Chapter 6 ®)
Real-World Knowledge Representation e
and Reasoning

Abstract Apart from its theoretical significance, the Al must represent real-world
knowledge, and produce reasoning using that. The real-world things are collections
of entities in different classes. This chapter presents the representations structures for
such knowledge, e.g., taxonomies and reasoning based on that. Other phenomena
in real-world, that are presented are, action and change, commonsense reasoning,
ontology structures for different domains, like, language, and world. The Sowa’s
ontology for objects, and processes, both concrete and abstract, is explained. The
situation calculus is presented in its formal details, along with worked exercises.
The more prevalent real-world reasoning, like nonmonotonic and default reasoning
are also treated in sufficient details, along with supporting worked exercises. This is
followed, with summary of the chapter, and exhaustive list of practice exercises.

Keywords Real-world knowledge « Ontologies + Ontological reasoning + Sowa’s
ontologies - Situation calculus - Nonmonotonics reasoning * Default reasoning

6.1 Introduction

Who is taller, the father or his son held in his hands by the father? Can you make tea
out of salt? If you push a needle into a potato, does the needle make a hole in the
potato or in the needle? We may find these questions as absurd, but many tasks, such
as machine vision, natural language processing, planning, and reasoning in general,
requires the same kind of real-world knowledge and capabilities of reasoning. As
another example, if a six feet tall person is holding a two feet baby in his arms, and
it is also given that they are father and son, we take no time to conclude which one
is father and which one is son.

The use of real-world knowledge for natural language processing (NLP), partic-
ularly for all kinds of sense disambiguation, and for machine translation is a chal-
lenging task. Some of the ambiguities are resolved using the simple rules, while the
others can be resolved using rich understanding of the world. Consider the following
two examples:
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“The Municipal council of the city refused permission to demonstrators because
they feared violence,” versus,

“The Municipal council of the city refused permission to demonstrators because
they advocated violence.”

In the first sentence it is required to determine that “they” refers to “Municipal
council of the city” and not to “demonstrators.” But, in the second sentence it is
required to find out that, “they” refers to “demonstrators.” The above determination
requires the knowledge about the characteristic relations of “Municipal council of
city” and “demonstrators” with the verbs “fear” and “advocated.” In NLP, such
ambiguities in the language can be resolved by true understanding of the text, which
requires bringing of real-world knowledge in the system.

Considering computer vision, we are able to recognize the objects because of
context. For example, the bowl, banana, knife in kitchen are for container, for eating,
and to cut vegetables, respectively. But, the same items in a departmental store are for
sale. So, it is relation with other objects/environment, like kitchen and shop, explain
the meaning of objects [1].

Learning Outcomes of this Chapter:

1. Compare and contrast the most common models used for structured knowledge
representation, highlighting their strengths and weaknesses. [Assessment]

2. Identify the components of non-monotonic reasoning and its usefulness as a rep-
resentational mechanism for belief systems. [Familiarity]

3. Compare and contrast the basic techniques for representing uncertainty.
[Assessment]

4. Compare and contrast the basic techniques for qualitative representation.
[Assessment]

5. Apply situation and event calculus to problems of action and change. [Usage]

6. Explain the distinction between temporal and spatial reasoning, and how they
interrelate. [Familiarity]

6.2 Taxonomic Reasoning

Taxonomy is a name given to collection of individuals, categories, and the relations
between their pairs. The taxonomies are also referred as semantic networks. As an
example, Fig. 6.1 shows a taxonomy of some categories of animals, individuals, and
the relations between categories and individuals, as well between category and its
subcategories.

There are three basic relations types [2]:

e A category is a subset of other category. For example, the categories dog and cat
are subsets of another category mammal;
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Fig. 6.1 Taxonomy of animal world

e An individual can be an instance of a category. For example, an individual called
Bruno is an instance of a category dog; robin and penguin are subsets (subcate-
gories) of bird,

e Two categories are always disjoint. For example, dog and cat are disjoint sets.

A property can be used a tag for a category. For example a category Mammal can
be tagged with property furry, and another category bird can be tagged with property
Canfly.

One form of inference from taxonomical structure is through the relation of tran-
sitivity. In the taxonomy shown in Fig. 6.1, Bruno is shown as an instance of dog,
and dog is a subset of mammals, then it can be reasoned that Bruno is an instance of
mammal.

The other form of inference—the inheritance, works as follows:

Bruno is an instance of dog,

Dog is subset of mammal,

Mammal has property furry,

Therefore, it can be inferred through inheritance that dog and Bruno have property

Sfurry.
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A variant of this inheritance is default inheritance, which have following charac-
teristics:

1. A category can be marked with a characteristic but cannot be marked as a universal
property, and

2. A subcategory or instance will always inherit property from higher order category
unless otherwise it is specifically negated.

For instance, there is a category bird, with property Canfly. And, there are subcate-
gories Robin and Penguin. The property Canfly should be inherited by sub-category
Robin, but not by Penguin. This is implemented by negating the Canfly property
for Penguin, as shown in the simple and standard taxonomy of the animal world in
Fig. 6.1, where every two categories are related in such a way that, they are either
disjoint or one is subcategory of other.

Other taxonomies structures are less straight forward. Consider a semantic net-
work for categories of people, the individual say Dr. C. V. Raman, is having following
relations with other categories, as an instance of those categories. He is simultane-
ously a Physicist, a Nobel-laureate, a Scientistindian, and NativeofMadras. Also,
there is an overlap, and it is some times not clear as which are the properties, and
which are taxonomic categories. Hence, in taxonomizing more abstract categories,
choosing and delimiting the categories become a challenging task.

Number of specialized taxonomies have been developed in the domains such
as medicine, geonomics, languages, and other fields. The more sophisticated tax-
onomies are based on description logic, which provides the tractable constructs for
describing concepts and the relation between them. These have been applied in
semantic OWL (Web Ontology Language).

Temporal Reasoning

It provides the representation of knowledge and automating reasoning about time,
duration, and time intervals. For example, in the sentence, “After landing at Frankfurt,
it took a long time, before I could board the connecting flight to New Delhi” versus
“It for the two countries a long time before they could arrive to trade treaty.” In the
first sentence, “long time” may mean few hours, while in the second same phrase
may mean many years, or even decades. Integrating such reasoning, with natural
language (NL) interpretation, has been problematic. Many temporal relations are not
explicitly stated in text, and they are complex and text dependent.

Action and Change

Theory of action and change is other area of commonsense reasoning, and has been
well understood. Following are the constraints of representation and reasoning for
the domains of action and change:

e Events are atomic, that is, at a time only one event occurs. The reasoning will take
place based on the state of the world at the beginning, and at the end of the event.
The intermediate states while the event is in execution are not accounted for.

e Each and every change of the world is due to occurrence of some event.
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e All the events are deterministic in nature, i.e., state of the world at the end of every
event can be fully determined using the state before that event, plus this event
itself.

The problem of representation, and the form of reasoning such as prediction
and planning, have been largely understood for the domain that satisfy the above
mentioned three constraints. However, there are other extreme domains: continu-
ous domains, simultaneous events, probabilistic events, and imperfect knowledge
domains, where, the representation and reasoning are not so well understood yet.
Some of these domains will be discussed in the following text.

6.3 Techniques for Commonsense Reasoning

The field of commonsense reasoning can be largely divided into two areas:

e knowledge based approaches, and
e machine learning approaches that cover large data corpora, which are almost
always of the text corpora types.

However, there is a very limited interaction between these approaches. There
are other approaches, e.g., crowd-sourcing based approaches, which try to construct
knowledge base as combination of other knowledge bases and participation of many
non-experts [2].

The knowledge based approaches are further divided into categories that are based
on following domains (see Fig. 6.2).

