
Chapter 16
Intelligent Agents

Abstract The intelligent agents are being viewed as new theoretical models of com-
putation thatmore closely reflects current computing reality, aimed as newgeneration
models for complex and distributed systems. An agent system can work as a single
agent, or as a multiagent system. The intelligent agents have many applications—
they are used in software engineering, in buying and selling—like online sales, bids,
trading; the agents are also modeled for decision-making—with preferences and cri-
teria for making decisions. This chapter also presents the classification of agents,
agent system architecture, how the agents should coordinate among themselves, and
the formation of a coalition between agents. Themultiagents communicate with each
other using agents’ communication languages which are oriented towards perform-
ing actions. Other categories of agents are mobile agents—programs which can be
moved to any far off place, and can communicate with the environment. The chapter
ends with chapter summary, and the set of exercises.

Keywords Intelligent agent · Mobile agent · Multiagents · Agents’ coordination ·
Cooperative agents · Agents’ coalition · Software agents

16.1 Introduction

Anartificial agentor intelligent agent is a recent term in computer science, and specif-
ically in artificial intelligence. There is a number of definitions of agents. The agents
are viewed as a new theoretical model of computation, that reflects current com-
puting reality in a better (tangible) way than the existing model of Turing Machine.
They are being projected as a next-generation model to engineer the complex and
distributed systems.

Among many characterizations of agents, the following definition is most com-
mon: An agent is an encapsulated computer system, which is situated in some envi-
ronment and it is flexible and capable of autonomous action in that environment in
order to meet its desired goals. There are associated number of questions about this
definition that require further explanation, which becomes somewhat clear through
the extended definition of agents, in the following:
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1. Agents are entities for problem-solving for clearly identifiable problems with
well-defined boundaries and interfaces;

2. They receive inputs related to the state of their environment through sensors, when
embedded in an environment, and act on the environment through effectors;

3. An agent is designed to fulfill a specific requirement, and it has a particular goal
to be achieved;

4. They have control over both their own behavior and over the internal state, a
property called autonomous;

5. The agents have flexible problem-solving behavior. They are both reactive (able
to respond in time to the changes occurring in their environment) and proactive
(able to act in anticipation of future goals).

Agents are also being used as a framework to bring together variousAI’s sub-areas
to design and build intelligent systems. In spite of the intense interest of research
community and progress made in the area of agents, a number of fundamental ques-
tions about the nature and the use of the agent-oriented approach remain unanswered,
which are as follows:

• What are the fundamental concepts and notions of agent-based computing?
• What makes the agent-based approach a natural and powerful computational
model?

• What are the implications of agent-based computing, in the wider perspectives,
for AI and computer science in general?

Learning Outcomes of this Chapter

1. List the defining characteristics of an intelligent agent. [Familiarity]
2. Characterize and contrast the standard agent architectures. [Assessment]
3. Describe the applications of agent theory to domains such as software agents,

personal assistants, and believable agents. [Familiarity]
4. Describe the primary paradigms used by learning agents. [Familiarity]
5. Demonstrate using appropriate examples how multiagent systems support agent

interaction. [Usage]
6. Syntactic structure of agent languages. [Familiarity]

16.2 Classification of Agents

Although there is no universally accepted definition of an agent, however, as per the
most commonly used definitions, an agent is a proactive software component that
interacts with its environment, as well as it interacts with other agents on behalf of
its user, and reacts to the changes in its environment. A component is called agent if
it exhibits several of the properties given below.
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Autonomous

It is the property of an agent, as per which it proactively initiates the activities as
per its goal. An agent has its own thread of control, can act on behalf of its user, and
without necessarily depending on the messages from other agents.

Mobile

An agent can move itself from one execution context to another. For this activity,
it can move its code, and carry on executing from the current point onward, or it
can start afresh. Other modes of execution can be, serialization of its code and state,
such that it may continue its execution in a new context, and at the same time, it may
retain the same old state and can continue to work.

Adaptable

An agent is adaptable to a new environment; its behavior can change after its deploy-
ment through its own learning, downloading new capabilities, and through user cus-
tomization.

Knowledgeable

A software agent has reasoning capability, due to which it can reason about the
acquired information, about the knowledge of other agents, its user, and about its
goals.

Collaborative

Some agents are called collaborative agents, which can communicate with other
agents and work in a cooperative manner. This collaboration can be formed either
in a static manner or a dynamic manner. The collection of such agents is called
multiagent system.

Persistent

The infrastructure used by the agents allows them to retain their knowledge and states
over an extended period of time. The agents have property of robustness, i.e., they
work correctly on the face of some failures at run time.

Many characteristics of Intelligent agents are result of capabilities like adaptabil-
ity, cooperation, and proactivity. see Fig. 16.1 shows agent taxonomy. The circles
correspond to general agent capabilities, and intersection corresponds to the agents
having either two or three capabilities. For example, an agent having the capability
of proactive and cooperative is called a collaborative agent.

Depending on the functions performed, agents can be classified in one of several
major categories.

Adaptive agents

They can learn from their previous experience, and can change how they should
behave in a given situation, and can also behave differently in given situations.
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Fig. 16.1 Agent taxonomy
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They can communicate with other agents, and their action can be according to the
results of the communication performed.

Proactive agents

These agents can initiate proactive actions, i.e., without any prompting from the user
or other agents.

Personal agents

They are proactive and can interact directly with a user. While interacting with the
user, they present some personality or character, can do monitoring and adapting to
the user’s activities, can learn the user’s style and preferences. They can automate
or simplify certain rote tasks. Many software tool-kits, e.g., Microsoft Agent, offer
software services set that support the presentation of software agents as interactive
personalities and includes natural language and animation capabilities.

Collaborative agents

These agents are proactive and cooperate with other agents. They communicate and
interact in groups, many times on behalf of a number of users or organizations, or
services.Multiple agents exchangemessages to negotiate or share information. Some
of their applications are: online auctions, planning, negotiation, logistics, supply-
chain management, and telecommunication services.

Smart agents

The smart agents exhibit a combination of all capabilities, i.e., they are adaptive,
cooperate with other agents, and are proactive.

Mobile agents

These agents are sent to remote sites to collect the information, and forward it to
the central or any other location. Before sending the results to a specified location,
these agents can aggregate and analyze data or perform some local control. They are
typically implemented in any of the following languages: Java, Java-based compo-
nent technologies, VBScript, Perl, TCL, or Python. The data-intensive processing is
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usually performed at the source, as this avoids the shipment of bandwidth consuming
raw data. Examples of such applications are network management agents, Internet
spiders, and NASA’s mobile agents for human planetary exploration, etc.

16.3 Multiagent Systems

Themultiagent systems are used byorganizations or peoplewith different /conflicting
goals, and having proprietary information. In such systems, multiagent system is
required to handle their interactions. As an example, in a manufacturing scenario
where company A produces launching-pad of missiles but subcontracts to company
B to produce the missiles. To build the whole system comprising missiles launcher
and missile, the internals of both companies must be modeled. However, none of
these companies are ready to share the details with the other company. Possibly,
the two companies may reach to some agreement, or when not ready to share any
details due to protocols imposed by the government, multiagent system (MAS) can
be created, with one agent for each company, that represents the goals and interest
of each company [10].

As another example, consider a teaching time-table system for a college. This
domain requires, different agents to represent the interest of different people in the
college. Facultywants their classes should be evenly distributed throughout theweek,
with possibly all classes in as few rooms as possible, management wants that all the
resources be used fully, students want that no more than two/three theory classes be
held each day. Similarly, the technicians will have their own requirements. In such
a scenario, a multiagent system, where different constraints are handled by agents
separately, can create time table static/dynamic to best meet all the constraints.

The multiagent system creates parallelism by assigning different tasks to differ-
ent agents, hence making overall a fast response system. In addition, many agent’s
systems will have redundant agents, this helps in building robustness in the system.
This is possible because, the control and responsibilities are shared among the agents,
hence the system can tolerate failures of some of the agents, and still working cor-
rectly and efficiently. The areas of applications that requires graceful degradation at
the time of failure, instead of sudden failure, are suitable domains where multiagent
systems’ use is welcomed. However, if single entity or processor or agent controls
everything, the then entire system may crash if there is a single failure.

