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The derivation of the equations for fluids and

structure

Miguel A. Fernández, Luca Formaggia, Jean-Frédéric Gerbeau, and
Alfio Quarteroni

In this chapter we derive the equations governing the mechanics of the fluid
(the blood) and the structure (the vessel wall). The derivation will be made
in a rigorous way, yet trying to provide the reader a physical understand-
ing. Reason of space obliged us to focus on the most important models for
haemodynamic computations and to omit several details and the proofs of
the propositions. For instance, all issues related to energy conservation princi-
ples have been ignored and we have eventually considered only incompressible
fluids.
The reader interested in a more in-depth analysis may refer to several

books on continuum mechanics available in the literature. We give here some,
non exhaustive, indications. Introductory general texts are [211,310] as well as
[221], which is more focused on solid mechanics. More mathematical oriented
texts are [92, 313], while a general introduction on non-linear mechanics is
found in [512]. For what concerns shell theory, of which we are here giving
just an outline, a rigorous mathematical introduction is found in [93,94], while
a text more oriented on the numerical aspects is [75]. As for fluid mechanics,
we mention [90].
The first part of the chapter is dedicated to the kinematics of continuum

media. Kinematics is the part of mechanics that describe the motion. It forms
the background enabling to derive the differential equations which “translate”
into mathematical terms some fundamental principles of physics. Namely,
mass and momentum balance. Up to this point there is no need to distinguish
between solids and fluids (and gases, for what matters).
It is only when we characterise how the medium reacts internally to an

exterior action that the behaviour of the two types of media diverge and we
are able to finalise the derivation of the mathematical models.
In haemodynamic applications often fluid and structure interact, for

instance when blood flows in a compliant vessel. This fact prompts the intro-
duction of a particular point of view: the so-called Arbitrary Lagrangian Eule-
rian formulation, which is particularly convenient for the numerical computa-
tion of this type of problems. Reduced models for the structure are often used
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in fluid/structure interaction computations to cut down on computational
complexity. They will be illustrated together with the general formulation of
the fluid-structure problem.
We will write the equations in the so called tensorial form, which is inde-

pendent of the particular coordinate system used. Whenever is needed we
will report the corresponding expression in terms of Cartesian components.
When dealing with shell models we will need to introduce a curvilinear system
of coordinates. We have tried to keep the notation as standard as possible,
avoiding too technical details, yet the reader may find in appendix 12.4.4 an
explanation of the main mathematical symbols used throughout the chapter.

3.1 The kinematics of continuum media

Let Ω̂ ⊂ R3 be a domain, that is a bounded, open and simply connected
subset of R3, with smooth boundary, filled by a continuum medium. We shall
refer to Ω̂ as the reference configuration of the medium under consideration.
A deformation of Ω̂ is a smooth one-to-one mapping

φ̂ : Ω̂ −→ Ω, x̂ −→ x = φ̂(x̂),

associating each point x̂ of Ω̂ to new position x = φ̂(x̂) in the current con-
figuration Ω ⊂ R3. The vector quantity

η̂(x̂) = φ̂(x̂)− x̂ (3.1)

is called displacement of the material point x̂. The local deformation is linked
to the deformation gradient , defined as

F̂ (x̂) =∇x̂φ̂. (3.2)

Here, the symbol∇x̂ indicates the gradient with respect to the x̂ = (x̂1, x̂2, x̂3)
coordinates. Sometimes we will omit the suffix when it is clear from the con-
text which coordinate system we are adopting. The deformation gradient is
a second order tensor field, therefore F̂ : Ω̂ → R3×3 being R3×3 the space of
three dimensional matrices. In Cartesian coordinates its value is given by the
3× 3 matrix of components1

F̂ij =
∂xi

∂x̂j
, i, j = 1, 2, 3.

We also assume that its determinant

Ĵ = det F̂ , (3.3)

1 In fact, to be a tensor the components have to satisfy certain rules with respect to
coordinate transformation, see any elementary book on tensor analysis like [47].
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Fig. 3.1. Local deformation of a material neighbourhood. An infinitesimal vector
dx̂ is deformed into dx

called the Jacobian of the deformation, is everywhere strictly positive. It
means that the mapping is orientation preserving .
The link between F̂ and the local deformation is made clear if we consider

two arbitrary points â and b̂ = â+ δ̂ of Ω̂, separated by the “small” vector δ̂
(refer to Fig. 3.1).

Let a = φ̂(â) and b = φ̂(b̂) be the corresponding points in Ω. The regu-

larity of the map φ̂ allows us to write b = a+δ = â+F̂ (â)δ̂+o(δ̂), where the
symbol o(h) stands for an infinitesimal of higher order than h for ||h|| → 0+,
being || · || the Euclidean norm. The length of δ = b− a is given by

||δ|| =
√
δT δ =

[
δ̂
T
F̂
T
(â)F̂ (â)δ̂

]1/2
+ o(||δ̂||).

This relation is often expressed in the form

||dx|| =
√
dx̂T F̂

T
F̂dx̂, (3.4)

and it gives the change of the length of the “infinitesimal vector” dx̂ due to the

deformation. The tensor Ĉ = F̂
T
F̂ is called the right Cauchy-Green tensor.

In the following we will often indicate by V̂ a subdomain of Ω̂ and by V

its image V = φ̂(V̂ ) = {x ∈ Ω : φ̂−1(x) ∈ V̂ }.
Then,

|V | =
∫
V

dx =

∫
̂V

Ĵ(x̂)dx̂ (3.5)

is themeasure of V (i.e. its volume). The Jacobian thus measures the variation
of volume due to the deformation.
To derive the equations of continuum mechanics we need to relate differ-

ential operators acting on the two configurations. For instance, by applying
the usual rules for the gradient of composite functions we have
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Proposition 3.1. Let f̂ : Ω̂ → R be a regular function and f : Ω → R

defined as f(x) = f̂(φ̂
−1
(x)); then

∇x̂f̂ = F̂∇f.
An important role in this context is played by the Piola transformation.

Let us refer to Fig. 3.2, where we display a generic volume V̂ ⊂ Ω̂ and its image
V , together with the corresponding normals to the boundary, indicated by n̂
and n, respectively. Let also assume that we have a sufficiently regular second
order tensor field σ : Ω −→ R3×3, defined on the deformed configuration.
The Piola transformation of σ associated to the given deformation φ̂ is

the second order tensor field Π̂ = P
̂φ
(σ) : Ω̂ → R3×3 given by

Π̂(x̂) = Ĵ(x̂)σ
(
φ̂(x̂)

)
F̂
−T
(x̂), (3.6)

for all x̂ ∈ Ω̂. Using a short hand notation we may write Π̂ = Ĵσ̂F̂−T .
The inverse Piola transformation of Π̂ returns the tensor σ(x) according

to

σ(x) = Ĵ−1
(
φ̂
−1
(x)
)
Π̂
(
φ̂
−1
(x)
)
F̂
T (
φ̂
−1
(x)
)
, (3.7)

or, more simply, σ = J−1Π̂F T .
The main property of the Piola transformation is given by the following

important formula (see [92] for a proof).

Proposition 3.2. Let σ be a regular tensor field in Ω and Π̂ its Piola trans-
formation, we have

divx̂Π̂ = J divσ, (3.8)

where divx̂ is the divergence with respect to the x̂ coordinates and the equality
has to be understood on corresponding points in Ω̂ and Ω, respectively.

As a result, by the application of the divergence theorem, we have∫
∂̂V

Π̂n̂ dγ̂ =

∫
∂V

σn dγ , (3.9)

whenever Π̂ and σ are related by (3.6). The use of this equality will be made
clear in the next sections.

Fig. 3.2. The transformation of a material volume under deformation
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It is also possible to derive the following relation for any scalar field f in
Ω and f̂ = f ◦ φ̂ ∫

∂V

fn dγ =

∫
∂̂V

f̂ ĴF̂
−T
n̂ dγ̂, (3.10)

where

dγ = Ĵ ||F̂−T n̂|| dγ̂ and n =
F̂
−T
n̂

||F̂−T n̂||
. (3.11)

The first relation in (3.11) is often called Nanson’s formula and relates the
measure of a surface element in the reference configuration to that of the
corresponding element in the current configuration. The second expression
relates the corresponding normals.

3.1.1 The motion

What we have shown so far is a static picture, to have motion we need to
bring the time into play. A motion is a smooth map

ϕ̂ : Ω̂ × R+ −→ R3, (x̂, t) −→ x = ϕ̂(x̂, t),

such that, at any t ≥ 0, ϕ̂t = ϕ̂(·, t) is a deformation. In other words, a
motion is one-parameter family of deformations, the parameter t being the
time. Without loss of generality we have assumed here that the motion starts
at t = 0 (initial time). The reference configuration Ω̂ is in principle arbitrary,

yet often it coincides with the initial configuration, i.e Ω̂ = Ω(0). When not
otherwise stated, we will implicitly make this assumption.
The point x = ϕ̂(x̂, t) is the position at time t of the material point (also

called material particle) identified by x̂, while Ω(t) = ϕ̂(Ω̂, t) denotes the
current configuration at time t.
In this context, the displacement is now also function of time, η̂(x̂, t) =

ϕ̂(x̂, t)− x̂ being the displacement at time t.
All the kinematic quantities defined in the previous section can be extended

to a motion. In particular, F̂ and Ĵ still indicate the deformation gradient
and Jacobian, respectively, yet are now function also of time. For instance,
F̂ (x̂, t) =∇x̂ϕ̂(x̂, t).
Given a subdomain V̂ ⊂ Ω̂, the set V (t) = {x ∈ Ω(t) : x = ϕ̂(x̂, t), x̂ ∈

V̂ } is formed by the same material particles as V̂ and is called a material
(sub)domain, or also material volume. Thanks to (3.5), if Ĵ is constant in

time (i.e ∂
̂J
∂t
= 0) the material subdomain does not change its measure during

motion.
The velocity is indeed a major kinematic quantity and is the time derivative

of the displacement:

û(x̂, t) =
∂

∂t
η̂(x̂, t) =

∂

∂t
ϕ̂(x̂, t), (3.12)
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the last equality is obtained by using the definition (3.1), now referred to
time t.

