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Preface

This book is addressed to graduate students and researchers in the field of bio-
engineering, applied mathematics and medicine wishing to engage themselves
in the fascinating task of modelling how the cardiovascular system works.
This effort is motivated by the fact that cardiovascular diseases have a major
impact in Western countries and by the widespread recognition that mathe-
matical models and numerical simulations can aid to better understand phys-
iological and pathological processes. It complements the information provided
to medical doctors by medical imaging and other non-invasive means and
opens the possibility of more in-depth surgical planning.
The expertise required by a researcher wishing to work in this field,

from the bioengineering, medical or mathematical side, is vast and multi-
disciplinary. This book offers a mathematically sound and up-to-date foun-
dation to the training of researchers and serves as a useful reference for the
development of mathematical models and numerical simulation codes. It is
structured into different chapters, written by recognised experts in the field.
However, the book is not just a collection of different contributions. A care-
ful editing process has ensured the progression of the material as well as the
consistency of notation and expressions and systematic cross-referencing.
To model blood flow and the circulatory system, many fundamental issues

need to be addressed. Blood flow interacts both mechanically and chemically
with the vessel walls and tissue, giving rise to complex fluid-structure inter-
actions whose mathematical analysis is complex (and in part still incomplete)
and which are difficult to simulate numerically in an efficient manner. At a
macroscopic level, the arterial wall is a complex multi-layer structure which
deforms under the action of blood flow. Even though sophisticated constitu-
tive equations have been proposed for the structural behaviour of the vessel
wall, its elastic characteristics in vivo are still very difficult to determine and
are usually inferred from pulse propagation data. The modelling of the interac-
tion between blood flow and the vessel wall mechanics needs algorithms which
correctly describe the energy transfer between them to accurately represent
wave propagation phenomena.
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Blood is in fact a suspension of cells and particles in plasma. A Newtonian
constitutive equation is generally accepted as a good approximation of blood
behaviour for large vessels. However, the study of circulation in smaller vessels
and capillaries needs to abandon the Newtonian assumption for the fluid and
account for the shear-thinning behaviour of blood. At a microscopic scale, the
orientation of the endothelial cells depends on the wall shear stress induced
by the blood. This can be related to possible degenerative pathologies of the
vascular tissue. An accurate description of the local flow field is thus required
to address this type of interaction.
Another source of alteration of biochemical exchanges is the modification

of the flow field caused by, for instance, vessel stenosis (a localised narrow-
ing), which often results in the development of fat deposits in the lumen. The
modelling of this process, known as atherogenesis, requires the coupling of the
flow equations with appropriate models to describe the wall absorption of the
chemicals involved and their transport, diffusion and kinetics. Sound mathe-
matical models of these phenomena are needed to develop effective numerical
schemes for the solution of these coupled problems.
Realistic simulations cannot be carried out without a proper geometrical

reconstruction frommedical imaging data, another important subject by itself.
Medical imaging has progressed enormously in the last decade and the amount
of information it can provide has increased by an order of magnitude at least.
Yet, how to extract data in a form useful for the simulations is not an obvious
task.
The complexity of the cardiovascular system calls for the integration of dif-

ferent models, operating at different levels of complexity and adapting to the
need of the research at hand. For instance, the study of the flow recirculation
in a carotid bifurcation requires to the use of a sophisticated three-dimensional
model. But this model has to be fed with boundary conditions that have to
take into account the rest of the circulatory system, which has then to be mod-
elled, even if at a lower level of detail. The coupling of different mathematical
models is one of the most active aspects of the research in haemodynamics.
Following a sort of “divide and conquer” strategy the cardiovascular system is
subdivided into “compartments” either at the geometric or at the functional
level, and each is treated with the model best suited to the problem at hand.
This way sophisticated (and expensive) models are used only where necessary,
while the “global” nature of the cardiovascular system is maintained.
All the aspects just described find a place in this book. A general overview

of the cardiovascular system physiology is given in Chapter 1, whose aim
is to introduce the most important terms and concepts to the readers less
acquainted with this topic. It is complemented by Chapter 2, which illus-
trates the basic mathematical models for blood flow and biochemical transfer.
Chapter 3 provide more details on the derivation of the equations that govern
blood flow, while Chapter 4 is devoted to the treatment of medical images
to obtain geometries suitable for numerical computations. The most up-to-
date techniques are explained in detail, focusing on the issues relevant to
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the use of the geometries for numerical simulations. Chapter 5 illustrates the
important relations between geometry and type of flow, pointing out also the
main characteristics of the different flow regimes that may be encountered in
the cardiovascular system. The issue of mathematical models for blood rhe-
ology is tackled in Chapter 6. Here, different non-Newtonian models are pre-
sented and their range of applicability discussed. Indications are given on their
implementation for practical flow computations. In Chapter 7 mathematical
and numerical models of biochemical transport are explained in detail, with
practical examples. This is a complex topic which involves the coupling of
equations of different types and acting on different domains. The mathemati-
cal analysis of such coupled models is an important and recent research topic.
Its foundation and major results are illustrated in Chapter 8, while Chap-
ter 9 focuses on the mechanical coupling between blood flow and the vessel
structure. It deserves special treatment because of its practical importance
and abundance of results both from the theoretical and the algorithmic side.
Indeed, the compliance of blood vessels influences blood flow and gives rise to
the so-called “pulse waves”. Chapter 10 deals with the derivation of reduced
models of the cardiovascular system, and the numerical method for their solu-
tion. Reduced models are important since they are able to provide simulations
of large parts, if not the whole cardiovascular system in an affordable way, at
the price of a reduced spatial resolution. One-dimensional and lumped param-
eter models will be considered. The former are of particular importance for
the study of the pulse wave propagation along the main arterial tree. The
latter represent the simplest (and historically the first) way of simulating the
cardiovascular system. The intertwining of such models with more complex
three-dimensional ones is the foundation of the so-called geometric multiscale
approach illustrated in detail in Chapter 11. Finally, Chapter 12 provides a
set of well described and reproducible test cases and applications. When nec-
essary, geometry data will be made available through the HaeMOdel project
web page. The value of the main physical parameters, the definition of the
major quantities of interest as well as a glossary of the more technical terms
are given in the Appendices.
This book is a follow-up of the scientific results and experience collected

during the four-year activity of the VI-framework European Funded project
HaeMOdel (contract n. HPRN-CT-2002-002670), a Research and Training
Network started in 2002. The aim of the project was to develop, analyse
and assess numerical models for the simulation of the human cardiovascular
system.
The authors want to acknowledge also the contribution to the research

from different national agencies; in particular we mention the contributions
of the Italian “Istituto Nazionale di Alta Matematica” (INDAM), the project
COFIN 2003 by the Italian Ministry of Research, the project CNR 2000,
the Fonds Nationale Suisse (FNS), the Portuguese Fundação para a Ciência
e a Tecnologia (project POCTI/MAT/41898/2001), the British Engineering
and Physical Sciences Research Council, the Canadian Institutes of Health
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Research (CIHR), the Heart and Stroke Foundation of Ontario and the Aus-
trian Science Foundation, Vienna, Projects N. P11982-TEC, P1414321-TEC.
The authors A. Quarteroni, A. M. Robertson and A. Sequeira appreciate

support from the National Science Foundation for the grant NSF 0104680
U.S.-Portugal-Switzerland Cooperative Research Program: “Multiscale mod-
els of blood flow in the cerebral vasculature”. This grant provided support for
collaborative meetings for work included in this book.
We would like to gratefully acknowledge the vital scientific contribution

of all the young researchers of the HaeMOdel project: Jordi Alastruey, Sylvia
Anicic, Santiago Badia, Tomas Bodnar, Paola Causin, Lukasz Janski, Zine-
dine Kathir, Nuno Niniz dos Santos, Vincent Martin, Alexandra Moura, Mar-
tin Prosi, Alessandro Radaelli, Gianluigi Rozza, Keith Smith, and Christian
Vergara.
Further information on the HaeMOdel project can be found on the project

home page mox.polimi.it/haemodel.

Milan, January 2009 Alfio Quarteroni
Luca Formaggia

Alessandro Veneziani
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Lisboa, Portugal
asequeir@math.ist.utl.pt

Spencer Sherwin
Department of Aeronautics
Imperial College
London, UK
s.sherwin@imperial.ac.uk



List of Contributors XIII

David A. Steinman
Mechanical and Industrial
Engineering
University of Toronto
Toronto, Ontario, Canada
steinman@mie.utoronto.ca

Marc Thiriet
INRIA team REO
Laboratoire Jacques-Louis Lions
CNRS UMR 7598
University Pierre and Marie Curie
Paris, France
Marc.Thiriet@inria.fr

Alessandro Veneziani
MOX, Department of Mathematics
Politecnico di Milano
Italy
and
Department of Mathematics
and Computer Science
Emory University
Atlanta, GA USA
ale@mathcs.emory.edu

Christian Vergara
Department of Information
Technology and Mathematical
Methods
University of Bergamo
V.le Marconi 5
Dalmine (BG), Italy
christian.vergara@unibg.it

Marina Vidrascu
INRIA-Rocquencourt
Le Chesnay Cedex, France
marina.vidrascu@inria.fr

Paolo Zunino
MOX, Department of Mathematics
Politecnico di Milano
Italy
paolo.zunino@polimi.it



1

Physiology and pathology of the cardiovascular

system: a physical perspective

Marc Thiriet and Kim H. Parker

The purpose of this chapter is to introduce the reader to cardiovascular physi-
ology and pathology. These are vast, complex subjects, each filling large tomes
and severely exercising the memory of medical students. By necessity, this will
be a very brief and, in places, simplistic introduction to the subject. Despite
its simplicity, it can be very daunting to the newcomer who has not been
trained in biology and physiology. Although we would strongly discourage it,
those readers interested only in the mathematics of the modelling could skip
this chapter initially, returning to it as the need arises.
Since the book primarily concerns the modelling of the mechanical and

biochemical behaviour of the cardiovascular system, we have concentrated
on the anatomy and physiology that bear directly upon mechanics. Living
systems, however, are both complex and exquisitely adaptable and so it is
impossible a priori to predict just how one facet of the physiology will interact
with another. In the middle of the last century, it was generally assumed that
blood vessels were relatively inert conduits for the blood and arterial disease
was often compared to the ‘furring’ of water mains in the water supply system
of a city. We now know that the cardiovascular system is a very active organ
that both controls and adapts to its environment.
Consider, as an example, the uterine arteries. In the non-pregnant woman

they have a diameter of less than 1mm and supply a small part of the pelvic
floor. In pregnancy, however, they provide the major source of blood to the
placenta and thus nutrients to the fetus. The uterine arteries respond to the
increasing demands of the fetus by increasing in size so that at term they are
approximately 4mm in diameter and supply about 20 times the volume flow
rate of blood. After delivery, the demand decreases almost instantaneously and
they respond within a few weeks, exactly how quickly is not known, to their
original size and function. Our understanding of the mechanisms involved in
this normal physiological reaction of the artery is rather perfunctory and good
models would certainly help.
Another feature of the cardiovascular system that should not be neglected

is its flexibility. The differences between rest and maximal exercise can be very

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
c© Springer-Verlag Italia, Milano 2009



2 Marc Thiriet and Kim H. Parker

large; trained athletes, for example, can increase their heart rate and cardiac
output by a factor of 5 for sustained periods. Normal individuals commonly
experience increases of 2–3 times in their heart rate and cardiac output during
periods of exertion or stress and such variation is important for health.
There are also enormous changes in design and size between individuals in

their cardiovascular system. In this chapter we will cite a number of ‘average’
values for the cardiac system, but it should be remembered that these refer
to the average adult, usually at rest conditions, and that there will be a very
wide range of values in the population as a whole and in individuals under
different conditions.
The primary motivation for cardiovascular modelling must be the preva-

lence of cardiovascular diseases, the single largest cause of death worldwide,
which is responsible for more than half of mortality in the developed coun-
tries. Atherosclerosis is responsible for both heart attacks and stroke. It is a
complex disease that generally takes decades to develop. There is widespread
study of its origins, its treatment and, hopefully, its reversal. Of the many risk
factors that have been identified – blood cholesterol and triglyceride levels,
smoking, obesity, genetics, etc. – only haemodynamic and mechanical factors
can explain the focal nature of the disease. A better understanding of these
factors is essential to our understanding of the disease.
In this chapter we will introduce the basic anatomy, physiology and pathol-

ogy of the cardiovascular system together with a collection of data necessary
for the later chapters. Our primary interests are in the mechanical properties
of the system, which will be the principal target of the models discussed in
this book. While there is some discussion of the regulation and control of the
cardiovascular system, we have largely ignored the enormous and medically
very important subject of cardiovascular pharmacology. Drug delivery and
action is undoubtedly influenced by haemodynamics but little is known about
these interactions.
Because all of the material in this chapter is introductory and available in

a number of standard textbooks, we will not cite individual papers. Instead,
we include an annotated bibliography at the end of the chapter as a guide to
further reading in cardiovascular anatomy, physiology and pathology.

1.1 Anatomy of the cardiovascular system

The cardiovascular system is composed of the heart, which pumps the blood,
and the network of blood vessels that convey blood to the body and drain it
from the body tissues to the heart. All parts of the system work in concert,
but initially will be considered individually.

1.1.1 The heart

The heart is a muscular organ made of two synchronised pumps in parallel:
the right side, which collects deoxygenated blood from the systemic veins and
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Fig. 1.1. A sketch of a cross section of the heart showing the gross anatomy. Cham-
bers: LA left atrium, LV left-ventricle, RA right atrium, RV right ventricle. Vessels:
Ao aorta, PA pulmonary artery, SVC superior vena cava, IVC inferior vena cava,
PV pulmonary veins. Valves: TV tricuspid valve, AV aortic valve, PV pulmonary
valve, MV mitral valve. LA is supplied by veins from the lungs and transfers blood
through the mitral valve into the LV. LV ejects blood through the aortic valve into
the aorta. RA collects blood from the inferior and superior venae cavae and transfers
it through the tricuspid valve into RV. RV ejects blood through the pulmonary valve
into the main pulmonary artery

perfuses the lungs, and the left side, which collects oxygenated blood from the
pulmonary veins and perfuses the rest of the body. The heart is comprised
almost entirely of myocardium, specialised muscle cells (cardiomyocytes) that
differ from other muscle cells in their contractibility (lower) and their resis-
tance to fatigue (much higher). The heart has four cavities: upper left (LA)
and right (RA) atria that collect the blood from the veins and lower left (LV)
and right (RV) ventricles that contract to propel the blood into the systemic
and pulmonary veins (Fig. 1.1). The left ventricle, the largest chamber with
the thickest walls, is located posteriorly and leftwards from the right ventri-
cle, which can be thought of as a chamber wrapped around the right side of
the left ventricle from the heart base to the apex. The two ventricles share
a septum, which separates the heart into the left and right sides. The heart
is surrounded by the pericardium, a serous, inelastic membrane that restricts
excessive dilation of the heart and can limit ventricular filling.
There are four valves in the heart, one at the exit of each heart cavity. All of

the valves are embedded in the fibrous skeleton of the heart, which divides the
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atria from the ventricles. The mitral valve, which prevents blood from flowing
back from the LV to the LA, has two leaflets and is prevented from prolapsing
by the chordae tendons and papillary muscles running from the cusps of the
valve leaflets to the side of the LV. The aortic valve guards the exit of the
LV into the aorta, the major systemic artery. It has three leaflets which are
inserted into the walls of the sinuses of Valsalva, roughly hemispherical bulges
at the root of the aorta. The aortic valve has three simple leaflets without
any attachments that come together, providing mutual support when they
are closed. The corresponding valves in the right heart are the tricuspid valve
between the RA and RV and the pulmonary valve between the RV and the
root of the main pulmonary artery.
The heart itself is perfused by the right and left coronary arteries, origi-

nating from two of the three sinuses of Valsalva just above the aortic valves.
The large coronary arteries form a network that lies on the outer layer of the
heart wall. The smaller arteries dive into the wall where they branch off to
form the microcirculation of the myocardium. Because the myocardium lacks
the ability of other muscle cells to contract anaerobically (without oxygen),
the constant supply of oxygen by the coronary vessels is crucial to the regular
function of the heart.
The heart is innervated by both components of the autonomic nervous sys-

tem: the parasympathetic and the sympathetic nerves. Normally, the parasym-
pathetic innervation is the dominant neural influence on the heart.
Deoxygenated blood from the head and the upper body and from the torso

and lower limbs is brought to the right atrium by the superior and inferior
venae cavae. While there are valves in the medium-sized veins that prevent
the back-flow of blood, there are no valves between the venae cavae and the
atria. This blood flows through the tricuspid valve into the RV. When the RV
contracts, the tricuspid valve closes and the pulmonary valve opens, allowing
the blood to flow into the main pulmonary artery. Oxygenated blood from the
lungs flows into the LA through a variable number (most often 4) of pulmonary
veins. There are no valves at the outlet of these veins; it is difficult, in fact,
to distinguish where the veins end and the atrium begins. This blood flows
through the mitral valve into the LV. When the LV contracts, the mitral valve
closes and the aortic valve opens, allowing the blood to flow into the aorta
and thence the systemic circulation. The detailed physiology of the cardiac
cycle will be discussed in Section 1.2.1.

1.1.2 The vascular networks

Blood is ejected from the heart in discrete pulses under relatively high pressure
into the main arteries (at a lower pressure in the pulmonary circulation than
in the systemic circulation) where it flows through a network of branching
arteries of decreasing size to the arterioles and then the capillaries where it
delivers oxygen and nutrients to the tissues and removes carbon dioxide and
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Fig. 1.2. A sketch of the cardiovascular system. LA left atrium, LV left ventricle,
RA right atrium, RV right ventricle. Oxygenated blood is pumped from the LV into
the aorta, which connects through the conduit arteries to the microcirculation in
all parts of the body. The oxygen is transferred to the tissue and carbon dioxide is
transferred to the blood. The deoxygenated blood is collected by the systemic venous
system and returned to the RA. The blood is then ejected from the RV into the main
pulmonary artery where it is distributed to the pulmonary microcirculation. Oxygen
is transferred to the blood and carbon dioxide is transferred to the airways where it
is breathed out. The newly oxygenated blood is collected by the pulmonary venous
system and carried back to the LA where the cycle starts again

catabolites. Blood is collected from the capillaries through merging venules
and returns to the heart at low pressure through a network of veins.
Each blood circuit, systemic and pulmonary, is thus composed of three

main compartments: arteries, capillaries and veins (Fig. 1.2, Tables 1.1 and
1.2). The primary purpose of the arterial and venous vessels is to carry blood
to and from the various tissues, the conduit function, while the microcircu-
latory compartment carries out the various exchange processes, the perfusion
function. The vascular networks are closed, tortuous, multi-generation systems
of branching or merging junctions of deformable vessels with widely different
diameters and lengths.The arterial and venous systems are primarily bifurcat-
ing trees although there are numerous interconnections, anastomoses, at dif-
ferent places in the body. It is estimated that there are approximately twenty
generations of bifurcations going from the heart to the most distant capillary
beds in both the systemic and pulmonary circulation. The venous network
roughly parallels the arterial network, except in the skull. The major arteries
and their corresponding veins often run together with nerves as a neurovas-
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Table 1.1. Properties of the human systemic vessels. The numbers of vessels are
very crude estimates. Adapted from Caro et al. [62]

Vessel Diameter Wall Number of Blood Mean
of lumen thickness vessels volume pressure
(mm) (mm) (%) (kPa)

Aorta 25 2 1 2 12.5
Large arteries 1–10 1 50 5 12
Small arteries .5–1 1 103 5 12
Arteriole .01–.5 0.03 104 5 7
Capillary .006–.01 0.001 106 5 3
Venule .01–.5 0.003 104 25 1.5
Vein .5–15 0.5 103 50 1
Vena cava 30 1.5 2 3 0.5

Table 1.2. Properties of the human pulmonary circulation. PA: pulmonary artery.
Adapted from Singhal et al. [465]

Diameter range Number of Volume Mean velocity
(mm) vessels (ml) (mm/s)

30 (main PA) 1 64 110
8–30 10 21 155
1–8 103 37 104
0.1–1 .25× 106 19 44
.02–0.1 20× 106 5 23

.01 (capillaries) 300× 106 5 2

cular bundle surrounded by a fascia of dense connective tissue. Veins, unlike
arteries, have valves that prevent backflow of blood away from the heart.
The boundary between the large vessels and the microcirculation is defined

differently by different authors, ranging from diameters of 100 to 250 μm.
This boundary is somewhat artificial since the structure and composition of
the smallest arteries and arterioles and of the narrowest veins and venules
are very similar. Capillaries, the smallest blood vessels, are very different
in their properties and connectivity. Capillaries can be as small as 5 μm in
diameter, which is considerable smaller than the largest diameter of a red
blood cell. In general, the topology of capillary beds is very complex with many
interconnections. Most capillaries have a continuous lining of endothelial cells,
like the arteries and veins. Fenestrated capillaries which have a discontinuous
endothelium are found in the kidney, the gut, the choroid plexi of the brain
and in many other locations where rapid exchange of water and small solutes
is desirable. The common feature of flow in the microcirculation is that the
Reynolds number (see Section 1.2 for the definition of the Reynolds number) is
very low, generally � 1, indicating that viscous effects dominate completely.
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The vasculature has many peculiar features such as vascular loops and
anastomoses. Arteriovenous anastomoses are found in the skin and the gut,
the interconnecting vessels often being muscular allowing for active control of
the degree of anastomosis. Arterial anastomoses are found in many organs.
The four arteries supplying the brain, the right and left internal carotid and
vertebral arteries, are connected together through the circle of Willis at the
base of the brain. The hands and the feet are each supplied by two separate
arteries that are connected through the palmar and pedal arches. The arteries
supplying the intestines have a large number of loops along their length. The
liver has a very specialised circulation where the portal vein takes blood from
the microcirculation of the gut directly to microcirculatory vessels in the liver
so materials absorbed into the blood can be stored, metabolically converted
or excreted immediately. While many generalisations can be made about the
vascular system, it is probably safest to assume that the vasculature of every
different organ has some special features.
The vasculature is characterised by three properties: complexity, diversity

and variability. The complexity arises from the biological functioning, the
complicated structure and sheer number of blood vessels. The diversity is the
consequence of the large variability between individuals in vessel origin, shape,
path and branching. The variability is due to the wide range of demands made
on the circulatory system during different normal and abnormal activities.
These properties place stringent demands on modelling of the circulation. On
one hand it is highly desirable to find generalisations that allow us to predict
the effect of various changes and interventions in the ‘average’ individual. On
the other, the ability to generate subject-specific models will be necessary to
predict detailed changes in each individual.

1.1.3 The microstructure of the heart and vessels

The cardiovascular system is made up of relatively few basic components. The
endothelial cells provide a continuous interface, the endothelium, between the
blood and the walls, with the exception of the fenestrated capillaries where
there are gaps in the endothelium. The endothelial cells are 0.5–2μm thick and
attach tightly to each other with clefts between them approximately 10–20nm
wide. Within the intercellular clefts there are specialised tight junctions where
the two cell membranes are held even closer together, particularly in the brain
where they are referred to as the blood-brain barrier. It is not certain whether
these tight junctions are continuous around the whole of the endothelial cell
or not. The shape of the endothelial cell is dependent upon the flow over it.
In regions of low flow the cells are roughly circular in aspect with a diameter
of ∼ 50μm. In regions where flow is high and unidirectional, the cells have
an aspect ratio of ∼10 and the same surface area. Experiments show that
endothelial cells will reorient themselves within a few hours in response to
changes in the flow direction and magnitude.
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The walls of the large components of the vasculature contain another cellu-
lar component, striated myocytes in the heart and smooth muscle cells in the
vessels. They are also made of fibrous proteins, collagen and elastin; ground
substance, proteoglycans and glycoproteins, and interstitial fluid, water con-
taining electrolytes and small plasma proteins. Apart from their active role in
pumping blood and controlling the tone of the vessels, the cells also produce
the proteins and ground substance necessary for growth and maintenance of
the tissue. Collagen forms relatively stiff, high-strength fibres that are nor-
mally tortuous in the relaxed tissue. Elastin forms complex, cross-linked net-
works that are very distensible, being able to stretch up to 100% elastically.
Thus, elastin provides the elasticity of the tissue at small strains and collagen
provides tensile strength at large strains. This results in highly non-linear elas-
tic properties. The role of the ground substance is less clear, but it is certainly
involved in the visco-elastic properties of tissue and affects the permeability
of the tissue to water and small solutes.

The heart

The heart achieves an efficient, co-ordinated contraction of its myofibre pop-
ulation in order to eject blood into both circulatory networks in each cycle.
It is a highly evolved organ that combines structural and functional hetero-
geneity to attain its primary function as a pump. The activation phase of
the myofibres matches the mechanical heterogeneity for a suitable electrome-
chanical coupling. The heart wall is composed of three layers: (i) the internal
thin endocardium (ii) the thick muscular myocardium, and (iii) the external
thin epicardium. The endocardium is made up of an endothelium which is
continuous with the blood vessel endothelium and elastic connective tissue
that merges with the myocardium. The myocardium is composed mainly of
cardiomyocytes, collagen fibres and capillaries. Its outer layer contains nodal
cells. The epicardium has an external layer of flat mesothelial cells lying on a
support tissue, which contains elastic fibres.
External to the heart wall is the double-layered pericardium containing

a lubricating fluid (∼ 25–35ml) which separates the two pericardial layers:
the outer, thick, fibrous, layer (the parietal pericardium) and the inner layer
(the epicardium, or visceral pericardium). The pericardium is composed of
collagenous connective tissue that can restrict overexpansion of the heart. It
is attached to the diaphragm, thus anchoring the heart, and fuses with the
outer wall of the blood vessels entering and leaving the heart.
The heart has a fibrous skeleton with its central fibrous body lying between

the atria and the ventricles. It prevents early propagation of the action poten-
tial (Section 12.4.4). The central fibrous body provides support for the inter-
ventricular septum and the valve rings, supporting the four cardiac valves.
The cardiac valves are sheets of connective tissue covered by an endothelium
and are composed of intramural cells (smooth muscle cells, fibroblasts and
myofibroblasts), reinforced by collagen and elastic bundles. The interstitial
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cells synthesise and remodel the extracellular matrix. The cusps of the atrio-
ventricular valves, the mitral valve on the left and the tricuspid valve on the
right, are connected via the chordae tendinae to papillary muscles attached
to the ventricle walls to prevent them prolapsing into the atria during the
ventricular contraction. The semilunar valves guarding the outlets of the ven-
tricles, the aortic valve on the left and the pulmonary valve on the right, are
tricuspid valves which do not require muscular support since the three cusps
support each other when the valves are closed (the significant contact surface
is called the coaptation zone). The aortic and pulmonary valves have smooth
ventricular and wavy arterial faces. The free edge is indented, with, charac-
terised by a high concentration of collage fibres, the Arantius nodule in its
thicker middle part. The cusp is a multi-layer structure with (i) the fibrosa,
(ii) the spongiosa, absent in the coaptation region, and (iii) the ventricularis.
The heart structure provides the three properties of contractibility, auto-

matism and conduction due to two kinds of cardiac muscular cells: cardiomy-
ocytes and nodal myocytes. The nodal cells are small (80–100×10–20μm) mus-
cular cells which either generate, thus acting as the pacemaker for the heart,
or quickly spread the depolarisation in the myocardium. The sino-atrial node
is located at the top of the right atrium. Due to its automatic self-excitation, it
initiates the electrochemical signal (“natural pacemaker”), which propagates
throughout the heart as a depolarisation wave (which can be measured as
an electrocardiogram – ECG), the so-called action potential. Since the sino-
atrial node fibres fuse with the surrounding atrial cardiomyocytes, the action
potential spreads through the atria and produces the atrial contraction. How-
ever, several nodal bundles conduct action potentials with a greater speed.
The action potential reaches the atrio-ventricular node, located in the right
atrium near the lower part of the interatrial septum. The atrio-ventricular
node imposes a delay of ∼ 100ms in the transmission of the depolarisation
wave to the ventricles after the atria have completed their contraction. From
the atrio-ventricular node, the wave of contraction propagates rapidly along
a network of conduction paths, including the His bundle (beneath the endo-
cardium in the interventricular septum), its right and left branches (along
respective sides of the interventricular septum) and the Purkinje fibres, which
activate the contraction of ventricular cardiomyocytes.
Cardiomyocytes (70–150 × 20–35μm), of given local orientation, are stri-

ated, nucleated cells which are electrically excited in order to rhythmically
contract and relax. The sarcomere, the array of thick and thin myofilaments
between the Z-lines, is the anatomical unit of muscular contraction (the hemi-
sarcomere is the functional unit). The sarcomeres formed by packed contrac-
tile proteins (actin, myosin and multiple associated proteins) fill most of the
cytosol. Cardiomyocytes have a richer supply of mitochondria, and a greater
dependence on ATP (adenosine triphosphate), than skeletal muscle. They act
more slowly and generate less force than skeletal muscle cells but are remark-
ably resistant to fatigue. Unlike skeletal muscle cells, myocardial cells rely
entirely on aerobic metabolism. The microcirculation of the heart is arranged
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so that the capillaries run parallel to the myocardial fibres and they take up
approximately half of the extracellular space in the myocardium.
Excitation of contraction requires the ion Ca++ and there is a complex

cycle of calcium flux during the contraction/relaxation cycle of a myocyte
involving active membrane transport, through special intracellular struc-
tures. The sarcolemma with its ion channels repeatedly invaginates to form
transverse tubules (T-tubules) which plunge into the sarcoplasma (see Sec-
tion 12.4.4), close to the sarcoplasmic reticulum. The sarcoplasmic reticulum
stores calcium ions from diastolic uptake for systolic release. Owing to its
speed, the action potential arrives almost simultaneously at all tubules of
the T-system, ensuring that all sarcomeres have a coordinated contraction.
It should be remembered that the relaxation phase of the cycle also requires
metabolic energy and is not a simple mechanical relaxation. The depolarisa-
tion of the membrane which initiates the contraction cycle propagates from
cell to cell as a wave. The potential changes due to this wave are detectable
on the surface of the chest, the electrocardiogram (ECG), which provides an
invaluable diagnostic marker of heart activity.
Cardiomyocytes are joined by intercalated discs that contain clusters of

gap junctions in order to allow action potential to spread rapidly. Cardiomy-
ocytes then act as a syncytium; stimulation of an individual cell results in the
contraction of the whole myocardium. Cardiomyocytes are surrounded by a
trellis of collagen and elastin, which supports the cells and limits dilation.
Structurally, the myocardium can be thought of as a left ventricle with a

right ventricle added to it in a form similar to a hip pocket on a pair of trousers.
The wall of the left ventricle is approximately 8mm when relaxed and thickens
to 12mm when contracted. The wall of the right ventricle is thinner, 5mm
(range 2–7mm). The myocardium is oriented in the wall of the left ventricle
in a roughly helical manner with its direction varying with depth (Fig. 1.3).
The myofibre orientation varies from the epicardial layers to the endocardial
layers in a given ventricle wall slice and with the myocardium region from the
base to the apex. The inner aspect of the walls of the ventricles is, contrary to
most sketches, highly variegated with trabeculae carnae and papillary muscle.
The role of the papillary muscles is to prevent the prolapse of the mitral valve
during systole, but the role of the trabeculae is not well known. It is, however,
highly likely that some of the thickening of the myocardium measured by
various imaging modalities includes a component due to the coming together
of the trabeculae as the volume of the ventricle decreases.

Large vessels

The walls of the large arteries have a circumferentially layered structure
(Fig. 1.4). The internal, lumenal layer is the intima made up of the endothe-
lium attached to a basement membrane and a thin layer of connective tissue
(subendothelium) connected to the internal elastic lamella. The internal elas-
tic lamella delimits the intima from the media. The media is formed by layers
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Fig. 1.3. A cross-sectional view of the human heart taken approximately half-
way between the apex and the fibrous body. The orientation of the myocardial
fibres is evident from the lines of staining and shows the roughly helical nature
of the orientation. The septum dividing the LV and RV can be thought of as a
continuation of the LV wall. Note the high degree of invagination of the internal
surface of both ventricles, indicating the extent of the trabeculae carnae on the
surface of the ventricles. LV: left ventricle, RV: right ventricle (adapted from [304])

of smooth muscle cells interspersed with elastic lamellae. These lamellae are
about 15μm thick and their structure is conserved across different sized arter-
ies, larger arteries simply having more lamellae. The thickness of the media is
∼ 10% of the internal diameter of the artery for the larger arteries. The outer
limit of the media is delineated by the external elastic lamella. The outer
layer of the arteries is the adventitia, consisting mainly of loose connective
tissue with some smooth muscle cells. In larger vessels the adventitia contains
nerves, vasa vasorum and lymphatic vessels. The adventitia is generally con-

Fig. 1.4. A cross-sectional view of a part of the rabbit thoracic aorta. The artery
has been fixed at physiological pressure, sectioned into thin slices and stained with
orcein stain, which stains elastic tissue, collagen and basement membrane. At this
magnification, the endothelium and intima are not visible. The dark lamellar struc-
tures in the media are elastic tissue with the smooth muscle cells lying between. The
adventitia layer at the outside of the vessel is less organised than the media and is
thought not to contribute significantly to the mechanical properties of the artery
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sidered to play only a minor role in the mechanics of the vessel wall, although
damage to the adventitia can lead to chronic changes in the properties of the
artery wall.
There are subtle differences in the structure and properties of the large

arteries at different locations in the arterial tree. Arteries proximal to the
heart, particularly the ascending aorta, are known as elastic arteries. Their
walls can be slightly thinner than more distal arteries with a smaller fraction
of smooth muscle cells. As a result they are more distensible and provide much
of the Windkessel (compliance chamber; Section 12.4.4) effect (blood systolic
storage followed by diastolic restoration) whereby the starting-stopping nature
of the blood flow expelled from the ventricle is smoothed out over the car-
diac cycle to become pulsatile without any zero flow period (but with possible
diastolic back-flow in certain territories) downstream from the main elastic
arteries. The more distal muscular arteries have a larger fraction of smooth
muscle, a thinner internal elastic lamella and a much more clearly delineated
external elastic lamella. The smooth muscle can alter the tone of the arteries
and can respond to both neural and humoral stimuli in the control of the
cardiovascular system. The elastin composes a complex network of elastic tis-
sue that forms a scaffold for the smooth muscle cells with many connections
between the different lamellae. The elastic tissue can make up more than 50%
of the dry weight of the large arteries. The collagen fibres are oriented in a
roughly helical form around the artery and are generally tortuous under nor-
mal conditions. As the artery is distended, the collagen fibres straighten and,
because of their large tensile strength, bear more and more of the load. Because
of their variability and number, very little is known about the medium-sized
arteries. It is usually assumed that they resemble scaled down versions of the
more distal muscular arteries which have been studied.
Cerebral arteries have distinct properties, probably because of the constant

volume of the cranium in which they reside. Cerebral arteries have thinner
walls without any external elastic lamella compared to similar sized arter-
ies elsewhere in the systemic circulation. The internal elastic lamella is well
developed.
Pulmonary arteries are much thinner than systemic arteries. The wall

thickness is typically only 1% of their diameter. Down to a diameter of about
1mm they are classified as elastic arteries because they contain relatively lit-
tle smooth muscle and collagen. They then transform into muscular arteries
as their diameters decrease to 0.1mm where the media is composed almost
entirely of smooth muscle. This difference in structure of the pulmonary arter-
ies is almost certainly due to the much lower blood pressure in the pulmonary
circulation, generally less than one third of the systemic blood pressure. It is
also interesting that pulmonary arteries are almost universally spared from
atherosclerosis.
The walls of the large veins are thinner than their corresponding arteries

and their bore is generally larger. The intima is very thin and the internal and
external elastic lamellae are either absent or very thin. The media is thinner
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than the adventitia. Medium-sized veins are characterised by the presence of
valves that prevent blood from flowing distally (i.e., in the direction away
from the heart) during muscular compression of the veins. The largest veins
of the abdomen and thorax have very thick adventitia, which contains bundles
of longitudinal smooth muscle cells and vasa vasorum. Valves are absent.
The veins of the leg form a parallel system of deep veins passing through

the large muscles and superficial veins lying close to the skin. They are con-
nected by perforator veins with ostial valves allowing blood flow only from the
deep to the superficial veins. This system provides a muscle pump whereby
venous return of blood to the heart is facilitated against the hydrostatic pres-
sure gradient that is present when the body is erect.
Venous valves are generally bicuspid and located in stiffer expanded seg-

ments of the vein. Venous valves are made of connective tissue with elastic
fibres and few smooth muscle cells, covered by the endothelium. Veins are
often elliptical in cross-section. Valve leaflets are inserted on the lower curva-
ture faces of the vein wall while tributary veins usually enter the edges with
the higher curvature.

Small vessels

Arterioles are usually defined as being less than 30 μm in diameter. They are
composed of a continuous endothelium surrounded by one or two concen-
tric layers of smooth muscle cells. Arterioles receive both sympathetic and
parasympathetic innervation and are the principle regulators of local blood
flow, through the action of muscular cells.
Capillaries are small exchange vessels composed of endothelium sur-

rounded by a basement membrane with three structural types. Continuous
capillaries, found in muscles, skin, lungs and the central nervous system, have a
continuous basement membrane and tight intercellular clefts between endothe-
lial cells. They, thereby, have the lowest permeability. Fenestrated capillaries,
found in endocrine glands, renal glomeruli and intestinal mucosa, are char-
acterised by perforations in the endothelium and, thus, by relatively higher
permeability. Discontinuous capillaries, found in liver, spleen and bone mar-
row, are defined by large gaps in the endothelium and the basement membrane
and, consequently, have very high permeability.
Venules are composed of a continuous endothelium surrounded by a base-

ment membrane for the post-capillary venules and smooth muscle for the
larger venules. Venules have been classified into microvenules (bore of 15–
100μm), minivenules (bore of 100–300μm, wall with a continuous layer of
smooth muscle cells) and venules (bore of 300–500μm, wall with an adven-
titia).

Vascular smooth muscle cells

The smooth muscle cells found in the walls of blood vessels are capable of
slower and much more sustained contraction than myocytes. Myogenic activity
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has been observed in all vessels except capillaries, including lymphatics. In
smooth muscle, unlike striated muscle, the actin and myosin that produce
the contractions are not arranged in distinct bands but are organised for the
maintenance of tonic contractions. Vascular smooth muscle contraction can be
initiated by mechanical, electrical and chemical stimuli. In particular, vascular
smooth muscle contraction can be initiated by stretching of the muscle.

The endothelium

The endothelium constitutes the interface between the flowing blood and the
deformable vessel walls (Fig. 1.5). In all vessels except the fenestrated capil-
laries the endothelium forms a continuous layer with very small gaps 10–20 nm
wide between adjacent endothelial cells. At the microscopic level, the luminal
surface of the endothelium is slightly wavy due to the thickening of the cells
over the nuclei, measurements showing that the maximum height variations
are ∼ 750nm.
The entire surface of the endothelium and the intercellular gaps is covered

with the glycocalyx, which forms the first contact between blood and the vessel
wall. The glycocalyx is composed of highly negatively charged glycoproteins
that are attached to the bilipid membrane of the cell wall. The glycocalyx
is highly hydrated and extends up to 100nm into the lumen of the vessel.
The presence of the highly charged glycocalyx provides the first barrier to
transport between the blood and the vessel wall and has a large influence on
mass transport, particularly in the intercellular gaps.

(a) ascending aorta (b) carotid artery

Fig. 1.5. An en face view of rabbit endothelium which lines all of the cardiovascular
system. The tissue is stained to delineate the junctions between the cells (silver stain)
and the cell nuclei (Weigert’s iron haematoxylin) which are slightly out of focus in
the centre of the cell. The mean flow direction is from the top to the bottom. a) The
ascending aorta. The cells are roughly circular with no particular orientation. It may
be significant that flow in the ascending aorta is highly unsteady and disorganised
during some periods of the cardiac cycle. b) The carotid artery. The cells are highly
elongated and aligned with the mean flow direction. Although flow in the carotid
artery is also unsteady, it is much more organised and unidirectional than flow in
the ascending aorta
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Endothelial cells, like most cells, monitor both their internal state and
the state of their environment. Endothelial cells experience normal stresses
from the blood pressure, axial and circumferential tension from neighbouring
cells, and shear stresses (see Chapters 2 and 3 for a precise definition) due to
the friction of the flowing blood. The applied forces are unsteady with large
spatial variations due to complex geometry of the vessels and the nature of
the blood flow.
The endothelium is involved in the control of blood-wall exchange, in the

modulation of the vasomotor tone, in the regulation of blood coagulation,
in vessel wall growth and remodelling, and in the initiation and control of
inflammation and immune responses through its effects on the adhesion of
leukocytes. Much is known about the response of the endothelium to hydro-
dynamic stimuli, mainly from in vitro studies that can only approximate the
complexity of in vivo behaviour. Virtually every function of the cell, from
gene expression to nano- and microstructure, is affected to some extent by
changes in the level or pattern of wall shear stress. Wall shear stress also
affects the secretion of vasoactive substances, particularly nitric oxide (NO),
and of molecules involved in coagulation and fibrinolysis. High wall shear
stress also hinders leukocyte adhesion to the endothelium.

Transendothelial mass transfer

Transport across the endothelium depends on relative pressure and concentra-
tion gradients. Endothelial permeability can vary according to the state of the
cytoskeleton and the size of the intercellular gaps. Molecular transport across
endothelial cells is affected by the characteristics of the molecule (size, charge,
shape and hydrophobicity). There are two different transport mechanisms:
an intercellular transport through the intercellular gaps for small molecules
and an intracellular transport for macromolecules. Intracellular transport can
involve active transport across the cell membrane or transport via vesicles.
Another possible mechanism for the control of endothelial permeability to
macromolecules is the contraction of the cytoskeleton to induce an increase
in the size of the intracellular gap. This contraction involves myosin chains
interacting with actin filaments that make up the cytoskeleton. Nitric oxide
induces a relaxation of the cytoskeleton and reduces endothelial permeability.

Extravasation

Flowing cells interact with each other, with the endothelium and with the
subendothelial matrix in haemostasis, in thrombosis, in inflammation and
in healing. These interactions involve cell-cell and cell-matrix attachments.
Circulating blood cells have adhesion receptors which, once they penetrate
the glycocalyx, enable them to adhere to the endothelial cell membrane.
The cell-wall attachment is initially reversible but can become irreversible,
tethering the cells together. Flowing cells thus undergo a sequence of steps
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leading to extravasation, with kinetics that are shear-dependent. The steps
include rolling, tethering, activation, firm adherence, locomotion, diapedesis
and finally transendothelial migration.
The endothelium can either enhance or inhibit flowing cell adhesion on its

wetted surface. NO can inhibit adhesion of cells involved in inflammation or
coagulation. Endothelial cells continually produce 13-hydroxyoctadecadienoic
acid, which enhances the resistance to platelet or monocyte adherence. Con-
versely, adhesion molecules (integrins, selectins, immunoglobulin-like adhesion
molecules) attract leukocytes for transmigration. Leukocyte extravasation also
requires chemoattractants and cell-surface enzymatic reactions on both the
leukocyte and endothelial cells. Ectoenzymes, membrane proteins that have
catalytic domains outside the plasmalemma, regulate cell recruitment.

Clotting

Rapid clotting of the blood is vital in response to injury, but circulating clots
can also lead to serious impairment of perfusion when they become lodged
in the microcirculation of critical organs (thrombosis). We will look at the
process of clotting in some detail because it is indicative of the complex-
ity of biological reactions, a fact that should not be overlooked in modelling
(Fig. 1.6).
When the endothelium is damaged, platelets aggregate and adhere to the

regions where the wall matrix is exposed and initiate the coagulation cascade.
The coagulation cascade is a complex process that results in a solid fibrin clot
that covers the damaged region and stops haemorrhage. Primary haemostasis

Fig. 1.6. A sketch of the pathways involved in the clotting cascade. See Table 1.3
for a definition of the different factors
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Table 1.3. Coagulation factors

Coagulation factor Targets

I (fibrinogen) fibrin
II (prothrombin) I, V, VII, XIII, protein C, platelets
III (tissue thromboplastin)
IV (Ca++) V, VIII, IX, X
V (proaccelerin) X, II
VI (accelerin or Va)
VII (proconvertin) IX, X
VIII (antihaemophilic factor A) IX, X
IX (plasma thromboplastic component) X
X (prothrombin converting enzyme) II
XI (plasma thromboplastin antecedent) II, prekallikrein
XII (Hageman or contact factor) XIa, prekallikrein, fibrin
XIII (fibrin-stabilising factor) fibrin

refers to the plug formed by the aggregating platelets at the site of injury.
Various plasma clotting factors then respond to form fibrin strands which
strengthen the platelet plug. The platelets are then activated and secrete the
contents of their granules into the plasma. The granules contain ADP, which
is a potent inducer of platelet aggregation, which provides positive feedback
for the accumulation of platelets at the site of injury. Secondary haemostasis
has two pathways, intrinsic and extrinsic, which join in a common pathway
leading to fibrin formation. The intrinsic pathway is characterised by the for-
mation of the primary complex on collagen by high-molecular-weight kinino-
gen, prekallikrein and FXII (Hegeman factor). FXII activates FXI which, in
turn, becomes a protease until fibrinogen is transformed into fibrin to form
the clot. In the extrinsic pathway, FVII is activated by tissue factor, which is
released from cellular membranes during injury. FVIIa activates FIX and FX.
The common pathway begins with activation of FX by FIXa and/or FVIIa, a
process that requires FVIIIa, to produce thrombin. Thrombin not only con-
verts fibrinogen to fibrin but also activates FVII, FV and their inhibitor PC
as well as platelets.
Haemostasis involves four components: (i) the endothelium, (ii) the flow-

ing platelets, (iii) the plasma coagulation factors and (iv) the fibrinolytic
molecules. In normal conditions, the endothelium prevents clotting (thrombin
inactivation and profibrinolytic activity). Endothelial cells have cell-surface
substances, such as thrombomodulin, protein C, lipoprotein-associated coag-
ulation inhibitor, tissue factor pathway inhibitor, protease-nexin and heparan
sulphate. They inhibit platelet aggregation, releasing inhibitors like prostacy-
clins and NO. They activate fibrinolysis by binding the plasminogen activa-
tor inhibitor, which inhibits the fibrinolytic system. (Fibrinolysis occurs after
coagulation during the healing process. It involves plasmin which cleaves fibrin
in the clot.)



18 Marc Thiriet and Kim H. Parker

Thrombosis
The clotting process continually produces thrombi in blood vessels and cardiac
chambers, probably triggered by unusual material circulating in the blood.
When the blood flow is high enough, the microthrombi do not adhere strongly
to the walls of the vessels and can be destroyed by the fibrinolytic system.
When the blood flow is low, the competition between the self-activation and
inhibition of coagulation can favour thrombis formation and the thrombus
can develop to block the vessel lumen inducing ischaemia of the tissues that
it irrigates. The thrombis can also detach to form an embolus, which can
lodge in a smaller vessel somewhere downstream from the site of thrombosis.
These blockages are called infarcts and the results can be serious when they
occur in the brain (stroke), the heart (heart attack) or the lungs (pulmonary
embolism).

Mechanotransduction

Blood vessel walls are constantly subjected to hydrostatic pressure, tension
and shear stress. Vessels react to changes in these parameters by inducing
changes that restore basal condition either by altering the conditions in the
cardiovascular system as a whole acutely or by remodelling themselves chron-
ically. The cell can change its shape and adapts to the mechanical loading.
The cytoskeleton of mural cells transmits and modulates stresses within the
cell via cellular junctions and cell-extracellular matrix adhesion sites. More-
over, applied forces initiate mechanotransduction cascades leading to tran-
scription factor activation and subsequent gene expression. Cells not only
sense applied forces and respond to received signals, but also evaluate the
mechanical properties of their environment, in particular the stiffness of the
extracellular matrix. However, the reaction depends on the cell type. For
instance, mechanosensitive signalling via elastin-laminin receptors depends
on the artery type and the particular region in the vessel.
There are several different mechanical stresses and various types of mechan-

ical environments associated with flow patterns and unsteadiness. The vessel
wall is sheared by the moving blood on one hand and stretched and compressed
by the pressure applied by the blood. Wall shear stress has attracted much
attention because of its correlation with the focal distribution of atheroma (see
1.3.1). Average wall shear stress on most arteries is ∼ 15Pa but, because of
the highly pulsatile nature of arterial flow, the wall shear stress vector under-
goes large variations in magnitude and direction during the cardiac cycle. The
normal stresses applied to the artery wall are orders of magnitude larger than
the wall shear stresses; mean arterial blood pressure is ∼ 12.5kPa. Because
of the unsteadiness of the pressure pulse, the complexity of the structure of
the artery wall (particularly near branches) and the anisotropic nature of the
walls, it seems likely that stress concentration could lead to large, unsteady
gradients of stress locally within the wall. This, coupled with the need to
displace interstitial fluid when the wall tissue is deformed, could have impli-
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cations for the development of disease that, to date, remain unexplored. The
stresses acting on vessel walls generate a basal tone of the smooth muscle
even in the absence of neurogenic and hormonal influences. The haemody-
namic stresses act on the smooth muscle via direct stress transmission or via
the release of vasoactive compounds by the endothelium.
Various mechanosensors detect stresses and strains applied to the endothe-

lial cells. Transduction elements on the cell surface include (i) mechanosensi-
tive ion carriers, especially the stress-gated ion channels, (ii) cell-membrane
receptors such as receptor tyrosine kinases and G-protein-coupled receptors
and (iii) adhesion molecules. Simulation of the mechanosensors initiates differ-
ent signalling pathways in order to trigger responses. Stresses can act directly
on stretch-activated channels, which are sensitive to tension imposed on the
cell membrane, and on shear-stress-activated channels. They convert exter-
nal mechanical forces into electrochemical signals in the cell. Shear stress and
luminal pressure either promote or repress gene expression in the endothelial
cells. Although a small fraction of targeted genes respond to both pressure
and shear stress stimulation, generally the two stimuli induce distinct gene
expression. The complexity and variety of mechanical responses is hinted at
in Fig. 1.7, which indicates some of the known responses of the endothelial
cell and of the adjoining smooth muscle cell. Referring to the figure, initia-
tion is done via (i) ion channels, such as stress-gated calcium ion channels
(SGCC), (ii) growth factor receptors and others tyrosine kinase receptors
(RTK), including the receptor type 2 of vascular endothelial growth fac-
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the vessel wall cells and of the shear, of much smaller magnitude than the applied
pressure on the wetted endothelial cells. Both forces vary in amplitude during the
cardiac cycle. Direction changes can also occur (flow separation, flow reversal during
the diastole)
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tor (VEGFR2), (iii) G-protein-coupled receptors (GPCR), (iv) membrane
NADH/NADPH oxidase (NOx) and (v) adhesion molecules, mainly inte-
grins, but also VE-cadherins and PECAM1. Effectors include small guano-
sine triphosphatases (GTPases), members of the mitogen-activated protein
kinase (MAPK) family, phosphatidylinositol 3-kinase (PI3K), phospholipase
PLC, protein kinases PKB and PKC, nitric oxide (NO), endothelin (ET), focal
adhesion kinases (FAK) and superoxide anion O−2 . The main targets are the
transcription factors for cell and tissue remodelling (with possible degradation
via matrix metalloproteinases (MMP) after long-duration pressure rise), such
as NFκB, the cytoskeleton, adhesion molecules and ion channels. More details
may be found in [276].
There is also cell-cell communication (i) between neighbouring endothelial

cells, (ii) between adjoining smooth muscle cells and (iii) between endothelial
cells and smooth muscle cells through fenestrae in the internal elastic lamella.
Shear stresses imposed on monolayers of endothelial cells in culture increase
the hydraulic conductivity of the endothelium by altering the state of the
occludins of the tight junctions between cells.

Nitric oxide

Nitric oxide is produced by endothelial cells, smooth muscle cells, cardiomy-
ocytes, and other cell types by the enzyme nitric oxide synthase (NOS). The
continuous NO production is enhanced by many different stimuli (ATP, acetyl-
choline, . . . ). Two signalling pathways can be involved in shear-mediated
changes in the NO production. The initial rapid phase of NO production
is dependent upon protein G and Ca++ and is affected by the rate of change
of shear and not on the level of shear. The subsequent slower phase of NO pro-
duction does depend upon the level of shear and is involved in the sustained
release of NO. NO is a potent vasodilator that acts by inhibiting vasoconstric-
tor influences (angiotensin-II, sympathetic vasocontriction). NO also inhibits
platelet and leukocyte adhesion to the endothelium and has an antiprolifera-
tive effect on endothelial and smooth muscle cells. NO acts via cyclic guanosine
monophosphate (cGMP), after binding to guanylyl cyclase.

Endothelin

Endothelin (ET) is a potent vasoconstrictor secreted by endothelial cells.
The endothelin isoform ET1 is produced in endothelial cells stimulated by
ischaemia or shear stress. The release of ET1 from endothelial cells in culture
varies with the duration and the level of shear. It stimulates Ca++ influx from
the sarcoplasmic reticulum of smooth muscle cells inducing vasoconstriction.
ET1 also induces proliferation of endothelial and smooth muscle cells, thereby
regulating the production of extracellular matrix. In human myocardium in
vitro, endothelin exerts a positive inotropic effect (increase in myocardial con-
tractility) via sensitisation of cardiac myofilaments to calcium and through
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the activation of sodium exchange. However, endothelins also induce coro-
nary vasoconstriction and delayed negative inotropic effects, which balance
and cancel the transient positive inotropic and chronotropic (increase in car-
diac frequency) effects. Endothelin is also a growth factor for cardiomyocytes.

Other vasoactive substances

Several substances cause either contraction or relaxation of smooth muscle
cells once they bind to specific surface receptors. Important endothelium-
derived vasodilators are prostacyclin (PGI2), acetylcholine, adenosine diphos-
phate and adrenomedullin. Adrenomedullin also functions in many cell types
including smooth muscle cells, cardiomyocytes and various blood cells. It
enhances cardiac contractility, activates nitric oxide synthase, possibly induces
hypotension and is involved in the regulation of fluid and electrolyte bal-
ance. Important endothelium-derived vasoconstrictors are adenosine triphos-
phate, superoxide anions, endoperoxides and thromboxane A2. Uridine adeno-
sine tetraphosphate, which is stimulated by adenosine triphosphate, uridine
triphosphate, acetylcholine, endothelin and mechanical stress, also produces
vasoconstriction, probably via purinic receptors.

Vessel wall remodelling

Blood vessels respond to chronic changes in blood pressure and flow rate
by remodelling, reduced pressure and flow lead to reduction of the lumenal
diameter and media mass initiated by the up-regulation of endothelin and the
down-regulation of NO. Similarly, a rapid increase in pressure or flow rate
is characterised by an increase in vessel bore followed by a reactive contrac-
tion of smooth muscle cells. Prolonged increases lead to structural changes
that are characterised by the proliferation of smooth muscle cells. Smooth
muscle cells can also migrate into the intima, proliferate, synthesise extracel-
lular matrix and form a neointima. Arterial wall layers thicken non-uniformly
during induced hypertension. The inner wall layers thicken more in the acute
phase, whereas the outer layers are thicker than the inner layers when the ves-
sel is subjected to long-term hypertension. Medial collagen content increases
quickly during the acute phase and more slowly during the chronic response.
Elastin levels increase steadily but only slightly. Vascular smooth muscle tone
increases rapidly but returns almost to control levels chronically.
Wall remodelling is thereby characterised by a rapid first stage of geometri-

cal changes. Mechanical changes occur during the second stage of wall remod-
elling. Remodelling in response to hypertension involves the accumulation of
collagens in order to counteract the increased distension of the wall, which
makes the wall stiffer. However, the release of matrix metalloproteinases,
which can cleave the fibrous matrix proteins, leads to progressive degrada-
tion of the extracellular matrix, increasing wall distensibility.
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NO mediates the remodelling in response to increased wall shear stresses.
NO released from cells exposed to excess shear stress triggers growth factor
and matrix metalloproteinase activation, which contribute to the restructur-
ing of the vessel wall. The expression of purinergic receptors in the vessel
wall increases strongly in response to injury of the endothelium by balloon
catheters, with a much higher level in the media, a very much higher level in
the neointima and a ten-fold increase in the endothelium. It therefore seems
likely that activated purinergic receptors are involved in neointimal prolifera-
tion.

1.1.4 Blood

Blood contains living cells and plasma (Table 1.4). The plasma represents
∼ 55% of the blood volume with the remaining being the cells; the volume
fraction of cells is called the haematocrit. Because erythrocytes (red blood
cells) represent 97% of the cell volume, the haematocrit is variously defined
as the red blood cell volume fraction. The plasma contains ∼ 92% water
with the rest being made up of proteins, small molecules and ions. The major
electrolytes in blood are the cations Na+, K+, Ca++ and Mg++ and the anions
Cl−, HCO−3 , HPO

–
4 and SO

–
4 . Small sugars and carbohydrates are transported

in the blood. Blood glucose is the most important of the small molecules and
its concentration (glycaemia) depends upon the exogenous supply and the
degredation of hepatic glycogen and is controlled by the hormone insulin.
The circulating blood proteins include fibrinogen and other clotting factors
as discussed above. Albumin is the main plasma protein, synthesised in the
liver. It binds many small molecules for transport through the blood. Albumin,
together with the electrolytes, is the main determinant of the osmotic pressure
of the blood, which maintains the water balance between blood and the tissues.
The non-protein nitrogen in the blood is contained in urea, uric acid, creatine,
creatinine, ammonium salts and amino acids.
Lipids are essential for the formation and repair of cell membranes but are

highly hydrophobic. They are transported in the blood in the lipoproteins,
which are classified by their size and density; chylomicrons are the largest and
are mainly involved in the transport of hydrophobic molecules from the small
intestine to the liver where they are sequestered and processed. Very-low-
density lipoproteins (VLDL) are synthesised in the liver and contain lipids,
triglycerides and cholesterol esters. VLDL is converted into intermediate den-
sity lipoprotein (IDL) and low-density lipoprotein (LDL) through a complex
cascade. LDL is the primary mode of transport of lipid and cholesterol through
the body. Most cells have LDL receptors that are involved in the transport
of lipids. High-density lipoprotein (HDL), a separate lipoprotein also synthe-
sised in the liver, is primarily involved in the transport of excess lipids and
cholesterol from the tissues to the liver for storage or excretion.
There are three main kinds of blood cells: erythrocytes, leukocytes (white
blood cells) and platelets (thrombocytes). The erythrocytes are highly spe-
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Table 1.4. Composition and properties of blood in the healthy human. The blood
cells include erythrocytes (red blood cells), leukocytes (white blood cells) and throm-
bocytes (platelets). Leukocytes are divided into five classes by their morphological
and histological characteristics. Neutrophils, eosinophils and basophils are known as
granulocytes due to the presence of granules in their cytoplasm. Monocytes and lym-
phocytes are involved in scavenging and the immune defence system. Blood plasma
consists of water (90%) with the remainder being electrolytes (Na+, 142mmol/l;
Cl−, 102mmol/l; and K+, 5mmol/l), carbohydrates, lipids, amino acids and other
molecules

Erythrocytes #/mm3 4.2–6.3× 106
average haematocrit 46% (male)
average haematocrit 42% (female)
Leukocytes #/mm3 4–10× 103
neutrophils 40–70%
eosinophils 1–2%
basophils 0.5–1%
lymphocytes 20–40%
monocytes 2–10%

Platelets #/mm3 2–4× 105

Ions mEq/l 295–310
Protids g/l 70–80
Lipids g/l 5–7
Glucids g/l 0.8–1.1

Density kg/m3 1050 (1040–1060)
Viscosity Pa s 0.004 (.003–.04)
Haematocrit 47% (40–50%)
Osmotic pressure mOsm 280–300
pH 7.39–7.41

cialised cells that contain neither a nucleus nor mitochondria. They consist
of a bilipid membrane and membrane cytoskeleton surrounding a solution of
haemoglobin. At rest they assume a biconcave discoid shape approximately
8μm in diameter and 2 μm thick. Since the capillary diameters are often
smaller than 6μm, the cells must deform considerably during their passage
through the microcirculation. Haemoglobin is a protein with a high affinity
for oxygen and most oxygen is transported from the lungs to the tissues via
this route. Erythrocytes have an average life span of ∼3 months and they are
constantly being generated by the bone marrow (∼ 6× 106 cells/s). The high
cell content of the blood means that it has very complex rheological properties
associated with cell deformability and agregation, which will be dealt with in
Chapter 6.
Leukocytes are globular cells principally involved in the immune defence

of the body and they have an average life span of only a few days. There
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are five types of leukocytes: neutrophils, eosinophils and basophils (collec-
tively called granulocytes), lymphocytes and monocytes. The granulocytes
are densely packed with granules and are primarily involved in the immune
system. Neutrophils, 50–70% of all leukocytes, diameter 8–15μm, are able
to phagocytise foreign cells, toxins and viruses. The eosinophils, less than
5% of all leukocytes, diameter ∼ 15 μm, phagocytise antigen–antibody com-
plexes. The basophils, less than 1% of all leukocytes, diameter 12–15μm,
release (i) preformed granule-associated mediators, including histamine, which
causes vasodilation, serotonin, bradykinin, heparin, which is an anticoagulant,
and cytokines and (ii) newly generated mediators, such as prostaglandins and
leukotrienes. The lymphocytes, 25–35% of all leukocytes, diameter 8–15μm,
also play an important role in the immune response by providing antigen-
specific acquired immunity (immunological memory). The monocytes, 3–9%
of all leukocytes, diameter 15–25μm, give rise to mature macrophages that
reside in the tissues and defend the body against viruses and bacteria.
The platelets, diameter 2–4μm, are non-nucleated cells with an average

life span of 10 days that are involved in coagulation. Platelets are dense
in granules which contain serotonin, granulophysin, P-selectin, growth fac-
tors, clotting molecules and chemotactic compounds. Circulating platelets are
kept in an inactive state particularly by prostacyclin and NO released by the
endothelium. Platelet activation is affected by haemodynamic forces. At sites
of injury, the platelets adhere to the exposed subendothelium, aggregate and
initiate the coagulation cascade. Platelets are also active in inflammation,
synthesizing proteins involved in the inflammatory pathways.

1.2 Cardiovascular physiology

The cardiovascular system is divided into the systemic circulation supplied
by the left ventricle (LV) and the pulmonary circulation supplied by the right
ventricle (RV). Each circulation can be divided conveniently into four parts:
the corresponding heart pump, the arteries, the microcirculation and the veins.
We will discuss each part separately although it should always be remembered
that it is a closed system with each part interacting with every other part
more or less strongly. For example, over time the same amount of blood must
flow through the left and the right side of the heart. There can be transient
variations which lead to the redistribution of blood within the circulatory
system, but these differences cannot be sustained for long and haemostasis
will soon be reestablished.
The heart is a single organ that is divided into the left and right sides.

The arteries are the larger blood vessels that carry blood from the heart to
the microcirculation in the tissue to be perfused and then the veins carry the
blood back to the heart. In terms of mechanics, the large arteries and veins are
differentiated from other vessels by their size and the predominance of inertial
effects over viscous effects in the flow of blood in them. This is characterised
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by relatively large values of the Reynolds number,

Re =
ρDU

μ
(1.1)

a dimensionless number that depends on the diameter of the vessel D (or
radius R), the mean blood velocity U , the density ρ and viscosity μ of the
blood. In Table 1.7 we report some typical values of the Reynolds number
in the main blood vessels. More insight on the significance of this and other
dimensionless numbers characterising fluid flow is given in Chapters 2 and 5.
Here we just mention that the large difference in Re results in profoundly
different fluid mechanics characteristics in the large and small vessels and so
it is usual to treat them separately.

1.2.1 The cardiac cycle

The heart beat is a two stage pumping action over a period of about 1 s.
Systole is defined as the period during which the myocardium contracts and
blood is ejected from the ventricle. Cardiologists tend to define systole by the
activity of the myocardium, usually through the electrocardiograph (ECG).
Vascular doctors tend to define systole as the period between the closing of
the mitral valve and the subsequent closing of the aortic valve. Functionally,
the two definitions are very similar. Diastole is defined either as the period
when the myocardium is relaxing or the period between the closing of the
aortic valve and the closing of the mitral valve. At rest diastole occupies
approximately two thirds of the cardiac period. As the heart rate increases,
diastole is shortened while systole remains approximately the same duration.
At maximal heart rate systole is also shortened.
Because of it predominance, we will focus our attention on the left ventricle

in the discussion of the cardiac cycle. The right side of the heart is obviously
just as important as the left, but it tends to follow the patterns established by
the left. Also, because it is a cycle, the choice of the starting point is arbitrary.
The wave of contraction over the ventricular surface gives rise to the QRS-
complex in the ECG. This is a very singular event in the ECG and is often
taken as the ‘start’ of the cardiac cycle. We will start the description of the
cardiac cycle with the closure of the mitral valve (Fig. 1.8).
The four main phases of the ventricular activity can be defined by the state

of the inlet and outlet valves. When the ventricular myocardium begins to con-
tract, the pressure in the LV increases rapidly, exceeding the LA pressure and
causing retrograde flow through the mitral valve. This flow causes the valve
to close, initiating the isovolumic contraction phase when both the mitral and
aortic valves are closed and the myocardium is contracting. Because blood is
incompressible, the volume of the LV remains constant, but it undergoes a
significant change in its shape as the myocardium continues to contract and
the pressure in the ventricle increases rapidly. The mitral valve is prevented
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the cardiac cycle

Fig. 1.8. A sketch of the events occurring during the cardiac cycle. P: pressure,
Q: volume flow rate, ECG: electrocardiogram, PCG: phonocardiogram, t: time.
MO: mitral valve open, MC: mitral valve close, AO: aortic valve open, AC: aor-
tic valve close, TO: tricuspic valve open, TC: tricuspic valve close, PO: pulmonary
valve open, PC: pulmonary valve close, PQRST: PQRST waves of the ECG. In the
left ventricle, the isovolumic contraction phase is between MC and AO, the ven-
tricular ejection phase is between AO and AC, the isovolumic relaxation phase is
between AC and MO and the ventricular filling phase between MO and MC. Systole
is the period between MC and AC, diastole the period between AC and MC

from prolapsing into the LA by the chordae tendinae and papillary muscles
connecting the cusps of the valve to the wall of the ventricle.
When pressure in the LV exceeds the pressure in the aorta, the aortic valve

opens, beginning the ventricular ejection phase of the cardiac cycle. The aortic
pressure begins to rise because of the expansion of the vessels by the blood
ejected from the heart, but as long as the myocardium is contracting quickly
enough, the pressure difference between the LV and aorta remains negative1

and flow into the aorta continues to accelerate up to peak flow.

1 By convention, distance along the circulatory system is measured in the direction
of mean blood flow, i.e. away from the heart in the arteries and towards the heart
in the veins.
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After a short time, the rate of contraction of the myocardium begins to
slow and eventually it ceases to contract and begins to relax. At the time
during this process when the rate of contraction of the ventricle becomes less
than the volume flow rate in the root of the aorta, the pressure difference
between the LV and the aorta becomes practically zero. This time coincides
with the time of maximum flow rate into the aorta. Because of inertial effects,
this time does not necessarily correspond to the start of relaxation of the
myocardium as is frequently stated. Once the peak flow is reached, the aortic
valve starts to close down to complete closure at the end of the decelerating
phase of the flow across the aortic valve.
When the myocardium begins to relax, there is a spontaneous repolarisa-

tion of the cardiomyocytes that gives rise to the T-wave of the ECG. It should
be remembered that myocardial relaxation is a metabolically active process
(in particular, calcium sequestration in the cell stores, the sarcoplasmic retic-
ulum).
As ventricular relaxation continues, the pressure difference between the left

ventricle (LV) and the aorta reverses, becoming positive. This positive pressure
gradient decelerates the flow into the aorta. After a period, this deceleration
causes the flow in the ascending aorta to reverse so that blood starts to flow
back into the aorta. The aortic valves closes, however, stopping this reversal
of flow. Because the pressure in the LV is still much larger than the pressure
in the left atrium (LA), the mitral valve is also closed and so the closing of the
aortic valve marks the start of the isovolumic relaxation phase. During this
period, the myocardium continues to relax and the pressure in the LV to fall.
When the LV pressure decreases below the pressure in the LA, the mitral

valve opens, beginning the phase of ventricular filling when the mitral valve
is open and the aortic valve closed. Filling initially occurs passively, the E-
wave of mitral flow driven by the pressure in the atrium. There is considerable
debate about the role of the ventricle during the passive filling, some cardiol-
ogists believing that the ventricle generates suction during this period due to
the over-contraction of the ventricle past its equilibrium configuration. There
is no debate about the second phase of filling, the A-wave, which is generated
by the contraction of the left atrium as evidenced by the P-wave on the ECG.
In healthy young adults at rest, about one third of the filling of the ventricle
is contributed by the A-wave. This fraction increases with exercise and with
age. At fast heart rates, the E and A-wave overlap to become a summation
wave. There is a delay between the contraction of the LA and the contraction
of the LV due to delays of the conduction wave through the atrio-ventricular
node. Typical timings for the different phases of the cardiac cycle in a healthy
adult at rest are given in Table 1.5.
The stroke volume can be modified by changes in ventricular contraction

(the rate of development of tension in the myocardium; Table 1.6). Two of the
major influences are the degree of filling, the rate of contraction of a myofibril
depending upon the amount that it is stretched (the Frank-Starling effect), and
the velocity of contraction (the magnitude of tension produced in a myofibril



28 Marc Thiriet and Kim H. Parker

Table 1.5. Typical duration of the four phases of the cardiac cycle (left ventricle)
in a healthy young adult at rest, with a heart rate of HR = 75 beats/min

Phase Duration Starting event
(ms)

Isovolumic relaxation 100 aortic valve closure
Ventricular filling 400 mitral valve opening
Isovolumic contraction 50 mitral valve closure
Ventricular ejection 250 aortic valve opening

Table 1.6. Typical properties of the heart functioning for a young adult

Property Units Typical Range

Mass g 300 250–350
Volume (LV) ml

end diastolic 120 70–150
end systolic 40 20–50
stroke volume 80 50–100
ejection fraction % 67 60–80

Flow rate ml/s 100 70–120
Heart rate Hz 1.25 0.6–4.0
Duration ms

isovolumic contraction 50 40–60
systolic ejection 300 230–400
isovolumic relaxation 80 70–90
diastolic filling 370 250–400

depends upon its rate of shortening). The coupling of the dynamics of the
heart to the vascular system, venous return and aortic dynamics makes control
of the cardiovascular system very complex. It is observed that a premature
depolarisation results in a weaker systole than usual, but that the following
heart beat is stronger (potentiation). Similarly, a delayed depolarisation causes
a more energetic contraction. The mechanical effects on cardiac contraction
are dominated, however, by neural and humoral effects.
The variety of control mechanisms working simultaneously in the cardio-

vascular system results in a rather irregular behaviour of the heart rate. This
is probably desirable in a pump that must react quickly to changes in the
environment of the body. In fact, a very stable heart beat is associated with
diseases such as congestive heart failure. This feature, however, is a handicap
in cardiovascular signal and image processing. Ensemble averaging over a cer-
tain number of beats is, indeed, often used to improve the signal-to-noise ratio.
In order to supply adequate oxygenation to itself, the heart requires an

average blood flow rate of 60–80ml/min per kg of tissue. Approximately 80%
of the oxygen consumption is related to its mechanical work and 20% to its
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basal metabolism. The myocardium also requires different substrates for its
energy production, primarily fatty acids, which supply ∼ 70% of the energy
requirement, and glucids.
The cardiac output (CO) is the average volume of blood that is pumped

by each ventricle per unit of time. In a healthy person at rest, CO is ∼ 5–
6 l/min. Because the cardiac cycle is roughly periodic, the CO is equal to the
stroke volume (SV) × the heart rate (HR), SV being the difference in volume
of the ventricle at the end of the filling phase (diastole, EDV) and the end of
the contraction phase (systole, ESV), hence2 , CO = (EDV − ESV) ×HR.
Various factors determine the cardiac output. The force of contraction of

myocardium depends upon the degree to which it is stretched and therefore
the degree of filling of the ventricle prior to contraction. Cardiologists refer
to anything that influences this as the preload. The rate of contraction of
myocardium depends upon the load that it experiences and therefore upon
the forces which resist ejection. Cardiologists refer to this as the afterload.3

Moreover, the contractility of the heart is also affected by different molecules
that originate either humorally or neurologically. Body size affects cardiac
demand and studies have shown that CO varies not with body mass but with
body area; so clinicians use the cardiac index (CI), which is the ratio of CO
to the surface area of the body. For healthy people, 2.8 < CI < 4.2 l/min/m2.
Clinicians also refer to the cardiac reserve as a measure of the ability of the
heart to quickly adjust to immediate demand, as measured by various standard
tests. In healthy young adults, the cardiac reserve is 300–400%.

The mechanical work done by the heart

The mechanical work done by the heart during one beat can be measured
from the PV loop, a plot of LV pressure vs. LV volume (Fig. 1.9):

W =

∮
PdV.

During the isovolumic relaxation and contraction phases, the ventricular vol-
ume is constant while the pressure falls or rises. Thus the integral over the loop
is simply the difference between the ventricular pressure during the ejection
phase and the filling phase. The work done by the LV is ∼ 1 J under resting
conditions, which corresponds to a mechanical power of ∼ 1.25W . The latter
is obtained by multiplyingW by the heart rate and increases to ∼ 8W during
heavy exercise, primarily due to the increase in heart rate.

2 Clinicians are fond of using acronyms as variable names. This is very convenient
for the medical student cramming for examinations, but very inconvenient for
modellers writing equations.

3 These terms derive historically from measurements on muscle fibres where they
are well defined and measured in units of force. Their current use by cardiologists
is less well defined, even to the extent that the units of measurement of preload
and afterload are no longer clear.
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Fig. 1.9. Pressure (P)–volume (V) curve of the left ventricle (LV). SE: systolic
ejection, IR: isovolumetric relaxation, VF: ventricular filling, IC: isovolumetric con-
traction, EDV, EDP: end diastolic volume and pressure, ESV, ESP: end systolic
volume and pressure, SEV: systolic ejection volume

The mechanical state of the contracting myocardium is frequently expres-
sed in terms of its elastance. Elastance is defined as the ratio

E(t) =
P (t)

V (t) − V0
,

where V0 is the volume of the ventricle at zero transmural pressure. If
myocardium were a simple elastic tissue, this would be the elastic modu-
lus of the passive tissue. Because it is contractile, E varies with time during
the cardiac cycle.
The use of the elastance to describe the state of the heart is supported

by the work of Suga et al. [487, 489] in isolated heart preparations. They
showed that the elastance at the end of systole (the end systolic pressure–
volume relationship) was nearly constant for all kinds of interventions that
altered heart function (pacing, volume loading, pharmacological interventions,
etc.). In terms of the PV loop, this means the line from the end systolic
shoulder of the loop to the intercept V = V0 is almost invariant with the
operating conditions of the heart. Furthermore, they found empirically that
the metabolic energy consumed by the heart was related to the mechanical
work (i.e. the area under the PV loop). This observation has limited clinical
application despite its success in isolated hearts because of the difficulty of
measuring V , particularly V0. Nevertheless, it is at the base of the lumped
parameter models for heart action presented in Chapter 10.

1.2.2 The large blood vessels

Because of the pulsatile nature of cardiac output, the arterial pressure varies
between the diastolic pressure pd (minimum) and systolic pressure ps (max-
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imum). The pulse pressure ΔP ≡ ps − pd. Cardiologists are taught that ps
reflects the cardiac output and the distensibility of the arteries, pd depends
upon the state of the peripheral vessels and Δp is proportional to the stroke
volume and inversely proportional to arterial compliance. In fact, the inter-
relations are much more complex than this. Cardiologists often calculate the
mean arterial pressure from the formula mAP = pd +Δp/3, which is a crude
approximation of the time-average arterial pressure assuming that the pres-
sure waveform is triangular.
Most arteries experience biphasic flow waveforms with a small amount

of backward flow occurring in late systole and early diastole. Despite the
common belief that arterial flow can be approximated by steady flow, this
is a serious misrepresentation of the nature of blood flow in the arteries. In
fact, the stroke volume ejected by the heart occupies less than 20 cm of the
ascending aorta. The values of two major dimensionless parameters which
govern the blood flow, the Reynolds number and the Womersley number (the
frequency parameter), are given in Table 1.7. Both parameters become much
lower than unity in the microcirculation. We have already given the definition
of the Reynolds number and we postpone that of the Womersley number to
Chapter 5.
Flow in the arteries is effectively wave-like. Elastic tubes, like the arteries,

support one-dimensional waves in which the energy is transferred between the

Table 1.7. Properties of typical systemic vessels for an adult (LAD = left anterior
descending). The numbers for the named arteries are based on measurements. The
numbers for the representative vessels at the bottom of the table should only be
considered as approximate, as there are very many of these vessels and a wide range
of properties for individual vessels should be expected. The wave speed for veins is
based on measurements of the distensibility of veins. As far as we know, the wave
speed in veins has never been measured

Bore Length Peak Wave Reynolds Womersley
(mm) (cm) velocity speed number number

(cm/s) (m/s)

Ascending aorta 15 4 1.0 5 4000 10.5
Thoracic aorta 11 15 0.8 6 2500 7.7
Iliac artery 5 20 0.8 6 1000 3.5
Femoral artery 4 45 0.8 7 800 2.8
Brachial artery 5 40 0.8 7 1000 3.5
Common carotid artery 4 20 0.8 7 800 2.8
LAD coronary artery 3 12 0.5 12 400 2.1
Small artery 2 10 0.2 20 100 1.4
Arteriole .02 .4 0.01 - 0.5 0.014
Capillary .01 .2 0.001 - 0.003 0.007
Venule .02 .4 0.01 - 0.5 0.014
Small vein 2 10 0.6 2 100 1.4
Large vein 8 50 0.8 1 1700 5.6
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elastic potential energy of the distensible walls and the kinetic energy of the
blood. The wave speed c depends upon the distensibility (sometimes also called
compliance) of the vessel C and the density of blood ρ, c ∼ (ρC)−1/2. More
details will be found in Chapter 10. Under normal conditions, a wave generated
by the contraction of the heart propagates throughout the arterial system.
These waves will give rise to reflections whenever there is a discontinuity in
the geometrical or elastic properties of the arteries. Bifurcations and high
resistance regions can give rise to reflections that propagate back towards the
heart. These backward waves are also reflected by the bifurcations giving rise
to a very complex pattern of reflected and re-reflected waves that determine
the local pressure and velocity waveforms in the arteries. This process will be
discussed in detail in later chapters.
The pressure in veins is very much less than the pressure in arteries. When

lying down, venous pressure is generally in the range of 1–2 kPa. Because of
hydrostatic effects, the venous pressure is very dependent upon posture and
pressure in the veins of the foot can rise to 15kPa when standing. Of course,
hydrostatic pressure also effects the arteries, but because their mean pressure
is much higher, the fractional changes are much less. Mean flow in veins must
be equivalent to the flow in arteries and so they have very similar values of
Re. Flow in veins is also very pulsatile but in a much less regular way than the
arteries. Venous flow is very dependent upon muscle contractions, particularly
in the arms and legs, respiratory effects in the thorax and atrial contractions
nearer the heart. Because of its irregularity and complexity, venous flow has
not been studied seriously either experimentally or theoretically. It is a subject
waiting to be explored.

1.2.3 The microcirculation

The microcirculation is made up of three parts; the arterioles, the capillar-
ies and the venules. These vessels are very small (5–30μm in diameter) but
very numerous so that local velocities are very small (∼ 1mm/s). This means
that the characteristic values of Re are very small so that viscous forces com-
pletely dominate any inertial forces in the flow. As a result, virtually all of
the resistance to flow is found in the microcirculation. This is not to say that
viscous effects are not important in the large vessels, the no-slip condition at
the vessel walls ensures that viscosity is important in determining the detailed
distribution of flow in the large vessels. However, it does mean that almost all
of the pressure head losses in the circulation occur in the microcirculation.
Most of the pressure head losses actually occur in the arterioles. The arte-

rioles have very thick muscular and highly ennervated walls; the ratio of wall
thickness to lumen diameter is ∼1. The distribution of blood flow to different
tissues is determined largely by these vessels whose resistance is highly depen-
dent upon their diameter, which is controlled by contraction or relaxation of
the smooth muscle in the wall.
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The capillaries are the smallest vessels in the circulatory system and they
are responsible for the bulk of exchange between the blood and the various
tissues. Capillaries range from 5–8μm in diameter and 200–400μm in length.
The bore of most capillaries is smaller than the largest dimension of the red
blood cells, which means that the cells pass through the capillaries in single
file and they must deform during their passage. In the capillaries, therefore,
blood can no longer be thought of as a homogeneous fluid and it is necessary
to treat it as a multi-phase fluid composed of plasma and cells (particle flow).
There is a reduction in the effective viscosity of blood in the microcircu-

lation (the Fahraeus-Lindquist effect) due to the steric exclusion of the blood
cells from the wall regions of the vessels (the Fahraeus effect). As the red
blood cells pass through the microvessels, there is a very small lubrication
layer between the red blood cell membrane and the microvessel wall that pro-
motes mass transfer between them. It is unclear how the larger leukocytes pass
through capillaries, probably relying upon larger anastomoses within the cap-
illary network. Because of these effects, the blood cells circulate more slowly
through the circulatory system than does the plasma.
Capillary density varies greatly between different tissues depending upon

their metabolic requirements. In skeletal muscle there are 300–1000 capillaries
per cm3 of tissue, which corresponds to a total surface area of ∼ 20 cm−1. In
the highly metabolically active myocardium or the brain, the surface area per
volume of tissue is ∼ 500 cm−1. In lungs where there is little tissue except
for airways and capillaries, the capillary surface area is ∼ 3500 cm2 per g of
tissue.
The capillary circulation, characterised by a low flow velocity and a short

distance between the capillary lumen and the tissue that it perfuses, is well
adapted to molecular exchange. In addition, fluid and the smaller solutes in
the plasma can move from the capillary to the extravascular space, composed
of the cellular, interstitial and lymphatic subcompartments. The flux of water
between the capillary and the surrounding tissue depends upon the transmu-
ral difference between hydrostatic pressure p and plasma osmotic pressure Π ,
J = LP (Δp−ΔΠ), where LP is the hydraulic permeability of the wall (Star-
ling’s law). The pressure drop along the capillary is 1–2Pa, which means that
the lumenal pressure is considerably higher at the arteriole end of the capil-
lary than at the venule end (Table 1.8). Therefore, even under homeostatic
conditions of water exchange, there is a net flux out of the arteriole end of
the capillaries into the tissues and back into the capillaries at the venule end.
This flux of water is very important in the exchange of small solutes carried
in the blood.
In microvessels with continuous endothelium, the main route for water and

small solutes is the endothelial cleft. Macromolecules can cross the endothe-
lium between the cells (paracellular transport) or through endothelial cells
(transcytosis), using receptors, specific or not, and vesicles. Microvascular
transport has been modelled using pore theory for small and intermediate-
sized molecules and transendothelial channels for macromolecules.
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Table 1.8. Main features of the capillary circulation

Units Value

Length μm 200–400
Diameter μm 6–8
Distance between capillaries μm 10–30
Capillary density #/cm3 300–6000 (myocardium)
Total surface density cm2/cm3 20–500 (myocardium)
Hydrostatic pressure kPa 3–4 (arteriole end)

1.5–3 (venule end)
Plasma osmotic pressure kPa 2.5–4.0
Mean velocity mm/s < 1
Cell transit time s 0.5–3
Haematocrit % 30
Viscosity Pa s 0.001 (plasma)
Total capillary volume ml ∼ 300 (∼ 5% total blood volume)

1.2.4 Regulation of the circulation

In order to meet the body’s changing needs, the cardiac output changes
through changes in the cardiac frequency and/or the ejection volume (see
also Section 10.2.4). The cardiovascular system is controlled by a complex set
of regulation mechanisms, which mainly involve the central nervous system
(neural) and the release of hormones from the endocrine organs (humoral).
Nervous signals are integrated in the cardiovascular centre, located in the

brainstem. Efferent nerves connect to the sino-atrial node and the myocardium
in the heart, controlling the heart rate and the rate and strength of the myocar-
dial contraction. Efferent nerves to the smooth muscles in the blood vessel
walls control arterial tone, resistance in the microcirculation and blood vol-
ume in the large veins. The brain gets signals from various sensors distributed
around the body.
The nervous system primarily regulates the cardiac frequency in order

to adapt to the changing needs of the body. However, the increase in fre-
quency is bounded by the rate of diastolic filling, which is determined by
the venous return and the diastolic perfusion of the coronary arteries. The
cardiac frequency is also influenced by other factors such as body tempera-
ture and the circulatory hormones. The main flowing hormones are the cat-
echolamines (adrenaline and noradrenaline – also known as epinephrine and
norepinephrine), secreted by the adrenal gland, vasopressin (or antidiuretic
hormone ADH), secreted by the hypothalamus, angiotensin-II, secreted by
the kidney, and natriuretic peptides, such as the atrial natriuretic peptide
(ANP), secreted by atrial myocytes.
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Blood pressure is regulated by short-term and long-term mechanisms.
Short-term adjustments are made by neural mechanisms involving the con-
trol of the cardiac output and peripheral resistances in response to signals
from the cardiovascular baroreceptors. Long-term control of the blood pres-
sure involves indirect monitoring of blood volume. Hormonal mechanisms,
including (i) the renin-angiotensin system, (ii) ANP and (iii) the antidiuretic
hormone, regulate blood volume and indirectly the blood pressure.

Cardiovascular sensors

Mechano- and chemoreceptors are widely distributed throughout the cardio-
vascular system: in the heart, the coronary arteries, the carotid sinuses, the
large intrathoracic blood vessels (particularly along the inner aortic arch and
at the bases of both venae cavae) and the cervical vessels. These receptors
continuously monitor the state of the circulation and feed their signals to the
corresponding afferent neurons.
The chemoreceptors transduce reduced O2 concentration and increased

CO2 and H
+ concentrations into an action potential. The impulses are trans-

mitted via the vagus into the vasomotor centres, as well as the respiratory
centres. The baroreceptors are sensitive to both mean pressure and the rate
of change of pressure. An increase in mean pressure or pulse pressure increases
the firing rate of the baroreceptor nerves, which not only inhibits sympathetic
tonic activity to the heart and blood vessels, but also increases vagal tone
to the heart. Conversely, a fall in arterial pressure reduces afferent signals,
which relieves inhibition of sympathetic tone and increases the peripheral
resistances, thereby restoring the blood pressure. The stretch receptors are
located in the ventricular walls and the lower pressure parts of the cardiovas-
cular system: the pulmonary artery and venae cavae. They are activated by
long-term stretch of the tissue and are primarily involved in the regulation of
blood volume.

Delayed control of the circulation

Blood volume is controlled by the kidneys, which control Na+ and water
reabsorption via the renin-angiotensin-aldosterone system. Renin cleaves an-
giotensinogen into angiotensin-I. Angiotensin-converting enzyme produces
angiotensin-II, which constricts the arterioles. Angiotensin-II acts on the
adrenal cortex to release aldosterone, which increases Na+ and water retention
by the kidneys and stimulates the release of vasopressin from the posterior
pituitary, which also increases water retention. Angiotensin-II favours nora-
drenaline release from sympathetic nerve endings and inhibits its re-uptake,
hence enhancing the sympathetic function.
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The heart also has an endocrine function. Atrial natriuretic peptide (ANP)
and brain natriuretic peptide (BNP) are synthesised by cardiomyocytes as
preprohormones, which are processed to yield prohormones and, ultimately,
hormones. They are released into the circulation at a basal rate. Augmented
secretion follows haemodynamical or neuroendocrine stimuli. They relax vas-
cular smooth muscle cells and regulate their proliferation. They decrease the
baroreflex activity and have direct and indirect renal actions. ANP increases
the renal blood flow, inhibits renin release by the kidneys, increases the rate
of glomerular filtration, decreases the tubular Na+ reabsorption, and inhibits
aldosterone synthesis and release by the adrenal cortex. C-type natriuretic
peptide (CNP) released by the endothelial cells reduces local vascular tone
and growth. The diuretic and natriuretic effects of CNP are much weaker
than those of ANP and BNP.

1.3 Cardiovascular diseases

Cardiovascular diseases are the leading cause of death in developed countries.
Heart failure is a progressive disease in which the myocardium loses the ability
to adequately perfuse the body. It has many causes including failure of the
myocardium itself, chronic valve disease and chronic arterial disease. Direct
disease of the heart is relatively rare. It can occur through bacterial or viral
infection (endocarditis or rheumatic disease), parasitical infestation (Chagas
disease) or the accumulation of protein complexes (cardiac amyloid). The two
major vascular diseases, atherosclerosis and aneurysms, account for the vast
majority of cardiovascular disease and have received the bulk of attention
from modellers.
Another type of cardiovascular problem are genetic disorders.4 The devel-

opment of the cardiovascular system can lead to a large number of congenital
disorders, many of which lead to problems that must be corrected by surgery.
The most common congenital diseases of the heart are septal defects (holes
in the septum) in either the atria or ventricles. Also relatively common is
the Tetralogy of Fallot where there is a ventricular septal defect, pulmonary
stenosis, aortic dislocation and thickening of the right ventricle. Another prob-
lem that has received considerable attention is the Fontan procedure for the
amelioration of pulmonary atresia (an absent or disfunctional right ventri-
cle) by connecting the pulmonary artery directly to the venae cavae so that
the left ventricle supplies both the systemic and the pulmonary circulation in
series. Perhaps the most severe, non-lethal disorder is the transposition of the
great arteries where the systemic vessels are connected to the right side of the
heart and the pulmonary to the left. All of these disorders and the surgical
procedures that have been devised to treat them result in alterations of the
haemodynamics that would benefit greatly from modelling.

4 It has been said that adult cardiologists deal with man’s mistakes while paediatric
cardiologists deal with nature’s mistakes.
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1.3.1 Atherosclerosis

Atherosclerosis is defined by the accumulation of fatty materials, fibrous ele-
ments and calcium in the intima of arteries (Fig. 1.10). The development of
the disease is very complex and there are conflicting theories about how it is
initiated and progresses. There are four main stages in the progression of the
disease: (i) the appearance of fatty streaks, (ii) the appearance of macrophages
(foam cells), (iii) the development of fibrous plaque and (iv) calcification and
the development of complicated plaques. It is a progressive disease that can
take decades for the development of symptoms. The early stages are com-
pletely benign but as the lesion develops it can intrude into the lumen of the
vessel creating a stenosis that obstructs blood flow leading to clinical complica-
tions. More dangerous, clinically, is the development of thrombi or the rupture
of the plaque leading to emboli that get lodged in downstream vessels causing
infarctions. Blockages in the heart are called heart attacks while blockages in
the brain are called strokes; together they comprise approximately half of all
deaths in developed countries.
Atherosclerosis is distributed throughout the systemic arteries, but is vir-

tually unknown in the pulmonary arteries or the venous system. It is not
distributed uniformly throughout the arteries but shows a strong predilection
for particular sites in the arteries. Lesions are commonly found on the inside
of bends in tortuous arteries and on the outer walls of bifurcations (they are
rare on the flow divider or inner walls of bifurcations). This focal nature of
the lesions has focused attention on mechanical effects on the development
of the disease since most of the other risk factors, such as the concentration

Fig. 1.10. A cross-sectional view of a very advanced atherosclerotic plaque in a
human coronary artery. The plaque involves approximately three-quarters of the
circumference of the arterial wall and occludes most of the original lumen of the
vessel. Note that the arterial wall at the bottom of the section appears to be normal.
This image was obtained by optical coherence tomography (Adapted from [301])
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of lipids in the blood, obesity, cigarette smoking, etc., affect the arteries uni-
formly. Mechanical effects are also important in the classification of stable and
unstable lesions, unstable lesions being prone to rupture and the formation of
emboli.

1.3.2 Aneurysms

An aneurysm is a gradual dilation of an arterial segment over a period of years
(Fig. 1.11). The aneurysm wall stretches and becomes thinner and weaker than
normal arterial walls. Consequently, untreated aneurysms can rupture causing
massive haemorrhage, except in the brain where rupture leads to possibly
lethal vasospasm. The plastic deformation of the arterial wall is associated
with structural changes in the connective tissue.
There are two types of aneurysms: fusiform aneurysms, cylindrical dila-

tions where the entire circumference of the artery is weakened (Fig. 1.12), and
saccular aneurysms, balloon-like bulges resulting from a weakening of one side
of the artery wall. Fusiform aneurysms are often complications of atheroscle-
rosis, local stenoses leading to the release of vasoactive drugs that cause the
artery to remodel. They can be located in any artery but are most com-
monly seen in the ascending and abdominal aortae. Saccular aneurysms can
be caused by trauma or certain infections of the blood. Congenital aneurysms
are located at branching sites in the cerebral circulation, most often at the

lip
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Fig. 1.11. Saccular aneurysms are located either on the vessel edge (side aneurysm;
left panel), or at a branching region, and called lateral (mid panel; medical obser-
vations – traumatism of the artery wall) or terminal (right panel, aneurysm of the
basilar artery; courtesy of A Gaston) whether the vessel trunk (or stem) gives birth
to a lateral branch or divides into two main daughter vessels. Centre: Schematic
drawing with geometry definitions of a saccular aneurysm at the apex of a branch-
ing segment of an artery. The neck is defined as the channel between the artery and
the wall dilation. The main region is called the cavity (or pouch or sac). Opposite
to the neck is the dome (or fundus). The cavity can be biloculated with a large pro-
jecting end part. Saccular aneurysms are classified into three categories according
to the largest width (small, large – 12 ≤ wa ≤ 25mm – and giant)
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Fig. 1.12. Schematic drawing of a large fusiform aneurysm of the abdominal aorta
(AAA; CT: coeliac trunk, SMA: superior mesenteric artery, RRA and LRA: right
and left renal arteries, RCIA and LCIA: right and left common iliac arteries)

branches of vessels leading to or away from the Circle of Willis, although they
can also be found on the sides of vessels.

1.3.3 Treatment of cardiovascular diseases

Modelling and simulations of blood flow through arterial grafts, through
reconstructed vascular segments and through vessels with implanted medical
devices, have been carried out by many groups in order to provide knowledge
of flow behaviour and the applied stress fields. Such investigations are useful
to optimise surgical procedures or the design of medical devices. Most of the
studies have been performed in idealised geometries but there is a growing
interest in computations carried out in realistic geometries determined from
medical imaging.

Heart surgery

Heart surgery deals with repair of congenital heart defects, with valve repair
and replacement, with pacemaker placement, with normal rhythm and/or
conduction restoration (arrhythmia surgery, such as the Maze procedure for
atrial fibrillation), with coronary revascularisation and, if all else fails, with
heart transplantation. Surgery nowmakes extensive use of imaging systems for
surgical planning and, increasingly, robotic assist during operation. Because
the donor pool for cardiac transplantation is insufficient, ventricular assist
devices (VAD) have been designed to unload the heart and to provide adequate
perfusion of the body organs both as a bridge to transplantation, and, recently,
as long-term treatment.
Malfunctioning valves can be removed and replaced with prosthetic heart

valves. There are two main types of heart valves: mechanical valves, and bio-
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prosthetic tissue valves, both stentless and stented. There are three main
designs of mechanical valves: the caged ball valve (e.g., Starr-Edwards valve),
the tilting disc valve (e.g., Medtronic Hall and Bjork-Shiley valves) and the
bileaflet valve (e.g., St Jude, CarboMedics and ATS valves). Valved grafts have
also been proposed (e.g., St Jude aortic valved graft, ATS aortic valve graft
prosthesis). Bioprosthetic (xenograft) valves are made from porcine valves
(e.g., Carpentier-Edwards and Hancock valves) or bovine pericardium (e.g.,
Ionescu-Shiley and Carpentier-Edwards valves). In order to be successful, the
prosthetic valve must mimic the static and dynamic characteristics of the
natural human valve and the mechanics of flow through it. It should not pro-
duce turbulence, flow stagnation or excessive shear stress (the latter can cause
haemolysis, i.e., the damaging of blood cells).

Grafting

Two surgical procedures can be applied to severely stenosed arteries: en-
darterectomy, which removes the plaque and preserves the artery, and grafting.
There are two types of grafts: (i) vessel replacement and (ii) bypass. Replace-
ment, or end-to-end anastomosis, involves removing the diseased artery and
replacing it with another vessel sutured end-to-end with the remaining arter-
ies. Bypass, or side-to-side anastomosis, provides an alternative route for blood
to bypass the stenoses which are left in place.
Vascular grafts can be divided into three types: (i) grafts using arteries or

veins from the patient (autologous) or a donor (homologous), (ii) xenografts
using vessels from other species (usually bovine or porcine) and (iii) artifi-
cial grafts (usually either woven or knitted dacron or expanded polytetraflu-
oroethylene PTFE). Autologous grafts have the advantage that they do not
elicit any immune responses and are probably the preferred method of replace-
ment despite the problem caused by removing the replacement vessel. With
proper typing, homologous vessels can also be incorporated into the body
with few or no problems. Xenografts have the advantage that they are biolog-
ical material, but they must be treated so that they are not rejected by the
immune system and this treatment limits their lifetime. Artificial grafts have
the advantage that they can be very durable, but there is always the problem
of incorporation of the material into the body so that it is not thrombogenic.
There is very active research into the development of new materials for grafts
and for drug treatments of the grafts that will promote acceptance of the graft
by the immune system and suppress hyperplasia.
All grafts suffer from complications; 50% close within 10 years after

surgery. The most common modes of failure are thrombus formation, resteno-
sis of the vessel due to intimal hyperplasia at the artery-graft junction,
aneurysms at the graft junction, dilation, kinking and deterioration of the
graft material. Some of these problems result from an incomplete covering
by the endothelium (endothelialisation) of the graft lumen leading to the for-
mation of thrombus: inflammation of the graft junction leading to the excess
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proliferation of cells (hyperplasia), and long-term degeneration of the graft
material.
As in the natural arteries, haemodynamics are thought to play a role in the

development of lesions in grafts. Better understanding of the flow and stresses
present in grafts and graft junctions will aid in surgical planning of grafting
and may improve the lifetime of grafts. As well as predicting the effects of
graft geometry on flow patterns, it is also important to consider the solid
mechanical interaction between the graft and the native arteries. This can
affect local wall stresses through stress concentration and the transmission of
the arterial pressure and velocity waves.

Stenting

The number of vascular graft operations has declined during the past decade
because of the development of stenting. Stenting is a minimally invasive pro-
cedure where a catheter is advanced from a peripheral artery to the site of
stenosis. The stenosis is generally disrupted by dilating it with a balloon
(angioplasty) used to expand a wire mesh stent which supports the vessel
walls. Nowadays, shape memory alloys are also used. The stent is left in place
permanently (Fig. 1.13).
The most common problem with stents is restenosis, which occurs at a

significant rate (see also Chapter 12). Consequently coated metallic stents and
biodegradable stents have been developed. Several types of drug-eluting stents
have been tested in clinical trials to limit cell migration and proliferation into
the intima in the region of the stent. Mathematical modelling of the effect of
stents on the artery and the process of intimal remodelling will certainly play
an important role in the development of more successful stents.

Fig. 1.13. Stent for saccular branching aneurysms (courtesy of Cardiatis). The part
within the trunk serves as support. In an arterial segment (more or less curved), a
uniform mesh is used to dilate a stenosis
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Aneurysm clipping

The surgical treatment of saccular aneurysm consists in placing a small metal-
lic clip around the base of the aneurysms to establish normal flow in the
affected artery. Aneurysm surgery is performed on both ruptured aneurysms
and to prevent rupture in aneurysms at risk. The presence of the clip and
the isolated aneurysm will certainly affect the behaviour of the artery after
operation, but little is known about these effects. Postoperative complications
of this procedure include infection and damage to neighbouring blood vessels.

Coils and external stents

Fusiform aneurysms are treated by grafting, or external or internal stenting.
Both grafting and external stenting are surgical procedures while internal
stents are inserted by catheter-based methods. External stents are a recent
development that rely upon the custom fabrication of the external stent
using computer-aided prototyping based upon accurate medical images from
magnetic resonance (MR), computed tomography (CT) or positron emission
tomography (PET). Because it is so new, there is little information about the
long-term outcome of external stenting.
In coiling, a catheter is advanced from a peripheral artery to the neck

of a targeted saccular aneurysm under image guidance. Very thin metallic
coils are then advanced into the aneurysm cavity, avoiding both rupture of
the wall and the formation of emboli. Once the coils are released, the blood
external to the coils compacted by the blood flow clots while the free space
forms the new lumen of the artery, comprising a more or less large area of the
aneurysmal cavity (the greater this area, the higher the recanalisation risk;
Fig. 1.14). There are a number of problems with coiling that could benefit from
suitable mathematical modelling. Therapeutic results are often unsatisfactory
when the volume of the aneurysm is large, when the neck of the aneurysm is
broad, or when there is a small angle between the inflow and the axis of the
aneurysmal cavity.

Fig. 1.14. Coiled side aneurysm. Coil compaction by blood flow leads to a residual
cavity of significant volume with possible recanalisation (arrows: schematic drawing
from a clinical observation)



1 Physiology and pathology of the cardiovascular system 43

Embolisation

Catheter-based transarterial chemoembolisation (TACE) is a a relatively new
technique used in the treatment of some cancers. TACE is similar to intra-
arterial infusion of chemotherapy but small emboli are included in the infusion
to block small blood vessels downstream from the site of infusion, thereby
increasing the residence time of the chemotherapeutic agents. This treatment
commonly induces regional side effects if the emboli are not injected close
enough to the target tissue.

Vein devices

The two most common problems in the veins are deep vein thrombosis and
varicose veins. Therapy to prevent deep vein thrombosis includes advice about
posture and exercise and the use of elastic stockings. The problem of post-
operative deep vein thrombosis is usually dealt with by the use of anticlotting
drugs such as heparin, although intermittent external compression by means of
an inflatable boot has also been used as a prophylactic measure. Varicose veins
are usually treated by surgical removal of the affected veins or by injection
sclerotherapy. A number of endovascular devices have been developed that
can be implanted in the veins. A venae cavae filter is a device inserted into
a major vein to prevent multiple pulmonary embolisms. When veins become
dilated, they lose their elliptical shape, which reduces the efficiency of the
venous valves. V-shaped clips can be put into varicose veins to restore the
usual configuration of their lumen in order to restore valve function.

Ventricular assist devices (VAD)

Ventricular assist devices (VAD) have been developed to assist the failing
heart initially as a bridge to transplantation but more recently as a bridge to
recovery. The oldest and most common devices consist of intra-aortic balloons
which are inflated and deflated in phase with the cardiac cycle. The balloon
is inflated during diastole to increase the aortic pressure, which increases the
perfusion through the coronary arteries. The balloon is deflated just before
systole, which decreases the pressure in the aorta and unloads the left ven-
tricle. Similar effects can be obtained by external compression of the arteries,
either directly invasively or indirectly non-invasively. The timing of the VAD
interventions is critical to the success of the intervention; being out of phase
with the cardiac cycle is highly detrimental to the functioning of the heart.
A number of implanted VADs have been developed which actively pump

blood from the ventricle to the aorta. These pumps can be classed as positive
displacement devices that mimic the functioning of the LV and turbine pumps,
which act predominantly as pressure generators. The turbine pumps are the
most recent development, primarily because it was wrongly believed that red
blood cells could not survive passage through a high-speed turbine. All types
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of VADs would benefit from modelling of their effects and efficiency in the
cardiovascular system.

Drawbacks of vascular medical devices

Any device implanted into a blood vessel can induce several biological and
mechanical disturbances when it is made from inappropriate material and its
rheology does not match the properties of the vessel wall. Devices inserted
into regions of high blood velocity can cause the breakup of red blood cells
(haemolysis), which is particularly dangerous. In any case, an implanted device
provides a matrix for the formation of thrombus, especially when the endothe-
lium is removed or damaged during implantation. Vessel wall damage also
generates an intimal proliferation response, which can lead to rapid resteno-
sis. Finally, any device implanted in a blood vessel will disturb the blood flow
to some degree and the long-term effects of these disturbances can be serious.
Mathematical modelling, together with new biomaterials, can and should help
us to overcome all of these problems.

1.4 Conclusions and annotated bibliography

This chapter is intended as an introduction to the anatomy, physiology and
pathology of the cardiovascular system for haemodynamic modellers. It is,
by necessity, a very superficial look at three very broad subjects. We hope
that it covers the basic topics in a way that will be accessible to engineers
and physical scientists who would like to apply their expertise to the study of
the cardiovascular system. At the same time we are aware that many of the
‘facts’ that we have presented will be contested by anatomists, physiologists
and clinicians who are experts in the subjects that we have covered. We hope
that it conveys some of the complexity of the subject, something that should
never be forgotten in the process of modelling.
This chapter has been condensed from a book to be published by one of

the authors, M. Thiriet, Biology and Mechanics of Blood Flows [497]. The
book was originally written as a long version of an invited contribution text
on “Biochemical and Biomechanical Aspects of Blood Flows”, for the survey
article collection “Modelling of Biological Materials” and as notes for a lecture
series on the cardiovascular system for the CRM–INRIA Spring School held
in Montréal, Canada. It contains many more details and references on specific
topics, which have has been omitted from this brief introduction.
The anatomy of the cardiovascular system is covered in any good text

on anatomy. We have made extensive use of M.F. Martini, Fundamentals of
Anatomy & Physiology [315] in the preparation of this chapter. The combi-
nation of anatomy and physiology makes this book particularly useful.
The physiology of the heart is covered in detail in A.C. Guyton, Medical

Physiology [213], which has become one of the standard medical physiology
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texts. An early work by the same author, A.C. Guyton, Circulatory Physiol-
ogy: Cardiac Output and Its Regulation [212], is an excellent introduction to
cardiac control, although there have been a number of advances in our under-
standing since its publication. It is, however, still a good introduction to the
subject.
The physiology of the cardiovascular system is the subject of two excellent

textbooks, J.R. Levick, An Introduction to Cardiovascular Physiology [279],
and M.N. Levy and R.M. Berne, Cardiovascular Physiology [282]. Both books
are intended as textbooks for medical students and their success is indicated
by the number of editions that have been published. They are both highly
recommended.
The standard textbooks on blood flow in the arteries are W.W. Nichols

and M.F. O’Rourke, McDonald’s Blood Flow in Arteries [350], a thoroughly
rewritten edition of D.A. McDonald, Blood Flow in Arteries [317] containing
a wealth of information that was not available to McDonald, who died shortly
after the publication of the 2nd edition of his book, and W.R. Milnor, Hemo-
dynamics [334]. Probably the best book on the pulmonary circulation, with
particular emphasis on the pulmonary microcirculation, is J.M.B. Hughes and
N.W. Morrell, Pulmonary Circulation: Basic Mechanisms to Clinical Prac-
tice [237].
The Mechanics of the Circulation, written by C.G. Caro, T.J. Pedley, R.C.

Schroter and W.A. Seed [62], is a relatively old book, written before techno-
logical advances in ultrasound and magnetic resonance imaging opened new
windows into the circulatory system. However, it is an excellent introduction
to the cardiovascular system and the basic mechanical principles that are
needed to study it. It is currently out of print, but well worth the search for
anyone new to the subject.
Cardiac electrophysiology, an extremely important facet of cardiological

function, which has only been touched upon in this chapter, is covered in
detail in D.P. Zipes, Cardiac Electrophysiology: from Cell to Bedside [560].
All of the biochemistry contained in this chapter is dealt with in detail in

A.L. Lehninger, Principles of Biochemistry [347]. In the tradition of medical
textbooks, this book has outlived its original author and is almost continu-
ously updated and revised to keep pace with developments in biochemistry.
Finally, cardiovascular pathology is the subject of a plethora of books,

including Heart Disease for Dummies [427]. One of the standard textbooks
is E. Braunwald, Braunwald’s Heart Disease: A Textbook of Cardiovascular
Medicine [50], which strives to encompass the whole of the subject.
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As explained in Chapter 1, the cardiovascular system is the main responsible
of the transport of various chemicals to and from the various organs, enabling
their correct functioning and, in fact, life.
The desire to model this system is longstanding. Indeed, the well known

Euler equations (nowadays standing at the ground of gas dynamics models)
were infact developed by Euler in 1775 with the intent of describing blood
flow in the human arteries [139]. We mention also the works by Bernoulli,
Poiseuille and Young on this subject.
However, it is only in the past few decades that the application of mathe-

matical models of the cardiovascular system have become widespread within
the bioengineering and medical research community. The main reasons are the
advancements in the power of modern computers, the progress in imaging and
geometry extraction techniques (see Chapter 4) as well as the development of
better numerical algorithms (like the ones described in the later chapters of
this book).
Nowadays, computer simulations can provide researchers with an invalu-

able tool for the interpretation and analysis of the circulatory system func-
tionality, in both physiological and pathological situations.
Clearly a main impulse to develop this field of study is the increasing

demand from the medical community for scientifically rigorous and quantita-
tive investigations of cardiovascular diseases, which are unfortunately respon-
sible for a large percentage of early mortality in industrialised societies, see
for instance [229]. The ageing of the population and the consequent increase
of health care costs also call for more effective treatments.
Besides their employment in medical research, numerical models of vas-

cular flows can also provide a virtual experimental platform to be used as
training system for new vascular surgeons [494] or anaesthesiologists [91,357].
In perspective, they can give specific design indications for the realisation of
surgical operations [331,494] or for the design of better prosthetic devices. For
instance, numerical studies have shown how shape optimisation techniques
may be used for minimising the downstream vorticity in coronary by-pass
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grafts [1, 434]. Investigations of this type can help the surgeon in understand-
ing how different surgical solutions may affect blood circulation and guide
the choice of the most appropriate procedure for a specific patient or type of
patients. Another interesting application of computational haemodynamics to
surgical planning is found in [329].
The mathematical modelling of the various functions of the cardiovascular

system is, however, still an incredibly challenging problem. The difference in
space and time scale of the processes involved, highlighted in the previous
chapter, makes the treatment of the system as a whole unfeasible. It is then
useful to identify a hierarchy of models, each suited for a different type of
investigation or to different parts of the system, see Chapter 10, and possibly
devise strategies to couple them, using for instance the multiscale framework
that will be illustrated in Chapter 11.
In the followingwe will focus our attention on models for the main systemic

cardiovascular tree, providing for each of them a justification from a physical
and computational point of view. A more formal derivation of the equations
is postponed to other chapters of the book, in particular Chapters 3 and 7.
Numerical simulations are of course less invasive than in vivo investigation,

and potentially more accurate and flexible than in vitro experiments. Numeri-
cal models require patients data: the value of the parameters characterising the
properties of blood and possibly the vessel wall, the initial and boundary con-
ditions for the partial differential equations to be solved as well as geometrical
data that defines the shape of the computational domain. The latter can be
obtained by radiological acquisition through, e.g., computer tomography,mag-
netic resonance, Doppler anemometry, etc., as will be addressed in Chapter 4.

2.1 Mathematical models for local blood flow dynamics

The mathematical equations of fluid dynamics are the key components of
haemodynamics modelling. Rigorously speaking blood is not a fluid but a
suspension of particles in the plasma, the latter being mainly made of water.
As discussed in Chapter 1, the most important blood particles are red cells
(erythrocytes), white cells (leukocytes), and platelets (thrombocytes). Being
the most numerous, red cells are the main responsible for the special mechan-
ical properties of blood. The prominent macroscopic effect of their presence is
that blood is a shear-thinning , or thixotropic fluid. A precise definition will be
given in Chapter 6, here we just say that a shear-thinning fluid the more it stirs
the more it fluidifies (just think to the behaviour of tomato ketchup, another
shear-thinning fluid). In other words, its (apparent) viscosity decreases with
the increase of the rate of deformation. This effect is stronger in smaller ves-
sels, like the arterioles, venules and the capillaries. Viscoelastic effects can be
very important at the fine spatial scale (micro-circulation). Below a critical
vessel calibre (about 1mm), blood viscosity becomes dependent on the ves-
sel radius and decreases very sharply. This is known as Fahraeus-Lindquist
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effect (see Chapter 1): red blood cells move to the central part of the capil-
lary, whereas the plasma stays in contact with the vessel wall. This layer of
plasma facilitates the movement of the red cells, thus causing a decrease of
the apparent viscosity. High shear rate and increased blood cell deformation
are further important factors that explain viscoelastic behaviour.
Things get even more complex in the smallest capillaries, since here the

size of a red blood cell becomes comparable to that of the vessel and the
continuum hypothesis may become questionable.
Therefore, a first separation line between models for blood flow may be

drawn: on one side the Newtonian model which neglects shear thinning and
viscoelastic effects and is suitable in larger vessels or when we are not inter-
ested in the finer details of the flow, as non-Newtonian behaviour may affect,
for instance, the size of the recirculation area behind a severe stenosis [382]. On
the other side, in vessels of diameter, say, less than 1mm the use of Newtonian
models is hardly justifiable. The small velocities and shear stress here involved
call for the use of one of the non-Newtonian models described in Chapter 6,
see also [348]. Computationwise, non-Newtonian models which just modify
the expression for the viscosity by making it dependent on the shear rate
would increase the cost of computations of approximately 10% [382], because
of the extra calculations and the increased non-linearity of the problem. Full
visco-elastic models may instead be much more costly in terms of computing
time.
In the sequel of this section we will focus our investigation on flow in large

and medium sized vessels. The flow is here governed by the Navier-Stokes
equations. If we take t = 0 as the initial time of our analysis, we are required
to solve for t > 0 the following system of partial differential equations,

∂u

∂t
+ ρ(u · ∇)u +∇P − div(μD(u)) = f ,divu = 0, (2.1)

in a domain Ω ⊂ R3 representing the lumen of the vessel, or system of vessels,
under investigation.
The first equation expresses the conservation of linear momentum. It is a

vector equation formed by three differential equations, one for each component
of the velocity. The second equation is the continuity equation. The domain
Ω is here fixed with time, in Chapter 3 we will discuss the modifications
needed for the case of moving computational domain. The viscosity μ is in
non-Newtonian models a function of the strain rate

D(u) =
∇u+∇uT

2
, (2.2)

while is kept constant when adopting the hypothesis of a Newtonian behaviour.
The principal unknowns are the velocity u and the pressure P , while the den-
sity ρ is here constant. The term f in the right hand side accounts for the
possible action of external forces, like gravity, and is often taken equal to zero
in haemodynamics. We will derive and discuss this system of equations in
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Fig. 2.1. A typical computational domain. Here we have a model of a carotid
bifurcation developed by K. Perktold and his research group at Graz University of
Technology on the basis of an experimental lumen cast prepared and digitised by
D. Liepsch, FH Munich

detail in the next chapter, here we wish only to point out their main charac-
teristics.
The equations have to be supplemented with boundary conditions on ∂Ω.

Referring to Fig. 2.1 describing a carotid bifurcation we typically prescribe a
velocity profile at the proximal boundary Γin, that is the section closest to the
heart along the direction of the mean blood flow, which we will also denote
as “inflow” boundary, even if the term “inflow” in not completely correct
since in some major vessels we can have flow reversals. We then prescribe
zero velocity at the fixed walls and the normal stresses T · n at the distal
boundaries Γout (also called “outflow” boundaries). Again, the term distal is
meant with respect to the heart.
Proximal and distal boundaries are often indicated as artificial boundaries

since they do not correspond to a physical interface between the fluid and
the exterior, but to sections that have been artificially created to separate the
region of interest for our investigation from the remaining part of the circula-
tory system. The set up of boundary conditions on artificial boundaries is an
important issue for fluid dynamic computations. Treatments of the boundary
data specially suited for haemodynamics will be discussed in Chapter 11.
We need also to prescribe the initial status of the fluid velocity, for instance

u(x, 0) = u0(x) x ∈ Ω,

being u0 a given quantity. We recall that u0 cannot be arbitrary, since it has
to satisfy divu0 = 0 to be admissible.
Unfortunately, in haemodynamics computations usually we do not know a

physically relevant “initial condition”. Therefore u0 is usually chosen rather
arbitrarily, often just equal to zero everywhere. It means that numerical com-
putations may suffer a “false transient” linked to the incorrect initial data.
If the boundary conditions are correct, however, it will decay quite rapidly
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and after two or three heart beats we may consider that the solution is not
anymore influenced by the incorrect initial data. A possibility to get a better
guess of the initial data is to solve a stationary Stokes problem for u0 in Ω,
that is

−div(μD(u0)) +∇P = f ,
divu0 = 0.

where the forcing and boundary terms are those of the original problem at
t = 0. In this way, u0 is certainly compatible and accounts already of part of
the physics of the problem, the only missing terms being those related to fluid
inertia. With this choice the “false transient” effect is greatly reduced and in
practise one may assume that it has faded away completely after just a few
time steps of the solution procedure.
The situation is worsened when the compliance of the wall is taken into

account. The continuous exchange of energy between fluid and wall effectively
makes the decay slower. In calculations of flow in compliant vessels it is normal
practise to wait for at least three cardiac cycles before considering the influence
of the initial data negligible.
The solution of the Navier-Stokes equations may develop instabilities,

which are normally called turbulence. The responsible is the dynamics induced
by the non-linear convection term ρ(u · ∇)u. It is therefore natural to mea-
sure the importance of this term compared with the diffusive part given by
div(μD(u)). This information is provided by the Reynolds number, defined
in (1.1). Typical values of the Reynolds number along the arterial tree are
given in Table 1.7. If the Reynolds number is small, say at most of the order
of 1000, the flow remains stable, and is called laminar . In normal physiological
situations, then, the values of the Reynolds number reached in the cardiovas-
cular system do not allow the formation of full scale turbulence. Some flow
instabilities may occur only at the exit of the aortic valve and limited to the
systolic phase. In this region the Reynolds number may reach the value of few
thousands only for the portion of the cardiac cycle corresponding to the peak
systolic velocity, however, there is not enough time for a full turbulent flow to
develop. When departing from physiological conditions, there are several fac-
tors that may induce transition from laminar to turbulent flows. For instance,
the increase of flow velocity because of physical exercise, or due to the pres-
ence of a stenotic artery or a prosthetic implant such as a shunt, may produce
an increase of the Reynolds number and lead to localised turbulence. Smaller
values of blood viscosity also raise the Reynolds number; this may happen
in the presence of severe anaemia, when the hematocrit drops sharply (and
so does the viscosity). More details on the relations among domain geometry,
flow characteristics and type of flow regime will be given in Chapter 5, where
the definition of other adimensional numbers that characterise blood flow will
be given as well.
Knowing the velocity and the pressure fields allows the computation of the

stresses, in particular the shear stresses to which an arterial wall is subjected
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due to the blood movement. Wall shear stresses, whose precise mathematical
definition will be given in Chapter 3, are the force per unit area exerted by the
fluid tangentially to the wall. We have already mentioned their importance
in relation with some vascular diseases, since endothelium cells react to shear
stresses. Irregular, and in particular small or “oscillating”1 shear stresses may
cause an alteration in the endothelium covering and induce inflammatory
processes. Their calculation require a “point-wise” knowledge of the velocity
and pressure field.
To account for the compliance of the vessel wall we need to introduce

another unknown, namely the wall displacement η. The mechanical interac-
tion between the flowing blood and the vessel structure is rather complex.
Its general mathematical description will be given in Chapter 3, while more
details on the numerical techniques that can be adopted for fluid structure
interaction problems are found in Chapter 9. Yet, even with the most advanced
techniques available today, accurate computations of fluid structure interac-
tion models of haemodynamics are rather costly. One reason is that the two
dynamics (fluid and structure) are here strongly coupled and most of the
simplest and cheapest techniques often used in other fields (like aeronautics)
simply don’t work. Consequently, one of the factors that may affect the choice
of a fixed geometry model versus a fluid-structure interaction one is compu-
tation time: the latter may be one order of magnitude as expensive as the
former.
It is therefore important to appreciate when the approximation of a fixed

geometry could be reasonable. It depends on the type of vessels, the type
of answers we are seeking and, finally, the type of data available. Smaller
vessels experience a smaller relative movement than larger ones, where the
change of radius during the heart beat may be of the order of 15%, like in
the aorta. Therefore, the flow in the peripheral vessels, lets say more than two
branching levels down from the aorta, can be reasonably modelled using a fixed
geometry. An exception being the coronaries, whose movement is however
dominated by the heart movement more than the fluid-structure interaction in
the vessel. In [396] the effect of heart movement in the shear stress distribution
in a coronary artery has been investigated. It has been found that it can be
relevant, particularly in vessels with high curvature.
Even in the larger vessels, at least in physiological situations, the main

characteristic of the flow are already captured by a fixed geometry model.
However, if more details are needed, such as a precise computation of shear
stresses or the size of a recirculation region, then compliant models are better
suited [250,481]. Furthermore, if it is necessary to have an accurate description
of pulse waves, for instance if one wants to investigate altered pressure pattern

1 Wall shear stress is considered to be oscillating when its component along the
main flow direction changes sign during the heart beat. In normal situations the
component of wall shear stress along the main flow is always negative. Oscillating
shear stresses are usually found in recirculation regions.
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possibly caused by anomalous pulse wave reflections, like in the study of aortic
aneurysms [285], then compliant models are mandatory. The reason is that
fixed geometry models simply cannot describe pulse waves: the propagation
speed is here infinite because of the incompressible fluid. It is indeed the
mechanical interaction between blood flow and vessel wall deformation that
generates the pulse waves.
Lack of sufficient data on the mechanical parameters of the vessel wall

may in some cases make compliant models less interesting. This is an impor-
tant issue in cardiovascular simulations. It is often difficult to obtain accu-
rate values for those parameters for a specific subject. They have often to be
inferred from literature data obtained from experiments on animal or human
cadaver tissues. More recently, a novel technique called elastography allows to
infer some elastic properties from images of the vessel wall movement taken
non-invasively. It may then be used to characterise a specific subject. Yet, this
technique is still not well widespread. Therefore, sometimes the choice of using
a fixed geometry model may be driven by the fact that no data is available
to characterise the mechanical property of the vessel under investigation. It
must be understood, however, that in large vessels these type of computations
may provide qualitative information on the general flow but they may lack
precision.
From the mathematical point of view, the analysis of fluid-structure inter-

action problems is still subject of open research. At the best of our knowl-
edge, a complete mathematical analysis of the coupled fluid-structure prob-
lem is not available yet. In the steady case, for small enough applied forces,
existence of regular solutions is proved in [201]. In the unsteady case, local
solvability in time is proved in the simple case where the structure is a
collection of rigid moving bodies in [202]. See also [73, 120]. Formulations
based on optimal control on simpler models have been investigated, e.g.,
in [107, 292, 292,345, 346, 361]. A overview on the most recent results on the
analysis of this type of problems may be found also in Chapter 8.
As for the structural model for the vessel wall, several level of approxi-

mation can be considered, depending on the objective of the study and the
data available. As we have described in detail in Section 4.2 of Chapter 1, the
internal structure of the wall of a blood vessel is rather complex and varies
largely with the type of vessel under consideration. The computation of the
displacements (and thus the stress) field inside the vessel wall requires to solve
the three dimensional equations of elastodynamics which are presented in all
generality in the next chapter. Their solution requires to have precise data
about the mechanical characteristics of the different layers forming the vessel
wall. A piece of information difficult to obtain even by in vitro experiments,
let alone in vivo. Published results like those in [222, 562] may help in the
set-up of a proper structural models, yet also in this case we are still far from
having the possibility of extracting routinely such type of information for a
given person by non invasive techniques. However, technology in this field
is progressing fast. As already mentioned, elastographic measurements will
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probably become common in the near future, and this will be of great help to
the set up of patient-specific models also for the structural part.
Whenever there is little interest in a detailed description of the stress and

displacement fields inside the vessel wall while the focus is more on their
action on the flow field, it is a common practise to resort to simplified (or
reduced) structural models. A first simplification is of course to use uniform
“space averaged” parameters to describe the mechanical characteristics of the
vessel wall, thus ignoring its internal structure. A further step is to use the
so called shell models, where the displacement field is defined on the surface
described by the lumen-wall interface, as indicated in Fig. 2.2. Shell theory,
whose mathematical derivation will be sketched in Chapter 3, is in fact based
on the assumption of a thin structure. In the case of a vessel it means that the
ratio h/R between the wall thickness and vessel radius should be small. Indeed
this assumption is questionable, particularly in arteries, which have normally
quite a thick wall (see Chapter 1). Yet, the approximation can still be jus-
tified by two empirical observations. The first is that the main responsible
of the mechanical strength of the vessel wall (at least in physiological situa-
tions) is the elastin, which is mainly present in the media. Thus the “effective”
thickness is smaller. The other is that, despite its use beyond the fundamen-
tal hypothesis, a shell model has proved to be capable of representing the
dynamics of the fluid-wall interface with a sufficient level of accuracy, pro-
vided that appropriate averaged values of the mechanical characteristics are
given. From the computational point of view, shell models are usually cheaper
than three dimensional models, as one has to discretise a surface and not a
three dimensional domain, with a reduction of the degrees of freedom required.
For this reason they are often used in haemodynamic simulations involving
fluid-structure interactions, also on realistic geometries, see for instance [187].
Further down in the hierarchy of structural models one may find one

dimensional models (see Fig. 2.2). These models assume a cylindrical type
geometry and therefore are suited only to study a single artery without bifur-

1D
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3D

Fig. 2.2. A hierarchy of structural models
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Fig. 2.3. The local coordinate system on the wall surface of a single vessel

cations. They are based on the fact that one can identify on each point of
the fluid-structure interface a local system of coordinates er, eθ, ez, with ez
aligned along the vessel axis and er normal to the surface. The corresponding
cylindrical coordinates are (r, θ, z), where the z coordinate axis is made to
coincide with the centerline of the vessel (see Fig. 2.3).
If one assumes that the circumferential component of the shear stresses

at the wall is negligible (this is true for an axial-symmetric geometry and
axial-symmetrical deformations) it is possible to write a differential equation
in the z variable and time. Often, the additional assumption of only radial
displacements, i.e. η = ηer is made as well. No derivatives depending on the
circumferential coordinate θ appear in the equations and we may consider
each plane θ = const. independently. The resulting displacement field will
depend only parametrically on θ. If, in addition, we assume that the problem
has an axial symmetry (which implies the further assumption of a straight
axis) the dependence on θ is completely neglected. In this case, also the fluid
would be described by a 2D axi-symmetric model (see [117]).
Some more details on the derivation of models of this type are given in

the Chapter 3. Clearly, we have here quite an important simplification also
from the computational point of view, and this explains why these models
are widely used to develop and test fluid-structure interaction algorithms.
Another reason is that they lend naturally to axi-symmetric formulations
[117]. However, their validity in practical computations is limited due to the
geometrical restrictions.
Yet, this is not the end of the story. Even simpler structural models may be

devised where the normal component of the stress on the fluid-wall interface is
directly linked to the normal displacements at the same point by an algebraic
relation (or possibly an ordinary differential equation in the time variable).
Here the wall mechanics is greatly oversimplified, and these models are indeed
used mainly to derive reduced models for blood flow in arteries, like the ones
discussed in Chapter 10, even if they have also been used in some early studies
of blood flow in simple or 2D geometries [481].
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Fig. 2.4. Recirculation in a model of the carotid bifurcation3. We show the path
of the particles entering the bifurcation. The presence of a recirculation region is
evident

A clear major feature of blood flow is its pulsatility. It may induce flow
reversal and recirculations near the arterial wall, a phenomenon that can have
negative effects on the endothelium and stimulate the deposit of lipids and
atherosclerosis. The latter effect is more likely to occur in specific vascular
districts, like the carotid bifurcation, see Fig. 2.4.
With some approximation one may think that blood flow is periodic in

time. Yet, this can be considered true only for relatively short periods, since
the various human activities require to change the amount of blood sent to the
various organs. Also the elastic properties of arteries (especially the arterioles)
may vary depending on the request of blood by the peripheral organs. Indeed
one of the aspects of current research in computational haemodynamics is the
interaction between blood flow and the metabolic regulation [108]. It presents
several challenges from the mathematical modelling and numerical side. For
the sake of space and because only partial results are available so far this
aspect has not been extensively covered in this book (see Chapter 10).
In several early studies, however, blood computations were made using

steady flow. This can be considered acceptable in peripheral arteries, the cap-
illary bed and in the veins,where the pulsatility of the flow is reduced thanks
to the regularising effect of the compliance of the major arteries. In partic-
ular, micro-circulation is practically (but not completely) steady. The use of
steady computations in larger vessels may again by justified by the lower
computational cost. If we eliminate the time derivative in (2.1) we still have
a non-linear system of partial differential equations to solve, yet we can make
use of acceleration techniques unsuited for unsteady computations because

3 Computation made by M. Prosi.
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they destroy time-accuracy. However, some important quantities (recircula-
tion regions, oscillatory shear stress etc.) cannot be evaluated with high accu-
racy and only a general qualitative structure of the flow field can be inferred.
Wemention that in some particular contexts, for instance in the hyperther-

mia treatment where some drugs are activated through an artificial localised
increase in temperature (see [123, 219]), the variation of blood temperature
may be relevant. Describing the evolution of temperature requires to intro-
duce another partial differential equation which derives from the principle of
energy conservation, and couple it with the Navier-Stokes equations. In large
and medium sized vessel the coupling is weak, since here temperature varia-
tions have small influence in the flow field. Therefore, one may solve the energy
equation (which is instead strongly influenced by the flow field because of the
convection term) after having calculated the velocity field. The computational
overhead is in this case minimal since we have to solve a single additional equa-
tion, moreover of linear type. Things are different in micro-circulation, where
the combined effect of temperature on the blood apparent viscosity and on
other mechanical properties of the vessel wall makes the situation more com-
plex [178]. However, since in the physiological regime the temperature inside
the human body is constant and the situations where temperature variations
are relevant are rather special, we will not pursue this topic further in this
book.

