H0,Σ(curl;Ω) := {v ∈ H(curl;Ω) |v × n = 0 on Σ}
H0(div;Ω) := {v ∈ H(div;Ω) | divv = 0 in Ω}

H0(curl;Ω) := {v ∈ H(curl;Ω) | curlv = 0 inΩ}
H0

0,Σ(div;Ω) := H0,Σ(div;Ω) ∩H0(div;Ω)

H0
0,Σ(curl;Ω) := H0,Σ(curl;Ω) ∩H0(curl;Ω) .

When Σ = ∂Ω, we simply writeH0(div;Ω) instead ofH0,∂Ω(div;Ω), and similarly
for the other cases.
For a symmetric matrixη = η(x), uniformlypositivedefinite inΩ andwith entries

belonging to L∞(Ω), we also set

H(η, div;Ω) := {v ∈ (L2(Ω))3 | div(ηv) ∈ L2(Ω)}

H0,Σ(η, div;Ω) := {v ∈ H(η, div;Ω) |ηv · n = 0 on Σ} .
To characterize the tangential boundary value of a vector belonging toH(curl;Ω)

we need some preliminaries concerning tangential differential operators. The standard
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definitionof the tangential gradient and the tangential curl on the flat surface {x3 = 0},
having chosen the unit outward normal vector n = (0, 0, 1), is

gradτφ = (∂1φ, ∂2φ, 0) , Curlτ φ = gradτφ× n = (∂2φ,−∂1φ, 0) .

Starting from this, ifΣ ⊂ ∂Ω is a closed surface (namely, a surface withoutboundary),
using local coordinates (see, e.g., Nečas [184]) it is possible to define the operators
gradτ and Curlτ for functions belonging toH1(Σ), and one obtains gradτφ ∈ L2

t (Σ)
and Curlτφ ∈ L2

t (Σ), where

L2
t (Σ) := {v ∈ (L2(Σ))3 |v · n = 0} .

By a duality argument, the adjoint operators

divτ : L2
t (Σ) → H−1(Σ)

and

curlτ : L2
t (Σ) → H−1(Σ)

are also introduced, and the Laplace–Beltrami operator

Δτ : H1(Σ) → H−1(Σ)

is defined as Δτ := divτ gradτ = − curlτ Curlτ .
These operators can be restricted to other spaces: in particular, one can verify that

the following relation holds

gradτφ = (n× grad φ̃× n)|Σ , φ ∈ H3/2(Σ) ,

where we have set H3/2(Σ) := {ϕ|Σ |ϕ ∈ H2(Ω)} and φ̃ is any extension of φ to
H2(Ω). Similarly, it holds

Curlτφ = gradτφ× n , φ ∈ H3/2(Σ) .

Clearly, in this case we have gradτφ ∈ H
1/2
T (Σ), where

H
1/2
T (Σ) := {(n× v × n)|Σ |v ∈ (H1(Ω))3} , (A.1)

and Curlτφ ∈ H
1/2
× (Σ), where

H
1/2
× (Σ) := {(v × n)|Σ |v ∈ (H1(Ω))3} , (A.2)

and moreover for each λ ∈ H
1/2
T (Σ) we have (λ × n) ∈ H

1/2
× (Σ), and viceversa

for each λ ∈ H
1/2
× (Σ) we have (λ× n) ∈ H

1/2
T (Σ). Let us also note that the spaces

H
1/2
T (Σ) andH

1/2
× (Σ) are both equal to the space

H
1/2
t (Σ) := {λ ∈ H1/2(Σ) |λ · n = 0}

if Σ is a smooth surface, while a characterization of them for a polyhedral domain is
given in Buffa and Ciarlet [70].
The dual operators divτ and curlτ now read (all the integrals should be intended as

duality pairings)∫
Σ

(divτλ)φ := −
∫
Σ

λ · gradτφ , λ ∈ (H1/2
T (Σ))′ , φ ∈ H3/2(Σ)
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Σ

(curlτλ)φ :=
∫
Σ

λ · Curlτφ , λ ∈ (H1/2
× (Σ))′ , φ ∈ H3/2(Σ) ,

and clearly one has that divτλ ∈ (H3/2(Σ))′ and curlτλ ∈ (H3/2(Σ))′ . It can also
be checked that λ ∈ (H1/2

× (Σ))′ if and only if (λ×n) ∈ (H1/2
T (Σ))′ , and moreover

that divτ(λ× n) = curlτλ for each λ ∈ (H1/2
× (Σ))′ .

We can now state the result concerning the characterization of the space of tan-
gential traces on Σ or of tangential components on Σ of functions belonging to
H(curl;Ω). In Buffa and Ciarlet [69], Buffa et al. [71] it has been proved that the
space of tangential traces (v × n)|Σ on Σ for v ∈ H(curl;Ω) is given by

H−1/2(divτ ;Σ) := {λ ∈ (H1/2
T (Σ))′ | divτλ ∈ H−1/2(Σ)} , (A.3)

with the graph norm

‖λ‖H−1/2(divτ ;Σ) := (‖λ‖2
(H

1/2
T (Σ))′

+ ‖ divτλ‖2−1/2,Σ)1/2 ,

while the space of tangential components (n× v × n)|Σ on Σ for v ∈ H(curl;Ω) is
given by

H−1/2(curlτ ;Σ) := {λ ∈ (H1/2
× (Σ))′ | curlτλ ∈ H−1/2(Σ)} , (A.4)

with the graph norm

‖λ‖H−1/2(curlτ ;Σ) := (‖λ‖2
(H

1/2
× (Σ))′

+ ‖ curlτλ‖2−1/2,Σ)1/2 .

It can be also shown that two these spaces are in duality, and that one has λ ∈
H−1/2(curlτ ;Σ) if and only if (λ × n) ∈ H−1/2(divτ ;Σ). Moreover, it holds
divτ(λ × n) = curlτλ for each λ ∈ H−1/2(curlτ ;Σ). Let us finally note that, when
Σ is a smooth surface, these trace spaces can be described as

H−1/2(divτ ;Σ) := {λ ∈ H−1/2(Σ) |λ · n = 0, divτλ ∈ H−1/2(Σ)}
H−1/2(curlτ ;Σ) := {λ ∈ H−1/2(Σ) |λ · n = 0, curlτλ ∈ H−1/2(Σ)}

(see Paquet [190], Alonso and Valli [6], Cessenat [76]).
In this functional framework it is thus possible to extend the operators gradτ and

Curlτ onH1/2(Σ) as∫
Σ

gradτφ · λ = −
∫
Σ

(divτλ)φ , λ ∈ H−1/2(divτ ;Σ),

and ∫
Σ

Curlτφ · λ =
∫
Σ

(curlτλ)φ , λ ∈ H−1/2(curlτ ;Σ) ,

obtaining by duality gradτφ ∈ H−1/2(curlτ ;Σ) and Curlτφ ∈ H−1/2(divτ ;Σ).
Again, Curlτφ = gradτφ × n for each φ ∈ H1/2(Σ). In particular, we have also
obtained ∫

Σ

gradτ(ϕ|Σ) · u× n = −
∫
Σ

divτ (u× n)ϕ|Σ (A.5)

for each u ∈ H(curl;Ω) and ϕ ∈ H1(Ω).
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For each u ∈ H(curl;Ω), v ∈ H0,∂Ω\Σ(curl;Ω) it can be proved that the follow-
ing formula of integration by parts holds true∫

