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Preface

This volume is located in a cross-disciplinary field bringing together mathe-
matics, logic, natural science and philosophy. Reflection on the effectiveness
of proof brings out a number of questions that have always been latent in
the informal understanding of the subject. What makes a symbolic construc-
tion significant? What makes an assumption reasonable? What makes a proof
reliable? Gödel, Church and Turing, in different ways, achieve a deep under-
standing of the notion of effective calculability involved in the nature of proof.
Turing’s work in particular provides a “precise and unquestionably adequate”
definition of the general notion of a formal system in terms of a machine with
a finite number of parts. On the other hand, Eugene Wigner refers to the un-
reasonable effectiveness of mathematics in the natural sciences as a miracle.

Where should the boundary be traced between mathematical procedures
and physical processes? What is the characteristic use of a proof as a compu-
tation, as opposed to its use as an experiment? What does natural science tell
us about the effectiveness of proof? What is the role of mathematical proofs
in the discovery and validation of empirical theories? The papers collected
in this book are intended to search for some answers, to discuss conceptual
and logical issues underlying such questions and, perhaps, to call attention to
other relevant questions.

Can every ‘real’ proof be translated into a ‘formal’ proof? Although Hilbert
and Gentzen’s positive answer is widely shared, there are also reasons for dis-
agreement. To deals with this matter Carlo Cellucci addresses two fundamen-
tal questions - Why proof? What is a proof? - which he settles by contrasting
the notion of axiomatic proof with the notion of analytic proof.

The contribution by Andrea Cantini concentrates on the nature and role
of formal proofs. It is argued that formal proofs do not target certainty or
formalistic foundations. Recent results in proof theory are considered in or-
der to illustrate the role of formal proofs in exploring ideas and clarifying
foundational questions in mathematics. The question is raised to what extent
are proofs for mathematics what experimental procedures are for empirical
sciences?
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Closely related to this topic is the question as to what role mathematics
should play in certain physical theories lacking both of rigorous mathemat-
ical structures and of experimental verifications. The notion of “theoretical
mathematics”, as a synthesis of theoretical physics and mathematics, is eluci-
dated by Annalisa Marzuoli. By creating “toy models”, i.e. simplified models
of complex physical systems, not only can mathematics set up a basis for test-
ing physical theories, but mathematical proofs may become more compelling
than experiments.

On the other hand, the significance and the diverse degrees of involvement
of ‘experimental’ methods in mathematics are investigated by Gabriele Lolli.
Examples are taken throughout the history of mathematics to throw doubt
on the empiricist view of mathematics as a “quasi-empirical” science and to
maintain the distinctive symbolic character of mathematics.

These same problems have made it necessary for mathematics to be con-
cerned about proofs produced by machines. Dag Prawitz’s paper explores
conceptual questions as to the use of deductive machinery to verify the cor-
rectness of computer programs and to the running of programs on computers
to produce proofs.

Giovanna Corsi presents a Gentzen-style calculus as a case study for the
discussion of typical metatheoretical properties: when is that a proof-tree is
closed? when is a proof-tree cut-free? when is it analytic?

The intercalation method for proof search is extended from pure first-
order logic to parts of mathematics by Wilfried Sieg and Clinton Field. By
interweaving general logical strategies with specific mathematical heuristic,
proofs of significant theorems are found in a fully automated way. They present
a solution for Gödel’s incompleteness theorems.1

New perspectives in computational complexity theory are examined by
Ugo Dal Lago and Simone Martini in the frame of the “Curry-Howard corre-
spondence”. By adopting a kind of proof-theoretical approach, the so-called
“Implicit Computational Complexity” takes into account single machine-free
models of computation and analyses complexity classes with respect to lan-
guage constraints.

The contribution by Mario Rasetti suggests how one might benefit from
quantum information tools in order to elicit wider fields than mere compu-
tation. In particular, the problem of ‘combing’ finite groups brings to light
relevant connections between language-theoretical and algorithmic-structural
issues. To open up more comprehensive fields a complex blend of notions
from different theoretical regions - such as formal languages, finite groups and
quantum computation - is needed.

From an ‘outside’ point of view, i.e. the detached view of the philosopher
of science, Dag Westerst̊ahl discusses the conflict between classical and in-
tuitionistic mathematics. By focusing on proofs rather than on explanations

1 This paper is reprinted from Annals of Pure and Applied Logic 133 (2005) pp.
319-338
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of meaning, mutual understanding between classical and intuitionistic math-
ematicians may be significantly improved. ‘Distinguishability’ may help to
clarify how intuitionists and classical mathematicians understand proofs by
grading classical and constructive proofs.

Rossella Lupacchini’s paper examines how a search for ‘more effective’ dis-
tinguishability leads quantum theory in complex Hilbert spaces and opens up
new computational paths. Specifically the bilateral symmetry involved in the
very notion of distinguishability, emerging out of quantum probability ampli-
tudes, can provide an argument for the irreducibility of quantum structures
to classical ones.

While there is a classical standard model of computability on natural num-
bers, i.e. in the style of the Turing machine, there are several nonequivalent
theories of computability for real numbers. In order to illustrate different
approaches, Guido Gherardi investigates the computability of the wave equa-
tion as a key example of a partial differential equation system in theoretical
physics. Here the difficulty of reconciling the discrete nature of computability
with the continuous character of motion equations stands out.

A reflection on the nature of incompleteness and its crucial role in the
evaluation of the effectiveness of both mathematics and physics is developed
by Francis Bailly and Giuseppe Longo. The phenomenon of incompleteness
is analysed in the context of Gödel’s logical results as well as of quantum
theory. A general constructivist approach to knowledge underlies this attempt
to achieve a ‘unified’ understanding of apparently unrelated theoretical issues.
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Why Proof? What is a Proof?

Carlo Cellucci

Dipartimento di Studi Filosofici ed Epistemologici
Università di Roma ‘La Sapienza’ (Italy)
carlo.cellucci@uniroma1.it

1 The Hilbert-Gentzen Thesis

This paper is concerned with real proofs as opposed to formal proofs, and
specifically with the ultimate reason of real proofs (‘Why Proof?’) and with
the notion of real proof (‘What is a Proof?’).

Several people believed and still believe that real proofs can be represented
by formal proofs. A recent example is provided by Macintyre who claims that
“one could go on to translate” all “classical informal proofs into formal proofs
of some accepted formal system”, where such translations “do map informal
proofs to formal proofs” [44, p. 2420].

This view is to a certain extent implicit in Frege – to a certain extent
only, because for Frege in a sense “every inference is non-formal in that the
premises as well as the conclusions have their thought-contents which occur
in this particular manner of connection only in that inference” [18, p. 318].

Anyway, the view that real proofs can be represented by formal proofs is
explicitly stated by Hilbert and Gentzen.

For Hilbert claims that formal proofs are “carried out according to certain
definite rules, in which the technique of our thinking is expressed” [34, p. 475].
These are “the rules according to which our thinking actually proceeds”. They
“form a closed system that can be discovered and definitively stated”.

Similarly, Gentzen claims that formal proofs in his natural deduction sys-
tems have “a close affinity to actual reasoning” [22, p. 80]. They reflect “as
accurately as possible the actual logical reasoning involved in mathematical
proofs” [22, p. 74].

Thus one may state the following:

Hilbert-Gentzen Thesis. Every real proof can be represented by a for-
mal proof.
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Although the Hilbert-Gentzen thesis is widely held, there are various rea-
sons for thinking that it is inadequate. To discuss this matter we must answer
the questions: Why proof? What is a proof?

2 What is a proof?

As already mentioned, ‘Why proof?’ is a question about the ultimate reason
of real proofs. Such question is strictly connected to the question ‘What is a
proof?’, for the ultimate reason of real proofs depends on what real proofs
are, so one can expect that an answer to the question ‘What is a proof?’ will
yield an answer to the question ‘Why proof?’.

Of course, this holds only if ‘Why proof?’ is meant as a question about
the ultimate reason of real proofs, not as a question about their possible uses,
which are multifarious. (Thirty-nine such uses are listed in Lolli [42]). Here
‘Why proof?’ will be meant in that sense.

There are two distinct answers to the question ‘What is a proof?’, which
yield two essentially different and indeed alternative notions of real proof.
All known apparently different notions of proof can be reduced to such two
notions.

A) The notion of axiomatic proof. Proofs are deductive derivations of
propositions from primitive premisses that are true in some sense of ‘true’.
They start from given primitive premisses and go down to the proposition to
be proved. Their aim is to give a foundation and justification of the proposi-
tion.

B) The notion of analytic proof. Proofs are non-deductive derivations of
plausible hypotheses from problems, in some sense of ‘plausible’. They start
from a given problem and go up to plausible hypotheses. Their aim is to
discover plausible hypotheses capable of giving a solution to the problem.

The notion of axiomatic proof was first stated by Aristotle in Posterior
Analytics and then modified by Pascal, Pieri, Hilbert, Padoa in that order
(see Cellucci [4, Chs. 4-5]). It is a very familiar one and so does not seem to
require further explanation.

The notion of analytic proof was first stated by Plato in Meno and Phaedo
(see [4, pp. 270-308]). It is less familiar and so requires some explanation. The
main points seem to be the following.

1) A problem is any open question.
2) A hypothesis is any means that can be used to solve a problem.
3) A hypothesis is said to be plausible if and only if it is compatible with the

existing data – that is, all mathematical notions and results available at that
moment – in the sense that, comparing the arguments for and the arguments
against the hypothesis on the basis of the existing data, the arguments for
prevail over those against. (A typical example is provided by the discussions
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concerning the plausibility of the axiom, or rather hypothesis, of choice at the
beginning of the twentieth century).

4) The process by which problems are solved is an application of the ana-
lytic method, which can be described as follows. One looks for some hypoth-
esis that is a sufficient condition for solving the problem. The hypothesis is
obtained from the problem, and possibly other data, by some non-deductive
inference: inductive, analogical, diagrammatic, metaphorical, metonymical, by
generalization, by specialization, by variation of the data, and so on. (On dif-
ferent kinds of non-deductive inferences for finding hypotheses, see Cellucci
[6, pp. 235-295]. The hypothesis must not only be a sufficient condition for
solving the problem, but must also be plausible, that is, compatible with the
existing data. However the hypothesis, in turn, is a problem that must be
solved, and will be solved in the same way. That is, one will look for another
hypothesis that is a sufficient condition for solving the problem posed by the
former hypothesis, it is obtained from it, and possibly other data, by some
non-deductive inference, and must be plausible. And so on, ad infinitum. Thus
the solution of a problem is a potentially infinite process.

In the course of this process the statement of the problem may be modified
to a certain extent to make it more precise, or may even be radically changed
as new data emerge. Thus the development of the statement of the problem
and the development of the solution of the problem may proceed in parallel.

The analytic method is both a method of discovery and a method of jus-
tification. It involves two distinct processes, the formulation of candidates for
hypothesis by means of non-deductive inferences, and the choice among such
candidates on the grounds of their plausibility. Such choice is necessary be-
cause non-deductive inferences can yield different conclusions from the very
same premisses. To choose among such conclusions one must carefully assess
the arguments for and the arguments against each of them on the basis of the
existing data. Such assessment is a process of justification, so justification is
part of discovery. (For more on the analytic method, see [4], [6], [7], [11]).

The axiomatic method is what results from the analytic method when the
hypotheses stated at a certain stage are considered as an absolute starting
point, for which no justification is given. Thus the axiomatic method is an
unjustified truncation of the analytic method.

One of the oldest examples of analytic proof concerns the problem of the
duplication of the cube a3. Hippocrates of Chios solved it by showing that
the hypothesis ‘One can find two mean proportionals x and y in continued
proportion between a and 2a’ is a sufficient condition for its solution.Then
Menaechmus solved the problem posed by such hypothesis by showing that a
certain other hypothesis is a sufficient condition for its solution. And so on.

A recent example of analytic proof concerns Fermat’s Problem. Ribet
solved it by showing that the Taniyama-Shimura conjecture – or hypothesis –
is a sufficient condition for its solution. For “let E be an elliptic curve over Q.
The Taniyama-Shimura Conjecture (also known as the Weil-Taniyama Con-
jecture) states that E is modular” [55, p. 123]. Ribet showed: “Conjecture of
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Taniyama-Shimura =⇒ Fermat’s Last Theorem” [55, p. 127]. Thus, as stated
above, Ribet solved Fermat’s problem by showing that the Taniyama-Shimura
hypothesis is a sufficient condition for its solution. Then Wiles and Taylor
solved the problem posed by the Taniyama-Shimura hypothesis by showing
that certain other hypotheses are a sufficient condition for its solution. And
so on.

But already one can hear the objection: Surely Ribet did not solve Fer-
mat’s Problem, for his alleged solution depended on a hypothesis that at the
time had not been proved yet! (One could hear a similar objection about Hip-
pocrates of Chios’s solution of the problem of the duplication of the cube).

Now, if Ribet did not solve Fermat’s Problem because his solution de-
pended on a hypothesis, the Taniyama-Shimura hypothesis, that at the time
had not been proved yet, then Wiles and Taylor have not solved Fermat’s
problem because their solution depends on a hypothesis, the axioms of set
theory, that to this very day has not been proved yet. (Similarly as regards
Hippocrates of Chios and Menaechmus. Ribet stands to Hippocrates of Chios
as Wiles and Taylor stand to Menaechmus).

One can also hear the objection: A so-called ‘analytic proof’ is not a proof.
Admittedly, working backwards to find the needed ingredients to prove a po-
tential theorem is a standard method in the work of mathematicians. But this
cannot justifiably be referred to as proof, for what is customarily understood
by ‘proof’ is a sequence of arguments to justify an assertion.

Now, at each stage in the development of an analytic proof, only a finite
piece of the proof is given and, reading it top down rather than bottom up,
one has a sequence of arguments that justifies an assertion. The sequence
justifies it because hypotheses must be plausible. Reading the sequence top
down rather than bottom up is inessential, it is just a matter of convention.

3 Analytic and axiomatic proof

The point of analytic proof can be seen in terms of Gödel’s first incompleteness
theorem.

Suppose that you want to solve a problem, say, of elementary number-
theory and want to find a hypothesis to solve it. By Gödel’s result there is no
guarantee that the hypothesis can be derived from the axioms of Peano Arith-
metic, so you must be prepared to look for hypotheses of any kind, concerning
objects of any mathematical field. Think, for instance, of Fermat’s problem,
a problem concerning natural numbers that, as we have already mentioned,
Ribet solved using a hypothesis, the Taniyama-Shimura, concerning elliptic
curves over Q – the set of rational numbers.

Moreover, again by Gödel’s result, there is no guarantee that the hypoth-
esis can be derived from any known axioms. Think, for instance, of Gödel’s
suggestion that we might need new infinity axioms to solve number-theoretic
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problems (see [23, p. 269]). Thus solving a problem generally consists in look-
ing for hypotheses in an open, that is, not predetermined space.

The point of analytic proof can be also seen, perhaps more vividly, in
terms of Hamming’s statement: “If the Pythagorean theorem were found to
not follow from postulates, we would again search for a way to alter the
postulates until it was true. Euclid’s postulates came from the Pythagorean
theorem, not the other way” [26, p. 87]. In mathematics “you start with some
of the things you want and you try to find postulates to support them” [27, p.
645]. The idea that you simply lay down some arbitrary postulates and then
make deductions from them “does not correspond to simple observation” [26,
p. 87].

In addition to giving alternative answers to the question ‘What is a
Proof?’, the notions of axiomatic proof and analytic proof give alternative
answers to the question ‘Why Proof?’. For the ultimate reason of axiomatic
proof is to give a foundation and justification of a proposition, and the ulti-
mate reason of analytic proof is to discover plausible hypotheses capable of
giving a solution to a problem.

Since their ultimate reasons are different, the notions of axiomatic and
analytic proof play different roles in the development of mathematics.

Axiomatic proof, being meant to give a foundation and justification of an
already acquired proposition, is not intrinsically fruitful for the creation of
new mathematics.

On the contrary, analytic proof has a great heuristic value, not only be-
cause it is meant to discover plausible hypotheses capable of giving a solution
to a problem, but also because such hypotheses may belong to areas of math-
ematics different from the one to which the problem belongs. Thus they may
establish connections between the problem and concepts and results of other
areas of mathematics. This may reveal unexpected relations between different
areas, which may suggest new perspectives and new problems and so may be
very fruitful for the development of mathematics. As Grosholz says, these new
perspectives and problems may allow one “to explore the analogies among dis-
parate things, a practice which in the formal sciences tends to generate new
intelligible things” [25, p. 49].

The notions of axiomatic and analytic proof yield alternative notions of
mathematical theory.

In terms of axiomatic proof, a mathematical theory is a closed set of prim-
itive premisses and propositions obtained from them by deductive inferences
– a closed set, because primitive premisses are predetermined and given once
for all, and the propositions belonging to the set in question are entirely deter-
mined by the primitive premisses. Briefly, a mathematical theory is a closed
system.

In terms of analytic proof, a mathematical theory is an open set of prob-
lems and hypotheses for their solution obtained from the problems by non-
deductive inferences – an open set, because hypotheses are not predetermined
or given once for all and the solution of a problem may generate new problems.
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Briefly, a mathematical theory is an open system. (For more on these notions
of closed and open system, see [4, pp. 309-347], [5], [6, Chs. 7 and 26]).

4 Analytic and analytic-synthetic method

The analytic method must not be confused with the analytic-synthetic method.
While the analytic method is a method for finding hypotheses to solve given
problems, the analytic-synthetic method is a method for finding deductions of
given propositions from given primitive premisses (axioms, rules, definitions),
thus it is only a heuristic pattern within axiomatized mathematics.

In the analytic-synthetic method, to find a deduction of a given proposi-
tion from given primitive premisses, one looks for premisses from which that
proposition will follow, then one looks for premisses from which those pre-
misses will follow, and so on until one arrives at some primitive premisses
among the given ones. If this process is successful, then inverting the path
direction – that is, repeating the steps in inverse order – one gets a deduction
of the given proposition from the given primitive premisses, as desired.

While in the analytic method finding a solution of a given problem is a po-
tentially infinite process, in the analytic-synthetic method finding a deduction
of a given proposition from given primitive premisses is a finite process.

Actually, there are two versions of the analytic-synthetic method, origi-
nally described by Aristotle and Pappus, respectively, which differ as to the
direction of the analysis. In Aristotle’s version the direction is upward, in
Pappus’s version it is downward (see [4, pp. 289-299], [11, Ch. 15]). Here we
need only consider Aristotle’s version, that is the one described above. (For
more on the analytic-synthetic method, see Hintikka-Remes [37], Knorr [40],
Mäenpää [45], Timmermans [59]).

5 Frege’s Thesis

Supporters of the notion of axiomatic proof assume that all proofs come under
that notion. This is due to the influence of Frege, who sharply separates the
context of discovery from the context of justification, limiting logic to the
latter and confining the context of discovery to individual psychology (see
[19, p. 5], [17, p. 3]). Contemporary supporters of the notion of axiomatic
proof follow Frege. Thus one may state the following:

Frege’s Thesis. Every real proof is an axiomatic proof.

The Hilbert-Gentzen Thesis can be viewed as an extreme form of Frege’s
Thesis, for it implies that every real proof not only is an axiomatic proof but is
also, ‘up to representation’, a formal proof. Azzouni states such implication by
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saying that “ordinary mathematical proofs indicate (one or another) mechan-
ically checkable derivation of theorems from the assumptions those ordinary
mathematical proofs presuppose” [2, p. 105]. So “it’s derivations, derivations
in one or another algorithmic system, which underlie what’s characteristic of
mathematical practice” [2, p. 83]. (For a critical appraisal of Azzouni’s views,
see Rav [54]).

6 Proofs as means of discovery or justification

While Hilbert and Gentzen build on Frege’s Thesis, Aristotle who, as we have
already mentioned, first stated the notion of axiomatic proof, would have re-
jected it. For, although Aristotle sharply distinguishes between the procedure
by which new propositions are obtained and the procedure by which propo-
sitions already obtained are organized and presented, he considers both such
procedures as belonging to logic. Aristotle views the former as the procedure
of the working mathematician, the latter as the procedure for teaching and
learning propositions already obtained, and attributes only the latter to the
notion of axiomatic proof.

For Aristotle states that the procedure by which new propositions are
obtained consists in a method that will tell us “how we may always find a
deduction to solve any given problem, and by what way we may reach the
primitive premisses adequate to each problem” (Aristotle, Analytica Priora,
A 27, 43a 20-22). The method “is useful with respect to the first elements
in each science” (Aristotle, Topica, A 2, 101a 36-37). For, “being used in the
investigation, it directs to the primitive premisses of all sciences” (ibid., A 2,
101b 3-4). On the other hand, the procedure by which propositions already
obtained are organized and presented consists in the axiomatic method, for
“we know things through demonstrations”, where demonstration is “scientific
deduction” (Aristotle, Analytica Posteriora, A 2, 71b 17-19). That is, it is a
deduction which proceeds “from premisses that are true and primitive” (ibid.,
A 2, 71b 20-21). The importance of demonstration depends on the fact that
“all teaching and intellectual learning” is obtained by means of it, in particular
“the mathematical sciences are acquired in this way” (ibid., A 1, 71a 1-4).

Aristotle’s description of the procedure by which propositions already ob-
tained are organized and presented corresponds to the notion of axiomatic
proof. On the other hand, his description of the procedure by which new
propositions are obtained does not correspond to that notion. It does not cor-
respond to the notion of analytic proof either because, for Aristotle, the pro-
cess by which new propositions are obtained is finite. Rather, it corresponds
to the procedure by which deductions of given propositions from given primi-
tive premisses are obtained in – Aristotle’s version of – the analytic-synthetic
method.

That, for Aristotle, the procedure by which new propositions are obtained
is finite depends on his argument that infinite regress is inadmissible, other-
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wise one could prove everything, including falsehood. To stop infinite regress
Aristotle assumes that there must be some primitive premisses that are true,
and must also be known to be true, otherwise one would be unable to tell
whether something is a demonstration.

For Aristotle claims that, if the series of premisses “did not terminate and
there was always something above whatever premiss has been taken, then
there would be demonstrations of all things” (Aristotle, Analytica Posteriora,
A 22, 84a 1-2.). Thus there must be premisses that must be “primitive and
indemonstrable, because otherwise there would be no scientific knowledge”,
and moreover “must be true, because it is impossible to know what is not the
case” (ibid., A 2, 71b 25-27). In addition to being true, primitive premisses
must also be known to be true, for “if it is impossible to know the primitive
premisses, then it is impossible to have scientific knowledge of what proceeds
from them absolutely and properly” (ibid., A 2, 72b 13-14). And to know the
primitive premisses amounts to knowing that they are true, for “grasping and
stating” them “is truth” (Aristotle, Metaphysica, Θ 10, 1051b 24).

Moreover, Aristotle claims that we know that primitive premisses are true
by intuition. For since “there cannot be scientific knowledge of the primi-
tive premisses, and since nothing except intuition can be truer than scientific
knowledge, it will be intuition that apprehends the primitive premisses” (Aris-
totle, Analytica Posteriora, B 19, 100b 10-12). So “it is intuition that grasps
the unchangeable and first terms in the order of proofs” (Aristotle, Ethica
Nicomachea, Z 11, 1143b 1-2).

However reasonable such Aristotle’s claims may appear, nevertheless they
are untenable.

Aristotle’s claim that, since nothing except intuition can be truer than
scientific knowledge, it will be intuition that apprehends the primitive pre-
misses, is untenable because intuition is an unreliable source of knowledge.
Kripke states: “I think” that intuition “is very heavy evidence in favor of any-
thing, myself. I really don’t know, in a way, what more conclusive evidence one
can have about anything, ultimately speaking” [41, p. 42]. Actually just the
opposite is true. Being completely subjective and arbitrary, intuition cannot
be used as evidence for anything. One really doesn’t know what less conclusive
evidence one could have about anything, ultimately speaking. For instance,
Frege considered his paradoxical Basic Law V completely intuitive since, in
his opinion, it “is what people have in mind, for example, where they speak
of the extensions of concepts” [18, p. 4]. But Russell’s paradox showed that
Frege’s intuition was wrong. On the other hand, completely counterintuitive
propositions, the so-called ‘monsters’, have been proved in various parts of
mathematics. (On intuition and ‘monsters’, see [6, Ch. 12] and [11, Ch. 8]).

Moreover, Aristotle’s claim that, if the series of premisses did not termi-
nate, then there would be demonstrations of all things, is untenable because
in the analytic method, which involves a potentially infinite regress, premisses
– that is, hypotheses – must be plausible, that is, compatible with the existing
data, so there can only be demonstrations of things using plausible premisses.
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Of course, a price has to be paid for that. Since plausible premisses are not
certain, the things proved by demonstrations are not certain, so mathematics
is not certain. But, in view of the unreliability of intuition, there is no alterna-
tive to that. As Xenophanes said, “as for certain truth, no man has known it,
nor will he know it” for “all is but a woven web of guesses” [16, 21 B 34]. And
yet knowledge, uncertain knowledge, is possible, for “with due time, through
seeking, men may learn and know things better” [16, 21 B 18].

7 The status of the Hilbert-Gentzen Thesis

In the light of what has been stated above, the status of the Hilbert-Gentzen
Thesis can be assessed as follows.

1) If by ‘proof’ one means ‘analytic proof’, then the Hilbert-Gentzen Thesis
is obviously inadequate because formal proofs don’t represent analytic proofs.

2) If by ‘proof’ one means ‘axiomatic proof’, then the Hilbert-Gentzen
Thesis is inadequate because, for instance, even the very first proof in Hilbert’s
Grundlagen der Geometrie cannot be represented by a formal proof since
it makes an essential use of properties of a figure (see [9] and [11, Ch. 9]).
This belies Hilbert’s claim that “a theorem is only proved when the proof is
completely independent of the figure” [36, p. 75]. Admittedly, one can give
a purely formal proof of the same result, but this involves replacing the use
of the figure by the use of additional primitive premisses (see Meikle-Fleuriot
[46]). Then the resulting formal proof is essentially different from, and hence
cannot be considered a representation of, Hilbert’s proof. Generally the use of
figures is crucial in mathematics. As Grosholz says, “number and figure are
the Adam and Eve of mathematics” [25, p. 47].

3) If by ‘proof’ one means ‘axiomatic proof’, then the Hilbert-Gentzen
Thesis is inadequate also for the the more basic reason that the notion of
axiomatic proof itself is inadequate. It is widely believed that the axiomatic
method “guarantees the truth of a mathematical assertion” [56, p. 135]. This
belief depends on the assumption that proofs are deductive derivations of
propositions from primitive premisses that are true, in some sense of ‘true’.
Now, as we will presently see, generally there is no rational way of knowing
whether primitive premisses are true. Thus either primitive premisses are false,
so the proof is invalid, or primitive premisses are true but there is no rational
way of knowing that they are true, then one will be unable to see whether
something is a proof, and hence will be unable to distinguish proofs from non-
proofs. In both cases, the claim that the axiomatic method guarantees the
truth of a mathematical assertion is untenable.

8 The truth of primitive premisses

We have claimed that generally there is no rational way of knowing whether
primitive premisses are true. This can be seen as follows.



10 Carlo Cellucci

That primitive premisses are true can be meant in several distinct senses.
The main ones are the following: 1) truth as possession of a model; 2) truth
as consistency; 3) truth as convention.

8.1 Truth as possession of a model

Primitive premisses are true in the sense that they have a model, that is, there
is a domain of objects in which they are true.

For instance, Tarski says that we “arrive at a definition of truth and false-
hood simply by saying that a sentence is true” in a given domain “if it is
satisfied by all objects” in that domain, “and false otherwise” [58, p. 353].
Then a sentence is true if and only if there is a domain of objects in which it
is true.

But, if primitive premisses are true in the sense that they have a model,
then to know that they are true one must be able to prove that they have
a model. However, by Gödel’s second incompleteness theorem, the sentence
‘Primitive premisses have a model’ will not be provable from such primitive
premisses but only from a proper extension of them, whose primitive pre-
misses have a model. However, by Gödel’s second incompleteness theorem,
the sentence ‘The primitive premisses of the proper extension have a model’
will not be provable from such primitive premisses but only from a proper
extension of them, whose primitive premisses have a model. And so on, ad
infinitum.

Thus there is no rational way of knowing whether primitive premisses are
true in the sense that they have a model.

8.2 Truth as consistency

Primitive premisses are true in the sense that they are consistent, that is, no
contradiction is provable from them.

For instance, Hilbert says that, “if arbitrarily given axioms do not contra-
dict one another with all their consequences, then they are true” [35, p. 39].
Thus “‘non-contradictory’ is the same as ‘true’ ” [33, p. 122].

But, if primitive premisses are true in the sense that they are consistent,
then to know that they are true one must be able to prove that they are consis-
tent. However, by Gödel’s second incompleteness theorem, the sentence ‘The
primitive premisses are consistent’ will not be provable from such primitive
premisses but only from a proper extension of them, whose primitive premisses
are consistent. However, by Gödel’s second incompleteness theorem, the sen-
tence ‘The primitive premisses of the proper extension are consistent’ will not
be provable from such primitive premisses but only from a proper extension
of them, whose primitive premisses are consistent. An so on, ad infinitum.

Thus there is no rational way of knowing whether primitive premisses are
true in the sense that they are consistent.
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8.3 Truth as convention

Primitive premisses are true in the sense that they are conventions, that is,
they may be chosen arbitrarily, subject to no condition whatsoever.

For instance, Carnap says that “it is not our business to set up prohibi-
tions, but to arrive at conventions” [3, p. 51]. Primitive premisses “may be
chosen quite arbitrarily” and this “choice, whatever it may be, will determine
what meaning is to be assigned to the fundamental logical symbols” [3, p.
xv]. Thus “no question of justification arises at all, but only the question of
the syntactical consequences to which one or the other of the choices leads”.
A sentence is said to be ‘determinate’ if its truth or falsity is settled by the
syntactical consequence relation alone, which thus provides “a complete crite-
rion of validity for mathematics” [3, p. 100]. Sentences “may be divided into
logical and descriptive, i.e. those which have a purely logical, or mathematical,
meaning” and those which express “something extralogical – such as empiri-
cal” facts, “properties, and so forth” [3, p. 177]. Then “every logical sentence
is determinate; every indeterminate sentence is descriptive” [3, p. 179].

But, if primitive premisses are true in the sense that they are conventions,
then to know that they are true one must know that they are true with respect
to the meaning their choice assigns to the fundamental logical symbols. How-
ever, by Gödel’s first incompleteness theorem, there are sentences of Peano
Arithmetic, say, that are indeterminate and hence descriptive, so for Carnap
they express something extralogical. This means that the primitive premisses
of Peano Arithmetic don’t fully determine the meaning of the fundamental
logical symbols, which will then be partly extralogical. Thus, to know that the
primitive premisses of Peano Arithmetic are true involves considering some-
thing extralogical, say, some empirical facts.

To overcome this problem Carnap considers the possibility of expanding
the primitive premisses of Peano Arithmetic by adding an inference rule with
infinitely many premisses, the ω-rule, which allows one to infer ∀xA(x) from
A(0), A(1), A(2), ... and makes all sentences of Peano Arithmetic determinate.
Carnap claims that “there is nothing to prevent the practical application of
such a rule” [3, p. 173]. But the syntactical consequence relation resulting from
this addition is not recursively enumerable, and hence a fortiori, in Carnap’s
parlance, it is indefinite. For, according to Carnap, “every definite” relation
“can be calculated”, whereas in this case there exists no “definite method
by means of which this calculation” can “be achieved” [3, p. 46]. So the ω-
rule yields “a method of deduction which depends upon indefinite individual
steps” [3, p. 100].

Thus any choice of primitive premisses for Peano Arithmetic either will not
fully determine the meaning of the fundamental logical symbols – which will
then be partly extralogical – or will yield an indefinite syntactical consequence
relation.

Moreover, by Gödel’s second incompleteness theorem, one cannot know
whether primitive premisses are consistent. This is problematic for, if prim-



12 Carlo Cellucci

itive premisses were inconsistent, then it would be worthless to know that a
sentence is a syntactical consequence of them. Since one cannot know whether
primitive premisses are consistent, the only ground one would have to believe
that their syntactical consequences include no contradiction would be induc-
tive, that is, it would consist in the fact that until then no contradiction has
been drawn from them. But then induction, not convention, would be the
basis of the choice of primitive premisses.

Thus we may conclude that there is no rational way of knowing whether
primitive premisses are true in the sense that they are conventions.

This is the substance of Plato’s criticism of the axiomatic method. Plato
asks: “When a man does not know the principle, and when the conclusion and
intermediate steps are also constructed out of what he does not know, how
can he imagine that such a fabric of convention can ever become science?”
(Plato, Republic, VII 533 c 4-5). Carnap has no answer to this question. (For
more on Plato’s criticism of the axiomatic method, see [4, pp. 286-291]).

9 Decline and fall of axiomatic proof

As we have already said, to stop infinite regress Aristotle assumes that there
must be primitive premisses that are true and are also known to be true. By
what we have just seen, however, such primitive premisses cannot exist, for
there is generally no rational way of knowing whether primitive premisses are
true, in any sense of ‘true’.

Thus the very foundation on which Aristotle and his modern followers
wanted to build an alternative to analytic proof breaks down. Axiomatic proof
is no viable alternative to analytic proof since it is inadequate. One is not
justified in using it for generally there is no rational way of knowing whether
the starting points of axiomatic proofs are true, in any sense of ‘true’.

Axiomatic proof is inadequate also because there is no non-circular way of
proving that deduction from primitive premisses is truth-preserving, that is,
such that, if primitive premisses are true, then the propositions deduced from
them are also true (see [8] and [11, Ch. 26]).

In addition to implying that axiomatic proof is inadequate, the fact that
generally there is no rational way of knowing whether primitive premisses are
true has another important consequence. It entails that primitive premisses
of axiomatic proofs are simply ‘accepted opinions’, endoxa in Aristotle’s par-
lance, or rather plausible propositions in the sense explained above. Thus
they have the same status as hypotheses in analytic proofs. Then the notion
of axiomatic proof collapses into that of analytic proof.

Even some supporters of the axiomatic method acknowledge that. For in-
stance, Pólya states that analogy and other non-deductive inferences “not
only help to shape the demonstrative argument and to render it more under-
standable, but also add to our confidence to it. And so we are led to suspect
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that a good part of our reliance on demonstrative reasoning may come from
plausible reasoning” [52, p. 168].

Thus Frege’s Thesis depends on a misunderstanding. An instance of such
misunderstanding is the claim that Wiles and Taylor solved Fermat’s Problem.
What they actually solved is the problem posed by the Taniyama-Shimura
hypothesis.

Admittedly, in the last century most mathematicians have thought them-
selves to be pursuing axiomatic proof. But, as the case of Fermat’s problem
shows, they weren’t. Their belief to be pursuing axiomatic proof has been
a matter of trend and fashion, so essentially a sociological fact: a result of
the predominance of the ideology of the Göttingen School and the Bourbaki
School over the mathematicians of the last century (see [4, Ch. 5]).

Mathematicians who think themselves to be pursuing axiomatic proof
don’t seem to be generally aware that Frege’s Thesis together with Hilbert-
Gentzen Thesis would make mathematics trivial. For then there would be an
algorithm that in principle could generate all possible proofs from given ax-
ioms in systematic manner, checking each time if the final proposition is the
proposition to be proved. Thus theorem proving would become an activity
requiring no intelligence.

Some supporters of axiomatic proof seem however to be aware of that,
at least to a certain extent. For instance Rota, while maintaining that the
axiomatic method guarantees the truth of a mathematical assertion, says
that the “identification of mathematics with the axiomatic method has led
to a widespread prejudice among scientists that mathematics is nothing but
a pedantic grammar, suitable only for belaboring the obvious” [56, p. 142].

10 Proving and re-proving

Even if a rational way of knowing whether primitive premisses are true gen-
erally existed, the notion of axiomatic proof would have other basic defects.

For instance, in terms of that notion one cannot explain why, once a proof
of a proposition has been found, mathematicians look for alternative proofs.

Several research papers in mathematics are concerned not with proving
but with re-proving. For instance, well over four hundred distinct proofs of
the Pythagorean Theorem have been given, a Fields Medal has been awarded
to Selberg for producing a new proof of a theorem, the prime-number theorem,
for which a proof was already known, and so on.

Now, if proofs were meant to provide a foundation and justification of a
proposition, once a proof has been found and hence a foundation and justi-
fication has been given, what would be the point of looking for other proofs,
even hundreds of them? No adequate answer to this question can be given in
terms of the notion of axiomatic proof.

A suitable answer can be given only in terms of the notion of analytic
proof, by which, to solve a problem, one may use several distinct hypotheses.
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For a problem may have several sides, so one may look at it from several
distinct perspectives, each of which may suggest a distinct hypothesis, thus
a different proof and hence a different explanation. (On the notion of mathe-
matical explanation involved here, see [10]). As we have already pointed out,
this may have a great heuristic value, so it may be very fruitful for the devel-
opment of mathematics. (For other approaches to the question of re-proving,
see [56, Ch. XI], Avigad [1], Dawson [13]).

11 Mathematics and intuition

Since generally there is no rational way of knowing whether primitive pre-
misses are true, supporters of axiomatic proof may only resort to assuming
that there is an irrational faculty, intuition, by which one can grasp mathemat-
ical concepts and see that primitive premisses are true of them – an irrational
faculty, because intuition is a faculty of which no account can be given.

This is the solution that, as we have seen, Aristotle suggested and most
supporters of axiomatic proof have since adopted.

For instance, Gödel claims that ultimately for the “axioms there exists no
other” foundation except that they “can directly be perceived to be true” by
means of “an intuition of the objects falling under them” [24, pp. 346-347].

However, appealing to intuition not only bases mathematical knowledge
on an irrational – and completely unreliable – faculty, but reduces proofs to
rhetorical flourishes.

This is made quite clear by Hardy, who states that a mathematician is “in
the first instance an observer, a man who gazes at a distant range of mountains
and notes down his observations” [28, p. 18]. If “he sees a peak” and “wishes
someone else to see it, he points to it, either directly or through the chain of
summits which led him to recognize it himself”. When “his pupil also sees it,
the research, the argument, the proof is finished”. Seeing a peak corresponds
to having an intuition of certain mathematical objects. That mathematical
activity consists in seeing peaks and pointing to them entails – Hardy argues
– that “there is, strictly, no such thing as mathematical proof; that we can, in
the last analysis, do nothing but point”; that proofs are merely “gas, rhetorical
flourishes designed to affect psychology”.

That appealing to intuition bases mathematical knowledge on an irrational
and completely unreliable faculty and reduces proofs to rhetorical flourishes,
conflicts with the intended aim of axiomatic proof to give a foundation and
justification of a proposition.

Moreover, appealing to intuition is inconclusive. For suppose that you have
an intuition of the concept of set S which tells you that your axioms of set
theory T are true of S. By Gödel’s first incompleteness theorem there is a
sentence A of T which is true of S but is unprovable in T . Then the theory
T ∪ {¬A} is consistent, so it has a model, say S′. Thus ¬A is true of S′, and
hence A is false of S′. Then S and S′ are both models of T , so they are both



Why Proof? What is a Proof? 15

concepts of set, but A is true of S and false of S′. Therefore S and S′ cannot
be isomorphic, so S and S′ are essentially different.

Now suppose that, by reflecting on the way S′ has been obtained, you get
an intuition of the concept of set S′ which tells you that the axioms of T are
true of S′. Then you have two distinct intuitions, one ensuring that S is the
genuine concept of set, the other one ensuring that S′ is the genuine concept
of set. Since S and S′ are essentially different, this raises the question: Which
of S and S′ is the genuine concept of set? Intuition gives no answer.

This confirms that axiomatic proof is inadequate. As Hersh says, “the view
that mathematics is in essence derivations from axioms is backward. In fact,
it’s wrong” [32, p. 6]. Only analytic proof is adequate, so axiomatic proof is
not on a par with it.

12 Mathematics and evolution

Axiomatic proof is not on a par with analytic proof also in another respect.
While axiomatic proof is simply a way of organizing and presenting results
already obtained and so, as Aristotle says, is essentially aimed at teaching
and learning, analytic proof goes deeply into the nature of organisms for it
reflects the way in which they mainly solve their problems, starting from the
most basic one: survival.

All organisms survive by making hypotheses on the environment by a
process that is essentially an application of the analytic method. Thus analytic
proof is based on the procedure by which organisms provide for their most
basic needs. As our hunting ancestors solved their survival problem by making
hypotheses about the location of preys on the basis of hints – crushed or bent
grass and vegetation, bent or broken branches or twigs, mud displaced from
streams, and so on – provided by them, mathematicians solve mathematical
problems by making hypotheses for the solution of problems on the basis of
hints provided by them.

Some of the hypotheses on the environment are chosen by natural selection
and are embodied in the biological structure of organisms, and some of them
concern mathematical properties of the environment. As a result, all organisms
have at least some of the following innate capabilities: space sense, number
sense, size sense, shape sense, order sense. Such capabilities are mathematical
in kind. They have a biological function and are a result of biological evolution
that has selected and embodied them in organisms.

Mathematical capabilities embodied in organisms, also non-human ones,
can even be rather sophisticated.

For instance, if standing on a beach with a dog at the water’s edge you
throw a tennis ball into the waves diagonally, the dog will not plunge into
the water immediately swimming all the way to the ball. It will run part
of the way along the water’s edge, and only then will plunge into the water
and swim out to the ball. For, since the dog’s running speed is greater than
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the dog’s swimming speed, the dog will choose to plunge into the water at
a point that will minimize the time of travel to the target. Such point can
be determined by calculus, and the point actually chosen by the dog broadly
agrees with the one given by calculus (see Pennings [51]). Does that mean that
dogs know calculus? Of course not. They are capable of choosing an optimal
point thanks to natural selection, which gives a definite survival advantage
to organisms that exhibit better judgment. Thus the calculation required to
determine an optimal point is not made by the dog but has been made by
nature through natural selection. It is thanks to natural selection that dogs
are able to solve this calculus problem. (For further examples of mathematical
capabilities embodied in non-human organisms, see Devlin [15]).

Natural selection has hardwired organisms to perform certain mathemat-
ical operations building mathematics in several features of their biological
structure, such as locomotion and vision, which require some sophisticated
embodied mathematics. Such mathematical operations are essential to escape
from danger, to search for food, to seek out a mate.

One may then distinguish a ‘natural mathematics’, that is, the mathe-
matics embodied in organisms as a result of natural selection, from ‘artifi-
cial mathematics’, that is, mathematics as discipline. (Devlin calls artificial
mathematics ‘abstract mathematics’, but ‘artificial mathematics’ seems more
suitable here since it expresses that it is a mathematics that is not a natural
product, being not a direct result of biological evolution but rather a human
creation [15, p. 249]).

Natural mathematics, however, is necessarily limited since biological evo-
lution is slow. On the contrary, artificial mathematics has developed relatively
fast in the past five thousand years or so since it is a result of cultural evolu-
tion, which is relatively fast. This raises serious doubts about Cooper’s claim
that artificial “mathematics must itself be evolutionarily reducible” [12, p.
135]. It seems more reasonable to conclude that artificial mathematics cannot
be reduced to natural mathematics.

The fact that natural mathematics is a result of biological evolution,
whereas artificial mathematics is a result of cultural evolution, leads to a
program of interpreting mathematics in terms of biological and cultural evo-
lution. Although, of course, such program cannot be carried out here, some
of its preconditions can be briefly discussed.

13 Mathematics and logic

Natural mathematics is based on natural logic, which is that natural capability
to solve problems that all organisms have and is a result of biological evolution.
On the other hand, artificial mathematics is based on artificial logic, which is
a set of techniques invented by organisms to solve problems and is a result of
cultural evolution.
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Unlike the distinction between natural mathematics and artificial mathe-
matics, the distinction between natural logic and artificial logic is not a new
one. A similar distinction was made in the sixteenth century, for instance, by
Ramus, and was still alive two centuries later when Kant used it in his logic
lectures (see [39, pp. 252, 434, 532]). At that time, however, artificial logic
was restricted to deductive inferences. But the notion of analytic proof re-
quires that artificial logic include non-deductive inferences. Natural logic too
requires non-deductive inferences, since the process by which all organisms
provide for their most basic needs is essentially an application of the analytic
method. However, natural logic requires not only non-deductive inferences but
also non-propositional unconscious inferences, for the latter are essential, for
instance, in vision. (On the role of non-propositional unconscious inference
in vision, and generally on the characters of natural and artificial logic as
intended here, see [11, Chs. 16-17]).

Since natural and artificial logic are based on two different forms of evolu-
tion, biological and cultural evolution, they are distinct. That, however, does
not mean that they are opposed. For artificial logic ultimately depends on
capabilities of organisms that are a result of biological evolution. Moreover,
both natural and artificial logic depend on the very same basic procedure: the
analytic method. The latter then provides a link between natural and artificial
logic, and hence between natural mathematics and artificial mathematics.

14 Logic and reason

The main aim of natural logic is to find hypotheses on the environment to the
end of survival. This implies that there is a strict connection between logic and
the search of means for survival and that, since generally all organisms seek
survival, natural logic does not belong to humans only but to all organisms.

On the contrary, logic has been traditionally viewed as the organ of reason
meant as a higher faculty belonging to humans only, which allows them to
overcome the limitations of their biological constitution, limitations within
which animals and plants are instead constrained. In particular, such higher
faculty has been supposed to be capable of intuitively and directly apprehend-
ing certain primitive truths, and specifically certain primitive premisses which
are the necessary basis of any demonstrative reasoning.

But reason is not such a higher faculty, it is rather the capability of choos-
ing means adequate to a given end. As Russell says, ‘reason’ “signifies the
choice of the right means to an end that you wish to achieve” [57, p. 8]. Thus,
in conformity with the original meaning of ‘ratio’, reason is a relation between
means and ends. Then nothing is rational in itself but only relative to a given
end. Now, since the primary end of all organisms is survival, the choice of
means adequate to that end can be viewed as an expression of the faculty of
reason, which then does not belong to humans only.
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One might think that the concept of reason could be made less relative by
stating that ‘rational’ – that is, ‘compliant with reason’ – is what is compliant
with human nature. That, however, would not solve the problem of explaining
what reason is but would simply refer it back to the problem of explaining
what human nature is.

Now human nature is the result of two factors, biological evolution and
cultural evolution. In explaining what human nature is biological evolution
plays an important role, for our biological structure has a basic importance
in determining what we are.

This view is fiercely opposed by those who, like Heidegger, deny that “the
essence of man consists in being an animal organism”, claiming that “the
aberration of biologism” consists in considering the body of man as that of “an
animal organism”, and that the fact “that the physiology and biochemistry of
man as an organism can be investigated in a natural scientific way is no proof
that the essence of man lies in this organicity, that is, in the scientifically
explained body” [26, p. 324].

But these claims are unjustified, because our biological structure really
plays an essential role in determining what we are. For instance, monozygotic
twins, when separated at birth and grown up in distinct environments with
no possibility of mutual communication, have similar personalities, their be-
haviours resemble under several respects, they even take similar positions on
the most disparate questions.

Those who deny that our biological structure has a basic importance in
determining what we are, claim that the behaviour of humans is not largely
governed by biological functions shared by all humans. There is no biological
basis of our most important behaviours, the latter are a result of cultural
evolution.

But the claim that our most important behaviours are a result of cultural
evolution is not in conflict with the claim that our biological structure has a
basic importance in determining what we are, for cultural evolution develops
on the basis of biological evolution. Culture is not an ethereal substance in-
dependent of our biological structure. It depends on the neural networks with
which biological evolution has provided us, for it is a product of our biological
structure and so is bound to it. To separate cultural from biological evolution
is to neglect what the subject of cultural evolution is: a biological organism
which is an outcome of biological evolution.

Since biological and cultural evolution are what determines human nature,
they are the relative terms with which we must commensurate rationality. Of
course, only relative terms, for there is nothing necessary in biological evo-
lution or in cultural evolution. In particular, biological evolution does not
work by design: it has gone that way but could have gone otherwise. Thus, if
‘rational’ is what is compliant with human nature, there is nothing absolute
in rationality. ‘Rational’ is a term relative to the contingent character of hu-
man nature, which is a contingent result of biological evolution and cultural
evolution.
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To view logic as the organ of reason, meant as a higher faculty belonging
to humans only, is to misjudge the nature of reason. Logic can be said to be
the organ of reason, though of a reason intended not as a higher faculty but
as the capability of choosing means adequate to a given end, starting from
survival, and hence as belonging to all organisms. Natural logic is the organ
of reason for it provides all organisms with means adequate to their ends.

Here ‘organisms’ are supposed to include not only animals but also plants.
Some of them, when attacked by herbivores, implement sophisticated defense
strategies. They produce complex polymers that reduce plant digestibility, or
toxins that repel or even kill the herbivores. They use other insects against the
herbivores, emitting volatile organic compounds that attract other carnivorous
insects which kill the attacking herbivores. These volatile organic compounds
may be also perceived by neighboring yet-undamaged plants to adjust their
defensive phenotype according to the present risk of attack, thus they function
as external signal for within-plant communication (see Heil and Silva Bueno
[31]).

15 Logic and evolution

That natural logic belongs to all organisms does not mean that non-human
organisms choose means adequate to their ends on the basis of learned logical
cognitions. But several humans too do not choose means adequate to their
ends on the basis of learned logical cognitions. They use logical means such as
induction, the cause-effect relation, the identity principle, and generally make
inferences, without having attended to any logic course. They are capable of
using logical means because biological evolution has designed them to do so.

Not only biological evolution has designed humans to use logical means,
but natural logic, in addition to being a means for survival, is itself a result
of natural selection. The natural logic system we have inherited is such that,
on average, it increases the possibility of surviving and reproducing in the
environment in which our most ancient ancestors evolved. Thus the first and
deepest origin of reason and logic is natural selection, which has provided
humans with those capabilities that have allowed them to survive.

The importance of reason and logic stems from the fact that the world
changes continually and irregularly, so organisms are confronted all the time
with the need to adapt to new situations. To deal with them they need logic,
which helps them to cope with new situations, thus increasing their overall
adaptive value.

The logic useful to this end is not only natural logic but also artificial logic,
though an artificial logic including not only deductive propositional inferences,
but also non-deductive and non-propositional inferences.

Biological evolution has embodied a series of informations in organisms
concerning their evolutionary past, and also suitable kinds of behaviour by
which they are able to cope with situations similar to those that already
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occurred in their evolutionary past. Moreover, they are able to cope with
them automatically, that is, with no need for the single organism to reinvent
the means to cope with them. To that end, natural logic is sufficient.

But, since the world changes continually and irregularly, it presents situa-
tions dissimilar from those that already occurred in the evolutionary past of
organisms and, to cope with them, the means embodied in organisms by bio-
logical evolution are generally insufficient, new means are necessary. Providing
them is the task of artificial logic, a logic which, like natural logic, includes
non-deductive and non-propositional inferences, but goes essentially beyond
natural logic because it includes stronger kinds of inference. This raises serious
doubts about Cooper’s claim that “logic is reducible to evolutionary theory”
[12, p. 2]. On the other hand, just because artificial logic goes essentially
beyond natural logic, it can supplement the work of biological evolution.

16 Mathematics and human activities

Like logic mathematics, being based on logic – both natural and artificial – is
an organ of reason and so is bound to our biological structure.

Hart claims that “not only are there infinitely many primes, but also,
since Euclid’s proof” of the infinity of primes “makes no reference to living
creatures, there would have been infinitely many primes even if life had never
evolved. So the objects required by the truth of his theorem cannot be mental”
[29, p. 3].

But Hart’s claim depends on the assumption that Euclid’s proof makes
no reference to living creatures, which seems unwarranted for Euclid’s proof
uses concepts that are man-made and hence ‘mental’. In particular, humans
introduced the concept of prime number in pre-Greek mathematics in connec-
tion with such concrete human activities as dividing rations among workers.
Thus, if life had never evolved, the concepts Euclid uses in his proof would not
have been formed, in particular there would have been no concept of prime
number.

Mathematics is strictly related to several human activities, and most of
its concepts arise – directly or indirectly – from them. As van Benthem says,
“mathematics is not some isolated faculty of the human mind which needs
to be approached with special reverence”, on the contrary, there is “a fluid
transition all the way from common sense reasoning to mathematical proof,
and from knowledge structures in daily life to mathematical theories” [60, p.
41].

It could be objected that stating that, if life had never evolved, there would
have been no concept of prime number, says nothing about the relation be-
tween the human concept of prime number and prime numbers. The question
at issue is the relation between human concepts and the mathematical objects
involved in those concepts. Such relation is one of the most important topics
in the philosophy of matematics and needs special investigation.
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Now, if one interprets mathematics in terms of biological and cultural
evolution, then mathematical objects are not independently existing entities
but rather cultural products. Specifically, they are hypotheses introduced by
humans to solve mathematical problems. For instance, a prime number is
the hypothesis of an integer greater than 1 whose only positive divisors are
1 and itself. (On mathematical objects as hypotheses – not to be confused
with fictions – see [6, pp. 300-303]. On the distinction between hypotheses
and fictions, see Vaihinger [61, pp. 147-148, 152, 606], [6, pp. 303-307]).

This broadly agrees with Plato’s claim that “practitioners of geometry,
arithmetic and similar sciences hypothesize the odd, and the even, the geo-
metrical figures, the three kinds of angle, and any other things of that sort
which are relevant to each subject” (Plato, Republic, VI 510 c 2-5). Such
hypotheses are in turn a problem that must be solved, and will be solved
by introducing other hypotheses, contrary to practitioners of the axiomatic
method who “don’t feel any further need to give an account of them either
to themselves or to anyone else” but simply “make them their starting-points
and draw conclusions from them” (ibid., VI 510 c 6-d 2).

Of course, considering the odd, the even, the geometrical figures, and so
on, as hypotheses entails that one must distinguish two different kinds of
hypotheses: hypotheses consisting of jugments, such as the Taniyama-Shimura
hypothesis, and hypotheses consisting of objects, such as prime numbers. Thus
hypotheses can be either jugments or objects.

17 Proof and evolution

Unlike the notion of axiomatic proof which, as we have seen, can be main-
tained, if ever, only at the cost of falling into irrationalism, unreliability and
rhetoric, the notion of analytic proof is completely rational since it is based
on logic – both natural and artificial logic.

Analytic proof is not a device aimed at the rather futile end of providing a
justification of a proposition based on primitive premisses for which no abso-
lute justification can be given anyway, and can only be shown to be plausible.
It is rather a continuation of strategies resulting from natural selection by
which organisms solve their problems, starting from survival.

Mach says that, although “science apparently grew out of biological and
cultural development as its most superfluous offshoot”, today “we can hardly
doubt that it has developed into the factor that is biologically and culturally
the most beneficial. Science has taken over the task of replacing tentative
and unconscious adaptation by a faster variety that is fully conscious and
methodical” [43, p. 361]. Thus modern science is a cultural artifact with a
biological role.

Then artificial mathematics too is a cultural artifact with a biological role,
for modern science is intrinsically mathematical. It originated from a philo-
sophical turn, Galilei’s decision to replace Aristotle’s view that science must
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“seek to penetrate the true and intrinsic essence of natural substances”, by
the view that we must “content ourselves with a knowledge of some of their
properties” such as “location, motion, shape, size” [21, V, pp. 187-188]. Such
properties are quantitative and hence mathematical in kind, unlike essences
that are the object of Aristotle’s science, which are non-mathematical in kind.
For that reason modern science is intrinsically mathematical whereas Aris-
totle’s science is intrinsically non-mathematical. For that very same reason
artificial mathematics is ‘unreasonably effective’ (see [6, Ch. 42] and [11, Ch.
13]).

Since modern science is intrinsically mathematical and is a cultural arti-
fact with a biological role, artificial mathematics too, being an inherent con-
stituent of modern science, is a cultural artifact with a biological role. Thus
artificial mathematics has a biological role like natural mathematics, though
less directly.

Artificial mathematics is a cultural artifact with a biological role roughly
in the same sense in which animal-made tools are cultural artifacts with a
biological role. As New Caledonian crows, say, make a wide variety of tools by
means of which they develop techniques that help them to solve their survival
problem (see Hunt-Gray [38]), humans make proofs by means of which they
develop techniques that help them to solve their survival problem. Although
there are obvious differences between proofs and animal-made tools, viewing
proofs as having a biological role helps to make sense of the phenomenon of
proof.

Such phenomenon is hardly comprehensible if ‘proof’ is intended as ‘ax-
iomatic proof’, that is, as a means to justify propositions by deducing them
from primitive premisses for which, as we have already stressed, no absolute
justification can be given. It is comprehensible only if ‘proof’ is intended as
‘analytic proof’, that is, as a means to discover plausible hypotheses capable
of giving solutions to problems that meet needs, even basic needs, of humans.

Rota states that, “of all escapes from reality, mathematics is the most
successful ever”, all other escapes, “sex, drugs, hobbies, whatever”, being
“ephemeral by comparison”, and speaks of “the mathematician’s feeling of
triumph as he forces the world to obey the laws his imagination has freely
created” [56, p. 70].

But things stand otherwise. Mathematics is no escape from reality for it is
an answer to needs, even basic needs, of humans. Mathematicians don’t force
the world to obey the laws their imagination has created, for such laws are
just the way mathematicians make the world understandable to themselves,
and the working of the world does not depend on them. Moreover, their cre-
ations are not completely free, for they are a product of the mathematicians’s
biological structure and so are bound to it.
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18 Proof, teaching and learning

That the notion of axiomatic proof is inadequate does not mean that it is of
no use. Its main use remains the one originally stated by Aristotle, that is,
teaching and learning.

This has been the main use of axiomatic proof from the very beginning, as
it appears from Euclid’s Elements that were intended to be a textbook “for
elementary teaching”, in which Euclid “did not bring in everything he could
have collected, but only what could serve as elements” [53, 69.6-9].

Euclid’s use of axiomatic proof in the Elements does not mean that this
was the notion of proof he used as a working mathematician. Writing text-
books is one thing, doing mathematical research is another thing. As Knorr
says, “the writing of textbooks is the end of mathematical research only in
the sense that death is the end of life” [40, p. 7]. Euclid’s notion of proof as a
working mathematician is to be found not in the Elements but in his research
work, where he “proceeds by analysis and synthesis” [50, 634.10-11].

Although the main use of axiomatic proof remains teaching and learning,
some reservations can be made even about that use. Descartes claims that
the notion of axiomatic proof makes proofs appear “discovered more through
chance than through method”, so by using it “we get out of the habit of using
our reason” [14, X, p. 375]. Therefore the notion of axiomatic proof “does not
completely satisfy the minds of those who are eager to learn” [14, VII, p. 156].
Descartes’s claim seems justified since axiomatic proofs are often unnatural
and unmemorable. Presenting propositions in a way different from the one in
which they were obtained, they conceal the real process, thus contributing to
make mathematics hard.

Using axiomatic proof for teaching and learning is more a matter of trend
and fashion than of effectiveness. For instance, Descartes did not use it in
presenting his Geometry. In the seventeenth century this practice was so
widespread that Newton wrote: “The Mathematicians of the last age have
very much improved Analysis but stop there & think they have solved a Prob-
lem when they have only resolved it” – that is, solved it by the method of
Analysis – “& by this means the method of Synthesis”, that is, the axiomatic
method, “is almost laid aside” [49, p. 294]. To them this “synthetic style of
writing is less pleasing, whether because it may seem too prolix and too akin
to the method of the ancients, or because it is less revealing of the manner of
discovery” [48, VIII, p. 451].

Newton also makes quite clear that using axiomatic proof for teaching and
learning is a matter of trend and fashion: “The Propositions in the following
book were invented by Analysis” [49, p. 294]. And “certainly I could have
written analytically what I had found out analytically with less effort than it
took me to compose it” [48, VIII, p. 451], that is, to write it axiomatically.
But “considering that the Ancients (so far as I can find) admitted nothing into
Geometry before it was demonstrated by Composition”, that is, axiomatically,
“I composed what I invented by Analysis to make it Geometrically authentic
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& fit for the publick” [49, p. 294]. But “this makes it now difficult for unskilful
Men to see the Analysis by which those Propositions were found out” [47, p.
206].

Thus Newton agrees with Descartes that axiomatic proof makes it difficult
for the learner to see how propositions were found out. This makes it advisable
to reconsider the use of axiomatic proof even for teaching and learning, in
sharp contrasts with our time when “the axiomatic method of presentation
has reached a pinnacle of fanaticism” [56, p. 142]. Admittedly, the axiomatic
method can sometimes supply more compact proofs, but it conceals how they
were discovered, and this may negatively affect teaching and learning.
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cantini@unifi.it

1 Introduction

We address two questions:

• what is the use of formal proofs?
• how do we proceed from a formal proof to a computation?

Indeed, the latter is subsidiary to the former and is briefly dealt with by means
of concrete examples in the final section. We shall argue that formal proofs
yield in many cases genuine methods for ideal experiments with problematic
principles and rules, and for gaining semantical and computational informa-
tion. The points are briefly illustrated by cases taken from proof theory; we
emphasize the fact that even within proof theory, the variety (vs purity) of
methods is common practice and it is justified by theoretical results.

The main motivation is to contrast the claim that there would be a stan-
dard thesis among logically oriented philosophers of mathematics, tending to
reduce the essence of usual proofs of mathematical statements to their formal
counterparts within a given axiomatic theory. This tenet is not justified today;
actual genuine uses of formal proofs are peculiar and technical, and they do
not aim at certainty or formalistic foundations.

On the other hand, formal proofs have a role with respect to a numbers of
issues, ranging from structural analysis (if one uses sensible calculi), to proof
mining (e.g. extracting constructive information, typically the rate of growth
of provably total functions). Above all, logical analysis of proofs is essential
in order to reveal internal symmetries (sequent calculi, cut elimination and
beyond) and to make the denotational semantics of proofs possible. Think of
Gentzen’s natural deduction1 and to the unveiling of the structure of proofs
since the fundamental investigations of D. Prawitz [33].
1 G. Rota [36] claims that Gentzen’s natural deduction is “an instance of a beauti-

ful theory which has never been matched in beauty of presentation”. The seman-
tics of proofs requires that proofs are regarded as definite mathematical objects,
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The final point is that the separation between formal and informal is not
so sharp as it could be thought of. This can be seen by dealing with advanced
results in proof theory and its applications to ordinary mathematics, where
the interaction between formal logical methods and concrete mathematics is
apparent. Also, insofar as the computational aspects are stressed in present
mathematical research, the impact of formal techniques is bound to increase.

As to the contents, we first deal (§ 2) with recent criticism of formal proofs,
i.e. with the thesis that formals proofs are certainly not enough to represent
concrete proofs for a number of reasons. We consider a stimulating paper of
Y. Rav [35] and certain ideas therein. In particular, he holds that a plain
philosophical understanding of proofs has been neglected. According to Rav’s
claim, proofs are for the mathematicians what experimental procedures are
for the experimental scientist. In § 3 we reconsider this thesis in the light of
ideas of Paul Bernays and Bertrand Russell, which point to the experimen-
tal (in a suitable sense) and conjectural nature of the so-called foundational
investigations.

The second part of the paper (§ 4) is devoted to illustrate the role of
formal proofs and methods with examples taken from recent investigations:
we survey a few results taken from analytic combinatorics, proof mining, the
theory of self-applicable operations and constructive set theory. The cases
should convey a succinct but significant idea of the positive role of formal
proofs.

2 Why do we prove theorems?

There is a misunderstanding, concerning the role of formal proofs and logic
in mathematics, which derives from assuming that logic is by its very nature
(doomed to be) infected by foundational bias or dogmas, or nowadays sterile
and old-fashioned views about mathematical thought. In order to clarify our
view, we first briefly consider the discussion in Rav [35]) emphasizing the pri-
ority of informal genuine proofs against formal proofs. We share some positive
remarks with [35] (what a genuine mathematical proof is), but we do not share
the implicit representation of what formal proofs are, and we try to complete
the picture with a few remarks on the positive role thereof.

2.1 (Informal) proofs

First of all, a crucial thesis in [35] is that proofs are central in mathematics,
not the truth of the mathematical statements. The mere fact that a statement
A is true is negligeable in comparison to the questions: how do we get to
know that A holds and why. A genuine proof of A has to tell us why it

namely think of the Curry-Howard correspondence. That proof theory is a well-
established mathematical discipline is explicitly acknowledged by Rav [35, p. 12].
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is so. This insistence on the reasons for A being true recalls the classical
distinction between demonstratio propter quid (the reason for the truth of A)
and demonstratio quia (the fact that A is true).2

A genuine proof of an interesting statement A has a conceptual nature:
it is usually the starting point for elaborating a novel theory which ought to
explain the reason, the grounds for accepting the truth of A. In this sense
mathematical explanation is tightly linked to proofs.3 A real proof is not a
simple verification, but it creates new notions and often in the long run it
gives rise to a new theory. Indeed, if we look at the history of mathematics,
we see that it is important not quite the truth value of a statement, but the
proof generated methods and notions.4

This thesis is corroborated by cases taken from the history of modern and
contemporary mathematics. For instance, by considering the failed attacks to
number theoretic conjectures like Goldbach’s and the twin primes conjecture,
one comes to know that new powerful methods have been developed.5

Similar remarks apply to problems coming from logic and the foundations
of mathematics, e.g. the Continuum Hypothesis CH. At the outset, topological
methods yield partial results, in the sense that, if one restricts the notion
of arbitrary set of reals with topological conditions, one does obtain positive
theorems (Cantor-Bendixson, CH for closed sets; Hausdorff’s theorem, CH for
Borel sets; Suslin’s theorem, CH for analytic sets). Later on, in the twenties
of the last century, Hilbert’s attack on CH unveiled new ideas leading to
Gödel’s invention of the constructible universe. But a powerful method had
to be invented by Cohen in the sixties that has been applied in many fields
of mathematical logic, also outside set theory (from recursion theory to proof
theory and constructive mathematics).

2.2 On the opposition proofs vs derivations

A further elucidation of the conceptual role of proofs can be gained by a
closer comparison with formal derivations. According to [35], ordinary proofs
are semantical objects and cannot be exhausted by formal derivations, which
depend upon a fixed formal system and can be codified as purely syntactical

2 A thorough discussion on the philosophical side of this topic is to be found in
Casari [12].

3 We cannot go into the important issue of mathematical explanation here; for
recent contributions, we send the reader to Mancosu [31], [20] and Cellucci [13],
who proposes his own variant of the so-called Aristotle-Pólya tradition, based on
a version of the analytic method and a criticism of the axiomatic method.

4 E. Giusti [18] in his book on the existence of mathematical objects remarks that
several important mathematical notions are proof-generated, see his discussion of
the notion of group. A similar view of proofs is also presented by J. Avigad in [4].

5 [35] mentions sieve methods in number theory and a famous theorem proved by
Schnirelmann in 1930: for some positive c, every natural number bigger than 1
can be written as the sum of at most c primes.
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finite objects. An ordinary proof better corresponds to a potentially infinite
object and, with reference to Kreisel [26], the incompleteness results can be
regarded as justification of such views.6 In order to clarify the opposition
formal/informal, one might be tempted to recall by analogy the pair effectively
computable function (in the intuitive sense)/partial recursive function and
Church’s Thesis CT, according to which effectively computable functions are
partial recursive. At this point one might invoke a parallel Hilbert’s thesis
claiming that every proof can be turned into a formal proof or derivation.
But according to Rav, this is not so good an analogy; by contrast with the
situation in computability the connection is only one-way: there is no means
to restore the ordinary proof content, once we have the formal derivation.7

This is right up to a certain extent, but we wish to add a few remarks. First
of all, in some cases, there is a standard (perhaps trivial) means to restore
ordinary proof content, that is, to apply a soundness theorem with respect to
a class of models or to a given intended semantics, which is often available for
a given axiomatic theory.

