Chapter 14)
Statistical Learning Theory Gzt

Abstract A machine learning system, in general, learns from the environment, but
statistical machine learning programs (systems) learn from the data. This chapter
presents techniques for statistical machine learning using Support Vector Machines
(SVM) torecognize the patterns and classify them, predicting structured objects using
SVM, k-nearest neighbor method for classification, and Naive Bayes classifiers. The
artificial neural networks are presented with brief introduction to error-correction
rules, Boltzmann learning, Hebbian rule, competitive learning rule, and deep learn-
ing. The instance-based learning is treated in details with its algorithm and learning
task. The chapter concludes with a summary, and a set of practice exercises.

Keywords Statistical machine learning + Support Vector Machines (SVM) -
K-nearest method - Naive Bayes classifier + Artificial Neural Networks (ANN) -
Boltzmann learning - Hebbian rule - Deep learning - Instance-Based Learning
(IBL)

14.1 Introduction

Statistical machine learning systems help the programs automatically learn from the
data. This is an attractive option as an alternative to manually coding every rule
in a program. Machine learning is used in computer science and beyond, e.g., in
spam filters in email, web searching, placement advertisement, stock trading, credit
scoring, drug design, fraud detection, and in many more applications. The statistical
machine learning can be said to be a kind of a data mining.

The field of machine learning developed in a new direction during 1979-80,
with innovations like decision trees and rule learning. These methods were applied
in expert systems. In the late 1980s, there were renewals of research interests in
machine learning architectures that used perceptron as the basic building block.
This was particularly because the limitations which were highlighted by Minksy and
Papert in the early days of Al were overcome by multilayer networks that used
simple computing elements. The latter used perceptrons like nodes called neural
networks. These networks were trained using biologically inspired backpropagation

© Springer Nature India Private Limited 2020 415
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-81-322-3972-7_14&domain=pdf
https://doi.org/10.1007/978-81-322-3972-7_14

416 14 Statistical Learning Theory

algorithms, which performed gradient descent on error-based cost functions. This
new approach raised the hopes not only of creating machines that were capable to
learn, but also of understanding the basic mechanisms used by biological learning
systems.

The machine learning algorithms can determine how to perform important tasks
through generalization from examples. A machine learning-based solution, at the
end, turns out to be a feasible and cost-effective solution when compared with the
manual programming approach. In statistical-based machine learning approaches, as
more data becomes available, it becomes possible to tackle more ambitious problems.

In the previous chapter we concentrated on broad classification of machine learn-
ing techniques, and basic principles of each of them. In the present chapter we will
discuss new and emerging techniques, which are mainly statistical based. For the
purpose of illustration, we focus on the most mature and widely used classification
for these techniques.

Learning Outcomes of This Chapter:

1. Apply the simple statistical learning algorithm such as Naive Bayesian Classifier
to a classification task and measure the classifier’s accuracy. [Usage]

2. Apply the simple statistical learning algorithm such as SVM to a classification
task and measure the classifier’s accuracy. [Usage]

3. Evaluate the performance of a simple learning system on a real-world data set.
[Assessment]

4. Compare and contrast each of the following techniques, providing examples of,
in what condition each strategy is superior: decision trees, neural networks, and
belief networks, deep learning. [Assessment]

14.2 Classification

One of the sub-fields of predictive modeling is supervised pattern classification. It
is a task of training a model based on labeled training data, such that the model can
later be used to assign predefined class labels to new objects. Figure 14.1 shows this
process.

Definition 14.1 (Classifier) We refer to a classifier as a system that typically has
inputs vector of discrete and/or continuous feature values and outputs a single discrete
value, the class. O

In that sense, for email filtering we use a classifier that classifies the email mes-
sages into “spam” and “no spam” classes. The input to this classifier may be a Boolean
vector,

X=(X1,...,x]',...,xd), (141)

14.2 Classification 417

Training data set

L

Machine Learning
Algorithm

!

. Prediction
New Data set Classifier (Infernce)
Fig. 14.1 A classifier’s block diagram
where xy, . .., x4 corresponds to words from some standard dictionary, such that the

element x; = 1 (True) if the jth word of that dictionary is present in the email under
consideration. If the jth word from the dictionary is absent in email, then x; = 0. The
aim is naturally to classify the emails based on these words. A learner (program)
inputs a training set of examples, comprising (X;, y;), where X; = (X; 1, ..., Xi.q4),
as an observed input, y; as the supposed to be corresponding output, and also the
classifier, which is supposed to be the class of this email. The test, that the learner
program (i.e., classifier) has successfully learned is, whether this classifier produces
the correct output y, for future examples x,. That is, whether the spam filter has
correctly classified the first-time seen email messages as spam or not spam, or some
other classes as dictated by the classifier [6].