2.2 Mathematical models for biochemical transport
processes

The transport of biochemicals by the arterial blood stream and its interaction
with intra-wall transport is of great interest in the vascular physiology and
biology. The local mass transfer between the blood and the arterial wall affects
the transport of nutrients to the cells, the removal of metabolic wastes from
the wall, and the accumulation of potentially atherogenic molecules [175]. The
transendothelial mass transfer has been already explained in Section 1.1.3 of
Chapter 1. One main aspect of the interest concerns the relation between
haemodynamics and molecular transport and the development of pathological
vessel alterations.
It has been observed that low density lipoprotein (LDL) accumulation in

the intima at zones of low and oscillating wall shear stress is associated with
the tendency to intimal thickening and the development of atherosclerotic
diseases [64, 278].
The dynamics of dissolved gases (e.g., oxygen or carbon dioxide) and of

macromolecules (e.g., lipoprotein or albumin) in arteries and in the arterial
wall is strongly related to the flow dynamics of blood. Irregular blood flow
patterns with flow stagnation, separation and recirculation, and resulting local
low and oscillating wall shear stress, causes local disturbed mass transfer,
e.g. [305, 381].
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Several mathematical models have been developed for the study of bio-
chemical transport processes in arteries. The simplest model considers solute
transport only in the artery lumen and replaces the wall by means of an
appropriate boundary condition at the inner surface of the arterial wall (blood-
endothelium boundary). This model couples the Navier-Stokes equations with
the advection-diffusion equation describing the dynamics of molecules trans-
ported in blood.
Improved models account for the arterial wall, where the mass transport

in blood and in the wall are described applying physically appropriate laws
to model the interaction between the blood flow and the biochemical trans-
port. These models take into account the heterogeneous layers constituting the
realistic arterial wall (from inside to outside) the endothelium, the intima, the
internal elastic lamina (IEL) and the media. The physical behaviour of the dif-
ferent layers are approximated with the laws of mass transport in porous media
(intima and media) and through plasma-permeable membranes (endothelium
and IEL), see [251, 381]. In order to simplify the multilayer model the arte-
rial wall can be treated as a single porous layer which is separated from the
arterial lumen by a membrane.

2.2.1 Transport in the arterial lumen

The mathematical description of arterial mass transport requires to augment
the Navier-Stokes equations (2.1) with the advection-diffusion-equation for
the solute concentration c,

∂c

∂t
+ u ·∇c−∇· (D∇c) = 0 in Ω, t > 0. (2.3)

The velocity u couples the transport problem to the Navier-Stokes problem.
A further coupling of the concentration field to the flow field occurs whenever
the diffusivity D of the solute in plasma depends on the strain, see [411] and
references therein.
The characterisation of the transport processes uses the Péclet number,

defined as Pe = UL
2D
, which relates the advective transport to the diffusion.

Here, L is a typical length scale, for instance the length of the vessel under
consideration.
Mass transport processes in medium-sized and large arteries are gener-

ally strongly advection dominated, which is reflected in rather large Péclet
numbers. The resulting numerical problems are discussed in Chapter 7.
The solution of the time-dependent mass transport problem requires the

prescription of an appropriate condition at the initial time t = 0, i.e. c(x, 0) =
c0(x) for x ∈ Ω, being c0 a given function.
For flow domains with “artificial” inflow and outflow boundaries, in most

cases a constant concentration profile is prescribed at the inflow cross-section
Γin as Dirichlet boundary condition. At the outflow boundary zero diffusive
flux can be assumed, i.e. a homogeneous Neumann condition, i.e. ∂c/∂n = 0.
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Appropriate boundary conditions at the inner surface of the arterial wall
depends on the molecule size. The transfer of small molecules (dissolved gases)
to and into the wall is controlled by diffusion in the boundary layer, as the
endothelium is not an significant barrier to the motion of these molecules.
Thus, the assumption of a Dirichlet boundary condition at the inner surface
is in this case justified. However, in the transfer of macromolecules (LDL)
from blood into the arterial wall the main resistance is the endothelial layer.
The flux across the endothelium into the arterial wall is determined by the
endothelial permeability and by the concentration differential. Therefore, a
permeability boundary condition at the blood-endothelium surface Γw of the
type

cu · n−D ∂c

∂n
= P(c − ci), (2.4)

is appropriate to model the arterial macromolecule transport. P is the
endothelial permeability, ci is a prescribed concentration in the sub-endothelial
intima, and u ·n is the normal component of the filtration velocity of plasma
at the lumen surface. It is either known or computed using the Darcy model
presented in Chapter 7.
Expressing the fact that the endothelium is not a passive barrier to macro-

molecules, the permeability depends on the local shear stress at the endothe-
lium, i.e P = P(|tTσn|), where the shear stress tTσn is the tangential com-
ponent of the Cauchy stress tensor, defined in Chapter 3, equation (3.33).
This model is called wall-free model since we are not computing the trans-

port inside the arterial wall. It is suitable to analyse the lumen concentration
polarisation effect of large molecules directly at the wall, which happens when
the equilibrium concentration at the fluid-endothelium boundary is higher
than the concentration in the bulk of the blood stream.
A more realistic model of biochemical transport processes in arteries takes

into account the heterogeneous wall, consisting of layers with strongly different
thickness and physical properties, as shown in Fig. 1.4. This is called the
multilayer model and it couples the solute concentration in the blood stream
(lumen) and in the intima and media. For a complete derivation of such model,
we remand to Chapter 7.
The multilayer model requires to determine a large number of parame-

ters which characterise the physical properties of each layer. The transport
parameters of the intima and the media (effective diffusivity, Darcy perme-
ability and porosity) are obtained from the fibre matrix models of the arterial
wall tissue. The parameters of the permeable membranes, the endothelium
and the IEL (permeability, hydraulic conductivity and reflection coefficients),
are calculated from the equations of pore theory. The literature concerning
these topics is very extended. Among others, we refer to [11,106,233,234,270].
For the specific case of the multilayer model, we will present in Chapter 7 a
brief overview, that is mainly inspired to [251].
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2.3 Numerical solution of partial differential equations:
a quick review

The mathematical models we have briefly illustrated in the previous sections
cannot in general be solved analytically, a part simple cases. Thus we have
to resort to numerical techniques to find approximated solutions. It is our
intention to give in this section just an introductory glance on this topic.
The interested reader can find details in the ample literature available, see for
instance [343,407,498].
All models just presented are based on partial differential equations

(PDEs) for an unknown u (which may be a scalar or a vector field) of the
general form

∂u

∂t
+ L(u) = f, in Ω, 0 < t < T, (2.5)

where L indicates a (linear or non-linear) differential operator in the space
variable x. The former equation will be augmented by proper boundary and
inital conditions. In some cases the time derivative is not present (steady
problems). Even when the problem is originally set in a semi-infinite time
domain, the numerical approximation deals with a bounded time interval, the
time T indicating the final time of our simulation.
The most common techniques to solve numerically a PDE are based on

a subdivision of the computational domain Ω into a grid, see Fig. 2.5. The
solution u is replaced by an approximation uh which depends on a finite
number of parameters, typically (but not necessarily) the values of uh at
the nodes of the grid. The pedix h is here an indication of the grid spacing.
Some details on the most common meshing strategies used for cardiovascular
geometries are given in Chapter 4.
In the case of time-dependent problems, we will also need to advance the

approximation in time, using a so called time-advancing (or time-stepping)

Fig. 2.5. An example of computational grid describing a cerebral artery with an
aneurysm. Here only the surface mesh is shown, formed by triangles. The interior is
covered by a tetrahedral grid (courtesy of T. Passerini, Aneurisk Project)
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scheme. It is typically an iterative method that from the knowledge of the
approximation unh at a time t

n, for n = 0, 1, . . . , n builds the approximation
un+1h at time tn+1 = tn+Δt, beingΔt > 0 a chosen time step. Most frequently,
one-step schemes are adopted, where the computation of un+1h will involve just
the knowledge of unh.
Let us consider space discretisation first. The most common methods are

finite difference, finite volume and finite elements.

2.3.1 Finite difference method (FDM)

When adopting finite differences, the approximated solution uh is in fact a
vector of values uh = [u1, . . . , un]

T corresponding to the approximation at the
nodes of the computational grid. The differential problem is collocated at the
grid nodes by replacing the differential operator L with finite differences. For
instance, the Laplace operator in two dimensions Δu = ∂2u/∂x2 + ∂2y/∂y2

at node xi of the regular grid of Fig. 2.6 would be approximated as(
∂2

∂x2
+

∂2

∂y2

)
u(xi) �

ue + uw + us + un − 4ui
h2

,

being h the grid spacing in the x and y directions, here taken constant for
simplicity.
Historically, finite differencing is probably the first technique adopted for

spatial discretisation. Yet, its use is less common in modern solvers. The reason
is manifold. The construction of the finite difference operator is rather compli-
cated for grids that are not uniform and not structured (a structured grid is a
grid made up by a regular pattern of nodes). Yet, these grids are mandatory
to treat complex geometries, particularly in three dimensional problems. The
handling of boundary conditions is also not always straightforward with finite
differences, in particular boundary conditions of Neumann type which involve
the normal derivative of u at the boundary.

2.3.2 Finite volume method (FVM)

The finite volume method makes use of an integral formulation of the equa-
tion. It can be employed whenever the operator L is written in the so called
divergence or conservation form, that is

L(u) = divF (u), (2.6)

where F is the so called flux vector, which depends on u and on spatial deriva-
tives of u. Let us note that with a few manipulations, the Navier-Stokes equa-
tions (2.1) may be written in conservation form, where for the momentum
equation

F (u, P ) = u ⊗ u + PI − μD(u),
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xi
xw xe

xn

xs

lij Cj

nijCi

Fig. 2.6. On the left an example of a regular two dimensional grid used for approx-
imation by finite differences. On the right, a generic control volume Ci used in a
finite volume scheme. Although we show here a grid made of triangles, finite volumes
methods con operate on control volume of general polygonal shape

while for the continuity equation F (u) = u. Also equation (2.3) can be recast
in conservation form, thanks to the continuity equation u ·∇c = div(cu).
In general, all differential problems that model a conservation law of

physics can be cast in conservation form. We will address in more detail the
conservation form of the Navier-Stokes equations in Chapter 3.
For what concerns finite volume methods, once the differential operator

is written in conservation form, we integrate the equation on control volumes
(usually of polygonal shape) built on the grid, like the one shown in Fig. 2.6.
The unknowns are now the approximation of u at each control volume. By
applying the divergence theorem we have∫

Ci

divF (u)dx =

∫
∂Ci

F (u) ·ndγ �
∑
j

F lij (uh) ·nij.

Here, F lij is an approximation, called numerical flux, of the flux vector on the
side lij of the control volume Ci. The latter has normal nij. The numerical
flux depends on the numerical solution uh. In practise, it usually depends
on the value of uh at the control volume Ci and at the adjacent control
volumes. In this way the previous expression actually involves a small number
of unknowns. By applying it to all control volumes of the grid we can transform
(2.6) into system of linear (or non-linear) equations.
Also in this case we can introduce a parameter h which accounts of the

size of control volumes. Typically h is the maximum diameter of the control
volumes of the grid. The smaller h the finer the approximation and the greater
the computational cost (since we have a higher number of control volumes).
The finite volume method is probably nowadays the most used method

for computational fluid dynamics (CFD). The reason is that it combines a



2 Basic mathematical models and motivations 63

high geometrical flexibility (it can operate on arbitrarily complex geometries,
even using grids with control volumes of different shapes) with computational
efficiency. Furthermore, the construction of the numerical fluxes can be done
so that some physical properties (such as local conservation or monotonicity)
are preserved also at numerical level. An account of finite volumes for CFD
is given in [530].

2.3.3 Finite element method (FEM)

Finite elements are based on a different integral formulation. To describe it let
first consider a simple steady problem where L is the Laplace operator with
mixed boundary condition, more precisely

−Δu = f in Ω, (2.7)

with

u = 0, on ΓD and ∇u ·n = ∂u

∂n
= g, on ΓN , (2.8)

being ΓN and ΓD two parts of the boundary of Ω such that ΓN ∩ΓD = ∅ and
ΓN ∪ ΓD = ∂Ω. We will also assume that ΓD = ∅. The function h is a given
datum (Neumann boundary condition), while on the Dirichlet boundary ΓD
we have assumed homogeneous conditions only for the sake of simplicity.

The weak formulation

We proceed formally by multiplying both members by a test function v :
Ω �→ R, regular enough, integrating over Ω, and using integration by parts
(by applying the Green formula) we get∫

Ω

∇u ·∇vdΩ −
∫
∂Ω

v∇u · ndγ =
∫
Ω

fvdΩ.

If v is chosen so that it is zero on ΓD, by applying the Neumann boundary
condition finally we obtain∫

Ω

∇u ·∇vdΩ =
∫
Ω

fvdΩ +

∫
ΓN

gvdγ. (2.9)

This statement can be written in the general form a(u, v) = F (v), by setting
a(u, v) =

∫
Ω
∇u ·∇v and F (v) = ∫

Ω
fvdΩ +

∫
ΓN

gvdγ.
To give sense to the formal steps made so far, we need to identify the

correct functional space for the solution u and the test function v. We will
postpone this aspect to Section 2.4. For the time being, we assume that u
and v are regular enough so that all the previous steps are well defined and
the integrals finite. We can then note that (a) if u is a solution of the original
problem (2.7)-(2.8), then it satisfies (2.9); (b) the test function v and the



64 Luca Formaggia, Karl Perktold, and Alfio Quarteroni

solution u are subject to the same essential conditions on ΓD, namely they
are both zero.
It comes then natural to introduce the abstract problem

Find u ∈ V such that a(u, v) = F (v), ∀v ∈ V, (2.10)

being V a space of function regular enough and null on ΓD, which we will
make more precise later.
Formulation (2.10) is called weak formulation . We have obtained it for the

Laplace problem (2.7)–(2.8), yet it is a rather general fact that a wide class
of partial differential problems can be rewritten in the weak form (2.10), with
obviously a different definition of a(u, v) and F (v), and possibly of the space
V . The application F (v) returns a real number for each v ∈ V and is called a
functional , while a(u, v) returns a real number for each couple of functions u
and v in V and is called a form. Under certain assumptions on the space V , the
form a and the functional F it is possible to prove that the weak formulation
is well-posed , that is it admits a unique solutions u which depends continuosly
on the data of the problem (in our example g and f). This important result
takes the name of Lax-Milgram lemma and its statement can be found, for
instance, in [408]. Furthermore, it can be proved that regular solution of the
weak formulation do indeed satisfy the original differential problem in what
is called strong form (in contract to the weak form). However, the space of
weak solutions is somehow larger than that of the problem in strong form.
Therefore, the weak formulationmay be seen as a generalisation of the orig-

inal problem. It gives a robust mathematical framework to differential prob-
lems, encompassing situations (e.g. rather irregular data or domains) which
cannot be treated satisfactorily in the classical strong formulation. Even for
more complex problems, like the Navier-Stokes equations or the fluid-structure
interaction problem, a weak formulation may be found, as it will be illustrated
in Chapter 8.

The Galerkin method

Moving from the weak formulation we can replace the space V , which is
infinite dimensional, with a finite dimensional subspace Vh, that is we choose
a Vh ⊂ V with dim(Vh) = Nh and solve the problem:

Find uh ∈ Vh such that a(uh, vh) = F (vh), ∀vh ∈ Vh. (2.11)

Being Vh finite dimensional the approximate solution uh may be expanded
with respect to a base of Vh as uh(x) =

∑Nh
i=1 uiφi(x). In other words, Vh is

spanned by the basis {φi, i = 1, . . . , Nh}. The coefficients ui ∈ R are called
degrees of freedom and are indeed the unknowns of the discrete problem.
Furthermore, we can choose vh = φj for j = 1, . . .Nh in (2.11) to produce
linear system of equations Au = b, where

Aij = a(φj, φi) =

∫
Ω

∇φj ·∇φi dΩ, bj = F (φj) =

∫
Ω

fφjdΩ +

∫
ΓN

gφjdγ.
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Matrix A is traditionally called the stiffness matrix. The actual expression for
stiffness matrix and source term may be more complex for problems more com-
plicated than Laplace’s, yet the way of deriving the discrete system remains
fundamentally the same. In the case of a non-linear problem, the resulting
system will be non-linear, typically this means that the matrix A will depend
on uh.
This technique of building the discrete problem by projection on a subspace

and searching the solution in the same subspace takes the name of Galerkin
method.

The finite element space

A last (but not the least) step is to choose the way of building Vh. To this
aim, various different techniques are possible. In the classical spectral element
method for periodic solutions a truncated Fourier series is used on the whole
Ω. It is a valid method if the solution is very smooth and on very simple
geometries (typically cubic or cylindrical domains). The other methods do
require to subdivide the domain into a grid Th of polygonal elements (or at
least elements that can be mapped by simple transformations into a polygon),
in a way similar to what is done in the finite volume method. Given the grid,
the space Vh may be expressed by piecewise polynomial functions, for instance
we could consider the space

Xrh(Th) = {vh ∈ C0(Ω), : vh|K ∈ Pr , K ∈ Th}

of piecewise polynomials of degree r on each grid element K. The space Vh is
then taken as the subspace of Xrh(Th) that accounts for the constraints at the
Dirichlet boundary. Methods of that sort are the finite element method (FEM)
and the spectral element method (SEM). They differ on the choice of the basis
for Vh and on the fact that the SEM adopts high order polynomials, while in
the FEM rarely r exceeds 3 (and often is equal to 1, i.e linear finite elements).
Another characteristic of the SEM method is the use of special quadrature
rule to approximate the integrals which guarantee high convergence rate (for
smooth solutions) while keeping the computational cost of building the linear
system reasonably small. Thus, they are quite interesting when dealing with
smooth solutions. However, are much less used than FEM in standard solvers,
since often the solution is not as regular as needed to benefit from the method
and their implementation on complex geometries may be rather complex.
Indeed, SEM methods are usually (although not always) implemented on grids
whose elements are hexahedra (quadrilaterals in 2D), while finite elements
are also implemented on tetrahedral (triangular) grids, which are much more
flexible. For more details on the spectral element method the reader may
consult [60, 253].
The usual (though not exclusive) choice for the basis function φi in the

FEM is such that the degrees of freedom ui do correspond to the value of
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uh at some points of the grid called nodes. An important characteristic of
the FEM is that the basis function φi has small support, i.e. is different
from zero only on a limited connected portion of Ω. The main consequence
is that the stiffness matrix A is sparse, since Aij = 0 whenever the support
of φi and φj has zero intersection, and this happens whenever nodes xi and
xj are not shared by any element of the mesh. This fact is very relevant in
applications since sparse matrices have a smaller memory requirement than
their full counterpart. The computer implementation is also rather efficient,
since the matrix and the right hand side can be built by looping over the mesh
elements and performing local operations on each element.
The FEM is probably one of the most adopted numerical method for

partial differential equations, especially in the field of structural mechanics,
although, as already mentioned, in the field of CFD finite volume methods
are probably more popular. Yet, finite elements are gaining grounds also in
this field, particularly in the case of incompressible flow. The richness (and
flexibility) of their mathematical formulation allows in fact to develop a large
variety of numerical schemes, basically changing the discrete spaces where the
solution is sought and the test functions chosen.
The parameter h in the finite element method is identified as the maximum

diameter of the finite elements in the given mesh. The smaller h, the higher
the number of elements necessary to cover Ω and the higher the number of
degrees of freedom (and the dimension of the linear system).
In the case of non linear problems, like the Navier-Stokes equation, the

application of the method leads to a non-linear system of equation, where the
stiffness matrix is itself function of the discrete solution.

Convergence

In all methods shown so far we expect that the approximation uh becomes
more precise as h goes to zero. Indeed, a request we make is that a discreti-
sation method be convergent, that is the error should go to zero as h → 0.
Furthermore, we say that the method converges with order p if it exists a con-
stant C = C(u) > 0 so that, for h sufficiently small, the following inequality
applies

||u− uh|| ≤ C hp.

The error is measured in a suitable norm, here indicated by || · ||. The order of
convergence typically depends on the particular method chosen, the regularity
of the exact solution and the selected norm.
For instance, a standard FEM discretisation of the Laplace problem sat-

isfies
||u− uh||H1(Ω) ≤ C‖u‖Hs(Ω)hp,

for a constant C > 0, where p = min(r, s− 1), being r the degree of the finite
element, and s a measure of the regularity of the solution u. More precisely,
the error estimate is true whenever u ∈ Hs(Ω). The definition of the Sobolev
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spaces Hk(Ω) as well as that of the Hk norm || · ||Hk(Ω) will be given in
Section 2.4. Therefore, if we use linear finite elements, we have a method
whose convergence is linear with respect to h when using the H1 norm to
measure the error.
We mention also the possibility of generating another class of schemes by

replacing the original form a(uh, vh) with an approximation ah(uh, vh). The
simplest way by which this is done is by performing numerical quadratures
to approximate the integrals which define the form. Methods of this sort are
usually called generalised Galerkin methods. We give in Fig. 2.7 a synthesis of
the main numerical techniques for PDEs which includes those mentioned here.

Strong Form
Lu = f

Weak Form
u ∈ V : a(u, v) = F (v) ∀v ∈ V

Conservation Form
Lu := div(F(u)) = f

Finite Volumes

∂ΩV

Fh(uh) · n =
ΩV

f

∀ΩV control volume

Collocation
on internal nodes

Galerkin

Finite Elements
uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh

Spectral Method
uN ∈ VN : a(uN , vN ) = F (vN) ∀vN ∈ VN

Spectral Elements
uN ∈ V CN : aC(uN , vN) = FC(vN) ∀vN ∈ V CN

Generalised Galerkin

Discontinuous Galerkin (DG)

Finite Differences
LΔuΔ = fΔ

Spectral
Collocation
LNuN = fN

FEM with Numerical Integration
uh ∈ Vh : ah(uh, vh) = Fh(vh) ∀vh ∈ Vh

G-NI Method
uN ∈ VN : aN (uN , vN ) = FN(vN ) ∀vN ∈ VN

SEM-NI Method

uN ∈ V CN : aC,N (uN , vN ) = FC,N (vN) ∀vN ∈ V CN

Fig. 2.7. A flow-chart of the main discretisation methods for PDEs
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2.3.4 Time advancing schemes

In the previous paragraphs we have considered the discretisation with respect
to the space variables. If we have a transient problem we need to consider the
time as well. What is usually done in this case is to first discretise in space
and then consider the time evolution. The reason why the two variables are
treated differently is due to their different nature. The differential problems
we will consider here are usually boundary value problems with respect to
space, that is conditions are set on the whole boundary of the spatial domain
Ω. On the contrary, they require a condition only at one end of the time axis,
the initial condition. It is natural, then, to think of using a different numerical
techniques to treat the time variable.
If we consider the general case of equation (2.5), after space discretisa-

tion with finite differences or finite volumes we obtain a system of ordinary
differential equations on each node i, of the form

dui

dt
(t) + sTi u(t) = fi(t), 0 < t < T, (2.12)

where u(t) = [u1(t), . . . , uNh(t)]
T are the degrees of freedom (here equal to

the approximated solution at the nodes or at the control volumes), which are
now function of the time. Furthermore, fi(t) = f(xi, t) and si is here a vector
of coefficients. For instance, for the Laplace equation, finite differences on a
the regular grid of Fig. 2.6 would give at any internal node i

dui
dt
(t) +

4ui(t)− ue(t) − uw(t) − us(t)− un(t)
h2

= fi(t).

In matrix form
du

dt
(t) +Au(t) = f (t),

where A is the matrix with the si as rows.
Schemes for this system of ordinary differential equations require to choose

a time step Δt and solve a problem for un, approximation of u(tn), being
tn = nΔt. The most common are

• the explicit Euler method, also called forward Euler method

un+1 = un +Δt [Aun + f(tn)] ; (2.13)

• the implicit Euler method, also called backward Euler method

(I +ΔtA)un+1 = un +Δtf(tn+1); (2.14)

• the Crank-Nicolson method,

(I +
1

2
ΔtA)un+1 = un +

Δt

2

[
Aun + f(tn) + f(tn+1)

]
. (2.15)
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All methods compute in successive steps the sequence u1,u2, . . ., being u0

known from the initial condition of the differential problem.
The main difference among (2.13) and (2.14) or (2.15) is that the former

allows to compute the approximation at time step tn+1 without the need to
solve a linear system. This is why is called explicit. Crank-Nicolson scheme is
more accurate than the other two since it a second order method with respect
to time. It means that assuming that the space operator is exact the error
between the approximated solution and the exact one goes to zero as (Δt)2

when Δt → 0. The other two methods are just first order. Explicit methods
are always subject to a stability condition, that is they provide a reasonable
approximation only if Δt ≤ Δ̂t, where the critical time step Δ̂t depends on
the particular method chosen and on the eigenvalues of the matrix A. The
latter is normally a decreasing function of h. Thus, typically the finer the
grid, the smaller the time step we have to adopt with an explicit scheme
to satisfy the stability condition. The type of problems we have to face to
solve haemodynamic applications usually exhibit a second order differential
operator L and, in general, for this class of problems

Δ̂t = Ch−2,

which penalises explicit schemes strongly. Therefore, despite their higher com-
putational complexity, implicit and unconditionally stable schemes are often
preferred for this class of problems. For instance, both implicit Euler and
Crank-Nicolson schemes fall in this category.
Were the original differential problem non-linear, implicit schemes lend to

non-linear problems, to be solved at each time step. A possibility is to resort
to a Newton iteration or other fixed point strategies, see for instance [257,403].
When dealing with finite element computations, the ordinary differential

equations stemming from space discretisation are in fact of the form

M
dui
dt
(t) + Su(t) = fi(t),

where M is the so called mass matrix , of elements Mij =
∫
Ω φiφj dΩ. Con-

sequently, we end up with a non trivial linear system even when adopting
explicit schemes. Yet, often the mass matrixM can be replaced with a diago-
nal matrix, called lumped mass matrix, and we are able to write the differential
system in the same form as in (2.12).
We mention that several other time advancing schemes are possible. In

particular, for the class of problems we deal in this book, methods based on
backward difference formulae (BDF) are quite interesting since they couple
good stability and convergence properties with an acceptable computational
cost. Interested readers can refer, for instance, to [403].
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2.4 Some elements of functional analysis

We give here some elements of functional analysis to help the reader through
some of the next chapters. Because of the scope of the book and the sake of
space we will be very brief and rather informal. A more complete introduction
in the context of partial differential equations is [424], while among the more
advanced books on the subject we mention [552] and [438].
First of all with functional space we denote a linear space of functions

Ω ⊂ Rd �→ Rn, where n is typically 1 (scalar functions) or either 2 or 3
(vector functions), as well as d. We assume that the domain Ω is open and
bounded. A common example of functional space is the space of continuous
real functions on an interval Ω ⊂ R, usually denoted by C0(Ω).
A norm is an application V �→ R such that

||v|| ≥ 0, and ||v|| = 0 iff v = 0, (2.16)

||v + w|| ≤ ||v||+ ||w||, ∀v, w ∈ V, (2.17)

||αv|| = |α|||v||, ∀v ∈ V, ∀α ∈ R.

We recall that a normed and complete linear space V is also called a Banach
space.

2.4.1 Functionals and bilinear forms

Given a functional space V an application

F : V �→ R

is called a functional on V . A functional is linear if F (αv + βw) = αF (v) +
βF (w), for all real numbers α and β and all v and w in V . A linear functional
on a normed space V is continuous if and only if it is bounded, i.e. ∃C > 0
such that

|F (v)| ≤ C||v||V , ∀v ∈ V.
We have indicated by || · ||V the norm of V . The space of linear and continuous
functionals on V is itself a normed space, called the dual space V ′. The norm
of a functional is in fact the smallest constant C in the previous inequality,
or equivalently

||F ||V ′ = sup
v∈V
v �=0

|F (v)|
||v||V

.

A linear and continuous functional applied to an element v ∈ V is often
indicated using the crochet symbol, that is F (v) can be written alternatively
as V ′ 〈F, v〉V (or simply 〈F, v〉 whenever there is no ambiguity). This notation
puts into evidence the duality between the two spaces.
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An application
a : V × V �→ R,

that maps two elements of V to a real number is called a form. It is a bilinear
form if linear with respect to each argument (taken singularly), i.e

a(λu+ μw, v) = λa(u, v) + μa(w, v), ∀λ, μ ∈ R, ∀u, v, w ∈ V,

a(u, λw+ μv) = λa(u, v) + μa(u, w), ∀λ, μ ∈ R, ∀u, v, w ∈ V.

A bilinear form is continuous if there exists a constant M > 0 such that

|a(u, v)| ≤M‖u‖V ‖v‖V , ∀u, v ∈ V,

and is coercive if ∃α > 0 such that

a(u, u) ≥ α‖u‖2V , ∀u ∈ V.

A scalar product (u, v) of a space V is an application V × V �→ R such
that it is bilinear with respect to each argument, ||v|| =

√
(u, u) is a norm on

V (called normed induced by the scalar product) and in addition the Cauchy-
Schwarz inequality holds:

(u, v) ≤ ‖u‖‖v‖, ∀u, v ∈ V.

In other words, the scalar product is a continuous bilinear form with respect to
the induced norm, with continuity constant equal to 1. A complete functional
space V equipped with a scalar product and the induced norm is called a
Hilbert space. Hilbert spaces play a fundamental role in the analysis of partial
differential equations.

2.4.2 Support of a function

The support of a function f is the closure of the subset of Ω where f = 0. A
function is said to have compact support in Ω if its support is contained in
a closed and bounded subset of Ω. In particular, if f has compact support in
Ω is zero on the boundary of Ω.

2.4.3 Sobolev spaces

The space L2(Ω) is the space of square integrable functions, that is

L2(Ω) = {v : Ω �→ R,

∫
Ω

v2dΩ < +∞}.

It is a Hilbert space with scalar product (u, v)L2(Ω) =
∫
Ω
u, v dΩ and norm

‖v‖L2(Ω) =
(∫
Ω
u, v dΩ

)1/2
. Often, the L2 scalar product is simply indicated



72 Luca Formaggia, Karl Perktold, and Alfio Quarteroni

as (u, v). To the sake of precision, we mention that the integral in the def-
inition of L2(Ω) (and of all the other functional spaces introduced in this
section) is a Lebesgue integral. Lebesgue integration is a mathematical con-
struction that extends the classical integral due to Riemann to a wider class
of functions. From the practical point view there is little difference in using
Lebesgue integrals, since bounded functions integrable in the classical sense
are also Lebesgue integrable and the two integrals coincide.
The existence of the L2 scalar product is based on the fact that if u and

v are in L2(Ω), then the integral
∫
Ω uv dΩ exists and is finite.

The space Hs(Ω) is defined as the space of function of L2(Ω) such that
all derivatives (partial derivatives if Ω is multidimensional) of order up to s
belong to L2(Ω) as well. For instance, in the case Ω ⊂ R,

H1(Ω) = {v ∈ L2(Ω) : dv

dx
∈ L2(Ω)}.

The derivative in the definition has to be intended as generalised deriva-
tive (also called “distributional derivative”). In this context, dv/dx ∈ L2(Ω)
actually means that there exists a g ∈ L2(Ω) such that for all functions
w ∈ C∞(Ω) with compact support in Ω the following equality holds, i.e.

−
∫
Ω

gwdΩ =

∫
Ω

v
dw

dx
dΩ.

We will identify g with dwdx . The notion of generalised derivative effectively
extends the concept of derivative to non-differentiable functions in the classical
sense. However, the two derivatives coincide for regular functions.
The Sobolev space Hs(Ω), with s a positive integer and Ω ⊂ Rd, is a

Hilbert space when endowed with the scalar product

(u, v)Hs(Ω) =
∑
|α|≤s

∫
Ω

∂|α|u
∂xα1 . . . ∂xαd

∂|α|v
∂xα1 . . . ∂xαd

dΩ,

and the corresponding norm

‖u‖Hs(Ω) =

⎡⎣ ∑
|α|≤s

∫
Ω

(
∂|α|u

∂xα1 . . . ∂xαd

)2
dΩ

⎤⎦1/2

Here, α = [α1, . . . , αd] is a multi-index of non negative integers and |α| =
α1 + . . .+ αn, and we have also adopted the convention that

∂|α|u
∂xα1 ...∂xαd = u

whenever |α| = 0. As a consequence of the definition, ‖u‖Hs(Ω) ≤ ‖u‖L2(Ω)
andHs(Ω) ⊂ L2(Ω), for all s. We can also conventionally set H0(Ω) ≡ L2(Ω),
so all previous definitions and properties extend trivially to the case s = 0 as
well.
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A most important space for the differential problems of our interest is
H1(Ω), where

(u, v)H1(Ω) =

∫
Ω

(uv +∇u ·∇v) dΩ, ‖u‖H1(Ω) =
√∫

Ω

(u2 + ||∇u||2) dΩ.

Here, ||∇u|| =
√∑3

i=1(∂u/∂xi)
2 indicates the Euclidean norm of the gradient.

The Hs seminorm4 is defined as

|u|Hs(Ω) =

√√√√∑
|α|=s

∫
Ω

(
∂|α|u

∂xα1 . . . ∂xαd

)2
dΩ.

We have that Hk+1(Ω) ⊂ Hk(Ω) for k = 0, 1, . . . with continuous injec-
tions, indeed if u ∈ Hk+1(Ω) then ‖u‖Hk(Ω) ≤ ‖u‖Hk+1(Ω).
We mention that in the next chapters, the symbol [Hk(Ω)]3 will be used

to indicate the space of vector functions whose components belong to Hk(Ω),
i.e. [Hk(Ω)]3 = Hk(Ω) ×Hk(Ω) ×Hk(Ω).

2.4.4 Traces

Let us first notice that two square integrable functions u1 and u2 which differ
only on a set of zero measure identify in fact the same member of L2(Ω), as
‖u1 − u2‖L2(Ω). Being the boundary of Ω of zero measure it is clear that we
cannot in general give a meaning to the value on ∂Ω of a function of L2(Ω).
Yet, what about a function belonging to Hs(Ω) with s ≥ 1?
A major result is that if Ω is sufficiently regular, for instance polygonal or

having a C1 boundary (more details in the cited bibliography) there exists a
linear and continuous application

γ0 : H
s(Ω) �→ L2(∂Ω),

such that γ0v = v|∂Ω, ∀v ∈ Hs(Ω) ∩ C0(Ω). The application γ0v is called
trace of v on ∂Ω.
The fact that γ0 is linear and continuous implies that ∃C > 0 so that

‖γ0v‖L2(∂Ω) ≤ C‖v‖Hs(Ω).

The result can be extended to the case of γΓ : H
s(Ω) �→ L2(Γ ) where Γ ⊂ ∂Ω

is sufficiently regular and of non-null d− 1 measure5 .
4 A seminorm enjoys all properties of a norm a part that it can be zero when its
argument is different from zero.

5 ∂Ω is of zero d-measure, i.e. when considered as immersed in the space Rd, while
in general has a non-zero d− 1 measure. For instance the surface of a sphere has
zero volume (3-measure) but a certain area (2-measure).
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This result allows to give sense to the Dirichlet conditions whenever we
seek a solution to a differential problem in Hs(Ω). We wish to point out that
the operator γΓ is not onto L

2(Γ ). In particular, the functions of L2(Γ ) which
are traces of functions of H1(Ω) is a subspace of L2(Γ ) denoted as H1/2(Γ ).
We can extend to functions in Hs(Ω) with Ω ⊂ Rd and d = 1, 2 or 3

the well known Green integration and, consequently, the divergence theorem
of classical vector calculus. In the following of the book for the sake of sim-
plicity we will indicate γ0u with u|∂Ω , using the same notation adopted for a
continuous function.

The space H10(Ω)

We can define the space H10 (Ω) as the space of functions with null trace on
∂Ω

H10 (Ω) = {v ∈ H1(Ω) : γ0v = 0}.
In fact, it is possible to define H10 (Ω) for arbitrary bounded domains Ω, using
technicalities we prefer to avoid in this sketchy notes.
It is also possible to define H1Γ (Ω) as the space of function with null trace

on Γ ⊂ ∂Ω,

H1Γ (Ω) = {v ∈ H1(Ω) : γΓ v = 0}.
An important result for what concerns the analysis of partial differential

problems is the Poincaré inequality, which states that there exists a constant
CΩ such that

‖v‖L2(Ω) ≤ CΩ‖v‖H1(Ω) ∀v ∈ H10 (Ω).

2.4.5 Back to the weak formulation

We are now in the position of making expression (2.10) more precise. Indeed,
by inspecting all the integrals that make up the bilinear form and the func-
tional, we can note that the requirements we have to make so that all inte-
grals exists and are finite is that V = H1ΓD , provided that f ∈ L2(Ω) and
h ∈ L2(ΓN). Actually, the conditions on the data indicated here are not the
most general possible, yet are already quite broad to demonstrate the gener-
ality of the weak formulation.
We mention that with this choice problem (2.10) is well posed.

2.5 Conclusions

The objective of this chapter was twofold. On the one hand, we gave an
overview of some basic mathematical models governing haemodynamics, with
a greater emphasis on their physical significance and applicability rather than
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on a rigorous formal derivation. To the latter are dedicated some of next
chapters.
One the other hand, we provided some basic notions on methods for their

numerical solution. We have also introduced some of the notation that will be
used throughout the book. The notions given here are only elementary and
have only the aim of introducing the occasional reader to the subject. The
bibliography provided could however serve as a complement.
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The derivation of the equations for fluids and

structure

Miguel A. Fernández, Luca Formaggia, Jean-Frédéric Gerbeau, and
Alfio Quarteroni

In this chapter we derive the equations governing the mechanics of the fluid
(the blood) and the structure (the vessel wall). The derivation will be made
in a rigorous way, yet trying to provide the reader a physical understand-
ing. Reason of space obliged us to focus on the most important models for
haemodynamic computations and to omit several details and the proofs of
the propositions. For instance, all issues related to energy conservation princi-
ples have been ignored and we have eventually considered only incompressible
fluids.
The reader interested in a more in-depth analysis may refer to several

books on continuum mechanics available in the literature. We give here some,
non exhaustive, indications. Introductory general texts are [211,310] as well as
[221], which is more focused on solid mechanics. More mathematical oriented
texts are [92, 313], while a general introduction on non-linear mechanics is
found in [512]. For what concerns shell theory, of which we are here giving
just an outline, a rigorous mathematical introduction is found in [93,94], while
a text more oriented on the numerical aspects is [75]. As for fluid mechanics,
we mention [90].
The first part of the chapter is dedicated to the kinematics of continuum

media. Kinematics is the part of mechanics that describe the motion. It forms
the background enabling to derive the differential equations which “translate”
into mathematical terms some fundamental principles of physics. Namely,
mass and momentum balance. Up to this point there is no need to distinguish
between solids and fluids (and gases, for what matters).
It is only when we characterise how the medium reacts internally to an

exterior action that the behaviour of the two types of media diverge and we
are able to finalise the derivation of the mathematical models.
In haemodynamic applications often fluid and structure interact, for

instance when blood flows in a compliant vessel. This fact prompts the intro-
duction of a particular point of view: the so-called Arbitrary Lagrangian Eule-
rian formulation, which is particularly convenient for the numerical computa-
tion of this type of problems. Reduced models for the structure are often used

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
c© Springer-Verlag Italia, Milano 2009
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in fluid/structure interaction computations to cut down on computational
complexity. They will be illustrated together with the general formulation of
the fluid-structure problem.
We will write the equations in the so called tensorial form, which is inde-

pendent of the particular coordinate system used. Whenever is needed we
will report the corresponding expression in terms of Cartesian components.
When dealing with shell models we will need to introduce a curvilinear system
of coordinates. We have tried to keep the notation as standard as possible,
avoiding too technical details, yet the reader may find in appendix 12.4.4 an
explanation of the main mathematical symbols used throughout the chapter.

3.1 The kinematics of continuum media

Let Ω̂ ⊂ R3 be a domain, that is a bounded, open and simply connected
subset of R3, with smooth boundary, filled by a continuum medium. We shall
refer to Ω̂ as the reference configuration of the medium under consideration.
A deformation of Ω̂ is a smooth one-to-one mapping

φ̂ : Ω̂ −→ Ω, x̂ −→ x = φ̂(x̂),

associating each point x̂ of Ω̂ to new position x = φ̂(x̂) in the current con-
figuration Ω ⊂ R3. The vector quantity

η̂(x̂) = φ̂(x̂)− x̂ (3.1)

is called displacement of the material point x̂. The local deformation is linked
to the deformation gradient , defined as

F̂ (x̂) =∇x̂φ̂. (3.2)

Here, the symbol∇x̂ indicates the gradient with respect to the x̂ = (x̂1, x̂2, x̂3)
coordinates. Sometimes we will omit the suffix when it is clear from the con-
text which coordinate system we are adopting. The deformation gradient is
a second order tensor field, therefore F̂ : Ω̂ → R3×3 being R3×3 the space of
three dimensional matrices. In Cartesian coordinates its value is given by the
3× 3 matrix of components1

F̂ij =
∂xi

∂x̂j
, i, j = 1, 2, 3.

We also assume that its determinant

Ĵ = det F̂ , (3.3)

1 In fact, to be a tensor the components have to satisfy certain rules with respect to
coordinate transformation, see any elementary book on tensor analysis like [47].
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dx̂

dx

̂φ

x̂1

x̂2

x̂3

Fig. 3.1. Local deformation of a material neighbourhood. An infinitesimal vector
dx̂ is deformed into dx

called the Jacobian of the deformation, is everywhere strictly positive. It
means that the mapping is orientation preserving .
The link between F̂ and the local deformation is made clear if we consider

two arbitrary points â and b̂ = â+ δ̂ of Ω̂, separated by the “small” vector δ̂
(refer to Fig. 3.1).

Let a = φ̂(â) and b = φ̂(b̂) be the corresponding points in Ω. The regu-

larity of the map φ̂ allows us to write b = a+δ = â+F̂ (â)δ̂+o(δ̂), where the
symbol o(h) stands for an infinitesimal of higher order than h for ||h|| → 0+,
being || · || the Euclidean norm. The length of δ = b− a is given by

||δ|| =
√
δT δ =

[
δ̂
T
F̂
T
(â)F̂ (â)δ̂

]1/2
+ o(||δ̂||).

This relation is often expressed in the form

||dx|| =
√
dx̂T F̂

T
F̂dx̂, (3.4)

and it gives the change of the length of the “infinitesimal vector” dx̂ due to the

deformation. The tensor Ĉ = F̂
T
F̂ is called the right Cauchy-Green tensor.

In the following we will often indicate by V̂ a subdomain of Ω̂ and by V

its image V = φ̂(V̂ ) = {x ∈ Ω : φ̂−1(x) ∈ V̂ }.
Then,

|V | =
∫
V

dx =

∫
̂V

Ĵ(x̂)dx̂ (3.5)

is themeasure of V (i.e. its volume). The Jacobian thus measures the variation
of volume due to the deformation.
To derive the equations of continuum mechanics we need to relate differ-

ential operators acting on the two configurations. For instance, by applying
the usual rules for the gradient of composite functions we have
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Proposition 3.1. Let f̂ : Ω̂ → R be a regular function and f : Ω → R

defined as f(x) = f̂(φ̂
−1
(x)); then

∇x̂f̂ = F̂∇f.
An important role in this context is played by the Piola transformation.

Let us refer to Fig. 3.2, where we display a generic volume V̂ ⊂ Ω̂ and its image
V , together with the corresponding normals to the boundary, indicated by n̂
and n, respectively. Let also assume that we have a sufficiently regular second
order tensor field σ : Ω −→ R3×3, defined on the deformed configuration.
The Piola transformation of σ associated to the given deformation φ̂ is

the second order tensor field Π̂ = P
̂φ
(σ) : Ω̂ → R3×3 given by

Π̂(x̂) = Ĵ(x̂)σ
(
φ̂(x̂)

)
F̂
−T
(x̂), (3.6)

for all x̂ ∈ Ω̂. Using a short hand notation we may write Π̂ = Ĵσ̂F̂−T .
The inverse Piola transformation of Π̂ returns the tensor σ(x) according

to

σ(x) = Ĵ−1
(
φ̂
−1
(x)
)
Π̂
(
φ̂
−1
(x)
)
F̂
T (
φ̂
−1
(x)
)
, (3.7)

or, more simply, σ = J−1Π̂F T .
The main property of the Piola transformation is given by the following

important formula (see [92] for a proof).

Proposition 3.2. Let σ be a regular tensor field in Ω and Π̂ its Piola trans-
formation, we have

divx̂Π̂ = J divσ, (3.8)

where divx̂ is the divergence with respect to the x̂ coordinates and the equality
has to be understood on corresponding points in Ω̂ and Ω, respectively.

As a result, by the application of the divergence theorem, we have∫
∂̂V

Π̂n̂ dγ̂ =

∫
∂V

σn dγ , (3.9)

whenever Π̂ and σ are related by (3.6). The use of this equality will be made
clear in the next sections.

Fig. 3.2. The transformation of a material volume under deformation
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It is also possible to derive the following relation for any scalar field f in
Ω and f̂ = f ◦ φ̂ ∫

∂V

fn dγ =

∫
∂̂V

f̂ ĴF̂
−T
n̂ dγ̂, (3.10)

where

dγ = Ĵ ||F̂−T n̂|| dγ̂ and n =
F̂
−T
n̂

||F̂−T n̂||
. (3.11)

The first relation in (3.11) is often called Nanson’s formula and relates the
measure of a surface element in the reference configuration to that of the
corresponding element in the current configuration. The second expression
relates the corresponding normals.

3.1.1 The motion

What we have shown so far is a static picture, to have motion we need to
bring the time into play. A motion is a smooth map

ϕ̂ : Ω̂ × R+ −→ R3, (x̂, t) −→ x = ϕ̂(x̂, t),

such that, at any t ≥ 0, ϕ̂t = ϕ̂(·, t) is a deformation. In other words, a
motion is one-parameter family of deformations, the parameter t being the
time. Without loss of generality we have assumed here that the motion starts
at t = 0 (initial time). The reference configuration Ω̂ is in principle arbitrary,

yet often it coincides with the initial configuration, i.e Ω̂ = Ω(0). When not
otherwise stated, we will implicitly make this assumption.
The point x = ϕ̂(x̂, t) is the position at time t of the material point (also

called material particle) identified by x̂, while Ω(t) = ϕ̂(Ω̂, t) denotes the
current configuration at time t.
In this context, the displacement is now also function of time, η̂(x̂, t) =

ϕ̂(x̂, t)− x̂ being the displacement at time t.
All the kinematic quantities defined in the previous section can be extended

to a motion. In particular, F̂ and Ĵ still indicate the deformation gradient
and Jacobian, respectively, yet are now function also of time. For instance,
F̂ (x̂, t) =∇x̂ϕ̂(x̂, t).
Given a subdomain V̂ ⊂ Ω̂, the set V (t) = {x ∈ Ω(t) : x = ϕ̂(x̂, t), x̂ ∈

V̂ } is formed by the same material particles as V̂ and is called a material
(sub)domain, or also material volume. Thanks to (3.5), if Ĵ is constant in

time (i.e ∂
̂J
∂t
= 0) the material subdomain does not change its measure during

motion.
The velocity is indeed a major kinematic quantity and is the time derivative

of the displacement:

û(x̂, t) =
∂

∂t
η̂(x̂, t) =

∂

∂t
ϕ̂(x̂, t), (3.12)
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the last equality is obtained by using the definition (3.1), now referred to
time t.

3.1.2 Lagrangian, Eulerian and ALE formulations

We can define all physical quantities alternatively on the reference or on the
current configuration, the choice being a matter of convenience. For instance
the field ρ̂ : Ω̂ × R+ → R+ indicates the density, i.e. ρ̂(x̂, t) is the density at
time t in the material point x̂. Yet, the invertibility of the mapping allows us
to refer the same quantity to the current configuration: for all t > 0

ρ(x, t) = ρ̂(ϕ̂−1t (x), t), x ∈ Ω(t),

is the density at the point x ∈ Ω(t) occupied by the material particle x̂ at
time t.
The interplay between these two “points of view” is crucial in continuum

mechanics. When we adopt (x̂, t) as independent variables we use a Lagrangian
formulation, while when we refer to the (x, t) pair we employ the Eulerian
formulation. In the Lagrangian formulation we focus on the material particle
x̂ and its evolution; in the Eulerian formulation we observe what happens at a
given point x in the physical space. When a field is expressed in the Eulerian
coordinates it is referred to as an Eulerian field , while a Lagrangian field , also
called material field , is a field expressed in Lagrangian coordinates.
We will adopt the same symbol for a given physical quantity. Yet, the

superscript ̂ will denote a Lagrangian field. To summarise, for a quantity q
we have

q̂(x̂, t) = q(x, t), with x = ϕ̂(x̂, t), x̂ ∈ Ω̂, t > 0. (3.13)

We will also make use of the composition operator: q̂(·, t) = q(·, t) ◦ ϕ̂t. Con-
versely,

q(x, t) = q̂(x̂, t), with x̂ = ϕ̂
−1
t (x), x ∈ Ω(t), t > 0, (3.14)

or, more simply, q(·, t) = q̂(·, t) ◦ ϕ̂−1t (see Fig. 3.3 and Fig. 3.4).
Therefore, the velocity u in the Eulerian frame is simply obtained by

mapping û in the current configuration, i.e.

u(x, t) = û(ϕ̂−1t (x), t), (x, t) ∈ Ω(t) ×R+. (3.15)

Sometimes it is useful to describe the displacement as an Eulerian field, obtain-
ing

η(x, t) = x− ϕ̂−1t (x). (3.16)

One formulation may be more convenient than the other, depending on the
context. Let us make this aspect more precise. As already illustrated in Chap-
ter 2 when we want to solve the differential equations governing the motion of
a fluid or a solid we need to identify the computational domain where we want
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Ω
Ω(t)

n

q(·, t)
q(·, t) = q(·, t) ◦ ϕ−1t

ϕt

ϕ−1t

Fig. 3.3. Eulerian description of a Lagrangian field

Ω
Ω(t)

n

q(·, t)
q(·, t) = q(·, t) ◦ ϕt

ϕt

Fig. 3.4. Lagrangian description of an Eulerian field

to solve the equations, on the boundary of which we need to provide suitable
boundary conditions. In a solid, where the displacements are often relatively
small, the computational domain is often taken to be Ω̂ and the Lagrangian
formulation is thus preferred. This situation is sketched in Fig. 3.5.
In a fluid the situation is rather different. The displacements are extremely

large and, moreover, usually irrelevant, since, as we will make clear in a later

Fig. 3.5. Lagrangian description of the motion of a solid. The differential problem
will be posed on ̂Ω, using a Lagrangian description



84 Miguel A. Fernández et al.

Fig. 3.6. Example of velocity field in the same region at three time instants

section, for a fluid we are normally interested in the velocity field, like the one
in Fig. 3.6, or other related quantities, rather than the displacement itself.
Therefore, the computational domain is normally chosen as a fixed, open
bounded set Ω ⊂ R3 located where we are interested to compute the solu-
tion. No special requirements is made on Ω apart that is should be “filled
by the fluid”, that is Ω ⊂ Ω(t) for all times t we are observing the motion2,
see Fig. 3.7. The Eulerian framework is then here preferable. However, the
Lagrangian frame is still useful as a tool to formally derive the equations from
fundamental principles.
As already mentioned in Chapter 2, in many cases of practical interest in
haemodynamics, such as blood flowing in a compliant artery, the computa-
tional domain for the fluid cannot be fixed in time, as it has to follow the
displacements of the fluid-wall interface3. Yet, the Lagrangian frame is not of
help here, since certainly we do not wish to follow the evolution of the blood
particles as they circulate along the whole cardiovascular system! We usually
wish to compute the flow field in a domain confined in the area of interest,
yet following the movement of the wall interface, (see for instance Fig. 3.8).
The computational domain, which we will now indicate with ω(t), is nei-

ther fixed nor a material subdomain, since its evolution is not governed by
the fluid motion, but has to comply by that of the boundary ∂ω(t), which

2 For the sake of simplicity we have set as the time interval for our equations the
whole positive real line, yet in practical computations the time interval of interest
is obviously finite.

3 Special computational techniques, like the immersed boundary method [385], may
get around this fact, at the price of using more complex equations, see Chapter 9.
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Fig. 3.7. The computational domain Ω in the Eulerian formulation. It is a fixed
portion of space filled by the medium during its motion

is either given or the result of the coupling with a structural model. It is
then necessary to introduce another, intermediate, frame of reference, called
Arbitrary Lagrangian Eulerian (ALE).
We will show in Section 3.5 how it is possible to build from the evolution

of ∂ω(t) an auxiliary motion

Ã : ω̃ × R+ → R3 (x̃, t)→ x = Ã(x̃, t),

such that ω(t) = Ã(ω̃, t), for all t > 0, see Fig. 3.9. Here, ω̃ ⊂ R3 is a reference
(fixed) configuration, which in general (yet not necessarily) corresponds to the
initial position at t = 0, i.e. ω(0). Fig. 3.9 gives a sketch of the situation.
In the ALE formulation we have then the interplay of (at least) two

motions: the one of the medium under consideration and that of the compu-
tational domain. The former is governed by physical laws, the latter is rather
arbitrary, provided that the given law for the domain boundary movement be
respected.
Given an ALE field , that is a field defined in the ALE reference domain,

q̃ : ω̃ ×R+ −→ R, its Eulerian description is given by

q(x, t) = q̃(Ã−1t (x), t), ∀x ∈ ω(t), t > 0,

˜Ωf

˜At Ωf (t)

Fig. 3.8. The computational domain Ωf for the fluid in a compliant artery. It
deforms to follow the arterial wall movement, yet the axial position of its proximal
and distal boundary is kept fixed. Its evolution is described by the ALE map
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Fig. 3.9. The moving computational domain ω(t) and the ALE map. Here, for
generality, we show an arbitrary reference computational domain ω̃. Most of the
times, however, it is chosen to coincide with ω(0)

also indicated as q(·, t) = q̃(·, t) ◦ Ã−1t . Conversely,

q̃(x̃, t) = q(Ã(x̃, t), t), ∀x̃ ∈ ω̃, t > 0, (3.17)

or, equivalently q̃(·, t) = q(·, t) ◦ Ãt. Here we have taken the case of a scalar
field, yet the same rule applies to vector and tensor fields.
Analogously to what done before, we can define the computational domain

velocity , also called ALE velocity, as

w̃(x̃, t) =
∂Ã
∂t
(x̃, t), ∀x̃ ∈ ω̃, (3.18)

which can be mapped to the Eulerian frame by means of (3.17), in short hand

notation w(., t) = w̃(·, t) ◦ Ã−1t .
Remark 3.1.1 In general, w(x, t) = u(x, t). However, we can note two par-
ticular cases:

• w = 0: the computational domain is fixed as ω(t) = ω(0) for all times; we
recover the Eulerian formulation;

• w = u: the computational domain ω(t) is now a material domain; we
recover the Lagrangian formulation.

In analogy with what already done for the Lagrangian frame, we can define

the Jacobian of the ALE movement J̃
˜A = det

∂ ˜A
∂x̃ and with J˜A the correspond-

ing quantity in the current configuration, obtained by composition with the
inverse ALE map. Recasting the Euler expansion formula (3.26) to the ALE
mapping we obtain

∂J
˜A

∂t | ˜A
= J

˜A divw. (3.19)

For the sake of notation, we will follow the convention that if F = F (x, t)
then Ft indicates the function of the space variable only, defined as Ft(x) =
F (x, t), at any fixed time t.
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Eulerian, Lagrangian and ALE time-derivatives

We have already seen how to transform some space differential operators from
different configurations, once we know the deformation. To complete the pic-
ture, we need now to understand how to relate time derivatives in the different
formulations.
For a given scalar Eulerian field q (the discussion applies also to vector or

tensor fields), we define the Eulerian time-derivative as simply

∂q

∂t
(x, t), x ∈ Ω(t). (3.20)

In other words, we look at the rate of change of q at a fixed point x in the
physical space, where the current configuration lives. It is nothing else than
the classical partial derivative.
Let now q̂ be the Lagrangian description of q. We define the material

time-derivative
Dq

Dt
of q as

Dq

Dt
(·, t) = ∂q̂

∂t
(·, t) ◦ ϕ̂−1t . (3.21)

We can give a different interpretation of the material derivative, with a
more immediate physical meaning. Let us note that by recalling relation (3.13)
we may write that

∂

∂t
q̂(x̂, t) = lim

h→0
q̂(x̂, t+ h)− q̂(x̂, t)

h

= lim
h→0

q(ϕ̂(x̂, t+ h), t+ h)− q(ϕ̂(x̂, t), t)
h

=
d

d t
(ϕ̂(x̂, t), t).

Therefore, using (3.21),

D

Dt
q(x, t) =

d

d t
q(ϕ̂(x̂, t), t), with x = ϕ̂(x̂, t). (3.22)

The material derivative of q at (x, t) is thus the rate of variation in time of
q “experienced” by an observer which moves with the particle x̂ located at
time t in the point x.
Standard application of the chain rule for the composition of functions in

(3.22) yields the following result.

Proposition 3.3. For any given Eulerian field q, the following identity holds

Dq

Dt
= u ·∇q + ∂q

∂t
. (3.23)
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It follows that the Lagrangian derivative is made of two contributions. A
transport term u · ∇q accounting for variations of q due to changes in the
position of the particle and the standard Eulerian time derivative.
The same type of considerations may be extended to the ALE formulation.

In particular the ALE time-derivative
∂q

∂t | ˜A
of a field q may be defined in a

way analogous to the material derivative. In particular, for each x ∈ ω(t) and
t > 0 we have

∂q

∂t | ˜A
=
d

d t
q(Ã(x̃, t), t), with x = Ã(x̃, t). (3.24)

In other words, we look at the rate of change of q in a point that moves
with the computational domain. The importance of this relation emerges in
the context of the numerical discretisation. When computing numerically a
solution in a moving domain we are usually interested in the variation of
quantities collocated at the nodes of a computational mesh, and the latter
necessarily follows the evolution of the computational domain. In Fig. 3.10 we
show one node at two different times, namely xi(t) and xi(t+ δt), being i the
node index. If qi indicates the quantity of interest at the given node, its value
at the two different times, qi(t) and qi(t+ δt), have to be understood as

qi(t) = q(xi(t), t), qi(t+ δt) = q(xi(t+ δt), t+ δt).

As a result, their difference is related to the ALE time derivative, since

qi(t+ δt)− qi(t) = q(xi(t+ δt), t+ δt) − q(xi(t), t) =
∫ t+δt
t

∂q

∂t | ˜A
(xi, t) dt.

The use of the Eulerian time-derivative would be in this case troublesome,
because a fixed point x which at time t is inside a moving computational
domain may well have fallen outside at time t + δt! This remark points out
the advantage of using the ALE framework.
We can use the same arguments used to derive (3.23) to obtain the follow-

ing proposition.

Fig. 3.10. Example of a moving mesh
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Proposition 3.4. The following identity holds

∂

∂t | ˜A
q = w ·∇q + ∂q

∂t
. (3.25)

The transport term w · ∇q accounts for the variations of q caused by the
motion of the computational domain. It is clearly zero if the domain is fixed,
while it coincides with the transport term in the material derivative (3.23) if
w = u.

The Reynolds transport formula

An interesting property of the Jacobian is that its time derivative is linked to
the divergence of the velocity field.

Proposition 3.5. Let J denote the Jacobian (3.3) in the Eulerian frame. We
have the relation

D

Dt
J = J divu, (3.26)

sometimes called the Euler expansion formula. It allows to obtain the following
fundamental result.

Proposition 3.6 (Reynolds transport formula). Let V (t) be a material

domain, i.e. V (t) = {x : x = ϕ̂(x̂, t), x̂ ∈ V̂ }, and f a continuously differen-
tiable field. Then,

d

d t

∫
V (t)

f dx =

∫
V (t)

(
Df

Dt
+ f divu

)
dx =

∫
V (t)

(
∂f

∂t
+ div (fu)

)
dx.

(3.27)

When working with the ALE formulation it might be useful to consider
the Reynolds formula acting on the moving computational domain.

Proposition 3.7 (ALE transport formula). Let ω̃0 ⊂ ω̃ be a subdomain

in the ALE reference configuration and ω0(t) = {x : x = Ã(x̃, t), x̃ ∈ ω̃} its
image by the ALE map. Clearly ω0(t) is always contained in the computational
domain ω(t). We have that

d

d t

∫
ω0(t)

f dx =

∫
ω0(t)

(
∂

∂t | ˜A
f + f divw

)
dx =

∫
ω0(t)

(
∂f

∂t
+ div (fw)

)
dx ,

(3.28)
for any continuously differentiable field f. Here w indicates the domain veloc-
ity defined in (3.18).
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3.2 The equations of continuum mechanics

The basic equations of continuum mechanics provide some well known con-
servation principles in the form of differential problems.

3.2.1 Mass conservation

The mass of an arbitrary material domain V (t) at time t is given by∫
V (t)

ρdx, (3.29)

being ρ the density (or volume mass) of the continuum medium. The units of
measurement of density are [ρ] = kg/m3.
In classical mechanics the mass of a body does not change during the

motion, a principle known as the mass conservation. Therefore,

d

d t

∫
V (t)

ρdx = 0, (3.30)

holds true for any V (t) at any time. This is an integral statement, we want
to express it “point-wise”. To is aim, we use the Reynolds transport formula
(3.6) to obtain

d

d t

∫
V (t)

ρdx =

∫
V (t)

(
∂ρ

∂t
+ div(ρu)

)
dx,

by which, due to the arbitrariness of V (t), we get the following

Proposition 3.8 (Continuity equation). If ρ indicates the density of a
continuum medium, mass conservation implies that

∂ρ

∂t
+ div(ρu) = 0, in Ω(t), (3.31)

for all t > 0, that is

∂ρ

∂t
+

3∑
i=1

∂

∂xi
(ρui) = 0.

If the fluid has constant density then (3.31) implies the well known incom-
pressibility equation

divu = 0 in Ω(t), t > 0. (3.32)

On the other hand divu = 0 implies DJ
Dt
= 0, thanks to the Euler expan-

sion formula and the definition of material derivative. In turn, this is equivalent

to
d

d t
|V (t)| = 0 for any material domain V (t). That is, in a constant den-

sity fluid the volume of a material domain does not change during motion. In
haemodynamics applications, blood is usually considered a constant density
fluid. The continuity equation can be rewritten in the Lagrangian frame, we
will give more details when we deal with the dynamics of a solid.
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3.2.2 Conservation of momentum

The conservation of (linear) momentum is in fact the well known Newton’s
law. The rate of change of the momentum of a material domain V (t), given
by
∫
V (t)

ρu dx equals the resultant of the external forces acting on it, that is

d

d t

∫
V (t)

ρudx = F = F v + F s.

Referring to Fig. 3.11, the force F is the composition of two terms: a volume
force F v, and a surface force F s. The former acts on each particle of V (t)
(like the force of gravity) and is expressed as the integral of the density times
a specific force (i.e. force per unit of weight) f which has the dimension of an
acceleration, [f ] = m/s2.
The latter is instead responsible for the mutual interaction between the

material contained in V (t) and the exterior, through the boundary ∂V (t).
More precisely, F s is equal to the surface integral of the so called Cauchy
stress t, which has the dimension of force per unit area, [t] = N/m2, that is
F s =

∫
∂V (t) tdγ.

It was indeed Cauchy who also postulated that t can be computed by
applying to the normal n of ∂V (t) a symmetric second-order tensor4

σ : Ω(t)→ R3×3, called the Cauchy stress tensor , i.e.

t = σn on ∂V (t), componentwise ti =

3∑
j=1

σijnj. (3.33)

The momentum conservation law can then be expressed by the following
equation,

d

d t

∫
V (t)

ρu dx =

∫
V (t)

ρf dx+

∫
∂V (t)

σn dγ =

∫
V (t)

ρf dx+

∫
V (t)

divσdx,

(3.34)

Fig. 3.11. Forces acting on a material volume V (t)

4 The symmetry is in fact an implication of the conservation of angular momentum.
We will not pursue this issue here, the interested reader may refer to the given bib-
liography. Note that the Cauchy postulate implies that the dependence of t on the
geometry of ∂V (t) is only through its normal. This holds true in most situations.
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valid for all material domains V (t). To obtain the last equality we have used
the divergence theorem. Finally, by exploiting the Reynolds transport formula
(3.6) we obtain

Proposition 3.9 (Momentum conservation). Assume that (3.30) holds.
Then (3.34) is equivalent to

ρ
∂u

∂t
+ ρ(u ·∇)u − divσ = ρf , in Ω(t), t > 0. (3.35)

Componentwise, we have

ρ
∂ui

∂t
+ ρ

3∑
j=1

uj
∂ui

∂xj
− ρ

3∑
j=1

∂σij

∂xj
= fi, i = 1, 2, 3.

The equations may be written in conservation form as

∂(ρu)

∂t
+ div

(
ρu⊗ u− σ

)
= ρf , in Ω(t), t > 0, (3.36)

which componentwise reads

∂(ρui)

∂t
+

3∑
j=1

∂

∂xj

(
ρuiuj − σij

)
= ρfi, i = 1, 2, 3.

In contrast, (3.35) is generally said to be in quasi-linear form or sometimes
in the gradient form.

Remark 3.2.1 The transport term (u ·∇)u (or divu⊗u in the conservation
form), is a non-linear term. This aspect makes the analysis, as well as the
numerical solution more complex. Only in flow at very low Reynolds numbers
(≤ 10) the non-linear term may be neglected.

At each point of the boundary of a material domain V (t) the Cauchy
stress t can be decomposed into its components normal and tangential to the
surface, given respectively by

tn = t ·n = (σn) ·n, and tt = t− tnn. (3.37)

The latter is indeed a vector laying on the tangential plane and is called
the shear stress vector. Componentwise, it may be computed as

[tt]i =

3∑
j=1

σijnj −
3∑

k,j=1

σkjnjnkni, i = 1, . . .3.

It is an important parameter in haemodynamics since the endothelium cells
are very sensitive to the shear stress at the vessel walls. Let us note that
(σn)·n is a scalar quantity which may also be written asnTσn. In a Cartesian
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coordinate system it is readily computed as
∑3
i,j=1 σijninj. The equations

have been here written in Eulerian formulation.
In the case of a fixed computational domain Ω they can be used directly,

just replacing Ω(t) with Ω (we recall that Ω is a subset of Ω(t) for all t).
In the case of a moving domain it is preferable to use the ALE formulation.
To this aim it is sufficient to employ identity (3.25). If instead one wants to
use a full Lagrangian formulation it is necessary to transform also the space
differential operators, in order to write the equations on Ω̂ instead of Ω(t).
The Piola formula (3.8) can then become handy. We postpone these issues to
Section 3.3.2.

3.3 Fluids and solids

We need now to make precise how the Cauchy stress tensor is linked to the
kinematics. It is indeed at this point where the behaviour of solids and fluids
diverges.
As solids react to deformations, the Cauchy stress must depend on F̂ (or

on quantities which are directly related to F̂ ). The reference configuration
plays here an important role.
Fluids instead can adapt to a deformation, as a fluid can fill freely any

arbitrary shape. Yet it takes time to fill it. And oil takes more time than
water. It means that fluids react mechanically not to the deformation itself
but to its rate. More precisely, the relevant quantity is here the strain rate
tensor D defined in (2.2) of Chapter 2, and whose dimensions are [D] = s−1.
Componentwise, the strain rate reads

Dij =
1

2

(
∂ui
∂xj
+
∂uj
∂xi

)
, i, j = 1, . . .3.

In a fluid then σ is a function ofD, while it is independent of F̂ . A consequence
is that the reference configuration is a concept useful for the derivation of the
equations, yet it does not play any particular role for a fluid. Intermediate
behaviours, like that of visco-elastic fluids, for instance, are possible; they will
be addressed in detail in Chapter 6.
The relation between the Cauchy stress tensor σ and the kinematic quan-

tities is called constitutive relation, or constitutive law, and is a characteristic
of the type of material under consideration. To be physically correct, a con-
stitutive relation must obey certain rules, like the principle of material frame
indifference [512] which states that the relation should be invariant under a
change of frame of reference. More details may be found also in the literature
cited at the beginning of the chapter.
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3.3.1 The Navier Stokes equations for a constant density fluid

We consider here the case of a constant density incompressible Newtonian
fluid. As anticipated in Chapter 2, this is a limitation usually accepted for
blood flow in large arteries, and we have discussed its consequences already
in Section 3.2.1.
In a Newtonian incompressible fluid , the Cauchy stress tensor depends

linearly on the strain rate. More precisely, we have

σ = σ(u, P ) = −PI + 2μD(u) = −PI + μ(∇u+∇uT ), (3.38)

where P is the pressure, I is the identity matrix, μ is the dynamic viscosity
of the fluid and is a positive quantity.
The term 2μD(u) is the viscous stress component of the stress tensor. We

have that [P ] = N/m2 and [μ] = kg/ms.
The viscosity may vary, for example it may depend on the fluid tempera-

ture. The assumption of Newtonian fluid, however, implies that μ is indepen-
dent of kinematic quantities. Simple models for non-Newtonian fluids, often
used for blood flow simulations, express the viscosity as function of the strain
rate, that is μ = μ(D(u)). The treatment of such cases is considered in Chap-
ter 6 and will not be covered here.
We now recall that, if P is a scalar andΣ a tensor field, then the following

identity holds,
div(PΣ) =∇PΣ + PdivΣ,

and, therefore,
div(PI) =∇PI + PdivI =∇P.

The momentum equation(3.36) may then be written as

ρ
∂u

∂t
+ ρdiv(ρu ⊗ u) +∇P − div(μD(u)) = ρf . (3.39)

Since ρ is constant, it is sometimes convenient to introduce the kinematic
viscosity ν = μ/ρ, with [ν ] = m2/s, and write

∂u

∂t
+ div(u ⊗ u) +∇P − div[ν(∇u+∇uT )] = f , (3.40)

where P = P/ρ is a scaled pressure (with [P ] = m2/s2).
Under the additional hypothesis that ν is constant, the momentum equa-

tion may be further elaborated by considering that div∇u = Δu and
div∇uT =∇(divu) = 0, producing the alternative formulation

∂u

∂t
+ div(u⊗ u) +∇P − νΔu = f . (3.41)

However, for reasons that will appear clear in Chapter9, and have to do with
the different natural boundary conditions associated with the two formula-
tions, for fluid-structure interaction problems it is more convenient to use the
momentum equation in the form (3.39), even when the viscosity is constant.
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The Navier-Stokes equations in the Eulerian frame

The set of differential equations formed by the continuity equation and the
momentum equation in the form derived in the previous section provides the
Navier-Stokes equations for a constant density fluid.
They have been written in the Eulerian frame and if the computational

domain Ω is time-independent they can be recast as the following system of
equations for the unknowns velocity u and pressure P ,

ρ
∂u

∂t
+ ρ(u · ∇)u +∇P − 2div(μD(u)) = ρf ,

divu = 0,

(3.42)

for any t > 0 and in Ω. Alternatively, one may use the conservative form
(3.39).
Furthermore, we need to prescribe the initial status of the fluid velocity,

for instance
u(t = t0,x) = u0(x) x ∈ Ω. (3.43)

There is no initial condition for the pressure.
We have already introduced the issue of boundary conditions in Chapter 2.

We here recall the more classical boundary conditions which are mathemati-
cally compatible with the Navier Stokes equations, namely

1. Applied stresses (or Neumann boundary condition)

σ · n = −Pn+ 2μD(u) ·n = h on ΓN ⊂ ∂Ω, (3.44)

where ΓN is a measurable subset (possibly empty) of the whole boundary
∂Ω and h = h(x, t) a given vector defined on ΓN and (possibly) function
of time. This is a typical condition at distal boundaries, where often h =
Pextn, being = Pext a prescribed “external” pressure.

2. Prescribed velocity (or Dirichlet boundary condition).

u = g on ΓD,

where g : ΓD × R+ → R3 is a given function. Since divu = 0 in Ω, it
must be noted that if ΓD = ∂Ω then g must satisfy∫

∂Ω

g · n = 0, (3.45)

at any time. This condition is applied at the vessel wall interface and
usually also at the proximal boundaries.

Clearly for a proper boundary condition specification we must have ΓN ∪
ΓD = ∂Ω. Other boundary conditions are possible, they will be discussed
whenever appropriate.
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The conditions to apply are normally inspired by physical considerations.
For instance, for a viscous fluid (μ > 0) like the one we are considering here,
it is appropriate to impose the Dirichlet condition u = ∂

∂tη at a solid bound-
ary, being η the displacement of the boundary. In the case of a fixed wall the
condition is homogeneous and is also called no-slip condition. When dealing
with an artificial boundary the choice of appropriate conditions in the context
of haemodynamic problems is more delicate and should in any case guaran-
tee the well-posedness of the resulting differential problem. In particular, the
imposition of a Neumann condition in a distal section may cause instabilities
in the presence of flow reversal, since this condition is most appropriate in
outflow sections.
As mentioned, at distal sections (like Γ out in Fig. 2.1) one often imposes a

constant (possibly homogeneous) Neumann condition. Yet, this would indeed
simulate a discharge into a reservoir at constant pressure. A rather unphysical
situation for the case of a human vessel as it neglects the presence of the
remaining part of the circulatory system completely. In Chapter 11 we will
address this problem in more depth presenting some possible solutions.
After having computed the solution using the numerical scheme of choice,

we may wish to estimate the wall shear stresses using the second relation in
(3.37). In a Newtonian fluid the Cauchy stress at each point of the surface of
interest Γ may be computed from the flow field solution as

t = −Pn+ μ∂u
∂n
+ μ∇uTn. (3.46)

Here, ∂u
∂n
=∇un is the normal derivative of u. If the surface is flat then n is

constant on Γ and thus∇uTn =∇un, being un = u ·n the component of the
velocity normal to the surface. If in addition Γ is a fixed wall surface, then
u = 0 on Γ and thus∇uTn = 0. We will see in Chapter 9 how it is possible to
recover this quantity when adopting finite elements for the numerical solution.
The shear stress acting on the wall is readily obtained from t by using relation
(3.37). Note that the shear stress does not depend on the pressure term, since
it cancels out.

The Navier-Stokes equations in the ALE frame

When dealing with a moving computational domain ω(t) it is preferable to
use the Navier-Stokes equations in the ALE framework introduced in Sec-
tion 3.1.2. By using (3.25) on the momentum equation we derive that

ρ
∂u

∂t | ˜A
+ ρ[(u −w) ·∇]u+∇P − 2div(μD(u)) = ρf ,

divu = 0,

(3.47)

in ω(t). We may note that the introduction of the ALE time-derivative induces
a correction in the transport term by subtracting to the “transport velocity”
u the domain velocity w given by (3.18).
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A conservation form may be devised as well. Recalling (3.19) we have

J
˜A
∂u

∂t | ˜A
=

∂

∂t | ˜A
(J
˜Au)− J˜Audivw,

by which, with simple manipulations, we get the following conservation form
for the Navier-Stokes equations in the ALE frame,

J−1
˜A ρ

∂

∂t | ˜A
(J
˜Au) + div

(
ρu ⊗ (u−w)

)
+∇P − 2div(μD(u)) = ρf ,

divu = 0.

(3.48)

3.3.2 The equations for a solid

We describe now the motion of the structure in terms of its displacement field
η̂ with respect to a given material reference configuration Ω̂. Mapping back
the continuity equation in integral form (3.30) to the reference domain we
obtain

0 =
d

d t

∫
̂V

Ĵ ρ̂dx̂ =

∫
̂V

∂(Ĵ ρ̂)

∂t
dx̂.

From the arbitrariness of V̂ we derive the continuity equation in the Lagrangian
frame, namely

∂

∂t
ρ̂0 = 0, in Ω̂, t > 0, (3.49)

where we have set

ρ̂0 = Ĵ ρ̂. (3.50)

Note that for a constant density material (3.49) together with the definition

of reference domain, implies that Ĵ = 1 for all t ≥ 0.
The momentum equation in integral form (3.34) can also be rewritten in

the Lagrangian frame by mapping all integrals back on the reference domain
and using (3.12) to obtain

d

d t

∫
̂V

Ĵ ρ̂
∂η̂

∂t
dx̂−

∫
̂V

Ĵd̂ivσ dx̂ =

∫
̂V

Ĵ ρ̂f̂ dx̂.

Yet, (3.50) and (3.49) give

d

d t

∫
̂V

Ĵ ρ̂
∂η̂

∂t
dx̂ =

∫
̂V

ρ̂0
∂2η̂

∂t2
dx̂.

Thus, by considering the arbitrariness of V̂ we obtain the following differential
equation

ρ̂0
∂2η̂

∂t2
− Ĵd̂ivσ = ρ̂0f̂ , in Ω̂, t > 0.
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This form is still not satisfactory as d̂ivσ is in a “mixed form” because the
divergence is still taken with respect to x. We now use the Piola transform
and Proposition 3.2 to get

ρ̂0
∂2η̂

∂t2
− divx̂Π̂ = ρ̂0f̂ , in Ω̂, t > 0. (3.51)

The tensor Π̂ = Pϕ̂(σ) = Ĵσ̂F̂
−T
is called the first Piola-Kirchhoff tensor

and (3.51) is the momentum equation written in the Lagrangian frame. It is
also known as the equation of elastodynamics.

Unlike the Cauchy stress tensor σ, the first Piola-Kirchhoff tensor Π̂ is
non-symmetric. Since constitutive laws are often better expressed in terms of
symmetric stress tensors, it is natural to introduce the second Piola-Kirchhoff
tensor Σ̂

Σ̂ = F̂
−1
Π̂ = ĴF̂

−1
σ̂F̂

−T
(3.52)

which is symmetric.
For an elastic material the stress is a function of the deformation (and

possibly of thermodynamic variables such the temperature) but is independent
on the deformation history (and thus on time). The material characteristics
may still vary in space. In an homogeneous material the mechanical properties
do not vary with x. As a consequence the strain energy function depends only
on the deformation. A material is mechanically isotropic if its response to
deformation is the same in all directions.
The constitutive equation is usually written in terms of theGreen-Lagrange

strain tensor , defined as

Ê =
1

2

(
F̂
T
F̂ − I

)
, (3.53)

where I is the identity tensor. Componentwise,

Êij =
1

2

(
3∑
l=1

F̂liF̂lj − δij
)
,

being δij the Kronecker’s symbol. Applying (3.2) and (3.1) we have also

Ê =
1

2

(∇x̂η̂ +∇Tx̂ η̂)+ 12∇Tx̂ η̂∇x̂η̂, (3.54)

which componentwise reads Êij =
1
2

(
∂η̂i
∂x̂j
+
∂η̂j
∂x̂i

)
+
∑3
l=1

∂η̂l
∂x̂i

∂η̂l
∂x̂j
.

The tensor Ê is not affected by a superimposed rigid body motion, and
in particular by rigid rotations. Indeed, from a geometric point of view Ê is
directly related to the difference of the squared length of a elemental vector
dx̂ and its image: by recalling (3.4) we have that

1

2
(||dx||2 − ||dx̂||2) = dx̂T Êdx̂.
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Many constitutive laws can be devised for a solid. For a hyperelastic mate-
rial we first define a density of elastic energy W : R3×3 −→ R+, and then
set

Σ̂(Ê) =
∂W

∂Ê
(Ê). (3.55)

Componentwise, Σ̂ij =
∂W

∂ ̂Eij
, i, j = 1, 2, 3.

A simple example of energy density for a homogeneous isotropic mate-
rial whose reference configuration is the natural state5 is the Saint-Venant
Kirchhoff model, where

W (Ê) =
L1

2
(tr Ê)2 + L2 tr Ê

2
, (3.56)

which componentwise reads (by exploiting the symmetry of Ê)

W =
L1

2

(
3∑
i=1

Êii

)2
+ L2

3∑
i=1

3∑
j=1

Ê2ij.

Here, L1 and L2 denote the first and second Lamé coefficients
6. Correspond-

ingly, we have
Σ̂(Ê) = L1(tr Ê)I + 2L2Ê. (3.57)

This relation is often written componentwise in terms of a fourth order sym-
metric tensor, called the elasticity tensor, H = (Hijkl), defined by

Hijkl = L1δijδkl + L2 (δikδjl + δilδjk) , (3.58)

so that
Σ̂ij =

∑
1≤i,j≤3

HijklEkl, (3.59)

which is commonly known as (generalised) Hook’s law . In tensorial form it

reads Σ̂ = H : Ê.
Note the in fact the only components of H which are different from zero

are H1111 = H2222 = H3333 = L1 + 2L2 and Hstst = Hstts = L2, for s = t.
More complex constitutive relations for hyperelastic materials may be

found in [221], and in particular models specially tailored for biological tissues
and blood vessels are reported in [178] and [222].
Often an elastic material is characterised by its Young modulus E and

Poisson coefficient ξ. Indeed, these quantities are inferred from experiments
more directly than the Lamé coefficients. We have the following relations

E = L2
3L1 + 2L2
L1 + L2

, ξ =
1

2

L1

L1 + L2
, (3.60)

5 The natural state is a configuration where the Cauchy stress tensor is zero every-
where.

6 In the literature L1 and L2 are usually denoted by λ and μ, respectively. We have
used different symbols to avoid repetitions.
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and

L1 =
Eξ

(1− 2ξ)(1 + ξ) , L2 =
E

2(1 + ξ)
. (3.61)

Specific models for the arterial wall

A simple Saint-Venant Kirchhoff elasticity model can be adopted only when
one is not really interested in the details of the stress inside the arterial wall
but only on its effect of the Haemodynamics. The development of reduced
models detailed in Section 3.4 does indeed make use of this type of modelling.
However, in reality the internal structure of the wall of an arterial vessel is

rather complex, an account has been given in Chapter 1. The presence of dif-
ferent layers and of collagen fibres which activate when the strain has reached
a critical level makes a homogeneous isotropic models clearly inadequate for
a detailed analysis of stresses inside the arterial wall.
Furthermore, it is often assumed that biological tissues, and thus the wall

of a blood vessel, are incompressible. The case of an incompressible material
is rather special. Indeed the Saint-Venant Kirchhoff model in its original for-
mulation fails, since ξ = 1/2 in an incompressible material. The constitutive
relation has to take into account the incompressibility constraints, a general
account is given in [243, 558]. We here only mention that it is convenient to

factor the deformation gradient F̂ into his spherical and distortional part,

F̂ =
(
Ĵ1/3I

)
F̂
∗
,

and use this decomposition to define a modified strain measure Ê
∗
as

Ê
∗
=
1

2
(F̂
∗T
F̂
∗ − I) = 1

2
(Ĵ−2/3F̂

T
F̂ − I).

When the motion is incompressible Ĵ = 1 during the whole motion and indeed

in this case F̂ = F̂
T
and Ê = Ê

∗
. In general,

Ê
∗
= Ĵ−2/3Ê +

1

2
(Ĵ−2/3 − 1)I,

and thus
∂Ê

∗

∂Ê
= Ĵ−2/3

[
I − 1
3
F̂
T
F̂ ⊗

(
F̂
T
F̂
)−1]

.

where I is the fourth order identity tensor with components Iijkl = (δikδjl +
δilδjk)/2.
The elastic energy density may then be expressed as the sum of two terms,

W (Ê) = U(Ĵ) +W ∗(Ê
∗
),

where the dependence of Ê
∗
and Ĵ on Ê is understood. The first term rep-

resent the volumetric elastic energy, which is constant in an incompressible
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material, the second term is associated to the volume preserving deformations.
Correspondingly, the second Piola Kirchhoff stress tensor becomes

Σ̂ =
∂U

∂Ê
+
∂W ∗

∂Ê
= P Ĵ(F̂

T
F̂ )−1 + Σ̂

∗
, (3.62)

and the Cauchy stress tensor

σ = PI + σ∗,

P being the pressure, while σ∗ and Σ̂
∗
are related by the inverse Piola trans-

formation.
Pressure in an incompressible material plays the role of the Lagrange mul-

tiplier that enforces the incompressibility constraint Ĵ = 1. It is a role iden-
tical to that played by the fluid pressure in an incompressible flow. As for
the distortional energy density W ∗, several expressions specifically targeted
to biological tissues are found in [23] and a critical review is available in [223].
The actual model to be adopted in practise may depend on the type of

investigation to be carried out. For instance, in physiological situations the
collagen fibres are not activated and the arterial wall behaves largely like an
isotropic hyperelastic material. A possible constitutive law in this case can be
derived from the model presented in [114], that is

W ∗ =
a

b

[
e
b
2 (I1−3) − 1

]
. (3.63)

Here, a and b are two parameters to be fitted by experiments and I1 indicates

the first invariant of the right Cauchy-Green tensor, which in terms of Ê
∗
is

defined as I1 = 2 tr(Ê
∗
) + 3.

However, if we are interested to study situations where the strains go
beyond the physiological range, like during balloon angioplasty, the hypothesis
of isotropic behaviour is not realistic. The collagen fibres in this case enter
into action, after a critical strain level. Since they are aligned principally along
two directions, they introduce a markedly anisotropy. In [223] a model was
proposed to account for this fact. The fibre directions are indicated by a1 and
a2, respectively, and are in general a function of x̂. Correspondingly we may
define the tensors A1 = a1 ⊗ a1 and A2 = a2 ⊗ a2. The energy density is
expressed as function of the modified right Cauchy green tensor C∗, which
is related to Ê

∗
by C∗ = 2Ê

∗
+ I . More precisely, the important variables

are the first invariant I1 = trC
∗, which we have already introduced, and

Ia1 = C
∗ : A1 and Ia2 = C

∗ : A2. The distortional energy density is then
expressed as W ∗ =W ∗

iso +W
∗
aniso, where

W ∗
iso =W

∗
iso(I1) =

c

2
(I1 − 3),

corresponds to a so-called neo-Hookean elestic model, and c > 0 is a suitable
parameter. While

W ∗
aniso =W

∗
aniso(Ia1 , Ia2) =

k1

2k2

[
ek2(Ia1−1)

2

+ ek2(Ia2−1)
2
]
.
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Here, k1 > 0 is a stress-like material parameter and k2 > 0 a dimensionless
parameter, both to be fitted by experiments. The dependance ofW ∗

aniso More
details may be found in the cited reference.
We anticipate that another important characteristics of arterial walls is

that they are normally in a pre-stressed state. We postpone the discussion on
this issue to Section 3.3.2.
Finally, viscoelastic behaviour may be relevant in muscular arteries (i.e.

arterioles) [180, 224]. Moreover, when undergoing major strains plasticity
effects should be taken into account as well [183]. These types of modelling
go beyond the scope of this book and will not be investigated any further.

Boundary conditions

Also in this case we have a second order system of partial differential equations
and we need to provide proper boundary conditions on ∂Ω̂. The two main
conditions are again:

• Dirichlet conditions. The displacements are imposed on part of the bound-
ary

η̂ = ĝ, on Γ̂D,

being ĝ a given function;
• Neumann conditions. Surface stresses are applied on a portion of the
boundary. Notice that often the given data are on the current configu-
ration, so they have to be recast to ∂Ω̂. For instance, we might want to
enforce

σn = h, on ΓN(t) ⊂ ∂Ω(t).

Using relations (3.9) and (3.11) we have

Π̂σn̂ = Ĵ ||F̂
−T
n̂||ĥ on Γ̂N , (3.64)

which is the relation which is needed in practise to enforce the Neumann
condition in the Lagrange frame.

Other conditions may be of interest for cardiovascular applications, for
instance non-reflecting boundary conditions. They are meant to minimise
the spurious reflections appearing when improper boundary conditions are
imposed on a computational domain which is in fact representing a small
portion of a larger body. For instance, an artery separated from the rest of
the circulatory system. This issue is rather complex and its treatment goes
beyond the scope of this chapter. Some considerations on special boundary
conditions for cardiovascular problems may be found in Chapter 11 in the
context of multiscale modelling.
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The linear elasticity from a pre-stressed configuration

The equations written so far are rather general. Yet, even if we employ a
linear relation between Σ̂ and Ê, like for instance (3.57), they give rise to a
non-linear problem in the displacement η̂, because of the presence of the defor-

mation gradient in the relation between Σ̂ and Π̂, as well as the quadratic
term in (3.54).
However, when both strains and displacements are small we may derive

a simpler, linear form of the equation. In haemodynamics, the hypothesis of
small displacements can be accepted in small arteries. Yet, it is sometimes used
also in larger vessels when deriving reduced models of structure dynamics,
since it is assumed that this approximation is of the same importance as the
others introduced by the model reduction process.
Yet, things are complicated by the fact that usually displacements may be

assumed to be small with respect to a configuration which is not a natural
one. Indeed, it has been observed that a vessel when extracted from its natural
site tends to shrink, and it opens up when cut longitudinally [177, 178]. This
is an indication that the Cauchy stresses in an in vivo artery are not zero
even when the artery is “at rest”. The presence of a circumferential pre-stress
may help in better equilibrating the stress state inside the arterial wall when
the vessel is subject to the intramural pressure. Therefore, to be correct the
linearisation procedure has to be carried out with respect to a pre-stressed
reference state.
Since hyperelastic constitutive equations are written assuming instead a

natural (i.e. zero stress) reference state, the problem is not straightforward.

We proceed then by assuming the existence of a natural configuration Ω̂0 from
which the actual reference configuration Ω̂ is displaced by η̂0 = η̂0(x̂0), being

x̂0 ∈ Ω̂0. The current configuration Ω(t) is then obtained as usual from Ω̂
by applying the displacement η̂, which is assumed small and to have small
gradients ∂η̂/∂x̂. The total displacement from the natural configuration is
η̂t = η̂0 + η̂, and in general it is not small (see Fig. 3.12). For the sake of
notation, here and in the following we will use the hat (̂) sign to indicate
quantities referred either to the natural or the pre-stressed configuration, the
ambiguity being resolved by the context.
The motion ofΩ(t) is the superposition of a time-independent deformation

from Ω̂0 to Ω̂ and the motion from Ω̂ to Ω(t). That is, a point x in the
current configuration is associated to a point x̂ in the natural configuration
by x = x̂ + η̂0 + η̂ = x̂ + η̂t. Finally, the Cauchy stress σ

0 in the reference
domain is self-equilibrating, i.e.

divx̂σ
0 = 0, in Ω̂. (3.65)

To get the linearised equations we will write the elastodynamics equations
with respect to Ω̂0 and then apply a linearisation procedure around the refer-
ence configuration Ω̂. We define the deformation gradient with respect to the
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natural state as F̂ 0(η) = I +∇x̂0η, being ∇x̂0η =
∂η

∂x̂0
, and F̂

0
= F̂ 0(η̂0)

its value at the reference configuration. Accordingly, we have

Ê0(η) =
1

2
(F̂
T

0 (η)F̂ 0(η)− I) =
1

2
(∇x̂0η +∇Tx̂0η) +

1

2
∇Tx̂0η∇x̂0η

and Ê
0
= Ê0(η̂0). We will consider a hyperelastic constitutive law given by

Σ̂0(ηt) =
∂W

∂Ê0
(Ê0(ηt)), (3.66)

being W a suitable energy function. The equations of elastodynamics written
with respect to the natural configuration then read

ρ̂0
∂2η̂t
∂t2

− divx̂0F̂ 0(η̂t)Σ̂0(η̂t) = ρ̂0f̂ , in Ω̂0, t > 0, (3.67)

where ρ̂0 is the density referred to the natural state configuration.
To linearize the differential operators in (3.67) around the reference config-

uration Ω̂ we introduce the symbol Dη̂0f(η) to indicate the Gateaux deriva-
tive in η̂0 and applied to η, being η a displacement field on Ω0 [92], i.e.

Dη̂0f(η̂) = limε→0
f(η̂0 + εη̂) − f(η̂0)

ε
.

We assume that the displacement are sufficiently regular to guarantee its
existence and continuity everywhere.
The most troublesome term in (3.67) is the one containing the divergence

operator, since we need to rewrite it with respect to the x̂ coordinates. To
this aim, we use the Piola transform (3.6) and property 3.2 to write

divx̂0F̂ 0Σ̂0 = Ĵ0divx̂

[
Ĵ−10

(
F̂ 0Σ̂0

)
F̂
0T
]
,

where F̂
0
and Ĵ0 = |F̂

0| are independent from η̂. Therefore,

Dη̂0

(
divx̂0F̂ 0Σ̂0

)
(η̂) = Ĵ0divx̂

[
Ĵ−10 Dη̂0(F̂ 0Σ̂0)(η̂)F̂

0T
]
.

By standard derivation rule and setting Σ̂
0
= Σ̂0(η̂0) we can write

Dη̂0 (F̂ 0Σ̂0)(η̂) = Dη̂0F̂ 0(η̂)Σ̂
0
+ F̂

0
Dη̂0Σ̂0(η̂). (3.68)

Since
Dη̂0 F̂ 0(η̂) =∇x̂0 η̂ =∇x̂η̂F̂

0
,

thanks to the inverse Piola transform and the relation between the Cauchy
and the second Piola-Kirchhoff stress tensor, we have

Ĵ−10 Dη̂0 F̂ 0(η̂)Σ̂
0
F̂
0T
= (∇x̂η̂)(Ĵ−10 F̂

0
Σ̂
0
F̂
0T
) =∇x̂η̂σ0.

Indeed, σ0 = Ĵ−10 F̂ 0Σ̂
0
F̂
0T
.
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Fig. 3.12. The reference and natural state configurations together with the current
configureation in dashed lines

The second term in (3.68) is elaborated further as

Dη̂0Σ̂0(η̂) =
∂2W

∂Ê
2 (Ê

0
)Dη̂0Ê0(η̂) = Ĥ :

(
F̂
0T
ε(η̂)F̂

0
)
,

where

Ĥ =
∂2W

∂Ê
2 (Ê0(η̂0)), componentwise Ĥijkl =

∂2W

∂ÊijÊkl
(Ê
0
), (3.69)

while

ε(η̂) =
1

2

(
∇x̂η̂ +∇Tx̂ η̂

)
(3.70)

is the well known linearised strain tensor.
Note that if we adopt the Saint-Venant Kirchhoff model (3.56) the com-

ponents of the elasticity tensor defined in (3.69) are exactly those given in
(3.58).

We now exploit the tensor identity Ĥ : (F̂
0T
εF̂
0
) = Ĥ : (F̂

0T
F̂
0T
) : ε,

which can be easily verified when written componentwise since

Ĥijkl(F̂
0
skεstF̂

0
tl) = (ĤijklF̂

0
skF̂

0
tl)εst

to finally write,

Ĵ−10 F̂
0
Dη̂0Σ̂0(η̂)F̂

0T
= Ĵ−10 F̂

0
[
Ĥ :

(
F̂
0T
F̂
0T
)
: ε(η̂)

]
F̂
0T
= Ĥ

p
: ε(η̂)

where

Ĥ
p
= Ĵ−10

(
F̂
0
F̂
0
)
: Ĥ :

(
F̂
0T
F̂
0T
)

(3.71)

is the linear elasticity fourth order tensor in the reference pre-stressed configu-
ration Ω̂. Componentwise, Ĥpijkl = Ĵ

−1
0 F̂ 0isF̂

0
jtĤstpqF̂

0
kpF̂

0
lq , where all repeated

indexes are implicitly summed from 1 to 3.
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We now recognise that ρ̂0/Ĵ0 is nothing else than ρ̂0, the density in the

reference configuration Ω̂. Using the expressions found so far and exploiting
(3.65), we are now able to write the linearised equations in the pre-stressed
state as

ρ̂0
∂2η̂

∂t2
− divx̂

[
∇x̂η̂ σ0 + Ĥp : ε(η̂)

]
= ρ̂0f̂ , in Ω̂, t > 0. (3.72)

We can make the following remarks:

• Whenever Ω̂ is a natural state σ0 = 0 and Ĥ
p
reduces to the standard

linear elasticity tensor H. System (3.72) becomes then the usual system
of equations of linear elastodynamics,

ρ̂0
∂2η̂

∂t2
− divx̂

(
H : ε(η̂)

)
= ρ̂0f̂ , (3.73)

where if we adopt (3.58) we have

H : ε(η̂) = L1(tr ε(η̂))I + 2L2ε(η̂). (3.74)

• Even if the material is homogeneous and isotropic with respect to the nat-
ural configuration, the same material in the pre-stressed configuration Ω̂ is
in general neither isotropic nor homogeneous. Indeed, these two properties
depend not only on the material internal structure but also on the chosen

reference state [92]. Homogeneity is retained whenever F̂
0
(and thus σ0)

is constant, while maintaining isotropy requires that F̂
0
= aI, for a non

negative scalar field a, and (consequently) that σ0 be proportional to the
identity tensor I.

• An interesting case is when the deformation gradient F̂
0
is diagonal and

the material complies with the Saint-Venant Kirchhoff model (3.58) (w.r.t.
the natural state). Then also σ0 is diagonal and it may be verified that

Ĥ
p
conforms to that of an orthotropic material with axis of symmetry

coinciding with the chosen coordinate axis.
Now, it is well known that the mechanical behaviour of the arterial wall
can be approximated as orthotropic [178]. The analysis carried out here
suggests that this behaviour can be caused not only by the particular
structure of the material composing a blood vessel, but also by its pre-
stressed state.

• Thanks to the symmetry of σ0 we have ∇x̂η̂σ0 = σ0ε(η̂) − σ0ω(η̂),
where ω(η̂) = 1

2(∇x̂η̂ −∇Tx̂ η̂) is the rotation tensor . It means that in a
pre-stressed state the material may react also to pure rotations.

The results reported in this section are consistent with the findings in
[23], where the authors considered an incompressible material and followed a
different linearisation procedure by writing the elasticity tensor on the current
configuration.
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It is worth to point out that the expressions derived in this section are not
relevant if one carries out a full non-linear analysis. However, even in this case
it is necessary to account of pre-stress. What is done in common practise is
to derive the pre-stress state from measurements of the opening angle and of
the shrinking (when such invasive experiments are not feasible one may refer
to reference data contained in the cited literature). How to introduce the
pre-stress in the actual computation may depend on the numerical technique
adopted.

Weak formulation of the equations of elastodynamics

We have introduced in Chapter 2 the weak formulation of a differential prob-
lem. We will here sketch that associated to (3.73). For the sake of simplicity

we consider a homogeneous Dirichlet condition, i.e we set ĝ = 0 on Γ̂D. Indeed
the non-homogeneous case may be reduced to an homogeneous problem by a
lifting technique [407] and more complex situations will be treated in Chap-
ter 9. If we consider the space of vector functions

V̂ = [H10(Ω̂)]
3 = {v̂ ∈ [H1(Ω̂)]3 : v̂ = 0 on Γ̂D},

following a route similar to that indicated in Chapter 2 we obtain the following
formulation:

For any t > 0 find η̂ = η̂(t) ∈ V̂ such that∫
̂Ω

ρ̂0
∂2η̂

∂t2
· v̂ + a(η̂, v̂) = F (v̂), ∀v̂ ∈ V̂ , (3.75)

where

a(η̂, v̂) =

∫
̂Ω

Π̂ : v̂dΩ, F (v̂) =

∫
̂Ω

f̂ · v̂dΩ +
∫
̂ΓN

ĥ · v̂ dγ̂.

Here, given two tensors A ad B, the symbol A : B indicates the scalar∑3
i,j=1AijBij.

Relation (3.75) is indeed a scalar equation. We can however recover three
equations for each component of η̂ by selecting v̂ = (v̂, 0, 0)T , v̂ = (0, v̂, 0)T

and v̂ = (0, 0, v̂)T , respectively, with v̂ ∈ H10(Ω̂).

3.4 Reduced structural models

As mentioned in Chapter 2, sometimes we can use reduced models for the
structure. This choice may reduce computational costs when we are inter-
ested in the effects of the structure mechanics on the fluid, rather than on an
accurate evaluation of the stresses inside the vessel tissue.
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A possibility often used for haemodynamic computations is to adopt shell
models, even if the thickness of the wall of blood vessels would not justify
them in full, since they assume that the structure is very thin. The basic
notions of linear shell theory can be found in [75] and the treatment of the
non-linear case may be found in [286].
For the sake of completeness, we give a brief account of the derivation of the

equations of linear shells in a rather general setting, yet at the same time we
will specialise them for the case of a cylindrical surface, an important paradigm
for blood vessels and discuss the effects of pre-stress, following the derivation
found in [352], in the context of fluid-structure interaction problems.

3.4.1 The geometrical description of a shell

In this section we will use the following summation convection: quantities with
repeated indexes appearing at the same side of an equation are automatically
summed up. Furthermore, Greek indexes will run in the set {1, 2} whereas
Latin indexes in {1, 2, 3}.
A shell is a solid medium whose reference configuration, Ω̂, can be defined

by a mid-surface, S, and a thickness hs > 0. More precisely, we shall assume
that the mid-surface is the image of a two-dimensional domain ω ⊂ R2 by an
injective mapping (or chart) ψ : ω ⊂ R2 −→ R3, i.e.,

S = ψ(ω),

see Fig. 3.13. We also assume that the chart ψ is such that the tangent vectors

aα(ξ1, ξ2) =
∂ψ

∂ξα
(ξ1, ξ2), (ξ1, ξ2) ∈ ω,

are linearly independent. Thus we may define the unit normal vector to the
mid-surface

a3 =
a1 × a2
‖a1 × a2‖

.

Finally, we parametrise the reference domain Ω̂ by the mapping Ψ given by

Ψ (ξ1, ξ2, ξ3) = ψ(ξ1, ξ2) + ξ3a3(ξ1, ξ2), (3.76)

Fig. 3.13. Parametrisation of the shell mid-surface
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for all (ξ1, ξ2, ξ3) ∈ Θ, where

Θ =

{
(ξ1, ξ2, ξ3) ∈ R3 : (ξ1, ξ2) ∈ ω, ξ3 ∈

(
−hs
2
,
hs
2

)}
.

As a result, we have Ω̂ = Ψ(Θ), see Fig. 3.14. Note that hs could vary along
the mid-surface, however, for the sake of clarity we assume that hs is constant.

The parametrisation of the domain given by the map Ψ induces a three-
dimensional curvilinear coordinate system. We can introduce the so-called
covariant basis {g1, g2, g3} defined by

gi(ξ1, ξ2, ξ3) =
∂Ψ

∂ξi
(ξ1, ξ2, ξ3), ∀(ξ1, ξ2, ξ3) ∈ Θ.

and the associated local contravariant basis {g1, g2, g3} defined by the relation
gi · gj = δji ,

being δji the Kronecker’s symbol. Tensors of arbitrary order can be expressed
in terms of either basis. For instance, f = fig

i = f igi, fi and f
i being called

the covariant and contravariant components of the vector f , respectively. The
metric tensor gij = gi · gj and its inverse gij = gi · gj allow to perform the
change of basis, whenever needed. For instance, we have vi = gijvj . If the
coordinate system is orthonormal, then gij = g

ij = δij, i.e. the transformation
reduces to the identity and there is no distinction between covariant and
contravariant components.
We now introduce some symmetric surface tensors which are fundamental

in shell analysis. The first, second and third fundamental forms of the mid-
surface are tensors defined on the surface here indicated by a, b and c, whose
covariant components are given by

aαβ = aα · aβ, bαβ = a3 ·
∂aα

∂ξβ
and cαβ = bαγa

γλbλβ, (3.77)

respectively. The first fundamental form is also called surface metric tensor .

Fig. 3.14. Geometric description of a shell, which might represent a portion of the
wall of a blood vessel



110 Miguel A. Fernández et al.

A function indexed by Greek letter is assumed to lay on the mid-surface
ξ3 = 0. Let us also note that at ξ3 = 0 we have that gα = aα and gαβ = aαβ.
There is the need to give a meaning to the derivation of a surface tensor

field. Given a vector field f = f(ξ1, ξ2) on the mid-surface we denote by fα|β
the surface covariant derivative of its covariant component fα defined as

fα|β =
∂fα

∂ξβ
− Γ λαβfλ. (3.78)

Here, Γ λαβ stands for the Christoffel’s symbol defined as

Γ λαβ =
∂aα
∂ξβ

· aλ. (3.79)

Relation (3.78) is readily extended to a tensor field of any order.
For the sake of illustration, let us consider a cylindrical shell of constant

radius R0 and length L aligned along the canonical base vector e3. It can be
parametrised by the chart

Ψ (ξ1, ξ2, ξ3) =

⎡⎣(R0 + ξ3) cos ξ1(R0 + ξ3) sin ξ1
ξ2

⎤⎦ , (3.80)

where

(ξ1, ξ2) ∈ ω = [0, 2π]× [0, L], and ξ3 ∈ [−hs/2, hs/2] .

One may immediately associate the selected independent variables with the
standard cylindrical coordinates (r, θ, z): θ = ξ1, r = R0 + ξ3 and z = ξ2.
The covariant base vector are thus given by

g1 =

⎡⎣−(R0 + ξ3) sin ξ1(R0 + ξ3) cos ξ1
0

⎤⎦ , g2 =

⎡⎣00
1

⎤⎦ , g3 =

⎡⎣cos ξ1sin ξ1
0

⎤⎦ ,
and the surface vectors by

a1 =

⎡⎣−R0 sin ξ1R0 cos ξ1
0

⎤⎦ , a2 =

⎡⎣00
1

⎤⎦ , a3 =

⎡⎣cos ξ1sin ξ1
0

⎤⎦ .
It then follows that

∂a1

∂ξ1
=

⎡⎣−R0 cos ξ1−R0 sin ξ1
0

⎤⎦ , ∂a1

∂ξ2
=
∂a2

∂ξ1
=
∂a2

∂ξ2
= 0.

On the other hand, as covariant surface vectors we have

a1 =

⎡⎣− 1
R0
sin ξ1

1
R0
cos ξ1
0

⎤⎦ , a2 = a2, a3 = a3.
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Therefore,

a11 = R
2
0, a12 = a21 = 0, a22 = 1, a11 = R−20 , a12 = a21 = 0, a22 = 1,

b11 = −R0, b12 = b21 = b22 = 0, c11 = 1, c12 = c21 = c22 = 0.
(3.81)

In particular, all the Christoffel’s symbols are zero

Γ λαβ =
∂aα
∂ξβ

· aλ = 0,

so that the covariant and standard derivation coincide in this particular case.

3.4.2 Shell kinematics

In general, shell models are based on some kinematic assumptions relating the
displacement of points located in a material line orthogonal to the mid-surface,
i.e. when ξ1, ξ2 are kept fixed, while ξ3 ∈ (−hs/2, hs/2). For instance, under
the Reissner-Mindlin kinematics assumption [335, 425], it is assumed that
such material line remains unstretched during the motion. As a consequence
the displacement η̂ of a point belonging to the shell may be expressed by the
following equation:

η̂(ξ1, ξ3, ξ3) = d(ξ1, ξ2) + ξ3θλ(ξ1, ξ2)a
λ(ξ1, ξ2), (3.82)

where d(ξ1, ξ2) is the displacement of the mid-surface and θλ the rotation of
a line normal to the mid-surface.
Using this assumption, the covariant components of the linearised strain

tensor ε(η̂), whose general definition in terms of the shell metric is

εij(η̂) = ε(η̂) : gi ⊗ gj =
1

2

(
∂η̂

∂ξj
· gi +

∂η̂

∂ξi
· gj
)
,

becomes

εαβ(η̂) = γαβ(d) + ξ3χαβ(d, θ) − ξ23καβ(θ),
εα3(η̂) = ζα(d, θ), and ε33(η̂) = 0,

with γ, χ and κ being the so-called membrane, bending and shear parts of
the strain tensor, whose covariant components are

γαβ(d) =
1

2

(
dα|β + dβ|α

)
− bαβd3,

χαβ(d, θ) =
1

2

(
θα|β + θβ|α − bλβdλ|α − bλαdλ|β

)
+ cαβd3,

καβ(θ) =
1

2

(
bλβθλ|α + b

λ
αθλ|β

)
,
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respectively, while

ζα(d, θ) =
1

2

(
θα +

∂d3

∂ξα
+ bλαdλ

)
. (3.83)

The tensor γ is also called change of metric tensor, since it is related to
the change in the surface metric tensor caused by the deformation. Often an
additional kinematic condition is adopted which takes the name of Kirchhoff-
Love kinematics condition. It states that during the motion any material line
orthogonal to the (reference) mid-surface remains straight, unstretched and
orthogonal to the mid-surface. The Kirchhoff-Love assumption introduces the
following relation between the translation and rotation displacements, see [75],

θλ = −
∂d3

∂ξλ
− bμλdμ, (3.84)

by which
ζα = 0, and εα3 = 0.

Thanks to the Kirchhoff-Love conditions we have eliminated the rotations θα.
In addition, it is often assumed that the term of order ξ23 may be neglected.

This is the term responsible to shear strain, which can indeed be considered
small for the target application. The resulting shell model is calledmembrane-
bending model .

3.4.3 Shell dynamics

In curvilinear coordinates, Hook’s law is still written in the form (3.59) where
now to account for the fact that we are not using curvilinear coordinates we
have

Hijkl = L1g
ijgkl + L2

(
gikgjl + gilgjk

)
. (3.85)

In shell models we make the further assumption of plane stresses. That is,
because of the small thickness we assume zero stresses along the normal direc-
tion, namely T 33 = 0. We thus obtain the modified constitutive equation

Tαβ = Cαβλμελμ, σα3 =
1

2
Dαλελ3,

with

Cαβλμ =
E

(1 + ξ)

(
gαλgβμ +

ξ

1− ξ g
αβgλμ

)
and Dαλ =

2E

1 + ξ
gαλ.

We indicate by ρ̂s,0 the density of the material composing the shell, measured
in kg/m3. We assume that external stresses s1 and s2 act on the boundaries of

Ω̂ given by the image of ω×{−hs/2} and ω×{hs/2}, respectively. Clearly we
have s1 = s1(ξ1, ξ2) and s2 = s2(ξ1, ξ2), and with the symbol f we indicate the
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resultant f(ξ1, ξ2) = s2(ξ1, ξ2)−s1(ξ1, ξ2), f being a force per unit area [f ] =
N/m2 (in our applications f is directly related to the transmural pressure
across the blood vessel),
The equations governing the dynamics of a shell is better written directly

using the weak formulation. We here give just the sketch of the procedure.
We assume a membrane-bending model and, for the sake of simplicity we take
homogeneous Dirichlet conditions on the lateral boundaries, image of ∂ω ×
(−hs/2, hs/2). On the remaining boundaries we have the action of the stresses
s1 and s2, which induce a Neumann-type boundary condition. Starting from
(3.75)7, since here Ω̂ = Ψ(Θ) we can rewrite the integrals over Θ. Then, as
Θ = ω × (−hs/2, hs/2) we can reduce all the integrals on ω by integrating
along the ξ3 direction. The final result is the variational formulation of the
membrane-bending model, which reads: For all t > 0, find d such that∫

ω

hsρ̂s,0
∂2d

∂t2
· qdω +

∫
ω

C̃αβλμ[
hsγαβ(d)γλμ(q) +

h3s
12
ραβ(d)ρλμ(q)

]
dω =

∫
ω

f · qdω, (3.86)

for all test function q regular enough and with zero trace on the Dirichlet
portion of the boundary. Here,

C̃αβλμ =
E

2(1 + ξ)

(
aαλaβμ + aαμaβλ +

2ξ

1− ξ a
αβaλμ

)
and

ραβ(d) = d3|αβ + b
μ
α|βdμ + b

μ
αdμ|β + b

μ
βdμ|α − cαβd3.

An advantage of the shell model is that now we are effectively operating
on a two dimensional domain. The discretisation by finite elements of (3.86)
then leads, in principle at least, to cheaper solution schemes than with a 3D
formulation on Ω̂. Examples of suitable finite element spaces for shell models
can be found in the cited literature.
We consider again the example of the cylinder illustrated in the previous

section and we make the additional hypotheses of axi-symmetric displace-
ments, that is that d1 = 0 as well as all derivatives w.r.t. ξ1. Furthermore,
for the sake of clarity, we will indicate with the suffixes θ and z the first
and second component of the displacement vector: d = (dθ, dr). Under these
hypothesis we have

γ11(d) = R0dr, γ22(d) =
∂dz

∂z
, γ12(d) = γ21(d) = 0,

ρ11(d) = −dr, ρ22(d) =
∂2dr
∂z2

, ρ12(d) = ρ21(d) = 0.

7 In (3.75) f was a volume force, which is here taken equal to zero. The symbol f
is here used instead to indicate the surface stress resultant acting on the shell.
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Therefore, we have

C̃αβλμγαβ(d)γλμ(q) =
E

2(1 + ξ)

(
1

R20
drqr +

∂dz
∂z

∂qz
∂z

)
+

Eξ

1− ξ2
(
dr

R20
+
∂dz

∂z

)(
qr

R20
+
∂qz

∂z

)
,

while

C̃αβλμραβ(d)ρλμ(q) =
E

2(1 + ξ)

(
1

R40
drqr +

∂2dr

∂z2
∂2qr

∂z2

)
+

Eξ

1− ξ2
(
− dr

R20
+
∂2dr

∂z2

)(
− qr

R20
+
∂2qr

∂z2

)
.

Replacing these expressions into (3.86) and counter-integrating by parts
(for simplicity let us assume homogeneous Dirichlet boundary conditions) we
may recognise that the corresponding strong differential form is nothing else
than the well known system of equation for a cylindrical Koiter-type shell,
that is

hsρ̂s,0
∂2dz
∂t2

− hsE

1− ξ2
(
∂2dz
∂z2

+ ξ
1

R

∂dr
∂z

)
= fz,

hsρ0
∂2dr
∂t2

+
hsE

R(1− ξ2)

(
ξ
∂dz
∂z
+
dr
R

)
+

h3sE

12(1− ξ2)(
∂4dr

∂z4
− 2ξ
R2

∂2dr

∂z2
+
dr

R4

)
= fr. (3.87)

3.4.4 One-dimensional reduced structural models

One dimensional models are a very simple way to describe the dynamics of a
single vessel. We assume that the artery is of cylindrical shape and the only
space dimension considered is the axial one. There are different ways to derive
them. For instance, directly from physical principles, as done in [401] or [406],
or from shell models like in [522]. By further simplification assumptions that
lead to simple algebraic relationship between the vessel section area and the
average pressure, they are often used to develop 1D models for blood flow in
compliant arteries like those illustrated in Chapter 10.
Here we will sketch the derivation starting from a shell model and account-

ing for pre-stress.
To this aim, we will follow [352], alternative derivations may be found,

for instance, in [401], [406], or in [523], where some viscoelastic effects are
accounted for.
We will consider the situation of Fig. 3.15 where the reference configu-

ration is a cylindrical surface. In the case of a standard cylinder, the map
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Fig. 3.15. Cylindrical map. ξ1 = θ, ξ2 = r and ξ3 = z

will coincide with that indicated in (3.80). We may then identify ξ1, ξ2 and
ξ3 with the circumferential, the axial and the radial physical coordinates,
and for this reason we will alternatively use the indexes θ, z, and r, respec-
tively. Furthermore the surface is the image of θ ∈ (0, 2π), z ∈ (0, L) and
r ∈ (R0 − hs/2, R0+ hs/2).
The main assumptions are:

• The ratio hs/R0 of the vessel wall is small so that we can neglect bending
terms (which indeed scale with higher order than membrane terms with
respect to this ratio). In other words we will set to zero the last term in
the left hand side of (3.86) and consider only membrane effects.

• The wall displaces in the normal direction, i.e. d = (0, 0, η). Correspond-
ingly we have

γαβ(d) = −bαβη. (3.88)

The assumption that longitudinal and circumferential displacements are
negligible compared to the radial ones is usually accepted in the biomedical
literature.

• The vessel is subject to a time varying transmural pressure ΔP = P−Pext
across the surface. Consequently we take

f = ΔPn, (3.89)

being n the outward oriented normal. For the sake of simplicity, we assume
homogeneous Dirichlet boundary condition (i.e. a clamped vessel). Yet
accounting for conditions of other type is rather straightforward.

• The reference configuration is pre-stressed, yet the deformation gradient

F̂
0
is assumed to be diagonal (in the shell local reference system) and

constant. More precisely we set

F̂
0
= diag(F 0θθ, F

0
zz, 1),

being F 0θθ and F
0
zz constants. In correspondence we assume a diagonal

(and constant) pre-stress tensor σ0 = diag(σ0θθ, σ
0
zz, 0). The value of the

parameters may be inferred from measurements of the opening angle and
shrinking of an extracted vessel, or by considerations on how the pre-
stressed configuration has been generated [23, 115,391,523].
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We first have to find out the modifications induced by the pre-stress state
to the standard shell model. We have seen that pre-stressing induces two
modifications to the standard linearised elasticity equations: a change in the
stress-strain tensorH and the appearance of an extra term in the stress, of the

form∇x̂η̂σ0. Being F̂ 0 diagonal the former modification is readily accounted
for by replacing gij with F 0iiF

0
jjg
ij (no implied sum) in (3.85). We are able to

carry out the standard derivation that led to (3.86) also in this case, however

now the tensor C̃ becomes

C̃αβλμ =
E

2(1 + ξ)
F 0ααF

0
ββF

0
λλF

0
μμ

(
aαλaβμ + aαμaβλ +

2ξ

1− ξ a
αβaλμ

)
.

