
Chapter 20
Automatic Speech Recognition

Abstract There are basically two application modes for automatic speech recog-
nition (ASR): using speech as spoken input or as knowledge source. Spoken input
addresses applications like dictation systems and navigation (transactional) systems.
Using speech as a knowledge source has applications like multimedia indexing sys-
tems. The chapter presents the stages of speech recognition process, resources of
ASR, role and functions of speech engine—like, Julius speech recognition engine,
voice-over web resources, ASR algorithms, language model and acoustic models—
like HMM (hidden Markov models). Many open-source tools like—Kaldi speech
recognition toolkit, CMU-Sphinx, HTK, and Deep speech tools’ introduction, and
guidelines for their usages are presented. These tools have interfaces with high-level
languages like C/C++ and Python. The is followed with chapter summary and set of
exercises.

Keywords Automatic speech recognition · ASR · Multimedia indexing · ASR
resources · Language model · Acoustic model · Julius · Kaldi · CMU-Sphinx ·
HTK · Deep tools

20.1 Introduction

Speech has long been viewed as the future of computer interfaces, promising signif-
icant improvements in ease of use over the traditional keyboard and mouse. There
are basically two application modes that exist for speech recognition: 1. Speech as
spoken input to computers, and 2. The speech is used as data or knowledge source.
The first application mode comprises the potential applications as, dictation systems,
navigation, and transactional systems.

In the application of dictation, a system transcribes the spoken words into written
text, and for dictating letters, reports, business correspondence, or e-mail messages,
to the computer/machine.

The speech can be used in the form of commands to navigate around the
applications, for example, selection of main application, then its one of the sub-
applications, and sub-sub-application, till you reach to the command to execute the
final application.

© Springer Nature India Private Limited 2020
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_20

651

http://crossmark.crossref.org/dialog/?doi=10.1007/978-81-322-3972-7_20&domain=pdf
https://doi.org/10.1007/978-81-322-3972-7_20

652 20 Automatic Speech Recognition

The speech can be used for transactional applications, i.e., to use speech in the
form of command or command sequence to cause a transaction to be performed. For
example, the speech-based transactions can be purchase of stock, book a flight ticket,
reserve an itinerary for tour, or doing the fund transfer.

The second mode of speech application, i.e., speech as a knowledge source has
applications like meeting capture, and knowledge management. These applications
are basically multimedia indexing systems that use speech recognition to transcribe
words verbatim from an audio file into text. Subsequently, the IR (Information
Retrieval) techniques are applied to the transcript to create an index with time offsets
into the audio. Users can access the index using text keywords to search a collection
of audio or video documents.

We understand both written and spoken language, and also know that skill of
reading is learned much later. We now focus on spoken language. The problem
of understanding the spoken language can be divided into major parts discussed
below [6].

Phonological

The phonological processing step relates sounds to the words we recognize. Phone
is smallest unit of sound, and the phones are aggregated into word sounds.

Morphological

This is lexical knowledge, which relates to word construction from basic units called
morphemes. A morpheme is the smallest unit of meaning, for example, the construc-
tion of friendly from friend and ly.

Syntactic

It is knowledge about how the words are organized to construct meaningful and
correct sentences.

Pragmatics

It is a high-level knowledge about how to use sentences in different contexts and how
the contexts effect the meanings of the sentences.

World

It is useful in understanding the sentence and carry out the conversation. It includes
the other person’s beliefs and goals.

Speech recognition by machine is important, as many problems get solved if our
computer/laptop can recognize the spoken works.We know, in the present days it has
become possible to do search in some of the search engines by speaking rather than
entering the keywords. In the following, we discuss some of the potential applications
of automatic speech recognition (ASR).

Learning Outcomes of this Chapter:

1. Distinguish the goals of sound recognition, speech recognition, and speaker recog-
nition and identify how the raw audio signal will be handled differently in each
of these cases. [Familiarity]

20.1 Introduction 653

2. Implement a feature-extraction algorithm on real data, e.g., an edge or corner
detector for images describing a short slice of audio signal. [Usage]

3. Language model and acoustic models for speech recognition. [usage]
4. Implement an algorithm combining features into higher level percepts, e.g.,

phoneme hypotheses from an audio signal. [Usage]
5. Evaluate the performance of the underlying feature extraction, relative to at least

one alternative possible approach (whether implemented or not) in its contribution
to the classification task. [Assessment]

6. Tools for speech recognition system. [Usage]

20.2 Automatic Speech Recognition Resources

At the simplest level, the programs that are speech driven can be characterized by the
words or phrases we say to a given application and how that application interprets
them. An application’s active vocabulary is what it listens for, determines what it
understands. The speech recognition process makes use of a speech engine, which
is language-independent, and what it recognizes can be from several domains. A
domain comprises a vocabulary set, pronunciation models, word-usage models that
are associated with specific speech applications. An acoustic component is also
present in the speech recognition engine, as part of voice models used by the speech
engine during the recognition. The voice models can be speaker independent, or may
be unique to the speaker.