Ω

curlu · v =
∫
Ω

u · curlv −
∫
Σ

(u× n) · v (A.6)

(where the last integral is indeed theduality pairingbetween (u×n) ∈ H−1/2(divτ ;Σ)
and (n× v × n) ∈ H−1/2(curlτ ;Σ)).
Taking v = gradϕ, with ϕ ∈ H1

0,∂Ω\Σ(Ω), from (A.6), (A.5) and the Gauss
divergence theorem it follows∫

Σ
curlu · nϕ|Σ = −

∫
Ω

(div curlu)ϕ +
∫
Σ
curlu · nϕ|Σ

=
∫
Ω
curlu · gradϕ =

∫
Ω

u · curl gradϕ−
∫
Σ

(u× n) · gradϕ
= −

∫
Σ(u× n) · gradτ(ϕ|Σ) =

∫
Σ divτ(u× n)ϕ|Σ ,

hence
curlu · n = divτ(u× n) on Σ (A.7)

for each u ∈ H(curl;Ω).
We finally recall that the following trace inequalities hold true (in the second, third

and fourth inequality we are assuming that Σ is a closed surface)

‖φ|Σ‖1/2,Σ ≤ κ ‖φ‖1,Ω ∀ φ ∈ H1(Ω) (A.8)

‖(v · n)|Σ‖−1/2,Σ ≤ κ ‖v‖H(div;Ω) ∀ v ∈ H(div;Ω) (A.9)

‖(v × n)|Σ‖H−1/2(divτ ;Σ) ≤ κ ‖v‖H(curl;Ω) ∀ v ∈ H(curl;Ω) (A.10)

‖(n× v × n)|Σ‖H−1/2(curlτ ;Σ) ≤ κ ‖v‖H(curl;Ω) ∀ v ∈ H(curl;Ω) , (A.11)

where κ > 0 is a suitable constant only depending on Ω and Σ. Moreover, in all
these cases there exist linear continuous extension operators form the trace space to
the corresponding space of functions defined in Ω.

A.2 Nodal and edge finite elements

We present in this section a brief description of the finite element spaces used for the
approximation of the spaces H1(Ω) and H(curl;Ω). A more comprehensive presen-
tation can be found, e.g., in Ciarlet [83], Quarteroni and Valli [199], Monk [179].
Let Ω ⊂ R3 be a Lipschitz polyhedral domain and let us consider a finite decom-

position of Ω given by

Ω =
⋃

K∈Th

K ,

where, denoting by int(K) and diam(K) the internal part and the diameter of K, re-
spectively,
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- each K is a (closed) polyhedron with positive volume;
- ifK1 andK2 are distinct elements in Th then int(K1) ∩ int(K2) = ∅;
- if K1 and K2 are distinct elements in Th and F = K1 ∩ K2 �= ∅, then F is a
common face, side, or vertex ofK1 and K2;

- diam(K) ≤ h for each K ∈ Th.
Under these conditions, Th is called a triangulation of Ω. In the sequel we will con-
sider triangulations where each element K can be obtained as an affine trasforma-
tion of a reference element K̂, i.e., K = TK (K̂), where TK is an invertible affine
map TK(x̂) = BK x̂ + bK , BK being a non-singular matrix. The reference element
can be the tetrahedron K̂ of vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) or the cube
K̂ = [0, 1]3.
Finite element spaces are based on piecewise-polynomial functions, hence some

notations for polynomial spaces are necessary. Let us denote by Pk , k ≥ 0, the space
of polynomials of degree less than or equal to k in the three variablesx1, x2, x3, and by
P̃k the space of homogeneous polynomials of degree k. Let Ql,m,n be the polynomial
space given by polynomials of maximum degree l in x1, m in x2, and n in x3. In
particularQk denotes the space of polynomials that are of degree less than or equal to
k with respect to each variable.
For the definition of finite elements in H(curl;Ω) the following space of vector

polynomials is used
Rk := (Pk−1)3 ⊕ Sk ,

where k ≥ 1 and
Sk := {q ∈ (P̃k)3 | q(x) · x = 0} .

Another space of incomplete vector polynomials is (for k ≥ 1)

Dk := (Pk−1)3 ⊕ P̃k x .

We also use polynomial spaces defined on planes and lines. If e is a segment we
denote by Pk(e) the space of polynomials of maximum degree k with respect to the arc
length on e. If f is a plane subdomain in R3, Pk(f) denotes the space of polynomials
of maximum degree k in two variables using an orthogonal coordinate system in the
plane.

A.2.1 Grad-conforming finite elements

Let us first recall that a function φ : Ω → R belongs to H1(Ω) if and only if φ|K ∈
H1(K) for each K ∈ Th and for each common face f = K1 ∩K2,K1,K2 ∈ Th, the
value of φ|K1 and φ|K2 on f is the same.
Therefore, for any k ≥ 1 the space

Lkh := {φh ∈ C0(Ω) | φh|K ∈ Pk ∀K ∈ Th}

is a subspace ofH1(Ω).
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In order to identify a basis of this finite dimensional subspace it is necessary to
choose a set of degrees of freedom that are unisolvent on Pk, namely, such that their
values uniquely determine a polynomial belonging to Pk .
Let us first assume that Th is a triangulation of Ω composed by tetrahedra. Fol-

lowing Monk [179], for a regular enough function φ we consider the following set of
degrees of freedom on a generic tetrahedronK:

- vertex degrees of freedom

mv(φ) := {φ(a) for all vertices a ofK } ;

- edge degrees of freedom (for k ≥ 2)

me(φ) :=
{

1
length(e)

∫
e

φ q ds ∀ q ∈ Pk−2(e) for all edges e ofK
}

;

- face degrees of freedom (for k ≥ 3)

mf (φ) :=
{

1
area(f)

∫
f

φ q dS ∀ q ∈ Pk−3(f) for all faces f ofK
}

;

- volume degrees of freedom (for k ≥ 4)

mK(φ) :=
{

1
volume(K)

∫
K

φ q dV ∀ q ∈ Pk−4

}
.

It is easy to check that the total number of degrees of freedom in a tetrahedron
concides with the dimension of Pk; moreover it can be verified that a polynomial φ ∈
Pk is vanishing in K provided that all its degrees of freedom are equal to 0. Hence
these degrees of freedom are unisolvent on Pk .
It can be also proved that, if all vertex, edge and face degrees of freedom of φ ∈ Pk

vanish for a particular face f of a tetrahedron, then φ = 0 on that face. This means
that, using these degrees of freedom for identifying a piecewise-polynomial functions
that locally belongs to Pk , we define a continuous function, hence an element of Lkh.
A basis of Lkh is thus given by the collection of those functions that are locally in Pk
and that have one degree of freedom equal to 1 and all the others equal to 0.