Thanks to (3.88) we may derive that in (3.86)

hsC̃
αβλμγαβ(d)γλμ(q) = a0ηqr, (3.90)

where

a0 =
hsE

1− ξ2
[
(1− ξ)ãαλãβδbαβbλδ + ξãαβãλδbαβbλδ

]
,

while
ãαβ = F 0ααF

0
ββa

αβ (no sum implied).

Finally, we account also for the term ∇x̂η̂ σ0 and we make the additional
assumption of axial symmetry, i.e. we set to zero all derivatives w.r.t. ξ1.

Under this hypothesis the radial component of div(∇ησ̂0) reduces to T 0zz ∂
2η
∂z2
.

We have then

hsρ̂s,0
∂2η

∂t2
+ aη − b∂

2η

∂z2
= P − Pext, z ∈ (0, L), t > 0, (3.91)

with η = 0 at z = 0 and z = L (or other suitable boundary conditions) while
η = η0 and ∂η/∂t = η1 at t = 0, η0 and η1 being suitable initial data.
Here,

a = a0 + σ
0
θθbγ1bγ1 + σ

0
zzbγ2bγ2. (3.92)

is the elastic coefficient modified to account for the pre-stress and b = σ0zz.
A notable case if that of the regular cylinder, where we may apply (3.81).

We may for instance assume that the circumferential pre-stress has been
caused by an external pressure P+ originally applied to the unstressed cylinder
(this value is sometimes assumed to be equal to the mean arterial pressure).
By using the simple Poisson’s law for the stress in a pressurised cylinder we
have then σ0θθ = P+R0/hs. As for the term F 0θθ, it might be estimated from

the measurements of the opening angle Θ̂ of artery specimens opened up longi-
tudinally so that they can recover a zero-stress configuration, i.e. F 0θθ = 1+

π
̂Θ
.

Gathering all this information the expression for a simplifies into

a = (F 0θθ)
4 hsE

R0(1− ξ2)
+
P+

R0
.
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In several works however, the effect of the pre-stress in the coefficient a is
neglected. Either because the value of the a is estimated from measurements
taken in vivo, thus already accounting for the pre-stress, or because it is felt
that pre-stress introduces a correction of the same order of the incertitude on
the value of E and R0. In the latter case the simpler formula a =

hsE
R0(1−ξ2)

is used instead, and this is the expression we will adopt in the sequel of the
book whenever model (3.91) is adopted.
Model (3.91) is called string model , since it is akin to the one governing

the motion of a string under tension. Some authors link the presence of the
second order space derivative in this model not to the pre-stress but to the
Timoshenko shear factor, an empirical term introduced to better account for
shear deformation and rotatory inertia effects in the theory of thin structures
[510]. In fact, probably both effects are present at the same time.
A more complete reduced one-dimensional model for the vessel structure

takes the general form (see [406], [525])

hsρ̂s,0
∂2η

∂t2
+ aη − b∂

2η

∂z2
+ c1

∂η

∂t
− c2

∂3η

∂t∂z2
= P − Pext, z ∈ (0, L), t > 0.

(3.93)
Here, c1 and c2 are two non-negative parameters accounting for the viscoelastic
property of the vessel wall, see also [523], [33]. We will call (3.93) a generalised
string model and it is often used as a simplified (yet rather complete) model
for the study of fluid structure interaction problems in a single artery (see
Chapters 8 and 9).
A whole class of models can be derived by setting to zero some of the

parameters. In particular, the simplest model is obtained by neglecting all
derivative terms (including the inertial term), obtaining the simple algebraic
expression

aη = P − Pext (3.94)

used for the derivation of the basic one-dimensional model for blood flow in
arteries, as illustrated in Chapter 10.

3.5 Modelling fluid-structure interaction problems

In this section we describe the general non-linear fluid-structure system in
large displacements arising in blood flows in large arteries. We consider as
computational domain a model of a portion of an artery, see Fig. 3.16. It
consists of a deformable structure Ωs(t) (vessel wall) surrounding a mov-
ing domain Ωf(t) filled by a fluid under motion (blood). The fluid structure
interface, i.e. the common boundary between Ωs(t) and Ωf (t), is denoted by
Γ (t) = ∂Ωf (t)∩ ∂Ωs(t). In the sequel, variables with a sub-script s or f shall
refer to quantities within the fluid or the solid domains, respectively.
We will ignore body forces, i.e. we take f = 0 both for the fluid and

the structure. For haemodynamic applications this corresponds in practise to
ignore the effects of gravity.
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Fig. 3.16. Geometric configuration (2D section)

We assume the motion of the control volume Ωf(t) to be parametrised by an

ALE map Ã : Ω̃f ×R+ −→ R3 (see Section 3.1.2), i.e. Ωf(t) = Ã(Ω̃f , t). The
reference domain Ω̃f being the position of the control volume at the initial
time. We assume that the inlet Γf,D and outlet Γf,N boundaries are at a fixed
axial position along the artery model of Fig. 3.17.
As showed in Section 3.1.2, when dealing with moving domains it is natural

to work with ALE time-derivatives. More precisely, we will use formulation
(3.48).
The differential equations have to be completed with proper boundary

conditions on ∂Ωf (t)\Γ (t). For instance, we can enforce

uf = uD, on Γf,D,

σf(uf , P )nf = gN , on Γf,N ,
(3.95)

with uD a given velocity and gf,N a given density of surface load.
To summarise, we have

ρf
∂uf

∂t | ˜A
+ ρf (uf −w) ·∇uf − divσf (uf , P ) = 0, in Ωf (t),

divuf = 0, in Ωf (t).

uf = uf,D , on Γf,D,

σf(uf , P )nf = gf,N , on Γf,N .

(3.96)

Fig. 3.17. Description of the motion of the computational domain for the fluid via
the ALE map ˜A
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Fig. 3.18. Description of the motion of the solid (2D section)

Remark 3.5.1 So far, we have assumed the ALE map Ã, and in particular
the ALE velocity field w, to be known. As wee shall see in the next section
that we can define the ALE map as an extension of the boundary position with
a technique that can be extended readily to the numerical computation.

As anticipated in Section 3.3.2, we consider a Lagrangian description of
the motion of the structure, where Ω̂s is a given material reference configu-
ration (see Fig. 3.18). We describe the motion of the structure in terms of its

displacement field η̂s : Ω̂s × R+ −→ R3. For the sake of simplicity, we here

assume the structure to be clamped on the boundaries Γ̂s,D.
The differential problem for the structure part then reads

ρ̂s,0
∂2η̂s
∂t2

− divx̂
(
F̂ sΣ̂

)
= 0, in Ω̂s,

η̂s = 0, on Γ̂s,D,

F̂ sΣ̂n̂s = Ĵs‖F̂
−T
n̂s‖ĝs,N , on Γ̂s,N ,

(3.97)

with Σ̂ related to η̂s through a constitutive law of the form (3.55).
The fluid and solid problems (3.96) and (3.97) must be coupled ensuring

a global energy balance. This is achieved by imposing three interface coupling
conditions: geometry, velocity and stress.

Geometry coupling: construction of the ALE map

We first enforce that the moving control volume follows the interface motion,
i.e.

Ã = ϕ̂s, on Γ̂ , (3.98)

this is a geometry coupling condition. Since we describe the motion of the
solid in terms of its displacement η̂s, it is also useful to describe the ALE map

in terms of the displacement of the control volume, η̃f : Ω̃f × R+ −→ R3,
defined by

η̃f (x̃, t) = Ã(x̃, t)− x̃,
for all x̃ ∈ Ω̃f . Thus, (3.98) reduces to

η̃f = η̂s, on Γ̂ . (3.99)
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By differentiating this equality with respect to t, it follows that

w̃ = ûs, on Γ̂ . (3.100)

On the other hand, since the inlet and outlet boundaries remain fixed along
the motion, we also have

η̃f = 0, on Γ̃f,D ∪ Γ̃f,N . (3.101)

Notice that (3.99) and (3.101) provide the value of η̃f on the boundary of Ω̃f .

However, inside Ω̃f , f η̃f (and hence Ã) is arbitrary: it can be any reasonable
extension of η̂s|̂Γ over Ω̃f (subjected to (3.101)). In the sequel we will denote
this operation by

η̃f = Ext(η̂s|̂Γ ). (3.102)

For instance, the operator Ext can be given in terms of an harmonic extension,
by solving:

−Δη̃f = 0, in Ω̃f ,

η̃f = 0, on Γ̃f,D ∪ Γ̃f,N ,
η̃f = η̂s, on Γ̂ .

(3.103)

Continuity of velocity and stress

Since the fluid is assumed to be viscous, it perfectly sticks to the interface (or
solid) boundary. This means that the whole velocity field must be continuous
at the interface. Thus, we set

uf = w, on Γ (t). (3.104)

Finally, in order to ensure the balance of stresses on the interface, we enforce
the continuity of stress at the interface. Thus, using the properties of the Piola
transform (Proposition 3.2) we get the coupling condition

F̂ sΣ̂n̂s + J̃˜Aσ̃f(uf , P )F̃
−T
˜A ñf = 0, on Γ̂ . (3.105)

The coupled fluid-structure problem

Using the coupling conditions (3.102), (3.104) and (3.105) the coupled fluid-

structure interaction problem reads: find η̃f : Ω̃f × R+ −→ R3, ũf : Ω̃f ×
R+ −→ R3, p̃ : Ω̃f × R+ −→ R and η̂s : Ω̂s ×R+ −→ R3, such that

• Fluid sub-problem:⎧⎪⎪⎨⎪⎪⎩
ρf
∂uf

∂t | ˜A
+ ρf (uf −w) ·∇uf − divσf (uf , P ) = 0, in Ωf (t),

divuf = 0, in Ωf (t),

σf(uf , P )nf = gf,N , on Γf,N .

(3.106)
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• Solid sub-problem:⎧⎪⎨⎪⎩
ρ̂s,0

∂2η̂s
∂t2

− divx̂
(
F̂ sΣ̂

)
= 0, in Ω̂s,

η̂s = 0, on Γs,D,

F̂ sΣ̂n̂s = 0, on Γ̂s,N .

(3.107)

• Coupling conditions:⎧⎪⎪⎨⎪⎪⎩
η̃f = Ext(η̂s|̂Γ ), Ωf(t) = Ã(Ω̃f , t), w̃ =

∂η̃f

∂t
, in Ω̃f ,

uf = w, on Γ (t),

F̂ sΣ̂n̂s + J̃˜Aσ̃f (uf , P )F̃
−T
˜A ñf = 0, on Γ̂ .

(3.108)

This is a complex non-linear system of equations whose numerical treat-
ment is addressed in Chapter 9. Some elements for its mathematical analysis,
under some simplifying hypotheses, are reported in Chapter 8.

3.6 Conclusions

We have derived the equations that governs the dynamics of fluid and struc-
ture, in the hypothesis of a continuum media. If this is a reasonable assump-
tion for the structure and for blood flow in the main vessels, the continuum
hypothesis may become questionable for the flow in small capillaries, where
the dimension of the vessel becomes comparable to that of blood cells.
This issue is treated partly in Chapter 6 and we will not investigate it fur-

ther in this book. We will see in other chapters, in particular Chapter 10, how
models of the global circulation may account for the haemodynamics in the
capillary bed by using suitable lumped parameter models. Indeed, the details
of the flow in the capillaries is needed only in specific microcirculation studies.
Even if we have assumed a Newtonian behaviour for the fluid, we have

derived the flow equations in generality, and they may be easily adapted to
the more complex rheological models presented in Chapter 6.
As for the models for the vessel wall, the actual structure of a blood

vessel is rather complex, as explained in Chapter 1. We have preferred giving
here the most basic models, giving reference to the interested reader of the
specialised literature where more sophisticated modelling may be found. In
fact, if one is interested mainly on the effect of the structure movements on
the haemodynamics there is no need of using complex models for the latter.
They are instead mandatory if one is interested in having the details of the
stress fields inside the vessel wall.
We wish to warn the reader that usually the more complex a model is

the higher number of parameters it requires. Experiments to determine those
parameters are often complex, in particular if one wishes to fit them to a
specific person. In this case only indirect measurements are at disposal, ex
vivo experiments being obviously out of question.
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From image data to computational domains
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The advent of high-resolution imaging systems and powerful computational
resources has made it possible to obtain information about the in vivo anatomy
of blood vessels in a non invasive way. By employing this information as
the domain definition for computational fluid dynamics, it is now possible
to model hemodynamics in realistic geometric configurations on a subject-
specific basis. Since geometry has a strong influence on hemodynamics, as
will shown extensively in Chapter 5, the procedure used to model the geome-
try of a blood vessel from medical images plays a primary role in determining
the reliability of haemodynamic predictions and, ultimately, their clinical sig-
nificance.
In this chapter we will describe the process of defining domains for hemo-

dynamics modelling from clinically acquired images. The solution of the equa-
tions of flow, transport and structure (see Chapter 2 and 3). in realistic geome-
tries requires the use of numerical approximation methods, such as finite ele-
ments and finite volumes [371, 407]. Such methods are based on the discreti-
sation of the physical domain in elements of simple shape and finite size (e.g.
tetrahedra or hexahedra), which constitute the so-called computational mesh.
The process from images to computational meshes representing realistic vas-
cular geometries involves several separate steps (which are summarised in the
flow chart of Fig. 4.1): i) Sets of images are first acquired using one of the
clinically available imaging techniques. Imaging datasets typically come in the
form of sets of 2D images each having a well defined position and orientation
in space. Such sets can either be formed by contiguous images that can be
stacked along a spatial direction, thus defining a volume, or be constituted by
disjoint images. In addition, series of images of the same anatomical structure
can be taken at several instants in time, effectively increasing the dimension-
ality of the data-set. ii) According to image quality and acquisition technique
characteristics, images eventually undergo an enhancement step, during which
vascular structures are made clearer at the expense of noise and non-vascular
content. iii) Image segmentation, which is the process by which the regions of
the belonging to vascular structures are identified, is then performed. Depend-
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2D segmentation

3D reconstruction

Mesh generation

3D segmentation

Image acquisition

Image enhancement

Section 4.1

Section 4.3

Section 4.4

Section 4.7

Section 4.5

Fig. 4.1. Flow chart depicting the typical workflow from medical images to compu-
tational meshes. References to sections in the present chapter covering the enclosed
topics are also reported

ing on the nature of the source images and on the geometric complexity of the
3D vascular structure of interest, segmentation can take place on single 2D
planes or directly in 3D. In the first case, a 3D reconstruction phase is needed
in order to generate the final 3D shape of the vessel from the information
defined on the separate 2D planes. Finally, in case of time-resolved acquisi-
tions, the segmentation have to adapt to the changes in shape occurring over
time. iv) Finally, the definition of the vessel surface is employed for the gen-
eration of the computational mesh onto which the hemodynamics modelling
problem can be solved numerically. For this purpose, well-shaped 2D elements
are generated over the surface, and the model interior is then filled with 3D
elements of appropriate density for the haemodynamic modelling problem.
While in the past several works have dealt with the description of the

process from images to computational models as a whole, the tendency of
current methodological publications on the subject is to focus on particular
aspects of the process. Indeed, the way the single steps of the process are
performed is potentially interchangeable (e.g. image segmentation is typically
independent of mesh generation), and not all the possible combinations of
techniques have actually been documented within a description of the whole
process. We will therefore try to draw a sketch of the most relevant techniques
today available for generating subject-specific models of blood vessels from
medical images, including, for each step, the techniques that have been or
could be potentially employed for the purpose.
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4.1 Vascular imaging

Before reviewing the techniques involved in turning medical image data into
geometries, it is important to appreciate the underlying physics, capabili-
ties and limitations of the three main vascular imaging modalities avail-
able: X-ray, i.e. digital subtraction angiography and computerised tomography
[206,284,389], magnetic resonance [203,327,369], and ultrasound [45,144,228]
imaging. In the interest of space these are only briefly discussed below; for fur-
ther information the reader is referred to the recent reviews cited. In general,
however, it should be appreciated throughout that superior image quality and
resolution invariably come at the expense of invasiveness and acquisition time.

4.1.1 X-ray imaging

Akin to casting a shadow, x-ray imaging records the projection of x-ray beams
through the body and onto a radiographic film, fluoroscopic screen, or digi-
tal detector. Differential absorption of x-rays by the various body structures
produces contrast in the resulting 2D images, though it is usually only possi-
ble to discriminate among bone, soft tissue and air. Highlighting the vascular
lumen anatomy at the expense of the wall and surrounding tissue – angiogra-
phy – typically requires the introduction of a radio-opaque dye into the blood
stream.
Traditionally, x-ray angiography highlights the lumen by injecting an

iodine-based contrast agent via a catheter placed directly into the artery
of interest, which serves to effectively replace the blood within the artery
for a few seconds. This results in superior contrast, and so permits the real-
time acquisition of the projections. Such “fluoroscopic” imaging is particularly
suited to mobile vessels like the coronary arteries (see Fig. 4.2 A), and so can
be useful for prescribing time-varying motions for blood flow simulations (see
Chapter 9). For relatively static vessels like the cerebral or peripheral arteries,
digital subtraction angiography (DSA), which acquires an image prior to the
contrast agent injection and then subtracts it digitally, can be used to bet-
ter discriminate the opacified lumen from surrounding bone and soft tissue.
Either way, real time or at least high temporal resolution (cine) angiography
allows for the visualisation of contrast agent as it flows into the vascular tree.
Although in principle this makes it possible to quantify blood flow rates and
residence times [463], in practise it is most often used clinically to identify
late or absent filling of distal and collateral vessels.
Owing to its superior contrast and spatial resolution (∼ 0.2mm), projec-

tion x-ray angiography remains the gold standard for most vascular imaging
applications. Still, its projective nature means that often-tortuous 3D lumen
geometries can only be properly reconstructed from multiple projections, typ-
ically coupled with simplifying assumptions about the shape of the lumen
cross-section (see Section 4.5). Such assumptions are unsuitable for truly 3D
vascular structures like cerebral aneurysms (Fig. 4.2 B), so to get around this,
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rotational angiography techniques (RA) have been developed in which the
gantry supporting the x-ray source and detector is rotated rapidly around the
patient, allowing for the acquisition of many projections within the few sec-
onds that contrast agent is being injected. From these multiple projections it is
then possible to reconstruct high quality, high resolution (∼ 0.4mm isotropic,
meaning the same resolution in all three directions) 3D images of the artery.
As with all catheterisation procedures, intra-arterial angiography carries

with it a small but non-negligible risk of emboli (blood clots, air bubbles,
etc.) travelling downstream and getting lodged in smaller arteries, a risk often
higher than that associated with ionising radiation itself [36]. A less invasive
alternative is to inject the contrast agent intravenously – any emboli must
first pass through the lungs, where, for air bubbles especially, they can be
filtered out. The downside is that the contrast agent mixes with the rest of
the blood volume before it reaches the arteries via the heart. This serves to
dilute its effect, and so higher contrast agent or x-ray doses may be required.
Intravenous injection also restricts the temporal window available for imaging:
too early and the contrast agent has not yet reached the artery of interest; too
late and adjacent veins become enhanced, which ultimately makes it difficult
to discriminate the arteries from veins.
While projection angiography still relies on intra-arterial injection, com-

puted tomography (CT) angiography takes advantage of intravenous injec-
tions. Building upon the principles of computed axial tomography (i.e., CAT
scans), a ring incorporating one or more x-ray sources and opposing detectors
is rotated rapidly around the patient, producing and then reconstructing into
an image the projections from multiple fan beams. By moving the patient axi-
ally through the donut-shaped scanner during this process, volumetric (3D)
images can be reconstructed (Fig. 4.2 C). Owing to the short temporal window
available for purely arterial enhancement, such “helical” CTA has typically
been forced to sacrifice axial for in-plane resolution by using relatively long
spiral pitches, resulting in anisotropic spatial resolutions despite the nomi-
nal 3D nature of the image data (see Section 4.3). The recent availability of
scanners with multiple rings of sources and detectors now makes it possible
to achieve sub-millimetre isotropic resolutions. With appropriate gating (i.e.,
synchronisation) of the acquisition to the heartbeat, temporally-resolved 3D
imaging – often referred to as 4D CT – becomes feasible. This makes possible
the reconstruction of time-resolved 3D lumen boundaries, or the validation of
motions predicted by fluid-structure interaction models (see Chapter 9).

4.1.2 Magnetic Resonance Imaging (MRI)

MRI exploits the phenomenon of nuclear magnetic resonance, whereby atomic
nuclei possessing spin can be made to resonate at their so-called Larmor fre-
quency, proportional to the strength of an applied magnetic field. In MRI,
protons, which resonate at radiofrequencies (RF) for clinical-strength scan-
ners, are first aligned by placing the patient within a powerful superconduct-
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ing magnet. (For this reason, MRI is contraindicated for patients with metallic
or electronic implants; getting within metres of an MRI scanner can also stop
your watch and erase your bank cards.) Brief application of RF energy sets
the protons resonating, after which the RF signals decay at rates characteris-
tic to the tissue in which the protons are bound. By simultaneously applying
magnetic field gradients, it becomes possible to effectively encode position
into the frequency of the signal. As such, MR images are actually acquired
in frequency space (often referred to as k-space), and images are obtained by
inverse Fourier transforms. Since the strength and evolution of the MR signal
are related to the tissue properties, contrast can be generated by judicious
selection and timing of the RF pulses and magnetic field gradients, collec-
tively referred to as a pulse sequence. Thus the chief advantage of MRI is that
it can achieve soft tissue contrast far superior to other imaging modalities. On
the other hand, since the MRI signal is relatively weak, usually sensitive RF
coils (i.e., antennae) must be placed close to the body surface, often to the
unease of patients already anxious after being placed within a long cylindrical
magnet (c.f., the shorter, donut-shaped configuration used for CT). Because
signal strength is proportional to the voxel volume – a voxel is the 3D version
of a 2D image pixel – high in-plane resolutions are usually only achievable
by acquiring 2D images over relatively thick slices, which has implications on
the way in which the 3D vascular geometries can be reconstructed, as will be
explained throughout the chapter (see Sections 4.3 and 4.5). Even then, rel-
atively long scan times are often required to traverse k-space: a single image
can take up to several minutes depending on the type of contrast required.
Patient motion then becomes a major challenge, especially since acquisition in
frequency space can produce non-intuitive artifacts in the transformed image.
For vascular imaging, MRI has an important advantage over x-ray-based

techniques: contrast can be generated without the need for exogenous agents.
In time-of-flight (TOF) MRA angiography, static tissue is suppressed by sat-
urating it with RF energy within a desired slice or volume, and then unsat-
urated blood flows in, appearing bright against the suppressed static tissue
(Fig. 4.2 D). The timing of TOF angiograms must therefore be done care-
fully, unsaturated blood must be allowed enough time to flow in, but not so
much that it becomes suppressed itself. This can be a problem for volumetric
(3D) acquisitions, and so, even though less time-efficient, TOF angiograms are
often acquired as a series of contiguous or overlapping thick (2D) axial slices.
Still, artefactual signal voids can appear even in 2D images when complex,
recirculating blood flow is present, confounding the segmentation of the lumen
boundaries. Care must also be exercised in choosing the image resolution: too
coarse and the blood signal is weakened by so-called phase dispersion caused
by the presence of large velocity gradients; too fine and there are not enough
protons to return adequate signal, thus necessitating longer scan times and/or
thicker slices. These limitations can be largely overcome by contrast-enhanced
(CE)-MRA, which resorts to the intravenous injection of a paramagnetic con-
trast agent to shorten the relaxation time of blood relative to background tis-
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sue. This results in a stronger blood signal within a shorter acquisition time,
and minimises the saturation of slow flow. Like CTA, the intravenous injec-
tions must be timed carefully to avoid venous contamination. Unlike CTA,
however, CE-MRA cannot yet be accomplished within a few seconds, and so
pulse sequences must be designed carefully so as to minimise the effects of
variable contrast agent concentration during the traversal of k-space.
In what amounts to the inverse of TOF-MRA, black blood (BB)-MRI seeks

to suppress all signal, including that of blood, from outside the imaging slice
or volume. As shown in Fig. 4.2 E, this makes it possible to see not only the
(black) vessel lumen but also the (bright) vessel wall and surrounding tissue.
As a result, BB-MRI – by definition imaging, not strictly angiography – is
particularly attractive for characterising the vascular wall pathologies that
can usually only be inferred from the presence of tortuosity or stenosis in
traditional angiograms. In the context of vascular modelling, BB-MRI can be
used to reconstruct both the lumen and wall simultaneously [480], which is
particularly advantageous for providing outer wall (or simply wall thickness)
boundary conditions for structural or fluid-structure interaction analyses (see
Chapter 9). Like TOF-MRA, BB-MRI is based on the assumption that blood
leaves the imaging region before it has time to recover its signal, so flow
artifacts can also occur, albeit appearing as the inverse of those in TOF-MRA.
An alternative less susceptible to saturation/recovery effects is phase con-

trast (PC)-MRA, which relies on the fact that the velocity of moving spins can
be encoded into the phase of the complex MR signal. Not only does this pro-
duce bright blood angiograms from the magnitude of the signal; as Fig. 4.2 F
shows, the blood velocities themselves can be encoded into images of the signal
phase, in principle one image for each direction of flow. By gating the acqui-
sition to the cardiac rhythm, it becomes possible to produce time-resolved
(cine) images of the blood velocities. In principle, this allows for the acquisi-
tion of a complete “4D” velocity field [43] ; in practise, such scans can be very
time-consuming and so are not always tolerated by patients. PC-MRA tends
not to be used for angiographic purposes alone, since for a given resolution
and coverage, more scan time is required relative to TOF-MRA and especially
CE-MRA.

4.1.3 Ultrasound (US) imaging

Relative to x-ray andMR imaging, US is the least expensive and least invasive.
Similar to sonar and other echolocation techniques, US works by transmitting
beams of low power, high frequency sound waves (on the order of a few MHz)
into the body via a hand-held probe coupled to the skin through a conduc-
tive gel. Normally, this same probe receives the echoes caused by the strong
reflections at tissue boundaries, and the weaker reflections within the tissues
themselves. The distance between the probe and the reflections can then be
calculated from the known speed of sound through tissue (1540m/s) and the
measured delay between transmission and each echo.
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J
Fig. 4.2. Representative vascular images from the various modalities discussed.
A. 2D x-ray angiogram of a coronary artery tree. B. Maximum intensity projec-
tion (MIP) through a 3D x-ray angiogram of a cerebral aneurysm (arrow). C. MIP
through a 3D CTA of an abdominal aortic aneurysm. D. MIP through a 3D CE-MRA
of the major arteries from neck to abdomen. E. 2D PC and F. BB-MRI images of the
carotid arteries at the level of the bifurcation. G. Duplex US image of a carotid artery
bifurcation. H. 3DUS image of a carotid artery bifurcation. J. IVUS image of a coro-
nary artery in cross-section. Panels A&J courtesy of Dr. Jolanda Wentzel, Erasmus
University. Panel D courtesy of Dr. Nils Planken, Department of Radiology, Ams-
terdam Medical Center. Panel G courtesy of Dr. David Spence, Robarts Research
Institute. Panel H courtesy of Dr. Aaron Fenster, Robarts Research Institute

For typical depths of penetration, echo delays are less than a millisecond,
and so US offers a remarkable facility for real-time imaging. For example,
the amplitude of each echo can be assigned a grayscale value and displayed
on screen at its respective depth from the probe. With the beam fixed this
produces a M-mode image, so named because it sensitively depicts tissue
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motions at high (∼ 1000Hz) temporal resolution. More commonly, the US
beam is swept, either mechanically or electronically, through a plane or sector
to produce real-time (∼ 100Hz) 2D B-mode images, so named because their
brightness reflects the distribution of tissue throughout the slice. By virtue
of the Doppler effect, blood flow in the direction of the US beam produces
shifts in the frequencies of the returned echoes, which can be converted into
velocities and mapped onto a near-real-time (∼ 15Hz) colour Doppler image,
as shown in the duplex US (i.e., combined B-mode and colour Doppler) image
shown in Fig. 4.2 G.
An obvious limitation of conventional US imaging is the 2D nature of

the acquisition, which, as noted earlier, makes visualisation of tortuous arter-
ies difficult. (Remember that these are actual slices through the vessel, not
projections.) This can be overcome via three-dimensional US (3DUS), which
reconstructs an image volume from conventional 2D slices acquired during
freehand or mechanical translation of the US probe (Fig. 4.2 H). Although
3DUS B-mode volumes can be acquired in less than a minute, longer scan
times are required for 3D colour Doppler US images. Moreover, this approach
is sensitive to vessel motion between individual 2D slices: 3DUS images can
exhibit so-called “sawtooth” artifacts if the artery is pulsating as the probe
is translated. These limitations, however, may soon be overcome through the
development of 2D array transducers, which will permit real-time acquisition
of 3D (and possibly 4D) US images.
As evidenced in Figs. 4.2 G and 4.2 H, ultrasound image quality and

resolution are typically coarse relative to the other imaging modalities. More-
over, constructive and destructive interference of the scattered sound waves
results in a form of multiplicative noise referred to as “speckle”. As with MRI,
image quality in US is also inextricably tied to the proximity of the vessel to
the transducer at the surface: with increasing depth, less acoustic power is
available for reflection. Similarly, tissue behind a calcification can be entirely
masked because all of the acoustic power is reflected, leading to well-known
shadowing artifacts. This also precludes the use of US for imaging cerebral
vessels within the skull, except those visible through the thin temporal bone.
Similarly, because the US also does not transmit well through air (hence the
need for coupling gel between the transducer and the skin surface), imaging of
abdominal vessels can be challenging. Image quality and artifacts cannot sim-
ply be overcome by increasing the power deposited, for this would risk heating
the tissue. Instead, for deep or shadowed vessels like the coronaries, one resorts
to intravascular ultrasound (IVUS), which places the transducer within the
artery via a catheter (Fig. 4.2 J). Although this results in an invasiveness
equal to that of x-ray angiography, it does provide information that angiogra-
phy does not, namely, the surrounding tissue. As with BB-MRI, this is useful
for providing the necessary boundaries for fluid-structure interaction analyses
(see Chapter 9); however, because imaging planes follow the orientation of
the (usually tortuous) vessel [261], adjacent slices are not parallel, potentially
complicating the reconstruction of the 3D geometry (see Section 4.5).
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4.2 Geometric modelling of blood vessels

Regardless the specific imaging modality, medical images contain information
in the form of multidimensional arrays of numeric values, which are correlated
with one or more physical properties of the imaged anatomical structures.
Modelling the geometry of a vessel from medical images consists in extracting
the location of the vessel wall from the values contained in the image volume.
Since the image formation process in general alters the underlying anatomi-
cal information, and since the resolution with which the latter is acquired is
bound to be finite, medical images are coarse representations of the under-
lying anatomy. Modelling the surface of an anatomical object from an image
can therefore be regarded as an inverse problem.
More formally, a medical image can be seen as the scalar function I : Ω →

R which associates an intensity value to every point in the acquisition volume
Ω ⊂ R3. In this framework, an image is not a collection of isolated samples, but
rather a continuous function known at the nodes of a regular grid, whose values
are interpolated over space with suitable shape functions (e.g. linear, cubic).
On the basis of I, we are ultimately interested in finding a representation of
the surface corresponding to the lumen wall boundary, or, in case the imaging
technique allows it, as in the case of black blood MRI, to the inner and outer
boundaries of the vessel wall. In both cases, we will generically indicate the
obtained surface representations with S, which will then serve as the definition
of the boundary of the computational domain for the haemodynamic or fluid-
structure interaction problem at hand, as introduced in Chapter 3.
Before we can face the problem of determining the location of S from I,

it is necessary to describe how a generic 3D surface can be mathematically
represented.

4.2.1 Explicit surface representations

A surface S corresponding to the vascular wall can be represented explicitly as
a bivariate parametric function with values in R3 (as shown in Fig. 4.3, left).
A common choice in computer graphics is expressing S as a set of adjacent
polygons (e.g. triangles) whose vertexes have a known position. The surface
in this case is given by

S =
⋃
i

Si (4.1)

with

Si(u, v) =

Ni∑
j=1

φi,j(u, v) pi,j (4.2)

where i indicates the i-th element, Ni is the number of nodes in the i-th
element, φi,j is the shape function on element i, relative to node j, and pi,j
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is the position of the j-th node in the i-th polygon. In general, the shape
functions employed are linear Lagrangian basis functions satisfying

φi,j(ul, vl) = 1 for l = j (4.3)

φi,j(ul, vl) = 0 for l = j (4.4)∑
j

φi,j(u, v) = 1 ∀ (u, v) ∈ Ui (4.5)

where Ui is the parametric space of the i-th element. In the case of triangu-
lar elements, suitable shape functions are barycentric coordinates. Due to the
linear nature of the interpolation, a large number of small polygonal elements
are required in order to represent a realistic anatomical structure. The repre-
sentation does not offer any built-in control over the regularity of the surface
apart from its continuity. However, given the simplicity of the formulation, it
is very flexible with respect to the possible topologies that can be represented.
An alternative way of explicitly representing a surface is to use adjacent

high-degree polynomial patches, such as NURBS (non-uniform rational B-
splines) (as shown in Fig. 4.3, right) [403]. In this case, the surface takes the
form of a union of patches each defined by a tensor product rule

Si(u, v) =

∑N
j=1

∑M
k=1 φ

p
i,j(u)φ

q
i,k(v)wi,j,kpi,j,k∑N

j=1

∑M
k=1 φ

p
i,j(u)φ

q
i,k(v)wi,j,k

(4.6)

where i indicates the i-th patch, pi,j,k is one of the M × N control points,
wi,j,k is the weight associated to the j, k-th point and φ

p
i,j a B-spline basis

function of degree p, defined recursively as

φ0i,j(u) =

{
1 uj ≤ u < uj+1
0 otherwise

(4.7)

φpi,j(u) =
u− uj

uj+p − uj
φp−1i,j (u) +

uj+p+1 − u
uj+p+1 − uj+1

φp−1i,j+1(u) (4.8)

where the values u1 . . . uN+p+1 are called knots and satisfy uj ∈ [0, 1] and
uj−1 ≤ uj. A realistic surface is obtained by employing several adjacent
patches and expressing continuity conditions at their boundaries. Such condi-
tions can reflect different degrees of continuity, namely positional continuity
(C0), tangential continuity (C1) or curvature continuity (C2), which respec-
tively require continuity of zeroth, first and second derivatives of adjacent
parametric patches.
The degree p of the B-spline basis function controls the smoothness of the

resulting surface and must be cautiously chosen in order to properly reproduce
the desired surface features while avoiding high-degree artifacts, which appear
as spurious oscillations typically located in the vicinity of patch boundaries.
Compared to polygonal representations, an anatomically realistic surface can
be represented by a lower number of NURBS patches and its smoothness, and
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Fig. 4.3. Left, polygonal surface; right, NURBS surface (dashed lines represent
isolines of the parameters u, v, while dots represent knots)

consequently the size of the smaller surface features, can be controlled more
directly. However, the use of larger patches leads to reduced flexibility in the
representable surface topology.
The advantages of the NURBS representation is the interpretation of the

vertexes pi,j as a control polygon that permits an intuitive modification of the
surface through changes in their position. Additionally, changes in the position
of one of the vertexes affects the surface only locally, a desirable feature for
CAD systems.
A representation that offers both topological flexibility and direct control

over surface smoothness is constituted by subdivision surfaces. Since their
description is not critical for the contents of this chapter, we refer the reader
to specific publications on this matter [561].

4.2.2 Implicit surface representations

In addition to the explicit representation described so far, a surface can also
be thought of as embedded in a function F : R3 → R, and represented by
describing its embedding. For example, the surface Ss of a sphere of centre
c and radius r is the locus of points x ∈ R3 where the function Fs(x) =
(x−c)2− r2 is zero. In this case, the surface of the sphere is embedded in the
3D function Fs, that is, Ss is an isosurface (or the zero level-set) of Fs. The
implicit representation of a surface S therefore becomes

S =
{
x ∈ R3 : F (x) = k

}
(4.9)

where k is a value of choice.
For a realistic vascular surface, the function F is likely not known in closed

form. Instead, it can either be given at the nodes of a regular grid or it can be
defined as a superposition of analytical basis functions. The simplest example
of the first case occurs when the surface of a vessel is assumed to coincide
with a particular value of intensity on a clinical image. In this situation, the
embedding function F is the image itself I, of which the vascular surface is an
isosurface (as shown in Fig. 4.4). Embedding functions known at the nodes of
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Fig. 4.4. Traces of embedding functions on single imaging planes, along with an
explicit representation of one isolevel: left, analytic embedding function; right, med-
ical image as an embedding function

a grid can also be obtained as the result of modelling procedures guided by
image features, as shown later in the chapter. For example, in the case of level
sets (see 4.4.4), the embedding function is generated as the finite differences
solution of a PDE [453].
The embedding function is defined as the superposition of analytic func-

tions in the case of radial basis functions (RBF), for which the value of a
single radial basis function depends solely on the distance from a given loca-
tion (hence their name). The embedding function in this case is given by

F (x) = P (x) +

N∑
i=1

wi φ(‖x− xi‖) (4.10)

where P is a low-degree polynomial function, wi is a set of weights corre-
sponding to the locations xi and φ is the basis function. For modelling 3D
shapes, radial basis functions take one of the following forms [375]

φ(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r linear
r3 cubic
exp(−Cr2) Gaussian

(r2 + C2)
1
2 multiquadratic

(r2 + C2)−
1
2 inverse multiquadratic

(4.11)

where C > 0 in all expressions. The choice among the various possibilities is
performed on the basis of smoothness of the result and on the convergence
properties of the numerical method employed to determine the coefficients
wi in Eq. 4.10, as shown in Section 4.5.3. Common choices for representing
3D surfaces have been the linear and the cubic RBFs, the former exhibiting
better convergence properties, the latter resulting in a greater surface smooth-
ness [67].
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4.2.3 From implicit to explicit surface representations

Most numerical techniques for modelling hemodynamics require explicit geo-
metric representations of the physical domain on which problems are solved.
Therefore, we will here describe the operation that allows to obtain explicit
representations from implicit ones. Contouring, or isosurface extraction, is the
procedure by which an explicit representation of a surface S is generated from
the 3D scalar function F that embeds it.
Marching cubes [299] is a widely used algorithm for generating polygonal

explicit surface representations from embedding functions sampled on a regu-
lar grid. As already noted, medical images are embedding functions for their
isosurfaces, so, provided the isolevel associated to the vascular wall is known
(which is usually not true for real world images) Marching Cubes can be used
to directly obtain the surface of a vessel (the limitations of this approach will
be explained in Section 4.4.2).
The algorithm works on the basic idea that a polygonal surface whose

vertexes lie on grid edges can intersect a cubical neighbourhood of the grid
and partition its vertexes in a finite number of configurations, 64 reduced to
15 by symmetry, called topological cases.
Thanks to this property, the polygonal surface can be constructed, one

cubical neighbourhood at a time, by selecting the topological case corre-
sponding to the local partition of above and below vertexes. Compatibility
of the surface from cube to cube is obtained owing to the fact that each cou-
ple of neighbouring cubes presents the same vertex partition on the shared
face. After the selection of the proper topological case, the exact position of
polygon vertexes is obtained by linearly interpolating the values of F along
the intersected edges. Once each cubical neighbourhood has been visited, the
polygonal explicit surface representation is generated (an example is shown
in Fig. 4.5).
A potential problem with this algorithm is that, in a limited number of

topological cases, two distinct polygon configurations can give rise to the same
cube vertex partition. Since this could break surface continuity if incompat-
ible choices were made for two neighbouring cubes, additional criteria have
been proposed to select the case which guarantees topological consistency.
This is an acceptable solution in most cases, when the surface to be recon-
structed is regular. As an alternative, other methods have been proposed to
solve the topological consistency problem, such as Marching Tetrahedra, in
which space is subdivided in tetrahedra rather than in cubes, resulting in 16
possible polygonisations reduced to 3 by symmetry [299].
The previous algorithm can be applied whenever the function F is available

at the vertexes of a regular grid. If the implicit representation is given analyt-
ically under the form of a radial basis function, a possibility for constructing
an explicit surface is to sample the radial basis function over a regular grid
and extract the isosurface of zero level using marching cubes. Alternatively,
it is possible to exploit the analytic nature of F [42]. Instead of relying on
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Fig. 4.5. Example of 3D contouring performed with the Marching Cubes algorithm
on a CRA image of a cerebral aneurysm. Left, the 3D image; middle, the result
of contouring at the level of the transition between the contrast-enhanced vascular
lumen and the surrounding tissue; right, a detail showing the appearance of the
resulting polygonal surface

a grid of predefined samples which are then linearly interpolated from grid
point to grid point, the method takes advantage of the fact that values of
F are available at all locations without interpolation, and accurately locates
surface points by means of a root finding method in the vicinity of the desired
contour value. Aside from this, the polygonisations method utilises similar
concepts to those used in marching cubes and marching tetrahedra.

4.3 Image enhancement

In dealing with the problem of building representations of the geometry of
blood vessels, we have assumed that the location of their surface was known.
We will now start to face the problem of how to actually derive such informa-
tion from medical images.
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Medical images can be affected by noise and artifacts that may interfere
with the segmentation process, or the image data may be provided in a form
not suitable for the segmentation method of choice, as in the case of anisotropic
resolutions, for which the spacing of the imaging grid along different axes is
different. In order to alleviate these problems, an imaging enhancement step
can be performed prior to segmentation. The introduction of such a step
can substantially alter the information contained in an image and potentially
play a role in the outcome of haemodynamic modelling. Since such influence
is associated in general with a set of user-dependent parameters, care must
be taken at defining the minimum amount of image enhancement operations
needed for segmentation to be successful.

4.3.1 Resampling

A first pre-segmentation operation we describe is image resampling. Its goal is
to change the resolution of the image in one or more imaging axis directions.
For modality-dependent reasons, images can be acquired with resolutions that
do not match the requirements imposed by the segmentation method of choice.
This leads to the need of changing (in most cases, increasing) the spacing of
the imaging grid in one or more directions, granted that this operation will in
no case increase the information content of the image.
Image resampling therefore consists in projecting image intensity values

onto a different grid than the original one. The most common way of per-
forming resampling is to obtain the image values at the new grid points by
interpolation from the original imaging grid. The choice of the interpolation
operator affects the accuracy of the resampling. If subsampling is needed,
interpolation can be preceded by low-pass filtering (see next section) of the
original image in order to avoid the generation of artifacts.
Among the available interpolation methods, the most common are nearest

neighbour and linear interpolation, which correspond to constant and first
order shape functions over the imaging grid. More sophisticated interpolation

Fig. 4.6. From left to right, CRA image with anisotropic resolution (the number
of points along the horizontal direction is four times greater than along the vertical
direction), resampled with nearest neighbour, linear, cubic and sinc interpolation
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methods include B-spline [514] and windowed sinc interpolation. In the for-
mer, a representation of the image based on bell-shaped high-order (typically
cubic) polynomials centred at the imaging grid points is first obtained by
least squares approximation. The image is then resampled onto the new grid
by linear combination of the polynomial basis functions. In the latter, off-grid
values are obtained by convolution of the image with a cardinal sine kernel.
Convolution of the image I with a kernel K is defined as

I ∗K(x) =
∫ ∞
−∞

∫ ∞
−∞

I(x) K(x − x̄) dx̄, (4.12)

where in this case the kernel is defined as

K(x) = sinc(x) =
sinx

x
. (4.13)

For the convolution kernel to have finite support, the cardinal sine function
is restricted to a suitable window, hence the name. Since the Fourier trans-
form of the sinc function is the box function, and since the convolution of
two functions corresponds to a product in frequency space, this interpolation
method corresponds to extending the periphery of the Fourier transform of
the original image by a zero-padded region. Although theoretically optimal
in terms of Shannon’s sampling theory1, the latter interpolation method can
give rise to ringing artifacts around sharp edges. A sample evaluation of the
described image interpolation method is shown in Fig. 4.6.
A more sophisticated interpolation method is adaptive control grid inter-

polation [166], which borrows concepts from motion estimation and frame pre-
diction algorithms and aims at reconstructing missing inter-slice information
for datasets suffering from highly anisotropic resolutions.

4.3.2 Noise reduction

Noise is generally identified as a random high-frequency signal added or mul-
tiplied to the image content. Noise is inherent in any acquisition process and it
is ascribable to thermal noise in the signal processing electronics or to phys-
ical undesired signal sources. Reduction of noise can be obtained either by
means of a smoothing filter, which removes the high-frequency components of
the image, or by modelling noise characteristics and filtering them out. In the
first case, no prior knowledge about the noise generation process is required,
but, on the other hand, meaningful high-frequency image content can be fil-
tered together with noise. In the second case, noise reduction is more specific,
even if this depends on the accuracy of noise modelling. The first approach is

1 The Shannon sampling theorem is a well-known result in information theory.
Conversion of a continuous function into a numeric sequence is called sampling.
Shannon theorem (or Nyquist-Shannon theorem) states that a continuous func-
tion featuring the highest frequency νM is completely determined by a sampling
with frequency 2νM .
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the most widely used in vascular modelling from CT and MR images, probably
because noise for these modalities has simpler characteristics and signal-to-
noise ratio (SNR) is usually fairly high. Moreover, the typical scale of the
anatomical structures of interest in CT or MR is often much larger than that
of noise. In contrast, more specific approaches are used for B-mode ultrasound
image enhancement, which are affected by speckle noise, already introduced in
Sect 4.1, whose scale is potentially similar to that of the observed structures.
One of the simplest and most used forms of noise reduction in images is

Gaussian filtering. It consists in performing a convolution of the image I(x)
with a Gaussian kernel

Gσ(x) =
1√
(2πσ2)3

e−
x2

2σ2 (4.14)

where σ is the width of the Gaussian kernel and controls the amount of
smoothing, i.e. the maximum spatial frequency represented in the filtered
image. An equivalent approach is the simulation of a diffusion process for
image intensity values governed by a PDE of the form

∂I(x, t)

∂t
= c ΔI(x, t) (4.15)

where c is the diffusivity coefficient which regulates the strength of diffusion.
We here underline that this formulation is made possible by the fact that the
image is considered as a continuum of intensity values rather than a collection
of isolated samples. The PDE is then solved numerically, for instance by using
finite differences (see Chapter 2), over the imaging grid up to a time t̄. Solving
the diffusion equation with c and t̄ is analogous to performing a convolution
with a Gaussian kernel having σ2 = 2 c t̄.
The drawback of the previous approaches is the potential loss of informa-

tion that results from filtering an image in which signal and noise have similar
spatial scales. In particular, objects in images are ideally separated from the
background by sharp borders, which have a high frequency content. Smooth-
ing can therefore result in edge blurring and displacement, which can affect
both the estimation of surface geometry and alter the topology of the resulting
object. In order to limit the effect of smoothing on relevant edges, anisotropic
diffusion filtering has been introduced. The idea behind this approach is that
smoothing should be stronger in regions dominated by noise, while it should
preserve regions in which image features, such as object boundaries, are pre-
dominant. Obviously, this would require the definition of object boundaries,
which in turn is our ultimate goal. Instead, image features are estimated
from the gradient magnitude of the intensity values or by more sophisticated
edge-detection techniques. In the standard formulation [384], the anisotropic
diffusion equation is given by the following PDE

∂I

∂t
= ∇ · c(|∇I|) ∇I (4.16)
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Fig. 4.7. From left to right, CRA image affected by noise, convolved with a Gaussian
kernel with σ = 2.5 pixels, with a Gaussian kernel with σ = 5 pixels and filtered
with anisotropic diffusion with the equivalent of σ = 5 pixels

where the diffusivity can be expressed as a decreasing function of the image
gradient magnitude, such as

c(x, t) = e−(
|∇I|
k )

2

(4.17)

or
c(x, t) =

k2

(k2 + |∇I|2) (4.18)

where k is used to control the relative influence of image features over the
diffusion process [384]. This way, the diffusion process preserves those regions
at which intensity values vary more rapidly, such as at object edges. The
filter must be tuned for specific applications in terms of k and t̄. Since the
interpretation of the parameters is less straightforward than in the linear case,
empirical evaluation of the effects of the filter is necessary.
An interesting variation of the classical anisotropic diffusion equation

above is constituted by the modified curvature diffusion equation (MCDE)
[541]

∂I

∂t
= ∇ ·

(
c
∇I
|∇I|

)
|∇I| (4.19)

where diffusivity can take the same form as in the previous case. This equation,
which is regarded as the evolution of a level set (see Section 4.4.4) analogous
to anisotropic diffusion, can be interpreted as a feature-dependent flow of
intensity isosurfaces controlled by their curvature, represented by the term
∇· ∇I|∇I| . This results in a flattening effect on high-curvature image isosurfaces,
such as the ones produced by small-scale noise. This filter does not exhibit a
feature edge enhancement effect as in the previous case. A sample evaluation
of the described noise reduction methods is shown in Fig. 4.7.

4.3.3 Vessel enhancement

While the techniques presented so far can be applied to images independently
from their specific content, a priori assumptions on the expected appearance of
the structures of interest allow to formulate methods targeted at highlighting
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those structures only, such as multiscale vessel enhancement [167]. The aim
of this method is to enhance vessel-shaped structures with respect to the rest
of the anatomical structures based on the analysis of the eigenvalues of the
Hessian matrix H, of the image intensity.
Let’s first recall the definition of Hessian matrix of an image at one point,

Hσ =

⎡⎣ Ixx Ixy IxzIyx Iyy Iyz
Izx Izy Izz

⎤⎦ (4.20)

where

Iαβ(x) = σ
2 ∂
2Gσ(x)

∂α ∂β
∗ I(x) (4.21)

that is, the convolution of the image with the second derivative of the Gaussian
kernel with width σ. This corresponds to a convolution of I(x) with Gσ(x)
and taking the second derivatives of the resulting image, which selects from
the image the spatial scales above σ.
The basic idea behind the filtering technique is that a tubular structure

should be characterised by low intensity variations along the axis of the ves-
sel and by a certain degree of cross-sectional symmetry. In terms of Hessian
matrix eigenvalues, denoted as λ1, λ2, λ3 and sorted so that |λ1| ≤ |λ2| ≤ |λ3|,
the idea translates into the fact that, at points inside tubular structures, λ1
should be low, and λ2 and λ3 should be high and of equal sign (negative for
bright intensity vessels and positive for dark intensity vessels).
Based on these considerations, vessel enhancement for bright intensity ves-

sels of scale σ can be obtained as the output of the following function

Vσ(x) =

⎧⎨⎩
0 if λ2 > 0 orλ1 > 0,(
1− e−

R2A
2α2

)
e−

R2B
2α2

(
1− e− S2

2c2

)
otherwise

(4.22)

where RA = |λ2|
|λ3| , RB =

|λ1|√
|λ2λ3|

and S = |Hσ| =
√∑

j λ
2
j . Parameters α,

β and c are scaling factors. Since Equation (4.22) depends on the scale σ at
which second derivatives are computed, the filter is applied at multiple scales
and the optimal scale is selected as the one which yields the maximum filter
response, that is V (x) = maxσ Vσ(x).
Besides being used for highlighting vessels in image datasets, the filter has

been successfully employed for automated centreline detection [167], stenosis
grading [168,520], and level sets initialisation for segmentation [119]. Indeed,
although effective for vessel detection, the filter does not ensure that the shape
of the lumen is not altered, therefore it is more suited in initial phases of vessel
identification than in precise location of the vessel wall.
Lastly, it must be noted that this image enhancement approach relies on

assumptions that may not be verified for all imaging modalities and vascular
segments. For example, the presence of non tubular vascular geometries, like
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aneurysms, complex bifurcations or calcifications, which in CT images appear
brighter than the contrast medium, may give rise to low filter output inside
vessels. Moreover, in black blood MRI imaging, the lumen appears dark, the
wall is in general bright and the surrounding tissue may again appear dark,
which does not lead to cylindrical structures but rather to thick walled hollow
ones, which does not comply with the method assumptions.

4.4 Image segmentation for vascular modelling

The task of deriving the shape of an object from a digital image is commonly
referred to as image segmentation. In its most classical acception, image seg-
mentation implies that the pixels constituting an image are partitioned into
classes corresponding to the objects represented in the image and to the back-
ground. In our context, however, the identification of the boundary of a vessel
needs to be carried out at sub-pixel precision, for the resulting model to be
suitable as the physical domain of a CFD simulation. In this sense, the auto-
matic identification of vessels in an angiographic image is not as important
as the accurate determination of the location of the lumen boundary. In fact,
while a user can robustly identify the presence of a vessel on an image, a
precise definition of its boundary is a challenging task for an operator in the
absence of objective criteria, the implications of which are discussed in the
next paragraph. Since the reconstruction of the vessel shape has a great influ-
ence in the modelled hemodynamics, as it will be clear in Chapter 5, we will
focus on those segmentation techniques geared at accurately and precisely esti-
mating the shape of the lumen rather than those designed for automatically
identifying the presence of vessels in an image.

4.4.1 Manual segmentation

Manual placement of points or delineation of contours on single image planes
is the first form of segmentation we take into account. This approach is based
upon the decisions of an operator who identifies the boundaries of the struc-
tures of interest based on visual perception of image content. Obviously, this
method is affected by a potentially low reproducibility of the results, espe-
cially when the image is of difficult interpretation. On the other hand, for
images heavily affected by artifacts of low signal-to-noise ratios this might be
the only option, as automated methods may not perform as well as human
perception in filling missing information, or, if they did, they may require a
large number of user-defined parameters that practically make segmentation
completely operator dependent, only in a less intuitive way.
While the use of corrupted images for hemodynamics modelling is ques-

tionable regardless of whether manual or automated segmentation is per-
formed, in most cases user-driven point placement or contour delineation is
useful as an initial approximation for automated segmentation methods shown
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in the following sections. For several of such methods, in fact, the closer the
initial segmentation is to the target shape, the more straightforward is the
segmentation process, although a good segmentation method should be rea-
sonably robust to initialisation.
In general, although operator dependency has to be minimised, completely

automated segmentation of real-world medical images is arguably not a strict
requirement for haemodynamic modelling, at least not as the requirement
of locating the position of the vessel wall as accurately and reproducibly as
possible. Rather, this is achieved by adopting a segmentation method based
on mathematical methods, while allowing the user to steer the segmentation
process, therefore integrating human perception with objective image-based
criteria.

4.4.2 Thresholding and classification

The term thresholding refers to the identification of one or more image inten-
sity values that separate the anatomical structures of interest from the back-
ground. The determination of thresholds can be performed manually or algo-
rithmically, and it can take place once for the whole 3D image or on a slice-
by-slice basis. The latter approach is necessary when the signal is not uniform
among the slices, such as in TOF-MRA, in which the signal depends on the
amount of flowing blood, or in CTA, in which the density of the contrast agent
can vary during the acquisition, resulting in a change in intraluminal signal
along the z-axis. Once one or more thresholds have been selected, thresholding
can either proceed by generating a classified image containing discrete labels
based on the relative positions of the original image intensities with respect
to the threshold set, or, in case only one threshold has been defined, by per-
forming contouring on the image at the threshold isolevel and generating an
explicit representation of the corresponding surface.
Since clinical imaging techniques do not associate a precise intensity value

to a particular tissue class, manual thresholding can present several shortcom-
ings if geometry has a great impact on the subsequent analysis, as in the case
of vascular modelling. The choice of a threshold intensity level strongly affects
the size and the topology of the resulting surface, since the vascular lumen
is characterised by strong spatial variations of image intensity compared to
uniform tissue regions, and therefore the sensitivity of the resulting surface to
the chosen threshold is high.
It is therefore of crucial importance to identify objective criteria capable

to define thresholds corresponding to the vascular lumen boundaries. One of
them, and the most used in the clinical setting, is the full width at half maxi-
mum (FWHM) criterion, which identifies the lumen boundary at an intensity
level, IFWHM, halfway between the peak intensity within the lumen and the
intensity of the background (see Fig. 4.8). This criterion is mostly used for
measuring vessel diameters by plotting image intensity along a line that crosses
a vessel and measuring the distance between points at IFWHM on both sides of
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Fig. 4.8. Full width at half maximum (FWHM) criterion applied to a CRA image.
Image intensities along the traced line are plotted at the upper left corner. On the
right, the image is thresholded at the FWHM value

the lumen. This method has been proven to yield accurate estimates of diam-
eters even for small vessels, for example, in TOF-MRA, while in PC-MRA
the full width at 10% criterion has been shown to be more accurate [225].
However, the FWHM criterion is sensitive to the definition of the peak lumen
intensity, which could change with the location and the vessel size, and of the
background, which in clinical images might consist of anatomical structures
of heterogeneous intensities.
In contrast to the FWHM criterion, which is a local criterion, statistical

thresholding methods seek to determine optimal thresholds from the distri-
bution of intensity values over the whole image. A popular choice among
statistical thresholding methods is Otsu’s algorithm [362]. The method seeks
to partition the image intensity histogram into classes in such a way that
the between-class variance is maximised, where the between-class variance is
defined as

σ2b =

Nc∑
i=1

ωi(μi − μ)2 (4.23)

where Nc is the number of classes, ωi is the probability of a pixel of belonging
to the i-th class, μi is the mean intensity of the i-th class and μ the overall
image intensity. This method has been employed in [375] to segment vessels
from TOF-MRA images.
Several other statistical criteria can be used for determining thresholds

that respond to different optimality criteria, such as K-means and expectation
maximisation for the estimation of mixture models, to cite a few [386].
Available statistical methods for pixel classification differ widely from pure

thresholding methods, and assign each pixel to a particular anatomical tissue
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class based on other criteria, such as adjacency relationships, Markov random
fields, or prior information about shape [386]. The vast amount of literature
on this topic cannot be covered here. It only has to be stressed that most
classification criteria work at the pixel level, so that the sub-pixel positioning
of the vessel boundary must be sought in a post-classification stage, following
smoothness criteria or optimising the position of the surface on the basis of
image features, as with deformable models, described later on. In this sense,
classification methods can also be employed as automatic initialisation for
deformable models.

4.4.3 Region growing and front propagation

While classification methods typically produce a segmentation of the whole
image, the interest in vascular modelling is typically to segment vascular struc-
tures. Region growing methods generate selective segmentations starting from
a pre-segmented region (or single pixel) and iteratively add neighbouring pix-
els to the region if they satisfy specified homogeneity criteria. The procedure
stops when no more pixels can be added to the region. The initialisation is usu-
ally performed interactively, and the resulting segmentation clearly depends
on the homogeneity criterion adopted. Such criterion is commonly related to
the intensity of the pixel under scrutiny with respect to the pixels belonging
to the segmented region. The simplest criterion consists of accepting the pixel
if its intensity lies between a pair of user-defined thresholds. A more conser-
vative criterion states that a pixel is included if its intensity and that of its
neighbours fall between user-defined thresholds. In both these cases, the crite-
rion does not vary throughout the growth. In a more sophisticated approach,
the pixel is accepted if its probability of belonging to the region is above
a certain threshold. For instance, under the assumption that the intensities
of the pixels belonging to the segmented structure are normally distributed
around a central value, a pixel is accepted in the region if its intensity lies
in the interval [μ − fσ, μ + fσ], where μ and σ are the mean and standard
deviation of the pixel intensity in the segmented region and f a user-defined
factor expressing the permissiveness of the criterion [241]. Since they consist
in adding individual pixels to the segmented region, region growing methods
are not capable of delivering sub-pixel precision. However, the final shape can
eventually be smoothed (which does not ensure sub-pixel precision, but at
least produces a realistic surface) and they can also be fruitfully employed as
initialisation tools for deformable models.
A conceptually related approach to region growing is represented by front

propagation methods. This approach is based on tracking the propagation of a
wavefront from a seed point over the image. The speed of the wave is regulated
by image features, and is typically set to be lower in regions where the image
intensity varies more rapidly and higher where the image is uniform. The
purpose is to make the front move rapidly towards the vessels while slowing
down as it approaches vessel boundaries. The most popular front propagation
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algorithm is represented by the fast marching method, which provides an
efficient solution to the eikonal equation

‖∇T (x)‖ = F (x) with F (x) > 0 (4.24)

where T (x) represents the first arrival time of the wave at a point of the
domain and F (x) is the reciprocal of the local wavefront speed. In other
words, we are looking for the spatial distribution of the arrival times of a
wave of given local speed. Once the initial front and F (x) are defined, the
eikonal equation is solved on the image grid using upwind finite differences.
A more efficient solution of the eikonal equation can be achieved by only
tracking the solution in a narrow band of pixels defined around the front.
Once computed, the isocontours of T (x) represent a collection of surfaces
describing the shape of the waveform during the propagation. It is the user’s
responsibility to select the value of T (x) that captures the desired surface.
Since it produces a continuous function, this front propagation method is able
to deliver sub-pixel precision. In practise, though, the fact that the front only
slows down without actually stopping on the vessels boundary makes the use
of this method alone not particularly robust for segmentation, since the shape
of the segmented vessel will depend on the choice of the contouring value of
T (x). In other words, the method lacks an objective criterion for defining the
location of the boundary of vessels based on image intensity. Nevertheless,
this method is very effective for the initialisation of deformable models, which
will be the subject of the next section.

4.4.4 Deformable models

Deformable models are curves or surfaces defined in the image space which
change their shape on the basis of image features, external constraints and
internal deformation laws [319]. This way, the position of a curve or a surface
can be optimised to identify the position of lumen boundary with sub-pixel
precision.
Deformable models are not conceptually different from other segmentation

methods: they serve to identify the position of the boundary of the shape of
interest from the information contained in an image. Their peculiarity lies in
the fact that the segmentation problem is treated as an energy minimisation
problem, where the energy depends on the position and shape of the curve
or surface and on image features. The fact that the minimisation process
proceeds through deformation of the model towards its final shape presents
two main advantages: the evolution can be followed and eventually steered in
an intuitive way, and the initialisation can be performed by providing a good
geometric approximation to the final shape. Being an optimisation process,
segmentation with deformable models makes it possible to establish a trade-off
between local adherence to image features and global criteria (e.g. regularity
of the resulting shape), thus allowing a control over the single contributions
to the final result.



4 From image data to computational domains 147

From a formal point of view, the energy functional can be expressed as
the sum of an internal and an external energy

E = Eint + Eext . (4.25)

The internal energy term governs how the model changes its shape, for exam-
ple it can confer a membrane or thin plate-like behaviour to the model, or
control its regularity in terms of smoothness. External energy terms include
image-based terms and positional constraints. The former drive the deforma-
tion based on the features the underlying image, for example inflating the
model with different speeds according to image intensity, or attracting the
model towards edges, while the latter serve to steer the evolution of the model
with user-defined rules, e.g. to avoid specific regions of the image in the pres-
ence of artifacts or to help the convergence of the model to the features of
interest.
Deformable models can be employed both in 2D, i.e. deformable contours

on planar images, or in 3D, i.e. deformable surfaces in a 3D image, depend-
ing on the nature of the data (disjoint images or thick slice imaging typi-
cally require 2D deformable models) and the geometry of the structures to
reconstruct (vascular networks of complex geometry are more challenging to
segment in sequences of 2D sections). Furthermore, the choice is also dictated
by the need of user interaction for steering the evolution of the deformable
model, e.g. in order to avoid the erroneous segmentation of flow-related arti-
facts arising in black blood MRI. Since interaction with a contour on a 2D
slice is simpler than that with a surface within a 3D volume, 2D segmentation
is often preferred in this case.
There are two major classes of deformable models, which correspond to

the way the curve or surface is represented, namely explicit and implicit
deformable models. Recalling the distinction made in Section 4.2, a surface S
can be given by explicitly describing the position of its points or by describing
an embedding function the surface is an isosurface of. In this perspective, the
evolution of a deformable model can either be represented by explicitly track-
ing the position of its points, of by tracking changes in the embedding function.
In the next two sections, the two approaches, along with their strengths and
limitations, will be described independently from the specific form that Eint
and Eext can take. Subsequently, a description of image-based and internal
forces applicable for both deformable model approaches will be provided.

Explicit deformable models

For explicit deformable models the position of surface points is explicitly rep-
resented and tracked during the evolution. In this case, the minimisation of
Equation (4.25) acts on S(u), that is, on the way points in the parametric
space are mapped onto the image space.
Two popular versions of explicit deformable models in 2D are discrete

dynamic contours (DDC) and deformable splines, both commonly referred
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to as snakes. DDC are polylines, i.e. nodes connected by straight segments,
whose deformation is expressed in terms of the change in the nodal coordi-
nates. Deformable splines are instead piecewise polynomials with continuity
constraints, each polynomial piece described by a set of control points. DDC
are in general more flexible in terms of topology and easier to handle from a
computational point of view, being described by nodal coordinates expressed
in physical space. On the other hand, splines require fewer control points and
implicitly incorporate internal constraints on their smoothness during the evo-
lution. The choice between the two is in general application-dependent.
The general expression of the internal energy of a 2D snake is

Eint =
∫
(w1|

∂S

∂u
|2 +w2|

∂2S

∂u2
|2)du, (4.26)

where u is the arclength, the first and second terms in the integral represent
the snake’s tension and stiffness, respectively. The relative contributions of
the two terms are controlled by the weights w1, w2, chosen by the user on
the basis of image characteristics. The external energy is in general expressed
through the definition of a image-dependent potential

Eext =
∫
w3P (S)du. (4.27)

More details on the choice of P will be given in Section 4.4.4. An example of
snake evolution is shown in Fig. 4.9.
The minimisation of E in Equation (4.25) can be worked out either directly

in its energetic form, e.g using a gradient descent minimisation approach on
E , or in its local form, by directly expressing the problem in terms of the
evolution of the position of physical points of S with respect to u, leading to
the evolution equation

∂S

∂t
= w1

∂2S

∂u2
−w2.

∂4S

∂u4
−w3∇P (S). (4.28)

For DDC, a simple way to discretise equation 4.28 is by means of finite
differences in the form of a spring-mass analogy, by which nodes are assigned
a mass m, and the linear segments linking adjacent nodes are associated a
stiffness. The nodal evolution equation for DDC is then expressed as [266]

ma = wext fext + wint fint +wd x
′ (4.29)

where a is the acceleration of nodes, fext and fint are the external and internal
forces applied to them, and the last term represents damping, introduced in
order to avoid the set up of oscillations during the DCC evolution. The weights
wext , wint and wd are again user-defined parameters.
The 3D counterparts of 2D snakes, commonly regarded as balloons, com-

prise deformable meshes and deformable spline surfaces. The considerations
for the 3D case as well as the mathematical treatment of the energy terms
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Fig. 4.9. Evolution of a 2D snake. Left, initialisation by interactive definition of
the vertexes of a polygonal line; middle, refinement (or spline interpolation) under a
smoothness constraint; right, deformation under the action of external image-based
forces

and the minimisation problem are not substantially different from the 2D case.
The parameter space is now represented by a bidimensional vector (u, v), and
the internal energy terms represent local surface stretching and bending. As
in the 2D case, the evolution of deformable meshes has been implemented
resorting to the spring-mass analogy, although more sophisticated approaches
based on the same idea assign a stiffness to the triangular mesh elements con-
sidered as solid surface elements rather than to their edges only [97, 318]. A
typical evolution equation for an explicit 3D deformable model is

∂S

∂t
= w1G(S)N+w2ΔS−w3∇P (S) (4.30)

in which the first term models inflation, by which the surface deforms along
its normals with speed G(S), the second term represents rigidity and the third
term the action of an external force expressed as the gradient of a potential
P , in general function of image features.
Specialised deformable models have been proposed for segmentation of vas-

cular structures [167,551]. In particular, Frangi et al [167] proposed the use of
tensor-product B-splines in which one dimension is periodic and whose control
points are constrained to move radially with respect to the estimated centre-
line, so that the deformable model maintains a cylindrical shape throughout
the evolution. Similarly, but improving the behaviour of the model to bend-
ing, Yim et al [551] presented a tubular deformable model, consisting in a
deformable mesh whose surface points are described in terms of radial distance
and angle around the vessel axis, and are constrained to deform along radial
lines. The main strength of these approaches is also their limitation, in that
non-tubular vascular structures, such as complex bifurcations or aneurysms,
are not easily reconstructed.
The main difficulty when dealing with explicit deformable models is the fact
that they rely on specific parametric representations of S(u). In principle,
the parametric space is fixed during the evolution; only the mapping from
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Fig. 4.10. Evolution of a polygonal balloon inflating under image-dependent forces.
The surface is re-parametrised during the evolution to account for large deforma-
tions: if a triangle has one edges exceeding a threshold length, the two triangles
sharing the edge are replaced by four smaller triangles (shown in the box)

the parametric space to the physical space is updated. In other words, a
triangle in a polygonal balloon is allowed to have its nodal coordinates, but
not its connectivity relationships with neighbouring triangles, updated during
evolution. When the deformable model evolves, large deformations can occur,
and the mapping from parametric to physical space can degenerate, or not be
sufficiently refined to properly represent the underlying geometry. This issue
is overcome with the introduction of re-parametrisation criteria, such as those
employed by Ladak et al [265], which allow the mesh to be dynamically refined
as the model undergoes large deformations. In particular, if the length of a
triangle edge exceeds a user-defined threshold, the edge is split in two by the
insertion of an additional node, and the two triangles sharing the edge are
replaced by four triangles sharing the inserted node, as shown in Fig. 4.10
(see also Section 4.11.4).
The need for re-parametrisation is not only linked to large deformations.

The initial topology of the deformable model may not correspond to that of
the target shape. As an example, when an initially spherical model enters
into two separate branches that merge back together, the model topology
must change from that of a sphere to that of a torus, requiring an intersec-
tion detection phase followed by a global re-parameterisation. The problem of
merging triangulated surface meshes has been addressed by Cebral et al [71] as
a post-processing step. Topology-adaptive deformable models have also been
proposed [320], for which the position of the deformable model is tracked on a
background regular grid made up of simplexes (triangles in 2D and tetrahedra
in 3D). Collision detection is performed by keeping track of the intersections of
the surface on the grid; topology changes are then obtained by re-triangulating
the surface from the grid once self-intersections have been removed.
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Implicit deformable models

As discussed previously, a surface S can be represented implicitly as the iso-
surface of a function F defined over R3 with values in R. Therefore, the
description of an implicitly represented deformable surface is given by tracking
changes in the embedding function. The resulting implicit deformable model
is commonly referred to as level set [453].
The link between the deformation of S and the evolution of F is given by

the fact that, by definition, S remains a level set of F over time. Therefore,

∂F (S)

∂t
= −∇F (S) · ∂S

∂t
= − |∇F (S)| ∂S

∂t
·N (4.31)

where N = ∇F
|∇F | .

By substituting Equation (4.30) into Equation (4.31) and re-expressing all
the terms in terms of F , the evolution of explicit 3D deformable models is
turned in implicit form

∂F (x)

∂t
= w1G(x)|∇F | − 2w2H(x)|∇F | −w3∇P (x) · ∇F (4.32)

in which G(x) is inflation speed, H(x) = ∇ · ∇F|∇F | is level set curvature and
P (x) a scalar potential whose gradient is the external force. The weights
w1, w2 and w3 are user-defined parameters controlling the influence of the
respective terms. The evolution equation for implicit deformable models is
solved over the whole image domain by means of upwind finite differences,
a numerical approximation scheme which takes into account the direction of
propagation of level sets when computing derivatives, avoiding smearing out of
the solution. Once an implicit deformable model has completed its evolution,
contouring can be performed on F (x) at its zero level to obtain an explicit
representation of the vessel surface. An example of level set evolution is shown
in Fig. 4.11.
Implicit deformable models offer some advantages relative to their explicit

counterparts. The most evident among these is topology independence, as
there is no restriction on the evolution of the model in terms of representable
topology or topology changes: a branch can merge with a neighbour at no
computational cost or increased algorithmic complication during evolution.
Another key advantage is that large deformations can be achieved without the
need of re-parameterisation, since deformation is simply expressed as a change
in the value of F (x). Moreover, the evolution equation does not depend on the
dimensionality of the problem, so an implicit deformable model can easily be
described in N dimensions (e.g. space and time), allowing to write evolution
equations for segmenting 3D time-resolved datasets. One last advantage is that
the notion of surface interior and exterior is known throughout the evolution,
making it easier to eventually incorporate region-based terms in the evolution
equations.
Computational cost is one of the disadvantages of this approach, since

in the general level sets framework a whole 3D volume must be evolved to
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Fig. 4.11. Evolution of level sets under inflation dependent on image gradient
magnitude. The top row shows the evolution of the embedding function F (x); the
mid row the corresponding zero level sets over the image (top left) and the image
gradient magnitude (top right); the bottom row shows the 3D results of level set
evolution, initialised from a set of disjoint seeds
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track a 2D surface. In order to gain in efficiency, sparse field and narrow band
methods have been proposed [540], in which only a few layers of grid points are
evolved around the level set of interest, making computational cost depend on
the 2D surface size rather on the size of the whole 3D embedding. One more
disadvantage, which is a flip side of topology independence, is the fact that
control over topology (e.g. in order to avoid self intersections or merging of
neighbouring vessels) is not handled naturally by the framework.

Driving forces for deformable models

Here we now describe the image-based external force terms driving the evolu-
tion of both explicit and implicit deformable models by inflation and attrac-
tion. As a general modelling strategy, inflation terms serve to make the
deformable model approach the vessel boundary from its initial shape, while
attraction terms are used to make the model converge on the vessel boundary.
Inflation speed terms must be crafted so that the expansion is faster in homo-
geneous regions (i.e. inside the lumen) and slower on vessel boundaries, while
attraction terms have to be expressed as vectors pointing to image features
with sub-voxel precision. In this framework, it must be noted that the role of
inflation terms can be partially or completely replaced with proper initialisa-
tion strategies, such as thresholding, region growing or front propagation.
The formulation of external forces depends on the definition of image fea-

ture, which in our case must coincide with the boundary of the vessels. The
most widely employed image feature definition for the segmentation of angio-
graphic images is image gradient magnitude, |∇I(x)|, which quantifies the
variations in local image intensity and thus highlights tissue interfaces, such
as vessel boundaries. Being based on first derivatives of image intensity, gra-
dient magnitude is likely to be sensitive to noise. Moreover, the capture radius
of gradient magnitude can be small, that is, the model surface must be close
to the vessel boundary for a gradient magnitude-based force to have an effect.
For these reasons, smoothed versions of gradient magnitude are eventually
employed, generated by convolving I(x) with the gradient of a Gaussian ker-
nel with width σ. This reduces noise and increases the capture radius to σ.
Alternatively, in order to reduce the effect of noise, edge preserving smoothing
can be employed [309]. In any case, the use of effective initialisation strate-
gies can mitigate the need for an increase in capture radius and decrease the
influence of noise in the deformable model evolution.
For the formulation of inflation speed terms, it is necessary to associate

lower speeds to higher gradient magnitude values, as shown in Fig. 4.12. Pos-
sible choices are therefore

G(x) =
1

1 + |∇I(x)| (4.33)

or
G(x) = e−|∇I(x)|. (4.34)
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As alternative formulations of the speed term, we cite the use of the func-
tion V (x) previously presented in Section 4.3.3. With this approach, the
deformable model is allowed to inflate at a higher speed in regions of high
V (x), while its inflation is slowed down as V decreases. Model speed is there-
fore adequately expressed by G(x) = V (x), as in [119]. In [519], the authors
employ an intensity-based speed term by first fitting two normal distribu-
tions, Nv and Nb, to the histograms of CE-MRA images, modelling vessel
and background voxel statistics separately. Inflation speed is then expressed
by

G(x) =
pv(x) − pb(x)
pv(x) + pb(x)

(4.35)

where pv and pb are the probabilities of a voxel of belonging to background and
voxel classes, respectively, computed on the basis of Nv and Nb. In another
work, van Bemmel et al [520] translated the FWHM approach used in clini-
cal settings (see Section 4.4.2) into a level set term which replaces the usual
gradient based inflation speed term. The justification is to increase robust-
ness to noise and outliers, although constraints on image acquisition modality
(CE-MRA) and on the absence of flow artifacts have to be introduced. The
proposed speed term is

GFWHM(x) = −1 +
2

σ
√
2π

∫ I(x)
0

e−
1
2 (ξ− 12 Imax(x)σ ) dξ (4.36)

that is the error function scaled between −1 and 1. Imax(x) is the maximum
intensity value in a circular region measured in a plane perpendicular to the
vessel centreline.
In contrast to inflation speed terms, attraction terms are usually formu-

lated as gradients of a potential. Model evolution is aimed at minimising
energy, therefore at seeking potential minima. Such potential can be expressed
as a decreasing function of image features. The classical formulation is made
in terms of image gradient magnitude as P (x) = |∇I(x)|. Regions correspond-
ing to at greater spatial variations in intensity levels are therefore valleys of
the potential. The resulting image-based force field

∇P (x) = ∇|∇I(x)| (4.37)

has its vectors pointing towards the valleys of−|∇I(x)| (as shown in Fig. 4.12).
This formulation therefore translates the criterion according to which the tran-
sition between two tissues coincides with the steepest variation in intensity
values. Although this is not necessarily verified for all acquisition modalities
and resolutions, this constitutes a well-accepted and rather accurate criterion.
Again, the distance at which the force field acts depends on the width of the
ridges, which can be increased by smoothing, at the price of a lower accuracy
in the identification of boundaries. A multiresolution approach can also be
employed in which the width σ of smoothing kernels is initially high, and is
then decreased to regain accuracy.
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Fig. 4.12. Top left, original image; top mid, gradient magnitude image; top right,
inflation speed image, obtained as (1 + |∇I(x)|)−1; bottom, attraction field vectors
(∇(|∇I(x)|)) superimposed to the gradient magnitude image, pointing to the ridges
of gradient magnitude
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4.5 Surface reconstruction

As extensively showed in the previous sections, the identification of the geom-
etry of vascular structures on images can be either performed directly in 3D,
or performed on a sequence of 2D images and subsequently reconstructed in
3D. In this latter case, the position of the vascular surface is known at disjoint
locations, such as at a series of lines or a set of points in space, e.g. arising
from tracing contours or from placing points on 2D images. In these cases,
continuous representations of 3D surfaces must be generated from sparse data,
a problem commonly referred to as surface reconstruction.

4.5.1 Lofting

Lofting is the procedure by which an explicit representation of a continuous
surface is obtained from a set of disconnected lines. Such lines can for exam-
ple be obtained as contours of the vascular lumen identified on different 2D
imaging planes. These can in turn be parallel to each other, such as in conven-
tional MR or CT, or non-parallel, as in intravascular ultrasound or freehand
3D ultrasound.
A simple lofting procedure consists in connecting each couple of succes-

sive contours by straight lines defining triangle edges. Corresponding triangle
vertexes can be located along the contours based on their mutual distance,
although this criterion can lead to distortion of the resulting surface in pres-
ence of abrupt changes in the shape of successive contours. One more difficulty
is the generation of the lofted surface in presence of bifurcations, when one
contour in one plane splits into two in the following plane.
A similar lofting technique consists in fitting a bivariate polynomial surface

patch to the contour set. The surface patch is defined as a tensor-product
bivariate polynomial S(u, v) where the parametric space is rectilinear in the
longitudinal direction, u ∈ [0, 1], and periodic in the circumferential direction,
v ∈ [0, 2π]. The patch is fitted along the whole vessel with a least squares
technique. Similar to the lofting procedure described above, geometric criteria
are introduced in order to avoid that the circumferential parameterisation
twists around the vessel [536]. The smoothness of the polynomial function
allow the contours to be spaced by a greater amount than in the linear lofting
case described above. This technique can notably deal with contours lying on
non parallel planes, such as those obtained from IVUS images (see Section 4.1).
As already noted, the lofting approaches introduced so far are not suited to

handle bifurcations. In other words, the topology of the surface has the require-
ment of being cylindrical, that is, it must be parameterisable by a rectangular
parametric space in which one coordinate is periodic. Several approaches have
been introduced to deal with the problem of bifurcating contours.
A technique used in [536] consists in fitting each bifurcation branch sepa-

rately and prolonging it into the parent vessel. The interpenetrating surfaces
are then clipped and stitched at the intersection lines. This method has the
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disadvantage of yielding non-smooth surfaces at seam lines. For this reason,
this method is not recommended for modelling Y-shaped bifurcations, while
it can be used to model T-shaped branches in which the parent vessel is much
larger than the side branch. Even in this case, the non-realistic discontinuities
in the orientation of normals at seam lines lead to models in which locations of
particular physio-pathological interest, such as branches, are non-realistically
reproduced.
Generic lofting algorithms capable of handling complex topologies are

available in several CAD packages, and permit the user to generate free-form
surfaces by controlling the shape of a set of contours. As such, they can be
employed to generate surfaces from contours delineated on medical images.
However, the generic nature of these solutions requires a certain degree of
interaction and user skill to generate the desired surfaces, such as the place-
ment of landmarks and editing of surface topology, at the expense of operator-
independence and reproducibility.
A lofting technique that has gained popularity for 3D reconstruction of

anatomical shapes from sets of parallel contours is the one proposed by
Geiger [185] and implemented in the public domain software Nuages. Contours
are first filled with triangles by means of a Delaunay tessellation approach (see
next paragraph and Section 4.11) [165]. Subsequently, triangles on every con-
tour are connected to the adjacent contour to form a set tetrahedra whose
boundary, after a clean-up step, forms the final surface. Since one layer of
tetrahedra is generated between each couple of contours, the smoothness of
the final surface depends on the spacing between contours. This aspect can
be improved with the use of subdivision methods in a post-processing step.
One more possibility for obtaining a continuous surface from a series of par-

allel contours is represented by shape based interpolation [422]. This method
generates an implicit surface representation either from a series of closed con-
tours or from a series of binary images generated using a segmentation tech-
nique. The implicit representation is given as a set of 2D images containing the
value of the minimum distance of each pixel to the contours, referred to as the
distance function. Since the contours are assumed to be closed, each distance
value is given a positive or negative sign depending on whether the pixel is
located inside or outside the contour, resulting in the so-called signed distance
function. The computed signed distance function is then interpolated in 3D
space by means of trilinear or higher-order interpolants. The final surface is
the zero level-set of the resulting interpolated signed distance field.

4.5.2 Polygonisations of point sets

In a typical surface reconstruction, the position of the surface can be known
at isolated points whose topological relationships are not available. As an
example, this occurs when the geometry of a physical replica of a vascular
segment is acquired by laser scanning techniques, but it can also occur in
image-based modelling in those cases in which it does not make sense to
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define 2D contours due to complexity of the underlying shape (e.g. in case of
a vascular network whose segments are diversely oriented with respect to the
imaging plane). In this case, a continuous representation of the surface has to
be reconstructed from the cloud of unorganised points.
A solution to this problem has been proposed in [226], and consists of

constructing the signed distance function D to the surface approximated by
the data points and then extracting the reconstructed surface by contouring
D. In order to compute D, a set of tangent planes is first constructed at each
data point by least squares fitting of the positions of the neighbouring points.
The normals to the tangent planes are then consistently reoriented with a
graph optimisation approach. The signed distance function is then obtained
as

D(x) = (x − oi) · ni (4.38)

where oi and ni are the origin and normal of the i-th plane which is closest
to the evaluation point x.
An alternative solution for surface reconstruction from scattered points is

offered by tessellation methods, which consist in filling space with simple 3D
elemental volumes, typically tetrahedra, whose vertexes are the data points.
The tessellation is performed in such a way that the boundary of the set of
tetrahedra approximates the surface the data points have been obtained from.
At the basis of most tessellation methods is Delaunay tessellation. A tetra-

hedralisation of a set of points is a Delaunay tessellation when no point falls
inside the circumsphere of any tetrahedron in the set. Delaunay tessellation
and its dual geometric construction, the Voronoi diagram, share a variety
of interesting geometric properties and they find wide application in recon-
struction and shape description, see for example [165] where several methods
for constructing the Delaunay tessellation of a set of points in 3D, are also
described. By construction, the Delaunay tessellation of a set of points results
in a convex set of tetrahedra, called a convex hull, irrespective of the origi-
nal shape of the object whose surface points have been sampled. Therefore,
its boundary does not in general correspond to the boundary of the object.
What makes Delaunay tessellations attractive for surface reconstruction is the
fact that, if the sampling density is sufficiently high, the original surface is
approximated by subset of the faces of Delaunay tetrahedra. This means that
it is possible to obtain the reconstructed surface by properly peeling external
tetrahedra off the convex hull. The challenge here is the correct identifica-
tion of external tetrahedra, since such information must be inferred without
the help of topological information. In case the orientation of normals to the
original surface is known for every point, a tetrahedron T can be classified as
external when

(pj − c) · nj ≥ 0 ∀pj ∈ T (4.39)

where pj is the j-th vertex of T , c its circumsphere and nj the known nor-
mal to the j-th vertex. After elimination of external tetrahedra, the boundary
of the resulting set of tetrahedra constitutes the reconstructed surface. Con-
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versely, in case surface normals are not known the reconstruction method has
select external tetrahedra by inferring the object shape from the 3D geometric
distribution of data points. A vast literature deals with this problem (see for
example [8, 9, 125, 131]).
Last, we mention the method of Boissonnat and Cazals [44], which fol-

lows the same idea of Hoppe’s method described at the beginning of this
section [226], but utilises the Delaunay tessellation of data points to infer
neighbourhood relationships and robustly construct the signed distance func-
tion.

4.5.3 Interpolation by radial basis functions

It has already been described in 4.2.2 how a 3D surface can be implicitly
represented as a superposition of analytical radial basis functions. Each RBF
is centred at a predetermined location in space, which is in general associated
with the known location of the surface to reconstruct, and has an expression
chosen among the possibilities listed in Equation 4.11. Once the location and
the expression of RBFs are determined, the implicit surface is fully determined
by the coefficients wi in Equation 4.10, as well as by the low-order polynomial
function P (x) (As suggested in [375], the latter can be omitted if the number
of data points is large (N > 10); for this reason, in the following we will
assume P (x) = 0).
At this point, the problem is that of determining coefficients wi from a

set of N data points pi of known location such that the resulting embedding
function F is zero at the data points and smoothly interpolates between them.
This implies the imposition of a set of conditions of the type

F (pi) = di i = 1, . . . , N (4.40)

which leads to a linear system of equations of the form

A ·w = d (4.41)

where Aij = φ(|pi − pj|) is a symmetric N × N matrix, w is the vector of
N weights wi and d is the right hand side vector containing the values that
F has to take at the data points. The matrix A is non singular if N ≥ 2 and
pi = pj for i = j. In theory, since the data points should lie on the surface, d
should be identically zero. In practise, this would lead to a linear system that,
if non singular, would only admit the trivial solutionw = 0. Therefore, one or
more data points must be specified in such a way that di = 0. These points are
referred to as offset points, and can be generated by moving data points away
from the surface of a fixed amount. As an example, if data points are generated
from closed planar contours, offset points can be generated by shrinking the
contours along their normals of a fixed amount, as shown in [375].
Depending on the choice of RBF and the distribution of data points, the

system needed for the computation of w can be badly conditioned or not
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positive definite. For this reason, robust iterative methods such as GMRES are
employed. In order to improve convergence properties, ad-hoc preconditioners
or regularisation techniques have been proposed [375].
In general, the choice of linear or cubic RBFs (see Equation 4.11), leads

to smooth implicit functions and good convergence rates.

4.6 Overview of vascular modelling strategies

In the previous sections we briefly overviewed some of the main techniques
available for accomplishing the several steps involved in modelling vascular
segments from medical images. We will now give an overview on how these
techniques have been combined to provide full-fledged image-based modelling
strategies.
As anticipated previously, the choice of a modelling strategy depends on

image modality (2D vs. 3D, bright blood vs. black blood), image quality (pres-
ence of noise or artifacts), vascular segment geometry and topology (simple
vs. complex), purpose of analysis (pure geometry, hemodynamics or fluid-
structure interaction), and it must take into account the issues of accuracy,
reproducibility, robustness, automation. Automation has in general been con-
sidered a key feature in proposing tools for clinical contexts, such as for steno-
sis grading, while accuracy has been assigned a higher priority over automation
for applications such as geometric or haemodynamic modelling, at the price
of user interaction. In some situations the intervention of a trained operator
is hardly replaceable, like in the case black blood MR imaging, when the pres-
ence of complex haemodynamic patterns gives rise to plaque-mimicking flow
artifacts which are difficult to automatically discern from the vessel wall.
As already mentioned, the dimensionality of the imaging modality con-

tributes to the choice of the dimensionality of the technique. For example,
if the acquired images are made up of strongly anisotropic voxels, for which
in-plane resolution is much greater than along the imaging plane normal, 2D
segmentation followed by a 3D reconstruction offers more flexibility in han-
dling typological and geometric changes occurring from one slice to the next.
On the other hand, 3D segmentation provides a more straightforward pos-
sibility on datasets with a more isotropic resolution, allowing modelling of
vascular segments with complex geometry. In general, initialisation and spec-
ification of user-defined constraints require more sophisticate approaches if
directly performed in 3D.
Two representative studies in which vascular models were generated by 2D

segmentation followed by 3D reconstruction are Milner et al [333] and Long et
al [297]. In the former, carotid bifurcation models were generated from black
blood MR images. 2D outlines were first generated by means of a region grow-
ing algorithm, which provided a sequence of oriented points around the lumen.
Point position was eventually interactively adjusted based on the degree of
fit to the wall and smoothness of a B-spline surface fitted to the points. Con-
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tours were finally lofted with B-spline surface patches, one for each vessel
branch (common, internal and external carotid artery). Each surface patch
was bounded by a contour; in particular, all surface patches were attached
to the same contour at the bifurcation level, so to ensure surface continuity.
Long et al instead resorted to 2D snakes for the segmentation of TOF-MRA
images or abdominal aorta bifurcations. A two-stage smoothing procedure was
applied to the generated lumen contours in order to correct misalignment of
subsequent contours due to subject movement, and to improve global surface
appearance. Four surface B-splines were generated from lumen contours, two
of them following the outer wall of the bifurcation, from the parent vessels
to the two daughters respectively, and two on the inner side of the daughter
branches, meeting at the bifurcation apex.
A 2D segmentation technique geared towards the delineation of both lumen

and wall boundaries in black blood MR images was presented by Ladak et
al [266], based on a DDC model. Steinman et al [482] employed this method
to generate 2D contours of carotid bifurcations. The contours were then filled
to create a binary volume, inside which a 3D balloon was inflated, in order to
generate a 3D mesh of triangular elements, whose smoothness was imposed
through internal forces. In the same work, owing to the acquisition technique
employed, the outer boundary of the vascular wall was also segmented using
the same deformable model, and a 3D model of the vascular wall was derived.
Besides allowing to test hypotheses on the correlations between hemodynam-
ics and wall thickening, as introduced in Chapter 1, this technique might in
principle be used for generating fluid-structure interaction models (see Chap-
ter 3 and 9) based on patient-specific lumen and wall geometry.
Wang et al [536] addressed the problem of performing 2D outline genera-

tion for geometrically complex vessels by extracting approximated vessel cen-
trelines from 3D image datasets, generating images oriented normally to vessel
centrelines and performing level set-based 2D segmentation on the resulting
images. The outlines were then lofted to produce analytical explicit represen-
tations of single branch surfaces, which were then merged together to obtain
a complete model of a branching vascular structure.
Giordana et al [194] employed a 2D segmentation method based on edge

detection and thresholding followed by cubic spline fitting to segment TOF-
MRA images of distal bypass grafts. 3D reconstruction was then performed by
means of implicit RBF. The same group [375] recently proposed automated
segmentation of TOF-MRA by means of Otsu’s thresholding followed by RBF
reconstruction.
Kaazempur-Mofrad et al [248] employed nonlinear image enhancement and

snake-based 2D segmentation followed by 3D surface lofting to reconstruct
diseased carotid bifurcations from black blood MR images.
As for 3D explicit deformable models, Ladak et al [265] proposed the use

of balloons initialised as a simple 3D shape (e.g. a sphere) and then evolved
with a two-stage procedure, during which the model is first inflated under the
effect of a gradient-dependent term until it approaches the vessel wall and then
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optimised under the effect of a gradient-based advection field. This technique
was successfully employed for the segmentation of a cerebral aneurysms from
RA [478] which constituted the first patient-specific model of hemodynamics
in cerebral aneurysms. As an alternative to this approach, Yim et al [550] pro-
posed to initialise explicit deformable models with isointensity surfaces built
using a 3D contouring algorithm directly on the images. This provides easier
generation of topologically complex initialisations, although the exclusion of
unwanted structures requires further processing.
Last, 3D implicit deformable models have been employed in [119] [12,518]

with different initialisation strategies. In [119], a front propagation approach
based on the solution of the eikonal equation was employed in order to initialise
level sets near the vessel wall. In [518] initialisation is provided by the esti-
mation of centrelines performed on the basis of vesselness (see Section 4.3.3),
and image-dependent inflation terms are then employed in conjunction with
stopping criteria. In [12], centrelines were estimated from a surface extracted
by contouring and again employed for initialisation of level sets. A first infla-
tion stage was then performed, followed by attraction of level sets to vessel
boundaries. Segmentation was carried out separately for branches of different
scales, in order to avoid scaling problems in the evolution parameters. Final
level sets relative to different branches were then merged together to obtain
the complete model.
In short, the problem of defining the geometry of a computational domain

representing a vascular segment from medical images has several possible solu-
tions. The choice has to be made based on image characteristics and on the
expected geometry and topology of the vascular segment under consideration.
Since the outcome of this step is the definition of the computational domain
upon which the modelling problem will be carried out, a careful choice of
the technique and of the involved parameters is of primary importance for
ensuring the significance of the final predictions.

4.7 Mesh Generation

The last step in the generation of computational domains from image data for
the numerical approximation of PDEs introduced in Chapter 2 and 3, is the
discretisation of the physical domain in small elements of simple shape and
finite size (the computational mesh), as illustrated in Fig. 4.1.
To this end, this section contains a brief description of available mesh gen-

eration techniques that we consider to be particularly useful for cardiovascular
geometries. The reader should be aware that there is no such thing as a “gen-
eral” mesh generation technique; the most efficient or appropriate technique
for mesh generation depends on the geometrical and physical complexity of
the problem being solved as well as on the method of discretisation chosen.
In what follows, the term mesh will be used to refer to the spatial discreti-
sation required for the numerical approximation of PDEs. The term grid is
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often used in the literature with the same meaning, but here the word grid
is reserved to denote a lattice of voxels/pixels of an image, as in the previous
sections.
The literature in mesh generation is extensive. The reader could consult

the general review articles [365,474,501], the textbooks [172,260,499,500], the
special journal issues [59, 366], and the “Meshing Research Corner” website
maintained by S. Owen to expand on the necessarily brief coverage of the
topic provided here.

4.8 B-Rep model of the computational domain

A general framework for the definition of a computational domain is the so
called boundary representation, or B-Rep, where the domain is viewed as a
polyhedron bounded by curved faces defined on surfaces. The faces in turn
are polygons bounded by edges defined on curves that, in what is commonly
referred to as a manifold representation, are common to two surfaces (see
Fig. 4.13). Non-manifold representations are discussed elsewhere, e.g. [312].
The surfaces in the B-Rep definition of the computational domain can be

defined as NURBS surfaces, implicit or level set surfaces, or triangulations, as
discussed previously in Section 4.2. The edges are represented by the inter-
sections between these surfaces.
A common practise is to generate the mesh in a bottom-up fashion, namely,

starting from a division of the edges into segments, followed by a discretisation
of the faces, and finally the generation of a volume mesh in the interior of the
domain.

Fig. 4.13. Boundary representation (B-Rep) model of the computational domain
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4.9 Structured versus unstructured meshes

Structured meshes are usually associated with numerical approximations by
finite differences. The nodes of such meshes follow a regular repeatable pat-
tern where each interior node is always connected to the same number of
neighbouring nodes, as shown in Fig. 4.14(a). The presence of such a pattern
means that the data structures required to represent the mesh are trivial, and
the neighbour nodes can be easily identified by a suitable numbering of the
nodes consistent with this pattern.
On the other hand, unstructured meshes do not show such a pattern and

the number of neighbours to a node changes from node to node in the mesh.
An example of such meshes is shown in Fig. 4.14(b). The data structures
required to represent unstructured meshes are more involved as we need to
store additional information to identify the neighbours of each node in the
mesh. Finite elements and finite volumes are the techniques commonly used
for numerical simulations in this type of meshes.
The mesh structure affects the efficiency of numerical algorithms for the

solution of PDEs. The neighbouring values required for the construction of
numerical approximations at a node of a structured mesh can be easily iden-
tified by direct addressing in the array storing the variables. A similar con-
struction on an unstructured mesh requires the use of a connectivity array
to identify the nodes neighbouring a given node. Its implementation requires
indirect addressing of the array of variables. The implications for efficiency are
significant: loops implemented using indirect addressing are at least twice as
expensive as similar loops where direct addressing is used. Therefore, when-
ever the complexity of the geometry permits the generation of an structured
mesh in a reasonable time, we could use numerical algorithms that take advan-
tadge of this structure to produce solvers that are faster and more efficient
than those implemented on unstructured meshes.
In what follows and without significant loss of generality, we will restrict

our discussion mainly to structured meshes that are topologically square lat-
tices of points and to unstructured meshes of triangles and tetrahedra. Other
lattice topologies and element types are possible but we refer to the literature
cited in Section 4.7 for a discussion.

(b)(a)

ξη

Fig. 4.14. Structured and unstructured mesh discretisation of a computational
domain
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4.10 Structured mesh generation

Finite difference approximations are easily implemented on a Cartesian sys-
tem of reference by defining an orthogonal network of lines parallel to the
axes. The mesh nodes then correspond to the intersection of the coordinate
lines. The application of boundary conditions is easy if the nodes are located
on the boundary. However, this is often not the case in the presence of curved
boundaries. It is still possible to impose boundary conditions at the inter-
section points of the network of lines with the boundary. This means that
the finite difference approximations use unevenly distributed points which
typically increases the truncation error of the approximation at boundary
when compared with that of the interior points where the intervals are evenly
spaced. Neumann boundary conditions, such as those described in Chapter 2,
are difficult to implement since they involve the normal to the boundary and
require additional points to construct the approximation.
To reduce the errors when applying boundary conditions one could use

higher order approximations at the boundary, but this increases the compu-
tational cost and complicates the implementation as requires additional book-
keeping to construct the boundary approximations. An alternative method is
to increase the resolution at the boundary using recursive subdivision meth-
ods, called quadtree in 2D and octree in 3D for reasons that will become clear
in the next section.

4.10.1 Quadtree and octree Cartesian meshes

The main idea behind these methods is to selectively refine the mesh, i.e.
reduce the mesh size, near the boundary to reduce approximation errors.
The procedure starts by defining a coarse Cartesian mesh (e.g. 3× 3 points)
which contains the domain Ω. Cells that contain the boundary are identified
and, if the discretisation error is larger than a certain prescribed value, the
cell is divided into four. This subdivision is recursively applied to the newly
created cells until the discretisation error is such that no further subdivision
is required, as illustrated in Fig. 4.15.

(a) (b)

Γ

Ω

Fig. 4.15. Quadtree structured mesh: (a) general view; (b) improving the truncation
error via subdivision near boundaries
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An efficient way of implementing the method is the use of a tree struc-
ture in which the initial four cells are at the root and each cell is associated
either the four cells that result from a splitting by half in both directions, or
none if the cell is not broken up any more. These type of structures are well
known and documented in the computer science literature [446], where they
are extensively employed, e.g., for compiler parsing and image processing.
The use of a quadtree structure increases the amount of memory required

as the tree needs to be stored. The discretisation of the PDE requires a com-
plex housekeeping which involves a tree searching to form the finite difference
approximations. The ideas described in 2D for the quadtree structure are
readily applied in 3D (octree), where each cell is now subdivided into eight.
The added complexity required for the treatment of curved boundaries

and the difficulty in applying boundary conditions in the normal direction
has limited his application for viscous flows on complex geometries.
The favoured approach for structured meshes in the presence of curved

boundaries is the use of boundary conforming meshes. These are meshes in
which their boundary nodes are on the boundary of the computational domain
thus eliminating the need for interpolation at intermediate points and reducing
the associated discretisation errors.

4.10.2 Mesh generation by mapping

A method for generating structured boundary conforming meshes is the use
of a suitable mapping. The idea of using a mapping (x, y) → (ξ, η), yet to
be defined, is therefore to transform the domain Ω with boundary Γ into a
rectangular region Ω∗ with boundary Γ ∗ as shown in Fig. 4.16.
The original PDE is also transformed into a new PDE, which is solved

in a square region where the application of boundary conditions is greatly
simplified and the discretisation can be easily and accurately performed using
standard finite difference approximations. An alternative option is to use the
inverse mapping to transform a network of orthogonal lines in Ω∗ into a net
of coordinate lines (a mesh) in Ω which is boundary conforming. This mesh
in Ω is boundary conforming and can be employed to discretise the PDE and
boundary conditions using finite volume or finite element methods.

C*D*

A* B* Γ

Ω*

Γ*

Ω

η

η

D

A

B

C

ξ

ξ

x

y

(ξ,η)x = x
y = y (ξ,η)

Fig. 4.16. Mapping of a region into a square region
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The problem of this approach is that of finding a suitable mapping. The
main types of structured mesh generation methods are either algebraic meth-
ods or based on the solution of elliptic, parabolic or hyperbolic PDEs.
Algebraic methods define the mapping via an explicit mathematical expres-

sion. For instance, the method of transfinite interpolation [134,470] obtains the
mapping via the interpolation of polynomials through a set of points along
the coordinate directions. Their main advantage of these methods is their
simplicity and efficiency. However they often do not afford the user sufficient
control to cluster points in regions where a finer mesh is required or to avoid
mesh overlapping occuring for certain geometries.
Mesh generation by means of elliptic PDEs is discussed in the next section.

4.10.3 Elliptic mesh generation

The mapping that will transform a Cartesian mesh in the parameter space
(η1, η2, η3) into a mesh in the physical space r = (x, y, z) is defined as the
solution of the system of elliptic PDEs of the form

N∑
i=1

N∑
j=1

gij
∂2r

∂ηi∂ηj
+

N∑
k=1

P k
∂r

∂ηk
= 0 (4.42)

where N is the number of dimensions and

gij =
∂r

∂ηi
· ∂r
∂ηj
;

n∑
j=1

gijgjk =

{
1 i = k
0 i = k . (4.43)

The terms P k(η1, η2, η3) are mesh control functions that are suitably defined
to increase or decrease the mesh resolution about nodes or lines in the mesh.
The equations 4.42 are solved numerically. The unknowns are the coordi-

nates of the interior mesh nodes. The boundary conditions are the coordinates
of the mesh nodes in the boundary obtained in the previous step of the dis-
cretisation of the B-Rep of the computational domain. The PDE is discretise
using centred finite differences and the resulting system of equations solved
using iterative techniques.
The method has been applied to the generation of some very complex 3D

geometries. However, finding a suitable mapping or sequence of mappings to
transform the topologically square computational domain into a square it is
often very difficult and requires a high degree of ingenuity. A strategy that,
to a large extent, remedies this problem is the use multiblock meshes.

4.10.4 Multiblock techniques

In the multiblock method the computational domain is divided into a number
of subdomains or blocks that are topologically square. These subdomains are



168 Luca Antiga, Joaquim Peiró, and David A. Steinman
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Fig. 4.17. Multiblock mesh generation

individually discretise using a mapping into a square or cube. Continuity
across the interfaces between the blocks is ensured by requiring that the points
(and perhaps tangent vectors) at the interfaces are shared by adjacent blocks.
The different steps involved in the discretisation procedure by the multiblock
approach are illustrated in Fig. 4.17.
This method has been very successful in producing structured meshes for

complex 3D geometries. However, there are two main drawbacks. The first
is an increase in computer memory for storage of the connectivity between
the blocks and the additional information from neighbouring blocks that is
required (usually in the form of halo cells) to form the approximations at
the block interface boundaries. The second, and also the main bottleneck of
the method at present, is the lack of a general method for the automatic
subdivision of the computational domain into topologically square regions.
This process often requires some form of user intervention that makes the
task very difficult and time-consuming.
A way to ease the process of automatically generating meshes for complex

geometries is the use of composite overlapping or, alternatively, unstructured
meshes.
Composite overlapping meshes, also known as overset or chimera meshes,

consist of separate boundary conforming meshes for each of the different com-
ponents of the boundary, but without defining a precise interface with common
points. Figure 4.18 shows a simple 2D example.
These methods facilitate considerably the generation of meshes for very

complex geometries, but require the use of special interpolation procedures to
transfer information between meshes. This could result in a loss of accuracy
at the interfaces. For instance, properties such as conservation are difficult to
preserve, particularly in 3D. Further information about these methods can be
found in [81].
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Fig. 4.18. Composite overlapping meshes

As discussed in Section 4.9, unstructured meshes do not have a predefined
node and element arrangement, this lack of structure eases greatly the mesh
generation and permits a better automatisation of the process. Their use has
lead to a considerable reduction of the time required to generate a mesh for
a complex geometry as compared to multiblock.

4.11 Unstructured mesh generation

In this section we discuss three of the most commonly used methods for gen-
erating unstructured meshes: Delaunay, advancing front and octree.

4.11.1 Delaunay mesh generation

This method is based in the construction of the Voronoi diagram for a given set
of nodes. This is a spatial partition of the domain into regions, each of which is
associated to a node in the set and contains the points that are closer to that
node than to any other node in the set. A Delaunay triangulation, already
introduced in Section 4.5, is uniquely defined by joining, with a straight line,
nodes in regions sharing an edge. An example of a Voronoi partition and its
dual Delaunay triangulation is shown in Fig. 4.19(a).
An important property of the Delaunay mesh is that circumcircles (cir-

cumspheres) of a triangle (tetrahedron) do not contain other nodes in the
mesh. This is depicted in Fig. 4.19(b) and it will be referred to as the in-circle
test in what follows. The algorithm proposed by Watson [537] uses this prop-
erty to generate a mesh as follows. Assume that we have an existing Delaunay
mesh where we want to introduce a new node. Those triangles in the mesh
that do not satisfy the in-circle test, i.e. their circle contains the new point,
are eliminated from the mesh. A new Delaunay mesh is then generated by
connecting the new node to the nodes in the boundary of the (convex) hole
created in the mesh in the previous step. This process is repeated for all the
nodes in the set. An illustration of the algorithm is shown in Fig. 4.20.
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(a) (b)

P

Fig. 4.19. Delaunay triangulation: (a) Voronoi diagram of a set of points. The
shaded region indicates the Voronoi region associated with the point P. The dashed
lines represent the boundary edges of the Voronoi regions. The Delaunay triangu-
lation is obtained by joining those point that share a boundary edge. The Voronoi
edges are the median lines of the sides of the triangulation. (b) The in-circle crite-
rion: the circumcircles of the triangles in a Delaunay mesh do not contain any other
nodes

(b)(a) (c)

Fig. 4.20. An illustration of the Watson’s algorithm for Delaunay mesh generation:
(a) a new node is introduced into an existing Delaunay mesh, the triangles that
do not satisfy the in-circle test are shaded; (b) the triangles that do not verify the
in-circle test are deleted and (c) the new node is connected to the nodes in the
boundary of the hole created to produce a new Delaunay mesh

A reliable implementation of this technique requires the use of robust
algorithms that provide unambiguous answers for the in-circle test. These
is required to handle degenerate cases, such as for instance four or more
nodes in the same circumcircle, that will lead to topological incompatibilities
(self-intersection) if the in-circle test is affected by round-off error. Robust
algorithms for the in-circle test and other geometrical tests are discussed
in [18, 461]. If the set of points is given, the main cost of the algorithm is
the search for the circles that contain a point to be inserted in the mesh. A
much more efficient version of the method is obtained is the search is reduced
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to a local search as proposed by [538]. The main idea is to automatically gen-
erate a point within a triangle if this is consistent with a specified mesh size
distribution. As a result, the verification of the in-circle condition requires
only a local search that is easily implemented by storing a list of neighbour
triangles to a triangle.
Another very important property of the Delaunay triangulation is that its

boundary is the convex hull of the set of nodes. If the boundary of the com-
putational domain is not convex, an additional post-processing of the mesh
is required for recovering a suitable discretisation of the boundary. Bound-
ary recovery is the main difficulty associated with this generation technique,
particularly if we require the mesh that conforms to the boundary discreti-
sation to be Delaunay. This could be achieved, to some extent, by boundary
point insertion but this might lead to a mesh which is too fine at the bound-
ary. If obtaining a Delaunay mesh is not a requirement, mesh modification
techniques could be employed to recover the surface discretisation [186].

4.11.2 Advancing front mesh generation

The advancing front method is based on the use of a generation front formed
by facets that will be used to construct elements using a facet of the front
as the element base. For a tetrahedral mesh, the facets are triangles and
the elements are tetrahedra. The mesh elements are generated in sequence
and, at a given stage of the generation process, the generation front is the
discretise boundary of the region in the computational domain that remains
to be meshed. The facets are consistently orientated so their normal could
be used to determine the relative position of that region with respect to the
front.
The generation front is a dynamic data structure which changes contin-

uously during the generation process. The initial front is the set of facets
generated in the previous stage of the discretisation of the B-Rep of the com-
putational domain. During the generation process a facet is selected from the
front and an element is generated. This may involve creating a new node or
simply connecting to an existing node in the front. The validity of the element
is verified by checking that this element does not intersect the generation front.
After a valid element has been generated, the front is updated by deleting the
facets of the newly generated element that are present in the current front
and inserting the facets that are not. This updating process is illustrated in
Fig. 4.21 for a two-dimensional domain.
The advancing front method preserves the boundary discretisation and

also permits a straightforward implementation of mesh control. However, it
is an heuristic method. A successful implementation requires procedures that
are robust, i.e. insensitive to computer round-off error, to verify the validity
of the element, a suitable strategy for the selection of facets and points to
generate new elements, and the use of suitable range searching and sorting
algorithms and data structures for efficiency [34].
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Fig. 4.21. Advancing front mesh generation. The shaded region represents the
region that remains to be meshed. Its boundary is the generation front. The arrows
indicate the generation sequence

The main advantadge of the method is that it preserves the boundary tri-
angulation and thus there is no need for boundary recovery. The quality of the
meshes it generates is very similar to that obtained by the Delaunay method
when the same mesh distribution is prescribed. The cost is also comparable
if a range search is required to insert points in the Delaunay mesh. However,
the Delaunay method with automatic point insertion is more efficient.
This method can also be employed for the generation of unstructured

meshes of quadrilaterals in reference [40, 559] and of hexahedra as described
in references [41].

4.11.3 Octree and quadtree unstructured mesh generation

The starting point is the definition of a box, or cell, that contains the compu-
tational domain. This cell is recursively subdivided into smaller cells, usually
four in 2D or eight in 3D. The subdivision is applied until the smallest cells
permit to represent the boundary accurately. To ensure good mesh quality,
the size of neighbouring cells is required not to differ by more than a factor
of two. If the boundary discretisation is an input, then the vertices of the
tree are moved to recover it. Otherwise, the intersections of the cells with the
geometry are calculated and the discretisation of the boundary obtained in a
manner similar to the marching cubes technique described in Section 4.2.3. In
the final step, we triangulate the portions of the cells that are interior to the
domain and exclude those that are exterior. An illustration of quadtree mesh
generation is depicted in Fig. 4.22.
The octree technique is fast, conceptually simple and works reasonably

well even with an inaccurate B-Rep of the boundaries. On the other hand,
it introduces artificially preferred directions and produces poor elements near
the boundary. This is due to the limited control on refinement near boundaries
which must occur by factors of two. The quality of the mesh can be improved
by the use of mesh enhancement techniques which are described in the next
section.
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(c)(a) (b)

Fig. 4.22. Quadtree mesh generation: (a) spatial partition of the cells; (b) boundary
discretisation; (c) triangulation of the interior portions of the cells

4.11.4 Mesh control, enhancement and adaption

The geometrical properties of the mesh play an important role in the efficiency
and accuracy of numerical simulations performed on it. The cost of a flow
simulation on a given mesh is proportional to the number of elements or
nodes in the mesh. The quality of the flow solution at a given location is
affected by the local discretisation errors that depend both on the mesh size
and the smoothness of the solution. Finally, mesh distortion, e.g. the presence
of very small angles, could have a detrimental impact on the convergence
of algorithms for the solution of the discretise PDEs. It is therefore very
important to incorporate mesh control strategies in mesh generation to achieve
an optimal mesh, i.e. the one that produces the best accuracy for a given
number of nodes.
Mesh control is usually implemented by requesting that the mesh to be

generated conforms to a given spatial distribution of element size and shape.
This distribution could be given as a user-defined function. Alternatively we
could use techniques for mesh adaption where the mesh control function is
automatically inferred from the geometry of the domain, a flow simulation on
the current mesh, or both.
Mesh control is easily incorporated into any of the unstructured mesh

generation techniques previously described. In the octree mesh generation
this is achieved by splitting a cell only if the children cells have a length
larger than the mesh size specified by the mesh control function at the cell
centre. In the advancing front method, the characteristics of the element to be
generated could be obtained by the evaluation of the mesh control function at
the centroid of the front facet used as its base. In the Delaunay triangulation,
a new point is inserted in the mesh only if its insertion leads to elements of a
size larger than that specified by the mesh control function.
Due to algorithmic and geometrical constraints it is not always possible to

achieve, using the previously described techniques, a mesh without distorted
elements. The quality of an element of the mesh is almost always evaluated by
comparison with its equilateral equivalent. Several quality indexes or metrics
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have been proposed in the literature and most of them are discussed in [462].
If a mesh control function is specified, the quality index must be computed in
a suitable normalised space as described in [172,374].
The quality of the mesh can be improved through the use of mesh enhance-

ment techniques such as mesh smoothing, side splitting, side collapsing and
side swapping. These techniques are of a local nature and modify only a
few nodes and elements in the mesh. The enhancement of the mesh is often
achieved by locally applying them in sequence whilst sweeping through the
mesh.
Mesh smoothing moves a node of the mesh to a new position that is a

weighted average of the positions of the nodes that belong to the elements in
the mesh surrounding the node. Side splitting inserts a new node in a side
of the mesh and divide all the elements sharing the side in two to produce
elements that contain the new node. Side collapsing takes a side of the mesh
and eliminates it from the mesh by collapsing its two nodes into a new node.
As a result, all the elements sharing the side also disappear from the mesh.
Side swapping a side is eliminated from the mesh, leaving a cavity bounded by
a polyhedron formed by the faces of the elements surrounding the side. A new
mesh topology for this cavity is obtained by first constructing a triangulation
using the nodes in the polyhedron that did not belong to the deleted side
and then connecting these triangles to the nodes of the eliminated side. There
might be many ways of constructing this triangulation and the obvious choice
is to select the one leading to the best mesh quality. All these procedures could
lead to the generation of invalid elements for certain meshes. In practise this
is avoided by applying these operations only if the modified mesh is valid.

4.11.5 High-order mesh generation

High-order elements, despite their increased computational cost with respect
to linear elements, can efficiently achieve high accuracy for a given computa-
tional work. When used in the frame of a spectral element method to solve the
differential problem at hand, they exhibit exponential convergence for smooth
solutions as the order of the polynomial is increased, and are particularly effi-
cient for the long time integration of unsteady flows, see for instance [60,253].
The generation of a mesh of boundary conforming high-order elements

can be achieved through the modification of a previously generated mesh by
creating the additional points required for the high order interpolation and
projecting them on the edges and surfaces of the boundary of the computa-
tional domain.
The construction of such elements starts with a discretisation of the edges

of the tetrahedral mesh into N points as required by a Lagrangian polynomial
interpolation of degree N − 1. There are three possible cases to consider. If
the end points of the mesh edge belong to an edge of the of the domain, the
interpolation points are generated on the edge. If the mesh edge is on the
boundary surface, the interpolation points are generated in a suitable projec-
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Fig. 4.23. Unstructured mesh of high-order elements: the figure on the left shows
the coarse mesh representing the projection of the edges of the linear mesh on the
boundary. The enlarged figure includes the interior points used in defining the high-
order approximation within the elements

tion of the mesh edge onto the surface. In all other cases, the edge is taken to
be straight and the interpolation points are equally spaced along its length.
The next step requires the subdivision of the faces of the tetrahedral

elements. This involves two possible situations. If the mesh face is on the
boundary surface, a transfinite interpolation from the interpolation points
on the edges of the face followed by a projection on the surface is used to
calculate their 3D coordinates. For all the other faces, a transfinite interpo-
lation between the 3D coordinates of the interpolation points on the edges is
employed to compute the position of the interior points. The final splitting
of the tetrahedral elements involves a transfinite interpolation between the
coordinates of the points previously generated on the faces of the element. An
example of a high-order mesh is shown in Fig. 4.23. More details about these
techniques can be found in [124,459].

4.12 Conclusions

The purpose of this chapter was to give an overview on the existing techniques
for generating patient-specific computational domains representing vascular
segments starting from image data. Rather than providing a comprehensive
list all the available approaches, we tried to organise this wide matter into a
unified framework, focussing on the fundamental concepts and terminology.
Our aim was to provide the reader with the means for choosing the best
techniques for the specific problem at hand. What has been described in this
chapter enables the application of the mathematical techniques presented in
the reminder of the book to patient-specific cases.



5

Geometry and flow

Denis Doorly and Spencer Sherwin

Arterial disease, in the form of atheromatous plaques, is found to occur pref-
erentially in regions where arteries bend and in the vicinity of branches, as
discussed in Chapter 1. The changes in vessel shape due to pathology clearly
affect blood flow, but there is a mutual interaction between haemodynamics
and vascular biology. For example the traction (i.e. the force per unit area)
exerted by the flowing blood on the vascular conduit walls directly affects
how the endothelial cells function. Admittedly we do not yet fully understand
the mechanisms through which haemodynamics and vascular biology interact.
Nevertheless since any internal flow is strongly affected by the geometry of its
conduit, we are motivated to explore how this is manifested in arteries.
In this chapter therefore we seek to uncover characteristic features of

the relation between flow and vessel geometry. For the major part, we focus
on simplified geometries rather than patient-specific vascular anatomies, and
briefly touch on how the nature of the response depends on the pulsatile char-
acter of the flow. The flow regimes modelled are appropriate only for the
larger arteries d > 1mm, and it is assumed that the vessel walls can be taken
as rigid and the viscosity as constant (i.e. Newtonian flow). Clearly errors
are introduced by the latter simplifications, though as found by Moore et
al. [340], Perktold and Rappitsch [419], Steinman and Ethier [481], assump-
tions of a rigid wall and Newtonian flow replicate the dominant features of
large artery flows. In smaller vessel a non-Newtonian rheology would instead
be more appropriate, as explained in Chapter 6.
The primary attributes we investigate are thus the geometric form of

the vascular flow conduit and the inflow and outflow boundary conditions.
The examples we present demonstrate characteristic flow patterns that occur
where conduits bend, branch or narrow; in selecting examples we wish to
illustrate how the flow response varies according to the temporal and spatial
length scales of the problem. We distinguish between global and local char-
acteristic features of the conduit geometry: global features are identifiable
attributes extending over many diameters, whereas local features represent
abrupt changes. A gradual bend or series of bends may be identified as a

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
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global feature since the radius of curvature of an arterial bend is usually sev-
eral times the diameter of an artery, whereas a stenosis often displays rapid
changes in lumen diameter. Likewise in considering temporal boundary con-
ditions, the flow may be modelled as effectively steady, quasi-steady or fully
unsteady, depending on the quantity under investigation and the part of the
cardiovascular system considered (c.f. Table 1.7 in Chapter 1).
The system of equations describing the model flow may be solved for par-

ticular values of viscosity μ, density ρ, and of the parameters specifying the
geometry and inflow. However there exist group transformations that leave
the system invariant, so that all solutions for arbitrary parameter values can
be generated from a restricted subset, [74]. We begin by identifying certain
dimensionless parameter combinations, termed similarity parameters, and dis-
cuss their physical significance at the outset.
We will then review some basic relations from the differential geometry of

three-dimensional curves. These relations facilitate both precise descriptions
of the bending and twisting of arteries, and the analysis of flow in curved
vessels and along curved pathlines.
The concept of vorticity, and techniques to identify vortical regions or

structures in a flow are next introduced. Together these tools prove espe-
cially useful in identifying the mechanisms responsible for the complex flow
phenomena observed.
Having outlined the essential physical and analytic concepts, we begin the

study by reviewing some key results in the viscous and inviscid analysis of
steady flow in a bend. For the physiologically relevant range of parameters,
direct numerical solution of the equations is however needed to provide accu-
rate results. We thus apply computational methods to determine first of all
the flow in an isolated bend, and subsequently the flow in sequences of rel-
atively weak (45◦) and strong (90◦) bends respectively. We then move on to
investigate flows at a graft anastomosis, including cases where the outflow
bifurcates. The effects of varying temporal scales on the flow structures in
unsteady flows are considered, both for a double bend and at a stenosis.
Finally we consider a few anatomically realistic geometries, and discuss

the relative significance of global and local attributes in determining the flow
characteristics in representative cases.

5.1 Similarity parameters: ReD, De,Wo, Ured and their
physical meaning

It is obvious that to model the in vivo flow environment computationally,
a necessary starting point is to recover a geometrically similar definition, as
discussed in Chapter 4. However in addition to geometric similarity, we need
to assure dynamic similarity, that is the dynamics of the model system must
match the real dynamics. It is not necessary that all the governing parameter
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values in the model match those in the real case, but only that the relevant
dimensionless similarity parameters of the flow agree.
In curved pipes important parameters are the Reynolds and Dean numbers,

whilst for unsteady flows the Womersley number and/or Reduced Velocity are
also relevant. We now discuss the physical interpretation of these parameters,
to complement their mathematical role in establishing invariant group trans-
formations.

5.1.1 Reynolds number

As previously defined in Chapter 1, the Reynolds number, ReD in an internal
flow of mean sectional velocity U within a pipe or vessel of characteristic
diameter D is given by

ReD =
ρUD

μ

where μ is the dynamic viscosity of the Newtonian fluid. We have here used
the suffix D to indicate that the reference length used in the definition of the
Reynolds number is the vessel diameter. Indeed, it is sometimes possible to use
other length scales. The diameter is the most important length scale for fluid-
dynamic phenomena in a vessel. The Reynolds number parameter naturally
arises in the non-dimensionalisation of the Navier-Stokes equations. However
it may physically be thought of as the ratio of inertial forces to viscous forces,
as is more evident if we re-arrange the above definition into the form

ReD =
ρUD

μ
=

ρU2

μU/D
≈ Mom. flux

wall shear stress
=
inertial forces

viscous forces
.

In the first step we observe that Reynolds number can be interpreted as a
ratio of the momentum flux ρU2 over the pipe (i.e. momentum ρU crossing
the diameter at speed U , see also Fig. 5.1(a)) to μU/D which is an estimate
of wall shear stress. Since inertial flux is related to the concept of an inertial
force, we can argue that Reynolds number is a measure of inertial forces to
viscous forces. When we have a larger Reynolds number inertial forces are
therefore dominant over viscous forces and vice versa. This naturally leads
us to the role of Reynolds number as the key parameter which identifies the
transition of the flow to turbulence.

