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Mathematical models of mass transfer in the

vascular walls

Karl Perktold, Martin Prosi, and Paolo Zunino

As illustrated in detail in chapters 1 and 2, the arterial wall is a heterogeneous
structure consisting of several layers which strongly differ in their thickness
and in their biological and physical properties, that we briefly recall here
for the sake of clarity. The layers constituting the wall are the endothelium,
the intima, the internal elastic lamina or lamella (IEL), the media and the
adventitia, see Fig. 7.1 for a simplified sketch. The endothelium is a type of
epithelium composed of a single layer of smooth, thin cells that lines the heart,
blood vessels, lymphatics, and serous cavities. It forms a continuous lining on
blood contacting surfaces in the vascular system, providing the principal bar-
rier against the entry of cholesterol and blood cells into the wall and inhibiting
platelet adherence to the vessel walls. Endothelial cells create chemicals and
control the transport of mass into and out of the wall. The sub-endothelial
layer is an extra-cellular matrix of randomly distributed fibres, mainly col-
lagenous bundles and proteoglycans (glycoproteins which have a very high
polysaccharide content). This layer is surrounded by the IEL, which is com-
posed by elastic fibres. Under normal physiological loading, the fibres form
an approximately circular band. Together with the sub-endothelial layer it
helps the wall to withstand haemodynamic stresses. Outside the IEL there is
the media, which is made of smooth muscle cells and is the primary regula-
tor of vessel diameter. The outer layer is the adventitia, which is a complex
structure that merges into the surrounding tissue. It tethers arteries in place
and it carries nutrients to and wastes away from smooth muscle cells in the
media. Moreover, it provides resistance to overextension and rupture. Some-
times, what we call intima is denoted with sub-endothelial layer. In this case,
the term intima is used for the group of endothelium, sub-endothelial layer
and IEL. However, we do not follow this nomenclature.
The behaviour and the interaction of these layers are regulated by a com-

plex set of chemical and mechanical phenomena. There is evidence (see [287]
for a general introduction or [169] for a more specific analysis) that these
mechanisms depend also on fluid dynamics and mass transport phenomena in
the blood stream and in the wall. The role of fluid dynamics and mass trans-
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port processes in the physiological and patho-physiological functions of the
vascular system are of great interest. As discussed in Chapter 1, arterioscle-
rotic disease consists in degenerative changes in the arteries, characterised by
thickening of the vessel walls and accumulation of calcium with consequent
loss of elasticity and lessened blood flow. Atherosclerosis, in particular, is a
common form of arteriosclerosis in which fatty substances form a deposit of
plaque on the inner lining of arterial walls. Based on the knowledge that abnor-
mal accumulation of macromolecules such as low density lipoprotein (LDL)
or other atherogens in the arterial wall is an important component of the
atherosclerotic disease processes, the quantification of the transport phenom-
ena is required. It is world-wide accepted that an improved understanding of
vascular mass transport phenomena and the influence of fluid dynamics will
have a significant impact on public health.
Atherosclerosis tends to be localised in zones of artery bifurcations and

bends where the shearing forces imposed by the flowing blood are disturbed
compared with the straight tube patterns ([174, 264]). It has been observed
that LDL accumulation in the intima occurring at zones of low and oscillat-
ing wall shear stress (in flow separation regions) is associated with the ten-
dency to intimal thickening ([64,65]). A powerful tool to analyse and quantify
the relevant phemomena is computational modelling which provides detailed
description of transport features, see [136].
The goals of vascular mass transport studies are to correlate mass trans-

fer in anatomic geometries with the localisation of atherosclerotic lesions and
to determine the influence of disturbed flow patterns on the local concen-
tration distribution of substances in the blood stream and in the vessel wall
layers. Vascular mass transport analysis requires the development of appro-
priate mathematical and numerical models. Because of the extreme complex-
ity, the biological problem can be cast with difficulty into a formal physical
framework, and simplifications with respect to the real biological situation
are unavoidable. Basically the presented analysis is restricted to the dynam-
ics of solutes in large and medium sized arteries. As a consequence, for the
specific study of mass transfer blood can be idealised as a Newtonian fluid
(see for instance [406], [383]). For a more detailed discussion of this assump-
tion, we refer to Chapter 2. Furthermore, rigid arterial walls are assumed,
with the justification that for the mass transfer study of large molecules
(LDL) from blood to arterial walls accounting for wall displacement is not
crucially important. However, for small molecules (oxygen), the wall compli-
ance affects the flux into the wall significantly, see [399]. The application of
mass and momentum conservation laws under these assumptions comes up
to the incompressible Navier-Stokes equations (see Chapter 2). According to
the fact that blood plasma filtrates from the inner to the outer part of the
arterial walls under the action of blood pressure, it will be necessary to model
the fluid flow in the wall layers, considered to be homogeneous porous media.
In this case the conservation laws describing the plasma filtration lead to the
Darcy or Darcy-Brinkman equation. Moreover, recent experiences show that
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intra-cellular transport also plays a role in the mass transfer through the arte-
rial walls ( [491] and references therein). Regarding the solute dynamics the
limitation to consider the presence of just one solute is applied. Moreover,
according to physical evidence, the concentration of chemicals dissolved in
blood is small; consequently the blood motion is not influenced by chemicals.
Then, by virtue of the mass conservation principle, the concentration of the
considered solute is governed by a classical advection-diffusion equation.
Several mathematical models have been developed recently for the study

of the transport of macromolecules (such as LDL) in arteries e.g., [249, 397,
476, 533, 563]). Essentially, the models can be classified in three categories
corresponding to the level of description of the arterial wall.
For the simplest model, the wall-free model, the arterial wall is described

by means of an appropriate boundary condition at the inner surface of the
artery (lumen-endothelial boundary). The appropriate boundary conditions
depend on the considered molecules. The transfer of dissolved gases (small
molecules, e.g., oxygen) to and into the wall is diffusion boundary layer con-
trolled, because of the fact that the endothelium is not an essential barrier to
these molecules. The assumption of a constant concentration at this bound-
ary is justified. Originally, this model was applied for the study of arterial
oxygen concentration by [20, 132,421]. The main resistance to the transfer of
macromolecules from lumenal blood into the arterial wall is the endothelial
layer. The flux across the endothelium into the inner layers of the arterial
wall is determined by the endothelial permeability and by the concentration
differential across the layer. Therefore, the permeability boundary condition
(which is of Robin type) can be applied. The model requires the prescription of
the concentration in the sub-endothelial intima. This model needs a relatively
small number of parameters, the diffusivity, the overall mass transfer coeffi-
cient of the wall and the filtration velocity. The model was applied to analyse
the local concentration of potentially atherogenetic molecules by [305] (ATP),
by [533] (LDL). The model cannot provide any information on the concentra-
tion of solute within the wall, however, concentration polarisation effects in
the blood phase directly at the wall can be addressed accurately.
Improved developments, the fluid-wall models, account for the arterial

wall, where the mass transport in blood and in the wall are described applying
physically appropriate laws to model the interaction between the blood flow
and the biochemical transport. In the first stage of improvement the complex
physiologic heterogeneous wall structure is approximated by one homogeneous
porous layer representing the media. This layer is separated from the lumen by
a membrane, which corresponds to the three physiologic layers endothelium,
intima and IEL. The transport processes in the blood stream (lumen) and in
the wall are coupled applying appropriate membrane equations. This model is
well suited to describe the dynamics of solutes in healthy arteries, where the
intima is a very thin layer, and the endothelium represents the main resistance
to the solid. The most complex arterial transport model proposed so far is
the multilayer model, which takes into account for the several heterogeneous
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layers, endothelium, intima, IEL and media (see [175, 176] for its definition;
[58,563] for the analysis of existence and uniqueness of solutions; [249,251] for
the analysis of a finite element scheme applied to this case). The multilayer
model provides the most realistic information on the dynamics of chemicals
(macromolecules) in the wall. The physical behaviour of the different layers are
approximated with the laws of mass transport in homogeneous porous media
(intima and media) and through plasma-permeable membranes (endothelium
and IEL).

7.1 Governing equations for mass transfer in the
cardiovascular system

The mathematical modelling for mass transfer in the cardiovascular system
originated from the study of microcirculation with the aim to provide models
for the mass transfer through the capillaries. Basic references are Friedman
[173], Katchalsky and Curran [254] and for the specific application to the
vascular system we mention Curry [106]. These works mainly neglect the space
dependence of the quantities of interest because of the geometrical complexity
of the capillary network. According to this tendency, we start our work with
the study of two solutions of one single chemical whose concentration is small
and uniform and we address in this setting the basic principles of transport
processes. Then, we present the general lines to set up a mathematical model
for mass transfer through the arterial walls. This procedure applies either to
the wall-free, fluid-wall and multilayer model. Finally, we focus our attention
on the multilayer model, which deserves a detailed discussion because of its
complexity.