3.1.2 Lagrangian, Eulerian and ALE formulations

We can define all physical quantities alternatively on the reference or on the
current configuration, the choice being a matter of convenience. For instance
the field ρ̂ : Ω̂ × R+ → R+ indicates the density, i.e. ρ̂(x̂, t) is the density at
time t in the material point x̂. Yet, the invertibility of the mapping allows us
to refer the same quantity to the current configuration: for all t > 0

ρ(x, t) = ρ̂(ϕ̂−1t (x), t), x ∈ Ω(t),

is the density at the point x ∈ Ω(t) occupied by the material particle x̂ at
time t.
The interplay between these two “points of view” is crucial in continuum

mechanics. When we adopt (x̂, t) as independent variables we use a Lagrangian
formulation, while when we refer to the (x, t) pair we employ the Eulerian
formulation. In the Lagrangian formulation we focus on the material particle
x̂ and its evolution; in the Eulerian formulation we observe what happens at a
given point x in the physical space. When a field is expressed in the Eulerian
coordinates it is referred to as an Eulerian field , while a Lagrangian field , also
called material field , is a field expressed in Lagrangian coordinates.
We will adopt the same symbol for a given physical quantity. Yet, the

superscript ̂ will denote a Lagrangian field. To summarise, for a quantity q
we have

q̂(x̂, t) = q(x, t), with x = ϕ̂(x̂, t), x̂ ∈ Ω̂, t > 0. (3.13)

We will also make use of the composition operator: q̂(·, t) = q(·, t) ◦ ϕ̂t. Con-
versely,

q(x, t) = q̂(x̂, t), with x̂ = ϕ̂
−1
t (x), x ∈ Ω(t), t > 0, (3.14)

or, more simply, q(·, t) = q̂(·, t) ◦ ϕ̂−1t (see Fig. 3.3 and Fig. 3.4).
Therefore, the velocity u in the Eulerian frame is simply obtained by

mapping û in the current configuration, i.e.

u(x, t) = û(ϕ̂−1t (x), t), (x, t) ∈ Ω(t) ×R+. (3.15)

Sometimes it is useful to describe the displacement as an Eulerian field, obtain-
ing

η(x, t) = x− ϕ̂−1t (x). (3.16)

One formulation may be more convenient than the other, depending on the
context. Let us make this aspect more precise. As already illustrated in Chap-
ter 2 when we want to solve the differential equations governing the motion of
a fluid or a solid we need to identify the computational domain where we want
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Ω
Ω(t)

n

q(·, t)
q(·, t) = q(·, t) ◦ ϕ−1t

ϕt

ϕ−1t

Fig. 3.3. Eulerian description of a Lagrangian field

Ω
Ω(t)

n

q(·, t)
q(·, t) = q(·, t) ◦ ϕt

ϕt

Fig. 3.4. Lagrangian description of an Eulerian field

to solve the equations, on the boundary of which we need to provide suitable
boundary conditions. In a solid, where the displacements are often relatively
small, the computational domain is often taken to be Ω̂ and the Lagrangian
formulation is thus preferred. This situation is sketched in Fig. 3.5.
In a fluid the situation is rather different. The displacements are extremely

large and, moreover, usually irrelevant, since, as we will make clear in a later

Fig. 3.5. Lagrangian description of the motion of a solid. The differential problem
will be posed on ̂Ω, using a Lagrangian description
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Fig. 3.6. Example of velocity field in the same region at three time instants

section, for a fluid we are normally interested in the velocity field, like the one
in Fig. 3.6, or other related quantities, rather than the displacement itself.
Therefore, the computational domain is normally chosen as a fixed, open
bounded set Ω ⊂ R3 located where we are interested to compute the solu-
tion. No special requirements is made on Ω apart that is should be “filled
by the fluid”, that is Ω ⊂ Ω(t) for all times t we are observing the motion2,
see Fig. 3.7. The Eulerian framework is then here preferable. However, the
Lagrangian frame is still useful as a tool to formally derive the equations from
fundamental principles.
As already mentioned in Chapter 2, in many cases of practical interest in
haemodynamics, such as blood flowing in a compliant artery, the computa-
tional domain for the fluid cannot be fixed in time, as it has to follow the
displacements of the fluid-wall interface3. Yet, the Lagrangian frame is not of
help here, since certainly we do not wish to follow the evolution of the blood
particles as they circulate along the whole cardiovascular system! We usually
wish to compute the flow field in a domain confined in the area of interest,
yet following the movement of the wall interface, (see for instance Fig. 3.8).
The computational domain, which we will now indicate with ω(t), is nei-

ther fixed nor a material subdomain, since its evolution is not governed by
the fluid motion, but has to comply by that of the boundary ∂ω(t), which

2 For the sake of simplicity we have set as the time interval for our equations the
whole positive real line, yet in practical computations the time interval of interest
is obviously finite.

3 Special computational techniques, like the immersed boundary method [385], may
get around this fact, at the price of using more complex equations, see Chapter 9.
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Fig. 3.7. The computational domain Ω in the Eulerian formulation. It is a fixed
portion of space filled by the medium during its motion

is either given or the result of the coupling with a structural model. It is
then necessary to introduce another, intermediate, frame of reference, called
Arbitrary Lagrangian Eulerian (ALE).
We will show in Section 3.5 how it is possible to build from the evolution

of ∂ω(t) an auxiliary motion

Ã : ω̃ × R+ → R3 (x̃, t)→ x = Ã(x̃, t),

such that ω(t) = Ã(ω̃, t), for all t > 0, see Fig. 3.9. Here, ω̃ ⊂ R3 is a reference
(fixed) configuration, which in general (yet not necessarily) corresponds to the
initial position at t = 0, i.e. ω(0). Fig. 3.9 gives a sketch of the situation.
In the ALE formulation we have then the interplay of (at least) two

motions: the one of the medium under consideration and that of the compu-
tational domain. The former is governed by physical laws, the latter is rather
arbitrary, provided that the given law for the domain boundary movement be
respected.
Given an ALE field , that is a field defined in the ALE reference domain,

q̃ : ω̃ ×R+ −→ R, its Eulerian description is given by

q(x, t) = q̃(Ã−1t (x), t), ∀x ∈ ω(t), t > 0,

˜Ωf

˜At Ωf (t)

Fig. 3.8. The computational domain Ωf for the fluid in a compliant artery. It
deforms to follow the arterial wall movement, yet the axial position of its proximal
and distal boundary is kept fixed. Its evolution is described by the ALE map
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Fig. 3.9. The moving computational domain ω(t) and the ALE map. Here, for
generality, we show an arbitrary reference computational domain ω̃. Most of the
times, however, it is chosen to coincide with ω(0)

also indicated as q(·, t) = q̃(·, t) ◦ Ã−1t . Conversely,

q̃(x̃, t) = q(Ã(x̃, t), t), ∀x̃ ∈ ω̃, t > 0, (3.17)

or, equivalently q̃(·, t) = q(·, t) ◦ Ãt. Here we have taken the case of a scalar
field, yet the same rule applies to vector and tensor fields.
Analogously to what done before, we can define the computational domain

velocity , also called ALE velocity, as

w̃(x̃, t) =
∂Ã
∂t
(x̃, t), ∀x̃ ∈ ω̃, (3.18)

which can be mapped to the Eulerian frame by means of (3.17), in short hand

notation w(., t) = w̃(·, t) ◦ Ã−1t .
Remark 3.1.1 In general, w(x, t) = u(x, t). However, we can note two par-
ticular cases:

• w = 0: the computational domain is fixed as ω(t) = ω(0) for all times; we
recover the Eulerian formulation;

• w = u: the computational domain ω(t) is now a material domain; we
recover the Lagrangian formulation.

In analogy with what already done for the Lagrangian frame, we can define

the Jacobian of the ALE movement J̃
˜A = det

∂ ˜A
∂x̃ and with J˜A the correspond-

ing quantity in the current configuration, obtained by composition with the
inverse ALE map. Recasting the Euler expansion formula (3.26) to the ALE
mapping we obtain

∂J
˜A

∂t | ˜A
= J

˜A divw. (3.19)

For the sake of notation, we will follow the convention that if F = F (x, t)
then Ft indicates the function of the space variable only, defined as Ft(x) =
F (x, t), at any fixed time t.
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Eulerian, Lagrangian and ALE time-derivatives

We have already seen how to transform some space differential operators from
different configurations, once we know the deformation. To complete the pic-
ture, we need now to understand how to relate time derivatives in the different
formulations.
For a given scalar Eulerian field q (the discussion applies also to vector or

tensor fields), we define the Eulerian time-derivative as simply

∂q

∂t
(x, t), x ∈ Ω(t). (3.20)

In other words, we look at the rate of change of q at a fixed point x in the
physical space, where the current configuration lives. It is nothing else than
the classical partial derivative.
Let now q̂ be the Lagrangian description of q. We define the material

time-derivative
Dq

Dt
of q as

Dq

Dt
(·, t) = ∂q̂

∂t
(·, t) ◦ ϕ̂−1t . (3.21)

We can give a different interpretation of the material derivative, with a
more immediate physical meaning. Let us note that by recalling relation (3.13)
we may write that

∂

∂t
q̂(x̂, t) = lim

h→0
q̂(x̂, t+ h)− q̂(x̂, t)

h

= lim
h→0

q(ϕ̂(x̂, t+ h), t+ h)− q(ϕ̂(x̂, t), t)
h

=
d

d t
(ϕ̂(x̂, t), t).

Therefore, using (3.21),

D

Dt
q(x, t) =

d

d t
q(ϕ̂(x̂, t), t), with x = ϕ̂(x̂, t). (3.22)

The material derivative of q at (x, t) is thus the rate of variation in time of
q “experienced” by an observer which moves with the particle x̂ located at
time t in the point x.
Standard application of the chain rule for the composition of functions in

(3.22) yields the following result.

Proposition 3.3. For any given Eulerian field q, the following identity holds

Dq

Dt
= u ·∇q + ∂q

∂t
. (3.23)
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It follows that the Lagrangian derivative is made of two contributions. A
transport term u · ∇q accounting for variations of q due to changes in the
position of the particle and the standard Eulerian time derivative.
The same type of considerations may be extended to the ALE formulation.

In particular the ALE time-derivative
∂q

∂t | ˜A
of a field q may be defined in a

way analogous to the material derivative. In particular, for each x ∈ ω(t) and
t > 0 we have

∂q

∂t | ˜A
=
d

d t
q(Ã(x̃, t), t), with x = Ã(x̃, t). (3.24)

In other words, we look at the rate of change of q in a point that moves
with the computational domain. The importance of this relation emerges in
the context of the numerical discretisation. When computing numerically a
solution in a moving domain we are usually interested in the variation of
quantities collocated at the nodes of a computational mesh, and the latter
necessarily follows the evolution of the computational domain. In Fig. 3.10 we
show one node at two different times, namely xi(t) and xi(t+ δt), being i the
node index. If qi indicates the quantity of interest at the given node, its value
at the two different times, qi(t) and qi(t+ δt), have to be understood as

qi(t) = q(xi(t), t), qi(t+ δt) = q(xi(t+ δt), t+ δt).

As a result, their difference is related to the ALE time derivative, since

qi(t+ δt)− qi(t) = q(xi(t+ δt), t+ δt) − q(xi(t), t) =
∫ t+δt
t

∂q

∂t | ˜A
(xi, t) dt.

The use of the Eulerian time-derivative would be in this case troublesome,
because a fixed point x which at time t is inside a moving computational
domain may well have fallen outside at time t + δt! This remark points out
the advantage of using the ALE framework.
We can use the same arguments used to derive (3.23) to obtain the follow-

ing proposition.

Fig. 3.10. Example of a moving mesh
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Proposition 3.4. The following identity holds

∂

∂t | ˜A
q = w ·∇q + ∂q

∂t
. (3.25)

The transport term w · ∇q accounts for the variations of q caused by the
motion of the computational domain. It is clearly zero if the domain is fixed,
while it coincides with the transport term in the material derivative (3.23) if
w = u.

The Reynolds transport formula

An interesting property of the Jacobian is that its time derivative is linked to
the divergence of the velocity field.

Proposition 3.5. Let J denote the Jacobian (3.3) in the Eulerian frame. We
have the relation

D

Dt
J = J divu, (3.26)

sometimes called the Euler expansion formula. It allows to obtain the following
fundamental result.

Proposition 3.6 (Reynolds transport formula). Let V (t) be a material

domain, i.e. V (t) = {x : x = ϕ̂(x̂, t), x̂ ∈ V̂ }, and f a continuously differen-
tiable field. Then,

d

d t

∫
V (t)

f dx =

∫
V (t)

(
Df

Dt
+ f divu

)
dx =

∫
V (t)

(
∂f

∂t
+ div (fu)

)
dx.

(3.27)

When working with the ALE formulation it might be useful to consider
the Reynolds formula acting on the moving computational domain.

