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Basic mathematical models and motivations

Luca Formaggia, Karl Perktold, and Alfio Quarteroni

As explained in Chapter 1, the cardiovascular system is the main responsible
of the transport of various chemicals to and from the various organs, enabling
their correct functioning and, in fact, life.
The desire to model this system is longstanding. Indeed, the well known

Euler equations (nowadays standing at the ground of gas dynamics models)
were infact developed by Euler in 1775 with the intent of describing blood
flow in the human arteries [139]. We mention also the works by Bernoulli,
Poiseuille and Young on this subject.
However, it is only in the past few decades that the application of mathe-

matical models of the cardiovascular system have become widespread within
the bioengineering and medical research community. The main reasons are the
advancements in the power of modern computers, the progress in imaging and
geometry extraction techniques (see Chapter 4) as well as the development of
better numerical algorithms (like the ones described in the later chapters of
this book).
Nowadays, computer simulations can provide researchers with an invalu-

able tool for the interpretation and analysis of the circulatory system func-
tionality, in both physiological and pathological situations.
Clearly a main impulse to develop this field of study is the increasing

demand from the medical community for scientifically rigorous and quantita-
tive investigations of cardiovascular diseases, which are unfortunately respon-
sible for a large percentage of early mortality in industrialised societies, see
for instance [229]. The ageing of the population and the consequent increase
of health care costs also call for more effective treatments.
Besides their employment in medical research, numerical models of vas-

cular flows can also provide a virtual experimental platform to be used as
training system for new vascular surgeons [494] or anaesthesiologists [91,357].
In perspective, they can give specific design indications for the realisation of
surgical operations [331,494] or for the design of better prosthetic devices. For
instance, numerical studies have shown how shape optimisation techniques
may be used for minimising the downstream vorticity in coronary by-pass
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grafts [1, 434]. Investigations of this type can help the surgeon in understand-
ing how different surgical solutions may affect blood circulation and guide
the choice of the most appropriate procedure for a specific patient or type of
patients. Another interesting application of computational haemodynamics to
surgical planning is found in [329].
The mathematical modelling of the various functions of the cardiovascular

system is, however, still an incredibly challenging problem. The difference in
space and time scale of the processes involved, highlighted in the previous
chapter, makes the treatment of the system as a whole unfeasible. It is then
useful to identify a hierarchy of models, each suited for a different type of
investigation or to different parts of the system, see Chapter 10, and possibly
devise strategies to couple them, using for instance the multiscale framework
that will be illustrated in Chapter 11.
In the followingwe will focus our attention on models for the main systemic

cardiovascular tree, providing for each of them a justification from a physical
and computational point of view. A more formal derivation of the equations
is postponed to other chapters of the book, in particular Chapters 3 and 7.
Numerical simulations are of course less invasive than in vivo investigation,

and potentially more accurate and flexible than in vitro experiments. Numeri-
cal models require patients data: the value of the parameters characterising the
properties of blood and possibly the vessel wall, the initial and boundary con-
ditions for the partial differential equations to be solved as well as geometrical
data that defines the shape of the computational domain. The latter can be
obtained by radiological acquisition through, e.g., computer tomography,mag-
netic resonance, Doppler anemometry, etc., as will be addressed in Chapter 4.

2.1 Mathematical models for local blood flow dynamics

The mathematical equations of fluid dynamics are the key components of
haemodynamics modelling. Rigorously speaking blood is not a fluid but a
suspension of particles in the plasma, the latter being mainly made of water.
As discussed in Chapter 1, the most important blood particles are red cells
(erythrocytes), white cells (leukocytes), and platelets (thrombocytes). Being
the most numerous, red cells are the main responsible for the special mechan-
ical properties of blood. The prominent macroscopic effect of their presence is
that blood is a shear-thinning , or thixotropic fluid. A precise definition will be
given in Chapter 6, here we just say that a shear-thinning fluid the more it stirs
the more it fluidifies (just think to the behaviour of tomato ketchup, another
shear-thinning fluid). In other words, its (apparent) viscosity decreases with
the increase of the rate of deformation. This effect is stronger in smaller ves-
sels, like the arterioles, venules and the capillaries. Viscoelastic effects can be
very important at the fine spatial scale (micro-circulation). Below a critical
vessel calibre (about 1mm), blood viscosity becomes dependent on the ves-
sel radius and decreases very sharply. This is known as Fahraeus-Lindquist
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effect (see Chapter 1): red blood cells move to the central part of the capil-
lary, whereas the plasma stays in contact with the vessel wall. This layer of
plasma facilitates the movement of the red cells, thus causing a decrease of
the apparent viscosity. High shear rate and increased blood cell deformation
are further important factors that explain viscoelastic behaviour.
Things get even more complex in the smallest capillaries, since here the

size of a red blood cell becomes comparable to that of the vessel and the
continuum hypothesis may become questionable.
Therefore, a first separation line between models for blood flow may be

drawn: on one side the Newtonian model which neglects shear thinning and
viscoelastic effects and is suitable in larger vessels or when we are not inter-
ested in the finer details of the flow, as non-Newtonian behaviour may affect,
for instance, the size of the recirculation area behind a severe stenosis [382]. On
the other side, in vessels of diameter, say, less than 1mm the use of Newtonian
models is hardly justifiable. The small velocities and shear stress here involved
call for the use of one of the non-Newtonian models described in Chapter 6,
see also [348]. Computationwise, non-Newtonian models which just modify
the expression for the viscosity by making it dependent on the shear rate
would increase the cost of computations of approximately 10% [382], because
of the extra calculations and the increased non-linearity of the problem. Full
visco-elastic models may instead be much more costly in terms of computing
time.
In the sequel of this section we will focus our investigation on flow in large

and medium sized vessels. The flow is here governed by the Navier-Stokes
equations. If we take t = 0 as the initial time of our analysis, we are required
to solve for t > 0 the following system of partial differential equations,

∂u

∂t
+ ρ(u · ∇)u +∇P − div(μD(u)) = f ,divu = 0, (2.1)

in a domain Ω ⊂ R3 representing the lumen of the vessel, or system of vessels,
under investigation.
The first equation expresses the conservation of linear momentum. It is a

vector equation formed by three differential equations, one for each component
of the velocity. The second equation is the continuity equation. The domain
Ω is here fixed with time, in Chapter 3 we will discuss the modifications
needed for the case of moving computational domain. The viscosity μ is in
non-Newtonian models a function of the strain rate

D(u) =
∇u+∇uT

2
, (2.2)

while is kept constant when adopting the hypothesis of a Newtonian behaviour.
The principal unknowns are the velocity u and the pressure P , while the den-
sity ρ is here constant. The term f in the right hand side accounts for the
possible action of external forces, like gravity, and is often taken equal to zero
in haemodynamics. We will derive and discuss this system of equations in
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Fig. 2.1. A typical computational domain. Here we have a model of a carotid
bifurcation developed by K. Perktold and his research group at Graz University of
Technology on the basis of an experimental lumen cast prepared and digitised by
D. Liepsch, FH Munich

detail in the next chapter, here we wish only to point out their main charac-
teristics.
The equations have to be supplemented with boundary conditions on ∂Ω.