7.1.1 Principles of transport processes

We consider two solutions that are separated by a porous thin membrane
that allows the flux of both solvent and solute from one compartment to the
other. The membrane is not totally transparent with respect to the transport
of mass, and makes a selection between the molecules that can pass through
its interstices and those that can not. Membranes featuring this behaviour
are called selective permeable membranes. As it will be made clear in the
following paragraphs, these phenomena typically happen between the lumen
and the wall or between the different layers of the wall.
Given a semipermeable membrane separating two solutions of concentra-

tion c in a suitable solvent, we denote with Jv the filtration velocity of the
solvent across the membrane and with Js the mass flux of the chemical per
unit surface. Let Lp and P the hydraulic conductivity and the permeability of
the membrane. The sieving coefficient, denoted with s, determines the ratio
of molecules that can sieve across the membrane. In what follows we will also
use the reflection coefficient that is the complementary of s with respect to
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the unity. We denote the reflection coefficient with σ = 1 − s. We will con-
sider two different kind of reflection and sieving coefficients, the osmotic one
(also called solvent drag sieving coefficient), denoted with σd = 1 − sd and
the frictional one σf = 1− sf . Finally, the index i = 1, 2 denotes here the two
compartments separated by the semipermeable membrane.
A well accepted mathematical model for the fluxes of solvent and the solute

is given by the following set of equations, called Kedem-Katchalsky equations
(see for example [254,255]).

Jv = Lp(δp− σdδπ) (7.1)

Js = Pδc+ Jv(1− σf)c, (7.2)

where c is the mean concentration inside the membrane and δc = c1−c2, δp =
p1 − p2, while

δπ = RTδc, (7.3)

where R, T are the gas constant and the absolute temperature. Equation (7.1)
is called Starling’s law of filtration and states that the solvent flux across the
membrane is proportional to the pressure jump between the two compart-
ments. The pressure jump is, on the other hand, split in two parts, the jump
of static pressure δp and the jump of osmotic pressure δπ. The latter depends
on the solute concentration on the two sides of the membrane, according to the
Van’t Hoff’s law (7.3). On the other hand, the solute flux, defined by equation
(7.2), can be interpreted as the sum of a diffusive term (depending on the jump
of concentration across the membrane) and a transport term (defined as the
product of effective solvent flux and the mean concentration within the mem-
brane). From another point of view, system (7.1,7.2) can be interpreted as the
description of the influence of the driving forces acting through a membrane,
namely δp and δc on the physical quantities Jv, Js. The parameters Lp,P are
the coefficients that govern this dependence and are called phenomenological
coefficients.
A very delicate parameter appearing in the Kedem-Katchalsky equations is

the average concentration within the membrane (c). In fact, several models can
be considered to estimate this quantity starting from physical considerations.
Let us assume that the dynamics of solute within the membrane are gov-

erned by diffusion and transport. Precisely, the concentration within the mem-
brane satisfies the following boundary-value problem,

−ac′′(x) + bc′(x) = 0, x ∈ (0, l)
c(0) = c1, c(l) = c2,

(7.4)

where the cross-section of the membrane is represented by the interval (0, l)
while the coefficients a := P and b := Lp(1 − σf)(p1 − p2) take into account
the diffusion and the transport respectively. Finally c1 and c2 represent the
concentration on the sides of the membrane. The solution of problem (7.4) is,

c(x) =
1

1− exp(Pe)

[
c2 − exp(Pe)c1 + (c1 − c2) exp

(
bx

a

)]
, x ∈ (0, l),
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where we have introduced the global Péclet number associated with problem
(7.4), Pe := bl/a. Then the average concentration within the membrane,

defined as c := (1/l)
∫ l
0
c(x)dx becomes,

c = fw(c1, c2) = w1c1 +w2c2

w1 =
exp(Pe)

exp(Pe)− 1 −
1

Pe
, w2 =

1

Pe
− 1

exp(Pe)− 1 .

In what follows, we call fw(c1, c2) the weighted arithmetic average. For exam-
ple, let us consider this average for a membrane representing the endothelium.
Thus, we set l = 10−4cm,P = 10−7cm/s, a = 10−11cm2/s and b = 10−6cm/s
(the latter provides a reasonable approximation for the filtration velocity in
the wall). The solute dynamics in the endothelium are in this case trans-
port dominated (indeed, the Péclet number is high, Pe = 100) and we obtain
w1 = 0.99, w2 = 0.01. This choice of the average concentration c is appropriate
for membranes whose thickness is considerable with respect to the character-
istic size of the molecules that filtrate through them.
An alternative approach to determine the average concentration within the

membrane makes use of irreversible thermodynamics, the Kedem-Katchalsky
equations can be theoretically derived from the general Onsager’s phenomeno-
logical equations (see for example [254] Chapter 8), by applying them to the
study of mass transport through membranes. For this matter the interested
reader is referred to [173, 254, 255]. In this framework, the average concen-
tration within the membrane can be defined starting from the Nerst-Planck
equation for equilibrium of chemical potentials and it becomes c = fl(c1, c2) =
(c1 − c2)/ ln(c1/c2), which we call logarithmic average. Physical experience
suggests that this model is suitable for extremely thin selective permeable
membranes.
It is straightforward to verify that these models lead to different values of

the average concentration. For example, in the common case of highly resistant
membranes and of solute exchange dominated by transport, one has c1/c2 � 1
as well as Pe� 1, which leads to fw(c1, c2) � c1 while fl(c1, c2) � 0. On the
other hand, we observe that if the solute dynamics within the membrane is
dominated by diffusion and the membrane is very permeable, one has c1/c2 �
1 and Pe � 1, which leads to fl(c1, c2) � fw(c1, c2) � 1/2(c1 + c2). Finally,
we observe that in the general case, the concentration within the membrane
will be denoted as c = f(c1, c2).

7.1.2 Set up of the multilayer model

The starting point of this section is the description of the blood flow into
the arterial lumen. It is governed by the Navier-Stokes equations, which are
extensively discussed in Chapter 3 (see in particular equations (3.32) and
(3.40)).
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Concerning the arterial wall, we remind that in any biological tissue flow
may take place through a complex network of interconnected pores, or open-
ings. However, when dealing with such flow, we overlook the microscopic flow
patterns inside individual pores and we consider some fictitious average which
takes place in the porous medium comprising the tissue. By doing so, we are
employing the concept of a continuum, which is common in most branches
of physics. The obvious reason for employing the continuum approach in flow
through a porous medium, is that it is practically impossible to describe in
any exact mathematical manner the complicated geometry that bounds the
flowing fluid. In order to set up the mathematical models for flow in porous
media based on the continuum approach, we introduce the porosity of the tis-
sue, 0 < ε < 1, and its hydraulic permeability (or Darcy permeability), KD ,
which is assumed here to be a constant scalar quantity. In the case of a free
fluid we set ε = 1. We denote with u the volume averaged velocity and with ũ
the velocity of the fluid phase. Similar notations, c and c̃, are adopted for the
concentration of chemical dissolved in the solution permeating the tissue. We
notice that the ratio between volume averaged value of a physical quantity
and the value of the corresponding quantity in the fluid phase is given by
ε = u/ũ = c/c̃.
Under the assumption that blood plasma completely fills the void space of

the porous medium, we consider two options to describe the average fluid flow
into the tissue, the Darcy’s model and the Brinkman’smodel. Both the Darcy’s
and the Brinkman’s equations can be derived by means of homogeneisation
techniques starting from the Stokes flow through an array of particles (for a
detailed discussion we refer for example to [283]). Moreover, the Brinkman’s
model can be regarded as a correction of the Darcy’s one featuring a viscous
term inspired from the Stokes equations. The Darcy’s model reads as follows,

u = −KD
μ
∇p with divu = 0,

while the Brinkman’s model is given by,

u = −KD
μ
[∇p− μ′(∇u+∇uT )], divu = 0,

where μ′ is called the Brinkman’s modified viscosity. Finally, the dynamics of
chemicals is governed by a system of advection-diffusion equations. Precisely,
applying the mass conservation principle on a generic control volume, we
obtain the following equation

∂tc+ div(−D∇c+ γuc/ε) = 0. (7.5)

We observe that collisions of large molecules with the structure of the porous
tissue layer result in a reduced convective transport. This phenomenon is taken
into account by using a hindrance coefficient 0 < γ ≤ 1 in the mathematical
model (see below).
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In the wall-free model the fluid dynamics and the mass transport in the
arterial lumen are described by the Navier-Stokes equations and the advection-
diffusion equations. At the boundary between the lumen and the arterial wall
appropriate conditions for the volume flux (Jv) and the mass flux (Js) are
assumed,

ul ·nl = Jv on Γ

(−Dl∇cl + ulcl) · nl = Js on Γ.

In this case the values of Jv and Js are provided by experimental data in [49,
492,513,533]. In the case of the fluid-wall model and the multilayer model we
need suitable matching conditions between the governing equations in different
media. These conditions are provided by the Kedem-Katchalsky equations
(7.1)–(7.2) and their application will be presented in detail for the multilayer
model in what follows.
To set up the multilayer model, first of all we recall that the arterial

wall consists of the endothelium (whose thickness is of the order of 2 μm),
intima (thickness � 10 μm), internal elastic lamina (IEL, thickness � 2 μm),
media (thickness � 300 μm) and adventitia. In the latter layer, pressure and
the concentration are supposed to be known from measurements. In order to
reduce the complexity of the resulting numerical problem, some simplifications
are in order. An approach, proposed and discussed in [411, 420, 421], consist
of treating the thinner layers as membranes through the Kedem-Katchalsky
equations, see e.g. (7.1,7.2). Consequently the problem that we address here
features three coupled domains: the lumen, the intima, the media, separated
by interfaces, representing the endothelium and the IEL. A representation of
the domains is given in Fig. 7.1. In order to set up the equations of the model,

Fig. 7.1. The considered domains and the partitioning of the boundaries for the
multilayer model
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we will denote with the subscripts l, i, m the physical quantities related with
the lumen, the intima and the media respectively. Moreover, we will apply the
subscripts end and iel for the endothelium and the internal elastic lamina.