Proposition 3.7 (ALE transport formula). Let ω̃0 ⊂ ω̃ be a subdomain

in the ALE reference configuration and ω0(t) = {x : x = Ã(x̃, t), x̃ ∈ ω̃} its
image by the ALE map. Clearly ω0(t) is always contained in the computational
domain ω(t). We have that

d

d t

∫
ω0(t)

f dx =

∫
ω0(t)

(
∂

∂t | ˜A
f + f divw

)
dx =

∫
ω0(t)

(
∂f

∂t
+ div (fw)

)
dx ,

(3.28)
for any continuously differentiable field f. Here w indicates the domain veloc-
ity defined in (3.18).
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3.2 The equations of continuum mechanics

The basic equations of continuum mechanics provide some well known con-
servation principles in the form of differential problems.

3.2.1 Mass conservation

The mass of an arbitrary material domain V (t) at time t is given by∫
V (t)

ρdx, (3.29)

being ρ the density (or volume mass) of the continuum medium. The units of
measurement of density are [ρ] = kg/m3.
In classical mechanics the mass of a body does not change during the

motion, a principle known as the mass conservation. Therefore,

d

d t

∫
V (t)

ρdx = 0, (3.30)

holds true for any V (t) at any time. This is an integral statement, we want
to express it “point-wise”. To is aim, we use the Reynolds transport formula
(3.6) to obtain

d

d t

∫
V (t)

ρdx =

∫
V (t)

(
∂ρ

∂t
+ div(ρu)

)
dx,

by which, due to the arbitrariness of V (t), we get the following

Proposition 3.8 (Continuity equation). If ρ indicates the density of a
continuum medium, mass conservation implies that

∂ρ

∂t
+ div(ρu) = 0, in Ω(t), (3.31)

for all t > 0, that is

∂ρ

∂t
+

3∑
i=1

∂

∂xi
(ρui) = 0.

If the fluid has constant density then (3.31) implies the well known incom-
pressibility equation

divu = 0 in Ω(t), t > 0. (3.32)

On the other hand divu = 0 implies DJ
Dt
= 0, thanks to the Euler expan-

sion formula and the definition of material derivative. In turn, this is equivalent

to
d

d t
|V (t)| = 0 for any material domain V (t). That is, in a constant den-

sity fluid the volume of a material domain does not change during motion. In
haemodynamics applications, blood is usually considered a constant density
fluid. The continuity equation can be rewritten in the Lagrangian frame, we
will give more details when we deal with the dynamics of a solid.
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3.2.2 Conservation of momentum

The conservation of (linear) momentum is in fact the well known Newton’s
law. The rate of change of the momentum of a material domain V (t), given
by
∫
V (t)

ρu dx equals the resultant of the external forces acting on it, that is

d

d t

∫
V (t)

ρudx = F = F v + F s.

Referring to Fig. 3.11, the force F is the composition of two terms: a volume
force F v, and a surface force F s. The former acts on each particle of V (t)
(like the force of gravity) and is expressed as the integral of the density times
a specific force (i.e. force per unit of weight) f which has the dimension of an
acceleration, [f ] = m/s2.
The latter is instead responsible for the mutual interaction between the

material contained in V (t) and the exterior, through the boundary ∂V (t).
More precisely, F s is equal to the surface integral of the so called Cauchy
stress t, which has the dimension of force per unit area, [t] = N/m2, that is
F s =

∫
∂V (t) tdγ.

It was indeed Cauchy who also postulated that t can be computed by
applying to the normal n of ∂V (t) a symmetric second-order tensor4

σ : Ω(t)→ R3×3, called the Cauchy stress tensor , i.e.

t = σn on ∂V (t), componentwise ti =

3∑
j=1

σijnj. (3.33)

The momentum conservation law can then be expressed by the following
equation,

d

d t

∫
V (t)

ρu dx =

∫
V (t)

ρf dx+

∫
∂V (t)

σn dγ =

∫
V (t)

ρf dx+

∫
V (t)

divσdx,

(3.34)

Fig. 3.11. Forces acting on a material volume V (t)

4 The symmetry is in fact an implication of the conservation of angular momentum.
We will not pursue this issue here, the interested reader may refer to the given bib-
liography. Note that the Cauchy postulate implies that the dependence of t on the
geometry of ∂V (t) is only through its normal. This holds true in most situations.
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valid for all material domains V (t). To obtain the last equality we have used
the divergence theorem. Finally, by exploiting the Reynolds transport formula
(3.6) we obtain

Proposition 3.9 (Momentum conservation). Assume that (3.30) holds.
Then (3.34) is equivalent to

ρ
∂u

∂t
+ ρ(u ·∇)u − divσ = ρf , in Ω(t), t > 0. (3.35)

Componentwise, we have

ρ
∂ui

∂t
+ ρ

3∑
j=1

uj
∂ui

∂xj
− ρ

3∑
j=1

∂σij

∂xj
= fi, i = 1, 2, 3.

The equations may be written in conservation form as

∂(ρu)

∂t
+ div

(
ρu⊗ u− σ

)
= ρf , in Ω(t), t > 0, (3.36)

which componentwise reads

∂(ρui)

∂t
+

3∑
j=1

∂

∂xj

(
ρuiuj − σij

)
= ρfi, i = 1, 2, 3.

In contrast, (3.35) is generally said to be in quasi-linear form or sometimes
in the gradient form.

Remark 3.2.1 The transport term (u ·∇)u (or divu⊗u in the conservation
form), is a non-linear term. This aspect makes the analysis, as well as the
numerical solution more complex. Only in flow at very low Reynolds numbers
(≤ 10) the non-linear term may be neglected.

At each point of the boundary of a material domain V (t) the Cauchy
stress t can be decomposed into its components normal and tangential to the
surface, given respectively by

tn = t ·n = (σn) ·n, and tt = t− tnn. (3.37)

The latter is indeed a vector laying on the tangential plane and is called
the shear stress vector. Componentwise, it may be computed as

[tt]i =

3∑
j=1

σijnj −
3∑

k,j=1

σkjnjnkni, i = 1, . . .3.

It is an important parameter in haemodynamics since the endothelium cells
are very sensitive to the shear stress at the vessel walls. Let us note that
(σn)·n is a scalar quantity which may also be written asnTσn. In a Cartesian
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coordinate system it is readily computed as
∑3
i,j=1 σijninj. The equations

have been here written in Eulerian formulation.
In the case of a fixed computational domain Ω they can be used directly,

just replacing Ω(t) with Ω (we recall that Ω is a subset of Ω(t) for all t).
In the case of a moving domain it is preferable to use the ALE formulation.
To this aim it is sufficient to employ identity (3.25). If instead one wants to
use a full Lagrangian formulation it is necessary to transform also the space
differential operators, in order to write the equations on Ω̂ instead of Ω(t).
The Piola formula (3.8) can then become handy. We postpone these issues to
Section 3.3.2.

3.3 Fluids and solids

We need now to make precise how the Cauchy stress tensor is linked to the
kinematics. It is indeed at this point where the behaviour of solids and fluids
diverges.
As solids react to deformations, the Cauchy stress must depend on F̂ (or

on quantities which are directly related to F̂ ). The reference configuration
plays here an important role.
Fluids instead can adapt to a deformation, as a fluid can fill freely any

arbitrary shape. Yet it takes time to fill it. And oil takes more time than
water. It means that fluids react mechanically not to the deformation itself
but to its rate. More precisely, the relevant quantity is here the strain rate
tensor D defined in (2.2) of Chapter 2, and whose dimensions are [D] = s−1.
Componentwise, the strain rate reads

Dij =
1

2

(
∂ui
∂xj
+
∂uj
∂xi

)
, i, j = 1, . . .3.

In a fluid then σ is a function ofD, while it is independent of F̂ . A consequence
is that the reference configuration is a concept useful for the derivation of the
equations, yet it does not play any particular role for a fluid. Intermediate
behaviours, like that of visco-elastic fluids, for instance, are possible; they will
be addressed in detail in Chapter 6.
The relation between the Cauchy stress tensor σ and the kinematic quan-

tities is called constitutive relation, or constitutive law, and is a characteristic
of the type of material under consideration. To be physically correct, a con-
stitutive relation must obey certain rules, like the principle of material frame
indifference [512] which states that the relation should be invariant under a
change of frame of reference. More details may be found also in the literature
cited at the beginning of the chapter.
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3.3.1 The Navier Stokes equations for a constant density fluid

We consider here the case of a constant density incompressible Newtonian
fluid. As anticipated in Chapter 2, this is a limitation usually accepted for
blood flow in large arteries, and we have discussed its consequences already
in Section 3.2.1.
In a Newtonian incompressible fluid , the Cauchy stress tensor depends

linearly on the strain rate. More precisely, we have

σ = σ(u, P ) = −PI + 2μD(u) = −PI + μ(∇u+∇uT ), (3.38)

where P is the pressure, I is the identity matrix, μ is the dynamic viscosity
of the fluid and is a positive quantity.
The term 2μD(u) is the viscous stress component of the stress tensor. We

have that [P ] = N/m2 and [μ] = kg/ms.
The viscosity may vary, for example it may depend on the fluid tempera-

ture. The assumption of Newtonian fluid, however, implies that μ is indepen-
dent of kinematic quantities. Simple models for non-Newtonian fluids, often
used for blood flow simulations, express the viscosity as function of the strain
rate, that is μ = μ(D(u)). The treatment of such cases is considered in Chap-
ter 6 and will not be covered here.
We now recall that, if P is a scalar andΣ a tensor field, then the following

identity holds,
div(PΣ) =∇PΣ + PdivΣ,

and, therefore,
div(PI) =∇PI + PdivI =∇P.

The momentum equation(3.36) may then be written as

ρ
∂u

∂t
+ ρdiv(ρu ⊗ u) +∇P − div(μD(u)) = ρf . (3.39)

Since ρ is constant, it is sometimes convenient to introduce the kinematic
viscosity ν = μ/ρ, with [ν ] = m2/s, and write

∂u

∂t
+ div(u ⊗ u) +∇P − div[ν(∇u+∇uT )] = f , (3.40)

where P = P/ρ is a scaled pressure (with [P ] = m2/s2).
Under the additional hypothesis that ν is constant, the momentum equa-

tion may be further elaborated by considering that div∇u = Δu and
div∇uT =∇(divu) = 0, producing the alternative formulation

∂u

∂t
+ div(u⊗ u) +∇P − νΔu = f . (3.41)

However, for reasons that will appear clear in Chapter9, and have to do with
the different natural boundary conditions associated with the two formula-
tions, for fluid-structure interaction problems it is more convenient to use the
momentum equation in the form (3.39), even when the viscosity is constant.
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The Navier-Stokes equations in the Eulerian frame

The set of differential equations formed by the continuity equation and the
momentum equation in the form derived in the previous section provides the
Navier-Stokes equations for a constant density fluid.
They have been written in the Eulerian frame and if the computational

domain Ω is time-independent they can be recast as the following system of
equations for the unknowns velocity u and pressure P ,

ρ
∂u

∂t
+ ρ(u · ∇)u +∇P − 2div(μD(u)) = ρf ,

divu = 0,

(3.42)

for any t > 0 and in Ω. Alternatively, one may use the conservative form
(3.39).
Furthermore, we need to prescribe the initial status of the fluid velocity,

for instance
u(t = t0,x) = u0(x) x ∈ Ω. (3.43)

There is no initial condition for the pressure.
We have already introduced the issue of boundary conditions in Chapter 2.

We here recall the more classical boundary conditions which are mathemati-
cally compatible with the Navier Stokes equations, namely

1. Applied stresses (or Neumann boundary condition)

σ · n = −Pn+ 2μD(u) ·n = h on ΓN ⊂ ∂Ω, (3.44)

where ΓN is a measurable subset (possibly empty) of the whole boundary
∂Ω and h = h(x, t) a given vector defined on ΓN and (possibly) function
of time. This is a typical condition at distal boundaries, where often h =
Pextn, being = Pext a prescribed “external” pressure.

