
Chapter 7
Networks-Based Representation

Abstract Network-based method is another approach for knowledge representation
and reasoning. They have particularly the advantage that, using the network one can
navigate through the knowledge represented, and can perform the inferences. This
chapter presents the semantic networks, conceptual graphs, frames, and conceptual
dependencies, as well as their syntax and semantics. TheDL (description logic)—a
modified predicate logic for real-world applications is treated in detail, with exam-
ples of its language—the concept language for inferencing. Conceptual dependency
(CD) is a language-independent representation and reasoning framework, such that
whatever may be the natural language used, as long as its meaning is the same, the
CD will be the same. The script language for representation and reasoning along
with its syntax, semantics, and reasoning for CD is presented, followed with chapter
summary, and an exhaustive list of exercises.

Keywords Network-based representation · Semantic networks · Conceptual
graph · Frames · Description Logic (DL) · Conceptual dependencies · Scripts

7.1 Introduction

Semantic Networks were developed with the goal of characterizing the knowledge
and the reasoning of a system by means of network-shaped cognitive structures. The
similar goals were later achieved through frame-based systems, which depend on the
notion of a “frame” as a prototype, and have the capability to express the relationship
between the frames. The frames and semantic networks are quite different from
each other, but both have cognitive features, and have the capability that allows
navigation in the structures. Due to this, both of them can be classified as network-
based structures, where the network is used for representing individuals and the
relationship between them.

Due to their human-oriented origins, the network-based systems are more appeal-
ing and effective from the practical point of view than the logical systems, that are
based on predicate logic and its variants. However, these network-based systems
were not accepted as a complete solution, due to their lack of semantic properties.

© Springer Nature India Private Limited 2020
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_7

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-81-322-3972-7_7&domain=pdf
https://doi.org/10.1007/978-81-322-3972-7_7

180 7 Networks-Based Representation

Due to that, every system behaved differently from the others, despite their almost
identical-looking components, as well as identical-looking relationships. Hence, the
need was felt to represent semantic characteristics in these structures. The semantic
characteristics in network-based systems could be achieved by introducing the notion
of hierarchical structures. Using hierarchical structures in semantics networks and
frames, one could gain both in terms of ease of representation, and also in terms of
efficiency of reasoning.

Learning Outcomes of this Chapter:

1. Identify all of the data, information, and knowledge elements and related organi-
zations, for a computational science application. [Assessment]

2. Describe how to represent data and information for processing. [Familiarity]
3. Compare and contrast the most common models used for structured knowledge

representation, highlighting their strengths and weaknesses. [Assessment]
4. Identify the components of non-monotonic reasoning and its usefulness as a rep-

resentational mechanism for belief systems. [Familiarity]
5. Compare and contrast the basic techniques for qualitative representation. [Assess-

ment]

7.2 Semantic Networks

A network-based representation provides means of structuring and exhibiting the
structure of knowledge. In a network, the pieces of knowledge are clustered together
into coherent semantic groups. It provides a natural way of mapping knowledge
between the natural language and these networks. In addition, the network represen-
tation provides a pictorial representation of knowledge objects, their attributes, and
relationship between them [2].

The basic difference between ontologies we studied earlier and the seman-
tic networks is that, ontologies are hierarchies, which may have multiple inheri-
tances, providing knowledge organization of world. Whereas, semantic networks
are not necessarily be hierarchy and they follow the lattice structure for knowledge
representation.

There is a need of built-in feature of natural language understanding in knowledge
representation, so that it becomes possible to carry out the inference through this
representation. However, when we make use of general theorem proving framework,
like resolution, these actually desired inferences are lost due to a wide range of
inferences carried out using resolution-refutation method (see Example 3.14, p. 74).

The Semantic networks not only represent information but facilitate the retrieval
of relevant facts. For instance, all the facts about an object “Rajan” are stored with
a pointer directly to one node representing Rajan. Another advantage of semantic
networks is about the inheritance of properties. If a semantic network represents the
knowledge: “All canaries are of yellow color”, and “Tweety is canary”, the network
would be able to infer that “Tweety is of yellow color.” This inference is performed

7.2 Semantic Networks 181

Fig. 7.1 A semantic
network birdfly

parrot

ako

has-parts

has-colour green

wingshas-property

through network mathcer or retriever. The most advanced system of inference has
Inference Engine, which can perform specialized inferences tailored to treat certain
functions, predicates, and constant symbols differently than others. This is achieved
by building into the inference engine certain true sentences, which involve these
symbols, and control is provided to handle these sentences. The inference engine
is able to recognize the special conditions, on which it makes use of specialized
machinery. It becomes possible by coupling the specialized knowledge to the form
of situations that it can deal with.

The semantic networks also called the Associative Networks, model the semantics
and words of the English language. In a system developed by their inventor Quillian,
evidenced that meanings were found between thewords by the path connecting them.
These models carry an intuitive appeal: the related information is always clustered
and bound together through relational links, and the knowledge required to perform
a certain task is typically contained in a narrow domain or in the vicinity of the
concerned task. This type or knowledge organization, in some way, resembles the
way knowledge is stored and retrieved in human brain [11].

Semantic networks includes a lattice of concept types [6]. Originally they included
a different correlated nets,whichwere based on56 relations, like: subtypes, instances,
case-relations, part-whole, kinship relations, and various types of attributes. A simple
example of semantic network is shown in Fig. 7.1, where ako(a-kind-of), has-parts,
color, and has-property, are binary relations.

There are several benefits of using Semantic Networks for representing knowl-
edge:

• Real-world meanings (semantics) are clearly identifiable.
• Reflects the structure of the part of the world being represented in the knowledge
structuring.

• The representation due to “is-a” and “is-partof” relations help in organizing the
inheritance based hierarchies, which are useful for inheritance-based inferences.

• Accommodates a hierarchy to be useful for default reasoning (e.g., we can assume
the height of an adult as 175 cm, but if the person is a basketball player, then we
take it as 190 cm).

• The semantic networks are useful in representing events and natural language
sentences, whose meanings can be very precise. However, the concept of semantic
networks is very general. This causes a problem, unless we are clear about the
syntax and semantics in each case.

182 7 Networks-Based Representation

The Semantic networks have been used for knowledge representation in various
applications like, natural language understanding, information retrieval, deductive
databases, learning systems, computer visions, and speech generation systems.

7.2.1 Syntax and Semantics of Semantics Networks

Unlike the predicate logic, there is nowell accepted syntax and semantic for semantic
networks. A syntax for any given system is determined based on the objects and
relation primitives chosen and the rules used for connection of the objects. However,
there are some primitives which are quite established. We can define a Semantic
Network by specifying its fundamental components:

1. Lexical part:

a. Nodes denote the objects.
b. Edges or links denote the relations between objects.
c. Labels denoting the particular objects and relations between them.

2. Structural part: The nodes and the edges connecting them form directed graphs,
and the labels are placed on the edges, which represent the relation between nodes.

3. Semantic part: Meanings (semantics) are associated with the edges and node
labels, whose details depend on the application domains.

4. Procedural part: The constructors are part of the procedural part, they allow for
the creation of new edges (links) and nodes. The destructors allow the deletion of
edges and nodes, the writers allow the creation and alteration of labels, and the
readers can extract answers to questions. Clearly, there is plenty of flexibility in
creating these representations.

The word-symbols used for the representation are those which represent object
constants and n-ary relation constants. The network nodes usually represent nouns
(objects) and the arcs represent the relationships between objects. The direction of the
arrow is taken from the first to the second objects, as they represent in the relations.
The Fig. 7.2 shows a is-a hierarchy representing a semantic network. In set theory
terms, is-a corresponds to the sub-set relation ‘⊆’, and an instance corresponds to
the membership relation ‘∈’ (an object class relation) [3].

The commonly used relations are: Member-of, Subset-of, ako (a-kind of), has-
parts, instance-of, agent, attributes, shaped-like, etc. The ‘is-a’ relationship occurs
quite often, like, in sentences: “Rajan is a Professor”, “Bill is a student”, “cat is a
pet animal”, “Tree is a plant”, “German shepherd is a dog”, etc. The ‘is-a’ relation
is most often used to state that an object is of a certain type, or to state that an object
is a subtype of another, or an object is an instance of a class.

Figure7.2 shows some important features of semantic networks. The representa-
tion makes it easy to retrieve the properties of any object efficiently due to hierarchy
of relations. These networks implement property of inheritance (a form of inference).

7.2 Semantic Networks 183

Living being

human vertiberate Animal Plant

Afro Indian pigeon crow Pet Livestock Tree Bush

Dog Cat

Germal Shephered

Horse

isa

Pomeranian

isa

isaisa isaisa

isa
isa

isa

isaisa

isa

isaisaisa

isa isa

Fig. 7.2 Semantic network showing “Is-a” Hierarchy

Fig. 7.3 A semantic
network showing
contradiction to an inherited
property

Living being

vertiberate Animal

pigeon Pet LivestockOstrich

fly

isa

has-property

has-property

cannot fly

isa

isa isa isa
isa

The nodes which are members or subsets of other nodes may inherit the properties
from their higher level ancestor nodes. For example, we can infer from Fig. 7.2 that
dogs are animals and pigeons are vertebrates, and both of them are living beings.
The property inherited like this is recognized as default reasoning. It is assumed
that unless there is an information to the contradictory, it is reasonable to inherit the
information from the ancestor nodes. In Fig. 7.3, Pigeon inherits the property of “can
fly” from the vertebrates, while Ostrich has a locally installed attribute of “cannot
fly”, hence the property ’fly’ will not be inherited by it.