Fluid dynamics models

In order to find out whether the Darcy’s or the Brinkman’s model is more
suited to our purpose, we focus on the interface conditions between the lumen
and the wall, corresponding to the endothelial layer denoted with Γend. We
notice that on the lumenal side we consider the interface as a non-slip surface
that only allows normal flow. On the other hand, since the Darcy model does
not allow any control on the tangential velocity on the boundary, there might
be a discontinuity of it across Γend. Although, this is not likely to happen
because the flow in the wall is driven by the pressure jump pl − padv and is
mainly radial, the Darcy-Brinkman model is able to override this drawback.
In fact it can be supplemented by conditions enforcing the continuity of the
velocity across interfaces, since it features a viscous term. In general these
conditions seem to be more realistic than the ones imposed in the Darcy case.
However, we observe that the tangential velocity on the lumen-wall interface
rapidly goes to zero into the wall. A rough estimation of the boundary layer
thickness can be computed as in [445]. Assuming that the wall is characterised
by the following parameters

• diameter of the pores, Dp = 30nm = 30 · 10−9m;
• porosity of the wall, ε = 0.96;
• channel thickness, H = 1cm;
• permeability of the wall Ki = [D

2
pε
3]/[150(1− ε)2] = 0.33 · 10−14m2,

the boundary layer thickness δ is then,

δ = K
1/2
i log

[
50(h/K

1/2
i − 1)

]
= 9.2 · 10−7m � 1 μm.

We observe that the thickness of the boundary layer is half the thickness of
the endothelium (about 2 μm). Furthermore, we point out that in the mul-
tilayer model the endothelium and the internal elastic lamina are treated as
membranes, due to their extremely small thickness. Consequently, the Darcy-
Brinkman model does not look fully consistent with the multilayer model
since, in order to be correctly applied, it could require us to resolve details on
a scale that is smaller than the thickness of the endothelium or the internal
elastic lamina. Hence the Navier-Stokes/Darcy coupling looks more suitable
in our case. Then, the system including the Navier-Stokes and the Darcy’s
equations (where we use the previously introduced notation) reads as flows.

Jv,end = Lp,end(pl − pi) − Lp,endσdRT (cl − ci) on Γend, (7.6)

Jv,iel = Lp,iel(pi − pm) − Lp,ielσdRT (ci − cm) on Γiel. (7.7)
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Problem 7.1.1 Find the velocities and pressures in the lumen, intima and
media ul, pl, ui, pi, um, pm, respectively, such that

(a)
∂ul
∂t
+ (ul · ∇)ul − divσl/ρ = 0 in Ωl, t > 0

(b) divul = 0 in Ωl, t > 0

(c) ul = ul,in on Γl,in, t > 0

(d) σlnl = poutnl on Γl,out, t > 0

(e) ul × nl = 0, ul · nl = ui · nl on Γ, t > 0

(f) ul = u0 with divu0 = 0 in Ωl,

(7.8)

(where σl is the Cauchy stress tensor defined in equation (3.33). Condition
(7.8e) states that Γ is a no-slip boundary that allows for filtration in the
normal direction. Moreover, we require the normal velocity component across
Γ to be continuous)

(a) ui +
Ki
μi
∇pi = 0 in Ωi, t > 0,

(b) divui = 0 in Ωi, t > 0,

(c) ui · ni = 0 on Γi,in ∪ Γi,out, t > 0,

(d) ui · ni = −Jv,end on Γend, t > 0,

(e) ui · ni = Jv,iel on Γiel, t > 0,

(7.9)

(equation (7.9a) is the Darcy’s law of filtration with a constant and scalar
Darcy’s permeability, Ki. Equation (7.9b) accounts for the conservation of
mass. Boundary condition (7.9c) enforces the filtration velocity to be tan-
gential to the distal and proximal sections of the wall. Conditions (7.9d,e)
determine the value of the filtration velocity into the endothelium and the
IEL according to the Kedem-Katchalsky equations (7.1),(7.2))

(a) um +
Km
μm
∇pm = 0 in Ωm, t > 0,

(b) divum = 0 in Ωm, t > 0,

(c) um ·nm = 0 on Γm,in ∪ Γm,out, t > 0,

(d) um · nm = −Jv,iel on Γiel, t > 0,

(e) pm = padv on Γadv, t > 0,

(7.10)

(equations (7.10a,b) and conditions (7.10c,d) are analogous to the ones set for
the intima. Condition (7.10e) fixes the pressure value on the adventitia to a
known value padv). �
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Finally, we point out that it is still possible account for the shear phenom-
ena in the tangential direction on the fluid-wall interface. This is achieved by
a special matching condition applied to the fluid side, proposed at first by
Beavers and Joseph and generalised by Jones (see [445]). This condition reads
as follows,

K
1/2
i

μi
[(σlnl)× nl] =

(
μ′i
μi

)1/2
[ul ×nl − ui × nl] on Γ. (7.11)

Indeed, (7.11) states that the shear stress on the fluid-wall interface induces a
jump on the tangential velocity across the interface. This boundary condition
looks particularly suitable in our case, since it takes into account the varia-
tion of the tangential velocity across the endothelium, still represented as a
membrane.

Solute dynamics models

First of all, we remind that because of friction phenomena on the motion
of molecules, the actual transport velocity in the wall is smaller than the
filtration velocity obtained from Problem 7.1.1. Consequently, we denote
the transport field in equations (7.15,7.16) as an effective velocity, given by
(γλ/ελ)uλ), λ = i, m, where γλ is a constant called friction or hindrance coef-
ficient, as in equation (7.5). For a more detailed discussion of this issue, we
refer to [138,249,251]. Furthermore, we rewrite equation (7.2) with a general
mean concentration within the membrane that we denote with f(·, ·):

Js,end = Pend(cl − ci) + Lp,end(1− σf)(pl − pi)f(cl , ci)−

Lp,end(1− σf )σdRTf(cl, ci)(cl − ci), (7.12)

Js,iel = Piel(ci − cm) + Lp,iel(1− σf )(pi − pm)f(ci, cm)−

Lp,iel(1− σf)σdRTf(ci, cm)(ci − cm). (7.13)

Then, making use of these definitions, we propose the following problem for
the solute dynamics.

Problem 7.1.2 Find the concentrations in the lumen, intima and media
cl, ci, cm respectively such that,

∂cl
∂t
+ div(−Dl∇cl + ulcl) = fl, t > 0, cl(0) = cl,0 in Ωl,

(a) cl = cl,in on Γl,in, t > 0

(b) ∇cl · nl = 0 on Γl,out, t > 0
(c) −Dl∇cl · nl + ul · nlcl = Js,end on Γend, t > 0,

(7.14)
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(condition (7.14c) that determines the solute flux across Γend according to
theKedem-Katchalsky equations. Moreover, we refer to Fig. 7.1 for the defi-
nitions concerning the boundary partition)

∂ci

∂t
+ div(−Di∇ci + γi

εi
uici) + rici = fi, t > 0, ci(0) = ci,0 in Ωi,

(a) ∇ci · ni = 0 on Γi,in ∪ Γi,out, t > 0,
(b) −Di∇ci · ni + γi

εi
ui ·nici = −Js,end on Γend, t > 0,

(c) −Di∇ci · ni + γi
εi
ui · nici = Js,iel on Γiel, t > 0,

(7.15)

(we introduced into the governing equations the term rici accounting for
consumption of chemicals by the tissues constituting the intima. Condition
(7.15a) enforces a null diffusive flux on the proximal and distal section of the
intima. Condition (7.15b,c) enforce on Γend and Γiel the flux prescribed by the
Kedem-Katchalsky equations)

∂cm
∂t
+ div(−Dm∇cm + γm

εm
umcm) + rmcm = fm, t > 0 cm(0) = cm,0 in Ωi,

(a) cm = cadventitia or ∇cm · nm = 0 on Γadv, t > 0,
(b) ∇cm · nm = 0 on Γm,in ∪ Γm,out, t > 0
(c) −Dm∇cm ·nm + γmεm um · nmcm = −Js,iel on Γiel, t > 0.