Figure20.1 shows the resources used by a typical speech engine during the process
of speech recognition. The domain-specific resources can vary dynamically during

Fig. 20.1 Speech
recognition resources

Word-usage models

Pronunciations

Vocabularies

CS domain

Human genome domain

World History domain

English
German

Speaker-independent
Voice-model

User voice

Speech
engine

Speech in Words, commands,

or index terms out

654 20 Automatic Speech Recognition

a given recognition session. The vocabulary is one of the domain-specific resources.
Some of the major applications are as follows [7].

1. Dictation application. It transcribes spoken input directly into the document’s
text content.

2. Transaction application. It facilitates a dialogue leading to a transaction, and
3. Multimedia indexing application. This application can generate words, which act

as index terms into the multimedia.

As far as application development is concerned, speech engines typically offer a
combination of programmable APIs (Application Programming Interfaces) and tools
that are helpful to create and define vocabularies and pronunciations for the words
they contain. A transactional application may use a smaller, task-specific vocabulary
of a few hundred words, but a dictation or multimedia indexing application may use
a predefined large vocabulary, some times as large as 100,000 words or so.

A small size of vocabularies is enough for some applications. However, they pose
usability problems in the system as their size grows. This is because, the system
requires a strict enumeration of the phrases, which must be recognizable by any of
the given states in the application. To overcome this limitation, speech grammars
for specific tasks are defined in the transaction-based applications, which provide an
extension to the single words or phrases a vocabulary supports. The speech grammars
are helpful in constructing structured collection of words and phrases bound together
by rules that define the set of speech streams the speech engine can recognize at a
given time. For example, using these grammars, the developers can define a grammar
that permits flexible ways of speaking a date, a dollar currency, a number, etc. The
prompts that cue users on what they can say next, are an important aspect of defining
and using grammar. Further, the speech grammars can serve as a critical component
of enabling the voice over the Web, discussed in the next section.

20.3 Voice Web

To have voice facility over theweb, a group of industry organizations, which included
AT&T, IBM, Lucent, andMotorola, had established the VoiceXML Forum, inMarch
1999 to develop and promote a new language—the Voice extensible Markup Lan-
guage (http://www.w3.org/Voice/). The VoiceXML forum was established with the
objective, to bring the content delivery to interactive voice response applications,
using Web-based developments [7, 8].

The VoiceXML (or VXML) is a digital document standard for specifying inter-
active media and voice dialogues between humans and machines. This language
has applications for developing audio and voice response applications, such as for
banking systems, customer services, and for automated customer service portals.
VoiceXML applications are commonly used in industries and segments of com-
merce, some of the examples are as follows.

http://www.w3.org/Voice/

20.3 Voice Web 655

Speech synthesis,
Recognize spoken and touch-tone key input,
Digitize audio,
Order inquiry,
Package tracking,
Flight tracking,
Voice access to email,
Emergency notification,
Audio news magazines,
Can record spoken input,
Like voice dialing, and
Directory assistance.

VoiceXML applications are developed and deployed in all the above major fields.
These applications are analogous to howawebbrowser interprets andvisually renders
the Hypertext Markup Language (HTML) it receives from a web server. In similar
ways, theVoiceXMLdocuments are interpreted by a voice browser, and users interact
with voice browsers via the public network like Internet. Like HTML, the VoiceXML
text provides tags that instruct the voice browser to provide the functions of automatic
speech recognition, speech synthesis, dialogue management, and audio playback.

Figure20.2 shows the architecture of VoiceXML model, which makes use of
standard client–server paradigm that integrates voice and data services. A voice
service consists of sequence of voice interaction dialogues between a user and an
implementation platform. A document server, which can be external to the imple-
mentation platform, provide the dialogues. The overall service logic is maintained
by the document servers or web servers, which also perform database and legacy
system operations, and produce dialogues.

A VoiceXML document specifies each interaction dialogue that is conducted by
the VoiceXML interpreter. The following is an example of a VoiceXML document:

Fig. 20.2 VoiceXML
architectural model

VoiceXML
Interpreter Interpreter

Context

Imprementation
platform

Document
server

Request
Document

for

656 20 Automatic Speech Recognition

<vxml version="3.0" xmlns="https://www.w3.org/TR/voicexml30/">

<form>

<block>

<prompt>

This is a VXML Code!

