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Reduced models of the cardiovascular system

Joaquim Peiró Alessandro Veneziani

Due to the large number of vessels involved and the multitude of different
length scales required to accurately represent the flow in the various regions
of the cardiovascular system, simulations of the flow of blood in the system
based on full 3D models (see Chapters 2 and 3) are beyond the capability
of current computers and they will be for years to come. Moreover, the huge
amount of data that would be generated by such simulations is costly to
process and of difficult clinical interpretation.
However, it is possible to devise simplified models exploiting specific fea-

tures of blood flow, such as the basically cylindrical morphology of the ves-
sels. Even though these models are highly simplified with respect to the local
dynamics, they can provide reliable numerical results at a low computational
cost. Interpretation is much straightforward, thus making them ideal as an
everyday tool for use in clinical practice.
Moreover, these models are well-suited for describing systemic dynamics

such as feedback mechanisms that play an important role in the correct work-
ing of the vascular system. These dynamics typically involve mechanical and
biochemical phenomena that can be hardly described in terms of complete 3D
models.
In this chapter, we address simplified models and in particular we consider:

1. one-dimensional (1D) models in which the space dependence is reduced
only to the axial coordinate;

2. lumped parameter (or 0D) models, where the space dependence is discre-
tised, by splitting the cardiovascular system into a set of compartments.
The associated mathematical model is typically based on differential alge-
braic equations (DAE), often represented in terms of hydraulic or electric
networks.

It is worth mentioning that studies on one-dimensional models of blood
flow were first presented by Leonhard Euler in his seminal article entitled
Pro principa motu sanguinis per arterias determinando [139]. In spite of
the simplifying assumptions behind these models, they are very useful and
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many of their analytical and numerical aspects still deserve further investiga-
tion1.

10.1 One-dimensional (1D) models

There are several ways of deriving a 1D model of an incompressible fluid
flowing in a compliant pipe. One could start from the incompressible Navier-
Stokes equations and perform an asymptotic analysis by assuming that the
radius of the vessel, R0, is small compared to its length l, i.e. R0

L
� 1, that

will permit us to simplify the governing equations by discarding the higher
order terms in R0L , as proposed in [25]. Alternatively, the 1D model could be
derived by assuming cylindrical symmetry and integrating the Navier-Stokes
equations on a generic section as described in [364].
Here we will follow the approach advocated and described in [238,239] and

derive the governing equations from conservation principles. This approach is
more general and it does not require any simplifying assumptions concerning
the geometry of the vessel section.

10.1.1 Derivation of the governing equations

We consider a simple compliant tube, illustrated in Fig. 10.1, as a model of
the artery. We assume that the axis of the vessel is rectilinear and coincides
with the x axis. The starting point for the derivation of the one-dimensional
governing equations is Reynolds’ transport theorem for an arbitrary control
volume Vt with boundary ∂Vt and outer normal n. A formal derivation of this
formula can be found in Chapter 2 of this book and in [401]. It states that,
for a continuous function f = f(t,x), we have

d

dt

∫
Vt

f dV =

∫
Vt

∂f

∂t
dV +

∫
∂Vt

f ub · ndσ, (10.1)

where x stands for (x, y, z) and ub is the velocity of the boundary of volume
Vt. This is composed of the arterial wall ∂Vt,w and the two end sections S1 and
S2, that are assumed normal to the axis. On S1 and S2 the normal component
of ub is 0, while on ∂Vt,w velocity ub does coincide with the velocity uw of
the arterial wall, so that∫

∂Vt

f ub · ndσ =

∫
∂Vt,w

f uw · n dσ. (10.2)

1 “Thus in explaining the motion of the blood, we come up against the same insu-
perable difficulties which clearly prevent us from more accurately investigating all
the works of the Creator; wherein we ought constantly to admire and to venerate
much more the highest wisdom conjoined with omnipotence since truly not even
the greatest human ingenuity avails to understand and explain the true structure
of the slightest micro-organism”, L. Euler [139].
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Fig. 10.1. Notation used to describe a simple compliant tube

Here uw is taken to be different of the fluid velocity u = (u1, u2, u3) to
allow for the presence of a permeable lumen. The relative velocity between
the arterial wall and the fluid at the lumen is given by

w = uw − u.

To obtain the one-dimensional form of the conservation laws, we consider
area-averaged values of the relevant variables. The area-averaged value of f
is denoted by f̄ and given by

f̄ =
1

A

∫
S

f dσ, (10.3)

where A = A(x, t) =
∫
S
dσ is the area of the cross section S. Using this

notation, we write a volume integral as∫
Vt

f dV =

∫ x2
x1

[∫
S

f dσ

]
dx =

∫ x2
x1

Af̄ dx, (10.4)

where x1 and x2 (x2 > x1) are the x−coordinates of the cross sections S1 and
S2.
Given that x1 and x2 are independent of time, the left-hand side term of

equation (10.1) can be written as

d

dt

∫
Vt

f dV =

∫ x2
x1

∂

∂t

(
Af̄
)
dx. (10.5)

The presence of a permeable wall makes the evaluation of the second term of
the right-hand side of equation (10.1) more involved. After (10.2), this term
is calculated as∫

∂Vt,w

fuw · n dσ =

∫
∂Vt,w

fw · n dσ +

∫
∂Vt,w

fu · n dσ.
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Observe that∫
∂Vt,w

fu · n dσ =

∫
∂Vt

fu · ndσ −
∫
S1

fu ·n dσ −
∫
S2

fu · n dσ =∫
∂Vt

fu ·n dσ +

∫
S1

fu1 dσ −
∫
S2

fu1 dσ,

where u1 is the x-component of the velocity u. Thanks to the Gauss’ theorem,
we have∫

∂Vt,w

fu · ndσ =

∫
Vt

∇ · (fu) dV +
∫
S1

fu1 dσ −
∫
S2

fu1 dσ,

so that using area-averaged quantities, we finally obtain∫
∂Vt,w

fuw · ndσ =
∫
∂Vt,w

fw · n dσ −
∫ x2
x1

∂

∂x

[
A
(
fu1

)]
dx+∫

Vt

∇ · (fu) dV, (10.6)

Finally, including the expressions (10.5) and (10.6) into equation (10.1) leads
to ∫ x2

x1

∂

∂t

(
Af̄
)
dx =

∫ x2
x1

(∫
S

∂f

∂t
dσ

)
dx+

∫ x2
x1

(∫
∂S

fw ·n dγ

)
dx−∫ x2

x1

∂

∂x

[
A
(
fu1

)]
dx+

∫ x2
x1

(∫
S

∇ · (fu) dσ
)

dx,

and, given that this is true for any values of the coordinates of the end sections
x1 and x2, the final form of the one-dimensional transport theorem for a
generic variable f is

∂

∂t

(
Af̄
)
+

∂

∂x

[
A
(
fu1

)]
=

∫
S

[
∂f

∂t
+∇ · (fu)

]
dσ +

∫
∂S

fw · n dγ. (10.7)

This formula is general and applicable to both compressible and incom-
pressible fluids. Now we will proceed to derive the governing equations by
invoking the principles of conservation of mass and balance of momentum.

Conservation of mass

The equation representing the conservation of mass in the flexible tube is
obtained by taking f = 1 in equation (10.7). If we further assume that the
fluid is incompressible, i.e. ∇ · u = 0, we get

∂A

∂t
+

∂

∂x
(Aū1) =

∫
∂S

w · ndγ, (10.8)

where the term in the right-hand side could be interpreted as a volumetric
outflow per unit length and unit time.
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Balance of momentum

Here we take f = u1 in the area-averaged Reynolds’ transport expression
(10.7), and assume again that the fluid is incompressible, to obtain

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

∫
S

[
∂u1
∂t
+ u · ∇u1

]
dσ +

∫
∂S

u1w · n dγ , (10.9)

which we now write as

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

∫
S

Du1

Dt
dσ +

∫
∂S

u1w · ndγ , (10.10)

where D
Dt
= ∂
∂t
+ u · ∇ denotes the material derivative (see Chapter 3). To

calculate the first term on the right-hand side of equation (10.10) we use the
balance of momentum derived in Chapter 3 for the control volume Vt in the
form ∫

Vt

D

Dt
(ρu) dV =

∫
Vt

ρf b dV +

∫
∂Vt

Tn dσ, (10.11)

where f b represents the body force per unit volume and T is the Cauchy
stress tensor. Assuming that the density ρ is constant and using the divergence
theorem, the balance of momentum equation (10.11) is written as∫

Vt

Du

Dt
dV =

∫
Vt

f b dV +
1

ρ

∫
Vt

∇ · T dV. (10.12)

Now, invoking the constitutive equation for the fluid, we could write the stress
tensor T as

T = −pI +D, (10.13)

where p denotes the pressure, I is the identity tensor, and D represents the
tensor of deviatoric stresses due to the viscosity of the fluid. Setting ∇·D = d
we also write

∇ · T = −∇p+∇ ·D = −∇p+ d,

and, therefore, equation (10.12) as∫ x2
x1

(∫
S

Du

Dt
dσ

)
dx =

∫ x2
x1

(∫
S

[
f b +

1

ρ
(−∇p+ d)

]
dσ

)
dx. (10.14)

Since x1 and x2 can be arbitrarily chosen, the integrands in the left and right-
hand sides of equation (10.14) must be equal, therefore we could write the
x-component of this equation as∫

S

Du1

Dt
dσ =

∫
S

[
fb1 +

1

ρ
(−∂p

∂x
+ d1)

]
dσ, (10.15)
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where d1 is the x-component of d. Substituting this expression in equation
(10.10) gives

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

∫
S

[
fb1 +

1

ρ
(−∂p

∂x
+ d1)

]
dσ +

∫
∂S

u1w · n dσ,

(10.16)
which can be expressed using area-averaged values as

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

A

ρ

(
ρf̄b1 −

∂p̄

∂x
+ d̄1)

)
+

∫
∂S

u1w · ndσ. (10.17)

The term u21 in this equation is handled by defining a momentum-flux cor-
rection coefficient α (sometimes called the Coriolis coefficient), which is a
function of the velocity profile, as

u21 =
1

A

∫
S

u21 dσ = αū21. (10.18)

For a flat profile we have α = 1 and for a parabolic flow α = 4/3.
The term representing the viscous forces d̄1 is taken to be a linear function

of the area-averaged velocity ū1 of the form

A

ρ
d̄1 = −KRū1, (10.19)

where KR is a strictly positive quantity which represents the viscous resis-
tance of the flow per unit length of tube. It is worth observing that for a
proper definition of the coefficient, (10.19) is fulfilled by the Poiseuille flow
(see Chapter. 5). The final form of the balance of momentum equation is

∂

∂t
(Aū1) +

∂

∂x

(
αū21

)
= Af̄b1 −

A

ρ

(
∂p̄

∂x

)
−KRū1 +

∫
∂S

u1w · ndσ. (10.20)

The unknowns in the system given by (10.8) and (10.20) are p, A and ū1.
Their number exceeds the number of equations and a common way to close
the system is to explicitly provide a relationship between the pressure of the
vessel p and the vessel area A. This relation will be derived from the models
introduced in Chapter 3, in particular the algebraic relation (3.94).