More important, metatheorems and theorems, even in axiomatic contexts
or in formal logic, are given in the same informal high level style as the one
adopted in mathematical texts or journals. This common style is grounded
upon theoretical reasons. Let us give a concrete example: a modification of
Selberg’s elementary proof of the prime number theorem PNT has been given
in [14] for the system IΔ0 +exp. The authors do not literally exhibit a formal
proof, say, in Hilbert’s style or natural deduction, but: (i) they show that
(a suitable version of) PNT can be carefully formalized in the language of
IΔ0 + exp; (ii) they work out in full details the basic steps and computations
in an arbitrary model M of IΔ0 + exp, dealing with rationals and integers
of M , and pointing out from time to time if the given bounds are standard
elements of M . By completeness, it follows that there exists a formal proof
of PNT in IΔ0 + exp.8 Of course, the formalization of PNT in IΔ0 + exp
is highly non-trivial, since one has to show that the results involving the
logarithm function work under a corresponding approximate function and the
steps involving infinite sums and products can be carried out, applying only

6 Another argument for holding the infinitary nature of proofs, which is reminiscent
of a well-known puzzle by Carroll [11], refers to the process of understanding a
proof: in order to see that A → B, we may need A → C and C → B, for some
interpolant C. In turn these steps might require additional interpolations (see
[35], p. 15), which correspond to subsequent lemmata. This could lead to a sort
of potential infinite regress; at each step, there could be some further premise to
accept, before we are compelled to accept the conclusion that A → B.

7 An additional reason one ought to stress is that there is no informal conceptual
analysis of the notion of proof comparable to the notion of effective procedure,
say, in the style of Turing.

8 PNT as a case study for the program of formalizing important results from math-
ematical practice is discussed by Avigad [3]. Quite recently, [5] yields a formally
verified version of Selberg’s proof via the Isabelle proof assistant.
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induction on bounded formulas. This in turn has byproducts, since one can
potentially apply proof theory and estimate the rate of growth of the Skolem
functions implicit in the proofs, and so on.

When we work within an axiomatic system and produce formal derivations,
the essential difference is that we try to carry out constructions by limited
means, like solving a geometric problem by ruler and compass: we need to
invent the successful combination of axioms, lemmata, definition and (logical
and mathematical) rules, but we also need a careful representation of the
concepts involved. The main reason why we impose such restrictions is not
foundational in a narrow, traditional sense (say, because we like to hold a
formalistic philosophy of mathematics or we force our arguments to meet the
canons of an ideal absolute rigor). Most likely, it is because we are after the
computational content of a statement, or we search for more general models
(constructive, recursive), or because we are investigating new principles we do
not understand well and we wish to experiment with (see below 3.2).

Therefore, the opposition formal/informal is not so neat and, up to a point,
is a matter of degree. Grasping the proof content of a deep and complex or-
dinary proof may be very difficult for a number of reasons. For instance, we
might gain a local understanding, that is, we might follow the single trans-
formations, steps and lemmata, and verify at a certain level that a given
argument is flawless and sound. Yet we might fail to grasp the leading ideas
(why it is so on general grounds). This might require further hard work and
we might be puzzled why certain technical choices have been made and why
they do their job (this is often the case in computational and combinatorial
arguments).9 Deep proofs, both as global and local constructions, usually re-
main objects of reflection over several years until a new conceptual approach is
discovered, which transforms a theorem with a difficult proof in a straightfor-
ward corollary of more general theoretical facts, that explain (in some sense)
it. Logicians can offer a typical instance of this situation: think of the many
attempts to clarify the deep structure of cut elimination, from its combina-
torial procedural assessment to its understanding via models deriving from
functional analysis.

Thus the problem of restoring the proper semantical content is still there
even with an ordinary proof, which has a lot of implicit knowledge to be made
explicit, both as a whole (the strategy behind, the main ideas) and locally (the
invention of the right formulas, etc.). This part is important both conceptually
and technically and it is not given by the informal proof as such.

By their very nature, real proofs have to be concise and streamlined insofar
as they are codified in a finite text, which usually tends to conceal or simply
hint the motivations, the false starts and the attempts that justify in the very

9 A related urgent issue we neglect here is that of highly complex proofs; we send
the reader to the interesting discussion by Aschbacher [2] of the proof of the
classification theorem of finite simple groups.
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end the final product. So the opposition already at a cognitive level should be
somewhat softened.

At this stage, it is perhaps worth recalling S. Mac Lane’s ideas about
proofs. He is well-known for holding a peculiar version of structuralism and
also for contrasting the view that identifies mathematics with set theory, hence
as a strong opponent of the view that the natural philosophy of mathematics is
set theoretic realism. A mathematician, like a painter or a poet, is concerned
with creating general patterns or forms10 and it is the abstract nature of
mathematics that requires a peculiar form of verification, i.e. mathematical
proof. According to Mac Lane , mathematics is that branch of science in which
the concepts are protean: each concept applies not to one aspect of reality, but
to many. Each mathematical idea is protean, thus deals with different realities,
so does not have a proper ontology. But this leads to forms of arguments
that have to be uniform and universal in the different interpretations of the
main predicates. This means that we need verifications involving the forms
themselves and a real proof is formal in an essential natural way [30, p. 150]:

Proof (and not experiment or speculation) is what is required in all of that
part of science which is mathematics, and this requirement is there because
of the very nature of mathematics. This is the case in all the branches
of mathematics. Thus, group theory is the study of symmetry wherever it
appears. The same axioms describe a group, whether it be a symmetry group
of a crystal, of a Moorish ornament, or a physical system . . . Any theorem
about groups is intended to apply to all of these cases. Such a theorem
may be suggested by the circumstances of one of these applications, but the
theorem itself is not about any one use and so must be established by a formal
proof from the definitions. Thus, the protean character of mathematics as a
part of science also explains why proofs are essential to mathematics.

3 Experiments?

Rav claims that proofs are for the mathematicians what experimental proce-
dures are for the experimental scientist. To a certain extent, this is acceptable.
My point is that the construction of formal systems and proofs sometimes has
a peculiar role, which is often forgotten. This leads to reconsider the term
experience; the idea is that a relevant part of the foundational work can be
regarded as experimental at least in the sense in which Gedankenexperimente
are used in science.11 This is forcefully illustrated by Paul Bernays. Further-
more, there is a peculiar interpretation of the foundational work given by

10 This is reminiscent of Hardy’s dictum: a mathematician, like a painter or a poet
is a maker of patterns, see [21, p. 84].

11 This part summarizes a lengthier paper Logical analysis and the philosophy of
mathematics. Formal systems as Gedankenexperimente, presented at the Work-
shop Philosophy of Mathematics Today, Centro di Ricerca Matematica “Ennio
De Giorgi”, Scuola Normale Superiore, Pisa, January 23-28, 2006.
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Russell which considers the foundational work as mainly inductive. And we
believe that both views ought to be reconsidered in the proper light.

3.1 Geistiges Experimentieren

Bernays [7], commenting on Gonseth’s philosophy and arguing for the dual
nature of mathematical knowledge, which combines rational and empirical fac-
tors, just like natural sciences, says:

For the abstract fields of mathematics and logic this means specifically that
thought-formations are not purely a priori, but grow out of a kind of intel-
lectual experimentation (geistiges Experimentieren). This view is confirmed
when we consider the foundational research in mathematics. Indeed, it be-
comes apparent here that one is forced to adapt the methodological frame-
work to the requirements of the task by trial and error (durch Probieren
den Erfordernissen der Aufgabe anzupassen). Such experimentation, which
must be judged as an expression of failure according to the traditional view,
seems entirely appropriate from the viewpoint of intellectual experience. In
particular, from this standpoint experiments that turned out to be unfeasi-
ble cannot eo ipso be considered methodological mistakes. Instead, they can
be appreciated as stages in intellectual experimentation (if they are set up
sensibly and are carried out consistently). Seen in this light, the variety of
competing foundational undertakings is not objectionable, but appears in
analogy with the multiplicity of competing theories encountered in several
stages of developments of research in the natural sciences. . .

We believe this is a masterful synthesis of both the aims of foundational
investigations and the role of formal methods; this could be hardly better
expressed.

The view of Bernays is just at variance with the standard thesis concern-
ing mathematical knowledge, that is, the view [35, p. 15] that the function of
proofs is simply to validate by deductive means theorems from axioms, and
that the notion of logical consequence does capture in full the essence of math-
ematical proof. The methodological frame and the consequent formal tools for
mathematical investigations are the outcome of a dynamical process, and the
whole enterprise might be better assimilated to a sort of ideal experimental
work. Bernays proposes a nice parallel: “just as in physics the theoretical lan-
guage and the theoretical attitude is complemented by the attitude and the
language of the experimentalist, the theoretical attitude in mathematics is also
complemented by a manner of reflection that is directed toward the procedu-
ral aspect of mathematical activity” [7]. This means expressions, operations,
definitions, methods of finding solutions, etc.

3.2 Back to Russell: the regressive method

Bernays’s paper stresses the role of ideal experiments in proper mathematical
activity, and it shows the recognition of a peculiar trial-and-error methodology
by a mathematician and philosopher deeply involved in Hilbert’s program.
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If we go back to the early years of the XX century and to an unpublished
paper [37] of Bertrand Russell on the so-called regressive method, we see that
foundational work was interpreted, at least at a certain stage, in a similar
vein.

In mathematics, except in the earliest parts, the propositions from which
a given proposition is deduced generally give the reason why we believe
the given proposition. But in dealing with the principles of mathematics,
this relation is reversed. Our propositions are too simple to be easy, and
thus their consequences are generally easier than they are. Hence we tend
to believe the premises because we can see that their consequences are true,
instead of believing consequences because we know the premises to be true.
But inferring the premises from consequences is the essence of induction;
thus the method of investigating the principles of mathematics is really an
inductive method, and is substantially the same as the method of discovering
general laws in any other science. . .Our reasons for believing logic and pure
mathematics are, in part, only inductive and probable [37, pp. 273–274].

We accept axioms in the foundations of mathematics not because they are ev-
ident or certain or even true in some sense, but because they yield the “right”
consequences.12 Similar statement in the Preface to Principia Mathematica
(1910):

The justification for this and the chief reason in favour of any theory of the
principles of mathematics must always be inductive, i.e. it must lie in the
fact that the theory in question enables us to deduce ordinary mathemat-
ics. In mathematics, the greatest degree of self-evidence is usually not to
be found quite at the beginning, but at some later point; hence the early
deductions, until they reach this point, give reason rather for believing the
premisses because true consequences follow from them, than for believing
the consequences because they follow from the premisses. . .

Research in the foundations is parallel to theoretical physics. Principles are
often chosen not because they are evident, but because they have nice conse-
quences and unifying power, and we have inductive evidence for them. This
is in strong opposition to the Euclidean model; it is important to devise bold
hypotheses with a strong explanatory power.

Thus both Bernays and Russell are also well aware that foundations are
tentative, conjectural, aim at guessing unifying principles, not true statements,
but points to be used in order to progress in our understanding.

A more indirect conclusion is that the opposition between formal and in-
formal methods is rather thin, because formal methods – insofar they are used
12 This general attitude is already in Mill’s Utilitarianism (1863): “The truths which

are ultimately accepted as the first principles of a science, are really the last results
of metaphysical analysis, practised on the elementary notions with which the
science is conversant; and their relation to the science is not that of foundations
to an edifice, but of roots to a tree, which may perform their office equally well
though they be never dug down to and exposed to light.”
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for foundational investigations – have similar features to informal methods.
If they are not used for foundational methods, then they have plenty of ap-
plications, which go well beyond the level of mere soundness verification and
logical certification in a narrow sense.

4 Why do we prove formal theorems?

In this sections we survey results, which concern:

(i) applications of formal methods and proofs to combinatorial problems
(Weiermann), and to various parts of analysis (Kohlenbach);

(ii) principles concerning self-applicable operations (combinatory logic and
lambda calculus), and alternative foundations of the continuum in the
light of predicative constructive foundations.

4.1 A threshold phenomenon related to formal provability

Usually the notion of phase transition belongs to physics. The essential fea-
ture of a phase transition is the sudden change of a physical property (e.g.
passing from liquid to gaseous state) of a physical system in consequence of
a small change of some parameter (e.g. temperature), marked by a threshold
point. Recently, a discovery by A. Weiermann [39], further investigated by
G. Lee [27], shows that there are phase transition phenomena involving com-
binatorial statements and formal systems of interest for logicians. Thus an
idea originally stemming from physics is unexpectedly lifted to the domain of
logical analysis and its applications to combinatorics.13 Let us briefly sketch
the main notions and results.

By a finite tree T we understand a finite partial ordering T := 〈T,�〉, with
a minimum such that, for b ∈ T , every set {a ∈ T | a � b} is totally ordered.
We write T1 ↪→ T2 as an abbreviation for: there is an injective map of the first
tree into the second preserving inf. | T | is the number of nodes of the tree T .

A celebrated theorem of Kruskal (KT in short) then states:

Theorem 1. For every infinite sequence {Ti | i ∈ ω} of finite trees, there are
indices i < j such that Ti ↪→ Tj .

Apart from important applications, the conceptual interest of KT lies in the
fact observed by H. Friedman that KT is independent of ATR0, an important
fragment of second order arithmetic,14 whose arithmetical content is coexten-
13 Threshold results are known since 1960 in connection with random graphs (Erdös

and Rényi; see [17]); for results separating satisfiability from unsatisfiability, see
[19].

14 For the basic definitions and results, also concerning ATR0, see Simpson’s book
[38], to which we refer for the definitions of other standard systems involved in
the present discussion, like Peano arithmetic PA, Primitive recursive arithmetic
PRA and arithmetical analysis ACA0.
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sive with the set of predicatively acceptable arithmetical truths in the sense
of Feferman-Schütte.

Now, by a suitable miniaturization of KT, one obtains a Π0
2 -true arith-

metical statement, which is true but predicatively unprovable, and this is
considered a step for arguing that impredicative methods are necessary for or-
dinary mathematics.15 Let us give more details. Let SWQ(f) be the statement,
depending on a given function parameter f :

For every K there exists M so big such that, for every M-sequence of
finite trees T1 . . . TM , satisfying | Ti |< K + f(i), then there exist i, j
with i < j ≤ M and Ti ↪→ Tj .

SWQ(f) is a finite miniaturization of KT with a slowness condition on the
potential descending sequences controlled by f , and it can be proved by a
compactness argument. It is known:

Theorem 2 (Friedman). Let f(i) = i. Then ATR0 � SWQ(f).

Let |i| = the length of the binary representation of i.

Theorem 3 (Löbl-Matousek).

(i) Let f(i) = 1/2.|i|. Then PRA � SWQ(f).
(ii)Let f(i) = 4|i|. Then PA � SWQ(f).

Given the previous results, it is natural to ask whether there exists a real
number separating provability from unprovability of SWQ(f). This threshold
problem is solved by the subsequent

Theorem 4 (Weiermann). There exists a real number c such that, if r is a
primitive recursive real number, and fr(i) = r|i|, then

1. if r > c, then ACA0 +Π1
2 − TI � SWQ(fr);

2. if r ≤ c, then PRA � SWQ(fr).

(c is related to the so-called Otter’s constant α16).

It is worth mentioning that the proof methods involve concrete mathematics,
and in particular complex analysis (for details see [27], chapter 6, where the
method of generating functions, the Pringsheim lemma and the Weierstrass
preparation theorem are applied).
15 All this would deserve separate discussion, but we skip it since the issue is irrel-

evant to the point we like to clarify.
16 c = 1/ lg(α), where α is a real number given by

α = lim
n→∞

Tn/Tn−1

and Tn is the number of non-isomorphic finite rooted trees with n nodes.
ACA0 +Π1

2 −TI is the fragment of second order arithmetic based on arithmetical
comprehension and transfinite induction along arbitrary wellorderings for Π1

2 -
predicates; see [38]. The system proves the consistency of ATR0 (in fact more,
i.e. the existence of ω-models for ATR0).
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4.2 Proof-Mining: mixing formal and informal

The general idea is well-established: use proof theoretic techniques in order to
extract effective bounds from ineffective proofs (Kreisel’s unwinding of proofs).
In the last fifteen years, due mainly to the work of U. Kohlenbach and his
students, applications of carefully designed systems and functional interpreta-
tions, based on Gödel primitive recursive functionals of finite type and variants
thereof, have produced a number of theorems in analysis (approximation the-
ory, metric fixed point theory; see [24], [25]). Below we present a brief (and
rough) account of typical results.

The chosen framework Aω is usually rather liberal and is represented by
a classical version of arithmetics in all finite types where choice is restricted
to quantifier free conditions, while dependent choice is applied to arbitrary
formulas. The formalization makes the language and the principles to be ap-
plied definite, and it clarifies the logical structure of the theorem to be proved.
The formal restrictions are essential in order to apply suitable extraction tech-
niques at large, and they allow to put upper bounds on the computational
complexity.

This part is, so to speak, a priori. However, the general frame is suitably
tailored for a special class of theorems one is interested in. Then Aω is uni-
formly expanded with data describing concrete mathematical structures, for
instance a metric space (X, d).

Moreover, the emphasis is put on theorems whose logical form is actually
found in ordinary mathematical texts. A typical instance (given by [24]) has
the form17

(∀x ∈ X)(∀y ∈ K)(f(x, y) R= 0 → g(x, y) R= 0), (1)

where X, K are Polish space, K is also compact,18 f , g : X × K → R are
continuous. The information to be extracted here is: how close to zero f(x, y)
must be in order to make sure that g(x, y) is ε-close to zero (for any given
ε > 0). In other words, one would like to find a functional Φ – a modulus
functional – such that, if | f(x, y) |≤ Φ(x, y, ε), then | g(x, y) |≤ ε. In general
the compactness of the space K guarantees that such a Φ is independent of y.
It turns out that in many cases the missing information can be extracted by
purely logical analysis out of prima-facie ineffective proofs of the theorem.

Similar results can be given in the form of powerful metatheorems provid-
ing majorization functionals, having the following form:

Let X be a Polish space), K be a compact Polish space. Then we can
extract from ineffective proofs of theorems of the form

∀x ∈ X∀y ∈ K∃z ∈ N.A(x, y, z),

17 For examples, the reader is sent to § 4 of [24].
18 Polish space = complete separable metric space, e.g. the Baire space NN; a typical

compact Polish space is the Cantor space 2N.
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where A is existential, effective uniform (in K) bounds Φ(x) such that

∀x ∈ X∀y ∈ K∃z ≤ Φ(x).A(x, y, z)

Φ is usually subrecursive (i.e. it belongs to a lower complexity class).

Concerning the proof interpretations used, these are purely syntactical trans-
formations and hence, given a formalized proof, the extraction of information
can be carried out in principle automatically via a computer. But, as the au-
thors remark, “the difficult part of proof mining would then consist in fully
formalizing a mathematical proof originally given in ordinary mathematical
terms. That can be in general very tiresome and intricate.” So one usually
needs only partial formalization and the extraction can be carried out ‘by
hand’. Interestingly, the typical theorems involve steps, where formal proofs
and formal manipulations are intertwined with informal ordinary mathemat-
ical arguments.

This shows in re that the opposition between proofs and derivations is not
that sharp: formal proofs and methods are after all generated by mathematical
questions, and there are not good grounds to reject them. If one looks for
applications, it is likely that one needs explicit computational content and
computational methods. If one likes to apply computational methods, it is
not unlikely that one is forced to interpolate formal pieces of works. This,
once more, has nothing to do with joining a philosophy of mathematics based
on identifying derivations with the essence of actual proofs.

4.3 Problems about self-applicable operations

Making sense of self-application is not entirely trivial either in mathematics
or in logic. On the other hand, it is certainly a mature topics, having been
dealt by logicians and mathematicians since the twenties (Schönfinkel, Curry,
Church and, as earlier as 1905, by Hilbert, see Kahle [23]).

We consider two problems illustrating how formal methods can be used to
understand better the interplay of suitable principles, computational assump-
tions and analysis of formal proofs. After all, the argument should be attuned
with the main topics of the workshop, like computation and effectiveness of
proof.

Implicit operations and choice

Given a structure M whose elements represent “computable operations” in
abstract sense, we like to investigate the closure properties of M, e.g. under
elementary definability. In order to make the question definite, we rephrase it
by means of a well-known natural notion of representable function.
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The representability problem for functions

Fix a universe M and a binary function Ap : M ×M −→ M .
F : M −→ M is Ap-representable iff, for some c ∈ M ,

(∀a ∈ M)(Ap(c, a) = F (a))

(Ap is the application operation; as usual, we henceforth use ab as an abbre-
viation for Ap(a, b). For unexplained notions, see [6]).
This has a natural reading: c represents the rule computing F ; if M is a
combinatory algebra, the idea is that the representable functions are the com-
putable functions. Of course, no maximal solution (i.e. the whole space MM ) is
available, for cardinality reasons. But sensible solutions do exist for logic-free
definable objects. Indeed, it is well-known at least since the thirties:

Theorem 5 (Church–Rosser). There exist non-trivial applicative struc-
tures M satisfying the condition

M |= (∃f)(∀x)(fx = t)) (2)

(t is arbitrary application term over M, x stands for a list of variables in-
cluding the variables occurring free in t; ‘non-trivial’ means card(M) > 1).

(2) is known as combinatory completeness and, in words, it states that ap-
plication is universal for algebraic functions;19M is usually presented as a
combinatory algebra (in short we write M ∈ CA), i.e. a structure satisfying,
for fixed K, S, the equations Kxy = x and Sxyz = xz(yz).

Problem 1. Do M ∈ CA exist, where every implicit function is repre-
sentable, i.e. M satisfying (c fixed in M)

(∀x)(∃ ! y)(F (x, y) = c) → (∃f)(∀x)(F (x, fx) = c) ? (3)

Indeed, we can require more, i.e. whether there exist M ∈ CA, satisfying
ACV :

(∀x)(∃ y)ϕ(x, y) → (∃f)(∀x)ϕ(x, fx) (4)

Note that ACV states that every (elementarily definable) total binary relation
is uniformized by a representable function.

From Hilbert’s Paradox to latest developments

The negative answer to the stronger version of the previous problem is sur-
prisingly present already in unpublished 1905 lecture notes of Hilbert, as de-
tailed by Kahle [23]. Let QF − AC! be the schema (4), restricted to quantifier
free-formulas and where the first occurrence of ∃ is replaced by the existential-
uniqueness quantification ∃ !. Clearly, QF − AC! trivially follows from ACV .
19 Once you naturally identify “algebraic” with “definable by a term of the equa-

tional language of the structure”.
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We can easily obtain a contradiction understanding negation classically and
using self-application. Indeed, by classical logic, if one assumes that there exist
two distinct objects a and b, then

(∀x)(∃ ! y) ((y = a ∧ xx �= a) ∨ (y = b ∧ xx = a))

By QF − AC! there is an operation f such that (∀x)(fx = a ↔ ¬xx = a),
which implies a contradiction, with x := f . To sum up:

Fact (Hilbert). QF − AC! + (∃x)(∃y)(x �= y) � ⊥

Constructive move

Is the problem settled once and for all? Not at all: the question is, so to speak,
opened again by D. Scott in the early seventies. The intuition is that under the
microscope of constructive logic, more operations are tame: Scott conjectures
that ACV might be consistent with an intuitionistic theory of self-applicable
operations, in the version, say, of combinatory logic CL.20 The conjecture was
then proved in 1973. Let CLi be the intuitionistic theory with equality whose
non-logical axioms are the equations of combinatory logic. Let Ext be the
extensionality axiom for operations:

(∀f)(∀g)((∀x)(fx = gx) → f = g).

Theorem 6 (Barendregt). CLi + Ext + ACV proves the same equations as
combinatory logic with extensionality CL + Ext. Hence CLi + Ext + ACV is
consistent.

The proof is semantical in nature; it involves an abstract realizability model,
where realizers are elements of a combinatory algebra.

Indeed, what about classical systems? Note that the original question in-
volves after all a version (3) of the principle ACV, where negation is not
involved. Thus this suggests to consider a weakening Pos − ACV, where the
defining conditions are positive, i.e. ¬,→-free, but within CLc, i.e. combina-
tory logic embedded in classical logic. We obtain a positive answer in [9]:

Theorem 7. A primitive recursive procedure ψ exists such that, if D is a
derivation of t = s in CLc + Ext + Pos − ACV, then ψ(D) is an equational
derivation of t = s in combinatory logic with extensionality.

The result is enough strong to grant existence for operations representing
implicitly defined functions; it also implies that every surjective representable
function has a representable right inverse.

The proof actually is rather involved and requires a tour de force, through
a chain of non-classical interpretations.

20 In this subsection we assume the reader is moderately familiar with the basics of
combinatory logic and lambda calculus; see [6].
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The input is a classical derivation of t = s in CLc + Ext + Pos − ACV.
The output of the procedure ψ is an equational derivation of t = s, that is,
a computation, and the result shows how to transform a proof using logical
notions and suitable choice principles in a purely computational construction.

Without giving any details, we summarize the different steps:

1. validating choice requires a constructive reading; this costs the embedding of
classical logic into an almost constructive environment via the ¬¬-translation;
almost-constructive means that there remains a classical residue around (a spe-
cial positive instance of the double negation law which is a sort of generalized
Markov principle, named after truth stability);

2. validating TS requires an internal forcing model, where forcing conditions are
arbitrary positive conditions;

3. the treatment of arbitrary positive conditions is carried out by extending the
whole frame with a self-referential truth predicate; the soundness result under
forcing requires the law CD of constant domains (∀x)(A ∨ B(x)) → A ∨ (∀x)B
(x not free in A) in the case of universal quantification;

4. CD is validated via a suitable realizability model which is trivial on quantifiers;
5. positive choice is then explained away by a realizability model à la Barendregt,

but we are still left with the truth predicate around;
6. eliminating truth is achieved by means of cut elimination and asymmetric inter-

pretation, which allows to get rid of the truth predicate T by separating positive
and negative occurrences of T and replacing T by its finite approximations;

7. the final step applies a witnessing technique for extracting equational derivations
from derivations using intuitionistic logic; a basic difficulty in the construction
is that we have to cope with undecidable atomic formulas (as = in combinatory
logic is essentially undecidable).

Each step roughly corresponds to proving that certain notions and princi-
ples are superfluous, but each reduction is obtained by producing a suitable
internal model. The result has, of course, a traditional reading in the style
of reductive proof theory: eliminating ideal elements by finitary means, and
restoring purity of methods. The interesting point is however that purity is
recovered by using semantical ideas; it is crucial that logical methods allow
to change the meaning of the basic logical operations (step from classical to
constructive logic, asymmetric interpretation), and this is really essential for
the realizability arguments lying at the heart of the proof.

Another interesting point is again computational, but we cannot go into
details: what about the computation given by ψ? Apparently it is much longer
in comparison to the original proof, and one might ask for a precise speed-up
theorem in this direction.

A final byproduct of the argument is that one can even refine Barendregt’s
result. For instance, one obtains conservation (for a suitable class of formulas)
over CLi + Ext, even if CLi + Ext + ACV is extended with the (classically
inconsistent) Unzerlegbarkeit principle UZ:

(∀x)(A(x) ∨B(x)) → (∀x)A ∨ (∀x)B
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and hence with the constructively unsound law of constant domains

(∀x)(A ∨B(x)) → A ∨ (∀x)B.

Combining extensionality, CT and enumeration

The second problem concerns the notion of computation and computable op-
eration in the abstract: to which extent can we consistently assume that the
ground operations are extensional, the universe is enumerated (it is the surjec-
tive image of the natural numbers) and Church’s thesis CT holds (in the sense
that the space NN of number theoretic functions contains only computable
number-theoretic operations)?

We believe that this problem is typical of the geistiges Experimentieren
Bernays talked about in his paper.

First of all, the problem can be rephrased as a question about a formal
system. Let TON be the first-order theory including (i) CL; (ii) axioms on
the type N of natural numbers, conditional on N , successor, predecessor, in-
duction. The enumeration axiom EA has the form (∃f)(∀x)(∃n)(fn = x);
Church’s thesis CT is the statement (∀f : N → N)(∃n)(∀m)(fm = Enm),21

where E is a fixed combinatory term defining an enumeration of the re-
cursive functions. Now the problem becomes whether there is a model of
TON + Ext + EA + CT. Clearly, due to CT, the model must be effective in
some sense. This leads to consider term models i.e. suitable effective congru-
ences on the set of lambda terms. However, in order to verify EA, one would
like to deal only with closed term models, for which an enumerator can be
defined. But then we have serious difficulties in validating extensionality be-
cause of the well-known Plotkin’s counterexample22. Of course, one would like
to kill the counterexample by closing under the so-called ω-rule. To make this
precise, if T is a set of equations in the language of the lambda calculus, define
T consistent iff there is at least one closed equation t = s, such that T � t = s;
if T is consistent, T is called a lambda-theory. The ω-rule is the inference (ω):

ts = rs, for each closed term s ⇒ t = r (5)

T is recursively enumerable (r.e. in short) if the corresponding derivability
relation T � t = s is r.e. The crucial (simple) observation is then:

Lemma 1. If there exists a λ-theory T which is recursively enumerable and
closed under the ω-rule, then the induced closed term model M0(T) can be
made into a model of TON + Ext + EA + CT.

Problem 2. Does a λ-theory T, which is r.e. and closed under ω-rule exist?

21 Of course, n,m range over natural numbers.
22 There are closed terms M and N behaving in the same way on closed terms,

which are not convertible (in the sense of λη-conversion, see [6]).



On Formal Proofs 45

We cannot use the usual lambda theories, because the usual term models
falsify either Ext or CT or else EA. However, by a clever extension of Böhm
trees, [22] proves:

Theorem 8 (Intrigila-Statman). There exists a theory TΩ which is closed
under ω-rule and recursively enumerable.

Corollary 1 (Cantini [10]). TON + Ext + CT + EA is consistent.

Of course, it remains to be seen if there other interesting models and appli-
cations thereof that make the “thought experiment” resulting in the formal
system above of any real use.

4.4 On the Dedekind continuum, constructively

Formal methods can be relevant for traditional philosophical and foundational
issues. This is evident if we consider the debate about the notion of set. Im-
predicative notions and classical logic notwithstanding, Aczel, following pre-
vious ideas of Myhill, succeeded in 1977 in designing a constructive version
CZF of ZF which has a distinctive feature: CZF can be shown to be sound
under an interpretation into Martin-Löf’s type theory. This shows that (pred-
icative) constructive set theory has a semantics of proofs, i.e. it can be based
upon a theory of meaning grounded upon an informal notion of proof (or
construction).

In this context, one can profitably analyze certain basic notions of classi-
cal mathematics, for instance that of real number. The least upper bound(=
l.u.b.) principle for the reals 23 has traditionally been classified as typically im-
predicative, and it is known that Dedekind reals can be handled in fragments
of second order arithmetics, which are usually regarded as impredicative (e.g.
the system based upon the Π1

1 -comprehension schema, allowing full universal
quantification on sets of natural numbers). However, Aczel and Rathjen [1]
could rather smoothly define a version of the Dedekind continuum in CZF by
identifying reals with (suitable) Dedekind cuts.24 In particular, the Dedekind
reals form a set, by invoking the principle of fullness,25 a powerful general-
ization of exponentiation, still sound under the constructive type-theoretic
interpretation. By construction, the Dedekind reals satisfy an appropriate
form of completeness corresponding to the l.u.b. principle.
23 Each set of reals having an upper bound has a least upper bound.
24 Let X be a set with a binary relation <. A pair (L, U) of subsets of X is a D-cut

iff (i) L, U are disjoint; (ii) L, U are both inhabited (constructively non-empty);
(iii) L, U are located, i.e. a ∈ L or b ∈ U , whenever a < b; (iv) L, U are open, i.e.
for every a ∈ L, there is b ∈ L and a < b and for every b ∈ U exists a ∈ U with
a < b.

25 Fullness states that, given sets A, B, there exists a set C whose elements are
multivalued functions from A to B such that, if R is a multivalued function from
A to B, then there exists S ∈ C such that S ⊆ R.
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Crosilla, Ishihara, Schuster [15] recently sharpened the theorem, proving
that the Dedekind cuts in an ordered set form a set in the sense of CZF
set theory. They deduce the statement from a new principle of refinement,
which, together with exponentiation, yields fullness.26 This can be further
generalised: the completion of a separable metric space turns out to be a
set, even if the original space is a proper class; in particular, every complete
separable metric space automatically is a set. There is a nice conceptual point
behind all this: constructively, sethood is not only a matter of size, but also
of cohesion.

We believe that the moral of the previous fact is that the classical charac-
terization of predicativism, stemming from Poincaré and Russell and proof-
theoretically characterized by Feferman and Schütte in the sixties, must be
somewhat updated. This could lead to see the famous Pólya-Weyl wager27

in a new light. Consider the two propositions:

• each bounded set of reals has a least upper bound;
• each infinite set of reals has a countable subset

According to Weyl, the notions of real, set, countable would have been regarded
as vague in twenty years, and the two statements above would have been
considered with respect to their own truth status on a par with the Hauptsätze
of Hegel’s Naturphilosophie; according to Pólya, quite the opposite.

Now, at least if one accepts CZF and its understanding within the frame of
predicative constructive type theory, the notion of real number à la Dedekind
and the l.u.b. principle could have been accepted even by Weyl (and possibly
Russell and Poincaré).28 This shows that informal content can be sharpened
by formal methods and logical analysis.

4.5 Conclusion

The previous results show that the separation between formal and informal
work is difficult to trace. Often formal systems and proofs act as powerful mi-
croscopes, whose aims go far beyond pure ideological (foundational) aims, and
the level of mere soundness verification and logical certification in a narrow
sense.

Formal methods have plenty of applications and they provide us with fine
tools if properly understood. We believe they are essential for clarifying the
procedural aspects of mathematics and abstract reasonings, and evaluating the
epistemological nature of proofs.
26 Quite recently, Lubarski and Rathjen have shown that exponentiation is not suf-

ficient to prove sethood of Dedekind reals, see [29].
27 The wager dated back to February 9, 1918; see G. Pólya [32] and S. Feferman

[16, p. 57].
28 Of course, we only mean that Pólya could have used CZF as a route to render

the l.u.b. principle palatable to Weyl, even if Pólya himself would have probably
rejected the constructive approach behind CZF.
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On the other hand, investigating formal methods and proofs requires se-
mantical ideas and new constructions as ever in mathematics and abstract
sciences.
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Toy models in theoretical physics are invented to make simpler the modelling
of complex physical systems while preserving at least a few key features of the
originals. Sometimes toy models get a life of their own and have the chance
of emerging as paradigms. Such an upgraded role, on the one hand, makes
these models likely to be considered for validation through (possibly new)
experimental tests. On the other, the role played by mathematical proof –
evoked in Wigner’s “unreasonable effectiveness of Mathematics in the Natural
Science”– could be so enhanced as to become in a sense more compelling than
experiments. ‘Theoretical Mathematics’, a new synthesis of mathematics and
theoretical physics proposed by Jaffe and Quinn in the 1990’s [12], looks at
pure mathematics as a sort of experimental testing ground for certain physical
theories (and in particular for associated toy models).

As a case study I shall illustrate some basic features of Chern–Simons
topological quantum field theory and its connections with the mathematical
theory of knots. The issue of effective computability of the basic functionals
and observables of such model will be briefly addressed as well.

1 Roles of mathematics

Modern mathematics is nearly characterized by the use of rigorous proofs,
but this practice sometimes runs the risk of becoming ‘compulsive’ about de-
tails of arguments. Starting from the mid-1970’s there has been a flurry of
mathematical–type activities –driven or inspired to a large extent by theoret-
ical physics– which has enhanced the role of ‘intuitive reasoning’ and spec-
ulation (actually the original, old pattern of history of mathematics). In the
paper titled “Theoretical Mathematics: toward a cultural synthesis of Mathe-
matics and Theoretical Physics” Arthur Jaffe and Frank Quinn proposed to
develop a constructive context for these new trends, changing somehow the
way mathematics is organized [12].
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1.1 Mathematics as a natural science

Within the current practice, the discovery of mathematical structures is
achieved in two stages, namely through

A. intuitive insight, conjectures based on ‘reasonable’ assumptions, specula-
tion beyond established knowledge

B. proof–oriented phase, where conjectures are proved (validated) by
a) adapting (or improving) known techniques within a same field;
b) inventing a new synthesis of standard arguments from different fields;
c) inventing a completely new strategy for proving
or, possibly, a mixing of them.

According to Jaffe and Quinn, A is likely to be refereed to as ‘theoretically–
oriented’ mathematics while B embodies ‘rigorous’ mathematical reasoning.1

As far as proceeding from A to B requires corrections, refinement and vali-
dation, the role of rigorous mathematics is functionally analogous to the role
of experiment in the natural sciences.2 Keeping on the analogy, unexpected
features coming from proofs may feed back the theoretical phase with new
speculative material:

Theoretical Math �� Rigorous Math

��

��

� � � � � � � � � �

As an illustration of these phases, consider two conjectures in differential
geometry, the validation of which has been recently proved.

The Poincaré conjecture.

This lonstanding problem can be stated as

Every closed, oriented and simply–connected 3–space is (topologically
equivalent to) the 3–sphere S3,

where S3 is the analog in dimension 3 of the usual spherical surface embedded
in ordinary space and denoted by S2. Such conjecture, open for more than a
century, was positively answered by Perelman in the early 2000’s [17] and his
proof was validate by the mathematical community in 2005.

1 b) relies at bottom on the effective procedure of recognition of identical funda-
mental entities such as for instance isomorphic underlying algebraic structures.

2 Note that ‘experimental’ mathematics, as opposite to theoretical, is to be meant
as computer–aided activity including both numerical calculations and computer
simulations, while the interesting issue concerning ‘automated proofs’ is addressed
in other contributions to this volume.
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The geometrization programme

This conjecture, better framed as a programme, was stated by Thurston in
the 1970’s [18] and for more than 30 years a number of people have been
working on several segments of the proof. To give an idea of its content,
recall that in dimension D = 2 there exist only three ‘standard’ types of
geometric structures, namely the Euclidean, flat plane R2, the sphere S2 and
the hyperbolic plane H2 (modelled for instance as a Poincaré disk). To be
more precise, the uniformization theorem asserts that each (connected portion
of) 2–space is equivalent to one of the above Riemannian manifolds whose
canonical metrics have constant curvatures k = 0, 1 and −1, respectively.3

The geometrization programme deals with the generalization to D = 3 of
the uniformization theorem and, leaving aside its technical formulation, its
content can be summarized in

Every 3–space can be decomposed into a finite number of ‘elementary
pieces’ or model 3–geometries, and only eight models exist (apart from
Euclidean 3–space).

The proof of the first conjecture has a crucial impact also on this second
conjecture, previously validated only up to Poincaré conjecture.

The above examples were aimed to give the flavor of what the theoreti-
cal side of mathematics should embody. Poincaré conjecture, once explicitly
formulated, has been of course addressed with methods of the proof–oriented
phase B (and Perelman’s work can be framed within the validation scheme b)
above). On the other hand, even the precise statement of the geometrization
conjecture has required quite a long phase of elaboration based on intuitive
insight and analogy–based reasoning. The possible way of looking at the body
of logical deductions leading to its validadion –and preceding the proof of
Poincaré conjecture– is to some extent a matter of taste. Such process might
fall into rigorous mathematics –but then Thurston’s theorem stated above
should have been emended by ‘if Poincaré conjecture would be positively
answered’– or rather considered as purely speculative. It is worth noting that
Jaffe and Quinn do not take stand in favour of either opinion.4

3 Two topological spaces X and Y of a same dimension D are topologically equiva-
lent if there exists a map f : X → Y which is one–to–one and continuous together
with its inverse f−1. A (real) D–manifold MD is a topological Hausdorff space
locally modelled on the the standard D–dimensional linear space RD. A Rieman-
nian metric on MD is the assignment of a bilinear, positive definite quadratic
form ds2 in (the tangent space associated with) each point of the manifold. Two
Riemannian manifolds are equivalent if they are isometric, namely have the same
global topology and local metric propeties. Riemannian manifolds represent the
proper frame for addressing D–dimensional ‘non–Euclidean’ geometry.

4 Indeed they were quite troubled about the acceptance policy of mathematical
journals and suggested that ‘sound’ conjectural papers should deserve publication,
going beyond the current practice of editorial boards.
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1.2 Mathematics & physics

A physical system examined in the light of

* guiding principles
* phenomenological data

provides a theory or a ‘modellig scheme’ for reality (‘model’ will be used in
connection with mathematical physics, see below).

The role of experimental work can be characterized as to giving rise to

- validation of the theory;
- correction, modification of the model;
- unexpected observations, and thus new input data for improving the model.

Physical theory �� Experiment

��

��

� � � � � � � � �

Then the theoretical side of physics mirrors the speculative phase in math-
ematics: here ‘intuitive insights’ are driven by guiding principles that have
their counterparts in ‘basic axioms’ about fundamental mathematical entities
(but of course phenomenological input data do not possess strict mathemat-
ical counterparts, unless one considers as possible input also the result of
numerical ‘experiments’ performed on instances of assumptions).

The traditional role of mathematics in physics is that played by mathematical
physics. Since any physical theory is expressed in a mathematical language,
every phenomenon is (approximated by) a mathematical model. Thus any such
model can be validated with tools proper of rigorous mathematics, namely
no ambiguity exists about definitions of fundamental entities, formulation
of claims, proofs of theorems. As a matter of fact, this type of ‘proof’ is
considered less effective than any experimental verification.5

Indeed, the typical attitude of theoretical physicists is nicely expressed in
the following quotations (see [12] for the original references).

It is quite satisfactory to test mathematical statements by verifying a
few well–chosen cases (Richard Feynman).

No attempt is made at mathematical rigor in the treatment, since it
is anyhow illusory in theoretical physics (Lev Landau).

Even with a more positive attitude for mathematics, it could happen that
either

5 Quantum field theory, combining quantum mechanics and special relativity, is
a paradigmatic example in the present context, since it admits an ‘axiomatic’
formulation only in very few (quite trivial) cases, while a number of predictions
have been completely validated by experiments, see the discussion in § 2.
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i) the approximation of the phenomenon by means of a mathematical model
is too rough, so that the model is useless in physics,

or

ii) the physical entities are not modelled exactly on mathematical structures

and/or

iii) deductions and calculation procedures are heuristic and cannot be casted
into rigorous proving protocols.

As will be illustrated through the case study of § 4, both i) and ii) may
provide material to feed the speculative side of mathematics.

2 Predictive & speculative physics: genesis of toy models

The ‘predictive’ role of a physical theory emerges when a physical phenomenon
is examined in the light of

* guiding principles
* known and presumed phenomenological data.

The predictions are subjected to (present or forthcoming) experiments whose
outcomes may provide either

CV) validation of the whole theory (Complete Validation), or
PV) validation of a few predictions (Partial Validation), and/or
NO) observation of unexpected new effects (New Outcome).

CV

Physical theory �� Experiment ��

������������

������������ PV

NO

An example of case CV) is Einstein’s General Relativity, while the Standard
Model of particle physics complies with PV) at present, and has the chance
to fall into NO) when the new high–energy experimental devices at CERN
will be completed.

In the presence of PV) or NO) an improved, more effective theoretical
framework is needed. It will be based on

* guiding principles improved with respect to the previously accepted ones
* upgraded phenomenological input from experiments
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and, usually, it will be required that the correct predictions of the original
theory I are recovered also in the new setting II.

Theory II ⊃ �� Theory I �� PV or NO

��

��

� � � � � � � � � � � � � � �

In the search for more and more ‘complete’ theoretical schemes including
all fundamental interactions (possibly up to the ‘theory of everything’) hi-
erarchies of theories can be generated. At the top, guiding principles and
phenomenologcal input may shade into

* guiding principles that mimic those of ‘analog’ predictive theories
* input data that are only reminiscent of reality, if not physically

‘unreasonable’.

Theories that reach such a stage are to be considered as speculative since
they have not yet matured to provide observable predictions or predictions
are beyond the potentialities of present and forthcoming experiments. It is
the lacking of experimentally testable predictions that makes entities and
procedures of such theories likely to be subjected to mathematical speculation,
as discussed below.

On the other hand, also in the presence of a truly predictive theory, it can
be useful to address ‘unrealistic’ versions of it in order to get a better insight
into particular aspects or mechanisms. In both cases the resulting theories
represent toy models since they display only analogs of physical phenomena,
even if they are not necessarily much more ‘simpler’ than the parent theories.
With respect to a same predictive reference theory, toy models can thus emerge
through bottom–up and top–down processes, schematically

Toy model Speculative theory��

Predictive theory

��

��
Unrealistic case �� Toy model

Examples of the bottom–up genesis from the Standard Model (viewed as the
reference theory) are given by string theories, while General Relativity in non–
physical spacetime dimensions (namely D �= 4) gives rise to toy models of the
top–down type (see § 3 and § 4 for a more detailed analysis).

Being the access to experiments forbidden, it may happen that specific toy
models framed within strongly formalized settings –reflecting the presence of
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underlying algebraic or geometric symmetries– actually fall into theoretical
mathematics looking for their validation. According to the discussion on the
roles of mathematics in § 1.1, the following diagram should summarizes the
point

Toy model �� Theor Math �� Rigorous Math ��

��

validated��

� � � � � � � � new outcome��

More stringently, a few toy models do not even require an intermediate phase
of mathematical speculation, but find a direct access to rigorous mathemat-
ics. Such goal is achieved by means of recognition, namely the fundamental
entities of the model are identified with known mathematical structures and
the deductive operational procedures are theorems.

entities �� structures

Toy model

������

������ Rigorous Math

� � � � � � �

� � � � � � �

procedures �� theorems

Note finally that the above correspondence could hold true only for entities,
as it is going to happen for Chern–Simons topological quantum field theory
–a toy model arising as a special type of gauge theory– presented in § 4. In
such cases the possibility of recognizing effectively deduction procedures as
mathematical proofs (the counterpart of the sequence of experimental oper-
ations performed by physical devices) would represent a major breakthrough
in theoretical physics.

3 Yang–Mills gauge theories

Yang–Mills (YM) field theories, and in particular their quantized versions,
represent a paradigmatic framework for addressing predictive/speculative hi-
erarchies of theories as well as bottom–up and top–down toy models.

The treatment here is aimed to sketch the main features of such theories
in connection with the remarks of § 2, leaving aside most tecnical details that
can be found for instance in [5], [4], [10].

3.1 Classical field theory

A classical YM field theory is based on the action functional
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MD

dDx L .= S, (1)

where dDx represents the D–dimensional volume element and

L = 1
2TrG FμνFμν (2)

is the YM Lagrangian that describes a classical field F (Fμν is called the
‘field strenght’ and μ, ν = 1, 2, . . . , D) living in an ambient spacetime MD

of dimension D. Such theory is endowed with a (Lie) group of symmetries,
the gauge group G, so that the field F carries a further ‘internal’ label, Fμν

→ Fμν(a), with a = 1, 2, . . . , d ≡ rank (G).
The trace operation in (2) is explicitly given by TrG Fμν(b)F

(a)
μν = Fμν(a)F

(a)
μν ,

where Einstein’s convention for summation over repeated indices is assumed.
The fundamental dynamical variable of the theory is the ‘vector potential’
Aa

μ (mathematically defined as a connection on the principal G–bundle whose
basis is the manifold MD) and its explicit relation with the field strenght
(representing the curvature associated with the connection A) reads

Fμν ≡ F (a)
μν = ∂μA

a
ν − ∂νA

a
μ + g (Aa

μA
a
ν − Aa

νA
a
μ) (3)

where g is the YM coupling constant.
The YM action recasted in terms of the vector potential Aa

μ ≡ A

g
∫

MD

dDx L(A) .= S(A;g) (4)

is required to be stationary against arbitrary variations of A according to
Hamilton variational principle. Formally

δS(A;g) = 0

which provides the Euler– Lagrange equations of the field strenght Fμν (analog
of equations of motion for a discrete physical system)

Dμ F
μν = 0 (5)

where Dμ = ∂μ +g[Aμ, ] and [ , ] is the commutator, i.e. the antisymmetrized
product of its entries.

YM field equations (5) (and associated Bianchi identities) are highly non
linear and have been solved exactly only in a few cases.
Example. The dynamics of the classical electromagnetic field is described
by an Abelian YM theory formulated in Minkowski spacetime M4 with the
Abelian group U(1) (unimodular complex numbers) as gauge group. The cor-
responding Euler–Lagrange equations (supplemented by Bianchi identities)
are the Maxwell equations. Here the phenomenological data are represented
by Fμν , the tensLagrangeor encoding both the electrical and the magnetic
fields, while g≡ α is the ‘fine structure’ constant.
Looking in some more details at the features of classical YM field theories
with respect to the categories of guiding principles and phenomenological
input addressed in § 2, the main issues can be summarized as follows.
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Guiding principles

• The Lagrangian is a ‘scalar’ –namely invariant with respect to the group of
spacetime symmetries– in order to ensure that field equations are generally
covariant. Moreover L(A) must be ‘gauge–invariant’, namely invariant un-
der the action of the gauge group G. Indeed the explicit expressions given
in (1), (2) and (4) complies with these requirements.

• The observables of the theory –namely those quantities that can be mea-
sured experimentally in the presence of a predictive theory– cannot depend
on the reference (coordinate) system used to write down field equations.
Moreover they must be gauge invariant, reflecting the presence of the in-
ternal symmetry given by the gauge group G. It can be shown that ‘good’
observables are of the form

Wγ = TrG exp
{
g i
∮

γ

dzμAμ(z)
}

(6)

where γ is a closed contour embedded into the spacetime MD and zμ

represent the coordinates of points lying on the curve (mathematically
these quantities are holonomies associated with the connection A).
The main characteristic of Wγ is to be non local, namely it depends on the
curve γ and on the global topology of the ambient space MD. However,
the calculation of Wγ for arbitrary contours makes it possible, at least in
principle, to reconstruct the vector potential Aμ and the associated field
strenght Fμν all over MD.

Phenomenological input (predictive theory)

Since YM action describes a pure vector potential A (associated with the
‘massless’ field F ) able to interact with other ‘matter’ fields, a truly predictive
theory should be based on a more general action of the type

S (A;g) + S ({φ}, A; {k},g) (7)

where {φ} denote collectively matter fields and {k} the set of associated
coupling constants. Note that the second part of the action contains mixed
terms taking into account physical interactions among A and matter fields
and among matter fields themselves.

• The first requirement is that MD = M4, namely the theory is formulated
in Minkowski spacetime, naturally endowed with the Lorentz (Poincaré)
group of symmetries.

• The physical input data are represented by the specification of A, g to-
gether with the collection of the (scalar, vector and/or tensor) fields {φ}.
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3.2 Quantization

Guiding principles here must comply also with the basic principles of quan-
tum mechanics. On the basis of the Lagrangian setting adopted for the clas-
sical case, the ‘natural’ quantization scheme turns out to be the Feynman’s
path integral prescription. The basic quantum functional is built on the basis
of a democratic assessment: within the space of potentials A = {A} each con-
figuration A(z) is weighted by a dynamical phase given by the value of the
corresponding classical action S(A;g). Formally∫

A
[DA] e i S ( A; g )/� = Z [g; �] , (8)

where � is the Planck constant and [DA] represents a ’measure’ over the
configuration space, up to gauge transformations.

The quantum observables are suitably defined counterparts of the classical
observables Wγ introduced in (6). The expectation values6 of such gauge
invariant quantum ‘Wilson loop’ operators are formally defined according to∫

A [DA] Ŵγ e
i S ( A; g )

Z [g]
= 〈Ŵγ [g] 〉 , (9)

where Z[g] corresponds to the expression given in (8) with the convention
� = 1.

Leaving aside the technical treatment of quantized interacting matter
fields, the main problems rised by such quantization procedure can be sum-
marized as follows. 7

• The path integral prescription is heuristic because it is worked out ex-
plicitly only in very few special cases and extended by analogy to other
situations. Thus, generally speaking, quantum functionals as those given
in (8) and (9) do not correspond to well defined mathematical structures.

• The relevant equations [expressions] cannot be solved [calculated] exactly
in most cases.

• As a consequence of the previous remark it becomes necessary to intro-
duce approximation schemes aimed to extract numerical predictions to be
compared with experimental data. The most effective approach relies on
the perturbative expansion in terms of powers the relevant coupling con-
stant(s). Referring for simplicity to the Wilson loop operator in (9) (and
dropping the brackets <>), the form of such an expansion would look like

6 In quantum field theory the expectation value of an operator (the quantum tran-
sition amplitude in ordinary quantum mechanics) is the quantity the square mod-
ulus of which gives the quantum probability of occurence.

7 Actually the path integral prescription is not the unique possible scheme, but
other approaches for addressing quantum fields –such as the second quantization
method– must face foundational obstacles that ultimately can be brought back
to those listed here.
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Ŵγ [g] ∼ Ŵ(0) + g Ŵ(1) + g2 Ŵ(2) + . . . . (10)

Such kind of expansions8 must be further improved by regularization and
renormalization–group techniques aimed to resum the series to get the
desired finite quantities. Quantum field theories of this kind are technically
referred to as perturbatively renormalizable.

Notwithstanding the heuristic, not rigorous, approximate nature of (basi-
cally all) quantization procedures, they are considered effective in theoreti-
cal physics because well validated in a number of situations as the following
examples witness.

Examples
• Quantum electrodynamics, the quantum counterpart of Maxwell theory, de-
scribing charged quantum particles interacting with photons.
• The Weinberg–Salam theory (1967-68) unifying electomagnetic and weak
interactions (G = SU(2) × U(1)).
• Quantum cromodynamics (’t Hooft, Gross, Wilczek 1972-73) describing
strong interactions and quarks (G = SU(3)).
• The Standard Model unifying all previous theories, the complete validation
of which is expected in the next future from LHC experiments at CERN.

Once validated in such a strong sense, both guiding principles and techniques
can be borrowed in addressing speculative Yang–Mills–type quantum field the-
ories9 as well as ‘unrealistic’ toy models, thus providing a concrete application
of the general observations presented in § 2.

4 Chern–Simons theory & topological invariants of knots

The case study addressed in this section belong to the class of ‘topological’
quantum field theories of Schwarz type [15], namely those YM gauge theories
that can be consistently axiomatized [2] and share the feature of possessing
observables that do not depend on local metric properties but only on glob-
ally defined, topological quantities associated with the underlying geometric
structures.

On the basis of the discussion in § 2 and taking into account the definitions
given in § 3, Chern–Simons theory can be characterized as follows.

- Guiding principles mimic those of YM predictive theories. In particular:
the underlying ambient ‘spacetime’ M is 3–dimensional (and thus physi-
cally unrealistic); the YM–type classical action is selected on the basis of
purely ‘theoretical’ considerations;

8 Note that these techniques actually requires that |g| � 1, otherwise other (nu-
merical) approximation methods or non–perturbative analysis are needed.

9 The genesis of string theories in connection with quantum gauge theories is nicely
addressed at a non–technical level in [8].
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the gauge group G can be chosen at will, namely does not reflect the exis-
tence of a physical symmetry (typically one works with the special unitary
group SU(2), the simplest non–Abelian compact Lie group).

- Input phenomenological data do not have a counterpart in reality, namely
the vector potential A and the coupling constant k are not related to any
physical interaction.

Chern–Simons (CS) classical action in term of the vector potential A –
technically, a 1–form with values in the Lie algebra of the gauge group
G = SU(2)– reads

S(CS) (A; k) = k
∫

M3
TrG

(
AdA+ 2

3 A ∧A ∧A
)
, (11)

where M3 is a closed Riemannian 3–manifold and k is CS coupling constant
(d denotes the differential and ∧ the wedge product on differential forms).

The quantum expectation values of a Wilson loop operator is formally
defined as in the YM setting (cfr. (9)) and is given by

∫
A [DA] Ŵγ e

i S(CS) ( A;k )

Z [M3; k]
= 〈Ŵγ [k] 〉. (12)

The basic facts about the quantum theory, as developed by Witten [46], are
summarized as follows.

1. The quantum theory is solvable, namely it is not only perturbatively renor-
malizable, but actually finite for each fixed value of the coupling constant
k (constrained to be a positive integer by the quantization prescription).
Accordingly, up to suitable normalization, the outcomes of the theory are
finite quantities.

2. The quantum functionals Z [M3, k] and < Ŵγ [k] > share a topological
nature, namely they depend only on the global topology of the ambient
manifold M3 and on intrinsic properties of the curve γ (see below).

3. Note preliminarly that the contour γ in (12) is actually a ‘knotted’ closed
curve, namely represents a mathematical knot.10 Then the expectation
value of the Wilson loop operator equals a well known topological invariant
of knots, the Jones polynomial [33]

〈Ŵγ [k] 〉 = J (γ; t) , (13)

10 Slightly more generally, a mathematical knot is a collection of circles embedded
in a 3–dimensional ambient space. Its topological properties are caught by the
notion of ‘ambient isotopy’, in the sense that two knots are equivalent (ambient
isotopic) if and only if they can be superposed by continuously stretching them
without cutting. Actually knots can live only in dimension 3 because in any higher
dimensional ambient space all such curves can be made ‘unknotted’, while in a
2–dimensional space knots do not exist at all.
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where the variable t of the polynomial is related to CS coupling constant
by t = exp (2π i/k) (recall that k is a positive integer, so that t is a
complex k–th root of unity).

4. The complete solvability of the model as stated in 1. does not rules out
questions concerning effective computablity of such topological invariants.
Indeed it can be shown that the Jones polynomial of any knot can be
calculated in practice by means of a (combinatorial) recursive procedure
based on ‘skein relations’ [14], and the same kind of relations are recovered
within the field–theoretic setting [9].
The issue of efficient computability is more subtle and will be briefly
addressed at the end of this section and in the concluding remarks.

The discussion in § 2 about toy models and the roles played by mathematics
can be now revisited in the light of the above list of remarks. The present
toy model, whose observables do not have any physical counterpart, is prop-
erly located within theoretical mathematics, and thus subjected to rigorous
proving in view of a complete validation.

In particular, the equality stated in (13) between a quantum functional
and a topological invariant represents an instance of the process referred to
as recognition (of an entity as a well–defined mathematical structure). The
validation of the heuristic procedures associated with quantization in terms
of effective proving techniques is still an open issue.

Computational complexity of knot invariants

Over the years mathematicians have proposed a number of ’knot invariants’
aimed to classify systematically all possible (equivalence classes of) knots. The
most effective invariants turn out to be Laurent polynomials in one or two
formal variables with coefficients in some ring, such as the 1-variable Jones
polynomial already quoted above [33] and the 2-variable HOMFLY polyno-
mial [16]. The reason why Jones’ case is so crucial also in the computational
context –besides CS theory and topology– is due to the fact that a ‘sim-
pler’ link invariant, the Alexander–Conway polynomial, can be computed ef-
ficiently, while the problem of computing 2–variable polynomials, such as the
HOMFLY invariant, is NP–hard (see [3] for an account on knot theory–based
computational questions and original references).

The issue of computational complexity of the Jones polynomial is summa-
rized in the question:

How hard is it to determine the Jones polynomial of a knot γ?

The most relevant parameter encoding the ‘size’ of this computational problem
is given by the number of crossings of the knot, so that the time required to
performed the calculation as a function of the input size is the quantity to be
evaluated.

An exhaustive answer to the question within the framework of classical
complexity theory was provided in [11], where the evaluation of the Jones
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polynomial at a root of unity t was shown to be generically #P–hard, namely
computationally intractable in a very strong sense.11

The computational intractability of the above problem does not rules out
the possibility of approximating efficiently Jones’ invariant either in a classical
or in a quantum computing context. Loosely speaking, the approximation in
question is a number X such that, for any choice of a small δ > 0, the nu-
merical value of J (γ; t), when one substitutes in its expression the previously
selected value of t, differs from X by an amount ranging between −δ and +δ.
In a probabilistic setting (either classical or quantum) it is required that the
value X is accepted as an approximation of the value of the polynomial if

Prob {| J (γ; t) − X | ≤ δ} ≥ 3
4
. (14)

It was proved quite recently that there actually exist explicit and efficient
(polynomial time) quantum algorithms 12 for approximating both the Jones’
and more general knot polynomials arising in the context of CS quantum field
theory (see [26] and references therein).

5 Concluding remarks

The issues of solvability and computability presented within the framework of
quantum Chern–Simons theory in the previous section deserve a closer analy-
sis. Unlike perturbatively renormalizable quantum field theories (cfr. the end
of § 3) where the only (necessarily finite) physically measurable quantities are
obtained as limits of infinite series as in (10), quantum CS theory is ‘solvable’
in the sense specified in remark 1 of § 4. More precisely, the Wilson observable
defined in (12) is the sum of a finite number of terms for each fixed value of the
coupling constant k. Actually such finiteness property reflects the existence of
a deeper algebraic symmetry stemming from braid group representations and
associated Yang–Baxter equation, see [9, 3, 27] and references therein. This
notion of solvability may be viewed as the quantum analog of the property
of ‘complete integrability’ in classical mechanics. Recall that (Liouville) inte-
grable systems admit a sufficient number of conserved quantities that make it
11 #P complexity class can be defined as the class of enumeration problems in

which the structures that must be counted are recognizable in polynomial time.
A problem π in #P is said #P–complete if, for any other problem π′ in #P,
π′ is polynomial–time reducible to π; if a polynomial time algorithm were found
for any such problem, it would follow that #P ⊆ P. A problem is #P–hard
if some #P–complete problem is polynomial–time reducible to it. Instances of
#P–complete problems are the counting of Hamiltonian paths in a graph and
the most intractable enumerative problems in combinatorics.

12 More precisely, such algorithms belong to BQP, the computational complexity
class of problems which can be solved in polynomial time by a quantum computer
with a probability of success at least 1

2
for some fixed (bounded) error.
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possible to solve explicitly the equations of motion (as happens for instance
in the Kepler problem involving two massive bodies which interact gravita-
tionally according to Newton law). These ‘constants of motions’ are endowed
with a suitable algebraic structure under Poisson bracketing which is related
in turn to complete integrability owing to Arnold–Liouville theorem [1].

The issue of computability of the relevant quantities of quantum CS theory,
and in particular of the Jones polynomial according to the identification (13),
is clearly independent of solvability/finiteness and to some extent goes beyond
the scope of this paper. However, looking for ‘effective’ (possibly efficient)
computational protocols might help in sheding light on the open question
concerning the validation of the heuristic procedure associated with the path
integral quantization scheme.
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The presence of experimental methods in mathematics has been the leit-motiv
of the so called, by Imre Lakatos in [12], renaissance of empiricism in the
philosophy of mathematics.

Among the efforts of reviving the philosophy of mathematics, as urged
by Reuben Hersh in [9], in the Seventies the empiricist trend was the most
vociferous and fashionable. It could rely on, and was enhanced by the novelties
introduced by the computer, namely much larger searches and the formation
of conjectures, either by numerical computations or by computer graphics.
But as a thesis on the nature of mathematics it had to find confirmation and
roots in the history of mathematics.

Prominent among others were Hilary Putnam [14] and Imre Lakatos [11];
they didn’t rescue from oblivion old philosophies claiming the empirical nature
or origin of mathematical objects; they proposed the term “quasi-empirical”
to characterize non-deductive methods of discovery and validation in mathe-
matics. The term was taken from Euler, via Pólya.

It had actually been George Pólya, in [13, pp. 17-22], some twenty years
before to stress the importance of the heuristic non-deductive moment in the
search for a proof, and to call attention to Euler’s unorthodox methods. The
same Eulerian examples were quoted by Putnam and by Mark Steiner in [16].

Empirical methods are loosely meant by the empiricists, with differences
among them, to be procedures of discovery and validation which are similar
to those of the natural sciences.

By “quasi-empirical” methods I mean methods that are analogous to
the methods of the physical sciences, except that the singular state-
ments which are “generalized by induction”, used to test “theories”,
etc., are themselves the product of proof or calculations rather than
being “observation reports”in the usual sense [14, pp. 49–65].

The reminder of the presence of such procedures has been beneficial to
the philosophy of mathematics. The purpose of this essay however is to give
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elements, through the analysis of a few examples, to dismantle the often
connected thesis that mathematics should thereby forego its pretension to
a unique position among sciences. If the “statements used to test theories”
are themselves mathematical, the similarity is limited to the forms of argu-
mentation. But the fact that mathematicians use many strategies and various
instruments to attack a problem does not mean that the solutions, when found,
are not rooted in a deductive setting: they purport to be logical consequences
of the data and of the formal specification of the notions involved. If not, they
are sooner or later recognized defective, and the search goes on, aiming at a
finer or deeper analysis.1

There are many degrees of involvement of empirical methods in mathe-
matics.

The first, more widespread and less interesting, is that of inductive forma-
tion of conjectures through observations.

The second is the presence of empirical facts or elements in the very body
of an argument proposed as a proof.

The strongest is represented by proofs found by machines, but it has in a
way turned topsy-turvy, since the formal proofs thus produced are pure logic,
the opposite of a liberated notion of proof.

Given its many facets, we will not dwell on this last topic, which began
to be discussed with Tymoczko’s remarks on the Four-Color Theorem2 and is
revived with every new computer performance.3

1 Euler’s observations

Let us have a look at Euler’s paper [4] quoted by Pólya, Specimen de usu
observationum in mathesi pura, where he says that many notable properties
are first observed and worked upon before being proved.

Inter tot insignes numerorum proprietates, quae adhunc sunt inven-
tae ac demonstratae, nullum est dubium, quin pleraeque primum ab
inventoribus tantum sunt observatae et in multiplici numerorum trac-
tatione animadversae, antequam de iis demonstrandis cogitaverint.4

A fuller presentation is in the summary:5

1 The author is grateful to a careful and subtle referee for many corrections; not
all of her suggestions for improvements could be met in such a short and unpre-
tentious essay.

2 See [19], [17], [18], [2].
3 Such as the non-existence of a projective plane of order 10, the sphere packaging

problem, the Robbins conjecture. See [6], [1].
4 “Among so many notable properties of numbers, which up to now have been

found and proved, there is no doubt that many have been observed and worked
upon by their discoverers well before they thought of a proof thereof”.

5 “Summarium”, in [4, pp. 459-60]. We quote from the Opera omnia edition. Italics
added.
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Haud parum paradoxum videbitur etiam in Matheseos parte, quae
pura vocari solet, multum observationibus tribui, quae vulgo nonnisi
in obiectis externis sensus nostros afficientibus locum habere viden-
tur. Cum igitur numeri per se unice ad intellectum purum referri de-
beant, quid observationes et quasi experimenta in eorum natura explo-
randa valeant, vix perspicere licet. Interim tamen hic solidissimis ra-
tionibus ostensum est plerasque nomerorum proprietates, quas quidem
adhux agnovimus, primum per solas observationes nobis innotuisse,
idque plerumque multo antequam veritatem earum rigidis demostra-
tionibus confermaverimus. Quin etiam adhuc multae numerorum pro-
prietates nobis sunt cognitae, quas tamen nondum demonstrare vale-
mus; ad earum igitur cognitionem solis observationibus sumus per-
ducti. Ex quo perspicuum est in scientia numerorum, quae etiamnunc
maxime est imperfecta, plurimum ad observationibus esse expectan-
dum, quippe quibus ad novas proprietates numerorum continuo de-
ducimur, in quarum demonstratione deinceps sit elaborandum. Talis
cognitio solis observationibus innixa, quandiu quidem demonstratione
destituitur, a veritate sollicite est discernenda atque ad inductionem
referri solet. Non desunt autem exempla, quibus inductio sola in er-
rores praecipitaverit. Quascumque ergo numerorum proprietates per
observationes cognoverimus, quae idcirco sola inductione innituntur,
probe quidem cavendum est, ne eas pro veris habeamus, sed ex hoc
ipso occasionem nanciscimur eas accuratius explorandi earumque vel
veritatem vel falsitatem ostendendi, quorum utrumque utilitate non
caret.6

In this research Euler wants to characterize the numbers which can be
written as 2aa + bb, a and b relatively prime. Similar questions arise in con-

6 “It is not a little paradox that in the part of mathematics which is usually called
pure so much depends on observations, which people think to have to do only
with external objects affecting our senses. Since numbers in themselves must
refer uniquely to pure intellect, it i does not seem worth investigating the value
of observations and quasi experiments in their study. However it can be shown
with strong reasons that the greatest part of the properties of numbers we have
come to know have been noted at first only through observations, long before
their truth has been confirmed by strict proofs. And there are even many of them
which we know but we are not yet able to prove: we have come to their knowledge
only through observations. So it is clear that in the science of numbers, which
is still greatly incomplete, a lot has to be expected from observations, to find
new properties of numbers for which later a proof has to be worked out . . . Such
knowledge depending only on observations, in case a proof is lacking, must be
carefully distinguished from truth, and based only on induction. There is no lack
of examples in which induction alone has led to errors. Whenever we come to know
a property of numbers through observations, based only on induction, beware not
to take it as true, but take the opportunity to investigate it carefully and show
its truth or falsity, in any case a useful deed”.
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nection with the study of Pythagorean triples. So Euler lists all such numbers
up to 500, and begins to make observations on the table he is considering:

- that if a prime number is there, that is it if it can be written as sum of
a square and twice a square, this presentation is unique;

- that if a prime number n can be so written, the same holds for 2n;
- that if an odd number can be so written, the same is true for its double,

and conversely, for an even number and its half;
- that if two numbers can be so written, the same is true for their product;
- that the prime divisors of such a number are of the same form;

and so on, to arrive through this series of remarks to the fact that
- the prime divisors of such a number, if it has any, are of the form 8n+ 1

or 8n+ 3,
and so on, finally arriving at a proposition affirmed by Fermat, without proof,
that

- prime numbers of the form 8n + 1 or 8n + 3 can be written as 2aa+ bb
and they only.