</prompt>

</block>

</form>

</vxml>

A user’s input affects dialogue interpretation, and the system collects this infor-
mation in the form of requests, which it submits to a document server. The later can
replywith anotherVoiceXMLdocument to continue the user’s sessionwith other dia-
logues. The grammar-based recognition vocabularies are commonly used to support
voice services in VoiceXML applications.

20.4 Speech Recognition Algorithms

The initial attempts for speech recognition were targeted to use expert knowledge of
speech production and perception processes. Soon it was found that such knowledge
was inadequate for capturing the complexities of continuous speech. Currently, the
statistical modeling techniques trained using hours of speech have provided most
speech recognition advancements [4].

The process of speech recognition starts with a sampled speech signal. This signal
has a good deal of redundancy because the physical constraints on the articulators
that produce speech—the glottis, tongue, lips, and so on—prevent them from mov-
ing quickly. Consequently, the ASR (Automatic Speech Recognition) system can
compress information by extracting a sequence of acoustic feature vectors from the
signal.

Typically, the system extracts a single multidimensional feature vector every 10
ms that consists of 39 parameters. These feature vectors, which contain information
about the local frequency content in the speech signal, are called acoustic observa-
tions because they represent the quantities the ASR system actually observes. The
system attempts to infer the spoken word sequence that could have produced the
observed acoustic sequence.

To simplify the design, we assume that speaker’s vocabulary is known to the ASR
system. Having adopted this approach, it is helpful in restricting the search for the
possible word sequences only within the words listed in the ASR lexicon. The ASR
lists the vocabulary and provides phonemes—a set of basic units of words, which
are usually individual speech sounds to pronounce each word.

The commercially available lexicons usually include tens of thousands of words.
The length of the word sequence uttered by the speaker is not necessarily be known,
for the same word by different speakers, as well as by the same speaker at two dif-

20.4 Speech Recognition Algorithms 657

ferent times. Consider that length of the word sequence is N . If V is taken as the size
of the lexicon, the ASR system can hypothesize V N possible word sequences. The
language constraints dictate that these word sequences are not equally likely to occur.
For example, the word sequence “please call me” is more likely to occur than the
sequence “please me call.” In addition, the acoustic feature vectors extracted from
the speech signal can provide important clues about the phonemes which produced
them. The sequence of phonemes that corresponds to the acoustics observations, can
imply the word sequences that could have produced the sequence of these sounds.
Hence, the acoustic observations experienced provide an important source of infor-
mation that can help further narrow down the space of possible word sequences.
The ASR systems use the acoustic observations information to compute the prob-
ability that these observed acoustic feature vectors have been produced when the
speaker uttered a particular word sequence. Essentially, the system efficiently com-
putes these probabilities and outputs the most probable sequence of words as a
decoded hypothesis.

The most successful speech recognition systems of today, use a generative proba-
bilistic model, shown as Eq.20.1. The speech recognizer tries to find the probability
of word sequence ŵN

1 (of N words) that maximizes the word sequence’s probabil-
ity, having given some observed acoustic sequence yT1 . This approach makes use of
Bayes’ theorem to compute the conditional probability of p(wN

1) given yT1 . When
Bayes equation is expanded in second line of equation (20.1), it ignores the denomina-
tor term (p(yT1)), common for all possible word sequences. This equation maximizes
the product of two terms: the probability of the acoustic observations given the word
sequence (p(yT1 | wN

1)) and the probability of the word sequence itself (p(wN
1)).

ŵN
1 = argmax

︸ ︷︷ ︸

wN
1

p(wN
1 | yT1)

= argmax
︸ ︷︷ ︸

wN
1

p(yT1 | wN
1)p(wN

1). (20.1)

Figure20.3 shows the process described by Eq.20.1 as a block diagram. The
lexicon, language model, and acoustic model components construct hypotheses for

Fig. 20.3 Speech recognition system block diagram

658 20 Automatic Speech Recognition

interpreting a speech sample. Block 1, extracts multidimensional features from the
sampled speech signal. In Block 5, hypothesis search is carried out, where the search
hypothesizes a probable word sequence based on the observation of features, as well
the input from threemodels—lexicon, language, and acoustic. The other components
drive the hypothesis search as follows:

– Lexicon in Block 2 defines the possible words that the search can hypothesize,
where each word is a linear sequence of phonemes;

– Language model of Block 3 models the linguistic structure (sequence of words
i.e., p(wN

1)), but does not contain any knowledge about the relationship between
the feature vectors and the words, and

– The acoustic model in Block 4 models the relationship between the feature vectors
and the phonemes (p(yT1 |wN

1)), which might have produced the sounds.