Themultiagent systems have the benefit of scalability. Because they are inherently
modular, it is easier to add new systems to a multiagent system than to add new
capabilities to monolithic systems. Due to the flexibility available, it is easier to
program a multiagent system.
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Fig. 16.2 A general
single-agent framework
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16.3.1 Single-Agent Framework

Though it might appear that a single-agent system might be simpler in concern
to dealing with a fixed complex task, however, the opposite is often true. In fact,
when control is distributed among number of agents, an individual agent can be
simpler. A general agent is a single-agent system, together with the environment,
and the interaction between agent and environment. An agent is itself part of the
environment, but generally, the agents are considered to have extra-environmental
components, which are independent entities, having their own goals, knowledge, and
actions. In a single-agent system, no other entities are recognized by the system (see
Fig. 16.2).

16.3.2 Multiagent Framework

Following are the taxonomies of multiagent systems:

1. Agent granularity, which can be course or fine.
2. Heterogeneity of agent’s knowledge, can be redundant or specialized.
3. Methods used for distributing control can be: benevolent or competitive, team or

hierarchical, static or shifting roles.
4. The agents can communicate among other agents, in blackboard or through mes-

sages, it can be low-level or high-level communication.

In a multiagent system, there are several agents which are capable of modeling
each other’s goals and actions. In a general multiagent system, there may be direct
interactions among the agents. The inter-agent communication is viewed separate
from communication with the environment. A major difference with single-agent
system is that, in multiagent systems, the environment dynamics can be determined
by the other agents also, which can affect the environment in an unpredictable way.
Thus, all multiagent systems can be treated as having dynamic environments.
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Fig. 16.3 A fully general
multiagent framework

The Fig. 16.3 shows multiagent environment, where each agent is part of the
environment, as well as can be modeled as a separate entity. There may be any
number of agents with different degrees of heterogeneity and with or without the
ability to communicate directly [10].

16.3.3 Multiagent Interactions

In agent-oriented view of the world, it has been found that most problems require the
participation of multiple agents to represent the distributed nature of the problems,
with multiple locations of control, and multiple competing interests. In addition,
the agents need to interact with each other to manage dependencies resulting from
their existence in a common environment, and to achieve their individual objectives.
Such interactions may vary greatly—from a simple information exchanges to, in a
more complex form—to request for particular action for coordination/cooperation,
or negotiation, or arranging interdependent activities.

Agent interactions are differing on two characteristics with respect to computa-
tional models, like networking and shared computing: 1. Agent-oriented interactions
are conceptualized as taking place at knowledge level—realized in terms of what
goals should be followed, by whom, and at what time. 2. The agents are flexible
problem solvers, operating in an environment that is partially observable, and agents
have partial control over it. Therefore, the interactions need to be also handled in a
similar and flexible manner.

The agents make use computational models to make run-time decisions about the
type and scope of their interactions, and also to initiate and respond to interactions
that were not anticipated at the time of design of the system [5].
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Fig. 16.4 Canonical view of an agent-based system

Agents usually act to achieve objectives as individuals, or as a group for some
larger problem-solving initiative. Hence, when agents interact with the environment,
there is a hidden organizational context in them, that defines the nature of the rela-
tionship between agents—as peers working together in a team or one may be the
manager of the other agents, hence may influence their subordinates’ behaviors.

Since agents are required to make decisions about the various types of interac-
tions at run time, there is a need for an explicit representation of organizational
relationships of agents. Often, these relationships are subject to frequent changes,
for example, the agents working on the computation of social interaction must take
care of existing relationships in social networks, and should also support the evolu-
tion of these relations. The evolution is due to the creation of new relations, and due
to the exit of members from these social networks. Looking at these examples, we
understand that the life span of these relationships can vary from just long enough
to deliver a particular service once to a permanent bond.

To cope with the dynamic scenario of variety and dynamics of relationships in
agents, their protocols needs to be devised to support organizational groups to be
formed and dismantled, there is need of specified mechanisms to ensure that these
groups act together in a coherent way, and also there is need of structures to charac-
terize macro behavior in a collective way.

The Fig. 16.4 shows the essential concepts of agent-based interactions.
The agents capable of having the features presented above are the Intelligent

agents (also called software agents). These agents are autonomous components,
have their own goals and beliefs. They are designed with the capability to reason
about their behavior: both present and future, and offer abundant scope for fast, and
incremental development of Web-based enterprise applications. The developers can
use these systems for a variety of complex and dynamic domains, which range from
e-commerce to research on planetary exploration systems.
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16.4 Basic Architecture of Agent System

Many complex and intelligent agents navigate on the Internet, collect the relevant
data and process them, perform various tasks including data analysis and data com-
munication, and make the decisions on behalf of their users. The present generation
of intelligent software agents canmanage, organize, and communicate huge amounts
of data on behalf of their users. For example, the agents in e-commerce applications
can dynamically discover and compose e-services and mediate interactions. They
can also be used to serve as delegates to handle routine tasks, like, monitoring activ-
ities, set up contracts, win the bid, execute business processes, and can find the best
services [3].

Agents reside and execute in a conceptual and physical location called an agency
(see Fig. 16.5), which provides facilities for locating and messaging to mobile agents
and also to those that are detached agents. The agency also facilitates for collecting
knowledge about agents. The core of the agency is an agent platform,with component
model infrastructure, which provides the local services to agents. The core also
includes the proxies to access remote services like security, agent management,
communication, persistence, and naming. For mobile agents, the agent platform also
provides agent transport. Some additional services provided by most agent systems
are in the form of specialized agents that reside in some remote agency. There are
some standard service agents, like a broker, auctioneer, or community maker, which
augment the basic agents infrastructure. The agent platform alongwith service agents
monitor and control message exchange by detecting any violation of rules while they
engage in communication. The agent’s platform is the system’s core, however, in
addition to this, a component model infrastructure empowers the agents with local
services and proxy access to remote services.

An agent system comprises components with simple interfaces. The major part
of the system’s capability results from its loose coupling, which helps the agents to
interact dynamically through the exchange of messages asynchronously. For com-
munication with each other, the agents must follow some common and well-defined

Fig. 16.5 Agent system
architecture
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protocols. Communication of agents is through a language, called ACL (agents
communication language). It is a specialized declarative language, which defines
the structure and pattern of interaction between agents. This language is associated
with the component model, and partitions the messages into many parts, which are
relatively independent of each other. The commonly used message partitions are:
message type, addressing, context, content of the message, domain description, and
expected conversation patterns. Due to the message protocols and its partitioning of
the message, it is easier to dynamically extend the agents to new problem domains,
while the system checks conformance to expectations and allows the component
model infrastructure to manage messages and agents.

The agents interact among themselves using a set of vocabularies, called ontol-
ogy, which is designed for the application domain of the agents. The word set in
the vocabulary describe the things, their attributes, action performed, various rela-
tionships, meanings, and how the agent’s system use this vocabulary to structure the
interactions, and access the devices.

16.5 Agents’ Coordination

For performing complex tasks there is requirements to integrate a group of agents to
coordinate the activity. This is possible by a multiagent system, working in either of
the two modes, static or dynamic. The agents can coordinate amongst themselves,
and also with people. This coordination requires messaging between the agents, the
sequence of themessagesmay havemany possible levels of choreography, depending
on how loosely or tightly the allowed interactions are controlled by the system. It
is common practice that, instead of directly programming as code to handle the
messages coordination, some graphical models or high-level declarative rules are
used. These models/rules make it easier to visualize how the agents interact. The
agent system can use explicit rules or models to monitor or enforce compliance,
which makes the programmer’s task simple [8].

It is not always the case that coordination would mean cooperation. For example,
an effective competitor will coordinate the decisions to maximize his/her advantages
against the opponent. This may be seen in the planning of product promotion by a
company to undercut a rival.