Mathematical logic or some other mathematical formalism,

Informal approaches, which are in contrary to mathematical formalism,

Based on theories from cognition, and

There are large-scale other approaches, which are usually mathematical or infor-
mal, but mainly targeted at collecting a large amount of knowledge.

bl
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KnowlItAll ConceptNet
OpenMind
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Situation calculus. Scripts, Frames, CcYC
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Fig. 6.2 Taxonomy of approaches to commonsense reasoning
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One of the successful form of a commonsense reasoning, which has mathematical
base is qualitative reasoning (QR). The QR helps in automating the reasoning and
problem solving about the physical world around us. It has also generated techniques
and systems that are being commonly used in application domains, like autonomous
support for spacecraft, on-board diagnosis of vehicular systems and their failure anal-
ysis, automated generation of control software for photocopiers, and intelligent aids
for learning about thermodynamic cycles. There are number of prominent features
that are typical for QR systems: ontologies, causality, and inference of behavior from
structure.

The other type of reasoning is quantitative reasoning, which deals with quantities,
and reasons on the criteria of high/low, big/small, long/short etc.

The commonsense reasoning targets a number of different objectives, some of
these are as follows:

e Plausible inference. It is used for drawing provisional/uncertain conclusions.

e Reasoning architecture. The reasoning architecture is a general-purpose data struc-
tures to encode knowledge and algorithms, which are helpful for carrying out the
reasoning. For example, to represent the meaning/senses of natural language sen-
tences.

e Basic domains. While performing the commonsense reasoning, human can do
complex reasoning about basic domains like space, time, basic physics, and basic
psychology. The knowledge we as human draw from these domains is largely not
fully documented and the reasoning processes are largely unavailable for intro-
spection. An automated reasoning should comprise all these reasoning capabilities.

e Reasoning modes. The commonsense reasoning system should incorporate a
variety of modes of inference, like, explanation-based reasoning, generalization,
abstraction, analogical-based reasoning, as well be able to perform the simulation.

e Independence of experts. Hand-coding of a large knowledge base for commonsense
reasoning is expensive and slow process. Hence, assembling it either automatically
or building it by drawing the knowledge of non-experts, e.g., through crowd-
sourcing, is considered as better choice.

e Breadth. To perform a powerful commonsense reasoning through machines, will
require a large body of knowledge.

e Cognitive modeling. These are the theories of automated commonsense reasoning
that describe the commonsense reasoning in people.

e Applications. To be useful, a commonsense reasoner must interface with applica-
tions smoothly, and must serve the needs of applications.

6.4 Ontologies

Ontology is a particular theory about the nature of being or the kinds of existent.
The task of intelligent systems in computer science is to formally represent these
existents. A body of formally represented knowledge is based on conceptualization.
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A concept is some thing we can form a mental image of. Conceptualization consists
of a set of objects, concepts, and other entities about which knowledge is being
expressed and of relationships that hold among them. Every knowledge model is
committed to some conceptualization, implicitly or explicitly [3].

The major applications of ontologies are in natural language processing, infor-
mation retrieval, modeling and simulation. The CYC (enCY Clopedia) ontology, for
example, is used for a CYC natural language system, built for the purpose of trans-
lating natural language text into cycL [4].

An ontology is a systematic arrangement of all of the important categories of
objects or concepts that exist in some field of discourse, that shows the relations
between these concepts/objects. In a completed form, an ontology is a categorization
of all of the concepts in some field of knowledge, that includes all the objects,
their properties, relations, and functions needed to define the objects, and specify
their actions. A simplified ontology may contain only a hierarchical classification
of objects and processes (called taxonomy), which shows the subsumption relations
between concepts in the specific domain of knowledge [5].

An ontology may be visualized as an abstract graph with nodes representing the
objects and labeled arcs representing the relations between them, as shown in Fig. 6.3,
which is the upper level of the CYC (from enCYClopedia) project hierarchy.

The CYC Project is an example of ontology. CYC contains more than 10,000
concept types used in the rules and facts encoded in the knowledge base. Its goal
was to build a commonsense knowledge base containing millions of facts and their
interrelationships. It was the efforts to build the knowledge in it that is seldom written
down—the knowledge for example, the reader of an encyclopedia is assumed to pos-
sess to understand the contents of encyclopedia. This kind of knowledge is required
as built-in in a system, which are required to read the restricted natural language.

A concept is some thing we can form a mental image of. At the top of the hierarchy
is the Thing “concept”, which does not have any properties of its own. The hierarchy
under Thing is quite tangled. Not all the subcategories are exclusive. In general, Thing
is partitioned in three ways: First is Represented Thing versus Internal Machine
Thing. Every CYC category must be an instance of one and only one of these sets.
Internal-Machine-Thing is anything that is local to the platform CYC is running on
(strings, numbers, and so on). Represented-Thing is everything else.

The concepts used in an ontology and hierarchical ordering are to some extent
arbitrary, and largely depends on the purpose the ontology is created. This is because,
same objects are of varying importance when used for different purposes, and one or
other set of properties of objects are chosen as the criteria for classification of these
objects. Apart from this, different degrees of aggregation of concepts may be used,
and the importance for one purpose may be of no concern for a other purpose. For
example, class is collection of students, and when all of them are playing in ground
we call it a feam. As other example, when both parents are teaching they are called
teachers, when traveling together they are passengers, and at home they are spouse.
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6.5 Ontology Structures

When compared with First-Order Predicate Logic (FOPL) for knowledge represen-
tation and reasoning, in the ontologies we are particular for knowledge organization
as well as contents. This approach has generalization, combined with exceptions.
For example, “all birds fly” can be a rule. But, there are some birds which do not fly,
for example, penguin. This is an exception. We should be able to add this concepts
of knowledge, not as exception, but as extension. This requires categorization of
objects.

Ontologies provide explicit representations of domain concepts busing a structure
around which knowledge base is built. Each ontology is a structure of concepts
and relations between them, such that all concepts are defined as well interpreted
using a declarative approach. The ontology system also defines the vocabulary of the
problem domain, and a set of constructs as how the terms can be combined to model
the domain. The Fig. 6.3 shows a general structure of ontology.
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Fig. 6.4 Language, logic,
and ontology

Language
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6.5.1 Language and Reasoning

The Fig. 6.4 shows the interrelationship of language and logic with ontology, and
how each of these are related to commonsense, reasoning, and type checking. The
language, ontology, and logic are representations, where as the corresponding blocks,
i.e., common-sense, type-checking, reasoning, are respectively, the applications.
Consider the object “ball”, we identify it as a member in the collection of balls
by its type checking; we say “plants have life”, they belong to the category of all
the living beings (type-check). At lowest level in Fig. 6.4 is logic, making use of
binary operators. This logic helps in reasoning process. The common-sense is con-
text level knowledge, which is essential for language understanding. For example,
the phrase—"“a good play”, while in a cricket ground is understood as good shot,
while in a theater, it is taken as performance by an artist. We resolve the phrase “a
good play” by context.

There is a close relationship between natural language understanding (NLU) and
knowledge representation and reasoning. In other words, the relationship between
language and knowledge. In fact, understanding is reasoning paradigm, as it has
become quite clear that understanding natural language is, for the most part, a com-
monsense reasoning process at the pragmatic level. As an example, to illustrate this
strong interplay between language understanding and commonsense reasoning, con-
sider the following:

(a) “Jack defended a jailed activist in every state.”
(b) “Jack knows a jailed activist in every state.”

Through commonsense, we have no difficulty in inferring for (a) that Jack supports
for the same activist in every state. Perhaps jack might have traveled to different states
for campaign. Where as in (b), we hardly conceive of the same. It may mean, “there
is a jailed activist in every state”, or an activist being jailed in every state. Such
inferences lie beyond syntactic and semantic explanations, and are in fact depend on
our commonsense knowledge of the world (where we actually live).