The inference procedures for semantic networks can also be in parallel to those in
propositional and predicate logic. For example, if a classA of objects have propertyP,
and ‘a’ is amember ofA, we can infer that ‘a’ has propertyP. The inferences in these
networks can be defined as per those in predicate logic, making use of unification,
chaining, modus ponens, and resolution, however, the reasoning is default type [13].

184 7 Networks-Based Representation

7.2.2 Human Knowledge Creation

The semantic networks are based on the associationist theory, which defines the
meaning of an object in terms of a network of associations with other objects. When
human perceives and reasons about an object, that perception is first mapped into
a concept. This concept is part of our entire knowledge about the world and is
connected through appropriate relationships to other concepts. These relationships
form an understanding of the properties and behavior of objects such as snow. For
example, through associations, we associate the snow with other concepts like cold,
white, snowman, slippery, and ice. Our understanding of snow and truth of statements
such as “snow is white” and “the snowman is white” manifests out of this network
of associations.

There is experimental evidence that, in addition to associate concepts, humans
also organize their knowledge hierarchically, as per that information is kept at the
highest levels, to be inherited by other concepts. The evidence have shown that if
the concepts in the networks were far off in the hierarchy, it took a relatively longer
time by humans to understand this relation compared to the concepts which were in
proximity to each other. For example, with reference to Fig. 7.2, the human response
will be faster to infer that “dog is an animal”, compared to the statement “Pomeranian
is a living being”. This time difference is argued due to the fact that humans store
the information in a hierarchical way. The fastest recall was for the cases where the
traits were specific to the object. For example, the negative response for “Can Ostrich
fly?”, will be faster than the positive response for “Can pigeons fly?”. This is because
in the reasoning for the first path: “Ostrich → cannot fly”, is faster that for “pigeon
→ vertebrate → fly”, due to path length difference [1].

7.2.3 Semantic Nets and Natural Language Processing

The inheritance based system allows to store the knowledge at the highest level of
abstraction. This results to reduction in size of the knowledge base, as well as it helps
in updating the inconsistencies. The graphs can explicitly represent the relations using
arcs and nodes, which helps in formalizing the knowledge of semantic networks.
These networks can be used to answer various queries related to the knowledge base
stored, using inferences.

Much of the research in network representation has been done in the field of
Natural Language Understanding (NLU). Often, the natural language understanding
requires the understanding of the common sense, the ways in which the physical
objects behave, the interactions that occur between humans, and the ways in which
the human institutions are organized. A natural language understanding the program
must understand the intentions, beliefs, hypothetical reasoning, plans, and goals
embedded in the natural language text. Due to these, the language understanding has
been the driving force for knowledge representation.

7.2 Semantic Networks 185

The NLU programs define the words of the English language in terms of other
words, like the English dictionary does, rather than defining in terms of primitive
words or axioms. Thus, to understand the meaning of a word we traverse a network
of words until we understand the meaning of the required word.

7.2.4 Performance

The network structures used to provide intuitive and useful representations for mod-
eling semantic knowledge. These models are required to fulfill the following four
objectives:

1. Is is possible to organize the human semantic knowledge using the general struc-
tural principles which are characteristics of semantic networks?

2. Is it possible that the human performance of semantic processing can be emulated
in terms of general processes operating on semantic networks?

3. Is it possible to emulate the human processes of semantic retrieval and search on
general structures of semantic networks?

4. Can the semantic networks emulate the human processes of semantic acquisition
and development of semantics in humans?

For all the above questions, the required answer is not only in terms of yes/no, but
to what degree it is achievable. Also, the answer depends on the applications, which
exploit the features of these networks, as well as there is yet lot to be found out.

The best example of a semantic network is semantic web, which enables the
people to access the documents and services on the Internet. The interface to service
is represented in web pages written in natural language, which must be understood
and acted on by humans. The existing web is augmented by the semantic web with
formalized knowledge and data, to be processed by computers.

7.3 Conceptual Graphs

Although there is no accepted standard for semantic network representations, but
something which is very close to the goal is Conceptual Graphs. It is the portrayal of
mental perceptionwhich consists of basic primitive concepts and relationships which
exist between them.The conceptual graphsmaybe regarded as formal buildingblocks
of Semantic networks. When they are linked together, they form a more complex
and useful network [4].

Simmons [12] suggested primitives to represent standard relationships, by using
the case structure of English verbs. In the verb oriented approach, links define the
roles played by nouns and noun phrases inaction of the sentence. Case relationships
includes: agent, object, instrument, location, and time [12].

186 7 Networks-Based Representation

PERSON: Rajan agent Eat object FOOD: Noodles

Inst

Fork

Fig. 7.4 Conceptual Graph-I

A sentence in the semantic network is represented with a verb node, and various
case links to this node represent other participants in carrying out the action. The
complete structure formed is called case-frame. While this sentence is parsed, the
algorithm identifies the verb node, and retrieves the complete case-frame from the
knowledge base. As a next step, the algorithm binds the values of an agent, object,
etc., to appropriate nodes in the case-frame.

Example 7.1 Represent the sentence: “Rajan eats noodleswith fork” as a conceptual
graph.

The given sentence is represented by the conceptual graph shown in Fig. 7.4, and the
corresponding predicate formula is given as Eq. 7.1.

∃x∃y(eat(x) ∧ person(Rajan) ∧ food(Noodles) ∧ fork(y)∧
agent(x,Rajan) ∧ object(x,Noodles) ∧ inst(x, y)) (7.1)

The concept we have represented is called typed or sorted version of logic, each of
the four concepts (i.e., Rajan, noodles, eat, and fork) have type labels, that represent
the type of entity the concept refers. The two concepts, Rajan and Noodles, which
have the names, identify the referent, e.g., the concept [PERSON:Rajan] has type
PERSON and referent Rajan. Three concepts have type labels: Agent, Instrument,
Object. The Conceptual Graph (CG) as a whole indicates the semantic that a person
“Rajan” is an agent of some instance of eating the food, noodles are an object, and
the fork is an instrument. Eat and Fork has no fields to refer them by name, as these
are generic concepts.

[PERSON : Rajan] ← (AGENT) ← [EAT]−
→ (OBJECT) → [FOOD : noodles]

← (INSTRUMENT) ← [FORK] (7.2)

The concept symbols may represent entities, actions, properties, or events. For
the Fig. 7.4, a linear conceptual graph form, which is easier to represent as text is
given in the Eq.7.2. �

7.3 Conceptual Graphs 187

We note that the representation of an English language sentence in the language
of CG in Eq.7.2, captures much of the deep structures of the natural language, such
as the relationship between the verb and its subject (called the agent relation), and
that between verb and object. When this sentence is parsed, the built-in relationship
indicates that “Rajan” is a person, who is eating, and the fork is used for eating
noodles (as object). These linguistic relationships are stored independent of the actual
sentence, and are independent of the language of the sentence.

In 1976, John Sowa developed the concept of the conceptual graph, as an inter-
mediate language, that mapped natural language questions and assertions to a rela-
tional database. The concepts were represented using symbols of rectangles, and
the circles represented as conceptual relations. An arc that pointed to a circle,
marked the first argument of the relation, and an arc pointing away from the cir-
cle marked the last argument. The relation is expressed in mathematical form as,
(relation(arg1, arg2, . . . , argn). If there is only one argument, the arrow-head is
omitted, while for relation with two or more arguments, the arrow-heads are replaced
by integers, 1, 2, . . . , n.

Example 7.2 Represent the sentence “Rajan is going to Mumbai by bus”, using a
Conceptual Graph.

The Fig. 7.5 shows a CG for the sentence: “Rajan is going to Mumbai by bus.”
In the CG all the four concepts, Person,Go,Mumbai, and Bus, have type label, for

the type of the entity referred by the concept. Two concepts, Person and Destination
have names. The verb “Go” is related to the remaining three concepts, by relations of
agent, destination, and Instrument. The complete CG indicates that the person Rajan
is an agent of some instance “Going”, the city of Mumbai is the destination, and the
bus is the instrument.

(∃x)(∃y)(Go(x)Person(Rajan)City(Mumbai)Bus(y)

Agent(x,Rajan)Dest(x,Mumbai)Inst(x, y)) (7.3)

The Fig. 7.5 can be translated into the predicate formula (7.3). �

Person: Rajan Agent Go Dest City: Mumbai

Inst

Bus

Fig. 7.5 Conceptual Graph-II

188 7 Networks-Based Representation

The only logical operators used in Fig. 7.5 are conjunction and the existential
quantifier, as expressed in the Eq.7.3, which are the most common operators in
translations from natural languages, to first-order predicate logic [14].

7.4 Frames and Reasoning

The frames are structure-based knowledge representation technique, and are similar
to semantic networks. The latter is based on the concept of human associative mem-
ory, but may simply be thought of as data structures of nodes—“concepts”—and
links—“associations”—between them [3].

