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Multiscale models of the vascular system

Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani

As we have illustrated in the previous chapters, there are essentially three
classes of models for the vascular system: fully three dimensional models,
based on the Navier-Stokes (NS) equations, one dimensional models, includ-
ing the space dependence on the vessel axial coordinate, based on the Euler (E)
equations, and the lumped parameter or zero-dimensional models, based on
the Kirchhoff laws (K) for hydraulic networks. Navier-Stokes based models can
account for many different features of blood flow problems, such as the blood
rheology (Chapter 6), the vascular wall dynamics (Chapter 3), the interaction
between blood flow and wall deformation (Chapters 8 and 9). These models
are perfectly adequate for investigating qualitatively and quantitatively the
effects of the geometry on the blood flow (Chapters 5) and the possible rela-
tions between local haemodynamics and the development of some pathologies
(Chapter 1). On the other hand, the high computational costs (Chapters 2, 3
and 9) restrict their use to cover few contiguous vascular districts only.
Euler-based models provide an optimal tool for the analysis of wave prop-

agation phenomena in the vascular tree. In particular, they are convenient
when the local flow details are less relevant than the accounting for propaga-
tive phenomena on large parts of the vascular tree and the numerical results
are needed in a relatively short time. These models outline the role of the
vascular system as a sort of telegraph line with the task of transmitting nutri-
ents as well as biological signals along the body. On the other hand, the space
dependence still retained in these models inhibits their use in the whole vas-
cular system. In fact, it would be impossible to follow the geometrical details
of the capillary network (not to mention the specific rheological assumptions
required by capillary circulation – see Chapter 6).
On the contrary, Kirchhoff-based models can provide a representation of

a large part or even the whole circulatory system, since they get rid of the
explicit space dependence (see Section 10.2 and [364]). In a simple and however
still quantitative way, these models can include the presence of the heart, the
venous system, but also account for self-regulating and metabolic dynamics,
as we have seen in Section 10.2.4.
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If NS, E and K models provide such a different tools, reliable numerical
methods for real life applications need to overcome the drawbacks and weak-
ness of each individual class of models. This can be done by resorting to the
geometrical multiscale representation of the circulatory system.

11.1 What do we mean with geometrical multiscale
models?

Geometrical multiscale1 approach is a strategy for modelling the circula-
tory system, including the reciprocal interactions between local and systemic
haemodynamics by exploiting the complementary features of the different pos-
sible models. Indeed, these features suggest in a natural way to couple detailed
local models with coarser models able to describe the dynamics over a large
part or the whole system with acceptable computational costs (see Fig. 11.1).
Multiscale modelling can be regarded as a refinement of models, or a sort of

“models zoom” in a specific region of interest, moving from a rough description
of the whole system (bottom-up approach). From a different point of view, it

Fig. 11.1. A schematic representation of a geometrical multiscale model

1 Term “multiscale” is often used with a different meaning in many fields of math-
ematical and numerical modelling, whenever two or more time and/or spatial
scales are present. Typical examples are the modelling of turbulence or multires-
olution representations. In order to avoid ambiguities, we have added the term
geometrical for identifying the multiscale perspective illustrated in this chapter.
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can be regarded as a sophisticated and reliable method for computing correct
boundary conditions at the artificial boundaries of a district of interest, that
is the non-physical boundaries needed to bound the computational domain
(top-down approach). In the latter perspective, it can be considered also as a
specific numerical tool to avoiding, or at least reduce, spurious effects caused
by the presence of artificial boundaries (see also Chapter 2). Indeed, the prop-
agative nature of blood flow in large vessels require appropriate techniques to
avoid artificial wave reflections at those boundaries. In this perspective the
geometrical multiscale approach can be regarded as a new method for solving a
class of problems, whose application goes beyond those addressed in this book.
Despite the simplicity of the basic idea, the coupling of NS, E and K models

lead to nontrivial problems at both the mathematical and the numerical level.
After a quick review of geometrical multiscale models of the cardiovascular
system and the coupling conditions based on some intuitive formulations,
we will consider in more details the mathematical aspects of this approach,
leading to less immediate and however more accurate solutions.

11.2 Setting up of geometrical multiscale models

A main issue of the geometrical multiscale modelling is to devise mathemati-
cally and physically sound coupling conditions among the models, and develop
efficient techniques for their numerical computation.

11.2.1 Coupling of 3D and 1D models

According to the top-down approach introduced above, let us consider the cou-
pling of 3D and 1D models for haemodynamics (see Fig. 11.2). This technique
is of interest for instance when an endograft prosthesis or a stent is deployed
in a specific district (abdominal aorta, carotid, etc.) and one is interested to
the alterations induced by this operations on the pressure propagation over
the vascular tree.
As already mentioned, this is also an effective way to implement physically

based absorbing conditions, in particular for a 3D compliant model. As it
has been pointed out in Chapter 3 (see also [155]) the solution of the fluid-
structure interaction problem in a compliant vessel Ω3D features a propagative
behaviour, similar to that of a compressible flow in a rigid pipe. We have seen
in the previous chapter that two pulse waves travel along the circulatory
system, in opposite directions. The domain Ω3D normally represents just a
tiny portion of the whole cardiovascular system, for instance a specific artery.
The pulse waves outgoing the artery are partially reflected by the remaining
part of the system and give rise to a backward wave (see Chapter 10) which
eventually re-enters the artery under consideration. Forward and backward
components are related to the structure of vascular tree and their correct
mathematical description is crucial to avoid artifacts in the numerical solution



398 Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani

Fig. 11.2. A 3D-1D model

induced by a wrong decomposition of incoming and outgoing waves. Coupling
of 3D and 1D models is a possible and reliable approach to achieve this goal
and requires the introduction of a proper 1D representation of the vascular
tree around Ω3D.
Appropriate matching conditions drive the data exchange between NS and

E models at the interface Γ (see Fig. 11.3). Different conditions in fact can
be considered. In particular we refer to the following quantities defined on Γ
(see [155])

A = meas(Γ ), Q =

∫
Γ

u · ndγ,

u =
1

A

∫
Γ

u · ndγ = Q
A
, p =

1

A

∫
Γ

pdγ.

(11.1)

A priori, it is reasonable to prescribe the continuity of the following quantities
at the interface:

[ A ] area: A3D = A1D;
[ B ] mean pressure: p3D = p1D;
[ C ] flux: Q3D = Q1D;

[ D ] incoming characteristic: u3D +
8

ρ

(√
p − pext + p∗ −

√
p∗
)
=W1,1D;

[ E ] mean total pressure: p3D +
1

2
u23D = p1D

1

2
u21D,

where W1,1D is the incoming characteristic variable
2 introduced in (10.37),

pext is the pressure external to the vessel and p
∗ depends on the physical

2 The incoming characteristic variable isW1 because we are considering an interface
which is an outflow (distal) boundary for the 3D model and correspondingly an
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Fig. 11.3. 3D-1D model: detail of the coupling at the outflow of Ω3D

features of vascular walls (see Chapter 3). The conditions above are not all
independent. For instance, [A],[B] and [D] imply conditions [C]. Similarly,
conditions [A], [C] and [D] imply [B]. Moreover, it is worth observing that,
following the derivation of 1D models carried out in Chapter 10, conditions [B],
[D] and [E] can be replaced by similar conditions where the mean pressure
on the 3D side is replaced by the averaged normal stresses (see Chapter 3
and [155]), yielding:

[ B1 ] σn3D = p1D;

[ D1 ] u3D +
8

ρ

(√
σn − pext + p∗ −

√
p∗
)
=W1,1D;

[ E1 ] mean total pressure: σn3D +
1

2
u23D = p1D

1

2
u23D.

In practise, we can identify different (alternative) sets of independent inter-
face conditions:

a) [A], [B], [D];
b) [A], [C], [D];
c) [A], [B1], [D1];
d) [A], [C], [D1];
e) [A], [E], [D];
f) [A], [E1], [D].

Different possible choices that are equivalent form the mathematical view-
point can however lead to different numerical schemes.

inflow (proximal) boundary for the 1D model. Should we swap the sequence of
1D and 3D models, the incoming characteristic variable would be W2.
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Some numerical issues

In numerical solution of multiscale models presented above it is natural to
split the scheme into the iterative sequence of dimensionally homogeneous
problems, namely 3D and 1D separately. In this way, we can figure out for
instance the following algorithm to be carried out at each time step3 . We
focus our attention on interface between the two models. In particular, we
refer to interface conditions (b) of the previous list. The conditions on the
other boundaries are assumed to be standard (see Chapter 3 and 10).

Initialisation. Set k = 0 and select an initial guess for the mean velocity

u
(0)
3D and pressure p

(0) at the interface. Typically, this guess is given by
the same quantities at the end of the previous time step.

Loop.

1. Solve the 1D model, using [D] as boundary condition at the interface,

by computing W
(k)
1 as a function of the current guess of the mean

velocity and pressure (or normal stress). The other boundaries of the
1D model will be properly managed (see Section 10.1.5). In this step,

A
(k+1)
1D and Q

(k+1)
1D are computed.

2. Solve the 3D fluid-structure interaction model, with [A] as a boundary

condition for the structure and [C] for the fluid by using A
(k+1)
1D and

Q
(k+1)
1D . At the end of this step, compute the new guess W

(k+1)
1 . Set

k = k + 1.

Test. The loop ends when:

|W (k)1 −W (k−1)1 | ≤ ε, |A(k) −A(k−1)| ≤ ε, |Q(k) −Q(k−1)| ≤ ε
(11.2)

being ε a given tolerance.

Analogous algorithms can be devised for the other interface conditions.
While the boundary conditions in step (1) of the loop lead to a mathemat-

ically well posed problem, step (2) in this form does not, since these averaged
data on the boundary are not enough to guarantee uniqueness of solution for
the associated 3D problem. A specific treatment of these problems is required.
To be more concrete, let us use condition [A] for the structure at step 2. On
the 3D compliant model we would need pointwise data for the wall displace-
ment η. On the other hand, when the area of the interface Γ (t) is known from
the computation of the 1D model, we have the average condition:∫

Γ(t)

dγ = A1D(t). (11.3)

We need to “spread” the average data to pointwise conditions on the displace-
ments η. To this aim we can assume a shape for the displacement depending

3 We will not put in evidence explicitly the temporal level for the sake of notation.
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on a single parameter to be tuned so to force (11.3). For instance, assume that
Γ is circular with centre on the axis of coordinates (xc, yc, zc), and belongs
to the plane identified by the equation z = zc. In this way the component η3
along z of η is constant and equal to zero and we can set:

η1(x, y, z, t) = ΔR(t) cos
(
tan−1

( y
x

))
=

√
A1D(t)− A0

π
cos
(
tan−1

( y
x

))
,

η2(t) = ΔR(t) sin
(
tan−1

(y
x

))
=

√
A1D(t) −A0

π
sin
(
tan−1

( y
x

))
.

