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Quantum tunneling of the magnetization in magnetic molecules (MM) with
high spin value is a fascinating subject which contrasts clean and accurate ex-
perimental data with sophisticated theoretical models. At the heart of these
models stands the Landau [1] and Zener [2] (LZ) derivation of quantum tun-
neling between levels, which at resonance have a tunnel splitting Δ, but are
brought in to and out off resonance by a time-dependent field. This theory
predicts transition probabilities, however, it has not been able to account for
the size of the magnetization jumps in molecular magnets. In fact, the dis-
crepancy between Δ deduced from LZ experiments [3] and the one calculated
from spectroscopic data is more than three orders of magnitudes [4]. In these
circumstances it might be essential to analyze experiments using a broader LZ
theory which includes stochastic fluctuations produced by the environment.
Such a theory was developed by Shimshoni and Stern (SS) [5]. The SS theory
takes into account the dephasing effect due to stochastic field fluctuations.
Combining this theory with measurements of dephasing times for MM could
lead to a revision in tunnel splitting calculations. But, as far as we know, there
are no estimates for dephasing time of MM. The purpose of the present work
is to highlight the importance of dephasing in tunneling experiments and to
measure the dephasing time.

First we revisit the SS theory, limiting the discussion to the parameter
range relevant to MM. This will be done in a tutorial manner in the hope
that even a non experienced reader will be able to follow the calculations. In
order to produce a formula we assume, as did SS, a weak-coupling between
the spins and the environment, in a sense that will be defined below. We show
how ignoring dephasing time can lead to erroneous estimates of Δ. Second
we review muon spin relaxation experiment on isotropic (Δ = 0) MM with
varying spin values. These experiments provide information on the source
of dephasing and an estimate of dephasing times. In light of our finding we
recognize that weak-coupling is not the correct assumption for MM. Therefore,
we set the stage for further theoretical developments.
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1 Landau-Zener model in the presence of stochastic field
fluctuations

We use the simplest Hamiltonian appropriate for the Landau-Zener problem.
It is the Hamiltonian of a spin 1/2 which has a resonance tunnel splitting
Δ at t = 0, and a time-dependent magnetic field αt in the z direction. The
Hamiltonian is given by

H0 = αtSz +ΔSx (1)

where Sz = σz/2, Sx = σx/2, and the σs are the Pauli matrixes. The
Schrödinger equation could be written in a dimensionless form as

i
tT
tZ

∂

∂y
|n〉 = (ySz + Sx) |n〉 (2)

where
tz = Δ/α (3)

is the Zener time [2],
tT = h̄/Δ (4)

is the tunneling time and
y = t/tz (5)

is dimensionless time.
Let us define the states |+〉 = [1, 0] and |−〉 = [0, 1]. We are interested in

the LZ probability that a spin prepared at time t = −∞ in the low energy
state |+〉 will be in the high energy state at t = ∞ which is again the |+〉
state. For this purpose we have to calculate the matrix element CLZ

CLZ = 〈+|U |+〉

where U is the time propagator operator. If the Hamiltonian had been time
independent this operator would have been

exp(−iH0t/h̄). (6)

But it does depend on time and a more complicated and approximated ex-
pression for U will be given soon. The probability of changing energy states
is given by

PLZ = |CLZ |2 .
Sometimes a different definition for PLZ is used where it is the probability
of flipping energy states. In this case the spin stays in the low energy state
throughout the field sweep. However, the two definitions sum up to 1 and
extracting one from the other is trivial.

In the standard LZ model practically no transitions are taking place at
very negative or very positive times. The transitions essentially take place
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within the Zener time scale tz around t = 0. This is demonstrated in Fig. 1(a)
which is a numerical solution of Eq. 2 taken from Ref. [6] as a function of
time for three different values tZ/tT . Clearly most of the action is happening
within tz. The asymptotic case t = ∞ can be solved analytically [1, 2] and

PLZ = exp
(
−πΔ

2

2h̄α

)
= exp

(
−πtZ

2tT

)
. (7)

However, the solution involves reducing Eq. 2 to the Weber equation, which
is not very well known in physics, and do not provide grate insight to the
problem. We will take an approximation approach based on the SS theory.

