
Chapter 2
Logic and Reasoning Patterns

Abstract Logic is the foundation of AI, and themajority of AI’s principles are based
on logical or deductive reasoning. The chapter presents: contributions of pioneers of
logic, the argumentation theory, which is based on logic and with its roots in propo-
sitional logic, the process of validating the propositional formulas, their syntax and
semantics, interpretation of a logical expression through semantic tableau, followed
with presents the basic reasoning patterns used by human, and their formal notations.
In addition, presents the normal forms of propositional formulas and application of
resolution principle on these for inference. The nonmonotonic reasoning and its sig-
nificance is briefly described. At the end, the chapter presents the axiomatic system
due to Hilbert and its limitations, and concludes with chapter summary.

Keywords Logic · Propositional logic · Deductive reasoning · Argumentation
theory · Syntax and semantics of propositional formulas · Nonmonotonic
reasoning · Hilbert’s axiomatic system

2.1 Introduction

The ancient Greeks are the source of modern logic, their education system empha-
sized the competence in rhetoric (proficient in language) and philosophy; the
words axioms and theorem are from Greek. The logic was used to formalize the
deductions—the derivation of true conclusions—from true premises. Later it was
formalized as a set theory by the mathematician George Boole. Till the arrival of the
nineteenth century, the logic remained more of a philosophical nature, rather than a
mathematical and scientific tool. Later, since complex things could not be reasoned
through logic, the logic became part of mathematics, where mathematical deduction
became justifiable through formalizing a system of logic, and resulted in one very
important breakthrough. This was, about the set of true statements, stated as “the set
of provable statements are only those that are true statements.” This is because some
proof exists for those due to some other true statements.

At the beginning of nineteenth century, the mathematician David Hilbert intro-
duced the logic, as well as theories of the nature of logic-a far more generalization
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of the logic. But, this generalization received a blow when another mathematician
Kurt Gödel showed in 1931 that there are true statements of arithmetics that are not
provable, through his incompleteness theorem.

Now, though mathematical logic remains the branch of pure mathematics, it is
extensively applied to computer science and artificial intelligence in the form of
propositional logic and predicate logic (first-order predicate logic (FOPL)).

As per the Newell’s and Simons’s Physical Symbol System Hypothesis (PSSH),
discussed in the previous chapter, the knowledge representation is the first require-
ment of achieving intelligence. This chapter presents the knowledge representation
using propositional logic, introduces first-order predicate logic (FOPL), and drawing
of inferences using propositional logic.

Logic is a formal method for reasoning, using its concepts can be translated into
symbolic representation, which closely approximate the meaning of these concepts.
The symbolic structures can be manipulated using computer programs to deduce
facts to carry out the form of automated reasoning [9].

The aim of logic is to learn principles of valid reasoning as well as to discern
good reasoning from bad reasoning, identifying invalid arguments, distinguishing
inductive versus deductive arguments, identifying fallacies as well as avoiding the
fallacies.

The Objective of logic is to equip oneself with various tools and techniques, i.e.,
decision procedures for validating given arguments, detecting and avoiding fallacies
of a given deductive or inductive argument.

We study the logic because of the following reasons:

• Logic deals with what follows from what? For example, Logical consequence,
inference pattern, and validating such patterns,

• We want the computer to understand our language and does some intelligent tasks
for us (Knowledge representation),

• To engage in debates, solving puzzles, game like situation,
• Identify which one is a fallacious argument and what is a type of fallacy?
• Proving theorems through deduction. To find out whether whatever proved is
correct, or whatever obviously true has a proof, and

• To solve some problems concerning the foundations of mathematics.

Learning Outcomes of This Chapter:

1. Convert logical statements from informal language to propositional logic expres-
sions. [Usage]

2. Apply formal methods of symbolic propositional such as calculating the validity
of formula and computing normal forms. [Usage]

3. Use the rules of inference to construct proofs in propositional. [Usage]
4. Describe how symbolic logic can be used to model real-life situations or appli-

cations, including those arising in computing contexts such as software analysis
(e.g., program correctness), database queries, and algorithms. [Usage]
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5. Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real
problems, such as predicting the behavior of software or solving problems such
as puzzles. [Usage]

6. Explain the difference between rule-based andmodel-based reasoning techniques.
[Familiarity]

7. Describe the strengths and limitations of propositional logic. [Familiarity]

2.2 Argumentation Theory

The Argumentation theory is the study of how conclusions can be reached through
logical reasoning, that is, whether the claims are soundly based on premises or not
(Fig. 2.1). It includes the arts and sciences of civil debate, dialog, conversation, and
persuasion. It includes the studies of rules of inference, logic, and procedural rules
in both artificial and real world settings.

An argumentation system comprises debate and negotiations, aimed at reaching
to amutually agreeable conclusion. The argumentationmay also consist of erroneous
dialogs, where victory over an opponent is the only goal, without consideration of
the truth. The argumentation theory is an art, as well as science, using these people
protect their self-interests and beliefs using rational dialogs at commonplaces of their
meeting points, and during the process of argumentation.

People make use of argumentation theory in law also, for example, in preparing an
argument to be presented before the court of law, in debate in the court of law, in trials,
and in testing the validity of certain kinds of evidence. Scholars of Argumentation
theory study the post-hoc rationalizations bywhich organizational actors try to justify
decisions even made irrationally.

The simple block diagram for logical reasoning shown in Fig. 2.1 has internal
structure, comprising the following:

1. a set of assumptions or premises (or antecedents),
2. a method of reasoning or deduction, and
3. a conclusion or consequence.

If the premises are P1, P2, . . . , Pn , then they are conjuncted and their conjunction
imply the conclusion C , i.e., P1 ∧ P2 ∧ · · · ∧ Pn → C .

An argument must have at least one premise and one conclusion. Often, classical
logic is used as the method of reasoning so that the conclusion follows logically
from the assumptions or support. One challenge is that if the set of assumptions is

Fig. 2.1 Inference process Set of
premises ConclusionMethod of

reasoning
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inconsistent then anything can follow logically from inconsistency. Therefore, it is
common to insist that the set of assumptions be consistent. It is the practice to have
a minimal set. Such argumentation has been applied to the field of medicine also.

The second school of argumentation investigates abstract arguments,where “argu-
ment” is considered a primitive term, so no internal structure of arguments is taken
on the account.

