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The aim of this manuscript is to introduce some of the physical principles in-
volved in nuclear magnetic resonance (NMR) spectroscopy, in order to allow
a better understanding of the following parts of the book. The foundations of
NMR have been settled decades ago [1] and its basic aspects are described in
detail in several text books where also a complete formal derivation can be
found. The reader can refer, for example, to the excellent monograph by C.P.
Slichter [2] or to the book by A. Abragam [8] in order to unravel the physics
underlying this spectroscopy. Although in some parts of this manuscript con-
tinuous wave (CW) NMR spectroscopy will be recalled we shall be dealing
most of the time just with pulsed NMR technique.

1 Precessing moments and the rotating frame

A first issue to address is what is being measured by pulsed NMR technique.
The answer to this question is not unique but still one can state on a rather
general ground that by means of pulsed NMR one detects the time evolution of
nuclear magnetization. Since the thermal energy kBT is in general much larger
than the interaction among nuclear magnetic moments, in order to produce
a non-zero magnetization one has to apply a magnetic field H0. Accordingly
a nuclear magnetization M0 = γ2h̄2I(I + 1)H0/3kBT arises, where I is the
nuclear spin and γ its gyromagnetic ratio.

Let us first consider what is the effect of the magnetic field on the time
evolution of a single magnetic moment M . This simple problem can be solved
within a classical approach and one finds that M precesses around H0 (see
Fig. 1) at the Larmor frequency ω0 = γH0. However, we are rather interested
on the time-evolution of M due to the interactions with the other degrees of
freedom of our system (e.g. the electron spins, the other nuclear spins, the
ionic charge distribution, etc...), not on the precessional motion around H0.
Remember that actually H0 was applied just to generate a nuclear magneti-
zation, as this is the quantity that will produce the NMR signal. Therefore it
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may be convenient to study the time-evolution of the nuclear magnetization
in a frame of reference, different from the laboratory one, where one can get
rid of the effect of H0 on the time evolution of M .
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Fig. 1. Sketch of the precessional motion of a magnetic moment M around H0 in
the laboratory frame of reference S. The frame of reference S’ rotating around H0

at a frequency ω is also shown. m is the component of M in the xy plane.

This frame of reference is the one (S’) rotating around H0 at a frequency
ω ≡ ω0 (see Fig. 1). In a frame of reference rotating at a frequency ω around
ẑ, the magnetic moment is observed to precess around an effective field He =
(H0 − ω/γ)ẑ′. This effective field vanishes for ω = ω0 so that M no longer
precesses in S’. Then any time-dependent perturbation at a frequency ω →
ω0 (time-independent in S’) would produce significant effects on the time-
evolution of M . For instance, let us consider the effect of a small RF field H1

rotating at frequency ω perpendicular to H0, corresponding to a static field
along x̂′ in S’. Then in S’ the magnetic moment will precess around (see Fig.
2)

He = (H0 −
ω

γ
)ẑ′ +H1x̂′

and for ω = ω0 M will precess just around H1, at a frequency ω1 = γH1.
Then one realizes it is convenient to analyze the time evolution of nuclear
magnetization in a frame of reference rotating at ω0 and, as we shall see later
on, the detected NMR signal is indeed the one in the rotating frame S’.

For ω = ω0 the RF field will drive M away from the ẑ axes by an angle
α(t) given by

cos(α(t)) = 1 − 2sin2(
ω1t

2
) . (1)

Hence even a very small perturbation can drive the magnetization away from
the H0 axes, provided that its frequency is very close (ω1 � |ω − ω0|) to
Larmor frequency. This is the classical description of the resonance process,
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Fig. 2. Sketch of the time-evolution of M in S’. The magnetic moment precesses
around an effective field He which for ω = ω0 coincides with H1. Notice that H0

and ω have opposite orientation.

which is the analogue of the resonance absorption driven by the magnetic-
dipole transition mechanism, namely the one induced by the perturbation
H1(t) = −γh̄H1(t) of the Zeeman hamiltonian H0 = −γh̄H0. If, for simplic-
ity, we refer to a spin I = 1/2 the energy level diagram is the one reported
below where the notation |2mI > for the eigenstates is used.

|+>

|- >
I=1/2

E±= ±γħH0/2

ħω0

Fig. 3. Energy level diagram for a spin I = 1/2 in a magnetic field H0 and illus-
tration of the transition induced by the RF field at frequency ω0.

One can estimate the expectation value

< Iz >= (1/2)(p+ − p−),

with p+ and p− the probability to find the spin in state |+ > and |− >,
respectively. Since p+ + p− = 1 one has

p− =
1 − 2 < Iz >

2

Then, if at t = 0 p+ = 1 and p− = 0 (i.e.I ‖ H0), at time t (see Eq. 1 for
comparison)
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p−(t) =
1
2
(1 − cosα(t)) = sin2ω1t

2
for ω = ω0. This equation corresponds to the well known Rabi equation giving
the probability to pass from state |+ > to state |− >.
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Fig. 4. Time evolution of p−(t) and of < Iz >. It is pointed out that if the RF field
is switched off after a time π/2ω1 < Iz > is zero, namely the spin expectation value
has turned by π/2, from parallel to perpendicular to z. Then one says that a π/2
pulse was applied. In general, to turn by an angle θ < I > one has to apply an RF
pulse of duration θ/ω1.