Though there are thousands of learning algorithms today, the learning can be
expressed as comprising three parts: representation, evaluation, and optimization.

Representation

The classifier must be represented in some formal language. Choosing a representa-
tion amounts to choosing a set of classifiers with the capability to learn. The repre-
senting set is called the hypothesis space of the learner, i.e., it covers those features
of the inputs to which we give importance. The classifier must be in the hypothesis
space, otherwise it cannot learn.

Evaluation

The evaluation function, called object function or scoring function of a learning
algorithm, should be able to distinguish between good classifiers from bad classifiers.

Optimization

This function is useful for searching a method for a classifier that helps in scoring
the highest. Proper choice of optimization technique is key to the efficiency of the
learner.

The learners can be divided into two major types: 1. whose representation com-
prises fixed size, e.g., linear classifiers, 2. those whose representation can grow with
data, e.g., decision trees.

418 14 Statistical Learning Theory

14.3 Support Vector Machines

Due to Support Vector Machines (SVMs), a new approach is introduced to machine
learning; the method is based more on statistical foundations and less on biological
plausibility. SVMs are trained by minimizing a convex cost function, which is a
measure of the margin of correct classification. This margin, in the case of the per-
ceptrons, is used for measuring the mistake complexity. In SVMs, the optimization
of this margin is justified by a rigorous statistical analysis. The SVMs use binary
classification, i.e., input is always split into two classes. This approach is proved use-
ful in a wide range of applications, which vary from text classifications, e.g., “Is this
article related to my search query?” to bioinformatics, e.g., “Do these micro-array
profiles indicate cancerous cells?”

The SVMs were originally used for problems in binary classification, where it was
required to distinguish an object belonging to one of the two categories. For a long
time, people attempted to solve such problems by simply reducing them to binary
classification problems. However, these reductions failed to exploit about the struc-
ture of the predicted objects. But SVMs are capable of exploiting the structure also,
e.g., the conventional SVMs can be applied for parts-of-speech tagging applications,
which requires resolving the sense of each word in a sentence using the context of
the word, i.e., surrounding text.

The support vector machines are falling in the category of supervised learning
models based on associative learning algorithms that analyze the data and recognize
patterns, hence they have applications in classification and regression analysis. After
having trained by some training examples, each belonging to one of the two cate-
gories, a SVM training algorithm builds a model that assigns new examples into one
of the two categories. Thus, an SVM is a non-probabilistic linear classifier. They are
powerful approaches to predictive modeling with success in a number of applica-
tions, which include handwritten digit and alphabet recognition, face detection, text
categorization, etc.

An SVM is a model where examples are nothing but representation of points
in space, that are mapped into two classes, such that the examples of the separate
categories are divided by a clear gap that should be as wide as possible. Once the
learning has taken place, any amount of new examples are then mapped into that
same space and predicted to belong to a category depending on which side of the
gap they fall on.

The SVMs fit in the context of classification where the attribute of the objects
whose value is to be predicted, called dependent attribute, has two possible values:
0 and 1. The classification is performed on a surface (in three or more dimensions)
in the space of predictor attributes, that separate the points with dependent attribute
= 0, from those with dependent attribute = 1 (or it may be —1 and +1 respectively).
An optimal separating surface is computed by maximizing the margin of separation
as shown in Fig. 14.2, where, data point with O attribute are labeled by circle (os)
and those with attribute 1 are labeled as squares ([Js). The figure shows a separable
problem in a 2D space. The margin of separation is the distance between the boundary

14.3 Support Vector Machines 419

Fig. 14.2 Classification Margin of separation
through SVM g

}\/\ 0 © Support vectors

N\
Ne—wx=y+1

Fig. 14.3 A case of different
margin in SVM

of points with dependent attribute = 0 and the boundary of those with dependent
attribute = 1. The variables x, y and w’ are vectors.

The margin (which is a hyperplane) is the measure of “safety” in separating the
two sets of points, the larger is better. Figure 14.3 shows three separator lines between
the set of data values of two categories, with separator line 3 producing the maximum
margin. Computing the optimal separating surface, in a standard SVM formulation
requires solving an optimization problem, which is quadratic in nature [2, 3].