The SS formulation of the problem gives a result similar to Eq. 7 and
provides a natural platform for adding a fluctuating field. The solution starts
by finding the instantaneous eigenstates and eigenvalues of the Hamiltonian
in Eq. 1. These are

|σ+(t)〉 =
√

2

2
√
Δ2 + α2t2 + αt

√
Δ2 + α2t2

[αt+
√
Δ2 + α2t2,Δ] (8)

with the eigenvalue

E+ = +
1
2

√
Δ2 + α2t2 (9)

and

|σ−(t)〉 =
Δ
√

2

2
√
Δ2 + α2t2 − αt

√
Δ2 + α2t2

[αt−
√
Δ2 + α2t2,Δ] (10)

with the eigenvalue

E− = −1
2

√
Δ2 + α2t2. (11)

They are named according to their instantaneous energy. The two energy
levels, normalized by Δ, are presented in Fig. 1(b) as a function of y (see
Eq. 5) by the solid lines. We expect the instantaneous states and energies to
be a useful concept in the adiabatic limit, namely, when the sweep rate is
small. Looking at Eqs. 2 and 3 this means

tT
tZ

< 1. (12)

At t→ −∞ we find that

|σ−(−∞)〉 = |+〉

and at t→ ∞
|σ+(∞)〉 = |+〉 ,

so that we need to calculate
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Fig. 1. (a) Landau-Zener transition probability as a function of normalized time
reproduced from Ref. [6] for three values of tZ/tT : 0.05 (top), 0.4 (middle) and
5 (bottom). (b) Solid lines show the instantaneous energy levels as a function of
normalized time in the Landau-Zener problem. Dashed lines are a schematic repre-
sentation of the paths the spin can take when tunneling from the low energy state
to the high energy state at times tj = yjtZ . The transition amplitude is a sum of all
paths with the appropriate matrix element as given by Eq. 16.

CLZ = 〈σ+(∞)|U |σ−(−∞)〉 .

To actually perform this calculation we divide the time into small segments
and assume that we are allowed to use Eq. 6 (with h̄ = 1) in each segment,
so that

U =
∞∏

j=1

e−iH0(tj)δt. (13)

We also define the identity operator for each point in time

Ij = |σ+(tj)〉 〈σ+(tj)| + |σ−(tj)〉 〈σ−(tj)| . (14)

We are now in position to perform the calculation. We do it by inserting this
identity between every two exponents in Eq. 13. For example, let’s divide the
time between the initial time ti and the final time tf = ti + 2δt into two
segment by introducing t1 in between. In this case
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CLZ = 〈σ+(tf )| e−iH0(t1)δt |σ−(ti)〉 (15)

and inserting Eq. 14 gives

CLZ = 〈σ+(tf )| [|σ+(t1)〉 〈σ+(t1)| + |σ−(t1)〉 〈σ−(t1)|] e−iH0(t1)δt |σ−(ti)〉 .

Acting with the Hamiltonian backwards leavs

CLZ = 〈σ+(tf )|σ+(t1)〉 〈σ+(t1)|σ−(ti)〉 e−iE+(t1)δt

+ 〈σ+(tf )|σ−(t1)〉 〈σ−(t1)|σ−(ti)〉 e−iE−(t1)δt.

We evaluate the bracket products to the lowest order in δt. For this purpose
we approximate |σ−(t1)〉 using the time derivative∣∣σ′

−
〉

=
d

dt
|σ−(t)〉

at the later time segment so that

〈σ+(tf )|σ−(t1)〉 ≈ −
〈
σ+(tf )|σ′

−(tf )
〉
δt

and
〈σ+(t1)|σ−(ti)〉 ≈ −

〈
σ+(t1)|σ′

−(t1)
〉
δt

since 〈σ+(t)|σ−(t)〉 = 0. Similarly, to the lowest order in δt

〈σ−(t1)|σ−(ti)〉 = 〈σ+(tf )|σ+(t1)〉 ≈ 1.

Using these approximations in Eq. 15 gives

CLZ = −
〈
σ+(tf )|σ′

−(tf )
〉
δte−iE−(t1)δt −

〈
σ+(t1)|σ′

−(t1)
〉
δte−iE+(t1)δt.

Now let’s repeat the same exercise by dividing the time into three segments
and introducing t1 and t2 in between ti and tf so that

CLZ = 〈σ+(tf )| e−iH0(t2)δte−iH0(t1)δt |σ−(ti)〉 .

