
Chapter 18
Information Retrieval

Abstract Information retrieval (IR) is the identification of documents or other units
of information in a collection that are relevant to a particular information need—a set
of questions towhich someonewould like to find an answer. This chapter presents the
basic strategies of IR in length along with their analysis, particularly emphasizing the
vector space and probabilistic models of IR, with worked examples in each category;
gives the detailed coverage to construction and maintenance of index, and its parallel
processing. The fuzzy logic-based retrieval, concept-based retrieval techniques, their
algorithms, and worked examples are presented; and Automatic Query Expansion
has been dealt with at length. Application of Bayesian networks, and inferences using
these have been demonstrated for IR. The newly emerged semantic web for futuristic
IR and its applications have been introduced; and the design aspects of distributed
IR suited for currently distributed information resources are treated in depth. The
chapter ends with the summary and a set of practice exercises.

Keywords Information retrieval · IR · Vector space model · Boolean model ·
Probabilistic model · Fuzzy-based IR · Concept-based IR · Automatic Query
Expansion · Indexing · Parallel index · Distributed index · Semantic web · Parallel
IR · Distributed IR · Query expansion · Bayesian networks

18.1 Introduction

The problem of Information Retrieval in the present context is highly relevant when
the volume of information generated is much more than the individuals can easily
digest. Consequently, it is extremely difficult to search, locate, and disseminate the
precisely desired information from the storage media, irrespective of whether it is
local or globally distributed. Ever-increasing information needs to be continually
added to the storage systems. This process has been fueled further by the arrival of
the Internet and theWorldWideWeb, aswell as digital libraries, research publications
repositories, electronic editions of newspapers, journals, and magazines.

Given a set of documents or information collection and information need, Infor-
mation Retrieval (IR) identifies the documents or other units of information in the

© Springer Nature India Private Limited 2020
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_18

557

http://crossmark.crossref.org/dialog/?doi=10.1007/978-81-322-3972-7_18&domain=pdf
https://doi.org/10.1007/978-81-322-3972-7_18

558 18 Information Retrieval

collection, which are relevant to that particular information need. The information
need is in the form of a set of questions one is interested to find an answer to. The aim
of IR is to locate the document or file which holds the desired information. Some-
times, it is also required to locate the actual position of the required information in
the document selected when the document is of a large size.

Here are some examples of IR tasks: finding an article in the Times of India that
discusses the freedom struggle of India; searching the recent postings in Twitter that
are related to a particular model of smart phones; finding the entries referring to
butterflies in an online encyclopedia, etc. [2].

The early IR methods were based on manually assigned keywords to the doc-
uments and required complicated Boolean queries. These methods were primarily
used by retrieval experts. However, in the 1970s, automatic indexing and natural lan-
guage queries gained popularity, and the IR facility became more and more available
to non-experts. The documents were commonly indexed by automatically consid-
ering all the terms in them as independent words. The documents were represented
using the set of these keywords, known as Bag-of-Words (BOW). The query format-
ting also became simplified in the form of short natural language formulation. This,
however, added noise in the documents’ representation, but the basic methodology
for indexing remained the same. Due to this, the non-expert users faced increasingly
more troubles, due to the “vocabulary problem”. This was because the keywords
chosen were often different than those used by the authors of the relevant docu-
ments. Due to this, systems’ recall1 rates came down. In other cases, the contextual
differences between ambiguous keywords were not properly resolved through the
BOW’s approach, which reduced the precision of the results. These two problems
are generally referred to as synonymy and polysemy, respectively [16].

To solve the problem of polysemy,2 automatic Word Sense Disambiguation algo-
rithms helped to disambiguate the documents’ contents as well as the query. The
disambiguation algorithms make use of resources like WordNet Thesaurus, corpora
text, or co-occurrence data to find the possible senses of a word and map word
occurrences to the correct sense. The disambiguated senses are used in indexing and
in query processing, which would help to retrieve only the documents that match
the correct sense. Unfortunately, sometimes the inaccuracy and errors of automatic
disambiguation are more dangerous than not using the disambiguation at all [5].

The models of Information retrieval assume each document described by a set
of representative keywords, called index terms. An index term is a word from a
document, which is supposed to represent the semantics of the document. In general
the index terms are nouns, as nouns carry maximum meaning of a sentence. Each
of the index terms in a document is not equally important; some of the index terms
describe the given document better than others. An index termwhich appears in every
document in a given set of documents is of no use. However, a term which appears
in only, say, five documents out of thousands of documents should distinctly identify

1Precision and recall are parameters which represent the performance of any IR system.
2Polysemy is an ambiguity in an individual word or phrase, such that the word can be used (in
different contexts) to express two or more different meanings.

18.1 Introduction 559

those documents. Accordingly, an index term should be assigned some numerical
weight to capture this effect. If ki is an index term, d j is a document then wi, j ≥ 0 is
the weight associated with the (keyword, document) pair (ki , d j).

Consider that there are a number of documents, and a query is put to retrieve the
documents relevant to this query. Ideally, the retrieval algorithm must return all the
documents that are relevant to that query, i.e., retrieved documents (say Ret) are the
same set as the relevant documents (say, Rel) in the entire set of documents. However,
in a realistic situation, systemsmay retrievemany non-relevant documents also along
with the relevant ones. To measure the effectiveness of retrieval, two ratios, precision
and recall, are used. The precision is the ratio of the number of relevant documents
retrieved to the total number of documents retrieved, and it provides the quality of the
answer set. However, this does not consider the total number of relevant documents
available in the original set. A system may have 90% precision if nine documents
are relevant out of total ten that it has retrieved, and there are a total of 100 relevant
documents in the store. Hence, the total relevant documents available also matters.
The recall is ratio of number of relevant documents retrieved to the total number of
relevant documents in the entire collection (see Fig. 18.1).

Intuitively, to keep precision high, one need to be overly careful (assuming that
human is itself an algorithm). In that case too a few documents will get retrieved.
But, in that process many useful documents would be left behind, making recall very
low. On the other hand, if one puts efforts to achieve high recall, i.e., trying to retrieve
the maximum number of relevant documents out of the total relevant count (a case
of too much aggressiveness), many non-relevant documents may also be retrieved,
resulting in poor precision. A typical such scenario is shown in Fig. 18.2.

All Documents

Relevant
Documents

Retrieved
Documents

Revevant

Documents
retrieved

Precision = Relevant retrieved
Total Retrieved = |Rel∩Ret|

Ret

Recall = Relevant retrieved
Total Relevant = |Rel∩Ret|

Rel

Rel
Ret

Fig. 18.1 Precision and Recall

560 18 Information Retrieval

Fig. 18.2 Typical relation
between Precision and
Recall

0.0 1.00.5

1.0

0.5

0.0

Typical

Optimal

Recall

Pr
ec
is
io
n

Learning Outcomes of This Chapter:

1. Explain basic information storage and retrieval concepts. [Familiarity]
2. Describe what issues are specific to efficient information retrieval. [Familiarity]
3. Give applications of alternative search strategies and explain why the particular

search strategy is appropriate for the application. [Assessment]
4. Design and implement a small to medium size information storage and retrieval

system, or digital library. [Usage]
5. Describe some of the technical solutions to the problems related to archiving and

preserving information in a digital library. [Familiarity]
6. Generate an index file for a collection of resources. [Usage]
7. Explain the role of an inverted index in locating a document in a collection.

[Familiarity]
8. Explain how stemming and stop words affect indexing. [Familiarity]
9. Describe key challenges in web crawling, e.g., detecting duplicate documents,

determining the crawling frontier. [Familiarity]

18.2 Retrieval Strategies

Consider a set of documents D1, D2, . . . , Dn and query Q, a retrieval strategy is
an algorithm for information retrieval that assigns a similarity measure sim(Q, Di)

for i = 1, 2, . . . , n, between query Q and document set D. Following are the most
common retrieval strategies [14].

• Boolean Indexing. A Boolean query results in ranking based on some score
assigned to the terms. This can be achieved by associating a weight with each
query term, which can be used to compute the similarity coefficient.

• Vector Space Model. In this model, the document Di and query Q are each repre-
sented as vectors in the term space. Themodel computes the similarity sim(Q, Di)

between two vectors.
• ProbabilisticModel.Aprobability of relevanceof a document to a query is basedon
the likelihood that a term (i.e., query term)will appear in a relevant document. This

18.2 Retrieval Strategies 561

probability is computed for each term in the collection of documents. For terms
that match between a query and document, the similarity measure is computed as
a combination of probabilities of each of the matching terms. This similarity is a
measure of relevance of the query to the document.

• Inference networks. A Bayesian network is used to infer the relevance of a doc-
ument to a query, the later is a measure of similarity between the query and the
document.

• Fuzzy set-based retrieval. In this IR approach, a document is mapped to a fuzzy
set.3 For example, rain/0.9 versus rain/0.2 shows that in the first case, the meaning
of the keyword rain indicates heavy rain, while in the second set it shows a very
mild rain [7].

18.3 Boolean Model of IR System

TheBooleanmodel for IR is a simple information retrievalmodel, based on set theory
and Boolean algebra. Since the concept of set is quite intuitive, the Boolean model
provides the framework that is easy to grasp by a common user of an IR system,
as well as simple to implement. Also, the Boolean queries in the form of Boolean
expressions, are precise in their semantics [14].

The Boolean model considers that the index terms, which are the represen-
tation of documents, are either present or absent in a document. Consequently,
the index terms’ weights are taken as binary (1 for presence and 0 for absence),
i.e., for a document Di the index term t j is either present or absent in Di , i.e.,
weight wi j ∈ {0, 1}. A query Q is composed of index terms connected through
the binary operators ∧, ∨, ¬ (and, or, not). A query can be expressed as con-
junctive normal form (CNF) or disjunctive normal form (DNF). For example the
query “Q = ta ∧ (tb ∨ ¬tc)” = “(ta ∧ tb) ∨ (ta ∧ ¬tc)” can be written in DNF as−→
Q = (1, 0, 0) ∨ (1, 1, 0) ∨ (1, 1, 1), where each term is a binary weighted vector
corresponding to the tuple (ta, tb, tc). Figure18.3 represent this query using a Venn
diagram.

IR is a process of matching the patterns in the user inquirywith the patterns in the
prospective text documents. If the inquiry words are taken as a set of words X , and
the text document words are taken as a set of words Y , then IR is nothing but finding
the binary relation X × Y . However, words may appear in different morphological
forms. It is, therefore, necessary that—before the matching is performed, the words
in the inquiry as well as the words in the text document are reduced to their basic
form—called stem words, by a process called stemming.

Consider that X is a Boolean set inquiry (or query) keywords, Y is a Boolean set
representing the keywords in the document. With this, a binary relation from X to Y
can be represented as

3A set that contained not only the elements but a number associated with each element that indicates
the strength of the membership of the term.

562 18 Information Retrieval

Fig. 18.3 Conjunctive
components of query
Q = ta ∧ (tb ∨ ¬tc)

(1,1,1)

(1,1,0)
(1,0,0)

ta tb

tc

R : X × Y ∈ {0, 1}. (18.1)

If for every x ∈ X , there is a corresponding y ∈ Y , then we say R(x, y) = 1, i.e.,
x is related to y, otherwise R(x, y) = 0.

Since in a Boolean model a query term x is either related to a document term y
(i.e., R(x, y) = 1), or not related to y (R(x, y) = 0), there are sharp boundaries of
relations, hence a Boolean-based model is also called Crisp set -based model. The
following example demonstrates crisp set-based IR.

Example 18.1 Crisp set-based Information Retrieval.

Consider a set of text documents Y consisting of documents y1, y2, ..., yn , as potential
documents to be searched for the keywords x1, x2, ..., xm in the inquiry set X . Assume
that n = 2, and y1, y2 are as given below: (quoted from, “Einstein—The Life and
Times,” by Ronald W. Clark).

y1: “Thus the new concept of the subatomic world was even by 1920 beginning
to produce a gulf. Bohr, Born, and a number of Einstein’s other contemporaries, as
well as the many of younger men who were in great part responsible for the new idea
readily jumped the gap. Einstein stayed where he was. Therefore, the scene in many
ways paralleled that into which he has launched his theory of relativity two decades
earlier. But then he had been in the iconoclastic vanguard; now he took up station
with the small conservative rearguard.”

y2: “Plank, the man of honor who had yet not signed the manifesto of 93, had in
fact for the first time done as much to keep Einstein in Berlin as he had done to bring
him there in 1914. His letter, which, in Einstein’s words, had induced him”

Let the inquiry be “Einstein’s Scientific Theory of Relativity”; and therefore the
corresponding set of keywords in the inquiry is X = {x1 = “Einstein”, x2 = “Scien-
tific”, x3 = “Theory of Relativity” }, and document set Y consists of documents y1,
y2, therefore, Y = {y1, y2}.