Various coordination strategies have emerged for computational agents. How-
ever, it is not possible to devise a coordination strategy that works equally well in
all situations. If any such strategy exists, it can be easily applied for an unlimited
number of constructs employed today, such as governments, corporations, markets,
teams, committees, professional societies, mailing groups, etc. Whatever strategy is
adopted, certain situations can stress it to be a breaking point. Any adopted coordi-
nation strategy must now be concerned about how to scale to increasingly complex
situations. To map the space of potential coordination strategies, we must find out
important dimensions along which they must scale and then evaluate their response
to complexities along with those dimensions.
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16.5.1 Sharing Among Cooperative Agents

Benefits at a global level of an agent system are bound to improve if all agents
cooperate. However, cooperation among the agents is difficult to realize, particularly,
in situations when agents are self-interested. For example, if a number of agents are
trying to get the same resource, say download a specific file, the download speed is
bound to decrease. Instead of this approach, if theywork on grouping a social decision
that is mutually beneficial, it will be good for all of them. Therefore, designing
mechanisms that promote cooperation among self-interested agents is important. In
fact, several game theory approaches have been found to be useful for the study of
cooperation in agents, e.g., the Prisoner’s Dilemma (PD) as a theoretical framework
(see Chap.11), which is well known for this purpose. The PD can be useful for
understanding the role of local interactions tomaintain cooperation among the agents.
It is based on the conflict of interest, i.e., between what is the best for the individual
(i.e., defection) and what is best for the group (i.e., cooperation). This creates a
situation of social dilemma. Therefore, specific mechanisms are required to evolve
cooperation to help the population to overcome this dilemma.

There are three basic approaches to prevent social dilemmas, and to promote and
stabilize cooperation as follows:

Coalition-based mechanism

The coalition-based approach is useful for establishing collaboration among agents,
with an individual having properties and objectives. These mechanisms use a tax
model, due to which agents can achieve cooperation when coalitions are formed
around some emerging leaders. To maintain coalitions, the leaders charge some tax
from their agents in favor of some benefit (e.g., guaranteed cooperation, protection
from cheaters, etc). The concept of coalition has been used in the game theory for a
long time, and has been proved useful in real-world economic scenarios. The dynamic
coalition formation model considers the grid topology of agents for cooperation
between them and makes use of spatial prisoner’s dilemma.

The coalitions facilitate cooperation between self-interested agents. The first
approach is: a leader of coalition is paid by the agents that are in the coalition.
The coalition leader also imposes its decision on the agents in the coalition to max-
imize cooperation. The decision making of each coalition is done in a centralized
manner by a single entity, called leading agent. The agents’ cooperation with their
coalition-mates also assumes some restriction in the collaboration.

The coalition-based approach is a clear example of the known trade-off between
the benefits versus the costs of collaboration (e.g., taxes). Therefore, this mechanism
is called dynamic coalition formation model, and also tax model.

Partner switching mechanisms

In most real-world situations, the network topology changes frequently. There is
an empirical evidence in the games on dynamic topologies that a partner switching
leads to cooperative behavior. A variant model of prisoner’s dilemma allows agents
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to either adjust their strategies or switch their defective partners, with the aim that
partner switching may help stabilize cooperation.

Self-governing institutions

The resource allocation in case of self-governing Institutions is modeled in a net-
work, based on a formal characterization of socio-economic principles. An agent
should autonomously decide how to behave with respect to coalition-mates and
agents outside its coalition. Although some mechanisms promote cooperation on
different network topologies, these networks are static.

16.5.2 Static Coalition Formation

There are two approaches for static coalition formation: 1. Optimization-based
approaches, that focus on finding an optimal coalition, and 2. Game theoretic
approaches. The later has applications in many real-world domains, like electronic
commerce, auctions, and general resource allocation scenarios. The game theoretic
approaches may also involve automated agents [8].

In coalitions with optimization objectives, the challenge in coalition formation is
generating coalition structure, which turns out to be an NP-complete problem as a
general case, hence the existing algorithms cannot generate solutions in a reasonable
time, even with the moderate size of the game (number of agents). Hence, finding an
optimal coalition can become intractable because the number of coalition structures
grows exponentially with a number of agents.

Among other goals, one goal of coalition formation is to improve cooperation
among the agents. The game theory approaches have been widely used to address
the issue of cooperation among agents. A class of coalition formation game, called
hedonic games, is a rich and versatile class for coalition formation, suited for both
static and theoretical aspects of coalition formation, and has the property of encap-
sulation in the stable matching scenarios. The major focus of hedonic games is
on critical stability for coalition structures, e.g., Nash stability, individual stability,
contractual individual stability, and core stability. These games also characterize
conditions under which the set of stable partitions is guaranteed to be non-empty.

16.5.3 Dynamic Coalition Formation

In formation of coalition in a dynamic environment, the agents constantly change the
coalition they belong to. In such a scenario, since optimality is possible with a very
small number of agents, computing of optimal coalition is either infeasible, or may
take a time longer than the lifetime of a coalition for any realistic number of agents.
Thus, the time constraint to find an optimal coalition prevents its use in a dynamic
multiagent system, where some agents have to decide if it is beneficial to them to
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join other agents for a small amount of time. This time limitation is due to the fact
that for n number of agents, the total number of possible coalition structures to be
enumerated are of the order of O(nn), which is too large unless n is a small number.
For large n, the computation cannot be carried out in realistic times. Hence, it is
necessary to make use of domain knowledge, with mathematical games and some
constraints to solve the problem of coalition formation in an efficient way, for the set
of agents of any specified characteristics [8].

To form a dynamic coalition, it is required to have decentralized procedures to
allow self-interested agents to negotiate the formation of coalitions, as well as to
divide the coalition payoffs. In the real-world scenarios, the agents may turn out
to be selfish and may focus on improving their own performance, but if they are
cooperative, the performance of the whole system will improve. Hence, the theory
of non-cooperative games (i.e., agents are selfish) is suitable to model the formation
of coalitions and their dynamics. The prisoners’ dilemma is a case of this category,
since the prisoners are considered as selfish (defecting is the dominant strategy) in
this game. A variant of this, called Iterated Prisoner’s Dilemma (IPD) game is widely
used to model various social and economic phenomena, and the cooperation among
agents. In the IPD, where a total number of rounds is random or unknown, sustained
cooperation strategies are likely to emerge.

16.5.4 Iterated Prisoner’s Dilemma Coalition Model

We present a model, where a graph (or network topology) representing population
is iterated, the nodes in the network represent agents, and edges represent relations
between agents. Such agents interact with their peers in the social neighborhood
(the agents to which they are linked), and play the game of Possessors-Traders (an
agent is either a possessor or a trader). Such agents not only cooperate or defect,
but have resources using which they can trade. The agents can form coalitions to
increase the cooperation level of the multiagent system. In such coalitions, group
decisions can result in mutually beneficial cooperation, that holds over some time.
The group decisions lead to, and is an indication of social behavior. In addition, the
agents’ neighborhood is not static, and can change partners through rewiring. Hence,
in addition to the trading of resources, each agent decides the following during the
game [8].

– To remain independent or to be part of a coalition, depending on which alternative
provides more payoffs.

– Whom to rewire with? As agents change their neighborhood, they rewire to
improve the benefits.

In addition, all the agents in a coalition behave like a unit, and all together decide
how they should behavewith those in the coalition (called insiders), and those outside
the coalition (called outsiders). Hence, the decision aboutwhat is a coalition andwhat
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is its behavior, is an important criterion in the dynamics of the coalition system. In
their behavior the agents work in cycles: trading strategies, rewiring (changing of
coalition) strategies, and coalition strategies. The Algorithm 16.1 shows this cycle,
where x represents Payoffs.

Algorithm 16.1 One cycle of Agents-dynamics
1: x = trade-with-all-neighbors();
2: rewire(x);
3: revise coalition(x);

Agents use certain trading strategies to trade among the agents, based on some
model, which can be called by a general name property ownership and trade (POT)
model. The trading model is based on extension of the Iterated prisoner’s Dilemma,
in which agents can cooperate or defect the actions. The model of POT comprises
two types of players: 1. The Possessors P , who own the resources, and 2. Traders
T , who sell and buy resources.

The strategy of any agent pi ∈ P models the practice of ownership, but does not
trade. The behavior of pi depends on whether it owns a resource or not. If pi owns
a resource it acts as a defector, but if it does not, then it cooperates. This strategy
is shown in Algorithm 16.2, where owns(pi , resource) indicates that possessor pi
owns some resource, de f ects(pi ) means pi defects, and cooperate(pi ) means pi
cooperates.

