
Chapter 9
Heuristic Search

Abstract This chapter provides in depth study of heuristic search methods—the
methods for searching the goal (solution) to problems, that are more like human,
and do not follow the exhaustive search approach, making them far more efficient
than the uninformed search methods. The introduction starts with formal defini-
tion of heuristic search, then follows Hill-climbing searches, their algorithm and
analysis, best-first search, its algorithm and analysis, optimization, A-star search,
and approaches to better heuristics. Finally, the search methods—simulated anneal-
ing (based on treatment of metals), Genetic Algorithm (GA)-based search method,
along with their analyses are presented, followed with chapter summary, and at end
an exhaustive list of practice exercises, along with multiple-choice questions are
provided.

Keywords Heuristic search · Hill-climbing search · Best-First Search · A-star
search · Simulated annealing · Genetic algorithm

9.1 Introduction

The subject of combinatorial optimization comprises a set problems that are central
to the domain of computer science. The field of combinatorial optimization aims to
develop efficient algorithms to find out minimum/maximum values of some function
having largenumber of independent variables. The function is usually calledobjective
function or cost function, and represents the quantitative measure of the “goodness”
of some complex system. The cost function depends on the total configuration of the
system which comprises many parts.

The best-quoted example of a combinatorial optimization problem is Traveling
Salesman Problem (TSP). It is stated as: given a list of n cities, and distance between
every two cities, it is required to plan a salesman’s route which guarantees to pass
through every city once only, covering all the cities, and finally returns to the starting
point. The order of cities to be visited should be so planned, that the total distance,
to cover all the cities, is minimum. Instead of distance, it can be cost of travel from
city to city, or some other parameter. For the sake of generality, we call this as

© Springer Nature India Private Limited 2020
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_9

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-81-322-3972-7_9&domain=pdf
https://doi.org/10.1007/978-81-322-3972-7_9

240 9 Heuristic Search

cost. The problems of this type are common in the areas of scheduling and design.
Two subsidiary problems in these areas are of general interest: 1. Predicting the
estimated cost of a salesman’s optimal route averaged over some arrangement of
cities, having given the arrangement of cities and the distance between pairs of
cities, 2. Estimating/obtaining the upper bounds of computing efforts necessary to
determine the optimal route.

All the exact methods (also called exhaustive) known so far, for determining the
optimal route of the salesman problem, requires the computing efforts, that grows
exponentially with the total number of cities n. Hence, to carryout the solution in
realistic times, the exact solution can be attempted only for a small number of cities
n, may be less than a hundred. The TSP belongs to a class of large set of problems,
called NP-Complete (NP for nondeterministic polynomial in time) problems. So far,
nomethod of exact solution having computing effort bounded by a polynomial power
of n (say nk , k ≥ 1) has been found for any of these problems.1

However, if such a solution was found for any problem, say A, which is NP-
complete, then it would be possible to map to A, all the remaining NP problems, as
all NP problems are member problems of A (an NP-complete). However, it is yet not
known as what are the features of the individual problems that make it NP-complete,
and that cause this level of difficulty of solving!

The problems of NP-complete class are at common place in many situations
of practical interest, and hence the importance of their solutions. Fortunately, the
solution methods, called, heuristic methods have been developed, which have com-
putational requirements proportional to only a limited powers of n (the size of the
problem). Unfortunately, there is no universal heuristic method which can be applied
to all types of problems. In fact, the heuristics are not general, but problem-specific,
and there is no guarantee that one heuristic procedure for finding near-optimal solu-
tions for one NP-complete problem will be effective for another problem also.

Fundamentally, there exist two basic approaches to heuristics: 1. “divide-and-
conquer” and 2. “iterative improvement”. The first approach is based on the concept
of dividing the original problem into subproblems of manageable sizes, and then the
subproblems are individually solved. At the end, the solutions to the subproblems are
patched back together to get the complete solution. For thismethod to produce a good
solution, it is necessary that subproblems are naturally disjoint, and the division of
the original into subproblems is proper, in the sense that errors made in patching up
the subproblems do not offset the gains obtained in applying more powerful methods
to the subproblems.

Other approach to heuristics is based on iterative improvement, where one has
to start with a known configuration. And, for this configuration, a standard rear-
rangement operation is applied to all parts of the system in turn, until a rearranged
configuration which improves the cost function is discovered. As a next step, this
rearranged configuration becomes the new configuration of the system, and the pro-
cess is repeated until we reach to a configuration such that no further improvements

1The NP-Complete problems require exponential power of computing efforts, in terms of n, i.e.,
kn .

9.1 Introduction 241

can be found. The iterative improvement comprises a search space for rearrange-
ment, so that there is a flat region in space, indicating that an optimized solution has
reached—called global maxima.

Instead of settling to global maxima, the search quite often gets stuck-up in a local
maxima. Due to this, it is usual to perform the search several times, starting from
different randomly generated configurations, and save the best result, so as to reach
the global maxima.

This chapter presents the heuristic methods for AI search problems. These meth-
ods are better informed, hence explore the state space in a more right directions. The
analysis and complexities of these methods are also discussed.

Learning Outcomes of this Chapter:

1. Describe the role of heuristics and describe the trade-offs among completeness,
optimality, time complexity, and space complexity. [Familiarity]

2. Select and implement an appropriate informed search algorithm for a problem by
designing the necessary heuristic evaluation function. [Usage]

3. Evaluate whether a heuristic for a given problem is admissible (i.e., can guarantee
optimal solution). [Assessment]

4. Design and implement a genetic algorithm solution to a problem. [Usage]
5. Design and implement a simulated annealing schedule to avoid local minima in

a problem. [Usage]
6. Design and implement A∗ search to solve a problem. [Usage]
7. Compare and contrast genetic algorithms with classic search techniques. [Assess-

ment]
8. Compare and contrast various heuristic searches vis-a-vis applicability to a given

problem. [Assessment]

9.2 Heuristic Approach

The search efficiency can improve tremendously—reducing the search space, if there
is away to order the nodes to be visited in such thatmost promising nodes are explored
first. These approaches are called informed methods, in contrast to the uninformed
or blind methods discussed in the previous chapter. These methods depend on some
heuristics determined by the nature of the problem. The heuristics is defined in
the form of a function, say f , which some how represents the mapping to the total
distance between start node and the goal node. For any given node n, the total distance
between start and goal node is f (n), such that

f (n) = g(n) + h(n), (9.1)

where g(n) is distance between start node and the node n, and h(n) is the distance
between node n and the goal node. We note that g(n) can be easily determined

242 9 Heuristic Search

and can be taken as shortest. However, the distance to goal is f (n), which requires
computation of h(n), called heuristics, cannot be so easily determined. In deciding
the next state every time, which is represented by node n, the state is chosen such
that f (n) is minimum.

Considering the case of the traveling salesman problem, which otherwise, is a
combinatorially explosive problem, with exponential time complexity of O(n!) for
n nodes, reduces to only O(n2) if every time the next node selected is the nearest
neighbor, that is, the one having shortest distance from the current node.

Similarly, in the 8-puzzle problem, the next move is chosen the one having mini-
mum disagreement from the goal, i.e., having minimum number of misplaced posi-
tions with respect to the goal.

The heuristic methods reduce the state space to be searched, and supposed to give
the solution, but may fail also.

9.3 Hill-Climbing Methods

The name hill-climbing comes from the fact that to reach the top of a hill, one selects
the steepest path at every node, out of the number of alternatives available. Naturally,
one has to sort the slope values available, pick up the direction ofmove having highest
angle, then reach to the next point (node) toward the hill top, then repeat the process.
The hill-climbing Algorithm 9.1 is an improved variant of the depth-first search
method. A Hill-climbing method is called greedy local search. Local, because it
considers a node close to the current node, at a time; and greedy because it always
selects the nearest neighbor without knowing its future consequences. The inputs to
this algorithm are G, S, and Goal, which stand for—graph, start(root) node, and the
goal node, respectively.

Consider the graph shown in Fig. 9.1a, where start node is A and goal node is G.
It is required to find out the shortest path from node A to node G, using the method
of hill-climbing. Figure9.1b shows the search tree for reaching to goal node G from
start node A, with shortest path A, B, D, E,G, and path length 14. It can be easily
worked out that this approach cannot lead to shortest path always.

Though simple, hill-climbing suffers from various problems. These problems are
prevalent when hill-climbing is used to optimize the solution.

• Foothill Problem: This occurs when there are secondary peaks or local maxima.
These are mistaken for the global maxima, as the user is left with false sense of
achieving the goal.