(11.4)
Here A0 is the reference area of section Γ , corresponding to a zero displace-
ment, and ΔR(t) = R(t) − R0 is the difference between the current and the
reference radius. With this choice the average condition has been extended to
pointwise data by assuming a priori a planar circular shape for the interface
Γ . This technique can be extended to more general shapes.
In a similar way we can address condition [C], by assuming, for instance, a

velocity profile depending on a single parameter. For instance, let us assume
again that Γ has a circular shape in the xy−plane. Then, we can resort to the
Poiseuille velocity field (see Chapter 5):

u1 = u2 = 0, u3(x, y, t) =
2Q1D(t)

πρR2

(
1− (x− xc)

2 + (y − yc)2
R2

)
, (11.5)

where Q1D is the flow rate computed by the 1D model. Again, the arbitrary
selection of a velocity profile converts the average conditions into pointwise
Dirichlet conditions for the fluid problem.
Numerical results (see Fig. 11.4 and 11.5) show that this approach is actu-

ally able to reduce spurious back-reflections at the boundaries, in particular
when the arbitrary assumptions on the displacement shape or the chosen
velocity profile are realistic. However, in general, the arbitrary selection of a
shape for the displacement or the velocity profile strongly affects the numeri-
cal solution. Hence, the reliability of results obtained in this way is sometimes
questionable. More sophisticated mathematical and numerical techniques that
are able to expand average data to pointwise conditions are required for ensur-
ing better accuracy. We will address these techniques in Section 11.3.
Another drawback of this multiscale coupling still relies on the limited

capability of E models of covering the capillary network, which on the other
hand is the main source of the back reflections propagating in the arterial tree
and of including the action of the heart. More sophisticated multiscale models
are therefore needed.
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Fig. 11.4. 3D simulation: pressure wave propagation along a compliant vessel. Spu-
rious effects arise at the artificial downstream boundary

Fig. 11.5. Multiscale 3D-1D simulation: pressure wave propagation along the two
submodels. Spurious effects at the artificial boundary are small
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11.2.2 Coupling of 1D-0D and 3D-1D-0D models

A possible way to account for the presence of the capillary bed and the action
of the heart is to close the 3D-1D network with K models. This requires in
particular the coupling of 1D and lumped parameter models, through interface
conditions. A simplified version of this coupling has been already addressed
in Chapter 10. In that case, lumped parameter models were represented by
a simple terminal impedance for prescribing boundary conditions in the fre-
quency domain at the downstream sections of a 1D network. Here, we want to
give an insight of models and numerical issues arising from a precise and accu-
rate inclusion of the dynamics in K models. In the multiscale framework they
are described in terms of a system of differential-algebraic equations (DAE –
see (10.84)) in the time variable.
For the sake of simplicity, we consider the multiscale model represented in

Fig. 11.6, where the 1D model represents a simple cylindrical domain. More
complex problems, featuring a network of 1D segments or even a coupled
3D-1D model can be considered as well within the same framework.
In the model at hand we have two interfaces, Γ0 and Γ1, where it is rea-

sonable to prescribe the continuity of:

[ A ] area: A1D = A0D;
[ B ] pressure: P1D = P0D;
[ C ] flow rate: Q1D = Q0D.

Moreover, we could require the continuity of the Riemann variables:

[ D ] characteristic variable propagating from the heart to the peripheries:
Q0D
A0D

+
8

ρ

(√
P0D − pext + p∗ −

√
p∗
)
=W1,1D;

[ E ] characteristic variable propagating from the peripheries to the heart:
Q0D

A0D
− 8
ρ

(√
P0D − pext + p∗ −

√
p∗
)
=W2,1D.

Again, these conditions are not all independent. This is the case for
instance of [A] and [B], since both the E and K models include a wall law
linking together pressure and area. Should these wall laws be the same, the
continuity of the area would imply the continuity of the pressure and vice-
versa. More in general, only one between [A] and [B] can be explicitly pre-
scribed.
Similarly, only two conditions among [B], [C], [D] and [E] can be selected,

for instance:

1. conditions [B], [D] at the upstream interface Γ0;
2. conditions [C], [E] at the downstream interface Γ1.

Some numerical issues

A possible approach for solving this multiscale model still resorts to splitting
the computation into the sequence of dimensionally homogeneous problems.
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Fig. 11.6. 1D-0D model: the 1D model is given by a simple compliant straight
cylinder, the 0D model is composed by the network in the cube and two bridging
regions (upstream and downstream). Upstream bridging region is given by a T
network, featuring the flow rate Q0 as state variable. Downstream bridging region
has the pressure P1 as state variable. These interface compartments are compatible
with the splitting scheme described in the text

In the case of Fig. 11.6, this means that we solve separately the DAE system
arising from the lumped parameter model and the Euler hyperbolic system.
Let us consider preliminarily the simple case in which a 1D straight cylinder
is split into a 1D-0D model as illustrated in Fig. 11.7. In particular, let us
consider the multiscale model at the top of Fig. 11.7, where the 0D model is
represented by a L inverted network (see Chapter 10). The lumped parameter
model is therefore described by the following equations:

C
dP

dt
= Qup −Q,

L
dQ

dt
+ RQ = P − Pdw.

(11.6)
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A possible iterative scheme reads as follows. At each time step:

Initialisation. Set k = 0 and fix an initial guess for the interface flow rate

Q
(0)
up .

Loop.

1. Solve the 0D model (11.6), by using Q
(k)
up as forcing term. This yields

the estimates of Q(k) and P (k). On the basis of this computation,

Riemann variableW
(k)
2 at the interface entering the 1D model can be

computed.

2. Solve the 1D model by using incoming Riemann variable W
(k)
2 as

boundary condition. At the end of this step, a new guess for Q
(k+1)
up

is available. Set k = k + 1.

Test. The loop ends when the solution fulfils an appropriate test, for instance:

|P (k) − P (k−1)| ≤ ε, |Q(k)up −Q(k−1)up | ≤ ε.

Let us consider now the multiscale model on the bottom of Fig. 11.7. Here
0D model is represented by a L network, described by system

L
dQ

dt
+ RQ = Pup − P,

C
dP

dt
= Q−Qdw.

(11.7)

We can still use an iterative approach as follows.

Initialisation. Set k = 0 and fix an initial guess for interface pressure P
(0)
up .

Loop.

1. Solve the 0D model (11.7), by using P
(k)
up as forcing term. This yields

the estimates of Q(k) and P (k). On the basis of this computation,

Riemann variableW
(k)
2 at the interface entering the 1D model can be

computed.

2. Solve 1D model by using incoming Riemann variableW
(k)
2 as bound-

ary condition. At the end of this step, a new guess for P
(k+1)
up is avail-

able. Set k = k + 1.

Test. The loop ends when the solution fulfils an appropriate test, for instance:

|P (k)up − P (k−1)up | ≤ ε, |Q(k) −Q(k−1)| ≤ ε.

Several remarks are in order. First of all the use of characteristic variables
has the advantage of prescribing (at least approximately) absorbing boundary
conditions, well suited for avoiding numerical reflections at the boundary of
the E model (see Chapter 10).
Secondly, interface conditions are by definition localised in a specific posi-

tion in space. On the other hand, K models have lost an explicit space depen-
dence. Therefore, in managing matching conditions with K models:
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Fig. 11.7. Two simple examples of 1D-0D multiscale models. At the top, the lumped
parameter model is given by a L-inverted network. On the bottom, it is given by
a L network. The two network configurations are appropriate for different iterative
solvers (see text)

1. interface conditions yield a forcing term in the 0D model;
2. different configurations of the 0D models are associated with different
iterative schemes: in the first case the 0D model is forced by the flow rate
Qup and provides the pressure P ; in the latter case, it is forced by the
pressure Pup and provides the flow rate Q.

The latter item deserves some further remarks. In lumped parameter prob-
lems, interfaces between E and K models are represented by the boundary of
the 1D domain and the compartments placed in the neighbourhood of the 1D
models4. The type of network used in these compartments defines implicitly
the state variables and forcing terms for the 0D model. In an iterative scheme,
the latter will be provided to the 0D model by the 1D problem, while the for-
mer are the variables that will be computed by the 0D and used to build the
boundary condition for the 1D model.

4 In the two oversimplified examples above they in fact corresponds to the entire
0D models.
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We call bridging regions those compartments of the 0D model that play the
role of the interfaces with the other models. The link between the graph of the
bridging regions and the numerical scheme will be called bridging region com-
patibility (see [409]).More precisely, we say that a numerical scheme is bridging
region compatible if it is consistent with the topology of the bridging regions.
For instance, for the multiscale model of Fig. 11.6, where the upstream

bridging region is given by a T network and the downstream one is given by
a π network, a bridging region compatible scheme reads as follows.

Initialisation. Set k = 0 and fix an initial guess for the upstream pressure

P
(0)
0 and the downstream flow rate Q

(0)
1 .

Loop.

1. Solve the 0D model, by using the available upstream pressure and
the downstream flow rate as forcing terms. Compute in particular the

upstream flow rate Q
(k)
0 and the downstream pressure P

(k)
1 . After this

computation, the incoming characteristic variables, W
(k)
1 upstream

and W
(k)
2 downstream are available.

2. Solve the 1D model by using the incoming characteristic variables
as boundary conditions. At the end of this step, new guesses for the

upstream pressure P
(k+1)
0 and the downstream flow rate Q

(k+1)
1 are

available.

Test. The loop ends when the solution fulfils an appropriate test, for instance:

|P (k)i − P (k−1)i | ≤ ε, |Q(k)i −Q(k−1)i | ≤ ε, i = 0, 1.

Remark 11.2.1 Step 1 can be regarded as a stand-alone lumped parameter
model, represented by the circuit of Fig. 11.8, where input variables of the 1D
model are represented by a current and a voltage generator respectively. In
terms of circuit analysis bridging region compatibility in fact implies that no
voltage/pressure generator is in parallel with a capacitor and no current/flow
rate generator is in series with an inductance. Under these assumptions it is
possible to prove that the DAE system associated with this stand-alone network
is of index 1 and it can be reduced to a well posed Cauchy problem for a system
of ordinary differential equations (see [121, Chap. 12]).

Aortic valve function

As we have pointed out, an advantage of K models is their capability of repre-
senting in relatively simple terms complex systems like the heart or the action
of control dynamics. Moving from the observation that “the left ventricle and
arterial circulation represent two mechanical units that are joined together to
form a coupled biological system” [350, Chap. 13], it makes sense to consider
a 1D model for the aorta coupled with the lumped parameter model of the
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Fig. 11.8. Stand alone 0D model corresponding to step 2 of the splitting iterative
algorithm (see text)

heart presented in Section 10.2.1. Since the coupling is mediated by the aortic
valve, we assume that there are two possible working states for the system
Heart-Aorta.

1. Closed valve (CV) condition: when the aortic valve is closed, the two sys-
tems are actually decoupled; in particular, for the arterial tree we have a
null flow rate condition at the aorta inflow, which in terms of the charac-
teristic variables implies

W1 = −W2.
2. Open valve (OV) condition: the ventricular pressure is related to the 1D
problem by solving equation (10.82) which we recall here for the sake of
clarity:

1

Ev

dPv

dt
+
d

dt

(
1

Ev

)
Pv = −Qv.

During this phase, we assume that ventricular flow rate Qv and pressure
Pv are equal to the arterial ones at the aorta inflow (see Fig. 11.9), corre-
sponding to conditions

Qv = Q1D, Pv = P1D.

A numerical implementation of these conditions by using the incoming
characteristic variable in the 1D network is addressed in [158].