As another example, consider resolving of the noun He in the following:

(c) Rajan shot a policeman. He instantly

(i) ran away.
(i1) collapsed.
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It is obvious that the above references can only be be resolved through common-
sense knowledge. For example, typically, when shot (x, y) holds between some x
and some y, the x is the more likely a “subject” which would run away. So, in (c(i)),
most likely its is Rajan who ran away. In c(ii), y is the more likely to collapse, that
is the policeman. Note, however, that such inferences must always be considered
defeasible, since quite often additional information might result in the retraction of
previously made inferences. For example, (c(ii)) might be describing a situation in
which Rajan, a ten-year old who was shooting for practice, fell down. Similarly, and
(c(i)) might actually be describing a situation in which the policeman, upon being
slightly injured, tried to run away, may be to escape further injuries!

There are number of challenges, in term of computational complexities, in rea-
soning with uncommitted (or underspecified) logical forms. However, even bigger
challenge is to make available of large body of commonsense knowledge, with com-
putationally effective reasoning engines.

6.5.2 Levels of Ontologies

In comparing various ontologies, they can be viewed at three different levels:

1. is-a taxonomy of concepts,
2. the internal concept structure and relation between concepts, and
3. the presence or absence of explicit axioms.

The Fig. 6.5 shows various concepts related by is-a hierarchy relation (a mem-
ber of relation), also subset relation. A member can be an instance of a category.
Taxonomy is central part of most ontologies, and its organization can vary greatly.
For example, all concepts can be in one large taxonomy, or there can be number of
smaller hierarchies, or there can be no explicit taxonomy at all.

Although all general-purpose ontologies try to categorize the same world, they
are very different at the top level. They also differ in their treatment of basic parts:
things, processes, and relations (see Fig. 6.3).

The next level of comparison is internal concept structure, which can be realized
by properties and roles. The internal concept relations are the relations, for example,
between bird versus canfly, wings, and feathers (see also Fig.6.5). Concepts in some
ontologies are atomic (axioms) and might not have any properties or roles or any
other internal structure associated with them.

An important test for any ontology is the practical applications it is used for.
These can be the applications in natural language processing, information retrieval,
simulation and modeling, and so on, that use knowledge represented in the ontology.
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Fig. 6.5 Top level ontology for animal

6.5.3 WordNet

The WordNet is a well developed lexical ontology—a manually constructed online
lexical database system, provided with open access and semantically organized lex-
ical objects. Its structure is provided with capability to distinguish between various
parts-of-speech: like nouns, adjectives, verbs and adverbs. The basic object of Word-
Net is synset, which is a set of synonyms. Hence, if a word has more than one senses
(e.g., the word “bank” for “money”, and “bank” for “river bank™), it will appear
in more than one synset. The synsets are organized in a hierarchy as super-class
(hypernyms) and subclass (hyponyms). The Fig. 6.6 shows part of wordnet hierar-
chy of tangible things, with braces enclosing concepts in same synset. Note that in
the synset {living thing, organization}, each of its subordinate item has two parts,
e.g., {plant, flora}, but in case of {nonliving thing, object} there is only one item (the
object name) in each of the subordinate, because the non-living thing is not classified
thing [5, 6].

The Wordnet is a taxonomical architecture, which does not have more elementary
concepts or axioms. For each concept (i.e., synset) provided in the Wordnet, there
is a pointer to nouns representing its parts. For example, the parts of concept “bird”
may be feathers, beak, and tail. There are provisions in the Wordnet for other types
of pointers, for example, from noun to verb, to represent functions (actions), or from
noun to adjective to represent properties of nouns.
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| {Thing, Entityt} |

|{n0n—living thing, object}l | {living thing, organization} |

{natural object} | {substance} | | {plant, flora} | |{amimal7 fauna} |

|{person7 human being} |

Fig. 6.6 WordNet ontology representing subclass relation among synsets

6.5.4 Axioms and First-Order Logic

Structurally, an ontology is collection of terms, their definitions, and axiom relating
them. The terms are typically organized as taxonomy. In some cases axioms are
central to ontology design, while in other cases the axiomatic language is associated
with central concepts.

Apart from the taxonomy and structure of concepts, axioms are the base for
representing more information about categories and their relations. In addition, the
axioms specify constraints on properties and role values for each category. Some
times, axioms are specifically specified, while other times ontology consists of cat-
egories and corresponding frames, and every thing else in hidden in the application
code. There is a fine-line difference between internal concept structure and axioms.

The category is represented using a frame formalism, and roles and properties
are slot of the frame. The same facts can also be represented using axioms, i.e., a
taxonomy can also be represented using axiomatic notations. In this notation, the
axioms are represented using first-order predicate logic. For example, “all persons
are living being and all living being are things”, is represented Fig. 6.6, as well by
the following Eq. 6.1.

VxVy[(person(x) — livingbeing(x)) A (livingbeing(y) — thing(y))] (6.1)

The CYC project, for example, comprised among the largest number of axioms,
i.e., in the order of 10°.

6.5.5 Sowa’s Ontology

John Sowa (1997, 1995) stated his fundamental principles for ontology design as
“distinctions, combinations, and constraints” (see Fig. 6.7). He uses philosophical
motivation as the basis for his categorization. There are three top-level distinctions:
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Fig. 6.7 Sowa’s ontology Top Level
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First is Physical versus Information, or Concrete versus Abstract. This is a disjoint
partition of all the categories in the ontology [5].

The second principle for ontology design is based on combinations. The combi-
nations classify the objects into firstness versus secondness versus thirdness, or Form
versus Role versus Mediation. These categories are not mutually exclusive. For exam-
ple, Woman is considered to be a form (firstness) because it can be defined without
considering anything outside a person. As a mother, a teacher, or an employee, the
same individual would be an example of a role (secondness). These roles represent
an individual in relation to another type (a child, a student, an employer). Marriage
is a mediation (thirdness) category because it relates several (in this case, two) types
together, lecture class of Al is mediation as it relates many students as a type together.

The third principle is based on constraints. It is, continuant versus occurrent,or
object versus Process. Continuants are objects that retain their identity over some
period of time; occurrents are processes “whose form is in the state of flux”. For
example, Avalanche is a process, and Glacier is an object. Note that this distinction
depends on the time scale. On a grand time scale of centuries, Glacier is also a
process. These distinctions are combined to generate new categories (Fig. 6.7). At
a lower level, for example, Script (a computer program, or a baking recipe) is a
form that represents sequences and is thus defined as Abstract, Form, Process. Also,
History (an execution of a computer program), which is a proposition that describes
a sequence of processes, is then Abstract, Form, or object [7].

In the John Sowa’s ontology, top level category is for every possible combination
of distinctions. Constraints are used at the lower levels to rule out categories that
cannot exist, as well it avoids too many combinations of categories. For example,
logical constraints, would rule out triangles of more than three sides, and empirical
constraints would rule out birds that talk or think. Representation of constraints is
in the form of axioms, inherited through the ontology hierarchy to the lower levels.
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6.6 Reasoning Using Ontologies

We have discussed in the above that, ontologies are taxonomical structures of cate-
gories, subcategories, and members of concepts. As human, we identify the objects,
whether physical or abstract, due to this classification. For example, we can distin-
guish an oranges from cricket balls, because in the first the surface property belong
to softness, and spongy, though their size and shape are quite similar. The Structures,
e.g., a University System, a building, a computer network, operating system, or say,
even office chair, are decomposed into parts, so that we identify the object as a whole
as well the relationship of the parts remain explicit in this representation. Hence, it is
due to these associated categorizations, and sub-categorizations, along with restric-
tions we are able to identify the real world objects. The reasoning can be done using
categories and objects, using physical decomposition of categories, using measuring
criteria, or using object oriented analysis.

6.6.1 Categories and Objects

The taxonomical hierarchies are common in government, military, and other organi-
zations. Classifying objects into categories is important for knowledge organization.
Of course interactions take place at individuals levels but relations are created at the
level of categories. For example, the sentence, “Basketball team has won”, does not
refer to a single ball and nor a single player, but a relationship among team members
as a group.

The Category also helps in prediction of objects once they are classified. One refers
the objects from perceptual inputs, infers category of membership from perceived
properties of the objects, then uses category information to predict about object. For
example, from its yellow colour, size, shape, we identify that an object is a ‘Mango’.