Remark A.1. A different and more often used set of degrees of freedom, consisting
of the values of the function on different points of the tetrahedron, can be employed
in order to describe these finite element spaces. Being expressed in terms of point
values, this kind of finite dimensional spaces are often called nodal finite elements
(see, e.g., Ciarlet [83], Quarteroni and Valli [199]). For instance, if k = 2 the values
of the function φ at the vertices ai, 1 ≤ i ≤ 4, and in the middle point of each edge
constitutes another set of grad-conforming and unisolvent set of degrees of freedom;
if k = 3 an analogous set of conditions is given by the values of φ at the 20 different
points of the form 1

3ai + 1
3aj + 1

3ak , with 1 ≤ i, j, k ≤ 4.
Here we have preferred to adopt the vertex, edge, face and volume degrees of

freedom for the sake of similarity with the curl-conforming finite elements introduced
in Section A.2.2. �
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For any φ ∈ H3/2+δ(K), δ > 0, we can now define an interpolation operator πK
by requiring that

mv(φ− πKφ) = me(φ− πKφ) = mf (φ− πKφ) = mK(φ− πKφ) = 0

for all the vertices, edges and faces of K; the corresponding global interpolation op-
erator

πh : H3/2+δ(Ω) → Lkh

is defined by (πhφ)|K := πKφ|K for each K ∈ Th. Note that the assumption on the
regularity of φ ensures that φ is continuous inK, hence vertex values are well-defined.
We recall that a family of triangulationsTh is called regular if there exists a constant

σ > 0 such that

max
K∈Th

hK
ρK

≤ σ ∀h > 0 ,

where
ρK := sup{diam(R) | R is a ball contained inK} .

The following interpolation error estimate holds:

Theorem A.2. Let Th be a regular family of triangulationsofΩ. Then ifφ ∈ Hs+1(Ω),
1/2 + δ ≤ s ≤ k, there exists a constant C > 0, independent of h, such that

‖φ− πhφ‖0,Ω + h‖φ− πhφ‖1,Ω ≤ Chs+1‖φ‖s+1,Ω .

It is also possible to construct a finite element space analogous to Lkh when con-
sidering a triangulation ofΩ consisting of parallelepipeds. In this case one works with
piecewise-polynomial functions φh such that φh|K ◦ TK ∈ Qk . The space of nodal
finite elements for a mesh composed by parallelepipeds and for k ≥ 1 is

L̃kh := {φh ∈ C0(Ω) | φh|K ◦ TK ∈ Qk ∀K ∈ Th} .

On the reference element K̂ the degrees of freedom, unisolvent onQk , are:

- vertex degrees of freedom

mv(φ̂) :=
{
φ̂(â) for all vertices â of K̂

}
;

- edge degrees of freedom (for k ≥ 2)

me(φ̂) :=
{∫

ê

φ̂ q̂ ds ∀ q̂ ∈ Pk−2(ê) for all edges ê of K̂
}

;

- face degrees of freedom (for k ≥ 2)

mf (φ̂) :=
{∫

f̂

φ̂ q̂ dS ∀ q̂ ∈ Qk−2(f̂) for all faces f̂ of K̂
}

;
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- volume degrees of freedom (for k ≥ 2)

mK (φ̂) :=
{∫

K̂

φ̂ q̂ dV ∀ q̂ ∈ Qk−2

}
.

The degrees of freedom on a general element K can be obtained from those on K̂
using the transformation φ ◦ TK = φ̂.
For these finite element spaces the interpolation error estimate described in Theo-

rem A.2 still holds.

Remark A.3. Let us assume k ≥ 0. A finite element subspace ofL2(Ω) is easily defined
by

Ck
h := {qh ∈ L2(Ω) | qh|K ∈ Pk ∀K ∈ Th}

when the elements K ∈ Th are tetrahedra, and by

C̃k
h := {qh ∈ L2(Ω) | qh|K ◦ TK ∈ Qk ∀K ∈ Th}

when the elements K ∈ Th are parallelepipeds.
If P0,h : L2(Ω) → Ck

h denotes the L2(Ω)-projection, then one has

‖φ− P0,hφ‖0,Ω ≤ Chs+1‖φ‖s+1,Ω ,

for all φ ∈ Hs+1(Ω), 0 ≤ s ≤ k. The same holds true for the L2(Ω)-projection
P̃0,h : L2(Ω) → C̃k

h . �

A.2.2 Curl-conforming finite elements

Here we introduce the finite element spaces used for the approximation of the space
H(curl;Ω). We present the two families of elements proposed by Nédélec in [185]
and [186], which are also called edge elements.
We start by considering a triangulation of Ω composed by tetrahedra. For k ≥ 1,

the first family is defined as

Nk
h := {zh ∈ H(curl;Ω) | zh|K ∈ Rk ∀K ∈ Th} .

We have the following set of degrees of freedom:

- edge degrees of freedom

me(z) :=
{∫

e

z · τ q ds ∀ q ∈ Pk−1(e) for all edges e ofK
}

;

- face degrees of freedom (for k ≥ 2)

mf (z) :=
{∫

f

z× ν · q dS ∀q ∈ (Pk−2(f))2 for all faces f ofK
}

;
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- volume degrees of freedom (for k ≥ 3)

mK (z) :=
{∫

K

z · q dV ∀q ∈ (Pk−3)3
}

.

Here τ denotes a unit vector with the direction of e, while ν is the unit normal vector
on f .
The total number of degrees of freedom on a tetrahedron K is equal to the di-

mension of Rk, and it can be shown that, if all the degrees of freedom are 0, then a
polynomial z ∈ Rk is identically vanishing inK. Hence this set of degrees of freedom
is unisolvent on Rk.
We recall that, if K1, K2 are two different elements of Th with a common face

f = K1 ∩K2, defining z ∈ L2(K1 ∪K2) by

z =
{

z1 inK1

z2 inK2 ,

where z1 ∈ H(curl;K1) and z2 ∈ H(curl;K2), it follows z ∈ H(curl;K1 ∪ K2)
provided that z1 × ν = z2 × ν on f .
It can also be proved that, if a vector functionz ∈ Rk has all its degrees of freedom

vanishing on a face f of K and on the three edges contained in f , then the tangential
component of z vanishes on f . This means that, using these degrees of freedom for
identifying a piecewise-polynomial functions that locally belongs toRk, we obtain an
element ofH(curl;Ω), hence an element of Nk

h .
We can introduce a natural interpolation operator. Assuming that z is sufficiently

regular, the interpolant rhz ∈ Nk
h is the unique function in Nk

h that has the same
degrees of freedom of z, that is

me(z − rhz) = mf (z − rhz) = mh(z− rhz) = 0

for all the edges, faces and tetrahedra of Th.
We notice that the degrees of freedomme(z) are not defined for a general function

inH(curl;Ω). However they are well-defined if z ∈ (Hs(Ω))3 for some s > 1/2 and
curl z ∈ (Lp(Ω))3 for some p > 2. For the proof of this result see Monk [179] (see
also Amrouche et al. [27], where a more general result is proved).
In particular, the following interpolation error estimate holds (see Alonso and

Valli [9]):

Theorem A.4. Let Th be a regular family of triangulationsof Ω. If z ∈ (Hs(Ω))3 and
curl z ∈ (Hs(Ω))3, 1/2 < s ≤ k, then there exists a constant C > 0, independent of
h, such that

‖z− rhz‖0,Ω + ‖ curl(z− rhz)‖0,Ω ≤ Chs(‖z‖s,Ω + ‖ curl z‖s,Ω) .