Transition between OV and CV conditions cannot be prescribed a priori.
We assume that the valve opens under the action of a differential pressure
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Fig. 11.9. Ventricular and arterial pressures during the heart beat. When the aortic
valve is open, the two pressures can be assumed to be the same

and it closes when forced by a flow reversal. This means that when the valve
is closed we need to compare at each time step the aortic and ventricular
pressure. If Pv − P1D < 0 the valve is kept closed (CV conditions), otherwise
we switch to the OV conditions until the next closure. To determine the
instant of valve closure (end of systole) we check the sign of the flux at the
aortic proximal node. At the first time step when Qv becomes negative we
“close” the valve by adopting again CV boundary condition, up to the next
heart cycle (see Fig. 11.10).
In [158] this multiscale model has been used for simulating a 1D network of

the largest 55 arteries, coupled with the heart. The microcirculation is repre-
sented by simple Windkessel models at every 1D terminal section. Figure 11.11
pinpoints the relevance of the multiscale model (right column) in comparison
with a standard approach, in which the action of the heart is described as a
boundary condition, not sensible to the real functioning of the arterial net-
work. The standard model actually damps wave reflection, in particular in the
pathological case in which right femoral artery is supposed to be surgically
closed.

Pv − P1D?Closed Valve Open Valve

≥ 0

< 0

< 0

≥ 0

Qv?

Fig. 11.10. Flow chart representation of the aortic valve modelling
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Fig. 11.11. Comparison between the results obtained with standard proximal con-
ditions (left) and the coupling with the ventricular model (right). Values of velocity
(first and third rows) and pressure (second and fourth rows) in the mid-point of
the aorta are presented. We have simulated circulation in a physiologic (solid) and
pathologic (dotted) test case. The pathologic case corresponds to a total occlusion
of the right femoral artery. The first two rows refer to an adult patient, the other
ones to an elder patient. Pictures taken from [158], reproduced with permission

11.2.3 Coupling of 3D-0D models

In our top-down approach, we have coupled the three kind of models, moving
from the finest 3D down to the coarsest 0D. In some applications a sort of
shortcut modelling can be pursued, coupling together directly 3D and 0D
models. This is, for instance, the case when the wave propagation phenomena
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Fig. 11.12. Representation of a 3D rigid-0D geometrical multiscale model with three
bridging regions (BR0, BR1, BR2). At the inlet of the 3D domain, the bridging
region has the current/flow rate Q0 as state variable. The latter is computed by
the 0D model and provided to the NS model. In the other bridging regions, the
voltage/pressures pi, i = 1, 2, are the state variables. The 0D model is forced by the
mean pressure at the interface Γ0 and by the flow rates at Γ1 and Γ2

are not of interest, and a 3D simulation needs boundary conditions that could
account in a precise way the dynamics of the complete vascular tree. An
example of clinical relevance of this situation is given in Chapter 12.
Consider for instance the model obtained by coupling a 3D model of a

region of interest and a lumped parameter model like in Fig. 11.12. Again,
three model ingredients can be identified:

K model, represented by a system of ordinary differential equations in the
form

dy

dt
+ Ay = f .

NS model, represented by the Navier-Stokes equations with appropriate bound-
ary conditions on the vascular walls Γw;

interface conditions represented by continuity conditions.

In particular, at each interface we consider the following conditions:

[ A ] area: A3D,i = meas(Γi) = A0D,i;

[ B ] mean pressure: p3D,i =
1

A3D,i

∫
Γi

pdγ = P0D,i;
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[ C ] flow rate: Q3D,i = ρ

∫
Γi

u · nidγ = Q0D,i.

As we have already pointed out for the 3D-1D coupling, condition [B] can be
replaced by a condition on the normal component of the stress

[ B1 ]
1

A3D,i

∫
Γi

(pni − (∇u+∇uT ) · ni)dγ = P0D,i.

Possible interface conditions are therefore represented by [A], [B] and [C],
or else by [A], [B1] and [C]. If the 3D model is assumed to be rigid, the three
conditions are not independent and in particular [A] and [B] (or [B1]) cannot
be prescribed together. Actually, in the 3D model the area at the interface is
constant, while in the 0D model is not. Indeed it is related to the pressure by
an algebraic law like (10.21). For this reason, typical interface conditions in
the 3D rigid-0D coupling are [B] (or [B1]) and [C].

Some numerical issues

We consider the problem represented in Fig. 11.12 where the 3D model is
assumed to be rigid and interface conditions [B1] and [C] are prescribed. We
consider the following algorithm for the numerical coupling at each time step.

Initialisation. Select an initial guess for the pressure P
(0)
0 = P0 and the

flow rates Q
(0)
1 = Q1 and Q

(0)
2 = Q2 at the interfaces. Typical choice is to

take these quantities from the previous time step. Set the iteration index
k = 0.

Loop.

1. Solve the 0D model by using the forcing terms P
(k)
0 , Q

(k)
1 and Q

(k)
2 .

This step, in particular, computes the state variables of the K model

Q
(k+1)
0 , P

(k+1)
1 and P

(k+1)
2 .

2. Solve the 3D model by using the boundary conditions given by

Q
(k+1)
0 , P

(k+1)
1 and P

(k+1)
2 . Compute the average normal stress on

Γ0, P
(k+1)
0 =

∫
Γ0
(p(k+1)n0 − (∇u(k+1) + ∇u(k+1),T ) · n0)dγ and the

flow rates Q
(k+1)
i = ρ

∫
Γi
u(k+1) · nidγ, for i = 1, 2.

Test. The iteration continues up to the fulfilment of a convergence test, for
instance:

|P (k+1)i − P (k)i | ≤ ε, |Q(k+1)i −Q(k)i | ≤ ε, i = 0, 1, 2.

As done previously, several remarks are in order.

1. Bridging region compatibility. The compartment that stands at the inter-
faces with the 3D model (bridging region) has to be devised appropriately.
More precisely, it should allow the calculation of the quantities required by
the splitting scheme. For instance, in the example presented in Fig. 11.12
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the flow rate on Γ0 and the pressures P1 and P2 on Γ1 and Γ2, respec-
tively, must be state variables of the lumped parameter model. As we have
pointed out, this ensures well posedness of the problem solved at step 1.

2. 3D defective boundary data problems. The K model (as well as the E
model) computes averaged quantities that do not provide enough bound-
ary data to the 3D model in step (2) of the loop. As for the coupling
between 3D and 1D models, we could postulate a priori single parameter
profile for the velocity or the normal stress and use the average data to
set the parameter appropriately. For instance, we could “expand” average
data into pointwise data in the following manner:
Flow rate conditions → Poiseuille parabolic profile→ (Standard) Dirichlet
conditions (see (11.5));

Average pressure conditions → Constant normal stress → (Standard) Neu-
mann conditions:

pn− ν∇u · n = Pn (11.8)

where P is constant over the interface.
At which extent numerical results are affected by this arbitrary profile
selection is a crucial question for the reliability of multiscale modelling.
We will address this problem in the next sections.

Fig. 11.13 illustrates some numerical results with a multiscale model (2D
coupled with a 0D model) with the aim of computing the flow distribution in
a by-pass anastomosis for different levels of occlusions in the stenotic vessel
(results taken from [402]). This distribution strongly depends on the behaviour
of the whole vascular system. Consequently, the multiscale 3D-0D coupling is
an appropriate numerical tool for investigating the effectiveness of the by-pass.

Remark 11.2.2 The same algorithm for the 3D-0D coupling can be extended
to the compliant case. If the 3D compliant model adopts an algebraic model for
the vascular walls, no further interface conditions are needed. In the case of a
differential (in space) structure model, conditions on the displacements should
be prescribed. Again, as we have seen in the 3D-1D coupling, a condition on
the section area is not enough for the structure problem. A workaround is to
expand it into a pointwise Dirichlet condition as we have done in (11.4).

11.2.4 Improving multiscale models

So far, we have proposed different coupled models, with some basic ideas
for their numerical implementation. A mismatch of mathematical characteris-
tics of the submodels we want to couple requires specific strategies to obtain
feasible and efficient multiscale simulations. In particular, we have already
outlined the role of the characteristic variables as interface conditions in the
coupling of E models. They allow to formulate absorbing boundary conditions
for the E model, allowing a better description of wave propagation dynamics
at the interface. Another crucial issue is the role played by bridging regions
in coupling with K models.
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Fig. 11.13. Top: Left, multiscale problem with a completely occluded host artery
and a by-pass; Right: results in the fine domain at the end of a heart beat. Centre:
as in the Top line, but for a partially occluded case. Bottom: Flow division in the
host artery and in the graft for the two cases. On the left, the completely occluded
case. On the right, the partially occluded case. Pictures taken from [402]
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There are two further issues that deserve a further investigation, for the
improvements of multiscale modelling.

Average data expansion: when coupling 3D with 1D or 0D models, we need
to convert average data into proper boundary conditions for a differential
problem that requires “pointwise data” instead. We have proposed some
practical strategies, which however introduce a level of arbitrariness in
the final numerical solution. Indeed, numerical results in [342, 527] show
how the prescription of an arbitrary velocity profile can sometimes induce
incorrect results (and maybe lead a medical researcher to wrong conclu-
sions). We need therefore to understand if there is an optimal approach
able to reduce the impact on the final solution of the unavoidable arbi-
trariness. To be more precise, if we select an arbitrary parabolic profile
at the inlet of a cylindrical pipe, as done in (11.5), we could expect that
this choice will not affect the numerical results far away from that inlet
boundary. This “entry problem” has been studied mathematically and a
review of the theory and main results may be found in [181]. In practise,
for steady problems and in conditions akin to that in the cardiovascular
system, it is commonly accepted that the effects of the profile chosen at
the inlet are no more significant after an entry length L ≈ 0.06D where D
is the diameter of the pipe (see [542]). However, for unsteady problems it
has been verified in [423] that an entry length of 40D may be not enough
to recover the analytical (Womersley) solution from a prescription of an
inlet parabolic profile. Different strategies, able to force a given flow rate
without the prescription of a velocity profile are then necessary to improve
the reliability of multiscale results.

Efficiency of coupling iterative schemes: we have presented some basic iterative
schemes, resorting to the successive solution of standard subproblems.
The effectiveness of this kind of schemes (in terms of number of iterations
required for the convergence) can be improved for instance by introducing
appropriate relaxation strategies. Convenience of such splitting schemes
in comparison with non-splitting or monolithic solvers is another relevant
point in devising multiscale models.

We investigate these two items in the next sections. We also discuss math-
ematical well posedness of multiscale models.

11.3 Defective boundary data problems

Let us consider the 3D Navier-Stokes equations (see Chapter 2):

ρ
∂u

∂t
+ ρu · ∇u− μ!u+∇P = f ,

divu = 0,

(11.9)
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that we assume to hold in the 3D domain Ω. The boundary ∂Ω still consists
of the vascular wall Γw and the artificial boundaries Γi, with i = 1, 2, . . . , m.
For the time being, we assume that the vessel is rigid, i.e.

u|Γw = 0, (11.10)

where Γw denotes the part of the boundary corresponding to the vascular
wall. The initial conditions

u(x, 0) = u0(x) (11.11)

are assigned.
We will consider the two kind of averaged data encountered in the previ-

ous section, namely conditions on mean velocity or flow rates and on mean
pressures.

11.3.1 Flow rate problem

Consider problem given by (11.9), (11.10), (11.11), together with boundary
conditions:

ρ

∫
Γi

u ·n dγ = Qi, i = 0, 1, . . . , m,

where Qi are given functions of time. In the case of a rigid domain, the incom-
pressibility of the fluid implies the following constraint on the data:

m∑
i=0

Qi = 0.