In FOPL there are two choices for categories: predicates and objects. Following
are the examples:

basketball (b);

member (b, basketballs);

b € basketballs; (the object b is a member of category basketball)
subset (basketballs, balls); (category is subclass of another category)
basketballs C balls.

dogs € domesticatedanimals. (categories are members)

The category is defined by members and subset relation. We also note that cate-
gories organize the knowledge as well as they help to inherit. Thus, ‘mango’€ ‘man-
goes’, and ‘mangoes’C ‘fruits’. Thus, mango inherits the properties of ‘taste’from
fruits (fruits have ‘tastes’). Similarly, we have categories: animals, birds, foods,
institutions. A ““set of institutions” C “institutions”, and MBM € “institutions”. The
subclass organize the categories into a taxonomic hierarchy.
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Following are the examples of reasoning through taxonomies:

(x € basketballs) = round(x); (all members of a category have same property
of roundedness)

color(x, brown) A round(x) ANdia(x) =9 A x € balls = x € basketballs;,
(the member category can be recognized by some property)

Having represented in taxonomy, when a top element is identified having some
property, those its subordinates can be easily identified, as they possess similar prop-
erties, unless there is an exception.

6.6.2 Physical Decomposition of Categories

An object can be part of another, for example, nose, eyes, hands, are part of body;
steering is part of car, wheels are part of wheel-assembly, and wheel-assembly is part
of car. This can be represented by relations of physical decompositions,

partof (wheel, wheelassembly).
partof (wheelassembly, car).

partof (x, y) A partof (y,z) = partof(x, z).

Note that taxonomies are transitive relations. The relation of reflexivity also holds
on individual objects, e.g., partof(x, x), as x has one part, and that part is itself.
The categories of composite objects is defined by structural relations between parts
and assemblies.

6.6.3 Measurements

The physical objects have height, weights, mass, length, and other physical measure-
ments. To characterize a physical object, values need to be assigned to the objects in
the form of their properties. Following are the examples:

length(ipad) = inches(5) or length(ipad) = centimeters(12.5).
listprice(basketball) = rupees(500).
height(x) > height(y) = taller(x, y).

6.6.4 Object-Oriented Analysis

The ontology development processes are similar to that of object-oriented design and
analysis. In both, domain vocabulary is collected in the beginning, which is often
out of domain’s generic nouns, verbs, and adjectives. The result of object-oriented
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analysis is in the form of a draft document for domain ontology and relevant to
the application. However, analysts do not call the result as ontology. A designer in
an object-oriented system defines the things like, objects, classes, interface func-
tions, hierarchies, and the system behavior. But, an ontological engineer make use of
intermediate representations such as graphs, tables, and semantic networks, to design
hierarchies and other concept relationships, which hold true for object oriented design
also.

In object oriented analysis, the classes act as templates. Both types of specialists
make use of templates to specify product details. The classes are then merged or
refined, as with ontologies.

6.7 Ontological Engineering

The knowledge engineering is process of knowledge representation—identification
of task, assemble relevant knowledge, decide vocabulary of predicates, functions and
constructs, encode knowledge about domain, encode description of specific problem
instance, pose queries to procedures and get answers and debug knowledge base.

The ontological engineering can be defined on the same line of knowledge engi-
neering. Itis related to the creating representation of general concepts—actions, time,
physical objects and beliefs.

Ontological engineering comprise a set of activities conducted during the time of:
conceptualization, design, implementation and deployment of ontologies. Ontologi-
cal engineering covers topics of philosophy, metaphysics, knowledge representation
formalisms, development methodology, knowledge sharing and reuse, knowledge
management, business process modeling, common-sense knowledge, systematiza-
tion of domain knowledge, information retrieval from the Internet, standardization,
and evaluation. It also gives us design rationale of a knowledge base, helps define
the essential concepts of the world of interest, allows for a more disciplined design
of a knowledge base, and enables knowledge accumulation. In practice, knowledge
of above mentioned disciplines helps to:

e Organize the knowledge acquisition process;

e Specify the ontology’s primary objective, purpose, granularity, and scope; and

e Build its initial vocabulary and organize taxonomy in an informal or semi-formal
way, possibly using an intermediate representation.

Special-purpose languages/tools used for implementing ontologies, such as
Ontolingua, CycL, and LOOM (lexical OWL ontology matcher), use a frame-based
formalism, a logic-based formalism, or combination. Ontolingua is a frame-based
language that uses KIF (Knowledge Interchange Format). It is a language for publica-
tion and knowledge communication, with notation and semantics like some extended
form of first-order predicate logic. Ontolingua enables writing knowledge-level spec-
ifications independent of particular data or programming languages, and can translate
a knowledge base from one representation language into another.
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The LOOM takes two ontologies represented in OWL and produces a pair of
relatedconcepts from the ontologies. In order to identify the corresponding concepts,
LOOM compares the preferred names and symbols of the concepts in both ontologies.
Itidentifies these concepts as similar, if and only if, their preferred names or synonyms
are equivalent based on modified string functions. The string comparison removes the
delimiters from both strings, then uses approximate matching techniques to compare
them, allowing for mismatch of at most one character in a specified length.

Some languages/tools used in building ontologies are based on translation
approaches. Using these approaches it is possible to build ontologies directly at
knowledge level, and knowledge level is translated into the implementation level,
thus eliminating the need to master the implementation languages [8].

6.8 Situation Calculus

The concept of action arises in at least two major subareas of artificial intelligence,
(1) natural language processing and (2) problem solving. For the most part, the
formalisms that have been suggested in each sub-area are independent of each other
and difficult to compare. However, so far there does not exists a computational
theory of actions, which is powerful enough to capture the range of the meanings
and distinctions expressible in any natural language. The primary goal of situation
calculus is to provide a formalism which is expressive enough for representation of
actions and to explore its use in defining the meanings of English language sentences
that describe actions and events [9].

The requirement on the formalism for representation of actions is that it should
be a useful representation for action reasoning (i.e., problem solving). It has a very
useful application, i.e., to describe, how this representation could be used for planning
(of actions) or for plan recognition system. This is essential to the natural language
processing as well, because the natural language understanding is aimed to ultimately
result to problem-solving capability.

The situation calculus is also the language of choice for investigations of various
technical problems that arise in theorizing about actions and their effects. It is being
taken as a foundation for practical work in planning, control, simulation, database
updates, agent programming and robotics. In parallel with these developments of
its applications, there have emerged axiomatizations for the situation calculus, and
explorations of some of their mathematical and computational properties [10].

6.8.1 Action, Situation, and Objects

The situation calculus is a logic formalism for representing and reasoning about
dynamical domains. The concepts in the situation calculus are situations, actions
and fluents. Number of objects are typically involved in the description of the world.
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The situation calculus is based on a sorted domain with three sorts: actions, situations,
and objects, where the objects include everything that is not an action or a situation.
Hence, domain D is,

D=(A,S, 0) (6.2)

where A is set of actions, S is set of situations, and O is set of objects, with variables
of all sort can be used. The actions, situations, and objects are elements of the domain,
but fluents are modeled either as predicates or as functions. The phrase, e.g., sorted
domain of actions means, that set of actions are to be carried out in a certain (sorted),
and similar meaning exists for sorted situations, and sorted fluents.

A situation is a kind of state (ako), however it is a result of chain of earlier
situations. Actions are what make the dynamic world change from one situation to
another when performed by agents. A fluent is a condition that can change over time.
Fluents are situation-dependent functions used to describe the effects of actions.
There are two kinds of them: relational fluents and functional fluents. The former
have only two values: True or False, while the latter can take a range of values.
For instance, one may have a relational fluent called handempty which is true in a
situation if the robot’s hand is not holding anything. We may need a relation like this
in a robot domain. One may also have a functional fluent, e.g., battery-level, whose
value in a situation is an integer of value between 0 and 100 denoting the total battery
power remaining in one’s notebook computer.