After a RF pulse (a π/2 pulse for example (see Fig. 4)) one can detect, with
the same coil used to apply the RF, the voltage induced by the time evolution
of nuclear magnetization. According to Faraday-Maxwell’s law this voltage is
proportional to the precessional frequency in the laboratory frame of reference
S and to the nuclear in-plane magnetization < Mx,y(t) >. The signal detected
by the coil in S can be transformed into the one in S’ by mixing it with a
reference signal oscillating at ω0 (e.g. cos(ω0t)). The low-frequency signal at
the output of the mixer is the one detected in pulsed NMR experiments, the
so-called FID (free induction decay) signal. The bloch scheme of a typical
pulsed NMR spectrometer is equivalent to the one of an MRI spectrometer
(see Fig. 10 in the chapter by Lascialfari and Corti in this book), except for
the pulsed gradient unit.
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2 Time-evolution of nuclear magnetization and the
Bloch equations

So far we have just considered the time evolution of a single spin. However, in
general experiments are performed on a sample containing a statistical ensem-
ble of nuclear spins and hence one has to consider how the statistical average
of the spin components, namely the components of the nuclear magnetization,
evolve in time. Then one can write for the statistical average

< Ix,y,z >=
∑
m

< m|Ix,y,z|m >
e−Em/kBT

Z

with |m > eigenstates of H = −γh̄IzH0. For simplicity, if one considers an
ensemble of nuclei with I = 1/2 in a magnetic field H0 one finds

< Iz >=
1
2
e−γh̄H0/2kBT − eγh̄H0/2kBT

e−γh̄H0/2kBT + eγh̄H0/2kBT

and
< Īx,y >= 0 .

Notice that for a single spin < Ix,y > is non-zero, while its average value is
zero owing to the random phase of the x, y components of the spins. In general
one can calculate the average statistical value starting from the density matrix
ρ = exp(−βH)/Z, with Z the partition function. Then

< Iz(t) >= Tr{ρ(t)Iz}

where the time evolution of ρ(t) is given by

dρ

dt
=
i

h̄
[ρ,H]

Consider now the experimental configuration introduced in the previous sec-
tion, where H0 ‖ ẑ and the RF field H1 was perpendicular to it. Then
H = H0 + H1(t), where H1 = −γh̄H1Ix can be treated as a perturbation of
H0 = −γh̄H0IZ . Then one finds that

< My(t) >= M0sin(ω1t)

in the rotating frame. Again we observe that if the RF field is applied at a
frequency ω0 in S’ < M(t) > precesses just around H1.

Although in certain cases it is rather simple to describe the time evolution
of < Mx,y(t) > in general, when one has to consider all hyperfine interactions
present in a sample, this problem can become rather cumbersome. Therefore,
it is convenient to consider the phenomenological equations devised by Bloch
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[4] to describe the time evolution of the components of the nuclear magneti-
zation in the lattice 1:

dMz

dt
= γ(M × H0)z +

M0 −Mz

T1

dMx,y

dt
= γ(M × H0)x,y − Mx,y

T2

Here two characteristic decay times have been introduced: T1 the spin-lattice
relaxation time and T2 the spin-spin relaxation time. T1 describes the time
evolution of Mz and is therefore directly related to the modifications in the
population of the Zeeman levels, which can occur after the exchange of energy
with the lattice excitations. The decay of Mx,y occurs in a time T2, which
is not only affected by the processes involved in the spin-lattice relaxation,
but also by other processes which do not imply an exchange of energy with
lattice excitations. For instance, as we shall see later on, the nuclear dipole-
dipole interaction yields a spread in the resonance frequencies of the nuclei and
accordingly a dephasing of the in-plane components of each nuclear moment
takes place, yielding a decrease in Mx,y.

It is interesting to treat the resonance absorption starting from Bloch
equations. Let us consider the effect of an RF field H1 � H0. Then one has
to replace in the above equations H0 with

H = H1(x̂cos(ωt) − ŷsin(ωt)) +H0ẑ

For a negligible RF field, namely γH1 � 1/
√
T1T2, so that the magnetization

Δω

χ”

χ’

Fig. 5. Real (χ′(ω)) and imaginary (χ′′(ω)) parts of the nuclear dynamical spin
susceptibility.

is only slightly tilted from the z axes (i.e. Mz �M0), by considering solutions
1 From now on we shall indicate the components of nuclear magnetization with

Mx,y,z =< Mx,y,z >.
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of the form Mx = mcos(ωt+ φ) and My = −msin(ωt+ φ) one finds that the
in-plane component of the magnetization (the one which can be detected with
a coil in the xy plane)

m � ω1M0T2√
1 + (ω − ω0)2T 2

2

.