Algorithm 16.2 Possessor pi ’s Strategy
1: if owns(pi , resource) then
2: de f ects(pi )
3: else
4: cooperates(pi )
5: end if

An agent t j ∈ T is trader, who is willing to sell or buy a resource when dealing
with a fellow trader tk ∈ T . For example, if some t j has a resource for selling, it will
try to get the maximum benefit by selling it. Whenever any pair of traders (t j , tk)
meet, the trader (say t j ) owning the resource values the resource at a random value y j
(but does not make it open), such that v < y j < V , and v, V ∈ R (real numbers). In
response, the buyer agent tk offers a value yk for the resource, such that v < yk < V .
If yk > y j then the buyer purchases the resource at some random value yl , so that
y j < yl ≤ yk . This is called trader T ’s strategy,with its logic given inAlgorithm16.3.
If the trader plays against who is not a trader, then it is the possessor.
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Algorithm 16.3 Trader T ’s Strategy
1: if isT rader(t j ) AND isTrader(tk) then
2: if owns(t j , resource) AND v < y j < V then
3: Sell for y j
4: else
5: if owns(tk , resource) AND y j < yk then
6: Buy for yl AND y j < yl ≤ yk
7: else
8: Behave as Possessor
9: end if
10: end if
11: else
12: Behave as Possessor
13: end if

16.5.5 Coalition Algorithm

AAlgorithm16.4 shows the basic strategy followed by agents either to join a coalition
or leave a coalition (change to a new one). If an agent ai has the poorest payoff among
all its neighboring agents after completion of the previous round of computations
(line 1), then ai makes a new coalition with some agent a j (line 4), who is free and
has the best payoff. If a j is already in some other coalition, then ai joins a j ’s coalition
(line 6). This rule also enables any agent to change from one coalition to another, in
case that agent receives poor payoffs in the former coalition [8].

In a dynamic network, agents form coalitions to behave as a unity. An agent can
belong to only one coalition at a time. All agents belonging to a coalition are not
required to be linked with each other, but behaves as a set to act together to maximize
their performance. However, an agent must have at least one link to some agent
belonging to its coalition. If that is not the case, it is an isolated agent, hence it must
be declared as an independent agent (lines 9–10, Algorithm 16.4). This connection
helps an agent to know its coalition information, strategy, share, and divide gains.
Again, if an agent changes link, it does not imply that it changes its coalition—it
simply rewires to change neighbors.

The agents that are in a coalition, must agree to some specific behavior to play
with insiders (agents in the coalition) and also with outsiders (agents outside the
coalition). We assume a flat coalition, i.e., there is no leader or central authority to
impose any policy. To decide the coalition behavior in this situation, each agent votes
for a strategy of either P or T (for possessors and traders) to play with insiders as
well as with outsiders (line 16, Algorithm 16.4).

To decide the vote, each agent uses a Learning Automata (LA), trained from its
trading history and payoffs (lines 12–15). The LA algorithm keeps two probability
models: I nProb, and Out Prob. Themodel [I nProbT, I nProbP] is used to assess
the strategy to play against insiders. Here, I nProbT is the probability of being inside
the coalition as a trader, and I nProbP is the probability of being inside the coalition
as possessor. In a similar way, [Out ProbT, Out ProbP] is to assess the strategy to
play against outsiders.
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Algorithm 16.4 Revise Coalition(Payoffs)
1: if poorest Payof f _ f rom_neighbors(ai ) then
2: a j = neighborWithBest Payof f ()
3: if independent (a j ) then
4: Creat NewCoali tion(a j , ai )
5: else
6: JoinCoali tion(a j , ai )
7: end if
8: end if
9: if I solated Agent (ai ) then
10: makeIndependent (ai )
11: else
12: [I nProbT, I nProbP] = UpdateInsidersL A(Payof f s)
13: [Out ProbT, Out ProbP] = UpdateOutsidersL A(Payof f s)
14: InAction = I nActionChoice(ProbInT, ProbInP)

15: Out Action = Out ActionChoice(Out ProbT, Out ProbP)

16: V oteBest (I nAction, Out Acion)

17: end if

16.6 Agent-Based Approach to Software Engineering

In respect of software engineering, we view agents as next-generation components
and agent-oriented software engineering as an extension of conventional CBSE
(case-based software engineering). The developers can integrate different types of
agents, like, personal, mobile, and collaborative agents, to build agent-based enter-
prise systems, covering a wide problem domain area. To patrol the networks to find
available resources, special software is used, called Daemons.

Developers often use distributed objects, active objects, and components that can
be scripted to implement agents. The agents are often driven by goals and plans
instead of procedural code, they encapsulate business or domain knowledge. These
agents often differmore fromeachother by the knowledge theyhave and the roles they
play, than by the differences in their implementing classes and methods. The agents
are capable of using different mixes of adaptability, mobility, intelligence, ACL,
and even multiagent support. Either AI programming languages or conventional
programming languages can be used to implement the agents.

Next, we introduce the techniques for tackling complexity in software [5].

Decomposition

For tackling large problems, the basic technique is to divide the problem into smaller
chunks, such that it is better manageable. Each of these chunks is dealt with relative
isolation. Since this limits the designer’s scope, it helps to tackle the complexity of
the issues, because it requires to consider only a small portion of the problem at any
given time.
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Abstraction

The abstraction is a process of defining a simplified model of any system, such that
only the necessary and important details or properties and emphasized, while all
unnecessary details are suppressed.

Organization

The process of organization is concerned with the identification and managing the
relationships between various problem-solving components. Specifying and imple-
menting organizational relationships are helpful to tackle the complexity due to two
reasons: 1. It facilitates the grouping of a number of basic components, which are
collectively treated as a unit at a higher level for the purpose of analysis. 2. Due to
grouping the components as a unit, as well as to specify the relationships between
them, a number of components maywork together (cooperate) to provide a particular
functionality.

16.7 Agents that Buy and Sell

The Software agents were used much earlier for the applications, like filtering infor-
mation, match people having similar or identical interests, and automating repetitive
behavior.

In the recent past, agents have found the applications in e-commerce to con-
duct business-to-business, business-to-consumer, and consumer-to-consumer trans-
actions. Consider an example of buying and selling, where a company willing to
place an order for procurement of stationery, assigns the tasks to agents to moni-
tor the quantity and usage patterns of paper within the company. It also launches
the buying agents when paper inventory is low. The Buying agents would typically
perform the following tasks, more or less, in order [6].

1. collect the information automatically about vendors and the required products
which best fulfills the needs of the company,

2. evaluate the various offers from the vendors,
3. make a decision about merchants and products that require further investigation,
4. negotiate the terms of transactions with these merchants, and finally
5. place orders and make automated payments.

There are several descriptive theories and models that seek to capture buying
behaviors, e.g., Nicosia model, Howard-Sheth model, and Engel-Blackwell model.
All these share six fundamental stages of the buying process:

1. Identification. The buyer can be motivated through product information, hence
he/she becomes aware of some unmet needs.
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2. Product brokering. The buying process comprises as its part, the Information
Retrieval to determine what to buy. IR consists of evaluation of product alterna-
tives based on the criteria provided by the buyer, whose result is a set of products,
called “consideration set.”

3. Merchant brokering. This activity combines the “consideration set” with
merchant-specific information to help customer to decide as fromwhere to buy the
goods. This stage also comprises the evaluation of merchant alternatives based on
buyer-provided criteria. The later is typically, the price, warranty, delivery time,
availability, and reputation, which are not necessarily be in order, but varies case
to case.

4. Negotiation. This step considers how to settle on the terms of transition. Negoti-
ations vary in duration and complexity, for price and other attributes.

5. Purchase and delivery. This step signals either termination of the negotiation
stage or occurs some time afterward.

6. Product service and evaluation. This involves the post-purchase product service,
customer service, and evaluation of the satisfaction of overall buying experience.

In the present online buying and selling, many of the processes and criteria dis-
cussed above are in a common place.

The continuous running personalized autonomous agents are well suited to medi-
ate for consumer behaviors, like, information filtering, IR, personalized evaluations,
time-based interactions, and complex coordination.Many agents perform constraint-
based, and collaborative filtering. Many websites of online-shopping use rule-based
techniques to personalize the products offering for individual customers. Some web-
sites use agents to experiment data-mining techniques to discover patterns in cus-
tomers’ purchase behavior, exploit those behaviors for sales, and use these patterns
also to help customers to find other products that meet their true requirements.