Getting the best performance for feature extraction and hypothesis searches
requires customizing the ASR system for individual speakers. The following section
explains the hypothesis in detail.

20.5 Hypothesis Search in ASR

Three basic components comprise the hypothesis search: a lexicon, a languagemodel,
and an acoustic model. Each one is described in detail in the following [4].

20.5.1 Lexicon

A typical lexicon is shown in Table20.1 with each lexicon’s possible pronunciations
constructed from phonemes. English language has 44 phonemes. Despite there being
just 26 letters in the language, there are 44 unique sounds (phonemes). These sounds
are helpful in distinguishing one word or meaning from another. An individual word
canhavemultiple pronunciations, for example, theword “the” has twopronunciations
as shown in Table20.1. These multiple pronunciations complicate the process of
recognition. The hypothesis search chooses the lexicon on the basis of task, trading
off vocabulary size with word coverage. Although a search can easily find phonetic
representations for commonly used words in various sources, task-dependent jargon
often requires writing out pronunciations by hand.

20.5.2 Language Model

The search for the most likely word sequence corresponding to the speech features
sampled, requires the computation of terms, p(yT1 |wN

1) and p(wN
1) in Eq.20.1. The

20.5 Hypothesis Search in ASR 659

Table 20.1 Typical lexicon Lexicon Phonetic representation

The dhah

The dhiy

Cat kaet

Pig pihg

Two tuw

term p(wN
1) is called the languagemodel. The computation requires the assignment of

probability to a sequence of words wN
1 . A simplest way we can imagine to determine

such a probability, is to compute the relative frequencies of different word sequences,
like we discussed earlier, that “Please call me” is more probable than “Please me
call.” Note that, the total number of different sequences can grow exponentially
with the length of the sequence, making this approach computationally infeasible.
Therefore, there is a need of approximations.

A typical approximation used assumes the probability of current word in the
sequence as depending on previous twowords only, called 2-grams, against n-grams.
When this is considered, the computation can approximate the probability of theword
sequence as follows:

p(wN
1) ≈ p(w1)p(w2|w1)

i=N
∏

i=3

p(wi |wi−1,wi−2). (20.2)

The term p(wi |wi−1,wi−2) can be estimated through computation by counting
the relative frequencies of word trigrams, or triplets:

p(wi |wi−1,wi−2) ≈ N (wi ,wi−1,wi−2)

N (wi−1,wi−2)
. (20.3)

In the above, N is the associated event’s relative frequency. Typically, training
such a language model requires using hundreds of millions of words to estimate
p(wi |wi−1,wi−2) for different word sequences. Even then, many trigrams do not
occur in the training text, so the computation must smooth the probability estimates
to avoid zeros in the probability assignment.

20.5.3 Acoustic Models

An acoustic model computes the probability of feature vector sequences (yT1) under
the assumption that a particular word sequence (wN

1) produced the vectors. In other
words, an acoustic model is P(yT1 |wN

1).

660 20 Automatic Speech Recognition

Fig. 20.4 Hidden Markov
model for a phoneme

p1 p3p2

p(y/1) p(y/2) p(y/3)

1− p1 1− p2 1− p3s1 s2 s3

Due to inherently stochastic nature of the speech, a speaker never utters a word
exactly the same way twice. The variation in a word’s or phoneme’s pronunciation
manifests itself in two ways: duration and spectral contents, also known as acoustic
observations. In addition, a particular phoneme’s spectral content are effected due
to phonemes in surrounding context, a phenomenon called co-articulation effect. It
is, therefore, necessary that acoustic models used should take into account these co-
articulation effects. One of the popular acoustic models is based on HMM (Hidden
Markov Model).

Hidden Markov Models

A hidden Markov model offers a natural choice for modeling speech’s stochastic
aspects. HMMs function as probabilistic finite-state machines—the model has a set
of states, and its topology specifies the allowed transitions between them. At every
time frame, an HMM makes a probabilistic transition from one state to another and
emits a feature vector with each transition.

Figure20.4 represents a phoneme’s transitions using a HMM. The transitions in
the waveform of a phoneme correspond to state transitions in the HMM. We may
think of a HMM as a finite automata with transitions governed by probabilities.
Accordingly, we take a set of state transition probabilities in the HMM as, p1, p2,
and p3, due to which the possible transitions between the states of the HMM are
governed. The probabilities specify the probabilities of going from one state at time
t to another state at time t + 1. The feature vectors emitted while making a particular
transition in the speech waveform, represent the spectral characteristics of the speech
at that point. These feature vectors vary corresponding to varying pronunciations of
the phoneme. A probability distribution or probability density function can model
this variation. In Fig. 20.4, the functions p(y|1), p(y|2), p(y|3), could be different
for different transitions. Typically, these distributions are modeled as parametric
distributions, which are a mixture of multidimensional Gaussian distributions.