(7.16)
(the governing equation and the boundary conditions for the media are anal-
ogous to the ones prescribed for the intima). �
In conclusion, Problems 7.1.1 and 7.1.2 represent the multilayer model

for mass transfer across the arterial wall. Besides its technical complexity, its
definition presents some intrinsic difficulties that appear both in the math-
ematical analysis of the well posedness of the problem and in its numerical
approximation.
On one hand, we observe that Problems 7.1.1 and 7.1.2 are coupled by

the interface conditions based on the fluxes Jv,end, Jv,iel and Js,end, Js,iel
that contain terms involving both the pressure and the concentration. We
want to simplify this situation. Since our aim is to study the absorption
of macromolecules in the arterial wall, we avoid any simplification on the
solute dynamics model, rather we make some assumptions on the equations
concerning the blood flow. We obtain a simplification dropping in equations
(7.6, 7.7) the term depending on the concentration. More precisely, by tak-
ing Jv,end = Lp,end(pl − pi) on Γend and Jv,iel = Lp,iel(pi − pm) on Γiel, as
reduced solvent fluxes, equations (7.9,7.10) do not depend on the concentra-
tion, so they can be rewritten with the pressure as an unknown. On the other
hand, the coupling between subequations of problems 7.1.1 and 7.1.2 will be
approached in Section 7.3 in the framework of the numerical approximation
of the multilayer model.
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These difficulties also make the mathematical analysis of the coupled Prob-
lems 7.1.1 and 7.1.2 an extremely challenging task. Indeed, this is still an open
issue. Indeed, we observe that the expressions of Js,end, Js,iel are nonlinear
functions of the concentrations. This is a major difficulty in the analysis of
the well posedness and of the mathematical properties of the model 7.1.2,
even when it is split from 7.1.1. We will not dwell here with a complete treat-
ment of these topics, but we point out that the relevance of the analytical
study with respect to the aim of this work is twofold. On one side, existence
and uniqueness of a solution are the basic properties that have to be satisfied
by mathematical models representing physical phenomena. These properties
make also possible to consider the numerical approximation of the problem
and to compute its solution by numerical methods. In addition to this, if the
solution of the original problem is regular enough, the analysis of accuracy
of the numerical method can be pursued (see for example Section 7.3). On
the other side, the analysis of other specific mathematical properties, as for
instance the maximum principle, allows us to characterise more precisely the
behaviour of the solution. To sum up, the mathematical analysis provides a
synthetic description of the multilayer model that turns out to be very useful
in the applications, for example for the interpretation of the numerical results.

Remark 7.1.1 (Mathematical analysis) Properties as existence, unique-
ness and maximum principles have been widely investigated for standard ellip-
tic operators, see e.g. [192], and in the parabolic case, in particular for advec-
tion diffusion problems in [398] or [471]. However, we point out that the mul-
tilayer model can not be casted into the classical framework, because of the non
standard, non linear boundary or matching conditions on the interface between
lumen and wall. In the linear case, the analysis of the model has been pursued
in [411]. In the non linear case, existence and uniqueness results have been
obtained in [58]. However, many analytical issues are still open. For instance,
the solution of the multilayer problem may blow up in finite time. The study of
blow up is a peculiar topic in analysis of partial differential equations for which
we refer to [24] and [87] for a general introduction and to [152,153,280,281]
for analytical results that fit our case.

7.2 Characterisation of physiological data

The physiological correct set up of the mathematical model for the lumenal
and transmural fluid and solute dynamics needs appropriate transport param-
eters. These parameters describe the transport properties of the domains con-
sidered in the model (lumen, endothelium, intima, IEL and media). Many
of these parameters can not be gained directly by experimental measure-
ments. In this chapter we will discuss two possible mathematical method-
ologies developed to obtain a complete set of parameters for the different
kinds of wall layers (membranes and fibre layers). The first part focuses on



256 Karl Perktold, Martin Prosi, and Paolo Zunino

the estimation by using the pore theory that bases on the assumption that
the wall layers are porous structures whose physical properties can be iden-
tified by their geometrical structure. This kind of method has been proposed
in [11, 106, 233,234,270]. The majority of this part has been take from [251]
where these models have been applied to obtain all parameters of the heteroge-
nous wall structure. The second part describes a different kind of approach
by a simplified inverse model based on an electrical analogy for the transport
processes. The derivation of the electrical analogies for membranes and porous
structers and their application to the arterial wall has been described in detail
in [397].

7.2.1 Pore theory

Mass transport in the porous intima and media

The healthy subendothelial intima and the media generally consist of an extra-
cellular matrix of randomly distributed proteoglycan and collagen fibres. In
the media, as well as in the thickened intima smooth muscle cells occur in
addition to the fibrous fluid phase. The transport processes in these arterial
wall layers only occur in the fluid phase.
The fibre matrix is characterised by the wall layer thickness H , the fibre

radius rf and by the total length of the fibres lf within the unit volume. Hence
the fractional void volume of the fibre matrix results from,

εf = 1− πr2f lf .

The Darcy permeability KD,f of the porous tissue is given as,

KD,f =
r2fε
3
f

4G(1− εf)2
, (7.17)

where G is the Kozeny constant, [232]. The restricted diffusivity of the solid
of interest with a mean molecular radius rmol in the extracellular matrix is
calculated from the equation,

Df = D · exp
(
−(1− εf )1/2

(
1 +

rmol
rf

))
, (7.18)

where D is the solute diffusivity in water and Df is the restricted diffusion in
the fiber matrix. According to [235] the hindrance coefficient for convective
transport in the fibre matrix can be obtained from,

γf = 2− Φf . (7.19)

The reduction coefficient Φf represents the relation between the space avail-
able to the solute relative to the space available to water,

Φf = exp

[
−(1− εf)

(
2rmol
rf

+
r2mol
r2f

)]
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As discussed in Chapter 1, the media is formed by layers of smooth muscle
cells. The presence of such cells is also observed in the case of a thickened
intima. The contribution of smooth muscle cells is included in the model by
means of an additional volume fraction εSMC that reduces the total porosity of
the wall layer εeff = εf (1−εSMC). In this case the transport parameters (dif-
fusivity, Darcy permeability and lag coefficient) have to be transformed into
effective parameters, see [235]. Without smooth muscle cells the parameters
calculated from the equations (7.17)–(7.19) represent the effective parameters.

Example 7.2.1 (Intima) The mean radius of the fibres building up the
extracellular matrix of the intima is rf = 3.22nm [235]. By assuming an
average spacing of 5 nm and an average ratio between fibre length and intima
thickness of 1.5 [232] we get a total length of the fibres within the unit vol-
ume of lf = 1.225 · 10 − 3 nm−2 and therewith a fractional void volume of
εf = 0.96 and a Darcy permeability of KD,f = 8.7 · 10−13 cm2/(s · dyne). For
LDL with a mean molecule radius rmol = 11nm we get a restricted diffusivity
of Df = 1.2 · 10−7 cm2/s and a reduction coefficient of Φf = 0.47.

Example 7.2.2 (Media) The fractional void volume of the fibres in the
media is εf = 0.43 and the fraction of the smooth muscle cells is εSMC = 0.4
which results in an effective values of εeff = 0.258, KD,eff = 7.75 ·
10−16 cm2/(s · dyne), Φeff = 6.8 · 10−6, Deff = 8.14 · 10−9 cm2/s.

Transport across the endothelium and internal elastic lamina

The endothelium and the internal elastic lamina (IEL) are treated as selective
permeable membranes. They are assumed to be layers of constant thickness
H . Exchange of water and solutes across the endothelium takes place through
clefts (pores) which occur between the endothelial cells. The pores can be
divided into normal endothelial clefts which are modelled as cylindrical pores
and leaky junctions which are approximated as pores with a ringlike cross-
section surrounding the leaky cells (cells which are either dying or in mito-
sis). The IEL contains fenestral pores through which transport between the
intima and the media takes place. According to [232] the fenestrae can be
approximated as cylindrical pores. The transport of molecules which is small
in relation to the pore size across such porous membranes can be basically
described using the convection-diffusion-reaction equation. The only effect of
the porous membrane on the transport is the reduction of the space available
to the solution. The transport of large molecules through these membranes
is highly restricted by the pore structure. It is assumed that for entrance
into the pore a molecule must pass through the opening without striking the
edge [270]. This restriction causes the reflection and sieving of large molecules
at the surface of membranes with relatively small pores. During the transport
through the pores the molecules collide with the pore walls. These interactions
between the molecules and the pore walls causes a loss in the kinetic energy
of the molecules which results in a restricted transport within the pores.
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We subdivide the pores on the endothelium and IEL into cylindrical pores
and pores with ring-like cross section. The hydraulic conductivity of a cylin-
drical pore is,

Lp =
ρporeπR

4

8μL
,

where ρpore is the average density of the pores, R is the radius and L the length
of the pore. The restricted diffusivity coefficient in the pore Dp is defined as

Dp = DF (α),

where α = rmol/R is the ratio between the molecule radius and the radius of
the pores and F (α) is, from [106],

F (α) =
[
2(1− α)2 − (1− α)4

] [
1− 2.1α+ 2.09α3 − 0.95α5

]
.

Then, the permeability of the pore can be calculated by

Pp = ΦDp/L, (7.20)

where Φ = (1 − α)2 considers the reduction of pore cross section that is
available to the solute. Fig. 7.2 (left) shows the relation of the free and the
restricted pore diffusivity as function of α. The osmotic reflection coefficient
is calculated by following the equation, which is obtained in [11],

σd,p = (1− Φ)2

and the solvent drag reflection coefficient is given according to [106] by,

σf,p =
16

3
α2 − 20

3
α3 +

7

3
α4.

The functions the reflection coefficients are depicted in Fig. 7.2 (right).
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Fig. 7.2. Relation between the pore diffusivity and the free diffusivity (left), the
osmotic reflection coefficient and the solvent drag reflection coefficient (right) as
functions of the relation between the molecule and the pore radius, α
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A pore with a ringlike cross-section is treated in the same way like a infinite
long slit with constant width 2b as proposed by [106]. Hence the hydraulic
conductivity of a ringlike pore is given by,

Ls =
b2

3μL
. (7.21)

The restricted diffusivity coefficient in the pore Ds is defined as,

Ds = DFs(αs),

where αs = rmol/b is the ratio of the molecule radius to the half pore width
size. The function of the restricted pore diffusivity [105] is,

Fs(αs) = (1− αs)
(
1− 1.004αs+ 0.418α3s − 0.169α5s

)
.