The concept of a frame was proposed in the 1970s by Minsky. As per Minsky,
when we encounter a new situation, or there is substantial change in the present
context, we select from memory a new structure, called Frame. This is a previously
remembered framework, which is adapted to fit into the current set of things as
required for the new situation, with necessary changes in the frame. The frame is a
data structure to represent a stereotype situation, like a certain kind of living room,
or a frame of a picnic, or of the classroom, etc. Each frame is attached with several
kinds of information, where some information may also be about how the frame is to
be used, while other information may be about what one may expect to be happening
next, and some information may be about what is to be done if these expectations
are not met, and so on [8].

Consider representing the sentence: “Car #12 is red”

Approach 1: red(car12). With this representation, it is easy to ask “what is red”, but
we cannot ask “what is the color of car12?”
Approach 2: color(car12, red). In this approach, it is easy to ask “What is red?”
Also, we can ask, “What is the color of car12?” But, we cannot ask “What property
of car12 has value red?”
Approach 3: property(car12, color, red). With this, it is easy to ask all the above
questions.

We call this representation as, object-property-value representation, and have for-
mat property(Object, Property, Value). To get the object-centered representation, we
merge many properties of the object of the same type into one structure, as follows:
property(Object, Property1, Value1)
property(Object, Property2, Value2)
…
property(Object, Property-n, Value-n)

The representation is called Frame, as shown in Fig. 7.6.
It is important to note that objects enable grouping of procedures for determining

the properties of objects, their parts, and interaction with parts. The first step in
structuring is to collect together all propositions concerning a particular object in
a data structure, like records in PASCAL, property lists in LISP, or relations in a

7.4 Frames and Reasoning 189

Fig. 7.6 A frame object Object

Property 1
Property 2
...
Property n

Fig. 7.7 A frame of
“Elephant”

Object Property Values

Elephant is-a: mammal
color: grey

has: trunk
size: huze
habitate: India/Africa

database. Figure7.7 shows an example of a structured representation of facts by
collecting together all the properties of an object in the data structure.

There are two types of frames: 1. The Individual frames represent a single object,
e.g., a person, part of a trip; 2. Other type, theGeneric frames, represent categories of
objects, e.g., students. An example of a generic frame is, “Indian city”, and individual
frames are “Delhi”, “Mumbai”. An individual frame is a named list of buckets, also
called slots. What goes in the bucket is called a filler of the slot.

(frame − name
< slot − name1 filler1 >

< slot − name2 filler2 > . . .)

7.4.1 Inheritance Hierarchies

A frame is a network of nodes and relations, whose “top levels” are fixed, and
represent the things that are always true concerning the supposed situation. The lower
levels of this frame-based network comprise many terminals or “slots”, which must
be filled in by specific instances of the data. The conditions must also be specified
for each terminal, under which the assignment be made. The assignments are usually
smaller frames, called “sub-frames” (see Fig. 7.8). Simple conditions are indicated
by markers, which might require a terminal assignment to be a person, an object
of sufficient value, or a pointer to a sub-frame of a certain type. It is possible to
specify relations among the things assigned to several terminals using more complex
conditions.

The inheritance hierarchies serve for economic data conservation. Instead of stor-
ing all the properties of each object, all the objects are structured in a hierarchy,
and only the individual properties are stored in the object itself, while the general
properties are attached to the predecessors and inherited by all the successors.

190 7 Networks-Based Representation

Fig. 7.8 A frame
representation of hotel room

In object-centered representations, an object is a natural way to organize the
knowledge about some physical objects, like “a desk has a surface-material, number
of drawers, width, length, height, color, procedure for unlocking, etc.” Some varia-
tions can be “no drawers, multi-level surface”. Alternatively, an object may describe
a situation, e.g., for a lecture-hall the complete set of situation is: hall, students,
teacher, day, time, seating arrangement, lighting, grading, etc. Or, it can be about
a trip with slot values as: origin (of trip), destination, procedures for buying ticket,
transport, getting through customs, reserving a hotel room, locating a car rental, etc.

7.4.2 Slots Terminology

Every frame is identified by its individual name—the frame name; a frame consists of
a set attributes associated with it (see Fig. 7.8). For example, in the frame “Person”,
slots may be: name, weight, height, and age; for the frame “Computer”, the slots
may be: model, processor, memory, and price. There is also a value attached to each
attribute or slot. A frame-based approach provides a natural way of structured and
compact knowledge representation. The knowledge is organized in slots that describe
various attributes or properties of any object. This approach is appropriately suited
for object-oriented programming of expert systems.

Following is the typical Information included in a Slot:

1. Relationship: A frame provides the relationship to the other frames. The frame
Hotel room (Fig. 7.8) can be a member of other frame class Room, which in turn
can belong to the class Housing, thus providing the relationship with these other
room types.

2. Slot value: The value of a slot can be numeric, symbolic, or Boolean (True/False).
For example, a slot identified as ‘Person’ is symbolic, with slot names as ‘Age’,
and ‘Height’, both having float values. The slot’s values can be dynamically
assigned during a session with the expert system, or they can be static, or can be
initialized in the beginning while the slot is created.

7.4 Frames and Reasoning 191

3. Default value of slot: A slot may contain default value when the true value is not
available, and there is no evidence that the value chosen is in no way providing
any contradiction. For example, in a frame named as Car when slot values are
not provided, default values of the slots: wheels-count and Engine-count can be
taken as 4 and 1, respectively.

4. Slot value’s range: The range of a slot’s value is useful in checking the bounds
of the slot value—whether the provided value of a slot is within the prescribed
limit? For example, a pressure range of a car tire may range 30–50 psi (pounds
per inch).

5. Slot Procedure: A slot has a procedure attached to it; when this procedure is called
it may read a value from the given slot, or it can update the value of the slot (write
the value in it).

6. Facets: The facets provide an extension to slot value structure in a frame-based
expert system.A facet provides extended knowledge about the attribute of a frame.
It can be used for establishing the attributed value of a frame, it can control end-
user queries, and can direct the inference engine as how to process the attributes.

7.4.3 Frame Languages

Frame-based languages are knowledge representation languages, where a frame des-
ignates a concept or a concrete entity. A concept is represented by a generic frame,
called class, and concrete entity illustrates one or more classes. These classes are
also represented by a specific frame, called instance. A frame, whether it is a class
or instance, is a data structure composed of slots which carry the properties of the
entity described by the frame or relations between frames.

The slots themselves are describedusing facets,which contribute to the description
semantics of the slot. The facets are two types: 1. descriptive (passive), and 2. active
(reflexes). The passive faces represent domain, vales, or defaults. The active facets
(also called daemons or procedural facets) are concerned to actions. They start with
keywords like, If-needed, If-created, which gets triggered after the value of a slot
is manipulated. The slots are characterized either by vales introduced by the value
facet, or default values, which reintroduced by the default facets.

The classes are organized as a hierarchy, and relations called structural links,
that connect the frames. A commonly used link, ako (a-kind-of) connect the classes
within the hierarchy, whereas “Is-a” link allows to connect instances to classes to
which they belong. A class connected by a link ako to another class, called mother-
class, inherits all the properties possessed by the mother-class. These properties are
represented using slots. The presence of a value within a class slot means this value
is true for this slot, as well as it is true for all the sub-classes and the instances of that
class, where the value has been declared. Specifying a default value in a class means
this value is generally true for that slot, also for the sub-classes, and the instances of
that class where the default is declared. However, the default can be overridden by
declaring an exception to the default, at any of the sub-class(es).

192 7 Networks-Based Representation

It is assumed that there is no multiple inheritance conflicts among these slots. The
frames of the hierarchy communicate bymeans of messages. The framesmake use of
methods (processes), which gets executed when a message is received by the frame
in which this message is declared or when the message is received by its sub-classes
or instances.

A domain knowledge base builder uses the frame languages to describe the type
of objects to be modeled by the system, and this representation can be provided
efficiently by the frame languages. The object description of certain typemay contain
a prototype description of objects of that type. These objects are used for creating a
default description of an object when its type becomes known in the model.

The frame-based languages are good for providing facilities for describing object
attributes. For example, a frame representing a car might include descriptions for
the length of the car, number of seats, size of the engine, engine’s horse-power, etc.
These attributes can be used to include partial descriptions of the attribute values,
and are helpful in preserving the semantic integrity of a system’s knowledge base by
restricting the number and range of permitted attribute values. The frame languages
do not provide a facility for describing the declarative behavior, however, they have
facilities for attaching procedural information expressed in some other language,
e.g., LISP. The procedural capability enables behavioral models of objects, and as an
expert in an application domain. It also provides a powerful tool for object-oriented
programming, where frames are treated as objects, and they respond to messages.

There are two standard forms for attaching the procedures: 1. methods, and 2.
active values. In languages, likeLISP andProlog, themethods are used as procedures,
that are attached to the frames, and respond to messages sent to the frames. Just like
the attributes, the methods are also stored as values in slots, and they are recognized
as responders to the messages. The messages sent to the frames carry the information
about targetmessage-responder slot, thesemessages contain the arguments neededby
the methods stored in the slot. The “actives values” in the slots are either procedures
or collection of production rules attached to the slot. These (procedure or rules) are
invoked when the slot’s values are accessed or new values are stored in the slots.
Thus, these slots behave like “daemons”, and monitor the change and usages of the
values.