14.3.1 Learning Pattern Recognition from Examples

The SVMs are based on Analogical Learning, which we discussed in the previous
chapter. The Support Vector Machine (or Support Vector Network (SVN)) maps the
input vectors into some high-dimensional feature space that we call Z, through some
nonlinear mapping, which is chosen a priori. A linear decision surface is constructed
in this space, with special properties that ensure high generalization capability of the
network. This approach gives rise to two problems: the first is conceptual in nature,
while the other is technical. The conceptual problem is regarding how to find out a

420 14 Statistical Learning Theory

separating hyperplane that will generalize well in the presence of very high dimension
of the feature space. The technical problem is about how to computationally treat
such a high dimensionality space problem?

The conceptual part of this problem can be solved for the case of optimal hyper-
planes for separable classes. An optimal hyperplane is a linear decision function with
maximal margin between the vectors of two classes (see Fig. 14.2). To construct such
a hyperplane, only a small amount of data is required, called support vectors, which
determine the margin. The optimal hyperplanes should separate the training data
without errors. The optimal hyperplane algorithm is described as follows.

The set of labeled training patterns,

()’I,Xl)’ LRI (Y(Z,XZ), Yi € {_1’ 1}7 (142)

are linearly separable if there exists a vector w and a scalar b (for bias) such that the
following inequalities are valid for all elements of the training set given in Eq. (14.2).

wx,+b>1 if yi=1,
wx,+b<1 if yy=-1.
(14.3)

The inequalities of Eq. (14.3) can be rewritten as
yiwxi+b)>1, i=1,...,¢ (14.4)

The optimal hyperplane, which is the unique one separating the training data with
a maximal margin, can be expressed by

wo.X + by = 0. (14.5)

As an application of character recognition, Fig. 14.4 shows a classification of an
unknown pattern (which appears like the decimal digit 7) using a support vector
machine. A pattern in the input space is compared with support vectors X, result-
ing in values u, u;, u;, u,. The resulting values are nonlinearly transformed using
Lagrangian multipliers. A linear function (F) of these transformed values deter-
mines the output of the classifier [5].

For the hyperplane expression (14.4), we use a standard optimization technique
through which we construct the Lagrangian function,

4
1
LW, b, A) = Zw.w — > ailyi(xi.w + b) — 1], (14.6)
i=1

where AT = (ay, ..., ay) is the vector of nonnegative Lagrange multipliers corre-
sponding to the constraints.

14.3 Support Vector Machines 421

Fig. 14.4 Classification of Output of the
an unknown pattern classifier

/ 0\0@ lagrange multipliers
uq Ui u

comparison
J Us up, = K(xg,X)

I support

1 3 »J _-,- vectors, X

’7. input vector, x

14.3.2 Maximum Margin Training Algorithm

As discussed above, in SVMs it is attempted to find out the support vectors with
maximum margin. An algorithm for this purpose finds a decision function for n-
dimension pattern vectors X, which belong to either of the two classes, A or B.
Input to the training algorithm is a set of k examples x;, ..., X; with labels yy, ..., vk,
respectively.

(x1,y1)5 (X2, ¥2), - -+ s (X, V) (14.7)

yi=+1 ifx; eclass A

where (14.8)

yi=—1 ifx; € class B.

Making use of these training examples during the learning phase, the SVM algo-
rithm finds the decision functions D(x), where x is an unknown pattern. Once the
training phase is over, the class of unknown pattern is predicted using the following
rule:

xeA, iftDx) >0

X € B, otherwise.

It is mandatory that the decision functions D(x) are linear in their parameters,
however they are not restricted to linear dependencies of x. These functions can be
expressed either in the direct space, or in dual space. The notation used for direct
space is identical to the one used in perceptions, i.e.,

422 14 Statistical Learning Theory

k
D(x) = Z we(x;) + b. (14.9)

i=1

In the above equation, ¢ is a predefined functions of x, and w and b are the
adjustable parameters of the decision function. In the dual space, the decision func-
tions are of the form,

k
D(x) =Y o; K(x;.X) + b, (14.10)

i=1

where coefficients ¢; are the parameters to be adjusted, and x; are the training patterns.
The function K is a predefined kernel, for example, radial bias function or a potential
function.