2.3 Role of Knowledge

We have discussed in the above section about knowledge and logic. The Logic needs
a base of knowledge to infer or conclude new knowledge. The knowledge is also
used for learning, retrieval and reasoning. The learning is not only adding new facts
into an existing knowledge base, but before the new data are put into the storage,
they need to be classified for ease of retrieval. The interaction and inference with
existing facts avoid the redundancy and duplication of knowledge in the knowledge
base. In addition, the learning updates the existing facts.

Having stored the knowledge in the process of learning, one important objective of
that is, retrieval. The representation scheme used in the knowledge base has critical
effect on the efficiency of the retrieval system. As humans, we are very good in
retrieval from our knowledge (memories), and many AI systems have used that for
modeling AI learnings.

The knowledge is also used for reasoning process, i.e., to infer new facts from the
existing facts in the knowledge. For example, observing many birds flying, to infer
that all the birds fly, as well for solving a complex problem, say, based on sufficient
facts, to infer that a customer financed by a bank, will be able to repay the loan the
bank has financed to him.

2.4 Propositional Logic

The propositional logic deals with individual Propositions, which are viewed as
atoms, i.e., these cannot be further broken down into smaller constituents. For build-
ing propositional logic, first we describe the logic with the help of a formula called
Well-Formed Formulas (wff, read as woofs). A formula is a syntactic concept, which
means whether or not a string of symbols is a formula not. It can be determined
solely based on its formal construction, i.e., whether it can be built according to
its construction rules. Therefore, we are in a position to verify that a sequence of
symbols is a formula or not, as per the specified rules. This function of verification,
in a compiler, is done by a parser—to verify whether the formula belongs to the
particular programming language or not. A parser also constructs a parse-tree of the
given formula through which it tells how the formula is constructed [2].
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The meaning (semantics) is associated with each formula by defining its inter-
pretation, which assign a value true (T) or false (F) to every formula. The syntax is
also used to define the concept of proof—the symbolic manipulations of formulas
to deduce the given theorem. The important thing we should note is that provable
formulas are only those which are always true.

We start the propositional logic with the individual propositional variables. These
variables themselves are formulas, which cannot be further analyzed. We represent
these by English alphabets and subscripted alphabets p, q, r, s, t, p1, p2, q1, q2, . . . ,
etc. These formulasmayhave smaller constituents but it is not the role of propositional
logic to go into the details of their constructions. The use of letters to represent
propositions is not in true sense variables, they simply represent the propositions or
statements in a symbolic form, and they are not the variables in the sense used in
predicate logic (to be discussed later), or in high-level languages like C or Fortran,
where a variable stands for a domain of values. For example, an integer variable
in a Fortran program stands for any integer number as per the specifications of the
language.

The other symbols of propositional logic are operators as follows:

∧ conjunction operator,
∨ disjunction operator,
¬ not or inverting operator,
→ implication, i.e., if . . . than . . . rule, and
⊥ contradiction (false).

Let following be the propositions:

p=Sun is star.
q=Moon is satellite.

We can construct the following formulas using the above propositions:

p ∧ q=Sun is star and Moon is satellite.
p ∨ q=Sun is star or Moon is satellite tennis.
¬p ∨ q=Sun is not star or Moon is satellite.
¬p → q= if Sun is not star then Moon is satellite.

A formula in propositional logic can be recursively defined as follows:

(i) Each propositional variable and null are formulas, therefore, p, q, φ are formu-
las,

(ii) If p, q are formulas, then p ∧ q, p ∨ q,¬p, p → q, (p), are also formulas,
(iii) A string of symbols is a formula only as determined by finitely many applica-

tions of above (i) and (ii), and
(iv) nothing else is propositional formula.

This recursive form of the definition can be expressed using BNF (Backups-Naur
Form) notation as follows:
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1. f ormula := atomic f ormula | f ormula ∧ f ormula | f ormula ∨ f ormula

| f ormula → f ormula | ¬ f ormula | ( f ormula)

2. atomic f ormula := ⊥ | p | q | r | p0 | p1 | p2 | . . .

(2.1)

In the above notation, the symbols— f ormula and atomic f ormula, that appears
to the left-hand are called non-terminals and represent grammatical classes. The
p, q, r,⊥, p1, etc, that appear only to the right-hand side, are called terminals, and
represent the symbols of the language.

A sentence in the propositional language is obtained through a derivation that
starts with a non-terminal, and repeatedly applied the substitution rules from the
BNF notations, until the terminals are reached [8].

Example 2.1 Derivation for p ∧ q → r .

The sequence of substitutions rules to derive this formula, i.e., to establish that it is
syntactically correct, are as follows:

f ormula ⇒ f ormula → f ormula

⇒ f ormula ∧ f ormula → f ormula

⇒ atomic ∧ f ormula → f ormula

⇒ p ∧ f ormula → f ormula

⇒ p ∧ atomic → f ormula

⇒ p ∧ q → f ormula

⇒ p ∧ q → atomic

⇒ p ∧ q → r.

The symbol atomic stands for atomic formula and the symbol “⇒” stands for
“implies”, i.e., the expression to right to this is implied by the expression to left of
“⇒”.

The derivation can also be represented by a derivation-tree (parse-tree), shown
in Fig. 2.2. From the derivation-tree, we can obtain another tree shown in Fig. 2.3,
called syntax-tree or formation-tree, by replacing each non-terminal by the child that
is an operator under that. There is always unique syntax-tree for every formula. �

Considering two propositions p, q, the interpretation (semantics) of the formulas
constructed when they are joined using binary operators (∨,∧, →) are shown in the
truth-table Table2.1.

The Material conditional ‘→’ joins two simpler propositions, e.g., p → q, read
as “if p then q”. The proposition to the left of the arrow is called the antecedent and
to the right is consequent. There is no such designation for conjunction or disjunction
operators because they are commutative operations. The p → q expresses that q is
true whenever p is true. Thus it is true in every case in Table2.1, except in row
three, because this is the only case when p is true but q is not. Using “if p then q”,
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Fig. 2.2 Parse-tree for the
expression p ∧ q → r

Fig. 2.3 Syntax-tree for the
expression p ∧ q → r

→

r

qp

∧

Table 2.1 Interpretation of propositional formulas

p q p ∨ q p ∧ q p → q

F F F F T

F T T F T

T F T F F

T T T T T

we can express that “if it is raining outside then there is a cold over Kashmir”.
The material conditional is often confused with physical causation. The material
conditional, however, only relates two propositions by their truth values—which is
not the relation of cause and effect. It is contentious in the literature whether the
material implication represents logical causation.