The active values can also be used to dynamically compute values on a “when-
needed” basis. The methods and active values are so written that they apply to any
member of a class of objects, and are included by the knowledge base designer in
the class description as a part of the prototype description of a class member.

7.4.4 Case Study

Many systems make use of the approach discussed above to control the reasoning,
where functions or rule classes behave like daemons, are attached to the slots of the
frames. The attachments get invokedwhen the value of a slot changed. That way, they
behave like sensors or alarms, or monitors. For example, an expert system is used for

7.4 Frames and Reasoning 193

Fig. 7.9 A satellite
diagnostic system Panel Panel

Controller

Ordinance
Controller

Baterry Battery Battery
#1 #2 #3

Command Battery BCR OFF True False Why

Electric Power distribution System

Power
Regulation

UnitNorth panel

South Panel
Controller

Solar SolarSouth North

an intelligent alarm facility, and this calls a user supplied function only when a slot’s
value crosses the threshold. The user may establish an alarm by providing critical
boundaries, and an alarm function. The system stores the boundaries and function
as facets of the slots, and may attach generic active value for check of boundary
crossing, whenever a value of the slot changes.

An example of the above phenomenon can be found in the knowledge system (see
Fig. 7.9), which is a Satellite diagnostic system . The system is meant to serve as an
intelligent facility for human operators to perform diagnostic and trouble-shooting
of satellite malfunctions. Such systems can also be used as a simulator to train the
operators and diagnostic experts. An important requirement of the diagnosis task is
that it requires detailed analysis of the satellite system through a diverse set of domain
experts. The software architecture of the prototype, which can be built using an expert
system, will make use of daemons attached to the slots to respond to messages sent
to objects. The prototypes of experts have the property that they can be instantiated,
as well as deleted dynamically, as per the need, during the operation of the system.

Significant events can be controlled. This system makes elaborate and effec-
tive use of frames, including prototype expert frames, which also, like a daemon,
can be instantiated and deleted dynamically as per the requirement, during opera-
tion of the system. The use of frame-based approach to build the system’s model
allowed the designers to organize the frames in such a way, that knowledge could
easily be accessible and comprehensible to diagnostic experts, as well as the satellite
operators [9].

A satellite diagnostic, e.g., STAR-PLAN, is designed with several requirements,
that resulted in an architecture based on the integration of frames and production
rules, with the following important features:

1. First, the system’s knowledge is made accessible and comprehensible to the satel-
lite operators as well as to diagnostic experts.

2. The system is incrementally and progressively built-up, as the descriptions of
additional satellite modules become ready, and as the needed experts became

194 7 Networks-Based Representation

available. Accordingly, the system’s knowledge is required to be partitioned into
a limited number of experts, for example, knowledge about a particular type of
malfunction, or about a particular module of the satellite.

3. In the case of STAR-PLAN, it was known to the designers that eventually, the
system will become very large, and it would be operating in real-time. To meet
the speed requirements, the system was so designed that only part of the system
shall be awakened—the one which is required at a certain moment of time, and
other shall be put to sleep.

Role of Frame Language

The designers of STAR-PLAN used frame language to build the taxonomy that
described parts of a typical communication satellite. The daemons andmethods were
later associated with the prototype in the taxonomy. This maintained the relationship
between various parts, and defined the behavior of each part, which resulted in a kind
of object-oriented programming style, built for creating simulation behavior.

To model the diagnostic part, two separate taxonomies were constructed, such
that each class in the first taxonomy represented experts who were assigned the task
of “watching over” to some particular components of the satellite. The members of
these classes were calledGuardians. In the second taxonomy, each class represented
experts responsible for responding to a particular type of problem that may occur in
the satellite. Themembers of the class in this second taxonomywere calledMonitors.

For each component of the satellite, guardians were created and initialized at the
start of the satellite system.When an initializemessage is sent to a guardian, it places
an intelligent alarm in the system’s model of the satellite. These alarms would wake-
up their guardian by sending a message when a problem has occurred in the satellite.
Hence, the guardian is active only when the satellite demands.

Alarms/Inferencing

Themethods of guardian system respond tomessages from the daemons. This is done
by invoking a class of diagnostic rules that determine what kind of problem is occur-
ring. For example, to find out all the possible consequences of an anomalous situation
that might have tripped the alarms, the set of rules is applied in forward-chaining
manner. In the process, all the rules are applied that have conditions matching some
aspects of the anomalous situations, or it matches a conclusion of the already applied
rule. This process of rules’ application continuous until no match is left.

The total number of rules associated with this system are small in number, typi-
cally, 10–20, so that modularization provides a small expert system of closely related
rules to be focused to develop a guardian.

As soon as a guardian comes to know about the occurrence of a problem, it
creates amonitor and initializes it. This represents an expert for the problem. The
monitor’s task is to watch the problem right from its evolution, and to make the
recommendations to the satellite operator. Once the initialization is done, the mon-
itor may create its own daemons and put itself to sleep for a fixed duration. When
the monitor wakes up itself or it is awakened by a message from one of its dae-
mons, it invokes a set of rules to analyze the status of the satellite. If the monitor

7.4 Frames and Reasoning 195

is waking-up itself after a fixed amount of time, the rules will be invoked by a
backward-chaining rule interpreter that tests a specific hypothesis (goal) about the
problem. The backward-chaining system attempts to find a sequence of rule applica-
tions that should conclude the hypothesis. When such a sequence is found, the rules
are applied so that the hypothesis is added into the knowledge base.

Based on the conclusions arrived-at making use of rules, the monitor will either
put itself to sleep again or make recommendations to the operator. When the monitor
concludes that the problem has been solved, it removes its daemons and then removes
(deletes) itself, and frees the memory occupied.

Due to the creation and deletion of monitors in a dynamic way, the satellite
problems by the STAR-PLAN system model are actually handled like by human
operators and experts. The situation is like in real-world:when a problem is identified,
a suitable expert is called in, which works with the team until the problem is resolved,
and then the expert leaves! The monitor’s rule sets are organized for problem specific
knowledge base about the problems of the satellite. The module-based system and
its organization structure also makes it easier for a (human) domain expert to create
and debug the knowledge base of rules.

7.5 Description Logic

Approaches to knowledge representation are sometimes divided roughly into two
categories: logic-based formalisms, which evolved out of the intuition, that predicate
calculus could be used unambiguously to capture facts about the world; and other,
non-logic-based representations. The latter was often developed by building onmore
cognitive notions—for example, network structures, and rule-based representations
derived from experiments on recall from human memory and human execution of
tasks like mathematical puzzle solving. Even though such approaches were often
developed for specific representational chores, the resulting formalisms were usually
expected to serve in general use [5].

Since first-order predicate logic (FOPL) provides very powerful and general
machinery, logic-based approaches were more general purpose from the very start.
In a logic-based approach, the representation language is usually a variant of the
first-order predicate calculus, and reasoning amounts to verifying logical conse-
quence. In the non-logical approaches, often based on the use of graphical interfaces,
knowledge is represented by means of some ad hoc data structures, and reasoning is
accomplished by similarly ad hoc procedures that manipulate the structures. Among
these specialized representations we find semantic networks and frames. However,
frames and semantic networks lack formal semantics. Description Logic (DL) was
first introduced into Knowledge Representation (KR) systems to overcome these
deficiencies of semantic networks and frames. The DL makes it easier to describe
definitions and properties of categories. The DL evolved from semantic networks
to formalize the network representation while retaining the emphasis on taxonomic
structures as an organizing principle.

196 7 Networks-Based Representation

A Description Logic models concepts, roles and individuals, and their relation-
ships. The fundamental modeling concept of aDL is the axiom: “a logical statement
relating roles and/or concepts”.DL is a family of formal knowledge representation
languages, which is more expressive than propositional logic and has more efficient
decision properties than first-order predicate logic. It is used in formal reasoning on
the concepts of an application domain (known as terminological knowledge). It is
used for providing a logical formalism for ontologies and the SemanticWeb.Modern
ontology languages are based on DL , such as OWL (Ontology Web Language).

7.5.1 Definitions and Sentence Structures

A DL describes the domain in term of the following:

• Individuals—are the things in the world that are being described. (For example a
house, book, ram, john, rita, etc, all starting with lowercase letters).

• Classes/Categories/Roles—are sets of individuals. It is a ako (a kind of) concept.
A class is a set of all real or potential things that would be in the class. For example,
Hunter, Teenager, etc.

• Properties/Relations—are used to describe individuals. It is akoRoles or relational
nouns, and used to describe objects that are parts or attributes or properties of other
objects. Examples are: Child, Mother, Age, etc.

Two different sets of symbols—logical symbols (with a fixed meaning) and non-
logical symbols (domain-dependent) are used in the Description Logic.

Following classes of Logical symbols are used in DL :

Punctuation: (,), [,]
Positive integers
Concept-forming operators: ∀, ∃, FILLs, AND.
Connectives: 	,

.=,→,
,�.
Non-logical symbols:

• Constants: john, rajanShaw (camel casing, but starting with uncapitalized
letter.