It is also possible to define an analogous family of curl-conforming finite element
spaces when considering a triangulationofΩ consisting of parallelepipeds. For the ref-
erence element K̂ = [0, 1]3 the polynomial space isQk−1,k,k×Qk,k−1,k×Qk,k,k−1,
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with k ≥ 1, and the degrees of freedom are given on edges ê with unit tangent τ̂ ,
on faces f̂ with unit normal ν̂ and in the interior of K̂. In particular we consider the
following set of degrees of freedom, unisolvent on Qk−1,k,k ×Qk,k−1,k × Qk,k,k−1:

- edge degrees of freedom

me(ẑ) :=
{∫

ê

ẑ · τ̂ q̂ ds ∀ q̂ ∈ Pk−1(ê) for all edges ê of K̂
}

;

- face degrees of freedom (for k ≥ 2)

mf (ẑ) :=
{∫

f̂
ẑ× ν̂ · q̂ dS ∀ q̂ ∈ Qk−2,k−1(f̂)× Qk−1,k−2(f̂)

for all faces f̂ of K̂
}

;

- volume degrees of freedom (for k ≥ 2)

mK(ẑ) :=
{∫

K̂ ẑ · q̂ dV

∀ q̂ ∈ Qk−1,k−2,k−2× Qk−2,k−1,k−2×Qk−2,k−2,k−1

}
.

They are well-defined if ẑ ∈ (Hs(K̂))3 for some s > 1/2 and curl ẑ ∈ (Lp(K̂))3

for some p > 2. The basis functions on a general element K can be obtained from
those on K̂ using the transformation z ◦ TK = (BT

K )−1ẑ. In this way the curl of z is
expressed in terms of the curl of ẑ by

curl z ◦ TK =
1

det(BK )
BK curl ẑ .

For k ≥ 1 we can thus consider the following curl-conforming finite element
spaces defined on parallelepipeds

Ñk
h := {zh ∈ H(curl;Ω) | zh|K ◦ TK ∈ Qk−1,k,k× Qk,k−1,k ×Qk,k,k−1

∀K ∈ Th} .

The interpolation error estimate reported in Theorem A.4 still holds.

We notice that, for the curl-conformingfinite elements presented here above, when
using elements of degree k the interpolation error in the L2(Ω)-norm is O(hk). A
second family of curl-conforming elements has been introduced by Nédélec in [186],
in order to obtain an O(hk+1)-error estimate in L2(Ω).
Let us first consider the case of a tetrahedral mesh. For k ≥ 1, the discrete functions

locally belong to the polynomial space (Pk)3, and the degrees of freedom, are the
following:

- edge degrees of freedom

me(z) :=
{∫

e

z · τ q ds ∀ q ∈ Pk(e) for all edges e ofK
}

;



320 Appendix

- face degrees of freedom (for k ≥ 2)

mf (z) :=
{∫

f

z · q dS ∀q ∈ Dk−1(f) for all faces f ofK
}

;

- volume degrees of freedom (for k ≥ 3)

mK (z) :=
{∫

K

z · q dV ∀q ∈ Dk−2

}
.

Here Dk−1(f) is the analogue ofDk−1 in two dimensions.
This set of degrees of freedom has been proved to be curl-conforming and unisol-

vent on (Pk)3. Thus for k ≥ 1 we can consider the discrete space

Nk
∗,h := {zh ∈ H(curl;Ω) | zh|K ∈ (Pk)3 ∀K ∈ Th} ,

and, for a function z which is regular enough, we can define the interpolant r∗,hz ∈
Nk

∗,h.
Concerning the interpolation error the following estimate holds:

Theorem A.5. Let Th be a regular family of triangulations of Ω. If z ∈ (Hs+1(Ω))3,
1 ≤ s ≤ k, then there exists a constant C > 0, independent of h, such that

‖z− r∗,hz‖0,Ω + h‖ curl(z − r∗,hz)‖0,Ω ≤ Chs+1|z|s+1,Ω .

Comparing the interpolation errors in Nk
h and Nk

∗,h we see that L
2(Ω)-norms of

the curl are of the same order with respect to h, while the L2(Ω)-norms of the fields
are O(hs) forNk

h andO(hs+1) forNk
∗,h. On the other hand, the number of degrees of

freedom of Nk
∗,h is greater than that of N

k
h .

It is also possible to define a second family of Nédélec curl-conforming finite el-
ements when considering a triangulation of Ω consisting of parallelepipeds. For the
reference element K̂ = [0, 1]3 and k ≥ 1 the polynomial space is (Qk)3 and the
degrees of freedom, unisolvent on (Qk)3, are given by:

- edge degrees of freedom

me(ẑ) :=
{∫

ê

ẑ · τ̂ q̂ ds ∀ q̂ ∈ Pk(ê) for all edges ê of K̂
}

;

- face degrees of freedom (for k ≥ 2)

mf (ẑ) :=
{∫

f̂

ẑ · q̂ dS ∀ q̂ ∈ Qk,k−2(f̂)×Qk−2,k(f̂) for all faces f̂ of K̂
}

;

- volume degrees of freedom (for k ≥ 2)

mK(ẑ) :=
{∫

K̂

ẑ · q̂ dV ∀ q̂ ∈ Qk,k−2,k−2×Qk−2,k,k−2×Qk−2,k−2,k

}
.

The corresponding discrete space is given by

Ñk
∗,h := {zh ∈ H(curl;Ω) | zh|K ◦ TK ∈ (Qk)3 ∀K ∈ Th} .
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A.3 Orthogonal decomposition results

We prove in this section some orthogonal decomposition results that are useful for
splitting the magnetic field HI or the electric field EI into the sum of suitable terms
(for a more detailed presentation, see also, e.g., Dautray and Lions [95], Saranen [218],
[219], Auchmuty [29], Cantarella et al. [73]).
Here the geometrical assumptions onΩ,ΩC andΩI are those of Section 1.3.More-

over, we again assume that the matrix μ is symmetric and uniformly positive definite
in Ω, with entries belonging to L∞(Ω) and that the matrix εI is symmetric and uni-
formly positive definite in ΩI , with entries belonging to L∞(ΩI). Finally, the spaces
of harmonic fields are introduced in Section 1.4 (see also Section A.4).

A.3.1 First decomposition result

Let us start by introducing the scalar product

(wI , zI)εI ,ΩI :=
∫
ΩI

εIwI · zI ,

where zI indicates the complex conjugate of zI , and by denotingwith the symbol⊥εI

the orthogonality with respect to this scalar product. Instead, ⊥ denotes the orthog-
onality with respect to the standard L2(ΩI )-scalar product. We have the following
theorem:

Theorem A.6. Any vector function zI ∈ (L2(ΩI))3 can be written as

zI = ε−1
I curlqI + gradϕI + hI , (A.12)

where qI ∈ H0,∂Ω(curl;ΩI) ∩ H0
0,Γ (div;ΩI) ∩ H(∂Ω, Γ ;ΩI)⊥, ϕI ∈ H1

0,Γ(ΩI )
and hI ∈ HεI (Γ, ∂Ω;ΩI), and each term of the decomposition (A.12) is orthogonal
to the others, with respect to the scalar product (·, ·)εI ,ΩI .