Having arrived at such a conjecture, Euler according to the summary first
checks it up to 1000, then proceeds to give a prove of it, through a series
of theorems paralleling the observations. Some of the proofs are easy, in Eu-
ler’s opinion, treading in the very observations steps, some require algebraic
arguments, only one is profund and uses the method of infinite descent.

Euler did not underrate proofs. At the beginning of the paper he wrote:

Quamvis autem huiusmodi proprietas per assiduam observationem
fuerit animadversa, quae per se menti non parum esse iucunda, tamen,
nisi demonstratio solida accrescerit, de eius veritate non satis certi esse
possumus; exempla enim non desunt, quibus sola inductio in errorem
praecipitaverit. Tum vero ipsa demonstratio non solum omnia dubia
tollit, sed etiam naturae numerorum penetralia non mediocriter reclu-
dit nostramque numerorum cognitionem continuo magis promovet, a
cuis certe doctrinae perfectione adhuc longissime sumus remoti. Verum
si cui haec forte non magni momenti esse videantur, quod vix unquam
ullum in Mathesi applicata usum habitura putentur, usus, quem inde
in ratiocinando adipiscimur, non est contemnendus.7

7 “Although such property has been controlled by careful observations, to the full
satisfaction of our mind, this notwithstanding we cannot be certain of its truth,
if some strong proof is not added; there is no lack of examples in which induction
alone has led to errors. In fact the proof not only eliminates all doubts, but also
illuminates the mysteries of their nature and greatly increases our knowledge of
numbers, whose theory is still far from perfect. And if this does not appear of great
importance in the uses which are considered relevant in applied mathematics, it
must not be underrated the utility we get in reasoning” [4, pp. 461-62].
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Proofs do not only eliminate doubts, they illuminate and improve our knowl-
edge.

There are other features of Euler’s methods which are attractive to the
empiricists, for example the use of analogies (from finite to infinite) in the
work on series. But Euler’s attitude with respect to their proofs was the same.
It is true that he said that his method for finding the sum of the series of the
inverses of squares, ∑∞

k=1
1
k2 = π2

6 ,

which to some could appear not enough reliable, had had a strong confirmation
in that he could prove with it a known result of Leibniz (the sum of the
alternating series of inverses). So we should not have doubts about other
results. But he nevertheless continued to search for a proof, until he found
one, as Pólya, though not Putnam or Steiner, took care to remind, in [13, p.
21].

So it seems out of place the question that continues to be asked,8 as in
[5]: “What shall we say, then? Are we wrong to insist on rigorous proofs? Is
there a special category of argument, something less than full proofs, some-
thing more than blowing smoke? Or do truly great mathematicians get special
dispensation?”.

There is nothing to add to Euler’s own comments above on the utility and
the limits of observations in pure mathematics.

2 Archimedes’ mechanical method

The idea of using mechanical devices to perform operations or graphical rep-
resentations of curves is very old. Eudoxus and Architas among others used
machines to draw higher order curves to solve problems such as the trisection
of an angle and the duplication of a cube.

Eudoxus and Archytas had been the first originators of this far-famed
and highly prized art of mechanics, which they employed as an elegant
illustration of geometrical truth, and as a means of sustaining exper-
imentally, to the satisfaction of the senses, conclusions too intricate
for proofs by words and diagrams. In the solution of the problem, so
often required in constructing geometrical figures, given two extremes,
to find the two mean lines of a proportion, both these mathematicians
had recourse to the aid of an instrument, adapting to their purpose
certain curves and sections of lines.
But what of Plato’s indignation at it, and his invective against it as a
mere corruption and annihilation of the one good in geometry, which
was thus shamefully turning its back upon the unembodied objects

8 Something more will be said in § 3.
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of pure intelligence to recur to sensation, and to ask help (not to be
obtained without base supervisions and depravations) from matter;
so it was that mechanics came to be separated from geometry, and,
repudiated and neglected by philosophers, took place as a military
art.9

Fortunately not everybody yielded to Plato’s curse. Prohibitions are never
welcome in science.

In the dedication of the Method to Eratosthenes, Archimedes10 explains
that he is going to present the peculiarities of a method which confers a certain
easiness to treat mathematical questions with mechanical considerations. He
has obtained with this method a few results he has already communicated to
Eratosthenes. He wants the method to be known because he is sure that it
will be fruitful and produce other results.

Archimedes is convinced that this method will be useful also for the proofs.
The results obtained with it do not come with a real proof, but it is easier
to look for one when one has acquired a certain familiarity with the matter
using the method. He promises that at the end he is going to give geometrical
proofs

Then he begins with the first result, namely that the area of a parabolic
segment is equal to 4/3 of the inscribed triangle (same base and same height).

Fig. 1. Archimedes’ mechanical proof

In the Fig. 1
- Q is the midpoint of AC,
- QBE is parallel to the axis of the parabola

9 indexPlutarchPlutarch, Life of Marcellus, c 14.5, quoted from [10, p. 146].
10 An english translation of The Method of Archimedes is published as an appendix

to [7].
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- AF is parallel to QBE
- CF is tangent in C
- HK = KC.
Think of K as the fulcrum of a scale with arms HK and (the other along)

KC.
Let MO be any line parallel to EQ. By known geometric properties

EB = BQ, FK = KA, MN = NO

and moreover

CA : AO = MO : OP
CA : AO = CK : KN

hence

HK : KN = MO : OP.

Now, since N is the center of gravity of line MO, if we take a segment TS
equal to OP and we put TS with its center of gravity in H, THS will balance
MO, because HN is divided by K in parts which are inversely proportional to
the weights TS, MO, that is because

HK : KN = MO : TS,

For the same reason, the other parallels to EQ balance the segments inter-
cepted on them by the parabola, between A and C, (transported in H) so that
the sum of the former balances, with respect to K, the sum of the latter.

Now the segments obtained as OP compose the parabolic segment ABC,
while the vertical lines drawn in the triangle CFA make the triangle CFA. This,
where it is, balances with respect to K, the parabolic segment transferred with
its center of gravity in H. If G is the point of CK such that

CK = 3KG

G will be the center of gravity of CFA, hence, denoting by sgm.ABC the
parabolic segment,

CFA : sgm.ABC in H = HK : GK.

But

HK = 3KG

from which it follows

CFA = 3 sgm.ABC.

As

CFA = 4 ABC

it follows that
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sgm.ABC = 4/3 ABC.

According to Archimedes the argument above does not prove the result,
and this will not do, since “those who boast of many discoveries, without
ever giving a proof, sometimes can be caught out, having claimed to have
impossible things”.

But the argument bestows on the result an appearance of truth. When
one rightly suspects the truth, one can more confidently look for a proof,
and Archimedes had in fact found it, actually two. In the Quadrature of the
Parabola he had first trasformed the argument of the Method based on the
infinitesimals in a proof by exaustion. Here ironically he was again in trouble,
because the exhaustion method was far from being accepted and he had to
expostulate for it. It was based on Eudoxus’ (now Archimedes’) axiom, or
the “lemma”: given two unequal areas, it is possible by adding the difference
between the two, to surpass any given bounded area. Archimedes is at pain to
recall propositions in Euclid’s Elements proved by this lemma, and asks for
the same reliability to be accorded to his own uses.

But then in the final propositions of the Quadrature, 18-24, he gives a
purely geometrical proof.11

3 Mathematics in statu nascenti

We claim that such arguments as constructed with Archimedes’ mechanical
method are more than heuristic suggestions as to the truth of the statements
involved. They could be accepted as conclusive; this is not because empirical
methods are allowed in mathematics, but because in fact such arguments,
with a grain of liberality, can be considered proofs.

There are no physical operations involved, such as weighing tin plates,
though such operations can be and are, or used to be performed in early
maths education with children. The whole argument is a thought experiment
based on notions which are still imperfectly mathematized, but on their way
to become object of mathematical theories.

Archimedes himself contributed to the founding and development of Stat-
ics. In On the Equilibrium of Planes and The Centers of Gravity of Planes he
laid the principles and the theory of the lever, stating a few postulates, such
as:12

- Equal weights at equal distances are in equilibrium, and equal
weights at unequal distances are not in equilibrium but incline to-
ward the weight which is at the greatest distance.
- If, when weights at certain distances are in equilibrium, something
is added to one of the weights, they are not in equilibrium . . .

11 See also Enrico Rufini in [15, pp. 216-19].
12 The following quotations are taken from [3].
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- If magnitudes at certain distances are in equilibrium, other mag-
nitudes equal to them will be also in equilibrium at the same dis-
tances. . .

From these the first laws of the lever are then proved, e.g: the first: Weights
which balance at equal distances are equal.

Later Greek texts give a definition of the center of gravity:

We say that the center of gravity of any body is a point within the
body such that, if the body can be conceived to be suspended from
the point, the weight carried thereby remains at rest and preserves
the original position.

Archimedes did not refer to such definition, instead again he gave axioms for
the center of gravity, such as

- If from a magnitude some other magnitude is subtracted, and if the
same point is the center of gravity of the original magnitude and of
that subtracted, then that same point is the center of gravity of the
remaining magnitude.
- If from a magnitude some other magnitude is subtracted, and if
the whole magnitude and the subtracted one do not have the same
center of gravity, the center of gravity of the remaining magnitude is
found by extending the line joining the two centers of gravity beyond
the center of gravity of the original magnitude, and taking on it a
segment which has to the segment joining the two centers of gravity
the same proportion which holds between the weight of the subtracted
magnitude and the weight of the remaining magnitude.
- If the centers of gravity of any number of magnitudes lie on the same
line, also the center of gravity of their sum will lie on the same line.
- The center of gravity of a straight line is its middle point.
- The center of gravity of a triangle is the point of intersection of the
lines drawn from the vertices to the middle points of the sides,

and other similar, enough to calculate the center of gravity of plane polygonal
figures.

Once the theory of momentum and center of mass is fully mathematized,
there is no obstacle to vindicate Archimedes’ proofs ab omni naevo and to
recast them in perfectly acceptable mathematical proofs.

The same can be said for other similar examples. We recall only Lakatos’
analysis of Euler’s theorem V − E + F = 2 on polyedra. Lakatos’ analysis is
too well known, and perhaps obsolete, to dwell on it. The first proof presented
in Lakatos’ dialogue is inspired by that of Cauchy in 1813 and it is based on
the following picture of a polyhedron to which a face has been subtracted and
which is flattened on a plane
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the faces and the edges are reduced by 1, some different subtraction being
realized in the other cases, always preserving the relation V − E + F = 1.
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We remember only the following crucial remark by Lakatos, relevant for
our discussion:

Alpha: But then we are worse off than before! Instead of one conjec-
ture we now have at least three! And this you call a ‘proof’?
. . .
Delta: What does it do then? What do you think a mathematical
proof proves?
Teacher: This is a subtle question which we shall try to answer
later. Till then, I propose to retain the time-honoured technical term
‘proof’ for a thought-experiment – or ‘quasi-experiment’ – which sug-
gests a decomposition of the original conjecture into subconjectures or
lemmas, thus embedding it in a possibly quite distant body of knowl-
edge. Our ‘proof’, for instance, has embedded the original conjecture
– about crystals, or, say, solids – in the theory of rubber sheets [11,
p. 9].

To call such a thought-experiment both a proof and a quasi-experiment though
linking together these two terms deprives the latter of any meaning. A de-
composition of a conjecture into subconjectures is a move quite legitimate
and common also in a deductive setting; per se it has nothing to to with the
possible distance of the conjured knowledge. Talking of crystals and rubber
sheets does not place the discourse outside pure mathematics. The theory of
rubber sheets of course is nothing else than what will be called topology.

4 Mechanical devices

The instruments mentioned in Plutarch’s report were however real machines,
not just methods inspired by mechanical considerations. Let us recall a few
examples.

For the trisection of an angle Nicomedes made use of the conchoid (or
cochloid according to Pappus) which was drawn by the contrivance shown in
Fig. 2.

It was composed of two fixed perpendicular rulers, and one revolving
around a peg in C; D is a fixed peg on PC which can move in the slot
in AB.

This apparatus was used when one had to insert a segment of given length
between two lines one of which was straight. The characteristic property of
the conchoid in fact is that the distance DP is constant.

Just as the constructions by ruler and compass have a mathematical equiv-
alent, so it is for this case. The equation of the conchoid is actually in polar
coordinates

r = a+ b sec θ.
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As Pappus has shown, the solution could be obtained as the intersection of
two conics, and from their equations the problem was reduced to the solution
of a cubic equation.

Fig. 2. Nicomedes’ conchoid

For the trisection of an angle AB̂C, with reference to Fig. 3, one had to find
E on AF parallel to BC and draw BE in such a way that DE = 2AB.

With the artifact above, one would then use B for pole, AC for the ruler
(the horizontal ruler) and 2AB for the distance.

Fig. 3. The trisection of AB̂C

Ironically, one of these devices, which we are going to consider next, was
attributed to Plato.13

Hippocrates had shown that the doubling of the cube can be reduced to
finding two mean proportionals in continued proportion: if a : x = x : y = y : b
then
13 By Eutocius, but apparently only by him. See the discussion in [8, pp. 255-8].
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a3 : x3 = a : b.

Menaechmus had discovered that since

x2 = ay, y2 = bx, xy = ab

and these curves exist, as section of right circular cones, one had to find the
point P of intersection of the two conics shown in fig. 4, and its coordinates.

Fig. 4. Two mean proportionals between AO and OB

For the solution, one could use the device shown in Fig. 5.

Fig. 5. Plato’s alleged instrument



78 Gabriele Lolli

FGH is a rigid right angle, and FKL another one which slides along GF so
that KL is always parallel to GH. It is positioned so that GH passes through
B and it is rotated until the vertex G lies on the prolongation of AO. Then
one slides FKL until KL passes through A. If K is not on BO the device has
to be repositioned again with G on AO until the desired configuration shown
in picture is reached.

Greek mathematical machines are a fascinating argument, which would
be worth pursuing, but what we have said so far should be sufficient for a
general provisional conclusion: that if we carefully look at the cases which are
known, the mystery about the unholy wedding of experimental methods and
mathematical proofs disappears. Or: much ado about nothing. These exam-
ples show that mathematics is not, contrary to the empiricists’ contention,
contaminated by empirical procedures, but that it grows by absorbing and
symbolically transforming the physical experience in formal models.
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I shall deal here with conceptual questions concerning two related phenom-
ena: 1) the use of deductive machinery to verify the correctness of computer
programs, and 2) the running of programs on computers to produce proofs.

1 Proofs verifying programs

How to verify the correctness of programs has become a serious problem with
the growing use of electronic devices to control industrial processes and big
systems of great public concern, like bank transactions, railway systems and
atomic power plants. Faults in the control units may cause commercial losses
but also hazards of safety. The faults may be traceable to the electronic hard-
ware, but more often they depend on errors in the programming of the hard-
ware.

When a program has been written, one usually tries to improve it by trial
and error. The program is run in various ways, and bugs are removed as
one finds them. But there is a growing concern that such inductive methods
for testing programs are not sufficient, especially not when great damages
may result from malfunctioning of the programs. An error in a program that
controls the signals and switches in a railway system may cause a collision
between two trains, and an error in a program that controls the pumps and
vaults of an atomic power plant may cause an even greater catastrophe. That
a program has worked as far as it has been tested cannot be enough. It has
therefore been demanded that one proves deductively that the program is
correct, that it works as intended.

This raises the question what, in principle, the difference is between, on the
one hand, testing the correctness of a program inductively by running it for
various choices of parameters and, on the other hand, proving the correctness
deductively. The idea of proving the correctness of a program deductively may
seem foreign in our relativistic time. Some people doubt that there is anything
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like conclusive proofs and that there can be any difference in principle between
inductive and deductive methods.

A simple and traditional answer to the question about the difference is of
course that a deductive proof guarantees the truth of what is proved, while
an inductive proof does not do so. In particular, if a program is proved to be
correct, then it is correct; it then works as intended and any malfunctioning
must depend on the hardware, not on the program, while if the program
is tested only inductively there is no such guarantee. It is this traditional
view that is sometimes questioned. Let us therefore look at the question of
the difference between deductive and inductive methods more carefully from
some different perspectives.

1.1 Commercial point of view

Let us first take the perspective of an insurance company that offers insurances
paying for damages caused by improper behaviour of electronic systems. Say
that one of its policyholders asks for a reduction of the insurance premium on
the ground that the correctness of the program of the insured system is now
verified deductively. The company has to estimate how this novelty affects the
risk that something goes wrong with the system. Even attempts to verify the
correctness deductively may of course go wrong - they can never be foolproof.
Although the company may find that the total risk has gone down, it may find
instead that it stays the same, or even that the risk increases - in other words
that the old way of carefully testing the program inductively was safer; some
critics maintain that the latter is often the case. So from the point of view
of the insurance company nothing has changed in principle. At least from a
commercial perspective, proving deductively that a program is correct is just
one way among others to verify correctness. This seems to speak in favour of
the critics of the idea of deductive proofs as guarantees of truths and as being
different in principle from inductive methods.

1.2 Experiences of verifiers

For people who are acquainted with verifications of programs, it is obvious
that to verify a program by proving its correctness deductively is to proceed
in a radically different way from testing it inductively, which does not mean
that they can offer a theoretical description of what this difference consists in.1

Their experience is that safety can be drastically improved by verifying the
1 My own acquaintance with this field is limited to some co-operation with a former

student of mine, Gunnar St̊almarck, who has started a commercially successful
firm that specializes in proving the correctness of programs deductively. According
to the experience of this firm, which has employed most logicians in Sweden
and is now expanding abroad, programs that control very important functions
of for instance traffic systems, airplanes or atomic power plants quite often turn
out to contain errors, and their security is drastically improved by deductive
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correctness of programs deductively, but of course, they must admit that it is
a theoretical possibility that something goes wrong even in their procedures.
Furthermore, the proofs by which the correctness of programs is established
tend to be very long, and they are therefore usually constructed by computers.
That takes us to problems that I shall discuss in the second part of the paper
- what to say about proofs produced by machines. Without anticipating that
discussion, it is obvious again that it is not in respect of safety that we can
find a difference in principle between deductive and inductive approaches.

1.3 Philosophical perspectives

1.3.1. Why a proof guarantees the truth of what is proved

The fact that we may make mistakes when trying to prove something has been
used philosophically as an argument against the idea that a proof guarantees
the truth of what is proved. There is a well-known passage by David Hume
that is sometimes construed as such an argument. Hume remarks that we
have a tendency “to make mistakes when we apply rules of deductive sciences
and therefore to fall in error”. Hume finds that no mathematician, however
skilful, places entire confidence in a truth immediately after having found a
proof of it. “But his confidence increases every time he runs over his proofs”,
Hume says, and continues: “This gradual increase of assurance is nothing but
the addition of new probabilities. Therefore all knowledge resolves itself into
probability, and become at last of the same nature with that evidence, which
we apply in common life.”2

However, what Hume says here, when formulated a little more carefully,
is quite compatible with the idea that a proof guarantees the truth of what is
proved. Hume says himself that deductive rules are “certain and infallible”.
It is our attempts to apply them that are fallible.

If it turns out that we have made a mistake when trying to prove an
assertion and that, in fact, what is asserted is false, then we say that we did
not really have a proof. We only thought that we had a proof, but we did not
really have one. This is how we use the notion of proof. We simply take it
to be a conceptual truth that if we have deductively proved something, then
what we have proved is true.

However, it is one thing that we take it to be conceptually true that a
proof guarantees the truth of what is proved, and another thing to explain
philosophically how there can be such things as proofs that guarantee truth.

verifications. That a program works as intended, for instance never leads to a
situation in which two trains are allowed to run against each other on the same
track, can often be shown to be equivalent to a certain formula in propositional
logic being a tautology. To show that the formula is a tautology the firm uses a
special, automated algorithm for which it has obtained a patent.

2 Quotations from Hume’s A Treatise of Human Nature, Book 1 (the beginning of
part 4).
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That we use a notion of proof in a particular way does not make it certain that
there is really a coherent concept of proof that fits this use. What is needed
is an analysis of the notion of proof, or rather the formation or creation of
a concept of proof, which, if possible, agrees with such pre-theoretical ideas
that we have about proofs.

The idea of formal proofs is of no great help here. It does contain the rea-
sonable idea of seeing the overall structure of a proof as a chain of inferences.
But whether the derivations of an interpreted formal system really represent
proofs depends on the nature of the inference rules. The intention when set-
ting up a formal system is of course that applications of the inference rules
will yield representations of valid inferences. But since the idea of a formal
system in itself does not imply anything to that effect, it does not relieve us of
analysing what properties inferences are to have in order to make up proofs.

Someone may think that by just requiring that the inference rules of a
formal system preserve truth and hence that the system is sound, one obtains
the desired result that the formal derivations represent proofs and that the
truth of what is proved is guaranteed. But to think so would be to overlook
two simple facts. Firstly, an inference rule may preserve truth but the epis-
temic distance between premisses and conclusion may be so great that no one
would think of using it in a proof. Secondly, the conclusiveness of a proof
should come from the proof itself or, at least, it must do so at some level.
If the conclusiveness of an interpreted formal derivation comes from a proof
on the meta-level, showing that the used inference rules preserve truth, then
the question remains where the conclusiveness of the meta-proof comes from;
obviously once cannot always answer this question by referring to another
proof.

To develop a precise concept of proof with desired properties one must
go deeper, beyond formal derivations, which should be seen as codifications
of proofs and not as answering the question what a proof is. Now as well as
later, one may concentrate on the most crucial epistemological function of
deductive inferences and proofs: the fact that they furnish us with conclusive
grounds for asserting the conclusions. We should then ask what kind of things
can amount to a conclusive ground for an assertion.

In the constructive tradition, there are ideas about what a ground for an
assertion is and how it is connected with the meaning of the assertion.3 These
ideas can be used to specify recursively the grounds for assertions of different
forms. A simple example is the idea that the meaning of a conjunction is such
that a ground for asserting its truth is formed, e.g. by pair formation, from
grounds for asserting the truth of its conjuncts. We may then specify that g
is a ground for asserting the truth of a conjunction A1∧A2 if and only if g is

3 They are made explicit in [5] and are in effect suggested already by Gentzen [4],
who remarks that an introduction rule for a logical constant in his system of
natural deduction ”gives, so to say, a definition of the constant in question”, in
other words, specifies the meaning of the sentences formed by using that constant.
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of the form 〈g1, g2〉 where g1 and g2 are grounds for asserting the truth of A1

and A2 respectively. Ideas of this kind apply in particular to a constructive
reading of the sentences, but can be extended to a classical reading to the
extent that such a reading can be explained constructively.4

Once one has specified what constitutes grounds for assertions of different
forms, there is the possibility to understand an inference not just as the as-
sertion of a conclusion on the basis of premisses asserted earlier, but rather as
the transformation of grounds. An inference is then individuated not only by
its premisses and conclusion but also by the operation by which we make this
transformation. We may illustrate the idea with two very simple examples of
inferences, conjunction introduction and conjunction elimination, say of the
form

A1 A2

A1 ∧A2

A1 ∧A2

Ai

for i = 1, 2. Having taken a ground for the assertion of the truth of a conjunc-
tion to be something of the form 〈g1, g2〉, where gi is a ground for the assertion
of the truth of Ai (i = 1, 2), we get immediately an operation that transforms
grounds for the premisses of a conjunction introduction to a ground for its
conclusion, namely pair formation. Furthermore, we get an operation i (i = 1
or 2) that transforms a ground for the premiss of one of the two forms of a
conjunction elimination to a ground for its conclusion by the definition

ϕ(〈g1, g2〉) = gi.

An inference that is individuated in this way by its premisses, conclusion, and
operation applicable to grounds for the premisses may be defined as valid, if
the operation when applied to the given grounds for the premisses actually
yields a ground for the conclusion.5 A proof may then naturally be understood
as built up of successive applications of such operations.

This is a very quick sketch of a way of determining the concept of proof
that does provide us with an answer to the question why a proof of an assertion
guarantees the truth of the assertion: A proof of an assertion A produces a
conclusive ground for A in virtue of what the assertion A means and how the
inference operations that the proof is built up of are defined. Of course, much
more has to be said to support this analysis, but my main point here is that

4 As discussed for instance in Dag Westerst̊ahl’s contribution to this volume about
the relation between classical and intuitionistic logic.

5 For a short indication of how this can be done see my paper ”Validity of Infer-
ences” [14]. To see an inference as an operation on grounds is a further develop-
ment of Gentzen’s idea that the elimination rule for a logical constant is justified
in terms of its meaning given by the introduction rule (see note 3). The reductions
defined for applications of elimination rules, which give rise to normalizations of
natural deductions, can be seen as a first articulation of that idea (see [12] and
[13] - for a development of this idea see [11]). Analogues to these reductions now
reappear as the very operations that individuate inferences.



86 Dag Prawitz

an analysis of the concept of proof is needed if one is to defend the idea that a
proof delivers a conclusive ground for its conclusion - it is my contention that
one cannot arrive at such an analysis by starting instead from the concept of
logical consequence in the model theoretical sense or, at least, it has not been
shown that one can; but this is another question that I shall not go into here.6

1.3.2. The correspondence between proofs and computations

Before passing on to the second topic of the paper, I want to make a remark on
the fact a proof becomes in principle like a computation when inferences are
seen in the way suggested above as operations on grounds for assertions. This
correspondence between proofs and computations is of especial interest in this
context and can be developed so as to get a somewhat different perspective
on the deductive approach to program verification.

Curry7 was the first to note an isomorphism between proofs in the implica-
tional fragment of minimal propositional logic and terms in certain computa-
tional systems (combinatory logic and lambda calculus). Howard [6] extended
it to an isomorphism between deductions in a Gentzen system for intuitionis-
tic predicate logic and an enriched lambda calculus; the result is often referred
to as the Curry-Howard correspondence.

This formal correspondence gets a deeper significance when it is combined
with foundational questions of the kind discussed above. Especially relevant
for the connection with computations and programs is the observation first
made by Kolmogorov [7] that propositions in intuitionistic systems can be in-
terpreted as problems and intuitionistic proofs can be interpreted as methods
or programs for solving problems. This interpretation of intuitionistic propo-
sitions was worked out systematically by Martin-Löf [8] and [9], showing that
in the type-theory developed by him, expressions written a ∈ A can be un-
derstood alternatively as saying that a is proof of the proposition A, a is an
object of type A, and a is a program (algorithm) for solving the problem A.

In Martin-Löf’s type theory, the task of verifying the correctness of a
program, showing that it does what it is supposed to do, is thus of the same
nature as that of checking that an alleged proof is correct, that it proves the
proposition it claims to prove. Furthermore, as is to be expected since one of
the readings of a ∈ A is that a is a proof of A, it is decidable whether a ∈ A
holds in the system. The problem of verifying the correctness of a program is
thereby reduced to a mechanically decidable problem.

A specific attempt to check whether a ∈ A holds may of course go wrong.
But if the expression a ∈ A is provable in the system, then the program
indicated by a does solve the task indicated by A. One may ask how we know
that this is so, and this is again something that has to be answered in the
form of a theory of meaning.8

6 For a discussion of this issue see [14].
7 See for instance [2] (from p. 321 onwards).
8 Worked out for the case of Martin-Löf’s type theory already in [10].
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Characteristic of a type theory is of course that we do not consider objects
in general but only objects of specific types. When the type theory is seen as a
programming language, we similarly do not consider programs in general but
only programs for solving specific problems. When building up a program in
the type theory, the program therefore comes together with the problem that
it is solving. If we consider programs generated in a programming language
where the problem that the program solves is not indicated along with the
generation of the program, and state separately that such a program p solves
the task t, for instance in the form of a first order assertion Solve(p, t), then
we cannot expect to be able to decide mechanically whether Solve(p, t) holds
but may hope to be able to prove it deductively.

2 Proofs produced by computers

Computers have been used to produce proofs since the 1950’s.9 In the be-
ginning only short proofs of already known theorems were produced in that
way, and there was no philosophical discussion of the question whether real
proofs were obtained in that way. This changed in the 1970’s, when comput-
ers were used in attempts to verify the correctness of programs deductively,
as discussed in the above, and especially when computers were reported to
be able to prove so far unestablished mathematical theorems by delivering
proofs that were too long to be taken in by a human, even if he or she de-
voted a lifetime to it. The most well known case is the proof of the four-colour
theorem in 1977, which caused a lively debate hinted to in the invitation to
the workshop on which the present volume is based. The question was and is
whether the acceptance of such proofs constitutes a philosophically significant
shift of mathematical practice, perhaps amounting to the beginning of a new
paradigm in mathematics.

2.1 The debate

In the debate, which started shortly after the publication of the proof of the
four-colour theorem, there were interesting arguments both for and against
the view that a significant shift had occurred. One argument for that view,
presented by Thomas Tymoczko [17], maintained that the acceptance of the
proof of the four-colour theorem meant a radical change of the concept of
proof, allowing it to rest on empirical evidence, namely the outfall of an ex-
periment in the form of running a computer and reading off its output, which
output was not a proof but only a message saying that there is a proof. Those
who argued against that view were divided as to the reason for saying that a

9 My own first-hand experience of automated deduction is limited to its childhood
in the 50’s and 60’s, when we were a group [15] who implemented on a computer
the first in principle complete proof procedure for 1st order predicate logic.



88 Dag Prawitz

radical shift had not occurred. One view was that the concept of proof had
not changed because empirical evidence was not a proper part of the proof of
the four-colour theorem. Another view was that there was no important shift
because even traditional proofs produced by humans rested sometimes on em-
pirical evidence. I shall summarize the various positions without attempting
to exhaust the whole debate.

2.1.1. Claims supporting the view that there is a philosophically
significant change

Connected with his claim that the acceptance of the computer-produced proof
of the four-colour theorem meant a change of the concept of proof, Tymoczko
made three more specific claims that I list here:

1. From a traditional point of view, the accepted proof of the four-colour
theorem is like a proof with a lacuna, a gap, because of one key lemma
being left unproved. This gap is now regarded to have been filled by the
report of a computer saying that it has produced a proof of this lemma.

2. Since no one can survey the computer-produced proof, the acceptance of
it means that mathematics become like physics in resting on empirical
evidence. The reliability of its results is then no longer certain but rests
on a complex of empirical factors concerning the functioning of computers.

3. Some truths of mathematics are then no longer a priori, they are no longer
resting on reason alone, but depend on sense experience concerning the
results of experiments.

2.1.2. Arguments for the view that no significant change has
occurred

I let counter-arguments given by Paul Teller [16] and Michael Detlefsen and
Martin Luker [3] represent the two different kinds of positions as to why the
acceptance of the computer-produced proof of the four-colour theorem does
not constitute a significant shift.

(a) Teller counters all the three claims 1-3 stated above by saying that they
depend on confusing proofs with checking or verifying the correctness of
proofs. The concept of a proof has not changed; no empirical evidence has
entered into the mathematical proofs. The loss of surveyability called at-
tention to by Tymoczko means only a shift in methods of checking proofs,
not a shift in conception of the things checked, Teller claims. But this shift
in methods for verifying that a purported proof is a proof is not signifi-
cant, because there is no difference in principle between letting a computer
and a mathematician check a proof; both are fallible, and sometimes the
computer is more reliable than the mathematician.
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(b) Detlefsen and Luker take the quite different standpoint that the verifica-
tion of the correctness of a proof, in particular when it comes to verifying
the correctness of computations that the proof depends on, may consti-
tute a part of the proof. They claim however that such verifications have
sometimes rested on empirical evidence even in the case of traditional
human proofs of mathematical theorems. Although it is true that empir-
ical evidence is used in the proof of the four-colour theorem, the use of
such evidence is thus nothing novel, they claim, and therefore, to rely on
computers making the job of verification means no fundamental change of
mathematical practice.

It seems to me that there is something reasonable in what is said by all
the parties in this debate. No progress can be made concerning these issues, I
think, without clarifying some of the key concepts that occur in the arguments.
As an attempt in that direction I shall make a few conceptual points.

2.2 Proofs and verification of proofs

The distinction between proofs and verifications of proofs, which Teller rests
his argument on, is certainly important. Proofs are what establish theorems,
and traditionally, since the Greeks, the requirement in mathematics for assert-
ing a theorem is the possession of a proof of it. To have verified that something
is a proof is the prerequisite for a quite different assertion: that so and so is a
proof.

To avoid a lurking regress, it is important to delimit what justifies an
assertion; or to use my earlier terminology in the first part of the paper, to
delimit what counts as a ground for an assertion. To formulate the point in
general terms, one can say that if g is a ground for an assertion A, that is,
if the possession of g is what is required in order to be justified in making
the assertion A, then it cannot be required that one has also verified that g
is a ground for A. Justifications must end somewhere. If the assertion of A
required a verification v of the fact that g has the property of being a ground
for A, then, after all, g would not be the proper ground for A, but it would
instead be v or the pair (g, v) that constituted the real ground for A; if in
addition one required some v′ that verified that v is a verification of the fact
that g is a “ground” of A, then it would be v or (g, v, v) that constituted the
real ground for A, and so on.10

That one has verified that a proof is a proof or, more particularly, that
an inference step in a proof is valid or that a computation made in a proof is
correct, is therefore not a part of the proof. That is not to say, of course, that
it is not wise to check one’s proof; as Hume rightly remarks, the confidence
in a proof increases when one runs over it. But the checking does not add
anything to the proof itself.
10 A similar argument for requiring that the property of being a proof in a logic

calculus is decidable is given by Church [1].
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However, having recognized the distinction between proofs and the verifi-
cation or checking of proofs, we have not automatically answered the question
whether the acceptance of the four-colour theorem involves a change of the
concept of proof or, in other words, of what counts as evidence for a mathe-
matical theorem. Neither Tymoczko nor Teller says much about the concept
of proof, which is not surprising in view of the fact that there have been few
attempts to analyse this concept and that there is thus little to build on. Of
course, there is no problem concerning what we mean by a formal proof, but
the issue does not concern that notion. Tymoczko agrees that there is good
evidence for the existence of a formal proof of the key lemma, which he claims
has nevertheless not been proved in a traditional sense, thus leaving a lacuna
in the proof of the theorem.

The question we have to ask is not just what a proof is (about which I
made a proposal in § 1.3), but rather what it is to have proved an assertion,
which I have regarded as the same as having got in possession of a proof of
the assertion. It is to be in possession of a proof of an assertion, not the mere
existence of such a proof, which is the condition for being justified in making
the assertion. Now it must be noted that to be in possession of an interpreted
formal proof of a formula, representing an assertion A, is not in itself to have
proved A. A formal proof is a syntactic object, like a numeral, and, as already
noted in § 1.3, knowing such an object is not to know a proof of the assertion
A. Hence, it is irrelevant for the issue that we are discussing whether we want
to say that we are in possession of a formal proof of a formula representing the
key lemma, because, even if we were in possession of such an object (which
assumption I think is contrary to the actual situation), this in itself would not
be enough to claim that we are in possession of a proof of that lemma.

Admittedly, having proved certain meta-theoretical facts about the formal
system in which the key lemma is formulated, it would be enough to be in
possession of a deductive proof of the existence of a formal proof of the lemma,
because then, without being in possession of the formal proof itself, we could
easily construct a real deductive proof of the lemma. To illustrate that idea,
we may note that we may prove deductively the existence of a formal deriva-
tion of the equation 1010 × 1010 = 1020 in a calculus containing just laws of
identity and recursive definitions of exponentiation, multiplication, and ad-
dition. Without being in possession of this very long formal derivation, but
having proved the soundness of the calculus in question, we can prove deduc-
tively (in a somewhat roundabout way) that 1010 × 1010 = 1020. However,
as everyone must agree, in contrast to the case just considered, we have not
proved deductively that there is a formal proof of the key lemma; we have
good evidence for the existence of a formal proof of the lemma, but that is
something else.

The crucial question that remains to consider is whether one can say for
other reasons that we are in possession of a deductive proof of the lemma.
Without any determinate concept of proof it is difficult to achieve any pre-
cision here. Most people would agree however that if we are in possession of
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an interpreted formal proof, and, in addition, are seeing that, for each step in
the formal proof, the assertion represented by the conclusion follows from the
assertions represented by the premisses, then we are in possession of a real
proof. Dropping the reference to formal proofs, one may say simply that one
is in possession of a deductive proof, if one has made a chain of inferences
and has seen directly at each step that the conclusion does follow from the
premisses.

The subjective phrase “are seeing” or “have seen directly” cannot simply
be dropped here, because, for instance, as already remarked in the first part
of the paper, a one step proof consisting of some axioms as premisses and a
difficult theorem as conclusion is not considered to be a proof, although the
conclusion does follow from the premisses. The point of the concept of proof
that I sketched in § 1.3 is that it offers a way to avoid such subjective phrases.
Instead of saying metaphorically that when making an inference we “see” that
the conclusion follows from the premisses, I suggested that we should say that
we apply an operation on the given grounds for the premisses that transforms
them to a ground for the conclusion. By carrying out such an operation we get
in possession of a ground for the conclusion, and are then doubtlessly justified
in asserting the conclusion (nota bene, without having in addition to verify
that we are in possession of such a ground).

Regardless of whether we stay with an entirely intuitive notion of deduc-
tive proof, relying on an unanalyzed notion of inferring the conclusion from
the premisses or of seeing it to follow, or try to analyse an inference as the
performance of an operation in the way I suggested, there is clearly nothing
in support of saying that we have made inferences that amount to being in
possession of a deductive proof of the key lemma in the proof of the four-
colour theorem. One could say that it in principle it is possible to construct
a deductive proof of that lemma, understanding the phrase “in principle” to
mean as usual that human limitations with respect to time and space are
disregarded. We typically say that it is possible in principle to give a proof
of 1010 × 1010 = 1020 using only laws of identity and recursive definitions of
exponentiation, multiplication, and addition. In the same sense, it is reason-
able to say that in principle it is possible to prove deductively the key lemma.
But the ground for saying so is in this case empirical, not deductive. It is true
that we may prove deductively that the program used by the computer to
derive the key lemma was correct, but we cannot prove deductively that the
computer executed the program correctly.

We must therefore conclude that the grounds that we have for asserting
the four-colour theorem is not of the traditional kind in mathematics, but is
partly of an inductive kind, resting as it does on the observation of the result
of running a particular program on a computer, giving empirical evidence for
the existence of a proof of the key lemma.

Detlefsen and Luker may be right that even before the use of computers
there was often an inductive element in mathematical proofs in the form of a
reference to the result of a human computation that was not incorporated as
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an integral part of the proof. They are also right in saying that in one respect
there is no fundamental difference between referring to the result of human
computation and referring to the result of electronic computation, in both
cases we refer to an empirical event. Similarly, it is of course also true that
most of us have, individually, merely inductive ground for difficult theorems:
we simply trust other people who claim that some person is in possession of a
deductive proof; it is only collectively that “we” are in possession of deductive
proofs.

On the other hand, when a computations can be made in the usual human
way, calculating the values of the occurring terms step-by-step, we do not
need to refer to the fact that the computation has been carried out somewhere
else, but can instead incorporate the computation in the main proof - there
is no interesting difference between the two cases, it is simply a matter of
organizing the presentation in different ways. But when a computation carried
out electronically is too big for this to be possible, we are in the same situation
as in the case of the four colour-theorem that we are forced to refer to the
outcome of an empirical process.

It is to be noted that the question of how the correctness of a proof or a
computation is verified has not entered at all in this discussion. What matters
is how our theorems are established, what kind of grounds for them that we are
in possession of, not how we verify that something is a ground. If a theorem
has been established only by relying on computers as in the proof of the
four-colour theorem or in a proof that involves big computations, then the
proof is not entirely deductive, and there is the undeniably epistemological
consequence that the theorem is known only a posteriori.

It is an entirely different matter whether our results become less safe when
they are based on empirical grounds as compared to when we try to establish
them deductively. That a deductive proof guarantees the truth of what is
proved does not mean in any way that an assertion of a theorem is safer
when based on the belief of having found a deductive proof of it than when
based on observing the outcome of the running a particular program on a
computer, interpreted as indicating the existence of a formal proof of a formula
representing the theorem. We can be more or less convinced that we have
really obtained a deductive proof of a particular theorem. Our confidence
may gradually increase, as Hume says, when we run over the purported proof
and find no error or when our result is corroborated by comparisons with
other results. It is in this connection that verification of an alleged proof is
relevant.

Our conviction that a computer has really found a proof is based on our
belief that the program is correct and that the hardware is reliable. Since we
often have good inductive grounds for the reliability of the hardware and may
be able to prove deductively that our program is correct (or to check mechan-
ically that it is correct in case the judgement to that effect is formulated as
sketched in § 1.3.2.), we are often in the situation that a computer report of
having found a specific proof may rightly be deemed as very trustworthy and
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as more trustworthy than a corresponding report from a human of having
found a deductive proof. The deductive approach to the verification of pro-
grams is therefore not necessarily impaired because of relying on computers
to construct formal proofs interpreted as showing that the programs behave
as intended. On the contrary, for the reasons stated, there are good reasons
to expect that the deductive approach increases the safety of the programs
even more when it is combined with the use of computers for finding formal
proofs - although it is true that the deductive approach will then rely partly
on inductive evidence.
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1 Introduction

The logic J of the weak excluded middle, known also as Jankov’s logic, is
an extension of the intuitionistic logic obtained by adding the schema ¬A ∨
¬¬A. This logic, we believe, offers a good case study for some metatheoretical
properties: Is there a cut-free calculus for this logic? Is it analytic? Is there
a proof-search procedure that answers the question whether a formula is a
theorem or not, and if not, does it give us a strategy to build a countermodel?
It is a well known result [4] that

Lemma 1. (Hosoi) If a wff A contains the propositional letters p1, . . . , pn,
then A is a theorem of J iff (¬p1 ∨ ¬¬p1) ∧ · · · ∧ (¬pn ∨ ¬¬pn) → A is a
theorem of the intuitionistic logic.

Hosoi’s lemma already answers in the positive the problem of a proof-search
procedure for J and we do not need any further investigation since many
proof-search procedures are at our disposal for intuitionistic logic. A quite
effective one is the one given by the rules of SIC, stack-based intuitionistic
calculus, see [3]. The main features of SIC can be summarized in four points:

- Proof-search never enters into loops: due to the presence of the a fortiori
rule.

- There is no need of back-tracking: due to the rules push and pop.
- If proof-search is successful, we can get a Gentzen style proof in the calculus

IG.
- If proof-search is not successful, we can get a Kripke model based on a

finite tree that falsifies the formula (sequent) we started with.

Therefore the question “is A a theorem of J?” becomes “is the proof-search
for (¬p1 ∨ ¬¬p1) ∧ · · · ∧ (¬pn ∨ ¬¬pn) → A in the calculus SIC successful?”,
where p1, . . . , pn are the propositional letters occurring in A. If yes, then we
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get a proof of (¬p1∨¬¬p1)∧ · · ·∧ (¬pn∨¬¬pn) → A in IG and consequently
a proof of A in IG plus the rule cutwem:

¬A ∨ ¬¬A, Γ ⇒ Δ
cutwem

Γ ⇒ Δ

For the sake of the reader here are the rules of IG, see [3].1

1.1 IG

Identity
p, Γ ⇒ Δ, p

A,B, Γ ⇒ Δ
L∧

A ∧B,Γ ⇒ Δ

Γ ⇒ Δ,A Γ ⇒ Δ,B
R∧

Γ ⇒ Δ,A ∧B

A,Γ ⇒ Δ B,Γ ⇒ Δ
L∨

A ∨B,Γ ⇒ Δ

Γ ⇒ Δ,A,B
R∨

Γ ⇒ Δ,A ∨B

A → B,Γ ⇒ Δ,A B, Γ ⇒ Δ
L→

A → B,Γ ⇒ Δ

Γ,A ⇒ B
R→

Γ ⇒ A → B,Δ

Γ ⇒ Δ,A
L¬¬A,Γ ⇒ Δ

Γ,A ⇒
R¬

Γ ⇒ ¬A,Δ

Γ ⇒ Δ,B
a fortiori→

Γ ⇒ Δ,A → B

Γ ⇒ Δ
afortiori¬

Γ ⇒ Δ,¬A

Proof-search for a formula such as (¬p1∨¬¬p1)∧ · · ·∧ (¬pn∨¬¬pn) → A in the
calculus SIC is highly unsatisfactory for one main reason: if the proof-search
fails, and so the formula A is not a theorem of J , we do not get any indication
as to the construction of a model based on a frame for J that falsifies A. A
Kripke frame 〈W,R〉 is a frame for J if R is a convergent (or directed) partial
order, where R is convergent if ∀x∀y∀z(zRx ∧ zRy → ∃v(xRv ∧ yRv)). The
main goal of the present investigation is indeed that of introducing ad hoc
proof-search procedures with the property that if proof-search fails we get
countermodels based on convergent partial orders. The countermodels we will
end up with are based on a special kind of convergent partial orders: trees
with a final point. We will reach this goal by setting up a procedure that
produces countermodels based on trees but in such a way that those models
1 We present here a variation of IG in which negation is taken as primitive instead

of being defined as ¬A =df A →⊥.
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admit of the addition of a final point. This means that when the final point
is added we still have a well defined model and this model is ”conservative”
with respect to the original one: what is true(false) at a point of the original
model based on a tree remains true(false) in the extended model. Obviously,
our proof-search strategy will also have the property that if it is successful, we
then get a proof in a Gentzen-style calculus equivalent to IG + cutwem. For
reasons of convenience that will become clear in a moment we have chosen
the Gentzen-style calculus JG, described in the next section.

2 The calculus JG

The main motivation for JG is that its rules are specular to the rules of SJC,
the calculus in which the proof-search for J is performed, see § 3. Looking
at the rules of JG, we see that they capture most of the properties of the
negation of J and they keep ”to the left” as much information as possible.
This is crucial because the intended meaning of a formula A in the antecedent
of a sequent - to the left - is that A is true, so for example from knowing that
¬(B ∨ C) is true, we get to know - via the rule L¬∨ that ¬B and ¬C are
both true and not simply that (B ∨C) is false. In brief, the rules for negated
formulas reflect the fact that negation commutes with the binary connectives.
Are theorems of J :

• ¬(A ∧B) ↔ (¬A ∨ ¬B)
• ¬(A ∨B) ↔ (¬A ∧ ¬B)
• ¬(A → B) ↔ (¬¬A ∧ ¬B)

as well as the following implication:

• (A → B) → (¬A ∨ ¬¬B)

A further peculiarity of J is the asymmetry between the schemata that hold
for the negated formulas and those that hold for the implicative ones:

• J � (B → ¬A) ∨ (¬A → B)
• J �� (B → (A → C)) ∨ ((A → C) → B)

again

• J � A → (B ∨ ¬C) → (A → B) ∨ ¬C
• J �� A → (B ∨ (C → D)) → (A → B) ∨ (C → D).

This asymmetry is reflected in the rules for right-negation and right-
implication. A less standard rule of JG is left-implication. Its motivation will
become clearer when we will examine it inside SJC. For the moment let us
simply say that from the knowledge that A → B is true we want to come
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to know which (proper)subformulas (or negation) of (proper)subformulas of
A → B are true and not simply that B is false and A → B remains true. As a
matter of fact, from the truth of A → B we are entitled to assert that: either
B is true or ¬A is true or A and ¬B are both false, and so that B is going to
be true at a future stage, see the proof of LJ

→ in the next paragraph.

2.1 Rules of JG

Identity
A, Γ ⇒ Δ, A

Non-contradiction
A,¬A, Γ ⇒ Δ

A, B, Γ ⇒ Δ
L∧

A ∧ B, Γ ⇒ Δ

Γ ⇒ Δ, A Γ ⇒ Δ, B
R∧

Γ ⇒ Δ, A ∧ B

A, Γ ⇒ Δ B, Γ ⇒ Δ
L∨

A ∨ B, Γ ⇒ Δ

Γ ⇒ Δ, A, B
R∨

Γ ⇒ Δ, A ∨ B

Γ, A → B ⇒ A,¬B, Δ Γ, B ⇒ Δ Γ,¬A ⇒ Δ
LJ

→
Γ, A → B ⇒ Δ

¬A, Γ ⇒ Δ ¬B, Γ ⇒ Δ
L¬∧¬(A ∧ B), Γ ⇒ Δ

¬A,¬B, Γ ⇒ Δ
L¬∨¬(A ∨ B), Γ ⇒ Δ

Γ ⇒ ¬A, Δ
L¬¬¬¬A, Γ ⇒ Δ

¬B, Γ ⇒ ¬A, Δ
L¬→¬(A → B), Γ ⇒ Δ

Γ ⇒ Δ, B
a fortiori→

Γ ⇒ Δ, A → B

Γ ⇒ Δ
a fortiori¬

Γ ⇒ Δ,¬A

Γ, C1, . . . , Ck ⇒
RJ

¬
Γ ⇒ ¬C1, . . . ,¬Ck, Δ

Γ, A ⇒ B,¬C1, . . . ,¬Ck

RJ
→

Γ ⇒ A → B,¬C1, . . . ,¬Ck, Δ

¬A ∨ ¬¬A, Γ ⇒ Δ
cutwem

Γ ⇒ Δ

Here is a proof of the rule LJ
→ in IG + cutwem
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A ⇒ A B ⇒ B
L→

A → B, A ⇒ B
L¬

A → B, A,¬B ⇒
R¬

A → B,¬B ⇒ ¬A
L¬

A → B,¬B,¬¬A ⇒ Γ,¬A ⇒ Δ
L∨¬A ∨ ¬¬A, A → B,¬B, Γ ⇒ Δ

cutwem

A → B,¬B, Γ ⇒ Δ

Γ ⇒ ¬B, A, Δ Γ, B ⇒ Δ
L→

Γ, A → B ⇒ ¬B, Δ
L→

Γ, A → B,¬¬B ⇒ Δ
L∨¬B ∨ ¬¬B, Γ, A → B ⇒ Δ

cutwem

A → B, Γ ⇒ Δ

2.2 Trees

Let N be the set of natural numbers, zero excluded, and N∗ the set of finite
lists of natural numbers (the empty list is denoted by ε).

- A tree τ is a not empty subset of N∗ such that:
1. if α ∈ τ and α = βγ, then β ∈ τ , α, β ∈ N�;
2. if α i ∈ τ and j < i, then α j ∈ τ , i, j ∈ N .

- ε, the empty list, is said to be the root.
- For each node α, the nodes of the form α i are said to be immediate suc-

cessors of α and we write α � αi.
- a segment α1, . . . αn is a sequence of nodes such that αi �αi+1, 1 ≤ i ≤ n.
- β is a successor of α if α < β, where < is the transitive closure of �.

α ≤ β iff (α = β or α < β).
- α is said to be a leaf if it has no successors.
- An α-branch is a segment α0 . . . αn such that α0 is the root and αn = α.
- The length of an α-branch α0 . . . αn is n, i.e. the number of its nodes minus

one.
- The height of a node α is the length of the α-branch.

Definition 1. An JG-derivation is a triple D = 〈T, φ, ρ〉 where T is a finite
tree, φ is a function that associates a sequent to every node of T and ρ is a
function that associates a rule of JG to every node of T in such a way that:

if α1, . . . , αn are all and only the immediate successors of α, then

φ(α1), . . . , φ(αn)
ρ(α)

φ(α)

is a rule of JG.

• If φ(ε) is the sequent Γ ⇒ Δ, D is said to be an JG-derivation of Γ ⇒ Δ.
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• If ρ(α) = R, then (that occurrence of) R is said to be of level α.

Definition 2. A JG-derivation is a proof if φ(α) is either identity or non-
contradiction for any leaf α.

3 The calculus SJC

As to the general motivation of the calculus SJC, stack-based Jankov calculus,
we refer the reader to [3], where a twin calculus, SIC, is presented. Analogously
to SIC, to each node of a SJC-derivation is associated a sequent-list 2

Γ1 ⇒ Δ1 ‖Γ2 ⇒ Δ2 ‖ . . . . . . ‖Γn ⇒ Δn

Before examining the rules of SJC, we want to point out a feature of SJC
which is most important and very peculiar of the system we are about to
describe: two distinct sequents can be mutually closed.

As to be expected, the rationale behind the rules of SJC is semantical:
the rules of SJC are just to be read as steps leading to the construction of a
countermodel for any non-theorem A of J. By the application of the rules we
are bound to end up with a tree of sequents which can be readily transformed
into a countermodel for A. The problem is that we need a model based on a
convergent frame, not just a tree. In general, if we add a final point to a given
model based on a tree, we get a contradictory situation. Take the simple case
of (q → ¬p)∨¬p → q). A countermodel for such a formula, if there were one,
would be something like

q ⇒ ¬p

�
�

�
�

���

⇒ (q → ¬p) ∨ (¬p → q)

¬p ⇒ q

�
�

�
�

��	

q, p ⇒



Now, no final point can possibly be added to this countermodel, in fact
at the final point both p and ¬p should be true, and this is impossible. The
lesson to be learned from this is that when we deal with trees as given by
the rules of SJC the notion of mutually closed sequents has to come into play.
The sequents q, p ⇒ and ¬p ⇒ q taken separately are not contradictory, but

2 A sequent-list can be read as a disjunction of implications (
V

Γ1 → W
Δ1) ∨

. . . . . . ∨ (
V

Γn → W
Δn).



The Logic of the Weak Excluded Middle: A Case Study of Proof-Search 101

if we consider them as bearing information that has to merge together, they
contradict each other. In SJC, the search for a countermodel (or for a proof)
of (q → ¬p) ∨ (¬p → q) takes the following form:

q, p ⇒
RJ

¬
q ⇒ ¬p

pop
q ⇒ ¬p ‖¬p ⇒ q

pushJ

⇒ q → ¬p, ¬p → q
R∨⇒ (q → ¬p) ∨ (¬p → q)

Let us examine this tree from below. We start by applying the rule R∨,
then the rule pushJ breaks the sequent ⇒ q → ¬p, ¬p → q into two sequents
q ⇒ ¬p and ¬p ⇒ q, and so it generates a sequent-list. From a semantical
point of view, the rule pushJ corresponds to the splitting in a Kripke model.
The rules of SJC apply only to the last sequent of a sequent-list. No rule can
be applied to ¬p ⇒ q since negated atoms are left unexamined. Therefore
we have reached a sort of dead end and the only thing to do is to put into
play the sequent before the last: this is done by the pop rule. The sequent
¬p ⇒ q which doesn’t occur in the premiss of the pop-rule is said to be a
pop-sequent. Now the rule RJ

¬ is enforced and we get q, p ⇒. No sequent of
the form Γ,A,¬A ⇒ Δ or Γ,A ⇒ A,Δ occurs in the above tree, still there is
a branch - the only branch of the tree - in which both p and ¬p occur in the
antecedents of a leaf-sequent and of a pop-sequent, respectively: q, p ⇒ and
¬p ⇒ q are then mutually closed and consequently the branch is closed.

From a proof-theoretical point of view it is interesting to see what two
mutually closed sequents amount to: an application of the rule cutwem. Let
us see it in detail. Consider the sequents: q, p ⇒ and ¬p ⇒ q. Add ¬p where
p is and ¬¬p where ¬p is.

- In order to emphasize what the situation is, we underline the added formulas.
- Transcribe the underlined formulas till the first application of the pushJ rule

below both the mutually closed sequents
- Apply the rule R→ in each branch separately
- Apply L∨ to the underlined formulas
- By the cutwem rule eliminate the disjunction obtained by L∨.
- Then apply R∨.

¬p, q, p ⇒
R¬¬p, q ⇒ ¬p
R→¬p ⇒ q → ¬p

¬¬p,¬p ⇒ q
R→¬¬p ⇒ ¬p → q
L∨¬p ∨ ¬¬p ⇒ q → ¬p, ¬p → q

cutwem⇒ q → ¬p,¬p → q
R∨⇒ (q → ¬p) ∨ (¬p → q)
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Let us now examine the role played by the rule LJ
→ by the help of a further

example. Take the sequent ⇒ ((p → q) → r)∨ (¬q → s)∨ (p → q) and analyse
it by the rules of SJC, we obtain:

¬p ⇒ r

p → q, q ⇒
RJ

¬
(p → q)� ⇒ p,¬q, r q ⇒ r

LJ
→

(p → q) ⇒ r
pop

(p → q) ⇒ r ‖¬q ⇒ s
pop

(p → q) ⇒ r ‖¬q ⇒ s ‖ p ⇒ q
pushJ

⇒ (p → q) → r, ¬q → s, p → q
R∨⇒ ((p → q) → r) ∨ (¬q → s) ∨ (p → q)

The leaf-sequent p → q, q ⇒ as well as q ⇒ r is mutually closed with the
pop-sequent ¬q ⇒ s, whereas the leaf-sequent ¬p ⇒ r is mutually closed with
the pop-sequent p ⇒ q. Therefore every branch is closed, the proof-search is
successful and we can easily transform it into a JG-proof, see theorem 2. For
the sake of clarity, here is the proof.

¬¬p, ¬p ⇒ r

¬q, p → q, q ⇒
RJ¬

¬q, p → q ⇒ p, ¬q, r ¬q, q ⇒ r

LJ→
¬¬p, ¬q, p → q ⇒ r

R→
¬¬p, ¬q ⇒ (p → q) → r

¬¬q, ¬q ⇒ s

R→
¬¬q ⇒ ¬q → s

L∨
¬q ∨ ¬¬q, ¬¬p ⇒ ((p → q) → r), (¬q → s)

cutwem

¬¬p ⇒ ((p → q) → r), (¬q → s)

¬p, p ⇒ q

R→
¬p ⇒ p → q

L∨
¬p ∨ ¬¬p ⇒ ((p → q) → r), (¬q → s), (p → q)

cutwem

⇒ ((p → q) → r), (¬q → s), (p → q)

R∨
⇒ ((p → q) → r) ∨ (¬q → s) ∨ (p → q)

If we had applied the standard rule L→ the situation would have been:

(p → q)� ⇒ p, r q ⇒ r
L→

(p → q) ⇒ r
pop

(p → q) ⇒ r ‖¬q ⇒ s
pop

(p → q) ⇒ r ‖¬q ⇒ s ‖ p ⇒ q
pushJ

⇒ (p → q) → r, ¬q → s, p → q
R∨⇒ ((p → q) → r) ∨ (¬q → s) ∨ (p → q)

The leaf-sequent (p → q)� ⇒ p, r is neither closed nor mutually closed. The
main weakness of the rule L→ in this context is that it prevents lemma 3
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to hold, and so the incompatibility of sequents such as Γ,A → B ⇒ Δ and
Γ ′,¬(A → B) ⇒ Δ′ is not transferred to the incompatibility of sequents
containing (the negation of) subformulas of either A or B.

3.1 Rules of SJC

It is expedient to mark certain occurrences of formulas in order to avoid
examining formulas unnecessarily.

Definition 3.

- Signed formulas, s-formulas, are formulas marked by either � or †. Only
implicative or double negated formulas can be marked with �. Atomic for-
mulas and the negation of atomic formulas are never signed.

- A sequent-list is either the empty list, 〈 〉, or a word of the form ζ‖Γ ⇒ Δ
where Γ is a multiset of formulas or s-formulas, Δ is a multiset of formulas
and ζ is a sequent-list.

- The length of a sequent-list is defined by recursion: length(〈〉) = 0,
length(ζ‖Γ ⇒ Δ) = length(ζ) + 1.

Notational convention

- Greek letters ζ, ξ, . . . denote sequent-lists. We write ‖Γ ⇒ Δ instead of
〈〉‖Γ ⇒ Δ.

- Capital greek letters signed by †, Π† . . ., denote multisets of formulas each
of which is signed by †.

- Capital greek letters signed by �, Σ� . . ., denote multisets of either im-
plicative or double negated formulas each of which is signed by �.

- p, q . . . denote multisets of atoms with no sign.

Identity
ζ‖A,Γ ⇒ Δ,A

Non− contradiction
ζ‖A,¬A,Γ ⇒ Δ

ζ‖A,B, Γ ⇒ Δ
L∧

ζ‖A ∧B,Γ ⇒ Δ

ζ‖Γ ⇒ A,Δ ζ‖Γ ⇒ B,Δ
R∧

ζ‖Γ ⇒ A ∧B,Δ

ζ‖A,Γ ⇒ Δ ζ‖B,Γ ⇒ Δ
L∨

ζ‖A ∨B,Γ ⇒ Δ

ζ‖Γ ⇒ A,B,Δ
R∨

ζ‖Γ ⇒ A ∨B,Δ

ζ‖Γ,B ⇒ Δ ζ‖Γ,¬A ⇒ Δ ζ‖Γ, (A → B)� ⇒ A,¬B,Δ
LJ
→

ζ‖Γ, (A → B) ⇒ Δ
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ζ‖¬A,Γ ⇒ Δ ζ‖¬B,Γ ⇒ Δ
L¬∧

ζ‖¬(A ∧B), Θ ⇒ Δ

ζ‖¬A,¬B,Γ ⇒ Δ
L¬∨

ζ‖¬(A ∨B), Γ ⇒ Δ

ζ‖¬¬A�, Γ ⇒ ¬A,Δ
L¬¬

ζ‖¬¬A,Γ ⇒ Δ

ζ‖¬¬A�,¬B,Γ ⇒ ¬A,Δ
L¬→

ζ‖¬(A → B), Γ ⇒ Δ

ζ‖Γ,A† ⇒ B,Δ
a fortiori→

ζ‖Γ,A† ⇒ A → B,Δ

ζ‖Γ,C† ⇒ Δ
a fortiori¬

ζ‖Γ,C† ⇒ ¬C,Δ

ζ ‖Σ,Π†,p, C†
1 , . . . , C

†
k, C1, . . . , Ck ⇒

RJ
¬

ζ‖Σ�,Π†,p ⇒ q,¬C1, . . . ,¬Ck

ζ‖Σ, Π
†

, p, A
†
1, A1 ⇒ B1, ¬C1, . . . , ¬Ck ‖ . . . . . . ‖ Σ, Π

†
, p, A

†
n, An ⇒ Bn, ¬C1, . . . , ¬Ck ⇒

pushJ

ζ‖Σ
�

, Π
†

, p ⇒ q, A1 → B1, . . . , An → Bn, ¬C1, . . . , ¬Ck

ζ
pop

ζ ‖Σ�,Π†,p ⇒ q

Conditions on pushJ :

- Σ contains exactly the formulas of Σ� without the �
- A†

1 . . . A
†
n do not occur in Π†

Definition 4. An SJC-derivation is defined in the same way as a JG-derivation
with the rules of SJC instead of the rules of JG.

Definition 5. Consider the conclusion of the pop-rule

ζ
pop

ζ ‖Σ�,Π†,p ⇒ q

- The last sequent Σ�,Π†,p ⇒ q is said to be a pop-sequent.
- If ζ ‖Γ ⇒ Δ is the sequent-list associated to a leaf of a SJC-derivation,

then the last sequent Γ ⇒ Δ is said to be a leaf-sequent.
- A leaf-sequent is said to be closed if it is either of the form Γ ′, A ⇒ A,Δ′

or of the form Γ ′, A,¬A ⇒ Δ, for some A.
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- A leaf-sequent is said to be mutually closed with a pop-sequent if either it is
of the form Γ, r ⇒ Δ and the pop-sequent of the form Σ�,Π†,p,¬r ⇒ q or
it is of the form Γ,¬r ⇒ Δ and the pop-sequent of the form Σ�,Π†,p, r ⇒
q, for some atom r.

Definition 6. Consider a SJC-derivation D.

- A branch is closed if its leaf-sequent is closed or mutually closed with a
pop-sequent occurring in the branch.

- A branch is open if it is not closed.
- D is a proof if every branch is closed.
- D is open if it contains an open branch.

What does an open branch of a SJC-derivation represents? A SJC-
derivation splits only in the presence of rules with two or more premisses
and not when the pushJ -rule is applied, pushJ is a one-premiss rule. From a
semantical point of view an open branch of a SJC-derivation represents one of
the possible alternatives to falsify the sequent at the root. Now the falsehood
of a formula is reduced by the rules of the calculus to the falsehood of a set of
either implicative or negated or atomic subformulas. Each implicative formula
has to be falsified, in general, at different points of a model. So the different
implicative subformulas are put in a stack by the rule pushJ and examined
sequentially as the branch develops. Therefore an open branch codifies, in
general, a model based on a tree. Consider the following SJC-derivation:

...

p ⇒ t → s, q

p, t ⇒ s
pop

p, t ⇒ s ‖ p, y ⇒ v
pushJ

p ⇒ t → s, y → v
R∧

p ⇒ (t → s), (q ∧ (y → v))
R∨

p ⇒ (t → s) ∨ (q ∧ (y → v))
pop

p ⇒ (t → s) ∨ (q ∧ (y → v)) ‖x ⇒ z

...

p ⇒ (t → s) ∨ (q ∧ (y → v)) ‖x ⇒ w
R∧

p ⇒ (t → s) ∨ (q ∧ (y → v)) ‖x ⇒ z ∧ w
pushJ

⇒ p → (t → s) ∨ (q ∧ (y → v)), x → (z ∧ w)
R∨⇒ (p → ((t → s) ∨ (q ∧ (y → v))) ∨ (x → (z ∧ w))

The branch ending with the sequent p, t ⇒ s provides a countermodel for
the sequent at the root of the tree. The proof of this fact is given in lemma
4. The countermodel is as follows, where both the leaf-sequents and the pop-
sequents are falsified at the leaves of the model.
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1 |= p

e


 2 |= x

�
�

�
�

�
�
�	

12 |= p, y

�
�

�
��	11 |= p, t

�
�

�
���

It is easy to see that
11 �|= t → s
12 �|= y → v
1 �|= p → ((t → s) ∨ (y → v))
1 �|= p → ((t → s) ∨ (q ∧ (y → v)))
2 �|= x → z ∧ w
e �|= p → ((t → s) ∨ ((q ∧ (y → v))) ∨ (x → (z ∧ w))

3.2 SJC versus JG

Some questions are in order : is the SJC-proof of (q → ¬p) ∨ (¬p → q) cut-
free? Does it contain cuts in disguise? Is there any reason to prefer a JG-proof
to a SJC-proof? Proofs in JG present themselves in the received Gentzen-style
way: a tree of sequents, with just one sequent associated to each node of the
tree. The first price to pay for this layout is that we can not dispense with
the cut-rule, at least we can not dispense with the special form of the cut-rule
that we call cutwem. A second price is the loss of the subformula property,
as we have seen ¬p ∨ ¬¬p occurs in the JG-proof (q → ¬p) ∨ (¬p → q).
On the contrary, in SJC we can still mantain that the subformula property is
satisfied in so far as a generalized notion of subformula is put into play to the
effect that ¬A and ¬B are also subformulas of ¬(A ∧ B) and ¬(A ∨ B), and
¬A,¬¬A,¬B are counted among the subformulas of ¬(A → B). With SJC
we associate a sequent-list to each node of a proof-tree, but we apply the rules
only to the last sequent of a sequent-list, so this is a minor deviation from the
Gentzen-style layout of proofs. Other calculi differ more profoundely: with the
hypersequent calculi the inference rules can be applied to any sequents of a
hypersequent and not only to the last one, and with the labelled calculi a proof
contains notions - natural numbers, relations, etc - external to the language of
the formulas we want to prove. The novelty with SJC is the notion of mutually
closed sequents. In order to know if a sequent is closed it is not enough to
look at the sequent itself, but one has to look also at some sequent occurring
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below it, in particular to the conclusion of an occurrence of the pop-rule. Our
tenet is that the calculus SJC has good metatheoretical properties at a very
low cost, if it is a cost, i.e. the use of sequent-lists instead of sequents and
the notion of mutually closed sequents. Here are some good metatheoretical
properties fulfilled by SJC:

1. Proof-search for a formula is performed by a single tree, as for classical
logic.

2. Proof-search always terminates since never enters into loops, thanks to
the a fortiori rules.

3. There is no need of back-tracking thanks to the rules pushJ and pop.
4. SJC-proofs satisfy the sub-formula property, where the notion of subfor-

mula is taken in a slightly generalized version.
5. SJC-proofs are cut-free.
6. SJC-proofs can be transformed, if we wish, into JG-proofs.
7. If proof-search in SJC fails we get a Kripke countermodel based on a

convergent frame for the formula we started with.