5.1.2 Dean number

A useful parameter for curved, planar pipes is the Dean number, De, which
we define here as

De = 4

√
D

RC
ReD
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(a) τw

2U Uρ U

(b)

x

y
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Fig. 5.1. (a) Interpretation of the Reynolds number as the ration of momentum
flux ρU2 to wall shear stress τW . (b) Definition of length parameters in the Dean
number

where RC is the radius of curvature (see Fig 5.1(b)), D is the pipe diameter
and ReD is the Reynolds number based on mean velocity and diameter. As
noted by Berger et al. [35], the definition of the Dean number is not always
consistent and so care must be taken when comparing values of the Dean
number. As for the Reynolds number, we can provide a physical interpretation
of the Dean number in terms of the balance between the forces due to inertia
and centripetal acceleration and the viscous forces by re-arranging the terms
as follows:

De = 4

√
D

RC
ReD = 4

√
ρR̄C

U2

R̄2C
× ρU2

μU/D
≈
√
centripetal forces× inertial forces

viscous forces
.

In the above we have defined R̄C = RC/D and consequently the term

ρR̄C
U2

R̄2C
is an approximation of the force to produce the centripetal acceler-

ation since U/R̄C is a measure of the angular velocity. As for the Reynolds
number, ρU2 represents an inertial contribution from the fluid whilst μU/D
represents the viscous forces.
Thus far we assume the curve to be planar; if we allow the pipe to possess

torsion, additional similarity parameters may be introduced. For example, the
Germano number Gn

Gn = (D/2)τReD

is introduced, where τ is the torsion (defined below) though Liu and Masliyah
[295] also introduce the parameter:

γ =
Gn

De3/2

which is found to be important in determining the nature of the flow response
to torsion.
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5.1.3 Womersley number and Reduced Velocity/Strouhal number

When considering unsteady flows a commonly used flow parameter is the
(Sexl)-Womersley number, Wo, defined as

Wo =
D

2

√
2π

νT

where we recall that ν = μ/ρ and T is normally taken as the fundamental
period of the oscillatory flow. The problem of interest to Womersley [546] (and
T. Sexl prior to this work [454]) was oscillatory flow in a straight pipe. Phys-
ically we can interpret the Womersley number as the ratio of pipe diameter
to the laminar boundary layer growth over the pulse period T , i.e.

Wo =
D

2

√
2π

νT
∝ D√

νT
=

Diameter

Bndry. length growth in time T
.

We arrive at this interpretation by considering the example shown in
Fig. 5.2 (a,b).
If we consider a flow in a pipe at initial time τ with a boundary layer of

thickness δ(τ ) then over a time T we expect the action of viscosity to cause
the boundary layer to increase in size to δ(τ + T ). A dimensional argument
commonly used in laminar boundary growth over flat plates is that the bound-
ary layer growth is proportional to

√
νT and hence our interpretation of this

parameter.
The choice of appropriate dimensionless numbers is typically motivated by

identifying parameters which collapse non-dimensionalised data into identifi-
able regimes. The relevance of the Womersley number is linked to the exact
solution of a Newtonian fluid in a straight circular pipe subject to a periodic
pressure difference. If δP = A cos(2πt/T ) is the expression of the pressure
difference applied at the two vessel ends, Womersley [546] (note also the cited
work by T. Sexl) found that the the fully developed solution, when all compo-
nents of the flow do not vary with streamwise distance, is periodic with only
the axial velocity component uz different from zero. For a given Womersley

(a)

δ(τ+Τ)δ(τ)

(b)

D

UT

Fig. 5.2. (a) Physical interpretation of the Womersley number as the ratio of the
diameter of the vessel, D, to the temporal growth of the laminar boundary layer δ
betweenthe instants τ and τ + T due to the action of viscosity. (b) Physical inter-
pretation of the reduced velocity which can be understood as the distance travelled
by the mean flow, U , in one pulsatile period, T , divided by the diameter, D
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number, the uz velocity component depends only on the ratio of the radial
coordinate over the vessel diameter, r/D, and on t/T and is given by

uz = uz(r, t) = Re

[
AT

2iπρ

(
1− J0(i

3/22Wo r
D
)

J0(i3/2Wo)

)
ei2π

t
T

]
. (5.1)

Here Re is the real part of a complex number, i indicates the imaginary unit
and J0 the Bessel function of order zero.
One of the potential limitations of the Womersley number is that it is

related to physical scales within a given cross section of the pipe and not to
any axial length scales. Therefore in problems involving variation of the flow
in the streamwise direction and hence axial length scales, such as flow within
double bends or stenoses, the role of the longitudinal geometry is not rep-
resented. Consequently meaningful ways to present the data may not easily
be identified. An alternative non-dimensionalisation of the time scale, com-
monly used in other fields such as bluff body flows, is the Strouhal number
(or frequency), St,

St =
D

UT
the inverse of which is sometimes referred to as the reduced velocity

Ured =
UT

D
=
Distance travelled by mean flows

Diameter
.

As illustrated in Fig. 5.2, the reduced velocity has a physically straightfor-
ward interpretation as the ratio of the distance travelled by the mean flow
along the pipe to the diameter. This number can also be interpreted as a
non-dimensionalised pulsatile period. Clearly it explicitly introduces an axial
length scale into the similarity parameter set and as we shall demonstrate in
Section 5.4.4 this can prove useful in interpreting different flow regimes.
The reduced velocity and Womersley number are not independent and can

be related through the Reynolds number by the relationship

Ured =
π

2

ReD
Wo2

. (5.2)

Finally we note that in their investigation of the formation strength of a
vortex ejected from an orifice such as the aortic root, Gharib and co-workers
[191, 432], have defined a formation number which is closely related to the
reduced velocity.

5.2 The geometry of curves and pipes

5.2.1 The Frenet frame

Arteries follow a curved, and sometimes highly tortuous path, along their
length with frequent branching or bifurcation. In the healthy state, the arte-
rial lumen (the flow conduit) is reasonably circular. Each segment of artery
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Fig. 5.3. Frenet frame: tangent s, normal n and binormal b at point P

can thus be modelled as a curved pipe, and of constant cross-section if we
neglect taper for the present. Such a geometry can be defined in terms of a
centerline curve and a radius. Even where the arterial cross-section varies in
area, or is non-circular, the locus of the centroid of the arterial lumen is a
useful geometric attribute in characterisation and modelling. The differential
geometry of curves provides a compact means to describe such geometry and
an essential framework for theoretical analysis of the flow.
Let us consider a point P traversing a curved pathline in three dimensional

space, as shown in Fig. 5.3.
The instantaneous position of P can be given either in terms of arc length

s along the curve, P (s(t)), or by its position vector xP with respect to axes
centred at O. The unit tangent to the curve at P , which we write as s is given
by:

s =
dxP
ds
= ẋP/υ,

where υ denote the speed at which P traverses the curve, i.e. υ = ds/dt = ṡ =
‖xP ‖. At any point P , we can construct the Frenet frame of unit orthogonal
vectors comprising s, together with the principal normal n, and the binormal
b. These are related according to the Frenet-Serret formulae:

ds

ds
= κn =

1

Rc
n; s× n = b; dn

ds
= −κs+ τb.

The curvature κ is the reciprocal of the radius of curvature κ = 1/Rc; in phys-
ical terms, the curve passing through three nearby points is closely approxi-
mated by a circle with radius of curvature Rc. If τ = 0, the curve is planar,
so τ represents the rate at which the curve twists out of the plane spanned by
(s,n), termed the osculating plane. The tangent is orthogonal to the normal
plane spanned by (n,b), and the plane spanned by (s,b) is known as the
rectifying plane.
A familiar example of a non-planar curve is the regular helix, C(t) =

(a cos t/c, a sin t/c, bt/c). The helix has curvature κ = a/(a2 + b2) and torsion
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τ = b/(a2 + b2), and can be thought of as a line wrapped around a cylinder
of radius a, with a spacing between turns or pitch c = (a2 + b2). We will call
a the “wrapping radius” of the helix.
To analyse flow in a curved pipe, we naturally look to the Frenet frame to

define a co-ordinate system. In a toroidal pipe, a co-ordinate system can be
defined in terms of arc length s along the pipe cross-sectional centreline, and
position (r, θ) in the normal plane, i.e. orthogonal to the centreline tangent.
In the normal plane, x and y axes are usually taken respectively anti-parallel
and parallel to (n,b) of the Frenet frame associated with the centreline. It
is thus straightforward to arrive at an orthogonal co-ordinate system for a
toroidal geometry.
For a helical tube however, a co-ordinate system set up in this way will not

be orthogonal due to the constant twisting of the cross-section. Germano [190]
introduced a rotation of the co-ordinate axes normal to the centreline to cancel
the non-orthogonal terms. As stated compactly by Huttl and Wagner, [240],
the position of a point in the Germano co-ordinate system is

x = s(s) − r sin(θ − τs)n(s) + r cos(θ − τs)b(s).

An alternative to the use of such a system is to recast the problem in helically
symmetric form as shown by Zabielski and Mestel [554]. This is computation-
ally highly efficient, as the problem is effectively reduced to two dimensions.
In the context of helical tube geometries we can define the helix amplitude

as the ratio of wrapping radius (defined above) to pipe radius; helical pipes
where the value of this ratio is of order one or less can be described as being
of small amplitude. Recently small amplitude loosely coiled helical pipes been
investigated for potential application to vascular prostheses, [61]. A loosely
coiled small amplitude helical tube is similar to a helicoidal tube formed by
translating the tube cross-section along the axis of the wrapping cylinder.
However the latter geometry can easily be represented by a co-ordinate map-
ping, facilitating numerical solution of the flow.

5.2.2 Vorticity transport, generation and dynamics

Vorticity, defined as the curl of the velocity,

ω = ∇× u

has several advantages as a primary variable in physical descriptions of fluid
flow.
Firstly, the dynamics of vorticity can be related to the motion of neigh-

bouring elements as we describe below.
Secondly, in incompressible flow, the traction exerted by the flow on an

element of the wall surface with normal n is given by

t = −pn+ μω × n.
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The viscous component of the stress in the fluid evaluated at the wall is known
as the wall shear stress. The wall shear stress is responsible for the tangential
component of the traction exerted by the flow on the wall surface, also known
as the skin friction vector. From the above relation it is clear that not only
is the wall vorticity directly proportional to the skin friction vector, but that
curves tangential to the surface vorticity are orthogonal to the curves tangent
to the skin friction field.
Thirdly the eruption of the near wall fluid layer which occurs in flow

separation can be elegantly described and visualised using vorticity.
Writing q2 = u · u, and using the vector identity

1

2
∇(u · u) = u× (∇× u) + (u · ∇)u,

the momentum equation for an incompressible Newtonian fluid (Ref. Chap-
ter 2) can be written in the alternative form:

∂u

∂t
− u× ω = −∇(q

2

2
+ p) +

1

Re
∇2u.

If the vorticity is non-zero, the flow is termed rotational. We can see from the
above form of the momentum equation that in steady, inviscid, rotational flow,
the gradient of total pressure is orthogonal to the velocity and vorticity fields.
The tangent lines to the velocity and vorticity fields, which are respectively
the streamlines and vortex lines of the flow, thus lie in a surface of constant
total pressure known as a Bernoulli surface.
The essential properties of vorticity are summarised by the three Helmholtz

laws. Taking the curl of the momentum equation, and using the constraints
∇ · u = 0 = ∇ · ω we obtain an equation for the transport of vorticity,

∂ω

∂t
+ u · ∇ω = dω

dt
= ω · ∇u+ 1

Re
∇2ω. (5.3)

If ω = 0 everywhere initially, the equation above shows it will remain so,
provided we neglect transport by viscous diffusion.
Next consider the velocity u(xP ) in the neighbourhood of a point P . The

velocity field at any point a short distance δx away can be approximated as:

u(xP + δx) = u(xP ) + δx · ∇u |P +O(δx2) � u(xP ) + δx · (D+Ω)
where

D =
1

2
[∇u+ (∇u)T ] and Ω =

1

2
[∇u− (∇u)T ]

are the symmetric and anti-symmetric components of the velocity gradient
tensor; it can be shown that Ω and ω are related according to Ω = −12I×ω.
Imagine an elemental line of marked particles in the flow, or material line

element denoted(δxP ) at P , which is aligned with the local vorticity vector
at some instant, i.e., δxP = εωP . Then (omitting the subscript P),

d

dt
(δx) = δx · ∇u.



186 Denis Doorly and Spencer Sherwin

If we now apply the vorticity transport equation and neglect viscous diffusion,

d

dt
(δx− εω) = δx · ∇u− εω · ∇u = 0. (5.4)

So we see that a vortex line is convected in inviscid flow exactly as a material
line. Thus the dynamics of vorticity are closely linked to the kinematics of the
flow.
Replacing the element of a material line by an elemental tube of vortex

lines with cross-sectional area AP , mass conservation and the identity between
material and vortex line transport imply ωPAP is constant.
As the flow moves along a conduit, variations in the velocity field will cause

the elemental tube to be stretched or compressed, and since incompressibility
requires the volume |δxP |AP to remain constant, increases in |δxP | due to
stretching reduce AP in proportion and thus increase vorticity ωP. The overall
impact of the vorticity distribution on the flow often depends to a large degree
on its integrated value, as expressed by circulation:

Γ =

∫
A

ω · ndA.

The circulation remains constant in inviscid flow as shown by integrating the
vorticity transport equation over a surface which cuts across (i.e is approxi-
mately orthogonal to) the vortex tube. Proceeding as we did to establish 5.4
it follows that

dΓ

dt
= ν

∫
A

∇2ω · ndA.

Even at the rather modest Reynolds numbers of the larger arteries, (mean
flow ReD ∼ O(100) or above), the flow progresses several diameters before
viscous diffusion from the wall penetrates to the interior. In some regions
of the arterial vasculature, the flow structure thus comprises a largely invis-
cid core flow with a viscous wall layer. Provided the interaction between the
core and wall layers is relatively weak, inviscid models can provide a good
approximation of the flow dynamics. However this nicely compartmentalised
flow picture breaks down when strong viscous-inviscid interactions develop,
leading to eruption of the viscous layer into the main core, as we show when
considering strongly curved model geometries.

5.2.3 Coherent structures/secondary flows

Swirling or rotating components of velocity often arise in arteries, and may
be induced by rapid turning of the flow direction as arteries bend and branch
along their length, or by flow separation. Although we generally associate a
vortex with a swirling velocity, it is not always straightforward to detect such
motions in a complex flow field. Despite being of considerable physiological
significance, these components may appear relatively weak compared to the
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mean flow. Furthermore, although vorticity is related to rotational motion,
examining isosurfaces of vorticity can be misleading, since where high strain
co-exists with high vorticity, as at the wall, there is no net rotation of pathlines.
To identify vortical motions, Jeong and Hussain [245] propose that a vor-

tex corresponds to a connected region where the second of the eigenvalues
(λ1, λ2, λ3) of (D

2 + Ω2) is negative, assuming they are ordered so that
λ1 ≥ λ2 ≥ λ3. This follows from the condition that for a local minimum
of pressure, two eigenvalues of the Hessian should be positive. However in
forming the pressure Hessian from the gradient of the momentum equations,
both the unsteady strain term, dS/dt, which can produce spurious pressure
minima, and the viscous terms are neglected.
We can also relate the so-called λ2 criterion to the local kinematics of the

flow. Consider the relative motion of two points O and P and let dx(t) = OP
represent the instantaneous position of P relative to O as the points move
with the flow. Referring to Fig. 5.3 with δx replacing xP , the motion of P
relative to axes translating with point O is a curve in space, unless the flow
is everywhere uniform, in which case P appears fixed. The rate of change of
the separation vector, ˙δx is related by δ̇x = υs to the tangent s, and to the
speed of P along the curve, υ = ṡ as previously outlined. Differentiating, and
again using the Frenet Serret relations,

δ̈x = υ2κn+ υ̇s = υ2κn+
υ̇

υ
δ̇x.

Now as described in Doorly et al. [128], to first order,

δ̇x =
d

dt
(δx) = δx · ∇u = (∇u)T · δx

δ̈x =
d

dt
(δx) · ∇u+ δx · d

dt
(∇u).

Under the ‘frozen’ flow assumptions used to derive the λ2 condition, we neglect
the second term on the right above, and again approximate δ̇x to first order
in space, yielding an expression for the acceleration of P relative to O.

δ̈x = δ̇x · ∇u = (∇u)T (∇u)T · δx.

The scalar product of the separation and acceleration vectors

δx · δ̈x = δx · ((∇u)T (∇u)T · δx) = (D2 +Ω2) : δx⊗ δx,

whereas from the geometry of the pathline,

δx · δ̈x = υ2κn · δx+ υ̇

υ
δ̇x · δx.

Thus we can directly relate the local geometry of the pathline of any point
P about another by projection onto an eigenplane of (D2 +Ω2). For a pure
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solid body rotation, the second term on the right is zero, and the magnitude
of λ2 is thus directly related to the strength of rotation. Thus although the
λ2 criterion is not a perfect indicator of the presence and strength of swirling
flows (as revealed by the different terms in the equation above) it is a highly
useful measure of vortical structure and intensity.

5.3 Flow in characteristic geometries

5.3.1 Bends and secondary flows

Viscous analysis

For a good introduction to the haemodynamics of flow in a bend, reference
should be made to the text by Pedley [373]. Here we outline the essentials
of different analytic treatments, contrasting the fully viscous approach which
treats a specific geometry under restrictive assumptions, with the more general
inviscid approach which is concerned with modelling the dynamics of flow
along curved pathlines.
If a non-uniform flow is forced to turn, the balance of angular momentum

will cause rotational or swirl components of velocity to develop. The rotational
velocity components are called ‘secondary flows’ as they lie in a plane normal
to the main or axial flow direction. In terms of vorticity, the curvature of the
flow pathlines causes an exchange in the components of ω, and the develop-
ment of a streamwise component, ωs. Squire and Winter [475] first showed
that secondary flows arise where the inlet flow contains a velocity gradient in
a direction normal to the plane of the bend, even if the flow is inviscid. The
original analysis of secondary flow in a circular pipe bend is however due to
Dean, who assumed the radius of curvature of the pipe to be much greater
than the pipe radius, and the pipe to be of infinite extent.
The section of toroidal pipe shown in Fig. 5.4 illustrates the form of geom-

etry considered, where the plane of curvature is taken to be the [yz] plane,
and the centre of curvature is located at y = −RC. In the limit of weak cur-
vature ratio, (D/2RC � 1), Dean obtained a truncated series solution [113]
for the axial velocity profile u(r, θ). The series expansion, valid for small Dean
numbers, 5.1(b) is:

u(r, θ)

2U∗
= 1−

(
2r

D

)2
+

(
De∗

96

)2 [
19

40

(
2r

D

)
−
(
2r

D

)3
+
3

4

(
2r

D

)5
− 1
4

(
2r

D

)7
− 1
40

(
2r

D

)9]
sin(θ).

To be consistent with the original derivation by Dean, in the previous equa-
tion U∗ should be interpreted as half the maximum velocity which would be
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Fig. 5.4. Toroidal geometry for the definition of low Dean number flows

generated in a straight pipe by the pressure gradient applied along the curved
pipe. In the limit of zero Dean number this means that U∗ would be half the
peak velocity of the parabolic Poiseuille flow which is exactly the mean flow
definition we have used previously. De* is defined analogously to the Dean
number introduced in section 5.1 but based upon U∗ rather than U.
The axial flow profiles for De = 0,100 and 200 are shown in Fig. 5.5. The

expansion is only valid for low De < 961 and so the case of De = 200 is
not strictly valid. Nevertheless the bulk flow displacement is characteristic of
the exact flow profile of a curved pipe and is therefore a useful equation to
illustrate the role of upstream curvature on the flow profile. For comparison
purposes the axial flow profile from a numerical solution of the full Navier
Stokes equations after a quarter turn at De = 200 is also shown in this figure;

Fig. 5.5. Asymptotic Dean flow patterns at De = 0 (Poiseuille flow) and De =
100, 200. For comparison purposes the numerical evaluation of a De = 200 flow
when from a configuration with a normalised radius of curvature of RC/D = 6.25

1 Strictly speaking it is only valid for De∗ < 96; however the differences of using U
rather than U∗ in the definition of De appear negligible for this regime.
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where the calculation is for a geometry with RC/D = 6.25 and ReD = 125.
We see that the peak flow at this Dean number is much lower but the crescent
shape of the iso-levels of velocity is still present.
For De = 0, the standard Hagen–Poiseuille flow in a straight pipe is

obtained and this is plotted to scale so that it has a unit mean. If we consider
the case where we fix the Reynolds number to ReD = 125 then Dean num-
bers of De = 100 and 200 correspond to a radius of curvature normalised by
diameter of RC/D = 25 and 6.25 respectively. As we can see from Fig. 5.5 the
introduction of the curvature and corresponding increase in the Dean number
and centripetal forces causes the peak velocity to increase and to be displaced
away from the centre of curvature.
Since the work of Dean, an extensive literature has developed on the the-

oretical analysis of flow in curved tubes, see Smith [469] for example. The
analysis of Dean is limited not only in terms of flow (steady and relatively low
ReD) but in geometry to a planar bend of large radius of curvature, and low
curvature ratio. Removing these limitations introduces additional similarity
parameters; we can account for finite curvature ratio by taking δC = D/2RC
as an independent similarity parameter or to incorporate torsion, we require
the Germano number Gn and potentially additional parameters.
In reality the curvature ratio of arteries cannot generally be taken as low

enough to warrant its neglect, for example δC = D/2Rc ∼ 1/4 for the aortic
arch, nor can arterial curvature be assumed to be planar, [63]. Physically we
expect δ = D/Rc to emerge as an independent similarity parameter once
the bend radius becomes small enough for the variation across the pipe in
the possible turning radii of the flow pathlines to become significant. The
study by Siggers and Waters [464] shows that incorporating finite curvature
does not change the qualitative features of the flow, but that quantitative
features, such as the variation in azimuthal distribution of wall shear stress
are significantly altered. In particular, finite curvature is found to reduce the
azimuthal variation in wall shear stress from inside to outside of the bend.
Referring again to the distinction between global and more local geometric

characteristics, the Dean number can be considered as the global parameter
of primary significance for the flow in curved pipes. Non-planarity associated
with the introduction of torsion significantly influences the flow; it breaks
the symmetry of the Dean vortex pair, either by making one vortex more
dominant or completely obliterating the second vortex, depending on De and
Gn parameter values [460, 554].
Describing more complex bend or bend-like configurations (such as mul-

tiple non-planar bends in sequence and end-to-side anastomoses) using co-
ordinate transformation is difficult. The formulation of the equations becomes
complex, rendering theoretical analysis rather intractable. Whilst it is nec-
essary to resort to direct computation of the Navier Stokes equations for
accurate solutions, as we will see below, we can apply inviscid approxima-
tions and analyses to provide understanding to complement the computational
approach.
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5.3.2 Inviscid secondary flow dynamics

Using the concept of vorticity and vortex models let us first explore the ori-
gin of secondary flow in a bend. We begin with a lumped vortex model for
Poiseuille flow in a straight tube, which defines the bend inflow. At any point
along the tube, the vorticity is purely azimuthal is distributed linearly over the
cross-section ω = (0, ωθ, 0) with a maximum at the walls, falling to zero along
the pipe axis (Fig. 5.6). The continuous ω distribution can be represented
as a series of discrete concentric rings, which can then be approximated as a
single lumped ring with circulation Γ0 =

∫
ωdA · dx = −2u · dx, where as

we discussed above, the circulation is a measure of the effective strength of
the vorticity. The choice of radius for the lumped ring approximation depends
on whether we wish to match the linear or angular impulse of the distri-
bution, [442]; as discussed in [128], r = 1√

2
matches the linear impulse or

r = (2/5)1/3 matches the angular impulse. The difference is not significant
within the accuracy of the idealisation and we thus idealise flow in a straight
pipe as a series of vortex rings at r = 1√

2 which are convected by a constant

mean flow.
Once the flow is forced to turn, the rings will become distorted by gradients

in velocity. By the Helmholtz relation (5.4), tracking a series of such rings
reveals the vortex dynamics of the flow. The length over which this model
effectively captures the vorticity dynamics is limited by the growth of errors
in the lumped treatment of the stretching/tilting term, and in the neglect of
diffusion. At the walls, changes in the core flow are resisted by the generation
of new vorticity which diffuses into the flow. The diffusive penetration depth

grows as Re
− 12
D , and we therefore might expect a limited effect at higher

Reynolds numbers. However, the vorticity generated at the wall may erupt and
be swept rapidly into the main flow, so the validity of this form of modelling
is often confined to the initial portion of a bend.
The method works well to visualise the dynamics of flow at the distal

anastomosis (i.e. where flow from the graft rejoins the host artery) of an end-
to-side bypass graft. The sketch on the left in Fig. 5.7 is based on computations

x
r

a) b) c) d)

Fig. 5.6. Interpretation of Poiseuille flow in a straight pipe. a) In linear momentum
terms the Poiseuille solution is a parabolic flow within the pipe, b) the parabolic
velocity profile gives rise to a linear variation of vorticity across the pipe, c) an
alternative local rotational momentum (vorticity) interpretation of the flow is a series
of ring of varying circulation, d) from a modelling point of view we can consider an
isolated ring with a lumped vorticity
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a) b)

Fig. 5.7. (a) Vortex ring model of development of Dean vortex pair in graft outflow.
Poiseuille inflow vorticity is represented as a sequence of lumped rings which impact
on floor or bed of host artery. Tilting and stretching at sides of impacting rings
intensifies streamwise vorticity and generates Dean pair. (b) Computation of graft
flow at ReD = 500 with zero wall shear stress. Without wall vorticity generation,
flow development is predominantly inviscid, and roll-up of the inflow vorticity is as
described qualitatively in part (a)

of the evolution of a series of rings placed at r = 1√
2 which pass from a

Poiseuille inflow to an equi-diameter host at an angle of 45 deg.
The tilting and stretching of the inflow vortex rings as they are forced

to turn by the graft demonstrates the essentially inviscid nature of the Dean
vortex creation [128], given a rotational inflow. Note however that the total
deflection angle of the flow in this example is relatively low, (45◦). As we will
see later the viscous interactions, which we have neglected, turn out to be
relatively weak for low deflections.
For comparison, the right hand of Fig. 5.7 (see [171]) shows the results

of a computation for ReD = 500, but with wall shear stress set to zero, to
prevent generation of fresh vorticity at the wall. (The computation approxi-
mates an inviscid realisation of the flow, with the remaining interior viscosity
preventing Euler instabilities). The gradual roll-up of the continuous inflow
vorticity distribution is well illustrated by comparing the inset plots of axial
vorticity at successive downstream stations, showing that the Dean vortexes
are still formed for a rotational inflow even when surface vorticity generation
(i.e. wall shear stress) is absent in the flow turning region. In this case the
λ2 criterion is not needed to reveal the core structure, owing to the lack of
vorticity generation at the wall, and which would otherwise obscure the core.
A key question we may ask is:
how is the strength of the cross-flow related to the bend geometry?
We can partly answer this using inviscid modelling, and in some cases

even derive approximate estimates. Referring again to Fig.5.7, the vorticity
transport equation can be expressed along a pathline (or streamline, if steady)
of the flow. To do so, we employ a local system of co-ordinates, known as
intrinsic co-ordinates, in which the reference axes comprise the unit vectors
(s,n,b) of the Frenet frame. Following [267], we write the velocity as u = qs,
in intrinsic co-ordinates the gradient operator is given by∇ = s ∂

∂s
+n ∂

∂n
+b ∂

∂b
.
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The vorticity components (ωs, ωn, ωb) are:

∇× ω = qσs + ∂q

∂b
n+ (

q

Rc
− ∂q

∂n
)b,

where σ = s ·∇× s is independent of the magnitude of q and depends only on
the geometry of the pathlines. Assuming steady flow, the streamwise compo-
nent in the transport equation for vorticity (5.3) reduces to a balance between
convective,

s · (u · ∇)ω = q ∂
∂s
(s · ω) − qω · ∂s

∂s
= q

∂ωs

∂s
− qωn

Rc
(5.5)

and vortex stretching/tilting terms

s · (ω · ∇)u = ωs
∂q

∂s
+ ωn

∂q

∂n
+ ωb

∂q

∂b
= ωs

∂q

∂s
+
qωn

Rc
. (5.6)

Equating equations (5.5) and (5.6)), we find:

∂

∂s
(
ωs
q
) =
2ωn
qRc

.

The positive sign on the right hand side of the equation (5.6) assumes the
normal vector points towards the centre of curvature. It is more common in
the secondary flow literature to take the normal vector to point outwards, and
a negative sign then precede the term on the left hand side of the equation.
Where flow is deflected through a total angle of θ, assuming torsion τ = 0

and flow speed q remains constant, integrating the above yields the estimate

ωs = 2ωnθ, (5.7)

predicting linear growth with deflection angle, and noting again the differ-
ence in sign of the right hand side from that in common usage. This expres-
sion reveals the conversion of the vorticity component in to the bend’s radial
direction to streamwise vorticity. The above simple estimate can be improved
to account for the deflection of the streamlines by the secondary flow asso-
ciated with the developing streamwise vorticity. Assuming weak secondary
flows, Rowe [433] adopted a marching procedure to solve for the streamfunc-
tion in the cross-sectional (b,n) plane at successive stations around the bend,
allowing the incremental changes in streamwise vorticity to be appropriately
corrected.
More general relations between all the components of secondary flow in a

bend can be derived by considering the balance of angular momentum applied
to a simple model of inviscid flows. As shown by Kitoh, [259] who investigated
swirling flow in a bend, the angular momentum fluxes (Ω,Λ,Ξ) about the
streamwise direction s, radial component, r̂ = −n and binormal axes b can
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be shown to be related by three coupled ordinary differential equations, the
first of which

dΩ

dθ
= −Λ

reduces to the Squire and Winter result for a simple model flow.

5.4 Flow in bends

5.4.1 Single bend

The bends which occur in arteries are generally less intense than the 180
degree turning of the aortic arch, yet even shallow bends significantly alter
the flow. To show this, we first consider flow in a single toroidal 45 degree arc
segment with RC = 2D (δC = 1/4) at ReD = 250, from which De � 700,
and apply the spectral h/p finite element method [253] to obtain numerical
solution of the Navier Stokes equations.
In Fig. 5.8 on the left, we plot the evolution of a series of rings, where the

colour shading represents the axial component of vortex stretching/tilting.
The plot shows the intensification of vorticity as the rings become distorted
in turning around the bend. The right-hand image, taken from Pitt [390]
shows the streamwise (axial) velocity component (top) and streamwise vor-
ticity (bottom) at slice locations corresponding to: (1) halfway through the
bend, i.e. deflection θ = π/8, (2): bend exit, and (3): at 3π/8D downstream
of the end of the bend. The rapid development of the characteristic crescent-
shaped axial velocity profile and the growth of streamwise vorticity are both
evident, so that the entrance length required to establish the Dean type flow
for these values of δC and ReD are clearly far lower than those predicted by
Yao and Berger [547]. In particular it can be seen that the streamwise vortic-
ity in the core rapidly becomes comparable in magnitude to the peak value

Fig. 5.8. Dean vortex generation in a single bend. (a) Ring transport and x-
component vorticity stretching. (b) Sectional axial flow profile (top) and vorticity
(bottom) and salient locations along the bend and exit
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Fig. 5.9. Visualisation of the Dean vortex cores in flow through a π/4 arc bend
with RC/D = 2 for ReD =125 left, and for ReD =250 right

of 4 for the azimuthal vorticity of the Poiseuille inflow, normalised for unit
values of mean velocity and pipe diameter.
The results also show that the growth of streamwise vorticity in the core

is counteracted by the generation of oppositely signed streamwise vorticity at
the wall. The core vortex pair shows significant decay even after one diameter,
as viscous diffusion promotes annihilation both through transport of opposing
vorticity from the wall, and to a lesser extent through self-cancellation.
The λ2 criterion is required to reveal the core structure, due to the masking

effect that the wall vorticity would have on isosurfaces of vorticity. Figure 5.9
clearly shows the rapid emergence and relatively rapid decay of the Dean
vortex pair at ReD = 125, compared with the greater persistence of the vortex
pair at ReD = 250.

5.4.2 Series of Bends

45 degree bends

As arteries are constantly turning and branching along their length, it is
generally necessary to consider the influence of the upstream geometry on
the flow in any given section. First we examine flow through two consecutive
shallow (45◦) toroidal bends, with a straight pipe inflow and outflow regions.
The bends have RC = 2D (δC = 1/4), with their central axes co-planar,
but have curvature of opposite sense, so that the outflow and inflow axes are
parallel. The radius of curvature gives a curve centre-line length of 1.57D for
each toroidal section.
The development of the flow in the first bend follows that for the single

bend considered previously. Initially the streamwise vorticity grows approx-
imately linearly as we observe from equation (5.7). Integrating the vorticity
across each half section of the pipe yields the circulation of each core, and
as shown in Fig. 5.10(a), the growth in circulation approaches the theoretical
estimate more closely as ReD increases.
In Fig. 5.10(b) from the results of [390], the axial vorticity component is

shown in contour plots at three sections, for ReD = 125 (top three plots) and



Fig. 5.10. (a) Growth of streamwise core vortex circulation in initial portion of first
bend in double 45◦ bend geometry. (b) Contours of streamwise vorticity in double
45◦ bend geometry, at (1) outlet of first bend, (2) outlet of second bend, (3) 3π/8D
downstream. Upper three plots correspond to ReD = 125, lower three plots are
for ReD = 500. Note how opposite signed vorticity is generated at wall to oppose
primary Dean vortex pair

for ReD = 250, lower three plots. Section 1 corresponds to the outflow from
the first 45◦ bend, section 2 is near the exit of the second bend, and section 3
is at two diameters downstream of the second bend.
Referring to section numbers in parentheses, we see the characteristic Dean

vortex pair at the outflow of the first bend, (1). At the higher ReD, the wall
reaction to the Dean flow is much stronger, with vortex sheets of opposite sign
evident. By the outlet of the second bend, (2), at the lower ReD , the primary
vortex pair has been much weakened due to viscous diffusion; the vorticity
generated at the wall in the first bend (often referred to as ‘secondary vor-
ticity’) has detached and is rolling up to form a new dominant Dean pair.
Nearest the wall new vorticity to oppose the newly detached sheets is gen-
erated, and is of the same sign as the primary vortex pair. At the higher
ReD however the original Dean pair are still strong at the end of the second
bend, and the penetration of the wall generated vorticity is lower, due to the
weaker viscous transport. Also the second bend vorticity appears to be only
partly detached from the wall. Finally at two diameters downstream, (3), at
the lower ReD, all that remains is the weak vortex pair remnant from the
second bend, the primary cores having been totally annihilated. By contrast,
at the higher Reynolds number, the initial bend pair is still dominant at this
stage, and it is the turn of the secondary vorticity to be annihilated through
cancellation with its wall generated opposite.
In Fig. 5.11, the vortical structures for ReD = 125, 250 and at ReD = 500

are visualised using isosurfaces of λ2, non-dimensionalised by (U/D)
2.

The plots clearly show the effect of more rapid viscous transport and decay
at the lower Reynolds number, where the initial bend structure is rapidly
subsumed by the second bend, and the ensuing cores soon dissipate. The
persistence of the first bend vortex cores is particularly striking at the highest
Reynolds numbers, extending far downstream of the bend.
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Fig. 5.11. Vortical structures in the double bend visualised using the λ2D
2/U2 =

−0.3 iso-contour and viewed from above (left) and below (right): (a) ReD = 125,
(b) ReD = 250, and (c) ReD = 500

90 degree bends

Lee [274, 275] has considered flow through a sequence of planar and non-
planar 90◦ bends. Five configurations were studied, with the downstream bend
rotated in 45◦ increments with respect to the plane of the first bend; in the 0◦

configuration the second bend outflow is in the same direction as the inflow.
Compared to the shallow bends, the greater turning of the flow and so the
geometry is similar to the previous 45◦ bend. in the sequence of 90◦ bends
produces more intense interactions between the core and wall vorticity, signif-
icantly altering the flow, particularly at higher ReD.
Separation of the wall boundary layers is possible, in which case the pen-

etration of vorticity generated at the wall into the interior is not limited by
viscous diffusion and merging. An illustration of the phenomenon is shown in
Fig. 5.12 for the 180◦ degree bend at ReD = 500. As shown from the upper
plot, the eruption of the wall layers into the core alters the roll up of the
primary vortex pair and introduces new vortical structures. The cross-flow
streamlines (lower plot) show multiple centres of rotation corresponding to
the dramatic modification of the vortical structures.
In a non-planar configuration, the rotation of the second bend out of the

plane causes a realignment of the core vorticity, the positions of which are
rotated and displaced within the cross section. This realignment can alter the
flow in two new ways. Firstly a core vortex on one side can merge with the
erupted wall or secondary vorticity layer generated by the opposite core. One
core may become dominant through re-enforcement by such vortex merging.
Secondly, and in contrast, the realignment may cause part of the core vortex
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Fig. 5.12. Eruption of wall layer (secondary) vorticity into core flow at ReD 500
in 180◦ bend. Top left: streamwise vorticity, bottom left: cross-flow streamlines.
Location of cross-section indicated on right hand figure. As flow progresses through
the bend, the wall layer vorticity is swept into the interior forming a new pair of
secondary vortex cores, partly enfolded by the primary vortex cores, as indicated
for left half of section by arrow. At the bottom of the cross-section (inside of the
bend), another weak pair of vortices are just becoming detached from the wall. The
sequence of vorticity eruptions produces the multiple recirculation regions shown in
the lower left plot

on one side to become totally encircled by opposing vorticity and thus more
rapidly annihilated.
These phenomena are illustrated in the sequence of streamwise vorticity

and cross-flow velocity plots for the 135◦ non-planar bend shown in Fig. 5.13.
From left to right, we can observe the encirclement of the left-hand primary
vortex core (large arrow pointing to blue circular region) and its annihilation
through cancellation in the interior. By contrast, the primary vortex on the

Fig. 5.13. Vortex merging and cancellation in non-planar 135◦ sequence of bends
at ReD=500
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Fig. 5.14. Three 90 degree bend sequence configurations in steady flow at ReD =
125 left, and ReD = 500 right. Top pair: S bend or zero degree configuration. Middle
pair: 45 degree configuration. Bottom: 90 degree configuration

right-hand section is reinforced by merging with the erupted wall vorticity on
the opposite side, as indicated by the three small arrows within the section. At
the outlet of the second bend in the 135◦ double bend configuration, an asym-
metric cross flow results, with the right-hand vortex core dominating the flow.
For a qualitative comparison of the effects of Reynolds number and bend

planarity on the flow, we can examine the vortical flow structures, as shown
in Fig. 5.14 from [274]. Not all the vortical structures can be visualised as
some become enfolded and thus hidden as discussed above, but the dominant
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features are mostly visible. The top pair of images in Fig. 5.14 compare the
vortical structures in an “S” or zero degree configuration of 90 degree bends,
for ReD = 125 left and ReD = 500 right. Note that unlike the case of the
45 degree bend sequence, the initial core structure does not survive the pas-
sage through the second bend, due to the much stronger interaction between
the core and the wall flow regions. Nevertheless, the core structure at the sec-
ond bend outflow shows some alteration due to the presence of the upstream
bend. The middle pair of images contrast the flow for the same two Reynolds
numbers in a sequence of 90 degree bends where the second bend is rotated by
45 degrees from the plane of the first bend. In this case, at the lower Reynolds
number, there is re-enforcement of one of the second bend vortices, resulting
in an asymmetric outflow. At the higher Reynolds number however, the strong
viscous-inviscid interaction does not preserve the coherence of the initial core
features, and a nearly symmetric outflow results. Finally for the configuration
where the second bend is rotated 90 degrees out of the plane of the first bend,
we note the high degree of re-orientation of the vortical structures within the
cross-section, which we would expect to enhance mixing. At the outlet, we
again see a symmetric flow structure in both cases.
In classifying the geometry, it is clear that for the lower Reynolds number,

the first bend has little impact on the flow in the second bend outlet. This sug-
gests that viewed globally, each bend is approximately independent, and from
a modelling perspective, it suggests that the flow quickly forgets upstream
influences, i.e. we do not need to worry too much about the inflow condition
after the flow has passed through one or two bends at modest Reynolds num-
bers. However we must not overlook two facts. Firstly, the flow is noticeably
asymmetric for the 45 degree configuration, and secondly, the re-arrangement
of vortical structures from one bend to the next will have significant conse-
quences for mixing.
For flow at the higher Reynolds numbers, it is only for the 135 degree

configuration [274] that pronounced asymmetry in the outflow results. Never-
theless the influence of the first bend strongly affects the flow character, even
if the structure appears superficially similar to that of a single bend. The most
striking feature is the less compact vortex cores at the second bend outflow,
which are associated with a blunter streamwise velocity distribution than for
a single bend.

5.4.3 Branches/anastomoses

In Fig. 5.15 we show the coherent structures, using the λ2 criterion and the
particle ring transport coloured by streamwise component vorticity stretching
for a series of equal diameter pipe junctions for a Reynolds number of 125.
In Fig. 5.15(a)–(c) we see three cases where there is no proximal flow in
the downstream vessel and the junction angle is changed from 45 to 90 and
135 degrees, respectively. The inset plot in these figures shows the cross plane
streamlines in a plane 0.25D distal (downstream) of the middle of the junction.
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a) b)

c) d)

Fig. 5.15. Coherent structure identified (using the λ2 criterion) and particle ring
transport/streamwise vorticity stretching in (a) 45◦ graft (no flow split), (b) 90◦

graft (no flow split), (c) 135◦ graft (no flow split) and (d) 45◦ graft (50 − 50 flow
split). Inset plots show secondary flow in (a)–(c) and axial flow in (d)
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In general a surgically generated branches, for example due to bypass grafts,
or even a natural vessel bifurcations have a flow split in the downstream vessel.
Therefore in Fig. 5.15 we have considered a 45 degrees branch with a 50− 50
proximal-distal flow split. A more detailed investigation of the flows discussed
in this section can be found in [458].
We observe that the two Dean vortexes are generated in all cases and

appear to have a similar form to the single bend case. although the branch
angle has a significant effect on the vortex strength. In the bottom half of
the plots we observe the particle/vorticity ring transport within the branch
coloured by x-component stretching and tilting (x is aligned to the centre of
the downstream pipe). Similar to the single bend model, we observe that the
rings transport up to the point of impact on the branch or anastomosis floor.
The lower part of each particle ring plot then highlights how the particles
transport after the impact on the floor at time intervals which are twice as
large as the upper plots. Considering the transport of the ring before impact
we observe that when the ring has reached the floor there is a greater distortion
of the ring into the distal host vessel in the grafts with larger branch angles.
This can be directly related to the stretching in the axial direction of the
downstream vessel and the establishment of the Dean vortices.
From Fig. 5.15 we also observe that as the branching angle is increased

there is a more notable particle recirculation in the occluded region after
the ring impacts on the anastomosis floor. The stronger recirculation is also
related to the looping structure evident just above the floor coherent structure
plots of Figs. 5.15(a)–(c). In the occluded region of the 45 degrees anastomo-
sis a vortical structure is evident when the recirculation is sufficiently strong
to distinguish the particle motion from the rotational action of the boundary
layers. This is not the case at either side of the structure as the impact of
the particles on the floor does not generate a sufficiently strong recirculation
in these regions. When we increase the branch angle however the impact of
the particles is sufficiently strong to generate a vortical structure not only in
the occluded region but also at the sides of the anastomoses leading to the
looping structures. This process is analogous to a vortex ring impacting on
a solid curved surface. The trajectories of the particles within the cross flow
plane at 0.25D distal to the centre of the junction are shown in the inset plots
of figs 5.15(a)-(c). From these streamline patterns we observe that there is
no evidence of a vortex in the secondary flow pattern of the 45 degrees anas-
tomosis. The secondary flow pattern of the 90 and 135 degrees anastomoses
however clearly show the vortex curves which connect to the downstream
Dean vortices.
We have previously explained in Section 5.3.2 that the generation of the

Dean vortexes can be modelled as the azimuthal vorticity, generated in the
graft, is realigned and stretched as it is transported through the anastomo-
sis. This stretching and tilting mechanism is clearly shown in lower plots of
Fig. 5.15 for the transport of the ring at r/D = 1/

√
8. Along these parti-

cle paths the peak stretching and tilting normalised by mean velocity over
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diameter squared was 8.5, 27.7 and 36.5 in Fig. 5.15, respectively. The corre-
sponding peak axial vorticity at x = 2D, also normalised by mean velocity
over diameter was 2.8, 4.4 and 7.0 for the 45, 90 and 135 degrees anastomoses
respectively. This is in accord with the conservation of local angular momen-
tum since as the stretching increases the vortex core diminishes and higher
and higher values of vorticity are expected. From the perspective of vortex
stretching however, it is perhaps more immediately obvious that the increase
in intensity of the Dean like flow vortexes should be directly related to the
degree of turning imposed on the flow by the anastomosis angle.
We see from Fig. 5.15(d) that as the flow enters the anastomosis it is

stretched in both the proximal and distal directions. This is consistent with
the combined effects of the fully distal and proximal flow cases shown in
Fig. 5.15(a) and (c). We also note that the stretching is more pronounced in
the proximal direction where the flow sees a larger branch angle. We note the
coherent structures in the distal direction are smaller in the 50−50 proximal-
distal flow split implying that the flow recovers more rapidly, this is consistent
with the lower Reynolds number of the distal and proximal graft. However a
significantly larger vorticity stretching arises at the branch.
Consideration of the axial flow profiles shown by the inset plots of 5.15(d)

demonstrates that the amount of axial flow distortion from the Hagen-
Poiseuille flow profile is far greater in the 50 − 50 proximal-distal flow split
configuration when compared to the fully occluded configuration 5.15(a). This
axial flow distortion is directly associated with a stronger secondary flow as
also indicated by the larger stretching which also has a significant effect on
the peak wall shear stress magnitude [458].

5.4.4 Pulsatile flow

In Section 5.1 we introduced the idea of using a non-dimensional time param-
eter based on a reduced velocity rather than the classical use of the Wom-
ersley number. In this section we provide some examples where the reduced
velocity is useful in providing a physical insight into different pulsatile flow
regimes. The motivation for consideration of an alternative time parameter to
the Womersley number arises from the interpretation of Womersley number
as the ratio of two length-scales within a given cross section (one of which is
related to time). This parameter is therefore helpful if different flow dynamics
arise within a specific cross section of a vessel. However if a change in flow
dynamics is related to length scales which are not purely related to a given
cross section alternative parameters are likely to be more physically relevant.
An alternatively time related parameter is the reduced velocity Ured = ŪT/D
which we recall is the ratio of the length that the mean sectional velocity
Ū propagates over a time period T to the vessel diameter D. The poten-
tial for this type of parameter to help understand pulsatile idealised flows is
highlighted in the following two examples.
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Fig. 5.16. Vortical structure in unsteady flow at ReD = 250, Wo = 4, (Ured =
24.5) (left) and ReD = 250, Wo = 8, (Ured = 6.13) (right), visualised using the
λ2D

2/U2 = −0.3 isocontour.

In Fig. 5.16 we consider the geometry of a 45◦ double bend previously
discussed in Section 5.4.2. In this example, taken from [390], the flow is driven
by a sinusoidally varying pulsatile flow with a peak to mean velocity of 1.75.
In the left series of plots in Fig. 5.16 we consider the vortex cores at four
time instances under the physiologically realistic parameters of a Womersley
numberWo = 4 and a mean Reynolds number of ReD = 250. At these values
of Reynolds number and Womersley number we can determine from equation
(5.2) that the reduced velocity is Ured = 24.5. Comparison of the vortex
structures with Fig. 5.11 highlight the quasi-steady nature of the flow thereby
having a similar flow structure and also supported by the large value of the
reduced velocity.
We next consider a pulsatile flow under similar conditions but at four

times the frequency which corresponds to doubling the Womersley number to
Wo = 8. These conditions relate to a reduced velocity of Ured = 6.13 and as
shown in the right set of plots in Fig. 5.16 we see a significantly different flow
structure appearing throughout the pulsatile cycle. The reduced velocity tells
us that the mean velocity only travels approximately 6 diameters throughout
the pulsatile cycle. Therefore the flow structures generated during one cycle
are unable to propagate through the entire double bend before the next pul-
satile cycle begins. The reduced velocity therefore indicates that interactions
of flow structures between each cycle is likely leading to the differing vortex
structures in the downstream (distal) portion of the pipe [390].
Another example of how pulsatility can change the flow dynamics is high-

lighted in Fig. 5.18. In this figure we observe the transitional flow in the distal
region behind an axi-symmetric stenosis as detailed in [39, 456]. During each
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Fig. 5.17. Comparison of wall shear stress at instants (a),(b) in unsteady flow cycle
for double bend flow: ReD = 250, Wo = 4, (Ured = 24.5) (left) and ReD = 250,
Wo = 8, (Ured = 6.13) (right)

pulsatile cycle a jet is generated from the 75% stenosis on the front of which a
vortex ring is generated. Depending on the frequency of the pulsatility and the
separation of the vortex rings (and therefore the reduced velocity) we observe a
different types of transition to turbulence. In Figs. 5.18(a) and (b) we observe
the flow at ReD = 400 and Ured = 2.5 where, as in the previous example, a
sinusoidal pulsatile waveform with a peak to mean ratio of 1.75 is imposed.
Under these conditions the flow transitions due to a tilting mechanism where
each vortex ring ejected from the stenosis tilts and subsequently stretches and
breaks down into a turbulence cloud. In the above figure the vortex ring is

(a)

(b)

(c)

(d)

Fig. 5.18. Breakdown of pulsatile flow through a stenosis. (a), (b): Ured = 2.5 leads
to breakdown via period doubling instability. (c), (d): Ured = 1 leads to breakdown
through wavy instability of the vortex rings. At non-linear saturation the transition
occurs close to the stenosis as shown in Fig. (a),(b) and (d)
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indicated by an isocontour of the velocity gradient tensor discriminant in blue
and the turbulent cloud is highlighted by isocontours of positive and negative
axial vorticity in red and yellow. The axi-symmetrical nature of the stenotic
geometry leads to a period doubling type instability where the tilting of the
vortex ring during one period is in the opposite direction to the tilting of the
vortex ring generated in the next cycle.
In Fig. 5.18(c) and (d), we consider the transition to turbulence under sim-

ilar conditions but at a higher frequency corresponding to a reduced velocity
of Ured = 1 and Reynolds number of ReD = 350. At this reduced veloc-
ity the flow transitions by the vortex ring ejected during each cycle breaking
down through a wavy type instability on the ring similar to the isolated vortex
breakdown investigated by Widnall [544]. Although the wavy ring vortex (and
the previous vortex tilting breakdown) initiates relatively far downstream from
the stenosis, after many pulsatile cycles the breakdown region moves towards
the stenosis as highlighted by Fig. 5.18(d).

5.5 Anatomically realistic geometries

5.5.1 Curved artery modelling

The preceding examples demonstrate that a vortical flow structure is rapidly
established in a single bend; in a series of bends, the structure of the flow
may be altered in several ways: (i) in a sequence of weak (short) bends, the
initial vortical structure may carry through or be annihilated depending on
ReD, (ii) non-planar sequences of bends can lead to asymmetric or helical type
outflows, (iii) strong (90 degree) bends at higher Reynolds numbers produce
eruptions of wall vorticity which appear to effectively destroy the coherence
of any structures remaining from the first bend.
For comparison, we now consider the flow in a real arterial geometry,

derived from a cast of the right coronary artery of a pig obtained under condi-
tions representative of diastole, [273]. The geometry is tortuous and we ignore
side branches; hence there is an artificial acceleration of the flow as the lumen
tapers along its length. For comparison we consider a slightly idealised geom-
etry in which a constant diameter tube is fitted to the same centreline curve.
On the right of Fig. 5.19 the wall shear stress distribution shows considerable
variation as the artery twists and turns.
Examining the vortical flow structures however shows high degree of sim-

ilarity between the vortical structures in the real and idealised geometries.
Cross-plane velocity vectors in Fig. 5.19 (a1,b1) likewise show a high degree
of similarity, with an asymmetric vortex pair in both realisations. As reported
in [273], if the wall shear stress values for the real model are re-scaled to
remove the effect of taper, there is very good correlation between the spatial
distributions in the real and idealised geometries.
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Fig. 5.19. Right: Dimensional distribution of wall shear stress in tortuous porcine
coronary artery in steady flow at ReD = 286. Left: cross-flow velocities and vortical
structures after third bend. Top pair corresponds to real geometry on right, lower
pair is for model with same centreline geometry but constant circular cross-section

5.5.2 Bypass graft models

Finally we present two examples of more complex, realistic geometries which
illustrate many of the features we have discussed. The first example, Fig. 5.20,
is that of the distal anastomosis of a femoro-tibial bypass graft. The geometry
of the anastomosis shortly after surgery, together with contour plots of the
streamwise velocity at the three indicated sections are shown in parts (a) and
(b) of the figure. Cross-flow streamlines indicated on the velocity contour plot
of the graft flow, (uppermost plot in part (a)), show a Dean-like vortex pair
resulting from the curvature of the graft as it approaches the anastomosis.
The bias of the graft flow towards the outer wall of the bend is shown in the

middle contour plot, and is also evident in the 20 cm/s isosurface of velocity

Fig. 5.20. Computed flow in femoro-tibial bypass graft geometry derived from in
vivo imaging shortly after surgery. (a), velocity contours, (b) geometry and slice
location, (c) 20 cm/s velocity isosurface – note bias towards outer wall as for bend,
(d) 10 cm/s velocity isosurface showing low proximal outflow, (e) geometry after six
months



208 Denis Doorly and Spencer Sherwin

Fig. 5.21. Left: Vortical flow structures at distal anastomosis of aorto-coronary
graft. Although the global geometry is that of a shallow S-bend, localised constric-
tion produces highly asymmetric flow shown by dominant vortex core. Right: Distri-
bution of particles (coded by distance from centreline radius at inflow) at indicated
section AA’

shown in part (c). Most of the graft flow carries on to the distal artery, though
with some retrograde flow to the proximal artery as shown in the 10 cm/s
isosurface of velocity (d). Consequently the wall shear stress distribution (not
shown) is uniformly low in the proximal outflow portion. Finally part (e) shows
the graft geometry six months post operatively. Remodelling of the arterial
lumen is evident in the region of the anastomosis, and there is no longer any
measurable flow to the proximal artery.
Next we consider flow in a the vicinity of the distal anastomosis of an

aorto-coronary bypass graft. The model geometry was again derived by cast-
ing a porcine heart ex vivo,as described in [370]. Here the geometry of the
graft centreline is similar to that of the 45 degree model double bend con-
figuration, and we would thus expect to find a relatively symmetric pair of
Dean type vortices in the host artery outflow. As shown in Fig. 5.21 however,
the outflow vortical structure is highly asymmetric, with a dominant swirl
component. In this case a highly localised asymmetric narrowing of the graft
at the anastomosis produces a strongly biased inflow, overriding the influence
of the global geometry.

5.6 Conclusions

In this chapter we have examined how the flow in the large arteries is influ-
enced by their geometric form. We provided a brief outline of the mathematical
tools and some concepts used to identify essential features and the mechanisms
leading to the development of secondary flows. The physical basis of dimen-
sionless similarity parameters was discussed and their use in characterising
flow regimes emphasised. Summarising:
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• Reynolds number, ReD, is overall the pre-eminent parameter, both in
determining the stability of a flow and the persistence of geometric influ-
ences downstream of a bend or other disturbance;

• the reduced velocity, Ured is a more appropriate parameter than the Wom-
ersley number for unsteady flows where there are significant streamwise
flow variations;

• the Dean number De is the dominant parameter used to characterise flow
in bends; in tightly curved or helical bends other parameters in addition
to De may be required.

A major focus of the discussion centred on the flow in bends and sequences
of bends. In particular we demonstrated that:

• In sequences of bends, the flow response to bends with high deflection
(90◦) was significantly different from that with modest (45◦) deflection,
due to the generally less intense interaction between the core and the wall
layers.

• In non-planar sequences of high deflection bends, re-orientation of the core
vortical structures is accompanied by merging and cancellation with the
wall vortical layers. This is likely to provide enhanced mixing. Symmetric
or asymmetric outflows may occur, depending on the degree of vortex
reorientation and the interactions between the core of the flow and wall.

• In pulsatile flow, if the mean flow propagation distance over one cycle is
long (many diameters or greater than the immediate geometry) the flow
character is quasi-steady, though not necessarily its impact for example
on mixing. If the mean flow propagation distance is relatively short, new
shedding-like structures arise which are not seen in steady flow.

Finally we chose a few examples of flow in anatomically realistic geometries.

• The first case comprised a tortuous artery at a modest Reynolds number
appropriate to the coronaries. There it was found that an idealised model
of the same centreline geometry but of circular cross-section captured the
essential dynamics well.

• In the second example of a bypass-graft flow, we observed characteris-
tic non-uniform velocity distributions and vortical structures introduced
by the global graft curvature. Post-operative evolution of the geometry
emphasises the potential for the vasculature to re-model, with profound
changes in topology.

• In the third example, again of a bypass graft configuration, we found a very
different flow pattern from that expected by consideration of the global
vascular geometry. A localised narrowing at the anastomosis produced a
strongly biased inflow and led to a highly asymmetric outflow.

In conclusion, the modelling of arterial flow in anatomically realistic geome-
tries calls for an understanding of the delicate balance between global and
local anatomical features.
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Rheological models for blood

Anne M. Robertson, Adélia Sequeira, and Robert G. Owens

Rheology is the science of the deformation and flow of materials. It deals with
the theoretical concepts of kinematics, conservation laws and constitutive rela-
tions, describing the interrelation between force, deformation and flow. The
experimental determination of the rheological behaviour of materials is called
rheometry. The object of haemorheology is the application of rheology to the
study of flow properties of blood and its formed elements, and the coupling
of blood and the blood vessels in living organisms. This field involves the
investigation of the macroscopic behaviour of blood determined in rheometric
experiments, its microscopic properties in vitro and in vivo and studies of the
interactions among blood cellular components and between these components
and the endothelial cells that line blood vessels.
Advances in the field of haemorheology have contributed in particular

to the fundamental understanding of the changes in the rheological proper-
ties of blood and its components due to pathological disturbances, and are
based on the evidence that they might be the primary cause of many car-
diovascular diseases. Haemorheological aberrations can easily be considered
as a result (or an indicator) of insufficient circulatory function. Alternatively,
deviations in haemorheological parameters may affect tissue perfusion and be
manifested as circulatory problems. Basically, pathologies with haematological
origin like leukemia, haemolytic anemia, thalassemia or pathologies associated
with the risk factors of thrombosis and atherosclerosis like myocardial infarc-
tion, hypertension, strokes or diabetes are mainly related to disturbances of
local homeostasis. Therefore, the mathematical and numerical study of power-
ful, yet simple, constitutive models that can capture the rheological response
of blood over a range of flow conditions is ultimately recognised as an impor-
tant tool for clinical diagnosis and therapeutic planning (see e.g. [127, 302]).
The aim of this chapter is to present the rheological properties of blood,

including its non-Newtonian characteristics, and review some of the macro-
scopic mathematical models that have been proposed in the literature to
model these features.

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
c© Springer-Verlag Italia, Milano 2009
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6.1 Physical mechanisms behind the mechanical
properties of blood

As already discussed in Chapter 1 whole blood is a concentrated suspension of
formed cellular elements that includes red blood cells (RBCs) or erythrocytes,
white blood cells (WBCs) or leukocytes and platelets or thrombocytes. These
cellular elements are suspended in an aqueous polymer solution, the plasma,
containing electrolytes and organic molecules such as metabolites, hormones,
enzymes, antibodies and other proteins. Erythrocytes have been shown to
exert the most significant influence on the mechanical properties of blood,
mainly due to their presence in very high concentration compared to the other
formed elements (approximately 4–6×106 RBCs/mm3), comprising about 40
to 45% of its volume in healthy individuals (haematocrit, Ht).
While plasma is nearly Newtonian in behaviour, whole blood exhibits

marked non-Newtonian characteristics, particularly at low shear rates. The
non-Newtonian behaviour of blood is mainly explained by three phenomena:
the erythrocytes’ tendency to form a three-dimensional microstructure at low
shear rates, their deformability and their tendency to align with the flow field
at high shear rates [86, 449].
As will be elaborated on below, the formation and breakup of this 3D

microstructure, as well as the elongation and recovery of red blood cells,
contribute to blood’s shear thinning, viscoelastic and thixotropic behaviour1.
Aggregation and deformation of erythrocytes are complex dynamic processes
in which cellular and plasma components of blood contribute as essential
factors. Experimental data under various flow conditions, particularly physi-
ologically relevant flows, are required to develop meaningful models of these
complex processes (see [466, 468]).
In this section we briefly discuss the physical behaviour of erythrocytes

that have the strongest influence on the non-Newtonian behaviour of whole
flowing blood at low shear rates.

6.1.1 Low shear rate behaviour: aggregation and disaggregation
of erythrocytes

In the presence of fibrinogen and globulins (two plasma proteins), erythro-
cytes have the ability to form a primary aggregate structure of rod shaped
stacks of individual cells called rouleaux. At very low shear rates the rouleaux
align themselves in an end-to-side and side-to-side fashion and form a sec-
ondary structure consisting of branched three-dimensional aggregates [450]

1 While the definition of thixotropy varies greatly in the literature, here we refer to
thixotropy as the dependence of the material properties on the time over which
shear has been applied. This dependence is largely due to the finite time required
for the three-dimensional structure of blood to form and break down. This issue
will be elaborated on in Section 6.2.1.
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Fig. 6.1. Three-dimensional microstructure of RBC aggregates in human blood
from a healthy donor. Rouleaux formed by rod shaped stacks of RBCs can be seen.
The isolated darker circles on top of the rouleaux arise from rouleaux branching
off these stacks, forming the three-dimensional microstructure of RBC aggregates.
These branches are less transparent and therefore darker. The large light circles are
white blood cells while the much smaller light circles are platelets. Magnification
100X, (courtesy of Prof. M.V. Kameneva, University of Pittsburgh, USA)

(see Fig. 6.1). The biochemical process of rouleaux formation is still unclear.
It has been experimentally observed that these stacks will not form if the ery-
throcytes have been hardened or in the absence of fibrinogen and globulins.
For blood at rest, the three-dimensional structure formed by the RBCs

appears solid-like, appearing to resist flow until a finite level of force is applied.
The applied stress needed to initiate flow, e.g. in simple shear, is often referred
to as the yield stress and, under normal conditions, is primarily a function of
the haematocrit and the fibrinogen concentration of the plasma [322,324,448].
Additional factors such as the red cell shape, deformability and tendency to
aggregate also influence the value of the yield stress parameter. As discussed
below, the existence of a yield stress for fluids in general and treatment of this
yield stress as a material parameter is a somewhat controversial issue (see,
e.g., [27, 338]).
When blood begins to flow, the solid-like structure breaks into three-

dimensional networks of various sizes which appear to move as individual
units and reach an equilibrium size for a fixed shear rate. Increases in shear
rate lead to a reduction in equilibrium size and lower effective viscosity. In the
studies of Schmid-Schönbein [450] at shear rates between 5.8 and 46 s−1, each
doubling of the shear rate resulted in a decrease in average aggregate size of
approximately 50% (see also Section 3 of [429] for further discussion).
Once the chains are broken down to 4–10 cells, they are resistant to further

shearing and, at high shear rates they roll, rotate and tumble as units along
with individual cells. A critical shear rate γ̇max is defined as a constant shear
rate at which, effectively there are no more aggregates (larger than 15μm). In
whole blood from healthy humans, different values are reported for this critical
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shear rate, largely in the range of 5–100s−1 (e.g. [127, 200]). Dintenfass [127]
attributed this variation in reported values to the degree of aggregation of the
original sample which, as discussed later, is consistent with the thixotropic
nature of blood (see Section 6.2). In diseased states, the critical shear rate
can increase substantially. For example, in blood samples from patients with
acute myocardial infarctions, the critical shear rate for dispersion was found
to be greater than approximately 250 s−1 and the average aggregate size was
larger than in the controls for all shear rates [200, 450].
The process of disaggregation under increasing shear is reversible. When

the shear rate is quasi-statically stepped down to lower values, the indi-
vidual cells form shorter chains, then longer rouleaux and eventually a 3-D
microstructure [200]. The finite time necessary for equilibrium of the structure
to be reached (both during aggregation and disaggregation) is responsible for
the thixotropic behaviour of blood at low shear rates (see, Section 6.2.1 and,
for example, Section 6 of [428]). The associated time constants are a function
of shear rate. The equilibria are found to be reached more rapidly at higher
shear rates and more gradually with lower shear rates (e.g. [127]). For exam-
ple, in a cone and plate viscometer, for shear rates between 0.01 and 1.0 s−1

the equilibrium distributions were found to be reached after time intervals of
20 to 200 seconds.
Accelerating flow has a marked effect on the structure of the aggre-

gate. Under acceleration between fixed shear rates, significant elongation of
rouleaux occurs which is not seen when the flow is held at a fixed shear rate.
The elongation is particularly evident in rouleaux that bridge larger secondary
structures and is found to arise from realignment of the individual cells (slid-
ing of the cells from a parallel stack to a sheared stack) and deformation of
individual cells (ellipsoidal deformation and eventually prolate deformation).
As a result of these mechanisms, the aggregate length can increase up to three
fold [450]. Under a sinusoidal variation of shear, elastic behaviour of the aggre-
gates is observed [102, 449,517]. While typical data for whole blood viscosity
are obtained from quasi-static shear experiments, small amplitude oscillatory
shear experiments are used to measure both viscous and elastic properties in
the regime of small deformations from the rest history (Section 6.2).

6.1.2 High shear rate behaviour of whole blood: shear flow
of dispersed erythrocytes

In a Couette rheometer, when blood is subjected to a constant shear rate
slightly above γ̇max, the cells can be seen to rotate. With increasing shear
rate, they rotate less and for shear rates above 230 s−1, they cease to rotate
and remain aligned with the flow direction [450].
For shear rates above 400 s−1, the RBCs lose their biconcave shape, become

fully elongated and are transformed into flat outstretched ellipsoids with major
axes parallel to the flow direction. At this stage the collision of red cells only
occurs when a more rapidly moving cell touches a slower one but there are
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no further interactions between the cells. Close observation suggests that the
changing cells contours are consistent with a tank-treading motion of the
cells membranes about their interior, similar to a fluid drop deformation,
[83, 154,449]. The high deformability of erythrocytes is due to the absence of
a nucleus, to the elastic and viscous properties of its membrane and also to
geometric factors such as the shape, volume and membrane surface area.

6.1.3 Further comments on the role of erythrocyte deformability

It has been shown experimentally that at a haematocrit above 30% and at a
shear rate of 230 s−1 the viscosity of a suspension of hardened red cells in saline
solution is much higher than that of a suspension of normal cells [450]. This
increase in viscosity is also observed in blood of sickle cell anemia parents
(see, e.g. [46, 133, 372]). This is a congenital pathology in which the loss of
deformability of the red cells causes ischemic manifestations in the capillary
bed. RBCs become sickle-shaped and less flexible, and have difficulty passing
through small blood vessels. Chien et al. [85] found that the viscosity of blood
containing irreversible sickled cells exceeds that of normal blood under all
experimental conditions and it can be of the order of fifty times greater.
On the basis of the rheological changes, a mechanism has been suggested to
explain the amplification of the clinical symptoms: oxygen is decreased, cells
change into the sickled form, blood viscosity increases, capillary flow decreases,
fragility of the sickle cells is decreased, blood flow slows down, more oxygen
is taken from the red cells to the tissues and thrombosis and haemolysis may
result. Other clinical applications of blood rheology can be found, for example,
in [302,485].

6.2 Measurements of the mechanical properties of blood

Measurements of the mechanical properties of whole blood are technically
challenging, particularly at low to medium shear rates where denatured pro-
tein films, sedimentation and phase separation can lead to erroneous results.
At high shear rates, inertial effects can be problematic. As a result, measur-
ing the mechanical properties of blood over a wide range of shear rates (e.g.
0.01–500 s−1), can require the use of more than one rheometer. Therefore,
before discussing rheological data for whole blood, we first turn attention to
the measurements of the mechanical properties of whole blood including a
brief discussion of material functions which are measured, an overview of typ-
ical blood rheometers and a discusion of some of the challenges which are
particular to blood rheometry.

6.2.1 Material functions

In this section, we provide an overview of typical material functions used to
quantify the rheological behaviour of blood. Many of the continuum mod-
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els for blood are examples of a large category of constitutive models called
incompressible simple fluids. As defined in [100],

. . . an incompressible simple material . . . is a substance whose mass
density never changes and for which the stress is determined, to within
a pressure, by the history of strain. . . . We then define an incom-
pressible simple fluid as an incompressible simple material with the
property that all of its local configurations are intrinsically equivalent
in response, with all observable differences in response being due to
definite differences in history.

The material functions used to quantify the viscous and viscoelastic properties
of blood have precise meaning within the context of simple fluid theory.

Viscometric functions

The mechanical response of incompressible Newtonian fluids in shear is com-
pletely determined by one material constant: the viscosity μ. The response
of general fluids is much more complicated and can include behaviours not
displayed by Newtonian fluids such as rod climbing, shear thinning and mem-
ory. Remarkably, the behaviour of an arbitrary simple fluid in a broad class of
flows called viscometric flows only requires knowledge of three material func-
tions for that fluid. Appropriately, these three functions are called viscometric
material functions and are intrinsic properties of the fluid.
For brevity we do not introduce the kinematics necessary to rigorously

define viscometric flows, but just recall that these are a special type of con-
stant stretch history flow which, from the point of view of the fluid element,
are indistinguishable from a steady simple shear flow described in terms of
suitably chosen local Cartesian coordinates (see [15, 100] for a more detailed
discussion). Some examples of viscometric flows are steady flow between par-
allel plates driven by the motion of one or both of the plates (simple shear
flow) and steady, fully developed flows in channels and pipes of constant cross
section. The three viscometric material functions are easily defined relative to
simple shear flow (expressed in a Cartesian frame (e1, e2, e3)) with velocity
field u = γ̇0x2e1 where the shear rate γ̇0 is a positive constant,

Viscosity or Shear Viscosity μ(γ̇0) ≡ σ12/γ̇0

First normal stress coefficient: ψ1(γ̇0) ≡ (σ11 − σ22)/γ̇20
Second normal stress coefficient: ψ2(γ̇0) ≡ (σ22 − σ33)/γ̇20 ,

(6.1)

and σij are the rectangular components of the Cauchy stress tensor defined
in Chapter 3 2. For Newtonian and generalised Newtonian fluids ψ1 and ψ2
will be zero.
2 Note that alternative definitions of the first and second normal stress definitions
are sometimes used, though they can be formed from linear combinations of these
given here.
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In short, if rheologists measure the functions μ(γ̇), ψ1(γ̇), ψ2(γ̇) in one
viscometric flow, they can predict the behaviour of this material in all other
viscometric flows. In addition, any incompressible simple fluid can undergo all
viscometric flows. The three functions are shown to be material functions that
have meaning without selecting a particular constitutive model for a fluid. It
is therefore not surprising, that all three of the commonly used rheometers
discussed below are designed to generate flows that are approximations of
viscometric flows.

Linear viscoelastic properties

The magnitudes of viscoelastic effects in blood are small. In fact, to date,
measurements of the first and second normal stress differences for blood have
not been reported. Instead, the majority of viscoelastic studies on blood are
directed at obtaining the linear viscoelastic properties of blood. For linear
viscoelastic theory to be valid, the general kinematics of a simple fluid are
restricted to motions in which the norm of the strain relative to the rest
history is small (see, e.g. [100]). All nonlinear effects are treated as negligible.
These linear viscoelastic properties are often determined by subjecting the
fluids to periodic flows in the limit of small deformations.
A commonly reported linearly viscoelastic property is the complex mod-

ulus G∗. The real and imaginary parts of G∗ = G′ + iG′′ are referred to as
the storage modulus and loss modulus, respectively, where G′ and G′′ are
both real numbers. The role of these parameters is easily seen for infinites-
imal oscillatory shear flows. For convenience, as for the discussion of simple
shear flow, we use a Cartesian frame with the plates parallel to e1. In par-
ticular, consider flow of blood between two parallel plates generated by the
motion of the upper plate when it is subjected to a oscillatory displacement
γ0h sinωte1. The corresponding plate velocity is then γ0ωh cosωte1. In the
limit of infinitesimal linear viscoelasticity, the shear stress can be written as
(e.g. Section 7.2.1 of [428]),

σ12 = γ0 (G
′ sinωt +G′′ cosωt) . (6.2)

For purely elastic materials, the shear stress and displacement are in phase,
in which case G′′ is zero and G′ plays the role of an elastic shear modulus.
For purely viscous materials, the shear stress is in phase with the velocity
gradient, requiring G′ to be zero. Hence, G′′ is the quantity associated with
viscous losses in the material. It is for this reason that G′ and G′′ are referred
to as the storage and loss moduli, respectively. A related quantity is the loss
tangent, tan δ defined as,

tan δ = G′′/G′. (6.3)

It follows from (6.3), that δ will be zero for a purely elastic material and π/2
for a purely viscous material.
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Another quantity which is often reported in the literature on linear vis-
coelasticity is the complex viscosity μ∗,

μ∗ = μ′ − iμ′′, (6.4)

where μ′ and μ′′ are real. The shear stress in small amplitude oscillatory shear
can be written in terms of these linear viscoelastic parameters (e.g. Sec. 7.2.1
of [428]) through

σ12 = γ0 ω (μ
′ cosωt + μ′′ sinωt) . (6.5)

Following similar arguments as used to determine the roles of G′ and G′′, we
see that μ′ is zero for elastic materials and μ′′ is zero for viscous materials.
It is for this reason that μ′′ and μ′ are referred to as the elastic and viscous
components of the complex viscosity, respectively.
The relationships between the complex viscosity and the complex modulus

as well as their components are

μ∗ = G∗/iω, μ′ = G′′/ω, μ′′ = G′/ω. (6.6)

In typical experiments, the material moduli of linear viscoelasticity are given
as a function of frequency ω.

Thixotropic response

The formation of the three-dimensional microstructure and the alignment of
the RBC are not instantaneous, which gives blood its thixotropic behaviour.
As emphasised by Barnes [26], there is a tremendous variation in published
definitions for thixotropy. Outside of industrial applications, these definitions
largely focus on the time dependence of rheological properties under fixed
shear rate (e.g. viscosity, normal stress effects) arising from the finite time
required for the breakdown and buildup in microstructure such as that just
described for blood. Bauer and Collins [31] provide the following representa-
tive definition,

Thixotropy: When a reduction in magnitude of rheological proper-
ties of a system, such as elastic modulus, yield stress, and viscosity,
for example, occurs reversibly and isothermally with a distinct time
dependence on application of shear strain, the system is described as
thixotropic.

Many theories for thixotropy introduce a metric of the level of microstruc-
ture denoted by λ. It is helpful to use this concept in the following discussion
of blood thixotropy. For simplicity, λ is normalised such that λ ∈ [0, 1] and
λ = 0 refers to the absence of structure (e.g. only individual RBCs remain)
and λ = 1 refers to the largest level of structure possible under the given phys-
ical conditions. An evolution equation is then introduced to describe the rate
of change of λ as result of competing effects driving build up or breakdown
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in microstructure. To complete the theory, an expression for the functional
dependence of viscosity and viscoelastic parameters on the level microstruc-
ture λ is given.
Unsteady shear flows are often used to probe the thixotropic material

response. In this section, we consider two such flows. Once again, flow between
two parallel plates is considered, driven by the motion of the upper plate. Here,
we consider the upper plate to move with unsteady, non-periodic velocity of
the form u = v(x2, t)e1. The magnitude of either of the two equal non-zero
components of the symmetric part of the velocity gradient is denoted by γ̇(t)
and referred to as the shear rate, (also defined below, see (6.19), Section 6.4.1).
The applied shear stress is denoted by σ12.
Shown in Fig. 6.2(a), is γ̇(t) for one such flow. Here, the plate is subjected

to a step increase in shear rate at time t0 from zero to γ̇ = γ̇a. This is followed
by a step decrease at t = t1 to a constant value γ̇b < γ̇a. For experiments on
thixotropic fluids, it is necessary to know the state of the material structure at
the beginning of the experiment. Here, we assume the material has maximum
structure at t = t0. For times larger than t1, the shear rate is held constant at
γ̇b. The response of a representative thixotropic material to this loading regime
is seen in Fig. 6.2(b). After the step increase in load, the structure begins to
diminish, resulting in a decrease in the viscosity and hence the applied shear
stress. A finite amount of time is required for the material to approach the
equilibrium structure (and hence viscosity) for the applied shear rate γ̇a. This
is reflected in the finite amount of time it takes for the applied shear stress
to approach σa. Just before the abrupt drop in shear rate, the level of the
microstructure has nearly reached the equilibrium value for γ̇a. Immediately
after the drop in shear rate, the level of the microstructure falls below that of
the equilibrium value for the new shear rate γ̇b. With increasing time at this
lower shear rate, the structure builds back up, tending towards the equilibrium
value for γ̇b. The viscosity increases due to this increasing structure, requiring
increased applied shear stress to maintain the shear rate γ̇b.
Shown in Fig. 6.3(a) is a loading regime for a second experiment used to

test thixotropic materials. It consists of a linear increase in shear rate followed

(a) t0
t1

.γ
a

γb

.

sh
ea

r 
ra

te

time (b) t0
t1

time

σ
σb

sh
ea

r 
st

re
ss

a

Fig. 6.2. Qualitative behaviour of a thixotropic fluid undergoing a step increase
then decrease in shear rate: (a) imposed shear rate as a function of time (b) resulting
shear stress as a function of time
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Fig. 6.3. Qualitative features of the dependence of shear stress on shear rate for
a representative thixotropic fluid experiencing a linear increase in shear rate fol-
lowed directly by a linear decrease: (a) imposed shear rate as a function of time;
(b) resulting shear stress as a function of shear rate

directly by a linear decrease. The shear rate is constantly changing so that
there is no possibility for the material structure to approach its equilibrium
value. As a result, the response of the material to this loading is more complex
than the step loading in Fig. 6.2. As before, we assume the material started
out with the maximummicrostructure. For simplicity, we consider thixotropic
materials with no viscoelastic behaviour. The microstructure will break down
as the shear rate is increased to γ̇max, Since there is not sufficient time for
the structure to break down to its equilibrium value for the current shear
rate, the viscosity and hence shear stress will be larger than the corresponding
equilibrium values. As the shear rate is decreased from γ̇max, the structure level
will begin to increase. Since this increase is not instantaneous, the structure
level (and viscosity) will be lower than the values at the same shear rate
during the first half of the loading regime. The corresponding shear stress
is lower, resulting in the hysteresis loop seen in Fig. 6.3(b). The size of this
loop is often used as a measure of thixotropy. In contrast, for fluids like water
with no substantial change in microstructure, the curve traced out during
increasing and decreasing shear rate would be identical.
It should be emphasised that, unfortunately, there are no thixotropic mate-

rial functions analogous to the viscometric functions. These non-periodic time
dependent flows can only provide information about material functions for
specific thixotropic constitutive models or used as a probe of qualitative fea-
tures of the thixotropic behaviour. Even this qualitative interpretation can be
confounded by combined viscoelastic and thixotropic effects. This is in con-
trast to the viscometric and oscillatory flows discussed earlier which can be
used to measure viscometric and viscoelastic material functions.

6.2.2 Overview of rheometers

The three most commonly used rheometers for blood are the concentric cylin-
der rheometer (Couette rheometer), the cone and plate rheometer and the
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Fig. 6.4. Schematic of three rheometers commonly used for blood: (a) Couette,
(b) cone and plate, and (c) capillary

capillary rheometer, Fig. 6.4. These rheometers can be used to approximate
the viscometric, oscillatory and non-periodic unsteady flows discussed in the
last section.

Couette rheometer

In a Couette rheometer, the test fluid is placed in the annulus between two
concentric cylinders, Fig. 6.4(a). The inner and outer radii are denoted by R1
and R2 respectively and the length of the test regime by L. The fluid motion
is generated by the rotation of one or both cylinders. We denote the difference
in rotation rate between the outer and inner cylinders by ΔΩ = |Ω2 − Ω1|.
Experimental values of the magnitude of the applied torque M necessary to
maintain the relative rotation rate ΔΩ can then used to obtain the viscosity
(e.g [100]).
The Couette rheometer is often used under steady rotation to measure the

viscosity of fluids μ. In many applications, the Couette geometry is designed
such that the gap between the cylinders is narrow. In this case, there is a
simple relationship between the viscosity and the measured quantities. For
example, if the inner cylinder is rotated and the outer cylinder held fixed,

μ =
M

4πR21L Ω1
(1− κ2), (6.7)

where κ = R1/R2. It is recommended that the narrow gap approximation
only be used for very small gaps (κ ≥ 0.99 [306]). Significantly, this simple
relationship can be used without a priori selection of a particular constitutive
model.
However, as elaborated on below, problems can arise when using a narrow

gap rheometer for blood, particularly in situations when the size of the 3D
microstructure is elevated. To address these problems, a finite gap Couette
rheometer is used. However, when the gap is finite there is no longer an explicit
solution for the relationship between viscosity and the experimental param-
eters for general simple fluids. Instead, it is necessary to select subclasses of
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theoretical models. For example, for constant viscosity fluids, we have

μ =
M(R22 − R21)
4 πLR22R

2
1ΔΩ

. (6.8)

The difficulty in obtaining explicit expressions of this kind arises because the
shear rate is not constant across the finite gap, in contrast to the solution
for the narrow gap rheometer. Therefore, the viscosity will vary across the
gap in flows of fluids with shear rate dependent viscosity. The corresponding
equations governing this flow are then more complex, and typically do not
have explicit solutions. In practice, blood viscosity is sometimes reported using
(6.8), even though the blood displays non-constant viscosity.
In obtaining (6.7) and (6.8), the fluid is assumed to travel in a purely

circular path. This assumption can be violated by the onset of a secondary
motion due to an inertial instability. In addition, deviations from the idealised
purely circumferential flow can arise due to wall slip and end effects [306].
Couette rheometers are also used to measure linear viscoelastic properties

and to evaluate the thixotropic behaviour discussed in Section 6.2.1.

Cone and plate rheometer

A schematic of a cone and plate rheometer is shown in Fig. 6.4(b). The test
fluid is loaded between the cone and flat plate and driven by the rotation of
the cone. The pathlines of the flow are assumed to be purely circumferential,
in planes parallel to the flat plate, which is reasonable when inertial effects
are negligible. Additionally, the free surface is assumed to be spherical, which
also limits the shear rates that can be tested. Corrections for the influence
of secondary motions are available (see, e.g. [306], p. 209–213). The angle
between the cone and plate β is small, typically less than 0.10 radians. Under
these assumptions, the stress and shear rate within the fluid are approximately
constant and the fluid viscosity is related to the applied torqueM and rotation
rate Ω through,

μ =
3M

2πR3
β

Ω
, (6.9)

where R is the cone radius. Viscoelastic fluids can generate a force normal to
the plate. If this force is measured, the first normal stress coefficient ψ1 can
be determined (e.g. [28]),

ψ1 =
2F

πR2
β2

Ω2
, (6.10)

where F is the resultant force upward on the cone. A detailed discussion of
other limitations involved in the use of this rheometer can be found in [306],
p. 205–217.
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Capillary rheometer

The test region of a capillary rheometer consists of a cylindrical rigid tube
of radius R and length L, Fig. 6.4(c). The test fluid is driven through this
cavity by gravity, compressed gas, or a piston from a reservoir. Measurements
of viscosity are often made by applying a steady pressure drop ΔP across the
test region in order to generate a flow with constant volumetric flow rateQ. For
constant viscosity fluids, the viscosity can be related to measured quantities
through,

μ =
πR4ΔP

8QL
, (6.11)

where in writing (6.11), it has been assumed the flow is approximately uni-
directional, fully developed and steady.
Even for steady flow of a constant viscosity fluid, the shear rate is not

constant across the gap. For fluids with shear rate dependent viscosity, the
viscosity will therefore vary over the cross section. As a result, an explicit
relationship between viscosity and the measurable parameters of the appara-
tus only exists for a small number of cases, constant viscosity and power-law
fluids being the most obvious examples.
The Weissenberg-Rabinowitsch relationship provides a means of obtaining

the viscosity function from measurements of Q and ΔP without choosing a
form of the viscosity function a priori ([339,416], see also, for example, p. 238–
242 of Macosko [306]),

μ =
πR4ΔP

8QL

(
4n′

3n′ + 1

)
where

1

n′
=

dlnQ

dlnΔP
. (6.12)

However, (6.12) is typically not used in blood rheology. Rather, only an
approximation to the viscosity is calculated using the expression for constant
viscosity fluids rather than the more precise results (6.12). Alternatively, the
true viscosity can be calculated by assuming a form of the constitutive equa-
tion, such as the power-law model, a priori. This constitutive equation will be
discussed in more detail in Section 6.4. Error in using the capillary rheometer
can arise from end effects due to increased pressure losses at the entrance and
exit of the test region. Correction factors have been introduced for these end
effects (e.g. [306]).
The capillary rheometer is frequently used to measure linear viscoelastic

properties of blood (e.g. Section 8 of [429] and references cited therein).

6.2.3 General challenges in measuring rheological properties
of blood

We first consider difficulties in rheological studies of blood which are com-
mon to all three devices. A classic reference on this subject is that by Mer-
rill, [321]. At the basis of most applications of these rheometers is the assump-
tion that blood is a single phase, homogeneous medium. One requirement for
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this assumption to be reasonable is that the smallest length scale of the device
is large compared to the largest length scale of the RBC (or the characteris-
tic length of the three-dimensional microstructure when the shear rate is low
enough). However, like other suspensions, this is not a guarantee of homogene-
ity. The cells themselves may be non-uniformly distributed due to geometric
and fluid dynamical mechanisms.
Particle migration and phase separation near boundaries can lead to a

non-homogeneous distribution of red blood cells in all three rheometers.
These effects are exacerbated at low shear rates, where blood microstructure
increases the characteristic length scale from that of the RBC diameter to the
length of microstructure formed by the RBCs. The walls of the cylinders in
Couette rheometers are sometimes roughened to diminish this effect [321].
Sedimentation in rheometers limits the time over which meaningful results

can be obtained without remixing the blood. The specific gravity of an RBC
is 1.10 and that of plasma is 1.03, resulting in sedimentation rates for individ-
ual RBC on the order of a few mm/hr [57]. However, the sedimentation rates
in blood increase with RBC aggregation, limiting the shear rates over which
viscosity can be measured. As discussed above, in some disease states the size
of the microstructure can be dramatically elevated over the normal level. In
these cases, sedimentation is even more rapid [200]. At low rotation rates, the
sedimentation of the red blood cells in cone and plate rheometers can lead to
a cell free layer adjacent to the upper plate [321], invalidating the assump-
tion of fluid homogeneity inherent in obtaining (6.9). As noted as early as the
work of F̊ahraeus and Lindqvist [140], sedimentation is also a problem in the
reservoir chambers of capillary rheometers. The coaxial cylinder viscometer is
less sensitive to sedimentation [306].
Outside the body, blood has a tendency to coagulate after a few min-

utes. Various additives are effective at preventing coagulation, though at the
expense of altering the blood from its native state. Merrill and co-workers
found the rheological properties of blood to be similar between native blood
and blood with heparin added, as long as the tests were performed within
eight hours of withdrawal. Similarly, Copley et al. [101] found the viscosity
to be insensitive to the addition of two different anti-coagulants: heparin and
EDTA over a wide range of shear rates (0.0009–1000s−1).
When viscoelastic effects are of interest, the cone and plate rheometer has

the major advantage of being able to directly measure normal stress effects for
finite viscoelasticity, though to date this has not been done for blood. All three
rheometers can be used to measure blood properties for the linear viscoelastic
regime, though it should be emphasised that measurements made for small
deformations from the rest state cannot be used to predict the behaviour of
blood in a nonlinear regime of deformation.
Another consideration is whether the viscosity can be measured directly

without a priori selection of a constitutive equation. The shear rate is constant
throughout the fluid domain in Couette rheometers as well as cone and plate
rheometers, under the assumptions of small gap and small cone angle, respec-
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tively. In contrast, in capillary rheometers and large gap Couette rheometers,
an elaborate data reduction process is required to obtain the true viscosity
function unless a prior selection of a constitutive model for blood is made. It is
for this reason that blood rheologists often report only an approximate viscos-
ity of blood from capillary and large gap Couette rheometers (Section 6.3.1).
This is not an issue at higher shear rates where the viscosity of blood is
approximately constant.
At low shear rates, extended periods of time are required before meaningful

measurements can be made, due to the time needed for the blood microstru-
ture to reach a state of equilibrium. For example, at shear rates of 0.01 s−1,
approximately three minutes are required for the shear stress to reach equi-
librium in a Couette viscometer (Ht = 70%) [387]. The lack of a constant
shear rate in these rheometers can also lead to erroneous results when the
thixotropy of blood is important
Another consideration is sample size, particularly for cases where the sup-

ply of whole blood is limited, such as in small animal studies. An advantage
of the cone and plate rheometer is the relatively small sample size.
In practice, commercial capillary rheometers are used to measure the

approximately constant viscosity plateau of blood (shear rates above 200–
300 s−1). Relatively standard Couette or cone and plate rheometers are used
at low to medium shear rates of 1 to 200–300s−1. Low shear rate Couette
viscometers have been developed for shear rates much below 1 s−1.

6.2.4 Challenges in thixotropy measurements

One of the greatest obstacles in evaluating the thixotropic properties of a
material is the lack of a clearly defined state at the initiation of the exper-
iment (see discussion in [325]). This point is often overlooked and is in fact
difficult to achieve if the material has been mixed or pumped prior to run-
ning the experiment. Even the seemingly benign task of loading fluid in the
rheometer may affect the structure of the material at the time the experi-
ment is initiated [26]. In the example above (Section 6.2.1) it was given that
λ = 1 at the initiation of the experiment. This might be achieved for example
by holding the sample in a quiescent state for a known recovery period after
loading the rheometer. Thixotropy is particularly difficult to measure in blood
due to the increase in sedimentation rate as the microstructure increases in
size [26]. Blood is frequently highly sheared prior to thixotropic experiments
in an effort to resuspend the RBCs (e.g. [54, 247, 431]). A period of minutes
is then typically allowed with the assumption that this is sufficient time for
nearly maximal microstructure to be reached without significant sedimenta-
tion. Measurements have been reported to be quite sensitive to this proce-
dure [54].
An additional difficulty for blood rheology is interpretation of the hys-

teresis loops due to the concurrent viscoelastic and thixotropic responses of
blood during the experiments [26]. When thixotropic data is used to develop



226 Anne M. Robertson, Adélia Sequeira, and Robert G. Owens

a constitutive model, it is imperative that the initial state be clearly defined
in the experiment and included in the modelling.

6.3 Mechanical properties of blood

In this section, we discuss representative experimental data for the mechanical
properties of blood.

6.3.1 Viscosity of blood

Before discussing the viscosity of blood, it is helpful to comment on some
nomenclature for viscosity in the literature which appears to have been given
different meanings by different authors. We will refer to the viscosity function
defined in (6.1) as the viscosity or sometimes as the material viscosity to
emphasise that it is a material property. The measured value of this quantity
should be independent of the choice of rheometer, assuming the rheometer is
used in an appropriate test regime. In some works, this viscosity is called the
apparent viscosity (e.g. [98]). A second viscosity which is sometimes reported is
an approximate viscosity based on using shear rates that would be found if the
fluid in the rheometer had a constant viscosity (Section 6.2). For example, in
the discussion above on capillary rheometers, the viscosity is calculated using
(6.11) rather than (6.12), even for shear rates where the viscosity is shear
rate dependent. A number of authors refer to this viscosity as the apparent
viscosity (e.g. Fung [179, Chapter 5]) and others refer to this as the effective
viscosity (e.g. [98]). At high shear rates, where the blood viscosity is nearly
constant, the apparent viscosity will be the same as the actual viscosity. A
third viscosity is the viscosity of blood (actual or approximate) relative to the
viscosity of either plasma or water at the same temperature, which is typically
referred to as the relative viscosity.
Figure 6.5 displays the shear thinning behaviour of whole blood as exper-

imentally observed by Chien [82]. Each of these data points represents an
equilibrium value obtained at a fixed shear rate. While most constitutive mod-
els for viscosity predict that μ(γ̇) will reach an approximately constant value
denoted as μo as the shear rate tends to zero, in fact it is commonly believed
that blood displays a yield stress, corresponding to an infinite viscosity at
zero shear rate. The proper method for measuring yield stress and even the
existence of a yield stress for blood are controversial, complicated by the dif-
ficulties in measuring blood properties at low shear rates. We therefore delay
a discussion of blood yield stress until Section 6.3.4. As the shear rate is
increased, there is a steep decrease in viscosity until a plateau in viscosity μ∞
is reached.
As discussed earlier in this chapter, the mechanical properties of blood

are dominated by the 3D microstructure formed by the RBCs and general
distribution of RBCs in the flowing plasma. At lower shear rates, the behaviour
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dependence of effective cell volume as a determinant of blood viscosity. Science,
168:977–979, 1970. Reprinted with permission from the American Association for
the Advancement of Science [86])

is controlled by the effect of the 3D RBC formations on the flow and the ability
of these formations to deform and store energy. At moderate to high shear
rates, these cells are dispersed in the plasma and the properties of the blood are
then influenced by their tendency to align and form layers in the flow, as well
as by their deformation [506]. The importance of RBC aggregation on blood
viscosity at low shear rates was clearly demonstrated by Chien who compared
the viscosity of RBCs suspended in heparinised plasma and albumin-Ringer
solution (Alb) [85]. The normal RBC aggregation found in plasma does not
occur in Alb. Though the viscosity of plasma and Alb were both the same, the
viscosity of the RBC solution was greatly increased at low shear rates by RBC
aggregation (less than approximately 5 s−1) but unaffected at larger shear
rates, Fig. 6.5. The effect of RBC deformability on viscosity of suspensions
of these cells was also clearly shown in [85]. Chien compared the viscosity of
normal RBCs in Alb and that of hardened RBCs in Alb (presumably hardened
at zero shear rate). The ability of normal RBCs to deform (change shape and
stretch) significantly decreased the viscosity over all shear rates tested.
In addition to shear rate, the aggregate size is a function of cell shape,

plasma composition and haematocrit. This is reflected in the dependence of
viscosity on these same variables. We do not address quantitative results for
these variables here, but refer the reader to references such as [127] and [543].
The viscosity of whole blood is strongly dependent on temperature and

care must be taken in noting the temperature at which the data was obtained
when comparing data from different sources. For example, the reported blood
viscosity at a haematocrit Ht = 40%, and temperatures of 20 ◦C and 37 ◦C
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for two representative shear rates are [418]:

μ 20 ◦C 37 ◦C

μ (6 s−1) 11.1mPa s 5.8mPa s

μ (212 s−1) 6.3mPa s 3.8mPa s

(6.13)

Merrill et al. [324] found the dependence of blood viscosity on temperature
to be similar to that of water for temperatures ranging from 10 ◦ to 40 ◦C
and shear rates from 1 to 100 s−1. The variation of plasma viscosity with
temperature is also known to approximately follow that of water [76]. For
these reasons, blood viscosity is often reported relative to the viscosity of
plasma or water at the same temperature.

6.3.2 Viscoelasticity of blood

The viscoelastic properties of blood are attributed primarily to reversible
deformation of the 3D microstructure of RBCs, e.g. [484, 508], (see also, Sec-
tion 8 of [429]). However, these properties are of relatively small magnitude
and to date have generally only been measured in the context of linear vis-
coelasticity, (e.g. references cited in [508]). The value of μ′′ (see (6.6)) in
whole blood from healthy patients decreases monotonically with increasing
shear rate [508]. In an experiment involving both steady and small amplitude
oscillatory tube flow, Thurston [507] showed that at shear rates of the order
of 10s−1 rms the elastic nature of the blood sample became negligible, as evi-
denced by a merging of the oscillatory and steady flow viscosities. The reader
is referred to [508] for a review of the dependence of blood viscoelasticity on
factors such as temperature, haematocrit and RBC properties.
While the linear viscoelastic functions are relatively straightforward to

obtain in the rheometers described above, it should be emphasised that blood
flow in the circulatory system is rarely in the regime applicable for linear
viscoelasticity theory. The linear elastic material constants are indicative of
aspects of the microstructure and therefore can be used as a method of quan-
tifying blood properties. However, ultimately, there is a need to consider the
finite viscoelastic behaviour of blood, if viscoelastic constitutive equations are
going to be used to model blood behaviour in the circulatory system.

6.3.3 Thixotropy of blood

The thixotropic properties of blood are believed to arise from the finite time
required for the formation and breakup of the 3D microstructure, elongation
and recovery of red blood cell microstructure, and the formation and break-
down of layers of aligned RBCs, as already mentioned in Section 6.2.
Bureau et al. [54] employed a Couette rheometer to expose blood to the sec-

ond type of non-periodic unsteady flows discussed in Section 6.2.1. In Fig. 6.6
(A) and (B) we reproduce shear stress hysteresis curves for normal human
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Fig. 6.6. Data from Bureau et al. [54] plotted in dynes/cm2. (Reprinted from
Biorheology, 17, M. Bureau, J. C. Healy, D. Bourgoin and M. Joly, Rheological
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blood from [54] where these correspond, respectively to γ̇max = 0.12025s
−1,

t0 = 6.5 s (experiment (A)) and γ̇max = 1.0234 s
−1, t0 = 23.8s (experiment

(B)). In both cases a residual non-zero shear stress may be seen at the end of
the cycle, indicating that blood is viscoelastic and that the stress depends on
the entire deformation history and not just the instantaneous rate of defor-
mation, as would be the case for a Newtonian or generalised Newtonian fluid.
That the two branches of the stress curve, cross in experiment (B), is a man-
ifestation of thixotropic behaviour. So sensitive is this flow to the rheological
properties of blood that Bureau et al. encountered significant dispersion in
the results they obtained for different samples of normal blood. A measure of
this dispersion for σrθ(t0) and σrθ(2t0) is supplied in the captions of Fig. 6.6.
For experiment (A) the stress response is, as may be expected for a low

shear rate experiment, mainly viscoelastic. In experiment (B) the maximum
shear rate attained is higher and thixotropic effects are much more important,
as anticipated.

6.3.4 Yield stress of blood

The behaviour of a number of fluids at low shear stress, including blood, has
led researchers to believe in the existence of a critical value of stress below
which the fluid will not flow. This critical stress level, called the yield value or
yield stress (see also Section 6.1.1), is typically treated as a material property



230 Anne M. Robertson, Adélia Sequeira, and Robert G. Owens

(constant) of the fluid.3 An extensive description of methods for measuring
yield stress is given in [349]. Briefly, there are two categories of methods:
indirect methods and direct methods. In indirect methods, the shear stress
versus shear rate curve is back extrapolated to zero, possibly using a specific
constitutive model or simple linear approximation. Sometimes the yield stress
is set to the lowest measured shear stress [388]. In direct methods, an attempt
is made to directly measure the shear stress at which the fluid begins to flow.
Reported values for the yield stress of blood vary greatly ranging from

0.002 to 0.40dynes/cm2 (see, e.g. [127]). This variation in reported values has
been attributed to artifacts arising from interactions between the RBCs and
surfaces of the rheometer [76] as well as the experimental method used to
measure the yield stress. The large range seen for blood is consistent with
results for other fluids where this spread is attributed to the experimental
methodology, the criterion used to define the yield stress, and the length of
time over which the experiment is run [349]. A true material constant should
be independent of these factors. These results have called into serious question
the treatment of the yield stress as a material parameter [27, 29, 338, 349].
Dintenfass appears to have been the first to question the appropriateness of
such a material constant for blood (see, e.g. [127], p. 82). He suggested that
rather than treating the yield stress as a constant, it should be considered as
a function of time. A time dependence was also noted in [80] and is consistent
with the link between yield stress and thixotropy proposed years later by other
researchers [338].

6.4 Constitutive models for blood

As discussed earlier in this chapter, the presence of the formed elements in
blood leads to some significant and fascinating changes in its rheological prop-
erties. In this section, we will discuss constitutive models introduced to capture
one or more of these properties. We will assume that all macroscopic length
and time scales are sufficiently large compared to time and length scales at
the level of the individual erythrocyte that the continuum hypothesis holds.
Thus the models presented in the pages that follow would not be appropriate
in the capillary network, for example, and for an overview of haemorheology
in the microcirculation we refer the reader to the review articles of Popel and
Johnson [393] and Pries and Secomb [394].
Since both the shear thinning and viscoelastic properties diminish rapidly

as the 3D microstructure of RBCs breaks down, it is important to consider
in which flow regimes and clinical situations the non-Newtonian properties of

3 While it is not discussed in the blood literature, it should be understood that this
material parameter must be a true scalar, independent of the system of coordi-
nates used. In most discussions, the yield stress is considered for approximations
of simple shear flows and the yield stress is just the corresponding applied shear
stress at which flow begins, (see also [429]).
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blood will be important. The Blood would need to be subjected to shear rates
below 1 s−1 per period sufficient for these structures to form and alter the flow.
Schmid-Schönbein and co-workers found the half-time for aggregate formation
to be 3–5 seconds for normal blood and 0.5–1.5 seconds for pathological blood
samples [452]. In their experiments, the time for aggregation was measured
after samples were exposed to an abrupt drop in shear rate from 460 s−1 to
approximately zero. Thurston estimated an aggregation time on the order of
a minute after the abrupt stoppage of oscillatory shear with shear rate of
500 s−1 and shear strain of 1.77 (rms) [182].
The blood circulation time for humans is on the order of minutes, so for

normal blood, the RBC structure will be broken down in the majority of the
arterial system and only exist in regions of the circulation where there are sta-
ble recirculation zones with shear rates significantly below 1 s−1 (see, Sects. 6.3
and 8.3 of [429] for a more in depth discussion of this issue). Possible loca-
tions where the non-Newtonian behaviour will be significant include segments
of the venous system and stable vortices downstream of some stenoses and
in the sacs of some aneurysms. For various pathologies, the 3D microstruc-
ture formed by the RBCs is substantially stronger than for normal blood.
For these patients, it is possible the 3D microstructure will exist in more
widespread regions of the circulatory system. Increased RBC aggregation has
been observed for patients with infections, trauma, burns, diabetes mellitus,
AIDS and other diseases [302].
The quantification of the mechanical response of blood (shear thinning,

viscoelasticity) can also be important for patient diagnosis. For example, η′′

has been shown to be very sensitive to myocardial infarction, peripheral vas-
cular disease and diabetes [508].
As a first step towards the macroscopic modelling of blood flow we recall

the equations for the balance of linear momentum and conservation of mass
(or incompressibility condition) for isothermal flow (see Chapter 2)

ρ
Du

Dt
= −∇P + divτ ,

divu = 0.

(6.14)

Here, τ denotes the extra-stress tensor accounting for differences in behaviour
from a purely inviscid, incompressible fluid. To close the system of equations,
we require an equation relating the state of stress to the kinematic variables
such as rate of deformation of fluid elements. These constitutive equations
and the elaboration of macroscopic constitutive models suitable for blood
flow under certain flow conditions are the primary subjects of this section.

6.4.1 Generalised Newtonian and yield stress models

The simplest viscous fluid model is that due to Newton. On the assumption
that the components of the extra-stress tensor are each linear isotropic func-
tions of the components of the velocity gradient ∇u, it may be shown (see,
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for example, [368, Chapter 2]) that for an incompressible fluid

τ = 2μD(u), (6.15)

where μ is a (constant) viscosity and D(u) is the rate of deformation tensor,
defined in Chapter 2. The substitution for τ in (6.14) from (6.15) leads to the
well-known Navier-Stokes equations for an incompressible viscous fluid (see
Chapter 3). This set of equations is commonly used with some justification to
describe blood flow in the heart and healthy arteries (see, e.g. [263]). Blood
is nonetheless non-Newtonian and in the previous sections evidence has been
presented to show that under certain experimental or physiological conditions
(6.15) is inadequate as a constitutive relation for blood. In this subsection,
we first discuss representative rheologically admissible constitutive equations
with shear thinning viscosity, and then introduce the Casson model, a repre-
sentative yield stress fluid.
Without loss of generality (e.g. [15]), the most general incompressible con-

stitutive model of the form τ = τ (∇u) that respects invariance requirements
can be written in the form

τ = φ1(I2, I3)D(u) + φ2(I2, I3)D(u)
2 (6.16)

where I2 and I3 are the second and third principal invariants of the rate of
deformation tensor,

I2 =
1

2

(
(trD(u))2 − trD(u)2

)
, I3 = det(D(u)), (6.17)

and trD(u) is identically zero for divergence free velocity fields essential for
incompressible fluids (isochoric motions). Incompressible fluids of the form
(6.16) are typically called Reiner-Rivlin fluids. The behaviour of Reiner-Rivlin
fluids with non-zero values of φ2 in simple shear does not match experimental
results on real fluids [15]. In addition, the dependence on the value of I3 is
often considered negligible [15]. For this reason, attention is typically confined
to a special class of Reiner-Rivlin fluids called generalised Newtonian fluids.

τ = 2μ(I2)D(u), (6.18)

where μ is the same viscosity (a viscometric function) defined in (6.1). In
viscometric flows, I3 is identically zero and it is not necessary to explicitly
assume the dependence of μ on I3 is negligible. The quantity I2 is not a positive
quantity, so it is useful to introduce a metric of the rate of deformation,
denoted by γ̇,

γ̇ ≡
√
2 tr (D(u)

2
) =

√
−4I2. (6.19)

Using (6.19), the generalised Newtonian model (6.18) takes the useful form,

τ = 2μ(γ̇)D(u). (6.20)
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For example in simple shear flow, the metric (6.19) coincides with the shear
rate γ̇0 introduced in (6.1). It should be emphasised that the use of the repre-
sentation (6.20) does not restrict attention to simple shear or other viscometric
flows.

Power-law type models

A simple example of a generalised Newtonian fluid is that of the power-law
fluid, which has viscosity function given by

μ = kγ̇(n−1), (6.21)

k being a positive constant and n a constant chosen to have a maximum value
1, leading to a monotonic decreasing function of shear rate (shear thinning
fluid) when n < 1 and a constant viscosity (Newtonian) fluid when n = 1. One
of the major advantages of this model is that it is possible to obtain numerous
analytical solutions to the governing equations. Two major drawbacks of the
power-law model for the shear thinning case are that the zero shear rate
viscosity is unbounded and the asymptotic limit as γ̇ →∞ is zero. Both these
behaviours are unphysical and limit the range of shear rates over which the
power-law model is reasonable for blood.
One of the more successful viscosity laws for blood is an extension of

the power-law model due to Walburn and Schneck [534]. In addition to the
shear rate, they considered the dependence of the viscosity on the haematocrit
(Ht) and total protein minus albumin (TPMA) content through the param-
eter k and n in (6.21). Using a nonlinear regression analysis they found that
shear rate and haematocrit were the two most important factors in decreasing
order of importance. Based on these two factors, they formulated the following
expressions for k and n,

k = C1 exp(C2Ht), n = 1−C3Ht. (6.22)

They found an R-squared statistical increase from 62% to 88% when Ht was
included in the power-law model in addition to shear rate. The statistical
significance rose to nearly 91% when TPMA was also added. Walburn and
Schneck attribute the two parameter model (6.21) to Sacks [441].

Quemada model

In 1978 Quemada [412] used a semi-phenomenological approach to develop
a constitutive law suitable for concentrated disperse systems (such as blood)
that had an apparent viscosity μ determined from

μ = μF

(
1− 1
2

k0 + k∞
√
γ̇/γ̇c

1 +
√
γ̇/γ̇c

ϕ

)−2
, (6.23)
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where μF , ϕ and γ̇c are the viscosity of the suspending fluid, the volume
concentration of the dispersed phase and a critical shear rate, respectively.
Quemada showed that calculating the absolute value of the shear stress τ12 in
simple shear flow from the generalised Newtonian constitutive relation

|τ12| = μγ̇, (6.24)

led to an expansion for
√
|τ12| valid for γ̇ � γ̇c of the form√

|τ12| =
√
μF γ̇

1− 1
2k∞ϕ

+
√
μF γ̇c

ϕ

2

k0 − k∞
(1− k∞ϕ/2)2

+O(
√
γ̇c/γ̇). (6.25)

Equation (6.25) is, to order
√
γ̇c/γ̇ of the form√

|τ12| =
√
K
√
γ̇ +

√
|τ0|, (6.26)

where
K = μF

(
1− 1

2k∞ϕ
)−2
= lim

.
γ̇→∞

μ(γ̇) = μ∞,

τ0 =
1

4
μF γ̇c(k0 − k∞)2

ϕ2

(1− k∞ϕ/2)4
+O(

√
γ̇c/γ̇).

Equation (6.26) is Casson’s equation [69] for the absolute value of the shear
stress τ12 as a function of the shear rate when the magnitude of the shear
stress exceeds that of a yield stress τ0.
The controversy over the existence of a yield stress and the use of it as

a material parameter were introduced in Section 6.3.4. Here, we briefly sum-
marise some of the results obtained for these measurements, but caution that
measurements of the yield stress are expected to be quite sensitive to the
microstructure of the blood prior to yielding, which is in turn expected to be
sensitive to both the shear rate history as well as time [338].
Merrill et al. [323], obtained data supporting the existence of a yield stress

using both a rotational viscometer and pressure-flow in capillaries. His data
was well fitted using Casson’s equation. Their results corroborated what had
been previously seen by researchers such as Cokelet et al. [99] and Merrill et
al. [324] and confirmed the importance of the presence of fibrinogen for the
magnitude of the yield stress. Also haematocrit levels had to exceed a criti-
cal threshold (typically between 0.05 and 0.08) for there to be a measurable
yield stress. Results in the literature for the yield stress of blood show it to
be very small, however: Neofytou [348] tabulated measurements made by dif-
ferent research groups at temperatures varying between 22 ◦C and 37 ◦C and
haematocrits between 0.42 and 0.46 and the maximum reported value of the
yield stress was 25.6mPa. More recent measurements of the yield stress in
human blood using a Couette rheometer have been performed by Picart et
al. [388] and their Fig. 7 supplies an interesting synthesis of yield stress data
in the literature as a function of haematocrit. Picart et al. used the shear
stress measured at a shear rate of 1 × 10−3 s−1 as an approximation for the
yield stress.
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Material parameters for blood in generalised Newtonian
and Casson models

Commonly used values used in the literature for blood density ρ and μo and
μ∞ at 37 ◦C are ([88])4,

ρ = 1056kg/m
3
, μo = 0.056Pa s, μ∞ = 0.00345Pa s, (6.27)

where μ0 and μ∞ are the asymptotic viscosities at zero and infinite shear
rates, i.e.

μ0 = lim
γ̇→0

μ(γ̇), μ∞ = lim
γ̇→∞

μ(γ̇).

Note that these definitions are only meaningful in the context of theoret-
ical constitutive models. In practice, the lower limit in shear rate at which
viscosity can be measured is limited by the experimental challenges discussed
in Section 6.2.3. The high shear rate limit has no real physical meaning since
the cells will lyse at sufficiently high shear rates. In practice, it is taken as the
high shear plateau value.
As discussed earlier in this chapter, the material parameters of blood are

quite sensitive to the state of blood constituents as well as temperature. The
dependence on temperature has been found to be similar to water.
The dependence on haematocrit is included in material parameters for

the power-law model that were obtained for human blood, Table 6.1. The
corresponding viscosity functions are shown in Fig. 6.7. The viscosity functions
obtained from [258] and [534] for Ht = 40% are quite close. In contrast, those
in [288] and [534] for Ht = 45% are substantially different, likely due to the
lower temperature used in [288] compared to those in [534].
Table 6.2 summarises some of the most common generalised Newtonian

models that have been considered in the literature for the shear dependent
viscosity of whole human blood. Values for the material constants obtained
by Cho and Kensey [88] for a compilation of human and canine blood are also
given in this table. Table 6.3 provides material parameters for the Quemada
and Casson models for blood used in [348].

6.4.2 Viscoelastic and thixotropic models

Experimental in vitro evidence for the viscoelastic behaviour of human blood
and discussion of its connection with the storage and dissipation of energy
during the distortion of the 3D microstrucure formed by the RBC at low shear
rates abounds in the literature: see, for example [84,303,503,504,532]. A word
of caution is in order at this point, however. A study of blood in sinusoidal flow

4 The values for μo and μ∞ presented by Cho and Kensey [88] were obtained from a
compilation of data including both human and canine blood and for haematocrits
ranging from 33–45%.
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Fig. 6.7. Comparison of viscosity functions μ(γ̇) for the power-law model (6.21)
using material constants provided by Kim et al. [258] (Kim) and Liepsch and
Moravec [288] (LM) for human blood. Also shown are representative viscosity curves
for the Walburn-Schneck model (WS) [534] that includes a dependence on haemat-
ocrit (6.22). Values for the material constants n and k are given in Table 6.1

Table 6.1. Material constants for power-law model obtained by various researchers
using fit of (6.21) to human blood data at different haematocrits. For comparison,
results predicted from the Walburn-Schneck model (6.22) are shown

Ht (%) n k (Pa sn) Background

40.5 0.828 0.00927 From Kim et al. [258] for unadulterated human
blood at 37◦ using a rotating viscometer for γ̇ ∈
[30, 375] s−1 and scanning capillary viscometer for
γ̇ ∈ [1, 375] s−1.

35
40
45

0.825
0.800
0.775

0.00888
0.0115
0.0148

From Walburn and Schneck [534] for anticoag-
ulated blood at 37◦ using a cone and plate vis-
cometer for γ̇ ∈ [23.28, 232.80] s−1 with C1 =
0.00148 Pa sn, C2 = 0.0512, C3 = 0.00499.

45 0.61 0.042 From Liepsch and Moravec [288] for human blood
at 23 ◦C using a rotational rheometer for γ̇ ∈
[0.2, 400] s−1.

in glass tubes by Federspiel and Cokelet in 1984 [143] using tube diameters,
flow rate amplitudes and oscillation frequencies that attempted to mimic those
in small arteries indicated that blood elasticity was effectively negligible in this
flow regime. Differences with measurements made earlier by Thurston [503]
were attributed to the larger shear rates in Federspiel and Cokelet’s work,
and Thurston’s work was suggested as being more applicable to venous flows
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Table 6.2. Material constants for various generalised Newtonian models for blood
with μ0 = 0.056Pa s, μ∞ = 0.00345 Pa s

Model
μ(γ̇) − μ∞
μ0 − μ∞ Material constants for blood

Powell-Eyring
sinh−1(λγ̇)
λγ̇

λ = 5.383 s

Cross
1

1 + (λγ̇)m
λ = 1.007 s, m = 1.028

Modified Cross
1

(1 + (λγ̇)m)a
λ = 3.736 s, m = 2.406, a = 0.254

Carreau (1 + (λγ̇)2)(n−1)/2 λ = 3.313 s, n = 0.3568

Carreau-Yasuda (1 + (λγ̇)a)(n−1)/a λ = 1.902 s, n = 0.22, a = 1.25

Table 6.3. Material constants for Quemada (6.23) and Casson (6.25) models. The
Quemada parameters were chosen to fit the data of Schmid-Schönbein et al. [451] and
are for Ht = 45%. The Casson parameters are drawn from the experimental papers
of Charm et al. [77] and Charm and Kurland [78] and correspond to Ht = 45% and
a temperature of 37◦C

Model Equation Material constants for blood

Quemada (6.23) μF = 1.2mPa s k∞ = 2.07 k0 = 4.33
γ̇c = 1.88 s

−1 ϕ = 0.45

Casson (6.26) μ∞ = 3.1mPa s σ0 = 10.86mPa

or pathological low-flow rate flows than arterial flows. In addition to being a
viscoelastic fluid, the fact that red cell aggregates neither form nor break up
instantaneously leads to blood being thixotropic (see, Section 6.3.3) and the
reader is also referred to [215,231,505], for example, for further discussion.
None of the models in Section 6.4.1 accounts for either the viscoelastic-

ity or the thixotropy of blood. Happily, a number of non-linear viscoelastic
constitutive models for blood are now available but because of their com-
plexity we will avoid presenting the mathematical details here, providing
instead a summary of the relevant literature. Viscoelastic constitutive mod-
els of differential type, suitable for describing blood, have been proposed
recently by Yeleswarapu [548, 549] and by Anand and Rajagopal [10] (the
latter being developed in the context of the general thermodynamic frame-
work of Rajagopal and Srinivasa [417]).
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An alternative approach to modelling blood rheology for time-dependent
flows has been made by authors such as Quemada [413–415], Williams et
al. [545] and De Kee and co-workers [112, 490]. The common outcome of the
modelling done by all these authors is a generalised Maxwell-type equation
for the stress due to the size and position distributions of the rouleaux. Both
viscosity and relaxation time are functions of a structure variable which, in the
papers cited above, is either the number fraction of red blood cells in aggre-
gates (more generally, aggregated particles) [413–415, 490] or of aggregated
cell faces [545].
The obvious analogy that exists between polymer network theories, in

which macromolecules form a network of temporary junctions, and the (re-
versible) aggregation of erythrocytes into a network of rouleaux at very low
shear rates, has been exploited by a number of authors in order to develop non-
linear constitutive equations for blood. Stoltz and Lucius [484], for example,
drawing inspiration from the earlier work of Carreau and De Kee [68, 111],
provided a constitutive model for blood in which the extra-stress tensor τ of
(6.14) included a memory function dependent on the second invariant of the
rate of strain tensor D(u).
In 2006 Owens [141, 367] followed ideas drawn from the classical theory

of network models for viscoelastic fluids to derive a relatively simple single-
mode structure-dependent generalised Maxwell model for the contribution τ
of the erythrocytes to the total Cauchy stress. In the model developed in [141,
367] the erythrocytes were represented in their capacity to be transported,
stretched and orientated in a flow by Hookean dumbbells, thus limiting the
model to low shear rate flows. The extra-stress tensor τ in Eq. (6.14) may be
written as the sum of a Newtonian viscous stress tensor and an elastic stress
tensor τE :

τ = 2μN D(u) + τE , (6.28)

where μN is the (Newtonian) plasma viscosity and τE represents the contri-
bution to the extra-stress due to the erythrocytes.
The constitutive equation for τE derived in [141] assumed the form

τE + ξ

(
DτE
Dt

−∇u · τE − τE · ∇uT
)
= 2N0kBTξD(u), (6.29)

where ξ is a relaxation time, dependent upon the local shear rate, time and
average aggregate size n. N0 in (6.29) denotes the number density of red blood
cells and is thus related to the haematocrit Ht by N0 = Ht/V , where V is the
volume of a single erythrocyte (approximately 92μm3). The average aggregate
size n was shown to evolve according to

Dn

Dt
=
1

2
a(γ̇)N0 −

1

2
b(γ̇)n2 +

1

2
b(γ̇)n, (6.30)

where a(γ̇) and b(γ̇) are (shear rate dependent) aggregation and fragmentation
rates. In the special case of homogeneous flow (∇u is a constant) the number
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density N0 is a constant and it may be shown that (6.30) becomes

dn

dt
= −1
2
b(γ̇)(n − nst)(n+ nst − 1), (6.31)

where nst is the steady-state value of n.

6.5 Comparison of predictions of constitutive models
with experimental data

6.5.1 Viscosity functions

In a study in 1980 by Easthope and Brooks [130] an attempt was made to fit
the measured steady shear stress data obtained from a Couette device from
thirty one different samples at shear rates ranging from 0.031 s−1 to 120 s−1

using eleven different explicit constitutive models for viscosity. The model
of Walburn and Schneck resulted in the closest fit. The predictions of the
Walburn and Schneck model have been compared with those of a Newtonian
fluid, Casson model and Bingham model for laminar flow through a straight
tube under flow conditions bearing some similarity to those that exist in the
femoral artery by Rodkiewicz et al. [430]. The Walburn and Schneck model
was seen to give markedly different results from the other models in pulsatile
flow and these were stated as being in conformity with some experimental
results [289]. The authors noted that the constitutive model of Walburn and
Schneck was developed for low shear rates, however, and was not valid for
certain shear rate regimes seen in their pulsatile flow simulations.
Details of a recent comparison between a Newtonian, Casson, power-law

and Quemada [412] model are to be found in the paper of Neofytou [348].
The author considered the case of channel flow where part of one of the
channel walls was forced to oscillate laterally, this being claimed to reproduce
some flow phenomena seen under realistic arterial conditions. The Casson
and Quemada models were seen to agree well in their predictions and were
preferred over the power-law model which has an unbounded viscosity at zero
shear rate, as discussed in Section 6.4.1.

6.5.2 Comparison of theory with triangular step shear rate
experiments

The triangular step shear rate experiment performed by Bureau et al. has
proved to be a popular one against which to test constitutive models and some
examples may be found in papers by Huang and Horng [230], Quemada [413],
Stoltz and Lucius [484], Williams et al. [545] and Owens [367].
Excellent agreement with the the stress hysteresis data of Bureau et al.

was found both for the model of Stoltz and Lucius [484] as well as that of
Owens [367]. Agreement was close between the experimental and theoretical
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predictions for the shear stress growth when the shear rate γ̇ in the time-
dependent simple shear flow passed from zero to 0.05 s−1 and from zero to
0.1s−1. As evidence of thixotropic behaviour, Stoltz and Lucius noted a shear
stress overshoot in the experiment with the larger step increase in shear rate.

6.5.3 Pulsatile flow in a straight tube

Although sophisticated experimental techniques such as 3D phase contrast
magnetic resonance imaging (see, for example [479, 493]) now exist for the
imaging of velocity fields in vivo, information about the rheology and conse-
quent flow behaviour of blood, useful for developing constitutive models, may
be gleaned from controlled experiments of pulsatile blood flow in a straight,
rigid-walled tube. Reference has been made already in Secs. 6.4.1 and 6.4.2
to the experiments of Merrill et al. [323] and Federspiel and Cokelet [143] in
glass tubes, where the magnitude of the yield stress and elastic character of
blood were evaluated, and their dependence on haematocrit, fibrinogen levels
and shear rate quantified.
A full description of all the comparisons that have been performed with

the model of Owens may be found in [141]. Other viscoelastic models have
already been used with some success for the simulation of this flow. For exam-
ple, the pressure field predictions of the viscoelastic model of Anand and
Rajagopal [10] were in reasonable agreement with the data of Thurston [504]
for oscillatory tube flow and comparisons were also made between the experi-
mental data and the results from a model of Yeleswarapu [548,549] and gener-
alised Oldroyd-B and Maxwell models. Neither of the generalised models was
found to give satisfactory results for oscillatory flows, however.