2. Prescribed velocity (or Dirichlet boundary condition).

u = g on ΓD,

where g : ΓD × R+ → R3 is a given function. Since divu = 0 in Ω, it
must be noted that if ΓD = ∂Ω then g must satisfy∫

∂Ω

g · n = 0, (3.45)

at any time. This condition is applied at the vessel wall interface and
usually also at the proximal boundaries.

Clearly for a proper boundary condition specification we must have ΓN ∪
ΓD = ∂Ω. Other boundary conditions are possible, they will be discussed
whenever appropriate.
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The conditions to apply are normally inspired by physical considerations.
For instance, for a viscous fluid (μ > 0) like the one we are considering here,
it is appropriate to impose the Dirichlet condition u = ∂

∂tη at a solid bound-
ary, being η the displacement of the boundary. In the case of a fixed wall the
condition is homogeneous and is also called no-slip condition. When dealing
with an artificial boundary the choice of appropriate conditions in the context
of haemodynamic problems is more delicate and should in any case guaran-
tee the well-posedness of the resulting differential problem. In particular, the
imposition of a Neumann condition in a distal section may cause instabilities
in the presence of flow reversal, since this condition is most appropriate in
outflow sections.
As mentioned, at distal sections (like Γ out in Fig. 2.1) one often imposes a

constant (possibly homogeneous) Neumann condition. Yet, this would indeed
simulate a discharge into a reservoir at constant pressure. A rather unphysical
situation for the case of a human vessel as it neglects the presence of the
remaining part of the circulatory system completely. In Chapter 11 we will
address this problem in more depth presenting some possible solutions.
After having computed the solution using the numerical scheme of choice,

we may wish to estimate the wall shear stresses using the second relation in
(3.37). In a Newtonian fluid the Cauchy stress at each point of the surface of
interest Γ may be computed from the flow field solution as

t = −Pn+ μ∂u
∂n
+ μ∇uTn. (3.46)

Here, ∂u
∂n
=∇un is the normal derivative of u. If the surface is flat then n is

constant on Γ and thus∇uTn =∇un, being un = u ·n the component of the
velocity normal to the surface. If in addition Γ is a fixed wall surface, then
u = 0 on Γ and thus∇uTn = 0. We will see in Chapter 9 how it is possible to
recover this quantity when adopting finite elements for the numerical solution.
The shear stress acting on the wall is readily obtained from t by using relation
(3.37). Note that the shear stress does not depend on the pressure term, since
it cancels out.

The Navier-Stokes equations in the ALE frame

When dealing with a moving computational domain ω(t) it is preferable to
use the Navier-Stokes equations in the ALE framework introduced in Sec-
tion 3.1.2. By using (3.25) on the momentum equation we derive that

ρ
∂u

∂t | ˜A
+ ρ[(u −w) ·∇]u+∇P − 2div(μD(u)) = ρf ,

divu = 0,

(3.47)

in ω(t). We may note that the introduction of the ALE time-derivative induces
a correction in the transport term by subtracting to the “transport velocity”
u the domain velocity w given by (3.18).
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A conservation form may be devised as well. Recalling (3.19) we have

J
˜A
∂u

∂t | ˜A
=

∂

∂t | ˜A
(J
˜Au)− J˜Audivw,

by which, with simple manipulations, we get the following conservation form
for the Navier-Stokes equations in the ALE frame,

J−1
˜A ρ

∂

∂t | ˜A
(J
˜Au) + div

(
ρu ⊗ (u−w)

)
+∇P − 2div(μD(u)) = ρf ,

divu = 0.

(3.48)

3.3.2 The equations for a solid

We describe now the motion of the structure in terms of its displacement field
η̂ with respect to a given material reference configuration Ω̂. Mapping back
the continuity equation in integral form (3.30) to the reference domain we
obtain

0 =
d

d t

∫
̂V

Ĵ ρ̂dx̂ =

∫
̂V

∂(Ĵ ρ̂)

∂t
dx̂.

From the arbitrariness of V̂ we derive the continuity equation in the Lagrangian
frame, namely

∂

∂t
ρ̂0 = 0, in Ω̂, t > 0, (3.49)

where we have set

ρ̂0 = Ĵ ρ̂. (3.50)

Note that for a constant density material (3.49) together with the definition

of reference domain, implies that Ĵ = 1 for all t ≥ 0.
The momentum equation in integral form (3.34) can also be rewritten in

the Lagrangian frame by mapping all integrals back on the reference domain
and using (3.12) to obtain

d

d t

∫
̂V

Ĵ ρ̂
∂η̂

∂t
dx̂−

∫
̂V

Ĵd̂ivσ dx̂ =

∫
̂V

Ĵ ρ̂f̂ dx̂.

Yet, (3.50) and (3.49) give

d

d t

∫
̂V

Ĵ ρ̂
∂η̂

∂t
dx̂ =

∫
̂V

ρ̂0
∂2η̂

∂t2
dx̂.

Thus, by considering the arbitrariness of V̂ we obtain the following differential
equation

ρ̂0
∂2η̂

∂t2
− Ĵd̂ivσ = ρ̂0f̂ , in Ω̂, t > 0.
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This form is still not satisfactory as d̂ivσ is in a “mixed form” because the
divergence is still taken with respect to x. We now use the Piola transform
and Proposition 3.2 to get

ρ̂0
∂2η̂

∂t2
− divx̂Π̂ = ρ̂0f̂ , in Ω̂, t > 0. (3.51)

The tensor Π̂ = Pϕ̂(σ) = Ĵσ̂F̂
−T
is called the first Piola-Kirchhoff tensor

and (3.51) is the momentum equation written in the Lagrangian frame. It is
also known as the equation of elastodynamics.

Unlike the Cauchy stress tensor σ, the first Piola-Kirchhoff tensor Π̂ is
non-symmetric. Since constitutive laws are often better expressed in terms of
symmetric stress tensors, it is natural to introduce the second Piola-Kirchhoff
tensor Σ̂

Σ̂ = F̂
−1
Π̂ = ĴF̂

−1
σ̂F̂

−T
(3.52)

which is symmetric.
For an elastic material the stress is a function of the deformation (and

possibly of thermodynamic variables such the temperature) but is independent
on the deformation history (and thus on time). The material characteristics
may still vary in space. In an homogeneous material the mechanical properties
do not vary with x. As a consequence the strain energy function depends only
on the deformation. A material is mechanically isotropic if its response to
deformation is the same in all directions.
The constitutive equation is usually written in terms of theGreen-Lagrange

strain tensor , defined as

Ê =
1

2

(
F̂
T
F̂ − I

)
, (3.53)

where I is the identity tensor. Componentwise,

Êij =
1

2

(
3∑
l=1

F̂liF̂lj − δij
)
,

being δij the Kronecker’s symbol. Applying (3.2) and (3.1) we have also

Ê =
1

2

(∇x̂η̂ +∇Tx̂ η̂)+ 12∇Tx̂ η̂∇x̂η̂, (3.54)

which componentwise reads Êij =
1
2

(
∂η̂i
∂x̂j
+
∂η̂j
∂x̂i

)
+
∑3
l=1

∂η̂l
∂x̂i

∂η̂l
∂x̂j
.

The tensor Ê is not affected by a superimposed rigid body motion, and
in particular by rigid rotations. Indeed, from a geometric point of view Ê is
directly related to the difference of the squared length of a elemental vector
dx̂ and its image: by recalling (3.4) we have that

1

2
(||dx||2 − ||dx̂||2) = dx̂T Êdx̂.
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Many constitutive laws can be devised for a solid. For a hyperelastic mate-
rial we first define a density of elastic energy W : R3×3 −→ R+, and then
set

Σ̂(Ê) =
∂W

∂Ê
(Ê). (3.55)

Componentwise, Σ̂ij =
∂W

∂ ̂Eij
, i, j = 1, 2, 3.

A simple example of energy density for a homogeneous isotropic mate-
rial whose reference configuration is the natural state5 is the Saint-Venant
Kirchhoff model, where

W (Ê) =
L1

2
(tr Ê)2 + L2 tr Ê

2
, (3.56)

which componentwise reads (by exploiting the symmetry of Ê)

W =
L1

2

(
3∑
i=1

Êii

)2
+ L2

3∑
i=1

3∑
j=1

Ê2ij.

Here, L1 and L2 denote the first and second Lamé coefficients
6. Correspond-

ingly, we have
Σ̂(Ê) = L1(tr Ê)I + 2L2Ê. (3.57)

This relation is often written componentwise in terms of a fourth order sym-
metric tensor, called the elasticity tensor, H = (Hijkl), defined by

Hijkl = L1δijδkl + L2 (δikδjl + δilδjk) , (3.58)

so that
Σ̂ij =

∑
1≤i,j≤3

HijklEkl, (3.59)

which is commonly known as (generalised) Hook’s law . In tensorial form it

reads Σ̂ = H : Ê.
Note the in fact the only components of H which are different from zero

are H1111 = H2222 = H3333 = L1 + 2L2 and Hstst = Hstts = L2, for s = t.
More complex constitutive relations for hyperelastic materials may be

found in [221], and in particular models specially tailored for biological tissues
and blood vessels are reported in [178] and [222].
Often an elastic material is characterised by its Young modulus E and

Poisson coefficient ξ. Indeed, these quantities are inferred from experiments
more directly than the Lamé coefficients. We have the following relations

E = L2
3L1 + 2L2
L1 + L2

, ξ =
1

2

L1

L1 + L2
, (3.60)

5 The natural state is a configuration where the Cauchy stress tensor is zero every-
where.

6 In the literature L1 and L2 are usually denoted by λ and μ, respectively. We have
used different symbols to avoid repetitions.
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and

L1 =
Eξ

(1− 2ξ)(1 + ξ) , L2 =
E

2(1 + ξ)
. (3.61)

Specific models for the arterial wall

A simple Saint-Venant Kirchhoff elasticity model can be adopted only when
one is not really interested in the details of the stress inside the arterial wall
but only on its effect of the Haemodynamics. The development of reduced
models detailed in Section 3.4 does indeed make use of this type of modelling.
However, in reality the internal structure of the wall of an arterial vessel is

rather complex, an account has been given in Chapter 1. The presence of dif-
ferent layers and of collagen fibres which activate when the strain has reached
a critical level makes a homogeneous isotropic models clearly inadequate for
a detailed analysis of stresses inside the arterial wall.
Furthermore, it is often assumed that biological tissues, and thus the wall

of a blood vessel, are incompressible. The case of an incompressible material
is rather special. Indeed the Saint-Venant Kirchhoff model in its original for-
mulation fails, since ξ = 1/2 in an incompressible material. The constitutive
relation has to take into account the incompressibility constraints, a general
account is given in [243, 558]. We here only mention that it is convenient to

factor the deformation gradient F̂ into his spherical and distortional part,

F̂ =
(
Ĵ1/3I

)
F̂
∗
,

and use this decomposition to define a modified strain measure Ê
∗
as

Ê
∗
=
1

2
(F̂
∗T
F̂
∗ − I) = 1

2
(Ĵ−2/3F̂

T
F̂ − I).