Simplified models of wall mechanics

By assuming static equilibrium in the radial direction of a cylindrical tube,
from one-dimensional models of wall mechanics described in Section 3.4.4 one
can derive an algebraic relationship of the form

p = Pext + β
(√

A−
√

A0

)
, (10.21)
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where

β =

√
πh0E

(1− ν2)A0
. (10.22)

Here h0 and A0 = A0(x) denote the vessel thickness and sectional area, respec-
tively, at the equilibrium state (p, Q) = (Pext, 0), E = E(x) is the Young
modulus, Pext is the external pressure, assumed constant, and ν is the Pois-
son ratio. This ratio is typically taken to be ν = 1/2 since biological tissue is
practically incompressible. More generally, we may have

p = Pext + Φ(A;A0, β), (10.23)

being Φ a suitable function of the vessel section A and of the reference area
A0 as well as some mechanical parameter β. The main properties of Φ are

∂Φ

∂A
> 0, Φ(A0;A0, β) = 0,

for all allowable values of A, A0 and β.
The algebraic relation (10.23), and in particular (10.21), assumes that the

wall is instantaneously in equilibrium with the pressure forces acting on it.
Wall inertia and viscoelasticity can be included, yielding a differential pres-

sure law. For instance, moving from (3.91) we may write

p− Pext = γ0
∂2η

∂t2
+ γ1

∂η

∂t
+ Φ(A;A0,β), (10.24)

where γ0 = ρwh0, γ1 =
γ
r20
and the last term is the elastic response, modelled

through equation (10.21). Here γ is the same viscoelasticity coefficient of (3.93)
and η is the wall position. In the following, we indicate by Ȧ and Ä the first
and second time derivative of A. By assuming a circular profile A = πη2, thus

∂η

∂t
=

1

2
√
πA

Ȧ,
∂2η

∂t2
= π−

1
2

(
1

2
√
A
Ä − 1

4
√
A3

Ȧ2
)
. (10.25)

Using these relations into (10.24) we obtain an equation that links the pressure
also to the time derivatives of A, which we write in all generality as

p− Pext = Φ̃E(A, Ȧ, Ä;A0) + Φ(A;A0,β),

where Φ̃E is a non-linear function which derives from the treatment of the
terms containing the time derivative of η. Since it may be assumed that the
contribution to the pressure is in fact dominated by the term Φ, we will
simplify this relationship by linearizing Φ̃E around the state A = A0, Ȧ =
Ä = 0. By so doing, after some simple algebraic manipulations, one finds

p− Pext =
γ0

2
√
πA0

Ä +
γ1

2
√
πA0

Ȧ + Φ(A;A0,β). (10.26)
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Replacing this expression for the pressure in the momentum equation
requires to compute the term

A

ρ

∂p

∂x
=

γ0A

2ρ
√
πA0

∂3A

∂x∂t2
+

γ1A

2ρ
√
πA0

∂2A

∂x∂t
+

A

ρ

∂Φ

∂x
.

Wall inertia introduces a dispersive term into the momentum equation, while
the viscoelasticity has a diffusive effect. This has implications on the numerical
solution.
In the following we will consider only relation (10.21) to discuss the prop-

erties of the resulting scheme and its numerical formulation. Most of the dis-
cussion, however, can be extended to any model based on a pressure-area
relation of the form (10.23).

10.1.2 Different formulations of the governing equations

In what follows, we will assume that the lumen is impermeable (w · n = 0),
that body forces are neglegible (f̄b1 = 0), and we will also simplify the notation
by denoting the area-averaged axial velocity by u instead of ū1 and using p
instead of p̄. Defining the mass flux across a section as Q = Au =

∫
S
u1dσ,

the equations (10.8) and (10.20) now read

∂A

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(
α
Q2

A

)
+

A

ρ

(
∂p

∂x

)
+KR

Q

A
= 0.

(10.27)

The couple (A,Q) will be referred to as conserved variable since they stem
naturally from the application of conservation principles.
The system of equations (10.27) can be expressed alternatively in terms

of the variables (A, u). By simple manipulations one gets

∂A

∂t
+

∂Au

∂x
= 0,

∂u

∂t
+ (2α− 1)u∂u

∂x
+ (α− 1)u2∂A

∂x
+
1

ρ

∂p

∂x
+KR

u

A
= 0.

(10.28)

Both systems (10.27) and (10.28) may be written in conservation form. Let
us assume for instance that the wall mechanics is described by the algebraic
pressure-wall relationship (10.21).
For the system (A,Q) we have

∂Q

∂t
+

∂G

∂x
(Q) = B(Q), (10.29)
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with

Q =

[
A
Q

]
, G =

[
Q

αQ
2

A
+
∫A
A0
a
ϕ
∂ρ
∂a

da

]
and

B =

[
0

−KR QA + Aϕ
(
∂ρ
∂A0

∂A0
∂x
+ ∂ρ
∂β
∂β
∂x

)]
. (10.30)

For the (A, u) system, if for the sake of simplicity we assume α = 1, we have

∂U

∂t
+

∂F

∂x
(U) = S(U), (10.31)

with

U =

[
A
u

]
, F =

[
Au
pt

]
and S =

[
0

−KR uA

]
. (10.32)

Here

pt =
u2

2
+

p

ρ
, (10.33)

denotes the total pressure (scaled by the constant density).
In the case α = 1 the two weak forms are equivalent for smooth solutions,

in particular when A and Q are C1 continuous functions with respect to both
arguments and A is strictly positive. Nevertheless, the assumption α = 1 is
quite realistic in the problems at hand since the velocity profile is in fact
almost flat (see Chapter 1 and [350]) and the solutions within each of the
approaches presented in this chapter will be sufficiently smooth to favour the
use of the (A, u) system which has a simpler structure.
The (A, u) and the (A,Q) systems given respectively by equations (10.28)

and (10.27), together with the algebraic pressure-area relationship (10.21),
will be starting points of the numerical schemes discussed in Section 10.1.8.

Remark 10.1.1 Even though the values of the coefficients α, KR and β are
fixed a priori once we make assumptions on the velocity profile and on the wall
mechanics, it is also possible to interpret them as parameters of the model that
can be obtained by fitting the results of the 1D model to available in vivo or
3D computational data as proposed in [314].

10.1.3 1D models for blood solutes

The relevance of the dynamics of blood solutes and its coupling with haemo-
dynamics have been extensively addressed in Chapter 7. Since the dynam-
ics of these solutes is relevant for regulatory mechanisms that involve large
parts of the cardiovascular system and are fundamental for its proper working
(see Section 10.2.4), it is worth to devise simple models also for biochemical
dynamics (see [108]). As done in Section 7.1 of Chapter 7, we assume that the
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solute concentration c(x, t) satisfies a (linear) advection-diffusion equation in
the form

∂c

∂t
− μs!c+ u · ∇c = 0,

in the domain Ωt (u is the blood velocity), together with a suitable initial
condition c(x, 0) = c0(x). We assume that a Robin condition ν∇c·n= χ(cext−
c) is given on the vascular wall. Here coefficient χ denotes the permeability.
For the sake of simplicity, we will assume that cext = 0.
By using area-averaged quantities, in a way similar to the one adopted for

the Navier-Stokes equations, and setting Γ = Ac, it is possible to obtain the
following 1D solute equation

∂Γ

∂t
+

∂

∂x

(
ω
ΓQ

A

)
+Kc

Γ

A
= 0, x1 < x < x2, (10.34)

to be completed with suitable boundary conditions. Coefficient ω depends on
the axial velocity and concentration profiles (similar to the Coriolis coefficient)
and Kc is a coefficient depending on the viscosity μs and the permeability χ.
Equation (10.34) can be therefore coupled to (10.27) for a complete model of
the blood and solutes dynamics. For an extensive analysis see [108].

10.1.4 Characteristic variables

Considering the pressure-area relationship (10.21) and assuming that β =
β(x) and A0 = A0(x) we recall that applying the chain rule we obtain

∂p

∂x
=

∂p

∂A

∂A

∂x
+

∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0
∂x

,

where
∂p

∂A
=

β

2
√
A
.

System (10.28) can therefore be written inquasi-linear form as

∂U

∂t
+H

∂U

∂x
= f (U), (10.35)

or, more explicitely [
A
u

]
t

+

[
u A

c2/A u

] [
A
u

]
x

=

[
0
f

]
,

where

c2 =
A

ρ

∂p

∂A
=

β
√
A

2ρ
and f =

1

ρ

[
KRu−

∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x

]
.
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Under the assumption that A > 0, which is indeed a necessary condition to
have a physically relevant solution, the matrix H has two real eigenvalues
λ1,2 = u± c and the corresponding left eigenmatrix L is

L =

[
lT1
lT2

]
=

[
c
A 1

− c
A
1

]
, (10.36)

where li indicates the i-th left eigenvector such that lTi H = λil
T
i . We will

also indicate by R =
[
r1 r2

]
= L−1 the corresponding right eigenmatrix. For

the typical values of velocity, vessel area and elastic parameter β encountered
in arteries under physiological conditions, we have that λ1 > 0 and λ2 < 0.
Therefore our system is strictly hyperbolic and subcritical (see [277] for these
definitions).
The characteristic variables can be determined by integrating the differen-

tial system ∂UW = L. It may be shown that this is possible for our problem
and that the two characteristic variables are

W1 = u+ 4c = u+ 4A1/4

√
β

2ρ
, (10.37)

W2 = u− 4c = u− 4A1/4
√

β

2ρ
. (10.38)

Since β > 0, we may write, as previously reported in [160], the variables (A, u)
in terms of (W1,W2) as

A =

[
(W1 −W2)

4

]4 (
ρ

2β

)2
u =

(W1 +W2)

2
. (10.39)

In the case where f = 0 equations (10.35) can be transformed in a decou-
pled system of equations for the characteristic variables, which component-
wise reads

∂W1

∂t
+ λ1

∂W1

∂x
= 0,

∂W2

∂t
+ λ2

∂W2

∂x
= 0.

(10.40)

We recall that the expression of the characteristic variables, as well as that
of the λi are independent from the choice of the governing variables of our
problem. This is not the case for L and R.

Remark 10.1.2 Smoothness of the solution. We recall some of the main
results regarding the hyperbolic system at hand. It has been shown in [7, 524]
that, using a pressure-area relationship of the form

p− Pext = G0

[(
A

A0

) δ
2

− 1
]
,
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where δ > 1 and G0 is a constant elasticity parameter, and under some reason-
able conditions on the smoothness of boundary and initial data, the solution of
system (10.27) remains smooth. Two critical assumptions to reach this con-
clusion are the pulsatility of the inflow data and a bound on the length of
the tube; both are verified for physiological flow in the human arterial tree.
In the same work it is shown that, if the solution is smooth and the initial
and boundary data are such that A > 0, A remains strictly positive for all
times. In [155] an energy inequality was derived which bounds a measure of
the energy of the hyperbolic system in terms of the initial and boundary data.
Furthermore, in the same work it has been found that the quantity

s =
1

2
ρAu2 +

∫ A
A0

(p− Pext)dA,

is an entropy function for the system with associated flux equal to F s = Q pt.