The permeability of the pore is calculated in the same way like the circular
pore (7.20), where Φs = 1−αs accounts for the reduction of pore cross section
that is available to the solute. The osmotic reflection coefficient follows form
the model of [11],

σd,s = (1− Φs)2 = α2s
and the solvent drag coefficient [105] equals to

σf,s = 1−
(
1− 3
2
α2s +

1

2
α3s

)(
1− 1
3
α2s

)
.

The functions the reflection coefficients are depicted in Fig. 7.3.
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Fig. 7.3. Osmotic reflection coefficient and solvent drag reflection coefficient as
functions of the ratio between molecule and half width size of the pore



260 Karl Perktold, Martin Prosi, and Paolo Zunino

Example 7.2.3 (Endothelium) The transport parameters of the leaky clefts
(Lp,lj , Plj , Φlj, σf,lj , σd,lj) and the normal junctions(Lp,nj, Pnj, σf,nj, σd,nj)
are calculated by equations described above. According to [232], the values
of the hydraulic conductivity, permeability and reflection coefficients of the
endothelium containing normal clefts and leaky clefts are

Lp,end = Lp,nj + Lp,ljεlj

Pend = Pnj + PljεljΦlj

σ =
Lp,njσnj + Lp,lj εljσlj

Lp,e
,

where εlj is the area of leaky clefts per unit area of the endothelial surface.
The average fraction of leaky cells for a healthy endothelium is 0.05%. Their
cell radius is 15μm and the width is 20nm–25nm. The normal junctions have
a radius of 5.5 nm and an average distance of 2.5μm [232]. The resulting
hydraulic conductivity is Lp,end = 3 · 10−11 cm3/(s · dyne). For LDL the
permeability is Pend = 1.07 · 10−11 cm/s and the reflection coefficients are
σd,end = 0.996 and σf,end = 0.997.

Example 7.2.4 (Internal elastic lamina) The average radius of the fen-
estral pores of the IEL is 0.15μm [278] and their average density is 2210/mm2
[235].The resulting hydraulic conductivity isLp,IEL = 3.05·10−9 cm3/(s · dyne).
For LDL the permeability is PIEL = 1.59 · 10−7 cm/s and the reflection coef-
ficients are σd,IEL = 1.99 · 10−2 and σf,IEL = 1.93 · 10−2.

7.2.2 Electrical analogy

Although the idea of applying an electrical analogy to set up reduced models
for transport phenomena, including fluid flows, will be introduced in Chapter
10, we address here for the first time its application to mass transfer, more
precisely to convection and diffusion processes.
The models to calculate the transport parameters described in the previ-

ous section are based on the assumption that the transport of the considered
molecules occurs only in the fluid phase of the different layers. The transcellu-
lar transport, representing an essential part of the complete solid dynamics for
very large molecules [355], cannot be considered in this kind of models. There-
fore the help of experimental measurements is needed to make the theoretical
estimations successful in the specific applications.
In this section a short overview of a methodology is presented that allows

to estimate the physical parameters of the wall layers starting from a set of
data that can be easily determined by experimental measurements like LDL
concentration profiles in the arterial wall (see [49, 129, 326, 492]). A simpli-
fied problem is used to define the relationship between the set of physical
parameters characterizing the wall (formally denoted with the vector p) and
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the concentration profiles of LDL the wall (described as a collection of con-
centration samples stored in the vector c). The mathematical relationship
between p and c will be denoted with c = F (p). We search for an analytical
expression of F , which could be easily inverted leading to an explicit solution
of the inverse problem p = F−1(c). For this reason, an electrical analogy is
applied to describe the mass transfer phenomena through the arterial walls.
The derivation of the electrical analogy and its application to the transport
through the wall layers is described in detail in [397].

Fluid dynamics

The electrical analog of the arterial wall with respect to fluid dynamics can be
represented as a sequence of four resistances in series, corresponding to each
single layer constituting the wall, as shown in Fig. 7.4.
The electrical representation of each layer is derived by a simplification

of the governing equations for the fluid dynamics (first Kedem-Katchalsky
equation and Darcy’s law). The pressure drop is the driving force resulting in
a volume flux representing the flux of the electrical analogy.
Using the transport parameters obtained from pore theory results in a

filtration velocity of Jv = 4.25 · 10−7 cm/s by applying a pressure drop of
70mmHg. This value does not correspond to the measurements reported in
[326]. Therefore the electric analog is used to rescale the parameters from
pore theory to obtain the measured flux of Jv = u · n = 1.78 · 10−6 cm/s.
The updated transport parameters for the fluid dynamics are Lp,end = 1.20 ·
10−10 cm3/(s · dyne), KD,i = 3.64 · 10−12 cm2/(s · dyne), Lp,IEL = 1.28 ·
10−8 cm3/(s · dyne) and KD,m = 3.24 · 1015 cm3/(s · dyne).

Dynamics of chemicals

The simplification of the equations describing the solid dynamics in mem-
branes and porous media (second Kedem-Katchalsky and advection-diffusion-
reaction equation) ends up with an electrical analogy of two parallel resis-
tances for each layer. These resistances represent the convective and the dif-
fusive solid transport.
The electrical analog of the system featuring the different wall layers with

respect to the transfer of molecules is represented in Fig. 7.5. The first two

Fig. 7.4. Electrical analog-on for the plasma filtration inside the arterial wall



262 Karl Perktold, Martin Prosi, and Paolo Zunino

Fig. 7.5. Electrical analogon for the dynamics of chemicals of the arterial wall

modules represent the endothelium and the IEL, the remaining ones represent
the media. Since the media is the thickest layer it is split in two parts, as this
makes easier to take into account of the degradation of solute due to chemical
reactions. Furthermore, physical experience suggests that the intima is the less
resistant layer to diffusion transport. Consequently, to simplify our model, it
is assumed that the concentration drop across the intima is negligible.
By fixing the value of the parameters that are experimentally determined

with reasonable accuracy, precisely the wall thickness L = 200μm, the solute
diffusivity inside the media, Dm = 8 · 10−9, and the porosity of the media,
εm = 0.15 we are able to cacluate the missing set of parameters starting from
a number of experimentally measured concentration values. For instance we
consider c̄+m = 10

−2, c̄m = 2.5·10−3, c̄−m = 10−2, given by [326]. The concentra-
tion in the intima is considered as unknown that will be determined by means
of the equation arising from the electrical analogy. A detailed description of
the complete procedure can be found in [397]. As a result of that, we determine
the missing set of transport parameters that are given by Pend = 2·10−8 cm/s,
PIEL = 3.18 · 10−4 cm/s, σend = 0.998, σIEL = 0.983, γi = 0.17, γm = 0.117
and rm = 3.197 · 10−4 s−1.

7.3 Computer simulation

This section is devoted to the numerical approximation of the mathemati-
cal models which have been introduced in Section 7.1. First of all, we point
out that a self contained treatment of the topics involved in the numerical
approximation of partial differential equations would be rather extensive and
complex, and consequently it goes beyond the scope of this chapter and of
this book. For this reason, the aim of this section is to provide a survey on
numerical approximation of PDEs and computational fluid dynamics that is
specifically adapted to the problems involved on the mass transfer in the car-
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diovascular system. We will enter into details only for those topics that are
peculiar to this matter. Furthermore, we will provide at first an overview and
the main references to build up the numercal discretisation of the multilayer
model. Then, we will consider a simplified model where the arterial walls are
assumed to be an homogeneous layer. In this context, we will address those
topics that are peculiar to the treatment of mass transfer in the arterial walls.
As already seen, the multilayer model involves the coupling of the flow

equations for blood and plasma, with an advection-diffusion-reaction problem
(see Problems 7.1.1 and 7.1.2 respectively). In these models, the advection-
diffusion-reaction equations depend on the fluid dynamics through the advec-
tive field. Hence the fluid dynamics problem is solved at a first step, and then
we solve the advection-diffusion-reaction problem.
For the space discretisation of the space-dependent partial differential

operators, we apply the finite element method. In particular, for what con-
cerns the Navier–Stokes equations, in order to satisfy the compatibility inf-
sup condition, we have adopted a linear approximation based on the so-called
P1isoP2 − P1 element, while the backward Euler time discretisation has been
coupled with a semi-implicit treatment of the nonlinear term. Finally, a split-
ting of the velocity and pressure problem based on the so-calledYosida method
is carried out. For more details about these techniques, the interested reader
is referred to [404,405,407].
For the discretisation of the Darcy problem we consider a mixed-hybrid

finite element formulation based on Raviart-Thomas elements, for which we
refer to [79]. By means of this method we approximate ui, pi and um, pm by
means of RT0 − P0 elements. Then, the discrete velocities are projected by
means of the standard L2 inner product on the space of vector valued linear
finite elements in order to be more easily exploited in the discretisation of the
solute dynamics problem.
Concerning the advection-diffusion equations, we observe that the mul-