2.4.1 Interpretation of Formulas

The interpretation of formula is assigning truth value to that formula. As discussed
earlier, a formula can be atomic or inmaybe complex, i.e., joining or atomic formulas.
The following are some definitions related to the interpretation of formulas [1].
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Definition 2.1 (Satisfied, model, valid, and tautology) A propositional formula A is
satisfied iffI (A) = True for some interpretationI . A satisfying interpretation is
calledmodel for A. The formula A is called valid, denoted by |= A, iffI (A) = True
for all interpretations I . A valid propositional formula is also called tautology.

A propositional formula is unsatisfiable (also called contradiction, ⊥), iff it is
not satisfiable, i.e.,I (A) = False, for all interpretationsI . IfI (A) = False for
some interpretationI , then A is called non-valid or falsifiable, and denoted by �|= A.

Definition 2.2 (Simultaneously satisfiable) A set of formulas S = {A1, A2, . . . , An}
is simultaneously satisfiable iff there exists an interpretation I such that I (Ai ) =
True for all i . The S is unsatisfiable iff for every interpretation I there exits an i
such that I (Ai ) = False.

2.4.2 Logical Consequence

The logical consequence or logically follows is the central concept in the foundations
of logic. It is much more interesting to assume that a set of formulas is true and then
to investigates the consequences of these assumptions [1].

Assume that θ and ψ are formulas (sentences) of a set P , and I is an interpre-
tation ofP . The sentence θ of propositional logic is true under an interpretationI
iffI assigns the truth value T to that sentence. The θ is false under an interpretation
I iff θ is not true under I .

Definition 2.3 (Logical consequence) A sentence ψ of propositional logic is a logi-
cal consequence of a sentence (or set of sentences) θ , represented as θ |= ψ , if every
interpretation I that satisfy θ also satisfy ψ .

In fact, ψ need not be true in every possible interpretation, only in those interpre-
tations which satisfy θ , i.e, those interpretations which satisfy every formula in θ .
In the formula ((p → q) ∧ p) � q, the q is logical consequence of ((p → q) ∧ p).
The sign ‘�’, is sign of deduction, and S � q is read as S deduces q, where S is a set
of formulas and q is the formula.

A sentence of propositional logic is consistent iff it is true under at least one
interpretation. It is inconsistent if it is not consistent.

Example 2.2 Determine the logical consequenceofψ = (p ∨ r) ∧ (¬q ∨ ¬r) from
θ = {p,¬q}, i.e., find θ |= ψ , and validity for ψ .

Hereψ is logical consequence of θ , denoted by θ |= ψ , becauseψ is true under all the
interpretations such that I (p) = True, and I (q) = False, is the interpretation,
for which θ is satisfied.

However, ψ is not valid, since it is not true under the interpretation I (p) =
F,I (q) = T,I (r) = T .

Further note that θ � ψ is a valid statement because the expression θ � ψ is
always true. �
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2.4.3 Syntax and Semantics of an Expression

Syntax is name given to a correct structure of a statement. It is the meaning asso-
ciated with the expression. It is mapping to the real-world situation is semantics.
The semantics of a language defines the truth of each sentence with respect to each
possible world. For example, the usual semantics for interpretation of the statement
(p ∨ q) ∧ r is true in a world where either p or q or both are true and r is true.
Different worlds can be all the possible sets of truth values of p, q, r , which is total
8. The truth values are simply the assignment to these variables, and not necessarily
the values which are only true. For example, I (p) = F,I (q) = F,I (r) = T ;
and I (p) = T,I (q) = F,I (r) = T are the possible worlds for the expression
(p ∨ q) ∧ r .

2.4.4 Semantic Tableau

Semantic tableau is relatively efficient method for deciding satisfiability for the for-
mula of propositional calculus. The method (or algorithm) systematically searches
for a model for a formula. If it is found, the formula is satisfiable, else not satisfi-
able. We start with the definition of some terms, and then analyze some formulas to
motivate us for the construction of semantic tableau [1].

Definition 2.4 (Literal and complementary pair) A literal is an atom or negation of
an atom. For any atom p, the set {p,¬p} is called complementary pair of literals.
For any formula A, {A,¬A} is complementary pair of formulas.

Example 2.3 Analysis of the satisfiability of a formula.

Consider that a formula A = p ∧ (¬q ∨ ¬p), has an arbitrary interpretation I .
Given this, I (A) = T iff I (p) = T and I (¬q ∨ ¬p) = T . Hence, I (A) = T
iff either,

1. I (p) = T and I (¬q) = T , or
2. I (p) = T and I (¬p) = T .

Hence A is satisfiable if either (1) interpretation holds or (2) holds. But (2) is not
feasible. So, A is satisfiable when the interpretation of (1) holds true. Note that the
satisfiability of a formula is reduced to the satisfiability of literals.

It is clear that a set of literals is satisfied if and only if it does not contain com-
plementary pair of literals. In the above case, the pair of literals {p,¬p} in case
(2) is complementary pair, hence the formula is unsatisfied for this interpretation.
However, the first set {p,¬q} is not the complementary pair, hence it is satisfiable.

From the above discussion, we have trivially constructed a model for the formula
A by assigning True to positive literals and False to negative literals. Hence, p =
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Fig. 2.4 Tree for semantic
tableau

p ∧ (¬q ∨ ¬p)

p, (¬q ∨ ¬p)

p,¬q p,¬p

True, and q = False makes the set in (1) true, hence {p = T, q = F} is a model for
formula A.

The above is a search process, and can be represented by a tree shown in Fig. 2.4.
The leaves in the tree represent a set of literals thatmust be satisfied. A leaf containing
complementary pair of literals is marked closed by ×, while the satisfying leaf is
marked as open by 	.

The construction process of the tree can be represented as an algorithm, to find
out if some model exists for a formula, and what is that model. �
Definition 2.5 (Semantic Tableau) Semantic Tableau is a tree, each node of which
will be labeled with a set of formulas, and these formulas are inductively expanded
to leaves such that each leaf is marked as open by 	 or closed by ×.