10.1.5 Boundary conditions

The characteristic analysis and the fact that for physiological conditions the
flow is subcritical (i.e. λ1 > 0 and λ2 < 0) leads us to the conclusion that only
one boundary condition has to be imposed at each end of the tube. Different
type of boundary conditions may be envisaged. For the sake of simplicity let
us focus on the boundary x = x1, the arguments being easily extended to
the other boundary point. Here, the sign of the eigenvalues tell us that W1
is associated to the characteristics entering the domain, while W2 to the one
exiting. Let here U = U(t) indicate the vector of primitive variables at the
boundary point x = x1, either in the form (A,Q) or (A, u), depending on the
choice of the adopted differential model. A boundary condition may take the
general form

ϕ(U(t)) = g(t), for t > 0, (10.41)

being ϕ a C1 function defined for all allowed values of U and g a given
function of time. Not all the choices are possible, indeed we require that the
boundary be not characteristic, a condition that in our case is satisfied if for
all admissible U

rT1 (U)
∂ϕ(U)

∂U
= 0, (10.42)

where r1 is the right eigenvector associated to λ1.
In practice we are interested in specific types of boundary conditions, some

of which are detailed in the following paragraphs.

Non-reflecting boundary conditions

Non-reflecting boundary conditions are those that allow the simple wave asso-
ciated with the characteristics exiting the domain to leave without spurious
reflections. Typically those conditions are expressed in terms of the character-
istic variables. Again, let us focus on one of the two boundary points, here we
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choose x = x2, and on problem (10.31), the modifications for system (10.29)
and for the other vessel end being immediate.
Following [502] and [216] non-reflecting boundary conditions at x = x2 are

provided as

lT2

[
∂U

∂t
− S(U)

]
x=x2

= 0,

which indeed is equivalent to state that at x = x2

dW2(t)

dt
= lT2 S(W2(U(t))), for t > 0.

Here we have set W2(t) = W2(x2, t), U(t) = U(x2, t) and we have recalled
that the characteristic variable may in our case be expressed in function of
the primitive variables of our differential problem. Being basically a condi-
tion on the incoming characteristics, relation (10.42) is satisfied. Numerically,
this ordinary differental equation will be discretised in time, for instance the
computation of W2 in x = x2 and at time tn+1 = tn + Δt may be carried
out as

Wn+1
2 =Wn

2 +ΔtlT2 S
n,

where l2 and S are computed from the solution at time t
n.

For the notable case S(U) = 0, or B(Q) = 0 if we use (10.29), we have
W2 = const, that is a constant incoming characteristic variable.
In our case a condition of this type may be convenient at the distal section

(typically x = x2) whenever one can neglect possible contributions of waves
coming from the distal circulation, while at the proximal section (x = x1)
we would like to prescribe some given values of pressure or flux data coming
either from measurement or other models. When the peripheral circulation is
taken into account, we need specific models for the terminal vessels that will
be discussed later.

Proximal conditions

It is immediate to verify that the prescription of either a flux Q (or velocity
u) or area A at x = x1 is allowable. For instance, we may impose

A(x1, t) = g(t), t > 0,

where g(t) is a known function obtained, for instance, from the knowledge
of the pressure time variation at x = x1. This type of condition is clearly of
reflective type and the simple wave associated to the outgoing characteristic
(W2 in this case) may be partly reflected back into the computational domain.
Yet, in the case where the measurements are accurate enough, this reflection
is indeed a physical one.
It is also possible to have available values of both pressure (and thus area)

and flux variations at the proximal section. For instance, measurements of
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pressure pulse together with flux data could be obtained from Doppler ultra-
sound. Clearly the hyperbolic system does not allow to impose both conditions
at the same time. However, one may construct a set of allowable boundary
conditions through the exact or approximate solution of a Riemann prob-
lem [199] at the boundary using the computed values and the known values
at the inlet. We will go back to this technique when we discuss the numeri-
cal treatment of the boundary data. Alternatively, one may set the incoming
characteristics variables as

W1(x1, t) =W1(p̃(t), ũ(t)),

where p̃(t) and ũ(t) are the given (measured) values of pressure and velocity,
whileW1(p, u) denotes the analytic expression of W1 as function of these two
variables. In both cases we are not enforcing pressure and velocity exactly (it
is not compatible with the hyperbolic character of the differential problem).

Distal boundary of terminal vessels: coupling with a model of
peripheral circulation

The human arterial system is a network of large arteries branching out into
many smaller arteries, arterioles and capillaries. We are usually interested in
the results in the larger arteries in the network. Blood vessels further down the
arterial tree are very small and numerous. They have, all together, an impor-
tant role in determining the haemodynamics in the large arteries since they
offer flow resistance and pressure wave is partially reflected at each bifur-
cation. An accurate description of all these vessels and districts although
virtually possible is unfeasible for the huge amount of data required not to
mention the computational costs. For these reasons, the downstream circu-
lation is usually described in terms of lumped parameter models. In Section
10.2 we will introduce extensively these kind of models and their derivation.
So, in general terms, an appropriate way for accounting outflow conditions
is to resort to multiscale models, namely coupling 1D and lumped parameter
models. Chapter 11 will be devoted to this topic. Here we limit ourselves to
some considerations when the role of the lumped parameter models is only
limited to provide a boundary condition for the 1D model, without further
details on the peripheral circulation.
Denoting by πT (ω) and χT (ω) the Fourier transform of PT (t) = P (xout, t)

and QT (t) = Q(xout, t) respectively (see Chapter 2) at the end of the 1D
network, the behaviour of the downstream network can be represented by the
terminal impedance (see Fig. 10.14, left) as

ζT (ω) =
π(ω)

χ(ω)
, (10.43)

that in general is a complex-valued function. An extensive discussion about
the role of the impedance function in describing the vascular tree haemody-
namics can be found in Chapter 13 of [350]. Here the impedance is the trans-
fer function describing in a simplified way the downstream blood dynamics
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that actually influences the hemodynamics in the proximal district repre-
sented by our 1D model. The counterpart of (10.43) in the time domain
is obtained by computing the inverse Fourier transform of the terminal
impedance, ZT = F−1(ζT ) and by applying the convolution theorem

pT (t) =

∫ t
t−H

ZT (t − τ )QT (τ )dτ, (10.44)

where H denotes the heart beat duration. Relation (10.44), possibly approxi-
mated with suitable numerical quadratures, provides the boundary condition
to be used for the 1D network model in correspondence of terminal vessels.
Since possible examples of impedance functions used in the literature stem

from the representation of the terminal districts by lumped parameter models,
often represented in terms of electrical circuits, we postpone their description
to the next section (see Section 10.2.3).
Relation (10.44) is not strictly of the form (10.41) and its admissibility for

a general ZT should be investigated. However, it has proved very effective in
the several test cases carried out so far.

10.1.6 Numerical compatibility relations at the boundary

When calculating the numerical solution of our system we need to compute at
the boundary points the values of both variables Q and A (or u and A), yet
the boundary condition provides only a single relation. We need to complete
this piece of information with an additional relation that can only come from
the differential equation. A possibility is to project the equation along the
outgoing characteristics, giving rise to the so-called compatibility relations
[408]. Again, for the sake of simplicity let us consider first the point x = x1
and the differential equation written in the quasi-linear form (10.35). The
compatibility relation in this case reads

lT2

[
∂U

∂t
+H

∂U

∂x
− f (U)

]
= 0, at x = x1, t > 0.

By simple manipulations it may be recognised that this expression may
be written as

dW2(x(t), t)

dt
− lT2 f (U) = 0, at x = x1, t > 0, (10.45)

where dW2(x(t),t)
dt

is the total derivative of W2 along the characteristic curve

of equation dx(t)dt = λ2.
In a numerical setting relation (10.45) may be approximated by following

the characteristic line backwards. Using a first-order scheme we may set at
t = tn+1 = tn +Δt that

W2(x1, t
n+1) =W2(x1 − λ2Δt, tn) +ΔtlT2 f (U), (10.46)
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Fig. 10.2. Extrapolation of the characteristic W2 in x1

where λ2 and U are computed at x = x1 and t = tn. More accurate schemes
may be devised following the ideas applied in [48] in the context of Navier-
Stokes equations. Relation (10.46) is called extrapolation of the characteristic
variable, and coupled with the boundary condition provides a full set of (non-
linear) equations for the numerical computation of the boundary data. An
analogous relation may be found at x = x2 for W1.
We may note that if f = 0, which is the case if we neglect the friction term,

and the dependence of B and A0 on x, then (10.46) reduces toW2(x1, t
n+1) =

W2(x1 − λ2Δt, tn).

10.1.7 Extensions of the basic model

In the previous sections we have introduced some assumptions on the geometry
of the vessel and on the smoothness of the coefficients characterizing the wall
dynamics. These hypotheses are acceptable for small segments of the vascular
tree, however more general models should be introduced to deal with segments
with discontinuous properties, bifurcations and curved vessels. These will be
discussed in the following sections.

Discontinuous material properties

In some cases, material properties of the wall are not smooth. In particu-
lar, coefficient β introduced in (10.21) features discontinuities for instance in
stented arteries (Fig. 10.3) or in by-pass grafts. The Young’s modulus E can
exhibit jumps due to the differences between the vascular tissue and the pros-
thesis (see e.g. [269]). It is also possible for the area of the vessel to change
abruptly due to certain pathologies, e.g. an aneurysm.
Since the derivative of the elastic coefficient β appears in the balance

of momentum equation, the presence of discontinuities in β requires careful
treatment in our models. There are basically two approaches for handling
material discontinuities.
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Fig. 10.3. Discontinuity of Young’s modulus in the case of a stented artery. Bottom
left: regularisation approach; bottom right: domain splitting

1. Data regularisation: the discontinuous data are suitably replaced by
smooth functions that can be differentiated and the models presented
above can be used straightforwardly.

2. Domain splitting : the vessel with discontinuous properties is split into a
set of smooth segments and the coupling between each pair of segments is
accomplished through suitablematching or interface conditions. A reason-
able choice is to assume continuity of fluxes and thus impose the continuity
of mass flux and total pressure across the interface, i.e.

Q = ulAl = urAr , (10.47)

Pr = ρ
u2l
2
+ βl(

√
Al −

√
Al0 ) = ρ

u2r
2
+ βr(

√
Ar −

√
Ar0 ). (10.48)

These interface conditions will preserve the conservation properties of the
(A, u) system.
In practice, the problem can be solved iteratively, by solving the sequence
of problems on each segment. In this case, the interface conditions (pos-
sibly reformulated in terms of characteristic variables) become boundary
conditions on each segment, following a classical domain decomposition
approach (see e.g. [408]).

Treatment of bifurcations

The 1D model of the compliant tube can be extended to handle the arterial
tree by adopting a domain splitting technique similar to the one used for
the discontinuous case. Again we require suitable interface conditions at the
bifurcations or branching points of the tree (see Fig. 10.4).
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Fig. 10.4. Arterial tree bifurcation: notation

In the bifurcations the problem is only locally one-dimensional, in the sense
that each branch is associated with its own axis (denoted by x, x and x in
Fig. 10.4). The use of domain splitting techniques allows us to cast the global
problem into a set of 1D problems (10.27) or (10.28). If we denote by x� the
branching point such that it is the right-end point xpr of the parent vessel Ωp,
and the left-end point xb1l and xb2l of the branches Ωb1 and Ωb2, for a given
function f defined over each segment we denote

fl = f
∣∣
Ωp
(xpr), fb1 = f

∣∣
Ωb1
(xb1l ), fb2 = f

∣∣
Ωb2
(xb2l ).