Again, inserting Eq. 14 behind the exponents gives

CLZ = 〈σ+(tf )| [|σ+(t2)〉 〈σ+(t2)| + |σ−(t2)〉 〈σ−(t2)|] e−iH0(t2)δt

× [|σ+(t1)〉 〈σ+(t1)| + |σ−(t1)〉 〈σ−(t1)|] e−iH0(t1)δt |σ−(ti)〉 .
We look for cases where there is only one transition, since every transition
introduces a factor δt. We also apply the Hamiltonians backwards and get

CLZ = 〈σ+(tf )|σ+(t2)〉 〈σ+(t2)|σ+(t1)〉 〈σ+(t1)|σ−(ti)〉 e−iE+(t2)δte−iE+(t1)δt

+ 〈σ+(tf )|σ+(t2)〉 〈σ+(t2)|σ−(t1)〉 〈σ−(t1)|σ−(ti)〉 e−iE+(t2)δte−iE−(t1)δt
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+ 〈σ+(tf )|σ−(t2)〉 〈σ−(t2)|σ−(t1)〉 〈σ−(t1)|σ−(ti)〉 e−iE−(t2)δte−iE−(t1)δt

Using the same rules as before we find

CLZ = −
〈
σ+(t1)|σ′

−(t1)
〉
δte−iE+(t2)δte−iE+(t1)δt

−
〈
σ+(t2)|σ′

−(t2)
〉
δte−iE+(t2)δte−iE−(t1)δt

−
〈
σ+(tf )|σ′

−(tf )
〉
δte−iE−(t2)δte−iE−(t1)δt.

This expression has a graphical representation depicted in Fig. 1(b). Tran-
sitions are occurring at some time t. We take the exponent of −iδt times the
sum of the low energies at the tjs [E−(tj)] until the transition. From the
transition onward we do the same thing using the high energy [E+(tj)] un-
til the final time tf . The exponential factor per transition is multiplied by〈
σ+(t)|σ′

−(t)
〉

at the time of the transition. Finally, we sum all contributions.
If we divide the time into an infinite number of segments and substitute

ti → −∞ and tf → ∞, we will find that

CLZ = −
∞∫

−∞
dt′

〈
σ+(t′)|σ′

−(t′)
〉
e−i

∫ ∞
t′ E+(τ)dτ−i

∫ t′
−∞ E−(τ)dτ (16)

where t′ now represents the time at which a transition is taking place. Next
using Eqs. 9 and 11 we replace E−(τ) by −E+(τ). To this we add zero in the
form of

i

∫ t′

−∞
E+(τ)dτ + i

∫ ∞

t′
E+(τ)dτ − i

∫ ∞

−∞
E+(τ)dτ

which leads to

−i
∫ ∞

t′
E+(τ)dτ − i

∫ t′

−∞
E−(τ)dτ = 2i

∫ t′

−∞
E+(τ)dτ − i

∫ ∞

−∞
E+(τ)dτ.

We give the following name

A(t′) =
〈
σ+(t′)|σ′

−(t′)
〉

and find using Eqs. 10 and 8 that

A(t′) =
Δα

2(Δ2 + (αt′)2)
. (17)

Similarly we name

φ(t′) = 2
∫ t′

−∞
E+(τ)dτ =

∫ t′

−∞

√
Δ2 + (ατ)2dτ. (18)

Thus
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CLZ = −e−iφ(∞)/2

∞∫
−∞

dt′A(t′)eiφ(t′). (19)

In the adiabatic limit (Eq. 12) this integral can be solved using a saddle
point approximation [7] as we demonstrate now. Since we are going to take
the absolute value of CLZ we can ignore all multiplying phases and express
the integral in dimensionless form

DLZ =
1
2

∞∫
−∞

dy
1

1 + y2
e

i
tZ
tT

w(y) (20)

where
w(y) =

∫ y

0

√
1 + x2dx.