The HMM in Fig. 20.4 has three states, representing the pronunciation of a
phoneme starting at state s1. Then, the phoneme corresponds to a sequence of tran-
sitions, and terminating at state s3. Duration of a phoneme is equal to the number
of time frames required to complete the transition sequence. The transition proba-
bilities p1...p3 implicitly indicate probability distribution that governs the duration
of the phoneme. If any of these transitions exhibits high self-loop1 probabilities,
the model spends more time in that state, consequently consuming a longer time

1for example, the word “speech” can be also pronounced as “spee...ech”, repeating the sound of
’e’, which creates a self-loop.

20.5 Hypothesis Search in ASR 661

to go from the first to the third state. Note that, how time duration a self-loop may
repeat, in unknown and varies from speaker to speaker. However, a self-loop (a state)
may repeat on itself few times, typically 2-5. However, some words’ phoneme(s)
may have exceptionally long loop, for example, chanting of Aum.2 The probability
density functions associated with these three transitions govern the feature vector
output.

A fundamental task required to be performed through an HMM is computation
of the likelihood that it produces a given sequence of acoustic feature vectors. For
example, assume that the system extracted T feature vectors from speech corre-
sponding to the pronunciation of a single phoneme, now the system seeks to infer
which phoneme from a set of, say, 50 was spoken, given these feature vectors. The
procedure for inferring the phoneme first assumes that the i th phoneme was spoken,
then finds the likelihood that the HMM for this phoneme produced the observed
feature vectors. The system then hypothesizes that the spoken phoneme model is the
one which has the highest likelihood of matching the observed sequence of feature
vectors.

If the sequence of HMM states is known, we can easily compute the probability
of a set of feature vectors. For this, the system computes the likelihood of the t th
feature vector yt using the probability density function for the HMM state at time t .
Having done this, the likelihood that set of all the T feature vectors has occurred is
simply the product of all the individual likelihoods yt . Usually, it is not possible to
know the actual sequence of state transitions, for the computation of likelihood, all
possible state sequences are summed. Given that the HMMdependencies are local, it
is possible to derive efficient formulas for performing these calculations recursively.

Parameter Estimation

It is necessary that in advance to using of an HMMs to compute the likelihood
values of feature vector sequences, the HMMs needs to be trained to estimate the
model’s parameters. The training process requires the availability of a large volume
of training data in the form of mappings of “spoken word sequences” versus “fea-
ture vectors” extracted from the corresponding speech signals. The commonly used
process to find a particular correspondence is, estimation of maximum likelihood
(ml) function (θ̂ml). Given that a correct word sequence is known corresponding to
the feature vector sequence, the maximum likelihood computation process tries to
choose those HMM parameters, which maximize the likelihood of training feature
vector. The computation of feature vectors also keeps target for obtaining the correct
word sequence. Consider that yT1 is the representation for stream of T acoustic obser-
vations, and let wN

1 represents the correct word sequence; for these, the maximum
likelihood function estimate represented by θ̂ml is,

θ̂ml = argmax
︸ ︷︷ ︸

θ

log[pθ (y
T
1 |wN

1)]. (20.4)

2chanting of Aum is a common practice during meditation and yoga (IPA:/5wm/), where sound of
IPA ’‘m’ is repeated.

662 20 Automatic Speech Recognition

In the beginning, an HMM is constructed for a correct word sequence to start
the training process. Then, for each next word, the HMM is constructed by con-
catenating the HMMs for the phonemes that constitute the next word. The word
HMMs are concatenated to construct the HMM for the complete utterance. As an
example, the words “we” and “were” have corresponding phonemes as “W IY” and
“W ER”, respectively. Hence, HMM for the utterance “we were” would consist of
the concatenation of HMMs of four phonemes “W IY W ER”.