The set of actions form sort of domain. The action can also use variables, and
they can be quantified, for example in a robot world, possible action terms would
be move(x, y) to model a robot moving to a new location (x, y), and pickup(o) to
model the robot picking up an object o, and so on.

6.8.2 Formalism

A formalism used in situation calculus is aimed to implement the commonsense
reasoning, such that the information used by humans can be expressed in sentences
in logical order, then it is made part of the database (knowledge base). As next step, a
goal oriented program will consult these databases for the required facts to ultimately
achieve the goal. The database stores facts about what are the effects for any given
actions, for example, a set of facts and effects concerning to a robot which moves
objects from one location to another location. The situation calculus is designed
to derive the actions (effects) for a given set of facts, independent of any specific
problem.

The major part of the database are facts about effect which resulted due to actions,
e.g., action of a robotic arm. These consequences of actions in situation calculus are
of general nature, and not bound to specific problem, hence they can be used for
solution of variety of problems, without creating new databases for new instances of
problems.
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In the situation calculus, a dynamic world is modeled to progress through a series
of situations as a result of various actions being performed within this world. A
situation is a consequence of sequence of action’s occurrences. The situation available
before any actions are performed is generally denoted by Sy, called initial situation.
A new situation resulting from the performance of an action is denoted using the
function symbol result or do. This function symbol has a ‘situation’and ‘action’as
arguments, and a new situation as a result due to performing the given action in the
given situation. We shall make use of do, called binary function symbol expressed
as,
do : action X situation — situation. (6.3)

The intended interpretation is that do(a, s) (or result (a, s)) denotes the successor
situation resulting from performing action a in situation s. Accordingly, the basic
formalism of the situation calculus is represented by:

s’ =do(e,s) 6.4)
which asserts that s’ is the resulting situation when event e (action) occurs in situation

s.
The basic ontology of situation calculus consists of:

—

situations, which corresponds to snapshots of universe or an instant of time, and,
2. actions or events, which change the world from one state to another.

It is a sorted language with sorting (order) for situation and actions.

The fluent “iscarrying(o, s)” can be used to indicate that the robot is carrying a
particular object ‘o’in a particular situation ‘s’. If the robot initially carries nothing,
“iscarrying(Ball, Sp)” is false while, the fluent

iscarrying(Ball, do(pickup(Ball), Sp))

is true. The location of the robot can be modeled using a functional fluent location,
which returns the location coordinates ‘(x, y)’of the robot in a particular situation.

To describe a dynamic domain using the situation calculus, one has to decide on
the set of actions available for the agents to perform, and the set of fluents needed
to describe the changes these actions will have on the world. For example, consider
the blocks world where some blocks of equal size can be arranged into some set of
towers on a table. The set of actions in this domain depends on what the imaginary
agent can do. If we imagine an agent to be a robot-arm that can be directed to grasp
any block that is on the top of a tower, and either add it to the top of another tower
or put it down on the table to make a new tower, then we can have the following
actions:

stack(x, y)—put block x on block y, provided that robot is holding x, and y’s
top is clear. Being action, it is read “stack x on y”, and shall not be confused with
predicate.
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unstack(x, y)—pick up block x from block y, provided that robot’s hand is empty,
x ison y, and x has top clear.

putdown(x)—put block x down on the table, provided that robot is holding x.
pickup(x)—pick up block x from the table, provided the robot’s hand is empty,
x is on the table and top is clear.

move(x, y)—move block x to position y.

To describe the effects of these actions, we can use the following relational fluents:

handempty—True in a situation if the robot’s hand is empty.
holding(x)—True in a situation if the robot’s hand is holding the block x.
on(x, y)—True in a situation if block x is on block y.

ontable(x)—True in a situation if block x is on the table.

clear(x)—True in a situation if block x has top clear.

For action stack(x, y) to be performed in a situation, the fluent,

— holding(x) must be true, and
— clear(y) must be true.

Also, after stack(x, y) is performed and it results to a new situation, the fluent,

— on(x, y) will be true,

— handempty will be true,

— holding(x) will be false, and
— clear(y) will be false.

The action stack(x, y), along with present value of fluents, and resulting action
with new value of fluents can be formally expressed as an axiom,

VxVy[[((holding(x) A clear(y)) — (stack(x, y)] = on(x, y)
A handempty A —holding(x) A —clear(y)).] (6.5)

Now, for example, we can say that for action stack(x, y) to be performed in
a situation, holding(x) and clear(y) must be true, and that after stack(x, y) is
performed, in the resulting new situation, on(x, y) and handempty both will be
True, and holding(x) and clear(y) will no longer be True.

We only need the action move(x, y) to take place, to move block x to position y.
This can happen if the agent (robot) in its world moves a block from a clear position
to another clear position. The block x is clear to move means that x is on the table
with top clear, or it is top most position in a stake of blocks. Accordingly, move(x, y)
action can be expressed by axiom,

Vx3y[(clear (x) A clear(y)) — move(x, y)] = on(x,y) A clear(x)]. (6.6)

For describing the effects of this action two fluents are sufficient: clear(x), and
on(x,y).Theactionmove(x, y) canbe performed only when the situation “clear (x),
clear(y), x # y” is True. The consequence of this action is that x is no longer at the
place where it was earlier, but instead at location y in the resulting new sifuation.
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6.8.3 Formalizing the Notions of Context

The axiomatic system we discussed above is justified only in some specific context.
With a little creative thought it is possible to construct a more general context in an
axiomatic system. However, in such a generalized context the exact form of axioms
will not hold. We can appreciate this argument if we think of human reasoning
apparent in natural language, for example, consider axiomatizing of the adjective
(concept) “on”, to draw correct inferences from the information presented in a English
language sentence, in a world of space-craft on a Mars mission (as context), where
flight crew answers a query of other crew as,

“The book is on the table.”

As critic may propose to suggest about the precise meaning of ‘on’, causing
difficulties about what can be between the book and the table or about how much
gravity there has to be in a spacecraft in order to use the word “on” and whether
centrifugal force counts. If the space-raft is orbiting the planet Mars! Thus, we
encounter a Socratic puzzles over the issue of what the concepts mean in complete
generality and come across examples that never arise in reality—*there simply is not
a most general context”!

On the other hand, if a system is axiomatized at sufficiently higher level (i.e.,
more general), the axioms will be too long to be suitable even in special situations.
Thus, we find it convenient to say, “The book is on the table,” and omit the reference
to exact time when it is on the table (global or local), its precise location on the
table (on which part or corner it is located), and what is location of table in reference
to global (GPS) coordinates, or universal coordinates, etc. Hence, we conclude that
position of book in above example is sufficiently general. How much general the
specification be? This depends on whether that general/commonsense knowledge
has been expressed in the logic used for reasoning, in the corresponding program or
in other other formalism.

A possible solution to the question—*“how much general?”, is, formalize the idea
of context, and combine it with circumscription procedure of monotonic reasoning.
This is done by adding context parameters to predicates and functions in the axioms,
because each axiom makes an assertion about certain context. Apart from this, the
axioms should express that, facts are inherited using more restricted context unless
exceptions are specified. Each assertion is assumed to apply nonmonotonically in any
particular more general context, but for that also there are exceptions. For example,
there is rule that says, birds fly. In this rule, we implicitly assume that there is
an atmosphere available. However, in a more general context, this (existence of
atmosphere) is not required to be assumed. Further, it still remains to be determined
as how the inheritance to more general contexts differs from that of more specific
contexts.

There are a some predicates about contexts as well as dealing with time. One of
the most important predicate is holds, which asserts that a property holds (i.e., is
true) during a time interval. Thus, the sentence,
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holds(p,t)

is true if and only if property p holds during time 7. A subsequent axiom will state,
this is intended to mean that p holds at every subinterval of 7 as well. Note that
if we had introduced holds as a “modal operator” we would not need to introduce
properties into our ontology.