If one derives the in-plane components of the magnetization oscillating in
phase and out of phase by π/2 with the RF field, one can estimate the real
and imaginary part of the nuclear spin susceptibility. One finds:

χ′(ω) =
M0

H0

ω0(ω0 − ω)T 2
2

1 + (ω0 − ω)2T 2
2

,

χ”(ω) =
M0

H0

ω0T2

1 + (ω0 − ω)2T 2
2

,

the dissipative part of the nuclear spin susceptibility is a Lorentzian of width
1/T2 centered around ω0. In other words there is a peak in the absorption of
the RF field at the Larmor frequency, which is spread over a certain width
determined by the nuclear spin-spin relaxation time.

3 NMR spectra

When the sample under investigation is placed into the coil one observes a
change in the inductance to

L = L0[1 + 4πχ(ω)]

and a corresponding variation of the resistance by

ΔR = L0ω4πχ” .

Then one can estimate that the average power adsorbed by the nuclei

P (ω) =
1
2
ωH2

1χ”(ω)V ,

where V is the sample volume. For ω = ω0, by recalling the expression derived
for χ” in the weak field limit, one would find

P (ω0) =
1
2
ω2

0H
2
1χ0V T2

So, one can derive directly χ”(ω) from the power adsorbed by the circuit.
Indeed, in CW NMR one directly detects χ”(ω).

Since the spacing between adjacent hyperfine levels is not the same for all
nuclei it is convenient to introduce a distribution function f(ω)dω giving the
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Fig. 6. Schematic illustration of the equivalence of the NMR spectra derived from
CW NMR and from pulsed NMR spectroscopies after performing the Fourier trans-
form (FT) of the FID signal.

fraction of nuclei with a resonance frequency between ω and ω+ dω. One can
show that the energy adsorbed per unit time by the nuclei is

P (ω) =
χ0

2
ωω0H

2
1f(ω)2π

If we now compare the above equation with the expression previously
derived for P (ω) one finds that

χ”(ω) = 2πf(ω)ω0χ0

Then the signal detected in a CW NMR experiment, directly proportional
to P (ω), is proportional to χ”(ω) and gives the number of nuclei which are
resonating with frequency between ω and ω+dω, namely the NMR spectrum
f(ω). On the other hand, by resorting to the fluctuation-dissipation theorem,
one can show that

f(ω) ∝ χ”(ω) =
ω

kBT

∫ ∞

0

eiωt < Mx(t)Mx(0) > dt

namely, the NMR spectrum is the Fourier transform at frequency ω of the
correlation function for the transverse components of the nuclear magnetiza-
tion, proportional to the signal measured in the pulsed NMR experiment (see
Fig. 6).

4 Moment expansion of the NMR signal

In order to establish a priori the shape of the NMR spectra or of the FID
signal one has to consider all the interactions acting on the nuclei. The nuclear
hyperfine hamiltonian can be written in the form

H = HZ + Hn−n + Hn−e + HEFG
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Fig. 7. Schematic view of the passage from the laboratory (left) to the frame of
reference rotating at frequency ω0. At the top the effect on the FID signal after
a π/2 pulse is shown. The signal detected in the laboratory frame is transformed
into the one in the rotating frame of reference by mixing it with a reference signal
proportional to cos(ω0t). Then the difference in the expressions for the FID signal
s(t) and NMR spectra are shown. Finally, at the bottom, the vectorial illustration
of the magnetization in the two reference frames is shown.

where the first term is the Zeeman-like interaction with H0

HZ = −γh̄
∑

i

Ii
zH0 .

Hn−n is nuclear dipole-dipole interaction, Hn−e describes the interaction be-
tween the nuclear and electron spins, while HEFG is the quadrupole hamil-
tonian associated with the interaction of the nuclear quadrupole moment Q
(non-zero for I > 1/2) with the electric field gradient (EFG) generated by the
charge distribution around the nucleus.

Let us consider for simplicity just the first two terms of the hyperfine
hamiltonian. Then

H = −γh̄H0

∑
j

Ij
z +

∑
j<k

h̄2γ2

r3jk

(
IjIk − 3

(Ijrjk)(Ikrjk)
r2jk

)
.