• Plateau Problem: This occurs when there is a flat region separating the peaks.
• Ridge Problem: It is like a knife edge or an edge on top of a hill, both the sides are
valleys. It again gives a false sense of top of the hill, as no slope change appears.

9.3 Hill-Climbing Methods 243

Algorithm 9.1 Hill-Climb(Input: G, S, Goal)
1: Open = [S]
2: Closed = nil
3: if Open = nil then
4: return fail
5: end if
6: repeat
7: if Open.Head = Goal then
8: return success
9: end if
10: expand Open.Head and generate children’s set, call it C
11: reject all paths in C having loops
12: delete Open.Head and insert it into Closed
13: sort C in order of heuristic, with best heuristic node in the front
14: insert C at the front of List
15: until Open = nil
16: Return fail

2

5

3
7

2

9

4
9

6

Goal node = G

Start node = A

2 5

3
2

9

6

(a) Graph to be searched for goal ’G’. (b) Search-Tree.

A

B

C

D

E

G

A

B

C

G

D E

C

4

6
GE

Fig. 9.1 Graph with Hill-climbing search

Due to above difficulties, a hill-climbing algorithm is not able to find a goal, even
if the goal exist. Thus, hill-climbing algorithms are not complete.

Consider the following phenomenas:

1. Rotating the brightness knob in control panel of an analog TV does not improve
the quality of picture,

2. While testing a program, running it again and again, with different data sets does
not indicate new discovery of errors,

3. Participating in a sports again and again (without new ideas and training), does
not improve further performance.

In all the above three cases, we strive for optimum performance. In case 1, the
adjustable parameter is TV control, in second types of different input data, and in the
third, adjustable parameter is more energy and preparedness. But it is appears that
optimum has reached (a highest point in performance, from where no improvements
take place, an indication of saturation point, the goal, but not the true goal).

244 9 Heuristic Search

The above scenarios are created due to either of the foothill problem, or plateau,
or ridge.

Local Versus Global Search

The preference for local search where only one state is considered to further expand
at a time, out of the newly explored states, is good for a memory efficiency, in
comparison to expanding all the successor nodes, but appear to be a too extreme
step. Thus, instead, k best nodes out of successors generated are considered for
further expansion. This gives rise to a new method, called local beam search.

However, the local beamsearch toowill lead to concentration to a specificdirection
to those successors which generate more potential nodes. Consequently, this search
also ultimately becomes a local search. A better solution is to elect these k nodes
such that they are not the best successors, but randomly selected, out of the next
generation of successor nodes. This new method is called stochastic beam search.
Thus, we grow a population (of nodes) and from that we generate further another
population by random selection, as well as on some criteria of merit. Thus, we reach
closely to the approach used in genetic algorithms-based search.

9.4 Best-First Search

If a problem that has a very large search space and can be solved by iteration (unlike
theorem proving),2 there is usually no alternative to using the iterative methods. In
such problems, there is a serious issue in bounding the effort to make the search
tractable. Due to this, the search should be kept limited in some way, e.g., in terms
of total number of nodes to be expanded, or maximum depth to which it may reach.
Since there is no guarantee that a goal node will be ultimately reached, an evaluation
function is invoked to help us decide the approximate distance to the goal, for any
given node at the periphery of the search. This or a similar function can also be
used for deciding which tip node to sprout next. Hence, the effort for proper design
of valuation functions limits the later stage difficulty in solving the problem. Note
that heuristics-based methods are called informed search methods, in contrast to the
uninformed methods discussed in the previous chapter.

Among all the problem-solving strategies based on search the heuristics, one of
the most popular methods of exploiting heuristic information to cut down search
time is best-first search strategy. This strategy possess general philosophy of using
heuristic information to assess the “merit” latent in every candidate search avenue
exposed during the search, and then continues the exploration along the direction
of highest merit. There are no local maxima “traps” in best-first search like in hill-
climbing methods. The best-first search strategy is usually seen in context of path-
searching problems—a formulation that represents many combinatorial problems
with practical applications, such as routing telephone traffic, layout of printed circuit

2In problems such as theorem proving, the search must continue until a proof is found.

9.4 Best-First Search 245

board, scheduling, speech recognition, scene analysis, mechanical theorem proving,
and problem-solving.

The heuristic approach typically uses special knowledge about the domain of the
problem being represented by the graph to improve the computational efficiency of
solution to particular graph-searching problem. However, the procedures developed
via the heuristic approach generally have not been able to guarantee that minimum
cost solution paths will always be found.

Given a weighted directional graph G = (V, E,W) with a distinguished start
node S and a set of goal nodes R, the optimal path problem is to find a least cost
path from S to any member of R where the cost of the path may, in general, be an
arbitrary function of them, weights assigned to the nodes and branches along that
path. A Generalized Best-First Search (GBFS) strategy will pursue this problem by
constructing a tree T of selected paths of G using the elementary operation of node
expansion, that is, generating all successors of a given node, Starting with S, the
GBFS will select for expansion that leaf node of T that features the highest “merit,”
and will maintain in T all paths which have been encountered so far. And, that still
appear as viable candidates for sprouting an optimal solution path. When no such
candidate is available for further expansion, the search terminates. In that case the
best solution path found so far is issued as a solution; if none has been found, a
failure is declared. Due to its nature of search, the best-first search is also called
branch-and-bound method, i.e., branching a search to other directions to which path
cost is minimum, and bounding the cost to that minimum, until a better minimum is
found after next expansion.

9.4.1 GBFS Algorithm

A best-first search algorithm maintains two lists of nodes, an “Open-list”and a
“Closed-list”. The Closed-list contains those nodes that have been expanded, by
generating all their children, and the Open-list contains those nodes that have been
generated, but not yet expanded. At each iteration of the algorithm, an Open node
having smallest total cost from start node, is expanded, moved to the Closed-list and,
its children are added into the Open-list [2].

The best-first search method takes the best node to be explored first, among
the number of nodes in the open-list. When a node is selected as a candidate for
expanding, its all children’s distance is computed from the start node, which serve as
heuristic value. This approach works because there is always a best node available
for expanding, until the goal is reached or the entire search has taken place.

Since, best node is selected every time, it is guaranteed to give the best solution.
The value of heuristic function f (n) for a given node n, does not here include the
distance from current node to the goal node, as required in Eq. (9.1, page no. 241),
however, since the best path is chosen every time, it is likely to provide the optimum
solution for the problem.

246 9 Heuristic Search

Algorithm9.2 shows the steps for best-first search.

Algorithm 9.2 Best-first Search(Input: S, Goal)
1: Open = [S]
2: Closed = []
3: repeat
4: if Open.Head = Goal then
5: return success
6: end if
7: generate children’s set C of Open.Head
8: if n ∈ C already exists in OPEN and new n is reachable by shorter path then
9: remove the old n
10: end if
11: if n ∈ C already exists in Closed and reachable by shorter path then
12: replace n ∈ C by the same node from Closed, along with shorter distance from root
13: end if
14: remove Open.Head and insert into Closed
15: update distance from root for all C nodes
16: add all C to either side of Open and record their parents
17: sort Open by path length so that least cost path node is at front
18: until Open = nil
19: return fail

Example 9.1 Best-first search.

Fig. 9.2a shows the graph, and Fig. 9.2b shows the search tree using GBFS for reach-
ing to goal node G.

Every node in best-first search shows the node identification alongwith its distance
from the root node S. The order in which the nodes are explored is shown with dotted
line. Since G is goal, its path from root is S, A,C,G with shortest path length 11.
Note that any other path will be of longer or equal length. �

S

A

B

C

D

E

G

3

4
5

4

5

2

4

4

3

S,0

A,3 B,4

C,7 B,8 A,9 D,6

C,11 E,10
G,11 D,12

(a) Graph (b) Best-first Search

Fig. 9.2 Best-First (Branch-and-Bound) search

9.4 Best-First Search 247

9.4.2 Analysis of Best-First Search

As we have noted that, the best-first searches tend to put the searching effort into
those subtrees that seem most promising (i.e., they are most likely of providing the
best solution). However, the best-first searches require a great deal of bookkeeping
for keeping track of all competing nodes, contrary to the great efficiencies possible
in depth-first searches.

Depth-first searches, on the other hand, tend to be forced to stop at inappropriate
moments thus giving rise to the horizon effect (number of possible states is immense
and only a small portion can be searched). They also tend to investigate huge trees,
large parts of which have nothing to do with any solution (since every potential arc
of the losing side must be refuted). However, these large trees sometimes turn up
something that the evaluation functions would not have found were they guiding the
search. Sometimes the efficiencies and discovery potential of the depth-first methods
appear to out-weight what best-first methods have to offer. In fact, bothmethods have
some glaring deficiencies.

