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1 The Hilbert-Gentzen Thesis

This paper is concerned with real proofs as opposed to formal proofs, and
specifically with the ultimate reason of real proofs (‘Why Proof?’) and with
the notion of real proof (‘What is a Proof?’).

Several people believed and still believe that real proofs can be represented
by formal proofs. A recent example is provided by Macintyre who claims that
“one could go on to translate” all “classical informal proofs into formal proofs
of some accepted formal system”, where such translations “do map informal
proofs to formal proofs” [44, p. 2420].

This view is to a certain extent implicit in Frege – to a certain extent
only, because for Frege in a sense “every inference is non-formal in that the
premises as well as the conclusions have their thought-contents which occur
in this particular manner of connection only in that inference” [18, p. 318].

Anyway, the view that real proofs can be represented by formal proofs is
explicitly stated by Hilbert and Gentzen.

For Hilbert claims that formal proofs are “carried out according to certain
definite rules, in which the technique of our thinking is expressed” [34, p. 475].
These are “the rules according to which our thinking actually proceeds”. They
“form a closed system that can be discovered and definitively stated”.

Similarly, Gentzen claims that formal proofs in his natural deduction sys-
tems have “a close affinity to actual reasoning” [22, p. 80]. They reflect “as
accurately as possible the actual logical reasoning involved in mathematical
proofs” [22, p. 74].

Thus one may state the following:

Hilbert-Gentzen Thesis. Every real proof can be represented by a for-
mal proof.
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Although the Hilbert-Gentzen thesis is widely held, there are various rea-
sons for thinking that it is inadequate. To discuss this matter we must answer
the questions: Why proof? What is a proof?

2 What is a proof?

As already mentioned, ‘Why proof?’ is a question about the ultimate reason
of real proofs. Such question is strictly connected to the question ‘What is a
proof?’, for the ultimate reason of real proofs depends on what real proofs
are, so one can expect that an answer to the question ‘What is a proof?’ will
yield an answer to the question ‘Why proof?’.

Of course, this holds only if ‘Why proof?’ is meant as a question about
the ultimate reason of real proofs, not as a question about their possible uses,
which are multifarious. (Thirty-nine such uses are listed in Lolli [42]). Here
‘Why proof?’ will be meant in that sense.

There are two distinct answers to the question ‘What is a proof?’, which
yield two essentially different and indeed alternative notions of real proof.
All known apparently different notions of proof can be reduced to such two
notions.

A) The notion of axiomatic proof. Proofs are deductive derivations of
propositions from primitive premisses that are true in some sense of ‘true’.
They start from given primitive premisses and go down to the proposition to
be proved. Their aim is to give a foundation and justification of the proposi-
tion.

B) The notion of analytic proof. Proofs are non-deductive derivations of
plausible hypotheses from problems, in some sense of ‘plausible’. They start
from a given problem and go up to plausible hypotheses. Their aim is to
discover plausible hypotheses capable of giving a solution to the problem.

The notion of axiomatic proof was first stated by Aristotle in Posterior
Analytics and then modified by Pascal, Pieri, Hilbert, Padoa in that order
(see Cellucci [4, Chs. 4-5]). It is a very familiar one and so does not seem to
require further explanation.

The notion of analytic proof was first stated by Plato in Meno and Phaedo
(see [4, pp. 270-308]). It is less familiar and so requires some explanation. The
main points seem to be the following.

1) A problem is any open question.
2) A hypothesis is any means that can be used to solve a problem.
3) A hypothesis is said to be plausible if and only if it is compatible with the

existing data – that is, all mathematical notions and results available at that
moment – in the sense that, comparing the arguments for and the arguments
against the hypothesis on the basis of the existing data, the arguments for
prevail over those against. (A typical example is provided by the discussions
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concerning the plausibility of the axiom, or rather hypothesis, of choice at the
beginning of the twentieth century).

4) The process by which problems are solved is an application of the ana-
lytic method, which can be described as follows. One looks for some hypoth-
esis that is a sufficient condition for solving the problem. The hypothesis is
obtained from the problem, and possibly other data, by some non-deductive
inference: inductive, analogical, diagrammatic, metaphorical, metonymical, by
generalization, by specialization, by variation of the data, and so on. (On dif-
ferent kinds of non-deductive inferences for finding hypotheses, see Cellucci
[6, pp. 235-295]. The hypothesis must not only be a sufficient condition for
solving the problem, but must also be plausible, that is, compatible with the
existing data. However the hypothesis, in turn, is a problem that must be
solved, and will be solved in the same way. That is, one will look for another
hypothesis that is a sufficient condition for solving the problem posed by the
former hypothesis, it is obtained from it, and possibly other data, by some
non-deductive inference, and must be plausible. And so on, ad infinitum. Thus
the solution of a problem is a potentially infinite process.

In the course of this process the statement of the problem may be modified
to a certain extent to make it more precise, or may even be radically changed
as new data emerge. Thus the development of the statement of the problem
and the development of the solution of the problem may proceed in parallel.

The analytic method is both a method of discovery and a method of jus-
tification. It involves two distinct processes, the formulation of candidates for
hypothesis by means of non-deductive inferences, and the choice among such
candidates on the grounds of their plausibility. Such choice is necessary be-
cause non-deductive inferences can yield different conclusions from the very
same premisses. To choose among such conclusions one must carefully assess
the arguments for and the arguments against each of them on the basis of the
existing data. Such assessment is a process of justification, so justification is
part of discovery. (For more on the analytic method, see [4], [6], [7], [11]).

The axiomatic method is what results from the analytic method when the
hypotheses stated at a certain stage are considered as an absolute starting
point, for which no justification is given. Thus the axiomatic method is an
unjustified truncation of the analytic method.

One of the oldest examples of analytic proof concerns the problem of the
duplication of the cube a3. Hippocrates of Chios solved it by showing that
the hypothesis ‘One can find two mean proportionals x and y in continued
proportion between a and 2a’ is a sufficient condition for its solution.Then
Menaechmus solved the problem posed by such hypothesis by showing that a
certain other hypothesis is a sufficient condition for its solution. And so on.

A recent example of analytic proof concerns Fermat’s Problem. Ribet
solved it by showing that the Taniyama-Shimura conjecture – or hypothesis –
is a sufficient condition for its solution. For “let E be an elliptic curve over Q.
The Taniyama-Shimura Conjecture (also known as the Weil-Taniyama Con-
jecture) states that E is modular” [55, p. 123]. Ribet showed: “Conjecture of
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Taniyama-Shimura =⇒ Fermat’s Last Theorem” [55, p. 127]. Thus, as stated
above, Ribet solved Fermat’s problem by showing that the Taniyama-Shimura
hypothesis is a sufficient condition for its solution. Then Wiles and Taylor
solved the problem posed by the Taniyama-Shimura hypothesis by showing
that certain other hypotheses are a sufficient condition for its solution. And
so on.

But already one can hear the objection: Surely Ribet did not solve Fer-
mat’s Problem, for his alleged solution depended on a hypothesis that at the
time had not been proved yet! (One could hear a similar objection about Hip-
pocrates of Chios’s solution of the problem of the duplication of the cube).