Referring to Fig. 2.1 describing a carotid bifurcation we typically prescribe a
velocity profile at the proximal boundary Γin, that is the section closest to the
heart along the direction of the mean blood flow, which we will also denote
as “inflow” boundary, even if the term “inflow” in not completely correct
since in some major vessels we can have flow reversals. We then prescribe
zero velocity at the fixed walls and the normal stresses T · n at the distal
boundaries Γout (also called “outflow” boundaries). Again, the term distal is
meant with respect to the heart.
Proximal and distal boundaries are often indicated as artificial boundaries

since they do not correspond to a physical interface between the fluid and
the exterior, but to sections that have been artificially created to separate the
region of interest for our investigation from the remaining part of the circula-
tory system. The set up of boundary conditions on artificial boundaries is an
important issue for fluid dynamic computations. Treatments of the boundary
data specially suited for haemodynamics will be discussed in Chapter 11.
We need also to prescribe the initial status of the fluid velocity, for instance

u(x, 0) = u0(x) x ∈ Ω,

being u0 a given quantity. We recall that u0 cannot be arbitrary, since it has
to satisfy divu0 = 0 to be admissible.
Unfortunately, in haemodynamics computations usually we do not know a

physically relevant “initial condition”. Therefore u0 is usually chosen rather
arbitrarily, often just equal to zero everywhere. It means that numerical com-
putations may suffer a “false transient” linked to the incorrect initial data.
If the boundary conditions are correct, however, it will decay quite rapidly
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and after two or three heart beats we may consider that the solution is not
anymore influenced by the incorrect initial data. A possibility to get a better
guess of the initial data is to solve a stationary Stokes problem for u0 in Ω,
that is

−div(μD(u0)) +∇P = f ,
divu0 = 0.

where the forcing and boundary terms are those of the original problem at
t = 0. In this way, u0 is certainly compatible and accounts already of part of
the physics of the problem, the only missing terms being those related to fluid
inertia. With this choice the “false transient” effect is greatly reduced and in
practise one may assume that it has faded away completely after just a few
time steps of the solution procedure.
The situation is worsened when the compliance of the wall is taken into

account. The continuous exchange of energy between fluid and wall effectively
makes the decay slower. In calculations of flow in compliant vessels it is normal
practise to wait for at least three cardiac cycles before considering the influence
of the initial data negligible.
The solution of the Navier-Stokes equations may develop instabilities,

which are normally called turbulence. The responsible is the dynamics induced
by the non-linear convection term ρ(u · ∇)u. It is therefore natural to mea-
sure the importance of this term compared with the diffusive part given by
div(μD(u)). This information is provided by the Reynolds number, defined
in (1.1). Typical values of the Reynolds number along the arterial tree are
given in Table 1.7. If the Reynolds number is small, say at most of the order
of 1000, the flow remains stable, and is called laminar . In normal physiological
situations, then, the values of the Reynolds number reached in the cardiovas-
cular system do not allow the formation of full scale turbulence. Some flow
instabilities may occur only at the exit of the aortic valve and limited to the
systolic phase. In this region the Reynolds number may reach the value of few
thousands only for the portion of the cardiac cycle corresponding to the peak
systolic velocity, however, there is not enough time for a full turbulent flow to
develop. When departing from physiological conditions, there are several fac-
tors that may induce transition from laminar to turbulent flows. For instance,
the increase of flow velocity because of physical exercise, or due to the pres-
ence of a stenotic artery or a prosthetic implant such as a shunt, may produce
an increase of the Reynolds number and lead to localised turbulence. Smaller
values of blood viscosity also raise the Reynolds number; this may happen
in the presence of severe anaemia, when the hematocrit drops sharply (and
so does the viscosity). More details on the relations among domain geometry,
flow characteristics and type of flow regime will be given in Chapter 5, where
the definition of other adimensional numbers that characterise blood flow will
be given as well.
Knowing the velocity and the pressure fields allows the computation of the

stresses, in particular the shear stresses to which an arterial wall is subjected
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due to the blood movement. Wall shear stresses, whose precise mathematical
definition will be given in Chapter 3, are the force per unit area exerted by the
fluid tangentially to the wall. We have already mentioned their importance
in relation with some vascular diseases, since endothelium cells react to shear
stresses. Irregular, and in particular small or “oscillating”1 shear stresses may
cause an alteration in the endothelium covering and induce inflammatory
processes. Their calculation require a “point-wise” knowledge of the velocity
and pressure field.
To account for the compliance of the vessel wall we need to introduce

another unknown, namely the wall displacement η. The mechanical interac-
tion between the flowing blood and the vessel structure is rather complex.
Its general mathematical description will be given in Chapter 3, while more
details on the numerical techniques that can be adopted for fluid structure
interaction problems are found in Chapter 9. Yet, even with the most advanced
techniques available today, accurate computations of fluid structure interac-
tion models of haemodynamics are rather costly. One reason is that the two
dynamics (fluid and structure) are here strongly coupled and most of the
simplest and cheapest techniques often used in other fields (like aeronautics)
simply don’t work. Consequently, one of the factors that may affect the choice
of a fixed geometry model versus a fluid-structure interaction one is compu-
tation time: the latter may be one order of magnitude as expensive as the
former.
It is therefore important to appreciate when the approximation of a fixed

geometry could be reasonable. It depends on the type of vessels, the type
of answers we are seeking and, finally, the type of data available. Smaller
vessels experience a smaller relative movement than larger ones, where the
change of radius during the heart beat may be of the order of 15%, like in
the aorta. Therefore, the flow in the peripheral vessels, lets say more than two
branching levels down from the aorta, can be reasonably modelled using a fixed
geometry. An exception being the coronaries, whose movement is however
dominated by the heart movement more than the fluid-structure interaction in
the vessel. In [396] the effect of heart movement in the shear stress distribution
in a coronary artery has been investigated. It has been found that it can be
relevant, particularly in vessels with high curvature.
Even in the larger vessels, at least in physiological situations, the main

characteristic of the flow are already captured by a fixed geometry model.
However, if more details are needed, such as a precise computation of shear
stresses or the size of a recirculation region, then compliant models are better
suited [250,481]. Furthermore, if it is necessary to have an accurate description
of pulse waves, for instance if one wants to investigate altered pressure pattern

1 Wall shear stress is considered to be oscillating when its component along the
main flow direction changes sign during the heart beat. In normal situations the
component of wall shear stress along the main flow is always negative. Oscillating
shear stresses are usually found in recirculation regions.
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possibly caused by anomalous pulse wave reflections, like in the study of aortic
aneurysms [285], then compliant models are mandatory. The reason is that
fixed geometry models simply cannot describe pulse waves: the propagation
speed is here infinite because of the incompressible fluid. It is indeed the
mechanical interaction between blood flow and vessel wall deformation that
generates the pulse waves.
Lack of sufficient data on the mechanical parameters of the vessel wall

may in some cases make compliant models less interesting. This is an impor-
tant issue in cardiovascular simulations. It is often difficult to obtain accu-
rate values for those parameters for a specific subject. They have often to be
inferred from literature data obtained from experiments on animal or human
cadaver tissues. More recently, a novel technique called elastography allows to
infer some elastic properties from images of the vessel wall movement taken
non-invasively. It may then be used to characterise a specific subject. Yet, this
technique is still not well widespread. Therefore, sometimes the choice of using
a fixed geometry model may be driven by the fact that no data is available
to characterise the mechanical property of the vessel under investigation. It
must be understood, however, that in large vessels these type of computations
may provide qualitative information on the general flow but they may lack
precision.
From the mathematical point of view, the analysis of fluid-structure inter-

action problems is still subject of open research. At the best of our knowl-
edge, a complete mathematical analysis of the coupled fluid-structure prob-
lem is not available yet. In the steady case, for small enough applied forces,
existence of regular solutions is proved in [201]. In the unsteady case, local
solvability in time is proved in the simple case where the structure is a
collection of rigid moving bodies in [202]. See also [73, 120]. Formulations
based on optimal control on simpler models have been investigated, e.g.,
in [107, 292, 292,345, 346, 361]. A overview on the most recent results on the
analysis of this type of problems may be found also in Chapter 8.
As for the structural model for the vessel wall, several level of approxi-