To avoid dealing with this constraint we will consider a slightly different prob-
lem, namely

Pn− ν ∂u
∂n
= 0, on Γ0, ρ

∫
Γi

u · ndγ = Qi, i = 1, . . . , m. (11.12)

In the analysis of this problem, we will prove however that there is no loss of
generality with these conditions.
In the sequel, for the sake of simplicity, we set ρ = 1.
We have already pointed out that conditions (11.12) are not enough to

guarantee the existence of a solution. Three scalar conditions should be
required for the well posedness of the problem, while (11.12) provides only
a scalar value for each Γi, for i = 1, 2, . . .m. The approach advocated in the
previous section was based on a-priori selection of a velocity profile fitting the
given flow rate (see for instance [72, 151]).
This approach is in fact pretty simple, since it actually reduces the defec-

tive boundary problem to a classical Dirichlet one. Nevertheless there are
several limitations. Real geometries (see e.g. Chapter 4) are typically far from
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being cylindrical circular and rectilinear, which are the assumptions for the
Womersley and Poiseuille solutions. Moreover, a-priori selection of a profile
may affect the entire numerical solution.
In general, a practical workaround is to expand the computational domain

(flow extensions), so that the arbitrary velocity profile is prescribed far away
from the zone of interest. The downstream section of the extension is often
made circular to apply a parabolic profile. However, this technique affects the
computational costs, in particular for unsteady computations where, as we
have pointed out, we need a rather long extension to damp out the effects of
the arbitrary choice of the velocity profile.
Different approaches that do not require arbitrary prescription of a velocity

profile are therefore very helpful.

A variational approach

A strategy proposed in [218] relies on the selection of an appropriate varia-
tional formulation for the problem at hand including all the available data.
Variational formulation by itself will complete the boundary data set with
homogeneous natural conditions. These conditions have been called some-
times do nothing conditions, since they are obtained spontaneously as a result
of the chosen variational formulation5. They are indeed less perturbing (or
“invasive”) on the (unknown) solution, since they are natural conditions for
the chosen variational formulation.
To introduce this approach for the flow rate problem, we need some func-

tional spaces and a specific notation. Set:

V̂f ≡
{
v ∈ V f :

∫
Γj

v · n = 0, ∀j = 1, 2, . . . , m
}
,

and let us denote by bi, i = 1, . . . , m the functions of V f such that, for all
j = 1, . . . , m ∫

Γj

bi · ndγ = δij , ∇ · bi = 0.

These functions are commonly called flux carriers and act as a lifting of the

flow rate data. We set u = û+
m∑
i=1
Qibi. A possible variational formulation of

the flow rate problem is the following: find û ∈ L2(0, T, V̂f)∩L∞(0, T,L2(Ω))

5 This denomination is effective but also a little bit misleading, since in any case
these conditions “do something”. This is the reason why we do not adopt this
name here.
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and p ∈ L2(0, T, Qf) such that for all v ∈ V̂f and q ∈ Qf :

(
∂û

∂t
,v

)
+ a(u,v) + c (û, û,v) + c

⎛⎝û, m∑
j=1

Qjbj,v

⎞⎠+
c

(
m∑
j=1

Qjbj, û,v

)
+ b(v, p) =

(f ,v)−
m∑
j=1

((
∂Qj

∂t
bj,v

)
+Qj a(bj,v)

)
− c

⎛⎝ m∑
j=1

Qjbj,

m∑
j=1

Qjbj,v

⎞⎠ ,
b(û, q) = 0,

(11.13)

with û(x, 0) = u0 −
m∑
j=1

Qj(0)bj.

In fact, this formulation forces some conditions implicitly, as stated by the
following proposition (for the proof see [218]).

Proposition 11.3.1 The solution of the flow problems (11.13) fulfills the
following boundary conditions on Γi, i = 1, . . .m and for all t > 0,

pn− μ∇u · n = Cin, i = 1, . . . , m,

where Ci = Ci(t) are unknown functions of time.

Remark 11.3.1 In the case of a problem with flow conditions also on Γ0,
with the constraint on the data

∑m
i=0Qi = 0, the previous proposition still

holds with C0 = C0(t) an arbitrary function of time. The case considered in
(11.12) is therefore a special case where we choose C0 = 0. Problem associated
to conditions (11.12) is of the same type of the one with all flow boundary
conditions and it does not require to force the flow rate compatibility explicitly.

Concerning the well posedness, we have the following result, proved in
[218].

Proposition 11.3.2 Under suitable assumptions on the smoothness of the
domain and the initial data, there exists a time interval in which the flow
problem (11.13) is well posed. If ||∇u0|| and |Qi| for all i are sufficiently
small the solution exists for each t > 0.

This approach has a practical drawback. The functional space V̂f is not
standard. In view of the numerical approximation, the construction of finite
dimensional functional subspaces of V̂f , as well as that of the flux carriers is
rather problematic.
Different strategies have been proposed that do not suffer from these lim-

itations even if they present other drawbacks.
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Augmented formulation

A second approach, proposed in [156], considers the flux conditions as con-
straints for the solution, to be forced by means of Lagrange multipliers (in
a way similar to the treatment of the incompressibility constraint in the
mixed formulation of the Navier-Stokes). In practise, we introduce a vector
function λ(t) and resort to the following problem: find u ∈ L2(0, T,V f ) ∩
L∞(0, T,L2(Ω)), p ∈ L2(0, T, Qf) and λ ∈ (L2(0, T ))m such that for all
v ∈ V f , q ∈ Qf :(

∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑
i=1

λi

∫
Γi

v · n dγ = (f ,v),

b(u, q) = 0,∫
Γi

u · n dγ = Qi i = 1, 2, . . .m,

(11.14)
Well posedness of this augmented formulation can be proven by means of

classical arguments (see [195]). In particular, moving from the well posedness
result of Prop. 11.3.2, it can be shown that an inf-sup condition holds for the
augmented problem, leading to the following result (see [526]).

Proposition 11.3.3 Under the same assumptions of Proposition 11.3.2, the
augmented formulation (11.14) is well posed.

Moreover, the investigation of the boundary conditions forced in the aug-
mented formulation so that the problem has a unique solution highlights the
physical significance of the Lagrange multiplier. We have in fact the following
Proposition (for the proof see [156]).

Proposition 11.3.4 The solution of problem (11.14) fulfils the following con-
ditions on the artificial boundaries Γi, i = 1, 2, . . . , m and for t > 0,

Pn− μ∇u ·n = λin. (11.15)

In other words, the Lagrange multipliers λi do coincide with the functions Ci
and play the role of normal stresses on the artificial boundaries.
The augmented formulation is based on standard functional spaces, whose

finite dimensional approximations are readily built (and present in most of
the commercial packages). However the indefinite saddle point nature of the
associated problem needs a specific analysis. Discretisation of (11.14) leads
indeed to an algebraic problem that in general is not practical to solve in a
monolithic way, i.e. with the simultaneous computation of u, P and λi.
On the one hand the resulting linear system is in general ill conditioned,

on the other hand problem (11.14) is not standard, since it deals with velocity,
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pressure and the Lagrange multipliers at the same time. Therefore, the use of
existing software packages is complex, if not impossible, in this setting.
These remarks suggest to split apart the computation of the fluid dynamics

quantities (u/P ) from that of the λi, yielding the so-called segregated methods.
In this perspective, some numerical methods have been proposed in [156,526,
528] to this aim. We limit ourselves to consider algebraic splittings of the
matrix obtained after discretisation/linearisation of the problem at hand at
each time step. This system reads Ay = c, with

A =

⎡⎣C DT LTD 0 0
L 0 0

⎤⎦ , c =

⎡⎣b0
q

⎤⎦ , (11.16)

and represents the discrete counterpart of (11.14). Matrix L corresponds to
the discretisation of the boundary integrals on Γi, D is the discretisation of the
divergence operator andC is the result of the discretisation and linearisation of(
∂u

∂t
,v

)
+a(u,v)+c (u,u,v). Correspondingly, y = [U,P,Λ]

T
, contains the

nodal values of the unknowns of velocity, pressure and Lagrange multipliers
respectively. Finally b derives from the discretisation of source terms in the
momentum equation, and the entries of vector q are the prescribed flow rates
Qi. Using the notation

C =
[
C DT

D 0

]
, L = [L, 0],

matrix A can be rewritten in the form:

A =

[
C LT
L 0

]
.

Correspondingly, we set x1 = [U, P]
T and x2 = Λ, f1 = [b, 0]

T and f2 = q.
A possible way for splitting velocity/pressure and multipliers computations

is based on the following classical block LU factorisation:[
C LT
L 0

]
=

[
C 0
L −LC−1LT

][
I C−1LT
0 I

]
,

which yields the following three-step algorithm

1) Cx̂1 = f1,
2) LC−1LTx2 = Lx̂1 − f2,
3) Cx1 = f1 −LTx2.

We can observe that:

a) steps (1) and (3) require to solve a system in C, i.e. a standard Navier-
Stokes problem (see [526]);
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b) step (2) consists of solving a problem governed by the m × m matrix
LC−1LT , being m the number of artificial sections where the flow rate is
assigned. This is typically a small number in haemodynamics problems (≤
5). Therefore, a small number of GMRES iterations is in general enough to
reach convergence. However, the explicit computation of this matrix is not
convenient, since C is large and sparse and its inversion is expensive and
memory consuming due to the well known phenomenon of fill-in. However,
iterative methods can avoid the explicit calculation of the matrix, since
they only need the application of the current matrix to a vector. This
can be done in the following way (v, r, z and w are vectors of proper
dimensions)

r = LC−1LTv ⇒

⎧⎪⎪⎨⎪⎪⎩
z = LTv,
w = C−1z⇒ Cw = z,
r = Lw.

The second step on the right hand side requires again to solve a standard
Navier-Stokes problem;

c) step (3) can be rewritten in the form:

x1 = C−1f1 − C−1LTx2 = x̂1 −w

where vector w = C−1LTx2 is a by-product of the last iteration of step
(2), so this step requires a simple vector sum.

This approach can still be computationally expensive, because of the
numerous Navier-Stokes solves involved. The cost is particularly high for
unsteady problems, since the algorithm must be applied at each time step. For
this reason, some specific techniques for computing an approximate solution
to Ay = c have been devised, like the one in [527] that guarantees that the
error introduced is confined in a small neighbourhood of the sections where
flow rate are prescribed. In Fig. 11.14 we present an example of solution in
a realistic geometrical model of a carotid bifurcation. The heuristic approach
based on the prescription of an inlet velocity parabolic profile and a constant
pressure profile at the outlet of the internal carotid (on the left) yields a dif-
ferent solution of the velocity field computed than that obtained with the
Lagrange multiplier approach (centre). The solution computed by the inexact
approach [527] (on the right) is very similar to the Lagrange multiplier one,
yet it requires about half of the computational time.

Control approach

Finally, we address a different approach that is in some sense “dual” to the
Lagrange multiplier strategy. While in the Lagrangian approach the flow rate
boundary conditions are regarded as constraints to the Navier-Stokes equa-
tions in the new approach the latter play the role of state equations. They act
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Fig. 11.14. Computations in a 3D carotid bifurcation (the square identifies the
cutting plane). Velocity field obtained with the prescription of an inlet parabolic
profile (left), the augmented Lagrangian scheme (centre), the inexact approach of
[527] (right)

as “constraints” to minimisation of a functional which enforces the desired
boundary conditions.
Clearly, for this to work we need to make Navier-Stokes problem function of

some parameters, called control variables, over which the minimum is sought.
The defective boundary problem in this way is formulated as a control problem
(see e.g. [210]).
For the sake of simplicity, we introduce this approach for the case of the

steady Stokes problem. The extension to the unsteady Navier-Stokes problem
can be found in [163].
Let us consider the following functional associated with flux conditions

(11.12)

JQ : V f → R+, JQ(w) =
1

2

m∑
i=1

(∫
Γi

w · ndγ −Qi
)2
. (11.17)

We can formulate the defective boundary problem as follows: minimise JQ(u(k))
where u(k) is subject to the constraint

−μ!u(k) +∇P = f , in Ω

∇ · u(k) = 0, in Ω

u(k) = 0, on Γ

−Pn+ μ∇u(k) · n = 0, on Γ0

−Pn+ μ∇u(k) · n = −kin on Γi i = 1, . . . , m.