6.6 Conclusions

In this chapter we have attempted to elucidate the manner in which the mate-
rial properties of flowing human blood, and in particular its shear viscosity,
elasticity and thixotropy may be explained in terms of the complex evolving
microstructure, and especially that of the deforming and migrating red blood
cells in their different states of aggregation. We would suggest, therefore, that
the most promising rheological models to date are those developed from an
underlying microstructure similar to that of blood (albeit necessarily simpli-
fied). The retention of sufficient detail at the microscopic level may be hoped
to translate into faithful reproduction of some of the complex characteristics
of blood, particularly those associated with its thixotropic nature.
It seems to us that at least three significant challenges face those who will

develop the next generation of rheological models and use them in large-scale
numerical simulations. First, attention has been drawn to the particular dif-
ficulties associated with the measurement of some of the basic macroscopic
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rheological properties of blood, and especially in flow regimes where non-
Newtonian effects are most likely to be observed. There is a pressing need for
further experimental data to validate the current microstructural rheological
models and provide a rational basis for the further development of these mod-
els. Experiments are needed both at the scale of the RBC as well as that of the
blood vessels. For example, data on the inhomogeneous spatial distribution of
the RBCs and the time constants associated with the formation and break up
of RBC aggregates in representative flow regimes and geometries would be of
tremendous value. Moreover the availability of reliable measurements of quan-
tities such as the velocity, wall shear stress and pressure in well characterised
(and hence reproducible) physiological flows (in vivo) is essential if numerical
simulations are going to have anything really useful to say about blood flow in
the cardiovascular system. Such in vivomeasurements are only now starting to
make an appearance in the literature (see [83, 87]). Secondly, when we write of
the desirability of sufficient detail at the microstructural level being retained
in rheological models we mean just sufficient. Although we want to be able to
successfully predict non-Newtonian effects in, say, an aneurysm we would like
any reasonable model to collapse to the Navier-Stokes equations (with some
suitable apparent viscosity) in bulk arterial flow, for example. A model that is
unnecessarily complicated or costly, may have a sound rheological foundation
but has little chance of attracting the attention of the medical community and
therefore of being implemented in practical situations. Thirdly, and finally, the
development of stable, accurate and affordable numerical methods tailored to
the new set of constitutive equations for blood is of the utmost importance.
For example, proper account must be taken of the mathematical type of the
system of equations, and the possible addition of elastic stress variables make
the use of parallelisable algorithms even more crucial than they are in present
day CFD Newtonian solvers. Faster large-scale computing platforms are open-
ing up new possibilities in simulation and visualisation.
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Mathematical models of mass transfer in the

vascular walls

Karl Perktold, Martin Prosi, and Paolo Zunino

As illustrated in detail in chapters 1 and 2, the arterial wall is a heterogeneous
structure consisting of several layers which strongly differ in their thickness
and in their biological and physical properties, that we briefly recall here
for the sake of clarity. The layers constituting the wall are the endothelium,
the intima, the internal elastic lamina or lamella (IEL), the media and the
adventitia, see Fig. 7.1 for a simplified sketch. The endothelium is a type of
epithelium composed of a single layer of smooth, thin cells that lines the heart,
blood vessels, lymphatics, and serous cavities. It forms a continuous lining on
blood contacting surfaces in the vascular system, providing the principal bar-
rier against the entry of cholesterol and blood cells into the wall and inhibiting
platelet adherence to the vessel walls. Endothelial cells create chemicals and
control the transport of mass into and out of the wall. The sub-endothelial
layer is an extra-cellular matrix of randomly distributed fibres, mainly col-
lagenous bundles and proteoglycans (glycoproteins which have a very high
polysaccharide content). This layer is surrounded by the IEL, which is com-
posed by elastic fibres. Under normal physiological loading, the fibres form
an approximately circular band. Together with the sub-endothelial layer it
helps the wall to withstand haemodynamic stresses. Outside the IEL there is
the media, which is made of smooth muscle cells and is the primary regula-
tor of vessel diameter. The outer layer is the adventitia, which is a complex
structure that merges into the surrounding tissue. It tethers arteries in place
and it carries nutrients to and wastes away from smooth muscle cells in the
media. Moreover, it provides resistance to overextension and rupture. Some-
times, what we call intima is denoted with sub-endothelial layer. In this case,
the term intima is used for the group of endothelium, sub-endothelial layer
and IEL. However, we do not follow this nomenclature.
The behaviour and the interaction of these layers are regulated by a com-

plex set of chemical and mechanical phenomena. There is evidence (see [287]
for a general introduction or [169] for a more specific analysis) that these
mechanisms depend also on fluid dynamics and mass transport phenomena in
the blood stream and in the wall. The role of fluid dynamics and mass trans-
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port processes in the physiological and patho-physiological functions of the
vascular system are of great interest. As discussed in Chapter 1, arterioscle-
rotic disease consists in degenerative changes in the arteries, characterised by
thickening of the vessel walls and accumulation of calcium with consequent
loss of elasticity and lessened blood flow. Atherosclerosis, in particular, is a
common form of arteriosclerosis in which fatty substances form a deposit of
plaque on the inner lining of arterial walls. Based on the knowledge that abnor-
mal accumulation of macromolecules such as low density lipoprotein (LDL)
or other atherogens in the arterial wall is an important component of the
atherosclerotic disease processes, the quantification of the transport phenom-
ena is required. It is world-wide accepted that an improved understanding of
vascular mass transport phenomena and the influence of fluid dynamics will
have a significant impact on public health.
Atherosclerosis tends to be localised in zones of artery bifurcations and

bends where the shearing forces imposed by the flowing blood are disturbed
compared with the straight tube patterns ([174, 264]). It has been observed
that LDL accumulation in the intima occurring at zones of low and oscillat-
ing wall shear stress (in flow separation regions) is associated with the ten-
dency to intimal thickening ([64,65]). A powerful tool to analyse and quantify
the relevant phemomena is computational modelling which provides detailed
description of transport features, see [136].
The goals of vascular mass transport studies are to correlate mass trans-

fer in anatomic geometries with the localisation of atherosclerotic lesions and
to determine the influence of disturbed flow patterns on the local concen-
tration distribution of substances in the blood stream and in the vessel wall
layers. Vascular mass transport analysis requires the development of appro-
priate mathematical and numerical models. Because of the extreme complex-
ity, the biological problem can be cast with difficulty into a formal physical
framework, and simplifications with respect to the real biological situation
are unavoidable. Basically the presented analysis is restricted to the dynam-
ics of solutes in large and medium sized arteries. As a consequence, for the
specific study of mass transfer blood can be idealised as a Newtonian fluid
(see for instance [406], [383]). For a more detailed discussion of this assump-
tion, we refer to Chapter 2. Furthermore, rigid arterial walls are assumed,
with the justification that for the mass transfer study of large molecules
(LDL) from blood to arterial walls accounting for wall displacement is not
crucially important. However, for small molecules (oxygen), the wall compli-
ance affects the flux into the wall significantly, see [399]. The application of
mass and momentum conservation laws under these assumptions comes up
to the incompressible Navier-Stokes equations (see Chapter 2). According to
the fact that blood plasma filtrates from the inner to the outer part of the
arterial walls under the action of blood pressure, it will be necessary to model
the fluid flow in the wall layers, considered to be homogeneous porous media.
In this case the conservation laws describing the plasma filtration lead to the
Darcy or Darcy-Brinkman equation. Moreover, recent experiences show that
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intra-cellular transport also plays a role in the mass transfer through the arte-
rial walls ( [491] and references therein). Regarding the solute dynamics the
limitation to consider the presence of just one solute is applied. Moreover,
according to physical evidence, the concentration of chemicals dissolved in
blood is small; consequently the blood motion is not influenced by chemicals.
Then, by virtue of the mass conservation principle, the concentration of the
considered solute is governed by a classical advection-diffusion equation.
Several mathematical models have been developed recently for the study

of the transport of macromolecules (such as LDL) in arteries e.g., [249, 397,
476, 533, 563]). Essentially, the models can be classified in three categories
corresponding to the level of description of the arterial wall.
For the simplest model, the wall-free model, the arterial wall is described

by means of an appropriate boundary condition at the inner surface of the
artery (lumen-endothelial boundary). The appropriate boundary conditions
depend on the considered molecules. The transfer of dissolved gases (small
molecules, e.g., oxygen) to and into the wall is diffusion boundary layer con-
trolled, because of the fact that the endothelium is not an essential barrier to
these molecules. The assumption of a constant concentration at this bound-
ary is justified. Originally, this model was applied for the study of arterial
oxygen concentration by [20, 132,421]. The main resistance to the transfer of
macromolecules from lumenal blood into the arterial wall is the endothelial
layer. The flux across the endothelium into the inner layers of the arterial
wall is determined by the endothelial permeability and by the concentration
differential across the layer. Therefore, the permeability boundary condition
(which is of Robin type) can be applied. The model requires the prescription of
the concentration in the sub-endothelial intima. This model needs a relatively
small number of parameters, the diffusivity, the overall mass transfer coeffi-
cient of the wall and the filtration velocity. The model was applied to analyse
the local concentration of potentially atherogenetic molecules by [305] (ATP),
by [533] (LDL). The model cannot provide any information on the concentra-
tion of solute within the wall, however, concentration polarisation effects in
the blood phase directly at the wall can be addressed accurately.
Improved developments, the fluid-wall models, account for the arterial

wall, where the mass transport in blood and in the wall are described applying
physically appropriate laws to model the interaction between the blood flow
and the biochemical transport. In the first stage of improvement the complex
physiologic heterogeneous wall structure is approximated by one homogeneous
porous layer representing the media. This layer is separated from the lumen by
a membrane, which corresponds to the three physiologic layers endothelium,
intima and IEL. The transport processes in the blood stream (lumen) and in
the wall are coupled applying appropriate membrane equations. This model is
well suited to describe the dynamics of solutes in healthy arteries, where the
intima is a very thin layer, and the endothelium represents the main resistance
to the solid. The most complex arterial transport model proposed so far is
the multilayer model, which takes into account for the several heterogeneous
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layers, endothelium, intima, IEL and media (see [175, 176] for its definition;
[58,563] for the analysis of existence and uniqueness of solutions; [249,251] for
the analysis of a finite element scheme applied to this case). The multilayer
model provides the most realistic information on the dynamics of chemicals
(macromolecules) in the wall. The physical behaviour of the different layers are
approximated with the laws of mass transport in homogeneous porous media
(intima and media) and through plasma-permeable membranes (endothelium
and IEL).

7.1 Governing equations for mass transfer in the
cardiovascular system

The mathematical modelling for mass transfer in the cardiovascular system
originated from the study of microcirculation with the aim to provide models
for the mass transfer through the capillaries. Basic references are Friedman
[173], Katchalsky and Curran [254] and for the specific application to the
vascular system we mention Curry [106]. These works mainly neglect the space
dependence of the quantities of interest because of the geometrical complexity
of the capillary network. According to this tendency, we start our work with
the study of two solutions of one single chemical whose concentration is small
and uniform and we address in this setting the basic principles of transport
processes. Then, we present the general lines to set up a mathematical model
for mass transfer through the arterial walls. This procedure applies either to
the wall-free, fluid-wall and multilayer model. Finally, we focus our attention
on the multilayer model, which deserves a detailed discussion because of its
complexity.

7.1.1 Principles of transport processes

We consider two solutions that are separated by a porous thin membrane
that allows the flux of both solvent and solute from one compartment to the
other. The membrane is not totally transparent with respect to the transport
of mass, and makes a selection between the molecules that can pass through
its interstices and those that can not. Membranes featuring this behaviour
are called selective permeable membranes. As it will be made clear in the
following paragraphs, these phenomena typically happen between the lumen
and the wall or between the different layers of the wall.
Given a semipermeable membrane separating two solutions of concentra-

tion c in a suitable solvent, we denote with Jv the filtration velocity of the
solvent across the membrane and with Js the mass flux of the chemical per
unit surface. Let Lp and P the hydraulic conductivity and the permeability of
the membrane. The sieving coefficient, denoted with s, determines the ratio
of molecules that can sieve across the membrane. In what follows we will also
use the reflection coefficient that is the complementary of s with respect to



7 Mathematical models of mass transfer in the vascular walls 247

the unity. We denote the reflection coefficient with σ = 1 − s. We will con-
sider two different kind of reflection and sieving coefficients, the osmotic one
(also called solvent drag sieving coefficient), denoted with σd = 1 − sd and
the frictional one σf = 1− sf . Finally, the index i = 1, 2 denotes here the two
compartments separated by the semipermeable membrane.
A well accepted mathematical model for the fluxes of solvent and the solute

is given by the following set of equations, called Kedem-Katchalsky equations
(see for example [254,255]).

Jv = Lp(δp− σdδπ) (7.1)

Js = Pδc+ Jv(1− σf)c, (7.2)

where c is the mean concentration inside the membrane and δc = c1−c2, δp =
p1 − p2, while

δπ = RTδc, (7.3)

where R, T are the gas constant and the absolute temperature. Equation (7.1)
is called Starling’s law of filtration and states that the solvent flux across the
membrane is proportional to the pressure jump between the two compart-
ments. The pressure jump is, on the other hand, split in two parts, the jump
of static pressure δp and the jump of osmotic pressure δπ. The latter depends
on the solute concentration on the two sides of the membrane, according to the
Van’t Hoff’s law (7.3). On the other hand, the solute flux, defined by equation
(7.2), can be interpreted as the sum of a diffusive term (depending on the jump
of concentration across the membrane) and a transport term (defined as the
product of effective solvent flux and the mean concentration within the mem-
brane). From another point of view, system (7.1,7.2) can be interpreted as the
description of the influence of the driving forces acting through a membrane,
namely δp and δc on the physical quantities Jv, Js. The parameters Lp,P are
the coefficients that govern this dependence and are called phenomenological
coefficients.
A very delicate parameter appearing in the Kedem-Katchalsky equations is

the average concentration within the membrane (c). In fact, several models can
be considered to estimate this quantity starting from physical considerations.
Let us assume that the dynamics of solute within the membrane are gov-

erned by diffusion and transport. Precisely, the concentration within the mem-
brane satisfies the following boundary-value problem,

−ac′′(x) + bc′(x) = 0, x ∈ (0, l)
c(0) = c1, c(l) = c2,

(7.4)

where the cross-section of the membrane is represented by the interval (0, l)
while the coefficients a := P and b := Lp(1 − σf)(p1 − p2) take into account
the diffusion and the transport respectively. Finally c1 and c2 represent the
concentration on the sides of the membrane. The solution of problem (7.4) is,

c(x) =
1

1− exp(Pe)

[
c2 − exp(Pe)c1 + (c1 − c2) exp

(
bx

a

)]
, x ∈ (0, l),
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where we have introduced the global Péclet number associated with problem
(7.4), Pe := bl/a. Then the average concentration within the membrane,

defined as c := (1/l)
∫ l
0
c(x)dx becomes,

c = fw(c1, c2) = w1c1 +w2c2

w1 =
exp(Pe)

exp(Pe)− 1 −
1

Pe
, w2 =

1

Pe
− 1

exp(Pe)− 1 .

In what follows, we call fw(c1, c2) the weighted arithmetic average. For exam-
ple, let us consider this average for a membrane representing the endothelium.
Thus, we set l = 10−4cm,P = 10−7cm/s, a = 10−11cm2/s and b = 10−6cm/s
(the latter provides a reasonable approximation for the filtration velocity in
the wall). The solute dynamics in the endothelium are in this case trans-
port dominated (indeed, the Péclet number is high, Pe = 100) and we obtain
w1 = 0.99, w2 = 0.01. This choice of the average concentration c is appropriate
for membranes whose thickness is considerable with respect to the character-
istic size of the molecules that filtrate through them.
An alternative approach to determine the average concentration within the

membrane makes use of irreversible thermodynamics, the Kedem-Katchalsky
equations can be theoretically derived from the general Onsager’s phenomeno-
logical equations (see for example [254] Chapter 8), by applying them to the
study of mass transport through membranes. For this matter the interested
reader is referred to [173, 254, 255]. In this framework, the average concen-
tration within the membrane can be defined starting from the Nerst-Planck
equation for equilibrium of chemical potentials and it becomes c = fl(c1, c2) =
(c1 − c2)/ ln(c1/c2), which we call logarithmic average. Physical experience
suggests that this model is suitable for extremely thin selective permeable
membranes.
It is straightforward to verify that these models lead to different values of

the average concentration. For example, in the common case of highly resistant
membranes and of solute exchange dominated by transport, one has c1/c2 � 1
as well as Pe� 1, which leads to fw(c1, c2) � c1 while fl(c1, c2) � 0. On the
other hand, we observe that if the solute dynamics within the membrane is
dominated by diffusion and the membrane is very permeable, one has c1/c2 �
1 and Pe � 1, which leads to fl(c1, c2) � fw(c1, c2) � 1/2(c1 + c2). Finally,
we observe that in the general case, the concentration within the membrane
will be denoted as c = f(c1, c2).

7.1.2 Set up of the multilayer model

The starting point of this section is the description of the blood flow into
the arterial lumen. It is governed by the Navier-Stokes equations, which are
extensively discussed in Chapter 3 (see in particular equations (3.32) and
(3.40)).
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Concerning the arterial wall, we remind that in any biological tissue flow
may take place through a complex network of interconnected pores, or open-
ings. However, when dealing with such flow, we overlook the microscopic flow
patterns inside individual pores and we consider some fictitious average which
takes place in the porous medium comprising the tissue. By doing so, we are
employing the concept of a continuum, which is common in most branches
of physics. The obvious reason for employing the continuum approach in flow
through a porous medium, is that it is practically impossible to describe in
any exact mathematical manner the complicated geometry that bounds the
flowing fluid. In order to set up the mathematical models for flow in porous
media based on the continuum approach, we introduce the porosity of the tis-
sue, 0 < ε < 1, and its hydraulic permeability (or Darcy permeability), KD ,
which is assumed here to be a constant scalar quantity. In the case of a free
fluid we set ε = 1. We denote with u the volume averaged velocity and with ũ
the velocity of the fluid phase. Similar notations, c and c̃, are adopted for the
concentration of chemical dissolved in the solution permeating the tissue. We
notice that the ratio between volume averaged value of a physical quantity
and the value of the corresponding quantity in the fluid phase is given by
ε = u/ũ = c/c̃.
Under the assumption that blood plasma completely fills the void space of

the porous medium, we consider two options to describe the average fluid flow
into the tissue, the Darcy’s model and the Brinkman’smodel. Both the Darcy’s
and the Brinkman’s equations can be derived by means of homogeneisation
techniques starting from the Stokes flow through an array of particles (for a
detailed discussion we refer for example to [283]). Moreover, the Brinkman’s
model can be regarded as a correction of the Darcy’s one featuring a viscous
term inspired from the Stokes equations. The Darcy’s model reads as follows,

u = −KD
μ
∇p with divu = 0,

while the Brinkman’s model is given by,

u = −KD
μ
[∇p− μ′(∇u+∇uT )], divu = 0,

where μ′ is called the Brinkman’s modified viscosity. Finally, the dynamics of
chemicals is governed by a system of advection-diffusion equations. Precisely,
applying the mass conservation principle on a generic control volume, we
obtain the following equation

∂tc+ div(−D∇c+ γuc/ε) = 0. (7.5)

We observe that collisions of large molecules with the structure of the porous
tissue layer result in a reduced convective transport. This phenomenon is taken
into account by using a hindrance coefficient 0 < γ ≤ 1 in the mathematical
model (see below).
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In the wall-free model the fluid dynamics and the mass transport in the
arterial lumen are described by the Navier-Stokes equations and the advection-
diffusion equations. At the boundary between the lumen and the arterial wall
appropriate conditions for the volume flux (Jv) and the mass flux (Js) are
assumed,

ul ·nl = Jv on Γ

(−Dl∇cl + ulcl) · nl = Js on Γ.

In this case the values of Jv and Js are provided by experimental data in [49,
492,513,533]. In the case of the fluid-wall model and the multilayer model we
need suitable matching conditions between the governing equations in different
media. These conditions are provided by the Kedem-Katchalsky equations
(7.1)–(7.2) and their application will be presented in detail for the multilayer
model in what follows.
To set up the multilayer model, first of all we recall that the arterial

wall consists of the endothelium (whose thickness is of the order of 2 μm),
intima (thickness � 10 μm), internal elastic lamina (IEL, thickness � 2 μm),
media (thickness � 300 μm) and adventitia. In the latter layer, pressure and
the concentration are supposed to be known from measurements. In order to
reduce the complexity of the resulting numerical problem, some simplifications
are in order. An approach, proposed and discussed in [411, 420, 421], consist
of treating the thinner layers as membranes through the Kedem-Katchalsky
equations, see e.g. (7.1,7.2). Consequently the problem that we address here
features three coupled domains: the lumen, the intima, the media, separated
by interfaces, representing the endothelium and the IEL. A representation of
the domains is given in Fig. 7.1. In order to set up the equations of the model,

Fig. 7.1. The considered domains and the partitioning of the boundaries for the
multilayer model
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we will denote with the subscripts l, i, m the physical quantities related with
the lumen, the intima and the media respectively. Moreover, we will apply the
subscripts end and iel for the endothelium and the internal elastic lamina.

Fluid dynamics models

In order to find out whether the Darcy’s or the Brinkman’s model is more
suited to our purpose, we focus on the interface conditions between the lumen
and the wall, corresponding to the endothelial layer denoted with Γend. We
notice that on the lumenal side we consider the interface as a non-slip surface
that only allows normal flow. On the other hand, since the Darcy model does
not allow any control on the tangential velocity on the boundary, there might
be a discontinuity of it across Γend. Although, this is not likely to happen
because the flow in the wall is driven by the pressure jump pl − padv and is
mainly radial, the Darcy-Brinkman model is able to override this drawback.
In fact it can be supplemented by conditions enforcing the continuity of the
velocity across interfaces, since it features a viscous term. In general these
conditions seem to be more realistic than the ones imposed in the Darcy case.
However, we observe that the tangential velocity on the lumen-wall interface
rapidly goes to zero into the wall. A rough estimation of the boundary layer
thickness can be computed as in [445]. Assuming that the wall is characterised
by the following parameters

• diameter of the pores, Dp = 30nm = 30 · 10−9m;
• porosity of the wall, ε = 0.96;
• channel thickness, H = 1cm;
• permeability of the wall Ki = [D

2
pε
3]/[150(1− ε)2] = 0.33 · 10−14m2,

the boundary layer thickness δ is then,

δ = K
1/2
i log

[
50(h/K

1/2
i − 1)

]
= 9.2 · 10−7m � 1 μm.

We observe that the thickness of the boundary layer is half the thickness of
the endothelium (about 2 μm). Furthermore, we point out that in the mul-
tilayer model the endothelium and the internal elastic lamina are treated as
membranes, due to their extremely small thickness. Consequently, the Darcy-
Brinkman model does not look fully consistent with the multilayer model
since, in order to be correctly applied, it could require us to resolve details on
a scale that is smaller than the thickness of the endothelium or the internal
elastic lamina. Hence the Navier-Stokes/Darcy coupling looks more suitable
in our case. Then, the system including the Navier-Stokes and the Darcy’s
equations (where we use the previously introduced notation) reads as flows.

Jv,end = Lp,end(pl − pi) − Lp,endσdRT (cl − ci) on Γend, (7.6)

Jv,iel = Lp,iel(pi − pm) − Lp,ielσdRT (ci − cm) on Γiel. (7.7)



252 Karl Perktold, Martin Prosi, and Paolo Zunino

Problem 7.1.1 Find the velocities and pressures in the lumen, intima and
media ul, pl, ui, pi, um, pm, respectively, such that

(a)
∂ul
∂t
+ (ul · ∇)ul − divσl/ρ = 0 in Ωl, t > 0

(b) divul = 0 in Ωl, t > 0

(c) ul = ul,in on Γl,in, t > 0

(d) σlnl = poutnl on Γl,out, t > 0

(e) ul × nl = 0, ul · nl = ui · nl on Γ, t > 0

(f) ul = u0 with divu0 = 0 in Ωl,

(7.8)

(where σl is the Cauchy stress tensor defined in equation (3.33). Condition
(7.8e) states that Γ is a no-slip boundary that allows for filtration in the
normal direction. Moreover, we require the normal velocity component across
Γ to be continuous)

(a) ui +
Ki
μi
∇pi = 0 in Ωi, t > 0,

(b) divui = 0 in Ωi, t > 0,

(c) ui · ni = 0 on Γi,in ∪ Γi,out, t > 0,

(d) ui · ni = −Jv,end on Γend, t > 0,

(e) ui · ni = Jv,iel on Γiel, t > 0,

(7.9)

(equation (7.9a) is the Darcy’s law of filtration with a constant and scalar
Darcy’s permeability, Ki. Equation (7.9b) accounts for the conservation of
mass. Boundary condition (7.9c) enforces the filtration velocity to be tan-
gential to the distal and proximal sections of the wall. Conditions (7.9d,e)
determine the value of the filtration velocity into the endothelium and the
IEL according to the Kedem-Katchalsky equations (7.1),(7.2))

(a) um +
Km
μm
∇pm = 0 in Ωm, t > 0,

(b) divum = 0 in Ωm, t > 0,

(c) um ·nm = 0 on Γm,in ∪ Γm,out, t > 0,

(d) um · nm = −Jv,iel on Γiel, t > 0,

(e) pm = padv on Γadv, t > 0,

(7.10)

(equations (7.10a,b) and conditions (7.10c,d) are analogous to the ones set for
the intima. Condition (7.10e) fixes the pressure value on the adventitia to a
known value padv). �
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Finally, we point out that it is still possible account for the shear phenom-
ena in the tangential direction on the fluid-wall interface. This is achieved by
a special matching condition applied to the fluid side, proposed at first by
Beavers and Joseph and generalised by Jones (see [445]). This condition reads
as follows,

K
1/2
i

μi
[(σlnl)× nl] =

(
μ′i
μi

)1/2
[ul ×nl − ui × nl] on Γ. (7.11)

Indeed, (7.11) states that the shear stress on the fluid-wall interface induces a
jump on the tangential velocity across the interface. This boundary condition
looks particularly suitable in our case, since it takes into account the varia-
tion of the tangential velocity across the endothelium, still represented as a
membrane.

Solute dynamics models

First of all, we remind that because of friction phenomena on the motion
of molecules, the actual transport velocity in the wall is smaller than the
filtration velocity obtained from Problem 7.1.1. Consequently, we denote
the transport field in equations (7.15,7.16) as an effective velocity, given by
(γλ/ελ)uλ), λ = i, m, where γλ is a constant called friction or hindrance coef-
ficient, as in equation (7.5). For a more detailed discussion of this issue, we
refer to [138,249,251]. Furthermore, we rewrite equation (7.2) with a general
mean concentration within the membrane that we denote with f(·, ·):

Js,end = Pend(cl − ci) + Lp,end(1− σf)(pl − pi)f(cl , ci)−

Lp,end(1− σf )σdRTf(cl, ci)(cl − ci), (7.12)

Js,iel = Piel(ci − cm) + Lp,iel(1− σf )(pi − pm)f(ci, cm)−

Lp,iel(1− σf)σdRTf(ci, cm)(ci − cm). (7.13)

Then, making use of these definitions, we propose the following problem for
the solute dynamics.

Problem 7.1.2 Find the concentrations in the lumen, intima and media
cl, ci, cm respectively such that,

∂cl
∂t
+ div(−Dl∇cl + ulcl) = fl, t > 0, cl(0) = cl,0 in Ωl,

(a) cl = cl,in on Γl,in, t > 0

(b) ∇cl · nl = 0 on Γl,out, t > 0
(c) −Dl∇cl · nl + ul · nlcl = Js,end on Γend, t > 0,

(7.14)
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(condition (7.14c) that determines the solute flux across Γend according to
theKedem-Katchalsky equations. Moreover, we refer to Fig. 7.1 for the defi-
nitions concerning the boundary partition)

∂ci

∂t
+ div(−Di∇ci + γi

εi
uici) + rici = fi, t > 0, ci(0) = ci,0 in Ωi,

(a) ∇ci · ni = 0 on Γi,in ∪ Γi,out, t > 0,
(b) −Di∇ci · ni + γi

εi
ui ·nici = −Js,end on Γend, t > 0,

(c) −Di∇ci · ni + γi
εi
ui · nici = Js,iel on Γiel, t > 0,

(7.15)

(we introduced into the governing equations the term rici accounting for
consumption of chemicals by the tissues constituting the intima. Condition
(7.15a) enforces a null diffusive flux on the proximal and distal section of the
intima. Condition (7.15b,c) enforce on Γend and Γiel the flux prescribed by the
Kedem-Katchalsky equations)

∂cm
∂t
+ div(−Dm∇cm + γm

εm
umcm) + rmcm = fm, t > 0 cm(0) = cm,0 in Ωi,

(a) cm = cadventitia or ∇cm · nm = 0 on Γadv, t > 0,
(b) ∇cm · nm = 0 on Γm,in ∪ Γm,out, t > 0
(c) −Dm∇cm ·nm + γmεm um · nmcm = −Js,iel on Γiel, t > 0.

(7.16)
(the governing equation and the boundary conditions for the media are anal-
ogous to the ones prescribed for the intima). �
In conclusion, Problems 7.1.1 and 7.1.2 represent the multilayer model

for mass transfer across the arterial wall. Besides its technical complexity, its
definition presents some intrinsic difficulties that appear both in the math-
ematical analysis of the well posedness of the problem and in its numerical
approximation.
On one hand, we observe that Problems 7.1.1 and 7.1.2 are coupled by

the interface conditions based on the fluxes Jv,end, Jv,iel and Js,end, Js,iel
that contain terms involving both the pressure and the concentration. We
want to simplify this situation. Since our aim is to study the absorption
of macromolecules in the arterial wall, we avoid any simplification on the
solute dynamics model, rather we make some assumptions on the equations
concerning the blood flow. We obtain a simplification dropping in equations
(7.6, 7.7) the term depending on the concentration. More precisely, by tak-
ing Jv,end = Lp,end(pl − pi) on Γend and Jv,iel = Lp,iel(pi − pm) on Γiel, as
reduced solvent fluxes, equations (7.9,7.10) do not depend on the concentra-
tion, so they can be rewritten with the pressure as an unknown. On the other
hand, the coupling between subequations of problems 7.1.1 and 7.1.2 will be
approached in Section 7.3 in the framework of the numerical approximation
of the multilayer model.
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These difficulties also make the mathematical analysis of the coupled Prob-
lems 7.1.1 and 7.1.2 an extremely challenging task. Indeed, this is still an open
issue. Indeed, we observe that the expressions of Js,end, Js,iel are nonlinear
functions of the concentrations. This is a major difficulty in the analysis of
the well posedness and of the mathematical properties of the model 7.1.2,
even when it is split from 7.1.1. We will not dwell here with a complete treat-
ment of these topics, but we point out that the relevance of the analytical
study with respect to the aim of this work is twofold. On one side, existence
and uniqueness of a solution are the basic properties that have to be satisfied
by mathematical models representing physical phenomena. These properties
make also possible to consider the numerical approximation of the problem
and to compute its solution by numerical methods. In addition to this, if the
solution of the original problem is regular enough, the analysis of accuracy
of the numerical method can be pursued (see for example Section 7.3). On
the other side, the analysis of other specific mathematical properties, as for
instance the maximum principle, allows us to characterise more precisely the
behaviour of the solution. To sum up, the mathematical analysis provides a
synthetic description of the multilayer model that turns out to be very useful
in the applications, for example for the interpretation of the numerical results.

Remark 7.1.1 (Mathematical analysis) Properties as existence, unique-
ness and maximum principles have been widely investigated for standard ellip-
tic operators, see e.g. [192], and in the parabolic case, in particular for advec-
tion diffusion problems in [398] or [471]. However, we point out that the mul-
tilayer model can not be casted into the classical framework, because of the non
standard, non linear boundary or matching conditions on the interface between
lumen and wall. In the linear case, the analysis of the model has been pursued
in [411]. In the non linear case, existence and uniqueness results have been
obtained in [58]. However, many analytical issues are still open. For instance,
the solution of the multilayer problem may blow up in finite time. The study of
blow up is a peculiar topic in analysis of partial differential equations for which
we refer to [24] and [87] for a general introduction and to [152,153,280,281]
for analytical results that fit our case.

7.2 Characterisation of physiological data

The physiological correct set up of the mathematical model for the lumenal
and transmural fluid and solute dynamics needs appropriate transport param-
eters. These parameters describe the transport properties of the domains con-
sidered in the model (lumen, endothelium, intima, IEL and media). Many
of these parameters can not be gained directly by experimental measure-
ments. In this chapter we will discuss two possible mathematical method-
ologies developed to obtain a complete set of parameters for the different
kinds of wall layers (membranes and fibre layers). The first part focuses on
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the estimation by using the pore theory that bases on the assumption that
the wall layers are porous structures whose physical properties can be iden-
tified by their geometrical structure. This kind of method has been proposed
in [11, 106, 233,234,270]. The majority of this part has been take from [251]
where these models have been applied to obtain all parameters of the heteroge-
nous wall structure. The second part describes a different kind of approach
by a simplified inverse model based on an electrical analogy for the transport
processes. The derivation of the electrical analogies for membranes and porous
structers and their application to the arterial wall has been described in detail
in [397].

7.2.1 Pore theory

Mass transport in the porous intima and media

The healthy subendothelial intima and the media generally consist of an extra-
cellular matrix of randomly distributed proteoglycan and collagen fibres. In
the media, as well as in the thickened intima smooth muscle cells occur in
addition to the fibrous fluid phase. The transport processes in these arterial
wall layers only occur in the fluid phase.
The fibre matrix is characterised by the wall layer thickness H , the fibre

radius rf and by the total length of the fibres lf within the unit volume. Hence
the fractional void volume of the fibre matrix results from,

εf = 1− πr2f lf .

The Darcy permeability KD,f of the porous tissue is given as,

KD,f =
r2fε
3
f

4G(1− εf)2
, (7.17)

where G is the Kozeny constant, [232]. The restricted diffusivity of the solid
of interest with a mean molecular radius rmol in the extracellular matrix is
calculated from the equation,

Df = D · exp
(
−(1− εf )1/2

(
1 +

rmol
rf

))
, (7.18)

where D is the solute diffusivity in water and Df is the restricted diffusion in
the fiber matrix. According to [235] the hindrance coefficient for convective
transport in the fibre matrix can be obtained from,

γf = 2− Φf . (7.19)

The reduction coefficient Φf represents the relation between the space avail-
able to the solute relative to the space available to water,

Φf = exp

[
−(1− εf)

(
2rmol
rf

+
r2mol
r2f

)]
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As discussed in Chapter 1, the media is formed by layers of smooth muscle
cells. The presence of such cells is also observed in the case of a thickened
intima. The contribution of smooth muscle cells is included in the model by
means of an additional volume fraction εSMC that reduces the total porosity of
the wall layer εeff = εf (1−εSMC). In this case the transport parameters (dif-
fusivity, Darcy permeability and lag coefficient) have to be transformed into
effective parameters, see [235]. Without smooth muscle cells the parameters
calculated from the equations (7.17)–(7.19) represent the effective parameters.

Example 7.2.1 (Intima) The mean radius of the fibres building up the
extracellular matrix of the intima is rf = 3.22nm [235]. By assuming an
average spacing of 5 nm and an average ratio between fibre length and intima
thickness of 1.5 [232] we get a total length of the fibres within the unit vol-
ume of lf = 1.225 · 10 − 3 nm−2 and therewith a fractional void volume of
εf = 0.96 and a Darcy permeability of KD,f = 8.7 · 10−13 cm2/(s · dyne). For
LDL with a mean molecule radius rmol = 11nm we get a restricted diffusivity
of Df = 1.2 · 10−7 cm2/s and a reduction coefficient of Φf = 0.47.

Example 7.2.2 (Media) The fractional void volume of the fibres in the
media is εf = 0.43 and the fraction of the smooth muscle cells is εSMC = 0.4
which results in an effective values of εeff = 0.258, KD,eff = 7.75 ·
10−16 cm2/(s · dyne), Φeff = 6.8 · 10−6, Deff = 8.14 · 10−9 cm2/s.

Transport across the endothelium and internal elastic lamina

The endothelium and the internal elastic lamina (IEL) are treated as selective
permeable membranes. They are assumed to be layers of constant thickness
H . Exchange of water and solutes across the endothelium takes place through
clefts (pores) which occur between the endothelial cells. The pores can be
divided into normal endothelial clefts which are modelled as cylindrical pores
and leaky junctions which are approximated as pores with a ringlike cross-
section surrounding the leaky cells (cells which are either dying or in mito-
sis). The IEL contains fenestral pores through which transport between the
intima and the media takes place. According to [232] the fenestrae can be
approximated as cylindrical pores. The transport of molecules which is small
in relation to the pore size across such porous membranes can be basically
described using the convection-diffusion-reaction equation. The only effect of
the porous membrane on the transport is the reduction of the space available
to the solution. The transport of large molecules through these membranes
is highly restricted by the pore structure. It is assumed that for entrance
into the pore a molecule must pass through the opening without striking the
edge [270]. This restriction causes the reflection and sieving of large molecules
at the surface of membranes with relatively small pores. During the transport
through the pores the molecules collide with the pore walls. These interactions
between the molecules and the pore walls causes a loss in the kinetic energy
of the molecules which results in a restricted transport within the pores.
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We subdivide the pores on the endothelium and IEL into cylindrical pores
and pores with ring-like cross section. The hydraulic conductivity of a cylin-
drical pore is,

Lp =
ρporeπR

4

8μL
,

where ρpore is the average density of the pores, R is the radius and L the length
of the pore. The restricted diffusivity coefficient in the pore Dp is defined as

Dp = DF (α),

where α = rmol/R is the ratio between the molecule radius and the radius of
the pores and F (α) is, from [106],

F (α) =
[
2(1− α)2 − (1− α)4

] [
1− 2.1α+ 2.09α3 − 0.95α5

]
.

Then, the permeability of the pore can be calculated by

Pp = ΦDp/L, (7.20)

where Φ = (1 − α)2 considers the reduction of pore cross section that is
available to the solute. Fig. 7.2 (left) shows the relation of the free and the
restricted pore diffusivity as function of α. The osmotic reflection coefficient
is calculated by following the equation, which is obtained in [11],

σd,p = (1− Φ)2

and the solvent drag reflection coefficient is given according to [106] by,

σf,p =
16

3
α2 − 20

3
α3 +

7

3
α4.

The functions the reflection coefficients are depicted in Fig. 7.2 (right).
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Fig. 7.2. Relation between the pore diffusivity and the free diffusivity (left), the
osmotic reflection coefficient and the solvent drag reflection coefficient (right) as
functions of the relation between the molecule and the pore radius, α
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A pore with a ringlike cross-section is treated in the same way like a infinite
long slit with constant width 2b as proposed by [106]. Hence the hydraulic
conductivity of a ringlike pore is given by,

Ls =
b2

3μL
. (7.21)

The restricted diffusivity coefficient in the pore Ds is defined as,

Ds = DFs(αs),

where αs = rmol/b is the ratio of the molecule radius to the half pore width
size. The function of the restricted pore diffusivity [105] is,

Fs(αs) = (1− αs)
(
1− 1.004αs+ 0.418α3s − 0.169α5s

)
.

The permeability of the pore is calculated in the same way like the circular
pore (7.20), where Φs = 1−αs accounts for the reduction of pore cross section
that is available to the solute. The osmotic reflection coefficient follows form
the model of [11],

σd,s = (1− Φs)2 = α2s
and the solvent drag coefficient [105] equals to

σf,s = 1−
(
1− 3
2
α2s +

1

2
α3s

)(
1− 1
3
α2s

)
.

The functions the reflection coefficients are depicted in Fig. 7.3.
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Fig. 7.3. Osmotic reflection coefficient and solvent drag reflection coefficient as
functions of the ratio between molecule and half width size of the pore
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Example 7.2.3 (Endothelium) The transport parameters of the leaky clefts
(Lp,lj , Plj , Φlj, σf,lj , σd,lj) and the normal junctions(Lp,nj, Pnj, σf,nj, σd,nj)
are calculated by equations described above. According to [232], the values
of the hydraulic conductivity, permeability and reflection coefficients of the
endothelium containing normal clefts and leaky clefts are

Lp,end = Lp,nj + Lp,ljεlj

Pend = Pnj + PljεljΦlj

σ =
Lp,njσnj + Lp,lj εljσlj

Lp,e
,

where εlj is the area of leaky clefts per unit area of the endothelial surface.
The average fraction of leaky cells for a healthy endothelium is 0.05%. Their
cell radius is 15μm and the width is 20nm–25nm. The normal junctions have
a radius of 5.5 nm and an average distance of 2.5μm [232]. The resulting
hydraulic conductivity is Lp,end = 3 · 10−11 cm3/(s · dyne). For LDL the
permeability is Pend = 1.07 · 10−11 cm/s and the reflection coefficients are
σd,end = 0.996 and σf,end = 0.997.

Example 7.2.4 (Internal elastic lamina) The average radius of the fen-
estral pores of the IEL is 0.15μm [278] and their average density is 2210/mm2
[235].The resulting hydraulic conductivity isLp,IEL = 3.05·10−9 cm3/(s · dyne).
For LDL the permeability is PIEL = 1.59 · 10−7 cm/s and the reflection coef-
ficients are σd,IEL = 1.99 · 10−2 and σf,IEL = 1.93 · 10−2.

7.2.2 Electrical analogy

Although the idea of applying an electrical analogy to set up reduced models
for transport phenomena, including fluid flows, will be introduced in Chapter
10, we address here for the first time its application to mass transfer, more
precisely to convection and diffusion processes.
The models to calculate the transport parameters described in the previ-

ous section are based on the assumption that the transport of the considered
molecules occurs only in the fluid phase of the different layers. The transcellu-
lar transport, representing an essential part of the complete solid dynamics for
very large molecules [355], cannot be considered in this kind of models. There-
fore the help of experimental measurements is needed to make the theoretical
estimations successful in the specific applications.
In this section a short overview of a methodology is presented that allows

to estimate the physical parameters of the wall layers starting from a set of
data that can be easily determined by experimental measurements like LDL
concentration profiles in the arterial wall (see [49, 129, 326, 492]). A simpli-
fied problem is used to define the relationship between the set of physical
parameters characterizing the wall (formally denoted with the vector p) and
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the concentration profiles of LDL the wall (described as a collection of con-
centration samples stored in the vector c). The mathematical relationship
between p and c will be denoted with c = F (p). We search for an analytical
expression of F , which could be easily inverted leading to an explicit solution
of the inverse problem p = F−1(c). For this reason, an electrical analogy is
applied to describe the mass transfer phenomena through the arterial walls.
The derivation of the electrical analogy and its application to the transport
through the wall layers is described in detail in [397].

Fluid dynamics

The electrical analog of the arterial wall with respect to fluid dynamics can be
represented as a sequence of four resistances in series, corresponding to each
single layer constituting the wall, as shown in Fig. 7.4.
The electrical representation of each layer is derived by a simplification

of the governing equations for the fluid dynamics (first Kedem-Katchalsky
equation and Darcy’s law). The pressure drop is the driving force resulting in
a volume flux representing the flux of the electrical analogy.
Using the transport parameters obtained from pore theory results in a

filtration velocity of Jv = 4.25 · 10−7 cm/s by applying a pressure drop of
70mmHg. This value does not correspond to the measurements reported in
[326]. Therefore the electric analog is used to rescale the parameters from
pore theory to obtain the measured flux of Jv = u · n = 1.78 · 10−6 cm/s.
The updated transport parameters for the fluid dynamics are Lp,end = 1.20 ·
10−10 cm3/(s · dyne), KD,i = 3.64 · 10−12 cm2/(s · dyne), Lp,IEL = 1.28 ·
10−8 cm3/(s · dyne) and KD,m = 3.24 · 1015 cm3/(s · dyne).

Dynamics of chemicals

The simplification of the equations describing the solid dynamics in mem-
branes and porous media (second Kedem-Katchalsky and advection-diffusion-
reaction equation) ends up with an electrical analogy of two parallel resis-
tances for each layer. These resistances represent the convective and the dif-
fusive solid transport.
The electrical analog of the system featuring the different wall layers with

respect to the transfer of molecules is represented in Fig. 7.5. The first two

Fig. 7.4. Electrical analog-on for the plasma filtration inside the arterial wall
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Fig. 7.5. Electrical analogon for the dynamics of chemicals of the arterial wall

modules represent the endothelium and the IEL, the remaining ones represent
the media. Since the media is the thickest layer it is split in two parts, as this
makes easier to take into account of the degradation of solute due to chemical
reactions. Furthermore, physical experience suggests that the intima is the less
resistant layer to diffusion transport. Consequently, to simplify our model, it
is assumed that the concentration drop across the intima is negligible.
By fixing the value of the parameters that are experimentally determined

with reasonable accuracy, precisely the wall thickness L = 200μm, the solute
diffusivity inside the media, Dm = 8 · 10−9, and the porosity of the media,
εm = 0.15 we are able to cacluate the missing set of parameters starting from
a number of experimentally measured concentration values. For instance we
consider c̄+m = 10

−2, c̄m = 2.5·10−3, c̄−m = 10−2, given by [326]. The concentra-
tion in the intima is considered as unknown that will be determined by means
of the equation arising from the electrical analogy. A detailed description of
the complete procedure can be found in [397]. As a result of that, we determine
the missing set of transport parameters that are given by Pend = 2·10−8 cm/s,
PIEL = 3.18 · 10−4 cm/s, σend = 0.998, σIEL = 0.983, γi = 0.17, γm = 0.117
and rm = 3.197 · 10−4 s−1.

7.3 Computer simulation

This section is devoted to the numerical approximation of the mathemati-
cal models which have been introduced in Section 7.1. First of all, we point
out that a self contained treatment of the topics involved in the numerical
approximation of partial differential equations would be rather extensive and
complex, and consequently it goes beyond the scope of this chapter and of
this book. For this reason, the aim of this section is to provide a survey on
numerical approximation of PDEs and computational fluid dynamics that is
specifically adapted to the problems involved on the mass transfer in the car-
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diovascular system. We will enter into details only for those topics that are
peculiar to this matter. Furthermore, we will provide at first an overview and
the main references to build up the numercal discretisation of the multilayer
model. Then, we will consider a simplified model where the arterial walls are
assumed to be an homogeneous layer. In this context, we will address those
topics that are peculiar to the treatment of mass transfer in the arterial walls.
As already seen, the multilayer model involves the coupling of the flow

equations for blood and plasma, with an advection-diffusion-reaction problem
(see Problems 7.1.1 and 7.1.2 respectively). In these models, the advection-
diffusion-reaction equations depend on the fluid dynamics through the advec-
tive field. Hence the fluid dynamics problem is solved at a first step, and then
we solve the advection-diffusion-reaction problem.
For the space discretisation of the space-dependent partial differential

operators, we apply the finite element method. In particular, for what con-
cerns the Navier–Stokes equations, in order to satisfy the compatibility inf-
sup condition, we have adopted a linear approximation based on the so-called
P1isoP2 − P1 element, while the backward Euler time discretisation has been
coupled with a semi-implicit treatment of the nonlinear term. Finally, a split-
ting of the velocity and pressure problem based on the so-calledYosida method
is carried out. For more details about these techniques, the interested reader
is referred to [404,405,407].
For the discretisation of the Darcy problem we consider a mixed-hybrid

finite element formulation based on Raviart-Thomas elements, for which we
refer to [79]. By means of this method we approximate ui, pi and um, pm by
means of RT0 − P0 elements. Then, the discrete velocities are projected by
means of the standard L2 inner product on the space of vector valued linear
finite elements in order to be more easily exploited in the discretisation of the
solute dynamics problem.
Concerning the advection-diffusion equations, we observe that the mul-

tilayer problem is characterised by very low diffusivity coefficients. In other
terms, this problem is dominated by the advection effects. Indeed, if h denotes
the space discretisation step (which in our simulations is in the range of
10−2cm), |u| is a representative value of the blood velocity, for instance equal
to 10cm/s, and the diffusivity of LDL is about D = 10−7cm2/s, we have an
indicative value of the local Péclet number, Pe = h|u|D−1, (which weighs
the convection effects with respect to the diffusive ones) of 106. As it is well
known, finite element techniques (and in general Galerkin methods) could be
inaccurate when facing convection dominated problems and resorting to a sta-
bilisation technique becomes mandatory. Different strategies can be pursued
in this regard: the interested reader is referred to [236] and [407]. In our sim-
ulations, streamline-upwind/Petrov–Galerkin (SUPG) has been successfully
adopted and will be addressed later on.
A further difficulty is related to the fact that we consider phenomena that

take place both into blood and into the arterial tissues. By consequence, from
the point of view of either fluid dynamics or solute dynamics, we notice that
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the multilayer problem, as well as its simplified variants, can not be refor-
mulated as problems governed by a unique differential operator on a single
domain. For this reason, we focus our attention on iterative substructuring
methods to split the multilayer problem into subproblems. For the treatment of
this topic, we will focus on the solute dynamics model, namely Problem 7.1.2,
which consists mainly in a system of advection-diffusion equations on adjacent
domains coupled by suitable matching conditions. A general theory, discussed
for instance by Quarteroni and Valli in [408], is available for this matter in the
case of linear symmetric problems, for example diffusion dominated processes,
but the presence of a non negligible advection term makes the multilayer
problem to be governed by strongly unsymmetric operators. Furthermore, the
specific matching conditions that we apply between blood and the arterial
walls are definitely non-standard and in particular they are nonlinear. Conse-
quently, the general framework of [408] does not apply to our case. Thus, in
this section we will discuss in detail the convergence properties of the iterative
substructuring methods suitable for the multilayer problem.

7.3.1 Numerical approximation of the solute dynamics

As already mentioned, in order to concentrate on the main ideas and to sim-
plify at most the notation and the technical aspects of this subject, we do
not consider here the complete multilayer problem 7.1.2. Instead of the mul-
tilayer model we consider an instance of the fluid-wall models, where the
complex heterogeneous structure of the arterial walls is approximated by a
simple homogeneous layer. Such model, proposed in [137, 138] to study the
concentration of oxygen and LDL within the arterial walls, reads as follows:

Problem 7.3.1 Find the concentrations cl, defined on Ωl × [0, T ], and cw,
defined on Ωw × [0, T ], such that

∂cl

∂t
+ div(−Dl∇cl + ulcl) = fl, in Ωl, t > 0

cl = cl,in on Γl,in, t > 0

Dl∇cl · nl = 0 on Γl,out, t > 0

cl(0) = cl,0 in Ωl, t = 0,

(7.22)

∂cw

∂t
− div(Dw∇cw) = fw in Ωw, t > 0

cw = cw,ext on Γw,ext, t > 0

Dw∇cw · nw = 0, on Γw,in ∪ Γw,out, t > 0,

cw(0) = cw,0 in Ωw, t = 0,

(7.23)
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with the following matching conditions at the interface,

Dw∇cw · nw = −Dl∇cl · nl on Γ, t > 0, (7.24)

−Dl∇cl ·nl = P(cl − cw) on Γ, t > 0, (7.25)

where the notation of Section 7.1 has been mantained.
In order to define the numerical discretisation of Problem 7.3.1 we intro-

duce Th,l, Th,w admissible triangulations of Ωl, Ωw respectively. Moreover, we
assume that Th,l, Th,w are conforming triangulations on Γ . In other words we
require that Th = Th,l∪Th,w is an admissible triangulation for Ωl∪Ωw. Then,
we are in position to define the finite element spaces,

Vh,l ={vh,l ∈ C0(Ωl) | vh,l ∈ Pk, ∀K ∈ Th,l, vh,l |Γl,in = 0}
Vh,w ={vh,w ∈ C0(Ωw) | vh,w ∈ Pk, ∀K ∈ Th,w, vh,w|Γw,ext, vh,m|Γadv = 0}.

Moreover, let Λh be the finite dimensional space defined by the traces on Γ of
functions in Vh,l or Vh,w . To introduce the time discretisation we subdivide the
time interval [0, T ] in N time steps tn = nΔt with Δt > 0 and n = 1, . . . , N ,
and use backward Euler finite difference schemes. In order to simplify our
notation, let us introduce the following time discrete bilinear forms,

anl (w, v) =
1

Δt
(w, v) + (Dl∇w,∇v) +

(
unh,l ·∇w, v

)
, (7.26)

anw (w, v) =
1

Δt
(w, v) + (Dw∇w,∇v) , (7.27)

and the corresponding right hand side terms, Fn−1λ = fλ+
1
Δtc

n−1
λ for λ = l, w.

The fully discrete counterpart of the fluid-wall model reads as follows:

Problem 7.3.2 For all n = 1, . . . , N , given [c0h,l, c
0
h,w] ∈ Vh,l × Vh,w , find

cnh,l ∈ Vl, cnh,w ∈ Vh,w such that

anl
(
cnh,l, vh,l

)
+
(
cnh,l, vh,l

)
P =

(
cnh,w, vh,l

)
P +

(
Fn−1l , vh,l

)
∀vh,l ∈ Vh,l

anw
(
cnh,w , vh,w

)
+
(
cnh,w, vh,w

)
P =

(
cnh,l, vh,w

)
P +

(
Fn−1w , vh,w

)
∀vh,w ∈ Vh,w.

(7.28)

Let us now introduce the algebraic counterpart of Problem 7.3.2. To this
aim, let us denote with cnλ ∈ RNλ , λ = l, w the vectors of the degrees of freedom
of the discrete approximation of the concentration on Th,λ. The application
of Lagrangian finite elements leads to systems of algebraic equations for the
unknowns cnλ. More precisely, at every time step t

n, Problem 7.3.2 leads to
the system of linear equations,

Ancn = bn ⇔
[
Anll A

n
lw

Anwl A
n
ww

]
·
[
cnl
cnw

]
=

[
bnl
bnw

]
(7.29)
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Denoting with {ψi,l}, i = 1, . . . , Nl and {ψi,w}, i = 1, . . . , Nw the set of
linear finite element shape functions of Vh,l, Vh,w respectively, the matrices
Anll, A

n
lw, A

n
wl, A

n
ww are defined as follows.

[Anll]i,j = anl (ψj,l, ψi,l) + (ψj,l, ψi,l)P i = 1, . . . , Nl, j = 1, . . . , Nl,

[Anlw]i,j =− (ψj,w, ψi,l)P i = 1, . . . , Nl, j = 1, . . . , Nw,

[Anwl]i,j =− (ψj,l, ψi,w)P i = 1, . . . , Nw, j = 1, . . . , Nl,

[Anww]i,j = anw (ψj,w, ψi,w) + (ψj,w, ψi,w)P i = 1, . . . , Nw, j = 1, . . . , Nw.

Moreover, the right hand sides bnl ,b
n
w are given by, [b

n
λ]i =

(
Fn−1λ , ψλ,i

)
with

i = 1, . . . , Nλ, λ = l, w. The obvious strategy to solve system (7.29) consists of
applying either direct or iterative methods to the global problem Ancn = bn.
An approach more specific to our case consists of splitting (7.29) into sub-
systems associated to the finite element discretisation on Th,l, Th,w separately.
The latter strategy seems more attractive, because it makes easier to handle a
discontinuous concentration across the interface. Indeed, in the finite element
framework, the concentration on the nodes laying on Γ has two different val-
ues, one associated to the lumen and one to the wall. Moreover, as we will see
later, the analysis of iterative techniques to split Problems 7.3.2, suggests the
way to build efficient preconditioners for the global system Ancn = bn. The
splitting technique gives even more advantages in the nonlinear case. In fact,
an explicit treatment of the nonlinear term, allows us to reduce the solution
of the multilayer problem to a sequence of linear subproblems.

7.3.2 Iterative substructuring methods for the solute dynamics

Since all the relevant equations deal only with unknowns evaluated at the
time step tn, for notational convenience from now on, we drop the index n.
The time index will be explicitly indicated only when referring to a time step
different than tn. Moreover, since the results presented in this section hold
true also in the infinite dimensional case with respect to space dependence,
we drop the index h denoting the space discrete functions.
To split Problem 7.3.2 into subproblems, we introduce an iterative proce-

dure where the concentration at the wall, in the advection diffusion equation
in the lumen, is evaluated at the previous iterative step. This leads to the
following iterative procedure:

1
Δt c

k
l + div(−Dl∇ckl + ulckl ) = fl + 1

Δtc
n−1
l in Ωl,

ckl = cD,l, on ΓD,l,

∇ckl · nl = 0 on ΓN,l,
−Dl∇ckl · nl = P(ckl − ck−1w ), on Γ,
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1
Δt c

k
w + div(−Dw∇ckw + uwckw) = fw + 1

Δt c
n−1
w in Ωw,

ckw = cD,w, on ΓD,w,

∇ckw · nw = 0 on ΓN,w,
−Dw∇ckw · nw = P(ckw − ckl ), on Γ.

Reinterpreting this iterative method in the variational form, we obtain the
following problem.

Problem 7.3.3 For all n = 1, . . . , N , given an initial guess c0w and a tolerance
ε, for k = 1, 2, . . . find a sequence [ckl , c

k
w] such that,

anl
(
ckl , vl

)
+
(
ckl , vl

)
P = 〈F

n−1
l , vl〉+

(
ck−1w , vl

)
P ∀vl ∈ Vl

anw
(
ckw, vw

)
+
(
ckw, vw

)
P = 〈F

n−1
w , vw〉+

(
ckl , vw

)
P ∀vw ∈ Vw,

(7.30)

until the stopping criterion,

‖ckl − ck−1l ‖0
‖ckl ‖0

+
‖ckw − ck−1w ‖0

‖ckw‖0
< ε (7.31)

is satisfied.

Of course the stopping criterion can be modified. Such method is often referred
as Robin-Robin iterative method, because the interaction between the subdo-
mains is achieved by Robin matching conditions.
At this stage, the issue of major importance is to understand whether

the iterative method presented in Problem 7.3.3 is convergent, or in other
words to prove that the sequence [ckl , c

k
w] converges in a suitable norm to the

solution of Problem 7.3.2. Because of the lack of continuity between cl and
cw at the interface Γ , the analysis of convergence for this splitting method
does not straightforwardly follows from available convergence results, namely
the Dirichlet-Neumann, the Neumann-Neumann or the Robin-Robin methods
arising from domain decomposition techniques, for which we refer to [408]. We
need thus to develop a specific analysis. First of all we introduce the splitting
error, namely

en,kh,l = c
n
h,l − cn,kh,l , en,kh,w = c

n
h,w − cn,kh,w

where [cnh,l, c
n
h,w] is the solution of problem 7.3.2. As stated before, in the

sequel we will use the abridged notation ekl , e
k
w. Now, if we subtract equations

(7.30) from (7.28), we obtain the following equations for [ekl , e
k
w], that we call

the splitting error equations,

anl
(
ekl , vl

)
+
(
ekl , vl

)
P =

(
ek−1w , vl

)
P ∀vl ∈ Vl (7.32)

anw
(
ekw, vw

)
+
(
ekw , vw

)
P =

(
ekl , vw

)
P ∀vw ∈ Vw. (7.33)

We resume the convergence property of Problem 7.3.3 in the theorem below.
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Property 7.3.1 The iterative method defined in problem 7.3.3 is convergent
(for both the Galerkin and the stabilised SUPG or GaLS discretisations). More
precisely we have limk→∞ ‖ekl ‖1+‖ekw‖1 = 0. The convergence rate may depend
on the physical data but not on the mesh size h.

Remark 7.3.1 (Advanced topics) In the framework of the mathematical
analysis of iterative substructuring methods, a more advanced approach con-
sists in rewriting the the fluid-wall problem for an unknown living on the inter-
face between the lumen and the wall. In this case, special Steklov-Poincaré
operators, see [408] and [410], are necessary to consider the non standard
Robin-Robin matching conditions. This reinterpretation leads to a detailed
characterisation of the convergence properties of the iterative scheme of Prob-
lem 7.3.3, where a parameter that accelerates the convergence is introduced.
This study, which is addressed in detail in [410], also suggests that the scheme
of Problem 7.3.3 can be seen as an optimal preconditioner for the original
coupled Problem 7.3.2. This observation give rise to the discussion of efficient
computational techniques to solve the fluid-wall problem. In particular, the
application of the flexible preconditioned GMRES method, proposed by Saad
in [439] leads to a very efficient numerical scheme for the problems at hand.
Furthermore, the introduction of mesh adaptive techniques would be an

extremely useful goal useful goal to approximate accurately the mass trans-
fer from the blood to the arterial walls. Some preliminary applications of
anisotropic mesh adaptivity techniques to these problems have been presented
in [161].

7.4 Numerical results and discussion

In this section we apply the models and methods developped so far to two
study cases. To this aim we apply a common paradigm. First of all we intro-
duce the geometrical model and then we discuss the lumeanl and transmural
transport processes. In the first study we will analyse the effect of disturbed
flow patterns (flow separation, stagnation and recirculation) inside an axisy-
metric stenosed artery, while in the second case we consider a realistic 3D
bifurcation. These results are discussed with further details in [395].
In the case of the stenosed axisymetric arterial segment we will focus our

attention on the influence of local flow recirculation and separation down-
stream the stenosis on the LDL transport. Additionally the impact of the
different wall models (fluid-wall model and multilayer model) on the concen-
tration distribution inside the wall will be addressed. Due to the low diffusivity
of the substances of interest (LDL) the lumenal transport is highly convec-
tion dominated and therefore strongly influenced by the flow patterns. The
water-permeable nature of the arterial wall and the related transmural plasma
filtration determine a local accumulation of LDL at the blood/wall interface.
In the case of the realistic human carotid bifurcation geometry only the

fluid-wall model is applied to simulate the coupled lumenal and transmural
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transport process. In this case the influence of the resulting complex inplane
flow patterns on the LDL transport will be discussed.
In both cases the blood flow in the arterial lumen has a mean veloc-

ity of U0 = 15.7 cm/s, the reference length (lumenal inflow diameter) is
L0 = 0.67cm. Blood is modelled as Newtonian fluid with the apparent vis-
cosity μ = 0.035 Poise and the constant fluid density ρ = 1.05 g/cm3 leading
to a Reynolds number Re = 300. The viscosity of plasma in the arterial wall
is μp = 0.7210

−2 cm2/s and a constant pressure drop of pl− padv = 70mmHg
across the arterial wall is assumed. The studies only focus on the stationary
flow because in the case of macromolecules (LDL) and constant transport
parameters of the wall layers the influence of pulsatility on the LDL distribu-
tion is very small.

7.4.1 LDL transport in a stenosed axisymetric artery

Geometrical model

The influence of flow separation onto the LDL transport processes is analysed
in a simplified geometrical model of an axisymetric stenosed arterial segment
(Fig. 7.6). The computational domain has a total length of 70L0, where L0 is
the arterial diameter. The length of the stenotic region is 1.5L0. The upstream
and downstream lengths with respect to the stenotic region are 18.75L0 and
49.75L0, respectively. The minimal section is equal to the 25% of the inflow
one. The thickness of the arterial wall in the fluid-wall model and of the media
in the multilayer model is 200μm (0.03L0). The thickness of the intima in the
multilayer wall case is 10μm (0.0015L0). The wall thickness is uniform along
the artery.
The finite element meshes consist of 50082 velocity/pressure elements for

the lumen, 14730 velocity/pressure elements for the wall (media) and addi-
tionally 4910 velocity/pressure elements for the discretisation of the intima in
the multilayer model. For the calculation of the concentration field each veloc-
ity/pressure element was subdivided into 16 concentration elements resulting
in 801312 elements in the lumen, 235680 elements in the wall (media) and
78560 concentration elements in the intima.

18 19 20
l/L0

L0/2
L0/4

Fig. 7.6. Geometrical model of the stenosed tube
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Fig. 7.7. Concentration contours near the stenosis

Lumenal LDL distribution

The development of lumenal surface concentration and the effect of flow sep-
aration on the local mass transfer to and into the wall in the downstream
region of the stenosis is demonstrated in Fig. 7.7. The figure shows LDL
accumulation near the tube wall. The equilibrium concentration at the fluid-
endothelium boundary is higher than the concentration in the bulk stream.
This polarisation effect at the surface occurs due to the plasma-permeability
of the wall. The figure displays the steep concentration gradient across the
separating streamline and a concentration increase of about one percent in
the separation region compared to the bulk concentration. At the wall region
directly downstream the stenosis a decrease of surface concentration polarisa-
tion can be observed.
The results of the mass transport study support the conclusion that the

filtration process at the wall causes a lumenal surface concentration of LDL
which is a dominant effect of mass transport processes including plasma-
permeable walls. Flow separation downstream the axisymmetric stenosis influ-
ences the concentration boundary layer resulting in a decrease of surface con-
centration. The equilibrium concentration at the lumenal surface depends on
the local convective transport near the surface in the lumen, on the filtration
velocity of plasma into the wall and on the diffusive processes of the molecules.

Transmural transport processes

Fig. 7.8 shows the normal velocity contours in the media (panel a) and the
velocity vectors in the media and in the intima (panel b) for the multilayer
model in the expanding region. The magnitude of the normal velocity is uni-
form and mainly determined by the pressure gradient across the arterial wall.
However, small but non negligible velocity gradients can be related to the geo-
metrical shape of the arterial wall. More precisely, due to the convex curvature
at l/L0 = 20 we observe a decreasing cross-sectional area in radial direction.
As a result of that, the wall velocity increases at the outer region of the arterial
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a

b

Fig. 7.8. Normal velocity contours in the media (panel a) and the velocity vectors in
the media and in the intima (panel b) for the multilayer wall model in the expanding
region

wall. On the other hand, because of the concave wall shape at l/L0 = 20.25,
the increasing cross-sectional area causes a decreasing wall velocity in radial
direction. However, we observe that the normal velocity at the endothelium
is only slightly affected by these geometrical properties and its value is about
Jv = 1.76 · 10−6 cm/s in the expansion region, in very good agreement with
the available measurements. The multilayer model also provides the flow field
in the intima. The pressure drop across this layer is very low compared to the
pressure drop across the whole arterial wall, while we observe high pressure
gradients in the expanding region of the lumen. As a result of this, a high
axial wall velocity occurs within the intima (Fig. 7.8 panel b). On the other
hand, in the media the dominating driving force is the pressure gradient in
the normal direction and consequently the axial flow is of minor importance.
These irregularities in the flow field across the arterial wall influence the

concentration distribution within the wall. Figure 7.9 display the concentra-
tion contours in the wall of the two different wall models at selected locations
in the expanding region of the stenosis. We observe that the perturbations
in the velocity field in the intima and the media affect the concentrations as
well. For example in the media, the concentration in the region of high filtra-
tion velocities is slightly higher than the average value, while it is lower than
the average in correspondence of low filtration velocities. This is also clearly
put into evidence by Fig. 7.10 that provides a quantitative comparison of the
profiles of cl, c

+
m, cm and c

−
m plotted along the axial coordinate.
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a1 b1

a2 b2

Fig. 7.9. Concentration contours provided by the fluid-wall model (bottom) and
the multilayer model (top). In the latter case, the presence of the intima is put into
evidence
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Fig. 7.10. Concentration values at the lumen-membrane boundary (panel a, left),
the membrane-wall boundary (panel b, left) provided by the fluid-wall model.
Concentration values at the lumen-endothelium boundary (panel a, right), the
endothelium-intima boundary ((panel b, right), solid line), the intima-IEL boundary
((panel b, right), dashed line), the IEL-media boundary (panel c, right) computed
with the multilayer model.
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Focusing on Fig. 7.10 it can be seen that the lumenal concentration at
the arterial wall is neither influenced by the concentration field in the arterial
wall nor by the different wall models. The concentration polarisation mainly
depends on the velocity field in the lumen. In particular, the polarisation
effect is negligible where the blood flow is attached to the wall and the axial
component is dominating. On the other hand, the filtration velocity normal
to the wall surface sensibly influence the concentration field in the regions of
blood recirculation where the axial flow next to the wall is highly reduced.
Indeed, the maximal polarisation occurs at the expanding region of the steno-
sis where the recirculation zone has the largest extent (Fig. 7.10 panel a, left,
and panel a, right). The behaviour of the wall concentration of the fluid-wall
model (Fig 7.10 panel b, left) is qualitatively similar to the one observed with
the multilayer model. However, the results provided by the two models differ
from the quantitative point of view. We analyse the total variation of con-
centration reported for both the fluid-wall model and the multilayer model in
Fig. 7.10 (on the left and on the right, respectively). We observe that for the
fluid-wall model the increase in the concentration level due to the bending
of the arterial wall results in about 0.26 · 10−3 that corresponds to 3% of
the average concentration value on the membrane-wall interface. Conversely,
for the multilayer model we obtain a similar profile but the increase in con-
centration in correspondence of the geometrical perturbation is equivalent to
0.8 · 10−3, namely 9.5% of the average concentration value. Consequently, we
point out that the two models react very differently to the geometrical pertur-
bation represented by the bending of the arterial wall. Indeed the ratio of the
aforementioned figures is of order 3. The larger variations in the multilayer
wall model can be explained by the additional presence of plasma filtration
with high axial components in the intima, that can not be captured by the
simpler fluid-wall model. In this examination the variations of concentration
in the wall layers are within a few percent, but this values might change under
different conditions (e.g. a damaged endothelium). Moreover, the peak in the
multilayer case is located downstream with respect to the fluid-wall case. This
could be explained by observing that in the multilayer model the axial veloc-
ity in the intima transports and accumulates molecules in the centre of the
expansion region (identified by 20 < x/L0 < 20.2, see Fig. 7.8).

7.4.2 LDL transport in realistic model of a 3D carotid artery
bifurcation

Geometrical model

An anatomically realistic computational model of a human carotid artery
bifurcation has been developed by K. Perktold and his research group at the
Graz University of Technology on the basis of an experimental lumenal cast
prepared and digitalised by D. Liepsch, FH Munich, see [250,379]. To develop
the computational model surface measured surface data were smoothed using



Fig. 7.11. Anatomically realistic computational model surface of the human carotid
artery bifurcation

weighted least squares B-splines. This surface corresponds to the lumen/wall
interface of the geometrical model. The arterial wall was created by the exten-
sion of the this surface in normal direction. A constant wall thickness of 200μm
(beside the region of the flow divider tip) was assumed (Fig. 7.11).
The finite element grid of the arterial lumen was generated applying a

mesh generator based on local optimisation of geometric properties such as
smoothness and orthogonality of the grid [380]. The finite element discretisa-
tion of the arterial wall was created by the extension of the lumenal grid at
the lumen/wall surface in normal direction. The discretisation employs eight
node isoparametric brick elements with tri-quadratic velocity and tri-linear
pressure approximation. The subdivision yields 49 536 brick elements for the
arterial lumen (resulting in 420 081 nodes for each velocity component and
55601 nodes for the pressure) and 76 272 brick elements for the arterial wall
(resulting in 656 265 nodes for each velocity component and 87832 nodes for
the pressure). For the solution of the mass transport problem each velocity ele-
ment is subdivided into 32 subelements. The approximation of the transport
problem applies tri-linear interpolation functions for the concentration result-
ing in 1 675 857 concentration nodes in the lumen and 2 537 587 concentration
nodes in the arterial wall.

Lumenal transport processes

To illustrate the influence of the arterial geometry on the lumenal convective
transport and the correlated LDL concentration distribution near the wall,
Fig. 7.12 displays the wall shear stress and the concentration distribution at
the interface lumen/membrane. The graphic demonstrates an accumulation
of macromolecules at the lumen side of the membrane (Fig. 7.12 panel b).
It is most pronounced in regions of low flow (indicated by low shear stress)
occurring in the bifurcation region. At the flow divider walls of the bifurcation
(high shear region) no accumulation of macromolecules occurs.
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a) b)

Fig. 7.12. Wall shear contours (panel a) and LDL concentration distribution (panel
b) at the lumen-membrane interface

Fig. 7.13 displays the lumenal LDL concentration distribution and the
inplane velocity component at different cross-sections in and downstream the
bifurcation region. Downstream near the bifurcation (cross-section B), two
symmetric vortices occur. This typical Dean flow is superposed further down-
stream by secondary motion caused by the nonplanarities of the vessel. It can
be seen that at the sites of stagnating inplane motion at the outer wall of
the vessel high polarisation occurs also downstream the bifurcation (level B,C
and D). This points out a strong correlation between concentration polari-
sation and inplane motion. Indeed the inplane motion can be interpreted as
additional convective effect which transports the accumulated macromolecules
back to the bulk flow and reduces the polarisation of LDL near the arterial
wall.

Transmural transport processes

The plasma flow field at the interface membrane/wall is shown in Fig. 7.14.
Due to the high pressure gradient across the wall (70mmHg) the velocity field
vectors are mainly oriented in normal direction (Fig. 7.14 panel a). The low
pressure drop along the vessel segment results in a small axial component of
the plasma field in the range of 10−8 cm/s. This axial component is about
100 times lower than the average value of the filtration velocity in normal
direction of 1.7610−6 cm/s. A 0.7% variation of the filtration velocity occurs
due to the non-constant pressure distribution at the lumenal side that results
from the superposition of hydrostatic and hydrodynamic pressure (Fig. 7.14
panel b).
Figure 7.15 shows the concentration profile across the wall at selected

points. The small variations of the plasma velocity field and the constant
transport parameters of the wall layers result in a relatively uniform con-
centration distribution of LDL in the arterial wall. The typically U-shaped



Fig. 7.13. Concentration contours of the LDL distribution and inplane motion
in the arterial lumen at selected cross-sections in and downstream the bifurcation
region
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Fig. 7.14. Plasma filtration velocity field in the arterial wall at the interface
membrane-wall, represented by means of vectors (a) and magnitude contours (b)
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Fig. 7.15. Concentration profiles of the LDL-distribution at selected locations
through the arterial wall

profiles are in good agreement with measured data of [49], [326] and suggest
that the estimation method proposed in [397] provide suitable values of the
transport parameters of the wall. Only small variation of LDL concentration
at the membrane/wall side occurs due to the increased convective and dif-
fusive transport in regions of high polarisation (point 3). This variation is
small compared to the changes of concentration in normal direction caused
by reaction of LDL with the wall tissue.

7.4.3 Numerical simulations of drug release from stents

A novel application of the mathematical models of mass transfer in the vas-
cular walls is promoted by the introduction of drug eluting stents for the
treatment of stenotic coronary arteries. Drug eluting stents (DES) are appar-
ently simple medical implanted devices used to restore blood flow perfusion
into stenotic arteries. Such structures are coated with a micro-film contain-
ing a drug that is locally released into the arterial walls for healing purposes.
However, the design of such devices is a very complex task, because their per-
formance in widening the arterial lumen and preventing further restenosis is
influenced by many factors such as the geometrical design of the stent, the
mechanical properties of the material and the chemical properties of the drug
that is released. All these topics are relevant for an effective stent design. In
this framework, numerical simulation techniques play a relevant role in under-
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standing what are the most appropriate choices for the optimal design of DES.
These topics will be addressed in detail in Chapter 12.

7.5 Conclusions

In this chapter we have proposed a possible way to set up suitable mathemat-
ical models with the aim to study the transfer of molecules, such as oxygen,
macromolecules or drugs, through the arterial walls. A few recipes for their
numerical discretisation have been considered. By means of these tools, we
have addressed several applications and discussed their results in order to put
into evidence the role of mass transfer in the physiological functions of the
vascular system.



8

Analysis of coupled models for fluid-structure

interaction of internal flows

Yvon Maday

The modelling of the behaviour of blood flows in (large or small) arteries has
to reflect two types of phenomenon that coexist: the blood flow – with any
suitable model to represent its behaviour – and the artery wall displacement –
with or without the tissues or muscles that surround the wall. This feature
relative to the coupling of different phenomena is a new one as regards the
mathematical analysis of the system of equations involved in the model and
it is present independently of the complexity and the accuracy of the models
chosen to represent each individual phenomenon. In addition to the theory
required for analyzing each individual model, the analysis of the coupling
or interaction raises new and specific difficulties. Mathematically speaking,
the resulting equations are nonlinear, firstly because any realistic model for
the fluid is nonlinear (cf. equation (2.1)), but also because the interaction
involves a nonlinearity in addition to any anterior nonlinearity of the primitive
independent model.
This chapter aims to shed some light on the mathematical tools that have

been adapted or originally proposed to understand if the equations stemming
from the model designer provide a mathematically well posed problem. There
are many reasons to justify this type of analysis, not including the fact that
from the beginning this subject has provided more than 20 research papers,
most of them in good journals (some of them being referred to in this chapter).
But the main reason is that the various numerical problems that appear at the
discretisation level for the simulation of such strongly coupled problems are
better hinted at and even sometimes better understood from the theoretical
analysis synthesised in this chapter. Another side effect is to guide the intuition
on what should be modified if one wants to change the fluid model or the
structure model at the level of the interface where the exchange of information
takes place.
In this contribution we consider mainly the case where either the whole

external fluid boundary is composed of an elastic structure or only part of
it is and the remaining part is solid or fixed. This means that we shall not
integrate in this chapter the many contributions dealing with the interaction
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of elastic structure floating within a fluid flow itself placed in a rigid container
since this is outside the scope of this book dealing with flow in elastic vessels.

8.1 A simplified model with half of the interaction

The first model we consider dates from almost 40 years ago and can be found in
a book by Jacques-Louis Lions [291]. It takes only one aspect of the interaction
into account since both the interface and the fluid domain are assumed to be
fixed. This simplifies the analysis quite a lot, but it is still not immediate.
This model could represent the fluid structure interaction in the case where
the motion of the interface is neglected. The following analysis is directly
extracted from [291] and serves as an introduction to the methods that will
be used later in the context of the full interaction problem.

8.1.1 A transmission parabolic-hyperbolic problem

Two domains of Rn are involved:Ωf where the fluid flows and Ω
s representing

the elastic envelop as described in Fig. 8.1.
Here we do not indicate the time dependency or the “hat” of the reference

configuration, since, in this model, these domains are fixed. The transmission
problem involves a velocity uf = (u1, u2, u3) and a pressure P defined over
Ωf × (0, T ) such that

∂uf

∂t
− 2div(νDuf) + (u · ∇)uf +∇P = f , in Ωf × (0, T ) (8.1)

divuf = 0, in Ωf × (0, T ), (8.2)

and a displacement η over Ωs × (0, T ) such that

∂2η

∂t2
−Δη = g, in Ωs × (0, T ). (8.3)

Equations (8.1) and (8.2) are the Navier-Stokes equations already derived in
Chapter 3 (see (3.42)) that we report here for the reader’s convenience.

Ωf

Γ

Ωs

Fig. 8.1. The two domains for fluid-structure transmission
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These equations are complemented with the transmission conditions over
the interface Γ between Ωf and Ωs, namely

uf =
∂η

∂t
, over Γ × (0, T ), (8.4)

and

2νDuf .n− Pn−
1

2

( n∑
j=1

uj cosnj

)
uf =

∂η

∂n
, over Γ × (0, T ), (8.5)

together with the boundary condition over the remaining boundary of Ωs

η = 0, over [∂Ωs \ Γ ]× (0, T ), (8.6)

and the initial conditions

uf (0) = uf 0 over Ωf ,

η(0) = η0,
∂η
∂t (0) = η1 over Ωs.

(8.7)

It should be noted that the interface between the fluid and the structure
does not follow the motion of the structure represented by η; this represents
a major simplification but corresponds fairly well to situations where the
displacements we expect are very small and are thus neglected in the modelling
of the fluid behaviour. Note that this simplification imposes that in (8.5) a
nonlinear contribution needs to be added to the normal stress equilibrium (see
Section 8.2.3 for a further comment in the full interaction case). In spite of
this simplification, the coupling is still a strong one since neither the fluid flow
nor the elastic displacement can be evaluated without considering the other.
In what follows, we shall present the mathematical analysis of this problem
resulting in the following theorem

Theorem 8.1. There exists a solution (uf , P,η) to the transmission problem.
Moreover, this solution is unique in the two-dimensional case.

8.1.2 Frame setting for the analysis of the transmission problem

The analysis starts by introducing the structure velocity Φ = ∂η
∂t which, from

(8.3), satisfies

∂Φ

∂t
−Δ

(∫ t
0

Φ(s)ds
)
= g +Δη0, ∈ Ωs. (8.8)

Then we formulate the problem in an equivalent variational setting. Let us
first define the two spaces Vf and Vs as follows

Vf = {vf |vf ∈ [H1(Ωf )]n, divvf = 0}, (8.9)

Vs = {ϕ|ϕ ∈ [H1(Ωs)]n, ϕ = 0 over ∂Ωs}.
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Then, for any Banach space Z, and any real number p, p ∈ [0,∞], we define
the functional space Lp(0, T ;Z) as follows

Lp(0, T ;Z) = {f |f : [0, T ]→ Z measurable ,∫ T
0

‖f‖pZ <∞, if p <∞,

sup
t∈[0,T ]

‖f(t)‖Z <∞, if p =∞,

The variational problem is: find (uf , Φ) with

uf ∈ L2(0, T ; Vf) ∩ L∞(0, T ; [L2(Ωf)]n),

Φ ∈ L∞(0, T ; [L2(Ωs)]n),
∫ t
0

Φ(s)ds ∈ L∞(0, T ; Vs),

uf = Φ over Γ × (0, T ),

such that, ∀vf ∈ VF , ∀ϕ ∈ Vs, with vf = ϕ over Γ ,∫
Ωf

∂uf
∂t
vfdx+

∫
Ωs

∂Φ

∂t
ϕdx+ νaf(uf , vf ) + as(

∫ t
0

Φ(s)ds, ϕ)

+ bf (uf ,uf ; vf )−
1

2

n∑
i,j=1

∫
Γ

uiujvj cos nidγ (8.10)

=

∫
Ωf

fvf +

∫
Ωs
gϕ + as(η0, ϕ).

where

af (uf , vf ) = 2

∫
Ωf

Duf :Dvf , (8.11)

bf(uf , vf ,wf ) =

n∑
i,j=1

∫
Ωf

ui
∂vj

∂xi
wj, (8.12)

as(uf , vf ) =
n∑

i,j=1

∫
Ωs

∂ui

∂xj

∂vi

∂xj
. (8.13)

These equations are complemented with the initial conditions (8.7).
In order to check the equivalence of the two formulations (the strong

one: (8.1)–(8.7) and the weak one (8.10)), we first notice that the direction
strong→ weak is obvious by integration by parts. Then, assuming that (8.10)
holds, we choose in (8.10) vf with compact support into Ωf together with
ϕ = 0, which leads to equation (8.1) in the sense of distributions. Then we
choose in (8.10) ϕ with compact support into Ωs together with vf = 0 and we
get equation (8.8) again in the sense of the distributions. Multiplying now the
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two equations (8.1) and (8.8) that we have just derived by vf and ϕ, integrat-
ing and taking into account that vf = ϕ over Γ , we get ∀vf ∈ VF , ∀ϕ ∈ Vs∫

Ωf

∂uf
∂t
vfdx+

∫
Ωs

∂Φ

∂t
ϕdx+ νaf(uf , vf ) + as(

∫ t
0

Φ(s)ds, ϕ)

+ bf(uf ,uf ; vf) +

∫
Γ

(
−2νDuf .n+ Pn+

∂

∂n

(∫ t
0

Φ(s)ds
))
vfdΓ

=

∫
Ωf

fvf +

∫
Ωs
gϕ + as(η0, ϕ)−

∫
Γ

∂η0
∂n

ϕdΓ,

so that recalling (8.10), we derive ∀vf ∈ VF∫
Γ

(
−2νDuf .n+Pn+

∂

∂n

(∫ t
0

Φ(s)ds+η0
)
+
1

2

( n∑
j=1

uj . cosnj
)
uf

)
vfdΓ = 0

(8.14)
Since divvf = 0, we notice

∫
γ vf .ndγ = 0, and reciprocally, to any vf∗ ∈(

H1/2(Γ ))n with
∫
γ
vf∗.ndγ = 0 we can associate a vf ∈ Vf with vf |Γ = vf ∗,

hence (8.14) is equivalent to (we refer to [294] for the introduction of the trace
space H1/2(Γ )))

−2νDuf .n+ Pn+
∂

∂n

(∫ t
0

Φ(s)ds+ η0
)
+
1

2

( n∑
j=1

uj. cosnj
)
uf = λn,

with λ ∈ R. Finally, by changing P into P − λ we get (8.5).

8.1.3 Analysis of the transmission problem

Approximated solutions

We turn now to the proof of Theorem 8.1. The classical tool that will be
introduced here and used over and over in the following sections is known as
the Faedo Galerkin method where, by restricting the trial and test functional
spaces to a sequence of finite dimensional subspaces, we define a series of
systems of differential equations for which the existence of a discrete solution
follows from Cauchy Lipschitz’s theorem. Different a priori estimates are then
derived and provide uniform bounds on the sequences of solutions. This is the
corner stone of the proof, as it allows us to state that there exists a subsequence
of discrete solutions that converges to a solution of (8.10) when the dimension
of the finite dimensional subspaces tends to infinity.
To be more precise, let us introduce a “special basis” of eigenfunctions for

the following space

W σ = {v|v ∈ (Hσ0 (Ω))n, Ω = Ωf ∪Ωs, divv = 0 over Ωf}
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with σ = n/2 and scalar product (., .)σ. These are solutions of the following
problem

(wj, v)Wσ = λj(wj , v) = λj

∫
Ω

wjvdx, (8.15)

where (., .)Wσ is any preferred choice of scalar product overW σ. This spectral
problem possesses a sequence of eigensolutions corresponding to an increasing
sequence of positive eigenvalues λi; they constitute a complete set of orthog-
onal functions in both L2(Ω) and W σ. With these eigenfunctions, we define
the basis (vj , ϕj)j with vj = wj|Ωf and ϕj = wj|Ωs and we introduce, for
any positive integer N , the discrete subspaces of Vf × Vs

XN = span{(vj, ϕj), j = 1, . . . , N},

and, for any m, we then define the discrete solutions (ufm, Φm) ∈ Xm of∫
Ωf

∂ufm
∂t
vfdx+

∫
Ωs

∂Φm
∂t

ϕdx+ νaf(ufm, vf) + as(

∫ t
0

Φm(s)ds, ϕ)

+ bf (ufm,ufm; vf )−
1

2

n∑
i,j=1

∫
Γ

um,ium,jvm,j cos nidγ (8.16)

=

∫
Ωf

fvf +

∫
Ωs
gϕ + as(η0, ϕ), ∀(vf , ϕ) ∈ Xm

supplemented again with the initial conditions

ufm(0) = um0 → u0 and Φm(0) = η1m → η1 when m→∞,

these last convergences being in the L2 sense.
By choosing alternatively (vf , ϕ) = (vj, ϕj), j = 1, . . . , m, the previous set

of equations yields a system of nonlinear differential equations in the compo-
nents gjm(t) with (ufm, Φm) =

∑m
j=1 gjm(t)(vj, ϕj), which possesses a unique

solution at least over a time interval (0, tm), for a suitable time tm depending
on m.

Derivation of a priori estimates

We choose now (vf , ϕ) = (ufm, Φm) in (8.16) which yields

∂

∂t

∫
Ωf

|ufm(., t)|2dx+
∂

∂t

∫
Ωs
|Φm(., t)|2dx+ 2νaf(ufm,ufm)

+
∂

∂t
as

(∫ t
0

Φm(., s)ds,

∫ t
0

Φm(., s)ds

)
+ 2bf(ufm,ufm;ufm) (8.17)

−
n∑
i,j=1

∫
Γ

um,iu
2
m,j cosnidγ = 2

∫
Ωf

fufm + 2

∫
Ωs
gΦm + 2as(η0, Φm).
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Since uf is divergence free, using integration by parts gives

2bf(ufm,ufm;ufm) =

n∑
i,j=1

∫
Γ

um,iu
2
m,j cosnidγ.

Hence from applying the Cauchy Schwarz inequality to the right-hand side of
(8.17) we deduce

∂

∂t

∫
Ωf

|ufm(., t)|2dx+
∂

∂t

∫
Ωs
|Φm(., t)|2dx+ νaf(ufm,ufm)

+
∂

∂t
as

(∫ t
0

Φm(., s)ds,

∫ t
0

Φm(., s)ds

)
(8.18)

≤ C

[∫
Ωf

f2 +

∫
Ωs
g2 + as(η0,η0)

]
.

Integrating in time, we first deduce that actually we can choose tm = T and
moreover

ufm is a bounded sequence in L
2(0, T ; Vf)∩L∞(0, T ; (L2(Ωf))n),

Φm is a bounded sequence in L
∞(0, T ;L2(Ωs))n),∫ t

0
Φm(., s)ds is a bounded sequence in L

∞(0, T ; V s).

(8.19)

In order to be allowed to pass to the limit in the nonlinear term, we need
further bounds for derivatives in time. Let Pm denote the projection operator
from L2(Ω) onto Xm. This operator is self-adjoint and bounded with norm
equal to 1 in L2(Ω) but also in W σ due to the use of the special basis. It
results, by transposition, that

‖Pm‖L((Wσ)′,(Wσ )′) ≤ 1,

where (W σ)′ is the dual space ofW σ. We now propose another way of writing
(8.16) through operators:

∂

∂t
(ufm, Φm) = −Pm[A(ufm, Φm)]− Pm[G(ufm, Φm)]− Pm[F ] (8.20)

where ∀(vf , ϕ) ∈W σ,

〈A(ufm, Φm), (vf , ϕ)〉 = νaf(ufm, vf) + as
(∫ t

0

Φm(s)ds, ϕ

)
〈G(ufm, Φm), (vf , ϕ)〉 = bf(ufm,ufm; vf)

−1
2

n∑
i,j=1

∫
Γ

um,ium,jvj cos nidγ

〈F (vf , ϕ)〉 =
∫
Ωf

fvf +

∫
Ωs
gϕ + as(η0, ϕ).

(8.21)
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It is straightforward to note that A is bounded in L(W σ , (W σ)′), that F
belongs to (W σ)′ and the following lemma states that G is continuous from
W σ into (W σ)′:

Lemma 8.1. There exists a positive constant c such that for any vf ∈
Hσ(Ωf)

|bf(ufm,ufm; vf )| ≤ c‖ufm‖
1/2
L2(Ωf)

‖ufm‖
3/2
H1(Ωf)

‖vf‖Hσ(Ωf)

|
n∑
i,j=1

∫
Γ

um,ium,jvj cos nidγ| ≤ c‖ufm‖
1/2
L2(Ωf)

‖ufm‖
3/2
H1(Ωf)

‖vf‖Hσ(Ωf)

that follows from the equality

n∑
i,j=1

∫
Γ

um,ium,jvj cos nidγ = bf(ufm,ufm; vf ) + bf(ufm, vf ;ufm)

and the bound
‖v‖2L4(Ωf ) ≤ c‖v‖L2(Ωf)‖v‖H1(Ωf)

valid in 2D and
‖v‖2L3(Ωf ) ≤ c‖v‖L2(Ωf)‖v‖H1(Ωf)

valid in 3D, together with the imbedding of Hσ(Ωf ) into any L
p(Ωf ) (choose

p = 4 if n = 2 and p = 6 if n = 3). We deduce from (8.20), (8.21) and Lemma
8.1 that(

∂ufm
∂t

,
∂Φm
∂t

)
is a bounded sequence in L4/3(0, T ; (W σ)′). (8.22)

Passing to the limit

From the boundedness of the sequences (ufm, Φm) we know we can extract a
subsequence (still indexed by m) that converges weakly⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ufm ⇀ uf in L2(0, T ; Vf) ∩L∞(0, T ; (L2(Ωf))n),

Φm ⇀ Φ in L∞(0, T ;L2(Ωs))n),∫ t
0

Φm(., s)ds ⇀

∫ t
0

Φ(., s)ds in L∞(0, T ; V s)(
∂ufm
∂t

,
∂Φm
∂t

)
⇀

(
∂uf
∂t

,
∂Φ

∂t

)
in L4/3(0, T ; (W σ)′).

(8.23)

These weak limits allow us already to pass to the limit in the linear terms, for
any (vf , ϕ) ∈ ∪n∈NXn,

〈A((ufm, Φm), (vf , ϕ)〉 → 〈A((uf , Φ), (vf , ϕ)〉
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as n→∞, and∫
Ωf

∂ufm
∂t
vfdx+

∫
Ωs

∂Φm
∂t

ϕdx→
∫
Ωf

∂uf
∂t
vfdx+

∫
Ωs

∂Φ

∂t
ϕdx.

The remaining nonlinear terms require the fundamental lemma: let B0, B and
B1 be three reflexive Banach spaces with

B0 ↪→ B ↪→ B1 with continuous imbeddings

the imbedding B0 ↪→ B is compact.

Let then

Z = {v|v ∈ Lp0 (0, T ;B0),
∂v

∂t
∈ Lp1(0, T ;B1) (8.24)

with 1 < p0, p1 <∞. Then
Lemma 8.2. Under the previous hypotheses, the imbedding of Z in Lp0 (0, T ;B)
is compact.

We now use this compactness theorem in the following situation : pi = 2,
B0 = V f × [L2(Ωs)]n, B1 = (W σ)′ and we choose B = {v ∈ [H1−ε(Ωf)]n,
divv = 0}×[H−ε(Ωs)]n for 0 < ε < 1/2. Let us remember (see e.g., [293]) that
the imbedding H1(Ωf ) ↪→ H1−ε(Ωf ) is compact for any ε > 0 and so is the
imbedding L2(Ωs) ↪→ H−ε(Ωs) ; thus there exists a convergent subsequence

uf μ → uf , in L2(0, T ; (H1−ε(Ωf))n), (8.25)

where the convergence is strong. In addition, for any ε < 1
2 , the trace operator

v �→ v|Γ

is continuous from H1−ε(Ωf )→ L2(Γ ), hence the convergence

ufm|Γ → uf |Γ , is strong in L2(0, T ; (L2(Γ ))n). (8.26)

These two strong convergences allow us to prove that

〈G((ufm, Φm), (vf , ϕ)〉 → 〈G((uf , Φ), (vf , ϕ)〉, (8.27)

which guarantees that the limit (uf , Φ) is a solution to this first transmission
problem.

8.2 Some preliminary basic considerations on the full
interaction system

One of the ingredients in the analysis of the interaction problem that has been
illustrated in the previous section is the derivation of a priori estimates on
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the solution of the problem or on the solutions of its approximated versions.
These estimates constitute the fundamental argument for the analysis of the
coupled nonlinear problem since they allow bounds on the finite dimensional
approximate solutions that lead to convergence in weak norms. This is the
first step to pass to the limit in most of the linear terms of the problem.
Then, combined with some further a priori estimates, compactness results
allow us to claim the existence of the solution to the coupled problem. In this
section we want to make clear the link between the model of the exchange of
informations between the fluid and the structure and the derivation of some a
priori estimates. This analysis is actually quite simple to derive in the general
setting. Unfortunately the following steps are much more difficult to perform
and currently the general analysis in this context is not complete.

8.2.1 A general setting of the problem

We denote by Ω̂s the reference configuration of a structure surrounding a fluid.
For each time t ∈ (0, T ), we denote by Ωf (t) the fluid domain delimited by the
deformed elastic structure. The structure is modelled by the behaviour of the
displacement ηs such that the structure at time t is the range of Ω̂s through
deformation φ(t, .) = Id+ ηs(t, .). The outside boundary of Ω̂s is assumed to
be fixed (just for the sake of simplicity); the inner boundary, denoted as Γ̂ , is
assumed to constitute the boundary of the fluid domain. We are thus looking
for the displacement ηs over Ω̂s, a divergence-free velocity field uf (t, .) and a
pressure P (t, .) defined over Ωf(t) such that, in addition to (8.1), (8.2) valid
with Ωf = Ωf (t), we have the following interface conditions (see Section 3.5
of Chapter 3, with slight modifications of the notations since we choose here
to state the interface conditions over Γ̂ )

uf (t, φ(t, x̂)) =
∂ηs
∂t
(t, x̂), ∀x̂ ∈ Γ̂[

2νDuf .n− Pn
]
(t, φ(t, x̂))

∂ηs
∂x̂
=
[
telastic(ηs)

]
(t, x̂), ∀x̂ ∈ Γ̂

(8.28)

where the traction vector telastic(ηs) is the normal stress to the structure, the
expression of which varies according to the definition of the structural energy.
For example, going back to the model

ρ̂s,0
∂2ηs
∂t2

− divx̂(F̂ sΣ̂) = 0 in Ω̂s (8.29)

the traction would be equal to

telastic(ηs)(t, x̂) = [F̂ sΣ̂](t, x̂).n̂(x̂), (8.30)

where n̂ denotes the outside normal to Ω̂s. These equations are then com-
plemented with the necessary initial conditions on the displacement and the
fluid velocity.
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8.2.2 A basic set of a priori estimates

Assuming that this coupled problem possesses a solution, then, by multiplying
equation (8.1) by uf , and integrating has formally over Ωf(t) we get∫

Ωf(t)

∂uf

∂t
uf −

∫
Ωf (t)

[2div(νDuf ) + (u · ∇)uf +∇P ]uf =

∫
Ωf(t)

fuf .

(8.31)
Integrating by parts in the fourth term, with (8.2) yields∫

Ωf (t)

∇Puf =

∫
Γ(t)

Pn.uf ,

while integrating by parts in the second term yields

−
∫
Ωf (t)

2div(νDuf )uf = 2ν

∫
Ωf(t)

[Duf ]
2 −

∫
Γ(t)

2νDuf .n.uf .

Similarly, by multiplying (8.29) by
∂ηs
∂t , integrating over Ω̂s and formally

integrating by parts, we get∫
Ω̂s

ρ̂s,0
∂2ηs
∂t2

∂ηs
∂t
+

∫
Ω̂s

(F̂ sΣ̂)∇[
∂ηs
∂t
]−
∫
Γ̂

[F̂ sΣ̂](t, .).n̂
∂ηs
∂t
= 0. (8.32)

From (8.28) we now recognise that

2ν

∫
Ω(t)

[Duf ]
2 −

∫
Γ(t)

2νDuf .n.uf −
∫
Γ(t)

Pn.uf =

∫
Γ̂

[F̂ sΣ̂](t, .).n̂
∂ηs
∂t

(8.33)
so that by adding (8.31) and (8.32), we get∫

Ωf(t)

∂uf
∂t
uf +

∫
Ωf(t)

(u · ∇)ufuf + 2ν
∫
Ω(t)[Duf ]

2

+

∫
Ω̂s

ρ̂s,0
∂2ηs
∂t2

∂ηs
∂t
+

∫
Ω̂s

(F̂ sΣ̂)∇[
∂ηs
∂t
]

=

∫
Ωf(t)

fuf .

(8.34)

The first remark is now∫
Ω̂s

ρ̂s,0
∂2ηs
∂t2

∂ηs
∂t
=
1

2

∂

∂t

∫
Ω̂s

ρ̂s,0[
∂ηs
∂t
]2;

next, depending on the definition of F and Σ we get∫
Ω̂s

(F̂ sΣ̂)∇[
∂ηs
∂t
] =

∂

∂t
E(ηs)(t, .),
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where E is some mechanical energy related to the displacement and is assumed
to be positive. The only terms that do not seem to have an appropriate sign
are the two first ones in (8.34). From the Reynolds theorem, nevertheless, we
derive ∫

Ωf(t)

∂uf
∂t
uf =

1

2

∂

∂t

∫
Ωf(t)

|uf |2 −
1

2

∫
Γ(t)

|uf |2uf .n; (8.35)

on the other hand, from the divergence-free condition (8.2), we get∫
Ωf (t)

(uf · ∇)ufuf = 1
2

∫
Ωf (t)

(uf · ∇)|uf |2 = −1
2

∫
Γ(t)

|uf |2uf .n; (8.36)

hence, by summing up

1

2

∂

∂t

∫
Ωf(t)

|uf |2 + 2ν
∫
Ω(t)

[Duf ]
2 +
1

2

∂

∂t

∫
Ω̂s

ρ̂s,0[
∂ηs
∂t
]2 +

∂

∂t
E(ηs)(t, .)

=

∫
Ωf (t)

fuf . (8.37)

After integration in time we obtain at any time t∫
Ωf(t)

uf
2 + 4ν

∫ t
0

∫
Ω(s)

[Duf ]
2ds+

∫
Ω̂s

ρ̂s,0[
∂ηs
∂t
(t)]2 + 2E(ηs)(t, .)

=

∫ t
0

∫
Ωf (s)

fufds+

∫
Ωf(0)

uf
2 +

∫
Ω̂s

ρ̂s,0[
∂ηs
∂t
(0)]2 + 2E(ηs)(0, .),

(8.38)
from which we derive that, should it exist, the solution (uf ,ηs) of the coupled
problem would be stable in the following sense :

uf is uniformely bounded in L∞(0, T ;L2(Ω(t)),

Duf is uniformely bounded in L2(0, T ;L2(Ω(t)),
∂ηs
∂t
(t) is uniformely bounded in L∞(0, T ;L2(Ω̂s),

E(ηs) is uniformely bounded in L∞(0, T ).

(8.39)

Note that in order to derive some uniform L2(0, T ;H1(Ω(t)) bound for uf , we
need to make use of a Korn-type inequality that may be true only according
to some hypotheses on the shape of Ω(t), in particular the regularity of its
boundary, which is, unfortunately, one of the unknowns of the problem! This
is just a preliminary illustration of the difficulties that have still to be faced.

8.2.3 Some general remarks

One interesting feature of the previous analysis is the different types of balance
in the energies. The first one holds between the fluid and the structure, as is
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illustrated in (8.33) and as might be expected. It allows us to rationally check
that the interface conditions that have been proposed are coherent with the
model. The second one, ehich is less obvious, states that the motion of the
interface, i.e., the fluid domain boundary, is balanced by the convection term
(see (8.35, 8.36)). Actually this is not so surprising since, in Lagrangian form,
this convection term enters in the total time derivative that commutes with
the spacial integration over the original fluid domain.
The corollary is that if, for the sake of simplification, we want to drop

some contribution (e.g., the interface motion, as we did in the first section,
or the convective component in order to arrive at a linear Stokes problem)
or if we want to add some effects (e.g., visco-elastic terms in the structure),
then special care should be taken with the way the interface contribution is
written up so that the previous balances are maintained. In particular, this
is the reason for the insertion of the term −12

(∑n
j=1uf j cosnj

)
in (8.5), a

consequence of the fact that the motion of the interface does not enter in the
model, yielding in turn the commutation of the time derivative operator with
the integration over Ωf .
The second corollary is that, if the balance is not possible, the consequence

of the lack of an a priori bound on the solution is not only revealed by the
difficulty of obtaining a solution to the coupled problem but it may hurt also
at the discretisation and simulation level since there may not be any stable
scheme for the simulation of this incorrect fluid structure interaction model.
To the best of our knowledge, these stability issues were first presented

in [135], together with an illustration of the (real versus numerical) instability
arrived at by getting rid of the nonlinear contribution in the fluid model.

8.3 Weak solution for a full interaction problem with
an elastic plate

Let us summarise here the results presented in [73] by Chambolle, Desjardins,
Esteban and Grandmont that deal with a more general situation where the
domain Ωf depends on time. The proof of the well-posedness of this problem
relies on the a priori estimates and compactness properties that are available
thanks to the simple shape of the geometry of the fluid that follows from the
assumption made on the structure that can be modelled as a plate.

8.3.1 Set up of the interaction problem

In this model, the fluid is assumed to fill a three-dimensional cavity and to
interact with a thin elastic structure sitting on one of its sides Γ (t). The
remaining part of the boundary, denoted as γ0 = ∂Ωf (t) \ Γ (t), is rigid. For
the sake of simplicity, it is assumed that, in the reference state, the elastic
part of the fluid boundary is ω × {1} where ω denotes a Lipshitz domain in
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R2; the initial state of the fluid occupies the domain Ωf0 defined by

Ωf0 = {x = (x, y, z) ∈ ω × R, 0 < z < 1 + η0(x, y)},

where η0 is a given initial displacement. The deformation of the elastic part
of the boundary is modelled by a classical linear plate theory for transverse
motions and the in-plane motions are neglected. The transversal displacement
of the plate η (η = η(t, x, y) ∈ R) is supposed to satisfy

∂ttη +Δ2η + μΔ2∂tη = g + (σf)3 in ω,

η =
∂η

∂n
= 0 over ∂ω,

η(0) = η0 ∂tη(0) = η1.

(8.40)

Here again g is a given force and σf = σf · n is fluid normal stress applied
on the surface of the structure. As usual, the domain occupied by the fluid at
time t is denoted by Ωf (t)

Ωf(t) = {(x, y, z) ∈ ω ×R, 0 < z < 1 + η(t, x, y)},

the divergence-free velocity field uf(t, .) and the pressure P (t, .) defined over
Ωf(t) satisfy (8.1), (8.2) over Ωf = Ωf(t), together with initial and boundary
conditions

uf(t, 0) = 0 over γ0,

uf(0, .) = uf 0 in Ωf0,

uf(t, x, y, 1 + η(t, x, y)) = (0, 0, ∂tη(t, x, y))
T , (x, y) ∈ ω.

(8.41)

The expression of the surface tension can now be given; it is simpler to express
it under a variational form, since the equilibrium of energy flows appears
clearly. It takes the form, valid for any regular enough function v defined on
the interface ∫

ω

σf (x, y)v =

∫
Γ(t)

(2νDuf ).n+ pn).v,

where v(t, x, y) = v(t, x, y, η(t, x, y)). Similarly to in the previous section, by
multipling equation (8.1) by uf , equation (8.40) by ∂tη, integrating by parts
over the corresponding domains and taking into account (8.41) we derive
stability on the solution (uf , η) (assuming it exists) whenever the datum f ∈
L2(0, T ;L2(R3))3, g ∈ L2(0, T ;L2(ω)), uf0 ∈ L2(Ωf0)

3, η0 ∈ H20 (ω) and
η1 ∈ L2(ω). These stability results on (uf , η) provide

uf ∈ L∞(0, T ;L2(Ωf(t))3),D(uf) ∈ L2(0, T ;L2(Ωf(t))
3)

and
η ∈W 1,∞(0, T ;L2(ω)) ∩H1(0, T ;H20(ω)).

It should be noted that the various integrations by parts and trace restriction
for the relative boundary terms should be carefully defined since the boundary
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is an unknown and is evolving in time. This issue is carefully analysed in [73]
(see their subsection 1.3, for full details) and everything is fine over the domain
Ωf(t) as soon as e.g., the boundary deformation η ∈ C0([0, T ]; C0(ω)∩H1(ω)).
In addition to the a priori estimates, the analysis of the problem involves

a fixed point procedure together with a regularisation process based on
two stable regularisation operators, Rε from L2(0, T ;L2(ω × (0, 2M)) onto
C∞([0, T ] × (ω × [0, 2M ])) and Nε from C0([0, T ] × ω) into C∞([0, T ] × ω),
where M is some large enough real number.

8.3.2 A linearised/regularised version of the problem

Let us take δ ∈ H1(0, T ; C0(ω)∩H1(ω)), a predictor for the plate displacement,
and let us regularise it by introducing δ�ε = Nε(δ). This allows the definition
of a domain Ωδ�ε as follows

Ωδ�ε (t) = {(x, y, z) ∈ ω × R, 0 < z < 1 + δ�ε (t, x, y)}, (8.42)

provided that we assume, e.g., 2M ≥ 1 + δ(t, x, y) ≥ α > 0, ∀(t, x, y) ∈
[0, T ]× ω. Next, similarly to in (8.9), we introduce the space

Vδ�ε (t) = {vf |vf ∈ [H
1(Ωδ�ε (t))]

n, divvf = 0, vf |γ0 = 0}.

Let us now take v ∈ L2(0, T ;L2(ω × (0, 2M)), that is a predictor for the
fluid convection velocity, and let us regularise it by introducing v�ε = Rε(v).
The intermediate problem we consider reads as follows : Find (uf ε, ηε)

such that

• uf ε ∈ L2(0, T ; Vδ�ε (t)) ∩ L∞(0, T ;L2(Ωδ�ε (t)));

• ηε ∈W 1,∞(0, T ;L2(ω)) ∩H1(0, T ;H20(ω));

• uf ε(t, x, y, 1 + δ�ε (t, x, y)) = (0, 0, ∂tηε(t, x, y))
T in ω;

• ∂uf ε
∂t

∈ L2(0, T ;L2(Ωδ�ε (t)));

• ∂2ηε

∂t2
∈ L2(0, T ;L2(ω)) and

•
∫ t
0

∫
Ωδ�ε (s)

∂uf ε
∂t
ϕε + ν

∫ t
0

∫
Ωδ�ε (s)

∇uf ε∇ϕε +
1

2

∫ t
0

∫
Ωδ�ε (s)

(v�ε.∇)uf ε.ϕε

−1
2

∫ t
0

∫
Ωδ�ε (s)

(v�ε.∇)ϕε.uf ε +
1

2

∫ t
0

∫
ω

∂ηε
∂t

∂δ�ε
∂t

b+

∫ t
0

∫
ω

∂ηε
∂t2

b

+

∫ t
0

∫
ω

∂Δηε

∂t
Δb+

∫ t
0

∫
ω

ΔηεΔb =

∫ t
0

∫
Ωδ�ε (s)

f .ϕε

∫ t
0

∫
ω

gb

(8.43)
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∀ϕε ∈ L2(0, T ; Vδ�ε (t)), ∀b ∈ L2(0, T ;H20(ω)) such that

ϕε(t, x, y, 1 + δ�ε (t, x, y)) = (0, 0, b(t, x, y))
T in ω, (8.44)

and complemented with initial conditions over uf ε, ηε and
ηε
∂t that are regu-

larised versions of uf 0, η0 and η1 respectively.
The regularity of the boundary of the domain Ωδ�ε (t) allows the definition

of a change of variable χε from a reference domain C = ω × (0, 1) onto the
domains Ωδ�ε (t). Let us denote by wε the time derivative of χε; the problem
(8.43) becomes

∫ t
0

∫
C

∂uf
ε

∂t
ϕεJε + ν

∫ t
0

∫
C
Aε∇uf

ε
∇ϕε +

1

2

∫ t
0

∫
C
(v�ε.(Bε∇))uf ε.ϕε

−1
2

∫ t
0

∫
C
(v�ε.(Bε∇))ϕε.uf ε +

1

2

∫ t
0

∫
ω

∂ηε

∂t

∂δ�ε
∂t

b−
∫ t
0

∫
C
(wε.(Bε∇))uf ε.ϕε

+

∫ t
0

∫
ω

∂2ηε
∂t2

b+

∫ t
0

∫
ω

∂Δηε
∂t

Δb+

∫ t
0

∫
ω

ΔηεΔb =

∫ t
0

∫
C
f .ϕεJε +

∫ t
0

∫
ω

gb

(8.45)

∀ϕε ∈ L2(0, T ; V0), b ∈ L2(0, T ;H20(ω)) such that

ϕε(t, x, y, 1) = (0, 0, b(t, x, y))
T in ω (8.46)

where the notation v denotes the transported function of v under the flow χε,
and Jε, Aε, Bε are the proper geometric factors that result from the change
of variables.
In order to prove that there exists a solution to problem (8.45), we intro-

duce, as in equation (8.15), a Galerkin basis of eigenfunctions of the Stokes
problem. Restricting the spaces of trial and test functions in (8.45) to the
spaces spanned by the first eigenfunctions allows a set of finite dimensional
coupled problems to be obtained, which reads as a system of coupled ordinary
differential equations that can be shown to possess unique solutions. A simi-
lar a priori analysis to the one that was performed in the previous subsection
allows us to state that the sequence of discrete solutions is uniformly bounded
(uniformly with respect to the dimension of the discrete space together with
ε). In order to get enough information to pass to the limit in the convection
terms, regularity with respect to time derivatives, similarly to in (8.22), is
obtained, and the boundedness of these terms is uniform with respect to the
dimension of the discrete space but not with respect to ε. Nevertheless, this
is enough to pass to the limit and possibly prove the existence of a solution
(uf

ε
, ηε) to problem (8.45) for every given ε, hence a solution (uf ε, ηε) to
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problem (8.43). This solution satisfies the following energy estimates

‖uf ε‖L∞(0,T ;L2(Ωδ�ε (t))) + ‖∇uf ε‖L2(0,T ;L2(Ωδ�ε (t)))

+‖∂ηε
∂t
‖L∞(0,T ;L2(ω)) + ‖Δηε‖H1(0,T ;H20(ω))

≤ C(T, ‖uf0‖L2(Ωη0 ), ‖f‖L2((0,T )×R3), ‖g‖L2((0,T )×R3), ‖η0‖H20 (ω), ‖η1‖L20(ω),

and

‖
∂uf

ε

∂t
‖L2(0,T ;L2(C)) + ‖

∂ηε
∂t2

‖L2(0,T ;L2(ω) ≤ Cε,M,α. (8.47)

The fact that this deformation of the boundary is only vertical and regular
enough allows us to get an easy extension of uf ε in L2(0, T ;L2(ω× (0, 2M))),
noted by uf ε

uf ε =

{
uf ε in Ωδ�ε (t)

(0, 0, ∂tηε)
T in (0, 2M)× ω \Ωδ�ε (t).

(8.48)

It is important to note that uf ε is divergence free. We can now define the
mapping Fε

Fε : (δ, v) �→ (ηε,uf ε). (8.49)

The previous estimates allow first to get a set BMε such that Fε(BMε ) ⊂ BMε for
M large enough. Then these estimates – in particular those involving the time
derivatives (8.47) – allow us to prove that Fε(Bε) is relatively compact in Bε.
The hypotheses of Schauder’s fixed point theorem are fulfilled and there exists
at least a fixed point to Fε over a time interval such that min[0,T ]×ω(1+ηε) > 0,
hence a solution (uf ε, ηε) to the regularised nonlinear problem.
The final step is to get rid of the regularisation ingredient. In order to pass

to the limit as ε tends to zero, further estimates should be derived since the
present available bounds on the time derivatives depend on ε and thus may
blow up as ε goes to zero. From the estimates already derived, uf ε remains
uniformely bounded in the L2(0, T ;H1) ∩ L∞(0, T ;L2) norm, but this is not
enough to pass to the limit in the nonlinear terms. As is often the case for the
Navier-Stokes equations, uniform estimates do not seem to be available. We
replace such a bound by bounds on the “half” derivative of uf ε, expressed in
a weak sense as follows : for any h > 0∫ T

0

∫
(0,2M)×ω

|uf ε(t, x)− uf ε(t+ h, x)|2dtdx

+

∫ T
0

∫
ω

(
∂ηε
∂t
(t, x)− ∂ηε

∂t
(t + h, x)|2dtdx ≤ C

√
h

with a constant C uniform in ε.
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These estimates allow first the relative compactness of the sequences to be
proved, which, in turn, allows us to pass to the limit in the equation satisfied
by uf ε and ηε, written as follows∫
Ωη�ε (t)

uf ε(t).Φε(t)−
∫ t
0

∫
Ωη�ε (s)

uf ε(s).
∂Φε
∂t
(s) + ν

∫ t
0

∫
Ωδ�ε (s)

∇uf ε∇ϕε

+
1

2

∫ t
0

∫
Ωδ�ε (s)

(uf
�
ε.∇)uf ε.ϕε −

1

2

∫ t
0

∫
Ωδ�ε (s)

(uf
�
ε.∇)ϕε.uf ε

−1
2

∫ t
0

∫
ω

∂ηε

∂t

∂η�ε
∂t

b+

∫
ω

∂ηε

∂t
(t)b(t)−

∫ t
0

∫
ω

∂ηε

∂t

∂b

∂t
+

∫ t
0

∫
ω

∂Δηε

∂t
Δb

+

∫ t
0

∫
ω

ΔηεΔb =

∫ t
0

∫
Ωδ�ε (s)

f .ϕε +

∫ t
0

∫
ω

gb +

∫
Ωη�ε (0)

uf ε(0).Φε(0) +

∫
ω

ηε1b(0)

after verifying that the time for existence of the solutions does not tend to zero
as ε converges to zero. Note that this weak treatment of the time derivative,
while it requires different test functions as they now depend on time, allows

the convergence to be handled despite the lack of convergence results of
∂uf ε
∂t
.

This allows the main result of the paper to be stated [73]:

Theorem 8.2. There exists T � ∈ (0,∞] and a weak solution (uf , η) on [0, T ]
to the fluid/plate interaction problem in the sense that, for any Φ and b,∫

Ωη�(t)

uf (t).Φ(t)−
∫ t
0

∫
Ωη� (s)

uf (s).
∂Φ

∂t
(s) + ν

∫ t
0

∫
Ωδ(s)

∇uf∇φ

+

∫ t
0

∫
Ωδ(s)

(uf .∇)uf .φ−
∫ t
0

∫
ω

[
∂η

∂t
]2b+

∫
ω

∂η

∂t
(t)b(t)

−
∫ t
0

∫
ω

∂η

∂t

∂b

∂t
+

∫ t
0

∫
ω

∂Δη

∂t
Δb+

∫ t
0

∫
ω

ΔηΔb

=

∫ t
0

∫
Ωδ(s)

f .φ+

∫ t
0

∫
ω

gb+

∫
Ωη�(0)

uf(0).Φ(0) +

∫
ω

η1b(0).

In addition, this solution satisfies the a priori bounds stated at the beginning
of this section.

8.4 A strong solution to a two-dimensional fluid-vessel
interaction

The technique involved in the previous section has marginally used an ALE-
type change of variable from the actual deformed shape of the fluid domain to
a reference domain in one preliminary step of the proof; during all following
steps, the fluid solution is considered in Eulerian form and the a priori bounds
and the limit process are performed on the Eulerian velocity and pressure. In
this section, we report on the paper of Beirao da Veiga [33], which presents a
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technique that allows both configurations to be considered at the same time:
the Eulerian form and the Lagrangian one. The change of variable is thus done
all through the analysis. This requires more regularity on the solutions and
the verification of the equations can be stronger than in the previous analysis.

8.4.1 The fluid vessel coupling

The configuration here is simplified as a two-dimensional fluid interacting with
a one-dimensional membrane. The fluid domain is delimited by a periodic
curve, Γ (t), t ∈ [0, T ] of equation

y = 1 + η(t, x), x ∈ [0, L]. (8.50)

Without loss of generality, we assume that the initial condition η0(x) = η(0, x)
satisfies ∫ L

0

η0(x)dx = 0 (8.51)

and 1+η0 ≥ 2δ0 > 0. The evolution of these curves is assumed to be governed
by the following generalised string model (see Section 3.4.4 and [406])⎧⎨⎩

∂2η
∂t2

− β ∂
2η
∂x2

− γ ∂3η
∂t∂x2

+ α ∂
4η
∂x4
+ ση = Φ, over (0, T )× (0, L),

η(0, x) = η0(x), ∂tη(0, x) = η1(x).
(8.52)

Here γ > 0, and α, β, σ are nonnegative. The fluid domain

Ωf (t) = {(x, y) ∈ (0, L)× R, 0 < y < 1 + η(t, x)}. (8.53)

The function Φ on the right-hand side of (8.52) is defined as follows

Φ[η,uf , P ] =
(
ρ1Pn− ρ2ν [Duf ].n

)
|Γ(t)

√
1 + η2xey

where ey denotes the unit vector in the y-direction. Again the fluid is assumed
to be governed by the Navier-Stokes equations (8.1), (8.2) complemented with
the initial and boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

uf (0, x, y) = uf0(x, y), in Ωf0

uf(t, x, 1 + η(t, x)) =
∂η

∂t
(t, x)ny, in (0, T )× (0, L)

uf (t, x, 0) = 0, in (0, T )× (0, L)

and periodicity is assumed in the x direction. The following compatibility
condition is required
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∇.uf 0 = 0, in Ωf0

uf 0(x, 0) = 0, in (0, L)

uf 0(x, 1 + η0(x)) = η1(x)ey, in (0, L)∫ L
0

η1(x)dx = 0.

8.4.2 The problem in an ALE form

This geometry allows the use of a simple change of variable

x = x, z =
y

1 + η(t, x)
, (8.54)

which transforms the fluid domain Ωf(t) into the reference domain C =
(0, 1)× (0, L) and the transformed functions are, as in the previous section,
represented as

f(x, z) = f(x, (1 + η(t, x))z).

Note that, of course, the notation of the transformed function f has nothing to
do with the classical complex conjugate notation. The Navier-Stokes equations
now read ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uf

∂t
− νΔuf +∇P = F [η,uf ,∇p] in C,

divuf = g[η,uf ] in C,
uf(0, x, z) = uf

0(x, z) in C,

uf (0, x, 1) =
∂η

∂t
(t, x)ey for x ∈ (0, 1),

uf (0, x, 0) = 0 for x ∈ (0, 1)

(8.55)

where

F [η,uf ,∇p] = − η
∂uf

∂t
+

[
z
∂η

∂t
+ νz

( 2∂η∂x 2
1 + η

− ∂2η

∂x2

)]∂uf
∂z

+ ν

(
−2z ∂η

∂x

∂2uf

∂x∂z
+ η

∂2uf

∂x2
+
[z2 ∂η∂x2 − η

1 + η

]∂2uf
∂z2

)

+ z
(∂η
∂x

∂P

∂z
− η

∂P

∂x

)
ex − (1 + η)uf,1

∂uf

∂x

+
(
z
∂η

∂x
uf,1 − uf,2

)∂uf
∂z

and

g[η,uf ] = −η
∂uf,1

∂x
+ z

∂η

∂x

∂uf,1

∂z
. (8.56)
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The string equation (8.52) now has, as a right-hand side, a function in the
fluid variables⎧⎪⎨⎪⎩

∂2η

∂t2
− β

∂2η

∂x2
− γ

∂3η

∂t∂x2
+ α

∂4η

∂x4
+ ση = Φ[η,uf , P 0] + ρ1φ[η,uf ],

over (0, T )× (0, L),
η(0, x) = η0(x), ∂tη(0, x) = η1(x)

(8.57)
with

Φ[η, v, P ] = ρ1P+νρ2

(
1

1 + η

∂η

∂x

∂v1

∂z
+
∂η

∂x

∂v2

∂x
−22 + (∂η/∂x)

2

1 + η

∂v2

∂z

)
. (8.58)

P 0 is such that ∫ L
0

P 0(t, x, 1)dx = 0

and

φ(t) = φ[η,uf ] =
νρ2

Lρ1

∫ L
0

(
1

1 + η

∂η

∂x

∂v1

∂z
+

∂η

∂x

∂v2

∂x
− 22 + (∂η/∂x)

2

1 + η

∂v2

∂z

)
dx

(8.59)
so that the pressure in (8.55) is given by

P (t, x, z) = P 0(t, x, z) + φ(t).