Definition 2.6 (Completed tableau) A semantic tableau whose construction is ter-
minated is called completed tableau . A completed tableau is closed if all the leaves
are marked closed. Otherwise, it is open i.e., some leaves are open.

Definition 2.7 (Unsatisfiable formula) Any formula A is unsatisfiable if its com-
pleted tableau T is closed.

Corollary 2.1 (Method for semantic tableau) A formula A is satisfied if its tableau
T is open. Thus a method for semantic tableau is an algorithm for the validity of a
propositional calculus formula.

Example 2.4 Find out whether (p ∨ q) ∧ (¬p ∧ ¬q) is satisfiable, using tableau
method.

Let A = (p ∨ q) ∧ (¬p ∧ ¬q). For the satisfaction of A, I (A) = True for some
assignments. That is, I (p ∨ q) = True and I (¬p ∧ ¬q) = True. Thus, I (A)

is True if either,

• I (p) = T,I (¬p) = True,I (¬q) = True, or
• I (q) = True,I (¬p) = True,I (¬q) = True.

So that, two sets of literals are,

(p,¬p,¬q) and (q,¬p,¬q).

Since both contain complementary pairs, hence neither of the literals is satisfiable.
So it is impossible to find a model for A, and A is unsatisfiable.
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2.5 Reasoning Patterns

How can we reason about solving any problem? To a certain extent, it depends on
the chosen knowledge representation. The followings are the methods in broad about
how the reasoning is performed by humans [2].

Deductive Reasoning

It is a process by which general premises are used to obtain the inferences, which
are specific. For example, we may have the following premises and conclusion:

Premise-I: I do shopping when the weather is good on weekends.
Premise-II: Today is Saturday and the sky is clear.
Conclusion: Therefore, I will go for shopping Today.

To perform the deductive reasoning, the problem is first formulated in the way as
wedid in the above example.Havingdone this, the conclusionsmust bevalidwhen the
premises are true. Beginning with a small set of axioms, postulates, and definitions,
the Greek mathematician Euclid proved a total of 465 geometric propositions as the
logical consequences of the input assumptions.

One of the most fundamental rules of inference is modus ponens rule. We have
the following example for modus ponens.

Premise-I: All the men are mortal.
Premise-II: Socrates is man.
Conclusion: Therefore, Socrates is mortal.

The new knowledge, “Socrates is mortal” has been deduced from the earlier two
sentences.

The enumeration table of all possible worlds for modus ponens are shown in
Table2.2. We note that it is a valid inference, as the sentence ((p → q) ∧ p) → q,
with q as the inference implied, is true in all the rows.

Other deductive reasoning approaches are : modus tollens and syllogism, and
abduction. The Table2.3 shows the formulas for these rules.

Abduction is deductive type logic, which provides only a “plausible inference.”
For example, given that: “smoking causes lung cancer” and “Sam died due to lung
cancer”, through abduction one would infer that “Sam was smoker”. However, this

Table 2.2 Modus ponens is valid inference

p q p → q (p → q) ∧ p ((p →
q) ∧ p) → q

F F T F T

F T T F T

T F F F T

T T T T T
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Table 2.3 Inference rules

Rule Formula Description

Modus ponens ((p → q) ∧ p) � q If p then q; p; therefore q

Modus tollens ((p → q) ∧ ¬q) � ¬p If p then q; not q; therefore
not p

Abduction (p → q) ∧ q � p if p then q; q; therefore q

Hypothetical syllogism ((p → q) ∧ (q → r)) if p then q; � (p → r) if q
then r ; therefore, if p then r

Disjunctive syllogism ((p ∨ q) ∧ ¬p) � q Either p or q, or both; not p;
therefore, q

conclusion is not necessarily true, because there are other reasons also for lung cancer,
which are not due to smoking. When statistics and probability theory are used along
with abduction, it may result in most probable inferences out of the many likely
inferences. To illustrate how the abduction based reasoning works, we consider a
logical system comprising a general rule and one specific proposition.

All successful enterprising industrialists are rich (general rule).Rajan is a richperson (specific
proposition). Therefore, a plausible inference can be that Rajan is a successful, enterprising
industrialist.

However, this conclusion can be false also, because there are many other paths
to richness, such as a lottery, inherited property, coming across a treasure, and so
on. If we have a table of all the riches and how they became rich, we may draw the
probability of abduction for richness to be true in this case.

Inductive Reasoning

The inductive reasoning arrives at a conclusion about all members of a class. It
is based on examination of only a few members of the class and based on that it
generalizes for the entire class. It is broadly reasoning from a specific to the general.
For example, the traffic police comes to knowabout following situation on a particular
day about nature of road accidents:

1st accident was due to wrong side drive,
2nd accident was due to wrong side drive,
3rd accident was due to wrong side drive.

One would logically infer that all the accidents are due to wrong side driving.
Another example is about the birds for their flying attribute.

Crow fly,
peacock fly,
pigeon fly.

Thus, we conclude that all the birds fly.
Another example is about the progressive sum of 1st n odd integers:
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1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

Thus, by induction we prove that, the sum of n successive odd integers is n2.
The outcome of the inductive reasoning process will frequently contain some

measures of uncertainty because including all possible facts in the premises are
usually impossible.

We know that the inference of an accident’s example is not always true, and also
of “all birds fly” is not true, because, ostrich and penguins do not fly. However, for
1st odd integers sum, it is true.

The deductive or inductive approaches are used in logic, rule-based systems, and
in frames.

Analogical Reasoning

The analogical reasoning assumes that when question is asked, the answer can be
derived by analogy, as in the case of following example.

Premise: All the 100m racers get 5% additional in their merit score.
Question: How much one 400m racer will get additional in academic score?
Conclusion: Because, 400m is a race, and an sports activity like 100m, so it will
also benefit one with 5% in final scores.

Analogical reasoning is a type of verbalization of an internalized learning process.
An individual uses processes that require the ability to recognize previously encoun-
tered experiences. This approach is not very common in AI, however, the case-based
reasoning, semantic networks, and frames use this analogical reasoning approach.

Formal Reasoning

It uses the process of syntactic manipulation of data structures to deduce new facts.
A typical example is the mathematical logic used in proving theorems in geometry.
For example, proof by resolution.