(11.18)

Here, f ∈ L2(Ω) is given and the control variables is the vector k whose
elements ki ∈ R are the normal components of the stress on the artificial
boundaries. In other words, we look for the values of ki such that the solution
of (11.18) minimises JQ.
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To this aim, following e.g. [210], we introduce the constrained functional:

L(w, s;λw, λs;η) = JQ(w) + μ(∇w,∇λw)+

b(s,∇ · λw) +
m∑
i=1

∫
Γi

ηiλw · ndγ − (f ,λw)− (λs,∇ ·w).

Here λw and λs are the so-called adjoint variables associated with w and
s respectively. Solution is sought by looking for stationary points of L.
This turns to be equivalent to solve the following problem6, where for the
sake of brevity we omit to specify that the differentials are computed in
[u,p;λu, λp;k], while we put into evidence the dependence on the control
variables.
Given f ∈ L2(Ω) and Q ∈ Rm, find u(k) ∈ V,p(k) ∈ L2(Ω), λu ∈

V, λp ∈ L2(Ω) and k ∈ Rm, such that, for all v ∈ V, q ∈ L2(Ω) and ν ∈ R:

(P )

〈dLλw ,v〉 = μ(∇u,∇v) + b(p,∇ · v)+
m∑
i=1

∫
Γi

kiv · n dγ − (f ,v) = 0,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(A)

〈dLu,v〉 = μ(∇v,∇λu) + b(λp,∇ · v)−
m∑
i=1

( ∫
Γi

u · n dγ −Qi
)∫
Γi

v · n dγ = 0,

〈dLs, q〉 = b(q,∇ · λu) = 0,

(Cj) 〈dLηj , ν〉 =
∫
Γj

νλu · n dγ = 0, j = 1, . . . , m.

Here, 〈dLu,v〉 indicates the Gateaux differential with respect to u applied
to v.
This system couples a steady Stokes problem (P), its adjoint (A) and m

scalar equations (optimality conditions, denoted by (Cj)). Observe that the
last condition forces the adjoint variableλu to have a null flux on the artificial
boundaries. Well posedness of this problem can be proven by resorting to fixed
point arguments (see [163]).
The numerical solution of this problem is not a trivial task. A possible

approach is to resort to the steepest descent method applied to the minimi-
sation of the functional at hand. For more details see [163].
In Fig. 11.15 we report the computation for the same case of Fig. 11.14,

solved with the control approach. The differences with the solution computed
with the Lagrange multiplier approach, reported in the figure on the right,
are below the discretisation errors. The computational cost of this approach

6 Rigorously speaking, the problem is obtained by forcing the Gateaux differentials
of L evaluated along the direction of any test function to vanish in correspondence
of the solution [u,p;λu, λp;k] (see [210]).
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Fig. 11.15. Control approach applied to a flow rate problem in a 3D carotid bifurca-
tion. On the left, the solution obtained by solving the minimisation problem. On the
right, plot of the differences with the solution obtained by the Lagrange multiplier
approach. The differences are below the discretisation error

can be made comparable with that of the augmented formulation (solved by
the splitting scheme) thanks to a proper selection of the iterative solver (see
[163]) for the sequence of problems (P ), (A) and (Cj). The control approach
is however more versatile, as we will illustrate when considering the mean
pressure problems.

11.3.2 Mean pressure problem

Let us consider now the following problem: look for (u, p) such that equation
(11.9) is satisfied with conditions (11.10) and (11.11) and∫

Γi

pdγ = Pi, i = 0, 1, . . . , m, (11.19)

where Pi are given functions of time. As for flow rate problem, conditions
(11.19) are not enough and some further information need to be prescribed
to obtain a well posed problem. Let us illustrate some approaches that aim
at completing these conditions in a mathematically sound way.
Again, we will introduce a simple variational approach at first, then we

will consider a possible Lagrange multiplier formulation. Both approaches are
affected by some important drawbacks that the formulation based on control
approach overcomes.

A variational approach

In [218] the following variational formulation of the mean pressure problem
is proposed: given Pi(t), i = 1, 2, . . .m, find (u, P ) ∈ L2(0, T ;H1(Ω)) ×
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Fig. 11.16. A domain where variational formulation (11.20) for the mean pressure
problem is not exact. τ 1 and τ 2 are the directions orthogonal to the axis a and n
is the unit vector orthogonal to the artificial boundary

L2(0, T ;L2(Ω)) such that for all v ∈ H1(Ω) and q ∈ L2(Ω)(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) = (f ,v)−

m∑
j=1

Pj

∫
Γj

v · ndγ,

b(u, q) = 0,
(11.20)

with u(x, 0) = u0(x).
The boundary conditions added implicitly by this formulation are identi-

fied in the following Proposition (see [218]).

Proposition 11.3.5 Any smooth solution of (11.20) fulfils the following
boundary conditions on the artificial boundaries Γi, i = 0, 1, 2, . . .m and for
t > 0

Pn− ν∇u · n = Pin. (11.21)

In practise, formulation (11.20) forces the mean pressure data by imposing
it as a constant normal stress on the artificial boundaries. This is indeed the
expected solution in special domains, like a cylindrical rectilinear pipe where
Γi is normal to the axis. Here, the analytical solution of the mean pressure
problem may be computed and satisfies (11.21).
For a generic domain, however, this technique may force a too strong

condition, which does not correspond to what is physically expected. This is
for instance the case of a rectilinear cylindrical domain with Γi oblique to
its axis (see Fig. 11.16). Here, we would like the mean pressure problem to
reproduce the Poiseulle flow (in steady situations) or the Womersley solution
(in a pulsatile flow), which however in this case do not satisfy (11.21). We
should therefore consider different approaches.

Augmented formulation

An augmented formulation for pressure drop problems still stems from regard-
ing mean pressure data as constraints for the Navier-Stokes solution, leading
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to the problem: find u ∈ L2(0, T,V f)∩L∞(0, T,L2(Ω)), p ∈ L2(0, T, Qf) and
λ ∈ (L2(0, T ))m such that for all v ∈ V f , q ∈ Qf :(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑
i=1

1

Γi

∫
Γi

Pdγ = (f ,v),

b(u, q) +

m∑
j=0

λj

∫
Γj

qdγ = 0,

1

|Γi|

∫
Γi

Pdγ = Pi i = 1, 2, . . .m.

(11.22)

Unfortunately, this problem is not well posed. Indeed, it is possible to
verify (see [155]) that the conditions forced implicitly by this formulation are

u(x, t) · n = λi(t) on Γi.

In general, since λi are non zero constants in space, the latter conditions are
incompatible with the fact that u = 0 on Γw. The discontinuity on Γ i ∩ Γw
leads to a value of the velocity on the boundary which cannot represent a trace
for H1(Ω), the natural functional space where we seek the velocity solution
of our flow problem. Indeed, the augmented formulation is appropriate in the
case where only a slip condition (i.e u · n = 0) is imposed on Γw, a situation
which however is not physical for a Navier-Stokes problem.
For this reason, the augmented formulation for mean pressure drop prob-

lems is not investigated any further.

Control approach

The approach based on control theory presented for the flow rate problems
can be straightforwardly extended to the mean pressure problem. With this
aim, we introduce the following functional

JP (s) =
1

2

( m∑
i=0

1

|Γi|

∫
Γi

s dγ − Pi
)2

(11.23)

and, as for the flow rate conditions, we consider a constrained minimisation
problem. Again, we assume that Navier-Stokes equations play the role of con-
straint for the solution minimising (11.23). As control variables we still assume
the constant normal stresses k = [ki]. It is worth remarking that this is not the
only possibility, since other choices for the control variables can be pursued,
such as flow rates (see [163]).
Still referring to steady Stokes equations for the sake of simplicity, we

introduce the following Lagrange functional:

L(w, s;λw, λs;η) = JP (s) + a(w,λw) + d(s,λw)

+

m∑
i=0

∫
Γi

ηiλw · n dγ − (f ,λw) + d(λs,w).
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A stationary point of L satisfies the following problem: given f ∈ L2(Ω) and
Pj ∈ R, j = 0, . . . , m, find k ∈ Rm, u(k) ∈ Vdiv, p(k) ∈ H1(Ω),λu ∈ Vdiv
and λp ∈ H1(Ω), such that, for all v ∈ Vdiv, q ∈ H1(Ω) and ν ∈ R,

(P )

⎧⎪⎨⎪⎩ 〈dLλu ,v〉 = a(u,v) + d(p,v) +
m∑
i=0

∫
Γi

kiv · ndγ − (f ,v) = 0,

〈dLλp , q〉 = d(q,u) = 0,

(A)

⎧⎪⎨⎪⎩
〈dLu,v〉 = a(v,λu) + d(λp,v) = 0,

〈dLp, q〉 =
m∑
i=0

( 1
|Γi|

∫
Γi

p dγ − Pi
) 1
|Γi|

∫
Γi

q dγ + d(q, λu) = 0,

(Cj) 〈dLki, ν〉 =
∫
Γi

νλu · ndγ = 0, i = 0, . . . ,m.

One of the most interesting features of this approach is that functional to
be minimised can be adjusted for including some possible a priori information
on the behaviour of the solution on artificial boundaries. For instance, for a
boundary of a pipe non orthogonal to the axis (see Fig. 11.16), where formu-
lation (11.20) fails, the functional to be minimised can be adapted in order to
include the physical evidence of the prevalent axial direction of the flow. We
resort in this case to the functional

L(w, s;λw, λs;η) = JP (s) + a(w,λw) + d(s,λw)

+

m∑
i=0

∫
Γi

ηiλw · n dγ − (f ,λw) + d(λs,w) + S(w, τ 1, . . . , τm) (11.24)

where in a problem with d space dimensions

S(w, τ 1, . . . , τm) =
1

2

d−1∑
l=1

m∑
i=0

∫
Γi

|w · τ l|2 dγ, (11.25)

and τl are the orthogonal directions to the pipe axis a, which in this case do
not coincide with the tangential directions to the boundary Γi. The term S
forces the velocity components orthogonal to a to be small. With a proper
choice of control variables, this procedure yields good numerical results.
For instance, suppose to prescribe a mean pressure

∫
Γ pdγ = P =

1g/(s2 cm) at the outlet Γout of the domain T (see Fig. 11.17 top). Boundary
Γout is supposed to be an artificial boundary in a pipe where a Poiseuille flow
holds, so that vertical velocity is zero.
By minimising functional (11.23), an undesirable vertical velocity at the

outlet occurs (Fig. 11.17, centre) while this is not anymore the case when
using the penalised functional (11.24) with (11.25) and the complete stress
(normal and tangential) as control variables. Fig. 11.17, bottom, show that
the latter strategy is able to strongly reduce the wrong tangential velocities.
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τ
u

a

n

Fig. 11.17. Simulations in a 2D pipe with an oblique boundary: in the centre
axial and normal velocity components by solving a mean pressure problem with the
minimisation of (11.23). On the bottom the same problem solved by minimising
(11.25): the velocity component along τ is strongly reduced (maximum value in the
last figure is 10−5)

Remark 11.3.2 As previously pointed out, different variational formulations
lead to different boundary conditions. For instance, if we exploit the vector
identity ∇(1/2|u|2) = u · (∇u)T , momentum equations can be equivalently
reformulated

∂u

∂t
+ u · ∇u− u · (∇u)T − ν!u = −∇

(
P +

1

2
|u|2

)
.