Now, if Ribet did not solve Fermat’s Problem because his solution de-
pended on a hypothesis, the Taniyama-Shimura hypothesis, that at the time
had not been proved yet, then Wiles and Taylor have not solved Fermat’s
problem because their solution depends on a hypothesis, the axioms of set
theory, that to this very day has not been proved yet. (Similarly as regards
Hippocrates of Chios and Menaechmus. Ribet stands to Hippocrates of Chios
as Wiles and Taylor stand to Menaechmus).

One can also hear the objection: A so-called ‘analytic proof’ is not a proof.
Admittedly, working backwards to find the needed ingredients to prove a po-
tential theorem is a standard method in the work of mathematicians. But this
cannot justifiably be referred to as proof, for what is customarily understood
by ‘proof’ is a sequence of arguments to justify an assertion.

Now, at each stage in the development of an analytic proof, only a finite
piece of the proof is given and, reading it top down rather than bottom up,
one has a sequence of arguments that justifies an assertion. The sequence
justifies it because hypotheses must be plausible. Reading the sequence top
down rather than bottom up is inessential, it is just a matter of convention.

3 Analytic and axiomatic proof

The point of analytic proof can be seen in terms of Gödel’s first incompleteness
theorem.

Suppose that you want to solve a problem, say, of elementary number-
theory and want to find a hypothesis to solve it. By Gödel’s result there is no
guarantee that the hypothesis can be derived from the axioms of Peano Arith-
metic, so you must be prepared to look for hypotheses of any kind, concerning
objects of any mathematical field. Think, for instance, of Fermat’s problem,
a problem concerning natural numbers that, as we have already mentioned,
Ribet solved using a hypothesis, the Taniyama-Shimura, concerning elliptic
curves over Q – the set of rational numbers.

Moreover, again by Gödel’s result, there is no guarantee that the hypoth-
esis can be derived from any known axioms. Think, for instance, of Gödel’s
suggestion that we might need new infinity axioms to solve number-theoretic
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problems (see [23, p. 269]). Thus solving a problem generally consists in look-
ing for hypotheses in an open, that is, not predetermined space.

The point of analytic proof can be also seen, perhaps more vividly, in
terms of Hamming’s statement: “If the Pythagorean theorem were found to
not follow from postulates, we would again search for a way to alter the
postulates until it was true. Euclid’s postulates came from the Pythagorean
theorem, not the other way” [26, p. 87]. In mathematics “you start with some
of the things you want and you try to find postulates to support them” [27, p.
645]. The idea that you simply lay down some arbitrary postulates and then
make deductions from them “does not correspond to simple observation” [26,
p. 87].

In addition to giving alternative answers to the question ‘What is a
Proof?’, the notions of axiomatic proof and analytic proof give alternative
answers to the question ‘Why Proof?’. For the ultimate reason of axiomatic
proof is to give a foundation and justification of a proposition, and the ulti-
mate reason of analytic proof is to discover plausible hypotheses capable of
giving a solution to a problem.

Since their ultimate reasons are different, the notions of axiomatic and
analytic proof play different roles in the development of mathematics.

Axiomatic proof, being meant to give a foundation and justification of an
already acquired proposition, is not intrinsically fruitful for the creation of
new mathematics.

On the contrary, analytic proof has a great heuristic value, not only be-
cause it is meant to discover plausible hypotheses capable of giving a solution
to a problem, but also because such hypotheses may belong to areas of math-
ematics different from the one to which the problem belongs. Thus they may
establish connections between the problem and concepts and results of other
areas of mathematics. This may reveal unexpected relations between different
areas, which may suggest new perspectives and new problems and so may be
very fruitful for the development of mathematics. As Grosholz says, these new
perspectives and problems may allow one “to explore the analogies among dis-
parate things, a practice which in the formal sciences tends to generate new
intelligible things” [25, p. 49].

The notions of axiomatic and analytic proof yield alternative notions of
mathematical theory.

In terms of axiomatic proof, a mathematical theory is a closed set of prim-
itive premisses and propositions obtained from them by deductive inferences
– a closed set, because primitive premisses are predetermined and given once
for all, and the propositions belonging to the set in question are entirely deter-
mined by the primitive premisses. Briefly, a mathematical theory is a closed
system.

In terms of analytic proof, a mathematical theory is an open set of prob-
lems and hypotheses for their solution obtained from the problems by non-
deductive inferences – an open set, because hypotheses are not predetermined
or given once for all and the solution of a problem may generate new problems.
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Briefly, a mathematical theory is an open system. (For more on these notions
of closed and open system, see [4, pp. 309-347], [5], [6, Chs. 7 and 26]).

4 Analytic and analytic-synthetic method

The analytic method must not be confused with the analytic-synthetic method.
While the analytic method is a method for finding hypotheses to solve given
problems, the analytic-synthetic method is a method for finding deductions of
given propositions from given primitive premisses (axioms, rules, definitions),
thus it is only a heuristic pattern within axiomatized mathematics.

In the analytic-synthetic method, to find a deduction of a given proposi-
tion from given primitive premisses, one looks for premisses from which that
proposition will follow, then one looks for premisses from which those pre-
misses will follow, and so on until one arrives at some primitive premisses
among the given ones. If this process is successful, then inverting the path
direction – that is, repeating the steps in inverse order – one gets a deduction
of the given proposition from the given primitive premisses, as desired.

While in the analytic method finding a solution of a given problem is a po-
tentially infinite process, in the analytic-synthetic method finding a deduction
of a given proposition from given primitive premisses is a finite process.

Actually, there are two versions of the analytic-synthetic method, origi-
nally described by Aristotle and Pappus, respectively, which differ as to the
direction of the analysis. In Aristotle’s version the direction is upward, in
Pappus’s version it is downward (see [4, pp. 289-299], [11, Ch. 15]). Here we
need only consider Aristotle’s version, that is the one described above. (For
more on the analytic-synthetic method, see Hintikka-Remes [37], Knorr [40],
Mäenpää [45], Timmermans [59]).

5 Frege’s Thesis

Supporters of the notion of axiomatic proof assume that all proofs come under
that notion. This is due to the influence of Frege, who sharply separates the
context of discovery from the context of justification, limiting logic to the
latter and confining the context of discovery to individual psychology (see
[19, p. 5], [17, p. 3]). Contemporary supporters of the notion of axiomatic
proof follow Frege. Thus one may state the following:

Frege’s Thesis. Every real proof is an axiomatic proof.

The Hilbert-Gentzen Thesis can be viewed as an extreme form of Frege’s
Thesis, for it implies that every real proof not only is an axiomatic proof but is
also, ‘up to representation’, a formal proof. Azzouni states such implication by
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saying that “ordinary mathematical proofs indicate (one or another) mechan-
ically checkable derivation of theorems from the assumptions those ordinary
mathematical proofs presuppose” [2, p. 105]. So “it’s derivations, derivations
in one or another algorithmic system, which underlie what’s characteristic of
mathematical practice” [2, p. 83]. (For a critical appraisal of Azzouni’s views,
see Rav [54]).

