
Chapter 3
First Order Predicate Logic

Abstract The first order predicate logic (FOPL) is backbone of AI, as well a method
of formal representation of Natural Language (NL) text. The Prolog language for AI
programming has its foundations in FOPL. The chapter demonstrates how to translate
NL to FOPL in the form of facts and rules, use of quantifiers and variables, syntax
and semantics of FOPL, and conversion of predicate expressions to clause forms.
This is followed with unification of predicate expressions using instantiations and
substitutions, compositions of substitutions, unification algorithm and its analysis.
The resolution principle is extended to FOPL, a simple algorithm of resolution is
presented, and use of resolution is demonstrated for theorem proving. The interpre-
tation and inferences of FOPL expressions are briefly discussed, along with the use
of Herbrand’s universe and Herbrand’s theorem. At the end, the most general unifier
(mgu) and its algorithms are presented, and chapter is concluded with summary.

Keywords First Order Predicate Logic (FOPL) · Natural language · Quantifiers ·
Syntax and semantics of FOPL · Unification · Most general unifier · Resolution
theorem · Theorem proving · Herbrand’s universe · Herbrand’s theorem

3.1 Introduction

This chapter presents a formulation of first-order logic which is best suited as a basic
theoretical instrument—a computer based theorem proving program. As per the
requirements of theory, an inference method should be sound—allows only logical
consequences of premises deducible from the premises. In addition, it should be
effective—algorithmically decidable whether a claimed application of the inference
principle is really an application of it. When the inference principle is performed
by computer, the complexity of the inference principle is not an issue. However, for
more powerful principles, usage of combinatorial information processing for single
application may become dominant.

The system described in the following is an inference principle—the resolution
principle, is a machine-oriented rather than human-oriented system. Resolution prin-
ciple is quite powerful in psychological sense also, as it obeys a single type of

© Springer Nature India Private Limited 2020
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_3

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-81-322-3972-7_3&domain=pdf
https://doi.org/10.1007/978-81-322-3972-7_3

52 3 First Order Predicate Logic

inference, which is often beyond the ability of the human to grasp. In theoretical
sense, it is a single inference principle that forms the complete system of first-order
logic. However, this latter property is not of much significance, but it is interesting
in the sense that no any other complete system of first-order logic is based on just
one inference principle, if ever one tries to realize a device of introducing a logical
axioms, or by a schema as an inference principle. The principle advantage of using
the resolution is due to its ability that allows us to avoid any major combinatorial
obstacles to efficiency, which used to be a serious problem in earlier theorem-proving
procedures.

Learning Outcomes of this Chapter:

1. Translate a natural language (e.g., English) sentence into predicate logic state-
ment. [Usage]

2. Apply formal methods of symbolic predicate logic, such as calculating validity
of formula and computing normal forms. [Usage]

3. Use the rules of inference to construct proofs in predicate logic. [Usage]
4. Convert a logic statement into clause form. [Usage]
5. Describe the strengths and limitations of predicate logic. [Familiarity]
6. Apply resolution to a set of logic statements to answer a query. [Usage]
7. Implement a unification-based type-inference algorithm for a simple language.

[Usage]
8. Precisely specify the invariants preserved by a sound type system. [Familiarity]

3.2 Representation in Predicate Logic

The first Order Predicate Logic (FOPL) offers formal approach to reasoning that has
sound theoretical foundations. This aspect is important to mechanize the automated
reasoning process where inferences should be correct and logically sound.

The statements of FOPL are flexible enough to permit the accurate representation
of natural languages. Thewords—sentence orwell formed formulawill be indicative
of predicate statements. Following are some of the translations of English sentences
into predicate logic:

• English sentence: Ram is man and Sita is women.
Predicate form: man(Ram) ∧ woman(Sita)

• English sentence: Ram is married to Sita.
Predicate form: married(Ram, Sita)

• English sentence: Every person has a mother.
The above can be reorganized as: For all x, there exists a y, such that if x is person
then x’s mother is y.
Predicate form: ∀x∃y[person(x) ⇒ hasmother(x, y)]

3.2 Representation in Predicate Logic 53

• English sentence: If x and y are parents of a child z, and x is man, then y is not
man.
∀x∀y[[parents(x, z) ∧ parents(y, z) ∧ man(x)] ⇒ ¬man(y)]
We note that predicate language comprises constants {Ram, Sita}, variables

{x, y}, operators {⇒,∧,∨,¬}, quantifiers {∃,∀} and functions/ predicates
{married(x, y), person(x)}. Unless specifically mentioned, the letters a, b, c, . . . at
the beginning of English alphabets shall be treated as constants to indicate names of
objects and entities, and those at the end, i.e., u, v,w, . . . shall be used as variables
or identifiers for objects and entities.

To indicate that an expression is universally true, we use the universal quantifier
symbol ∀, meaning ‘for all’. Consider the sentence “any object that has a feathers
is a bird.” Its predicate formula is: ∀x[hasfeathers(x) ⇒ isbird(x)]. Then certainly,
hasfeathers(parrot)⇒ isbird(parrot) is true. Someexpressions, althoughnot always
True, are True at least for some objects: in logic, this is indicted by ‘there exists’,
and the existential quantifier symbol ∃ is used for this. For example, ∃x[bird(x)],
when True, this expression means that there is at least one possible object, that
when substituted in the position of x, makes the expression inside the parenthesis as
True [1].

Following are some examples of representations of knowledge FOPL.

Example 3.1 Kinship Relations.

mother(namrata, priti).(That is, Namrata is mother of Preeti.)

mother(namrata, bharat).

father(rajan, priti).

father(rajan, bharat).

∀x∀y∀z[father(y, x) ∧ mother(z, x) ⇒ spouse(y, z)].
∀x∀y∀z[father(y, x) ∧ mother(z, x) ⇒ spouse(z, y)].
∀x∀y∀z[mother(z, x) ∧ mother(z, y) ⇒ sibling(x, y)].

In above, the predicate father(x, y) means x is father of y; spouse(y, z) means y
is spouse of z, and sibling(x, z) means x is sibling of y. �

Example 3.2 Family tree.

Suppose that we represent “Sam is Bill’s father” by father(sam, bill) and “Harry is
one of Bill’s ancestors” by ancestor(harry, bill). Write a wff to represent “Every
ancestor of Bill is either his father, his mother, or one of their ancestors”.

∀x∀y[ancester(y, bill) ⇒(father(y, bill) ∨ mother(y, bill))

∨ ((father(x, bill) ∧ ancester(y, x))

∨ ((mother(x, bill) ∧ (ancester(y, x))].

54 3 First Order Predicate Logic

Example 3.3 Represent the following sentences by predicate calculus wffs.

1. A computer system is intelligent if it can perform a task which, if performed by
a human, requires intelligence.

∃x[[(perform(human, x) → requires(human, intelligence))

∧ (perform(computer, x)] → intelligent(computer))]

2. A formula whose main connective is ⇒ is equivalent to a formula whose main
connective is ∨.

∀x∀y[(formula(x) ∧ mainconnective(x,′ ⇒′))
∧ (formula(y) ∧ mainconnective(y,∨))

→ x ≡ y].

3. If a program cannot be told a fact, then it cannot learn that fact. ∀x[(program(x) ∧
¬told(x, fact)) → ¬learn(x, fact)] �

Example 3.4 Blocks World.

Consider that there are physical objects, like—cuboid, cone, cylinder placed on the
table-top, with some relative positions, as shown in Fig. 3.1. There are four blocks
on the table: a, c, d are cuboid, and b is a cone. Along with these there is a robot
arm, to lift one of the object having clear top.

Fig. 3.1 Blocks world

a

b

c

d

robot arm

3.2 Representation in Predicate Logic 55

Following is the set of statements about the blocks world (called knowledge base):

cuboid(a).
cone(b).
cuboid(c).
cuboid(d).
onground(a).
onground(c).
ontop(b, a).
ontop(d , c).
toplcear(b).
topclear(d).
∀x∀y[topclear(x) ∧ toplcear(y) ∧ ¬cone(x) ⇒ puton(y, x)].
The knowledge specified in the blocks world indicate that objects a, c, d are

cuboid, b is cone, a, c are put on the ground, and b, d are on top of a, c, respectively,
and the top of b, d are clear. These are called facts in knowledge representation. At
the end, the rule says that there exists objects x and y such that both have their tops
clear and x is not a cone, then y can be put on the object x. �
Bound and Free Variables

A variable in awff is bound if it is within the scope of a quantifier naming the variable,
otherwise the variable is free. For example, in ∀x(p(x) → q(x, y)), x is bound and y
is free; in ∀x(p(x) → q(x)) → r(x), the x in r(x) is free variable. In the latter case
it is better to rename the variable to remove the ambiguity, hence we rephrase this
statement as ∀x(p(x) → q(x)) → r(z). An expression can be evaluated only when
all the variables in that are bound.

If F1,F2, . . . ,Fn are wffs with ∧,¬ as operators in each of Fi, then F1 ∨ F2 ∨
· · · ∨ Fn is called DNF (disjunctive normal form). Alternatively, if operators in Fi

are ∨,¬ then F1 ∧ F2 ∧ · · · ∧ Fn is called CNF (conjunctive normal form). The
expressionFi called a term, consists only literals.Wewill prefer theCNF for predicate
expression. Thus, for an inference to be carried out, it is necessary to convert a
predicate expression to CNF . For example, ∃x[p(x) ⇒ q(x)] can be converted to
¬p(a) ∨ q(a), where a is an instance of variable x. The expression ¬p(a) ∨ q(a) is a
term ofCNF . A formula inCNF, comprising∧,∨,¬ alongwith constants, variables,
and predicates, is called clausal or clause form [2].

