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Preface

This book is a collection of scientific articles on the basic aspects of nuclear
magnetic resonance (NMR), muon spin rotation (μSR) and Mössbauer spec-
troscopies, applied to the study of molecular magnets and to related systems,
such as low-dimensional magnets and contrast agents for magnetic resonance
imaging (MRI). These articles gather, to a certain extent, the lecture notes
presented by the authors at the Training School on NMR-MRI, μSR and
Mössbauer Techniques, held in Pavia from the 17th to the 30th of September
2006.

The motivation for the School and for the publication of this book orig-
inates from the growing interest of a broad scientific community to the field
of molecular magnetism where the aforementioned techniques play a key role.
Nowadays several groups of physicists, of chemists and some groups of biolo-
gists work in this field in order to unravel the fundamental physical aspects
of molecular magnets which are of interest for their future applicability as
storage units, in quantum computation, in hybrid superconducting-magnetic
systems or as contrast agents, for example. Nevertheless, the use and the
knowledge of NMR-MRI, μSR and Mössbauer spectroscopies is still limited
to a small scientific community. The purpose of the School and of the book
was to introduce these techniques to a broader scientific community working
on molecular magnets and related systems. In particular, to give the basic
principles of each technique, to show which information is derived, for ex-
ample, from the spectra, from the muon depolarization curves or from the
relaxation rates, and how it is complementary to the one obtained by other
techniques. Moreover, it will be shown how from the experimental results de-
rived by these techniques one can tailor the properties of molecular magnets
and nanoparticles which, in turn, can be used as contrast agents for MRI.

The book is addressed to graduate and senior researchers working on
molecular magnets or closely related areas, having a background on quan-
tum mechanics. It is divided into three main parts, each one dedicated to a
different spectroscopy. The first chapter of each part is a short tutorial intro-
duction to each one of the spectroscopies. Since an exhaustive introduction is
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out of the aim of this book, reference is properly made to text books and to
web sites which allow a deeper understanding of the basic principles underlay-
ing these techniques. This introductory chapter is followed by more specialized
ones giving an overview on recent results obtained by NMR, μSR and Möss-
bauer spectroscopies in molecular magnets and in strictly related areas. Two
chapters of the first part are dedicated to MRI and to the investigation of
contrast agents suitable for applications in MRI.

We would like to acknowledge MAGMANet network of excellence for
supporting the School and the publication of this book. CNR-INFM and
CNISM secretaries Stefania Riboni, Antonella Biondi, Elisa Bolognesi and
Maria Grazia Angelini are also acknowledged for their precious help.

Pavia, Pietro Carretta
March 2007 Alessandro Lascialfari
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Part I

Nuclear Magnetic Resonance



A short introduction to Nuclear Magnetic
Resonance

Pietro Carretta

Dipartimento di Fisica ”A.Volta” and CNISM - University of Pavia - Via Bassi, 6 -
27100 Pavia (Italy)

The aim of this manuscript is to introduce some of the physical principles in-
volved in nuclear magnetic resonance (NMR) spectroscopy, in order to allow
a better understanding of the following parts of the book. The foundations of
NMR have been settled decades ago [1] and its basic aspects are described in
detail in several text books where also a complete formal derivation can be
found. The reader can refer, for example, to the excellent monograph by C.P.
Slichter [2] or to the book by A. Abragam [8] in order to unravel the physics
underlying this spectroscopy. Although in some parts of this manuscript con-
tinuous wave (CW) NMR spectroscopy will be recalled we shall be dealing
most of the time just with pulsed NMR technique.

1 Precessing moments and the rotating frame

A first issue to address is what is being measured by pulsed NMR technique.
The answer to this question is not unique but still one can state on a rather
general ground that by means of pulsed NMR one detects the time evolution of
nuclear magnetization. Since the thermal energy kBT is in general much larger
than the interaction among nuclear magnetic moments, in order to produce
a non-zero magnetization one has to apply a magnetic field H0. Accordingly
a nuclear magnetization M0 = γ2h̄2I(I + 1)H0/3kBT arises, where I is the
nuclear spin and γ its gyromagnetic ratio.

Let us first consider what is the effect of the magnetic field on the time
evolution of a single magnetic moment M . This simple problem can be solved
within a classical approach and one finds that M precesses around H0 (see
Fig. 1) at the Larmor frequency ω0 = γH0. However, we are rather interested
on the time-evolution of M due to the interactions with the other degrees of
freedom of our system (e.g. the electron spins, the other nuclear spins, the
ionic charge distribution, etc...), not on the precessional motion around H0.
Remember that actually H0 was applied just to generate a nuclear magneti-
zation, as this is the quantity that will produce the NMR signal. Therefore it
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may be convenient to study the time-evolution of the nuclear magnetization
in a frame of reference, different from the laboratory one, where one can get
rid of the effect of H0 on the time evolution of M .

Ho

M

x’

y’

x

y

S S’

m

Fig. 1. Sketch of the precessional motion of a magnetic moment M around H0 in
the laboratory frame of reference S. The frame of reference S’ rotating around H0

at a frequency ω is also shown. m is the component of M in the xy plane.

This frame of reference is the one (S’) rotating around H0 at a frequency
ω ≡ ω0 (see Fig. 1). In a frame of reference rotating at a frequency ω around
ẑ, the magnetic moment is observed to precess around an effective field He =
(H0 − ω/γ)ẑ′. This effective field vanishes for ω = ω0 so that M no longer
precesses in S’. Then any time-dependent perturbation at a frequency ω →
ω0 (time-independent in S’) would produce significant effects on the time-
evolution of M . For instance, let us consider the effect of a small RF field H1

rotating at frequency ω perpendicular to H0, corresponding to a static field
along x̂′ in S’. Then in S’ the magnetic moment will precess around (see Fig.
2)

He = (H0 −
ω

γ
)ẑ′ +H1x̂′

and for ω = ω0 M will precess just around H1, at a frequency ω1 = γH1.
Then one realizes it is convenient to analyze the time evolution of nuclear
magnetization in a frame of reference rotating at ω0 and, as we shall see later
on, the detected NMR signal is indeed the one in the rotating frame S’.

For ω = ω0 the RF field will drive M away from the ẑ axes by an angle
α(t) given by

cos(α(t)) = 1 − 2sin2(
ω1t

2
) . (1)

Hence even a very small perturbation can drive the magnetization away from
the H0 axes, provided that its frequency is very close (ω1 � |ω − ω0|) to
Larmor frequency. This is the classical description of the resonance process,
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Ho//z//z’

M

x’

Ho+ω/γ

H1

He

θ

α

Fig. 2. Sketch of the time-evolution of M in S’. The magnetic moment precesses
around an effective field He which for ω = ω0 coincides with H1. Notice that H0

and ω have opposite orientation.

which is the analogue of the resonance absorption driven by the magnetic-
dipole transition mechanism, namely the one induced by the perturbation
H1(t) = −γh̄H1(t) of the Zeeman hamiltonian H0 = −γh̄H0. If, for simplic-
ity, we refer to a spin I = 1/2 the energy level diagram is the one reported
below where the notation |2mI > for the eigenstates is used.

|+>

|- >
I=1/2

E±= ±γħH0/2

ħω0

Fig. 3. Energy level diagram for a spin I = 1/2 in a magnetic field H0 and illus-
tration of the transition induced by the RF field at frequency ω0.

One can estimate the expectation value

< Iz >= (1/2)(p+ − p−),

with p+ and p− the probability to find the spin in state |+ > and |− >,
respectively. Since p+ + p− = 1 one has

p− =
1 − 2 < Iz >

2

Then, if at t = 0 p+ = 1 and p− = 0 (i.e.I ‖ H0), at time t (see Eq. 1 for
comparison)
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p−(t) =
1
2
(1 − cosα(t)) = sin2ω1t

2
for ω = ω0. This equation corresponds to the well known Rabi equation giving
the probability to pass from state |+ > to state |− >.

0 1 2 3 4 5

-0.5

0.0

0.5

1.0

<I
z
(t)>

p
-
(t)

t (π/ω
1
)

ππ/2 RF /2 RF pulsepulse ππ RF RF pulsepulse

Fig. 4. Time evolution of p−(t) and of < Iz >. It is pointed out that if the RF field
is switched off after a time π/2ω1 < Iz > is zero, namely the spin expectation value
has turned by π/2, from parallel to perpendicular to z. Then one says that a π/2
pulse was applied. In general, to turn by an angle θ < I > one has to apply an RF
pulse of duration θ/ω1.

After a RF pulse (a π/2 pulse for example (see Fig. 4)) one can detect, with
the same coil used to apply the RF, the voltage induced by the time evolution
of nuclear magnetization. According to Faraday-Maxwell’s law this voltage is
proportional to the precessional frequency in the laboratory frame of reference
S and to the nuclear in-plane magnetization < Mx,y(t) >. The signal detected
by the coil in S can be transformed into the one in S’ by mixing it with a
reference signal oscillating at ω0 (e.g. cos(ω0t)). The low-frequency signal at
the output of the mixer is the one detected in pulsed NMR experiments, the
so-called FID (free induction decay) signal. The bloch scheme of a typical
pulsed NMR spectrometer is equivalent to the one of an MRI spectrometer
(see Fig. 10 in the chapter by Lascialfari and Corti in this book), except for
the pulsed gradient unit.
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2 Time-evolution of nuclear magnetization and the
Bloch equations

So far we have just considered the time evolution of a single spin. However, in
general experiments are performed on a sample containing a statistical ensem-
ble of nuclear spins and hence one has to consider how the statistical average
of the spin components, namely the components of the nuclear magnetization,
evolve in time. Then one can write for the statistical average

< Ix,y,z >=
∑
m

< m|Ix,y,z|m >
e−Em/kBT

Z

with |m > eigenstates of H = −γh̄IzH0. For simplicity, if one considers an
ensemble of nuclei with I = 1/2 in a magnetic field H0 one finds

< Iz >=
1
2
e−γh̄H0/2kBT − eγh̄H0/2kBT

e−γh̄H0/2kBT + eγh̄H0/2kBT

and
< Īx,y >= 0 .

Notice that for a single spin < Ix,y > is non-zero, while its average value is
zero owing to the random phase of the x, y components of the spins. In general
one can calculate the average statistical value starting from the density matrix
ρ = exp(−βH)/Z, with Z the partition function. Then

< Iz(t) >= Tr{ρ(t)Iz}

where the time evolution of ρ(t) is given by

dρ

dt
=
i

h̄
[ρ,H]

Consider now the experimental configuration introduced in the previous sec-
tion, where H0 ‖ ẑ and the RF field H1 was perpendicular to it. Then
H = H0 + H1(t), where H1 = −γh̄H1Ix can be treated as a perturbation of
H0 = −γh̄H0IZ . Then one finds that

< My(t) >= M0sin(ω1t)

in the rotating frame. Again we observe that if the RF field is applied at a
frequency ω0 in S’ < M(t) > precesses just around H1.

Although in certain cases it is rather simple to describe the time evolution
of < Mx,y(t) > in general, when one has to consider all hyperfine interactions
present in a sample, this problem can become rather cumbersome. Therefore,
it is convenient to consider the phenomenological equations devised by Bloch
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[4] to describe the time evolution of the components of the nuclear magneti-
zation in the lattice 1:

dMz

dt
= γ(M × H0)z +

M0 −Mz

T1

dMx,y

dt
= γ(M × H0)x,y − Mx,y

T2

Here two characteristic decay times have been introduced: T1 the spin-lattice
relaxation time and T2 the spin-spin relaxation time. T1 describes the time
evolution of Mz and is therefore directly related to the modifications in the
population of the Zeeman levels, which can occur after the exchange of energy
with the lattice excitations. The decay of Mx,y occurs in a time T2, which
is not only affected by the processes involved in the spin-lattice relaxation,
but also by other processes which do not imply an exchange of energy with
lattice excitations. For instance, as we shall see later on, the nuclear dipole-
dipole interaction yields a spread in the resonance frequencies of the nuclei and
accordingly a dephasing of the in-plane components of each nuclear moment
takes place, yielding a decrease in Mx,y.

It is interesting to treat the resonance absorption starting from Bloch
equations. Let us consider the effect of an RF field H1 � H0. Then one has
to replace in the above equations H0 with

H = H1(x̂cos(ωt) − ŷsin(ωt)) +H0ẑ

For a negligible RF field, namely γH1 � 1/
√
T1T2, so that the magnetization

Δω

χ”

χ’

Fig. 5. Real (χ′(ω)) and imaginary (χ′′(ω)) parts of the nuclear dynamical spin
susceptibility.

is only slightly tilted from the z axes (i.e. Mz �M0), by considering solutions
1 From now on we shall indicate the components of nuclear magnetization with

Mx,y,z =< Mx,y,z >.
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of the form Mx = mcos(ωt+ φ) and My = −msin(ωt+ φ) one finds that the
in-plane component of the magnetization (the one which can be detected with
a coil in the xy plane)

m � ω1M0T2√
1 + (ω − ω0)2T 2

2

.

If one derives the in-plane components of the magnetization oscillating in
phase and out of phase by π/2 with the RF field, one can estimate the real
and imaginary part of the nuclear spin susceptibility. One finds:

χ′(ω) =
M0

H0

ω0(ω0 − ω)T 2
2

1 + (ω0 − ω)2T 2
2

,

χ”(ω) =
M0

H0

ω0T2

1 + (ω0 − ω)2T 2
2

,

the dissipative part of the nuclear spin susceptibility is a Lorentzian of width
1/T2 centered around ω0. In other words there is a peak in the absorption of
the RF field at the Larmor frequency, which is spread over a certain width
determined by the nuclear spin-spin relaxation time.

3 NMR spectra

When the sample under investigation is placed into the coil one observes a
change in the inductance to

L = L0[1 + 4πχ(ω)]

and a corresponding variation of the resistance by

ΔR = L0ω4πχ” .

Then one can estimate that the average power adsorbed by the nuclei

P (ω) =
1
2
ωH2

1χ”(ω)V ,

where V is the sample volume. For ω = ω0, by recalling the expression derived
for χ” in the weak field limit, one would find

P (ω0) =
1
2
ω2

0H
2
1χ0V T2

So, one can derive directly χ”(ω) from the power adsorbed by the circuit.
Indeed, in CW NMR one directly detects χ”(ω).

Since the spacing between adjacent hyperfine levels is not the same for all
nuclei it is convenient to introduce a distribution function f(ω)dω giving the
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CW NMR χ”(ω)

Pulsed NMR S(t)
FT

Δω

χ”

χ’

Fig. 6. Schematic illustration of the equivalence of the NMR spectra derived from
CW NMR and from pulsed NMR spectroscopies after performing the Fourier trans-
form (FT) of the FID signal.

fraction of nuclei with a resonance frequency between ω and ω+ dω. One can
show that the energy adsorbed per unit time by the nuclei is

P (ω) =
χ0

2
ωω0H

2
1f(ω)2π

If we now compare the above equation with the expression previously
derived for P (ω) one finds that

χ”(ω) = 2πf(ω)ω0χ0

Then the signal detected in a CW NMR experiment, directly proportional
to P (ω), is proportional to χ”(ω) and gives the number of nuclei which are
resonating with frequency between ω and ω+dω, namely the NMR spectrum
f(ω). On the other hand, by resorting to the fluctuation-dissipation theorem,
one can show that

f(ω) ∝ χ”(ω) =
ω

kBT

∫ ∞

0

eiωt < Mx(t)Mx(0) > dt

namely, the NMR spectrum is the Fourier transform at frequency ω of the
correlation function for the transverse components of the nuclear magnetiza-
tion, proportional to the signal measured in the pulsed NMR experiment (see
Fig. 6).

4 Moment expansion of the NMR signal

In order to establish a priori the shape of the NMR spectra or of the FID
signal one has to consider all the interactions acting on the nuclei. The nuclear
hyperfine hamiltonian can be written in the form

H = HZ + Hn−n + Hn−e + HEFG
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Ho

M

x’

y’

S(t)∝ cos(ω0t)G’(t)

χ”(ω) ∝ FTω{cos(ω0t)G’(t)}

S(t)∝ G’(t)

χ”(ω-ω0) ∝ FT{G’(t)}

cos(ω0t)

Ho
M

x

ym

Fig. 7. Schematic view of the passage from the laboratory (left) to the frame of
reference rotating at frequency ω0. At the top the effect on the FID signal after
a π/2 pulse is shown. The signal detected in the laboratory frame is transformed
into the one in the rotating frame of reference by mixing it with a reference signal
proportional to cos(ω0t). Then the difference in the expressions for the FID signal
s(t) and NMR spectra are shown. Finally, at the bottom, the vectorial illustration
of the magnetization in the two reference frames is shown.

where the first term is the Zeeman-like interaction with H0

HZ = −γh̄
∑

i

Ii
zH0 .

Hn−n is nuclear dipole-dipole interaction, Hn−e describes the interaction be-
tween the nuclear and electron spins, while HEFG is the quadrupole hamil-
tonian associated with the interaction of the nuclear quadrupole moment Q
(non-zero for I > 1/2) with the electric field gradient (EFG) generated by the
charge distribution around the nucleus.

Let us consider for simplicity just the first two terms of the hyperfine
hamiltonian. Then

H = −γh̄H0

∑
j

Ij
z +

∑
j<k

h̄2γ2

r3jk

(
IjIk − 3

(Ijrjk)(Ikrjk)
r2jk

)
.

It is convenient to write the nuclear dipole-dipole hamiltonian in the form

Hn−n =
∑
j<k

h̄2γ2

r3

(
A+B + C +D + E + F

)
jk
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with
Ajk = Ij

zI
k
z f(θ, φ) ΔmT = 0

Bjk = −(Ij
+I

k
− + Ij

−I
k
+)
f(θ, φ)

4
ΔmT = 0

Cjk = (Ij
zI

k
+ + Ij

+I
k
z )g(θ, φ) ΔmT = 1

Djk = C∗
jk ΔmT = −1

Ejk = (Ij
+I

k
+ + Ij

+I
k
+)h(θ, φ) ΔmT = 2

Fjk = E∗
jk ΔmT = −2

rjk

φ

θ
k

j

H0//z

x

y

Since HZ � Hn−n only the terms of Hn−n that commute with HZ will
to the first order contribute to the time evolution of nuclear magnetization,
namely the A and B terms. Then one has that the FID signal in the laboratory
frame is given by

G(t) = cos(ω0t) < M ′
x(t)Mx(0) >

where

G′(t) =< M ′
x(t)Mx(0) >= Tr{eiH′

n−nt/h̄Mxe
−iH′

n−nt/h̄Mx}

with

H′
n−n =

∑
j<k

h̄2γ2

r3jk

(
A+B

)
jk

In the frame of reference rotating at frequency ω0, the FID is directly given
by G′(t). Namely we have removed the term cos(ω0t) which was just describ-
ing the precessional motion around H0. Once more one realizes that if we
work in the rotating frame we probe just the time-evolution of the nuclear
magnetization due to the microscopic interactions within the sample.

For γ2h̄t/r3 < 1 one can write

G′(t) = G′(0)[M0 + M2
t2

2
+ M4

t4

4!
+ ....] ,
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where here Mn represents the nth moment of the NMR spectrum in the
rotating frame (∝ FT{G′(t)}). The second moment, for example, is given by

M2 = −Tr{[H
′
n−n, Ix]2}

Tr{I2
x}

By writing H′
n−n in polar coordinates one finds

M2 = γ4h̄2 I(I + 1)
3

∑
k

(
3
2

1 − 3cos2(θk)
r3k

)2

Thus, one realizes that by deriving M2 from the FID signal one can estimate
in a rather precise way the interatomic distances, for example.

If one considers the dipolar interaction with nuclei S of a different species
one finds

M2 =
4
9
γ2

Iγ
2
S h̄

2S(S + 1)
3

∑
j<k

(
3
2

1 − 3cos2(θjk)
r3jk

)2

It has be remarked that nuclear spins can interact also through and indirect
coupling mediated by electron spins, usually much weaker than the classical
one described above, of the form

Hind
n−n = JIiIj

with J a scalar. This interaction is of major relevance in high resolution NMR
spectroscopy and is responsible for the appearance of multiplets formed by
2(n − 1)I + 1 lines, where n is the number of interacting nuclei of the same
species. On the other hand, in certain cases, when the hyperfine coupling with
electron spins is quite large, an indirect interaction (with J a tensor) larger
than the direct one can be observed. Such a scenario occurs in the cuprates,
for example [5].

5 Electron-nucleus hyperfine interaction

Let us now consider the interaction with the electron spins, which can often
be written in the form

Hn−e = −γh̄
∑
i,k

IiÃikSk

with Ãik the hyperfine coupling tensor. Then, there will be an hyperfine field
at the i-th nucleus given by hi =

∑
k ÃikSk. If the electron spins have a

non-zero average polarization < S > then the local field probed by the nuclei
will be hi =

∑
k Ãik < Sk > and one can directly estimate < S > from the
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Fig. 8. Temperature dependence of 63Cu 1/2 → −1/2 zero-field resonance frequency
in the antiferromagnetic phase of YBa2Cu3O6.05 vs. temperature. The resonance
frequency is directly proportional to the order parameter, namely to the thermal
average of Cu2+ spin < S > [6].

resonance frequency in the local field. When an external field is applied the
nuclei will experience a magnetic field

H = H0 +
∑

k

Ãik < Sk >

and the resonance frequency will be shifted to

ω = ω0(1 + Δ̃K)

with

Δ̃K =
∑

k Ãk < Sk >

H0
.

Then one can write that Δ̃K =
∑

k Ãkχ(q = 0, ω = 0) and one notices
that from the shift of the NMR resonance spectrum one can derive the static
uniform susceptibility associated with those electron spins which interact with
the nuclear ones. Another contribution to the shift, usually smaller than the
one involving the electron spins, arises from the screening of the magnetic field
by the electrons on the ligands and by the core electrons. This shift depends
significantly on the chemical bonding around the nuclei and for this reason is
called chemical shift.

The electric quadrupole hamiltonian describing the interaction between
the nucleus quadrupole moment Q and the EFG tensor Ṽ generated by the
charge distribution around the nucleus is

HEFG =
∑

i

e2QVZZ

4I(2I − 1)

(
3(Ii

z)
2 − I(I + 1) +

η

2
[(Ii

+)2 + (Ii
−)2]

)



A short introduction to Nuclear Magnetic Resonance 15

ω0 ω0
ω0ω0

ω0(1+ΔK)

I=3/2

m=-3/2

m=-1/2

m=1/2

m=3/2

Zeeman +    n-n      +       n-e       +    quadrupole

Fig. 9. Schematic illustration of the modifications in the hyperfine levels of I =
3/2 nuclei, due to the different terms of the nuclear hyperfine hamiltonian. The
corresponding modifications in the NMR spectra are reported at the bottom of the
figure.
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Fig. 10. The shift of 29Si NMR frequency in MnSi is reported as a function of the
macroscopic susceptibility measured with a SQUID magnetometer. The slope of the
plot directly yields the hyperfine coupling, while the intercept gives the chemical
shift (almost negligible here).

where VZZ is the main component of the EFG tensor written in the frame of
reference of its principal axes (X,Y and Z)
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η =
VXX − VY Y

VZZ
with |VZZ | ≥ |VY Y | ≥ |VXX |

is the EFG tensor asymmetry parameter. If this is the only relevant hyperfine
interaction the degeneracy between the spin components is partially resolved
(Fig. 11) and one can induce transitions between the hyperfine levels by irra-
diating the nuclei at a frequency

νQ =
3eVZZQ

h2I(2I − 1)
(1 +

η2

3
)1/2 .

This resonance frequency is extremely sensitive to the symmetry of the charge
distribution around the nuclei and hence to the presence of lattice distortions,
as shown in Fig. 11.

ωQ

I=3/2

m=±3/2

m=±1/2

Fig. 11. At the top a schematic illustration of the transitions involved in an NQR
experiment on I = 3/2 nuclei is presented. In the lower part of the figure 63,65Cu
(I = 3/2) NQR spectrum in Cu8 molecular ring is shown. It is evidenced that
although in principle all Cu sites should be equivalent, a difference is present at the
microscopic level, possibly associated with a lattice distortion [7].

When both Zeeman and quadrupole interactions are present the eigenval-
ues will depend on the orientation of the magnetic field with respect to the
EFG principal axis. Then, in a powder sample there will be a distribution
of possible orientations and of resonance frequencies. Therefore, the NMR
powder spectra can become very broad if the quadrupole interaction is size-
able. The powder spectrum f(ν) can be estimated from the number of nuclei
resonating at frequency ν which, for instance if η = 0, is simply given by
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f(ν) ∝ sin(θ(ν))/(dν/dθ) (θ is the polar angle defining the orientation of H0

with respect to Z in the XYZ frame of reference).

6 Effect of the motions on the NMR spectra

Due to the time dependence of the hyperfine hamiltonian one can observe a
modification in the NMR spectra. Let us consider a rather standard situation
where the rigid lattice NMR spectrum is a Gaussian and the local field at the
nuclei is fluctuating. Then the FID signal is given by

G′(t) ∝ Tr{eiH′
P t/h̄Ixe

−iH′
P t/h̄Ix}

where H′
P (t) is the time-dependent hamiltonian which can be considered as a

perturbation of the Zeeman hamiltonian. Suppose that the time-dependence
is induced by fluctuations of the local field at the nucleus (for example due to
molecular motions, spin fluctuations, ionic diffusion, flux lines lattice motion
in a superconductor, etc...). Then one can write

H′
P (t) = −h̄

∑
i

Ii
zΔωi(t) = −h̄γ

∑
i

Ii
zh

i
z(t)

where Δωi(t) describes the fluctuations in the resonance frequency of the i-th
nucleus. If we consider a stationary gaussian distribution for the fluctuations
with a mean-square amplitude < Δω2 >, then one finds that

G′(t) = G′(0)exp
(
− < Δω2 >

∫ t

0

(t− τ)g(τ)dτ
)

(2)

where g(τ) =< Δω(t + τ)Δω(t) > / < Δω2 > is the normalized correlation
function describing the fluctuations of the resonance frequency.

Now one can introduce the corresponding correlation time

τc =
∫ ∞

0

g(τ)dτ

which describes the characteristic decay time for g(τ). Without making any
assumption on the analytical form of g(τ) one can distinguish two limiting
cases:

a) Slow motions regime. The correlation time is extremely long and the
FID is recorded over a time t� τc. Then in Eq. 2 one can set g(τ) � g(0) � 1,
so that

G′(t) � G′(0)e−<Δω2>t2/2

namely a Gaussian decay, as it has to be expected since we have assumed a
rigid lattice Gaussian spectrum with a second moment < Δω2 >.
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b) Fast motions regime. The FID signal is recorded over a time t � τc.
Then one can set the upper limit of the integral in Eq. 2 to ∞ and neglect τ
with respect to t, since g(τ) has already vanished over the time t. Then

G′(t) � G′(0)e−<Δω2>tτc = G(0)e−t/T ′
2

where
1
T ′

2

=< Δω2 > τc = γ2

∫ ∞

0

< hz(t)hz(0) > dt

is the relaxation rate of the FID signal, namely of the transverse magne-
tization. One observes that now the FID decay is exponential and thus the
corresponding NMR spectrum is a lorentzian with full width at half maximum
equal to 1/T ′

2. Upon decreasing τc the linewidth decreases and one observes
the motional narrowing of the NMR line.

If g(τ) = exp(−τ/τc) then one can write

G′(t) = G′(0)e−<Δω2>τ2
c [exp(−t/τc)−1+(t/τc)]

which nicely interpolates between fast and slow motions regime.

7 The spin echo

In general one observes that the decay of the FID signal is affected not only by
intrinsic effects but also by extrinsic effects as magnetic field inhomogeneities
associated, for example, with a distribution of paramagnetic shifts or simply
to the inhomogeneity of the magnetic field generated by the magnet over the
sample volume. Then one has an additional contribution to the decay of the
FID, namely

G(t) = G(0)exp(−t/T ′
2)exp(−γΔHt) = G(0)exp(−t/T ∗

2 )

with ΔH the magnetic field distribution. Sometimes T ∗
2 can be so short that

it is not even possible to record the FID signal. To avoid this problem one
can resort to the spin-echo technique. Let us suppose that the magnetic field
distribution is static and we apply the pulse sequence in Fig. 12.

The effect of the π RF pulse is to reverse the time evolution of the in-plane
components of the nuclear spins. So, one observes that the dephasing of the
spins during the first half of the sequence (between 0 and t) is recovered in the
second half, after the π pulse, and the in-plane magnetization recovers at 2t
and produces an echo signal. It is evident that the refocussing of the nuclear
spins can occur as far as the resonance frequency of each nucleus during the
first half and the second half of the pulse sequence is the same.

As an illustrative example let us consider what happens if the magnetic
field is changed at time t, when the π RF pulse is applied. This is done,
for example, in a controlled way in a spin-echo double resonance (SEDOR)



A short introduction to Nuclear Magnetic Resonance 19

y’

y’

x’

z’

M0 exp(-t /T2)

t

ττ

FID
T2

*

ECHO

π/2 π

z’

y’

x’

H1(π)
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Fig. 12. Schematic representation of the motions of the nuclear spins generating
the echo signal upon application of a sequence of π/2 and π RF pulses. It is shown
how the FID signal after the π/2 pulse decays in a rather short time T ∗

2 owing
to the dephasing of the nuclear spins. An echo is formed at time 2t thanks to the
refocussing of the spins after the π RF pulse. The decay of the echo occurs over a
time T2 ≥ T ∗

2 . It should be remarked that with pulse techniques, by switching the
phase of the RF field it is possible to apply the second pulse (at time t) along a
direction different from the one of the first pulse at t = 0 (e.g. from x to y in the
rotating frame).

experiment, where at time t one applies a π pulse also on the nuclei S which
are coupled to I nuclei through a HIS = aI.S. The π pulse on S yields a
change in the resonance frequency of the I nuclei during the second half.
Accordingly a decrease in the echo signal of the I nuclei is detected and the
coupling between the two nuclear species is estimated.

Let us now consider the more general situation where the magnetic field
fluctuations are described by a gaussian stationary distribution function. If
now one calculates the dephasing of the nuclear spins between the π/2 and π
(0 − t) pulse and then between the π pulse and the echo (t− 2t) one derives
that the echo amplitude at time 2t is given by

E(2t) = E(0)exp
(
− < Δω2 >

[
2
∫ ∞

0

(t− τ)g(τ)dτ −
∫ t

0

τg(τ)dτ−

−
∫ 2t

t

(2t− τ)g(τ)dτ
])

.

Without making any assumption on g(τ), in the fast motions regime
(
√
< Δω2 >τc � 1) one finds that
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E(2t) = E(0)e−<Δω2>τc2t = E(0)e−2t/T ′
2

namely the echo decays with the same characteristic time of the FID. In the
very slow motions regime, i.e.

√
< Δω2 >τc � 1 the echo sequence allows to

rephase completely the nuclear magnetization and then

E(2t) → E(0) .

On the other hand, if
√
< Δω2 >τc � 1 one finds

E(2t) = E(0)e−
<Δω2>(2t)3

3τc

If g(τ) = exp(−τ/τc) one can derive an expression valid in any limit [8]

E(2t) = E(0)exp
(
− < Δω2 > τc[2t− τc(1 − exp(−t/τc))(3 − exp(−τ/τc))]

)
One notices that if

√
< Δω2 >τc � 1 the decay of the echo amplitude

can be quite fast. After a time 2t the echo would have decayed by a factor
exp(−< Δω2 > (2t)3/3τc). What happens if during the time 2t we apply n
π pulses separated by a shorter delay 2t′, so that 2t � 2nt′ (see figure be-
low)? Then, after every π pulse there will be a decay of the echo by a factor
exp(−< Δω2 > (2t′)3/3τc) and after n π pulses by

exp(−< Δω2 > n(2t′)3

3τc
) � exp(−< Δω2 > (2t)3

3τc
)

Hence the effect of the motions on the decay of the echo amplitude is signif-
icantly reduced. This particular echo sequence was first introduced by Carr
and Purcell [9].

t

2t

M exp(-t /T )

Fig. 13. Carr-Purcell sequence with Meiboom-Gill phase alternation. The π pulses
are generated by an RF field which in S’ is alternatively along +x′ and −x′.
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8 Nuclear spin-lattice relaxation rate

As we have seen in Bloch equations the longitudinal component of nuclear
magnetization relaxes back to its equilibrium value, determined by the tem-
perature of the lattice, with a characteristic relaxation time T1. A simple RF
pulse sequence which allows one to determine T1 is shown in Fig. 14. After
flipping the magnetization along x′ with a π/2 pulse one waits for a delay τ
and then applies a second π/2 pulse. The second π/2 will flip back along x′

the fraction of magnetization which during the time τ has relaxed back to
equilibrium. One can repeat the same experiment for different τ values and
then derive T1.

t

τ

π/2 π/2

x’

z’

x’

z’

x’

z’H1//y’

Mz(τ)

Excite Read

Mz(τ)> 0

|+>

|->

|+>

|->

After π/2 After τ

Mz(τ=0)= 0= N+-N-

W±

Fig. 14. (Top) Example of a simple RF pulse sequence used to measure the re-
covery of Mz(τ). The first π/2 turns the magnetization into the xy plane and the
second pulse reads the amount of magnetization Mz(τ) which has relaxed back to
equilibrium during the delay τ . The experiment is repeated for several values of τ
to derive the recovery law of the magnetization. (Bottom) The effect of the first π/2
pulse on the statistical population on the hyperfine levels and its modification after
τ are reported.

The recovery of nuclear magnetization towards equilibrium is determined
by the transition probability among the hyperfine levels associated with the
time-dependent part of the hamiltonian, namely by the lattice excitations.
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The effect of the previous pulse sequence on the longitudinal magnetization
can also be understood from the analysis of the statistical populations on the
hyperfine levels (see Fig. 14). In fact, if we consider for simplicity nuclei with
I = 1/2, then Mz(τ) ∝ N+ − N−, the difference of population between the
two levels.

In general for nuclei with spin I one has 2I+1 states and one has to solve
a system of 2I + 1 differential equations

dNm

dt
=

∑
n�=m

(NnWnm −NmWmn)

to derive the time evolution of the population difference between the levels
which are being irradiated. For the simple case of I = 1/2 one finds that

Mz(τ) = Mz(τ → ∞)(1 − e−τ/T1)

or equivalently

y(τ) =
Mz(∞) −Mz(τ)

Mz(∞)
= e−τ/T1

with
1
T1

≡ 2W±

It should be noticed that in order to have spin-lattice relaxation W∓ > W±,
but since usually h̄ω0 � kBT W∓ �W± and one can express T1 just in terms
of one of the two transition probabilities. For I > 1/2 one has to consider
all possible transitions which are driven by the time-dependent part of the
hamiltonian. If the fluctuations are associated with an effective fluctuating
magnetic field (e.g electron spin fluctuations) then just transitions with Δm =
±1 have to be considered in solving the system of differential equations. If the
fluctuations are the ones of the electric field gradient, since HEFG is quadratic
in the spin components, one has to consider also Δm = ±2 transitions. In
general one finds a recovery law for nuclear magnetization

y(τ) =
∑

j

cje
−αjτ/T1

still with 1/T1 = 2W I=1/2
± .

Let us suppose that the time-dependent part of the hamiltonian is associ-
ated with an effective magnetic field fluctuation

HP (t) = −γh̄Ih(t)

which can be considered as a perturbation of the Zeeman hamiltonian. Then,
starting from time-dependent perturbation theory one can express W± in
terms of the correlation function
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g(τ) =< HP (τ)HP (0) >

describing the fluctuations of HP (t). If g(τ) decays with a correlation time
τc � T1 and T1ω0 � 1, conditions which are usually satisfied, then one can
write

1
T1

=
γ2

2

∫ +∞

−∞
eiω0t < h+(t)h−(0) > dt (3)

This fundamental expression shows that 1/T1 is driven by the transverse com-
ponents of the fluctuating field at the nucleus, to comply with magnetic-dipole
selection rules, and that 1/T1 is proportional to the Fourier transform of the
correlation function at the resonance frequency, to comply with energy con-
servation. In other terms 1/T1 probes the spectral density at ω0.
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Fig. 15. Effect of the frequency of the fluctuations on the decay of the FID, of the
echo and on 1/T1. < Δω2 > is the second moment for the amplitude of the frequency
fluctuations. τe is the characteristic time at which the FID or the echo decreases by
a factor e. It has been assumed at the sake of illustration that the Larmor frequency
is 10 times

√
< Δω2 >.

Suppose that < h+(t)h−(0) >=< Δh2
⊥ > exp(−t/τc). Then from Eq. 3

one derives that
1
T1

=
γ2

2
< Δh2

⊥ >
2τc

1 + ω2
0τ

2
c

(4)

One can distinguish three regimes:
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a) Fast motions, ω0τc � 1, then

1
T1

= γ2 < Δh2
⊥ > τc

Then one notices that if the fluctuations are isotropic so that < Δh2
⊥ >= 2 <

Δh2
z > then if ω0τc � 1 and

√
< Δω2 >τc � 1 one finds 1/T1 = 2/T ′

2.
b) Slow motions, ω0τc � 1, then

1
T1

= γ2 < Δh2
⊥ >

1
ω2

0τc

c) ω0τc = 1 then
1
T1

=
γ2

2
< Δh2

⊥ >
1
ω0

and one has a maximum in 1/T1, as it has to be expected since the highest
transition probability would take place when the characteristic frequency for
the fluctuations corresponds to the resonance frequency ω0.

1/
T 1 (

m
s-1

)

T(K)

Fig. 16. Temperature dependence of 7Li 1/T1 in Li2VOSiO4. It is evident that at
temperatures larger than the exchange coupling (� 9 K) the spin-lattice relaxation
rate is temperature independent.

Let us now derive some typical expressions for nuclear spin-lattice relax-
ation rate which apply to some model systems. In a paramagnetic insulator the
fluctuations are associated with electron spin fluctuations h(t) =

∑
i ÃiSi(t).

At high temperature, namely kBT � J (J the exchange coupling among the
spins), the correlation function for the spin components is [10]

< Si
x,y,z(t)S

i
x,y,z(0) >= |Sx,y,z|2e−ω2

et2/2

with ωe = (J/h̄)
√

2zS(S + 1)/3 the Heisenberg exchange frequency. Then
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1
T1

=
γ2

2

∑
i

(
[Ai

xx]2 + ...

)
S(S + 1)

3

√
2π
ωe

,

temperature independent. One notices that as ωe � ω0 (fast motions) 1/T1 ∝
1/ωe and does not depend on ω0.

In general, when collective spin excitations are present one can write

h(t) =
1√
N

∑
q

∑
i

eiqriÃiSq(t)

and by writing the transverse components of h(t) in 1/T1 expression one finds
that

1
T1

=
γ2

2
1
N

∑
q

(
|Aq|2Sαα(q, ω0)

)
⊥
.

Here |Aq|2 is the form factor giving the hyperfine coupling of the nuclei with
the spin excitations at wave-vector q. Sαα(q, ω0) is the component of the
dynamical structure factor at the resonance frequency. The term ⊥ indicates
that one has to consider the products |Aq|2Sαα(q, ω0) associated with the
perpendicular components of the hyperfine field at the nucleus. From the
fluctuation-dissipation theorem, by recalling that usually kBT � h̄ω0 one can
also write

1
T1

=
γ2

2
kBT

h̄

1
N

∑
q

(
|Aq|2

χ”αα(q, ω0)
ω0

)
⊥

One can now introduce the expressions for the dynamical susceptibility of
a certain system and derive the corresponding expression of 1/T1. In a metal
one finds

1
T1

= (
16
3

)2π3h̄2γ2μ2
B(|ψ(0)|2)FSD

2(EF )kBT .

where D(EF ) is the density of states at Fermi level (EF ) and |ψ(0)|2 is the
probability that the electron is at the nuclear site. One observes that 1/T1 is
linear in T , at variance with what was derived for a paramagnetic insulator.
This is a simple evidence of Fermi-Dirac statistics, which tell us that, owing
to Pauli principle, only a fraction � kBT/EF of all electron spins can flip and
cause the relaxation.

In certain cases T1 can be so short to prevent its direct measurement.
However, under certain circumstances it still be possible to estimate it. Let us
call S the spin of the fast relaxing nuclei and I the spin of another species of
nuclei which one can suitably investigate. If S and I spins are coupled through
nuclear dipole-dipole interaction, then the flip of spin S due to TS

1 processes
is detected as a fluctuation of the local field at the I nuclear spin. Namely, one
detects a dynamic with a correlation time τc = TS

1 . This dynamic can manifest
itself on the decay of the echo amplitude, for instance. If

√
< Δω2

I >T
S
1 � 1,

where < Δω2
I > is the second moment of the frequency distribution associated
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Fig. 17. Temperature dependence of 51V 1/T1 in MoVO5 estimated by measuring
the decay rate of 95Mo echo signal [11].

with the nuclear dipole interaction between S and I spins, then the decay of
the echo amplitude of I spins is given by

E(2t) = E(0)e−<Δω2
I >T S

1 2t

and then one can estimate TS
1 .

In pulsed NMR spectroscopy often one looks for the effect of the nuclear
spins of a species S on the spins of another species I. This is the basis of the
double resonance techniques, as the SEDOR one previously mentioned, of the
Overhauser and cross-polarization techniques which allow to transfer polar-
ization between different spin ensembles and of multi-dimensional techniques
which are just a part of the marvellous realm of the nuclear magnetic reso-
nance spectroscopy, which nowadays is employed in many different research
areas [12].
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Introduction

In the last years there has been a great interest in magnetic systems formed by
a cluster of transition metal ions covalently bonded via superexchange bridges,
embedded in a large organic molecule. Following the synthesis and the struc-
tural and magnetic characterization of these magnetic molecules by chemists,
the physicists realized the great interest of these systems as a practical re-
alization of zero-dimensional model magnetic systems. In fact the magnetic
molecules can be synthesized in crystalline form whereby each molecule is mag-
netically independent since the intramolecular exchange interaction among
the transition metal ions is dominant over the weak intermolecular, usually
dipolar, magnetic interaction.
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Magnetic molecules (see Fig.1 for some example systems) can be prepared
now a day with an unmatched variety of parameters: (i) the size of the mag-
netic spin can be varied spanning from high “classical” spins to low “quantum”
spins by using different transition metal ions i.e. Fe3+, Mn2+ (s=5/2), Mn3+

(s=2), Cr3+, Mn4+ (s=3/2), Cu2+, V4+(s=1/2); (ii) the exchange interaction
can go from antiferromagnetic (AFM) to ferromagnetic (FM) with values of
the exchange constant J ranging from a few Kelvins to more than 1000K;
(iii) the geometrical arrangement of the magnetic core of the molecule can
be as simple as a coplanar regular ring of magnetic ions as found in many
Fe and Cr rings to totally asymmetric three dimensional clusters such as
[Fe8(N3C6H15)6O2(OH)12]8+·[Br8·9H2O]8− (in short Fe8); (iv) the symme-
try of the magnetic Hamiltonian can go from isotropic Heisenberg type as in
most cases to easy axis or easy plane. Choosing from this variety of model
systems one can investigate fundamental problems in magnetism taking ad-
vantage of the fascinating simplicity of zero-dimensional systems. Examples
of issues of interest are the transition from classical to quantum behavior, the
effect of geometrical frustration and of symmetry breaking by substitution in
heterometallic rings, the form of the spectral density of the magnetic fluctua-
tions, the spectrum of the low-lying excitations with the connected problem of
quantum spin dynamics and tunneling and the problem of long range magnetic
order due to the weak (dipolar) intermolecular interactions.

NMR has proved to be a powerful tool to investigate both static and dy-
namic properties of magnetic systems. In particular it has been very successful
in addressing some special features in low dimensional magnetic systems. In
molecular nanomagnets there are additional features specific to the finite size
of the system which require the development of novel models and theories to
interpret the data.

In the first lecture we will mention some of the problems encountered
in doing NMR in molecular nanomagnets. These are related for example to
the presence of many non equivalent nuclei, to very broad and structured
resonance lines, to very short relaxation rates, to vanishingly weak signals.
Following this we will discuss the static magnetic properties which can be
extracted from the measurements of the NMR spectra. The hyperfine inter-
action of nuclei with the magnetic moments in the cluster offers an unique
tool to determine the local spin moment configuration and distribution in the
nanomagnet. The subsequent four lectures will discuss the information that
one can obtain from the nuclear relaxation measurements. These lectures will
be organized somewhat arbitrarily according to the temperature range. In fact
the physical issues regarding the magnetic properties and the spin dynamics
of the molecular nanomagnets depend on the relative ratio of the thermal
energy kBT and the magnetic exchange energy J. At high T the individual
magnetic ions in the molecule behave as weakly correlated paramagnetic ions;
at very low T the individual spins are locked into a collective quantum state
of total spin S; at intermediate T the interacting spins develop strong correla-
tions in a way similar to what happens in magnetic phase transitions in three
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dimensional systems. In the illustration of the physical issues encountered in
the different temperature ranges we utilize the most representative results for
different kind of molecules.

Fig. 1.

1 General features of NMR in molecular nanomagnets.
NMR spectra and hyperfine interactions

1.1 General features of NMR in molecular nanomagnets

Molecular nanomagnets offer a wide variety of nuclei which can be used to
probe the magnetic properties and the spin dynamics. Most of the measure-
ments were done on proton NMR. In this case the signal is very strong but
the width of the spectrum and the presence of many inequivalent protons in
the molecule require some special attention in the analysis of the results. Due
to the above reasons the recovery of the nuclear magnetization was found in
many cases to be strongly non exponential. There are two sources for non
exponential recovery. The first is due to incomplete saturation of the broad
NMR spectrum which leads to an initial fast recovery of the nuclear magneti-
zation due to spectral diffusion. If the spectrum is not too wide (at most twice
the spectral width of the rf pulse) one can still saturate the whole line by using
a sequence of rf pulses provided that the condition of T1 much longer and T2

much shorter than the pulse spacing can be met. In nanomagnets with mag-
netic ground state like [Mn12O12(CH3COO)16(H2O)4] (in short Mn12) and
in Fe8 the proton spectrum can be as wide as 4MHz and structured at low
temperature. In this case the spectrum has to be acquired by sweeping the
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field and/or the frequency and plotting the amplitude of the echo signal after
proper correction for changes of irradiation conditions. In this case the relax-
ation can only be measured at given points of the spectrum and the spectral
diffusion effect cannot be avoided. One can try to establish the percentage of
the fast initial recovery which is affected by spectral diffusion and exclude that
from the measurement but a large systematic error can still be unavoidable.
The second source of non exponential recovery is due to the presence in the
molecule of protons having a different environment of magnetic ions and thus
having a different relaxation rate. If T2 is fast compared to T1 then a common
spin temperature is achieved during the relaxation process and the recovery is
exponential with a single T1

−1 which is a weighted average of the rates of the
inequivalent protons in the molecule. In the opposite limit encountered when
T1 is comparable to T2 each nucleus or group of nuclei relax independently
with its own spin temperature and the recovery of the nuclear magnetization
results in the sum of exponentials:

n(t) = [M(∞) −M(t)]/M(∞) = Σipiexp(−t/T1i) (1)

If there is a continuous distribution of T1’s the recovery follows a stretched
exponential function exp(-(t/T1*)β) where β< 1 is the smaller the wider is the
distribution and T1

∗ is a relaxation parameter related to the distribution of
T1’s in a non trivial manner. When the recovery is non exponential it is best
to measure the T1 parameter from the recovery of the nuclear magnetization
at short times. In fact the slope at t→0 of the semilog plot of n(t) vs t yields
an average relaxation rate T1

−1 = Σ i pi exp(-t/T1i). Unfortunately, in most
cases the situation is intermediate between the two above limiting cases. In
this circumstance there is no simple way that one can define a spin-lattice
relaxation parameter. Since in many instances one is interested in the relative
changes vs T and H one can simply define an effective relaxation parameter
R by taking the time at which the recovery curve n(t) reduces to 1/e of the
initial value.
Other isotopes which have been utilized for NMR studies of magnetic molecules
include 2H, 13C, 7Li, 23Na, 63,65Cu. The disadvantage of a weaker signal in
13C is in part compensated by the advantage of having a nucleus with strong
hyperfine coupling to the magnetic ions and with less number of inequivalent
sites with respect to protons. For the remaining quadrupole nuclei there is the
additional information obtained by the quadrupole coupling with the electric
field gradient. When the quadrupole interaction is sufficiently strong to re-
move the satellite transition from the central line the non exponential decay
of the nuclear magnetization becomes very difficult to analyze because besides
the non equivalent sites one has to take into account the intrinsic non expo-
nential decay due to unequal separation of the Zeeman levels. The 63,65Cu
case is the only one where, to our knowledge, a pure NQR experiment has
been performed in molecular clusters (i.e. [Cu8(dmpz)8(OH)8] · 2C6H5NO2,
in short Cu8). The NQR spectrum was found to contain several lines in the
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frequency range 16-21MHz.
Very useful information were obtained from the 55Mn and 57Fe NMR in Mn12
and Fe8 clusters respectively. The NMR of the above nuclei can be observed
only at low temperature (T< 4K) since with increasing temperature the relax-
ation times T1 and T2 become too short. The 55Mn and 57Fe (in isotopically
enriched sample) NMR were detected both in zero field and in an externally
applied field. The zero field 55Mn NMR spectrum in Mn12 consists of three
quadrupole broadened lines (i.e. each several MHz wide) in the frequency
range 230-370 MHz while the 57Fe NMR spectrum in Fe8 is made of eight
different lines rather narrow (i.e. 100 kHz) in the frequency range 63-73 MHz.
Both Mn12 and Fe8 are ferrimagnetic molecules at low temperature. How-
ever, since there are no domain walls and the anisotropy is very high no signal
enhancement due to the rf enhancement in domain walls and/or domains is
present contrary to normal ferro or ferri magnetic long range ordered sys-
tems. As a consequence the NMR signal intensity in zero external field is
small (particularly in Fe8) even at low temperature since the frequency range
of the overall spectrum is quite broad.

1.2 NMR spectra and hyperfine interactions

The local magnetic properties can be obtained from the NMR spectra since
the nuclei are coupled to the electronic moments via the hyperfine interac-
tions. The local field at the nuclear site is given by the sum of dipolar fields
and contact fields: H int=H dip+ H contact = I· A· S + B I· S. The NMR

Fig. 2.

resonance frequency is given by νres = γ |H+Hint|. If the molecular nano-
magnet is at sufficiently high temperature, namely kBT � J , then the mag-
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netic system behaves as a normal paramagnet and one has that the local field
is proportional to the local spin polarization i.e. the product of the magnetic
susceptibility times the external field: H j

int ∝ Σk Ajk 〈 Sk 〉 ∝ 〈 S 〉∝ χ H.
If the dominant hyperfine interaction is dipolar as is the case of protons in
molecular nanomagnets then the averaging over all proton sites and over all
particle orientations results in a broadening of the line proportional to both
the external field and to the magnetic susceptibility. This is shown in Fig.3 for
the case of proton NMR in the molecular cluster Fe30 which has a very low
J value (of order of 1K). The slope of the plot of the full width at half max-
imum (FWHM) vs H yields the product of the magnetic susceptibility times
the average hyperfine interaction constant. In the graph below the slope is
much larger at low T where the susceptibility is larger. If the susceptibility
is known one can obtain information about the size of the dipolar hyperfine
interaction. At low temperature the fluctuation time of the local spin becomes

Fig. 3.

progressively longer as a combination of the onset of correlation among spins
due to the magnetic interaction and of the ‘freezing’in the direction of the
crystal field anisotropy and/or of the external magnetic field. The local field
Hint= g 〈s〉 A is seen as static by the resonant nucleus if the fluctuation time
is longer than the inverse interaction energy (in frequency units) τ � A−1. In
this case the NMR of the nucleus can be observed, in principle, also in absence
of an applied magnetic field and from the relation νres = γ(H + g 〈s〉 A) one
can obtain a direct information on the local spin density 〈s〉 if the hyperfine
constant A can be either calculated or measured independently. For example,
at very low T (≤ 4K) both the NMR of 55Mn in Mn12 and the NMR of 57Fe
in isotopically enriched Fe8 can be detected in zero external field. In the case
of Fe8 eight different lines where observed in zero field spanning over a wide
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frequency range (63-73 MHz)(see Fig.4). The different resonant frequency of
the eight lines was interpreted as due primarily to a different local spin density
of the eight Fe3+ ions in the molecular nanomagnet. The hyperfine constant
A is dominated in this case by core polarization effects which create at the
nuclear site a local field directed opposite to the polarization of the transition
metal d electrons. From the formula H int=A〈s〉 and from the estimated
theoretical value A= -126 kOe/μB one can derive the local spin density at
each Fe site. It is noted that this information can be obtained only by NMR
and by polarized neutron scattering.

Fig. 4.

1.3 Determination of the local spin density and configuration

One important issue in molecular nanomagnets is the knowledge of the local
spin configuration corresponding to the collective quantum state described
by the total spin i.e S=10 for both Mn12 and Fe8. This issue has been ad-
dressed very successfully by NMR and we will show these two examples in the
following.

a) Fe8

By applying an external field along the easy axis one can deduce the local spin
configuration as follows. The field dependence of the eight 57Fe resonance
frequencies shown in Fig.4 as a function of a magnetic field applied along
the main easy axis is linear as shown in Fig.5. As seen in the plot, two of
the eight 57Fe lines shift at higher frequency with increasing magnetic field
while the other six shift to lower frequency. Since the resonance frequency is
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Fig. 5.

proportional to the vector sum of the internal field (Hint) and the external
field (Hext) i.e. ν

R
= γ

N
(Hint+Hext), this result indicates that the direction

of the internal field at the site of two Fe3+ ions is opposite to the one at the
other six sites. Since Hint originates mainly from the core-polarization, Hint

is negative and the direction of the internal fields at nuclear sites is opposite
to that of the Fe spin moment. Thus one can conclude that the spin direction
of the two Fe moments is antiparallel to the external field, while that of the
remaining six moments is parallel to the external field, corresponding to the
standard spin structure of magnetic core of Fe8 cluster as postulated from
results of magnetization. When the magnetic field is applied perpendicular to
the main easy axis and parallel to the medium axis in the xy hard plane the
field dependence of the resonance frequencies is non linear, as shown in Fig.6,
since the external field and the local internal field are now perpendicular to
each other. As described above, the resonance frequency is proportional to the
effective internal field at the nuclear site, which is the vector sum of Hint due
to spin moments and Hext due to the external field i.e. |Heff |=|Hint + Hext|.
Thus the opposite field dependence of |Heff | for the two lines and the other six
lines indicates that the direction of two Fe spin moments remains antiparallel
to that of the other six Fe spin moments. This leads to the conclusion that
the individual spin moments do not cant independently along the direction
of the transverse field but rather rotate rigidly maintaining the same relative
spin configuration. From the quantitative analysis of the field dependence one
can obtain information about the canting of the total magnetization.

b) Mn12

A similar study has been performed in Mn12 at 1.5K where the nanomagnet
is in its ground state. Three 55Mn NMR signals can be detected in Mn12 at
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Fig. 6.

low T and in zero applied field. These correspond to three inequivalent groups
of Mn ions. Two of the signals are much broader due to quadrupole effects
of the 55Mn nucleus. The frequency position of the three lines correspond
to different local spin density of the corresponding Mn magnetic ion. With
increasing parallel field, P1 shifts to higher frequency while the other two
peaks P2 and P3 (pertaining to Mn3+ ions) shift to lower frequency. Since
the resonance frequency is proportional to the vector sum of the internal field
(Hint) and the external field (Hext) i.e. ν

R
= γ

N
(|Hint+Hext |), this result

indicates that the direction of the internal field at the Mn sites for Mn3+ ions
is opposite to that for Mn4+ ions. Since Hint originates mainly from the core-
polarization, Hint is negative and the direction of the internal fields at nuclear
sites is opposite to that of the Mn spin moment. Thus one can conclude that
spin direction of Mn4+ ions is antiparallel to the external field, while that
of Mn3+ ions is parallel to the external field, corresponding to the standard
spin structure of magnetic core of Mn12 cluster as postulated from results of
magnetization. The study of the field dependence when the field is applied
perpendicular to the easy axis yields results similar to the ones illustrated
above for Fe8.

c) Cr7Cd

Another example of determination by NMR of the local spin density is a
recent study of the heterometallic antiferromagnetic (AF) ring Cr7Cd. The
homometallic AF ring Cr8 is constituted of eight equivalent Cr3+ ions each
carrying a spin s=3/2. Due to a strong antiferromagnetic exchange interac-
tion J the ground state of Cr8 has a total spin S=0 (singlet non magnetic
state). The local spin moment in the ground state is also zero i.e. 〈s〉 = 0
thus yielding no hyperfine field at the 53Cr site. When a diamagnetic Cd ion
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is replaced for the magnetic Cr3+ ion,the symmetry is broken and the ground
state acquires a magnetic total spin value of S=3/2. By looking at the 53Cr
NMR one can determine the staggered local spin moment around the het-
erometallic ring Cr7Cd. Since the 53Cr nucleus has very low sensitivity and
low isotopic abundance the NMR signal could be observed only at very low
temperature and high magnetic field. Four different lines were detected two
of which overlapping into a broad unresolved line. The field dependence of
the three signals is shown in Fig.7. From the formula ν = γ[H + g 〈s〉A] one

Fig. 7.

can derive the local spin moment 〈s〉i = ν i/ g A. In this particular case the
hyperfine constant A, which can be assumed to be the same for all sites, can
be determined independently from the condition that the sum of all local mo-
ments must equal the total spin S=3/2.
The sketch of the staggered local moment determined by NMR in Cr7Cd is
shown in Fig.8. The experimental values are found in excellent agreement with
the local moment distribution calculated from a model magnetic Hamiltonian
of the ground state which includes crystal field anisotropic terms. It should
be pointed out that what is measured here is the expectation value of the
spin component along the external field which is applied along the anisotropy
axis z. The applied field is sufficiently strong to align the total moment S=3/2
of the molecule along the field but is still smaller than the critical field for
level crossing to the S=5/2 excited state. It should be noted that the local
spin moment is strongly reduced from the single Cr3+ spin s=1.5 and is not
uniform along the ring. NMR is a unique tool for this kind of determination.
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Fig. 8.