At the bifurcation we have six unknowns: (Al, ul) in the parent vessel,
(Ab1, ub1) and (Ab2, ub2) in the branches Ωb1 and Ωb2 respectively.
The first three equations required to solve the problem may be obtained

by extrapolating the outgoing characteristics like in (10.46) (or alternatively
by solving (10.45)), giving

W1 = ul + 4A
1/4
l

√
βl

2ρ
=W ∗

1 , (10.49)

W21 = ub1 − 4A1/4b1

√
βb1
2ρ

, (10.50)

W22 = ub2 − 4A1/4b2

√
βb2
2ρ
=W ∗

22, (10.51)
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where the starred quantities are the extrapolated values. The other three
equations required to close the problem are obtained from the continuity of
mass flux and total pressure across the boundary of the elements at the bifur-
cation, i.e.

Q = upAp = ub1Ab1 + ub2Ab2, (10.52)

Pr = ρ
u2p
2
+ βp(

√
Ap −

√
Ap0) = ρ

u2b1
2
+ βb1(

√
Ab1 −

√
Ab10), (10.53)

Pr = ρ
u2p
2
+ βp(

√
Ap −

√
Ap0) = ρ

u2b2
2
+ βb2(

√
Ab2 −

√
Ab20). (10.54)

The six equations given by (10.49-10.54) define a non-linear system of alge-
braic equations which allow to determine the values of (Al, ul), (Ar1, ur1) and
(Ar2, ur2) at the bifurcation. These values are then used to evaluate the flux
at the elemental interfaces in the numerical discretisation.
We have assumed that the coefficient β could be different in the three

vessels, as it is to be expected from the different values of their respective
areas at rest A0.

Remark 10.1.3 Continuity of the total pressure in (10.53,10.54) can be mod-
ified for including pressure losses due to the bifurcation. These typically depend
on the bifurcation angle. For more details see [157, 469].

Accounting for curvature in 1D models (Directors’ theory)

One of the most relevant assumptions in devising the basic 1D model is that
the axis of the vessel is rectilinear. Actually, if we remove this hypothesis, it is
still possible to define a main flow direction in the domain, namely the curvi-
linear abscissa along the axis, and however the effect of the blood dynamics in
the other directions on the main one is no longer negligible (see [373]). Never-
theless, there are some vessels which are significantly curved (aorta, femoral
arteries, etc.). For these vessels, the basic 1D model (10.28) or (10.27) can be
considered only as a rough description. A possible model relies on introduc-
ing a subdivision into subsegments sufficiently short to be considered straight
and connected one to the other with a suitable angle θ = 0 (see Fig. 10.5). A
suitable pressure loss as a function of the angle needs to be introduced in the
interface conditions between segments. The other interface conditions will be
given by the flow conservation (see (10.47) and Remark 10.1.3).
We would like to briefly address in the following an alternative definition of

1D models that are able to account for the effects of the transversal dynamics
on the axial one, still at a reasonable computational cost. The task is not
easy, since we want to devise a sort of 1D models for the cheap description of
a genuinely 3D dynamics.
Simplified models for curved pipes can be obtained for small curvatures of

the vessels with a perturbation analysis of the rectilinear model (see [113]).
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Fig. 10.5. Splitting of a curved domain into a sequence of rectilinear segments

Let us consider the non-dimensional parameter

De = 2
√
2

√
rw
rc
Re, (10.55)

where rw is the vessel radius, rc is the curvature radius of the vessel axis
(rc → ∞ in the straight case), Re is the Reynolds number and De the Dean
number (they have been defined in Chapter 5). Simplified models can be read-
ily obtained for small values of the Dean number. For large values of De these
models need to be suitably corrected, and the analysis becomes by far more dif-
ficult: a complete description of this approach can be found in [373], Chapter 4.
A different approach relies on the theory of Cosserat curves considered

by Green and Naghdi in [204,205] (see also [269]). If we consider the refer-
ence frame (s, ŷ, ẑ) of Fig. 10.5 left, the basic idea of the Green and Naghdi
approach is to represent the velocity field u(s, ŷ, ẑ, t) with respect to a set of
shape functions that depend only on the coordinates in the normal section
ŷ, ẑ and are given by

u(s, ŷ, ẑ, t) =

N∑
n=0

ωn(s, t)ϕ(ŷ, ẑ), (10.56)

where ωn are the coefficients of the velocity profile. This can be considered as
a generalisation of the straight vessel case, where we set for the axial velocity,
uz(x, y, z, t) = ϕ(ŷ, ẑ)u(x, t) being u(x, t) the average velocity and ϕ(ŷ, ẑ) a
given velocity profile. Once a basis function set is selected the unknowns are
the coefficients ωn, that can be computed by solving a suitable set of equations
derived by mass and momentum conservation principles.
In principle, the accuracy of these models can be tuned by choosing a

suitably large N , i.e. having a rich enough basis functions set. However, even
for small values of N , mathematical difficulties of the obtained model imply
high numerical costs (see [269]).
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A curved pipe model

Let us consider a curved pipe of circular section and indicate by s the arch
length coordinate of the axis, which we assume to be a planar curve. If we
integrate any function f(s, ŷ, ẑ, t) over the volume of the pipe V (ε) between
normal sections at a distance ε one to the other and let ε → 0, we get (see
[269])

lim
ε→0
1

ε

s+ε/2∫
s−ε/2

∫
S

√
gf(s, ŷ, ẑ, t)dσds =

∫
S

√
gf(s, ŷ, ẑ, t)dσ,

where S = S(s, t) is the section normal to the vessel axis and √g is
the metric tensor invariant, accounting for the integration over a curved
axis. In particular, for a rectilinear pipe g = 1, while for a curved ves-
sel in the plane (s, y) with a constant curvature radius RC ,

√
g = (ŷ +

RC)/ŷ.
Associated to this integral over the section S, we introduce the following

operators acting on a generic regular enough function f(s, ŷ, ẑ, t)

P00(f) =

∫
S

√
gfdŷdŷ,

P10(f) =

∫
S

√
gfŷdŷdẑ, P01(f) =

∫
S

√
gfẑdŷdẑ. (10.57)

Consider now the 3D Navier-Stokes equations written with respect to the
reference frame (s, ŷ, ẑ) with the velocity field represented by (10.56). In par-
ticular, we assume for the axial velocity

us =

(
1− ŷ2 + ẑ2

R2

)
(a(s, t) + b(s, t)ŷ + c(s, t)ẑ) ,

which is a generalisation of the classical parabolic profile (first term), while for
the transversal velocity components, we simply postulate a linear dependence:
uŷ = η̇ŷ/R, uẑ = η̇ẑ/R, where η̇ is the wall velocity. The unknowns of the
problem are therefore the coefficients a(s, t), b(s, t) and c(s, t) and the vessel
radius R(s, t). A more convenient set of unknowns is

A = πR2, Q =
π

2
R2a, H =

π

12
R4b, G =

π

12
R4c.

For the determination of these unknowns we need four equations that can be
obtained by applying memberwise the average operator P00 to the continuity
equation and the operators P00, P10 and P01 to the axial momentum equations.
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The resulting 1D model for curved vessels reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A

∂t
+

∂Q

∂s
= 0,

∂Q

∂t
+
4

3

∂

∂s

(
Q2

A

)
+ 6π

∂

∂s

(
H2

A2

)
+

6π
∂

∂s

(
G2

A2

)
+

β
√
A

2ρA0

∂A

∂s
+ 8πν

Q

A
= 0,

∂H

∂t
+

H

2A

∂Q

∂s
+ 2

∂

∂s

(
HQ

A

)
+ 24πν

H

A
= 0,

∂G

∂t
+

G

2A

∂Q

∂s
+ 2

∂

∂s

(
GQ

A

)
+ 24πν

G

A
= 0.

(10.58)

More complex model can devised for instance by assuming a different
profile for the transversal velocity components (see [269]).

10.1.8 The numerical solution of the 1D models

The wave propagation speeds in the large arteries are typically an order of
magnitude higher than the average flow speeds. As mentioned previously, the
characteristic system is inherently subcritical and does not produce shock
under physiological conditions. Therefore the numerical challenge is to propa-
gate waves for many periods without suffering from excessive errors in ampli-
tude (dissipation) and in phase (dispersion) (see e.g. [277]). If the solution
remains smooth then high-order methods are particularly attractive due to
the fast convergence of the dispersion and dissipation errors with the order of
the scheme [457].
Here, we limit ourselves to present two possible discretisations of the prob-

lems. The first one is based on a Taylor-Galerkin approach and is essentially
a generalisation of the classical Lax-Wendroff scheme for systems of conser-
vation laws (see [277]).
The second one is based on more recent techniques for the discretisation

of the space variable, in which continuity of the solution at the discretisation
nodes is no longer postulated. This discontinuous Galerkin approach is well
suited for high order approximations.

Taylor-Galerkin method

In this section we describe the numerical discretisation of the (Q,A) system
described by equation (10.27) recast in the conservation form (10.31) given
by

∂Q

∂t
+

∂G

∂x
(Q) = B(Q).

The expressions for Q, G and B are given in (10.30).
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We proceed to discretise equation (10.31) by adopting a second-order
Taylor-Galerkin scheme. To this aim, we write the Taylor expansion trun-
cated up to the second order terms at time tn such that Δt = tn+1 − tn,
yielding

Qn+1 = Qn +Δt
∂Q

∂t

∣∣∣∣n + Δt2

2

∂2Q

∂t2

∣∣∣∣n . (10.59)

The time derivatives will be replaced by space derivatives, by exploiting the
equations (10.31). In particular, we will use the abridged notation

GQ =
∂G

∂Q
, BQ =

∂B

∂Q
,

and we obtain
∂Q

∂t
= B − ∂G

∂x
, (10.60)

∂2Q

∂t2
= BQ

∂Q

∂t
− ∂2G

∂t∂x
= BQ

∂Q

∂t
− ∂

∂x

(
GQ

∂Q

∂t

)
=

BQ

(
B − ∂G

∂x

)
− ∂ (GQB)

∂x
+

∂

∂x

(
GQ

∂G

∂x

)
. (10.61)

Remark 10.1.4 The presence of a non-constant source term and the explicit
dependence of the momentum flux G on the variable x through β(x) makes
the derivation of the scheme slightly more complex than the standard Lax-
Wendroff formulation. In particular we stress that, in contrast to the normal
derivation, we have not further developed the x derivative of the fluxes, since
for our problem

∂G

∂x
= GQ

∂Q

∂x
,

because of the dependence of G on x through β.