The product alternatives are compared at the product brokering stage, whereas
the merchant alternatives are compared at the merchant brokering stage.

16.8 Modeling Agents as Decision Maker

Formodeling agents as decisionmakers, it is necessary to havemodelingmethods that
use formal notions of mental state to represent and reason about agents. The mental
states may consist of mental attributes such as beliefs, knowledge, and references.
In multiagent systems, the success of one’s actions and plans are governed by the
actions of other agents. Thus, agents can help in constructing plans that are likely to
succeed. The mental level models can bring two informal properties: 1. They provide
an abstract way of representing agents, which is implementation-independent, and, 2.
These models are built using an intuitive approach, and use attributes, such as goals,
beliefs, and intentions. The abstract nature of models have the following practical
implications [1]:
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1. A single formalism can capture different agents, written in different languages,
and running on different hardware platforms,

2. There are no implementation details in abstract models, and
3. Fever lower-level details in abstract models result in faster computation.

16.8.1 Issues in Mental Level Modeling

In mental level modeling following are the central questions:

1. Structure. The structure holds the designer’s initial database of beliefs, goals,
intentions, which are manipulated by the agent.

2. Grounding. It is the base for the model construction process, which is essential
because we cannot directly observe the mental state of another agent.

3. Existence. Under what conditions a model will exist? Answer to this question
will be helpful in evaluating any proposal for mental level models. Therefore, it
is necessary to know, what assumptions are made, or biases we are making when
we model agents in this manner.

4. Choosingamodel.Howdowechoose betweendifferentmodels that are consistent
with our data?

16.8.2 Model Structure

Amodel’smental level structure consists of three key components:beliefs, references,
and decision criteria, which in order corresponds to accounting for the agent’s per-
ception about the world, its goals, and method of choosing actions under uncertainty,
respectively.

The agents’ belief help in establishing about which states of the world it considers,
are plausible. As an example, the possible worlds of interest may be about weather
conditions: rainy and non-rainy, and let the agent believes rainy to be plausible. In
fact, the agent’s preference indicates how much it likes each preference. The agent
may have two possible actions: take an umbrella along to protect from rain, and do
not take an umbrella along. The outcomes of these actions are shown in Table16.1.
The agent’s preferences tell us how much significance it gives to these values. We
will prefer to use real numbers to describe these values, such that larger numbers
indicate better outcomes, as shown in Table16.2 [1].

An agent would choose its action (take or not take umbrella) by applying its
decision criteria to the outcome of different actions in the world. A commonly used
decision criterion is maximin, where the action for the “best worst-case” outcome is
chosen. The best outcome out of (10, −4) and (−1, 8) is 10 and the worst is −4.
The best in the worst-case is −1, so the agent chooses the action “Do not take an
umbrella”. This is because the outcome worst −1 is better than worst −4.
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Table 16.1 Decision table for an agent

Action (↓), Worlds (→) Rainy Not-rainy

1. Take umbrella Dry, Heavy Dry, Heavy, Illogical

2. Do not take umbrella Wet, Light Dry, Light

Table 16.2 Table with
weighted outcomes

Action (↓), Worlds
(→)

Rainy Not-rainy

1. Take umbrella 10 −4

2. Do not take
umbrella

−1 8

Having gone through the above example, we are now in a position for grounding.
Wecanview the problemof describing amental state of the agent as aCSP (Constraint
Satisfaction Problem). The state of the model is such that it should have generated
the observed behavior, and it is consistent with the background knowledge.

In the above example, the background knowledge is agents preferences, given in
the Table16.2, and decision criteria ismaximin. We observe that if the agent goes out
without an umbrella, it believes that “no rain will come”, for it is had other beliefs it
would have taken a different action.

Once an agent’s model is constructed, it can be used to predict its future behavior.
To give it a formal shape,we consider that an agentA , is described as a statemachine,
with set of possible local states LA , a set of possible actions AA , and a program,
which we call its protocol PA . Thus an agent is a tuple,

A = 〈LA , AA , PA 〉 (16.1)

where PA : LA → AA . All the agents function with some environment, so we
assume LE as set of all states in the environment. The environment describes every
things external to the agent, which may possibly include other agents also. The com-
bined state of the whole system, i.e., both the agent and the environment are referred
to as global state, and represent by a pair (lA × lE ) ∈ LA × LE . We further assume
that environment does not perform actions, and agent’s actions are deterministic
functions of its state and the environment’s state. Thus, the set of possible worlds
will be only a subset S of the set of global states LA × LE . And, finally, a transition
function,

τ : (LA × LE ) × AA → (LA × LE ) (16.2)

maps a global state and an action to a new global state.

Example 16.1 An agent A to model a an air-conditioner’s thermostat control.

The modeling of agent A is shown in Table16.3, which shows the results of transi-
tion function τ . It should have local states LA = {−,+}, where ‘−’ corresponds to
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Table 16.3 Transition table for thermostat agent

Worlds:
LA × LE →

(−, cold) (+, cold) (−, ok) (+, ok) (−, hot) (+, hot)

Action: AA ↓
Turn-on (−, ok) (+, ok) (−, hot) (+, hot) (−, hot) (+, hot)

Turn-off (−, cold) (+, cold) (−, ok) (+, ok) (−, ok) (+, ok)

the state when the thermostat indicates that the temperature is less than the room tem-
perature, and ‘+’ for temperature greater than or equal to desired room temperature.
The thermostat’s protocol is given below.

State − +
Action Turn-on Turn-off

The thermostat’s actions are modeled as AA = {turnon, turnof f }, and the envi-
ronment’s states are, LE = {cold, hot, ok}. For the sake of simplicity, we assume
that the possible world is LA × LE , which are displayed in the heading row in the
Table16.3.

Given the set of possible worlds W , we can associate with each local state l of
the agent (the thermostat), a subset S, W (l), comprising of all worlds in which the
local state of the agent is l. �
In the above example, the effects of an action on the environment do not affect
the state of the thermostat. In addition, the static one-shot model assumes some
simplifications. The first assumption is that the room temperature is affected only
by the thermostat and not by external influences. Second assumption is that the
thermostat state’s actions do not affect its state.

It may be noted that, while the thermostat knows its local state, it knows nothing
about the room temperature. Consequently, we made all pairs of LA × LE possible,
including the (−, hot) as the possible world, indicating that thermostat’s local state
is indicating low temperature, while the environment state is hot. In one aspect, it
simplifies the system by assuming all possible worlds, while in other terms, it is
a blessing, as this is taken as a situation, where we assume that there may be a
measurement error in the thermostat [1].

Definition 16.1 (Belief) A belief assignment function B may be defined as B :
LA → (2S − φ), so that for all l ∈ LA we have B(l) ⊆ W (l). The value B(l) is
referred as worlds plausible at l.



492 16 Intelligent Agents

16.8.3 Preferences

The beliefsmake sense being part of amore detailed description of the agent’s mental
state, which has more associated aspects. One such aspect is the agent’s preference
order in the possible worlds, which can be taken as the agent’s desire. There are
various assumptions about the structure of the agent’s preferences, which consider a
total order on the set of possible worldsW . However, wemay need a richer algebraic
structure, in some cases, e.g., one inwhich addition is defined.Weuse a value function
to represent the agent’s preferences.

Definition 16.2 (Value function) A value function is a function u : S → R. �

This numeric approach of representation of agent’s preferences is most convenient,
where a state s1 is at least as preferred as state s2, iff u(s1) ≥ u(s2).

Considering the example of the thermostat (as agent), the goal of the agent is
to make room temperature ok. Thus, the thermostat/agent prefers any global state
in which the environment’s state is ok, over any global state which may be cold
or hot, and is indifferent between cold and hot. And, it is also indifferent between
the states, where the environment’s states are identical, i.e., (+, ok) and (−, ok).
This preference order over possible worlds can be represented by a value function.
The value function assigns zero to global state in that environment when the state is
either hot or cold, and assigns 1 where the environment’s state is ok. This outcome
is represented in Table16.4, where ∗ stands for either − or +.