Variational formulations associated to this form lead to natural conditions

where the total pressure P +
1

2
|u|2 replaces the pressure P . This form of the

momentum equations is therefore well suited for defective boundary conditions
on the total pressure. Other strong formulations of the momentum equations
well suited for other kinds of boundary conditions are considered in [32].
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11.3.3 Defective boundary problems: the compliant case

When describing a compliant domain, different models for the vessel mechan-
ics could be considered, as discussed in Chapter 3. Models which do not involve
a differential operator for the space variables, like the algebraic laws consid-
ered in Chapter 10 do not need boundary conditions for the wall problem.
Models which exhibit second order differential operators in space, on the con-
trary, require boundary conditions on the artificial boundaries that typically
either prescribe the position d or the normal stresses (see Chapter 3). In this
case, defective problems occur also for the structure problem and a complete
analysis is still missing. Here, we limit ourselves to some basic remarks.
Possible approaches are suggested by the strategies presented in the rigid

case. For instance, let us assume that a boundary condition is prescribed on
the area of the i−th artificial section∫

Γi(d)

dγ = Ai(t). (11.26)

This condition can come from coupling a 3D compliantmodel with a 1D model
or can be inferred by measurements. It is clear that (11.26) can be regarded
in general as an average condition for the vascular wall position. As a matter
of fact, assume that the interface Γi is planar and the z-axis is aligned along
its normal. Then, we may write

d(x, y, z, t) =

{√
x2(t) + y(t)2 = Ri(θ, t),
z = zi,

where θ = tan−1(y/x). In this case, condition (11.26) provides∫ 2π
0

∫ R(θ,t)
0

ρdρdθ = Ai(t). (11.27)

As done in Section 11.2 (eq. (11.4)), we can pursue a heuristic approach similar
to the one for flow rates. The latter was essentially based on the a-priori
selection of a velocity profile, so that condition (11.27) can be fulfilled by
arbitrarily selecting a profile forRi(θ, t). In particular, assumption of a circular
shape implies to take Ri independent of θ. In this way, (11.27) reduces to

πR2i (t) = Ai(t)⇒ Ri(t) =
√
Ai(t)

π
.

More in general, one can set Ri(t, θ) = Ci(t)R0(θ) where Ci(t) is selected in
such a way that:

C2i (t)

2π∫
0

R20(θ)

2
dθ = Ai(t).

In practise, this amounts to assume that boundary area evolves according to
a homothety of the reference area described by R0(θ) (see [52]).
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Fig. 11.18. “Artificial” section of a compliant domain

As for the case of flow rate conditions, this strategy upgrades defective
data for the displacement to classical Dirichlet conditions and actually requires
low computational costs. This is an important feature in particular for fluid-
structure interaction problems which are usually computationally very expen-
sive.
However, different mathematically sound approaches can still be pursued.

Control approach can be extended to the compliant case, by including con-
ditions on structure in the functional to be minimised. For instance, pressure
and area conditions in the form∫

Γi

Pda = Pi,

∫
x∈Γi(d)

dγ = Ai (11.28)

can be faced by resorting to the minimisation of

Jp,A =
1

2

(∫
Γi

Pda− Pi
)2
+

(∫
x∈Γi(d)

dγ −Ai
)2

with the constraint given by fluid-structure equations.
Another possible approach refers to the augmented formulation. In [352] an

augmented formulation for a compliant 3D model is considered with flow rate
boundary conditions. Since no data were available for the structure, homoge-
neous natural conditions have been introduced. In Fig. 11.19 we report the

Fig. 11.19. Comparison between the inlet profiles in a rigid and compliant simula-
tion. The results are obtained by prescribing the sinusoidal in time flow rates with
a Lagrange multiplier approach [352]
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velocity profile computed with this approach at the inlet of a compliant ves-
sel, compared to the solution of the corresponding rigid case. The solution is
axial-symmetric, so that only half profile is reported.

11.4 Some well posedness results

In this section we recall some theoretical results on multiscale models. We
illustrate in particular some stability properties concerning the coupling of
3D and 1D models. Then we will present a general well posedness analysis of
3D/0D models and its extension to the 1D/0D case.

11.4.1 Coupling of 3D and 1D models

Referring to Fig. 11.20, let us consider a 3D−1D coupling, where for the sake
of simplicity we assume that the interface between the models is normal to
the z axis. The 3D model is given by

∂u

∂t
+

(
1

2
∇|u|2 + (∇× u) × u

)
−∇ · (2νD(u)) +∇P = f x ∈ Ωf , t > 0,

∇ · u = 0 x ∈ Ωf , t > 0,

ρw
∂2ηr

∂t2
+ σηr = Φr − Φext x ∈ Γw, t > 0,

(11.29)
where ρw is the wall density, ηr is the radial displacement, while we assume
that axial and circumferential displacements are null, and Φr−Φext is the dif-
ference of stresses in the radial direction induced by the fluid and the external
organs. Observe that the structure is modelled by the independent rings model
(structure is considered as a stack of independent slices or rings), while the
convective term of the fluid problem has been rearranged in order to have nat-
ural conditions associated with the total pressure (see Remark 11.3.2). System

is completed by the initial conditions ηr(x, 0) = η0,
∂ηr

∂t
(x, 0) = ur for x ∈ Γw

Fig. 11.20. Domain for the coupled 3D/1D problem
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and u(x, 0) = u0 for x ∈ Ω. At the inlet Γin of the 3D domain we can assume
both Dirichlet and Neumann conditions for the Navier-Stokes equations.
For z ∈ (a, b) we assume the 1D model to satisfy equations (10.27) that

we report here for completeness

∂A

∂t
+
∂Q

∂x
= 0,

∂Q

∂t
+
∂

∂x

(
α
Q2

A

)
+
A

ρ

(
∂p

∂x

)
+KR

Q

A
= 0.

We assume also that area and pressure are related by the algebraic law (see
Section 10.1.1)

P − Pext = ψ(A,A0, β) = β
√
A−

√
A0

A0
.

On z = b we assume absorbing boundary conditions, while in z = a we set((
P +

1

2
|u|2

)
I− 2νD(u)

)
· n = P1D +

1

2
|u1D|2,∫

Γf

u · ndγ = Q1D.
(11.30)

To the 3D model we associate the following energy functional

E3D =
1

2
||u||2L2(Ωf(t)) +

ρw

2
||∂ηr
∂t
||
2

L2(Γw,0)
+
b

2
||ηr||2L2(Γw,0)

where Ωf(t) is the fluid domain at time t while Γw,0 is the reference structure
domain, which here reduces to the wall boundary of Ωf (0). For the 1D model,
we select the following energy

E1D =
1

2

∫ b
a

Q2

A
dz +

∫ b
a

∫ A
A0

ψ(τ, A0, β)dτdz.

We have then (see [159]) the following Proposition.

Proposition 11.4.1

1. If homogeneous Dirichlet conditions for the velocity are prescribed on Γin,
the following ( energy decay property) holds

E3D(t)+ ν
∫ t
0

||D(u)||2L2dt+ E1D(t)Kr
∫ t
0

∫ b
a

Q2

A2
dzdt ≤ E3D(0)+ E1D(0).
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2. If non homogeneous Neumann conditions for the fluid are prescribed on
Γin with data g, we have ( energy estimate)

E3D(t) + ν
∫ t
0

||D(u)||2L2dt+ E1D(t)Kr
∫ t
0

∫ b
a

Q2

A2
dzdt ≤(

E3D(0) + E1D(0) + C
∫ t
0
||g||2L2(Γin)

)
e2νt.

Remark 11.4.1 The previous results can be extended to more complex domains
with many interfaces between 3D and 1D models. As a matter of fact, they
can be applied locally at each interface.

11.4.2 Coupling of 3D and 0D models

We consider now the multiscale 3D/0D depicted in Fig. 11.18. In particular
we make the following basic assumptions.

1. The NS model is given in terms of classical primitive variable formulation
of Navier-Stokes equations. We assume that initial data and forcing terms
are small enough, for the sake of well-posedness of the problem (see [218]).

2. Nonlinear terms of K model (introduced by the modelling of valves and of
the heart action) are described by suitable smooth functions (see Chap-
ter 10).

This coupled problem can be analysed by a fixed point strategy represented
in Fig. 11.21. Precisely, we regard the solution as the fixed point of an operator
T given by the sequence of NS and K problems (denoted respectively as PNS
and PK). Setting T = PK ·PNS the solution to the coupled multiscale problem
satisfies

s = T s = PK · PNSs.
In this framework, we add two further assumptions.

3. The splitting into subproblems PNS and PK represented in Fig. 11.21
is bridging region compatible. With reference to Fig. 11.18, the role of
interface variables in the splitting is given in Table 11.1.

4. Defective boundary problem PNS is formulated in terms of variational
formulations following the variational approach advocated in Section 11.3.

T

s0D

PKPNS
s3Ds0D

Fig. 11.21. Splitting/fixed point reformulation of multiscale model of Fig. 11.18
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Table 11.1. Role of matching data in a bridging region compatible splitting for
multiscale model depicted in Fig. 11.12

Input PNS = Output PK Input PK = Output PNS
Γ0 pressure P0 flow rate Q0

Γ1 flow rate Q1 pressure P1

Γ2 flow rate Q2 pressure P2

More precisely, let V̂f denote the space

V̂f ≡
{
v ∈ V f :

∫
Γ0

v · n = 0
}
,

and b0 a function of V f such that

∫
Γ0

b0 · n dγ = 1. Set u = û +Q0b0.

The following variational formulation holds. Find û ∈ L2(0, T, V̂f) ∩
L∞(0, T,L2(Ω)) and p ∈ L2(0, T, Qf) such that for all v ∈ V̂f and q ∈ Qf :(

∂û

∂t
,v

)
+ a(u,v) + c (û, û,v) + c (û, Q0b0,v) + c (Q0b0, û,v)+

b(v, p) = (f ,v)−
(
∂Q0

∂t
b0,v

)
+Q0 a(b0,v)− c (Q0b0, Q0b0,v)−

P1

∫
Γ1

v · ndγ − P2
∫
Γ2

v · n dγ,
b(û, q) = 0,

(11.31)
with û(x, 0) = u0 −Q0(0)b0.
By collecting classical results of calculus and results proven in [218], [121],

we have that:

1. NS Problem: If initial and forcing data are small enough, PNS is well
posed.

2. K Problem: DAE system of PK is of index 1 and can be reformulated
as a well posed Cauchy problem.

3. Multiscale: There exists T � > 0 such that T is compact in (0, T �]. This
means that the application of T to bounded sequences of arguments yields
convergent sequences in appropriate topologies (for a more precise defini-
tion of compactness see e.g. [556]).

The latter step actually proves the existence of a fixed point, thanks to the
classical Schauder’s fixed point theorem (see [409]).

11.4.3 Coupling of 1D and 0D models

Following a similar outline as for the 3D-0D coupling, in [147] the coupling
between 1D and 0D models is investigated. It is assumed that the 1D model is
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represented in terms of characteristic variablesW and that the DAE system
of lumped parameters model is reduced to an ordinary differential system, so
that the coupled model reads

∂W

∂t
+

[
μ(W1,W2) 0

0 λ(W1,W2)

]
∂W

∂x
= 0, in R+ × [0, T ],

dy

dt
= G(y, t) + f in [0, T ].