4 Soundness and completeness

Given an open branch, a segment 〈ζ ‖Γ1 ⇒ Δ1, . . . , ζ ‖Γk ⇒ Δk〉 is said
to be a pop-segment if the first sequent-list ζ ‖Γ1 ⇒ Δ1 is the premiss of an
occurrence of the pop-rule or is the initial sequent of the tree, the last sequent-
list, ζ ‖Γk ⇒ Δk is the conclusion of an occurrence of the pop-rule and the
pop-rule never occurs inside the segment.

ζ
pop

ζ ‖Γk ⇒ Δk

...
ζ ‖Γ1 ⇒ Δ1

pop
ζ ‖Γ1 ⇒ Δ1 ‖Θ ⇒ Θ′

Lemma 2. Let σ = 〈ζ ‖Γ1 ⇒ Δ1, . . . , ζ ‖Γk ⇒ Δk〉 be a pop-segment of an
open branch. Define Lσ = Γ1 ∪ · · · ∪ Γk. Then

- Δk = p
- If ¬¬B ∈ Lσ, then B ∈ Lσ

- If (B → C) ∈ Lσ, then either C ∈ Lσ or ¬B ∈ Lσ

- If ¬(B → C) ∈ Lσ, then B ∈ Lσ and ¬C ∈ Lσ

Given a pop-segment σ = 〈ζ ‖Γ1 ⇒ Δ1, . . . , ζ ‖Γk ⇒ Δk〉, let us denote
by Ltop

σ the formulas of Γk.
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Lemma 3. Let σ1 . . . σn be the sequence of pop-segments that constitute an
open branch. If there is a formula A such that A ∈ Lσi

and ¬A ∈ Lσj
then

there is an atomic formula p such that p ∈ Ltop
σi

and ¬p ∈ Ltop
σj

or there is an
atomic formula q such that ¬q ∈ Ltop

σi
and q ∈ Ltop

σj
.

Proof. By induction on A. If p ∈ Lσi
, then p ∈ Ltop

σi
, because atomic

formulas are never cancelled along a segment. Analogously for A = ¬p.

- A = (B ∧ C). If (B ∧ C) ∈ Lσi
, then ¬B ∈ Lσi

and ¬C ∈ Lσi
; if

¬(B ∧ C) ∈ Lσi
, then either B ∈ Lσi

or C ∈ Lσi
, so by induction hy-

pothesis the lemma holds.

- Analogously for A = (B ∨ C).

- A = (B → C). Let (B → C) ∈ Lσi
and ¬(B → C) ∈ Lσj

. Then ¬¬B� ∈
Lσj

and ¬C ∈ Lσj
. Since σj is a pop-segment, by lemma 2.2, B ∈ Lσj

.
Since (B → C) ∈ Lσi

, by lemma 2.3 either ¬B ∈ Lσi
or C ∈ Lσi

.
- A = ¬B. Let ¬B ∈ Lσi and ¬¬B ∈ Lσj . Then B ∈ Lσj by lemma 2.2.

4.1 Labelling sequent-lists

As with SIC, we label SJC-derivations. A labelling function φ�(α) associates
labels to every sequents occurring in a SJC-derivation D = 〈T, φ, ρ〉. Each
label is a list of natural numbers, and we use the letters a, b, c, to denote them
so as to avoid confusion with the labels of the nodes of T . The empty list of
natural numbers is denoted by e.

In this section ζ1 . . . ζn denote lists of labelled sequents.

Definition 7. The function φ� is so defined:

- if φ(ε) = 〈‖Γ ⇒ Δ〉 then φ�(ε) = [‖Γ ⇒e Δ],

- if φ�(α) = 〈ζ‖Γ ⇒a Δ〉 and ρ(α) ∈ {L∧, R∧, L∨, R∨, L→, L¬∧, L¬∨, L¬¬,
L¬→, a fortiori→, a fortiori¬}, then φ�(αi) = 〈ζ‖Γ ′ ⇒a Δ′〉, where
Γ ′ ⇒a Δ

′ is a premiss of ρ(α)

- if φ�(α) = 〈ζ‖Σ�,Π†,p ⇒ q,¬C1, . . . ,¬Ck〉 and ρ(α) = R¬, then
φ�(α1) = 〈ζ‖Σ,Π†,p, C1, . . . , Ck ⇒a1〉

- if φ�(α) = 〈ζ‖Σ�,Π†,p ⇒ q, A1 → B1, . . . , An → Bn,¬C1, . . . ,¬Ck〉 and
ρ(α) = pushJ , then φ�(α1) = 〈ζ‖Σ,Π†,p, A†

1, A1 ⇒a1 B1,¬C1, . . . ,¬Ck〉, . . . ,
〈ζ‖Σ,Π†,p, A†

n, An ⇒an Bn,¬C1, . . . ,¬Ck〉

- if φ�(α) = 〈ζ‖Γ ⇒a Δ〉 and ρ(α) = pop, then φ�(α1) = 〈ζ〉.
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Consider now the following open SJC-derivation and let us add labels to its
sequents.

〈 〉
pop

q ⇒ p
pop

q ⇒ p ‖ p ⇒ q
pushJ

⇒ q → p, p → q
R∨⇒ (q → p) ∨ (p → q)

〈 〉
pop

q ⇒1 p
pop

q ⇒1 p ‖ p ⇒2 q
pushJ

⇒e q → p, p → q
R∨⇒e (q → p) ∨ (p → q)

The labelled derivation can be transformed into the countermodel based on
the tree to the left hand side and then into the countermodel based on the
same tree but with a final point. The fact that the addition of the final point
does not alter the truth values of the formulas at the various point of the
initial tree is guaranteed by lemmas 3 and 5.
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Consider the function λ that gives the label of the last sequent of a sequent-
list : if φ�(α) = 〈ζ‖Γ ⇒a Δ〉, then λ(α) = a.

Take an open branch ζ1 . . . ζn of D. For every a = λ(ζj), 1 ≤ j ≤ n, we
define

Ta =
⋃{Γ : ζj = 〈ξ‖Γ ⇒a Δ〉 for some j, 1 ≤ j ≤ n}

Fa =
⋃{Δ : ζj = 〈ξ‖Γ ⇒a Δ〉 for some j, 1 ≤ j ≤ n}

Ta e Fa are saturated, i.e. they satisfy the following conditions:
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1. if (A ∧B) ∈ Ta then A ∈ Ta and B ∈ Ta

2. if (A ∧B) ∈ Fa then either A ∈ Fa or B ∈ Fa

3. if (A ∨B) ∈ Ta then either A ∈ Ta or B ∈ Ta

4. if (A ∨B) ∈ Fa then A ∈ Fa and B ∈ Fa

5. if (A → B) ∈ Ta then either ¬A ∈ Ta or B ∈ Ta or
(A ∈ Fa and ¬B ∈ Fa)

6. if (A → B) ∈ Fa and A† ∈ Ta then B ∈ Fa

7.1 if ¬(A ∧B) ∈ Ta then ¬A ∈ Ta or ¬B ∈ Ta

7.2 if ¬(A ∨B) ∈ Ta then ¬A ∈ Ta and ¬B ∈ Ta

7.3 if ¬(A → B) ∈ Ta then ¬B ∈ Ta and ¬A ∈ Fa

7.4 if ¬¬A ∈ Ta then ¬A ∈ Fa

Let us consider the model M = 〈W,≤, I〉, where W = {λ(ζ1), . . . , λ(ζn)},
≤ is the usual order between lists of natural numbers (see § 2.2) and I(p) =
{b ∈ W : p ∈ Tb}. ≤ is a partial order and it holds that if a ≤ b and a ∈ I(p)
then b ∈ I(p).

Lemma 4. Let b ∈ W . For any formula E (signed or unsigned), (1) if
E ∈ Tb then M |=b E; (2) if E ∈ Fb then M �|=b E.

Proof. By induction on the weighted length of E.

Definition 8. The weighted length of a formula A, wl(A), is so defined by
induction on A.

- wl(p) = 0
- wl(A ∧B) = wl(A ∨B) = wl(A → B) = wl(A) + wl(B) + 2
- wl(¬A) = wl(A) + 1

If E is a propositional variable the lemma holds by the definition of I(p).
If E is A ∧ B or A ∨ B the lemma holds because Tb is saturated and by the
induction hypothesis.
Let E = A → B.

• If A → B ∈ Fb we distinguish two cases.

- A† ∈ Tb. Then B ∈ Fb, so by induction hypothesis M |=b A and M �|=b B
therefore M �|=b A → B.

- A† �∈ Tb. Then A → B is a principal formula of pushJ . Therefore A ∈ Tbj

and B ∈ Fbj , for some 1 ≤ j ≤ m. Since the branch is open, bj = λ(ζk),
for some k, 1 ≤ k ≤ n. By induction hypothesis M |=bj A and M �|=bj B,
therefore M �|=b A → B.

• If (A → B) ∈ Tb, then for any b′ ∈ W , b ≤ b′, either ¬A ∈ Tb′ orB ∈ Tb′ or
((A → B) ∈ Tb, A ∈ Fb′ and ¬B ∈ Fb′), therefore by induction hypothesis
either M |=b′ ¬A or M |=b′ B or M �|=b′ A, hence M |=b A → B.

Let E = ¬A.
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• If ¬A ∈ Fb we distinguish two cases.
- A† ∈ Tb. Then by induction hypothesis M |=b A, therefore M �|=b ¬A.
- A† �∈ Tb. Then ¬A is a principal formula of pushJ . Therefore A ∈ Tbj

for some 1 ≤ j ≤ m. Since the branch is open, bj = λ(ζk), for some k,
1 ≤ k ≤ n. By induction hypothesis M |=bj A, therefore M �|=b ¬A.

• If ¬A ∈ Tb we distinguish five cases:
- If ¬p ∈ Tb, then for any b′ ∈ W (in particular those b′ ≥ b), p /∈ Tb′

because the branch is open, therefore for any b′, M �|=b′ p, so M |=b ¬p.
- If ¬(A ∧ B) ∈ Tb, then either ¬A ∈ Tb or ¬B ∈ Tb, so by induction

hypothesis either M |=b ¬A or M |=b ¬B, then the lemma follows.
- If ¬(A∨B) ∈ Tb, then ¬A ∈ Tb and ¬B ∈ Tb, so by induction hypoth-

esis either M |=b ¬A and M |=b ¬B, then the lemma follows.
- If ¬¬A ∈ Tb, then for any b′, b′ ≥ b, ¬A ∈ Fb, so for any b′, b′ ≥ b,

there is a c, c ≥ b′, such that A ∈ Tc. By induction hypothesis for any
such b′ there is a c, c ≥ b′, such that M |=c A, so M |=b ¬¬A.

- If ¬(A → B) ∈ Tb, then ¬¬A� ∈ Tb, ¬B ∈ Tb and ¬A ∈ Fb, so for
every b′, b′ ≥ b, there is a c, c ≥ b′, such that A ∈ Tc and B ∈ Fc,
therefore by induction hypothesis M |=c A and M �|=c B, hence M |=c

¬(A → B).

The theorem follows.

Definition 9. Given an open branch ζ1), . . . , ζn, let Ω =
⋃{Γ : ζj = 〈ξ‖Γ ⇒

Δ〉 for some j, 1 ≤ j ≤ n}

Let us consider the model M′ obtained by adding to M a final point ω,
so M′ = 〈W ∪ {ω},≤, I ′ >, where

- a ≤ ω for all a ∈ W and ω ≤ ω.
- a ∈ I ′(p) iff a ∈ I(p), for all a ∈ W .
- if for some a ∈ W , p ∈ Ta, then ω ∈ I ′(p).

I ′ is well defined because ζ1 . . . ζn is an open branch.

Lemma 5. For any formula A ∈ Ω and c ∈ W ,

1. if M |=c A then M′ |=c A and M′ |=ω A
2. if M �|=c A then M′ �|=c A.

Proof. By induction on the weighted length of A.

- If M |=c p, then M′ |=c p and M′ |=ω p by definition of I ′.

- If M �|=c p, then M′ �|=c p by definition of I ′.
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- If M |=c ¬p, then p �∈ Ω since the branch is open, therefore for all a ∈ W ,
M′ �|=a p, hence M′ �|=ω p, consequently M′ |=c ¬p and M′ |=ω ¬p.

- If M �|=c ¬D, where D is any wff, then there is a d ∈ W , c ≤ d such that
M |=d D. Whence by induction hypothesis M′ |=d D and M′ |=ω D,
therefore M′ �|=c ¬D.

- If M |=c ¬(B∧C), then M |=c ¬B or M |=c ¬C, so by induction hypoth-
esis either (M′ |=c ¬B and M′ |=ω ¬B) or (M′ |=ω ¬C and M′ |=ω ¬C),
whence M′ |=c ¬(B ∧ C) and M′ |=ω ¬(B ∧ C).

- If M |=c ¬(B ∨ C), then M |=c ¬B and M |=c ¬C, so by induction
hypothesis M′ |=c ¬B, M′ |=c ¬C, M′ |=ω ¬B and M′ |=ω ¬C. Whence
M′ |=c ¬(B ∨ C) and M′ |=ω ¬(B ∨ C).

- If M |=c ¬¬B, then M |=d B for some d ≥ c. By induction hypothesis
M′ |=d B and M′ |=ω B, therefore M′ |=c ¬¬B and M′ |=ω ¬¬B.

- If M |=c ¬(B → C), then M |=c ¬¬B and M |=c ¬C, whence for some
d ≥ c, M |=d B. By induction hypothesis M′ |=d B, M′ |=c ¬C, M′ |=ω B
and M′ |=ω ¬C, therefore M′ |=c ¬(B → C) and M′ |=ω ¬(B → C).

- If M |=c (B → C), then M |=c ¬B or there is a d, d ≥ c, such
that M |=d C. Then by induction hypothesis either (M′ |=c ¬B and
M′ |=ω ¬B) or (M′ |=d C and M′ |=ω C), therefore M′ |=c B → C and
M′ |=ω B → C.

- If M �|=c (B → C), then there is a d ∈ W , c ≤ d, and M |=d B and
M �|=d C. Whence by induction hypothesis M′ |=d B and M′ �|=d C,
therefore M′ �|=d B → C.

- If M |=c (B∧C), then M |=c B and M |=c C, so by induction hypothesis
M′ |=c B, M′ |=c C, M′ |=ω B and M′ |=ω C, whence M′ |=c (B ∧ C)
and M′ |=ω (B ∧ C).

- If M �|=c (B ∧ C), then M �|=c B or M �|=c C, so by induction hypothesis
M′ �|=c B or M′ �|=c C, whence M′ �|=c (B ∧ C).

- If M |=c (B ∨ C), then M |=c B or M |=c C, so by induction hypothesis
either (M′ |=c B and M′ |=ω B) or (M′ |=c C and M′ |=ω C), whence
M′ |=c (B ∨ C) and M′ |=ω (B ∨ C) .

- If M �|=c (B∨C), then M �|=c B and M �|=c C, so by induction hypothesis
M′ �|=c B and M′ �|=c C, whence M′ �|=c (B ∨ C).



The Logic of the Weak Excluded Middle: A Case Study of Proof-Search 113

Theorem 1. (Completeness of SJC) Given an open SJC-derivation D of a
sequent-list ‖Γ ⇒ Δ not containing signed formulas, there is a model M′

based on a tree with a final point such that M′ �|= ∧(Γ ) → ∨
(Δ).

Theorem 2. (Soundness of SJC) Given a SJC-proof D of a sequent-list ‖Γ ⇒
Δ not containing signed formulas, there is a JG-proof of Γ ⇒ Δ.

Proof. By induction on the number n of the mutually closed leaf-sequents.
n = 0. Proceed as for lemma 4.7 of [3]. Let n > 0.

First transformation. We transform D into a SJC-derivation D′ with aux-
iliary formulas added to the antecedents of some of its sequents. Auxiliary
formulas do not play any role whatsoever in the SJC-derivation D′, and are
double underlined, so D′ is nothing but D with some double underlined for-
mulas added to its sequents.
Consider a leaf-sequent Θ, p ⇒ Φ and let Γ,¬p ⇒ Δ be the pop-sequent
mutually closed with Θ, p ⇒ Φ. Denote by pop(¬¬p) the occurrence of the
pop-rule whose conclusion is ζ ‖Γ,¬p ⇒ Δ. (Analogously, if the leaf sequent
is Θ,¬p ⇒ Φ and the pop-sequent is Γ, p ⇒ Δ, denote the pop-rule by
pop(¬p).) Consider then the occurrence of the rule pushJ of maximum height
that is below both Θ, p ⇒ Φ and Γ,¬p ⇒ Δ. Denote such an occurrence by
pushJ

(¬p,¬¬p). Add ¬p to the antecedent of Θ, p ⇒ Φ and to the antecedents of

all the sequents between Θ, p ⇒ Φ and the premiss of pushJ
(¬p,¬¬p), add ¬¬p

to the antecedent of Γ,¬p ⇒ Δ and to the antecedents of all the sequents be-
tween Γ,¬p ⇒ Δ and the premiss of pushJ

(¬p,¬¬p). D′ is still a SJC-derivation
since the double underlined formulas are not part of the derivation.

Let us show the transformation by way of an example. The SJC-proof
below contains two mutually closed leaf-sequents and a closed leaf-sequent:

p, r ⇒ s p, q ⇒ s
L∨

p, r ∨ q ⇒ s
pop

p, r ∨ q ⇒ s ‖ p,¬r ⇒ t
pushJ

p ⇒ r ∨ q → s,¬r → t
R∨

p ⇒ (r ∨ q → s) ∨ (¬r → t)

p,¬s ⇒ p
pushJ

p ⇒ ¬s → p
R∧

p ⇒ [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p)
pop

p ⇒ [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p) ‖¬q, z ⇒
R¬

p ⇒ [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p) ‖¬q ⇒ ¬z
pushJ

⇒ p → ((r ∨ q → s) ∨ (¬r → t)) ∧ (¬s → p), ¬q → ¬z

After the first transformation, it becomes
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¬r, p, r ⇒ s ¬q, p, q ⇒ s
L∨¬r,¬q, p, (r ∨ q) ⇒ s

pop(¬¬r)¬r,¬q, p, (r ∨ q) ⇒ s ‖ ¬¬r, p,¬r ⇒ t
pushJ

(¬r,¬¬r)¬q, p ⇒ (r ∨ q → s), (¬r → t)
R∨¬q, p ⇒ (r ∨ q → s) ∨ (¬r → t)

p,¬s ⇒ p
pushJ

p ⇒ (¬s → p)
R∧¬q, p ⇒ [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p)

pop(¬¬q)¬q, p ⇒ [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p) ‖ ¬¬q,¬q, z ⇒
R¬¬q, p ⇒ [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p) ‖ ¬¬q,¬q ⇒ ¬z
pushJ

(¬q,¬¬q)⇒ p → [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p), (¬q → ¬z)

Second transformation. Now the double underlined formulas become sim-
ply underlined and are treated on a par with the non underlined ones; we keep
them underlined only for the sake of clarity. Therefore all the leaf-sequents
are axioms and also the pop-sequents containing underlined formulas are ax-
ioms. Notice that the sequent at the root contains no underlined formulas.
We transform the SJC-proof D′ into a JG-proof D�.
By induction on the height of the SJC-proof D′ we show that
(1) every sequent-list contains at least a sequent provable in JG and
(2) all the sequents containing underlined formulas are provable in JG.
Let Γ ⇒ Δ be the sequent at the root of D′.

1. The height of D′ is 1. Then Γ ⇒ Δ is either identity or non-contradiction,
so it is an axiom of JG. No underlined formulas can possibly occur in
Γ ⇒ Δ.

2. The height of D′ is greater than 1. Consider the last rule.
a) The last rule is pop. By induction hypothesis the premiss of the pop-

rule satisfies conditions (1) and (2), so it does the conclusion. Notice
that the last sequent of the conclusion contains no underlined formu-
las.

b) The last rule is pop(¬p) or pop(¬¬p). By induction hypothesis the pre-
miss of the pop-rule satisfies conditions (1) and (2). Moreover the last
sequent of the conclusion of pop(¬p) (pop(¬p,¬¬p)) contains an under-
lined formula and it is an axiom of JG. So conditions (1) and (2) are
again satisfied.

c) The last rule is one of L∧,R∨, L¬∨, L¬¬, L¬→, afortiori→, afortiori¬,
RJ

¬. Let Γ ′ ⇒ Δ′ be a JG-provable sequent of the premiss ξ′.
- if Γ ′ ⇒ Δ′ is the last sequent of ξ′, then also the last sequent of

the conclusion ξ is JG-provable by the application of the JG-rule
with the same name.

- if Γ ′ ⇒ Δ′ is not the last sequent of ξ′, then ξ contains the same
JG-provable sequents as ξ′, since SJC-rules apply only to the last
sequent.
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d) The rule is one of R∧, L∨, LJ
→, L¬∧, L.¬∨. Analogously to the pre-

ceding case.
e) The last rule is pushJ :

ζ‖Σ, Π
†

, p, A
†
1, A1 ⇒ B1, ¬C1, . . . , ¬Ck ‖ . . . . . . ‖ Σ, Π

†
, p, A

†
n, An ⇒ Bn, ¬C1, . . . , ¬Ck ⇒

pushJ

ζ‖Σ
�

, Π
†

, p ⇒ q, A1 → B1, . . . , An → Bn, ¬C1, . . . , ¬Ck

By induction hypothesis the premiss ξ′ contains at least a JG-provable
sequent, say Γ ′ ⇒ Δ′.
- if Γ ′ ⇒ Δ′ is a principal sequent of pushJ (i.e. it is one of the

last n sequents of ξ), then we get a JG-proof of the conclusion
of pushJ by an application of R→ to Γ ′ ⇒ Δ′. The conclusion
trivially satisfies conditions (1) and (2).

- if Γ ′ ⇒ Δ′ is not a principal sequent of pushJ , then Γ ′ ⇒ Δ′

occurs also in the conclusion of pushJ and so conditions (1) and
(2) are satisfied.

f) The last rule is pushJ
(¬p,¬¬p). So the situation in D′ is as follows

...

ξ‖ . . . ‖Γ,¬p,Ai ⇒ Bi‖ . . . ‖Γ,¬¬p,Aj ⇒ Bj‖ . . .
pushJ

(¬p,¬¬p)
ξ‖ . . . ‖Γ ⇒ A1 → B1 . . . An → Bn

Since sequents containing underlined formula are provable in JG, this can be
transformed into

...

Γ,¬p,Ai ⇒ Bi
R→

Γ,¬p ⇒ A1 → B1 . . . An → Bn

...

Γ,¬¬p ⇒ Aj ⇒ Bj
R→

Γ,¬¬p ⇒ A1 → B1 . . . An → Bn
L∨¬p ∨ ¬¬p, Γ ⇒ A1 → B1 . . . An → Bn

cutwem
Γ ⇒ A1 → B1 . . . An → Bn

So the theorem is proved. Here is the JG-proof od the example we started
with.
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¬r, p, r ⇒ s ¬q, p, q ⇒ s

L∨
¬r, ¬q, p, (r ∨ q) ⇒ s

R→
¬r, ¬q, p ⇒ (r ∨ q → s)

¬¬r, p, ¬r ⇒ t

R→
¬¬r, p ⇒ (¬r → t)

L∨
¬r ∨ ¬¬r, ¬q, p ⇒ (r ∨ q → s), (¬r → t)

cutwem

¬q, p ⇒ (r ∨ q → s), (¬r → t)

R∨
¬q, p ⇒ (r ∨ q → s) ∨ (¬r → t)

p, ¬s ⇒ p

R→
p ⇒ (¬s → p)

R∧
¬q, p ⇒ [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p)

R→
¬q ⇒ p → [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p)

¬¬q, ¬q, z ⇒
R¬

¬¬q, ¬q ⇒ ¬z

R→
¬¬q ⇒ (¬q → ¬z)

L∨
¬q ∨ ¬¬q ⇒ p → [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p), (¬q → ¬z)

cutwem

⇒ p → [(r ∨ q → s) ∨ (¬r → t)] ∧ (¬s → p), (¬q → ¬z)
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We present strategies and heuristics underlying a search procedure that finds
proofs for Gödel’s incompleteness theorems at an abstract axiomatic level. As
axioms we take for granted the representability and derivability conditions
for the central syntactic notions as well as the diagonal lemma for construct-
ing self-referential sentences. The strategies are logical ones and have been
developed to search for natural deduction proofs in classical first-order logic.
The heuristics are mostly of a very general mathematical character and are
concerned with the goal-directed use of definitions and lemmata. When they
are specific to the meta-mathematical context, these heuristics allow us, for
example, to move between the object-and meta-theory. Instead of viewing
this work as high-level proof search, it can be regarded as a first step in a
proof-planning framework: the next refining steps would consist in verifying
the axiomatically given conditions. Comparisons with the literature are de-
tailed in Section 4. (The general mathematical heuristics are indeed general:
in Appendix B we show that they, together with two simple algebraic facts
and the logical strategies, suffice to find a proof of “

√
2 is not rational”.)

1 Background

In a genuinely experimental spirit, we extended the intercalation method for
proof search from pure first-order logic to parts of mathematics by interweav-
ing general logical strategies with specific mathematical heuristics. The guid-
ing question for our investigation was: What is needed, in addition to purely
logical considerations, for finding proofs of significant theorems in a fully au-
tomated way? We answer the question for Gödel’s incompleteness theorems
[23]. When proved at an abstract axiomatic level they lend themselves nat-
urally to such an investigation; they have intricate, yet not overwhelmingly
difficult proofs, and they are obviously significant. During the academic years
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1975–77, the first author had taken steps towards establishing them interac-
tively. That work was done for a computer-based course on Elementary Proof
Theory ; a detailed report was given in [18] and a brief summary in [22].

Elementary Proof Theory presented the incompleteness theorems for ZF∗,
that is Zermelo–Fraenkel set theory without the axiom of infinity; see, for
example, [7]. Its major innovation consisted in carrying out the meta-math-
ematical work in a formal theory of binary trees and elementary inductive
definitions, called tem.1 Without the detour of their arithmetization, the in-
ductively given syntactic notions were shown to be representable in ZF∗; the
diagonal lemma was established and the proof of the Hilbert–Bernays deriv-
ability conditions, central for the second theorem, was sketched. Within that
high-level framework the standard material on the incompleteness theorems
is compact and the proofs are direct. It was natural to ask, whether the proofs
can be found via an appropriate extension of the intercalation method.

The arguments for the incompleteness theorems are carried out in the first-
order theory tem: instead of viewing syntactic objects as (having been coded
as) natural numbers, we consider them as finitely branching trees; instead of
defining syntactic notions recursively, we specify them by elementary inductive
definitions, briefly, by eid’s. In the language of tem we have the constant S
for the empty tree and the function symbol [ , ] for the binary operation of
building a tree from two given ones. We use X, Y , Z—possibly with indices—
as variables ranging over binary trees. The axioms for S and [ , ] are formulated
in analogy to those of Dedekind–Peano arithmetic for zero and successor. The
further axioms of tem include the induction principle for binary trees, and
closure and minimality conditions for the eid’s. Instead of discussing these
axioms in generality—the details do not matter for the current project—we
specify some definitions that are actually needed to characterize the formal
theory for which the incompleteness theorems are to be proved.

The theory to be considered is ZF∗, Zermelo and Fraenkel’s theory of sets
without the axiom of infinity. The details of its axiomatic formulation do not
matter either for the current project. Let us assume that it is formulated in a
first-order language with x, y, z—possibly with indices—as variables ranging
over sets. To indicate the general character of eid’s we specify the generating
clauses of the familiar notion of a formula (taking for granted the concepts of
atomic formula and of variable); @ stands for any binary sentential connective,
Q for the existential or universal quantifier:

If X is an atomic formula, X is a FORMULA;
If X is a FORMULA, [¬, X] is a FORMULA;
If X is a FORMULA and Y is a FORMULA, [@, [X,Y ]] is a FORMULA;
If X is a variable and Y is a FORMULA, [[Q,X], Y ] is a FORMULA.

1 tem abbreviates Theory for Elementary Meta-Mathematics. Feferman system-
atically investigates in his papers [10] and [11] the use of “finitary inductive”
definitions in meta-mathematics.
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We write also “FORM(X)” for “X is a FORMULA”. tem contains for such
eid’s a closure and a minimality principle. The first principle asserts that
FORM is closed under the above clauses and is expressed by

FOR ALL X (if A(FORM, X) then FORM(X)).2

The minimality principle claims that FORM is the smallest such class.
This is approximated in first-order logic by the usual principle of induction
for formulas:

If FOR ALL X (if A(P,X) then P (X))
then FOR ALL X (if FORM(X) then P (X)).

Formulas are binary trees built up from the empty tree using pairing. In a
similar way one can generate inductively the relation X is a proof of Y
from assumptions Z1, . . . , Zn or from a(n inductively generated) class of ax-
ioms; if X is a proof of Y using axioms of ZF∗, this relation is denoted by
PROOF(X,Y ). To indicate that there is a ZF∗-proof for Y , we write ZF∗ � (Y ),
ZF∗ � Y or THEO(Y ).

Using the constant ∅ and the set-theoretic pairing operation 〈, 〉 one can
build up terms in the language of ZF∗ whose parse trees are isomorphic to
the binary trees; they are used as names for the meta-mathematical trees in
the same way as numerals in Dedekind–Peano arithmetic are used as names
for natural numbers. With every meta-mathematical tree we can directly as-
sociate its set-theoretic name or code: CODE(S) = ∅ and CODE([X,Y ]) =
〈CODE(X),CODE(Y )〉. We also write �X� for CODE(X) or indicate it by X.
This is the apparatus needed to formulate the representability conditions for
the syntactic notions. We give them paradigmatically for FORM and PROOF:

If FORM(X) then ZF∗ � form(X), and
If NOT FORM(X) then ZF∗ � ¬ form(X).

“form” is a formula in the language of set theory for which these conditions
are provable in tem. Similarly, there is a formula “proof” in the language of
ZF∗ that represents the proof relation PROOF:

If PROOF(X,Y ) then ZF∗ � proof(X,Y ), and
If NOT PROOF(X,Y ) then ZF∗ � ¬ proof(X,Y ).

Using the first representability condition for PROOF one can establish:

If THEO(Y ) then ZF∗ � theo(Y ),

2 A(P, X) is obtained from the generating clauses; it is the disjunction of the fol-
lowing tem-formulas: (i) X is atomic; (ii) (X)0 is ¬ and P ((X)1); (iii) (X)0 is
@ and P (((X)1)0) and P (((X)1)1); (iv) ((X)0)0 is Q and ((X)0)1 is a variable
and P ((X)1). P can be viewed as either a meta-variable over tem-formulas or
as a free second-order variable; under the second reading we have an appropriate
substitution rule in the logical calculus for tem.



120 Wilfried Sieg and Clinton Field

where theo(y) abbreviates (∃x) proof(x, y) Finally, we will use the Self-reference
Lemma (or Diagonal Lemma) in the form: if F is a formula in the language
of set theory (with one free variable), then there is a sentence DF in that
very language such that ZF∗ proves (DF ↔F(DF )). Applied to the formula
¬ theo(y), the self-reference lemma yields the Gödel sentence G that expresses
its own unprovability, i.e., ZF∗ proves (G ↔ ¬ theo(G)).

With this systematic background it is not difficult to prove that G is not
provable in ZF∗ assuming, of course, that ZF∗ is consistent. So let us assume—
in order to obtain a contradiction—that ZF∗ proves G; then, by the diago-
nal lemma concerning G, ZF∗ proves ¬ theo(G). On the other hand, by the
(semi-) representability of THEO, we can infer from the fact that ZF∗ proves G,
that ZF∗ establishes theo(G). Thus, ZF∗ proves both ¬ theo(G) and theo(G),
and we have obtained a contradiction! The independence of G requires a proof
that ¬G is not provable either; for that a stronger assumption concerning ZF∗,
stronger than mere consistency, has to be made. Gödel used for that purpose
the notion of ω-consistency; the corresponding concept for the context of our
meta-mathematical set-up is τ -consistency, thinking of τ as the class of (sets
denoted by codes for) binary trees. ZF∗ is τ -consistent is defined by the condi-
tion: there is no formula F (y) such that ZF∗ proves (∃y)(τ(y) &F(y)) and also
¬F(Y ) for all Y ; or equivalently, for all formulas F (y), if ZF∗ proves ¬F(Y )
for all Y , then ZF∗ does not prove (∃y)(τ(y) &F(y)).

Assuming that ZF∗ is τ -consistent, we show now that ZF∗ does not prove
the negation of the Gödel sentence G. By what we established already (and
the fact that τ -consistency implies ordinary consistency) we know that

FOR ALL X: NOT PROOF(X,G);

the representability of PROOF implies

FOR ALL X: ZF∗ � ¬ proof(X,G).

But then the τ -consistency of ZF∗ ensures

NOT ZF∗ � (∃y) proof(y,G).

As the formula (∃y) proof(y,G) is abbreviated by theo(G), we can use the self-
reference lemma for G to infer that this formula is in ZF∗ provably equivalent
to ¬G. Thus, NOT ZF∗ � (¬G), and the independence of G from ZF∗ has
been established.

Given the axiomatic context provided by the representability of PROOF

and THEO and the self-reference lemma applied to ¬ theo(y), the proofs are
direct, yet intricate. To take a first step towards describing the search algo-
rithm that finds proofs of these and related theorems, we present briefly the
basic ideas underlying the intercalation method for classical logic; for the the-
oretical underpinnings we refer to Sieg [19], Sieg and Byrnes [20] and Byrnes
[6]. We should emphasize at this point that, in our view, logical formality per
se does not facilitate the finding of proofs. However, logic within a natural
deduction framework does help to bridge the gap between assumptions and
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conclusions by suggesting very rough structures for arguments, i.e., logical
structures that depend solely on the syntactic form of assumptions and goals.
This role of logic, though modest, is the crucial starting-point for moving up
to subject-specific considerations that support a theorem. In the case study
at hand we will show, how far these logical considerations go, and how they
can be extended quite naturally by the leading mathematical ideas underlying
Gödel’s proofs.

2 Intercalation: broad strategies & special heuristics

The intercalation method is a proof search procedure that is goal-directed and
guided by the possibly expanding syntactic context of the problem at hand.
In first-order logic it is a complete procedure and a basis for broad logical
strategies. The fundamental idea is straightforward. In order to bridge the
gap between premises A1, . . . , An and a goal B, one applies systematically the
rules of the natural deduction calculus, i.e., the elimination rules are applied
only from “above”, whereas the introduction rules are inverted and applied
from “below”. Such systematic applications of the rules generate a search
space that either contains a proof of B from the assumptions A1, . . . , An or
provides a semantic counterexample to the claim that B is a logical conse-
quence of A1, . . . , An—tertium non datur; in addition, proofs contained in the
search space are necessarily normal. The argument for this sharpened com-
pleteness theorem provides a method for searching directly for normal proofs;
indeed, it yields also a semantic argument for normal form theorems in natu-
ral deduction. Such arguments concerning classical first-order logic were first
given in [19], later also for intuitionistic logic and some modal logics in col-
laboration with Cittadini in [21].

Normal proofs satisfy a similar subformula property as cut-free derivations
in the sequent calculus. That, of course, allows a restriction of the systematic
search and is basic for broad strategies underlying our proof search: (i) ex-
tracting B via elimination rules—if B is a strictly positive subformula of an
assumption, (ii) sub-goaling via the appropriate inverted introduction rule—if
B is a logically complex formula, (iii) refuting B via the elimination rule for
negation—if an appropriate pair of contradictory formulas is available.3 In
the latter case there must be a negation that is a strictly positive subformula
of an assumption. It is evident that direct proof search is strongly and natu-
rally constrained by the syntactic context of the problem, as only particular
subformulas can be intercalated between assumptions and goals.

With these logical strategies in the background let us return to the proof
of the first part of the first incompleteness theorem and examine, how the
3 This condition was modified for the republication. The old formulation was “(iii)

refuting B via the rules for negation—if B is a negation or an atomic formula and
if an appropriate pair of contradictory formulas is available”. Negated formulas
are actually treated under (ii); the restriction to atomic formulas is too restrictive.
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intercalation method might find it with “a little help” (when pure logic is
unable to proceed any further). So we begin with the goal NOT (ZF∗ � (G))
and the premise ZF∗CONS. We also have a definition and a lemma available,
namely, the definition

ZF∗CONS IFF NOT [ZF∗ � (G) AND ZF∗ � (¬G)]

and the consequence of the diagonal lemma for ¬ theo(x), i.e.,

ZF∗ � (G ↔ ¬ theo(G)).4

The goal cannot be extracted from the premises. Thus, the algorithm proceeds
indirectly with the assumption ZF∗ � (G) and needs a pair of contradictory
formulas as new goals. However, no negation occurs as a strictly positive
subformula of the premise. As there is a negation in the definition of the
premise, we use it and the premise to infer

NOT [ZF∗ � (G) AND ZF∗ � (¬G)].

This negation is one element of a contradictory pair, and the algorithm at-
tempts to prove [ZF∗ � (G) AND ZF∗ � (¬G)]. This formula cannot be ex-
tracted: even though it is a subformula of a premise, it is not a strictly positive
one. So the algorithm inverts the formula and attempts to prove the new goals
ZF∗ � (G) and ZF∗ � (¬G). The former goal is already an assumption of the
indirect proof, so we examine the latter goal.

It is here that we make the first significant change to the proof search
procedure. ZF∗ � (¬G) cannot be extracted, but as an existential formula
it can be inverted. Instead of searching for a term in the language of tem
describing a ZF∗-proof of ¬G, the search proceeds “inside” ZF∗. The claim
ZF∗ � (¬G) can be justified, after all, by the presentation of a proof of ¬G
within ZF∗. The procedure tries now to find a ZF∗-proof for the goal ¬G. As
the formula ¬G cannot be extracted, indirect proof is applied to ¬G: assume
G and find a contradictory pair. There is no negation immediately available
in the premises, except through the diagonal lemma for G. Note that this
lemma is formulated within tem as a provability claim for ZF∗ and should
be available for any ZF∗-proof. In general, when attempting an extraction or
looking for contradictory pairs within a ZF∗-proof, strictly positive subfor-
mulas of ZF∗-formulas A must be considered, where ZF∗ � (A) occurs as a
strictly positive subformula of a premise or available assumption in tem. So,
the diagonal lemma makes available the formula ¬ theo(G), which is used to
construct the contradictory pair. This leaves theo(G) as a new goal, which
cannot be extracted. The regular proof search procedure would attempt an
inversion. But here an additional step can be considered, since theo is a semi-
representable relation: we can justify theo(G) by establishing ZF∗ � (G) in
tem. ZF∗ � (G) is an assumption in tem, so the proof is complete.
4 We could have chosen one of the more general formulations of consistency, for

example, NOT ( EXISTS X)(ZF∗  (X) AND ZF∗  (¬X)). The quantificational
search in the SH-expansion (see [20]) would find the appropriate instance quickly.



Automated search for Gödel’s proofs 123

The expanded version of the proof search algorithm, which results from
the careful examination of the above proof, interweaves mathematical and
purely logical considerations in an intercalating and goal-directed manner. It
has the following main steps:

Extraction

If the goal is in tem, then extraction functions as described above for first-
order logic. If the goal is in ZF∗, then the set of formulas available for ex-
traction is expanded by those formulas A, for which the claim ZF∗ � (A) is
extractable in tem and the goal is extractable from A. That is the inference
Prov E, which is used to turn A into a part of the ZF∗-proof.

Inversion

For the standard connectives inversion is applied as discussed earlier. There
are two additional cases where “inversion” is applied. The first case occurs,
when the goal in tem is a statement of the form ZF∗ � (A). Here the algorithm
tries to find a proof of A in ZF∗; that is the inversion of the inference Prov I.5 In
the second case, when the goal is a formula like [¬] rel(X) in ZF∗, and when the
relation REL is represented by rel, the procedure tries to prove [NOT ] REL(X)
in tem, after having explored indirect strategies in ZF∗. For semi-representable
relations such as ZF∗ � (X), this step is obviously not applied to the negation
¬ rel(X) in ZF∗.

Extended extraction and inversion (“Meaning of premises and goals”)

Definitional and other mathematical equivalences are used to obtain either
a new available formula from which the current goal is extractable or to get
an equivalent statement as a new goal. This we would like to do relative to
a developing background theory; currently, we just add the definitions and
lemmata explicitly to the list of premises.

Indirect strategies are pursued in the same way as in pure first-order logic,
with one exception: the set of contradictory pairs for indirect proofs in ZF∗ is
expanded by pairs whose negations are strictly positive subformulas of A in
case ZF∗ � (A) (and this tem-statement is itself extractable from an available
tem-claim).

This completes the informal description of the algorithm that searches for
statements surrounding the first incompleteness theorem. The extensions of
extraction and inversion mentioned have a very general mathematical charac-
ter, whereas the extensions via ProvE and ProvI express most directly meta-
mathematical content. The former rule reflects, in part, that theorems can be
appealed to in proofs, and the latter rule expresses that the search mechanism
provides syntactically correct object theoretic proofs.
5 If the goal is of the form ZF∗  ([¬] rel(X)), the algorithm tries first to prove

[ NOT ] REL(X) directly.
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The extended search procedure evolved out of a probing analysis of the
standard proofs for the first incompleteness theorem and incorporates what we
take to be the leading mathematical ideas for this part of meta-mathematics. It
finds proofs not only for the first and second incompleteness theorems (after
incorporating the derivability conditions), but also for a broader range of
theorems and lemmata in this general area; cf. Appendix A for a proof of
Löb’s Theorem and Appendix D for two further examples. Even without the
specifically meta-mathematical steps the algorithm is of real mathematical
interest, as it discovers the structure of the proof for the irrationality of the
square root of 2; see Appendix B.

3 Machine proofs & new heuristics

We present now the proofs of the first and second incompleteness theorem and
start out by explaining the format of proofs. Proofs are presented in a modified
Fitch-style format, which can be given using only plain text; cf. [12].6 A line
of dashes sets off the assumptions themselves. To distinguish the parts of the
proof which occur in tem and those which are embedded ZF∗-proofs, we mark
every line in the object language with a star. Note that ZF∗-proofs retain the
scope indications from the meta-language, and appeals to representability will
use all available tem-assumptions.

The rules include the standard natural deduction rules. For example, con-
junction introduction has the name “And I”, and the left and right-hand ver-
sions of conjunction elimination are named “And EL” and “And ER” respec-
tively. To these basic rules we add special rule names for every heuristically
applied theorem or lemma. “Rep” names the rule for representable or semi-
representable relations, where the premise is a representable relation in tem
and the conclusion the corresponding relation in ZF∗. “Prov E” and “Prov I”
indicate provability elimination and introduction.

We present first the machine proof of non-provability of the Gödel sen-
tence G, assuming that ZF∗ is consistent. In addition, the machine uses an
instance of the diagonal lemma ZF∗ � (G ↔ ¬(theo(G))) and the definition
of consistency, ZF∗CONS IFF NOT (ZF∗ � (G) ANDZF∗� (¬(G))).

6 Dawn McLaughlin modified the presentation of proofs in such a way that the
next sentence in the original publication could be dropped. That sentence was:
“We show the scope of assumptions by inserting bars between the number and
formula on each line, with nested assumptions being noted by alternating bars
and exclamation points.”
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Proof. 7

1. ZF∗ � (G ↔ ¬(theo(G))) Premise

2. ZF∗CONS Premise

3. ZF∗CONS IFF NOT (ZF∗ � (G) AND ZF∗ � (¬(G))) Premise

4. ZF∗ � (G) Assumption

* 5. G Assumption

* 6. theo(G) Rep 4
* 7. (G ↔ ¬(theo(G))) Prov E 1
* 8. ¬(theo(G)) Iff E R 7, 5
* 9. ¬(G) Not I 5, 6, 8
10. ZF∗ � (¬(G)) Prov I 9
11. ZF∗ � (G) AND ZF∗ � (¬(G)) And I 4, 10
12. NOT (ZF∗ � (G) AND ZF∗ � (¬(G))) Iff E R 3, 2
13. NOT (ZF∗ � (G)) Not I 4, 11, 12 ��

To prove the independence of G we have also to establish the non-
provability of ¬G. As remarked earlier, that requires the stronger hypothesis
of τ -consistency. Here are the premises for the non-provability of ¬G:

- the diagonal lemma ZF∗ � (G ↔ ¬(theo(G))),
- ZF∗

τCONS,
- ZF∗

τCONS IMPLIES [(FOR ALL X)
(ZF∗ � (¬(proof(X,G))) IMPLIES NOT (ZF∗ � (theo(G))))],

- ZF∗
τCONS IMPLIES ZF∗CONS,

- and a reformulation of what was established above, namely
ZF∗CONS IMPLIES (FOR ALL X)(NOT (PROOF(X,G))).

7 When following this argument and all the other machine proofs, the reader should
keep in mind the intercalation strategies for bridging the gap between assumptions
and goals. After all, they motivate the steps in the arguments.
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Proof.

1. ZF∗ � (G ↔ ¬(theo(G))) Premise

2. ZF∗
τCONS Premise

3. ZF∗
τCONS IMPLIES

[(FOR ALL X)(ZF∗ � (¬(proof(X,G)))

IMPLIES NOT (ZF∗ � (theo(G))))]

Premise

4. ZF∗CONS IMPLIES ZF∗CONS Premise

5. ZF∗CONS IMPLIES

(FOR ALL X)(NOT (PROOF(X,G))))

Premise

6. ZF∗ � (¬(G)) Assumption

* 7. ¬(theo(G)) Assumption

* 8. (G ↔ ¬(theo(G))) Prov E 1
* 9. G Iff E L 8, 7

* 10. ¬(G) Prov E 6
* 11. theo(G) Not E 7, 9, 10

12. ZF∗ � (theo(G)) Prov I 11
13. (FOR ALL X)(ZF∗ � (¬(proof(X,G)))

IMPLIES NOT (ZF∗ � (theo(G)))

Imp E 3, 2

14. ZF∗CONS Imp E 4, 2
15. (FOR ALL X)(NOT (PROOF(X,G))) Imp E 5, 14
16. NOT (PROOF(X,G)) All E 15

* 17. ¬(proof(X,G)) Rep 16
18. ZF∗ � (¬(proof(X,G)) Prov I 17
19. (FOR ALL X)ZF∗ � (¬(proof(X,G))) All I 18
20. NOT (ZF∗ � (theo(G))) Imp E 13, 19
21. NOT (ZF∗ � (¬(G))) Not I 6, 12, 20 ��

For the proof of the second incompleteness theorem, i.e., the non-provability
of the formal consistency statement zf∗cons under the assumption of the con-
sistency of ZF∗, the formalism has to satisfy the Hilbert–Bernays derivability
conditions D1 and D2. D1 is the formalized semi-representability condition for
the theorem predicate [theo(X) → theo(theo(X))], whereas D2 is the prov-
able closure under modus ponens [theo(X →→→ Y ) → (theo(X) → theo(Y ))].
The algorithm makes use of these conditions as rules with one additional
heuristic to exploit D2: if theo(F ) is the goal and F , as a consequent of a
conditional (or biconditional), is a strictly positive subformula of an available
purely implicational formula, apply D2 repeatedly and try to extract theo(F ).
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Proof.

1. ZF∗ � (theo(G) ↔ ¬G)) Premise8

2. ZF∗ � (zf∗cons ↔ ¬(theo(G) & theo(¬¬¬G))) Premise

3. NOT (ZF∗ � (G)) Premise

4. ZF∗ � (zf∗cons) Assumption

* 5. ¬(G) Assumption

* 6. (theo(G) ↔ ¬G) Prov E 1
* 7. theo(G) Iff E L 6, 5
* 8. theo(theo(G)) Der 1 7
* 9. theo(theo(G)) → theo(¬¬¬G) Der 2 6

* 10. theo(¬¬¬G) Imp E 9, 8
* 11. theo(G) & theo(¬¬¬G) And I 7, 10
* 12. (zf∗cons ↔ ¬(theo(G) & theo(¬¬¬G))) Prov E 2
* 13. zf∗cons Prov E 4
* 14. ¬(theo(G) & theo(¬¬¬G)) Iff E L 12, 13
* 15. G Not E 5, 11, 14

16. ZF∗ � (G) Prov I 15
17. NOT (ZF∗ � (zf∗cons)) Not I 4, 17, 3 ��

This argument made use of the special character of the Gödel sentence
G—in order to obtain the two conjuncts of line 11. Instead, one can exploit
the elegant way of proceeding made possible by Löb’s theorem in [14]:

For all sentences F : ZF∗ � (theo(F ) →F) IFF ZF∗ � (F ).

Löb’s theorem expresses that a sentence F is provable in ZF∗ if and only
if its reflection formula (theo(F ) → F ) can be established in ZF∗. Consider a
refutable sentence H (i.e., a sentence whose negation is provable in ZF∗) and
assume that ZF∗ is consistent; then H is not provable in ZF∗. Löb’s theorem
implies that the corresponding reflection formula (theo(H) → H) is not prov-
able either. Thus, the second incompleteness theorem amounts to establishing
NOT (ZF∗ � (zf∗cons)) from the premises NOT (ZF∗ � (theo(H) → H)),
ZF∗ � (zf∗cons ↔ ¬(theo(H) & theo(¬¬¬H))), and ZF∗ � (¬H). That is done
in the next proof.

8 Notice that the diagonal lemma is used here in a propositionally equivalent form;
the current algorithm does not find the proof, when it is given in its standard
form.
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Proof.

1. NOT (ZF∗ � (theo(H) → H)) Premise

2. ZF∗ � (zf∗cons ↔ ¬(theo(H) & theo(¬¬¬H))) Premise

3. ZF∗ � (¬H) Premise

4. ZF∗ � (zf∗cons) Assumption

* 5. theo(H) Assumption

* 6. ¬(H) Assumption

* 7. theo(¬¬¬H) Rep 3
* 8. theo(H) & theo(¬¬¬H) And I 5, 7
* 9. (zf∗cons ↔ ¬(theo(H) & theo(¬¬¬H))) Prov E 2

* 10. zf∗cons Prov E 4
* 11. ¬(theo(H) & theo(¬¬¬H)) Iff E R 9, 10
* 12. H Not E 6, 8, 11
* 13. theo(H) → H Imp I 5, 12

14. ZF∗ � (theo(H) → H) Prov I 13
15. NOT (ZF∗ � (zf∗cons)) Not I 4, 14, 1 ��

This proof of the second incompleteness theorem uses Löb’s Theorem only in
the discussion leading up to the precise derivational problem. In Appendix A
the preliminary considerations are incorporated into the proof; there we also
show an elegant machine proof of Löb’s Theorem.

4 Comparisons

A number of researchers have pursued goals similar to ours, but with inter-
estingly different programmatic perspectives and strikingly different compu-
tational approaches. We focus on work by Ammon [1], Quaife [15], Bundy
et al. [5] and Shankar [17]. We first discuss Ammon’s and Quaife’s work, as
theirs is programmatically closest to ours: Ammon aims explicitly for a fully
automatic proof of the first incompleteness theorem, and Quaife establishes
the incompleteness theorems and Löb’s theorem in a setting that is similarly
“abstract” as ours.

In his 1993 Research Note An automatic proof of Gödel’s incompleteness
theorem, Ammon describes the shunyata program and the proof it found for
the first incompleteness theorem. shunyata’s proof is structurally identical
with the proof in Kleene’s book Introduction to Metamathematics (pp. 204–8);
the latter proof is discussed in great detail in Sections 4 and 5 of Ammon’s
note. Two main claims are made: (i) Gödel’s undecidable sentence is “con-
structed” by the program “on the basis of elementary rules for the formation
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of formulas”, and this is taken as evidence for the subsidiary claim (on p. 305)
that the program “implicitly rediscovered Cantor’s diagonal method”; (ii) the
proof of its undecidability is found by a heuristically guided complete proof
procedure involving Gentzen’s natural deduction rules for full first-order logic.
The first claim (made on p. 291 and reemphasized on p. 295) is misleading:
the Gödel sentence is of course constructible by the elementary rules for the
(suitably extended) language of number theory, but that the formula so con-
structed expresses its unprovability has to be ensured by other means (and is
“axiomatically” required to do so by Ammon’s definition 3 and lemma 1).9

As to the second claim (made on p. 294), the paper contains neither a logi-
cal calculus nor a systematic proof procedure using the rules of the calculus.
What one finds are local heuristics for analyzing quantified statements and
conditionals together with directions to prove the negation of a statement, i.e.,
to use the not introduction rule. These latter directions are quite open-ended,
as there is no mechanism for selecting appropriate contradictory pairs. (Cf.
Ammon’s discussion of the “contradiction heuristic” on p. 296.)

In 1988 Quaife had already published a paper on Automated proofs of Löb’s
Theorem and Gödel’s two incompleteness theorems. The paper presents proofs
of the theorems mentioned in its title10 “at a suitable level of abstraction”—
as the author emphasizes on p. 219—“from the underlying details of Gödel
numbering and of recursive functions”. The suitable level of abstraction is
provided by the provability logic K4. That well-known logic contains as spe-
cial axioms the derivability conditions and as its special rule (beyond modus
ponens) the rule of “necessitation”; the additional rule corresponds to the
semi-representability of the theorem predicate. In order to make use of the
resolution theorem proving system itp, the first-order meta-theory of K4 is
represented in itp by five “clauses”, which are listed in Appendix C. Four of
the clauses correspond to the axioms and rules just mentioned, whereas the
very first clause guarantees that all tautologies are obtained. The tautologies
are established by “applying properly specified demodulators” and transform-
ing given sentential formulas into conjunctive normal form; the underlying
procedure is complex and involves particular weighting schemes. Quaife illus-
trates the procedure by presenting on pp. 226–7 a derivation of a “reasonably
complex tautology”; the derivation uses a sequence of 73 demodulation steps.
Quaife concludes the discussion of this derivation by saying: “itp can also be
asked to print out the line-by-line application of each demodulator, but that
detailed proof is too long for this article”. We present this tautology and its
direct (and easily found) natural deduction proof in Appendix C.

9 Our assessment of this claim is in full agreement with that found in the Letter to
the Editor by Brüning et al. [3].

10 Quaife establishes only the unprovability of G, not of its negation under the
assumption of ω-consistency. On p. 229 he asserts, “With the right axioms, its
proof [i.e., the other half of the first incompleteness theorem, S&F] could be
reproduced about as easily as the principal half above”.
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In contrast to Ammon’s paper, we find here a conceptually and technically
straightforward meta-mathematical and logical set-up: representability and
derivability conditions are axiomatically assumed, and the logical inference
machinery is precisely and carefully described. However, it is very difficult to
understand, how the syntactic context of axioms, theorems and assumptions
directs the search in a way that is motivated by the leading ideas of the mathe-
matical subject.11 The proofs use in every case “axioms and previously proven
theorems” in addition to the standard hypotheses for the theorem under con-
sideration. It is clear that the “previously proven theorems” are strategically
selected, and it is fair to ask, whether the full proof—from axioms through
intermediate results to the meta-mathematical theorems—should be viewed
as “automated” or rather as “interactive” with automated large logical steps.
So the direct computational question is, would proofs of the main theorems
be found, if only the axioms were available?

The answer is most likely “No”. otter, the resolution theorem prover
that developed out of itp, was not able to prove, under appropriately similar
conditions, the full first incompleteness theorem in 1996; that is reported in
Bundy, Giunchiglia, Villafiorita and Walsh’s paper An incompleteness theorem
via abstraction.12 It was precisely this computational problem that motivated
their paper, namely to show how “abstraction” can be useful to attack it.
They present a proof of Gödel’s theorem, where the real focus is not on the
particular meta-mathematical proof, but rather on the process of abstraction
and refinement that aids proof planning. This process is not a fully automated
one, since both the choice of the abstraction and the subsequent refinement of
the abstract proof into the original language require external guidance. While
we share the ultimate goal of limiting the search space for mathematical proofs
by “abstraction”, their semi-automated abstraction process is a very different,
though complementary approach.

The three approaches we have been discussing are as “abstract” as ours
in the sense that the diagonal lemma, the representability condition and,
in Quaife’s and our case, the derivability conditions are taken for granted.
Shankar’s book Metamathematics, Machines, and Gödel’s Proof focuses on
an interactive proof of (the Rosser version of) the first incompleteness the-
orem.13 The explicit goal was to find out, whether the full proof could in
practice be checked using a computer program, i.e., the Boyer–Moore theo-
rem prover. In the preface to his book Shankar points out that “A secondary
goal was to determine the effort involved in such a verification, and to iden-
tify the strengths and weaknesses of automated reasoning technology”. The

11 A similar reservation is articulated by Fearnley-Sander in his review [9] of Quaife’s
book [16].

12 On p. 10 they write: “This proof [of the full first incompleteness theorem; S&F]
turns out to be a considerable challenge to an unguided theorem prover. We have
given these axioms to otter (v. 3.0) . . . but it blew up”.

13 In addition, Shankar provides a “mechanical proof” of the Church–Rosser Theo-
rem in Chapter 6.
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crucial meta-mathematical task and most significant difficulty consisted in
verifying the representability conditions—for a particular theory (the system
Z2 for number theory in Cohen’s book) and a particular way of making com-
putability precise (via McCarthy’s Lisp). That required, of course, a suitable
formalization of all meta-mathematical considerations within, what Shankar
calls on p. 141, “a constructive axiomatization of pure Lisp”. In Sections 5.4
and 5.5 Shankar gives a very informative analysis of, and an excellent per-
spective on, the work presented.

Moving back from interactive theorem proving to automated proof search,
it is clear that the success of our search procedure results from carefully inter-
weaving mathematical and logical considerations, which lead from explicitly
formulated principles to a given conclusion. Proofs provide explanations of
what they prove by putting their conclusions in a context that shows them to
be correct. This need not be a global context providing a foundation for all of
mathematics, but it can be a rather more restricted one as here for the pre-
sentation of the incompleteness theorems. Such a local deductive organization
is the classical methodology of mathematics with two well-known aspects: the
formulation of principles and the reasoning from such principles; we have il-
lustrated only the latter aspect by using suitable strategic considerations and
appropriate heuristic “leading mathematical ideas”.

The task of considering a part of mathematics, finding appropriate basic
notions, and explicitly formulating principles—so that the given part can be
systematically developed—is of a quite different character. For Dedekind the
need to introduce new and more appropriate notions arises from the fact that
human intellectual powers are imperfect. The limitation of these powers leads
us, Dedekind argues in [8], to frame the object of a science in different forms
or different systems. To introduce a notion, “as a motive for shaping the sys-
tems”, means in a certain sense to formulate a hypothesis concerning the inner
nature of a science, and it is only the further development that determines
the real value of such a notion by its greater or smaller efficacy [Wirksamkeit ]
in recognizing general truths. In the part of meta-mathematics we have been
considering, Hilbert and Bernays did just that: their formulation of repre-
sentability and derivability conditions ultimately led to more “abstract” ones
and, in particular, to the principles for the provability logic K4 and related
systems; see [2].14

5 Concluding remarks

No matter how one might mechanize an attempt of gaining such a principled
deeper understanding of a part of mathematics, the considerations for a sys-
14 In a different, though closely related case, Hilbert and Bernays succeeded in pro-

viding “recursiveness conditions” for the informal concept of calculability in a
deductive formalism; that was done in a supplement of the second volume of
their Grundlagen der Mathematik.
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tematic and efficient automated development would still be central. In our
given meta-mathematical context, there is an absolutely natural step to be
taken next. As we emphasized earlier, there is no conflict or even sharp con-
trast between proof search and proof planning: proof search is hierarchically
and heuristically organized through the use of “axioms” and their subsequent
verification (or refutation). The guiding idea for verification in the interca-
lation approach is to generate sequences of formulas, reduce differences, and
arrive ultimately at syntactic identities. Such difference reduction also under-
lies the techniques for inductive theorem proving that have been developed
by Bundy et al. in their recent book [4]. We conjecture that those techniques
can be seamlessly joined with the intercalation method to take the next step
and prove the representability conditions. The strictly formal proof in tem
might then be transformed into a ZF∗ proof of the first derivability condition,
automatically. From a different, more proof-theoretic perspective one might
wish to compare the intercalation method for natural deduction calculi with
appropriately formulated methods for sequent calculi with and without cuts.
That might lead to interesting heuristics for choosing suitable cut formulas
(to make proof search more efficient).15
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built into the argument. In order to prove Löb’s theorem in tem, one faces
two claims, namely,

(i) ZF∗ � (theo(F ) → F ) IMPLIES ZF∗ � (F )

and

(ii) ZF∗ � (F ) IMPLIES ZF∗ � (theo(F ) → F ).

The last claim is immediate, whereas the first is difficult: its proof uses the
instance of the diagonal lemma for the formula (theo(x) → F ). Here is the
precise derivational problem at the heart of Löb’s theorem: ZF∗ � (F ) can be
proved from the premises

ZF∗ � (theo(F ) → F )

and

ZF∗ � (L ↔ (theo(L) → F )).

We actually have two proofs of Löb’s theorem, which differ in the pre-
sentation of the derivability conditions. In the first proof the conditions are
formulated as premises and are instantiated for this problem. They enter the
search through the standard extraction procedure. In the second proof heuris-
tics guide their application. The heuristics were described above and have a
fairly general character; they are designed to apply each condition when it
may be useful. The resulting proofs are very similar, differing mainly in the
greater number of extraction rule applications necessary in the first proof to
make use of the axiomatically given derivability conditions. We present only
the first proof.
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Proof.

1. ZF∗ � (L ↔ (theo(L) → F )) Premise

2. ZF∗ � (theo(L) → (theo(theo(L)) → theo(F ))) Premise

3. ZF∗ � (theo(L) → theo(theo(L))) Premise

4. ZF∗ � ((theo(F ) → F )) Assumption

* 5. theo(L) Assumption

* 6. theo(L) → (theo(theo(L)) → theo(F )) Prov E 2
* 7. (theo(theo(L)) → theo(F )) Imp E 6, 5
* 8. (theo(L) → theo(theo(L))) Prov E 3
* 9. theo(theo(L)) Imp E 8, 5

* 10. theo(F ) Imp E 7, 9
* 11. (theo(F ) → F ) Prov E 4
* 12. F Imp E 11, 10
* 13. (theo(L) → F ) Imp I 5, 12
* 14. (L ↔ (theo(L) → F )) Prov E 1
* 15. L Iff E L 14, 13

16. ZF∗ � (L) Prov I 15
* 17. theo(L) Rep 16
* 18. F Imp E 13, 17

19. ZF∗ � (F ) Prov I 18
20. (ZF∗ � ((theo(F ) → F )) IMPLIES ZF∗ � (F )) Imp I 4, 19
21. ZF∗ � (F ) Assumption

* 22. theo(F ) Assumption

* 23. F Prov E 21
* 24. (theo(F ) → F ) Imp I 22, 23

25. ZF∗ � ((theo(F ) → F )) Prov I 24
26. (ZF∗ � (F ) IMPLIES ZF∗ � ((theo(F ) → F ))) Imp I 21, 25
27. (ZF∗ � ((theo(F ) → F )) IFF ZF∗ � (F )) Iff I 20, 26 ��



Automated search for Gödel’s proofs 135

Now we present the proof of the second incompleteness theorem with the
explicit use of Löb’s Theorem.

Proof.

1. ZF∗CONS Premise

2. ZF∗ � (¬(H)) Premise

3. (ZF∗CONS IFF NOT ((ZF∗ � (H) AND ZF∗ � (¬(H))))) Premise

4. ZF∗ � (zf∗cons ↔ ¬((theo(H) & theo(¬¬¬(H))))) Premise

5. (ZF∗ � (H) IFF ZF∗ � ((theo(H) → H))) Premise

6. ZF∗ � (zf∗cons) Assumption

7. NOT ((ZF∗ � (H) AND ZF∗ � (¬(H)))) Iff E R 3, 1
* 8. theo(H) Assumption

* 9. ¬(H) Assumption

* 10. (zf∗cons ↔ ¬((theo(H) & theo(¬¬¬(H))))) Prov E 4
* 11. zf∗cons Prov E 6
* 12. ¬((theo(H) & theo(¬¬¬(H)))) Iff E R 10, 11
* 13. theo(¬¬¬(H)) Rep 2
* 14. (theo(H) & theo(¬¬¬(H))) And I 8, 13
* 15. H Not E 9,14, 12
* 16. (theo(H) → H) Imp I 8, 15

17. ZF∗ � ((theo(H) → H)) Prov I 16
18. ZF∗ � (H) Iff E L 5, 17
19. (ZF∗ � (H) AND ZF∗ � (¬(H))) And I 18, 2
20. NOT (ZF∗ � (zf∗cons)) Not I 6, 19, 7 ��

Appendix B

The square root of 2 is not rational. The logical search algorithm uncovers
directly the following proof of the claim from the premises:

(1)
√

2 is rational ↔ (∃x)(∃y)(
√

2 ∗ x = y&¬(∃z)(z|x& z|y))
(2) (∀x)(∀y)(2 ∗ x2 = y2 → 2|x& 2|y)
(3) (∀x)(∀y)(

√
2 ∗ x = y → 2 ∗ x2 = y2)

The universe of discourse consists of the set of all reals or just the algebraic
ones, but the range of the quantifiers consists just of the sort of positive
integers. Here is the translation of the automatically generated proof; “trans-
lation”, as the parser understands only a more restricted language.
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Proof.

1.
√

2 is rational ↔ (∃x)(∃y)(
√

2 ∗ x = y&¬(∃z)(z|x& z|y)) Premise

2. (∀x)(∀y)(2 ∗ x2 = y2 → 2|x& 2|y) Premise

3. (∀x)(∀y)(
√

2 ∗ x = y → 2 ∗ x2 = y2) Premise

4.
√

2 is rational Assumption

5. (∃x)(∃y)(
√

2 ∗ x = y&¬(∃z)(z|x& z|y)) Iff E R 1, 4
6. (∃y)(

√
2 ∗ u = y&¬(∃z)(z|u& z|y)) Assumption

7. (
√

2 ∗ u = v&¬(∃z)(z|u& z|v)) Assumption

8. (∀y)(2 ∗ u2 = y2 → 2|u& 2|y) All E 2
9. (2 ∗ u2 = v2 → 2|u& 2|v) All E 8

10. (∀y)(
√

2 ∗ u = y → 2 ∗ u2 = y2) All E 3
11. (

√
2 ∗ u = v → 2 ∗ u2 = v2) All E 10

12.
√

2 ∗ u = v And EL 7
13. 2 ∗ u2 = v2 Imp E 11, 12
14. 2|u& 2|v Imp E 9, 13
15. (∃z)(z|u& z|v) Ex I 14
16. ¬(∃z)(z|u& z|v) And ER 7
17. ⊥ ⊥ I 15, 16
18. ⊥ Ex E 6, 7, 17
19. ⊥ Ex E 5, 6, 18
20. ¬(

√
2 is rational) Not I 4, 19 �

⊥ is taken as a placeholder for an appropriate contradiction, say, (P &¬P ).