If the exact state of theworldwas known to the thermostat, it would have no trouble
in selecting proper action based on the value of its outcome. Considering the case of
value as cold, theTurn-on actionwould lead to the best outcome.However,when there
is uncertainty, the thermostat must compare vectors of plausible outcomes instead
of a single outcome. For example, for the belief assignment B(l) = {cold, ok}, the
plausible outcome of the action Turn-on is (1, 0), and of the action turn-off it is (0, 1).

Given the transition function τ , the belief assignment B, and an arbitrary, fixed
enumeration of elements of B(l), the plausible outcomes of a protocol P in l is a
tuple whose kth element is the value of the state generated by applying P starting at
the state of B(l).

Table 16.4 Global outcome
preference for an agent

Worlds (→) (∗, cold) (∗, hot) (∗, ok)

Action (↓)
Turn-on 1 0 0

Turn-off 0 1 1
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Table 16.5 Table with
weighted outcomes

Action (↓), Worlds
(→)

Rainy Not-Rainy

1. Take umbrella 10 −4

2. Do not take
umbrella

−1 8

16.8.4 Decision Criteria

The values can be compared easily, however, it is not clear as how to compare the
plausible outcomes. Therefore, we choose some protocols. A strategy for making
choice under uncertainty is required that depends on the agent’s attitude towards
risk. The strategy can be represented by decision criteria, which is a function with a
set of plausible outcomes and returning a set of most preferred out of these. For this
we make use of maximin criteria discussed earlier. Hence, we reproduce the same
Table as 16.5.

Note that when both the worlds are plausible, the two plausible outcomes are
(10,−4) and (−1, 8). On the condition, the maximin criteria is used, the first action,
corresponding to “take umbrella” is the most preferred one. But, when the principle
of indifference is used, the plausible outcome “do not take umbrella” is preferred.
Accordingly, decision criteria can be defined as follows:

Definition 16.3 Decision criteria.

A decision criteria is a function:

ρ :
⋃

n∈N
2R

n →
⋃

n∈N
2R

n − φ (16.3)

that is, from sets of equal length tuples of reals, to sets of equal length tuples of reals,
so that U ∈ ⋃

n∈N 2R
n − φ, we have that ρ(U ) ⊆ U (i.e., it returns a non-empty

subset of the argument set).
Note that the decision criteria can be used to compare tuples. For example, if

ρ{u, v} = {v}, then we say that v is more preferred than u.

16.9 Agent Communication Languages

The agentsworking together, irrespective ofwhether they are cooperating or compet-
ing, is called a multiagent system. These systems provide higher level of abstraction
than the traditional distributed computing. The abstractions are closer to the users’
expectations, and allow the designers a higher flexibility in determining the behavior.
For example, instead of hard-wiring a specific behavior into the agents, multiagent
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system designers design the agents with the capability to negotiate amongst them-
selves and find out the best course of action for a given situation. The ACLs (Agent
Communication Languages) must be flexible enough to accommodate abstractions
such as negotiations. But, the same flexibility makes it harder to succeed in under-
standing their semantics [9].

Due to this reason, we must examine many elements to arrive at he meaning of a
communication, which includes, type of meaning, perspective, basis (semantics or
pragmatics), context, and coverage, i.e., number of communication actions included.

The formal study of languages comprises three parts: 1. Syntax, which is con-
cerned with organizing the symbols to create the structure of language sentences, 2.
Semantics, which deals with what sense is denoted by the sentences and their parts,
and 3. Pragmatics, which is concerned with how the sentences are interpreted and
used. The combinedmeaning of a sentence is obtained due to semantics and pragmat-
ics. The pragmatics includes those considerations that are external to the language,
like, state of the agents, and the environment in which the text exists. Therefore,
the pragmatics can restrict, as to how the agents can relate to one another and how
they process the messages which are sent or received. In a situation when agents are
not fully cooperative or they cannot find out the implications, they cannot meet the
pragmatic requirements.

Semantics versus pragmatics

A perspective can be combined with a type of meaning, either personal or conven-
tional. In case of personal, the meaning of communication is based on intention
and interpretation of receiver/sender. The action, “purge this file” shall be taken by
the receiver as directive, whereas “This is an old file”, shall be taken as an asser-
tion. In Fig. 16.6, the inform construct is to give the information to the receiving
agent, the request construct requests for rain, and so on. In conventionalmeaning,
the meaning of communication actions is based on usage conventions. A language
is nothing but a system of conventions. Violating the idea of conventions, the tradi-
tional approaches go against thewisdomof having different labels for communication
actions. The language KQML (Knowledge Query Management Language) have all
acts as variants of tell, whereas for communication language Arcol, it is infom.

Fig. 16.6 An example of agent language
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Context

In general, we do not understand a communicationwithout context. Here, in agents, it
is agent’s physical or simulated environment, which becomes the context. For agents,
the social context is not as subtle as for humans, but they must understand what an
agent expects from others.

Coverage of communicative acts

When heterogeneous autonomous agents exchange information, the meaning of the
exchange is decided by communicative actions. All these actions fall into one of the
following categories:

• Assertive. This action is to inform. For example, “The door is shut.”
• Directive. This is for request, for example, “Shut the door”. It can also be used for
query, e.g., “Can I shut the door?”

• commissive. To promise something, e.g, “I will shut the door.”
• Prohibitive. It can ban something. For example, “Please do not shut the door”
• Declarative. It causes events in themselves. For example, “This information is
redundant.”

• Expressive. To express emotions and evaluations. “I wish that hurricane will stop.”

Communication actions can be represented in stylized forms like, “I hereby
request …” or “I hereby declare …”. The grammatical form emphasize that through
the language, you not onlymake statements but perform actions. The action by speak-
ing becomes the essence of communication. Figure16.6 shows that all primitives of
this agent language are assertive or directive. In the agent language Arcol, one can
simulate commissiveness using other acts. All the acts can be reduced to the cate-
gory of assertive, but these categories have only restricted meanings. For example,
a request in Arcol language is the same as conveying to the receiver that the sensor
intends for it to perform the action.

Considering the code given in Fig. 16.6 for agent Avi, each communication act has
a challenge for language, which promotes mental agency. The traditional approaches
ignore whether Bob has really the capability to cause rain when it is requested or
allowed to do so, or whether it can stop the rain when it is prohibited from causing
the rain. Similar is the case for, whether Avi can make it rain when he promises; or
whether Avi has the authority to permit or prohibit any of Bob’s actions or to name
whether conditions.

Finally, the ACL approaches conclude that if Avi’s designer wants it to comply
with, then it does. This is quite unsatisfactory, because it means that agents do not
have any reasoning about their limitations.

16.9.1 Semantics of Agent Programs

A platform that supports the creation and deployment of multiple software agents
must have the capability to interoperate with a wide variety of custom-made, as
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Fig. 16.7 Architecture of IMPACT agent system

well as legacy software sources. What it requires for a software package S to be
considered as an agent program, is that it must come accompanied with tools to
augment, modify, and message S to another agent.

Figure16.7 shows, the architecture of a system, called IMPACT, used for the
creation and deployment of multiple interactive intelligent agents. It was a joint
research project created by the collaborative work of some Universities. In IMPACT,
an agent comprises two parts as described below [2].

Software code

It is a programwritten in any programming language that supports awell-definedAPI
(application programming interface), which may be part of the code or developed
separately to augment the code. The program (S) may be represented as a pair,

S = (TS,FS) (16.4)

where,

– TS is set of all data typesmanipulated by this program, and the set is closed under
all the subtypes, i.e., if τ is subtype of TS , then τ ∈ TS , and,

– FS is the set of all pre-defined functions of setS that are provided by the package’s
API.

In other words, S is a collection or hierarchy of objects classes in any standard
object data management language.

For example, in Oracle, the database may be viewed as S = (TS,FS), where
TS comprises all data types (all attribute domains, tuple of different combinations
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of domains, and relations on tuples). Whereas, FS is a set of all functions, i.e., all
relational operations: select, project, Cartesian products, join, union, etc.

At any given point of time t , the state of an agent will refer to a setOS(t) of objects
from the type TS , managed by its internal software code. An agent may change its
state by taking action, which may be triggered internally or by processing a message
received from other agents. But, an agent cannot directly change the state of another
agent, but can do so by issuing a request message to that agent.