2 NMR and relaxation at high temperature (kT�J).
The spin dynamics in “zero”dimensions

Most of the magnetic molecular clusters investigated are characterized by ex-
change constants J which are well below the room temperature energy value
kBT. Exceptions to this is the Cu8 ring and to a certain extent also Mn12
and Fe8 clusters. If kBT� J, the magnetic moments in the cluster are weakly
correlated and the system behaves like a paramagnet at high temperature.
Since the intermolecular magnetic interaction is negligibly small each molec-
ular nanomagnet behaves as a paramagnet with a finite and small number
of spins. Thus the spin dynamics is restricted to energy exchanges among a
small number of spins and the situation can be defined as spin dynamics in
“zero”dimensions. It is well known that the spin dynamics in paramagnets
with limited dimensionality presents peculiar features absent in three dimen-
sions. In fact as a consequence of the conservation of the total spin S2 and
Sz2 for an isotropic Heisenberg hamiltonian J Si· Sj the spin-spin pair and
autocorrelation functions (CF) decay slowly at long times. For example in the
one dimensional case an hydrodynamic spin diffusion approximation can be
used at long times leading to a square root time decay of the CF. In general
an approximate expression for the correlation function over all time intervals
can obtained for an infinite Heisenberg classical chain at high temperature by
matching the short time expansion to the long time diffusive behavior due to
the conservation of the total spin and of its component in the direction of the
applied field. For temperatures T � J/kB the conservation property can be
incorporated for spins in a finite size nanomagnet by means of a discretized
diffusion equation to which cyclic boundary conditions are applied. For this
model it is found that the auto-correlation function (CF) decays rapidly at
short times until it reaches a constant value which depends on the number of



40 Ferdinando Borsa

spins in the cluster. The plateau in the CF is reached after a time of the order
of 10ωD

−1 where ωD is the exchange frequency given at the simplest level of
approximation by:

ωD = (2πJ/h)[S(S + 1)]1/2 (2)

with J the exchange constant between nearest neighbor spins S. The same
result is obtained for the CF by using a one dimensional hopping model on
a closed loop or by calculating the spin correlation function with a mode-
coupling approach. The levelling off of the time dependence of the CF at a
value approximately given by 1/N with N the number of spins in the cluster
is the result of the conservation of the total spin component for an isotropic
spin-spin interaction. The time dependence of the CF in low dimensions can be
contrasted with the one in three dimensional paramagnets where a short time
expansion leads to a Gaussian decay of the CF. The situation is summarized
as follows:

〈s±(t) s±(0)〉= 2〈sz(t)sz(0)〉=2/3s(s+1)exp(-ωD
2 t2) for 3D paramagnets

〈s±(t)s±(0)〉=2〈sz (t)sz(0)〉 ∝t−1/2 for 1D paramagnetic chains
〈s±(t)s±(0)〉=2〈sz(t)sz(0)〉 ∝1/N for N spins nanomagnet

whereby the cases of restricted dimensionality hold for both auto and pair
CF’s in the long time limit.
NMR spin-lattice relaxation measurements are an ideal tool to probe the
long time decay of the electronic spin correlation function since 1/T1 probes
the spectral density of the fluctuations at low frequency i.e. the long time
behavior of the CF. The relationship between the relaxation rate and the
spectral density of the spin fluctuations can be obtained by a time dependent
perturbation approach within the so called “weak collision”approximation.
This approximation requires that the time dependent perturbation be small
with respect to the Zeeman Hamiltonian so that many fluctuation events are
needed to generate a nuclear spin relaxation transition. Alternatively one can
say that the fluctuation time must be much shorter than the nuclear relaxation
time: τ �T1.

One can start from the general formula for the nuclear relaxation transition
probability:

1/T1 = 2W = γ2
N/2

∫
〈δH±(t)δH±(0)〉exp(−iωt)dt (3)

The correlation function (CF) refers to the fluctuations of the local hyperfine
field transverse to the quantization axis and calculated at the nuclear site.
In molecular nanomagnets the hyperfine interaction is the nuclear-electron
dipolar interaction and/or the superexchange transferred contact interaction.
If the hyperfine field in Eq.3 is expressed in terms of the electronic spin com-
ponents and of the hyperfine coupling constants one obtains:

T−1
1 = 2(γNγeh̄)2s(s+ 1)

∑
ij

{αij

∫ +∞

−∞
〈s±i (t)s±i (0)〉ei(ωN±ωe)tdt+
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βij

∫ +∞

−∞
〈sz

i (t)s
z
i (0)〉eiωN tdt} (4)

and by introducing the spectral density functions:

T−1
1 = 2(γNγeh̄)2s(s+ 1)(ΣijαijJ

ij
± (ωe) +ΣijβijJ

ij
z (ωL)) (5)

where i,j number the electronic spins, ωe and ωN are the Larmor frequencies
of the electron and of the nucleus respectively, αij and βij are geometrical
factors and Jij±,z are the transverse and longitudinal spectral densities of the
spin fluctuations. It is noted that in a paramagnetic system at high T, si(t) is
the fluctuating electronic spin which coincides with the deviation δsi(t) from
thermal equilibrium. Also we have factored out the Larmor precession of the
electronic spin i.e.〈s±′(t) s±′(0)〉 = 〈s±(t) s±(0) 〉 exp(-iωet), an approximation
valid only for an Heisenberg paramagnet at high T.

In a 3D paramagnet the spectral density is given by a Gaussian (or
Lorenzian) and one expects no field dependence of the relaxation rate for
ωN , ωe � ωD. This is shown in Fig.9 where ωD = ωex On the other hand

Fig. 9.

for 1D systems and for molecular nanomagnets the spectral density obtained
from the Fourier transform of the CF in Eq.4 has a divergent behavior at
low frequency and hence one expects a strong frequency (field) dependence of
T−1

1 . In real low dimensional systems the CF at long times will in fact have
a cut-off due to anisotropic terms in the Hamiltonian which do not commute
with the Heisenberg Hamiltonian and thus allow for exchange of energy with
the “lattice”.

A sketch of the time decay of the CF and of the corresponding spectral
density expected in finite size molecular clusters is shown in Fig.10. The initial
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fast decay is characterized by the constant ΓD
−1 ≈ ωD ≡ ωexwhich depends

on the intramolecular exchange interaction J (see Eq.1). The decay at long
time of the CF has a cut-off at a time ΓA

−1 due to the anisotropic terms in
the spin hamiltonian. As seen in the sketch of the spectral density of the spin
fluctuations, if ωe = γeH is of the order of the cut-off frequency ΓAone expects
a field dependence of the nuclear relaxation rate from the first term in Eq.5.
In the following we will discus the magnetic field dependence of the nuclear
relaxation rate at room temperature in terms of a simplified model which
incorporates the theoretical understanding of the spin dynamics in clusters
as described above. On the basis of the time dependence of the CF discussed

Fig. 10.

and sketched above, we model the spectral function in Eq.5 as the sum of two
components:

Φ±(ω) = Φz(ω) = Φ′(ω)+ΓA/(ω2+Γ 2
A) = ΓD/(ω2+Γ 2

D)+ΓA/(ω2+Γ 2
A) (6)

where we assume the same CF for the decay of the transverse (±) and lon-
gitudinal (z) components of the spins. The first term in Eq.6 represents the
Fourier transform (FT) of the initial fast decay of the CF while the second
term represents the FT of the decay at long time of the CF due to anisotropic
terms in the spin Hamiltonian and we model this second part with a Lorenzian
function of width ΓA.

From Eq.2 one can estimate that the exchange frequency ωD is of the order
of 1013 Hz for typical values of J/kB (10-20K) and spin values S (1/2-5/2).
The spectral function Φ′(ω) in Eq.6 reaches a plateau and becomes almost
frequency independent for ω < ωD/10. For the magnetic field strength used in
the experiment both ωN and ωe are smaller than ωD/10. Thus we will assume
Φ′(ωn) = Φ′(ωe) = ΓD

−1 in Eq.6 where the characteristic frequency ΓD is
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of the same order of magnitude as ωD/10. Finally, by assuming ωN � ΓA in
Eq.6, the relaxation rate can be rewritten as:

1/T1 = K[1/2A±(ΓA/(ω2
e + Γ 2

A) + 1/2A±/ΓD +Az(1/ΓD + 1/ΓA)] (7)

where the constants A± and Az are averages over all protons in the molecule
of the products of the hyperfine dipolar tensor components αij and βij respec-
tively (see Eq.4). The constant K which has been factored out from the dipolar
tensor coefficients is given by K=(hγnγe)2/(4π) = 1.94·10−32 (sec−2cm6). The
width ΓA of the narrow component in the spectral function represents the fre-
quency which characterizes the exponential time decay of the spin CF in the
cluster due to anisotropic terms in the spin Hamiltonian.

The field dependence of 1/T1 was measured at room temperature in a
large number of molecular nanomagnets. The results are shown in Fig.11.
The experimental data were fitted by using an expression of the form of Eq.7,

Fig. 11.

i.e.:
1/T1 = A/(1 + (H/B)2) + C(msec−1) (8)

where the magnetic field H is expressed in Tesla and B = ΓA / γe (Tesla).
The fitting parameters for the different rings and clusters are summarized in
Table 1.

The most significant parameter in the Table is B which measures the cut
off frequency ΓA of the electronic spin-spin correlation function. Except for
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Table 1.

single molecule magnet A (msec−1) B (Tesla) C (msec−1)

Cr8 (AFM ring- s=3/2) 2.7 5 1.7
Fe6 (AFM ring-s=5/2) 2.7 1.5 2.6
Fe10 (AFM ring-s=5/2) 2 0.5 3.6
Cu6 (FM ring-s=1/2) 0.65 0.5 0.18
V12 (AFM square-s=1/2) 8.5 1.6 ≈ 0
V6 (AFM triangle-s=1/2) 17 1 2.5
V15 (AFM ring-s=1/2) 0.13 2 0.28

the Cr8 case (complete formula: [Cr8F8Piv16], Hpiv=pivalic acid) B is around
1 Tesla corresponding to ΓA≈ 1011 rad sec−1 or hΓA/kB ≈ 1 K.The cut-off
effect is provided, in principle, by any magnetic interaction which does not
conserve the total spin components. In practice, such small terms stem from a
variety of mechanisms including intracluster dipolar and anisotropic exchange
interaction, single ion anisotropies, inter-ring dipolar or exchange interactions
etc... A detailed calculation for Fe6 based on intra-ring dipolar interaction
yielded ΓA= 1.5 1011 sec−1. A similar estimate for Cu6 based on known
anisotropic nearest neighbor (exchange and dipolar) contributions to nearest
neighbor interactions yielded 1.4×1011 sec−1. Both these results can account
very well for the experimental findings in the Table. From the comparison of
Eqs.7 and 8 one has A= K A± /2ΓA and C≈K Az /ΓA (since ΓD � ΓA).
Thus the order of magnitude of the hyperfine constants is A± ≈ Az ≈ 1÷10
1046 cm−6. Since A±, Az are the product of two dipolar interaction tensor
components they are of order of r−6 where r is the distance between a 1H
nucleus and a transition metal local moment. For most of the rings the value
of the hyperfine constants is consistent with a purely nuclear-electron dipolar
interaction.

For V12 (complete formula: (NHEt)3[VIV
8VV

4As8O40(H2O)]·H2O) and
V6 (complete formula of one variant: Na6[H4(V3L)2P4O4]·18H2O ), the A±(�
Az) hyperfine constant is one order of magnitude higher indicating the pres-
ence of an additional contribution probably due to a contact interaction due
to the admixing of the hydrogen s wave function with the d wave function of
the Vanadium ions.

An alternative way to explain the anomalous values (A�C) for V6 and
particularly for V12 in the Table is to go back to Eq.8 and assume that B
= ΓA/γN instead of B = ΓA/ γe. This implies that the cut-off frequency
ΓA is much less than in other clusters namely of order of the nuclear Larmor
frequency in Eq.7. In this case the value of the constant C in Eq.8 is close to
zero in agreement with the experiments as can be seen easily by modifying in
the appropriate way the approximate Eq.7. It is, however, difficult to justify
such small value for the cut-off frequency in V12.
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By concluding, the experimental results seem to confirm very well the
theoretical prediction for the dependence at long times of the CF in molecular
nanomagnets which are a good experimental realization of spin dynamics in
“zero”dimensions.

3 NMR and relaxation at intermediate temperatures
(kT � J). The spin dynamics in a collective total spin S
quantum state

As the temperature is lowered and it becomes comparable to the magnetic
exchange interaction J strong correlations in the fluctuations of the magnetic
moments of the molecule start building up. The situation is analogous to
macroscopic three dimensional magnetic systems when the temperature ap-
proaches the critical temperature for the transition to long range magnetic
order. In molecular magnets, as a result of the finite size of the system the
low lying magnetic states are well separated among themselves. Therefore the
correlation of the magnetic moments at low temperature has to be viewed as
the result of the progressive population by the magnetic molecule of the collec-
tive low lying quantum total spin states without any phase transition. In this
intermediate temperature range the nuclear spin lattice relaxation rate has to
be described with a formalism different from the one utilized at high temper-
ature when the system is totally uncorrelated. The starting expression is still
given by Eq.4. In presence of strong spin-spin correlation (kBT ≈ J) one has
〈SiSi+n〉 �= 0 which implies the presence of static short range order (SRO) in
the magnetic system and limt−→∞〈Si(t)Si+n(0)〉 �= 〈Si(t)Si(0)〉which implies
dynamic spin correlation. Thus the semiclassical approach in terms of the
time dependence of the autocorrelation function of the local spin operator is
no longer practical and one should resort either to a quantum description of
the CF or to a description in terms of collective spin variables. If the collective
quantum states are well defined and underdamped the CF can be expressed
in terms of the matrix elements of the local spin quantum operators:
〈Si(t)Sj(0)〉 = Tr {exp(−βH)exp(iHt/h)Sjexp(−iHt/h)Si} /Tr{exp(−βt)}
leading to

1
T1

=

∑
i,j

∑
n,m exp(−βEn)[A〈n | j | m〉〈m | Si | n〉δ(En −Em − ωN )]∑

n exp(−βEn)
(9)

The energy conservation condition requires that the magnetic states n,m
are very close in energy for a direct relaxation transition probability to be
different from zero. This situation is found e.g. in ordered 3D magnetic systems
where the excited states are magnons. As we will argue below, in molecular
nanomagnets the energy levels are well separated in energy so that no direct
process is possible unless a finite broadening of the levels is introduced.
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An alternative approach in presence of SRO and strong correlation among
interacting electron spins, is to describe the spin dynamics of magnetic systems
in terms of collective variables in q-space obtained by Fourier transforming
the local spin variables in real space. One obtains:

1
T1

=
(h̄γnγe)2

4π

∫
dtcos(ωN t)

∫
dq(

1
4
A±(q)〈S±

q (t)S±
−q(t)〉+

Az(q)〈Sz
q (t)Sz

−q(t)〉) (10)

Or by using the fluctuation dissipation theorem:
∫
〈Sq (t) S−q (t)〉cos(ωt) dt

= 2 kT/ Im χ (q, ω)

1/T1 = (h̄γnγe)2/(4πg2μ2
B)kBT [1/4

∑
q

A±(q)χ±(q)f±q (ωe)+∑
q

Az(q)χz(q)fz
q (ωn)] (11)

where γn and γe are the gyromagnetic ratios of the nucleus and of the free elec-
tron respectively, g is the Lande’s factor, μB is the Bohr magneton, kB is the
Boltzmann constant. The coefficients A± (q) and Az(q) are the Fourier trans-
forms of the spherical components of the product of two dipole-interaction
tensors describing the hyperfine coupling of a given proton to the magnetic
moments whereby the symbols ± and z refer to the components of the electron
spins transverse and longitudinal with respect to the quantization direction
which is here the external magnetic field. The collective q-dependent spin
correlation function is written as the product of the static response function
times a normalized relaxation function fq±,z (ω).

At high temperature (kBT� J) one can neglect in Eq.11 the q-dependence
of the generalized susceptibility χα(q) and of the spectral density function
fqα(ω). If one assumes an isotropic response function 1/2 χ±(q) = χz(q) =
χ(q=0) and one takes a q-independent average value for the dipolar hyperfine
interaction of the protons with the local moment of the electronic spins: A±(q)
= A⊥; Az(q) = Az in units of cm−6, then Eq.11 reduces in this high temper-
ature limit to: 1/T1 = (hγnγe)2/(4πg2μB

2) kB T χ(q=0)[1/2 A±Φ±(ωe)+Az

Φz(ωn)]. This is indeed the expression for the nuclear relaxation rate which
was utilized to analyze the high temperature data in molecular nanomagnets
in the previous lecture.

By decreasing the temperature at values such that kBT becomes compa-
rable to J one expects that the nuclear spin lattice relaxation rate displays
a characteristic temperature dependence related to the correlated spin dy-
namics. As shown in Fig.12, measurements of proton T1 as a function of
temperature in a number of antiferromagnetic molecular rings has shown a
surprisingly large enhancement of the relaxation rate at low temperatures re-
sulting in a field dependent peak of T1

−1 centered at a temperature of the
order of the magnetic exchange constant J/kB . The results are shown for
three different rings. The systems investigated are: Cr8 (s=5/2, J∼17.2K);
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Fig. 12.

Fe6(Na) (s=5/2, J∼ 28.2K); Fe10 (s=5/2, J∼ 13.8K) (for the last two com-
pounds the respective complete formulas are: [NaFe6(μ2-OMe)12(dbm)6]Cl
and [Fe(OMe)2(O2CCH2Cl)]10). In all three samples the ground state is non
magnetic with total spin STotal=0 and the energies of the lowest lying ex-
change multiplets can be described at first approximation by Lande’s interval
rule ES=2JS(S+1)/N where N is the number of spins in the ring. The main
feature in the temperature dependence of T1

−1 is the strong enhancement
at low T and the presence of a maximum at a temperature T0 for each of
the samples investigated. For T<T0, T1

−1 decreases approaching at low T an
exponential drop due to the “condensation” into the Stotal=0 singlet ground
state as discussed later on. It should be noted that the behavior of the relax-
ation rate is different than the behavior of the uniform magnetic susceptibility.
The latter, when plotted as χT vs T, shows a continuous decrease with an
exponential drop at very low temperature consistent with what expected for
an AFM system with a singlet ground state.

The plot of 1/T1χT also shown in Fig.12 indicates that the enhancement of
the relaxation rate is of purely dynamical origin. As shown in the same figure
the peak in the relaxation rate is depressed by the application of an external
magnetic field and the position of the maximum moves at higher temperature
on increasing the external field. The maximum of the relaxation rate divided
by χT can be fitted by a simple expression of the type τ (1+ω2

Nτ
2) where the

correlation time τ is temperature dependent but field independent. The simple
expression which fits the data is known as Bloembergen,Purcell and Pound
(BPP) expression and it normally describes the nuclear relaxation driven by
a random hyperfine field fluctuations which follows an exponential CF with a
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unique correlation time. A further remarkable finding is that the renormalized
relaxation rate plotted as a function of the temperature normalized to the
temperature of the peak T0 is given by a universal function:

1/(T1Tχ)/(1/(T1Tχ))max = 2tn/(1 + t2n) (12)

with t=T/T0 and a fitting exponent n close to 3 as shown in Fig.13: It is
noted that the universal function Eq.12 is a direct consequence of the BPP
-type fitting expression but only if the correlation time is assumed to have
a power law T dependence i.e. τ−1 ∝ Tn. This BPP -type maximum in the

Fig. 13.

relaxation rate has been observed also in other molecular nanomagnets and
it appears now to be a very general feature of finite size magnetic systems
at a temperature comparable with the magnetic exchange interaction J. For
example in the AF cluster Fe30 which has a S=0 ground state and J = 1.57
K, the peak is observed at much lower temperature compared with the AF
rings as shown in Fig.14. Even in the more complex molecular ferrimagnets,
the peak in the proton 1/T1 can be observed although the analysis of the data
is complicated by the loss of NMR signal in the region of the peak for low
applied magnetic fields. The data for different clusters together with the fitting
curves are shown in Fig.15. Two different but probably related interpretations
of the characteristic maximum in the proton 1/T1 in molecular nanomagnets
have been given and will be briefly outlined in the following. In the first
interpretation one starts from the quantum expression for the relaxation rate
(Eq.9) which we rewrite below for the case of a dominant dipolar nuclear-
electron hyperfine interaction.

T−1
1 =

1

2(γeγN h̄)2

N∑
i,j=1

1

(rirj)3
1∑

μ e−βEμ

∑
μ,ν

e−βEμπ[δ(ωN + ωμν) + δ(ωN − ωμν)]·
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Fig. 14.

Fig. 15.

·[αij〈μ|sz
i |ν〉〈ν|sz

j |μ〉 +
1

4
βij(〈μ|s−i |ν〉〈ν|s+

j |μ〉 + 〈μ|s+
i |ν〉〈ν|s−j |μ〉)], (13)

If the energy levels are well separated in energy no direct relaxation transition
is possible between different magnetic states since ωN � ωμν .

On the other hand the term which depends on the longitudinal spin com-
ponent sz can give rise to relaxation transitions if the energy levels have some
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finite broadening bigger than ωN . Thus the BPP -type maximum observed in
finite size magnetic systems can be simply explained as arising form the lon-
gitudinal fluctuations of the local spin via lifetime broadening of the magnetic
levels. The expression which fits the data i.e. 1/T1=χTAτ/(1+ω2

Nτ
2) can be

obtained from the above expression if one identifies χT =exp(-βEn)/
∑

nexp(-
βEn) i.e. the population of the magnetic states, the hyperfine constant A with
the average coupling coefficients times the matrix elements between the total
spin states of the local electron spin operator and the Lorenzian τ/(1+ω2

Nτ
2)

with the broadened delta function. The correlation frequency τ−1 ≡ ωc is
thus identified here as an average lifetime broadening of the magnetic states.
The characteristic frequency ωc appears to have a power law T dependence
and to scale with the gap Δ between ground state and first excited state i.e.
τ−1 ≡ ωc = DT 3 with D ∝ Δ−2orΔ−3.

These findings are illustrated in the two figures 16 and 17. Both the power

Fig. 16.

law temperature dependence and the dependence on the gap parameter for the
lifetime broadening are in qualitative agreement with a lifetime broadening
of the magnetic states dominated by spin-phonon interaction although no
detailed theory has been yet generated.

The alternative explanation starts by considering the q-dependent expres-
sion for the relaxation rate Eq.10 or 11 valid in presence of SRO and strong
correlation among interacting electron spins. Under the approximations f±q (ωe)
� fzq(ωN ); χz(q) ≈ 1/N χ then Eq.11 takes the form of the BPP expression
1/T1=χTAτ/(1 +ω2

Nτ
2)where now the correlation time τ can be interpreted

as a dominant relaxation time for the macroscopic magnetization. This inter-
pretation has been based on the results by P. Santini et al. of first principle
calculations of the time autocorrelation of the molecular magnetization M(t)
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Fig. 17.

which corresponds to the q=0 component of the spin CF in Eq.10. It was
found that the exponential decay of the fluctuations of M(t) is characterized
by a single characteristic time τ(T,B) which can be identified with the charac-
teristic correlation time entering the expression which fits the NMR relaxation
rate. The calculation of the T and B dependence of τ yielded good agreement
with the NMR data. We refer to the original literature for further details.

4 NMR at low temperatures (kBT� J). Nuclear spin
lattice relaxation in gapped molecular antiferromagnets
and effects at level crossing

When the temperature is much lower than the exchange interaction among
magnetic moments in the molecule the system is mostly in its collective quan-
tum ground state characterized by a total spin S. We have to distinguish the
two cases of singlet ground state S=0 and of high spin ground state S>0. In
this section we will treat the first case while the second case will be discussed
in the next section. In the case of singlet S=0 ground state, which pertains to
AFM rings, the residual weak magnetism of the molecule at low temperature
is due to the thermal population of the first excited state which is normally a
triplet S=1 state.

4.1 Determination of the energy gap of AFM rings in the
magnetic ground state

AFM rings such as Fe10, Fe6, Cr8 are characterized by a single nearest neigh-
bor exchange interaction J which generates a singlet ground state of total
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spin S=0 separated by an energy gap Δ from the first excited triplet state
S=1. From simple Lande’s interval rule one has E(S)= 2J/N S(S+1). Thus in
absence of crystal field anisotropy the gap is Δ= 4J/N where N is the number
of magnetic moments in the ring. In presence of crystal field anisotropy with
axial symmetry characterized by the parameter D the gap between S=0 and
S=1, M=±1 is 4J/N +D/3 for the case of positive axial anisotropy.

Measurements of T1
−1 versus temperature in a T range where the molecule

is mostly in the non magnetic S=0 ground state can allow the determination
of the energy gap Δ which separates the singlet ground state from the first
magnetic excited state. We give first the general theoretical argument and
then we give a specific example by choosing the cluster V12 which can be
assimilated to a square of V4+ magnetic ions. The electronic spin correlation
function entering the expression of T1

−1 is defined as:

Gα
ij(r, t) = ΣnΣm〈n|Sα

i |m〉exp(−βEn + iEnt/h̄− iEmt/h̄)〈m|Sα
j |n〉 (14)

where n,m number the eigenstates, En, Em are the energy eigenvalues,
β=1/kBT, Si(j)

α are the spin operators of the ith (jth) spin and α=x,y,z. For a
finite system the energy difference between eigenstates is very large compared
to the Larmor Zeeman energy. Therefore for a direct process only the matrix
elements with n=m in Eq.14 need to be considered and a broadening of the
energy levels has to be introduced in order to fulfill energy conservation (i.e.,
in order to have some spectral density of the fluctuations at ωe and ωL). It
should be noted that an alternative approach is to describe the nuclear re-
laxation in terms of a Raman process. Even in this case one needs to have
a broadening of the levels or a spin wave band. We have not explored this
possibility since the direct relaxation process appears to be able to explain
the experimental data.

As a consequence of the presence of the Boltzman factors in Eq.13 the
NSLR at very low temperature will be simply proportional to the population
of the excited states. For temperatures less than the energy gap Δ one has
approximately:

T−1
1 = Aexp(−Δ/kBT )/(1 + 3exp(−Δ/kBT )) (15)

where A is a fitting constant which contains the hyperfine coupling constants
and the matrix elements in Eq.13. The gapΔ depends on the applied magnetic
field as a result of the Zeeman splitting of the excited triplet state of the AFM
rings. The validity of the simple prediction of Eq.15 was tested in several AFM
rings. Here we show the results in V12 which is a magnetic cluster which
contains three squares of V4+ ions. Two of the squares are magnetically mute
since they are in a S=0 singlet ground state even at high T due to the huge
magnetic exchange coupling J. The middle square instead has a J coupling of
only 17.6 K and thus can be treated as a spin tetramer with Hamiltonian H
= J ( s1+s3). (s2+s4) + gμB B.Stot.

The resulting low lying energy levels are shown in Fig.18 below: Part (a)
is from inelastic neutron scattering and part (b) is from the solution of the
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isotropic Heisenberg Hamiltonian written above. For T�J the nuclear spin

Fig. 18.

lattice relaxation rate (NSLR) is proportional to an exponential function of
the gap between the ground and first excited state as predicted by Eq.15. The
experimental measurements of proton 1/T1 at low temperature display an
exponential decrease in agreement with Eq.15 as shown in the Fig.19. From

Fig. 19.

the slope of the semi-log plot one can derive the gap between the singlet
ground state and the first excited state which turns out in good agreement
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with the theory and the INS data shown in the above figure. By applying
an external magnetic field in the direction of the anisotropy axis the gap is
reduced.

As long as the applied field is small enough so that one is far from the
level crossing conditions, the reduction of the gap Δ between the ground
state Stot=0 and first excited state Stot=1, Ms =+1 is expected to be linear
in the applied field as the result of the Zeeman splitting of the excited state i.e.
Δ(H) = Δ0 − gμ

B
B. This has been confirmed in V12 from proton relaxation

measurements as shown in Fig.20.

Fig. 20.

4.2 Level crossing in AFM rings

In a AFM ring of the kind discussed above with a S=0 singlet ground state
and a S=1 triplet excited state, an external magnetic field H removes the
residual Kramers degeneracy of the triplet state and induces multiple level-
crossings (LCs) at specific magnetic field values Hci, whereupon the ground
state of the molecule changes from S = 0 to S = 1 (Hc1), from S = 1 to S =
2 (Hc2), and so on. Because of magnetic anisotropy, the values of Hci depend
on the angle between H and the molecular axis z. When the energy separation
between the ground state and the first excited state decreases in proximity of
the level crossing condition energy conserving transitions involving a nuclear
flip accompanied by a magnetic transition of the molecule can become pos-
sible. In other words matrix elements of the local transverse spin operators
between different energy states are no longer zero in Eq.9. This equation can
be rewritten for dipolar hyperfine interactions as:
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T−1
1 =

1
2N2

γ2
nγ

2
e h̄

2[2πδ(ωn)
1

1 + e−βh̄ωeg
(S + 1)2]Gα+

π[α(ωn + ωeg) + δ(ωn − ωeg)]
(S ∗ 1)[(Ns+ 1)2 − (S + 1)2]

2(2S + 3)
Gβ ] (16)

S is the total spin value in the ground state i.e S=0 for the first crossing.
Gα and Gβ are the geometrical dipolar coupling coefficients and ωeg is the
frequency separation between the ground state and the excited state. The first
term which arises from the longitudinal spin components (with respect to the
field H) will be named quasi-elastic term since it does not involve any change
of magnetic state of the molecular cluster. The second term is the inelastic
term which is present only close to the level crossing condition. The quasi
elastic term is proportional to the thermal population of the excited state
while the inelastic term has a maximum when the energy separation of the
two magnetic levels is equal to the nuclear Zeeman splitting i.e. ωL ≈ ωeg.

The first example of the effect of level crossing on the nuclear relaxation
was obtained by proton NMR in the AF ring Fe10. A picture of the Fe10
ring and of the field dependence of the magnetic energy levels is shown in
Fig.21. Three level crossings are accessible for available magnetic fields. The

Fig. 21.

enhancement of the proton relaxation rate around the critical fields for level
crossing in Fe10 is shown in Fig.22. One crucial issue in the study of LC in
AFM rings is the structure of the magnetic levels at the critical field where the
S=0 state becomes degenerate with the S=1, MS=1 state (first level crossing)
and similarly for the other LC’s. If the magnetic Hamiltonian does not contain
terms that admix the two degenerate levels one can have in principle a true
LC. If on the other hand the Hamiltonian contains terms which strongly
admix the levels one expects a gap at the critical field resulting in what
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Fig. 22.

we call level anticrossing (LAC). The analysis of the width and shape of the
peak of NSLR at the critical field can in principle give information about
the structure of the magnetic levels near the critical field. To analyze the
data one can use a phenomenological expression obtained from the theoretical
expression discussed above where the delta functions are replaced by finite
width Lorenzian functions.

T−1
1 =

e
− Δ1

kBT

1 + e
− Δ1

kBT

A
Γ1(T,H)

Γ 2
1 (T,H) + ω2

n

+B
Γ2(T,H)

Γ 2
2 (T,H) + (ωn −Δ1)2

(17)

Both the first term (quasi elastic) and the second term (inelastic) display a
maximum at the LC or LAC point. The maximum of the quasi elastic term
reflects the rapid change of the magnetization at level crossing. In fact one
has approximately 1/T1 =A δ〈M2〉f(ωN ) = A′ T dM/dH f(ωN ). The change
of magnetization at level crossing is shown in Fig.23 for the case of the Fe6
AF ring. The maximum of the inelastic term is instead due to the overlap
of the broadened energy levels of the ground state and excited state in the
vicinity of the LC or LAC condition which makes the scattering of a nucleus
by a magnetic excitation possible. The width of the nuclear relaxation peak
at the level crossing can thus give an indication of the anticrossing gap. This
is illustrated by the results in two AF rings: Cr8 and Fe6(Li). In the first case
the crossing is almost a pure LC while in the second case there is a sizeable
LAC gap. The data are shown in Fig.24. The expression utilized to describe
the field dependence of the gap is Δ1 = {[gμB(Hc1 −H)]2 + Δ01}1/2 where
the LAC gap is Δ01. From the fit of the inelastic peak in Cr8 one obtains an
anticrossing gap: Δ01 = 0.1K much smaller than the one in Fe6(Li) i.e. Δ01

= 1K.
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Fig. 23.

Fig. 24.

5 NMR relaxation in single molecule magnets (SMM) in
the ground state. Detection of quantum tunneling of the
magnetization by NMR

We consider now the case of molecular nanomagnets with a high spin ground
state which at low temperature behaves like a nanomagnet with a spontaneous
magnetization proportional to the value of the ground state spin S. If there
is no anisotropy the molecule acts like a soft nanomagnet with a magnetiza-
tion which can be aligned by an external magnetic field with no hysteresis
in the magnetization cycle. This is the case of Cu6 FM ring. In presence of
an anisotropy the molecule behaves as a hard nanomagnet with hysteresis
in the magnetization cycle. However, since there is no long range order each
molecule acts as a superparamagnetic particle. At temperatures much lower
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than the anisotropy barrier the relaxation of the magnetization can be dom-
inated by quantum tunneling. NMR can give interesting information in this
low temperature regime. The best examples of single molecule magnets with
superparamagnetic behavior are Mn12 and Fe8. As a result of crystal field
anisotropy the total S ground state is split into 2S+1 doubly degenerate mag-
netic levels which can be labelled with the magnetic quantum number MS .The
two lowest MS = ± 10 levels are separated by an energy barrier which depends
on the anisotropy (for Mn12 is 60K while for Fe8 is about 30K).

The NSLR at low temperature i.e. when the SMM is in its total S ground
state has interesting features and can give useful information on the collective
spin dynamics of the molecule. There are two regimes which can be treated
separately. The first regime is at a temperature comparable to the energy
barrier kT≈ ΔE. In this case the nuclei sense essentially the fluctuations of the
magnetization due to thermal transitions among different MS states induced
by spin phonon coupling. At temperatures much lower than the barrier, kT�
ΔE the SMM is in the highest Ms state(lowest energy) and the dominant
fluctuation is due to quantum tunneling of the magnetization. We are going
to discuss below the two cases separately:

5.1 NMR relaxation due to thermal fluctuations of the
magnetization.

Proton relaxation in the ground state of SMM is driven by fluctuations of the
magnetization due to transitions of among different crystal field MS substates
induced by spin phonon coupling. The transitions among different magnetic
levels generates a fluctuation in the local hyperfine field at the nuclear site
which is responsible for the nuclear relaxation. The theoretical treatment of
this process in terms either of local spin correlation functions or in terms of
matrix elements of the local spin among the total magnetic eigenstates which
we used before for high T and low T respectively is not very practical in
this case. A model has been proposed which describes the nuclear relaxation
in terms of the correlation function of the hyperfine field itself. One starts
from the usual Moriya expression Eq.3. One then assumes an exponential
form for the CF of the hyperfine field i.e. 〈δH±(t) δH±(0)〉 = h2

eff exp (-
t/τm). One makes the further assumption that h2

eff is an average square
value of the change of hyperfine field when the SMM undergoes a transition
between different magnetic MS states (corresponding classically to different
orientations of the magnetization with respect to the anisotropy axis). The
correlation time τm corresponds then to the lifetime of the corresponding m
state. The NSLR can be written by summing the contributions of the different
magnetic states:

1/T1 =
∑

m=+10,−10

h2
effexp(−Em/kBT )/Z

∫
exp(−t/τm)exp(−iωt)dt =
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A/Z
∑

m=+10,−10

τm exp(−Em/kT )/(1 + ω2
Nτ

2
m)(18)

where A = γ2
Nh2

eff . The lifetime τm for each individual m state is de-
termined by the probability of a transition from m to m ± 1, Wm,m±1,
plus the probability for a transition with Δm=±2, Wm,m±2 i.e: 1/τm =
Wm→m+1+Wm→m−1+Wm→m+2+Wm→m−2. The transition probabilities are
due to spin-phonon interaction and can be expressed in terms of the energy
level differences as:

Wm→m±1 = W±1 = C ′s±1
(Em±1 − Em)3

exp[β(Em±1 − Em)] − 1

Wm→m±2 = W±2 = 1.06C ′s±2
(Em±2 − Em)3

exp[β(Em±2 − Em)] − 1
(19)

where s±1 = (s∓m)(s±m+1)(2m±1)2 and s±2 = (s∓m)(s±m+1)(s∓m−
1)(s±m+2) The spin-phonon parameter C′ is given by C′= D′2 /(12πρv5h4)
with ρ the mass density and v the sound velocity and D′ a constant related
to the crystal field anisotropy. The energy levels Em in the above equations
can be obtained from the Hamiltonian of the molecules expressed in terms of
the total spin S:

H = −DS2
z −BS4

z + E(S2
x − S2

y) + gμBSzH (20)

For Mn12 one has D=0.55 K, B=1.2x10−3 K, and E=0 while for Fe8 one has
D=0.27 K, B=0 and E= 0.046 K. Some representative experimental results

Fig. 25.

of proton NSLR are shown in the figures 25 and 26. For Fe8 we show the
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Fig. 26.

temperature dependence at different fields and for Mn12 the field dependence
at different temperatures. The curves are best fit curves according to the
theoretical expressions discussed above with A and C′ treated as adjustable
parameters. From the fit of the proton relaxation in Fe8 one obtains the
parameters: C′ = 31 Hz/K3 and A= 1.02x1012 (rad/sec)2. The fit of the
proton relaxation data in Mn12 was obtained with a somewhat larger value
of C′ and a smaller value of A=0.45x1012 (rad/sec)2. The coupling constant
A represents the average hyperfine interaction squared between protons and
transition metal magnetic moments. The value found for Fe8 is larger than the
value obtained in Mn12 indicating that in Fe8 the protons are subject to non
negligible hyperfine interaction due to contact terms in addition to the dipolar
interaction. From the knowledge of the spin-phonon coupling parameter C′ one
can estimate the lifetime of the m sublevels. For a detailed discussion we refer
to the original papers.

5.2 NMR relaxation due to incoherent quantum tunneling

At very low temperature, when the nanomagnet occupies mostly the magnetic
ground state the thermal fluctuations of the magnetization become vanishingly
small. In this temperature range the spin dynamics is dominated by quantum
fluctuations. In this section we will concentrate on the issue of what infor-
mation NMR can give about the phenomenon of quantum tunneling of the
magnetization (QTM). Let us first briefly summarize the QTM phenomenon.
The ground state of both Mn12 and Fe8 clusters is a high total spin ground
state i.e. S=10. The S=10 ground state is split into eleven sublevels by a
strong easy axis anisotropy. The remaining Kramers degeneracy is removed
by an external magnetic field directed along the z easy axis. The energy levels
for H // z are obtained from Hamiltonian Eq.20 as:
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Em = −Dm2 −Bm4 + gμBHm (21)

Assuming g=2 one has gμBH = 1.33H (K) for H in Tesla. For Mn12 one has
D=0.55K, B=1.2x10−3 K; for Fe8 one has D= 0.27K, B=0 and in the to-
tal Hamiltonian H = -DSz

2-BSz
4+gBH·S, the rhombic term E(Sx

2-Sy
2), with

E=0.046K, must be added. This term modifies the Eq.21 of the energy levels
in a non-simple way. Below liquid helium temperature the clusters occupy
mostly the MS = ± 10 states and the reorientation of the magnetization be-
tween these two states becomes extremely long (about one day for Mn12 at 2.4
K) due to the anisotropy barrier giving rise to a pronounced superparamag-
netic behavior. When the relaxation rate of the magnetization is measured in
response to a varying magnetic field Hz along the easy axis peaks are observed
which have been interpreted as a manifestation of resonant tunneling of the
magnetization. The qualitative explanation is that the relaxation rate of the
magnetization is maximum at zero field and at field values where the total
spin states become pairwise degenerate again. The longitudinal field at which
this occurs can be easily calculated from Eq.21 with the parameters given for
Mn12 and Fe8 respectively. It is this degeneracy which increases the tunnel-
ing probability and thus shortens the relaxation time. The size of the effect
depends on terms not shown in the Hamiltonian Eq.20, terms which couple
the pairwise degenerate states. In particular a transverse magnetic field com-
ponent can greatly enhance the tunneling splitting of the degenerate levels
and thus the QTM. On the other hand the QTM is reduced by the smearing
out of the energy levels of the spin states due to spin-phonon coupling, inter-
molecular interactions and/or hyperfine interactions with the nuclei. It should
be stressed that the QTM which has been detected up to now in molecular
nanomagnets is an incoherent tunneling probability. In other words the de-
coherence due to the coupling of the magnetic levels with the thermal bath
(phonons and nuclear spins) is always sufficiently strong to overdamp the Rabi
oscillations at the frequency given by the tunneling splitting. The incoherent
tunneling probability can be calculated in this simple way. Let us consider
first the quantum oscillations in time of the probability of occupation of one
of the two degenerate MS = ± 10 states in presence of a small offset ΔE of
the energies of the two quasi degenerate magnetic states:

|C−10(t)|2 = Δ2
T /(ΔE2 + Δ2

T ) sen2 (ΔE2 + Δ2
T )1/2 t

If the two quasi degenerate states have a finite broadening W which de-
scribes the decoherence effects, the incoherent tunneling probability can be
defined as the average over the offset levels whose broadening is described by
a Lorenzian function of width W:

Γ= 1/t
∫
|C−10(t) |2 W/ (W2+(E- ΔE)2 ) dE

the result for the incoherent tunneling probability is
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Γ = Δ2
TW/(ΔE

2 +W 2) (22)

Quantum tunneling of the magnetization produces a fluctuation of the hyper-
fine field at the nuclear site and thus is expected to be a source of NSLR.
The problem is to discriminate between the nuclear relaxation due to thermal
fluctuations from the one due to QTM. We give in the following two repre-
sentative cases where the contribution to NSLR coming from QTM can be
sorted out without ambiguity.

5.3 Proton NSLR in Fe8 due to QTM in transverse applied field.

In zero applied field the tunneling splitting ΔT of the ground state is very
small. On the other hand by applying a magnetic field perpendicular to the
easy axis (transverse field), one can increase ΔT of all levels while leaving
the symmetry of the double well potential intact. An increase of the tunnel-
ing splitting corresponds to an increase of the tunneling frequency and thus
of the incoherent tunneling probability (see Eq.22). For H>1T, in Fe8, the
relaxation (fluctuation) of the magnetization driven by tunneling becomes so
fast that it falls within the characteristic frequency domain (MHz) of a NMR
experiment as shown in the Fig.27. Therefore when the magnetic field is ap-

Fig. 27.

plied perpendicular to the main easy axis z (transverse field) a pronounced
peak in the proton spin-lattice relaxation rate, 1/T1, of protons in a single
crystal of Fe8 as a function of external magnetic field can be observed at
1.5K as shown in Fig.28. The effect is well explained by considering that by
increasing the transverse field the incoherent tunneling probability which is
proportional to the square of the tunneling splitting ΔT becomes faster and
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Fig. 28.

faster and at a certain value of the transverse field it can match the Larmor
frequency. When the applied field goes through this condition the fluctuation
rate of the magnetization is most effective in driving the nuclear relaxation
and a maximum appears in 1/T1. The peak disappears when a parallel field
component is introduced in addition to the transverse field, by tilting the
single crystal about 5 degrees in yz plane. Since the parallel field component
removes the degeneracy of the ±MS magnetic states and consequently the
possibility of tunneling it is clear that the peak of 1/T1 must be related to
a contribution to the nuclear relaxation rate from the tunneling dynamics.
It should be stressed that the theoretical description in this case follows the
“weak collision”approximation i.e. a perturbation approach and one can use
the formula’s used previously to describe the relaxation due to thermal fluc-
tuations. In particular one can use Eq.18 where the correlation frequency τ−1

is replaced with the tunneling probability Γ. In fact the reversal of the mag-
netization due to QTM is a small perturbation at the proton site in Fe8 since
the hyperfine field is the weak dipolar coupling with the Fe3+ moments which
is much smaller than the proton Zeeman energy in the high applied field. A
detailed quantitative description can be found in the original literature.

5.4 57Fe NMR relaxation in zero field in Fe8 due to QTM: a case
of “strong collision”.

As we have shown in the first section the 57Fe NMR signal can be detected
in isotopically enriched Fe8 at low temperature in absence of external field.

The NSLR of anyone of the eight NMR lines of the 57Fe spectrum (see
Fig.4) is dominated at very low T by QTM. This can be inferred by the fact
that the NSLR becomes temperature independent as shown in Fig.29. In this
T independent region the “weak collision”approximation cannot be applied.
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Fig. 29.

In fact the 57Fe nuclei are quantized in the internal hyperfine field (of the
order of 40T!!!). When a tunneling transition takes place the direction of the
quantization axis changes by 1800 degrees. Obviously this fluctuation cannot
be treated as a perturbation. As a matter of fact a tunneling transition corre-
sponds to interchanging the high energy nuclear Zeeeman level with the low
energy one. This is equivalent to a relaxation transition for the nuclear spin
system. A detailed treatment of this “strong collision”approximation can be
found in the original literature. Here we limit ourselves to the qualitative argu-
ment that identifies (apart from a numerical constant of order of 1) the nuclear
relaxation probability with the tunneling probability i.e. 1/T1 ≈ Γ. To con-
vince ourselves that the NSLR at the low T plateau is a direct measurement
of the incoherent tunneling probability Γ one can refer to two experiments.
In the first one a small longitudinal (along the anisotropy axis z) magnetic
field was applied in a single crystal of Fe8. The longitudinal field introduces
an offset in the energies of the two otherwise degenerate MS =±10 states
and thus destroys the possibility of tunneling. As a consequence the NSLR
decreases abruptly as shown in Fig.30. Since the experiment was performed
at a temperature not sufficiently low a sizeable contribution due to thermal
fluctuations remains at high magnetic fields when no tunneling is present. In
the second experiment the 57Fe NMR in a isotopically enriched single crystal
of Fe8 with almost complete deuteration was measured The replacement of
hydrogen nuclei with the lower gyromagnetic ratio deuterium nuclei should
not affect the 57Fe NSLR if this were due to thermal fluctuations of the mag-
netization. On the other hand the deuteration, by changing the hyperfine
interactions with the Fe3+ moments can affect the broadening of the mag-
netic levels and thus the incoherent tunneling probability. Since the 1/T1 at
the temperature plateau is a direct measure of the tunneling probability we
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Fig. 30.

observe a dramatic change by almost one order of magnitude of the 57Fe NSLR
as shown in Fig.31 which corresponds to an equivalent change in the incoher-
ent tunneling probability. Before closing this section we would like to recall

Fig. 31.

that one can measure the relaxation rate of the magnetization by monitoring
the NMR signal intensity in off-equilibrium state. The idea is quite simple.
We have seen above that in the NMR spectrum at low temperature in Mn12
and Fe8 the position of the resonance lines depend upon the internal field
due to the magnetization of the molecule. Thus if an external field is also
applied the position of the line depends on the vector sum of the external
field plus the internal field the latter being directed along the magnetization
of the molecule. If the direction of the external field is suddenly reversed
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(or the sample is flipped by 180◦) the position of the NMR line changes in
the new off-equilibrium situation. The intensity of that particular line starts
from zero and it grows back to the full intensity as the magnetization of the
molecule relaxes back to equilibrium along the applied field. The method was
first described for proton NMR in Mn12 by looking at the echo intensity at
the Larmor frequency when the external field is turned on adiabatically at
low temperature. A more straightforward implementation was later applied
to the signal intensity of shifted proton lines in Mn12. The detailed results for
proton NMR in Mn12 are discussed in the original literature. The method has
been confirmed by measuring the 55Mn NMR spectrum in Mn12 with results
very similar to the ones obtained with proton NMR and it has been extended
to very low temperature to observe the avalanche effect of the spin reversal in
the magnetization recovery in Mn12. Also it has been applied to proton NMR
in Fe8 at very low temperature to obtain information about Landau-Zener
transition as the field is swept through a level crossing condition.

Conclusions

In these lectures we have shown how NMR can give information about the mi-
croscopic static and dynamic magnetic properties of molecular nanomagnets.
Regarding static properties NMR spectra give access to the hyperfine interac-
tions between nuclei and magnetic ions. Measurements in external fields and
in zero field at low temperature allow the microscopic determination of the
local spin structure of the ground state and its modifications as a function
of temperature and field. Regarding the dynamic properties the NMR relax-
ation measurements (NSLR) give a clear picture of the evolution of electronic
spin dynamics from the uncorrelated high temperature regime to the quan-
tum spin dynamics in the low temperature ground state. In particular it is
shown that at high temperature the spin dynamics is characterized by the
persistence at long time of the decay of the electronic spin correlation func-
tion due to the restricted dimensionality of the nanomagnet. At intermediate
temperature the spin dynamics is surprisingly dominated by a uniform collec-
tive fluctuation characterized by a single correlation time which increases fast
as the temperature decreases. This result appears to be robust and universal
for all kind of nanomagnets. At temperatures lower than the exchange inter-
action energy J/k the spin dynamics is dominated by the fluctuations of the
total magnetization. In AFM rings and in clusters with a singlet S=0 total
spin ground state the fluctuations are due to thermal transitions from the
non magnetic ground state to the first magnetic excited state. At magnetic
fields small compared to the energy gap between these two states the NMR
relaxation measurements allow the determination of the energy gap and of
its dependence on the applied magnetic field. For large applied fields one can
observe a peak in the NSLR in correspondence to the critical field for which
the lowest lying magnetic states cross. From the width of the peak one can
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obtain information about the nature of the crossing i.e. the degree of level
repulsion. In molecular clusters with a magnetic high spin ground state one
can distinguish in the NSLR a temperature region where thermal excitations
among the crystal field sublevels of the high spin ground state are dominant
(superparamagnetic region) and a very low temperature region where the spin
dynamics is dominated by incoherent quantum tunneling. In this T region it
is shown that, under favorable circumstances, the NSLR can measure directly
the incoherent tunneling probability.
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1 Introduction

Magnetic resonance imaging (MRI) is a non invasive method that, in a medical
context, allows the identification and characterization of pathological tissues
and lesions. The principle of this technique is based on the application of mag-
netic field gradients in three dimensions. The image results from the spatial
identification of hydrogen nuclei. This image is constituted of elements, “pix-
els”, where grey levels represent the signal intensity emitted by corresponding
volume elements, “voxels”. As the signal depends on the concentration in
protons and on nuclear relaxation times, T1 and T2, modulations of image
intensity are observed.

To make a precise medical diagnosis, contrast agents facilitating the dis-
tinction between pathological and healthy tissue are administered. Their role
is to modify the nuclear density and nuclear relaxation times. Instrumental
parameters such as the choice of the sequence can also influence the contrast.
Among the characteristics of these substances, the efficiency and safety for
the patient must be determined before considering medical application. The
contrast agents therefore have to be stable, non toxic, biocompatible and ef-
ficient at weak doses.
The intensities on MRI image are mainly determined by water proton relax-
ation. The process of relaxation is a function of the water proton environment
and varies according to the tissues. The contrast can be modulated by two
phenomena governing the relaxation of protons: the T1 effect or longitudi-
nal relaxation, which increases the signal intensity (positive agent), or the T2

effect or tranverse relaxation, which decreases the signal intensity (negative
agent). Images will then be weighted in T1 or T2.
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2 Contrast agents

To increase the signal intensity and image quality, contrast agents are used
[1,2,3] (fig. 1). Their key property is their ”relaxivity”, defined as the aptitude
to increase the water proton relaxation rate by one mmol l−1 of paramagnetic
center. These substances play the role of a real catalyst in relaxation and
are classified into 3 categories according to their magnetism: diamagnetic,
paramagnetic or superparamagnetic compounds. Contrast agents decrease the
proton relaxation time and, thus, reduce the acquisition time of the image.
More of the signal can be accumulated, which increases the sensitivity and
the image contrast.

a)

b)

Fig. 1. MRI before injection of the contrast agent and after injection with the
positive contrast agent (a) [4] and with a negative contrast agent (b).

Diamagnetic materials have a weak negative susceptibility in an external
magnetic field. Their effect on signals is very weak.

Paramagnetic compounds include oxygen, nitroxydes, transition metal
ions and lanthanides. They possess one or several free electrons reponsible
for the presence of a dipolar magnetic field during the application of an ex-
ternal field B0. This magnetic moment is 657 times higher than that of the
proton, and the paramagnetic effect is therefore superior to the diamagnetic
effect. Gadolinium is a very toxic metal in the hydrated form [Gd(H2O)8]3+.
To avoid toxicity while maintaining the magnetic and electronic properties
of this ion, paramagnetic gadolinium complexes have been used. In vivo, the
free Gd is in competition with calcium-dependent systems and blocks the
reticulo-endothelial system. To avoid all in-vivo toxicity, it has to be used
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in the form of a thermodynamically stable inert complex. Further, the lig-
and which complexes the metal has to leave free coordination sites such
that one or several molecules of water can link to the metal, thus increas-
ing the relaxivity. The first gadolinium complexes commercially available were
Magnevist r© (Gd-DTPA) and Dotarem r© (Gd-DOTA). These compounds are
accompanied by counter-ions that increase the osmolality of the injected so-
lution. Two other “neutral” complexes exist, Omniscan r© (Gd-DTPA-BMA)
and Prohance r© (Gd-HP-DO3A) [5]. These 4 paramagnetic complexes (fig. 2)
disseminate freely in the extracellular space and present no specificity.

Fig. 2. Structure of commercial paramagnetic contrast agents.

The addition of lipophilic groups onto the skeleton of Gd-DTPA has im-
proved the tissular tropism. When these derivatives accumulate at the level
of some pathological tissues, they can greatly increase the signal intensity.
Eovist r© (Gd-EOB-DTPA), for example, targets hepatocytes (fig. 3). Another
strategy is to covalently couple these gadolinium complexes to macromolecules
such as human seric albumin (HSA) and polysaccharides (dextran), or to syn-
thetic polymers such as polylysine, polyethyleneglycol, dendrimers, etc. An
alternative for bettering the efficiency of contrast agents is the non-covalent
interaction with HSA. Aryl moieties are grafted onto the contrast agent, which
are able to recognize the hydrophobic sites of the protein.

The recent development in contrast agent research is the targeting of a
sickness or its manifestations, for example the early detection of tumors. This
strategy is based on the principle of recognition of specific receptors. Their lig-
ands, i.e. peptides, antibodies, folate,. . . are grafted onto Gd-DTPA. Another
class of smart agents modulates their efficiency according to the biological
environment (the presence of enzymes, pO2, pH, and so on). For example,
pH-sensitive agents are promising for pathologies that acidify the environ-
ment (in tumors, the pH is ∼6.8, while in a healthy extracellular medium, the
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Fig. 3. Structure of Gd-EOB-DTPA.

pH is ∼7.4).
Contrast compounds for angiography are notably characterized by prolonged
vascular remanence time, decreased extravasation, biological inertia, efficient
elimination, etc. To increase the vascular residence time, various strategies
have been tried: imitating sanguine cellular structures (liposomes, micelles)
or increasing the molecular mass by covalent bond to the macromolecules.
However, these approaches have disadvantages that limit their application
because, among other problems, they leave the bloodstream rapidly. Thus,
the liposomes accumulate in the liver and spleen, the plasma protein mimet-
ics are opsonized and recognized by the reticulo-endothelial system. A new
strategy consists in grafting molecules of glucose onto the Gd-DTPA. Prolon-
gation of the half-life of glucosylated Gd-DTPA derivatives is hypothesized
to be due to a possible interaction with the renal glucose carrier, which can
entail delayed renal excretion.

The last category is that of superparamagnetic nanoparticles (fig. 4), which
are composed of an iron oxide nucleus of 5 nm diameter (SPIO, SuperParam-
agnetic Iron Oxide). To increase their stability in aqueous medium, particles
are coated with polymers (dextran) and form colloidal solutions. The diame-
ter of these particles is on the order of 10 - 20 nm. After intravenous injection,
particles are trapped by cells of the reticulo-endothelial system (i.e. Kupffer
cells in the liver, the spleen). They induce a diminution of the signal in these
organs and are used for hepatic tumor detection. Current experiments aim to
graft these contrast agents onto different molecules that target specific cellular
receptors of a given pathology. MRI applications for these superparamagnetic
compounds are quite various and go from angiography to tumoral diagnosis
and atherosclerotic pathology. The progress of molecular biology in recent
years has led to the development of new, increasingly specific methods of di-
agnostic imaging. Among these, molecular imaging has burgeoned thanks to
the utilization of the magnetic marker and to a better spatial resolution. The
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Fig. 4. Structure of iron oxide nanoparticles.

recent studies on cellular labeling in MRI have used the specific targeting of
some cellular receptors with ligands grafted to SPIO (superparamagnetic iron
oxide) or USPIO (ultrasmall superparamagnetic iron oxide) particles.

The most common method for producing magnetic nanoparticles involves
coprecipition of ferrous and ferric salts in an alkaline medium. This synthesis
approach can be used in the absence or presence of surface complexing agents,
such as PEG, dextran, synthetic polymer, to name a few. For the method
without surface complexing agents, the nanoparticles precipitated are iso-
lated through magnetic decantation or centrifugation. The precipitate is then
treated with nitric acid, centrifuged and peptized in water to produce a stable
acidic magnetic sol. Alkaline magnetic sols can be obtained using tetramethy-
lammonium. A variety of factors can be adjusted in the synthesis protocol
of the iron oxide particles in order to control size, magnetic characteristics,
stability in solution or surface properties. Although coprecipitation methods
are used for their simplicity, the nanoparticles produced are fairly polydis-
perse. Consequently, several other techniques are currently being developed
to obtain nanoparticles with more uniform dimensions.

3 Relaxation mechanims

3.1 Nuclear relaxation

Nuclear relaxation corresponds to the return to thermodynamic equilibrium
of a spin system excited by the energy absorbed during the application of an
electromagnetic field of appropriate frequency.
The interaction of magnetic moments of the excited spins with the environ-
ment creates fluctuating local microscopic magnetic fields. These magnetic
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fluctuations are linked to molecular movement. Longitudinal (R1) and trans-
verse (R2) relaxation rates are therefore modulated by the phenomenon of
molecular distribution and are expressed by the generic relationship:

1
Ti

= Ri = KE2
c f(τc) (1)

where:
i = 1, 2
K is a constant
Ec is the amplitude of the interaction responsible for the relaxation
f(τc) is a function of the correlation time, τc, that modulates the interaction.

3.2 Paramagnetic relaxation

The presence of paramagnetic ions entails the increase of the observed relax-
ation rate of water protons. This equation can be written as:

1
T obs

i

=
1

T dia
i

+
1
T p

i

(2)

where 1/T dia
i is the diamagnetic relaxation rate of water protons without

paramagnetic contribution and 1/T p
i is the paramagnetic relaxation rate.

The paramagnetic center influences the relaxation rate of the water
molecule which interacts directly with it and the neighboring molecules.