There are no poles between the real axis and an axis running parallel to
it through, but avoiding from below, the point i. We therefore perform the
integral along this new axis. We need to find yc where w(y) is stationary by
taking

w′ ≡ dw(y)
dy

=
√

1 + y2 = 0 (21)

which gives yc = ±i. We expand w(y) around yc using small values of x so
that

w(y) = wc +
∫ y−yc

0

√
1 + (x+ yc)2dx � wc +

√
2yc

2
3
(y − yc)3/2 (22)

where
wc =

∫ yc

0

√
1 + x2dx = ±iπ/4.

The integral of Eq. 20 is done by changing variables dw = w′dy and using
Eq. 21

DLZ =
1
2

∞∫
−∞

dw

w′(1 + y2)
e

i
tZ
tT

w =
1
2

∞∫
−∞

dw

(w′)3
e

i
tZ
tT

w
.

From Eqs. 22 and 21

(w′)3 = (2yc)
3/2 (y − yc)3/2 = 3yc (w − wc)

so that finally, by closing the path of integration in the upper part of the
complex plane, we get

DLZ =
1

6yc

∞∫
−∞

dw

(w − wc)
e

i
tZ
tT

φ =
πi

3yc
e
−πtZ

4tT
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yielding

PLZ =
(π

3

)2

exp
(
−πΔ

2

2h̄α

)
.

This is only slightly different from the exact result in Eq. 7.
The calculation using the SS formalism clearly shows that PLZ is a con-

sequence of interference of different paths. If instead of summing transition
amplitude we would sum transition probabilities |A(t′)|2 using discretization
of time based on the uncertainty principle h̄/ |2E+(t′)| we would find

1
4

∞∫
−∞

|A(t′)|2 h̄

2E+(t′)
dt′ =

35πh̄α
1024Δ2

which is very different from PLZ .
Now let’s introduce dephasing. The starting point is the LZ transition

probability obtained by taking the absolute value of Eq. 19

PLZ = |CLZ |2 =

∞∫
−∞

dt1

∞∫
−∞

dt2A(t1)A(t2)ei[φ(t1)−φ(t2)].

We consider the simplest case where a fluctuating field fluctuates in the z
direction, namely, the Hamiltonian is

H = [αt+ 2B(t)]Sz +ΔSx

where B(t) is a stochastic field. We include μB in the definition of B. This
is equivalent to introducing noise to the sweep rate α which will affect both
A(t′) and φ(t′). The effect on A(t′) involves energy non-conserving transitions
between states, which is equivalent to T1 processes. The effect on φ(t′) involves
dephasing similar to T2. Usually T2 is shorter than T1 so we will concentrate
on the stronger effect. In other words we ignore the effect of B on the A(t′)
and simply consider its impact on the phases. We now have to average PLZ

over different realizations of the noise B(t). We rename this stochastic LZ
transition probability as SS probability and write

〈PSS〉 =

∞∫
−∞

dt1

∞∫
−∞

dt2A(t1)A(t2)
〈
ei[φ(t1)−φ(t2)]

〉
. (23)

As a result of the fluctuations in B the phase φ will have an average part
〈φ(t)〉 which is not random and given by Eq. 18, and a part δφ which is
different for different realizations of B, therefore,〈

ei[φ(t1)+δφ(t1)−φ(t2)−δφ(t2)]
〉

= ei[〈φ(t1)〉−〈φ(t2)〉]
〈
ei[δφ(t1)−δφ(t2)]

〉
.

We assume that 〈exp(i[δφ(t1) − δφ(t2)])〉 is a function of t1− t2 and introduce
a phenomenological dephasing time τφ which is defined as
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ei[δφ(t1)−δφ(t2)]

〉
� e−|t1−t2|/τφ . (24)

SS related τφ to the dynamic properties of B(t). We will not give this deriva-
tion here and simply mention that if

〈B(t)B(0)〉 = B2 exp(−νt) (25)

then
1
τφ

=
B2

h̄2ν
. (26)

For the dynamic fluctuations to be interesting the field must fluctuate several
times before the tunneling process is over, therefore the interesting case is the
fast fluctuation limit

νtZ > 1. (27)

The important point to carry to the next section is that the environment
alone determines the dephasing time. If we can determine the dephasing time
for one kind of molecule in a given environment, and if we believe the en-
vironment does not change between different molecules, then we know the
dephasing time for other molecules.