(11.32)

System (11.32) is completed by initial conditions w(x, 0) = w0(x), y(x, 0) =
y0(x) and the matching conditions:

W1(a, t) = g(y,W2), f = f (W),

where x = a is the interface between the two submodels, g is a suitable
function relating the characteristic variable W1 with the entry of the state
vector y associated with the interface condition, for instance the interface
pressure, and correspondingly forcing term f would depend on the interface
flow rate Q = Q(W).
Results obtained for the 3D/0D coupling can be strengthened in the case

of 1D/0D problems. In fact the analysis can be carried out again by refor-
mulating this problem in a fixed point framework. Let PK be the operator
corresponding to solve the lumped parameter model for a given flow rate Q
at the interfaces and PE be the operator corresponding to solve 1D model for
given pressure interfaces and to compute the associated interface flow rates.
Then the problem at hand can be reformulated as the search of the fixed point
for the operator:

T = PE · PK .
Under mild assumptions on the regularity of the initial data and on λ and μ
it is possible to prove that:

1. PK is well posed for 0 < t ≤ T0 with T0 ≤ T ;
2. PE is well posed for 0 < t ≤ T1 with T1 ≤ T ;
3. T is a contraction in 0 < t ≤ T̂ ≤ min(T0, T1), i.e.

||T (Q1)− T (Q2)||C0[0,T̂ ] ≤ K||u1 − u2||C0[0,T̂ ]

with K < 1, being Q1 and Q2 two interfaces flow rates properly selected.

The latter inequality is stronger than the compactness proved for the cor-
responding operator in the 3D/0D. In particular, well known Banach con-
traction theorem (see e.g. [556]) proves in this case that the solution to the
coupled problem exists and it is unique.
Recent results on the coupled problem stating the existence of local and

global classical solutions under assumptions on the data may be found in
[435–437].
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11.5 Numerical techniques for the coupling

We here consider possible numerical techniques for the coupled problems. In
particular we will distinguish between monolithic solvers where the coupled
problem is treated as a whole and substructuring-type solvers. In the latter,
the solution is sought by an iterative procedure where each model is com-
puted in sequence. Monolithic solvers avoid the problem of setting up a fast
convergent sequence of iterates. Yet, they may be more difficult to implement
and sometimes give rise to badly conditioned problems. Substructuring proce-
dures, on the other hand, may allow to use existing software already developed
for solving subproblems separately.

11.5.1 Monolithic solvers

Let us start by considering the case of a 3D-0D coupled problem where K
models describe terminal vessels, as we have done in Section 10.1.5. More
precisely, we assume that the presence of terminal vessels is described in the
frequency domain by means of an appropriate impedance function ζi(ω) for
i = 1, 2, . . . , m (see Chapter 10) to be coupled to the 3D problem at the m
distal boundaries of the latter. On the proximal boundaries of the NS problem
we assume for the sake of simplicity that boundary data (pressure or flow
rates) are given, for instance by measurements (see Fig. 11.22, where m = 2).
If πi(ω) and χi(ω) represent the Fourier transform of the interface pres-

sures Pi(t) and flow rates Qi(t) respectively, the 0D model would provide a
relation in the frequency domain of the type

πi(ω) = ζi(ω)χi(ω),

which, transformed back to the time domain gives

Pi(t) =
1

T

t∫
t−T
Zi(t− τ )Qi(τ )dτ. (11.33)

Here Zi is the inverse Fourier transform of ζi and T is the heart beat period.
Conditions (11.33) cannot be regarded as mean pressure boundary conditions,

Fig. 11.22. 3D/0D coupling with K models described by impedance functions ζ1
and ζ2 in the frequency domain. Here lumped parameters model have the role of
describing terminal vessels (see Section 10.1.5)
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since the pressure is given as a function of the (unknown) flow rate. However,
we can recast (11.33) in the variational formulation of the 3D NS problem in
a way similar to the one pursued for the variational formulation of the mean
pressure problem (see (11.20)). We set (for j = 1, . . . , m)∫

Γj

(Pn− νD(u) · n) · vdγ = Pj
∫
Γj

n · vdγ.

In this way, a variational formulation of the 3D/0D coupled problem reads:(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑
j=1

T 0Dj = (f ,v),

b(u, q) = 0,

(11.34)

where

T 0Dj =
1

T

t∫
t−T
Zj(t− τ )

∫
Γj

u(τ ) · ndτ
∫
Γj

v · ndγ. (11.35)

In practise, we obtain special Robin boundary conditions for the Navier-Stokes
problem.
Discretisation of this problem can be carried out by means of methods

addressed in Chapter 2. For instance, if space discretisation is based on the
finite element method and time discretisation on finite differences, then veloc-
ity field at time tn is represented as

uh(x, t
n) =

∑
i

Uni ϕi(x)

beingϕk the Lagrangian basis functions of the finite element space andU
n
k the

nodal values vector. The term on the right hand side of (11.35) can be discre-
tised in time by resorting to classical quadrature formulae. If the quadrature
nodes do coincide with time levels, we have simply

1

T

tn+1∫
tn+1−T

Zj(t
n+1 − τ )

∫
Γj

u(τ ) · ndτ
∫
Γj

v · ndγ ≈

1

T

⎛⎝ k∑
k=k

wkZj(t
n+1 − tk)

∫
Γj

ϕj · n
∑
l

∫
Γj

ϕl · n

⎞⎠Ulj,
where wk are the quadrature weights and the quadrature nodes are such that

T − tn+1 ≤ tk ≤ tk+1 ≤ . . . ≤ tk−1 ≤ tk ≤ tn.
Remark 11.5.1 In the oversimplified case of a purely resistive impedance
function Zj(t) = RjTδ(t), being δ the Dirac generalised function, and we
have

T 0Dj = Rj

∫
Γj

u(t) · ndγ
∫
Γj

v · ndγ.
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This approach has been adopted for instance in [531] where the relevance
of an appropriate impedance function is clearly shown by numerical results.

An algebraic formulation

Thus far, we have considered a monolithic formulation of a coupled 3D/0D
problem in which however the primal role of K models was to provide bound-
ary conditions which could well represent the general behaviour of the vascular
tree external to the 3D model. In particular, blood dynamics in terminal ves-
sels is computed only as far as it influences the 3D solution at the interfaces.
Let us consider now a different approach in which one is interested also

to the evolution of the state variables in the lumped parameter model. We
assume therefore to describe 0D problems in the time domain as a system of
ordinary differential equations.
For the sake of clarity we will consider an example, namely the multiscale

problem represented in Fig. 11.23, where the K model is given by a network
featuring a capacitance C, three resistances and three inductors. The forcing
term in the network is given by a voltage/pressure generator where Pp(t) is a
given function. The NS model is given by Navier-Stokes equations and bridg-
ing region compatibility requires that flow rate is prescribed at the boundaries
of 3D domain. A model for the compliance of the wall can be included as well.
For the sake of simplicity however we assume that the pipe is rigid, so that
flow rate at inflow must equal that at outflow. Equations associated to the K
model are

L
dQ

dt
+RQ+ P = Pp − P1 + P2,

C
dP

dt
−Q = 0,

(11.36)

where L = L1 + L2 + L3 and R = R1 + R2 + R3, P is the pressure jump
associated with the capacitance C, P1 and P2 are computed by the 3D model,
and Q is the flow rate in the circuit.

Fig. 11.23. An example of 3D/0D geometrical multiscale model
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Assume that both 3D and 0D problems have been properly discretised in
time, and the 3D problem also in space, linearised when required. Since the
considerations we are going to make are rather general and apply to other
couplings like the 3D/1D or the 1D/0D, we indicate with the suffix f the
“fine” model (in this case NS) and with c the “coarse” model (here the K
model). We also assume that we are using a multistep time advancing scheme
for both models, with number of steps pf +1 and pc+1, respectively. At each
time step we have to solve a linear system in the form[

Acc Acf
Afc Aff

][
sn+1c

sn+1f

]
=

[
bn+1c

bn+1f

]
+

[
gc(s

n
c , s

n−1
c , . . . , sn−pcc )

gf(s
n
f , s

n−1
f , . . . , s

n−pf
f )

]
. (11.37)

Vectors gc and gf account for the terms due to the time advancing schemes in
the two submodels, that depend on the solution s at the previous time steps.
Let us denote by Nu and Np the number of degrees of freedom for velocity and
pressure in the fine (NS) model. Suppose moreover to solve the flow boundary
problem by means of a Lagrange multiplier approach, so that sf ∈ RNu+Np+1
is here given by sf = [U, P, λ], while the vector of the unknowns of the coarse
model is formed by the state variables of the network, namely sc = [Q, P ].
Finally, suppose to use an implicit Euler time discretisation for both the fine
and the coarse models (pc = pf = 0). From (11.36) we have therefore:

Acc =
[ 1
Δt
L+ R 1

−1 C

]
, Aff =

⎡⎢⎢⎣
1

Δt
M+K DT Λ

D 0 0

ΛT 0 0

⎤⎥⎥⎦ ,
where M is the mass matrix, K is the discretisation of the diffusion-convection
operator of the momentum equation and D is the discretisation of the diver-
gence operator in the NS problem, while the discretisation of the term related
to the Lagrange multiplier has been denoted here by Λ.
Once pressure in 3D model is computed for a given flow rate, mean pres-

sures P1 and P2 at the interfaces are usually computed by means of quadrature
formulae

Pk = |Γk|−1
∫
Γk

Pdγ ≈ |Γk|−1
∑
i

wi,kp(xi, yi, zi) k = 1, 2.

It is practically convenient to assume that quadrature nodes xi, yi, zi on Γk
do coincide with nodes of the space discretisation of the problem7. We may

7 In general quadrature nodes will not correspond to grid nodes and interpolation
procedures will be necessary.
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finally write (see also (11.14)):

Acf =
[
01×Nu acf 0

01×Nu 01×Np 0

]
, afc,i =

{
0 if (xi, yi, zi) /∈ Γ1,2
wi,k if (xi, yi, zi) ∈ Γ1,2

,

Afc =

⎡⎢⎣0Nu×1 0Nu×10Np×1 0Np×1
−1 0

⎤⎥⎦ ,
and

bn+1c =

[
PP (t

n+1)

0

]
,bn+1f =

⎡⎢⎣F
n+1

0

0

⎤⎥⎦ , gc =
⎡⎣ 1ΔtLQn

0

⎤⎦ , gf =
⎡⎢⎢⎣
1

Δt
MUn

0

0

⎤⎥⎥⎦ .
A possible solution strategy is to solve the complete system (11.37) as a

whole at each time step. As already pointed out, also for simple cases as for the
example at hand, this approach can have the drawback of a badly conditioned
matrix. An alternative approach is a Schur complement decomposition of the
problem. By a formal elimination of the coarse solution sn+1c , we obtain(
Aff −AfcA−1cc Acf

)
sn+1f = bn+1f + g2(s

n
f )−AfcA−1cc

(
bn+1c + gc(s

n
c )
)
.