When the motion is incompressible Ĵ = 1 during the whole motion and indeed

in this case F̂ = F̂
T
and Ê = Ê

∗
. In general,

Ê
∗
= Ĵ−2/3Ê +

1

2
(Ĵ−2/3 − 1)I,

and thus
∂Ê

∗

∂Ê
= Ĵ−2/3

[
I − 1
3
F̂
T
F̂ ⊗

(
F̂
T
F̂
)−1]

.

where I is the fourth order identity tensor with components Iijkl = (δikδjl +
δilδjk)/2.
The elastic energy density may then be expressed as the sum of two terms,

W (Ê) = U(Ĵ) +W ∗(Ê
∗
),

where the dependence of Ê
∗
and Ĵ on Ê is understood. The first term rep-

resent the volumetric elastic energy, which is constant in an incompressible



3 The derivation of the equations for fluids and structure 101

material, the second term is associated to the volume preserving deformations.
Correspondingly, the second Piola Kirchhoff stress tensor becomes

Σ̂ =
∂U

∂Ê
+
∂W ∗

∂Ê
= P Ĵ(F̂

T
F̂ )−1 + Σ̂

∗
, (3.62)

and the Cauchy stress tensor

σ = PI + σ∗,

P being the pressure, while σ∗ and Σ̂
∗
are related by the inverse Piola trans-

formation.
Pressure in an incompressible material plays the role of the Lagrange mul-

tiplier that enforces the incompressibility constraint Ĵ = 1. It is a role iden-
tical to that played by the fluid pressure in an incompressible flow. As for
the distortional energy density W ∗, several expressions specifically targeted
to biological tissues are found in [23] and a critical review is available in [223].
The actual model to be adopted in practise may depend on the type of

investigation to be carried out. For instance, in physiological situations the
collagen fibres are not activated and the arterial wall behaves largely like an
isotropic hyperelastic material. A possible constitutive law in this case can be
derived from the model presented in [114], that is

W ∗ =
a

b

[
e
b
2 (I1−3) − 1

]
. (3.63)

Here, a and b are two parameters to be fitted by experiments and I1 indicates

the first invariant of the right Cauchy-Green tensor, which in terms of Ê
∗
is

defined as I1 = 2 tr(Ê
∗
) + 3.

However, if we are interested to study situations where the strains go
beyond the physiological range, like during balloon angioplasty, the hypothesis
of isotropic behaviour is not realistic. The collagen fibres in this case enter
into action, after a critical strain level. Since they are aligned principally along
two directions, they introduce a markedly anisotropy. In [223] a model was
proposed to account for this fact. The fibre directions are indicated by a1 and
a2, respectively, and are in general a function of x̂. Correspondingly we may
define the tensors A1 = a1 ⊗ a1 and A2 = a2 ⊗ a2. The energy density is
expressed as function of the modified right Cauchy green tensor C∗, which
is related to Ê

∗
by C∗ = 2Ê

∗
+ I . More precisely, the important variables

are the first invariant I1 = trC
∗, which we have already introduced, and

Ia1 = C
∗ : A1 and Ia2 = C

∗ : A2. The distortional energy density is then
expressed as W ∗ =W ∗

iso +W
∗
aniso, where

W ∗
iso =W

∗
iso(I1) =

c

2
(I1 − 3),

corresponds to a so-called neo-Hookean elestic model, and c > 0 is a suitable
parameter. While

W ∗
aniso =W

∗
aniso(Ia1 , Ia2) =

k1

2k2

[
ek2(Ia1−1)

2

+ ek2(Ia2−1)
2
]
.
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Here, k1 > 0 is a stress-like material parameter and k2 > 0 a dimensionless
parameter, both to be fitted by experiments. The dependance ofW ∗

aniso More
details may be found in the cited reference.
We anticipate that another important characteristics of arterial walls is

that they are normally in a pre-stressed state. We postpone the discussion on
this issue to Section 3.3.2.
Finally, viscoelastic behaviour may be relevant in muscular arteries (i.e.

arterioles) [180, 224]. Moreover, when undergoing major strains plasticity
effects should be taken into account as well [183]. These types of modelling
go beyond the scope of this book and will not be investigated any further.

Boundary conditions

Also in this case we have a second order system of partial differential equations
and we need to provide proper boundary conditions on ∂Ω̂. The two main
conditions are again:

• Dirichlet conditions. The displacements are imposed on part of the bound-
ary

η̂ = ĝ, on Γ̂D,

being ĝ a given function;
• Neumann conditions. Surface stresses are applied on a portion of the
boundary. Notice that often the given data are on the current configu-
ration, so they have to be recast to ∂Ω̂. For instance, we might want to
enforce

σn = h, on ΓN(t) ⊂ ∂Ω(t).

Using relations (3.9) and (3.11) we have

Π̂σn̂ = Ĵ ||F̂
−T
n̂||ĥ on Γ̂N , (3.64)

which is the relation which is needed in practise to enforce the Neumann
condition in the Lagrange frame.

Other conditions may be of interest for cardiovascular applications, for
instance non-reflecting boundary conditions. They are meant to minimise
the spurious reflections appearing when improper boundary conditions are
imposed on a computational domain which is in fact representing a small
portion of a larger body. For instance, an artery separated from the rest of
the circulatory system. This issue is rather complex and its treatment goes
beyond the scope of this chapter. Some considerations on special boundary
conditions for cardiovascular problems may be found in Chapter 11 in the
context of multiscale modelling.
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The linear elasticity from a pre-stressed configuration

The equations written so far are rather general. Yet, even if we employ a
linear relation between Σ̂ and Ê, like for instance (3.57), they give rise to a
non-linear problem in the displacement η̂, because of the presence of the defor-

mation gradient in the relation between Σ̂ and Π̂, as well as the quadratic
term in (3.54).
However, when both strains and displacements are small we may derive

a simpler, linear form of the equation. In haemodynamics, the hypothesis of
small displacements can be accepted in small arteries. Yet, it is sometimes used
also in larger vessels when deriving reduced models of structure dynamics,
since it is assumed that this approximation is of the same importance as the
others introduced by the model reduction process.
Yet, things are complicated by the fact that usually displacements may be

assumed to be small with respect to a configuration which is not a natural
one. Indeed, it has been observed that a vessel when extracted from its natural
site tends to shrink, and it opens up when cut longitudinally [177, 178]. This
is an indication that the Cauchy stresses in an in vivo artery are not zero
even when the artery is “at rest”. The presence of a circumferential pre-stress
may help in better equilibrating the stress state inside the arterial wall when
the vessel is subject to the intramural pressure. Therefore, to be correct the
linearisation procedure has to be carried out with respect to a pre-stressed
reference state.
Since hyperelastic constitutive equations are written assuming instead a

natural (i.e. zero stress) reference state, the problem is not straightforward.

We proceed then by assuming the existence of a natural configuration Ω̂0 from
which the actual reference configuration Ω̂ is displaced by η̂0 = η̂0(x̂0), being

x̂0 ∈ Ω̂0. The current configuration Ω(t) is then obtained as usual from Ω̂
by applying the displacement η̂, which is assumed small and to have small
gradients ∂η̂/∂x̂. The total displacement from the natural configuration is
η̂t = η̂0 + η̂, and in general it is not small (see Fig. 3.12). For the sake of
notation, here and in the following we will use the hat (̂) sign to indicate
quantities referred either to the natural or the pre-stressed configuration, the
ambiguity being resolved by the context.
The motion ofΩ(t) is the superposition of a time-independent deformation

from Ω̂0 to Ω̂ and the motion from Ω̂ to Ω(t). That is, a point x in the
current configuration is associated to a point x̂ in the natural configuration
by x = x̂ + η̂0 + η̂ = x̂ + η̂t. Finally, the Cauchy stress σ

0 in the reference
domain is self-equilibrating, i.e.

divx̂σ
0 = 0, in Ω̂. (3.65)

To get the linearised equations we will write the elastodynamics equations
with respect to Ω̂0 and then apply a linearisation procedure around the refer-
ence configuration Ω̂. We define the deformation gradient with respect to the
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natural state as F̂ 0(η) = I +∇x̂0η, being ∇x̂0η =
∂η

∂x̂0
, and F̂

0
= F̂ 0(η̂0)

its value at the reference configuration. Accordingly, we have

Ê0(η) =
1

2
(F̂
T

0 (η)F̂ 0(η)− I) =
1

2
(∇x̂0η +∇Tx̂0η) +

1

2
∇Tx̂0η∇x̂0η

and Ê
0
= Ê0(η̂0). We will consider a hyperelastic constitutive law given by

Σ̂0(ηt) =
∂W

∂Ê0
(Ê0(ηt)), (3.66)

being W a suitable energy function. The equations of elastodynamics written
with respect to the natural configuration then read

ρ̂0
∂2η̂t
∂t2

− divx̂0F̂ 0(η̂t)Σ̂0(η̂t) = ρ̂0f̂ , in Ω̂0, t > 0, (3.67)

where ρ̂0 is the density referred to the natural state configuration.
To linearize the differential operators in (3.67) around the reference config-

uration Ω̂ we introduce the symbol Dη̂0f(η) to indicate the Gateaux deriva-
tive in η̂0 and applied to η, being η a displacement field on Ω0 [92], i.e.

Dη̂0f(η̂) = limε→0
f(η̂0 + εη̂) − f(η̂0)

ε
.

We assume that the displacement are sufficiently regular to guarantee its
existence and continuity everywhere.
The most troublesome term in (3.67) is the one containing the divergence

operator, since we need to rewrite it with respect to the x̂ coordinates. To
this aim, we use the Piola transform (3.6) and property 3.2 to write

divx̂0F̂ 0Σ̂0 = Ĵ0divx̂

[
Ĵ−10

(
F̂ 0Σ̂0

)
F̂
0T
]
,

where F̂
0
and Ĵ0 = |F̂

0| are independent from η̂. Therefore,

Dη̂0

(
divx̂0F̂ 0Σ̂0

)
(η̂) = Ĵ0divx̂

[
Ĵ−10 Dη̂0(F̂ 0Σ̂0)(η̂)F̂

0T
]
.

By standard derivation rule and setting Σ̂
0
= Σ̂0(η̂0) we can write

Dη̂0 (F̂ 0Σ̂0)(η̂) = Dη̂0F̂ 0(η̂)Σ̂
0
+ F̂

0
Dη̂0Σ̂0(η̂). (3.68)

Since
Dη̂0 F̂ 0(η̂) =∇x̂0 η̂ =∇x̂η̂F̂

0
,

thanks to the inverse Piola transform and the relation between the Cauchy
and the second Piola-Kirchhoff stress tensor, we have

Ĵ−10 Dη̂0 F̂ 0(η̂)Σ̂
0
F̂
0T
= (∇x̂η̂)(Ĵ−10 F̂

0
Σ̂
0
F̂
0T
) =∇x̂η̂σ0.

Indeed, σ0 = Ĵ−10 F̂ 0Σ̂
0
F̂
0T
.
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Fig. 3.12. The reference and natural state configurations together with the current
configureation in dashed lines

The second term in (3.68) is elaborated further as

Dη̂0Σ̂0(η̂) =
∂2W

∂Ê
2 (Ê

0
)Dη̂0Ê0(η̂) = Ĥ :

(
F̂
0T
ε(η̂)F̂

0
)
,

where

Ĥ =
∂2W

∂Ê
2 (Ê0(η̂0)), componentwise Ĥijkl =

∂2W

∂ÊijÊkl
(Ê
0
), (3.69)

while

ε(η̂) =
1

2

(
∇x̂η̂ +∇Tx̂ η̂

)
(3.70)

is the well known linearised strain tensor.
Note that if we adopt the Saint-Venant Kirchhoff model (3.56) the com-

ponents of the elasticity tensor defined in (3.69) are exactly those given in
(3.58).