Suppose that, whenever a sentence p is present in the memory of a computer, we
consider it as in a particular context and as an abbreviation for the sentence,

holds(p, C)

where C is the name of a context. We create a relation about the generality of a
context as follows: a relation (<), e.g., ¢c; < ¢, means context ¢, is more general
than context c;. Using this relation, we allow sentences like,

holds(c; < ¢, C)

which means that statements relating contexts (c; < c;) can have contexts C.

A logical system using contexts might provide operations of entering and leaving
a context yielding what we might call unnatural deduction allowing a sequence of
reasoning as given in the followings.

holds(p, C)
ENTERC

p

q
LEAVEC

This resembles the usual logical natural deduction systems.

Example 6.1 Represent the following sentences in the formalism of situation cal-
culus.

“A man called Rex is standing at the gate of Ghana Bird Sanctuary wearing a black
T-shirt. Rex loads his toy gun, waits for few seconds, and shoots at a migratory
crane.”

The fluents, which are either true or false, in this sentence are:

standing(place): whether Rex is standing at a given place or not?
black: whether Rex is wearing black T-shirt or not?
loaded: whether the gun is loaded or not?



6.8 Situation Calculus 165

Following are the actions in above sentence:

load: Rex is loading the gun.
wait: Rex waits for few seconds.
shoot: Rex shoots his gun.

Now, let us find out what holds at initial situation Sj.

holds(standing(gate), Sy)
holds(black, Sp)

holds (alive, Sp)
—holds(loaded, Sy)

Now we try to relate actions with situations. In other words, which fluents will
hold after performing a certain action in a given situation?

If Rex shoots the gun and gun is loaded, crane is not alive.
If Rex shoots the gun, gun will become unloaded.

If Rex loads the gun, gun will be loaded.

If Rex waits on an loaded gun, the gun remain loaded.

If Rex waits on an unloaded gun, the gun remain unloaded.

SNk

Our first method for writing above sentences in formal way is as follows. Consider
a general sentence “f, (fluent) will be true by performing action a, in state s if
(provided that) f; is true in s.”

Vslholds(f1,s) — holds(f>,do(ay, s))]

Now consider the first sentence: “if Rex shoots the gun and the gun is loaded,
crane is not alive,” which is written as:

Vs[holds(loaded, s) — —holds(alive, do(shoots, s))]

. The remaining four sentences can be expressed in situation calculus as follows:
. Vs[—holds(loaded, do(shoot, 5))]

. Vslholds(loaded, do(load, s))]

Vslholds(loaded, s) — holds(loaded, do(wait, s))]

Vs[—holds(loaded, s) — —holds(loaded, do(wait, s))]

I

Having represented in this form of FOPL, the reasoning is done using conventional
methods used for predicate logic reasoning, e.g., resolution based theorem proving.

6.9 Nonmonotonic Reasoning

The most logic we have studied so far falls in the category of monotonic logic, and
the corresponding reasoning as monotonic reasoning. The property of monotonicity
is satisfied by all methods that are based on the classical (mathematical) logic. As
per this property, if a conclusion is warranted on the basis of certain premises, no
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additional premises should ever invalidate the conclusion. The Nonmonotonic logic
is those ways of reasoning to infer additional information, that do not satisfy the
monotonicity property of classical logic, that is, on the face of additional information,
some of the earlier conclusions drawn may even become invalid!

In everyday life, however, we often draw sensible conclusions from what we
know/information available to us. On receiving new/updated information, many a
times we take back our previous conclusions, even when the new information we have
collected has in no way indicated that it is contradicting the previous conclusions.
Consider the following example: we have assumption that most birds fly, and that
penguin are the birds which do not fly. On learning or receiving a new information
that “Tweety is a bird”, we infer that it flies. Further learning that “Tweety is a
penguin”, still does not effect our old inference that most birds fly. But, it (addition
of new information) will require to abandon on inference of “Tweety flies.” It is quite
appropriate to say that intelligent automated systems must have the capabilities of
this kind of inference, call as non-monotonic inference.

Many systems perform such nonmonotonic inferences. The most common are :
negation as failure, circumscription, the modal system, default logic, autoepistemic
logic and inheritance systems. Each of those systems is worth studying by itself, but a
general framework in which those many examples could be compared and classified
is necessary. The following section presents a general framework, concentrating on
properties, which are important families of nonmonotonic reasoning systems.

6.10 Default Reasoning

One of the features of commonsense reasoning that makes it different from traditional
mathematical proofs is the use of defaults. A default is a proposition that is postulated
to be true in the absence of information to the contrary. For instance, an intelligent
agent may assume by default that his observation correctly reflects the state of the
world, and be prepared to retract this assumption in the face of evidence that be is in
error [11].

The logic systems we have often come across, like, classical logic, intuitionistic
logic, and modal logic are monotonic in nature. The name monotonic indicates that
on adding a new fact in these systems never results in retraction of a conclusion
derived before addition of that new fact. In fact, after addition of new knowledge in
these logic systems, the inference ability of these systems monotonically increases.
The Default logic is called nonmonotonic, because the new fact may be an exception
to one of the defaults included in the set, and on the face of that the inference system
should withdraw the conclusions drawn already.

In an intelligent system (either computer-based or human), when it tries to solve
a problem, it may rely on complete information about the problem, and its main
task will be to draw correct conclusions using classical reasoning. The classical
(predicate) logic may be sufficient in such cases. But, in many situations, the system
may have only incomplete information at hand, and it is required to draw inferences
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with only these available information. The nonavailability of the information may
be because of the need to respond quickly, and acquiring these more information
will take some time, but the system cannot afford to wait for the collecting of all the
relevant data. For example, the case evacuation required in a nuclear disaster, where
we cannot wait to gather the complete information, and then decide to evacuate or
not, as otherwise it would have caused havoc. Some times, the information available
is unreliable/inaccurate, and it needs to be authenticated, which will require more
time, and we cannot prolong the decision.

The classical logic possess the quality to represent and reason with certain aspects
of incomplete information. In special conditions, additional information needs to
be “filled in” to overcome the incompleteness, as it is important to make certain
decisions. In such special circumstances, the system need to make some plausible
conjectures, which are based on rules of thumb, called defaults, and this modified
logic is called default logic, and the reasoning is called default reasoning. As an
example, a doctor has to make some conjectures during a situation of emergency,
about some most probable causes of the symptoms observed. Obviously, in such
conditions it would be not appropriate to wait for the results of laboratory tests, as
possibly extensive and time-consuming tests results may arrive too late to complete
the diagnosis based on those and begin the treatment.

However, when a medical diagnosis (i.e., decision) is based on assumptions, it
may turn out to be wrong on the face of availability of new information, and may
require a modified diagnosis! The phenomenon of having to take back some previous
conclusions is called nonmonotonic reasoning or non-monotonicity, which can be
stated as: if a statement ¢ follows from a set of premises M,i.e., M =¢and M C M’,
then ¢ does not necessarily follow from M’ (see Example 6.2). Default Logic provides
formal methods to support this kind of reasoning.

Example 6.2 Let

M = {Vx(bird(x) = fly(x)),Vy(penguin(y) = bird(y)),
Vz(penguin(z) = —fly(z)), bird(tweety)}.

Given these, we have M = fly(tweety), and M' = M U {penguin(tweety)} is
inconsistent. We would expect the inference

M U {penguin(tweety)} = — fly(tweety), (6.7)

making fly(tweety) a defeasible consequent. O

The default Logic is the most commonly used method for nonmonotonic reason-
ing, due to the simplicity of the notion of default used in this, and because the defaults
occur quite common in real-life situations.
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6.10.1 Notion of a Default

A rule used by football organizers in Kashmir valley might be: “A football game shall
take place, unless there is snow in the stadium.” This rule of thumb is represented
by the default

football : =snow

6.8
takesPlace ©.8)

Consider the following example to understand the default reasoning: In the
absence of information that there is going to be snowfall in the stadium, it is reason-
able to assume —snow, and also to conclude that game will take place. Accordingly,
the preparations for the game can go on. But actually if there is a heavy snowfall
during the night before the game is scheduled, then this assumption is wrong. This
is because, when we are certain, based on definite information that there is snow, we
cannot assume —snow, and therefore the default cannot be applied. In this case we
need to refrain from the previous conclusion (i.e., the game will take place), so the
reasoning is nonmonotonic, as we are going to withdraw the previous conclusion [11].