It is convenient to write the nuclear dipole-dipole hamiltonian in the form

Hn−n =
∑
j<k

h̄2γ2

r3

(
A+B + C +D + E + F

)
jk
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with
Ajk = Ij

zI
k
z f(θ, φ) ΔmT = 0

Bjk = −(Ij
+I

k
− + Ij

−I
k
+)
f(θ, φ)

4
ΔmT = 0

Cjk = (Ij
zI

k
+ + Ij

+I
k
z )g(θ, φ) ΔmT = 1

Djk = C∗
jk ΔmT = −1

Ejk = (Ij
+I

k
+ + Ij

+I
k
+)h(θ, φ) ΔmT = 2

Fjk = E∗
jk ΔmT = −2

rjk

φ

θ
k

j

H0//z

x

y

Since HZ � Hn−n only the terms of Hn−n that commute with HZ will
to the first order contribute to the time evolution of nuclear magnetization,
namely the A and B terms. Then one has that the FID signal in the laboratory
frame is given by

G(t) = cos(ω0t) < M ′
x(t)Mx(0) >

where

G′(t) =< M ′
x(t)Mx(0) >= Tr{eiH′

n−nt/h̄Mxe
−iH′

n−nt/h̄Mx}

with

H′
n−n =

∑
j<k

h̄2γ2

r3jk

(
A+B

)
jk

In the frame of reference rotating at frequency ω0, the FID is directly given
by G′(t). Namely we have removed the term cos(ω0t) which was just describ-
ing the precessional motion around H0. Once more one realizes that if we
work in the rotating frame we probe just the time-evolution of the nuclear
magnetization due to the microscopic interactions within the sample.

For γ2h̄t/r3 < 1 one can write

G′(t) = G′(0)[M0 + M2
t2

2
+ M4

t4

4!
+ ....] ,
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where here Mn represents the nth moment of the NMR spectrum in the
rotating frame (∝ FT{G′(t)}). The second moment, for example, is given by

M2 = −Tr{[H
′
n−n, Ix]2}

Tr{I2
x}

By writing H′
n−n in polar coordinates one finds

M2 = γ4h̄2 I(I + 1)
3

∑
k

(
3
2

1 − 3cos2(θk)
r3k

)2

Thus, one realizes that by deriving M2 from the FID signal one can estimate
in a rather precise way the interatomic distances, for example.

If one considers the dipolar interaction with nuclei S of a different species
one finds

M2 =
4
9
γ2

Iγ
2
S h̄

2S(S + 1)
3

∑
j<k

(
3
2

1 − 3cos2(θjk)
r3jk

)2

It has be remarked that nuclear spins can interact also through and indirect
coupling mediated by electron spins, usually much weaker than the classical
one described above, of the form

Hind
n−n = JIiIj

with J a scalar. This interaction is of major relevance in high resolution NMR
spectroscopy and is responsible for the appearance of multiplets formed by
2(n − 1)I + 1 lines, where n is the number of interacting nuclei of the same
species. On the other hand, in certain cases, when the hyperfine coupling with
electron spins is quite large, an indirect interaction (with J a tensor) larger
than the direct one can be observed. Such a scenario occurs in the cuprates,
for example [5].

5 Electron-nucleus hyperfine interaction

Let us now consider the interaction with the electron spins, which can often
be written in the form

Hn−e = −γh̄
∑
i,k

IiÃikSk

with Ãik the hyperfine coupling tensor. Then, there will be an hyperfine field
at the i-th nucleus given by hi =

∑
k ÃikSk. If the electron spins have a

non-zero average polarization < S > then the local field probed by the nuclei
will be hi =

∑
k Ãik < Sk > and one can directly estimate < S > from the
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Fig. 8. Temperature dependence of 63Cu 1/2 → −1/2 zero-field resonance frequency
in the antiferromagnetic phase of YBa2Cu3O6.05 vs. temperature. The resonance
frequency is directly proportional to the order parameter, namely to the thermal
average of Cu2+ spin < S > [6].

resonance frequency in the local field. When an external field is applied the
nuclei will experience a magnetic field

H = H0 +
∑

k

Ãik < Sk >

and the resonance frequency will be shifted to

ω = ω0(1 + Δ̃K)

with

Δ̃K =
∑

k Ãk < Sk >

H0
.

Then one can write that Δ̃K =
∑

k Ãkχ(q = 0, ω = 0) and one notices
that from the shift of the NMR resonance spectrum one can derive the static
uniform susceptibility associated with those electron spins which interact with
the nuclear ones. Another contribution to the shift, usually smaller than the
one involving the electron spins, arises from the screening of the magnetic field
by the electrons on the ligands and by the core electrons. This shift depends
significantly on the chemical bonding around the nuclei and for this reason is
called chemical shift.