We now exploit the tensor identity Ĥ : (F̂
0T
εF̂
0
) = Ĥ : (F̂

0T
F̂
0T
) : ε,

which can be easily verified when written componentwise since

Ĥijkl(F̂
0
skεstF̂

0
tl) = (ĤijklF̂

0
skF̂

0
tl)εst

to finally write,

Ĵ−10 F̂
0
Dη̂0Σ̂0(η̂)F̂

0T
= Ĵ−10 F̂

0
[
Ĥ :

(
F̂
0T
F̂
0T
)
: ε(η̂)

]
F̂
0T
= Ĥ

p
: ε(η̂)

where

Ĥ
p
= Ĵ−10

(
F̂
0
F̂
0
)
: Ĥ :

(
F̂
0T
F̂
0T
)

(3.71)

is the linear elasticity fourth order tensor in the reference pre-stressed configu-
ration Ω̂. Componentwise, Ĥpijkl = Ĵ

−1
0 F̂ 0isF̂

0
jtĤstpqF̂

0
kpF̂

0
lq , where all repeated

indexes are implicitly summed from 1 to 3.
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We now recognise that ρ̂0/Ĵ0 is nothing else than ρ̂0, the density in the

reference configuration Ω̂. Using the expressions found so far and exploiting
(3.65), we are now able to write the linearised equations in the pre-stressed
state as

ρ̂0
∂2η̂

∂t2
− divx̂

[
∇x̂η̂ σ0 + Ĥp : ε(η̂)

]
= ρ̂0f̂ , in Ω̂, t > 0. (3.72)

We can make the following remarks:

• Whenever Ω̂ is a natural state σ0 = 0 and Ĥ
p
reduces to the standard

linear elasticity tensor H. System (3.72) becomes then the usual system
of equations of linear elastodynamics,

ρ̂0
∂2η̂

∂t2
− divx̂

(
H : ε(η̂)

)
= ρ̂0f̂ , (3.73)

where if we adopt (3.58) we have

H : ε(η̂) = L1(tr ε(η̂))I + 2L2ε(η̂). (3.74)

• Even if the material is homogeneous and isotropic with respect to the nat-
ural configuration, the same material in the pre-stressed configuration Ω̂ is
in general neither isotropic nor homogeneous. Indeed, these two properties
depend not only on the material internal structure but also on the chosen

reference state [92]. Homogeneity is retained whenever F̂
0
(and thus σ0)

is constant, while maintaining isotropy requires that F̂
0
= aI, for a non

negative scalar field a, and (consequently) that σ0 be proportional to the
identity tensor I.

• An interesting case is when the deformation gradient F̂
0
is diagonal and

the material complies with the Saint-Venant Kirchhoff model (3.58) (w.r.t.
the natural state). Then also σ0 is diagonal and it may be verified that

Ĥ
p
conforms to that of an orthotropic material with axis of symmetry

coinciding with the chosen coordinate axis.
Now, it is well known that the mechanical behaviour of the arterial wall
can be approximated as orthotropic [178]. The analysis carried out here
suggests that this behaviour can be caused not only by the particular
structure of the material composing a blood vessel, but also by its pre-
stressed state.

• Thanks to the symmetry of σ0 we have ∇x̂η̂σ0 = σ0ε(η̂) − σ0ω(η̂),
where ω(η̂) = 1

2(∇x̂η̂ −∇Tx̂ η̂) is the rotation tensor . It means that in a
pre-stressed state the material may react also to pure rotations.

The results reported in this section are consistent with the findings in
[23], where the authors considered an incompressible material and followed a
different linearisation procedure by writing the elasticity tensor on the current
configuration.
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It is worth to point out that the expressions derived in this section are not
relevant if one carries out a full non-linear analysis. However, even in this case
it is necessary to account of pre-stress. What is done in common practise is
to derive the pre-stress state from measurements of the opening angle and of
the shrinking (when such invasive experiments are not feasible one may refer
to reference data contained in the cited literature). How to introduce the
pre-stress in the actual computation may depend on the numerical technique
adopted.

Weak formulation of the equations of elastodynamics

We have introduced in Chapter 2 the weak formulation of a differential prob-
lem. We will here sketch that associated to (3.73). For the sake of simplicity

we consider a homogeneous Dirichlet condition, i.e we set ĝ = 0 on Γ̂D. Indeed
the non-homogeneous case may be reduced to an homogeneous problem by a
lifting technique [407] and more complex situations will be treated in Chap-
ter 9. If we consider the space of vector functions

V̂ = [H10(Ω̂)]
3 = {v̂ ∈ [H1(Ω̂)]3 : v̂ = 0 on Γ̂D},

following a route similar to that indicated in Chapter 2 we obtain the following
formulation:

For any t > 0 find η̂ = η̂(t) ∈ V̂ such that∫
̂Ω

ρ̂0
∂2η̂

∂t2
· v̂ + a(η̂, v̂) = F (v̂), ∀v̂ ∈ V̂ , (3.75)

where

a(η̂, v̂) =

∫
̂Ω

Π̂ : v̂dΩ, F (v̂) =

∫
̂Ω

f̂ · v̂dΩ +
∫
̂ΓN

ĥ · v̂ dγ̂.

Here, given two tensors A ad B, the symbol A : B indicates the scalar∑3
i,j=1AijBij.

Relation (3.75) is indeed a scalar equation. We can however recover three
equations for each component of η̂ by selecting v̂ = (v̂, 0, 0)T , v̂ = (0, v̂, 0)T

and v̂ = (0, 0, v̂)T , respectively, with v̂ ∈ H10(Ω̂).

3.4 Reduced structural models

As mentioned in Chapter 2, sometimes we can use reduced models for the
structure. This choice may reduce computational costs when we are inter-
ested in the effects of the structure mechanics on the fluid, rather than on an
accurate evaluation of the stresses inside the vessel tissue.
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A possibility often used for haemodynamic computations is to adopt shell
models, even if the thickness of the wall of blood vessels would not justify
them in full, since they assume that the structure is very thin. The basic
notions of linear shell theory can be found in [75] and the treatment of the
non-linear case may be found in [286].
For the sake of completeness, we give a brief account of the derivation of the

equations of linear shells in a rather general setting, yet at the same time we
will specialise them for the case of a cylindrical surface, an important paradigm
for blood vessels and discuss the effects of pre-stress, following the derivation
found in [352], in the context of fluid-structure interaction problems.

3.4.1 The geometrical description of a shell

In this section we will use the following summation convection: quantities with
repeated indexes appearing at the same side of an equation are automatically
summed up. Furthermore, Greek indexes will run in the set {1, 2} whereas
Latin indexes in {1, 2, 3}.
A shell is a solid medium whose reference configuration, Ω̂, can be defined

by a mid-surface, S, and a thickness hs > 0. More precisely, we shall assume
that the mid-surface is the image of a two-dimensional domain ω ⊂ R2 by an
injective mapping (or chart) ψ : ω ⊂ R2 −→ R3, i.e.,

S = ψ(ω),

see Fig. 3.13. We also assume that the chart ψ is such that the tangent vectors

aα(ξ1, ξ2) =
∂ψ

∂ξα
(ξ1, ξ2), (ξ1, ξ2) ∈ ω,

are linearly independent. Thus we may define the unit normal vector to the
mid-surface

a3 =
a1 × a2
‖a1 × a2‖

.

Finally, we parametrise the reference domain Ω̂ by the mapping Ψ given by

Ψ (ξ1, ξ2, ξ3) = ψ(ξ1, ξ2) + ξ3a3(ξ1, ξ2), (3.76)

Fig. 3.13. Parametrisation of the shell mid-surface
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for all (ξ1, ξ2, ξ3) ∈ Θ, where

Θ =

{
(ξ1, ξ2, ξ3) ∈ R3 : (ξ1, ξ2) ∈ ω, ξ3 ∈

(
−hs
2
,
hs
2

)}
.

As a result, we have Ω̂ = Ψ(Θ), see Fig. 3.14. Note that hs could vary along
the mid-surface, however, for the sake of clarity we assume that hs is constant.

The parametrisation of the domain given by the map Ψ induces a three-
dimensional curvilinear coordinate system. We can introduce the so-called
covariant basis {g1, g2, g3} defined by

gi(ξ1, ξ2, ξ3) =
∂Ψ

∂ξi
(ξ1, ξ2, ξ3), ∀(ξ1, ξ2, ξ3) ∈ Θ.

and the associated local contravariant basis {g1, g2, g3} defined by the relation
gi · gj = δji ,

being δji the Kronecker’s symbol. Tensors of arbitrary order can be expressed
in terms of either basis. For instance, f = fig

i = f igi, fi and f
i being called

the covariant and contravariant components of the vector f , respectively. The
metric tensor gij = gi · gj and its inverse gij = gi · gj allow to perform the
change of basis, whenever needed. For instance, we have vi = gijvj . If the
coordinate system is orthonormal, then gij = g

ij = δij, i.e. the transformation
reduces to the identity and there is no distinction between covariant and
contravariant components.
We now introduce some symmetric surface tensors which are fundamental

in shell analysis. The first, second and third fundamental forms of the mid-
surface are tensors defined on the surface here indicated by a, b and c, whose
covariant components are given by

aαβ = aα · aβ, bαβ = a3 ·
∂aα

∂ξβ
and cαβ = bαγa

γλbλβ, (3.77)

respectively. The first fundamental form is also called surface metric tensor .

Fig. 3.14. Geometric description of a shell, which might represent a portion of the
wall of a blood vessel
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A function indexed by Greek letter is assumed to lay on the mid-surface
ξ3 = 0. Let us also note that at ξ3 = 0 we have that gα = aα and gαβ = aαβ.
There is the need to give a meaning to the derivation of a surface tensor

field. Given a vector field f = f(ξ1, ξ2) on the mid-surface we denote by fα|β
the surface covariant derivative of its covariant component fα defined as

fα|β =
∂fα

∂ξβ
− Γ λαβfλ. (3.78)

Here, Γ λαβ stands for the Christoffel’s symbol defined as

Γ λαβ =
∂aα
∂ξβ

· aλ. (3.79)

Relation (3.78) is readily extended to a tensor field of any order.
For the sake of illustration, let us consider a cylindrical shell of constant

radius R0 and length L aligned along the canonical base vector e3. It can be
parametrised by the chart

Ψ (ξ1, ξ2, ξ3) =

⎡⎣(R0 + ξ3) cos ξ1(R0 + ξ3) sin ξ1
ξ2

⎤⎦ , (3.80)

where

(ξ1, ξ2) ∈ ω = [0, 2π]× [0, L], and ξ3 ∈ [−hs/2, hs/2] .

One may immediately associate the selected independent variables with the
standard cylindrical coordinates (r, θ, z): θ = ξ1, r = R0 + ξ3 and z = ξ2.
The covariant base vector are thus given by

g1 =

⎡⎣−(R0 + ξ3) sin ξ1(R0 + ξ3) cos ξ1
0

⎤⎦ , g2 =

⎡⎣00
1

⎤⎦ , g3 =

⎡⎣cos ξ1sin ξ1
0

⎤⎦ ,
and the surface vectors by

a1 =

⎡⎣−R0 sin ξ1R0 cos ξ1
0

⎤⎦ , a2 =

⎡⎣00
1

⎤⎦ , a3 =

⎡⎣cos ξ1sin ξ1
0

⎤⎦ .
It then follows that

∂a1

∂ξ1
=

⎡⎣−R0 cos ξ1−R0 sin ξ1
0

⎤⎦ , ∂a1

∂ξ2
=
∂a2

∂ξ1
=
∂a2

∂ξ2
= 0.

On the other hand, as covariant surface vectors we have

a1 =

⎡⎣− 1
R0
sin ξ1

1
R0
cos ξ1
0

⎤⎦ , a2 = a2, a3 = a3.
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Therefore,

a11 = R
2
0, a12 = a21 = 0, a22 = 1, a11 = R−20 , a12 = a21 = 0, a22 = 1,

b11 = −R0, b12 = b21 = b22 = 0, c11 = 1, c12 = c21 = c22 = 0.
(3.81)

In particular, all the Christoffel’s symbols are zero

Γ λαβ =
∂aα
∂ξβ

· aλ = 0,

so that the covariant and standard derivation coincide in this particular case.