• Atomic concepts: Person, FatherOfOnlyGirls, Hunter, Teenager
(camel casing, first letter capital).

• Roles: :Height, :Age, :FatherOf, :Child, Mother (same as concepts,
but precede by colons).

Concepts

In terms of semantics, the concepts are given set-theoretic interpretation, where a
concept is interpreted as a set of individuals, and roles are a set of pairs of indi-
viduals. An interpretation domain can be chosen arbitrarily, which can be infinite
also. The infinite domain and the open-world assumptions are distinctive features of
Description Logic.

7.5 Description Logic 197

7.5.2 Concept Language

Atomic concepts are thus interpreted as subsets of the interpretation domain, while
the semantics of the other constructs is then specified by defining the set of individuals
denoted by each construct. For example, the concept C � D is the set of individuals
obtained by intersecting the sets of individuals denoted by C and D, respectively.
For example, Female � Teacher. Similarly, the interpretation of ∀R.C is the set of
individuals that are in the relationshipRwith individuals belonging to the set denoted
by the concept C. For example, ∀ResidentsOfJodhpur.Students represents all the
students who are residents of Jodhpur.

There exists some ambiguity also, due to the natural language being the source,
wheremany nouns can be used to refer as a category aswell as relations. For example,
child can be used as a category, i.e., a very young person, it can also be used to
represent a relation, which stands for the inverse of parent.

An important feature of Description Logic is to define complex concepts in
terms of simpler ones. This is achieved by means of concept-forming operators:
∃,∀,AND,FILLs. A complex concepts is defined as [4, 10]:

Every atomic concept is a concept;
If R is a role and C is a concept, then ∀R.C is a concept;
If R is a role and n is a positive integer, then ∃n.R is a concept;
If R is a role and C is a constant, then FILLs R.C is a concept; and
If C1 . . .Cn are concepts, then AND C1, . . . ,Cn is a concept.

The symbol ∃ stands for the class of individuals in the domain that are related by
relation R to at least n other individuals. The following can be created as complex
concepts:

∃ 1.Child : All the individuals (the class of the individuals) that have at least one
child.

∃ 2.HasCar: All the individuals that have at least two cars.

∃ 6.HasWheels: All the individuals that have at least six wheels.

The FILLs R.C stands for those individuals that are related (R-related) to the
individual identified by C. For example, “All the individuals that have the car with
plate RJC12 is represented by FILLs HasCar.RJC12.

The ∀ R.C stands for those individuals that are R-related only to individuals of
class C. For example, ∀ BeingInThisRoom.PHDStudents represents “All the individ-
uals that are in this room and are Ph.D. students.”

198 7 Networks-Based Representation

The full syntax of a concept in DL is:

Concept : −Thing|conceptName
|AND(concept1, concept2, ...)
|∀RoleName.concept
| ≤ ingtger.RoleName

| ≥ integer.RoleName

|FillsRoleName.IndividualName
|SameAs(Path,Path)
|∃IndividualName.concept|�|⊥

Path : −[RoleName, ...]

The family of concept languages is called Attribute Language (AL) , which is
minimal language that is of practical importance. Given that Person and Female are
both atomic concepts, then Person � Female and Person � ¬Female are
AL -concepts which intuitively describe, persons that are female, and those that
are not female. Suppose that hasChild is atomic role, then Person � ∃hasChild .�,
and Person � ∀ hasChild .Female denote those persons that have a child, and all
those whose children are female. Opposite to the top, there is a bottom concept (⊥),
using which we can describe the persons without a child: Person � ∀hasChild .⊥.

Sentences

A knowledge base in a Description Logic is collection of sentences like,

If C1 and C2 are concepts, then (C1 	 C2) is a sentence;

If C1 and C2 are concepts, then (C1
.= C2) is a sentence;

If C is a constant and D is a concept, then (C → D) is a sentence;

For example,

PhDStudent 	 Student, i.e., Every Ph.D. student is also a student (not vice versa).

C1
.= C2, i.e., concept C1 is equivalent to concept C2 , i.e. the individuals that

satisfy C1 are precisely those that satisfy C2.

PhDStudent
.= AND(Student, Graduated , HasFunding), i.e., a Ph.D. student is

a student that is already graduated, and that has some funding.

C → D, i.e., the individual denoted by C satisfies the description expressed by
concept d . For example, rajan → PostDoc, i.e. ”Rajan is a Post Doc.“

When compared with FOPL, the FOPL focuses on sentences, and it does not
help you with reasoning on complex categories. For example, we can say that X is
a hunter by a 1-ary predicate Hunter(X). Similarly, there is 1-ry predicate, we can
say Shooter(X). What if we want to say is that X is both a hunter and a shooter. In
predicate logic, it is

7.5 Description Logic 199

Hunter(X) ∧ Shooter(X),

whereas in DL it is a 2-ary relation

Hunter&Shooter(X).

or
AND(Hunter, Shooter).

In the DL , intersection of concepts, which is denoted C � D, is used to restrict the
set of individuals under consideration to those that belong to both C and D. In the
syntax of DL , concept expressions are variable-free. In fact, a concept expression
denotes the set of all individuals satisfying the properties specified in the expression.
Therefore, C � D can be regarded as the first-order logic sentence, C(x) ∧ D(x),
where the variable ranges over all individuals in the interpretation domain and C(x)
is true for those individuals that belong to the concept C.

We can represent the concept of “persons that are not female” and the concept of
“individuals that are female or male” by the expressions:

Person � ¬Female

and
Female � Male.

The key characteristic features of DL lies in the constructs that are helpful for
creating relationships between concepts. The most common and elementary is the
value restriction, written as ∀R.C, which means all the individuals that are having
relationship R with the concept being described, belong to concept C. Similarly,
∃R.C is a value restriction for some individuals.

Example 7.3 Represent the concepts of semantic network form in Fig. 7.10, using
DL .

Fig. 7.10 Semantic network
hierarchy

Person

Parent(1, NIL)

Women

Female

Mother

isa
hasChild

isa
isa

isa

isa

isa
isa

v/r

200 7 Networks-Based Representation

Assume that the atomic concepts are: Female, Person, and Woman. And,
hasChild,hasFemaleRelative are atomic roles. They use the operators inter-
section, union and complement of concepts, interpreted as set operations.

The Description Logic has a characteristic feature as their ability to represent
other kinds of relationships that can hold between concepts, this is beyond the IS-A
relationships. For example, in Fig. 7.10, the concept of Parent has a property that is
usually called a “role,” and expressed by a link from the concept to a node for the
role, labeled hasChild. The role has a “value restriction,” denoted by the label
v/r, which expresses a limitation on the range of types of objects that can fill that
role. In addition, the node has a number of restrictions expressed as (1, NIL), where
the first number is a lower bound on the number of children and the second element
is the upper bound, and NIL denotes no restriction on the upper limit. Overall, the
representation of the concept of Parent here can be read as “A parent is a person
having at least one child, and all of his/her children are persons”, thus the role link
between Parent and Person in Fig. 7.10 can be expressed as a concept expression
DL as,

∃1.hasChild.Parent � ∀hasChild.Person.

Existential quantification and value restrictions are thus meant to characterize
relationships between concepts. Such an expression therefore characterizes the con-
cept ofParent as the set of individuals having at least one filler of the rolehasChild
belonging to the concept Person; moreover, every filler of the role hasChildmust
be a person.

Relationships are inherited from concepts to their subconcepts. For example, the
concept Mother, i.e., a female parent, is a more specific descendant of both the
concepts Female and Parent, and as a result inherits from Parent the link to
Person through the role hasChild; in other words, Mother inherits the restric-
tion on its hasChild role from Parent. The other relations are translated as:

Woman
.= Person � Female.

Mother
.= Woman � Female � Parent.

∀Female.Person
∀Parent.Person.

weobserve that theremay be implicit relationships between concepts. For example, if
we define Woman as the concept of a female person, it is the case that every Mother
is a Woman. It is the task of the knowledge representation system to find implicit
relationships such as these (many are more complex than this one). Typically, such
inferences have been characterized in terms of properties of the network. In this case,
one might observe that both Mother and Woman are connected to both Female
and Person, but the path from Mother to Person includes a node Parent,

7.5 Description Logic 201

which is more specific then Person, thus enabling us to conclude that Mother is
more specific than Person. �

7.5.3 Architecture for DL Knowledge Representation

A knowledge representation system based on Description Logic provides facilities
to set up knowledge base, to reason about their concepts, and manipulate them. The
Fig. 7.11 shows the related blocks and their interactions for this purpose.

The KB comprises two components, the TBOX (terminology Box) introduces the
terminology, i.e., the vocabulary of an application domain; and the ABOX (assertion
box) contains assertions about the named individuals in terms of vocabulary.

The vocabulary consists of concepts, which denotes the individuals, and the roles
which denote the binary relationship between the individuals. In addition to these,
DL system allows the users to build a complex description of concepts and roles.
The TBOX can be used to assign names to complex descriptions. The description
language has model theoretic semantics. Consequently, the semantics in ABOX and
TBOX are FOPL formulas or its extensions.