mation can be considered, depending on the objective of the study and the
data available. As we have described in detail in Section 4.2 of Chapter 1, the
internal structure of the wall of a blood vessel is rather complex and varies
largely with the type of vessel under consideration. The computation of the
displacements (and thus the stress) field inside the vessel wall requires to solve
the three dimensional equations of elastodynamics which are presented in all
generality in the next chapter. Their solution requires to have precise data
about the mechanical characteristics of the different layers forming the vessel
wall. A piece of information difficult to obtain even by in vitro experiments,
let alone in vivo. Published results like those in [222, 562] may help in the
set-up of a proper structural models, yet also in this case we are still far from
having the possibility of extracting routinely such type of information for a
given person by non invasive techniques. However, technology in this field
is progressing fast. As already mentioned, elastographic measurements will
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probably become common in the near future, and this will be of great help to
the set up of patient-specific models also for the structural part.
Whenever there is little interest in a detailed description of the stress and

displacement fields inside the vessel wall while the focus is more on their
action on the flow field, it is a common practise to resort to simplified (or
reduced) structural models. A first simplification is of course to use uniform
“space averaged” parameters to describe the mechanical characteristics of the
vessel wall, thus ignoring its internal structure. A further step is to use the
so called shell models, where the displacement field is defined on the surface
described by the lumen-wall interface, as indicated in Fig. 2.2. Shell theory,
whose mathematical derivation will be sketched in Chapter 3, is in fact based
on the assumption of a thin structure. In the case of a vessel it means that the
ratio h/R between the wall thickness and vessel radius should be small. Indeed
this assumption is questionable, particularly in arteries, which have normally
quite a thick wall (see Chapter 1). Yet, the approximation can still be jus-
tified by two empirical observations. The first is that the main responsible
of the mechanical strength of the vessel wall (at least in physiological situa-
tions) is the elastin, which is mainly present in the media. Thus the “effective”
thickness is smaller. The other is that, despite its use beyond the fundamen-
tal hypothesis, a shell model has proved to be capable of representing the
dynamics of the fluid-wall interface with a sufficient level of accuracy, pro-
vided that appropriate averaged values of the mechanical characteristics are
given. From the computational point of view, shell models are usually cheaper
than three dimensional models, as one has to discretise a surface and not a
three dimensional domain, with a reduction of the degrees of freedom required.
For this reason they are often used in haemodynamic simulations involving
fluid-structure interactions, also on realistic geometries, see for instance [187].
Further down in the hierarchy of structural models one may find one

dimensional models (see Fig. 2.2). These models assume a cylindrical type
geometry and therefore are suited only to study a single artery without bifur-
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Fig. 2.2. A hierarchy of structural models
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Fig. 2.3. The local coordinate system on the wall surface of a single vessel

cations. They are based on the fact that one can identify on each point of
the fluid-structure interface a local system of coordinates er, eθ, ez, with ez
aligned along the vessel axis and er normal to the surface. The corresponding
cylindrical coordinates are (r, θ, z), where the z coordinate axis is made to
coincide with the centerline of the vessel (see Fig. 2.3).
If one assumes that the circumferential component of the shear stresses

at the wall is negligible (this is true for an axial-symmetric geometry and
axial-symmetrical deformations) it is possible to write a differential equation
in the z variable and time. Often, the additional assumption of only radial
displacements, i.e. η = ηer is made as well. No derivatives depending on the
circumferential coordinate θ appear in the equations and we may consider
each plane θ = const. independently. The resulting displacement field will
depend only parametrically on θ. If, in addition, we assume that the problem
has an axial symmetry (which implies the further assumption of a straight
axis) the dependence on θ is completely neglected. In this case, also the fluid
would be described by a 2D axi-symmetric model (see [117]).
Some more details on the derivation of models of this type are given in

the Chapter 3. Clearly, we have here quite an important simplification also
from the computational point of view, and this explains why these models
are widely used to develop and test fluid-structure interaction algorithms.
Another reason is that they lend naturally to axi-symmetric formulations
[117]. However, their validity in practical computations is limited due to the
geometrical restrictions.
Yet, this is not the end of the story. Even simpler structural models may be

devised where the normal component of the stress on the fluid-wall interface is
directly linked to the normal displacements at the same point by an algebraic
relation (or possibly an ordinary differential equation in the time variable).
Here the wall mechanics is greatly oversimplified, and these models are indeed
used mainly to derive reduced models for blood flow in arteries, like the ones
discussed in Chapter 10, even if they have also been used in some early studies
of blood flow in simple or 2D geometries [481].
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Fig. 2.4. Recirculation in a model of the carotid bifurcation3. We show the path
of the particles entering the bifurcation. The presence of a recirculation region is
evident

A clear major feature of blood flow is its pulsatility. It may induce flow
reversal and recirculations near the arterial wall, a phenomenon that can have
negative effects on the endothelium and stimulate the deposit of lipids and
atherosclerosis. The latter effect is more likely to occur in specific vascular
districts, like the carotid bifurcation, see Fig. 2.4.
With some approximation one may think that blood flow is periodic in

time. Yet, this can be considered true only for relatively short periods, since
the various human activities require to change the amount of blood sent to the
various organs. Also the elastic properties of arteries (especially the arterioles)
may vary depending on the request of blood by the peripheral organs. Indeed
one of the aspects of current research in computational haemodynamics is the
interaction between blood flow and the metabolic regulation [108]. It presents
several challenges from the mathematical modelling and numerical side. For
the sake of space and because only partial results are available so far this
aspect has not been extensively covered in this book (see Chapter 10).
In several early studies, however, blood computations were made using

steady flow. This can be considered acceptable in peripheral arteries, the cap-
illary bed and in the veins,where the pulsatility of the flow is reduced thanks
to the regularising effect of the compliance of the major arteries. In partic-
ular, micro-circulation is practically (but not completely) steady. The use of
steady computations in larger vessels may again by justified by the lower
computational cost. If we eliminate the time derivative in (2.1) we still have
a non-linear system of partial differential equations to solve, yet we can make
use of acceleration techniques unsuited for unsteady computations because

3 Computation made by M. Prosi.
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they destroy time-accuracy. However, some important quantities (recircula-
tion regions, oscillatory shear stress etc.) cannot be evaluated with high accu-
racy and only a general qualitative structure of the flow field can be inferred.
Wemention that in some particular contexts, for instance in the hyperther-

mia treatment where some drugs are activated through an artificial localised
increase in temperature (see [123, 219]), the variation of blood temperature
may be relevant. Describing the evolution of temperature requires to intro-
duce another partial differential equation which derives from the principle of
energy conservation, and couple it with the Navier-Stokes equations. In large
and medium sized vessel the coupling is weak, since here temperature varia-
tions have small influence in the flow field. Therefore, one may solve the energy
equation (which is instead strongly influenced by the flow field because of the
convection term) after having calculated the velocity field. The computational
overhead is in this case minimal since we have to solve a single additional equa-
tion, moreover of linear type. Things are different in micro-circulation, where
the combined effect of temperature on the blood apparent viscosity and on
other mechanical properties of the vessel wall makes the situation more com-
plex [178]. However, since in the physiological regime the temperature inside
the human body is constant and the situations where temperature variations
are relevant are rather special, we will not pursue this topic further in this
book.

