
Chapter 15
Automated Planning

Abstract Automated planning deals with the tasks of finding out ordered sets of
actions that allow a system to transform an initial state to a state satisfying goal spec-
ification. The set of actions is a plan, and it belongs to PSPACE-complete. Automatic
planing or scheduling generates a set of actions automatically. This chapter presents
the nature of automated planning, the classical planning problem, agent types that
execute the problem, and worked examples. It also covers, the concepts and imple-
mentation aspects of forward planning, partial-order planning, planning languages,
a case study of general planning language—STRIPS, and search strategies. Plan-
ning with propositional logic, planning graphs, and hierarchical network planning
are demonstrated. The multiagent planning techniques are presented for goal and
task refinement, decentralized planning, and on how to do coordination after it is
planned. This is followed by the chapter summary, and a set of exercises.

Keywords Automated planning · Scheduling · Forward planning · Partial-order
planning · Planning languages · STRIPS · Multiagent planning

15.1 Introduction

Automated planning is concerned with the problem of finding a set of actions to
be carried out in an ordered way to complete a job, such that they allow a system
to transform an initial state into a state that satisfies the goal specification. In a
deterministic system, these sets of actions are called plans, while in nondeterministic
systems they are called policies. Finding a plan, or even deciding its existence,
has shown to be PSPACE-complete1 in the deterministic planning, unless severe
restrictions are applied to the search [1].

Developing automated methods for reasoning about plans and schedules and for
generating the plans has remained the part AI, which helped both the autonomous

1In the theory of computational complexity, a decision problem is in complexity class PSPACE-
complete if it can be solved using a memory whose size is polynomial on the size of input (i.e.,
polynomial space), and if every other problem that can be solved in polynomial space can be
transformed into it in polynomial time.
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and human agents. There is always a need for planning when an agent wants to
control the evolution of its environment. An algorithm for a planning problem has
the following inputs:

1. possible courses of actions,
2. a predictive model that underlies the dynamics, and
3. a performance measure that evaluates the courses of actions.

The output or solution to a planning problem is one or more courses of actions that
satisfies the specified requirements for theminimum performance. Hence, a planning
problem involves deciding “what” actions to be performed and “when” they should
be performed. The “when” part of the problem has been traditionally called the
scheduling problem. The separation between “what” and “when” is motivated by
computational considerations. In fact the algorithm for automating scheduling has
been around for a long time, for example, in the areas of operations research as well
for automating the complete planning problems.

The classical schedulingmethods are concernedwith the planningproblemswhere
resource constraints are static, and prespecified in numerical form. This is in con-
trast to the AI methods for scheduling that allow declarative specifications for both
symbolic and numeric resource constraints and handle dynamic changes in the con-
straints, i.e., while in execution. The Constraint Satisfaction Problems (CSFs) (see
Chap. 10) form the canonical backbone of most AI scheduling methods, and there
are several sophisticated heuristic search strategies that are common for such prob-
lems [11].

Although the classical panningmodel has been prevailing for a long time, amajor-
ity of research in planning is toward planning in environments that are dynamic,
stochastic, and in a partially observable world. These requirements are not compat-
ible with the classic planning assumptions, which are for deterministic, static, and
fully observableworld. To copewith the partially observable environments, gathering
of information is designed as part of the planning activity, and the existing classical
planning techniques are extended to accommodate interleaving of scheduling and
planing tasks. The environments that are stochastic are modeled using Markov deci-
sion processes, while the planning in such environments requires construction of
policies for the corresponding Markov decision processes [6].
All variants of domain-independent planning problem are known to be computation-
ally hard (P-SPACE complete or worst); efficiency can be improved only through
exploitation of problem distribution space and through the knowledge of domain
structure. For improving the efficiency of plan generation, formal planning models
are preferred. Following are the basic approaches for achieving efficiency enhance-
ment:

1. split both, domain and the problem into tractable sub-components using decom-
position techniques,

2. find out the control information using inductive and speedup learning techniques,
3. define abstractions for expected problem distribution, and
4. define language(s) to express domain-specific search control information.
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Another approach to planning is extending and complementing the planning
models that are based exclusively on techniques that define subgoals. A promising
approach is using constraint-logic-programming-type models that allow both: defin-
ing subgoals and constraint-satisfaction criteria. These work together in controlling
the planner, which results in handling action selection and scheduling of planning
problems through appropriate computational models. In addition to the above, plan
generation can also be carried out using network flow approaches, which are based
on a form of disjunctive projection of future states of the agent [9].

So far, both the classical and stochastic planning techniques are in common used
in the design of autonomous agents. The AI planning techniques are also common in
software domains such as database query planning and Internet browsing, however,
they have less impacted the problems that support industrial applications. Although
the industrial area has an enormous scope for planning problems—be it project
planning, process planning, or maintenance planning—the automation so far has
progressed to supporting scheduling, particularly concentrating on harder action-
selection problem, which are more concerned with the humans domain.

The type of plannings, which are incremental or interactive planning in nature,
are new areas in plannings. However, many planning applications involve reason-
ing with a variety of constraints that are not of temporal type, e.g., the problems
of path planning, assembly planning, and manufacturing problems need spatial and
geometric-reasoning capabilities. Due to the nature of these constraints, it is neither
possible to ignore or abstract away, nor it is advisable to encode them in a homo-
geneous representation. These conditions make it necessary to have an interaction
between the planner and the reasoners. Hence, understanding of the modalities of
interaction between a planner and the external reasoners, which may be both humans
or machines, is thus important [7].

Learning Outcomes of This Chapter:

1. Define the concept of a planning system and how it differs from classical search
techniques. [Familiarity]

2. Describe the differences between planning as search, operator-based planning,
and propositional planning, providing examples of domains where each is most
applicable. [Familiarity]

15.2 Automated Planning

Automated planning techniques are now commonly being applied in a number of
tasks, that include, robotics, process planning, web-based information gathering,
autonomous agents, and spacecraft mission control. A solution to a problem in auto-
mated planning can be described in terms of a sequence of steps that transforms
some initial description of the problem state, for example, the initial configuration of
a puzzle, into a description satisfying a specified goal criterion. The steps (transfor-
mations) are called operators and a problem is defined in terms of a set of operators
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and a language for describing problem states. The problem states correspond to
instantaneous descriptions of the world and operators correspond to actions that an
agent can perform to change the state of the world [3].