Procedural and Numeric Reasoning

It uses mathematical models or simulation to solve the problems. The model-based
reasoning is an example of this approach.

Generalization and Abstraction

The approaches of generalization and abstraction, both can be used with the logical
and semantic representation of knowledge.

Meta-level Reasoning

The meta-level reasoning involves the knowledge about what you, how much you
know about so and so. Also, which approach to use, how successful the inference will
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be, depends on a great extent on which knowledge representation method is used.
For example, reasoning by analogy can be more successful with semantic networks
than with frames.

2.5.1 Rule-Based Reasoning

The rule-based reasoning is also called pattern matching, and uses forward and
backward chaining. The implementation of rule-based system makes use of modus
ponens and other approaches. Consider the rule:

Rule 1: If export rises the prosperity increases.

Using the modus ponens, if the premises, e.g., “The export rises” is true, the
conclusion of the rule is accepted as true. We call this accepting the rule as “rule
fires”. The firing of a rule occurs when all its premises are satisfied, whether all are
true or some are false. On firing, the resulting conclusion is stored in the assertion
base, to use for further firing of the rules and generate the assertions.When a premise
is not available as an assertion, it can be obtained by querying the user, or by firing
other rules. Testing of a rule premise or conclusion is as simple as matching a symbol
pattern.

Every rule in the knowledge base can be checked to see if its premises or conclu-
sion can be satisfied by previouslymade assertions. This process of matching, if done
using forward chaining, i.e., premises to conclusions. If it is done from conclusions
to premises, it is called backward chaining.

2.5.2 Model-Based Reasoning

A reasoning within a context is important in any reasoning system. In real-life situa-
tions, one often provides a lot of missing contexts or out of context information when
answering certain queries. This situation can be correctly modeled by supplementing
the existing knowledge about theworld, with additional context-specific information.
When it is supplemented by context information, reasoning within context becomes
a deduction process.

The added information may act as constrain to the existing information in the
system, as in the absence of this additional information the deduction process has
more paths of freedom in the reasoning process. But, due to the availability of this
added context information the reasoning task becomes easier because the domain
in which reasoning takes place gets restricted (constrained) due to having lesser
flexibility of deduction paths to be navigated. This task can be formalized as a task
of varying contexts.

The knowledge that comprises the information for reasoning in the model-based
system is in the form of a set of models of the world. These models satisfy the
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assignments and examples of the world. This is, in contrast, to the use of only the
formulas in the first-order predicate logic to describe the world. The other difference
is that the model-based approach is motivated from a cognitive point of view – the
forerunners of this approach of reasoning are cognitive psychologists who support
the “reasoning by examples.” When a model-based reasoning system is presented
with a query, the reasoning is performed by evaluating the query on these models.

Let us suppose that model-based knowledge base representation Γ , and a query
α are both given, and it is required to find out if Γ implies α (i.e., Γ |= α)? This
we can determine in two steps: 1) evaluate α on all the models in the representation,
2) If there is a model of Γ that does not satisfy α, the Γ does not model the alpha
(i.e., Γ �|= α), otherwise we conclude that Γ |= α. This means if the model-based
representation contains all the models of Γ , then by definition, this approach verifies
the implication correctly, and produces the correct deduction.

However, there is a problem—the representation ofΓ , such that it explicitly holds
all the models, is not a plausible solution. The model-based approach is feasible only
ifΓ can be replaced by smallmodel-based representation, and after that also it should
correctly support the deduction.

Various topics in reasoning are as follows:

Monotonic versus nonmonotonic reasoning,
Reasoning with uncertainty,
Shallow and deep representation of knowledge,
Semantic networks,
Blackboard approach,
Inheritance approach,
Pattern matching,
Conflict resolution.

These are discussed in current, and the following chapters, in details.

2.6 Proof Methods

There are twodifferentmethods, one is throughmodel checking andother isdeduction
based. The first comprises enumeration of truth-tables, and is always exponential in
n, where n is the size of the set of propositional symbols. The other, i.e., deduction
based approach is repeated application of inference rules. The inference rules are
used as operators in the standard search algorithm. In fact, the application of the
inference approach to proof is called searching for solution. Proper selection of
search directions is important here, as these will eliminate many unnecessary paths
that are not likely to result in the goal. Consequently, the proof-based approach for
reasoning is considered better and efficient compared tomodel enumeration/checking
based method. The later is exhaustive and exponential in n, where n is the size of the
set of propositional symbols.
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The property, the logical system follows, is the fundamental property of mono-
tonicity. As per this, if S � α, and β is additional assertion, then S ∧ β � α.

Thereby, the application of inference rules is legitimate (sound) rule, which helps
in the generation of new knowledge from the existing. If a search algorithm like DFS
(depth first search) is used, it will always be possible to find the proof, as it will
search the goal, whatever the depth may it be. Hence, the inference method in this
case is complete also [7].

Before the inference rules are applied on the knowledge base, the existing sen-
tences in the knowledge base (KB) needs to be converted into some normal form.

2.6.1 Normal Forms

A logical expression can be represented as sum-of-product terms or product-of-sum
terms. If a given logical expression is represented as sums of elementary products,
then this form is called disjunctive normal form (DNF), and if it is represented as
product of elementary sums, it is called conjunctive normal form (CNF). In DNF, the
elementary product terms are calledminterms, while in a CNF elementary sum terms
are calledmaxterms. For a given formula, an equivalent disjunctive normal formwith
only disjunctions of minterms is called principle disjunctive normal form or sum-
of-products canonical form. Similarly, an equivalent CNF with only conjunctions of
maxterms is called principle conjunctive normal form or product-of-sums canonical
form [2].

One technique to get aCNF expression for a givenDNF expression, say,¬a¬bc +
¬ab¬c + ¬abc + a¬bc is given in steps as follows:

1. Considering a DNF expression of three variable a, b, c, write down all the
minterms: ¬a¬b¬c, ¬a¬bc, ¬ab¬c, ¬abc, a¬b¬c, a¬bc, ab¬c, abc.

2. Cross out all combinations in the original DNF. We are left with ¬a¬b¬c,
a¬b¬c, ab¬c, abc.

3. Next, write the expression in CNF by inverting each subset of three variables
and ORing as (a + b + c)(¬a + b + c)(¬a + ¬b + c)(¬a + ¬b + ¬c) in the
form of CNF.