(11.38)
In general, matrix A−1cc is not available and appropriate techniques of solution
are required (see the next section). However, in the simplest coarse models
like the one at hand, matrix A−1cc can be easily computed

A−1cc =
1

(Δt−1L +R) + 1

[
C −1
1 Δt−1L +R

]
, (11.39)

and problem can be solved by (11.38). In fact, by a simple algebraic argument,
the Schur complement can be explicitly computed

Aff −AfcA−1cc Acf =

⎡⎢⎢⎢⎢⎢⎣
1

Δt
M +K D r

DT 0 0

rT − ΔtC

L +Δt(R+ 1)
acf 0

⎤⎥⎥⎥⎥⎥⎦ . (11.40)

System (11.38) can be therefore solved, yielding the fine solution sn+1f . Coarse
solution is then recovered by solving

sn+1c = A−1cc
(
bn+1c + gc(s

n
c )−Acf sn+1f

)
.

In this way, the coupled problem is split into a sequence of 3D and 0D prob-
lems, each of them being in general smaller and better conditioned than the
whole heterogeneous system.
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11.5.2 Iterative substructuring approaches

The block Gauss elimination procedure proposed in the previous section is
seldom feasible, since in general matrix A−1cc is neither easy nor convenient
to compute explicitly. For this reason, here we address some possible solution
schemes resorting to the separate computing of the submodels that do not
need the explicit computation of A−1cc .
A first, simple method for solving the problem is the following iterative

scheme.

1. Let sn+1f,0 be a time extrapolation of s
n+1
f based on the previous time

evaluations of sf .
2. For k = 0, 1, 2, . . . solve{Accsn+1c,k+1 = b

n+1
c + gc(s

n
c , . . . , s

n−pc
c )−Acf sn+1f,k

Affsn+1f,k+1 = b
n+1
f + gf (s

n
f , . . . , s

n−ff
c )−Afcsn+1c,k+1

(11.41)

up to the fulfillment of an appropriate convergence test.

Observe how this splitting approach is essentially based on the same fixed
point formulation devised for the proof of well posedness of multiscale prob-
lems.
The first issue is the convergence of the iterations. This problem can be

analysed by regarding this scheme as a block Gauss-Seidel scheme for solving
system (11.37), or, equivalently, as a Richardson preconditioned scheme (see
e.g. [403]). By classical arguments, the convergence of the scheme holds if the
spectral radius ρ of matrix[

Acc 0
Afc Aff

]−1 [Acc Acf
Afc Aff

]
,

i.e. the maximum modulus of the matrix eigenvalues, is less than 1.
In practice, it is quite hard to compute ρ, so this convergence analysis

is seldom able to give quantitative responses about convergence and it has
essentially a theoretical relevance. A practical approach for driving the iter-
ative scheme to the convergence is to introduce a parameter to be properly
tuned. In the present case, (11.41) can be modified as follows (for the sake of
notation we drop time index n+ 1 from now on)

Accsc,k+1 = bc + gc(snc , . . . , sn−pcc )−Acf sn+1f,∗ ,

Aff sf,k+1 = bf + gf(snf , . . . , s
n−pf
f )−Afcsn+1c,k ,

sn+1f,∗ = θs
n+1
f,k+1 + (1 − θ)sn+1f,k .

(11.42)

In the example above, this means that average pressures used as forcing terms
for the coarse problem are modulated by the relaxation parameter θ. An appro-
priate choice of θ can yield or improve convergence of the iterative scheme,
even if a priori it is not easy to identify its optimal value.
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This scheme has been used for 3D/1D coupling illustrated in Fig. 11.24.
The 3D model features rigid boundaries and mimics a stented segment of a
cylindrical artery. Pressure drop problem is solved for the NS model, being
pressure computed as a function of the area computed by E model. The latter
receives data on flow rate, that are formulated in terms of the incoming charac-
teristic variables (W2 at interface Γup and W1 at interface Γdw). Velocity and
pressure solutions in 3D model (bottom, centre) are illustrated together with
area in upstream (bottom, left) and downstream (bottom, right) of Fig. 11.24.
Effects of the stent rigidity on the upstream area can be recognised. Relaxation
parameter θ has been tuned in this case by a trial and error approach.
The main drawback of this approach is related to the computational costs.

Iterations of these coupling algorithm are nested into the time loop, and this
in general implies high computational costs. For this reason, more sophisti-
cated algorithms can be devised to reduce the number of iterations. Possible
approaches resort to a dynamical choice of relaxation parameters, or to more
effective preconditioners of the coupled problem at hand.

Remark 11.5.2 Splitting schemes like (11.41) or (11.42) can be regarded
as the final result of an approximation process starting from a fully accurate
model of blood flow problems. If Ω denotes the cardiovascular system (a) in
Fig. 11.25, we can summarise the steps performed as follows.

1. Domain splitting:Ω is split into Ωf and Ωc subdomains ((b) in Fig. 11.25).
Original problem is formulated as a set of subproblems. This is the first
step of any domain decomposition method (see e.g. [408,511]). In domain
decomposition theory domain splitting can be performed with or without
overlap among subdomains. Here we assume that subdomains do not over-
lap. Appropriate interface conditions describe the link between two subdo-
main solutions.

2. Model coarsening: Fully model in Ωc is downscaled to a coarse model ((c)
in Fig. 11.25). For lumped parameter models this step requires to keep
trace of interface conditions that need to be incorporated in K problem by
means of a proper selection of bridging regions.

3. Iterative substructuring schemes: Solution of the overall problem is pur-
sued by a sequence of subdomain solutions suitably coupled ((d) in
Fig. 11.25). In particular, for coarse K models bridging region compat-
ibility guarantees that in the downscaled problem interface conditions are
correctly included.

This picture based on domain decomposition theory can be useful for the
set up and analysis of effective ad hoc preconditioners.

Another approach for reducing computational costs is based on the intro-
duction of a fully explicit splitting of subproblems.
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Pressure E
NS

problemdrop

tn

tn+2

tn+1 k = k + 1

pn+1k+1 (A
n+1
k+1 )

Γup : Wn+12,k+1 =W2(Q
n+1
k+1 ,W

n+1
1,k+1)

Γdw : Wn+11,k+1 = W1(Q
n+1
k+1 ,W

n+1
2,k+1)

Qn+1k+1 = θQ3D,k+1 + (1− θ)Qn+1k

Fig. 11.24. 3D/1D multiscale problem: solution based on an iterative splitting
solver with a relaxation parameter θ
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Ω

a) b)

c) d)

Ωf

Ωf
Ωc

Ωf

Fig. 11.25. Geometrical multiscale modelling as a domain decomposition method

11.5.3 Decoupled schemes

A simple way for reducing the computational costs essentially relies on the
time dependent nature of the problems at hand. At each time step tn+1 we
compute an extrapolation s�f of s

n+1
f as a function of the fine solution at the

previous time steps and we solve{
Accsc = bc + gc(snc , sn−1c , . . . , sn−pcc ) −Acf s�f
Aff sn+1f = bn+1f + gf(s

n
f , s

n−1
f , . . . , s

n−pf
f )−Afcsn+1c .

(11.43)

In practise, we perform scheme (11.41) for one time solely. A flow-chart rep-
resentation of this scheme is given in Fig. 11.26.
The computational advantage is clear, no nested iterations are required.

However, both stability and accuracy issues need to be addressed.

1. Absolute Stability in time of the scheme is affected by the explicit treat-
ment of the fine solution in the first equation. The region of absolute
stability (see Chapter 2) will be reduced even when unconditionally sta-
ble time advancing schemes such as implicit Euler are used for the time
discretisation.
A precise quantitative assessment of these stability restrictions is in prac-
tise neither easy nor convenient. It is however worth pointing out that in

tn+1

Coarse

Coarse Fine

Fine

sn+1c

sn+1c

sn+1f

snfsnc

tn

Fig. 11.26. Semi-implicit solver for multiscale problems
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Fig. 11.27. Comparison between the pressure values of the stand-alone and the
multiscale solutions at three different times (t=0.005, 0.01 and 0.015), using a 3D
linear elastic model for the structure

many situations time advancing schemes used for solving single subprob-
lems are explicit or semi-explicit. This is the case of 3D Navier-Stokes
solver with a semi-explicit treatment of the convective term or of Lax-
Wendroff schemes for 1D Euler equations (see Chapter 10). Numerical
experience suggests that in many situations stability bounds associated
with time advancing schemes are not significantly affected by the split-
ting scheme (11.43). This is the case for instance of results presented in
Fig. 11.13.
Another example is provided by the 3D/1D model presented in [159]. In
Fig. 11.27 we report a comparison between the pressure computed by
a stand-alone 3D compliant model and a multiscale model, solved with
a scheme in the form (11.43). Stand-alone model is a 10 cm long tube,
the multiscale one is split into two domains (3D and 1D) of 5 cm each.
Matching conditions yield the continuity of the total stresses and fluxes.
Explicit coupling scheme (11.43) has been successfully used also for the
application of multiscale modelling to paediatric surgery, as shown in Sec-
tion 12.4.

2. Time Accuracy. Time accuracy of the scheme (11.43) is not lower than
that of the uncoupled scheme (11.41) provided that an appropriate extrap-
olation s�f is computed. More precisely, if qc denotes the accuracy of the
time advancing scheme for the coarse problem and qf the one for the fine
problem, an extrapolation of order qc of sf is enough for maintaining an
accuracy of order qc to the solution of the coarse problem. The accuracy
of the fine solution will depend both on qf and qc. More precisely, on the
basis of classical results of numerical analysis (see [268]), it is possible to
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prove that accuracy of the fine model is given by:

q = min(qf , qc + 1). (11.44)

Since it is reasonable that for the fine model one would have a greater
accuracy in time than for the coarse model, it follows from (11.44) that,
for a desired order of accuracy q for the fine solution, it suffices that the
coarse model be solved by a scheme of order q − 1.

11.6 Conclusions

Complexity of the vascular system demands for the set up of convenient math-
ematical and numerical models that go beyond the traditional ones based
on Navier-Stokes, Euler or Kirchhoff equations. By themselves, these models
have an intrinsic appeal and correctness that make them mathematically and
numerically self-consistent. However, when we try to couple them, we face the
unusual task of mixing different kind of differential equations, which are not
conceived to function in a cooperative model. Many options are possible for
yielding a multiscale model, starting from heuristic approaches, that however
are often oversimplified and unreliable. From the mathematical and numerical
viewpoints, set up of mathematically sound multiscale models raises new chal-
lenges both at the theoretical and practical level. The set up of effective and
accurate numerical methods for the multiscale modelling and their analysis is
not trivial and is actually still an open problem, especially for the simulation
of 3D compliant domains. On the other hand, geometrical multiscale approach
can play a relevant role in numerical treatment of spurious reflections at the
artificial boundaries (see [155]). This approach can be of interest also in other
engineering problems, featuring similar geometric multiscale complexity, like
the design of intake/out-takes of internal combustion engines, the study of
complex hydrological basins for environmental applications, or the design of
electrical circuits (see e.g. [6, 116]).
More in general, reliable numerical solution of defective problems is by

itself an interesting problem. For instance, in [392] a method for improving
the accuracy in blood flow ultrasound measures is proposed, based on the
extensive use of numerical simulations with flow rate defective boundary con-
ditions. The focal point of these simulations is the prescription of the flow rate
without the prescription of a velocity profile that induces a bias in results of
ultra sound measurements.
Future perspectives in the mathematics for the vascular system should

includemultiscale modelling in time. Some pathological effects such as plaques
formation or aneurysms growth require time scales of weeks, months or even
years. Nevertheless, basic mechanisms that could be responsible of these
pathologies develop over the time scale of a heart beat (seconds). An ade-
quate multiscale-in-time modelling of these phenomena represents an impor-
tant challenge for cardiovascular mathematics.