In crisp set-based IR, it is required to find R—a subset of X × Y , i.e., R (“Ein-
stein”, y1), R (“Scientific”, y1), R (“Theory of Relativity”, y1), R (“Einstein”, y2),
R (“Scientific”, y2), R (“Theory of Relativity”, y2). The Boolean relation R for the
example under consideration is given in Table18.1.

It may be seen that while y1 has two matchings, y2 has only one matching. Hence,
Table 18.1 shows that the relative relevance of y1 with respect to y2, given by the sum
of matching counts in y1 divided by the sum of matching counts in y2 is 2. For larger

18.3 Boolean Model of IR System 563

Table 18.1 Crisp set relation
between query and document

Query (X) Document (Y)

y1 y2

x1 1 1

x2 0 0

x3 1 0

number of documents: y1, y2, …, yn , the relevance can be computed in the similar
manner for a specified inquiry. Once the relevance is computed, the IR system lists
the documents in the order of their relevance.

In the classical binary logic, there is either 100% match for an index term in the
inquiry and corresponding term in the document, so R(xi , yi) = 1; or there is no
match at all with R(xi , yi) = 0. However, the real-life situations are often different.
It may happen that the two terms from index and document which are being matched
are two forms of the same word, e.g., real and reality, phrase and phrases, exact and
exactness, etc. In all these cases the crisp logic returns zero value of relevance. �

18.4 Vector Space Model

The vector space model determines the measure of similarity (sim(Q, Di)) between
a query and a document using a vector that represents query Q, and document Di .
The model is based on the intuitive notion that meaning of a document is conveyed
by the words present in the document. Figure18.4 represents the concepts of vectors
for a query Q and documents D1, D2, . . . , Dn . Here t is the total number of terms
in the collection [12].

Fig. 18.4 Vector space
model

Document
D1

Document
D2

Document
Dn

Query
q1, q2, . . . , qt

D11D12 . . . , D1t

Dn1Dn2 . . . , Dnt

D21D22 . . . , D2t

Q

564 18 Information Retrieval

The vector spacemodel is based on amethodwhich compares how close the query
vector is to the document vector. The traditional method of determining the closeness
between two vectors is the angle between them, where the angle is computed using
dot products of two vectors. In our context here, the similarity coefficient is used
instead of the angle. If a term is present in the vector, 1 is placed else 0 is placed in the
corresponding position in the vector. To account for multiple occurrences of a term in
the document, frequency of that term is used instead of merely its presence/absence.
Thus, for a query 〈a, b〉, two documents’ vectors, 〈1, 0〉, and 〈5, 1〉 indicate that in
the first terms a and b have frequency of 1 and 0, respectively, and for the second
these frequencies are 5 and 1, respectively.

The similarity between query and documents can be computed as the distance
between the query and each of the document vectors. If a document has the same
vector as the query, their distance is minimum and have the highest similarity.

Instead of specifying the list of terms in a query, a user is often interested to
indicate that certain terms are more important than others. One approach to this
is that user indicates a higher weight to specific terms by manually specifying the
weight. The other approach is automatically assigning theweight equal to the number
of times (frequency of the term) a term appears in a document. But, if a common term
appears in every document, it cannot be used to distinguish a rare document from the
rest. For example, if a term appears only in very few documents, say two documents
comprising such a term out of a thousand documents, then that term is an important
criterion to distinguish those two documents as relevant to that term. In this case,
the similarity is proportional to the ratio of the total number of documents (d) to the
documents count (say d f j , the document frequency) which have the occurrence of
this rare term. The ratio is called inverse document frequency, id f .

The important terms encountered in the above discussion are defined and listed
below as

t : Terms. It is the number of distinct terms (keywords) in the entire collection of
documents.
t fi j : Term frequency. It is the number of occurrences of the term ti in the document
Dj .
d f j : Document frequency. It is the number of documents that contain the term.
id f j : Inverse document frequency. It is equal to log d

d f j
, where d is the total number

of documents.

Each document is represented as a vector, with a total t number of components,
and each entry in the vector corresponds to a distinct term from the entire collection
set. In addition, each component in a vector is filled with weights computed for the
corresponding term. This weight is automatically assigned based on how frequently
the term has occurred in the entire documents collection, and another weight is based
on how often the term has appeared in the particular document. The weight of a term
in a document increases, the more often it appears in that document, and decreases,
the more often it appears in other documents.

The weight of a term in a document is defined as a combination of term frequency
t f , and the inverse document frequency id f . Each term has a position in the vector,

18.4 Vector Space Model 565

if it is present in the document, that position is marked with its weight, else marked as
weight 0. To compute the weight (dwi j) of a term ti in a document Dj , the following
equation of t f.id f is used:

dwi j = t fi j × id f j . (18.2)

When an information retrieval system (actually it retrieves the document carrying
the needed information) is used to query a document collection using a query of n
number of terms, the system computes one document vector, 〈dw1 j , dw2 j , . . . , dwnj 〉
of size n for each of the documents j , and these vectors’ components are filled
with weights as discussed above. Similarly, a query vector, 〈qw1, qw2, . . . , qwn〉 is
computed for the terms found in the query. Note that, size of the query vector is also
n. The similarity measure between query Q and a document Dj is defined as the dot
product of two vectors.

sim(Q, Dj) =
n∑

i=1

qwi × dwi j . (18.3)

18.5 Indexing

The vector space model and other retrieval strategies make use of an inverted index
file structure to avoid the length of search in the keywords of every document for
which relevancy is to be established. Instead of searching into a document, an inverted
index is generated in advance for all the keywords in the document set. An entry for
each of the n terms (t1, ..., tn) is stored in an index structure, like the one shown in
Fig. 18.5. For each term ti , a pointer references to a linked list, which contains an
entry for each document containing this term as well as the term frequency in that
document is present. For example in row i , there are entries for (d j , t fi j) forming
a connected list for term ti . The d j is a document in which term frequency is t fi j
for the term ti . The figure shows that the term ti has a frequency of 7 in document
d3. This indexing structure has the advantage that the retrieval system can search the
term quickly, as well as the documents in which the term appears [18].

18.5.1 Index Construction

A key challenge in the construction of an index is the size of the data involved in
the index itself (see Fig. 18.5), which is a dynamic data structure typically used for
cross-reference generation, but cannot be kept together in the memory of a typical
system due to its size. The task to be performed here is a matrix transposition,
given that the documents’ terms’ matrix is very sparse. Such matrices are not so
easy to manipulate directly as an array. Therefore, the index construction makes use

566 18 Information Retrieval

Fig. 18.5 Inverted index file

ti

tt

t3

t2

t1 (d5, 2)

(d3, 7)(dj , tfij)

(d7, 1)

Inverted List

of index compression techniques, together with distribute-comparison-based sorting
techniques.

Algorithm 18.1 is a simple in-memory inversion algorithm. The key idea in this
algorithm is that the first pass through the documents to be indexed collects terms
frequency (t fi j) information, which is sufficient for the construction of an inverted
index. The index is stored in the memory in the form of a template. The second pass
places the pointers, shown by arrows, at their correct positions in the template as
shown in Fig. 18.5.

Algorithm 18.1 To build an inverted index using the in-memory technique
1: Pass I: Make an initial pass over the collection of documents.
2: For each term ti , count its term frequency t fi j in each document d j , and determine the upper

bound uti in bytes, on the length of the inverted list for ti .
3: Allocate an in-memory array of

∑
ti uti bytes, and, for each term ti , create a pointer cti to the

start of a corresponding block of uti bytes.
4: Pass II. Process the collection of documents a second time.
5: For each document d j , and for each term ti ∈ d j , append a code representing 〈d j , t fi j 〉 at cti ,

and update cti .
6: Pass over in memory Index: Make sequential pass over these index, for each term ti , copy the

t fi j representations of the 〈d j , t fi j 〉 pointers from the allocated uti bytes to the inverted file, and
compress if required.

It is possible to extend the in-memory technique to data collection technique. In
this technique, the index size may exceed the memory size. This is possible by laying
off the index skeleton on the disk, while partial sequences of indexes are created in
the memory, and each one is transferred to the disk in a skip-sequential manner into
a template in a large file. Using this extended method, and using compression, it is
possible to create indexes of the size of terabytes using a memory of a moderate size
of 4–8 GB—a size common in the present time.

18.5 Indexing 567

Parallel Processing of Index

For parallel processing of indexes, they can be constructed in parallel and can be
merged after regular intervals (see Algorithm 18.2). Themerge-based inversion tech-
nique reads the documents and indexes them in the memory until a fixed capacity
is achieved. Every inverted list is represented using a structure, which can grow as
more information about the index terms become available. For this structure, dynamic
resizable arrays are most appropriate. As soon as the memory is full to its predefined
capacity, the indexes are flushed out to disk in a single run, such that the inverted
lists are stored in the disk file in a lexicographic order. This lexicographic order later
becomes useful for the sequential merging of the indexes. Since the runs of these
subindexes are never used to answer a query, there is no need to store their vocabulary
in an explicit structure, hence each run can be written at the head of its inverted list.
Once a run is written into the hard disk, it is fully deleted from the memory so that
the construction of the next run begins with initially empty vocabulary.

Algorithm 18.2 To build an inverted index using Merge-based technique
1: while all the documents are not processed do
2: Initialize an in-memory index, using a dynamic structure for the vocabularies and a static

coding scheme for inverted lists; store lists either in dynamically resized array or in linked
blocks.

3: Read documents and insert 〈d, t f 〉 pointers into the in-memory index, continuing until all
allocated memory is consumed.

4: Flush this temporary index to disk, including its vocabulary.
5: end while
6: Merge all the set of partial indexes to form a single index, compressing the inverted lists if

required.

When all the documents have been processed, the runs available in the disk are
merged to get the final index. The merging process builds the final vocabulary on the
fly. Since the runs from the disk are read (into a buffer) for merging, a sufficiently
large size of the bufferwill reduce the disk accesses, hencemaking the process further
faster. However, if the free disk space is limited, the final index can be written back
into the RAM at the space occupied by the runs, progressively as they are processed,
which is helpful in representing the final inverted lists more efficiently. The latter
becomes possible because the final index is typically smaller than the runs, hence
the vocabulary information is not duplicated.

The index construction using the merge-based approach is common and practical
for data collections of all sizes. It is scalable, and operates efficiently in a memory
size as small as 100 MB. The overheads of a disk space can be limited to a small
fraction of the final index, as it requires only one parsing pass over the data, and the
method can be extended from keyword indexing to phrase indexing.

568 18 Information Retrieval

18.5.2 Index Maintenance

Inserting a new document into the text collections amounts to inserting a few bytes to
the end of every inverted list depending on howmuch the terms in that document are,
i.e., size of the document. Since a documentmay consist of 100s–1000s of terms, such
insertion of terms requires fetching and extending 100s of inverted lists, and it may
require 10–20 s in the worst cases, to rebuild the inverted list for the new collection
of documents. However, the merge-based inversion approach can index thousands
of documents per second, making this method almost 10,000-times faster [12].

For fast insertion of terms for indexing into the inverted list, the disk resident
part of the list be not accessed frequently, else it will reduce the overall speed. The
practical solution is to amortize the update cost over a sequence of insertions. There
are many properties of text databases, which allow strategies for cost amortization.
Thenewdocuments are not immediately available for searching, if they are searchable
they can be made available through a temporary in-memory index—that is, the last
subindex in the merging.

There are three broad categories available for updating the index as the new
documents get added into the collection, they are rebuild from scratch, merge an
existing index with an index of new documents, and incremental update.

Rebuild

There are applications where the index is not updated at all, but it is rebuilt from
scratch at some regular intervals. The presence of new documents is established
through crawling, and an update is not immediately needed for these documents.
This approach is considered economical even for gigabytes of data, where rebuilding
takes just a few minutes, rather than updating the existing index, which anyway will
require fetching the document as well as the index to be updated.