Optimizing Best-First Search

In practice, several shortcuts have been devised to simplify the computation ofGBFS.
First, if the evaluation function f (n) used for node selection always provides opti-
mistic estimates of the final costs of the candidate paths evaluated, then we can
terminate the search as soon as the first goal node is selected for expansion, without
compromising the optimality of the solution used. This guarantee is called admissi-
bility and is, in fact, the basis of the branch-and-bound method. This we can observe,
for example in a chess game, where goal is property of a configuration and not the
property of path from start node. Hence, once a winning configuration is reached,
there is no need to try it from other paths.

Second, we are often able to purge from tree T , large sets of paths that are rec-
ognized at an early stage to be dominated (i.e., superior) by other paths in T . This
becomes particularly easy if the evaluation function f is order-preserving, that is,
if, for any two paths p1 and p2, leading from S to n, and for any common extension
p3 of those paths, the following holds (Fig. 9.3) [2]:

f (p1) ≥ f (p2) ⇒ f (p1 p3) ≥ f (p2 p3). (9.2)

The property of Order-preserving is a judgmental version of the principle of
optimality inDynamic Programming. The principle states that, a path p1 is judged to
be more meritorious than another path p2, such that both are paths from one source
state S to some future state n, and there is a common extension p3 of p1 and p2.
In such a scenario, the common extension cannot later reverse the judgment made
earlier. Under such conditions, there is no need to keepmultiple copies of nodes in the
tree T . Every time, the expansion process generates a node n, which already resides
in T , only lower path to node n be maintained, and the link from more expensive
parent of n is discarded. This has been illustrated in Fig. 9.3.

248 9 Heuristic Search

Fig. 9.3 Order-preserving in
GBFS

p2
p1

p3

S

n

n

The best-first search allows revisiting the decisions. This is possible when a newly
generated state by expansion of one of the state in Open-list is found in the closed-list
also. The best-first would retain the shorter path to this node, and purge the other to
save space. However, in a variant of best-first, called, greedy best-first search once a
state is visited the decision is final and the state is not visited again, thus eventually
accepting the suboptimal solution. This however, does not require theClose-list, thus
saving the memory space significantly.

Special Cases of Best-First Search

Individual best-first search algorithms differ primarily in the cost function f (n).
If f (n) is the total depth of node n (not the distance from start), best-first search
becomes breadth-first search. Note that breadth-first searches all the closer nodes (to
start) before farther nodes. If f (n) = g(n), where g(n) is the cost of the current path
from the start state to node n, then best-first search becomes Dijkstra’s single-source
shortest-path algorithm.

If f (n) = g(n) + h(n), where h(n) is a heuristic estimate of the cost of reaching
a goal from node n, then best-first search becomes a new algorithm A∗ algorithm.

Breadth-first search can terminate as soon as a goal node is generated, while
Dijkstra’s algorithm and A∗ must wait until a goal node is chosen for expansion to
guarantee optimality. Every node generated by a best-first search is stored in either
the Open- or Closed-lists, for the following reasons:

1. To detect when the same state has previously been generated. This is to prevent
expanding it more than once.

2. To generate the solution path once a goal is reached. This is done by saving with
each node a pointer to its parent node along an optimal path to the node, and then
tracing these pointers back from the goal state to the initial state.

3. To choose only the node, which is at shorter distance, when a newly generated
node already exists in the closed-list.

9.4 Best-First Search 249

The primary drawback of best-first search is its memory requirements. By storing
all nodes generated, best-first search typically exhausts the available memory in very
short time on most machines.

While breadth-first search manages the Open-list as a first-in first-out queue,
generalized best-first searches manage the Open-list as a priority-queue in order to
facilitate efficiently determining the best node to expand next.

All of these algorithms suffer the same memory limitation as breadth-first search,
since they store all nodes generated in their “Open”or “Closed”lists, and will exhaust
the available memory in a very short time.

9.5 Heuristic Determination of Minimum Cost Paths

The objective of heuristic determination of minimum cost path is to find an algorithm
that searches a graph, G = (V, E) to obtain an optimal path from start node S to its
perfect goal node t . In the search process, each time a new node is expanded, two
things are storedwith each successor node: 1. The cost of reaching to n through a least
cost path created so far, and 2.A pointer to the predecessor node of n. Ultimately, the
algorithm gets terminated at some goal node t , and no further nodes are expanded. At
this state, we can reconstruct the minimum cost path from S to t , simply by chaining
back the nodes from t to S through the pointers to predecessor nodes.

In order to expand as few nodes as possible for searching an optimal path, the
search algorithm must constantly make an informed decision about what node is to
be expanded next. The expansion of nodes that are not going to be in the optimal
path, will result to wastage of efforts. On the other hand, if the algorithm ignores the
nodes that might be in the optimal path, it will fail to find such a path, in that case
the algorithm is not admissible. Thus, a good algorithm obviously needs some way
to evaluate the available nodes to determine which node to expand next.

Consider that an evaluation function could be calculated for some node n. Let,
f ∗(n) is estimated minimum distance from start state to goal state, constrained
through node n. Assume that this evaluation function be defined in such a way
that the node with smallest value of f ∗ is expanded next. We will show that for
a suitable choice of the evaluation function f ∗, the algorithm A∗ is guaranteed to
provide an optimal path to a preferred goal node from the start node S, which is
sufficient condition for the admissibility of the algorithm.

9.5.1 Search Algorithm A∗

By far, the most studied version of best-first-search is the algorithm A∗, which was
developed for additive cost measures, that is, where the cost of a path is defined as
the sum of the costs of its arcs. The A∗ is in fact a family of algorithms, we will see
it shortly. The algorithm makes use of ordered state-space search and the estimated

250 9 Heuristic Search

heuristic cost to determine the evaluation function f ∗, a function which provides the
goal state. This process is similar to the best-first search, but now it is unique in the
sense that it defines f ∗, which will provide a guarantee of optimal path to the goal
state. The A∗ algorithm is in the class of branch-and-bound algorithms, which are
common in use in operations research for finding the solution of a problem, in the
form of a shortest path in a graph [1].

The evaluation function f ∗(n) estimates the quality of the solution path through
node n, and it is based on values returned from two components: 1. g∗(n), and 2.
h∗(n). The first component is the minimal cost of a path from a start state to n, and
the second component, called heuristic value, is a lower bound on the minimal cost
of a solution path from state n to goal state.

In graphs, g∗ can have error only in the direction of overestimating the minimal
cost. In future steps of the algorithm, if a shorter path is found, the value of g∗ can
be readjusted to lower side. The function h∗ carries the heuristic information, such
that it has the capability that ensures that value of h∗(n) is less than h(n). This later
condition is essential to the optimality of A∗ algorithm. The property, as per which,
h∗(n) is always less than h(n), is called admissibility condition.

To match this cost measure, A∗ employs an additive evaluation function f (n) =
g(n) + h(n), where g(n) is the cost of the currently evaluated path from S to n and
h is a heuristic estimate of the cost of the path remaining between n and some goal
node. Since g(n) is order-preserving and h(n) depends only on the description of
the node n, therefore f (n) is also order-preserving, and one is justified in discarding
all but one parent for each node.

The admissible search algorithm for A∗ (A-star) is given as Algorithm9.3.

Algorithm 9.3 Admissible search A∗(Input: G, S, Goal)
1: Open = [S]
2: Closed = []
3: compute f ∗(n) for all n ∈ Open
4: repeat
5: select the open node n whose f ∗(n) is smallest
6: resolve ties arbitrarily, but always in favor of any node n ∈ Goal
7: if n ∈ Goal then
8: move n to Closed
9: terminate algorithm
10: else
11: move n to Closed
12: apply successor operator to n
13: calculate f ∗ for each successor ni of n
14: move all ni /∈ Closed to Open
15: move to Open any ni ∈ Closed and for which f ∗(ni) is smaller now than it was when ni

was in Closed
16: end if
17: until Open = nil
18: return fail

9.5 Heuristic Determination of Minimum Cost Paths 251

9.5.2 The Evaluation Function

Let, for any graph G and any set of goal nodes Goal, let us assume that f (n) is
the actual cost of an optimal path that is restricted to go through only the node n,
i.e., from source S to a preferred goal node n. Note that at the begin of the A∗
search algorithm, the constrained node n is nothing but S. Hence, g(n) = g(S) = 0.
Therefore, f (S) = h(S) is the cost of unconstrained optimal path from node S to
preferred goal node, what so ever it is. Actually, for every node n on optimal path,
the condition f (n) = f (S) holds, and for every node n not on an optimal path,
f (n) > f (S) holds. Thus, although f (n) may not be known in advance, it seems
reasonable to use the evaluation function f ∗(n) as an estimate of f (n). This is
because determination of the true value of f (n) may be main problem of interest.