The training phase of an HMM assumes that it is possible to obtain the acoustic
observations yT1 by the system, by traversing HMM from initial state to final state
in total T time-frames. However, we know that system cannot trace the actual state
sequence, e.g., due to the loops. Therefore, ml estimation assumes that this state
sequence is hidden, and thus, what is best possible is to average out all the state
sequence values. The system can express the maximization of Eq.20.4 in terms of
the HMM’s hidden states st at time t , as follows:

argmax
︸ ︷︷ ︸

θ

T
∑

t=1

∑

st

pθ (st |yT1) log[pθ̂ (yt |st)]. (20.5)

An iterative process is used to solve Eq.20.5, with each iteration having two steps:
1. An expectation step, and 2.A maximization step. The expectation step computes
the posterior probability pθ (st |yT1), or count of a state. The posterior probability
is conditioned on all the acoustic observations. The system makes use of current
parameter estimate of HMM, and the computation is performed using forward–
backward algorithm.Theparameter θ̂ is chosenby themaximization step tomaximize
Eq.20.5. For Gaussian nature of the probability function, the computation can derive
closed-form expressions for this step [4].

20.6 Automatic Speech Recognition Tools

Before we proceed to understand some of the commonly available tools for speech
recognition, let us try to understand some of the important terminology of speech
recognition.

Automatic speech recognition (ASR) or simply the speech recognition, or
computer-based speech recognition, is a process of converting the speech into a
sequence of words, using some algorithms which have been implemented as pro-
grams. A standard way of doing this is to first split the utterances in the speech
waveform with respect to certain parameters of speech recognition. Some of these
are: presence of voice activity, duration, pitch, voice quality, voice intensity, S/N
(signal to noise) ratio, and the strength of Lombard effect.3 This is followed with

3Lombard effect: Involuntary tendency of speakers to increase their vocal effort particularly when
speaking in loud background to enhance the audibility of their voice. Due to the Lombard effect, not

20.6 Automatic Speech Recognition Tools 663

recognition of each utterance. The important factors to be considered during the
recognition are detailed in the following paragraphs.

Concept of Features

The parameters or values in a complete waveform signal for a given speech is very
large. Therefore, to optimize it, a given speech is divided into a large number of
frames, such that each frame is of small length, typically 10 milliseconds. Each
such frame is used to extract 39 different features, i.e., 39 different numerical values
representing speechoptimized to 1 frame.Thesevalues of one frameare called feature
vector. Each such vector that corresponds to a speech segment of ten milliseconds is
numerical representation of the speech of that duration.

Concept of Model

We need a mathematical model, called concept model, that has a representation to
gather common attributes of spoken words. Such a model needs to be evaluated for
various characteristics, like, how adaptive it is for the changing situations, how well
this model fits into practice, and how well it can be configured?

Concept of Matching Process

It would require a lot of time for comparing the feature vectors with all the models.
Hence, the search should be optimized for choosing the best matching variant.

20.6.1 Automatic Speech Recognition Engine

Julius is a high- performance continuous speech recognition software, based on word
N -grams. It is able to perform recognition at the sentence level with a vocabulary of
the order of tens of thousands of words. Julius can realize high-speed speech recog-
nition on ordinary laptop/PC, can perform the speech recognition at near real time,
and can achieve typically a recognition rate of greater than 90% using a vocabulary
of 20, 000-words, for dictation tasks. Julius is multipurpose, i.e., by recombining the
pronunciation dictionary, language, and acoustic models, one can build task-specific
systems. Its code is open source, so one can recompile the system for other platforms
or alter the code for specific needs [2].

Figure20.5 shows the structure of Julius speech recognition system. The language
model of Julius uses N -gram mode, and context-dependent HMM (Hidden Markov
Model) is used as Acoustic model. As shown in the figure, the input speech is pro-
cessed through two passes: first pass is 2-gram frame synchronous beam-search (a
high-speed approximate search), and second pass is 3-gram N -best stack decoding,
which is a high precision technique. It can do online recognition using PC/laptop’s

only the loudness increases, but also the other acoustic features such as pitch, rate, and duration of
syllables. The Lombard effect also results in an increase in the signal-to-noise ratio of the speaker’s
signal.

664 20 Automatic Speech Recognition

Frame synchronous

beam search
(1-best)

Stack decoding

search
(N-best)

Julius

Context-dependent HMM
(cross word approx.) (no approx.)

word
2-gram lexicon word

3-gram
Language
Model

Acoustic
Model

Word
sequence

Input
speech

word

Index
trellis

Fig. 20.5 Julius speech recognition system

microphone or can use any audio device. The first pass of Julius segments input with
short pauses, and the second pass sequentially decodes these segments and slots to
the results. During the first pass, when a short pause has the maximum likelihood at
a certain point of time, a break is placed at that point and second pass is executed
on that utterance segment. Due to this process, word constraints are preserved as the
context within a utterance segment, and first pass may continue over to the next utter-
ance. Using the above sequence of steps, an input speech file with multiple sentences
can be decoded.

20.6.2 Tools for ASR

Speech Recognition is available in English, and many other languages, and this
feature is common in most smart phones, laptops, and PCs. In the following, we
discuss basic tools available as open source.