The planning is about how an agent achieves its goals, even the simplest ones an
agent must reason about the future. Since the goal is not achievable in a single step,
the number of steps to be carried out needs to be broken up into subtasks, and steps
for each needs to be the goal; what an agent will do in the next step also depends on
its past.

To complete each subtask, there are actions, which need to be carried out; each
action has a subsequent state as well as a preceding state. To be simple at start of this
subject, the following assumptions are made:

1. the actions are deterministic, i.e., the agent can determine the consequent of the
actions,

2. the world is fully observable, i.e., the agent can observe the correct state of the
world, and

3. the closed world assumption, i.e., the facts not described in the world are false.

15.3 The Basic Planning Problem

Abasic planningproblemusually comprises an initialworld description, a description
of the goal world, and a set of actions (sometimes also called operators) that map
a world description to another. A solution is a sequence of actions leading from the
initial world description to the goal world description, referred to as a plan.

A deterministic action is a partial function from states to states.2 For example,
a robot can move block x onto y, if x has top-clear, y has top-clear, and obviously,
x �= y. Also, all the alternatives are not available. A precondition of an action decides
about when the action can be carried out, and whether the resulting state due to an
action is the effect of the actions.

Definition 15.1 (Planning Problem) The relevant part of the world is in a certain
state, but managers or directors would like it to be in another state. The (abstract)
problem of how one should get from the current state of the world through a sequence
of actions to the desired goal state is a planning problem. �

AI planning techniques are techniques to search for a plan: forward planning is a
planning technique building a plan starting from the initial state; backward planning
starts from the goal states; and least-commitment planning constructs plans by adding
actions in a non-sequential order.

Ideally, to solve such planning problems,wewould like to have a general planning-
problem solver. However, such an algorithm, solving all planning problems, can be
proven to be non-existing (that is, the general planning problem is undecidable). We

2Partial function: Every state “(state, action)” pair does not necessarily result in a state.
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therefore, try to concentrate on a simplification of the general planning problemcalled
the classical planning problem. Although not all realistic problems can be modeled
as a classical planning problem, they can help to solve more complex problems.

15.3.1 The Classical Planning Problem

Classical planning problem is the simplest case of planning, where the environment
is static and deterministic, and the planner has complete knowledge about the current
state of the world. Two important issues are faced by the classical planners: 1. To
model the actions and changes, and 2. To organize search for plans (i.e., sequences
of actions) that are capable of achieving the goals. The logic programming and
nonmonotonic reasoning are frequently used in planning and search, however, many
implemented planners have used a variant of action model, called the STanford
Research Institute Problem Solver (STRIPS). This model represents the state of the
world in terms of state variables and their values, and actions as state-transforming
functions, which are deterministic in nature. Most of the early planners modeled the
state-space exploration of the world-states as a search, and the transitions between
states represented the actions.

The state exploration method worked suitable only for problems having small
search space, due to the complexity in space and time. Instead, the utility of manip-
ulating partial plans during search became popular, and this led to the design of
algorithms that search in the space of partial plans.

The classical planning problem is defined as follows. Given

1. a description of the known part of the initial state of the world (in a formal
language, usually propositional logic) denoted by I,

2. a description of the goal (i.e., a set of goal states), denoted by G, and
3. a description of the possible atomic actions (R (i.e., rule)) that can be performed,

modeled as state transformation functions,

determine a plan, i.e., a sequence of actions that transforms each of the states fitting
the initial configuration of the world into one of the goal states.Thus, classical plan-
ning problem is a tuple 〈I ,G,R〉. Consider the following example of planning the
“Transport a passenger by cab.”

Example 15.1 Classical planning problem of “Transporting by cab.”

Suppose that initially (i.e., in all states of the world that match the description I),
there is a cab at a location A, represented by a binary state variable cab(A), and a
passenger at a location B, represented by passgr(B). In each of the states described
by G the passenger should be at a location C, denoted by passgr(C). Furthermore,
suppose that there are three actions (move, load, unload) that can transform (some
part of) the state of the world.
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Table 15.1 Classical planning problem

State Transition Comment

0. I ; Initial state

1. move(A,B) ; cab moves from location A to B

2. load(passgr) ; passenger gets into cab

3. move(B,C) ; cab moves from location B to C

4. unload(passgr) ; passenger unloads from cab

5. G ; goal: passenger at location C

Following are the steps for actions:

1. The cab can move from one location to another:move(x, y)with x, y ∈ {A,B,C}.
This action requires that a priori cab(x) holds, and ensures that in the resulting
state ¬cab(x) and cab(y) hold, that is cab is not at place x as well not at the
place y.

2. The passenger can get into the cab: load(passgr). This action requires a priori
cab(x) and passgr(y) and x = y, and in the resulting state both ¬passgr(y) and
passgr(cab) (i.e., passenger in cab) should hold.

3. The passenger can get out of the cab: unload(). This action requires that cab
is at location x (cab(x)) and passenger in cab (passgr(cab)), and results in
¬passgr(cab) and passgr(x).

With I as the initial set of states, and G as a set of goal states, the sequence of
state transitions can be indicated as shown in Table15.1. �

15.3.2 Agent Types

Agents are classified according to the techniques they employ in their decision mak-
ing:

1. Reactive agents: They base their next decision solely on their current sensory
input.

2. Planning agents: They base their course of action considering the anticipated
future situations, possibly as a result of their own actions.

Whether an agent should plan or it should be reactive, depends on the particular
situation it finds itself in. Consider the case where an agent has to plan a route from
one place to another. A reactive agent might use a compass to plot its course, whereas
a planning agentwould consult a map. Clearly, the planning agent will come up with
the shortest route in most cases, as it will not be confronted with uncrossable rivers
and one-way hills. On the other hand, there are also situations where a reactive agent
can be at least as effective, for instance, if there are no maps to consult such as in
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Fig. 15.1 World states and
agent (robot) actions

s1

s2 s3

a1 a2

a3 a4 a5
a6

s4

Table 15.2 Table for
mappings: State × Action →
State

State Action Resulting state

s1 a1 s2
s1 a2 s3
s2 a3 s4
s2 a4 s5
… … …

Fig. 15.2 Delivery robot
with service locations Coffee

Shop

Mail
Room

Shyam,s
Office

AI Lab

mcmcc

Robo

a domain of planetary exploration, like Mars or Moon. Nevertheless, the ability to
plan ahead is invaluable in many domains.