Appendix C

In [15, pp. 226–227], this “reasonably complex tautology” is presented:

[(P → (Q → R)) → ((Q → (R → S)) → (Q → (P → S)))].

Its proof, however, is considered to be too long for incorporation into the
article. In our natural deduction framework the proof is absolutely canonical
and direct; here it is—in twelve lines:
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Proof.

1. (P → (Q → R)) Assumption

2. (Q → (R → S)) Assumption

3. Q Assumption

4. P Assumption

5. (R → S) Imp E 2, 3
6. (Q → R) Imp E 1, 4
7. R Imp E 6, 3
8. S Imp E 5, 7
9. (P → S) Imp I 4, 8

10. (Q → (P → S)) Imp I 3, 9
11. ((Q → (R → S)) → (Q → (P → S))) Imp I 2, 10
12. ((P → (Q → R)) → ((Q → (R → S)) → (Q → (P → S)))) Imp I 1, 11 �

As mentioned in Section 4, Quaife’s framework is a formulation of the first-
order meta-theory of K4 within itp. The predicate ThmK4(x) expresses that
the formula x is a theorem of K4. Here are the clauses generating theorems
(from p. 223):

(itp.A1) If taut(x) then ThmK4(x);
(itp.A2) ThmK4((b(x → y) → (b(x) → b(y))));
(itp.A3) ThmK4(b(x) → b(b(x)));
(itp.R1) If ThmK4((x → y)) & ThmK4(x) then ThmK4(y);
(itp.R2) If ThmK4(x) then ThmK4(b(x)).

A1 guarantees that all tautologies are theorems; A2 and A3 correspond to
the derivability conditions; R1 is modus ponens, and R2 expresses the semi-
representability of the theorem predicate.

Appendix D

Here we present two further computer-generated proofs surrounding the in-
completeness theorems. The first claim is a version of the first half of the first
incompleteness theorem, asserting the unprovability of the reflection formula
for the Gödel sentence.

(i) ZF∗CONS IMPLIES NOT (ZF∗ � (theo(G) → G)).
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Proof.

1. (ZF∗CONS IFF NOT ((ZF∗ � (G) AND ZF∗ � (¬(G))))) Premise

2. ZF∗ � ((G ↔ ¬(theo(G)))) Premise

3. ZF∗CONS Assumption

4. ZF∗ � ((theo(G) → G)) Assumption

5. NOT ((ZF∗ � (G) AND ZF∗ � (¬(G)))) Iff E R 1, 3
* 6. (G ↔ ¬(theo(G))) Prov E 2
* 7. theo(G) Assumption

* 8. (theo(G) → G) Prov E 4
* 9. G Imp E 8, 7

* 10. ¬(theo(G)) Iff E R 6, 9
* 11. ¬(theo(G)) Not I 7, 7, 10
* 12. G Iff E L 6, 11

13. ZF∗ � (G) Prov I 12
* 14. G Assumption

* 15. theo(G) Rep 13
* 16. ¬ theo(G) Iff E R 6, 14
* 17. ¬(G) Not I 14,15,16

18. ZF∗ � (¬(G)) Prov I 17
19. (ZF∗ � (G) AND ZF∗ � (¬(G))) And I 13, 18
20. NOT (ZF∗ � ((theo(G) → G))) Not I 4, 19, 5
21. (ZF∗CONS IMPLIES NOT (ZF∗ � ((theo(G) → G)))) Imp I 3, 20 ��

The argument is perfectly canonical—up to the extraction step in line 12;
at this point G could have been extracted from the formula (theo(G) → G)
in line 4. The resulting proof is “symmetric” to the given one.

The second claim asserts that for any refutable sentence R, the formula ex-
pressing its unprovability, i.e., ¬(theo(R)), is in ZF∗ equivalent to its reflection
formula (theo(R) → R)).

(ii) ZF∗ � (¬(R)) IMPLIES ZF∗ � ((¬(theo(R)) ↔ (theo(R) → R))).
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Proof.

1. ZF∗ � (¬(R)) Premise

* 2. ¬(theo(R)) Assumption

* 3. theo(R) Assumption

* 4. ¬(R) Assumption

* 5. R Not E 2, 3
* 6. (theo(R) → R) Imp I 5
* 7. (¬(theo(R)) → (theo(R) → R)) Imp I 6
* 8. (theo(R) → R) Assumption

* 9. theo(R) Assumption

* 10. ¬(R) Prov E 1
* 11. R Imp E 8, 9
* 12. ¬(theo(R)) Not I 10, 11
* 13. ((theo(R) → R) → ¬(theo(R))) Imp I 12
* 14. (¬(theo(R)) ↔ (theo(R) → R)) Iff I 7, 13

15. ZF∗ � ((¬(theo(R)) ↔ (theo(R) → R))) Prov I 14 ��
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There may, indeed, be other uses of the system than its use as a logic.

A. Church [8]

Logic and theory of computation have been intertwined since their first days.
The formalized notion(s) of effective computation are at first technical tools
for the investigation of first order systems, and only ten years later – in the
hands of John von Neumann – become the blueprints of engineered physical
devices. Generally, however, one tends to forget that in those same years,
in the newly-born proof-theory of Gerhard Gentzen [20] there is an implicit,
powerful notion of computation – an effective, combinatorial procedure for
the simplification of a proof. However, the complexity of the rules for the
elimination of cuts (especially the commutative ones, in the modern jargon)
hid the simplicity and generality of the basic computational notion those rules
were based upon. We had to wait thirty more years before realizing in full glory
that Gentzen’s simplification mechanism and one of the formal systems for
computability (Church’s λ-calculus) were indeed one and the same notion.

As far as we know, Haskell Curry is the first to explicitly realize [11] that
the types of some of his basic combinators correspond to axioms of intuition-
istic implicational calculus, and that, more generally, the types assignable to
expressions made up of combinators are exactly the provable formulae of in-
tuitionistic implicational logic. It is William Howard in 1969 to extend this
formulas as types correspondence to the more general proofs as programs iso-
morphism ([27], published in 1980 but widely circulated before). Under this
interpretation, the two dynamics – proof normalization on one hand, and β-
reduction on the other – are identified, so that techniques and results from
one area are immediately available to the other.

In this paper, we will discuss the use of the Curry-Howard correspondence
in computational complexity theory, the area of theoretical computer science
concerned with the definition and study of complexity classes and their rela-
tions. The standard approach to this discipline is to fix first a machine model
(e.g., Turing machines) equipped with an explicit cost (e.g., number of transi-
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tions) and define then the (inherent) complexity of a function as the minimal
cost needed to compute it with those machines. More formally, let h : N → N
be a non-decreasing function and assume Turing machines (TM) with unitary
cost per transition. We say first that a TM M works in time h iff for any input
x, M(x) terminates in at most h(|x|) steps, where | | is a suitable notion of size
for the input. A function f has complexity h iff there exists a TM computing
f working in time h. At this point one may define the complexity class of h as
the set of all functions with complexity h. Main examples of such classes are
the polynomial functions (fptime), the exponential functions (fexptime), or
the Kalmar-elementary ones (felemtime). In building up this theory, one of
the first tasks is to show that the definition of a complexity class is somehow
independent from the machine model adopted at first. Here comes the notion
of reasonable machine models [39]:

Reasonable machines can simulate each other within a polynomially-
bounded overhead in time and a constant-factor overhead in space.

Complexity classes like fptime and the others we mentioned before are clearly
invariant with respect reasonable machine models, and are thus amenable to
general theoretical treatment.

If these classes are so robust, however, there should be characterizations
of them independent from explicit machine models. This is the subject of im-
plicit computational complexity (ICC) whose main aim is the description of
complexity classes based on language restrictions, and not on external mea-
sure conditions or on an explicit machine model. It borrows techniques and
results from mathematical logic (model theory, recursion theory, and proof-
theory) and in doing so it has allowed the incorporation of aspects of com-
putational complexity into areas such as formal methods in software develop-
ment and programming language design. The most developed area of implicit
computational complexity is probably the model-theoretic one – finite model
theory being a very successful way to describe complexity problems. In the
design of programming language tools (e.g., type-systems), however, syntac-
tical techniques prove more useful, and in the last twenty years much work
has been devoted to restricted ways of formulating recursion theory, and to
proof-theoretical techniques to enforce resource bounds on programs.

1 Proofs as programs

The Curry-Howard correspondence between natural deduction proofs and
lambda-terms is summarized in Fig. 1. Formally, we start by defining λ-terms
as:

M ::= x | λx.M | MM ,

where x ranges over a denumerable set of variables. As usual, λ binds variables
in its scope. Formulas (or types) are defined starting from a base type (o) as
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A ::= o | A → A .

The system in Fig. 1 defines judgments of the form Γ � M : A, where M is a
term, A is a formula, and Γ is a set of pairs x : A, where x is a variable and
all the variables in Γ are distinct.

Γ, x : A  x : A

Γ  M : A → B Γ  N : A
Γ  MN : B

(→,E)
Γ, x : A  M : B

Γ  λx.M : A → B
(→,I)

Fig. 1. Natural deduction proofs and typed lambda-terms

If we forget terms, we are left with the usual natural deduction system
for propositional implicational intuitionistic logic. Terms may be seen just as
a convenient, linearized way to write the proofs, instead of the usual two-
dimensional tree-like notation. On the other hand, a computer scientist will
recognise the rules assigning types to functional programs. This correspon-
dence between proofs and programs is completed by observing that the notion
of proof normalization (that is, the elimination of the detours composed of
an introduction immediately followed by an elimination) is the same as the
reduction of the corresponding term (see Fig. 1, where we have adopted for
more clarity the standard two-dimensional notation for proofs); M [x ← N ]
denotes the substition of N for the free occurrences of x in M .

[x : A]
π

M : B
λx.M : A → B

δ
N : A

(MN) : B =⇒

δ
N : A

π
M [x ← N ] : B

Fig. 2. Normalization is beta-reduction

We may now apply logical methods to the study of computation as term
rewriting, and vice versa. From the point of view of computational complexity,
however, λ-calculus is a rather awkward computational model, since it misses
a basic notion of elementary step with bounded cost. Indeed, it is evident
that a step in a Turing machine can be “actually performed” in constant time,
thanks to the finiteness of the states and the symbols. Even for machine models
with non-constant time step – like Unbounded Register Machines (URM, see,
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e.g., [12]), where in a single step one may store or increment an arbitrary
large natural number – one can usually give a natural and plausible cost
model (for URMs one can assume, for instance, that one step accounts for
the logarithm of the length of the manipulated number). For λ-calculus all
these considerations seem to vanish, since beta-reduction is inherently too
complex to be considered as an atomic operation, at least if we stick to explicit
representations of lambda terms. Indeed, in a beta step

(λx.M)N → M [x ← N ] ,

there can be as many as |M | occurrences of x inside M . As a consequence,
M [x ← N ] can be as big as |M | × |N |. And this applies to any step dur-
ing a reduction, where the terms N and M have no longer a direct evident
connection with the original term.

As a result, in the literature the actual cost of normalizing a lambda-
term has been studied without any reference to the number of beta steps to
normal form. One of the main results of this field is Statman’s theorem [36],
showing that there is no Kalmar-elementary function of the length of a typed
λ-term bounding the work needed to compute its normal form. This result, in a
sense, matches in λ-calculus the series of results in proof theory giving bounds
on the size of a normal proof, as a function of the size of the proof before
normalization (see, e.g., [21]). These results could be summarized by saying
that, in any reasonable logic, if the (natural deduction) proof π normalizes to
ρ, then the size of ρ can be (hyper-)exponential in the size of π. But then we
are faced with another problem in the direct application of the Curry-Howard
correspondence to computational complexity. How could we use a tool that, in
any interesting case, has a hyper-exponential complexity? How is it possible
to use it for studying interesting complexity classes, and especially the most
important ptime?

The solution comes from a different perspective, the natural one from the
programming view-point. We should forget the natural symmetry, present in
λ-calculus, between programs (terms) and data (just other terms), and recall
that, in computing, the roles of programs and data are not symmetric. We
are instead interested in the behavior of a single, fixed program as a function
of the size of its data. That is, under the proofs-as-programs isomorphism,
the behavior of a fixed proof (say Γ � M : A → B) when composed with all
sensible proofs (that is when “cut” against – applied to – all proofs of the
shape Γ � N : A). In explicit terms, we should study the time to normalize
MN , with M in normal form, as a function of |N | only.

We may borrow some terminology from software engineering and distin-
guish two main ways of applying logical notions and techniques to computa-
tional complexity.

1. Implicit computational complexity in-the-large, using logic to study com-
plexity classes. More specifically, given a complexity class C, find a logical
system G such that:
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A  A (Ax)

Γ  A A, Δ  B

Γ, Δ  B
(Cut)

Γ  C
Γ, !A  C

(Weak.)
Γ, !A, !A  B

Γ, !A  B
(Contr.)

Γ  A B, Δ  C

Γ, A � B, Δ  C
(�,l)

Γ, A  B

Γ  A � B
(�,r)

Γ, A, B  C

Γ, A ⊗ B  C
(⊗i,l)

Γ  A Δ  B
Γ, Δ  A ⊗ B

(⊗,r)

A1, . . . , An  B

!A1, . . . , !An !B
(!)

Γ, A  B

Γ, !A  B
(ε)

Γ, !!A  B

Γ, !A  B
(δ)

Γ, T [S/t]  C

Γ, ∀t.T  C
(∀,l)

Γ  C
Γ  ∀t.C

t
∈FV (Γ ) (∀,r)

Fig. 3. Intuitionistic Multiplicative Exponential Linear Logic, MELL

Soundness: for any interesting type A and M : A → A in the system
G, there is a function fA ∈ C such that for any N : A, the cost of
normalizing MN is bounded by fA(|N |).
Completeness: for any function F computable in complexity C, there
is a proof MF (in system G) “representing” F .

2. Implicit computational complexity in-the-small, using logic to study single
machine-free models of computation. More specifically, in the context we
just described, giving natural cost models for λ-calculus reduction, show-
ing that it is indeed a reasonable model (that is, polynomially related to
Turing machines).

2 ICC in the large

Finding a system characterizing interesting complexity classes is far from obvi-
ous, all standard logics having a too high complexity of reduction. The break-
through came with Girard’s light linear logic [25] (LLL). Linear logic [22] put
under scrutiny the structural rules (especially contraction, responsible for ar-
bitrary duplication of subproofs during cut-elimination) and their role during
normalization. Intuitionistic logic, however, may be embedded in linear logic,
and therefore the latter cannot be used as a limited complexity formal system.
One has to weaken linear logic, limiting the use of contraction.

Second order multiplicative linear logic (MELL) is summarized in Fig. 2,
as a sequent calculus. Rule (Contr.) is the culprit for exponential blow-up,
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but since it may only be applied to !-marked formulas, the rules for (!) are our
main source of concern. If we look at the logic from an axiomatic point of view,
one of the fundamental properties of the logic is the law !A ≡ !A⊗!A (A ≡ B
is short for A � B and B � A), which is obtained from rules (Contr.),
(Weak.) and (!). Other important laws are of course derivable (! acts much
the same as � in modal logic S4), namely !A � A (from (ε), “dereliction”) and
!A �!!A (from (δ), “digging”). The interplay between these rules is the main
source for complexity of normalization (and for the expressivity of the logic,
of course). Girard’s insight was to weaken the operator !, still maintaining
enough expressivity to code interesting functions.

If we drop (ε) and (δ), we get Elementary linear logic (ell), which is
sound and complete (in the meaning explained above) for Kalmar-elementary
functions, a complexity class still too big for computer science. To get just
the polynomial functions we must drastically restrict (!) to have at most one
formula to the left of �. But now the system would be too weak (far from
complete from polytime, that is) and to fix this Girard adds another modality
(§), to compensate for the loss of a full (!)-rule. The system is best formulated
in an affine form (i.e., full weakening is allowed), following [2]. The relevant
rules for Light affine logic (lal) are summarized in Fig. 2 (they replace rules
(Weak.), (Contr.), (!), (ε), and (δ) of Fig. 2; in (§), n,m ≥ 0; in (!u), A can
be absent).

Γ  C
Γ, A  C

(AWeak.)
Γ, !A, !A  B

Γ, !A  B
(Contr.)

A1, . . . , An, C1, . . . , Cm  B

!A1, . . . , !An, §C1, . . . , §Cm  §B (§) A  B
!A !B

(!u)

Fig. 4. Light affine logic, lal

With this key idea, one obtains indeed a sound and complete system for
polytime. The following theorem expresses the soundness result, the most
delicate and interesting one. We observe, first, that there is natural way to
code in the logic, as a type, interesting data types; the theorem may be stated
with respect to �BS�, the type coding binary strings1.

Theorem 1. Let �lal M : �BS� → �BS�. For any �lal W : �BS�, we
can compute the normal form of MW in time O((d + 1)|MW |2d), where d
depends only on M .

Observe that, when M is fixed and in normal form, the theorem says that
M is a program with complexity O(|W |2d), that is, polynomial in its input.
1 The statement uses Landau’s big-oh notation: For f and g functions, f is in O(g)

iff ∃c, d, n0 such that ∀n > n0 f(n) ≤ cg(n) + d.
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Care should be taken, however, on the correct reading of the normalization
result. In order the theorem to hold as stated, we cannot simply reduce MW
as a lambda-term (because even terms typable in lal could have esponentially
long normal forms, though “computable” in polynomial time [7]). Proof-nets
(the intended notation for proofs in linear logic) should be used instead.

Once discovered, the technology has been applied, mutatis mutandis, to
several other formal systems. In addition to lll and lal, we have eal
(for elementary time), sll (for polynomial time [29]), staB (for logarithmic
space [19]), etc. Moreover, we now have also systems where, contrary to lal,
the soundness for polynomial time holds for lambda-calculus reduction, like
dlal [7] and other similar systems. As a result, the general framework of light
logics is now full of different systems, and of variants of those systems. It is
urgent to get general, unifying results to compare the systems and improve
on them.

As already mentioned, soundness and completeness are the key results to
be obtained when trying to characterize complexity classes by way of logical
systems. Completeness is always of an extensional nature: one proves that
any function in the complexity class under consideration can be represented
by a proof in the logical system, without taking care of the intensional as-
pect of the proof itself. Since the same function can be represented by many,
distinct proofs (in particular those corresponding to unnatural algorithms,
in computer science terminology), proving completeness does not say much
about the usefulness of the considered system as a programming language.
On the other hand, soundness is a key property: any representable function
is in a complexity class. This is often proved by showing that any proof in
the logical system can be normalized with a bounded amount of resources.
This way, soundness proofs give insights on the reasons why normalization is
a relatively easy computational process. As a consequence, soundness proofs
are interesting on their own:

• The intensional expressive power of two or more apparently unrelated sys-
tems can be compared through their soundness proofs. This requires the
soundness proofs to be phrased in the same framework.

• The possibility of extending sound systems with new rules and features
can be made easier if their soundness proofs are designed to be adaptable
to extensions in the underlying syntax.

Unfortunately, soundness has been traditionally proved with ad hoc tech-
niques which cannot be easily generalized. Different systems has been proved
sound with very different methodologies. As an example, Lafont’s sll has been
proved to be polytime sound by a simple mathematical argument, while As-
perti’s lal requires a complicated argument, in particular if strong soundness
is needed [37].

In the last years, much effort has been put in the task of finding pow-
erful, simple and unifying semantic frameworks for implicit computational
complexity. In the rest of the section we will give an account of some of
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these frameworks, with particular emphasis on authors’ contribution. What
we would like to convey are not the technicalities, of course, but the flexi-
bility of the approaches – simple modifications to a general framework allow
for the semantical description (and sometimes also for syntactical results, like
soundness) of a wide spectrum of formal systems.

2.1 Context semantics

Context semantics [26] is a powerful framework for the analysis of proof and
program dynamics. It can be considered as a model of Girard’s geometry
of interaction [24], [23] where the underlying algebra consists of contexts. As
such, it is a dynamic, interactive semantical framework, with many similarities
to game semantics [3]. In these semantic frameworks, one manages to identify
those proofs interacting in the same way with the environment (i.e., that
cannot be distiguished, through normalization, no matter the context in which
they are used in a larger proof; technically: observationally equivalent proofs)
by proving that the semantic objects which interpret them are the same. In
some cases, one can prove that the converse implication holds – this property
is called full-abstraction in the literature. Context semantics and geometry
of interaction have been used to prove the correctness of optimal reduction
algorithms [26] and in the design of sequential and parallel interpreters for
the λ-calculus [31], [33].

Notice that whenever a proof π is obtained from another proof ρ by cut-
elimination (or normalization), π and ρ have the same interactive behaviour
and, as a consequence, cannot be distinguished in the semantics. This im-
plies that the “complexity” of normalizing a proof π cannot be read out of
the interpretation of π itself, in any standard semantical approach. What is
appealing in context semantics is that its formulation, differently from the
majority of other approaches, allows for easy modifications of the semantics
of π (without altering the basic mathematical concepts needed), in such a way
that the interpretation of π somehow “reflects” the computational difficulty
of normalizing it. A first example of this flexibility of the context semantics, is
the well known fact that strongly normalizing proofs are exactly the ones hav-
ing finitely many so-called regular paths in the geometry of interaction [18].
As a second example, a class of proofs which are not just strongly normaliz-
ing but normalizable in elementary time can still be captured in the geometry
of interaction framework, as suggested by Baillot and Pedicini [6]. Until re-
cently it was not known, however, whether this correspondence scales down
to smaller complexity classes, such as the one of polynomial time computable
functions. The usual measure based on the length of regular paths cannot be
used, since there are proofs which can be normalized in polynomial time but
whose regular paths have exponential length [18].

The solution to the above problem is relatively simple: not every (regular)
path should be taken into account, but only those having something to do
with duplication. This way, one can define the weight Wπ of any proof as the
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total number of paths in this restricted class. On one hand, we may prove
that Wπ is an upper bound to the computational difficulty of normalizing π:

Theorem 2. There is a polynomial p : N 2 → N such that for every proof π,
π normalizes in at most p(Wπ, |π|) steps and the size of any reduct ρ of π is
at most p(Wπ, |π|).

On the other hand, Wπ can be proved to be a lower bound to the complexity
of normalizing π:

Theorem 3. For every proof π there is another proof ρ such that π normalizes
in n steps to ρ and Wπ ≥ n+ |ρ|.

The two results above highlight a strong correspondence between Wπ and
some crucial quantitative attributes of π, i.e. the (maximal) number of steps
to normal form for π and the (maximal) size of reducts of π. Perhaps the
most interesting application of this correspondence are new, simple proofs
of soundness for elementary, light and soft linear logic. After all, Wπ can
be defined for any (multiplicative and exponential) proof π, while proving
bounds on Wπ when some of the rules are forbidden (as in the cited logical
systems) turns out to be very simple. Details about the results sketched in
this paragraph can be found in [14].

The same technique can be applied to similar, but different, systems. A
first example consists in linear lambda calculi with higher-order recursion [13].
There, a parameter influencing the complexity of any term M is the (maximal)
size of ground subterms of reducts of M , called the algebraic potential size of
M . Context semantics is powerful enough to induce bounds on the algebraic
potential size of terms, in the same vein as in Theorem 2. Another example
is optimal reduction [1], where context semantics allows to transfer known
complexity results from global reduction, where proofs are normalized in the
usual way, to local reduction, where a slightly different syntax for proofs allows
a completely local notion of reduction [5], itself necessary to get optimality
for lambda calculus.

2.2 Realizability semantics

Kleene’s realizability and its variations have been used for various purposes
in modern logic (see [38] for an introduction). In particular, realizability has
been used in connection with complexity-constrained computation in several
places. The most prominent one is Cook and Urquhart’s work [9], where terms
of a language called PVω are used to realize formulas of bounded arithmetic.
There, realizability is used to show polytime soundness of a logic (for a slightly
different notion of soundness than the one considered here). Realizers in [9]
are typed and very closely related to the logic that is being realized. This
implies that any modification to the underlying logical system would require
changing as well the language of realizers.
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On the other hand, one can use untyped realizers and interpret formulas
as partial equivalence relations on those, this way going towards a unifying
framework. This has been done by Crossley et al. [10], in the same spirit as
Kreisel’s untyped realizability model HEO [28]. The proof that the untyped
realizers (in this case of formulas of bounded arithmetic) can indeed be nor-
malized in bounded time, has to be performed “externally” (that is, it is not
obtained directly from the model). In other words, proving soundess of a logic
has been reduced to proving soundness of a certain class of realizers.

Recently, a realizability framework has been introduced by one of the au-
thors, as a joint work with Martin Hofmann [15]. The framework is designed
as a refinement of the existing ones. In standard realizability, formulas are
usually interpreted as sets of pairs (t, f), where t (a realizer, e.g., a lambda
term) realizes f (a denotational object, e.g., a function); in our approach for-
mulas are interpreted as sets of triples (α, t, f), where t realizes f as usual but,
moreover, t is majorized by α (itself an element of an algebraic structure called
a resource monoid). The notions of majorization and of resource monoid are
relatively simple and designed to guarantee that whenever (α, t, f) ∈ A → B
and (β, u, g) ∈ A, t computes a realizer for f(g) in time bounded by F(α+β)
when applied to u (F is a function from majorizers to natural numbers which
is part of the definition of the underlying resource monoid). Proving that
F is bounded (e.g., by something like a polynomial) is usually easy, once a
resource monoid is fixed. Therefore, by choosing a proper resource monoid,
“intensional” soundness can be obtained as a corollary of “extensional” sound-
ness while giving meaning to a logic. Notice, however, that this way we do
not prove anything about the time needed to normalize proofs, but we rather
prove something about realizers corresponding to the interepreted proofs.

Once a resource monoid M has been fixed, one can present the above
construction as a category L (M): objects are length spaces (i.e., the ternary
relations described above) while morphisms are realized and majorized func-
tions between them. Noticeably, L (M) is symmetric monoidal closed for ev-
ery M. This means that any category L (M) is a model of (second order)
multiplicative linear logic, and that one must only guarantee that the expo-
nential structure can be justified when interpreting systems like lal or sll
in such a category. This has been done indeed [15], obtaining as a byproduct
new proofs of soundness for lal, sal (the affine version of sll) and eal. No-
ticeably, even systems going beyond the realm of linear logic (e.g., Hofmann’s
lfpl) can be proved sound.

2.3 Other frameworks

In the last two sections, we focused on semantic frameworks where relevant,
quantitative properties of the interpreted proof can be “read out” from the
underlying semantic object. This way, semantics can be effectively used as a
tool when proving soundness.
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Semantics, however, has also a more traditional role (in ICC, as in any
other domain), somehow orthogonal to the goals we had so far. A mathemat-
ical model of a formal system is, by its very essence, a different description
of the syntax, expressed with new concepts, and embedding the syntactical
objects in the structures the model is built upon. The more simple, non-
syntactical, and mathematically elegant a model is, the more it is interesting
and able to give us a fresh look on our formal system. Also in this sense,
therefore, semantics is much welcomed in ICC.

Once a mathematical object M is proved to be a fully complete model
of a logical system, itself sound and complete with respect to a complexity
class C , the model M can be understood as a new, presumably simpler, pre-
sentation of C . Here, we are not interested in inferring intensional properties
of proofs from M – indeed, not much about the intensional expressive power
of a logic can be inferred from any fully complete model for it. We would
like, instead, to get global insight on the structure (and properties) of C . As
pointed out by Girard [25] denotational models of light logics could thus help
in shedding some light on the nature of polytime from an extensional point of
view, maybe allowing to attack one of the many open problems in computa-
tional complexity. In the rest of this section, we briefly recall three proposals
designed around these lines.

First, one should mention Baillot’s stratified coherent spaces [4], a refine-
ment on Girard’s coherent spaces in which semantic stratification mimicks
the absence of digging and dereliction in ell. Indeed the two principles men-
tioned are not valid in stratified coherent spaces. By a further enrichment, one
can obtain a model for lll through stratified measured coherence spaces. In
all these cases, however, full completeness does not hold, due to the inherent
incompleteness of coherent spaces (already at the level of linear logic).

If one forgets about coherence in coherent spaces, what is left is relational
semantics, maybe the simplest model of linear logic. Again, one can define a
restricted notion of this model, this time through obsessional cliques [30]. Of
course, the obtained model is not fully complete with respect to any of the
known light logics. However, one can prove relative completeness for ell: the
clique interpreting a mell proof π is obsessional (in a certain technical sense)
if and only if π is an ell proof. A similar result holds for sll.

The only example of a semantic object which is fully complete with respect
to a light logic is the model based on Murawski and Ong’s discreet games [32].
They can be constructed as appropriate restrictions on usual game structures,
already known to be fully complete with respect to mell.

3 ICC in the small

Giving a reasonable cost model for λ-calculus grounded on natural notions is
a non trivial challenge. From the logical point of view, the most interesting
parameter is the number of β-reductions, but, as we briefly discussed in Sect. 1,



152 Ugo Dal Lago and Simone Martini

it is difficult to give general arguments proving that this simple approach gives
rise to a reasonable model. As usual, the problem stems from duplication; in
a single step (λx.M)N → M [x ← N ], the term N may be duplicated as
many times as the number of occurrences of x in M . While in general this
precludes to use the number of beta steps as the main ingredient in a cost
model, there are restrictions of the reduction for which something can be done.
In particular, we will concentrate on pure untyped λ-calculus endowed with
weak (that is, we never reduce under an abstraction) call-by-value reduction.
The following definitions are standard.

Definition 1.

• Terms are defined as usual: M ::= x | λx.M | MM , where x ranges over
a denumerable set. Λ denotes the set of all lambda terms.

• Values are defined as V ::= x | λx.M .
• Weak call-by-value reduction is denoted by →v and is obtained by closing

call-by-value reduction under any applicative context:

(λx.M)V →v M [x ← V ]
M →v N

ML →v NL

M →v N

LM →v LN .

Here M ranges over terms, while V ranges over values. We denote with
� the reflexive and transitive closure of →v.

• The length |M | of M is defined as follows, by induction on M : |x| = 1,
|λx.M | = |M | + 1 and |MN | = |M | + |N | + 1.

Weak call-by-value reduction enjoys many nice properties. In particular, the
one-step diamond property holds and, as a consequence, the number of beta-
steps to normal form (if any) is invariant on the reduction order [16]. These
properties enable the definition of interesting cost models for this calculus.
We will discuss two different points of view.

First, we consider the case in which λ-terms are represented explicitly.
Then, we will discuss the situation where we are allowed to choose more
compact (and therefore efficient) representations.

3.1 Explicit representation

With explicit representation, a term M is represented by its explicit, uncom-
pressed description (that is, with a data structure of size |M |). In particular,
from the representation of a term in normal form, the term is immediately
available (a situation which will change for implicit representations). In this
case, we define the difference cost of a single step of β-reduction M →v N as
max{1, |N | − |M |}. The following definition and results are from [16].

Definition 2 (Difference cost model). If M � N , where N is a normal
form, then Timed(M) is defined as |M | plus the sum of the difference costs of
the individual steps of the sequence M � N . If M diverges, then Timed(M)
is infinite.
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In view of the invariance of the number of beta-steps to normal form, this is a
good definition. As an example, consider the term n 2, where n ≡ λx.λy.xny
is the Church numeral for n. It reduces to normal form in one step, because we
do not reduce under the abstraction. To force reduction, consider E ≡ n 2 x,
where x is a (free) variable; E reduces to

F ≡ λyn.(λyn−1 . . . (λy2.(λy1.x
2y1)2y2)2 . . .)2yn

in Θ(n) beta steps. However, Timed(E) = Θ(2n), since at any step the size
of the term is duplicated. Indeed, the size of F is exponential in n.

We are left to state that this cost model makes weak call-by-value re-
duction a reasonable machine. That is, (i) we can simulate Turing machine
computations with β-reduction, and (ii) we can implement β-reduction over
Turing machines, in both cases with a polynomial overhead on the cost with
Turing machines.

Theorem 4. If f : Σ∗ → Σ∗ is computed by a Turing machine M in time g,
then there are a λ-term NM and a suitable encoding �·� : Σ∗ → Λ such that
NM�v� normalizes to �f(v)� and Timed(NM�v�) = O(g(|v|)).

Theorem 5. We can construct a multitape Turing machine R computing the
normal form of any term M in O((Timed(M))4) steps.

3.2 Compact representation

If we are allowed to use more efficient representations, we can get more par-
simonious cost models. In particular, under certain conditions, we can in fact
choose the number of β-steps to normal form as a reasonable cost model.

One the most appealing representations for λ-terms is the graph-based
one, known at least since Wadsworth’s thesis [40]. A term is represented first
with its syntax tree, linking then the nodes representing bound variables to the
λ-node binding them. The crucial idea, at this point, is to perform reduction
without textual substitution, and updating – as much as possible – the arcs of
the graph (i.e., performing update of pointers in the implementation). When
we have a redex (λx.M)N → M [x ← N ] , just erase the λ and the application
nodes of the redex and link the arcs representing x (from the graph of M) to
the root of the graph representing N . If there is more than one occurrence of
x, N is not duplicated, but simply “shared” by all the arcs represented the
different x’s. The problem is that, sooner or later, some portion of a redex
has to be actually duplicated (see [1], pp 14-15). The cost of normalization,
thus, has to take into account the size of the duplicated part, which has no
relation, in general, with the size of the original term (or with other sen-
sible parameters). In other words, we would be back at the cost model of
Sect. 3.1, taking into account the size of the intermediate terms. However,
in case of weak (call-by-value and call-by-name) reduction we can drastically
improve on Sect. 3.1 and show that the number of β-reduction steps is indeed
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a polynomially invariant cost model. The crucial observation is that, for these
reductions, there exist ways to represent λ-terms in which subterms can be
efficiently shared. Moreover, for this representation, any subterm needing to
be duplicated during the reduction is a subterm of the original term. This has
been obtained first by Sands, Gustavsson, and Moran [35], by a fine analysis
of a λ-calculus implementation based on a stack machine.

We may give a more formal treatment [17], by exploiting techniques as
defunctionalization and graph-rewriting. By using defunctionalization, we first
encode a λ-term M into a term [M ]Φ in a (first-order) constructor term rewrite
system, where any λ-abstraction is represented by an atomic constructor.

Theorem 6. Weak (call-by-value and call-by-name) β-reduction can be sim-
ulated step by step by first-order rewriting.

At this point we are left to show that first-order rewriting can be implemented
so efficiently that the number of reduction steps can be taken as the actual cost
of the reduction (up to a fixed polynomial). Without going into technical de-
tails, we may define a further encoding [·]Θ that, applied to a first order term,
returns a graph. Our original term M would then be translated into [[M ]Φ]Θ,
composing the two encodings. We prove, further, that graph-rewriting simu-
lates step by step constructor rewriting. We can eventually exploit the crucial
observation about the first-order encoding of a λ-term: during the reduction
of [M ]Φ we always manipulate subterms of the original term M .

Definition 3 (Unitary cost model). For any λ-term M , Timeu(M) is
defined as the number of β-steps to normal form, under weak reduction. If M
diverges, then Timeu(M) is infinite.

Some simple combinatorics allows to prove the following theorem.

Theorem 7. There is a polynomial p : N 2 → N such that for every lambda
term M , the normal form of [[M ]Φ]Θ (under weak reduction) can be computed
in time at most p(|M |,Timeu(M)).

It is worth observing that [[N ]Φ]Θ is in general very different from N ,
the former being a compact graph representation of the latter. Additional
“read-back” work must in general be performed to obtain from [[N ]Φ]Θ its
explicit, sequentialized form N . To factor out this time from our cost model
should be considered a feature of the model. Indeed, we cannot do miracles.
Consider again the term E ≡ n 2 x, introduced earlier. Under weak call-by-
value reduction this term reduces to normal form in Θ(n) beta steps, but
there is an exponential gap between this quantity and the time just needed
to write the normal form, which is of length Θ(2n).

4 Conclusions

Proof-theoretical implicit computational complexity is a young research area
which has given in the last ten years a fresh look to a number of different
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subjects. In this short paper we tried to give a (very) personal overview of
some of its main achievements and of its techniques. Still, we have to admit
it is a very fragmented area. Too many systems, too few general results. We
have suggested some semantical paths, but it is not sufficient.

An important problem we do not know how to attack is intensional ex-
pressiveness. We mentioned several complete systems for certain complexity
classes. Completeness is an extensional notion – for any function in a com-
plexity class, there is a term (proof, program) in our complete system. For
the systems we mentioned, the term guaranteed to exists is seldom the most
intuitive one, from a programming point of view. Moreover, there are a lot of
natural algorithms (terms, proofs, programs) which do have the right com-
plexity, but which are not expressible in our systems (they are not typable,
or get the wrong type). Filling the gap between extensional completeness and
the miserable intensional expressiveness of these systems is probably the most
interesting challenge of the field.
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1 Alphabets, sequences, languages and all that

Leading idea of this note is to argue that quantum information manipula-
tion tools may allow us to explore much wider fields than mere computation,
reaching beyond its boundaries to touch the very roots of the universal struc-
ture of languages. The paper is mostly conjectural and touches just the few
technical details necessary to pursue the general argument, because its main
aim is simply to show how a complex blend of notions coming from formal
language theory, finite group theory, and quantum computation theory can
lead to new views. As working study-case the problem of combing finite groups
will be dealt with, which bridges language theoretical issues with structural
and algorithmic issues.

To begin with, let us recall that the basic ingredient of a language is
its alphabet. An alphabet is a finite set. The members of the alphabet are
symbols; often characters. A finite sequence over an alphabet S is a function
from {0, 1, ..., N−1} (for some integer N ≥ 1) to S. The size of the function’s
domain is the length of the sequence. One writes sequences in this form: aab is
a sequence mapping 0 to symbol a, 1 to a, and 2 to b. A sequence of length 1
is written as a and the sequence of length 0 as ε. A language over an alphabet
S is a set of finite sequences over that alphabet. For example if we have an
alphabet of two distinct symbols, say a and b, then each of the following is a
different language over that alphabet

{} , {ε} , {a, b, ab, ba} , {a, ab, aba, abab, ababa, ...} , {ε, a, aa, aaa, aaaa, ...} .

The first is the empty language, whereas the second is a language containing
only the empty sequence; they are different. Notice that while all the sequences
in a language are finite, the language itself can be infinite (as in the last two
examples).

A family of languages is defined to be any non-empty set of languages
over finite alphabets; in particular, the universal set U denotes the set of all
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languages with finite alphabet. Many families of formal languages are known,
including the four families of the Chomsky Hierarchy [8], [9], [11], [12], (reg-
ular sets, context-free languages, context sensitive languages and recursively
enumerable sets), recursive sets, and indexed languages. A rigorous formal
mathematical setting of context-free languages and of language theory from
a group theoretical standpoint has been constructed [29], [21]. Also indexed
languages and bounded languages are exhaustively studied in the literature.

A formal language may be reconducted to a machine which recognises it
[13], [14], [15], [10], [32]; for example, regular sets are recognised by finite
state automata, context-free languages by (non-deterministic) pushdown au-
tomata, recursively enumerable and recursive sets by Turing machines and
halting Turing machines respectively. Alternatively, a formal language may
be generated (defined) by the set of its grammatical rules, as halting Turing
machines respectively. Alternatively, a formal and generated by grammars.

It is worth recalling that the philosophy of Chomsky ’s linguistic theory
has changed the long, traditional way of studying language. The nature of
knowledge, closely tied to human knowledge in general as it is, made it a logical
step for Chomsky to use his theory to analyze the relation between language
and the world – in particular, to give life to the study of truth and reference,
thus turning linguistics into a science of mind/brain. The theory is based on
the assumption that “languages are learnt with limited stimuli” (the so called
problem of poverty of evidence), namely the recognition that the input during
the acquisition of a natural language is circumscribed and degenerate [13],
[14], [15]. Moreover, the output cannot be simply accounted for by learning
mechanisms only, such as induction and analogy on the input. Output and
input differ both in quantity and quality. A subject may know linguistic facts
without instruction or even direct evidence. Knowledge of language is normally
attained through exposure, and the character of the acquired knowledge may
be largely predetermined [10]. This predetermined knowledge is tied to some
“notion of structure” in the mind, which guides the subject in acquiring a
natural language of his own.

Too far reaching as it may appear, this is nevertheless a plausible – yet
challenging to the very limit of the possible in terms of cognition – motivation
for the analysis that will follow.

Listing all the elements of a language necessary to determine its structure
is (in principle) possible for finite languages, but of course not for infinite
languages and a notation is needed to describe languages. Regular expressions
provide one such notation. Several methods support regular expressions using
various syntaxes; these syntaxes are not unique.

There are five basic ways to form a regular expression. Any member of
the alphabet is itself a regular expression: it describes the language that con-
sists of one sequence which in turn consists of that one symbol exactly once.
For example, if the alphabet contains symbols a and b, we have for regular
expression a the language {a}. Also the symbol ε is a regular expression: it de-
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scribes the language {ε}. More complex regular expressions are: Alternation,
Concatenation, Repetition:

• If E and F are regular expressions, their “alternation”, denoted E|F , is
also a regular expression, that consists of the set of all sequences described
by either E or F (or both).

• If E and F are regular expressions, their “concatenation”, denoted EF ,
is also a regular expression, that consists of the set of all sequences one
can make by gluing together an ordered sequence described by E and one
described by F .

• Using the above notations, one can describe any non-empty finite lan-
guage, but no infinite language. The key to describing infinite languages
is “repetition”. If E is a regular expression, then repetition, E∗, is also a
regular expression describing sequences that are made up of the catena-
tion of a finite number of sequences, each described by E. If one allowed
infinitely large regular expressions (which typically one doesn’t), then E∗

would describe the same language as

ε|E|EE|EEE| · · · .

Given a sequence and a regular expression, one can legitimately ask whether
the sequence is described by the regular expression in O(N) time and O(1)
space, where N is the length of the sequence.

Regular expressions cannot describe all languages. Any language that can
be described by a regular expression is a regular language. To go beyond
regular expressions, one needs extended context free grammars. An extended
context free grammar consists of an alphabet, a nonempty finite set of symbols
not in the alphabet (referred to as the set of “non-terminal symbols”) and a
set of “productions”. A production consists of a nonterminal symbol N and
a regular expression E, and is denoted by N  → E. Each nonterminal symbol
appears on the left-hand side of exactly one production. The alphabet of the
regular expressions is the union of the alphabet, the grammar and the set of
nonterminal symbols. One nonterminal symbol is singled out to be the start
nonterminal.

This is an example grammar: an alphabet {�, a, b}, nonterminal symbols
{S,B}, where S is the start nonterminal, and productions, say, S  → �Bb and
B  → �Bb|a.

Basic idea is that one starts with the start nonterminal and replaces it
with any sequence in the language, described by its regular expression. Then
one picks up any occurrence of a nonterminal in the resulting sequence, and
replaces it with any sequence in the language described by the nonterminal’s
regular expression. Finally, one repeats the process until there are no non-
terminals left. Any sequence one can reach by this procedure is assumed to
belong to the language described by the grammar.

One writes s ⇒ t to mean that sequence t can be obtained from sequence
s by picking one occurrence of a nonterminal in s are replacing it by one
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sequence in the language described by that nonterminal’s regular expression.
Using the example grammar above, one can see that:

S : replace S with �Bb

⇒ : �Bb replace B with �Bb

⇒ : ��Bbb replace B with a

⇒ : ��abb ,

(1)

proves that ��abb is in the language described by that grammar. The language
is

{�ab, ��abb, ���abbb, ...} ,
and it is not regular. Those languages that can be described by an extended
context free grammar are called context free languages.

Acquiring a language in terms of the internal language, corresponds to the
change of a subject’s mind/brain state: knowing the language L consists for
the subject’s mind/brain, initially in a state SO, to be set to another state
SL. To explain what this implies for the individual’s brain (in particular,
its language faculty) that corresponds to its knowing L is of course task of
the brain sciences. Chomsky proposes the crucial hypothesis that there exists
a universal grammar (UG). UG is a characterization of the innate principle
of language faculty [13], [14], [15], [10]. The detailed structure of UG is a
system of conditions on grammars; constraints on the form and interpreta-
tion of grammar at all levels, from the deep structure of syntax, through the
transformational component, to the rules that interpret syntactic structures
semantically and morphologically. “Semantics” means indeed the study of the
relation between language and the world – in particular, the study of truth
and reference. Comprehension of linguistic universals is the study, classified
as substantive, of the properties of UG for a natural language.

Substantive universals concern the vocabulary for the description of lan-
guage and a formal linguistic universal involves the character of the rules
that appear in grammars as well as the ways in which they can be intercon-
nected. The idea is that any language-acquisition device uses primary formal
language data as empirical basis for language learning to meet the explana-
tory adequacy inherent in UG, and to select one of the potential grammars
permitted by UG.

The theory of complex systems shows that a vast system such as the
human brain, highly flexible and able to process abstract concepts at many
different levels as it is, may exhibit features intractable at the algorithmic
level. Chomsky ’s proposal however is indeed a plausible theory of language
and when he maintains that the boundary between linguistics and natural
sciences will shift or disappear he fully exhibits his far-reaching vision. The
theory of mind should aim to determining the properties of the initial state SO
as well as of each attainable state SL of the language faculty, while the brain
sciences should seek to discover the mechanisms of the brain that constitute
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the physical realizations of such states. Eventually, language theory and the
brain sciences will converge in their effort to discover the mechanisms of brain
that are the physical realization of the state SL, while UG is biologically
determined.

2 Combing finitely generated groups

A further topic toward the argument of this note is the fact that, as thoroughly
and rigorously argued in [29], there exist deep connections between language
theory and the properties (structural, combinatorial, topological) of groups.
Here – with no substantial loss of generality – the focus will be mainly on
finitely presented groups. An automatic group [2] is a finitely generated group
equipped with several finite-state automata [32], [1], [40]. These automata can
tell whether a given word representation of a group element is in a “canonical
form” and whether two elements given by canonical words differ by a gener-
ator. A particularly interesting and intriguing structural property of finitely
presented automatic groups is “combing”. A group is combable if it can be
represented by a language of words satisfying a “fellow traveller” property.

More precisely, let G be a group and X̂ a finite (sub)set of generators
of G. An automatic structure of G with respect to X̂ is a set of finite-state
automata: i) the word-acceptor, which accepts for every element of G at least
one word in X̂ representing it; ii) multipliers, one for each g ∈ X̂∪{e}, (e being
the group identity element) which accept a pair (w�, wj) of words accepted
by the word-acceptor, precisely when w�g = wj in G. The property of being
automatic does not depend on the set of generators. In particular, the braid
group [5] is an automatic group. One can find the properties of groups with
combing, as well as the closure properties of the associated classes of groups,
in various formal language classes.

The concept of combing [6] for a finitely generated group has grown
out just of the definition of automatic group; evolving to the property that a
group is automatic precisely when it possesses a regular synchronous combing.
More details will be given below; for the moment, roughly speaking, combing
is the process of generation of an orderly set of strands through the Cayley
graph of the group, which is regular if it is defined by a finite state automaton.
Groups with asynchronous combing – which is an indexed language – can also
be defined, by weakening both of the two restrictions on the “language” as-
sociated with an automatic group: the geometric “fellow traveller condition”
is relaxed from synchronous to asynchronous, and the language theoretic re-
quirement of regularity is replaced by the requirement that the language be
indexed (that is, recognised by a one-way nested stack automaton, a type of
machine which is more general than a pushdown automaton). An automatic
group has a “synchronous” combing which is a regular language.

In order to make the argument more effective, the notions of fellow traveller
property and their connection with languages and combings will now first
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briefly reviewed. Successively their application will be considered to the study
of the problem of combing for a specific class o groups: parenthesized (finite)
groups, which will be assumed as study case and metaphor.

Let G be a finitely presented group, with identity element e, and let X
be the finite generating set of G. Assume that X is inverse closed, that is, it
contains also the inverse of each of its elements. A product of elements in X is
a ′′word in G ′′, and one denotes by X∗ the set of all such words. Let Γ = ΓG,X

be the Cayley graph for G over X, with vertices corresponding to the elements
of G, and, for each x ∈ X, a directed edge from the vertex g to the vertex g ·x,
labelled by x. Let moreover dG,X measure the “chemical” distance between
vertices of ΓG,X. For words w, v ∈ X∗, one writes w = v if w and v are identical
as words, w =G v if w and v represent the same element of G. Let �(w) denote
the length of w as a string, and �G(w) the length of the shortest word v with
v =G w. It is also possible to extend dG,X to a differentiable metric on the
1-skeleton of Γ [3]. Then each word w can be associated with a differentiable
path from e labelled by w such that, for t < �(w), the path from e to w(t) has
length t, and for t ≥ �(w), w(t) = w(�(w)).

Suppose now that v, w are words in X∗, and that k ∈ N. Various “fellow
traveller” properties can describe the relationship between v and w. We say
that v and w “synchronously” k-fellow travel if for all t, dG,X(v(t), w(t)) ≤ k.
More generally, one says that v and w “asynchronously” k-fellow travel if there
is a strictly increasing, differentiable function h : R → R, mapping [0, �(v)]
onto [0, �(w)], with the property that, for all t > 0, dG,X(v(t), w(h(t))) ≤ k.
v and w asynchronously k-fellow travel with bound M , if for all t ≤ �(v) the
function h satisfies 1/M ≤ h′(t) ≤ M . h is the “relative speed function” of v
and w, and k the fellow traveller constant. Notice that v and w synchronously
fellow travel if and only if they asynchronously fellow travel with relative speed
function h(t) = t.

A language for G over X is a set of words L in X which contains at least
one representative for each element of G. It is “bijective” if it contains exactly
one representative of each group element; “geodesic” if for each w ∈ L, �(w) =
�G(w), and “near geodesic” if, for some arbitrary constant ξ, for all w ∈ L,
�(w) − �G(w) < ξ.

Suppose further that L is a language for G. L has a “synchronous combing”
if for some constant k, the k-fellow traveller condition is satisfied by all pairs
of words v, w ∈ L for which w =G vx for some x ∈ X ∪ {e}. L has instead
an “asynchronous combing” if for some k the asynchronous k-fellow traveller
condition is satisfied by all pairs of words v, w ∈ L for which w =G vx for
some x ∈ X∪ {e}. An asynchronous combing L is “boundedly asynchronous”
if for some constant M , relevant pairs of words asynchronously fellow travel
with bound M . Boundedly asynchronous combings are crucial for the study
of automatic groups.
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2.1 Combing and parenthesized groups

An interesting metaphor and study-case for both the above notions and their
interpretation in terms of quantum information theory is a group, Dehornoy
group B [19], that includes Artin’s braid group B∞ and Thompson’s group
F [45], [38]. The elements of B are represented by braids diagrams in which
the distances between the strands are not uniform and, besides the usual
crossing generators, new rescaling generating operators shrink or stretch the
distances between the strands. B is a “group of fractions”, i.e. it is orderable,
and admits – besides its group multiplication – a non-trivial self-distributive
structure generated by the additional binary operation (x(yz)) = ((xy)(xz))
[17]. Moreover B embeds in the mapping class group [5] of a sphere with a
Cantor set of punctures, and Artin’s representation of B∞ into the automor-
phisms of a free group extends to it.

B is generated by copies of B∞ and F , and its properties are a mixture
of those of B∞ and F . Indeed the presentation of B extends the standard
presentations of B∞ and F , starting from a geometric approach in terms of
parenthesized braid diagrams. Every element of B generates a free subsystem
with respect to the operation (x(yz)) = ((xy)(xz)) – which shows that the
self-distributive structure of B is non-trivial.

The elements of B can be seen as parenthesized braids [30], or braids in
which the distances between the strands are not uniform. While an ordinary
braid diagram connects an initial sequence of equidistant positions to a sim-
ilar final sequence, a parenthesized braid diagram connects a parenthesized
sequence of positions to another possibly different parenthesized sequence of
positions. For this reason, arranging such objects into a group leads to intro-
ducing, besides the usual braid generators si that create crossings, and s−1

i

that generate inverse crossings, new rescaling generators ai that shrink the
distances between the strands in the vicinity of position i, and of course a−1

i

that stretch it. The si’s generate the copy of B∞, while the ai’s generate the
copy of Thompson’s group F . Parenthesized braids and tangles were stud-
ied as categories in connection with Vassiliev’s invariants of knots: one can
therefore expect that they are related to knot polynomials.

Group B is constructed using the approach that is standard for braids,
namely starting from isotopy classes of braid diagrams. The difference is that
diagrams are considered here in which the distances between the endpoints
of the strands need not be uniform. Positions are therefore specified using
parenthesized expressions, such as (•((••)•)), where grouped positions are to
be seen as (arbitrarily) closer than the adjacent ones. This is implemented by
considering positions that are indexed not only by integers, but more generally
by finite sequence of integers. A braid diagram consists of curves that connect
an initial sequence of positions to a similar final sequence of positions. In
an ordinary braid diagram, positions are indexed by positive integers and a
generic diagram is obtained by stacking one on top of the other elementary
diagrams. Here one considers also braid diagrams in which the initial and final
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positions need not be equidistant. This leads to the feature that, between the
positions i and i+1, (infinitely) many new positions are possible. Then one has
to consider generalized braid diagrams obtained by stacking (finitely many)
elementary crossing diagrams (“s′′i ) in which all strands near position i cross
over all strands near position i + 1, and rescaling diagrams (“a′′i ) in which
the strands near position i are shrinked and all strands on their right are
translated to fill the gaps. These diagrams form a category, whose objects
are the possible sets of positions – which can be specified by parenthesized
expressions or, equivalently, finite binary trees – and whose morphisms are
the isotopy classes of braid diagrams.

Generating a group out of these objects requires further analysis. In ordi-
nary braid diagrams, the initial and final positions coincide; thus, for each n,
concatenating n strand diagrams is always possible, which leads to the braid
group Bn. In the extended framework, concatenating two diagrams D1, D2 is
possible only when the final set of positions in D1 coincides with the initial
set of positions in D2, and an everywhere defined product is achievable only
when one considers infinite completions. To make a group out of all ordinary
diagrams, independently on the number of strands, one embeds recursively Bn

into Bn′ , for n < n′ and the elements of B∞ are then represented by diagrams
with n arbitrarily large. The set of positions involved in an ordinary braid
diagram is an initial interval {1, 2, ..., n} of N.

When one turns to parenthesized positions, the role of such intervals is
played by finite binary trees. Upon denoting by • the tree consisting of a
single vertex and by t1t2 the tree with left subtree t1 and right subtree t2,
every tree has a unique decomposition in terms of •, and one can identify
trees and parenthesized expressions. Conversely, one associates with every
tree a finite set of positions P (t).

Consider now diagrams constructed from two series of elementary diagrams
indexed by

{
s±1

i

}
and

{
a±1

i

}
, namely diagrams specified using a word on these

letters. To construct a parenthesized diagram Dt(w) for w a word and t a tree,
one may proceed exactly as for the ordinary diagram Dn(w) defined for an s-
word w and n an integer. For t of size n+1, namely defining n positions, Dt(w)
consists of n strands that connect the positions of P (t) to n new positions.

In contrast to the case of B∞, the diagrams Dt(si) or Dt(ai) require at-
tention when they have to be stacked, since the final positions of the strands
need not coincide with the initial ones. However, the changes correspond to
a straightforward action on trees: 1) for tree t, the unique sequence of trees
(t1, ..., tn) such that t factorizes as (t1(t2(...(tn•)...))) is called the (right) de-
composition of t, and denoted by d(t). For a tree t with d(t) = (t1, ..., tn) with
n > i, one defines the trees t ◦ si and t ◦ ai by:

d(t ◦ si) = (t1, ..., ti−1, ti+1, ti, ti+2, ..., tn) ,
d(t ◦ ai) = (t1, ..., ti−1, titi+1, ti+2, ..., tn) .

One further inductively defines t◦w for word w in such a way that t◦w−1 = t′

is equivalent to t′◦w = t and t◦(w1w2) is equal to (t◦w1)◦w2. Such definition
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implies that the final positions of the strands in Dt(si) and Dt(ai) are P (t◦si)
and P (t◦ai), respectively. Completing the construction of the diagrams Dt(w)
is then straightforward; 2) the diagrams Dt(s−1

i ) and Dt(a−1
i ) are defined to

be the mirror images of Dt◦si
(si) and Dt◦ai

(ai), respectively. Then, for w a
word and t a binary tree such that t ◦ w is defined, the parenthesized braid
diagram Dt(w) is inductively defined by the rule that, if w is xw′, where x
is one among the s±1

i ’s and a±1
i ’s, then Dt(w) is obtained by stacking Dt(x)

over Dt◦x(w′).
Induction gives, for every tree t and every word w, the diagram Dt(w),

defined if and only if the tree t ◦ w is defined, and, in the affirmative, with
final positions in Dt(w) that are P (t ◦ w).

One can now finally define the group of parenthesized braids. According to
Artin’s original construction, braids can be introduced as equivalence classes
of braid diagrams. Viewing a diagram as the planar projection of a 3D-figure,
one considers the equivalence relation corresponding to ambient isotopy of
such 3D figures. This amounts to declaring equivalent those diagrams that can
be connected by a finite sequence of appropriate Reidemeister moves. From
a topological point of view, parenthesized braid diagrams are just ordinary
diagrams, thus they are eligible for the same notion of equivalence.

The task of making a group out of parenthesized braids faces the problem
that one cannot compose arbitrary diagrams. Such problem can be solved eas-
ily by introducing a completion procedure and defining the group operation
on the completed objects. In the case of ordinary braids, where the only pa-
rameter is the number of strands, in order to compose two diagrams Dn1(w1),
Dn2(w2) with, say, n2 > n1, one first completes Dn1(w1) into the n2-diagram
Dn2(w1) obtained from Dn1(w1) by adding n2 − n1 unbraided strands on the
right. Such construction leads to working with infinite diagrams. This is not
an obstruction because for each braid word w, the diagrams Dn(w) make an
inductive system when n varies, and, letting D∞(w) to be the limit of such
system, one obtains a well-defined product on arbitrary diagrams. Moreover,
as completion preserves equivalence, the product so defined induces a group
structure, namely just that of B∞.

The procedure is similar for parenthesized braid diagrams, the appropri-
ate ordering being the inclusion of trees viewed as sets of nodes: for t, t′

trees with t ⊆ t′, let Γt,t′ denote the completion that maps Dt(w) to Dt′(w)
whenever Dt(w) exists. The geometric construction of parenthesized braid
diagrams makes indeed the completion procedure easy to understand: the di-
agram Dt′(w) for t′ ⊇ t is obtained by keeping the existing strands, and adding
new strands in Dt(w) that lie half-way between their left and right neighbours.
The only difference with ordinary diagrams is that there is in general more
than one basic extension: the only way to extend the interval {1, 2, ..., n} into
a bigger interval is to add n + 1, while in a tree t, each leaf can be split into
a caret with two leaves, so there are n + 1 basic extensions when t specifies
n positions. As induction shows, splitting the k-th leaf amounts to doubling
the k-th strand.
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In conclusion, all is needed for mimicking the construction of B∞ is: i)
for each word w the system (Dt(w), Γt,t′), which is directed, because, for any
two trees t, t′, there exists a tree t′′ that includes both t and t′; ii) diagram
concatenation, that induces a well-defined product on direct limits, as the
completion Γt,t′ is compatible with the product: if Dt(w1) and Dt◦w1(w2) exist
so that Dt(w1w2) is defined, then, for each tree t′ including t, the diagram
Dt′(w1w2) exists and

Dt′(w1w2) = Dt′(w1) · Dt′◦w1(w2) .

Notice that completion maps are compatible with diagram equivalence, as the
description of completion in terms of strand addition implies.

Consider, for each word w, the union of the inductive system of the Dt(w).
Then concatenation induces an everywhere defined product on such parenthe-
sized braid diagrams, and isotopy induces a well-defined equivalence relation
that is compatible with such product.

Finally, the same argument as in the case of ordinary braid diagrams
gives the property that “isotopy classes of infinite parenthesized braid dia-
grams make a group”. The group of isotopy classes of such diagrams is the
parenthesized braid group B, whose elements are parenthesized braids.
By construction, B is generated by the elements si and ai. Let R denote the
list of the following relations with i ≥ 1 and j ≥ i+ 2:

sisj = sjsi , siaj = ajsi , aiaj = aj−1ai , aisj = sj−1ai ,

sisi+1si = si+1sisi+1 , si+1siai+1 = aisi , sisi+1ai = ai+1si .

All relations in R induce diagram isotopies, hence equalities in B. Moreover,
R includes the standard braid relations, as well as the relations aiaj = aj−1ai

for j ≥ i+2, which provide the standard presentation of Thompson’s group F .
R furnishes thus the full set of relations of B. In other words, upon denoting
by s∗ and a∗ the families of all si’s and all ai’s, respectively, one has the
presentation [18]:

B = 〈a∗ , s∗ ; R〉 .
When one constructs combings out of other combings, it is clear from the

construction that properties such as bijectivity, geodesicity or near geodesicity
possessed by the original combings would be inherited by the new ones. In
general, however the construction itself is independent on those properties.
More precisely, 1) any asynchronously combable group is finitely presented;
2) any asynchronously combable group has soluble word problem.

A natural property of combing is the feature that it is a language in one
of the families of formal languages, namely, a language recognised by some
theoretical model of computation (or, equivalently, defined by a formal gram-
mar). The combing of an automatic group is a regular language. Bijective,
asynchronous combings were studied in various formal language families, in
particular the families of bounded languages, regular languages, context-free
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languages and indexed languages, and more generally any full abstract family
of languages. This general set includes both the range of fellow traveller con-
ditions (synchronous and boundedly asynchronous, harder to obtain) and the
range of language families for which they hold: manifestly such conditions are
valid for parenthesized groups in general, and for B in particular.

3 Knots, braids, automata and languages

One can now finally address the question of generating combing algorithms
in a quantum context. It is by now a generally accepted fact that the laws of
quantum theory provide in principle a radically novel and more powerful way
of processing information than any classically operated device. In the past few
years a great deal of activity has been devoted to devise and to implement
schemes for taking actual advantage from such quantum extra power. In par-
ticular in quantum computation the states of a quantum system S are used for
encoding information in such a way that the final state, obtained by the ap-
propriate unitary time evolution of S, encodes the solution to a given compu-
tational problem. A system S with state-space H (the “Quantum Computer”
[41]) supports universal quantum computation if any unitary transformation
U ∈ U(H) can be approximated with arbitrarily high accuracy by a sequence
(“network”) of simple unitaries (“gates”) that the experimenter is supposed
to be able to implement. The case in which S is a multi-partite system is the
most relevant, as it allows for entanglement, the crucial quantum feature from
which quantum speed-up (polynomial or exponential) is generated.

In the above picture the realization of the quantum network is achieved
at the physical level by turning on and off external fields coupled to S as
well as local interactions among the subsystems of S, in other words a basic
set of time-dependent Hamiltonians that perform the necessary sequences of
quantum logic gates.

At variance with such a standard dynamical view, conceptual schemes
[48] based on geometrical and topological approaches to quantum informa-
tion manipulation exhibit far reaching peculiarities: for example, one can act
over the manifold C of quantum codewords in H with a trivial Hamiltonian,
for example H

∣∣
C = 0, yet obtain nevertheless a non-trivial quantum evolution

due to the existence of an underlying geometrical/topological global struc-
ture. The quantum gates in this case are realized in terms of operations of
purely geometrical/topological nature. Besides being conceptually intriguing
on their own, such schemes are noteworthy because they have built-in fault-
tolerant features, as certain topological as well as geometrical quantities are
inherently stable against local perturbations. This in turn allows for quantum
information processing naturally stable against errors.

Most general conceptual schemes of interpretation of quantum computa-
tion are indeed based on topological notions [34], [20], [25]; among them, any-
onic quantum computation, fermionic quantum computation, localized mod-
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ular functor quantum field computation, holonomic quantum computation.
Such models were shown to be simply different realizations of a unique more
general conceptual scheme, that incorporates all of them as particular in-
stances, grounded on their “discretized” counterparts.

The general setting for such universal representation is the “Quantum Spin
Network Simulator” [35], [36], [36], [43]. The latter is characterized by dynam-
ical evolution processes, permitting information manipulation, based on the
(re)coupling theory of the angular momenta SU(2). The scheme automati-
cally incorporates all the features that make quantum information encoding
more efficient than classical: it is fully discrete; it deals with inherently en-
tangled states, naturally endowed with a (non associative) tensor product
structure; it allows for generic encoding patterns. Also, it satisfies the whole
set of Feynman, R. P.’s requirements [22] for the full characterization of an
efficient quantum simulator: i) locality of interactions; ii) complexity capacity
growing at most polynomially with the space-time volume of the system; iii)
time discreteness (time itself is “simulated” by the number of computational
steps). All such basic features are endowed in spin networks. Spin networks
are in essence graphs, G, the node and edge sets of which can be labelled by
quantum numbers associated with SU(2) irreducible representations and by
SU(2) recoupling coefficients, respectively. A more general version of the spin
network resorts to the quantum (deformed) algebra su(2)q, which embodies
crucial novel features in its co-algebra structure (in particular, it provides the
discretized version of a Chern-Simons topological quantum field theory). Spin
networks are the ideal conceptual framework for dealing with tensorial trans-
formations and topological effects in the information coding observables, by
modelling the computational space in terms of a set (a graph) endowing all
necessary combinatorial and topological rules.

The spin network quantum simulator model can be thought of as a non-
Boolean generalization of the quantum circuit model, with unitary gates ex-
pressed in terms of the recoupling coefficients S (3nj symbols) between in-
equivalent binary coupling schemes of a finite number, (n + 1), of SU(2)-
angular momentum variables, and of Wigner rotations, W, in the eigenspace
of the total angular momentum [4]. The basic ingredients of the spin net-
work simulator are then G, S, W, i.e., its computational Hilbert space and
admissible elementary gates.

Here a new frontier of quantum information is proposed: the search for
algorithms capable of addressing problems in linguistics, mapping them onto
problems in low dimensional geometry and topology. The combing of finite
groups is the case study addressed. The reference scheme to achieve this aim,
is the same already worked out in the literature [26], [27], which plays the role
of a metaphor for it: the problem of evaluating Jones polynomials [33]. The
latter characterize the topology of knots and links associated with the expecta-
tion value of a Wilson loop operator in quantum Chern-Simons field theory in
three dimensions. Resorting to the q-deformed spin-network quantum simula-
tor model, which essentially encodes the deformed su(2)q Racah-Wigner ten-
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sor algebra, it was shown that families of finite-states and discrete-time
quantum automata could be implemented, which accept the language
generated by the braid group as their language and the (deformed) angu-
lar momenta (re)coupling scheme as corresponding grammar. The success of
the algorithm mentioned is due to the feature that transition amplitudes for
such automata are indeed just (colored) Jones polynomials. What is argued
here is that the quantum circuit which efficiently simulates the dynamics of
these automata, that can be explicitly constructed, if appropriately controlled
and sampled with a set of measurements, could approximate not only the knot
invariants, but recognize and count the group identity elements necessary to
solve the combing problem. As for the complexity of the corresponding cir-
cuit, since the time complexity of the spin network automaton is polynomial
in the size of the input (depending on the index of the braid group), the
algorithm that efficiently simulates the automata is expected to provide an
efficient estimation for the latter problem as well.

It is worth noticing, incidentally, that knots and braids, beside being fas-
cinating mathematical objects, are encoded in the foundations of a number
of physical theories, either as concrete realizations of natural systems or as
conceptual tools. From statistical mechanics of exactly solvable classical lat-
tice models, to string theory, from liquid crystals physics to molecular biology
(counting “knotted” configurations of DNA strands), the need for classify-
ing the observed structures in the topological theory of knots and links has
generated novel mathematical categories.