2.2 Mathematical models for biochemical transport
processes

The transport of biochemicals by the arterial blood stream and its interaction
with intra-wall transport is of great interest in the vascular physiology and
biology. The local mass transfer between the blood and the arterial wall affects
the transport of nutrients to the cells, the removal of metabolic wastes from
the wall, and the accumulation of potentially atherogenic molecules [175]. The
transendothelial mass transfer has been already explained in Section 1.1.3 of
Chapter 1. One main aspect of the interest concerns the relation between
haemodynamics and molecular transport and the development of pathological
vessel alterations.
It has been observed that low density lipoprotein (LDL) accumulation in

the intima at zones of low and oscillating wall shear stress is associated with
the tendency to intimal thickening and the development of atherosclerotic
diseases [64, 278].
The dynamics of dissolved gases (e.g., oxygen or carbon dioxide) and of

macromolecules (e.g., lipoprotein or albumin) in arteries and in the arterial
wall is strongly related to the flow dynamics of blood. Irregular blood flow
patterns with flow stagnation, separation and recirculation, and resulting local
low and oscillating wall shear stress, causes local disturbed mass transfer,
e.g. [305, 381].
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Several mathematical models have been developed for the study of bio-
chemical transport processes in arteries. The simplest model considers solute
transport only in the artery lumen and replaces the wall by means of an
appropriate boundary condition at the inner surface of the arterial wall (blood-
endothelium boundary). This model couples the Navier-Stokes equations with
the advection-diffusion equation describing the dynamics of molecules trans-
ported in blood.
Improved models account for the arterial wall, where the mass transport

in blood and in the wall are described applying physically appropriate laws
to model the interaction between the blood flow and the biochemical trans-
port. These models take into account the heterogeneous layers constituting the
realistic arterial wall (from inside to outside) the endothelium, the intima, the
internal elastic lamina (IEL) and the media. The physical behaviour of the dif-
ferent layers are approximated with the laws of mass transport in porous media
(intima and media) and through plasma-permeable membranes (endothelium
and IEL), see [251, 381]. In order to simplify the multilayer model the arte-
rial wall can be treated as a single porous layer which is separated from the
arterial lumen by a membrane.

2.2.1 Transport in the arterial lumen

The mathematical description of arterial mass transport requires to augment
the Navier-Stokes equations (2.1) with the advection-diffusion-equation for
the solute concentration c,

∂c

∂t
+ u ·∇c−∇· (D∇c) = 0 in Ω, t > 0. (2.3)

The velocity u couples the transport problem to the Navier-Stokes problem.
A further coupling of the concentration field to the flow field occurs whenever
the diffusivity D of the solute in plasma depends on the strain, see [411] and
references therein.
The characterisation of the transport processes uses the Péclet number,

defined as Pe = UL
2D
, which relates the advective transport to the diffusion.

Here, L is a typical length scale, for instance the length of the vessel under
consideration.
Mass transport processes in medium-sized and large arteries are gener-

ally strongly advection dominated, which is reflected in rather large Péclet
numbers. The resulting numerical problems are discussed in Chapter 7.
The solution of the time-dependent mass transport problem requires the

prescription of an appropriate condition at the initial time t = 0, i.e. c(x, 0) =
c0(x) for x ∈ Ω, being c0 a given function.
For flow domains with “artificial” inflow and outflow boundaries, in most

cases a constant concentration profile is prescribed at the inflow cross-section
Γin as Dirichlet boundary condition. At the outflow boundary zero diffusive
flux can be assumed, i.e. a homogeneous Neumann condition, i.e. ∂c/∂n = 0.
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Appropriate boundary conditions at the inner surface of the arterial wall
depends on the molecule size. The transfer of small molecules (dissolved gases)
to and into the wall is controlled by diffusion in the boundary layer, as the
endothelium is not an significant barrier to the motion of these molecules.
Thus, the assumption of a Dirichlet boundary condition at the inner surface
is in this case justified. However, in the transfer of macromolecules (LDL)
from blood into the arterial wall the main resistance is the endothelial layer.
The flux across the endothelium into the arterial wall is determined by the
endothelial permeability and by the concentration differential. Therefore, a
permeability boundary condition at the blood-endothelium surface Γw of the
type

cu · n−D ∂c

∂n
= P(c − ci), (2.4)

is appropriate to model the arterial macromolecule transport. P is the
endothelial permeability, ci is a prescribed concentration in the sub-endothelial
intima, and u ·n is the normal component of the filtration velocity of plasma
at the lumen surface. It is either known or computed using the Darcy model
presented in Chapter 7.
Expressing the fact that the endothelium is not a passive barrier to macro-

molecules, the permeability depends on the local shear stress at the endothe-
lium, i.e P = P(|tTσn|), where the shear stress tTσn is the tangential com-
ponent of the Cauchy stress tensor, defined in Chapter 3, equation (3.33).
This model is called wall-free model since we are not computing the trans-

port inside the arterial wall. It is suitable to analyse the lumen concentration
polarisation effect of large molecules directly at the wall, which happens when
the equilibrium concentration at the fluid-endothelium boundary is higher
than the concentration in the bulk of the blood stream.
A more realistic model of biochemical transport processes in arteries takes

into account the heterogeneous wall, consisting of layers with strongly different
thickness and physical properties, as shown in Fig. 1.4. This is called the
multilayer model and it couples the solute concentration in the blood stream
(lumen) and in the intima and media. For a complete derivation of such model,
we remand to Chapter 7.
The multilayer model requires to determine a large number of parame-

ters which characterise the physical properties of each layer. The transport
parameters of the intima and the media (effective diffusivity, Darcy perme-
ability and porosity) are obtained from the fibre matrix models of the arterial
wall tissue. The parameters of the permeable membranes, the endothelium
and the IEL (permeability, hydraulic conductivity and reflection coefficients),
are calculated from the equations of pore theory. The literature concerning
these topics is very extended. Among others, we refer to [11,106,233,234,270].
For the specific case of the multilayer model, we will present in Chapter 7 a
brief overview, that is mainly inspired to [251].
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2.3 Numerical solution of partial differential equations:
a quick review

The mathematical models we have briefly illustrated in the previous sections
cannot in general be solved analytically, a part simple cases. Thus we have
to resort to numerical techniques to find approximated solutions. It is our
intention to give in this section just an introductory glance on this topic.
The interested reader can find details in the ample literature available, see for
instance [343,407,498].
All models just presented are based on partial differential equations

(PDEs) for an unknown u (which may be a scalar or a vector field) of the
general form

∂u

∂t
+ L(u) = f, in Ω, 0 < t < T, (2.5)

where L indicates a (linear or non-linear) differential operator in the space
variable x. The former equation will be augmented by proper boundary and
inital conditions. In some cases the time derivative is not present (steady
problems). Even when the problem is originally set in a semi-infinite time
domain, the numerical approximation deals with a bounded time interval, the
time T indicating the final time of our simulation.
The most common techniques to solve numerically a PDE are based on

a subdivision of the computational domain Ω into a grid, see Fig. 2.5. The
solution u is replaced by an approximation uh which depends on a finite
number of parameters, typically (but not necessarily) the values of uh at
the nodes of the grid. The pedix h is here an indication of the grid spacing.
Some details on the most common meshing strategies used for cardiovascular
geometries are given in Chapter 4.
In the case of time-dependent problems, we will also need to advance the

approximation in time, using a so called time-advancing (or time-stepping)

Fig. 2.5. An example of computational grid describing a cerebral artery with an
aneurysm. Here only the surface mesh is shown, formed by triangles. The interior is
covered by a tetrahedral grid (courtesy of T. Passerini, Aneurisk Project)
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scheme. It is typically an iterative method that from the knowledge of the
approximation unh at a time t

n, for n = 0, 1, . . . , n builds the approximation
un+1h at time tn+1 = tn+Δt, beingΔt > 0 a chosen time step. Most frequently,
one-step schemes are adopted, where the computation of un+1h will involve just
the knowledge of unh.
Let us consider space discretisation first. The most common methods are

finite difference, finite volume and finite elements.