The DL system provides the services for reasoning using using KB, typically,
to reason if the terminology is satisfiable. The reasoning process checks that the
assertions are consistent.With subsumption testing, it is easy to organize the concepts
of terminology in the hierarchy.

In any application, the KR system is embedded into a large environment. The
other components interact system through queries to KB and by modifying it, i.e.,
by adding or retracting concepts, roles, and assertions.

Thebasic formof declaration in aTBox is a concept definition, that is, the definition
of a newconcept in terms of other previously defined concepts. For example, awoman
can be defined as a female person by writing this declaration:

Woman
.= Person � Female

Fig. 7.11 DL based
knowledge representation
architecture

TBOX

ABOX

Description
Language

Reasoning

KB

Rules Application
programs

202 7 Networks-Based Representation

There are some important common assumptions usually made about DL termi-
nologies:

• Only one definition for a concept name is allowed;
• Definitions are acyclic in the sense that concepts are neither defined in terms of
themselves nor in terms of other concepts that indirectly refer to them.

The ABox comprises extended knowledge about the domain of interest, which
are, assertions about individuals, called membership assertions. For example,

Female � Person(sita)

show that the individual named as sita is a female person. Given this definition of
woman, one can derive from this assertion that sita is an instance of the concept
Woman. Similarly,

hasChild(sita,luv)

indicates that sita has luv as a child. Assertions of the first category are also called
concept assertions, while of the second is called role assertions.

7.5.4 Value Restrictions

Let us now turn our attention to role restrictions by looking first at the quantified
role restrictions and, subsequently, at what we call “number restrictions.” Most lan-
guages provide (full) existential quantification and value restriction that allows one
to describe, for example, the concept of “individuals having a female child” as
∃hasChild.Female, and to describe the concept of “individuals all of whose
children are female” by the concept expression ∀hasChild.Female. In order to
distinguish the function of each concept in the relationship, the individual object that
corresponds to the second argument of the role viewed as a binary predicate is called
a role filler. In the above expressions, which describe the properties of Parents
having female children, individual objects belonging to the concept Female are the
fillers of the role hasChild.

Another important kind of role restriction is given by number restrictions, which
restrict the cardinality of the sets of fillers of roles. For instance, the concept

(≥ 3 hasChild) � (≤ 2 hasFemaleRelative)

represents the concept of “individuals having at least three children and at most
two female relatives.” Number restrictions are sometimes viewed as a distinguishing
feature of Description Logics, although one can find some similar constructs in some
database modeling languages (notably Entity-Relationship models).

Beyond the constructs to form concept expressions, Description Logics provide
constructs for roles, which can, for example, establish role hierarchies. However,

7.5 Description Logic 203

the use of role expressions is generally limited to expressing relationships between
concepts.

Intersection of roles is an example of a role-forming construct. Intuitively,
hasChild � hasFemaleRelative yields the role “has-daughter,” so that the
concept expression

Woman � ≤ 2 (hasChild � hasFemaleRelative)

denotes the concept of “a woman having at most 2 daughters”.

Example 7.4 Represent the following statement in Description Logic: A cheese
pizza is defined as a pizza having toping and having a pizza base. The topping is a
cheese topping, while the base is a pizzabase. A cheese topping is a topping.

CheesePizza = Pizza

� (∃hasTopping.CheeseTopping)
� (∃hasPizzabase.PizzaBase).

cheeseTopping 	 Topping. �

7.5.5 Reasoning and Inferences

The basic inference on concept expressions in Description Logics is subsumption,
typically written as C 	 D (read as “C is subsumed by D”). Sometimes, this axiom
type is also referred to as is-a relationship, inspired by the often chosen wording for
this type of statement (e.g. “a cat is a mammal” would be a typical verbalization
of Cat 	 Mammal). Determining subsumption is the problem of checking whether
the concept denoted by D (the subsumer) is considered more general than the one
denoted by C (the subsumee). In other words, subsumption checks whether the first
concept always denotes a subset of the set denoted by the second one.

The principle inferences of DL are subsumtion—checking if one category is a
subset of another category, and classification checking, whether an object belongs to
a category.

For example, one might be interested in knowing whether Woman 	 Mother. In
order to verify this kind of relationship, one has, in general, to take into account the
relationships defined in the terminology in Fig. 7.10.

Given a knowledge base expressed as a set S of sentences:

“Does a constant c satisfies concept d?”
“Is a concept c subsumed by a concept d?”

204 7 Networks-Based Representation

Answering to these questions amount to compute the entailment. For example,
representation for “A Ph.D. student is, a student that already graduated, and that has
some funding.” is:

PhDStudent
.= AND(Student, Graduated, HasFunding).

As another example, to say that “Bachelors are unmarried adult males”, we write
in DL as

Bachelor
.= Unmarried � Adult � Male

The most important aspect of DL is its emphasis on tractability of inference. A
problem instance is solved by designing it and then asking if it is subsumed by one
of several possible solution categories. The complexity of DL is far simpler than
FOPL. The DL usually also lacks the negation and disjunction operators.

The main application domains of description logic are: software engineering,
configuration of large software, digital libraries, Web-based information systems,
Planning, and Data Mining.

7.6 Conceptual Dependencies

TheConceptualDependency (CD) framework is a simplified linguistic system, aimed
to provide a computational theory of simulated performance. In Conceptual Depen-
dency terms, the linguistic process is a mapping into and out of some mental rep-
resentation. This mental representation consists of concepts related to each other
by various meaning-contingent dependency links. Each concept in the interlingual
networkmay be associated with someword that is its realization on a sentential level.

A representation using conceptual dependency is a linked network, which charac-
terizes the conceptualization inherently present in a piece of language, with reference
to a real-world scenarios. A simple rule for representing concepts as dependent on
other concepts is, to check whether the dependent concept further explains its gov-
ernor, and this concept cannot make sense without its governor. For example, in the
sentence,

“The big man steals the red book from the girl.”,

the analysis of the sentence is as follows: The article, ‘The’ stands for connecting
sentences in paragraphs, i.e., ‘The’ also specifies that ‘man’ might have been used
previously. The adjective, ‘Big’ refers to the concept ‘big’, which cannot stand inde-
pendently. The concept ‘man’, however, can stand alone, but in the above sentence it
is conceptually modified by ‘big’, and in the network, it is realized as governor with
its dependent. The verb ‘steals’ is an action, which is dependent on the concept of
doing the acting. A conceptualization (a statement about a conceptual actor) cannot
be complete without a concept acting (or an attribute statement). Thus, to com-
plete a two-way dependency, a link must exist between the ‘man’ and the ‘steal’.

7.6 Conceptual Dependencies 205

Fig. 7.12 CD for “The big
man steals the red book from
the girl”

man steals book girlfrom

big red

Dependencies

Which indicates that they are dependent on each other, and also govern each other
as shown in Fig. 7.12.

It is mandatory that every conceptualization has a two-way dependency link. In
the Fig. 7.12, the concept ‘Book’ governs the concept ‘red’ attributively (color is an
attribute), and the whole entity is placed as objectively dependent on ‘steals’. The
construction “from the girl” is realized as being dependent on the action through the
conceptual object. This is prepositional type of dependency (denoted by ⇐). There
are different forms of this prepositional dependency, each of which is expressed by
writing the preposition over the link, that indicates the prepositional relationship.

A language may use inflections, or nothing may be used instead of prepositions
to indicate prepositional dependency. Here we will discuss a language-free system,
which represents the relation of the parts conceptually.

The CDs are intended to be used in reasoning with natural language constructs,
independent of any language or the phrases in the language. This has resulted in a
small number of primitive actions, about 10–12, and a set of dependencieswhich con-
nect the primitive actions with each other andwith their actions, objects, instruments,
etc.

The CDs have two main objectives:

1. If the meaning of any two sentences is the same, they should be represented the
same CD, regardless of the particular words are used in these.

2. Any information, which may be present implicitly in the sentence, should be
represented explicitly in the CD.

For item 1 above, the examples are ‘get’ and ‘receive’, both will have the same
CD representation. For item 2, the machine must extract the implicit part from the
sentence.

The CDs have:

1. a set of primitive actions,
2. a set of states for representation and result of the action,
3. a set of dependencies, or conceptual relationships, which could exist between

primitives, states, and objects.

The representation of English sentences could be constructed by joining together
the building blocks to form a CD graph. The CD provides four conceptualization
primitives using which the world of meaning is built. These are:

206 7 Networks-Based Representation

ACTs: Actions
PPs: Picture producers(objects)
AAs: Action Aiders (they modify the actions)
PAs: Picture Aiders (they modify the objects)

All the actions are assumed to reduce to one or more of the primitive ACTs, out
of the following actions only [7]:

PROPEL: Apply physical pressure to an object (push)
MOVE: Move body parts by owner
GRASP: Grab an object by actor(grasp)
ATRANS: Transfer of relationship (give)
PTRANS: Transfer of physical location of an object (go)
INGEST: Ingest an object by an animal (eat)
EXPEL: Expel from an animal’s body (cry)
MTRANS: Transfer mental information(tell)
MBUILD: Mentally make a new information(decide)
ATTEND: Focus sense organ
CONC: Conceptualize or think about an idea (think)
SPEAK: Produce sound (say)

At the conceptual level, a CD framework is responsible for representing themean-
ing of a piece of written language in language-free terms. The conceptualization is
written on a straight line, in a conceptual dependency analysis. The dependents writ-
ten perpendicular to the line are attributes of their governor, except when they are
part of another conceptualization line. The whole of conceptualizations can relate to
other conceptualizations as actors or attributes.