3.3 Syntax and Semantics

Two types of semantics are defined for the programing languages: (1) operational
semantics, and, (2) fixpoint semantics. The operational semantics defines input-
output relation computed by a program in terms of the individual operations per-
formed by the program inside a machine, like, basic logical and arithmetic opera-
tions. The meaning of a program is input-output relation obtained by executing the

56 3 First Order Predicate Logic

program on a machine. The other semantics—fixpoint semantics, is machine inde-
pendent. It defines the meaning of a program to be the input-output relation which is
the minimal fixpoint of a transformation associated with the program. The Fixpoint
semantics is used to justify existing methods for proving properties of programs, and
to justify new methods of proof.

We know the distinction between the syntax and the semantics from previous
chapter as well from the study of programming languages. The Syntax deals with
the formal part of language in abstraction from its meaning. It concerns with the
definition of well-formed formulas. Syntax in its narrow sense and also deals with
the study of axioms, rules of reference and proofs, which constitute proof theory.
Semantics is concerned with the interpretation of language and includes such notions
as meaning, logical implication and truth.

It is convenient to restrict attention to predicate logic programs written in clausal
form. Such programs have an especially simple syntax but retain all the expressive
power of the full predicate logic [3].

• Atomic formula. A string of symbols consisting of a predicate symbol of degree
n ≥ 0 followed by n terms is an atomic formula.

• Clause. A clause is a disjunction L1 ∨ · · · ∨ Ln of literals Li, each of which is
atomic formula P(t1, . . . , tm) or the negation of atomic formulas, where P is a
predicate symbol and ti, are terms. A finite set (possibly empty) of literals is called
a clause. The empty clause is denoted by: []

• Sentence. A sentence is a finite set of clauses.
• Literals. An atomic formula is a literal; and if A is an atomic formula then ¬A is
also literal.
The atomic formulas are positive literals, and negations of atomic formulas are
negative literals.

• Term. A term is either a variable or an expression like f (ti, . . . , tn), where f is a
function symbol, ti are terms, and constants are 0-ary function symbols. A variable
is also a term, and a string of symbols comprising a function symbol of degree
n ≥ 0 followed by n terms is again a term.
A set of clauses {C1 . . . ,Cn} is interpreted as a conjunction of clauses C1 . . .Cn.
A clause C containing just the variables x1, . . . , xn is called universally quantified.
For example,

for all x1, . . . , xnC (3.1)

is universally quantified clause.
• Ground Literals. A literal having no variables is called Ground Literal.
• Ground clauses. A clause with every member of it as a ground literal, is called a
Ground Clause. Empty clause—[] is a Ground Clause.

• Well-formed expressions. The Terms and Literals are (the only) Well-Formed
expressions.

• LexicalOrder ofWell-formed expressions. This is set of allwell formed expressions
ordered in lexical order. The ordering is as follows: A precedes B if A is shorter

3.3 Syntax and Semantics 57

than B. If A and B have same length, then A has the alphabetically earlier symbol
in the first symbol position, at which A and B have distinct symbols.

• HerbrandUniverse. It is set of ground terms associatedwith any set of S of clauses.
LetF be the set of all function symbolswhichoccur in clause setS. IfF contains any
function symbols of degree 0, then the functional vocabulary of S is F , otherwise,
it is {a} ∪ F , where a is a ground term. In this case, the Herbrand universe of S is
set of all ground terms with only symbols of the functional vocabulary of S.

• Models. It is a set of ground literals having no complementary pair. If M is a
Model and S is a set of ground clauses, then M is a model of S if, for all C ∈ S,
C contains a member of M . In general, if S is any set of clauses, and H is the
Herbrand Universe of S, then M is model of H (S).

• Satisfiability. A set S is Satisfiable if there is a model of S, otherwise S is Unsat-
isfiable.

For every sentence S1 of first order predicate logic there is always a sentence S2
in Clausal Form which is satisfiable if and only if S1 is also satisfiable. In other
words, for every non-clause form sentence there is a logically equivalent clause form
sentence. Due to this, all questions concerning to the validity or satisfiability of
sentences in FOPL can be addressed to sentences in clausal form.

Procedure for obtaining clausal-form for any well-formed formula (wff) are dis-
cussed later in this chapter. In the above we have defined part of the syntax of
predicate logic, which is concerned with the specification of well-formed formulas.
The formalism we are going to use in the next section is based on the notions of
unsatisfiability and refutation rather than upon the notions of validity and proof.

To work on the criteria of refutation and unsatisfirability, it is necessary to convert
the given wff into clausal form.

To determine whether a finite set of sentences (S) of first-order predicate is satis-
fiable, it is sufficient to assume that each sentence in S is in clause form, and there is
no existential quantifiers as the prefix to S. In addition, the matrix of each sentence in
S is assumed to be a disjunction of formulas, each of which is either atomic formula
or the negation of an atomic formula. Therefore, the syntax of S is designed such
that the syntactical unit is a finite set of sentences in this special form, called clause
form. Towards the end of conversion process, the quantifier prefix is omitted from
each sentence, since it is necessary that universal quantifiers bind each variable in
the sentence. The matrix of each sentence is simply a set of disjuncts and the order
and multiplicity of the disjuncts are not important.

3.4 Conversion to Clausal Form

Following are the steps to convert a predicate formula into clausal-form [2].

1. Eliminate all the implications symbols using the logical equivalence: p → q ≡
¬p ∨ q.

58 3 First Order Predicate Logic

2. Move the outer negative symbol into the atom, for example, replace ¬∀x p(x)
by ∃x¬p(x).

3. In an expression of nested quantifiers, existentially quantified variables not in the
scope of universal quantifiers are replaced by constants. Replace ∃x∀y(f (x) →
f (y)) by ∀y(f (a) → f (y)).

4. Rename the variables if necessary. For example, in ∀x(p(x)) → q(x), rename
second free variable x, as ∀x(p(x) → q(y)).

5. Replace existentially quantified variables with Skolem functions; then elimi-
nate corresponding quantifiers. For example, for ∀x∃y[¬p(x) ∨q(y)], we obtain
∀x[¬p(x) ∨ q(f (x)). These newly created functions are celled Skolem functions,
and the process is called Skolemization.

6. Move the universal quantifiers to the left of the equation. For example, substitute
∃x[¬p(x) ∨ ∀y q(y)] by ∃x∀y[¬p(x) ∨ q(y)]

7. Move the disjunctions down to the Literals, i.e., terms should be connected by
conjunctions only, vertically.

8. Eliminate the conjunctions.
9. Rename the variables, if necessary.
10. Drop all the universal quantifiers, and write each term in a separate line.

The resulting sentence is a CNF, and suitable for inferencing using resolution.

Example 3.5 Convert the expression ∃x∀y[∀z p(f (x), y, z) ⇒ (∃u q(x, u) ∧
∃v r(y, v))] to clausal form.

The steps discussed above are applied precisely, to get the clausal form of the pred-
icate formula.

1. Eliminate implication.

∃x∀y[¬∀z p(f (x), y, z) ∨ (∃u q(x, u) ∧ ∃v r(y, v))]

2. Move negative symbols to the atom.

∃x∀y[∃z¬p(f (x), y, z) ∨ (∃u q(x, u) ∧ ∃v r(y, v))]

3. Replace existentially quantified variables not in the scope of universal quantifier
to constants.

∀y[∃z¬p(f (a), y, z) ∨ (∃u q(a, u) ∧ ∃v r(y, v))]

4. Rename variables (not required in this example.)
5. Replace existentially quantified variables that are functions of universal quanti-

fied variables, by Skolem functions:

∀y[¬p(f (a), y, g(y) ∨ (q(a, h(y) ∧ r(y, l(y))]

3.4 Conversion to Clausal Form 59

6. Move ∀ to left is not required in this example.
7. Move disjunctions down to Literals.

∀y[(¬p(f (a), y, g(y)) ∨ (q(a, h(y))) ∧ (¬p(f (a), y, g(y)) ∨ r(y, l(y)))]

8. Eliminate conjunctions.

∀y[¬p(f (a), y, g(y)) ∨ (q(a, h(y)), (¬p(f (a), y, g(y)) ∨ r(y, l(y))]

9. Renaming variable is not required in this example.
10. Drop all universal quantifiers and write each term on separate line.

¬p(f (a), y, g(y)) ∨ (q(a, h(y)),

¬p(f (a), y, g(y)) ∨ r(y, l(y)).

Example 3.6 Convert the following wff to clause form.

(∀x)(∃y){[p(x, y) ⇒ q(y, x)] ∧ [q(y, x) ⇒ s(x, y)]}
⇒ (∃x)(∀y)[p(x, y) ⇒ s(x, y)]

For [p(x, y) ⇒ q(y, x)] ∧ [q(y, x) ⇒ s(x, y)] by application of syllogism, it can be
reduced to [p(x, y) ⇒ s(x, y)]. Thus, original expression reduces to:

= (∀x)(∃y)[p(x, y) ⇒ s(x, y)] ⇒ (∃x)(∀y)[p(x, y) ⇒ s(x, y)]
= ¬(∀x)(∃y)[p(x, y) ⇒ s(x, y)] ∨ (∃x)(∀y)[p(x, y) ⇒ s(x, y)]
= (∃x)¬(∃y)[p(x, y) ⇒ s(x, y)] ∨ (∃x)(∀y)[p(x, y) ⇒ s(x, y)]
= (∃x)(∀y)¬[p(x, y) ⇒ s(x, y)] ∨ (∃x)(∀y)[p(x, y) ⇒ s(x, y)]
= (∀y)¬[p(a, y) ⇒ s(a, y)] ∨ [p(a, y) ⇒ s(a, y)]
= [p(a, y) ∧ ¬s(a, y)] ∨ [¬p(a, y) ∨ s(a, y)]
= T

3.5 Substitutions and Unification

The following definitions are concerned with the operation of instantiation, i.e, sub-
stitutions of terms for variables in the well-formed expressions and in sets of well-
formed expressions [8].

Substitution Components

A substitution component is any expression of the form T/V , whereV is any variable
and T is any term different from V . The T can be any constant, variable, function,
predicate, or expression.