Considering the states set as s1, s2, . . . , and set of actions as a1, a2, . . . , they can
be represented using a tree shown in Fig. 15.1 or explicitly by Table15.2.

We consider the following example to better understand the actions and states
world, where agent is a robot, called Robo.

Example 15.2 A delivery Robot’s (Robo’s) planning.

A delivery robot shown in Fig. 15.2 is responsible for some jobs. It can pick up mail
from the mail room and deliver it to Shyam’s office, and also can pick up coffee from
the coffee room and can deliver it to Shyam’s office. The robot, called Robo, can also
reach these places by moving clockwise (mc) as well as moving counterclockwise
(mcc). Assume that the mail it handles is a postal mail (not the email). The domain
of the world is represented by the terminology described as follows [13].

Various locations are represented by the following symbols. Each of them can be
true/false.

cs: robo at coffee shop
off : robo at Shyam’s office
mr: robo at mail room
lab: robo at AI lab
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Following are the various states’ variables of the world, which can also be
true/false:

mw: Mail waiting in the mail room
rhc: Robo is holding coffee
swc: Shyam wants coffee
rhm: Robo is holding mail

Absence of a state is represented by its negation. For example, rhc indicates that
Robo is not holding coffee. Various actions performed by the Robo are

mc: Robo moves clockwise
mcc: Robo moves counterclockwise
puc: Pick up coffee
dc: Deliver coffee
pum: Pick up Mail
dm: Deliver Mail

Presence of an action symbol indicates that the action is true.
A state (of the world) may comprise many parameters or preconditions for the

action to take place at that state. For example, the state,

〈lab, rhc, swc,mw, rhm〉 (15.1)

indicates that the Robo is in an AI lab, Robo has no coffee in hand, Shyam wants
coffee, mail is not waiting, and Robo holds the mail. Another state,

〈lab, rhc, swc,mw, rhm〉, (15.2)

indicates that the Robo is in the lab, Robo is holding coffee, Shyam is waiting for
coffee, mail is waiting in the mail room, and Robo is not holding the mail. Table15.3
shows the transitions for certain states. For example, in the third row, we note that
after performing the action dm (deliver mail), in new state created, the state rhm
indicates that variable “Robo is holding mail” is false.

Table 15.3 Some mapping: State × Action → State, for Fig. 15.2

State Action Resulting state

〈lab, rhc, swc,mw, rhm〉 mc 〈mr, rhc, swc,mw, rhm〉
〈lab, rhc, swc,mw, rhm〉 mcc 〈off , rhc, swc,mw, rhm〉
〈off , rhc, swc,mw, rhm〉 dm 〈off , rhc, swc,mw, rhm〉
… … …
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15.4 Forward Planning

One of the simplest plannings is to treat the planning as a path planning problem in
the state-space graph. The nodes here are states, transitions are actions, and results
of actions are also states. A forward planner searches the state-space graph from
the start state for the goal state. Figure15.3 shows the state-space graph for forward
planning with the start state as 〈cs, rhc, swc,mw, rhm〉, with three transitions from
start state, corresponding to the actions: pick up coffee (puc), Robo moves clockwise
(mc), and Robo moves counterclockwise (mcc). If we choose the action puc, the next
state is 〈cs, rhc, swc,mw, rhm〉. The new state indicates that the Robo still remains
facing the coffee shop; since it picked up coffee, the robot holding coffee is no more
false, mail waiting remains true (unchanged). The new states as a consequence of
the various actions are self-explanatory, and are similar to this description [2, 13].

Note that, being closed reasoning, in the world of actions we explicitly specify
each of the variable as True or False.

The branching factor in Fig. 15.3 is 3, and the search can be done in DFS or
BFS. Theoretically, since, the Robo can be at any of the four locations, and the other
four parameters in a state can be true/false, there are 4 × 2 × 2 × 2 × 2 = 64 total
possible states in the world. Obviously, all of these states are not possible to reach
in a graph search.

The representation above is simple and clear, but it is not suitable due to following
reasons:

• there are too many states to acquire, reason, and represent,
• small change in the requirements will need a major change in the model, for
example, if we need to have information about robot battery level to be added as
one of the parameters, the entire structure gets modified.

cs, rhc, swc,mw, rhm

puc
mc

mcc

mr, rhc, swc,mw, rhm
off, rhc, swc,mw, rhm

cs, rhc, swc,mw, rhm

off, rhc, swc,mw, rhm

off, rhc, swc,mw, rhm lab, rhc, swc,mw, rhm

mr, rhc, swc,mw, rhm
mc

dc mc mcc

cs, rhc, swc,mw, rhm

cs, rhc, swc,mw, rhm

lab, rhc, swc,mw, rhm

mcc

mc

mcc

Fig. 15.3 State space for forward planning
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The improvement in complexity is possible, and can be based on the following
criteria: we note that the actions have a structure and that can be used to make
actions compact. We also note that a precondition of an action should be true before
the action takes place. For example, the action of the Robo to pick up the coffee (puc)
requires the precondition of “Robo’s location is coffee shop and Robo does not hold
the coffee”, which is expressed as cs ∧ rhc. This means that puc is not available at
other preconditions (or constraints) [11].

15.5 Partial-Order Planning

A partial-order planning is a search carried out by refining the partial plans through
addition of actions and orderings. Alternatively, a search may proceed through per-
forming abstract actions in the plan, by replacing fragments capable of carrying out
those actions—the planning is called hierarchical planning. It has been now well
understood that even the state-space search methods are nothing but other ways of
refining partial plans. This refining is done by growing the prefix or suffix of the plan
and different ways of refining a partial plan can be suitably interleaved.