Intermittent Merge

Number of inverted lists can be maintained for the documents collection, in the
memory of a system.Having the lists inmemory, it is easy (less complex) to insert new
documents into these lists when the new documents are discovered. This is carried
out using Algorithm 18.2 discussed on page 567, through the process of merging the
indexes. Alternatively, the existing documents’ index remains in a standard inverted
file, and new documents are indexed as an inverted file data structure in the memory.
With this, the two indexes can share a common vocabulary. In this process, both the
indexes are made available to queries, and the result of any query is the union of the
query results from both of these inverted indexes. When the size of the in-memory
index crosses a threshold size, it is merged into the index file on the disk.

Other approaches for indexing use incremental update, or choice of alternative
strategies for indexing as a combination, suffix arrays, wavelet trees, Bayesian infer-
ences, predicate-based indexing, and probabilistic indexing [14].

18.6 Probabilistic Retrieval Model 569

18.6 Probabilistic Retrieval Model

The probabilistic model of retrieval computes the similarity measure (sim(q, di))
between the query q ∈ Q and a document di ∈ D as the probability that di is relevant
to q, where D is the set of documents in the collection, and Q is the set of queries.
The probabilistic retrieval method estimates the term weight based on how often the
term appears in the relevant but does not appear in the non-relevant documents. The
term weight is calculated using the probability ranking principle, which is based on
the assumption that optimal performance is observed when documents are ranked
on their relevance to the query. In the approach used, probabilities are first assigned
to components of the query and then each of these is used as evidence in computing
the probability that a given document is relevant to the query [8].

Each term in the query is also assigned a weight corresponding to the probability
that the document termmatchedwith the querywill retrieve a relevant document. The
weights of the query terms are aggregated to obtain the final measure of relevance.
A probability-based information retrieval system ranks the documents in decreasing
order of probability of relevance to the user’s information needs. Following are
essential preconditions for this probabilistic retrieval model:

• Retrieval accuracy is dependent on how accurately the query and document have
been represented, and does not directly depend on the documents and the queries,

• The representation of documents and queries may not be accurate due to a variety
of uncertainties prevailing in the method of representation itself.

Figure18.6 shows the conceptual probabilistic model for IR, where event space is
represented by Q × D, such that Q = {q1, q2, q3, . . .} is a set of queries representing
the information need, and D = {d1, d2, d3, . . . , } is a finite set of documents. Each
query qi and document d j is in the form of descriptors, where qi and d j are set of
terms (i.e., keywords). The descriptor is a binary-valued vector, and each element in
that corresponds to a term. Every query is taken as a unique event, i.e., two identical
queries at different times are treated as different events. We assume that G is a set
of possible relevance judgments for the Cartesian product of documents’ set D and
queries set Q. Let the relevance relationship be r , between the query set and document
set, in the form of a mapping r : Q × D → G. In case of Boolean IR, a document
is either relevant to a query or not, hence for any query qi and document d j , there is
r(qi , d j) → {0, 1}.

Fig. 18.6 Conceptual
probabilistic model of IR Q

D

G

Q

D

Q

D

H

αQ

αD

βQ

βD

570 18 Information Retrieval

In fact, an IR system does not directly handle the documents and the queries,
but handles them indirectly, in the forms of their representations. For example, a
document is represented in the form of index terms, and a query is represented
as a Boolean expression comprising terms and Boolean operators (see page 562
for more detail). Let us assume that Q′ and D′ are representations of queries and
documents, respectively. These representations have a mapping from the original
query and documents through some functions, which are expressed as αQ : Q → Q′
and αD : D → D′. Hence, if there are two different documents, but represented
with the identical set of index terms, then they will be mapped onto the identical
representation.

Further mapping is introduced from the representation (Q′, and D′) to object
descriptions, to make the models more general. This is done by supplementing a
weight to the index term forms of the queries’ and documents’ representations. The
weight is a real number. Let us assume that these object descriptions, for query set
and document set, respectively, are Q′′ and D′′, and the mappings as βQ : Q′ → Q′′
and βD : D′ → D′′, respectively. Due to the introduction of weight the newmapping
shows a more accurate relevance relation between the query and its descriptor set,
and similar is the case for the document set to their descriptors. Therefore, the more
correct value of the relevance function r is r : Q′′ × D′′ → H .

For a submitted query qi ∈ Q to the IR system, the documents d j ∈ D are ranked
according to the decreasing order of r(q ′′

i , d
′′
j), such that the document with the

highest rank (of relevance) is at the top. The job of an IR system that ranks the
documents in the order of their relevancy for a query q ′′

i is to calculate relevance and
rank every document d j ∈ D′′. Often, for the sake of simplicity, the description and
representation are treated the same, and both are represented as the form of set of
terms [4].

18.7 Fuzzy Logic-Based IR

The fuzzy retrieval technique is based on the fuzzy set theory and fuzzy logic—an
extension of the classical set theory. This fuzzy retrieval technique is based on the
concept that the word matching between the inquiry word set and the text word set
should not be limited to the perfect matching with the stem words. But, since the
words in inquiry also match with their synonyms in the text documents, the matching
should be graded, depending on the degree or level of matching in the range from
0 to 1. The extremes of this range, a special case in fuzzy logic, corresponds to the
Boolean matching. Fuzzy logic is more realistic than the Boolean logic, simply due
to the fact that it considers the exact as well as vague matching, the latter being more
frequently encountered in the real world [7].

In the relations over fuzzy sets, the elements of two sets have a degree of asso-
ciation as a form of relation rather than simply—related (binary 1) or not related
(binary 0). The degree of association ranges from 0 to 1, where 0 indicates the total

18.7 Fuzzy Logic-Based IR 571

absence of relation and a 1 indicates the total presence of the relation; therefore, a
fuzzy relation between query keywords set and of document’s keywords is

R : X × Y ∈ [0, 1] (18.4)

and the range of R(x, y) varies from 0 to 1 depending on how close the y, (y ∈ Y)
is associated with x, (x ∈ X).

Information Retrieval Using Fuzzy Sets

The membership value R(xi , y j) specifies, for each xi ∈ X , y j ∈ Y , the grade of
relevance of index term xi with the document y j . The grade of relevance depends on
many factors [3]:

1. position of term y j in the text document, if the document is a research article,
and y j appears in the list of keywords, the abstract, or in the conclusion part, the
relevance is higher;

2. frequency of occurrence of y j in the document;
3. xi and y j are terms formed from the same basic stem word; and
4. y j is synonym of xi—the proximity of the meaning of xi and y j decide value of

R(xi , y j)’s closeness with 1.

The criteria (1) and (2) above are user-defined and they can be programmed in
the implementation according to the user needs. The stem word criteria (3) requires
a data structure similar to the one shown below in Fig. 18.7, which helps to locate
the stem word for a given word, and then the stem word is substituted in the original
text before the retrieval technique is applied to it [4].

Other, more often used approach for stemming is through some stemming algo-
rithm, e.g., Porter’s stemmer, which takes the benefit of certain patterns in the words
to obtain the stem word. For example, for the words with “ing” at the end, the stem
word can be obtained by removing the “ing” part, like “book” from “booking”. Also,
there are other features, like removing “ed” at the end of the past tense of a verb; we
obtain its stem word, say “book” and “look” from “booked” and “looked”, respec-
tively. Along with this, there are some more complex patterns, like “goose” from
“geese”, etc.

Fig. 18.7 Data Structure for
finding stem words

....

Keyword1

Keywordn

Keyword2
Stemword1

Stemwordm

....

572 18 Information Retrieval

Another important relation for IR based on criteria (iv) above is the fuzzy the-
saurus, which plays a pivotal role for FIR. The fuzzy thesaurus shows the relationship
between the pairs of words based on their centrality or degree of relevance. The struc-
ture of a fuzzy thesaurus (T) is

〈WC1〉〈WC2〉〈RD〉

where WC stands for word category and RD is the degree of relationship between
the words WC1 and WC2. A typical examples for this can be as follows.

attraction, love, 0.8
studious, hardworking, 0.9
war, crime, 0.7.

A relation 〈xi 〉, 〈x j 〉, 〈1.0〉 shows that xi is a perfect synonym of x j . The fuzzy
thesaurus can be manually constructed, or can be generated from the lexicons. Tran-
sitivity relationship can be applied by computing the missing relationship degrees
from the existing ones. The thesaurus, say T , is a reflexive fuzzy relation, defined
over X2. For each pair of index terms (xi , x j) ∈ X2, the T (xi , x j) expresses the
degree of association of x j with xi , such that the degree to which the meaning of the
index term x j is compatible with the meaning of the index term xi . The objective
of this relation is to deal with the problem of synonyms among the index terms, for
example a document’s term is a synonym of query term or vice versa. The relation
helps to identify the relevant documents which otherwise would not be selected in
the absence of a perfect match between the keywords in the user inquiry and those
in the text document.

Different approaches can be used for the construction of fuzzy thesaurus. For
example, experts in the domain of text can be asked to identify, in a given set of
index terms, the pairs of words whose meaning they consider are associated, and
provide the degree of association for each pair. In Fuzzy Information Retrieval (FIR)
an inquiry can be expressed in the form of a fuzzy set (say Q) based on the index
term X . Then, by composing Q with the fuzzy thesaurus T , we obtain a new fuzzy
set on X , say A—which represents the augmented inquiry, i.e.,

A = Q ◦ T, (18.5)

where “◦” is called max-min composition operator, such that

A(x j) = max-min[Q(xi), T (xi , x j)]. (18.6)

Here, xi ∈ X , for all x j ∈ X . The retrieved documents, expressed by a fuzzy set F
defined over Y , are then obtained by composing the augmented inquiry, expressed
by the fuzzy set A, with the relevance relation R, i.e.,

18.7 Fuzzy Logic-Based IR 573

F = A ∗ R (18.7)

where “∗” is a matching operator, which evaluates the degree of fuzzy matching by
multiplying the fuzzy membership of the augmented inquiry with the fuzzy mem-
bership of the corresponding words in the text. Finally, the relevance measure of the
text with the inquiry under consideration is obtained by summing all the values of
fuzzy matching for the text.

Example 18.2 Fuzzy logic-based Information Retrieval.

Let the terms be xi , i = 1, 6, representing keywords—“Einstein”, “scientific”, “The-
ory of Relativity”, “Bohr”, “subatomic”, and “New idea”, respectively. Let the given
inquiry be Q = “Einstein’s Scientific Theory of Relativity”, and the vector represen-
tation of corresponding fuzzy inquiry be

x1 x2 x3
Q = [1 0.6 0.8] (18.8)

where 1, 0.6, and 0.8 are called the centralities of x1 (Einstein’s), x2 (Scientific), x3
(Theory of Relativity), respectively. The centrality indicates the presence of certain
qualities, whose computations are modeled as a computation of fuzzy membership
degree. The relevant part of the fuzzy thesaurus T , restricted to the support of Q, is
given by the matrix:

T =

⎡

⎢⎢⎣

x1 x2 x3 x4 x5 x6
x1 1 .6 .9 0 .1 0
x2 .6 1 .8 .6 .5 .8
x3 .9 .8 1 0 0 .7

⎤

⎥⎥⎦ . (18.9)

Note that terms’ pairs (x1, x1), (x2, x2), and (x3, x3) has each a fuzzy matching
of 1. On using (18.5), and the data given by Eqs. (18.8) and (18.9), we get

A = [
1 .8 .9 .6 .5 .7

]
. (18.10)

The values in augmented query A are obtained as follows: we show the compu-
tation for third element (A3), i.e., 0.9 as

A3 =max(min(1 × 0.9),min(0.6 × 0.8),min(0.8 × 1))

=max(0.9, 0.6, 0.8)

=0.9.

Assume that relevance relation R (i.,e., R(xi , y j)) is given by the matrix,

574 18 Information Retrieval

R =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2
x1 .7 .3
x2 .3 .1
x3 .6 .1
x4 .6 0
x5 .6 .3
x6 .6 .1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18.11)

where y1, y2 are the documents related to index terms xi , i = 1, . . . , 6. Using Eq.
(18.7) and data given by (18.10) and (18.11), we get fuzzy relevance relation F as

F = A ∗ R = [
2.56 0.69

]
. (18.12)

Equation (18.12) shows that the relative relevance of y1 with respect to y2 is
2.56/0.69, i.e., 3.7. Thus, the result appears to be more realistic in comparison to the
result obtained using crisp (binary) logic. This fact is also supported by the contents of
texts y1 and y2. Once the FIR system lists the documents with their relevance values,
the user can now decide whether to inspect all the retrieved documents supported by
the fuzzy set F or to inspect only some of the documents depending on the degree
of association of the document with the index terms. �

The use of fuzzy set theory for IR shows that the fuzzy relevance relation and
fuzzy thesaurus are more expressive than their crisp set counterparts. Also, since the
degree of association is returned along with the retrieved documents, it helps the
user to decide the order in which the documents can be viewed, particularly when
the documents are in large number.