Semantic wrapper

A semantic wrapper contains a large collection of semantic information. Following
are the typical contents of this information (see Fig. 16.7):

1. Service description. It is represented in some language, with flexibility to modify
it.

2. Messagemanager. It manages the data-structure associatedwith themessage box,
and specifies and implements the policies.

3. Action module. It takes input of a new message consisting of an event. This
message is used to trigger zero or more actions. Thus, the action module requires:
(1) action base: the actions the agent may take in principle, conditions the agent
state must satisfy for the actions to execute, as well as the effects of those actions,
(2) Action requirements: conditions under which the agent is allowed or barred
from taking the actions, (3) Action policy: What actions to choose out of many?

4. Meta-knowledge module. It provides to the agent information about itself, as well
as about other existing agents in theworld. This knowledgemay include statistical
information on the reliability of other agents, the speed at which other agents can
provide the services, financial charges levied for such services. It also provides the
self- knowledge, like about its own performance, analysis of various operations
performed by itself.

16.9.2 Description Language for Interactive Agents

An Agent’s internal mechanism is based on languages, that describe the agent’s
behavior and its communication protocols. Examples are (1) Soar, a general cog-
nitive architecture for developing systems that exhibit intelligent behavior, and (2)
Knowledge Query and Manipulation Language (KQML), a language and protocol
for developing large-scale sharable and reusable knowledge-bases [4].

There is another language Q, which is used for describing interactions between
agents. Rather than depending on the internal mechanism, Q provides an interface
between computing professionals and scenario writers. Due to change in focus, from
internal mechanism to interaction, language’s syntax and semantics are quite differ-
ent. For example, agent accepting requests on or off, which have the standard mean-
ings. However, if agents received amove command, it may have different semantics,
like move fast, slow, as detailed by the semantics.
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Because the language Q is suited for interactions, it is used for scenario writing.
Example of primitives for interactions are cue and action. A cue is an event that
triggers interaction, while actions are requests to an agent which causes the change
in the environment. Unlike the programming languages, the language Q does not
define the semantics of cues and actions. Since different agents execute the cues
and actions in different ways, their semantics depend on corresponding agents. The
Example 16.2 demonstrates the cues (preceded with question mark) and actions
(preceded by exclamation mark).

Example 16.2 Cues and Actions.

(?hear "Hello" : from Tom}

(!walk :from class_room

:to library)

(!speak "Hello" : to Tom)

(?see library

:direction north) �

In the above example, the following cues and actions are there:

1. Agent waits for Tom to say Hello (?hear),
2. Tom walks from the class room to library (!walk),
3. Agent says hello to Tom (!speak), and
4. Agent asks, do you see the library in north (?see).

The above are synchronous actions, and each one to be followed on completion
of the previous.

The asynchronous actions allow overlapped execution, like, in the Example 16.2,
walk can be asynchronous action, we can walk and speak, and so are agents. To
represent an action to be executed in asynchronous mode, we precede the action
with a double exclamation (!!), e.g., !!walk. For this, the agent may say hello to Tom,
just after it has begun the walk.

Example 16.3 Guarded commands.

(guard

((?hear "Hello" :from Tom)

(!speak "Hello" :to Tom) ... )

((?see library

:direction north)

(!walk :from class_room

:to library) ... )

(otherwise

(!send "I am still waiting"

:to Dickens) ... ))) �
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Just like the common programming languages, the interaction language Q has
commands for conditional branching and recursive calls. Apart from this, its has
commands, called guarded commands for situations that require to observe multiple
cues at the same time. A guarded command combines the cues, actions, and forms.
After either of the cues becomes true, the guarded command evaluates the corre-
sponding form. If no cue is satisfied, it evaluates the otherwise clause, as shown
in Example 16.3.

In the above code, if any cue is encountered, e.g., “agent hears hello from Tom,”
then corresponding forms will be performed, i.e., agent says (replies) “hello to Tom.”
If no cue is observed by the guard command, it performs the otherwise clause,
and the agent sends the message “I am still waiting” to Dickens.

A collection of state transitions in the language Q constitutes a scenario. A sce-
nario defines each state as a guarded command, and it can include the conditions. A
program writer can draft scenarios in the form of simple state transitions, which can
describe fairly complex tasks. The scenarios can be invoked recursively.

16.10 Mobile Agents

All agents are not of the type, mobile agents. An agent sitting at a far off place can
communicate with its environment through older time mechanisms, RPC (remote
procedure call) andmessaging. Such agents are called stationary agents, and executes
only on the system on which they begin execution (not moving, but stationary). If
such agents need information, which is not available on their systems, or they need
interaction with an agent (program) residing on other systems, they usually make
use of a communication mechanism, such as RPC or messaging.

However, a mobile agent is not bound to a particular system on which it begins
execution, but it is free to travel to other hosts in the network. Once created in one
execution environment, the mobile agent can transport its state (including data and
other information), and its code, to other execution environments in the network,
when everything is delivered there, it starts execution. The mobile agent is designed
with special ability, due to which it can transport itself from one system to another
system in the same network. This ability of the agent allows it to move to the system
containing anobjectwithwhom this agentwants to interact, then to take the advantage
of being in the same host or network, as an object. There is a number of benefits of
using mobile agents rather than doing the same job by remote procedure calls and
messaging. Some of the advantages are as follows.

Reduction in network traffic

Distributed systems need communication, involving interactions with multiple des-
tinations to perform a given task. This results to a large traffic in the entire network.
The mobile agents permit us to package a conversation and dispatch it to a destina-
tion host where interactions take place locally. This gets rid of the flow of raw data
in the network. When a large quantity of data is stored at remote hosts, that data is
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processed locally by the transported mobile agent rather than transferring over the
network. That is, computation is moved to the data center.

Overcome network latency

Critical real-time systems, such as nuclear reactors, and robots in manufacturing
processes are required to respond to act to changes in their environments. Controlling
such systems through a factory network introduces significant latency, due to many
reasons, like network being busy. For critical real-time systems, such latency is not
tolerable. Mobile agents offer a solution by moving the required programs and state
at the place where it is needed.

Encapsulates protocols

When data is exchanged in a distributed environment, each host owns the code, which
implements the protocols. However, when protocols change to add new features, it
becomes difficult to upgrade the protocol. Since mobile agents can move to remote
hosts to establish “channels”, this problem does not occur.

Execute asynchronously and autonomously

The mobile devices often need to rely on expensive and fragile network connections.
Tasks that require a continuously active connection between amobile device andfixed
network are not economically, as well as technically feasible. To solve this, tasks are
dispatched into the network in the form of mobile agents, which can operate at their
ease, can move anywhere, where CPU resources and memory are abundant, and can
operate asynchronously and autonomously. The devices can reconnect at a later time
to collect back the agent.

Adapt dynamically

The mobile agents have capability to sense their execution environment, and can
react autonomously to changes. The mobile multiagent system can distribute the
agents geographically among the hosts in the network to perform any required task.

Robust and fault-tolerant

Mobile agents’ ability to react dynamically to unfavorable situations is useful to
build robust and fault-tolerant distributed systems. For example, if a host is being
shutdown, all agents executing on that machine are warned and given time to migrate
and continue their operation on another host in the network!

16.11 Social Level View of Multiagents

Since intelligence is mainly a social phenomenon, and it is due to the necessity of
social life, there is a need to construct socially intelligent systems to understand it, and
we need to build social entities to have intelligent systems. The society has adopted
a set of social laws, and each agent will be required to obey these laws, and will
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assume that all other agents also follow the same. These laws, in one hand, constrain
the plans available to agents, and on the other hand, will guarantee certain behaviors
on the part of other agents. A social law may include communication protocol which
leads to rational deals with multiagents. The protocol may also include rationality
constraints for cooperation. The social law also, includes the rules, like those that
exist for humans for driving—left-drive or right-drive as it may be prevailing [7].

The idea of traffic rules for mobile robots highlights the important aspects of the
artificial social system approach. Rather than having a centralized controller or a
robot to continuously negotiate in order to avoid collisions, the better approach is
that robot should follow the traffic rules, “keep always to the left of the road”.

To consider the applicability of social laws, assume that there is a multi-robot
network, and we think of laws for agent mobilization in such systems. In such a
network, it is assumed that there is coordination among multiagent (i.e., robots). It
is formally defined using the following definition.