2.3.1 Finite difference method (FDM)

When adopting finite differences, the approximated solution uh is in fact a
vector of values uh = [u1, . . . , un]

T corresponding to the approximation at the
nodes of the computational grid. The differential problem is collocated at the
grid nodes by replacing the differential operator L with finite differences. For
instance, the Laplace operator in two dimensions Δu = ∂2u/∂x2 + ∂2y/∂y2

at node xi of the regular grid of Fig. 2.6 would be approximated as(
∂2

∂x2
+

∂2

∂y2

)
u(xi) �

ue + uw + us + un − 4ui
h2

,

being h the grid spacing in the x and y directions, here taken constant for
simplicity.
Historically, finite differencing is probably the first technique adopted for

spatial discretisation. Yet, its use is less common in modern solvers. The reason
is manifold. The construction of the finite difference operator is rather compli-
cated for grids that are not uniform and not structured (a structured grid is a
grid made up by a regular pattern of nodes). Yet, these grids are mandatory
to treat complex geometries, particularly in three dimensional problems. The
handling of boundary conditions is also not always straightforward with finite
differences, in particular boundary conditions of Neumann type which involve
the normal derivative of u at the boundary.

2.3.2 Finite volume method (FVM)

The finite volume method makes use of an integral formulation of the equa-
tion. It can be employed whenever the operator L is written in the so called
divergence or conservation form, that is

L(u) = divF (u), (2.6)

where F is the so called flux vector, which depends on u and on spatial deriva-
tives of u. Let us note that with a few manipulations, the Navier-Stokes equa-
tions (2.1) may be written in conservation form, where for the momentum
equation

F (u, P ) = u ⊗ u + PI − μD(u),
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xi
xw xe

xn

xs

lij Cj

nijCi

Fig. 2.6. On the left an example of a regular two dimensional grid used for approx-
imation by finite differences. On the right, a generic control volume Ci used in a
finite volume scheme. Although we show here a grid made of triangles, finite volumes
methods con operate on control volume of general polygonal shape

while for the continuity equation F (u) = u. Also equation (2.3) can be recast
in conservation form, thanks to the continuity equation u ·∇c = div(cu).
In general, all differential problems that model a conservation law of

physics can be cast in conservation form. We will address in more detail the
conservation form of the Navier-Stokes equations in Chapter 3.
For what concerns finite volume methods, once the differential operator

is written in conservation form, we integrate the equation on control volumes
(usually of polygonal shape) built on the grid, like the one shown in Fig. 2.6.
The unknowns are now the approximation of u at each control volume. By
applying the divergence theorem we have∫

Ci

divF (u)dx =

∫
∂Ci

F (u) ·ndγ �
∑
j

F lij (uh) ·nij.

Here, F lij is an approximation, called numerical flux, of the flux vector on the
side lij of the control volume Ci. The latter has normal nij. The numerical
flux depends on the numerical solution uh. In practise, it usually depends
on the value of uh at the control volume Ci and at the adjacent control
volumes. In this way the previous expression actually involves a small number
of unknowns. By applying it to all control volumes of the grid we can transform
(2.6) into system of linear (or non-linear) equations.
Also in this case we can introduce a parameter h which accounts of the

size of control volumes. Typically h is the maximum diameter of the control
volumes of the grid. The smaller h the finer the approximation and the greater
the computational cost (since we have a higher number of control volumes).
The finite volume method is probably nowadays the most used method

for computational fluid dynamics (CFD). The reason is that it combines a
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high geometrical flexibility (it can operate on arbitrarily complex geometries,
even using grids with control volumes of different shapes) with computational
efficiency. Furthermore, the construction of the numerical fluxes can be done
so that some physical properties (such as local conservation or monotonicity)
are preserved also at numerical level. An account of finite volumes for CFD
is given in [530].

2.3.3 Finite element method (FEM)

Finite elements are based on a different integral formulation. To describe it let
first consider a simple steady problem where L is the Laplace operator with
mixed boundary condition, more precisely

−Δu = f in Ω, (2.7)

with

u = 0, on ΓD and ∇u ·n = ∂u

∂n
= g, on ΓN , (2.8)

being ΓN and ΓD two parts of the boundary of Ω such that ΓN ∩ΓD = ∅ and
ΓN ∪ ΓD = ∂Ω. We will also assume that ΓD = ∅. The function h is a given
datum (Neumann boundary condition), while on the Dirichlet boundary ΓD
we have assumed homogeneous conditions only for the sake of simplicity.

The weak formulation

We proceed formally by multiplying both members by a test function v :
Ω �→ R, regular enough, integrating over Ω, and using integration by parts
(by applying the Green formula) we get∫

Ω

∇u ·∇vdΩ −
∫
∂Ω

v∇u · ndγ =
∫
Ω

fvdΩ.

If v is chosen so that it is zero on ΓD, by applying the Neumann boundary
condition finally we obtain∫

Ω

∇u ·∇vdΩ =
∫
Ω

fvdΩ +

∫
ΓN

gvdγ. (2.9)

This statement can be written in the general form a(u, v) = F (v), by setting
a(u, v) =

∫
Ω
∇u ·∇v and F (v) = ∫

Ω
fvdΩ +

∫
ΓN

gvdγ.
To give sense to the formal steps made so far, we need to identify the

correct functional space for the solution u and the test function v. We will
postpone this aspect to Section 2.4. For the time being, we assume that u
and v are regular enough so that all the previous steps are well defined and
the integrals finite. We can then note that (a) if u is a solution of the original
problem (2.7)-(2.8), then it satisfies (2.9); (b) the test function v and the
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solution u are subject to the same essential conditions on ΓD, namely they
are both zero.
It comes then natural to introduce the abstract problem

Find u ∈ V such that a(u, v) = F (v), ∀v ∈ V, (2.10)

being V a space of function regular enough and null on ΓD, which we will
make more precise later.
Formulation (2.10) is called weak formulation . We have obtained it for the

Laplace problem (2.7)–(2.8), yet it is a rather general fact that a wide class
of partial differential problems can be rewritten in the weak form (2.10), with
obviously a different definition of a(u, v) and F (v), and possibly of the space
V . The application F (v) returns a real number for each v ∈ V and is called a
functional , while a(u, v) returns a real number for each couple of functions u
and v in V and is called a form. Under certain assumptions on the space V , the
form a and the functional F it is possible to prove that the weak formulation
is well-posed , that is it admits a unique solutions u which depends continuosly
on the data of the problem (in our example g and f). This important result
takes the name of Lax-Milgram lemma and its statement can be found, for
instance, in [408]. Furthermore, it can be proved that regular solution of the
weak formulation do indeed satisfy the original differential problem in what
is called strong form (in contract to the weak form). However, the space of
weak solutions is somehow larger than that of the problem in strong form.
Therefore, the weak formulationmay be seen as a generalisation of the orig-

inal problem. It gives a robust mathematical framework to differential prob-
lems, encompassing situations (e.g. rather irregular data or domains) which
cannot be treated satisfactorily in the classical strong formulation. Even for
more complex problems, like the Navier-Stokes equations or the fluid-structure
interaction problem, a weak formulation may be found, as it will be illustrated
in Chapter 8.