Obtaining DNF from CNF is just the reverse process.

2.6.2 Resolution

The resolution rule is an inference which uses deduction approach. It is used in
theorem proving. If two disjunctions have complementary literals, then a resultant
inference of these is disjunction of these expressions, with complementary terms
removed. If p = p1 ∨ p2 ∨ c and q = q1 ∨ ¬c are two formulas, then resolution of
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p and q results to dropping of c and¬c and disjunction is performed of the remaining
propositions of p and q, as follows:

(p1 ∨ p2 ∨ c), (q1 ∨ ¬c)

p1 ∨ p2 ∨ q1
(2.2)

The necessary condition for the above is that C should not be a function of any
of the p1, p2, q1.

Example 2.5 Show by resolution that (p → q) → [(r ∧ p) → (r ∧ q)] is a
tautology:

⇒ ¬(¬p ∨ q) ∨ [¬(r ∧ p) ∨ (r ∧ q)]
⇒ (p ∧ ¬q) ∨ [(¬r ∨ ¬p) ∨ (r ∧ q)]
⇒ (p ∧ ¬q) ∨ [((¬r ∨ ¬p) ∨ r) ∧ ((¬r ∨ ¬p) ∨ q)]
⇒ (p ∧ ¬q) ∨ [(r ∨ ¬r ∨ ¬p) ∧ (q ∨ ¬r ∨ ¬p)]
⇒ (p ∧ ¬q) ∨ [(q ∨ ¬r ∨ ¬p)]
⇒ (q ∨ ¬r ∨ ¬p ∨ p) ∧ (q ∨ ¬r ∨ ¬p ∨ ¬q)

⇒ T ∧ T

⇒ T .

2.6.3 Properties of Inference Rules

An inference rule is a mechanical process of producing new facts from the existing
facts and rules. The semantics of predicate logic provides a basis for a formal theory
of logical inference. It allows the creation of new facts from the existing facts and
rules [5, 7].

An interpretation of a predicate statement means the assignment of true or false
value to that statement. An interpretation that makes a sentence true is said to satisfy
a sentence. An interpretation that satisfies every member of a set is said to satisfy the
set.

Definition 2.8 (Logically follows) If every interpretation that satisfies S also satisfy
X , then we say the expression X logically follows from a set of expressions S (the
knowledge base). In other words, the knowledge base S entails sentence X if and
only if X is true in all worldswhere knowledge base is true. If a sentence X logically
follows S, we represent it as S |= X .

The term logically follows simply means that X is true for every, potentially
infinite interpretations that satisfy S. However, it is not a practical way of interpre-
tations. In fact, inference rules provide a computationally feasible way to determine
the expression X , when it logically follows a set of premises S.
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An example of an inference rule isModus Ponens:

[(P → Q) ∧ P] → Q (2.3)

which is a valid statement (a tautology). Here, the Q also logically follows (entails)
from (P → Q) ∧ P . That is, [(P → Q) ∧ P] |= Q.

Definition 2.9 ‘Sound’ inference system.

When every inference X deduced from S also logically follows S, then the inference
system is sound. This is expressed by,

S � x ⇒ S |= x . (2.4)

The ‘�’ is sign of ‘deduction’.
Soundness means that you cannot prove anything that is wrong. �

Definition 2.10 (AComplete inference system) If every X which logically follows S
can also be deducted (inferred), then the inference rule is complete. This is expressed
by

S |= x ⇒ S � x . (2.5)

Completeness means that you can prove anything that is right.

Another rule of inference is Modus tollens, specified as,

[(P → Q) ∧ ¬Q] → ¬P (2.6)

is sound and complete.
The reader may verify whether the inference rule of modus tollens is sound or

complete or both or none?

2.7 Nonmonotonic Reasoning

The classical logic or FOPL (first order predicate logic) discussed far, is not all time
sufficient to model the real-world knowledge of the world we live in. The reason are:
things become false to true or vice-versa over a time, addition of new knowledge in
the knowledge base may contradict the existing knowledge (e.g., the statement “the
surface of the earth is curved” becomes false on poles), things may be partially true
instead either true or false, and some times there is a probability of being some thing
true or false, and so on. Hence, there is a requirement of an all together different
approach and method of inferencing for real world situations.

TheNonmonotonic logic is the study of those ways of inferring from given knowl-
edge that do not necessarily satisfy themonotonicity property, satisfied by allmethods
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based on classical logic. In classical logic, if a conclusion is warranted on the basis
of certain premises (knowledge), no additional premises will ever invalidate the con-
clusion.

In everyday life, however, it seems clear thatwe humans draw sensible conclusions
from what we know and that, on the face of new information we often have to take
back previous conclusions. This happens evenwhen the new informationwe gathered
in no compel us to take back our previous assumptions (see Fig. 2.5).

For example, wemay hold the assumption that “most birds fly”, but that “penguins
are birds that do not fly”. On learning that “Tweety is a bird”, we infer that “Tweety
flies.” However, on learning that “Tweety is a penguin,” will in no way make us
change our mind about the fact that most birds fly, and also that penguins are birds
that do not fly or the fact that Tweety is a bird. However, it should make us aban-
don our conclusion about Tweety’s flying capabilities. It is desirable that intelligent
automated systems will have to do the same kind of (nonmonotonic) inferences.

Considering that Γ is a set of sentences of propositional logic, and α is inferred
from it, i.e Γ � α. For any new propositional sentences β, if Γ ∪ {β} � α then it is
monotonic reasoning. If it is not necessary that Γ ∪ {β} � α, then it is nonmonotonic
reasoning.We note from Fig. 2.5, that some times, even when we add into knowledge
base, the number of inferences decreases instead of increasing; and, this is property
of nonmonotonic reasoning.

Some of the systems that perform such nonmonotonic inferences are—negation
as failure, circumscription, modal system, default logic, autoepistemic logic, and
inheritance systems.

2.8 Hilbert and the Axiomatic Approach

An axiomatic system comprises a set of axioms and a set of primitives, where the
primitives are object names but, these objects are left undefined. The axioms are
the sentences that make assertions about the primitives. Further, these assertions are
not provided with any justifications, so they are neither true nor false. The subse-
quent or new assertions about the primitives are called theorems, are rigorous logical
consequences of axioms and previously proved theorems.
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In 1899 the mathematician David Hilbert published his ground-breaking research
in the form of a book. He provided a complex deductive system based on five groups
of axioms, namely:

1. Axioms of incidence,
2. Axioms of order,
3. Axioms of congruence,
4. Axioms of continuity, and
5. an axiom of parallels.