The forward planner enforces a total ordering on actions at all the stages in the
planning process. The idea of partial ordering between actions only commits to an
ordering between actions when forced. A partial ordering is a “≤” relation, that is,
reflexive, transitive, and antisymmetric. It is the set of actions together with partial
ordering, representing a “before relation” on actions, such that any total ordering of
the actions, consistent with partial ordering, will solve the goal from the initial state.
That is, Act0 < act1 means action Act0 appears before the Act1 in the partial order.

A partial-order plan comprises the following sets:

1. Set of steps. Each step maps to some operator, except the start and end step. There
are no preconditions for start step and start state is its post-condition. Similarly,
the final step has the goals as its preconditions and has no post-conditions.

2. Set of orderings of steps. Each ordering is a pair of steps, in the form of previous
and next step. The start step is ordered first of all, and the finish step is ordered
after all the steps.

3. Set of causal links. Each causal link is a pair of steps and a proposition, which is
a post-condition of the first step and a precondition of the second. The first step
is always ordered before the second step.

In fact, a partial planner works as follows: begin with actions start and finish,
and with partial order start < finish. The planner maintains an agenda set of 〈P,A〉
pairs, where, A is action in plan, and P is the precondition of A. First, 〈G, finish〉 is
chosen, such that G is the precondition for Goal. Then at each stage, a pair 〈P, act1〉
is chosen from the agenda, where P is the precondition for action act1. Subsequent
to this, act0 is chosen to achieve P, which is either already in the plan or it is start to
achieve P, or it could be a new, that is, added to the plan. The act0 must occur before
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act1, that adds a new causal link. Any action to delete P must happen after act1 or
before act0. If act0 is a new action, its preconditions are added to the agenda, and the
process continues till the agenda is empty.

15.6 Planning Languages

The STRIPS formulation for planning problems uses a simple and general format
for specifying operators with clear semantics. It employs propositional logic as a
language for describing states of the world, with a set of conditions and Boolean
variables to describe states. A complete assignment maps the set of conditions to
possible values. For example, truth values and a partial assignment maps a subset of
conditions to values, and a complete assignment is a state. An operator comprises
two partial assignments—first is preconditions or results, which decide the states
for applying the operator. The second is post-conditions, that decide the next state
resultingwhen an operator is applied in a particular start state. In addition, the implicit
frame axioms indicate that the value of any condition, which is not mentioned in an
operator’s post-conditions, is unchanged due to the application of an operator.

A planning problem instance consists of a set of operators, an Initial state, and a
Goal. The Goal may be a Boolean formula also. Generally, a solution is in the form
of a partially ordered multi-set of operators, which satisfies the following condition:
any total ordering consistent with the given partial order transforms the initial state
assignment into a new assignment that satisfies the Goal formula. The STRIPS for-
mulation provides the semantic foundations for many extensions, including those
handling external events, multiple agents, probabilistic transformations, and vari-
ants that allow the agent to observe aspects of the current state and choose actions
conditioned on observations.

The STRIPS is action-centric representation, which is based on the idea that most
things are not affected by single action. It specifies action, precondition, and effect.
For example, for the goal: “Robo to pick up coffee”, we write

precondition : cs ∧ rhc

effect : rhc.

The other features are unaffected in the above. The action of delivering coffee
(dc) is

precondition : off ∧ rhc

effect : rhc ∧ swc.

Apart from the above, you need to specify the initial states and goal.
The action or the rule has two formats:
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– Causal Rule, when a feature gets a new value, and
– Frame Rule, when a feature keeps its value.

We can demonstrate the change of Robo’s location (see Fig. 15.2), from current
RLoc0 to a new locationRLoc1 on account of actionmcc,mc, and onewhich is neither
mcc nor mc, as follows:

(RLoc1 = cs) ← (RLoc0 = off ) ∧ (Act = mcc)

(RLoc1 = cs) ← (RLoc0 = mr) ∧ (Act = mc)

(RLoc1 = cs) ← (RLoc0 = cs) ∧ (Act �= mcc) ∧ (Act �= mc). (15.3)

In the above formulas, the first two are causal rules, and the last one is the frame
rule. Similarly, the state “Robo holds coffee” in the resulting state would depend on
whether it was holding coffee in the previous state and its action:

rhc1 ← rhc0 ∧ Act �= dc

rhc1 ← Act0 = puc (15.4)

where the first is frame rule, and the second is the causal rule.

15.6.1 A General Planning Language

STRIPS is a problem-solving program implemented in LISP and has been used in
the application of robotic research; it is a member of the class of problem solvers that
search a space of world models to find a model through which the goal is achieved.
We assume that, for some world model, there exists a set of operators; each of such
operators transforms the world model into some other world model. Having this, the
task of the problem solver is to determine a composition of operators that transform
a given initial world model into one that satisfies the goal condition [3].

The primary objectives in robotics-based class of problems are rearranging phys-
ical objects, and navigation of robot—problems that require general world models,
and are more complex than those used in the solution of puzzles and games. Usually,
a list or simple matrix structures is adequate to represent a state of such problems.
The world model for a robot problem solver must comprise a large number of facts
and relations about the position of the robot, and about the positions and attributes
of objects, open spaces, and boundaries. In STRIPS, the world model is represented
by a set of well-formed formulas in the first-order predicate logic (FOPL) [4].

A solution is built using operators, which are the basic elements of general robotics
planning language. For a robot problem, each operator corresponds to an action
routine whose execution causes a robot to take that action. For example, we might
have a routine to push back if the robot touches the wall, or a routine to lift and object,
or to grip an object, and so on, there are a large number of routines that correspond
to actions of a robot.
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15.6.2 The Operation of STRIPS

The problem space for STRIPS language comprises the initial world model, a set
of available operators with their effects on the world model, and a goal statement.
The world model is represented by a set of well-formed formulas (wffs) of FOPL,
e.g., to describe a world model in which the robot is at location a and boxes B, C
are at locations b, c respectively, we would use the following wffs to express this
knowledge [4]:

ATR(a)

AT (B, b)

AT (C, c).

We might also use the wffs to express the general rule that an object u at place x is
not in a place y, i.e., an object cannot exists at two places.