tilayer problem is characterised by very low diffusivity coefficients. In other
terms, this problem is dominated by the advection effects. Indeed, if h denotes
the space discretisation step (which in our simulations is in the range of
10−2cm), |u| is a representative value of the blood velocity, for instance equal
to 10cm/s, and the diffusivity of LDL is about D = 10−7cm2/s, we have an
indicative value of the local Péclet number, Pe = h|u|D−1, (which weighs
the convection effects with respect to the diffusive ones) of 106. As it is well
known, finite element techniques (and in general Galerkin methods) could be
inaccurate when facing convection dominated problems and resorting to a sta-
bilisation technique becomes mandatory. Different strategies can be pursued
in this regard: the interested reader is referred to [236] and [407]. In our sim-
ulations, streamline-upwind/Petrov–Galerkin (SUPG) has been successfully
adopted and will be addressed later on.
A further difficulty is related to the fact that we consider phenomena that

take place both into blood and into the arterial tissues. By consequence, from
the point of view of either fluid dynamics or solute dynamics, we notice that
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the multilayer problem, as well as its simplified variants, can not be refor-
mulated as problems governed by a unique differential operator on a single
domain. For this reason, we focus our attention on iterative substructuring
methods to split the multilayer problem into subproblems. For the treatment of
this topic, we will focus on the solute dynamics model, namely Problem 7.1.2,
which consists mainly in a system of advection-diffusion equations on adjacent
domains coupled by suitable matching conditions. A general theory, discussed
for instance by Quarteroni and Valli in [408], is available for this matter in the
case of linear symmetric problems, for example diffusion dominated processes,
but the presence of a non negligible advection term makes the multilayer
problem to be governed by strongly unsymmetric operators. Furthermore, the
specific matching conditions that we apply between blood and the arterial
walls are definitely non-standard and in particular they are nonlinear. Conse-
quently, the general framework of [408] does not apply to our case. Thus, in
this section we will discuss in detail the convergence properties of the iterative
substructuring methods suitable for the multilayer problem.

7.3.1 Numerical approximation of the solute dynamics

As already mentioned, in order to concentrate on the main ideas and to sim-
plify at most the notation and the technical aspects of this subject, we do
not consider here the complete multilayer problem 7.1.2. Instead of the mul-
tilayer model we consider an instance of the fluid-wall models, where the
complex heterogeneous structure of the arterial walls is approximated by a
simple homogeneous layer. Such model, proposed in [137, 138] to study the
concentration of oxygen and LDL within the arterial walls, reads as follows:

Problem 7.3.1 Find the concentrations cl, defined on Ωl × [0, T ], and cw,
defined on Ωw × [0, T ], such that

∂cl

∂t
+ div(−Dl∇cl + ulcl) = fl, in Ωl, t > 0

cl = cl,in on Γl,in, t > 0

Dl∇cl · nl = 0 on Γl,out, t > 0

cl(0) = cl,0 in Ωl, t = 0,

(7.22)

∂cw

∂t
− div(Dw∇cw) = fw in Ωw, t > 0

cw = cw,ext on Γw,ext, t > 0

Dw∇cw · nw = 0, on Γw,in ∪ Γw,out, t > 0,

cw(0) = cw,0 in Ωw, t = 0,

(7.23)
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with the following matching conditions at the interface,

Dw∇cw · nw = −Dl∇cl · nl on Γ, t > 0, (7.24)

−Dl∇cl ·nl = P(cl − cw) on Γ, t > 0, (7.25)

where the notation of Section 7.1 has been mantained.
In order to define the numerical discretisation of Problem 7.3.1 we intro-

duce Th,l, Th,w admissible triangulations of Ωl, Ωw respectively. Moreover, we
assume that Th,l, Th,w are conforming triangulations on Γ . In other words we
require that Th = Th,l∪Th,w is an admissible triangulation for Ωl∪Ωw. Then,
we are in position to define the finite element spaces,

Vh,l ={vh,l ∈ C0(Ωl) | vh,l ∈ Pk, ∀K ∈ Th,l, vh,l |Γl,in = 0}
Vh,w ={vh,w ∈ C0(Ωw) | vh,w ∈ Pk, ∀K ∈ Th,w, vh,w|Γw,ext, vh,m|Γadv = 0}.

Moreover, let Λh be the finite dimensional space defined by the traces on Γ of
functions in Vh,l or Vh,w . To introduce the time discretisation we subdivide the
time interval [0, T ] in N time steps tn = nΔt with Δt > 0 and n = 1, . . . , N ,
and use backward Euler finite difference schemes. In order to simplify our
notation, let us introduce the following time discrete bilinear forms,

anl (w, v) =
1

Δt
(w, v) + (Dl∇w,∇v) +

(
unh,l ·∇w, v

)
, (7.26)

anw (w, v) =
1

Δt
(w, v) + (Dw∇w,∇v) , (7.27)

and the corresponding right hand side terms, Fn−1λ = fλ+
1
Δtc

n−1
λ for λ = l, w.

The fully discrete counterpart of the fluid-wall model reads as follows:

Problem 7.3.2 For all n = 1, . . . , N , given [c0h,l, c
0
h,w] ∈ Vh,l × Vh,w , find

cnh,l ∈ Vl, cnh,w ∈ Vh,w such that

anl
(
cnh,l, vh,l

)
+
(
cnh,l, vh,l

)
P =

(
cnh,w, vh,l

)
P +

(
Fn−1l , vh,l

)
∀vh,l ∈ Vh,l

anw
(
cnh,w , vh,w

)
+
(
cnh,w, vh,w

)
P =

(
cnh,l, vh,w

)
P +

(
Fn−1w , vh,w

)
∀vh,w ∈ Vh,w.

(7.28)

Let us now introduce the algebraic counterpart of Problem 7.3.2. To this
aim, let us denote with cnλ ∈ RNλ , λ = l, w the vectors of the degrees of freedom
of the discrete approximation of the concentration on Th,λ. The application
of Lagrangian finite elements leads to systems of algebraic equations for the
unknowns cnλ. More precisely, at every time step t

n, Problem 7.3.2 leads to
the system of linear equations,

Ancn = bn ⇔
[
Anll A

n
lw

Anwl A
n
ww

]
·
[
cnl
cnw

]
=

[
bnl
bnw

]
(7.29)
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Denoting with {ψi,l}, i = 1, . . . , Nl and {ψi,w}, i = 1, . . . , Nw the set of
linear finite element shape functions of Vh,l, Vh,w respectively, the matrices
Anll, A

n
lw, A

n
wl, A

n
ww are defined as follows.

[Anll]i,j = anl (ψj,l, ψi,l) + (ψj,l, ψi,l)P i = 1, . . . , Nl, j = 1, . . . , Nl,

[Anlw]i,j =− (ψj,w, ψi,l)P i = 1, . . . , Nl, j = 1, . . . , Nw,

[Anwl]i,j =− (ψj,l, ψi,w)P i = 1, . . . , Nw, j = 1, . . . , Nl,

[Anww]i,j = anw (ψj,w, ψi,w) + (ψj,w, ψi,w)P i = 1, . . . , Nw, j = 1, . . . , Nw.

Moreover, the right hand sides bnl ,b
n
w are given by, [b

n
λ]i =

(
Fn−1λ , ψλ,i

)
with

i = 1, . . . , Nλ, λ = l, w. The obvious strategy to solve system (7.29) consists of
applying either direct or iterative methods to the global problem Ancn = bn.
An approach more specific to our case consists of splitting (7.29) into sub-
systems associated to the finite element discretisation on Th,l, Th,w separately.
The latter strategy seems more attractive, because it makes easier to handle a
discontinuous concentration across the interface. Indeed, in the finite element
framework, the concentration on the nodes laying on Γ has two different val-
ues, one associated to the lumen and one to the wall. Moreover, as we will see
later, the analysis of iterative techniques to split Problems 7.3.2, suggests the
way to build efficient preconditioners for the global system Ancn = bn. The
splitting technique gives even more advantages in the nonlinear case. In fact,
an explicit treatment of the nonlinear term, allows us to reduce the solution
of the multilayer problem to a sequence of linear subproblems.

7.3.2 Iterative substructuring methods for the solute dynamics

Since all the relevant equations deal only with unknowns evaluated at the
time step tn, for notational convenience from now on, we drop the index n.
The time index will be explicitly indicated only when referring to a time step
different than tn. Moreover, since the results presented in this section hold
true also in the infinite dimensional case with respect to space dependence,
we drop the index h denoting the space discrete functions.
To split Problem 7.3.2 into subproblems, we introduce an iterative proce-

dure where the concentration at the wall, in the advection diffusion equation
in the lumen, is evaluated at the previous iterative step. This leads to the
following iterative procedure:

1
Δt c

k
l + div(−Dl∇ckl + ulckl ) = fl + 1

Δtc
n−1
l in Ωl,

ckl = cD,l, on ΓD,l,

∇ckl · nl = 0 on ΓN,l,
−Dl∇ckl · nl = P(ckl − ck−1w ), on Γ,
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1
Δt c

k
w + div(−Dw∇ckw + uwckw) = fw + 1

Δt c
n−1
w in Ωw,

ckw = cD,w, on ΓD,w,

∇ckw · nw = 0 on ΓN,w,
−Dw∇ckw · nw = P(ckw − ckl ), on Γ.

Reinterpreting this iterative method in the variational form, we obtain the
following problem.