From (10.59), (10.60) and (10.61) we obtain the following time-marching
scheme

Qn+1 = Qn −Δt
∂

∂x

[
Gn +

Δt

2
GnQB

n

]
− Δt2

2

[
BnQ

∂Gn

∂x

− ∂

∂x

(
GnQ

∂Gn

∂x

)]
+Δt

(
Bn +

Δt

2
BnQB

n

)
. (10.62)

Space discretisation is carried out by using linear finite elements. To that
purpose, let us subdivide the domain Ω into Nel finite elements Ωe, of size
he. We indicate by Vh the space of continuous vector functions defined on Ω,
linear on each element, and with V0h the set formed by functions of Vh which
are zero at x = x1 and x = x2. Furthermore, we omit the subscript Ω in the
L2(Ω) vector product.
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Using the notation

GLW = G + (Δt/2)GQB,

BLW = B + (Δt/2)BQB,

and indicating with

(u,v)Ω =

∫
Ω

u v dx,

the standard L2(Ω) inner product, the finite element solution of (10.62)
requires, for n ≥ 0, to find Qn+1h in Vh which satisfies for all ψh in V

0
h

that

(Qn+1h ,ψh) = (Q
n
h,ψh) +Δt(GnLW ,

∂ψh
∂x
) − Δt2

2
(BnQ

∂Gn

∂x
,ψh)−

Δt2

2
(GnQ

∂Gn

∂x
,
∂ψh
∂x
) +Δt(BnLW ,ψh). (10.63)

The numerical initial condition U0h will be taken as the finite element inter-
polant of the given initial data U0. A possible technique for computing the
boundary values Un+1h is described later on.
In (10.63) we need to numerically integrate the terms containing the fluxes

and sources. For the terms involving Gn and GnQ we have projected each
component on the finite element function space Vh via interpolation. The
same applies for the other vector products which involve only Gn and GnQ.
The term d β/dx in Bn and BnQ must be approximated in a piecewise con-

stant manner to ensure that our numerical scheme represents constant solu-
tions of the differential problem exactly. Therefore, on each element (xle, x

u
e )

we have approximated d β/dx by [β(xui )−β(xli)]/he. For the remaining terms
we have applied the same technique adopted for the fluxes. This gives rise to
a piecewise linear discontinuous representation for the source terms.

Discontinuous Galerkin method

The discontinuous Galerkin method is an attractive formulation for high-order
discretisation of hyperbolic conservation laws. Following the work of Cockburn
and Shu [96] and Lomtev, Quillen and Karniadakis [296] we proceed as follows.
Considering the one-dimensional hyperbolic system (10.28) in conservative

form we have
∂U

∂t
+

∂F

∂x
= S(U ), (10.64)

where

U =

[
U1

U2

]
=

[
A

u

]
, F =

[
F1

F2

]
=

[
uA

u2

2 +
p
ρ

]
, S =

[
S1

S2

]
=

[
0

−KR uA

]
.
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To solve this system in a domain Ω = (x1, x2) discretised into a mesh of Nel
elemental non-overlapping regions Ωe = (x

l
e, x

u
e), such that xue = xle+1 for

e = 1, . . . , Nel, and
Nel⋃
e=1

Ωe = Ω,

we start by constructing the weak form of (10.64), i.e.(
∂U

∂t
,ψ

)
Ω

+

(
∂F

∂x
,ψ

)
Ω

= (S,ψ)Ω , (10.65)

where ψ represents an arbitrary function in Ω. Decomposing the integral into
elemental regions we obtain

Nel∑
e=1

[(
∂U

∂t
,ψ

)
Ωe

+

(
∂F

∂x
,ψ

)
Ωe

− (S,ψ)Ωe

]
= 0. (10.66)

Integrating the second term by parts leads to

Nel∑
e=1

[(
∂U

∂t
,ψ

)
Ωe

−
(
F ,

dψ

dx

)
Ωe

+ [ψ · F ]x
u
e

xle
− (S,ψ)Ωe

]
= 0. (10.67)

To get the discrete form of our problem we choose U to be in the finite
space of L2(Ω) functions which are polynomial of degree q on each element.
We indicate an element of such space using the subscript h. We also note that
Uh may be discontinuous across inter-element boundaries. However to attain
a global solution in the domain Ω we need to allow information to propagate
between the elemental regions. Information is propagated between elements
by upwinding the boundary flux, F , in the third term of equation (10.67).
More precisely, thanks to the relations (10.39) linking primitive and char-

acteristic variables we may always write the flux F as function of the char-
acteristic variables, that is F = F(W1,W2). At the right interface of element
Ωe we set the upwinded flux as F

u = F(W−
1 ,W+

2 ), being W+
1 = W 1|Ωe(xle)

and W−
2 = W 2|Ωe+1(xre+1), being Ωe+1 the adjacent element on the right of

Ωe. On the left interface the relation is analogous with the role ofW1 and W2
exchanged. In this way we always construct the flux by using the information
carried by the two characteristics impinging on the interface. This upwind-
ing process can be conveniently used in the numerical scheme also to impose
the boundary conditions, as we will see in the next section. Clearly we are
assuming that the flow is subcritical, i.e. λ1 > 0 and λ2 < 0.
The discrete weak formulation can now be written as∑Nel

e=1

{(
∂Uh
∂t

,ψh
)
Ωe
−
(
F (Uh),

dψh
dx

)
Ωe
+

[ψh · F u]
xue
xle
− (S(Uh),ψh)Ωe

}
= 0.

(10.68)
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Following the traditional Galerkin approach, we choose the test function ψh
within each element to be in the same discrete space as the numerical solution
Uh. At this point if we defined our polynomial basis and choose an appropriate
quadrature rule we would now have a semi-discrete scheme. However, from an
implementation point of view, the calculation of the second term in equation
(10.68) can be inconvenient and consequently we choose to integrate this term
by parts once more to obtain

∑Nel
e=1

{(
∂Uh
∂t

,ψh
)
Ωe
+
(
∂F (Uh)
∂x

,ψh

)
Ωe
+ [ψh · {F u − F (Uh)}]

xue
xle
−

(S(Uh),ψh)Ωe
}
= 0.

(10.69)
We note that the information between elements is transmitted by the third
boundary term as the difference between the upwinded and the local fluxes,

[ψh · [Fu − F (Uh)]]
xue
xle
. This method can be considered as a penalty method

with an automatic procedure for determining the penalty parameter.
Finally we select our expansion bases to be polynomials of order q and

expand our solution on each element e in terms of Legendre polynomials
Lp(ξ), i.e.

Uh
∣∣
Ωe
(xe(ξ), t) =

q∑
p=0

Lp(ξ)Û
p

e(t).

where, following standard finite element techniques, we consider ξ in the ref-
erence element Ωref = {ξ : −1 ≤ ξ ≤ 1} and introduce the elemental affine
mapping

xe(ξ) = xle
(1 − ξ)

2
+ xue

(1 + ξ)

2

whose Jacobian Je is

Je =
dxe

dξ
=

xue − xle
2

.

We note that the choice of discontinuous discrete solution and test functions
allows us to decouple the problem on each element, the only link coming
through the upwinded boundary fluxes. Legendre polynomials are particularly
convenient because the basis is orthogonal with respect to the L2(Ωe) inner
product and equation (10.69) turns out to be equivalent to solving component-
wise, for all elements e, for i = 1, 2 and p = 1, . . . , P , the equation

Je
∂Ûpi,e

∂t
= −Je

(
∂Fi

∂x
, Lp

)
Ωe

−[Lp (F ui − Fi(Uh))]
xue
xle
+Je (Si, Lp)Ωe . (10.70)

To complete the discretisation we require a time integration scheme. Possible
choices are the standard Runge-Kutta or the Adams-Bashforth schemes (see
e.g. [403]).
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The numerical treatment of boundary data

The numerical schemes (10.70) and (10.63) need to be complemented with
boundary data Q or U at the boundaries of the domain Ω. The way the
boundary data is treated in practice by the two schemes is different.

Taylor-Galerkin method

Let assume that the boundary condition at x = x1 is given by the general
form (10.41). A possible way to provide the boundary data on the first node
at time t]tn+1, here indicated by Qn+10 is to solve the system

ϕ(Qn+10 ) = g(tn+1),

W2(Q
n+1
0 )) = W ∗

2 =W2(x1 − λ2Δt, tn) +ΔtlT2 f ,
(10.71)

where λ2 and f are computed, for instance, in x = x1 and at t = tn andW2(Q)
indicates the expression linking the characteristic and primitive variables that
can be derived from (10.38).
It is a system of nonlinear equation which may be solved by a few Newton

iterations, starning from the values at the previous time step. In practice, we
have notices that for our problems three Newton iterations are sufficient.
Similar considerations can be applied to the right boundary x2.

Discontinuous Galerkin method: Flux upwinding

The procedure illustrated in the previous paragraph may in principle be
applied also to the discontinuous Galerkin scheme. However in the latter the
technique of flux upwinding at the interface between elements may be of hand
also to implement the boundary conditions. Let consider the boundary x = x1
and assume to have at disposal the boundary condition in terms of the entering
characteristic, variable, i.e W1 = w1(t). Then when computing the upwinded
flux for the left interface of the first element we will set F u = F(w(tn),W+

2 ).
If both primitive variables are provided at the boundary (for instance form
experiments) w1(t

n) could be readily computed from their value. It means
that we will not impose the values exactly (it would be impossible because we
can impose only a single scalar equation) but their value mediated through
the entering characteristic variable. If instead we wish to impose the value of
a single primitive variable, for instance the flux, the situation is more compli-
cated.

10.2 Zero-dimensional (0D) or lumped models

As for the 1D models, lumped parameters models can be derived by general
conservation principles or directly by averaging 3D and 1D models. In the for-
mer case, the key concept is the compartment, that is a part of the system at
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hand that it is worth to be considered as a homogeneous unit. This definition is
kept vague since the number and kind of compartments considered depend on
the type of analysis at hand. A few compartments, describing the heart, arte-
rial and venous systems and the capillary bed are sufficient for a very general
description of the behaviour of the cardiovascular system. More detailed anal-
ysis may give rise to models with up to fifty separate compartments accounted
for. Following this approach the continuous space dependence is lost, and the
emphasis is on the behaviour of the unit with respect to the rest of the system.
Input/output relations are formulated via transfer functions based either on
physical or empirical relations.
Since we have already considered one-dimensional models of a blood vessel,

we will here derive the corresponding lumped model by an averaging proce-
dure. This approach is closer to the physics of the problem, and is useful
to understand the role of the parameters of the model and their quantifi-
cation. We will start from lumped parameter models of a simple vascular
compartment formed by a single artery, and then, by application of appropri-
ate matching conditions derived from conservation principles we will be able
to build more general models.
Let us consider the single artery Ω, illustrated in Fig. 10.1, of length

l = |x2−x1|. We define the (volumetric) mean flow rate over the whole artery
as the quantity

Q̂ =
ρ

l

∫
Ω

u1dυ =
ρ

l

∫ x2
x1

⎛⎜⎝ ∫
S(x)

uxdσ

⎞⎟⎠ dx =
ρ

l

∫ x2
x1

Q(x)dx. (10.72)

Similarly, we define the mean pressure and area over the artery as

p̂ =
1

l

x2∫
x1

Pdx, Â =
1

l

x2∫
x1

Adx. (10.73)

Starting from equations (10.27) for this domain, we integrate the continuity
equation along the axial direction (x1 ≤ x ≤ x2) to obtain

l
dÂ

dt
+Q2 −Q1 = 0, (10.74)

where we have set

Q1(t) = Q(t, x1), Q2(t) = Q(t, x2). (10.75)

Observe that now Â depends only on time, so we have an ordinary time
derivative.
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In considering the momentum equation, we add the following simplifying
assumptions:

1. the contribution of the convective term ∂x(αQ
2/A) may be neglected ; and

2. the variation of A (and β) with respect to x is small compared to that of
P and Q.