(∀u ∀x ∀y){[AT (u, x) ∧ (x �= y)] ⇒ ¬AT (u, y)}. (15.5)

We can represent a complex world model using the first-order predicate logic, and
can use standard theorem-proving programs to answer questions about the model.
The operators are grouped into families of operators, called schema. For example, an
operator goto for moving the robot from one point m on the floor to other point n is
a schema. For this, distinct operators (one for each pair of points) are grouped into a
family of goto operators, and goto(m, n) represents a move from the initial position
m to the final position n. The members of goto schema are goto(m, a1), goto(a1, a2),
..., goto(ak , n). In STRIPS, specific constants will already have been chosen for the
operator parameters when an operator is applied to a world model.

First of all, it is necessary to determine whether or not there is an instance of an
operator schema applicable to the current world model. It is required that an instance
of the corresponding wffs (well-formed formulas) schema exists, and it logically
follows from the model. Each operator schema is defined by a description having
two parts: conditions under which the operator can be applied, and the effects of
application of that operator. The precondition for an operator schema is represented
as awff. The effects of application of an operator are defined by a list of wffs thatmust
be added to themodel, and a list of wffs that are no longer true, hencemust be deleted.
As an example, consider the question of applying instances of the operator subschema
goto(m, b) to a world model containing the wff ATR(a). If the precondition wff
schema of goto(m, n) isATR(m), thenwe note that the instanceATR(a) can be proved
from the world model. Thus, an applicable instance of goto(m, b) is goto(a, b).

It is important to understand the difference between the parameters in wff schema,
and existentially and universally quantified variables. These variables are used in
FOPL formula in theorem-proving programs (e.g., Resolution theorem) that would
handlewff schema. For example, in resolution, ∀x∀y goto(x, y)will have substitution
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{a/x, b/y}, to make it a clause, whereas in STRIPS there is a chain of pairs of (x, y)
to implement goto(x, y), hence it will require some modifications.

A goal statement is also in the form of a wff, e.g., a task of moving the boxes B
and C to locations d , e, respectively, might be expressed a goal as

AT (B, d) ∧ AT (C, e).

In summary, the problem in state space for STRIPS comprises three entities:

1. Initial world model. It is a set of wffs to describe the present state of the world.
2. Set of operators. The operators and their description in the form of effects and

preconditions as wffs.
3. Goal. It is a condition in the form of a wff.

The problem is taken as solved when a world model that satisfies the goal wff is
deduced using the initial world model with the application of operators.

15.6.3 Search Strategy

A very simple problem-solving strategy is to apply all the applicable operators to
the initial world model and create a set of successor models. Then, continue to
apply all applicable operators to these successors and to their descendants generated
through DFS or BFS search, until a model is deduced having the goal formula as a
theorem. However, it is quite likely that in most real-word problems modeled using
this approach, the number of operators applicable to any given world model will be
too large. Hence, such a simple system would generate trees that are large in number
as well as size. Hence, such world models would be impractical.

An alternative strategy is to extract differences between current world model
and the goal model, with the objective as to how to move from one to another
with minimum changes. Then find out the operators that may reduce the differences
between these models. Once the relevant operators are found out, we try to solve the
subproblem that produces a world model to which it is applicable. If such a model
is found, then we apply the relevant operators and consider the original goal in the
resulting model.

15.7 Planning with Propositional Logic

Consider the graph/tree shown in Fig. 15.4, with s0 as start state, and a0 . . . an−1

as actions representing a path leading to the goal state sn. If s0, a0 . . . an−1, sn are
considered as propositional expressions, then Eq. [10],
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Fig. 15.4 Propositional
planning

sn

s0

a0

a1

an−1

p = s0 ∧ (a0 ∧ a1 ∧ · · · ∧ an−1) ∧ sn (15.6)

is a propositional expression representing the path to goal state from start state. If
there is only one goal, then p is the only path to goal, and all other propositions p′
are false. Equation15.6 can always be transformed into a CNF (conjunctive normal
form) or SAT expression. Thus, planning through propositional logic is to find a
satisfiability expression, comprising start state, path, and goal state, i.e., logical
sentence equal to

initial state ∧ all proposition action descriptions ∧ goal. (15.7)

In other words, a model that satisfies a sentence will assign true to all actions
that are part of a correct plan. If the planning problem is unsolvable then there is
no sentence that is satisfiable. The following example demonstrates planning with
propositional logic [12].

Example 15.3 Flight Planning.

Initial Plan: Let us assume that initially, the plane p1 is atDEL (Delhi) and p2 atCAL
(Calcutta). The actions should correspond to flying these planes so that the goal: “p1
at CAL, and p2 at DEL” is satisfied.

The initial state (0) is represented by

At(p1,DEL)
0 ∧ At(p2,CAL)

0.

Since the propositional logic has no closed world, it is also necessary to show that
initially the planes p1, p2 are not CAL, DEL, respectively, i.e.,

¬At(p1,CAL)
0 ∧ ¬At(p2,DEL)

0.

The initial conditions correspond to start state s0.
The goal also needs to be specified with a particular time step. Since it is not

known howmany time steps it would consume to iterate the action, a worst case time
limit needs to be specified so that either the goal is reached within that time limit,
else the solution is terminated as failure.
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We test the following assertion for a goal at time T = 0 (at start),

At(p1,CAL)
0 ∧ At(p2,DEL)

0.

If that fails, apply certain actions and again try it at time T = 1, and so on, up to
time T = Tmax. This is shown in Algorithm 15.1, where for every iteration, for the
next value of T (time), the problem is translated to SAT (satisfiability) problem using
the procedure translate-to-SAT. This results in CNF expression and a mapping of
the solution to the problem. The SAT-Solver procedure returns the assignment for the
above CNF expression. If the assignment is satisfying the solution (i.e., not null), the
solution is extracted for the present mapping, and assignment is returned as result.
If this does not happen, the procedure is iterated as per the Tmax iteration time [8].