60 3 First Order Predicate Logic

Substitutions

A substitution is any finite set (possibly empty) of substitution components, none
of the variables of which are same. If P is any set of terms, and the terms of
the components of the substitution θ are all in P, we say that θ is a substitu-
tion over P. We write the substitution where components are T1/V1, . . . ,Tk/Vk as
θ = {T1/V1, . . . ,Tk/Vk}, with the understanding that order of components is imma-
terial. We will use lowercase Greek letters θ, λ, μ denote substitutions.

Instantiations

If E is any function string of symbols, and θ = {T1/V1, . . . ,Tk/Vk} is any substitu-
tion, then the instantiation of E by θ is the operation of replacing each occurrence of
variable Vi, 1 ≤ i ≤ k, in E by term Ti. The resulting string denoted by Eθ is called
an instance of E by θ . That is, if E is the string E0Vi1E1 . . .VinEn, n ≥ 0, then Eθ is
the string E0Ti1E1 . . . TinEn. Here, none of the substrings Ej of E contain occurrences
of variables V1, . . . ,Vk after substitution. Some of Ej are possibly null, and each Vij
is an occurrence of one of the variables V1, . . . ,Vk .

3.5.1 Composition of Substitutions

If θ = {T1/V1, . . . ,Tk/Vk} and λ are any two substitutions, then the composition of
θ and λ denoted by θλ is union θ

′ ∪ λ
′
, defined as follows:

The θ
′
is set of all components Tiλ/Vi, 1 ≤ i ≤ k, such that Tiλ (λ substituted

in θ) is different from Vi, and λ
′
is set of all components of λ whose variables are

not among V1, . . . ,Vk .
Within a given scope, once a variable is bound, it may not be given a new binding

in future unifications and inferences. If θ and λ are two substitution sets, then the
composition of θ and λ, i.e., θλ, is obtained by applying λ to the elements of θ and
adding the result to λ.

Following examples illustrate two different scenario of composition of substitu-
tions.

Example 3.7 Find out the composition of {x/y,w/z}, {v/x}, and {A/v, f (B)/w}.
Let us assume that θ = {x/y,w/z}, λ = {v/x} and μ = {A/v, f (B)/w}. Following
are the steps:

1. To find the composition λμ, A is is substituted for v, and v is then substituted for
x. Thus, λμ = {A/x, f (B)/w}.

2. When result of λμ is substituted in θ , we get composition θλμ = {A/y,
f (B)/z}. �

Example 3.8 Find out the composition of θ = {g(x, y)/z}, and λ = {A/x,B/y,
C/w,D/z}.

3.5 Substitutions and Unification 61

By composition,

θλ = {g(x, y)/z} ◦ {A/x,B/y}
= {g(A,B)/z,A/x,B/y,C/w}

The {D/z} has not been included in the resultant substitution set, because other-
wise, there will be two terms for the variable z, one g(A,B) and other D. �

One of the important property of substitution is that, ifE is any string, and σ = θλ,
then Eσ = Eθλ. It is straight forward to verify that εθ = θε = θ for any substitu-
tion θ . Also, composition enjoys the associative property (θλ)μ = θ(λμ), so wemay
omit the parentheses in writing multiple compositions of substitutions. The substi-
tutions are not in general commutative; i.e., it is generally not the case that θλ = λθ ,
because for this Eθλ has to be equal to Eλθ , which is not guaranteed. However, the
composition has distributive property.

The point of the composition operation on substitution is that, when E is any
string, and σ = θλ, the string Eσ is just the string Eθλ, i.e., the instance of Eθ by λ.

3.5.2 Unification

IfE is any set ofwell-formed expressions and θ is a substitution, then θ is said to unify
E, or to be a unifier of E, if Eθ is a singleton. Any set of well-formed expressions
which has a unifier is said to be unifiable [6].

In proving theorems using quantified variables, it is often necessary to “match”
certain subexpressions. For example, to apply the combination of modus ponens
and universal instantiation (Eq. 3.5) to produce “mortal(socrates)”, it was necessary
to find substitution {socrtaes/x} for x that makes man(x) and man(socrates) equal
(singleton).

Unification algorithm determines the substitutions needed to make two predicate
expressions match. For this, all the necessary condition is that variables must be uni-
versally quantified. Unless the variables in an expression are existentially quantified,
they are assumed to be universally quantified. This criteria allows us full freedom
choosing the substitutions. The existentially quantified variables can be eliminated
by substituting themwith constants or with Skolem functions thatmakes the sentence
true. For example, in sentence,

∃x mother(x, jill),

we can replace x with a constant designating jill’s mother, susan, to get:

mother(susan, jill);

and write unifier as {susan/x}.

62 3 First Order Predicate Logic

For perform unification, a variable can be replaced by any term, including other
variable or function expressions of arbitrary complexity. This also includes function
expressions that themselves contain variables. For example, the function expression,
mother(joe), may be substituted for x in human(x) to get human(mother(joe)).

Example 3.9 Find out the substitution instances for foo(x, a, zoo(y)), given the sim-
ilar predicates with literal arguments.

1. foo(fred , a, zoo(z)), where fred is substituted for x and z for y, i.e., λ1 =
{fred/x, z/y}. Thus,

foo(fred , a, zoo(z)) = foo(x, a, zoo(y))λ1.

2. foo(w, a, zoo(jack)), where λ2 = {w/x, jack/y}; hence

foo(w, a, zoo(jack)) = foo(x, a, zoo(y))λ2.

3. foo(z, a, zoo(moo(z))), where λ3 = {z/x,moo(z)/y}, hence;

foo(z, a, zoo(moo(z))) = foo(x, a, zoo(y))λ3.

We use the notation x/y to indicate that x is substituted for the variable y; we
also call this as bindings, so y is bound to x. A variable cannot be unified with a
term containing that variable. So p(x) cannot be substituted for x, because this would
create an infinite regression: p(p(p(...x)...).

3.6 Resolution Principle

The resolution rule can be traced back to 1960, which was introduced by Davis
and Putnam. However, this algorithm required all around ground instances for the
given formula, which resulted to a combinatorial explosion. However, the source of
combinatorial explosion was eliminated in 1965, when J. A. Robinson introduced
an algorithm for unification. The unification allowed the instantiation of the formula
during the proof “in demand”, just as per the need through the newly introducedmost
general unifier (mgu) algorithm [8].

The resolution method for (propositional) logic due to J. A. Robinson (1965) is
sound and complete, and a well-known procedure for checking the unsatisfiability of
a set of clauses. The resolution is mathematical oriented rather than human oriented.
It is quite powerful both in the psychological sense that it condones single inferences
which are often beyond the ability of human to grasp, and in theoretical sense that
it alone, as sole inference principle, forms a complete system of FOPL. Because of
only one inference type, it allows to avoid the combinatorial obstacles to efficiency.

Let us refresh us with the terminology we discussed in the beginning of this
chapter. We will designate a literal by symbol L, which is either a propositional

3.6 Resolution Principle 63

Fig. 3.2 DAG for theorem
proving

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

{}

symbol, P, or the negation, ¬P. A finite set of literals {L1, . . . ,Lk} is a clause,
which is interpreted as a disjunction of literals, L1 ∨ · · · ∨ Lk . With k = 0, it is an
empty clause, denoted as []. A conjunction of a set of clauses Γ = {C1, . . . ,Cn} is
interpreted as C1 ∧ · · · ∧ Cn. In short, we write set of clauses as Γ = C1, . . . ,Cn.

The resolution method is a procedure for determining whether a set of clauses Γ ,
is unsatisfiable. To find out latter, the resolution method first builds a certain kind
of labeled DAG (Directed Acyclic Graph) whose terminal nodes are labeled with
clauses in Γ and the interior nodes are labeled as per the resolution rule [5].

Consider that there are any two clauses C = A ∪ {P} and D = B ∪ {¬P} (where
P is a propositional letter, P /∈ A and ¬P /∈ B). The resolvent of C and D is the
clause R = A ∪ B obtained by canceling out P and ¬P, and making disjunction
of the remaining part in each clause. A resolution DAG for Γ is a DAG whose
terminal nodes are labeled with clauses from Γ and such that every interior node n
has exactly two predecessors, n1 and n2 so that n is labeled with the resolvent of the
clauses labeling n1 and n2. A resolution refutation for Γ is a resolution DAG with a
single root whose label is the empty clause. Note that the root will come at the end,
as shown in Fig. 3.2.

Example 3.10 Resolution refutation.

A resolution refutation for the set of clauses

Γ = {{P,Q}, {P,¬Q}, {¬P,Q}, {¬P,¬Q}}.

is shown in Fig. 3.2. �

A recursive algorithm can be given for construction of a resolution DAG using
any number of clauses, and to prove its correctness. That means, if the input set of
clauses is unsatisfiable, the output resolution DAG is a resolution refutation. This
confirms the completeness of propositional resolution constructively.

64 3 First Order Predicate Logic

3.6.1 Theorem Proving Formalism

It is a syntactic inference procedure, when applied to clauses, determines, if the
satisfied set is unsatisfiable. Proof is similar to proof by contradiction and deduce []
(i.e., null). If for example, we have set of clauses (axioms) C1,C2, . . . ,Cn, and we
want to deduceD, i.e.,D is logical consequence of ofC1,C2, . . . ,Cn. For this we add
¬D to the set {C1,C2, . . . ,Cn}, then we show that set is unsatisfiable by deducing
contradiction [7].

The process of deduction using resolution is given in Algorithm 3.1. Given two
clauses C1,C2 with no variables in common, and if l1 is a literal in C1 and its
complement literal l2 is a literal in C2, then l1, l2 can be dropped and disjunction C
is obtained from the remaining part of C1,C2. The C is called resolvent of C1,C2.

Let C1 = ¬P ∨ Q, and C2 = ¬Q ∨ R, then following can be deduced through
resolution,

P ⇒ Q,Q ⇒ R

P ⇒ R
(3.2)

equivalently,

(¬P ∨ Q), (¬Q ∨ R)

∴ (¬P ∨ R)
. (3.3)

It can be easily verified that (¬P ∨ Q) ∧ (¬Q ∨ R) |= (¬P ∨ R), hence (¬P ∨
Q) ∧ (¬Q ∨ R) ⇒ (¬P ∨ R) is a valid statement. Thus, ¬P ∨ R is inference or the
resolvent. Arriving to a proof by above is called proof by refutation.