8.4.3 The linearised coupled problem

This problem is written in a form well suited to propose a linearised version
of it, where the terms in the right-hand side are supposed to be given. We are
thus faced with a couple of systems :⎧⎪⎨⎪⎩

∂2η̃

∂t2
− β

∂2η̃

∂x2
− γ

∂3η̃

∂t∂x2
+ α

∂4η̃

∂x4
+ ση = Φ[η̂, ûf , P̂0] + ρ1φ[η̂, ûf ],

over (0, T )× (0, L),
η̃(0, x) = η0(x), ∂tη̃(0, x) = η1(x)

(8.60)
corresponding to the string equation, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũf
∂t

− νΔũf +∇P̃ = F [η̂, ûf ,∇p̂] in C,
divũf = g[η̂, ûf ] in C,

ũf(0, x, z) = ûf
0(x, z) in C,

ũf (0, x, 1) =
∂η̂

∂t
(t, x)ey for x ∈ (0, 1),

ũf (0, x, 0) = 0 for x ∈ (0, 1)

(8.61)

for the fluid part.
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Here the triplet (η̂, ûf ,∇p̂) is assumed to be given, the solution (η̃, ũf ,∇p̃)
follows and we shall seek a fixed point to the mapping (η̂, ûf ,∇p̂) −→
(η̃, ũf ,∇p̃).
The set K in which the fixed point procedure will be performed is expressed

in terms of the following regularities

• on the displacement

‖|η|‖2 ≡ ‖η‖2L∞(0,T ;H7/2) + ‖
∂η

∂t
‖2L∞(0,T ;H3/2) + ‖

∂η

∂t
‖2L2(0,T ;H5/2) <∞

(8.62)
and

‖∂
2η

∂t2
‖|2L2(0,T ;H−1/2) <∞;

• on the velocity and pressure

‖|uf , P |‖2 = ‖uf‖2L2(0,T ;H2(Ω)) + ‖
∂uf

∂t
‖2L2(0,T ;L2(Ω)) + ‖P ‖2L2(0,T ;L2(Ω)) <∞

which are more restrictive, as anticipated, than those we have encountered up
to now. The generic constants that will appear in the sequel, all denoted by
c, may depend on L, δ0, ν, α, β, γ and σ.
We start by analysing the linearised string equation (8.60), for which a

solution is quite simple. By considering the equation satisfied by λ = ∂η̃
∂x
we

deduce, by multiplying by ∂2η̃
∂x∂t, the following stability results:

• η̃ is bounded in L∞(0, T ;H1);

• ∂η̃

∂t
is bounded in L∞(0, T ;H1);

• ∂2η̃

∂x2
is bounded in L∞(0, T ;H1);

• ∂η̃

∂t
is bounded in L2(0, T ;H2);

in terms of ‖η0‖H3 , ‖η1‖H1 and the L2(0, T ;L2)-norm of the right-hand side
in (8.60). By multiplying the equation satisfied by λ by − ∂3λ

∂t∂x2 , we get the
following stability results :

• η̃ is bounded in L∞(0, T ;H2);

• ∂η̃

∂t
is bounded in L∞(0, T ;H2);

• ∂2η̃

∂x2
is bounded in L∞(0, T ;H2);

• ∂η̃

∂t
is bounded in L2(0, T ;H3);

in terms of ‖η0‖H4 , ‖η1‖H2 and the L2(0, T ;H1)-norm of the right-hand side
in (8.60).
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The required stability for K is derived by interpolation from the two pre-
vious stability results that lead to

‖η̃‖2L∞(0,T ;H7/2) + ‖
∂η̃

∂t
‖2L∞(0,T ;H3/2) + ‖

∂η̃

∂t
‖2L2(0,T ;H5/2)

≤ c
(
‖η0‖2H7/2 + ‖η1‖2H3/2 + ‖Φ[η̂, ûf , P̂0] + ρ1φ[η̂, ûf ]‖L2(H1/2

)
.

(8.63)

We complement this analysis by noticing that

‖Φ[η̂, ûf , P̂0] + ρ1φ[η̂, ûf ]‖2L2(H1/2)

≤ cρ21‖∇P̂0‖2L2 + cρ22

(
1 + ‖η0‖3H5/2 + T 3/2‖∂η̂

∂t
‖3L2(H5/2)

)2
‖|ûf |‖2 (8.64)

where the norm ‖|.|‖ has been defined in (8.62). Similarly, we can derive an
estimate of ∂

2η̃
∂t2

‖∂
2η̂

∂t2
‖L2(0,T ;H−1/2) ≤ cρ1‖∇P̂0‖L2

+ cρ2T
1/8
(
1 + ‖η0‖2L∞ + ‖|η̂|‖2

)
‖|ûf |‖+ cT 1/2‖|η̂|‖.

(8.65)

Let us now consider the linearised fluid problem (8.61) that takes the
form of a non-homogeneous unsteady Stokes problem. In order to transform
the problem into another one that is more classical, Beirao da Veiga proposes
to lift the two data g[η̂, ûf ] and ûf

0(x, z). This is done through the definition
of a vector field v such that

divv = g[η̂, ûf ], (8.66)

v(0, x, z) = ûf
0(x, z).

The construction of such a vector field is rather intricate and involves the
resolution of different Poisson problems from which the gradient of the solu-
tion is taken. A stability in the L2(0, T ;H2) ∩ H1(0, T ;L2) norm is natural
and is achieved thanks to a careful analysis of the traces. This allows the
transformation of the original problem (8.61) into another one, similar but
where the boundary condition is homogeneous and the divergence is free. The
regularity and stability of the solution of such a standard Stokes problem is a
consequence of the regularity of the boundary of the domain C (remembering
the periodic condition imposed in the x direction). The stability of the asso-
ciated solution in the ‖|.|‖-norm is governed by the L2(0, T ;L2) bound on the
right-hand side that leads to the following statement: the solution (ũf ,∇p̃) is
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stable in the following sense

‖|ũf ,∇p̃|‖2 ≤ c‖ûf0‖2H1

+ c
(
‖η0‖2L∞ +

∂η0

∂x
‖2L∞ +

∂η0

∂x
‖4L∞ + T 2/3‖η0‖2H5/2

+T‖∂η̂
∂t
‖2L∞(0,T ;H3/2) + T‖∂η̂

∂t
‖2L2(0,T ;H5/2) + T 2‖∂η̂

∂t
‖4L∞(0,T ;H5/2)

)
‖|ûf |‖2

+ c
(
‖η0‖2L∞ +

∂η0
∂x
‖2L∞

)
‖∂ûf

∂t
|‖2L2(0,T ;L2)

+ cT 1/2
(
1 + ‖η0‖2H5/2 + ‖

∂η̂

∂t
‖2L2(0,T ;H5/2)

)
‖|ûf |‖4

+ c
(
‖η0‖2L∞ +

∂η0
∂x
‖2L∞ + T‖∂η̂

∂t
‖2L2(0,T ;H5/2)

)
‖∇P̂0‖2L2(0,T ;L2)

+ c
(
‖∂η̂
∂t
‖2L2(0,T ;H3/2) + ‖

∂η̂

∂t
‖2H3/4(0,T ;L2) + ‖

∂2η̂

∂t2
‖2L2(0,T ;H−1/2)

)
.

(8.67)

8.4.4 The fixed point procedure

From the inequalities

‖∂η̂
∂t
‖L2(0,T ;H3/2) ≤ cT 1/2‖∂η̂

∂t
‖L∞(0,T ;H3/2)

and

‖∂η̂
∂t
‖H3/4(0,T ;L2) ≤ c‖∂η̂

∂t
‖1/4
H3/4(0,T ;L2)

‖∂η̂
∂t
‖3/4
H1(0,T ;H−1/2)

we first derive that

‖∂η̂
∂t
‖H3/4(0,T ;L2) ≤

cT 1/8
(
‖η̂‖L∞(0,T ;H3/2) + ‖

∂η̂

∂t
‖1/4
L∞(0,T ;H3/2)‖

∂2η̂

∂t2
‖3/4
L2(0,T ;H−1/2)

)
.

We have illustrated here the way to incorporate some dependency on T in the
estimates similar as those that have been used to get e.g., (8.67). Summing
up, we derive that for a small enough T , the mapping T : (η̂, ûf ,∇p̂) −→
(η̃, ũf ,∇p̃) maps K into itself, provided that we choose

K = {(η̂, ûf ,∇p̂)|, ‖|ûf ,∇p̂|‖ ≤ K0, ‖|η̂|‖ ≤ K1, ‖
∂2η

∂t2
‖|2L2(0,T ;H−1/2) ≤ K2}

with three constants K0, K1 and K2 appropriately chosen. In addition K is a
compact subset of L2(0, T ;L2)× L2(0, T ;L2) ×H−1(0, T ;L2).
The Schauder theorem can be applied to get a fixed point of T once it is

checked that T is continuous with respect to the L2(0, T ;L2)×L2(0, T ;L2)×
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H−1(0, T ;L2)-topology, which is done in detail in [33]. This proves the exis-
tence of the solution to the problem in the ALE form. The regularities on the
solution are sufficient to turn back to the original variables (t, x, y). By using
the inverse transform to (8.54), we obtain a solution (η,uf , P ) to the fluid
vessel coupling problem.
As a final remark, it should be noted that in this section and in the pre-

vious one, the regular feature of the structure is a fundamental ingredient
for the proof of the existence of a solution. Indeed in both of these analyses,
the presence of a visco-elastic contribution leads to increased stability that
gives enough compactness to the solutions. Independently of the theoretical
question, which at this point remains unanswered, of whether the coupled
problem with standard elasticity (i.e. with no visco-elastic contribution) is
well posed or not, this rings a bell at the level of the numerical simulation
since most of the time no such visco-elastic contribution is incorporated in
the models. It is well known however that discretisation schemes classically
add inherent viscosity contributions to the original model. First this could
be the reason why such terms are not needed in the current simulations; sec-
ond, if the visco-elastic terms are revealed to be mandatory at the continuous
level, this might lead to some problems if the discretisation parameters tend
to zero. Until now this question has remained unsolved in this conformation.
Nevertheless, we refer to the papers of Coutand and Shkoller [103, 104] where
the elastic body, floating within a fluid, is analysed and no such viscoelastic
term is added. The new ingredient in that paper is the analysis of the fluid
part in a hyperbolic-type functional framework that, at the price of increased
compatibility assessments between the initial and boundary conditions, allows
the increased regularisation of the elastic behaviour to be discarded. These
results have not yet been extended to the configuration we are interested in,
in this chapter, and that deals with a fluid inside an elastic envelop.

8.5 A full interaction problem with zero structural mass

The model we consider in this last section corresponds to a more complete
analysis. This work, done by Cheng, Coutand and Shkoller [13], deals with
the full fluid-structure interaction problem where the fluid, modelled by the
viscous incompressible equations, is enclosed by a moving thin nonlinear elas-
tic shell. The three-dimensional fluid interacts here with a structure repre-
sented by a two-dimensional quasilinear elastic model of Koiter shell type
which is directly derived from the asymptotic expansion in the nonlinear three-
dimensional Saint-Venant Kirchhoff equations when the thickness of the shell
converges to zero. The motion of the structure is assumed to be inertia-free,
nevertheless the main difficulty of the coupling is present since the shape of
the fluid domain is nonstationary and unknown.
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8.5.1 Navier-Stokes/Koiter coupling

We denote again by Ωf0 an open bounded domain in R
3 with boundary Γ0 =

∂Ωf0. For each time t ∈ (0, T ) we look for a volume-preserving transformation
η(t, .): Ωf0 −→ R3, a domain Ωf (t) = η(t, Ωf0), a divergence-free velocity
field uf (t, .) and a pressure P (t, .) defined over Ωf(t, .) such that, in addition
to (8.1), (8.2) valid with Ωf = Ωf (t), we have

ηt(t, x) = uf (t,η(t, x)) (8.68)

complemented with the interface conditions

2νDuf .n− Pn = tshell , over Γ (t) = η(t, Γ0) (8.69)

(where the traction vector tshell will be detailed later) and subject to the
initial conditions {

uf(0) = u0, over Ωf0,
η(0, x) = x, ∀x ∈ Ωf0 .

(8.70)

In the widest generality, the traction vector tshell is derived from the nonlinear
Saint Venant-Kirchhoff constitutive law by cancelling out the first variation
of the hyperelastic stored energy:

Eshall = εEmem + ε3Eben

where ε stands for the thickness of the shell and where the membrane energy
satisfies

Emem =

∫
γ(t)

[μ
4

2∑
α,β=1

(gαβ − g0αβ)
2 +

μλ

4(2μ+ λ)

( 2∑
α=1

(gαα − g0αα)
)2]

ds

while the bending energy Eben is given by

Eben =

∫
Γ(t)

[
(4μ+ 2λ)H2 − 2μK

]
ds.

In the previous expression, g denotes the induced metric on the surface Γ (t),
H and K denote the mean and Gauss curvature on Γ (t), and λ/2 and μ/2
are the Lamé constants (see [95]).
Adopting a local coordinate system in a tubular neighborhood of Γ0 com-

posed of tangential coordinates y1 and y2 and a normal one, the bending
traction has the form of a, possibly degenerate, fourth-order tangent deriva-
tive operator acting on the normal displacement h taking the form

1√
det(g)

∂2

∂yγ∂yδ
[√
det(g)Aαβγδ

∂2h

∂yα∂yβ
]

(where Aαβγδ is a fourth-rank tensor) plus some lower-order terms, whereas
the membrane traction is a second-order derivative operator.
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8.5.2 Lagrangian formulation of the problem

Following the strategy developed in two former papers by Coutand and
Shkoller [103, 104], the analysis is performed on the Lagrangian formulation
of the problem. Hence after introducing the Lagrangian velocity vf = uf ◦ η
and the Lagrangian pressure q = P ◦η and F = f ◦η the coupled system can
be rewritten as

ηt = vf , in (0, T )×Ωf0,

vf
i
t − ν(aj�Dη(vf )

i
�),j = −(aki q),k + F i in (0, T )×Ωf0,

aki vf
i
,k = 0 in (0, T )×Ωf0,

(νDη(vf)
i
� − qδi�)a

j
�nj = εtmem + ε3tben on (0, T )× Γ0,

ht = h,α(vf ◦ η−τ )α + (vf ◦ η−τ )z on (0, T )× Γ0,

vf = uf0 in Ωf0,
h = 0 on Γ0,
η(0, x) = x, ∀x ∈ Ωf0.

(8.71)
As in the previous sections, the interest of this transformation is to work over a
fixed domain so that standard imbedding, compactness and Korn or Poincaré
type inequalities are available.
The analysis of this nonlinear problem involves, as in Section 8.3, regu-

larisation operators, one for ensuring that the forcing terms and the initial
data are smooth enough, and another one to regularise the right-hand side of
the linearised version of the problem. An additional penalisation ingredient
is incorporated to take care of the transformed incompressibility constraint.
One of the simplest results proved in this paper deals with the case where the
membrane contribution is neglected and reads

Theorem 8.3. Assume the data F satisfies

F ∈ L2(0, T ;H2(Ωf0)) ∩H1(0, T ;L2(Ωf0)), F (0) ∈ H1(Ωf0)

and that the initial data uf 0 ∈ H5/2(Ωf0) and its trace uf 0|Γ0 ∈ H9/2(Γ0),

and that the tangential component of Duf0.n vanishes. Suppose in addition
that the shell traction is composed only of bending contributions

tshell = tben.

There exists a solution (uf , P, h) to the full interaction problem in Lagrangian
form. More precisely, uf ∈ L2(0, T, H3(Ωf0)) ∩ H1(0, T, H1(Ωf0)) and h ∈
L2(0, T ;H11/2(Γ0))∩H1(0, T ;H5/2(Γ0))∩H2(0, T ;H1/2(Γ0))∩L∞(0, T ;H2(Γ0)).
The solution is unique under appropriate compatibility conditions between ini-
tial and boundary data.
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8.6 Conclusions

The goal of this chapter was to provide a few ideas on the analysis of the
coupled problem of fluid and structure interaction in the framework that best
fits the applications that are pursued in this book. The analysis deals with
questions of existence of solution to the partial differential equations resulting
from the model construction. This involves discussions on the best functional
space and even the sense in which the equations are satisfied. As announced
in the introduction of the chapter, the difficulty comes from the highly nonlin-
ear features of the equations, the modelling of the interaction involving new
nonlinearities to an already nonlinear problem. In addition to the existence of
a solution, the derivation of properties of uniqueness and regularity is also of
interest both for the analyst and for the numerical analysis who has to choose
the most appropriate discretisation scheme and algorithm to get an approxi-
mation of the solution. Some of these results appear in the references quoted
in this chapter but the situation is still unresolved and there is a need for fur-
ther contributions to answer some open questions. One of the most intriguing
is whether a visco-elastic assumption for the structure model is required.
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Algorithms for fluid-structure interaction

problems

Miguel A. Fernández and Jean-Frédéric Gerbeau

Fluid-structure coupled problems and their analysis have been addressed in
the previous chapters (particularly in Chapter 3 and Chapter 8). In this chap-
ter, we present some computational issues encountered in the resolution of
these problems and propose efficient algorithms to solve them.
A fluid-structure problem is defined by the fluid equations, the structure

equations and by the transmission conditions at the fluid-structure inter-
face Γ (t):

uf = us, (9.1)

σf ·nf + σs · ns = 0. (9.2)

We will show in Section 9.1 that these conditions are the key ingredients
when deriving the energy equality of the continuous fluid-structure system.
After discretisation, a straightforward way to satisfy the discrete counterpart
of (9.1) and (9.2) is to simultaneously solve the fluid and the structure prob-
lems in a unique solver. This approach is usually referred to as a monolithic
method. When relations (9.1) and (9.2) are satisfied after time discretisation,
one says that the method is strongly coupled . A monolithic method is typically
strongly coupled and, hopefully, is stable in the energy norm. However, this
approach needs ad hoc software development and results in a global solver
which is less modular than two distinct fluid and structure solvers. In par-
ticular it is difficult to devise efficient global preconditioners and to maintain
state-of-the-art schemes in each solver. With the so-called partitioned proce-
dures (sometimes called segregated), the fluid and the structure are solved with
their own software. This increases the capabilities of evolution and optimisa-
tion of each code. Among the partitioned schemes, we have to distinguish the
weakly coupled ones from the strongly coupled. A scheme is said to be weakly
(or loosely or explicit) coupled when (9.1) and (9.2) are not exactly satis-
fied at each time step or, in other words, when a spurious numerical power
appears on the fluid-structure interface. Let us emphasise that a partitioned
scheme is not necessarily weakly coupled: when sub-iterations are performed

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
c© Springer-Verlag Italia, Milano 2009
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at each time step, the transmission conditions (9.1) and (9.2) can be enforced
with a high accuracy even though two different solvers are used. Nevertheless,
partitioned procedures are often used to implement weakly coupled schemes.
Indeed, many fluid-structure interaction problems, in particular in aeroelas-
ticity, can be solved in practice without enforcing exactly (9.1) and (9.2). We
will show in Section 9.2 on a toy model why it may be very difficult to achieve
stability in blood flows with loosely coupled algorithms. This is the reason
why several strongly coupled schemes have been proposed in the literature.
We will present some of them in Section 9.3. We will show in Section 9.4 that
it is in fact possible to avoid strong coupling without compromising stability,
even for blood flows. In Section 9.5, we give some hints to compute the load
on the structure after space discretisation in various cases of interest.

9.1 The coupled fluid-structure problem

At this stage, we assume that the reader is familiar with the basic notions of
kinematics and mechanics introduced in Chapter 3. As shown in Section 3.5,
the interaction of an incompressible viscous fluid and a hyperelastic structure
is governed by a system of partial differential equations, which we repeat here
for the sake of convenience.

• Fluid sub-problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρf

∂uf

∂t | ˜A
+ ρf (uf −w) ·∇uf − divσ(uf , P ) = 0, in Ωf(t),

divuf = 0, in Ωf(t),

σ(uf , P )nf = gf,N , on Γf,N .

(9.3)
• Solid sub-problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̂s,0
∂2η̂s
∂t2

− divx̂
(
F̂ sΣ̂

)
= 0, in Ω̂s,

η̂s = 0, on Γ̂s,D,

F̂ sΣ̂n̂s = 0, on Γ̂s,N .

(9.4)

• Coupling conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
η̃f = Ext(η̂s|̂Γ ), Ωf (t) = Ã(Ω̂f , t), ŵ =

∂η̃f
∂t

, in Ω̂f ,

uf = w, on Γ (t),

F̂ sΣ̂n̂s + J̃
˜Aσ̂(uf , P )F̃

−T
˜A n̂f = 0, on Γ̂ ,

(9.5)

where the unknowns are: the fluid domain displacement η̃f : Ω̂f ×R+ −→ R3,

the fluid velocity ûf : Ω̂f ×R+ −→ R3, the fluid pressure P̂ : Ω̂f ×R+ −→ R
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and the structure displacement η̂s : Ω̂s×R+ −→ R3. We recall that Ã denotes
the ALE application that maps the reference fluid configuration Ω̂f onto the
current fluid configuration Ωf(t), w denotes the fluid domain velocity and,

for any function q̂ defined on Ω̂f , its Eulerian counterpart q is defined by

q(x) = q̂(x̂) for x = Ã(x̂, t).

9.1.1 Energy balance

In this paragraph we extend the formal a priori energy analysis performed in
Chapter 8 to the case of the general fluid-structure interaction problem (9.3)–
(9.5). Note that, here, the fluid domain Ωf(t) is not necessarily a material
domain and the fluid equations (9.3) are written in ALE form. As expected,
dissipation only comes from the fluid viscosity and the power exchanged by
the fluid and the structure exactly balance at the interface. This balance is a
direct consequence of the coupling conditions (9.5).

Proposition 9.1. Assume that the coupled fluid-structure system is isolated,
i.e., uf = 0 on ∂Ωf (t)\Γ (t), F̂ sΣ̂n̂s = 0 on ∂Ω̂s\Γ̂ , then the following
energy balance holds:

d

d t

[ ∫
Ωf(t)

ρf

2
|uf |2 dx+

∫
̂Ωs

ρ̂s,0

2
|ûs|2 dx̂︸ ︷︷ ︸

Kinetic energy

+

∫
̂Ωs

W (Ê) dx̂︸ ︷︷ ︸
Elastic potential energy

]

+

∫
Ωf(t)

2μ|D(uf)|2 dx︸ ︷︷ ︸
Dissipated viscous power

= 0. (9.6)

The density of elastic energy W has been defined in (3.55).

Proof. We multiply the fluid equation (9.3)1 by uf and the solid equation
(9.4)1 by ûs; we integrate by parts and use the boundary conditions. Finally,
we add the resulting expressions by noticing that the interface integral con-
tributions cancel thanks to the coupling conditions.
For the mass term in the fluid, using the change of variables x = Ã(x̂, t)

and (3.26), we have∫
Ωf (t)

ρf
∂uf
∂t | ˜A

· uf dx =
∫
̂Ωf

ρf J̃˜A
∂ûf
∂t

· ûf dx̂

=

∫
̂Ωf

ρf
2

∂
(
J̃
˜A|ûf |2

)
∂t

dx̂−
∫
̂Ωf

ρf
2
J̃
˜Ad̂ivw|ûf |2 dx̂

=
d

d t

[∫
Ωf(t)

ρf

2
|ûf |2 dx

]
−
∫
Ωf (t)

ρf

2
divw|uf |2 dx.
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For the convective term, since divuf = 0, integrating by parts, using the
boundary conditions and the equality uf = w on Γ (t), we have∫

Ωf(t)

ρf (uf −w) ·∇uf · uf dx =
∫
Ωf(t)

ρf

2
(uf −w) ·∇|uf |2 dx

=

∫
Ωf(t)

ρf

2
divw|uf |2 dx.

For the stress term, integrating by parts we have

−
∫
Ωf (t)

divσf(uf , P ) · uf dx =
∫
Ωf (t)

σf (uf , P ) :∇uf dx

−
∫
∂Ωf(t)

σf(uf , P )nf · uf dγ

=

∫
Ωf (t)

2μD(uf) :D(uf) dx

−
∫
Γ(t)

σf (uf , P )nf · uf dγ .

Therefore, by adding these three contributions we have the following energy
balance in the fluid:

d

d t

[∫
Ωf(t)

ρf

2
|uf |2 dx

]
+

∫
Ωf (t)

2μ|D(uf )|2 dx−
∫
Γ(t)

σf (uf , P )nf ·uf dγ = 0.

(9.7)
For the mass terms in the solid, we readily obtain∫

̂Ωs

ρ̂s,0
∂2η̂s
∂t2

· ∂η̂s
∂t
dx̂ =

d

d t

∫
̂Ωs

ρ̂s,0

2
|ûs|2 dx̂. (9.8)

For the stress term, integrating by parts and using the boundary conditions
we have

−
∫
̂Ωs

divx̂
(
F̂ sΣ̂

)
· ûs dx̂ =

∫
̂Ωs

F̂ sΣ̂ :∇x̂ûs dx̂−
∫
̂Γ

F̂ sΣ̂n̂s · ûs dγ̂ . (9.9)

On the other hand, since Σ̂ is symmetric and using (3.53), it follows that

F̂ sΣ̂ :∇x̂ûs = F̂ sΣ̂ : ∂F̂ s
∂t
=

∂F̂ s
∂t
F̂ s : Σ̂

=
1

2

(
∂F̂

T

s

∂t
F̂ s + F̂

T

s

∂F̂ s

∂t

)
: Σ̂ =

∂Ê

∂t
: Σ̂.

In addition, since the material is hyperelastic, we have

F̂ sΣ̂ :∇x̂ûs = ∂Ê

∂t
: Σ̂ =

∂Ê

∂t
:
∂Ŵ

∂Ê
(Ê) =

∂W (Ê)

∂t
,
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and, therefore from (9.9),∫
̂Ωs

F̂ sΣ̂ :∇x̂ûs dx̂ =
∫
̂Ωs

∂W (Ê)

∂t
dx̂−

∫
̂Γ

F̂ sΣ̂n̂s · ûs dγ̂

=
d

d t

∫
̂Ωs

W (Ê) dx̂−
∫
̂Γ

F̂ sΣ̂n̂s · ûs dγ̂ .

Finally, by combining this last equality with (9.8), we get the following energy
balance for the solid

d

d t

∫
̂Ωs

ρ̂s,0
2
|ûs|2 dx̂+

d

d t

∫
̂Ωs

W (Ê) dx̂−
∫
̂Γ

F̂ sΣ̂n̂s · ûs dγ̂ = 0.

We then conclude the proof by adding this equality to (9.7) and using the
interface coupling conditions (9.1) and (9.2).

9.1.2 Variational formulation

Problem (9.3)–(9.5) can be reformulated in a weak variational form using
appropriate test functions, performing integrations by parts and taking into
account the boundary and interface conditions.
Let v̂f : Ω̂f −→ R3 and q̂ : Ω̂f −→ R be time-independent smooth

functions. We will take as test functions their Eulerian counterparts defined
by

vf(x, t) = v̂f(Ã−1t (x)), q(x, t) = q̂(Ã−1t (x)),

for all x ∈ Ωf (t). Notice that, in contrast to test functions on fixed domains,
these functions are time-dependent. However, since v̂f is independent of t, vf
has zero ALE time-derivative

∂vf

∂t | ˜A
= 0. (9.10)

The same property holds for q.
By multiplying the fluid equation (9.3)1,2 by (vf , q), integrating by parts

and taking into account the boundary conditions, we get∫
Ωf(t)

ρf
∂uf

∂t | ˜A
· vf dx+

∫
Ωf(t)

ρf (uf −w) ·∇uf · vf dx

+

∫
Ωf(t)

σf (uf , P ) :∇vf dx−
∫
Γf,N(t)

gf,N · vf dγ

−
∫
Γ(t)

σf(uf , P )nf · vf dγ +
∫
Ωf(t)

q divuf dx = 0. (9.11)
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Using a change of variables in the first integral in combination with (9.10)
and since ρf is assumed to be constant, it follows that∫
Ωf (t)

ρf
∂uf

∂t | ˜A
· vf dx =

∫
̂Ωf

ρf J̃˜A
∂ûf

∂t
· v̂f dx̂

=
d

d t

∫
̂Ωf

J̃
˜Aρf ûf · v̂f dx̂−

∫
̂Ωf

J̃
˜Aρf d̂ivwûf · v̂f dx̂

=
d

d t

∫
Ωf(t)

ρfuf · vf dx−
∫
Ωf (t)

ρf divwuf · vf dx.

In addition, using the properties of the Piola transformation (see Proposition
3.2 in Chapter 3) we have∫

Γ(t)

σf(uf , P )nf · vf dγ =
∫
̂Γ

J̃
˜A
̂σ(uf , P )F̃

−T
˜A n̂f · v̂f dγ̂ .

Finally, by inserting these two equalities in (9.11), we can see that (uf , P )
satisfies

d

d t

∫
Ωf(t)

ρfuf · vf dx+
∫
Ωf(t)

ρf (uf −w) ·∇uf · vf dx

−
∫
Ωf(t)

ρf (divw)uf · vf dx+
∫
Ωf (t)

σf (uf , P ) :∇vf dx−
∫
Γf,N

gf,N · vf dγ

−
∫
̂Γ

J̃
˜A
̂σ(uf , P )F̃

−T
˜A n̂f · v̂f dγ̂ +

∫
Ωf(t)

q divuf dx = 0. (9.12)

On the other hand, multiplying the solid equation (9.4)1 by a smooth function

v̂s : Ω̂s −→ R3 vanishing on Γ̂s,D, integrating by parts and taking into account
the boundary conditions of (9.4), we get

∫
̂Ωs

ρ̂s,0
∂2η̂s
∂t2

· v̂s dx̂+
∫
̂Ωs

F̂ sΣ̂ :∇x̂v̂s dx̂−
∫
̂Γ

F̂ sΣ̂n̂s · v̂s dγ̂ = 0. (9.13)

After summation of (9.12)–(9.13), taking into account the coupling condi-

tion (9.5)3 and assuming that v̂f = v̂s on Γ̂ , we have

d

d t

∫
Ωf(t)

ρfuf · vf dx+
∫
Ωf(t)

ρf (uf −w) ·∇uf · vf dx

−
∫
Ωf(t)

ρf divw uf · vf dx+
∫
Ωf(t)

σf (uf , P ) : ∇vf dx−
∫
Γf,N

gf,N · vf dγ

+

∫
Ωf(t)

q divuf dx+

∫
̂Ωs

ρ̂s,0
∂2η̂s
∂t2

· v̂s dx̂+
∫
̂Ωs

F̂ sΣ̂ :∇x̂v̂s dx̂ = 0,
(9.14)
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for all (v̂f , q̂) ∈ [H1(Ω̂f )]3 × L2(Ω̂f ) and v̂s ∈ [H1
̂Γs,D
(Ω̂s)]

3 with v̂f = v̂s

on Γ̂ , where L2 denotes the space of square integrable functions and H1 the
standard Sobolev space of L2 functions which have first derivatives in L2.
In what follows, we will make explicit the dependence of Ωf (t) and Γ (t)

on η̃f by introducing the notations

Ωf(η̃f) = Ωf(t) = (I + η̃f)(Ω̂f ), Γ (η̃f ) = Γ (t).

Therefore, after summation of (9.14)–(9.62) we obtain the following global

weak formulation of problem (9.3)–(9.5): Find ûf : Ω̂f × R+ → R3, P̂ :

Ω̂f × R+ → R, η̃f : Ω̂f ×R+ → R3 and η̂s : Ω̂s × R+ → R3 such that

η̃f = Ext(η̂s|̂Γ ), ŵ =
∂η̃f

∂t
, in Ω̂f ,

uf = w, on Γ (η̃f ),

η̂s = 0, on Γs,D,

(9.15)

and

d

d t

∫
Ωf(η̃f )

ρfuf · vf dx+
∫
Ωf(η̃f )

ρf (uf −w) ·∇uf · vf dx

−
∫
Ωf(η̃f)

ρf (divw)uf · vf dx+
∫
Ωf (η̃f)

σf (uf , P ) :∇vf dx

−
∫
Γf,N

gf,N · vf dγ +
∫
Ωf(η̃f )

q divuf dx

+

∫
̂Ωs

ρ̂s,0
∂2η̂s
∂t2

· v̂s dx̂+
∫
̂Ωs

F̂ sΣ̂ :∇x̂v̂s dx̂ = 0,

(9.16)

with uf = ûf ◦ Ã−1t , P = P̂ ◦ Ã−1t , and for all (v̂f , q̂) ∈ [H1(Ω̂f )]3× L2(Ω̂f ),

v̂s ∈ [H1Γs,D(Ω̂s)]3 with v̂f = v̂s on Γ̂ .

9.2 Strong versus weak coupling

The purpose of this section, mainly based on [70], is to address stability issues
of both strongly and loosely coupled methods applied to a “toy model” which
can be regarded as a simplified version of (9.3)–(9.5). This model represents
the interaction between a potential fluid and a linear elastic thin tube. It
cannot describe complex situations, like fluid-structure interaction in arteries,
since, for example, it does not include nonlinearities and dissipation phe-
nomena. Nevertheless, it retains important physical features of more complex
models: in particular, it reproduces propagation phenomena and takes into
account the added-mass effect of the fluid on the structure, which is known
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to induce numerical difficulties [272]. This model problem is simple enough to
perform mathematical and numerical studies but, at the same time, complex
enough to mimic more realistic situations, at least in the case of incompress-
ible fluids. As will be shown in Sections 9.2.4 and 9.2.5, starting from this
simple FSI model, we are able to derive stability and convergence conditions
that are in excellent agreement with the numerical observations collected in
much more complex situations. Moreover, this simplified FSI model is also
helpful in devising new and more efficient coupled algorithms, as will been
shown in Section 9.4.

9.2.1 Motivations

In order to motivate the subsequent discussions, we recall some empirical
observations made on a basic FSI test case proposed in previous studies
(see [155,188,351]). The goal of this test case is to simulate, in a very idealised
framework, the mechanical interaction between blood and arterial wall. The
geometry at rest is a cylinder. The fluid is described by the incompressible
Navier-Stokes equations in Arbitrary Lagrangian Eulerian formulation (9.3).
The structure is described either by a 1D generalised string model (see Sec-
tion 3.4.4) when the fluid is 2D or by a nonlinear shell model when the fluid
is 3D (see [75, 189]). An overpressure is applied at the inlet of the fluid for a
short duration of time. Due to the fluid-structure coupling, the overpressure
propagates along the cylinder. All the details regarding this test case can be
found in the above-cited references.
We first tried explicit coupled methods. It was observed that these algo-

rithms exhibit numerical instabilities:

(R1) for a given geometry, as soon as the density of the structure is lower
than a certain threshold;

(R2) for a given structure density, as soon as the length of the domain is
greater than a certain threshold.

We then tried “strongly” coupled methods, i.e., we ensured at each time step
an exact balance of energy by sub-iterating several times between the fluid
and the structure. When the sub-iterations consisted of a relaxed fixed-point
method, it was observed that an increasing amount of relaxation is needed
when:

(R3) the density of the structure decreases;
(R4) the length of the domain increases.

All the details concerning these observations (values of parameters, algo-
rithms, experiments, etc.) can be found in [351, Chapter 4].
The fact that the numerical stability depends on the structure density has

a clear physical interpretation. This is not the same for the dependence on the
geometry, which is quite unexpected: since the main physical phenomenon is
a wave propagation with a finite velocity, it is surprising that the length of
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the domain modifies the stability of the algorithm (independently of the space
and time steps).
Since it is difficult to explain these observations on the original fully non-

linear equations (9.3)–(9.5), we propose in the next section a simplified model
which exhibits an analogous behaviour and which is simple enough to be
analysed in detail.

9.2.2 A simplified model

We consider a rectangular domain Ωf ⊂ R2 whose boundary is split into
different subsets Γ 1F , Γ

2
F , Γ

3
F and Γ , the last one corresponding to the fluid-

structure interface (see Fig. 9.1). In this simplified model, the domain Ωs
occupied by the structure is such that Ωs = Γ . We set Γf = Γ 1f ∪Γ 2f . Finally,
we denote by nf the unit outward normal vector on ∂Ωf .
In the domain Ωs, we use the generalised string model derived in Sec-

tion 3.4.4: find the displacement η = η(x, t) such that⎧⎨⎩ρshs
∂2η

∂t2
+ aη − b

∂2η

∂x2
= f in Ωs,

η = 0 on (0, T )× ∂Ωs

(9.17)

where hs is the thickness of the structure, a = Ehs/R
2(1− ξ2), E is the Young

modulus, ξ the Poisson coefficient, b = κTGhs, G is the shear stress modulus,
κT the Timoshenko shear correction factor and f the external forcing term
coming from the fluid (whose expression will be made precise below). Equation
(9.17) must be supplied with initial conditions

η(x, 0) = η0(x),
∂η

∂t
(x, 0) = η̇0(x) in Ωs, (9.18)

and boundary conditions η(0, t) = η(L, t) = 0, ∀t ∈ (0, T ).
For the fluid, we use a linear incompressible inviscid model. Moreover, the

deformation η of the structure is assumed to be very small, so that the fluid
domain Ωf can be considered fixed. Thus, the fluid problem reads: find the

Γ

Γ1f Γ2fΓ3f

f

Ωs

Ωf

nf

R

L

Fig. 9.1. Schematic representation of the computational domain
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fluid velocity uf = uf(x, y, t) and the pressure P = P (x, y, t) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
∂uf

∂t
+∇P = 0 in Ωf ,

divuf = 0 in Ωf ,

P = P on Γ 1f ∪ Γ 2f ,

uf · nf = 0 on Γ 3f ,

uf · nf = w on Γ,

(9.19)

where P and w are given functions (we refer to Fig. 9.1 for the notations).
System (9.19) may be conveniently reformulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ΔP = 0 in Ωf ,

P = P on Γ 1f ∪ Γ 2f ,

∂P

∂nf
= 0 on Γ 3f ,

∂P

∂nf
= −ρf

∂w

∂t
on Γ.

(9.20)

The fluid and structure systems are coupled by the following transmission
conditions ⎧⎨⎩uf ·nf = w =

∂η

∂t
on Γ,

f = P on Γ.

(9.21)

Using (9.21)1, condition (9.20)4 can be written as

∂P

∂nf
= −ρf

∂2η

∂t2
on Γ. (9.22)

9.2.3 The added-mass operator

We introduce the functional spaces

V = H10 (Ωs),

Q = {q ∈ H1(Ωf ), q|Γ1f∪Γ2f = 0}.

We denote by (·, ·) the L2(Ωf ) or L2(Ωs) inner products and we define the
bi-linear forms:

af (p, q) =

∫
Ωf

∇p · ∇q dx dy, ∀p, q ∈ H1(Ωf ),

as(η, ξ) =

∫
Ωs

a η ξ dx+

∫
Ωs

b
∂η

∂x

∂ξ

∂x
dx, ∀η, ξ ∈ H1(Ωs).
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Throughout this section, the Hilbert space V will be endowed with the scalar
product defined by as(·, ·). We make the following regularity assumptions on
the boundary data for the fluid

P ∈ C0(0,∞;H1/2(Γf)), (9.23)

and on the initial data for the structure

η0 ∈ V, η̇0 ∈ V. (9.24)

In the sequel, the notation qΓ will indicate the restriction of an arbitrary
function q : Ωf → R to the interface Γ .
A variational formulation of the fluid-structure problem introduced in the

previous section is:

Find (P (t), η(t)) ∈ H1(Ωf )×V such that (9.18) is satisfied, P (t)|Γ1f∪Γ2f =
P (t), ∀t ∈ (0,∞) and for all (q, ξ) ∈ Q× V :⎧⎪⎪⎨⎪⎪⎩

af(P, q) = −ρf
∫
Γ

∂2η

∂t2
q,(

ρshs
∂2η

∂t2
, ξ

)
+ as(η, ξ) = (P |Γ , ξ).

(9.25)

In order to write problem (9.25) in a more compact form, further notations
are needed. We introduce the following operators: for η, ξ ∈ V , we define

〈Lη, ξ〉 = as(η, ξ), (9.26)

and for � ∈ L2(Ωs), we denote by T� the element of V such that

〈L(T�), ξ〉 = (�, ξ). (9.27)

Using the above definitions, the structure problem reads:
find η such that

ρshs
∂2η

∂t2
+ Lη = PΓ . (9.28)

Next, for any w ∈ H−1/2(Γ ), we denote by Rw the element of Q solution
of the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ΔRw = 0 in Ωf ,

Rw = 0 on Γ 1f ∪ Γ 2f ,

∂Rw

∂nf
= 0 on Γ 3f ,

∂Rw

∂nf
= w on Γ.

(9.29)
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We define the added-mass operator MA : H−1/2(Γ )→ H1/2(Γ ) by

MAw = Rw|Γ . (9.30)

Note that, for w, v ∈ L2(Γ ),

〈MAw, v〉 = af (Rw,Rv).

The operator T is compact, self-adjoint and positive on V . The operatorMA
is compact, self-adjoint and positive on L2(Γ ) (see [51, 220]).
Let us now introduce an arbitrary continuous extension operator EF :

H1/2(Γf) → H1(Ωf ). By definition, there exists a positive constant C such
that, for all q ∈ H1/2(Γf), EF q|Γf = q and ‖EF q‖H1(Ωf) ≤ C‖q‖H1/2(Γf).
We define p∗(t) ∈ H1(Ωf) as the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δp∗ = ΔEFP in Ωf ,

p∗ = 0 on Γ 1f ∪ Γ 2f ,

∂p∗

∂nf
= −∂EFP

∂nf
on Γ 3f ,

∂p∗

∂nf
= −∂EFP

∂nf
on Γ.

(9.31)

Using equations (9.29) and (9.31), the solution to (9.20) is given by

P = p∗ +EFP − ρfR
∂2η

∂t2
. (9.32)

Then, defining
Pext = p∗|Γ + EFP |Γ , (9.33)

and using (9.30), we have

PΓ = Pext − ρfMA
∂2η

∂t2
. (9.34)

Let I denote the identity operator. Inserting (9.34) into (9.28), we see that
(9.25) can be written in the following form:
Find η such that

(ρshsId+ ρfMA)
∂2η

∂t2
+ Lη = Pext, (9.35)

the pressure in the fluid being given by (9.32).
Equation (9.35) is very close to the structure equation (9.28) except for

the extra operator ρfMA in front of the second-order time derivative. This
operator encompasses the effect that the fluid has on the structure and acts as
an extra mass, whence the name of “added-mass” operator (see e.g., [271,341]).
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In view of carrying out the stability analysis of the numerical schemes, it is
convenient to consider the maximum eigenvalue ofMA denoted by μmax. Note
that the inverse of μmax is the smallest eigenvalue of the standard Steklov-
Poincaré operator [408]. Note also that μmax is a purely geometric quantity.
When dealing with an arbitrary geometry, a closed expression for μmax cannot
be found. In the case of the simple geometry of Fig. 9.1, μmax can be computed
analytically (see [70]):

μmax =
L

π tanh

(
πR

L

) . (9.36)

This expression will be useful in the sequel to understand qualitatively the
behaviour of coupling schemes, in particular to comment on observations (R2)
and (R4) above.

9.2.4 Weak coupling for the simplified model

In this section, we present the stability analysis, proposed in [70], for an
explicit coupling scheme for the temporal discretisation of the FSI problem
presented above. For the sake of simplicity we assume that the coefficient b in
(9.17) is equal to zero. The differential structural operator defined in (9.26)
therefore reduces to Lη = aη. The results obtained in the following sections
can be generalised to the case b = 0 and to other time discretisation schemes
(see [164]).
By explicit coupling schemes we mean time discretisation algorithms of

the coupled FSI problem (9.17), (9.18), (9.19), (9.21) that allow the fluid and
the structure equations to be solved only once (or just a few times) within
each time step, without enforcing exactly the coupling conditions.
Our goal is to show that such kinds of algorithms can be uncondition-

ally unstable in certain cases, depending on the relative mass density of the
structure and the fluid and on some geometric properties of the domain.
As a prototype of an explicit algorithm, we consider the one obtained by

employing a Leap-Frog scheme for the structure and an Implicit Euler scheme
for the fluid. Denoting by δt the time step, at every time-level we obtain the
following systems:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρf
unf − uf n−1

δt
+∇P n = 0 in Ωf ,

divunf = 0 in Ωf ,

P n = P (tn) on Γ 1f ∪ Γ 2f ,

unf ·nf = 0 on Γ 3f ,

(9.37)
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and

unf · nf =
ηn − ηn−1

δt
on Γ, (9.38)

ρshs
ηn+1 − 2ηn + ηn−1

δt2
+ aηn = P n in Ωs. (9.39)

Observe that, given the wall displacement ηn at time tn, the fluid equation
(9.37) with boundary condition (9.38) allows the fluid velocity unf and the
pressure P n to be computed. With the latter, we can now solve the structure
equation (9.39) and get the new wall displacement ηn+1 at time tn+1. Hence,
this coupling algorithm is explicit.
We now analyse its stability. We proceed as in Section 9.2.3 and we reduce

the coupled problem to a single structure equation with an added-mass term.
We have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔP n = 0 in Ω

∂P n

∂nf
= −ρf

(unf − uf n−1) · nf
δt

= −ρf
ηn − 2ηn−1 + ηn−2

δt2
on Γ

∂P n

∂nf
= 0 on Γ 3f

P n = P (tn) on Γf .

Hence, with the notation introduced in (9.33), we have

P n
∣∣
Γ
= P next − ρfMA

ηn − 2ηn−1 + ηn−2

δt2
,

and

ρshs
ηn+1 − 2ηn + ηn−1

δt2
+ ρfMA

ηn − 2ηn−1 + ηn−2

δt2
+ aηn = P next, (9.40)

on Ωs. The following result holds (see [70]).

Proposition 9.2. Let μmax be the largest eigenvalue of the operator MA.
Then, the scheme (9.40), and hence the explicit coupling scheme (9.37)–

(9.39), is unconditionally unstable if
ρshs

ρfμmax
< 1.

Observe that the “instability condition” in Proposition 9.2 confirms empir-
ical observations (R1) and (R2) of Section 9.2.1. Indeed, this condition is more
and more restrictive as ρs/ρf decreases and as μmax increases, the connection
of the latter with the geometry being shown in (9.36). More precisely, the
more Ωf becomes a slender geometry (that is, when, for a fixed radius R, L
increases or when, for a fixed length L, R decreases), the larger μmax becomes.
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9.2.5 Strong coupling for the simplified model

Proposition 9.2 suggests that explicit coupling schemes might not work for
fluid-structure interaction problems in certain conditions. An obvious remedy
consists in switching to implicit couplings. As a prototype of implicit coupling
algorithms we choose here the one obtained by combining the Implicit Euler
scheme for the fluid with the first-order backward difference scheme for the
structure. The time-discrete problem reads:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρf
un+1f − ufn

δt
+∇P n+1 = 0 in Ωf ,

divun+1f = 0 in Ωf ,

P n+1 = P (tn+1) on Γ 1f ∪ Γ 2f ,

un+1f · nf = 0 on Γ 3f ,

(9.41)

and

un+1f · nf =
ηn+1 − ηn

δt
on Γ, (9.42)

ρshs
ηn+1 − 2ηn + ηn−1

δt2
+ aηn+1 = P n+1 on Ωs. (9.43)

This problem corresponds to the following discrete added-mass problem for
the structure

(ρshsI + ρfMA)
ηn+1 − 2ηn + ηn−1

δt2
+ aηn+1 = P n+1ext in Ωs. (9.44)

It is straightforward to show that problem (9.44), and hence the coupled
problem (9.41)–(9.43), is stable for any choice of the time step δt.
In this simple example, at each time step, the coupled problem (9.41)–

(9.43) turns into a linear system in the unknowns (un+1f , P n+1, ηn+1) (after
spatial discretisation) and can be assembled and solved quite easily. Yet, since
we are interested in partitioned schemes, we propose to solve the simplified
problem (9.41)–(9.43) in the following way:
Given an initial guess ηn+10 , solve for each k = 1, 2, . . .

1. Fluid step: find (ufk, pk) s.t.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
uf k − uf n

δt
+∇Pk = 0 in Ωf ,

divufk = 0 in Ωf ,

Pk = P (tn+1) on Γ 1f ∪ Γ 2f ,

ufk · nf = 0 on Γ 3f ,

ufk · nf =
ηk−1 − ηn

δt
on Γ.
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2. Structure step: find η̃k s.t.

ρshs
η̃k − 2ηn + ηn−1

δt2
+ aη̃k = Pk in Ωs.

3. Relaxation step:

ηk = ωη̃k + (1− ω)ηk−1.

4. Convergence test:
• if ||ηk−ηk−1|| < tol then set ηn+1 = ηk, u

n+1
f = ufk and P n+1 = Pk;

• else set k = k + 1 and go to step 1.

We can eliminate the unknowns ufk and Pk, using the same technique as
was employed before. We obtain in this case:

PΓ,k = −ρfMA
(
ηk−1− 2ηn + ηn−1

δt2

)
+ P n+1ext .

Keeping in mind that η̃k =
ηk
ω
− 1− ω

ω
ηk−1, the previous algorithm corre-

sponds to the following iterative method to solve the added-mass problem
(9.44):

ρshs

δt2

(ηk
ω
− 2ηn + ηn−1

)
+ a

ηk

ω
=
1− ω

ω

(
ρshs

δt2
+ a

)
ηk−1

− ρfMA
(
ηk−1 − 2ηn + ηn−1

δt2

)
+ P n+1ext , k = 1, 2, . . .

or, equivalently, the fixed-point iteration

1

ω

(
ρshs

δt2
+ a

)
ηk =

[
1− ω

ω

(
ρshs

δt2
+ a

)
− ρfMA

δt2

]
ηk−1+g(ηn , ηn+1, P n+1ext ).

(9.45)
Concerning the convergence of the fixed point iteration (9.45), the fol-

lowing result can be proved (see [70]). Notice that it confirms the empirical
observations (R3) and (R4) of Section 9.2.1.

Proposition 9.3. The implicit partitioned method converges to the solution
to (9.41)–(9.43) if and only if

0 < ω <
2(ρshs + aδt2)

ρshs + ρfμmax + aδt2
. (9.46)

Remark 9.2.1 It is possible to investigate a possible alternative to the stan-
dard Dirichlet-to-Neumann iterations on the above toy model: if, in contrast
to what has been done above, a load is applied to the fluid and a displacement
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to the structure, it can be shown that the relaxation parameter ω tends to zero
with the space discretisation parameter. Therefore, such an algorithm seems
not to be of practical use. We refer to [70] for the details.

9.2.6 Conclusions

The above considerations show that it is difficult to achieve stability with
weakly (or explicit) coupled schemes, at least in some physical situations
(Proposition 9.2). In the context of blood flows, this fact has been confirmed by
several numerical experiments using realistic models and various time schemes.
Moreover, the computational cost of naive strongly coupled schemes – typi-
cally fixed point methods – can be prohibitive (Proposition 9.3). The following
section presents various attempts to efficiently and implicitly couple the fluid
and the structure.
Nevertheless, we must keep in mind that these conclusions have been

obtained on a simplified problem. The results only show that a strong coupling
is necessary, in some situations, as far as the added-mass part is concerned.
A further analysis, considering different time discretisation schemes, has been
reported in [164]. In particular, it is advocated that no sequentially staggered
scheme can be constructed that is unconditionally stable irrespective of the
fluid-solid density ratio.
Finally, let us stress that a more complex fluid model involves many other

features, like viscosity and nonlinear advection, that could be coupled explic-
itly with the structure without significantly compromising stability. This will
be investigated in Section 9.4.

9.3 Implicit coupling

In the previous section, it has been shown that explicit coupling schemes may
lead to numerical instabilities. We now focus on an implicit coupling scheme
for the general coupled problem (9.15)–(9.16). As we shall see, this scheme
can be proved to be unconditionally stable (under mild conditions). We also
address the numerical solution of the resulting nonlinear system using different
iterative procedures.

9.3.1 An implicit coupling scheme

Let δt > 0 be a given time step. We aim at approximating the solution(
ûf , P̂ , η̃f , η̂s

)
of (9.16) at time tn = nδt, for n ∈ N. In what follows, the

quadruplet
(
û
n
f , P̂

n, η̃
n
f , η̂

n
s

)
will stand for an approximation of the solution

of (9.16) at time tn.
We use an implicit Euler scheme for the ALE Navier-Stokes equations and

a mid-point rule for the structural equation. Thus, the semi-discretised cou-

pled problem writes: given
(
ûnf , P̂

n, η̃nf , η̂
n
s

)
, find

(
ûn+1f , P̂ n+1, η̃n+1f , η̂n+1s

)
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such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
η̃n+1f = Ext(η̂n+1

s|̂Γ ), ŵ(η̃n+1f ) =
1

δt

(
η̃n+1f − η̃nf

)
, in Ω̂f ,

un+1f = w(η̃n+1f ), on Γ (η̃n+1f ),

η̂n+1s = 0, on Γs,D,

(9.47)

and

af

(
η̃n+1f ; (un+1f , P n+1), (vf , q)

)
+ as

(
η̂n+1s , v̂s

)
= 〈Ff , (vf , q)〉

+〈Fs, v̂s〉,
(9.48)

for all (v̂f , q̂, v̂s) ∈ [H1(Ω̂f)]3 × L2(Ω̂f )× [H1Γs,D(Ω̂s)]3 such that v̂f = v̂s on
Γ̂ , where the fluid terms are defined by

af

(
η̃
n+1
f ; (un+1f , P n+1), (vf , q)

)
=
1

δt

∫
Ωf(η̃

n+1
f )

ρfu
n+1
f · vf dx

+

∫
Ωf(η̃

n+1
f )

ρf

(
un+1f −w(η̃n+1f )

)
·∇un+1f · vf dx

−
∫
Ωf(η̃

n+1
f )

ρf

(
divw(η̃n+1f )

)
un+1f · vf dx

+

∫
Ωf(η̃

n+1
f )

σf (u
n+1
f , P n+1) :∇vf dx+

∫
Ωf (η̃

n+1
f )

q divun+1f dx,

(9.49)

and

〈Ff , (vf , q)〉 =
∫
Ωf(η̃

n
f )

ρfu
n
f · vf dx+

∫
Γf,N

gf,N (tn+1) · vf dγ,

and the structure terms are defined by

as(η̂
n+1
s , v̂s) =

2

δt2

∫
̂Ωs

ρ̂s,0η̂
n+1
s · v̂s dx̂

+
1

2

∫
̂Ωs

F̂ s(η̂
n+1
s )Σ̂(η̂n+1s ) :∇x̂v̂s dx̂,

(9.50)

and

〈Fs, v̂s〉 =
2

δt2

∫
̂Ωs

ρ̂s,0 (η̂
n
s + δtûns ) · v̂s dx̂

+
1

2

∫
̂Ωs

F̂ s(η̂
n
s )Σ̂(η̂

n
s ) : ∇x̂v̂s dx̂.

(9.51)

The structure velocity is defined by:

1

2

(
ûn+1s + ûns

)
=
1

δt

(
η̂
n+1
s − η̂ns

)
.
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This implicit coupling scheme leads to a highly nonlinear system. As a mat-
ter of fact, in addition to the common nonlinearities of the fluid and solid
equations, implicit coupling induces geometrical nonlinearities within the
fluid equations, due to the dependence of Ωf(η̃

n+1
f ) on η̃

n+1
f . The numerical

approximation of problem (9.47)–(9.48) using iterative methods is addressed
in §9.3.3.
The rest of this paragraph is devoted to the stability analysis of the implicit

coupling scheme (9.47)–(9.48). The next result (see [272,344]) states its uncon-
ditional stability.

Proposition 9.4. Let us assume that

1. The coupled fluid-structure system is isolated, i.e.,
• un+1f = 0 on ∂Ωf (η̃

n+1
f )\Γ (η̃n+1f );

• F̂ s(η̂
n+1
s )Σ̂(η̂n+1s )n̂s = 0 on ∂Ω̂s\Γ̂ .

2. The structure is hyperelastic with a quadratic energy density W̃ (F̂ s):

F̂ sΣ̂ =
∂W̃ (F̂ s)

∂F̂
. (9.52)

3. Given a smooth function v̂ : Ω̂f −→ R, we have

1

δt

[∫
Ωf(η̃

n+1
f )

v dx−
∫
Ωf (η̃

n
f )

v dx

]
=

∫
Ωf (η̃

n+1
f )

v divw(η̃n+1f ) dx,

(9.53)

with v(·, tn) = v̂ ◦ Ã−1n for all n ≥ 0.
Then, the following energy inequality holds

1

δt

[∫
Ωf(η̃

n+1
f )

ρf
2
|un+1f |2 dx−

∫
Ωf (η̃

n
f )

ρf
2
|unf |2 dx

]

+
1

δt

[∫
̂Ωs

ρ̂s,0

2
|ûn+1s |2 dx̂−

∫
̂Ωs

ρ̂s,0

2
|ûns |2 dx̂

]

+
1

δt

[∫
̂Ωs

W̃ (F̂
n+1

s ) dx̂−
∫
̂Ωs

W̃ (F̂
n

s ) dx̂

]

+

∫
Ωf(η̃

n+1
f )

2μ|D(un+1f )|2 ≤ 0.

(9.54)

Therefore, the implicit coupling scheme is unconditionally stable in the energy
norm.
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Before giving the proof of this result, some remarks are in order:

1. The energy balance (9.54) constitutes the discrete counterpart of (9.6).
2. The relation (9.53) is known in the literature as the Geometric Conserva-
tion Law (GCL), see [209, 351]. This constraint on the fluid domain dis-
placement η̃f ensures that the continuous ALE transport formula (3.28)
holds at the discrete level at each time interval. A deep discussion on
(9.53) and its numerical relevance is beyond the scope of this chapter; we
refer the interested reader to [209,351] and the references therein.

Proof. We set

v̂f = û
n+1
f , v̂s =

1

2

(
ûn+1s + ûns

)
=
1

δt

(
η̂
n+1
s − η̂ns

)
, q̂ = P̂ n+1. (9.55)

Thanks to the coupling conditions (9.47)1,2, v̂f and v̂s are admissible test
functions for (9.48), i.e.,

v̂f = v̂s, on Γ̂ .

It is worth noticing that this choice is licit only because the fluid and the
structure problems are implicitly coupled (see Remark 9.3.1). This allows us
to insert the expressions of (9.55) in (9.48) and proceed term by term.
For the mass term in the fluid we have

1

δt

[∫
Ωf(η̃

n+1
f )

ρf

∣∣∣un+1f

∣∣∣2 dx− ∫
Ωf(η̃

n
f )

ρfu
n
f · un+1f dx

]

≥ 1
δt

[∫
Ωf(η̃

n+1
f )

ρf
2

∣∣∣un+1f

∣∣∣2 dx− ∫
Ωf(η̃

n
f )

ρf
2

∣∣unf ∣∣2 dx
]

+
1

δt

[∫
Ωf(η̃

n+1
f )

ρf
2

∣∣∣un+1f

∣∣∣2 − ∫
Ωf(η̃

n
f )

ρf
2

∣∣∣un+1f

∣∣∣2 dx] .
By applying (9.53) with v̂ = ûn+1f to the last term, we finally get

1

δt

[∫
Ωf(η̃

n+1
f )

ρf

∣∣∣un+1f

∣∣∣2 dx− ∫
Ωf(η̃

n
f )

ρfu
n
f ·un+1f dx

]

≥ 1
δt

[∫
Ωf(η̃

n+1
f )

ρf

2

∣∣∣un+1f

∣∣∣2 dx− ∫
Ωf(η̃

n
f )

ρf

2

∣∣unf ∣∣2 dx
]

+

∫
Ωf(η̃

n
f )

ρf

2
divw(η̃n+1f )

∣∣∣un+1f

∣∣∣2 dx.
(9.56)
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For the convective term, integrating by parts and using the coupling condition
(9.47)2, we have

∫
Ωf(η̃

n+1
f )

ρf
2

(
un+1f −w(η̃n+1f )

)
·∇|un+1f |2 dx

−
∫
Ωf(η̃

n+1
f )

ρf

(
divw(η̃n+1f )

)
|un+1f |2 dx

=

∫
∂Ωf(η̃

n+1
f )

ρf
2

(
un+1f −w(η̃n+1f )

)
· nf |un+1f |2 dγ

−
∫
Ωf(η̃

n+1
f )

ρf
2

(
divw(η̃

n+1
f )

)
|un+1f |2 dx

= −
∫
Ωf(η̃

n+1
f
)

ρf
2

(
divw(η̃

n+1
f )

)
|un+1f |2 dx.

(9.57)

On the other hand, using the expression of the fluid Cauchy stress tensor
(3.38) and the symmetry of D(un+1f ), we have

∫
Ωf(η̃

n+1
f )

σf(u
n+1
f , P n+1) :∇un+1f dx+

∫
Ωf(η̃

n+1
f )

P n+1 divun+1f dx

=

∫
Ωf(η̃

n+1
f )

2ν
∣∣∣D(un+1f )

∣∣∣2 dx.
(9.58)

The mass term of the structure gives directly

1

δt

∫
̂Ωs

ρ̂s,0

2

(
ûn+1s − ûns

)
·
(
ûn+1s + ûns

)
dx̂ =

1

δt

∫
̂Ωs

ρ̂s,0

2

(
|ûn+1s |2 − |ûns |2

)
dx̂.

(9.59)
On the other hand, we have

1

δt

∫
̂Ωs

F̂ s(η̂
n
s )Σ̂(η̂

n
s ) :∇x̂

(
η̂n+1s − η̂ns

)
dx̂

=
1

δt

∫
̂Ωs

F̂ s(η̂
n
s )Σ̂(η̂

n
s ) :

(
F̂ s(η̂

n+1
s )− F̂ s(η̂ns )

)
dx̂

=
1

δt

∫
̂Ωs

∂W̃ (F̂ s(η̂
n
s ))

∂F̂
:
(
F̂ s(η̂

n+1
s ) − F̂ s(η̂ns )

)
dx̂.
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Therefore, since the density W̃ is assumed to be quadratic, we finally obtain

1

2

∫
̂Ωs

F̂ s(η̂
n
s )Σ̂(η̂

n
s ) :∇x̂v̂s dx̂+

1

2

∫
̂Ωs

F̂ s(η̂
n+1
s )Σ̂(η̂n+1s ) :∇x̂v̂s dx̂

=
1

δt

∫
̂Ωs

1

2

(
∂W̃ (F̂ s(η̂

n+1
s ))

∂F̂
+

∂W̃ (F̂ s(η̂
n
s ))

∂F̂

)
:
(
F̂ s(η̂

n+1
s )− F̂ s(η̂ns )

)
dx̂

=
1

δt

∫
̂Ωs

(
W̃ (F̂ s(η̂

n+1
s )) − W̃ (F̂ s(η̂

n
s ))
)
dx̂.

(9.60)
Finally, the energy balance (9.54) is obtained after summation of (9.56)–

(9.60), which completes the proof.

Remark 9.3.1 The key ingredient in the above proof lies in the admissibility
of the test functions (9.55). For an explicit coupling scheme, a correction
term needs to be introduced to cope with the fact that the fluid and structure
velocities do not match:

v̂f = û
n+1
f −Lf

(
û
n+1
f − 1

δt

(
η̂
n+1
s − η̂ns

))
,

where Lf denotes a fluid lifting operator. This term leads to an artificial power
at the interface (see [146]).

9.3.2 Abstract formulations

Problem (9.48) can be rewritten in a more compact form in terms of the fluid,
solid and interface state operators. With this aim, we first reformulate the
coupling conditions (9.47)1,2 in weak form. The geometry coupling condition

(9.47)1 is rewritten in terms of the interface displacement γ
n+1 ∈ [H 1

2 (Γ̂ )]3

as ∫
̂Ωf

(
η̃n+1f − Ext(γn+1)

)
· τ̂ dx̂+

∫
̂Γ

(η̂n+1s − γn+1) · ζ̂ dγ̂ = 0, (9.61)

for all τ̂ ∈ [L2(Ω̂f )]3 and ζ̂ ∈ [L2(Γ̂ )]3. Finally, the continuity of the velocities
at the interface (9.47)2 is reformulated on the reference configuration as∫

̂Γ

(
ûn+1f − ŵ(η̃n+1f )

)
· ξ̂ dγ̂ = 0, (9.62)

for all ξ̂ ∈ [L2(Γ̂ )]3.
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Thus, the semi-discretised coupled problem (9.47)–(9.48) writes:

given (ûnf , P̂
n, η̃nf , η̂

n
s , γ

n), find (ûn+1f , P̂ n+1,ηn+1f , η̂n+1s , γn+1) such that

af

(
η̃n+1f ; (un+1f , P n+1), (vf , q)

)
+ as

(
η̂n+1s , v̂s

)
+

∫
̂Ωf

(
η̃n+1f − Ext

(
γn+1

))
· τ̂ dx̂+

∫
̂Γ

(η̂n+1s − γn+1) · ζ̂ dγ̂

+

∫
̂Γ

(
ûn+1f − ŵ

(
η̃n+1f

))
· ξ̂ dγ̂ = 〈Ff , (vf , q)〉+ 〈Fs, v̂s〉,

(9.63)

for all (v̂f , q̂, ξ̂, τ̂ , ζ̂, v̂s) ∈ [H1(Ω̂f)]3 × L2(Ω̂f) × [L2(Γ̂ )]3 × [L2(Ω̂f)]3 ×
[L2(Γ̂ )]3 × [H1Γs,D(Ω̂s)]3 such that v̂f = v̂s on Γ̂ .

Based on the discrete weak formulation (9.63) we introduce the fluid oper-
ator

F : [H1(Ω̂f)]3 × L2(Ω̂f )× [H1(Ω̂f )]3 × [H
1
2 (Γ̂ )]3

−→
(
[H1
̂Γ
(Ω̂f )]

3 × L2(Ω̂f )× [L2(Γ̂ )]3 × [L2(Ω̂f )]3
)′

,

defined by 〈
F
(
ûf , p̂, η̃f , γ

)
, (v̂f , q̂, ξ̂, τ̂)

〉
= af

(
η̃f ; (uf , P ), (vf , q)

)
+

∫
̂Γ

(
ûf − ŵ

(
η̃f
))
· ξ̂ dγ̂ +

∫
̂Ωf

(
η̃f − Ext(γ)

)
· τ̂ dx̂− 〈Ff , (vf , q)〉

(9.64)

for all (v̂f , q̂, ξ̂, τ̂ ) ∈ [H1(Ω̂f )]3 × L2(Ω̂f ) × [L2(Γ̂ )]3 × [L2(Ω̂f )]3. By taking
(v̂s, ζ̂) = 0 in (9.63), and using the definition (9.64), it follows that the fluid

state
(
un+1f,h , p̂n+1, η̃

n+1
f

)
satisfies the following Dirichlet (fluid) sub-problem:

F
(
ûn+1f , p̂n+1, η̃n+1f , γn+1

)
= 0. (9.65)

Similarly, from (9.63), we define the solid operator

S : [H1(Ω̂s)]3 × [H
1
2 (Γ̂ )]3 −→

(
[H1
ΓD∪̂Γ (Ω̂s)]

3 × [L2(Γ̂ )]3
)′

,

through〈
S(η̂s, γ), (v̂s, ζ̂)

〉
= as

(
η̂
n+1
s , v̂s

)
− 〈Fs, v̂s〉 +

∫
̂Γ

(η̂s − γ) · ζ̂ dγ̂, (9.66)

for all (v̂s, ζ̂) ∈ [H1ΓD(Ω̂s)]3 × [L2(Γ̂ )]3. Now, by taking (v̂f , q̂, ξ̂, τ̂ ) = 0 in
(9.63), and using the definition (9.66), it follows that the solid displacement
η̂n+1s satisfies the following Dirichlet (solid) sub-problem:

S
(
η̂n+1s , γn+1

)
= 0. (9.67)
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Finally, let Lf : [H
1
2 (Γ̂ )]3 → [H1Γin−out(Ω̂f )]

3 and Ls : [H
1
2 (Γ̂ )]3 →

[H1
∂̂Ωs\̂Γ (Ω̂s)]

3 be two given continuous linear lift operators. The interface

operator

I : [H1(Ω̂f )]3 × L2(Ω̂f) × [H1(Ω̂f )]3 × [H1(Ω̂s)]3 −→ [H−
1
2 (Γ̂ )]3,

is then defined by〈
I
(
ûf , p̂, η̃f , η̂s

)
,μ
〉
=
〈
F
(
ûf , p̂, η̃f , γ

)
, (Lfμ, 0, 0, 0)

〉
+
〈
S
(
η̂s, γ

)
, (Lsμ, 0)

〉
,

(9.68)

for all μ ∈ [H 1
2 (Γ̂ )]3.

Remark 9.3.2 The interface operator (9.68) does not depend on γ since,
due to the choice of the test functions, the terms involving γ vanish in the
right-hand side of (9.68).

For each μ ∈ [H 1
2 (Γ̂ )]3, taking v̂f = Lfμ, v̂s = Lsμ and (q̂, ξ̂, τ̂ , ζ̂) = 0

in (9.63), it can be seen that the fluid structure state (û
n+1
f , P̂ n+1,ηn+1f , η̂

n+1
s )

satisfies

I
(
ûn+1f , p̂n+1, η̃n+1f , η̂n+1s

)
= 0, (9.69)

which is a variational form of (9.2).
According to (9.65)–(9.69), and by noticing that the test-functions space:{

(v̂f , v̂s) ∈ [H1(Ω̂f )]3 × [H1ΓD(Ω̂s)]
3, v̂f = v̂s on Γ̂

}
,

can be decomposed as the direct sum(
[H1
̂Γ
(Ω̂f)]

3 × [H1
ΓD∪̂Γ (Ω̂s)]

3
)
⊕
{
(Lfμ,Lsμ), μ ∈ [H

1
2 (Γ̂ )]3

}
,

it follows that problem (9.48) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F
(
ûn+1f , p̂n+1, η̃n+1f , γn+1

)
= 0,

S
(
η̂n+1s , γn+1

)
= 0,

I
(
ûn+1f , p̂n+1, η̃n+1f , η̂n+1s

)
= 0.

(9.70)

Steklov-Poincaré operators

In order to describe partitioned methods for the numerical solution of (9.70),
we now introduce the nonlinear fluid and solid Steklov-Poincaré operators,
also called Dirichlet-to-Neumann maps.
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The nonlinear fluid Steklov-Poincaré operator

Sf : [H
1
2 (Γ̂ )]3 −→ [H−12 (Γ̂ )]3,

is defined by

〈Sf (γ),μ〉 =
〈
I
(
ûf(γ), P̂ (γ), η̃f (γ), 0

)
,μ
〉
,

for all γ ,μ ∈ [H 1
2 (Σ̂)]3, where (ûf(γ), P̂ (γ), η̃f(γ)

)
is the solution of the

Dirichlet fluid problem:

F
(
ûf (γ), P̂ (γ), η̃f (γ), γ

)
= 0. (9.71)

In an analogous way, we introduce the nonlinear solid Steklov-Poincaré oper-
ator

Ss : [H
1
2 (Σ̂)]3 −→ [H−12 (Σ̂)]3,

given by 〈
Ss(γ),μ

〉
=
〈
I
(
0, 0, 0, η̂s(γ)

)
,μ
〉
,

for all γ,μ ∈ [H 1
2 (Σ̂)]3 and where η̂s(γ) is the solution of the Dirichlet solid

problem:
S (η̂s(γ), γ) = 0. (9.72)

From the above definitions, it follows that problem (9.48) (or (9.70)) is
equivalent to

Sf (γ
n+1) + Ss(γ

n+1) = 0. (9.73)

The composition of (9.73) with the inverse operators S−1s gives rise to the
Dirichlet-to-Neumann formulation, namely

S−1s
(
− Sf (γ

n+1)
)
− γn+1 = 0. (9.74)

We could also consider the Neumann-to-Dirichlet formulation

S−1f
(
− Ss(γ

n+1)
)
− γn+1 = 0,

by composing (9.73) with S−1f . Nevertheless it is rarely used in practice and
it is known to lead to poor algorithms in some cases, as pointed out in
Remark 9.2.1.

9.3.3 Solution methods

In this section, we review some existing algorithms for the numerical solution
of the nonlinear system arising in the time discretisation of the fluid-structure
problem with an implicit coupling scheme. These methods are typically based
on the application of a particular nonlinear iterative method to the formula-
tions (9.70), (9.73) or (9.74).
In what follows, we only consider one time step of (9.63) so we omit the

upper index n + 1 in the unknowns. Moreover, we introduce the following
compact notations for the fluid and solid state variables:

x = (ûf , P̂ , η̃f), y = η̂s.
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Monolithic formulation

A common approach in the numerical solution of nonlinear systems arising in
implicit coupling consists of applying a Newton-based algorithm to the global
formulation (9.70). This yields the following procedure:

1. Initialise: x0, y0, γ0.

2. For k ≥ 0 until convergence
a) Evaluate residual:

Rk =

⎡⎢⎣F (xk, γk)S (yk, γk)
I (xk, yk)

⎤⎥⎦ .

b) Solve tangent problem:

J k

⎡⎢⎣δxδy
δγ

⎤⎥⎦ = −Rk. (9.75)

c) Update rule: ⎡⎢⎣xk+1yk+1

γk+1

⎤⎥⎦ =
⎡⎢⎣xkyk
γk

⎤⎥⎦+
⎡⎢⎣δxδy
δγ

⎤⎥⎦ .

Here, J k stands for the Jacobian, or an approximation of the Jacobian, of
the coupled nonlinear operator (F ,S, I).
The exact Newton method involves repeated solutions of problem (9.75)

with an exact Jacobian J k, having the following block structure:

J k =

⎡⎢⎣DxF (xk, γ) 0 Dγ F (xk, γ)
0 Dy S (yk, γ) Dγ S (yk, γ)

Dx I (xk, yk) Dy I (xk, yk) 0

⎤⎥⎦ . (9.76)

The main difficulty in the evaluation of J k is the evaluation of the following
cross-derivative in (9.76):

Dη̃f F(ûf , P̂ , η̃f , γ)δη̃f , (9.77)

which corresponds to the directional derivative of the fluid equations with
respect to fluid-domain perturbations. The evaluation of (9.77) requires shape
derivative calculus within the fluid [148,149,473]. For the sake of completeness,
we give the expression of (9.77) in the next equation and refer to [148–150]
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for the details:〈
Dη̃f F(ûf , P̂ , η̃f , γ)δη̃f ,

(
v̂f , q̂, ξ̂, τ̂

)〉
=
1

δt

∫
Ωf(η̃f )

(div δηf )ρfuf · vf dx

+

∫
Ωf(η̃f )

div
{
ρfuf ⊗

(
uf −w(η̃f )

) [
I div δηf − (∇δηf)t

]}
·vf dx

+

∫
Ωf(η̃f )

σf(uf , P )
[
I div δηf − (∇δηf)t

]
:∇vf dx

−
∫
Ωf(η̃f )

μ
[∇uf∇δηf + (∇δηf)t(∇uf )t] :∇vf dx

−
∫
Ωf(η̃f )

q div
{
uf
[
I div δηf − (∇δηf )t

]}
dx− 1

δt

∫
̂Γ

δη̃f · ξ̂ dγ̂

+

∫
̂Ωf

δη̃f · τ̂ dx̂,

(9.78)

for all (v̂f , q̂, ξ̂, τ̂) ∈ [H1(Ω̂f )]3 × L2(Ω̂f )× [L2(Γ̂ )]3 × [L2(Ω̂f )]3.
In contrast, inexact Newton methods deal with approximations of (9.76),

for instance, using finite difference approximations of (9.77) (see [217, 496]),
by neglecting the corresponding sub-block in (9.76) (see [30, 217,496,557]).
Newton algorithms based on the numerical solution of (9.75) in a mono-

lithic fashion, i.e., using global direct or iterative methods, have been reported
in [30, 122,217,496,557]. It is worth noticing that such a monolithic approach
makes the use of separate solvers for the fluid and structure sub-problems
difficult. Alternatively, system (9.75) can be solved in a partitioned manner
through a block-Gauss elimination of δxf , which leads to the so-called block-
Newton methods [148, 149], or, more generally, using domain decomposition
methods [145].

Dirichlet-to-Neumann formulation

Formulation (9.74) reduces problem (9.70) to the determination of a fixed
point of the Dirichlet-to-Neumann operator γ �→ S−1s

(
− Sf (γ)

)
. This moti-

vates the use of fixed-point based iterations [272,336,337,351]:

1. initialise γ0;
2. for k ≥ 0 until convergence

γk+1 = ωkS
−1
s

(
− Sf (γk)

)
+ (1− ωk)γk. (9.79)

Here, ωk stands for a given relaxation parameter which is chosen in order to
enhance convergence of the method [117,272,336,337].
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Remark 9.3.3 After space discretisation of problem (9.47)–(9.48), a com-
mon expression for the relaxation parameter ωk is the one given by a multi-
dimensional Aitken’s formula [117, 337]:

ωk =

(
γk − γk−1

)
·
(
S−1s

(
− Sf (γk)

)
− γk − S−1s

(
− Sf (γk−1)

)
− γk−1

)
‖S−1s

(
− Sf (γk)

)
− γk − S−1s

(
− Sf (γk−1)

)
− γk−1‖

,

with · and ‖ · ‖ standing for the Euclidean scalar product and norm.
Even though relaxation techniques may improve their efficiency, fixed-

point based iterations are very expensive and might fail to converge in real
applications. Alternatively, one can use Newton-based methods [150, 188] for
a fast convergence towards the solution of (9.74). This gives the algorithm:

1. Initialise γ0;
2. For k ≥ 0 until convergence
a) Evaluate residual:

Rk = S−1s
(
− Sf (γk)

)
− γk.

b) Solve tangent problem:

(J (γk) − I) δγ = −Rk. (9.80)

c) Update rule:
γk+1 = γk + δγ.

where J (γ) stands for the Jacobian, or approximated Jacobian, of the com-
posed operator

γ �→ S−1s
(
− Sf (γ)

)
. (9.81)

In practice, the linear problem (9.80) can be solved using an operator-free
iterative method (e.g., GMRES [439,440]), which only requires repeated eval-
uations of J (γ) against given interface displacements λ. As in the previous
paragraph, exact Jacobian evaluations of (9.81) require shape derivative cal-
culus within the fluid. Indeed, by the chain rule we have

J (γ)λ = −
(
S−1s

)′ (− Sf(γ)
)
S′f (γ)λ,

whose expression can be obtained by implicit derivation of (9.71) and (9.72).
More precisely, the evaluation of S′f (γ)λ makes necessary expression (9.78);
we refer to [150] for the details. One of the simplest ways of approximating
S′f(γ)λ consists in using finite differences, for instance,

S′f(γ)λ ≈
1

ε

(
Sf (γ + ελ)− Sf (γ)

)
,

for a small enough given parameter ε > 0. However, as noticed in [188, Remark
5.1], such a strategy may lead to inefficient inexact Newton iterations. Alterna-
tively, one can derive approximations based on simplified models. For instance,
as reported in [188], we can provide very efficient approximations of S′f (γ)λ
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in terms of the added-mass operator associated to the simplified fluid problem
(9.20)–(9.22), by solving⎧⎪⎪⎪⎨⎪⎪⎪⎩

−ΔδP = 0, in Ωf(η̃f),

P = 0, on Γf,N ,

∂δP

∂nf
= − ρf

δt2
λ · nf , on Γ (η̃f).

(9.82)

Finally, let us stress the fact that all the methods discussed in this para-
graph are naturally partitioned.

Steklov-Poincaré formulation

The Dirichlet-Neumann formulations share a common feature: their imple-
mentation is purely sequential. The Steklov-Poincaré formulation (9.73) may
allow parallel algorithms to be set up to solve the interface equation.
Following the presentation of [118], the nonlinear problem (9.73) can be

solved through nonlinear Richardson iterations:

Pk(γk+1 − γk) = ωk(−Sf (γk)− Ss(γk)), (9.83)

for an appropriate choice of the preconditioner Pk, namely

P−1k = αk
[
S′f (γk)

]−1
+ (1− αk) [S

′
s(γk)]

−1
, (9.84)

where λ �→ S′f (β) · λ is the differential of Sf at β, and
[
S′f (β)

]−1
its inverse.

This choice generalises the standard preconditioners of linear domain decom-
positionmethods (for which S′ = S). If αk is 0, 1 or 0.5 we retrieve respectively
Dirichlet-Neumann, Neumann-Dirichlet or Neumann-Neumann precondition-
ers [408]. On the other hand, since equation (9.73) is nonlinear, one can apply
a Newton method,(

S′f (γk) + S′s(γk)
)
(γk+1 − γk) = −Sf (γk)− Ss(γk), (9.85)

which corresponds to the nonlinear Richardson iteration (9.83) preconditioned
with Pk = S′f (γk)+S

′
s(γk). This linear equation can be solved, for example, by

a GMRES algorithm, with or without preconditioning. For instance, in [118]
the authors propose to use the preconditioners (9.84).
The Newton method applied to the Dirichlet-Neumann formulation is not

equivalent to the Newton method applied to the Steklov formulation, since
the roles played by the fluid and by the structure are not symmetric in the
first approach whereas they are in the second. After linearisation, one cannot
compose (9.80) with Ss to retrieve (9.85). Finally, let us emphasise that (9.83)–
(9.84) is not equivalent to (9.85) since in general (A +B)−1 = A−1 +B−1.
The advantage of (9.73) compared to formulation (9.74) is that the fluid

and the structure sub-problems can be solved simultaneously and indepen-
dently for the residual computation (right-hand sides of (9.83)) and the appli-
cation of the preconditioner (S′f and S′s) as soon as α /∈ {0, 1}.
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9.4 Semi-implicit coupling

The method that we introduce in this paragraph is not strongly coupled, in
the sense that (9.1) and (9.2) are not exactly enforced, but it exhibits very
good stability properties. It basically relies upon two ideas. The first one is
to couple implicitly the pressure stress to ensure stability. This is suggested
in Section 9.2 where it is shown that explicit coupling of the added mass
term yields instabilities. The remaining terms of the fluid equations – dissipa-
tion, convection and geometrical nonlinearities – are explicitly coupled to the
structure (of course, these terms may be implicit within the fluid solver). This
drastically reduces the cost of the coupling without affecting the stability too
much. The second idea relies upon the fact that this kind of implicit-explicit
splitting can be conveniently performed using a Chorin-Temam projection
scheme (see [89, 495] for the original papers and [207] for a review) in the
fluid: at each time step the projection sub-step (carried out in a known fluid
domain) is strongly coupled with the structure, so accounting for the added-
mass effect in an implicit way, while the expensive ALE-advection-viscous
sub-step is explicitly, i.e., weakly, coupled. The main advantages of the result-
ing algorithm are its simplicity of implementation and its efficiency compared
to the methods presented in the previous section. Obviously, the main draw-
backs are: first, it assumes the fluid to be solved with a projection scheme
and, second, the energy is not perfectly balanced, at least from a theoretical
viewpoint. In spite of that, theoretical and numerical evidence shows that, for
a wide range of physical and discrete parameters, the scheme is numerically
stable.
We denote by δt the time step, and for the sake of clarity we present the

time semi-discrete version of the algorithm. Assuming that Ωnf , u
n
f , P

n, η̂ns are

known at time tn, we propose to compute Ωn+1f , un+1f , P n+1, η̂n+1 according
to the following procedure:

• Step 1: Definition of the new domain:

η̃n+1f = Ext(η̂n
s|̂Γ ), ŵ(η̃n+1f ) =

1

δt

(
η̃n+1f − η̃nf

)
. (9.86)

• Step 2: ALE-advection-diffusion step (explicit coupling):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ρf
ũn+1f − ufn

δt

∣∣∣∣∣∣
x̂

+ ρf (ũf
n −wn+1) ·∇ũn+1f

−2μdiv(D(˜un+1f )) = 0, in Ωn+1f ,

ũn+1f = wn+1, on Γ n+1.

(9.87)



9 Algorithms for fluid-structure interaction problems 337

• Step 3: Projection step (implicit coupling):
– Step 3.1:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρf
un+1f − ũn+1f

δt
+∇P n+1 = 0, in Ωn+1f ,

divun+1f = 0, in Ωn+1f ,

un+1f · nf =
η̂
n+1
s − η̂ns

δt
·nf , on Γ n+1.

(9.88)

– Step 3.2:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ̂s,0
ûn+1s − ûns

δt
− divx̂

(
Π̂
n
+ Π̂

n+1

2

)
= 0, in Ω̂s,

η̂n+1s − η̂ns
δt

=
ûn+1s + ûns

2
, in Ω̂s,

Π̂
n+1 · n̂s = Ĵn+1f (σf (ũ

n+1
f , P n+1) ◦ Ãn+1)(F̂ n+1f )−T · n̂s, on Γ̂ .

(9.89)

Note that steps 1 and 2 are performed only once per time step. In a partitioned
procedure, step 3 is solved by sub-iterating between steps 3.1 and 3.2 (using
fixed-point or Newton iterations, for instance) since η̂n+1s is required in 3.1
while P n+1 is required in 3.2. The two sub-problems of steps 3 are therefore
solved several times but in contrast to a fully coupled procedure, the part
of the fluid solved during the inner iterations reduces to a simple Darcy-like
problem. In a standard strongly coupled approach (as shown in Section 9.3)
the domain velocity in step 1 is defined from the (unknown) solution of the
structure problem by

wn+1|Γ̂ =
η̂n+1s − η̂ns

δt
|Γ̂ .

The sub-iterations therefore include step 1 and step 2 which dramatically
increases the overall computational cost. The key point here is to show that
steps 1 and 2 can indeed be treated “outside” the inner loop of sub-iterations,
without compromising the stability too much.

Remark 9.4.1 The idea presented here can be generalised to other fractional
step schemes. See for example [22, 400] for an extension to algebraic factori-
sation methods.

In a simplified case, when the fluid and the structure are linear, and with
a Leap-Frog scheme for the structure, the following stability result can be
proved [146].

Proposition 9.5. Let h and H be the space discretisation steps in the fluid
and the solid respectively. Assume that the solid-to-fluid interface matching
operator πh : V

s
H(Γ ) −→ V fh (Γ ) is L2-stable. Then, there exists a constant
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C > 0, independent of the physical and discretisation parameters, such that
under the condition

ρs ≥ C

(
ρf

h

Hα
+ 2

μδt

hHα

)
, with α =

{
0, if Ωs = Γ,

1, if Ωs = Γ,
(9.90)

the following discrete energy estimate holds:

1

δt

[ρf
2
‖un+1f,h ‖20,Ωf −

ρf
2
‖unf,h‖20,Ωf

]
+
1

δt

⎡⎢⎣ρs

2

∥∥∥∥∥∥ η̂
n+1
s,H − η̂ns,H

δt

∥∥∥∥∥∥
2

0,Ωs

− ρs

2

∥∥∥∥∥∥ η̂
n
s,H − η̂n−1s,H

δt

∥∥∥∥∥∥
2

0,Ωf

⎤⎥⎦
+
1

2δt

[
as(
̂ηn+1s,H , ̂ηn+1s,H )− as(η̂

n
s,H , η̂

n
s,H)

]
+ μ‖D(un+1f,h )‖20,Ωf ≤ 0.

(9.91)

Therefore, the semi-implicit coupling scheme is stable, in the energy-norm,
under condition (9.90).

We end this section with a few remarks:

• It is worth noticing that, with this scheme, decreasing δt enhances sta-
bility. This property is the main advantage of the semi-implicit algorithm
compared to the explicit scheme studied in Section 9.2.4. Indeed, in that
case, we have shown in Proposition 9.2 that the coupling may be unstable
irrespective of δt.

• The assumption on the L2-stability of the interface matching operator is
satisfied by the standard finite element interpolation operator, for example,
whenever the fluid interface triangulation is a sub-triangulation of the solid
interface triangulation (see [146]). This includes, in particular, the case
of interface matching meshes. By construction, a mortar-based matching
operator also fulfils that assumption (see [37]).

• The sufficient condition (9.90) can be satisfied by reducing the ratios h
Hα

and δt
hHα . The latter might be thought of as a CFL-like condition.

• In the case Ωs = Γ , i.e., α = 0, condition (9.90) becomes independent of
the solid mesh size H . In particular, we can set H = h, and stabilise the
scheme by simply reducing h (and δt).

• In the case Ωs = Γ , i.e., α = 1, the stability of the scheme can be ensured
provided that the fluid mesh size h is small enough compared to the struc-
ture mesh size H . Numerical simulations performed in 2D and 3D, with
h = H , showed however that this condition seems to be unnecessary when
dealing with a reasonable range of physical parameters.

9.5 Space discretisation of the coupling conditions

A thorough analysis of the space discretisation of the fluid and structure
equations is beyond the scope of this chapter. Nevertheless, we wish to briefly
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Fig. 9.2. A simple case of nonconformity: tetrahedra for the fluid (left) and quadri-
laterals for the structure, but matching nodes (from [189])

address the space discretisation of the transmission conditions (9.1) and (9.2).
We assume that the fluid and the structure problems are in a variational form
and are discretised by the finite element method.
The simplest situation occurs when the nodes of the fluid and structure

meshes match at the interface. The kinematic condition (9.1) can then be
imposed straightforwardly, pointwise. Nevertheless, even in this simple case,
it may not be obvious to devise a procedure to accurately compute the load
for condition (9.2). For example, the aneurysm meshes presented in Fig. 9.2
have been built using tetrahedra for the fluid (convenient for automatic mesh
generators) and quadrilaterals for the structure (shell elements). With a spe-
cial algorithm (see [189]), the meshes can be built in such a way that the nodes
lying on the surface wall are matching. Each solid quadrilateral then contains
two triangles, which lie on the boundary of fluid tetrahedra. In this configu-
ration, although the nodes are the same on the fluid and structure interfaces,
the shape functions are different and the issue of well-balanced load compu-
tation is therefore not trivial. Of course, we can also consider completely non-
matching grids, the element size being generally smaller in the fluid than in the
structure. Another case of nonconformity can also occur when the structure is
immersed in the fluid: in this case, when very large displacements occur, the
ALE formulation presented above yields frequent re-meshing. To circumvent
this problem, it may be convenient to use completely independent meshes for
the fluid and the structure. This of course results in nonconforming meshes.
In all these cases, once the velocity has been imposed – typically on the

fluid – the question is how to compute the load on the structure without
introducing any spurious energy due to the discretisation. Roughly speaking,
the answer is: the operator giving the load has to be the dual of the operator
defining the velocity. The purpose of the rest of this section is to expound this
statement through a few examples.
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9.5.1 A general formulation with Lagrange multipliers

In order to reformulate in a slightly different way the fluid-structure problem,
we introduce the following notations: For v̂f ∈ [H1(Ω̂f )]3 and μ ∈ [H−12 (Γ̂ )]3
we define:

bf(v̂f , μ) = 〈μ, v̂f〉Γ ,

and for v̂s ∈ [H1(Ω̂s)]3,
bs(v̂s, μ) = 〈μ, v̂s〉Γ ,

where 〈·, ·〉Γ denotes the duality pairing between [H−
1
2 (Γ̂ )]3 and [H

1
2 (Γ̂ )]3.

The fluid-structure problem reads: find (ûf , P̂ , η̂s) ∈ [H1(Ω̂f )]3×L2(Ω̂f )×
[H1(Ω̂s)]

3, λ ∈ [H−12 (Γ̂ )]3 such that for all (v̂f , q̂, v̂s) ∈ [H1(Ω̂f )]3×L2(Ω̂f )×
[H1(Ω̂s)]

3, μ ∈ [H−12 (Γ̂ )]3⎧⎪⎪⎨⎪⎪⎩
af

(
η̂s; (ûf , P̂ ), (v̂f , q̂)

)
+ bf (v̂f , λ) = 〈Ff , v̂f 〉,

bf (ûf , μ)− bs(ûs, μ) = 0,

as(η̂s, v̂s)− bs(v̂s, λ) = 〈Fs, v̂s〉.

(9.92)

In this formalism, equation (9.92)2 represents the kinematic condition (9.1)
while −bf (v̂f , λ) and bs(v̂s, λ) are the variational forms of the load acting on
the fluid and the structure respectively. Note that (9.2) is implicitly handled
since λ = −σf · nf and λ = σs · ns.

9.5.2 Three configurations of interest

To simplify our notations, we propose to rewrite formally system (9.92) as
follows: find (uf , us, λ) ∈ Xf ×Xs ×XΓ such that, for all (vf , vs, μ) ∈ Xf ×
Xs ×XΓ , ⎧⎪⎪⎨⎪⎪⎩

af (uf , vf) + bf (vf , λ) = 〈Ff , vf〉,
bf (uf , μ)− bs(us, μ) = 0,

as(us, vs)− bs(vs, λ) = 〈Fs, vs〉.
(9.93)

Compared to (9.92), the system is now linear, and all the fluid (resp. structure)
unknowns are “lumped” in the scalar unknown uf (resp. us). It is easy to
extend the ideas presented here to the original fluid-structure problem.
We consider finite element meshes on the fluid and the structure domains

and finite element spaces Xf,h, Xs,h and XΓ,h approximatingXf , Xs and XΓ
respectively. The fluid (resp. structure) mesh has nf (resp. ns) nodes, whose
nΓf (resp. n

Γ
s ) are located on the fluid-structure interface and nIf (resp. n

I
s)

are not. The nodes on the fluid-structure interface are numbered from nIf + 1

to nf (resp. n
I
s + 1 to ns). We thus have n

Γ
f = nf − nIf (resp. n

Γ
s = ns − nIs).

We introduce finite element basis (vfi )i=1,...,nf , (v
s
i )i=1,...,ns and (μi)i=1,...,nΓ
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of the spaces Xf,h , Xs,h and XΓ,h respectively. Then (9.93) can be readily put
into the following matrix form:⎡⎢⎣Af 0 BTf

Bf −Bs 0

0 As −BTs

⎤⎥⎦
⎡⎢⎣UfUs

Λ

⎤⎥⎦ =
⎡⎢⎣Ff0
Fs

⎤⎥⎦ . (9.94)

Note that such a formulation is, by construction, associated to a global energy
equality: multiplying (9.94)1 by Uf , (9.94)2 by Λ, (9.94)3 by Us, and adding,
we obtain:

(AfUf ,Uf) + (AsUs,Us) = (Ff ,Uf) + (Fs,Us). (9.95)

We see that the coupling terms cancel, as in the continuous case (see Sec-
tion 9.1). In other words, using this formulation, no spurious power appears
on the fluid-structure interface due to the space discretisation.
The matrix Bf has nΓ rows and nf columns, but most of the columns are

zero. Its block structure is typically the following:

Bf =

⎡⎣ 0 . . . . . . 0 Kf
0 . . . . . . 0

⎤⎦ ,

where Kf is the nΓ×nΓf matrix whose entries are bf (v
f
j , μi), j = nIf+1, . . . , n

Γ
f

and i = 1, . . . , nΓ . The matrices Bs and Ks are defined mutatis mutandis.
We propose to address three configurations of interest. We do not claim

that formulation (9.94) with Lagrange multipliers is the most convenient in all
cases. As we shall see, we can solve the first two configurations without using
Lagrange multipliers explicitly. Nevertheless this formulation offers a unified
framework and a useful guideline to compute the load at the interface.

Conformal meshes

We first consider the simple case of matching meshes represented in Fig. 9.3.
The Lagrange multipliers space can be, for example, defined by:

XΓ,h =

⎧⎨⎩μh measure on Γ, μh =

nf∑
i=nIf+1

μiδ(xi), μi ∈ R

⎫⎬⎭ , (9.96)

where (xi)i=nIf+1...nf denote the fluid nodes on the fluid-structure interface

Γ and δ(xi) is the Dirac measure on xi defined by:

〈δ(xi), vh〉 = vh(xi).

Note that XΓ,h is not a subspace of XΓ and that this choice requires continu-
ous basis functions. We have nΓ = nΓf = nΓs and the matrices Kf and Ks are
the identity:

Kf = Ks = InΓ×nΓ .



342 Miguel A. Fernández and Jean-Frédéric Gerbeau

s

Ω

Γ

f

Ω

Fig. 9.3. Example of conformal meshes

The second equation of (9.93) is thus simply equivalent to:

UΓf = U
Γ
s . (9.97)

Note that in this case, the Lagrange multiplier space could have been defined
equivalently on the structure nodes.

Conformal interface, non-conformal meshes

We now consider the case of non-conformal meshes represented in Fig. 9.4.
First suppose that the Lagrange multipliers space is defined as in (9.96). We
have

[Kf ]ij = 〈δ(xi), vfj 〉 = vfj (xi) = δij ,

where δij = 0 if i = j and 1 otherwise,

[Ks]ij = 〈δ(xi), vsj 〉 = vsj (xi).

The matrix Ks is the structure-to-fluid interpolation matrix. The kinematic
condition thus reads:

UΓf = KsU
Γ
s . (9.98)

Other choices of Lagrange multipliers would lead to different matrices. For
example, following [142] and using a mortar approach (see [38]), we could
choose

XΓ,h =
{
μh ∈ L2(Γ ), trace of the fluid shape functions vfh

}
.

In this case

[Kf ]ij = 〈μi, vfj 〉 =
∫
Γ

vfi v
f
j ,

Ω

Γ

Ωs

f

Fig. 9.4. Example of non-conformal meshes
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and

[Ks]ij = 〈μi, vsj 〉 =
∫
Γ

vsi v
f
j .

With this choice, the matrix Kf is a surface mass matrix. It is therefore non-
singular. Thus, the kinematic condition reads:

UΓf = Kf
−1KsUΓs . (9.99)

The three previous cases, (9.97), (9.98) and (9.99), can be put in the same
form:

UΓf = CU
Γ
s (9.100)

where the matrix C is either I, Ks or Kf
−1Ks, depending on the case and the

choice of the Lagrange multipliers space. When using partitioned algorithms,
system (9.94) is never solved directly. Nevertheless, we would like to show that
this formulation provides a hint to compute the load exerted on the structure
when the kinematic condition is imposed on the fluid with relation (9.100).
Let us decompose the matrix Af , and vectors Uf and Us into blocks cor-

responding to the internal and fluid-structure nodes:

Af =

[
AIIf A

IΓ
f

AΓIf A
ΓΓ
f

]
, Uf =

[
UIf

UΓf

]
, Us =

[
UIs

UΓs

]
.

Consequently, assuming that UΓs is given, we see from (9.94) that U
I
f is

obtained by solving
AIIf U

I
f = Ff −AIΓf CUΓs .

We introduce the algebraic residual Rf of the fluid problem defined by

Rf = F
Γ
f − AΓIf UIf − AΓΓf UΓf . (9.101)

In the three considered cases, (9.97), (9.98) and (9.99), the Lagrange multiplier
is given by:

Λ = K−Tf Rf .

In the algebraic system (9.94), formally representing the fluid-structure prob-
lem, we see that the algebraic counterpart of the load exerted on the structure
is given by:

Ffsi = K
T
s Λ.

Therefore, as soon as the kinematic continuity is imposed with a relation like
(9.100), the load on the structure is given by the dual relation:

Ffsi = C
TRf (9.102)

where Rf is the fluid residual defined in (9.101). This corresponds to the
conservative approach proposed in [142], which, as shown in (9.95), ensures a
well-balanced energy transfer at the discrete level.
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Let us consider the question raised at the beginning of this section con-
cerning the case of the aneurysm presented in Fig. 9.2. Recall that, with a
procedure proposed in [189], we can build a tetrahedral mesh in the fluid and
a quadrilateral mesh in the structure with matching nodes. Therefore, the
matrix C in (9.100) is the identity. Consequently, relation (9.102) shows that
the load on the structure is exactly the residual of the fluid problem. Note that
this convenient result was not obvious at the beginning since each quadrilat-
eral on the structure corresponds to two triangles on the fluid boundary.

Immersed structure

We now address the case of an immersed thin structure, like a valve (see
Fig. 9.5). Considering again our simplified system (9.94), we can choose for
example the following Lagrange multipliers space:

XΓ,h =

{
μh measure on Γ, μh =

ns∑
i=1

μiδ(xi), μi ∈ R
}

,

where xi denotes the structure nodes lying on the fluid-structure interface
(which coincide with the whole structure for a thin solid). We have:

[Kf ]ij = 〈δ(xi), vfj 〉 = vfj (xi),

and
[Ks]ij = 〈δ(xi), vsj 〉 = vs,j(xi) = δij .

The matrix Kf is the fluid-to-structure interpolation matrix. We have

KfUf
Γ = Us

Γ . (9.103)

Note that the matrix Kf is rectangular. Thus, in contrast to the previous cases
– which can all be put in the form (9.100) – the fluid velocity on the fluid-
structure interface cannot be eliminated. Thus, when decoupling the fluid and
the structure in a partitioned scheme, the fluid problem has now to be solved
as a “genuine” saddle-point problem: given the structure velocity Us, we have
to solve [

Af B
T
f

Bf 0

][
Uf

Λ

]
=

[
Ff

BsUs

]
. (9.104)

s

fΩ

Ω

Fig. 9.5. Example of an immersed structure
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As before, other Lagrange multipliers spaces can be considered, for example
the trace of the structure basis function or more general L2 functions. Of
course, this space has to be carefully chosen in order to have KerBTf = {0}.
Once the fluid problem is solved, the load on the structure can be computed
following the same guidelines as before.
The use of a Lagrange multipliers for immersed structure is the basis of

the so-called Fictitious Domain method, initially used in fluid-structure inter-
action for rigid solids (see for example [196–198]). It has also been applied
for flexible structures, either using Lagrange multipliers located on the struc-
ture surface (see [19, 126, 298]) or Lagrange multipliers located on the struc-
ture volume for thick solids [553]. It is also possible to simulate valves with
the ALE formalism presented in the previous sections ([246, 272]). Another
well-known approach is provided by the Immersed Boundary method (see for
example [385]).

9.6 Numerical results and discussion

We end this chapter by comparing algorithms presented in the previous sec-
tions to solve the benchmark proposed in [155]. The fluid domain is a straight
cylinder of radius 0.5 cm and length 5 cm. The wall displacement is described
using a nonlinear shell model (based on MITC4 shell elements [75]). The
physical parameters are: μ = 0.03 poise, ρf = 1g/cm

3, ρs = 1.2 g/cm
3,

E = 3×106 dynes/cm2 , ν = 0.3. The thickness of the vessel wall is 0.1 cm. The
fluid is initially at rest and a pressure of 1.332× 104 dynes/cm2 (10mmHg)
is imposed on the inlet boundary for 0.005 s. The fluid and structure meshes
have 3649 and 656 nodes respectively. A pressure wave propagation is observed
[150,155,188].
We report in Table 9.1 the elapsed CPU time (dimensionless) for each of

the approaches used for the simulations. We can notice that the semi-implicit
coupling is about 5 times faster than the best implicit coupling (solved through
Newton-based iterations). The increase in speed reported in Table 9.1 inten-
sifies greatly when performing physiologic fluid-structure simulations, involv-
ing several cardiac beats and realistic boundary conditions based on lumped
parameter models (see Chapter 10).

Table 9.1. CPU time: straight cylinder, 50 time steps of length δt = 0.0002 s.

Coupling Algorithm CPU total Reference in the text
(dimensionless)

FP-Aitken 24.86 (9.79) and Remark 9.3.3

Implicit inexact-Newton 6.05 (9.80) approx. Jacobian

Newton 4.77 (9.80) exact Jacobian (9.82)

Semi-Implicit Newton 1 Section 9.4
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In general, the computational cost reduction observed in Table 9.1, with
the semi-implicit coupling, is due to: (i) the use of a fractional-step method in
the fluid; (ii) the explicit treatment of the ALE-advection-viscous sub-step and
(iii) the use of Newton iterations for solving the projection sub-step (9.88)–
(9.89). Compared to the implicit case, these iterations are cheap, as they do
not require the computation of shape (domain) derivatives (see [150]).

9.7 Conclusions

We have presented various numerical methods to solve fluid-structure inter-
action problems involving an incompressible fluid. The nonlinear character of
the coupled problem is one of the main difficulties that have to be faced when
solving this type of problem. Thus, we have presented algorithms to efficiently
address this issue. On the other hand, we have also shown that many troubles
encountered in practice can be understood in the framework of a simplified
linear model. This fact has been used to propose a very efficient coupling
algorithm in which part of the fluid and the structure solvers are explicitly
coupled without compromising the stability. All the proposed approaches have
been formulated in the language of domain decomposition techniques.
The design of efficient numerical algorithms for fluid-structure problems

in haemodynamics is still a challenging problem. We cite, for instance, recent
works [21, 22, 145] that aim at reducing the computational cost of implicit
coupling schemes. We refer also to [55, 56], which provide a robust method to
stabilise the explicit coupling. Alternative approaches consisting in simplifying
the structure problem have also been proposed [151,352].
There are important issues that have not been addressed in the present

chapter. Among them, we can mention the definition of appropriate boundary
conditions (see e.g., [151, 155, 526]) and the management of contact between
valves (see e.g., [16, 126,521]). The effect of the surrounding tissues, the defi-
nition of more realistic constitutive laws and the integration of clinical mea-
surements and of the information provided by medical images are some of the
challenges that still have to be addressed.
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Reduced models of the cardiovascular system

Joaquim Peiró Alessandro Veneziani

Due to the large number of vessels involved and the multitude of different
length scales required to accurately represent the flow in the various regions
of the cardiovascular system, simulations of the flow of blood in the system
based on full 3D models (see Chapters 2 and 3) are beyond the capability
of current computers and they will be for years to come. Moreover, the huge
amount of data that would be generated by such simulations is costly to
process and of difficult clinical interpretation.
However, it is possible to devise simplified models exploiting specific fea-

tures of blood flow, such as the basically cylindrical morphology of the ves-
sels. Even though these models are highly simplified with respect to the local
dynamics, they can provide reliable numerical results at a low computational
cost. Interpretation is much straightforward, thus making them ideal as an
everyday tool for use in clinical practice.
Moreover, these models are well-suited for describing systemic dynamics

such as feedback mechanisms that play an important role in the correct work-
ing of the vascular system. These dynamics typically involve mechanical and
biochemical phenomena that can be hardly described in terms of complete 3D
models.
In this chapter, we address simplified models and in particular we consider:

1. one-dimensional (1D) models in which the space dependence is reduced
only to the axial coordinate;

2. lumped parameter (or 0D) models, where the space dependence is discre-
tised, by splitting the cardiovascular system into a set of compartments.
The associated mathematical model is typically based on differential alge-
braic equations (DAE), often represented in terms of hydraulic or electric
networks.

It is worth mentioning that studies on one-dimensional models of blood
flow were first presented by Leonhard Euler in his seminal article entitled
Pro principa motu sanguinis per arterias determinando [139]. In spite of
the simplifying assumptions behind these models, they are very useful and

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
c© Springer-Verlag Italia, Milano 2009

,
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many of their analytical and numerical aspects still deserve further investiga-
tion1.

10.1 One-dimensional (1D) models

There are several ways of deriving a 1D model of an incompressible fluid
flowing in a compliant pipe. One could start from the incompressible Navier-
Stokes equations and perform an asymptotic analysis by assuming that the
radius of the vessel, R0, is small compared to its length l, i.e. R0

L
� 1, that

will permit us to simplify the governing equations by discarding the higher
order terms in R0L , as proposed in [25]. Alternatively, the 1D model could be
derived by assuming cylindrical symmetry and integrating the Navier-Stokes
equations on a generic section as described in [364].
Here we will follow the approach advocated and described in [238,239] and

derive the governing equations from conservation principles. This approach is
more general and it does not require any simplifying assumptions concerning
the geometry of the vessel section.

10.1.1 Derivation of the governing equations

We consider a simple compliant tube, illustrated in Fig. 10.1, as a model of
the artery. We assume that the axis of the vessel is rectilinear and coincides
with the x axis. The starting point for the derivation of the one-dimensional
governing equations is Reynolds’ transport theorem for an arbitrary control
volume Vt with boundary ∂Vt and outer normal n. A formal derivation of this
formula can be found in Chapter 2 of this book and in [401]. It states that,
for a continuous function f = f(t,x), we have

d

dt

∫
Vt

f dV =

∫
Vt

∂f

∂t
dV +

∫
∂Vt

f ub · ndσ, (10.1)

where x stands for (x, y, z) and ub is the velocity of the boundary of volume
Vt. This is composed of the arterial wall ∂Vt,w and the two end sections S1 and
S2, that are assumed normal to the axis. On S1 and S2 the normal component
of ub is 0, while on ∂Vt,w velocity ub does coincide with the velocity uw of
the arterial wall, so that∫

∂Vt

f ub · ndσ =

∫
∂Vt,w

f uw · n dσ. (10.2)

1 “Thus in explaining the motion of the blood, we come up against the same insu-
perable difficulties which clearly prevent us from more accurately investigating all
the works of the Creator; wherein we ought constantly to admire and to venerate
much more the highest wisdom conjoined with omnipotence since truly not even
the greatest human ingenuity avails to understand and explain the true structure
of the slightest micro-organism”, L. Euler [139].
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Fig. 10.1. Notation used to describe a simple compliant tube

Here uw is taken to be different of the fluid velocity u = (u1, u2, u3) to
allow for the presence of a permeable lumen. The relative velocity between
the arterial wall and the fluid at the lumen is given by

w = uw − u.

To obtain the one-dimensional form of the conservation laws, we consider
area-averaged values of the relevant variables. The area-averaged value of f
is denoted by f̄ and given by

f̄ =
1

A

∫
S

f dσ, (10.3)

where A = A(x, t) =
∫
S
dσ is the area of the cross section S. Using this

notation, we write a volume integral as∫
Vt

f dV =

∫ x2
x1

[∫
S

f dσ

]
dx =

∫ x2
x1

Af̄ dx, (10.4)

where x1 and x2 (x2 > x1) are the x−coordinates of the cross sections S1 and
S2.
Given that x1 and x2 are independent of time, the left-hand side term of

equation (10.1) can be written as

d

dt

∫
Vt

f dV =

∫ x2
x1

∂

∂t

(
Af̄
)
dx. (10.5)

The presence of a permeable wall makes the evaluation of the second term of
the right-hand side of equation (10.1) more involved. After (10.2), this term
is calculated as∫

∂Vt,w

fuw · n dσ =

∫
∂Vt,w

fw · n dσ +

∫
∂Vt,w

fu · n dσ.
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Observe that∫
∂Vt,w

fu · n dσ =

∫
∂Vt

fu · ndσ −
∫
S1

fu ·n dσ −
∫
S2

fu · n dσ =∫
∂Vt

fu ·n dσ +

∫
S1

fu1 dσ −
∫
S2

fu1 dσ,

where u1 is the x-component of the velocity u. Thanks to the Gauss’ theorem,
we have∫

∂Vt,w

fu · ndσ =

∫
Vt

∇ · (fu) dV +
∫
S1

fu1 dσ −
∫
S2

fu1 dσ,

so that using area-averaged quantities, we finally obtain∫
∂Vt,w

fuw · ndσ =
∫
∂Vt,w

fw · n dσ −
∫ x2
x1

∂

∂x

[
A
(
fu1

)]
dx+∫

Vt

∇ · (fu) dV, (10.6)

Finally, including the expressions (10.5) and (10.6) into equation (10.1) leads
to ∫ x2

x1

∂

∂t

(
Af̄
)
dx =

∫ x2
x1

(∫
S

∂f

∂t
dσ

)
dx+

∫ x2
x1

(∫
∂S

fw ·n dγ

)
dx−∫ x2

x1

∂

∂x

[
A
(
fu1

)]
dx+

∫ x2
x1

(∫
S

∇ · (fu) dσ
)

dx,

and, given that this is true for any values of the coordinates of the end sections
x1 and x2, the final form of the one-dimensional transport theorem for a
generic variable f is

∂

∂t

(
Af̄
)
+

∂

∂x

[
A
(
fu1

)]
=

∫
S

[
∂f

∂t
+∇ · (fu)

]
dσ +

∫
∂S

fw · n dγ. (10.7)

This formula is general and applicable to both compressible and incom-
pressible fluids. Now we will proceed to derive the governing equations by
invoking the principles of conservation of mass and balance of momentum.

Conservation of mass

The equation representing the conservation of mass in the flexible tube is
obtained by taking f = 1 in equation (10.7). If we further assume that the
fluid is incompressible, i.e. ∇ · u = 0, we get

∂A

∂t
+

∂

∂x
(Aū1) =

∫
∂S

w · ndγ, (10.8)

where the term in the right-hand side could be interpreted as a volumetric
outflow per unit length and unit time.
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Balance of momentum

Here we take f = u1 in the area-averaged Reynolds’ transport expression
(10.7), and assume again that the fluid is incompressible, to obtain

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

∫
S

[
∂u1
∂t
+ u · ∇u1

]
dσ +

∫
∂S

u1w · n dγ , (10.9)

which we now write as

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

∫
S

Du1

Dt
dσ +

∫
∂S

u1w · ndγ , (10.10)

where D
Dt
= ∂
∂t
+ u · ∇ denotes the material derivative (see Chapter 3). To

calculate the first term on the right-hand side of equation (10.10) we use the
balance of momentum derived in Chapter 3 for the control volume Vt in the
form ∫

Vt

D

Dt
(ρu) dV =

∫
Vt

ρf b dV +

∫
∂Vt

Tn dσ, (10.11)

where f b represents the body force per unit volume and T is the Cauchy
stress tensor. Assuming that the density ρ is constant and using the divergence
theorem, the balance of momentum equation (10.11) is written as∫

Vt

Du

Dt
dV =

∫
Vt

f b dV +
1

ρ

∫
Vt

∇ · T dV. (10.12)

Now, invoking the constitutive equation for the fluid, we could write the stress
tensor T as

T = −pI +D, (10.13)

where p denotes the pressure, I is the identity tensor, and D represents the
tensor of deviatoric stresses due to the viscosity of the fluid. Setting ∇·D = d
we also write

∇ · T = −∇p+∇ ·D = −∇p+ d,

and, therefore, equation (10.12) as∫ x2
x1

(∫
S

Du

Dt
dσ

)
dx =

∫ x2
x1

(∫
S

[
f b +

1

ρ
(−∇p+ d)

]
dσ

)
dx. (10.14)

Since x1 and x2 can be arbitrarily chosen, the integrands in the left and right-
hand sides of equation (10.14) must be equal, therefore we could write the
x-component of this equation as∫

S

Du1

Dt
dσ =

∫
S

[
fb1 +

1

ρ
(−∂p

∂x
+ d1)

]
dσ, (10.15)
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where d1 is the x-component of d. Substituting this expression in equation
(10.10) gives

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

∫
S

[
fb1 +

1

ρ
(−∂p

∂x
+ d1)

]
dσ +

∫
∂S

u1w · n dσ,

(10.16)
which can be expressed using area-averaged values as

∂

∂t
(Aū1) +

∂

∂x

(
Au21

)
=

A

ρ

(
ρf̄b1 −

∂p̄

∂x
+ d̄1)

)
+

∫
∂S

u1w · ndσ. (10.17)

The term u21 in this equation is handled by defining a momentum-flux cor-
rection coefficient α (sometimes called the Coriolis coefficient), which is a
function of the velocity profile, as

u21 =
1

A

∫
S

u21 dσ = αū21. (10.18)

For a flat profile we have α = 1 and for a parabolic flow α = 4/3.
The term representing the viscous forces d̄1 is taken to be a linear function

of the area-averaged velocity ū1 of the form

A

ρ
d̄1 = −KRū1, (10.19)

where KR is a strictly positive quantity which represents the viscous resis-
tance of the flow per unit length of tube. It is worth observing that for a
proper definition of the coefficient, (10.19) is fulfilled by the Poiseuille flow
(see Chapter. 5). The final form of the balance of momentum equation is

∂

∂t
(Aū1) +

∂

∂x

(
αū21

)
= Af̄b1 −

A

ρ

(
∂p̄

∂x

)
−KRū1 +

∫
∂S

u1w · ndσ. (10.20)

The unknowns in the system given by (10.8) and (10.20) are p, A and ū1.
Their number exceeds the number of equations and a common way to close
the system is to explicitly provide a relationship between the pressure of the
vessel p and the vessel area A. This relation will be derived from the models
introduced in Chapter 3, in particular the algebraic relation (3.94).

Simplified models of wall mechanics

By assuming static equilibrium in the radial direction of a cylindrical tube,
from one-dimensional models of wall mechanics described in Section 3.4.4 one
can derive an algebraic relationship of the form

p = Pext + β
(√

A−
√

A0

)
, (10.21)
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where

β =

√
πh0E

(1− ν2)A0
. (10.22)

Here h0 and A0 = A0(x) denote the vessel thickness and sectional area, respec-
tively, at the equilibrium state (p, Q) = (Pext, 0), E = E(x) is the Young
modulus, Pext is the external pressure, assumed constant, and ν is the Pois-
son ratio. This ratio is typically taken to be ν = 1/2 since biological tissue is
practically incompressible. More generally, we may have

p = Pext + Φ(A;A0, β), (10.23)

being Φ a suitable function of the vessel section A and of the reference area
A0 as well as some mechanical parameter β. The main properties of Φ are

∂Φ

∂A
> 0, Φ(A0;A0, β) = 0,

for all allowable values of A, A0 and β.
The algebraic relation (10.23), and in particular (10.21), assumes that the

wall is instantaneously in equilibrium with the pressure forces acting on it.
Wall inertia and viscoelasticity can be included, yielding a differential pres-

sure law. For instance, moving from (3.91) we may write

p− Pext = γ0
∂2η

∂t2
+ γ1

∂η

∂t
+ Φ(A;A0,β), (10.24)

where γ0 = ρwh0, γ1 =
γ
r20
and the last term is the elastic response, modelled

through equation (10.21). Here γ is the same viscoelasticity coefficient of (3.93)
and η is the wall position. In the following, we indicate by Ȧ and Ä the first
and second time derivative of A. By assuming a circular profile A = πη2, thus

∂η

∂t
=

1

2
√
πA

Ȧ,
∂2η

∂t2
= π−

1
2

(
1

2
√
A
Ä − 1

4
√
A3

Ȧ2
)
. (10.25)

Using these relations into (10.24) we obtain an equation that links the pressure
also to the time derivatives of A, which we write in all generality as

p− Pext = Φ̃E(A, Ȧ, Ä;A0) + Φ(A;A0,β),

where Φ̃E is a non-linear function which derives from the treatment of the
terms containing the time derivative of η. Since it may be assumed that the
contribution to the pressure is in fact dominated by the term Φ, we will
simplify this relationship by linearizing Φ̃E around the state A = A0, Ȧ =
Ä = 0. By so doing, after some simple algebraic manipulations, one finds

p− Pext =
γ0

2
√
πA0

Ä +
γ1

2
√
πA0

Ȧ + Φ(A;A0,β). (10.26)
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Replacing this expression for the pressure in the momentum equation
requires to compute the term

A

ρ

∂p

∂x
=

γ0A

2ρ
√
πA0

∂3A

∂x∂t2
+

γ1A

2ρ
√
πA0

∂2A

∂x∂t
+

A

ρ

∂Φ

∂x
.

Wall inertia introduces a dispersive term into the momentum equation, while
the viscoelasticity has a diffusive effect. This has implications on the numerical
solution.
In the following we will consider only relation (10.21) to discuss the prop-

erties of the resulting scheme and its numerical formulation. Most of the dis-
cussion, however, can be extended to any model based on a pressure-area
relation of the form (10.23).

10.1.2 Different formulations of the governing equations

In what follows, we will assume that the lumen is impermeable (w · n = 0),
that body forces are neglegible (f̄b1 = 0), and we will also simplify the notation
by denoting the area-averaged axial velocity by u instead of ū1 and using p
instead of p̄. Defining the mass flux across a section as Q = Au =

∫
S
u1dσ,

the equations (10.8) and (10.20) now read

∂A

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(
α
Q2

A

)
+

A

ρ

(
∂p

∂x

)
+KR

Q

A
= 0.

(10.27)

The couple (A,Q) will be referred to as conserved variable since they stem
naturally from the application of conservation principles.
The system of equations (10.27) can be expressed alternatively in terms

of the variables (A, u). By simple manipulations one gets

∂A

∂t
+

∂Au

∂x
= 0,

∂u

∂t
+ (2α− 1)u∂u

∂x
+ (α− 1)u2∂A

∂x
+
1

ρ

∂p

∂x
+KR

u

A
= 0.

(10.28)

Both systems (10.27) and (10.28) may be written in conservation form. Let
us assume for instance that the wall mechanics is described by the algebraic
pressure-wall relationship (10.21).
For the system (A,Q) we have

∂Q

∂t
+

∂G

∂x
(Q) = B(Q), (10.29)
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with

Q =

[
A
Q

]
, G =

[
Q

αQ
2

A
+
∫A
A0
a
ϕ
∂ρ
∂a

da

]
and

B =

[
0

−KR QA + Aϕ
(
∂ρ
∂A0

∂A0
∂x
+ ∂ρ
∂β
∂β
∂x

)]
. (10.30)

For the (A, u) system, if for the sake of simplicity we assume α = 1, we have

∂U

∂t
+

∂F

∂x
(U) = S(U), (10.31)

with

U =

[
A
u

]
, F =

[
Au
pt

]
and S =

[
0

−KR uA

]
. (10.32)

Here

pt =
u2

2
+

p

ρ
, (10.33)

denotes the total pressure (scaled by the constant density).
In the case α = 1 the two weak forms are equivalent for smooth solutions,

in particular when A and Q are C1 continuous functions with respect to both
arguments and A is strictly positive. Nevertheless, the assumption α = 1 is
quite realistic in the problems at hand since the velocity profile is in fact
almost flat (see Chapter 1 and [350]) and the solutions within each of the
approaches presented in this chapter will be sufficiently smooth to favour the
use of the (A, u) system which has a simpler structure.
The (A, u) and the (A,Q) systems given respectively by equations (10.28)

and (10.27), together with the algebraic pressure-area relationship (10.21),
will be starting points of the numerical schemes discussed in Section 10.1.8.

Remark 10.1.1 Even though the values of the coefficients α, KR and β are
fixed a priori once we make assumptions on the velocity profile and on the wall
mechanics, it is also possible to interpret them as parameters of the model that
can be obtained by fitting the results of the 1D model to available in vivo or
3D computational data as proposed in [314].

10.1.3 1D models for blood solutes

The relevance of the dynamics of blood solutes and its coupling with haemo-
dynamics have been extensively addressed in Chapter 7. Since the dynam-
ics of these solutes is relevant for regulatory mechanisms that involve large
parts of the cardiovascular system and are fundamental for its proper working
(see Section 10.2.4), it is worth to devise simple models also for biochemical
dynamics (see [108]). As done in Section 7.1 of Chapter 7, we assume that the
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solute concentration c(x, t) satisfies a (linear) advection-diffusion equation in
the form

∂c

∂t
− μs!c+ u · ∇c = 0,

in the domain Ωt (u is the blood velocity), together with a suitable initial
condition c(x, 0) = c0(x). We assume that a Robin condition ν∇c·n= χ(cext−
c) is given on the vascular wall. Here coefficient χ denotes the permeability.
For the sake of simplicity, we will assume that cext = 0.
By using area-averaged quantities, in a way similar to the one adopted for

the Navier-Stokes equations, and setting Γ = Ac, it is possible to obtain the
following 1D solute equation

∂Γ

∂t
+

∂

∂x

(
ω
ΓQ

A

)
+Kc

Γ

A
= 0, x1 < x < x2, (10.34)

to be completed with suitable boundary conditions. Coefficient ω depends on
the axial velocity and concentration profiles (similar to the Coriolis coefficient)
and Kc is a coefficient depending on the viscosity μs and the permeability χ.
Equation (10.34) can be therefore coupled to (10.27) for a complete model of
the blood and solutes dynamics. For an extensive analysis see [108].

10.1.4 Characteristic variables

Considering the pressure-area relationship (10.21) and assuming that β =
β(x) and A0 = A0(x) we recall that applying the chain rule we obtain

∂p

∂x
=

∂p

∂A

∂A

∂x
+

∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0
∂x

,

where
∂p

∂A
=

β

2
√
A
.