Algorithm 15.1 Planning with Propositional Logic
1: INPUT : AplanningProblem;
2: Tmax: an upper limit for plan length
3: for T = 0 to Tmax do
4: cnf ,mapping ← translate-to-SAT (problem,T )
5: assignment ← SAT -Solver(cnf )
6: if Assignment is not null then
7: Return Extract-solution(asignment,mapping)
8: end if
9: end for
10: Return Failure
11: End

15.7.1 Encoding Action Descriptions

We have a propositional symbol for each occurrence. For the plane p1 to be at CAL,
there is a proposition:

At(p1,CAL) ⇔ (At(p1,CAL)
0 ∧ ¬fly(p1,CAL,DEL))

∨ (At(p1,DEL)
0 ∧ fly(p1,DEL,CAL)

0) (15.8)

There ought to be a plan that tries to achieve the goal at T = 1. Now suppose
CNF is

Initial state ∧ successor state axioms ∧ goal1,

that is, goal is true at T = 1, we check and verify that

fly(p1,DEL,CAL)
0 ∧ fly(p2,CAL,DEL)

0

is the model, and other assignments are false.
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15.7.2 Analysis

For the proposition fly having general form as fly(p, o1, o2), with time T -steps, the
number of propositions represented by |p|, and objects (o1, o2, etc.) as O, the com-
plexity expression is given by,

fly(p, o1, o2) ⇒ T × |p| × |o1| × |o2|
⇒ T × |p| × |O|2
⇒ T × |Act| × |O|p

where T is the number of time steps, p is arity of function (here it is 2), O is the
number of objects o1, o2, etc. We note that the complexity is exponential. The term
|Act| is for the action, like fly, i.e., how many predicates are there in total [8].

15.8 Planning Graphs

The planning graphs give better heuristics and consist of a sequence of levels, for
time steps in plan. Each level has literals (constant values) which have become true
because of the previous action, and each level has preconditions for the next action.
Theplanninggraphs represent theactions aswell as inactions. The following example
demonstrates the application of planning graphs [5, 12].

Example 15.4 Problem of the solution to “have a Pizza and eat Pizza”.

init(have(pizza))

Goal(have(pizza) ∧ eaten(pizza))

Action(eat(pizza)

Precond : have(pizza)
Effect : ¬have(pizza) ∧ eaten(pizza))

Action(cook(pizza)

Precond : ¬have(pizza)

Effect : have(pizza)).

The planning graph for these actions is shown in Fig. 15.5. The box action in the
figure indicates the mutual exclusions of actions.

In the planning graph, all the actions Ai at level i contain all actions that are
applicable at state Si, along with constraints saying which part of the actions cannot
be executed. Every state at level Si contains all literals that could result from any
choice of actions at Ai−1, along with constraint saying which part of actions cannot
be executed.
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S0
A0 S1

A1 S2

have(pizza)

¬eaten(pizza)

eat(pizza)

have(pizza)
¬have(pizza)

eaten(pizza)
¬eaten(pizza)

eat(pizza)

cook(pizza)
have(pizza)

¬have(pizza)

eaten(pizza)
¬eaten(pizza)

Fig. 15.5 A planning graph for “To have pizza and eat pizza”

We note that graph plan provides lesser complexity because it does not require
choosing about all actions. It just records the impossibility of certain choices using
mutex, i.e., through mutual exclusion links. For example, when¬have(pizza) is cho-
sen, the action have(pizza) is excluded. This results in the complexity as a function
of low polynomial actions and literals [11].

15.9 Hierarchical Task Network Planning

In the hierarchical task planning, each level of hierarchy is decomposed into smaller
levels. It is common for areas like military mission, administration, program devel-
opment, where a task is reduced to small number of activities at the next level, so that
the computational effort of arranging those activities is low. This results in reduction
in complexity to linear time from the original exponential [13].

Consider an example of “building a house”, where the task of house building can
be decomposed to acquiring land, preparation of design map, obtaining the NOC (no
objection certificate) from municipal corporation, arranging for a house loan, hiring
a builder, paying the builder, and so on, as shown in Fig. 15.6.

House
¬Money

Fig. 15.6 Decomposition of task of house building
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We understand that some of these activities can be done in parallel, but not all.
Thus, there is a partial-order relation between those actions. The decomposition can
be expressed as decompose(a, d), where action a is decomposed into a partial-order
plan d . Various activities for building a house as per the plan in Fig. 15.6 can be
formally described as follows.

Action(Buildhouse, Precond : BuyLand ,
Effect : House) (15.9)

Action(Buyland , Precond : Money,

Effect : Land ∧ ¬Money) (15.10)

Action(Getfiance, Precond : Goodcredit,

Effect : Money ∧ Mortgage) (15.11)

Action(Hirebuilder, Precondition : Nil,
Effect : contract) (15.12)

Action(Construction, Precond : NOC ∧ Builderhired ,

Effect : Housebuilt ∧ ¬NOC) (15.13)

Action(Paybuilder, Precond : Money ∧ Housebuilt,

Effect : ¬Money ∧ house ∧ ¬Contract) (15.14)

Decompose(steps : {A1 : Get NOC, A2 : Hirebuilder,
A3 : construction,A4 : Paybuilder} (15.15)

Orderings : {start ≺ A1 ≺ A3 ≺ A4 ≺ Finish;
Start ≺ A2 ≺ A3}. (15.16)

Here Ai ≺ Aj indicates that activity Ai precedes the activity Aj.
The linking of states and activities through activities/resources for the house build-

ing plan can be expressed as follows:

Links : {start Land−−→ A1, Start Money−−−→ A4,A1 NOC−−→ A3,

A2 Contract−−−−−→ A3, A3 Housebuilt−−−−−−→ A4,A4 House−−−→ Finish,

A4 ¬Money−−−−−→ Finish.} (15.17)
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15.10 Multiagent Planning Systems

There are a number of good reasons for having multiple agents creating plans:

1. The agents may represent real-life entities, which may require the privacy and
autonomy also to be maintained.

2. Changing of an existing distributed system to a multiagent system is less costly
than to a centralized system .

3. Creating and maintaining plans locally allows for more efficient reaction, espe-
cially when communication is limited, and

4. Dividing a planning problem into smaller pieces and solving those in parallel turns
out to be many times more efficient. This is true particularly when the individual
planning problems are not tightly coupled.