Moreover, if curl zI = 0 in ΩI and zI × nI = 0 on Γ it follows qI = 0,
if div(εIzI) = 0 in ΩI and εIzI · n = 0 on ∂Ω one has ϕI = 0, and if
zI⊥εIHεI (Γ, ∂Ω;ΩI) one finds hI = 0.

Proof. To prove this result, let us start showing how qI , ϕI and hI can be determined
in terms of zI .
First of all, setting

YI :=
{
pI ∈ H0,∂Ω(curl;ΩI) ∩H0,Γ (div;ΩI) |pI⊥H(∂Ω, Γ ;ΩI)

}
, (A.13)

the vector field qI ∈ YI is the solution to∫
ΩI

(ε−1
I curlqI · curlpI + divqI divpI) =

∫
ΩI

zI · curlpI (A.14)
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for all pI ∈ YI . Concerning the solvability of this problem, note that using the
compactness of YI in L2(ΩI) (see, e.g., Fernandes and Gilardi [104]), the following
Poincaré-like inequality is easily proved∫

ΩI

|pI|2 ≤ C

∫
ΩI

(| curlpI|2 + | divpI |2) ∀ pI ∈ YI . (A.15)

Therefore, the existence of a unique solutionqI to (A.14) is a consequence of the Lax–
Milgram lemma. It can be also verified that, if curl zI = 0 inΩI and zI × nI = 0 on
Γ , then the right-hand side of (A.14) vanishes, thus qI = 0.
Since equation (A.14) is trivially satisfied for each test function belonging to

H(∂Ω, Γ ;ΩI), there we can select the test functions pI not only in YI but also in
H0,∂Ω(curl;ΩI) ∩ H0,Γ (div;ΩI), namely, without imposing the orthogonality con-
straint.
We also see that divqI = 0 in ΩI , as in (A.14) we can choose pI = grad vI ,

where the function vI ∈ H1(ΩI) satisfies ΔvI = divqI in ΩI , vI = 0 on ∂Ω and
grad vI · nI = 0 on Γ , thus obtaining

∫
ΩI
| divqI |2 = 0.

We have therefore shown that qI satisfies∫
ΩI

ε−1
I curlqI · curlpI =

∫
ΩI

zI · curlpI (A.16)

for all pI ∈ H0,∂Ω(curl;ΩI)∩H0,Γ (div;ΩI). We can indeed prove something more,
namely, that equation (A.16) is satisfied for each test function p∗

I ∈ H0,∂Ω(curl;ΩI).
In fact, denoting by v∗I ∈ H1(ΩI) the solution ofΔv∗I = divp∗

I inΩI , v∗I = 0 on ∂Ω
and grad v∗I · nI = p∗

I · nI on Γ , we have pI = (p∗
I − grad v∗I ) ∈ H0,∂Ω(curl;ΩI) ∩

H0,Γ (div;ΩI), and the result follows from the fact that curlp∗
I = curlpI .

Hence, choosing in (A.16) a test functionp∗
I ∈ (C∞

0 (ΩI ))3, we find by integration
by parts that

curl(ε−1
I curlqI − zI) = 0 inΩI ;

finally, repeating the same computation for p∗
I ∈ H0,∂Ω(curl;ΩI) gives

(ε−1
I curlqI − zI) × nI = 0 on Γ .

The function ϕI ∈ H1
0,Γ (ΩI) is such that∫

ΩI

εI gradϕI · grad ηI =
∫
ΩI

εIzI · grad ηI (A.17)

for all ηI ∈ H1
0,Γ(ΩI ), and also this problem is uniquely solvable by the Lax–Milgram

lemma, as the Poincaré inequality∫
ΩI

|ηI|2 ≤ C

∫
ΩI

| grad ηI |2 (A.18)

holds inH1
0,Γ (ΩI) (see, e.g., Dautray and Lions [94], Chap. IV, Sect. 7, Rem. 4). It is

readily seen that, if div(εIzI) = 0 in ΩI and εIzI · n = 0 on ∂Ω, then the right-hand
side of (A.17) vanishes, and consequently ϕI = 0.
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Then, selecting ηI ∈ C∞
0 (ΩI), an integration by parts in (A.17) yields

div[εI(gradϕI − zI)] = 0 in ΩI ,

and the choice ηI ∈ H1
0,Γ (ΩI) gives

εI(gradϕI − zI) · n = 0 on ∂Ω .

Finally, hI ∈ HεI (Γ, ∂Ω;ΩI) satisfies∫
ΩI

εIhI · gradwj,I =
∫
ΩI

εIzI · gradwj,I ,

∫
ΩI

εIhI ·πk,I =
∫
ΩI

εIzI ·πk,I

for each j = 1, . . . , pΓ and k = 1, . . . , n∂Ω, the harmonic vector fields gradwj,I and
πk,I being the basis functions of the space HεI (Γ, ∂Ω;ΩI). In other words, hI can
be written as

hI =
pΓ∑
j=1

cI,j gradwj,I +
n∂Ω∑
k=1

dk,Iπk,I ,

where (cI,j , dk,I) are the solution of the linear system

A†
(

cI,j
dI,k

)
=
( ∫

ΩI
εIzI · gradwg,I∫
ΩI

εIzI · πi,I

)
, (A.19)

g = 1, . . . , pΓ , i = 1, . . . , n∂Ω, where A† :=
(

D† B†

(B†)T C†

)
with

D†
gj :=

∫
ΩI

εI gradwj,I · gradwg,I

B†
gk :=

∫
ΩI

εIπk,I · gradwg,I

C†
ik :=

∫
ΩI

εIπk,I · πi,I .

It is easily proved that the matrix A† is symmetric and positive definite, as the matrix
εI (x) is symmetric and positivedefinite, uniformlywith respect tox, and the functions
πk,I and gradwj,I are linearly independent. Therefore (A.17) is uniquely solvable; its
right-hand side vanishes if zI⊥εIHεI (Γ, ∂Ω;ΩI), so that in that case one has hI = 0.
The three terms ε−1

I curlqI , gradϕI and hI are orthogonal with respect to the
scalar product (·, ·)εI,ΩI : in fact∫

ΩI

εI(ε−1
I curlqI) · gradϕI =

∫
∂Ω∪Γ

curlqI · nI ϕI = 0 ,

as curlqI · n = divτ (qI × n) = 0 on ∂Ω and ϕI = 0 on Γ . Then∫
ΩI

εIhI · gradϕI =
∫
∂Ω∪Γ

εIhI · nI ϕI = 0 ,

as div(εIhI) = 0 in ΩI , εIhI · nI = 0 on ∂Ω and and ϕI = 0 on Γ . Finally,∫
ΩI

εI(ε−1
I curlqI) · hI =

∫
∂Ω∪Γ

nI × qI · hI = 0 ,

as curlhI = 0 in ΩI , hI × nI = 0 on Γ and qI × n = 0 on ∂Ω.
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The decomposition result (A.12) is then straightforwardly verified. In fact, let us
setUI := zI−ε−1

I curlqI−gradϕI−hI . Since curlqI ·n = divτ(qI×n) = 0 on ∂Ω
and gradϕI × nI = 0 on Γ , from the results proved above we verify at once thatUI

belongs to HεI (Γ, ∂Ω;ΩI). On the other hand, by construction hI is the orthogonal
projection of zI onHεI (Γ, ∂Ω;ΩI)with respect to the scalar product (·, ·)εI,ΩI , hence
UI is orthogonal toHεI (Γ, ∂Ω;ΩI) with respect to the scalar product (·, ·)εI ,ΩI , and
the conclusionUI = 0 follows at once. �

A.3.2 Second decomposition result

Let us define the scalar product

(uI,vI)μI ,ΩI :=
∫
ΩI

μIuI · vI (A.20)

and denote by the symbol⊥μI the orthogonalitywith respect to this scalar product. By
interchanging the role of Γ and ∂Ω and by replacing εI with μI , by proceeding as in
Section A.3.1 it is easy to obtain the following theorem, whose proof is presented for
the ease of the reader.