The efficiency of contrast compounds is linked to molecular movements
but also to intrinsic properties of the nuclei (magnetic moment, gyromagnetic
ratio, spin). The paramagnetic relaxation R1

p is characterized by two contri-
butions: the contribution of internal sphere R1

is (”inner sphere”, IS, fig. 5)
and external sphere R1

os (”outer sphere”, OS, fig. 6). The principle of ”inner
sphere” relaxation is a chemical exchange during which one or several wa-
ter molecules are in contact with the electronic spin; after leaving the first
sphere of coordination of the paramagnetic center, they are replaced by other
molecules. This mechanism allows the propagation of the paramagnetic ef-
fect to the totality of the solvent and constitutes a situation where the water
molecule is exchanged between two sites (the interior and the exterior of the
first coordination sphere). The IS model has been described by the Solomon-
Bloembergen-Morgan theory (SBM) [6, 7].

The inner sphere contribution is given by:
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1 = fq

1
T1M + τM

(3)

1
T1M

=
2
15

(μ0

4π

)2

γ2
Hγ

2
S h̄

2S(S + 1)
1
r6

[
7τc2

1 + (ωSτc2)2
+

3τc1
1 + (ωHτc1)2

]
(4)



Contrast agents for magnetic resonance molecular imaging 77

Fig. 5. Schematic representation of the inner sphere theory (IS).
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where f is the relative concentration of the paramagnetic complex and of the
water molecules; q is the number of water molecules in the first coordination
sphere; τM is the water residence time; γS and γH are the gyromagnetic ratios
of the electron (S) and of the proton (H), respectively; ωS,H are the angular
frequencies of the electron and of the proton; r is the distance between coor-
dinated water protons and the unpaired electron spin; τ c1,2, the correlation
times modulating the interaction, are defined by Eq. 5 – where τR is the rota-
tional correlation time of the hydrated complex and τs1,2 are the longitudinal
and transverse relaxation times of the electron. These latter parameters are
field-dependent (Eqs. 6 and 7). τSO is the value of τs1,2 at zero field and τv

is the correlation time characteristic of the electronic relaxation times.
The second contribution to paramagnetic relaxation is ”outer sphere” re-

laxation. It is explained by the dipolar interaction at long-distance between
the spin of the paramagnetic substance and the nuclear spin. This intramolec-
ular mechanism is modulated by the translational correlation time (τD) that
takes into account the relative molecular diffusion constant (D) between the
paramagnetic center and the solvent molecule, as well as their distance of
closest approach (d). The OS model has been described by Freed [8].
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Fig. 6. Schematic representation of outer sphere theory (OS).

The outer sphere contribution is given by:
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[C] is the molar concentration of the paramagnetic ion and τD=d2/D is the
translational correlation time.

4 Physico-chemical characterization of contrast agents

4.1 Paramagnetic complexes

The complexity of the equations describing the relaxation rate justifies the
large number of parameters describing the relaxation IS and OS (8 parame-
ters: τM , q, τR, D, r, d, τV , τS0). Considering the high number of parameters
introduced by the equations, the estimation of all parameters using the tech-
nique of field cycling is often ambiguous. Thus, the determination of some
parameters using independent methods increases the overall reliability of the
theoretical adjustment of the NMRD curve (fig. 7) [9, 10, 11, 12, 13].
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Fig. 7. NMRD profile of Gd-DTPA.

Rotational correlation time

The rotational correlation time (τR) characterizes the reorientation of the
spin-nucleus vector, such as the Gd3+-proton vector of the water molecule in
the case of a gadolinium complex. Generally, τR limits the complex relaxivity
of low molecular weight complexes in the fields range used in imaging. This
characteristic can be exploited advantageously. The rotational correlation time
can be obtained through several methods: analysis of the longitudinal relax-
ation of 17O on the Gd complex, EPR measurement of the vanadyl complex,
measurement of the longitudinal relaxation rate by 13C NMR, fluorescence
polarization spectroscopy or by deuterium relaxation rate.
In small diamagnetic molecules, the longitudinal relaxation rate of deuterium
nuclei is given by equation 10, where the quantity in brackets is the quadrupo-
lar coupling constant (e2qQ/h = 170 kHz for D-Csp

3).

R1 =
1
T1

=
3
8

(
e2qQ

h̄

)2

τR (10)

Electronic relaxation times

Longitudinal and transversal electronic relaxation times (τS1 and τS2) de-
scribe the process of return to equilibrium of the magnetization associated
with electrons undergoing transitions between the electronic levels of the Gd
ion. These transitions produce fluctuations that enable the relaxation of pro-
tons. The degeneration of the higher electronic level of gadolinium ions occu-
pied by single electrons is attributed to the Zeeman effect. It seems that the
origin of electronic transition is represented by the collisions between solvent
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molecules and the complex that induces distortions in symmetry and leads to
transitory ZFS of electronic levels.

Electronic relaxation rates depend on the field. In the case of Gd com-
plexes, electronic relaxation rates are quite long (∼10−10 s at low field and
∼10−8-10−7 s at high field). Consequently, the influence of electronic relax-
ation is especially evident at fields inferior to 0.2 Tesla.

Number of water molecules coordinated to metal

The number of water molecules strongly influences the IS contribution because
the relation is directly proportional. For complexes like Gd-DTPA, an increase
in the number of water molecules from 1 to 2 enhances relaxivity by about
30%, but nearly all derivatives of Gd-DTPA are q=1. Two types of measure-
ments can be distinguished: q in solid phase and q in solution. Measurements
in solid phase are obtained by diffraction (X rays, neutron diffraction). Al-
though there is generally a good correlation between measurements obtained
in these two different states of matter, by definition, measurement in solid
phase does not take into account the dynamic state of the complex. It is
therefore useful to confirm these measurements by doing studies in solution.
The fluorescence of Eu or Tb complexes can be induced by laser. The dis-
excitation rate by fluorescence of the two lanthanides follows an exponential
decrease and is proportional to the number of water molecules coordinated to
the metal. This disexcitation rate differs according to whether the complexes
are coordinated to H2O or D2O. The measurement in these two media and
their subtraction allows the calculation of number q. Another possibility is the
LIS (Lanthanide Induced Shift) method that makes it possible to determine
the number of water molecules coordinated by 17O NMR.

Proton-to-metal distance

For protonic relaxation in the presence of paramagnetic centers, the IS con-
tribution is manifested by dipolar interactions. The efficiency of the dipolar
mechanism comprises the term in 1/r6, where r is the metal-to-proton dis-
tance. One understands therefore that even a slight reduction in this distance
will have a noticeable impact on the relaxivity of Gd-DTPA complex.
This reduction could be the cause of the higher relaxivity of Gd-EOB-DTPA
(5.5 mM−1 s−1 at 310 K, 20 MHz) with respect to Gd-DTPA (3.9 mM−1 s−1

at 310 K, 20 MHz). While the exact distance between the gadolinium and the
oxygen in water is well defined thanks to cristallographic structures, the Gd-
water-proton distance is only an estimate because few experimental methods
allow this measurement.

Coordinated water exchange rate

The mechanism of IS relaxation is based on an exchange between water
molecules surrounding the complex and the water molecule(s) coordinated
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to the lanthanide. Consequently, for agents of paramagnetic relaxation, the
exchange rate (kex= 1/τM ) is an essential parameter for the transmission of
the ”relaxing” effect to the solvent surrounding the complex. The principle of
measurement is based on Swift and Connick’s works on diluted paramagnetic
solutions. It consists of analyzing the transverse relaxation rate of 17O as a
function of the temperature.

The paramagnetic transverse relaxation rate of water in solutions of
gadolinium complexes is given by equation 11 where T2M , the transverse
relaxation rate of the oxygen atom of the bound water, results from scalar
interaction between the electron and the oxygen nucleus (Eq. 12) and ΔωM ,
the chemical shift of the oxygen in this water molecule is given by Eq. 13. The
outer sphere contribution is neglected.
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A/h̄ is the hyperfine or scalar coupling constant between oxygen and Gd3+;
τei are given by [τM –1 + τSi –1]−1; gL, the Landé factor, is equal to 2.0 for
Gd3+; μB is the Bohr magneton; B0 is the external magnetic field.

The temperature dependence of τM and τV can be described by Eqs. 14
and 15, respectively.
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ΔS�= and ΔH�= are the entropy and the enthalpy of activation for the
exchange process, τV

298 is the correlation time at 298.15 K and Ev is the
activation energy for this process.

4.2 Superparamagnetic nanoparticles

Proton relaxation in superparamagnetic colloids occurs because of the fluctu-
ations of dipolar magnetic coupling between nanocrystal magnetization and
proton spin. The relaxation is described by an outer sphere model where the
dipolar interaction fluctuates because of both the translational diffusion pro-
cess and the Néel relaxation process.
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The simplest model [14] is derived when the anisotropy energy of the
crystal is great enough to prevent any precession of its magnetic moment.
In this high anisotropy condition, the magnetization of the crystal is locked
along the easy axes. The magnetic fluctuations then arise from the jumps of
the moment between different easy directions according to the Néel relaxation
process.

Fig. 8. Illustration of the superparamagnetic model.

At low fields (Fig. 8), the longitudinal relaxation rate of the protons is
obtained by introducing in the outer sphere equations the limitation of the
precession as mentioned above: the electron Larmor precession frequency is
set to zero. The spectral density function determining this component of the
relaxation is then characterized by a global correlation time depending on
τN and τD. τN and τD are respectively the Néel relaxation time and the
translation correlation time. Figure 8 shows the dispersion of this spectral
density function, called the Freed function.

For very small crystals, the assumption of a complete locking of the magne-
tization along the easy axes, assuming an infinite anisotropy energy, becomes
less and less valid. Subsequently, the orientation of the magnetization vector
out of the easy axes becomes more probable [15]. This results in the presence
of low field dispersion (Fig. 9). The evaluation of the amplitude of the low
field component requires a more complete and difficult theory that takes into
account the anisotropy. Note that the low field dispersion is always smaller
than that predicted by the classical paramagnetic outer sphere theory. In-
deed, the classical theory would be valid only for superparamagnetic colloids
characterized by a null anisotropy [16].

At high fields (Fig. 8), the magnetic vector is locked along the external field
Bo, and Curie relaxation dominates. The corresponding relaxation rates are
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given by an outer sphere model assuming a stationary magnetization compo-
nent in the Bo direction and, therefore, an infinite value of the Néel relaxation
time. The dispersion of this spectral density (named the Ayant function) oc-
curs when ωI .τD ∼ 1.

At intermediate fields (Fig. 8), the relaxation rates are combinations of
the high and low field contributions, weighted by factors depending on the
Langevin function, which gives the average magnetization of the sample.

a)

b)

Fig. 9. Comparison between NMRD curves of particles with high (a) and low (b)
anisotropy. As the anisotropy energy is proportional to the crystal volume, curve A
corresponds to larger crystals.

The analysis of the proton NMRD profiles thus gives:
1. the average radius (r): at high magnetic fields, the relaxation rate depends
only on τD and the inflection point corresponds to the condition ωI .τD ∼1
(Fig. 10). As shown in Eq. 16, the determination of τD gives the crystal size
r. r, D and ωI are the average radius of the superparamagnetic crystals, the
relative diffusion coefficient, and the proton Larmor pulsation, respectively.



84 Sophie Laurent, Luce Vander Elst, Alain Roch, Robert N. Muller

τD =
r2

D
(16)

2. the specific magnetization (Ms): at high fields, Ms can be obtained from
the equation Ms ∼ C.(Rmax/τD)1/2, where C is a constant and Rmax the
maximal relaxation rate.

3. the crystal anisotropy energy (Ea): the absence or the presence of dis-
persion at low fields informs about the magnitude of the anisotropy energy.
For crystals characterized by a high Ea value as compared to the thermal ag-
itation, the low field dispersion disappears. This was confirmed in a previous
work with cobalt ferrites [17], known to have high anisotropy energy.

4. the Néel relaxation time (τN ): the relaxation rate at very low field R0

is governed by a “zero magnetic field” correlation time τC0 which is equal
to τN if τN << τD. However, this situation is not met often, so τN is fre-
quently reported as qualitative information additional to the crystal size and
the specific magnetization.

Fig. 10. NMRD profile of magnetite particles in colloidal solution.

5 Magnetic applications: MRI, cellular targeting

One possible way of extending the vascular residence time of contrast agents
resides in the renal reabsorption mechanisms of some molecules such as glu-
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cose. Thus, various small-molecular-weight glucosyl derivatives of gadolin-
ium diethylenetriaminepentaacetic (Gd-DTPA) were synthesized and their
vascular half-life was studied. The sugar moieties linked to Gd-DTPA effi-
ciently reduce the renal excretion of some derivatives. The interaction with
the renal carrier was not clearly demonstrated, nor was any interaction with
blood components observed. New glucosylated derivatives of Gd-DTPA (Cd-
DTPA-BC2-beta-cellobionA and Gd-DTPA-BC4-beta-glucosylA) have been
proposed as blood-pool MR contrast agents, considering their vascular rema-
nence [18].

Apoptosis is a physiological process that becomes pathologic either by
overactivity or inhibition. A dedicated contrast agent evidencing pathologies
where apoptosis takes place would be useful for monitoring antitumor thera-
pies. Phage display is a powerful new method used to select peptides with high
affinity for a given target - phosphatidylserine (PS) in this study. Subsequent
coupling of the selected peptides with a magnetically active species produces
selective MRI contrast agents. The efficacy of this new contrast agent was
tested on cells in culture [19].

Targeting of the endothelial inflammatory adhesion molecule E-selectin by
MRI can be performed with a paramagnetic or superparamagnetic contrast
agent in the context of in vitro and in vivo models of inflammation [20, 21].
The specific contrast agent was obtained by grafting a synthetic mimetic of
sialyl Lewisx (sLex), a natural ligand of E-selectin expressed on leukocytes,
on the DTPA-bisanhydride or on the dextran coating of ultrasmall particles
of iron oxide (USPIO).

Bulté has used MRI to provide information on the location and migration
of cells after transplantation or transfusion. This approach requires magnetic
prelabeling of the cells. With the magnetic labeling methods currently avail-
able, it is anticipated that cellular MRI will find applications in biology and
medicine [22].

Magnetic hyperthermia involves dispersing nanoparticles into the targeted
tissue and then applying a magnetic field to heat the particles. This heat is
conducted into the immediately surrounding diseased tissue. Hyperthermia
treatment of cancers is based on the finding that some cancer cells are more
sensitive to temperatures in excess of 41◦C than are their normal healthy
counterparts [23, 24]. Magnetic nanoparticles encapsulated in polymer ma-
trix beads have been used successfully for the treatment of macroscopic liver
tumor.

Conclusions

MRI plays an important role in modern medicine and is at the interface of
several scientific domains such as chemistry, biology and the physical sciences.
Superparamagnetic particles present a lot of advantages in terms of molecu-
lar imaging because: (i) they constitute very powerful transverse relaxophores
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and therefore are very efficient for use as a negative contrast agent. (ii) super-
paramagnetic crystals allow the fixation of several thousand active iron atoms,
instead of only one in the case of paramagnetic complexes, to a single cell re-
ceptor. (iii) iron oxide particles are absolutely non toxic and bio-compatible.
(iv) as shown in this review, there are many ways to graft the molecular enti-
ties that are the most suitable for targeting the desirable receptor. (v) the new
means of synthesis recently discovered would optimize the size distribution of
the crystal and thus the performance of the contrastophore. The challenge for
chemists is, hence, to increase the relaxivity of their ”contrastophores”.
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Fundamental aspects of the Magnetic Resonance Imaging (MRI) technique
which is one of the preferred modalities for non-invasive clinical applications
and ”in vivo” medical and biological research, are presented. The physical
principles of MRI and protocols recently introduced to investigate the mi-
croscopic details of pathological cerebral damages are introduced. The main
results obtained from the analysis of T2 relaxation curves are briefly summa-
rized.

1 Introduction

The techniques available for medical diagnosis of internal tissues and organs
of human body can be grossly divided into non-invasive and invasive ones.
X-ray computer assisted tomography (CT X-rays), SPET (single photon to-
mography) and PET (Positron Emission Tomography) are part of the invasive
techniques as they make large use of ionizing radiations. On the other hand
Magnetic Resonance Imaging (MRI) is a non-invasive investigation tool (to-
gether with Diagnostic Ultrasounds) that has had a very fast technological
development in the last 20 years, resulting in a substantial improvement of
diagnostic images and protocols. Particularly, it should be noted that for some
sectors and/or pathologies MRI reached the highest resolution in images and
the fastest acquisition times (e.g. in the case of internal cerebral damages to
which, in some cases, CT is blind). In the present work, before going into
some details of recent results obtained by means of MRI in models of cerebral
ischemia, we briefly describe the principles of MRI and some potentialities of
this technique.

2 MRI physical principles and examples

The Magnetic Resonance Imaging is the last application of the Nuclear Mag-
netic Resonance (NMR) technique which is a powerful tool in many research
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fields: in chemical and pharmaceutical analysis for the investigation of molecu-
lar structure and molecular motion in solids and liquids, in solid state physics
to study physical properties at the atomic level [1,2], in biomedicine to obtain
information about organs, cells and tissues [3,4].

Fig. 1. MRI Artoscan (Esaote SPA Genova, Italy) Imager dedicated to the in-
vestigation of articular diseases. The system in the picture is placed in the NMR
laboratory of the Department of Physics ”A. Volta”, University of Pavia, Italy.

The process of acquiring 2D and 3D images by NMR was first illustrated
by Lauterbur and Mansfield in 1973 (awarded by the Nobel Prize in Medicine
in 2003) and, over the last 20 years, the development of this technique was
accelerated by Fourier transform image processing [3,4]. Nowadays MRI has
become one of the most important techniques in the diagnosis of many dis-
eases. As said above, contrary to CT which uses ionizing radiations MRI is
based on the magnetic properties of the nuclei, excited by (non-invasive) ra-
diofrequency radiation.

The NMR experiment is based on the precession of a nuclear spin I when
it is immersed in a static magnetic field. For the sake of simplicity in the
following we are only focusing on the nuclear spin of the hydrogen nucleus,
1H, the most relevant one for MRI. When the patient is positioned within the
magnetic field B0 of the MRI apparatus (see Fig.1), the spins Ii of the atomic
nuclei inside the human tissues are forced to align along B0, thus giving a
total nuclear magnetization M =

∑
i Ii/V . As shown in Fig. 2, in a magnetic
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field spinning nuclei have lower energy when aligned to the magnetic direction
than when they are opposed to it.

Bo

M0

Bo M0

NO MAGNETIC  
FIELD

MAGNETIC  FIELD APPLIED 

Energy Gap 
∆ E = γ  Bo 

E1

E2

Fig. 2. The basis of NMR in a semi-classical picture: a nuclear spin precesses around
the external magnetic field B0. For example the 1H nuclei that possess a nuclear
spin, can be simplified by visualizing them as small magnets. This simplification
allows one to explain the alignment of these spins in the magnetic field of the MR
system and how they generate nuclear magnetization in the patient’s body. The two
possible directions of the spin vectors determine two energy levels E1 and E2. The
frequency difference, Δν = (E1 − E2)/h, is in the range of radio-frequencies.

The energy difference between the two levels generated by the Zeeman ef-
fect, ΔE = γB0, corresponds to a certain frequency ν = ΔE/h which is in the
range of radio frequencies. The energy of the nuclei can be increased if they
absorb radio waves with the same frequency (condition of resonance). After
each stimulation by a RF pulse, the atomic nuclei return to their previous
energy level emitting radio waves [1-4]. The detected NMR response signal
contains all the information related to the recovery of the magnetization to-
ward the equilibrium state (i.e. the relaxation). The relaxation process of the
nuclear magnetization is described mainly by two microscopic time constants:
the longitudinal one (T1) called nuclear spin-lattice relaxation time and the
transversal one (T2) called nuclear spin-spin relaxation time. The fascinating
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and extraordinary characteristic of the NMR experiment in general and in
particular of the MRI experiment is that microscopic nuclear parameters like
T1 and T2 are material-dependent, thus giving the possibility of distinguishing
different tissues/diseases with a proper analysis of the received RF signal.

2.1 Spatial localization principle: Fourier imaging

In the classical NMR experiment the signal contains information about all
the resonant nuclei in the whole body; thus, no information about the spatial
distribution of nuclei belonging to different tissues can be obtained. In order
to generate an image showing spatial structures in scale of gray intensities, a
method able to spatially differentiate the NMR signal must be developed.

Bz(x) = Bo + Gxx

0

ω(x) = ω0 + γ Gx x

ω ∝ x

ω ∝ x

Bz

x

x

Bz

NMR signal

t

t

FT

FT

ω0 ≡ (x=0)

NMR signal

Fig. 3. Resonance spectrum (1D-FT of the acquired NMR signal) of a 9 capillaries
water phantom which form a ”F” letter (the height of each column is proportional
to the number of resonating 1H nuclei contained inside), in a presence of a uniform
magnetic field (upper part) and in a presence of a field gradient Gx superimposed
to the uniform one (lower part). The field gradient produces a linear distribution
of resonance frequencies of the proton (i.e. 1H nuclei) density along the gradient
direction.

In a uniform magnetic field the proton resonance frequency is the same ev-
erywhere. On the other hand, in the presence of a field gradient superimposed
to the uniform magnetic field the resonance frequency become site dependent
opening the way to identify the different nuclei position in the human body.
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The used technique is well illustrated in Fig. 3 where we consider a phantom
composed by 9 capillaries. By taking the Fourier Transform (FT) of the ac-
quired NMR signal in presence of a linear spatial (site) dependent magnetic
field, that follows the expression Bz(x) = Gxx = δBz

δx x, instead of a single line
at the Larmor frequency, one observes a series of resonance lines which de-
scribe the proton intensity of the different isochromates. A frequency encoding
along the direction of the field gradient is thus obtained (1D imaging).

In the case of a single magnetic field gradient not all the power of the
FT technique is applied. FT in fact is a complex function that can be repre-
sented by real and imaginary part or, in equivalent notation, by magnitude
and phase. With one field gradient only the magnitude of proton density along
the direction of the gradient could be detected. In order to completely char-
acterize a two-dimensional region a further information related to the second
spatial dimension must be take into account. This is achieved by using a
further field gradient perpendicular to the one that produces the frequency
encoding. In particular, if a gradient Gy is applied for a fixed time ty, the
magnetization vectors along the y axis are forced to precess at a frequencies
ω = ω0 + γGyy. When Gy is turned off, the accumulate phase of each local
magnetic vector along the y axis will be φy = ωyt and a complete characteri-
zation of the 2D domain is obtained. Generally in the imaging sequences the
encoding procedure is done by first applying the phase encoding gradient Gy

which is followed by the frequency encoding gradient Gx. This last gradient is
maintained during the acquisition of the whole NMR signals. If one considers
that the MRI spectrometers are equipped with a double phase sensitive de-
modulator detector with two reference signals at frequency ωrf in quadrature
(see Fig. 10), all the information giving a complete characterization of a 2D
region can be obtained.

Following the presented excitation and acquisition procedure, the local
NMR signal can be described by the expression

snmr = I(x, y)exp[j((ω(x, y) − ωrf )t+ φ(x, y) − β)] (1)

where I(x, y) take into account that the local magnetization is related to
the proton density ρ and to the local relaxation times (T1 and T2) of the
different human tissues. More generally each pixel gives a contribution to the
demodulated NMR signal of the form

snmr = I(x, y)exp(j[Ω(x, y)t+Φ(x, y)] = I(x, y)exp[j(γGxtxx+γGytyy)] (2)

The detected NMR signal, by introducing the related variables kx =
γGxtx/2π and ky = γGyty/2π (here tx represent the time where the NMR
signal is acquired and ty is the time length of the encoding phase gradient)
and by considering all the pixels of the interested region becomes

Snmr(kx, ky) =
∫ ∫

I(x, y)exp[j2π(kxx+ kyy)]dxdy (3)
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The form assumed by the Snmr(kx, ky) expression shows that the 2D pro-
ton density image can be obtained by the Fourier Transform of the detected
NMR signal. More precisely, the MRI apparatus uses the digital Fast Fourier
Transform (FFT) to obtain a two dimensional proton image with (NxN) ele-
ments; for example to get a 2D image with 128x128 pixels one has to acquire
a matrix composed of 128 different values of the encoding phase gradient (i.e.
Gy(i) = ig with g = Gy(max)/128 and i that spans from 1 to 128, each one
followed by 128 samples of the NMR signals obtained in presence of the same
frequency encoding gradient Gx applied along the transverse x direction.

ω

ω0

ω

Selected slice

x

RF Pulse

t

B0

Bz(x)

x0

Fig. 4. In a uniform magnetic field, the nuclear magnetic resonance condition is
the same everywhere. By using a magnetic field gradient and a sinc(t) shaped RF
pulse it is possible to irradiate the nuclei contained in a thin slice leaving the outside
nuclei at the rest conditions. The gradients allow one to position slices at will.

The proton density image is then obtained by applying the 2D-DFFT (Dis-
crete Fast Fourier Transform) to the acquired (NxN) matrix. It is now easy to
understand that by applying a further gradient (slice-selecting gradient) along
the third space direction (z) it is possible to select a small volume of sample,
generally of the order of 1 mm3 (voxel), as expected in the conventional MRI
technique. The time required to obtain the image in this case becomes so long
that it is not applicable for the patients that should have to stay immobile



Basic concepts of Magnetic Resonance Imaging 95

for more than half an hour. With the aim of reaching a good compromise
between image resolution and acquisition time, the investigation along the
third space dimension, by using particular RF pulses in conjunction with a
magnetic field gradient, is usually limited to a set of slices with thickness of
the order of 1 mm. The slice selection technique is realized by using pulses
of the form sinc(x) = sin(x)/x whose FT is the rectangular function. By
applying a sinc(t) amplitude modulated RF pulse in a presence of a linear
magnetic field gradient, a rectangular window of exciting nuclear resonance
frequencies is obtained (see Fig. 4). By modifying the gradient intensity, the
RF strength, the argument of the sinc(t) function and the frequency carrier
of the RF pulse, it is possible to select more than one slice during the same
image acquisition. The slice selection is generally the first implemented opera-
tion in a MRI pulse sequence and it is followed by the phase and the frequency
encoding. It is now clear the importance of the magnetic field gradients that,
in conjunction with particular RF excitations sequences, allow to distinguish
the classical NMR from MRI and to obtain beautiful images of the internal
tissues of living subjects, like the ones reported in Fig. 5.

Fig. 5. Images of the human head and rachis with different kinds of contrast:
(a) SE T2 -weighted images; (b) SE T1 -weighted images; (c) GE T2 -weighted
images. These different images are collected to visualize different contrasts between
white matter, gray matter, rachis and cerebrospinal fluid. They all reveal excellent
anatomic details.



96 Alessandro Lascialfari, Maurizio Corti

2.2 Pulse sequences

The spatial selection techniques introduced in the previous section can be
used as the guide line to implement the acquisition sequences with the aim
of obtaining a good quality of the tomographic image in the shortest time.
The most general and traditional image sequences are based on the Hahn-
Echo technique that generates the so call Spin-Echo signal (see Chapter 1 by
P. Carretta). This is the typical pulse sequence used in the traditional NMR
experiment to measure the spin-spin relaxation time. The ”short” echo de-
phasing time of the NMR signal observed when a gradient is applied after
the exciting RF pulse, forces the image acquisition process to the detection of
the echo signal. In fact with the echo sequence it becomes possible to observe
the NMR signal till to time value of the order of T2. The most important
echo-based imaging sequences are the Spin-Echo (SE) sequence, the Inversion
Recovery (IR) and the Multi-SE (MSE) sequence. More recently due to the
relatively long acquisition time of the spin-echo based sequences, in order to
speed up the image acquisition, a new sequence able to generate an echo signal
with a simple inversion of the pulsed gradient was implemented; this is a very
useful MRI sequence that takes the name of Gradient-Echo (GE) sequence.
Other sequences that couple the SE and the GE sequences i.e. MPRAGE,
GRASE, FLASH, etc., belong to the same family. Other image sequences
that reduce the phase encoding gradient configurations (Fast-Spin-Echo se-
quence) or allow to acquire more than one phase encoding gradient during
the same echo dephasing time (Turbo-Spin-Echo sequence) were also devel-
oped. Particular attention is devoted to the last image acquisition based on
the Ultra-Fast image sequences that are able to detect angiography images
and to study the encephalon in times of the order of tenth of second [4,5].
The most relevant MRI sequences will be analyzed in detail in the following
subsections.

Spin-Echo sequence

In order to well understand how an image acquisition sequence works,
in Fig. 6 the Spin Echo Sequence is represented. As one can see from the
figure, to generate the echo signal of the selected slice the SE sequence uses
two pulse gradients aligned along the z axis, Gz, in conjunction with a 90o

followed by a 180o selective pulses, separated by a time TE/2. Between the
two RF pulses a phase encoding gradient Gy is applied along the y axis for
a time ty. After the second RF pulse, symmetric with respect to the time
echo position TE, the frequency encoding gradient Gx is applied along the
x axis for the total acquisition time of the NMR echo signal. To obtain an
image of 256x 256 pixels one has to memorize 256 echo signals acquired in the
presence of 256 different values of the phase encoding gradient Gy. Generally
all the gradient configurations are obtained by using the expression Gy = ngy

with gy gradient step increment and n spanning between -127 and 128. It is
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possible to prove that the intensity of the acquired echo signal intensity (SI)
follows the expression

SI ∝ ρ[1 − exp(−TR/T1)]exp(−TE/T2) (4)

where ρ represents the proton density, TR is the repetition time (the time
between two excitation sequences) and TE the echo time. As one can see from
Eq. (4), the echo intensity depends on both the relaxation processes T1 and
T2. As a consequence the produced image will be also T1- and T2- dependent.
If one considers that the values of the relaxation times in the human tissue can
change by orders of magnitude between the normal and pathological tissues,
the possibility to change the weight of one relaxation process with respect
to the other plays a crucial role in the quality of the final image and the
differentiation of tissues.
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Fig. 6. Typical sequence diagram for a 2D spin echo (SE) imaging sequence. The
RF pulses are modulated by a sinc(t) function to irradiate only the selected slice.
The phase encoding gradient Gy is pictured as a series of horizontal lines to indicate
that it is regularly increased in intensity during the different repetition periods TR.

One can easily observe that with TR >> T1 and TE << T2 an image of
proton density of the selected slice is obtained, with TR ≈ T1 and TE << T2

a T1-weighted image is observed and by choosing TR >> T1 and TE ≥ T2 a
T2-weighted image is detected. It is important to note that, although the SE
sequence is the slowest imaging technique, it gives the best image quality. The
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variant of the SE sequence that acquires more than one echo signal during the
same TR (Multi-SE sequence) allows to obtain concurrently more than one
T2-weighted images of the selected slice.

Inversion Recovery sequence

The Inversion Recovery (IR) Imaging sequence is very similar to the SE.
As in classical IR-T1 measuring sequence a selectively inversion 180o RF pulse
that reverses the magnetization of the selected slice is applied before the echo
generating pulses (see Fig.7). By indicating with TI the time interval between
the inversion pulse of the magnetization and the 90o pulse of the echo pulses
sequence and with ρ the proton density, it is possible to obtain an echo signal
intensity, acquired with TE << T2, that follows the expression

SI ∝ ρ[1 − 2exp(−TI/T1)] × [1 − exp(−TR/T1)] (5)

This sequence is able to detect a T1-weighted image with a contrast higher
than the one that it is possible to obtain with a SE technique with short TR
and TE.
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Fig. 7. Inversion recovery (IR) sequence diagram. By applying a selective 90o RF
pulse at the beginning of the SE sequence it is possible to eliminate the signal of
particular tissues, e.g. the fat signal.
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The peculiarity of the IR sequence is related to the ability to remove a
signal coming from a particular tissue when the inversion time TI is set equal
to T1ln2 � 0.69T1, being T1 the relaxation time of the tissue whose signal
must be removed. For example if we are interested in removing the fat proton
signal of the selected slice, we can use a IR sequence with an inversion time
TI ≈ 150 ms. The IR sequence specific for the fat suppression take the name
of STIR (Short-Tau Inversion Recovery).

Gradient Echo sequence

In this sequence the echo signal is generated without the refocusing 180o

RF pulse. In fact within the GE sequence the echo signal is produced by
applying, after the 90o RF selective pulse, a magnetic field gradient that is
inverted after a chosen time τ .
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Fig. 8. Standard 2D gradient eco (GE) sequence diagram.

As explained above, a field gradient Gx produces a distribution of reso-
nance frequencies along the x direction determining a controlled dephasing of
the transverse magnetization. If after a time τ the field gradient is reversed,
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after a further time τ one observes the refocusing of the magnetization with an
echo signal development. The gradient echo generation process can be easily
pictured by comparing the nuclear spin to the runners on a race. If at time
τ they turn around and run back toward the starting point, as the slower
runners are leading, they will reach the starting point at exactly the same
time (at time 2τ). The lack of the refocusing pulse paves the way for the
decreasing of the repetition time of the RF pulses (TR) and consequently of
the image acquisition time. A shorted TR however produces a worsening of
the quality of the image, due to the incomplete recovery of the longitudinal
magnetization. To partially overcome this problem a selective RF pulse with
a flip-angle α < 90o is used, as suggested by Ernst [6] for a rapid determina-
tion of T1 in an NMR experiment with progressive saturation pulse sequence.
The typical excitation procedure is shown in Fig. 8. As one can see after the
excitation of the slice with a selective RF pulse the pulsed phase encoding
field gradient Gy is applied, followed by the frequency encoding gradient Gx

that is inverted after a time τ in order to acquire the full echo signal. By using
small flip-angles (10o − 30o RF pulse) and relatively short TR (50-100 ms) a
T ∗

2 -weighted images with a contrast comparable to the ones obtained with a
SE sequence with long TR can be acquired. By applying the mathematical
expressions that control the NMR signal generation introduced in the first
chapter of this book, it is possible to obtain for the echo signal intensity (SI)
the equation

SI ∝ ρ
1 − exp(−TR/T1)

1 − cos(α)exp(−TR/T1)
sin(α)exp(−TE/T ∗

2 ) (6)

The remarkable reduction of the acquisition time in the GE sequence
have led to strong attention for 3D imaging techniques, for cardiac and
cerebrospinal fluid (CSF) dynamic-MRI, for magnetic resonance angiography
(MRA) investigation and for functional magnetic resonance imaging (f-MRI).

Imaging flow sequences

Flow-related effects are used in magnetic resonance angiography where
vascular structures can be investigated without the use of contrast agent. One
of these techniques uses the NMR phase shift that is accumulated by the
moving volume element. In fact if a nuclear spin is moving in a magnetic
field gradient, it acquires an extra phase with respect to the spin at rest
which is proportional to the spin speed. This is the effect used in the phase-
contrast angiography imaging. The second angiography technique uses the
time employed by the moving element to pass through the selected slice: this
is called time of flight or TOF technique. The time of flight sequence uses
a large flip angle α � 90o RF pulse with a short repetition time TR. In
these conditions while the stationary tissue saturates, the signal of the nuclei
flowing into the excited vessels slice is enhanced. The increasing intensity can
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be explained by the flow, into the selected image slice, of nuclei not irradiated
by the previous RF excitations (see Fig. 9). The two previously illustrated
techniques cannot be applied for the imaging of large volumes. In such cases,
”blood pool” contrast agents must be used. Here the shortening of the spin-
lattice relaxation time T1 produced by the blood pool contrast agent generates
a very strong signal of the vessels with respect to the other tissues.

vessel

Slice

Excited
spin

v

Fig. 9. Schematic representation of the TOF technique, on the left. On the right is
reported a 3D image of intracranial circulation vessels obtained by means of TOF
and the Maximum Intensity projection algorithm (MR angiography).

MRI instrumentation

One of the basic part of a MRI apparatus is represented by a superconduct-
ing (or permanent or electro) magnet that generates the external magnetic
field B0 required to perform an NMR experiment. The investigated sample (or
animal or patient) is positioned within the force lines of the ”homogeneous”
magnetic field generated by the magnet (see Fig. 10). The second main part
is represented by the NMR pulse spectrometer where one has electronic de-
vices in charge of generating and transmitting to the patient the exciting RF
pulsed sequences and receiving from the sample the NMR generated signals.
The pulsed RF signal is transmitted through proper ”coils” that create an
oscillating B1 magnetic field perpendicular to the static magnetic field B0
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where a system of coils, designed to create a spatial variation of the magnetic
field (field gradient) along the 3 orthogonal directions, is added. Finally a
computerized system able to analyze (acquire, average and process by Fourier
Transform, etc.) the RF signal coming from the sample is also included. The
block diagram of a MRI standard apparatus where all the main electronic
units are evidenced, is reported in Fig. 10. As already introduced, the MR
system has three pairs of gradient coils along the orthogonal axes x, y, z and,
by switching them, it is possible to acquire images from different ”slices”,
without moving the patient (depending on the slices, i.e. ”sections” of the
patient, the images are called coronal, sagittal, axial or oblique). Thus the
MR images display the internal structure of the patient under investigation
in two or three dimensions. These images show the spatial distribution of the
excited nuclei within the object.
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Fig. 10. Block diagram of a standard MRI apparatus.

MRI signal contrast

The contrast of the images depends primarily on a combinations of the
following parameters: a) nuclear spin density (SD) or, equivalently for 1H
nuclei, proton spin density (PD); b) nuclear spin-lattice relaxation time T1; c)
nuclear spin-spin relaxation time T2; d) apparent diffusion coefficient (ADC);
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e) chemical shift; f) magnetic field (B0) strength; g) concentration (and kind)
of contrast agent (CA).

The ADC contains information on the nuclei’s mobility inside different
kinds of tissues and in the framework of different clinical situations (in case
e.g. of edema the ADC changes remarkably with respect to normal situa-
tion). The chemical shift represents the shift of the NMR resonance line due
to different chemical environment of the investigated nuclei. This is a typical
situation for 1H nuclei in the human body, belonging to different molecular
structures. As the magnetic field is concerned, it should be remarked that, if
all the other software and electronic parameters are kept to a constant effi-
ciency, by increasing the magnetic field the quality of the images is improved.
Finally, MRI contrast agents [7,8] are paramagnetic or superparamagnetic
compounds (generally dissolved in solution) that can be injected inside the
human body to highlight pathological tissues or diseases, eventually by the
so-called ”dynamic-MRI” (here the CA uptaking is followed as a function of
time; the modalities of uptaking depend on the current state of the disease;
see Fig. 11). They are distinguished in non-specific CA and specific-CA. The
magnetic properties of non-specific CA tend to decrease T1 and T2 of all the
nuclei in the human body, with different quantitative reduction depending on
the CA.

In most cases they can be distinguished in intra-vascular and extra-
vascular CA. The specific CA were deeply investigated in recent years. In fact,
they are synthesized in form of molecules able to link to proteins, macrophages
or other molecules. In this way it is possible to realize the so-called ”Molec-
ular Imaging” that targets specific molecules during the development of an
investigated disease (for example transferrin and related gene’s expressions in
cancer diagnosis). This field of research is currently in rapid evolution and it
is one of the most promising experimental protocols to investigated targeted
pathologies.

Before going on, we would like to remark the importance of functional
MRI (f-MRI), a very recent field of MRI research. With f-MRI, the evolution
of brain activities during normal life actions can be followed in real time. A
typical example is the brain activity when a rotating black and white disk
(the MRI paradigm) is showed to a primate for some seconds. Within this
time interval the MR responses of the brain’s 1H nuclei change, thus giving
evolving (i.e. different with time) MR Images. Effects of brain’s memory can
be also evidenced [9].

Finally, we remark that the Diffusion weighted MRI (DWI) is the only non-
invasive method able to give diffusion imaging and quantification [3,4,10]. As
a particular applicative example we report in Fig. 12 some images highlighting
the potential of DWI as a clinical tool able to provide the earliest detectable
clinical signs of brain ischemia, i.e. cytotoxic edema [11,12]. These images will
be discussed more deeply in the next paragraph.
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Fig. 11. A dynamic-MRI sequential study of a hepatic lesion by TURBO-FLASH
sequence. The uptaking of a Gd-DTPA paramagnetic contrast agent is followed with
time evolving.

3 Recent results on cerebral ischemia

In the last years, the researchers of the Department of Pharmacological Sci-
ences of the University of Milan partly in collaboration with the Department
of Physics of the University and INFM Unit of Pavia, studied the brain dam-
ages occurring in Spontaneously Hypertensive Stroke-Prone (SHR-SP) Rats
and in the rat’s model of induced ischemia by Occlusion of Middle Cerebral
Arteria (MCAO rats) [11-14] (see also ref. [15]). These two animal models are
thought to approximate the situation of cerebral ischemia in humans. In recent
years, it was shown how it is possible to discriminate between the two inves-
tigated animal models by monitoring the temporal behavior of the apparent
diffusion coefficient (ADC) and the nuclear spin-spin relaxation time T2 of the
water’s 1H nuclei [9,10]. The main finding is that the pattern of ADC varia-
tion in SHR-SP has different features from those reported in MCAO (see Fig.
12 for T2-weighted and diffusion-weighted images). In particular, the decrease
of ADC in MCAO rats is interpreted as a consequence of cytotoxic edema
(e.g., the transfer of water from the extracellular space into the cells due to
cellular energy failure): since ADC is a weighted average between the intracel-
lular (assumed to be lower) and extracellular diffusion coefficients (assumed
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to be higher), its decrease reflects the changes in the ratio of intracellular and
extracellular volume. As a further information, the increase of T2 occurs at
times later than 24 hrs. In MCAO rats it was shown that vasogenic edema
sets in as a result of the increase in absolute extracellular water content due
to the increase in vascular permeability. In SHR-SP, the phase of cytotoxic
edema is missing. Data obtained by means of different techniques (like im-
munohistologic analysis) have revealed the spread of plasma constituents into
the brain, presence of anomalies in arteries and alterations of the Blood Brain
Barrier (BBB) [12].

a) b)

Fig. 12. Images of the brain of : (a) SHR-SP rats. Coronal sections of the same slice
imaged on different days are shown: T2-Weighted images and maps of the diffusion
tensor trace (Tr(D)). Arrows show the main area of injury: note that both T2 and
D increase after the beginning of the damage, thus showing its vasogenic origin.
(b) MCAO rats. Coronal sections of the same slice imaged at different times after
the surgery are shown: T2-Weighted images and maps of the diffusion tensor trace.
Arrows show the main area of tissue injury: note that the decrease of the diffusion
coefficient evidences early the beginning of the damage, thus showing its cytotoxic
edema [12].
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It should be remarked however that these MRI protocols of investigation
are not enough to understand the details of the microscopic situation created
by brain damages. For this reason , T1W (Fig. 13) and T2W images modified
by the introduction of paramagnetic and superparamagnetic contrast agents
[13,14,16] and multiexponential T2 relaxation curves were collected and an-
alyzed. In the following, a very brief summary of the experimental results
obtained in ref. [13,14 and 16] is given. For experimental details the reader is
referred to the cited papers.

The analysis of magnetic resonance imaging (MRI) images in the absence
and presence of contrast agents is useful for the investigation of pathological
states [17-20] in humans and in animal models [21-25]. In particular, con-
trast agents can be used to assess increased vascularity, blood-brain barrier
breakdown, etc. The images obtained by means of T2-weighted (T2W ) MRI
are generally used to obtain qualitative information concerning the extent of
brain damage in biological subjects, whereas the possibilities offered by a more
detailed analysis of nuclear relaxation curves in different in vivo experimental
models are often ignored [26-28].

Fig. 13. SHR-SP with cerebral damages. T1W MR images of the coronal section
of the same slice imaged before (a) and after (b) gadolinium injection show leakage
through the Blood Brain Barrier [13].

In T1W and T2W images, relaxation curves are generally analyzed using a
single exponential component, which leads to conventional images in which the
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”gray” intensity depends on the local T2 (T1) value. However, in many cases,
studies of transversal (T2) nuclear magnetization by means of the well-known
Carr-Purcell-Meiboom-Gill (CPMG) technique reveal a behavior that is not
monoexponential (see fig. 14), which can be explained by the presence of many
”non-equivalent” hydrogen nuclei in biological tissues that have different nu-
clear relaxation mechanisms (rotational, diffusional, etc.) also due to different
environments (i.e. the different molecules causing the relaxation). The use of
MRI contrast agents can be of further help in understanding the evolution of
brain damage [7,29]. It is well known that the gadolinium-based paramagnetic
contrast agents (CA) reduce the T1 and T2 relaxation times (see [7] and ref-
erences therein). Given the small size of the molecule (mean diameter ≈ 0.35
nm), it should be possible to highlight variations in the permeability of the
membranes separating different tissue compartments. On the other hand, the
superparamagnetic USPIO (ultra-small superparamagnetic iron-oxide parti-
cles) contrast agent is formed by molecules with dimensions of the order of
5/10 nm and gives extraordinary variations in magnetic susceptibility, thus
leading to very well imaged loss of MRI signal.

Despite the considerable interest in brain pathologies and MRI contrast
agents, no published study has compared the T2 times extracted from mul-
tiexponential relaxation without and with contrast agent in the presence of
lesions in rat models. The experimental CPMG data in MCAO and SHR-SP
rats, without and with Multihance (Bracco Imaging SpA, Milan, Italy) para-
magnetic contrast agent, reveal two components (at intermediate times) in
the exponential relaxation of the T2-curves that reflect the behavior of the
protons belonging to different molecular groups [14]. Different T2 values can
be attributed to a well-defined water molecular group belonging to a spe-
cific compartment. Concentrating on the two intermediate relaxation times
T2A (relative weight A) and T2B (relative weight B), the data suggest the
following interpretations:

1) If A is interpreted as the relative weight of the protons in the intracellu-
lar compartment, and B the relative weight of the protons in the extracellular
compartment, it can be observed that the qualitative temporal behavior of A
and B is the same in SHR-SP at times around the damage onset, and in the
first 24 hrs. in MCAO rats.

2) In MCAO rats, the data obtained two hours after surgery suggest that
the ADC decreases whereas the monoexponential T2 used in T2W images does
not change, as has previously been verified in the case of cytotoxic edema.

3) The increase in B at the time of the damage onset in SHR-SP is sudden
and marked, and less marked in MCAO rats 24 hrs after surgery.

In conclusion, the analysis of multiexponential relaxation curves confirmed
the dynamics of edema development in models of cerebral ischemia.

For further investigation on cerebral damages, data with the use of USPIO
contrast agent were collected. T2-weighted (T2W ) images obtained on MCAO
and SHR-SP rats after injection of USPIO (Sinerem, Guerbet Group, Roissy,
France), evidence very clearly the damaged zone thus confirming the Blood
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Fig. 14. Relaxation of transverse nuclear magnetization. (a) No damage and no
contrast agent (Multihance) data in MCAO rats before artery occlusion and in
SHR-SP rats well before damage onset; the results obtained in one reference rat are
also shown. (b) The same MCAO and SHR-SP rats with damage at different times
from onset. The solid lines are fits to the experimental data in the range 20< t <450
ms [14]. In (a), only the fit to the reference rat data is shown; the other two fits are
not shown for reasons of clarity. The error bars correspond to the standard deviation
of uniform distribution of width equal to the experimental accuracy.

Brain Barrier disruption [16]. The region of interest appears darker in the
central core of the damage (because of T ∗

2 effect generated by high concentra-
tion of USPIO) and more brilliant in the border zones. The multiecho T2W

images obtained with USPIO were analyzed in terms of multiexponential T2-
relaxation and compared with the case of Multihance. The relaxation curves
resulted almost identical for both CA (data not reported) and the presence
of two T2 values in the range 0.03-1 s with very different weights, named T2A

and T2B , was again evidenced.
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1 Basic aspects of phase transitions and critical
dynamics as reflected in NMR-NQR relaxation.

1.1 Introduction and free energy for homogeneous systems

Phase transitions (PT) are typical collective phenomena occurring in many-
body systems with interparticle interactions. A rather general description of
the PT’s and of the accompanying “critical dynamics” can be given in the
framework of Landau-type statistical theory, which includes more specific the-
ories such as the Weiss mean field theory for magnetic systems and the Van
der Waals theory for fluids. This approach is suited for second order or slightly
first-order PT3.
3 At the transition one observe “anomalous” behaviour (such as divergencies or

tendencies to zero) of the response functions, namely the derivatives of the ther-
modynamical densities (e.g. magnetization, particle density, entropy) with respect
to the conjugate fields (magnetic or electric fields, pressure, temperature). That
behaviour reflects the onset of correlation and slowing down of the fluctuations
around the equilibrium values, fluctuations in turn driven by some microscopic
critical dynamics. The order of a transition is related to the order of the deriva-
tive of the thermodynamical potentials which display discontinuity at the critical
point. First order, when the first derivatives with respect to the conjugate variable
display discontinuity. Tipically this classification refers to the order parameter,
namely the density going toward zero when the critical point is approached along
the coexistence curve. For second order transition only the second derivatives of
the thermodinamical potential have discontinuity at the critical point. At vari-
ance, the order parameter goes to zero with continuity on approaching the critical
point.
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In that framework one defines a generalized site-dependent order parame-
ter m(r) having a field h as thermodinamically conjugated (we shall use scalar
quantities for simplicity). A proper average of m(r) is defined as the thermod-
inamic density, going gradually to zero on moving along the coexistence curve
towards the critical point. From a microscopic point of view there is a cer-
tain correspondence of m to a local critical variable (e.g. local spins to the
magnetization), as we shall see.

The general principle is to expand the free energy density f
(
m(r, T )

)
in

powers of m(r), with coefficients that depend on (T −Tc) (Tc critical temper-
ature), the total free energy being

F =
∫
f
(
m(r, T )

)
dr

By taking into account that f cannot depend from the sign of m and must
increase when a gradient of m occurs (and ∇m must be involved to the second
power for isotropy reasons) one writes4

f
(
m(r), T

)
= f0(T ) + α(T )m2(r) +

1
2
β(T )m4(r) + γ(T )|∇m(r)|2 (1)

Then α(T ) and β(T ) can be expanded in series of (T −Tc). For homogeneous
system ∇m = 0 and by assuming β(T ) = b0 temperature independent, Eq.(1)
is rewritten

f(m,T ) = f0(T ) + a0(T − Tc)m2 +
b0
2
m4 (2)

Thus for T > Tc the minimum of F is at m = 0. For T < Tc the minimum is
at the equilibrium value

m =

[
−

(
a0

b0

)
(T − Tc)

] 1
2

= m0(−ε)
1
2 (3)

with ε = (T−Tc)
Tc

. Therefore according to (3) the critical exponent describing
the temperature dependence of the order parameter for T -decreasing below
Tc is β = 1

2 , often indicated as “classical” or mean-field exponent.

NMR-NQR spectra (through splittings or shifts of some resonance lines) or
μSR (from precessional frequencies) are among the best experimental tools to
study the temperature behaviour of the order parameter and of other related
“static” quantities (such, for instance, expectation values of local spin operator
through magnetic hyperfine fields or atomic displacements at structural phase
transitions, through the electric field gradients at the nuclear sites).
4 In this expansion the odd terms are not present because the form of the forces

cannot change on reversing the sign of m. The term ∇m has the role to damp out
the spatial variation in m (for γ(T ) > 0), f having a minimum for m constant. The
expansion does not converge but it is customary to suppose that the singularities
involve the coefficients of the terms which are not explicitely considered.
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From the equation of state yielding m = m(T, h) (as for instance the
equation for the magnetization in the Weiss mean field theory, or for the
inverse density ρ−1 ≡ V for the isotherms of real gases) one can find the
response of m to the conjugate field, namely the generalized susceptibility
χ ≡ ∂m

∂h tipically going around Tc as χ ∝ (T − Tc)−1 ∝ ε−1, with classical
critical exponent γ = 1. From the free energy density f(T ) as in Eq.(2), the
specific entropy s = −

(
∂f
∂T

)
and the specific heat c = T

(
∂s
∂T

)
(the response

function to a thermal stimulus) can be directly derived.
It should be remarked that for the superconducting transition the role of

the free energy expansion requires further detail and arguments. This happens
because the order parameter Ψ(r) in that case is complex, i.e. Ψ(r) =

√
nce

iθ(r)

(with nc = density of Cooper pairs, and θ(r) = phase) and it cannot be
considered site-independent, as we shall see.

1.2 Non-homogeneous systems and fluctuations

The assumption of homogeneity for m(r) is inappropriate in the neighborhood
of a phase transition, where the fluctuations around the equilibrium value m
play a dominant role, since the curvature of f vs.m is going to zero for T → Tc,
according to Eq(2). Actually, one could say that is just the enhancement of
the fluctuations for T → T+

c that drives the transition to the low-temperature
phase.

The probability that a thermodynamic variable yields a fluctuation imply-
ing an increase of free energy ΔF is given by5

W ∝ e−ΔF/kBT (4)

Then, in the presence of fluctuations one has to go back to Eq.(1), by con-
sidering γ �= 0, often assumed temperature independent. The term in m4 is
neglected6.
5 The probability that at constant temperature a fluctuation occurs is given by

w(m) = A exp[S(m)/kB ], where S is the entropy of the system in correspon-
dence to the value m of the density. As usual S(m) has a gaussian distribution
around the mean value S(m) and thus the probability of a fluctuation is given by
Eq.(4). When the transition is approached, the free energy being a slowly varying
function of m, large fluctuations occur. The mean square value 〈|m|2〉 is related
to the response function χ by the fluctuation-dissipation theorem. Therefore the
divergency of χ at the critical point, for a second-order PT, again evidences the
divergency of the fluctuations.

6 This is known as gaussian approximation (or first-order fluctuation correction)
and it breaks down in the so called critical region. In most systems this region
corresponds to a very narrow temperature range, where ε is close to zero. Only in
particular cases one cannot neglect the term in m4, as for instance in restricted
dimensionality or for the superconducting transition in small size grains, where
the range of the critical region is expanded.
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Furthermore one has to expand m(r) in Fourier series

m(r) −m =
∑
q

mqe
−iq·r (5)

and then

ΔF

V
=

1
V

∫
(f − f0)dV =

∑
q

|mq|2α(T )
[
1 +

γq2

α(T )

]
(6)

One has to take the thermodynamic average of |mq|2 over all the possible
values of the fluctuating order parameter, in accordance to Eqs.(4) and (6):

〈|mq|2〉 =
∫
|mq|2e−ΔF/kBT dmq∫
e−ΔF/kBT dmq

,

or
〈|mq|2〉 =

kBT

2V α(T )
[
1 + γ

α(T )q
2
] (7)

which corresponds to the energy kBT for each orthogonal mode of the system,
namely for each q value. From the second term in Eq.(2) α(T ) = a0(T − Tc),
Eq.(7) can be rewritten

〈|mq|2〉 ∝
1[

(T − Tc) + k−2
0 q2

] (8)

with k0 constant wave vector.
For homogeneous fluctuation (i.e. q = 0) one notes the divergence of

〈|mq=0|2〉 as in the static generalized susceptibility χ(q = 0, ω = 0), with
critical exponent γ = 1 (see note 5). This divergence describes the enhance-
ment of the fluctuations on approaching the transition. Here q = 0 can be
defined the critical wave vector.

One can also write Eq.(8) in the form

〈|mq|2〉 =
〈|mq=0|2〉
1 + ξ2q2

(9)

where

ξ(T ) ≡
(
γ

α

) 1
2

=
1

k0εν
≡ ξ0ε

− 1
2 (10)

is the correlation length, diverging with the critical exponent ν = 1/2 for
T → Tc.7 The role of ξ as correlation length can be better understood looking
at the spatial correlation function for the fluctuations of m(r).
7 The critical exponents in most cases are different from the “classical” values

derived in mean field-like theories. In particular that can happen when the tem-
perature range of the critical region is expanded or when the interactions are
short-range or when the dimensionality of the system is reduced.
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By referring for simplicity to the case T > Tc where m = 0, the correlation
function is

g(r, r′) = 〈m(r)m(r′)〉0 =
∑
q

〈|mq|2〉e−iq·(r−r′) (11)

For R = r − r′, from Eq.(7) and
∑

q → 1
8π3

∫
dq, one obtains

g(R) = 〈|m(0)|2〉
[ 1
R
e−Rk0

(
T−Tc

T

)1/2]
= 〈|m(0)|2〉

[ 1
R
e−R/ξ(T )

]
(12)

showing that ξ(T ) = ξ0ε
−1/2 is indeed a measure of the correlation.

For T � Tc one has a fast decay of the correlations while at Tc, where
ξ(T ) → ∞, g(R) ∝ R−1 (note that γ > 0).

Thus we have deduced the enhancement and the onset of correlated fluctu-
ations for T approaching Tc from above. It is noted that for T < Tc, where the
fluctuations occur around m and α = 2a0(Tc − T ) analogous divergences are
obtained for 〈|mq=0|2〉, ξ(T ) and for the inverse correlation length k = k0ε

ν ,
with the same critical exponents as above Tc.

1.3 The time dependence of the fluctuations

So far we did not have to take into account the time-dependence of the fluc-
tuations. However the life time of the fluctuations (or, in other words, the
microscopic “anomalous” dynamics of the local critical variables, such spin-
components s(t) or local density departure δρ(r, t) = ρ(r, t) − ρ0 for fluids,
to which the macroscopic order parameter can be connected) is of crucial im-
portance in phase transitions. One can remark that NMR-NQR relaxation,
with neutron or light scattering, is among the reliable tools to study the
time-dependence of the fluctuations, as it will be emphasized by illustrative
examples given later on.

In the framework of a general, Landau-type statistical theory the time-
dependence of m(r, t) around the equilibrium value can be discussed by start-
ing from an equation based on the extension of the thermodynamics of the
irreversible processes.

For the collective, Fourier component mq, for q around the critical wave
vector q = 0, we write

M
d2mq

dt2
+Ωq

dmq

dt
+ kqmq = 0 (13)

namely the equation for a damped harmonic oscillator.8 The effective elastic
constant kq must be such that for q = 0 kq=0 ∝ (T − Tc), since it is re-
lated to the curvature of the free energy as a function of m. The relaxation
8 From an extension of the thermodynamics of the irreversible processes the fol-

lowing phenomenological equation for the order parameter has been written
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term in Eq.(13) involves a coefficient Ωq that can be assumed temperature
independent. With respect to the usual relaxation equation

∂m

∂t
= −1

c

δf

δm

(with c non-critical kinetic coefficient) and leading to an exponential decay
for the fluctuation8, in Eq.(13) one finds an inertial term, with a generalized
mass M . This term is required, in particular, to describe structural phase
transitions, while it can be neglected for magnetic PT where the local critical
variable can be identified with a spin operator.

From the equation of motion there are two methods to obtain the cor-
relation and the slowing down of the fluctuations. One way is to look for
the response of the system to an external, wave-dependent and oscillating
field h(q, ω) = h0e

−iq·re−iωt, thus deriving the response function, namely the
generalized susceptibility χ(q, ω) = χ

′
q(ω) + iχ

′′
q(ω). Then, by means of the

fluctuation-dissipation theorem, the power spectrum of the correlation func-
tion 〈mq(0)m−q(t)〉0 is obtained.