3.4.2 Shell kinematics

In general, shell models are based on some kinematic assumptions relating the
displacement of points located in a material line orthogonal to the mid-surface,
i.e. when ξ1, ξ2 are kept fixed, while ξ3 ∈ (−hs/2, hs/2). For instance, under
the Reissner-Mindlin kinematics assumption [335, 425], it is assumed that
such material line remains unstretched during the motion. As a consequence
the displacement η̂ of a point belonging to the shell may be expressed by the
following equation:

η̂(ξ1, ξ3, ξ3) = d(ξ1, ξ2) + ξ3θλ(ξ1, ξ2)a
λ(ξ1, ξ2), (3.82)

where d(ξ1, ξ2) is the displacement of the mid-surface and θλ the rotation of
a line normal to the mid-surface.
Using this assumption, the covariant components of the linearised strain

tensor ε(η̂), whose general definition in terms of the shell metric is

εij(η̂) = ε(η̂) : gi ⊗ gj =
1

2

(
∂η̂

∂ξj
· gi +

∂η̂

∂ξi
· gj
)
,

becomes

εαβ(η̂) = γαβ(d) + ξ3χαβ(d, θ) − ξ23καβ(θ),
εα3(η̂) = ζα(d, θ), and ε33(η̂) = 0,

with γ, χ and κ being the so-called membrane, bending and shear parts of
the strain tensor, whose covariant components are

γαβ(d) =
1

2

(
dα|β + dβ|α

)
− bαβd3,

χαβ(d, θ) =
1

2

(
θα|β + θβ|α − bλβdλ|α − bλαdλ|β

)
+ cαβd3,

καβ(θ) =
1

2

(
bλβθλ|α + b

λ
αθλ|β

)
,
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respectively, while

ζα(d, θ) =
1

2

(
θα +

∂d3

∂ξα
+ bλαdλ

)
. (3.83)

The tensor γ is also called change of metric tensor, since it is related to
the change in the surface metric tensor caused by the deformation. Often an
additional kinematic condition is adopted which takes the name of Kirchhoff-
Love kinematics condition. It states that during the motion any material line
orthogonal to the (reference) mid-surface remains straight, unstretched and
orthogonal to the mid-surface. The Kirchhoff-Love assumption introduces the
following relation between the translation and rotation displacements, see [75],

θλ = −
∂d3

∂ξλ
− bμλdμ, (3.84)

by which
ζα = 0, and εα3 = 0.

Thanks to the Kirchhoff-Love conditions we have eliminated the rotations θα.
In addition, it is often assumed that the term of order ξ23 may be neglected.

This is the term responsible to shear strain, which can indeed be considered
small for the target application. The resulting shell model is calledmembrane-
bending model .

3.4.3 Shell dynamics

In curvilinear coordinates, Hook’s law is still written in the form (3.59) where
now to account for the fact that we are not using curvilinear coordinates we
have

Hijkl = L1g
ijgkl + L2

(
gikgjl + gilgjk

)
. (3.85)

In shell models we make the further assumption of plane stresses. That is,
because of the small thickness we assume zero stresses along the normal direc-
tion, namely T 33 = 0. We thus obtain the modified constitutive equation

Tαβ = Cαβλμελμ, σα3 =
1

2
Dαλελ3,

with

Cαβλμ =
E

(1 + ξ)

(
gαλgβμ +

ξ

1− ξ g
αβgλμ

)
and Dαλ =

2E

1 + ξ
gαλ.

We indicate by ρ̂s,0 the density of the material composing the shell, measured
in kg/m3. We assume that external stresses s1 and s2 act on the boundaries of

Ω̂ given by the image of ω×{−hs/2} and ω×{hs/2}, respectively. Clearly we
have s1 = s1(ξ1, ξ2) and s2 = s2(ξ1, ξ2), and with the symbol f we indicate the
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resultant f(ξ1, ξ2) = s2(ξ1, ξ2)−s1(ξ1, ξ2), f being a force per unit area [f ] =
N/m2 (in our applications f is directly related to the transmural pressure
across the blood vessel),
The equations governing the dynamics of a shell is better written directly

using the weak formulation. We here give just the sketch of the procedure.
We assume a membrane-bending model and, for the sake of simplicity we take
homogeneous Dirichlet conditions on the lateral boundaries, image of ∂ω ×
(−hs/2, hs/2). On the remaining boundaries we have the action of the stresses
s1 and s2, which induce a Neumann-type boundary condition. Starting from
(3.75)7, since here Ω̂ = Ψ(Θ) we can rewrite the integrals over Θ. Then, as
Θ = ω × (−hs/2, hs/2) we can reduce all the integrals on ω by integrating
along the ξ3 direction. The final result is the variational formulation of the
membrane-bending model, which reads: For all t > 0, find d such that∫

ω

hsρ̂s,0
∂2d

∂t2
· qdω +

∫
ω

C̃αβλμ[
hsγαβ(d)γλμ(q) +

h3s
12
ραβ(d)ρλμ(q)

]
dω =

∫
ω

f · qdω, (3.86)

for all test function q regular enough and with zero trace on the Dirichlet
portion of the boundary. Here,

C̃αβλμ =
E

2(1 + ξ)

(
aαλaβμ + aαμaβλ +

2ξ

1− ξ a
αβaλμ

)
and

ραβ(d) = d3|αβ + b
μ
α|βdμ + b

μ
αdμ|β + b

μ
βdμ|α − cαβd3.

An advantage of the shell model is that now we are effectively operating
on a two dimensional domain. The discretisation by finite elements of (3.86)
then leads, in principle at least, to cheaper solution schemes than with a 3D
formulation on Ω̂. Examples of suitable finite element spaces for shell models
can be found in the cited literature.
We consider again the example of the cylinder illustrated in the previous

section and we make the additional hypotheses of axi-symmetric displace-
ments, that is that d1 = 0 as well as all derivatives w.r.t. ξ1. Furthermore,
for the sake of clarity, we will indicate with the suffixes θ and z the first
and second component of the displacement vector: d = (dθ, dr). Under these
hypothesis we have

γ11(d) = R0dr, γ22(d) =
∂dz

∂z
, γ12(d) = γ21(d) = 0,

ρ11(d) = −dr, ρ22(d) =
∂2dr
∂z2

, ρ12(d) = ρ21(d) = 0.

7 In (3.75) f was a volume force, which is here taken equal to zero. The symbol f
is here used instead to indicate the surface stress resultant acting on the shell.
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Therefore, we have

C̃αβλμγαβ(d)γλμ(q) =
E

2(1 + ξ)

(
1

R20
drqr +

∂dz
∂z

∂qz
∂z

)
+

Eξ

1− ξ2
(
dr

R20
+
∂dz

∂z

)(
qr

R20
+
∂qz

∂z

)
,

while

C̃αβλμραβ(d)ρλμ(q) =
E

2(1 + ξ)

(
1

R40
drqr +

∂2dr

∂z2
∂2qr

∂z2

)
+

Eξ

1− ξ2
(
− dr

R20
+
∂2dr

∂z2

)(
− qr

R20
+
∂2qr

∂z2

)
.

Replacing these expressions into (3.86) and counter-integrating by parts
(for simplicity let us assume homogeneous Dirichlet boundary conditions) we
may recognise that the corresponding strong differential form is nothing else
than the well known system of equation for a cylindrical Koiter-type shell,
that is

hsρ̂s,0
∂2dz
∂t2

− hsE

1− ξ2
(
∂2dz
∂z2

+ ξ
1

R

∂dr
∂z

)
= fz,

hsρ0
∂2dr
∂t2

+
hsE

R(1− ξ2)

(
ξ
∂dz
∂z
+
dr
R

)
+

h3sE

12(1− ξ2)(
∂4dr

∂z4
− 2ξ
R2

∂2dr

∂z2
+
dr

R4

)
= fr. (3.87)

3.4.4 One-dimensional reduced structural models

One dimensional models are a very simple way to describe the dynamics of a
single vessel. We assume that the artery is of cylindrical shape and the only
space dimension considered is the axial one. There are different ways to derive
them. For instance, directly from physical principles, as done in [401] or [406],
or from shell models like in [522]. By further simplification assumptions that
lead to simple algebraic relationship between the vessel section area and the
average pressure, they are often used to develop 1D models for blood flow in
compliant arteries like those illustrated in Chapter 10.
Here we will sketch the derivation starting from a shell model and account-

ing for pre-stress.
To this aim, we will follow [352], alternative derivations may be found,

for instance, in [401], [406], or in [523], where some viscoelastic effects are
accounted for.
We will consider the situation of Fig. 3.15 where the reference configu-

ration is a cylindrical surface. In the case of a standard cylinder, the map
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Fig. 3.15. Cylindrical map. ξ1 = θ, ξ2 = r and ξ3 = z

will coincide with that indicated in (3.80). We may then identify ξ1, ξ2 and
ξ3 with the circumferential, the axial and the radial physical coordinates,
and for this reason we will alternatively use the indexes θ, z, and r, respec-
tively. Furthermore the surface is the image of θ ∈ (0, 2π), z ∈ (0, L) and
r ∈ (R0 − hs/2, R0+ hs/2).
The main assumptions are:

• The ratio hs/R0 of the vessel wall is small so that we can neglect bending
terms (which indeed scale with higher order than membrane terms with
respect to this ratio). In other words we will set to zero the last term in
the left hand side of (3.86) and consider only membrane effects.

• The wall displaces in the normal direction, i.e. d = (0, 0, η). Correspond-
ingly we have

γαβ(d) = −bαβη. (3.88)

The assumption that longitudinal and circumferential displacements are
negligible compared to the radial ones is usually accepted in the biomedical
literature.

• The vessel is subject to a time varying transmural pressure ΔP = P−Pext
across the surface. Consequently we take

f = ΔPn, (3.89)

being n the outward oriented normal. For the sake of simplicity, we assume
homogeneous Dirichlet boundary condition (i.e. a clamped vessel). Yet
accounting for conditions of other type is rather straightforward.

• The reference configuration is pre-stressed, yet the deformation gradient

F̂
0
is assumed to be diagonal (in the shell local reference system) and

constant. More precisely we set

F̂
0
= diag(F 0θθ, F

0
zz, 1),

being F 0θθ and F
0
zz constants. In correspondence we assume a diagonal

(and constant) pre-stress tensor σ0 = diag(σ0θθ, σ
0
zz, 0). The value of the

parameters may be inferred from measurements of the opening angle and
shrinking of an extracted vessel, or by considerations on how the pre-
stressed configuration has been generated [23, 115,391,523].
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We first have to find out the modifications induced by the pre-stress state
to the standard shell model. We have seen that pre-stressing induces two
modifications to the standard linearised elasticity equations: a change in the
stress-strain tensorH and the appearance of an extra term in the stress, of the

form∇x̂η̂σ0. Being F̂ 0 diagonal the former modification is readily accounted
for by replacing gij with F 0iiF

0
jjg
ij (no implied sum) in (3.85). We are able to

carry out the standard derivation that led to (3.86) also in this case, however

now the tensor C̃ becomes

C̃αβλμ =
E

2(1 + ξ)
F 0ααF

0
ββF

0
λλF

0
μμ

(
aαλaβμ + aαμaβλ +

2ξ

1− ξ a
αβaλμ

)
.

Thanks to (3.88) we may derive that in (3.86)

hsC̃
αβλμγαβ(d)γλμ(q) = a0ηqr, (3.90)

where

a0 =
hsE

1− ξ2
[
(1− ξ)ãαλãβδbαβbλδ + ξãαβãλδbαβbλδ

]
,

while
ãαβ = F 0ααF

0
ββa

αβ (no sum implied).

Finally, we account also for the term ∇x̂η̂ σ0 and we make the additional
assumption of axial symmetry, i.e. we set to zero all derivatives w.r.t. ξ1.