The FIR promises a higher potential for cross-language text processing and IR.
Every language and its semantics have a close association with the culture in which it
has its roots, and therefore, exact matching terms for any language are not possible in
other languages. In fact a degree of relevance or, only fuzzy relation exists between the
matching words of the two ormore languages.We have planned to work on the cross-
language areas, which include English, and Sanskrit-based Indian languages [3].

18.8 Concept-Based IR

The keyword-based approach we discussed above is also called the BOW (Bag-of-
Words) approach. The concept-based information retrieval makes use of semantic
concepts for the representation of the documents andqueries, instead of (or in addition
to) keywords; and the approach performs the retrieval in the concept space of query
and documents. Hence, this retrieval model is less dependent on the specific terms
(keywords) used, and yields a match even when the same notion is described by a
different set of terms in the query or in the target document, or in both. This helps
in eliminating the problem of synonymy. Since more relevant documents are likely

18.8 Concept-Based IR 575

to be retrieved from the store, the recall rate increases. In the similar way, if the
concepts chosen for the words, particularly the ambiguous words in the query and
document are accurate, the non-relevant documents thatwere retrievedwith theBOW
approach could be eliminated from the results. Since the non-relevant documents are
lesser in the retrieved documents now, it increases the precision rate. Note that in
the keyword-based approach of IR, non-relevant documents’ share increases in the
retrieved documents when the keywords have multiple meanings, e.g., “bank” (of
river and of money). The problem of many senses of a word is called polysemy.

The concept-based methods can be characterized by the following three
parameters:

1. Concept representation. The concept-based IR makes use of real-life concepts
that closely resemble human perception. The concepts are based on the language
of the text of documents and queries.

2. Mappingmethod used. It is themethod used for mapping the natural language text
to concepts. In fact, the ideal mechanism is the manual approach, which builds a
hand-crafted ontology of concepts alongwith a list of words to be assigned to each
concept. However, this approach is inefficient and time consuming. The automatic
mapping between concepts andwords can also be done throughmachine learning,
but with loss of accuracy.

3. Use in IR. The concepts are used during the indexing and retrieval phases of the
documents. A simpler but less-accurate method applies the concept analysis in
one stage only. For example, it is better to apply the concept analysis in the query
expansion rather than document retrieval.

A large and diverse knowledge repository, like Wikipedia, can create a powerful
concept ontology,well-suited for concept-based IR.Awide range andexhaustive cov-
erage of topics in Wikipedia’s diversity, coupled with automatic ontology-building
capability, can be used for the purpose of highly fine-grained ontology. Additionally,
the inverted index language provides a mapping from massive natural language text
terms of the entireWikipedia collections, to the concepts as per the context and sense
of the text terms. This entire process produces a powerful classifier that automatically
maps any given text fragment to its concept ontology [9].

18.8.1 Concept-Based Indexing

A concept-based IR algorithm maps documents and queries individually to the
Wikipedia concept space. The indexing and retrieval are performed in this space
only. In the Wikipedia-based Semantic Analysis (SA), the semantics of a word are
described by a vector that stores the word’s association strengths toWikipedia-based
concepts. A concept is in the form of a concept vector

−→
Fd , which is generated from a

single Wikipedia article d, as a vector of words appearing in that article. The article
is weighted by t f.id f score. Once these concept vectors are generated, an inverted
index is created for the purpose of mapping back each word to the concepts it is

576 18 Information Retrieval

Economy
The ... trade..
...market...

trade... money
..property ...

market

trade

property

wordn

....

....

....

....

Bazaar (0.72)

Economy(0.61)

< ci, wi >

Real estate(0.8)

< cj , wj >

Theft(0.55)

Trade union (0.5)

Economy (0.5)

Wikipedia articles

Concept Concept Vectors

...
.

...
.

...
.

Fig. 18.8 Semantic analysis from Wikipedia articles

associated with. Thus, each word appearing in the Wikipedia corpus can be seen as
triggering one or more concepts c j it points to the inverted index. An attached weight
wj with the concept represents the degree of association between that word and the
concept. This process is illustrated in Fig. 18.8, which shows how the semantic anal-
ysis is carried out of aWikipedia article.4 The articles and the words in the articles are
processed to build a weighted inverted index, which represents each word of article
as a vector in the space of all Wikipedia concepts, i.e., articles in theWikipedia itself.

In the concept-based indexing, each document (i.e., article) in the corpus is
mapped to a vector of weighted concepts, represented by 〈c1,w1〉, 〈c2,w2〉, ...,
〈cn,wn〉. Like Bag-of-Words (BOWs) vectors, the concept-based vectors are also
sparse, hence concept weights are zero for a large majority of the Wikipedia con-
cepts. Since every word in the document to be indexed may be related to a large
number of concepts, and a document containing a collection of words is likely to be
related to an even larger number of words, indexing an entire list of related concepts
for every document is not feasible. Therefore, only the concepts having the highest
weights (for example, “Bazaar”, “Economy”, etc., in Fig. 18.8) are used for indexing.
In a sorted representation of the weighted vector, this subset of concepts is simply
its prefix.

It more difficult to map the long documents in full, into the concept space. For
example, a small part of a long document might be relevant to a given query, but
the semantics of this small part are not likely to be fully represented in the concepts
vector of the complete document. Note that, a somewhat similar problem also exists
in the Bag-of-Words approach, where the term frequency (t f) value is normalized
to account for the documents of varying lengths.

Due to the averaging effect of the representation of longer text fragments, and due
to the practical limitation to use only a small subset of the representation of concepts,
the challenge in the concept-based retrieval technique is even greater. Because the
concepts generated for a subset of the larger document, where the subset is relevant

4A Wikipedia article is an article about some topic, for example, we find articles in the collections
of Wikipedia, like websites, Internet, WWW, etc.

18.8 Concept-Based IR 577

and the remaining document consists of non-relevant topics, the representation of
the latter need to be pruned out of the index vector. This is necessary as otherwise
the concepts weights in the overall document concepts vector might be too low to
show any significance of the retrieval results.

Semantic Analysis-Based Indexing Algorithm

An algorithm suitable for indexing larger size documents, based on semantic analysis
and using the inverted index, is given as Algorithm 18.3. This algorithm indexes a
corpus D of documents using semantic analysis concepts, by trimming of semantic
analysis vector to s as the first concepts. Each document d ∈ D is represented by
a concept vector

−→
Fd . For each concept 〈ci ,wi 〉 ∈ −→

Fd , the corresponding 〈d,wi 〉 is
added into the inverted inverted index. Here, ci is the concept and wi is the concept
weight.

To overcome the problem of mapping each large document d ∈ D in full into
concept space, d is divided into smaller fixed length (size l) overlapping passages
set Pd . Then each passage p ∈ Pd is represented separately by its own generated set
of concepts

−→
Pd .

Each passage p is indexed and can be retrieved as a stand-alone unit of informa-
tion. For this, all concepts 〈ci ,wi 〉 ∈ −→

Fp corresponding to a passage p, the passage
is ranked separately as an independent unit along with its relevance in its parent
document (d), shown in the algorithm by “add〈p,wi 〉 to I nvIndex[ci]”. These
concepts are indexed in a standard IR inverted index, with each concept having a
unique identifier in the form of a token. The score wi , associated with each concept
ci in the vector, is used as the token weight, which is equivalent to term frequency
t f , in standard text indexing.

Algorithm 18.3 Semantic analysis-based indexing in an inverted index
1: Procedure SA-Indexing(D, s, l) {Indexes corpus D using SA concepts; trims SA vector to s as

first concept; then segments document to passages, each of length l.}
2: for all d ∈ D do
3:

−→
Fd ← SA(d, s)

4: for all 〈ci ,wi 〉 ∈ −→
Fd do

5: add〈d,wi 〉 to I nvIndex[ci]
6: end for
7: Pd ← Divide-Into-Passages(d, l)
8: for all p ∈ Pd do
9:

−→
Fp ← SA(p, s)

10: for all 〈ci ,wi 〉 ∈ −→
Fp do

11: add〈p,wi 〉 to I nvIndex[ci]
12: end for
13: end for
14: end for

578 18 Information Retrieval

18.8.2 Retrieval Algorithms

Once a query is received by an IR system, it is converted into a concept vector by
the retrieval algorithm. The representation method used is identical to the one we
discussed above, for documents and passages during the indexing. The indexes of
full documents and passages, as evidences, are to be combined for ranking. This
combination is performed by retrieving both set of results, and then by summing
each document’s full score with the score of the best performing passage in it. In the
next phase, documents are sorted on a combined score, i.e., sum, and the top-scoring
documents are output.All the above steps are described in the retrieval algorithm18.4.
The algorithm works as follows:

1. Retrieve the query results, which are based on SA concept, for query −→q , as well
as the cutoff concept vector at s;

2. Retrieve results for query −→q using the combined results;
3. Score the document’s match to the query using the standard inverted index func-

tion InvIndex-score().

Algorithm 18.4 SA-based Retrieval
1: Procedure SA-Retrieval(−→q , s) {Retrieve the SA concept-based results for query−→q , and cutoff

concept vector at s}

2:
−→
Fq ← SA(

−→q , s)

3: return DocsPass-Retrieve(
−→
Fq)

4: Procedure DocsPass-Retrieve(−→q) {Retrieve results for query−→q from the combined results;
Score the document’s match to the query using the standard inverted index function I nvIndex-
score().}

5: for all d ∈ D do
6: Wd ← I nvIndex-Score(−→q , d)
7: for all p ∈ PASSAGES(d) do
8: Wp ← I nvIndex-Score(−→q , p)
9: end for
10: W ′

d ← Wd + max Wp
11: end for
12: return ranked list according to W ′

d

The retrieval algorithm 18.4 has a single parameter s that controls the query
concept vector’s cutoff. The value of s can be chosen the same as that during the
indexing, however it is not necessary. If the entire corpus is indexed with large cutoff
values, the resultant costs for computation as well as storage will be high, hence
it is not advisable to index the entire corpus with large cutoffs. Since the query is
much smaller in size, there are no such costs as that for text corpus, hence a finer
representation will be beneficial. That can be achieved using a higher value of s.

18.9 Automatic Query Expansion in IR 579

18.9 Automatic Query Expansion in IR

Most IR systems, and particularly the web search engines, have a standard user
interface comprising of an input box to accept from a user, a query in the form of
keywords. The submitted keywords are matched against the collection of index terms
to find the documents that contain those keywords. The results are then sorted by
various methods. When there are many topic-specific keywords in the user’s query,
which accurately describe user’s information need, the system is likely to return good
matches for the query. However, when this query is short—comprising 2–3 words,
as the case usually is—there is likely ambiguity in the language of the query, then
this simple retrieval model is sensitive to errors [1].

Themost serious issue in retrieval effectiveness is the termmismatch problem, i.e.,
indexers and the users do often not use the same keywords. For example, a document
uses “tv” while user submits the query with keyword “television”. This is known
as the vocabulary problem. This problem gets compounded due to polysemy, i.e.,
the same word with different/multiple meanings, such as Java (name of language,
and also name of a place), and also due to synonymy, i.e., different words with the
identical or similar meanings, such as “tv” and “television”. Synonym words, along
with word inflections (like in plural forms, “book” versus “books”) may result in a
failure to retrieve relevant documents. This may decrease the recall. The problem of
polysemy may cause retrieval of erroneous or non-relevant documents, thus causing
a decrease in precision.

Several approaches have been proposed, to deal with the vocabulary problem;
some of them are the following:

Interactive query refinement,
Relevance feedback,
Word Sense Disambiguation,
Query expansion, and
Search results clustering.

The technique of query expansion is one of the most natural and successful tech-
niques, using which the original query is expanded with other words that best capture
the user’s actual intent, or it simply produces a more useful query—a query that is
more likely to retrieve relevant documents.