Resolution says that if there are axioms of the form ¬P ∨ Q and there is another
axiom of the form ¬Q ∨ R, then ¬P ∨ R logically follows; called the resolvent. Let
us see why it is so? When ¬P ∨ Q is True, then either ¬P is True or Q is True. For
other expression, when¬Q ∨ R is True, then either¬Q is True or R is True. Then we
can say that ¬P ∨ R is certainly True. This can be generalized to two expressions,
when we have any number of expressions, but two must be of opposite signs.

3.6.2 Proof by Resolution

To prove a theorem, one obvious strategy is to search forward from the axioms, using
sound rules of inference. We try to prove a theorem by refutation. It requires to show
that negation of a theorem cannot be True. The steps for a proof by resolution are:

1. Assume that negation of the theorem is True.
2. Try to show that axioms and assumed negation of theorem, together are True,

which cannot be True.
3. Conclude that above leads to contradiction.
4. Conclude that theorem is True because its negation cannot be True.

3.6 Resolution Principle 65

To apply the resolution rule,

1. Find two sentences that contain the same literal, one in its positive form and one
in its negative form, like,

CNF : summer ∨ winter,¬winter ∨ cold ,

2. use the resolution rule to eliminate the complement literals from both sentences
to get,

CNF : summer ∨ cold .

The Algorithm 3.1 is an algorithm for theorem proving through resolution-
refutation, where α is the theorem to be proved, and β is set of axioms, both of
these are input to the algorithm. All the inputs to algorithm are in the clause form.
The algorithm returns “true” if the theorem is true, else returns “False”.

Algorithm 3.1 Algorithm-Resolve(Input: α, β)
1: Γ = β ∪ {¬α}
2: while there is a resolvable pair of clauses Ci,Cj ∈ Γ do
3: C = resolve(Ci,Cj)

4: if C = NIL then
5: return “Theorem α is true”
6: end if
7: Γ = Γ ∪ {C}
8: end while
9: Report that theorem is False

3.7 Complexity of Resolution Proof

The question is, how you can be so clever to pickup the right clauses to resolve? The
answer is that you take advantage of two ideas:

1. You can be sure that every resolution involves the negated theorem, directly or
indirectly.

2. You know where you are and where you are going, hence you can compute the
difference to help you proceed with your intuition for selection of clauses.

Consider there are total n clauses, c1 . . . cn. We can try to match c1 with c2 . . . cn,
and in next level c2 is matched with c3 . . . cn, and so on. This results to breadth first
search (BFS). Consider that resolvents generated due to this matching are c′

1 . . . c′
m.

Next all the newly generated clauses are matched with the original, and then they
are merged into the original. This process is repeated until contradiction is reached,
showing that theorem is proved. Since, the entire set of clauses are compared, the

66 3 First Order Predicate Logic

proof is bound to result, if it exists, at all. This gives completeness to the resolution
proof.

The other alternative is, nodes which are farther and farther away are matched
before those which are closer to the root. The c1 is matched with first child c2 out of
c2 . . . cn. Then c2 is matched with its first child generated, and so on, resulting to the
search process called DFS (depth first search).

However, the above both are brute-force algorithms, and are complex. The other
methods are heuristic based. In fact, there is difficulty to express your concepts
required in pure logic. One of the approaches is to use the clauses having smallest
number of literals. Another, to use negated clauses.

The resolution search strategies are subject to the exponential-explosion problem.
Due to this, those proofs which require long chains of inferences, will be exponen-
tially expensive in time.

All resolution search strategies are subject to a version of halting problem, for
search is not guaranteed to terminate unless there actually is a proof. In fact, all
complete proof procedures for the first order predicate calculus are subject to halting
problem. Complete proof procedures are said to be semi-decidable, because they are
generated to tell you whether an expression is a theorem, only if the expression is
indeed a theorem.

Theorem proving is suitable for certain problems, but not for all problems, due to
the following reasons:

1. Complete theorem proving requires search, and search is inherently exponential,
2. Theorem provers may not help you to solve practical problems, even if they do

their work instantaneously.

3.8 Interpretation and Inferences

A FOPL statement is made of predicates, arguments (constants or variables), func-
tions, operators, and quantifiers. Interpretation is process of assignment of truth
values (True/False) to subexpressions and atomic expressions, and computing the
resultant value of any expression/statement. A statement or expression in predicate
logic is also called wwf (well formed formula).

Consider the interpretation of predicate formula:

∀x[bird(x) → flies(x)]. (3.4)

To find out the satisfiability of the formula (3.4), we need to substitute (instantiate)
a value for x (an instance of x) and check if flies(x) is true. Until, that x is found,
it may require instantiation with large number of values. Similarly, to check if the
Eq. (3.4) is valid, it may require infinitely large number of values in the domain of

3.8 Interpretation and Inferences 67

x to be verified. If any one of that makes the formula false, the formula is not valid.
Thus, checking of satisfiability as well as validity of a formula is predicate logic are
complex process. The approach of truth table and tableau method we discussed in
the previous chapter are applicable here also.

Given a predicate sentences ofm number of predicates each having one argument,
and domain size of all the arguments is n, in the worst case it will require total nm

substitutions to test for satisfiability, as well as for validity checking. However, a
sentence of m propositions will require in the worst case only 2m substitutions.
Hence, satisfiability checking in predicate sentences is much more complex than that
in proposition logic. It equally applieswith expressions having existential quantifiers,
like, ∃x[bird(x) → flies(x)].

Thus, it is only the proof methods, using which logical deductions can be carried
out in realistic times.

Example 3.11 Given, “All men are mortal” and “Socrates is man”, infer using pred-
icate logic, that “Socrates is mortal”.

The above statement can be written in predicate logic as:

∀x[man(x) ⇒ mortal(x)],
man(socrates). (3.5)

Using a rule called universal instantiation, a variable can be instantiated by a
constant and universal quantifier can be dropped. Hence, from (3.5) we have,

man(socrates) ⇒ mortal(socrates),

man(socrates). (3.6)

Using the rule of modus ponens on (3.6) we deduce “mortal(socrates)”. It
is also logical consequence. If Γ = {[man(socrates) ⇒ mortal(socrates)] ∧ man
(socrates)}, and α = mortal(socrates), then we can say that Γ � α.

The set of formulas Γ is called knowledge base. To find out the result for the
query “Who is man?”, we must give the query

?man(X).

in Prolog (to be discussed later), whichwill match (called unify or substitute)man(X)

with man(socrates) with a unification set, say, θ = {socrates/X }. The substitution
which returns man(socrates) is represented by man(X)θ . �

68 3 First Order Predicate Logic

Example 3.12 Prolog Program.

The sentence in Eq. (3.5) will appear in prolog as,

mortal(socrates) :- man(socrates).

man(socrates).

Here, the sign ‘:-’is read as ‘if’. The subexpression before the sign ‘:-’is called
‘head’or procedure name and the part after ‘:-’is called body of the rule. The sentence
(3.6) can also be written in a clause form (to be precise, in Horn clause form) as,

mortal(socrates) ∨ ¬man(socrates).

man(socrates). (3.7)

3.8.1 Herbrand’s Universe

Defining an operational semantics for a programming language is nothing but to
define an implementation independent interpreter for it. In case of predicate logic,
the proof procedure itself behaves like an interpreter. The Herbrand’s Universe and
Herbrand’s base play an important role in interpretation of predicate language. In the
following, we define the Herbrand’s Universe and Herbrand’s Base.

Definition 3.1 (Herbrand’sUniverse) In a predicate logic program, aHerbrandUni-
verse H, is a set of ground terms that use only function symbols and constants.

Definition 3.2 (Herbrand’s Base) A set of atomic formulas formed by predicate
symbols in a program, is called Herbrand’s base. The additional condition is that,
arguments of these predicate symbols are in the Herbrand Universe.

For a predicate program, the Herbrand universe and Herbrand base are countably
infinite if the predicate program contains a function symbol of positive arity. If the
arity of function symbols is zero, then both the haerbrand’s universe and base are
finite [3].

In special cases, when resolution proof is used on FOPL, it reduces the expressions
to propositional form. If the set of clauses is A, its Harbrand’s universe is set of all
the ground terms formed using only the function symbols and constants in A. For
example, if A has constants a, b, and a unary function symbol f , then the Herbrand
universe is the infinite set:

{a, b, f (a), f (b), f (f (a)), f (f (b)), f (f (f (a)), . . . }.

The Herbrand’s base of A is the set of all ground clauses cθ where c ∈ A and θ

is a substitution that assigns the variables in c to terms in the Herbrand’s universe.

3.8 Interpretation and Inferences 69

Horn clauses

The Horn clauses are terms without variables, these are constructed using constants
and function symbols that occur in the set of clauses A. These terms form the data
structures, which are manipulated by the program built-in in the clauses A. The
collection of all such terms, determined by A, is called Herbrand universe. Every
n-ary predicate symbol P occurring inA denotes an n-ary relation over the Herbrand
universe of A. We call the n-tuples which belong to such relations as input-output
tuples and the relations themselves as input-output relations.

In an inference system, the operational semantics determine a unique denotation
for a formula P such that the n-tuple (t1, . . . , tm) belongs to the denotation of P ∈ A,
iff A � P(t1, . . . , tn). That is,

D(P) = {(t1, . . . , tn) : A � P(t1, . . . , tn)}. (3.8)

We first pick an arbitrary constant, say, a, and then construct the variable-free
terms. Formally, D(P) is inductively defined as follows:

1. All constants occurring in P belong to D(P); if no constant occurs in P, then
a ∈ D(P).

2. For every n-ary functional symbol p occurring in P, if t1, t2, . . . , tn ∈ D(P) then
p(t1, t2, . . . , tn) ∈ D(P).

Here X � Y means X derives Y . For resolutions systems, if X � Y then there
exists a refutation of the sentence in clausal form with atoms as X and Y .