In the following, we present some properties of search algorithm A∗ where cost
f (n) of an optimal path through node n is estimated using an evaluation function
f ∗(n). The function f (n) can be written as the sum of two parts, g(n) and f (n):

f (n) = g(n) + h(n). (9.3)

In the above, g(n) is the actual cost of an optimal path from node S to n, and h(n)

is the actual cost of an optimal path from node n to a preferred goal node.
If we had the estimates of g and h, we could easily get the estimate of f (n), as

the simple addition of the two. An obvious choice for g∗(n) is, so far smallest cost
path found by the algorithm, from S to n. This indicates that g∗(n) ≥ g(n).

Through a simple example we will explain that the above estimate is easy to
compute as the algorithm progresses through its computations [6].

Example 9.2 Consider the subgraph shown in Fig. 9.4, with start node S and three
other nodes n1, n2, n3, with cost on edges as the weights.

Having given this, we trace the algorithm A∗ as it proceeds. With S as start node,
n1 and n2 are the successor nodes. The estimates for g∗(n1) and g∗(n2) are then 4
and 9, respectively. Let, A∗ expands the next node as n1, and obtains the successors
n2 and n3. At this stage g∗(n3) = 4 + 3 = 7, and g∗(n2) is 4 + 4 = 8. The value of
g∗(n1) ultimately remains equal to 4, irrespective of the goal node. �

Fig. 9.4 Admissibility test

4

3

4

9
S

n1

n2

n3

252 9 Heuristic Search

We have the following arguments for an estimate h∗(n) of h(n), which we are not
able to compute for this example, as no criteria for heuristics is specified here. We
usually rely on information from the problem domain for heuristics. For example,
many problems that can be represented in the form of problem of finding mini-
mum cost path through a graph that contains some “physical” information, and this
information is used to form the basis for estimation of h∗. When considering the
connection between cities through roads, the value h∗(n) might be air distance from
city n to goal city, because this distance is the shortest possible length of any road
connecting city n to the goal city. Thus, it is lower bound on h(n). However, the
above conclusion is based on the assumption that air connectivity between any two
cities follows a straight line rule.

As another example, in an 8-puzzle problem, at node n, the distance h∗(n) might
be equal to the number of tiles dislocated with respect to the goal state.

We will discuss later about using information from specific problem domains, to
form estimate of f ∗. However, first we can prove that if h∗ is any lower bound of h,
then the algorithm A∗ is admissible.

Example 9.3 A∗-Search.

Figure9.5 shows a graph, heuristic function table for h(n) for every node in the
graph, and tree constructed for A∗ search for the graph, for given start state S and
goal state G. To expand the next node, the one having smallest value of function f is
chosen out of the nodes in the frontiers. The function f for a node n is sum of three
values: the g value of the parent of n, the distance from parent of n to the node n,
and heuristic value (estimated distance from n to goal, given in the table) indicated
by h. In the case of a tie, i.e., two states having equal values of f , the one to the left
of the tree is chosen.

If, in addition, h(n) is a lower bound to the cost of any continuation path from
n to goal, then f (n) is an optimistic estimate of all possible solutions containing
the currently evaluated path. Then, terminating A∗ upon the selection of the first
goal node does not compromise its admissibility. Several other properties of A∗ can
be established if admissibility holds, such as the conditions for node expansion,
node reopening, and the fact that the number of nodes expanded decreases with
increasing h.

Based on the criteria set for A∗ (i.e., to always expand the node having smallest
value of f). The distance to goal (f) for each node n is: distance from source S to
parent, plus distance from parent to this node n, plus distance h from this node n to
goal. For current node n = A, these distances are 0, 1, 6, respectively. The order in
which nodes have been expanded for Fig. 9.5a, and shown in search tree in Fig. 9.5c
with start node S and goal node G are: (S, 0), (B, 6), (A, 7), (B, 5), (C, 6), (C, 7)
(with parent A), (C, 7) (with parent B), (G, 8), (G, 9), (G, 12). Finally, we note that
the best path is corresponding to goal (G, 8), and it is: S, A, B,C,G. Note that, in
the A∗-tree, we followed the sequence (S, 0), (B, 6), with (A, 7) and not (C, 7),
which are equally weighted. We chose the node to the left-side subtree. Had we
chosen, (C, 7) in place of (A, 7), we would have reached to (G, 9) as next node,
which incidentally was not a good choice. �

9.5 Heuristic Determination of Minimum Cost Paths 253

S

A

B

C G

1

2
4

5

2

11

3

State h
S
A
B
C
G

6
2
1
0

7

S

A B

B C G

C

G

G

C

G

f = 0+7
= 7

1 4

2

2

3

5 11

3

2

3

f=0+4+2
=4+2=6

f=4+2+1
= 6+1=7

f=6+3+0
=9+0=9

f=0+1+6
= 1+6=7

f=1+2 +2
=3+2=5

f=1+5+1
=6+1=7

f=1+11+0
=12+0=12

f=3+2+1
=5+1=6

f=5+3+0
=8+0=8

f=6+3+0
=9+0=9

(a) Graph. (b) Heuristic Table.

(c) A*-Search Tree.

Fig. 9.5 Graph and A*-Search tree

9.5.3 Analysis of A∗ Search

The A∗ is actually a family of search algorithms, as mentioned earlier, and many
other search algorithms are special cases of this algorithm.

The estimated value h∗(n) for h(n) can be obtained from the problem domain.
For example, in the case of 8-puzzle problem or the 8-queen problem, this value is
inverse of the number of tiles out of place with the goal or the inverse of number of
queens giving checks to other queens. Even better value is, actual number of moves
from n to goal.

Let us consider the specific cases of f ∗(n) as follows:

• When h = 0, then g = d (the distance to goal in the search tree). This algorithm
is called as A, and it is identical to Breadth-First Search (BFS).

• We claimed that the BFS algorithm is guaranteed to find the minimum path length
to the goal node. If h is lower bound on h∗, i.e., h(n) ≤ h∗(n), for all n, then the
algorithm will find an optimal path to a goal node. This algorithm is called as A∗.

254 9 Heuristic Search

9.5.4 Optimality of Algorithm A∗

A search algorithm B is called optimal if there does not exist any other search algo-
rithm performing the searching in less time or space or can do the job by expanding
fewer nodes, having a guarantee of solution quality as that of algorithm A. Hence,
if h(n) is lower bound on h∗(n) then the solution of A∗ is admissible. This estimate
also concludes that any open node n may even be arbitrarily close to a preferred goal
node.

In oneway, we can define an optimal search algorithm as one that picks the correct
next node at each choice. However, this specification of an algorithm is not of much
use as this much specification is insufficient to design an algorithm. In fact, whether
such an algorithm may ever exist is also an open question in itself [6].

9.6 Comparison of Heuristics Approaches

The heuristic search that finds the shortest path to a goal wherever it exists is called
admissible. We may like to know, in what sense one heuristics is better than other,
is called informedness of the heuristics.

When search is made, it is expected that same node will not be accessible from a
shorter path later on. This property is called monotonicity.

The breadth-first search algorithm is admissible algorithm, because it searches a
path at level n, before searching the paths at level n + 1, hence if the goal exists at
level n it will be certainly found out. However the BFS algorithm is too expensive
as a general purpose algorithm.

The A∗ algorithm does not require g(n) = g∗(n). This shows that there may be
subgoals in the path, which are longer than g∗(n); this is due to monotonicity [8].

Definition 9.1 (Monotonicity) A heuristic function h is monotonous if for all the
nodes ni , n j , where n j is descendant of ni , such that

h(ni) − h(n j) ≤ cost (ni , n j), (9.4)

where cost (ni , n j) is actual cost, in number of moves from node ni to n j .

Definition 9.2 (Informedness) For a problem, suppose there are two A∗ heuristic
functions h1 and h2. Then, if h1(n) ≤ h2(n), for all states n in the search space, the
heuristic h1 is called more informed that h2.

For example, the criteria of number of tiles out of place, in the 8-puzzle is better
informed than the breadth-first or depth-first searchmethods. Similarly, the heuristics
which calculates the number of transitions to reach the goal is better informed than
the one considering the heuristics based on the number of tiles out of place. In general,
a more informed is an algorithm, there is less expansion of space for searching [6].