As per Hilbert’s approach, the basic concepts of geometry comprises points, lines
and planes of Euclidean geometry. However, these concepts are never explicitly
defined. Instead, they are implicitly defined by the axioms such that, points, lines,
and planes are any family of mathematical objects that satisfy the given axioms of
geometry.

Twenty years later Hilbert was considered as the chief promoter of a program
intended to provide solid foundations to arithmetic, based on purely axiomatic
methods—the mathematics that model all the computations. It was called formalist
program, and Hilbert was identified as the champion of the formalist approach to
mathematics as a whole [6].

2.8.1 Roots and Early Stages

The formal definitions in an axiomatic system serves the purpose to simplify the
things as they can be used to create new objects made of complex combinations of
primitives and previously defined terms (objects and theorems). If a definite meaning
is assigned to a primitive of an axiomatic system, called as an interpretation, the
theorems become meaningful assertions.

Following are some definitions of the axiomatic system.

Definition 2.11 (Model (for axiomatic system.)) If all the axioms are true for a
given interpretation, then everything asserted by the theorem is also true. Such an
interpretation is called a model for the axiomatic system.

Definition 2.12 (Inconsistent (axiomatic system.)) Since a contradiction can never
be true, an axiomatic system using a contradiction can arrive at a logical deduction
that it has no model. An axiomatic system with this property is called inconsistent.

Definition 2.13 (Consistent (axiomatic system.)) If an abstract axiom system does
have a model, then such system is consistent.

Definition 2.14 (Isomorphic) If twomodels of the same axiom system can be proved
as structurally equivalent, then they are isomorphic to each other.

An axiomatic system can have more than one model.
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Definition 2.15 (Categorical Axioms) If all models of an axiom system are isomor-
phic then the axiom system is categorical.

Thus, for a categorical axiom system, there exists a model—the one and only
interpretation in which its theorems are all true.

The qualities—truth, logical necessity, consistency, and uniqueness were consid-
ered as the base of classical Euclidean geometry. Till recently, it was accepted that
Euclidean geometry is the only way to think about space. Now, the axiomatic sys-
tems are taken as the basis of geometry, and later all of the mathematics including
the computational mathematics and algorithms.

Hilbert’s definition of an axiomatic system lays the foundation of theory and
verifies that this system satisfies three main properties: independence, consistency,
and completeness. He proposed that just as in geometry, this kind of axiomatic
analysis should be applied to other fields of knowledge, and in particular to physical
theories. When we study any system of axioms as per Hilbert’s perspectives, the
focus of interest remained always on the disciplines themselves rather than on the
axioms. The axioms are just a means to improve our understanding of the discipline,
and not aimed to turn mathematics into a formally axiomatized game. For example,
in the case of geometry, a set of axiomswere selected in such away that they reflected
the basic manifestations of the intuition of space [4].

2.8.2 Axiomatics and Formalism

To understand the role of axioms, we will discuss the axioms of the set, as they
are useful in reasoning and inferences. By analyzing the mathematical arguments,
logicians become convinced that the notion of “set” is the most fundamental concept
of mathematics. For example, it can be shown that the notion of an integer can be
derived from the abstract notion of a set. Thus, in our world all the objects are sets,
and we do not postulate the existence of any more primitive objects. To support
this intuition, we can think our universe as all sets which can be built by successive
collecting processes, starting from the empty set, and we allow the formation of
infinite sets.

The first set of axioms for a general set theory was given by E. Zermelo in 1908,
and later developed by A. Fraenkel, hence usually referred to as Zermelo-Fraenkel
(ZF) set theory, the one we are most concerned. Another systems of axioms, which
has only finitely many axioms, but is less natural, was developed by von Neumann,
Bernays, andGödel. The later is usually referred to asGödel-Bernays (GB) set theory.

Following are some of the important axioms of ZF set theory [3, 8].

1. Axioms of Extensibility.

∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) (2.7)
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The above says that set is determined by its members. We can define the subsets
as follows:

x ⊆ y ↔ ∀z(z ∈ x → z ∈ y). (2.8)

Also,
x ⊂ y ↔ x ⊆ y ∧ ¬x = y. (2.9)

2. Axiom of the Null set.
∃x∀y(¬y ∈ x). (2.10)

The set defined by this axiom is the empty or null set and we denote it by φ.

3. Axiom of Unordered Pairs.

∀x∀y∃z∀w(w ∈ z ↔ w = x ∨ w = y). (2.11)

We represent the set z by {x, y}. Also, {x} is {x, x} and we put 〈x, y〉 =
{{x}, {x, y}}. The set 〈x, y〉 is called ordered pair of x and y.
Using the abovewe can define a function as follows: a function is a set f of ordered
pairs such that 〈x, y〉, 〈x, z〉 ∈ f → y = z. The set of x such that 〈x, y〉 ∈ f is
called domain, and set of y is called range. We say, f maps in set u if the range
of f is in u.

4. Axiom of set Union. It can be expressed as:

∀x∃y∀z(z ∈ y ↔ ∃t (z ∈ t ∧ t ∈ x)). (2.12)

The above says that y is union of all sets in x . Using the axiom Eq.2.12, we can
deduce that given x and y, there exists z, such that z = x ∪ y, that is, t ∈ z ↔
t ∈ x ∨ t ∈ y.
To motivate for the next axiom being described, if x is an integer, the successor
of x will be defined as x ∪ {x}. Then the “axiom of infinity” generates a set that
contains all the integers and thus infinite.

5. Axiom of Infinity. It can be expressed as follows, and we understand that it is the
principle of Induction.

∃x(φ ∈ x ∧ ∀(y ∈ x → y ∪ {y} ∈ x). (2.13)

6. Axiom of Power Set. This axiom states that there exists for each x the set y for all
the subsets of x .

∀x∃y∀z(z ∈ y ↔ z ⊆ x). (2.14)

If the axiom of extensionality is dropped, the resulting systemmay contain atoms,
i.e., sets x such that ∀y(¬y ∈ x) yet the sets x are different. Indeed, one possible
view is that integers are atoms and should not be taken as sets.
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The first interesting axiom is the Axiom of Infinity. If we drop it, then we can take
a model for ZF set of all finite sets which can be built from φ.