The electric quadrupole hamiltonian describing the interaction between
the nucleus quadrupole moment Q and the EFG tensor Ṽ generated by the
charge distribution around the nucleus is

HEFG =
∑

i

e2QVZZ

4I(2I − 1)

(
3(Ii

z)
2 − I(I + 1) +

η

2
[(Ii

+)2 + (Ii
−)2]

)
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Fig. 9. Schematic illustration of the modifications in the hyperfine levels of I =
3/2 nuclei, due to the different terms of the nuclear hyperfine hamiltonian. The
corresponding modifications in the NMR spectra are reported at the bottom of the
figure.
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Fig. 10. The shift of 29Si NMR frequency in MnSi is reported as a function of the
macroscopic susceptibility measured with a SQUID magnetometer. The slope of the
plot directly yields the hyperfine coupling, while the intercept gives the chemical
shift (almost negligible here).

where VZZ is the main component of the EFG tensor written in the frame of
reference of its principal axes (X,Y and Z)
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η =
VXX − VY Y

VZZ
with |VZZ | ≥ |VY Y | ≥ |VXX |

is the EFG tensor asymmetry parameter. If this is the only relevant hyperfine
interaction the degeneracy between the spin components is partially resolved
(Fig. 11) and one can induce transitions between the hyperfine levels by irra-
diating the nuclei at a frequency

νQ =
3eVZZQ

h2I(2I − 1)
(1 +

η2

3
)1/2 .

This resonance frequency is extremely sensitive to the symmetry of the charge
distribution around the nuclei and hence to the presence of lattice distortions,
as shown in Fig. 11.

ωQ

I=3/2

m=±3/2

m=±1/2

Fig. 11. At the top a schematic illustration of the transitions involved in an NQR
experiment on I = 3/2 nuclei is presented. In the lower part of the figure 63,65Cu
(I = 3/2) NQR spectrum in Cu8 molecular ring is shown. It is evidenced that
although in principle all Cu sites should be equivalent, a difference is present at the
microscopic level, possibly associated with a lattice distortion [7].

When both Zeeman and quadrupole interactions are present the eigenval-
ues will depend on the orientation of the magnetic field with respect to the
EFG principal axis. Then, in a powder sample there will be a distribution
of possible orientations and of resonance frequencies. Therefore, the NMR
powder spectra can become very broad if the quadrupole interaction is size-
able. The powder spectrum f(ν) can be estimated from the number of nuclei
resonating at frequency ν which, for instance if η = 0, is simply given by
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f(ν) ∝ sin(θ(ν))/(dν/dθ) (θ is the polar angle defining the orientation of H0

with respect to Z in the XYZ frame of reference).

6 Effect of the motions on the NMR spectra

Due to the time dependence of the hyperfine hamiltonian one can observe a
modification in the NMR spectra. Let us consider a rather standard situation
where the rigid lattice NMR spectrum is a Gaussian and the local field at the
nuclei is fluctuating. Then the FID signal is given by

G′(t) ∝ Tr{eiH′
P t/h̄Ixe

−iH′
P t/h̄Ix}

where H′
P (t) is the time-dependent hamiltonian which can be considered as a

perturbation of the Zeeman hamiltonian. Suppose that the time-dependence
is induced by fluctuations of the local field at the nucleus (for example due to
molecular motions, spin fluctuations, ionic diffusion, flux lines lattice motion
in a superconductor, etc...). Then one can write

H′
P (t) = −h̄

∑
i

Ii
zΔωi(t) = −h̄γ

∑
i

Ii
zh

i
z(t)

where Δωi(t) describes the fluctuations in the resonance frequency of the i-th
nucleus. If we consider a stationary gaussian distribution for the fluctuations
with a mean-square amplitude < Δω2 >, then one finds that

G′(t) = G′(0)exp
(
− < Δω2 >

∫ t

0

(t− τ)g(τ)dτ
)

(2)

where g(τ) =< Δω(t + τ)Δω(t) > / < Δω2 > is the normalized correlation
function describing the fluctuations of the resonance frequency.

Now one can introduce the corresponding correlation time

τc =
∫ ∞

0

g(τ)dτ

which describes the characteristic decay time for g(τ). Without making any
assumption on the analytical form of g(τ) one can distinguish two limiting
cases:

a) Slow motions regime. The correlation time is extremely long and the
FID is recorded over a time t� τc. Then in Eq. 2 one can set g(τ) � g(0) � 1,
so that

G′(t) � G′(0)e−<Δω2>t2/2

namely a Gaussian decay, as it has to be expected since we have assumed a
rigid lattice Gaussian spectrum with a second moment < Δω2 >.
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b) Fast motions regime. The FID signal is recorded over a time t � τc.
Then one can set the upper limit of the integral in Eq. 2 to ∞ and neglect τ
with respect to t, since g(τ) has already vanished over the time t. Then

G′(t) � G′(0)e−<Δω2>tτc = G(0)e−t/T ′
2

where
1
T ′

2

=< Δω2 > τc = γ2

∫ ∞

0

< hz(t)hz(0) > dt

is the relaxation rate of the FID signal, namely of the transverse magne-
tization. One observes that now the FID decay is exponential and thus the
corresponding NMR spectrum is a lorentzian with full width at half maximum
equal to 1/T ′

2. Upon decreasing τc the linewidth decreases and one observes
the motional narrowing of the NMR line.

If g(τ) = exp(−τ/τc) then one can write

G′(t) = G′(0)e−<Δω2>τ2
c [exp(−t/τc)−1+(t/τc)]

which nicely interpolates between fast and slow motions regime.