6 Proofs as means of discovery or justification

While Hilbert and Gentzen build on Frege’s Thesis, Aristotle who, as we have
already mentioned, first stated the notion of axiomatic proof, would have re-
jected it. For, although Aristotle sharply distinguishes between the procedure
by which new propositions are obtained and the procedure by which propo-
sitions already obtained are organized and presented, he considers both such
procedures as belonging to logic. Aristotle views the former as the procedure
of the working mathematician, the latter as the procedure for teaching and
learning propositions already obtained, and attributes only the latter to the
notion of axiomatic proof.

For Aristotle states that the procedure by which new propositions are
obtained consists in a method that will tell us “how we may always find a
deduction to solve any given problem, and by what way we may reach the
primitive premisses adequate to each problem” (Aristotle, Analytica Priora,
A 27, 43a 20-22). The method “is useful with respect to the first elements
in each science” (Aristotle, Topica, A 2, 101a 36-37). For, “being used in the
investigation, it directs to the primitive premisses of all sciences” (ibid., A 2,
101b 3-4). On the other hand, the procedure by which propositions already
obtained are organized and presented consists in the axiomatic method, for
“we know things through demonstrations”, where demonstration is “scientific
deduction” (Aristotle, Analytica Posteriora, A 2, 71b 17-19). That is, it is a
deduction which proceeds “from premisses that are true and primitive” (ibid.,
A 2, 71b 20-21). The importance of demonstration depends on the fact that
“all teaching and intellectual learning” is obtained by means of it, in particular
“the mathematical sciences are acquired in this way” (ibid., A 1, 71a 1-4).

Aristotle’s description of the procedure by which propositions already ob-
tained are organized and presented corresponds to the notion of axiomatic
proof. On the other hand, his description of the procedure by which new
propositions are obtained does not correspond to that notion. It does not cor-
respond to the notion of analytic proof either because, for Aristotle, the pro-
cess by which new propositions are obtained is finite. Rather, it corresponds
to the procedure by which deductions of given propositions from given primi-
tive premisses are obtained in – Aristotle’s version of – the analytic-synthetic
method.

That, for Aristotle, the procedure by which new propositions are obtained
is finite depends on his argument that infinite regress is inadmissible, other-
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wise one could prove everything, including falsehood. To stop infinite regress
Aristotle assumes that there must be some primitive premisses that are true,
and must also be known to be true, otherwise one would be unable to tell
whether something is a demonstration.

For Aristotle claims that, if the series of premisses “did not terminate and
there was always something above whatever premiss has been taken, then
there would be demonstrations of all things” (Aristotle, Analytica Posteriora,
A 22, 84a 1-2.). Thus there must be premisses that must be “primitive and
indemonstrable, because otherwise there would be no scientific knowledge”,
and moreover “must be true, because it is impossible to know what is not the
case” (ibid., A 2, 71b 25-27). In addition to being true, primitive premisses
must also be known to be true, for “if it is impossible to know the primitive
premisses, then it is impossible to have scientific knowledge of what proceeds
from them absolutely and properly” (ibid., A 2, 72b 13-14). And to know the
primitive premisses amounts to knowing that they are true, for “grasping and
stating” them “is truth” (Aristotle, Metaphysica, Θ 10, 1051b 24).

Moreover, Aristotle claims that we know that primitive premisses are true
by intuition. For since “there cannot be scientific knowledge of the primi-
tive premisses, and since nothing except intuition can be truer than scientific
knowledge, it will be intuition that apprehends the primitive premisses” (Aris-
totle, Analytica Posteriora, B 19, 100b 10-12). So “it is intuition that grasps
the unchangeable and first terms in the order of proofs” (Aristotle, Ethica
Nicomachea, Z 11, 1143b 1-2).

However reasonable such Aristotle’s claims may appear, nevertheless they
are untenable.

Aristotle’s claim that, since nothing except intuition can be truer than
scientific knowledge, it will be intuition that apprehends the primitive pre-
misses, is untenable because intuition is an unreliable source of knowledge.
Kripke states: “I think” that intuition “is very heavy evidence in favor of any-
thing, myself. I really don’t know, in a way, what more conclusive evidence one
can have about anything, ultimately speaking” [41, p. 42]. Actually just the
opposite is true. Being completely subjective and arbitrary, intuition cannot
be used as evidence for anything. One really doesn’t know what less conclusive
evidence one could have about anything, ultimately speaking. For instance,
Frege considered his paradoxical Basic Law V completely intuitive since, in
his opinion, it “is what people have in mind, for example, where they speak
of the extensions of concepts” [18, p. 4]. But Russell’s paradox showed that
Frege’s intuition was wrong. On the other hand, completely counterintuitive
propositions, the so-called ‘monsters’, have been proved in various parts of
mathematics. (On intuition and ‘monsters’, see [6, Ch. 12] and [11, Ch. 8]).

Moreover, Aristotle’s claim that, if the series of premisses did not termi-
nate, then there would be demonstrations of all things, is untenable because
in the analytic method, which involves a potentially infinite regress, premisses
– that is, hypotheses – must be plausible, that is, compatible with the existing
data, so there can only be demonstrations of things using plausible premisses.
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Of course, a price has to be paid for that. Since plausible premisses are not
certain, the things proved by demonstrations are not certain, so mathematics
is not certain. But, in view of the unreliability of intuition, there is no alterna-
tive to that. As Xenophanes said, “as for certain truth, no man has known it,
nor will he know it” for “all is but a woven web of guesses” [16, 21 B 34]. And
yet knowledge, uncertain knowledge, is possible, for “with due time, through
seeking, men may learn and know things better” [16, 21 B 18].

7 The status of the Hilbert-Gentzen Thesis

In the light of what has been stated above, the status of the Hilbert-Gentzen
Thesis can be assessed as follows.

1) If by ‘proof’ one means ‘analytic proof’, then the Hilbert-Gentzen Thesis
is obviously inadequate because formal proofs don’t represent analytic proofs.

2) If by ‘proof’ one means ‘axiomatic proof’, then the Hilbert-Gentzen
Thesis is inadequate because, for instance, even the very first proof in Hilbert’s
Grundlagen der Geometrie cannot be represented by a formal proof since
it makes an essential use of properties of a figure (see [9] and [11, Ch. 9]).
This belies Hilbert’s claim that “a theorem is only proved when the proof is
completely independent of the figure” [36, p. 75]. Admittedly, one can give
a purely formal proof of the same result, but this involves replacing the use
of the figure by the use of additional primitive premisses (see Meikle-Fleuriot
[46]). Then the resulting formal proof is essentially different from, and hence
cannot be considered a representation of, Hilbert’s proof. Generally the use of
figures is crucial in mathematics. As Grosholz says, “number and figure are
the Adam and Eve of mathematics” [25, p. 47].