In spite of many benefits of multiagent systems, following are the challenges in
developing multiagents planning:

1. How to put additional constraints upon the agents before planning, such that their
resulting plans can still be coordinated?

2. How to efficiently construct plans in a distributed environment?
3. How to make collaborative decisions when there are multiple options, and agents

have their own preferences for these options?
4. In what condition should a planning agent ask for more specific information to

the user?
5. How to find out themagnitude of privacy lost in the process of coordinating plans?

Definition 15.2 Multiagent planning problem.

In general, amultiagent planning problem is a problem of planning by and for a group
of agents. Except for centralized multiagent planning problems, each agent in such
a problem has in fact a private, individual planning problem. A typical individual
planning problem of an agent includes a set of operations with some costs attached,
and pre- and post-conditions that it can perform, and a set of goals (with reward
values), and the current (initial) state of this agent. The following statement captures
the concept of multiagent planning:

Multiagent planning = planning + coordination. (15.18)

�
The solution to a multiagent planning problem is a plan: a partially ordered

sequence of actions that, when executed successfully, results in a set of achieved
goals for some of the agents. Most techniques can deal with problems where the
actions and goals of the agents are 1. only weakly dependent upon each other, 2.
agents are cooperative, and 3. communication is reliable. However, in general a mul-
tiagent planning problem may encounter a lot variety of situations along these three
axes. Some characteristics are described below.
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1. From independent to strongly related.

a. Independent: There are no shared resources, and no dependencies. For exam-
ple, a robot is lifting a box.

b. Strongly related: They have joint actions, and the resources are shared. For
example, car assembly is a case of strongly related.

2. From cooperative to self-interest agents: The participating agents interested in
optimizing their own utility is the case of self-interesting agents, while the agents
involved in supply chain management is an example of cooperative.

3. From no communication to reliable communication: In hostile environments
agents may not or cannot communicate during execution. This may require agents
to be equipped in advance, with or without some initial communication before the
execution starts. The robots rescuing people in disaster scenarios, or working on
a inter-planetary exploration mission, are examples of the first type, while agents
working in a supply chain management is an example of the second category.

15.11 Multiagent Planning Techniques

Multiagent planning techniques cover quite a range of solutions to different phases
of the problem. In general, the following phases can be distinguished in task sharing:

1. Allocate goals to agents.
2. Refine goals into subtasks.
3. Schedule subtasks by adding resource allocation including the agents, and timing

constraints.
4. Communicate planning choices (i.e., prior steps) to recognize and resolve con-

flicts.
5. Execute the plans.

Planning is a combination of phases 2 and 3 in the above, which are often inter-
leaved. Any of these steps could be performed by one agent or some subset. Not all
the above phases of general multiagent planning process need to be considered in
every multiagent planning problem. For example, there is no need for phase 1 if there
are no common or global goals for the multiagents. Some multiagents system may
combine different phases, for example, while constructing their plans agents may
coordinate with each other due to the combination of phases 2, 3, and 4. Alterna-
tively, robots may postpone coordination until the execution phase (i.e., combining
phase 4, 5). This may result, for example, when they unexpectedly encounter each
other while following their planned routes.

It is possible in general, to interleave any combination of five phases listed above,
depending on the nature of the planning problem, resulting in a wide variety of
possible problem sub-classes. In the following we present the phases in more detail.
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15.11.1 Goal and Task Allocation

Centralized methods often take care of the assignment of goals and tasks to agents
during planning. There are, however, many other methods to assign tasks in a more
distributed way, giving the agents a higher degree of autonomy and privacy. For
example, complex task allocation protocols may be used, or auctions and market
simulations can also be used.

One way to assign the tasks to agents is through the method of auction, which is
a way to assign a task to that agent who attaches (or bids) the highest value or the
lowest cost of performing it, called private value. A protocol called Vickrey auction
is a frequent example in multiagent systems, where each agent makes a closed bid,
and the task is assigned to the highest bidder, but not on the price of that bidder,
but for the price of the second highest bidder! The Vickery protocol has the good
property due to which the bidding agents will simply bid their true private values,
with no need for additional reasoning about it is worth for the others.

Economics andmarket simulations can also be the basis for allocation of resources
among agents. For example, it is shown how costs can be turned into a coordination
device. These methods are useful for task assignment (phase 2), and also for the
coordination of agents after plan construction (phase 5).

In concerning thevalue-oriented environments, these game-theoretical approaches
become more important where agents reason about cost of their decision-making (or
communication).

15.11.2 Goal and Task Refinement

Task assignment can be done through a single agent, using Hierarchical Task Net-
works or nonlinear planning. More than one planner with more sophisticated models
of temporal extent can be introduced, along with centralizing as well as combining
the phases 2 through 4.

15.11.3 Decentralized Planning

Instead of one agent planning for rest of the agents, the second and third phases
can be implemented through local planning by each of the agents. In principle, any
planning technique can be used in this condition, and different agents may even use
different techniques. Some of the approaches join the individual plannings (phases
2 and 3), along with the coordination of the plans (phase 4).

A distributed version of a planner can be used to integrate phases 1 through 4, to
plan for a single agent in parallel.
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In one setting, each agent has a partial knowledge of the plans of other agents
using some specialized plan representation techniques. In such kind of environment,
coordination is achieved as follows: If an agent A informs the other agent B about
part of its own plan, then agent B merges this information into its own partial global
plan. The agentB can then try to improve the global plan by, for example, eliminating
redundancy in the plan, and this improved plan is shown to the other agents, who
might reject, or accept, or modify it. This process may run concurrently with the
execution of the (first part of the) local plan.

15.11.4 Coordination After Planning

One of the tasks is the planning of coordination after plans are constructed on individ-
ual basis (phase 4), called plan merging . Its objective is construction of a joint plan
for a set of agents, given the individual plans of each of the participating agents. In
coordination planning, every pair of agents helps each other by changing the state of
the world such that the conditions of the other agent become satisfied. In this process,
changing the state of the world may be helpful to these two, but may also interfere
with the correct conditions of the remaining n − 2 agents, assuming a system of n
agents.