In goal oriented inference systems, the procedure calls are replaced by procedure
bodies. Such inference systems correspond to standard notion of operational seman-
tics. In theoretical sense, any inference system, based on predicate logic represents
an abstract machine, that generates only those derivatives which are determined by
this inference system.

For predicate logic, the corresponding programs compute the relations represented
by predicate symbols in the set of clauses A. These relations may be in the form of
predicates or functions. However, these function or predicate symbols are not treated
as functions computed by the program, but they result into some data structures,
and these data structures are actually the input and output objects of the relations /
functions being computed.

Definition 3.3 Herbrand’s Structure.

Let P be a formula in Skolem form (when a constant, say, a is substituted for x
in ∃x p(f (x), b) results to Skolem form p(f (a), b))). A structure A = (UA , IA)

suitable for p is a Herbrand structure for P if it satisfies the following conditions:

1. UA = D(P), and
2. for every n-ry function symbol p occurring in P and every t1, t2, . . . , tn ∈ D(P) :

f A (t1, t2, . . . , tn) = f (t1, t2, . . . , tn).

70 3 First Order Predicate Logic

In above, A = (UA , IA) is model with UA as formula and IA as its
interpretation. �

Definition 3.4 (General logic program) It is a finite set of general rules, with both
positive and negative subgoals.

A general logic program comprises rules and facts. A general rule’s format is: its
head, or conclusion is to the left of the symbol “←,” (read “if”), and its subgoals
(called body) is right of the symbol “←”. Following is an example of rule, where
p(X) is head, q(X) is positive subgoal, and r(X) is a negative subgoal.

p(X) ← q(X), ¬ r(X). (3.9)

This rule may be read as “p(X) if q(X) and not r(X).” A Horn rule has no
negative subgoals, and a Horn logic program is made of only Horn rules.

We will follow the conventions of Prolog for naming the objects: the logical
variables beginwith an uppercase letter,while the constants, functions, and predicates
begin with a lowercase letter. For both the predicate and its relation, we will use the
same symbol, for example p.

Followings may be the arguments of a predicate:

1. a constant/variable is a term;
2. a function symbol with terms as arguments, is a term.

The termsmay be viewed as data structures of the program, with function symbols
serving as record names. Often a constant is treated as a function symbol of arity
zero.

Following are the definitions of some important terms.

Definition 3.5 (Herbrand Instantiation) Herbrand instantiation of a general logic
program is the set of rules obtained by substituting terms in the Herbrand universe
for variables, in every possible way.

Definition 3.6 An instantiated rule is one only, whereas “uninstantiated” logic
programs are assumed to be a finite set of rules, and instantiated logic programs may
be infinite in number.

Definition 3.7 (Complement of a set) For a set of literals L its complement is a set
formed by complementing of each literal in L, represented by ¬L.

Further,

– p is said to be inconsistent with L if p ∈ ¬L,
– Sets of literals R and L are inconsistent if at least one literal in R is inconsistent
with L, i.e., when R ∩ ¬L �= φ,

– A set of literal is inconsistent if it is inconsistent with itself; otherwise it is con-
sistent.

3.8 Interpretation and Inferences 71

3.8.2 Herbrand’s Theorem

Herbrands theorem is a fundamental theorem based on mathematical logic, that
permits a certain type in reduction from FOPL to propositional logic [4].

In its simplest form, the Herbrand’s theorem states that a formula of first-order
predicate logic ∃x A, where A is quantifier free, is provable if and only if there exist
ground terms M1, . . . ,Mn such that,

|= A[x := M1] ∨ · · · ∨ A[x := Mn]. (3.10)

When using the classical formulation, the Herbrand’s theorem relates the validity
of a first-order formula in Skolem prenex form1 to the validity of one of its Herbrand
extensions. That means, the formula ∀x1 . . . ∀xnψ(x1 . . . , xn) is valid if, and only if,∧m

i ψ(ti,1, . . . , ti,n) is valid for somem ≥ 1 and some collection of ground Herbrand
terms ti,j.

Since it is possible that every classical first-order formula can be reduced to this
Skolem prenex form through the Skolemization while preserving its satisfiability, the
Herbrand’s theorem provides a way to reduce the question of validity of first-order
formulas to propositional logic formula.

However, the required Herbrand’s extension and the terms ti,j cannot be computed
recursively (for otherwise first-order logic would be decidable), this result is highly
useful for the automated reasoning as it gives a way to some highly efficient proof
methods such as resolution and the resolution refutation.

Theorem 3.1 A closed formula F in Skolem form is satisfiable if and only if it has
a Herbrand model.

Proof If the formula has a Herbrand model then it is satisfiable. For the other direc-
tion let A = (UA , IA) be an arbitrary model of F . We define a Herbrand structure
B = (UB , IB) as follows:

Universe: UB = D(F)

Functional Symbols: f B (t1, t2, . . . , tn) = f (t1, t2, . . . , tn)
Predicate Symbols: (t1, . . . , tn) ∈ PB iff A (t1), . . . ,A (tn) ∈ PA .
Claim: B is also a model of F .
We prove a stronger assertion: For every closed form G in Skolem form such that

G∗ only contains atomic formulas of F∗ : if A |= G then B |= G.
By induction on the number n of universal quantifiers of G.
Basis (n = 0). Then G has no quantifiers at all.
It follows A (G) = B(G), this proves the theorem. �
To perform reasoningwith theHerbrand base, the unifiers are not required, andwe

have a sound and complete reasoning procedure, which is guaranteed to terminate.
The idea used in this approach is: Herbrand’s base will typically be an infinite set of
propositional clauses, but it will be finite when Herbrand’s universe is finite (there

1A string of quantifiers followed by a quantifier-free part, e.g., ∀x1 . . .∀xnψ(x1 . . . , xn).

72 3 First Order Predicate Logic

is no function symbols and only finitely many constants appear in it). Sometimes
we can keep the universe finite by considering the type of the arguments (say t) and
values of functions (f), and include a term like f (t) in the universe only if the type of
t is appropriate for the function f . For example, f (t) may be, birthday(john), which
produces a date.

3.8.3 The Procedural Interpretation

It is easy to procedurally interpret the sets of clauses, say,A,which contain atmost one
positive literal per clause. However, along with this any number of negative literals
can also exist. Such sets of clauses are called Horn sentences or Horn Clauses or
simply clauses. We distinguish three kinds of Horn clauses [3].

1. ‘[]’the empty clause, containing no literals and denoting the truth value false, is
interpreted as a halt statement.

2. B̄1 ∨ · · · ∨ B̄n, a clause consisting of nopositive literals andn ≥ 1negative literals,
is interpreted as a goal statement. Note that goal statement is negated and added
into the knowledge base to obtain the proof through resolution refutation.

3. A ∨ B̄1 ∨ · · · ∨ B̄n, a clause consisting of exactly one positive literal and n ≥ 0
negative literals is interpreted as a procedure declaration (i.e., rule in Prolog
program). The positive literal A is the procedure name and the collective negative
literals are the procedure body. Each negative literal Bi, in the procedure body
is interpreted as a procedure call. When n = 0 the procedure declaration has an
empty body and interpreted as an unqualified assertion of fact.

In the procedural interpretation, a set of procedure declarations is a program.Com-
putation is initiated by an initial goal statement, which proceeds by using declared
procedures to derive new goal statements (subgoals) Bis from old goal statements,
and terminates on the derivation of the halt statement. Such derivation of goal state-
ments is accomplished by resolution, which is interpreted as procedural invocation.

Consider that, a selected procedure call Ā1 inside the body of a goal statement as,

Ā1 ∨ · · · ∨ Āi−1 ∨ Āi ∨ Āi+1 ∨ · · · ∨ Ān (3.11)

and a procedure declaration is given as,

A′ ∨ B̄1 ∨ · · · ∨ B̄m,m ≥ 0. (3.12)

Suppose, the name of procedure A′ matches with the procedure call Ai, i,e., some
substitution θ of terms for variables makes Ai and A′ identical. In such a case, the
resolution derives a new goal statement by disjunction formulas (3.11) and (3.12) as
given below, subject to substitution θ .

3.8 Interpretation and Inferences 73

(Ā1 ∨ · · · ∨ Āi−1 ∨ B̄1 ∨ · · · ∨ B̄m ∨ Āi+1 ∨ · · · ∨ Ān)θ. (3.13)

In general, any derivation can be regarded as a computation, and any refutation
(i.e. derivation of []) can be regarded as a successfully terminating computation. It is
to be noted that, only goal oriented resolution derivations correspond to the standard
notion of computation.

Thus, a goal-oriented derivation, from an initial set of Horn clauses A and from
an initial goal statement (computation) C1 ∈ A, is a sequence of goal statements
C1, . . . ,Cn. So that each Ci contains a single selected procedure call and Ci+1,
obtained from Ci by procedure invocation relative to the selected procedure call
in Ci, using a procedure declaration in A.

For the implementation of above, onemethod ismodel elimination. Using this, the
selection of procedure calls is governed by the last-in/first-out rule: a goal statement
is treated as a stack of procedure calls. The selected procedure call must be at the
top of the stack. The new procedure calls which by procedure invocation replace the
selected procedure call are inserted at the top of the stack. This would result to a
depth-first search procedure.

The Predicate logic is a nondeterministic programming language. Consequently,
given a single goal statement, several procedure declarations can have a name which
matches the selected procedure call. Each declaration gives rise to a new subgoal
statement. A proof procedure which sequences the generation of derivations in the
search for a refutation behaves as an interpreter for the program incorporated in the
initial set of clauses.

The following example explains how to use procedural interpretation to append
two given lists.

Example 3.13 Appending two lists [3].

Let a term cons(x, y) is interpreted as a list whose first element, the head, is x and
whose tail y is the rest of the list. The constant nil denotes the empty list. The terms
u, x, y, and z are variables. The predicate append(x,y,z) denotes the relationship: z is
obtained by appending y to x.