The Galerkin method

Moving from the weak formulation we can replace the space V , which is
infinite dimensional, with a finite dimensional subspace Vh, that is we choose
a Vh ⊂ V with dim(Vh) = Nh and solve the problem:

Find uh ∈ Vh such that a(uh, vh) = F (vh), ∀vh ∈ Vh. (2.11)

Being Vh finite dimensional the approximate solution uh may be expanded
with respect to a base of Vh as uh(x) =

∑Nh
i=1 uiφi(x). In other words, Vh is

spanned by the basis {φi, i = 1, . . . , Nh}. The coefficients ui ∈ R are called
degrees of freedom and are indeed the unknowns of the discrete problem.
Furthermore, we can choose vh = φj for j = 1, . . .Nh in (2.11) to produce
linear system of equations Au = b, where

Aij = a(φj, φi) =

∫
Ω

∇φj ·∇φi dΩ, bj = F (φj) =

∫
Ω

fφjdΩ +

∫
ΓN

gφjdγ.
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Matrix A is traditionally called the stiffness matrix. The actual expression for
stiffness matrix and source term may be more complex for problems more com-
plicated than Laplace’s, yet the way of deriving the discrete system remains
fundamentally the same. In the case of a non-linear problem, the resulting
system will be non-linear, typically this means that the matrix A will depend
on uh.
This technique of building the discrete problem by projection on a subspace

and searching the solution in the same subspace takes the name of Galerkin
method.

The finite element space

A last (but not the least) step is to choose the way of building Vh. To this
aim, various different techniques are possible. In the classical spectral element
method for periodic solutions a truncated Fourier series is used on the whole
Ω. It is a valid method if the solution is very smooth and on very simple
geometries (typically cubic or cylindrical domains). The other methods do
require to subdivide the domain into a grid Th of polygonal elements (or at
least elements that can be mapped by simple transformations into a polygon),
in a way similar to what is done in the finite volume method. Given the grid,
the space Vh may be expressed by piecewise polynomial functions, for instance
we could consider the space

Xrh(Th) = {vh ∈ C0(Ω), : vh|K ∈ Pr , K ∈ Th}

of piecewise polynomials of degree r on each grid element K. The space Vh is
then taken as the subspace of Xrh(Th) that accounts for the constraints at the
Dirichlet boundary. Methods of that sort are the finite element method (FEM)
and the spectral element method (SEM). They differ on the choice of the basis
for Vh and on the fact that the SEM adopts high order polynomials, while in
the FEM rarely r exceeds 3 (and often is equal to 1, i.e linear finite elements).
Another characteristic of the SEM method is the use of special quadrature
rule to approximate the integrals which guarantee high convergence rate (for
smooth solutions) while keeping the computational cost of building the linear
system reasonably small. Thus, they are quite interesting when dealing with
smooth solutions. However, are much less used than FEM in standard solvers,
since often the solution is not as regular as needed to benefit from the method
and their implementation on complex geometries may be rather complex.
Indeed, SEM methods are usually (although not always) implemented on grids
whose elements are hexahedra (quadrilaterals in 2D), while finite elements
are also implemented on tetrahedral (triangular) grids, which are much more
flexible. For more details on the spectral element method the reader may
consult [60, 253].
The usual (though not exclusive) choice for the basis function φi in the

FEM is such that the degrees of freedom ui do correspond to the value of
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uh at some points of the grid called nodes. An important characteristic of
the FEM is that the basis function φi has small support, i.e. is different
from zero only on a limited connected portion of Ω. The main consequence
is that the stiffness matrix A is sparse, since Aij = 0 whenever the support
of φi and φj has zero intersection, and this happens whenever nodes xi and
xj are not shared by any element of the mesh. This fact is very relevant in
applications since sparse matrices have a smaller memory requirement than
their full counterpart. The computer implementation is also rather efficient,
since the matrix and the right hand side can be built by looping over the mesh
elements and performing local operations on each element.
The FEM is probably one of the most adopted numerical method for

partial differential equations, especially in the field of structural mechanics,
although, as already mentioned, in the field of CFD finite volume methods
are probably more popular. Yet, finite elements are gaining grounds also in
this field, particularly in the case of incompressible flow. The richness (and
flexibility) of their mathematical formulation allows in fact to develop a large
variety of numerical schemes, basically changing the discrete spaces where the
solution is sought and the test functions chosen.
The parameter h in the finite element method is identified as the maximum

diameter of the finite elements in the given mesh. The smaller h, the higher
the number of elements necessary to cover Ω and the higher the number of
degrees of freedom (and the dimension of the linear system).
In the case of non linear problems, like the Navier-Stokes equation, the

application of the method leads to a non-linear system of equation, where the
stiffness matrix is itself function of the discrete solution.

Convergence

In all methods shown so far we expect that the approximation uh becomes
more precise as h goes to zero. Indeed, a request we make is that a discreti-
sation method be convergent, that is the error should go to zero as h → 0.
Furthermore, we say that the method converges with order p if it exists a con-
stant C = C(u) > 0 so that, for h sufficiently small, the following inequality
applies

||u− uh|| ≤ C hp.

The error is measured in a suitable norm, here indicated by || · ||. The order of
convergence typically depends on the particular method chosen, the regularity
of the exact solution and the selected norm.
For instance, a standard FEM discretisation of the Laplace problem sat-

isfies
||u− uh||H1(Ω) ≤ C‖u‖Hs(Ω)hp,

for a constant C > 0, where p = min(r, s− 1), being r the degree of the finite
element, and s a measure of the regularity of the solution u. More precisely,
the error estimate is true whenever u ∈ Hs(Ω). The definition of the Sobolev
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spaces Hk(Ω) as well as that of the Hk norm || · ||Hk(Ω) will be given in
Section 2.4. Therefore, if we use linear finite elements, we have a method
whose convergence is linear with respect to h when using the H1 norm to
measure the error.
We mention also the possibility of generating another class of schemes by

replacing the original form a(uh, vh) with an approximation ah(uh, vh). The
simplest way by which this is done is by performing numerical quadratures
to approximate the integrals which define the form. Methods of this sort are
usually called generalised Galerkin methods. We give in Fig. 2.7 a synthesis of
the main numerical techniques for PDEs which includes those mentioned here.

Strong Form
Lu = f

Weak Form
u ∈ V : a(u, v) = F (v) ∀v ∈ V

Conservation Form
Lu := div(F(u)) = f

Finite Volumes

∂ΩV

Fh(uh) · n =
ΩV

f

∀ΩV control volume

Collocation
on internal nodes

Galerkin

Finite Elements
uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh

Spectral Method
uN ∈ VN : a(uN , vN ) = F (vN) ∀vN ∈ VN

Spectral Elements
uN ∈ V CN : aC(uN , vN) = FC(vN) ∀vN ∈ V CN

Generalised Galerkin

Discontinuous Galerkin (DG)

Finite Differences
LΔuΔ = fΔ

Spectral
Collocation
LNuN = fN

FEM with Numerical Integration
uh ∈ Vh : ah(uh, vh) = Fh(vh) ∀vh ∈ Vh

G-NI Method
uN ∈ VN : aN (uN , vN ) = FN(vN ) ∀vN ∈ VN

SEM-NI Method

uN ∈ V CN : aC,N (uN , vN ) = FC,N (vN) ∀vN ∈ V CN

Fig. 2.7. A flow-chart of the main discretisation methods for PDEs
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2.3.4 Time advancing schemes

In the previous paragraphs we have considered the discretisation with respect
to the space variables. If we have a transient problem we need to consider the
time as well. What is usually done in this case is to first discretise in space
and then consider the time evolution. The reason why the two variables are
treated differently is due to their different nature. The differential problems
we will consider here are usually boundary value problems with respect to
space, that is conditions are set on the whole boundary of the spatial domain
Ω. On the contrary, they require a condition only at one end of the time axis,
the initial condition. It is natural, then, to think of using a different numerical
techniques to treat the time variable.
If we consider the general case of equation (2.5), after space discretisa-

tion with finite differences or finite volumes we obtain a system of ordinary
differential equations on each node i, of the form

dui

dt
(t) + sTi u(t) = fi(t), 0 < t < T, (2.12)

where u(t) = [u1(t), . . . , uNh(t)]
T are the degrees of freedom (here equal to

the approximated solution at the nodes or at the control volumes), which are
now function of the time. Furthermore, fi(t) = f(xi, t) and si is here a vector
of coefficients. For instance, for the Laplace equation, finite differences on a
the regular grid of Fig. 2.6 would give at any internal node i

dui
dt
(t) +

4ui(t)− ue(t) − uw(t) − us(t)− un(t)
h2

= fi(t).