14.4 Predicting Structured Objects Using SVM

A potential drawback of SVMs and other statistical learning methods is that they
treat the category structure as “flat”’and do not consider the relationships between
categories, which are commonly used for expressing the concepts as hierarchies or
as taxonomies. The taxonomies or taxonomical structures offer clear advantages in
supporting tasks like browsing, searching, or visualization. It is to realize that all the
real-word concepts have complex hierarchical structures. For example, in browsing,
the list of answers to a query can be taken as the children of the root (keyword).
Further, each answer link would correspond to a web page, which may have many
links, thus making a tree structure.

To better appreciate the above, consider the problem of natural language parsing
as shown in Fig. 14.5, where the parser receives the input in the form of a sentence of
natural language, and the output is a parser-tree as a decomposition of the sentence
into its constituents. While support vector machines are used in NLP applications,
such as Word Sense Disambiguation (WSD), parsing is not suited as a problem to be
solved through SVMs for classification. This is because, in parsing, the output is not
a classification of yes/no but a labeled tree, representing the structure of a sentence.
So the question is, how can we take an SVM and learn predicting a parse-tree?

The question above arises not only for predicting the structured trees but also for
a variety of other structures, like DNA sequence, or sequence ordering for image
segments, etc.

Let us assume that there is multi-class SVM for document classification, where
each document belongs to exactly one category. Let {(x;, y;)}?_; be a set of n labeled
training documents. Here, Xx; € R4 denotes a standard vector representation for the
i-th training document, and there are total d number of such documents. Each label
is y;, where y; € & = {1, ..., k}, and k is the total number of categories.

14.4 Predicting Structured Objects Using SVM 423
S
/NP\ K
Det N 14 NP
Det N

Fig. 14.5 Parse-tree for “The dog chased the thief”

[Musk’s] campaigning in

the [National elections]

has motwaﬁed [mfn}y new young fthis group
voters.] [His| [position] on many new young voters
[bitcoin money] was well -
. . Musk’s —
received by [this group]. His Eiltcom money l

Fig. 14.6 Resolving the equivalent noun-phrase co-references

Let us assume that there is weight vector w, for every class 1 <y < k. We will
refer to the stacked vector of all weights by w = (wy, ..., wWy). The structured output
prediction is the term used for this kind of prediction, where our objective is to learn
a function h : Z° — %, that maps the inputs x € 2~ to complex and structured
output y € ¢. In the structured output prediction, tasks range from predicting an
equivalence relation, say, in noun-phrase co-reference resolution, to predicting a
correct and well-formed machine translation.

Example 14.1 Resolving the equivalent noun-phrase co-references.

Consider a situation that a man called “Musk” contests in the elections and hence
campaigns to seeks votes as a presidential candidate, and suggests election mani-
festo of promoting the bitcoin money if he wins the elections. Figure 14.6 shows an
example of resolving noun-phrase co-reference, where there is an equivalence rela-
tion between a noun phrase (e.g., “Musk’) and its co-reference “His”, and similarly
between “this group”and “many young voters”.

The problems of this type exists elsewhere also, for example, in image segmen-
tation, for determining an equivalence relation, say y, over a matrix of pixels x, and
the problem of web search to predict a document ranking y for a given query x. The
structural SVMs (SSVMs) are suitable for use, as well as to address these all, and a
large range of prediction tasks with structured output.]

424 14 Statistical Learning Theory

14.5 Working of Structural SVMs

How to map the input to some structured output? Basically, a task of prediction
of a structure is similar to a task of multi-class learning. Each possible parse-tree
y € % may correspond to one class, and classifying a new example x is nothing but
predicting its correct class out of many possible classes, as shown in Fig. 14.7.

However, the problem is that there is a very large number of classes ¢. In case of
parsing, the number of possible parse-trees are exponential as a function of the length
of the sentence. This situation is similar for most other prediction problems, which
output some structure. Hence, there is need for finding a compact representation of
output spaces, which are large in size. In addition, a single prediction for an example
is computationally challenging, this requires the enumeration of all the outputs. The
third challenge is, how to distinguish between two wrong parse-trees, where one may
be closer to the correct one. This, we call as prediction error [9, 11].
We can derive a structural SVM from a multi-class SVM, such that for each class y,
the multi-class SVMs use a weight vector w,, and each input x has a score for each
class y via the function,

f(x,y) =w,.®(x), (14.11)

where @ is a function that extracts the vector @ (x) of binary or numeric features, from
x. Hence, every feature has additive-weighted influence in the modeled compatibility
between inputs x and classes y. For the classification of x, a prediction rule i(x)
chooses simply the highest-scoring class as the predicted output. This is expressed by

h(x) = argmaxyew f (X, y). (14.12)

Fig. 14.7 Resolving to
correct structure through
structural SVM
Class 1

Class 2

|

”The dog chased the thief.”