Inserting Eqs. 17, 18 and 24 into 23 we find

〈PSS〉 =
1
4

∞∫
−∞

du

∞∫
−∞

ds
1

1 + u2

1
1 + s2

exp
(
i
tZ
tT

∫ u

s

√
1 + v2dv

)
exp

(
−|u− s|

uφ

)
(28)

where
uφ = τφ/tZ .

Evaluation of this integral is not simple. To date SS have done this analytically
for weak dephasing only where the dephasing time τφ is long compared to the
resonance tunneling time tT given in Eq. 4. In this case we have

tT
τφ

=
B2

Δh̄ν
< 1. (29)

Since this case means that B is small, it is named the weak-coupling limit.
Another requirement for analytic evaluation of the integral is that the dephas-
ing is taking place within the Zener time, namely, τφ/tZ < 1. One can call
this requirement long LZ time, and it is expressed as

τφ
tZ

=
h̄2να

B2Δ
< 1. (30)

Put in other words, analytical evaluation of Eq. 28 is provided only for the
time scales order

tZ > τφ > tT . (31)
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In the adiabatic (Eq. 12), fast fluctuation (Eq. 27), weak coupling (Eq. 29),
and long LZ time (Eq. 30) limits, the integral in Eq. 28 can be evaluated [5];
the answer is

〈PSS〉 �
τφα

Δ

(
e

2Δ
ατφ PLZ +

{
h̄

Δτφ

}2
)
. (32)

It is clear from this expression that for a proper evaluation of Δ from a tunnel-
ing experiment τφ must be determined. If one insists on fitting experimental
data with a LZ type expression, as in Eq. 7, using an observed tunnel splitting
Δobs one finds, in terms of the three time scales, that

Δ2
obs

Δ2
= − 2tT

πtZ
ln
τφ
tZ

(
e

2tz
τφ PLZ +

{
tT
τφ

}2
)
.

Interestingly, due to the dephasing, the observed tunnel splitting becomes
sweep rate dependent.

When considering experimental difficulties, the four limits leave a very
narrow range of parameters in which Eq. 32 is valid. For example, for Δ =
10−7 K, α/μB = 10−4 T/s, B/μB = 0.1 G, and ν = 5 × 108 sec−1 we find
that tz = 1.5 × 10−3 sec, τφ = 6.4 × 10−4 sec, and tT = 7.6 × 10−5 sec,
so that the order of time scales given in Eq. 31 holds, and νtZ > 1. In this
case Δobs = 0.4× 10−7 K which is smaller than Δ. Thus, dephasing increases
the probability of moving from the low energy state to the higher one, or,
decreases the probability of staying in the low energy state.

2 Experimental dephasing time estimates

We extract the dephasing time in real material using muons coupled to the
electronic spins of isotropic MM that experience only the stochastic field. The
leading terms for such an Hamiltonian are

H = −2μB [H + B(t)]S + h̄μγ [H + SA] I

where S is the electronic spin, I is the muon spin, H is the external field, B
is the stochastic field, γμ = 85.162 MHz/kG is the muon gyromagnetic ratio,
μB is the Bohr magneton, and A is a coupling matrix. In this section we use
a definition of B which does not include μB since the electronic spin and the
muon spins have different gyromagnetic ratios. We ignore a term of the form
B(t)I since the field experienced by the muon from the molecular spins is
greater than this term. Due to the fluctuating field B, S will vary in time.
The simplest assumption that one can make is that the correlation function
〈{S(t),S(0)}〉, where {} stands for anticomutator, decay exponentially. The
decay rate is determined by the dynamic properties of B(t) which is produced
by the environment of the molecules. Therefore we expect
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{S(t),S(0)} = 2S2 exp(−t/τφ). (33)

A priori it is possible that τφ will be H-dependent but we will show experi-
mentally that this is not the case for H < 2 kG.

The muon, which is prepared with 100% polarization, will decay towards
its equilibrium polarization with a decay rate

1
μT1

=
2A2τφ

1 + (μγHτφ)2
(34)

where we assumed for simplicity that A is diagonal and isotropic as well. By
measuring μT1 as a function of H2 and fitting the measurement to

μT1 = m+ nH2 (35)

one can obtain τφ from

τφ =
(

n

mμγ2

)1/2

. (36)

Salman et al. [8] performed such an experiment for three different isotropic
MM with different spin value. In these systems no tunneling is observed due
to the absence of a tunnel splitting Δ. However, spin dynamics is observed
even at very low temperatures (T = 50 mK) with no temperature dependence
over a wide temperature range [9].