System (10.28) can therefore be written inquasi-linear form as

∂U

∂t
+H

∂U

∂x
= f (U), (10.35)

or, more explicitely [
A
u

]
t

+

[
u A

c2/A u

] [
A
u

]
x

=

[
0
f

]
,

where

c2 =
A

ρ

∂p

∂A
=

β
√
A

2ρ
and f =

1

ρ

[
KRu−

∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x

]
.
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Under the assumption that A > 0, which is indeed a necessary condition to
have a physically relevant solution, the matrix H has two real eigenvalues
λ1,2 = u± c and the corresponding left eigenmatrix L is

L =

[
lT1
lT2

]
=

[
c
A 1

− c
A
1

]
, (10.36)

where li indicates the i-th left eigenvector such that lTi H = λil
T
i . We will

also indicate by R =
[
r1 r2

]
= L−1 the corresponding right eigenmatrix. For

the typical values of velocity, vessel area and elastic parameter β encountered
in arteries under physiological conditions, we have that λ1 > 0 and λ2 < 0.
Therefore our system is strictly hyperbolic and subcritical (see [277] for these
definitions).
The characteristic variables can be determined by integrating the differen-

tial system ∂UW = L. It may be shown that this is possible for our problem
and that the two characteristic variables are

W1 = u+ 4c = u+ 4A1/4

√
β

2ρ
, (10.37)

W2 = u− 4c = u− 4A1/4
√

β

2ρ
. (10.38)

Since β > 0, we may write, as previously reported in [160], the variables (A, u)
in terms of (W1,W2) as

A =

[
(W1 −W2)

4

]4 (
ρ

2β

)2
u =

(W1 +W2)

2
. (10.39)

In the case where f = 0 equations (10.35) can be transformed in a decou-
pled system of equations for the characteristic variables, which component-
wise reads

∂W1

∂t
+ λ1

∂W1

∂x
= 0,

∂W2

∂t
+ λ2

∂W2

∂x
= 0.

(10.40)

We recall that the expression of the characteristic variables, as well as that
of the λi are independent from the choice of the governing variables of our
problem. This is not the case for L and R.

Remark 10.1.2 Smoothness of the solution. We recall some of the main
results regarding the hyperbolic system at hand. It has been shown in [7, 524]
that, using a pressure-area relationship of the form

p− Pext = G0

[(
A

A0

) δ
2

− 1
]
,
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where δ > 1 and G0 is a constant elasticity parameter, and under some reason-
able conditions on the smoothness of boundary and initial data, the solution of
system (10.27) remains smooth. Two critical assumptions to reach this con-
clusion are the pulsatility of the inflow data and a bound on the length of
the tube; both are verified for physiological flow in the human arterial tree.
In the same work it is shown that, if the solution is smooth and the initial
and boundary data are such that A > 0, A remains strictly positive for all
times. In [155] an energy inequality was derived which bounds a measure of
the energy of the hyperbolic system in terms of the initial and boundary data.
Furthermore, in the same work it has been found that the quantity

s =
1

2
ρAu2 +

∫ A
A0

(p− Pext)dA,

is an entropy function for the system with associated flux equal to F s = Q pt.

10.1.5 Boundary conditions

The characteristic analysis and the fact that for physiological conditions the
flow is subcritical (i.e. λ1 > 0 and λ2 < 0) leads us to the conclusion that only
one boundary condition has to be imposed at each end of the tube. Different
type of boundary conditions may be envisaged. For the sake of simplicity let
us focus on the boundary x = x1, the arguments being easily extended to
the other boundary point. Here, the sign of the eigenvalues tell us that W1
is associated to the characteristics entering the domain, while W2 to the one
exiting. Let here U = U(t) indicate the vector of primitive variables at the
boundary point x = x1, either in the form (A,Q) or (A, u), depending on the
choice of the adopted differential model. A boundary condition may take the
general form

ϕ(U(t)) = g(t), for t > 0, (10.41)

being ϕ a C1 function defined for all allowed values of U and g a given
function of time. Not all the choices are possible, indeed we require that the
boundary be not characteristic, a condition that in our case is satisfied if for
all admissible U

rT1 (U)
∂ϕ(U)

∂U
= 0, (10.42)

where r1 is the right eigenvector associated to λ1.
In practice we are interested in specific types of boundary conditions, some

of which are detailed in the following paragraphs.

Non-reflecting boundary conditions

Non-reflecting boundary conditions are those that allow the simple wave asso-
ciated with the characteristics exiting the domain to leave without spurious
reflections. Typically those conditions are expressed in terms of the character-
istic variables. Again, let us focus on one of the two boundary points, here we
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choose x = x2, and on problem (10.31), the modifications for system (10.29)
and for the other vessel end being immediate.
Following [502] and [216] non-reflecting boundary conditions at x = x2 are

provided as

lT2

[
∂U

∂t
− S(U)

]
x=x2

= 0,

which indeed is equivalent to state that at x = x2

dW2(t)

dt
= lT2 S(W2(U(t))), for t > 0.

Here we have set W2(t) = W2(x2, t), U(t) = U(x2, t) and we have recalled
that the characteristic variable may in our case be expressed in function of
the primitive variables of our differential problem. Being basically a condi-
tion on the incoming characteristics, relation (10.42) is satisfied. Numerically,
this ordinary differental equation will be discretised in time, for instance the
computation of W2 in x = x2 and at time tn+1 = tn + Δt may be carried
out as

Wn+1
2 =Wn

2 +ΔtlT2 S
n,

where l2 and S are computed from the solution at time t
n.

For the notable case S(U) = 0, or B(Q) = 0 if we use (10.29), we have
W2 = const, that is a constant incoming characteristic variable.
In our case a condition of this type may be convenient at the distal section

(typically x = x2) whenever one can neglect possible contributions of waves
coming from the distal circulation, while at the proximal section (x = x1)
we would like to prescribe some given values of pressure or flux data coming
either from measurement or other models. When the peripheral circulation is
taken into account, we need specific models for the terminal vessels that will
be discussed later.

Proximal conditions

It is immediate to verify that the prescription of either a flux Q (or velocity
u) or area A at x = x1 is allowable. For instance, we may impose

A(x1, t) = g(t), t > 0,

where g(t) is a known function obtained, for instance, from the knowledge
of the pressure time variation at x = x1. This type of condition is clearly of
reflective type and the simple wave associated to the outgoing characteristic
(W2 in this case) may be partly reflected back into the computational domain.
Yet, in the case where the measurements are accurate enough, this reflection
is indeed a physical one.
It is also possible to have available values of both pressure (and thus area)

and flux variations at the proximal section. For instance, measurements of
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pressure pulse together with flux data could be obtained from Doppler ultra-
sound. Clearly the hyperbolic system does not allow to impose both conditions
at the same time. However, one may construct a set of allowable boundary
conditions through the exact or approximate solution of a Riemann prob-
lem [199] at the boundary using the computed values and the known values
at the inlet. We will go back to this technique when we discuss the numeri-
cal treatment of the boundary data. Alternatively, one may set the incoming
characteristics variables as

W1(x1, t) =W1(p̃(t), ũ(t)),

where p̃(t) and ũ(t) are the given (measured) values of pressure and velocity,
whileW1(p, u) denotes the analytic expression of W1 as function of these two
variables. In both cases we are not enforcing pressure and velocity exactly (it
is not compatible with the hyperbolic character of the differential problem).

Distal boundary of terminal vessels: coupling with a model of
peripheral circulation

The human arterial system is a network of large arteries branching out into
many smaller arteries, arterioles and capillaries. We are usually interested in
the results in the larger arteries in the network. Blood vessels further down the
arterial tree are very small and numerous. They have, all together, an impor-
tant role in determining the haemodynamics in the large arteries since they
offer flow resistance and pressure wave is partially reflected at each bifur-
cation. An accurate description of all these vessels and districts although
virtually possible is unfeasible for the huge amount of data required not to
mention the computational costs. For these reasons, the downstream circu-
lation is usually described in terms of lumped parameter models. In Section
10.2 we will introduce extensively these kind of models and their derivation.
So, in general terms, an appropriate way for accounting outflow conditions
is to resort to multiscale models, namely coupling 1D and lumped parameter
models. Chapter 11 will be devoted to this topic. Here we limit ourselves to
some considerations when the role of the lumped parameter models is only
limited to provide a boundary condition for the 1D model, without further
details on the peripheral circulation.
Denoting by πT (ω) and χT (ω) the Fourier transform of PT (t) = P (xout, t)

and QT (t) = Q(xout, t) respectively (see Chapter 2) at the end of the 1D
network, the behaviour of the downstream network can be represented by the
terminal impedance (see Fig. 10.14, left) as

ζT (ω) =
π(ω)

χ(ω)
, (10.43)

that in general is a complex-valued function. An extensive discussion about
the role of the impedance function in describing the vascular tree haemody-
namics can be found in Chapter 13 of [350]. Here the impedance is the trans-
fer function describing in a simplified way the downstream blood dynamics
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that actually influences the hemodynamics in the proximal district repre-
sented by our 1D model. The counterpart of (10.43) in the time domain
is obtained by computing the inverse Fourier transform of the terminal
impedance, ZT = F−1(ζT ) and by applying the convolution theorem

pT (t) =

∫ t
t−H

ZT (t − τ )QT (τ )dτ, (10.44)

where H denotes the heart beat duration. Relation (10.44), possibly approxi-
mated with suitable numerical quadratures, provides the boundary condition
to be used for the 1D network model in correspondence of terminal vessels.
Since possible examples of impedance functions used in the literature stem

from the representation of the terminal districts by lumped parameter models,
often represented in terms of electrical circuits, we postpone their description
to the next section (see Section 10.2.3).
Relation (10.44) is not strictly of the form (10.41) and its admissibility for

a general ZT should be investigated. However, it has proved very effective in
the several test cases carried out so far.

10.1.6 Numerical compatibility relations at the boundary

When calculating the numerical solution of our system we need to compute at
the boundary points the values of both variables Q and A (or u and A), yet
the boundary condition provides only a single relation. We need to complete
this piece of information with an additional relation that can only come from
the differential equation. A possibility is to project the equation along the
outgoing characteristics, giving rise to the so-called compatibility relations
[408]. Again, for the sake of simplicity let us consider first the point x = x1
and the differential equation written in the quasi-linear form (10.35). The
compatibility relation in this case reads

lT2

[
∂U

∂t
+H

∂U

∂x
− f (U)

]
= 0, at x = x1, t > 0.

By simple manipulations it may be recognised that this expression may
be written as

dW2(x(t), t)

dt
− lT2 f (U) = 0, at x = x1, t > 0, (10.45)

where dW2(x(t),t)
dt

is the total derivative of W2 along the characteristic curve

of equation dx(t)dt = λ2.
In a numerical setting relation (10.45) may be approximated by following

the characteristic line backwards. Using a first-order scheme we may set at
t = tn+1 = tn +Δt that

W2(x1, t
n+1) =W2(x1 − λ2Δt, tn) +ΔtlT2 f (U), (10.46)
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Fig. 10.2. Extrapolation of the characteristic W2 in x1

where λ2 and U are computed at x = x1 and t = tn. More accurate schemes
may be devised following the ideas applied in [48] in the context of Navier-
Stokes equations. Relation (10.46) is called extrapolation of the characteristic
variable, and coupled with the boundary condition provides a full set of (non-
linear) equations for the numerical computation of the boundary data. An
analogous relation may be found at x = x2 for W1.
We may note that if f = 0, which is the case if we neglect the friction term,

and the dependence of B and A0 on x, then (10.46) reduces toW2(x1, t
n+1) =

W2(x1 − λ2Δt, tn).

10.1.7 Extensions of the basic model

In the previous sections we have introduced some assumptions on the geometry
of the vessel and on the smoothness of the coefficients characterizing the wall
dynamics. These hypotheses are acceptable for small segments of the vascular
tree, however more general models should be introduced to deal with segments
with discontinuous properties, bifurcations and curved vessels. These will be
discussed in the following sections.

Discontinuous material properties

In some cases, material properties of the wall are not smooth. In particu-
lar, coefficient β introduced in (10.21) features discontinuities for instance in
stented arteries (Fig. 10.3) or in by-pass grafts. The Young’s modulus E can
exhibit jumps due to the differences between the vascular tissue and the pros-
thesis (see e.g. [269]). It is also possible for the area of the vessel to change
abruptly due to certain pathologies, e.g. an aneurysm.
Since the derivative of the elastic coefficient β appears in the balance

of momentum equation, the presence of discontinuities in β requires careful
treatment in our models. There are basically two approaches for handling
material discontinuities.
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Fig. 10.3. Discontinuity of Young’s modulus in the case of a stented artery. Bottom
left: regularisation approach; bottom right: domain splitting

1. Data regularisation: the discontinuous data are suitably replaced by
smooth functions that can be differentiated and the models presented
above can be used straightforwardly.

2. Domain splitting : the vessel with discontinuous properties is split into a
set of smooth segments and the coupling between each pair of segments is
accomplished through suitablematching or interface conditions. A reason-
able choice is to assume continuity of fluxes and thus impose the continuity
of mass flux and total pressure across the interface, i.e.

Q = ulAl = urAr , (10.47)

Pr = ρ
u2l
2
+ βl(

√
Al −

√
Al0 ) = ρ

u2r
2
+ βr(

√
Ar −

√
Ar0 ). (10.48)

These interface conditions will preserve the conservation properties of the
(A, u) system.
In practice, the problem can be solved iteratively, by solving the sequence
of problems on each segment. In this case, the interface conditions (pos-
sibly reformulated in terms of characteristic variables) become boundary
conditions on each segment, following a classical domain decomposition
approach (see e.g. [408]).

Treatment of bifurcations

The 1D model of the compliant tube can be extended to handle the arterial
tree by adopting a domain splitting technique similar to the one used for
the discontinuous case. Again we require suitable interface conditions at the
bifurcations or branching points of the tree (see Fig. 10.4).
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Fig. 10.4. Arterial tree bifurcation: notation

In the bifurcations the problem is only locally one-dimensional, in the sense
that each branch is associated with its own axis (denoted by x, x and x in
Fig. 10.4). The use of domain splitting techniques allows us to cast the global
problem into a set of 1D problems (10.27) or (10.28). If we denote by x� the
branching point such that it is the right-end point xpr of the parent vessel Ωp,
and the left-end point xb1l and xb2l of the branches Ωb1 and Ωb2, for a given
function f defined over each segment we denote

fl = f
∣∣
Ωp
(xpr), fb1 = f

∣∣
Ωb1
(xb1l ), fb2 = f

∣∣
Ωb2
(xb2l ).

At the bifurcation we have six unknowns: (Al, ul) in the parent vessel,
(Ab1, ub1) and (Ab2, ub2) in the branches Ωb1 and Ωb2 respectively.
The first three equations required to solve the problem may be obtained

by extrapolating the outgoing characteristics like in (10.46) (or alternatively
by solving (10.45)), giving

W1 = ul + 4A
1/4
l

√
βl

2ρ
=W ∗

1 , (10.49)

W21 = ub1 − 4A1/4b1

√
βb1
2ρ

, (10.50)

W22 = ub2 − 4A1/4b2

√
βb2
2ρ
=W ∗

22, (10.51)
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where the starred quantities are the extrapolated values. The other three
equations required to close the problem are obtained from the continuity of
mass flux and total pressure across the boundary of the elements at the bifur-
cation, i.e.

Q = upAp = ub1Ab1 + ub2Ab2, (10.52)

Pr = ρ
u2p
2
+ βp(

√
Ap −

√
Ap0) = ρ

u2b1
2
+ βb1(

√
Ab1 −

√
Ab10), (10.53)

Pr = ρ
u2p
2
+ βp(

√
Ap −

√
Ap0) = ρ

u2b2
2
+ βb2(

√
Ab2 −

√
Ab20). (10.54)

The six equations given by (10.49-10.54) define a non-linear system of alge-
braic equations which allow to determine the values of (Al, ul), (Ar1, ur1) and
(Ar2, ur2) at the bifurcation. These values are then used to evaluate the flux
at the elemental interfaces in the numerical discretisation.
We have assumed that the coefficient β could be different in the three

vessels, as it is to be expected from the different values of their respective
areas at rest A0.

Remark 10.1.3 Continuity of the total pressure in (10.53,10.54) can be mod-
ified for including pressure losses due to the bifurcation. These typically depend
on the bifurcation angle. For more details see [157, 469].

Accounting for curvature in 1D models (Directors’ theory)

One of the most relevant assumptions in devising the basic 1D model is that
the axis of the vessel is rectilinear. Actually, if we remove this hypothesis, it is
still possible to define a main flow direction in the domain, namely the curvi-
linear abscissa along the axis, and however the effect of the blood dynamics in
the other directions on the main one is no longer negligible (see [373]). Never-
theless, there are some vessels which are significantly curved (aorta, femoral
arteries, etc.). For these vessels, the basic 1D model (10.28) or (10.27) can be
considered only as a rough description. A possible model relies on introduc-
ing a subdivision into subsegments sufficiently short to be considered straight
and connected one to the other with a suitable angle θ = 0 (see Fig. 10.5). A
suitable pressure loss as a function of the angle needs to be introduced in the
interface conditions between segments. The other interface conditions will be
given by the flow conservation (see (10.47) and Remark 10.1.3).
We would like to briefly address in the following an alternative definition of

1D models that are able to account for the effects of the transversal dynamics
on the axial one, still at a reasonable computational cost. The task is not
easy, since we want to devise a sort of 1D models for the cheap description of
a genuinely 3D dynamics.
Simplified models for curved pipes can be obtained for small curvatures of

the vessels with a perturbation analysis of the rectilinear model (see [113]).
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Fig. 10.5. Splitting of a curved domain into a sequence of rectilinear segments

Let us consider the non-dimensional parameter

De = 2
√
2

√
rw
rc
Re, (10.55)

where rw is the vessel radius, rc is the curvature radius of the vessel axis
(rc → ∞ in the straight case), Re is the Reynolds number and De the Dean
number (they have been defined in Chapter 5). Simplified models can be read-
ily obtained for small values of the Dean number. For large values of De these
models need to be suitably corrected, and the analysis becomes by far more dif-
ficult: a complete description of this approach can be found in [373], Chapter 4.
A different approach relies on the theory of Cosserat curves considered

by Green and Naghdi in [204,205] (see also [269]). If we consider the refer-
ence frame (s, ŷ, ẑ) of Fig. 10.5 left, the basic idea of the Green and Naghdi
approach is to represent the velocity field u(s, ŷ, ẑ, t) with respect to a set of
shape functions that depend only on the coordinates in the normal section
ŷ, ẑ and are given by

u(s, ŷ, ẑ, t) =

N∑
n=0

ωn(s, t)ϕ(ŷ, ẑ), (10.56)

where ωn are the coefficients of the velocity profile. This can be considered as
a generalisation of the straight vessel case, where we set for the axial velocity,
uz(x, y, z, t) = ϕ(ŷ, ẑ)u(x, t) being u(x, t) the average velocity and ϕ(ŷ, ẑ) a
given velocity profile. Once a basis function set is selected the unknowns are
the coefficients ωn, that can be computed by solving a suitable set of equations
derived by mass and momentum conservation principles.
In principle, the accuracy of these models can be tuned by choosing a

suitably large N , i.e. having a rich enough basis functions set. However, even
for small values of N , mathematical difficulties of the obtained model imply
high numerical costs (see [269]).
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A curved pipe model

Let us consider a curved pipe of circular section and indicate by s the arch
length coordinate of the axis, which we assume to be a planar curve. If we
integrate any function f(s, ŷ, ẑ, t) over the volume of the pipe V (ε) between
normal sections at a distance ε one to the other and let ε → 0, we get (see
[269])

lim
ε→0
1

ε

s+ε/2∫
s−ε/2

∫
S

√
gf(s, ŷ, ẑ, t)dσds =

∫
S

√
gf(s, ŷ, ẑ, t)dσ,

where S = S(s, t) is the section normal to the vessel axis and √g is
the metric tensor invariant, accounting for the integration over a curved
axis. In particular, for a rectilinear pipe g = 1, while for a curved ves-
sel in the plane (s, y) with a constant curvature radius RC ,

√
g = (ŷ +

RC)/ŷ.
Associated to this integral over the section S, we introduce the following

operators acting on a generic regular enough function f(s, ŷ, ẑ, t)

P00(f) =

∫
S

√
gfdŷdŷ,

P10(f) =

∫
S

√
gfŷdŷdẑ, P01(f) =

∫
S

√
gfẑdŷdẑ. (10.57)

Consider now the 3D Navier-Stokes equations written with respect to the
reference frame (s, ŷ, ẑ) with the velocity field represented by (10.56). In par-
ticular, we assume for the axial velocity

us =

(
1− ŷ2 + ẑ2

R2

)
(a(s, t) + b(s, t)ŷ + c(s, t)ẑ) ,

which is a generalisation of the classical parabolic profile (first term), while for
the transversal velocity components, we simply postulate a linear dependence:
uŷ = η̇ŷ/R, uẑ = η̇ẑ/R, where η̇ is the wall velocity. The unknowns of the
problem are therefore the coefficients a(s, t), b(s, t) and c(s, t) and the vessel
radius R(s, t). A more convenient set of unknowns is

A = πR2, Q =
π

2
R2a, H =

π

12
R4b, G =

π

12
R4c.

For the determination of these unknowns we need four equations that can be
obtained by applying memberwise the average operator P00 to the continuity
equation and the operators P00, P10 and P01 to the axial momentum equations.
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The resulting 1D model for curved vessels reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A

∂t
+

∂Q

∂s
= 0,

∂Q

∂t
+
4

3

∂

∂s

(
Q2

A

)
+ 6π

∂

∂s

(
H2

A2

)
+

6π
∂

∂s

(
G2

A2

)
+

β
√
A

2ρA0

∂A

∂s
+ 8πν

Q

A
= 0,

∂H

∂t
+

H

2A

∂Q

∂s
+ 2

∂

∂s

(
HQ

A

)
+ 24πν

H

A
= 0,

∂G

∂t
+

G

2A

∂Q

∂s
+ 2

∂

∂s

(
GQ

A

)
+ 24πν

G

A
= 0.

(10.58)

More complex model can devised for instance by assuming a different
profile for the transversal velocity components (see [269]).

10.1.8 The numerical solution of the 1D models

The wave propagation speeds in the large arteries are typically an order of
magnitude higher than the average flow speeds. As mentioned previously, the
characteristic system is inherently subcritical and does not produce shock
under physiological conditions. Therefore the numerical challenge is to propa-
gate waves for many periods without suffering from excessive errors in ampli-
tude (dissipation) and in phase (dispersion) (see e.g. [277]). If the solution
remains smooth then high-order methods are particularly attractive due to
the fast convergence of the dispersion and dissipation errors with the order of
the scheme [457].
Here, we limit ourselves to present two possible discretisations of the prob-

lems. The first one is based on a Taylor-Galerkin approach and is essentially
a generalisation of the classical Lax-Wendroff scheme for systems of conser-
vation laws (see [277]).
The second one is based on more recent techniques for the discretisation

of the space variable, in which continuity of the solution at the discretisation
nodes is no longer postulated. This discontinuous Galerkin approach is well
suited for high order approximations.

Taylor-Galerkin method

In this section we describe the numerical discretisation of the (Q,A) system
described by equation (10.27) recast in the conservation form (10.31) given
by

∂Q

∂t
+

∂G

∂x
(Q) = B(Q).

The expressions for Q, G and B are given in (10.30).
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We proceed to discretise equation (10.31) by adopting a second-order
Taylor-Galerkin scheme. To this aim, we write the Taylor expansion trun-
cated up to the second order terms at time tn such that Δt = tn+1 − tn,
yielding

Qn+1 = Qn +Δt
∂Q

∂t

∣∣∣∣n + Δt2

2

∂2Q

∂t2

∣∣∣∣n . (10.59)

The time derivatives will be replaced by space derivatives, by exploiting the
equations (10.31). In particular, we will use the abridged notation

GQ =
∂G

∂Q
, BQ =

∂B

∂Q
,

and we obtain
∂Q

∂t
= B − ∂G

∂x
, (10.60)

∂2Q

∂t2
= BQ

∂Q

∂t
− ∂2G

∂t∂x
= BQ

∂Q

∂t
− ∂

∂x

(
GQ

∂Q

∂t

)
=

BQ

(
B − ∂G

∂x

)
− ∂ (GQB)

∂x
+

∂

∂x

(
GQ

∂G

∂x

)
. (10.61)

Remark 10.1.4 The presence of a non-constant source term and the explicit
dependence of the momentum flux G on the variable x through β(x) makes
the derivation of the scheme slightly more complex than the standard Lax-
Wendroff formulation. In particular we stress that, in contrast to the normal
derivation, we have not further developed the x derivative of the fluxes, since
for our problem

∂G

∂x
= GQ

∂Q

∂x
,

because of the dependence of G on x through β.

From (10.59), (10.60) and (10.61) we obtain the following time-marching
scheme

Qn+1 = Qn −Δt
∂

∂x

[
Gn +

Δt

2
GnQB

n

]
− Δt2

2

[
BnQ

∂Gn

∂x

− ∂

∂x

(
GnQ

∂Gn

∂x

)]
+Δt

(
Bn +

Δt

2
BnQB

n

)
. (10.62)

Space discretisation is carried out by using linear finite elements. To that
purpose, let us subdivide the domain Ω into Nel finite elements Ωe, of size
he. We indicate by Vh the space of continuous vector functions defined on Ω,
linear on each element, and with V0h the set formed by functions of Vh which
are zero at x = x1 and x = x2. Furthermore, we omit the subscript Ω in the
L2(Ω) vector product.
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Using the notation

GLW = G + (Δt/2)GQB,

BLW = B + (Δt/2)BQB,

and indicating with

(u,v)Ω =

∫
Ω

u v dx,

the standard L2(Ω) inner product, the finite element solution of (10.62)
requires, for n ≥ 0, to find Qn+1h in Vh which satisfies for all ψh in V

0
h

that

(Qn+1h ,ψh) = (Q
n
h,ψh) +Δt(GnLW ,

∂ψh
∂x
) − Δt2

2
(BnQ

∂Gn

∂x
,ψh)−

Δt2

2
(GnQ

∂Gn

∂x
,
∂ψh
∂x
) +Δt(BnLW ,ψh). (10.63)

The numerical initial condition U0h will be taken as the finite element inter-
polant of the given initial data U0. A possible technique for computing the
boundary values Un+1h is described later on.
In (10.63) we need to numerically integrate the terms containing the fluxes

and sources. For the terms involving Gn and GnQ we have projected each
component on the finite element function space Vh via interpolation. The
same applies for the other vector products which involve only Gn and GnQ.
The term d β/dx in Bn and BnQ must be approximated in a piecewise con-

stant manner to ensure that our numerical scheme represents constant solu-
tions of the differential problem exactly. Therefore, on each element (xle, x

u
e )

we have approximated d β/dx by [β(xui )−β(xli)]/he. For the remaining terms
we have applied the same technique adopted for the fluxes. This gives rise to
a piecewise linear discontinuous representation for the source terms.

Discontinuous Galerkin method

The discontinuous Galerkin method is an attractive formulation for high-order
discretisation of hyperbolic conservation laws. Following the work of Cockburn
and Shu [96] and Lomtev, Quillen and Karniadakis [296] we proceed as follows.
Considering the one-dimensional hyperbolic system (10.28) in conservative

form we have
∂U

∂t
+

∂F

∂x
= S(U ), (10.64)

where

U =

[
U1

U2

]
=

[
A

u

]
, F =

[
F1

F2

]
=

[
uA

u2

2 +
p
ρ

]
, S =

[
S1

S2

]
=

[
0

−KR uA

]
.
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To solve this system in a domain Ω = (x1, x2) discretised into a mesh of Nel
elemental non-overlapping regions Ωe = (x

l
e, x

u
e), such that xue = xle+1 for

e = 1, . . . , Nel, and
Nel⋃
e=1

Ωe = Ω,

we start by constructing the weak form of (10.64), i.e.(
∂U

∂t
,ψ

)
Ω

+

(
∂F

∂x
,ψ

)
Ω

= (S,ψ)Ω , (10.65)

where ψ represents an arbitrary function in Ω. Decomposing the integral into
elemental regions we obtain

Nel∑
e=1

[(
∂U

∂t
,ψ

)
Ωe

+

(
∂F

∂x
,ψ

)
Ωe

− (S,ψ)Ωe

]
= 0. (10.66)

Integrating the second term by parts leads to

Nel∑
e=1

[(
∂U

∂t
,ψ

)
Ωe

−
(
F ,

dψ

dx

)
Ωe

+ [ψ · F ]x
u
e

xle
− (S,ψ)Ωe

]
= 0. (10.67)

To get the discrete form of our problem we choose U to be in the finite
space of L2(Ω) functions which are polynomial of degree q on each element.
We indicate an element of such space using the subscript h. We also note that
Uh may be discontinuous across inter-element boundaries. However to attain
a global solution in the domain Ω we need to allow information to propagate
between the elemental regions. Information is propagated between elements
by upwinding the boundary flux, F , in the third term of equation (10.67).
More precisely, thanks to the relations (10.39) linking primitive and char-

acteristic variables we may always write the flux F as function of the char-
acteristic variables, that is F = F(W1,W2). At the right interface of element
Ωe we set the upwinded flux as F

u = F(W−
1 ,W+

2 ), being W+
1 = W 1|Ωe(xle)

and W−
2 = W 2|Ωe+1(xre+1), being Ωe+1 the adjacent element on the right of

Ωe. On the left interface the relation is analogous with the role ofW1 and W2
exchanged. In this way we always construct the flux by using the information
carried by the two characteristics impinging on the interface. This upwind-
ing process can be conveniently used in the numerical scheme also to impose
the boundary conditions, as we will see in the next section. Clearly we are
assuming that the flow is subcritical, i.e. λ1 > 0 and λ2 < 0.
The discrete weak formulation can now be written as∑Nel

e=1

{(
∂Uh
∂t

,ψh
)
Ωe
−
(
F (Uh),

dψh
dx

)
Ωe
+

[ψh · F u]
xue
xle
− (S(Uh),ψh)Ωe

}
= 0.

(10.68)
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Following the traditional Galerkin approach, we choose the test function ψh
within each element to be in the same discrete space as the numerical solution
Uh. At this point if we defined our polynomial basis and choose an appropriate
quadrature rule we would now have a semi-discrete scheme. However, from an
implementation point of view, the calculation of the second term in equation
(10.68) can be inconvenient and consequently we choose to integrate this term
by parts once more to obtain

∑Nel
e=1

{(
∂Uh
∂t

,ψh
)
Ωe
+
(
∂F (Uh)
∂x

,ψh

)
Ωe
+ [ψh · {F u − F (Uh)}]

xue
xle
−

(S(Uh),ψh)Ωe
}
= 0.

(10.69)
We note that the information between elements is transmitted by the third
boundary term as the difference between the upwinded and the local fluxes,

[ψh · [Fu − F (Uh)]]
xue
xle
. This method can be considered as a penalty method

with an automatic procedure for determining the penalty parameter.
Finally we select our expansion bases to be polynomials of order q and

expand our solution on each element e in terms of Legendre polynomials
Lp(ξ), i.e.

Uh
∣∣
Ωe
(xe(ξ), t) =

q∑
p=0

Lp(ξ)Û
p

e(t).

where, following standard finite element techniques, we consider ξ in the ref-
erence element Ωref = {ξ : −1 ≤ ξ ≤ 1} and introduce the elemental affine
mapping

xe(ξ) = xle
(1 − ξ)

2
+ xue

(1 + ξ)

2

whose Jacobian Je is

Je =
dxe

dξ
=

xue − xle
2

.

We note that the choice of discontinuous discrete solution and test functions
allows us to decouple the problem on each element, the only link coming
through the upwinded boundary fluxes. Legendre polynomials are particularly
convenient because the basis is orthogonal with respect to the L2(Ωe) inner
product and equation (10.69) turns out to be equivalent to solving component-
wise, for all elements e, for i = 1, 2 and p = 1, . . . , P , the equation

Je
∂Ûpi,e

∂t
= −Je

(
∂Fi

∂x
, Lp

)
Ωe

−[Lp (F ui − Fi(Uh))]
xue
xle
+Je (Si, Lp)Ωe . (10.70)

To complete the discretisation we require a time integration scheme. Possible
choices are the standard Runge-Kutta or the Adams-Bashforth schemes (see
e.g. [403]).



10 Reduced cardiovascular models 373

The numerical treatment of boundary data

The numerical schemes (10.70) and (10.63) need to be complemented with
boundary data Q or U at the boundaries of the domain Ω. The way the
boundary data is treated in practice by the two schemes is different.

Taylor-Galerkin method

Let assume that the boundary condition at x = x1 is given by the general
form (10.41). A possible way to provide the boundary data on the first node
at time t]tn+1, here indicated by Qn+10 is to solve the system

ϕ(Qn+10 ) = g(tn+1),

W2(Q
n+1
0 )) = W ∗

2 =W2(x1 − λ2Δt, tn) +ΔtlT2 f ,
(10.71)

where λ2 and f are computed, for instance, in x = x1 and at t = tn andW2(Q)
indicates the expression linking the characteristic and primitive variables that
can be derived from (10.38).
It is a system of nonlinear equation which may be solved by a few Newton

iterations, starning from the values at the previous time step. In practice, we
have notices that for our problems three Newton iterations are sufficient.
Similar considerations can be applied to the right boundary x2.

Discontinuous Galerkin method: Flux upwinding

The procedure illustrated in the previous paragraph may in principle be
applied also to the discontinuous Galerkin scheme. However in the latter the
technique of flux upwinding at the interface between elements may be of hand
also to implement the boundary conditions. Let consider the boundary x = x1
and assume to have at disposal the boundary condition in terms of the entering
characteristic, variable, i.e W1 = w1(t). Then when computing the upwinded
flux for the left interface of the first element we will set F u = F(w(tn),W+

2 ).
If both primitive variables are provided at the boundary (for instance form
experiments) w1(t

n) could be readily computed from their value. It means
that we will not impose the values exactly (it would be impossible because we
can impose only a single scalar equation) but their value mediated through
the entering characteristic variable. If instead we wish to impose the value of
a single primitive variable, for instance the flux, the situation is more compli-
cated.

10.2 Zero-dimensional (0D) or lumped models

As for the 1D models, lumped parameters models can be derived by general
conservation principles or directly by averaging 3D and 1D models. In the for-
mer case, the key concept is the compartment, that is a part of the system at
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hand that it is worth to be considered as a homogeneous unit. This definition is
kept vague since the number and kind of compartments considered depend on
the type of analysis at hand. A few compartments, describing the heart, arte-
rial and venous systems and the capillary bed are sufficient for a very general
description of the behaviour of the cardiovascular system. More detailed anal-
ysis may give rise to models with up to fifty separate compartments accounted
for. Following this approach the continuous space dependence is lost, and the
emphasis is on the behaviour of the unit with respect to the rest of the system.
Input/output relations are formulated via transfer functions based either on
physical or empirical relations.
Since we have already considered one-dimensional models of a blood vessel,

we will here derive the corresponding lumped model by an averaging proce-
dure. This approach is closer to the physics of the problem, and is useful
to understand the role of the parameters of the model and their quantifi-
cation. We will start from lumped parameter models of a simple vascular
compartment formed by a single artery, and then, by application of appropri-
ate matching conditions derived from conservation principles we will be able
to build more general models.
Let us consider the single artery Ω, illustrated in Fig. 10.1, of length

l = |x2−x1|. We define the (volumetric) mean flow rate over the whole artery
as the quantity

Q̂ =
ρ

l

∫
Ω

u1dυ =
ρ

l

∫ x2
x1

⎛⎜⎝ ∫
S(x)

uxdσ

⎞⎟⎠ dx =
ρ

l

∫ x2
x1

Q(x)dx. (10.72)

Similarly, we define the mean pressure and area over the artery as

p̂ =
1

l

x2∫
x1

Pdx, Â =
1

l

x2∫
x1

Adx. (10.73)

Starting from equations (10.27) for this domain, we integrate the continuity
equation along the axial direction (x1 ≤ x ≤ x2) to obtain

l
dÂ

dt
+Q2 −Q1 = 0, (10.74)

where we have set

Q1(t) = Q(t, x1), Q2(t) = Q(t, x2). (10.75)

Observe that now Â depends only on time, so we have an ordinary time
derivative.
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In considering the momentum equation, we add the following simplifying
assumptions:

1. the contribution of the convective term ∂x(αQ
2/A) may be neglected ; and

2. the variation of A (and β) with respect to x is small compared to that of
P and Q.

The first assumption is particularly suited to represent the peripheral circu-
lation, where blood flow is in general quite slow. The second assumption is
reasonable when the axial average is carried out over short segments. It basi-
cally amounts to replace A in the momentum equation with a constant value
for the area that in general is assumed to be the area at rest A0. With these
assumptions, averaging over x of (10.27)2 yields

ρl

A0

dQ̂

dt
+

ρKRl

A20
Q̂+ P2 − P1 = 0, (10.76)

where
P1(t) = P (t, x1), P2(t) = P (t, x2). (10.77)

As for 1D models we have now the problem of closing system (10.74, 10.76),
by adding a wall mechanics law. In particular, if we assume the simple law
(10.21) to hold, we have

x2∫
x1

∂p

∂t
dx =

x2∫
x1

β

2
√
A

∂A

∂t
dx.

Now, if we exploit the second assumption above, we obtain l
dp̂

dt
=

lβ

2
√
A0

dÂ

dt
,

which we write, for convenience, as

dÂ

dt
= k1

dp̂

dt
, (10.78)

where k1 =

√
A0
β
. Substituting (10.78) into (10.74) we obtain

k1l
dp̂

dt
+Q2 −Q1 = 0, (10.79)

that together with (10.76) represents the lumped parameter model for a vessel.
Equations of this type are also found in the analysis of electrical circuits.

Indeed, before digital computers, early simulations of flow in the vascular
system were based on analog electrical circuits, see for instance [539]. In the
electric network analogy, the blood flow rate is assimilated to the current,
while blood pressure corresponds to voltage, as summarised in Table 10.1.
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Table 10.1. Correspondence table of the analogy between electric and hydraulic
networks

Hydraulic Electric

Pressure Voltage
Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L
Wall compliance Capacitance C

In order to exploit this electrical analogy, we recast the system (10.76,10.79)
as

C
dp̂

dt
+Q2 −Q1 = 0,

L
dQ̂

dt
+RQ̂+ P2 − P1 = 0.

(10.80)

The coefficients R, L and C are associated to elements of a circuit as depicted
in Fig. 10.6, where the corresponding equation is recalled at the bottom. We
recall hereafter their physical significance.

Resistance. The coefficient R =
ρKRl

A20
in equation (10.80) represents the

resistance induced to the flow by the blood viscosity. Different expres-
sions for R can be obviously obtained for different velocity profiles or if a
non-Newtonian rheology is introduced into the model (see e.g. [426], [539],
[162]).

Inertia (inductance). The coefficient L =
ρl

A0
in equation (10.76) repre-

sents the inertial term in the momentum equation and it will be called the
inductance of the flow.

Q

P

Q

=Reference Pressure Value

L                    C                   R

C
dP

dt
= QP = RQ L

dQ

dt
= P

P

Q

P

Fig. 10.6. Notation used in the electrical analogy of the circulatory system
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Compliance (capacitance). It is characterised by the coefficient C = k1l
that represents the mass storage term in the mass conservation law, due to
the compliance of the vessel.

For instance, if we assume Poiseuille flow (i.e. fully developed flow with
a constant pressure gradient) and that the vessel is a cylinder of constant
circular section we have

R =
8πρνl

π2r40
=
8μl

πr40
; L =

ρl

πr20
; C =

3πr30l

2Eh0
.

The system of equations (10.80) involves the mean flow rate and pressure
over the vascular segment at hand and the boundary values of pressure and
flow rate Qi, Pi, with i = 1, 2. Strictly speaking, the term boundary is inap-
propriate, since the continuous space dependence has been lost in the axial
average, and they simply represent input/output quantities exchanged by the
vessel with the rest of the systems. However, we will retain the term, since it
is related to the physical derivation of the equations. In particular, in order to
close problem (10.80), we need to introduce some boundary conditions. This
means that we need to identify the input data of the district at hand. For
instance, suppose that Q1 and P2 are given. Then, (10.80) represents a sys-
tem of two equations for four unknowns, Q̂, p̂, P1 and Q2. The dynamic of the
system is represented by p̂ and Q̂, i.e. by the unknowns that are under time
derivative (the state variables). We approximate now the unknowns on the
upstream and downstream sections with the state variables,

p̂ ≈ P1, Q̂ ≈ Q2,

that corresponds to assume that the output of the district is given by the state
variables. With these additional assumptions, which are reasonable for a short
pipe, the lumped parameter model becomes:

C
dP1
dt
+Q2 = Q1,

L
dQ2
dt
+RQ2 − P1 = P2.

(10.81)

where the input data have been put on the right hand side. This system can
be illustrated by the electric L-network shown in Fig. 10.7 (left).

R L

C

Q1 Q2

P1 P2 P1

Q1

P2

Q2

C

RL

Fig. 10.7. Lumped L-network (top) and L-inverted network (bottom) equivalent
to a short pipe
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Fig. 10.8. Cascade connection of a L-inverted and a L-network (top), lumped T -
network (bottom)
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Fig. 10.9. Cascade connection of a L-network and a L-inverted one (top), lumped
π-network (bottom)

In a similar way, if the pressure P1 and the flow rate Q2 are prescribed, we
still approximate the quantities at the upstream and downstream sections by
the state variables, i.e. p̂ ≈ P2, Q̂ ≈ Q1, yielding the system represented by
an electric analog, called an L-inverted network, depicted in Fig. 10.7(right).
If the mean pressures P1 and P2 are prescribed, the system can be modelled

by a cascade connection of L and L-inverted lumped representations, yielding
a T -network (Fig. 10.8). Similarly, if both flow rates Q1 and Q2 are prescribed,
the vessel Ω is described by an electric π-network, obtained as a cascade
connection of a L-network and a L-inverted network (Fig. 10.9).
The four different representations of the same vessel arise from four dif-

ferent possible assumptions about the data prescribed at the upstream and
downstream sections. In other words, they can be considered as the lumped
parameter simplifications of four different “boundary” values problems.

Remark 10.2.1 Alternative ways can be pursued for devising lumped param-
eter models. Among the most recent, we mention the one proposed in [359]
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Fig. 10.10. Electric analog network of the Jager, Westerhof and Noordergraf model
[244] including the sleeve effect and rheological effects. The larger N is, the more
accurate is the model

which is based on suitable approximations of the inverse Laplace transform of
the axisymmetric Stokes equations in rigid vessels.
Other lumped parameters models relying on more realistic assumptions

have been proposed by different authors. For instance, we mention [244]. In
this paper some modifications to the L-inverted network of Fig. 10.7 (right)
are proposed that account for the interactions between inertial and viscous
phenomena induced by the pulsatility of blood flow (the so-called sleeve effect)
and the non-Newtonian blood rheology (see Chapter 6). In particular, a bound-
ary layer with lower viscosity due to the different concentrations of red cells is
accounted for. The set up of the model was based on an explicit computation
of the impedance associated to an approximation of the Womersley solution
(see Chapter 5). The corresponding electric analog is depicted in Fig. 10.10.
More accurate models can be obtained by including more elements, i.e. by tak-
ing higher values of N . Resistance R0 is related to the non-Newton effects,
while RL (where L stands for leakage) accounts for secondary vessels that are
not accurately described in the model and however are relevant in the mass
conservation.
The picture highlights the remarkably simple modifications to the lumped

model required to account for the description of complex phenomena.

10.2.1 Lumped parameters models for the heart

As explained in Chapter 1, Section 1.1.1, the heart is subdivided into the right
and the left parts, separated by the septum. The right heart supplies the pul-
monary circulation, while the left one pumps the blood into the systemic tree.
Each side consists of two chambers, the atrium and the ventricle, separated
by the atrioventricular valves (the tricuspid valve in the right side, the mitral
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valve in the left one). Their role is to receive fluid at low pressure and transfer
it to a higher pressure region, acting as a pump. A possible representation of
heart working is given by left ventricle pressure-volume diagrams (see [227]
and Section 1.1).
Each ventricle can be described therefore as a vessel where the most

significant feature is the compliance and the compliance changes with time
(see [227, 256,443,509]).
The starting point for a candidate mathematical model is the relation that

links internal pressure with the radius of an elastic spherical ball filled with
fluid. Here and in the following we take Pext = 0. We have

πR2P = 2πEh0R
R− R0
R0

,

where R0 is the reference sphere radius (corresponding to P = 0), h0 is a
reference thickness of the ball surface and E denotes the Young’smodulus. The
contraction of the cardiac muscle may be taken into account by an increase of
E (stiffening) and by a shortening of the muscle length (i.e. a reduction ofR0).
It is more convenient to express this relation as a function of the volume V ,

instead of the radius. By recalling that V =
4

3
πR3, a linearisation procedure

leads to

P =
2E(t)h0
3R20

(
3

4π

)1/3
V
− 23
0 (V − V0) ,

where we have indicated the coefficients that change in time because of the
action of the muscle. This simplified model does indeed describe the major

characteristic of the ventricle. If we indicate C(t) =
3R20V

2
3

0

2E(t)h0

(
4π

3

)1/3
we

may re-write the relation in the more compact form

V (t) = C(t)P (t) + V0(t).

By differentiating with respect to time we obtain

dV

dt
= Q =

dC

dt
P + C

dP

dt
+MQ(t), (10.82)

where Q represents the (incoming) flow rate and MQ =
dV0
dt is the action

exerted by the contraction of the cardiac muscle.
A lumped representation (electric analog) of each ventricle2 is given in

Fig. 10.11, where R accounts for an additional viscous resistance inside the
ventricle. Here, MQ is represented by a current generator.
The electrical analog of the presence of heart valves has been represented

in Fig. 10.11 by diodes. Ideally, the behaviour of a diode is described by the

2 A mechanical representation of the heart working based on the classical Hill’s
model for the muscle can be found in [262] and [555].
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Q

dC

dt MQ(t)

R

Fig. 10.11. Electric analog of the lumped parameter model of a ventricle

Real

IdealP

Q

P

Q

Fig. 10.12. P −Q curve in a diode, representing the electric analog of a heart valve

curve depicted in Fig. 10.12 and given by

P = 0 if Q > 0,
Q = 0 if P < 0.

This means that the diode representation does not allow flow through the
valve if the pressure is higher downstream than upstream. If the upstream
pressure is higher, the diode allows the flow without any pressure loss. This
is an “ideal” behaviour. Real valves have a different behaviour that can be
represented by the curve

Q = QS
(
eαP − 1

)
(10.83)

called Shockley equation. In some cases, this equation has been approximated
by a piecewise polynomial curve (see e.g. [328]).
The presence of diodes introduces a nonlinear term in the system. However,

if we resort to the Shockley model, the nonlinear terms are smooth in terms
of mathematical regularity.

10.2.2 Lumped parameters models for the circulatory system

In the previous sections we have introduced lumped parameter description of
two basic compartments, a segment of vessel and the heart. A possible model
for the vascular network can be derived by “connecting” these compartments
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Fig. 10.13. Lumped parameters model for a branched vessel as a cascade of T and
π networks

by means of appropriate matching conditions, in a way similar to the one pur-
sued for the 1D model of bifurcations in Section 10.1.7. Matching conditions
will be actually driven by continuity of flux and balance of momentum at the
interfaces. More precisely, since our lumped parameter models deal with the
flow rate Q and the pressure P , matching conditions will essentially state the
continuity of these variables at the interfaces. In the electric analog, these
relations correspond to the application of the classical Kirchhoff laws for the
nodes (conservation of current/flow rate) and the nets (conservation of the
voltage/pressure). For these reasons, lumped parameter models will also be
referred to as Kirchhoff (K) models.
A sketch of possible connections of different compartments is given in

Fig. 10.13.
More detailed models for the circulation are proposed in [353,539], where

hundreds of elementary compartments are considered.

Mathematical and numerical analysis of lumped parameters
models

From the mathematical viewpoint, a general representation of lumped param-
eters models is a system of differential-algebraic equations (DAE) of the form

dy

dt
= b(y, z, t), t ∈ (0, T ],

G(y, z) = 0,

(10.84)
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together with the initial condition vector y|t=t0 = y0. Here, y is the vector
of state variables, the vector z contains the other variables of the network
and G represents the algebraic equations derived from the Kirchhoff laws.
Differentiating the algebraic equations with respect to time we get

dG(y, z)

dt
= Jy

dy

dt
+ Jz

dz

dt
= 0

where Jy =
∂G

∂y
and Jz =

∂G

∂z
are the Jacobian matrices with respect to y

and z. Assuming that Jz is non singular, the DAE system is said to be of
index 1 (see e.g. [184]). This is the most frequent case in problems concerning
lumped parameters models of the vascular system. We can then write

dz

dt
= −J−1z Jy

dy

dt
= −J−1z Jyb(y, z, t). (10.85)

Assuming that an initial vector z0 is available, the first equation of (10.84)
and (10.85) can be rewritten as the classical Cauchy problem

dw

dt
= a(w, t), t ∈ (0, T ],

w(t0) = w0,

(10.86)

where w = [y, z]T and a = [b,−J−1z Jyb]T . For the analysis of this problem
we can refer to classical mathematical results, e.g. [214]. We will recall the
following results:

1. if a(w, t) is continuously differentiable there exists a time interval [0, T ∗]
in which the solution of the problem exists and is unique;

2. if, moreover, the derivatives ∂ai/∂wj are bounded in the time interval
[0, T ], then the solution of the Cauchy problem exists and is unique in
[0, T ].

Numerical solution of Cauchy problems like (10.86) is an important branch
of scientific computing. A general introduction can be found in [268]. Some
basic ideas have been given in Section 2.3 in Chapter 2 for the Cauchy prob-
lems arising from the space discretisation of unsteady partial differential equa-
tions. Beyond the schemes mentioned there, we quote here a class of methods
particularly useful for the problems considered here, namely the Runge-Kutta
methods. Like the Euler and Crank-Nicolson methods, these schemes involve at
each time step only the solution of the current and the previous steps, yielding
however high accuracy by a splitting of the computation into an appropriate
number of stages. These schemes can be explicit or implicit. For instance, the
following is an explicit method of order 2 (called Heun scheme) given by

w� = wn +Δta(wn, tn),

wn+1 = wn +
Δt

2

(
a(wn, tn) + a(w�, tn+1)

)
.
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Some Runge-Kutta methods have interesting practical features prone to time
adaptive implementations. This means that with these methods it is possible to
devise competitive a posteriori error estimators that can be used for adapting
the time step to the solution dynamics. This feature is particularly useful in
vascular problems where a fast transient (systole) is followed by a relatively
steady phase (diastole). Furthermore, implicit Runge-Kutta schemes can be
succesfully used in stiff problems, i.e. problems where different components of
the solution w have so different dynamics that the fulfillment of stability and
accuracy requirements could ask for an intensive computational effort (see
e.g. [455]). These kind of problems can arise for instance when the lumped
parameter representation of the vascular system couples a precise description
of a district of interest with a rough description of the rest of the system.
Other stiff problems arise when the dynamics of blood solutes (see the next
section) is included in the mathematical model.
When the DAE problem (10.84) is of index higher than one, which is

not the usual situation in this kind of problems, both the mathematical and
numerical analyses become more involved. We refer the interested readers
to [14, 184].

10.2.3 Lumped parameter models for modelling terminal vessels

By using the electrical analogy presented above, we now consider briefly some
possible model for the terminal vessels to be used as stand-alone models or
for computing boundary conditions to 1D networks (Section 10.1.5).

Pure resistive load: In some cases, the dynamics of blood in peripheral vessels
is adequately represented by a simple algebraic law, see Fig. 10.14(right),
given by

p(t) = RQ(t), (10.87)

corresponding to the impedance ZT (t − τ ) = Rδ(τ − t), where δ denotes the
Dirac delta. This is particularly true for small vessels where the heart pulsatil-
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Q

Fig. 10.14. Left: Terminal impedance for the peripheral circulation. Right: Lumped
parameters representation (electrical networks) of possible impedances: (a) pure
resistive load; (b) original windkessel model; (c) three elements windkessel; (d) four
elements windkessel
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ity has been almost completely attenuated by the larger vessel compliance and
the motion is almost steady. An effective way of including this condition into
the 1D model is based on the introduction of a reflection coefficient.
The reflection coefficient, Rt, is defined in [290] as the ratio of the magni-

tude of change of pressure across the reflected wave, δP , to the magnitude of
change of pressure in the incident wave, ΔP . By an appropriate linearisation
and assuming that the pressure in the venous system is zero, it has been found
that this ratio can be expressed as function of the terminal resistance at the
vessel outflow and is related to the resistance R by the expression

Rt =
δP

ΔP
=
A0R− ρc0
A0R+ ρc0

=
R − ρc0/A0
R + ρc0/A0

.

The suffix 0 indicates the at rest state, i.e Q = 0 and A = A0.
The value of Rt may vary between a free outflow when Rt = 0 and a block-

age when Rt = 1. The use of this parameter to characterise wave reflections
caused by peripheral vessels is described in [535]. An advantage of using Rt
instead of R is that it is related to pressure data only.
There is another possible definition for the reflection coefficient which is

more suitable for prescribing boundary conditions based on the characteristic
variables. More precisely, Rc is defined as

Rc = −
Winc −Winc,0
Wout −Wout,0

,

where Winc and Wout are the incoming and the outgoing characteristic vari-
ables at the boundary point, respectively. The negative sign is necessary to
have a positive coefficient under normal conditions. A zero value of Rc indi-
cates a perfectly non-reflecting boundary: the incoming characteristic variable
is kept constant and equal to the value at rest, whileRc = 1 is again associated
to a perfect blockage (indeed, it can be verified that in this case u = 0).
If we consider the right boundary x = x2 and use (10.87) we have the

following expressions

Wout =W1 =
p

RA
+ 4c and Winc =W2 =

p

RA
− 4c.

Thus, if the rest value of the pressure is taken equal to 0, we have

Rc = −
W2 −W2,0
W1 −W1,0

=
R0 − p/4A(c− c0)
R+ p/4A(c− c0)

.

Using equations (10.39) and (10.87) in can be shown that Rc � Rt and
indeed we have an equality by linearising c around the rest configuration. At
the numerical level, W1 can be computed for instance by extrapolation along
the characteristic curves, refer to equation (10.46), the condition

W2 =W2,0 −Rc(W1 −W1,0), (10.88)

thus readily yields a boundary value for W2.
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Windkessel models: A more accurate representation of the terminal load is
provided by the models including some possible dynamics related to ves-
sel compliance and blood inertia. The first model was introduced by Otto
Frank in 1899 [170]. It included a peripheral resistance and a compliance (see
Fig. 10.14(b)) which yields a value of the impedance

ζT (ω) =
R

1 +
√
−1ωRC .

This model has been called Windkessel in analogy with the device (made
of a reservoir and an air chamber) converting the alternate (periodic) water
pumping of firemen into a steady flow. In order to better fit the experimen-
tal results (see [350, 539]), this basic model has been successively refined by
Westerhof and his co-workers with the introduction of a second resistance (see
Fig. 10.14(c)). The model has been called a three-element Windkessel or also
familiarlyWestkessel, and corresponds to an impedance value of

ζT (ω) =
R1 + R2 +

√
−1ωR1R2C

1 +
√
−1ωR2C

.

More recently (see [53,483]), it has been pointed out that the fitting of experi-
mental data with the three elements Windkessel model requires values that are
not clearly related to the physical properties of the arteries. A new improve-
ment of the model has been therefore proposed, leading to a four-element
network (Fig. 10.14 right, (d)) that includes an inductor for inertial effects.
The impedance of the model is

ζT (ω) =
R1R2 − CR1R2Lω2 +

√
ω(R1 + R2)

R1 −CR2Lω2 +
√
ω(L +CR1R2)

.

The determination of an appropriate estimate of the parameters of these mod-
els is a difficult problem. The interested reader is referred to [53, 350, 483].
An intuitive and systematic approach to estimate the parameters of a three-
element model is presented in [5].
The moduli of impedances and angles of the four networks considered in

Fig. 10.14 are drawn in Fig. 10.15.

Remark 10.2.2 For including this kind of conditions in the 1D model, an
alternative to equation (10.44) consists in formulating a condition in the time-
domain for the Riemann variables (see the previous remark). For instance, by
setting R = R1 + R2, the three-element Windkessel model corresponds to the
boundary condition

R2C
Ra +R1
Ra +R

dW2

dt
+W2 = R2C

Ra − R1
Ra + R

dW1

dt
− RcW1,

that generalises (10.88) (see [158]).



10 Reduced cardiovascular models 387

0
R_1

R_2
R_1+R_2

ω

|ζ
|

(a)
(b)
(c)
(d)

0

ω

∠
(ζ

)

(a)
(b)
(c)
(d)

Fig. 10.15. Modulus (left) and angle (right) for the transfer function of the four
networks in Fig. 10.14 (right)

Structured tree model: The dynamics spanned by family of Windkessel mod-
els is quite crude and in particular the wave propagation in the peripheral
circulation is not well represented. A possible way for accounting these effects
is the introduction of lumped parameters models with many elements, follow-
ing the geometrical multiscale approach discussed in Chapter 11. A different
approach, still resorting to the definition of an appropriate impedance func-
tion has been introduced in [358] and it is based on the representation of the
terminal vessels as a structured tree (see Fig. 10.16).
By classical arguments in the wave theory (see e.g. [373]), the impedance

at the beginning of a vessel with length l can be written as a function of the
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Fig. 10.16. Structured asymmetric tree representation of peripheral circulation
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impedance at the end:

ζbeg(ω) =
g−1

√
−1 sin(ωl/c) + ζend(ω) cos(ωl/c)

cos(ωl/c) + g
√
−1ζend(ω) sin(ωl/c)

, (10.89)

where

g = A0

√
3
√
A0K

2Eπhρ
, c =

√
2EπhK

3
√
A0ρ

,

and K is an appropriate function of the Womersley number. The basic idea
of this peripheral model is therefore to apply this formula for the terminal
impedance ζT that is expressed in this way as a function of the impedance
at the end of the first peripheral vessel. The latter will be computed recur-
sively by:

1. giving a model for the bifurcations in terms of impedance of parent and
daughters vessels;

2. applying (10.89) for each branch of the vascular tree.

Continuity of pressure and flow rate at the bifurcation yields the condition
linking the impedance of the parent vessel to the impedances of the daughter
vessels (we assume branching with only two daughters)

ζparent =

(
1

ζd1
+
1

ζd1

)−1
.

Each branch of the tree is then scaled on the basis of the following assump-
tions:

1. at each bifurcation, the daughters branches scale asymmetrically with
respect to the parent one with radius factors α, β that can be determined
on the basis of optimal branching considerations (see [358]);

2. under a certain threshold on the radius it is possible to assume that the
impedance is purely a resistive load, known by experimental data.

Observe that the threshold is applied to the vessel radii and not to the number
of branchings, so the number of branches is in general a function of the position
of the interface with the 1D model and will be not assumed to be known a
priori.
A more detailed code for this impedance modelling can be found in [364].

Results presented in [360] show that this approach for terminal outflow bound-
ary conditions provide reliable results. In particular, it provides a closer phys-
iological behaviour than the Windkessel models, with a correct phase-lag
between flow and pressure.
See also [477] for an advanced application of this approach.
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10.2.4 Modelling the interaction between cardiovascular system
and chemical species

In the previous sections we have assumed that the parameters of the models
depend on the morphological features and are constant in time (see equa-
tion (10.76)). This is a strong simplification since daily experience indicates
that these parameters change in different physiological situations. Heavy exer-
cise requires a body’s response that involves biochemical reactions, chemicals
transport (oxygen in particular) and definitely adjustments in blood flow.
The cardiovascular system has feedback mechanisms that regulate its work-
ing activity and are essential for life (see e.g. [227]). The dynamics underlying
these phenomena is extremely heterogeneous and complex, involving different
chemical species, the cardiovascular and the nervous systems from periph-
eral to central districts (see [364], Chapter 7). There are long-term mech-
anisms that are essentially driven by the renal activity. Presence of water
and salt or hormones can be adjusted by the kidneys for controlling arte-
rial pressure. Other mechanisms belong to the short term regulation effects.
In the latter case, the central nervous system (CNS) is the main mediator,
involving baroreceptors, mechanoreceptors and chemoreceptors. The latter are
sensitive to chemicals in blood (see Section 10.1.3). When the oxygen concen-
tration drops, chemoreceptors increases cardiac strength and vasoconstriction.
Baroreceptors are sensitive to the pressure alterations. They are located in the
carotid sinus and the aortic arch. The role of the baroreflex effect is to keep
the pressure within a physiological range. Mechanoreceptors are located in
the atria and in the pulmonary veins and control arterial pressure by acting
on the venous volume.
Other tuning dynamics are specifically present in the cardiovascular sys-

tem. In particular, the autoregulation is a mechanism for maintaining an
almost constant oxygen supply (in particular in the brain), driven by the
smooth muscles in the vascular walls (see [2, 227]).
Lumped parameter models are an affordable mathematical and numerical

tool for modelling these complex phenomena. Here we address some basic
ideas for including feedback mechanisms in the models introduced so far. We
essentially need:

1. lumped parameter models for chemical species, and
2. constitutive equations establishing the dependence of the parameters of
the cardiovascular model on the concentration of chemicals.

We present these topics by means of an example based on Chapter 1 of
reference [108].

Cardiovascular model

We assume the the cardiovascular system is represented by means of a set of
four compartments (see Fig. 10.17):
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Cs

Qa

Pa

Pv

Ps

Qs

CaRa

Ro

Rsp

Rsm

LH

RH

Cv

L

Fig. 10.17. Simplifed compartment model of the circulation

Right heart/lungs/left heart acting as a forcing term for the whole system.
Large arteries represented by a resistance Ra and a compliance Ca.
Systemic arteries that are represented by the compliance Cs and three sub-
districts:
1. skeletal muscle represented by the resistance Rsm and with flow rate
Qsm;

2. splanchnic compartment with resistance Rsp and flow rate Qsp;
3. other organs with resistance Ro and flow rate Qo.
The total systemic resistance will be given by

Rs =
(
R−1sm + R

−1
sp +R

−1
o

)−1
.

Venous system that is represented by the compliance Cv as their deformabil-
ity is the more relevant feature of the veins.

The cardiovascular system will be therefore modelled by a lumped parameter
model of the form

Ca
dPa

dt
= Qa −

Pa − Ps
Ra

,

Cs
dPs

dt
=
Pa − Ps
Ra

− Ps − Pv
Rs

,

Cv
dPv

dt
= Qa − Ca

dPa

dt
− Cs

dPs

dt
,

Qsm =
Ps − Pv
Rsm

, Qsp =
Ps − Pv
Rsp

, Qo =
Ps − Pv
Ro

.

(10.90)
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Here Qa is driven by the heart activity that can be simply given by

Qa =
Vstr

T
,

Vstr = Ved(Pv)− Vu,vent−
Pa
E
.

(10.91)

Here, T is the heart period, Vstr is the stroke volume of the heart. The latter
is assumed to be a function of the end-of-diastole volume Ved, which is in
turn a function of the venous pressure Pv, of the (constant) unstressed ven-
tricular volume Vu,vent and of the arterial pressure Pa by means of the heart
elastance+E.

Chemical model

Let us start considering only the dynamics of oxygen. We denote by [O2]i the
oxygen concentration in compartment i (i ∈ (a, v, sm, sp, o)) and by Vi is the
volume of the i compartment. A possible law for the dynamics of oxygen in
the systemic compartments (i = sm, sp, o) is

Vi
d[O2]i
dt

= −ri([O2]i, t) +Qi(t) ([O2]a − σi[O2]i) , (10.92)

where ri is the oxygen consumption rate and σi is a partition (constant) coef-
ficient, function of the oxygen concentration in the different compartments at
rest. The first term on the right-hand side is driven by the chemical reactions,
while the second one is related to the transport associated to the blood flow.
In the arterial compartment it is reasonable to assume that the oxygen con-
sumption is negligible, so that [O2]a is constant. In the venous compartment,
by mass conservation, we collect the residual oxygen coming from the systemic
compartments and its concentration is thus given by

[O2]v =
∑

i=sm,sp,o

Qi
Qa
σi[O2]i.

A possible generalisation of this equation to the multi-chemical case is the
following. We introduce a vector of chemical concentration ci so that cki is
the concentration of the kth species in compartment i. This model is given by

Vi
dci
dt
= Aψi(ci, t) + bi(ca, ci, Qi, t), i = sm, sp, o,

cv =
∑

i=sm,sp,o

Qi
Qa
Sici,

ca = ca(c
0
a, cv),

(10.93)

where Si is a diagonalmatrix with entries given by the partition coefficients σki
and c0a is the arterial vector concentration at rest. Moreover, ψi is the vector of
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consumption rates associated to chemical reactions and Ai is the so-called stoi-
chiometric matrix representing the weighed connection of the species involved
in the chemical reactions. Term bi represents the convection contribution to
the chemical dynamics, driven by the blood flow. It is worth pointing out that
since chemical reactions can have different time scales associated with each
reaction, differential systems like (10.93) can in practice be stiff.

Feedback model

The dependence of chemical dynamics on fluid dynamics is clearly defined
in the transport term bi of equation (10.93). Let us consider now how the
chemical dynamics can affect the blood flow (see Fig. 10.18). To this aim,
following [516], we introduce some new unknowns:

fes represents the efferent sympathetic activity ;

fev is the efferent vagal activity ;

fcs is the carotid sinus firing rate, that is the action generated by pressure
alterations at the level of the carotid sinus;

fcm is the chemoreflex activity ;

R̃i with i = sm, sp, o the state variables determining the systemic resis-
tances and influenced by the vagal activity;

xi with i = sm, sp, o the state variables determining the systemic resis-
tances and influenced by the chemoreflex activity;

Pn a reference pressure value.

CardiovascularPa

Pn

[O2 ] xi

Ri

E

TCentral

fcm

Chemoreflex

Baroreflex

n
e
r
e
f
f
E

t

Model

fev

fes

Ri

Nervous

System

fcs
n
e
r
e
f
f
A

t

Chemical Model

Fig. 10.18. Three compartments representation of the feedback cardiovascular
model
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We assume that the heart period T and the elastance E are influenced by
the efferent vagal and sympathetic activities. In particular, we assume that

dT

dt
=
1

τT
(T0 − T − σT,s(fes) − σT,v(fev)) ,

dE

dt
=
1

τE
(E0 −E − σT,s(fes)) ,

fes = fes,∞ + (fes,0 − fes,∞) exp(−kesfcs),

fev =
fev,0 + fev,∞ exp((fcs − fcs,0)/kev)
1 + exp((fcs − fcs,0)/kev))

,

fcs =
fmin + fmax exp((Pa − Pn)/ka)
1 + exp((Pa − Pn)/ka

.

(10.94)

where σ, E0, T0, f,∞, f,0, fmin , fmax and k (with their respective indices)
represent appropriate functions and constants. The reference pressure Pn is
driven by the chemoreflex activity and its temporal variation is given by

dPn
dt
=
1

τPn
(Pn,0 − Pn − σPn,cm(fcm)) . (10.95)

The systemic resistances are influenced both by the baroreflex and chemoreflex
activities. More precisely, for i = sm, sp, o we have

dR̃i

dt
=
1

τ
˜Ri

(
R̃i,0 − R̃i − σ ˜Ri,s(fes)

)
,

dxi

dt
=
1

τxi
(xi,0 − xi − σxi,cm(fcm)) ,

(10.96)

where finally we “assemble” the resistances

Rsm =
R̃sm
1 + xsm

,

Rsp = R̃sp(1 + xsp),

Ro =
R̃o
1 + xo

.

(10.97)

Finally, the chemoreflex control is driven by the oxygen concentration:

fcm =

⎧⎪⎨⎪⎩
0 if [O2]sm > [O2]

0
sm,

kcm
(
[O2]sm − [O2]0sm

)2
otherwise.

(10.98)
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Equations (10.90), . . . (10.98) represent a possible simplified model of feedback
mechanisms in the cardiovascular system More details can be found in [108,
363,515,516].
A major concern in the devise of this kind of models is the parameter

identification based on experimental data. There are different approaches for
pursuing this aim. Basically, the problem is recast into the form of the minimi-
sation of the distance between an experimental data set and the corresponding
results predicted by the theory, by acting on the values of the parameters to
be estimated. The “optimal values” can be found by means of:

• line search algorithms (see e.g. [403]), that are quite cheap and however
can found local (i.e. non global) optimal values;

• genetic algorithms, that compute the global optimal solution, even if with
a larger computational cost. See [109] for more details.

10.3 Conclusions

Although this Chapter is limited to a basic introduction to simplified models
of the circulatory system, we should stress that these models represent an
important tool for quantitative cardiovascular investigations. The simple rep-
resentation of a single vessel or a compartment makes these models well suited
for an affordable description of complex dynamics among different vessels or
compartments. As a matter of fact, in practice these models have been used in
cardiovascular mathematics before the Navier-Stokes based models, because
the latter require so many complex numerical techniques (and computational
time) for providing quantitative results. In particular, 1D models are appro-
priate for describing pressure wave propagation along the vascular tree [316],
and at which extent this can be affected by some pathologies, prostheses or
aging [3,4,158]. Lumped parameter models, on the other hand, are extremely
useful for describing complex dynamics among compartments, in particular
when the space details are not so relevant, like in the case of estimation of
blood flow reserves in some compartment (usually the coronary reserve) or
the feedback mechanisms.
The main drawback of these models is the loss of some details that could be

relevant at the systemic level, despite of their local nature. For this problem,
a possible approach is to couple together local and systemic models, as it is
addressed in the next chapter.
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Multiscale models of the vascular system

Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani

As we have illustrated in the previous chapters, there are essentially three
classes of models for the vascular system: fully three dimensional models,
based on the Navier-Stokes (NS) equations, one dimensional models, includ-
ing the space dependence on the vessel axial coordinate, based on the Euler (E)
equations, and the lumped parameter or zero-dimensional models, based on
the Kirchhoff laws (K) for hydraulic networks. Navier-Stokes based models can
account for many different features of blood flow problems, such as the blood
rheology (Chapter 6), the vascular wall dynamics (Chapter 3), the interaction
between blood flow and wall deformation (Chapters 8 and 9). These models
are perfectly adequate for investigating qualitatively and quantitatively the
effects of the geometry on the blood flow (Chapters 5) and the possible rela-
tions between local haemodynamics and the development of some pathologies
(Chapter 1). On the other hand, the high computational costs (Chapters 2, 3
and 9) restrict their use to cover few contiguous vascular districts only.
Euler-based models provide an optimal tool for the analysis of wave prop-

agation phenomena in the vascular tree. In particular, they are convenient
when the local flow details are less relevant than the accounting for propaga-
tive phenomena on large parts of the vascular tree and the numerical results
are needed in a relatively short time. These models outline the role of the
vascular system as a sort of telegraph line with the task of transmitting nutri-
ents as well as biological signals along the body. On the other hand, the space
dependence still retained in these models inhibits their use in the whole vas-
cular system. In fact, it would be impossible to follow the geometrical details
of the capillary network (not to mention the specific rheological assumptions
required by capillary circulation – see Chapter 6).
On the contrary, Kirchhoff-based models can provide a representation of

a large part or even the whole circulatory system, since they get rid of the
explicit space dependence (see Section 10.2 and [364]). In a simple and however
still quantitative way, these models can include the presence of the heart, the
venous system, but also account for self-regulating and metabolic dynamics,
as we have seen in Section 10.2.4.

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
c© Springer-Verlag Italia, Milano 2009
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If NS, E and K models provide such a different tools, reliable numerical
methods for real life applications need to overcome the drawbacks and weak-
ness of each individual class of models. This can be done by resorting to the
geometrical multiscale representation of the circulatory system.

11.1 What do we mean with geometrical multiscale
models?

Geometrical multiscale1 approach is a strategy for modelling the circula-
tory system, including the reciprocal interactions between local and systemic
haemodynamics by exploiting the complementary features of the different pos-
sible models. Indeed, these features suggest in a natural way to couple detailed
local models with coarser models able to describe the dynamics over a large
part or the whole system with acceptable computational costs (see Fig. 11.1).
Multiscale modelling can be regarded as a refinement of models, or a sort of

“models zoom” in a specific region of interest, moving from a rough description
of the whole system (bottom-up approach). From a different point of view, it

Fig. 11.1. A schematic representation of a geometrical multiscale model

1 Term “multiscale” is often used with a different meaning in many fields of math-
ematical and numerical modelling, whenever two or more time and/or spatial
scales are present. Typical examples are the modelling of turbulence or multires-
olution representations. In order to avoid ambiguities, we have added the term
geometrical for identifying the multiscale perspective illustrated in this chapter.
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can be regarded as a sophisticated and reliable method for computing correct
boundary conditions at the artificial boundaries of a district of interest, that
is the non-physical boundaries needed to bound the computational domain
(top-down approach). In the latter perspective, it can be considered also as a
specific numerical tool to avoiding, or at least reduce, spurious effects caused
by the presence of artificial boundaries (see also Chapter 2). Indeed, the prop-
agative nature of blood flow in large vessels require appropriate techniques to
avoid artificial wave reflections at those boundaries. In this perspective the
geometrical multiscale approach can be regarded as a new method for solving a
class of problems, whose application goes beyond those addressed in this book.
Despite the simplicity of the basic idea, the coupling of NS, E and K models

lead to nontrivial problems at both the mathematical and the numerical level.
After a quick review of geometrical multiscale models of the cardiovascular
system and the coupling conditions based on some intuitive formulations,
we will consider in more details the mathematical aspects of this approach,
leading to less immediate and however more accurate solutions.

11.2 Setting up of geometrical multiscale models

A main issue of the geometrical multiscale modelling is to devise mathemati-
cally and physically sound coupling conditions among the models, and develop
efficient techniques for their numerical computation.

11.2.1 Coupling of 3D and 1D models

According to the top-down approach introduced above, let us consider the cou-
pling of 3D and 1D models for haemodynamics (see Fig. 11.2). This technique
is of interest for instance when an endograft prosthesis or a stent is deployed
in a specific district (abdominal aorta, carotid, etc.) and one is interested to
the alterations induced by this operations on the pressure propagation over
the vascular tree.
As already mentioned, this is also an effective way to implement physically

based absorbing conditions, in particular for a 3D compliant model. As it
has been pointed out in Chapter 3 (see also [155]) the solution of the fluid-
structure interaction problem in a compliant vessel Ω3D features a propagative
behaviour, similar to that of a compressible flow in a rigid pipe. We have seen
in the previous chapter that two pulse waves travel along the circulatory
system, in opposite directions. The domain Ω3D normally represents just a
tiny portion of the whole cardiovascular system, for instance a specific artery.
The pulse waves outgoing the artery are partially reflected by the remaining
part of the system and give rise to a backward wave (see Chapter 10) which
eventually re-enters the artery under consideration. Forward and backward
components are related to the structure of vascular tree and their correct
mathematical description is crucial to avoid artifacts in the numerical solution
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Fig. 11.2. A 3D-1D model

induced by a wrong decomposition of incoming and outgoing waves. Coupling
of 3D and 1D models is a possible and reliable approach to achieve this goal
and requires the introduction of a proper 1D representation of the vascular
tree around Ω3D.
Appropriate matching conditions drive the data exchange between NS and

E models at the interface Γ (see Fig. 11.3). Different conditions in fact can
be considered. In particular we refer to the following quantities defined on Γ
(see [155])

A = meas(Γ ), Q =

∫
Γ

u · ndγ,

u =
1

A

∫
Γ

u · ndγ = Q
A
, p =

1

A

∫
Γ

pdγ.

(11.1)

A priori, it is reasonable to prescribe the continuity of the following quantities
at the interface:

[ A ] area: A3D = A1D;
[ B ] mean pressure: p3D = p1D;
[ C ] flux: Q3D = Q1D;

[ D ] incoming characteristic: u3D +
8

ρ

(√
p − pext + p∗ −

√
p∗
)
=W1,1D;

[ E ] mean total pressure: p3D +
1

2
u23D = p1D

1

2
u21D,

where W1,1D is the incoming characteristic variable
2 introduced in (10.37),

pext is the pressure external to the vessel and p
∗ depends on the physical

2 The incoming characteristic variable isW1 because we are considering an interface
which is an outflow (distal) boundary for the 3D model and correspondingly an
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Fig. 11.3. 3D-1D model: detail of the coupling at the outflow of Ω3D

features of vascular walls (see Chapter 3). The conditions above are not all
independent. For instance, [A],[B] and [D] imply conditions [C]. Similarly,
conditions [A], [C] and [D] imply [B]. Moreover, it is worth observing that,
following the derivation of 1D models carried out in Chapter 10, conditions [B],
[D] and [E] can be replaced by similar conditions where the mean pressure
on the 3D side is replaced by the averaged normal stresses (see Chapter 3
and [155]), yielding:

[ B1 ] σn3D = p1D;

[ D1 ] u3D +
8

ρ

(√
σn − pext + p∗ −

√
p∗
)
=W1,1D;

[ E1 ] mean total pressure: σn3D +
1

2
u23D = p1D

1

2
u23D.

In practise, we can identify different (alternative) sets of independent inter-
face conditions:

a) [A], [B], [D];
b) [A], [C], [D];
c) [A], [B1], [D1];
d) [A], [C], [D1];
e) [A], [E], [D];
f) [A], [E1], [D].

Different possible choices that are equivalent form the mathematical view-
point can however lead to different numerical schemes.

inflow (proximal) boundary for the 1D model. Should we swap the sequence of
1D and 3D models, the incoming characteristic variable would be W2.
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Some numerical issues

In numerical solution of multiscale models presented above it is natural to
split the scheme into the iterative sequence of dimensionally homogeneous
problems, namely 3D and 1D separately. In this way, we can figure out for
instance the following algorithm to be carried out at each time step3 . We
focus our attention on interface between the two models. In particular, we
refer to interface conditions (b) of the previous list. The conditions on the
other boundaries are assumed to be standard (see Chapter 3 and 10).

Initialisation. Set k = 0 and select an initial guess for the mean velocity

u
(0)
3D and pressure p

(0) at the interface. Typically, this guess is given by
the same quantities at the end of the previous time step.

Loop.

1. Solve the 1D model, using [D] as boundary condition at the interface,

by computing W
(k)
1 as a function of the current guess of the mean

velocity and pressure (or normal stress). The other boundaries of the
1D model will be properly managed (see Section 10.1.5). In this step,

A
(k+1)
1D and Q

(k+1)
1D are computed.

2. Solve the 3D fluid-structure interaction model, with [A] as a boundary

condition for the structure and [C] for the fluid by using A
(k+1)
1D and

Q
(k+1)
1D . At the end of this step, compute the new guess W

(k+1)
1 . Set

k = k + 1.

Test. The loop ends when:

|W (k)1 −W (k−1)1 | ≤ ε, |A(k) −A(k−1)| ≤ ε, |Q(k) −Q(k−1)| ≤ ε
(11.2)

being ε a given tolerance.

Analogous algorithms can be devised for the other interface conditions.
While the boundary conditions in step (1) of the loop lead to a mathemat-

ically well posed problem, step (2) in this form does not, since these averaged
data on the boundary are not enough to guarantee uniqueness of solution for
the associated 3D problem. A specific treatment of these problems is required.
To be more concrete, let us use condition [A] for the structure at step 2. On
the 3D compliant model we would need pointwise data for the wall displace-
ment η. On the other hand, when the area of the interface Γ (t) is known from
the computation of the 1D model, we have the average condition:∫

Γ(t)

dγ = A1D(t). (11.3)

We need to “spread” the average data to pointwise conditions on the displace-
ments η. To this aim we can assume a shape for the displacement depending

3 We will not put in evidence explicitly the temporal level for the sake of notation.
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on a single parameter to be tuned so to force (11.3). For instance, assume that
Γ is circular with centre on the axis of coordinates (xc, yc, zc), and belongs
to the plane identified by the equation z = zc. In this way the component η3
along z of η is constant and equal to zero and we can set:

η1(x, y, z, t) = ΔR(t) cos
(
tan−1

( y
x

))
=

√
A1D(t)− A0

π
cos
(
tan−1

( y
x

))
,

η2(t) = ΔR(t) sin
(
tan−1

(y
x

))
=

√
A1D(t) −A0

π
sin
(
tan−1

( y
x

))
.

(11.4)
Here A0 is the reference area of section Γ , corresponding to a zero displace-
ment, and ΔR(t) = R(t) − R0 is the difference between the current and the
reference radius. With this choice the average condition has been extended to
pointwise data by assuming a priori a planar circular shape for the interface
Γ . This technique can be extended to more general shapes.
In a similar way we can address condition [C], by assuming, for instance, a

velocity profile depending on a single parameter. For instance, let us assume
again that Γ has a circular shape in the xy−plane. Then, we can resort to the
Poiseuille velocity field (see Chapter 5):

u1 = u2 = 0, u3(x, y, t) =
2Q1D(t)

πρR2

(
1− (x− xc)

2 + (y − yc)2
R2

)
, (11.5)

where Q1D is the flow rate computed by the 1D model. Again, the arbitrary
selection of a velocity profile converts the average conditions into pointwise
Dirichlet conditions for the fluid problem.
Numerical results (see Fig. 11.4 and 11.5) show that this approach is actu-

ally able to reduce spurious back-reflections at the boundaries, in particular
when the arbitrary assumptions on the displacement shape or the chosen
velocity profile are realistic. However, in general, the arbitrary selection of a
shape for the displacement or the velocity profile strongly affects the numeri-
cal solution. Hence, the reliability of results obtained in this way is sometimes
questionable. More sophisticated mathematical and numerical techniques that
are able to expand average data to pointwise conditions are required for ensur-
ing better accuracy. We will address these techniques in Section 11.3.
Another drawback of this multiscale coupling still relies on the limited

capability of E models of covering the capillary network, which on the other
hand is the main source of the back reflections propagating in the arterial tree
and of including the action of the heart. More sophisticated multiscale models
are therefore needed.
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Fig. 11.4. 3D simulation: pressure wave propagation along a compliant vessel. Spu-
rious effects arise at the artificial downstream boundary

Fig. 11.5. Multiscale 3D-1D simulation: pressure wave propagation along the two
submodels. Spurious effects at the artificial boundary are small
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11.2.2 Coupling of 1D-0D and 3D-1D-0D models

A possible way to account for the presence of the capillary bed and the action
of the heart is to close the 3D-1D network with K models. This requires in
particular the coupling of 1D and lumped parameter models, through interface
conditions. A simplified version of this coupling has been already addressed
in Chapter 10. In that case, lumped parameter models were represented by
a simple terminal impedance for prescribing boundary conditions in the fre-
quency domain at the downstream sections of a 1D network. Here, we want to
give an insight of models and numerical issues arising from a precise and accu-
rate inclusion of the dynamics in K models. In the multiscale framework they
are described in terms of a system of differential-algebraic equations (DAE –
see (10.84)) in the time variable.
For the sake of simplicity, we consider the multiscale model represented in

Fig. 11.6, where the 1D model represents a simple cylindrical domain. More
complex problems, featuring a network of 1D segments or even a coupled
3D-1D model can be considered as well within the same framework.
In the model at hand we have two interfaces, Γ0 and Γ1, where it is rea-

sonable to prescribe the continuity of:

[ A ] area: A1D = A0D;
[ B ] pressure: P1D = P0D;
[ C ] flow rate: Q1D = Q0D.

Moreover, we could require the continuity of the Riemann variables:

[ D ] characteristic variable propagating from the heart to the peripheries:
Q0D
A0D

+
8

ρ

(√
P0D − pext + p∗ −

√
p∗
)
=W1,1D;

[ E ] characteristic variable propagating from the peripheries to the heart:
Q0D

A0D
− 8
ρ

(√
P0D − pext + p∗ −

√
p∗
)
=W2,1D.

Again, these conditions are not all independent. This is the case for
instance of [A] and [B], since both the E and K models include a wall law
linking together pressure and area. Should these wall laws be the same, the
continuity of the area would imply the continuity of the pressure and vice-
versa. More in general, only one between [A] and [B] can be explicitly pre-
scribed.
Similarly, only two conditions among [B], [C], [D] and [E] can be selected,

for instance:

1. conditions [B], [D] at the upstream interface Γ0;
2. conditions [C], [E] at the downstream interface Γ1.

Some numerical issues

A possible approach for solving this multiscale model still resorts to splitting
the computation into the sequence of dimensionally homogeneous problems.
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Fig. 11.6. 1D-0D model: the 1D model is given by a simple compliant straight
cylinder, the 0D model is composed by the network in the cube and two bridging
regions (upstream and downstream). Upstream bridging region is given by a T
network, featuring the flow rate Q0 as state variable. Downstream bridging region
has the pressure P1 as state variable. These interface compartments are compatible
with the splitting scheme described in the text

In the case of Fig. 11.6, this means that we solve separately the DAE system
arising from the lumped parameter model and the Euler hyperbolic system.
Let us consider preliminarily the simple case in which a 1D straight cylinder
is split into a 1D-0D model as illustrated in Fig. 11.7. In particular, let us
consider the multiscale model at the top of Fig. 11.7, where the 0D model is
represented by a L inverted network (see Chapter 10). The lumped parameter
model is therefore described by the following equations:

C
dP

dt
= Qup −Q,

L
dQ

dt
+ RQ = P − Pdw.

(11.6)
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A possible iterative scheme reads as follows. At each time step:

Initialisation. Set k = 0 and fix an initial guess for the interface flow rate

Q
(0)
up .

Loop.

1. Solve the 0D model (11.6), by using Q
(k)
up as forcing term. This yields

the estimates of Q(k) and P (k). On the basis of this computation,

Riemann variableW
(k)
2 at the interface entering the 1D model can be

computed.

2. Solve the 1D model by using incoming Riemann variable W
(k)
2 as

boundary condition. At the end of this step, a new guess for Q
(k+1)
up

is available. Set k = k + 1.

Test. The loop ends when the solution fulfils an appropriate test, for instance:

|P (k) − P (k−1)| ≤ ε, |Q(k)up −Q(k−1)up | ≤ ε.

Let us consider now the multiscale model on the bottom of Fig. 11.7. Here
0D model is represented by a L network, described by system

L
dQ

dt
+ RQ = Pup − P,

C
dP

dt
= Q−Qdw.

(11.7)

We can still use an iterative approach as follows.

Initialisation. Set k = 0 and fix an initial guess for interface pressure P
(0)
up .

Loop.

1. Solve the 0D model (11.7), by using P
(k)
up as forcing term. This yields

the estimates of Q(k) and P (k). On the basis of this computation,

Riemann variableW
(k)
2 at the interface entering the 1D model can be

computed.

2. Solve 1D model by using incoming Riemann variableW
(k)
2 as bound-

ary condition. At the end of this step, a new guess for P
(k+1)
up is avail-

able. Set k = k + 1.

Test. The loop ends when the solution fulfils an appropriate test, for instance:

|P (k)up − P (k−1)up | ≤ ε, |Q(k) −Q(k−1)| ≤ ε.

Several remarks are in order. First of all the use of characteristic variables
has the advantage of prescribing (at least approximately) absorbing boundary
conditions, well suited for avoiding numerical reflections at the boundary of
the E model (see Chapter 10).
Secondly, interface conditions are by definition localised in a specific posi-

tion in space. On the other hand, K models have lost an explicit space depen-
dence. Therefore, in managing matching conditions with K models:



406 Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani

Fig. 11.7. Two simple examples of 1D-0D multiscale models. At the top, the lumped
parameter model is given by a L-inverted network. On the bottom, it is given by
a L network. The two network configurations are appropriate for different iterative
solvers (see text)

1. interface conditions yield a forcing term in the 0D model;
2. different configurations of the 0D models are associated with different
iterative schemes: in the first case the 0D model is forced by the flow rate
Qup and provides the pressure P ; in the latter case, it is forced by the
pressure Pup and provides the flow rate Q.

The latter item deserves some further remarks. In lumped parameter prob-
lems, interfaces between E and K models are represented by the boundary of
the 1D domain and the compartments placed in the neighbourhood of the 1D
models4. The type of network used in these compartments defines implicitly
the state variables and forcing terms for the 0D model. In an iterative scheme,
the latter will be provided to the 0D model by the 1D problem, while the for-
mer are the variables that will be computed by the 0D and used to build the
boundary condition for the 1D model.

4 In the two oversimplified examples above they in fact corresponds to the entire
0D models.
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We call bridging regions those compartments of the 0D model that play the
role of the interfaces with the other models. The link between the graph of the
bridging regions and the numerical scheme will be called bridging region com-
patibility (see [409]).More precisely, we say that a numerical scheme is bridging
region compatible if it is consistent with the topology of the bridging regions.
For instance, for the multiscale model of Fig. 11.6, where the upstream

bridging region is given by a T network and the downstream one is given by
a π network, a bridging region compatible scheme reads as follows.

Initialisation. Set k = 0 and fix an initial guess for the upstream pressure

P
(0)
0 and the downstream flow rate Q

(0)
1 .

Loop.

1. Solve the 0D model, by using the available upstream pressure and
the downstream flow rate as forcing terms. Compute in particular the

upstream flow rate Q
(k)
0 and the downstream pressure P

(k)
1 . After this

computation, the incoming characteristic variables, W
(k)
1 upstream

and W
(k)
2 downstream are available.

2. Solve the 1D model by using the incoming characteristic variables
as boundary conditions. At the end of this step, new guesses for the

upstream pressure P
(k+1)
0 and the downstream flow rate Q

(k+1)
1 are

available.

Test. The loop ends when the solution fulfils an appropriate test, for instance:

|P (k)i − P (k−1)i | ≤ ε, |Q(k)i −Q(k−1)i | ≤ ε, i = 0, 1.

Remark 11.2.1 Step 1 can be regarded as a stand-alone lumped parameter
model, represented by the circuit of Fig. 11.8, where input variables of the 1D
model are represented by a current and a voltage generator respectively. In
terms of circuit analysis bridging region compatibility in fact implies that no
voltage/pressure generator is in parallel with a capacitor and no current/flow
rate generator is in series with an inductance. Under these assumptions it is
possible to prove that the DAE system associated with this stand-alone network
is of index 1 and it can be reduced to a well posed Cauchy problem for a system
of ordinary differential equations (see [121, Chap. 12]).

Aortic valve function

As we have pointed out, an advantage of K models is their capability of repre-
senting in relatively simple terms complex systems like the heart or the action
of control dynamics. Moving from the observation that “the left ventricle and
arterial circulation represent two mechanical units that are joined together to
form a coupled biological system” [350, Chap. 13], it makes sense to consider
a 1D model for the aorta coupled with the lumped parameter model of the
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Fig. 11.8. Stand alone 0D model corresponding to step 2 of the splitting iterative
algorithm (see text)

heart presented in Section 10.2.1. Since the coupling is mediated by the aortic
valve, we assume that there are two possible working states for the system
Heart-Aorta.

1. Closed valve (CV) condition: when the aortic valve is closed, the two sys-
tems are actually decoupled; in particular, for the arterial tree we have a
null flow rate condition at the aorta inflow, which in terms of the charac-
teristic variables implies

W1 = −W2.
2. Open valve (OV) condition: the ventricular pressure is related to the 1D
problem by solving equation (10.82) which we recall here for the sake of
clarity:

1

Ev

dPv

dt
+
d

dt

(
1

Ev

)
Pv = −Qv.

During this phase, we assume that ventricular flow rate Qv and pressure
Pv are equal to the arterial ones at the aorta inflow (see Fig. 11.9), corre-
sponding to conditions

Qv = Q1D, Pv = P1D.

A numerical implementation of these conditions by using the incoming
characteristic variable in the 1D network is addressed in [158].

Transition between OV and CV conditions cannot be prescribed a priori.
We assume that the valve opens under the action of a differential pressure
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Fig. 11.9. Ventricular and arterial pressures during the heart beat. When the aortic
valve is open, the two pressures can be assumed to be the same

and it closes when forced by a flow reversal. This means that when the valve
is closed we need to compare at each time step the aortic and ventricular
pressure. If Pv − P1D < 0 the valve is kept closed (CV conditions), otherwise
we switch to the OV conditions until the next closure. To determine the
instant of valve closure (end of systole) we check the sign of the flux at the
aortic proximal node. At the first time step when Qv becomes negative we
“close” the valve by adopting again CV boundary condition, up to the next
heart cycle (see Fig. 11.10).
In [158] this multiscale model has been used for simulating a 1D network of

the largest 55 arteries, coupled with the heart. The microcirculation is repre-
sented by simple Windkessel models at every 1D terminal section. Figure 11.11
pinpoints the relevance of the multiscale model (right column) in comparison
with a standard approach, in which the action of the heart is described as a
boundary condition, not sensible to the real functioning of the arterial net-
work. The standard model actually damps wave reflection, in particular in the
pathological case in which right femoral artery is supposed to be surgically
closed.

Pv − P1D?Closed Valve Open Valve

≥ 0

< 0

< 0

≥ 0

Qv?

Fig. 11.10. Flow chart representation of the aortic valve modelling
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Fig. 11.11. Comparison between the results obtained with standard proximal con-
ditions (left) and the coupling with the ventricular model (right). Values of velocity
(first and third rows) and pressure (second and fourth rows) in the mid-point of
the aorta are presented. We have simulated circulation in a physiologic (solid) and
pathologic (dotted) test case. The pathologic case corresponds to a total occlusion
of the right femoral artery. The first two rows refer to an adult patient, the other
ones to an elder patient. Pictures taken from [158], reproduced with permission

11.2.3 Coupling of 3D-0D models

In our top-down approach, we have coupled the three kind of models, moving
from the finest 3D down to the coarsest 0D. In some applications a sort of
shortcut modelling can be pursued, coupling together directly 3D and 0D
models. This is, for instance, the case when the wave propagation phenomena
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Fig. 11.12. Representation of a 3D rigid-0D geometrical multiscale model with three
bridging regions (BR0, BR1, BR2). At the inlet of the 3D domain, the bridging
region has the current/flow rate Q0 as state variable. The latter is computed by
the 0D model and provided to the NS model. In the other bridging regions, the
voltage/pressures pi, i = 1, 2, are the state variables. The 0D model is forced by the
mean pressure at the interface Γ0 and by the flow rates at Γ1 and Γ2

are not of interest, and a 3D simulation needs boundary conditions that could
account in a precise way the dynamics of the complete vascular tree. An
example of clinical relevance of this situation is given in Chapter 12.
Consider for instance the model obtained by coupling a 3D model of a

region of interest and a lumped parameter model like in Fig. 11.12. Again,
three model ingredients can be identified:

K model, represented by a system of ordinary differential equations in the
form

dy

dt
+ Ay = f .

NS model, represented by the Navier-Stokes equations with appropriate bound-
ary conditions on the vascular walls Γw;

interface conditions represented by continuity conditions.

In particular, at each interface we consider the following conditions:

[ A ] area: A3D,i = meas(Γi) = A0D,i;

[ B ] mean pressure: p3D,i =
1

A3D,i

∫
Γi

pdγ = P0D,i;
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[ C ] flow rate: Q3D,i = ρ

∫
Γi

u · nidγ = Q0D,i.

As we have already pointed out for the 3D-1D coupling, condition [B] can be
replaced by a condition on the normal component of the stress

[ B1 ]
1

A3D,i

∫
Γi

(pni − (∇u+∇uT ) · ni)dγ = P0D,i.

Possible interface conditions are therefore represented by [A], [B] and [C],
or else by [A], [B1] and [C]. If the 3D model is assumed to be rigid, the three
conditions are not independent and in particular [A] and [B] (or [B1]) cannot
be prescribed together. Actually, in the 3D model the area at the interface is
constant, while in the 0D model is not. Indeed it is related to the pressure by
an algebraic law like (10.21). For this reason, typical interface conditions in
the 3D rigid-0D coupling are [B] (or [B1]) and [C].

Some numerical issues

We consider the problem represented in Fig. 11.12 where the 3D model is
assumed to be rigid and interface conditions [B1] and [C] are prescribed. We
consider the following algorithm for the numerical coupling at each time step.

Initialisation. Select an initial guess for the pressure P
(0)
0 = P0 and the

flow rates Q
(0)
1 = Q1 and Q

(0)
2 = Q2 at the interfaces. Typical choice is to

take these quantities from the previous time step. Set the iteration index
k = 0.

Loop.

1. Solve the 0D model by using the forcing terms P
(k)
0 , Q

(k)
1 and Q

(k)
2 .

This step, in particular, computes the state variables of the K model

Q
(k+1)
0 , P

(k+1)
1 and P

(k+1)
2 .

2. Solve the 3D model by using the boundary conditions given by

Q
(k+1)
0 , P

(k+1)
1 and P

(k+1)
2 . Compute the average normal stress on

Γ0, P
(k+1)
0 =

∫
Γ0
(p(k+1)n0 − (∇u(k+1) + ∇u(k+1),T ) · n0)dγ and the

flow rates Q
(k+1)
i = ρ

∫
Γi
u(k+1) · nidγ, for i = 1, 2.

Test. The iteration continues up to the fulfilment of a convergence test, for
instance:

|P (k+1)i − P (k)i | ≤ ε, |Q(k+1)i −Q(k)i | ≤ ε, i = 0, 1, 2.

As done previously, several remarks are in order.

1. Bridging region compatibility. The compartment that stands at the inter-
faces with the 3D model (bridging region) has to be devised appropriately.
More precisely, it should allow the calculation of the quantities required by
the splitting scheme. For instance, in the example presented in Fig. 11.12
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the flow rate on Γ0 and the pressures P1 and P2 on Γ1 and Γ2, respec-
tively, must be state variables of the lumped parameter model. As we have
pointed out, this ensures well posedness of the problem solved at step 1.

2. 3D defective boundary data problems. The K model (as well as the E
model) computes averaged quantities that do not provide enough bound-
ary data to the 3D model in step (2) of the loop. As for the coupling
between 3D and 1D models, we could postulate a priori single parameter
profile for the velocity or the normal stress and use the average data to
set the parameter appropriately. For instance, we could “expand” average
data into pointwise data in the following manner:
Flow rate conditions → Poiseuille parabolic profile→ (Standard) Dirichlet
conditions (see (11.5));

Average pressure conditions → Constant normal stress → (Standard) Neu-
mann conditions:

pn− ν∇u · n = Pn (11.8)

where P is constant over the interface.
At which extent numerical results are affected by this arbitrary profile
selection is a crucial question for the reliability of multiscale modelling.
We will address this problem in the next sections.

Fig. 11.13 illustrates some numerical results with a multiscale model (2D
coupled with a 0D model) with the aim of computing the flow distribution in
a by-pass anastomosis for different levels of occlusions in the stenotic vessel
(results taken from [402]). This distribution strongly depends on the behaviour
of the whole vascular system. Consequently, the multiscale 3D-0D coupling is
an appropriate numerical tool for investigating the effectiveness of the by-pass.

Remark 11.2.2 The same algorithm for the 3D-0D coupling can be extended
to the compliant case. If the 3D compliant model adopts an algebraic model for
the vascular walls, no further interface conditions are needed. In the case of a
differential (in space) structure model, conditions on the displacements should
be prescribed. Again, as we have seen in the 3D-1D coupling, a condition on
the section area is not enough for the structure problem. A workaround is to
expand it into a pointwise Dirichlet condition as we have done in (11.4).

11.2.4 Improving multiscale models

So far, we have proposed different coupled models, with some basic ideas
for their numerical implementation. A mismatch of mathematical characteris-
tics of the submodels we want to couple requires specific strategies to obtain
feasible and efficient multiscale simulations. In particular, we have already
outlined the role of the characteristic variables as interface conditions in the
coupling of E models. They allow to formulate absorbing boundary conditions
for the E model, allowing a better description of wave propagation dynamics
at the interface. Another crucial issue is the role played by bridging regions
in coupling with K models.
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Fig. 11.13. Top: Left, multiscale problem with a completely occluded host artery
and a by-pass; Right: results in the fine domain at the end of a heart beat. Centre:
as in the Top line, but for a partially occluded case. Bottom: Flow division in the
host artery and in the graft for the two cases. On the left, the completely occluded
case. On the right, the partially occluded case. Pictures taken from [402]
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There are two further issues that deserve a further investigation, for the
improvements of multiscale modelling.

Average data expansion: when coupling 3D with 1D or 0D models, we need
to convert average data into proper boundary conditions for a differential
problem that requires “pointwise data” instead. We have proposed some
practical strategies, which however introduce a level of arbitrariness in
the final numerical solution. Indeed, numerical results in [342, 527] show
how the prescription of an arbitrary velocity profile can sometimes induce
incorrect results (and maybe lead a medical researcher to wrong conclu-
sions). We need therefore to understand if there is an optimal approach
able to reduce the impact on the final solution of the unavoidable arbi-
trariness. To be more precise, if we select an arbitrary parabolic profile
at the inlet of a cylindrical pipe, as done in (11.5), we could expect that
this choice will not affect the numerical results far away from that inlet
boundary. This “entry problem” has been studied mathematically and a
review of the theory and main results may be found in [181]. In practise,
for steady problems and in conditions akin to that in the cardiovascular
system, it is commonly accepted that the effects of the profile chosen at
the inlet are no more significant after an entry length L ≈ 0.06D where D
is the diameter of the pipe (see [542]). However, for unsteady problems it
has been verified in [423] that an entry length of 40D may be not enough
to recover the analytical (Womersley) solution from a prescription of an
inlet parabolic profile. Different strategies, able to force a given flow rate
without the prescription of a velocity profile are then necessary to improve
the reliability of multiscale results.

Efficiency of coupling iterative schemes: we have presented some basic iterative
schemes, resorting to the successive solution of standard subproblems.
The effectiveness of this kind of schemes (in terms of number of iterations
required for the convergence) can be improved for instance by introducing
appropriate relaxation strategies. Convenience of such splitting schemes
in comparison with non-splitting or monolithic solvers is another relevant
point in devising multiscale models.

We investigate these two items in the next sections. We also discuss math-
ematical well posedness of multiscale models.

11.3 Defective boundary data problems

Let us consider the 3D Navier-Stokes equations (see Chapter 2):

ρ
∂u

∂t
+ ρu · ∇u− μ!u+∇P = f ,

divu = 0,

(11.9)
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that we assume to hold in the 3D domain Ω. The boundary ∂Ω still consists
of the vascular wall Γw and the artificial boundaries Γi, with i = 1, 2, . . . , m.
For the time being, we assume that the vessel is rigid, i.e.

u|Γw = 0, (11.10)

where Γw denotes the part of the boundary corresponding to the vascular
wall. The initial conditions

u(x, 0) = u0(x) (11.11)

are assigned.
We will consider the two kind of averaged data encountered in the previ-

ous section, namely conditions on mean velocity or flow rates and on mean
pressures.

11.3.1 Flow rate problem

Consider problem given by (11.9), (11.10), (11.11), together with boundary
conditions:

ρ

∫
Γi

u ·n dγ = Qi, i = 0, 1, . . . , m,

where Qi are given functions of time. In the case of a rigid domain, the incom-
pressibility of the fluid implies the following constraint on the data:

m∑
i=0

Qi = 0.

To avoid dealing with this constraint we will consider a slightly different prob-
lem, namely

Pn− ν ∂u
∂n
= 0, on Γ0, ρ

∫
Γi

u · ndγ = Qi, i = 1, . . . , m. (11.12)

In the analysis of this problem, we will prove however that there is no loss of
generality with these conditions.
In the sequel, for the sake of simplicity, we set ρ = 1.
We have already pointed out that conditions (11.12) are not enough to

guarantee the existence of a solution. Three scalar conditions should be
required for the well posedness of the problem, while (11.12) provides only
a scalar value for each Γi, for i = 1, 2, . . .m. The approach advocated in the
previous section was based on a-priori selection of a velocity profile fitting the
given flow rate (see for instance [72, 151]).
This approach is in fact pretty simple, since it actually reduces the defec-

tive boundary problem to a classical Dirichlet one. Nevertheless there are
several limitations. Real geometries (see e.g. Chapter 4) are typically far from
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being cylindrical circular and rectilinear, which are the assumptions for the
Womersley and Poiseuille solutions. Moreover, a-priori selection of a profile
may affect the entire numerical solution.
In general, a practical workaround is to expand the computational domain

(flow extensions), so that the arbitrary velocity profile is prescribed far away
from the zone of interest. The downstream section of the extension is often
made circular to apply a parabolic profile. However, this technique affects the
computational costs, in particular for unsteady computations where, as we
have pointed out, we need a rather long extension to damp out the effects of
the arbitrary choice of the velocity profile.
Different approaches that do not require arbitrary prescription of a velocity

profile are therefore very helpful.

A variational approach

A strategy proposed in [218] relies on the selection of an appropriate varia-
tional formulation for the problem at hand including all the available data.
Variational formulation by itself will complete the boundary data set with
homogeneous natural conditions. These conditions have been called some-
times do nothing conditions, since they are obtained spontaneously as a result
of the chosen variational formulation5. They are indeed less perturbing (or
“invasive”) on the (unknown) solution, since they are natural conditions for
the chosen variational formulation.
To introduce this approach for the flow rate problem, we need some func-

tional spaces and a specific notation. Set:

V̂f ≡
{
v ∈ V f :

∫
Γj

v · n = 0, ∀j = 1, 2, . . . , m
}
,

and let us denote by bi, i = 1, . . . , m the functions of V f such that, for all
j = 1, . . . , m ∫

Γj

bi · ndγ = δij , ∇ · bi = 0.

These functions are commonly called flux carriers and act as a lifting of the

flow rate data. We set u = û+
m∑
i=1
Qibi. A possible variational formulation of

the flow rate problem is the following: find û ∈ L2(0, T, V̂f)∩L∞(0, T,L2(Ω))

5 This denomination is effective but also a little bit misleading, since in any case
these conditions “do something”. This is the reason why we do not adopt this
name here.
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and p ∈ L2(0, T, Qf) such that for all v ∈ V̂f and q ∈ Qf :

(
∂û

∂t
,v

)
+ a(u,v) + c (û, û,v) + c

⎛⎝û, m∑
j=1

Qjbj,v

⎞⎠+
c

(
m∑
j=1

Qjbj, û,v

)
+ b(v, p) =

(f ,v)−
m∑
j=1

((
∂Qj

∂t
bj,v

)
+Qj a(bj,v)

)
− c

⎛⎝ m∑
j=1

Qjbj,

m∑
j=1

Qjbj,v

⎞⎠ ,
b(û, q) = 0,

(11.13)

with û(x, 0) = u0 −
m∑
j=1

Qj(0)bj.

In fact, this formulation forces some conditions implicitly, as stated by the
following proposition (for the proof see [218]).

Proposition 11.3.1 The solution of the flow problems (11.13) fulfills the
following boundary conditions on Γi, i = 1, . . .m and for all t > 0,

pn− μ∇u · n = Cin, i = 1, . . . , m,

where Ci = Ci(t) are unknown functions of time.

Remark 11.3.1 In the case of a problem with flow conditions also on Γ0,
with the constraint on the data

∑m
i=0Qi = 0, the previous proposition still

holds with C0 = C0(t) an arbitrary function of time. The case considered in
(11.12) is therefore a special case where we choose C0 = 0. Problem associated
to conditions (11.12) is of the same type of the one with all flow boundary
conditions and it does not require to force the flow rate compatibility explicitly.

Concerning the well posedness, we have the following result, proved in
[218].

Proposition 11.3.2 Under suitable assumptions on the smoothness of the
domain and the initial data, there exists a time interval in which the flow
problem (11.13) is well posed. If ||∇u0|| and |Qi| for all i are sufficiently
small the solution exists for each t > 0.

This approach has a practical drawback. The functional space V̂f is not
standard. In view of the numerical approximation, the construction of finite
dimensional functional subspaces of V̂f , as well as that of the flux carriers is
rather problematic.
Different strategies have been proposed that do not suffer from these lim-

itations even if they present other drawbacks.
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Augmented formulation

A second approach, proposed in [156], considers the flux conditions as con-
straints for the solution, to be forced by means of Lagrange multipliers (in
a way similar to the treatment of the incompressibility constraint in the
mixed formulation of the Navier-Stokes). In practise, we introduce a vector
function λ(t) and resort to the following problem: find u ∈ L2(0, T,V f ) ∩
L∞(0, T,L2(Ω)), p ∈ L2(0, T, Qf) and λ ∈ (L2(0, T ))m such that for all
v ∈ V f , q ∈ Qf :(

∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑
i=1

λi

∫
Γi

v · n dγ = (f ,v),

b(u, q) = 0,∫
Γi

u · n dγ = Qi i = 1, 2, . . .m,

(11.14)
Well posedness of this augmented formulation can be proven by means of

classical arguments (see [195]). In particular, moving from the well posedness
result of Prop. 11.3.2, it can be shown that an inf-sup condition holds for the
augmented problem, leading to the following result (see [526]).

Proposition 11.3.3 Under the same assumptions of Proposition 11.3.2, the
augmented formulation (11.14) is well posed.

Moreover, the investigation of the boundary conditions forced in the aug-
mented formulation so that the problem has a unique solution highlights the
physical significance of the Lagrange multiplier. We have in fact the following
Proposition (for the proof see [156]).

Proposition 11.3.4 The solution of problem (11.14) fulfils the following con-
ditions on the artificial boundaries Γi, i = 1, 2, . . . , m and for t > 0,

Pn− μ∇u ·n = λin. (11.15)

In other words, the Lagrange multipliers λi do coincide with the functions Ci
and play the role of normal stresses on the artificial boundaries.
The augmented formulation is based on standard functional spaces, whose

finite dimensional approximations are readily built (and present in most of
the commercial packages). However the indefinite saddle point nature of the
associated problem needs a specific analysis. Discretisation of (11.14) leads
indeed to an algebraic problem that in general is not practical to solve in a
monolithic way, i.e. with the simultaneous computation of u, P and λi.
On the one hand the resulting linear system is in general ill conditioned,

on the other hand problem (11.14) is not standard, since it deals with velocity,
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pressure and the Lagrange multipliers at the same time. Therefore, the use of
existing software packages is complex, if not impossible, in this setting.
These remarks suggest to split apart the computation of the fluid dynamics

quantities (u/P ) from that of the λi, yielding the so-called segregated methods.
In this perspective, some numerical methods have been proposed in [156,526,
528] to this aim. We limit ourselves to consider algebraic splittings of the
matrix obtained after discretisation/linearisation of the problem at hand at
each time step. This system reads Ay = c, with

A =

⎡⎣C DT LTD 0 0
L 0 0

⎤⎦ , c =

⎡⎣b0
q

⎤⎦ , (11.16)

and represents the discrete counterpart of (11.14). Matrix L corresponds to
the discretisation of the boundary integrals on Γi, D is the discretisation of the
divergence operator andC is the result of the discretisation and linearisation of(
∂u

∂t
,v

)
+a(u,v)+c (u,u,v). Correspondingly, y = [U,P,Λ]

T
, contains the

nodal values of the unknowns of velocity, pressure and Lagrange multipliers
respectively. Finally b derives from the discretisation of source terms in the
momentum equation, and the entries of vector q are the prescribed flow rates
Qi. Using the notation

C =
[
C DT

D 0

]
, L = [L, 0],

matrix A can be rewritten in the form:

A =

[
C LT
L 0

]
.

Correspondingly, we set x1 = [U, P]
T and x2 = Λ, f1 = [b, 0]

T and f2 = q.
A possible way for splitting velocity/pressure and multipliers computations

is based on the following classical block LU factorisation:[
C LT
L 0

]
=

[
C 0
L −LC−1LT

][
I C−1LT
0 I

]
,

which yields the following three-step algorithm

1) Cx̂1 = f1,
2) LC−1LTx2 = Lx̂1 − f2,
3) Cx1 = f1 −LTx2.

We can observe that:

a) steps (1) and (3) require to solve a system in C, i.e. a standard Navier-
Stokes problem (see [526]);
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b) step (2) consists of solving a problem governed by the m × m matrix
LC−1LT , being m the number of artificial sections where the flow rate is
assigned. This is typically a small number in haemodynamics problems (≤
5). Therefore, a small number of GMRES iterations is in general enough to
reach convergence. However, the explicit computation of this matrix is not
convenient, since C is large and sparse and its inversion is expensive and
memory consuming due to the well known phenomenon of fill-in. However,
iterative methods can avoid the explicit calculation of the matrix, since
they only need the application of the current matrix to a vector. This
can be done in the following way (v, r, z and w are vectors of proper
dimensions)

r = LC−1LTv ⇒

⎧⎪⎪⎨⎪⎪⎩
z = LTv,
w = C−1z⇒ Cw = z,
r = Lw.

The second step on the right hand side requires again to solve a standard
Navier-Stokes problem;

c) step (3) can be rewritten in the form:

x1 = C−1f1 − C−1LTx2 = x̂1 −w

where vector w = C−1LTx2 is a by-product of the last iteration of step
(2), so this step requires a simple vector sum.

This approach can still be computationally expensive, because of the
numerous Navier-Stokes solves involved. The cost is particularly high for
unsteady problems, since the algorithm must be applied at each time step. For
this reason, some specific techniques for computing an approximate solution
to Ay = c have been devised, like the one in [527] that guarantees that the
error introduced is confined in a small neighbourhood of the sections where
flow rate are prescribed. In Fig. 11.14 we present an example of solution in
a realistic geometrical model of a carotid bifurcation. The heuristic approach
based on the prescription of an inlet velocity parabolic profile and a constant
pressure profile at the outlet of the internal carotid (on the left) yields a dif-
ferent solution of the velocity field computed than that obtained with the
Lagrange multiplier approach (centre). The solution computed by the inexact
approach [527] (on the right) is very similar to the Lagrange multiplier one,
yet it requires about half of the computational time.

Control approach

Finally, we address a different approach that is in some sense “dual” to the
Lagrange multiplier strategy. While in the Lagrangian approach the flow rate
boundary conditions are regarded as constraints to the Navier-Stokes equa-
tions in the new approach the latter play the role of state equations. They act
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Fig. 11.14. Computations in a 3D carotid bifurcation (the square identifies the
cutting plane). Velocity field obtained with the prescription of an inlet parabolic
profile (left), the augmented Lagrangian scheme (centre), the inexact approach of
[527] (right)

as “constraints” to minimisation of a functional which enforces the desired
boundary conditions.
Clearly, for this to work we need to make Navier-Stokes problem function of

some parameters, called control variables, over which the minimum is sought.
The defective boundary problem in this way is formulated as a control problem
(see e.g. [210]).
For the sake of simplicity, we introduce this approach for the case of the

steady Stokes problem. The extension to the unsteady Navier-Stokes problem
can be found in [163].
Let us consider the following functional associated with flux conditions

(11.12)

JQ : V f → R+, JQ(w) =
1

2

m∑
i=1

(∫
Γi

w · ndγ −Qi
)2
. (11.17)

We can formulate the defective boundary problem as follows: minimise JQ(u(k))
where u(k) is subject to the constraint

−μ!u(k) +∇P = f , in Ω

∇ · u(k) = 0, in Ω

u(k) = 0, on Γ

−Pn+ μ∇u(k) · n = 0, on Γ0

−Pn+ μ∇u(k) · n = −kin on Γi i = 1, . . . , m.

(11.18)

Here, f ∈ L2(Ω) is given and the control variables is the vector k whose
elements ki ∈ R are the normal components of the stress on the artificial
boundaries. In other words, we look for the values of ki such that the solution
of (11.18) minimises JQ.
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To this aim, following e.g. [210], we introduce the constrained functional:

L(w, s;λw, λs;η) = JQ(w) + μ(∇w,∇λw)+

b(s,∇ · λw) +
m∑
i=1

∫
Γi

ηiλw · ndγ − (f ,λw)− (λs,∇ ·w).

Here λw and λs are the so-called adjoint variables associated with w and
s respectively. Solution is sought by looking for stationary points of L.
This turns to be equivalent to solve the following problem6, where for the
sake of brevity we omit to specify that the differentials are computed in
[u,p;λu, λp;k], while we put into evidence the dependence on the control
variables.
Given f ∈ L2(Ω) and Q ∈ Rm, find u(k) ∈ V,p(k) ∈ L2(Ω), λu ∈

V, λp ∈ L2(Ω) and k ∈ Rm, such that, for all v ∈ V, q ∈ L2(Ω) and ν ∈ R:

(P )

〈dLλw ,v〉 = μ(∇u,∇v) + b(p,∇ · v)+
m∑
i=1

∫
Γi

kiv · n dγ − (f ,v) = 0,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(A)

〈dLu,v〉 = μ(∇v,∇λu) + b(λp,∇ · v)−
m∑
i=1

( ∫
Γi

u · n dγ −Qi
)∫
Γi

v · n dγ = 0,

〈dLs, q〉 = b(q,∇ · λu) = 0,

(Cj) 〈dLηj , ν〉 =
∫
Γj

νλu · n dγ = 0, j = 1, . . . , m.

Here, 〈dLu,v〉 indicates the Gateaux differential with respect to u applied
to v.
This system couples a steady Stokes problem (P), its adjoint (A) and m

scalar equations (optimality conditions, denoted by (Cj)). Observe that the
last condition forces the adjoint variableλu to have a null flux on the artificial
boundaries. Well posedness of this problem can be proven by resorting to fixed
point arguments (see [163]).
The numerical solution of this problem is not a trivial task. A possible

approach is to resort to the steepest descent method applied to the minimi-
sation of the functional at hand. For more details see [163].
In Fig. 11.15 we report the computation for the same case of Fig. 11.14,

solved with the control approach. The differences with the solution computed
with the Lagrange multiplier approach, reported in the figure on the right,
are below the discretisation errors. The computational cost of this approach

6 Rigorously speaking, the problem is obtained by forcing the Gateaux differentials
of L evaluated along the direction of any test function to vanish in correspondence
of the solution [u,p;λu, λp;k] (see [210]).
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Fig. 11.15. Control approach applied to a flow rate problem in a 3D carotid bifurca-
tion. On the left, the solution obtained by solving the minimisation problem. On the
right, plot of the differences with the solution obtained by the Lagrange multiplier
approach. The differences are below the discretisation error

can be made comparable with that of the augmented formulation (solved by
the splitting scheme) thanks to a proper selection of the iterative solver (see
[163]) for the sequence of problems (P ), (A) and (Cj). The control approach
is however more versatile, as we will illustrate when considering the mean
pressure problems.

11.3.2 Mean pressure problem

Let us consider now the following problem: look for (u, p) such that equation
(11.9) is satisfied with conditions (11.10) and (11.11) and∫

Γi

pdγ = Pi, i = 0, 1, . . . , m, (11.19)

where Pi are given functions of time. As for flow rate problem, conditions
(11.19) are not enough and some further information need to be prescribed
to obtain a well posed problem. Let us illustrate some approaches that aim
at completing these conditions in a mathematically sound way.
Again, we will introduce a simple variational approach at first, then we

will consider a possible Lagrange multiplier formulation. Both approaches are
affected by some important drawbacks that the formulation based on control
approach overcomes.

A variational approach

In [218] the following variational formulation of the mean pressure problem
is proposed: given Pi(t), i = 1, 2, . . .m, find (u, P ) ∈ L2(0, T ;H1(Ω)) ×
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Fig. 11.16. A domain where variational formulation (11.20) for the mean pressure
problem is not exact. τ 1 and τ 2 are the directions orthogonal to the axis a and n
is the unit vector orthogonal to the artificial boundary

L2(0, T ;L2(Ω)) such that for all v ∈ H1(Ω) and q ∈ L2(Ω)(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) = (f ,v)−

m∑
j=1

Pj

∫
Γj

v · ndγ,

b(u, q) = 0,
(11.20)

with u(x, 0) = u0(x).
The boundary conditions added implicitly by this formulation are identi-

fied in the following Proposition (see [218]).

Proposition 11.3.5 Any smooth solution of (11.20) fulfils the following
boundary conditions on the artificial boundaries Γi, i = 0, 1, 2, . . .m and for
t > 0

Pn− ν∇u · n = Pin. (11.21)

In practise, formulation (11.20) forces the mean pressure data by imposing
it as a constant normal stress on the artificial boundaries. This is indeed the
expected solution in special domains, like a cylindrical rectilinear pipe where
Γi is normal to the axis. Here, the analytical solution of the mean pressure
problem may be computed and satisfies (11.21).
For a generic domain, however, this technique may force a too strong

condition, which does not correspond to what is physically expected. This is
for instance the case of a rectilinear cylindrical domain with Γi oblique to
its axis (see Fig. 11.16). Here, we would like the mean pressure problem to
reproduce the Poiseulle flow (in steady situations) or the Womersley solution
(in a pulsatile flow), which however in this case do not satisfy (11.21). We
should therefore consider different approaches.

Augmented formulation

An augmented formulation for pressure drop problems still stems from regard-
ing mean pressure data as constraints for the Navier-Stokes solution, leading
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to the problem: find u ∈ L2(0, T,V f)∩L∞(0, T,L2(Ω)), p ∈ L2(0, T, Qf) and
λ ∈ (L2(0, T ))m such that for all v ∈ V f , q ∈ Qf :(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑
i=1

1

Γi

∫
Γi

Pdγ = (f ,v),

b(u, q) +

m∑
j=0

λj

∫
Γj

qdγ = 0,

1

|Γi|

∫
Γi

Pdγ = Pi i = 1, 2, . . .m.

(11.22)

Unfortunately, this problem is not well posed. Indeed, it is possible to
verify (see [155]) that the conditions forced implicitly by this formulation are

u(x, t) · n = λi(t) on Γi.

In general, since λi are non zero constants in space, the latter conditions are
incompatible with the fact that u = 0 on Γw. The discontinuity on Γ i ∩ Γw
leads to a value of the velocity on the boundary which cannot represent a trace
for H1(Ω), the natural functional space where we seek the velocity solution
of our flow problem. Indeed, the augmented formulation is appropriate in the
case where only a slip condition (i.e u · n = 0) is imposed on Γw, a situation
which however is not physical for a Navier-Stokes problem.
For this reason, the augmented formulation for mean pressure drop prob-

lems is not investigated any further.

Control approach

The approach based on control theory presented for the flow rate problems
can be straightforwardly extended to the mean pressure problem. With this
aim, we introduce the following functional

JP (s) =
1

2

( m∑
i=0

1

|Γi|

∫
Γi

s dγ − Pi
)2

(11.23)

and, as for the flow rate conditions, we consider a constrained minimisation
problem. Again, we assume that Navier-Stokes equations play the role of con-
straint for the solution minimising (11.23). As control variables we still assume
the constant normal stresses k = [ki]. It is worth remarking that this is not the
only possibility, since other choices for the control variables can be pursued,
such as flow rates (see [163]).
Still referring to steady Stokes equations for the sake of simplicity, we

introduce the following Lagrange functional:

L(w, s;λw, λs;η) = JP (s) + a(w,λw) + d(s,λw)

+

m∑
i=0

∫
Γi

ηiλw · n dγ − (f ,λw) + d(λs,w).
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A stationary point of L satisfies the following problem: given f ∈ L2(Ω) and
Pj ∈ R, j = 0, . . . , m, find k ∈ Rm, u(k) ∈ Vdiv, p(k) ∈ H1(Ω),λu ∈ Vdiv
and λp ∈ H1(Ω), such that, for all v ∈ Vdiv, q ∈ H1(Ω) and ν ∈ R,

(P )

⎧⎪⎨⎪⎩ 〈dLλu ,v〉 = a(u,v) + d(p,v) +
m∑
i=0

∫
Γi

kiv · ndγ − (f ,v) = 0,

〈dLλp , q〉 = d(q,u) = 0,

(A)

⎧⎪⎨⎪⎩
〈dLu,v〉 = a(v,λu) + d(λp,v) = 0,

〈dLp, q〉 =
m∑
i=0

( 1
|Γi|

∫
Γi

p dγ − Pi
) 1
|Γi|

∫
Γi

q dγ + d(q, λu) = 0,

(Cj) 〈dLki, ν〉 =
∫
Γi

νλu · ndγ = 0, i = 0, . . . ,m.