Problem 7.3.3 For all n = 1, . . . , N , given an initial guess c0w and a tolerance
ε, for k = 1, 2, . . . find a sequence [ckl , c

k
w] such that,

anl
(
ckl , vl

)
+
(
ckl , vl

)
P = 〈F

n−1
l , vl〉+

(
ck−1w , vl

)
P ∀vl ∈ Vl

anw
(
ckw, vw

)
+
(
ckw, vw

)
P = 〈F

n−1
w , vw〉+

(
ckl , vw

)
P ∀vw ∈ Vw,

(7.30)

until the stopping criterion,

‖ckl − ck−1l ‖0
‖ckl ‖0

+
‖ckw − ck−1w ‖0

‖ckw‖0
< ε (7.31)

is satisfied.

Of course the stopping criterion can be modified. Such method is often referred
as Robin-Robin iterative method, because the interaction between the subdo-
mains is achieved by Robin matching conditions.
At this stage, the issue of major importance is to understand whether

the iterative method presented in Problem 7.3.3 is convergent, or in other
words to prove that the sequence [ckl , c

k
w] converges in a suitable norm to the

solution of Problem 7.3.2. Because of the lack of continuity between cl and
cw at the interface Γ , the analysis of convergence for this splitting method
does not straightforwardly follows from available convergence results, namely
the Dirichlet-Neumann, the Neumann-Neumann or the Robin-Robin methods
arising from domain decomposition techniques, for which we refer to [408]. We
need thus to develop a specific analysis. First of all we introduce the splitting
error, namely

en,kh,l = c
n
h,l − cn,kh,l , en,kh,w = c

n
h,w − cn,kh,w

where [cnh,l, c
n
h,w] is the solution of problem 7.3.2. As stated before, in the

sequel we will use the abridged notation ekl , e
k
w. Now, if we subtract equations

(7.30) from (7.28), we obtain the following equations for [ekl , e
k
w], that we call

the splitting error equations,

anl
(
ekl , vl

)
+
(
ekl , vl

)
P =

(
ek−1w , vl

)
P ∀vl ∈ Vl (7.32)

anw
(
ekw, vw

)
+
(
ekw , vw

)
P =

(
ekl , vw

)
P ∀vw ∈ Vw. (7.33)

We resume the convergence property of Problem 7.3.3 in the theorem below.
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Property 7.3.1 The iterative method defined in problem 7.3.3 is convergent
(for both the Galerkin and the stabilised SUPG or GaLS discretisations). More
precisely we have limk→∞ ‖ekl ‖1+‖ekw‖1 = 0. The convergence rate may depend
on the physical data but not on the mesh size h.

Remark 7.3.1 (Advanced topics) In the framework of the mathematical
analysis of iterative substructuring methods, a more advanced approach con-
sists in rewriting the the fluid-wall problem for an unknown living on the inter-
face between the lumen and the wall. In this case, special Steklov-Poincaré
operators, see [408] and [410], are necessary to consider the non standard
Robin-Robin matching conditions. This reinterpretation leads to a detailed
characterisation of the convergence properties of the iterative scheme of Prob-
lem 7.3.3, where a parameter that accelerates the convergence is introduced.
This study, which is addressed in detail in [410], also suggests that the scheme
of Problem 7.3.3 can be seen as an optimal preconditioner for the original
coupled Problem 7.3.2. This observation give rise to the discussion of efficient
computational techniques to solve the fluid-wall problem. In particular, the
application of the flexible preconditioned GMRES method, proposed by Saad
in [439] leads to a very efficient numerical scheme for the problems at hand.
Furthermore, the introduction of mesh adaptive techniques would be an

extremely useful goal useful goal to approximate accurately the mass trans-
fer from the blood to the arterial walls. Some preliminary applications of
anisotropic mesh adaptivity techniques to these problems have been presented
in [161].

7.4 Numerical results and discussion

In this section we apply the models and methods developped so far to two
study cases. To this aim we apply a common paradigm. First of all we intro-
duce the geometrical model and then we discuss the lumeanl and transmural
transport processes. In the first study we will analyse the effect of disturbed
flow patterns (flow separation, stagnation and recirculation) inside an axisy-
metric stenosed artery, while in the second case we consider a realistic 3D
bifurcation. These results are discussed with further details in [395].
In the case of the stenosed axisymetric arterial segment we will focus our

attention on the influence of local flow recirculation and separation down-
stream the stenosis on the LDL transport. Additionally the impact of the
different wall models (fluid-wall model and multilayer model) on the concen-
tration distribution inside the wall will be addressed. Due to the low diffusivity
of the substances of interest (LDL) the lumenal transport is highly convec-
tion dominated and therefore strongly influenced by the flow patterns. The
water-permeable nature of the arterial wall and the related transmural plasma
filtration determine a local accumulation of LDL at the blood/wall interface.
In the case of the realistic human carotid bifurcation geometry only the

fluid-wall model is applied to simulate the coupled lumenal and transmural
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transport process. In this case the influence of the resulting complex inplane
flow patterns on the LDL transport will be discussed.
In both cases the blood flow in the arterial lumen has a mean veloc-

ity of U0 = 15.7 cm/s, the reference length (lumenal inflow diameter) is
L0 = 0.67cm. Blood is modelled as Newtonian fluid with the apparent vis-
cosity μ = 0.035 Poise and the constant fluid density ρ = 1.05 g/cm3 leading
to a Reynolds number Re = 300. The viscosity of plasma in the arterial wall
is μp = 0.7210

−2 cm2/s and a constant pressure drop of pl− padv = 70mmHg
across the arterial wall is assumed. The studies only focus on the stationary
flow because in the case of macromolecules (LDL) and constant transport
parameters of the wall layers the influence of pulsatility on the LDL distribu-
tion is very small.

7.4.1 LDL transport in a stenosed axisymetric artery

Geometrical model

The influence of flow separation onto the LDL transport processes is analysed
in a simplified geometrical model of an axisymetric stenosed arterial segment
(Fig. 7.6). The computational domain has a total length of 70L0, where L0 is
the arterial diameter. The length of the stenotic region is 1.5L0. The upstream
and downstream lengths with respect to the stenotic region are 18.75L0 and
49.75L0, respectively. The minimal section is equal to the 25% of the inflow
one. The thickness of the arterial wall in the fluid-wall model and of the media
in the multilayer model is 200μm (0.03L0). The thickness of the intima in the
multilayer wall case is 10μm (0.0015L0). The wall thickness is uniform along
the artery.
The finite element meshes consist of 50082 velocity/pressure elements for

the lumen, 14730 velocity/pressure elements for the wall (media) and addi-
tionally 4910 velocity/pressure elements for the discretisation of the intima in
the multilayer model. For the calculation of the concentration field each veloc-
ity/pressure element was subdivided into 16 concentration elements resulting
in 801312 elements in the lumen, 235680 elements in the wall (media) and
78560 concentration elements in the intima.

18 19 20
l/L0

L0/2
L0/4

Fig. 7.6. Geometrical model of the stenosed tube
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Fig. 7.7. Concentration contours near the stenosis

Lumenal LDL distribution

The development of lumenal surface concentration and the effect of flow sep-
aration on the local mass transfer to and into the wall in the downstream
region of the stenosis is demonstrated in Fig. 7.7. The figure shows LDL
accumulation near the tube wall. The equilibrium concentration at the fluid-
endothelium boundary is higher than the concentration in the bulk stream.
This polarisation effect at the surface occurs due to the plasma-permeability
of the wall. The figure displays the steep concentration gradient across the
separating streamline and a concentration increase of about one percent in
the separation region compared to the bulk concentration. At the wall region
directly downstream the stenosis a decrease of surface concentration polarisa-
tion can be observed.
The results of the mass transport study support the conclusion that the

filtration process at the wall causes a lumenal surface concentration of LDL
which is a dominant effect of mass transport processes including plasma-
permeable walls. Flow separation downstream the axisymmetric stenosis influ-
ences the concentration boundary layer resulting in a decrease of surface con-
centration. The equilibrium concentration at the lumenal surface depends on
the local convective transport near the surface in the lumen, on the filtration
velocity of plasma into the wall and on the diffusive processes of the molecules.

Transmural transport processes

Fig. 7.8 shows the normal velocity contours in the media (panel a) and the
velocity vectors in the media and in the intima (panel b) for the multilayer
model in the expanding region. The magnitude of the normal velocity is uni-
form and mainly determined by the pressure gradient across the arterial wall.
However, small but non negligible velocity gradients can be related to the geo-
metrical shape of the arterial wall. More precisely, due to the convex curvature
at l/L0 = 20 we observe a decreasing cross-sectional area in radial direction.
As a result of that, the wall velocity increases at the outer region of the arterial
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a

b

Fig. 7.8. Normal velocity contours in the media (panel a) and the velocity vectors in
the media and in the intima (panel b) for the multilayer wall model in the expanding
region

wall. On the other hand, because of the concave wall shape at l/L0 = 20.25,
the increasing cross-sectional area causes a decreasing wall velocity in radial
direction. However, we observe that the normal velocity at the endothelium
is only slightly affected by these geometrical properties and its value is about
Jv = 1.76 · 10−6 cm/s in the expansion region, in very good agreement with
the available measurements. The multilayer model also provides the flow field
in the intima. The pressure drop across this layer is very low compared to the
pressure drop across the whole arterial wall, while we observe high pressure
gradients in the expanding region of the lumen. As a result of this, a high
axial wall velocity occurs within the intima (Fig. 7.8 panel b). On the other
hand, in the media the dominating driving force is the pressure gradient in
the normal direction and consequently the axial flow is of minor importance.
These irregularities in the flow field across the arterial wall influence the

concentration distribution within the wall. Figure 7.9 display the concentra-
tion contours in the wall of the two different wall models at selected locations
in the expanding region of the stenosis. We observe that the perturbations
in the velocity field in the intima and the media affect the concentrations as
well. For example in the media, the concentration in the region of high filtra-
tion velocities is slightly higher than the average value, while it is lower than
the average in correspondence of low filtration velocities. This is also clearly
put into evidence by Fig. 7.10 that provides a quantitative comparison of the
profiles of cl, c