The axioms discussed above can be used to prove theorems, like, mathematical
induction, invertible functions, and in fact another theorem of set theory, as well as
the corollaries, but the same are not appropriate to cover here, and a curious reader
is encouraged to refer the literature given in the bibliography.

2.9 Summary

Logic is used for valid deductions, and it avoids fallacy reasoning. Logic is also
useful in argumentation theory—a study of how conclusions can be reached through
logical reasoning, that is, whether the claims are soundly based on premises or not.
Argumentation includes debate and negotiation, that are concerned with reaching
mutually acceptable conclusions. The logic is used in proofs, games, and puzzles
solutions. The arguments have the internal structure: comprising of premises, rea-
soning process, and consequence.

The most commonly used, Propositional logic, represents sentences using single
symbols, called atoms, which are joined using the operators ∨,∧,¬,→ to cre-
ate compound sentences. The sign of “→” in p → q is material implication, also
called conditional join, if p then q. Propositional logic expressions are called sen-
tences/statements; these are interpreted as true or false. The sentences are called wff,
and are defined recursively. A formula is a syntactic concept, which means whether
or not a string of symbols is a formula.

The meaning (semantics) is associated with each formula by defining its inter-
pretation, which assign a value true (T) or false (F) to every formula. Interpretation
of a statement means the assignment of true values to its atoms. A set of truth values
assigned to the atoms in a statement is called its world. Assignment of truth values
to the atoms in a statement, which makes the statement true is called model of the
statement.

The model checking is the process of truth-table enumeration, and is exponential
on n, the number of atoms in a statement. The derivation can also be represented by
a derivation-tree (parse-tree).

A propositional formula A is satisfied iff v(A) = True for some interpretation
v. A satisfying interpretation is called model for A. The formula A is called valid,
denoted by |= A, iff v(A) = True for all interpretations v. A sentence is logically
true (valid) iff it is true under every interpretation. |= θ means that θ is valid.

A reasoning, in which addition of new knowledge may produce inconsistency in
the knowledge base, is called nonmonotonic reasoning.As per the property ofmono-
tonicity, if S � α, and β is additional assertion, then S ∧ β � α. The Nonmonotonic
logic is the study of those systems that do not satisfy the monotonicity property
satisfied by all methods based on classical logic.

The reasoningpattern comprises inferencemethods:modus ponens,modus tollens,
syllogism; and Proof methods: resolution theorem, model checking, model checking,
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Normal forms. Deducing new knowledge from the existing set of the knowledge
base is called inferencing. TheModus ponens, modus tolens, syllogism are inference
rules, and Sound and Complete are good properties of inference systems.

Semantic tableau is a method for deciding satisfiability for the formula of proposi-
tional calculus, which systematically searches for a model for a formula. If it is found
the formula is satisfiable, else not satisfiable. Semantic Tableau is a tree, each node
of which will be labeled with a set of formulas, and these formulas are inductively
expanded to leaves such that each leaf is marked as open by 	 or closed by ×.

The resolution rule is an inference which uses deduction approach. It is used in
theorem proving.

If every interpretation that satisfies S also satisfy X , then we say expression X
logically follows from a set of expressions S (the knowledge base). The Soundness
means that you cannot prove anything that is wrong, and Completeness means that
you can prove anything that is right.

An axiomatic system comprises a set of axioms and primitives.

Exercises

1. Prove the following assertions:

a. α is valid only if T |= α, where T stands for True.
b. For any (not necessarily valid) α,F |= α, where F is logically False.
c. Γ |= β if and only if the sentence (Γ ⇒ β) is valid. Here, Gamma is knowl-

edge base and β is sentence.
d. α ≡ β if and only if the sentence (α ⇔ β) is valid. Here,α andβ are sentences.

2. Give your argument in favor and against, that the material join p → q is not
same as the cause effect p → q.

3. Determine, which of the following formulas are valid /satisfied /contradiction?

a. ((p → q) ∧ (¬p → r)) → (q ∨ r)
b. (p ∨ q) → (p ∧ q)

c. p → ¬q
d. (p ∧ q) → (p ∨ q).

4. Show that (p → q) → (¬q → ¬p) is valid (Hint: Construct truth-table, the
interpretation of this formula shall be true for all the worlds).

5. Show that formula (¬p ∧ ¬q) ∧ (p ∨ q) is unsatisfiable (Hint: Construct truth-
table).

6. Assume a vocabulary with only four propositions, A, B,C , and D. Find out the
number of models for each of the following sentences?

a. P ⇔ Q ⇔ R.
b. P ∧ Q,
c. (P ∧ Q) ∨ (Q ∧ R),
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7. If S is a set of propositional formulas, then show that S |= F iff S ∪ {¬F} is
contradiction (Hint: A set of propositional formulas is contradiction, iff every
valuation of S there is a formula p in the set such that S �|= p).

8. If θ |= ψ then prove that θ ∪ {A} |= ψ for any formula A.
9. If θ |= ψ and A is valid then prove that θ − {A} |= ψ for any formula A.
10. Find out the satisfiability of the following formulas using semantic Tableau

methods:

a. p ∧ (¬p ∨ ¬q).
b. (p ∧ q) ∨ (¬p ∧ ¬q).

11. Show that if S is unsatisfiable then S − {Ai } is also unsatisfiable for every i ≤
i ≤ n.

12. Establish the consistency/inconsistencyof the following statements usingTableau
method.

a. (p ∧ q) ∨ (p → q),
b. (¬q → ¬p) ↔ (p → q),
c. (¬p ∨ ¬q) ∧ (p ∨ q).

13. Convert the following statements into CNF:

a. a¬bc + bc + ¬ab¬c,
b. a + bc + ¬b¬c.

14. Convert the following statements into DNF:

a. (a + b)(a + ¬b + c)(a + ¬c),
b. (¬a + b) ∨ (a → b → c).

15. Find out the resolvent for {p → q,¬q ∨ ¬r, r → p}.
16. Write a recursive algorithm T RUE(x,M) that returns true if and only if propo-

sitional logic sentence x is true in the model M, where M assigns a truth value
for every symbol in x . The algorithm should run in time linear in the size of the
sentence.
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