7 The spin echo

In general one observes that the decay of the FID signal is affected not only by
intrinsic effects but also by extrinsic effects as magnetic field inhomogeneities
associated, for example, with a distribution of paramagnetic shifts or simply
to the inhomogeneity of the magnetic field generated by the magnet over the
sample volume. Then one has an additional contribution to the decay of the
FID, namely

G(t) = G(0)exp(−t/T ′
2)exp(−γΔHt) = G(0)exp(−t/T ∗

2 )

with ΔH the magnetic field distribution. Sometimes T ∗
2 can be so short that

it is not even possible to record the FID signal. To avoid this problem one
can resort to the spin-echo technique. Let us suppose that the magnetic field
distribution is static and we apply the pulse sequence in Fig. 12.

The effect of the π RF pulse is to reverse the time evolution of the in-plane
components of the nuclear spins. So, one observes that the dephasing of the
spins during the first half of the sequence (between 0 and t) is recovered in the
second half, after the π pulse, and the in-plane magnetization recovers at 2t
and produces an echo signal. It is evident that the refocussing of the nuclear
spins can occur as far as the resonance frequency of each nucleus during the
first half and the second half of the pulse sequence is the same.

As an illustrative example let us consider what happens if the magnetic
field is changed at time t, when the π RF pulse is applied. This is done,
for example, in a controlled way in a spin-echo double resonance (SEDOR)
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H1(π)
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Fig. 12. Schematic representation of the motions of the nuclear spins generating
the echo signal upon application of a sequence of π/2 and π RF pulses. It is shown
how the FID signal after the π/2 pulse decays in a rather short time T ∗

2 owing
to the dephasing of the nuclear spins. An echo is formed at time 2t thanks to the
refocussing of the spins after the π RF pulse. The decay of the echo occurs over a
time T2 ≥ T ∗

2 . It should be remarked that with pulse techniques, by switching the
phase of the RF field it is possible to apply the second pulse (at time t) along a
direction different from the one of the first pulse at t = 0 (e.g. from x to y in the
rotating frame).

experiment, where at time t one applies a π pulse also on the nuclei S which
are coupled to I nuclei through a HIS = aI.S. The π pulse on S yields a
change in the resonance frequency of the I nuclei during the second half.
Accordingly a decrease in the echo signal of the I nuclei is detected and the
coupling between the two nuclear species is estimated.

Let us now consider the more general situation where the magnetic field
fluctuations are described by a gaussian stationary distribution function. If
now one calculates the dephasing of the nuclear spins between the π/2 and π
(0 − t) pulse and then between the π pulse and the echo (t− 2t) one derives
that the echo amplitude at time 2t is given by

E(2t) = E(0)exp
(
− < Δω2 >

[
2
∫ ∞

0

(t− τ)g(τ)dτ −
∫ t

0

τg(τ)dτ−

−
∫ 2t

t

(2t− τ)g(τ)dτ
])

.

Without making any assumption on g(τ), in the fast motions regime
(
√
< Δω2 >τc � 1) one finds that
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E(2t) = E(0)e−<Δω2>τc2t = E(0)e−2t/T ′
2

namely the echo decays with the same characteristic time of the FID. In the
very slow motions regime, i.e.

√
< Δω2 >τc � 1 the echo sequence allows to

rephase completely the nuclear magnetization and then

E(2t) → E(0) .

On the other hand, if
√
< Δω2 >τc � 1 one finds

E(2t) = E(0)e−
<Δω2>(2t)3

3τc

If g(τ) = exp(−τ/τc) one can derive an expression valid in any limit [8]

E(2t) = E(0)exp
(
− < Δω2 > τc[2t− τc(1 − exp(−t/τc))(3 − exp(−τ/τc))]

)
One notices that if

√
< Δω2 >τc � 1 the decay of the echo amplitude

can be quite fast. After a time 2t the echo would have decayed by a factor
exp(−< Δω2 > (2t)3/3τc). What happens if during the time 2t we apply n
π pulses separated by a shorter delay 2t′, so that 2t � 2nt′ (see figure be-
low)? Then, after every π pulse there will be a decay of the echo by a factor
exp(−< Δω2 > (2t′)3/3τc) and after n π pulses by

exp(−< Δω2 > n(2t′)3

3τc
) � exp(−< Δω2 > (2t)3

3τc
)

Hence the effect of the motions on the decay of the echo amplitude is signif-
icantly reduced. This particular echo sequence was first introduced by Carr
and Purcell [9].

t

2t

M exp(-t /T )

Fig. 13. Carr-Purcell sequence with Meiboom-Gill phase alternation. The π pulses
are generated by an RF field which in S’ is alternatively along +x′ and −x′.