The molecules were [Cr{(CN)Cu(tren)}6 ](ClO4)21, [Cr{(CN)Ni(tetren)}6

](ClO4)9 [10, 11] and [Cr{(CN)Mn(tetren)}6](ClO4)9 [12], which are labeled
as CrCu6, CrNi6 and CrMn6, respectively. In these molecules a Cr(III) ion is
surrounded by six cyanide ions, each bonded to a Cu(II), Ni(II) or Mn(II) ion.
Their magnetic moments of CrCu6, CrNi6 and CrMn6 is 9

2 gμB , 15
2 gμB and

27
2 gμB , respectively. High field ESR measurements (on CrNi6) [5] and suscep-
tibility measurements (on CrCu6, CrNi6 and CrMn6) found no evidence for
anisotropy. This is consistent with the octahedral character of the molecules.

In Fig. 2 we reproduce the data from Ref. [8] where the relaxation time
Tμ

1 (H) is plotted at T → 0 as a function of H2 for all compounds, and
for fields up to 2 kG (note the axis break). Tμ

1 obeys Eq. 35 in this range.
This is consistent with the assumption that for low H the field experience
by the muon, which stems from the molecules, and hence the molecular spin
autocorrelation function, can be described by a single correlation time τφ, and
that τφ is field-independent.

From the linear fits in Fig. 2, and using Eq. 36, it was found that τφ =
7 ± 1 nsec for CrCu6, τφ = 10 ± 1 nsec for CrNi6 and τφ = 11 ± 1 nsec for
CrMn6. According to Eq. 26 this kind of dephasing time could be generated
by a field B ∼ 1 G fluctuating with a fluctuation rate of ν ∼ 106 sec−1.

3 Conclusions

It is highly significant that τφ is nearly spin-independent. Since τφ is de-
termined by the environment in which the molecules are embedded, its S-
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Fig. 2. The relaxation time at T ∼ 100 mK as a function of H2 for CrCu6, CrNi6
and CrMn6 with sping value S = 9/2, 15/2, 27/2. The solid lines are linear fits.
Data are reproduced from Ref. [8]

independence means that coupling to other molecules or to phonons is not
responsible for τφ. This can be understood by examining the Bloch equation
which govern the spin motion. In zero external field this equation is given by

dŜ
dt

= eγ[Ŝ × B(t)]

where Ŝ is a unit vector in the direction of the magnetic moment. Only if
B does not stem from other molecules or from spin-phonon coupling could
the time scale for spin motion be S-independent, as found experimentally. We
therefore conclude that at T → 0 the stochastic field B(t) responsible for the
MM spin motion most likely emanates from nuclear moments.

More importantly τφ is on the order of 10 nsec. As we argue before, we
assume that this dephasing time is typical to high spin magnetic molecules
made of transition metal ions embedded in a sea of other ions, including a
large number of protons. Indeed, the three isotropic molecules reported here
are different but have the same τφ. We have no reason to believe that τφ will be
substantially different in Fe8 for example. In Fe8, the only molecule where as
far as we know Δobs was measured, it was found to be on the order of 10−7 K
and sweep rate dependent [3]. If this Δobs had been simply the intrinsic tunnel
splitting Δ, then the tunneling time would have been h̄/Δ ∼ 7 × 10−5 sec.
This tunneling time is longer than the dephasing time τφ = 10−8 sec. More
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over if, for example, α = 0.001 T/sec, then the Zener time (for the 10 to
−10 transition) tz = Δ/(20α) = 7 × 10−5 sec. This makes the order of time
scales tZ ∼ tT > τφ. This order is very different from Eq. 31, and neither
the LZ theory nor the SS theory are valid. However, it is conceivable that
Δobs is not the intrinsic Δ, and that Δ > Δobs. If this is correct we might
still be in the adiabatic limit and Δobs could be sweep rate dependent as was
observed experimentally. However, to be in the τφ > tT range, it must be that
Δ� Δobs and in fact Δ > 10−3 K. It is more likely that in the MM the order
of time scales is tZ > tT > τφ. For this case there is no theory available and
a new approach is required.
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