The q and ω transform of the correlation function g(r, t) = 〈m(0, 0)m(r, t)〉0
is known as dynamical structure factor (DSF):

S(q, ω) =
∫
e−i(ωt−q·r)g(r, t)drdt ≡

∫
e−iωt〈mq(0)m−q(t)〉0dt (16)

Another method is to construct the correlation function gq = 〈mq(0)mq(t)〉0
from Eq.(13). For underdamped normal oscillators, i.e. Ω2

q � 4Mkq the so-
lution of Eq.(13) is

mq(t) = e−
Ωq
2M t

{
mq(0) cosωqt+

[
ṁq(0) +

Ωq

2M
mq(0)

]
sinωq

ωq

}
(17)

with

dm

dt
= −c

∂f

∂m
− c

d(∂f/∂ṁ)

dt
. (14)

Without the last term the equation has the well-known meaning: the speed to
approach the equilibrium (after a variation induced by the fluctuation) is propor-
tional to the restoring force. In this case from f = a(T − Tc)m

2, expressing m as
m0 + δm and linearizing with respect to δm, the regression equation is

δm(t) = δm(0)exp[−t/τ ] (15)

The time constant τ ∝ (T − Tc)
−1 going to zero at the transition, describes the

classical Landau-Kalatnikov slowing down of the fluctuations.
The meaning of the second term in Eq.(14) is better understood when, after

the expansion of the energy in terms of the deviation from the equilibrium value
and Fourier transform to the collective variable, Eq.(14) is rewritten in the form
of Eq.(13) (strictly valid only in the limit q → 0).
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ωq =
[
kq
M

−
Ω2

q

4M2

] 1
2

yielding the correlation function9

gq(t) = 〈|mq(0)|2〉e− Ω
2M t

[
cosωqt+

sinωqt

ωq
· Ωq

2M

]
(18)

The DSF turns out

S(q, ω) ∝
4Ωqω

2
q/M

(ω2
q − ω2)2 + 4Ω2

qω
2/M2

(19)

namely in the form of two resonant peaks centered at −ωq and at +ωq, of
width Ωq/M .

In general, for any extent of the damping, the solution of Eq.(13) can be
written in the form

mq(t) = mq(0)eiω̃t , (20)

ω̃ ≡ ω± being two complex frequencies with

Im = Ωq/2M (21a)

and

Re =

[
4Mkq −Ω2

q

]1/2

2M
(21b)

If T ∗ is defined as the temperature at which Ω2
q
0 = 4Mkq
0, for T < T ∗

both poles lie on the imaginary axis and ω− = −ikq
0/Ωq
0 moves towards
the origin of the complex plane. Accordingly the transition is approached with
ω− going as ∝ (T − Tc).

Thus Eqs.(20) and (21) describe the slowing-down of the fluctuations for
T → T+

c . In terms of the DSF it can be said that above a given temperature
one has the temperature dependent resonant peaks of constant width while for
T ≤ T ∗ the slowing-down is rather described by a diffusive-type central peak,
centered at ω = 0, of width that decreases while the transition is approached.
Equivalently, an effective correlation time τq
0 ∝ ω−1

q ∝ (T − Tc) goes to
infinity for T → T+

c .

9 Due to the deterministic character of the motion (Eq.(13)) the statistical ensemble
average for the correlation function involves the initial (t = 0) condition, i.e. the
value of mq(0). Note that in Eq.(17) ṁq(0) = 0, since the recovery of the collective
order parameter towards the equilibrium, after a fluctuation, initiates from zero
velocity. The mean square value 〈|mq(0)|2〉 is related to the temperature by the
condition

〈|mq(0)|2〉0 =
1

2Aq

∫ +Aq

−Aq

m2
q(0)dmq =

A2
q

3

and kqA2
q = 2kBT .



118 A. Rigamonti and F. Tedoldi

The DSF under favorable circumstances is directly probed by the cross
section for inelastic neutron and light scattering. As we shall see by means
of illustrative examples, when the time-dependent perturbation hamiltonian
driving the NMR-NQR relaxation process can be expressed in terms of m(r, t)
then the relaxation rate is related to the q-integration of S(q, ω = ωres).
This is the case of the magnetic time-dependence of the relaxation process
driven by the hyperfine field at the nuclear site, or by the time-dependent
EFG components induced by the critical lattice dynamics accompanying the
ferroelectric transitions or other structural phase transitions.

As already mentioned, the fluctuation-dissipation theorem relates the spec-
trum of the fluctuations to the response to a dynamic perturbation:

S(q, ω) =
2h̄χ

′′
(q, ω)

1 − exp(−h̄ω/kBT )
� 2kBT

ω
χ

′′
(q, ω) (22)

χ
′′
(q, ω) being the dissipative part of the generalized susceptibility. The static

structure factor
S(q) =

1
2π

∫
S(q, ω)dω (23)

yields the mean square amplitude of the collective mq(t) and then

S(q) = 〈|mq|2〉 = kBTχ(q, 0) (24)

χ(q, 0) being the static wave-vector dependent susceptibility.
In view of the analysis of the NMR relaxation data some model forms for

the q-dependence of the fluctuations are necessary. For the static structure
factor S(q) = 〈|mq|2〉, for temperature close to Tc where the fluctuations at
the critical wave vector qc (here q = 0) are dominant, one can tentatively
adopt the form given by Eq.(9) in term of the correlation length.

The q-dependence of the time-dependent quantities ω̃ in Eq.(21) is a very
complicated issue, in essence involving the dynamics of cooperative effects.
Several theoretical approaches have been developed along the years, all with
limitations or possible criticisms.

For the present lectures we will rely on general arguments that basically
are simplified forms of the dynamical scaling theories. The dynamical part
Jq(ω) ≡ S(q, ω)/S(q) of the DSF is written

Jq(ω) =
2π
Γq
f
(
ω/Γq

)
(25)

where Γq = Γq(T ) is a characteristic frequency and f(ω/Γq) is a well-behaving
function depending on the frequency only through the ratio ω/Γq, with a
width and an area of the order of the unity (to be determined either by
experiments or by the theoretical model10).
10 One can use an expansion of the time-dependent correlation function in a series

in t, the coefficients being the equal-time correlation functions related to the
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Then the amplitude of the fluctuations i.e. S(q) = 〈|mq|2〉 and the decay
rates Γq in (20) are scaled in their q-dependence in terms of the correlation
length ξ. In the light of Eq.(8) and (9), with a slight generalization we write

〈|mq|2〉 ∝ ξ2−ηf(qξ) (26)

where f is a homogeneous function of qξ and η a correction exponent (for
dimensionality D ≥ 2 η is close to zero). The simplest form of f is

f(qξ) =
1

1 + q2ξ2
(27)

in accordance to Eq.(9) and corresponding to the Ornstein-Zernike expansion
of the correlation function in the theory for the critical opalescence at the
gas-liquid transition (the odd-order terms being dropped out because of the
isotropy of the system).

For the decay rate Γq in Eq.(25) the analogous of Eq.(26) is

Γq(T ) = Γqc
(T )g(qξ) (28)

(where for the moment qc = 0). g is the homogeneous function and in its
simplest form it reads

g(qξ) = 1 + q2ξ2 ≡ f−1 (29)

According to the general arguments given above, Γq≈qc, in Eq.(27) must de-
crease towards zero for T → T+

c . It can be assumed of the form Γq≈qc
∝

ξ−z ∝ ενz where z is the dynamical critical exponent (z in the dynamical
scaling also controls the q-dependence of Γq at Tc i.e. Γq � Aqz, in other
words the exponent expressing the q-dependence of Γq at Tc is the same as
the exponent that expresses the ξ dependence of Γq above Tc).

It is noted that combining Eqs.(25)-(29) our scaling relationships corre-
spond to scale the generalized susceptibility in Eqs.(21) and (24) in the form

χ(q, ω) = χ0ξ
zf(qξ, ω/ξz) (30)

ξ0 being the single particle response function. In other words χ(q, ω) can be
expressed as a function independent of ε provided that length and frequencies
are rescaled by appropriate powers of ε.

Illustrative examples of NMR spin-lattice relaxation will better clarify the
role of the scaling hypothesis used in order to achieve approximate expressions
for the wave-vector dependence of the critical quantities that correspond to the
enhancement and to the slowing-down of the fluctuations. It can be remarked
that if one assumes zν = γ = 1 then the so-called thermodynamical slowing-
down condition is attained: on approaching Tc from above the correlation
growths at the same rate of the life-time of the “islands” where the correlation
is effective.

lowest moments of Jq(ω). Then approximants are often used, the procedure being
essentially the attempt to guess the long-time behaviour of g(r, t) from the short-
time behaviour. Another theoretical line is based on the Mori continuous fraction
approximation or on Monte Carlo computer simulations.
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1.4 NMR relaxation at the gas-liquid critical point

As mentioned the possibility to study the onset of the correlation and the
critical dynamics accompanying the phase transition from NMR relaxation
is related to the fact that the relaxation rate can be written in terms of the
spectral densities at the resonance frequency ωres of the appropriate lattice
functions FL(t) which described the time-dependence of the fluctuating mag-
netic field (or EFG) at the nuclear site. When FL(t) can be expanded in
series of the critical variable that is the microscopic counterpart of the ther-
modynamical order parameter, the relationship of the relaxation rate to the
q-integrated DST is attained.

For the transition from the gas to the liquid phase on cooling along the
critical isochore, the possibility to derive insights on the DSF is offered by
modulation of the intramolecular dipole-dipole interactions due to local den-
sity fluctuations. By referring to the fluctuations of the dipolar field hdip(t)
due to the fluctuations in the number density n(r, t) one has

T−1
1 ∝

∑
j,j′

∫
e−iωrest〈n(rj , 0)n(rj′ , t)〉 . (31)

After the introduction of the collective variables and by assuming for sim-
plicity for the Fourier transform of the positional functions entering in hdip

the condition of q-independence, then

T−1
1 =

γ4h̄2

5d3

∑
α=1,2

∫
α2S(q, αωres)q2dq (32)

where d is the distance of minimum approach between molecules.
In the light of Eqs.(22), (24) and (25) we write

S(q, ω) =
χT

χ0

1
1 + q2ξ2

Jq(ω) (33)

where χT is the isothermal compressibility which controls the strength of the
density fluctuation. The DSF in Eq.(33) corresponds to the light scattering
spectrum in a fluid. As it is known, it has a three-components structure: the
Brillouin doublet related to pressure fluctuations at constant entropy (corre-
spondent to resonant self-propagating modes) and a central Rayleigh com-
ponent due to entropy fluctuations at constant pressure (correspondent to
diffusive, non propagating thermal modes).

Since ωres in Eq.(32) corresponds to the low-frequency part of the DSF,
we can assume for Jq(ω) in Eq.(33) a Lorentzian function, with width Γq

corresponding to the width of the Rayleigh component yielding the decay
rate of the density fluctuations. According to the hydrodynamical theory one
has

Γq = DT q
2 (34)
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where DT is the thermal diffusivity, for which

DT ∝ εα (35)

From Eq.(34), with S(q, ω) according to the above assumption one would
derive the critical contribution (T � Tc) to the relaxation rate in the form

T−1
1 ∝ D

− 1
2

T ω
− 1

2
res ∝ ε−0.35ω

− 1
2

res (36)

namely a divergent behavior for T → T+
c and a weak frequency dependence.

The experimental results for the proton relaxation (obtained a long ago)
around the critical point in chloroform evidence the breakdown of Eq.(36).
On the other hand, some time before, in the framework of the mode-mode
coupling theory, Kawasaki had argued that the hydrodynamical theory had
to be significantly corrected: a scaling function K(qξ) had to be included in
Eq.(34), to give

Γq = DT q
2K(qξ) ≡ DT q

2 3
4

[
1 +

1
q2ξ2

+
(
qξ − 1

q3ξ3
)
arctan qξ

]
(37)

which in the limit of q � ξ−1 yields

Γq = DT q
2K(qξ) ≡ DT q

2
[
1 +

3
5
q2ξ2 − 1

7
q4ξ4

]
By using for the Rayleigh peak in the DST in Eq.(32) the frequency width

given by Eq.(37) one has the following theoretical results:

i) the temperature behaviour of T−1
1 displays a maximum above Tc which

moves towards higher temperatures on increasing ωres.
ii) for T ≥ Tc there is a weakly divergent behaviour of T−1

1 and for T � Tc

one has

T−1
1 =

γ4h̄2

5d3

2
π

χT

χ0

1
ξ2

( 1
DT ξ

) 1
3 1

ω
3
2
res

� Aω
− 3

2
res (38)

As shown in Fig.1, in a temperature range of about 3 degrees above Tc the
experimental data satisfactorily agree with the theoretical predictions when
Eq.(37) is used for Γq. In particular the frequency dependence at Tc is close

to ω− 3
2

res and the maxima in the relaxation rate occur above Tc.
Although several improvements are evidently required for a better agree-

ment between theory and the experimental data, from this study (unfortu-
nately no other one has been carried out along almost three decades, in the
author’s knowledge) it appears that under proper conditions the spin-lattice
relaxation can actually probe the critical density fluctuations. While light
scattering is almost confined to the q-range where the corrections to the hy-
drodynamical theory are hard to detect and neutron scattering at the critical
point in a fluid is probably a difficult experiment to be carried out, T1 appears
a natural tool to investigate the non-hydrodynamical regime.
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Fig. 1. Critical contribution to the proton spin-lattice relaxation rates in chloroform,
at the measuring frequency 20.8 MHz (full dots) and 10 MHz (open dots), as a
function of temperature along the critical isochore. The solid lines represent the
theoretical behavior according to the theory outlined in the text (see Krynicky et
al. and F. Borsa and A. Rigamonti in Further reading).

1.5 NMR-NQR relaxation and spin dynamics for strong electron
correlation, with an illustrative example in a 2D pseudo-spin AF

In this Subsection we shall illustrate some basic aspects of the nuclear spin-
lattice relaxation driven by the time dependence of the magnetic hyperfine
hamiltonian through the spin operator s(t), in systems with strongly cor-
related electrons. In these cases, most Equations recalled for the correlated
fluctuations on approaching the phase transitions can be used, in particular
in terms of the correlation length ξ. The illustration for a pseudo-spin 2D-AF
structural transition should serve as introduction for the spin dynamics in 2D
Heisenberg AF.

The magnetic transition probability Wm is written11

Wm =
γ2

h

8

[
J+(ω0) + J−(ω0)

]
(39)

where J±(ω) are the spectral density for the field h(t) at the nuclear site due
to the electron spin s(t). ω0 is the nuclear Larmor frequency. The spectral
densities for h(t) can be transformed to the ones for s(t) by resorting to
the time evolution of the spin operator under the total Hamiltonian HT =
HZeeman+Hexch. In the assumption of isotropic exchange Hamiltonian Hexch,
commuting with Zeeman Hamiltonian, the transformation yields
11 This form of Wm holds for “classical lattice” and weak-collisions approach. In

practice this corresponds to assume strong damping in the precessional motions
of s, so that the spin components fluctuate in a random way and a bath of low
energy spin excitations is present.
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J±(ω0) = 9γ2
e h̄

2
[
B1J‖(ω0) +B2J⊥(ωe ± ω0) +AJ⊥(ωe ∓ ω0)

]
, (40)

where J‖ is the spectral density for sz and J⊥ the one for (sx + isy). A and
B1,2 are the well-known “lattice functions” related to the position of s. For
NQR the external field is absent and thus in (40) ωe = γeH0 = 0. The same
condition can be used in NMR in the case that the precessional motion of
s at ωe is strongly damped, e.g. in the presence of anisotropy for the total
Hamiltonian.

For isotropically-exchange interacting spins, in the high-temperature con-
dition where the exchange frequency is ωexch ∼ (J/h̄) � ωe while ω0 is smaller
than the fluctuation frequencies of h(t), one shows that the correlation func-
tion for the spin components is approximately gaussian, with characteristic
Heisenberg exchange frequency

ωE =

[
8
3
z s(s+ 1)

] 1
2
J

h̄
(41)

(z number of nearest neighbors). Thus for an Heisenberg paramagnet, in the
limit T → ∞, by considering for simplicity a powder average, the relaxation
rate is written

Wm =
∑

i

W (i)
m =

∑
i

1
2
γ2

hh
2
iω

−1
exch (42)

where hi is the amplitude of the fluctuating field at the nuclear site due to
si

12.
At finite temperature the magnetic correlation length ξ controls the site

dependent order parameter and, in terms of the microscopic critical variable
s(t), the space-time spin correlation function. The collective spin components
sq have to be introduced and the transverse local field correlation function
〈h+(0)h−(t)〉 (involved in Eq.(39)) are related to 〈s±q (0)s±−q(t)〉 through the
FT of the “lattice functions” A and B1,2. Then the spectral densities J‖,⊥
lead to the DSF for the spin components and in compact form we write

2W =
γ2

h

2N

∑
q

[(
hq

)2
S(q, ωres)

]
⊥

=
γ2

h

2N
kBT

∑
q

[(
hq

)2χ
′′
(q, ωres)
ωres

]
⊥

(43)

where ⊥ means that the product h2
qS(q, ω) related to the transverse compo-

nents of the local field h(t) has to be considered. It is noted that h2
q in Eq.(43)

strongly depends on the symmetry properties of the spin fluctuations and it
can filter out or enhance the contribution to the relaxation rate arising from
the “critical” part of the spin susceptibility.

(
hq

)2 can be expressed in close
form once that the magnetic hyperfine Hamiltonian is known. (see Section2).

12 For restricted dimensionality (1D or 2D) long-term persistence of the correlation
occurs and Eq.(42) has to be modified.
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As we have already mentioned, for the analysis of the experimental data
it is useful to modelize the DSF or, in other words, the amplitudes |Sq|2 and
the decay rates Γq of the spin fluctuations. From the equivalent of Eqs.(26)-
(29), in the assumption that the spin fluctuations are probed at a time much
longer than the microscopic time scales (namely ωe, ω0 � Γq) by expanding(
hq

)2 in Eq.(43) by starting from the value at the critical wave vector, in the
assumption that h2

qc
�= 0 one arrives at

2W ≈
(
hqc

)2 γ2
h

2N

∑
q

[
ξ2−ηf(qξ)

g−1(qξ)
ξ−zωexch

]
�

(
hqc

)2 γ2
h

2ωexch
ξ2−η+z

∫ qDξ

0

f(x)
g(x)

xD−1

ξD−1

1
ξ
dx

≈
(
hqc

)2 γ2
h

ωexch
ξz−D+2+η

(44)

(ξ is in lattice units).13

For extreme slowing down of the fluctuation, i.e. Γq � ωe, condition
for which the function f(ω/Γq) in Eq.(25) can be approximately assumed
of the form Γ ≈ Γ 2

q/ω
2, then instead of Eq.(44) one would have 2W ∝

ω−1
exchω

−2
e ξ(2−η−z).

While this case is hard to occur, a more realistic condition is the one of
intermediate range of slowing-down. Then ωexch � ωe while Γqc

≤ ωe. Here
the full dependence of f(ω/Γq) has to be taken into account, possibly in the
form f ≈ Γ 2

q/(Γ
2
q +ω2). A complicate temperature and frequency dependence

occurs. The qualitative behavior of W is a flattening for T approaching Tc

from above, with an inverse square root dependence from the magnetic field:
W ∝ ω

−1/2
e ∝ H

−1/2
0 .

An illustrative example of studies of critical dynamics in 2D systems and
meantime a test for dynamical scaling hypothesis, is offered by the proton T1

relaxation in the molecular crystal C18H24, which at Tc � 190◦K undergoes
an antiferrodistortive disorder-order transition, twisting the phenylene ring
out of the plane formed by the two ends phenil groups. The phenil ring is in
a double-well local potential and torsional oscillations bring the proton from
one of the well to the other. Thus the decay rates of the fluctuations are
described by a pseudo-spin variable sz(t) = ±1 controlling the dipole-dipole
nuclear Hamiltonian. With the exception of a narrow temperature range close

13 It is noted that
∫ ∞
0

f(x)
g(x)

xD−1dx converges to a number around the unity. As re-

gards the critical exponents, renormalization group theories indicates z = D+2−η
2

for Heisenberg ferromagnet, z = D
2

for Heisenberg AF. Since the critical exponent
γ for the static response is γ = (2 − η)ν and ν is the exponent for ξ, for strong
AF or FE correlation one can also write Eq.(44) in the form W ∝ ε−γ+ν(D−z). In
a planar system, η being small, W ∝ ξ−z and the dynamical critical exponent is
expected to be z = 1.
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to Tc the decay rate remains greater than the measuring frequency ω0. The
dominant contribution to the dipolar field is the on-site one and thus only the
auto-correlation function 〈sz(0)sz(t)〉 is involved in the relaxation rate and
the factor

(
h2
q

)
(Eq.(43)) is q-independent. Thus one can rewrite

T−1
1 = ω2

int

1
2N

∑
q

|Sαα
q |2
Γq

(45)

ωint = γhh being the effective strength of the dipolar field at the nuclear site.
From the correspondent to Eqs.(26) and (28) and analogously to Eq.(44) (for
D = 2 and η ≈ 0) one obtains

T−1
1 = ω2

intΓ
−1
qc

(46)

From the experimental data the temperature dependence of the critical decay
rate (see Fig.2) Γqc

(T ) is extracted with no adjustable parameter, ωint being
derived from the NMR spectra.

The critical frequency is found to go as ξ−z, namely as ενz, as expected
from the dynamical scaling condition in 2D.

Fig. 2. Spin lattice relaxation rate in p-terphenil on approaching the transition
temperature TC = 194.5K (a). No dependence from the measuring frequency was
detected. In part b) the temperature behavior of the critical frequency is reported
and compared with the results (open squares) from high resolution neutron back-
scattering in the deuterated crystal (see T. Guillon et al. in Further reading.)
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2 NMR-NQR insights on the phase transitions and spin
dynamics in pure and in charge and spin- doped 2D
S = 1/2 Heisenberg Antiferromagnets

Long abstract of the Chapter
“Correlated spin dynamics and phase transitions in pure and disor-
dered S = 1/2 antiferromagnets: insights from NMR-NQR”

by A.Rigamonti, P. Carretta and N. Papinutto in “Novel NMR and EPR tech-
niques”, Eds. J. Dolinsek, M. Vilfan and S. Zumer, Springer Series Lecture
Notes in Physics, Springer Verlag (2006) pg 351-382

2.1 General Properties of 2DQHAF

La2CuO4, the parent of high temperature superconductors, is also among the
first experimental realizations of the model two-dimensional (2D), quantum
(S = 1/2), Heisenberg antiferromagnet (AF). This compound, beginning with
1987 has triggered strong interest towards low-dimensional quantum mag-
netism.
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In La2CuO4 spin dilution is achieved, by S = 0 Zn2+ or Mg2+ for S =
1/2 Cu2+ substitutions, while charge doping, namely injection of holes in the
CuO2 plane, is obtained by substituting the La3+ ions by Sr2+. Attention has
to be devoted to a variety of aspects involving static and dynamical properties
of the 2D array of Cu2+ magnetic ions in super-exchange interaction via
Oxygen : the temperature dependence of the in plane magnetic correlation
length ξ2D; the critical spin dynamics driving the system towards the long-
range ordered state (at T = 0 in pure 2DQHAF in the absence of inter-planar
interaction); the validity of the dynamical scaling, where ξ2D controls the
relaxation rate of the order parameter. One can also analyse the modifications
induced by spin dilution and by charge doping, aspects of particular interest
in the vicinity of the percolation thresholds, where the AF order is about to
be hampered at any finite temperature. This can be considered a situation
similar to a quantum critical point, where no more the temperature but rather
Hamiltonian parameters can drive the transition.

In principle the problems involving the aforementioned aspects could be
studied by spectroscopic techniques relying on the electron response. How-
ever, electron paramagnetic resonance is often prevented by very broad lines,
possibly due to the strong electron-electron correlation. Neutron scattering is
a powerful technique but it could suffer of resolution limitation for low-energy
excitations or for short correlation length. Thus the nuclei have represented
in recent years one of the best tools to investigate the properties of 2DQHAF,
by resorting to the hyperfine interactions and to their time-dependence, as
explored by NMR-NQR spectra and relaxation.

• D.C. Johnston, in Handbook of Magnetic Materials Vol.10, Ed. K.H.J.
Buschow (Elsevier 1997) Chapter 1

• S. Chakravarty, B.I. Halperin, D.R. Nelson, Phys.Rev. B 39, 2344 (1989)
• P. Hasenfratz, F. Niedermayer, Phys. Lett. B 268, 231 (1991); Z. Phys. B

92, 91 (1993)
• P.W. Anderson: Frontiers and Borderlines in Many-particle Physics Eds.

R.A. Broglia and J.R. Schriffer (North Holland 1988)
• S. Sachdev: Quantum Phase Transitions (University Press, Cambridge

1999)

2.2 Temperature Dependence of the Correlation Length (in
La2CuO4 and in CFTD, within Scaling Arguments)

The results obtained in two 2DQHAF (La2CuO4 and CFTD) prototypes show
how quantitative estimate of the correlation length is derived, concluding that
in a wide temperature range the predictions of the renormalized classical (RC)
regime are rather well followed.

• A. Rigamonti, F. Borsa, P. Carretta, Rep.Prog. Phys. 61, 1367 (1998)
• P. Carretta, T. Ciabattoni, A. Cuccoli, A. Rigamonti, V. Tognetti, P. Ver-

rucchi, J. Appl. Magn. Resonance 19, 391 (2000)
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• P. Carretta, A. Rigamonti, R. Sala, Phys. Rev. B 55, 3734 (1997)
• P. Carretta, T. Ciabattoni, A. Cuccoli, E.R. Mognaschi, A. Rigamonti, V.

Tognetti, P. Verrucchi, Phys. Rev. Lett. 84, 366 (2000)

2.3 Spin and Charge Doped La2CuO4

For charge and spin doped 2DQHAF nice insights are derived from 63Cu
and 139La NQR in Sr-doped and in Zn (or Mg) -doped La2CuO4. It is
shown, in particular for spin doping, how the “dilution model”, namely the
simple correction in the 2D AF Hamiltonian by the probability of presence
of the magnetic ion, explains rather well the behaviour of ξ2D(x, T ), of the
spin stiffness ρs(x) and of the ordering temperature TN (x), when the doping
amount x is far from the percolation threshold.

2.4 Near the AF Percolation Thresholds: Spin Stiffness,
Correlation Length and Staggered Magnetic Moment

The analysis of the NQR relaxation rates can be extended to the spin doping
region where the dilution model would be a crude assumption. In practice
only 139La NQR relaxation have been measured in the temperature range of
interest and the correlation length has been extracted. The absolute values
and the temperature dependences derived in the strong dilution condition are
compared with the data for light doping and with the theoretical behaviours,
by leaving the spin stiffness as adjustable parameter. One is led to the con-
clusion that the RC regime holds, also in regards of charge-doped La2CuO4.

A quantity of interest for the quantum effects in disordered 2DHQAF is the
zero-temperature staggered magnetic moment 〈μCu(x, T → 0)〉 along the local
quantization axis, namely the dependence of the sublattice magnetization on
spin dilution. The staggered magnetic moment is different from the classical
S = 1/2 value because of the quantum fluctuations, that in turn are expected
to increase with spin dilution. The quantity

R = 〈μCu(x, 0)〉
/
〈μCu(0, 0)〉

has been obtained to a good accuracy from the magnetic perturbation due
to the local hyperfine field on 139La NQR spectra or from μSR precessional
frequencies and recently evaluated also close to the percolation threshold from
neutron diffraction in a single crystal of Zn −Mg doped La2CuO4. The x-
dependence of R as it results from a combination of NQR and neutron diffrac-
tion data can be derived. The classical doping dependence (for S → ∞) as
well as the one predicted by the quantum non-linear σ model are not sup-
ported by the experimental findings. The data indicate a doping dependence
with non-classical critical exponent in substantial agreement with finite-size
scaling.
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2.5 The Cluster Spin-Glass Phase

The main properties of the cluster spin glass phase, occurring when the charge
doping is above the percolation threshold in Sr-doped La2CuO4, have been
widely explored by NMR-NQR spectra and relaxation.
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2.6 The Quantum Critical Point in an Itinerant 2DAF - Effect of
Magnetic Field

Finally one should look at the results of a recent NQR-NMR study carried
out in a system (CeCu6−xAux) around the quantum critical point (QCP)
(x = 0.1) separating Fermi liquid and AF phases, with a field-dependent
magnetic generalized susceptibility of 2D character, with anomalous exponent
and energy/temperature scaling. The main results obtained by other authors
by means of inelastic neutron scattering are confirmed also by NMR-NQR
measurements based on low-energy susceptibility over all the Brillouin zone.
Novel aspects are pointed out in regards of the role of the magnetic field.
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2.7 Summarizing Remarks

NMR-NQR relaxation can be a valuable tool in order to study the correlated
spin dynamics and the phase transitions in systems that in the last decade
have called strong interest as models for quantum magnetism and as par-
ents of high temperature superconductors, namely the square planar arrays of
S = 1/2 magnetic moments in antiferromagnetic interaction. Their rich phase
diagram as a function of temperature and of spin dilution or hole injection,
can be explored by means of NQR-NMR spin-lattice relaxation measurements.
Quantitative estimate of the quantum fluctuations-affected correlation length,
spin stiffness and order parameter can be derived by resorting to the integra-
tion of the generalized susceptibility, once that the wave vector dependence
of the electron-nuclei hyperfine interaction is properly taken into account.

In pure, non-disordered, 2DQHAF the in-plane correlation length ξ(0, T )
can be obtained from the relaxation rate. By working in the prototype CFTD,
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where the exchange constant J is rather small, it has been possible to prove
that the classical regime for ξ, with renormalization of the spin stiffness and of
the spin wave velocity due to the quantum fluctuations, holds in a wide (T/J)
range. No evidence of the crossover to quantum critical regime, expected on
the basis of an extension of the non-linear σ model, is observed. Similar conclu-
sion holds also for La2CuO4, although only a more limited (T/J) range can be
explored in this compound, where J = 1500K. On the other hand La2CuO4

allows one to perform spin dilution or charge doping, which corresponds to
injecting itinerant holes in the CuO2 plane. The disordered 2DQHAF is thus
created and a variety of interesting effects is observed. For moderate spin
doping the dilution model is found to lead to a reliable description: the spin
stiffness and therefore the correlation length are still the ones pertaining to
the renormalized classical regime, once that the probability of a spin vacancy
is taken into account in the AF Hamiltonian.

For strong dilution the dilution model is evidently inadequate, the spin
stiffness decreasing with increasing the Zn or Mg content x with a x-
dependence much stronger when the percolation threshold is approached. Still
the spin doped La2CuO4 was found to remain in the RC regime, ξ(x, T ) dis-
playing a temperature dependence similar to the one for ξ(0, T ), once that
the spin stiffness is renormalized to the corrected value. The transition to the
3D ordered state occurs at the temperature where ξ(x, T ) reaches about the
same value as in the pure 2DQHAF, namely about 150 lattice steps.

Similar results have been found also in charge doped La2CuO4, for a Sr
content y = 0.016, not far from the percolation value y = 0.02. Again the
temperature behaviour of ξ(y, T ) appears almost the same as in the pure
compound, although with a strongly reduced spin stiffness, and ξ(y = 0.016)
at TN again turns out around 150 lattice steps.

The reduction of the expectation value of the Cu+
2 magnetic ion as a

function of the spin dilution has also been derived. In accordance to neutron
diffraction data it has been found that the x-dependence turns out of the
form (x − xc)β with β = 0.45, close to the one expected from spin wave
theories and T matrix description and in agreement with finite-size scaling.
The temperature dependence of the staggered magnetic moment seems to
follow a rather universal law in terms of the x-dependent Neel temperature,
with an abrupt but continuous phase transition and a critical exponent close
to 0.2 for small x, possibly increasing to 0.3 for large doping amounts.

A system where a study of the spin dynamical properties at the disor-
der conditions corresponding to a quantum critical point has been possible,
is CeCu5.9Au0.1. The NQR-NMR 63Cu relaxation rates have provided en-
lightening insights on the magnetic response function, particularly when the
critical frequency slows down below the resolution limit of neutron scattering
and in regards of the role of an external magnetic field. On one side a 2D re-
sponse, with a critical exponent different from 1 and the energy/temperature
scaling have been confirmed from the relaxation measurements involving the
k-integrated dynamical susceptibility at low energy. On the other hand, it
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has been shown that below a certain field-dependent temperature the system
crosses over to a phase of gapped spin excitations, with quenching for T → 0
of the magnetization fluctuations and unconventional magnetic field scaling.

In short, the nuclei can be used as useful tools in the attempt to un-
ravel the many static and dynamical phenomena occurring in 2DQHAF upon
charge and spin doping. The powerfulness of the NQR-NMR measurements,
when accompanied by a suitable analysis, is comparable to inelastic neutron
scattering. While in some cases fine confirmations of the data found by this
technique have been obtained, in other cases the information obtained from
NQR-NMR relaxation in regards of low-energy spin excitations have turned
out even more subtle and novel aspects have been pointed out, in turn stim-
ulating new scientific work.

3 Short-range correlation in AF spin-1 chains: insights
from 89Y NMR in Y2BaNi1−xMgxO5

Long abstract, involving the papers reported as References

As already discussed in previous sections, due to the richness of their phase
diagrams, low-dimensional AF spin systems have attracted strong interest.
Since the ”strength” of quantum effects is enhanced by the reduced dimen-
sionality, exotic behaviors characterize AF spin chains (i.e. linear systems of
AF-coupled spins). For instance, in contrast to the classical scenario, where
the spins assume a perfect antiparallel configuration at T = 0 independently
on their value S, the ground state of the quantum Heisenberg chain is never
ordered and shows qualitative difference for integer-S and half-integer-S.

• A. Auerbach in Interacting Electrons and Quantum Magnetism, Springer-
Verlag 1994.

• F. D. M. Haldane, Phys. Lett. 93A, 464 (1983) and Phys. Rev. Lett. 50,
1153 (1983).

The correlation properties of low-dimensional AF’s are enbedded in the
spin-spin correlation length ξ, namely the distance over which the memory of
a given spin configuration is preserved. In the paper

• F. Tedoldi, R. Santachiara and M. Horvatić, Phys. Rev. Lett. 83, 412
(1999).

the authors have pointed out a novel way to measure ξ, that consists in
imaging, by Nuclear Magnetic Resonance (NMR), the response of the system
to a homogeneous magnetic field, after the introduction of finite size effects.

The compound chosen for the study, Y2BaNi1−xMgxO5, is a prototype
one-dimensional, spin-1, Heisenberg AF, where the average size of chain seg-
ments 〈L〉 is easily varied by controlled substitution of x Ni2+(S = 1) by
Mg2+(S = 0), to obtain 〈L〉 � 1/x.
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Fig. 3. 89Y NMR spectra in doped Haldane chain Y2BaNi0.95Mg0.05O5 recorded
at fixed frequency of 29.4 MHz by sweeping the magnetic field. Resolved satellite
peaks allow one to obtain the magnetization ”site by site”, as schematically shown
at the bottom of the figure, starting from one of the chain edges. Inset shows that
the intensity of satellite peaks in Y2BaNi1−xMgxO5 decreases as a function of the
average chain length 〈L〉 � 1/x.

In 89Y NMR spectra of Y2BaNi1−xMgxO5, shown in Fig. 3, several satellite
peaks are resolved. These peaks can be associated to individual spin sites along
the chain, providing a real-space picture of the microscopic spin polarization
and giving direct access to ξ, as explained below.

In a NMR spectrum acqired at frequency νNMR in an external field H0,
the signal intensity is proportional to the number of 89Y nuclei probing an
internal local field h such that the resonance condition νNMR = | γ

2π (H0 +h)|
is fulfilled (γ/2π = 2.0859 MHz/Tesla is the 89Y gyromagnetic ratio). The
local field h reflects, via the hyperfine interaction, the expectation value 〈Sz

i 〉
of the single spin operator at the nearby chain site, h = A〈Sz

i 〉, where in
Y2BaNiO5-based compounds the Ni2+-89Y hyperfine coupling constant was
found to be A = 13 KGauss. So, each different value 〈Sz

i 〉 will produce a peak
in the NMR spectrum at the position given by H0 = 2πνNMR/γ−A〈Sz

i 〉. The
multi-peak structure shown in Fig. 3 is thus a clear signature of a non-uniform
magnetization along the chain. Explicit mapping between chain-position i and
resolved peaks pI is suggested by the evolution of the spectra as a function
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of the chain length. The size of the satellite peaks is reduced on increasing
〈L〉 � 1/x (inset to Fig. 3) and disappear for 〈L〉 → ∞, while the central line pc

remains almost the same. This indicates that the peaks pI should be associated
to spins at the boundaries of the chains, while pc reflects the properties of the
”bulk”. Then, it looks reasonable correlate the shift of each peak from the
central line, Δ(pI) = H0(pI) − H0(pc), to the distance of the ions from the
edge of the chain, i.e., to assign the peaks pI to the positions i = I (and
i = L− I + 1) following the decreasing magnitude of Δ(pI), as illustrated in
Fig. 3. Thus the magnetization induced near the edge of the chain is deduced:
Δ〈Sz

I 〉 ≡ 〈Sz
I 〉 − 〈Sz

c 〉 = Δ(pI)/A. The alternation of the sign of Δ(pI) as
a function of I points out the staggered character of the magnetic response,
although the applied field is homogeneous. In the light of the correspondence
established above, one can study how the local magnetization evolves moving
from the boundaries towards the center of the chain. In Fig. 4, left side, the
magnitude of Δ〈Sz

I 〉 extracted from the shift Δ(pI) in Y2BaNi0.95Mg0.05O5 is
reported as a function of I. At all temperatures, |Δ〈Sz

I 〉| is well fitted by an
exponential law providing the characteristic decay length ξ(T ) of the boundary
magnetization. As shown on the right side of Fig. 4, ξ(T ) obtained in this way
matches the temperature behavior predicted for the infinite chain correlation
length reported in

• Y. J. Kim, M. Greven, U. J. Wiese, and R. J. Birgeneau, Eur. Phys. J. B
4, 291 (1998).

Fig. 4. Left: The magnitude of the site magnetization Δ〈Sz
I 〉 (deduced from the

shift of the satellites in the spectra) decreases exponentially by moving from the
boundaries towards the center of the chain. This defines experimental correlation
lengths ξ (full squares) which are compared (Right) to the theoretical prediction
for the infinite-chain correlation length (open triangles)reported by Kim et al. (see
text).
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Thus, one concludes that the perturbation developed around spinless im-
purity (Mg-ion) indeed ”reflects” very well, in a broad temperature range, the
bulk correlation properties of the ideal unperturbed systems.

This experimental finding has been subsequently confirmed by Monte
Carlo simulations of Heisenberg AF spin chains with open boundaries in uni-
form magnetic field:

• S. Botti, A. Rosso, R. Santachiara and F. Tedoldi, Eur. Phys. Rev. B 63,
012409 (2001).

These calculations also identify the distribution of chain lengths around
the average value 〈L〉 to be the origin of the progressive increase of the width
of the NMR peaks on cooling observed in Fig. 3).

A complete report of the various insight obtained on AF spin chains by
NMR investigation of pure and doped Y2BaNiO5 can be found in

• F. Tedoldi, Scientifica Acta XVI, 1 (2001).

4 An overview on the main results from NMR-NQR
studies in HTc superconductors, with emphasis on the
vortex dynamics

Long abstract, involving review articles and papers reported as References

4.1 Generalities

In the NMR-NQR studies of SC cuprates one can envisage three main lines
of activity:

i) along the charge and spin doping of precursor antiferromagnets
ii) in the strong charge doped SC regime, above and below Tc

iii) about the flux lines lattice and the thermal excitations of the vortices

Line i) is basically similar to what has been discussed in Section 2. Fun-
damentals in quantum magnetism have been studied, most in terms of the
in-plane correlation length, on the effects of charge and spin doping on the
excitations in 2DQHAF in the various regimes of the phase diagram, on the
extra magnetic moments associated to doping and their cooperative freezing
and on the charge localization and spin texture. Interesting results have been
obtained in regards of the low-energy excitations, of the itinerancy vs. local-
ization and on the doping dependence of the gap from itinerant to localized
states.

Line ii): NMR-NQR has provided a great deal of nice results about the
fundamental hyperfine interactions, on the interplay Fermi-liquid and AF cor-
relations, on the features of the low-energy excitations in the underdoped
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phase (with the vexata quaestio of the spin gap opening and pseudo gap
opening above Tc), in regards of the characteristics of the SC phase vis-a
vis the results expected from the BCS theory (namely about the coherence
peak, the orbital pairing, the anisotropy of the spin fluctuations). We shall
briefly overview this line at Subsection (4.2). Furthermore, somewhat unex-
pected phenomena, like the coexistence of superconductivity and spin freezing
in underdoped SC cuprates, with the related striped-phase and wipe-out on
cooling of the 63Cu NMR-NQR signals have recently attracted a great deal
of interest.

Line iii) regards the studies of the structure of the flux lines lattice, of
their thermal excitations and the character of the motions, by means of NMR
line narrowing, spin lattice relaxation and echo dephasing. This line shall be
discussed in some more detail in Subsection(4.3).

• D.Brinkmann and M. Mali: NMR Basic Principles and Progress Vol. 31
(Springer, 1996)

• C. Berthier, M. H. Julien, M. Horvatic and Y. Berthier, J. Phys. I France
6, 2205 (1996)

• K. Asayama, Y. Kitaoka, G-q Zheng and K. Ishida, Progress NMR Spec-
troscopy 28, 221 (1996)

• A. Rigamonti, F. Borsa, and P. Carretta, Rep. Prog. Phys. 61, 1367 (1998)

4.2 The superconducting phase (above and below Tc)

In the normal state the spin-lattice relaxation rates have been measured for a
variety of nuclei and interpreted in terms of the generalized magnetic suscep-
tibility χ“(q, ω), in general by referring to one of the two limiting situations:
strong correlation, namely (U/t) � 1 in the Hubbard Hamiltonian, and for
(U/t) � 1 in a scenario of Fermi-like carriers with AF correlation.

In the first case the excitations are basically overdamped spin waves
for localized magnetic moments, the interpretation is similar to the one for
2DQHAF, with an effective temperature- and doping- dependent frequency,
controlled by the in-plane correlation length.

For the opposite limit (U/t) � 1, the interpretation of the relaxation rates
has been most based on a generalized susceptibility of the form

χ(q, ω) =
χ0(q, ω)[

1 − χ0(q, ω)I(q)
]

Here the bare susceptibility in a Fermi gas is related to the density of states
at EF , while the Stoner-like enhancement factor I(q) is due to the AF corre-
lation.

The main conclusions, particularly in comparison to the BCS supercon-
ductors, can be summarized as follows.

For T > Tc the relaxation rates W are site-dependent, because of the fil-
tering factors h2

q (discussed in Section 2) and reflect the different temperature
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dependence of the excitations in different regions of the Brillouin zone. For
17O the filtering factor is peaked at q = 0, only a moderate increase of W with
respect to the BCS value (small enhancement due to the Stoner like factor) is
detected and the interpretation is most in terms of the density of states, for
the q-integrated spectral density.

For Cu nuclei a strong enhancement of W with respect to the expected
WBCS is observed: the filtering factor is peaked at (π/a, π/a) and a sizeable
and temperature dependent AF correlation is active.

From the comparison of the relaxation rate in optimally doped and in
underdoped YBCO, a spin and charge pseudo-gap is noticed to open up at
T ∗, well above Tc, basically corresponding to a transfer of excitations from
the low frequency to the high frequency range14. A long list of attempts of
explanations of the pseudo-gap opening has been produced, involving elec-
tronic crossover, charge density waves, instability, AF or SC fluctuations of
non Ginzburg-Landau character, polarons and stripes of various nature. For
a recent mis-a-point, see Norman et al. in the References.

Below Tc the main conclusions achieved, with a significant role of NMR
measurements (Knigth shift, the Gaussian part of the echo dephasing and T1)
are the following. The SC state is a singlet spin state; the zero temperature
gap is about 4Tc, thus indicating strong coupling; the orbital symmetry of
the order parameter is d-wave; the relaxation rate goes as W ∝ T 3 (a feature
common to heavy fermions SC) and it is rather well accounted for by the BCS
density of states, with the modifications taking into account the 2D character
and the d-wave orbital symmetry.

As already mentioned another topic of more recent and strong interest,
where NMR studies have provided meaningful insights, is the phenomenon
of the microscopic coexistence of spin-freezing and superconductivity in the
underdoped phase of cuprates, particularly LSCO.This implies a kind of exten-
sion to the superconducting regime of the cluster spin-glass phase described
for charge doped 2DQHAF. Related effects are the onset of charge-stripes
and the marked slowing-down of spin fluctuations, causing wipe-out of the
Cu NQR signals, since the echo dephasing times become very short.

For a comprehensive analysis, see Julien et al.

• M.R. Norman, D. Pines and C. Kallin, Advances in Physics 54, 715 (2005)
• M. Julien, A. Campana, A. Rigamonti, P. Carretta, F. Borsa et al., Phys.

Rev. B 63, 144508 (2001)
• P. Carretta, A. Lascialfari, A. Rigamonti, P. Tedesco, F. Tedoldi and A.

Larionov, Phys. Rev. B 69, 104512 (2004)
• A. Uldry and P.F. Meier, Phys. Rev. B 72, 094508 (2005)

14 For the shift in the q-range, NMR and neutron scattering are somewhat in con-
trast: from T2 one could deduce for T > T ∗ a global increase in the excitations
at q = qAF while neutron scattering does not detects effects on the coherence
length.



138 A. Rigamonti and F. Tedoldi

4.3 The flux lines lattice and their thermal excitation

The cuprates are superconductors strongly of II type. Therefore an external
magnetic field penetrates inside the sample in form of flux lines, each carry-
ing the elementary fluxon Φ0 = 2.7 · 10−7 Gauss cm2. Typically for YBCO
(oriented powder with field along the c-axis) in a field of 6 Tesla, the vortices
are accommodated on a 2D triangular lattice, at a distance of about 200 Å,
a factor at least ten larger than the diameter of the vortex core. The London
penetration length λL is about 1500 Å and thus by moving along a given x-
direction in the CuO2 plane one finds a kind of ‘ripple’ of the magnetic field
H(x), with temperature-dependent amplitude of about 50− 100 Gauss, going
towards zero for T → Tc(H) from below.

Above a certain temperature (the irreversibility line) field- and some-
what sample-dependent, the vortices move, the features of their motion being
possibly in form of pieces of flux lines (‘pancakes‘) diffusing in the plane, with
or without correlation among adjacent planes.

NMR line width, echo dephasing and T1 have been used as microscopic
tools to study the structure of the flux lines (FL) lattice and their thermal
excitations.

Because of the spatial distribution of the magnetic field H(x) (that can be
approximately deduced from the solution of the London equations for δ-like
field line) instead of an intrinsic NMR line, in general one detects an asym-
metric broad line, with temperature dependent second moment proportional
to [λL(T )]−4. Below the irreversibility temperature Tirr, in practice no direct
evidence of FL motions is detected in line narrowing or T1, while some evi-
dence of motion has been claimed from the echo dephasing (which is much
more sensitive, however involving an effective correlation time poorly defined).

Above Tirr, from the extra narrowing (with respect to the one related
to λL(T )) of the 89Y NMR line in YBCO family (particularly YBCO124)
information on an effective correlation time reaching about 50 μs and further
decreasing on approaching Tc have been achieved. Better insights have been
obtained from high-resolution 17O NMR spectra in YBCO123, with evidence
of coexistence of liquid and solid-like vertex behaviour in a certain temperature
range.

More quantitative studies have been possible from the field and tempera-
ture dependence of the relaxation rate related to the time dependence of the
local field components induced by the motions of the FL, most in YBCO ori-
ented powers and 89Y relaxation. The starting point is the expansion of the
local field components hρ,z (in cylindrical coordinates and for the regions out-
side the vortices) in terms of the displacements of the FL from the equilibrium
position. Then the correlation function for the transverse field components is
written in terms of the mean square displacements from the equilibrium po-
sition, with an ensemble average, over the range from the FL core up to the
intra-vortices distance le.

The final result is
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T−1
1 =

1
2
γ2h2

e(T )j(ωL)

where j(ω) is the spectral density of that correlation function and the effective
field driving the relaxation process reads

h2
e =

8
3

[
d

(ξλL)2

]
kBT

[
2 ln

(λL

le

)]
(T > Tirr)

d being the inter-plane distance.
The interplay between he (which decreases on increasing temperature) and

the field and temperature dependencies of the maxima of the spectral den-
sity (expected when the effective frequency 〈ωq〉 = Dq2e , with D the pseudo-
diffusion constant of the vortices and qe = l−1

e , is around ωL) leads to a
nice structure of the relaxation rates W (T,H). Maxima in W are detected at
different temperatures for different fields, while Wmax do not increase with
decreasing field as one would expect from the popular argument Wmax ∝ ω−1

L .
Information on the barrier for the vortex depinning and its field dependence
can be derived from the analysis of the relaxation rates.

From measurements of the spin echo dephasing some further information
can be obtained in regards of the degree of correlation in the pancake motions
along the c-axis.

An additional contribution to the nuclear relaxation comes from the ex-
citations within the vortex cores (vortex core relaxation), where the nuclei
relax as in the normal non-SC phase and possibly with other pseudo-particles
excitations. The contribution to the relaxation from the vortex cores goes
approximately as T−1

1 ∝ HT and can be studied in detail in non-cuprate
SC, where at moderate magnetic field (e.g. 5-10 Tesla) the vortex cores are a
sizeable part of the whole sample.

• M. Corti, B.J. Suh, F. Tabak, A. Rigamonti, F. Borsa et al., Phys. Rev.
B 54, 9469 (1996)

• A. Lascialfari, A. Rigamonti and I. Zucca, Phys. Rev. B 71, 214510 (2005)

5 Superconducting fluctuations: an overview of the
studies based on the spin susceptibility (Knight shift
and T1) and on diamagnetic susceptibility

5.1 Introductory aspects

The superconducting (SC) transition is a second-order one and for T → Tc

from above, the enhancement and slowing down of the fluctuations described
in Section 1 occur. As already mentioned, for the SC transition the fluctuations
take particular aspects, the order parameter being complex:

ψ(r) =
√
nc e

iθ(r). (47)
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nc is the density of Cooper pairs, while the phase θ(r), through its gradient,
is part of the velocity of the pairs. While above Tc the average of ψ(r) is zero,
(no long range order) because of the fluctuations the average of the modulus
[〈|ψ|2〉] 1

2 is different from zero. This corresponds to the generation of local
pairs, without long-range spatial coherence, which decay slower and slower
for T → T+

c .
In conventional (BCS) superconductors the mean field theories apply quite

well, basically because the coherence volume ξ3 includes a large numbers of
fluctuating pairs. At variance, in layered SC cuprates the coherence length ξ
is very small, the carriers density is reduced, one has anisotropy and high Tc,
and thus a marked enhancement of the fluctuations occurs.

As recalled in Section 1, a suitable description of the superconducting fluc-
tuations (SF) can be given in terms of the Ginzburg-Landau (GL) approach15

based on the expansion of the free energy density f(T, ψ)

f(T, ψ) = fnormal + α|ψ|2 +
β

2
|ψ|4 +

1
2m∗

∣∣∣[ h̄
i
∇− e∗

c
A

]
ψ

∣∣∣2 (48)

Eq.(48) include the spatial variation and the magnetic field, through the vector
potential A. In the Gaussian approximation the term in β is neglected. The
derivation of the collective amplitude and of the decay times of the fluctuations
for β = 0 and in the absence of the magnetic field can be given in a way similar
to the one shown in Section 1. The order parameter is expanded in free-particle
eigenfunctions

ψ(r) =
∑
k

ψke
ik·r (49)

Then f ≡ f(T, ψ) − fnorm =
∑

k

(
α + h̄2

2m∗ k
2
)
|ψk| and from the thermody-

namical average over all the possible values of the order parameter

〈|ψk|2〉 ≡
∫
|ψk|2e−

f
kBT d2ψ∫

e
− f

kBT d2ψ
(50)

one obtains

〈|ψk|2〉 =
kBT

α(1 + k2ξ2)
=

〈|ψk=0|2〉
1 + k2ξ2

(51)

where

ξ(T ) =
[ h̄2

2m∗α

]1/2

= ξ(0)
( Tc

T − Tc

)1/2

∝ ε−1/2

is the correlation length involved in the correlation function g(0,R) =
〈ψ∗(0)ψ(R)〉0. One can envisage the SF as generating metastable SC droplets
of size ξ(T ).

15 As shown by Gor’kov, the GL theory can be derived from the BCS theory.
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For the time-dependence of the SF, required to describe the transport
properties and NMR T1, one can start from the basic equation for the devia-
tion out of equilibrium

∂ψ

∂t
= − 1

γ

δf

δψ∗ (52)

where γ here is the kinetic coefficient. From Eq.(48), with A = 0 and neglect-
ing non linear terms,

−h̄γ ∂ψ
∂t

= αψ − h̄2

2m∗∇
2ψ (53)

which for the uniform mode at k = 0 yields an exponential relaxation of the
order parameter with the GL relaxation time τGL = (h̄γ/α) ∝ (Tc/t− Tc) ∝
ε−1.

For k �= 0, from Eq.(53) the linearized time-dependent GL equation be-
comes

−τGL
∂ψ

∂t
=

(
1 − ξ2∇2

)
ψ.

From Eq.(49) one sees that each mode decays exponentially in time, i.e.
ψk(t) = ψk(0)exp(−t/τk), with

τk =
τGL

1 + k2ξ2
(54)

namely the equivalent of the slowing down of the fluctuations seen in Section
1.

From the SC current density j = 2e|ψ|2 h̄
m∇θ and Eq.(53) for the imaginary

part, the SF contribution to the conductivity turns out

σSF =
(e∗)2

2m

∑
k

〈|ψk|2〉 τk. (55)

By comparing this equation with the Drude conductivity σ0 = (e2/m)nτ [with
n number of electrons per cm3 and τ average collision time], one realizes that
〈|ψk|2〉 is indeed the collective number density of Cooper pairs while τk is a
life-time of the collective fluctuations.

5.2 The SF contributions to NMR shift and T1

One can derive the SF contribution to conductivity and to other transport
properties such as the spin-lattice relaxation within the Fermi liquid scenario,
without specifying the nature of the interactions. It should be noted that it
is not required that the system is a Fermi liquid but just that the charge and
spin excitations are of fermionic character.

The term with a direct correspondence to the description of fluctuating
Cooper pairs is the one given in Eq.(55) (called Aslamazov-Larkin, (AL)),
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with the most marked singularity at Tc. The AL term has no effect on T1.
A schematic justification of the lack of contribution to the nuclear relaxation
from the AL term can be obtained by recalling that the nuclear transition
requires a spin-flip of the scattered electron, through the transverse spin op-
erators S± in the hyperfine hamiltonian. Therefore the spin-flip would imply
the crossover of the pair to the triplet state.

A term that in principle is effective for the nuclear spin-lattice relaxation
is the one introduced by Maki-Thompson (MT). Being of purely quantum
nature the MT term cannot be expressed in the GL scenario. It is a kind of
pairing of an electron with itself along intersecting trajectories and on physical
grounds it is expected to be very sensitive to pair breaking mechanism, such
as the external magnetic field. The MT contribution to T1 can be expressed
in terms of a decay rate Γk of diffusive character that goes to zero for k = 0
when T → T+

c , so that a weak divergence in the relaxation rate (T−1
1 )MT is

predicted.
SF imply the subtraction of electrons to create the fluctuating pairs. Thus

one has a negative contribution for T → T+
c from the reduction in the density

of states ρ(E) and then of the single-particle contribution (DOS contribution).
The DOS term causes a decrease in the static susceptibility and therefore in
principle it could imply an effect on the Knight Shift KSF :

K0
SF = K0

[
1 −

(
2
Tc

TF

)
ln ε−1

]

(K0 Knight shift in the absence of SF, with K0 ∝ ρ(EF )).
In classical BCS superconductors, some evidences the effects of SF on T1

and KSF have been obtained in nanoparticles (see Mac Laughlin, in “Further
reading”). In cuprates high-temperature SC, from high resolution 17O NMR
spectra in external magnetic field ranging from 2 up to 24 Tesla, a smooth
crossover in KSF close to Tc(H), with suppression in high field of the SF and a
dimensionality crossover has been evidenced (see Bachman et al., in “Further
reading”).

As regards T1 a possible way to evidence the SF is when the relaxation
rates WDOS and WMT have different sensitivity to the magnetic field. Un-
fortunately, some theoretical estimates (see Mosconi et al.) seem to indicate
that DOS and MT terms are affected to comparable extent by the field. Thus
it turns out that the SF are actually hard to evidence from NMR relaxation
measurements.

From a collection of data in optimally doped YBCO it seems that a small
decrease of W (H,T → T+

c ) is observable, due to the WDOS term. However
one is left with the problem of the concurrent effect of the spin-gap opening
(see Section 4) that might be present even around T ≈ Tmax

c . Furthermore it
seems that no effect of SF is detectable for 63,65Cu while field-dependent 17O
T1 has been claimed (see Mitrovic et al.)(For a through discussion see Chapter
11, in the book by Larkin and Varlamov reported in “Further reading”).
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5.3 Superconducting fluctuations and fluctuating diamagnetism

More convincing studies of the SF can be carried out from the related dia-
magnetic effects and particularly from the isothermal magnetization curves
M(T ≈ T+

c ,H).
A qualitative argument to understand the generation of a diamagnetic

susceptibility above Tc is the following. To each evanescent pair, of size ξGL

one can attribute the diamagnetic susceptibility χc
dia ≈ −e2ξ2GL/mc

2, a di-
rect extension from atomic physics. From nc =

∑
k〈|ψk|2〉 and Eq.(51), by

integrating over the Brillouin zone the susceptibility turns out

χdia ∝ −εD
2 −2 (56)

Almost the same result is obtained from the GL free energy density (Eq.(48)),
in the Gaussian approximation (i.e. β = 0), with A = 1

2H× r. By expanding
the order parameter in terms of the eigenfunctions for Landau levels, from
〈f〉 = −kBT lnZ, evaluating the partition function Z to the second order in
the field, and from

Mdia = −d〈f〉
dH

(57)

one derives a diamagnetic magnetization Mdia linear in the field, defining the
susceptibility in a form close to the one in Eq.(56). In this way the effect of the
magnetic field in modifying the transition temperature and possibly affecting
the fluctuating pairs is disregarded.