Kaldi Speech Recognition Toolkit

Kaldi is an open-source speech recognition toolkit, written in C++ language, and
works under the Apache platform.

It is a finite-state transducer (FST) based framework, with linear algebra support.
Figure20.6 shows different components of Kaldi: the library modules are grouped
together, which depend on two types of libraries, 1. linear algebra libraries (the
numerical algebra libraries) and 2. OpenFST (finite-state framework). These two
external libraries are also freely available as open source [3, 5].

Access to the library functionalities is provided through command-line tools writ-
ten in C++. These tools are called from a scripting language, for building and running
a speech recognizer. Each tool has a very specific functionality with a small set of
command-line arguments: for example, there are separate commands to be executed

20.6 Automatic Speech Recognition Tools 665

Fig. 20.6 Kaldi speech
recognition toolkit

BLAS/LAPACK OpenFST

External Libraries

Kaldi C++ Library

Kaldi C++ Executables

(Shell) Scripts

for accumulating statistics, summing accumulators, and updating a GMM-based
(Gaussian Mixture Models) acoustic model. For language modeling (LM), Kaldi
uses FST-based framework, hence, in principle it can use any language model that
can be represented as FST.

CMU-Sphinx

Since its release as an open-source code in 1999, CMU-Sphinx provides a platform
for building speech recognition applications. It is used in desktop control software,
telephony platforms, intelligent houses, computer-assisted language learning tools,
information retrieval, and mobile applications. Traditionally, CMU-Sphinx provides
support for low-resource and underdeveloped languages. It is a speech recognition
toolkit with tools to build speech applications, which makes use of technologies
such as C, cross-platform, HMM (Hidden Markov Models), JavaScript, and Python.
CMU-Sphinx contains a number of packages for different tasks and applications.
The following is the list:

Sphinx4—adjustable, modifiable recognizer written in Java, and
Sphinxtrain—acoustic model training tools.
Pocketsphinx—lightweight recognizer library written in C, and
Sphinxbase—support library required by Pocketsphinx.

Deep Speech Tool

It is a simple end-to-end deep learning based speech system, which when combined
with a languagemodel, achieves higher performance than traditionalmethods on hard
speech recognition tasks. The deep tool is realized by training a large recurrent neural
network (RNN) that usesmultipleGPUs and thousands of hours of data.Due towhich
the system learns directly from data, and there is no need for specialized components
for speaker adaption, like in other systems, neither it needs noise filtering. The more
traditional systems use acoustic models and Hidden Markov Models(HMM) [1].

The RNN,which is core of this system, is trained to speech spectrograms to gener-
ate English text transcriptions. A training setχ = {(x (1), y(1)), (x (2), y(2)), ...} is used
to sample a single utterance x and a label y, where each utterance x (i) is a time series of
length T (i). Here every time slice is a vector of audio features, x (i)

t , t = 1, ..., T (i). The
role of RNN is to convert the input sequence x into a sequence of character probabil-
ities for the transcription y, with ŷt = p(ct |x), where ct ∈ {a, b, c, ..., x, space, ′}.

666 20 Automatic Speech Recognition

The RNN has five layers of hidden units, such that for an input x , the hidden
units at layer l are denoted as h(l), with input as h(0). The first three layers are not
kept as recurrent layers. At each time t , for the first layer, the output depends on the
spectrogram frame xt along with a context of C frames on each side. The remaining
non-recurrent layers operate on independent data for each time step. Thus, for each
time t , the first three layers are computed by

h(l)
t = g(W (l)h(l−1)

t + b(l)), (20.6)

where g(z) = min{max{0, z}, 20} is the clipped rectified-linear activation function
and W (l), b(l) are weight matrix and bias parameters for layer l.

HTK Tool

The hiddenMarkovmodel toolKit (HTK) is a portable toolkit for building andmanip-
ulating hidden Markov models. It is primarily used for speech recognition research,
and speech synthesis, as well for character recognition and DNA sequencing. HTK
consists of set of library modules and tools available in ANSI C source form. These
tools provide sophisticated facilities for speech analysis, HMM training, testing, and
result analysis.

The statistical speech models use here the context-dependent hidden Markov
models. Probabilities of word sequences is based on N-gram, which finds the most
probable word sequence using language model (refer Eqs. 20.1, 20.2) and acoustic
model (refer Eq.20.1).