The following two clauses constitute a program for appending two lists.

append(nil, x, x). (3.14)

append(cons(x, y), z, cons(x, u)) ∨ append(y, z, u). (3.15)

The clause in statement (3.14) represents halt statement. In (3.15) there is a
positive literal for procedure name, and negative literal(s) for the procedure body,
both together it is procedure declaration. The positive literal means, if cons(x, y)
is appended with z, it results to x appended with u such that u is, y appended
with z. The later part is indicated by the complementary (negative) term. Note that
clausal expression (3.15) is logically equivalent to the expression append(y, z, u) →
append(cons(x, y), z, cons(x, u)).

74 3 First Order Predicate Logic

Suppose it is required to compute the result of appending list cons(b, nil) to the
list cons(a, nil). Therefore, the goal statement is,

append(cons(a, nil), cons(b, nil), v), (3.16)

where v (a variable) and a, b (constants), are the “atoms” of the lists. To prove using
resolution, we add the negation of the goal,

append(cons(a, nil), cons(b, nil), v), (3.17)

into the set of clauses. The program is activated by this goal statement to carry out
the append operation. With this goal statement the program is deterministic, because
only one choice is available for matching. The following computation follows with
a goal directed theorem prover as interpreter: The goal statement,

C1 = append(cons(a, nil), cons(b, nil), v). (3.18)

matches with the clause statement (3.15) with matchings: x = a, y = nil, z = cons
(b, nil). Also, v = cons(x, u) = cons(a, u), i.e., there exists a unifier θ1 = {cons
(a,w)/v}. The variable u has been renamed as w. On unifying clauses (3.18) and
(3.15), the next computation C2 is:

C2 = append(nil, cons(b, nil),w)θ1. (3.19)

Keeping θ1 accompanying the predicate in above is for the purpose that if C2 is
to be unified with some other predicate, the matching of the two shall be subject to
the same unifier θ1.

As next matching, C2 can be unified with (3.14) using a new unifier θ2 =
{cons(b, nil)/w} to get next computation,

C3 = []θ2. (3.20)

The result of the computation is value of v in the substitution, i.e.,

v = cons(a, u)

= cons(a,w)

= cons(a, cons(b, nil)).

The above result is equal to goal: append(cons(a, nil), cons(b, nil), v). �

Example 3.14 Theorem proving using resolution-refutation.

Following axioms are about the observed block relationship shown in Fig. 3.3, which
are already in clausal form.

3.8 Interpretation and Inferences 75

Fig. 3.3 Objects on table

on(cylinder, box).

on(box, table).

It is required to be shown that object cylinder is above table, i.e., above(cylinder,
table), given the the following rules:

∀x∀y[on(x, y) → above(x, y)], and
∀x∀y∀z[above(x, y) ∧ above(y, z) → above(x, z)].
After we have gone through the procedure for conversion to clausal form, the

above axioms are transformed into clause forms.

¬on(u, v) ∨ above(u, v).
¬above(x, y) ∨ ¬above(y, z) ∨ above(x, z).

The expression to be proved is “above(cylinder, table)”; its negation is
¬above(cylinder, table). Let us list all the clauses systematically.

(1) ¬on(u, v) ∨ above(u, v).
(2) ¬above(x, y) ∨ ¬above(y, z) ∨ above(x, z).
(3) on(cylinder, box).
(4) on(box, table).
(5) ¬above(cylinder, table).

Now, we manually run the Algorithm 3.1 on the clauses (1)–(5), as well as those
which would created new, to unify them according to unification Algorithm 3.2,
until we reach to a null resolvent.

First we resolve clauses (2) and (5) and bind x to ‘cylinder’and z to ‘table’.
Applying the resolution, we get resolvent (6). Unifier for this is {cylinder/x, table/z}.

76 3 First Order Predicate Logic

(2) ¬above(cylinder, y) ∨ ¬above(y, table) ∨ above(cylinder, table).
(5) ¬above(cylinder, table).
(6) ¬above(cylinder, y) ∨ ¬above(y, table).

Next, resolve clauses (1) with (6), binding u with y and v with ‘table’, we get (7).
Unifier for this is {y/u, table/v}.
(1) ¬on(y, table) ∨ above(y, table).
(6) ¬above(cylinder, y) ∨ ¬above(y, table).
(7) ¬on(y, table) ∨ ¬above(cylinder, y).

We use (1) again with (7) with u bound to cylinder and v to y. Unifier for this is
{cylinder/u, y/v}. On resolving we get (8).

(1) ¬on(cylinder, y) ∨ above(cylinder, y).
(7) ¬on(y, table) ∨ ¬above(cylinder, y).
(8) ¬on(cylinder, y) ∨ ¬on(y, table).

Next, use clause (3) and (8), binding y to box, with unifier {box/y}. We get (8) as
resolvent.

(3) on(cylinder, box).
(8) ¬on(cylinder, box) ∨ ¬on(box, table).
(9) ¬on(box, table).

Finally, the clauses (4) and (9) are resolved to get ‘[]’:

(4) on(box, table).
(9) ¬on(box, table).

(10) [].
Since we have arrived at the contradiction, it shows that negation of the theorem:

¬above(cylinder, table) must be False. Hence the theorem above(cylinder, table)
must be True. �

3.9 Most General Unifiers

The simple approach to avoid needless search in a first-order derivation is to keep
the search procedure as general as possible. Consider, for example the following two
clauses, each as a literal only.

c1 = p(g(x), f (x), z),

and
c2 = ¬p(y, f (w), a).

3.9 Most General Unifiers 77

They are unified by the substitution θ1,

θ1 = {b/x, g(b)/y, a/z, b/w},

and also by θ2,

θ2 = {f (z)/x, g(f (z))/y, a/z, f (z)/w}.

Note that a constant, or variable, or a function substitutes for a variable, and not
the other way.

Wemay very well be able to derive the empty clause using c1, c2 with substitution
of θ1, followed with application of resolution. But if we cannot, we will need to
consider other substitutions like θ2.

The trouble is that both of these substitutions are overly specific. We can see that
any unifier must give w the same value as x, and to y the same as g(x), but we do not
need to commit yet to a value for x. The substitution,

θ3 = {g(x)/y, a/z, x/w}

unifies the two literals without making an arbitrary choice that might preclude a path
to the empty clause. The θ3 is a most general unifier (mgu).

More precisely, an mgu θ of literals ρ1 and ρ2 is a unifier that has the property
that for any other unifier θ

′
, there is a further substitution θ∗ such that θ

′ = θθ∗.
So starting with θ , you can always get to any other unifier by applying additional
substitutions. For example, given θ3, we can get to θ1 by further applying λ = {b/x}
so that θ1 = θ3λ. And, we can get to θ2 by μ = {f (z)/x} so that θ2 = θ3μ. Note that
an mgu need not be unique. For example, θ4 = {g(w)/y, a/z,w/x} is also an mgu
for c1 and c2.

The key fact about mgus is that we can limits the resolution rule to mgus without
loss of completeness. This helps immensely in the search since it dramatically reduces
the number of resolvents that can be inferred from these two input clauses.

Example 3.15 Given a unifier, obtain a more general unifier.

Suppose youhave two expressionsp(x) anp(y). Oneway to unify these is to substitute
any constant expression for x and y: S = {fred/x, fred/y}. But this is not the most
general unifier, because if we substitute any variable for x and y, we get a more
general unifier: G = {z/x, z/y}. The first unifier is a valid unifier, but it would lessen
the generality of inferences that we might want to make.

Let E = {p(x), p(y)},
S = {fred/x, fred/y},
G = {z/x, z/y}.

Now let S
′ = {fred/z}

78 3 First Order Predicate Logic

Then ES = {p(fred), p(fred)}
and GS

′ = {fred/x, fred/y}
and therefore EGS

′ = {p(fred), p(fred)} = ES.

So, given a unifier, you can always create a more general unifier. When both of
these unifiers are composed and instantiate the original expression E, you get the
same instance as it was obtained with the earlier unifier.

3.9.1 Lifting

It is necessary to show that the general resolution principle is sound and complete.
However, a technical difficulty is the completeness of the proof. Using theHerbrand’s
theorem and semantic trees, we can prove that there is a ground resolution refutation
of an unsatisfiable set of clauses. But, this cannot be generalized as a proof for
general resolution, because the concept of semantic trees cannot be generalized.
Why it cannot be generalized, is due to the variables, which give rise to potentially
infinite number of elements in the Herbrand’s base, as we will show it shortly.

Fortunately, there is a technique, called, “Lifting”, to prove completeness of a
theorem. Following are the steps for lifting:

1. first prove the completeness of the system for a set of ground classes, then,
2. as a second step, lift the proof to non-ground case.

Example 3.16 Infinite inferences.

Let us assume that there are two non-ground clauses: 1. p(u, a) ∨ q1(u) and, 2.
¬p(v,w) ∨ q2(v,w). If the signature pattern contains function symbols, then these
clauses have infinite set of instances, as follows:

{p(r, a) ∨ q1(r) | r is ground}.
{¬p(s, t) ∨ q2(s, t) | s, t are ground}.
We can resolve above instances if and only if r = s and t = a. Then we can

apply the resolution refutation and obtain the inference given in the denominator of
Eq. (3.21), which are infinite, due to variable s.

p(s, a) ∨ q1(s),¬p(s, a) ∨ q2(s, a)

q1(s) ∨ q2(s, a)
(3.21)

�
The above difficulty can be overcome by taking a ground resolution refutation

and “lifting” it to a more abstract general form.
The lifting is an idea to represent infinite number of ground inferences of the form

given in Eq. (3.21) by a single non-ground inferences:

3.9 Most General Unifiers 79

p(u, a) ∨ q1(u),¬p(v,w) ∨ q2(v,w)

q1(v) ∨ q2(v, a)

This lifting can be done using most general unifier, we will be discussing shortly.