As the use of search engines increased over time, the size/length of the user’s
query has also increased. In the year 2009, an average query’s length was 2.3 words.
However, there has been an increase in the number of long queries per user or
per session of interaction, of five or more words; the most common queries are
still those of one, two, and three words. When a query is short, the vocabulary
problem is more serious, because the shortage of query terms limits the scope of
handling synonymy. At the same time, the reduced resizing of data makes the effects
of polysemy more severe. This required the need and scope of Automatic Query
Expansion (AQE). Over the years a number of AQE techniques have increased that
employ sophisticatedmethods for finding new features related to query terms. Today,

580 18 Information Retrieval

there are firm theoretical foundations, and a better understanding of the utility and
limitations of AQEs. For example, what the critical parameters are that affect the
performance of the IR system, what types of AQEs are useful and what not, etc.

Along with the AQE, the basic techniques are being increasingly used in con-
junction with mechanisms to increase their effectiveness, likemethod combinations,
selection of information source dynamically for expansion, and discriminating poli-
cies for the application of methods. These advances have been supported by many
experimental findings. The AQE methods have gained their popularity due to the
evaluation results obtained at the Text REtrieval Conference series (TREC).

Document Ranking using AQE

The IR systems including search engines depend on computing the importance of
terms occurring in the query and documents to determine the relevance of docu-
ment(s) to the queries. The commonly used indicator of relevance is the similarity
measure between the query and the document. Considering that a query is repre-
sented by q and a document by d, the similarity measure between them, sim(q, d),
is expressed by

sim(q, d) =
∑

t∈(q∩d)

wt,q × wt,d (18.13)

where wt,q and wt,d are the weights of term t in a query q and a document d,
respectively, according to some weighting criteria adopted. The weight of a term t
in a document is typically proportional to the term frequency (t f) in that document
and to the inverse document frequency (id f). The purpose of id f is to diminish the
effect of very frequent terms like “the” for which we are not interested to find the
relevance. But we want to increase the effect of terms, which occur rarely, in a few
documents only, for example, “blue” and “bird”, which might be occurring only in
a few documents. If N is the total number of documents and n is the number of
documents in which the rare term occurs, the id f for this term is log(N

n). Note that
if a term like “the” occurs in every document, then id f is zero, hence it will not
contribute to the similarity measure.

The similarity computation between a document and query representation,
expressed in Eq.18.13, can be easily modified by abstracting away from the original
underlying weighting model, so as to work for the query expansion. In this revised
model, the basic input to AQE module is 1. original query q and, 2. source of data
from which to compute the weight and the expansion terms. The output of the AQE
module is the query formed (say, q ′) due to the expansion of query terms, and their
associated weights w′. These new weighted query terms 〈q ′, w′〉 are used for com-
puting the similarity between the query q ′ and the original document d. The new
similarity computation formula is expressed by

sim(q ′, d) =
∑

t∈(q ′∩d)

w′
t,q ′ × wt,d . (18.14)

18.9 Automatic Query Expansion in IR 581

The commonly used data source for generating new query terms is the collection
itself into which we are searching, and sometimes it is the thesaurus to get the
synonyms of the keywords. The simplest approach to weight the query expansion
terms is to use the same weighting function that is being used by the ranking system.
Whenmore complex features in the terms, like phrases, are used for query expansion,
the underlying system must be able to handle such features. An example is “Jodhpur
departmental store”, which though a phrase, can be treated as a single term, for the
purpose of indexing.

In the following we address some new areas, in addition to document ranking,
where AQE is used heavily; these are: question answering, multimedia IR, informa-
tion filtering, and cross-language IR. This introduction is followed by pointers to
more recent applications [1].

Question Answering

The goal of question answering (QA) is to provide concise responses (instead of
full-length documents) to certain types of natural language questions, such as “Who
built the Taj Mahal?” Like the Document Ranking (DR), the QA is faced with a
fundamental challenge of mismatch between the vocabularies of the question and
answer.

To improve on the early stage of QA, which is document retrieval, a common
strategy used is to expand the original question terms with terms that are expected to
appear in documents containing answers to this question. One important goal of QA
translation is to learn the associations between question words and the answer words,
which may be synonyms to the words in question. For example, for the question,
“Where Taj Mahal is located?,” the answer part embedded in a document may be
“Taj Mahal is in Agra,” or “Taj Mahal is situated in the city of Agra.” Here, the words
“situated” and “exists” are the synonyms of the word “located”. Different resources
for AQE for QA include using lexical ontologies like WordNet—a lexical database
of synonyms (called synsets), and semantic parsing of questions based on roles, and
other criterias [7].

Multimedia Information Retrieval

With the widespread use of digital media and digital libraries, the requirements of
searching the multimedia documents like image, speech, and video have become
important. Up till recently, the multimedia IR systems performed only text-based
search over themediametadata, like annotations and captions,which are surrounding
the html/xml descriptions. However, when these metadata are absent, this method is
not suitable. Hence, the IR relies on some form of multimedia content analysis,
which is implemented in combination with the AQE techniques. For example, a
transcription is produced by an automatic speech recognition system for spoken
document retrieval systems, and this is augmented with related terms, in advance to
raising the query. Since automatic speech transcriptions often contain mistakes, this
form of a document expansion is very useful for spoken document retrieval.

582 18 Information Retrieval

For image retrieval systems, a typical approach is making use of query examples
having visual features, like colors, textures, and shapes. The query is iteratively
refined through a relevance feedback.

For video retrieval systems, both the documents and queries are mostly multi-
modal, i.e., they have both textual as well as visual aspects. An expanded text query
is usually compared against the textual description of the visual concepts, and the
matched concepts are used for visual refinement.

Information Filtering

Information filtering (IF) is different from IR. It removes redundant or unwanted
information from an information stream prior to presentation to a human user. Its
main goal is the management of the information overload and increment of the
semantic signal-to-noise ratio. The documents arrive continuously and the user’s
information needs evolve over time, as per the experience of the user. Some examples
of information filtering are electronic news, blogs, e-commerce, and e-mails. There
are twomain approaches to IF: 1. collaborative IF, which is based on the preferences
of like-minded users, and the other is 2. content-based IF. However, these techniques
are said to bear a strong conceptual similarity to IR, because the user profile can be
modeled as a query and the data stream can be treated as a set of collection of
documents. The user profiles (i.e., queries) are learned using relevance feedback
techniques, or other forms of query expansion, such as those based on similar users.

Cross-Language Information Retrieval

The Cross-Language Information Retrieval (CLIR) is concerned with retrieving the
documents written in a language different than the language of the users’ query.
Earlier methods of such retrieval consisted of translating a query into the docu-
ments’ language, and then using the standard techniques of IR. The query translation
in these approaches was performed using machine-readable bilingual dictionaries,
through machine translation, or using parallel corpora. However, no such translation
is absolutely correct, and regardless of the translating resource used, there are usually
limitations due to insufficient coverage, for example, there are terms which cannot
be translated or do not require the translation, and due to the translation ambiguity
from the source language to the target language.

To reduce the errors introduced due to translation, one standard technique is to
use query expansion, so that even when the translation does not contain errors, use of
semantically similar terms yields better results than those due to the literal translation
of terms only. The query expansion can be applied either before the translation of
query, or after, or even can be applied at both the places. It has been found that query
expansion, before the translation of a query, yields better results than doing it after
the translation. The expansion done at both the places provided even better results.

18.9 Automatic Query Expansion in IR 583

Query

Data
Source(s)

Inter-

features
mediate Ranked

candidate
Features

Expansion
Features

Reformulated
Query

Data
processing

Feature -
Generation

and Ranking

Feature
Selection

Query
Reformu-
lation

Fig. 18.9 Automatic Query Expansion process

18.9.1 Working of AQE

The Automatic Query Expansion (AQE) is performed in a number of steps, the major
steps are

1. Preprocessing the source text,
2. Generating expansion terms (features) and ranking them,
3. Selection of expansion features, and
4. Reformulation of Query.

Figure18.9 shows these steps of AQE.
The objective of preprocessing the data source data is to transform the raw data

source used for expanding the user query into such a format so that it can be processed
more efficiently by the subsequent steps. The preprocessing task performs extraction
of intermediate features, followed by the construction of data structures for easy
access and manipulation of such features. The preprocessing is usually independent
of a particular user query to be expanded, but it is specific to the type of data source
and expansion method used [1].

To compute the initial retrieval run, it is necessary to index the documents collec-
tion, and then run the query against this collection’s index. The process of indexing
consists of, in order, the following steps:

1. text extraction from documents, which are in a certain format, like HTML, PDF,
MS Word, where there is format information as well as text inside them,

2. tokenization of the extracted text,
3. stop-word removal from the tokenized text (removal of common words such as

articles and prepositions),
4. stemming (reduction of inflected or derivational words to their root form), e.g.,

reduce “tokenize, building, training” into “token, build, train”, etc.
5. word weighting (score is assigned to each token such that the weight reflects the

importance of the tokens in each document).

We take an example of a short HTML text fragment to illustrate the weights
associated with tokens.

<p> An automatic query expansion

increases the query’s semantics.</p>

584 18 Information Retrieval

In the above HTML document, first, text is extracted, then stop words “the” and
“an” are removed, then it is stemmed using Porter’s stemmer, and weight is assigned
to each word based on their frequency. Finally, we obtain the text representation as
follows:

automat 0.16, queri 0.33, expan 0.16, increase 0.16, semantic 0.16.

This is an example of a very small document, however, it gives an understanding
that each document can be represented as a set of weighted terms, such that the total
weight of the document is 1. The index is created in the form of a complementary
inverted index file, which maps terms to documents at the time of query. To reach the
location of index terms in the document faster, the system may also store the terms’
locations to provide proximity-based search.

The original query is preprocessed to remove the stop words and/or extract impor-
tant terms to be expanded. In the second stage of AQE, the system generates and
ranks the candidate expansion terms; most query expansion methods choose only a
small proportion of the expansion features (i.e., terms) to be added into the query.
Input to this stage of AQE is the original query and the transformed data source, and
the output is a set of expansion features, with/without scores.

Once the ranking of the candidate features is carried out, the top elements are
selected for query expansion. Selection of these top elements is performed on an
individual basis, without regard to mutual dependencies between the expansion fea-
tures. Usually, only a limited number of features are selected for expansion such
that 1. resulting query is not bulky, thus helpful for processing faster, and 2. retrieval
effectiveness of a small set of good terms is not necessarily less successful than the
effectiveness we get by adding all candidates’ expansion features. The addition of
expansion features will also be helpful in reducing the noise.

Sometimes, the feature scores are interpreted as probabilities. In that case, only
the terms having a probability greater than a certain threshold are selected for con-
sideration.

The last stage of AQE is query reformulation, which describes the expanded query
that will be submitted to the IR system. The description means the assignment of
proper weight to each feature that is part of the expanded query—the process called
query re-weighting.

The total time required for an AQE is the sum of two factors, 1. cost of generating
expansion features, and 2. increase in the cost for the evaluation of the expanded query
(due to its size), against the documents collection. In practice, the second factor is a
more critical one. Consider the architecture (data structure) of most ranking systems,
which are based on the inverted (linked) lists of N elements, one for each term in the
collection. Here, each inverted list specifies the documents in which the particular
term occurs, along with a pre-computed score for each term. At the time of query
processing, the system retrieves the inverted list of every query term, and updates
the score accumulators of the documents present in each list. The execution time of
a ranked query is almost linearly proportional to the number of terms in the query;

18.9 Automatic Query Expansion in IR 585

this is because the query terms are processed one at a time. The AQE runs with sizes
of practical interest, for example 10–20 word queries were found to be much slower
(by a factor of ten), than the original queries of 3–4 words.

18.9.2 Related Techniques for Query Processing

The mismatch of words between the query and documents for relevant documents is
an issue in IR for a long time. In the following section, we discuss AQE with respect
to alternative strategies in reference to the vocabulary problem [1].

Interactive Query Refinement

In interactive query refinement, the system provides several suggestions for reforma-
tion of the query, and it is the user who selects the best choice out of that.With respect
to the computations required to be performed, in Interactive Query Refinement (IQE)
versus AQE, the first two stages are commonwith both, i.e., data acquisition and can-
didate feature extraction. The IQE does not follow the steps of feature selection and
query reformulation of AQE. One of the best-known examples of Interactive Query
Refinement is the suggestion of complete query, which offers real-time hints to user
to complete a search query. This happens when a user progresses in typing the query
in the inbox, like we note in many search engines, including Google. The IQE has
better potential for superior results than AQE, but generally requires higher expertise
on part of the user. Looking from the usability point of view, an IQE provides the
user with better control over query processing than the AQE.