A first step towards a more suitable description goes back to Prange, who
provided the exact solution for the partition function Z. Then the divergence
in χdia for T → T+

c was correctly predicted to occur at Tc(H) and for T ≈
Tc(H) the magnetization was found to go as Mdia ∝ −H1/2.

Since the early measurements of the fluctuating diamagnetism in BCS met-
als by Tinkham and coworkers, a dramatic breakdown of any theory neglecting
the effect of the field in suppressing the fluctuating pairs was evidenced. A
microscopic theory to integrate the GL approach and avoiding the breakdown
for finite field was given by Gor’kov, by taking into account short wave-length
fluctuations and non locality effects.

A simple interpretative model that allows one to grasp the basic effects of
the field on the Cooper’s pairs is to apply the zero-dimensional (0-D) condition
to the evanescent SC droplets of size ξ(T )16. In this model in the free energy
functional f [ψ(r)] (involved in the partition function Z[ψ(r)] to be integrated
for Z and then derived for Mdia) ψ(r) is assumed site independent, the gra-
dient of ψ(r) goes to zero and the potential vector is 〈A〉 = H2d2/10, as for a
sphere of diameter d. Then in the Gaussian approximation, from Eq.(48), by
identifying d with ξ(T ) one obtains for the single droplet free energy

16 Although this assumption is evidently crude, still leads to the field dependence
of Mdia qualitatively correct, likely because are the droplets of size ξ(T ) to give
the maximum diamagnetic screening.
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f0D = −kBT ln
π

α
(
ε+ 4πξ2

Φ2
0
〈A2〉

) (58)

and then Mdia is obtained:

Mdia(ε,H) = −kBT

2π2ξ40ε
−1

5Φ2
0

H

ε+
π2ξ40ε

−1H2

5Φ2
0

= C
H

H2
up +H2

(59)

with χdia(H → 0) = C/H2
up.

It is noted that Eq.(59) predicts an upturn in the field-dependence (where
|Mdia| reverses its field-dependence and starts to decrease on increasing H)
at

Hup =
√

5Φ2
0

πξ20
ε

This 0D model is grossly approximated, since the order parameter does
change over a length of the order of ξ17. Still the magnetization curve
Mdia(T = const,H) are rather well justified, as it can be see for the BCS
SC MgB2 (see Lascialfari et al. 2002, in “Further reading”). When the zero-
temperature coherence length is in the range of ∼ 100 , the upturn field is
found in the range 100 ÷ 1000 Oe, depending on temperature.

In SC cuprates since ξ(0) ≈ 3 − 5 lattice steps the upturn in Mdia vs H
should be observable only at very high field, say in the range 10 − 30 Tesla.
In fact in optimally doped YBCO the GL theory, with no-field quenching of
the Cooper pairs, works pretty well. As already mentioned the magnetization
curves are linear in H for T ≥ T+

c while very close to Tc they display the
expected H

1
2 dependence. Good agreement with the 3D anisotropic scaling

relationship for Mdia(Tc)/H1/2 is also found for optimally doped SC cuprates.
At variance in underdoped cuprates of the YBCO and the LSCO family

a quite different behavior of Mdia vs H is detected (see Lascialfari et al.
2002 and 2003 in “Further reading”). A dramatic enhancement of χdia for
evanescent field is found and the magnetization curves display an upturn
field in the range below 1000 Oe. This upturn behavior in non-optimally SC
cuprates cannot be ascribed to the breakdown of the GL theory in finite field
as in MgB2, since ξ0 is a few . Instead it has been shown (see Lascialfari et
al. 2002 and Roman 2003 in “Further reading”), that enhancement of χdia

and field effect are related to a different type of fluctuating diamagnetism,
typical of systems with charge inhomogeneities. A kind of precritical regime is
generated, with |ψ| �= 0 in local, non-percolating regions, lacking of long range

17 At variance, the model works quite well in nanoparticles, where the magnetization
curves have been obtained even in the critical region, namely for β �= 0 in close
form and compared with experimental findings, see Bernardi et al. in “Further
reading”.
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order and experimenting marked fluctuation in the phase. The fluctuations
involve vortices and antivortices in the plane and 3D vortex loops.A theory
based on the phase fluctuations in an anisotropic XY liquid of vortices rather
well accounts for a variety of interesting effects observed in the fluctuating
diamagnetism of underdoped cuprates.
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Introduction to μSR.

Roberto De Renzi

Department of Physics and CNISM, Viale G.P. Usberti, 7a, I-43100 Italy

We briefly introduce the principles of muon spin spectroscopy, considering in
particular what happens with molecules and magnets.

1 Introduction

The following notes are meant to introduce the principles of Muon Spin Spec-
troscopy. They are divided as follows: The first section briefly recalls the his-
torical origins and the principles upon which the technique is based; Section II
describes the main types of experimental setup; Section III distinguishes what
may happen to the muon at implantation, before the measurement starts; The
detection of paramagnetic muon molecules is outlined in section IV; a brief
account of what happens in magnetic material is given in section V; finally
specific muon relaxation functions are described in section VI.

Besides the books and articles cited explicitly in these Sections, it is worth
referring the reader to the main papers, books and web sites available on
the subject [1, 2, 4, 3]. Among the more topical reviews it is worth quoting
the recent special issue of the Journal of Physics, Condensed Matter [5], and
recalling that a rather detailed account of μSR research is contained in the
Proceedings of the ten past International Conferences on Muon Spin Rotation,
Relaxation and Resonance (the first seven editions on Hyperfine Interactions,
the three most recent on Physica B).

2 The rules of the game

2.1 A bit of history.

The experimental technique of μSR applied to condensed matter originates
from the discovery of the violation of parity in decays regulated by weak inter-
actions. The Nobel Prize was awarded to Lee and Young (1957) [6] “for their
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penetrating investigation of the so-called parity laws” (from the motivation of
the prize). These investigation were confirmed by madame Wu and collabora-
tors [7] in their experiment on the β-decay of 60Co, and, almost at the same
time, in the parallel experiment of Richard L. Garwin, Leon M. Lederman,
and Marcel Weinrich [8] on the muon decay, which illustrates parity violation
more directly.

Fig. 1. The first column and the main picture from ref. [8] are shown on the left.
Due to parity violation the positron counts from the decays of a muon population
are made to oscillate in time, as the spins of the muons are coherently precessing
around an external magnetic field. This implies that the muons preferentially emit
their decay positron along the direction of their spin, instead of uniformly distributed
in all directions, as it would happen for parity conserving events.

Fig. 1 shows an excerpt from the muon decay paper, and the bottom line
in the right column indicates that the authors had already the intuition of the
potential use of the newly discovered effect as a solid state technique.

2.2 The muon

Thanks to parity violation the muon may be produced with a large spin
polarization, nearly 100%, starting from an accelerated particle beam, most
often protons. It is then implanted as a probe in solids, liquids and gasses.
It generally ends up inside the sample in few equivalent, most energetically-
convenient sites, retaining its initial spin polarization. Parity violation again
allows the detection of the muon spin coherent behaviour from the direction
of emission of its decay-positron (electron). This is accomplished by averaging
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over an ensemble of muons which are implanted one by one, or in bunches, at
subsequent times.

Charge ±
Mass mμ = 0.1126 mp = 206.7684(6) me = 105.65849(4) MeV/c2

Spin Iμ = 1
2

Magnetogyric ratio
γμ

2π
= 135.53875(6) MHz/T

Mean lifetime τμ+ = 2.19703(4) μs

Table 1. Muon properties. Values of other quoted constants: electron mass
me = 9.1093826(16), 10−31 kg = 0.51099907(15) MeV, speed of light in vac-
uum c = 299792458 m/s, electron charge e = 1.60217653(14) 10−19 C, Planck’s
constant h = 6.6260693(11) 10−34 Js. The muon magnetogyric ratio is given by
γμ = e

mμ
(1 +

gμ−2

2
), where the measured quantity is 1 +

gμ−2

2
= 1.001165923(8).

The muon is a lepton[9] and its properties are listed in Tab. I. In order to
produce intense muon beams suitable for implantation the decay of charged
pions is exploited. Since negative muons in matter are strongly attracted by
nuclei their fate often tell more about the nuclear interactions in the sample
than about its solid state properties. For this reason from now on we specialize
to positive muons. In the rest frame of the pion, which decays according to:

π+ → μ+ + ν (1)

the outgoing muon and neutrino have opposite linear momentum, equal
to 29.79 MeV/c. This value is obtained by imposing the conservation of the
relativistic energy:√

m2
πc

4 + p2
πc

2 =
√
m2

μc
4 + p2

μc
2 +

√
m2

νc
4 + p2

νc
2 (2)

with pπ = 0, pν = −πμ, mν = 0 (effectively) andmπ = 139.57MeV/c2.
The muon kinetic energy is then

Ek =
√
m2

μc
4 + p2

μc
2 −mμc

2 = 4.119MeV/c2 (3)

Comparing the terms in Eq. 2 is is easy to see that, whereas the neutrino is
entirely relativistic (if its mass were zero, it would travel at the speed of light),
the muon is far from the fully relativistic limit, having β = 0.272. Equation
3 sets the energy that a muon originating from a pion at rest has to spend to
get through thin vacuum windows along the beamline and to implant inside
the sample.

2.3 Muon production

The decay of charged pions, Eq. 1, is more precisely:
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π+ → μ+ + νμ

π− → μ− + νμ,

the bar indicating a leptonic antiparticle (the decay conserves the number
of leptons, zero on both side of the arrow).

In order to obtain the pions, for a start, a proton beam of sufficient energy
is aimed at a solid target and a transport channel for charged particles is
tuned to focus one open surface of the target, at one end, onto the sample, at
the opposite end.

The energy of the primary proton beam must be above the threshold for
pion production. To determine this threshold, consider that the dominant
channel for positive pions is

p+ (p, n) → n+ (p, n) + π (4)

where the second particle on the left (proton or neutron) is at rest.
Assuming the proton and neutron mass both equal to M = 938MeV/c2

and studying the system in the center of mass, where the two particles have
equal and opposite momentum q we suppose that the threshold momentum
for pion production (mass m = 139.57MeV/c2) is for the head-on collision,
where the proton turns into a neutron and bounces off with momentum p in
the reverse direction, whereas the pion momentum x is opposite to p and so
is the final momentum of the original particle at rest (−p+x). This situation
is sketched in Fig. 2.

Fig. 2. Pion production: momentum is conserved before and after the head-on
collision.

Energy conservation imposes that:

2
√
M2 + q2 =

√
M2 + p2 +

√
M2 + (p− x)2 +

√
m2 + x2 (5)
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One can see that the minimum q is that for which p=x=0, i.e. q ≥√
Mm+m2/4 = 361.93 MeV/c which means q′ ≥ 790.6 MeV/c in the labo-

ratory frame (q′ = 2q
√
M2 + q2/M). This implies that the threshold kinetic

energy of the proton beam in the laboratory frame is
√
M2 + q′2−M = 281.5

MeV.
In practice the cross section increases [10] rapidly up to q′ = 1.1 GeV/c,

corresponding to a beam energy of 500 MeV, representing an optimum in
some sense.

Pions of a well defined linear momentum are selected with a transport
channel from the primary target on which the proton beam is impinging. The
target is often pyrolitic graphite, with special care for cooling, since typical
proton beams at muon facilities are from hundreds to thousands of μA.

A transport channel for charged particles is roughly equivalent to an optical
beam and it is composed of magnetic lenses and magnetic prisms. The function
of a (chromatic) lens is provided by two or three quadrupole magnets at short
distance from each other. Quadrupoles have two opposed north poles and two
opposed south poles each. The function of the prism is produced by a dipole
magnet, a bender, which acts as a momentum selector. Muons, pions, electrons
and any other particle of the same momentum and charge are transported
down such a beam.

An additional important element is the electrostatic separator, with crossed
electric and magnetic fields. This device acts on a straight line as a velocity
selector, since the two fields can be tuned to compensate each other for a
specific mass. Hence it removes the other particles from the muon beam.

At best, the cross section of the beam at one of its subsequent foci is equal
to cross section of the pion source on the primary target, which, in turns,
is determined by the proton beam cross section and, possibly, by the target
geometry (i.e. its thickness, for muon beams extracted at right angles to the
protons) .

2.4 Muon spin polarization

The role of the violation of parity in yielding spin polarized muon beams can
be directly identified in the rest frame of the pion, again.

We already considered the kinematics of this decay. We can now concen-
trate on angular momentum conservation, recalling that the π+ is a spinless
particle. Since, instead, the neutrino has spin one half, like the muon, the
angular momenta of the two particles must come out opposite to each other.
Furthermore the neutrino is highly relativistic: assuming that it is massless,
its spin would be aligned with its linear momentum, i.e. its helicity[11] is
equivalent to chirality[12] (handedness) multiplied by h̄/2.

The violation of parity in this event is equivalent to stating that only
neutrinos of negative helicity (spin antiparallel to linear momentum) exist.
Positive helicity is conversely the only possibility for antineutrinos, as shown
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in Fig. 3. This is often simplified by saying that, although in the macroscopic
world the mirror image of any possible event is also a possible event, this
symmetry is broken in the microscopic realm of elementary particles

Fig. 3. The figure shows an antineutrino, with spin parallel to momentum; its
mirror image should have spin antiparallel to momentum (negative helicity) because
angular momentum is an axial vector that reverses in the mirror image, but this state
does not exist in nature. For neutrinos the opposite holds: only those with negative
helicity exist.

This statement and the conservation of angular momentum impose that
also the muon from the decay must have negative helicity. This is illustrated
in Fig. 3 and Fig. 4.

π
0

Fig. 4. Pion decay in its rest frame: the muon must have negative helicity like the
neutrino.

Therefore if we select by transport a very small solid angle of directions
diverging from the primary target, and a momentum of exactly 29.79 MeV/c,
the beam will be predominantly of muons from the decays of pions at rest on
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the surface of the target, and very nearly[13] 100% spin-polarized backwards
with respect to linear momentum.

By the same argument forward negative muons would be produced in
a similar geometry. This simple description, performed in the rest frame of
the pion, is valid in practice if we consider pions decaying on the surface
of the production target, yielding the so-called surface muon beams. The
initial muon direction is preserved by all the magnetic elements of conventional
beam transport “optics”, i.e. by the focusing and bending actions of magnetic
fields on charged particle trajectories, to the sample. Bending elements can
finely tune the linear momentum of transported particles. At the low momenta
of surface muon beams the high field versions of separators are called spin
rotators. Besides selecting velocity (mass), the magnetic field in these devices
makes the muon spin precess by a large angle and the electric field may be
tuned to compensate the corresponding turn in the geometrical trajectory by
the same angle, yielding therefore a straight trajectory and a predetermined
initial spin direction.

The surface beam is only one of the possible schemes for the production
of muon beams, the most convenient for the majority of μSR experiments,
since it provides fully polarized muons of relatively low energies, which stop
in condensed matter within few hundreds micron from the surface (roughly
80 μm for Pb and 1 mm for water). In this way muons are probes of the bulk
and require moderate amounts of material.

However higher energy beams can be obtained, simply by selecting the
corresponding linear momentum in the transport channel. In this case the
transported particles are pions and sufficient length of the transport path must
be allowed for most pions to decay (with mean lifetime τπ = 26.033(5) ns).
This is accomplished by superconducting solenoids, on dedicated beamlines,
where the helical path is much longer than the physical length of the device.
The use of higher energy muons (typically 80 to 100 MeV/c) is mandatory
for pressure experiments, where the muons must penetrate a massive pressure
cell.

2.5 Parity violation in the muon decay

Parity violation is also the key to the detection of the muon spin evolution
in time. As in the case of the muon production it is implemented in angu-
lar momentum conservation with the constraint that the positron and the
neutrinos:

μ+ → e+ + νe + νμ (6)

distinguish between left and right. They must have well defined helicities
(negative for the particle νe and positive for the antiparticles e+ and νμ).

Since Eq. 6 represents a three body decay, there is a continuum of possible
geometries, as shown in the sketch on the left) and, correspondingly, a range
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of energies for the emitted positron (E ≤ 52.83MeV). The correlation imposed
on the directions of the muon spin and of the positron momentum is however
simple at maximum positron energy, which corresponds to the two neutrino
being both emitted opposite to the positron. In this particular collinear case,
which is close to that shown in Fig. 5:

- the two neutrinos do not contribute to angular momentum, since they are
collinear and of opposite helicity

- the positron must have positive helicity, hence it must come out in the
direction of the muon spin in order to conserve angular momentum.

Fig. 5. Muon decay, conservation of linear (long arrows) and angular momentum
(short arrows), together with parity violation, produces a correlation between the
muon spin direction and the positron linear momentum.

This correlation allows the experimental determination of the muon spin
direction from the identification of the positron momentum direction. The
correlation is reduced for lower energies. More precisely, the probability dis-
tribution function for the positron emission is correlated to the instantaneous
direction of the muon spin by:

P (θ) ∝ 1 +A(E)cosθ (7)

where A(E) is an asymmetry factor that depends on the energy of the
emitted positron, equal to 1 for E = Emax.

The distribution vs. both angle and energy is given in terms of x =
E/Emax as:

W (x, θ) =
E(x)
4π

[1 +A(x)cosθ] (8)

with E(x) = 2x2(3−2x) and A(x) = (2x−1)/(3−2x). These two functions
are shown in Fig. 6. The third shown function is the weighted asymmetry
spectrum, E(x)a(x)/2. The polar plot in Fig. 6, inset a, shows the probability
distribution lobe for the maximum asymmetry, A(Emax) = 1: the probability
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Fig. 6. Energy spectrum, E, and asymmetry spectrum, A, vs. reduced energy,
x = E/Emax. The third solid curve is the weighted asymmetry, E(x)a(x)/2. The
top inset (a) shows the polar plot of the emission probability at the maximum
asymmetry A = 1, as one would observe if only maximum energy positron were
detected. The bottom inset (b) shows the polar plot of the emission probability at
the average asymmetry A = 1

3
, that is ideally observed if all positrons are detected.

in each direction is proportional to the length of the blue segment along that
same direction. The average over all energy of the function A(E) is equal to
1
3 , which is the ideal experimental asymmetry value when no positron electron
discrimination is performed. The corresponding polar plot of the probability
is shown in inset b.

2.6 Longitudinal field

Let us build the simplest possible experimental setup: we place two positron
detectors in front of the sample, one in the muon spin direction (F for forward)
and one in the opposite direction (B, for backward), as shown in Fig. 7.

With spin polarized muons the F detector will count more and the B
detector less than with unpolarized muons. If we simply count events vs.
the lifetimes of the individual muons, we shall record rates that follow an
exponential decay with mean lifetime τμ = 2.2μS.

dN(t) = N0 e
−t/τμ (1 +Acosθ)dt dθ (9)
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The unpolarized muon rate, N0 e
−t/τμ corresponds to the central black

curve, the polarized rate in the F and B detectors are correspondingly labeled.
Note that the polar plot on Fig. 7 (right) is for the maximum asymmetry,
A(52.8MeV) = 1, for clarity, whereas the count rates in Fig. 7 (left) are
shown for the more realistic average asymmetry A = 1

3 .

Fig. 7. Left: Count rates in the same hypothetical experiment, with unpolarized
muons (middle curve), with muons polarized along the direction towards which
the detector is facing (Forward, top curve), and with muons polarized along the
opposite direction (Backward, bottom curve); average asymmetry A = 0.33. Right:
the geometry of the Forward and Backward detectors, together with the probability
lobe for maximum asymmetry A = 1.

In order to obtain the count rates of a real experiment Eq. 9 must be
integrated over a finite time bin and over the solid angle covered by the de-
tector. Both integrations lead to an average, i.e a reduction of the observed
asymmetry from the theoretical 1

3 value.

2.7 Transverse field

Another very simple experimental setup is when an external magnetic field
B is applied perpendicular to the incoming muon spin direction. This is the
setup of the original experiment of Fig. 1.

After implantation the muon spin precesses in a plane perpendicular to B,
describing an angle θ = γBt with its own initial direction, and the probability
distribution lobe for the emission of the positrons precesses with it. Averaging
over an ensemble of muons will then modulate harmonically the decay rate
of the ensemble in time, obtained from the positron count rates in a single
detector, as shown in Fig. 8.

dN(t) = N0 e
−t/τ (1 + AcosγBt)dt dθ (10)
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Fig. 8. Count rates in the transverse field case. The inset shows that, while the
muon spin precesses around the vertical magnetic field, the probability lobe sweeps
past the detector modulating the count rates between the limits appropriate for a
forward detector (dashed F curve) and for a backward detector (dashed B curve).

Muons are implanted either one by one, at continuous sources, or in
bunches of hundreds, at pulsed sources. Individual lifetimes are thus recorded
for millions of muon events, each contributing with one count in one time bin.
All these events are accumulated independently, over long times, minutes to
hours. Coherence is guaranteed by the fact that all muons at implantation
(time zero in the plot) have the same spin polarization.

2.8 Muon interactions

At each interstitial site the muon spin I = 1
2 is subject to interactions with the

other spins, those of neighbouring electrons and nuclei. A classification of these
interactions similar to that of NMR may be performed, with the simplifying
condition that the muon itself, being spin one-half, does not possess an electric
quadrupole moment. Hence the muon spin does not couple to the electric field
gradient, although it definitely may produce one.

Assuming that a uniform external magnetic field B will be aligned along
z, we may write:
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H
h

=
1
2π

{ [
−γμIz + γe

ne∑
i=1

siz −
nn∑

k=1

γkIkz

]
B (11)

+γμI ·
ne∑
i=1

h̄γe

[
li
r3i

+
−si + 3r̂i(si · r̂i)

r3i
+

8π
3

siδ(ri)
]

(12)

+γμI ·
nn∑

k=1

h̄γk
−Ik + 3r̂k(Ik · r̂k)

r3k

}
(13)

where the first row (11) contains the Zeeman interactions of all the involved
spins, si for the i-th electron and Ik for the k-th nucleus, the second (12) row
contains the magnetic interactions between the muon and the electrons and
third (13) row those between the muon and the nuclei.

The sum over k in line 13, where the vector rk = rk r̂k connects the muon
and the k-th nucleus, may be recognized as the classical dipolar field, Bd,
from nuclear point dipoles, each contributing with

Bkd = h̄γk
−Ik + 3r̂k(Ik · r̂k)

r3k
(14)

where the nuclear coordinates may be treated classically.
In contrast, in line 12 the coordinates should be considered as electron

operators. However, since the electron dynamics is much faster than the muon
spin precessions, we shall always average these operators over the electron
wave functions, recovering a spin-only Hamiltonian. The first term in line
12 represents the interaction with the orbital momentum li of each electron
h̄γe

li

r3
i
, and it is often neglected because of the quenching of orbital momentum

by crystalline fields. The second term of line 12 typically accounts for the
distant magnetic ions, yielding a purely dipolar field, like that of Eq. 14, by

Bid = h̄γe
−si + 3r̂i(si · r̂i)

r3i
, (15)

For a and the last term which corresponds to the dipolar contribution
when the muon and the i-th electron overlap. For electrons involved in the
chemical bond with the muon, hence whose wave functions overlap, the same
second term, together with the third one, contribute to the so-called hyperfine
coupling. This may happen directly, if the i − th unpaired electron of spin
si is involved in the bond. Then the second term gives rise to the pseudo
dipolar hyperfine (tensorial) and the third term gives rise to the Fermi contact
hyperfine (scalar) couplings:

δν̃ + ν0 =
μ0

4π
γμ

2π
I · h̄γe

[
〈Ψ |−si + 3r̂i(si · r̂i)

r3i
|Ψ〉 + s

8π
3
|Ψ(0)|2

]
(16)

respectively the first and second contributions in parenthesis.
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In magnetic materials the muon is often bound to an anion (oxygen, flu-
orine, etc..), which is non magnetic, i.e. the bond is formed, in first approx-
imation, only by paired electrons. In this case a second nearest neighbour
magnetic cation, M, may spin polarize the Mu bond, say, M-O-Mu, giving
rise to a net spin density at the muon. This will yield the so-called super-
hyperfine coupling. Averaging over the intervening electrons, the second and
third terms act as a tensorial coupling:

δν̃ + ν0 =
γμ

2π
I ·

[
δÃ+A0

]
· S (17)

formally equivalent to those of Eq. 16, although here S may be a composite
spin, like that of the ground state of a magnetic cation.

3 The muon fate at implantation

Muons come to rest inside the sample and, in most cases, this happens without
loss of spin polarization. The initial energy of the muon, of the order of 4
MeV, is huge compared to the typical energies of electrons (from few eV, for
valence shells to hundreds of keV, for inner shells in heavy elements) with
whom collisions take place. Therefore the initial collisions lead to ionization
(Coulomb scattering) and in this process the muons leave behind a wake of
ions and electrons.

When below the ionization threshold the muons generally travel quite a
long way away from this region and the final thermalization depends on solid
state or chemical details of the environment. In this context the positive muon
may be regarded as a light isotope of hydrogen, whose complex epithermal
chemistry reactions in the host material determine its successive fate.

Muons seldom replace an atom of the host compound: this may be the case
when cation vacancies are abundant or when a MU-H exchange takes place,
e.g. in organic compounds. More often the muon ends up at ”’interstitial”’
sites, in crystals, or equivalently, at addition sites, in molecules. The spin
dynamics of the thermalized muon depends dramatically on whether it ends
up in a ”coherent” or in an ”incoherent” spin state with its environment.
”Coherent” spin states are formed:

• when the muon is attached to a paramagnetic molecule (in the chemical
sense), that is when a MO state with an unpaired electron, also called free
radical, is formed; this instance is characteristic of unsaturated organic
molecules and the prototype of such a free radical is notably muonium, a
hydrogen atom with the proton replaced by the muon.

• when the muon is bound to a diamagnetic molecule; a molecular orbital
(MO) type of state is formed in which two electrons of opposite spin occupy
a bond between an atom and this light hydrogen isotope; the only influence
of the host on the muon is a chemical Larmor frequency shift, i.e. a tiny
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diamagnetic effect due to the polarization of the bond currents, which is
however too feeble to be measured within a few muon lifetimes.

• when the muon is localized interstitially in a magnetically ordered environ-
ment where it experiences hyperfine and dipolar couplings to the ordered
magnetic moments of the electron.

• when the muon is in close dipolar interaction with few isolated nuclei
having non vanishing magnetic moment. This is typically the case of the
F-Mu-F center [14] formed in several fluorides.

The spin environment may be ”incoherent” because of fast temporal fluctu-
ations, e.g. when the magnetic moments of nearby electrons fluctuate rapidly
on the time-scale of the muon spin dynamics. This is the ”paramagnetic” cases
in the condensed matter sense, i.e.:

• in metals, where free electrons (the Fermi liquid) are characterized by Pauli
paramagnetism; in this case electron charge screening would generally pre-
vent the formation of a bound state, and spin dependent scattering with
the electron liquid would prevent the observation of a bound state, if it
did form. Knight shift may be measured for metals, although high fields
are required to observe it within a few muon lifetimes.

• in the disordered state above the magnetic ordering temperature of a mag-
netic material.

Another incoherent spin environment, frequently encountered in condensed
matter, is the nearly static, spatially inhomogeneous case of the unpolarized
(or very weakly polarized) nuclear spins, when their number is large enough
to allow a classical statistical treatment, rather than the exact quantum com-
putation of the F-Mu-F center [14].

3.1 Muon sites

Quite often the fate of the muon is not unique. A number of distinct final
states may be obtained with different probabilities. These states may simply
correspond to distinct interstitial sites, due to alternative chemical bonds.
Sometimes different sites correspond also to very different electronic configu-
rations, as it is the case for intrinsic semiconductors, where often a metastable
antibonding position can be occupied, e.g. in Si at low temperatures, together
with a more stable bond center position.

In this respect the situation is more complex than it would be for most
chemical species at thermal equilibrium, both because of the epithermal en-
ergy that the muon initially possesses, and because of the short timescale over
which it is observed, which allows the detection of the metastable states.

Note that muon locations may be further differentiated in a magnet if
the direction of the ordered electron magnetic moments produces different
dipolar fields at otherwise equivalent sites. The multiple sites are effectively
accounted for by considering that the total asymmetry A of the full implanted
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muon ensemble is divided into the partial asymmetries of the n distinct muon
sites, according to:

A(t) =
N∑

j=1

Aj(t) (18)

where the initial partial asymmetry, Aj(0) = Apj , may be written in terms
of the stopping probability pj at the j-th site (with

∑
j pj = 1).

Sometimes one refers to a muon spin polarization function Pj at each site:

Aj(t) = Aj(0)Pj(t) (19)

4 Paramagnetic chemical species

When the muon binds to a molecule with at least one spin-unpaired electron
the interactions with the electron spin become dominant.

We shall describe in some more details this species, the muonic adduct
radical, quite typical of muons implanted in molecular compounds containing
unsaturated organic molecules, i.e. double or triple bonds. In these cases the
muon actually modifies greatly its surrounding by forming a unique molecule,
very different from the others. The state thus formed turns out to be a very
sensitive probe in itself, yielding a wealth of valuable information via its spe-
cific spectroscopic signatures.

Muonium and radical states are directly observable: muonium may be
found in vacuum (evaporated from suitable hot spongy surfaces) and inside
matter in a few cases (e.g. in quartz, inside the fullerene cage, in a slightly
distorted form in silicon). Radicals are observed in many unsaturated com-
pounds.

We shall start describing the simplest of these states, the muonium atom.
Fig. 9 shows the Breit-Rabi diagram of the energy levels of muonium. In zero
field the upper degenerate state is the spin triplet of electron and muon spins,
whereas the lower state is the singlet. Precessions can be detected correspond-
ing to the nearly degenerate triplet transitions at low transverse field, shown
in the figure by the double arrows on the left.

The spin states at high field are shown by the labels (± stand for spin
up and down, for electron, first, and muon). The transitions that become de-
tectable are the two shown by the double arrows at high fields, which represent
the spectroscopic signature of a radical. This description is valid also for more
complex radicals since in the high field condition the additional interactions
with other nuclei are decoupled. We shall now proceed to discuss this point
in some more details.
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Fig. 9. Energy levels of muonium (in frequency units) vs. external magnetic field.
Low field triplet transitions and high field, muon-spin-flip transitions are shown by
double arrows.

4.1 Muonium precessions

Muonium is the muon equivalent of the hydrogen atom and the simplest rad-
ical state. When free muonium is formed in its 1s ground state, the muon
spin interacts with that of the bound electron, governed by the hyperfine
Hamiltonian H:

H
h

= − [νμIz − νesz + ν0I · s] (20)

where 2πνμ = γμB, 2πνe = γeB are the muon and electron Larmor
frequencies, due to the Zeeman interaction with the magnetic field, and
ν0 = μ0

3πγμγeh̄|ψ(0)|2 = 4.4 GHz is the hyperfine frequency, proportional to
the square modulus of the electron wave function ψ at the muon position.
Note that the Hamiltonian of Eq. 20 is invariant under rotation, thanks to
the spherical symmetry of the 1s ground state.

The energy levels of this spin Hamiltonian, a 4x4 matrix, are very easy to
recognize for B = 0, since the hyperfine term is invariant under rotations and
the addition of the two angular momenta I, s = 1

2 yields two eigenstates: the
triply degenerate J = 1 state (triplet) and the non-degenerate J = 0 state
(singlet).

The spin matrix for finite fields and its diagonalization are easy to calculate
with matlab or octave. The field dependence of the energy levels is plotted
in Fig. ?? in frequency units (γe/2π = 27.992 GHz/T). For B > 2πν0

γe
the

electron and muon states are decoupled as the labels in the plot imply.
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It is easy to see that in high fields the selection rule is Δm = 1 for the
muon only, in other words in a high transverse field the the electron is in
an eigenstate, whereas the muon spin is not. Hence the two allowed muon
transitions are between states of equal electron spin polarization. The field
dependence of these high field transitions is shown in Fig. 9.

4.2 The adduct radical

The free adduct radical differs from free muonium in that the unpaired elec-
tron wave function is delocalized over many more nuclei, several of which
may possess a spin. A marked difference with the 1s ground state of muo-
nium is that the electron wave function is not spherically symmetric around
each of these nuclei, including the muon. This brings in two modifications
to the Hamiltonian of Eq. 20: the hyperfine coupling becomes a tensor (its
trace is the isotropic hyperfine coupling, whereas the traceless tensor is the
pseudodipolar contribution), and additional terms appear:

Hn

h
= −νnInz − In · ν0n · s (21)

for each nucleus in the molecule, with spin In. The dimensions of this
Hamiltonian quickly grow with the number m of nuclei involved, as 22 ·N =
4

∏m
n=1(2In + 1). However it is still rather simple to obtain the muon tran-

sitions in the high field condition, the so-called Paschen-Bach regime where
B > max{ω0, ω0n}/γe. In this regime all the spins are decoupled and the
eigenvalues of Iz, sz, Inz are good quantum numbers. Therefore the measure-
ment of Ix can induce only muon spin transitions, whereas all other quantum
numbers must remain constant. In practice one has N replicae of the cor-
responding ”muonium-like” energy levels, determined only by the muon and
electron spin.

Fig. 10 shows the energy levels obtained with one additional proton and
hyperfine frequencies ν0 = 500 MHz and νop = 150 MHz, as appropriate for
the cyclohexadienyl radical obtained by Mu addition to benzene (although
that radical actually has six hydrogens).

Allowing for a hyperfine traceless anisotropy tensor δν̃0 one has an effective
Hamiltonian:

H
h

= −νμIz + νesz − I · (ν0 + δν̃0) · s (22)

valid only at high fields. The tensor δν̃0 can be written as:

δν̃0 = δν0

⎛⎝− 1
2 0 0

0 − 1
2 0

0 0 1

⎞⎠ (23)

in the reference frame of its principal axes, ξ, η.
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Fig. 10. Three-spin-radical energy levels (in frequency units, see text) vs. external
magnetic field.

The observation of narrow muon transitions requires either a single crystal,
to select the tensor orientation, or a liquid, to average out the effects of the
anisotropy by fast reorientation. Isotropic reorientation averages to zero the
traceless tensor δν̃0 and reduces Eq. 22 to the same form of Eq. 20 (isotropic
muonium ), the only difference being a reduced value of the isotropic hyperfine
frequency ν0, due to the delocalization of the unpaired electron over the whole
molecule.

A radical in a liquid at high fields then shows two precession frequencies:

ν12 ≈ ν0/2 +
γμ

2
B (24)

ν34 ≈ −ν0/2 +
γμ

2
B (25)

such that their difference is equal to ν0 and their sum approximately equal
to γμB.

5 Magnetically ordered materials

Let us assume for simplicity that the ordered moments h̄γeS are directed
along a known, single crystallographic direction. This can be the case of a
uniaxial ferromagnet in zero applied field. A uniaxial antiferromagnet may
yield a similar situation.
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The local field at the muon site is due to a spin Hamiltonian of the type
described in Eq. 15 and 17 as

H
h

=
γμ

2π
I ·

[
μ0

4π
h̄γe

∑
i

3r̂i(Si · r̂i) − Si

r3i
+ (δÃ+A0) · S

]
(26)

where, in fact, the electronic term in square brackets acts as an effective
magnetic field, Bμ, on the muon. Note that Bμ is not necessarily parallel to
S, due to the tensorial character of the dipolar and pseudo-dipolar interac-
tions, which justifies, as we already noted, that crystallographically equivalent
interstitial muon sites in the unit cell might experience different local fields,
which has important consequences both for the amplitudes of muon preces-
sions in an oriented single crystal sample and for the vector composition of
the local field with externally applied magnetic fields. We shall briefly review
the two topics.

5.1 Magnetic single crystal

We shall treat this example a bit pedantically, as a useful exercise. Let us treat
formally the general case, specializing for the time being to the geometry of a
typical instrument, the General Purpose Spectrometer (GPS) of PSI, whose
basic geometry is sketched in Fig. 11.

Fig. 11. Typical setup, e.g. from GPS. Only four out of five GPS positron detectors
are shown for clarity. The μ arrow indicates the muon momentum, IR its spin, and
Bμ the local field.
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We need to specify the geometry in detail. The direction ζ̂ is defined by
the polar angles θ, φ in the GPS reference frame x̂, ŷ, ẑ, shown in the figure.

Likewise the initial muon spin IR lies along Ẑ, in the ŷ, ẑ plane, forming
an angle Θ with the −ẑ direction. The spin rotator (subsection 2.4) can select
Θ ≈ 0 or 50 degrees.

If we call ζ̂ the direction of the local field Bμ we need to define two
additional axes that form an orthogonal frame with ζ̂, say, ξ̂, η̂. We arbitrarily
chose them such that: ξ̂ lies in the x, y plane, and is obtained as ξ̂ = Rz(φ)ŷ;
η̂ lies in the plane defined by ẑ and Bμ, and is obtained as η̂ = Rξ(π

2 − θ)ẑ.
In the absence of an applied field the spin Hamiltonian is simply

H
h

=
γμ

2π
Bμ Iζ (27)

With this notation we can write the time dependent muon polarization
observed in the forward-backward detectors, along z, in terms of the density
matrix ρ as:

Pz(t) = Tr[ρσz(t)] (28)

Since initially the muon is in the spin state with eigenvector of σZ equal
to 1 it is easy to write the density matrix [15] in this basis, |m〉 = |±〉, as

ρ =
(

1 0
0 0

)
(29)

hence we can simply write ρ = 1
2 (1 + σZ). It is however more convenient

to express all matrices in the basis of σζ , such that the Hamiltonian of Eq. 27
is diagonal. The required transformations are:

σZ = σξ sinΘ cosφ− ση(cosΘ sin θ (30)
+ sinΘ cos θ sinφ) + σζ(sinΘ sin θ sinφ− cosΘ cos θ) (31)

σz = ση sin θ + σζ cos θ (32)
σy = σξ cosφ− ση cos θ sinφ+ σζ sin θ sinφ (33)

and, since Tr(1+σZ)σz(t) = TrσZσz(t) (Pauli matrices are traceless), the
forward-backward polarization turns out to be:

Pz(t) =
1
2

[〈+|σZ |+〉〈+|σz|+〉 + 〈−|σZ |−〉〈−|σz|−〉 (34)

+〈+|σZ |−〉〈−|σz|+〉e−iγμBμt + 〈−|σZ |+〉〈+|σz|−〉eiγμBμt
]
. (35)

The first two terms represent the constant, longitudinal polarization, due
to the field component parallel to the initial muon spin direction, while the last
two terms correspond to the transverse polarization, which precesses around
the local field.
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An alternative, perhaps more intuitive interpretation of this expression
is to consider the first matrix element in each term of the sum as the
projection of the initial muon state |ψ〉 over the eigenstates of the Hamil-
tonian, which is the weight of the corresponding expectation value of the
observed quantity, σz. We could then simply write Pz(t) = 〈ψ(t)|σz|ψ(t)〉,
with |ψ(t)〉 =

∑
m cme

iωmt|m〉, m = ±. Thus the density matrix [15],
ρmn = c∗mcn, reappears in Pz(t), leading to the same expression obtained
above.

After a little algebra, substituting the relevant σ operators, Eqs. 30, into
Eqs. 34 and recalling that σζ is diagonal, while 〈+|σξ|−〉 = 1, 〈+|ση|−〉 = −i,
we get

Pz(t) = cos θ(sinΘ sin θ sinφ− cosΘ cos θ) +
sin θ [sinΘ cosφ sin γμBμt− (cosΘ sin θ + sinΘ cos θ sinφ) cos γμBμt](36)

The same calculation yields

Py(t) = Tr[ρσy(t)]
= sinφ sin θ(sinΘ sin θ sinφ− cosΘ cos θ) +[

sinΘ(cos2 φ+ cos2 θ sin2 φ) + cosΘ sin θ cos θ sinφ
]
cos γμBμt

+ cosΘ sin θ cosφ sin γμBμt. (37)

Table 2 summarizes the most used configurations, distinguishing for each
observation direction α = y, z the constant, longitudinal component, from the
transverse, precessing component. We incidentally note that starting from the
muonium Hamiltonian of Eq. 20, one can follow exactly the same procedure
outlined above to obtain the muonium transitions and their amplitudes, dis-
cussed in Sec. 4.1.

5.2 Powder average

Let us assume the same local field as above in a polycrystalline sample. Since
the spectrum of precession frequencies is unaffected by the orientation of the
individual crystallite in which each muon has stopped, in the absence of an
external field the amplitudes of the longitudinal and transverse precession
signals are simply obtained by taking the powder average of Eqs. 36 and 37,
P z,y(t) = 1

4π

∫ π

0
sin θdθ

∫ 2π

0
dφPz,y(t;Θ, θ, φ) All terms linear in sinφ and cosφ

average to zero and it is straightforward to check that

P z(t) = −1
3

cosΘ [1 + 2 cos γμBμ]

P y(t) = −1
3

sinΘ [1 + 2 cos γμBμ] (38)
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SPIN ROTATOR OFF (Θ = 0)

Py Pz

Longitudinal Transverse Longitudinal Transverse(
Bμ ‖ x̂

θ = π
2
, φ = 0

)
0 sin γμBμt 0 − cos γμBμt(

Bμ ‖ ŷ
θ = π

2
, φ = π

2

)
0 0 0 − cos γμBμt(

Bμ ‖ ẑ
θ = 0

)
0 0 1 0

SPIN ROTATOR ON (Θ ≈ π
3
)

Py Pz

Longitudinal Transverse Longitudinal Transverse(
Bμ ‖ x̂

(θ = π
2
, φ = 0)

)
0 sin(γμBμt + Θ) 0 − cos(γμBμt + Θ)(

Bμ ‖ ŷ
(θ = π

2
, φ = π

2
)

)
sin Θ 0 0 − cos Θ cos γμBμt(

Bμ ‖ ẑ
(θ = 0)

)
0 sin Θ − cos Θ 0

Table 2. Longitudinal and transverse muon polarization for different geometrical
conditions, from Eqs. 36, 37

Intuitively, the one-to-two proportion between the averaged longitudinal
and the transverse terms displayed by Eqs. 38 is due to the fact that preces-
sions take place around field components orthogonal to the initial muon spin
direction, i.e. two possible Cartesian components, while the constant term
arises from field components parallel to the initial muon spin direction, and
there is only one such component.

It is simpler to recognize the result of Eqs. 38 without spin rotation
(Θ = 0). In this case the U-D counters measure zero polarization and the
F-B counters detect a fraction 1

3 of the polarization as longitudinal and the
remaining fraction, 2

3 , as transverse, in the proportions shown in Fig. 12. The
example in the figure also shows that, quite typically, both the transverse
precessing component and the longitudinal one relax in time, and that, fur-
thermore, the two relaxation rates are generally not the same.

Longitudinal relaxation in this context can only be due to time dependent
interactions and it is a T1 process, whereas transverse relaxation will be prob-
ably dominated by inhomogeneity of the local field (a ”so-called” T ∗

2 process).
For this distinction we refer to the NMR chapters, which applies equally well
to muons.

6 Relaxation functions

We shall treat here only one aspect that is specific of μSR, referring the reader
to the NMR chapters for the basic treatment of spin relaxation.
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Fig. 12. Powder average of a the signal from a single muon site in a magnetically
ordered material., The total asymmetry, A = 0.27), is subdivided into two thirds
precessing and decaying in time, plus one third decaying at different (generally
slower) rate.

We recall in brief that we distinguish two types of relaxation processes:
transverse relaxation, due to dephasing of precessions, which occur without
energy dissipation (also called T2, or spin-spin processes); longitudinal relax-
ation, due to recovery of thermodynamic equilibrium, which requires contact
with a thermal reservoir (e.g. the lattice) to dissipate the excess spin energy
stored in the out-of-equilibrium initial muon polarization (also called T1, or
spin-lattice processes).

The experimental condition that allows to measure separately the two
terms is the geometry of the experiment: whether the initial muon spin po-
larization, P (0) ‖ ẑ is longitudinal or transverse to the static component of
the local field B0. In order to observe a pure longitudinal relaxation we need
to have B0 ‖ P 0 and the maximum amplitude will be recorded in detectors
along ẑ. In order to observe a pure transverse relaxation we need to have
B0 ⊥ P 0, say along x̂ and the maximum amplitude will be recorded in the yz
plane. Examples of these geometries, including intermediate cases, have been
described in section 5.1.

The models for these relaxation functions are always derived from more
general NMR descriptions (nuclei may have spin larger than 1

2 and experience
more complicated interactions; the subcase of spin 1

2 applies to muons).
It is a general feature that longitudinal relaxation can only be due to

time dependent interactions, such as those introduced by time dependent
external fields (i.e. light, or radio frequency), thermally populated excita-



172 Roberto De Renzi

tions (phonons, magnons, etc.). For transverse relaxation one generally distin-
guishes the T1-like component, due to time dependent (secular) interactions,
from the static component, due to an inhomogeneous distribution of time
independent interactions. Since the simple μSR experiment (without spin-
echoes) cannot separate the two, transverse relaxation is often dominated by
the larger inhomogeneous static contribution.

Muons may easily diffuse already at moderate temperatures. For instance
they diffuse in pure metals, down to very low temperatures, and in oxides,
already below room temperature. This, which is a condition much more rarely
encountered with nuclei, gives rise to a specific time dependence of the local
fields.

One very specific ability of muons is to measure spin relaxation in the ab-
sence of an applied magnetic field. Zero field relaxation may be measured also
with Nuclear Quadrupole Resonance, given a nucleus with spin larger than 1

2
and with a strong enough quadrupolar interaction. Also NMR may allow this
measurement, in special conditions and with a field cycling apparatus. In this
case the nuclei are polarized in a large magnetic field, which is then rapidly
reduced to measure spin dynamics in low or zero field. How rapidly a large
field may be varied imposes restrictions both on the sample nature and on the
accessible relaxation rates.

With muons the experiment is particularly straightforward, and has vir-
tually no restrictions, since the polarization is provided by parity violation. A
peculiar μSR experimental condition, therefore, is when only relatively weak,
random magnetic fields are present, like, for instance, in the case of nuclear
dipolar fields. The relaxation functions appropriate for this case were obtained
by Kubo (Ryogo Kubo, 1920 - 1995) and coworkers and it is illustrated in the
next section.

6.1 Kubo-Toyabe functions

The relaxation function that one observes e.g. with nuclear dipolar fields
is the static Kubo-Toyabe function, from the name of the two authors who
calculated it first. Its Gaussian form is appropriate for fields whose distri-
bution is a Gaussian of standard deviation Δ

2πγ , centered at zero, pG(B) =
√

2π
Δ e−

1
2 (2πγmuB/Δ)2 . This is roughly [16] the case of a nuclear species dense

on a lattice (abundant isotopes).
The relaxation function is given by

GG(t) =
1
3

[
1 + 2(1 −Δ2t2)e−

Δ2t2
2

]
(39)

and it may be worked out in details [17, 18] by means of a simple stochastic
model.

In the opposite limit of randomly diluted nuclei on a lattice the Lorentzian
field distribution pL(B) = γμ

Δ
1

1+(2πγμB/Δ)2 is more appropriate [19] and the
corresponding relaxation function is
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GL(t) =
1
3

[
1 + 2(1 −Δt)e−Δt

]
(40)

Fig. 13. Kubo Toyabe Gaussian (GG) and Lorentzian (GL) relaxation functions,
displayed with a (typical) asymmetry of 0.27.

Fig. 13 shows that both functions recover one third of the initial asym-
metry at long times, where the one third fraction corresponds to the average
longitudinal component of the local fields over the distribution. However the
Gaussian relaxation shows a more marked dip before that recovery, which is
the reminder of the overdamped precession around the transverse component
of the local field.

The cited papers [17, 18] describe also a stochastic treatment of the re-
laxation function that includes the effects of the dynamics, represented by a
characteristic time τ of the time correlations of the local field, both in van-
ishing and non vanishing external field B0.

Dynamics is taken into account by means of the so-called Markov chain, or
strong collision process, i.e. collisional events take place such that within the
characteristic time τ all memory is lost of the previous evolution (the more
familiar case where this approach is employed is perhaps that of the relaxation
time τ in the classical Drude model of metallic conduction [20]).

In strong external field B0 this model obtains two results for the transverse
geometry case, which are valid quite more generally:

- that in the limit of slow modulation of a stochastic interaction from a Gaus-
sian distribution pG(B), the so called static limit where ω0 = 2πγμB0 >
Δ� 1

τ , the relaxation function turns out to be
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Fig. 14. Left: transverse precession with static (damped oscillations) and motion-
ally narrowed relaxation (much less damped); right: Fourier transform of the two
signals, the broader is relative to the static relaxation function.

G(t) = cos(ω0t+ φ)e−
Δ2t2

2 (41)

where the relaxing term e−
Δ2t2

2 is proportional to the Fourier transform
of the distribution pG(B), i.e. the lineshape itself reflects the distribution
(see the static functions in Fig. 14).

- that in the limit of ”fast modulation”, 1
τ � Δ, the same Gaussian distribu-

tion produces the so-called ”motional narrowing” of the line: the lineshape
narrows and the relaxation becomes slower

G(t) = cos(ω0t+ φ)e−Δ2τt (42)

where the Fourier transform linewidth is reduced to 1
T2

= Δ2τ . This case
exemplified by the less damped signal of Fig. 14, is typically obtained with
nuclear dipolar fields when fast muon diffusion sets in, and also in the
presence of a local instantaneous hyperfine field with an electron moment
undergoing paramagnetic fluctuations.

The static limit in the longitudinal geometry yields a relaxation function
which requires numerical methods to be calculated (e.g. in a fitting routine),
The expression derived by Kubo for the Gaussian field distribution is:

G(ω0, t) = 1−
[
Δ2

ω2
0

(
1 + cosω0te

−Δ2t2
2

)
− Δ4

ω3
0

∫ t

0

dx sinω0x e
−Δ2x2

2

]
. (43)

although a more useful equivalent expression for the numerical calculation
is perhaps
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G(ω0, t) = 1 + 2Δ2

∫ t

0

xdx e−
Δ2x2

2

[(
Δ2

ω2
0

− 1
)

sinω0x

ω0x

− Δ2

ω2
0

cosω0x

]
(44)

Fig. 15. The effect of increasing longitudinal fields on the Gaussian Kubo-Toyabe
function. The plotted functions represent asymmetries, AG(t).

The function of Eq. 44 is shown in Fig. 15. We quote here the equivalent
expression for the Lorentzian field distribution

G(ω0, t) = 1+2
Δ

ω2
0

∫ t

0

dx
e−Δx

x2

[
(1 +Δx− ω2

0x
2)

sinω0x

ω0x
− (1 +Δx) cosω0x

]
(45)

Finally, the longitudinal field relaxation can be calculated in the presence
of a dynamical process producing on average one jump in each time interval
τ . The jump produces a change to a different value extracted according to
a probability drawn from the same distribution (e.g. Gaussian, pG(B)). This
is the so-called strong collision limit of a Markoffian process (i.e. with no
memory), appropriate for instance for muon diffusion in zero external field.

The relaxation function corresponding to this model may be computed
[17, 18] via a simple expansion, making use of its Laplace transform (which
requires some caution to be treated numerically [21]), and it is shown in
Fig. 16.

Its behaviour may be understood as follows:



176 Roberto De Renzi

Fig. 16. Time dependence of the muon polarization; time is scaled by the parameter
Δ of the static distribution, and so is the jump frequency ν = 1/τ

- for slow jump rates ν < 1 only the long time longitudinal tail is affected
(see e.g. the curve labeled ν/Δ = 0.2 in the figure);

- for fast jump rates ν > 1 there is ”motional narrowing” of the relaxation
process, i.e. it becomes a simple exponential decay, and the slower, the
faster the jump rate (see the curves labeled ν/Δ = 20− 100 in the figure).

A useful analytical approximation for this expression, valid also in the
longitudinal field case, may be found in ref. [22].
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1 Introduction

Solid-state physics has been traditionally concerned almost exclusively with
the study of inorganic elements, alloys and simple compounds. However, in the
last few years there has been increasing interest in various new organic mate-
rials, the building blocks of which are not atoms but molecules. The shape of
these molecules and their electronic structure play a crucial rôle in determin-
ing the resulting crystallographic structure, and hence the observed electrical
and magnetic properties. The technique of muon-spin rotation (μSR) can be
applied to many different types of organic compound, including molecular
magnets, molecular conductors, conducting polymers and molecular super-
conductors. In this chapter, I review various recent developments in this field.

2 Molecular magnetism

The field of molecular magnetism has seen rapid change in the last decade or
two, driven by advances in chemical synthesis [1, 2]. Newly prepared materials
are typically characterized initially using magnetometry; however, measure-
ments of magnetic susceptibility χ extract

χ = lim
δH→0

δMav

δH
, (1)

where Mav is given by Mav = 1
V

∫
V
M(r) d3r, a volume averaged magnetiza-

tion. In contrast, from μ+SR data one can extract the staggered magnetization
distribution ρ(M) in zero applied field; thus if there are N crystallographically
independent muon sites (in most molecular magnetic materials that we have
studied, we find that N is 1, 2 or 3), such that a fraction fi of the muons
implant at the ith site, then one can assume that the measured muon polar-
ization function A(t) (neglecting weakly relaxing terms due to longitudinal
relaxation) follows
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A(t) ∝
N∑

i=1

fi

∫
ρ(M)e−λit cos(αiMt) dM, (2)

where αi is a constant which depends on the dipolar coupling between the local
magnetization M and the muon at site i, and λi is a relaxation rate. If the
sample has uniform staggered magnetization M0, so that ρ(M) = δ(M−M0),
then

A(t) ∝
N∑

i=1

fie−λit cos(αiM0t). (3)

Muons can hence allow the temperature dependence of M0 to be determined
and have the useful advantage that they can demonstrate rather easily that
M0 is a characteristic of the entirety of the sample, and not of a minority
impurity phase.

2.1 Purely organic magnets

An early candidate organic ferromagnet was tanol suberate, which is a bi-
radical with formula (C13H23O2NO)2 (for molecular structure, see Fig. 1(c)).
The spin density is found to be located on the NO group and almost equally
shared between the oxygen and the nitrogen atoms [3]. The magnetic suscep-
tibility measured down to liquid helium temperatures follows a Curie-Weiss
law with a positive Curie temperature (+0.7 K) and it therefore looked like
a good candidate for an organic ferromagnet. The specific heat exhibits a λ
anomaly [4] at 0.38 K, but tanol suberate was actually found to be an an-
tiferromagnet with a metamagnetic transition in a field of 6 mT, resulting
in ferromagnetic spin alignment [5, 6]. In tanol suberate the molecules are
arranged in sheet-like layers in which the magnetic moments are almost local-
ized [7]. Muon-spin rotation (μSR) experiments [8] yield clear spin precession
oscillations (see Fig. 1(b)) corresponding to a uniform staggered magnetiza-
tion in the material. The temperature dependence of the precession frequency
(Fig. 1(c)) fits to νμ(T ) = νμ(0)(1 − T/TC)β where β = 0.22, consistent with
a two-dimensional XY magnet [9] and also with the temperature dependence
of the magnetic susceptibility [10], suggesting that the ordered state is domi-
nated by two-dimensional interactions.

Following these early attempts, organic ferromagnetism was first achieved
using a member of a family of organic radicals called nitronyl nitroxides. The
unpaired electron in nitronyl nitroxides is mainly distributed over the two
NO moieties, although some unpaired spin density is also distributed over the
rest of the molecule. The central carbon atom of the O–N–C–N–O moiety is
a node of the SOMO. Nitronyl nitroxides are chemically stable but the vast
majority of them do not show long range ferromagnetic order. Therefore, the
discovery of long-range ferromagnetism in one of the crystal phases (the β
phase) of para-nitrophenyl nitronyl nitroxide (C13H16N3O4, abbreviated to
p-NPNN) was particularly exciting, even though the transition temperature
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.

.

Fig. 1. Zero-field muon spin rotation frequency in (a) the organic ferromagnet p-
NPNN (after [13]) and (b) the organic antiferromagnet tanol suberate (after [8]).
In both cases the data for different temperatures are offset vertically for clarity. (c)
Temperature dependence of the zero-field muon spin rotation frequency in p-NPNN
and tanol suberate.

was a disappointingly low 0.65 K [11] and only present in one of its crystal
phases.

The transition to ferromagnetic order was indicated by a λ-type peak in
the heat capacity and a divergence in the AC susceptibility at the critical tem-
perature [11, 12]. The magnetization below TC saturates in a very small field,
demonstrating that p-NPNN is a very soft ferromagnet. μSR experiments
on p-NPNN (Fig. 1(a)) show the development of coherent spin precession
oscillations below TC [13, 14]. The temperature dependence of the preces-
sion frequency and the corresponding local field at the muon-site is shown
in in Fig. 1(c). This is fitted to a functional form νμ(T ) = (1 − (T/TC)α)β

yielding α = 1.7 ± 0.4 and β = 0.36 ± 0.05. In this expression, the parame-
ter β controls the behaviour near TC, while the parameter α determines the
power law at T � TC. This is consistent with three-dimensional long range
magnetic order [13, 14]. Near TC the critical exponent is as expected for a
three-dimensional Heisenberg model (one expects β ≈ 0.36 in this case). At
low temperatures the reduction in local field with increasing temperature is
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consistent with a Bloch-T 3/2 law (α = 1.5), indicative of three dimensional
spin waves.

The overlaps in all these materials which favour ferromagnetism appear
to agree with the McConnell mechanism [15]: as a result of spin polarization
effects, positive and negative spin-density may exist on different parts of each
molecule; intermolecular exchange interactions tend to be antiferromagnetic,
so if the dominant overlaps are between positive (majority) spin-density on one
molecule and negative (minority) spin density on another molecule, the overall
intermolecular interaction may be ferromagnetic. Though the mechanism for
ferromagnetism is electronic, the low values of TC imply that the magnetic
dipolar interactions will play a rôle in contributing to the precise value of TC.
Dipolar interactions are also particularly important in determining the easy
magnetization axis [13, 16]. This too depends on the crystal structure, which
in turn depends on the molecular shape.

2.2 Chemically complex molecular magnets

The application of μSR to a more complex system can be illustrated with an
example. I consider the family of layered molecule-based magnets which has
general formula [ZIIICp∗

2][M
IIMIII(ox)3] and and which consists of an eclipsed

stacking of bimetallic oxalate-based extended layers, separated by layers of
organometallic cations [17]. Here MII, MIII and ZIII are paramagnetic transi-
tion metal cations, ox is the oxalate anion, and Cp∗ is pentamethylcyclopenta-
dienyl. These compounds are some of the most chemically complex magnetic
materials yet studied with μSR. Fig. 2 shows μSR data for a powder sample
of one member of the family, [FeCp∗

2][MnCr(ox)3]. For temperatures above
Tc the relaxation of the spin ensemble (not shown) is well described by an
exponential function, corresponding to dynamic fluctuations in the local mag-
netic field at the muon stopping site. Below the transition temperature, we
observe clear oscillations, characteristic of a quasistatic field at the muon site.
It is possible to identify three separate spin precession frequencies, suggest-
ing three distinct muon sites in the material. The precession frequencies are
proportional to the order parameter, and can be extracted as a function of
temperature (as shown in Fig. 2) in order to determine the critical exponents
describing the phase transition [18, 19].