In matrix form
du

dt
(t) +Au(t) = f (t),

where A is the matrix with the si as rows.
Schemes for this system of ordinary differential equations require to choose

a time step Δt and solve a problem for un, approximation of u(tn), being
tn = nΔt. The most common are

• the explicit Euler method, also called forward Euler method

un+1 = un +Δt [Aun + f(tn)] ; (2.13)

• the implicit Euler method, also called backward Euler method

(I +ΔtA)un+1 = un +Δtf(tn+1); (2.14)

• the Crank-Nicolson method,

(I +
1

2
ΔtA)un+1 = un +

Δt

2

[
Aun + f(tn) + f(tn+1)

]
. (2.15)
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All methods compute in successive steps the sequence u1,u2, . . ., being u0

known from the initial condition of the differential problem.
The main difference among (2.13) and (2.14) or (2.15) is that the former

allows to compute the approximation at time step tn+1 without the need to
solve a linear system. This is why is called explicit. Crank-Nicolson scheme is
more accurate than the other two since it a second order method with respect
to time. It means that assuming that the space operator is exact the error
between the approximated solution and the exact one goes to zero as (Δt)2

when Δt → 0. The other two methods are just first order. Explicit methods
are always subject to a stability condition, that is they provide a reasonable
approximation only if Δt ≤ Δ̂t, where the critical time step Δ̂t depends on
the particular method chosen and on the eigenvalues of the matrix A. The
latter is normally a decreasing function of h. Thus, typically the finer the
grid, the smaller the time step we have to adopt with an explicit scheme
to satisfy the stability condition. The type of problems we have to face to
solve haemodynamic applications usually exhibit a second order differential
operator L and, in general, for this class of problems

Δ̂t = Ch−2,

which penalises explicit schemes strongly. Therefore, despite their higher com-
putational complexity, implicit and unconditionally stable schemes are often
preferred for this class of problems. For instance, both implicit Euler and
Crank-Nicolson schemes fall in this category.
Were the original differential problem non-linear, implicit schemes lend to

non-linear problems, to be solved at each time step. A possibility is to resort
to a Newton iteration or other fixed point strategies, see for instance [257,403].
When dealing with finite element computations, the ordinary differential

equations stemming from space discretisation are in fact of the form

M
dui
dt
(t) + Su(t) = fi(t),

where M is the so called mass matrix , of elements Mij =
∫
Ω φiφj dΩ. Con-

sequently, we end up with a non trivial linear system even when adopting
explicit schemes. Yet, often the mass matrixM can be replaced with a diago-
nal matrix, called lumped mass matrix, and we are able to write the differential
system in the same form as in (2.12).
We mention that several other time advancing schemes are possible. In

particular, for the class of problems we deal in this book, methods based on
backward difference formulae (BDF) are quite interesting since they couple
good stability and convergence properties with an acceptable computational
cost. Interested readers can refer, for instance, to [403].



70 Luca Formaggia, Karl Perktold, and Alfio Quarteroni

2.4 Some elements of functional analysis

We give here some elements of functional analysis to help the reader through
some of the next chapters. Because of the scope of the book and the sake of
space we will be very brief and rather informal. A more complete introduction
in the context of partial differential equations is [424], while among the more
advanced books on the subject we mention [552] and [438].
First of all with functional space we denote a linear space of functions

Ω ⊂ Rd �→ Rn, where n is typically 1 (scalar functions) or either 2 or 3
(vector functions), as well as d. We assume that the domain Ω is open and
bounded. A common example of functional space is the space of continuous
real functions on an interval Ω ⊂ R, usually denoted by C0(Ω).
A norm is an application V �→ R such that

||v|| ≥ 0, and ||v|| = 0 iff v = 0, (2.16)

||v + w|| ≤ ||v||+ ||w||, ∀v, w ∈ V, (2.17)

||αv|| = |α|||v||, ∀v ∈ V, ∀α ∈ R.

We recall that a normed and complete linear space V is also called a Banach
space.

2.4.1 Functionals and bilinear forms

Given a functional space V an application

F : V �→ R

is called a functional on V . A functional is linear if F (αv + βw) = αF (v) +
βF (w), for all real numbers α and β and all v and w in V . A linear functional
on a normed space V is continuous if and only if it is bounded, i.e. ∃C > 0
such that

|F (v)| ≤ C||v||V , ∀v ∈ V.
We have indicated by || · ||V the norm of V . The space of linear and continuous
functionals on V is itself a normed space, called the dual space V ′. The norm
of a functional is in fact the smallest constant C in the previous inequality,
or equivalently

||F ||V ′ = sup
v∈V
v �=0

|F (v)|
||v||V

.

A linear and continuous functional applied to an element v ∈ V is often
indicated using the crochet symbol, that is F (v) can be written alternatively
as V ′ 〈F, v〉V (or simply 〈F, v〉 whenever there is no ambiguity). This notation
puts into evidence the duality between the two spaces.
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An application
a : V × V �→ R,

that maps two elements of V to a real number is called a form. It is a bilinear
form if linear with respect to each argument (taken singularly), i.e

a(λu+ μw, v) = λa(u, v) + μa(w, v), ∀λ, μ ∈ R, ∀u, v, w ∈ V,

a(u, λw+ μv) = λa(u, v) + μa(u, w), ∀λ, μ ∈ R, ∀u, v, w ∈ V.

A bilinear form is continuous if there exists a constant M > 0 such that

|a(u, v)| ≤M‖u‖V ‖v‖V , ∀u, v ∈ V,

and is coercive if ∃α > 0 such that

a(u, u) ≥ α‖u‖2V , ∀u ∈ V.

A scalar product (u, v) of a space V is an application V × V �→ R such
that it is bilinear with respect to each argument, ||v|| =

√
(u, u) is a norm on

V (called normed induced by the scalar product) and in addition the Cauchy-
Schwarz inequality holds:

(u, v) ≤ ‖u‖‖v‖, ∀u, v ∈ V.

In other words, the scalar product is a continuous bilinear form with respect to
the induced norm, with continuity constant equal to 1. A complete functional
space V equipped with a scalar product and the induced norm is called a
Hilbert space. Hilbert spaces play a fundamental role in the analysis of partial
differential equations.

2.4.2 Support of a function

The support of a function f is the closure of the subset of Ω where f = 0. A
function is said to have compact support in Ω if its support is contained in
a closed and bounded subset of Ω. In particular, if f has compact support in
Ω is zero on the boundary of Ω.

2.4.3 Sobolev spaces

The space L2(Ω) is the space of square integrable functions, that is

L2(Ω) = {v : Ω �→ R,

∫
Ω

v2dΩ < +∞}.