Eachprimitive comprises a set of slots associatedwith it, from the set of conceptual
dependencies. Associated with each slot are restrictions as to what sorts of objects
could appear in that slot. For example, the following are slots for PTRANS.

ACTOR: It is either human or animate object, that initiates the PTRANS
OBJECT: It is a physical object, that is moved (PTRANSed)
FROM: The PTRANS begins at this location
TO: PTRANS ends at this location

Figure7.13 shows the basic roles of conceptualization primitives of CD, and
Fig. 7.14 shows a general case of primitives along with an example.

The inference rules are written based on these primitives to make explicit the
information which is implicitly presented in the English or any other language text.
For example, using the primitive PTRANS, it is possible to make inference about
the OBJECT that was PTRANSed (physically transferred), which was initially at the
FROM location, and after the PTRANS is carried out, it is at the TO location. The
same inferences shall be made no matter what type of PTRANS was present, like,
flying, driving, walking, falling, etc.

7.6 Conceptual Dependencies 207

PP ACT : Indicates that an actor Acts

: Indicates that an object has attributePP PA

ACT PP : An object has an action

ACT
PP

PP

: Recipient and doner of an object are in action

Rajan PROPEL ball : Rajan threw the ball

P
Rajan PTRAN : Rajan ran.

dog

Rajan

poss-by : Rajan’s dog.

R

Fig. 7.13 Conceptual dependency representations

Fig. 7.14 A CD graph

7.6.1 The Parser

The CD framework can be used for natural language parsing. A CD-based system
analyzes sentences into their conceptual representation by operating on pieces of
every sentence, and lookup for potential conceptual cases. All the conceptualiza-
tions are checked against a list of expressions to see if that part of the concept has
occurred before. Those concepts which never occurred, are meaningless in the sys-
tem. Consider the sentence: “tall boy went to the park with the dog.” Part of the
parser output is as shown in Fig. 7.15.

In this sentence, the problem is, where to attach the concept “with dog”? Is it to the
“park” or to the “tall boy”? The problem can be solved by conceptual semantics. The
semantics for ‘go’ contains a list of conceptual prepositions. Under the preposition

208 7 Networks-Based Representation

Fig. 7.15 Parser output for
“tall boy went to the park” boy

tall

P
go

to
park

Fig. 7.16 CD for parsing a
sentence: tall boy went...

boy

tall

P
go

to
park

boy

tall

P
go

to
park

with
dog

with

dog

(1)

(2)

‘with’ there is a description: “any movable physical object”, and since the dog is a
physical object, the dependency is applicable. As per the sentence, the parse tree (1),
in Fig. 7.16 is allowed, while (2) is rejected.

The parser tries to analyze a sentence in a way analogous to human method.
It handles input one word at a time as it is encountered, checks potential linkages
with its own knowledge of the world and past experience, and puts its output into a
language-free formalism that can be acted on.

The CD parser is a conceptual analyzer rather than syntactic parser.
Consider a sentence: “big boy gives apples to pig”. The input sentence is processed

word by word, and parsed into CD as shown with steps in Fig. 7.17.

(1) boy

big

(2) boy give (3) give apples

(4) give
to

pig

Assembled sentence:

boy

big

give apples
to

pig

Fig. 7.17 Steps for parsing using CD

7.6 Conceptual Dependencies 209

7.6.2 Conceptual Dependency and Inferences

The representation of text in canonical form has the benefit to perform inference
using that text, because the canonical form allows to write inference rules as general
as possible. If the representation does not capture the similarities in the meaning of
the text, the rules about what can be inferred from a given text needs be duplicated
by writing one rule for every form of the representation, even though they may have
the same meaning relevant to the inference. To illustrate that inference is facilitated
by CD, the inferences are used to build a “causal chain” to connect the events like in
a story, as in the following sentence.

Simon hit Anne. Anne’s mother took Anne to the hospital. Anne’s mother called Simon’s
mother. Simon’s mother slapped Simon.

An inference system could draw many inferences through this story, e.g., 1.
Simon’s mother slapped Simon because she was angry at him for hitting Anne,
2. Anne was taken to the hospital because she was hurt, 3. Anne’s mother called
Simon’s mother because she wanted to complain later. Inferences are based on a set
of rules, organized around inference categories. The total number of categories in
this case is 16, some of these are:

1. Causative inferences: These are hypothesized as possible causes or preconditions
of actions.

2. Specification inferences: These fill in missing ‘slots’ in a CD primitive, such as
the ACTOR or INSTRUMENT of an ACTion.

3. Resultantive inferences: These are inferred as likely results of the actions.
4. Function inferences: These are inferred as likely functions of objects.

The inference rules are applied in an undirected fashion. When a system reads a
sentence, the inference rules for this are automatically applied without a goal, such
as building a causal chain of events. So, it is fortuitous (having no cause or apparent
cause): the inferences are applied to new representation in an undirected fashion,
which some times result in the confirmation of another representation.

The undirected inferences are analogous to the spontaneous nature of inferences
madebypeople,which some times seemuncontrollable for people. This is convincing
as one cannot learn new facts without inferring things about that. However, this
undirected behavior leads to problems: When processing a story, an expert system,
which is based on CD, would not know which inferences are most likely to lead
to building a coherent causal chain to represent the story. Hence, it would lead to a
combinatorial explosion in the number of inferences that the systemneeds to consider
to build the causal chain to represent the story. In other words, the expert system lacks
the commonsense knowledge about what inferences are most likely to be relevant in
a given situation. For another example,

Simon picked up the menu. He decided on fish.

As an example, consider a situation, where one visits a restaurant, and decides to
take a seat for eating (see Fig. 7.18).

210 7 Networks-Based Representation

Customer PTRAN Customer
Restaurent

Customer ATTEND EYES
table

Customer MBUILD where to sit

Customer PTRAN Customer
table

Customer CustomerMOVE
sitting position

Fig. 7.18 CD for “Customer moves to Restaurant”

Once a CDwith a sequence of the graph is represented, it is possible to infer many
things from the representation. Like, from the Fig. 7.18, it is possible to infer many
things, like: “Who went to a restaurant?”, “Why the customer searched some thing
in a restaurant?”, etc.

7.6.3 Scripts

The scripts represent stereotypical sequences of events, like going to a restaurant,
buying from a store, etc. The theory of scripts has an emphasis to understand and
quick access those events that always happen in a stereotypical event sequence,
without worrying about those inferences which would most likely be irrelevant.

Scripts are larger knowledge structures, used to solve problems using undirected
inference. The scripts are pre-compiled sets of likely inferences, with elements of
each set packed together so that they can be searched more efficiently, and produces
lesser number of irrelevant inferences.

A script is a set of roles (participants) involved in the script, as well as common
objects used. A script comprises scenes, such that each scene describes typical events
in a portion of a script. For example, in restaurant’s script, roles may be waiter,
customer, restaurant itself, and food. Scene may be, ENTER, ORDER, EAT, PAY,
LEAVE. Each scene’s details are represented as a sequence of CD representations.
For example, the ENTER scene in a restaurant may consist of a causal chain as shown
in Fig. 7.18, and the sequence of CDs are:

Scene-name: ENTER
C PTRAN C into restaurant
C ATTEND eyes to tables
C MBUlLD where to sit

7.6 Conceptual Dependencies 211

C PTRANS C to table
C MOVE C to siting position

In above, C is a customer.

7.6.4 Conceptual Dependency Versus Semantic Nets

The conceptual dependency networks and its derivatives are often grouped into the
family of semantic net representations, because the CD is a content theory, whereas
the semantic networks are a structure theory. The distinction between these two
types of theories lies in their emphasis: the semantic nets theory is about how the
knowledge should be organized—there are nodes with arcs connecting them. There
is also some general notion about the structure’s semantics, i.e., how to interpret a
particular semantic network. In any representation, apart from the knowledge orga-
nization, there is also a general notion about inheritance. Both of these points are
about structural information. The semantic networks say nothing about what will be
represented, e.g., what labels should be used for nodes and arcs, and what arcs to use
where? It is only up to the user to decide about these details, and what a semantic
network says is about the (structural) form that the representation will take.

The CD theory was an attempt to enumerate the types of nodes and arcs which
could be used to build representations. Instead of specifying the structure of repre-
sentations, the CD theory specifies the contents. Note that the basic conventions used
for drawing CD graphs also specified structures, but these graphs were not really the
essence of the theory. The essence of the CD was in the primitives, and in the types
(names) of dependencies which could be used to link the primitives together.