Relevance Feedback

The relevance feedback takes two inputs: 1. results initially returned due to the given
query, and 2. feedback provided by the user about whether those results are relevant
or not. Based on these two inputs, the system submits a newquery to the search engine
provided that previous results returned were not considered useful for fulfilling the
need of the user.

The features in the assessed documents are used to adjust the weights of terms
in the original query and/or for adding words to the query. The relevance feedback
has the effect of reinforcing the system’s original decision. This is done by the user
by modifying the expanded query to look closer at the retrieved relevant documents.
However, the AQE tries to form a better match with the user’s existing intentions, and
does not give the user a second chance to rethink, support/reject the results produced
by the first query. The specific data sources using which the expansion features are
generated in the relevance feedback may be more reliable than the sources generally
used by AQE. In the relevance feedback, the user must assess the relevance of the
documents, requiring a user to be better trained.

The relevance feedback has directly inspired one of the most popular AQE tech-
niques, called pseudo-relevance feedback, which has also provided foundations for
modeling query reformulation in a variety of AQE approaches.

586 18 Information Retrieval

Word Sense Disambiguation in IR

The Word Sense Disambiguation (WSD) is the ability of the system to correctly
identify the senses of words in context to the remaining (surrounding) text in a
document. This identification is carried out in a computational manner. WSD is a
natural and well-known approach to the vocabulary problem in IR—usually, even if
we do not know the meaning of a word, for example, in a newspaper, we are still able
to understand the sentence, as well as able to discover the meaning of that unknown
word due to its context words in a sentence [5].

Early work of WSD concentrated on representing words using their dictionary
definitions, or using theWordNet Synsets. But, many experiments suggested that this
straightforward technique is not effective in IR, at least as long as the selection of
the correct sense from the resource is flawed. For example, if precision does result in
a good value, say greater than 75%. However, more sophisticated methods in AQE
still used the WordNet resource [11].

Instead of depending on short predefined lists of senses, using a corpus is found to
be more convenient as an evidence for performing the Word Sense Disambiguation.
Due to its nature of the process, it may be called as word sense induction.

In one approach based on the corpus, the context of every occurrence of a word
in the corpus is identified and similar contexts are clustered together to help in
determining the word senses. This method can provide a maximum disambiguation
rate of 90%, hence can be used successfully with an IR system. With the reliance of
this method on corpus-based analysis, this approach is similar in spirit to the global
AQE techniques.

In another corpus-based WSD technique, a metaphor of small words is applied to
word co-occurrence graphs, due to which it is capable of discovering low-frequency
senses (senses which are not very common), that are as low as 1%.

Further, in the context of a query to web search engines, where the query is too
small, it may be too difficult to disambiguate the word senses in it in the absence of
sufficient context available in the query. Therefore, longer queries due to their higher
contexts are likely to be helpful in performing the disambiguation, and consequently
to produce better results. As a whole, we note that the application of WSD to IR
presents the challenges of computational nature, there are limitations of effectiveness
as well.

Search Results Clustering

The objective of Search Results Clustering (SRC) is that for the new queries, exactly
similar to some previous queries by users, the IR system should store the previous
results in some compact forms, so that it can provide the results directly, without per-
forming any search process. For this, the SRC organizes the search results topic-wise,
which allows direct access to the documents relevant to the user queries,making over-
all IR far faster. In contrast to the standard clustering techniques, the SRC algorithms
try to optimize the clustering structures, as well as the quality of cluster labels. This
is because, a cluster with a poor description (labels) is likely to be entirely omitted by
the user, even though it may be pointing to a group of strongly related and relevant
documents.

18.10 Using Bayesian Networks for IR 587

18.10 Using Bayesian Networks for IR

A Bayesian network is an annotated directed graph, which can be used to encode a
probabilistic relationship among the distinctions of interest in an uncertain reasoning
problem.The representation rigorously describes these relationships, and can provide
a human-oriented qualitative structure which facilitates a communication between
a user and the system based on a probabilistic model. As the computing power
is available chiefly even in small systems, the modeling tools based on Bayesian
networks are abundantly used in real-world applications, e.g., in forecasting, fault
diagnosis, sensor fusion, anti-virus software, automated vision, and manufacturing
control [10], [13].

18.10.1 Representation of Document and Query

For understanding the basics of Bayesian networks as well as Naive Bayes, the reader
may refer to the previous chapters (section 12.4, page no. 344, and section no. 14.7,
page no. 428). Using the conditional probability, the probability that a document dk
is relevant to the query q j can be expressed as P(R | q j , dk). An accurate definition
of probability of relevance depends on the definition of relevance itself. The term
relevance is to some extent a subjective entity, and depends on many variables,
which are functions of documents, user’s information need, and the user itself. A
perfect retrieval is not achievable in true sense. However, it is possible to define an
optimal retrieval for the probabilistic model for IR. This optimal retrieval can be
proved theoretically with respect to representations (or descriptions) of documents
and information needs [4].

Let us assume that collections of queries and documents are described by a set of
index terms. Let T = {t1, t2, ..., tn} be the set of terms in the documents’ collection,
and a query q j and document dk are taken as subsets of terms in T . For the sake of
retrieval, each document is described by the presence/absence of these index terms.
Therefore, any document dk can be represented using a binary vector:

−→x = (x1, x2, . . . , xn), (18.15)

where any term xi = 1 if ti ∈ dk , and for ti /∈ dk , the xi = 0. A query q j is also
represented in similar way. The basic task of a relevance model-based IR system is
to compute the probability that a given document is relevant. This can be achieved
by estimating the probability P(R | q j , dk), for every document dk in the collection.
Since relevancy in every document is computed for a single query, the term q j being
common, and can be dropped, and the relevancy can be expressed using the Bayes
theorem as

588 18 Information Retrieval

P(R | −→x) = P(
−→x | R)P(R)

P(
−→x)

. (18.16)

In the above,
P(R | −→x) is called posterior probability—the probability of relevance, given that
the document is −→x ,
P(

−→x | R) is called likelyhood function or probability of evidence, which is the
probability of randomly selecting the document of description −→x from the set R
of relevant documents,
P(R) is prior probability of relevance, i.e., the probability that a randomly selected
document from the entire collection is relevant, and
P(

−→x) is probability that a randomly selected document has a description −→x . It is
determined as a joint probability distribution of the n terms in the collection [6].

Equation (18.16) can be expressed in simple language as

Posterior probabili t y ∝ likelihood × prior probabili t y.

18.10.2 Bayes Probabilistic Inference Model

The Bayes probabilistic inference makes use of a network, which is an extension to
the probability-based IR. The network is a Directed Acyclic Graph (DAG), in which
nodes represent propositional variables or constants, and the edges represent the
dependency relations between the propositions [10].

If p and q are two propositions, and there is a relation of implication from p
to q, i.e., the first proposition “causes” the second, then p is cause and q is effect,
and is represented by p → q. In the DAG, p and q are nodes, and there is an edge
from a node marked as p to node marked as q. A link matrix is stored at node q,
which specifies the probability P(p|q) for all possible values of variables p and q.
The expression P(p|q) is the expression for the probability of occurrence of event
p given that q has already occurred. In the model we take q node as evidence, and
it stands for a query. In a scenario, a node has more than one parent (say p1, p2,
...), the link matrix will indicate the dependence of query node q on all the parents.
The query node q now characterizes the dependence relationship between itself and
all the nodes p1, p2, ..., which are potential causes. This is illustrated in Fig. 18.10.
Using the Bayes theorem, the conditional probability expression can be expanded as

P(p|q) = P(q|p).P(p)

P(q)
. (18.17)

When the set of prior probabilities P(p) are given for the root of a DAG that
represents the document, the network can be used to compute the probability of
belief associated with all the remaining nodes. Figure18.10 shows a document di at

18.10 Using Bayesian Networks for IR 589

Fig. 18.10 Basic Inference
Network Model for IR

di

t1 t2 tj tn

q1 q2AND AND

root, corresponding keywords t1, . . . , tn , and submitted queries q1, q2. Note that, t1,
..., tn are the representation of document di [17].

Through the inference network, the random variables are associated with the
documents, index terms, and user queries. Multiple evidences of query terms in the
document’s representation for a given query are conjuncted to estimate the probability
that the document satisfies the user’s information need. For example, in Fig. 18.10,
queryq1 is conjunct (ANDed) of terms t1, t2, t j , andq2 = t2 ∧ t j ∧ tn . Thus, variables
associated with document di represent the event that the document is observed. The
index terms/document variables are represented as nodes of the DAG, and the edges,
which are directed from document nodes to index terms nodes indicate that the
observation of document results in an improved belief on its term nodes.

Further, a random variable associated with the user’s query node models the
event that information need expressed in the form of user’s query has been met. The
dependency in the form of direction arrows indicate that belief in the query node
is function of beliefs in the nodes that correspond to the query terms. In Fig. 18.10,
document di comprises t1, t2, . . . , t j , tn as its index terms. Similarly, the query q1
comprises the query terms t1, t2, . . . , t j , hence, q1 = t1 ∧ t2 ∧ t j , and q2 = t2 ∧ tn .

From this Bayes inference model for IR, we note that a set of edges pointing
to a node represents the probabilistic dependence between that node and its par-
ents. Through its structure, the Bayes network represents the conditional dependence
relation among the variables in the network. These dependence relations provide a
framework for retrieving the information [4, 6].

18.10.3 Bayes Inference Algorithm

For IR using Bayes inference, a user specifies one or more topics of interest while
keeping in mind some document features, the latter are to be used as evidence for
topics of interest mentioned above. The task of IR using Bayesian inference network
is documented as Algorithm 18.5, which requires building an inference network for
the representation of query terms and document features (i.e., terms), and computa-
tion of posterior probabilities (P(p|q) in Eq. 18.17) based on the prior probability
of the document [6, 10].

590 18 Information Retrieval

Algorithm 18.5 Bayesian Inference-based IR
1: Construct the network representation of query
2: {Steps to score all the documents}
3: for all documents do
4: Extract the features {t1, t2, ...} from document
5: Label features in network
6: Compute posterior probabilities, P(p|q)

7: end for
8: Rank the documents set in order of posterior probabilities

Fig. 18.11 Two-Level
Bayesian network model for
IR

t1 t2

f11 f12 f1m f21 f22 f2m

In this algorithm, steps 4, 8 are IR routines, whereas steps 5, 6 are routines to
draw inferences.

Figure18.11 shows the term-weighting architecture of Bayesian network, which
indicates that there are topics of interest, shown as t1, t2, and there are features to be
examined, f11, ..., f1m, f21, ..., f2m . The features’ set and topics set shown here are
different, but they can be the same also. The occurrence of the topics t1, t2 on graph
nodes represent the event that the document is related to topics t1, t2. Whereas, the
nodes corresponding to the features represent the events, for example, the features
f11, ..., f1m represent the event that these features are present in the document d1.
The network structure in Fig. 18.11 is based on the following assumptions con-

cerning the Bayesian probability:

1. Given the topics {ti , t2, ...} from the document (the document is relevant to these),
the presence or absence of any feature does not imply about the presence or
absence of some other feature. In other words, it is assumed that there are no
dependency relations between the features.

2. Given that the document relevant to one topic does not affect one’s belief about
the relevance or non-relevance of that document to any other topic.

In the above, the first assumption specifies the conditional independence of fea-
tures,when the topic is already given. It is called asbinary independence. The absence
of arcs between feature nodes in Fig. 18.11 is an explicit indication of independence
between features. Given these conditions and the Bayes network in Fig. 18.11, we
can draw some important conclusion. That is, the assumption “1” will not be valid,
if the query includes features that are identical or closely related, like synonyms,
because in that case the features are not independent.

Now, for the network in Fig. 18.11, we define two sets of probabilities, given
below:

(a) P(t1), P(t2), .., called prior probabilities, that a document is relevant to topics
t1, t2, ..., etc. If we are discussing one document only, then it is P(t1, t2, ..).

18.10 Using Bayesian Networks for IR 591

(b) The conditional probability P(fi j |ti) of each feature fi j is defined as the prob-
ability that feature fi j is present in the document, given that this document is
relevant to topic ti .

Given the above, the task of IR is to compute the posterior probability P(ti | fi1,
. . . , fim), which is the probability that the document is relevant to ti , given that we
have observed the presence or absence of all of the features fi j , called evidences.