3) If by ‘proof’ one means ‘axiomatic proof’, then the Hilbert-Gentzen
Thesis is inadequate also for the the more basic reason that the notion of
axiomatic proof itself is inadequate. It is widely believed that the axiomatic
method “guarantees the truth of a mathematical assertion” [56, p. 135]. This
belief depends on the assumption that proofs are deductive derivations of
propositions from primitive premisses that are true, in some sense of ‘true’.
Now, as we will presently see, generally there is no rational way of knowing
whether primitive premisses are true. Thus either primitive premisses are false,
so the proof is invalid, or primitive premisses are true but there is no rational
way of knowing that they are true, then one will be unable to see whether
something is a proof, and hence will be unable to distinguish proofs from non-
proofs. In both cases, the claim that the axiomatic method guarantees the
truth of a mathematical assertion is untenable.

8 The truth of primitive premisses

We have claimed that generally there is no rational way of knowing whether
primitive premisses are true. This can be seen as follows.
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That primitive premisses are true can be meant in several distinct senses.
The main ones are the following: 1) truth as possession of a model; 2) truth
as consistency; 3) truth as convention.

8.1 Truth as possession of a model

Primitive premisses are true in the sense that they have a model, that is, there
is a domain of objects in which they are true.

For instance, Tarski says that we “arrive at a definition of truth and false-
hood simply by saying that a sentence is true” in a given domain “if it is
satisfied by all objects” in that domain, “and false otherwise” [58, p. 353].
Then a sentence is true if and only if there is a domain of objects in which it
is true.

But, if primitive premisses are true in the sense that they have a model,
then to know that they are true one must be able to prove that they have
a model. However, by Gödel’s second incompleteness theorem, the sentence
‘Primitive premisses have a model’ will not be provable from such primitive
premisses but only from a proper extension of them, whose primitive pre-
misses have a model. However, by Gödel’s second incompleteness theorem,
the sentence ‘The primitive premisses of the proper extension have a model’
will not be provable from such primitive premisses but only from a proper
extension of them, whose primitive premisses have a model. And so on, ad
infinitum.

Thus there is no rational way of knowing whether primitive premisses are
true in the sense that they have a model.

8.2 Truth as consistency

Primitive premisses are true in the sense that they are consistent, that is, no
contradiction is provable from them.

For instance, Hilbert says that, “if arbitrarily given axioms do not contra-
dict one another with all their consequences, then they are true” [35, p. 39].
Thus “‘non-contradictory’ is the same as ‘true’ ” [33, p. 122].

But, if primitive premisses are true in the sense that they are consistent,
then to know that they are true one must be able to prove that they are consis-
tent. However, by Gödel’s second incompleteness theorem, the sentence ‘The
primitive premisses are consistent’ will not be provable from such primitive
premisses but only from a proper extension of them, whose primitive premisses
are consistent. However, by Gödel’s second incompleteness theorem, the sen-
tence ‘The primitive premisses of the proper extension are consistent’ will not
be provable from such primitive premisses but only from a proper extension
of them, whose primitive premisses are consistent. An so on, ad infinitum.

Thus there is no rational way of knowing whether primitive premisses are
true in the sense that they are consistent.
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8.3 Truth as convention

Primitive premisses are true in the sense that they are conventions, that is,
they may be chosen arbitrarily, subject to no condition whatsoever.

For instance, Carnap says that “it is not our business to set up prohibi-
tions, but to arrive at conventions” [3, p. 51]. Primitive premisses “may be
chosen quite arbitrarily” and this “choice, whatever it may be, will determine
what meaning is to be assigned to the fundamental logical symbols” [3, p.
xv]. Thus “no question of justification arises at all, but only the question of
the syntactical consequences to which one or the other of the choices leads”.
A sentence is said to be ‘determinate’ if its truth or falsity is settled by the
syntactical consequence relation alone, which thus provides “a complete crite-
rion of validity for mathematics” [3, p. 100]. Sentences “may be divided into
logical and descriptive, i.e. those which have a purely logical, or mathematical,
meaning” and those which express “something extralogical – such as empiri-
cal” facts, “properties, and so forth” [3, p. 177]. Then “every logical sentence
is determinate; every indeterminate sentence is descriptive” [3, p. 179].

But, if primitive premisses are true in the sense that they are conventions,
then to know that they are true one must know that they are true with respect
to the meaning their choice assigns to the fundamental logical symbols. How-
ever, by Gödel’s first incompleteness theorem, there are sentences of Peano
Arithmetic, say, that are indeterminate and hence descriptive, so for Carnap
they express something extralogical. This means that the primitive premisses
of Peano Arithmetic don’t fully determine the meaning of the fundamental
logical symbols, which will then be partly extralogical. Thus, to know that the
primitive premisses of Peano Arithmetic are true involves considering some-
thing extralogical, say, some empirical facts.

To overcome this problem Carnap considers the possibility of expanding
the primitive premisses of Peano Arithmetic by adding an inference rule with
infinitely many premisses, the ω-rule, which allows one to infer ∀xA(x) from
A(0), A(1), A(2), ... and makes all sentences of Peano Arithmetic determinate.
Carnap claims that “there is nothing to prevent the practical application of
such a rule” [3, p. 173]. But the syntactical consequence relation resulting from
this addition is not recursively enumerable, and hence a fortiori, in Carnap’s
parlance, it is indefinite. For, according to Carnap, “every definite” relation
“can be calculated”, whereas in this case there exists no “definite method
by means of which this calculation” can “be achieved” [3, p. 46]. So the ω-
rule yields “a method of deduction which depends upon indefinite individual
steps” [3, p. 100].

Thus any choice of primitive premisses for Peano Arithmetic either will not
fully determine the meaning of the fundamental logical symbols – which will
then be partly extralogical – or will yield an indefinite syntactical consequence
relation.

Moreover, by Gödel’s second incompleteness theorem, one cannot know
whether primitive premisses are consistent. This is problematic for, if prim-
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itive premisses were inconsistent, then it would be worthless to know that a
sentence is a syntactical consequence of them. Since one cannot know whether
primitive premisses are consistent, the only ground one would have to believe
that their syntactical consequences include no contradiction would be induc-
tive, that is, it would consist in the fact that until then no contradiction has
been drawn from them. But then induction, not convention, would be the
basis of the choice of primitive premisses.

Thus we may conclude that there is no rational way of knowing whether
primitive premisses are true in the sense that they are conventions.

This is the substance of Plato’s criticism of the axiomatic method. Plato
asks: “When a man does not know the principle, and when the conclusion and
intermediate steps are also constructed out of what he does not know, how
can he imagine that such a fabric of convention can ever become science?”
(Plato, Republic, VII 533 c 4-5). Carnap has no answer to this question. (For
more on Plato’s criticism of the axiomatic method, see [4, pp. 286-291]).

9 Decline and fall of axiomatic proof

As we have already said, to stop infinite regress Aristotle assumes that there
must be primitive premisses that are true and are also known to be true. By
what we have just seen, however, such primitive premisses cannot exist, for
there is generally no rational way of knowing whether primitive premisses are
true, in any sense of ‘true’.