The first assumption is particularly suited to represent the peripheral circu-
lation, where blood flow is in general quite slow. The second assumption is
reasonable when the axial average is carried out over short segments. It basi-
cally amounts to replace A in the momentum equation with a constant value
for the area that in general is assumed to be the area at rest A0. With these
assumptions, averaging over x of (10.27)2 yields

ρl

A0

dQ̂

dt
+

ρKRl

A20
Q̂+ P2 − P1 = 0, (10.76)

where
P1(t) = P (t, x1), P2(t) = P (t, x2). (10.77)

As for 1D models we have now the problem of closing system (10.74, 10.76),
by adding a wall mechanics law. In particular, if we assume the simple law
(10.21) to hold, we have

x2∫
x1

∂p

∂t
dx =

x2∫
x1

β

2
√
A

∂A

∂t
dx.

Now, if we exploit the second assumption above, we obtain l
dp̂

dt
=

lβ

2
√
A0

dÂ

dt
,

which we write, for convenience, as

dÂ

dt
= k1

dp̂

dt
, (10.78)

where k1 =

√
A0
β
. Substituting (10.78) into (10.74) we obtain

k1l
dp̂

dt
+Q2 −Q1 = 0, (10.79)

that together with (10.76) represents the lumped parameter model for a vessel.
Equations of this type are also found in the analysis of electrical circuits.

Indeed, before digital computers, early simulations of flow in the vascular
system were based on analog electrical circuits, see for instance [539]. In the
electric network analogy, the blood flow rate is assimilated to the current,
while blood pressure corresponds to voltage, as summarised in Table 10.1.
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Table 10.1. Correspondence table of the analogy between electric and hydraulic
networks

Hydraulic Electric

Pressure Voltage
Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L
Wall compliance Capacitance C

In order to exploit this electrical analogy, we recast the system (10.76,10.79)
as

C
dp̂

dt
+Q2 −Q1 = 0,

L
dQ̂

dt
+RQ̂+ P2 − P1 = 0.

(10.80)

The coefficients R, L and C are associated to elements of a circuit as depicted
in Fig. 10.6, where the corresponding equation is recalled at the bottom. We
recall hereafter their physical significance.

Resistance. The coefficient R =
ρKRl

A20
in equation (10.80) represents the

resistance induced to the flow by the blood viscosity. Different expres-
sions for R can be obviously obtained for different velocity profiles or if a
non-Newtonian rheology is introduced into the model (see e.g. [426], [539],
[162]).

Inertia (inductance). The coefficient L =
ρl

A0
in equation (10.76) repre-

sents the inertial term in the momentum equation and it will be called the
inductance of the flow.

Q

P

Q

=Reference Pressure Value

L                    C                   R

C
dP

dt
= QP = RQ L

dQ

dt
= P

P

Q

P

Fig. 10.6. Notation used in the electrical analogy of the circulatory system
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Compliance (capacitance). It is characterised by the coefficient C = k1l
that represents the mass storage term in the mass conservation law, due to
the compliance of the vessel.

For instance, if we assume Poiseuille flow (i.e. fully developed flow with
a constant pressure gradient) and that the vessel is a cylinder of constant
circular section we have

R =
8πρνl

π2r40
=
8μl

πr40
; L =

ρl

πr20
; C =

3πr30l

2Eh0
.

The system of equations (10.80) involves the mean flow rate and pressure
over the vascular segment at hand and the boundary values of pressure and
flow rate Qi, Pi, with i = 1, 2. Strictly speaking, the term boundary is inap-
propriate, since the continuous space dependence has been lost in the axial
average, and they simply represent input/output quantities exchanged by the
vessel with the rest of the systems. However, we will retain the term, since it
is related to the physical derivation of the equations. In particular, in order to
close problem (10.80), we need to introduce some boundary conditions. This
means that we need to identify the input data of the district at hand. For
instance, suppose that Q1 and P2 are given. Then, (10.80) represents a sys-
tem of two equations for four unknowns, Q̂, p̂, P1 and Q2. The dynamic of the
system is represented by p̂ and Q̂, i.e. by the unknowns that are under time
derivative (the state variables). We approximate now the unknowns on the
upstream and downstream sections with the state variables,

p̂ ≈ P1, Q̂ ≈ Q2,

that corresponds to assume that the output of the district is given by the state
variables. With these additional assumptions, which are reasonable for a short
pipe, the lumped parameter model becomes:

C
dP1
dt
+Q2 = Q1,

L
dQ2
dt
+RQ2 − P1 = P2.

(10.81)

where the input data have been put on the right hand side. This system can
be illustrated by the electric L-network shown in Fig. 10.7 (left).

R L

C

Q1 Q2

P1 P2 P1

Q1

P2

Q2

C

RL

Fig. 10.7. Lumped L-network (top) and L-inverted network (bottom) equivalent
to a short pipe
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L/2

L/2 R/2 L/2

R/2

C P2

Q2

P1

Q1

C/2

R/2L/2

C/2

Q2

P2

Q

P1

Q1
R/2

Fig. 10.8. Cascade connection of a L-inverted and a L-network (top), lumped T -
network (bottom)

L/2L/2Q1

P1

Q

C/2

Q1

P1
C/2 P2

Q2

C/2

RL

P2

Q2

C/2

R/2R/2

Fig. 10.9. Cascade connection of a L-network and a L-inverted one (top), lumped
π-network (bottom)

In a similar way, if the pressure P1 and the flow rate Q2 are prescribed, we
still approximate the quantities at the upstream and downstream sections by
the state variables, i.e. p̂ ≈ P2, Q̂ ≈ Q1, yielding the system represented by
an electric analog, called an L-inverted network, depicted in Fig. 10.7(right).
If the mean pressures P1 and P2 are prescribed, the system can be modelled

by a cascade connection of L and L-inverted lumped representations, yielding
a T -network (Fig. 10.8). Similarly, if both flow rates Q1 and Q2 are prescribed,
the vessel Ω is described by an electric π-network, obtained as a cascade
connection of a L-network and a L-inverted network (Fig. 10.9).
The four different representations of the same vessel arise from four dif-

ferent possible assumptions about the data prescribed at the upstream and
downstream sections. In other words, they can be considered as the lumped
parameter simplifications of four different “boundary” values problems.

Remark 10.2.1 Alternative ways can be pursued for devising lumped param-
eter models. Among the most recent, we mention the one proposed in [359]
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P1

Q1

P2

Q2

R0

LN

L1 R1

R2

R3

C RL

L4

L2

L3

RN−1

Fig. 10.10. Electric analog network of the Jager, Westerhof and Noordergraf model
[244] including the sleeve effect and rheological effects. The larger N is, the more
accurate is the model

which is based on suitable approximations of the inverse Laplace transform of
the axisymmetric Stokes equations in rigid vessels.
Other lumped parameters models relying on more realistic assumptions

have been proposed by different authors. For instance, we mention [244]. In
this paper some modifications to the L-inverted network of Fig. 10.7 (right)
are proposed that account for the interactions between inertial and viscous
phenomena induced by the pulsatility of blood flow (the so-called sleeve effect)
and the non-Newtonian blood rheology (see Chapter 6). In particular, a bound-
ary layer with lower viscosity due to the different concentrations of red cells is
accounted for. The set up of the model was based on an explicit computation
of the impedance associated to an approximation of the Womersley solution
(see Chapter 5). The corresponding electric analog is depicted in Fig. 10.10.
More accurate models can be obtained by including more elements, i.e. by tak-
ing higher values of N . Resistance R0 is related to the non-Newton effects,
while RL (where L stands for leakage) accounts for secondary vessels that are
not accurately described in the model and however are relevant in the mass
conservation.
The picture highlights the remarkably simple modifications to the lumped

model required to account for the description of complex phenomena.

10.2.1 Lumped parameters models for the heart

As explained in Chapter 1, Section 1.1.1, the heart is subdivided into the right
and the left parts, separated by the septum. The right heart supplies the pul-
monary circulation, while the left one pumps the blood into the systemic tree.
Each side consists of two chambers, the atrium and the ventricle, separated
by the atrioventricular valves (the tricuspid valve in the right side, the mitral
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valve in the left one). Their role is to receive fluid at low pressure and transfer
it to a higher pressure region, acting as a pump. A possible representation of
heart working is given by left ventricle pressure-volume diagrams (see [227]
and Section 1.1).
Each ventricle can be described therefore as a vessel where the most

significant feature is the compliance and the compliance changes with time
(see [227, 256,443,509]).
The starting point for a candidate mathematical model is the relation that

links internal pressure with the radius of an elastic spherical ball filled with
fluid. Here and in the following we take Pext = 0. We have

πR2P = 2πEh0R
R− R0
R0

,

where R0 is the reference sphere radius (corresponding to P = 0), h0 is a
reference thickness of the ball surface and E denotes the Young’smodulus. The
contraction of the cardiac muscle may be taken into account by an increase of
E (stiffening) and by a shortening of the muscle length (i.e. a reduction ofR0).
It is more convenient to express this relation as a function of the volume V ,

instead of the radius. By recalling that V =
4

3
πR3, a linearisation procedure

leads to

P =
2E(t)h0
3R20

(
3

4π

)1/3
V
− 23
0 (V − V0) ,

where we have indicated the coefficients that change in time because of the
action of the muscle. This simplified model does indeed describe the major

characteristic of the ventricle. If we indicate C(t) =
3R20V

2
3

0

2E(t)h0

(
4π

3

)1/3
we

may re-write the relation in the more compact form

V (t) = C(t)P (t) + V0(t).

By differentiating with respect to time we obtain

dV

dt
= Q =

dC

dt
P + C

dP

dt
+MQ(t), (10.82)

where Q represents the (incoming) flow rate and MQ =
dV0
dt is the action

exerted by the contraction of the cardiac muscle.
A lumped representation (electric analog) of each ventricle2 is given in

Fig. 10.11, where R accounts for an additional viscous resistance inside the
ventricle. Here, MQ is represented by a current generator.
The electrical analog of the presence of heart valves has been represented

in Fig. 10.11 by diodes. Ideally, the behaviour of a diode is described by the

2 A mechanical representation of the heart working based on the classical Hill’s
model for the muscle can be found in [262] and [555].
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Valve 1 Valve 2

C(t)

Q

dC

dt MQ(t)

R

Fig. 10.11. Electric analog of the lumped parameter model of a ventricle

Real

IdealP

Q

P

Q

Fig. 10.12. P −Q curve in a diode, representing the electric analog of a heart valve

curve depicted in Fig. 10.12 and given by

P = 0 if Q > 0,
Q = 0 if P < 0.

This means that the diode representation does not allow flow through the
valve if the pressure is higher downstream than upstream. If the upstream
pressure is higher, the diode allows the flow without any pressure loss. This
is an “ideal” behaviour. Real valves have a different behaviour that can be
represented by the curve

Q = QS
(
eαP − 1

)
(10.83)

called Shockley equation. In some cases, this equation has been approximated
by a piecewise polynomial curve (see e.g. [328]).
The presence of diodes introduces a nonlinear term in the system. However,

if we resort to the Shockley model, the nonlinear terms are smooth in terms
of mathematical regularity.