Under this hypothesis the radial component of div(∇ησ̂0) reduces to T 0zz ∂
2η
∂z2
.

We have then

hsρ̂s,0
∂2η

∂t2
+ aη − b∂

2η

∂z2
= P − Pext, z ∈ (0, L), t > 0, (3.91)

with η = 0 at z = 0 and z = L (or other suitable boundary conditions) while
η = η0 and ∂η/∂t = η1 at t = 0, η0 and η1 being suitable initial data.
Here,

a = a0 + σ
0
θθbγ1bγ1 + σ

0
zzbγ2bγ2. (3.92)

is the elastic coefficient modified to account for the pre-stress and b = σ0zz.
A notable case if that of the regular cylinder, where we may apply (3.81).

We may for instance assume that the circumferential pre-stress has been
caused by an external pressure P+ originally applied to the unstressed cylinder
(this value is sometimes assumed to be equal to the mean arterial pressure).
By using the simple Poisson’s law for the stress in a pressurised cylinder we
have then σ0θθ = P+R0/hs. As for the term F 0θθ, it might be estimated from

the measurements of the opening angle Θ̂ of artery specimens opened up longi-
tudinally so that they can recover a zero-stress configuration, i.e. F 0θθ = 1+

π
̂Θ
.

Gathering all this information the expression for a simplifies into

a = (F 0θθ)
4 hsE

R0(1− ξ2)
+
P+

R0
.
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In several works however, the effect of the pre-stress in the coefficient a is
neglected. Either because the value of the a is estimated from measurements
taken in vivo, thus already accounting for the pre-stress, or because it is felt
that pre-stress introduces a correction of the same order of the incertitude on
the value of E and R0. In the latter case the simpler formula a =

hsE
R0(1−ξ2)

is used instead, and this is the expression we will adopt in the sequel of the
book whenever model (3.91) is adopted.
Model (3.91) is called string model , since it is akin to the one governing

the motion of a string under tension. Some authors link the presence of the
second order space derivative in this model not to the pre-stress but to the
Timoshenko shear factor, an empirical term introduced to better account for
shear deformation and rotatory inertia effects in the theory of thin structures
[510]. In fact, probably both effects are present at the same time.
A more complete reduced one-dimensional model for the vessel structure

takes the general form (see [406], [525])

hsρ̂s,0
∂2η

∂t2
+ aη − b∂

2η

∂z2
+ c1

∂η

∂t
− c2

∂3η

∂t∂z2
= P − Pext, z ∈ (0, L), t > 0.

(3.93)
Here, c1 and c2 are two non-negative parameters accounting for the viscoelastic
property of the vessel wall, see also [523], [33]. We will call (3.93) a generalised
string model and it is often used as a simplified (yet rather complete) model
for the study of fluid structure interaction problems in a single artery (see
Chapters 8 and 9).
A whole class of models can be derived by setting to zero some of the

parameters. In particular, the simplest model is obtained by neglecting all
derivative terms (including the inertial term), obtaining the simple algebraic
expression

aη = P − Pext (3.94)

used for the derivation of the basic one-dimensional model for blood flow in
arteries, as illustrated in Chapter 10.

3.5 Modelling fluid-structure interaction problems

In this section we describe the general non-linear fluid-structure system in
large displacements arising in blood flows in large arteries. We consider as
computational domain a model of a portion of an artery, see Fig. 3.16. It
consists of a deformable structure Ωs(t) (vessel wall) surrounding a mov-
ing domain Ωf(t) filled by a fluid under motion (blood). The fluid structure
interface, i.e. the common boundary between Ωs(t) and Ωf (t), is denoted by
Γ (t) = ∂Ωf (t)∩ ∂Ωs(t). In the sequel, variables with a sub-script s or f shall
refer to quantities within the fluid or the solid domains, respectively.
We will ignore body forces, i.e. we take f = 0 both for the fluid and

the structure. For haemodynamic applications this corresponds in practise to
ignore the effects of gravity.



118 Miguel A. Fernández et al.

Fig. 3.16. Geometric configuration (2D section)

We assume the motion of the control volume Ωf(t) to be parametrised by an

ALE map Ã : Ω̃f ×R+ −→ R3 (see Section 3.1.2), i.e. Ωf(t) = Ã(Ω̃f , t). The
reference domain Ω̃f being the position of the control volume at the initial
time. We assume that the inlet Γf,D and outlet Γf,N boundaries are at a fixed
axial position along the artery model of Fig. 3.17.
As showed in Section 3.1.2, when dealing with moving domains it is natural

to work with ALE time-derivatives. More precisely, we will use formulation
(3.48).
The differential equations have to be completed with proper boundary

conditions on ∂Ωf (t)\Γ (t). For instance, we can enforce

uf = uD, on Γf,D,

σf(uf , P )nf = gN , on Γf,N ,
(3.95)

with uD a given velocity and gf,N a given density of surface load.
To summarise, we have

ρf
∂uf

∂t | ˜A
+ ρf (uf −w) ·∇uf − divσf (uf , P ) = 0, in Ωf (t),

divuf = 0, in Ωf (t).

uf = uf,D , on Γf,D,

σf(uf , P )nf = gf,N , on Γf,N .

(3.96)

Fig. 3.17. Description of the motion of the computational domain for the fluid via
the ALE map ˜A
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Fig. 3.18. Description of the motion of the solid (2D section)

Remark 3.5.1 So far, we have assumed the ALE map Ã, and in particular
the ALE velocity field w, to be known. As wee shall see in the next section
that we can define the ALE map as an extension of the boundary position with
a technique that can be extended readily to the numerical computation.

As anticipated in Section 3.3.2, we consider a Lagrangian description of
the motion of the structure, where Ω̂s is a given material reference configu-
ration (see Fig. 3.18). We describe the motion of the structure in terms of its

displacement field η̂s : Ω̂s × R+ −→ R3. For the sake of simplicity, we here

assume the structure to be clamped on the boundaries Γ̂s,D.
The differential problem for the structure part then reads

ρ̂s,0
∂2η̂s
∂t2

− divx̂
(
F̂ sΣ̂

)
= 0, in Ω̂s,

η̂s = 0, on Γ̂s,D,

F̂ sΣ̂n̂s = Ĵs‖F̂
−T
n̂s‖ĝs,N , on Γ̂s,N ,

(3.97)

with Σ̂ related to η̂s through a constitutive law of the form (3.55).
The fluid and solid problems (3.96) and (3.97) must be coupled ensuring

a global energy balance. This is achieved by imposing three interface coupling
conditions: geometry, velocity and stress.

Geometry coupling: construction of the ALE map

We first enforce that the moving control volume follows the interface motion,
i.e.

Ã = ϕ̂s, on Γ̂ , (3.98)

this is a geometry coupling condition. Since we describe the motion of the
solid in terms of its displacement η̂s, it is also useful to describe the ALE map

in terms of the displacement of the control volume, η̃f : Ω̃f × R+ −→ R3,
defined by

η̃f (x̃, t) = Ã(x̃, t)− x̃,
for all x̃ ∈ Ω̃f . Thus, (3.98) reduces to

η̃f = η̂s, on Γ̂ . (3.99)
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By differentiating this equality with respect to t, it follows that

w̃ = ûs, on Γ̂ . (3.100)

On the other hand, since the inlet and outlet boundaries remain fixed along
the motion, we also have

η̃f = 0, on Γ̃f,D ∪ Γ̃f,N . (3.101)

Notice that (3.99) and (3.101) provide the value of η̃f on the boundary of Ω̃f .

However, inside Ω̃f , f η̃f (and hence Ã) is arbitrary: it can be any reasonable
extension of η̂s|̂Γ over Ω̃f (subjected to (3.101)). In the sequel we will denote
this operation by

η̃f = Ext(η̂s|̂Γ ). (3.102)

For instance, the operator Ext can be given in terms of an harmonic extension,
by solving:

−Δη̃f = 0, in Ω̃f ,

η̃f = 0, on Γ̃f,D ∪ Γ̃f,N ,
η̃f = η̂s, on Γ̂ .

(3.103)

Continuity of velocity and stress

Since the fluid is assumed to be viscous, it perfectly sticks to the interface (or
solid) boundary. This means that the whole velocity field must be continuous
at the interface. Thus, we set

uf = w, on Γ (t). (3.104)

Finally, in order to ensure the balance of stresses on the interface, we enforce
the continuity of stress at the interface. Thus, using the properties of the Piola
transform (Proposition 3.2) we get the coupling condition

F̂ sΣ̂n̂s + J̃˜Aσ̃f(uf , P )F̃
−T
˜A ñf = 0, on Γ̂ . (3.105)

The coupled fluid-structure problem

Using the coupling conditions (3.102), (3.104) and (3.105) the coupled fluid-

structure interaction problem reads: find η̃f : Ω̃f × R+ −→ R3, ũf : Ω̃f ×
R+ −→ R3, p̃ : Ω̃f × R+ −→ R and η̂s : Ω̂s ×R+ −→ R3, such that

• Fluid sub-problem:⎧⎪⎪⎨⎪⎪⎩
ρf
∂uf

∂t | ˜A
+ ρf (uf −w) ·∇uf − divσf (uf , P ) = 0, in Ωf (t),

divuf = 0, in Ωf (t),

σf(uf , P )nf = gf,N , on Γf,N .

(3.106)
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• Solid sub-problem:⎧⎪⎨⎪⎩
ρ̂s,0

∂2η̂s
∂t2

− divx̂
(
F̂ sΣ̂

)
= 0, in Ω̂s,

η̂s = 0, on Γs,D,

F̂ sΣ̂n̂s = 0, on Γ̂s,N .

(3.107)

• Coupling conditions:⎧⎪⎪⎨⎪⎪⎩
η̃f = Ext(η̂s|̂Γ ), Ωf(t) = Ã(Ω̃f , t), w̃ =

∂η̃f

∂t
, in Ω̃f ,

uf = w, on Γ (t),

F̂ sΣ̂n̂s + J̃˜Aσ̃f (uf , P )F̃
−T
˜A ñf = 0, on Γ̂ .

(3.108)

This is a complex non-linear system of equations whose numerical treat-
ment is addressed in Chapter 9. Some elements for its mathematical analysis,
under some simplifying hypotheses, are reported in Chapter 8.

3.6 Conclusions

We have derived the equations that governs the dynamics of fluid and struc-
ture, in the hypothesis of a continuum media. If this is a reasonable assump-
tion for the structure and for blood flow in the main vessels, the continuum
hypothesis may become questionable for the flow in small capillaries, where
the dimension of the vessel becomes comparable to that of blood cells.
This issue is treated partly in Chapter 6 and we will not investigate it fur-

ther in this book. We will see in other chapters, in particular Chapter 10, how
models of the global circulation may account for the haemodynamics in the
capillary bed by using suitable lumped parameter models. Indeed, the details
of the flow in the capillaries is needed only in specific microcirculation studies.
Even if we have assumed a Newtonian behaviour for the fluid, we have

derived the flow equations in generality, and they may be easily adapted to
the more complex rheological models presented in Chapter 6.
As for the models for the vessel wall, the actual structure of a blood

vessel is rather complex, as explained in Chapter 1. We have preferred giving
here the most basic models, giving reference to the interested reader of the
specialised literature where more sophisticated modelling may be found. In
fact, if one is interested mainly on the effect of the structure movements on
the haemodynamics there is no need of using complex models for the latter.
They are instead mandatory if one is interested in having the details of the
stress fields inside the vessel wall.
We wish to warn the reader that usually the more complex a model is

the higher number of parameters it requires. Experiments to determine those
parameters are often complex, in particular if one wishes to fit them to a
specific person. In this case only indirect measurements are at disposal, ex
vivo experiments being obviously out of question.