On such conceptual side, knot theory reveals a deep, unexpected inter-
action with quantum field theory, based on its global and not purely local
(i.e., topological) features. It was in the seminal work by Witten [46] that it
was recognized how knot invariants could be associated with the vacuum ex-
pectation value of Wilson loop operators in a three-dimensional non-abelian
Chern-Simons quantum field theory with gauge group SU(2).

Braids appear naturally in this conceptual context, since one can always
present a knot as the closure of a braid (Alexander theorem). Moreover, braids
and parenthesized braids enrich the purely topological nature of the theory,
since, as it was shown above, they can be endowed with a group structure.
The Artin braid group on n strands indeed encodes all topological informa-
tion about over- and under-crossings into an algebraic setting and Thompson’s
group allows to extend the same equivalence-class relations to parenthesized
braids. It is the very structure of the spin network quantum simulator, based
as it is on recoupling of angular momenta, that allows fully incorporating
the extra information connected with parenthesization in natural way: the
idea is simply its recursive iteration over different computational graphs GJ ,
combinatorially coupling the corresponding total angular momenta J, for dif-
ferent J’s, to generate the full new computational space needed to host the
parenthesized braids.

Problems ubiquitous in many areas of mathematics and physics, which
can be cast in the language of braids, that often share the feature of being
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intractable in the framework of classical information theory, may then instead
be possibly dealt with efficiently at quantum level. The arguments presented
in previous sections prove that formal symbolic, questions in language the-
ory, and possibly in linguistic, can enrich the family of problems (efficiently)
tractable in a quantum framework.
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1 Introduction

The conflict between classical and intuitionistic mathematics – henceforth,
the C-I conflict – has been discussed at length and in depth by a number of
famous scholars. Why an outside perspective? Is such a perspective interesting,
or even possible?

There are in fact reasons why a somewhat detached account of this conflict
might be worthwhile. First, the conflict is prima facie very puzzling, and even
worrying. Mathematics is a discipline on which much of science, indeed much
of our knowledge, rests. Moreover, it is a discipline whose practitioners are
supposed to agree among each other more than in other fields about results
and methods. Yet here there appears to be a conflict even about basic laws of
logic, not to mention specific mathematical claims.

Second, popular accounts of this state of affairs are not very satisfactory.
One may be told that the part of mathematics that matters for practical
applications is unaffected by the C-I conflict. But that leaves the original
question even more puzzling: how then can there be a conflict about basic
logic? Another idea is that classical and intuitionistic mathematicians simply
speak different languages, and only seem to contradict each other. There is
something to this, of course. But again, if that were the whole explanation,
why would the conflict persist?

Specialists in the field haven’t paid much attention to explaining what goes
on to a wider audience. That’s unfortunate, especially since the ‘received’ view
of the matter has undergone significant changes since the days of Brouwer.
For example, it is now quite common for intuitionists to see classical mathe-
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matics as a special case of intuitionistic mathematics. That would have been
unthinkable to Brouwer.1

But also from the point of view of general epistemology or philosophy of
science, this conflict ought to be an ideal object of study. One would be hard
put to find other cases of such clear-cut and continued disagreement, about
truth and about methods, in the sciences. Discussions on the subject in the
philosophy of mathematics abound, but they usually reflect the philosophical
aspects of one or the other position in the conflict. What I am after here is
the more detached view of the philosopher of science.2

For example, it might seem, prima facie, that the C-I conflict is a promising
case for those who sustain some form of relativism about knowledge or truth.
Here we have two communities of mathematicians who clearly disagree, but
whose disagreement is not easily resolvable by giving one side an advantage
over the other. Perhaps both are right; perhaps the disagreement is ‘fault-
less’? I am not saying that this is actually the case, but the question could
surely be raised, as it recently has been raised for discourse about other things
than numbers or functions (e.g. discourse about taste, values, probabilities,
knowledge, the future, etc.3).

Such an undertaking would not only benefit from an outside perspective,
but require one. But is such a perspective really possible?4 Won’t one in-
evitably be influenced by one’s own preferences? Surely there is a such a risk,
but it shouldn’t make us give up before trying. Being aware of the problem,
one can try to avoid falling into the most obvious traps. And if in the end the
difficulties become unsurmountable, that too would be a useful insight.

There is, however, a theoretical objection coming from the intuitionist
camp, for example in Michael Dummett’s version. It stems from the claim
that classical mathematics, and more generally the classical notion of truth, is
simply incoherent, and therefore ultimately unintelligible. Mustn’t the lack of
intelligibility transfer to any attempt at an ‘objective’ account of the conflict?
This is a serious question. But things are not simple: the unintelligibility
claim is not shared by all intuitionists, and it may even be in conflict with

1 The inverse view is also common, that intuitionistic mathematics is just a par-
ticular kind of (classical) mathematics. Appearances notwithstanding, these two
views are not incompatible; see § 5.2.

2 [7] focuses on the issue of mutual understanding between the two camps, as I
do in this paper. His perspective is that of classical mathematics, however, and
a main claim is that the intuitionist cannot state her position clearly without
resorting to classical logic. Although that issue is both interesting and relevant,
I avoid it here.

3 See, for example, [10] and references therein.
4 Traditional relativism denies that this is possible. But the modern versions of

relativism referred to in the previous footnote might very well allow it. Relativism
applies, it is claimed, to certain discourses, not to all. One could be allowed to
be relativist about statements of taste, say, but absolutist about semantics, in
particular about the meaning of taste statements.
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some other things Dummett says on this subject — Dummett is in fact one
of the (few) champions of promoting mutual understanding between classical
and intuitionistic mathematicians.

A further worry is that an outside view of the C-I conflict will be super-
ficial. Mathematicians are usually (and often justifiably) suspicious of how
non-specialists describe what they are up to. They feel that the mathematics
should speak for itself. But that would mean that non-specialists should give
up any attempt to understand what the conflict is about. And this might even
be reasonable if the debate were about number theory, or topology, say. But
the debate is (also) about what mathematics is. Then it is not enough to just
point to existing mathematics, especially when the different camps point to
different kinds of mathematics.

The structure of the paper is as follows. After some stage-setting in § 2
and § 3, I start with a rather close look in § 4 at the suggestion, mainly
due to Dummett, that classical and intuitionist mathematicians should try
to achieve mutual understanding by starting from a common ground, which
is unproblematic in some important sense. My evaluation of this strategy is
mostly negative: a basic asymmetry as to one side’s ability to achieve under-
standing of what the other is up to will remain. In § 5, I then explore another
approach: focusing on proofs rather than meaning explanations, and taking
account of the avowed intention of most modern intuitionists to make all
intuitionistic theorems classical theorems as well, appears to significantly im-
prove the prospects of mutual understanding. Although this indeed promises
to eliminate serious conflict between the two camps, I make some cautionary
remarks at the end of that section, as well as in the concluding § 6.

2 Background

Although there are many variants of intuitionistic as well as classical math-
ematics, for certain basic issues these differences do not matter much. It is
often enough to simply speak (as Dummett does) of intuitionists and pla-
tonists. The principled differences between these two concern the notion of
mathematical truth and the meaning of the basic logical constants. The typi-
cal intuitionist takes truth to be what philosophers call an epistemic notion:
roughly, something is true if it can be proved. This puts computation at cen-
ter stage: (intuitionistic) proofs are computations, or directions for finding
computations. Accordingly, the meaning of the constants are given as proof
conditions: some form of the Brouwer-Heyting-Kolmogorov (BHK) condi-
tions for the circumstances under which a statement of a certain form can be
asserted.

The typical platonist disagrees. Truth is not epistemic: whether something
is true is unrelated to our ability to find out if that is so. A statement for
which we will in fact never find a proof might still be true. The meaning of
the constants are in terms of the usual (Tarskian) truth conditions. It is a
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little harder to state the ‘typical’ platonist way of explaining why truth is
non-epistemic, but the rough idea is that mathematical statements are about
some reality or structure suitably independent of us. We need not assume he
holds this for all of mathematics; for most of what I say it will be enough to
consider first-order number theory, PA: for any sentence in PA, the platonist
holds that it is either true or false, regardless of what we know now or will
ever know. A platonist about real numbers holds the same for statements (in
some language that needs to be specified) about the reals, but that doesn’t
commit him, as these terms are used here, to the same view about the whole
of set theory, for example.

It may seem that an obvious weak point for the platonist is the reference
to an independent (platonic) reality of abstract objects. The only abstract
objects the intuitionist needs are the proofs themselves. But here the platonist
counters that this is just appearance: by defining truth as provability you lose
the ability to explain the point of proofs, which, non-trivially, is precisely to get
at the truth. The intuitionist responds that the point is in fact another, having
to do with computability. And the familiar (philosophical) debate continues.
But to begin, at least, we shall ignore the ‘why’ of proving things, as well as
the existence of platonic realities: it is enough to assume that the two parties
have the different attitudes towards number-theoretic statements indicated
above.

3 Setting the stage

A quick glance from the ‘outside’ seems to indicate that the C-I conflict is very
serious indeed. Intuitionists refuse to assert things that platonists find triv-
ially true, and in other cases assert things that classical mathematics outright
denies. An example of the former is of course the Law of Excluded Middle,
say in the form that for any PA-sentence ϕ,

(lem) ϕ ∨ ¬ϕ
is (logically) true. The intuitionist doesn’t deny lem (which to her would
mean claiming that it is contradictory), but she certainly doesn’t believe we
have any reason to assert it. The second kind of conflict is exemplified by
Brouwer’s theorem

(cont) Every function from [0,1] to the real line R interval is uniformly
continuous,

something that every math student learns how to disprove at an early stage.
But a common explanation is that only the words are the same; the state-

ments made are different. The intuitionist means something quite different
with words like “or”, “not”, “real number”, etc.5 This eliminates the immedi-
5 Thus, for example, [3, p. 55]: “The apparent absurdity of this statement is, how-

ever, illusory, as is suggested by the following more careful re-statement of it.
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ate threat of conflict. Moreover, it seems that provided the words are used in
the intuitionist way, the platonist too can accept that lem fails, and perhaps
even that cont holds.6

However, the problem doesn’t go away so easily:

• Can the respective meaning explanations be provided in a sufficiently clear
way, so that mutual understanding is achieved?

• Assuming this can be done, and allowing for the meaning differences, can
we be sure that no other conflicts than those alluded to above, of the
stronger or the weaker kind, exist?

• For example, can we be sure, for some principled reason, that the platonist
will accept all ‘translated’ intuitionistic claims?

• Even if that were the case, what shall we do with the fact that the converse
seems to fail? Intuitionists do not accept the classical version of lem or
of the negation of cont. They might (nowadays) agree that these claims
are consistent, but they would not assert them, whereas the platonist is
happy to admit, for example, that the intuitionistic version of lem fails.

• Thus there seems to be an asymmetry as regards mutual understanding,
and one would like to know why.

To the specialist, these questions may seem trivial, or misguided. But I
will proceed on the assumption that, at least initially, they make sense.

4 Mutual understanding

The intuitionism of Brouwer and Heyting was often presented in rather polem-
ical form. Michael Dummett, however, is a latter-day defender of Brouwer style
intuitionism who, in addition to finding support for it from a Wittgenstein-
inspired account of how language works, has repeatedly stressed the need for
dialogue between platonists and intuitionists:

. . . the desire to express the conditions for the intuitionistic truth of a
mathematical statement in terms which do not presuppose an under-
standing of the intuitionistic logical constants as used within mathe-
matical statements is entirely licit. Indeed, if it were impossible to do
so, intuitionists would have no way of conveying to platonist mathe-
maticians what it was that they were about: we should have a situation
quite different from that which in fact obtains, namely one in which
some people found it natural to extend basic computational mathe-
matics in a classical direction, and others found it natural to extend

Every intuitionistically definable function from the intuitionistic interval [0, 1]
to the intuitionistic real line is, intuitionistically, uniformly continuous.”

6 For example, by following the exposition of Brouwer’s theory of choice sequences
in [17], which takes place in a classical framework.
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it in an intuitionistic direction, and neither could gain a glimmering
of what the other was at. That we are not in this situation is because
intuitionists and platonists can find a common ground, namely state-
ments, both mathematical and non-mathematical, which are, in the
view of both, decidable and about whose meaning there is therefore
no serious dispute and which both sides agree obey a classical logic.
[4, pp. 237-8]

The quote also indicates one road along which Dummett thought mutual
understanding could proceed: via the common ground of decidable sentences.

4.1 Decidable sentences as a common ground?

The basic idea seems to be that decidable sentences are unproblematic, and
therefore mutual understanding can begin with them.

We can avoid any discussion about exactly what decidable means here, as
follows. First, restrict attention to the language of PA. The great advantage
of this is that we can assume, without distorting things very much, that

(1) There is no conflict about the meaning of the arithmetical non-logical
constants, and therefore no conflict about atomic sentences.

In contrast with the case of analysis, the conflict concerns only the logical
vocabulary in this case. Now, let D be the set of PA-formulas with only
bounded quantification.7 Even if D is only a subset of the set of sentences
Dummett has in mind, there is no unclarity about the fact that all sentences
in D are decidable.

Now, in what sense are sentences in D a common ground for the platonist
and the intuitionist?

At first sight, it might seem that Dummett holds that these sentences ex-
press “basic computational mathematics” and therefore mean the same for
both. But this cannot be the idea. Sentences in D use the basic logical vo-
cabulary, and Dummett points out time and again that the logical constants
have different meanings for the platonist and the intuitionist. Rather, what
he means is that the following holds:

(2) For all ϕ ∈ D, the intuitionist asserts ϕ if and only if the platonist does.

This is the sense in which decidable sentences “obey a classical logic”.
However, it doesn’t follow from (2) that they only involve notions concerning
which there is no dispute. That would only follow if there were nothing more
7 That is, terms and D-formulas have the following forms:

terms: 0, S(t), t1 + t2, t1 · t2
formulas: t1 = t2, t1 < t2, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ∃x(x < t ∧ ϕ),
∀x(x < t → ϕ)
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to the meaning of these sentences than their assertion conditions, so that
(2) would entail that D-sentences do mean the same to both. But Dummett
doesn’t favor such a crude behavioristic meaning theory. This is clear from
his remarks about the logical constants, and also from his claim that what
the intuitionist means can be explained in terms which are not in dispute. On
the crude meaning theory, there would be nothing further to explain about
sentences in D.

It is thus somewhat mysterious how (2) could do the work Dummett wants
it to. Consider the following D-sentence:8

ϕ0 = prime(210540 + 1) ∨ ¬prime(210540 + 1)

The intuitionist and the platonist can both assert ϕ0, but on very different
grounds. For the intuitionist, ϕ0 is true since there is an algorithm for deter-
mining if a number is prime, which we know in advance will terminate, even
if we don’t know the outcome for this particular number. The platonist recog-
nizes that this is a ground for asserting ϕ0, but he has a much a simpler one:
it is a trivial logical truth. Surely, this is a strong indication that ϕ0 means a
different thing for the platonist than for the intuitionist.

So the sense in which decidable sentences constitute a common ground is
too weak, it seems. Nor is there a common way they are used in standard
explanations of the meaning of the logical constants. For the platonist, decid-
able sentences play no role at all in that explanation. There is no difference
for him between ϕ0 and

ϕ1 ∨ ¬ϕ1

when ϕ1 is undecidable. The intuitionist, on the other hand, might use de-
cidable sentences in a first approximation of the meaning explanations, going
beyond them to deal with quantification over infinite domains. No common
role is played by decidable sentences in these respective explanations.

4.2 A neutral metatheory?

To understand what Dummett is after we must, I think, pay less attention
to the class of decidable sentences and the fact that these have the same
assertion conditions for everyone. Instead, we should focus on his idea that
the respective meaning explanations themselves can be given in terms which
are understandable to the opponent. In [4], he is mostly interested in how the
platonist can come to understand the intuitionist:

It is therefore wholly legitimate, and, indeed, essential, to frame the
condition for the intuitionistic truth of a mathematical statement in
terms which are intelligible to a platonist and do not beg any ques-
tions, because they employ only notions which are not in dispute. [4,
p. 239]

8 Allowing standard extensions by definition from D-formulas, such as e.g.
prime(x).
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Dummett goes on to say that this is most naturally done by carefully de-
scribing the intuitionistic notion of truth, in terms of the existence of a proof,
to the platonist. He comments, concerning the success of such explanations,
that although the other side may not accept them as legitimate, “at least the
conception of meaning held by each party is not wholly opaque to the other”
[4, p. 238]. This remark relates to the fact that the intuitionist insists that
mathematical truth cannot be explained in the platonist manner. In the other
direction no similar problem is mentioned. In fact, the rest of his discussion
concerns the very notion of intuitionistic truth: e.g. whether one should re-
quire the actual possession of a proof or if it is enough to have the means
(in principle) to obtain one. This leads to an intricate analysis of the role of
so-called canonical proofs, but there is no indication that the platonist should
have greater difficulties following these arguments than anyone else.

When Dummett returns to the issue of mutual understanding in [6], his
approach is slightly more formal:

What is needed, if the two participants to the discussion are to achieve
an understanding of each other, is a semantic theory as insensitive as
possible to the logic of the metalanguage. Some forms of inference
must be agreed to hold in the metalanguage . . . but they had better
be ones that both disputants recognise as valid. . . .
Thus, within sentential logic, the semantics of Kripke trees or Beth
trees is insensitive to whether the logic of the metalanguage is classical
or intuitionistic: exactly the same forms of inference can be shown
valid or invalid on that semantic theory. If both disputants propose
semantic theories of this kind, there will be some hope that each can
come to understand the other; there is even a possibility that they
may find a common basis on which to conduct a discussion of which
of them is right. [6, p. 55]

Although Dummett carefully distinguishes formal semantic theories from
the ‘real thing’, i.e. theories of meaning, he apparently thinks that if the
language in which such semantic theories are expressed has a logic not in
dispute, at least a road towards mutual understanding is open. He is also
explicit that ‘internal semantics’, e.g. a semantics for an intuitionistic theory
given in an intuitionistic metalanguage, is of no help here. No technical details
are given, but presumably Dummett is referring to intuitionistic proofs of
completeness theorems for intuitionistic logic. A completeness theorem says
precisely that a certain formal semantics captures the notion of validity in a
certain logic or theory.9

9 It was first believed that completeness theorem for Kripke or Beth semantics for
intuitionistic systems could only be proved classically, but Weldman and de Swart
realized that if one allows contradictory worlds (worlds in which some sentences
are both true and false), completeness with respect to this class of models could
be proved intuitionistically. See, for example, [9] for results of this kind.
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The point cannot be that the platonist too understands the metalanguage
and the logic in which the completeness proof is carried out — if he did
there would be no point of the exercise. Rather, the idea must be that there
is now a formal characterization of a certain set of intuitionistic validities,
whose correctness is accepted by the intuitionist, as well as (via the classical
completeness proof) by the platonist. One may grant, as Dummett indicates,
that this could provide some basis for a discussion between the two on the
merits of that system of intuitionistic logic.

Again, this is only understanding in one direction. For truly mutual under-
standing by these means, we would also need an intuitionistically acceptable
proof of the completeness of a relevant system of classical logic; say, first-order
logic. However, it is known that such a proof doesn’t exist.10

We thus see, following Dummett, that whether one takes the direct route
of explaining the intuitionistic meaning of the logical constants, or the more
indirect route via completeness theorems, an asymmetry appears: it seems
fairly clear how the platonist could go about understanding intuitionism, but
much less clear how understanding in the opposite direction would work.11

Indeed, in several other places, Dummett says explicitly that the intuitionist
cannot understand or make sense of classical logic or mathematics, because it
doesn’t make sense: it is unintelligible.

4.3 Intelligibility and translation

How seriously should one take Dummett’s claims about unintelligibility? On
the one hand, he continues Brouwer’s antagonistic stance towards classical
mathematics, saying that intuitionistic theorems “refute certain classically
valid logical laws” [5, p. 84]. One may wonder how a theorem can refute
a meaningless statement. On the other hand, he takes the issue of mutual
understanding and a common ground very seriously, as we have seen.

Perhaps one should take the unintelligibility claim at face value. Perhaps
laws like lem are refuted in the sense that the only meaningful way to under-
stand them renders them invalid. And perhaps mutual understanding must
always be approximate or partial.

At this point, an observer can only note that if Dummett is right, the
prospects of mutual understanding are bleak indeed. To get any further, he

10 This was shown by Gödel and Kreisel; for stronger versions, see [13]. It should
be noted that [8] shows that the fact that every consistent set of sentences (in
a countable language) has a model can be proved intuitionistically; see also the
exposition in [1]. Classically (but not intuitionistically), the completeness of clas-
sical first-order logic follows almost immediately from this fact. So some measure
of understanding can perhaps be obtained in this case too.

11 The first claim is also a standard platonist view: he can follow the intuitionistic
explanations of the logical constants, as well as intuitionistic mathematical proofs
(given the way the relevant intuitionistic concepts are defined); but he sees no
reason to declare that these are the only acceptable proofs.
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would have to engage in the philosophical debate, which is not my ambition
here. A remaining point, however, would be to account for the fact that clas-
sical mathematics appears to make sense. After all, it does so to the vast
majority of mathematicians.

Intuitionists often explain this via the various negative translations that
exist from parts of classical mathematics into corresponding constructive the-
ories. The idea is that when the platonist asserts ϕ, what he really means —
or alternatively, all he can be taken to mean — is ϕneg, where ϕneg is some
translation of ϕ (in the same language) such that, if TC and TI are the rele-
vant axiomatic theories, ϕ and ϕneg are equivalent in TC , and TC proves ϕ if
and only if TI proves ϕneg.

But there are problems with this view. First, it only concerns certain
axiomatized parts of mathematics. Second, such translations yield (relative)
consistency of the classical theories (since they preserve negation), and so the
intuitionist can take them to indicate that classical mathematics is at least
consistent, but that is a far cry from making sense of it. Of course, an extreme
view would be that this is the only sense to be had. But the translation is
often taken to show more, namely, that what the platonist mathematician
is really after are the translated versions of his theorems. And at this point,
the asymmetry in understanding shows up again. For even if ϕ and ϕneg are
provably equivalent, if you take a reasonably complex classical theorem ϕ and
tell a platonist that what he really means is ϕneg, he might just deny that
that was what he had in mind when he was thinking about how to prove ϕ.12

In other words, even for these theories (like PA versus its intuitionistic
version, Heyting Arithmetic, HA), the platonist and the intuitionist would
not agree about what the classical mathematician is up to. By contrast, if the
platonist ‘translates’ an intuitionistic statement using the BHK explanations
of the logical constants, or further intuitionistic elaborations about meaning
as in e.g. [6], they might well agree about the truth or falsity of the statement
understood in this way.

4.4 Summing up

We started with the need for an outside view, but have so far focused on
whether mutual understanding between the two camps is possible. But that’s
an entirely relevant issue. If we had found, for example, that each party can
fully understand what the other is up to, and is willing to admit that both
are doing mathematics and that no inconsistencies are likely to arise, then the
conflict would only be about which kind of mathematics was most interesting
or useful. This is of course highly relevant for matters of research funding or
academic appointments, but has little theoretical interest. (It might interest
the sociology of science, but hardly the philosophy of science.)
12 The argument hinges on notions of meaning that may themselves be controversial.

My point is merely to observe that even if a translation preserves theoremhood,
it does not automatically follow that it also preserves meaning.
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But that is not what we found. There is a striking asymmetry when it
comes to understanding what the other side is up to, however such under-
standing is supposed to take place. The platonist appears to have no serious
difficulties in grasping, at least not in principle, via reinterpretation of the
logical vocabulary and other means, the intended content of intuitionistic
mathematical claims. This is what many classical mathematicians themselves
claim, but we saw that Dummett appears to reason along similar lines.

Problems arise, on the other hand, for how classical mathematics is to be
understood. If the intuitionist insists that it is fundamentally flawed, she can
try to make sense of at least parts of it via negative translations. But it seems
unlikely to me that there could be an agreement about meaning along these
lines. There is likely to be a recognition that what the other side is up to is
consistent, but that is a very weak form of agreement.

If we don’t want to delve deeply into philosophical questions about mean-
ing, or simply take sides in the conflict, we seem to have reached an impasse.

5 Understanding in terms of proofs

The intuitionist I have so far portrayed is of the original Brouwer style, al-
though in Dummett’s version, which differs as to philosophical background
but not in mathematical content. But there is a newer brand of intuition-
ism, that I will simply call modern intuitionism,13 since it is a dominating
trend these days. One starting point is [2], whose explicit aim was to do con-
structive mathematics that looked just like ordinary mathematics, not even
apparently contradicting any classical theorems, and not relying on more or
less philosophical notions concerning the continuum or other central mathe-
matical objects, but only paying attention to constructivity (to assert that
something exists, you must provide an algoritm for finding it). More specifi-
cally, it proposed to approach the continuum without using Brouwer’s choice
sequences, or his ideas about the ‘creative subject’. An independent effort
with similar aims was [11].

This line of work has been carried on by a number of mathematicians, e.g.
Per Martin-Löf, Douglas Bridges, Fred Richman, Giovanni Sambin, Thierry
Coquand, to mention just a few,14 and today encompasses an impressive body
of mathematics.

Some of the modern intuitionists are still concerned with philosophy and
the foundations of mathematics, whereas others prefer to let the mathematics
speak for itself. But one thing that separates them from the old style intu-
itionists is their (explicit or implicit) adherence to the slogan:
13 Some of its practitioners would prefer to avoid the label “intuitionism” altogether,

using “constructivism” or “constructive mathematics” instead. But it is just a
label here.

14 Again, I am ignoring the various differences concerning the nature of construc-
tivism/intuitionism and platonism among these scholars.
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(*) Every intuitionistic theorem (proof) is a classical theorem (proof).15

This appears to provide a way out of the impasse mentioned above.

5.1 Truth and assertability

The impasse stemmed from the radically different notions of truth entertained
by the two sides: for one it is a primitive, fundamental, and ‘metaphysical’
notion; for the other it is a secondary epistemic notion, defined in terms of
proof. Although this difference may make mutual understanding impossible at
the level of a theory of meaning, it is worth pointing out that in one important
respect, the differences over truth don’t matter. The point is that both parties
have essentially the same notion of assertion.

Assertions in mathematics are theorems (or propositions, lemmas, etc.),
and with some simplification (actually a lot) we can say that the main goal of
mathematical scientific activity is to deliver theorems. And regardless of any
difference over what truth is, both sides agree about the following:16

(a) To assert something in mathematics, you need a proof.
(b) Provable statements are true.17

That is, for the purely mathematical activity, the differences come down
what proofs to accept. Certainly, a platonist might claim that there are true
statements of arithmetic whose proofs we will never know, or even truths that
don’t have proofs. But that is not a mathematical claim.

Relying on (*), one may affirm that intuitionistic mathematics is a part of
classical mathematics. But the converse affirmation is also popular.

5.2 Classical and intuitionistic mathematics as special cases of
each other

The implementation of (*) (in either version) in a specific area of mathematics
T often takes roughly the form:

(**) classical version of T = intuitionistic version of T + AX

where AX is a particular axiom, like some version of lem, or the unrestricted
axiom of choice, or the power set axiom. For example, HA can be formulated
so that one obtains PA simply by adding lem as an axiom. This has of course
been known for a long time, but a result of the work of modern intuitionists
has been to extend (**) to ever larger parts of mathematics.

15 For example, Brouwer’s cont is not a theorem of modern intuitionistic mathe-
matics. See also footnote 19.

16 “. . . the intuitionist’s view is that . . . you are not entitled to assert that a theorem
is true until it’s proved, which sounds much like a realist’s view also” [15, p. 124].

17 At least if we restrict attention to number theory and analysis.
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Classical mathematics is then a special case of intuitionistic mathematics
in the sense that it allows fewer models (having more axioms); in particular,
AX disallows ‘computational’ models that intuitionists take a special inter-
est in.18 A different and perhaps clearer way to make the same point is that
without AX, many mathematical notions bifurcate. For example, intuitionis-
tic logic distinguishes between a statement’s not being true and its leading to
contradiction. Or consider formal topology, a constructive approach to topol-
ogy initiated by Martin-Löf and Sambin, where the duality between closed
and open sets remains, but a closed set is no longer defined as the comple-
ment of an open set; only with classical logic do these two notions collapse
into one.19 For a final example, intuitionistic analysis doesn’t have access to
the axiom

∀x ∈ R(x = 0 ∨ x �= 0)

but gets by with slightly weaker principles like

a > b → ∀x ∈ R(a > x ∨ b > x)

∀x ∈ R(¬(x > 0) → x ≤ 0)

(see [3]). With lem, one never even thinks of these distinctions.
On the other hand, in another clear sense, intuitionistic mathematics is

a special case of classical mathematics, i.e. the special case where one in-
vestigates how to get by without certain axioms. For particular axiomatized
theories, (**) expresses just that. For mathematics in general, i.e. for (*), this
is presumably not something one can prove (see below), but it appears to be
a shared conviction. This notion too goes well with the idea that intuitionistic
mathematics is the computational part of classical mathematics.20

Clearly, from either of these (fully compatible) perspectives, the conflict
between platonists and (modern) intuitionists becomes less serious. Focus has
shifted from what lies behind mathematical truth to what proofs to accept.
Indeed, there is no necessity to take a stand, as witnessed by the fact that a
number of mathematicians do both classical and intuitionistic mathematics.
For example, a set theorist can study classical extensions of ZFC, and the
18 See [15] for a forceful statement of this claim.
19 See e.g. [16]. Thus, (**) should not be taken to entail that both sides use the same

language. Roughly, the intuitionistic language extends the classical one, but in
such a way that when AX is added, the extra intuitionistic vocabulary can be
eliminated.

20 This statement is imprecise. For some, the computational part of mathematics is
essentially recursive function theory. Intuitionists emphasize that recursive func-
tions too must be studied with constructive methods, e.g. without assuming lem.
Also, they reject the idea that intuitionists study subclasses of classical mathemat-
ical objects, such as constructive real numbers (as opposed to all real numbers) or
recursive functions (as opposed to all function among natural numbers). Instead,
they maintain that if you study e.g. number-theoretic functions with constructive
methods, these functions will in fact all be computable; see [15] and [3].
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status of the Continuum Hypothesis or large cardinal axioms, and at the same
time be interested in constructive versions of set theory. At the extremes, there
will be platonists who find the abandonment of certain obvious valid methods
of proof wholly unmotivated, and intuitionists who see no justification at all
in the extra axioms. In between, all kinds of positions are possible. But when
the differences have been reduced to whether or not this or that axiom can be
used, those interested in philosophical foundations can focus on those axioms,
and the others — the majority of mathematicians — can keep studying what
follows from what, which proofs are more effective, or more elegant, or more
informative, etc. The threat of conflict, in the sense of proving theorems that
contradict each other, seems to have disappeared.

End of story? Recall that the peaceful coexistence between classical and
intuitionistic mathematics envisaged here wholly builds on (*). I will briefly
consider the evidence for (*), and conclude with some remarks indicating that
some problems still remain.

5.3 Evidence for (*)

If (*) holds, no inconsistency between classical and intuitionistic mathematics
can ever arise. How sure can we be of (*)? As long as we restrict attention to
specific theories for which (**) holds, we are safe. But everyone knows that
mathematics cannot be fully captured within any formal system, and espe-
cially intuitionists have emphasized the open-endedness of the mathematical
enterprise: its methods can never be laid down once and for all. This may not
matter much to the working mathematician, but it certainly matters for the
methodological question of the validity of (*).

How could we know (*), once and for all? Note that the reformulation of
intuitionistic mathematical theories in the form (**) has by no means been an
easy matter, but the result of hard mathematical work. The methodological
considerations underlying this work are, when they are made explicit,21 still
some form of the BHK explanations of the logical constants. However, these
explanations by themselves really don’t give full evidence for (*). This obser-
vation is not often made, but an exception is Dummett, who notes that the
problem lies with intuitionistic implication:

In some very vague intuitive sense one might say that the intuitionistic
connective → was stronger than the classical →. This does not mean
that the intuitionistic statement A → B is stronger than the classical
A → B, for, intuitively, the antecedent of the intuitionistic conditional
is also stronger. The classical antecedent is that A is true, irrespective
of whether we can recognize it as such or not. Intuitionistically, this
is unintelligible: the intuitionistic antecedent is that A is (intuitionis-
tically) provable, and this is a stronger assumption. We have to show

21 As in the careful meaning explanations in [12].
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that we could prove B on the supposition, not merely that A happens
to be the case (an intuitionistically meaningless supposition), but that
we have been given a proof of A. Hence intuitionistic A → B and clas-
sical A → B are in principle incomparable in respect of strength. We
may sometimes have a classical proof of A → B where we lack an
intuitionistic one; but there is no reason why the converse should not
sometimes hold too. [5, p. 17] (Last italics mine)

To flesh out these remarks, consider the following thought experiment.
Suppose ϕ = ψ → θ were a sentence – we can even assume it is a numer-
theoretic sentence – such that:

(i) there is a construction taking intuitionistic proofs of ψ into intuitionistic
proofs of θ;

(ii) there is (in fact) no intuitionistic proof of ψ, but
(iii) there is a classical proof of ψ and a classical proof of ¬θ.

Of course, these claims about existence and non-existence of proofs must
be understood relative to some future, not yet discovered, notion of number-
theoretic proof. (That’s why it is a thought experiment.) Also, assumption
(ii) has to be read classically: not in the sense that we can show that ψ’s
provability would lead to contradiction, but simply that no proof exists. So the
thought experiment is only accessible to someone who can make sense of that
assumption. But if you cannot do that, probably (*) makes no sense to you
either.22 In any case, these assumptions appear consistent. An instantiation
of them would be a counter-example to (*).

The existence of such a counter-example seems very unlikely. For all the
known theories which satisfy (**), no such example can exist. Perhaps a more
general meta-theorem can be proved, ruling out such examples for a large class
of theories. And the issue whether we could give a principled argument that
there isn’t one, in all of mathematics, doesn’t look like something that could
be proved anyway. My point here is merely that (*) doesn’t automatically
follow from the standard intuitionistic account of the logical constants.

Incidentally, if there were a counter-example ϕ, it would not constitute a
conflict with classical mathematics, at least from the platonist’s viewpoint:
he would happily acknowledge that ¬ϕ is true, but also that the intuitionistic
reading of ϕ is true! It would, however, show that the relation between classical
and intuitionistic mathematics is not quite what it is usually taken to be.

22 Note that Dummett in the quote above (a) claims that an assumption like (ii) is
“intuitionistically meaningless”, but (b) uses it to explain the difference between
classical and intuitionistic implication.
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6 Concluding remarks

6.1 The asymmetry remains

We found that the attempts to achieve mutual understanding between pla-
tonists and intuitionists via a common ground of unproblematic statements,
or via a meta-theory that was not in dispute stranded — or at least were
far from successful — because of the apparent asymmetry of understanding
that resulted. The platonist could claim he has no principled problem of un-
derstanding what the intuitionist is up to. The intuitionist might even agree
that this understanding is essentially correct. But if she also insists that clas-
sical mathematics is at bottom unintelligible, there can be no corresponding
agreement about how to understand classical mathematics. For those who
still pursue Brouwer style intuitionistic mathematics, as well as for those who
base their adherence to intuitionistic logic on a Wittgenstein-inspired theory
of meaning, like Dummett or Prawitz, there is no real possibility of reconcili-
ation. Despite efforts to find a commond ground, they must in the end argue
that “classical logic contains some invalid forms of reasoning, and consequently
has to be rejected” [14, p. 2].

Modern versions of intuitionistic mathematics appear to allow for friendlier
relations. We noted that this stance presupposed that every intuitionistic the-
orem is also a classical theorem, a highly nontrivial claim which does not
follow automatically from the standard intuitionistic explanations of what
the logical vocabulary means. But the claim has been remarkably borne out
in mathematical practice. Let us assume it is true. Does it follow that peaceful
coexistence is now unproblematic?

The threat of platonists and intuitionists proving theorems that contra-
dict each other has disappeared. But in an important sense, the asymmetry
remains. The platonist still has no problem understanding intuitionistic math-
ematicians as dealing with the constructive part of mathematics in general. He
could even admit that this is a useful and worthwhile enterprise. But nothing
similar holds in the other direction. As far as I can see, the intuitionist’s only
possibility is a formalist understanding of classical mathematics: investigating
the consequences of certain extra axioms.23

The appeal of formalism to mathematicians, of all kinds, should not be
underestimated.24 For one thing, it is a handy retreat position when philoso-
phers or logicians ask too many questions about foundations: I just study

23 The claim that classical mathematics is a special case doesn’t really help, if this
special case results from ignoring distinctions that one feels should be upheld.

24 Of course I don’t mean Hilbert style formalism, i.e. the idea that the safety of
mathematics should be guaranteed by some reduction to a small ‘concrete’ part
of it, about which one is in no way formalist. Formalism here is roughly the view
that mathematicians prove theorems in axiom systems, but the choice of axioms
is unrelated to questions of truth.
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what follows from these axioms. For another, it fits with the aesthetic aspects
of proofs and theorems, aspects which no mathematician ignores.

What are the criteria for choosing among axiom systems? Generally
there are two opposing criteria: interesting models and beautiful the-
orems. [15, p. 125]

Presumably, a theorem or a proof is beautiful in much the same way as a
game of chess can be beautiful. But, as Richman indicates, beauty has little
to do with the truth- or knowledge-seeking aspects of mathematics.

On reflection, formalism is not a solution to the problem but a way to
ignore it. Besides, I doubt that there are any formalists about number the-
ory. There is a huge literature on axiom systems for arithmetic, and their
models. But this is part of proof theory or model theory, both established
mathematical-logical disciplines. To put it crudely, the object of these inves-
tigations is proofs, or models, but not numbers. By contrast, consider the im-
mense efforts mathematicians have spent on long standing number-theoretic
claims, such as Fermat’s Last Theorem or Goldbach’s Conjecture. Clearly, the
feeling of mathematicians is that we now know that Fermat’s Theorem is true,
whereas Goldbach’s conjecture is still open.25

To be sure, an intuitionist might not accept this result until she is satis-
fied about the constructivity of the methods. That is, without a constructive
proof she would not think that the truth of Fermat’s Last Theorem had been
established, and would presumably be forced to take a formalist stance on the
actual proof. And that would be another illustration of the asymmetry.

6.2 From the outside

What should the outside observer conclude, then, about the C-I conflict?
A first impression is that the persistent asymmetry we found might not be
that serious after all, at least with modern intuitionism. There is no outright

25 There is an interesting quirk concerning Fermat’s Last Theorem, since the
actual proof apparently uses methods from category theory not formalizable
in ZFC (relying on the existence of inaccessible cardinals; see the discus-
sion in FOM on this issue, for example Harvey Friedman’s postings, such as
http://cs.nyu.edu/pipermail/fom/1999-April/002992.html), although all special-
ists are convinced these methods are eliminable and the proof goes through in
ZFC. My simple point here is just that virtually everyone agrees that it is the
truth of Fermat’s claim which is at stake here, not which axioms it follows from.
The question was unresolved for 350 years, but now it is settled. (There are other
and perhaps more interesting issues involved, such as why everyone agrees that
provability in ZFC, and perhaps even in ZFC + some large cardinal axioms, would
guarantee arithmetical truth, and also why no one apparently has found it worth-
while or rewarding to actually perform the elimination of inaccessibles from the
proof. But the simple point is sufficient here.)
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conflict, and the fact that one participant in the debate has problems under-
standing what the other is up to doesn’t mean that it cannot be understood.
The other side claims it can.

I am not being ironic here. Without going into the philosophical debate
about meaning, I think all our observer can do is to take seriously the claims of
the mathematicians involved. If one group of mathematicians insist they have
no problems understanding both kinds of mathematics, and another group in-
sist they have serious problems understanding parts of classical mathematics,
so be it.

But an equally strong impression is that we haven’t really dealt with the
heart of the matter. If the differences between platonists and intuitionists
eventually boiled down to matters of taste, to which kind of mathematics
they liked best (and therefore should be funded, etc.), the investigation could
stop. But more seems to be involved. Consider the question of why modern
intuitionists have gone to such lengths about asserting only theorems that the
classical mathematician can also assert. There is no a priori reason to do so.
On the contrary, although both insist on using the same logical symbols, the
respective meanings they associate with these symbols are manifestly different,
so a priori one wouldn’t be surprised if some apparent conflict emerged (as
it did with Brouwer style intuitionism). But the tendency has been to avoid
even apparent conflicts. Why?

Presumably, part of the answer is that in this way intuitionistic mathe-
matics is will attract more interest among ‘traditional’ mathematicians. But
that can hardly be the main motivation. Surely the main motivation lies in
the mathematical work itself, in the fact that it has proved possible to formu-
late constructive mathematics in this way. This is a striking and non-trivial
fact, and it would appear to merit some principled explanation. Then, the
asymmetry might come to look natural, rather than problematic. It seems to
me that such an explanation has not yet been given.26

That much can perhaps be gleaned from the outside. Providing an expla-
nation, however, most likely would require inside work.

Finally, what about relativism? I think that question too must await an
explanation of the kind just asked for. Consider the statement

(3) The real numbers can be well-ordered.

This is a claim students learn to prove during a first set theory course, but
which intuitionists (modern or traditional) refuse to believe in. The platonist
may argue, as we have seen, that the sentence (3) can express two differ-
ent claims, the second entailing that we can somehow compute such a well-
ordering, and he may agree with the intuitionist that we have have no grounds
for asserting that. A relativist take on this, however, is different. The relativist

26 As noted, I don’t think explanations via negative translations are adequate in the
required sense.
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must argue that there is in fact only one claim, but that the context of assess-
ment determines its truth value.27 In the standard classical set theory context
of assessment, (3) is true; in the intuitionist context, the very same claim or
proposition is not true.

There is the issue of whether such a relativist stance is internally coherent.
Many philosophers doubt that. But setting that issue aside, isn’t there some
plausibility in the (vague) idea that platonists and intuitionists do talk about
the same things, but assess them in different ways? If they only talked about
different things, or said different things that only appear similar because the
same words are used, their disagreement would be somewhat trivial. But there
is a strong impression that it is not trivial in that way. An explanation of the
‘real’ relation between classical and constructive mathematics, and of the way
platonists and intuitionists understand each other, should clarify this situation
too. Whether some form of relativism is involved is, I think, anybody’s guess.
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According to certain medieval philosophers, perspective is a “demonstrative
science” as it reveals the connection between sensible and intelligible visions
by means of the mathematical rules of geometric optics. Carrying over con-
cepts and methods of the medieval perspectiva naturalis into a plane surface,
the Renaissance perspectiva artificialis unfurls a new “pictorial” space. To
appreciate the impact of quantum theory on determinism and computation
issues this paper will adopt a “perspectival” approach: the architecture of the
theory, first captured in the ‘real’ three dimensional space, will lead us into a
new ‘imaginary’ space. Here the bilateral symmetry coupling any possibility
with its negation, sized by “complex probability amplitudes”, may dissolve
the ‘ignorance’ of classical probabilities as well as the ‘blindness’ of finite
mechanical procedures.

1 In the light of light

To understand the rules underlying the structure of the world, nature must be
examined through the mechanism of vision. In the thirteenth century, Robert
Grosseteste wrote that “Physicists know what [quid ], whereas experts of optics
[perspectivi ] know why [propter quid ]”.1 The quid is the “substantial cause”,
whereas the propter quid is the cause derived from the definition of the thing,
since a definition is the beginning and the end of the proof. Light is the
first beginning, the form, or quid, or essence, common to all natural beings,
that allows the construction of a “demonstrative science”.2 By connecting the
Platonic doctrines of light to the Aristotelian conception of a demonstrative
science, Grosseteste sought a causal explanation of the generation of forms
through the analysis of the behaviour of creatures according to the different

1 De iride 1230-33 [25, p. 145].
2 Commentarius in Posteriorum Analyticorum libros 1228-30 [24].
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‘modes’ in which light acts. The idea of an active luminous matter, capable of
generating forms, was further developed in the De multiplicatione specierum3

by Roger Bacon. Species is the effect of natural agency and presupposes both
an action and a substratum of matter inclined to receive it and be modified
by it. The laws of the multiplication of species follow the rules of natural
perspective, namely of optics.

The demonstrative science of the medieval perspectivi is of Aristotelian
character and pursues substantial causes, rather than functional links; nev-
ertheless the conception of the science of light as a demonstrative science
hands over a mathematical language to visual phenomena. Thus the problem
of vision leads to search for an adequate reading of the spatiality and of the
geometry of things revealed by the light radiating through the space. How-
ever the problem of the objectivization of the visual impression, as we shall
see later on, demands a new “perspectival” space. According to Panofsky, the
antique conception of an inhomogeneous space of aggregates is abandoned
when the Romanesque, fully matured by the middle of the twelfth century,
sheds all vestiges of antiquity and renounces all spatial illusionism.

For if Romanesque painting reduced bodies and space to surface, in the
same way and with the same decisiveness, by these very means it also
managed for the first time to confirm and establish the homogeneity
of bodies and space. It did this by transforming their loose, optical
unity into a solid and substantial unity [38, p. 51].

The way in which the Romanesque resolves the antithesis between the bodies
and the space in a new plastic composition ought to be regarded as a con-
crete application of the theoretical principles which the medieval perspective
derived from the Arabic philosopher Al-Kindi.

Although both Grosseteste and Bacon, regarded the spiritual enlighten-
ment coming from faith above the human and philisophical experience of
vision, there is the spiritual enlightenment which comes from faith, their ideal
of a contemplative science (in the Greek tradition) is dialectically related to
an ‘active’ conception of nature derived from De radiis (the theory of rays)4

by Al-Kindi. In the worldview of Al-Kindi, things act and leave signs or im-
pressions of their action in different ways, according to certain rules. All ac-
tions occur in line with rays and the laws of radial propagation, namely in
accordance with geometric optics. However the Euclidean geometry cannot
correctly explain what rays are, since the rays are not empty and abstract
mathematical entities but they must have the power of operating. Hence ge-
ometry must be ‘materialized’; if the rays were really one-dimensional, like
the lines of the Euclidean geometry, they would not be physically determined,
or perceivable. Vision is a sensory phenomenon and the certainty of the truth
of demonstrative and geometrical sciences ought to rest on sensory evidence.

3 Written before 1267.
4 The Arabic text (IX cen.) was translated in Latin in the XII century.



Proof as a Path of Light 197

Light is not an abstraction, it is a material quid which generates sensible and
intellectual experience through its action. Matter, the first essence,5 antici-
pates form. Specification or, in general, differentiation is bound to the capa-
bility of recognizing forms: such a capability that allows ‘identifing’ something
through sight and, as a result, ‘knowing’ something.

Keeping in mind this image of light as a (material) quid giving rise to our
knowledge through its action, as well as the conception of a demonstrative
science, based on on the capability of recognizing forms and on the rules of
light propagation, we are going to explore what quantum physics tells us about
the effectiveness of proof.

2 Photons, observability, and limitation of size

Consider a photon which impinges on a beam splitter – that is a randomising
device reflecting and transmitting the light with the same probability – and
propagates via two different paths (Fig. 1A). After its encounter with the
beam splitter the photon will be registered with the same probability either
in the detector A or in the detector B. Now let the photon reach, via two
symmetrical alternative paths, another beam splitter and again propagates
via one of two paths (as shown in Fig. 1B).

Fig. 1. A: Beam splitter B: Quantum interference effect

According to the probability laws, we would expect the photon to be regis-
tered with the same probability either in the detector A or in the detector B.
However, according to quantum physics, if the two paths are exactly symmet-
rical, and therefore “indiscernible”, then there is a 100 per cent probability
that the photon reaches one of the two detectors, call it A the light detector,

5 The five essences or principles of reality are: matter, form, place, motion, time.
Mater is the first essence or the principle from which the other four essences are
derived.
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and 0 per cent probability that the photon reaches the detector B, the dark-
ness detector. It appears as if some action took place between the two beam
splitters that prevents the photon from reaching B, an action which involves
an invisible quid travelling at the speed of light exactly as a photon would.
This action of invisible counterparts affecting the motion of photons that we
observe is due to quantum interference and applies not only to photons but
to all quantum particles.

Quantum interference has a peculiar character: as if it were a creature of
darkness, when observed it may suddenly disappear. If a measurement device
is placed after the first beam splitter of our “Mach-Zehnder interferometer”,
as such an experimental apparatus is called, to show which path is taken by
the photon, then the probability that the photon reaches one of the two de-
tectors is balanced (it becomes 0.5 for each); by observing the path of the
photon, the darkness detector lights up and the interference vanishes. The
question then arises as to which evidence one can have of quantum interfer-
ence. A possible answer is that this evidence is to be obtained a posteriori, as
a kind of ‘global’ property of an ensemble of identical particles. The series of
pictures in Fig. 2 shows a sequence of independent events in a “double-slit ex-
periment” performed with electrons. In this case, the quantum particles travel
through a screen in which there are two slits and then reach a photographic
plate. The particles which initially appear to draw up randomly in the plate,
end up in a typical interference pattern where light and darkness zones follow
one another.6 Interference emerges step by step. By considering each particle
as a discrete unit, the probability distribution of the electrons in the various
points of the plate is derived by the ratios between the number of electrons
counted up in each point and the total number in the ensemble. But what is
the relationship between probability and interference? How to recognize har-
monics in the coarse score of statistics? What enables one particle to conform
to the rules of such harmonics?

Fig. 2. Two slit interference pattern

To connect probabilities and interference, quantum theory introduces the
notion of the complex probability amplitude and defines the probability of

6 The experiment was first performed at the Bologna University [37].
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an event as the squared modulo of its probability amplitude given by a com-
plex number. When an event can occur in several mutually exclusive ways,
its probability amplitude is obtained by summing up the probability ampli-
tudes for each alternative. Thus interference is brought out as a consequence
of complex numbers having a phase, that is to say an angle θ which sizes
the distance between any complex number and the ‘real’ axis in the Argand
plane.7 If there are two alternatives, like in the double-slit experiment or in the
Mach-Zehnder interferometer, whose amplitudes are α1 and α2, the probabil-
ity amplitude α of the event is α = α1 +α2 and the corresponding probability
p is not p = p1 + p2 but rather

p = |α|2 = |α1 + α2|2 = |a1|2 + |a2|2 + a∗1α2 + a1α
∗
2

= p1 + p2 + (a∗1α2 + a1α
∗
2) .

It is evident that the last term (a∗1α2 + a1α
∗
2) is to answer for the fail of

classical probability laws, or rather to be praised for quantum interference.
How does it change probability?

Fig. 3. Probability amplitudes in the Argand plane

As the two addenda are complex conjugate to each other, there is bilateral
symmetry8 between them in the real axis (see Fig. 3); accordingly their sum
can be expressed as the product of their (same) modulo times 2 cos θ, where
θ gives their symmetrical angular separation from the real axis:

a∗1α2 + (a∗1α2)
∗ = |a∗1α2| 2 cos θ = 2 cos θ

√
p1p2.

Thus, when there are several mutually exclusive ways in which an event can
occur, the probability is the sum of the probabilities for each single way sharp-
ened by an additional term which marks the ‘symmetrical distance’ between
7 The Argand plane is a two-dimensional plane where we can visualize any complex

number c as a point and locate it by means of Cartesian coordinates (x, y) such
that: c = (x + iy) or in polar form as c = |c| eiθ = |c| (cos θ + i sin θ).

8 More about this in § 4.
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any pair of them. In this way quantum interference moulds physical phenom-
ena, as in Fig. 2, by guiding mutually exclusive events to match in a mosaic
where each tessera is labelled by a complex number.

The question then arises as to what prevents the effects of quantum inter-
ference when the particle path is observed. Is there really no way of observing
the path without cancelling out the interference? Perhaps watching the par-
ticle in a very weak light may help.9 According to the de Broglie’s relation
p = �/λ, to have weaker light means to increase its wavelength, namely to have
light of a redder colour. However, to be distinguishable two objects must be
separated by a minimal distance not shorter than the wavelength of the light
illuminating them. With reference to the double slit experiment, this implies
that, when the wavelength of light is longer than the distance between the
two holes, the distinguishability of the two paths is lost; then, being ‘aware’
of a multiplicity of indiscernible options, each particle is ‘free’ to choose its
place in the interference pattern. The conclusion, as it is stated by the uncer-
tainty principle, is that performing an experiment to determine ‘which path’
is taken by a quantum system entails disturbing its state so much as to cancel
any interference effect.

Since measurement involves an interaction of the system with a measuring
device, it has a ‘perturbative’ character. Determining the value of a physical
quantity, an observable after quantum theory, is an effective process, not only
for the ‘measurer’, as it changes its ‘state of knowledge’, but also for the sys-
tem as, in getting in one “pure” state of the measured observable, it needs to
get out of some other pure state of an “incompatible” observable. In classical
mechanics, instead, measurement has no effect on the system; though the ac-
curacy of observation can be infinitely sharpened (in principle) by increasing
precision and power of the (optical) instruments, these instruments - as pow-
erful as they can be – are undetectable to the system. To discharge this view
quantum theory “gives an absolute meaning to size”. As Dirac writes:

We have to assume that there is a limit to the finiteness of our powers
of observation and the smallness of the accompanying disturbance -
a limit which is inherent in the nature of things and can never be
surpassed by improved technique or increased skill on the part of the
observer [12, § 1].

Turning into mathematics a requirement of observability is also crucial in
Turing’s conceptual analysis of effective calculability. The so-called Church-
Turing thesis asserting that “what is effectively calculable is calculable by a
Turing machine” presupposes two assumptions: (1) the interpretation of ef-
fectively calculable as calculable by a ‘computer’; (2) the Turing thesis that
a human computer is computationally equivalent to a Turing machine. Inves-
tigating calculations as symbolic processes carried out by a computer, Turing

9 Cf. [21, § I.6].
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is able to impose restrictions on the steps permitted in computations and
justify them through an analysis of the idealized capacities of the computer
available for its execution, i.e. a person. In other words, (2) is needed to mo-
tivate boundedness conditions on the computer involved in (1). Thus Turing
portrays a human computer as a finite state machine. Considering the actions
of a person performing a calculus and searching the easiest way to mimic
them, he speculates that a machine could play the role of the computer. The
operations of computing are viewed as modifications of a mechanical device
consisting of a scanner moving back and forth along a tape. It suffices to
consider two kinds of steps: a shift of one cell along the tape, and a change
of symbol (0 to 1 or 1 to 0) on the scanned cell. This is all is needed for
an abstract machine to reproduce the effectiveness of the computer. Now the
calculability of a function can be identified with the possibility of printing its
values as sequences of 0s and 1s on the tape of a “Turing machine”.

Turing’s strategy, in arguing for the adequacy of his notion, is to point
out the essential human capacity involved in computing, i.e. distinguishing
symbols, and to formulate it in terms of finiteness conditions on the symbols
scanned by the machine. The process of computation rests on the process of
observation. If it is assumed that the computation is performed by reading
and printing (or cancelling) symbols on a potentially infinite tape divided into
squares, then there is a lower bound on the distance between symbols, to rule
out that some of them get “arbitrarily close”, and an upper bound on the
number of symbols, to ensure that all symbols (which take part in a computa-
tional step) can be observed at one glance.10 In accordance with experience, if
we admitted an infinity of symbols, some of them would be confused [44, § 9].
The states relevant to the computation must be “immediately recognizable.”
As a Turing machine is ‘computationally’ equivalent to a person, what Turing
conceives is a kind of simulation which renders the machine functionally in-
distinguishable from a human computer. In so far as what happens in “human
computing activity” can be described in terms of a local, deterministic, finite
procedure, Turing’s conceptual analysis echos Hilbert’s words:

The fundamental idea of my proof theory is none other than to de-
scribe the activity of our understanding, to make a protocol of the
rules according to which our thinking actually proceeds. Thinking, it
so happens, parallels speaking and writing: we form statements and
place them one behind another. If any totality of observations and
phenomena deserves to be made the object of a serious and thorough
investigation, it is this one [27, p. 475].

10 Refining Turing’s conceptual argument as to the boundedness constraints on com-
putability, Gandy [22] replaces the sensory limitations of a human computer with
physical limitations: a lower bound on the size of atomic components and an up-
per bound on the speed of signal propagation (a locality condition set by relativity
theory). Notice that to set an upper bound on the velocity of light is equivalent
to set a lower bound on its wavelength.
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The deterministic character of Turing machines also satisfies Gödel’s re-
quirement for a limited freedom in the activity of the mathematician. “If any-
thing like creation exists at all in mathematics, then what any theorem does
is exactly to restrict the freedom of creation” [23, p. 314]. Nevertheless, while
the (universal) Turing machine, as derivative of mathematical experience is
anchored in space and time, for Gödel mathematical knowledge involves an
objective reality out of space and time.

It is correct that a mathematical proposition says nothing about the
physical or psychical reality existing in space and time, because it is
true already owing to the meaning of the terms occurring in it, ir-
respectively of the world of real things. What is wrong, however, is
that the meaning of the terms (that is, the concepts they denote) is
asserted to be something man-made and consisting merely in seman-
tical conventions. The truth, I believe, is that these concepts form an
objective reality of their own, which we cannot create or change, but
only perceive and describe [23, p. 320].

What does such an objective reality mean? If knowledge comes in with expe-
rience, beyond the limits of experience, it has no meaning. As lucidly empha-
sized by Cassirer, if a finite intellect is limited, this limitation holds not only
a negative mark, but a positive one as well. It does not show an accidental
and exterior limit of the intellect, it is rather a necessary condition for its
activity and fruitfulness. It is not licit to conceive a limit as a simple obstacle
to avoid: it rather delimits the domain of our thought and our knowledge,
the domain in which they find their concrete meaning [8, chap. II]. Thus the
restriction of the intellect to the conditions and limits set by experience is its
only possibility of realization.

Although from different perspectives, both Turing computability and
quantum physics pose two fundamental questions. Would it be possible to
conceive computation or measurement without assuming a limit to the finete-
ness of our means of observation? Could an adequate description of any effec-
tive procedure dispense with the medium of the agent (computer or measurer)
working out the operations involved?

3 Quantum observables

Observables are physical quantities which can be measured on a system. Any
physical theory is about observables, but the classical presupposition that ob-
servables are made out of objective properties – beables11 – is not tenable
in quantum theory because the observables it considers are incompatible. We
have already met incompatible observables of a photon, that is path and in-
terference. As we have seen, an experimental arrangement which allows to

11 Cf. Bell [5].
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answer the question ‘which path?’, gives no answer to the question ‘which
detector?’. But what incompatible observables are is written in the Hilbert
spaces. And according to the mathematical theory of Hilbert spaces, incom-
patible observables of a two-state quantum system are represented within the
same two-dimensional complex Hilbert space by operators which are mutually
transformable12 and do not commute.

Fig. 4. States of incompatible observables on the unit circle

Consider three incompatible observables like the components of the po-
larization of a photon selected by means of three filters: the first for vertical
polarization ‘V ’, the second for linear polarization at 45◦ ‘L’ and the third for
right-hand circular polarization ‘C’. Each of these observables is assumed to
have two values, ‘+’ and ‘-’: if the photon goes through the polarizing filter the
outcome is ‘+’, if it does not the outcome will be ‘-’. We can try to represent
the polarization states of the photon in a two-dimensional space R2. In Fig.
4, the “eigenvectors”13 of the operator V corresponding to the observable V
can be associated with the vectors |v+〉 = (0, 1) and |v−〉 = (0,−1) while the
eigenvectors of L can be the vectors |l+〉 = (1, 0) and |l−〉 = (−1, 0). Although
in doing so the orthogonal pure states of one observable are separated by an
angle π rather than π

2 ,14 this picture is a convenient way to visualize the
symmetry and continuity constraints on probabilities associated with incom-
patible observables. Any pure state of the photon, say |v+〉, assigns probability
1 to exactly one value of one observable, namely (V,+), and probability 0 to
the opposite value (V,−), and the same probability 0.5 to the values of the
incompatible observables (L,+) and (L,−). Accordingly, any pure state of
one observable is equidistant from the pure states of the other observable.
The point at issue is that no pure state of one observable can coincide with
a pure state of the other, for they must be distinguishable (as the operators

12 That is to say, for any pair of operators - say A and B - there exists a unitary
operator U such that A = UBU−1.

13 The vectors which represent the pure states of a physical quantity.
14 In quantum theory, any pair of pure states is represented by a pair of orthogonal

rays on the Hilbert space.
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corresponding to such observables do not commute); still we can ‘rotate’ axes
to transform the diagram of V -results into the diagram of L-results (as the
operators are mutually transformable). Thus pure states of the same observ-
able are mutually orthogonal, while pure states of incompatible observables
are mutually “oblique”.

To translate these ideas into experiment, one can let a photon impinge
on a polarizing filter and observe if it passes through it or not. Imagine a
photon gets through a vertical polarizing filter, then the state of the photon
is |v+〉 and its probability to pass through a linear filter at 45◦ or a right-
hand circular polarizing filter is 0.5. By performing a measurement, we can
observe the photon going through a second filter, say the linear one, and
getting the state |l+〉. Knowing its vertical polarization state |v+〉 after the
former measurement, can we predict that it will confirm such a state passing
again through the vertical polarizing filter? No, we cannot as the uncertainty
principle teaches us that a polarization state is not an objective property of
the photon: selecting a polarization state by means of the appropriate filter,
any previous incompatible polarization state of the photon is lost. As the
photon, after the second measurement, is in the pure state |l+〉, its position
in the unit circle, given by the point (1,0), is equidistant from the points
corresponding to the eigenvectors of V; hence the probability of each vertical
polarization state of the photon is 0.5. That is how probabilities are assigned
to quantum observables according to the uncertainty principle.

Reflecting about the significance of quantum theory, John Bell underlines
that quantum theory is fundamentally about the results of ‘measurements’,
and therefore presupposes a ‘measurer’ (or subject) in addition to the ‘system’
(or object). But a theory about ‘measurement’ implies incompleteness of the
system and unanalyzed interventions from outside. Here is why the subject-
object distinction is viewed as an issue “at the very root of the unease that
many people still feel in connection with quantum mechanics.” Bell raises the
question as to how it can again become possible “to say of a system not that
such and such may be observed to be so but that such and such be so”[5, p.
41]. In other words, could completeness and determinism be restored?

The unease which Bell connects to the distinction system-measurer in
quantum mechanics has its analogues in the unease roused by the incom-
pleteness theorems in mathematics. In both cases the crucial issue originates
from the difficulty of describing an ‘inside-outside’ relationship ignoring one
part of the relation, as if a relationship was an ‘objective property’ of the
system. By connecting the ‘effectiveness’ of the formal system to the ‘resolu-
tion power’ of the computer, as we have seen above, a Turing machine takes
Hilbert’s proof theory to its limits.15 Those limits overlap with the classical
physics’. Hermann Weyl states the question as it follows:

The ‘physical process’ undisturbed by observation is represented by
a mathematical formalism without intuitive [anschauliche] interpre-

15 Proving the unsolvability of the Entscheidungsproblem.
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tation; only the concrete experiment, the measurement by means of a
grating, can be described in intuitive terms. This contrast of physical
process and measurement has its analogue in the contrast of formal-
ism and meaningful thinking in Hilbert’s system of mathematics. As
it is possible to formalize an intuitive mathematical argument, so it
is true that measurement by a grating G may be interpreted as a
physical process. In doing so one has to extend the original system
S to a system S∗ by inclusion of the grating G. But as soon as we
want to learn something about S∗ that can be told in concrete terms,
then the undisturbed course of events [...] must again be disrupted by
subjecting S∗ to the test of a grating outside S∗ [48, p. 261].

However, as we learn from quantum theory, the limits of Hilbert’s “metamath-
ematics” are not the limits of Hilbert’s mathematics!

In classical mechanics, a complete description of how things are now is
given by a point in the phase space and the Hamiltonian function determines
how things change with time. However, to make classical physics deterministic,
an additional assumption is needed, namely that the physical system, is closed.
In quantum mechanics, a deterministic description of how the state of a system
evolves with time is given by the Schrödinger equation; however quantum
theory is inherently probabilistic as a quantum state cannot assign values to
all physical quantities associated with the system. A quantum state does not
describe how things are but their probability relations.

In determining the probability of a certain value for a physical quantity,
quantum theory differs from classical physics as to the impossibility of per-
forming certain measurements simultaneously. A measurement is not a ‘for-
mal’ process, it is an action which involves two actors – a system to be ob-
served and an observer – and establishes a kind of ‘exclusive’ relationship
between them. Once the action is performed the ‘pair’ is modified through an
exchange of information. Given this, any measurement is ‘perturbative’ and
demands to make a choice. The observer has to choose, among incompatible
aspects of a physical system, which one to probe. As far as measurement is
viewed as an interaction, with the twin requirement of freedom in choosing
the observable to be questioned and capability of recognizing the answer, it
demands to sharpen the probability relations associated with its results and,
consequently, to sharpen their mathematical representation.16 This leads to
locate the mathematical space on complex field, hence to Hilbert spaces.

Rephrasing Bell, we may rather say that quantum theory is fundamentally
about the ‘probabilities’ of measurements and, as it presupposes in addition
to the system (or object) a ‘measurer’ (or subject), the distinction between
‘objective’ probability and ‘subjective’ probability disappears. Indeed, quan-
tum observables reveal a meaningful symmetry between system-object and
observer-subject. In the light of this symmetry, let us look at the significance
of complex probability amplitudes.
16 Cf. Wheeler [50].
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4 The reality and its double

The unease described by John Bell is not felt neither by the hero Perseus
nor by the Renaissance artists. They master the object-subject symmetry
which rules the observation or the visual phenomenon in a superb way. The
myth tells us that Perseus can accomplish his task and kill the monstrous
Medusa, thanks to a highly-polished bronze shield given to him by Athena.
The polished shield, acting like a mirror, allows him to approach the Gorgon
and cut off her head, without exposing himself to her petrifying gaze. The
success of Perseus’ exploit depends on letting Medusa’s reflection guide him.

4.1 The geometry of vision and the colour of numbers

The Renaissance art presents us with the “linear” or “artificial” perspective.
The invention is attributed to the architect Filippo Brunelleschi. It provides an
effective rational procedure for transferring the visual ‘reality’ into an artificial
space:

first is sight, that is to say the eye; second is the form of the thing
seen; third is the distance from the eye to the thing seen; fourth are
the lines which leave the boundaries of the object and come to the eye;
fifth is the intersection, which comes between the eye and the thing
seen, and on which it is intended to record the object...17

The result is a painted or drawn scene somehow indistinguishable from the
image captured over a transparent window or in a mirror. To accomplish
this task the three-dimensional visual ‘appearance’ is projected on a plane
surface. When the natural perspective set up the view of the space, the linear
perspective intervenes on that view and transforms the empirical space into a
purely mathematical space, i.e. infinite, unchanging, and homogeneous [38]. A
remarkable shift from this abstract space to a more ‘synthetic’ system is due to
those artists who find the appropriate means to ‘substantiate’ the perspectival
view of the space.