Before proceeding with more examples, let us first explain why classical logic is
not appropriate to model this situation. Of course, we could use the rule:

football AN —snow — takesPlace. (6.9)

The problem with this rule is that we have to definitively establish that there will
be no snow in the stadium before applying the rule. But that would mean that no
game could be scheduled in the winter, as it would not be possible to comment about
“no snow” on previous night of game, for in advance to decide whether to proceed for
preparations or not! And, if we wait for the previous night of match to make decision
for match, then there is no time left to do preparations. It is necessary to analyze
the difference between two statements: having “to know that it will not snow”, and
being able to “assume that it will not snow.” The defaults works on the second, and
it supports drawing conclusions based on assumptions.

The defaults can be used to model prototypical reasoning, i.e., the most instances
of a concept carry some property. One example is the statement “Typically, children
have (living) parents”; this statement can be expressed using the default logic as,

child(X) : has Parents(X)

(6.10)
hasParents(X)

A no-risk reasoning is another form of default logic based reasoning, which is
concerned to situations where we need to draw a conclusion even if it is not the most
probable one, as another decision may be more disastrous. One such example is the
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commonly used principle of awarding justice in the courts of Law: “In the absence
of evidence to the contrary, assume that the accused is innocent.” In default form we
write this as:

accused(X) : innocent (X) 6.11)

innocent (X)

The interpretation of rule (6.11) is that if accused(X) is known, and there is no
evidence that innocent (X) (at numerator) is false, then innocent (X) (at denomina-
tor) can be inferred.

6.10.2 The Syntax of Default Logic

A default theory T is a pair (W, D), where W is set of first-order predicate logic
formulas (called the facts/axioms or belief set of 7) and a countable set D of default
rules. A default rule § is of the form

8:¢:1/’1,-~-7Wn (612)

X
here ¢, ¥, ..., ¥y, X, are one or more closed formulas in predicate logic. The for-
mula ¢ is called prerequisite of the inference rule (6.12), ¥, ..., ¥, are called

Justifications, and x is consequent or inference of this rule §.
It is important to note that the formulae in a default must be a ground clause. For
example the formula,

bird(X) : flies(X)

flies(X) (©6.13)

is not adefault according to the definition: it should have all clauses as ground clauses.
Let us call this rule of inference as open defaults rule. An open default is interpreted
as a default schema, and it may represents a set of defaults, which may be infinitely
large in numbers.

A default schema is very much like a default, with the difference that ¢, ¥4, ...,
Y, x in default are arbitrary predicate formulas (i.e., they may contain free vari-
ables). Where as, a default schema defines a set of defaults as,

0o Yo, ..., Yo
X0

(6.14)

for all ground substitutions o that assign values to all free variables occurring in
the schema. That means free variables are interpreted as being universally quantified
over the whole default schema. Given a default schema
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bird(X) : flies(X)
flies(X)

(6.15)

and the facts bird(tweety) and bird(sam), the default theory is represented as

T =(W, D)
=({{bird(tweety), bird(sam)},
{bird(rweety) : flies(tweety)

bl

flies(tweety)
bird(sam) : flies(sam) })
flies(sam) ’

The Default Logic is a simple and commonly used method of knowledge repre-
sentation and reasoning in real-world situations. It has following characteristics:

e The most important aspect is that it supports reasoning with incomplete informa-
tion.

e Defaults inferences are found naturally in many applications, like in, medical diag-
nostics, reasoning related to legal issues, information retrieval, preparing specifi-
cations of systems, and as a logic in software.

e Default Logic is commonly used to model the reasoning with incomplete infor-
mation, which was the original motivation, as well as a formalism that enables
compact representation of information.

e Important prerequisites for the development of successful applications in these
domains are,

— basic concepts’ understanding, and
— there exists a powerful implementation of default logic.

6.10.3 Algorithm for Default Reasoning

The Algorithm 6.1 for default reasoning provides extensions to the formula set W.
Let T = (W, D) be a closed default theory (unspecified variables are false) with a
finite set of default rules D and formula W. Let P be the set of all permutations of
elements of default set D. If P = {},i.e., D = {}, or if W is inconsistent, then return
default theory Th (W) as the only extension of 7. The set of justifications and beliefs
are indicated by variables JUST and BELIEF, respectively.
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Algorithm 6.1 Algorithm for Default Reasoning

1: P = All permutations of elements of D
2: while P # {} do

3:  Take a permutation, perm = {dy, ..., dy} e P

4: P =P —{perm}

5:  ;Initialization

6: BELIEF =W, JUST = {}

7:  ;Application of defaults and consistency test

8 fori=1ton do

9: ;J[assume d; = ' Bi ]

10: if (BELIEF K 'A)) A(BELIEF ¥ —B;) then
11: BELIEF = BELIEF U{C;}

12: JUST = JUST U {B;}

13: if 3JA(A € JUST and BELIEF - —A) then
14: exit the algorithm

15: end if

16: end if

17:  end for

18: end while
19: Return Th(BELIEF)
20: End

Example 6.3 Find extensions of following default theory:

T =(W,D)=({R(n) A Qn)}

{R(x) :=P(x) Qx): P(x) }>
-Pkx) P(x)

First consider the permutation of D as,

d,, dy) = {R(x) :=P(x) Q(x): P(x) }

-P(x) ' Pk

At the begin, we initialize BELIEF = {R(n) A Q(n)}, JUST = {}. As per
Algorithm 6.1, d, = % = %ﬁ(}gm From algorithm, we note that BELIEF |-
R(n),and BELIEF ¥ —(—P(n)). Thus, we add C;, i.e., =P (n) inthe BELIEF.
Also, add =P (n) into JU ST . We also note that, the justification does not negate the
BELIEF,hence it is consistent.

Next, we repeat the loop of Algorithm 6.1, for i = 2: (dy) = 222 = Q(x) P (")
Before this, the updated BELIEF ={R(n) A Q(n), ~P(n)}. We note that
BELIEF - A, (ie.,, Q(n)), but BELIEF ¥ =B, (i.e., =P(n)) does not hold.
Also, Q(n) € JUST holds, but BELIEF F —Q(n) does not hold, so algorithm
continues. This conclude that belief is stable (see Table 6.1).

When above is repeated for other permutation, i.e., (d2, d;), we have,

(dy, d)) = {Q(X) :P(x) R(x):—P(x) },

P(x) = P
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Table 6.1 Belief computation-1

Iteration BELIEFS JUSTIFICATIONS Consistency test
Initial R(n) A Q(n) {}

i=1,d —P(n) —P(n) OK

i=2,dp Stable

Table 6.2 Belief computation-2

Iteration BELIEFS JUSTIFICATIONS Consistency test
Initial R(n) A Q(n) {}

i=1,d P(n) P(n) OK

i=2,d Stable

we get the extended belief set as shown in Table 6.2.
In conclusion, the T has two different extensions: Th({R(n) A Q(n), =P (n)}),
and Th({R(n) A Q(n), P(n)}), but obviously, not both at th same time.

6.11 Summary

Ontology is a theory about the nature of being or the kinds of existent. It is a sys-
tematic arrangement of all the important categories of objects or concepts that exist
in some field of discourse, such that the arrangement shows the relations between
them (objects/concepts). When compared with First-Order Predicate Logic (FOPL),
in the ontologies we are particular for knowledge organization as well as contents,
where as in predicate logic, the emphasis is on knowledge contents only.