A short introduction to Nuclear Magnetic Resonance 21

8 Nuclear spin-lattice relaxation rate

As we have seen in Bloch equations the longitudinal component of nuclear
magnetization relaxes back to its equilibrium value, determined by the tem-
perature of the lattice, with a characteristic relaxation time T1. A simple RF
pulse sequence which allows one to determine T1 is shown in Fig. 14. After
flipping the magnetization along x′ with a π/2 pulse one waits for a delay τ
and then applies a second π/2 pulse. The second π/2 will flip back along x′

the fraction of magnetization which during the time τ has relaxed back to
equilibrium. One can repeat the same experiment for different τ values and
then derive T1.

t

τ

π/2 π/2

x’

z’

x’

z’

x’

z’H1//y’

Mz(τ)

Excite Read

Mz(τ)> 0

|+>

|->

|+>

|->

After π/2 After τ

Mz(τ=0)= 0= N+-N-

W±

Fig. 14. (Top) Example of a simple RF pulse sequence used to measure the re-
covery of Mz(τ). The first π/2 turns the magnetization into the xy plane and the
second pulse reads the amount of magnetization Mz(τ) which has relaxed back to
equilibrium during the delay τ . The experiment is repeated for several values of τ
to derive the recovery law of the magnetization. (Bottom) The effect of the first π/2
pulse on the statistical population on the hyperfine levels and its modification after
τ are reported.

The recovery of nuclear magnetization towards equilibrium is determined
by the transition probability among the hyperfine levels associated with the
time-dependent part of the hamiltonian, namely by the lattice excitations.
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The effect of the previous pulse sequence on the longitudinal magnetization
can also be understood from the analysis of the statistical populations on the
hyperfine levels (see Fig. 14). In fact, if we consider for simplicity nuclei with
I = 1/2, then Mz(τ) ∝ N+ − N−, the difference of population between the
two levels.

In general for nuclei with spin I one has 2I+1 states and one has to solve
a system of 2I + 1 differential equations

dNm

dt
=

∑
n �=m

(NnWnm −NmWmn)

to derive the time evolution of the population difference between the levels
which are being irradiated. For the simple case of I = 1/2 one finds that

Mz(τ) = Mz(τ → ∞)(1 − e−τ/T1)

or equivalently

y(τ) =
Mz(∞) −Mz(τ)

Mz(∞)
= e−τ/T1

with
1
T1

≡ 2W±

It should be noticed that in order to have spin-lattice relaxation W∓ > W±,
but since usually h̄ω0 � kBT W∓ �W± and one can express T1 just in terms
of one of the two transition probabilities. For I > 1/2 one has to consider
all possible transitions which are driven by the time-dependent part of the
hamiltonian. If the fluctuations are associated with an effective fluctuating
magnetic field (e.g electron spin fluctuations) then just transitions with Δm =
±1 have to be considered in solving the system of differential equations. If the
fluctuations are the ones of the electric field gradient, since HEFG is quadratic
in the spin components, one has to consider also Δm = ±2 transitions. In
general one finds a recovery law for nuclear magnetization

y(τ) =
∑

j

cje
−αjτ/T1

still with 1/T1 = 2W I=1/2
± .

Let us suppose that the time-dependent part of the hamiltonian is associ-
ated with an effective magnetic field fluctuation

HP (t) = −γh̄Ih(t)

which can be considered as a perturbation of the Zeeman hamiltonian. Then,
starting from time-dependent perturbation theory one can express W± in
terms of the correlation function
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g(τ) =< HP (τ)HP (0) >

describing the fluctuations of HP (t). If g(τ) decays with a correlation time
τc � T1 and T1ω0 � 1, conditions which are usually satisfied, then one can
write

1
T1

=
γ2

2

∫ +∞

−∞
eiω0t < h+(t)h−(0) > dt (3)

This fundamental expression shows that 1/T1 is driven by the transverse com-
ponents of the fluctuating field at the nucleus, to comply with magnetic-dipole
selection rules, and that 1/T1 is proportional to the Fourier transform of the
correlation function at the resonance frequency, to comply with energy con-
servation. In other terms 1/T1 probes the spectral density at ω0.
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Fig. 15. Effect of the frequency of the fluctuations on the decay of the FID, of the
echo and on 1/T1. < Δω2 > is the second moment for the amplitude of the frequency
fluctuations. τe is the characteristic time at which the FID or the echo decreases by
a factor e. It has been assumed at the sake of illustration that the Larmor frequency
is 10 times

√
< Δω2 >.