Theorem A.7. Any given vector function vI ∈ (L2(ΩI))3 can be decomposed into
the following sum

vI = μ−1
I curlQI + gradχI +

p∂Ω∑
r=1

aI,r grad zr,I +
nΓ∑
l=1

bI,lρl,I , (A.21)

where QI ∈ H0,Γ (curl;ΩI) ∩H0
0,∂Ω(div;ΩI) ∩ H(Γ, ∂Ω;ΩI)⊥ are introduced in

(A.22), χI ∈ H1
0,∂Ω(ΩI ) in (A.23), and aI,r, bI,l, r = 1, . . . , p∂Ω, l = 1, . . . , nΓ ,

in (A.24). Setting kI :=
∑p∂Ω

r=1 aI,r grad zr,I +
∑nΓ

l=1 bI,lρl,I , each of the three terms
μ−1
I curlQI , gradχI and kI of the decomposition (A.21) is orthogonal to the others,

with respect to the scalar product (·, ·)μI ,ΩI .
Moreover, if curlvI = 0 in ΩI and vI × n = 0 on ∂Ω it follows QI = 0,

if div(μIvI) = 0 in ΩI and μIvI · nI = 0 on Γ one has χI = 0, and if
vI⊥μIHμI (∂Ω, Γ ;ΩI) one finds aI,r = 0 and bI,l = 0, r = 1, . . . , p∂Ω, l =
1, . . . , nΓ .

Proof. For the sake of variety with respect to the proof of Theorem A.6, let us
present the result by resorting to the strong formulations. The vector function QI ∈
H(curl;ΩI) ∩H(div;ΩI) is the solution to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl(μ−1
I curlQI) = curlvI in ΩI

divQI = 0 in ΩI

QI × nI = 0 on Γ
QI · n = 0 on ∂Ω
(μ−1

I curlQI)× n = vI × n on ∂Ω
QI⊥H(Γ, ∂Ω;ΩI) .

(A.22)
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The existence and uniqueness of the solutionQI can be proved by proceeding as was
done for problem (A.14). It is readily verified that one has QI = 0 if curlvI = 0 in
ΩI and vI × n = 0 on ∂Ω.
The scalar function χI ∈ H1(ΩI ) is the solution to the elliptic mixed boundary

value problem ⎧⎨⎩
div(μI gradχI) = div(μIvI ) inΩI

μI gradχI · nI = μIvI · nI on Γ
χI = 0 on ∂Ω .

(A.23)

The existence and uniqueness of the solution χI is well-known from the classical
theory on elliptic boundary value problems. Clearly, if div(μIvI) = 0 in ΩI and
μIvI · nI = 0 on Γ it follows χI = 0 inΩI .
Finally, the vector (aI,r , bI,l), r = 1, . . . , p∂Ω, l = 1, . . . , nΓ , is the solution of

the linear system

A

(
aI,r
bI,l

)
=
( ∫

ΩI
μIvI · grad zs,I∫

ΩI
μIvI · ρm,I

)
, (A.24)

s = 1, . . . , p∂Ω,m = 1, . . . , nΓ , where A :=
(

D B
BT C

)
with

Dsr :=
∫
ΩI

μI grad zr,I · grad zs,I
Bsl :=

∫
ΩI

μIρl,I · grad zs,I
Cml :=

∫
ΩI

μIρl,I · ρm,I ,
(A.25)

and the harmonic vector fields grad zr,I and ρl,I are the basis functions of the space
HμI (∂Ω, Γ ;ΩI). As in the preceeding Theorem A.6, it is easily proved that thematrix
A is symmetric and positive definite, and that aI,r = 0, bI,l = 0 for r = 1, . . . , p∂Ω,
l = 1, . . . , nΓ if vI⊥μIHμI (∂Ω, Γ ;ΩI).
The verification that the three terms in the decomposition are orthogonal with re-

spect to the scalar product (·, ·)μI,ΩI is readily carried out by proceeding as in Theo-
rem A.6. Moreover, defining

VI := vI − μ−1
I curlQI − gradχI −

p∂Ω∑
r=1

aI,r grad zr,I −
nΓ∑
l=1

bI,lρl,I ,

it can be directly verified that

VI ∈ HμI (∂Ω, Γ ;ΩI) , VI⊥μIHμI (∂Ω, Γ ;ΩI) ,

and the thesis follows. �
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A.3.3 Third decomposition result

Another decomposition result, based on different harmonic fields, is the following one

Theorem A.8. Any vector function vI ∈ (L2(ΩI ))3 can be decomposed into the fol-
lowing sum

vI = μ−1
I curlQ∗

I + gradχ∗
I +

nΩI∑
α=1

θ∗I,αρ∗
α,I , (A.26)

where Q∗
I ∈ H0(curl;ΩI)∩H0(div;ΩI)∩H(e;ΩI)⊥ is introduced in (A.27), χ∗

I ∈
H1(ΩI)/C in (A.28) and θ∗I,α, α = 1, . . . , nΩI , in (A.29), and each term of the
decomposition (A.26) is orthogonal to the others, with respect to the scalar product
(·, ·)μI,ΩI .

Moreover, if curlvI = 0 in ΩI it follows Q∗
I = 0, if div(μIvI ) = 0 in ΩI and

μIvI · nI = 0 on Γ ∪ ∂Ω one has gradχ∗
I = 0, and if vI⊥μIHμI (m;ΩI) one finds

θ∗I,α = 0, α = 1, . . . , nΩI .

Proof. Since the proof is similar to that of Theorems A.6 and A.7, let us just sketch it.
For any vector function vI ∈ (L2(ΩI))3, construct the solutionQ∗

I ∈ H(curl;ΩI) ∩
H(div;ΩI) to ⎧⎪⎪⎨⎪⎪⎩

curl(μ−1
I curlQ∗

I) = curlvI in ΩI

divQ∗
I = 0 in ΩI

Q∗
I × nI = 0 on Γ ∪ ∂Ω

Q∗
I⊥H(e;ΩI ) .

(A.27)

The existence and uniqueness of the solutionQ∗
I can be proved as done for problem

(A.14). Note thatQ∗
I = 0 if curlvI = 0 in ΩI .

The scalar functionχ∗
I ∈ H1(ΩI )/C is the solution to the ellipticNeumann bound-

ary value problem {
div(μI gradχ

∗
I) = div(μIvI) in ΩI

μI gradχ
∗
I · nI = μIvI · nI on Γ ∪ ∂Ω .