S
Class k

A [cC]

14.5 Working of Structural SVMs 425

This will resultin a correct prediction of output y for input x, provided that the weights
w = (wy, ..., wg) are chosen such that the inequalities f (x,y) < f(x, y) hold true
for all incorrect outputs y # y. For a given training sample (X1, y1), . . . , (X,, Y»), this
leads directly to a margin (a hard-margin) formulation of the learning problem by
requiring a fixed margin (= 1) separation of all training examples, while using the
norm of w as a regularizer:

1
min,, EIIWIIZ, such that f (x;, yi) —f(xi, y) = 1, (Vi,y # yi). (14.13)

For a k-class problem, the optimization problem has a total n(k — 1) inequalities,
that are linear in w. This is because, one can expand

F&X) =X, y) = Wy — w3). D (X)), (14.14)

which is a convex quadratic program.

The drawback of Eq. (14.13) for structured output is there is a generalization across
the inputs x, but output is without generalization due to a separate weight vector wy
for each class y. It is therefore not advisable to reduce the output prediction to multi-
class classification, as the number of possible outputs are likely to become very
large. This problem is solved using a new function ¥ (x, y) in place of &(x, y) to
extract features from input—output pairs. This new function is called as joint feature
map. This will yield compatibility functions due to contributions from the combined
properties of both inputs and outputs. Since the compatibility functions is defined via
f(x,y) = w.¥ (X, y), the number of parameters simply will be equal to the number
of features extracted via ¥, and that may not depend on the number of classes |%/|.

14.6 k-Nearest Neighbor Method

The nearest neighbor method is a statistical learning method, also called sometimes
as memory-based method. The method is used for clustering of objects based on
some similarity in their attributes. The k-nearest neighbor (k-NN) or simply nearest
neighbor method is an analogical type of learning. Given a training set 6 of N number
of labeled patterns, each with n attributes, a nearest neighbor algorithm decides that
some new pattern x belongs to the same category to which its closest neighbors in 6
belong. In other words, a k-nearest neighbor algorithm assigns a new pattern, X, to
that category x; to which the majority of its k-closest neighbors belong.

Example 14.2 Nearest Neighbor.

Consider there are five cars manufactured by company A, and for every car ten
important attributes have been identified, like engine size, color, wheel size, fuel
used, etc. Then, training set size is N = 5, and attribute size of each training set is
n = 10. Let a new model is introduced by company B, and the nearest neighbors’

426 14 Statistical Learning Theory

size is taken as k = 4. In this situation, a car from the company A having four
attributes common to the new car is, say model-Zeta. Therefore, Zeta being the nearest
neighbor to the new model from company B, the new model is put in the class of
model-Zeta.]

If k is relatively large, there are less chances of the decision going wrong due
to noisy training pattern close to x. However, the large values of k also reduce
the sharpness or acuteness of this method. The k-NN method can be thought of as
estimating the values of the probabilities of belongingness to class, given an input
pattern X.

The k-NN approach has been shown to be a useful non-parameteric technique
for regression and classification. In both cases, the input comprises the k-closest
neighbors of the vector. However, finding the k-NNs for a test sample, among N
design samples, is a time-consuming process, particularly for large N. The reordering
of these samples requires N (N — 1)/2 pairwise distance computations, which is a
time-consuming process for large values of N.

When used for object classification, the k-NN algorithm has many practical appli-
cations, e.g., in the areas of artificial intelligence, pattern recognition, statistics, cog-
nitive psychology, vision analysis, and medicine, to name a few. The decision rule
in k-NN provides a simple non-parameteric procedure for the assignment of a class
label to the input pattern based on the class labels represented by the k-closest (for
example, in terms of Euclidean distance) neighbors of the vector.

14.6.1 k-NN Search Algorithm

Let us assume that we are given N design samples, {Xi, ..., Xy}, each of which is n-
dimensional sample. With this, it is required to compute the k-nearest neighbors (k <
n) in a test sample y, as measured by an appropriate distance function d (y, x;) [7].