To specify the constraints on plans, one approach is to use propositional tem-
poral logic, which will ensure that only feasible states of the environment are
reached. A theorem prover algorithm generates a sequences of communication
actions, on receiving these constraints. In fact, these communication actions imple-
ment semaphores that guarantee that no eventwill fail. For resolving conflicts, restric-
tions are required to be introduced on individual plans in phase 3, which will also
ensure efficient merging.

A different approach to plan merging uses the distributed approach to improve
social welfare, based on the sum of the benefits of all agents. This approach uses a
process of group constraint aggregation, where agents construct an improved global
plan by voting for joint actions, in an incremental way. The agents even propose
algorithms to deal with insincere agents, and to interleave planning, coordination,
and execution [11].

15.12 Summary

When an agent is interested in controlling the evolution of its environment, there is a
need for planning. Thinking as an algorithm, a planning problem has an input in the
form of possible courses of actions, a predictive model for the required dynamics,
and a measure for performance to evaluate the courses of actions. The output or
solution of this algorithm is one or more courses of actions that satisfy the specified
requirements for performance.
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The agents are classified as reactive and planning agents.
The classical planning problem is to plan reaching the goal state(s) from the initial

state, for a given set of actions. Amajority of research in planning is toward planning
in the environments that are dynamic, stochastic, and partially observable. To carry
out this, the existing classical planning techniques are extended to allow interleaving
of planning and scheduling.

Automated planning techniques are being applied in many domains, that include
robotics, process planning, web-based information gathering, autonomous agents,
and spacecraft mission controls. In automated planning, a solution to a problem can
be described in terms of a sequence of steps that transforms some initial description of
the problem state, for example, the initial configuration of a puzzle, into a description
satisfying a specified goal criterion. For a simple automated planning problem, called
classical planning problem, the following assumptions are made:

1. the actions are deterministic,
2. the world is fully observable, and
3. the closed world assumption.

Agents are classified according to the techniques they employ in decision-making:

1. Reactive agents, and
2. Planning agents.

Forward planning, one of the simplest planning, is path planning where nodes
are states, transitions are actions, and results of actions are also states. A forward
planner searches the state-space graph from start state for goal state. One problem
with forward planner is its time complexity, which is exponential.

A partial-order plan consists of (1) a set of steps, each mapping to an operator,
(2) a set of orderings, and (3) a set of causal links.

STRIPS is an action-centric language, based on the idea that most things are not
affected by a single action. It specifies action, precondition, and effect. The problem
space for STRIPS is defined by an initial world model, a set of operators, and a goal
condition state.

Planning through propositional logic is to find a satisfiability expression, which
can be given as

initial state ∧ all proposition action descriptions ∧ goal.

Other approach for automated planning is planning graphs, which consists of a
sequence of levels, for time steps in plan, representing actions as well as inactions.

In the areas such asmilitarymission, administration, programdevelopment,where
a task is reduced to a small number of activities at the next level, such that the com-
putational effort of arranging those activities is low, the hierarchical task planning
using networks is preferred.

Splitting a planning problem into smaller problems and solving these in parallel
turns out to be more efficient, thus motivating the use of multiple agents for creating
plans. Multiagent planning covers the following phases:
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1. Allocate goals.
2. Refine goals into subtasks.
3. Add resource including the agents.
4. Communicate planning choices.
5. Execute the plans.

Exercises

1. Consider the standard Towers ofHanoi problemwith 3 pegs and 4 number of disks
(d1, d2, d3, d4, with d1 at the top). The disks are to be transferred from start-peg
to end-peg, using intermediate peg, one at a time such that at no time larger disk
comes over the smaller. The disk d1 is the smallest and d4 is the largest. Make
use of only 3-predicates: unary predicate: clear, and binary predicates: on and
smaller, and only one action: puton(x, y) needs to be used.
Write the domain of the problem, and make use of forward planning to plan the
solution to move all the 4 disks from start-peg to end-peg.

2. Given the 3-SAT problem:

(¬p1 ∨ p2 ∨ p3) ∧ (p1 ∨ ¬p2 ∨ p3) ∧ (p1 ∨ p2 ∨ ¬p3),

solve it using forward planning. (Hint: you need to assume some operators (i.e.,
actions) to assign the values to variables p1 . . . p3.)

3. Given the Table T , and blocks A,B,C,D, having different positions on the table,
apply STRIPS to plan the solution of the following problem:
Initial state I as

clear(A), clear(B), clear(C), clear(D),

on(A,T ), on(B,T ), on(C,T ), on(D,T ),

i.e., the blocks A . . .D are on the table, and their tops are clear.
Final State F :
on(A,B), on(B,C), on(C,D), on(D,T ), clear(A).
Use the action puton(X ,Y ), x �= y, where X is a block A . . .D and Y is either
table T or block A . . .D. Give the forward planning to reach stateG starting with
state I.

4. Use STRIPS for planning of the following problem: You are at home, and you
have money, and you are required to buy milk. Assume the necessary start and
goal states, actions, preconditions, and results for this planning job.

5. Give the STRIPS representations to actions: pick up mail and deliver mail (ref.
Fig. 15.2).

6. Suppose the robot (in Fig. 15.2) cannot carry both coffee and mail at the same
time. Make use of some constraints to provide the planning for this situation.
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Assume that the robot can carry a box in which it can place objects, so that it can
carry the box and the box can hold the mail and coffee.

7. Modify the problem in Fig. 15.2, so that the robot has the work of cleaning the
four rooms (mail room, office, coffee shop, lab). Assume that it will clean the
room onlywhen the room is unclean, andwill not consumemore than one rotation
mcc or mc to reach any of these rooms.

8. Using the method of hierarchical task network planning, provide the automated
planning for the following problems:

a. Shopping grocery items from market.
b. Deliver a lecture of AI.
c. Robot path planning to cover the diagonal in a room.

9. Assume that you have three operators:

f1 : Precondition: a; effect: ¬a ∧ b
f2 : Precondition: a ∧ c; effect: ¬a ∧ b ∧ ¬c
f3 : Precondition: b ∧ c; effect: ¬c ∧ d

Show the first three layers (proposition, action, and proposition) of the graph plan
when the initial state is a ∧ c (a and c both are true). Include themutual exclusions
and justify each of them.
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