(A.28)

It is clear that gradχ∗
I = 0 inΩI provided that div(μIvI ) = 0 inΩI andμIvI ·nI = 0

on Γ ∪ ∂Ω.
Finally, the vector θ∗I,α, α = 1, . . . , nΩI , is the solution of the linear system

nΩI∑
α=1

A∗
βαθ

∗
I,α =

∫
ΩI

μIvI · ρ∗
β,I , β = 1, . . . , nΩI , (A.29)

where
A∗
βα :=

∫
ΩI

μIρ
∗
α,I · ρ∗

β,I , (A.30)

and the harmonic vector fields ρ∗
α,I are the basis functions of the space HμI (m;ΩI).

Hence θ∗I,α = 0 for α = 1, . . . , nΩI when vI⊥μIHμI (m;ΩI).
The proof of the theorem is now easily done by following the same procedure used

in Theorems A.6 and A.7. �
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A.4 More on harmonic fields

In this section we give an explicit construction of the basis functions of the spaces of
harmonic fields presented in Section 1.4. Useful references about this topic are, e.g., the
papers by Foias and Temam [106], Picard [192], Amrouche et al. [27], Fernandes and
Gilardi [104], Hiptmair [126], Cantarella et al. [73], Auchmuty and Alexander [30],
[31], and the books by Bossavit [59], Gross and Kotiuga [115]. The most complete
results are in Ghiloni [110].
Let us start from the space HεI (Γ, ∂Ω;ΩI), defined as

HεI (Γ, ∂Ω;ΩI) := {vI ∈ (L2(ΩI ))3 | curlvI = 0, div(εIvI ) = 0,
vI × nI = 0 on Γ, εIvI · n = 0 on ∂Ω} .

The determination of the basis functions gradwj,I , j = 1, . . . , pΓ , is easily done as
follows:wj,I ∈ H1(ΩI ) is the solution of the elliptic problem⎧⎪⎪⎨⎪⎪⎩

div(εI gradwj,I) = 0 inΩI

εI gradwj,I · n = 0 on ∂Ω
wj,I = 0 on Γ \ Γj
wj,I = 1 on Γj .

(A.31)

Instead, the basis functions πk,I , k = 1, . . . , n∂Ω, need some preliminary notation.
It is known that in ΩI there exist n∂Ω connected orientable Lipschitz surfaces Σk,
with ∂Σk ⊂ ∂Ω, such that every curl-free vector field in ΩI with vanishing tan-
gential component on Γ has a global potential in ΩI \ ∪kΣk . These surfaces, usually
called Seifert surfaces, are “cutting” surfaces: each one of them “cuts” a Γ -independent
non-bounding cycle in ΩI (for notation, see Section 1.4). We can now introduce the
functions qk,I ∈ H1(ΩI \Σk), solutions to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div(εI grad qk,I) = 0 inΩI \Σk

εI grad qk,I · n = 0 on ∂Ω \ ∂Σk

qk,I = 0 on Γ
[εI grad qk,I · nΣ]Σk

= 0
[qk,I]Σk

= 1 ,

(A.32)

having denoted by [ · ]Σk the jump across the surface Σk and by nΣ the unit normal
vector on Σk . We finally define πk,I as the (L2(ΩI))3-extension of grad qk,I (com-
puted in ΩI \Σk).
The basis functions for the other harmonic spaces can be defined in a similar way:

let us go on withHμI (∂Ω, Γ ;ΩI), defined as

HμI (∂Ω, Γ ;ΩI) := {vI ∈ (L2(ΩI))3 | curlvI = 0, div(μIvI) = 0,
vI × n = 0 on ∂Ω,μIvI · nI = 0 on Γ } .
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The basis functions grad zr,I , r = 1, . . . , p∂Ω, are the gradients of the solutions zr,I ∈
H1(ΩI) to ⎧⎪⎪⎨⎪⎪⎩

div(μI grad zr,I ) = 0 in ΩI

μI grad zr,I · nI = 0 on Γ
zr,I = 0 on ∂Ω \ (∂Ω)r
zr,I = 1 on (∂Ω)r .

(A.33)

Moreover, similarly to the preceding case, in ΩI there exist nΓ connected orientable
Lipschitz surfaces Ξl, l = 1, . . . , nΓ , with ∂Ξl ⊂ Γ , such that every curl-free vector
field in ΩI with vanishing tangential component on ∂Ω has a global potential in ΩI \
∪lΞl. These “cutting” surfaces “cuts” the ∂Ω-independent non-boundingcycles inΩI .
Then introduce the functions pl,I ∈ H1(ΩI \ Ξl), solutions to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div(μI gradpl,I ) = 0 in ΩI \ Ξl

μI grad pl,I · nI = 0 on Γ \ ∂Ξl

pl,I = 0 on ∂Ω
[μI grad pl,I · nΞ]Ξl

= 0
[pl,I ]Ξl

= 1 ,

(A.34)

having denoted by [ · ]Ξl the jump across the surfaceΞl and by nΞ the unit normal vec-
tor onΞl. The basis functionsρl,I are the (L2(ΩI))3-extension of grad pl,I (computed
inΩI \ Ξl).
For the space HεI (e;ΩI), defined as

HεI (e;ΩI) := {vI ∈ (L2(ΩI))3 | curlvI = 0, div(εIvI) = 0,
vI × nI = 0 on Γ ∪ ∂Ω} ,

the basis functions are gradw∗
γ,I , γ = 0, . . . , p∂Ω + pΓ , where w∗

γ,I ∈ H1(ΩI) is the
solution to ⎧⎨⎩

div(εI gradw∗
γ,I) = 0 in ΩI

w∗
γ,I = 0 on (∂Ω ∪ Γ ) \Θγ

w∗
γ,I = 1 on Θγ .

(A.35)

Here the surfaces Θγ are defined as Θγ := (∂Ω)γ for γ = 0, . . . , p∂Ω and Θγ :=
Γγ−p∂Ω for γ = p∂Ω + 1, . . . , p∂Ω + pΓ .
When considering the space HμI (m;ΩI), defined as

HμI (m;ΩI) := {vI ∈ (L2(ΩI ))3 | curlvI = 0, div(μIvI) = 0,
μIvI · n = 0 on Γ ∪ ∂Ω} ,

one has first to introduce the “cutting” surfaces Ξ∗
α ⊂ ΩI , α = 1, . . . , nΩI , each one

“cutting” an independent non-bounding cycle in ΩI . They are connected orientable
Lipschitz surfaces with ∂Ξ∗

α ⊂ ∂Ω ∪ Γ , such that every curl-free vector field in ΩI

has a global potential in ΩI \ ∪αΞ∗
α. The basis functions ρ∗

α,I are the (L2(ΩI))3-
extension of grad p∗α,I , where p∗α,I ∈ H1(ΩI \ Ξ∗

α) is the solution, determined up to
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an additive constant, to⎧⎪⎪⎪⎨⎪⎪⎪⎩
div(μI grad p