Suppose that < h+(t)h−(0) >=< Δh2
⊥ > exp(−t/τc). Then from Eq. 3

one derives that
1
T1

=
γ2

2
< Δh2

⊥ >
2τc

1 + ω2
0τ

2
c

(4)

One can distinguish three regimes:
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a) Fast motions, ω0τc � 1, then

1
T1

= γ2 < Δh2
⊥ > τc

Then one notices that if the fluctuations are isotropic so that < Δh2
⊥ >= 2 <

Δh2
z > then if ω0τc � 1 and

√
< Δω2 >τc � 1 one finds 1/T1 = 2/T ′

2.
b) Slow motions, ω0τc � 1, then

1
T1

= γ2 < Δh2
⊥ >

1
ω2

0τc

c) ω0τc = 1 then
1
T1

=
γ2

2
< Δh2

⊥ >
1
ω0

and one has a maximum in 1/T1, as it has to be expected since the highest
transition probability would take place when the characteristic frequency for
the fluctuations corresponds to the resonance frequency ω0.

1/
T 1 (

m
s-1

)

T(K)

Fig. 16. Temperature dependence of 7Li 1/T1 in Li2VOSiO4. It is evident that at
temperatures larger than the exchange coupling (� 9 K) the spin-lattice relaxation
rate is temperature independent.

Let us now derive some typical expressions for nuclear spin-lattice relax-
ation rate which apply to some model systems. In a paramagnetic insulator the
fluctuations are associated with electron spin fluctuations h(t) =

∑
i ÃiSi(t).

At high temperature, namely kBT � J (J the exchange coupling among the
spins), the correlation function for the spin components is [10]

< Si
x,y,z(t)S

i
x,y,z(0) >= |Sx,y,z|2e−ω2

et2/2

with ωe = (J/h̄)
√

2zS(S + 1)/3 the Heisenberg exchange frequency. Then
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1
T1

=
γ2

2

∑
i

(
[Ai

xx]2 + ...

)
S(S + 1)

3

√
2π
ωe

,

temperature independent. One notices that as ωe � ω0 (fast motions) 1/T1 ∝
1/ωe and does not depend on ω0.

In general, when collective spin excitations are present one can write

h(t) =
1√
N

∑
q

∑
i

eiqriÃiSq(t)

and by writing the transverse components of h(t) in 1/T1 expression one finds
that

1
T1

=
γ2

2
1
N

∑
q

(
|Aq|2Sαα(q, ω0)

)
⊥
.

Here |Aq|2 is the form factor giving the hyperfine coupling of the nuclei with
the spin excitations at wave-vector q. Sαα(q, ω0) is the component of the
dynamical structure factor at the resonance frequency. The term ⊥ indicates
that one has to consider the products |Aq|2Sαα(q, ω0) associated with the
perpendicular components of the hyperfine field at the nucleus. From the
fluctuation-dissipation theorem, by recalling that usually kBT � h̄ω0 one can
also write

1
T1

=
γ2

2
kBT

h̄

1
N

∑
q

(
|Aq|2

χ”αα(q, ω0)
ω0

)
⊥

One can now introduce the expressions for the dynamical susceptibility of
a certain system and derive the corresponding expression of 1/T1. In a metal
one finds

1
T1

= (
16
3

)2π3h̄2γ2μ2
B(|ψ(0)|2)FSD

2(EF )kBT .

where D(EF ) is the density of states at Fermi level (EF ) and |ψ(0)|2 is the
probability that the electron is at the nuclear site. One observes that 1/T1 is
linear in T , at variance with what was derived for a paramagnetic insulator.
This is a simple evidence of Fermi-Dirac statistics, which tell us that, owing
to Pauli principle, only a fraction � kBT/EF of all electron spins can flip and
cause the relaxation.

In certain cases T1 can be so short to prevent its direct measurement.
However, under certain circumstances it still be possible to estimate it. Let us
call S the spin of the fast relaxing nuclei and I the spin of another species of
nuclei which one can suitably investigate. If S and I spins are coupled through
nuclear dipole-dipole interaction, then the flip of spin S due to TS

1 processes
is detected as a fluctuation of the local field at the I nuclear spin. Namely, one
detects a dynamic with a correlation time τc = TS

1 . This dynamic can manifest
itself on the decay of the echo amplitude, for instance. If

√
< Δω2

I >T
S
1 � 1,

where < Δω2
I > is the second moment of the frequency distribution associated
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Fig. 17. Temperature dependence of 51V 1/T1 in MoVO5 estimated by measuring
the decay rate of 95Mo echo signal [11].

with the nuclear dipole interaction between S and I spins, then the decay of
the echo amplitude of I spins is given by

E(2t) = E(0)e−<Δω2
I >T S

1 2t

and then one can estimate TS
1 .

In pulsed NMR spectroscopy often one looks for the effect of the nuclear
spins of a species S on the spins of another species I. This is the basis of the
double resonance techniques, as the SEDOR one previously mentioned, of the
Overhauser and cross-polarization techniques which allow to transfer polar-
ization between different spin ensembles and of multi-dimensional techniques
which are just a part of the marvellous realm of the nuclear magnetic reso-
nance spectroscopy, which nowadays is employed in many different research
areas [12].
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