It is a Hilbert space with scalar product (u, v)L2(Ω) =
∫
Ω
u, v dΩ and norm

‖v‖L2(Ω) =
(∫
Ω
u, v dΩ

)1/2
. Often, the L2 scalar product is simply indicated
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as (u, v). To the sake of precision, we mention that the integral in the def-
inition of L2(Ω) (and of all the other functional spaces introduced in this
section) is a Lebesgue integral. Lebesgue integration is a mathematical con-
struction that extends the classical integral due to Riemann to a wider class
of functions. From the practical point view there is little difference in using
Lebesgue integrals, since bounded functions integrable in the classical sense
are also Lebesgue integrable and the two integrals coincide.
The existence of the L2 scalar product is based on the fact that if u and

v are in L2(Ω), then the integral
∫
Ω uv dΩ exists and is finite.

The space Hs(Ω) is defined as the space of function of L2(Ω) such that
all derivatives (partial derivatives if Ω is multidimensional) of order up to s
belong to L2(Ω) as well. For instance, in the case Ω ⊂ R,

H1(Ω) = {v ∈ L2(Ω) : dv

dx
∈ L2(Ω)}.

The derivative in the definition has to be intended as generalised deriva-
tive (also called “distributional derivative”). In this context, dv/dx ∈ L2(Ω)
actually means that there exists a g ∈ L2(Ω) such that for all functions
w ∈ C∞(Ω) with compact support in Ω the following equality holds, i.e.

−
∫
Ω

gwdΩ =

∫
Ω

v
dw

dx
dΩ.

We will identify g with dwdx . The notion of generalised derivative effectively
extends the concept of derivative to non-differentiable functions in the classical
sense. However, the two derivatives coincide for regular functions.
The Sobolev space Hs(Ω), with s a positive integer and Ω ⊂ Rd, is a

Hilbert space when endowed with the scalar product

(u, v)Hs(Ω) =
∑
|α|≤s

∫
Ω

∂|α|u
∂xα1 . . . ∂xαd

∂|α|v
∂xα1 . . . ∂xαd

dΩ,

and the corresponding norm

‖u‖Hs(Ω) =

⎡⎣ ∑
|α|≤s

∫
Ω

(
∂|α|u

∂xα1 . . . ∂xαd

)2
dΩ

⎤⎦1/2

Here, α = [α1, . . . , αd] is a multi-index of non negative integers and |α| =
α1 + . . .+ αn, and we have also adopted the convention that

∂|α|u
∂xα1 ...∂xαd = u

whenever |α| = 0. As a consequence of the definition, ‖u‖Hs(Ω) ≤ ‖u‖L2(Ω)
andHs(Ω) ⊂ L2(Ω), for all s. We can also conventionally set H0(Ω) ≡ L2(Ω),
so all previous definitions and properties extend trivially to the case s = 0 as
well.
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A most important space for the differential problems of our interest is
H1(Ω), where

(u, v)H1(Ω) =

∫
Ω

(uv +∇u ·∇v) dΩ, ‖u‖H1(Ω) =
√∫

Ω

(u2 + ||∇u||2) dΩ.

Here, ||∇u|| =
√∑3

i=1(∂u/∂xi)
2 indicates the Euclidean norm of the gradient.

The Hs seminorm4 is defined as

|u|Hs(Ω) =

√√√√∑
|α|=s

∫
Ω

(
∂|α|u

∂xα1 . . . ∂xαd

)2
dΩ.

We have that Hk+1(Ω) ⊂ Hk(Ω) for k = 0, 1, . . . with continuous injec-
tions, indeed if u ∈ Hk+1(Ω) then ‖u‖Hk(Ω) ≤ ‖u‖Hk+1(Ω).
We mention that in the next chapters, the symbol [Hk(Ω)]3 will be used

to indicate the space of vector functions whose components belong to Hk(Ω),
i.e. [Hk(Ω)]3 = Hk(Ω) ×Hk(Ω) ×Hk(Ω).

2.4.4 Traces

Let us first notice that two square integrable functions u1 and u2 which differ
only on a set of zero measure identify in fact the same member of L2(Ω), as
‖u1 − u2‖L2(Ω). Being the boundary of Ω of zero measure it is clear that we
cannot in general give a meaning to the value on ∂Ω of a function of L2(Ω).
Yet, what about a function belonging to Hs(Ω) with s ≥ 1?
A major result is that if Ω is sufficiently regular, for instance polygonal or

having a C1 boundary (more details in the cited bibliography) there exists a
linear and continuous application

γ0 : H
s(Ω) �→ L2(∂Ω),

such that γ0v = v|∂Ω, ∀v ∈ Hs(Ω) ∩ C0(Ω). The application γ0v is called
trace of v on ∂Ω.
The fact that γ0 is linear and continuous implies that ∃C > 0 so that

‖γ0v‖L2(∂Ω) ≤ C‖v‖Hs(Ω).

The result can be extended to the case of γΓ : H
s(Ω) �→ L2(Γ ) where Γ ⊂ ∂Ω

is sufficiently regular and of non-null d− 1 measure5 .
4 A seminorm enjoys all properties of a norm a part that it can be zero when its
argument is different from zero.

5 ∂Ω is of zero d-measure, i.e. when considered as immersed in the space Rd, while
in general has a non-zero d− 1 measure. For instance the surface of a sphere has
zero volume (3-measure) but a certain area (2-measure).
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This result allows to give sense to the Dirichlet conditions whenever we
seek a solution to a differential problem in Hs(Ω). We wish to point out that
the operator γΓ is not onto L

2(Γ ). In particular, the functions of L2(Γ ) which
are traces of functions of H1(Ω) is a subspace of L2(Γ ) denoted as H1/2(Γ ).
We can extend to functions in Hs(Ω) with Ω ⊂ Rd and d = 1, 2 or 3

the well known Green integration and, consequently, the divergence theorem
of classical vector calculus. In the following of the book for the sake of sim-
plicity we will indicate γ0u with u|∂Ω , using the same notation adopted for a
continuous function.

The space H10(Ω)

We can define the space H10 (Ω) as the space of functions with null trace on
∂Ω

H10 (Ω) = {v ∈ H1(Ω) : γ0v = 0}.
In fact, it is possible to define H10 (Ω) for arbitrary bounded domains Ω, using
technicalities we prefer to avoid in this sketchy notes.
It is also possible to define H1Γ (Ω) as the space of function with null trace

on Γ ⊂ ∂Ω,

H1Γ (Ω) = {v ∈ H1(Ω) : γΓ v = 0}.
An important result for what concerns the analysis of partial differential

problems is the Poincaré inequality, which states that there exists a constant
CΩ such that

‖v‖L2(Ω) ≤ CΩ‖v‖H1(Ω) ∀v ∈ H10 (Ω).

2.4.5 Back to the weak formulation

We are now in the position of making expression (2.10) more precise. Indeed,
by inspecting all the integrals that make up the bilinear form and the func-
tional, we can note that the requirements we have to make so that all inte-
grals exists and are finite is that V = H1ΓD , provided that f ∈ L2(Ω) and
h ∈ L2(ΓN). Actually, the conditions on the data indicated here are not the
most general possible, yet are already quite broad to demonstrate the gener-
ality of the weak formulation.
We mention that with this choice problem (2.10) is well posed.

2.5 Conclusions

The objective of this chapter was twofold. On the one hand, we gave an
overview of some basic mathematical models governing haemodynamics, with
a greater emphasis on their physical significance and applicability rather than
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on a rigorous formal derivation. To the latter are dedicated some of next
chapters.
One the other hand, we provided some basic notions on methods for their

numerical solution. We have also introduced some of the notation that will be
used throughout the book. The notions given here are only elementary and
have only the aim of introducing the occasional reader to the subject. The
bibliography provided could however serve as a complement.