The language, logic, ontology are closely related to commonsense, reasoning, and
type checking, respectively. The language, ontology, and logic are representations,
where as common-sense, type-checking, reasoning, are respectively, the applications.
The natural language ‘understanding is reasoning’paradigm. In comparing various
ontologies, they can be viewed at three different levels: is-a taxonomy of concepts,
(2) internal concept structure and relation between concepts, and (3) the presence or
absence of explicit axioms.

John Sowa stated his fundamental top-level principles for ontology design as
“distinctions, combinations, and constraints”. The distinctions is Physical versus
Information, combinations classify the objects into firstness versus secondness versus
thirdness, or Form versus Role versus Mediation. The constraint is, continuant versus
occurrent, or object versus Process.

The knowledge engineering is process of knowledge representation comprising of:
identification of task, assemble relevant knowledge, decide vocabulary of predicates,
functions and constructs, encode knowledge about domain, and deploy it. The onto-
logical engineering is aimed to create representation of general concepts—actions,
time, physical objects and beliefs.
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Some of the languages and tools for implementing ontologies are: Ontolingua,
CycL, and LOOM, which use either a frame-based formalism, or a logic-based for-
malism, or both.

Classifying objects into categories is important for knowledge organization and
reasoning. For example, the sentence, “Basketball team has won”, does not refer to
a single ball and nor a single player, but a relationship among team members as a
group. The Category helps in reasoning, e.g., prediction of objects once they are
classified.

The concept of action arises in two major subareas of artificial intelligence, (1)
natural language processing and (2) problem solving. However, the formalisms that
have been suggested in each sub-area are independent of each other and difficult
to compare. The requirement on the formalism for representation of actions is that
it should be a useful representation for action reasoning (i.e., problem solving). It
has an important application to describe how this representation could be used for
planning (of actions) or for plan recognition system.

A situation is a consequence of sequence of action’s occurrences. We shall make
use of do (a binary function symbol) expressed as,

do : action X situation — situation.

which results to a new situation given an action and a present situation.

Nonmonotonic logic is the study of those ways of inferring additional information
from given information that do not satisfy the monotonicity property. The following
systems perform nonmonotonic reasoning:

e Negation as failure,

e Circumscription,

e Modal logic system,

e Default logic,

e Autoepistemic logic, and
e Inheritance systems.

One important features of commonsense reasoning that makes it different from
traditional classical reasoning is the use of defaults. A default is a proposition that
is assumed to be true in the absence of information to the contrary, i.e., unless the
contrary information is made available, it is taken as true. In addition, the default
logic is the most commonly used method for nonmonotonic reasoning due to its
simplicity and due to the notion of a default.

Exercises

1. Give the top level ontology of following structures, represent the concepts using
relations, and attributes.

a. University system—consisting of faculties, departments, teachers, classes,
students, courses, etc.
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10.

11.
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b. Organizational ontology of a manufacturing firm.
c. Organizational ontology of a project based software company.
d. Government system ontology with various bodies and their responsibilities.

. Suggest some applications of Sowa’s ontology.
. Compare and contrast the Wordnet and Sowa’s ontology, and explain the rea-

soning performed in both with small examples.

. Represent the ontologies of the following worlds, and explain, how you will

perform the question-answering using each of these ontology?

a. Ontology of Shirt.
b. Ontology of Dining table.
c. Ontology of University system.

. Suggest the approach, how you will generate e-learning exercises using the

ontology.

. What is unnatural deduction in reference to situation calculus? Give examples

to justify your claims.

. How the inheritance works in a world of contexts? For example, in space-craft,

on earth, and when context changes from one to other?

. Show some similarities between “contexts” and “properties” in expressing situ-

ation calculus axioms.

. Consider a robotic-hand which can move between several bins, pickup an object

from the bin if the hand is above the bin and the hand is empty. The hand can
drop an object into a bin if the hand is holding an object and the hand is above
the bin. Moving of hand from any bin to any other bin is always possible, it does
not require any preconditions. The actions are:

drop(x, y) (drop object x into bin y)
move(y) (move hand to be above the bin y)
grab(x, y) (pickup object x from bin y).

The fluents are:

holding(x, s) (the hand is holding x in situation s)
over(y, s) (the hand is over bin y in situation s)
in(x,y, s) (object x is in the bin y in a situation s).

a. Write the axioms for move, drop and grab actions.
b. Write the successor state axioms for all the fluents.

A robot is to pickup n (n = 10) cuboid lying on the table and drop one-by-one in
a bucket, available nearby the table. Write the statements for sequential calculus.
What are the situations, actions, and fluents here?

Consider the eight puzzle shown in Fig. 6.8 with initial and goal states (situa-
tions).

The objective is to go from a initial situation to the goal situation. We are allowed
to move a tile into the empty space if that tile is adjacent to the empty space (e.g.
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Fig. 6.8 Initial and final Initial situation Goal situation
situation of 8-puzzle
1 2 3 1 2 3
4 516 8 4
7 8 7 615

12.

13.

14.

in the initial situation tile 6 and 8 are adjacent to empty space). The locations are
numbered as 1-9, as shown in initial situation, with number 9 as empty tile. The
tiles are numbered 1-8. There is a single action move(¢, [) which indicates mov-
ing tile ¢ to location /. Assume a predicate adjacent(ly, [;), which is true when
location /, is one move from /;. It is only possible to do a move action if a tile is
in a location adjacent to an empty location. The only fluent is location(t, L, s)
meaning tile ¢ is in location [ in situation s. Given this, write down:

initial conditions,

effect axioms,

precondition axioms, and

from the effect axioms derive the successor state axioms.

Given the following set of facts and default rules:

. People typically live in the same city where they work (default: d,)

. People typically live in the same city where their spouses are (default: d5)
. John works in New Delhi (fact: f;)

. John’s spouse works in Mumbai (fact: f>)

o o

Answer these questions:

a. Where does John live according to default logic?
b. Where does John live according to your intuition?

Formalize these set of facts and default rules:

Bob usually speaks the truth (d)).

John usually speaks the truth (d5).

Bob says that the suspect stabbed the victim to death ( f}).
John says that the suspect shot the victim to death (f2).
Nobody can be both stabbed and shot to death (f3).
Stabbing or shooting to death is killing ( f4).

-0 0 o

Answer these questions:

a. Did the suspect kill the victim according to default logic?
b. Did the suspect kill the victim according to your intuitions?

Is the formula (6.10) sufficient and correct form of default reasoning, with X as
variable? Justify your answer.
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15. Translate the following into first-order predicate logic, and check whether the
given conclusion follow from it?
Typically, the computer science students like computers. Female students who
like computers are typically interested in cognitive science. The computer sci-
ence students are typically female: for example Anita, Babita, Cathy; but Dorthy
is an exception to this rule. Conclusion: Anita, Babita, Cathy are interested in
cognitive science; Dorthy is not interested in cognitive science.

16. Compute the default extensions of following theories T = (M, D):

a. M ={a},D= {2 e =t
b. M {a—>cb—>c}D_%b,*T“,%
c. —{}D—{ﬁb,ﬁ“ =43
d {p/\q}D_{_s_:_gv_‘qu_‘Tp}

17. Compute the default extensions of T = (M, D), where

= {Vx[mynah(x) — —nests(x)],
Vx[penguin(x) — — flies(x)],
Vx[birds(x) = mynah(x) V penguin(x) V canary(x)],

bird(Tweety)},
bird(x) : nests(x) bird(x) : flies(x)
nest(x) ’ flies(x)

18. Find the extensions of the following default theories:

a T = ({). (32, 242y)

b. T = ({—|Sun shining A Summer}, {—S"S’Z;”izl;ﬁg”})
_ r:3x P(x) wrA—-plx)

¢ T={h{5750 Trpw 1)

d. T =({pvaq}{5F, L))

19. Assume that (D, W) be a propositional default theory, and D’ be a set of normal
defaults such that D C D’. If E is an extension of (D, W), then show that there
exists an extension E’ of (D', W) such that E C E’.
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