∗
α,I) = 0 in ΩI \ Ξ∗

α

μI grad p
∗
α,I · nI = 0 on (∂Ω ∪ Γ ) \ ∂Ξ∗

α[
μI grad p

∗
α,I · nΞ∗

]
Ξ∗

α

= 0[
p∗α,I

]
Ξ∗

α

= 1 ,

(A.36)

having denoted by [ · ]Ξ∗
α
the jump across the surface Ξ∗

α and by nΞ∗ the unit normal
vector on Ξ∗

α.
The basis functions grad ẑr, r = 1, . . . , p∂Ω, of the space

H(e;Ω) := {v ∈ (L2(Ω))3 | curlv = 0, divv = 0,
v × n = 0 on ∂Ω} ,

and π̂t, t = 1, . . . , nΩ, of the space

H(m;Ω) := {v ∈ (L2(Ω))3 | curlv = 0, divv = 0,
v · n = 0 on ∂Ω} ,

are determined in a similar way to those of the spaces HεI (e;ΩI) and HμI (m;ΩI),
respectively.
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– unisolvent, 315, 316, 318–320
dipole, 288, 292
displacement current, 3, 6, 7, 26
domain decomposition algorithm, 111, 119,
124, 136

electric
– conductivity, 3, 99, 103
– current density, 1
– field, 1
– induction, 1
– permittivity, 1, 22, 26
– ports, 235–237, 239, 244, 246, 247, 264,
265, 272, 273

electro-quasistatic equations, 6
electrode, 279–282, 284
electroencephalography, 286
electromotive force, 302
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error estimate, 73, 75, 78, 91, 110, 130, 132,
166, 195, 255–257

family of triangulations, 314
– regular, 316
Faraday equation, 2, 22, 30, 37, 39, 45, 46,
48, 51, 54, 55, 57, 60, 61, 78, 79, 82, 83,
117, 148, 188, 199, 200, 202, 203, 207,
230, 237, 239, 244–246, 248, 251, 264,
268, 269, 272, 274, 301

forward problem, 289, 292
frequency
– angular, 4, 22, 99, 103
furnace
– electric reduction, 261, 275, 279, 281, 284
– induction, 5, 275, 276

Galerkin approximation
– discontinuous, 110, 169, 180
gauge conditions, 147, 148, 168, 203, 207
Gauss
– electrical equation, 2
– magnetic equation, 3, 199, 203, 245, 251
Geselowitz formula, 290

harmonic fields, 10, 31, 36, 38, 43, 53, 54,
80, 82, 111, 112, 117, 149, 160, 198, 238,
245, 251, 265, 323, 325–327

homology space, 11
hypersingular integral operator, 209, 210,
220, 231

impedance, 304
inequality
– duality, 23, 24, 62
– normal trace, 161, 313
– Poincaré, 24, 85, 106, 116, 124, 162, 189,
193, 215, 222, 310, 322

– Poincaré-like, 23, 40, 66, 71, 80, 162, 192,
193, 200, 202, 215, 253, 322

– tangential trace, 23, 24, 62, 109, 313
– trace, 24, 161, 222, 313
inf–sup condition, 65, 66, 72, 74, 75, 81, 82,
84, 85, 88–90, 95, 106, 109, 143, 269, 270

interface conditions, 49, 50, 83, 198, 203,
224, 240, 272

interpolation
– error, 316, 318, 320

– operator, 316, 318
inverse problem, 287

Joule
– effect, 5, 275–277, 280, 298, 301
– law, 5

Lagrange multiplier, 59, 60, 63, 64, 66–68,
77, 78, 84, 85, 90, 91, 105–107, 128, 133,
142, 168, 226, 270

Lagrange nodal elements, 87, 107, 112, 128,
129, 131, 142, 165, 168, 179, 197, 202,
206, 218, 255, 258, 315

Laplace–Beltrami operator, 84, 90, 311
Lax–Milgram lemma, 25, 37, 40, 45, 53, 114,
161, 189, 202, 214, 219, 243, 322

levitation, 5
– electrodynamic, 293, 295
– electromagnetic, 295, 296
Lorentz force, 5, 277, 294
Lorenz gauge, 147, 180, 181, 183, 187, 188,
190, 191

Lorenz-like gauge, 202, 301
LU factorization
– incomplete, 96, 97

magnetic
– field, 1
– induction, 1
– permeability, 2, 99, 103
magneto-quasistatic equations, 7
magnetoencephalography, 286
mass matrix, 95
Maxwell equations, 3, 147, 235
– time-harmonic, 4, 25, 48, 292

Nédélec edge elements, 67, 77, 87, 107, 112,
128, 129, 131, 136, 142, 168, 179, 223,
226, 233, 255, 256, 258, 317

Navier–Stokes equations, 277
non-destructive evaluation, 303

Ohm law, 3, 266, 278, 289
– generalized, 3
orthogonal decomposition, 42, 66, 69, 71, 80,
81, 83, 112, 113, 117, 127, 239, 321

orthogonality, 19, 22, 39, 42, 55, 64, 114,
116, 160
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penalization, 105, 160, 167, 177, 195, 208,
252

phasor, 4
Poisson equation, 289
potential
– double layer, 209, 211, 220, 231
– scalar electric, 32, 147, 148, 206, 207, 289
– scalar magnetic, 111, 120, 206, 207, 239,
261

– single layer, 209, 211, 220, 231
– vector magnetic, 32, 82, 86, 147, 148, 206,
207

power transformer, 5, 298
preconditioner, 96, 97

Raviart–Thomas elements, 70, 90

saddle-point problem, 59, 60, 63, 65, 75, 76,
78, 79, 84, 91, 93, 96, 106, 108, 112, 140,
144, 269, 270

sesquilinear form
– âI(·, ·), 115
– â∗

I(·, ·), 128
– a(·, ·), 37, 113, 267, 269
– aC(·, ·), 113
– aΓC(·, ·), 226
– aI(·, ·), 113
– aT (·, ·), 222
– ae(·, ·), 105
– a∗

e(·, ·), 22, 178
– aΓe,C(·, ·), 233
– ae,I(·, ·), 140
– C(·, ·), 243
– R(·, ·), 69
– A[·, ·], 154
– A†[·, ·], 197
– A(ω=0)[·, ·], 213
– A(ω �=0)[·, ·], 213
– B[·, ·], 192
– C(·, ·), 61, 242
– C∗

h(·, ·), 255

– D(·, ·), 81
– K(·, ·), 123
– Q(·, ·), 204
– S(·, ·), 201
– S∗(·, ·), 253
– Sh(·, ·), 68
Silver–Müller condition, 292
simply-connected domain, 30, 32, 60, 67, 77,
81, 94, 95, 98, 105, 180, 195, 198, 206,
222, 224, 230, 236, 239, 263

Sobolev spaces, 309
SOR method, 95, 97–100, 103
source localization, 287
Steklov–Poincaré operator, 205, 222–224,
230

surface
– “cutting”, 11, 18, 39, 45, 46, 51, 54, 55,
63, 114, 117, 121, 129, 133, 134, 141, 149,
193, 198, 200, 202, 239, 261, 268, 270,
272, 327

– Seifert, 100, 327

tangential
– component, 312
– curl, 311
– gradient, 311
– trace, 312
TEAM workshop
– problem n. 7, 97, 102
– problem n. 15, 306
– problem n. 27, 303
– problem n. 28, 293, 294
trace, 309
transcranial magnetic stimulation, 292
trefoil knot, 11, 12, 14, 100

Uzawa method, 96–100, 103

voltage, 117, 237–239, 241, 242, 244, 245,
247–250, 252, 254, 255, 257, 263–267,
270–274
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