The above highlighted distinctions betweenCDs and semantic nets would become
clear if one thinks of trying to implement the CDs and semantic nets in first-order
predicate logic (FOPL). In CDs, it is not difficult to imagine that the primitives:
ACTs, dependencies, and states would specify a set of predicates to be used when
one writes the predicate calculus statements to represent sentences. There will be a
need to adopt some translation conventions, in order to make all assertions of FOPL
type, but these would be quite straightforward.

But, it does not make a sense to implement a semantic net in FOPL, as the two
representations are in competition with each other: each representation provides
a different syntax for distinguishing between predicates, arguments, and relations.
There would be nothing left to semantic nets, if they are translated into predicate
logic. Putting it another way, the semantic nets would not add anything to FOPL.
This statement is in contrast to CD, which adds the CD primitives to the predicates
used, as and when needed.

212 7 Networks-Based Representation

7.7 Summary

In a network-based representation, the pieces of knowledge are clustered together
into coherent semantic groups. It provides amore natural way ofmapping knowledge
between the natural language and these networks. A semantic network has ako (a kind
of), has-parts, color, and has-property are binary relations. Semantic networks have
primitives, and inference in the semantic networks is provided through inheritance.
The semantic networks are based on the associationist theory, which defines the
meaning of an object in terms of a network of associations with other objects.

Anatural language understanding programmust understand the intentions,beliefs,
hypothetical reasoning, plans, and goals. Conceptual Graphs (CG) portray mental
perception which consists of basic primitive concepts and relationships which exist
between them. In CG, a sentence is represented as a verb node, with various case
links to the node representing other participants in the action.

A frame can be viewed as generalized semantic network. In a frame, there is stress
on instances or classes, rather than nodes, and on slots and their values instead of
links and connections. Inheritance moves the default values in frames from classes to
instances through activation of the appropriate when-constructed procedure. Frames
represent some stereotypical situation, like, a classroom, house, a machine with
various parts, etc, and have slots,whichmayhold values, or procedures. Procedures in
frames may be sleeping procedures (daemons) and may be awakened when required.
Frames have the language to describe them. The Frames have applications inmachine
vision.

A Description Logic models concepts, roles and individuals, and their relation-
ships. The fundamental modeling concept of aDL is the axiom: “a logical statement
relating roles and/or concepts”. It is a family of formal knowledge representation
languages, which is more expressive than propositional logic and has more efficient
decision properties than first-order predicate logic. It is used in formal reasoning on
the concepts of an application domain.

The Conceptual Dependency (CD) framework is a stratified linguistic system
that attempts to provide a computational theory of simulative performance. Every
conceptualization must have a two-way dependency link. The CDs are intended to
be used in reasoning with natural language constructs, independent of any language
or the phrases in the language. The CDs have a set of primitive actions, a set of states
for representation and result of the action, and a set of dependencies, or conceptual
relationships, which could exist between primitives, and states. An English language
sentence can be parsed into CDs. The inference using CDs is unambiguous.

Scripts represent stereotypical sequences of events, such as going to a restaurant.
By using the script, the theory was that the understand had quick access to those
events which always happen in a stereotypical event sequence.

Exercises 213

Exercises

1. Explain the difference between Ontologies and Semantic networks.
2. Describe the logical, structural, semantic, and procedural parts of semantic

networks.
3. There are many words in the English language which can be used as noun and

verb, for example, “book” in “Book my ticket” and “This is my book” have used
the word “book” as verb and noun, respectively. In the following words, what
are their different parts of speech?
milk, house, liquid, airborne, group, set.
Suggest a method in each case, as to how you will reason the true meaning.

4. Suggest a data structure for the implementation of semantic nets such that
retrieval can be as fast as possible.

5. Represent the relationships between quadrangle, parallelogram, rhombus, rect-
angle, and square in the form of a semantic network. Is the semantic network
unique, or are there many different forms it can take?

6. Represent the following statements using semantic networks:

a. “Rajan teaches his students a lot of innovative things.”
b. “Raman tells Rajan’s students a number of useful things.”
c. Mike and Mary’s telephone number is the same.
d. John believes that Mike and Mary’s telephone number is the same.

7. Represent the following knowledge in a semantic network:

Dogs are Mammals Birds have Wings
Mammals are Animals Bats have Wings
Birds are Animals Bats are Mammals
Fish are Animals Dogs chase Cats
Worms are Animals Cats eat Fish
Cats are Mammals Birds eat Worms
Cats have Fur Fish eat Worms

8. Represent the following in partitioned semantic networks:

a. Every player kicked a ball.
b. All players like the referee.
c. Andrew believes that there is a fish with lungs.

9. Represent the following statements using semantic networks:

a. “John tells his students a lot of useful things.”
b. “Andrea tells John’s students an enormous number of useful things.”

Suppose you wanted to build an AI system that was able to work out “who tells
John’s students the greatest number of useful things.” How could you do that?

10. Suppose you learn that “Tom is a cat”. What additional knowledge about Tom
can be derived from your representation? Explain how.

214 7 Networks-Based Representation

11. Suppose Tom is unlike most cats and does not eat fish. How could one deal with
this in the semantic network?

12. Formulate the solutions as to how the semantic networks can be used in the
following cases?

a. Natural language understanding
b. Information retrieval
c. Natural language translation
d. Learning systems
e. Computer vision
f. Speech generation system

13. “The inferencing in semantic networksmake use of unification, chaining, modus
ponens, and resolution.” Justify each, taking a suitable example.

14. Explain, using semantic networks, how we can map an object’s perception to
concepts, and identify these concepts. Give examples.

15. How semantic networks help in understanding the meaning of words in natural
language sentences? Explain.

16. Represent the following as a series of frames:

Dogs are Mammals Birds have Wings
Mammals are Animals Bats have Wings
Birds are Animals Bats are Mammals
Fish are Animals Dogs chase Cats
Worms are Animals Cats eat Fish
Cats are Mammals Birds eat Worms
Cats have Fur Fish eat Worms

17. Express the following sentences in Description Logic:

a. All employees are humans.
b. A mother is a female who has a child.
c. A parent is a mother or a father.
d. A grandmother is a mother who has a child who is a parent.
e. Only humans have children that are humans.

18. Translate the logic expressed in Fig. 7.10 into DL .
19. Select one or more answers from the following. Also, justify the answer(s)

selected by you.

a. What type of reasoning is performed using semantic networks?

(A) Deductive (B) Default
(C) Inductive (D) Abductive
(E) Hierarchical

b. In the Description Logic, the domain is always,

(A) Open world (B) Closed world
(C) Depends on the domain used (D) None of above

References 215

References

1. Collins AM, Quillian MR (1969) Retrieval time from semantic memory. J Verbal Learn Verbal
Behav 8(2):240–247

2. Deliyanni A, Kowalski RA (1979) Logic and semantic networks. Commun ACM 22(3):184–
192

3. Faucher C (2001) Easy definition of new facets in the frame-based language Objlog+. Data
Knowl Eng 38:223–263

4. Harmelen FV et al (2008) Handbook of knowledge representation. Elsevier, pp 213–237
5. https://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-02.pdf. Accessed 19 Dec 2017
6. http://www.jfsowa.com/pubs/semnet.htm. Accessed 12 Feb 2018
7. Lytinen SL (1992) Conceptual dependency and its descendants. Comput Math Appl 23(2–

5):51–73 Pergamon Press
8. Minsky M (1974) A framework for representing knowledge. MIT-AI Laboratory Memo-306
9. Pike R, Kehler T (1968) The role of frame-based representation in reasoning. Commun ACM

28(9):904–920
10. QuillianMR(1967)Word concepts: a theory and simulationof somebasic semantic capabilities.

Behav Sci 12(5):410–443
11. Quillian MR (1968) Semantic information processing. Cambridge, Mass., MIT Press, pp 216–

270
12. Simmons RF (1973) Semantic networks: their computation and use for understanding English

sentences. In: Schank RC, Colby KM (eds) Computer models of thought and language. W.H.
Freeman and Co, San Francisco, CA

13. Simmons RF, Chester D (1977) Inferences in quantified semantic networks. Proceedings of the
fifth international joint conference on artificial intelligence. MIT, pp 267–273

14. Sowa J (1976) Conceptual graphs for a data base interface. IBM J Res Develop 336–355

https://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-02.pdf
http://www.jfsowa.com/pubs/semnet.htm

	7 Networks-Based Representation
	7.1 Introduction
	7.2 Semantic Networks
	7.2.1 Syntax and Semantics of Semantics Networks
	7.2.2 Human Knowledge Creation
	7.2.3 Semantic Nets and Natural Language Processing
	7.2.4 Performance

	7.3 Conceptual Graphs
	7.4 Frames and Reasoning
	7.4.1 Inheritance Hierarchies
	7.4.2 Slots Terminology
	7.4.3 Frame Languages
	7.4.4 Case Study

	7.5 Description Logic
	7.5.1 Definitions and Sentence Structures
	7.5.2 Concept Language
	7.5.3 Architecture for mathcalDL Knowledge Representation
	7.5.4 Value Restrictions
	7.5.5 Reasoning and Inferences

	7.6 Conceptual Dependencies
	7.6.1 The Parser
	7.6.2 Conceptual Dependency and Inferences
	7.6.3 Scripts
	7.6.4 Conceptual Dependency Versus Semantic Nets

	7.7 Summary
	References