2.3 Low-dimensional molecular magnets

Low-dimensional magnetic systems, in particular one-dimensional magnets,
have attracted much attention because they are, in principle, easier to treat
theoretically than three-dimensional (3D) systems [20]. If the interchain inter-
action J ′ can be ignored, a spin-1

2 Heisenberg antiferromagnetic chain (with
Hamiltonian H = J

∑
i Si · Si+1, where J is the intrachain exchange) will

show magnetic susceptibility χ as given by Bonner and Fisher [21], with a
maximum value at Tmax = 1.282J/kB. However, at very low temperatures
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(a) (b)
T

Fig. 2. (a) Positron decay asymmetry spectra for [FeCp∗
2][MnCr(ox)3] measured

below the ordering temperature. (b) The temperature dependence of the precession
frequencies, which allows the extraction of critical parameters relating to the phase
transition. After [18, 19].

there may be expected to be a departure from Bonner-Fisher behaviour with
a singularity in dχ/dT as the temperature approaches zero [22]. In molecu-
lar systems both the intrachain and interchain exchange interactions can be
controlled, to some extent, using chemical modifications.

An isolated one-dimensional antiferromagnetic spin-chain will never show
magnetic long range order (LRO), but correlated regions of spatial extent ξ(T )
will develop, where ξ(T ) can be estimated using ξ(T ) ≈ 2|J |S(S + 1)/kBT .
Clearly ξ → 0 only at T = 0. Real crystal systems contain many chains
and have non-zero interchain interactions, and they will generally show 3D
magnetic LRO, albeit at very low temperature. For example, Sr2CuO3 has a
Néel temperature (TN) of 5 K, despite having an intrachain exchange in-
teraction J ∼ 1300 K [23, 24]. The strong quantum fluctuations due to
the one-dimensionality renormalize the moment on the Cu cation down to
∼0.06μB [24]. In isostructural Ca2CuO3 the chain separation is slightly smaller
and hence the interchain interaction is larger, so that both TN and the ordered
moment are somewhat larger (11 K and ∼ 0.1μB respectively [24]). It is the
presence of even a very weak interchain exchange J ′ that can drive the system
into 3D LRO below a non-zero TN. A simple estimate of the transition tem-
perature can be made by matching kBTN to the exchange energy of correlated
segments in neighbouring chains. Thus kBTN ≈ ξ(TN)|J ′|S(S + 1) and hence
we have that

kBTN/|J | ≈ |J ′/J |1/2. (4)
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Recently, substantially more accurate expressions have been obtained for
TN as a function of |J ′/J | for quasi-one-dimensional (Q1D) and quasi-two-
dimensional (Q2D) antiferromagnetic Heisenberg models on a cubic lattice
using Monte Carlo simulations [25]. These are∣∣∣∣J ′

J

∣∣∣∣ =
ln(λx) + 1

2 ln ln(λx)
4cx

(5)

with x = |J |/kBTN, λ = 2.6 and c = 0.233 for Q1D systems, and∣∣∣∣J ′

J

∣∣∣∣ = exp
(
b− 4πρs

kBTN

)
, (6)

with ρs = 0.183J and b = 2.43 for Q2D systems. By using Eqns 5 and 6 a
measurement of TN and J can allow even a small |J ′/J | to be extracted.

Muons have a particular advantage in the case of low-dimensional mag-
nets. Because the correlation length ξ in an antiferromagnetic chain grows on
cooling, the heat capacity exhibits a rather broad maximum as the entropy of
the spins consequently decreases with the increasing correlation. Thus when
3D ordering sets in at TN, the transition is associated only with a rather small
change in entropy and thus gives rise to a tiny peak in the heat capacity,
the size of which decreases as |J ′/J | decreases. This effect is shown in recent
Monte Carlo simulations for Q2D systems [26], and means that identifying 3D
ordering in very anisotropic magnets using heat capacity can be challenging.
In contrast, the transition from a non-long-range ordered state, even one with
dynamic correlations of large spatial extent, to a 3D long-range ordered state
is rather straightforward using μ+SR.

Copper pyrazine dinitrate [Cu(C4H4N2)(NO3)] is a S = 1
2 chain in which

Cu2+ ions are linked via pyrazine molecules with an intrachain exchange
J ≈ 0.91 meV (so that J/kB ≈ 10.3 K) [27], see Fig. 1. This exchange is con-
siderably weaker than that in Sr2CuO3 (J = 2200 K [28]) so that the critical
field μ0Hc = 2J/gμB is more easily accessible to experiment in CuPzN [27].
This has allowed inelastic neutron scattering to probe the two-spinon contin-
uum in CuPzN and the multiple overlapping continua with incommensurate
soft modes that can be induced by an applied field [29]. However, 3D LRO
was not found by heat capacity measurements performed down to 70 mK [30],
seemingly implying that |J ′/J | < 10−4.

Example ZF μ+SR spectra are shown in Fig. 4 [31]. In spectra measured
for T < 0.11 K oscillations in the asymmetry are observed (Fig.4(a)). These
oscillations are characteristic of a quasi-static local magnetic field at the muon
stopping site, which causes a coherent precession of the spins of those muons
with a component of their spin polarization perpendicular to this local field
(expected to be 2/3 of the total polarization). There are two independent
muon sites, so N = 2 in Eqn 3. The frequency of the oscillations is given
by νi = αiM0/2π. Any fluctuation in magnitude of these local fields will
result in a relaxation of the oscillating signal, described by relaxation rates
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Fig. 3. Molecular structure of CuPzN, showing the chains of Cu2+ ions bridged by
pyrazine (C4H2N2) and each one additionally coordinated by two NO3 groups.

λi (whose temperature dependence is shown in Fig. 4(e)). The presence of
oscillations at low temperatures in CuPzN provides convincing evidence that
this material is magnetically ordered below ≈ 0.11 K. From fits of νi (see
Fig. 4(d)) to the form νi(T ) = νi(0)(1−T/TN)β close to TN, one can estimate
TN = 107(1) mK, leading to a value of the ratio |kBTN/J | = 0.0103(1) [31].
Substituting this value of TN into Eqn 5 yields |J ′|/kB � 0.046 K and a ratio
|J ′/J | = 4.4 × 10−3. The failure of earlier heat capacity measurements to
detect an anomaly at TN [30] can be attributed to the large anisotropy (small
|J ′/J |) in this material which renders the entropy change at TN to be so small
that it makes a negligible contribution to the measured heat capacity.

Similar studies (see e.g. [32, 33]) have been performed on a number of
low-dimensional molecular magnets containing copper, and one can use the
measured TN from μ+SR and J from susceptibility to obtain an estimate for
J ′ using Eqns 5 and 6. The results of various low-dimensional copper com-
pounds are plotted in Fig. 5(a) and Fig. 5(b). Note that anisotropy has much
less of an effect in reducing TN/J for Q2D systems (Fig. 5(b)) than for Q1D
systems (Fig. 5(a)). For the organic radical-ion salt DEOCC-TCNQF4 [34],
which contains linear chains of stacked molecules with a much stronger in-
trachain exchange (J = 110 K) than CuPzN, but very weak interchain in-
teractions, experiments have confirmed the absence of magnetic LRO down
to 20 mK, showing that |J ′/J | is significantly less than 10−4. This implies
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Fig. 4. ZF μ+SR spectra for CuPzN at three temperatures [31]: (a) T = 36 mK:
Oscillations are observed in the asymmetry, characteristic of magnetic LRO. A fit
is shown to Eqn 3. (b) T = 120 mK: the spectra are described by two components.
A fast relaxing signal, probably due to the existence of a radical state, and a larger
component, seen to be exponential in form. (c) T = 405 mK: The fast relaxing
component is still evident, although the larger component now shows a Gaussian
form. (d) Muon precession frequencies νi with fits shown to the expression νi(T ) =
νi(0)(1 − (T/TN)α)β . (e) Transverse relaxation rates λi are seen to increase as the
magnetic transition is approached from below.
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that DEOCC-TCNQF4 is one one of the most ideal examples of a S = 1
2

Heisenberg antiferromagnetic chain yet discovered.

(a) kBTN/J

J
J

k
T

J
J

J

(b) kBTN/J

J
J

Fig. 5. (a) The anisotropy of Q1D antiferromagnetic spin-half chains as a function
of kBTN/J according to Eqn 5 (the dashed line shows Eqn 4). The Néel temperature
and anisotropy in DEOCC-TCNQF4 has not been determined, but it is known that
TN < 0.002 K and |J ′/J | < 10−4. (b) The anisotropy of Q2D antiferromagnetic
spin-half systems as a function of kBTN/J according to Eqn 6.

3 Muonium states

To understand the behaviour of muons in organic materials, it is helpful to con-
sider the nature of muonium (abbreviated Mu= μ+e−) states (see also [35]).

3.1 Muonium

In muonium the electronic spin and the muon-spin are coupled by a hyperfine
interaction which we will initially assume is isotropic. This leads to two energy
levels, a lower triplet state and a higher singlet state. In a magnetic field the
triplet levels split and the energy levels move. Muonium can be considered
as an isotope of hydrogen, with a Bohr radius and Bohr energy close to the
value of hydrogen (see Table 1). The Hamiltonian of a free, isotropic muonium
state, in a magnetic field B parallel to the z-axis is

H/h̄ = −γμ I · B + γe S · B +AS · I = −γμ IzB + γe SzB +AS · I, (7)

where I and S are the muon and electron spin operators andA is the (isotropic)
hyperfine coupling constant (expressed as an angular frequency, so that h̄A
has the units of energy). In this equation, all terms are in angular frequency
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units. The eigenvalues and eigenvectors of this Hamiltonian can be calculated,
and the results are shown in Table 2. As a basis of the spin Hilbert-space we
use the product of the muon and electron spin-up and spin-down vectors,
|Ψ〉 = |χμ〉 ⊗ |χe〉 = |χμχe〉. The eigenstates at low fields are one triplet state
and one singlet state.

Property Muonium=μ+e− Hydrogen=p+e−

Mass 0.1131mH mH

207.77me 1837.2me

Reduced mass 0.9956μH μH

Bohr radius 1.0044a0 a0 = 0.5292Å
Ionization energy 0.9956R∞ R∞ = 13.6058 eV
Hyperfine coupling constant 3.1423AH AH

2π×4463.3 MHz 2π×1420.4 MHz

Table 1. Properties of atomic muonium and atomic hydrogen (protium).

Suppose we implant muons in a sample and apply a magnetic field in the
direction of the spin polarization. It then can be shown that the muon spin
polarization

Pz(t) =
1 + 2(B/B0)2

2 {1 + (B/B0)2}
+

1
2 {1 + (B/B0)2}

cos(ω24t) (8)

eigenvector eigenvalue

|Ψ1〉 = | ↑μ↑e〉 E1
h̄

= A
4

(1 + 2mB/B0)

|Ψ2〉 = α| ↑μ↓e〉 + β| ↓μ↑e〉 E2
h̄

= −A
4

(
1 − 2

√
1 + (B/B0)2

)
|Ψ3〉 = | ↓μ↓e〉 E3

h̄
= A

4
(1 − 2mB/B0)

|Ψ4〉 = β| ↑μ↓e〉 − α| ↓μ↑e〉 E4
h̄

= −A
4

(
1 + 2

√
1 + (B/B0)2

)

B0 = A/ {γμ + γe} , m = (γe − γμ)/(γe + γμ) ≈ 0.9904,

α = 1√
2

√
1 − B/B0√

1+(B/B0)2
, β = 1√

2

√
1 + B/B0√

1+(B/B0)2

Table 2. Eigenstates and eigenvalues of Muonium. For free muonium, B0 =
0.1585 T.
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where ω24 = A
√

1 + (B/B0)2 and for free muonium, B0 = 0.1585 T. The
incoming muons are spin polarized, while the electrons which are picked up
to form the muonium are not spin-polarized. Therefore the initial states will
be a combination of |↑μ↑e〉 and |↑μ↓e〉, see Table 2.

In all cases the muonium can be studied by measuring precession signals
in an applied magnetic field, or by using a technique known as repolarization.
In this latter method a longitudinal magnetic field is applied to the sample,
along the initial muon-spin direction, and as the strength of the magnetic
field increases, the muon and electron spins are progressively decoupled from
the hyperfine field. For isotropic muonium, half of the initial polarization of
implanted muons is lost because of the hyperfine coupling, but this is recov-
ered in a sufficiently large applied field, allowing an estimate of the strength
of the hyperfine field. This occurs because on increasing the magnetic field
B, the Zeeman energy dominates, and the electron and muon spins become
decoupled, (i.e. α → 0 and β → 1 in Table 2). This “repolarization” is given
by

Pz(B) =
1 + 2(B/B0)2

2 {1 + (B/B0)2}
, (9)

see Equation 8. For anisotropic muonium, the repolarization is slightly more
complicated, see for example [36].

In metallic samples the muon’s positive charge is screened by conduction
electrons which form a cloud around the muon, of size given by a Bohr radius.
Thus μ+, rather than muonium, is the appropriate particle to consider in a
metal. (The endohedral muonium found in alkali fulleride superconductors is
the only known example of a muonium state in a metal.) In insulators and
semiconductors screening cannot take place so that the muon is often observed
in these systems either as muonium or is found to be chemically bound to one
of the constituents, particularly to oxygen if it is present. Isotropic muonium
states are found in many semiconducting and insulating systems. The value of
the hyperfine coupling strength is close to that for vacuum (free) muonium if
the band gap is large. For materials with smaller band gap the hyperfine cou-
pling is lower reflecting the greater delocalization of the electron spin density
on to neighbouring atoms. This occurs because the greater the disparity be-
tween the levels of the states to be mixed, the smaller is the degree of mixing
(i.e. the more the muonium retains its atomic character [37]). In Si, a sub-
stantial fraction of neutral muonium is also found in a most unexpected place,
wedged into the centre of a stretched Si–Si bond for ‘bond-centre’, see [38] for
a review of muonium states in semiconductors). This state is extremely im-
mobile, and surprisingly turns out to be the thermodynamically more stable
site. Its hyperfine coupling is much lower than that of the tetrahedral state,
typically less than 10% of the vacuum value. Furthermore the coupling is very
anisotropic, with axial symmetry about the 〈111〉 crystal axis (i.e. along the
Si–Si bonds) [39, 40, 41].
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Fig. 6. Muonium addition to (a) ethene and (b) benzene.

3.2 Muonium in organic molecules

Muonium states can also be formed in many organic systems and allow a
unique form of radical spectroscopy [42]. Muonium adds to unsaturated bonds
to form muoniated free radicals. Addition of muonium at the carbon–carbon
double bond in ethene (see Figure 6(a)) produces the muoniated ethyl radical.
The radical is electrically neutral, but has an electronic doublet ground state
due to the unpaired electron remaining on the unlabelled carbon atom. As de-
scribed below, it is the hyperfine coupling between the muon and the unpaired
electron which can be the source of information on the molecular dynamics
(showing, for example, that –CH2Mu reorients less readily than –CH3). As
another example, addition to benzene (C6H6) leads to the muoniated cyclo-
hexadienyl radical (C6H6Mu), as shown in Figure 6(b). The advantage of the
muon technique is that one can work with concentrations down to just one
muoniated radical at a time in an entire macroscopic sample. In contrast ESR
detection needs ∼ 1012 radicals in a cavity, forbidding measurements at high
temperatures where the radicals become mobile and terminate by combina-
tion. The technique has been applied to radicals in various environments [42],
including those absorbed on surfaces [43], and also to liquid crystals [44].

3.3 Muonium in non-conducting polymers

Figure 7 shows transverse-field μSR data for polybutadiene which is a non-
conducting polymer. The diamagnetic precession frequency νμ is clearly vis-
ible, together with artifacts (labelled c) from the cyclotron at 50, 100 and
200 MHz. The two additional frequencies, labelled ν1 and ν2, are due to the
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Fig. 7. FFT of transverse-field μSR data for polybutadiene with a field of 0.3 T.
(After [45].)

hyperfine coupling with the radical electron and the correlation spectrum
shown in Figure 8(a) allows an extraction of the temperature dependence
of the hyperfine coupling. At high temperatures, a strong narrow signal is
observed, due to efficient dynamical orientational averaging of the hyperfine
anisotropy [46]. On cooling, the lines become broader as the polymer dynamics
slow down.

Similar behaviour is seen for the ΔM = 0 transition in the ALC spectrum
(see Figure 8(b)), but the ΔM = 1 transition shows the opposite behaviour,
since it requires some residual anisotropy for oscillator strength. For T ≤
225 K, all the radical signals become too broad to extract reliably from the
background [46, 45]. The dynamics close to the glass transition at 165 K can
be followed using longitudinal-field μSR [46]. Similar effects are found for
polystyrene [47]. The main point to be made about polybutadiene is that the
muoniated radical is highly localised (see Figure 9), because the double bonds
are separated from one another by polyethylene segments. Any modulation of
the hyperfine coupling arises therefore from polymer motion. This is not the
case for conducting polymers, as I shall discuss in the following section.
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(a) (b)

Fig. 8. (a) The associated correlation spectrum for polybutadiene. (b) ALC data
for polybutadiene (After [45].)

Fig. 9. (a) Raw polybutadiene and (b) the muoniated radical state.

4 Conducting polymers

Conducting polymers have attracted interest from a fundamental point of view
because of the different type of mobile defects which can be found in them, in-
cluding solitons [48] and polarons [49, 50]. The reaction between muonium and
trans-polyacetylene [51, 52, 53, 54, 55] produces a diamagnetic, neutral muon
defect and a highly mobile unpaired spin (a soliton, see Figure 10). Because
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the unpaired spin is mobile, the hyperfine coupling between it and the muon
defect is intermittent [56]. In other polymers, such as polyaniline (PANI) or
polyphenylvinylene (PPV), the muon-induced defect is a negatively charged
polaron [57, 58]. In each case, the excitation diffuses up and down the chain
but cannot cross the point at which the muon is bonded to the chain which
therefore acts as a barrier. Every time the excitation briefly revisits the muon,
the muon-electron hyperfine coupling is turned on and then off, so that suc-
cessive visits progressively relax the muon polarization. Measurement of the
magnetic field dependence of this relaxation yields the spectral density func-
tion associated with the excitation random walk and can be used to infer the
dimensionality of the diffusion [51, 59]. This occurs because the relaxation rate
is connected with the noise power (or spectral density), J(ωμ), in the fluctuat-
ing magnetic field at the muon Larmor frequency, ωμ = γμB, associated with
that particular magnetic field B, where γμ is the muon gyromagnetic ratio.
Sweeping the magnetic field allows one to extract the frequency distribution
of the fluctuations.

... ... ... ...

... ...

+ Mu

MuH

MuH mobile

Fig. 10. Muonium interaction with trans-polyacetylene to produce a diamagnetic
radical and a mobile neutral soliton.

Polaronic motion in doped conducting polymers can be measured using
NMR and ESR [60]; for these techniques the motional linewidth contributions
are proportional to the carrier density and so measurements on conducting
polymers are restricted to doped materials (see e.g. [61]). Muons are uniquely
sensitive to polaron transport in undoped materials (in which there is no
significant carrier density to provide an NMR or ESR signal). In contrast to
transport experiments, which provide results which are inevitably dominated
by the slowest component of the transport process, muon measurements can
provide information on the intrinsic transport processes governing the mobility
of an electronic excitation along a chain [62].

The measured muon relaxation data were fitted using the theory of Risch
and Kehr [63] for a muon interacting through hyperfine coupling ω0 to the spin
density on the chain site to which it is bonded (this is illustrated in Figure 11).
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D

D

0

Fig. 11. Schematic diagram of the polaron diffusion model used in the text which is
based on that of Risch and Kehr but including interchain diffusion (after [46]). The
muon interacts through hyperfine coupling ω0 to the spin density on the chain site
to which it is bonded. The electronic spin defect (black filled circle) rapidly diffuses
up and down the chain with intrachain and interchain diffusion rate D‖ and D⊥
respectively. λ is the electron spin flip rate, assumed faster than the reciprocal of
the experimental time scale.

In this model, when the hyperfine coupling is switched on, the muon electron
system evolves according to a Hamiltonian given by equation 7 with A = ω0.
When the hyperfine coupling is switched off, the electron and muon spins
are decoupled and separately evolve according to the Zeeman terms in the
Hamiltonian. In addition, the electron spin is subject to random spin-flips at
a rate λ. The fluctuating spin density induced by an electronic spin defect
rapidly diffusing up and down the 1D chain leads to a relaxation function
of the form G(t) = exp(Γt)erfc(

√
Γt) for λtmax � 1, with erfc signifying

the complementary error function, tmax the experimental timescale and Γ a
relaxation parameter. For D‖ > ω0 > λ, Γ has an inverse magnetic field
dependence given by

Γ =
ω4

0

2ωeD2
‖
. (10)

The delocalization of the electronic defect in the neighbourhood of the at-
tached muonium is not known, but a neutral spin-1

2 defect is believed to be
delocalised over six lattice constants in finite-trans polyacetylene on the ba-
sis of calculations [64]. In the Risch-Kehr model, the Brownian motion of
an extended defect is replaced by an effective hopping process of a localized
defect [63].

Data for polyaniline [62] and various derivates of PPV [65] fit to the
Risch-Kehr model very well, and the measured temperature dependence of
Γ as a function of field allow the extraction D‖ using equation 10. The ex-
tracted D‖ are then fitted well by a simple model for the transport in which
D‖ ∝ (Σ0+Σr)−1 where Σ0 is a temperature independent scattering term and
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Fig. 12. (a) The temperature dependence of the intrachain polaron diffusion rates
in DB-PPV and BDMOS-PPV derived from the muon-spin relaxation. The main
figure shows D‖, and the solid line is a fit to a simple model of the transport, with a
phonon activation energy of 22 meV (DB-PPV) or 11 meV (BDMOS-PPV). (b) An
activated plot of the interchain diffusion rate D⊥ for the two polymers. The fitted
activation energies are 130(10) meV and 21(3) meV [47, 65].

Σr is a phonon scattering term proportional to the number of modes excited,
so that it is proportional to (exp(Er/kBT ) − 1)−1. A scattering contribution
proportional to phonon number is expected in theories of phonon-limited po-
laron transport [66, 67]. In each case, the energy of the phonon mode is found
to be in agreement with a mode associated with whole chain librations or
mixed chain torsions and ring librations which has been observed in inelastic
neutron scattering [62, 65]. These data are shown in Figure 12 for two deriva-
tives of PPV. The field Bc, at which crossover to a 3D diffusion regime is
observed, can be used to estimate the interchain diffusion D⊥ ≈ γeBc. The
interchain transport is assisted by thermal motion, rather than hindered by it,
so that D⊥ increases with increasing temperature (usually with an activated
dependence), while D‖ decreases.

μSR has been very successful at studying a variety of different types of
polymer [68] and these studies have recently been extended to polymer thin
films using very slow muons [69].

5 Molecular superconductors

To understand the usefulness of muons, recall that the two important length-
scales in superconductors are the penetration depth, λ, which controls the
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ability of the superconductor to screen magnetic fields, and the coherence
length, ξ, which controls the lengthscale over which the order parameter can
vary without undue energy cost. If the former is sufficiently greater than the
latter (the condition is that λ > ξ/

√
2) the material is a type II supercon-

ductor which if cooled through its transition temperature, Tc, in an applied
magnetic field remains superconducting everywhere except in the cores of the
superconducting vortices which usually are arranged in a triangular lattice.
Each vortex is associated with a magnetic flux equal to one flux quantum
Φ0 = h/2e. The distance between vortices, d, is such that the number of vor-
tices per unit area 2/(

√
3d2) equals the number of flux quanta per unit area

B/Φ0. Thus d ∝ B−1/2. In general the vortex lattice will be incommensurate
with the crystal lattice and, except at very high magnetic field, the vortex
cores will be separated by a much larger distance than the unit-cell dimen-
sions. Implanted muons will sit at certain crystallographic sites and thus will
randomly sample the field distribution of the vortex lattice.

(a)

(b)

(c)

B(r)

r

G(t)

t

B(r)

r

G(t)

t

B(r)

r

G(t)

t

Fig. 13. The field distribution inside a superconductor as a function of position
and the corresponding muon-spin relaxation function for three cases: (a) the normal
state, (b) the superconducting state, (c) as (b) but with a shorter penetration depth.
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In the normal state (T > Tc) with a transverse field B, all muons precess
with frequency ω = γμB (Figure 13(a)). In the superconducting state however
the muons implanted close to the vortex cores experience a larger magnetic
field than those implanted between vortices. Consequently there is a spread
in precession frequency, resulting in a progressive dephasing of the observed
precession signal (Figure 13(b)). The larger the penetration depth, the smaller
the magnetic field variation and the less pronounced the dephasing (compare
Figure 13(b) and (c)). In fact, the relaxation rate σ of the observed precession
signal is related to the penetration depth using

σ = γμ〈B(r) − 〈B(r)〉r〉1/2
r ≈ 0.0609γμΦ0/λ

2, (11)

where B(r) is the field at position r and the averages are taken over all po-
sitions [70]. Thus the relaxation rate of the observed precession signal can be
used to directly obtain the magnetic penetration depth. This principle has
been applied to many different superconductors to extract both the penetra-
tion depth and its temperature dependence [71]. An advantage is that data
are obtained from the bulk of the superconductor, in contrast to techniques
involving microwaves which are only sensitive to effects at the surface.

B

p(
B
)

(a) (b)

Bpk B

Fig. 14. (a) The field distribution p(B) in the vortex lattice (contours of B shown
in (b)).
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5.1 Vortex states

A conventional type II superconductor exhibits three well-defined phases for
T < Tc: (1) a Meissner phase for B < Bc1, (2) a mixed or Shubnikov phase
for Bc1 < B < Bc2 (in which the magnetic field enters the superconductor in
the form of well defined flux lines or vortices arranged in a lattice) and (3) the
normal metallic phase for B > Bc2. In highly anisotropic systems the vortex
lattice is no longer a system of rigid rods but should be considered as a sys-
tem of flexible interacting lines. A useful picture is that of a weakly coupled
stack of quasi-two-dimensional (q2D) “pancake” vortices, each one confined
to a superconducting plane [72, 73]. The phase diagram is thus substantially
altered to take account of field and temperature dependent changes in the
vortex lattice itself. At low T and low B the stacks resemble conventional
vortex lines. Above a characteristic temperature Tb, but still below that at
which superconductivity is destroyed, the vortex lattice is broken up by ther-
mal fluctuations [73] (this is called vortex lattice melting). At low T , but this
time increasing B, the energetic cost of interlayer deformations of the lattice
(local tilting of the lines) is progressively outweighed by the cost of intralayer
deformations within the superconducting plane (shearing). Above a crossover
field Bcr the vortex lattice enters a more two-dimensional regime. Thus in
anisotropic systems we may expect temperature and field dependent transi-
tions in which the vortex lattice is destroyed. When muons are implanted into
a superconductor in a field Bapplied one can directly measure the field distri-
bution p(B) which is given by p(B) = 〈δ(B − B(r))〉r and is the probability
that a randomly chosen point in the sample has field B [70]. This is shown
in Fig. 14(a) for an ideal vortex line lattice. The distribution is highly asym-
metric, the high field “tail” corresponding to regions of the lattice close to
the vortex cores (see Fig. 14(b)). The maximum of the distribution occurs at
Bpk, which lies below the mean field 〈B〉 (see Fig. 14(a)). Such lineshapes have
been observed at low temperatures and fields in various anisotropic supercon-
ductors using μSR, including the high temperature superconductors [74] and,
as will be discussed below, in organic superconductors [75]. In both cases it
is found that the vortex lattice can be melted with temperature at Tb or can
cross into a two-dimensional regime at fields above Bcr. Both transitions can
be followed by measuring the field and temperature dependence of the p(B)
line shapes.

Early μSR measurements on κ-(BEDT-TTT)2Cu(SCN)2 [76, 77, 78] pro-
duced contradictory results concerning the low temperature behaviour of the
penetration depth λ(T ). These were all performed at rather large transverse
fields ∼ 300–400 mT (in order to obtain a larger number of precessions during
the muon lifetime) but in fact this destroys the anisotropic vortex structure.
Figure 15 is a μSR lineshape measured at 1.8 K for a sample of κ-(BEDT-
TTF)2Cu(SCN)2 showing the measured lineshape cooled in a field of only
2.5 mT, which was derived from the muon time spectra using a maximum
entropy technique [74]. The inset curve in Figure 15(a) is the probability dis-
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Fig. 15. κ-(BEDT-TTT)2Cu(SCN)2 showing the measured lineshape when field
cooled to 1.8 K in a field applied at 45◦ to the superconducting planes. (a) At
2.5 mT the characteristic asymmetric vortex-line-lattice shape is seen. [Note the
circles are data, solid line is simulation of ideal vortex-line-shape convoluted with
instrument response. The inset shows the computed p(B) before convolution.] (b)
At 40 mT a symmetric line-shape is obtained due to the 2D arrangement of pancake
vortices which results in a more symmetrical vortex field distribution [75].

tribution p(B) from a numerical simulation of a vortex-line lattice in a uniaxial
superconductor at an angle of 45◦ to the superconducting planes. The solid
curve in the main part of Fig. 15(a) is the convolution of this field distribu-
tion with instrumental and dipolar broadening of 0.23 mT, which describes the
data well. The long penetration depth in ET superconductors means that the
lineshape is very narrow and the dipolar broadening very significant. Moreover
the very low field used to ensure the existence of the vortex lattice means that
it is essential to use a pulsed muon source such as ISIS since the very long time
window available reduces the contribution from instrumental broadening [79].

Figure 15(b) shows the μSR-lineshape taken for the same sample cooled
in a larger field of 40 mT. The lineshape is highly symmetric, with a mode at
Bpk close to the average field 〈B〉. This change of lineshape with field is very
similar to changes observed in the high-Tc superconductor Bi2Sr2CaCu2O8+δ

(BSCCO), and indicates the loss of short-range correlations of the pancake
vortices along the field direction [74]. It is attributed to the effective smearing-
out of the core fields due to the local tilt deformations of the pancake
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stacks [74, 80, 81]. As a function of field we find that there is a broad crossover
centred around Bcr ∼ 7 mT from the asymmetric lineshape of Fig. 15(a) to
the almost symmetric lineshape of Fig. 15(b) [75].

For B < Bcr there is a dramatic increase in linewidth below T ∗ ∼ 5 K and
the lineshape also changes around T ∗. An estimate of the characteristic tem-
perature for the thermally-induced breakup of an electromagnetically-coupled
pancake stack is given by Tb = φ2

◦s/kBμ◦(4π)22λ2
‖ ≈4.5 K [73] where s is the

interlayer spacing. The reduction in the positional correlations of pancake
vortices at T ∗ ∼ 5 K is thus consistent with this prediction [75, 79]. Flux
decoration studies have independently confirmed this interpretation [82, 83].

The crossover field Bcr is closely related to the “second-peak” effect which
has been observed in magnetization hysteresis loops [84]. For a Josephson
coupled superconductor (λ‖ � γs) the dimensional crossover is expected
at a field BJ ∼ φ◦/(γs)2 when the width of the Josephson vortex core γs
equals the vortex separation. When the anisotropy is very large γs � λ‖
the rigidity of the vortex line is controlled by the tilt modulus of the lat-
tice and is dominated by a highly dispersive electromagnetic interaction so
that despite long wavelength stiffness the vortices are subject to short wave-
length fluctuations [85, 75]. Electromagnetic coupling is believed to dominate
in BSCCO [86, 87] and κ-(BEDT-TTF)2Cu(SCN)2 [75, 79] and taking the
layer separation for κ-(BEDT-TTF)2Cu(SCN)2 as s ∼ 1.6 nm yields an esti-
mate Bcr ∼ 7mT which is in agreement with the μSR experiment [75]. Recent
measurements have mapped out this phase diagram in more detail [88].

5.2 Scaling relations

There is a linear scaling between the superconducting transition temperature
(Tc) and the superfluid stiffness (ρs = c2/λ2, where λ is the London penetra-
tion depth), which was first identified by Uemura et al for the underdoped
cuprates [89]. Recently, scaling relations between ρs and the normal state con-
ductivity σ0 have also been suggested and a linear relation between ρs and
the product σ0(Tc)Tc was demonstrated for cuprates and some elemental su-
perconductors [90]. F. L. Pratt and I have recently found that these specific
linear scaling relations do not hold for molecular superconductors, but a dif-
ferent form of power-law scaling is found to link ρs, σ0(Tc) and Tc [91]. These
scaling properties hold as Tc varies over several orders of magnitude for ma-
terials with differing dimensionality and contrasting molecular structure, and
the scaling is dramatically different from that of the cuprates. systems.

We considered values of ρs/c
2 (= ne2/m∗ε0c2) and Tc derived from μSR

measurements in the vortex state [71], and σ0(Tc) in the highest conductiv-
ity direction for a series of molecular superconductors. The materials range
from a highly anisotropic quasi-one-dimensional (q1D) organic superconduc-
tor ((TMTSF)2ClO4), through systems of two-dimensional (2D) layered or-
ganic superconductors (BETS and ET salts) to examples of three-dimensional
(3D) fulleride superconductors. Fig. 16 shows the Uemura plot of Tc against
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1/λ2 in log–log form where it can be seen that Tc follows ρm
s with the fitted

value m = 1.44(3). This approximate scaling of Tc with ρ
3/2
s , or equivalently

λ−3, in 2D organic superconductors was noted previously and discussed in
terms of the 2D physics of layered superconductors [88, 92, 93]. However,
it now appears that the scaling relations between Tc, ρs and σ0 are more
universal, encompassing examples of q1D and 3D molecular superconductors
alongside the 2D systems. The non-linear scaling between Tc and ρs in the
molecular case is much harder to understand than the linear scaling seen in
the cuprates. In the cuprates the carrier density n is directly controlled by
the doping level; in the underdoped regime ρs is directly proportional to n
and Tc has been suggested to be linked to ρs either through Bose-Einstein
condensation of preformed pairs [94] or through a mechanism in which phase
fluctuations of the superconducting order parameter determine Tc [95]. In
contrast, for the molecular systems n is fixed by the unit cell size and sto-
ichiometry of the crystal structure and varies only little across the range of
materials, whose superconducting parameters are nevertheless varying across
several orders of magnitude. Differences in the superconducting properties
must then arise entirely from differences in the details of the electronic many–
body interactions.

0.1 1 10 100 1000

1 / 2 = s / c
2 ( m-2)

0.1

1

10

100

T
c

(K
)

Cuprates and elements
Molecular superconductors

1

2
3

4

5
6

7
8

Fig. 16. Log-log Uemura plot of Tc against 1/λ2. Data for the cuprates and elemen-
tal superconductors tabulated by Homes et al [90] are also shown for comparison. For

the molecular systems a scaling close to ρ
3/2
s is observed, rather than the linear ρs

scaling seen for the cuprates. The molecular superconductors are (1) κ-BETS2GaCl4,
(2) (TMTSF)2ClO4, (3) α-ET2NH4Hg(SCN)4, (4) β-ET2IBr2, (5) λ-BETS2GaCl4,
(6) κ-ET2Cu(NCS)2, (7) K3C60, (8) Rb3C60. (After [91].)
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Fig. 17. (a) Plot of 1/λ2 against the product of Tc and σ0(Tc), following Homes et
al [90]. For the molecular superconductors the data collapse onto a narrow ordinate
range due to the inverse scaling between Tc and σ0 demonstrated in Fig. 1(a). Open
circles show the data of Homes et al [90] along with the linear fit (solid line). The
dashed line shows the scaling expected for a weak coupling BCS superconductor in
the high scattering rate limit (Eqn.13). (b) The data expressed as an effective gap
parameter η = (2Δ/kBTc)(ns/nn)(m∗

n/m∗
s ). Whereas the cuprates and elements are

grouped around a value of η just above the BCS limit (dashed line) and comparable
to the gap ratios seen using other techniques, the molecular systems cover a wide
range of η values, both above and below the BCS limit. (After [91].)

Further evidence for fundamentally different behaviour between molecu-
lar and non-molecular superconductors is seen when an attempt is made to
search for linear scaling between ρs and the product σ0(Tc)Tc, of the form
that was recently demonstrated by Homes et al [90]. Fig. 17(a) shows that
such a simple linear scaling does not occur for the molecular superconductors.
The linear behaviour seen for the non-molecular systems can be understood
from applying the Ferrell-Glover-Tinkham sum rule for the real part of the
frequency dependent conductivity [96],
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2
π

∫ ∞

0

σ(ω) dω =
ne2

m∗ = ε0ρs, (12)

where σ(ω) takes the Drude form σ0/(1 + (ω/Γ )2), with σ0 = ne2/(m∗Γ )
and Γ being the scattering rate. In the case where Γ is significantly smaller
than the frequency corresponding to the superconducting energy gap 2Δ/h̄,
the whole free carrier spectrum is redistributed to zero frequency to give the
superfluid response peak, i.e. ε0ρs = σ0(Tc)Γ . If, on the other hand, 2Δ/h̄ is
significantly smaller than Γ , then the normal state conductivity is indepen-
dent of frequency in the gap region, i.e. σ(ω, Tc) = σ0(Tc); in this case, as
the superconducting gap forms, an area of the conductivity spectrum with
frequency width 2Δ/h̄ and height σ0 is redistributed to zero frequency to give
the superfluid response peak. This leads to the following expression for ε0ρs:

ε0ρs =
2
π
σ0(Tc)

2Δ
h̄

=
2kB

πh̄
η σ0(Tc)Tc, (13)

where η = 2Δ/kBTc. In Fig. 17(a) the dashed line shows Eqn. 13 plotted
taking the weak-coupling BCS limit η = 3.53 as a reference; this is seen
to describe the general behaviour of the non-molecular data quite well. The
effective value of η derived from the data using Eqn. 13 is shown in Fig. 17(b),
which reveals the considerable variation among the molecular systems. Note
that Eqn. 13 was derived assuming that the ratio of carrier density to effective
mass is the same in the normal and superconducting states. If, however, this
assumption is relaxed then the effective gap ratio observed in this plot becomes

η =
(

2Δ
kBTc

)(
ns

nn

)(
m∗

n

m∗
s

)
, (14)

where the subscripts s and n refer to the superconducting and normal states
respectively. Strong coupling can increase η over the BCS value via the first
term of Eqn. 14, however if Eqn.13 is applicable to the molecular systems then
the reduced values of η seen for many cases would require a contribution from
at least one of the other two terms, i.e. the superconducting carrier density
would need to be less than normal state carrier density or the effective mass
of superconducting carriers would have to be larger than that of the carriers
in the normal state.

Another way to look at the data is to plot the ratio of the coherence
length ξ (estimated using ξ = h̄vF/πΔ, and writing a BCS-type gap Δ =
1.76kBTc) and the mean free path � = vFγ. Thus ξ/� = 0.181(h̄Γ/kBTc) and
this is shown in Fig. 18. The solid line shows a fit to ξ/� = (Tc/T

∗)x and
yields T ∗ ∼ 30 K and x ≈ 0.5. This implies that the scattering rate Γ ∝ Γ y

where y ≈ 1.5. This is broadly consistent with the temperature dependence
of the scattering rate deduced from the temperature dependent resistance
of individual examples of the molecular metals; measurements for molecular
metals just above Tc generally show power-law exponents in the region 1.5
to 2 [97] The scaling relations for the molecular superconductors [91] suggest
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Fig. 18. The ratio ξ/� as a functio of Tc. The horizontal dashed line shows ξ = �.

that there are features of their electronic properties that are common, despite
the various materials having quite different dimensionality and Fermi surface
topology. The simplicity of the scaling also suggests that it is being controlled
by a single dominant parameter, such as the ratio of the electron correlation
energy on a molecule U to the electronic bandwidth W . Identification of new
theoretical models (see e.g. [98]) that match the observed scaling behaviour
is clearly necessary; finding such models should lead to significant progress in
understanding superconductivity in molecular systems.

6 Conclusion

This chapter has shown that muons can be used in a variety of ways to under-
stand the magnetic, conducting and superconducting properties of a variety
of organic and molecular systems. In each case, the muon is able to provide
unique information which is unavailable using other techniques. However, the
most information can be obtained when muons are used in tandem with other
experimental probes.

I would like to thank the members of my research group and research
collaborators at other institutions who have contributed to this work in many
ways, and particularly Tom Lancaster and Francis Pratt.
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Quantum tunneling of the magnetization in magnetic molecules (MM) with
high spin value is a fascinating subject which contrasts clean and accurate ex-
perimental data with sophisticated theoretical models. At the heart of these
models stands the Landau [1] and Zener [2] (LZ) derivation of quantum tun-
neling between levels, which at resonance have a tunnel splitting Δ, but are
brought in to and out off resonance by a time-dependent field. This theory
predicts transition probabilities, however, it has not been able to account for
the size of the magnetization jumps in molecular magnets. In fact, the dis-
crepancy between Δ deduced from LZ experiments [3] and the one calculated
from spectroscopic data is more than three orders of magnitudes [4]. In these
circumstances it might be essential to analyze experiments using a broader LZ
theory which includes stochastic fluctuations produced by the environment.
Such a theory was developed by Shimshoni and Stern (SS) [5]. The SS theory
takes into account the dephasing effect due to stochastic field fluctuations.
Combining this theory with measurements of dephasing times for MM could
lead to a revision in tunnel splitting calculations. But, as far as we know, there
are no estimates for dephasing time of MM. The purpose of the present work
is to highlight the importance of dephasing in tunneling experiments and to
measure the dephasing time.

First we revisit the SS theory, limiting the discussion to the parameter
range relevant to MM. This will be done in a tutorial manner in the hope
that even a non experienced reader will be able to follow the calculations. In
order to produce a formula we assume, as did SS, a weak-coupling between
the spins and the environment, in a sense that will be defined below. We show
how ignoring dephasing time can lead to erroneous estimates of Δ. Second
we review muon spin relaxation experiment on isotropic (Δ = 0) MM with
varying spin values. These experiments provide information on the source
of dephasing and an estimate of dephasing times. In light of our finding we
recognize that weak-coupling is not the correct assumption for MM. Therefore,
we set the stage for further theoretical developments.
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1 Landau-Zener model in the presence of stochastic field
fluctuations

We use the simplest Hamiltonian appropriate for the Landau-Zener problem.
It is the Hamiltonian of a spin 1/2 which has a resonance tunnel splitting
Δ at t = 0, and a time-dependent magnetic field αt in the z direction. The
Hamiltonian is given by

H0 = αtSz +ΔSx (1)

where Sz = σz/2, Sx = σx/2, and the σs are the Pauli matrixes. The
Schrödinger equation could be written in a dimensionless form as

i
tT
tZ

∂

∂y
|n〉 = (ySz + Sx) |n〉 (2)

where
tz = Δ/α (3)

is the Zener time [2],
tT = h̄/Δ (4)

is the tunneling time and
y = t/tz (5)

is dimensionless time.
Let us define the states |+〉 = [1, 0] and |−〉 = [0, 1]. We are interested in

the LZ probability that a spin prepared at time t = −∞ in the low energy
state |+〉 will be in the high energy state at t = ∞ which is again the |+〉
state. For this purpose we have to calculate the matrix element CLZ

CLZ = 〈+|U |+〉

where U is the time propagator operator. If the Hamiltonian had been time
independent this operator would have been

exp(−iH0t/h̄). (6)

But it does depend on time and a more complicated and approximated ex-
pression for U will be given soon. The probability of changing energy states
is given by

PLZ = |CLZ |2 .
Sometimes a different definition for PLZ is used where it is the probability
of flipping energy states. In this case the spin stays in the low energy state
throughout the field sweep. However, the two definitions sum up to 1 and
extracting one from the other is trivial.

In the standard LZ model practically no transitions are taking place at
very negative or very positive times. The transitions essentially take place
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within the Zener time scale tz around t = 0. This is demonstrated in Fig. 1(a)
which is a numerical solution of Eq. 2 taken from Ref. [6] as a function of
time for three different values tZ/tT . Clearly most of the action is happening
within tz. The asymptotic case t = ∞ can be solved analytically [1, 2] and

PLZ = exp
(
−πΔ

2

2h̄α

)
= exp

(
−πtZ

2tT

)
. (7)

However, the solution involves reducing Eq. 2 to the Weber equation, which
is not very well known in physics, and do not provide grate insight to the
problem. We will take an approximation approach based on the SS theory.

The SS formulation of the problem gives a result similar to Eq. 7 and
provides a natural platform for adding a fluctuating field. The solution starts
by finding the instantaneous eigenstates and eigenvalues of the Hamiltonian
in Eq. 1. These are

|σ+(t)〉 =
√

2

2
√
Δ2 + α2t2 + αt

√
Δ2 + α2t2

[αt+
√
Δ2 + α2t2,Δ] (8)

with the eigenvalue

E+ = +
1
2

√
Δ2 + α2t2 (9)

and

|σ−(t)〉 =
Δ
√

2

2
√
Δ2 + α2t2 − αt

√
Δ2 + α2t2

[αt−
√
Δ2 + α2t2,Δ] (10)

with the eigenvalue

E− = −1
2

√
Δ2 + α2t2. (11)

They are named according to their instantaneous energy. The two energy
levels, normalized by Δ, are presented in Fig. 1(b) as a function of y (see
Eq. 5) by the solid lines. We expect the instantaneous states and energies to
be a useful concept in the adiabatic limit, namely, when the sweep rate is
small. Looking at Eqs. 2 and 3 this means

tT
tZ

< 1. (12)

At t→ −∞ we find that

|σ−(−∞)〉 = |+〉

and at t→ ∞
|σ+(∞)〉 = |+〉 ,

so that we need to calculate
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Fig. 1. (a) Landau-Zener transition probability as a function of normalized time
reproduced from Ref. [6] for three values of tZ/tT : 0.05 (top), 0.4 (middle) and
5 (bottom). (b) Solid lines show the instantaneous energy levels as a function of
normalized time in the Landau-Zener problem. Dashed lines are a schematic repre-
sentation of the paths the spin can take when tunneling from the low energy state
to the high energy state at times tj = yjtZ . The transition amplitude is a sum of all
paths with the appropriate matrix element as given by Eq. 16.

CLZ = 〈σ+(∞)|U |σ−(−∞)〉 .

To actually perform this calculation we divide the time into small segments
and assume that we are allowed to use Eq. 6 (with h̄ = 1) in each segment,
so that

U =
∞∏

j=1

e−iH0(tj)δt. (13)

We also define the identity operator for each point in time

Ij = |σ+(tj)〉 〈σ+(tj)| + |σ−(tj)〉 〈σ−(tj)| . (14)

We are now in position to perform the calculation. We do it by inserting this
identity between every two exponents in Eq. 13. For example, let’s divide the
time between the initial time ti and the final time tf = ti + 2δt into two
segment by introducing t1 in between. In this case
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CLZ = 〈σ+(tf )| e−iH0(t1)δt |σ−(ti)〉 (15)

and inserting Eq. 14 gives

CLZ = 〈σ+(tf )| [|σ+(t1)〉 〈σ+(t1)| + |σ−(t1)〉 〈σ−(t1)|] e−iH0(t1)δt |σ−(ti)〉 .

Acting with the Hamiltonian backwards leavs

CLZ = 〈σ+(tf )|σ+(t1)〉 〈σ+(t1)|σ−(ti)〉 e−iE+(t1)δt

+ 〈σ+(tf )|σ−(t1)〉 〈σ−(t1)|σ−(ti)〉 e−iE−(t1)δt.

We evaluate the bracket products to the lowest order in δt. For this purpose
we approximate |σ−(t1)〉 using the time derivative∣∣σ′

−
〉

=
d

dt
|σ−(t)〉

at the later time segment so that

〈σ+(tf )|σ−(t1)〉 ≈ −
〈
σ+(tf )|σ′

−(tf )
〉
δt

and
〈σ+(t1)|σ−(ti)〉 ≈ −

〈
σ+(t1)|σ′

−(t1)
〉
δt

since 〈σ+(t)|σ−(t)〉 = 0. Similarly, to the lowest order in δt

〈σ−(t1)|σ−(ti)〉 = 〈σ+(tf )|σ+(t1)〉 ≈ 1.

Using these approximations in Eq. 15 gives

CLZ = −
〈
σ+(tf )|σ′

−(tf )
〉
δte−iE−(t1)δt −

〈
σ+(t1)|σ′

−(t1)
〉
δte−iE+(t1)δt.

Now let’s repeat the same exercise by dividing the time into three segments
and introducing t1 and t2 in between ti and tf so that

CLZ = 〈σ+(tf )| e−iH0(t2)δte−iH0(t1)δt |σ−(ti)〉 .

Again, inserting Eq. 14 behind the exponents gives

CLZ = 〈σ+(tf )| [|σ+(t2)〉 〈σ+(t2)| + |σ−(t2)〉 〈σ−(t2)|] e−iH0(t2)δt

× [|σ+(t1)〉 〈σ+(t1)| + |σ−(t1)〉 〈σ−(t1)|] e−iH0(t1)δt |σ−(ti)〉 .
We look for cases where there is only one transition, since every transition
introduces a factor δt. We also apply the Hamiltonians backwards and get

CLZ = 〈σ+(tf )|σ+(t2)〉 〈σ+(t2)|σ+(t1)〉 〈σ+(t1)|σ−(ti)〉 e−iE+(t2)δte−iE+(t1)δt

+ 〈σ+(tf )|σ+(t2)〉 〈σ+(t2)|σ−(t1)〉 〈σ−(t1)|σ−(ti)〉 e−iE+(t2)δte−iE−(t1)δt
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+ 〈σ+(tf )|σ−(t2)〉 〈σ−(t2)|σ−(t1)〉 〈σ−(t1)|σ−(ti)〉 e−iE−(t2)δte−iE−(t1)δt

Using the same rules as before we find

CLZ = −
〈
σ+(t1)|σ′

−(t1)
〉
δte−iE+(t2)δte−iE+(t1)δt

−
〈
σ+(t2)|σ′

−(t2)
〉
δte−iE+(t2)δte−iE−(t1)δt

−
〈
σ+(tf )|σ′

−(tf )
〉
δte−iE−(t2)δte−iE−(t1)δt.

This expression has a graphical representation depicted in Fig. 1(b). Tran-
sitions are occurring at some time t. We take the exponent of −iδt times the
sum of the low energies at the tjs [E−(tj)] until the transition. From the
transition onward we do the same thing using the high energy [E+(tj)] un-
til the final time tf . The exponential factor per transition is multiplied by〈
σ+(t)|σ′

−(t)
〉

at the time of the transition. Finally, we sum all contributions.
If we divide the time into an infinite number of segments and substitute

ti → −∞ and tf → ∞, we will find that

CLZ = −
∞∫

−∞
dt′

〈
σ+(t′)|σ′

−(t′)
〉
e−i

∫ ∞
t′ E+(τ)dτ−i

∫ t′
−∞ E−(τ)dτ (16)

where t′ now represents the time at which a transition is taking place. Next
using Eqs. 9 and 11 we replace E−(τ) by −E+(τ). To this we add zero in the
form of

i

∫ t′

−∞
E+(τ)dτ + i

∫ ∞

t′
E+(τ)dτ − i

∫ ∞

−∞
E+(τ)dτ

which leads to

−i
∫ ∞

t′
E+(τ)dτ − i

∫ t′

−∞
E−(τ)dτ = 2i

∫ t′

−∞
E+(τ)dτ − i

∫ ∞

−∞
E+(τ)dτ.

We give the following name

A(t′) =
〈
σ+(t′)|σ′

−(t′)
〉

and find using Eqs. 10 and 8 that

A(t′) =
Δα

2(Δ2 + (αt′)2)
. (17)

Similarly we name

φ(t′) = 2
∫ t′

−∞
E+(τ)dτ =

∫ t′

−∞

√
Δ2 + (ατ)2dτ. (18)

Thus



Stochastic Landau-Zener 215

CLZ = −e−iφ(∞)/2

∞∫
−∞

dt′A(t′)eiφ(t′). (19)

In the adiabatic limit (Eq. 12) this integral can be solved using a saddle
point approximation [7] as we demonstrate now. Since we are going to take
the absolute value of CLZ we can ignore all multiplying phases and express
the integral in dimensionless form

DLZ =
1
2

∞∫
−∞

dy
1

1 + y2
e

i
tZ
tT

w(y) (20)

where
w(y) =

∫ y

0

√
1 + x2dx.

There are no poles between the real axis and an axis running parallel to
it through, but avoiding from below, the point i. We therefore perform the
integral along this new axis. We need to find yc where w(y) is stationary by
taking

w′ ≡ dw(y)
dy

=
√

1 + y2 = 0 (21)

which gives yc = ±i. We expand w(y) around yc using small values of x so
that

w(y) = wc +
∫ y−yc

0

√
1 + (x+ yc)2dx � wc +

√
2yc

2
3
(y − yc)3/2 (22)

where
wc =

∫ yc

0

√
1 + x2dx = ±iπ/4.

The integral of Eq. 20 is done by changing variables dw = w′dy and using
Eq. 21

DLZ =
1
2

∞∫
−∞

dw

w′(1 + y2)
e

i
tZ
tT

w =
1
2

∞∫
−∞

dw

(w′)3
e

i
tZ
tT

w
.

From Eqs. 22 and 21

(w′)3 = (2yc)
3/2 (y − yc)3/2 = 3yc (w − wc)

so that finally, by closing the path of integration in the upper part of the
complex plane, we get

DLZ =
1

6yc

∞∫
−∞

dw

(w − wc)
e

i
tZ
tT

φ =
πi

3yc
e
−πtZ

4tT
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yielding

PLZ =
(π

3

)2

exp
(
−πΔ

2

2h̄α

)
.

This is only slightly different from the exact result in Eq. 7.
The calculation using the SS formalism clearly shows that PLZ is a con-

sequence of interference of different paths. If instead of summing transition
amplitude we would sum transition probabilities |A(t′)|2 using discretization
of time based on the uncertainty principle h̄/ |2E+(t′)| we would find

1
4

∞∫
−∞

|A(t′)|2 h̄

2E+(t′)
dt′ =

35πh̄α
1024Δ2

which is very different from PLZ .
Now let’s introduce dephasing. The starting point is the LZ transition

probability obtained by taking the absolute value of Eq. 19

PLZ = |CLZ |2 =

∞∫
−∞

dt1

∞∫
−∞

dt2A(t1)A(t2)ei[φ(t1)−φ(t2)].

We consider the simplest case where a fluctuating field fluctuates in the z
direction, namely, the Hamiltonian is

H = [αt+ 2B(t)]Sz +ΔSx

where B(t) is a stochastic field. We include μB in the definition of B. This
is equivalent to introducing noise to the sweep rate α which will affect both
A(t′) and φ(t′). The effect on A(t′) involves energy non-conserving transitions
between states, which is equivalent to T1 processes. The effect on φ(t′) involves
dephasing similar to T2. Usually T2 is shorter than T1 so we will concentrate
on the stronger effect. In other words we ignore the effect of B on the A(t′)
and simply consider its impact on the phases. We now have to average PLZ

over different realizations of the noise B(t). We rename this stochastic LZ
transition probability as SS probability and write

〈PSS〉 =

∞∫
−∞

dt1

∞∫
−∞

dt2A(t1)A(t2)
〈
ei[φ(t1)−φ(t2)]

〉
. (23)

As a result of the fluctuations in B the phase φ will have an average part
〈φ(t)〉 which is not random and given by Eq. 18, and a part δφ which is
different for different realizations of B, therefore,〈

ei[φ(t1)+δφ(t1)−φ(t2)−δφ(t2)]
〉

= ei[〈φ(t1)〉−〈φ(t2)〉]
〈
ei[δφ(t1)−δφ(t2)]

〉
.

We assume that 〈exp(i[δφ(t1) − δφ(t2)])〉 is a function of t1− t2 and introduce
a phenomenological dephasing time τφ which is defined as
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ei[δφ(t1)−δφ(t2)]

〉
� e−|t1−t2|/τφ . (24)

SS related τφ to the dynamic properties of B(t). We will not give this deriva-
tion here and simply mention that if

〈B(t)B(0)〉 = B2 exp(−νt) (25)

then
1
τφ

=
B2

h̄2ν
. (26)

For the dynamic fluctuations to be interesting the field must fluctuate several
times before the tunneling process is over, therefore the interesting case is the
fast fluctuation limit

νtZ > 1. (27)

The important point to carry to the next section is that the environment
alone determines the dephasing time. If we can determine the dephasing time
for one kind of molecule in a given environment, and if we believe the en-
vironment does not change between different molecules, then we know the
dephasing time for other molecules.

Inserting Eqs. 17, 18 and 24 into 23 we find

〈PSS〉 =
1
4

∞∫
−∞

du

∞∫
−∞

ds
1

1 + u2

1
1 + s2

exp
(
i
tZ
tT

∫ u

s

√
1 + v2dv

)
exp

(
−|u− s|

uφ

)
(28)

where
uφ = τφ/tZ .

Evaluation of this integral is not simple. To date SS have done this analytically
for weak dephasing only where the dephasing time τφ is long compared to the
resonance tunneling time tT given in Eq. 4. In this case we have

tT
τφ

=
B2

Δh̄ν
< 1. (29)

Since this case means that B is small, it is named the weak-coupling limit.
Another requirement for analytic evaluation of the integral is that the dephas-
ing is taking place within the Zener time, namely, τφ/tZ < 1. One can call
this requirement long LZ time, and it is expressed as

τφ
tZ

=
h̄2να

B2Δ
< 1. (30)

Put in other words, analytical evaluation of Eq. 28 is provided only for the
time scales order

tZ > τφ > tT . (31)
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In the adiabatic (Eq. 12), fast fluctuation (Eq. 27), weak coupling (Eq. 29),
and long LZ time (Eq. 30) limits, the integral in Eq. 28 can be evaluated [5];
the answer is

〈PSS〉 �
τφα

Δ

(
e

2Δ
ατφ PLZ +

{
h̄

Δτφ

}2
)
. (32)

It is clear from this expression that for a proper evaluation of Δ from a tunnel-
ing experiment τφ must be determined. If one insists on fitting experimental
data with a LZ type expression, as in Eq. 7, using an observed tunnel splitting
Δobs one finds, in terms of the three time scales, that

Δ2
obs

Δ2
= − 2tT

πtZ
ln
τφ
tZ

(
e

2tz
τφ PLZ +

{
tT
τφ

}2
)
.