Example 3.17 Find out the Lifting for following clauses:

C1 = p(u) ∨ p(f (v)) ∨ p(f (w)) ∨ q(u)
C2 = ¬p(f (x)) ∨ ¬p(z) ∨ r(x)

Using the substitution θ = {f (a)/u, a/v, a/w, a/x, f (a)/z}, the above clauses
become C ′

1 = p(f (a)) ∨ q(f (a)), and C ′
2 = ¬p(f (a)) ∨ r(a). Using C ′

1 and C ′
2, it

resolves to C ′ = q(f (a)) ∨ r(a). The lifting claims that there is a clause C =
q(f (x)) ∨ r(x)which is resolvent for clausesC1 andC2, such that clauseC ′ is ground
instance of C. This can be realized using the unification algorithm to obtain a most
general unifier (mgu) of clauses C1 and C2, the latter two clauses resolves to C, as

{f (x)/u, x/v, x/w, f (x)/z}.

3.9.2 Unification Algorithm

A unification algorithm is central to most of the theorem-proving systems. This
algorithm receives as input a pair of expressions, and returns as output a set of
substitutions (assignments) that make the two expressions look identical.

The unification algorithm recursively compares the structures of the clauses to be
matched, working across element by element. The criteria is that,

1. the matching individuals, functions, and predicates must have the same names,
2. the matching functions and predicates must have the same number of arguments,

and
3. all bindings of variables to values must be consistent throughout the whole match.

To unify two atomic formulas in an expression A, we need to understand the
disagreement set.

Definition 3.8 Disagreement Set.

If A is any set of well-formed expressions, we call the set D the disagreement set
of A, whenever D is the set of all well-formed subexpressions of the well-formed
expressions inA, which begin at the first symbol position atwhich not all well-formed
expressions in A have the same symbol. �

Example 3.18 Find out the disagreement set for given set of atoms.

Let the string is, A = {p(x, h(x, y), y), p(x, k(y), y), p(x, a, b)}, having three predi-
cate expressions. The disagreement set for A is,

D = {h(x, y), k(y), a}. (3.22)

80 3 First Order Predicate Logic

Once the disagreement is resolved through unification for this this symbol position,
there is no disagreement at this position. The process is repeated for the new first
symbol position at which all wffs in A do not have same symbol, and so on, until A
becomes a singleton.

Evidently, ifA is nonempty and is not a singleton (a set with exactly one element),
then the disagreement set of A is not a singleton and nonempty. Also, if θ unifies A,
and A is not singleton, the θ unifies the disagreement set A. �

For A to be a finite nonempty set of well-formed expressions for which the sub-
stitution Algorithm 3.2 terminates with “return σA”, the substitution σA available as
output of the unification algorithm is called the most general unifier (mgu) of A, and
A is said to be most generally unifiable [8, 9].

Algorithm 3.2 Unification-Algorithm (Input: A, Output: σA)
1: Set σ0 = ε, k = 0
2: while true do
3: if Aσk is a singleton then
4: Set σA = σk
5: terminate
6: end if
7: Let Uk be the earliest and Vk be the next earliest element in the disagreement set Dk of Aσk

(see Eq. 3.22)
8: if Vk is a variable, and does not occur in Uk then
9: set σk+1 = σk {Uk/Vk },
10: k = k + 1
11: else
12: (A is not unifiable)
13: exit.
14: end if
15: end while

Through manually running the Algorithm 3.2 for the disagreement set in (3.22),
stepwise computation for σk is as follows:

For k = 0, and σ0 = ε,

σk+1 = σk{k(y)/h(x, y)}
⇒ σ1 = {k(y)/h(x, y)}.

which, in the next iteration becomes,

σ2 = σ1{a/k(y)}
= {k(y)/h(x, y)}{a/k(y)}.

3.9 Most General Unifiers 81

The same process is repeated for the disagreement set of 3rd argument inA, which
results to substitution set as {b/y}.

σ3 = σ2{b/y}
= {k(y)/k(x, y)}{a/k(y)}{b/y}.

On substituting these, we have,

A = {p(x, a, b), p(x, a, b), p(x, a, b}.

which is a singleton, and σ3 is mgu.
For obtaining the unifier σk , the necessary relation required between Uk and Vk

is, Vk has to be a variable, andUk can be a constant, variable, function, or predicate.
Vk may even be a predicate or function with variable.

The Algorithm 3.2 always terminates for finite nonempty set of well-formed
expressions, otherwise it would generate an infinite sequence of A,Aσ1,Aσ2, . . . ,
each of which is a finite nonempty sets of well-formed expressions, with the property
that each successive set contains one less variable than its predecessor. However, this
is impossible because A contains only finitely many distinct variables.

The Algorithm 3.2 runs in O(n2) time on the length of the terms, and an even
better. However, there exists more complex, but linear time algorithms for same.
Because,most general unifiers (mgus) greatly reduce the search, and canbe calculated
efficiently, almost all Resolution-based systems implementations are based on the
concept of mgus.

3.10 Unfounded Sets

In the well-founded semantics, the unfounded sets provide the basis for negative
conclusions. Let there is a program P (set of rules and facts in FOPL), its associated
Herbrand base is H , and suppose its partial interpretation is I . Then, some A ⊆ H
is called an unfounded set of P with respect to the interpretation I , with following
condition: for each instantiated rule R ∈ P, at least one of the following holds: (In
the rules P , we assume that p is a head, and qi are the corresponding subgoals.)

1. Some positive / negative subgoal qi of the body of the rule is false in the interpre-
tation I ,

2. Some positive subgoals qi of the body occurs in the unfounded set A.

For rule R with respect to I , a literal that makes conditions 1 or 2 above true is
called witness of unusability.

Intuitively, the interpretation I is intended model of P. The rules that satisfy
condition1 cannot beused for further derivations because their hypotheses are already
known to be false.

82 3 First Order Predicate Logic

The condition 2 in above, called unfoundedness condition, states that all the rules
which might still be usable to derive something in A, should have an atom (i.e., a
fact) in A as true. In other words, there is no single atom in A, that can be established
to be true by the rules of P (as per the knowledge of interpretation I). Therefore, if
we infer that some or all atoms in A are false, there is no way available later, using
that we could infer that an atom is true [4].

Hence, the well-founded semantics uses conditions 1 and 2 to draw negative
conclusions, and simultaneously infers all atoms in A to be false. The following
example demonstrates the construction of unfounded set from the set of rules and
facts.

Example 3.19 Unfounded set.

Assume that we have a program in predicate logic with instantiated atoms.

p(c).

q(a) ← p(d).

p(a) ← p(c),¬ p(b).

q(b) ← q(a).

p(b) ← ¬ p(a).

p(d) ← q(a),¬ q(b).

p(d) ← q(b),¬ q(c).

p(e) ← ¬ p(d).

From above rules, we see that A = {p(d), q(a), q(b), q(c)} is an unfounded set
with respect to φ (null set). Since A is unfounded, its subsets are also unfounded. The
component, {q(c)} is unfoundeddue to condition (1), because there is no rule available
to establish its truth. The set {p(d), q(a), q(b)} is unfoundeddue to condition (2) (their
subgoals or body appear in unfounded set.

There is no way available to establish p(d) without first establishing q(a) or q(b).
In other words, whether we can establish ¬q(b) to support the first rule for p(d) is
irrelevant as far as determination of unfoundedness is the concern.

Interestingly, there is no way available to establish q(a) in the absence of first
establishing p(d), and also there is no way available to establish q(b) without first
establishing q(a). Further, q(c) can never be proven. We note that among p(d), q(a),
and q(b) as goals, none can be proved without the other two or their negation as
subgoals.

The pair p(a), p(b), even though they depend on each other, but does not form
an unfounded set due to the reason that the only dependence is through negation.
Hence, it can be concluded that the any attempt for proof of p(a) and p(b) will fail,
but this claim is faulty.

The difference between sets {p(d), q(a), q(b)} and {p(a), p(b)} is as follows:
declaring any of p(d), q(a), or q(b) false (unfounded), does not create a proof that
any other element of the set is true.

3.10 Unfounded Sets 83

Finally, consider the set {p(a), p(b)}: If any of the elements p(a) or p(b) is taken
false, it becomes possible to prove that the other is true. And, if both are declared
false together, there is an inconsistency. �

3.11 Summary

First-order logic is best suited as a basic theoretical instrument of a computer theorem
proving program. From the theoretical point of view, an inference principle need
only be sound (i.e., allow only logical consequences of premises to be deduced from
them) and effective (i.e., it must be algorithmically decidable whether an alleged
application of the inference principle is indeed an application of it). The resolution
principle satisfies both.

Two types of semantics, namely, operational and fixpoint, have been defined
for programing languages. The operational semantics defines input-output relation
computed by a program in terms of the individual operations performed by the
program inside the machine. Meaning of a program is nothing but the input-output
relation obtained due to executing it in a machine.

Amachine independent alternative to semantics, called fixpoint semantics, defines
the meaning of a program as input-output relation which is the minimal fixpoint of
a transformation associated with the program.

A FOPL statement is made of predicates, arguments (constants or variables),
functions, operators, and quantifiers. Interpretation is process of assignment of truth
values (True/False) to subexpressions and atomic expressions, and computing the
resultant value of any expression/ statement.

It is easy to procedurally interpret the sets of clauses which contain at most one
positive literal per clause. However, along with this any number of negative literals
can also exist. Such sets of clauses are called Horn sentences or Horn Clauses or
simply clauses.

The Predicate logic is a nondeterministic programming language. Consequently,
given a single goal statement, several procedure declarations can have a name which
matches the selected procedure call. Each declaration gives rise to a new subgoal
statement.

A proof procedurewhich sequences the generation of derivations in the search for
a refutation behaves as an interpreter for the program incorporated in the initial set
of clauses. Defining an operational semantics for a programming language means
to define an implementation independent interpreter for it. For predicate logic, the
proof procedure behaves as such an interpreter.

TheHerbrand universe is the set of ground terms which use the function symbols
and constants that appear in the predicate logic program. The Herbrand base is
defined as the set of atomic formulas formed by predicate symbols in the program,
whose arguments are in the Herbrand universe.