Thus the very foundation on which Aristotle and his modern followers
wanted to build an alternative to analytic proof breaks down. Axiomatic proof
is no viable alternative to analytic proof since it is inadequate. One is not
justified in using it for generally there is no rational way of knowing whether
the starting points of axiomatic proofs are true, in any sense of ‘true’.

Axiomatic proof is inadequate also because there is no non-circular way of
proving that deduction from primitive premisses is truth-preserving, that is,
such that, if primitive premisses are true, then the propositions deduced from
them are also true (see [8] and [11, Ch. 26]).

In addition to implying that axiomatic proof is inadequate, the fact that
generally there is no rational way of knowing whether primitive premisses are
true has another important consequence. It entails that primitive premisses
of axiomatic proofs are simply ‘accepted opinions’, endoxa in Aristotle’s par-
lance, or rather plausible propositions in the sense explained above. Thus
they have the same status as hypotheses in analytic proofs. Then the notion
of axiomatic proof collapses into that of analytic proof.

Even some supporters of the axiomatic method acknowledge that. For in-
stance, Pólya states that analogy and other non-deductive inferences “not
only help to shape the demonstrative argument and to render it more under-
standable, but also add to our confidence to it. And so we are led to suspect
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that a good part of our reliance on demonstrative reasoning may come from
plausible reasoning” [52, p. 168].

Thus Frege’s Thesis depends on a misunderstanding. An instance of such
misunderstanding is the claim that Wiles and Taylor solved Fermat’s Problem.
What they actually solved is the problem posed by the Taniyama-Shimura
hypothesis.

Admittedly, in the last century most mathematicians have thought them-
selves to be pursuing axiomatic proof. But, as the case of Fermat’s problem
shows, they weren’t. Their belief to be pursuing axiomatic proof has been
a matter of trend and fashion, so essentially a sociological fact: a result of
the predominance of the ideology of the Göttingen School and the Bourbaki
School over the mathematicians of the last century (see [4, Ch. 5]).

Mathematicians who think themselves to be pursuing axiomatic proof
don’t seem to be generally aware that Frege’s Thesis together with Hilbert-
Gentzen Thesis would make mathematics trivial. For then there would be an
algorithm that in principle could generate all possible proofs from given ax-
ioms in systematic manner, checking each time if the final proposition is the
proposition to be proved. Thus theorem proving would become an activity
requiring no intelligence.

Some supporters of axiomatic proof seem however to be aware of that,
at least to a certain extent. For instance Rota, while maintaining that the
axiomatic method guarantees the truth of a mathematical assertion, says
that the “identification of mathematics with the axiomatic method has led
to a widespread prejudice among scientists that mathematics is nothing but
a pedantic grammar, suitable only for belaboring the obvious” [56, p. 142].

10 Proving and re-proving

Even if a rational way of knowing whether primitive premisses are true gen-
erally existed, the notion of axiomatic proof would have other basic defects.

For instance, in terms of that notion one cannot explain why, once a proof
of a proposition has been found, mathematicians look for alternative proofs.

Several research papers in mathematics are concerned not with proving
but with re-proving. For instance, well over four hundred distinct proofs of
the Pythagorean Theorem have been given, a Fields Medal has been awarded
to Selberg for producing a new proof of a theorem, the prime-number theorem,
for which a proof was already known, and so on.

Now, if proofs were meant to provide a foundation and justification of a
proposition, once a proof has been found and hence a foundation and justi-
fication has been given, what would be the point of looking for other proofs,
even hundreds of them? No adequate answer to this question can be given in
terms of the notion of axiomatic proof.

A suitable answer can be given only in terms of the notion of analytic
proof, by which, to solve a problem, one may use several distinct hypotheses.
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For a problem may have several sides, so one may look at it from several
distinct perspectives, each of which may suggest a distinct hypothesis, thus
a different proof and hence a different explanation. (On the notion of mathe-
matical explanation involved here, see [10]). As we have already pointed out,
this may have a great heuristic value, so it may be very fruitful for the devel-
opment of mathematics. (For other approaches to the question of re-proving,
see [56, Ch. XI], Avigad [1], Dawson [13]).

11 Mathematics and intuition

Since generally there is no rational way of knowing whether primitive pre-
misses are true, supporters of axiomatic proof may only resort to assuming
that there is an irrational faculty, intuition, by which one can grasp mathemat-
ical concepts and see that primitive premisses are true of them – an irrational
faculty, because intuition is a faculty of which no account can be given.

This is the solution that, as we have seen, Aristotle suggested and most
supporters of axiomatic proof have since adopted.

For instance, Gödel claims that ultimately for the “axioms there exists no
other” foundation except that they “can directly be perceived to be true” by
means of “an intuition of the objects falling under them” [24, pp. 346-347].

However, appealing to intuition not only bases mathematical knowledge
on an irrational – and completely unreliable – faculty, but reduces proofs to
rhetorical flourishes.

This is made quite clear by Hardy, who states that a mathematician is “in
the first instance an observer, a man who gazes at a distant range of mountains
and notes down his observations” [28, p. 18]. If “he sees a peak” and “wishes
someone else to see it, he points to it, either directly or through the chain of
summits which led him to recognize it himself”. When “his pupil also sees it,
the research, the argument, the proof is finished”. Seeing a peak corresponds
to having an intuition of certain mathematical objects. That mathematical
activity consists in seeing peaks and pointing to them entails – Hardy argues
– that “there is, strictly, no such thing as mathematical proof; that we can, in
the last analysis, do nothing but point”; that proofs are merely “gas, rhetorical
flourishes designed to affect psychology”.

That appealing to intuition bases mathematical knowledge on an irrational
and completely unreliable faculty and reduces proofs to rhetorical flourishes,
conflicts with the intended aim of axiomatic proof to give a foundation and
justification of a proposition.

Moreover, appealing to intuition is inconclusive. For suppose that you have
an intuition of the concept of set S which tells you that your axioms of set
theory T are true of S. By Gödel’s first incompleteness theorem there is a
sentence A of T which is true of S but is unprovable in T . Then the theory
T ∪ {¬A} is consistent, so it has a model, say S′. Thus ¬A is true of S′, and
hence A is false of S′. Then S and S′ are both models of T , so they are both
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concepts of set, but A is true of S and false of S′. Therefore S and S′ cannot
be isomorphic, so S and S′ are essentially different.

Now suppose that, by reflecting on the way S′ has been obtained, you get
an intuition of the concept of set S′ which tells you that the axioms of T are
true of S′. Then you have two distinct intuitions, one ensuring that S is the
genuine concept of set, the other one ensuring that S′ is the genuine concept
of set. Since S and S′ are essentially different, this raises the question: Which
of S and S′ is the genuine concept of set? Intuition gives no answer.

This confirms that axiomatic proof is inadequate. As Hersh says, “the view
that mathematics is in essence derivations from axioms is backward. In fact,
it’s wrong” [32, p. 6]. Only analytic proof is adequate, so axiomatic proof is
not on a par with it.

12 Mathematics and evolution

Axiomatic proof is not on a par with analytic proof also in another respect.
While axiomatic proof is simply a way of organizing and presenting results
already obtained and so, as Aristotle says, is essentially aimed at teaching
and learning, analytic proof goes deeply into the nature of organisms for it
reflects the way in which they mainly solve their problems, starting from the
most basic one: survival.