10.2.2 Lumped parameters models for the circulatory system

In the previous sections we have introduced lumped parameter description of
two basic compartments, a segment of vessel and the heart. A possible model
for the vascular network can be derived by “connecting” these compartments
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Fig. 10.13. Lumped parameters model for a branched vessel as a cascade of T and
π networks

by means of appropriate matching conditions, in a way similar to the one pur-
sued for the 1D model of bifurcations in Section 10.1.7. Matching conditions
will be actually driven by continuity of flux and balance of momentum at the
interfaces. More precisely, since our lumped parameter models deal with the
flow rate Q and the pressure P , matching conditions will essentially state the
continuity of these variables at the interfaces. In the electric analog, these
relations correspond to the application of the classical Kirchhoff laws for the
nodes (conservation of current/flow rate) and the nets (conservation of the
voltage/pressure). For these reasons, lumped parameter models will also be
referred to as Kirchhoff (K) models.
A sketch of possible connections of different compartments is given in

Fig. 10.13.
More detailed models for the circulation are proposed in [353,539], where

hundreds of elementary compartments are considered.

Mathematical and numerical analysis of lumped parameters
models

From the mathematical viewpoint, a general representation of lumped param-
eters models is a system of differential-algebraic equations (DAE) of the form

dy

dt
= b(y, z, t), t ∈ (0, T ],

G(y, z) = 0,

(10.84)
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together with the initial condition vector y|t=t0 = y0. Here, y is the vector
of state variables, the vector z contains the other variables of the network
and G represents the algebraic equations derived from the Kirchhoff laws.
Differentiating the algebraic equations with respect to time we get

dG(y, z)

dt
= Jy

dy

dt
+ Jz

dz

dt
= 0

where Jy =
∂G

∂y
and Jz =

∂G

∂z
are the Jacobian matrices with respect to y

and z. Assuming that Jz is non singular, the DAE system is said to be of
index 1 (see e.g. [184]). This is the most frequent case in problems concerning
lumped parameters models of the vascular system. We can then write

dz

dt
= −J−1z Jy

dy

dt
= −J−1z Jyb(y, z, t). (10.85)

Assuming that an initial vector z0 is available, the first equation of (10.84)
and (10.85) can be rewritten as the classical Cauchy problem

dw

dt
= a(w, t), t ∈ (0, T ],

w(t0) = w0,

(10.86)

where w = [y, z]T and a = [b,−J−1z Jyb]T . For the analysis of this problem
we can refer to classical mathematical results, e.g. [214]. We will recall the
following results:

1. if a(w, t) is continuously differentiable there exists a time interval [0, T ∗]
in which the solution of the problem exists and is unique;

2. if, moreover, the derivatives ∂ai/∂wj are bounded in the time interval
[0, T ], then the solution of the Cauchy problem exists and is unique in
[0, T ].

Numerical solution of Cauchy problems like (10.86) is an important branch
of scientific computing. A general introduction can be found in [268]. Some
basic ideas have been given in Section 2.3 in Chapter 2 for the Cauchy prob-
lems arising from the space discretisation of unsteady partial differential equa-
tions. Beyond the schemes mentioned there, we quote here a class of methods
particularly useful for the problems considered here, namely the Runge-Kutta
methods. Like the Euler and Crank-Nicolson methods, these schemes involve at
each time step only the solution of the current and the previous steps, yielding
however high accuracy by a splitting of the computation into an appropriate
number of stages. These schemes can be explicit or implicit. For instance, the
following is an explicit method of order 2 (called Heun scheme) given by

w� = wn +Δta(wn, tn),

wn+1 = wn +
Δt

2

(
a(wn, tn) + a(w�, tn+1)

)
.
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Some Runge-Kutta methods have interesting practical features prone to time
adaptive implementations. This means that with these methods it is possible to
devise competitive a posteriori error estimators that can be used for adapting
the time step to the solution dynamics. This feature is particularly useful in
vascular problems where a fast transient (systole) is followed by a relatively
steady phase (diastole). Furthermore, implicit Runge-Kutta schemes can be
succesfully used in stiff problems, i.e. problems where different components of
the solution w have so different dynamics that the fulfillment of stability and
accuracy requirements could ask for an intensive computational effort (see
e.g. [455]). These kind of problems can arise for instance when the lumped
parameter representation of the vascular system couples a precise description
of a district of interest with a rough description of the rest of the system.
Other stiff problems arise when the dynamics of blood solutes (see the next
section) is included in the mathematical model.
When the DAE problem (10.84) is of index higher than one, which is

not the usual situation in this kind of problems, both the mathematical and
numerical analyses become more involved. We refer the interested readers
to [14, 184].

10.2.3 Lumped parameter models for modelling terminal vessels

By using the electrical analogy presented above, we now consider briefly some
possible model for the terminal vessels to be used as stand-alone models or
for computing boundary conditions to 1D networks (Section 10.1.5).

Pure resistive load: In some cases, the dynamics of blood in peripheral vessels
is adequately represented by a simple algebraic law, see Fig. 10.14(right),
given by

p(t) = RQ(t), (10.87)

corresponding to the impedance ZT (t − τ ) = Rδ(τ − t), where δ denotes the
Dirac delta. This is particularly true for small vessels where the heart pulsatil-
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Fig. 10.14. Left: Terminal impedance for the peripheral circulation. Right: Lumped
parameters representation (electrical networks) of possible impedances: (a) pure
resistive load; (b) original windkessel model; (c) three elements windkessel; (d) four
elements windkessel
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ity has been almost completely attenuated by the larger vessel compliance and
the motion is almost steady. An effective way of including this condition into
the 1D model is based on the introduction of a reflection coefficient.
The reflection coefficient, Rt, is defined in [290] as the ratio of the magni-

tude of change of pressure across the reflected wave, δP , to the magnitude of
change of pressure in the incident wave, ΔP . By an appropriate linearisation
and assuming that the pressure in the venous system is zero, it has been found
that this ratio can be expressed as function of the terminal resistance at the
vessel outflow and is related to the resistance R by the expression

Rt =
δP

ΔP
=
A0R− ρc0
A0R+ ρc0

=
R − ρc0/A0
R + ρc0/A0

.

The suffix 0 indicates the at rest state, i.e Q = 0 and A = A0.
The value of Rt may vary between a free outflow when Rt = 0 and a block-

age when Rt = 1. The use of this parameter to characterise wave reflections
caused by peripheral vessels is described in [535]. An advantage of using Rt
instead of R is that it is related to pressure data only.
There is another possible definition for the reflection coefficient which is

more suitable for prescribing boundary conditions based on the characteristic
variables. More precisely, Rc is defined as

Rc = −
Winc −Winc,0
Wout −Wout,0

,

where Winc and Wout are the incoming and the outgoing characteristic vari-
ables at the boundary point, respectively. The negative sign is necessary to
have a positive coefficient under normal conditions. A zero value of Rc indi-
cates a perfectly non-reflecting boundary: the incoming characteristic variable
is kept constant and equal to the value at rest, whileRc = 1 is again associated
to a perfect blockage (indeed, it can be verified that in this case u = 0).
If we consider the right boundary x = x2 and use (10.87) we have the

following expressions

Wout =W1 =
p

RA
+ 4c and Winc =W2 =

p

RA
− 4c.

Thus, if the rest value of the pressure is taken equal to 0, we have

Rc = −
W2 −W2,0
W1 −W1,0

=
R0 − p/4A(c− c0)
R+ p/4A(c− c0)

.

Using equations (10.39) and (10.87) in can be shown that Rc � Rt and
indeed we have an equality by linearising c around the rest configuration. At
the numerical level, W1 can be computed for instance by extrapolation along
the characteristic curves, refer to equation (10.46), the condition

W2 =W2,0 −Rc(W1 −W1,0), (10.88)

thus readily yields a boundary value for W2.
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Windkessel models: A more accurate representation of the terminal load is
provided by the models including some possible dynamics related to ves-
sel compliance and blood inertia. The first model was introduced by Otto
Frank in 1899 [170]. It included a peripheral resistance and a compliance (see
Fig. 10.14(b)) which yields a value of the impedance

ζT (ω) =
R

1 +
√
−1ωRC .

This model has been called Windkessel in analogy with the device (made
of a reservoir and an air chamber) converting the alternate (periodic) water
pumping of firemen into a steady flow. In order to better fit the experimen-
tal results (see [350, 539]), this basic model has been successively refined by
Westerhof and his co-workers with the introduction of a second resistance (see
Fig. 10.14(c)). The model has been called a three-element Windkessel or also
familiarlyWestkessel, and corresponds to an impedance value of

ζT (ω) =
R1 + R2 +

√
−1ωR1R2C

1 +
√
−1ωR2C

.

More recently (see [53,483]), it has been pointed out that the fitting of experi-
mental data with the three elements Windkessel model requires values that are
not clearly related to the physical properties of the arteries. A new improve-
ment of the model has been therefore proposed, leading to a four-element
network (Fig. 10.14 right, (d)) that includes an inductor for inertial effects.
The impedance of the model is

ζT (ω) =
R1R2 − CR1R2Lω2 +

√
ω(R1 + R2)

R1 −CR2Lω2 +
√
ω(L +CR1R2)

.

The determination of an appropriate estimate of the parameters of these mod-
els is a difficult problem. The interested reader is referred to [53, 350, 483].
An intuitive and systematic approach to estimate the parameters of a three-
element model is presented in [5].
The moduli of impedances and angles of the four networks considered in

Fig. 10.14 are drawn in Fig. 10.15.

Remark 10.2.2 For including this kind of conditions in the 1D model, an
alternative to equation (10.44) consists in formulating a condition in the time-
domain for the Riemann variables (see the previous remark). For instance, by
setting R = R1 + R2, the three-element Windkessel model corresponds to the
boundary condition

R2C
Ra +R1
Ra +R

dW2

dt
+W2 = R2C

Ra − R1
Ra + R

dW1

dt
− RcW1,

that generalises (10.88) (see [158]).
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Fig. 10.15. Modulus (left) and angle (right) for the transfer function of the four
networks in Fig. 10.14 (right)

Structured tree model: The dynamics spanned by family of Windkessel mod-
els is quite crude and in particular the wave propagation in the peripheral
circulation is not well represented. A possible way for accounting these effects
is the introduction of lumped parameters models with many elements, follow-
ing the geometrical multiscale approach discussed in Chapter 11. A different
approach, still resorting to the definition of an appropriate impedance func-
tion has been introduced in [358] and it is based on the representation of the
terminal vessels as a structured tree (see Fig. 10.16).
By classical arguments in the wave theory (see e.g. [373]), the impedance

at the beginning of a vessel with length l can be written as a function of the
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Fig. 10.16. Structured asymmetric tree representation of peripheral circulation
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impedance at the end:

ζbeg(ω) =
g−1

√
−1 sin(ωl/c) + ζend(ω) cos(ωl/c)

cos(ωl/c) + g
√
−1ζend(ω) sin(ωl/c)

, (10.89)

where

g = A0

√
3
√
A0K

2Eπhρ
, c =

√
2EπhK

3
√
A0ρ

,

and K is an appropriate function of the Womersley number. The basic idea
of this peripheral model is therefore to apply this formula for the terminal
impedance ζT that is expressed in this way as a function of the impedance
at the end of the first peripheral vessel. The latter will be computed recur-
sively by:

1. giving a model for the bifurcations in terms of impedance of parent and
daughters vessels;

2. applying (10.89) for each branch of the vascular tree.