Herbrands theorem is a fundamental theorem ofmathematical logic, which allows
a certain type of reduction of first-order logic to propositional logic.

84 3 First Order Predicate Logic

A substitution component is any expression of the form T/V , where V is any
variable and T is any term different from V , is called unifier. The V is called variable
of component T/V , and T is called term of the component. A most general unifier
(mgu) (i. e., simplest one) θ of literals ρ1 and ρ2 is a unifier that has the property that
for any other unifier θ

′
, there is a further substitution θ∗ such that θ

′ = θθ∗.
The backbone of most theorem-proving systems is a unification algorithm. This

algorithm returns a set of substitutions for a pair of input expressions. These substitu-
tionsmaybe assignments to variables or expressions,whichmake the twoexpressions
(or variables or functions) identical or equivalent. To prove a theorem, one obvious
strategy is to search forward from the axioms, using sound rules of inference. We
try to prove a theorem by refutation. It requires to show that negation of a theorem
cannot be True.

Exercises

1. Apply the Resolution theorem to prove:

“Socrates is mortal”, given that
All men are mortal, and
Socrates is man.

2. What are the other methods for automated theorem proving? Explain any three
in brief.

3. Convert the following into clause form:

∀x[p(x) ∧ q(x)] ⇒ [R(x, I) ∧ ∃y(∃z r(y, z)

⇒ S(x, y))] ∨ ∀x T (x).

4. Show that a formula inCNF is valid if and only if each of its disjunctions contains
a pair of complementary literals P and ¬P.

5. Prove or disprove the followings:

a. If S is a first-order formula, then S is valid iff S → ⊥ is contradiction.
b. If S is a first-order formula and x is a variable, then S is contradiction iff

∃xS is a contradiction.

6. Using the resolution principle prove the validity of following formula:

∀x∃y(p(f (f (x)), y) ∧ ∀z(p(f (x), z)
→ p(x, g(x, z)))) → ∀x∀y p(x, y).

7. Is the predicate logic deterministic or nondetermnistic programming language?
justify for yes / no.

Exercises 85

8. Consider a set of statements of FOPL that uses two 1-place predicates: Large
and Small. The set of object constants are a, b. Find out all possible models for
this program. For each of the following sentences find out the models in which
each of the sentence becomes true.

a. ∀x Large(x).
b. ∀x ¬Large(x).
c. ∃x Large(x).
d. ∃x ¬Large(x).
e. Large(a) ∧ Large(b).
f. Large(a) ∨ Large(b).
g. ∀x [Large(x) ∧ Small(x)].
h. ∀x [Large(x) ∨ Small(x)].
i. ∀x [Large(x) ⇒ ¬Small(x)].

9. Find out the clauses for the following FOPL formulas.

a. ∃x∀y∃z(P(x) ⇒ (Q(y) ⇒ R(z))).
b. ∀x∀y((P(x) ∧ Q(y)) ⇒ ∃zR(x, y, z)).

10. Define the required predicates and represent the following sentences in FOPL.

a. Some students opted Sanskrit in fall 2015.
b. Every student who opts Sanskrit passes it.
c. Only one student opted Tamil in fall 2015.
d. The best score in Sanskrit is always higher than the best score in Tamil.
e. There is a barber in a village who shaves every one in the village who does

not shave himself / herself.
f. A person born in country X , each of whose parents is a citizen of X or a

resident of X , is also a resident of X .

11. Determine whether the expression p and q unify with each other in each of the
following cases. If so, give the mgu, if not justify it. The lowercase letters are
variables, and upper are predicate, functions, and literals.

a. p = f (x1, g(x2, x3), x2, b); q = f (g(h(a, x5), x2), x1, h(a, x4), x4).
b. p = f (x, f (u, x)); q = f (f (y, a), f (z, f (b, z))).
c. p = f (g(v), h(u, v)); q = f (w, j(x, y)).

12. What can be the strategies for combination of clauses in resolution proof? For
example, if there are N clauses, in how many ways they can be combined?

13. Why resolution based inference is more efficient compared modus-ponens?
14. Let Γ is knowledge base and α is inference from Γ . Give a comparison among

the following inferences, in terms of their performances:

a. Proof by Resolution, i.e., Γ � α,
b. Proof by Modus poenes, i.e., Γ � α,
c. Proof by Resolution Refutation, i.e., Γ ∪ {¬α} � φ.

86 3 First Order Predicate Logic

15. Given n number of clauses, draw a resolution proof tree to demonstrate combin-
ing them. Suggest any two strategies.

16. Given the knowledge base in clausal form, is it possible to extract answers from
that making use of resolution principle? For example, finding an answer like,
“Where is Tajmahal located?”

17. Represent the following set of statements in predicate logic, convert them to
clause from, then apply the resolution proof to answer the question : Did Ranjana
kill Lekhi?
“Rajan owns a pat. Every pat owner is an animal lover. No animal lover ever
kills an animal. Either Rajan or Ranjana killed a pat, called Lekhi.”

18. Explain:

a. Unification
b. Skolemization
c. Resolution principle versus resolution theorem proving.

19. Use resolution to show that the following set of clauses is unsatisfiable.

{p(a, z),¬p(f (f (a)), a),¬p(x, g(y)) ∨ p(f (x), y)}.

20. Derive ⊥ from the following set of clauses using the resolution principle.

{p(a) ∨ p(b),¬p(a) ∨ p(b), p(a) ∨ ¬p(b),¬p(a) ∨ ¬p(b)}.

21. Give resolution proofs for the inconsistency ∀x shaves(Barber, x) →
¬shaves(x, x), where Barber is a constant.

22. Consider ab locks-world described by facts and rules:

Facts:

ontable(a), ontable(c), on(d , c), on(b, a), heavy(b),
cleartop(e), cleartop(d), heavy(d),wooden(b), on(e, b).

Rules:

All blocks with clear top are black.
All wooden blocks are black.
Every heavy and wooden block is big.
Every big and black block is on a green block.

Making use of resolution theorem find out the block that is on the green block.
23. Given the following knowledge base:

If x is on top of y then y supports x.
If x is above y and they are touching each other then x is on top of y.
A phone is above a book.
A phone is touching a book.

Exercises 87

Translate the above knowledge base into clause form, and use resolution to show
that the predicate “supports(book, phone)” is true.

24. How resolution can be used to show that a sentence is:

a. Valid?
b. Unsatisfiable?

25. “The application of resolution principle for theorem proving is a non-
deterministic approach.” justify this statement.

26. a. Use Herbrand’s method to show that formula,

∀x shaves(barber, x) → ¬shaves(x, x)

is unsatisfiable?
b. What is Herband’s universe for S = {P(a),¬P(f (x)) ∨ P(g(x))}?

27. Prove that ∀x¬p(x) and ¬∃x p(x) are equivalent statements.
28. Let S and T be unification problems. Also, let σ be a most general unifier for S

and θ be a most general unifier for σ(T). Show that θσ is a most general unifier
for S ∪ T .

29. Write the axioms describing predicates: grandchild, grandfather, grandmother,
soninlaw, fatherinlaw, brother, daughter, aunt, uncle, brotherinlaw, and first-
cousin.

30. For each pair of atomic sentences in the following, find out the most general
unifier.

a. knows(father(y), y) and knows(x, x).
b. {f (x, g(x)) = y, h(y) = h(v), v = f (g(z),w)}.
c. p(a, b, b) and p(x, y, z).
d. q(y, g(a, b)) and q(g(x, x), y).
e. older(father(y), y) and older(father(x), ram).

31. Explain what is wrong with the below given definition of set membership pred-
icate ∈:

∀x, s : x ∈ {x | s}
∀x, s : x ∈ s ⇒ ∀y : x ∈ {y | s}.

32. Consider the following riddle: “Brothers and sisters have I none, but that man’s
father is my father’s son”. Use the rules of kinship relations to show who that
man is?

33. Let the following be a set of facts and rules:
Rita, Sat, Bill, and Eden are the only members of a club.
Rita is married to Sat.
Bill is Eden’s brother.
Spouse of every married person in the club is also in the club.

88 3 First Order Predicate Logic

a. Represent the above facts and rules using predicate logic.
b. Show that they do not conclude “Eden is not married.”
c. Add some some more facts, and show that now the augmented set conclude

that Eden is not married.

References

1. Chowdhary KR (2015) Fundamentals of discrete mathematical structures, 3rd edn. EEE, PHI
India

2. Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7(3):201–
215. https://doi.org/10.1145/321033.321034

3. Emden V, Kowalki RA (1976) The semantics of predicate logic as a programming language. J
ACM 23(4):733–742

4. Av Gelder et al (1991) The well-founded semantics for general logic programs. J ACM
38(3):620–650

5. LuckhamD,NilssonNJ (1971) Extracting information from resolution trees. Artif Intell 2:27–54
6. Nilsson NJ (1980) Principles of artificial intelligence, 3rd edn. Narosa, New Delhi
7. Robinson JA (1963) Theorem-proving on the computer. J ACM 10(2):163–174
8. Robinson JA (1965) A machine-oriented logic, based on the resolution principle. J ACM

12(1):23–41
9. Stickel ME (1981) A unification algorithm for associative-commutative functions. J ACM

28(3):423–434

https://doi.org/10.1145/321033.321034

	3 First Order Predicate Logic
	3.1 Introduction
	3.2 Representation in Predicate Logic
	3.3 Syntax and Semantics
	3.4 Conversion to Clausal Form
	3.5 Substitutions and Unification
	3.5.1 Composition of Substitutions
	3.5.2 Unification

	3.6 Resolution Principle
	3.6.1 Theorem Proving Formalism
	3.6.2 Proof by Resolution

	3.7 Complexity of Resolution Proof
	3.8 Interpretation and Inferences
	3.8.1 Herbrand's Universe
	3.8.2 Herbrand's Theorem
	3.8.3 The Procedural Interpretation

	3.9 Most General Unifiers
	3.9.1 Lifting
	3.9.2 Unification Algorithm

	3.10 Unfounded Sets
	3.11 Summary
	References