Definition 16.4 (Multi-robot network) A multi-robot network consists of a graph
G = (V, E), and set R of robots, and a strictly positive length function λ = E → R,
such that λ associates with each edge (u, v) of G, a distance which robot needs to
travel to go from u to v. We assume that there exists a clock such that a robot is at
some node or at some point between the nodes, at each point in the time scale. �

The action of a robot (agent) is direction and velocity. The velocity is a number
of distance units it passes in a unit time. The direction and velocity are decided by
the robot when it is a node in the graph. Also, a robot can observe another robot. The
robots need to meet the goals which arrive at them in a dynamic fashion. The goals
shall be met without collision to other robots. A collision may take place if they are
at the same node at the same point of time, or at the same step distance on edge at
the same time point. Based on these facts, it is possible to define some social laws.

Definition 16.5 (Social law for robot’s movement) Given a graph G = (V, E), the
social law for robot’s movement determines a subset A ⊆ E of edges in which robot
is allowed to move, and restricts the direction of movement along each edge of A,
and also restricts the velocity at which robots are allowed to move along each edge
e ∈ A. �

In the above definition, the social law is traffic law, which should guarantee that
each robot will be able to achieve its goals (say reaching to a destination node),
without any collision with other robots. This irrespective of what the other robots do.

Given a multi-robots system, a useful social law is one that guarantees non-
collision system, even if all the robots initially enter the graph G at arbitrary nodes,
with offset of at least one unit of time from each other, and they obey the social laws.
Such a system also guarantees that all the robots will reach their targets ultimately.

Modeling social actions

Design of social laws can be reduced to the problem of finding a route in a graph.
For this purpose consider that there is a simple graph G = (V, E), having no cycles,
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no parallel edges, no cut-vertex, and has at least three vertices. A graph with no
cut-vertex is called block.

Let N be the set positive integers, and f : V → N be a labeling of vertices in
G. For U ⊆ V , let min f (U ) and max f (U ), respectively, be the smallest and
largest labels of two vertices inU . An f-minimal vertex inU is any u ∈ U for which
f (u) = min f (U ), and similarly for f-maximal.
The labeling f as above indicates a directed graph G f = (V, A) on the same

vertex set as G, whose edge set A ⊆ E is obtained from E by removing each edge
(u, v) ∈ E with f (u) = f (v). Alternatively, orienting each edge (u, v) ∈ E with
f (u) < f (v), in the direction vu if v is f-maximal and u is f-minimal in the block
containing (u, v), and in the direction (u, v) otherwise.

Given this scenario, we have the following definition for routing a graph.

Definition 16.6 (Routing graph) A routing of a graph G = (V, E) is labeling f :
V → N of its vertices, for which the induced graph G f is strongly connected. A
routing under which there is unique f-minimal vertex r ∈ V , shall be called root.
Assigning the root is called rooting process. �

The routing of a graph can serve as a basis for useful social laws in multi-robot
systems. For this, the robots are required to enter the graph network from an f-
minimal vertex with an offset of one or more time unit from another. Additionally,
the robots are required to move only along the arcs of the graph G f induced by
the routing f . For this, a velocity function is defined as v : A → R as follows: for
e = (u, v) ∈ A, put v(e) = λ(e)/D if u is f-maximal, and v is f-minimal, and put
v(e) = λ(e)/( f (v) − f (u)) otherwise. It is mandatory that robots should move at
the calculated velocities.

16.12 Summary

Wecall a component an agent if it exhibits a combination of following characteristics:
autonomous, adaptable, knowledgeable, mobile, collaborative, persistent. Accord-
ingly, agents are classified as multiagents, autonomous, adaptable, collaborative,
proactive, personal, and mobile agents.

Agents have well-defined boundaries and interfaces, they are autonomous and
are capable of flexible, autonomous action in that environment in order to meet its
design objectives. An important benefit of multiagents is scalability. Since they are
inherently modular, it should be easier to add new agents to a multiagent system than
to add new capabilities to a monolithic system. They have flexible problem-solving
behavior, and they can be reactive or proactive. While parallelism is achieved using
multiagents, robustness and scalability are additional benefits.

In all cases of interactions, there are two major differences of agents when they
are compared with networked computing and shared computing: 1. agent-oriented
interactions take at knowledge level, and 2. operating in an environment that is
partially observable, the apparatus should make run-time decisions.
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Software agents navigate on the Internet to collect relevant data, perform tasks,
and make decisions autonomously. They can transfer an enormous amount of data
on behalf of their users. Some agent systems also include standard service agents,
such as broker, auctionerr, or community maker.

Cooperation in multiagents is difficult when agents are self-interested, say, every-
one tries to download the same file at the same time, the speed will come down. Thus,
they need to communicate and cooperate. The cooperative agents should avoid the
situation of a prisoner’s dilemma. In cooperative agents coalitions need to be formed.
There are two approaches for this: (1) optimization-based, which finds an optimal
coalition, and (2) game theoretic approach,which has applications inmany real-world
domains.

When agents are constantly changing coalitions, there is a need of formation of
dynamic coalitions. The total possible coalitions turn out to be of the order of O(nn)
for n number of agents. Hence, the number of agents should be small in number. To
study the coalitions phenomena, the agents are represented by nodes of a graph and
edges by the links indicating coalitions. The agents which are ready to provide the
resources are taken as sellers and those receiving are taken as buyers. This becomes
a structure to design a coalition algorithm.

Agents approach can also be applied to software engineering, where agents are
treated as next-generation components and this software engineering as case-based
software engineering. The complexity issues in software engineering can be tackled
through decomposition, abstraction, and organization. Agents can be assigned the
task of buying and selling. Software agents are used for filtering information that
matches people-to-peoplewith similar interests, and automate the repetitive behavior.

There are theories to model the buying agents, which share the six fundamental
stages of buying processes: need identification, product brokering, merchant broker-
ing negotiations, purchase and delivery, product services and evaluation. For model-
ing agents as decision makers, formal notions of the mental attributes are used, such
as belief, knowledge, and references, accordingly, themodeling is calledmental level
modeling.

When agents function together in cooperative or competitive mode, the multia-
gent system must provide the abstractions. Instead of providing specific behavior it
is designed flexible and can be coded using agent communication languages. The
languages have syntax, semantics, and pragmatics.

Many of the agents are mobile, and can just sit at a far place and communicate
with its environment, for example, through remote procedure calls or messaging. A
mobile agent has a feature that it can partly execute on one system, and can move to
another along with data, and can continue to execute the remaining part. Mobile
agents reduce network traffic, overcome network latency, encapsulate protocols,
execute asynchronously and autonomously, adapt dynamically, and have features
of robustness and fault tolerance.

The society has adopted a set of social laws, and each agent will be required to
obey these laws and will assume that all other agents also follow the same. These
laws, in one hand, constrain the plans available to agents, and on the other hand, will
guarantee certain behaviors on the part of other agents.
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Exercises

1. Label the following as an agent or not an agent. Explain your reasoning with
justification for each.

a. There is a program on a website to collect answers for a questionnaire.
b. Google’s web crawler, i.e., Googlebot.
c. A distributed IR (Information Retrieval) program to helps you locate Web

documents, you are interested in.
d. A program operating for a supermarket to automatically locate and bid for

the lowest food prices.
e. A mail-filtering program that removes SPAM messages in your e-mail

received in your account.
f. An Internet-wide multi-user game playing program.
g. A “chatterbot” program aimed to send messages to chat-rooms and try to

fool the people to make them believe that messages are coming from real
human beings.

2. In a multiagent system agent interact with the environment. How you can model
a situation where one agent modifies the environment and the other perceive it,
as a dynamic system?

3. How the architecture of a computer system is different from agent system? Give
the salient differences, and justify their significance.

4. A rat searches for food, and at the same time it has to save itself from its predators,
and expecting any such it either runs away or hides. For example, a single-agent
system model of a rat succeeds in protecting itself from predators as well as in
searching the food.

5. Explain the coordination and coalition functions between agents. How they differ
from each other.

6. Write the coalition algorithm in your own language.
7. Give an example of evidence of the prevailing use of agents in online buying from

the online stores.
8. Give a brief note of agent communication languages and compare themwith other

high-level languages.
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