All organisms survive by making hypotheses on the environment by a
process that is essentially an application of the analytic method. Thus analytic
proof is based on the procedure by which organisms provide for their most
basic needs. As our hunting ancestors solved their survival problem by making
hypotheses about the location of preys on the basis of hints – crushed or bent
grass and vegetation, bent or broken branches or twigs, mud displaced from
streams, and so on – provided by them, mathematicians solve mathematical
problems by making hypotheses for the solution of problems on the basis of
hints provided by them.

Some of the hypotheses on the environment are chosen by natural selection
and are embodied in the biological structure of organisms, and some of them
concern mathematical properties of the environment. As a result, all organisms
have at least some of the following innate capabilities: space sense, number
sense, size sense, shape sense, order sense. Such capabilities are mathematical
in kind. They have a biological function and are a result of biological evolution
that has selected and embodied them in organisms.

Mathematical capabilities embodied in organisms, also non-human ones,
can even be rather sophisticated.

For instance, if standing on a beach with a dog at the water’s edge you
throw a tennis ball into the waves diagonally, the dog will not plunge into
the water immediately swimming all the way to the ball. It will run part
of the way along the water’s edge, and only then will plunge into the water
and swim out to the ball. For, since the dog’s running speed is greater than
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the dog’s swimming speed, the dog will choose to plunge into the water at
a point that will minimize the time of travel to the target. Such point can
be determined by calculus, and the point actually chosen by the dog broadly
agrees with the one given by calculus (see Pennings [51]). Does that mean that
dogs know calculus? Of course not. They are capable of choosing an optimal
point thanks to natural selection, which gives a definite survival advantage
to organisms that exhibit better judgment. Thus the calculation required to
determine an optimal point is not made by the dog but has been made by
nature through natural selection. It is thanks to natural selection that dogs
are able to solve this calculus problem. (For further examples of mathematical
capabilities embodied in non-human organisms, see Devlin [15]).

Natural selection has hardwired organisms to perform certain mathemat-
ical operations building mathematics in several features of their biological
structure, such as locomotion and vision, which require some sophisticated
embodied mathematics. Such mathematical operations are essential to escape
from danger, to search for food, to seek out a mate.

One may then distinguish a ‘natural mathematics’, that is, the mathe-
matics embodied in organisms as a result of natural selection, from ‘artifi-
cial mathematics’, that is, mathematics as discipline. (Devlin calls artificial
mathematics ‘abstract mathematics’, but ‘artificial mathematics’ seems more
suitable here since it expresses that it is a mathematics that is not a natural
product, being not a direct result of biological evolution but rather a human
creation [15, p. 249]).

Natural mathematics, however, is necessarily limited since biological evo-
lution is slow. On the contrary, artificial mathematics has developed relatively
fast in the past five thousand years or so since it is a result of cultural evolu-
tion, which is relatively fast. This raises serious doubts about Cooper’s claim
that artificial “mathematics must itself be evolutionarily reducible” [12, p.
135]. It seems more reasonable to conclude that artificial mathematics cannot
be reduced to natural mathematics.

The fact that natural mathematics is a result of biological evolution,
whereas artificial mathematics is a result of cultural evolution, leads to a
program of interpreting mathematics in terms of biological and cultural evo-
lution. Although, of course, such program cannot be carried out here, some
of its preconditions can be briefly discussed.

13 Mathematics and logic

Natural mathematics is based on natural logic, which is that natural capability
to solve problems that all organisms have and is a result of biological evolution.
On the other hand, artificial mathematics is based on artificial logic, which is
a set of techniques invented by organisms to solve problems and is a result of
cultural evolution.
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Unlike the distinction between natural mathematics and artificial mathe-
matics, the distinction between natural logic and artificial logic is not a new
one. A similar distinction was made in the sixteenth century, for instance, by
Ramus, and was still alive two centuries later when Kant used it in his logic
lectures (see [39, pp. 252, 434, 532]). At that time, however, artificial logic
was restricted to deductive inferences. But the notion of analytic proof re-
quires that artificial logic include non-deductive inferences. Natural logic too
requires non-deductive inferences, since the process by which all organisms
provide for their most basic needs is essentially an application of the analytic
method. However, natural logic requires not only non-deductive inferences but
also non-propositional unconscious inferences, for the latter are essential, for
instance, in vision. (On the role of non-propositional unconscious inference
in vision, and generally on the characters of natural and artificial logic as
intended here, see [11, Chs. 16-17]).

Since natural and artificial logic are based on two different forms of evolu-
tion, biological and cultural evolution, they are distinct. That, however, does
not mean that they are opposed. For artificial logic ultimately depends on
capabilities of organisms that are a result of biological evolution. Moreover,
both natural and artificial logic depend on the very same basic procedure: the
analytic method. The latter then provides a link between natural and artificial
logic, and hence between natural mathematics and artificial mathematics.

14 Logic and reason

The main aim of natural logic is to find hypotheses on the environment to the
end of survival. This implies that there is a strict connection between logic and
the search of means for survival and that, since generally all organisms seek
survival, natural logic does not belong to humans only but to all organisms.

On the contrary, logic has been traditionally viewed as the organ of reason
meant as a higher faculty belonging to humans only, which allows them to
overcome the limitations of their biological constitution, limitations within
which animals and plants are instead constrained. In particular, such higher
faculty has been supposed to be capable of intuitively and directly apprehend-
ing certain primitive truths, and specifically certain primitive premisses which
are the necessary basis of any demonstrative reasoning.

But reason is not such a higher faculty, it is rather the capability of choos-
ing means adequate to a given end. As Russell says, ‘reason’ “signifies the
choice of the right means to an end that you wish to achieve” [57, p. 8]. Thus,
in conformity with the original meaning of ‘ratio’, reason is a relation between
means and ends. Then nothing is rational in itself but only relative to a given
end. Now, since the primary end of all organisms is survival, the choice of
means adequate to that end can be viewed as an expression of the faculty of
reason, which then does not belong to humans only.
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One might think that the concept of reason could be made less relative by
stating that ‘rational’ – that is, ‘compliant with reason’ – is what is compliant
with human nature. That, however, would not solve the problem of explaining
what reason is but would simply refer it back to the problem of explaining
what human nature is.

Now human nature is the result of two factors, biological evolution and
cultural evolution. In explaining what human nature is biological evolution
plays an important role, for our biological structure has a basic importance
in determining what we are.

This view is fiercely opposed by those who, like Heidegger, deny that “the
essence of man consists in being an animal organism”, claiming that “the
aberration of biologism” consists in considering the body of man as that of “an
animal organism”, and that the fact “that the physiology and biochemistry of
man as an organism can be investigated in a natural scientific way is no proof
that the essence of man lies in this organicity, that is, in the scientifically
explained body” [26, p. 324].

But these claims are unjustified, because our biological structure really
plays an essential role in determining what we are. For instance, monozygotic
twins, when separated at birth and grown up in distinct environments with
no possibility of mutual communication, have similar personalities, their be-
haviours resemble under several respects, they even take similar positions on
the most disparate questions.