9.6 Comparison of Heuristics Approaches 255

Approaches to Better Heuristics

From the above two examples, we note that in some cases of search, the path matters
(TSP), while in other the path does notmatter, and only the final configurationmatters
(8-puzzle).

A simple algorithm for heuristic search could be considering only single state at
a time rather than many states corresponding to many paths sprouting at the same
time. Such algorithms are called local search in contrast to the global search, which
maintains many active paths at the same time. The local search algorithms consume
much less memory, usually a constant amount.

The Branch-and-bound algorithms are implicitly enumeration algorithms. These
are the principal general methods for finding out optimal solutions for discrete opti-
mization problems. The branch-and-bound algorithms are based on the following
parameters:

(D, E, L , N , P,U), (9.5)

where

D: Node dominance function,
E : Set of node elimination rules,
L: Node lower bound solution cost function,
N : Next node selection rule,
P: Partitioning or branching rule, and
U : Upper bound solution cost function.

A branch-and-bound algorithm is a two-step algorithm: first step is a splitting
or branching step which returns two or more smaller sets S1, S2, . . ., whose union
covers S, where S is set of candidates. Minimum of f (x) over S is min{v1, v2, . . .},
where each vi is the minimum of f (x) within Si . The recursive application of this
step defines a tree structure (a search tree) whose nodes are the subsets of S. The
second step, called bounding, computes upper and lower bounds of the minimum
value of f (x), within a given subset of S.

Application of the branch-and-bound technique has grown rapidly. Representative
examples of this include: flow-shop and job-shop sequencing problem, traveling
salesman problem, integer programming problem, and general quadratic assignment
problem. Though, the branch-and-bound algorithms are usually more efficient than
complete enumeration, however, these algorithms have computational requirements
that usually grow exponentially or high degree polynomial of the problem size n. In
these cases, their usefulness is limited to small size problems.

These are other search techniques based on “natural phenomena”. Under this
we are going to discuss two techniques: (1) Simulated annealing, which is based
on changes in the properties of metals and alloys due to heating them to higher
temperature and then slowly decreasing their temperature; and (2) Something based
on the Darwin’s theory of evolution, called genetic algorithms.

256 9 Heuristic Search

9.7 Simulated Annealing

Annealing is process of treatment of metal or alloy by heating to a predetermined
temperature, holding for a certain time, and then cooling to room temperature to
increase ductility and reduce brittleness. The process of annealing is carried out
intermittently during theworking of a piece of ametal to restore ductility lost through
repeated hammering or other working. Annealing is also done for relief of internal
stresses. The annealing temperature varieswithmetals and alloys, andwith properties
desired, but must be done within a range, that prevents the growth of crystals. It is an
optimization algorithm, its strength is that it avoids getting caught at local maxima—
the solutions that are better than nearby, but not best.

SimulatedAnnealing (SA) is a probabilistic search for the global optimization of a
problem for locating a good approximation to the global optimumof a given function,
in a large search space. The name of the process and its inspiration come from
annealing in metallurgical processes, where a function E(S) needs to be minimized.
This function is analogous to the internal energy of the system in that state. The
goal of SA is to bring the system from some arbitrary initial state, to a state having
minimum possible energy [7].

Process

The SA makes use of heuristics to reach to the goal state, such that at each step, the
heuristic considers some neighboring state s ′ of the current state s, and probabilis-
tically decides of moving the system to move to s ′ state or staying in s. When the
above sequence of steps are repeated, the probabilities ultimately move the system to
more stable states at lower energy. Typically, the iterations continue until the system
reaches to a state that is good enough for the application, or until a given number of
iterations are exhausted.

In SA we make one change from the normal heuristic search; we attempt to
minimize the function’s value instead ofmaximizing. So, instead of heuristic function
it is called object function. This is like a valley descending rather than hill-climbing.
Note that in 8-puzzle, for hill-climbing, we compute inverse of number of tiles out
of place with respect to goal to obtain heuristic value. So, if zero tiles are out of
place (i.e., at goal), the heuristic function is infinite. This would correspond to object
function as zero (or minimum).

The physical substances usually move from higher energy configuration to lower
levels, so that the valley descending occurs naturally. But, there is some probability
that a transition to higher energy will occur, given by

p = e
ΔE
kT , (9.6)

where ΔE is positive change in energy level (difference, i.e., current cost–new cost,
so ΔE is negative in valley descending), T is temperature in Kelvin absolute tem-
perature scale, and k is Boltzmann’s constant. As per this property, the probability
to a large uphill move will be lower than probability of small move. Also, the prob-
ability that a large uphill move will take place, decreases as the temperature (T)

9.7 Simulated Annealing 257

Fig. 9.6 Probability of
uphill move in simulated
annealing, as a function of
temperature and change in
energy

Pr
ob

ab
ili
ty

p

Pr
ob

ab
ili
ty

p

(-ve)Temperaure 1
T ΔE

(a) (b)

1 1

decreases. Figure9.6 shows the effect of increase of temperature and decrease of
ΔE , on probability.

In other words, the uphill moves are more possible when temperature is high, but
as the temperature decreases, relatively small uphill moves are made until finally
process converge to a local minimum configuration.

The rate at which system cools is called annealing schedule. If cooling occurs
too fast, the physical system will form stable regions high energy. That is, local but
not global minima is reached. If a slower schedule is used, a uniform crystalline
structure, which corresponds to a global minimum, will develop.

In search techniques, change in E (ΔE) is equal to change in object function. The
constant k represents the correspondence between the unit of temperature and unit
of energy. Since it is constant, we take probability p in Eq. (9.6) as

p′ = e
ΔE
T . (9.7)

SA mimics annealing process in metallurgy by combination of random search
and hill-climbing. During metallurgical annealing, alloys are cooled at a controlled
rate to allow for the formation of larger crystals. Larger crystals are chemically at a
lower energy state than smaller ones; alloys made of crystals in the lowest energy
state are comparably stronger and more rigid. At a high temperature, the search is a
random walk, and as the temperature lowers the search gradually transits to a local
search. Capturing this idea in an algorithm yields a random process over a space of
configurations where the probability of actually moving to a new configuration is
determined by the difference in energy and the current temperature. Algorithm 9.4
shows the steps for this process.

We note that SA uses

1. Iterative improvement,
2. Local random search,
3. Exploration, and
4. Greedy search.

When the temperature is high, atoms can move anywhere freely, and have equal
probability. When temperature does down, this freedom is reduced.

258 9 Heuristic Search

Algorithm 9.4 Simulated Annealing
1: T = high
2: generate random solution
3: calculate energy (E) of the solution
4: set initial temperature T (sufficiently high)
5: (Gradually decrease the temperature)
6: while T > cut-off temperature do
7: test solution ← solution
8: for n iterations do
9: adjust test solution
10: calculate energy E of test solution
11: ΔE = E1 − E2
12: if ΔE < 0.1 then
13: update solution and energy E

14: else if e
ΔE
T > random(0 to 1) then

15: update solution and E
16: end if
17: decrease T
18: end for
19: end while
20: end

Formal Approach

The Boltzmann probability function tends to return True at higher temperature and
False at lower temperature; thus in essence the search gradually shifts from random
walk to local hill-climb.

A simulated annealing algorithm is suitable for minimization of an objective
function f , having the mapping, f : S → R, where S is some finite search space,
and R is real number. Typically, the search spaces, designated as Sn , comprise sets
of bit strings {0, 1}n of fixed length or the set of all possible the permutations over
the set {1, 2, ..., n}.

When considering the search space S, it is necessary to define some notion of
neighborhood N , which is a relation N ⊆ S × S. A function

N : S → P(S) (9.8)

refers to the neighborhood of a search point s ∈ S, expressed as

N (s) = {s ′ ∈ S | (s, s ′) ∈ N }. (9.9)

Simulated annealing is considered efficient if it can locate a global maximum of
f at sufficiently high probability, and at the same time use fewer number of steps.
SA is a widely used heuristic to NP-complete problems that appear in real life

from job-shop scheduling to groundwater remediation design.
Most analysis of search algorithms usually focuses on the worst-case situa-

tion. There are relatively few discussions of the average performance of heuristic

9.7 Simulated Annealing 259

algorithms, because the analysis is usually more difficult and the nature of the appro-
priate average to study is not always clear. However, as the size of optimization
problems increases, the worst-case analysis of a problem will become increasingly
irrelevant, and the average performance of algorithms will dominate the analysis of
practical applications. This large number domain of statistical mechanics, and hence
of simulated annealing.