Continuity of pressure and flow rate at the bifurcation yields the condition
linking the impedance of the parent vessel to the impedances of the daughter
vessels (we assume branching with only two daughters)

ζparent =

(
1

ζd1
+
1

ζd1

)−1
.

Each branch of the tree is then scaled on the basis of the following assump-
tions:

1. at each bifurcation, the daughters branches scale asymmetrically with
respect to the parent one with radius factors α, β that can be determined
on the basis of optimal branching considerations (see [358]);

2. under a certain threshold on the radius it is possible to assume that the
impedance is purely a resistive load, known by experimental data.

Observe that the threshold is applied to the vessel radii and not to the number
of branchings, so the number of branches is in general a function of the position
of the interface with the 1D model and will be not assumed to be known a
priori.
A more detailed code for this impedance modelling can be found in [364].

Results presented in [360] show that this approach for terminal outflow bound-
ary conditions provide reliable results. In particular, it provides a closer phys-
iological behaviour than the Windkessel models, with a correct phase-lag
between flow and pressure.
See also [477] for an advanced application of this approach.



10 Reduced cardiovascular models 389

10.2.4 Modelling the interaction between cardiovascular system
and chemical species

In the previous sections we have assumed that the parameters of the models
depend on the morphological features and are constant in time (see equa-
tion (10.76)). This is a strong simplification since daily experience indicates
that these parameters change in different physiological situations. Heavy exer-
cise requires a body’s response that involves biochemical reactions, chemicals
transport (oxygen in particular) and definitely adjustments in blood flow.
The cardiovascular system has feedback mechanisms that regulate its work-
ing activity and are essential for life (see e.g. [227]). The dynamics underlying
these phenomena is extremely heterogeneous and complex, involving different
chemical species, the cardiovascular and the nervous systems from periph-
eral to central districts (see [364], Chapter 7). There are long-term mech-
anisms that are essentially driven by the renal activity. Presence of water
and salt or hormones can be adjusted by the kidneys for controlling arte-
rial pressure. Other mechanisms belong to the short term regulation effects.
In the latter case, the central nervous system (CNS) is the main mediator,
involving baroreceptors, mechanoreceptors and chemoreceptors. The latter are
sensitive to chemicals in blood (see Section 10.1.3). When the oxygen concen-
tration drops, chemoreceptors increases cardiac strength and vasoconstriction.
Baroreceptors are sensitive to the pressure alterations. They are located in the
carotid sinus and the aortic arch. The role of the baroreflex effect is to keep
the pressure within a physiological range. Mechanoreceptors are located in
the atria and in the pulmonary veins and control arterial pressure by acting
on the venous volume.
Other tuning dynamics are specifically present in the cardiovascular sys-

tem. In particular, the autoregulation is a mechanism for maintaining an
almost constant oxygen supply (in particular in the brain), driven by the
smooth muscles in the vascular walls (see [2, 227]).
Lumped parameter models are an affordable mathematical and numerical

tool for modelling these complex phenomena. Here we address some basic
ideas for including feedback mechanisms in the models introduced so far. We
essentially need:

1. lumped parameter models for chemical species, and
2. constitutive equations establishing the dependence of the parameters of
the cardiovascular model on the concentration of chemicals.

We present these topics by means of an example based on Chapter 1 of
reference [108].

Cardiovascular model

We assume the the cardiovascular system is represented by means of a set of
four compartments (see Fig. 10.17):
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Fig. 10.17. Simplifed compartment model of the circulation

Right heart/lungs/left heart acting as a forcing term for the whole system.
Large arteries represented by a resistance Ra and a compliance Ca.
Systemic arteries that are represented by the compliance Cs and three sub-
districts:
1. skeletal muscle represented by the resistance Rsm and with flow rate
Qsm;

2. splanchnic compartment with resistance Rsp and flow rate Qsp;
3. other organs with resistance Ro and flow rate Qo.
The total systemic resistance will be given by

Rs =
(
R−1sm + R

−1
sp +R

−1
o

)−1
.

Venous system that is represented by the compliance Cv as their deformabil-
ity is the more relevant feature of the veins.

The cardiovascular system will be therefore modelled by a lumped parameter
model of the form

Ca
dPa

dt
= Qa −

Pa − Ps
Ra

,

Cs
dPs

dt
=
Pa − Ps
Ra

− Ps − Pv
Rs

,

Cv
dPv

dt
= Qa − Ca

dPa

dt
− Cs

dPs

dt
,

Qsm =
Ps − Pv
Rsm

, Qsp =
Ps − Pv
Rsp

, Qo =
Ps − Pv
Ro

.

(10.90)
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Here Qa is driven by the heart activity that can be simply given by

Qa =
Vstr

T
,

Vstr = Ved(Pv)− Vu,vent−
Pa
E
.

(10.91)

Here, T is the heart period, Vstr is the stroke volume of the heart. The latter
is assumed to be a function of the end-of-diastole volume Ved, which is in
turn a function of the venous pressure Pv, of the (constant) unstressed ven-
tricular volume Vu,vent and of the arterial pressure Pa by means of the heart
elastance+E.

Chemical model

Let us start considering only the dynamics of oxygen. We denote by [O2]i the
oxygen concentration in compartment i (i ∈ (a, v, sm, sp, o)) and by Vi is the
volume of the i compartment. A possible law for the dynamics of oxygen in
the systemic compartments (i = sm, sp, o) is

Vi
d[O2]i
dt

= −ri([O2]i, t) +Qi(t) ([O2]a − σi[O2]i) , (10.92)

where ri is the oxygen consumption rate and σi is a partition (constant) coef-
ficient, function of the oxygen concentration in the different compartments at
rest. The first term on the right-hand side is driven by the chemical reactions,
while the second one is related to the transport associated to the blood flow.
In the arterial compartment it is reasonable to assume that the oxygen con-
sumption is negligible, so that [O2]a is constant. In the venous compartment,
by mass conservation, we collect the residual oxygen coming from the systemic
compartments and its concentration is thus given by

[O2]v =
∑

i=sm,sp,o

Qi
Qa
σi[O2]i.

A possible generalisation of this equation to the multi-chemical case is the
following. We introduce a vector of chemical concentration ci so that cki is
the concentration of the kth species in compartment i. This model is given by

Vi
dci
dt
= Aψi(ci, t) + bi(ca, ci, Qi, t), i = sm, sp, o,

cv =
∑

i=sm,sp,o

Qi
Qa
Sici,

ca = ca(c
0
a, cv),

(10.93)

where Si is a diagonalmatrix with entries given by the partition coefficients σki
and c0a is the arterial vector concentration at rest. Moreover, ψi is the vector of
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consumption rates associated to chemical reactions and Ai is the so-called stoi-
chiometric matrix representing the weighed connection of the species involved
in the chemical reactions. Term bi represents the convection contribution to
the chemical dynamics, driven by the blood flow. It is worth pointing out that
since chemical reactions can have different time scales associated with each
reaction, differential systems like (10.93) can in practice be stiff.

Feedback model

The dependence of chemical dynamics on fluid dynamics is clearly defined
in the transport term bi of equation (10.93). Let us consider now how the
chemical dynamics can affect the blood flow (see Fig. 10.18). To this aim,
following [516], we introduce some new unknowns:

fes represents the efferent sympathetic activity ;

fev is the efferent vagal activity ;

fcs is the carotid sinus firing rate, that is the action generated by pressure
alterations at the level of the carotid sinus;

fcm is the chemoreflex activity ;

R̃i with i = sm, sp, o the state variables determining the systemic resis-
tances and influenced by the vagal activity;

xi with i = sm, sp, o the state variables determining the systemic resis-
tances and influenced by the chemoreflex activity;

Pn a reference pressure value.
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Fig. 10.18. Three compartments representation of the feedback cardiovascular
model
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We assume that the heart period T and the elastance E are influenced by
the efferent vagal and sympathetic activities. In particular, we assume that

dT

dt
=
1

τT
(T0 − T − σT,s(fes) − σT,v(fev)) ,

dE

dt
=
1

τE
(E0 −E − σT,s(fes)) ,

fes = fes,∞ + (fes,0 − fes,∞) exp(−kesfcs),

fev =
fev,0 + fev,∞ exp((fcs − fcs,0)/kev)
1 + exp((fcs − fcs,0)/kev))

,

fcs =
fmin + fmax exp((Pa − Pn)/ka)
1 + exp((Pa − Pn)/ka

.

(10.94)

where σ, E0, T0, f,∞, f,0, fmin , fmax and k (with their respective indices)
represent appropriate functions and constants. The reference pressure Pn is
driven by the chemoreflex activity and its temporal variation is given by

dPn
dt
=
1

τPn
(Pn,0 − Pn − σPn,cm(fcm)) . (10.95)

The systemic resistances are influenced both by the baroreflex and chemoreflex
activities. More precisely, for i = sm, sp, o we have

dR̃i

dt
=
1

τ
˜Ri

(
R̃i,0 − R̃i − σ ˜Ri,s(fes)

)
,

dxi

dt
=
1

τxi
(xi,0 − xi − σxi,cm(fcm)) ,

(10.96)

where finally we “assemble” the resistances

Rsm =
R̃sm
1 + xsm

,

Rsp = R̃sp(1 + xsp),

Ro =
R̃o
1 + xo

.

(10.97)

Finally, the chemoreflex control is driven by the oxygen concentration:

fcm =

⎧⎪⎨⎪⎩
0 if [O2]sm > [O2]

0
sm,

kcm
(
[O2]sm − [O2]0sm

)2
otherwise.

(10.98)
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Equations (10.90), . . . (10.98) represent a possible simplified model of feedback
mechanisms in the cardiovascular system More details can be found in [108,
363,515,516].
A major concern in the devise of this kind of models is the parameter

identification based on experimental data. There are different approaches for
pursuing this aim. Basically, the problem is recast into the form of the minimi-
sation of the distance between an experimental data set and the corresponding
results predicted by the theory, by acting on the values of the parameters to
be estimated. The “optimal values” can be found by means of:

• line search algorithms (see e.g. [403]), that are quite cheap and however
can found local (i.e. non global) optimal values;

• genetic algorithms, that compute the global optimal solution, even if with
a larger computational cost. See [109] for more details.

10.3 Conclusions

Although this Chapter is limited to a basic introduction to simplified models
of the circulatory system, we should stress that these models represent an
important tool for quantitative cardiovascular investigations. The simple rep-
resentation of a single vessel or a compartment makes these models well suited
for an affordable description of complex dynamics among different vessels or
compartments. As a matter of fact, in practice these models have been used in
cardiovascular mathematics before the Navier-Stokes based models, because
the latter require so many complex numerical techniques (and computational
time) for providing quantitative results. In particular, 1D models are appro-
priate for describing pressure wave propagation along the vascular tree [316],
and at which extent this can be affected by some pathologies, prostheses or
aging [3,4,158]. Lumped parameter models, on the other hand, are extremely
useful for describing complex dynamics among compartments, in particular
when the space details are not so relevant, like in the case of estimation of
blood flow reserves in some compartment (usually the coronary reserve) or
the feedback mechanisms.
The main drawback of these models is the loss of some details that could be

relevant at the systemic level, despite of their local nature. For this problem,
a possible approach is to couple together local and systemic models, as it is
addressed in the next chapter.