While the geometry of light frames the image of the reality in two dimen-
sions,18 lines and colours drive a new ‘pictorial’ space to emerge from that
image. As a case in point, we could consider Piero della Francesca’s “perspec-
tive synthesis of form and colour”[35]. We may also translate this synthesis
in mathematical language and see Piero’s perspectiva pingendi as a coherent
system which combines the geometry of light with the algebra of colour. In
fact an analogous attempt, though not as successful, is that of Descartes who
conflates algebra and geometry in his vision of the world. To distinguish and

17 Piero della Francesca 1474 [40, p. 64]
18 According to Alberti, the geometry of light is the medium through which the eye

could measure the properties of the forms and geometrical construction of the
space as a prerequisite for proper painting [1].
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recognize the points of an infinite and homogeneous space, Descartes attaches
numbers to them, instead of colours. The numbers give ‘voice’ to the points
in his algebraic geometry, whereas the values of the physical quantities be-
come points of the space, and the matter, by penetrating through the space,
becomes res extensa. In this way Descartes tries to rewrite the ‘geometrizate’
physics in the language of algebra19 and to depict an ‘algebraic’ method of
proof which would aspire to “operate by means of the numbers what the an-
cients made with the figures”.20

Descartes shares the Renaissance belief in a mathematical harmony of the
universe and the view of geometry as the most eloquent expression of the archi-
tecture regulating that harmony. However he does not share the Leonardo da
Vinci’s conviction that arithmetic is essentially inferior to geometry. Leonardo
rests his claim on the fact that arithmetic deals with “discontinuous quanti-
ties” while geometry deals with “continuous quantities”. The number does
not possess the magic of the geometric forms. Accordingly he finds most dis-
turbing the rupture of harmony in the ratio of side and diagonal of a square;
there is no ‘symmetry’ or proportion between them as they are incommen-
surable quantities. For Leonardo the beauty and perfection of geometry is
revealed, above all, by the divina proportione of the five regular polyhedra,21

the so-called ‘Platonic’ solids (Fig. 5).
Art and science of the Renaissance seek the harmony of the nature in static

forms, not in dynamical laws.22 Indeed, if located in infinite and homogeneous
space, motion and rest are indistinguishable. Koyré [31] observes that if ‘clas-
sical’ science replaces a world of qualities with a world of quantities and the
world of the becoming with the world of the being this is because numbers
and figures are motionless. The very concept of motion, shaped in geomet-
ric terms, does not describe a process but a status. However, when nature
takes a mathematical form, mathematics in turn ends up by taking in the
character of natural science; mathematical entities, ‘naturalized’, are to be
considered not so much in their ‘being’ as in their ‘becoming’.23 Rather than
the Cartesian res extensa, a new ‘naturalized’ mathematics, that of the differ-
ential calculus, allows classical physics to be written. It is Newton24 then who
succeeds in constructing the modern physical world by recreating distance be-
tween matter and space and, above all, by transforming mathematics in the

19 Descartes also tries to convert geometrical problem into geometric ones known as
to be solved by Arabic and Renaissance Italian algebraists.

20 Regulae ad Directionem ingenii 1628 [13].
21 In the first printed edition of Luca Pacioli’s treatise De Divina proportione (Flo-

rence 1509), Leonardo’s illustrations provide the five regular polyhedra with a
‘visible’ spacial configuration.

22 Even Kepler made an attempt to reduce the distances in the planetary system
to regular bodies which are alternatively inscribed and circumscribed to spheres
(Mysterium cosmographicum 1595).

23 Cf. Hadamard [26].
24 Philosophiae naturalis principia mathematica 1687.
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guise of physics [31]. And yet the conceptual aporia between substance and
form, being and becoming, or discrete and continuum, ignored or neglected,
remains. Physics, indifferent to the aporia, runs its course and achieves, with
the Hamilton-Jacoby’s analytical mechanics, its more coherent and rigorous
expression.

Fig. 5. Pentagondodecahedron as designed by Leonardo for De Divina proportione

Whether the question concerning the form, either mathematical or artistic,
of the world is solved or dismissed, that form rouses a problem of meaning.
Which expressive value is to be attributed to the different intellectual elabora-
tions of experience? On this matter, Panofsky’s reading of the perspective as
one of the “symbolic forms” fastening ‘spiritual’ contents to concrete sensible
signs, stands out. The different perspectival views of space25 are determined by
the subject; nevertheless, this very variety, “as paradoxical as it may sound”,
purifies the space of all subjective admixtures. The arbitrariness of direction
and distance within modern pictorial space, for Panofsky, bespeaks and con-
firms the indifference to direction and distance of modern intellectual space;
it corresponds to the stage when perspective replaces the simple Euclidean
‘visual cone’ with the universal ‘geometrical beam’ of Desargues’ general pro-
jective geometry; it paves the way, we may add, for the stage when physics
would replace the deceiving objectivity of the modern worldview with a new
quantum ‘inter-objectivity’. Thus perspective provides art and science with a
method for recognizing the ‘symbolic’ value, i.e. significant-expressive, of any

25 The “high space” of Italians perspectival constructions is to confront with the
“near space” of the North’s ones (Netherland in particular) and the “oblique
space” such like Altdorfer’s [38, pp. 69-70].
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artistic or scientific representation, from the Euclidean one to that meaning-
fully abstract of Hilbert spaces. This method is “ambivalent” as it states the
distance between subject and object and in turn dissolves this distance in an
autonomous equidistant space:

Perspective subjects the artistic phenomenon to stable and even math-
ematically exact rules, but on the other hand, makes that phenomenon
contingent upon [...] the individual: for these rules refer to the psy-
chological and physical conditions of the visual impression, and the
way they take effect is determined by the freely chosen position of a
subjective ‘point of view’ [38, pp. 67].

Panofsky’s emphasis is on the “directional indifference of space” which, as it
allows the objectification of subjectivity, seals off religious art from the realm
of the magical as well as from the realm of the dogmatic, but then it opens
it to the realm of the “visionary”[38, p. 72]. In a somehow similar way, the
peculiar arbitrariness of orientation of quantum theory in Hilbert spaces seals
off science from the realm of the metaphysical determinism. As Hermann Weyl
writes:

The concepts with which it [quantum theory] deals are not qualities
or attributes which can be obtained from the objective world by direct
cognition. They can only be determined by an indirect methodology,
by observing their reaction with other bodies, and their implicit defi-
nition is consequently conditioned by definite laws of nature governing
reactions. [...] But scientists have long held the opinion that such con-
structive concepts were nevertheless intrinsic attributes of the ‘Ding
an sich’ [...] In quantum theory we are confronted with a fundamental
limitation to this metaphysical standpoint [47, p. 76].

Quantum world contrasts so much the Cartesian world as the Leonardo’s
one. Whereas Descartes’ attempt of pursuing an algebraic construction of
physics is bound to fail as, in Koyré’s words, “there is no motion in numbers”,
and Leonardo diminishes arithmetic as the number does not possess “the
magic of the geometric forms”, complex numbers open mathematics to the
realm of the forms and motion as they open up an entirely new dimension.
In the complex space any number, to begin with the ‘one’ moulded by the
Euler’s formula 1 = eiπ, brings to mind the circle of which is ray and the
rotation drawing that form. Form and motion of complex numbers hold the
architecture of quantum theory in Hilbert spaces.

4.2 From a pespectival point of view

We have learned from the uncertainty principle that, as soon as a polarization
state of a photon is selected by means of the appropriate filter, any previous
incompatible polarization state of the photon is lost. However the structure
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of the probabilities relations is preserved and now we can also appreciate its
beauty with ‘Leonardo’s eye’. To see how the probability function connects
quantum states we can use a perspectival procedure: first we try to capture
the probabilities relations on the ‘visual’ space, then we let those relations
lead us into a new ‘pictorial’ space.26

There is a one-to-one correspondence between pure states of a two-state
quantum system and points of the unit sphere in R3. Consider a triad of
mutually transformable observables,27 each of which has two possible values
i = [+,−] corresponding to two distinguishable (namely, orthogonal) pure
states |σ+〉 and |σ−〉, and locate a pure state |v〉 of the system in one point σ =
(φ, θ) on the unit sphere, where the azimuthal angle φ can vary as −π < φ ≤ π
and the longitude θ as −π

2 < θ ≤ π
2 . The state |v〉 assigns probabilities pv (σi)

to the values of all observables of the family. How? As mentioned in connection
with the polarization states of light, the obliquity of any two states,28 like |σ+〉
and |ϑ+〉, tells us that they correspond to observables that do not commute or,
as we may say, that are not ‘commensurable’. However, in contrast with the
antique view of mathematics, in quantum physics ‘incommensurability’ does
not mean ‘lack of proportion’, i.e. lack of symmetry, quite the opposite. Indeed
the set of pure states as well as the probabilities grid display a ‘spherical’
symmetry, and the “arbitrariness of orientation” within the representational
space seals off the probability function from the particular point in which
the state |v〉 is located. The probability is a symmetrical function δ of the
distance, i.e. the angular separation α, between any pair of states |v〉 and |w〉
corresponding to the points σ and ϑ on the sphere: pσ (ϑ) = δ (ασ,ϑ) = pϑ (σ);
hence |v〉 assigns probability 1 to exactly one point, that that coincides with
its own ‘point of view’ σ, namely when α = 0. The probabilities relations
are also symmetrical about the axis, somehow ‘North-South’, defined by the
points σ and σ∗ = (π ± φ, θ); hence |v〉 assigns the same probability pv (σ) to
all points on the same ‘latitude’ as σ. That is how any pure state |v〉 spreads
probabilities continuously over the sphere.

Now the group of symmetries of the unit sphere S in R3 is the set of all
rotations of S about its centre, that is orthogonal transformations of three
variables that leave invariant the angular separation of all pairs of points
on the sphere and the 2-norm: |v|2 =

(
σ2

x + σ2
y + σ2

z

)
. Since our observables

are mutually transformable for each pair of them Sσ and Sϑ there must be
a rotation by ±

(
π
2

)
which takes Sσ and Sϑ to coincide (Fig. 6). In fact, if

we confine the system in the subspace R2 where the two observables can be
represented by the two matrices

26 For a more rigorous and detailed treatment of the representational capacity of
Hilbert spaces, see Hughes [28, Part I].

27 See footnote 14 above.
28 Mind that the ‘toy model’ in R3 represents two oblique states - namely, pure states

of incompatible observables - as orthogonal, whereas it represents orthogonal pure
states of the same observable as ’antipodes’.
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Sσ = 1
2

(
1 0
0 −1

)
and Sϑ = 1

2

(
0 1
1 0

)
,

we can verify that Rπ
2
Sσ = Sϑ and R−(π

2 )Sϑ = Sσ;29 the rotation Rπ
2

which
takes Sσ into Sϑ has its inverse R−(π

2 ) which takes Sϑ into Sσ. But we can also
keep on rotating our system and verify the symmetry of the rotations group
of the sphere; by repeating the rotation which takes Sσ into Sϑ we ‘overturn’
Sσ into its ‘mirror image’ −Sσ:

Rπ
2

(
Rπ

2
Sσ

)
= (−1)Sσ.

No surprise, given that a rotation by ± (π) is nothing but a ‘reflection’ (−1).
Then two rotations by ± (π) take the observable back to the original form,
(Rπ)2 Sσ = Sσ. We may recall that reflection of the horizontal plane in a line
L, i.e. bilateral symmetry, is an ‘improper’ rotation in two-dimensions as it
interchanges left and right. To carry any point σ into its mirror-image σ∗ by
a ‘proper’ rotation, one more dimension is needed; so it can be brought about
in space through a rotation around L by π, an Umklappung (overturning) as
Weyl calls it. The rotation symmetries of the space can be condensed in the
so-called “four-group” 4G which consists of the identity and the Umklappung
around three mutually perpendicular axes.

Fig. 6. Mutually transformable observables in R2

To overview, one rotation by ±
(

π
2

)
interchanges incompatible observables,

four rotations by ±
(

π
2

)
or, if you wish to atomize more a continuous pro-

cess, 2n rotations by ±
(

π
n

)
take the observable back into its original form,(

R±(π
n )
)2n

= 1, and finally two rotations by ±
(

π
2

)
take the observable into

29 Any rotation by θ in R2 is represented by the matrix Rθ =

 
cos θ − sin θ

sin θ cos θ

!
.
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its ‘mirror image’
(
R±(π

2 )
)2

= (−1). All this is fine as much as two incom-
patible observables are considered. But given that our mutually transformable
observables are three, when the system goes from one incompatible state into
another, how to distinguish which of the other two? It is clear that the sys-
tem can go from a pure state of one observable, say |σ+〉, into the alternative
state |σ−〉 following (at least) four different symmetrical paths, each of which
passes through one of the two alternative states of the other two incompatible
observables. All these paths are equally plausible as no asymmetry pushes
the system to make a choice; and yet they must be distinguishable. How to
distinguish in R3 the ‘symmetrical’ rotations carrying one state of the system
into its mirror-image via two incompatible alternative states? This ‘doubling’
of possibilities, which flows from symmetry, suggests to ‘square’ the space of
our representation as to create the appropriate distance between all of them.

Can we think of some improper rotation which could present each possibil-
ity with one more dimension where to reflect its image? The reflection caught
in ‘(−1)’ is a good hunch. Even though reflection can be brought about in
the ‘real’ space by proper rotations, it can draw a new “visionary” space.
Which roads alternative to proper rotations are feasible from (−1)? Let com-
plex numbers open up them. For continuity allows ‘decomposing’ any linear
transformation, we can take the 2n-root of any ‘rotation’ by ±

(
π
n

)
, in par-

ticular we can take the square root of (−1)! The following table shows how
complex numbers entry into matrixes and how these matrixes are ‘specularly’
related with those of identity and negation:

1
1
2 = ±

(
1 0
0 1

)
N

1
2 = 1

2

(
1 ± i 1 ∓ i

1 ∓ i 1 ± i

)

(−1)
1
2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i =

(
i 0
0 i

)

iN =

(
0 i

i 0

) (−N)
1
2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−i =

(
−i 0
0 −i

)

−iN =

(
0 −i
−i 0

)

According to Weyl the requirement for improper rotations in R3 leads
to introduce the reflection in the origin which carries any point σ into its
‘antipode’ σ∗. This operation R∗ commutes with all rotations R of the sphere,
R∗R = RR∗. By including improper rotations of the form R∗R in the four-
group 4G we obtain the group 4G∗ = 4G+R∗4G which ‘doubles’ 4G.

From the perspectival view in C2 one can see how the third “Pauli matrix”
comes into existence:
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1 =

(
1 0
0 1

) (
0 1
1 0

)
= 2Sσx

2Sσz
=

(
1 0
0 −1

)
i

(
0 −1
1 0

)
= 2Sσy

To transfer the group of rotations of the space R2 into the Hilbert space C2

the relevant result is due to Felix Klein: to any rotation which leaves invariant
the angular separation between points of the unit sphere, there corresponds
two unitary operators U and −U on the set of rays of C2, which leave invariant
the angular separation between rays. A mapping of rotation operators on R3

onto unitary operators of C2 is consistent with the mapping which takes the
point σ = (φ, θ) ∈ S of R3 into the ray Lv of C2 whose projector Pv is given
by:

Pv =

⎛
⎝ cos2

(
φ
2

)
cos φ

2 sin φ
2 e

−iθ

cos φ
2 sin φ

2 e
iθ sin2

(
φ
2

)
⎞
⎠ .

Now suppose the state |v〉 coincides with |v+〉:

|v〉 =

(
cos φ

2 e
−iθ

sin φ
2 e

iθ

)
.

Assume that the system is in the state |σz〉 =

(
1
0

)
∈ C2 which corresponds

to the point σz = (0, 0)φ,θ = (0, 0, 1)x,y,z on the unit sphere S. The probability
which the state |σz〉 assigns to |v〉 is:

pσz
(v) = 〈σz|Pvσz〉 = cos2

(
φ
2

)
= δ (αv,σz

)

where αv,σz
is the ‘angular separation’ between |σz〉 and |v〉.

If we take as possible values of each observable Sσ, +1 and −1, then we
have Sσ = Pv+ − Pv− . By expressing the points on the unit sphere in the
Cartesian coordinate σ = (σx, σy, σz), we can see the Pauli matrixes Sσx

, Sσy

and Sσz
as special cases of

Sσ =

(
σz σx − iσy

σx + iσy −σz

)

and verify that Sσ = σxSσx
+ σySσy

+ σzSσz
. Moreover, we can derive the

probability function δ from the expectation value of Sσ:
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〈Sσ〉v = σx 〈Sσx
〉v + σy

〈
Sσy

〉
v

+ σz 〈Sσz
〉v

and the assumption:

(*) 〈Sσ〉v = pv (σ+) − pv (σ−) = 2pv (σ+) − 1.

Since the system is in the state |σz〉 whose angular separation from
|v〉 is (αv,σ) = φ, a convenient Cartesian coordinate system is such that
σ (φ, 0) = (sinφ, 0. cosφ) and σz = (0, 0) = (0, 0, 1). The expectation value of
the two observables Sσx

and Sσy
vanishes 〈Sσx

〉v =
〈
Sσy

〉
v

= 0 whereas the
expectation value of the third one is 〈Sσz

〉v = 1. Thus:

〈Sσ〉v = σz 〈Sσz 〉v = cosφ 〈Sσz 〉v = cosφ

and confronting this equation with the (*), we obtain the probability function:

pv (σ+) = 1+cos φ
2 = cos2

(
φ
2

)

which depends on the angular separation α as

δ (αv,σ) = cos2 1
2 (αv,σ) .

Thus the symmetrical character of the quantum probability function and the
key role of complex amplitudes can be captured in the formula:

pv (σ) = 〈v|σ〉 〈σ|v〉 = pσ (v) .

5 In the light of darkness

The hero Perseus who guided us to the realm of quantum amplitudes with
his resplendent shield is also endowed with the helmet of invisibility borrowed
from Hades. This last section will explore how one can takes advantage of
invisibility.

We have seen that, according to quantum physics, the probability that a
photon going through a Mach-Zehnder interferometer reaches the light detec-
tor A is 1. This outcome is to be explained as determined by quantum inter-
ference (Fig. 1B). By contrast, when a measurement device is placed between
the two beam-splitters, the interference vanishes and the probability that the
photon reaches the darkness detector B becomes 0.5 (Fig. 7A). Thus, when
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the darkness detector B is on, the presence of a measuring device between the
two beam-splitters is ‘brought to light’. It is worth noticing that in this case,
namely when the darkness detector is on, there is a 50 per cent probability
that no interaction takes place between the measuring device and the photon
(Fig. 7B). If the photon does not interact with the measuring device, where
is that light coming from? Again, it looks like an invisible quid is in charge of
some ‘spooky action’.

But quantum theory also asserts that the probability that no interaction
takes place between the measuring device and the photon (reaching the dark-
ness detector) can be stretched until approaching 1. What can explain this
stretching is the so-called “quantum Zeno effect”, after Zeno from Elea. This
effect is actually an eloquent picture of an argument of the Eleatic philosophy
questioning the atomistic determinism: motion is not attainable by summing
up motionless states. To figure out what is at issue, we can consider as in-
compatible observables two components of the polarization of the light. Each
photon can be observed in two alternative orthogonal states of polarization,
that we can now connect to its possible paths through the interferometer as
follows. Imagine that the first beam-splitter reflects vertical polarized photons
and transmits horizontal polarized photons, while the second beam-splitter
reflects photons with linear polarization by 45◦and transmits photons with
linear polarization by 135◦. To fix the picture, when no measurement is per-
formed between the two beam-splitters, again the probability that a photon
going through the interferometer reaches the darkness detector is 0; however,
when a measurement reveals the path taken by the photon between the two
beam-splitters, that probability becomes 0.5. How to perform such a measure-
ment?

Fig. 7. A: Measuring the photon path B: Measurement without interaction

As we know (from § 4.2), the probability that an horizontal polarized pho-
ton passes through an horizontal polarizing filter is 1, that it passes through
a vertical filter - namely a filter rotated by 90◦- is 0, that it passes through a
filter rotated by θ is cos2 (θ). Of course, if the polarization state of the photon
is rotated by 90◦before impinging on the horizontal filter, then its probability
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of going through becomes 0 (Fig. 8). Thus if a rotation operator by 90◦and a
horizontal filter are placed along the lower path in the interferometer, then the
photon transmitted by the first beam splitter will be absorbed by the filter. We
also know that the action of a rotation operator by (π/2) can be decomposed
in a series of n steps each of which rotates the state of the photon by (π/2n).
If n = 6, in six steps the polarization state of the photon turns from horizontal
into vertical and the photon will be absorbed by the horizontal filter. Can we
follow the evolution of the photon step by step, from one polarization state
into the other? Yes, we can by inserting a horizontal filter after each polar-
ization rotator (Fig. 9). What happens? Passing through the first rotator, the
state of the photon is turned by 15◦and the probability of passing through the
horizontal filter is cos2 (15). Now if the photon goes through, its polarization
state is again horizontal. By repeating this process five times, the probability
that the photon goes through all the six filters is

[
cos2 (15)

]6. Moreover, in-
creasing the number n of steps, that is to say decreasing the angle (by which
any rotator turns the polarization state of the photon), the probability that
the photon goes through the measuring device increases accordingly.30 As the
number n of rotators by (π/2n) approaches ‘infinite’ n → ∞, the probability
that the photon is not absorbed, i.e. observed, by the filter approaches 1. In
other words, watching how the polarization state of the photon is supposed to
evolve step by step, in fact it prevents its evolution. It is then possible to con-
ceive a suitable modification of the arrangement above so that when a photon
reaches the darkness detector and signals the presence of a measuring device,
it is almost certain that this device did not measure (absorb) the photon [32].

Fig. 8. Orthogonal rotator and horizontal filter

Fig. 9. Action of an orthogonal rotator decomposed in 6 steps

30 Recall cos θ → 1 as θ → 0.
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From a ‘classical’ point of view, no doubt all this certainly echoes the
Eleatic critics to the Democritus’ atomism. On the other hand, in the sym-
metrical and non-separable system-measurer perspective, one can see how
the photon and the filter are not invisible to each other as a result of a se-
ries of system-measurer entanglements: first, the photon gets entangled with
the vertical-horizontal beam-splitter, second this composite system gets en-
tangled with the series of rotators and horizontal filters (in the lower arm
of the interferometer), thirdly this further composite system gets entangles
with the second beam-splitter, and finally the darkness detector lights up.
It is thanks to subsequent ‘meta-entanglements’ due to quantum interference
that the darkness detector is able to reveal the presence of a measurement
device in the interferometer even though the photon and this device remain
somehow invisible to each other. The quantum Zeno effect, first noticed by
von Neumann [46], is described as a consequence of dynamical features in-
troduced by a series of measurements: the evolution of a quantum state can
be slowed down (or even halted in some limit) when measurements are fre-
quently performed on the system, in order to check if it is still in its initial
state [17]. However, even Democritus, who first creates the universal schema
of the ‘atomistic determinism’, is aware of the difficulty: motion, or evolution,
cannot be described as a series of states. It requires the void (empty space)
for its representation.

But the void is no sensuous ‘given’, no thing-like reality; nevertheless,
without this concept, a consistent physical representation is not to be attained.
As lucidly emphasized by Cassirer, the thought of ‘non-being’ is no dialectical
construction; but, on the contrary, it is taken as the sole means of protecting
physics from the extravagances of a speculative idealism. In the conception of
the real, this sensuous ‘nothing’ has the same place and the same inviolable
validity as the ‘something’.

It is impossible to relate scientific thought merely to being, as the
Eleatic idealism had attempted; non-being is just as necessary and
unavoidable a concept. The Eleatics in their denial of non-being not
only robbed thought of one of its fundamental instruments, but they
destroyed the phenomena themselves by giving up the possibility of
understanding them in their multiplicity and mutability [7, p. 167].

Through an eloquent interference of the ‘visible’ with the ‘invisible’ as well
as of the system to be observed with the observer, quantum theory protects
physics from metaphysical determinism insofar as it gives back to the phys-
ical phenomena their multiplicity and mutability. Quantum theory defines
its notions through a double opposition: on the one hand, to metaphysical
speculation, and, on the other, to ‘non-perturbative’ - that is to say ‘non-
perspectival’ - observation. As it connects all the multiple and ‘symmetrical’
outcomes opened to the system by the observer, quantum interference is not
to be understood as an objective property of the system but rather as a math-
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ematical functional relation. It provides the whole system-measurer objectivity
with a structure made out of complex probability amplitudes.

6 Final remarks

In his Symmetry, Hermann Weyl credits Leonardo for making up “a complete
list of orthogonally inequivalent finite groups of orthogonal transformations.”
Actually Leonardo has learnt all he knows about geometric forms and their
symmetries from fra Luca Pacioli31 who had turned to him for illustrating
his treatise De Divina Proportione. So it is Pacioli who knows why in three
dimensions there are only five regular polyhedra; he explains to Leonardo -
let the story go loosely - that while the regular polygons are connected with
the finite groups of proper and improper rotations in the plane, the polyhedra
are connected with the finite groups of proper rotations around the centre
or around an axis through the centre. (Of course he could not concern about
implausible improper rotations in the space.) Leonardo is conquered and draws
the geometrical bodies both in their solid form and in a skeletal manner [29,
p. 62]. Leonardo’s eye is so much enchanted by the beauty of the geometric
forms as to be afraid of loosing it in details. On the other hand, by tackling
unsolvable problems such as squaring the circle or diagonalazing the square’s
side, all canons about divina proportione fail.

Besides these ‘Renaissance perspective’ canons, complex numbers present
us with one more: the bilateral symmetry between ‘beables’ and its mirror-
image, ‘not-beables’, as they both result by taking the squared root of being.
And it is most ironic that the Italian Renaissance thought also yields complex
numbers. The invention of such numbers is attributed to the algebraist Giro-
lamo Cardano, who works out a general algebraic solution to the cubic and
quadratic equations. The irony of the history lies in the fact that Cardano and
Leonardo know each other and are tackling what we can now see as ‘quantum
incompatible observables’. If Leonardo does not see the magic of the forms in
numbers, Cardano does not see the magical form of his numbers. They both
miss the bilateral symmetry of the issue. Their visions conflate, as it were, in
one dimensional space.

Hilbert’s proof theory is an attempt to ‘secure’ what even Leonardo fears
to lose, the magic of the continuum; it is pursued by ‘projecting’ it into ‘dis-
creteness’, and it fails. No consistency proof for analysis and set theory can be
attained within finitist mathematics [42, p. 259]. The perspectival view from
Hilbert spaces, as it reveals the effectiveness of the bilateral symmetry of com-
plex numbers, it allows mathematical description to radiate in two dimensions.
In complex space the ‘distinguishability’ between numbers or points, conse-
quently between Turing’s symbols, does not vanish, it is rather emphasized by

31 Franciscan Friar from Sansepolcro strongly influenced in his work by Piero della
Francesca his fellow countryman.
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their complex amplitudes. It also applies to a single number as it is to be dis-
tinguished from its complex conjugate. Quantum theory focus on probability
relations and runs into complex probability amplitudes. Squaring their modulo
they become probabilities. But the complex character of quantum amplitudes
cannot be locked in ‘computation’. On the contrary, as it breaks into a new di-
mension, it also opens up entirely new computational paths. Quantum theory,
as the previous pages have tried to show, has been guided to complex spaces
by a search for ‘more effective’ distinguishability; once in the new perspectival
space, the bilateral symmetry involved in the very notion of distinguishability
emerges out of quantum probability amplitudes and proves the irreducibility
of quantum probabilities to classical ones. Can the effectiveness of proof as
well benefit from a ‘double-distinguishability’ in complex space?
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In the following discussion we are going to deal with the problem of com-
putability of differential equations, and we will outline some of the most im-
portant results achieved in this area, mainly due to K. Weihrauch and N.
Zhong. In particular, a large part of the paper will concern the debate about
the computability of the wave equation.

First of all, we have to specify what we mean by the term ”computability”.
More precisely, we have to characterize a specific theory which provides a
notion of computability that we consider reliable. It is well known indeed
that for real numbers we do not have a single generally accepted theory of
computation. The situation is therefore different from the case of natural
numbers, where the Turing machines approach has become standard.

The main philosophical question we investigate throughout the whole pa-
per is then essentially the following: computers are used every day in ordinary
life and in scientific research, and the results they produce are welcomed as
trustworthy. Nowadays computers of different capacities run in every scientific
department. In many cases their programmers and users employ them (im-
plicitly or explicitly) to perform computations on real numbers or at least to
execute calculations which are supposed to approximate, as accurately as pos-
sible, some real number values. This happens when one computes the decimal
expansions of numbers like π or e, or when physicians aim to find solutions
for differential equation systems (as in the case of the wave equation).

Nevertheless, the situation at the theoretical level is rather more compli-
cated. Currently, we still cannot rely on a unique theoretical model of com-
putability for real numbers, and accordingly there is no general agreement on
the effective power of real computing (again, the case of the wave equation
provides a perfect example).

There comes then the problem of making a choice among the different
approaches, or even more, of justifying the need for such models, since most
of the users may not understand the necessity for a theoretical foundation of
real computing.
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1 The continuum and the discrete

The question of the existence of real numbers is a long-term problem, open
since the time of the Pythagorians, who had to admit them necessarily even if
this was opposite to their philosophical interpretation of the world. The opin-
ion of Dedekind is well known: he believed that only natural numbers exist
in nature, whereas real numbers are a human invention. Many other authors
have discussed this, and not only within the community of the philosophers
of science. This is, in fact, the philosophical problem of more general inter-
est, that of the continuum/discrete dichotomy. It has been argued by some
authors, like René Guénon (see for example [10]), that the assumption of the
existence of real numbers is a consequence of the wrong claim of measuring
the spatial continuum using numerical, and thus discrete, tools. According to
Guénon, space and numerical quantity have different natures (the earlier is a
continuum, the latter is discrete), therefore any attempt to reduce the spatial
extension to a numerical measure cannot be completely satisfying:

There is a basic essence difference among these two modalities of the
quantity, so that a perfect correspondence cannot be established; in
order to find some remedy, as long as this is possible, one tries some-
how to reduce the intervals which exist in the discontinuity of the
numerical sequence by introducing new numbers, first of all fractions
[...] Nevertheless, there is always necessarily something in the discon-
tinuous nature of numbers that precludes a perfect equivalence with
the continuum [...] in this it appears the insufficiency of fractional
numbers, and we can say of any other possible kind of number [...]

We will not investigate the problem of the continuum/discrete opposition
in its entirety, but we point out how the formulation of theories for real com-
puting has re-introduced the challenge of “squaring” the continuum by the
discrete. This reduction leads to several problems, so that some computer
scientists have developed a skeptical attitude towards the concrete existence
of real numbers in nature. This opinion is described for example in chapters
5 and 6 of a recent book [4] by G. Chaitin, one of the eminent fathers of
randomness theory. He wonders whether real numbers should be considered
a cheat and states that a number of infinite precision is actually something
unreal! He is convinced that digital information theory cannot be applied sat-
isfyingly to a physical or mathematical world made of real numbers, since such
numbers contain an infinite quantity of information, and a human mind, or a
computer, cannot actually have access to infinite information. Currently, there
are a lot of expectations, today very fashionable, that information theory and
computer science may provide a new interpretation (even a re-formulation) of
physical laws. And since the nature of computation is digital, thus discrete,
some may be tempted to reject real numbers, and even more, very radically,
classical mathematical physics as based on differential equations. Quite sur-
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prisingly, this opinion has been expressed also by one of the most important
physicians of the twentieth century, R. Feynman [6].

This is not the philosophical perspective we consider in this paper. The
approach we present accepts the existence of real numbers, and is interested
in developing a computability theory suitable to handle them. This is the goal
of what we mean by “real computing”.

On a first level we can roughly classify the different approaches to real
computing in two groups. The first group founds real numbers computation
on the digital and discrete nature of Turing machines (and contemporary com-
puters). The second group believes that a satisfying theory of computability
for real numbers should somehow subordinate computation laws to the pecu-
liar nature of these numbers. However, both groups assume (or at least they
do not argue about) the existence of the continuum. We will not present this
struggle in detail but we point out again how a generally accepted theory of
computation for real numbers is not yet available. We refer the reader inter-
ested in this discussion to the last chapter of [14] and to the introduction of
[1], or also to [9].

We simply outline some essential theoretical divergence between the two
approaches. The classical method of dealing with real computing sees Turing
machines as capable of operating on infinite bit sequences; the basic idea is
that one needs an infinite amount of information to codify the exact value
of a real number (for example, through digital expansions). Accordingly, one
needs an infinite amount of time to execute ordinary operations over the reals,
like sum or product, and also to execute the identity test between two real
values. In concrete, thus in a finite quantity of time, one can only expect to
obtain reliable rational approximations of the exact operation results.

L. Blum, F. Cucker, M. Schub and S. Smale do not accept this point of
view. In [1] they say:

Computer science is oriented by the digital nature of machines and by
discrete foundations given by Turing machines. For numerical analy-
sis, systems of equations and of differential equations are central and
this discipline depends heavily on the continuous nature of the real
numbers. [...] We believe that the Turing machine as a foundation for
real number algorithms can only obscure concepts.

In reality, even the Turing machine approach is paying increasing attention
to differential equations, and this is indeed the topic of the present paper.

The theoretical model of L. Blum, F. Cucker, M. Schub and S. Smale
postulates that one can operate on real numbers as if they were atomic objects.
Therefore they assume it is possible to execute the basic operations of sum,
difference, multiplication and quotient, as well as to compare the exact values
of two real numbers, in a finite amount of time (even in a single computation
step). This paradigm has met with strong criticism from K. Weihrauch, who
in [14] states:
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In a finite amount of time every physical information channel can
transfer only finitely many bits of information and every physical
memory is finite. Since there are uncountably many real numbers,1 it
is impossible to identify an arbitrary real number by a finite amount
of information. Therefore, it is impossible to transfer an arbitrary real
number to or from a computer in a finite amount of time or to store
a real number in a computer.

To avoid this concrete limit, in the real-RAM model supported by Blum,
Cucker, Schub, and Smale the problem of the “discretization” of the contin-
uum must necessarily re-appear: rather than using infinite sequences of bits
to codify real numbers, the alternative is to compute functions on a highly
dense set of rational numbers distributed uniformly in some real interval, in
order to approximate real function graphs as accurately as possible.

Maybe a computability theory for a mathematical branch is not satisfying
unless it proves that the fundamental operations in that field are computable.
For example, in classical recursion theory one easily proves that the sum and
the product, which are the fundamental operations over the natural numbers,
are computable: it is straightforward to write algorithms for Turing machines
to compute such operations or to define them through Kleene recursive nu-
merical operations.

In the model we adopt, the so called “Type-Two Theory of Effectivity”
(TTE ), or “Theory of Representations”, which is a very natural extension
of Turing machine computability theory, one proves that the fundamental
operations over the reals are computable. Beside the basic four operations, we
mention the roots of any degree n (we recall indeed that the notion of real
closed fields is actually defined in terms of existence of solutions for odd degree
polynomials). This is not true for the real-RAM machine approach to real
computing, where, for example, the square root operation is not computable.

Obviously, one may postulate the computability of certain operations by
introducing ad hoc axioms, but this may sound too arbitrary. Remarkably,
in classical recursion theory the two different methods are equivalent: one
can define each recursive operation in terms of sum and product, or, con-
versely, prove recursivity of sum and product by elaborating simple programs
for Turing machines. For the reals, these two approaches no longer coincide,
thus leading to the two different groups of theories we have mentioned. Of
course, an axiomatic approach requires the formulation of particular axioms
depending on the mathematical theory under study. This is not exactly the
case of the Turing machine approach. For example, in set theory the basic
operations are union and intersection. These operations can be easily proved
to be computable by Turing machines with respect to closed sets: one needs
only to find a satisfactory method to codify the mathematical objects involved

1 Notice the expression “there are uncountably many real numbers”: the existence
of (all) real numbers is openly accepted.
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(in this case, closed sets), rather than postulating the computability of such
operations by introducing new axioms [8], [3].

2 Computable analysis

Before giving a technical presentation of computable analysis as modelled in
the TTE computational paradigm, we discuss its philosophical interest. We
would like to call it a “constructive platonism”. The underlying idea of com-
putable analysis is that the classical mathematical world exists in all its ampli-
tude. The role of the computable analyst is then that of elaborating algorithms
in the language of Turing machines to simulate specific mathematical func-
tions, and this is the constructive part of the subject. An extreme application
of this principle would be that of accepting within the mathematical world
only objects and functions that can be effectively generated by some computer
program. This is typical, indeed, of some constructive schools, like Markov’s.
But this is not the attitude of TTE computable analysis. Nevertheless, an
immediate correspondence with intuitionistic mathematics can be found in
the proof that all computable functions (following the TTE definition) are
continuous. Notwithstanding, computable analysis is far from accepting only
the existence of continuous functions, as intuitionism does. Indeed, even dis-
continuous functions are objects of investigation in computable analysis, in
terms of ”degrees of incomputability”. Summing up, there is a classical math-
ematical world, and then a constructive job which consists in codifying the
objects and in elaborating algorithms to simulate mathematical operations by
machines, or in classifying their degrees of incomputability.

As we have mentioned above, TTE employs Turing machines which can
handle infinite sequences of bits. The necessity for this is the “infinitary” na-
ture of real numbers (and many other mathematical objects): one needs to
codify an infinite quantity of information to characterize a single real num-
ber. Typical and well known infinitary codings of real numbers are obtained
through decimal expansions and Cauchy sequences of rational numbers.

The Turing machines used in this model are said to be of Type-2 (therefore
we say “Type-2 Theory of Effectivity”). These machines are conceived as
having:

• possibly many one-way read-only input tapes,
• several two-ways reading-writing working tapes,
• a one-way write-only output tape.

Such machines transform infinite sequences of natural numbers. For the input
tape heads the only instruction that is allowed is to read digits while moving
rightwards. On the output tape the machine can only write digits and move
rightwards, and therefore no correction can be made. In this way, at any stage
of the computation, the result, even if it is incomplete, is anyway reliable. All
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ordinary Turing machine instructions are allowed for working tape heads: to
move rightwards, to move leftwards, to read, to write, and to erase digits.

The prohibition of erasing digits on the output tape has a fundamental
topological consequence: all computable functions are continuous (with re-
spect to the space NN of infinite digit sequences, the so called “Baire space”).
Roughly speaking, a function over this space is continuous when any pair of
infinite sequences sharing finite initial segments of increasing length yields
ever greater coincidence between corresponding images.

A basic result by C. Kreitz and K. Weihrauch (sometimes referred to as
the Representation Theorem) shows a fundamental correspondence for certain
mathematical structures that admit reasonable codification systems: a math-
ematical function defined on these structures is continuous if and only if it
admits a continuous simulation with respect to opportunely selected codifi-
cations. We now explain this result in detail for second countable topological
T0-spaces. We recall that a space is second countable if it is generated by
a countable sub-base (we may call “atomic properties” the open sets in this
sub-base). A space is T0 when given any two different elements x, y in this
space, there is an open set U such that x ∈ U if and only if y /∈ U : in other
words, there cannot be two different objects sharing the same atomic proper-
ties. An object is then uniquely determined by the (countable) list of all its
atomic properties. This way of denoting objects by means of atomic properties
is said to be the standard representation of that space (with respect to any
chosen sub-base): once an enumeration of the countable sub-base is fixed, one
can identify objects using sequences of natural numbers. The term “represen-
tation” is the technical expression used in the literature to mean any possible
way of codifying the elements of a space through infinite numerical sequences.
A representation of a space is then said to be “admissible” if it is equivalent
to the standard representation, i.e. it can be reduced through a continuous
translation into the standard representation and vice versa. A more general
definition characterizes a representation as admissible when it is a continuous
function and any other continuous representation of the space can be reduced
by a continuous translation into such representation.

The typical standard representation (denoted in the literature by ρ) of R

is given by the set of all maximal sequences of open intervals with rational
end points whose intersections are singletons. Any single real number is then
uniquely determined by the list of all the rational open intervals it belongs
to. A straightforward generalization defines ρn for the Euclidean spaces Rn,
with n ≥ 0.

A well known equivalent representation (thus, admissible) of R is obtained
by using Cauchy sequences of rational numbers with a fixed computable mod-
ulus of convergence: one can decide uniformly when a rational number in
any such sequences approximates the respective limit within a margin of 2−n

for any n ∈ N. The definition of Cauchy representation can be immediately
extended to all other separable metric spaces (metric spaces including a count-
able dense subset).
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The technical word used to denote any simulation in the Baire space of a
(partial) mathematical function f :⊆ X → Y is “realization”. Any realization
of f maps then each name of any x ∈ dom(f) (with respect to a given repre-
sentation δX of X) to a name of f(x) (with respect to a given representation
δY of Y .). The (partial) function f is then said to be “computable” (with
respect to δX , δY ) if it has a computable realization (with respect to the same
representations), in other words, if there is a Type-2 Turing machine which
transforms any name of any given element x ∈ dom(f) into a name of f(x)
(where such names are of course infinite sequences of natural numbers which
depend on the chosen representations δX , δY of X and Y , respectively).

We would like to point out this fundamental fact: in the theory of rep-
resentations there is no absolute notion of computability: a function may be
computable with respect to some representations, but non computable with
respect to some others.

It is then important to find reasonable, or even privileged, representations
for a given space. The Representation Theorem helps us in the case of T0

second countable spaces. This theorem says indeed that a (partial) function
f :⊆ X → Y , for X and Y second countable T0-spaces, is continuous if it has
some continuous realization with respect to admissible representations of X
and Y . This is the reason why admissible representations are so important
(and they are also very natural, because of their equivalence to standard
representations).

As we have mentioned before, the theory of representations not only sug-
gests a valid definition of computability, it also provides suitable tools for
a detailed analysis of the notion of incomputability. After some preliminary
intuition, the theory of incomputability has been elaborated systematically
by V. Brattka in [2]. More precisely, Brattka has characterized infinite levels
of incomputability: the more the level increases, the more the functions are
incomputable. This hierarchy is generated by the functions Ck : NN → NN:

Ck(p)(n) =

{
0 if ∃nk∀nk−1∃nk−2...Qn1 : p(〈n, nk, nk−1..., n1〉) �= 0
1 otherwise

for any k ∈ N, where

Qn1 =

{
∃n1 if k is odd
∀n1 if k is even.

The incomputability levels of these functions are strictly increasing: C0 is
computable and Cn is “more complicated” than Cm, for n > m.

A partial function F :⊆ NN → NN on the Baire space NN is said to be
Σ0

k+1-computable if it can be computably reduced to Ck. This means that
we could compute F if only we had a method to compute Ck (via uniform
translation of any input of F into an input of Ck, and then of the output of
Ck in the corresponding output of F ). Vice versa, F is Σ0

k+1-hard if Ck is
reducible to F in a similar way. A function which is Σ0

k+1-hard, for k ≥ 1,
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maps some computable object to an incomputable object, therefore it is not
a computable function. When both reductions hold, we say that F is Σ0

k+1-
complete: in this case the function F is exactly complicated as Ck.

The class of the computable functions coincides with the class of the Σ0
1-

computable functions.
This hierarchy turns out to be an effective version of the ordinary Borel

hierarchy of degrees of discontinuity, as some results by Brattka show. Such
results generalize the relation between computability and continuity at higher
levels, as we are about to explain.

We recall that in classical topology a (partial) function f :⊆ X → Y ,
for X and Y metric spaces, is said to be Σ0

k-measurable when for any open
set U , the pre-image f−1(U) is a Σ0

k-set in the Borel structure induced by
the relative topology on dom(f). Therefore the Σ0

1-measurable functions are
exactly the continuous maps. If a function F :⊆ NN → NN is Σ0

k-computable,
then it is Σ0

k-measurable with respect to the relative topology of its domain
as a subset of the Baire space.

An immediate extension of the notion of computability for functions be-
tween separable metric spaces can be obtained in the following way: a function
f :⊆ X → Y is said to be Σ0

k-computable if it has a Σ0
k-computable realization

(with respect to the admissible Cauchy representations of X and Y ).
A generalization of the Representation Theorem proved by V. Brattka

asserts that for f total, f is Σ0
k-measurable if and only if it has some Σ0

k-
measurable realization. Thus, for separable metric spaces the concept of
Σ0

k-measurability defined in terms of realizations and the concept of Σ0
k-

measurability through Borel sets simply coincide.

3 The Cauchy problem for ordinary differential
equations

Having introduced the previous preliminary notions, we can now investigate
the topic of our paper: the computability properties of the Cauchy problem,
thus the possibility of computing solutions for differential equation systems.

This problem has been addressed by several authors. A simple case is given
by ordinary differential equations of the first order:

dϕ
dx

= f(x, ϕ(x))

G. Peano has proved that if f(x, t) is a continuous real-valued function on the
rectangle −a ≤ x ≤ a, −b ≤ t ≤ b, where a, b > 0, then the Cauchy problem
dt
dx = f(x, t), with initial condition t(0) = 0, has a continuously differentiable
solution t = ϕ(x) on the interval −α ≤ x ≤ α, for α = min(a, b/M), where
M = max{|f(x, t)| : −a ≤ x ≤ a,−b ≤ t ≤ b}. Nevertheless, this theorem
does not hold computably : in [11] M. B. Pour-El and J. I. Richards have proved
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that there is a function f(x, y) computable in the square [−1, 1]2 such that
no solution is computable on any interval [0, δ], for δ > 0.

S. G. Simpson has provided a further contribution to this problem in the
context of reverse mathematics. We may consider reverse mathematics as a
sort of “foundation without dogmas”: its scope is not to decide which mathe-
matical results are admissible in mathematics (like constructivism does), but
to classify them on the basis of the weight of the different ontological as-
sumptions needed to prove them. Climbing up the ontological hierarchy, the
ontological depth increases. Since reverse mathematics (usually) employs clas-
sical logic, one may argue that a very strong ontological assumption is tacitly
accepted within the inner foundations of the theory; nevertheless the aim of
reverse mathematics is that of measuring the ontological weights of math-
ematical theorems with impartiality. The question to answer should not be
“Are you allowed to prove A?”, but rather “What must you admit in order
to prove A?”

Simpson has proved (see [13]) that the Peano Theorem is logically equiv-
alent to the weak Kőnig’s Lemma WKL0: each infinite binary tree has an
infinite path. Therefore a solution satisfying the conditions of Peano’s Theo-
rem can exist if and only if one accepts the existence of a path in any infinite
binary tree.

This result can be translated in the framework of computable analysis,
and this proves that the construction of the solution suggested by Simpson
is almost computable, i.e. it is not computable but nevertheless simpler than
C1. This characterization refines the result by Pour-El and Richards. We will
see another refinement of the same result in the next section.

4 The incomputability result on the wave equation and
its discussion

The two authors that have probably spent more time studying the computabil-
ity aspects of the Cauchy problem are K. Weihrauch and N. Zhong. In par-
ticular, they have written several papers about partial differential equations,
and some of them concern the discussion of the computability of the wave
equation (see for example [15], [17]).

The wave propagation is a fundamental example of partial differential
equations system in mathematical physics:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− ∂2u

∂t2
= 0

u(0, x, y, z) = f(x, y, z)

∂u

∂t
(0, x, y, z) = 0

for x, y, z, t ∈ R.
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Classically the wave equation has a unique solution depending on the ini-
tial condition f and on the initial velocity (that we assume here to be 0).
Nevertheless, Pour-El and Richards [12] have proved the existence of a com-
putable initial condition f such that the unique corresponding solution at
time 1 is not a computable function:

Theorem 1 (Pour-El-Richards). Consider the wave equation with the ini-
tial conditions u(t, x, y, z) = f(x, y, z), ∂u

∂t (t, x, y, z) = 0 at time t = 0. Let D1

and D2 be the following two cubes in R3:

D1 = {(x, y, z) : |x| ≤ 1, |y| ≤ 1, |z| ≤ 1}

D2 = {(x, y, z) : |x| ≤ 3, |y| ≤ 3, |z| ≤ 3}.
There exists a computable function f(x, y, z) in C(D2) such that the solution
u(t, x, y, z) at time t = 1 is continuous, but is not a computable function in
C(D1).

By commenting this result, Weihrauch and Zhong [17] say:

These examples have considerably disconcerted logicians and com-
puter scientists, as well as physicists, most of whom accept the Church-
Turing Thesis or at least believe that wave propagation can be pre-
dicted (arbitrarily precisely) by means of digital computers.

The say even more:

These results bother physicists, in particular, who are convinced that
wave propagation is computable and in fact write computer programs
which predict the future behavior of waves from initial conditions.

In Weihrauch and Zhong’s opinion, this belief concerns the whole sector
of mathematical physics [17]:

[...] most physicists believe that for processes which can be described
by well-established theories (finitely many point masses interacting
gravitationally, electromagnetic waves, quantum systems etc.) the fu-
ture behavior can be computed with arbitrary precision, at least in
principle, from sufficiently precisely given initial conditions, where the
computations can be performed on digital computers, and hence on
Turing machines.

This is a typical case of what we mentioned in the introduction. Comput-
ers are programmed and then run everyday, and often they should simulate,
somehow, computations over the reals, as in the case of mathematical physics.
Nevertheless, there is a lack of knowledge of the theoretical foundations for
real computing. Therefore, when a result like that of Pour-El and Richards is
formulated, it can be hard for people to give an appropriate interpretation of
these results.
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4.1 Weihrauch’s and Zhong’s solution

In [15] and [17], K. Weihrauch and N. Zhong have developed a detailed analysis
of the incomputability result of Pour-El and Richards.

The two authors have dealt with a more general version of the wave prop-
agation, with initial conditions f, g where possibly g �= 0:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− ∂2u

∂t2
= 0

u(0, x, y, z) = f(x, y, z)

∂u

∂t
(0, x, y, z) = g(x, y, z)

for x, y, z, t ∈ R.
The TTE-approach to computable theory is strongly topological, and

therefore Weihrauch and Zhong have constructed some topologies on the space
of continuous functions.

First of all take the topology on C(R3) generated by the “rational ampli-
tude boxes” as atomic properties: an open set in the sub-base consists of all
the functions which map a certain closed ball B(a, r)), for a ∈ Q3, within a
certain interval (c, d), for r, c, d ∈ Q. The use of rational numbers only assures
the enumerability of all the atomic properties. More precisely, we let:

σ = {Rarcd : a ∈ Q3, r, c, d ∈ Q, r > 0, c < d}

where
Rarcd = {f ∈ C(R3) : f(B(a, r)) ⊆ (c, d)}.

Let τ be the topology generated by the sub-base σ and let ζ :⊆ NN → C(R3)
be the corresponding standard representation of C(R3).

Therefore a ζ-name of f ∈ C(R3) is a list of (natural numbers coding) all
its rational amplitude boxes; thus it is a list of all the 4-tuples:

(a, r, c, d) a ∈ Q3, r ∈ Q+, c, d ∈ Q c < d

such that
f(B(a, r)) ⊆ (c, d).

The authors have then considered a topology for the set of continuous func-
tions with continuous partial derivatives:

C1(R3) = {f ∈ C(R3) : ∂xif ∈ C(R3), 1 ≤ i ≤ 3}.

The topology is defined so that, roughly speaking, its corresponding stan-
dard representation denotes any function f ∈ C1(R3) through a combination
of ζ-names of f and of its partial derivatives ∂x1f, ∂x2f, ∂x3f as continuous
functions. More precisely, on the set C1(R3) define the topology τ1 generated
by the following set of atomic properties:
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σ1 = {Ri
arcd : 0 ≤ i ≤ 3, a ∈ Q3, r, c, d ∈ Q, r > 0, c < d}

with R0
arcd = Rarcd ∩ C1(R3) and Ri

arcd = {f ∈ C1(R3) : ∂xif ∈ Rarcd}.
Let τ1 be the topology generated by the sub-base σ1 and let ζ1 :⊆ NN →

C1(R3) be the corresponding standard representation of C1(R3).

Surprisingly, Weihrauch and Zhong have proved that the Cauchy problem
of the wave propagation is computable (in some sense):

Theorem 2 (Weihrauch-Zhong). The solution operator S : (f, g, t)  →
u(t, .) of the wave equation problem mapping f ∈ C1(R3), g ∈ C(R3) and
t ∈ R to the solution u(t, .) ∈ C(R3) is (ζ1, ζ, ρ, ζ)-computable.

The reason for this positive result lies in the choice of the codification
methods. Please observe, in fact, that f has continuous partial derivatives,
while this condition is not required for g. Hence, the corresponding names
of f and g depend on the two different topologies on C1(R3) and C(R3),
respectively, i.e. the name of f must also contain the information about its
partial derivatives, but this is not the case for g. The key of the proof is that
for t ∈ R, x ∈ R3, the operation

(f, g, t, x)  → u(t, x) =

=
∫

S2
[tg(x+ tn) + f(x+ tn) + t∇f(x+ tn) · n]dσ(n)

is (ζ1, ζ, ρ, ρ3, ρ)-computable (here ∇ = (∂f
∂x + ∂f

∂y + ∂f
∂z ) and observe that

f  → ∂f
∂xi

is trivially (ζ1, ζ)-computable).

As an immediate corollary we have:

Corollary 1 (Weihrauch-Zhong). The special solution operator f  → S(f, 0, 1)
is (ζ1, ζ)-computable.

Therefore, if f is a computable function as an object of C1(R) (thus, if it
has a computable codification of itself and its partial derivatives), then u(1, .)
cannot fail to be computable.

Nevertheless, the incomputability result by Pour-El and Richards must
necessarily re-appear somehow. In fact, Weihrauch and Zhong show first of
all that in some other sense the Cauchy problem of the wave propagation
is not computable: this comes from a discontinuity property which arises in
the change of the source topology (and coherently of the information given in
input):

Theorem 3 (Weihrauch-Zhong). For any t ∈ R�{0} the wave propagator
St : f  → S(f, 0, t), which sends the initial conditions f ∈ C1(R) and g = 0 to
the solution at time t, is not (τ, τ)-continuous.
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Please observe that in this case the name of the function f does not include
any information about its partial derivatives, and this lack of information,
which corresponds to a change in the source topology, makes the difference.
We give the fundamental hint of this fact. Let fn(x) = n−1 sinn||x||2 for
x ∈ R3, n > 0, and let f(x) = 0. Then fn →τ f (but observe that ∂fn

∂xi
�→τ

∂f
∂xi

,
hence fn �→τ1 f !)
We have that St(f) = 0 and one can prove that:

St(fn)(0) = un(t, 0) =

= 2t2 cos(nt2) + n−1 sin(nt2),

in particular |St(fn)(0)| > d infinitely often for some d > 0. Take a posi-
tive e < d. Then St(f) = 0 ∈ R0,1,−e,e. Suppose St is continuous. There is
then an open set U ∈ τ such that fn, f ∈ U for any sufficiently large n and
St(U) ⊆ R0,1,−e,e. But infinitely often St(fn) /∈ R0,1,−e,e, which is a contra-
diction.

If the operator St is not continuous with respect to the topologies chosen
in Theorem 3, then by Representation Theorem it cannot be computable with
respect to the corresponding representations.

Moreover Weihrauch and Zhong prove that the solution operator S1 is not
only incomputable for topological reasons, but also for pure computability
theoretical motivations. In fact S1 maps some computable f to a continuous
but incomputable u(1, .). A result by Myhill constructs a computable func-
tion F ∈ C1(R) whose derivative F ′ is continuous but not computable, since
F ′(1) is not a computable real number. Weihrauch and Zhong show in [17] a
particular case in which the initial conditions are f = F (||x||), g = 0 and:

u(t, 0) =
∂

∂t
[F (t) · t] = F (t) + F ′(t) · t.

The function u(t, .) is continuous for all t ∈ R, but for t = 1 and x = 0
we obtain u(1, 0) = F (1) + F ′(1), a number which is not computable. Since
the input (1, 0) is computable, but its image is not, then u(1, .) cannot be a
computable function, even if continuous. In this way the result by Pour-El and
Richards is re-obtained with respect the topology τ : indeed F is a computable
input with respect to ζ, but not to ζ ′, since F ′ is not computable.

Recall that, for k ≥ 2, a Σ0
k-hard function maps some computable objects

to incomputable ones and notice that it is discontinuous, since Ck−1 is so. For
the wave equation solution operator (with respect to the source topology τ)
we have an important example of this kind, and indeed it is a discontinuous
function which maps some computable objects to incomputable ones. Hence
its incomputability is due to reasons of double nature: both topological and
computational. Weihrauch and Zhong say:

According to a general theorem by Brattka any function of sufficiently
high degree of discontinuity with some weak computability properties
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maps some computable elements to non-computable ones. For the in-
stances we have considered, the solution operator of the Cauchy prob-
lem is computable if it is continuous, and has computable irregularities
if it not continuous.

To conclude, we can say, at least theoretically, that a Turing machine can
describe correctly the propagation of the wave, provided that suitable infor-
mation is given in the input. This kind of information is suggested by Theorem
2. The result of Pour-El and Richards apparently denies the possibility of de-
scribing the wave propagation process by using Turing machines. But this
may simply be a consequence of a wrong approach to the problem. In fact,
the incomputability result is obtained when a considerably relevant part of
information is missing. If all relevant information is given in the input, the
system is perfectly predictable by Turing machines.

Obviously this opens an interesting philosophical question: in the frame-
work of the theory of representations, the computability property is strictly
connected to the chosen codification method. Hence it seems questionable
whether one can actually speak of the possibility of describing a physical pro-
cess using Turing machines, if one assigns to the term “possibility” an “abso-
lute” meaning. Some processes could be classified as “non computable” only
because the appropriate type of information has not been identified yet. A
fundamental problem is then determining what information should be consid-
ered relevant in a given context. One possible method can be that of selecting
the kind of information which allows the formulation of computable versions
of the main results of the theory, if such information exists. But this choice
method may sound in general a bit artificial, and maybe one should then
evaluate, case by case, if the selected type of information is “natural”. In the
case of the wave equation, we can accept that the codification system which
assures the computability of wave propagator is, theoretically, very natural:
it is indeed a fundamental property, and not simply a redundant detail, the
fact that the initial condition f has continuous derivatives; hence it is rea-
sonable that one has to codify these derivative in the input. We conjecture
that the kind of information needed to make the description of a physical pro-
cess computable should always sounds at the end very natural. This should
hold at least at the level of pure mathematics. Nevertheless, at the practical
level there could be some difficulties. The required information could be in
fact very hard to obtain. For example, we have mentioned the result by My-
hill regarding the existence of computable functions which are continuously
differentiable, but whose derivatives are not computable.2 Therefore it is im-
possible to give always in input all relevant information required. When f is
computable, one could consider this function as being concretely constructible
in a laboratory (at least, through approximations) and worthy of considera-
tion. Unfortunately, this could not be the case of some ∂xif , which could be

2 One can prove easily that the map f �→ ∂xif is not computable by comparing
the positive Theorem 2 with the negative Theorem 3.
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not computable. Therefore, through this incomplete information, no Turing
machine could in general output the amplitude boxes of the wave at a given
computable time.

4.2 Cenzer and Remmel’s approach

The incomputability results found by Pour-El and Richards regarding Peano’s
Theorem and the wave propagation have been analyzed and generalized by
other authors, following different approaches. In [5] D. Cenzer and J. B. Rem-
mel have used the classical arithmetical hierarchy studied in recursion theory
to evaluate the complexity of index sets of continuous functions which satisfy
certain properties. The arithmetical hierarchy is an instrument to classify the
level of incomputability of sets of natural numbers. A Σ0

k-set3 is the collection
of all the x ∈ N that satisfy a formula of the kind ∃x1∀x2...Qxkϕ(x1, ..., xk, x),
where ϕ(x1, ..., xk, x) is a recursive predicate and Q := ∀ if k is even, other-
wise Q := ∃. The complement of a Σ0

k-set is said to be a Π0
k -set, and a set

is Δ0
k if it is both Σ0

k and Π0
k . The recursive sets are exactly the Δ0

1-sets,
whereas the r.e-sets coincide with the Σ0

1 -sets. The hierarchy is conservative,
but the Σ0

k-complete sets do not belong to levels smaller than k, and the same
is true for Π0

k and Δ0
k-sets. Let (Vi)i∈N and (Ui)i∈N be enumerations of the

open rational balls (open balls with rational coordinates centers and rational
radii) in R and in Rn, respectively (it is preferable when the open balls are
enumerated so as to respect certain trivial inclusion properties, but it is not
necessary to insist here on these details). Cenzer and Remmel consider that a
natural number e is a code for a (computable) continuous function f : Rn → R

if the e-th Turing machine (as defined in classical recursion theory) computes
a total function g : N → N such that:

• ∀m,n (Um ⊂ Un → Ug(m) ⊂ Ug(n))
• ∀k,m ∃r ∀t (Ut ⊆ [−k, k]n ∧ diam(Ut) < 2−r → Ug(t) < 2−m).

Denote the function f by Fe when e ∈ N is a code for f . Cenzer and Remmel
have proved then that:

Theorem 4 (Cenzer-Remmel). The set A of all the numbers a ∈ N

for which there exists δ > 0 such that the ordinary differential equation
dϕ
dx = Fa(x, ϕ(x)) has a computable solution ϕ within some interval [−δ, δ]
with ϕ(0) = 0 is Σ3-complete.

This result in some sense improves the incomputability result obtained by
Pour-El and Richards regarding Peano’s Theorem, i.e. about the existence of
computable functions f such that dϕ

dx = f(x, ϕ(x)) has no computable solution
ϕ within the usual rectangles. Indeed one can see that the set of indexes for
computable functions f(x, y) is Π0

2 -complete, while by Theorem 4 the set of

3 Please notice that we now use light-face letters, since this hierarchy must not be
confused with the previous bold-face classification.
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those which admit some computable solution is Σ0
3 -complete, thus the two

sets do not coincide (the second is more complicated).
We now come back to the wave equation problem. Cenzer and Remmel

have in fact proved a result similar to Theorem 4 for the case of the wave
propagation:

Theorem 5 (Cenzer-Remmel). The set A, whose members are the num-
bers a ∈ N such that the wave equation ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 − ∂2u
∂t2 = 0 with initial

condition u(0, x, y, z) = Fa(x, y, z) and ∂u
∂t (0, x, y, z) = 0 has computable so-

lutions, is Σ3-complete.

Following the comments to Theorem 4, one sees immediately that Theorem
5 is another way to prove the existence of computable initial conditions f for
which the wave equation has no computable solution.

5 Partial differential equations: computability for a
general case

Partial differential equations are quite complex objects, classified in different
categories, and therefore it is not easy to elaborate a general theory of solv-
ability of the Cauchy problem. This is true for classical mathematics, and
coherently, for computable analysis, too. In [19] Weihrauch and Zhong have
searched a general method to computably solve partial differential equations.
In this paper the two authors write:

There have been many studies on computability of solutions of partial
differential equations (PDEs). The majority of results obtained so far
deals with inidividual equations, for example, linear heat, wave, or
Schrödinger equation, and the KdV equation. This may have to be
the case for non linear equations, for different non linear equations
generally have little in common and they may have to be dealt with
on a case-by-case basis. But how about linear PDEs? Is there any
Turing algorithm computing solutions of a class of linear PDEs?

They have found a possible general solution to the question through the
notion of infinitesimal generator, that we now explain according to [19].

A parameter family W (t), 0 ≤ t ≤ ∞, of bounded linear maps A : X → X,
for X a Banach space, is called a “semigroup of bounded linear operators on
X” if:
(i) W (0) = I, where I is the identity operator on X;
(ii) W (t+ s) = W (t)W (s) for every t, s ≥ 0.
The linear operator A defined by dom(A) = {x ∈ X : limt→0+

W (t)x−x
t exists}

and

Ax = lim
t→0+

W (t)x− x

t
=

d+

dt
W (t)x|t=0
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is called the “infinitesimal generator of the semigroup W (t)”.
A semigroup W (t), t ≥ 0 of bounded linear operators on X is “uniformly

continuous” if limt→0+ ||W (t) − I|| = 0.
By showing how to compute a uniformly continuous semigroup W (t) from its
infinitesimal generator, and conversely, Weihrauch and Zhong can prove that
the solution operator S(A, x) = u of the Cauchy problem

du(t)
dt

= Au(t) u(0) = x,

for t > 0, x ∈ X, and A : X → X a bounded linear operator, is computable.
The case for unbounded operators requires instead further concepts.
The resolvent ρ(A) of a linear operator A is the set of all complex numbers

β for which βI − A is invertible, thus R(β,A) := (βI − A)−1 : X → X is a
bounded linear operator (complex numbers can be coded as pairs of reals).

A triple (A, θ,M), for A :⊆ X → X an unbounded linear operator, θ ≥ 0
and M ≥ 1, is a piece of type-IG (=infinitesimal generator) information for
A if:

1. A is a closed map and dom(A) = X;
2. the resolvent set ρ(A) of A contains the interval (θ,∞) and ||R(λ,A)n|| ≤

M
(λ−θ)n for λ > θ, n ∈ N.

We codify (A, θ,M) through some standard name of θ and M , and a name of
A which consists of a code for a countable dense subset in graph(A). Then the
Cauchy problem du(t)

dt = Au(t) with u(0) = x for t > 0, x ∈ X, is computable.
Another relevant result in computational mathematical physics is then

achieved: the computability of the heat equation

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− ∂u

∂t
= 0

u(0, x, y, z) = f(x, y, z)

for f ∈ L2(R3), that means that f  → u ∈ C([0, T ], L2(R3)) for 0 ≤ t ≤ T
where T is any positive computable real number, is computable with respect
to admissible representations of the corresponding spaces involved.

6 Further relevant results in computable physics

The case of the Schrödinger equation is more complicated and can be consid-
ered similar to that of the wave equation. As Weihrauch and Zhong point out
in [16]:

Like the wave propagator the computability of the solution operator
of the Schrödinger equation is closely related to the space of the initial
conditions.
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More precisely, with respect to the inhomogeneous linear Schrödinger equa-
tion:

ut = i
(∂2u

∂x2
1

+
∂2u

∂x2
2

+ ...+
∂2u

∂x2
d

)
+ φ

for t ∈ R, i =
√
−1, with the forcing term φ(t, x1, ..., xd) and the initial con-

dition u(0, x1, ..., xd) = f(x1, ..., xd), they have considered as possible initial
conditions spaces Lp(Rd) and the space of Sobolev functions.

We will not give many technical details, but we point out the crucial point
of the result. If we consider the initial condition as an element of a Sobolev
space, and therefore we codify it through a very natural representation of
such space, then the Schrödinger propagator solution operator S : (t, φ, f)  →
u(t, .) is computable. If we consider instead the Schrödinger propagator as
operating in a Lp(Rd) space, then this propagator is computable only in one
case, precisely when p = 2.

Again, the question about the possibility to describe a physical system is
strictly dependent on the chosen representation.

The last topic concerning mathematical physics we mention is the Korteweg-
de Vries equation. The question about its computability is one of the open
problems listed by Pour-El and Richards in [12]. Some authors have provided
partial solutions to this question. In [7] Gay, Zhang and Zhong have analyzed
the periodic case

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0 t ≥ 0, x ∈ (0, 2π)

u(0, x) = f(x)

u(t, 0) = u(t, 2π)
∂u

∂x
(t, 0) =

∂u

∂x
(t, 2π)

∂2u

∂x2
(t, 0) =

∂2u

∂x2
(t, 2π).

Some mathematicians have proved the appropriateness of Sobolev spaces
Hs([0, 2π]) for s > 3

2 for the initial value function. This defines f  → u as a non
linear operator fromHs([0, 2π]) to C([0, T ],Hs([0, 2π]). The authors have then
proved that for computable numbers s > 3

2 and T > 0, and for a computable
f ∈ Hs([0, 2π]), the corresponding unique solution u is computable.

In [20], N. Zhong alone has re-considered the Korteweg-de Vries equation
with other initial conditions, and has provided another positive answer to the
question by Pour-El and Richards, showing the computability of the solution
operator under certain conditions.

Weihrauch and Zhong have considered in [18] the simpler case

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0 t, x ∈ R

u(0, x) = f(x).

This problem has been classically proved to be well-posed for all classical
Sobolev spaces Hs(R), for s ≥ 0. Weihrauch and Zhong have proved a partial
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(but quite general!) effective version of this classical result, by showing that
the corresponding solution operator S : Hs(R) → C(R,Hs(R)) is computable
for s ≥ 3.

Different philosophic conclusions may be deduced from this very con-
cise outline of results concerning computable physics. In [17], Weihrauch and
Zhong write:

Apart from the wave equation, two other partial differential equations
with applications in physics have been analyzed similarly, the linear
and a non linear Schrödinger equation. In both cases the propagator
is computable.

We think that one can agree with their opinion, provided that one accepts
a precise meaning of the term “computable”. This assertion should be inter-
preted as: “They are Turing computable, in the sense that there is at least
some natural way to codify the inputs for which the corresponding solution
operators are Turing computable”. For each case there is indeed at least some
reasonable representation that allows a computable simulation of the physical
system. In the case of the Schrödinger equation we have even just seen how
different mathematical structures, which have been used successfully in pure
mathematics in the study of a physical system, can have different physical
relevance (we say “physical”, since we consider the Turing machine to be a
physical model). Physically, some structures are more appropriate than others
for an accurate description of a certain reality. This is evident in the case of
the Schrödinger equation, where the Sobolev space permits a more general
computational treatment than the space Lp(R3).