9.8 Genetic Algorithms

TheGenetic Algorithms (GAs) are search procedures based on the process of natural
selection and genetics. These are increasingly used in applications in difficult search
problems, optimization, and machine-learning, across a wide spectrum of human
endeavor. A GA processes a finite population of fixed-length binary strings. In prac-
tice, the strings are: bit codes, k-ary codes, real (floating-point) codes, permutation
(order) codes, etc. Each of these has their place, but here we examine a simple GA
to better understand basic mechanics and principles [3].

A simpleGAconsists of three operators: selection, crossover, andmutation. Selec-
tion is the survival of the fittest within the GA. Figure9.7 shows the sequence of
operations on a population Pn and producing next population Pn+1. To understand
the operation of the genetic algorithm, a population of three individuals is taken.
Each is assigned a fitness value by the function F , called fitness function. On the
basis of these fitnesses, the selection phase assigns the first individual (00111) zero
copies, the second (111000) two, and the third (01010) one copy. After selection,
the genetic operators are applied probabilistically; the first individual has its first bit
mutated from a 1 to a 0, and crossover combines the next two individuals into two
new ones. The resulting population is shown in the box labeled Tn+1. Algorithm 9.5
shows the steps for search using GA.

00111
11100
01010.........

11100
11100
01010

01100
11010
01100

F(00111) = 0.1
F(11100) = 0.9
F(01010) = 0.5

Population at
Tn

Population at
Tn+1

Mutation

Cross-over
Selection

applied
probabilistically

Fig. 9.7 Sequence of operations in GA

260 9 Heuristic Search

Algorithm 9.5Genetic Algorithm(Input: Initial Population, fitness function, percent
for mutation, selection threshhold)
1: Initialize the population with random candidate solutions
2: Apply fitness function to Evaluate each candidate’s fitness value
3: repeat
4: Select parents based on fitness value
5: Recombine pairs of parents (crossover)
6: Mutate resulting offspring
7: Apply fitness function to Evaluate new candidates’ fitness value
8: until termination condition/goal is reached

There are many ways to achieve effective selection, including ranking, tourna-
ment, and proportionate schemes, but the key notion is to give preference to better
individuals. Consider that individuals are strings of fixed length. In a selection game
of two-party of such individuals, pairs of strings are drawn randomly from the parental
(original) population, and the better/fitting individuals places an identical copy into
the mating pool. When the whole population is selected in this manner, every indi-
vidual will participate in two tournaments; the best individuals in the population will
win both trials. The median individual will typically win one trial and those worst,
do not win at all.

For the selection to function, there must be some way of determining who is fitter
individual. This evaluation can come directly from the formal objective function,
or from the subjective judgment by a human observer. The ordering used is usually
partial ordering.

The population holds representations of possible solutions. It usually has a fixed
size and is amulti-set. Selection operators usually takewhole population into account,
i.e., reproductive probabilities are relative to current generation and diversity of a
population refers to the number of different fitnesses.

If we were to do nothing but selection, GAs would not be very interesting because
the trajectory of populations could contain nothing but changing proportions of
strings contained in the original population. In fact, if run repeatedly, selection alone
is a fairly expensive way of—with high probability-filling a population with the best
structure of the initial population [4].

9.8.1 Exploring Different Structures

To do something more sensible, the GA needs to explore different structures. The
main operator used in GAs is crossover, which can be one-point or multi-point
crossover. A simple one-point crossover is performed using these three steps:

1. two individuals structures are chosen from the population using selection operator,
and considered for mating,

9.8 Genetic Algorithms 261

2. a crossover site along the string length is chosen uniformly at random, and,
3. the values following the crossover site are exchanged between the two strings.

Let the two strings be, A = 00000 and B = 11111. If the random choice of a cross
site turns up at 2, the two new strings following the crossover will be A′ = 00111
and B ′ = 11000. These resulting strings are placed in the new population pool, and
the process continues pair-by-pair from original population, until the new population
is completely filled with “off-springs” constructed from the bits and pieces of good
(selected) parents [5].

9.8.2 Process of Innovation in Human

Note that, the selection and crossover are simple operators, which do the job of:
generating random number, copying string, and exchange of partial strings. However,
their combined action makes much of the genetic algorithm’s search ability. To
understand this, we need to think the processing required to be done by human (us)
when we innovate. Often we combine the notions that worked well in one context,
with those that worked well in another context, to generate possibly better ideas (new
notions) of how to attack the problem at hand. In similar way, the GAs juxtapose
many different, highly fit substrings (called as notions) through the combined actions
of selection and crossover to form new strings (can be called as ideas).

9.8.3 Mutation Operator

If selection and crossover provide much of the innovative capability of a GA, what is
the role of the mutation operator? In a binary-coded GA, mutation is the occasional
(low-probability) alteration of a bit position, and with other codes a variety of diver-
sity generating operators may be used. By itself, mutation induces a simple random
walk through string space. When used with selection alone, the combination form a
parallel, noise-tolerant hill-climbing algorithm. When used together with selection
and crossover, mutation acts as both insurance policy and as a hill-climber.

9.8.4 GA Applications

The simplest GAs are discrete, nonlinear, stochastic, highly dimensional algorithms
operating on problems of infinite varieties. Due to this, GAs are hard to design and
analyze [5].

262 9 Heuristic Search

The nature of problems GAs can solve are:

• GAs can solve hard problems quickly and reliably,
• GAs are easy to interface to existing simulations and models,
• GAs are extensible, and
• GAs are easy to hybridize.

Because GAs use very little problem-specific information, they are remarkably
easy to connect to extant application code. Many algorithms require high degree of
interconnection between the solver and the objective function. For example, dynamic
programming requires a stagewise decomposition of the problem that not only limit
its applicability, but also can require massive rearrangement of system models and
objective functions. GAs on the other hand have clean interface, requiring no more
than the ability to propose a solution and receive its evaluation.

Although there are many problems for which the genetic algorithm can evolve
a good solution in reasonable time. There are also problems for which they are not
suitable, such as problems in which it is important to find the exact global optimum.
The domains for which one is likely to choose an adaptive method such as the genetic
algorithm are precisely those about which we typically have little analytical knowl-
edge, they are complex, noisy, or dynamic (changing over time). These characteristics
make it virtually impossible to predict with certainty how well a particular algorithm
will perform on a particular problem, especially if the algorithm is nondeterministic,
as is the case with the genetic algorithm. In spite of this difficulty, there are fairly
extensive theories about how and why genetic algorithms work in idealized settings.

Example 9.4 4-Queen Puzzle.

Suppose we choose to solve the problem for N = 4. This means that the board size
is 42 = 16, and the number of queens we can fit inside the board without crossing
each other is 4. A configuration of 4 queens can be represented as shown in Fig. 9.8,
using 4-digit string made of decimal numbers in the range 1–4. Each digit in a string
represents the position of queen in that column. Thus, all queens in the left-to-right
diagonal will be represented by a string 1234.

To solve this problemwe take initial populations as [1234, 2342, 4312, 3431]. Let
us recombine by randomly choosing the crossover after digit position 2. We recom-
bine 1, 2 and 3, 4members of population, producing [1242, 2334, 4331, 3412].When
this is combinedwith the original population, we get [1234, 2342, 4312, 3431, 1242,
2334, 4331, 3412]. Next, a random mutation is applied on members 3431 and 2334,
changing the third digit gives 3421, 2324.Thus newpopulation is, [1234, 2342, 4312,
3421, 1242, 2324, 4331, 3412].

The fitness of a string is proportional to the inverse of number of queens giving
check in each string. for example, in the configuration in Fig. 9.8, total number of
checks of Q1 . . . Q4 are: 2 + 3 + 2 + 1 = 8. Similarly in configuration 1234, total
number of checks are 12.

This is because each queen is crossing the remaining three. These numbers in
the remaining seven configurations are: 8, 4, 4, 4, 6, 8, 8. Thus fitness functions of

9.8 Genetic Algorithms 263

Fig. 9.8 4-Queens’ board
configuration

Q1

Q2

Q3

Q4

= 2 3 4 1

above population of elements are [1
12 ,

1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
6 ,

1
8 ,

1
8]. Thus, if we need to keep

a population of size 4, of more fitter members their fitness functions are [14 , 1
4 ,

1
4 ,

1
6].

These further combine next time, with population size of 4, having population of
[4312, 3421, 1242, 2324]. This sequence can go on until goal is found in one of the
configuration. �

9.9 Summary

The domain of combinatorial optimization consists of a set of problems, which
requires development of efficient techniques for finding the minimum or maximum
of a function havingmany independent variables. This function is called cost function
or objective function, and represents a quantitative measure of the “goodness” of
some complex system. Because these combinatorial class of problems contain many
situations of practical importance, heuristic methods have been developed, which
require computations proportional to only a small polynomial of n, where n is size of
the problem. These heuristics cannot be generalized, and are unfortunately problem-
specific.