TheBayes rule can be directly applied for this computation. The network topology
shown in Fig. 18.11 is called Bayes inference and, can be expressed by

P(ti | fi1, . . . , fim) = P(ti).P(fi1, . . . , fim | ti)
P(fi1. . . . , fim)

. (18.18)

Generally, we are not interested in absolute numerical values of the posterior prob-
abilities, butwant to just rank the documents by the posteriors. Thus,we can eliminate
the denominator term P(fi1 . . . , fim) in this equation as long as this denominator
remains the same, with varying ti ,s. Further, we can simplify this Bayes rule to a
linear decision rule given in Eq.18.19, where I (fi j) is an indicator variable that
equals to 1.0 only if fi j is present in the document and 0.0 otherwise, and w is a
coefficient corresponding to a specific (feature, topic) pair:

g(ti | fi1, . . . , fim) =
∑

j

I (fi j) × w(fi j , ti). (18.19)

A careful choice of w results in a ranking of documents in descending order of
g(), which turns out to be in the same order as that of ranking them in decreasing
order of the posterior probabilities. However, since g() does not include the priors
probabilities (P(ti)) of the topics ti , which is indicator of the relative rarity of the
topics, one cannot compare a document’s strength of relevance to one topic with
respect to its strength of relevance to a different topic.

The coefficients w can be interpreted as weights corresponding to each feature fi j
and term ti . Similarly, the function g() can be interpreted as the sum of weights of
the features fi j that are present in the document, which is relevant to topic ti . Hence,
this method is known as “term weighing”.

In the Bayes network topology shown in Fig. 18.11, the query corresponding to
each topic, e.g., t1, is representedby its own subnetwork,which is showndisconnected
from the subnetworks of other topics’ queries. Hence, these isolated models fail to
represent the possible relationships between the topics, for example between t1, t2.
Therefore, it is difficult to acquire consistent, feature-conditional probabilities, as
well as find out the probabilities by combining the topics.

592 18 Information Retrieval

Fig. 18.12 Information
retrieval model with two
related topics

t1 t2

f1 f2 f3
fmf4

Fig. 18.13 Multi-topic
query as a single
compound-topic query

S

f1 f2 f3 fmf4

18.10.4 Representing Dependent Topics

In the previous section, we discussed that, a document relevant to one topic does
not affect one’s belief about the relevance or non-relevance of that document to any
other topic.

An IR network topology that removes this assumption, and explicitly represents
the relationships among different topics is shown in Fig. 18.12. We note that the
Bayesian inference problem becomes more completed with multiple topics.

The addition of a relationship between topics in Fig. 18.12 requires two changes in
specifying the network probabilities. In the first one, we must specify what are those
topics (t1, t2, ...), and then compute the strength of the relevance between them. In
the second step, we must compute the probability of each feature (fi j), conditioned
on each combination of its parent topic. Having done in this manner, it gives rise to
a number of probabilities, which are combinatorial in size.

However, there is an approach to simplify the multiple-topic network, such that it
looks like a single-topic network, and its range is only all the possible present/absence
combinations of topics t1, t2, ..., etc. Thus, in a way we have translated the topology
from one form to another. Themodified topology of Fig. 18.12 is shown in Fig. 18.13,
where node S represents the compound topic. An advantage of this representation is
that the same set of formulas (18.18) and (18.19) for the computation of probabilities
can be used now also. The disadvantage of this approach is that the compound query
shall contain 2n states for n parent states, which will complicate the computations.

18.11 Semantic IR on the Web

The semantic web is a vision of the future WWW. It is an extension of the current
web, where information is given with well-defined meanings, that will better enable
the computers so that computers and people can work in cooperation. However, a
universal implementation of the semantic web—a full substitution for the existing
web—is still far away from reality. Therefore, it could be useful to have a system
that analyzes the documents from a contextual point of view for more accurate

18.11 Semantic IR on the Web 593

retrieval. The semantic IR (SIR) on web is based on computing semantic relations to
evaluate the relevance of documents with a query in a given context, and makes use
of structures like lexical chains, semantic networks, and ontologies. The semantic-
based approach is context-driven, where keywords (topics/terms) in documents are
processed in the context of the information in which they are retrieved. This will
help solve the semantic ambiguity so that the retrieval is accurate, and as per the true
need of the user [15].

In the recent times, the information andknowledge representationusingontologies
have acquired great importance, as it is found to be suitable for strategic requirements.
These strategies are intrinsically independent on information codification, which
helps to isolate the information, as well as to recover, organize, and integrate it with
respect to its content.

Following are the definitions of ontologies.

Definition 18.1 Ontology. An explicit and formal specification of shared conceptu-
alization is called an ontology. It is an abstract model of specified reality, such that
the components are clearly identified. The terms in definition are further clarified as
follows:

– Explicit means type of concepts used and the constraints on them are well defined,
– Formal refers to the ontology property of being machine-readable, and
– Sharedmeans, a property of ontologyof capturing consensual knowledge, accepted
by a group of persons. �

Definition 18.2 Ontology (Definition-2). An ontology defines the basic terms and
their relations consisting the vocabulary of a topic, as well as the rules for combining
terms and relations to define extensions to the vocabulary. �

The above definition also indicates a path to be followed in order to construct an
ontology:

1. first identify the basic terms and their mutual relations;
2. agreement on the rules that arrange them;
3. defining of terms, and relations among concepts.

From the above perspective it is clear that an ontology does not include just the
terms that are explicitly defined in it, but keeps provision to derive new terms using
defined rules and properties. Also, the ontology can be viewed as a “set of terms and
relations between them, which denote the concepts used in a domain.”

The concept of semantic relatedness refers to the relations between words and
concepts that are in the practice, or those based on the perceptions. There can be
severalmetrics tomeasure the semantic relatedness ofwords. Some of the approaches
to these metrics are as follows.

• Thesaurus-based metrics. These metrics make use of thesaurus where words are
related to concepts, and each word is referred to a category by an index structure.

594 18 Information Retrieval

• Dictionary-based metrics. Dictionaries are linguistic information sources of our
knowledge about the world; they form a knowledge base in which headwords are
defined using other headwords and/or their derivatives.

• Semantic network-based metrics. These metrics use semantic networks—graphs
in which the nodes are the concepts, and the arcs between nodes represent relations
between concepts. Number of edges’ links between terms (nodes/concepts) in the
semantic network, without loops, is a measure of conceptional distance between
terms (nodes).

A sequence of related words in a text is called lexical chain (a linguistic structure),
which may span short distances (adjacent words or sentences) or long distances,
covering the entire text. Computing a lexical chains helps in the identification of the
main topics of a document. The semantic relatedness measures use lexical chains to
perform their computations, the lexical chains are used for IR and related areas, and
to explore structure of texts as well. The lexical chains have been also used to index
video-conference transcriptions by topic, construction of typical IR system and text
segmentation systems, and for automatic generation of hypertext links.

The strength of a relation between words that connect different fragments of the
text is measured by their cohesion, and the cohesion between lexical units of text is
called lexical cohesion—the most common type of cohesion. The lexical cohesion
can be expressed by repetitions of relations like synonym, hyponym, or by other
linguistic relations between words, such as whole-part and object-property.

Semantic IR Systems

Use of ontologies in IR consists of an approach that identifies important concepts in
documents using criteria of semantic relatedness and co-occurrence; this is followed
by disambiguation of them using an external general purpose ontology (e.g., Word-
Net). On matching the ontology with a document provides a set of scored concept
senses (nodes) with weighted links, called semantic representation of the document.

The steps for the process of Semantic IR (SIR) are as follows:

1. For improving the web searches, only important information is selected from
the user query, which is helpful in extracting information from documents;

2. The user’s query or a phrase expressed in natural language is sent to a lexical
processing module;

3. The boundaries of words and phrases are detected through tokenization. The
system labels the words using some tagger like Brill’s tagger;

4. A phrase parser splits every phrase into several members, as nouns and verbs;
5. The stop words are removed, and the system uses some keywords to represent

the main concept of the phrase;
6. The remaining process steps of SIR, like Word Sense Disambiguation (WSD),

query expansion, and post-processing, have been already discussed in this
chapter.

18.11 Semantic IR on the Web 595

To solve the problem of polysemy,5 the concept of “word sense” from WordNet is
used, which helps the user interactingwith the system to associate with every concept
a list of terms semantically are related to.

18.12 Distributed IR

When the size of data is very large, or when it is required to support high query vol-
umes, single machine is not enough to support the load of IR, even when the number
of the enhancements discussed above have been used. For example, even when the
Internet was not so common, in mid-2004, Google search engine processed more
than 200 million queries a day against more than 20 GB of crawled data, and it used
over 20,000 computers. The requirement in the present time is hundred times bigger.
For handling large size of data loads, a combination of distribution and replication is
necessary. The distribution means, document collections and their indexes are split
across multiple machines, so that answers to every query is synthesized from many
collections of components. The word replication means mirroring, which involves
making enough identical copies of the system so that the required query load can be
handled with acceptable minimum response time [18].

Document-Distributed Architectures

A very simple distributed document’s architecture is to partition the collection and
allocate one sub-collection to each of the separate processors (see Fig. 18.14). To
make use of distributed document architecture, a local index is built and main-
tained for each sub-collection, and when a query arrives, it is passed to every sub-
collection to search and evaluate in parallel against every local index. The sets of sub-
collections’ answers are then merged in some way to provide an overall answer. The
main advantages of such document’s partitioning system is that, collection growth
is handled by designing one of the hosts in the form of dynamic collection, such that
only this host needs to rebuild its index. The parts of the process that are computa-
tionally expensive are distributed equally across all the hosts in the computer cluster.
These parts are searching the index, updating individual indexes, computation of
weights, and id f for documents, etc.

Figure18.14 shows a simple inverted index of a document-distributed retrieval
system. It shows two index partitions: 1. a term-based index partition, and 2.
document-based index partition. Elements in a inverted list have format 〈document
number, term-frequency〉, for example 〈2, 2〉 in second row, second column indicates
that the term “quick” has frequency 2 in the document number 2, while 〈3, 1〉 in the
same row, third column indicates that the term “quick” has frequency 1 in the docu-
ment number 3. Each of the two dashed regions in Fig. 18.14 show one component
of a document-distributed retrieval system; with this, one processor indexes all terms

5Polysemy: A single term with several meanings.

596 18 Information Retrieval

the
quick

brown

fox

jumped

...

over

a

lazy

dog

today

1 2 3 4 5 6

V
oc
ab

ul
ar
y

Term-based
index partition

Document-based
index partition

Document number

< 2, 2 >

< 6, 1 >

< 6, 1 >

< 6, 1 >

< 1, 1 >

< 1, 3 >

< 2, 1 >

< 6, 2 >< 5, 3 >< 4, 1 >< 3, 3 >< 2, 2 >

< 3, 1 >

< 4, 4 >

< 4, 2 >

< 4, 3 >

< 3, 1 >

Fig. 18.14 Partition and distribute index across a cluster of machines

that appear in the first two documents of the collection, creating a document-based
partition.

Term-Distributed Architectures

An alternative strategy for partitioning the index is term-based partitioning, where
index is split into components by partitioning the vocabulary, with one possible
partition shown by the dotted horizontal split in Fig. 18.14. Each processor has full
information about a subset of the terms, i.e., all the necessary things to handle a
query. Hence, only the relevant subset of the processors needs to respond to a query.
The term partitioning has the advantage that it requires fewer disk seek and transfer
operations during query evaluation than document partitioning because each term’s
inverted list is still stored contiguously on a single machine rather than being split in
fragments across multiple machines.

On the other hand, each of these disk transfer operations involve more data.
Mainly because, in a term-partitioned arrangement we are discussing, the majority
of the processing load is on the coordinating machine; the experiments have shown
that it can easily become a bottleneck and starve the other processors of work.

Term-Based Versus Document-Based Partitioning

Compared to the term-based partitioning, the document-based partitioning typically
results in a better balance of workload and achieves higher throughput for queries.

18.12 Distributed IR 597

Also, the document-based partitioning (document distribution) allows for more nat-
ural index construction and for document insertion. On the other side, for term-
partitioned index, index construction involves first of all, distributing the documents
and building the document-partitioned index. Then, once the vocabulary split has
been agreed upon by the processors, the index fragments are exchanged between all
pairs of processors.

The document-based partition also has the practical advantage of providing the
search service even when one of the hosts is offline for some reason, because any
answers not resident on that machine are still available to the system. For exam-
ple, there are 10 machines, m1...m10 and 100 documents d1...d100, with document
distribution as follows:

machine m1 : d1...d10,
...
machine m10 : d91...d100.