Interestingly, due to the dephasing, the observed tunnel splitting becomes
sweep rate dependent.

When considering experimental difficulties, the four limits leave a very
narrow range of parameters in which Eq. 32 is valid. For example, for Δ =
10−7 K, α/μB = 10−4 T/s, B/μB = 0.1 G, and ν = 5 × 108 sec−1 we find
that tz = 1.5 × 10−3 sec, τφ = 6.4 × 10−4 sec, and tT = 7.6 × 10−5 sec,
so that the order of time scales given in Eq. 31 holds, and νtZ > 1. In this
case Δobs = 0.4× 10−7 K which is smaller than Δ. Thus, dephasing increases
the probability of moving from the low energy state to the higher one, or,
decreases the probability of staying in the low energy state.

2 Experimental dephasing time estimates

We extract the dephasing time in real material using muons coupled to the
electronic spins of isotropic MM that experience only the stochastic field. The
leading terms for such an Hamiltonian are

H = −2μB [H + B(t)]S + h̄μγ [H + SA] I

where S is the electronic spin, I is the muon spin, H is the external field, B
is the stochastic field, γμ = 85.162 MHz/kG is the muon gyromagnetic ratio,
μB is the Bohr magneton, and A is a coupling matrix. In this section we use
a definition of B which does not include μB since the electronic spin and the
muon spins have different gyromagnetic ratios. We ignore a term of the form
B(t)I since the field experienced by the muon from the molecular spins is
greater than this term. Due to the fluctuating field B, S will vary in time.
The simplest assumption that one can make is that the correlation function
〈{S(t),S(0)}〉, where {} stands for anticomutator, decay exponentially. The
decay rate is determined by the dynamic properties of B(t) which is produced
by the environment of the molecules. Therefore we expect
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{S(t),S(0)} = 2S2 exp(−t/τφ). (33)

A priori it is possible that τφ will be H-dependent but we will show experi-
mentally that this is not the case for H < 2 kG.

The muon, which is prepared with 100% polarization, will decay towards
its equilibrium polarization with a decay rate

1
μT1

=
2A2τφ

1 + (μγHτφ)2
(34)

where we assumed for simplicity that A is diagonal and isotropic as well. By
measuring μT1 as a function of H2 and fitting the measurement to

μT1 = m+ nH2 (35)

one can obtain τφ from

τφ =
(

n

mμγ2

)1/2

. (36)

Salman et al. [8] performed such an experiment for three different isotropic
MM with different spin value. In these systems no tunneling is observed due
to the absence of a tunnel splitting Δ. However, spin dynamics is observed
even at very low temperatures (T = 50 mK) with no temperature dependence
over a wide temperature range [9].

The molecules were [Cr{(CN)Cu(tren)}6 ](ClO4)21, [Cr{(CN)Ni(tetren)}6

](ClO4)9 [10, 11] and [Cr{(CN)Mn(tetren)}6](ClO4)9 [12], which are labeled
as CrCu6, CrNi6 and CrMn6, respectively. In these molecules a Cr(III) ion is
surrounded by six cyanide ions, each bonded to a Cu(II), Ni(II) or Mn(II) ion.
Their magnetic moments of CrCu6, CrNi6 and CrMn6 is 9

2 gμB , 15
2 gμB and

27
2 gμB , respectively. High field ESR measurements (on CrNi6) [5] and suscep-
tibility measurements (on CrCu6, CrNi6 and CrMn6) found no evidence for
anisotropy. This is consistent with the octahedral character of the molecules.

In Fig. 2 we reproduce the data from Ref. [8] where the relaxation time
Tμ

1 (H) is plotted at T → 0 as a function of H2 for all compounds, and
for fields up to 2 kG (note the axis break). Tμ

1 obeys Eq. 35 in this range.
This is consistent with the assumption that for low H the field experience
by the muon, which stems from the molecules, and hence the molecular spin
autocorrelation function, can be described by a single correlation time τφ, and
that τφ is field-independent.

From the linear fits in Fig. 2, and using Eq. 36, it was found that τφ =
7 ± 1 nsec for CrCu6, τφ = 10 ± 1 nsec for CrNi6 and τφ = 11 ± 1 nsec for
CrMn6. According to Eq. 26 this kind of dephasing time could be generated
by a field B ∼ 1 G fluctuating with a fluctuation rate of ν ∼ 106 sec−1.

3 Conclusions

It is highly significant that τφ is nearly spin-independent. Since τφ is de-
termined by the environment in which the molecules are embedded, its S-
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Fig. 2. The relaxation time at T ∼ 100 mK as a function of H2 for CrCu6, CrNi6
and CrMn6 with sping value S = 9/2, 15/2, 27/2. The solid lines are linear fits.
Data are reproduced from Ref. [8]

independence means that coupling to other molecules or to phonons is not
responsible for τφ. This can be understood by examining the Bloch equation
which govern the spin motion. In zero external field this equation is given by

dŜ
dt

= eγ[Ŝ × B(t)]

where Ŝ is a unit vector in the direction of the magnetic moment. Only if
B does not stem from other molecules or from spin-phonon coupling could
the time scale for spin motion be S-independent, as found experimentally. We
therefore conclude that at T → 0 the stochastic field B(t) responsible for the
MM spin motion most likely emanates from nuclear moments.

More importantly τφ is on the order of 10 nsec. As we argue before, we
assume that this dephasing time is typical to high spin magnetic molecules
made of transition metal ions embedded in a sea of other ions, including a
large number of protons. Indeed, the three isotropic molecules reported here
are different but have the same τφ. We have no reason to believe that τφ will be
substantially different in Fe8 for example. In Fe8, the only molecule where as
far as we know Δobs was measured, it was found to be on the order of 10−7 K
and sweep rate dependent [3]. If this Δobs had been simply the intrinsic tunnel
splitting Δ, then the tunneling time would have been h̄/Δ ∼ 7 × 10−5 sec.
This tunneling time is longer than the dephasing time τφ = 10−8 sec. More
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over if, for example, α = 0.001 T/sec, then the Zener time (for the 10 to
−10 transition) tz = Δ/(20α) = 7 × 10−5 sec. This makes the order of time
scales tZ ∼ tT > τφ. This order is very different from Eq. 31, and neither
the LZ theory nor the SS theory are valid. However, it is conceivable that
Δobs is not the intrinsic Δ, and that Δ > Δobs. If this is correct we might
still be in the adiabatic limit and Δobs could be sweep rate dependent as was
observed experimentally. However, to be in the τφ > tT range, it must be that
Δ� Δobs and in fact Δ > 10−3 K. It is more likely that in the MM the order
of time scales is tZ > tT > τφ. For this case there is no theory available and
a new approach is required.
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1 The Method

The Mössbauer spectroscopy [1, 2, 3], know also as a recoilless nuclear gamma
rays resonance, represents a very powerful tool by providing a large range of
information via the modification of the nuclear level energy, derived from the
interactions with external factors specific to condensed matter, mostly due to
the electron contributions.

The Mössbauer effect comprises simultaneously two factors: a nuclear and
a condensed matter state contribution in a related multiplication product and
this feature will be present over the whole actual presentation. The “golden
mine” of the Mössbauer spectroscopy is represented by the 57Fe isotope (over
90% of publications) and most of the subsequent examples will refer to such
related data.

2 Novelty of gamma recoilless phenomena: the classic
and the quantum approach

There is widespread known that in most interactions a part of energy is lost
by recoil according to the following formula

Erecoil =
1
2
mv2 =

p2

2m
=

E2
γ

2mc2
(1)

where p is the momentum, m the mass and v the velocity of the nucleus. In
the case of 57Fe with an energy transition of 14.4 KeV, the recoil energy can
be derived as follow:

Erecoil =
E2

γ

2mc2
=

(14.4keV )2

2(53.022GeV )
= 0.002eV (2)

However, when the vibrations are not any more individual but collective, as
best described by Debye model, one can replace m with the mass M for
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the whole crystal, exceeding the previous one at least by a factor equal to
Avogadro’s number, and the recoil vanishes. That was explained by Rudolf
Mössbauer, when at low temperatures he discovered a huge emission line,
compared with the room temperature one.

Because the crystal forces are very weak compared with the internal nu-
clear forces one can separate the matrix element for the lattice (expressing
the change of its state from initial (ni) to final (nf )) from the matrix ele-
ment describing the nuclear gamma transition, namely the Hamiltonian can
be explicitly written with separate lattice and nuclear contributions [4]. Hence

ML = (nf |exp(iKXL )|ni).(f |a(q)| i) , (3)

where K is the momentum operator and XL is the center of mass, both being
related to the lattice, while a(q)) represents the nuclear properties operator.
The quantum Mössbauer condition is fulfilled when the lattice conserves its
initial state, i.e. there are no modifications of the vibrational spectrum and
the initial ni and final nf states are the same.

In the early sixties of last century, it was of interest to search for all
possible Mössbauer isotopes, looking especially for transitions with low free
recoil energy and high “effective Mössbauer temperature” and on that search
over all known gamma emitting nuclei the 57Fe appeared then real era of
Mössbauer spectroscopy as a powerful tool has started.

It is worth to mention that there are 46 elements involving 89 isotopes
showing 104 Mössbauer transitions, but only up to ten or a dozen are mostly
used in condensed matter, chemistry and biology or material science research.

3 Lamb-Mössbauer factor

The Mössbauer effect cannot be observed for freely moving atoms or molecules,
i.e. in gaseous or liquid state. Only in the solid state, crystalline or non-
crystalline, including frozen matter, there is possible a recoilless emission and
absorption of a gamma quantum. The reason is related to much larger mass
M of a solid particle as compared to that of an atom or a molecule, the linear
recoil momentum created by emission and absorption of a gamma quantum
practically vanishes, as mentioned above. The recoil energy caused by an emit-
ting and absorbing atom tightly bound in the lattice is mostly transferred to
the lattice in a vibration system. There is a certain probability f (called
”Lamb-Mössbauer” factor , but also known, incorrectly, as Debye-Waller fac-
tor) that no lattice excitation (zero-phonon processes) takes place during γ-ray
emission or γ-ray absorption. In this case f denotes the fraction of nuclear
transitions which occur without recoil. The Mössbauer effect is observable
only for this fraction.

The simplest model is due to Einstein (1907) and assumes a large num-
ber (via discrete approach) of independent linear harmonic oscillators at
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a frequency ωE then the fraction of resonant events is given by Lamb-
Mossbauer factor and the characteristic temperature is given by the relation:
kBΘE = hωE while a more adequate continuous model (ωD frequency) was
provided by Debye(1912) as expressed in the followings:

f = exp

⎧⎨⎩− 2R
3Nh̄

ωmax∫
0

1
ω

[
1
2

+ n [ω]
]
ρ (ω) dω

⎫⎬⎭ ;n (ω) =
1

exp
(

h̄ω
kBT

)
− 1

(4)

EinsteinModel :

ρ (ω) = 3Nδ (ω − ωE) → f (T, ωE) = exp
[
− R

kBθE
cth

(
h̄ωE

2kBT

)]
(5)

DebyeModel :

ρ (ω) =

{
9N
ω3

D
ω2 for ω < ωD

0 for ω > ωD

}
(6)

→ f (T, ωD) = exp

⎧⎪⎪⎨⎪⎪⎩− 3R
2h̄ωD

⎡⎢⎢⎣1 + 4
(
kBT

h̄ωD

)2

h̄ωD
kBT∫
0

xdx

ex − 1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (7)

R here is the photon energy. Within the Debye model for solids, f increases
with decreasing transition energy Eγ , with decreasing temperature, and with
increasing Debye temperature ΘD. One can consider ΘD as a measure for the
strength of the bonds between the Mössbauer atom and the lattice. It is high
( > room temperature=RT) for metallic materials and low (< RT) for soft
compounds, including co-ordination and metal-organic ones.

Here is a typical disintegration scheme, exemplified by nuclear level of 57Fe
isotope:

Fig. 1. Disintegration scheme for 57Co.
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4 Mössbauer Parameters

There are two types of parameters, one related with nuclear level energy mod-
ified by the interaction with external nucleus forces (called energetical) and
the other (called dynamic) related to lattice vibrations and influenced by local
surroundings, including impurities and defects (details about the following ex-
planations can be found in classic books listed as Ref. [5]). The first category
counts on three different parameters, namely Isomer Shift (IS), Quadrupole
Splitting (QS) and Magnetic Splitting produced by an effective (or internal)
field at nucleus(Bint).

4.1 Energetic Mössbauer Parameters

Isomer shift (IS) and second order Doppler effect

The interaction (mono-polar type) between the nuclear charge density and
the electric potential V (0) of the atomic electronic charge having a nonzero
probability in the finite nuclear volume generates the isomer shift or center
shift .

δ =
(
Ze2R2c

5ε0Eγ

)
· [ρa (0) − ρS (0)] ·

[
ΔR

R

]
mm · s−1 (8)

Z is the atomic number, e - electronic charge, R- nucleus radius, c -light
velocity, ε0- dielectric constant, Eγ-gamma quantum energy, ρ- charge density
at the nucleus, in absorber (a) and, source (s), respectively.

In addition, there is also a shift, called the second order Doppler shift of
the phonon spectrum parameters, depending either on the temperature or on
pressure. In particular for the Einstein and Debye models this temperature
dependence is:

Einstein model:

δSODS(T, θE) =
ERkBθE

2Mc2
cth

(
θE

2T

)
; kBθE = h̄ωE (9)

Debye model :

δSODS(T, θD) = − 9kBE0

16Mc2

⎡⎢⎣θD + 8T
(
T

θD

)3

θD
T∫

0

x3dx

ex − 1

⎤⎥⎦ ; kBθD = h̄ωD (10)

IS will decrease (when ΔR/R is negative, Fe-case) if there is:
a) a lone pair with low s character present,
b) a decrease in oxidation state of a metal centre,
c) a decrease in co-ordination number, such as for example tetrahedral sp3

versus octahedral d2sp3
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Quadrupole splitting (QS)

The expression of the isomer shift has been derived assuming a spherical
charge, but the real nucleus has a non-spherical charge density. Consequently
higher order interactions with a non-cubic distribution of ionic and/or elec-
tronic charges are possible, if the quadrupole moment Q of the nucleus is
different from zero and if the extra-nuclear (atom co-ordination) symmetry is
non cubic, the relationship is for iron as follow:

ΔEQ = e(QVzz/2)(1 + η2/3)1/2

η = (Vxx − Vyy)/Vzz

where eQ is the nuclear electric quadrupole moment, Vzz the principal
component of the Electric Field Gradient (EFG) tensor and η is the asymme-
try parameter, with specific definition of axis.

The contributions concern both the lattice and own electronic shell, there-
fore the quadrupole splitting show various values what represent “a good
finger print” for both valence and co-ordination providing accurate and reli-
able assignments, enforced within correlation with the isomer shift and the
magnetic field data

Magnetic Splitting (B)

The third hyperfine interaction corresponds to the nuclear Zeeman effect, re-
flecting interactions between the nuclear magnetic momentum and the extra-
nuclear magnetic field. This interaction occurs if there is an effective magnetic
field at the Mössbauer nucleus.

When nucleus possesses a magnetic moment (I) in the presence of a mag-
netic field B, the interaction is μNgNIB, where μN is the nuclear magneton
and gN is the nuclear gyromagnetic ratio.

In a magnetically ordered compound it contains three main contributions:

Bint = BF + BL + BD

Here BF is the Fermi contact field arising from the polarisation of the core
electrons via the exchange interactions with the valence electrons. Generally
this term is proportional to the net spin density at the nucleus. BL is the
magnetic field produced at the same nucleus by the orbital motion of the
electrons from a partially filled shell. BD is the dipolar field due to the spins
of the valence shell.

There is largely agreed that in most cases the main contribution to Bint

comes from BF , specifically in the case of ions with a half-filled shell (for
example Fe(III)). The detailed expressions of the three components could be
written, for instance in the way presented in the followings. The Fermi contact
field contribution is:
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BF =
8
3
πμB [ρ↑(0) − ρ↓(0)] (11)

where ρ(0) is the electron density with spin up or spin down.
The orbital contribution provides a field:

BL = −2μB

〈
r−3

〉
3d

〈Lz〉 (12)

While the dipolar field contribution is:

BD = 2μBq3d 〈Sz〉 (13)

q3d =< r −3 > <3 cos2 θ -1 > , where <3 cos2 θ -1 > is the angular distribution
of the electrons in partially filled shell, similar to one of quadrupole splitting.

A combined quadrupole (Q) and magnetic (M) interaction provide the

E = μNgNmIB + (−1)|mI |+1/2(e2qQ/4)(3cos2φ− 1)/2

with the symbols and parameters having the same meaning as above, while
mI is the projection of nuclear spin I along the quantization axes.

The fitted parameters provide the angle φ between the Bint and the
main Electrical Field Gradient (EFG) principal axis (Vzz), derived from the
quadrupole splitting (QS) values observed in the magnetically ordered tem-
perature region, ε, and non-ordered (paramagnetic) higher temperature region
ΔEQ, according to the formula:

ε = (ΔEQ/2)(3cos2φ− 1)

The relative intensity of theΔm = 0 lines of the sextet (specifically number
2 and 5) with respect to the Δm = 1 lines yields information on the angle
θ between Bint and γ-rays. In the case when the quadrupole interaction is
treated as a small perturbation to the magnetic one and the absorber thickness
tends to zero, for 57Fe, the relative intensities of the sextet lines, the outer,
middle and inner pairs of the sextet pattern, are given by R1 /R2/ R3 :

3 (1+cos2 θ): 4 sin2 θ : (1+cos2 θ)
The intensity ratio for random distribution is 3:2:1. The middle line ratio

could vary between 0 (moments/ B direction and γ-ray are parallel) and 4
(when they are perpendicular). The values are playing an important role in
defining the orientations of the magnetic moment directions per site.

In many cases of measurements on polycrystalline samples or powders, due
to the non-vanishing absorber thickness, existing texture and to the competi-
tive electronic mechanisms, the ratios show smaller values than the theoretical
ones, calculated from Clebsch-Gordan coefficients. When spin re-orientation
processes are present, the angle provided by the combined interaction points
towards new directions.
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Information derived from the energetic parameters:

- the number of un-equivalent positions,
- the number of order or non-ordered ones,
- the sites showing non-spherical distribution,
- their real individuality

IS provides data on:
- the electron distribution,
- the valence,
- the spin state,
- the local co-ordination,
- the change of orbital populations,
- the type of transition (first or second order)

QS supplies information about:
- the valence,
- the Crystal Field symmetry,
- the local distortions,
- the local defects,
- the spin re-orientations (joint Q and M interactions)

B presents knowledge concerning
- electron configuration,
- magnetic moment,
- spin value,
- magnetic order,
- various contributions to magnetic field, spin and transition
- magnetic transition temperature,
- spin flop processes,
- magnetic relaxation*

R2 / R3 ratio gives information
- related to spin reorientation and magnetic moment direction

4.2 Dynamic Mössbauer Parameters

Natural line width Γ

The uncertainty principle can be presented in the form:

ΔEΔt ≥ h̄ (14)
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In the following picture, the distribution of energies called a Lorentzian or
a Breit-Wigner distribution, is presented:

Fig. 2. Lorentzian distribution.

If the width of this distribution at half-maximum is labelled Γ , then the
uncertainty in energy E, could be reasonably expressed as:

ΔE = Γ =
h̄

τ
(15)

Where τ is the life time of the nuclear level and Γ is normally referred as the
”natural line width”.

The Lamb-Mössbauer factor

As mentioned above, fLM represents the fraction of gamma quanta absorbed
or emitted without recoil. Here is re-iterated expression based on Debye model,
with the same notation used above when comparing the Einstein and Debye
model for lattice vibration:

fLM = exp(−ER/h̄ωD) = exp(−ER/kBΘD) (16)

The factor appeared both in area and absorption parameters.

Absorption effect

The effect ε(v) of the absorber, is defined (in the emission spectroscopy) by
the following formula, related to maximum and minimum absorption counts
as presented in the subsequent figure.

The most relevant parameters are the Lamb-Mössbauer factor f , the ab-
sorption section σ0, the amount of isotope in the compound ca and natural
line width Γ .
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Fig. 3. Defined effect in absorption line.

ε(ν) =
N∞ −N0

N0
= 1 − T (ν)

cs.fs
α

2cA.fAσ0Z

π.Γ
(17)

Area of one pattern

There is very important parameter providing relative population of differ-
ent phases, sites or in-equivalent accommodations, being more complex but
directly related to the absorption effect:

A =

+vmax∫
−vmin

ε(ν)dναε(νa)Γ (18)

Information derived from dynamic parameters

– the population of various sites
– the relative ratios among phases
– the Debye temperature and Lamb-Mössbauer factor
– the local defects
– the solid state diffusion
– the relaxation phenomena
– the anisotropy ( magnetic, electric, vibration)
– the dynamic Jahn-Teller effects ( not the co-operative provided by ener-
getic parameters)
– the nuclear after effects

A very short survey on relaxation processes in various cases

A- Fluctuating isomer shift
B- Fluctuating field in combined magnetic and quadrupole interactions
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i) fluctuating Electric Field Gradient
ii) fluctuating magnetic field
C- Paramagnetic relaxation
i) spin–phonon processes
ii) spin-spin mechanism
D- Magnetic relaxation
i) spin-spin
ii) spin-lattice effects
E- Spin relaxation in case of quadrupole interactions
F- Super-paramagnetic limits
G- Goldanskii- Karyagyn effect

5 Mössbauer set-up

Normally a set-up is composed from three elements (as observed from the
following picture):

a. Driving system generator (pulse, ramp), amplifier (power + opera-
tional), transducer (with mounted source)
b. Nuclear Gamma detection and signal selection chain (detector, pream-
plifier, single channel analyser)
c. Acquisition/storage data device (multi-channel analyser or computer
acquisition card)

Additionally, there are devices providing external effects such as: fur-
naces, cryostats, pressure cell, irradiation facilities, solenoids for magnetic
field, etc....The few examples presented hereafter are from basic books on
Mössbauer spectroscopy but most of them are from references listed under
Ref.[6].

Fig. 4 present two alternatives: transmission with source-absorber and
detector in line or back-scattering arrangement for detecting re-emitted or
scattered gamma, X rays or conversion electron

In the figure above specific transmission and back-scattered spectra are
presented for the sake of comparison (one is truly absorption and the other is
characteristic to emission/re-emission spectra).

Basic requirements for Mössbauer Source

- emitting nuclei must be in a very symmetrical co-ordination and the ma-
trix to show no splitting or enlargement of line width at very low temperature
- accurate and homogeneous distribution of the emitting nuclei into the
matrix
- high Debye temperature of the matrix and large Mössbauer- Lamb frac-
tion
- narrow emitting line width close to natural one
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Fig. 4. Set-up description.

- adequate selection of the source activity related to specific investigations
and/or applications has to be considered

Nowadays most of (rather few) companies which are delivering Mössbauer
sources take care to provide good sources.

Essential qualities for Detectors

- Adequate efficiency for specific (for each isotope) gamma Mössbauer en-
ergy
- High counting rate derived from the filling gas type and pulse shape
- Very good energetic resolution
- Endurance/life of use (related to number of scintillation/discharges or
working ambient conditions)
- elaborate shielding system against competitive scattered radiations

The detectors could be proportional counters (most widely used), crystals
such as NaI (Tl) or Lithium drifted Ge or InP and their selection is related
with type of Mössbauer source and specific experimental condition related to
efficiency and resolution quality.
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Gamma Spectrometric Chain requirements are

- specific preamplifiers
- pulse amplifiers with large energy range and pulse characteristics
- stable single channels analysers
- integrated devices ( preamplifier +amplifier + single channel/ pulse dis-
criminator)

The following figures present the effect of filling gas for proportional coun-
ters on emission line intensity for 57Fe:

Fig. 5. Exemplification from a leaf-let of proportional counter producer: (left) One
atmosphere (97% Krypton - 3% CO2) and anode voltage of 1.8 kV. (right) One
atmosphere (97% Xenon - 3% CO2) and anode voltage of 2 kV.

Driving systems assuring the relative velocity, involve several
characteristics

- High quality electro-mechanical performances
- Very precise and flexible electronic control
- Attached calibration units, when possible
- Warranted linearity for main types of driving wave form: sinusoidal,
triangular- symmetrical, saw tooth
- Easy settings optimal conditions
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- Adequate velocity range, depending on Mössbauer isotopes to be used
- Precise protection against vibrations of building or incidentally induced
by co-lateral daily activities

Acquisition systems options

- independent multi channels acquisition systems
- Computer plug-in card with various functions
- Incorporated system of spectroscopic chain and acquisition

The following picture describes the main elements of a performing driving
system:

Fig. 6. Home made vibrator/transducer: 1.Diaphragm, 2. Plates, 3.Coils, 4.Perma-
nent magnet, 5.Rod, 6.Source.

One coil is the excitation signal and the second is the control signal one,
the perfect movement being controlled by power amplifier (see above) which
permanently compare and ensures the wave form accuracy.

Absorbers and thickness effects

This is a very important matter in the optimisation (acquisition time, large
effects, avoiding the increase of experimental line width, etc) of a Mössbauer
experiment. Normally the absorption of gamma rays is given by
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ε(ν) =
N∞ −N0

N0
(19)

where N0 = N∞ exp(−μx)+NB , NB is the radiation background μ the linear
absorption coefficient and x the thickness of the absorber.

Fig. 7. Absorption related with transmission and radiation background.

This type of absorption is related with electronic configuration of ions
or atoms and is always used in the form (μ/ρ) (ρ.x) where the ratio could
be found in tables of gamma absorptions per elements and the product is
providing the thickness of the absorber in mg per cm2.

The thickness could be derived from the product μx = 1−2, meaning that
the absorption in the sample decrease the intensity of emergent radiations by
a roughly factor between 3 and 7. Depending on specific arrangement the μx
value can be taken around 1.3.

Another approach is related to restrict the experimental line width en-
largement to maximum 20% from the natural line width value:

Γapp/Γ = 2 + 0.27nafσ0

(then restricted to additional maximum 20 %). Here n is the number of atoms,
a the abundance, f - Lamb-Mössbauer factor and σ0 the absorption section.
From this relation another value for absorber thickness could be derived as
well.

There is known an already custom recommendation of 10 mg/cm2 of Fe
related to the thickness absorber and the total amount (derived thickness) is
calculated taking into account the holder area and the percentage of Fe in the
sample molecular formula. This simple rule does not work when compounds
contain heavy absorbing elements (Ba, Pb) or competitive X-ray emitting
energy (close to 14.4 KeV for Fe) as in the case of Ga !!
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6 Presentation of selected experiments

With isotopic sources (for example 57Fe, 119Sn or 151Eu) two types of experi-
ments could be realized (as already mentioned above) :
a. in a transmission arrangement where the quanta are passing through
absorber to reach detector placed on their way
b. in a scattering geometry ( mostly back scattered) when detector ac-
commodate the absorber and the pulses are generated either by conversion
electrons, X-rays or by gamma rays.

The back scattering is recommended for thin layers or when a depth se-
lective investigation of surface formed phases is envisaged. For an optimized
detection of one specific from various emerged radiations the gas filling of
detector is of a great importance (see Fig.5 above).

Fig. 8. Energies of various emissions of 57Fe atom and nucleus.

In the next figure an example of a very simple CEMS (Conversion electron
spectroscopy) counter is shown.
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Fig. 9. Simple CEMS detector

Fig. 10. Effect of electron delocalization on the quadrupole splitting

7 Selected examples for the influence of external factors
on Mössbauer spectra

7.1 Temperature Effect

The temperature dependence Mössbauer spectra provided an almost ex-
haustive range of information concerning all types transition (crystallographic,
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order-disorder, magnetic, spin, electron flop), mechanisms (donor-acceptor, re-
laxation, anisotropic coupling or vibration, Jahn-Teller distortion) or change
in orbital population and valence. This is obviously the one more consistently
reported.

Fig. 11. Effect of spin crossover on Mössbauer spectra.
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One particular example of an electronic process seen via Mössbauer spec-
troscopy is the delocalization of the electron among a tri-nuclear core of Fe3+

2 -
Fe2+. The electron hopping increases in frequency with temperature and mod-
ifies the electron population on the orbitals, which determines the individual
quadrupole splitting of each iron species. Fig. 10 shows the quadrupole split-
tings of Fe3+ and Fe2+ decreasing with increasing temperature, until 300 K
where only one species is seen in the Mössbauer time window.

A more currently mention of the temperature effects is related to spin
crossover transition from high spin (HS)to low-spin (LS) states. Typical spec-
tra showing transition from S=2 to S=0 for Fe2+ are presented in the next
figure.

Another example proves the behaviour of three iron sites in the pyrochlore
structure showing very distinct spin-spin relaxation versus temperature.

Fig. 12. Effect of spin-spin relaxation on Mössbauer spectra

7.2 Pressure effect

Pressure cells are often used in Mössbauer spectroscopy as they allow to obtain
specific relevant data. The example in Fig. 13 shows the reduction of Fe ion
valence under the applied pressure.
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Fig. 13. Mössbauer spectra of iron(III) phosphate showing the electron transfer
which takes place at high pressure.

7.3 Effect of an external magnetic field

The applied field is used to investigate the magnetic properties. Few very
relevant examples are shortly described in the next paragraphs.

Fig. 14. Effect of spin re-orientation on Mössbauer spectra.
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Spin reorientation can occur in a canted antiferromagnet when magnetic
fields of increasing magnitude are applied, as shown in the next figure. At B
=0 T the direction of magnetic moment is perpendicular to incident γ-rays, as
derived from the value 4 for the ratio between middle and inner line pairs. The
two canted sublattices (two sextets) are better evidenced with increasing field
until there is a re-orientation to a direction parallel to the incident γ-rays, as
proven by the absence of second and fifth lines (middle pair).

Another example of canting, this time in a ferromagnet, is provided by Fe-
phthalocyanine (FePc) giving in the absence of applied field the largest value
reported for the hyperfine field for Fe in an S=1 state. Another unusual aspect
is that both sub-lattices appearing under applied field show an increase in the
local field with the external field. This was explained by the fact that in that
peculiar case the resulting magnetic field at nucleus is positive and coming
from a huge orbital and dipolar contributions which surmount the negative
spin contribution.

Fig. 15. Mössbauer spectra in Fe-phthalocyanine in external magnetic field.

A more striking effect is that the resulting field observed under external
applied field is higher than algebraic sum of the two components, namely
the hyperfine field on Fe and the applied magnetic field. The only reliable
explanation is an increased orbital contribution under applied field.



Basic principles of Mössbauer spectroscopy and applications 245

Fig. 16. Effective field at Fe nucleus vs. the external magnetic field in Fe-
phthalocyanine.

7.4 Irradiation

Some of the more interesting phenomena are those produced by irradiation, ei-
ther with particle (electron, neutron, heavy nuclei) or rays (gamma, monochro-
matic light or micro-waves). The present example is showing the rotation in-
side a molecular crystal of Fe with 8-hydroxyquinoline. Below are presented
two possible packing of the molecule in a either ”cis” or ”trans” arrangement.
The synthesis provides the cis version with inequivalent bonds, inducing an
anisotropy in Lamb-Moossbauer factor. Accordingly different areas and line-
widths are observed for the paramagnetic doublet.

Under irradiation, the two lines become more and more equal in their pa-
rameters. The process is more evident for the irradiation with 2 MeV electrons
than for gamma irradiation at 1.2 MeV from a 60Co source. The following fig-
ures show the Mössbauer spectra and the evolution of area and line width of
each of the two components line of the doublet. Finally, when the lines have the
same parameters the molecule is completely rotated in the trans-configuration
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Fig. 17. Effect of irradiation on Mössbauer spectra.

Fig. 18. Mössbauer parameters vs. the electron irradiation time: (top) I1/I2 ratio
(open circles) and relative area (closed circles); (bottom) linewidths Γ1 and Γ2.
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1. R. L. Mössbauer, Naturwissenschaften 45, 538 (1958)
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1 Mössbauer cross section line shape

The resonant absorption of gamma rays, emitted by nucleus of particular
isotopes embedded in solid state matrices, was discovered and explained in
1957 by Rudolph Mössbauer. From the time when it was discovered, scientists
have used the Mössbauer effect to investigate valence states, structure and
bonding properties in solid state materials. Moreover, vibrational properties
and dynamics of the hyperfine fields have been investigated.[1][2][3]

Usually, the spectrum consists of a set of sharp lines. This is true only if,
within the lifetime of the nuclear states, the hyperfine interaction is practically
stationary. Two opposite situations give rise to such result.

The first case occurs when the lifetime of the electronic state is much
greater than the nuclear one. The second one is characterized by the opposite
situation. In fact, in the first case the nucleus sees the hyperfine fields pro-
duced by each single electronic level, in the second case it sees the mean value
of hyperfine fields generated by all the electronic levels. In both cases the hy-
perfine fields are defined and time independent. In the intermediate situation
the shape of the spectrum can be very complex and reflects the dynamics of
the electronic levels.

Previous considerations give rise to the time window for the electronic
dynamics that can be studied by Mössbauer spectroscopy. For the common
case of the Fe57 we have 10−5 ÷ 10−11 sec [Section 5].

The functional dependence of the Mössbauer spectrum on the source ve-
locity v is given by [2]

Y (v) = F (v)
{

1 − fs

1 +B

∫ ∞

−∞
L(ω − v, Γs)[1 − exp(−taσ(ω))]dω

}
(1)

where F (v) is the background function, not very dependent on v. Moreover
L(ω, Γs) is the line shape of the source characterized by the linewidth value
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Γs, σ(ω) is the Mössbauer absorption cross section, ta indicates the sample
thickness and fs is the source Mössbauer f factor . Finally, B depends on the
detected spurious counts.

This chapter is devoted to the evaluation of the Mössbauer spectrum line
shape in presence of transitions among electronic states.

In the present section, we derive a general expression for the absorption
cross section σ(ω). Subsequent sections, taking into account electronic states
and involved interactions, will be devoted to the application of the derived
expression in the case of time dependent hyperfine interactions.

The usual perturbation theory states that the probability amplitude for
an absorption transition from the ground state |mg〉 to a final excited state
|me〉 is given by [4]

ame,mg
(t) = −i

〈
me

∣∣A†∣∣mg

〉 ∫ t

0

exp[−i(ω − ωme
+ ωmg

)τ − Γa

2
τ ]dτ (2)

where Γa is the linewidth of the excited state and the energies are expressed
in units h̄ = 1. MoreoverA† represents the operator describing the absorption
of a gamma ray by the nuclear system. From this expression we obtain

ame,mg
(∞) =

〈me|A†|mg〉
−ω + ωme

− ωmg
+ iΓa

2

Consequently, the transition probability is expressed by

P =
〈mg |A|me〉

〈
me

∣∣A†∣∣mg

〉(
−ω + ωme

− ωmg
− iΓa

2

) (
−ω + ωme

− ωmg
+ iΓa

2

) (3)

Now by using the relation

1(
Δω − iΓa

2

) (
Δω + iΓa

2

) =
1
iΓ a

(
1

Δω − iΓa

2

− 1
Δω + iΓa

2

)

we obtain

P =
2
Γa

�
{
〈mg |A|me〉

〈
me

∣∣A†∣∣mg

〉
i(−ω + ωme

− ωmg
) + Γa

2

}

where �{a} indicates the real part of a.
By summing contributions from all possible ground and exited states |mg〉

and |me〉 we obtain the absorption cross section.

σ(ω) =
2
Γa

�

⎧⎨⎩∑
mg

ρmg

∑
me

〈mg |A|me〉
〈
me

∣∣A†∣∣mg

〉
i(−ω + ωme

− ωmg
) + Γa

2

⎫⎬⎭ (4)
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where ρmg
represents the thermal occupation probability for the generic

ground state.
Posing p = −iω + Γa

2 , using the relation

〈mg|A|me〉
i(−ω + ωme

− ωmg
) + Γa

2

=
∫ ∞

0

e−pt〈mg|A(t)|me〉dt

and the completeness of the base states, we finally find the general expression
for the Mössbauer absorption cross section

σ(ω) =
2
Γa

�

⎧⎨⎩∑
mg

ρmg

∫ ∞

0

e−pt
〈
mg

∣∣A(t)A†(0)
∣∣mg

〉
dt

⎫⎬⎭ =

=
2
Γa

�

⎧⎨⎩∑
mg

∫ ∞

0

e−pt
〈
mg

∣∣ρA(t)A†(0)
∣∣mg

〉
dt

⎫⎬⎭ (5)

We note that the derived expression contains a Trace; consequently any
complete set of base states can be used to evaluate Eq. 5.

2 Time dependent hyperfine interactions and the
relaxation superoperator

When transitions among electronic levels occur, we must consider the struc-
ture of the states and of the involved interactions.

The quantum system is composed of the gamma radiation field, the nu-
cleus, the surrounding atomic electrons and, finally, of the states describing
the thermal bath. The nucleus interacts with the gamma radiation field; more-
over, it also interacts with the electrons through hyperfine interaction. Lastly,
electronic states interact with the thermal bath.

The energy values connected with the hyperfine interaction are much
smaller than the typical energy differences among the electronic levels; so
that, it is usual to consider the hyperfine interaction operator as diagonal on
the electronic states. In other terms, magnetic fields and E.F.G. tensors are
considered as expectation values, evaluated for each electronic state, instead
of quantum operators acting on the electronic states.

In the following we indicate the atomic Hamiltonian by

Hat(t) = Hne(t) +Hhyp(t) = (Hn(t) +He(t)) +Hhyp(t) (6)

where the subscripts n, e and hyp denote respectively the nuclear, elec-
tronic and hyperfine components. Moreover, indicating by Hb the thermal
bath Hamiltonian and byHe−b the electron-bath interaction, the total Hamil-
tonian takes the form
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H(t) = Hat(t) +Hb(t) +He−b(t) (7)

Taking into account that Eq. 5 contains a Trace, the base states of the
system are usually chosen as the product of the eigenstates describing the
various subsystems. A common choice is

|ψ〉 = |I, Iz〉 |ϕi〉 |n〉 (8)

where |I, Iz〉 represents the nuclear quantum state, |ϕi〉 indicates the ith elec-
tronic level and finally |n〉 denotes the state of the thermal bath. We stress
that the atomic base states |I, Iz〉|ϕi〉 are eigenstates of Hne(t), but not nec-
essarily they are also eigenfunctions of Hat(t).

The Eq. 5 contains the density matrix that depends on the whole Hamil-
tonian. It is however possible to forget contributions to ρ due to Hhyp and
He−b. Such approximation is physically correct if electron-bath and hyperfine
interactions do not significantly change the occupation probabilities. Under
such hypothesis, we write ρ � ρatρb, where ρat and ρb respectively depend on
the atomic and bath Hamiltonians.

The operator A†(0) does not act on the thermal bath states, so the ab-
sorption cross section can be rewritten as

σ(ω) =
2
Γa

�
{∫ ∞

0

e−ptT rat[ρat〈A(t)〉bA†(0)]dt
}

(9)

where 〈A(t)〉b and T rat respectively represent the average of the A(t)
operator over the thermal bath and the Trace over the atomic states.

In order to treat in a simple and condensed way the time dependence of
A(t), is it useful to introduce the Liouville operator [Appendix 1] related to
the Hamiltonian of the system (Eq. A.10). This way we can write the matrix
elements of the operators A(t) and A(p) as linear combinations of those of
A(0). We obtain A(t) = eiH

xtA(0) and (p − iHx)A(p) = A(0), where A(p) is
for the Laplace transform of A(t).

Eq. 9 contains the Laplace transform of 〈A(t)〉b. To evaluate Aat(p) =∫ ∞
0
e−pt〈A(t)〉bdt, we divide the Hamiltonian in two parts, by separating the

term He−b. Moreover we introduce the projection operator P which, applied
to a generic operator M returns its thermal average over the bath states |n〉.

H = Hat +Hb +He−b = H1 +He−b

PM = 〈M〉b =
∑
n,m

ρn,m 〈m|M |n〉 (10)

Obviously P 2 = P and P (1 − P ) = 0.
Applying P and (1 − P ) to (p− iHx)A(p) = A(0) we obtain the equation

system {
P (p− iHx)A(p) = A(0)
(1 − P ) (p− iHx)A(p) = 0 (11)
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The thermal average of the Laplace transform of the nuclear-radiation in-
teraction Hamiltonian can be written as Aat(p) = PA(p); where the index
denotes the system on which the operator acts. Moreover, defining the differ-
ence operator Ad(p) = A(p)−Aat(p) = (1−P )A(p) and resolving the system
for Aat(p), we obtain

{p − iPHxP + PHx[p− i(1 − P )Hx]−1 (1 − P )HxP }Aat(p) = A(0) (12)

Since [Hb, Aat(p)]− = 0, we have Hb
xAat(p) = 0 ; moreover [P,Hat

x]− = 0
because Hat

xdoes not operate on the thermal bath. Using these properties,
the Eq. 12 is rewritten as

{p−i (Hat
x + 〈He−b〉b

x)+PHx[p− i(1 − P )Hx]−1 (1 − P )He−b
x }Aat(p) = A(0)

(13)
Thus we have for Aat(p):

Aat(p) = [p− i (Hat
x + 〈He−b〉b

x) +R(p)]−1
A(0) (14)

where we introduced the relaxation operator R(p), defined as

R(p) = PHx[p− i(1 − P )Hx]−1 (1 − P )He−b
x (15)

To obtain useful expressions for the relaxation superoperator, we consider
the series expansion [p−i(1−P )Hx]−1 = 1

p (1+
∑
n

( i
p )

n
[(1 − P )Hx]

n
), and we

observe that PHx(1−P ) = P (Hat
x +Hb

x +He−b
x)(1−P ) = PHe−b

x(1−P )
So that, we obtain

PHx[p− i(1 − P )Hx]−1 (1 − P )He−b
xAat(p) =

= PHx(1 − P )[p− i(1 − P )Hx]−1 (1 − P )He−b
xAat(p) =

= PHe−b
x(1 − P )[p− i(1 − P )Hx]−1 (1 − P )He−b

xAat(p)

and, consequently

R(p) = PHe−b
x(1 − P )[p− i(1 − P )Hx]−1 (1 − P )He−b

xP (16)

The absorption cross section is then given by

σ(ω) =
2
Γa

�
{
T rat[ρat(G(p)−1

A(0))A(0)†
]}

(17)

where G(p)−1 = [p− i(Hat
x + 〈He−b〉b

x) +R(p)]−1 . If the diagonal ele-
ments of the electron-bath interaction Hamiltonian are zero, we finally obtain

G(p)−1 = [p− iHat
x +R(p)]−1 (18)

Eq. 14 expresses the matrix elements of Aat(p) as linear combination of
those of A(0) and Eq. 18 allows us to evaluate the involved coefficients. The
Mössbauer cross section, Eq. 17, depends on the dynamical properties of the
electronic states through R(p) that makes Aat(p) able to operate on electronic
levels; in fact A(0) does not operate on them.
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3 Evaluation of the relaxation superoperator matrix
elements

In order to evaluate the derived expressions, we use the base states expressed
by Eq. 8. In particular we write |ψg〉 = |μ〉|i〉 and |ψe〉 = |ν〉|i〉 for atomic
states respectively characterized by nuclear ground and exited levels. Where
|i〉 denotes the electronic state and |μ〉, or |ν〉, represents the nuclear eigen-
function. This way, Eq. 17 is rewritten as

σ(ω) =
2
Γa

�

⎧⎨⎩∑
μ,i

ρat(μ, i)
∑

ν

〈μ, i|G(p)−1
A(0)|ν, i〉〈ν, i|A(0)†|μ, i〉

⎫⎬⎭ (19)

where we also considered that the nuclear-radiation operator A(0)† does
not act on the electronic states.

Moreover, denoting by |μ′
, i

′
; ν

′
, i

′〉 the generic decay transition |μ′
, i

′〉〈ν′
, i

′ |,
one has

〈μ, i|G(p)−1
A(0)|ν, i〉 =

∑
μ′ ,ν′ ,j

〈μ, i; ν, i|G(p)−1|μ′
, j; ν

′
, j〉〈μ′

, j|A(0)|ν′
, j〉

(20)
By ordering the transitions, the elements of A(0) can be written as a

column vector and the superoperator G−1takes the form of a square matrix
whose order is equal to the total number of transitions. For example, in the
case of Fe57, one has eight transitions for each electronic state.

Instead of directly evaluating the matrix elements of G−1, the more suit-
able procedure consists of the evaluation of the eigenvalues and eigenvectors
of G and G†and in the subsequent reconstruction of G−1[5][6].

For this reason let us now consider the superoperator G(p) = p− iHat
x +

R(p).
It is formed by three terms. The first one, containing the natural linewidth

and the independent variable ω, is diagonal. The second one describes the hy-
perfine interaction; as mentioned, we assume that it does not connect transi-
tions between base states having different electronic parts, so that it is charac-
teristic of each electronic state and depends also on eventually applied external
fields.

Finally the last term, depends both on the electron-bath interaction and
on the total Hamiltonian. Moreover it depends on the natural linewidth Γa

and on the independent variable ω.
In order to evaluate the matrix elements of the relaxation operator, a few

approximations must be introduced.
To discuss them it is useful to write

R(p) = PHe−b
x(1 − P )[p− i(1 − P )Hx]−1(1 − P )He−b

xP =
∫ ∞

0

e−ptR(t)dt

where



Line shape of Mössbauer relaxation spectra 255

R(t) = PHe−b
x(1 − P )e(i(1−P )Hxt)(1 − P )He−b

xP (21)

To deduce the matrix elements of R(t), we use the general rule of Eq. A.5
by applying the superoperator to the general operator |μ, i;n〉〈ν, j;m|, where
n and m denote generic bath states. The application of P to |μ, i;n〉〈ν, j;m|
gives an operator that works only on the electronic and nuclear parts.

In fact P |μ, i;n〉〈ν, j;m| =
∑
m,n

ρnm|μ, i;n〉〈ν, j;m| = |μ, i〉〈ν, j|

Now, by applying He−b
x one has

He−b
x|μ, i〉〈ν, j| = He−b|μ, i〉〈ν, j| − |μ, i〉〈ν, j|He−b

and the subsequent application of (1 − P ) gives

(1 − P )He−b
x|μ, i〉〈ν, j| = He−b|μ, i〉〈ν, j| − |μ, i〉〈ν, j|He−b −

−P (He−b|μ, i〉〈ν, j| − |μ, i〉〈ν, j|He−b)

If He−b does not contain diagonal elements on the bath states

P (He−b|μ, i〉〈ν, j| − |μ, i〉〈ν, j|He−b) = 0

so that

(1 − P )He−b
x|μ, i〉〈ν, j| = He−b|μ, i〉〈ν, j| − |μ, i〉〈ν, j|He−b

The subsequent application of e(i(1−P )Hxt) means that we must consider
the temporal evolution of the operator (1−P )He−b

x|μ, i〉〈ν, j| due to the total
Hamiltonian that, we note, also contains electron-bath terms. It is however
physically correct to introduce the lifetime τb of the bath states and to not
consider the contribution of He−b to the temporal evolution. In fact, bath
states interact not only with the considered ion, but with all the ions existing
in the compound. Moreover the description of the bath states is in every case
approximate. Consequently it is correct to introduce a decay time for the bath
states; furthermore He−b can be omitted because the time constants involved
in the electron-bath term are obviously much greater than τb.

Thus, eliminating He−b from the argument of the exponential and using
the usual power expansion we have

e(i(1−P )Hxt) � e(i(1−P )(Hat+Hb)
xt) = 1 +

∑
n

(i(1 − P )(Hat +Hb)t)
n

n!

Considering the general term of the series, it is easy to see that

(1 − P ) e(i(1−P )(Hat+Hb)
xt)(1−P )He−b

x |μ, i〉 〈ν, j| = e(iHat
xt)He−b

x |μ, i〉 〈ν, j|

where Hat contains both electronic and nuclear terms. Consequently one
has
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R(t) |μ, i;n〉 〈ν, j;m| = PHe−b
xe(iHat

xt)He−b
x |μ, i〉 〈ν, j| =

= e−iωμ,νtP [He−b,He−b(t) |μ, i〉 〈ν, j| − |μ, i〉〈ν, j|He−b(t)]− =

= e−iωμ,νtP{He−bHe−b(t)|μ, i〉〈ν, j| −He−b|μ, i〉〈ν, j|He−b(t) −
−He−b(t)|μ, i〉〈ν, j|He−b + |μ, i〉〈ν, j|He−b(t)He−b}

where ωμ,ν = ωμ − ων and the temporal evolution of He−b(t) is due to
the electronic Hamiltonian.

Let us now consider the interaction Hamiltonian He−b as a product of two
terms[7]; the first one, denoted by S, acts on the electronic states and the
second one, indicated by F , works on the bath:

He−b = S · F (22)

Under such hypothesis and, moreover, supposing that |ωj − ωi| � 0 we
write

R(t) |μ, i;n〉 〈ν, j;m| =
= e−iωμ,νt {〈F (0)F (t)〉b[S(0)S(t) |μ, i 〉 〈ν, j |−S (0) |μ, i 〉 〈ν, j |S(t)]−

−〈F (0)F (t)〉b
∗[S(t) |μ, i 〉 〈ν, j |S(0) − |μ, i 〉 〈ν, j |S(t)S(0)]}

where 〈F (0)F (t)〉b = P (F (0)F (t)) = 〈F (0)2〉be−t/τb depends exponen-
tially on the time and the electronic Hamiltonian He determines the time
dependence of S(t).

Since the S operator does not act on the nuclear states, we have

R(t)|μ, i;n〉〈ν, j;m| =
= e−iωμ,νt{〈F (0)F (t)〉b[S(0)S(t)|i〉〈j| − S(0)|i〉〈j|S(t)] −

−〈F (0)F (t)〉b
∗[S(t)|i〉〈j|S(0) − |i〉〈j|S(t)S(0)]} |μ〉〈ν|

and, introducing the completeness, we obtain:

R(t)|μ, i;n〉〈ν, j;m| =

= e−iωμ,νt{〈F (0)F (t)〉b[
∑

k

S(0)|k〉〈k|S(t)|i〉〈j| − S(0)|i〉〈j|S(t)] −

−〈F (0)F (t)〉b
∗[S(t)|i〉〈j|S(0) −

∑
k

|i〉〈j|S(t)|k〉〈k|S(0)]} |μ〉〈ν|

Consequently, we get the following expression for the matrix element of
the relaxation superoperator R(t)

〈μ′
, i

′
; ν

′
, j

′ |R(t)|μ, i; ν, j〉 = δμ,μ′ δν,ν′ e−iωμ,νt ·
·{〈F (0)F (t)〉b[

∑
k

〈i′ |S(0)|k〉〈k|S(t)|i〉δj,j′ − 〈i′ |S(0)|i〉〈j|S(t)|j′〉]−
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−〈F (0)F (t)〉b
∗[〈i′ |S(t)|i〉〈j|S(0)|j′〉 −

∑
k

δi,i′ 〈j|S(t)|k〉〈k|S(0)|j′〉]} (23)

Let us discuss the obtained result. We first note that the Relaxation super-
operator only connects transitions characterized by identical changes in the
nuclear part of the base states.

Let us now consider the time dependence of the superoperator matrix
elements. They are composed of a sum of terms whose general time dependence
is given by e−iωμ,νte−t/τbeiωet, where ωe is the energy difference between two
electronic states. The Laplace transform of the general term is given by∫ ∞

0

e−pte−t/τbe−iωμ,νteiωetdt =
1

−i(ω − ωμ,ν + ωe) + 1
τb

+ Γa

(24)

and contains the difference ω−ωμ,ν , where ω is associated with the value
of the source velocity and ωμ,ν depends on the particular nuclear transition.
To introduce useful approximations, the orders of magnitude for the quantities
appearing in Eq. 24 must be considered.

For the case of the Fe57, we have[3][1][7][8]:

ω − ωμ,ν ≈ (11.62MHz · sec /mm) · 10mm/ sec ≈ 108Hz

Γa � (11.62MHz · sec /mm) · 0.1mm/ sec ≈ 106Hz

ωe < KB300 ≈ 1013Hz
1
τb

∼ 1011 ÷ 1013Hz

It is clear that Γa can be surely omitted. Moreover, considering the value
for the lifetime of the bath states, the dependence of the Relaxation operator
on ω − ωμ,ν can also be neglected: white noise approximation (WNA). In
such a case, the relaxation operator depends on the Laplace transform of
the electron-bath interaction, evaluated at frequencies equal to the energy
separations among the electronic levels.∫ ∞

0

e−pte−t/τbe−iωμ,νteiωetdt � 1
−iωe + 1

τb

=
iωe + τb

−1

ωe
2 + τb−2

The WNA approximation is of great practical importance and it has been
applied in the interpretation of virtually every experimentally measured Möss-
bauer spectrum, although its limitations have been realized[8]. In the frame-
work of this approximation, the value of the Relaxation superoperator be-
comes independent of p and, consequently, of the velocity values associated to
the distinct channels of the Mössbauer spectrum.

G(p) � p− iHat
x +R(0) (25)

Finally, if the energy values of the electronic states are close each other,
it is also possible to neglect the ωe terms with respect to τb

−1; so that the
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relaxation operator depends on the Laplace transform of the electron-bath
interaction evaluated at zero frequency∫ ∞

0

e−pte−t/τbe−iωμ,νteiωetdt � τb

This situation is very usual, so that we restrict our discussion to such a
case, obtaining:

〈μ′
, i

′
; ν

′
, j

′ |R(p)|μ, i; ν, j〉 =
∫ ∞

0

e−pt〈μ′
, i

′
; ν

′
, j

′ |R(t)|μ, i; ν, j〉dt �

� δμ,μ′ δν,ν′ · τb〈F 2〉b{[
∑

k

〈i′ |S|k〉〈k|S|i〉δj,j′ − 〈i′ |S|i〉〈j|S|j′〉] −

−[〈i′ |S|i〉〈j|S|j′〉 −
∑

k

δi,i′ 〈j|S|k〉〈k|S|j
′〉]}

Eq. 20 does not contain transitions among different electronic states; con-
sequently the relevant elements of the relaxation operator are

〈μ, i; ν, i|R(p)|μ′
, j; ν

′
, j〉 � δμ,μ′ δν,ν′ · τb〈F 2〉b·

·2{
∑

k

〈i|S|k〉〈k|S|i〉δi,j − |〈j|S|i〉|2} (26)

In particular, the diagonal elements on the electronic states, are given by

〈μ, i; ν, i|R(p)|μ′
, i; ν

′
, i〉 � δμ,μ′ δν,ν′ · τb〈F 2〉b · 2

∑
j �=i

|〈j|S|i〉|2 (27)

Moreover the non diagonal ones are expressed by

〈μ, i; ν, i|R(p)|μ′
, j; ν

′
, j〉 � −δμ,μ′ δν,ν′ · τb〈F 2〉b · 2|〈j|S|i〉|

2 (28)

In the general case, id est for |ωj − ωi| ≥ KBT , the second member of

previous equations contains the multiplicative factor exp
(
− (ωj−ωi)

2KBT

)
. More-

over 〈F 2〉b depends on |ωj − ωi| and the approximation ωe � τ−1
b must be

reconsidered. Finally, we note that the following sum rule is verified

〈μ, i; ν, i|R(p)|μ′
, i; ν

′
, i〉 = −

∑
j �=i

〈μ, i; ν, i|R(p)|μ′
, j; ν

′
, j〉 (29)

The temperature dependence of the elements of R(p) is mainly due to
〈F 2〉b. The mean value of F 2 depends on the temperature for two reasons :
first of all, it contains the occupation probability for the various states of the
thermal bath, secondly the matrix elements of the F operator depend on the
temperature thought the occupation numbers of the involved states. It must
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be also noted that an additional dependence on the temperature is due to the
bath state lifetime τb. The non diagonal elements of R(p) are proportional
to the transition probabilities among the electronic states |i〉 and |j〉. They
exhibit identical temperature dependence and differ each other by the matrix
elements 〈i|S|j〉 of the spin part of the interaction Hamiltonian; so that they
can be considered as proportional to each other.

The diagonal elements, expressed by Eq. 27, are proportional to the sum
of the transition probabilities from the considered level to a different generic
state, so that they express the total probability of leaving the considered
electronic level.

Usually, the fitting procedure of the Mössbauer spectrum uses τb〈F 2〉b as
the free parameter connected with dynamical properties. Alternatively, one of
the non diagonal elements of R(p) may be used.

4 Cross section evaluation

The expression for the absorption cross section is given by Eq. 19 and Eq.
20, where the matrix elements of the G superoperator, defined by Eq. 25, are
given by

〈μ, i; ν, i|G(p)|μ′
, j; ν

′
, j〉 �

� pδμ,μ′ δν,ν′ δi,j′ − i〈μ, i|(Hat
x|μ′

, j〉〈ν′
, j|)|ν, i〉 + 〈μ, i; ν, i|R(0)|μ′

, j; ν
′
, j〉 =

= pδμ,μ′ δν,ν′ δi,j − i (〈μ, i|Hat|μ
′
, i〉δν,ν′ δi,j − 〈ν′

, i|Hat|ν, i〉δμ,μ′ δi,j) +

+δμ,μ′ δν,ν′ · τb〈F 2〉b2�{
∑

k

〈i|S|k〉〈k|S|j〉δi,j − |〈i|S(t)|j〉|2}

By ordering the transitions, first considering the electronic levels and then
the nuclear states, the whole matrix is divided into square blocks having di-
mensions equal to the number of nuclear ground states multiplied by the num-
ber of excited ones. Each block corresponds to an ordered couple of electronic
levels. In the case of Fe57 the dimensions of the square blocks are 8 · 8.

The superoperator G consists of three parts. The first and second parts
only contribute to diagonal blocks. The third part contributes to the diagonal
elements of all blocks, both diagonal and not.

Table 1 shows the structure of the G superoperator in the case of three
electronic levels. p = (−iω + Γa/2)δμ,μ′ δν,ν′ δi,j denotes diagonal 8 · 8 blocks.
Moreover Hx

at(i) = 〈μ, i|Hat|μ
′
, i〉δν,ν′ − 〈ν′

, i|Hat|ν, i〉δμ,μ′ denotes the 8 ·
8 square blocks containing the contributions from the hyperfine interaction
corresponding to the ith electronic level and to external equipments. Finally
Ri,j indicates diagonal 8 · 8 blocks, defined by Ri,j = δμ,μ′ δν,ν′ · τb〈F 2〉b ·
2�|〈i|S|j〉|2.

The ordering of the electronic level is obviously arbitrary, nevertheless it
can be useful to utilize an electronic level sequence based on the energy values.
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Table 1. Structure of the G matrix in the case of three electronic states. See text
for symbols.