Two basic strategies are common for heuristics: “divide-and-conquer” and “iter-
ative improvement”. The first approach divides/splits the problem into subproblems
of manageable sizes, then solves each subproblem, and finally the sub-solutions are
patched back together, to get the desired solution.

In iterative improvement-based approach, the heuristics starts with the system
in a known configuration, and then, a standard rearrangement operation is applied
to all parts of the system in turn, until a rearranged configuration that improves
the cost function is discovered. The rearranged configuration then becomes the new
configuration of the system, and the process is repeated until no further improvements
are found.

These methods depend on some heuristics determined by the nature of the prob-
lem. The heuristics is defined in the form of a function, say f , which somehow
represents the mapping to the total distance between start node and the goal node.
For any given node n, the total distance between start and goal node is f (n), such
that

264 9 Heuristic Search

f (n) = g(n) + h(n), (9.10)

where g(n) is distance between start node and the node n, and h(n) is the distance
between node n and the goal node.

One of the heuristic methods is hill-climbing. The name comes from the fact that
to reach the top of a hill, one selects the steepest path at every node, out of the number
of alternatives available. A Hill-climbing method is called greedy local search.

Among all the heuristic-based problem-solving strategies, informed best-first
search strategy is one of the most popular methods to exploit heuristic information
to cut down the search time. This method assesses exploration along the direction of
highest merit, using heuristic information.

Several shortcuts help to simplify the computation of best-first search. First, if the
evaluation function f (n)used for node selection always provides optimistic estimates
of the final costs of the candidate paths evaluated, then we can terminate the search
as soon as the first goal node is selected for expansion, without compromising the
optimality of the solution used. This guarantee is called admissibility.

Weare often able to purge fromsearch treeT , large sets of paths that are recognized
at an early stage to be dominated by other paths in T . This becomes possible if the
evaluation function f is order-preserving, that is, if for any two paths p1 and p2,
leading from start node S to n, and for any common extension p3 of those paths, the
following holds:

f (p1) ≥ f (p2) ⇒ f (p1 p3) ≥ f (p2 p3) (9.11)

The most studied version of best-first-search is the algorithm A∗, which provides
additive cost measures, that is, where the cost of a path is defined as the sum of
the costs of its arcs. This algorithm uses ordered state-space search and estimated
heuristic to a goal state f ∗, like the best-first search.3 But, f ∗ is unique in the sense
that it can guarantee an optimal path to goal.

Based on values returned from two components: g∗(n) and h∗(n), the evaluation
function f ∗(n) estimates the quality of a solution path through node n. The one
component, i.e., g∗(n), is the minimal cost of a path from start node to node n, and
h∗(n) is a lower bound on the minimal cost of a solution path from node n to a goal
node.

There are other search techniques based on “natural phenomena”. Under this
there are two techniques: (1) Simulated annealing, which is based on changes in
the properties of metals and alloys due to heating them to higher temperature and
then slowly decreasing their temperature; and (2) Something based on the Darwin’s
theory of evolution, called genetic algorithms. Annealing is process of treatment of
metal or alloy by heating to a predetermined temperature, holding for a certain time,
and then cooling to room temperature to improve ductility and reduce brittleness.
The process annealing is carried out intermittently during the working of a piece of
a metal to restore ductility lost through repeated hammering or other working.

3 f ∗ is also known as evaluation function.

9.9 Summary 265

Table 9.1 Heuristic search methods

S.No. Search algorithm Properties

1. Best-First Search It depends on definition of f (n). If f (n) = h(n), then it is
likely not optimal, and potentially incomplete. But, A∗ is a type
of best-first search, which is complete and optimal. It is due to
its choice of f (n) that combines g(n) and h(n)

2. Hill-Climbing It is Non-optimal, Incomplete like DFS, follows heuristics

3. Beam Search It is like BFS, expand nodes in f (n) order, and Incomplete for
small k (k best nodes from successors are considered for further
expansion). But, Complete, and like BFS for k = infinity. It is
Non-optimal. When k = 1, Beam search is analogous to
Hill-Climbing method without backtracking

4. Branch and Bound It is Optimal, and g(n) is the cost of path from s to node n and
f (n) = g(n) + 0

5. Simulated annealing Escapes local optima, and is complete and optimal given a long
enough cooling schedule

The Genetic Algorithms (GAs) are search procedures based on natural selection
and genetics. A GA processes a finite population of fixed-length binary strings. In
practice, all these are bit codes, kry-codes real (floating-point) codes, permutation
(order) codes, etc.

A simpleGAconsists of three operators: selection, crossover, andmutation. Selec-
tion is the survival of the fittest within theGA. Eachmember of population is assigned
a fitness value. On the basis of these fitnesses, the selection phase assigned zero or
more copies of each individual. After selection, the genetic operators of crossover
and mutation are applied probabilistically to the current population to produce new
population.

The special features of GAs are as follows:

• GAs can solve hard problems quickly and reliably,
• GAs are easy to interface to existing simulations and models,
• GAs are extensible, and
• GAs are easy to hybridize.

Table9.1 gives comparison of various heuristic methods:

Exercises

1. Answer the following short review questions.

a. In what condition the best-first search becomes the breadth-first?
b. What can you infer from the condition: f (n) = g(n)?
c. What can you infer from the condition: f (n) = h(n)?

266 9 Heuristic Search

Fig. 9.9 State-space search Start Goal

1

2 3 1 2

3

d. In what situation the A∗ search become best-first search?
e. What is the primary drawback of best-first search?
f. Which search method(s) use the priority-queue data structure?

2. Consider the 3-puzzle problem, where the board is 2 × 2 and there are three tiles,
numbered 1, 2, and 3, and blank tile. There are four operators, which move the
blank tile up, down, left, and right. The start and goal states are given in Fig. 9.9.
Show, how the path to the goal can be found using

a. Breath-first search.
b. Depth-first search.
c. A∗ search having g(n) equal to number of moves from start state, and h(n)

is number of misplaced tiles.

Assume that there is no possibility to remember states that have been visited
earlier. Also, use the given operators in the given order unless the search method
defines otherwise. Label each visited node with a number indicating the order in
which they are visited. If a search method does not find a solution, explain why
this happened.

3. Explain what algorithms or heuristics are suitable for solving constraint satis-
faction problems under the following situations. Justify your answers.

a. The problem is so tightly constrained that it is highly unlikely that solutions
exist.

b. The domain sizes vary significantly: some variables have very large domains
(over 1,000 values) and some have very small domains (with fewer than 10
values).

c. Eight-Queens Problem: Arrange eight queens on a chess board in such a
manner that none of them can attack any of the others. (Note: A queen will
attack another queen if it is crossing other queen while moving horizontally,
vertically, or diagonally).

d. The set of variables and set of domains are handled by a computer say,
M . Each constraint is handled by a networked computer, say N . Traffic in
the networks is slow. To check a particular constraint, computer M sends
a message to computer N through the network, which in turn will send a
message back to indicate whether the constraint is satisfied or violated.

4. Suggest a heuristic function for the 8-puzzle that sometimes overestimates, and
show how it can lead to a suboptimal solution on a particular case.

Exercises 267

5. Prove that, if the heuristic function h never overestimates bymore than a constant
cost c, then algorithm A∗ making use of h returns a solution whose cost exceeds
that of the optimal solution by no more than c.

6. Give the name of the algorithms that results from each of the following special
cases:

a. Local beam search with k = 1.
b. Local beam search with k = ∞.
c. Simulated annealing with T = 0 at all times.
d. Genetic algorithm with population size N = 1.

7. Explain, how will you use best-first search in each of the following cases? Give
the data structure and explain logic.

a. Speech recognition
b. PCB design
c. Routing telephone traffic
d. Routing Internet traffic
e. Scene analysis
f. Mechanical theorem proving

8. What type of data structure is suitable for implementing best-first search, such
that each node in the frontier is directly accessible, and all the vertices behind it
remain in the order they have been visited.

9. Answer the following in one sentence/one word.

a. How will you detect during the search of a graph that a particular node has
been already visited?

b. Is the best-first search optimal?
c. Is the best-first search order-preserving?
d. Is the best-first search admissible?