The situation for the Korteweg-de Vries equation is a little more compli-
cated, but we think that the answers to the question of Pour-El and Richards
which are nowadays available are satisfying, since the results obtained are
quite general. In any case, Weihrauch and Zhong leave us with the general
problem still open, when they conclude:

However, computability of many other physical processes, for example,
boundary value problems, has not yet been investigated. Therefore,
there still might be a physical device which beats the Turing machine.
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This paper is divided into two parts. The first proposes a philosophical frame
and it “uses” for this a recent book on a phenomenological approach to the
foundations of mathematics. Gödel’s 1931 theorem and his subsequent philo-
sophical reflections have a major role in discussing this perspective and we will
develop our views along the lines of the book (and further on). The first part
will also hint to the connections with some results in Mathematical physics, in
particular with Poincaré’s unpredictability (three-body) theorem, as an open-
ing towards the rest of the paper. As a matter of fact, the second part deals
with the “incompleteness” phenomenon in Quantum physics, a wording due to
Einstein in a famous joint paper of 1935, still now an issue under discussion for
many. Similarities and differences w.r. to the logical notion of incompleteness
will be highlighted. A constructivist approach to knowledge, both in math-
ematics and in physics, underlies our attempted “unified” understanding of
these apparently unrelated theoretical issues.

Part I
Revisiting Phenomenology, Logic, and the Philosophy of Mathematics1

Constructivism is the most common philosophical attitude in the mathematics
(and practice) of Computing and this in contrast with the prevailing debate
in mathematical circles still ranging from Platonism to Formalism. But, what
do we mean, today, by “conceptual construction”, in the broadest sense? Phe-
nomenology may provide one possible answer to this, by a deeply renewed un-
derstanding of Weyl’s (and Brouwer’s) ideas, in a perspective close to Husserl’s

1 Part I is a largely expanded version of a review of [47], which appeared in
Metascience, a review journal in Philosophy of Science, 15.3, 615-619, Springer,
2006.
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philosophy. Tieszen’s book proposes a critical account of modern views in the
foundations of mathematics, which is of direct concern for the logician and
the theoretician in natural sciences who wants to reflect on the constructive
principles of the mathematical intelligibility of the world. We will refer to
this book to go further and motivate a broadening of the notion of “construc-
tion” as given in formal deductions and arithmetical computations, in either
classical or intuitionistic frames. By this broadening, we will understand the
incompleteness phenomenon as a “gap” between mathematical construction
principles and formal proof principles, following and further devellopping some
ideas hinted in [2].

Tieszen’s perspective is original, as the Philosophy of mathematics has
been largely dominated by a contraposition between Ontologism and Nomi-
nalism, as recalled above. This separated the foundational analysis of math-
ematics both from our lifeworld and from other scientific domains, including
physics where mathematics has a constitutive role. By correlating founda-
tional issues in mathematics and physics, along the lines of [2], we will try to
recompose the foundational break, at least as for the issue of incompleteness.

Part I.1

The first part of Tieszen’book is dedicated to an introduction to a Husser-
lian perspective in the foundations of mathematics. It is interesting per se,
as a broad survey of Husserl’s phenomenology. This is made possible by the
relevance that Husserl himself gave to Logic and mathematics in his philoso-
phy of knowledge: writings on Logic and Arithmetic are among the earliest of
Husserl’s and the related issues accompany his lifelong work.

The constitution of ideal objects, in Husserlian terms, is based on a clear
distinction between the transcendental perspective and psychologism. It is
the human subject who makes science possible, yet the common endeavour of
the historical community should not be confused with the individual analysis:
epistemology is a genetic analysis, provided that history is not understood in
the usual limited sense, explains Husserl in the “Origin of Geometry” (1933).
There are different types and levels of consciousness, which allow the historical
dynamics of knowledge: science is built up from the lifeworld experience of
human subjects on the basis of active abstraction, idealization, reflection,
formalization. The objectivity of knowledge is a constructed one, a result of
the interaction by an active subject, beginning with “kinaesthesia”, in a living
body, in everyday world of life. Meaning is not the passive interpretation of
independent signs, but it is constructed in this interaction, it is the result of a
“friction” and of structuring of this very world by our attempts to give sense
to it; meaning is the result of an action. Of course, we dare to add, this must
be understood in a broad sense: Quantum Mechanics for example seems to owe
little to kinaesthesia. Yet, it is a paradigmatic case where meaning is the result
of active consciousness, beginning with the preparation of the experiment or
of the technical context for insight: we are conscious of a quantum object as
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a constituted phenomenon. Our lived body is just expanded by instruments
which, in turn, result from a theoretical commitment: this is the richest form of
interaction in the sense mentioned above, with no meaningful object without
active knowing subject. A (conscious) intentional process is at the origin of
this form of knowledge.

As Tieszen explains, consciousness, for Husserl, is consciousness of some-
thing. It could be an ideal object of mathematics. The later being the result
of a formation of sense founded on underlying acts and contents, which make
possible the ideal construction. We would like to exemplify by considering Eu-
clid’s action on space by ruler and compass. This action organises figures in
space by rotations, translations and reflections, to put it in modern terms. A
dialogue with the Gods for sure, but also active measure of ground. But, how
to define and measure surfaces, a technique that, in its mathematical general-
ity, is the key Greek invention? In order to conceive exact metric surfaces one
has to conceive lines without thickness; there is no way to give a mathematical
sound notion of surface, without first proposing, with Euclid’s clarity, lines
with 0 thickenss. Then, as a consequence of intersecting lines, one obtains di-
mensionless points, as Euclid defines them (a remark by Wittgenstein). These
extraordinarily abstract concepts, point, line etc. are the idealized result of
a praxis of measure of surfaces and access to the world by translating and
rotating ruler and compass, far away, but grounded on sensory experience.
Rotations, translations and symmetries are “principles of (geometric) con-
structions”, a notion to be often used in the sequel. In Euclid’s geometry they
are used in proofs and they define the geometric objects as given by invariant
properties w. r. to these transformations.

Tieszen stresses several times the relevance of invariants in Husserl’s foun-
dational approach. “Mathematical objects are invariants that persist across
acts” carried out in different contexts. The practical constructions of mathe-
matics, in human space and time, are also stabilized by language and, then,
by writing, says Husserl: their constituted ideal nature is primarily the re-
sult of their invariance, as conceptual constructions, with respect to suitable
transformations of context. And this is extremely modern: invariant structures
and transformations were first the foundational core of Riemann’s geometry,
in Klein’s approach, then of Category Theory. Husserl seems to precede the
underlying philosophy of Category Theory by his analysis of mathematical
knowledge. These invariants are then the essences and, thus, provide the only
possible ontology for mathematics; they are the result of different “fulfilled
mathematical intentions”, as constructions. And these constructions have a
horizon, the space of the historical praxis which leaves as trace the most stable
invariants of all our mental practices, the structures and objects of mathemat-
ics. Then, underlines Tieszen, “truth is within this horizon” as there is no, for
Husserl, absolute mathematical truth nor evidence. Yet, mathematical the-
ories are not arbitrary creations (consider the example of Greek geometry
above), they are no conventional games of signs: we do not solve open prob-
lems by convention, as they are the result of a meaningful and motivated
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construction. The genetic analysis gives evidence for the objectivity of the
constitution of mathematics, in the interface between us and the world.

One of the challenges of this approach, that stresses the exactness and
stability of mathematical structures, is the correlation with the inexact (i.e.
morphological) nature of everyday sensory objects. Even more so, it is the
challenge of the relation of mathematics to the sciences of life, where the
stability may be global but is not due to exactness. We will go back to this
at the end.

Tieszen dedicates a section to the “Origin of Geometry”. Even if the sig-
nificance of that essay is very often present in Tieszens book, we think that it
is not sufficiently stressed. This mature text of Husserl’s is a splendid progress
and a revision for his overall philosophy of mathematics. It radically departs
from the partial proximity one can find in Husserl’s early books with Frege’s
logicism and even Hilbert’s formalism. However, in this short section, Tieszen
presents very clearly Husserl’s view on the role of bodily action, by the ki-
naesthetic and orientation systems, in organising space (the distance of an
object is the evaluation of the movement needed to reach it, says Poincaré).
Abstraction is then seen as “limitation of attention” and reflection as “adop-
tion of a theoretical attitude” (one can see here the path towards the abstract
and reflected nature of our science, which begins with Euclid’s Geometry, the
original mathematics). Measure, in order to be exact, requires ideal shapes, as
given by the notions of point, line etc we mentioned above. These are invari-
ants that found knowledge, from Euclid up to Einstein’s Invariantentheorie
(the early name of Relativity Theory). Riemann’s Geometry, which was born
to understand gravitation, underlies this late developments, where, jointly to
Category Theory, one sees “invariance and objectivity go hand in hand”, since
“invariance is a cornerstone of rationality and science”. The challenge is to
propose, at the same time, the right transformations that preserve the in-
variants, i.e. to give the right Category (or metric phase-space, to put it in
physical terms).

Part I.2

The second part of Tieszen’s book is largely devoted to an effort to find some
Husserl in Gödel’s philosophy. Gödel, in the last part of his life, became, appar-
ently, a close reader of Husserl. But, Gödel’s reading seems more concentrate
on some of the writings by Husserl of the beginning of the century and does not
seem to span the mature reflection of Husserl, typically to the “Origin of Ge-
ometry”, in landmark of Husserl’s foundational reflection on Mathematics. In
particular, Gödel stresses the possible ontological understanding of Husserl’s
phenomenology far away from the theory of invariance we sketched above. He
proposes in particular an identification of physical and mathematical objects,
made not in the ground of a similar construction of objectivity, but in reference
to a similar objective and autonomous existence. Of course, the foundation of
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physical knowledge is strictly related to the mathematical one, but this com-
mon foundation may be understood, in phenomenological terms, by reversing
bottom-up Gödel’s realism: their simultaneous constitution is the result of
a common praxis, not of a similar transcendent reality. Quantum physics is
the highest example for this: an electron is a solution of Dirac’s equation and
nothing else; but Dirac’s equation is given on the grounds of robust empiri-
cal evidence, prepared by a theoretically oriented acting subject. Here is the
virtuous circle of knowledge, which is hypothetical - principles driven, where
these principles are grounded on a friction, on a “reality”, whatever it may
mean, which opposes frictions or resists and canalises our endeavour towards
knowledge construction.

So, if one reads Gödel the other way round (both mathematical and phys-
ical objectivity - and objects, in a sense - are constituted, including the book
and the table mentioned by Gödel), then this is (modern) phenomenology,
otherwise one stays with the current interpretation of Gödel as an ordinary
Platonist in mathematics. It is not by chance that this interpretation is pre-
vailing, as most published writings of Gödel largely favour this understand-
ing. Of course, the table and the book in Gödel’s working place, pre-exist the
knowing subject, as they are the result, both the object and the concept (of
table, of book), of previous human activities. But also the mountain, which
is out there, for sure, is delimited and given a name, isolated from the con-
text, by our historical endeavour towards organising the world (where is it its
lower bound, exactly? We draw the mountain’s contours). For Gödel, instead,
concepts are abstract objects, which exist independently of our perception of
them, “perceived” by some physical “ad hoc” organ, which allows intuiting
the essence. The lesson instead we learn from (the late) Husserl gives even to
intuition the structure of a constituted: intuition in not an absolute, it is the
result of our historical praxis, beginning with our phylogenetic history. More
closely to us, the mathematician’s intuition of the continuum, for example,
150 years after the splendid construction of Cantor’s, is deeply indebted to
the Cantorian real line: we see the continuum in that way and it is very hard
to appreciate different continua (Leibniz’s insight, for example.)

In short, Gödel’s philosophy of mathematics contains transcendence and
very little transcendental constitution, in spite of Tieszen’s claim. And Tieszen
rightfully recalls Merleau-Ponty’s stress on the change towards a theory of
existence as preceding essence in the late Husserl, in “Krisis” in particular:
existence as invariance and as a result of a constitution. It is a process of free
variation that gives the conceptual stability of mathematical (or more gener-
ally, conceptual) rules and structures. And this process is similar in mathe-
matics and in physics; while for Gödel it is static perception that is similar
in mathematics and physics, as if Physical knowledge (years after Quantum
Mechanics) were based on sense perception. Perception, both everyday, com-
mon perception, and organised one, is far from static. Even vision requires
an activity (saccades at least): perception is the result of an action, which,
by its variations, singles out stabilities and invariance. Late unpublished (or
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recently published) reflections by Gödel show an increasing appreciation of
the dynamic of thought in Husserl and the role of transcendental constitution
in his philosophy. But this unknown writings had little or no relevance in the
major influence that Gödel has had in the formation of the platonist approach
to foundations. And a philosophy matters also for the effect that it has.

As a matter of fact, the modern perspective in phenomenology even more
radically departs from Gödel’s blend of realism and idealism: by, perhaps,
forcing slightly Husserl (and surely beyond Tieszen’s approach), we can even
say that any constitution is contingent, as it is the result of a history and a
praxis (a praxis in this world, with its frictions to our action).

Whatever is the true teaching by Husserl, our strong stand here is the
opposite of the Fregean absolutes that still invade Gödel’s views. Of course,
though, this constitution has a pre-human history: we share with many an-
imals basic counting praxes, appreciation of borders and trajectories. These
are invariants of pre-linguistic activities and, thus, partly precede conscious
intentionality, in Husserl’s sense.

More generally, mathematics is practiced in “our space of humanity”, by
our “historical communicating community”, as Husserl says, not by an individ-
ual subject: this adds to it its further, conscious and intersubjective stability.
At once, then, one also understands the effectiveness of mathematics, which
suddenly becomes reasonable: it follows from this contingency. There is no
real line in the world, nor imaginary number i, but we organise the world by
these construed concepts, which are strictly conceived by us, against Gödel’s
view, and are conceived by acting in this world, this is why they are not ar-
bitrary. Mathematics is the result of this contingent friction between us and
the world by a complex praxis of “action - abstraction of the action”. The
memory of a prey’s trajectory, say, is already “abstract”: it is the retention
of a protension, of the inexistent line, preceding the prey to be caught and
that the predator traces in advance, by saccades. And later, the concept of
line is the result of our symbolic-linguistic culture, by language, drawing and
writing, a further stabilization by intersubjective practices. Here lies its ob-
jectivity. Clearly, the resulting invariants, both in mathematics and, perhaps,
in general conceptual constructions, may be surely transcendental and, once
constituted, non-contingent. By this, we mean that they may be invariant
w.r. to transformations of reference system, in physics or mathematics, or of
humanly possible forms of life. It is the constitution of these transcendental
invariants that is contingent.

Similarly, as humans, we constructed this chair and this table, which were
not already there, nor was the concept of chair, of table, but resulted, both the
object and the concept, from our constructive action and linguistic exchanges.
Once constructed, the table, the chair and their concepts stay there, go cross
generations and history, through changes, and transcend each individual life.
And we also invented language and the alphabet, which are not in the world;
yet, by their constitutive history, they are extremely (yet, reasonably) effective
in understanding each other and the world, no less than mathematics, in their
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domains of application. They are at least as effective as this chair, which seats
us so well, it fits us and the physical world! And we understand each other
by talking and by (re-)producing language in writing: where is the miracle?
It is no more than in the panglossian nose and spectacles, which surprisingly
fit each other so well. And we can even use words with certain prevailing
meanings to express very different situations, by metaphors say. That is, we
may transfer linguistic expressions and conceptual structures, by formal or
semantic drifts, similarly as complex numbers can be used to express conjugate
values in Quantum Physics, three centuries after their invention.

In conclusion and against Logicism and Platonism metaphysical necessi-
ties, which need miracles and/or inspire an unreasonable effectiveness when
transferred to the world, we claim that mathematics is objective and effective,
exactly because it is the constructed contingency of maximally stable invari-
ants of our action in space-time and of reasoning, by gestures and language,
along our phylogenetic and human history. Or, also, we define mathematics as
the set of conceptual practices that is maximally stable and independent from
the contingency of their constitutive path (they are invariant under trans-
formations of humanly possible frames, as we said). And this, since Euclid’s
triangles, which, by definition, do not depend on the thickness of the traits,
or the colour of the ink. This maximal stability and independence, which is
part of their construction, makes the mathematical concepts more stable than
a chair and a table or their concepts; they better go through history.

Finally, let’s observe that mathematical objects are limit constructions,
obtained by a conceptual “critical” transition (see part 2), where the consti-
tutive contingency is lost at the limit. Euclid’s line with no thickness or the
“transcendental” number π is the result of a geometric construction, pushed to
the limit. But, in the end, their objectivity does not depend on the specific-
contingent and more or less abstract reference to actual traits or sequence
of rational numbers, needed to conceive or present them: at the limit, the
transition to infinity provides us with a perfectly stable conceptual object (a
mathematical ideality, some like to say). Their value and their sense do not
depend on the specific construction or contingent converging sequence of ra-
tionals, yet needed to conceive or define them. And the conceptual transition
is irreversible: no way to go from π to a given specific converging sequence;
there are infinitely many of them and π is the invariant under transforma-
tion (change) of equiconvergent sequence. In the second part we will return
at length on this understanding of the constitution of mathematical idealities
as a conceptual (we will say “critical”) transition, in analogy to the physics
of critical phase change.

Let’s go back to Tieszen’s book. In a very scholarly fashion, Tieszen’s chap-
ters on Gödel’s allow to grasp the differences between the mature Husserl and
Gödel’s philosophy, as well as the ontological shift of Gödel’s which may at
most be referred to Husserl’s work at the beginning of the century. Yet, we
would continue further to dig into the non-phenomenological reference to ab-
solutes in Gödel’s thinking. Tieszen explains how Gödel believed Hilbert to
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be correct in supposing the decidability of all number-theoretic questions, in
spite of his own undecidability (incompleteness) theorem: rationality needs
just to be extended by new laws and procedures. This rationalistic optimism,
a belief in absolute-ideal essences and their possible perfect knowledge, is
paradigmatic of how both Formalism and Platonism detached the foundation
of mathematics from physics and allows us to understand the opposite views
of mathematicians more deeply concerned with the latter (philosophically
at least, as Hilbert greatly contributed to Mathematical physics): Poincaré,
Weyl, Enriques. How could a leading Nominalist and a leading Ontologist (in
an broad semi-Husserlian sense), Hilbert and Gödel respectively, both possibly
say that there could be no undecidable assertion? And this when Poincaré had
shown that, given a formal system of a few equations (the Newton-Laplace sys-
tem for three bodies in their gravitational fields, 1890), one could state a (for-
malizable) proposition, parametrized on a sufficiently distant time, that could
be provably shown to be undecidable, under the intended (and best) physical
approximation of initial data. This was the first great result on the mathemat-
ical unpredictability of non-linear deterministic systems. No added (physically
possible) mathematical knowledge can solve this. This is why Poincaré cries
out against Hilbert’s “sausage machine’s view of mathematics” (an aggres-
sive stand recalled also by Tieszen): he has an entirely different Philosophy of
Knowledge. Let’s analyse this point more closely.

Preliminary reflections on incompleteness, in mathematics and in
physics

In Longo [31], it was suggested that Poincaré’s three-body theorem (see [5] for
an introduction and an historical account) is an epistemological predecessor
of Gödel’s undecidability result. Of course, Hilbert and Gödel were speak-
ing about purely mathematical ‘yes or no’ questions, while unpredictability
shows up, at finite time, in the relation between a physical system and a
mathematical set of equations (or evolution functions). That is, in order to
give unpredictability, Poincaré’s Negative Result, as he called his proof of the
non-analyticity of the equations for three-body system, needs a reference to
physical measure. Measure is always, in classical (and relativistic) physics,
an interval, that is an approximation, by which non-observable initial fluc-
tuations may give observable thus unpredictable evolutions, in presence of
non-linearity of the mathematical determination - a set of equations or an
evolution function (main reasons: the initial interval expands exponentially,
by the so-called Lyapounov exponents, and it is “mixed”, [18], [19]). Yet, one
can reformulate the problem in terms of a formal trajectory “reaching or keep-
ing away” from a given target neighbourhood: if the deterministic system is
chaotic, the mathematical question cannot be decided (see [26], [27] for sur-
veys). However, this is slightly unsatisfactory as it only shows undecidability
properties of chaotic dynamics (and not the converse) and it partly relies on
abstract properties of real computable numbers, instead of intervals, that do
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not need to fully express the mathematics of physical systems. In particular,
an effective measure theory (along the lines of Lebesgue’s measure, the locus
for dynamic randomness) needs to be introduced. The problem then is to have
a sound and purely mathematical treatment of the epistemological issue (and
obtain a convincing mathematical correspondence between unpredictability
and undecidability).

Now, unpredictability of deterministic systems is randomness in classical
physics (see [3]) and it may also be expressed as a limit or asymptotic notion.
Under this form, it may be soundly turned into a purely mathematical issue.
That is, randomness, as a mathematical limit property, lives in formal systems
of equations or evolution functions, with no need to refer to physical processes
and their approximated measure.

On these purely mathematical grounds, the second author conjectured that
a rigorous formal link could be shown, between Poincaré’s unpredictability
and Gödel’s undecidability, by passing through Martin-Löf number-theoretic
randomness. This is a “gödelian” notion of randomness, as it is based on Re-
cursion Theory and yields a strong form of (strong) undecidability for infinite
0-1 sequences (an infinite sequence is random if it passes all effective statistical
tests, see [37]2). On the side of physical dynamics, its mathematical counter-
part can be found in reference to Birkhoff’s notion of ergodicity, which refers to
infinite trajectories, a purely mathematical approach at the infinite limit, with
no need to refer to the interval of physical measure to engeder randomness.
That is, mathematical dynamical systems, in their (Lesbesgue) measurable
spaces, allow to define generic points and infinite random trajectories, in the
ergodic sense [41].

Recently, M. Hoyrup and C. Rojas, under Galatolo’s and the second au-
thor’s supervision, proved that dynamic randomness (à la Poincaré, thus, but
asymptotically, following Birkhoff), in suitable effectively given measurable
dynamical systems, is equivalent to (a generalization of) Martin-Löf random-
ness. This is a non-obvious result, spreading across two doctoral dissertations
(available by summer 2008, see aknowledgements) and gives an indirect, but
relevant, we believe, technical link between Gödel’s incompleteness as unde-
cidability and Poincaré’s unpredictability.3

On more philosophical grounds, Poincaré, in several writings, also tried to
relate the foundations of mathematics to that of physics, passing by cognition
and action in space. Similarly for Weyl and Enriques, who insisted, during
their entire life, on a parallel foundation of scientific knowledge in these exact
Sciences, see [2]. We insisted here on the connections between the issues of

2 Martin-Löf’s randomness, inspired by Kolmogorof’s ideas, has been developped
by many, Chaitin most remarkably, see [13] for a classic.

3 Other links betwen physical and algorithmic randomness may be found in the
litterature, yet the connection via ergodic theory seems new. In particular, [14]
relates algorithmic randomness to quantum indetermination, a different issue; in
Part 2 we will discuss the difference between incompleteness and indetermination
in Quantum Mechanics.
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decidability and predictability, at the core of mathematical and physical theo-
retizing. Of course, unpredictability in not in the world, it is not an ontological
matter, it concerns the relation of our forms of (mathematical) knowledge to
the world and this by the role of physical measure (our form of access to the
world). However, as we hinted, mathematics brings it within a purely theo-
retical realm, by pushing to the asymptotic limit the mathematical treatment
of the intended physical processes in space-time continua, following Birkhoff
ergodicity. And this relates, as we said, to algorithmic randomness.

Observe now that, since the beginning of the XXth century, physicists have
been discussing the immense philosophical challenge of the intrinsic indeter-
mination of Quantum Physics (again, an issue related to measure) and that, in
1935, the possible “incompleteness” of Quantum Mechanics was proposed as
a key theoretical issue, as we shall see in Part II. These internal limitations to
knowledge (physico-mathematical unpredictability, intrinsic indetermination
vs quantum incompleteness), whose understanding opened the way to two
major scientific domains, in classical and Quantum physics, were simply out
of the scope of the discussion of the two metaphysical rationalisms of Hilbert
and Gödel, in foundations.

Back to Gödel’s philosophy

Gödel’s philosophy, in our opinion, seems far away from any internal debate in
physics such as the one we will discuss in Part II (an example is given by the
mathematically remarkable, but physically unsound paper on the circularity
of relativistic time, see [23]). It escapes though trivial physicalism, as for
Theory of Mind. As Tieszen explains, Gödel argues against Turing’s claim
that mental procedures cannot carry any further than mechanical procedure,
as both mind (in the brain) and machines are both “finite state devices”. To
this, Gödel observes that mind is not static, but constantly developing. A very
modern view, as it is now clear that there are no “states” in brain/mind, but
only processes: Turing’s Machines “instantaneous descriptions” simply do not
make sense in cognition. In particular, Gödel remarks that abstract meanings
or concepts may be the result of limit procedures (to put it short: after a few
iterations, we “look at the horizon” and we construct and understand, say,
irrational numbers, projective limits, transfinite ordinals.)

In chapters 6 and 7, Tieszen further develops his close analysis of Gödel’s
path towards phenomenology. This is a rather unaccomplished path, as we
explained above and as one may deduce also from Tieszen’s many references
and comparisons. Yet, this path is very interesting, as it brings Gödel to a
clarification of the role of meaning in Arithmetic. With the help of notions
from phenomenology, Gödel derives from his incompleteness results the need
for a reference to meaning as “categorial intuition” in (arithmetic) proofs.
Thought structures or thought contents, in Gödel’s words, are the result of
insights which go beyond the combinatorial properties of symbols and require
a reflection upon the meanings involved. This is what we call the meaningful
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construction principles, as rooted in our cognitive history (from evolution
to human history); the well-ordering of integer numbers is an example (see
[32]). It is in this sense that formal proof principles are incomplete w. r. to
construction principles, see also below. As we recalled, for the late Husserl as
well, these meanings are the result of a “formation of sense” which is grounded
in our “historical spaces of humanity”.

While missing this point about the constitution of meaning and principles,
Gödel takes up another fundamental theme of phenomenology: intentionality.
In Tieszen’s interpretation, Gödel uses and understands it as directedness
towards invariants. This fundamental structure of thought allows us to un-
derstand even sense perception as a non passive but active and constitutive
first step of knowledge building: the early, pre-conceptual, singling out of in-
variants. Of course, from this perspective, Benacerraf’s dilemma or alike, to
which Tieszen refers in a highly critical way, are just part of the new scholastic
which F. Enriques had forecasted long before (“the Philosophy of Mathemat-
ics is heading towards a new scholastic: the Scylla of Ontologism and the
Charybdis of Nominalism”, he observed in 1937). As a matter of fact and well
beyond Quine’s Platonism, in particular in Set Theory (meaning as truth is
“out there”), Gödel proposes an understanding of meaning as content, that is
as a result of intentional processes. Husserl’s intentionality again allows un-
derstanding categorization, from perception to thought, and thus content as
part of meaning formation.

As we are talking of more or less naive forms of Platonism, which regained
relevance by, helas, too common interpretations of incompleteness, a reference
should be made here to Penelope Maddy’s book. Tiestzen begins by some high
praises of it and continues with . . . an extremely severe critique of any relevant
idea in that book. Tieszen explains the misunderstanding of Gödel’s refined
Platonism which is brought back to the usual flat ontology, in contrast to the
phenomenological components that Tieszen showed to contain. He insists on
the wrong “bon sens” (our words) attitude of considering that “(some) sets
are part of the physical world” and perceived by us as such, without any of
the constructed conceptual stability and invariance that is proper to mathe-
matics. This brings Maddy to an unavoidable relativism, which is rather alien,
says Tieszen, to that science. There are three eggs, three atoms and so forth
and, ho miracle, we have the mathematical “set of three” and the concept of
“three”! But mathematics is a science of structures: there is no mathematics
without structures. Set Theory originated in the logical foundations of math-
ematics and passed aside the foundation of modern physics exactly because
this refers to geometric invariants or geodetic principles (which are symmetry
invariants: they reflect a structure). Mathematics actively organises the world
and our forms of scientific knowledge, it shapes them simultaneously, since it
is grounded on invariant structures, beginning with perception: the line is not
a set of points (let alone a set of eggs), but a gestalt. It may be logically found
or reconstructed, a posteriori, as a set of points (Cantor), or even without
points, in some toposes (Lawvere, Bell, see [6]).
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Tieszen analysis continues by scholarly and stepwise demolishing Maddy’s
book (in a very gentle and motivated way, of course, though some polemic
tension may be appreciated in between the lines). One further issue should
be mentioned here; it concerns the naive attitude of confusing “bon sens”
(which is different from “common sense”) with “formation of sense”: there is
a huge gap between the two and this is called the constructed objectivity of
science. Science always goes against “bon sens”. Greek mathematics did not
begin by looking at sets of eggs, but by daring to propose non-existing lines
with no thickness and nondimensional points. Modern science began against
the “bon sens” evidence of the Sun turning around the Hearth. But even the
concept of number is a constructed and complex invariant w.r. to ordering,
organizing and “small” counting, as ancient (pre-human?) practices ([17] is a
classic about this). It is complex, as it is the result of many active experiences
of transformations and their invariants.

But then, why not to propose that the unity of consciousness (and math-
ematical meaning) is due to Quantum entanglement as global effects in the
brain? This is the question discussed in chapter 10. Personally, we are not
against occasional audacious speculations as the one proposed by Penrose in
several bestsellers and analyzed by Tieszen. However, as it is a matter of find-
ing physical phenomena in a material structure (the brain) it would be better,
at least in principle, to start from some empirical evidence. Of course, there is
none of this and Penrose’s starting point is Gödel’s incompleteness theorem.
And a few assumptions.

First, awareness is a physical action and any (classical) physical action can
be simulated computationally (in Turing’s sense); then, truth is an absolute
matter, to which we have access by awareness. So, again, in order to escape
the Scylla and Charybdis of Nominalism and Ontologism, Penrose suggests a
shortcut from microphysics to consciousness.

As for the role of Gödel’s theorem, unfortunately this is based on a mis-
understanding of the proof of it: Tieszen quotes a fine analysis of Penrose’s
mistakes made by Feferman. The result of this misunderstanding is the belief
that one can deduce from it the absolute and transcendent nature of truth.
Tieszen criticizes this point not only on the technical grounds of Feferman’s
remarks but also along the lines of his phenomenological analysis of meanings
as intentions. In short, infinity, as meaningful thought structure, constituted
along history, steps in the proof of consistency of Arithmetic. This may be
more closely understood by an analysis of recent “concrete” incompleteness
results, carried on in [32] and, more informally, in [33].

There is no place here to criticize further Penrose’s physicalism. It takes
explicitly for granted that current physical theories are complete w.r. to the
world (this was also Aristotle’s opinion): so, if a phenomenon is not classical
(relativistic) - thus computable (really? see [36]), it must be describable by
some Quantum Theory. If the founding fathers of Quantum physics had had
the same attitude, they would have searched in existing theories, Relativity
Theory, say, or in variants of (thermo-)Dynamics the solution to strange phe-
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nomena such as the energy spectrum of the hydrogen or the three bodies’
problem of the helium. They proposed instead a radically new theory.

It is interesting to see how often physicists, who in general defend non
trivial philosophies of knowledge within their discipline, when looking at life
or cognitive phenomena, just claim: this must be understood in terms of (re-
duced to) one of our theories (usually: the one I know best). Typically, when
discussing of General Relativity and Quantum Mechanics they talk of “unifi-
cation” not of reduction, as many do when referring to biology. Unification,
in contrast to reduction, means that one must be ready to invent a new the-
ory that changes radically both pertinent notions of field or even the intended
objects (String Theory) or the structure of space-time (Non Commutative Ge-
ometry). The point is that in order to “unify” one must have two robust field
theories and, in biology, we miss exactly an autonomous and proper notion
of “biological (causal) field” (this is discussed at length in [2]). There is no
use to analyse any further Penrose’s claim that all classical physical processes
are computational, since we know, for example, that even the evolution of
our planetary system is provably non computable. As a matter of fact, recent
results of unpredictability in deterministic systems [30] prove that there is
no way to compute the relative positions of all planets and the Sun in more
than ten million years. That is, the system will have a position in the con-
tinuum of space that no digital machine can compute; this a “concrete” and
difficult version of Poincaré’s theorem on non-linear Dynamical Systems and
their unpredictability, as uncomputability. It is a “concrete” result, similarly
as the famous combinatorial results by Paris and Harrington, or Friedman
version of Kruskal’s theorem, which provide concrete combinatorial example,
that is (interesting) propositions about interger numbers, that are provably
unprovable in Formal Arithmetic, see [39], [24] (and [32] for a discussion).

Of course, by this we do not pretend to exhaust the discussion on mind, as
developed also in Tieszen’s chapter on Penrose: even a sound biological theory
of brain would still be far from our symbolic culture and the phylogenetic and
historical formation of sense in our “communicating community”, which is the
place where meaning, consciousness and intentionality are formed. That is, a
purely biological theory of brain would be incomplete w.r. to cognition, as this
should be embedded in our social and historical “forms of life”: brain signs
have meaning only within a context. A contingent distinction of theories does
not imply dualism, as much as the distinction of quantum field from relativistic
one is not dualism, but a distinction of phenomenal levels. And unification is a
difficult matter. Yet, Gödel’s attitude on the matter, as explained by Tieszen,
is a traditional ontological dualism Mind vs Brain: the first has access to
(infinitary) truth and meaning, by a metaphysical ahistorical path, the second
should be less complex than our planetary system as, according to Gödel, it is
fully computational. Unfortunately, Penrose’s answer to this ordinary dualism
is highly insufficient.
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Part I.3

This part of Tieszen’s book is largely dedicated to Weyl and Poincaré’s
philosophies, with a final reflection returning to Frege and Husserl. First,
though, a very interesting understanding of Intuitionism is presented. Dum-
mett’s approach, in particular, is surveyed, with a clear presentation of his
Wittgensteinian constructivism: “meaning is use”. Unfortunately, Dummett
seems to focus only on linguistic sense of use, in a clear contraposition with the
Brouwerian orthodoxy (for Brouwer, mathematics is languageless!). In addi-
tion to language, use as action, as gestures, as (imagined) figures and drawings
as forms of presence in space and time or of human interaction contribute to
the transcendental constitution and to single out invariants by our intentional
attitude. In our phenomenogical perspective, meaning goes well beyond the
linguistic truth-conditions and brings us back again to intentionality, broadly
construed (here we would like to pause and insist, with Merleau-Ponty, that,
well before consciousness, “le mouvement et l’action sont l’intentionalite’ orig-
inaire”). Tieszen stresses another crucial point which is not captured by the
linguistic turn: the intentional grasp of meaning doesn’t need to be fully de-
terminate nor clear and exact. This allows inserting the phenomenological
theory of meaning in human contexts where communication is enriched (and
made possible) by polysemy, ambiguity, cross references . . . . Mathematics, in
our approach, singles out and is determined as the locus of maximal stability
and invariance among our conceptual constructions: no polysemy is allowed,
in principle, no ambiguity: we force a - relative - stability of meaning; this is
mathematics.

Tieszen’s analysis of Weyl’s constructivism is unfortunately limited to his
views on the foundations of mathematics. The point though is that both
Weyl’s and Poincaré’s views should not be detached from their Philosophies
of Nature, though difficult it may be to spell them out, in particular from the
overloaded and unorganised writings by Poincaré. Thus, while it is true that
in “Das Kontinuum” Weyl spends several pages in sketching a (mathemati-
cally remarkable) predicative theory of reals, however, his short “flirt” with
brouwerian intuitionism is motivated by his broader constructivist perspec-
tive that always tries to relate the foundations of mathematics to our general
“human endeavour towards knowledge”. Thus, like Brouwer, but well beyond
Brouwer’s psychological time, Weyl reflects to the continuum as space-time
structure. He distinguishes between space continua and the phenomenal time
continuum, the time we experience in consciousness. This cannot be reduced
to analytic representations by points, in his view. Tieszen gives a very clear
account of Weyl’s understanding of time (based on a “specious or extended
present”) as well as of his short lasting predicativism; yet, the presentation
makes an insufficient effort in connecting “Das Kontinuum” and the con-
temporary work in “Raum-Zeit-Materie”. Moreover, later on, Weyl invented
gauge theory, in physics, as an analysis of invariance, with a peculiar role of
symmetries. Considering the constitutive role of both these notions for the
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foundations of mathematics and physics, one should find also there the rich
perspective of Weyl’s.

An informal survey of this physico-mathematical unity may be found in
“Symmetry”, Weyl’s last book. Observe also that, while stressing the interest
of Brouwer’s free choice sequence as an approach to the continuum, Weyl, in
several places, radically disagrees with Hilbert’s formalist project as “the idea
of a potential mechanization trivializes mathematics” (in “Das Kontinumm”,
where in an early section Weyl hesitantly conjectures the incompleteness of
Arithmetic, in 1918! This should be noted more often).

Weyl’s reflections are of a rare depth in the XXth century Philosophy of
mathematics, scattered in several writings, from “Das Kontinuum” (1918) to
Weyl’s simple, but deep masterpiece that we mentioned, “Symmetry” (1952).
One can find there the key role of symmetries in the constructed objectivity
of our physico-mathematical knowledge. There is no ontological miracle nor
miracle whatsoever, but the role of mathematics as a science structuring the
world, by its very definition. One sees, in that book, the classification of planar
symmetries (by rotation, translation, reflection: the Greek insight) as the pre-
requisite for understanding that of finite groups. Other classifications, from
Platonic solids to crystals’ symmetries are then understood as conceptual,
if not technical, consequences of these regularities, which make space-time
intelligible and objective. Gauge invariance, a result of rotation/translation
symmetries, is also seen as a foundation of Relativity and Quantum Theories
(more on symmetries in the foundations of physics and mathematics may be
found in [21], [2]). In short, Weyl shows that we singled out from and imposed
on the world, also by our own bodily symmetries, a few regularities as tools for
knowledge (for understanding, organizing), of which symmetries are the core
part, and we called it “mathematics”. In some cases, this is exhaustive of our
spatio-temporal and linguistic representations: it covers them completely (by
classifications). In no way does it follow from this, however, that mathematics
can be detached from our own existence in this world and its concrete, active
representations; on the contrary, it roots mathematics in them, starting with
these resonance of symmetries, between us and the world. 4

The passage to Poincaré’s philosophy is motivated by Tieszen in the best
possible way, in our opinion, that is by the call for an epistemological or
cognitive dimension of proof. Poincaré refers to proofs by their meaning and
geometric organization (against the flat arithmetic coding by Hilbert), and
stresses the cognitive grounding of mathematical structures. Proof is the re-
alization of a mathematical expectation, it is grounded on possibly new con-
cepts, it requires a conceptual investigation, as in the contentual approach by

4 “But perhaps this question can be answered by pointing toward the essentially
historical nature of that life of the mind of which my own existence is an integral
but not autonomous part. It is ... contingency and necessity, bondage and freedom,
and it cannot be expected that a symbolic construction of the world in some final
form can ever be detached from it.” [48, p. 62]
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Martin-Löf quoted by Tieszen. The geometric intuition of the real line pre-
cedes, in Poincaré’s view, its logical foundation. In general, the analysis of
the construction of mathematical concepts and structures (the epistemology
of mathematics), which is extraneous to the formalist and logicist (Platonist)
approaches, is a matter of a “living process in which the mind remains active”:
an analysis of human cognition, thus, in our sense. And here Tieszen moves
to Husserl’s “Krisis”, a lesson for today even more than for his time: by “the
construction and mastery of formal systems, Science becomes nothing but
technique”. It loses meaning and “forgets its historical origin”. It loses also
students, a dramatic process in Western world, as, once that making physical
experiments, for example, is transformed into implementing computer simu-
lations (isn’t any classical-relativistic physical process computational?), why
should one study physics? And many claim that also understanding biology
or Cognition is only a matter of good computer models and compilers. Thus,
financing increasingly goes only to short term technical and “competitive” in-
dustrially oriented projects, possibly producing quick computational models
of whatever natural process. This is gradually killing theoretical long-term
collaborative construction of knowledge, often grounded on “negative results”
such as Gödel’s or Poincaré’s. In their time, these results were the opposite of
positive modelization. It happened though that they opened the way to major
scientific areas, the geometry of dynamical systems and computability, whose
practical fall-out are under everybody’s eyes.

The epistemological relevance of the major negative results we have been
talking about goes toghether with their technical interest and actually moti-
vated them. Tieszen’s final chapter goes back to Husserl’s philosophy in order
to single out more closely, from his early writings, the role of meaning and
intentionality as constitutive of the epistemological analysis and, in our views,
of the analysis of proofs as well (in view of the incompleteness of formalisms).
Husserl’s reflection may thus be mentioned both for the need to preserve
“meaning and sense” to the general scientific enterprise, beyond its technical
developements, and for opposing Frege’s project of eliminating intuition from
proofs (meaning would be “obtruding”, according to Frege!).

Conclusion on mathematical incompleteness

We tried to better understand incompleteness, which is usually seen just as
an incomplete covering of semantics by syntax, as the gap between proof
principles (on which formal deductions are based) and construction principles
(the locus of meaning, in the constitutive relation between mathematics and
our life world). Both principles are the result of the contingent constitution
we mentioned above, but the former are the late commers of this process and,
by principle, they forget the constitutive path. The latter instead may allow a
reconstruction of the cognitive and historical gestures that lead to them and
yield meaning.5

5 More on this may be found in [32], [2] and [33].
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This view of principles and incompleteness further specifies Husserl’s ap-
proach in mathematics and it is even more remote from Frege’s view, as he
actually believed in Peano Arithmetic’s “categoricity” (to put it in modern
terms: there is only one model, or syntax coincide wit semantics), a much
stronger property than Hilbert’s completeness. As we shall see next, the dis-
cussion on “meaning” and “interpretation”, also in relation to “completeness”,
is at the core of theoretical and foundational analysis also in physics.

Part II
Incompleteness and uncertainty: differences and similarities between

physics and mathematics

In the view of discussing some themes around the notion of incompleteness,
such as it appeared with force during the 30s, a period which saw the flourish-
ing of Gödel’s great logical theorems, and such as it started to foster debates
and arouse new perplexities in physics during the same era, we will delve here
into some concepts of quantum physics.

Firstly, and somewhat trivially, we know that in physics the accumulation
of empirical proof does not suffice to account for the totality of the theoret-
ical construction which represents phenomena. This is how, in physics and
at a very first level, is manifested the incompleteness of proof principles, as
grounded on empirical evidence, relative to construction principles. The latter
are principles of conceptual construction and are, often, limit principles. No
empirical evidence showed to Galileo that bodies never stop. Yet he dared to
propose the principle of inertia at the non-existing limit of absence of friction,
which is the only general and pertinent one (cf. [2] for more on this; chapter
4 for example, shows the constructive role of the geodesic principle).

However, this incompleteness has been thought way beyond this first and
simple level, both in classical and in quantum frames.

Completeness/incompleteness in classical theories

We first return to a conceptual comparison between the positions of Laplace
and Hilbert on the one hand and of Poincaré and Gödel on the other. The first
two refer to a sort of strict completeness of theories that are physical in one
case, and mathematical in the other: they would be complete in the sense that
any statement concerning the future would be decidable (this is the Laplacian
predictability of systems determined by a finite set of equations) or, regarding
logico-formal derivations, the completeness or decidability of arithmetics (or
of any sufficiently expressive axiomatic theory: this is Hilbert’s completeness
and decidability conjecture).

The other two demonstrate incompleteness: Poincaré, with his theorem
on the three-body problem, showed unpredictability of interesting non-linear
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systems, which we may understand as undecidability of future states. Their
dynamics will be said to be sensitive to the initial conditions, and in that,
deterministic, yet unpredictable: minor variations, possibly below the level
of observability, could cause major changes in the evolution of the system.
Gödel proved at once the unprovability of coherence and the intrinsic un-
decidability and incompleteness of arithmetics (and of all its formal exten-
sions), by constructing an undecidable statement, equivalent to the formal
assertion of consistency (which is thus also unprovable within the system).
We hinted to the epistemological and the recent technical link between the
physico-mathematical problem and the purely mathematical one. It can then
be interesting to try to characterize the main types of physical theories in
terms of this relationship to completeness.

If relativistic theories may indeed proclaim theoretical completeness in the
sense defined above, it very well appears that theories of classical dynamics
on the one hand and quantum theories on the other hand, may present two
distinct manners by which they manifest incompleteness.

In the case of chaotic dynamic systems, as we observed, unpredictability is
associated to the sensitivity to the initial conditions joint to the non-linearity,
typically, of the (formal) determination. It may however be observed that a
(theoretically) infinite precision regarding the initial data is meant to generate
a perfectly defined evolution (deterministic aspect of the system), or that a
reinitialization of the dynamic system with rigorously identical values leads to
reproducible results. Of course, this in principle and from the mathematical
viewpoint, because physically speaking, we are still within the context of an
approximation and the result of a measurement in classical and relativistic is
always, in fact, an interval and not a unique point, in spite of the supposed
mathematically continuous (space-time)background. Hence, we may notice
that an essential conceptual transition appears between that which pertains
to a finite level of approximation and that which constitutes a singularity,
at the “actual” infinite limit of precision (or, one could say, between the
unpredictable and the theoretically reproducible).

In quantum theories, contrastingly, as we shall see, be it an issue of rela-
tionships of indetermination or of non-separability, unpredictability is intrinsic
to the system, it is inherent to it. In this case, the degree of approximation
matters little: there is no conceptual break between finite and infinite, since,
as for measurement, there is no supposed continuous space-time background
(conitnuity may be found in Hilbert spaces, before measurement, but this is
a different issue). Another way to observe this consists in noticing that this
time, regardless of the rigor of the reinitialization of the system, the results
of the measurement will not necessarily be individually reproducible (proba-
bilistic character of quantum measurement), even if the law of probability of
these results can be perfectly well known.

It is randomness then which is at the center of these theories, and this
by subtle differences from classical frameworks. This point is delicate and we
refer the reader to [3].
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Incompleteness in quantum physics

In the debate on the completeness of quantum physics, Einstein, Podolsky and
Rosen (EPR) highlighted three characteristics of the physical object which
they believed to be fundamental in order to be able to speak of a complete
theory (see [20], [10]):

1. the reference to that which they called elements of reality (as existing
objects “beyond ourselves”, independently of measurement or access, say);

2. the capacity to identify a principle of causality (including in the relativist
sense);

3. the property of locality (or of separability) of physical objects.

Bell inequalities, [7], and their experimental verifications, notably by As-
pect and his team, [1], have shown that the third EPR postulate was not
corroborated: experience shows that two quantum objects having interacted
remain for certain measurements a single object, consequently non separable,
regardless of their distance in space. In other words, for two quantons having
interacted, even if they are afterwards causally separated in space, any mea-
surement of a value on the one would instantaneously determine the value of
the other, against fundamental principles of Relativity Theory.

Presented this way, the eventual incompleteness (or, conversely, complete-
ness) of quantum physics seems to have nothing to do with what is meant by
completeness or incompleteness in logic, which have been addressed above.6

However, a deeper examination reveals that what appears at first glance as a
lexical telescoping may not be completely fortuitous.

To each of these characteristics “required” by EPR in physics, one may,
indeed, without distorting the significations too much, associate characteris-
tics “required” by mathematics (recall that principles of proof correspond to
formal deductions in mathematics and to empirical “evidence” in physics):

1. elements of reality would be put into correspondence with proofs that con-
struct existence, that is, the effectiveness of mathematical constructions
(which, axiomatically or not, we have seen the difference, cause mathemat-
ical structures to exist - similarly as we construct, isolate or “point-out”
objects in physics, see 1 above);

2. the principle of causality would be put into correspondence with the ef-
fectiveness of the administration of proof (which presents and works upon
the rational sequences of demonstrations, be they stemming from formal-
ism as such or not - the deductive chain is here placed in correspondence
with the causal one in physics, see 2 above);

3. the property of locality (or of separability) would be put into correspon-
dence with the autonomy of mathematical theories and structures inas-
much as they would be “locally” decidable (or that within a formal theory,

6 By accepting, for this discussion, to use the framework of arithmetics or of set the-
ory (ZFC type) and its models, a framework within which the questions relative
to logical completeness were first raised.
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any statement or its negation would be demonstrable, see next for a rela-
tion to 3 above).

Now it is precisely this local autonomy of theories, this “locality” in terms of
decidability, which seems to be contradicted by the theorems of incompleteness
in mathematics. The latter indeed refer to a sort of globality of mathematical
theories in that one may need to use stronger principles to prove a statment in
a given theory. Techinically, recent results by Friedman show that, relatively
simple combinatorial statements of Peano Arithmetic may require increasingly
large ordinals or cardinals to be proved.7 In a sense, the “global” structure
of orders, even of the entire mathematics (if one believes that ordinals and
cardinals express the proof theoretic power in mathematics) seems to step in
the proof of local properties of the first order arithmetic. So, the adjunction of
(finetely or recursively many ) axioms to a theory doesn’t render“decidable”,
at most “more expressive” (or capable of deciding previously undecidable
statements), but at the cost of generating a new theory which requires the
same treatment itself, because, remaining formal, it would still be incomplete.
In other words, there is no way to isolate arithmetic nor any other sufficiently
expressive mathematics and deduce within it “completely”: tools from any
other branch of mathematics may be need in a proof of a statement of the
given (apparently simple) theory.

But we can probably push the analysis further than suggested by these
conceptual analogies.

In mathematics, if we refer to the interpretation of Gödelian incomplete-
ness in terms of discrepancy between construction principles (structural and
significant) and proof principles (formal) that is, in terms of incomplete cov-
ering, between semantics and syntax (all achievable propositions are not
formally derivable, or, more traditionally: semantics exceeds syntax), then
a closer relationship may be established. This relationship concerns, among
other things, the introduction and the plurivocity of the term interpretation,
according to whether it is used in a context of model theory or if it is taken
in its common physical sense. In model theory, the excess of semantics (con-
struction principles) with regard to syntax (proof principles) is first mani-
fested in distinct interpretations (existence of non-isomorphic models, that is,
non-categoricity) of a same syntax (for example, the non-standard model of
Peano’s arithmetic, cf. above). Gödelian incompleteness furthermore demon-
strates that some of these models realize different properties (technically, they
are elementarely non-equivalent).

In physics, if we accept to see the equivalent of syntax in the mathemat-
ical structure of quantum mechanics and the equivalent of semantics in their
proposed conceptual-theoretical interpretations (hidden-variable theories, for
example, see below), then the “semantics” would also exceed “syntax” and,
consequently, a certain form of incompleteness (in this sense) would be man-

7 See http://www.math.ohio-state.edu/users/friedman/
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ifest.8 But more profoundly, in the case of quantum physics, it is the excess
of the “possible”, the quantum states in a Hilbert space, over the “actual”,
once states are measured, which best illustrates this type of parallelism and
of comparison. In other words, the result of a measurement corresponds to a
plurality of potential states leading to it, each with its well defined probability.
A sort of non-categoricity of the states (non-isomorphic, even if they belong
to the same system) relatively to the well defined result of the measurement.
The latter operates here like a sort of “axiomatic” constraint in that it stems,
as we have seen, from the physical principles of proof, which are empirical
(empirical proofs are “constraint” by physical measure).

The concept of incompleteness was then understood by EPR in the sense
that quantum physics should be deterministic in its core and that its proba-
bilistic manifestations would only be due to the lack of knowledge of “hidden
variables” and of their behaviors. This actually amounts to saying “there are
hidden causal relationships between particles that are not described by the
theory”. Now, the EPR argument is experimentally contradicted by the viola-
tion of the Bell inequalities and the fact that the property of non-separability
is indeed inherent to quantum physics. In this sense quantum theory has been
shown to be complete (there are no hidden variables).

Can we nevertheless speak of incompleteness in a sense different than that
of EPR without however it being totally extraneous? In other words, would
it be possible to formulate a proposition that is undecidable in the sense that
it would be true according to one model and false according to another? Let’s
consider the crucial statement which can be attributed to EPR: “there are
hidden variables”. As we have just seen, this statement is false according to
the usual model (standard interpretation) of quantum mechanics. Yet a theory
presenting the same properties as quantum mechanics can be constructed, in
which this statement is true on condition that an adjective is added: “there
are non-local hidden variables”.9

8 If we want to continue with the analogy and in parallel with Logic, we will also
notice that this search for hidden variables, which prove to be non-local, evokes
in a way the method of forcing, which enabled Cohen to demonstrate the inde-
pendence in ZFC of the Continuum Hypothesis and of the Axiom of Choice (by
constructing a model not realizing them, whereas Gödel had constructed a model
that does, see [28]). The hidden variables in question are indeed “forcing” for the
physical model they nevertheless continue to respect. This is somewhat analo-
gous, conceptually speaking, to the logical situation where forcing propositions
are compatibly integrated with the original axiomatic construction: one adds or
forces extending variables or properties, previously “hidden” or not assumed.

9 “Local variables” is an expression which is also equivalent to “variables attached
to particles” (they depend only on properties specific to a given particle each:
this is locality). To speak then of non-local variables is to express the fact that
the value of a variable which governs the behavior of a particle may not only
depend on this particle, but may also depend on (remote) other particles. This
is also another way to consider the non-separability we have just mentioned.
As a matter of fact, the distinction (separability) between two particles having
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Incompleteness vs indetermination

Sometimes, confusion is set in between the concept of incompleteness (as pre-
sented by EPR) and that of indetermination (as highlighted by Heisenberg).
So let’s try to further explain how are the relationships between incomplete-
ness and indetermination, which do not cover the same conceptual construc-
tions.

The issue of incompleteness such as raised by EPR leads, we have seen, to
the search for “hidden variables” which would “explain” the counter-intuitive
behavior of quantum phenomena. As we observed, it is possible to elabo-
rate hidden-variable theories, but these variables are themselves non-local,
therefore simply postponing the intuitive difficulties. In this regard, it is bet-
ter to preserve the canonical version of quantum physics, the Bell inequali-
ties and the experiments by Aspect which highlight the property of quantum
non-separability (that for two separated quantons, which have previously in-
teracted, measurement on one would determine the value of the other). By
highlighting the fact that one of the origins of this situation stems from the
use of complex numbers (in state vectors or wave function) as additive quan-
tities (principle of superposition), whereas that which is measured is a real
number and refers to the squares of the modules of these quantities. We will
return to this in a moment.

Quantum indetermination (“the uncertainty principle”), for its part, mo-
bilizes somewhat different concepts: it consists in the treatment of explicit
variables (non-hidden), such as positions and momentums, of which the as-
sociated operators will present a character of noncommutativity (measuring
first one observable, then the other does not commute: a fundamental property
which will lead moreover to the development of non-commutative geometry,
the current insight into the space of microphysics). It is in fact an issue of the
constraints which weigh the Plank constant (small but non-null) upon physical
measurement, precluding simultaneous measurement with an “infinite” pre-
cision of two conjugated magnitudes such as positions and the corresponding
momentums, which we have just mentioned.

If we wanted to roughly distinguish the two types of conceptual ambiguity
introduced by these quantum properties with regard to habitual intuition, we
would say that incompleteness refers rather to an ambiguity of object (is the
object local or global? How is it that according to the nature of the experi-

interacted is a representation that stems directly from classical physics, be it
relativistic. For its part, quantum physics proves to be fundamentally non-local,
that is to contain entangled (non-separable) quanta. Thus, a type of valid propo-
sition in an interpretation (no hidden variables and non-separability) can be false
in another (existence of hidden variables, but by specifying non-local variables).
In fact, more broadly, the controversy first initiated by L. de Broglie continues
among some physicists, currently a small minority, with regards to the character
of causal determination, which would be classical but hidden, undescribed by the
theory: an incompleteness of quantum physics.
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ment it appears to manifest either as a particle or a wave?10). Indetermination
instead leads to an ambiguity of the “state” of the system: a quantum object
of which we know the precise position would be affected by an imprecise
velocity; conversely, the precise knowledge of a velocity would entail an “in-
determinacy” regarding the position occupied. In a purely mathematical way,
a quantum object which we would manage to “stop” would occupy all space.

In fact, both versions of these quantum specificities refer to a difficulty of
describing quantum phenomena “classically” within time and space of classical
or relativistic theories, while their description within their own “abstract”
spaces (a Hilbert space, for instance) is perfectly clear.11

Regarding space, we will note several traits which make of our usual intu-
ition of space (and even of the Riemannian manifold of general relativity) an
instrument which is unadapted to properly represent quantum phenomenal-
ity:12

i) Firstly, as we have indicated above, quantum quantities are defined at
the onset on the field of complex numbers C, as opposed to classical and
relativistic quantities which are defined at the onset of the field of real
numbers R. It stems from this that in quantum physics, what is added
(principle of superposition) is not what is measured (complex amplitudes
are added - as vectors, their square norms are measured - as real numbers).
At the same time and for the same reason, quantum objects so defined
(wave function or state vector, for example) are no longer endowed with
the “natural” order structure associated to real numbers (a total order).

ii) Then, as we have seen, the definition of the observables makes it so that
some among them (corresponding to the conjugated magnitudes) are not
commutable, as opposed to the classical case. This, in the context of the
geometrization of this physics, necessitates the introduction of a geometry
that is itself non-commutative, thus breaking, as we said, with all previous
traditions [16].

iii) Finally, the enquiry may lead even further, with regard to the relationships
between quantum phenomenality and the nature of our usual geometric

10 Situations with regard to which Bohr was lead very early on to introduce the
concept of complementarity (in the sense of a complementarity specific to the
quantum object, which could manifest itself, according to the type of measure-
ment performed, either as particle or as a wave), which was the object of many
controversies.

11 These differences between the notions of incompleteness, as meant by EPR, and
of indetermination make our conceptual analysis concerning incompleteness, from
Gödel to EPR, very different from the technical correlation, à la Chaitin, beween
Gödel’s theorem and quantum indetermination in [14].

12 For example, with inseparability, everything seems to occur as if an event locally
well defined in the state space of the definition of quantum magnitudes - an
Hilbert space typically, was to potentially project itself upon two distinct points
in our usual state space.
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space. May the latter be Newtonian or Riemannian, it will admit a rep-
resentation as a set of points and its continuum stems from an indefinite
divisibility. Now given the existence of a scale of length (possibly mini-
mal, cf. [38]) such as the Plank length, recent string theories lead to ask
if in fact this space would not escape a description in terms of punctual
elementarity (eventually to the benefit of another, in terms of interval
elementarity,13 or in terms of higher dimensionality such as “branes”).

It should be clear that these specific issues lead to a conceptual revolution
in our relating to physical space, at least the space of microphysics. The key
idea is that geometry, as a human construction, as we stressed in part, is the
consequence of the way we access to space, possibly by measure. So Euclid
started by accessing, measuring, with rule and compass. Riemann analyzed,
more generally, the rigid body (and characterized the spaces where this tool
for measure is preserved: those of constant curbature). Finally, todays non-
commutative geometry, in Connes’ approach, begins by reconstructing space
by quantum measure. In microphysics, this happens to be noncommutative
(measure this and, later, that, is not equivalent to measuring that and, later,
this). And this takes us very far from the space of senses or even classi-
cal/relativistic spaces. In conclusion, measure, by rule and compass, by the
rigid body, or quantum measure is the form of access we have to space and
events in it. This access may differ, yet it may provide a geometric way to a
novel unity, by explaining first how to pass from one mathematical organiza-
tion/understanding of space to another.

Constitutions of objectivity. Conceptual comparisons
between mathematics and physics

We will now try to understand some aspects of the contingent constitution
of mathematical idealities, in analogy to some physical processes, the phase
transitions.

“Actual infinity”, once conceptually constructed by constitutive intersub-
jectivity, is not only conducive to imagining the idea of God (and theology)
or, like Giordano Bruno, the infinity of worlds. It is, on one side, a mathe-
matical concept, and on the other it is involved in the process of constitution
of the mathematical objects themselves (both finitary and infinitary). The
idea is that mathematical objects are “substantially” (if we may say so) a
concentrate of actual infinity brought into play by human beings, within their
symbolic culture. Let’s explain and argue.

The transcendental constitution of mathematical objectivities (from the
finitary ones which are the triangle or the circle, to the structures of well
13 We would then maybe pass from a Cantorian representation of continuity to a

representation by interval interlockings such as proposed by Veronese or to the
nil-potent infinitesimals, see [6].
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order, or even to the categories of finite objects of which we have spoken) ac-
tually involves a very fundamental change of level : the process of abstraction
of acts of experience and of the associated constructions (see Part I) leads
to this transition, which constitutes the forms thus produced, into abstract
structures as eidetic objects. This transition (which also leads to their con-
ditions of possibility) presents all the characteristics we ascribe to “physical
criticality” (the theory of “critical phase transitions”, [8], [29]). Notably, this
describes the passage from the local (such or such empirical form) to the
global (the structure which is defined abstractly and which is to be found in
all particular manifestations), as well as the passage from a certain (“sub-
jectivizing”) heteronomy to an autonomy (objectivity), and from a certain
instability (circumstantial) to a stability (a-evential). For example, even Eu-
clid’s passage from the empirical practice of lines, in measuring “geo”, to the
concept of thickless line or o dimensionless point, is a conceptual transition,
which may be better specified, in our view, in analogy to the critical ones in
physics. It is namely these constituted characteristics, resulting from a sort
of passage to the effective infinite limit as process of constitution, which lead
to mathematical platonic thinking. The latter though, as much as the formal
axiomatic approach, forgets the constitutive process itself.

The examples we can use to try to account for this conceptual transition,
which leads to the constitution of new objectivities, are varied. In mathemat-
ics, we recall the example of the sum of rational numbers (1/n!, for example)
which gives, at the actual infinite limit, a transcendental number (e, in this
case). This may be seen as a critical transition, or “space transition”, which
leads from one field (the rationals, Q) into another one encompassing it (the
reals, R). In physics, we may find an equivalent in a change of phase, associated
to the divergence of an intensive magnitude of the system (a susceptibility,
for example, which formally is considered to go to infinity) and to the passage
from local to global (divergence of the correlation length of interactions). In
biology, it would be a case of a change in the level of functional integration
and regulation (the organism in relation to its constituents, for example).

If mathematical structures are also the result of the search for the most
stable invariants, as is conceptually characterized in the preceding, it is then
probably due, at least in part, to this process of constitution mobilizing a form
of actual infinity and leading to a sort of stable autonomy, at the limit. Let’s
continue with the physical metaphor of phase changes. A phase transition
can be manifested for instance in a symmetry breaking of the system and
a concomitant change (sudden or more progressive) of an order parameter
(the total magnetic moment for a para-ferromagnetic transition, density for a
liquid/solid transition). In fact, the phase transition is, in a way or another,
a transition between disorder (relative) and order (also relative). If we keep
these characteristics in mind and make them into a conceptual trait that
is common to the transcendental constitution of mathematical objectivities,
we will readily notice the disordered situation with regards to the often un-
coordinated collection of “empirical” mathematical beings, and the ordered
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situation in mathematical objects and structures as such, as resulting from
the process of abstraction and of constitution.

So it is easily conceivable why the axiomatization, or even the logicization
of the statements characterizing these mathematical structures, are geneti-
cally and in some respects conceptually second relatively to the mathemati-
cal activity and to the process of constitution itself, as we emphasize in the
first part of this paper. In our view, here are the roots of the mathematical
incompleteness of formalisms. Indeed, the formal statements describe order
consecutively to the “phase transition” we have just invoked. But mathemat-
ical thinking concerns as much the process of transition as the putting into
form and description of its result. And to go even further, we could almost
say that the evacuation of the “contingent disorder” accompanying transition-
constitution corresponds to the evacuation of the “significations” associated
to the structures over the course of their elaboration and to the “infinitary
involvement” it presupposes. This is why the purely logico-formal foundations
lead to pure syntaxes devoid of meaning and intrinsically incomplete.

It is probably also one of the reasons enabling to understand why formalism
“works” when it is an issue of describing the order resulting from the transition
in question (the constituted mathematical structures), but that it fails from
the moment it is given the task of also describing the transition itself, that
is, the process of constitution as such, from and in the terms of its result.
In fact, one may consider that formalism fails to capture “actual infinity”
that enabled the passage and which has become a major characteristic of the
objectivities thus constructed. In this sense, the “semantic” aspect is the most
deeply involved in the occurrence of this effective passage to the infinite limit,
whereas the syntactic aspect is much more relative to the rigorous, possibly
axiomatic, description of the once stabilized results of this passage. We insist
that it is the non-coincidence of these two dimensions that is at the origin of
the properties of incompleteness, that we saw as a discrepancy or gap between
construction principles (conceptual) and proof principles (formal), of which
we speak in part I. The results of incompleteness are a demonstration of these
lackings.

So here ends, in our view, the proposed conceptual analogy with phase
transitions in physics because we know that in physics, as we have recalled
earlier, renormalization theory proves itself in a way to be able to address the
critical transition itself. This difference in behavior relatively to the processes
put into play is to be referred to the difference between the objects considered
themselves, such as they are elaborated in physics and in mathematics: if the
construction principles are similar, as we have shown in [2] and hinted here,
the proof principles are completely different (empirical vs formal), and it is
indeed regarding the status of the proof that the difference is manifest.

It is probably what transpires in this dichotomy introduced in [2] relatively
to elementarity. As a matter of fact, we opposed the elementary and simple
(related to the artificial processes of algorithmic calculus, to the concatena-
tion of simple logical gates, or even to any artifact) to the elementary and



Phenomenology of Incompleteness 269

complex (related to natural processes such as strings in quantum physics or
cells in biology). Quantum physics and biology address natural phenomena
that are confronted to elementarities that are rather complex and hence they
seem irreducible to processes grounded on simple elementarities, in the sense
of artificial computation and general artefacts. Besides the role of meaning
in deduction (a role stressed by “concrete” incompleteness in particular, see
[32]), this further prevents from reducing scientific judgment to a calculus,
in this sense, without denying, of course, the interest of the complementary
understanding provided by the formal and computational descriptions.

Conclusion

Let’s conclude this paper by stressing the perspective that guided our work.
In our views, the epistemological investigation of mathematics cannot be de-
tached from a constitutive analysis of concepts and structures (and thus of
the very object of knowledge) in other scientific disciplines, such as physics.
This is the project that, in a very preliminary and modest fashion, but along
the same phenomenological approach, we try to pursue in several papers and
in [2], an extension, within a scientific project, of some of the ideas we hinted
here. The analogies and differences in the “phenomenology of incompleteness”
is a fundamental part of it. We believe that further work should lead to an
analysis of this phenomenon in other disciplines (see [35] for some reflections
on a form of causal incompleteness in biology).
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2. F. Bailly and G. Longo: Mathématiques et sciences de la nature. La singularité
physique du vivant (Hermann, Paris 2006). (English introduction, download-
able)

3. F. Bailly and G. Longo: Randomness and Determination in the interplay be-
tween the Continuum and the Discrete. Mathematical Structures in Computer
Science 17, 2 (2007)

4. H. Barreau and J. Harthong (eds): La mathmatique non standard (Ed. CNRS
1989)
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Journal of Theoretical Physics 44, 7 (2005) pp 1053-1065
15. P. Collins: Continuity and computability of reachable sets. Theoretical Com-

puter Science 341 (2005)
16. A. Connes: A. Non-commutative Geometry (Academic Press, New York 1994)
17. S. Dehaene: The Number Sens (Oxford Univ. Press, Oxford 1997)
18. R. L. Devaney: An introduction to Chaotic Dynamical Systems (Addison-

Wesley, Reading 1989)
19. F. Diacu: Singularities of the N-Body Problem (Publications CRM, Montreal

1992)
20. A. Einstein, B. Podolsky and N. Rosen: Can Quantum-Mechanical Description

of Physical Reality be Considered complete? Phys. Rev. 41 (1935) p 777
21. B. van Fraassen: Lois et symetries (Vrin, Paris 1994)
22. G. Frege: The Foundations of Arithmetic (1884) (Evanston 1980)
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