20.7 Summary

Automatic speech recognition (ASR) is another domain of human–machine inter-
face, where machine is to recognize human speech, that is, transform some kind of
frequency signal to text. This is a complex process, and requires many processes like
phonological, morphological, syntactic, pragmatics, and world. Speech recognition
is considered as the future of computer interface. There are basically two application
modes for speech recognition: 1. Using speech as input, or 2. As data or knowledge.
The application of “speech as input” addresses applications like dictation systems,
navigation or transaction systems (like purchasing stocks). Using speech as knowl-
edge has applications like meeting capture.

An application of speech recognition can be implemented using “Voice extensi-
ble Markup Language” (http://www.w3.org/Voice/). Developers can use VoiceXML
to create audio dialogues that feature synthesized speech, recognition of spoken
and touch-tone key input, digitized audio, recording of spoken input, telephony,
and mixed-initiative conversations. The VoiceXML’s architecture uses client–server
paradigm to integrate voice services with data services. A voice service is a sequence

http://www.w3.org/Voice/

20.7 Summary 667

of interaction dialogues between a user and an implementation platform, and a docu-
ment server, which can be external to the implementation platform, and can provide
the dialogues.

The modern speech recognition algorithms are based on statistical modeling tech-
niques trained from hours of speech. The process of speech recognition starts with a
sampled speech signal, which has a good deal of redundancy due to the physical con-
straints on the articulators that produce speech. Consequently, the ASR system can
compress information by extracting a sequence of acoustic feature vectors from the
signal. A system extracts a single multidimensional feature vector every 10 ms that
consists of 39 parameters. The system seeks to infer the spoken word sequence that
could have produced the observed acoustic sequence, using Bayesian probabilistic
approach, which basically, is a process of hypothesis search. Models used for AR
are: Language model (searching the most likely word sequence), Acoustic models
(compute the probability of feature vector components), and HiddenMarkov models
(probabilistic finite-state machines).

There are a number of software tools, most as open source, for speech recogni-
tion, speech synthesis, as well for research in automatic speech recognition. These
software tools take input as sound-wave signal (a file) and split the waveform based
on the utterances by the speaker, sample the speech input intervals of about 10 mil-
liseconds, extract the features of input speech. Then using the various models of
probability theory, estimate the probable text, which most likely would have pro-
duced these utterances. These tools were developed (mostly) as research projects.
Among these are: Julius, Kaldi, CMU-Sphinx, Deep Speech tools, and HTK (Hidden
Markov Model).

Exercises

1. Consider alphabet set � = {a, b, c, d}. Create finite automata (recognizers) for
following strings.

a. All strings which start with letter a.
b. All strings which end with letter d.
c. All strings where every c is followed letter d.
d. All strings which have odd number of c’s.

2. Answer followings in brief, giving suitable examples.

a. What is the difference between phoneme and morpheme?
b. What is the difference between language and dialect?

3. Write an equation to compute trigram probability.

668 20 Automatic Speech Recognition

4. The text processing algorithms are usually written in Python, while the ASR
algorithms, which produce the same text, are written in C/C++. Explain what
could have been the reason behind this?

5. What is the fundamental difference between the language model and acoustic
model? Why are they the same so?

References

1. Hannun A et al (2014) Deep Speech: Scaling up end-to-end speech recognition. https://arxiv.
org/abs/1412.5567. Accessed Dec 19, 2017

2. http://julius.osdn.jp/book/Julius-3.2-book-e.pdf. Accessed Dec 19, 2017
3. http://kaldi.sf.net/. Accessed Dec 19, 2017
4. Padmanabham M, Picheny M (2002) Large-vocabulary speech recognition algorithms. Com-

puter 4:42–50
5. Provey D (2011) The Kaldi speech recognition toolkit. IEEE workshop on automatic speech

recognition and understanding. US IEEE Signal Processing Society, Hawaii
6. Ronald C et al (1997) Survey of the state of art in human language technology. Studies in Natural

Language Processing, Cambridge University Press
7. Savitha S, Eric B (2002) Is speech recognition becoming mainstream? Computer 4:38–41
8. http://www.w3.org/Voice/. Accessed Dec 19, 2017

https://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1412.5567
http://julius.osdn.jp/book/Julius-3.2-book-e.pdf
http://kaldi.sf.net/
http://www.w3.org/Voice/

	20 Automatic Speech Recognition
	20.1 Introduction
	20.2 Automatic Speech Recognition Resources
	20.3 Voice Web
	20.4 Speech Recognition Algorithms
	20.5 Hypothesis Search in ASR
	20.5.1 Lexicon
	20.5.2 Language Model
	20.5.3 Acoustic Models

	20.6 Automatic Speech Recognition Tools
	20.6.1 Automatic Speech Recognition Engine
	20.6.2 Tools for ASR

	20.7 Summary
	References