Those who deny that our biological structure has a basic importance in
determining what we are, claim that the behaviour of humans is not largely
governed by biological functions shared by all humans. There is no biological
basis of our most important behaviours, the latter are a result of cultural
evolution.

But the claim that our most important behaviours are a result of cultural
evolution is not in conflict with the claim that our biological structure has a
basic importance in determining what we are, for cultural evolution develops
on the basis of biological evolution. Culture is not an ethereal substance in-
dependent of our biological structure. It depends on the neural networks with
which biological evolution has provided us, for it is a product of our biological
structure and so is bound to it. To separate cultural from biological evolution
is to neglect what the subject of cultural evolution is: a biological organism
which is an outcome of biological evolution.

Since biological and cultural evolution are what determines human nature,
they are the relative terms with which we must commensurate rationality. Of
course, only relative terms, for there is nothing necessary in biological evo-
lution or in cultural evolution. In particular, biological evolution does not
work by design: it has gone that way but could have gone otherwise. Thus, if
‘rational’ is what is compliant with human nature, there is nothing absolute
in rationality. ‘Rational’ is a term relative to the contingent character of hu-
man nature, which is a contingent result of biological evolution and cultural
evolution.
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To view logic as the organ of reason, meant as a higher faculty belonging
to humans only, is to misjudge the nature of reason. Logic can be said to be
the organ of reason, though of a reason intended not as a higher faculty but
as the capability of choosing means adequate to a given end, starting from
survival, and hence as belonging to all organisms. Natural logic is the organ
of reason for it provides all organisms with means adequate to their ends.

Here ‘organisms’ are supposed to include not only animals but also plants.
Some of them, when attacked by herbivores, implement sophisticated defense
strategies. They produce complex polymers that reduce plant digestibility, or
toxins that repel or even kill the herbivores. They use other insects against the
herbivores, emitting volatile organic compounds that attract other carnivorous
insects which kill the attacking herbivores. These volatile organic compounds
may be also perceived by neighboring yet-undamaged plants to adjust their
defensive phenotype according to the present risk of attack, thus they function
as external signal for within-plant communication (see Heil and Silva Bueno
[31]).

15 Logic and evolution

That natural logic belongs to all organisms does not mean that non-human
organisms choose means adequate to their ends on the basis of learned logical
cognitions. But several humans too do not choose means adequate to their
ends on the basis of learned logical cognitions. They use logical means such as
induction, the cause-effect relation, the identity principle, and generally make
inferences, without having attended to any logic course. They are capable of
using logical means because biological evolution has designed them to do so.

Not only biological evolution has designed humans to use logical means,
but natural logic, in addition to being a means for survival, is itself a result
of natural selection. The natural logic system we have inherited is such that,
on average, it increases the possibility of surviving and reproducing in the
environment in which our most ancient ancestors evolved. Thus the first and
deepest origin of reason and logic is natural selection, which has provided
humans with those capabilities that have allowed them to survive.

The importance of reason and logic stems from the fact that the world
changes continually and irregularly, so organisms are confronted all the time
with the need to adapt to new situations. To deal with them they need logic,
which helps them to cope with new situations, thus increasing their overall
adaptive value.

The logic useful to this end is not only natural logic but also artificial logic,
though an artificial logic including not only deductive propositional inferences,
but also non-deductive and non-propositional inferences.

Biological evolution has embodied a series of informations in organisms
concerning their evolutionary past, and also suitable kinds of behaviour by
which they are able to cope with situations similar to those that already
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occurred in their evolutionary past. Moreover, they are able to cope with
them automatically, that is, with no need for the single organism to reinvent
the means to cope with them. To that end, natural logic is sufficient.

But, since the world changes continually and irregularly, it presents situa-
tions dissimilar from those that already occurred in the evolutionary past of
organisms and, to cope with them, the means embodied in organisms by bio-
logical evolution are generally insufficient, new means are necessary. Providing
them is the task of artificial logic, a logic which, like natural logic, includes
non-deductive and non-propositional inferences, but goes essentially beyond
natural logic because it includes stronger kinds of inference. This raises serious
doubts about Cooper’s claim that “logic is reducible to evolutionary theory”
[12, p. 2]. On the other hand, just because artificial logic goes essentially
beyond natural logic, it can supplement the work of biological evolution.

16 Mathematics and human activities

Like logic mathematics, being based on logic – both natural and artificial – is
an organ of reason and so is bound to our biological structure.

Hart claims that “not only are there infinitely many primes, but also,
since Euclid’s proof” of the infinity of primes “makes no reference to living
creatures, there would have been infinitely many primes even if life had never
evolved. So the objects required by the truth of his theorem cannot be mental”
[29, p. 3].

But Hart’s claim depends on the assumption that Euclid’s proof makes
no reference to living creatures, which seems unwarranted for Euclid’s proof
uses concepts that are man-made and hence ‘mental’. In particular, humans
introduced the concept of prime number in pre-Greek mathematics in connec-
tion with such concrete human activities as dividing rations among workers.
Thus, if life had never evolved, the concepts Euclid uses in his proof would not
have been formed, in particular there would have been no concept of prime
number.

Mathematics is strictly related to several human activities, and most of
its concepts arise – directly or indirectly – from them. As van Benthem says,
“mathematics is not some isolated faculty of the human mind which needs
to be approached with special reverence”, on the contrary, there is “a fluid
transition all the way from common sense reasoning to mathematical proof,
and from knowledge structures in daily life to mathematical theories” [60, p.
41].

It could be objected that stating that, if life had never evolved, there would
have been no concept of prime number, says nothing about the relation be-
tween the human concept of prime number and prime numbers. The question
at issue is the relation between human concepts and the mathematical objects
involved in those concepts. Such relation is one of the most important topics
in the philosophy of matematics and needs special investigation.
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Now, if one interprets mathematics in terms of biological and cultural
evolution, then mathematical objects are not independently existing entities
but rather cultural products. Specifically, they are hypotheses introduced by
humans to solve mathematical problems. For instance, a prime number is
the hypothesis of an integer greater than 1 whose only positive divisors are
1 and itself. (On mathematical objects as hypotheses – not to be confused
with fictions – see [6, pp. 300-303]. On the distinction between hypotheses
and fictions, see Vaihinger [61, pp. 147-148, 152, 606], [6, pp. 303-307]).

This broadly agrees with Plato’s claim that “practitioners of geometry,
arithmetic and similar sciences hypothesize the odd, and the even, the geo-
metrical figures, the three kinds of angle, and any other things of that sort
which are relevant to each subject” (Plato, Republic, VI 510 c 2-5). Such
hypotheses are in turn a problem that must be solved, and will be solved
by introducing other hypotheses, contrary to practitioners of the axiomatic
method who “don’t feel any further need to give an account of them either
to themselves or to anyone else” but simply “make them their starting-points
and draw conclusions from them” (ibid., VI 510 c 6-d 2).