10. In the Traveling Salesperson Problem (TSP) one is given a fully connected,
weighted, undirected graph and is required to find the Hamiltonian cycle (a
cycle visiting all of the nodes in the graph exactly once) that has the least total
weight.

a. Outline how hill-climbing search could be used to solve TSP.
b. How good results would you expect hill-climbing to attain?
c. Can other local search algorithms be used to solve TSP?

11. Show that if a heuristic is consistent, then it can never overestimate the cost
to reach the goal state. In other words, if a heuristic is monotonic, then it is
admissible.

12. Suggest an admissible heuristic that is not consistent.
13. Can GAs have Local maximas? If it is not, how does the GAs tries to avoid it?

If yes, justify it.

268 9 Heuristic Search

14. Explain different data structures that can be used to implement the open list in
BFS, DFS, Best-first search?

15. Find out the worst-case memory requirements for best-first search.
16. If there is no solution, will A∗ explore the whole graph? Justify.
17. Define and describe the following terms related to heuristics:

Admissibility, monotonicity, informedness.
18. Show that:

a. The A∗ will terminate ultimately.
b. During the execution of the A∗ algorithm, there is always a node in the

open-list, that lies on the path to the goal.
c. If there exits a path to goal, the algorithm A∗ will terminate by finding the

path of to goal.
d. If there is no solution in A∗, the algorithm will explore the whole graph.

19. Discuss thewaysusingwhichh function in f (n) = g(n) + h(n) canbe improved
during the search.

20. Why must the A∗ algorithm work properly on a graph search, with graph having
cycles?

21. For the graph shown in Fig. 9.5, find out whether the A∗ search for this graph is

a. Optimal?
b. Oder-preserving?
c. Complete?
d. Sound?

22. Apply the BFS algorithm for robot path planing in the presence of obstacles for
a square matrix of 8 × 8 given in Fig. 9.10. Write an algorithm to generate the
frontier paths. Assume that each move of robot in horizontal (H) and vertical
(V) covers a unit distance, and the robot can take only the H and V moves. The
start and goal nodes are marked as S and G. Shaded tiles indicate obstacles, i.e.,
robot cannot pass through these.

23. Redesign the problem of robot shown in Fig. 9.10 for A∗ search. Assume that
value of h is number of squares equal to V − i + H − j , where V and H are
both 8.

Fig. 9.10 8 × 8 tiles, with
obstacles in shades

S

G

i

j

Exercises 269

24. Solve the 8-puzzle manually for 20-steps, where heuristic is number of tiles
out of place with respect to goal state. Assume that f ∗(n) = g∗(n) + h∗(n)

= 0 + h∗(n) = h∗(n), so that only the heuristics is deciding factor for next node.
Note that algorithm shall be DFS. In case of ties, give preference to those nodes
which are to the left of the search tree.

25. Find an appropriate state-space representation for the following problems. Also,
suggest suitable heuristics for each.

a. Cryptarithmetic problems (e.g., TWO + TWO = FOUR)
b. Towers of Hanoi
c. Farmer, Fox, Goose, and Grain.

26. Suggest appropriate heuristics for each of the following problems:

a. Theorem proving using resolution method
b. Blocks world

27. If P = “heuristic is consistent”, and Q = “heuristic is admissible”. Then show
that P ⇒ Q. Demonstrate by counter example that Q � Q.

28. Consider themagic-puzzle shown in Fig. 9.11. Suggest the formalism for search-
ing the goal state when started from the start state. (Note that in the goal state
all the rows, columns, and diagonals have equal sums equal to 15).

29. Make use of GA to solve 4-puzzle (Fig. 9.12). A move consists, sliding of either
of tiles 1 or 2, or 3 into the blank tile. Such a movement creates blank tile at
a different position, and the process is repeated until goal state is reached. The
solution requires not only reaching to the goal state, but also finds the trace path
to reach the goal. Construct a suitable fitness function to implement search by
GA, the search should consider only those members of the population which
correspond to valid moves.

30. For the graph shown in Fig. 9.13, make use of DFS and certain depth cut-off to
backtrack the search from that cut-off.

31. Use best-first search for Fig. 9.14 to find out if the search from start node A to
goal node G is

Fig. 9.11 Magic-puzzle
1 2 3

4 5 6

7 8 9

6 7 2

1 5 9

8 3 4

Start state Final state

Fig. 9.12 4-puzzle
1 2

3

1

2 3

Start state Goal state

270 9 Heuristic Search

Fig. 9.13 A graph with start
node S goal G

S G

2

3
4

5

7
6

8

9
1 10

11

Fig. 9.14 Graph with start
node A and goal node G

D

2

H

C

BA

E G

F

1

4

3

7

5

8

1

6

5

4

9

a. Oder-preserving
b. Admissible
c. Optimal

32. How youwill apply the simulated annealing in the following scenarios? For each
case, give the problem formation so as to compute the ΔE , temperature T , the
states s, s ′; the state space S, and object function f : S → R, and perform 5–10
iterations steps manually.

a. 8-puzzle
b. 8-Queen problem
c. Tic-tac-toe problem

33. One fine morning you find that your laptop is not booting. There can be enumer-
able reasons for this. Assume that you are expert in installation and maintenance
of laptops. Represent the search process for trouble-shooting the laptop by con-
structing a search tree.

a. Suggest, what search method you consider as most appropriate for this?
Also, explain the justification of the particular method you have chosen?

b. What heuristics you would like to suggest for making the search efficient?
c. What are the characteristics of this search? Comment for admissibility,

monotonocity, and completeness of this solution.

34. Assume a population of 10 members, and apply GA to find out the solution
by performing five cycles of iterations, each having selection, mutation, and
crossover. Verify that we are far closer to the solution than we were in the begin
after performing these iterations. Represent the members as bit strings {0, 1}n
for some integer n. Also, fix up some criteria for fitness function, as well as the
probability of mutation, and point of crossover.

Exercises 271

a. 8-puzzle
b. square-root of a number
c. Factors of an integer

35. What are the consequences of the following special cases of GA-based search?

a. Only the selection operation is performed in each iteration, based on the
fitness value.

b. Only the crossover operation is performed in each iteration at a random
position.

c. Only the mutation operation is performed in each iteration at a random bit
position.

36. Simulated annealing is guidedby a changing “temperature” value that determines
the likelihood of visiting nodes that appear to be worse than the current node.
How does the search behave for very low and very high temperature values, and
why it behaves so?

37. Select the best alternatives in each of the following questions.

i. The mutation operation is good for the following:
(a) noise tolerance (b) hill-climbing
(c) random walk (d) all above

ii. The following operation of GA has maximum contribution to search:
(a) mutation (b) selection
(c) crossover (d) fitness function

iii. What operation of GA is responsible for random walk?
(a) mutation (b) crossover
(c) none above (d) both a and b

iv. GAs are not good for the following purpose:
(a) finding exact global optimum (b) local search
(c) approximate solution (d) global search

v. GAs are good in environments which are :
(a) complex (b) noisy
(c) dynamic (d) all above

vi. GA is always:
(a)P (b) nondeterministic
(c)NP (d) deterministic

References

1. Bagchi A, Mahanti A (1985) Three approaches to heuristic search in networks. J ACM 32:
I:1–27

2. Dechter R, Pearl J (1985) Generalized Best-First Search strategies and the optimality of A∗. J
ACM 32(3):505–536

3. Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation.
Science 261:872–878

272 9 Heuristic Search

4. Goldberg DE (1989) Genetic algorithms in search, optimization andmachine learning. Addison-
Wesley, Reading

5. Goldberg DE (1994) Genetic and evolutionary algorithms come of age. Commun ACM
37(3):113–119

6. Hart PE et al (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE
Trans Syst Sci Cybern 100–107

7. Kirkpatrick S et al (1983) Optimization by simulated annealing. Science 220(4598):671–680
8. Korf RE et al (2005) Frontier search. J ACM 52(5):715–748

	9 Heuristic Search
	9.1 Introduction
	9.2 Heuristic Approach
	9.3 Hill-Climbing Methods
	9.4 Best-First Search
	9.4.1 GBFS Algorithm
	9.4.2 Analysis of Best-First Search

	9.5 Heuristic Determination of Minimum Cost Paths
	9.5.1 Search Algorithm A*
	9.5.2 The Evaluation Function
	9.5.3 Analysis of A* Search
	9.5.4 Optimality of Algorithm A*

	9.6 Comparison of Heuristics Approaches
	9.7 Simulated Annealing
	9.8 Genetic Algorithms
	9.8.1 Exploring Different Structures
	9.8.2 Process of Innovation in Human
	9.8.3 Mutation Operator
	9.8.4 GA Applications

	9.9 Summary
	References