One of the most interesting features of this approach is that functional to
be minimised can be adjusted for including some possible a priori information
on the behaviour of the solution on artificial boundaries. For instance, for a
boundary of a pipe non orthogonal to the axis (see Fig. 11.16), where formu-
lation (11.20) fails, the functional to be minimised can be adapted in order to
include the physical evidence of the prevalent axial direction of the flow. We
resort in this case to the functional

L(w, s;λw, λs;η) = JP (s) + a(w,λw) + d(s,λw)

+

m∑
i=0

∫
Γi

ηiλw · n dγ − (f ,λw) + d(λs,w) + S(w, τ 1, . . . , τm) (11.24)

where in a problem with d space dimensions

S(w, τ 1, . . . , τm) =
1

2

d−1∑
l=1

m∑
i=0

∫
Γi

|w · τ l|2 dγ, (11.25)

and τl are the orthogonal directions to the pipe axis a, which in this case do
not coincide with the tangential directions to the boundary Γi. The term S
forces the velocity components orthogonal to a to be small. With a proper
choice of control variables, this procedure yields good numerical results.
For instance, suppose to prescribe a mean pressure

∫
Γ pdγ = P =

1g/(s2 cm) at the outlet Γout of the domain T (see Fig. 11.17 top). Boundary
Γout is supposed to be an artificial boundary in a pipe where a Poiseuille flow
holds, so that vertical velocity is zero.
By minimising functional (11.23), an undesirable vertical velocity at the

outlet occurs (Fig. 11.17, centre) while this is not anymore the case when
using the penalised functional (11.24) with (11.25) and the complete stress
(normal and tangential) as control variables. Fig. 11.17, bottom, show that
the latter strategy is able to strongly reduce the wrong tangential velocities.
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τ
u

a

n

Fig. 11.17. Simulations in a 2D pipe with an oblique boundary: in the centre
axial and normal velocity components by solving a mean pressure problem with the
minimisation of (11.23). On the bottom the same problem solved by minimising
(11.25): the velocity component along τ is strongly reduced (maximum value in the
last figure is 10−5)

Remark 11.3.2 As previously pointed out, different variational formulations
lead to different boundary conditions. For instance, if we exploit the vector
identity ∇(1/2|u|2) = u · (∇u)T , momentum equations can be equivalently
reformulated

∂u

∂t
+ u · ∇u− u · (∇u)T − ν!u = −∇

(
P +

1

2
|u|2

)
.

Variational formulations associated to this form lead to natural conditions

where the total pressure P +
1

2
|u|2 replaces the pressure P . This form of the

momentum equations is therefore well suited for defective boundary conditions
on the total pressure. Other strong formulations of the momentum equations
well suited for other kinds of boundary conditions are considered in [32].
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11.3.3 Defective boundary problems: the compliant case

When describing a compliant domain, different models for the vessel mechan-
ics could be considered, as discussed in Chapter 3. Models which do not involve
a differential operator for the space variables, like the algebraic laws consid-
ered in Chapter 10 do not need boundary conditions for the wall problem.
Models which exhibit second order differential operators in space, on the con-
trary, require boundary conditions on the artificial boundaries that typically
either prescribe the position d or the normal stresses (see Chapter 3). In this
case, defective problems occur also for the structure problem and a complete
analysis is still missing. Here, we limit ourselves to some basic remarks.
Possible approaches are suggested by the strategies presented in the rigid

case. For instance, let us assume that a boundary condition is prescribed on
the area of the i−th artificial section∫

Γi(d)

dγ = Ai(t). (11.26)

This condition can come from coupling a 3D compliantmodel with a 1D model
or can be inferred by measurements. It is clear that (11.26) can be regarded
in general as an average condition for the vascular wall position. As a matter
of fact, assume that the interface Γi is planar and the z-axis is aligned along
its normal. Then, we may write

d(x, y, z, t) =

{√
x2(t) + y(t)2 = Ri(θ, t),
z = zi,

where θ = tan−1(y/x). In this case, condition (11.26) provides∫ 2π
0

∫ R(θ,t)
0

ρdρdθ = Ai(t). (11.27)

As done in Section 11.2 (eq. (11.4)), we can pursue a heuristic approach similar
to the one for flow rates. The latter was essentially based on the a-priori
selection of a velocity profile, so that condition (11.27) can be fulfilled by
arbitrarily selecting a profile forRi(θ, t). In particular, assumption of a circular
shape implies to take Ri independent of θ. In this way, (11.27) reduces to

πR2i (t) = Ai(t)⇒ Ri(t) =
√
Ai(t)

π
.

More in general, one can set Ri(t, θ) = Ci(t)R0(θ) where Ci(t) is selected in
such a way that:

C2i (t)

2π∫
0

R20(θ)

2
dθ = Ai(t).

In practise, this amounts to assume that boundary area evolves according to
a homothety of the reference area described by R0(θ) (see [52]).
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Fig. 11.18. “Artificial” section of a compliant domain

As for the case of flow rate conditions, this strategy upgrades defective
data for the displacement to classical Dirichlet conditions and actually requires
low computational costs. This is an important feature in particular for fluid-
structure interaction problems which are usually computationally very expen-
sive.
However, different mathematically sound approaches can still be pursued.

Control approach can be extended to the compliant case, by including con-
ditions on structure in the functional to be minimised. For instance, pressure
and area conditions in the form∫

Γi

Pda = Pi,

∫
x∈Γi(d)

dγ = Ai (11.28)

can be faced by resorting to the minimisation of

Jp,A =
1

2

(∫
Γi

Pda− Pi
)2
+

(∫
x∈Γi(d)

dγ −Ai
)2

with the constraint given by fluid-structure equations.
Another possible approach refers to the augmented formulation. In [352] an

augmented formulation for a compliant 3D model is considered with flow rate
boundary conditions. Since no data were available for the structure, homoge-
neous natural conditions have been introduced. In Fig. 11.19 we report the

Fig. 11.19. Comparison between the inlet profiles in a rigid and compliant simula-
tion. The results are obtained by prescribing the sinusoidal in time flow rates with
a Lagrange multiplier approach [352]
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velocity profile computed with this approach at the inlet of a compliant ves-
sel, compared to the solution of the corresponding rigid case. The solution is
axial-symmetric, so that only half profile is reported.

11.4 Some well posedness results

In this section we recall some theoretical results on multiscale models. We
illustrate in particular some stability properties concerning the coupling of
3D and 1D models. Then we will present a general well posedness analysis of
3D/0D models and its extension to the 1D/0D case.

11.4.1 Coupling of 3D and 1D models

Referring to Fig. 11.20, let us consider a 3D−1D coupling, where for the sake
of simplicity we assume that the interface between the models is normal to
the z axis. The 3D model is given by

∂u

∂t
+

(
1

2
∇|u|2 + (∇× u) × u

)
−∇ · (2νD(u)) +∇P = f x ∈ Ωf , t > 0,

∇ · u = 0 x ∈ Ωf , t > 0,

ρw
∂2ηr

∂t2
+ σηr = Φr − Φext x ∈ Γw, t > 0,

(11.29)
where ρw is the wall density, ηr is the radial displacement, while we assume
that axial and circumferential displacements are null, and Φr−Φext is the dif-
ference of stresses in the radial direction induced by the fluid and the external
organs. Observe that the structure is modelled by the independent rings model
(structure is considered as a stack of independent slices or rings), while the
convective term of the fluid problem has been rearranged in order to have nat-
ural conditions associated with the total pressure (see Remark 11.3.2). System

is completed by the initial conditions ηr(x, 0) = η0,
∂ηr

∂t
(x, 0) = ur for x ∈ Γw

Fig. 11.20. Domain for the coupled 3D/1D problem
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and u(x, 0) = u0 for x ∈ Ω. At the inlet Γin of the 3D domain we can assume
both Dirichlet and Neumann conditions for the Navier-Stokes equations.
For z ∈ (a, b) we assume the 1D model to satisfy equations (10.27) that

we report here for completeness

∂A

∂t
+
∂Q

∂x
= 0,

∂Q

∂t
+
∂

∂x

(
α
Q2

A

)
+
A

ρ

(
∂p

∂x

)
+KR

Q

A
= 0.

We assume also that area and pressure are related by the algebraic law (see
Section 10.1.1)

P − Pext = ψ(A,A0, β) = β
√
A−

√
A0

A0
.

On z = b we assume absorbing boundary conditions, while in z = a we set((
P +

1

2
|u|2

)
I− 2νD(u)

)
· n = P1D +

1

2
|u1D|2,∫

Γf

u · ndγ = Q1D.
(11.30)

To the 3D model we associate the following energy functional

E3D =
1

2
||u||2L2(Ωf(t)) +

ρw

2
||∂ηr
∂t
||
2

L2(Γw,0)
+
b

2
||ηr||2L2(Γw,0)

where Ωf(t) is the fluid domain at time t while Γw,0 is the reference structure
domain, which here reduces to the wall boundary of Ωf (0). For the 1D model,
we select the following energy

E1D =
1

2

∫ b
a

Q2

A
dz +

∫ b
a

∫ A
A0

ψ(τ, A0, β)dτdz.

We have then (see [159]) the following Proposition.

Proposition 11.4.1

1. If homogeneous Dirichlet conditions for the velocity are prescribed on Γin,
the following ( energy decay property) holds

E3D(t)+ ν
∫ t
0

||D(u)||2L2dt+ E1D(t)Kr
∫ t
0

∫ b
a

Q2

A2
dzdt ≤ E3D(0)+ E1D(0).
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2. If non homogeneous Neumann conditions for the fluid are prescribed on
Γin with data g, we have ( energy estimate)

E3D(t) + ν
∫ t
0

||D(u)||2L2dt+ E1D(t)Kr
∫ t
0

∫ b
a

Q2

A2
dzdt ≤(

E3D(0) + E1D(0) + C
∫ t
0
||g||2L2(Γin)

)
e2νt.

Remark 11.4.1 The previous results can be extended to more complex domains
with many interfaces between 3D and 1D models. As a matter of fact, they
can be applied locally at each interface.

11.4.2 Coupling of 3D and 0D models

We consider now the multiscale 3D/0D depicted in Fig. 11.18. In particular
we make the following basic assumptions.

1. The NS model is given in terms of classical primitive variable formulation
of Navier-Stokes equations. We assume that initial data and forcing terms
are small enough, for the sake of well-posedness of the problem (see [218]).

2. Nonlinear terms of K model (introduced by the modelling of valves and of
the heart action) are described by suitable smooth functions (see Chap-
ter 10).

This coupled problem can be analysed by a fixed point strategy represented
in Fig. 11.21. Precisely, we regard the solution as the fixed point of an operator
T given by the sequence of NS and K problems (denoted respectively as PNS
and PK). Setting T = PK ·PNS the solution to the coupled multiscale problem
satisfies

s = T s = PK · PNSs.
In this framework, we add two further assumptions.

3. The splitting into subproblems PNS and PK represented in Fig. 11.21
is bridging region compatible. With reference to Fig. 11.18, the role of
interface variables in the splitting is given in Table 11.1.

4. Defective boundary problem PNS is formulated in terms of variational
formulations following the variational approach advocated in Section 11.3.

T

s0D

PKPNS
s3Ds0D

Fig. 11.21. Splitting/fixed point reformulation of multiscale model of Fig. 11.18
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Table 11.1. Role of matching data in a bridging region compatible splitting for
multiscale model depicted in Fig. 11.12

Input PNS = Output PK Input PK = Output PNS
Γ0 pressure P0 flow rate Q0

Γ1 flow rate Q1 pressure P1

Γ2 flow rate Q2 pressure P2

More precisely, let V̂f denote the space

V̂f ≡
{
v ∈ V f :

∫
Γ0

v · n = 0
}
,

and b0 a function of V f such that

∫
Γ0

b0 · n dγ = 1. Set u = û +Q0b0.

The following variational formulation holds. Find û ∈ L2(0, T, V̂f) ∩
L∞(0, T,L2(Ω)) and p ∈ L2(0, T, Qf) such that for all v ∈ V̂f and q ∈ Qf :(

∂û

∂t
,v

)
+ a(u,v) + c (û, û,v) + c (û, Q0b0,v) + c (Q0b0, û,v)+

b(v, p) = (f ,v)−
(
∂Q0

∂t
b0,v

)
+Q0 a(b0,v)− c (Q0b0, Q0b0,v)−

P1

∫
Γ1

v · ndγ − P2
∫
Γ2

v · n dγ,
b(û, q) = 0,

(11.31)
with û(x, 0) = u0 −Q0(0)b0.
By collecting classical results of calculus and results proven in [218], [121],

we have that:

1. NS Problem: If initial and forcing data are small enough, PNS is well
posed.

2. K Problem: DAE system of PK is of index 1 and can be reformulated
as a well posed Cauchy problem.

3. Multiscale: There exists T � > 0 such that T is compact in (0, T �]. This
means that the application of T to bounded sequences of arguments yields
convergent sequences in appropriate topologies (for a more precise defini-
tion of compactness see e.g. [556]).

The latter step actually proves the existence of a fixed point, thanks to the
classical Schauder’s fixed point theorem (see [409]).

11.4.3 Coupling of 1D and 0D models

Following a similar outline as for the 3D-0D coupling, in [147] the coupling
between 1D and 0D models is investigated. It is assumed that the 1D model is
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represented in terms of characteristic variablesW and that the DAE system
of lumped parameters model is reduced to an ordinary differential system, so
that the coupled model reads

∂W

∂t
+

[
μ(W1,W2) 0

0 λ(W1,W2)

]
∂W

∂x
= 0, in R+ × [0, T ],

dy

dt
= G(y, t) + f in [0, T ].

(11.32)

System (11.32) is completed by initial conditions w(x, 0) = w0(x), y(x, 0) =
y0(x) and the matching conditions:

W1(a, t) = g(y,W2), f = f (W),

where x = a is the interface between the two submodels, g is a suitable
function relating the characteristic variable W1 with the entry of the state
vector y associated with the interface condition, for instance the interface
pressure, and correspondingly forcing term f would depend on the interface
flow rate Q = Q(W).
Results obtained for the 3D/0D coupling can be strengthened in the case

of 1D/0D problems. In fact the analysis can be carried out again by refor-
mulating this problem in a fixed point framework. Let PK be the operator
corresponding to solve the lumped parameter model for a given flow rate Q
at the interfaces and PE be the operator corresponding to solve 1D model for
given pressure interfaces and to compute the associated interface flow rates.
Then the problem at hand can be reformulated as the search of the fixed point
for the operator:

T = PE · PK .
Under mild assumptions on the regularity of the initial data and on λ and μ
it is possible to prove that:

1. PK is well posed for 0 < t ≤ T0 with T0 ≤ T ;
2. PE is well posed for 0 < t ≤ T1 with T1 ≤ T ;
3. T is a contraction in 0 < t ≤ T̂ ≤ min(T0, T1), i.e.

||T (Q1)− T (Q2)||C0[0,T̂ ] ≤ K||u1 − u2||C0[0,T̂ ]

with K < 1, being Q1 and Q2 two interfaces flow rates properly selected.

The latter inequality is stronger than the compactness proved for the cor-
responding operator in the 3D/0D. In particular, well known Banach con-
traction theorem (see e.g. [556]) proves in this case that the solution to the
coupled problem exists and it is unique.
Recent results on the coupled problem stating the existence of local and

global classical solutions under assumptions on the data may be found in
[435–437].
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11.5 Numerical techniques for the coupling

We here consider possible numerical techniques for the coupled problems. In
particular we will distinguish between monolithic solvers where the coupled
problem is treated as a whole and substructuring-type solvers. In the latter,
the solution is sought by an iterative procedure where each model is com-
puted in sequence. Monolithic solvers avoid the problem of setting up a fast
convergent sequence of iterates. Yet, they may be more difficult to implement
and sometimes give rise to badly conditioned problems. Substructuring proce-
dures, on the other hand, may allow to use existing software already developed
for solving subproblems separately.

11.5.1 Monolithic solvers

Let us start by considering the case of a 3D-0D coupled problem where K
models describe terminal vessels, as we have done in Section 10.1.5. More
precisely, we assume that the presence of terminal vessels is described in the
frequency domain by means of an appropriate impedance function ζi(ω) for
i = 1, 2, . . . , m (see Chapter 10) to be coupled to the 3D problem at the m
distal boundaries of the latter. On the proximal boundaries of the NS problem
we assume for the sake of simplicity that boundary data (pressure or flow
rates) are given, for instance by measurements (see Fig. 11.22, where m = 2).
If πi(ω) and χi(ω) represent the Fourier transform of the interface pres-

sures Pi(t) and flow rates Qi(t) respectively, the 0D model would provide a
relation in the frequency domain of the type

πi(ω) = ζi(ω)χi(ω),

which, transformed back to the time domain gives

Pi(t) =
1

T

t∫
t−T
Zi(t− τ )Qi(τ )dτ. (11.33)

Here Zi is the inverse Fourier transform of ζi and T is the heart beat period.
Conditions (11.33) cannot be regarded as mean pressure boundary conditions,

Fig. 11.22. 3D/0D coupling with K models described by impedance functions ζ1
and ζ2 in the frequency domain. Here lumped parameters model have the role of
describing terminal vessels (see Section 10.1.5)
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since the pressure is given as a function of the (unknown) flow rate. However,
we can recast (11.33) in the variational formulation of the 3D NS problem in
a way similar to the one pursued for the variational formulation of the mean
pressure problem (see (11.20)). We set (for j = 1, . . . , m)∫

Γj

(Pn− νD(u) · n) · vdγ = Pj
∫
Γj

n · vdγ.

In this way, a variational formulation of the 3D/0D coupled problem reads:(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑
j=1

T 0Dj = (f ,v),

b(u, q) = 0,

(11.34)

where

T 0Dj =
1

T

t∫
t−T
Zj(t− τ )

∫
Γj

u(τ ) · ndτ
∫
Γj

v · ndγ. (11.35)

In practise, we obtain special Robin boundary conditions for the Navier-Stokes
problem.
Discretisation of this problem can be carried out by means of methods

addressed in Chapter 2. For instance, if space discretisation is based on the
finite element method and time discretisation on finite differences, then veloc-
ity field at time tn is represented as

uh(x, t
n) =

∑
i

Uni ϕi(x)

beingϕk the Lagrangian basis functions of the finite element space andU
n
k the

nodal values vector. The term on the right hand side of (11.35) can be discre-
tised in time by resorting to classical quadrature formulae. If the quadrature
nodes do coincide with time levels, we have simply

1

T

tn+1∫
tn+1−T

Zj(t
n+1 − τ )

∫
Γj

u(τ ) · ndτ
∫
Γj

v · ndγ ≈

1

T

⎛⎝ k∑
k=k

wkZj(t
n+1 − tk)

∫
Γj

ϕj · n
∑
l

∫
Γj

ϕl · n

⎞⎠Ulj,
where wk are the quadrature weights and the quadrature nodes are such that

T − tn+1 ≤ tk ≤ tk+1 ≤ . . . ≤ tk−1 ≤ tk ≤ tn.
Remark 11.5.1 In the oversimplified case of a purely resistive impedance
function Zj(t) = RjTδ(t), being δ the Dirac generalised function, and we
have

T 0Dj = Rj

∫
Γj

u(t) · ndγ
∫
Γj

v · ndγ.
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This approach has been adopted for instance in [531] where the relevance
of an appropriate impedance function is clearly shown by numerical results.

An algebraic formulation

Thus far, we have considered a monolithic formulation of a coupled 3D/0D
problem in which however the primal role of K models was to provide bound-
ary conditions which could well represent the general behaviour of the vascular
tree external to the 3D model. In particular, blood dynamics in terminal ves-
sels is computed only as far as it influences the 3D solution at the interfaces.
Let us consider now a different approach in which one is interested also

to the evolution of the state variables in the lumped parameter model. We
assume therefore to describe 0D problems in the time domain as a system of
ordinary differential equations.
For the sake of clarity we will consider an example, namely the multiscale

problem represented in Fig. 11.23, where the K model is given by a network
featuring a capacitance C, three resistances and three inductors. The forcing
term in the network is given by a voltage/pressure generator where Pp(t) is a
given function. The NS model is given by Navier-Stokes equations and bridg-
ing region compatibility requires that flow rate is prescribed at the boundaries
of 3D domain. A model for the compliance of the wall can be included as well.
For the sake of simplicity however we assume that the pipe is rigid, so that
flow rate at inflow must equal that at outflow. Equations associated to the K
model are

L
dQ

dt
+RQ+ P = Pp − P1 + P2,

C
dP

dt
−Q = 0,

(11.36)

where L = L1 + L2 + L3 and R = R1 + R2 + R3, P is the pressure jump
associated with the capacitance C, P1 and P2 are computed by the 3D model,
and Q is the flow rate in the circuit.

Fig. 11.23. An example of 3D/0D geometrical multiscale model
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Assume that both 3D and 0D problems have been properly discretised in
time, and the 3D problem also in space, linearised when required. Since the
considerations we are going to make are rather general and apply to other
couplings like the 3D/1D or the 1D/0D, we indicate with the suffix f the
“fine” model (in this case NS) and with c the “coarse” model (here the K
model). We also assume that we are using a multistep time advancing scheme
for both models, with number of steps pf +1 and pc+1, respectively. At each
time step we have to solve a linear system in the form[

Acc Acf
Afc Aff

][
sn+1c

sn+1f

]
=

[
bn+1c

bn+1f

]
+

[
gc(s

n
c , s

n−1
c , . . . , sn−pcc )

gf(s
n
f , s

n−1
f , . . . , s

n−pf
f )

]
. (11.37)

Vectors gc and gf account for the terms due to the time advancing schemes in
the two submodels, that depend on the solution s at the previous time steps.
Let us denote by Nu and Np the number of degrees of freedom for velocity and
pressure in the fine (NS) model. Suppose moreover to solve the flow boundary
problem by means of a Lagrange multiplier approach, so that sf ∈ RNu+Np+1
is here given by sf = [U, P, λ], while the vector of the unknowns of the coarse
model is formed by the state variables of the network, namely sc = [Q, P ].
Finally, suppose to use an implicit Euler time discretisation for both the fine
and the coarse models (pc = pf = 0). From (11.36) we have therefore:

Acc =
[ 1
Δt
L+ R 1

−1 C

]
, Aff =

⎡⎢⎢⎣
1

Δt
M+K DT Λ

D 0 0

ΛT 0 0

⎤⎥⎥⎦ ,
where M is the mass matrix, K is the discretisation of the diffusion-convection
operator of the momentum equation and D is the discretisation of the diver-
gence operator in the NS problem, while the discretisation of the term related
to the Lagrange multiplier has been denoted here by Λ.
Once pressure in 3D model is computed for a given flow rate, mean pres-

sures P1 and P2 at the interfaces are usually computed by means of quadrature
formulae

Pk = |Γk|−1
∫
Γk

Pdγ ≈ |Γk|−1
∑
i

wi,kp(xi, yi, zi) k = 1, 2.

It is practically convenient to assume that quadrature nodes xi, yi, zi on Γk
do coincide with nodes of the space discretisation of the problem7. We may

7 In general quadrature nodes will not correspond to grid nodes and interpolation
procedures will be necessary.
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finally write (see also (11.14)):

Acf =
[
01×Nu acf 0

01×Nu 01×Np 0

]
, afc,i =

{
0 if (xi, yi, zi) /∈ Γ1,2
wi,k if (xi, yi, zi) ∈ Γ1,2

,

Afc =

⎡⎢⎣0Nu×1 0Nu×10Np×1 0Np×1
−1 0

⎤⎥⎦ ,
and

bn+1c =

[
PP (t

n+1)

0

]
,bn+1f =

⎡⎢⎣F
n+1

0

0

⎤⎥⎦ , gc =
⎡⎣ 1ΔtLQn

0

⎤⎦ , gf =
⎡⎢⎢⎣
1

Δt
MUn

0

0

⎤⎥⎥⎦ .
A possible solution strategy is to solve the complete system (11.37) as a

whole at each time step. As already pointed out, also for simple cases as for the
example at hand, this approach can have the drawback of a badly conditioned
matrix. An alternative approach is a Schur complement decomposition of the
problem. By a formal elimination of the coarse solution sn+1c , we obtain(
Aff −AfcA−1cc Acf

)
sn+1f = bn+1f + g2(s

n
f )−AfcA−1cc

(
bn+1c + gc(s

n
c )
)
.

(11.38)
In general, matrix A−1cc is not available and appropriate techniques of solution
are required (see the next section). However, in the simplest coarse models
like the one at hand, matrix A−1cc can be easily computed

A−1cc =
1

(Δt−1L +R) + 1

[
C −1
1 Δt−1L +R

]
, (11.39)

and problem can be solved by (11.38). In fact, by a simple algebraic argument,
the Schur complement can be explicitly computed

Aff −AfcA−1cc Acf =

⎡⎢⎢⎢⎢⎢⎣
1

Δt
M +K D r

DT 0 0

rT − ΔtC

L +Δt(R+ 1)
acf 0

⎤⎥⎥⎥⎥⎥⎦ . (11.40)

System (11.38) can be therefore solved, yielding the fine solution sn+1f . Coarse
solution is then recovered by solving

sn+1c = A−1cc
(
bn+1c + gc(s

n
c )−Acf sn+1f

)
.

In this way, the coupled problem is split into a sequence of 3D and 0D prob-
lems, each of them being in general smaller and better conditioned than the
whole heterogeneous system.
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11.5.2 Iterative substructuring approaches

The block Gauss elimination procedure proposed in the previous section is
seldom feasible, since in general matrix A−1cc is neither easy nor convenient
to compute explicitly. For this reason, here we address some possible solution
schemes resorting to the separate computing of the submodels that do not
need the explicit computation of A−1cc .
A first, simple method for solving the problem is the following iterative

scheme.

1. Let sn+1f,0 be a time extrapolation of s
n+1
f based on the previous time

evaluations of sf .
2. For k = 0, 1, 2, . . . solve{Accsn+1c,k+1 = b

n+1
c + gc(s

n
c , . . . , s

n−pc
c )−Acf sn+1f,k

Affsn+1f,k+1 = b
n+1
f + gf (s

n
f , . . . , s

n−ff
c )−Afcsn+1c,k+1

(11.41)

up to the fulfillment of an appropriate convergence test.

Observe how this splitting approach is essentially based on the same fixed
point formulation devised for the proof of well posedness of multiscale prob-
lems.
The first issue is the convergence of the iterations. This problem can be

analysed by regarding this scheme as a block Gauss-Seidel scheme for solving
system (11.37), or, equivalently, as a Richardson preconditioned scheme (see
e.g. [403]). By classical arguments, the convergence of the scheme holds if the
spectral radius ρ of matrix[

Acc 0
Afc Aff

]−1 [Acc Acf
Afc Aff

]
,

i.e. the maximum modulus of the matrix eigenvalues, is less than 1.
In practice, it is quite hard to compute ρ, so this convergence analysis

is seldom able to give quantitative responses about convergence and it has
essentially a theoretical relevance. A practical approach for driving the iter-
ative scheme to the convergence is to introduce a parameter to be properly
tuned. In the present case, (11.41) can be modified as follows (for the sake of
notation we drop time index n+ 1 from now on)

Accsc,k+1 = bc + gc(snc , . . . , sn−pcc )−Acf sn+1f,∗ ,

Aff sf,k+1 = bf + gf(snf , . . . , s
n−pf
f )−Afcsn+1c,k ,

sn+1f,∗ = θs
n+1
f,k+1 + (1 − θ)sn+1f,k .

(11.42)

In the example above, this means that average pressures used as forcing terms
for the coarse problem are modulated by the relaxation parameter θ. An appro-
priate choice of θ can yield or improve convergence of the iterative scheme,
even if a priori it is not easy to identify its optimal value.
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This scheme has been used for 3D/1D coupling illustrated in Fig. 11.24.
The 3D model features rigid boundaries and mimics a stented segment of a
cylindrical artery. Pressure drop problem is solved for the NS model, being
pressure computed as a function of the area computed by E model. The latter
receives data on flow rate, that are formulated in terms of the incoming charac-
teristic variables (W2 at interface Γup and W1 at interface Γdw). Velocity and
pressure solutions in 3D model (bottom, centre) are illustrated together with
area in upstream (bottom, left) and downstream (bottom, right) of Fig. 11.24.
Effects of the stent rigidity on the upstream area can be recognised. Relaxation
parameter θ has been tuned in this case by a trial and error approach.
The main drawback of this approach is related to the computational costs.

Iterations of these coupling algorithm are nested into the time loop, and this
in general implies high computational costs. For this reason, more sophisti-
cated algorithms can be devised to reduce the number of iterations. Possible
approaches resort to a dynamical choice of relaxation parameters, or to more
effective preconditioners of the coupled problem at hand.

Remark 11.5.2 Splitting schemes like (11.41) or (11.42) can be regarded
as the final result of an approximation process starting from a fully accurate
model of blood flow problems. If Ω denotes the cardiovascular system (a) in
Fig. 11.25, we can summarise the steps performed as follows.

1. Domain splitting:Ω is split into Ωf and Ωc subdomains ((b) in Fig. 11.25).
Original problem is formulated as a set of subproblems. This is the first
step of any domain decomposition method (see e.g. [408,511]). In domain
decomposition theory domain splitting can be performed with or without
overlap among subdomains. Here we assume that subdomains do not over-
lap. Appropriate interface conditions describe the link between two subdo-
main solutions.

2. Model coarsening: Fully model in Ωc is downscaled to a coarse model ((c)
in Fig. 11.25). For lumped parameter models this step requires to keep
trace of interface conditions that need to be incorporated in K problem by
means of a proper selection of bridging regions.

3. Iterative substructuring schemes: Solution of the overall problem is pur-
sued by a sequence of subdomain solutions suitably coupled ((d) in
Fig. 11.25). In particular, for coarse K models bridging region compat-
ibility guarantees that in the downscaled problem interface conditions are
correctly included.

This picture based on domain decomposition theory can be useful for the
set up and analysis of effective ad hoc preconditioners.

Another approach for reducing computational costs is based on the intro-
duction of a fully explicit splitting of subproblems.
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Pressure E
NS

problemdrop

tn

tn+2

tn+1 k = k + 1

pn+1k+1 (A
n+1
k+1 )

Γup : Wn+12,k+1 =W2(Q
n+1
k+1 ,W

n+1
1,k+1)

Γdw : Wn+11,k+1 = W1(Q
n+1
k+1 ,W

n+1
2,k+1)

Qn+1k+1 = θQ3D,k+1 + (1− θ)Qn+1k

Fig. 11.24. 3D/1D multiscale problem: solution based on an iterative splitting
solver with a relaxation parameter θ
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Ω

a) b)

c) d)

Ωf

Ωf
Ωc

Ωf

Fig. 11.25. Geometrical multiscale modelling as a domain decomposition method

11.5.3 Decoupled schemes

A simple way for reducing the computational costs essentially relies on the
time dependent nature of the problems at hand. At each time step tn+1 we
compute an extrapolation s�f of s

n+1
f as a function of the fine solution at the

previous time steps and we solve{
Accsc = bc + gc(snc , sn−1c , . . . , sn−pcc ) −Acf s�f
Aff sn+1f = bn+1f + gf(s

n
f , s

n−1
f , . . . , s

n−pf
f )−Afcsn+1c .

(11.43)

In practise, we perform scheme (11.41) for one time solely. A flow-chart rep-
resentation of this scheme is given in Fig. 11.26.
The computational advantage is clear, no nested iterations are required.

However, both stability and accuracy issues need to be addressed.

1. Absolute Stability in time of the scheme is affected by the explicit treat-
ment of the fine solution in the first equation. The region of absolute
stability (see Chapter 2) will be reduced even when unconditionally sta-
ble time advancing schemes such as implicit Euler are used for the time
discretisation.
A precise quantitative assessment of these stability restrictions is in prac-
tise neither easy nor convenient. It is however worth pointing out that in

tn+1

Coarse

Coarse Fine

Fine

sn+1c

sn+1c

sn+1f

snfsnc

tn

Fig. 11.26. Semi-implicit solver for multiscale problems
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Fig. 11.27. Comparison between the pressure values of the stand-alone and the
multiscale solutions at three different times (t=0.005, 0.01 and 0.015), using a 3D
linear elastic model for the structure

many situations time advancing schemes used for solving single subprob-
lems are explicit or semi-explicit. This is the case of 3D Navier-Stokes
solver with a semi-explicit treatment of the convective term or of Lax-
Wendroff schemes for 1D Euler equations (see Chapter 10). Numerical
experience suggests that in many situations stability bounds associated
with time advancing schemes are not significantly affected by the split-
ting scheme (11.43). This is the case for instance of results presented in
Fig. 11.13.
Another example is provided by the 3D/1D model presented in [159]. In
Fig. 11.27 we report a comparison between the pressure computed by
a stand-alone 3D compliant model and a multiscale model, solved with
a scheme in the form (11.43). Stand-alone model is a 10 cm long tube,
the multiscale one is split into two domains (3D and 1D) of 5 cm each.
Matching conditions yield the continuity of the total stresses and fluxes.
Explicit coupling scheme (11.43) has been successfully used also for the
application of multiscale modelling to paediatric surgery, as shown in Sec-
tion 12.4.

2. Time Accuracy. Time accuracy of the scheme (11.43) is not lower than
that of the uncoupled scheme (11.41) provided that an appropriate extrap-
olation s�f is computed. More precisely, if qc denotes the accuracy of the
time advancing scheme for the coarse problem and qf the one for the fine
problem, an extrapolation of order qc of sf is enough for maintaining an
accuracy of order qc to the solution of the coarse problem. The accuracy
of the fine solution will depend both on qf and qc. More precisely, on the
basis of classical results of numerical analysis (see [268]), it is possible to
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prove that accuracy of the fine model is given by:

q = min(qf , qc + 1). (11.44)

Since it is reasonable that for the fine model one would have a greater
accuracy in time than for the coarse model, it follows from (11.44) that,
for a desired order of accuracy q for the fine solution, it suffices that the
coarse model be solved by a scheme of order q − 1.

11.6 Conclusions

Complexity of the vascular system demands for the set up of convenient math-
ematical and numerical models that go beyond the traditional ones based
on Navier-Stokes, Euler or Kirchhoff equations. By themselves, these models
have an intrinsic appeal and correctness that make them mathematically and
numerically self-consistent. However, when we try to couple them, we face the
unusual task of mixing different kind of differential equations, which are not
conceived to function in a cooperative model. Many options are possible for
yielding a multiscale model, starting from heuristic approaches, that however
are often oversimplified and unreliable. From the mathematical and numerical
viewpoints, set up of mathematically sound multiscale models raises new chal-
lenges both at the theoretical and practical level. The set up of effective and
accurate numerical methods for the multiscale modelling and their analysis is
not trivial and is actually still an open problem, especially for the simulation
of 3D compliant domains. On the other hand, geometrical multiscale approach
can play a relevant role in numerical treatment of spurious reflections at the
artificial boundaries (see [155]). This approach can be of interest also in other
engineering problems, featuring similar geometric multiscale complexity, like
the design of intake/out-takes of internal combustion engines, the study of
complex hydrological basins for environmental applications, or the design of
electrical circuits (see e.g. [6, 116]).
More in general, reliable numerical solution of defective problems is by

itself an interesting problem. For instance, in [392] a method for improving
the accuracy in blood flow ultrasound measures is proposed, based on the
extensive use of numerical simulations with flow rate defective boundary con-
ditions. The focal point of these simulations is the prescription of the flow rate
without the prescription of a velocity profile that induces a bias in results of
ultra sound measurements.
Future perspectives in the mathematics for the vascular system should

includemultiscale modelling in time. Some pathological effects such as plaques
formation or aneurysms growth require time scales of weeks, months or even
years. Nevertheless, basic mechanisms that could be responsible of these
pathologies develop over the time scale of a heart beat (seconds). An ade-
quate multiscale-in-time modelling of these phenomena represents an impor-
tant challenge for cardiovascular mathematics.
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Applications and test cases

12.1 Flow in large vessels

J. Alastruey Arimon, Denis Doorly, Sergio Giordana, Joaquim Peiró, and
Spencer Sherwin

12.1.1 Flow in an idealised distal anastomosis

Although medical imaging can provide relatively accurate geometric data of
in vivo bypass grafts, as will be discussed in Section 12.1.2, to obtain an
understanding of the general flow features it is instructive to consider an
idealisation of a distal bypass graft. In this example we therefore consider the
problem shown in Fig. 12.1, which consists of three vessels, all of the same
diameter D, where the bypass (connecting) vessel has a centreline length of
3D and the host vessel is represented by two co-aligned vessels of lengths 5D
(distal) and 10D (proximal) from the junction.
In this example the upstream (proximal) host vessel is fully occluded.

At the inflow to the bypass graft we impose a normal flow rate of the fully

Fig. 12.1. Domain of idealised distal anastomosis

Formaggia L, Quarteroni A, Veneziani A (Eds.): Cardiovascular Mathematics. Modeling and
simulation of the circulatory system
c© Springer-Verlag Italia, Milano 2009
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developed Hagen-Poiseuille flow, i.e.,

u(x, y, z) = um

(
1− (x− x0)

2 + (y − y0)2 + (z + z0)2
R2

)
v(x, y, z) = vm

(
1− (x − x0)

2 + (y − y0)2 + (z + z0)2
R2

)
w(x, y, z) = wm

(
1− (x− x0)

2 + (y − y0)2 + (z + z0)2
R2

)
where (um, vm, wm) = (

√
2,−
√
2, 0) and if we take the centreline intersection

to be the origin of the coordinate system (x0, y0, z0) = (3/
√
2, 3/
√
2, 0) and

R = D/2. At outflow we impose zero traction conditions by imposing fully
developed conditions on the velocity and that pressure within the plane is
zero, i.e.,

∂u

∂n

∣∣∣∣
outflow

= 0 p|outflow = 0.

The requirement for separate conditions on velocity and pressure is a conse-
quence of the velocity correction scheme [208, 252] to discretise the Navier-
Stokes equations. Finally we set the Reynolds number, ReD based on diame-
ter, D, and mean inflow velocity ū to be ReD = ūD/ν = 125.
The flow within this model graft has been extensively discussed in [458]

and in Section 5.3.2. In Fig. 12.2(a) we show the Dean vortex structure estab-
lished in the junction idealised by the λ2 criterion at a value of λ2D

2/ū = −0.3
(see 5.2.3). In Fig. 12.2(b) we show the wall shear stress magnitude distribu-
tion in the junction normalised with the wall shear stress magnitude at the
inflow. The points labelled α, β denote the maximum and minimum (stagna-
tion point) of the wall shear stress magnitude distribution. Finally in Fig. 12.3
we show the axial flow profiles at x = 1D, 3D and 5D distal to the centreline
intersection in the distal host vessel. In Fig. 12.3 we highlight the distribu-

(a) (b)

Fig. 12.2. (a) Dean vortex flow structure identified using the λ2 criterion. (b) Nor-
malised wall shear stress magnitude contours
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Fig. 12.3. Axial flow profiles in the host vessel located at a distance from the
centreline intersection of (a) 1D, (b) 3D and (c) 5D. The bottom plots show the
profile evaluated along the line of symmetry

tion of velocity magnitude as well as the profile evaluated along the plane of
symmetry of the flow and geometry.

12.1.2 Flow in an anatomically realistic distal anastomosis

In this section we provide the details of flow within a realistic anastomosis
as reported in [193] (see study 3). The domain shown in Fig. 12.4(a) belongs
to a graft that runs from the femoral to the popliteal artery. It was located
below the knee of the patient, and the graft conduit was an in situ long
saphenous vein. The geometry was acquired from an MR scan performed one
week post-operatively, and, as we can see, the graft meets the host vessel with
a reasonably sharp bend. Figure 12.4(a) also illustrates a series of four-sided
patches through which a cubic spline fit was enforced. The coordinate of each
point in the patches is provided on the web page, and the units are provided
in pixels of the original imaging data. In this domain, an inflow was imposed
as indicated in Fig. 12.4(a), which corresponds to a fully developed Poiseuille
flow which has a radius of 6.476 units. The other two vessels were specified to
be outflows with zero pressure conditions, i.e.,

• Inflow: Fully developed Poiseuille flow.

u(x, y, z) = um

(
1− (x− x0)

2 + (y − y0)2 + (z + z0)2
R2

)
v(x, y, z) = vm

(
1− (x− x0)

2 + (y − y0)2 + (z + z0)2
R2

)
w(x, y, z) = wm

(
1− (x− x0)

2 + (y − y0)2 + (z + z0)2
R2

)
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(a)

Outflow

Inflow

Outflow
(b) (c)

Fig. 12.4. (a) Anatomic bypass geometry, (b,c) relative wall shear stress magnitude
relative to inflow wall shear

with constants R = 6.476,

(x0, y0, z0) = (193.52, 183.87, 369.70)

and
(um, vm, wm) = 2n = (1.3,−0.66,−1.36).

This choice of definition for the velocity magnitude ensures that the sec-
tionally average velocity ū = 1.

• Outflow: Zero traction conditions with zero pressure.

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0, p|outflow = 0.

The imposition of zero pressure at both outflows leads to a flow split where
65% of the flow exits at the distal (downstream) outflow.

The flow was simulated at a Reynolds number, based on the average inflow
velocity and inflow diameter of ReD = 341. Figure 12.4(b) shows the nor-
malised wall shear stress magnitude calculated assuming a Newtonian fluid
and rigid walls divided by the inflow wall shear stress magnitude. For a point
of data comparison in Fig. 12.4(b) we present the wall shear stress magnitude
normalised by the wall shear stress at the inflow, i.e., μ4/R assuming ρ = 1.

12.1.3 Assessment of a 1-D numerical simulation against in vitro
measurements

The accuracy of the non-linear, one-dimensional (1-D) equations of pulse wave
propagation in complaint arteries was tested by comparison against a well
defined experimental 1:1 replica of the human arterial tree [316]. The experi-
mental model was a 1:1 replica of the 37 largest systemic arteries in the human,
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Fig. 12.5. Planview schematic of the hydraulic model (left). 1: Pump (left heart);
2: catheter access; 3: two-leaflet aortic valve; 4: peripheral resistance tube; 5: flexible
plastic tubing (veins); 6: venous overflow; 7: venous return conduit; 8: buffering
reservoir; 9: pulmonary veins. The 37 arteries simulated (top right). Detail of the
pump and the aorta (bottom right). Taken from [316].

including the aorta, carotid arteries and arteries that perfuse the upper and
lower limbs and the main abdominal organs (Fig. 12.5).
The in vitro arterial network was manufactured using in-house crafted

tubular aluminiummoulds, which were either linearly tapered or had constant
cross-section (for the smallest branches). A two-component silicone material
(Fairfield, CT, USA) was hand-painted in six layers on each mould. Cur-
ing between subsequent layers was done at 150 ◦C. The silicone network was
manually assembled piece by piece, mounted horizontally and subsequently
connected proximally to a Harvard pulsatile pump and distally to a set of
terminal resistance tubes connected to overflow reservoirs, creating a closed
loop hydraulic system. A 65%–35% water–glycerol mixture, with a density
ρ = 1050kgm−3 and a viscosity μ = 2.5mPa s at 30 ◦C, was used to mimic
the density and viscosity of blood.
Values of length (l), radius (R) and wall thickness (h) were measured at

the inlet, middle point and outlet of each arterial segment (Fig. 12.5, top right)
using a ruler, callipers and micrometer. These measurements were taken at the
end of the experiment and after having dissected the model. The elastic wall
properties were measured by performing a tensile test on 63 silicone sample
strips, taken from specimen sheets of various thicknesses and angles with
respect to the principal direction of painting the silicone layers. A constant
Young modulus E = 1.2 MPa was measured within the working interval of
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pressures. Wave speeds were calculated using

c2 =
2Eh

3ρR
. (12.1)

Table 12.1 shows these data for each arterial segment.
The in vitro inflow boundary condition was imposed by the Harvard pump

with the following settings: 70 beats per minute (with a systole-to-diastole
ratio of 35/65) and a stroke volume of 70 ml, creating an average pressure of
approximately 13.3 kPa at the ascending aorta. Figure 12.6 shows the resulting
flow rate measured at the root of the silicone network and enforced as a
periodic inflow boundary condition in the numerical model. Each experimental
outflow consisted of a single diameter tube (length 250mm; Ø2mm) and an
overflow reservoir with a constant back pressure pout = 427Pa. The simplicity
of this type of outlet allowed for accurate quantification of its parameters,
although it induced some non-physiological features in the pressure and flow
waveforms because peripheral compliances were not simulated. Numerically,
these outflow boundary conditions were modelled using the relation

Q1D =
p1D − pout
Rp

, (12.2)

where Q1D and p1D are the flow rate and pressure at the outlet of the 1-D
terminal branch, and Rp is the peripheral resistance to the flow, determined
from mean pressure and flow measurements less than 2 cm to the outlet of each
terminal branch. The values of Rp are shown in the last column of Table 12.1.
Combined, they yield a total peripheral resistance of 2.25 ·108Pa s m−3.
Applying Equation (12.2) with Q1D and p1D as the mean flow rate and pres-
sure measured at the inlet of the ascending aorta produced a larger total resis-
tance (2.37 ·108Pa s m−3), resulting from the total peripheral resistance plus
the effect of viscous dissipation throughout the vessels and junctions of the
silicone network. At the bifurcations of the system, conservation of mass and

Fig. 12.6. The experimental flow rate measured at the ascending aorta is enforced
as the inflow boundary condition of the numerical model. Taken from [316].
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Table 12.1. Data of the 37 silicone tubes shown in Fig. 12.5 (top right). l: length;
Rin → Rout: diastolic cross-sectional radii at the inlet and the outlet; h: average
wall thickness; cin → cout: wave speed at the inlet and the outlet; Rp: peripheral
resistance. Single numbers indicate vessels with a constant cross-section. The interval
of confidence of the geometrical measurements is indicated in the heading

Arterial segment l Rin → Rout h cin → cout Rp
(mm) (mm) (mm) (m/s) (109 Pa s m−3)
± 2.0% ± 3.5% ± 2.5%

1. Ascending aorta 36 14.40 → 13.00 0.51 5.21 → 5.49 –
2. Innominate 28 11.00 → 7.29 0.35 4.89 → 6.01 –
3. R. carotid 145 5.37 → 3.86 0.28 6.35 → 7.49 2.67
4. R. subclavian I 218 4.36 → 3.34 0.27 6.87 → 7.84 –
5. R. subclavian II 165 3.34 → 2.78 0.16 6.00 → 6.58 –
6. R. radial 235 2.07 0.15 7.43 3.92
7. R. ulnar 177 2.10 0.21 8.81 3.24
8. Aortic arch I 21 13.00 → 12.50 0.50 5.41 → 5.52 –
9. L. carotid 178 5.58 → 3.73 0.31 6.55 → 8.00 3.11
10. Aortic arch II 29 12.50 → 11.80 0.41 4.98 → 5.12 –
11. L. subclavian I 227 4.42 → 3.39 0.22 6.21 → 7.10 –
12. L. subclavian II 175 3.39 → 2.84 0.17 6.26 → 6.84 –
13. L. radial 245 2.07 0.21 8.84 3.74
14. L. ulnar 191 2.07 0.16 7.77 3.77
15. Thoracic aorta I 56 11.80 → 11.00 0.43 5.29 → 5.48 –
16. Intercostals 195 4.12 → 3.22 0.27 7.07 → 7.99 2.59
17. Thoracic aorta II 72 11.00 → 9.26 0.34 4.84 → 5.26 –
18. Coeliac I 38 3.97 0.20 6.20 –
19. Coeliac II 13 4.31 1.25 14.90 –
20. Splenic 191 1.83 0.13 7.24 3.54
21. Gastric 198 1.92 0.11 6.73 4.24
22. Hepatic 186 3.31 → 2.89 0.21 6.95 → 7.44 3.75
23. Abdominal aorta I 62 9.26 → 8.01 0.33 5.19 → 5.59 –
24. L. renal 120 2.59 0.19 7.39 3.46
25. Abdominal aorta II 7 7.90 0.35 5.83 –
26. R. renal 118 2.55 0.16 6.95 3.45
27. Abdominal aorta III 104 7.80 → 5.88 0.30 5.41 → 6.24 –
28. R. iliac-femoral I 205 3.90 → 3.38 0.21 6.47 → 6.94 –
29. R. iliac-femoral II 216 3.38 → 2.31 0.15 5.89 → 7.13 –
30. R. iliac-femoral III 206 2.31 → 2.10 0.20 8.04 → 8.44 –
31. L. iliac-femoral I 201 4.02 → 3.34 0.20 6.19 → 6.79 –
32. L. iliac-femoral II 195 3.34 → 2.26 0.16 6.11 → 7.44 –
33. L. iliac-femoral III 207 2.26 → 2.12 0.13 6.67 → 6.89 –
34. R. anterior tibial 163 1.55 0.15 8.47 5.16
35. R. posterior tibial 151 1.53 0.12 7.73 5.65
36. L. posterior tibial 149 1.58 0.11 7.23 4.59
37. L. anterior tibial 126 1.55 0.10 7.01 3.16
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continuity of the total pressure p+ 12ρU
2 were enforced. The initial conditions

of the numerical model were A(x, 0) = A0(x) and U(x, 0) = 0 in all the vessels.
The model was run until it converged to a periodic solution, which took about
10 cardiac cycles and of the order of five minutes to run on a standard PC.
Simultaneous pressure and flow measurements were taken at 70 sites along

the arterial network. Flow rates were measured using ultrasonic volume flow
meters with five different sized probes (Ø24mm, Ø16mm, Ø12mm, Ø8mm
and Ø3mm). Pressures were measured using micro-tip catheter pressure trans-
ducers. Peripheral recording of the pressure and flow was always accompanied
by a simultaneous measurement of the pressure and flow just distal to the aor-
tic valve. At least ten successive beats of pressure and the flow were recorded at
each measurement location. The signals were first calibrated and subsequently
filtered with a 5th-order low-pass (20Hz) Butterworth filter to reduce noise
on the signals while maintaining the relevant frequency information. Subse-
quently, a minimum of 8 beats were selected from the 10–12 recorded beats
and ensemble averaged to generate a single beat pressure and flow waveform
to be compared with their numerical counterparts.
Figure 12.7 compares experimental and numerical pressure and flow wave-

forms at three representative locations along the silicone aorta, showing the
ability of the 1-D formulation to capture the main features of experimental
pulse waves. None of the parameters involved in the simulation was tuned,
except for phase matching the onset of the experimental and numerical sys-
tolic ejections during data post-processing. Despite the simple terminal bound-
ary conditions used, the experimental model was able to reproduce the main
features of in vivo pressure and flow waveforms, such as the dicrotic notch,
diastolic decay and peaking and steepening of pulse pressure as we move away
from the heart [66]. Some backward flow was observed after the closure of the
two-leaflet aortic valve, as well as a reduction in the amplitude of the flow with
the distance from the heart. These results highlighted the relative indepen-
dence of aortic pulse waves from the outflow boundary conditions, which was
to be expected since the bifurcations of the in vitro model were well matched
for forward travelling waves.
Typical comparisons between experimental and numerical results in the

rest of the vessels of the system are shown in Figs. 12.8–12.10. Each figure
compares experimental and numerical results in representative vessels of each
generation of bifurcations, going from vessels branching off the experimental
aorta (Fig. 12.8) to vessels of the third generation of bifurcations (Fig. 12.10).
The 1-D formulation was also able to predict the essential characteristics
of the in vitro pressure and flow waveforms in more peripheral vessels. Due
to the simple resistance boundary conditions used in the experiment, the
measured pulse waves became less physiological in the more distal vessels,
containing many non-physiological oscillations, in both pressure and the flow,
whose frequency was surprisingly well captured by the 1-D model.
Relative errors in pressure and the flow were within 4% and 19%, respec-

tively, at all 70 locations studied. The larger relative error in the flow was
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Fig. 12.7. Experimental and theoretical pressure (left) and flow (right) waveforms.
(top) Aortic arch II (segment 10 in Table 1), (middle) thoracic aorta II (segment
17) and (bottom) abdominal aorta III (segment 27). The figures also show the
standard deviation (thin solid lines) of the ensemble average of each experimental
measurement. Taken from [316]

primarily attributed to flow measurement uncertainty. Accurate flow measure-
ments rely upon close contact between the tube and the flow transducer, and
since only five different sizes of transducers were available, some mismatches
were inevitable at the 70 different measurement sites. In general, relative errors
were smaller at locations close to the inflow boundary condition, where the
numerical flow matched its experimental counterpart. Discrepancies between
experimental and numerical measurements arose from the uncertainties in the
experimental measurements and the assumptions and simplifications of the
1-D formulation. The study in [316] showed that these discrepancies could
not be a consequence of having neglected energy losses at junctions. In addi-
tion, the higher amplitude of the numerical peripheral oscillations could only
be partially explained by the presence of peripheral compliance in the over-
flow reservoirs. The effect of neglecting the curvature of the vessels was not
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Fig. 12.8. Experimental and theoretical pressure (left) and flow (right) waveforms
in typical first-generation vessels: (top) left subclavian I (segment 11), (bottom) right
iliac-femoral II (segment 29). The figures also show the standard deviation (thin solid
lines) of the ensemble average of each experimental measurement. Taken from [316]

Fig. 12.9. Experimental and theoretical pressure (left) and flow (right) waveforms
in typical second-generation vessels: (top) left ulnar (segment 14), (bottom) right
anterior tibial (segment 34). The figures also show the standard deviation (thin solid
lines) of the ensemble average of each experimental measurement. Taken from [316]
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Fig. 12.10. Experimental and theoretical pressure (left) and flow (right) waveforms
in typical-third generation vessels: (top) right ulnar (segment 7), (bottom) splenic
(segment 20). The figures also show the standard deviation (thin solid lines) of the
ensemble average of each experimental measurement. Taken from [316]

analysed, although it should be secondary because of the geometry of the
experimental network. Consequently, the viscoelasticity of the silicone wall
might have had an important effect on damping peripheral oscillations.

12.2 A FSI benchmark on a straight compliant vessel

Miguel A. Fernández, Jean-Frédéric Gerbeau, and Marina Vidrascu

We consider the academic numerical test, originally proposed in [155], which
consists in simulating the pressure wave propagation through a straight com-
pliant vessel. This test case has been extensively used in the literature as a
benchmark (see e.g., [55, 146,150,188]), in order to illustrate the efficiency of
the different fluid-structure coupling algorithms described in Chapter 9.
The fluid domain is a straight cylinder of radius 0.5 cm and length 5 cm.

The fluid and solid unknowns are described by the fluid-structure problem
(3.106)–(3.108) introduced in Chapter 3, in which the elastodynamics equa-
tion (3.107) is replaced by a a non-linear shell model (based on MITC4 shell
elements [75]).
The fluid physical parameters are μ = 0.03 poise and ρf = 1 g/cm

3,
whereas for the solid we have ρ̂s,0 = 1.2 g/cm

3, E = 3 × 106 dynes/cm2 ,
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Fig. 12.11. The fluid and solid computational meshes: 21534 tetrahedra for the
fluid and 640 quadrilaterals for the solid
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Fig. 12.12. Snapshots of the fluid pressure and fluid domain deformation (magnified
by a factor 10) at three different time instants: t = 0.0025, 0.006, 0.01 s
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ξ = 0.3. The thickness of the vessel wall is 0.1 cm. The fluid is initially at rest
and a pressure of 1.332× 104 dynes/cm2 (10mmHg) is imposed on the inlet
boundary during 0.005s.
The resulting fluid-structure coupled problem is semi-discretised in time

using the implicit coupling framework described in Section 9.3.1, with a time
step size of δt = 0.0001 s. As regards the space discretisation, a P1/P1 sta-
bilised finite element discretisation is considered for the fluid, and the MITC4
shell finite element for the solid. The fluid and solid computational meshes
are depicted in Fig. 12.11. At each time step, the resulting non-linear prob-
lem is solved using Newton’s method (with exact Jacobian evaluations, see
e.g., [150]) applied to the Dirichlet-to-Neumann formulation, as described in
Section 9.3.3.
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in- and out-flow rates (bottom)
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A pressure wave propagation is observed during the simulation (see
Fig. 12.12). These results are similar to those obtained in the literature,
see e.g. [55, 146, 150, 155, 188]. We conclude this test case by providing, in
Fig. 12.13, a few quantitative outputs: the maximum interface displacement
and the inlet and outlet flow-rates. In particular, we can clearly observe the
expected phase shift between the in- and out-flow rates due to the compliance
of the vessel wall.

12.3 Mass transfer phenomena.
A case study: drug-eluting stents1

Paolo Zunino, Carlo D’Angelo, Christian Vergara, and Martin Prosi

A stent is a small mesh tube that is inserted permanently into a stenotic
artery. The stent restores the original value of the arterial section to ensure
the physiological flow rate. One of the problems caused by stent insertion
is re-narrowing of the treated vessel. To overcome this phenomenon drug-
eluting stents (DES) have recently been introduced. Referred to as a coated
or medicated stent, a DES is a normal metal stent that has been coated with
a pharmacologic agent (drug) that is known to interfere with the process of
restenosis (reblocking). However, the design of such devices is a very complex
task because their performance in widening the arterial lumen and preventing
further restenosis is influenced by many factors such as the geometrical design
of the stent, the mechanical properties of the materials and the chemical
properties of the drug that is released. Mathematical models and numerical
simulation techniques are appropriate to study such phenomena, aiming for
use as predictive tools for the effective design of drug-eluting stents.
We present in this section a brief review of fluid dynamics and drug release

models developed by the authors for the numerical simulation of drug-eluting
coronary stents.

12.3.1 A mathematical model for drug release

We assume that the drug released by the stent behaves as a passive scalar. This
statement holds true under the assumption that the drug does not react with
the arterial walls. This is a zero-level simplification of a number of chemical
phenomena that involve the drug as a ligand and suitable sites of the extra-
cellular matrix as receptors, as discussed in [444]. As a consequence, our drug
release model features just one chemical species, the drug, that is governed

1 This work has been developed in collaboration with the Laboratory of Biological
Structure Mechanics (LaBS), Department of Structural Engineering, Politecnico
di Milano.
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by standard advection-diffusion equations. Thanks to the assumption that
coronary arteries treated with cardiovascular stents are large enough to apply
a Newtonian model for blood rheology, we consider the Navier-Stokes equa-
tions for fluid dynamics in the arterial lumen. Furthermore, the drug we will
consider in the numerical experiments is heparin, a relatively small molecule
with non-negligible diffusive properties. Then, the advective phenomena in the
arterial walls can be neglected. In other words, we address the interaction of
the mass transfer in the lumen and in the arterial walls as the fluid-wall model,
already fluid-wall mentioned in the introduction of Chapter 7 and analysed
in [411] for the transport of oxygen. Concerning the coronary artery, here we
simplify the complex multilayered structure of the wall; more precisely we
assume that the arterial wall is a homogeneous medium, whose physical prop-
erties are, for simplicity, the ones corresponding to the intermediate layer, the
media.
Under these assumptions, the geometrical setting of our reference problem

is the following. We denote with Ωl the lumen of a coronary artery where we
set up our analysis. This is the cylindric channel deformed by the introduction
and the expansion of a stent. We denote with Γin and Γout the proximal and
distal sections since they coincide with the inflow and outflow sections of the
domain Ωl. The remaining part of the boundary of Ωl can be subdivided
into two parts: the interface with the arterial wall and the stent. The former
is denoted with Γ and the latter with Γs,l. In conclusion we obtain ∂Ωf =
Γin ∪ Γout ∪ Γs,l ∪ Γ , as shown in Fig. 12.14. Finally, we denote with nl the
outward unit normal vector on ∂Ωl . Let Ωw be the truncated portion of the
arterial walls corresponding to the lumen Ωl. We denote with Γa the interface
of the arterial wall with the outer tissue, with Γn,w the artificial sections
originated by the truncation of the artery and with Γs,w the interface of the
stent with the arterial wall. Moreover, let nw be the outward unit normal
vector relative to Ωw. These sections are also shown in Fig. 12.14.
The governing equations for drug release are time dependent, because the

drug release process is intrinsically transient and it dies out in a long but finite
time. Then, our model for drug concentrations, namely cl(t,x) and cw(t,x),
read as follows,

∂tc∗ +∇ · (−D∗∇c∗ + u∗c∗) = 0 in Ω∗, with ∗ = l, w, (12.3)

together with a condition prescribing the initial state of the concentration into
blood stream and arterial walls, c∗(t = 0) = 0 in Ω∗ and suitable boundary
conditions. For the arterial lumen, Ωl, on the inflow boundary we prescribe
cl = 0 on Γin since the blood does not contain drug proximally to the stent.
Assuming that the outflow boundary is far enough from the stent, we can
neglect any diffusive effects across this section and set ∇cl · nl = 0 on Γout.
Also, for the arterial wall we prescribe ∇cw · nl = 0 on Γa ∪ Γn,w.
According to Chapter 7, for the transmission conditions between Ωl and

Ωw we take into account the endothelium, which is modelled as a membrane
at the interface between the lumen and the arterial walls, corresponding to
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Fig. 12.14. The lumen, the arterial wall and the stent with the partition of their
boundaries for the set up of fluid dynamics and drug release models

Γ , having a permeability P with respect to the transfer of drug. Then, the
coupling between equations (12.3) is provided by the following conditions,

−Dl∇cl · nl = P(cl − cw) and −Dw∇cw · nw = P(cw − cl), on Γ, (12.4)
which are symmetric with respect to the lumen and the arterial walls. As
shown in [411] this represents an advantage both for the analysis and the
numerical approximation of the coupled problem.
Finally, particular attention should be dedicated to the boundary condition

at the interface between the stent and the lumen, because this is primarily
responsible for determining the drug release rate. We remember that DES for
cardiovascular applications are miniaturised metal structures that are coated
with a micro-film containing the drug that will be locally released into the
arterial walls for healing purposes. The thickness of this film generally lays
within the range of microns. Owing to the fact that stent coating is extremely
thin, we apply the model proposed in [529] consisting in the following formula
for the release rate,

J(t, x) = ϕ(t)(c0s − c∗) on Γs,∗ with ∗ = l, w, (12.5)

J(t, x) being the flux that is released from the stent and c0s the initial drug
charge of the stent that is equal to unity in the undimensional setting for the
concentration. Given the thickness of the stent coating, Δl, and its diffusion
parameter, Ds, the scaling function ϕ(t) is defined as follows,

ϕ(t) =
2Ds
Δl

∞∑
n=0

e−(n+1/2)
2kt with k = π2Ds/Δl

2. (12.6)

Owing to (12.5), the boundary condition on Γs,l and Γs,w for equation (12.3)
turns out to be the following Robin-type condition,

−D∗∇c∗ · n∗ + ϕ(t)(c0s − c∗) = 0 on Γs,∗ with ∗ = l, w.
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The initial/boundary value problem relative to equation (12.3) is now
ready to be approximated by means of the numerical discretisation methods
addressed in Section 7.3.

12.3.2 Numerical simulation data

The stent used in this study resembles the coronary Cordis BX-Velocity (John-
son & Johnson, Interventional System, Warren, NJ, USA). The stent geom-
etry is created using Rhinoceros 3.0 Evaluation CAD program (McNeel &
Associates, Indianapolis, IN, USA), after an acquisition of the Cordis dimen-
sions by the use of a Nikon SMZ800 stereo microscope (Nikon Corporation,
Tokyo, Japan). The length of the unit of the stent considered in the analysis
is 3.62mm, the inner radius 0.6mm and the thickness 0.14mm. The simula-
tion of the expansion of the folded stent into the coronary artery is achieved
by means of the commercial code ABAQUS/Explicit v. 6.4 (see [330]) and
references therein.
The lumen and the wall of the artery are subdivided with Gambit (ANSYS

Inc., Canonsburg, PA, USA) into 1,637,336 and 1,118,420 tetrahedra respec-
tively. In order to obtain an accurate resolution with a reasonable computa-
tional cost and memory storage, we have applied a non-uniform spacing for
the mesh generation. In particular, the central part of the domain has been
subdivided by means of variable size elements, particularly refined around the
stent.
Concerning the blood physiological data, the fluid density is ρ = 1mg/mm3

and the viscosity is μ = 3mgs−1mm−1. Moreover, at the inflow of the artery
we have imposed a parabolic velocity profile with a peak of 270mm/s. As
regards the drug release, we adopt the parameters determined by the exper-
imental investigations presented in [300] for heparin. This corresponds to set
Dl = 1.5 × 10−4mm2/s, Dw = 7.7 × 10−6mm2/s and P = 4 × 10−4mm/s.
The diffusivity of the drug into the stent coating typically ranges from 10−8

to 10−12mm2/s, depending on the mechanical properties of the polymeric
substrate. To avoid too stiff parameters we set Ds = 10

−8mm2/s.

12.3.3 Analysis of fluid dynamics around the stent

Looking at the Cordis BX-Velocity stent, it is possible to identify two kinds of
structures: the struts and the links. The former are twisted rings that provide
the circumferential strength of the stent, while the latter are tiny connections
along the longitudinal axis between subsequent struts.
An important feature of the struts is that they are twisted in the circum-

ferential direction. For this reason, the blood flow hits the struts at different
angles. Consequently, the flow pattern downstream from the struts may be
substantially different from the well known flow after a backward facing step
that corresponds to the ideal case of a perfectly circular ring that is orthogonal
to the flow. This conjecture is confirmed by the fluid dynamics simulations.
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Fig. 12.15. The interaction between the stent and the blood flow visualised by
means of streamlines. The proximal section is located on the top while the distal
section is on the bottom

Indeed, in Fig. 12.15 we visualise the streamlines of the blood flow around the
stent. This picture shows that we are dealing with a fully three-dimensional
flow with recirculations, vortexes and secondary motions. For instance, we
observe that the vortex induced by the presence of the link on the top left
corner is stretched and absorbed in the main stream on its right side. This
confirms that the vortex is not only characterised by a planar rotating flow
but an out-of-plane motion is present. This secondary motion generates the
displacement of the fluid from the centre of the vortex to the extrema and the
fluid is thus cast out of the vortex into the main stream.

12.3.4 Analysis of drug release

The numerical simulation based on equation (12.3) shows that the drug
released into the lumen is very quickly washed out by the blood flow. Indeed,
the peaks of drug concentration into the lumen are reached about 40 seconds
after the beginning of the release process. Conversely, the drug dynamics into
the arterial walls is much slower, but after 1 hour the drug has reached the
outer boundary of the arterial walls, as can be seen in Fig. 12.17 (bottom).
The drug concentration on the surface of the lumen is reported in Fig. 12.16.

The highest peaks of drug concentration appear in the neighbourhood of the
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Fig. 12.16. The contour plots of the concentration on the surface of the arterial
lumen at 40 seconds after the beginning of the process are shown on the left. The
colour scale ranges linearly from 0 (blue) to 10−3c0s (red). The mass flux exchanged
between the lumen and the arterial wall is shown on the right. The red colour denotes
a positive flux from the lumen to the wall, while the blue colour refers to the opposite
case

links. In these regions, the concentration contours suggest that the recircu-
lation of the blood flow interacts with the drug accumulation. In particular,
the smooth and concave shape of the contours suggests that part of the drug
released and accumulated in the neighbourhood of the links is transported
away and may affect the arterial walls located downstream. Indeed, regions
related to non-negligible concentration levels are clearly visible downstream
from the stent in Fig. 12.17 (top), where the presence of the drug in the lumen
is visualised by means of the iso-surface of the concentration. This means that
a wide portion of the endothelium, which is often severely injured during the
stent implantation, is exposed to a non-negligible drug concentration. When
the drug has anti-proliferative properties, the re-endothelialisation process
may be slowed down. This seems to be one of the major drawbacks of DES,
and it should be further investigated.
Concerning the struts, the accumulation of drug is unexpectedly prominent

upstream with respect to the blood flow. High concentration levels take place
where the struts are highly curved and their curvature is convex with respect
to the blood flow. This can be explained observing that blood transports the
drug downstream to the location where it has been released. The accumulation
of the drug takes place where this effect is hindered by the convex stent pattern
with respect to the blood flow.
This balance can be analysed by means of more quantitative results. One

hour after the stent implantation, almost all the drug has been released. The
contact interface between the stent and the walls ensures that 15% of the
total amount of drug is released into the walls. However, more than a half
of this fraction is simultaneously transferred into the lumen because of the
negative concentration gradient between the lumen and the walls.
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Fig. 12.17. The iso-surface corresponding to the value 10−5c0s for the drug concen-
tration in the arterial lumen and contour plots into the arterial walls, at 40 seconds
(top) and 1 hour (bottom) after the beginning of the process. The colour scale ranges
linearly from 0 (blue) to 10−3c0s (red). The blood flow is directed from top to bottom,
as depicted in Fig. 12.14

12.4 Multiscale modelling applied to surgery for the
treatment of congenital heart diseases2

Francesco Migliavacca, Giancarlo Pennati, Rossella Balossino, and
Gabriele Dubini

In this paragraph a test case is presented where the multiscale methodology
(see Chapter 11) is applied to paediatric cardiac surgery. The objective is to
show its efficacy in surgical planning, side by side with cardiology and cardiac

2 This work was made possible by the far-sighted and strongly supportive co-
operation with Professors Marc R. de Leval and Edward L. Bove. Financial sup-
port from the British Heart Foundation and the University of Michigan is also
acknowledged.
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surgery evaluations, to select the best surgical procedure to treat a complex
congenital heart defect. In particular, the treatment of hypoplastic left heart
syndrome (HLHS) is hereinafter considered.

12.4.1 The clinical problem

In the HLHS the left side of the heart (including the aorta, the aortic valve, the
left ventricle and the mitral valve) is either underdeveloped when compared
with the normal heart or absent. Blood returning from the lungs must flow
through an opening in the wall between the atria (atrial septal defect). The
right ventricle pumps blood into the pulmonary artery and blood reaches the
aorta through a patent ductus arteriosus. The baby often seems normal at
birth, but will come to medical attention within a few days of birth as the
ductus closes. This heart defect is usually fatal within the first days or months
of life unless it is treated surgically. The anatomical outcome of this surgical
operation is briefly described hereinafter.
In the presence of a hypoplastic left heart the palliative procedure usually

undertaken up until a few years ago was the Norwood stage I [354]. Fig-
ure 12.18 depicts a possible solution for the reconstructed anatomy following
this operation. The basic idea of this operation is the connection of part of the
systemic circulation directly with the pulmonary one after the reconstruction
of a new aorta incorporating the original main pulmonary artery. Indeed, the
pulmonary artery is detached from the heart above the valve and the end
is oversewn. The gap between the valve and the aorta is then bridged by a
homograft allowing blood to pump from the right ventricle into the aorta. To
get blood into the lungs a systemic-to-pulmonary shunt is performed between
the innominate artery and the right pulmonary artery.
In the recent years a new procedure [242, 447], referred to as the Sano

operation (SO), has been proposed to treat the hypoplastic left heart. It con-
sists mainly in the connection of the systemic circulation to the pulmonary
one by means of a synthetic conduit connecting the right ventricle and the
pulmonary arteries (Fig. 12.18). It seems that there may be many potential
advantages to the placement of a right ventricle to pulmonary artery shunt.
Diastolic coronary perfusion may be more stable and shunt thrombosis may
be less likely in the perioperative period. Babies treated with a SO shunt seem
better able to tolerate temporary low cardiac output and hypotension than
if they had had a conventional Norwood procedure. Many questions remain
regarding optimal size, location and material of the shunt, growth and distor-
tion of the pulmonary arteries, and possible ventricular volume overload due
to shunt backward flow.

12.4.2 The multiscale model

Two different 3-D detailed models of Norwood stage I procedure (Figs. 12.18a
and 12.18b) have been developed: a Sano shunt operation (SO) and a systemic-
to-pulmonary shunt (the modified Blalock-Taussig shunt, NO). The size of
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Fig. 12.18. Anatomic skemes (top) and 3-D models (bottom) of the two operations.
Left: Modified Blalock-Taussig Shunt (NO) showing the reconstructed neo-aorta and
the conduit between the innominate and the right pulmonary artery; right: Sano
Operation (SO) showing the conduit between the right ventricle and the pulmonary
arteries. Arrows indicate blood flow directions. Dark arrows indicate the blood flow
through the shunt. AoA: ascending aorta; AoD: descending aorta; COR: coronary
artery; HLV: hypoplstic left ventricle; LA: left atrium; IA: innominate artery; LCA:
left carotid artery; LSA: left subclavian artery; LPA: left pulmonary artery; RPA:
right pulmonary artery; RA: right atrium; RV: right ventricle (Modified from [328])

the conduits were 4, 5 and 6mm for the SO model and 3, 3.5 and 4mm for
NO model. The geometric dimensions of the blood vessel were taken from
angiograms of a group of patients with a modified Blalock-Taussig shunt per-
formed during catheterisation prior to the second-stage operation. The Finite
Volume Method (FVM) was adopted to solve the mass and momentum con-
servation equations for an incompressible, Newtonian fluid (blood density and
viscosity equal to 1,060kg m−3 and 0.005kg m−1 s−1, respectively).
The Fluent general-purpose fluid dynamic code (Fluent Inc., Lebanon,

NH, USA) was utilised for calculations. Meshes were developed (Fig. 12.19)
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Fig. 12.19. Coupled 3-D and lumped parameter models for the Sano operation.
AO: aorta; ASD: atrial septal defect; CA: coronary arteries; CB: coronary bed; CV:
coronary veins; LA: left atrium; LBA: lower body arteries; LBB: lower body bed;
LBV: lower body veins; NEOAO: aortic valve; PAB: pulmonary arterial bed; PVB:
pulmonary venous bed; RA: right atrium; UBA: upper body arteries; UBB: upper
body bed; UBV: upper body veins; SVB: systemic venous bed; SV: single ventricle;
SVP: single ventricle pressure; SLV: systemic large veins; TRIC: tricuspid valve
(Modified from [328])
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including about 130,000 4-node tetrahedral cells. The implicit backward Euler
method was utilised to as time integration technique, implementing a fixed
time increment equal to Δt = 10−4s. A segregated solver was chosen. Four
cardiac cycles were simulated for each model to guarantee a periodic solution.
The circulatory network and the cardiac function were taken into account

by means of a lumped parameter model (Fig. 12.19). This model is made
of four subsystems: heart, systemic, pulmonary and coronary circulations; it
was built following the methodology previously adopted to model the foetal
[376] and neonatal circulations [332, 378]. As regards the heart, the pressure
within any cardiac chamber (Pcc) varies throughout the cardiac cycle due
to changes of volume within the chamber (Vcc) and to contractile activity
of the sarcomeres. Active (systolic) and passive (diastolic) properties of the
myocardium account for the total chamber pressure. This can be expressed
mathematically as [467]:

Pcc(t) = Pcc,active(t, Vcc) + Pcc,passive(t, Vcc), cc = {SV,RA,LA} . (12.7)
Both active and passive pressure-volume relationships are non-linear [488],

despite the usual practice of approximating the active curve as a straight
line [515]. The active relationship changes during systole as contractile activity
of the cardiac chamber changes. Furthermore, the slope (i.e., the elastance)
of the active curve decreases with increasing volume. This behaviour was
mimicked with a time-varying elastance Ecc(Vcc, t), which depends also on
chamber volume. This elastance, which accounts for the isometric pressure-
volume function, was coupled with a constant viscous term Rwall, which is
related to the dissipative properties of the myocardium:

Pcc,active(t, Vcc) = Ecc(t, Vcc) (Vcc − Vu,cc) +Rwall,cc
dVcc
dt

(12.8)

where Vu,cc is the unstressed volume of the cardiac chamber (i.e., the volume
at zero pressure). The viscous term was considered only for the ventricle [17].
Elastance can be expressed as a product of a pulsatile activation time-

function Acc(t) and a purely volume elastance term E∗cc:

Ecc(t, Vcc) = Acc(t)E
∗
cc(Vcc). (12.9)

Ranging between 0 during the diastole and 1 at the end of systole as a
squared sinusoidal function, Acc(t) describes the excitation–relaxation pat-
tern of the myocardial sarcomeres (i.e., the muscle basic contractile units)
[17, 515]. Activation function has the same form for the single ventricle and
the atria, but has different initiation (ΔT ) and temporal lapse. The expres-
sion of E∗cc(Vcc) depends on the pressure-volume relationship during systole
of the cardiac chamber. For both atria, a linear pressure-volume function was
assumed so that E∗RA(VRA) and E

∗
LA(VLA) are constant. For the single ven-

tricle, a second-order polynomial function was adopted where the elastance
decreases linearly with increasing volume:

E∗SV (VSV ) = E
∗
1,SV +E

∗
2,SV (VSV − Vu,SV ) . (12.10)
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At diastole, when muscle fibres are relaxed, both the single ventricle and the
atria fill through an exponential pressure-volume function [486,515], reflecting
the non-linear elasticity of the relaxed muscle and pericardium:

Pcc,passive(t, Vcc) = P0,cc

(
eKE,cc(Vcc−Vu,cc) − 1

)
(12.11)

where P0,cc and KE,cc are constant parameters. Atrio-ventricular (tricuspid)
and ventriculo-arterial (neoaorta) valves were mimicked as a series of an ideal
unidirectional valve and resistance. Flows through these valves were described
by a non-linear relationship between the pressure drop ΔP (t) and the volume
flow rate Q(t) across them:

ΔPvalv = KvalvQ
2 valv = {TRIC,NEOAO} . (12.12)

Finally, the non-restrictive atrial septal defect (ASD), which allows flow from
the left into the right atrium, was simulated as a constant resistance (RASD).
The systemic circulation was divided into seven compartments, describing
the arterial and venous districts located in the upper and lower body. The left
and right pulmonary arterial and venous beds were defined by four compart-
ments. The parameter values for the systemic and pulmonary circulations
were obtained from previous studies of ours [332, 378], while those for the
coronary circulation were scaled from the adult model [311] according to the
criteria reported in Pennati and Fumero [377]. Tables 12.2 and 12.3 list the
values adopted for this study with the nomenclature as in Fig. 12.19, which
depicts the SO coupled to the whole circulatory network. For the whole sim-
ulation the heart rate (HR) was 120 beats per minute. HR and duration of
the cardiac cycle (Tc = 1/HR) were derived from a clinical data set. The
duration of ventricular systole (Ts,SV = 0.16 + 0.3Tc), which increases lin-
early with the duration of cycle [17], and duration (Ts,LA = Ts,RA = 0.3Tc
and time advance (ΔT = 0.02Tc) of atrial systole were calculated as fractions
of the cycle duration [472]. The resulting ordinary differential equation sys-
tem arising from the lumped parameter model was solved with an explicit
Euler method implemented in the Fluent package by means of a purposely
developed user-defined function. This allowed us to obtain a fully coupled solu-
tion at each time-step without stopping the Fluent execution. In particular,
uniform, time-dependent normal stresses were derived from pressure values
calculated in the lumped parameter model and imposed at the boundaries of
the 3-D model, while the local velocity profiles were not forced but calculated
at each time instant by Fluent. After spatial averaging they were fed back to
the lumped parameter model. All simulations were carried out on a Pentium
IV Personal Computer.

12.4.3 The results

Comparing the cardiac output (CO) in the SO model with the NO models
when the same shunt size is used (4mm), a higher value was found for the
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Table 12.2. Values of the parameters describing the circulation. (AO: aorta; CA:
coronary arteries; CB: coronary bed; CV: coronary veins; LBA: arterial lower body,
LBB: bed lower body; LBV: venous lower body; LPA: left pulmonary artery; RPA:
right pulmonary artery; UBA: arterial upper body, UBB: bed upper body; UBV:
venous upper body)

R mmHg s/ml L mmHg s2/ml C ml/mmHg

Pulmonary circulation

RRPA1 0.83376 CRPA1 0.02039
RRPA2 0.02194 CRPA2 0.44375
RLPA1 0.83376 CLPA1 0.02039
RLPA2 0.02194 CLPA2 0.44375

Upper body circulation

RUBL 14.04478 LUBL 0.02138 CUBL 0.088592
RUBR 14.04478 LUBR 0.02138 CUBR 0.088592
RUBB 0.64510 CUBB 0.15515
RUBV 0.16529 CUBV 2.03945

Lower body circulation

RLBA 7.02239 LLBA 0.01069 CLBA 0.077575
RLBB 0.64510 CLBB 0.077575
RLBV 0.16529 CLBC 2.03945

Coronary circulation

RCA1 10.6739 CCA1 1.94351 ×10−3
RCA2 10.6739 CCA2 5.18269 ×10−3
RCB 21.3477 CCB 7.77404 ×10−3
RCV 10.6739 CCV 0.5 ×10−4

Aorta

CAO 0.0415548

NO model (2.38–2.43 vs. 2.09 l min−1). This observation led to the conclusion
that the shunt to be adopted in the SO should be bigger than that selected
for the NO. This was already known in clinical practice as reported also by
clinical studies. Thus results of this mathematical study are consistent with
this practice. The comparison between the two technical procedures in terms
of hemodynamics outcomes should hence be done comparing small NO shunts
with greater SO shunts (for example, 3mm NO vs. 4mm SO, 3.5mm NO
vs. 5mm SO, 4mm NO vs. 6mm SO). From volume flow rate values it is
possible to calculate also the oxygen saturations. Similar arterial saturations
were obtained with greater SO shunts and smaller NO shunts [328].
Keeping in mind this observation, the results showed that the SO mod-

els exhibit, when compared with the NO models with similar CO and aortic
pressure, lower pulmonary-to-systemic flow ratio, lower arterial pulse pressure
(difference between the maximum and minimum pressures in a cardiac cycle)
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Table 12.3. Values of the parameters describing the heart

Compartment Parameter Value Units

Single E∗1,SV 8.5 mmHg/ml
ventricle

Right atrium E∗2,SV -0.042 mmHg/ml2

Rwall,SV 0.09 mmHg s/ml
P0,SV 0.9 mmHg
KE,SV 0.062 ml−1

Vu,SV 4 ml

Left atrium E∗RA 7.35 mmHg/ml
P0,RA 0.17 mmHg
KE,RA 0.484 ml−1

Vu,RA 1 ml

ASD RASD 0.001 mmHg s/ml

Tricuspid KTRIC 0.00004 mmHg s2/ml2

Neoaorta KNEOAO 0.0004 mmHg s2/ml2

and lower pulmonary arterial pressure, higher coronary perfusion pressure (dif-
ference between the diastolic aortic and the diastolic right atrial pressure),
which are consistent with literature measurements [307, 308]. Figure 12.20
reports some of those data in a graphical and more readable form. Interest-
ingly, mathematical models also predicted behaviours which are not confirmed
at the moment by clinical evidence, except for a work by Ohye et al. [356].
Shunt Doppler analysis performed in one SO and one NO patient demon-
strated continuous anterograde flow (i.e., from heart to periphery) through
both systole and diastole in the NO patient and anterograde flow through the
conduit only during systole for the SO patient.
Figure 12.21 reports the time tracing of the maximum velocity (corre-

sponding to the velocity usually recorded by a Doppler analysis) in the NO
model with 4mm shunt and SO with 6mm. An almost stable velocity occurred
in the NO model while reversal flow during diastole was observed in the SO
model. The same figure also shows the axial velocity profiles at different cross-
sections along the two shunts at four instants of the cardiac cycle.

12.4.4 Conclusions

Many computationally challenging problems that arise in science and engi-
neering exhibit multi-scale behaviour. In this test case the multiscale simu-
lation methodology has been applied to a surgical procedure whose haemo-
dynamic outcomes are still difficult to foresee in the clinical practice. The
presented test case still suffers from limitations such as the assumption of a
rigid arterial wall in the 3-D model and the absence of any feed back con-
trol (except for the Starling law of the heart). For instance, changes in the
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Fig. 12.20. Comparison between CFD simulation and clinical observed data in
terms of arterial and coronary perfusion pressure and pulmonary-to-systemic flow
ratio. Computational data refer to the 5mm SO and the 4mm NO models. Clinical
data are from Maher et al., 2003 [307] and Malec et al., 2003 [308]. * Statistically
significant differences (Modified from [328])

coronary perfusion do not affect the cardiac contractility. On the other hand,
use of simpler, stand-alone 3-D or lumped parameter models would not yield
results as meaningful as those obtained here. Indeed, the adopted approach
allows one to quantitatively evaluate the postoperative situation, thus sug-
gesting its use as a tool for preoperative surgical planning. In conclusion,
this case study illustrates a very successful application of the methodology in
the research about paediatric cardiovascular diseases wherein patient-specific
anatomy and physiology are used in an engineering model to predict surgical
outcome and to guide patient management.
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Fig. 12.21. Shunt flow tracings in the 4mm NO and 6mm SO models. Velocity
profiles along the two shunt models at two different instants of the cardiac cycle



Glossary of medical terms

Name Explanation

Actin A fibrous protein which together with myosin
provides the contractile force of muscles

Action potential A wave of electrical discharge that travels along
the membrane of a cell

Aerobic Involving oxygen (opp. anaerobic)
Afferent toward (opp. efferent)
Anaerobic Not involving oxygen (opp. aerobic)
Anastomosis A direct connection between arteries or veins.
Aneurysm A localised dilation or ballooning of a blood ves-

sel by more than 50% of the diameter of the ves-
sel. If broken can lead to severe haemorrhage and
rapid death. Aneurysms most commonly occur
in arteries at the base of the brain (cerebral
aneurysm) and in the aorta (aortic aneurysm).
The understanding of the basic mechanisms of
the genesis and progression of an aneurysms is
still matter of active medical research

Anterior Towards the front (opp. posterior)
Atheroma Abnormal lesions in the artery walls causing

atherosclerosis (also called arteriosclerosis)
Autonomic nervous system The part of the nervous system not under con-

scious control
Bilipid membrane A membrane composed of two layers of lipids

arranged so that their hydrophilic head groups
are facing outward and their hydrophobic tails
are facing each other, the fundamental compo-
nent of all cell membranes

Cardiac Pertaining to the heart
Catabolism The metabolic breakdown of complex molecules

into simpler ones, often resulting in a release of
energy

Catabolites The products of catabolism
Coagulate To transform from a liquid to a solid form, gen-

erally applied to the clotting of blood
Cytoskeleton The fibrous proteins within a cell which provide

mechanical integrity to the cell
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Depolarise The decrease, or eliminate, the electric potential
across a membrane

Diastole The period of cardiac relaxation (opp. diastole).
Distal Further away (opp. proximal)
Efferent away from (opp. afferent)
Electrocardiogram The electrical signal caused by the depolarisation

of the myocardium during the cardiac cycle
Embolus An air bubble, fat globule or blood clot drifting

in the blood
Endocrine Pertaining to the glands that excrete hormones.
Endothelium The monolayer of cells lining blood vessels
Erythrocytes Also known as “red blood cells”, they are the

most common type of blood cell and are the ver-
tebrate body principal means of delivering oxy-
gen from the lungs or gills to body tissues via the
blood (see also haemoglobin)

Extravasation Leaving a blood vessel
Fascia Sheets of connective tissue, largely collegen, that

surround or separate muscle fibres
Focal occurring at specific locations
Gene expression The process by which a gene DNA sequence is

converted into the structures and functions of a
cell

Glycocalyx The polysaccharide or glycoprotein covering on
a cell surface

Haemoglobin The iron-containing oxygen-transport protein in
the red cells of the blood in mammals and other
animals. Haemoglobin in vertebrates transports
oxygen from the lungs to the rest of the body.
Haemoglobin also has a variety of other gas-
transport and effect-modulation duties, which
vary from species to species

Haemorrhage Haemorrhage is the medical term for bleeding.
In common usage, a haemorrhage means a par-
ticularly severe bleeding; although technically it
just means any escape of blood to extravascular
space. The complete loss of blood is referred to
as exsanguination

Hematocrit The hematocrit is the percent of whole blood
that is composed of red blood cells. The hemat-
ocrit is a measure of the number and the size of
red blood cells

Humoral Relating to bodily fluids, particularly serum.
Hyperplasia An abnormal increase in the as cells composing

a tissue
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Inflammation The first response of the immune system to infec-
tion or irritation which triggers the immune cas-
cade

Lesion A localised abnormality in tissue organisation.
Leukocytes Also known as “white cells”, they form a compo-

nent of the blood. They are produced in the bone
marrow and help to defend the body against
infectious disease and foreign materials as part of
the immune system. There are normally between
4 × 109 and 11 × 109 white blood cells in a litre
of healthy adult blood

Matrix The ground substance of connective tissue
Metabolism The chemical processes occurring within a cell

that are necessary for the maintenance of life
Metabolites The products of metabolism
Mitochondria An organelle in the cytoplasm of cells containing

genetic material and many enzymes important
for cell metabolism, including those responsible
for the conversion of food to usable energy

Mucosa A mucous membrane containing an epithelium
and excretory cells

Myocardium The cardiac muscle tissue of the heart
Myofiber A muscle fibre composed of myocytes
Myosin A protein which, together with actin, is responsi-

ble for the generation of contractile force in mus-
cles

Neural Pertaining to nerves
Ostium An opening or passage
Pacemaker The collection of specialist myocytes in the sinoa-

trial node which oscillate electrically to initiate
the cardiac cycle

Parasympathetic The part of the autonomic nervous system that is
generally responsible for conserving energy and
reducing metabolism. (opp. sympathetic)

Plaque a localised abnormal patch on a body part
Posterior toward the back (opp. anterior)
Prolapse the abnormal protrusion of a part of an organ, in

particular the movement of a cardiac valve into
its upstream chamber

Proliferate To grow or multiply rapidly by producing new
tissue or cells

Proximal Closer (opp. distal)
Pulmonary Pertaining to the lung
Red blood cells See erythrocytes
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Remodelling The change of tissue morphology due to external
or internal stimulus

Renal Pertaining to the kidney
Sarcoplasm The cytoplasm of the muscle cell
Septum A partition that divides an organ; specifically

in the heart it is the layer of myocardium that
divides the left chambers from the right

Serous membrane The membrane composed of epithelium and
underlying loose connective tissue; particularly
the lining of the pericardial, pleural and peri-
toneal cavities

Smooth muscle cells Non-striated, involuntary muscle found in vessel
walls

Stasis An unchanging state
Stenosis A constriction or narrowing of a passageway
Stent A short narrow tube, often in the form of a mesh,

that is inserted into the lumen of a vessel such
as an artery or bile duct to keep a previously
blocked passageway open

Sympathetic The part of the autonomic nervous system that
is generally responsible for elevating metabolism
and increasing alertness (opp. parasympathetic).

Systemic pertaining to the cardiovascular system with the
exception of vessels perfusing the lungs (opp. pul-
monary)

Systole The period of cardiac contraction (opp. diastole).
Thrombus a blood clot
Vasoactive Stimuli that affect the cardiovascular system,

particularly vasoconstriction and vasodilation
Vasoconstriction A reduction of the diameter of blood vessels, par-

ticularly the arterioles that control the distribu-
tion of blood in the body (opp. vasodilation)

Vasodilation An increase of the diameter of blood vessels, par-
ticularly the arterioles (opp. vasoconstriction)

White blood cells See leukocytes
Windkessel The mechanism by which the elastic arteries

smooth out the cardiac pulse by expanding dur-
ing systole and contracting during diastole, the
principle was used in early fire engine pumps by
including an air chamber (Windkessel in Ger-
man) downstream of the pump



Symbol explanation

div The divergence of a vector field
div The divergence of a tensor field
Dv

Dt
The material derivative of the field v

Ω(t) The domain at a given time t
∇v The gradient operator
∇vT Transpose gradient operator ∇vT = (∇v)T
F̂ The deformation gradient at time t
J The Jacobian of the deformation at time t, J = |F̂ |
Lt The Lagrangian Mapping at time t
Δ The Lapace operator
P The pressure
R The set of real numbers
σ The Cauchy stress tensor
(u · ∇) The convective operator associated with the velocity field u

Ω̂ The reference domain
dγ The surface measure
ρ The density
η The displacement vector
Ê The Green-Lagrange tensor
x̂ The Lagrangian space coordinate
ϕ̂ The motion map
n The normal to a domain boundary (outward oriented)
∂u
∂n The normal derivative: ∂u∂n =∇u · n
P The permeability

Π̂ The Piola-Kirchhoff 1st tensor
p The Scaled pressure P = P/ρ

Σ̂ The Piola-Kirchhoff 2d tensor
s Extra diagonal part of the rate of deformation tensor
ε The strain tensor
D The rate of deformation tensor
u The velocity
μ The dynamic viscosity
ν The kinematic viscosity ν = μ/ρ
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131. H. Edelsbrunner and E.P. Mücke. Three-dimensional alpha shapes. ACM Press
New York, 1992

132. L.W. Ehrlich and M.H. Friedman. Steady convective diffusion in a bifurcation.
IEEE T. Bio-Med. Eng., BME-24(1):12–18, 1977

133. S.H. Embury, R.P. Hebbel, N. Mohandas, and M.H. Steinberg (eds.). Sickle
Cell Disease: Basic Principles and Clinical Practice. Raven Press, 1994

134. L.E. Eriksson. Practical three-dimensional mesh generation using transfinite
interpolation. SIAM J. Scient. Stat. Comput., 6(3):712–741, 1985

135. D. Errate, M. Esteban, and Y. Maday. Couplage fluide-structure. un modèle
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375. J. Peiró, L. Formaggia, M. Gazzola, A. Radaelli, and V. Rigamonti. Shape
reconstruction from medical images and quality mesh generation via implicit
surfaces. Int. J. Numer. Meth. Fluids, 53:1339–1360, 2007

376. G. Pennati, M. Bellotti, and R. Fumero. Mathematical modelling of the human
fetal cardiovascular system based on Doppler ultrasound data. Med. Eng.
Phys., 19:327–335, 1997

377. G. Pennati and R. Fumero. Scaling approach to study the changes through
the gestation of human fetal cardiac and circulatory behaviors. Ann. Biomed.
Eng., 28:442–452, 2000

378. G. Pennati, F. Migliavacca, G. Dubini, R. Pietrabissa, and M.R. de Leval. A
mathematical model of circulation in the presence of the bidirectional cavopul-
monary anastomosis in children with a univentricular heart. Med. Eng. Phys.,
19:223–234, 1997

379. K. Perktold and G. Karner. Computational principles and models of hemody-
namics. In M. Hennerici and S. Meairs (eds.), Cerebral Ultrasound, Theory,
practice and future developments, p. 63. Cambridge University Press, Cam-
bridge, 2001

380. K. Perktold, M. Hofer, G. Rappitsch, M. Loew, B.D. Kuban, and M.H. Fried-
man. Validated computation of physiologic flow in a realistic coronary artery
branch. J. Biomech., 31:217–228, 1998

381. K. Perktold and M. Prosi. Computational models of arterial flow and mass
transport. In G. Pedrizzetti and K. Perktold (eds.), Cardiovascluar fluid
mechanics, number 446 in CISM Courses and lectures, pp. 73–136. Springer-
Verlag, Wien, New York, 2003

382. K. Perktold, M. Prosi, and A. Leuprecht. Computer simulation of arterial flow
and related transport phenomena. In J. Middleton, N.G. Shrive, and M.L.
Jones (eds.), Computer Methods in Biomechanics and Biomedical Engineer-
ing. University of Wales College of Medicine, Cardiff, 2002. CD Rom, ISBN:
1 903847 09 5

383. K. Perktold, M. Resch, and H. Florian. Pulsatile non-Newtonian flow charac-
teristics in a three-dimensional human carotid bifurcation model. J. Biomech.
Engng., 113:464–475, 1991

384. P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE T. Pattern. Anal., 12(7):629–639, 1990

385. C. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002
386. D.L. Pham, C. Xu, and J.L. Prince. Current methods in medical image seg-

mentation. Annu. Rev. Biomed. Eng., 2:315–337, 2000
387. C. Picart, J.-M. Piau, H. Galliard, and P. Carpentier. Blood low shear rate

rheometry: influence of fibrinogen level and hematocrit on slip and migrational
effects. Biorheol., 35:335–353, 1998

388. C. Picart, J.-M. Piau, H. Galliard, and P. Carpentier. Human blood shear
yield stress and its hematocrit dependence. J. Rheol., 42:1–12, 1998

389. G. Pierce. Basics of computed tomography angiography of the lower extremity
vessels. Semin. Vasc. Surg., 17(2):102–109, 2004



504 References

390. R. Pitt. Numerical Simulation of Fluid Mechanical Phenomena in Idealised
Physiological Geometries: Stenosis and Double Bend. PhD thesis, Imperial
College London, University of London, 2005

391. G. Pontrelli. The role of the arterial prestress in blood flow dynamics. Med.
Eng. Phys., 28(1):6–12, Jan 2006

392. R. Ponzini, C. Vergara, A. Redaelli, and A. Veneziani. Reliable CFD based
estimation of flow rate in haemodynamics measures. Ultras. Biol. Med.,
32(10):1545–1555, 2006

393. A.S. Popel and P.C. Johnson. Microcirculation and hemorheology. Ann. Rev.
Fluid Mech., 37:43–69, 2005

394. A.R. Pries and T.W. Secomb. Rheology of the microcirculation. Clinic.
Hemorheol. Microc., 29:143–148, 2003

395. M. Prosi. Computersimulation von Massetransportvorgängen in Arterien. PhD
thesis, TUG, Austria, 2003

396. M. Prosi, K. Perktold, Z. Ding, and M.H. Friedman. Influence of curvature
dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J.
Biomech., 37:1767–1775, 2003

397. M. Prosi, P. Zunino, K. Perktold, and A. Quarteroni. Mathematical and numer-
ical models for the transfer of low-density lipoproteins through the arterial
walls: a new methodology for the model set up with application to the study
of disturbed lumenal flow. J. Biomech., 38:903–917, 2005

398. M.H. Protter and H.F.Weinberger. Maximum Principles in Differential Equa-
tions. Springer-Verlag, New York, 1984

399. Y. Qiu and J.M. Tarbell. Numerical simulation of oxygen mass transfer in a
compliant curved tube model of a coronary artery. Ann. Biomed. Eng., 28:26–
38, 2000

400. A. Quaini and A. Quarteroni. A semi-implicit approach for fluid-structure
interaction based on an algebraic fractional step method. Math. Mod. Meth.
Appl. Sciences, 17(6):957–983, 2007

401. A. Quarteroni and L. Formaggia. Mathematical modelling and numerical sim-
ulation of the cardiovascular system. In N. Ayache, editor, Computational
Models for the Human Body, Handbook of Numerical Analysis (P.G. Ciarlet
ed.), pp. 3–129. Elsevier, Amsterdam, 2004

402. A. Quarteroni, S. Ragni, and A. Veneziani. Coupling between lumped and
distributed models for blood problems. Comp. Visual. Science, 4:111–124,
2001

403. A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer-
Verlag (2nd ed.), Berlin, 2006

404. A. Quarteroni, F. Saleri, and A. Veneziani. Analysis of the Yosida method for
the incompressible Navier-Stokes equations. J. Math. Pures et Appl., 78:473–
503, 1999

405. A. Quarteroni, F. Saleri, and A. Veneziani. Factorization methods for the
numerical approximation of the incompressible Navier-Stokes equations. Comp.
Meth. Appl. Mech. Eng., 1998:505–526, 2000

406. A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid
dynamics: problems, models and methods. Comp. Visual. Science, 2:163–197,
2000

407. A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential
Equations. Number 23 in Springer-Verlag Series in Computational Mathemat-
ics. Springer-Verlag, Berlin, 1997



References 505

408. A. Quarteroni and A. Valli. Domain decomposition methods for partial dif-
ferential equations. Numerical Mathematics and Scientific Computation. The
Clarendon Press and Oxford University Press, Oxford, 1999. Oxford Science
Publications

409. A. Quarteroni and A. Veneziani. Analysis of a geometrical multiscale model
based on the coupling of PDE’s and ODE’s for blood flow simulations. Multi-
scale Model. Simul., 1(2):173–195, 2003

410. A. Quarteroni, A. Veneziani, and P. Zunino. A domain decomposition method
for advection-diffusion processes with application to blood solutes. SIAM J.
Scient. Comp., 23(6):1959–1980, 2002

411. A. Quarteroni, A. Veneziani, and P. Zunino. Mathematical and numerical
modelling of solute dynamics in blood flow and arterial walls. SIAM J. Numer.
Anal., 39(5):1488–1511, 2002

412. D. Quemada. Rheology of concentrated disperse systems III. General features
of the proposed non-Newtonian model. Comparison with experimental data.
Rheol. Acta, 17:643–653, 1978

413. D. Quemada. A non-linear Maxwell model of biofluids: Application to normal
human blood. Biorheol., 30:253–265, 1993

414. D. Quemada. Rheological modelling of complex fluids. I. The concept of effec-
tive volume fraction revisited. Eur. Phys. J. AP, 1:119–127, 1998

415. D. Quemada. Rheological modelling of complex fluids. IV. Thixotropic and
“thixoelastic” behaviour. Start-up and stress relaxation, creep tests and hys-
teresis cycles. Eur. Phys. J. AP, 5:191–207, 1999
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Basel, 2008. Oberwolfach Seminars

429. A.M. Robertson, A. Sequeira, and M.V. Kameneva. Hemorheology. In G.P.
Galdi, R. Rannacher, A.M. Robertson, and S. Turek (eds.), Hemodynamical
Flows: Modeling, Analysis and Simulation, vol. 37, pp. 63–120. Birkhäuser
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λ2 criterion, 187, 192, 195, 200
3D ultrasound, 128

a priori estimate, 284, 292, 309
absolute stability, 444
acetylcholine, 20, 21
action potential, 9, 10
Adams-Bashforth method, 372
adaptive control grid interpolation, 138
added-mass operator, 316, 318, 335
adenosine
diphosphate, 21
triphosphate, 9, 20, 21

adhesion molecule, 15
adrenaline, 34
adrenomedullin, 21
adventitia, 11, 243, 250
afterload, 29
Aitken acceleration, 334
albumin, 22
algebraic
model, 117
residual, 343

anastomosis, 5, 7, 178, 200
distal, 207, 447

aneurysm, 38, 40, 339
clipping, 42
coiling, 42
fusiform, 38
saccular, 38
stenting, 42

angiotensin, 20, 34
angioplasty, see stent
angular momentum, 193

anisotropic diffusion, 139
Arbitrary Lagrangian Eulerian
field, 85
formulation, 77, 85, 296, 303, 309,
314, 339

map, 119, 309
construction, 120
Navier-Stokes, 323
equations, 97
reference domain, 85
time-derivative, 88, 118, 311
transport formula, 326
velocity, 86

arterial pressure, 18, 30
arteriole, 13, 32
artificial boundary, 50
atheroma, 18, 177
atherosclerosis, 2, 12, 37, 244
atrial
natriuretic peptide, 36
septal defect, 467

atrio-ventricular node, 9
atrium, 3
autoregulation, 389
average concentration
logarithmic average, 248
weighted arithmetic average, 248

B-mode ultrasound, 128
B-spline interpolation, 137
balloons, 148
Banach
space, 70, 282
theorem, 435
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baroreceptor, 35, 389
baroreflex effect, 389
Beavers-Joseph conditions, 253
Bernoulli surface, 185
Bessel function, 182
bilinear form, 71
black blood MRI (BB-MRI), 126, 142,

160, 161
block Gauss-Seidel method, 441
blood-brain barrier, 7
blood temperature, 57
boundary condition
no-slip, 96
permeability, 59

boundary layer
thickness, 251

boundary representation (B-Rep), 163,
167, 171, 172

brain natriuretic peptide, 36
branch, 200
bridging region, 407
compatibility, 407, 412

Butterworth filter, 454
by-pass, 40

calcium, 10
capacitance, 377
capillary, 6, 13, 32
rheometer, 221, 223

cardiac
frequency, 25, 34
index, 29
output, 29

cardiomyocyte, 3, 8, 9, 21
carotid sinus firing rate, 392
Casson model, 232, 234
Cauchy-Green tensor, 79
Cauchy-Lipschitz theorem, 283
Cauchy-Schwarz inequality, 71, 285
Cauchy problem, 383
Cauchy stress tensor, 91, 93, 327, 351
components, 92

centerline, 183
central nervous system, 389
cerebral artery, 12
CFL condition, 338
Chagas disease, see parasitical infesta-

tion
change of metric tensor, 112

characteristic variable, 356, 398
extrapolation, 362

chemoreceptor, 35, 389
chemoreflex activity, 392
Chorin-Temam algorithm, 336
chracteristic variables, 357
Christoffel’s symbols, 110
chronotropy, 21
circulation regulation mechanisms, see

feedback mechanism
closed valve condition, 408
clotting, 16
coagulation, 224
factor, 17

coherent structure, 186
coil, 42
collagen, 8, 10, 12, 21
colour doppler ultrasound, 128
compartment, 373
compatibility relations, 361
complex modulus, 217
compliance
time-dependent, 380

computational
domain, 82
domain velocity, 86

computational grid, 60, 123
adaption, 173
advancing front, 171
boundary conforming, 166
Cartesian, 165
chimera, 168
composite overlapping, 168
confroming triangulation, 265
control, 173
Dealunay
generation, 169
enhancement, 174
generation, 162
elliptic, 167
mapping, 166
multiblock techniques, 167
high order, 174
non-conformal (non-matching), 339
octree mesh generation, 172
quadtree mesh generation, 172
side collapsing, 174
side swapping, 174
size, 62, 66
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smoothing, 174

structured, 61, 164
generation, 165

unstructured, 61, 164

generation, 169
computed axial tomography (CAT), 126

computed tomography (CT), 125

4D, 126
concentric cylinder rheometer, see

Couette rheometer

cone and plate rheometer, 220, 222
conservation form, 354

constant density fluid, 90
constitutive relation, 93

continuity equation, 90

continuum medium, 78
contouring, 135

contraction, 435

contrast enhanced MRA (CE-MRA),
126, 154

contravariant component, 109

control
problem, 422, 426

variable, 422
convergence discretisation methods, 66

convex hull, 157, 171

convolution, 138, 139, 141
Coriolis coefficient, 352, 356

coronary artery, 4

Cosserat theory, 366
Couette rheometer, 214, 220, 221, 224

coupling conditions, 307

covariant basis, 109
covariant component, 109

Crank-Nicolson method, 68, 69, 383
cubic spline, 449

curvature, 183

Gauss, 304
mean, 304

cytoskeleton, 15, 18

Darcy-Brinkman equation, 244, 249,
251

Darcy equation, 244, 249, 251, 261, 337
data regularisation, 363

Dean

number, 179, 188, 190, 209, 366
vortex, 192, 196, 202, 208, 448

defective data problem, 413, 415, 416,
422, 424, 428

compliant case, 429
deformable
contours, 147
surface, 147

deformation, 78
gradient, 78, 81
Jacobian, 79

degree of freedom, 64
Delaunay tessellation, 157, 158, 169
density of elastic energy, 99
diastole, 25
differential-algebraic equations, 347,

382, 403, 404, 407, 434, 435
index 1, 383

diffusive effect, 354, 368
diffusivity, 257, 258
digital subtraction angiography (DSA),

125
dimensionless parameter, 178
diode, 380
Director’s theory, 365
Dirichlet-Neumann
iteration, 322, 330, 333
preconditioner, 335

discontinuous-Galerkin approach, 368,
370

flux upwinding, 373
discrete dynamic contours (DDC), 147,

161
discrete energy inequality, 338
dispersive effect, 354, 368
displacement, 78
distal boundary, 50
distance function, 157
signed, 157, 158

distensibility, 32
distributional derivative, 72
divergence theorem, 62
domain
decomposition, 333, 335
splitting, 363, 442

double bend flow
45 degrees, 195
90 degrees, 197

do nothing conditions, 417
ductus arteriosus, 467
duplex ultrasound, 128
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edge blurring, 139

edge detection, 139

efferent

sympathetic activity, 392

vagal activity, 392
eigenfunctions, 283

eikonal equation, 145, 162

elastance, 30

elastic artery, 12

elastic material, 98

elastin, 8, 10, 12

elastodynamics
boundary conditions

Dirichlet, 102

Neumann, 102

weak formulation, 107

elastodynamics equation, 98

elastography, 53

electrical analogy of circulatory system,
376

embedding function, 151

embolisation, 43

end-to-end anastomosis, 40

endarterectomy, 40

endocarditis, 36
endocardium, 8

endothelial

cell, 7, 14

clefts, 257

endothelin, 20

endothelium, 8, 10, 14–15, 44, 243, 250

energy equality, 309, 341

energy decay property, 432
epicardium, 8

erythrocite, 22, 23, 212, 238

deformability, 212, 213, 215

Euler

equation, 47

expansion, 89

Euler (E) circulation models, see one-
dimensional circulatory models

Eulerian

field, 82

formulation, 82

explicit
coupling, 307

Euler method, 68

surface representations, 131

extension, see aso lifting120
harmonic, 120

external elastic lamella, 11
extravasation, 15, 16

Faedo-Galerkin method, 283
Fahraeus-Lindquist effect, 33, 48
Fahraeus efect, 33
false transient, 50
Farhaeus-Lindqvist effect, 224
fast marching method, 145
feature image, 153
feedback mechanism, 347, 392
long term, 389
short term, 389

fibrinogen, 22, 212
finite
difference method, 61
element method, 63
element technique, 263
volume method, 61, 468

first normal stress coefficient, 216
fixed-point algorithm, 333
fixed point method, 69
flow extension, 417
flow rate problem, 416
fluid operator, 329
fluid-structure coupling, 117
monolithic, 307, 332
semi-implicit, 336
strong, 281, 307, 314, 321, 323
weak, 307, 314, 319, 336

fluid-structure interaction system, 121
fluid-wall model, 245, 246, 250, 264,

265, 268, 269, 273, 461
flux vector, 61
Fontan procedure, 36
Fourier transform, 360
fractional step algorithm, 337
Frank Starling effect, 27
Frenet-Serret formulae, 183, 187
Frenet frame, 182, 192
friction coefficient, 253
front propagation, 145, 162
full width at half maximum crite-

rion (FWHM), 143, 154
functional, 64, 70
linear and continuous, 70

functional space, 70, 282
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Galerkin method
generalised, 67

Gateaux differential, 104, 423
Gaussian
filtering, 139
kernel, 139, 141, 153

genetic algorithm, 394
geometrical multiscale model, 360, 387,

396
geometric conservation law, 325, 326
geometric modelling, 131
Germano co-ordinate system, 184
Germano number, 180, 190
globulin, 212
glycocalyx, 14, 15
GMRES method, 160, 334, 421
flexible preconditioned, 268

gradient magnitude, 153
graft, 40
Green-Lagrange strain tensor, 98
G protein-coupled receptor, 19

H10 space, 74
haematocrit, 22
haemoglobin, 23
haemolysis, 44, 215
haemorheology, see rheology
haemostasis, 17
Hagen-Poiseuille flow, 190, 203, 352,

401, 413, 417, 448
Harvard pulsatile pump, 451
head loss, 32
heart
anatomy, 2
attacks, 2
bioprosthetic stentless valve, 39
congenital disease, 36
innervation, 4
mechanical valve, 39
muscular cells, 9
valve, 3, 8, 25
wall layer, 8

Helmholtz laws, 185
Hessian matrix, 141
Heun method, 383
Hilbert space, 71
hindrance coefficient, 249, 253, 256
His bundle, 9
homogeneisation, 249

homogeneous

isotropic material, 99
material, 98

Hook’s law, 99
hydraulic conductivity

cylindrical pore, 258
ringlike pore, 259

hyperelastic material, 99, 325
hypertension, 21

hypoplastic left heart syn-
drome (HLHS), 473

image
enhancement, 136

interpolation, 137
segmentation, 123, 142

deformable models, 146
manual, 142

region growing, 145
imbedding, 286

compact, 287
continuous, 287

immersed
boundary method, 84, 345

structure, 345
implicit

Euler method, 68, 319, 321, 470
surface representation, 133

incompressibility, 90
independent rings model, 431

inductance, 376
inf-sup condition, 263, 419

inotropy, 20
interface operator, 330

internal elastic lamella, 10, 243, 250
interpolation operator, 338, 342, 344

intima, 10, 21, 243, 250
intimal hyperplasia, 40

intravascular ultrasound (IVUS), 128,
156

inverse Fourier transform, 361
isosurface, 133

extraction, 135
isotropic material, 98

iterative substructuring method, 264,
441, 442

Jacobian, 81
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k-space, 126
Kedem-Katchalsky equations, 247, 250,

252, 254, 261
kinematic condition, 339
Kirchhoff-Love condition, 112
Kirchhoff (K) circulation models,

see lumped-parameter circula-
tory models

Kirchhoff law, 382
Koiter shell, 303
Korn inequality, 290, 305
Kozeny constant, 256

L2 space, 71
Lagrange multiplier, 340–345, 420, 439
Lagrangian
field, 82
formulation, 82

lag coefficient, 257
Lamè coefficients, 99, 304
laminar flow, 51
Laplace transform, 379
large vein, 12
Larmor frequency, 126
Lax-Milgram lemma, 64
Lax-Wendroff method, 368, 445
leaky junctions, 257
leap-frog scheme, 319, 337
Lebesgue integral, 72
left eigenmatrix, 357
Legendre polynomial, 372
leukocyte, 16, 22, 23, 212
adhesion, 15, 20

level sets, 134, 151, 163
narrow band, 151
sparse field, 151

lifting, 107, 120, 328
linear viscoelastic property, 217, 228
line search algorithm, 394
lipoprotein, 22
load computation, 339
lofting, 156, 161
low density lipoprotein, 22, 57, 244,

268, 269, 275
lumped-parameter circulatory models,

347, 373, 395, 411, 434
π network, 378
L-inverted network, 378
L network, 377

T network, 378
terminal vessels, 384

magnetic resonance angiogra-
phy (MRA), 126

magnetic resonance imaging (MRI),
126, 449

marching

cubes, 135

tetrahedra, 135

mass, 90

conservation, 90, 350

matrix, 69

transfer, 15

matching conditions

Beavers-Joseph, 253

fluid dynamics, 253

solute dynamics, 265

material

domain, 81

field, 82

particle, 81

point, 78, 81

volume, 81

maximum principle, 255

Maxwell model, 238, 240

mean pressure problem, 424

mechanoreceptor, 35, 389

mechanosensitive channel, 19

mechanotransduction, 18

media, 10, 243

medical image

formal definition, 131

membrane-bending shell model, 112

mesh, see computational grid

mid-point method, 323

midsurface, 108

mitral valve, 379

model coarsening, 442

modified Blalock Taussig shunt, 467

modified curvature diffusion equa-
tion (MCDE), 140

momentum

balance, 351

equation, 91, 98

motion, 81

multi-index, 72
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multilayer model, 59, 245, 246, 248, 250,
251, 254, 255, 263, 264, 266, 268,
269, 271, 273

differential formulation
fluid dynamics, 251
differential formulation
solute dynamics, 253

multiscale vessel enhancement, 140
muscular artery, 12
myocardium, 3, 8

Nanson’s formula, 81
natriuretic peptide, 34
Navier-Stokes equations, 49, 95, 244,

248, 348, 395, 411, 434, 448
ALE formulation, 97
boundary condition, 95, 96

Neumann-Dirichlet iteration, 331
Neumann-Neumann preconditioner, 335
Newtonian fluid, 49, 94, 177, 244
generalised, 231

Newton iteration, 69
Newton method, 332
exact, 332, 334
inexact, 333, 334

nitric oxide, 15–17, 20, 21
nodal myocytes, 9
nodal cell, 9
noise reduction, 138
non-reflecting boundary conditions,

358, 405
non-uniform rational B-

splines (NURBS), 132, 160,
163

nonconformity, 339
noradrenaline, 34
norm, 70
normal plane, 183
Norwood stage I procedure, 467
nuages, 156
numerical flux, 62

octree, 165
mesh generation, 172

Oldroyd-B model, 240
one-dimensional circulatory models,

347, 395
Onsager phenomenological equations,

248

open valve condition, 408
optimality conditions, 423
orientation preserving mapping, 79
osculating plane, 183
osmotic pressure, 22
osmotic reflection coefficient, 258, 259
Otsu thresholding, 144, 161
oxygen, 9

P-wave, 27
Péclet number, 58
global, 248
local, 263

parameter identification, 394
parasitical infestation, 36
parasympathetic, 4, 13
particle
migration, 224
ring, 200, 202

partitioned scheme, 307, 344, 420
pericardium, 3, 8
permeability, 249, 251, 252, 256, 257,

356
phase contrast MRA (PC-MRA), 126,

144
phase separation, 224
Piola
formula, 80
transformation, 80, 312
inverse, 80

Piola-Kirchhoff tensor
first, 98
second, 98

pixel classification, 144
plasma, 48
platelet, see thrombocyte, see thrombo-

cyte, see thrombocyte
Poincaré inequality, 74, 305
Poiseuille flow, see Hagen-Poiseuille flow
Poisson
coefficient, 99, 315
ratio, 353

polygonal surface, 131
polygonisation, 157
polynomial interpolation
Lagrangian, 174

pore
cylindrical, 257
diameter, 251
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permeability, 258

ringlike, 257, 259
theory, 256

porosity, 249, 251
power law, 233

preload, 29
pres-stressed reference state, 103

pressure-volume loop, 29
projection scheme, 336

prostacyclin, 21
proteoglycan, 8

proximal boundary, 50
pulmonary
artery, 12

circulation dimension, 5
purinergic receptor, 22

Purkinje fibre, 9

QRS-complex, 25
quadtree, 165

mesh generation, 172
quasi-linear form, 356

Quemada model, 233

radial basis function (RBF), 134, 159,
161

radiofrequency (RF), 126
Raviart-Thomas elements, 263

re-endothelialisation, 465
receptor tyrosine kinase, 19

rectifying plane, 183
reduced

solvent fluxes, 254
velocity, 181, 209

reduction coefficient, 256
red cells, see erythrocite
reference configuration, 78

reflection coefficient, 385
regulatory mechanisms, see feed-

back mechanism

Reiner-Rivlin fluid, 232
Reissner-Midlin kinematics assumption,

111
relaxation, 322, 334

remodelling, 21
resampling, 137

resistance, 376
restenosis, 40, 41, 44

Reynolds number, 25, 31, 51, 179, 186,
366, 448, 450

Reynolds transport, 290, 348, 351
rheology, 211
rheometer, 215, 220
rheometry, 211
Richardson method, 335
Riemann problem, 360
Robin-Robin iterative method, 267
roleaux, 212
rotational
angiography (RA), 125, 162
component of velocity, 188

rotation tensor, 106
Runge-Kutta method, 372, 383
time adaptivity, 384

saddle-point, 344
Saint-Venant Kirchhoff model, 99–106,

303
Sano operation, 467
saphenous vein, 449
sarcomere, 9
sarcoplasmic reticulum, 10, 27
Schauder theorem, 295, 302, 434
secondary flow, 186, 188
bend, 188
inviscid, 191

second normal stress coefficient, 216
segmentation, see image segmentation
segregated scheme, see parti-

tioned scheme
selective permeable membranes, 246
seminorm, 73
Shannon’s sampling theorem, 138
shape
based interpolation, 157
derivative, 333

shear
stress, 92
stress modulus, 315
thinning, 48, 212
viscosity, see viscosity

shell, 108
cylindrical, 110
dynamics, 112
element, 339
kinematics, 111
Koiter-type, 114
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membrane bending, 112
model, 54

Shockley equation, 381
side-to-side anastomosis, 40
signal to noise ratio (SNR), 139
similarity parameter, 178
sino-atrial node, 9
sleeve effect, 379
smooth muscle cell, 8, 12, 13, 21
snakes, 147, 161
spectral element method, 65
spring mass analogy, 148
stability, 322
condition, 320

Starling, 247
law, 33

state
equation, 421
variable, 377

steepest descent method, 423
Steklov-Poincaré operator, 268, 319,

330
stent, 41, 460
drug eluting, 277, 460

stiffness matrix, 65
stiff problem, 384, 392
stoichiometric matrix, 392
strain rate, 49, 93
strain tensor
linearised, 105

streamline-upwind/Petrov-
Galerkin method, 263

strictly hyperbolic system, 357
string model, 117
generalised, 117

stroke, 2
strong formulation, 64
Strouhal number, 181
structure
operator, 329
tree model, 387

sub-endothelial layer, see intima
subcritical system, 357
subdivision surface, 133
support of functions, 71, 282
surface
covariant derivative, 110
force, 91
metric, 109

reconstruction, 156
representations, 131
tension, 292

swirl component of velocity, 188
sympathetic, 4, 13, 20
systemic vessels
dimension, 5

systemic-to-pulmonary shunt, 467
systole, 25

T-tubule, 10
T-wave, 27
Taylor-Galerkin approach, 368
tensorial form, 78
terminal impedance, 361
test function, 63
tetralogy of Fallot, 36
theorem
Reynolds transport, 89

thickness, 108
thixotropic fluid, 48
thixotropy, 212, 218, 228
measurement, 225
model, 235

thresholding, 143
thrombocyte, 17, 22, 23, 212
thrombosis, 18, 40, 43, 44, 215
tight junction, 7
time-derivative
Eulerian, 87
material (Lagrangian), 87

time advancing scheme, 61, 68
time of flight MRA (TOF-MRA), 126,

143, 144, 161
time step, 61
Timoshenko shear correction factor, 315
topology-adaptive deformable models,

150
torsion, 180, 183
total pressure, 355, 399, 428
total protein minus albumin (TPMA),

233
trace, 73
transfer function, 360
transmission condition, 307, 339
transport term, 88
gradient form, 92

tricuspid valve, 379
tubular deformable models, 149
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turbulence, 51

ultrasound imaging (US), 128
upwind finite differences, 151

Valsalva sinus, 4
Van’t Hoff law, 247
varicose vein, 43
vascular imaging, 125
vasoconstriction, 20, 21
vasodilation, 20, 21
vasopressin, 34
vein device, 43
velocity, 81, 82
venous
return, 13
valve, 6, 13

ventricle, 3
ventricular activity
four phases, 25

ventricular assist device, 39, 43
venule, 13, 32
vessel
compliance, 32
enhancement, 140
replacement, 40

viscoelasticity, 212
viscoelastic effects for vascular wall,

114, 306
viscometric
flow, 216
function, 216

viscosity, 216
apparent, 226
Brinkamn’s modified, 249
dynamic, 94
kinematic, 94
material, 226

volume force, 91
Voronoi diagram, 158, 169

vortex
ring, 191, 192, 202, 205, 206
stretching, 194, 203

tilting, 194, 205
vortical structures, 178, 199
vorticity, 178, 184, 193
streamwise, 193, 195, 198, 200

wall-free model, 59, 245, 246, 250
wall boundary layer
separation, 197

wall shear stress
oscillating, 52

weak-formulation, 64
weakly coupled schemes, 307
weighted least squares B-spline, 274
Weissenberg-Rabinowitsch relation, 223
well-posed problem, 64
white cells, see leukocyte

Willis circle, 7
Windkessel
effect, 12
model, 386, 409

windowed-sinc interpolation, 138
Womersley
flow, 182, 415, 417
number, 31, 181, 203

solution, 379
wrapping radius, 184

X-ray imaging, 125

yield stress, 213, 229, 232

Yosida method, 263
Young modulus, 99, 315, 353, 451

zero-dimensional circulation models,
see lumped-parameter circula-
tory models