Now, if machine m5 is offline, the queries for all the documents, except d51...d60,
is answered.Whereas, in the term-based distribution, since index terms of every doc-
ument are uniformly distributed on all the processors, the query cannot be answered
even if one processor is offline. However, in the term distribution case, if anymachine
is offline or idle, it is immediately noticeable because it will affect queries belonging
to almost every document.

Google indexing uses document-based partitioning, with massive replication and
redundancy at all the levels, for example at machine level, cluster level, and indi-
vidual level. In addition, the document partitioning remains effective even if the
collaborating systems are independent and unable to exchange their index data. The
distributed system makes use of ameta-searcher, using which the final result answer
list is synthesized from the possibly overlapping answer sets provided by a range of
different services.

18.13 Summary

Information retrieval (IR) process is the identification of documents or other units of
information in a collection that are relevant to particular information needs expressed
through queries for which people are interested to find answers. The IR models
consider that each document is described by a set of representative keywords, called
index terms—aword from a document that represents the semantics of the document.
In general the index terms are nouns. If ti is an index term, d j is a document then
wi, j ≥ 0 is the weight associated with the pair (ti , d j), or single entity wi j .

Two ratios, precision and recall are used to measure the effectiveness of an IR
system. Precision is the ratio of the number of relevant documents retrieved to the
total number of documents retrieved, i.e., what fraction of the retrieved documents
are relevant, and recall is the ratio of the number of relevant documents retrieved to

598 18 Information Retrieval

the total number of relevant documents in the entire collection, i.e., what fraction of
the relevant documents have been retrieved.

The common retrieval strategies are Boolean Model, Vector Space Model, Prob-
abilistic Model, Inference networks, and Fuzzy set-based retrieval.

The Booleanmodel is a simple retrieval model based on Set Theory and Boolean
Algebra, Vector Space Model computes the measure of similarity (sim(q, d j))
between query q ∈ Q and a document d j ∈ D, where q and d j are vectors for query
and document, and the Q, D are sets for queries and documents, respectively.

The probabilistic retrieval model computes the similarity measure (sim(q, d j))
between the query q and a document d j as the probability that document d j is relevant
to q. This model estimates a query term’s weight on how often the term appears or
does not appear in relevant and non-relevant documents, respectively. One class of
probabilistic approach for IR is Bayesian networks. These networks are annotated
directed graphs encoding probabilistic relationship among distinctions of interest, in
an uncertain reasoning problem.

The fuzzy retrieval technique is based on fuzzy set theory and fuzzy logic—an
extension of the classical set theory. The word matching between the query set and
the text word is not limited to the perfect matching, but, the matching is graded,
depending on the degree or level of matching in the range from 0 to 1. In fuzzy set
-based retrieval, a membership value R(xi , yi) specifies for each xi ∈ X , yi ∈ Y , the
grade of relevance of index term xi with the document yi .

In a concept-based information retrieval, queries and documents are represented
using semantic concepts, instead of (or in addition to) keywords, and they perform
retrieval in that concept space. This results in a retrieval model that is less dependent
on the specific terms used, and yields matches even when the same sense is described
by different terms in the query and target documents.

The retrievalmodelsmake use of an inverted indexfile structure. Instead of search-
ing into a document, an inverted index is generated in advance for all the keywords
in the document set. For each term, a pointer references to a linked list, which con-
tains an entry for each document containing this term as well the term frequency
in that document. The single key problem with this index is that volume of data
involved cannot be held in the main memory. To solve this problem, the indexes are
constructed in parallel and can be merged after a regular intervals.

Yet, there is another method for IR that uses an approach based on the measure of
semantic relatedness, applied to evaluate the relevance of a document with respect to
a query in a given context. The approach makes use of structures like lexical chains,
ontologies, and semantic networks. The semantic approach implements a context-
based system, such that keywords are processed in the context of the information
from which they are retrieved. This approach helps in solving semantic ambiguity,
and results in giving amore accurate retrieval, that is based on the real-world interests
of the user.

In most information retrievals, user queries are short and the natural language is
inherently ambiguous, consequently, the retrieval is prone to errors and omissions.
The most critical language issues are polysemy and synonymy. To resolve this, the

18.13 Summary 599

query is expanded by appending the synonyms of query terms into the query, called
Automatic Query Expansion (AQE).

When large volumes of data sets are involved or when the query volumes are high,
one machine may be inadequate to support the users’ query load, even when the
various enhancements and optimizations are carried out. For handling heavy load of
users’ queries, a combination of distribution and replication is required. Distribution
means, the document collection and their indexes are split across multiple machines
(servers) and that answers to the query as a whole must be synthesized from the
various collection components. Replication (or mirroring) involves making enough
identical copies of the system so that the required query load can be handled at speed
and accuracy.

Exercises

1. Show how the vector space model can be modeled using an inference network.
2. Consider a documents collection made of 100 documents. Given a query q, the

set of documents relevant to the users is D∗ = {d4, d15, d34, d56, d98}. An IR
system retrieves the following documents D = {d4, d15, d35, d56, d66, d88, d95}
a. Compute the number of True-Negatives, True-Positives, False-Negatives,

False-Positives.
b. Compute Precision, Recall, and F-measure.

3. Consider an IR scenario in the following: It has been found in some hospital,
results of blood tests taken on a specific day are unreliable for diabetic patients
due to equipment malfunction. The hospital uses an IR system to identify these
patients. Suppose the collection of patients’ records contains 10, 000 documents,
500 of that are relevant to the query. The system returns 350 documents, 225 of
that are relevant to the query. Answer the following for this scenario:

a. Calculate the precision and recall for this system.
b. Based on your results from above, explain how well would you say about the

working of hospital’s IR system.
c. Knowing about the precision-recall trade-off, what is likely to happen if an IR

system is tuned to aim for 100% precision?
d. Knowing about the precision-recall trade-off, what is likely to happen if an IR

system is tuned to aim for 100% recall?
e. For the trade-off given scenario,whichmeasure doyou think ismore important,

precision or recall? Why?

4. You are looking for information on “Economic growth in India” in a large doc-
ument collection, during the period of last 3 years. You decide to search using
the terms: India, banks, growth, economy, business, agriculture, using an IR
system, which recommends three possible documents given below with term
frequencies.

600 18 Information Retrieval

Term Economy India Growth Banks Business Agriculture
Document-
1

15 10 3 4 2 9

Document-
2

0 0 9 8 7 8

Document-
3

4 2 4 4 6 10

There is no additional information about the documents. Make use of each of
the following models to find out the relevancy of the documents to the query.

a. Boolean model
b. Vector space model
c. t f.id f model

5. Take any three small documents of size, approximately 100 words.

a. Build a matrix of an inverted index for these documents, in the format shown
in Fig. 18.5.

b. Weight terms by their presence/absence (binary), and also and by t f × id f
(with estimated IDFs).

c. Compute the memory requirements for this inverted index. Make necessary
assumptions for character size, pointer size, etc.

d. Construct a suitable query, and calculate document–query similarity, for the
following scenarios:
i Cosine (with normalization)
ii Inner product (i.e., cosine without normalization)
iii Does the normalization has any effect? Justify.

6. Consider that we submit the queries to search engines for searching the needed
information on WWW.

a. Does the search process use a stop-word list?
b. Can you search “The”, “The a”, “An a”, etc.? Justify.
c. Is it a practice to search the above terms?
d. Does the search process use stemming?
e. Are there different results for two queries “Human body”, “Humanly body”.

Justify your answer.
f. Does it normalize words to lower case?

7. “Having theknowledgeof the senseof a query termmayhelp adocument retrieval
system, especially for short queries.” Why it is not true for longer queries?

8. Comment on the validity of following statements for Boolean model:

a. “Stemming does not lower the precision of a Boolean retrieval system.”
b. “Stemming does not lower recall of a Boolean retrieval system.”

9. Answer the following in brief:

Exercises 601

a. Why is the idf of a term always finite?
b. What is the idf of a term that occurs in every document?
c. What is the idf of a term that appears in one document only?
d. What is the idf of a term that appears in no document?

10. Answer the following in brief:

a. Name three criteria for evaluating a search engine.
b. What is an easy way to maximize the recall of a search engine?
c. What is an easy way to maximize the precision of a search engine?

11. What is the difference between clustering and classification? How can they be
used in a complete IR system?

12. Discuss themerits anddemerits of following, suggest as towhichonewill provide
better response time?

a. Document-distributed architecture.
b. Term-distributed architecture.

References

1. Carpineto C, Romano G (2012). A Survey of Automatic Query Expansion in Information
Retrieval. ACM Comput. Surv. 44(1): 50.https://doi.org/10.1145/2071389.2071390

2. Chowdhary K R, Bansal VS (2001) Current trends in information retrieval. In: The 4th Inter-
national Conference of Asian Digital Libraries, Dec. 10–12, 2001 Bangalore, pp. 306–319

3. Chowdhary K R, Bansal VS (2003) Fuzzy Logic-based information retrieval. In: Conference
proceedings on algorithms and artificial systems, Allied Publishers Pvt. Ltd. pp 297–307. ISBN
81-7764-403-3

4. Chowdhary KR (2004) Natural language processing for word sense disambiguation and infor-
mation extraction. PhD Thesis, J.N.V. University, Jodhpur, May 2004

5. Chowdhary KR (2005) Word sense disambiguation. J Comput Sci 1(1):30–37
6. Chowdhary KR (2008) Information retrieval from digital libraries using probabilistic-

possibilistic inferences. In: IR@INFLIBNET INFLIBNET’s Convention Proceedings CAL-
IBER 2008 Allahabad, http://ir.inflibnet.ac.in/handle/1944/1225

7. ChowdharyKR,BansalVS (2006) Information extraction fromnatural language texts. J Institut
Eng (India), 87:14–19

8. Chowdhary KR, Bansal VS (2011) Information retrieval using probability and belief the-
ory. International conference emerging trends in networks and computer communications
(ETNCC). https://doi.org/10.1109/ETNCC.2011.5958513

9. Egozi O et al (2011).Concept-based information retrieval using explicit semantic analysis.
ACM Trans Informat Syst, 29(2):8.1–8.34. https://doi.org/10.1145/1961209.1961211

10. Fung R, DelFavero B (1995) Applying Bayesian networks to information retrieval. Commun
ACM 38(3):42–49

11. Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41.
https://doi.org/10.1145/219717.219748

12. Grossman DA, Ophir F (2008) Information retrieval-algorithms and heuristics, 2nd edn.
Springer

13. Heckerman D et al (1995) Real-world applications of Bayesian networks. Commun ACM
38(3):24–26

14. Recardo BY, Berthier RN (1999) Modern information retrieval. Addison Wesley-ACM Press

https://doi.org/10.1145/2071389.2071390
http://ir.inflibnet.ac.in/handle/1944/1225
https://doi.org/10.1109/ETNCC.2011.5958513
https://doi.org/10.1145/1961209.1961211
https://doi.org/10.1145/219717.219748

602 18 Information Retrieval

15. Rinaldi AM (2009) An ontology-driven approach for semantic information retrieval on the
web. Trans Internet Technol 9(3):10:1–10:24. https://doi.org/10.1145/1552291.1552293

16. Smith LC (1976) Artificial intelligence in information retrieval systems. Informat Process
Manage 12:189–222. Pergamon Press

17. Wright (1921) Correlation and causation. Agric Res 20:557–585
18. Zobel J, Moffat A (2006) Inverted files for text search engines. ACM Comput Surv 38(2):1–56

https://doi.org/10.1145/1552291.1552293

	18 Information Retrieval
	18.1 Introduction
	18.2 Retrieval Strategies
	18.3 Boolean Model of IR System
	18.4 Vector Space Model
	18.5 Indexing
	18.5.1 Index Construction
	18.5.2 Index Maintenance

	18.6 Probabilistic Retrieval Model
	18.7 Fuzzy Logic-Based IR
	18.8 Concept-Based IR
	18.8.1 Concept-Based Indexing
	18.8.2 Retrieval Algorithms

	18.9 Automatic Query Expansion in IR
	18.9.1 Working of AQE
	18.9.2 Related Techniques for Query Processing

	18.10 Using Bayesian Networks for IR
	18.10.1 Representation of Document and Query
	18.10.2 Bayes Probabilistic Inference Model
	18.10.3 Bayes Inference Algorithm
	18.10.4 Representing Dependent Topics

	18.11 Semantic IR on the Web
	18.12 Distributed IR
	18.13 Summary
	References