1 2 3

p − iHx
at(1) + R1,2 + R1,3 −R1,2 −R1,3

−R2,1 p − iHx
at(2) + R2,1 + R2,3 −R2,3

−R3,1 −R3,2 p − iHx
at(3) + R3,1 + R3,2

The explicit expression for the atomic hamiltonian depends on the chosen
quantization direction. In our case the electric interaction does not depend
on the time; consequently, the principal axes of the E.F.G. tensor appear to
be good candidates for the direction of quantization. This way, the atomic
hamiltonian is written as

Hat(i) = Hn +He +Hhyp = Hn +He(i) +
(
δI.S.
ν (i)δn,ν + δI.S.

μ (i)δn,μ

)
+

+
Δ(i)

6

[
3I2

z − I(I + 1) +
η(i)
2

(
I2
+ + I2

−
)]

−

− (gνδn,ν + gμδn,μ)μn

[
Bz(i)Iz +

1
2

(B−(i)I+ +B+(i)I−)
]

(30)

where
(
δI.S.
ν (i)δn,ν + δI.S.

μ (i)δn,μ

)
gives rise to the Isomer Shift. Moreover the

Electric Quadrupolar Interaction is expressed in terms of Δ = e2qQ
2 and of

the E.F.G. asymmetry parameter η. Furthermore Bz, B+ and B− denote the
components of the magnetic field acting on the nucleus, containing contribu-
tions arising from the ith electronic state and from external sources. Finally
μn indicates the nuclear Bohr magneton; gg , ge are the nuclear gyromagnetic
factors for |μ〉 and |ν〉 nuclear states and δn,ν , δn,μ respectively identify the
proper terms for exited and ground nuclear states.

Obviously, Hn and He do not contribute to the relevant matrix elements
of Hx

at so that the structure of the Hx
at(i) matrix is as shown in Table 2 and

Table 3, where we also omitted the I.S. terms.
Tables 2 and 3 report the quantities γi,j , defined as γi,j = γ2μ,2ν = (ggμ−

geν) where μ, ν indicate the Iz components for |μ〉 and |ν〉 nuclear states.
As mentioned, to obtain the matrix elements of G−1, the G matrix must

be diagonalized. In the following we denote by VLα and VRα the left and right
eigenvectors of G for ω = 0; moreover ωα indicates the corresponding eigenval-
ues. As the G matrix is non hermitian, left eigenvectors differ from the right
ones and eigenvalues ωα are complex numbers[6][9]. From these quantities it
is possible to reconstruct the G−1 operator.

We have G−1 =
∑
α

VRα×VL∗
α

−iω+ωα
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Table 2. Structure of the iHx
atmatrix ( first four columns ). See text for symbols.

| 1
2
, 3

2
〉 | 1

2
, 1

2
〉 | 1

2
,− 1

2
〉 | 1

2
,− 3

2
〉

iΔ
2

+ iμnBzγ1,3 −iμnge

√
3

2
B+ iΔ

6
η
√

3 0

−iμnge

√
3

2
B− −iΔ

2
+ iμnBzγ1,1 −iμngeB+ iΔ

6
η
√

3

iΔ
6

η
√

3 −iμngeB− −iΔ
2

+ iμnBzγ1,−1 −iμnge

√
3

2
B+

0 iΔ
6

η
√

3 −iμnge

√
3

2
B− iΔ

2
+ iμNBzγ1,−3

+iμngg
1
2
B+ 0 0 0

0 +iμngg
1
2
B+ 0 0

0 0 +iμngg
1
2
B+ 0

0 0 0 +iμngg
1
2
B+

Table 3. Structure of the iHx
atmatrix ( last four columns ). See text for symbols.

| − 1
2
, 3

2
〉 | − 1

2
, 1

2
〉 | − 1

2
,− 1

2
〉 | − 1

2
,− 3

2
〉

+iμngg
1
2
B− 0 0 0

0 +iμngg
1
2
B− 0 0

0 0 +iμngg
1
2
B− 0

0 0 0 +iμngg
1
2
B−

iΔ
2

+ iμnBzγ−1,3 −iμnge

√
3

2
B+ iΔ

6
η
√

3 0

−iμnge

√
3

2
B− −iΔ

2
+ iμnBzγ−1,1 −iμngeB+ iΔ

6
η
√

3

iΔ
6

η
√

3 −iμngeB− −iΔ
2

+ iμnBzγ−1,−1 −iμnge

√
3

2
B+

0 iΔ
6

η
√

3 −iμnge

√
3

2
B− iΔ

2
+ iμnBzγ−1,−3

Consequently, the absorption cross section, expressed by Eq. 19, is rewrit-
ten as:

σ(ω) =
2
Γa

� {
∑
μ,i

ρat(μ, i)
∑

ν

∑
μ′ ,ν′ ;j

∑
α

V Rα(μ, ν; i) × V L∗
α(μ

′
, ν

′
; j)

−iω + ωα
·

·〈μ′
, j|A(0)|ν′

, j〉〈ν, i|A(0)†|μ, i〉 } (31)

Now let us consider the matrix elements of the nucleus-radiation interac-
tion A. The elements are independent of the electronic state, contain Clebsch-
Gordan coefficients 〈j1, j2,m1,m2|j1, j2, J,M〉 [10] [11] and magnetic vectorial
spherical harmonics Y m

1 (ϑ, ϕ) defined as [12]

Y m
j (ϑ, ϕ) =

n × ∇nY
m
j (ϑ, ϕ)√

j (j + 1)
=

1√
j (j + 1)

(
aϕ

∂

∂ϑ
− aϑ

1
sin (ϑ)

∂

∂ϕ

)
Y m

j (ϑ, ϕ)

where n, aϕ and aϑ represent the three orthogonal directions for a spher-
ical system of coordinates and the angles (ϑ, ϕ) identify the gamma photon
direction in the chosen system of coordinates. Table 4 shows the involved
Clebsch-Gordan coefficients for the common Fe57 case.
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Table 4. Clebsch-Gordan coefficients 〈1, 1
2
, m1, m2|1, 1

2
, 3

2
, M〉

m1 m2 M 〈1, 1
2
, m1, m2|1, 1

2
, 3

2
, M〉

1 1
2

3
2

1

1 − 1
2

1
2

√
1
3

0 1
2

1
2

√
2
3

0 − 1
2

− 1
2

√
2
3

−1 1
2

− 1
2

√
1
3

−1 − 1
2

− 3
2

1

Moreover the explicit expressions for the vectorial armonical functions are

Y 1
1 (ϑ, ϕ) =

√
3

16π
(iaϑ − cos (ϑ) aϕ) eiϕ

Y 0
1 (ϑ, ϕ) = −

√
3
8π

sin (ϑ) aϕ

Y −1
1 (ϑ, ϕ) =

√
3

16π
(iaϑ + cos (ϑ) aϕ) e−iϕ

Consequently we have

〈μ′
, j|A(0)|ν′

, j〉〈ν, i|A(0)†|μ, i〉 =

= 〈1, 1
2
, ν−μ, μ|1, 1

2
,
3
2
, ν〉〈1, 1

2
, ν

′−μ′
, μ

′ |1, 1
2
,
3
2
, ν

′〉Y ν
′−μ

′

1 (ϑ, ϕ)·(Y ν−μ
1 (ϑ, ϕ))

∗

(32)
where the selection rules |ν − μ| ≤ 1 and |ν′ − μ

′ | ≤ 1 must also be considered.
It is evident that the products 〈μ′

, j|A(0)|ν′
, j〉〈ν, i|A(0)†|μ, i〉 form a square

matrix of order 8ne · 8ne where ne is the number of electronic states. Such a
matrix is composed by identical ne

2 square blocks.
We also note that ρat(μ, i) is the occupation probability of the ith electronic

state divided by the degeneration of the nuclear ground level; for example
ρat(μ, i) = ρat(i)

2 in the iron case.
Shortly, the Mössbauer absorption cross section is expressed by

σ(ω) =
2
Γa

�

⎧⎪⎨⎪⎩
∑
α

∑
k,l

VRLα
k,lBl,k

−iω + ωα

⎫⎪⎬⎪⎭ (33)

where the indices k and l respectively localize the transitions |μ, ν; i〉
and |μ′

, ν
′
; j〉 within rows and columns of superoperator matrices. Moreover

VRLα
k,l = VRα(k)×VL∗

α(l) andBl,k = ρat(μ, k)〈μ
′
, l|A(0)|ν′

, l〉〈ν, k|A(0)†|μ, k〉
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5 Result discussion

First of all, we stress that the cross section, as expressed by Eq. 33, does
not have a Lorentian shape. In fact the VRLα

k,l terms are complex numbers
and, consequently, dispersive terms also appear in the cross section expression.
The imaginary parts of the eigenvalues ωα define the central positions of both
Lorentian and dispersive terms. Whereas the real parts, that contain Γa and
contributions from R(p), determine linewidth values.

In order to discuss the evolution of the spectra, we consider three physical
situations; namely Ri,j ≈ Γa, Ri,j � Hat(i) and Ri,j ≈ Hat(i). The first and
second situations are respectively called slow and fast relaxation limits. The
third is the general case.

In the slow relaxation limit, as a first approximation, we may omit, out of
the structure of the G matrix, all the non diagonal blocks Ri,j ; id est those
with i �= j. This way the diagonal elements Ri,i act as additional terms to the
linewidth value Γa. Therefore the cross section can be approximated by a set
of structures, described by the various Hamiltonians Hat(i), characterized by
lines having lorentian shape and linewidth given by Γi � Γa +Ri,i. In the slow
relaxation limit, the dispersive terms act as second order contributions and
give rise to non symmetric lines[7]. The Γa value is connected to the minimum
frequency value of the electronic dynamics, detectable by the experimental
technique. Practically RMin ≈ Γa

10 . For the iron case RMin ≈ 105 ÷ 106Hz
In the fast relaxation limit, the effect of the Ri,j terms result in the

superposition of the various physical situations associated with the set of
electronic levels. Consequently, the cross section is connected to the mean
value, with respect to the electronic levels, of the atomic Hamiltonians:
〈Hat〉el =

∑
i

"i(T )Hat(i)[7].

The linewidth values are greater than the natural one and, as a conse-
quence of the sum rule (Eq. 29), the growing of R makes them go back to
the natural Γa value. In fact, for high R values, � (ωα (R)) � Γa + [�(ωα(0))]2

2R
where � (ωα (0)) denotes the corresponding line position for R = 0. From the
above relation, the upper limit for the experimental window is determined.
We have RMax ≈ 10 [�(ωα(0))]2

Γa
. For the iron case RMax ≈ 1011Hz.

In the fast and in the slow relaxation limits the Mössbauer spectrum de-
pends on the value of the time constants but does not depend on the relaxation
mechanism. In fact the spectrum is characterized only by the linewidth value.

In the general case, Ri,j ≈ Hat(i), the evolution of the cross section is
complex and strongly dependent not only on the relaxation times but also on
the relaxation mechanism itself. To demonstrate it, let us consider a simple
case in two different situations.

The simplest case that can be considered consists of transitions between
two electronic levels. For the sake of simplicity we also suppose that there is no
quadrupolar interaction and the two atomic Hamiltonians only differ for the
direction of the hyperfine magnetic field. In this situation the static spectra,
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belonging to each electronic level, are identical and consist of six lines, that
we number, as usual, in order of increasing energy, id est ω1 < ω2 < · · · < ω6.

If the two possible directions for the magnetic fields are opposite each
other, the nuclear eigenstates are the same and the corresponding eigenvalues
are opposite each other. Considering the structure of the G superoperator (
Table 1, Table 2 and Table 3 ), it is easy to see that the two Hat matrices
are diagonal. Consequently line 1 will only interact with line 6. For the same
reason line 2 will interact with line 5 and line 3 with line 4. It is also clear
that no other interaction will occur. The interaction will result in a collapse
of each couple of lines to a central structure. Such collapse will occur for
Ri,j ≥ |ωj − ωi|, consequently the evolution of the shape of the cross section,
as a function of the temperature, is quite simple. We will first observe the
collapse, to a central structure, of the two internal lines. Next, the intermediate
lines will collapse and, finally, we will observe the collapse of the external part
of the spectrum.

Figures 1, 2 and 3 show the evolution of the spectrum when a small
quadrupolar interaction is also present. The electric interaction is introduced
to make evident that the inner lines collapse before the external ones; more-
over we note that, in the high temperature limit, there is no trace of magnetic
interactions.

Fig. 1. Mössbauer spectra in the “Slow Relaxation Limit”. Relaxation parameter
τb〈F 2〉bincreases from bottom to top.

Very different, and much more complex will be the evolution of the spec-
trum if the two magnetic fields are not opposite each-other. In this case the
nuclear transition states diagonalizing the first Hat matrix does not diagonal-
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Fig. 2. Mössbauer spectra for intermediate relaxation times. Relaxation parameter
τb〈F 2〉bincreases from top to bottom.

Fig. 3. Mössbauer spectra in the “Fast Relaxation Limit”. Relaxation parameter
τb〈F 2〉bincreases from top to bottom. The right line originates from the collapse of
external lines of Fig.1

ize the second one. For this reason each line will interact with all the others
and the strength of the interaction will depend on the values of the non di-
agonal coefficients. In particular, if the angle between the two magnetic fields
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is 90◦degrees, it can be seen that the first line will interact much more with
the second one than with the sixth [13]. Moreover, in the high temperature
limit, the hyperfine interaction is not completely quenched and the spectrum
will exhibit magnetic splitting and narrow lines.

Consequently the first and the second situation will give rise to very dif-
ferent evolution of the spectrum.

Another particular situation can arise when the system is characterized
by a set of non degenerate electronic states, whose associated spin values
monotonically increase with the energy. When the temperature increases, the
spectrum may show an apparent slowing down of the electronic dynamics, Fig.
4 . Such behavior is simply due to the increase in occupation probability of
electronic exited levels, characterized by high S values and giving rise to strong
hyperfine interactions. It must be noted that the mean number of quantum
jumps necessary to reverse the spin of the Mössbauer atom is proportional to
the S2 value. Therefore there are two quantities that increase with tempera-
ture: namely

〈
S2

〉
at

and τb〈F 2〉b. If the increase of
〈
S2

〉
at

predominates, the
apparent slowing down of the dynamics will occur[14].

Fig. 4. Example of an apparent slow down of the electronic dynamics as a function
of the temperature increase[14]
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Generally speaking, the evolution of a relaxing Mössbauer spectrum per-
mits not only to determine the time constants but also to identify the actual
relaxation mechanism.

6 Saturation, texture and Goldanskii effects

Dynamical properties of the electronic states affect the shape of the cross sec-
tion, so that the fitting procedure of the experimental data must reproduce
not only peak positions but also the whole shape of the spectrum. Conse-
quently, all experimental and theoretical causes affecting the line shape must
be also considered.

As reported by Eq. 1 , the spectrum shape is connected to the absorp-
tion cross section by the relation Y (v) = F (v){1 − fs

1+B

∫ ∞
−∞ L(ω − v, Γs)[1 −

exp(−taσ(ω))]dω} where ta = nβσ0fa is the thickness of the absorber and the
source line shape L(ω− v, Γs) is usually assumed to have a Lorentian profile.
Occasionally, Voigt profiles are also used.

The cross section expression contains the angular terms Y ν
′−μ

′

1 (ϑ, ϕ) ·
(Y ν−μ

1 (ϑ, ϕ))
∗

that make σ(ω) to depend on the local orientation of sur-
roundings of the Mössbauer atom with respect to the gamma ray direction:
σ = σ(ω, ϑ, ϕ). Usually the sample is constituted by a set of differently ori-
ented microcrystals, so that the argument of the exponential function is ob-
tained by considering all possible orientations.

taσ(ω) =
∫

4π

"ta
(ϑ, ϕ)σ(ω, ϑ, ϕ)dΩ (34)

where "ta
(ϑ, ϕ) = "n(ϑ, ϕ)βσ0fadepends on the direction through "n(ϑ, ϕ) =

nD(ϑ, ϕ), where
∫
4π
D(ϑ, ϕ)dΩ = 1 and n is the number of nucleus per square

centimeter.
The simplest case corresponds to a random distribution over all the pos-

sible directions. Id est: D(ϑ, ϕ) = 1
4π

In this situation, the thickness does not depend on the direction, so that
we have

taσ(ω) = ta 〈σ(ω, ϑ, ϕ)〉
where ta = nβσ0fa , and consequently

Y (v) = F (v)
{

1 − fs

1 +B

∫ ∞

−∞
L(ω − v, Γs)[1 − exp(−ta 〈σ(ω, ϑ, ϕ)〉)]dω

}
(35)

There are three items to discuss, connected with the absorber thickness,
that affect the spectrum shape. The first one is connected with the order of
magnitude of ta, the other two are connected with possible dependencies of
the thickness on spatial directions.
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If the value for the absorber thickness is smaller than one, it is possible to
substitute the exponential function present in Eq. 35 by its series development,
obtaining

Y (v) � F (v)
{

1 − fsta
1 +B

∫ ∞

−∞
L(ω − v, Γs) 〈σ(ω, Γa, ϑ, ϕ)〉 dω

}
In this case, if the cross section can be expressed as a sum of lorentzian

shapes, the spectrum is composed by a superposition of lorentzian lines.

Y (v) � F (v)
{

1 − fsta
1 +B

〈σ(v, Γa + Γs, ϑ, ϕ)〉
}

(36)

In other words, Mössbauer spectrum and cross section exhibit the same
functional shape (thin sample approximation). Line intensities are propor-
tional to the sample thickness and moreover to the square values of the
corresponding Clebsch-Gordan coefficients. Finally, linewidths are given by
Γ = Γa + Γs. The saturation of the spectra makes the differences among the
line intensities to be smaller than those previewed by Eq. 36. Moreover it
increases the apparent line width value. Therefore the use of the thin sam-
ple approximation for the fitting of saturated spectra gives rise to incorrect
evaluations of the electronic transition probabilities.

Usually, in our case, we cannot use Eq. 36. First of all, the absorption cross
section does not have Lorentzian shape. Moreover the Mössbauer fa factor of
molecular cluster systems, and consequently the sample thickness ta, is usually
heavily dependent on the temperature. To study dynamical mechanisms, a
set of Mössbauer spectra, as a function of the temperature, must be collected;
consequently, if the high temperature value for the target thickness is high
enough to produce spectra characterized by low noise to signal ratio, the low
temperature value for ta can be high enough to require the use of the correct
integral expression. Finally the dependence of the cross section on the system
dynamics (Fig. 1) strongly enhances such necessity.

The use of the integral expression ( Eq. 35 ) is a time consuming task, be-
cause the convolution integral must be evaluated for each value of the source
velocity. Moreover the source factor fs and the B parameter of Eq. 35 must
be known. In particular, the evaluation of B requires the collection of Total
and Anticoincidence PHA ( Pulse Height Analysis) spectra. Anticoincidence
spectra are collected using photons giving rise to voltage pulses whose val-
ues lie outside the range chosen to select the Mössbauer nuclear transition.
Fig. 5 shows Total and Anticoincidence spectra for a Fe57 source. From the
anticoincidence spectrum the lower and upper limits of the voltage range are
determined and the amount of spurious counts under the Mössbauer line can
be evaluated by standard fitting procedures of the total PHA spectrum.

Alternatively, the ulterior fitting parameter fs

1+B , strongly correlated with
ta, must be introduced.

Two effects act on the spectrum shape if the thickness depends on the
direction. They are the Goldanskii[15] and texture[16] effects.
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Fig. 5. Normal and AntiCoincidence PHA spectra for a Fe57 source

The first one describes the dependence of the thickness on the direction
caused by anisotropies of the mean square displacement of the vibrating nu-
cleus: 〈x2〉 = 〈x2〉(ϑ, ϕ). In fact, the Mössbauer f factor depends on the atomic
mean square displacement through the relation fa = exp[−k2〈xa

2〉] , where k
is the photon impulse; consequently, the sample thickness ta will also depend
on the direction of the gamma ray with respect to the crystal cell axes.

Indicating by 〈fa〉 the mean values of the absorber f value over all the
possible orientations, we have fa(ϑ, ϕ) = 〈fa〉g(ϑ, ϕ), where g(ϑ, ϕ) is the
Goldanskii function normalized by the relation 1

4π

∫
4π
g(ϑ, ϕ)dΩ = 1. The

thickness parameter is therefore expressed as ta(ϑ, ϕ) = 〈ta〉g(ϑ, ϕ), where
〈ta〉 = nβσ0〈fa〉, and the argument of the exponential function ( Eq.34 ) is
given by

taσ(ω) = 〈ta〉
∫

4π

g(ϑ, ϕ)σ(ω, Γa;ϑ, ϕ)dΩ

In solid state physics, the Goldanskii effect is rarely observed. In the
present case of molecular cluster the situation is different. In fact, the low
symmetry, that may characterize molecular cluster systems, can give rise to
dependencies of the 〈x2〉 value on the direction.

Moreover the f factor value is much smaller than those common in solid
state physics; consequently the effect of mean square displacement anisotropies
on the Mössbauer f factor is expected to be enhanced.

We speak of texture effects when the simple assumption D(ϑ, ϕ) = 1
4π is

not adequate.
First of all, it is possible that the target construction procedure from the

chemical compound, may cause preferred orientations. In fact certain types of
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microcrystallytes are particularly prone to partial orientation on compacting
and the Mössbauer target is shaped as a thin flat disk, so that the distribution
function D may depend on the angle between the normal to the disk surface
and a particular crystallographic axis. The safest construction procedure of
preparing unoriented absorbers appears to be by grinding with large bulk
of fine-grained Al2O3 or other abrasive materials [17]. However we note that
preferred orientations can be also desired, because spectra of strong orientated
samples may be similar to those of monocrystals. Consequently, from the
spectra of oriented samples, magnetic anisotropy directions, with respect to
the crystal structure, can be extracted [18].

It is evident that preferred orientations and Goldanskii effect influence
the Mössbauer spectrum in similar ways. It is however possible to distinguish
between them.

First of all the dependence of the Goldanskii function g(ϑ, ϕ) on the di-
rection cannot be very strong. In fact all f(ϑ, ϕ) values are constrained into
the 0-1 range; moreover, in order to obtain a well defined spectrum, the 〈fa〉
medium value must be not very small. Consequently, the maximum and min-
imum values for f(ϑ, ϕ) must be close to each other.

For this reason if, in order to fit the spectrum, strong angular dependencies
are to be introduced, they are surely related to texture effects.

Moreover, in the case of the Goldanskii effect, the shape of Mössbauer
spectrum is independent from the relative orientation between target and
experimental optical axis. On the contrary, the effect produced by preferred
orientations depends on the target axis direction.

A technique useful to see if texture is present and moreover able to deter-
mine the D(ϑ, ϕ) distribution function, is based on the collection of five inde-
pendent spectra characterized by different spatial orientations of the sample.

The first one with the target axis parallel to the experimental optical one,
and the other four with the target axis forming the magic angle of 54.7◦ de-
grees with the optical one. The last four experimental dispositions differentiate
among them by subsequent rotations of 90◦ degrees of the sample around the
target axis [19] [Fig. 6].

In order to avoid the influence of the magnetization dynamics, it is neces-
sary to make such measurements either in the low or high temperature range
where the magnetic interaction is, respectively, static or completely quenched.

In the second case, the interpretation of the data requires the knowledge
of the quadrupolar parameters Vzz and η = Vxx−Vyy

Vzz
. In particular a non zero

value for η produces a mixing of the nuclear |I, Iz〉 states, so that it can
greatly affect the intensities of the various transitions. For this reason the
experimental work must go along with molecular orbital calculations.

In order to show the influence of the η value, let us consider the simple
case of a quadrupolar Mössbauer spectrum. The intensities of the cross section
lines are respectively given by [20]
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Fig. 6. Quadrupolar Mössbauer spectra for two different orientations of the sample:
the former with the normal to the sample parallel to the gamma rays direction and
the latter with the normal forming the magic angle of 54.7◦.

I1 = σ0[4

√(
1 +

η2

3

)
+

(
3cos2(ϑ) − 1 + ηsin2(ϑ) cos(2ϕ)

)
]

I2 = σ0[4

√(
1 +

η2

3

)
−

(
3cos2(ϑ) − 1 + ηsin2(ϑ) cos(2ϕ)

)
]

where the polar angles define the gamma ray direction with respect the
principal axes of the E.F.G. tensor.

Introducing the texture function D(ϑ, ϕ) one has

I1
I2

=
4
√(

1 + η2

3

)
+

∫
4π
D(ϑ, ϕ)

(
3cos2(ϑ) − 1 + ηsin2(ϑ) cos(2ϕ)

)
dΩ

4
√(

1 + η2

3

)
−

∫
4π
D(ϑ, ϕ)

(
3cos2(ϑ) − 1 + ηsin2(ϑ) cos(2ϕ)

)
dΩ

Let us now consider two extreme situations: the first one characterized by
Vzz = a, Vxx = Vyy = −a

2and D(ϑ, ϕ) � δϑ=0; the second one characterized
by Vzz � 0 , Vxx � a, Vyy � −a and D(ϑ, ϕ) � D(ϑ).

It is easy to see that, in the first case, we have η = 0 and I1
I2

= 3. In the
second situation we obtain η � ∞ and I1

I2
� 1 ; moreover the intensity ratio

results to be independent of the texture dependence on the ϑ angle, so that
I1
I2

� 1 also holds for D(ϑ, ϕ) � δϑ=0.
Fig. 6 shows Mössbauer spectra of a sample affected by texture. It is evi-

dent that the upper spectrum, collected with the normal of the sample parallel
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to the gamma ray direction, is quite similar to the second from bottom of Fig.
3 where the intensity difference between the two lines is due to dynamical
processes.

We conclude that texture, Goldanskii and saturation effects must be taken
into account in order to extract, from the Mössbauer spectra, information on
the electronic dynamics.

Appendix: Liouville Operators

Let us consider a complete set of base states |μ〉 describing a physical system
and a generic operator A . The application of the operator to a base state
gives rise to a quantum state expressed as a linear combination of all the base
states

|ψ〉 = A |μ〉 =
∑

ν

〈ν |A |μ〉 |ν〉 (A.1)

If the system is characterized by a limited number n of base states,
it is possible to order the n2 generic operators |ν〉〈μ| corresponding to all
possible transitions. That allows us to introduce the transition base states
|m〉 = |ν, μ〉 = |ν〉〈μ| [21].

Let us now consider a linear combination of them, expressed by
∑
μ,ν

Cμ,ν |ν〉〈μ| =∑
m
Cm|m〉. From the formal identity with the second term of Eq. A.1 it is pos-

sible to regard
∑
m
Cm|m〉 as resulting from the application of a “superoperator”

to a specified transition base state |n〉.
So that, we write

C |n 〉 =
∑
m

Cm |m 〉 (A.2)

where Cm = 〈m|C|n〉. The term “superoperator” simply indicates an oper-
ator that operates on operators, instead of on quantum states, and generates
new operators. From the analogy between Eq. A.1 and Eq. A.2 it follows that
superoperators and standard operators obey the same algebra[21].

The matrix elements 〈m|C|n〉 define the particular superoperator; to derive
them we apply C to a generic operator

B =
∑
n

Bn|n〉 =
∑
μ′ ,ν′

〈ν′ |B|μ′〉|ν′〉〈μ′ | (A.3)

obtaining

CB = C
∑
n

Bn|n〉 =
∑
m,n

Bn〈m|C|n〉|m〉 =

=
∑
μ,ν

∑
μ′ ,ν′

〈ν′ |B|μ′〉〈ν, μ|C|ν′
, μ

′〉|ν, μ〉
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and, consequently

〈ν|CB|μ〉 =
∑
μ′ ,ν′

〈ν′ |B|μ′〉〈ν, μ|C|ν′
, μ

′〉 (A.4)

Eq. A.4 shows that the matrix elements of CB are linear combinations of
those of B. The coefficients of the linear combinations give a representation
for C.

Now, taking into account Eq. A.3, we obtain the general rule that permits
us to determine the representation

〈ν, μ|C|ν′
, μ

′〉 = 〈ν|(C|ν′〉〈μ′ |)|μ〉 (A.5)

In the following, we restrict our discussion to the so called Liouville su-
peroperator Ax associated with a standard operator A. It is defined as the
superoperator that, applied to a generic operator B, returns the commutator
between A and B[22].

AxB = [A,B]− (A.6)

The great importance of Liouville superoperators is mainly due to the fact
that the time dependence of operators is expressed through commutators. In
fact, posing h̄ = 1,

dB(t)
dt

= i [H,B]− (A.7)

So that
dB(t)
dt

= iHxB(t) (A.8)

and
B(t) = eiH

xtB(0) (A.9)

where
Hx = [H, ]− (A.10)

identifies the Liouville superoperator associated, through Eq. A.6, with the
Hamiltonian of the system.

Using Eq. A.5, we obtain the expression for the matrix elements of the
Liouville superoperator Ax.

〈ν, μ|Ax|ν′
, μ

′〉 = 〈ν|[A, |ν′〉〈μ′ |]−|μ〉 = 〈ν|A|ν′〉δμ,μ′ − 〈μ′ |A|μ〉δν,ν′ (A.11)

In the particular case of Hx, choosing the eigenvector base state, we have

〈ν, μ |Hx| ν′
, μ

′〉 = (ων − ωμ) δμ,μ′ δν,ν′

and, from Eq. A.6,

Hx |ν 〉 〈μ | = (ων − ωμ) |ν 〉 〈μ |
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where ων and ωμ are the eigenvalues corresponding to the states |ν〉 and
|μ〉.

In other words, transitions and corresponding frequencies are the eigen-
vectors and eigenvalues of Hx, and consequently the Liouville superoperator is
closely related to the information immediately extracted from an experimental
spectrum.

This statement gives rise to the physical importance of the Liouville su-
peoperator formalism.

As a concluding remark, let us consider the general function f(z), which
can be expressed as a Laurent series:

f(z) =
∞∑

n=−∞
cnz

n

It is interesting to give a representation for the two operators f(Hx) and
[f(H)]x.

We have:

f(Hx) |ν 〉 〈μ | =
∞∑

n=−∞
cn(Hx)n |ν 〉 〈μ | =

=
∞∑

n=−∞
cn(ων − ωμ)n |ν 〉 〈μ |= f(ων − ωμ) |ν 〉 〈μ|

and

[f(H)]x |ν 〉 〈μ | =

[ ∞∑
n=−∞

cnH
n

]x

|ν 〉 〈μ | =

=
∞∑

n=−∞
cn(ων

n − ωμ
n) |ν 〉 〈μ |= [f(ων) − f(ωμ)] |ν 〉 〈μ|
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Potential applications of single molecular magnets (SMMs) in high density
storage devices have been a major driving force for researchs in this field
[1, 2, 3]. An hindrance to applications of this kind lies in the mobility of spins.
That is, uncontrolled spin inversions can arise which destroy any magnetic
order. Therefore, we need to understand the microscopic mechanisms on which
such interactions are based, so that their effects can be removed or reduced
in the new generations of magnetic molecules.

As far as the experimental techniques are concerned, Mössbauer spec-
troscopy is an excellent tool for the study of the magnetic properties of
molecules containing iron ion, since Mössbauer probes are the nuclei of these
ions, i.e. the ions which determine the magnetic properties of the molecules.

Spin fluctuations influence the spectrum shapes through the hyperfine in-
teraction, according to the theory developed in the previous lesson. However,
the Mössbauer spectra do not directly depend on the molecule spin. In fact,
they consist of the superposition of sub-spectra corresponding to the different
sites of the 57Fe(III) ions, which depend on the spins of these ions.

Furtherly, we observe that the iron-spin changes are due to a hierarchic
series of interactions. First of all, the iron spins are coupled through the
isotropic exchange interaction, for which only the total spin S of the molecule
is conserved. Their fluctuation frequencies are of the order of J/h, where the
exchange constant J is in the range between some tens and few hundreds
kelvins [3], corresponding to 1012s−1. This value is behind the top border of
the Mössbauer temporal window and one can assume that each iron nucleus
sees a mean spin 〈s(i)〉 where i = 1, 2, . . . denotes the different sites. Moreover,
for the presence of the axial magnetic anisotropy (z-axis) – which is usually
much larger than the hyperfine interaction –, the iron nucleus only “sees” the
mean z-component 〈s(i)z 〉 of the iron-ion spins, so that Sz =

∑
i〈s

(i)
z 〉. Lastly,
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the transverse terms of magnetic anisotropy, if any, and the spin-thermal bath
interactions, which produce spin fluctuations with frequencies usually within
the Mössbauer window, must be considered. These latter interactions induce
transitions between Sz states and consequently between 〈s(i)z 〉 states; they
are thus the cause of the hyperfine-field fluctuations affecting the spectrum
shapes.

Usually, it is not simple to establish the relations between the single spins
〈s(i)〉 and the molecule spin S, as they depend on the exchange constants in
a cumbersome way. In any case, we have 〈s(i)〉 = C(i)S [4] where C(i) are
parameters that can be determined by the spectrum fits.

Here as follows, we report the properties of the magnetization dynamics of
some species of Fe(III)-molecules studied by using Mössbauer spectroscopy.

1 Molecules with S �= 0 ground spin state

Two molecules with spin ground state different from zero will be considered:
the one (Fe4) containing four s = 5/2 Fe(III) ions and the other (Fe8) eight.
In both the molecules the magnetic ions are antiferromagnetically coupled
through bridging atoms.

First, a detailed Mössbauer analysis of the spin fluctuations in Fe4 will
be reported, as this case is rather simple and particularly suitable in order
to show the potentialities of the Mössbauer spectroscopy in spin fluctuations
studies.

1.1 Ground state of Fe4 molecula

This molecule has formula Fe4(OCH3)6(dpm)6 and its structure is shown in
Figure 1.

The trend of χT versus T was found to be characteristic of a antiferromag-
net with spin S �= 0 [5]. The antiferromagnetic coupling between the central
ion Fe1 and the peripheral ions Fe2, Fe3, and Fe3’ leads to a ground state
S = 5. The corresponding Heisenberg Hamiltonian HH is given by:

HH = Js1 · (s2 + s3 + s3′) (1)

However, in order to obtain a good fit of χT one has to suppose the presence
of a small ferromagnetic coupling between peripheral ions. The best fit pa-
rameters are J = 21.1 cm−1 = 30.4 kB with g = 1.97 [5]. Moreover, the first
excited level is a doubly degenerate S = 4 state and its energy with respect to
the ground state is about 60 cm−1 = 86.4 kB . Here, we consider spin fluctua-
tions at low temperatures, so that only the ground states will be considered.
The spin Hamiltonian for the ground state has the form:

HS = DS2
z +

E

2
(S2

+ + S2
−) +HHO (2)
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Fig. 1. Schematic structure of the Fe4 molecule. Globes denote Fe(III) ions; black
and white circle denote oxygen and carbon atoms, respectively. Hydrogen atoms are
not indicated.

whereHO denotes fourth-order terms in the spin components; the constantsD
and E are relative to the axial anisotropy and the transverse one, respectively.
These constants were determine by means of HF-EPR and INS thecniques
[6, 7]. Three different isomers are present in the crystal with occupancies
0.49, 0.42 and 0.09, respectively. They differ for the binding modes of the
dpm anions on peripheral Fe. They have slightly different D values: −0.29 kB ,
−0.27 kB and −0.25 kB , respectively. This differences were disregarded and
a single isomer was considered with D given by the weighted mean of the
three values. E value is more questioned, since HF-EPR and INS gave fairly
different results: −0.014 kB and 0.029 kB , respectively. In any case, |E| � |D|,
so that the ground state consists approximately of five doublets, with the
doublet |5,±5〉 having the lowest energy, plus the singlet |5, 0〉 that has energy
Δ = 25|D| ≈ 7 kB with respect to the lowest doublet. Calculations based on
a ligand field approach [5] showed that the anisotropy for the ground state
has both single ion and dipolar contributions with the unique axis quasi-
perpendicular to the iron plane.

1.2 Spin fluctuations

Mössbauer spectra from 1.38 to 77 K were collected (Figure2), which display a
strong dependence on the temperature. Thus, spin fluctuations due to energy
exchanges between spins and thermal vibrations are present. Spectra have
then to be evaluated by considering the transitions induced by the atomic
vibrations. Phenomenologically, the interaction Hamiltonian was assumed to
have the form [8]:

Hi = F (t)A(Sx, Sy, Sz) (3)
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Fig. 2. Mössbauer spectra of the Fe4 molecule at the temperatures of (starting from
the top) 1.38, 4.25, 12.5, 25.7, 45, 77 K.

where F (t) is a stochastic function having dimension s−1 and of order of
the interaction energy (in unit h) and A is a dimensionless function of the
spin components of order of unit. For the sake of simplicity, only transitions
M →M ′ with M ′ = M ± 1 were considered. The transition probabilities per
unit time are then given by [8]:

WM,M−1 = |〈M |A|M − 1〉|2J(ωM ) (4)

WM−1,M = WM,M−1 exp
(
h̄ωM

kBT

)
(5)

where ωM is the energy difference between the states M − 1 and M , and
J(ωM ) is the Fourier transform of the correlation function of F :

J(ω) =
∫ ∞

−∞
exp(iωt) 〈F (0)F (t)〉dt (6)

By assuming for 〈F (0)F (t)〉 an exponential trend: 〈F (0)F (t)〉 = F 2 exp(−|t|/τ),
where the decay constant τ is of order of the mean life of the atomic vibration
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modes that is of the order of 10−12s (Sect. 3, p. 255 of the previous lesson).
Since ωM ≤ 6 109 s−1 � τ−1 , we have with good approxmation:

WM,M−1 =
|〈M |A|M − 1〉|2

|〈5|A|4〉|2 W (7)

where W = W5,4.
As above mentioned, in a fixed cluster state |S,M〉, the single iron-ion

spin z−component are not constant in time; only their mean value is definite.
Consequently, the Mössbauer nucleus should experience the static hyperfine
field corresponding to the mean z−component of the electronic spin. Standard
techniques [4, 9] provide the projection 〈mi〉 of the individual spin si on the

total spin S. One finds: 〈m2〉 = 〈m3〉 = 〈m3′〉 =
M − 〈m1〉

3
with

〈m1〉
M

= −0.4167, and
M − 〈m1〉

3M
= 0.472 (8)

When the spin undergoes transitions between its states, the spin mean
z−component of the iron-ions changes simultaneously between their corre-
sponding values, so that the iron nuclei are subjected to stochastic changes in
the hyperfine field. According to this picture, central and peripheral iron nu-
clei experience fields having different magnitudes, but changing with the same
rate.To be precise, the fields for central and peripheral nuclei are proportional
to −0.4167M and 0.472M , respectively.

Since the environment symmetry of the iron ions is lower than octahe-
dral, the electric quadrupole interaction has to be considered. An estimate of
the electric field gradient (EFG) at the three non-equivalent (Fe1, Fe2 and
Fe3 ≡ Fe3′) iron sites showed that one of the EFG principal axes resulted
almost perpendicular to the iron plane, i.e. practically parallel to the mag-
netic anisotropy axis, for all of the sites. It was then convenient to assume
this principal axis as z-axis, no matter whether or not Vzz was the maximum
component of the EFG. With this assumption, η > 1 values are possible.

The nuclear Hamiltonian of an iron ion can then be written as a sum of the
time-independent and stochastically-changing terms V1 and V2, respectively
(see sect.??):

V1 =
eVzzQI

4

[
I2
z − 1

3
I(I + 1) +

η

2
(I2

+ + I2
−)

]
(9)

V2 = gIμNIzBh(t) (10)

where Bh(t) is the hyperfine field which depends on time because of the tran-
sitions between spin states. The other symbols have the usual meaning (Sect.
4 of Filoti’s lesson).

In order to evaluate the spectrum forms, the formalism of Sect. 4 of pre-
vious lesson was used (see also [10]). Since there are 11 spin states and 8
Mössbauer transitions the Blume’s matrix has order 11 × 8 = 88. Moreover
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three different sites have to be considered for the iron. The central site (Fe(1)),
the apical one (Fe(2)) and the two lateral sites (Fe(3), Fe(3)), the normalized
spectrum shapes of which will be denoted by I1(ω), I2(ω) and I3(ω), respec-
tively. For the resultant spectrum we can then write [11]:

I(ω) =
1

1 + 3φ
[I1(ω) + φI2(ω) + 2φI3(ω)] (11)

where the parameter φ takes into account the fact that the absorption spectra
areas may be different for the central and peripheral sites.

Fitting outcomes

The quadrupolar parameters (ΔQ = eVzzQ/2 and η) and the isomer shift
(IS) at the three sites and the hyperfine field corresponding to sz = 5/2
were obtained from the fit of the spectra at 1.38 K [12]. At this tem-
perature, relaxation effects on the spectrum shape are negligible, so that
the spectrum contains maximum information about the hyperfine parame-
ters. The values of −0.5(3)mms−1 (central site), 0.1(1)mms−1 (apical site)
and −0.3(1)mms−1 (lateral sites) were obtained for ΔQ and the values of
0.38(5)mms−1, 0.37(7)mms−1 and 0.42(4)mms−1, respectively, for IS, which
are just characteristic of Fe(III) ions. As far as η is concerning, its value was
found greater than 1 at all sites. This means that the maximum EFG compo-
nents are directed in the iron plane. The value of W (T ) obtained by assuming

Table 1. Rate of the transition M = 5 → M = 4 of Fe4. Values obtained from the
fitting of the spectra. χ2 values are also shown.

T (K) W (MHz) χ2

1.38 2.0(1) 1171
4.25 3.3(1) 1488
12.5 7.5(3) 1128
25.7 37(1) 1016
45.0 267(5) 1428
77.0 1198(40) 1022

the spin-thermal bath Hamiltonian of the form: Hi = F (t)Sx are reported in
Table1, together with the χ2 values. A good fit of the W (T ) trend is given by
the function

W (t) = 9.8(6) 103 exp
(
−161(4)

T

)
(12)

This is the characteristic trend of the Orbach mechanism involving an excited
state with an energy of about 160 kB [13]. States of this energy are definitely
present, since the energy difference between the ground S = 5 state and the
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top S = 10 state is about 1200kB (J ≈ 30K), with 1296 spin states shared in
this range. Another possible mechanism could involve vibrational modes of a
160kB centered peak of the vibrational-states density, if present, and would
consist in the creation of one and subsequent destruction of another one of
these vibrational quanta. However, further studies are necessary in order to
clarify this issue.

1.3 The Fe8 molecule

Now, let us consider the single-molecule magnet [Fe8O2(OH)12(tacn)6]Br8,
briefly Fe8, Figure 3. The ground state is a S = 10 multiplet and the first

Fig. 3. Schematic structure of the Fe8 molecule. Globes denote Fe(III) ions; black
and white circles denote oxygen and nitrogen atoms, respectively; carbon atoms are
at the vertices of the black lines. Hydrogen atoms are not indicated.

excited states are three S = 9 multiplets at 44 kB , 61.5 kB and 72 kB [14]. EPS
and INS gave for D the values of −0.29 kB and for E the values of 0.056 kB

and 0.044 kB . respectively [15, 16]. By diagonalizing HS (eq.(1)) in the space
of the ground spin states |10,M〉, the eigenstates displayed in Figure 4 were
obtained. The six quasi degenerate lowest doublets do not differ much from
the ones corresponding to the axial anisotropy term of HS , while the nine
highest singlets consist of superposition of states having different M , with
〈M〉 = 0.

Three spectra at temperatures lower than 20 K were collected (Figure 5)
because at higher temperatures the contribution of the excited spin states are
not negligible.

In order to calculate the spectrum shapes, three different sites were con-
sidered [12]: one for Fe1 and Fe2, another for Fe3 and Fe4 and the third for
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Fig. 4. Level scheme of the ground state of the Fe8 molecule. The six lowest levels
(bold lines) are quasi degenerate doublets. The nine highest levels are singlet (〈M〉 =
0).The dashed lines denote levels corresponding to the only axial term of HS .

Fe5 to Fe8. However, we met with twofold difficulty. Firstly, since the energy
of the lowest excited multiplet is ≈ 44 kB , the calculation of the spectra, dis-
regarding the excited levels is corrected only for T � 44K. Secondly, as the
ground state consists of 21 spin states and there are 8 possible Mössbauer
transitions, the Blumes matrix is of order 8 × 21 = 168. Therefore, also tak-
ing into account the large number of parameters, the fittings of the spectra
require a rather long computation time. Fortunately, a simplified theoretical
approach, which is based on the particular structure of the spin ground state,
can be used. As we have seen above, these states can be ideally divided into
two groups: the former consists, with a good approximation, of the six lowest
doublets |10,±M〉 with M from 5 to 10 and the latter of the nine singlets.
Since in all the singlets M has an average value of zero, their Mössbauer
spectrum contributions to the Mössbauer spectrum does not have a magnetic
structure and will be the same for all of them, apart from the absorption area.
In order to reproduce the spectra, the nine states were considered as a single
fictitious state, the occupation of which is the sum of the occupations of the
nine states. By using this simplified model, the order of the Blumes matrix is
reduced from 168 to 104.

As far as the hyperfine magnetic field is concerned, in the S = 0 ground
state the iron spins are parallel to each other and, for M = 10, 〈sz〉 = ±5/2.
The field magnitudes at the three non equivalent iron sites have then the
greatest values B5/2i i = (1, 2, 3). These values were considered as fitting
parameters, and the fields for Sz = M were evaluated by scaling in proportion
to M : Bi

M = (M/10)Bi
5/2. Lastly, the presence at each site of an EFG having

axial symmetry parallel to the hyperfine field was assumed.
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Table 2. Hyperfine parameters obtained from the fitting of the Fe8 lowest temper-
ature spectrum.

Parameter Central Apical Lateral

ΔQ mms−1 0.13(1) -0.11(2) 0.057(2)
IS mms−1 0.25(1) 0.36(1) 0.24(1)
B5/2 (T) 47.3(1) 47.9(1) 53.1(1)

According to the procedure followed for Fe4, the hyperfine parameters
were obtained from the spectrum at the lowest temperature (in this case, 4.2
K), which displays a well-resolved hyperfine structure. The fitting outlets are
reported in Table 2 The transition rate W10,9 of the transition M = 10 →
M = 9 was assumed as relaxation parameter. By setting W = W10,9 a linear
trend was obtained for W (T ). To be precise, the best fit gave (in MHz):
W (T ) = 2.2(1)T .

Fig. 5. Mössbauer spectra of the Fe8 molecule at the temperatures of (starting from
the top) 4.2, 11 and 18 K.

2 Molecules with S = 0 ground spin state

In the previous examples, molecules with high-spin ground states were con-
sidered and correlation functions of the spin components were determined in
ranges of temperatures where only the ground state is important. In this sec-
tion, we review two Mössbauer studies of molecules with diamagnetic ground
state, one regarding a molecule of six iron(III) ions in coplanar ring-shaped
arrangements [3], and the other regarding one of a dimers’ family [17].
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An antiferromagnetic coupling between iron ions is present so that the
spin ground state consists in a singlet (S = 0). All the spin multiplets can be
fairly well described by means of an Heisemberg Hamiltonian with nearest-
neighbours coupling [18]:

H = J

N−1∑
i=1

sisi+1 + sNs1 (13)

where si is the spin of the i-th magnetic ion, N is the number of magnetic
ions, and J the exchange constant.

2.1 hexairon(III) molecule

The six Fe(III) ions are lying on the vertices of a hexagon and a Na+ ion on
the centre, Figure 6.

Fig. 6. Structure of the hexairon(III) molecule.

It has S6 symmetry, with the axis S6 perpendicular to the iron plane
[18]. Susceptibility measurements on a powdered sample gave J = 28.7 kB .
Moreover, from single crystal measurements magnetic anisotropy was detected
with an easy axis along the S6 direction [18].

Spin fluctuations in this compound were investigated by using 1H-NMR
[19]. T−1was found to display a particular trend as a function of the temper-
ature. It presents a sharp maximum, the amplitude of which decreases as the
applied magnetic field increases, but its position is field independent. Now,
due to energy-level complexity, a quantitative analysis of this trend is very
complicate. In order to evade the difficulty of a direct calculation, a different
approach in terms of collective q-dependent spin variables was used [20]. The
trend of T−1 that was found in this way fits fairly well the experimental one.
A further in-dept study of 1H-NMR results for a series of molecular rings was
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performed in ref. [21], were a model that accurately fits the NMR data is
developed.

As far as the Mössbauer study is concerned [22], spectra in the range of
temperatures from 10 to 200 K consist of quadrupolar doublets, the linewidth
of which depends on the temperature as shown in Figure 7: it monotonically
increases with the temperature from 0.27 mms−1 at 12 K to 0.37 mms−1 at
200 K, showing a flat trend from 20 to 60 K. Since the spectra display no
magnetic structure, the average of the hyperfine field in a Larmor period has
to be zero. That is, we are in the fast relaxation conditions [23], in which
contributions to the spectra of a single spin multiplet correspond to a null
hyperfine field and fluctuations affect only linewidths. Let us now consider
transitions between states of different multiples. Until their probabilities per
unit time are much smaller than τ−1

M , where τM is the mean life of the Möss-
bauer excited level, spectra consist in the superposition of the single multiplet
contributions. Conversely, if the transitions are much faster than τ−1

M , spectra
will be a suitable average of the multiplet sub-spectra.

Since the magnetic sites are equivalent, each iron ion has mean spin z-
component 〈sz〉 = Sz/N , where N is the number of magnetic ions in the
molecule. The corresponding hyperfine field is then given by:

Bz =
1
N

Sz

5/2
B

5/2
hyp =

2
5N

SzB
5/2
hyp (14)

where B5/2
hyp is the hyperfine field corresponding to the state sz = 5/2 of the

ion Fe(III). According to the theory of the Mössbauer spectra in the presence
of fast relaxation [24] the spin fluctuations cause the spectrum lines to be
broadened by quantities proportional to

Jrel = μ2
N

∫ ∞

0

〈Bz(0)Bz(t)〉dt =

(
2μNB

5/2
hyp

5N

)2 ∫ ∞

0

〈Sz(0)Sz(t)〉dt (15)

2.2 General expression for Jrel

Here as follows, a detailed analysis of the correlation function (CF) in terms
of physical quantities characterizing the spin fluctuations will be made. Its
general expression is:

〈Sz(0)Sz(t)〉 = Tr{ρSz(0)Sz(t)}m,s (16)

where {. . . }m,s means that the trace is calculated on a complete set of states
of the system constituted by the molecule and its surroundings and ρ is the
density operator. By making the factorization approximation of the density
operator [24], we can carry out the trace on the surrounding states, obtaining:

〈Sz(0)Sz(t)〉 = Tr{ρmSz(0)Sz(t)}m (17)
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Fig. 7. Linewidth versus temperatures obtained by fitting the spectra with
quadrupole doublets.

where ρm is the density operator of the spin system.
Let us consider first the transitions within a spin multiplet S of the

molecule. In the fast relaxation limit with 〈Bz〉 = 0, we can assume that the
spin z−component undergoes simple inversions. Two causes can determine
this behaviour: the interaction between spin and thermal bath and the quan-
tum tunnelling [13, 3]. In the first case the rate w(S)

M of the transition between
the two states |S,±M〉 increases with the temperature, while in the second
case we have coherent transitions with independent temperature frequency
ν

(S)
M . The contribution of the doublet |S,±M〉 to the CF can be evaluated by

means of the procedure described in [12]. We obtain:

〈Sz(0)Sz(t)〉S,M = M2 exp(−2w(S)
M t) cos(2πν(S)

M t) (18)

We must consider now the intermultiplet transitions. As above mentioned,
if the rate are much smaller than (τ−1

M ), spectra will be given by the sum of
the multiplet contributions. Conversely, if the transition rates are much faster
than τ−1

M , spectra will be given as average of the multiplet sub-spectra.. Since
in the fast relaxation limit sub-spectrum shapes differ from each other only
for the line broadening, in order to obtain the mean spectrum it is sufficient
to carry out the average of the multiplet contributions to the CF (mean spin
approximation).

In the more general case, spectrum shapes explicitly depend on the tran-
sition rates and the calculations become very complicated. As a result, long
computation times are expected and great uncertainties regarding the pa-
rameter values will result from their correlations. Fortunately, for our cases,
preliminary fittings showed the approximation of the mean spin to be fairly
good. Therefore, according to the mean spin approximation, we must carry
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out the average of the single multiplet contributions to the CF:

〈Sz(0)Sz(t)〉 = 2
∑

multiplets

WES

2S + 1

S∑
M=1

M2 exp[] − (2w(S)
M + τ−1

M )t] cos(2πν(S)
M t)

(19)
where WES

is the occupation probability of the multiplet of energy ES .
Obviously, the fitting of Jrel did not make possible to obtain the very large

number of transition rates w(S)
M , so that these quantities were replaced by an

appropriate mean w value. Frequencies ν(S)
M can be calculated by means of the

procedure of [12], where, by assuming the presence of a transverse anisotropy
of Hamiltonian HT = E(S2

+ + S2
−)/2, a general expression was obtained for

ν
(S)
M as function of E/D. In summary, we write the CF in the form:

〈Sz(0)Sz(t)〉 = 2 exp(−2w′t)
∑

multiplets

WES

2S + 1

S∑
M=1

M2 cos(2πν(S)
M t) (20)

where w′ = w + τ−1
M /2. By replacing the right-hand side of this equation in

(14), we obtain:

Jrel =
(
μN

2
5N

B
5/2
hyp

)2 ∑
multiplets

WES

2S + 1

S∑
M=1

M2 w′

w′2 + (πν(S)
M )2

(21)

The best fit Jrel as function of the temperature by means of (19) should
permit to test the possible w(T ) trends and also make an estimate of E/D.
However, difficulties arose when this procedure was applied to the hexairon
molecule. The difficulties were due to the large number of multiplets, the D
values of which are not known and change from one multiplet to another, so
that the frequencies ν(S)

M occour to be different for different multiplets. Thus,
too many parameters had to be determined and the fitting was problematic.
Fortunately, many magnetic properties are qualitatively common also to a
series of Fe(III) dimers, where the two Fe(III) ions are antiferromagnetically
coupled through diamagnetic groups. In these cases, apart from the ground
state S = 0, there are only five excited spin multiplets, so that we are able to
take into account every contribution. For example, in [25] the spin fluctuations
in a dimer were studied in detail through the analysis of the Mssbauer spectra,
which will be reviewed here as follows.

2.3 Mössbauer analysis of the dimer [Fe(OMe)(dpm)2]2

The structure of the molecule is shown in Figure 8. The two Fe(III) ions
are antiferromagnetically coupled through oxygen bridges, so that the ground
state is S = 0 and, in order of increasing energy, there are the multiplets
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S = 1, 2, 3, 4, 5. Moreover, the exchange constant is J = 27.4K and an ax-
ial magnetic anisotropy is present, with the constant D(S) depending to S
according to [26]:

D(S) = − 1
3.2

3S(S + 1) − 38
2(2S + 3)(2S − 1)

D(1) (22)

From EPR measurements on a similar dimer the value of about 8K was ob-
tained for the multiplet S = 1 [27]. More detailed properties of this molecule
are reported in ref. [17].

Fig. 8. ORTEP view of the dimer [Fe(OMe)(dpm)2]2.

Fifteen spectra in ±6mms−1 velocity range were collected between 6.5 and
288 K. Some of them are shown in Figure 9 to illustrate the evolution of the
spectrum shape with the temperature. They consist of quadrupolar doublets
with linewidth increasing with the temperature due to the spin fluctuations.
To be more precise, for T < 50K the linewidths are similar and fairly nar-
row, while, for T > 100K, they become wider and wider as the temperature
increases. This is expected because for T < 50K the prevalent contribution
to the spectra come from the ground singlet, while spin fluctuations become
more and more important with the increasing of temperature and, conse-
quently, populations of the spin multiplets. We observe, moreover, that the
line broadening is much more evident for the spectrum line corresponding to
the more energetic Mössbauer transition.

Since in the spectrum shapes any magnetic structure is absent at all the
temperature, we are in fast relaxation conditions, at least for T > 50K: the
detailed theory of the spectrum shape for this dimer in the fast relaxation
limit is reported in [25]. From the fitting of the spectra the parameter Jrel

defined in the previous section was obtained and then fitted by means of (21).
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Fig. 9. Set of spectra collected in a range from 6.5 K to room temperature. Solid
lines represent the relative fit obtained as described in the text. The velocity range
is restricted between -1 and 2 mm s−1 to emphasize the line shape evolution.

For this purpose, the presence of a transverse anisotropy of Hamiltonian HT =
E(S2

+ + S2
−)/2 was assumed, and the tunnel frequencies ν(S)

M were calculated
by means of the Brillouin-Wigner perturbation theory [12], obtaining:

ν
(S)
M = F

(S)
M

(
E

D(S)

)M

D(S) (23)

where F (S)
M are numerical factors depending onM and S. As far as the trend of

ν is concerned, we note that, as a significant linewidth broadening is observed
for T > 100K, the microscopic mechanism describing the spin fluctuations
has to be at least of the second order. Moreover, there are not other spin
states in addition to the spin states considered, so that mechanisms based on
Orbach or Raman effects should be excluded. It is therefore reasonable that
the basic process consists of a first order Raman effect [13]. We also assumed
that only vibrational molecular modes of a narrow band, so that the w trend
has to be of the form w = w0 exp(2T0/kBT ), which just describes a first order
Raman effect in the presence of vibrational modes of a narrow band around
T0 [28]. The experimental Jrel values together with the best fit are shown in
Figure 10. We see that the fitting is poor for T < 50K, which is expected,
since, being the S = 0 ground state prevalently populated in this range, the
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spectrum linewidts are practically independent of spin fluctuations and the
mean spin approximation is not allowed.

Table 3. Values of D and E/D for S = 1; moreover, values of τM , w0 and T0

obtained from the fitting of Jrel by eq.(21)

D(1) (K) E/D(1) (10−4) τ−1
M (107 s−1) w0 (108 s−1) T0 (K)

8.1 8.5 1.3 9.2 732

The outlet values of the parameters are reported in Table 3. We included
τ−1
M in the fitting parameters in order to check the foundation of (21). The

value of 1.3 107s−1 is of the same order of magnitude of the value reported in
the literature [29]. As far as the values of D(1) and E/D(1) are concerned,
these are substantially in agreement with EPR measurements on a similar
dimer [27]. The corresponding tunnelling frequencies of the multiplets are of
the order of 109s−1, i.e. of the same of w0. Lastly, the value of 732 K for T0

corresponds to modes of circular frequency ω0 = 8.5 1013s−1.

Fig. 10. Full circles denote Jrel values obtained from the fitting of the spectra. The
solid line is the best fit obtained from eq.(21).
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