Of course, considering the odd, the even, the geometrical figures, and so
on, as hypotheses entails that one must distinguish two different kinds of
hypotheses: hypotheses consisting of jugments, such as the Taniyama-Shimura
hypothesis, and hypotheses consisting of objects, such as prime numbers. Thus
hypotheses can be either jugments or objects.

17 Proof and evolution

Unlike the notion of axiomatic proof which, as we have seen, can be main-
tained, if ever, only at the cost of falling into irrationalism, unreliability and
rhetoric, the notion of analytic proof is completely rational since it is based
on logic – both natural and artificial logic.

Analytic proof is not a device aimed at the rather futile end of providing a
justification of a proposition based on primitive premisses for which no abso-
lute justification can be given anyway, and can only be shown to be plausible.
It is rather a continuation of strategies resulting from natural selection by
which organisms solve their problems, starting from survival.

Mach says that, although “science apparently grew out of biological and
cultural development as its most superfluous offshoot”, today “we can hardly
doubt that it has developed into the factor that is biologically and culturally
the most beneficial. Science has taken over the task of replacing tentative
and unconscious adaptation by a faster variety that is fully conscious and
methodical” [43, p. 361]. Thus modern science is a cultural artifact with a
biological role.

Then artificial mathematics too is a cultural artifact with a biological role,
for modern science is intrinsically mathematical. It originated from a philo-
sophical turn, Galilei’s decision to replace Aristotle’s view that science must
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“seek to penetrate the true and intrinsic essence of natural substances”, by
the view that we must “content ourselves with a knowledge of some of their
properties” such as “location, motion, shape, size” [21, V, pp. 187-188]. Such
properties are quantitative and hence mathematical in kind, unlike essences
that are the object of Aristotle’s science, which are non-mathematical in kind.
For that reason modern science is intrinsically mathematical whereas Aris-
totle’s science is intrinsically non-mathematical. For that very same reason
artificial mathematics is ‘unreasonably effective’ (see [6, Ch. 42] and [11, Ch.
13]).

Since modern science is intrinsically mathematical and is a cultural arti-
fact with a biological role, artificial mathematics too, being an inherent con-
stituent of modern science, is a cultural artifact with a biological role. Thus
artificial mathematics has a biological role like natural mathematics, though
less directly.

Artificial mathematics is a cultural artifact with a biological role roughly
in the same sense in which animal-made tools are cultural artifacts with a
biological role. As New Caledonian crows, say, make a wide variety of tools by
means of which they develop techniques that help them to solve their survival
problem (see Hunt-Gray [38]), humans make proofs by means of which they
develop techniques that help them to solve their survival problem. Although
there are obvious differences between proofs and animal-made tools, viewing
proofs as having a biological role helps to make sense of the phenomenon of
proof.

Such phenomenon is hardly comprehensible if ‘proof’ is intended as ‘ax-
iomatic proof’, that is, as a means to justify propositions by deducing them
from primitive premisses for which, as we have already stressed, no absolute
justification can be given. It is comprehensible only if ‘proof’ is intended as
‘analytic proof’, that is, as a means to discover plausible hypotheses capable
of giving solutions to problems that meet needs, even basic needs, of humans.

Rota states that, “of all escapes from reality, mathematics is the most
successful ever”, all other escapes, “sex, drugs, hobbies, whatever”, being
“ephemeral by comparison”, and speaks of “the mathematician’s feeling of
triumph as he forces the world to obey the laws his imagination has freely
created” [56, p. 70].

But things stand otherwise. Mathematics is no escape from reality for it is
an answer to needs, even basic needs, of humans. Mathematicians don’t force
the world to obey the laws their imagination has created, for such laws are
just the way mathematicians make the world understandable to themselves,
and the working of the world does not depend on them. Moreover, their cre-
ations are not completely free, for they are a product of the mathematicians’s
biological structure and so are bound to it.
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18 Proof, teaching and learning

That the notion of axiomatic proof is inadequate does not mean that it is of
no use. Its main use remains the one originally stated by Aristotle, that is,
teaching and learning.

This has been the main use of axiomatic proof from the very beginning, as
it appears from Euclid’s Elements that were intended to be a textbook “for
elementary teaching”, in which Euclid “did not bring in everything he could
have collected, but only what could serve as elements” [53, 69.6-9].

Euclid’s use of axiomatic proof in the Elements does not mean that this
was the notion of proof he used as a working mathematician. Writing text-
books is one thing, doing mathematical research is another thing. As Knorr
says, “the writing of textbooks is the end of mathematical research only in
the sense that death is the end of life” [40, p. 7]. Euclid’s notion of proof as a
working mathematician is to be found not in the Elements but in his research
work, where he “proceeds by analysis and synthesis” [50, 634.10-11].

Although the main use of axiomatic proof remains teaching and learning,
some reservations can be made even about that use. Descartes claims that
the notion of axiomatic proof makes proofs appear “discovered more through
chance than through method”, so by using it “we get out of the habit of using
our reason” [14, X, p. 375]. Therefore the notion of axiomatic proof “does not
completely satisfy the minds of those who are eager to learn” [14, VII, p. 156].
Descartes’s claim seems justified since axiomatic proofs are often unnatural
and unmemorable. Presenting propositions in a way different from the one in
which they were obtained, they conceal the real process, thus contributing to
make mathematics hard.

Using axiomatic proof for teaching and learning is more a matter of trend
and fashion than of effectiveness. For instance, Descartes did not use it in
presenting his Geometry. In the seventeenth century this practice was so
widespread that Newton wrote: “The Mathematicians of the last age have
very much improved Analysis but stop there & think they have solved a Prob-
lem when they have only resolved it” – that is, solved it by the method of
Analysis – “& by this means the method of Synthesis”, that is, the axiomatic
method, “is almost laid aside” [49, p. 294]. To them this “synthetic style of
writing is less pleasing, whether because it may seem too prolix and too akin
to the method of the ancients, or because it is less revealing of the manner of
discovery” [48, VIII, p. 451].

Newton also makes quite clear that using axiomatic proof for teaching and
learning is a matter of trend and fashion: “The Propositions in the following
book were invented by Analysis” [49, p. 294]. And “certainly I could have
written analytically what I had found out analytically with less effort than it
took me to compose it” [48, VIII, p. 451], that is, to write it axiomatically.
But “considering that the Ancients (so far as I can find) admitted nothing into
Geometry before it was demonstrated by Composition”, that is, axiomatically,
“I composed what I invented by Analysis to make it Geometrically authentic
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& fit for the publick” [49, p. 294]. But “this makes it now difficult for unskilful
Men to see the Analysis by which those Propositions were found out” [47, p.
206].

Thus Newton agrees with Descartes that axiomatic proof makes it difficult
for the learner to see how propositions were found out. This makes it advisable
to reconsider the use of axiomatic proof even for teaching and learning, in
sharp contrasts with our time when “the axiomatic method of presentation
has reached a pinnacle of fanaticism” [56, p. 142]. Admittedly, the axiomatic
method can sometimes supply more compact proofs, but it conceals how they
were discovered, and this may negatively affect teaching and learning.
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