+
m, cm and c

−
m plotted along the axial coordinate.
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a1 b1

a2 b2

Fig. 7.9. Concentration contours provided by the fluid-wall model (bottom) and
the multilayer model (top). In the latter case, the presence of the intima is put into
evidence
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Fig. 7.10. Concentration values at the lumen-membrane boundary (panel a, left),
the membrane-wall boundary (panel b, left) provided by the fluid-wall model.
Concentration values at the lumen-endothelium boundary (panel a, right), the
endothelium-intima boundary ((panel b, right), solid line), the intima-IEL boundary
((panel b, right), dashed line), the IEL-media boundary (panel c, right) computed
with the multilayer model.
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Focusing on Fig. 7.10 it can be seen that the lumenal concentration at
the arterial wall is neither influenced by the concentration field in the arterial
wall nor by the different wall models. The concentration polarisation mainly
depends on the velocity field in the lumen. In particular, the polarisation
effect is negligible where the blood flow is attached to the wall and the axial
component is dominating. On the other hand, the filtration velocity normal
to the wall surface sensibly influence the concentration field in the regions of
blood recirculation where the axial flow next to the wall is highly reduced.
Indeed, the maximal polarisation occurs at the expanding region of the steno-
sis where the recirculation zone has the largest extent (Fig. 7.10 panel a, left,
and panel a, right). The behaviour of the wall concentration of the fluid-wall
model (Fig 7.10 panel b, left) is qualitatively similar to the one observed with
the multilayer model. However, the results provided by the two models differ
from the quantitative point of view. We analyse the total variation of con-
centration reported for both the fluid-wall model and the multilayer model in
Fig. 7.10 (on the left and on the right, respectively). We observe that for the
fluid-wall model the increase in the concentration level due to the bending
of the arterial wall results in about 0.26 · 10−3 that corresponds to 3% of
the average concentration value on the membrane-wall interface. Conversely,
for the multilayer model we obtain a similar profile but the increase in con-
centration in correspondence of the geometrical perturbation is equivalent to
0.8 · 10−3, namely 9.5% of the average concentration value. Consequently, we
point out that the two models react very differently to the geometrical pertur-
bation represented by the bending of the arterial wall. Indeed the ratio of the
aforementioned figures is of order 3. The larger variations in the multilayer
wall model can be explained by the additional presence of plasma filtration
with high axial components in the intima, that can not be captured by the
simpler fluid-wall model. In this examination the variations of concentration
in the wall layers are within a few percent, but this values might change under
different conditions (e.g. a damaged endothelium). Moreover, the peak in the
multilayer case is located downstream with respect to the fluid-wall case. This
could be explained by observing that in the multilayer model the axial veloc-
ity in the intima transports and accumulates molecules in the centre of the
expansion region (identified by 20 < x/L0 < 20.2, see Fig. 7.8).

7.4.2 LDL transport in realistic model of a 3D carotid artery
bifurcation

Geometrical model

An anatomically realistic computational model of a human carotid artery
bifurcation has been developed by K. Perktold and his research group at the
Graz University of Technology on the basis of an experimental lumenal cast
prepared and digitalised by D. Liepsch, FH Munich, see [250,379]. To develop
the computational model surface measured surface data were smoothed using



Fig. 7.11. Anatomically realistic computational model surface of the human carotid
artery bifurcation

weighted least squares B-splines. This surface corresponds to the lumen/wall
interface of the geometrical model. The arterial wall was created by the exten-
sion of the this surface in normal direction. A constant wall thickness of 200μm
(beside the region of the flow divider tip) was assumed (Fig. 7.11).
The finite element grid of the arterial lumen was generated applying a

mesh generator based on local optimisation of geometric properties such as
smoothness and orthogonality of the grid [380]. The finite element discretisa-
tion of the arterial wall was created by the extension of the lumenal grid at
the lumen/wall surface in normal direction. The discretisation employs eight
node isoparametric brick elements with tri-quadratic velocity and tri-linear
pressure approximation. The subdivision yields 49 536 brick elements for the
arterial lumen (resulting in 420 081 nodes for each velocity component and
55601 nodes for the pressure) and 76 272 brick elements for the arterial wall
(resulting in 656 265 nodes for each velocity component and 87832 nodes for
the pressure). For the solution of the mass transport problem each velocity ele-
ment is subdivided into 32 subelements. The approximation of the transport
problem applies tri-linear interpolation functions for the concentration result-
ing in 1 675 857 concentration nodes in the lumen and 2 537 587 concentration
nodes in the arterial wall.

Lumenal transport processes

To illustrate the influence of the arterial geometry on the lumenal convective
transport and the correlated LDL concentration distribution near the wall,
Fig. 7.12 displays the wall shear stress and the concentration distribution at
the interface lumen/membrane. The graphic demonstrates an accumulation
of macromolecules at the lumen side of the membrane (Fig. 7.12 panel b).
It is most pronounced in regions of low flow (indicated by low shear stress)
occurring in the bifurcation region. At the flow divider walls of the bifurcation
(high shear region) no accumulation of macromolecules occurs.
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a) b)

Fig. 7.12. Wall shear contours (panel a) and LDL concentration distribution (panel
b) at the lumen-membrane interface

Fig. 7.13 displays the lumenal LDL concentration distribution and the
inplane velocity component at different cross-sections in and downstream the
bifurcation region. Downstream near the bifurcation (cross-section B), two
symmetric vortices occur. This typical Dean flow is superposed further down-
stream by secondary motion caused by the nonplanarities of the vessel. It can
be seen that at the sites of stagnating inplane motion at the outer wall of
the vessel high polarisation occurs also downstream the bifurcation (level B,C
and D). This points out a strong correlation between concentration polari-
sation and inplane motion. Indeed the inplane motion can be interpreted as
additional convective effect which transports the accumulated macromolecules
back to the bulk flow and reduces the polarisation of LDL near the arterial
wall.

Transmural transport processes

The plasma flow field at the interface membrane/wall is shown in Fig. 7.14.
Due to the high pressure gradient across the wall (70mmHg) the velocity field
vectors are mainly oriented in normal direction (Fig. 7.14 panel a). The low
pressure drop along the vessel segment results in a small axial component of
the plasma field in the range of 10−8 cm/s. This axial component is about
100 times lower than the average value of the filtration velocity in normal
direction of 1.7610−6 cm/s. A 0.7% variation of the filtration velocity occurs
due to the non-constant pressure distribution at the lumenal side that results
from the superposition of hydrostatic and hydrodynamic pressure (Fig. 7.14
panel b).
Figure 7.15 shows the concentration profile across the wall at selected

points. The small variations of the plasma velocity field and the constant
transport parameters of the wall layers result in a relatively uniform con-
centration distribution of LDL in the arterial wall. The typically U-shaped



Fig. 7.13. Concentration contours of the LDL distribution and inplane motion
in the arterial lumen at selected cross-sections in and downstream the bifurcation
region
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Fig. 7.14. Plasma filtration velocity field in the arterial wall at the interface
membrane-wall, represented by means of vectors (a) and magnitude contours (b)
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Fig. 7.15. Concentration profiles of the LDL-distribution at selected locations
through the arterial wall

profiles are in good agreement with measured data of [49], [326] and suggest
that the estimation method proposed in [397] provide suitable values of the
transport parameters of the wall. Only small variation of LDL concentration
at the membrane/wall side occurs due to the increased convective and dif-
fusive transport in regions of high polarisation (point 3). This variation is
small compared to the changes of concentration in normal direction caused
by reaction of LDL with the wall tissue.

7.4.3 Numerical simulations of drug release from stents

A novel application of the mathematical models of mass transfer in the vas-
cular walls is promoted by the introduction of drug eluting stents for the
treatment of stenotic coronary arteries. Drug eluting stents (DES) are appar-
ently simple medical implanted devices used to restore blood flow perfusion
into stenotic arteries. Such structures are coated with a micro-film contain-
ing a drug that is locally released into the arterial walls for healing purposes.
However, the design of such devices is a very complex task, because their per-
formance in widening the arterial lumen and preventing further restenosis is
influenced by many factors such as the geometrical design of the stent, the
mechanical properties of the material and the chemical properties of the drug
that is released. All these topics are relevant for an effective stent design. In
this framework, numerical simulation techniques play a relevant role in under-
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standing what are the most appropriate choices for the optimal design of DES.
These topics will be addressed in detail in Chapter 12.

7.5 Conclusions

In this chapter we have proposed a possible way to set up suitable mathemat-
ical models with the aim to study the transfer of molecules, such as oxygen,
macromolecules or drugs, through the arterial walls. A few recipes for their
numerical discretisation have been considered. By means of these tools, we
have addressed several applications and discussed their results in order to put
into evidence the role of mass transfer in the physiological functions of the
vascular system.