There is no need of preprocessing of the labeled sample set in the nearest neighbor
classifier. The nearest neighbor classification rule assigns an input sample vector
y of unknown classification, to a class which is THE nearest neighbor to it (see
Algorithm 14.1). The idea of the nearest neighbor can be extended to k-nearest
neighbors with the vectors y being assigned to the class that is represented by a
majority among the k-nearest neighbors. In the algorithm, dj stands for distance
from y to x;, for k-nearest neighbor.

When more than one neighbor is taken into account, it is likely that there may
be a tie among the qualifying classes, which corresponds to maximum number of
neighbors in the group of k-nearest neighbors. There is a simple way to handle this
problem by restricting the possible values of k. For example, if there is two-class
problem, and k is restricted to odd values only, no tie can occur.

Occurrence of a tie can be handled using the following approach. An unclassified
(i.e., sample) vector is assigned to the class, of those labels that are tied, and for
that class the sum of distances from the sample to each neighbor in the class is a
minimum. There are chances that there may still remain a tie.

14.6 k-Nearest Neighbor Method 427

Algorithm 14.1 K-Nearest Neighbor Algorithm

1: Let W = {x1, X2, ..., X,} //set of n labeled samples.
2: Input y //whose class is to be determined

3: Set k to any value in 1...n

4: Let S = ¢ //initial set of k-nearest neighbors (for given k)
S:fori=1ton do

6: compute distance d;(y, X;) from y to x;

7. if (d; < d;) then

8: S =S U{x;}

9: else

10: if x; is more close to y than some previous neighbor then
11: Delete farthest in the S

12: S =S U{x;}

13: end if

14: end if

15: end for

16: Determine class in S that is in majority

17: if (there is tie) then

18: Compute the sum of distances of neighbors in each class with the one having tie
19: if (there is no tie) then

20: Classify y into minimum found class

21: endif

22: else

23: Classify y into the class of majority

24: end if

25: End

For numerical attributes, the distance metric used in the nearest neighbor is

Euclidean distance. Considering two patterns, X; = xy,, X1,,...,X,, and X =
X2,,X2,, - .., X, , distance between two using Euclidean is given by
d(x1, %) = (14.15)

To keep the spread of attribute values along each dimension approximately same,
the above value of the distance is usually modified by scaling of the features. In
that case the distance is represented by the following equation, where aj2 is the scale
factor for the dimension j.

dxi. %) = | Y al(xy, —x,)2. (14.16)

j=1
Example 14.3 Finding the nearest neighbor with k patterns.

Figure 14.8 shows a problem of k-nearest neighbor classification, where k = 6. There
are two patterns of each categories 1, 2, and 3, with numbers 1, 2, 3 marked after
each pattern symbol, respectively. A collection of dots makes a pattern. For example,

428 14 Statistical Learning Theory

Fig. 14.8 k-nearest Training patterns
neighbor problem
y pattern
to be classified

2 .2

2 2

2

o] ol

el o]

in the two patterns of category 1, there are three and four dots, each followed by 1s.
The pattern y, represented by a box, is to be classified. In the circle enclosing,
since the majority are in the category of 1, the new pattern y should be classified in
category 1. (]

14.7 Naive Bayes Classifiers

The Bayesian networks are powerful tools for decision-making and reasoning under
uncertainty. These networks are specified by two components:

— Graphical component. It expresses uncertainty of causal relations, and consists
of Directed Acyclic Graph (DAG) to represent causal relations and conditional
probabilities of each node, given the parent of each. The vertices represent events
and edges which are the relations between them.

— Numerical component. It quantifies different links in the DAG through conditional
probability distribution of each node in the contexts of its parents.

Basically, the Bayes theorem permits optimal prediction of a class of new
instances, given a vector X = {xy, ..., X, }, of attribute’s values. Since there is always
insufficient training data to obtain accurate prediction of full joint probability dis-
tribution, the straight forward application of Bayes theorem is impracticable for
machine learning. Therefore, there is need for making assumptions of independence
to make the inference feasible.

The Bayesian classifier, called Naive Bayes, i.e., “straw man”, approach takes
this to the extreme when it is assumed that attributes are statistically independent,
given the value of the class attribute. However, the above assumption never holds
true, but still the Naive Bayes performs exceptionally well in most classification
problems. Apart from this, the Naive Bayes approach is computationally efficient,
as the training is linear in both the number of instances and attributes, and simple to
implement [4].

14.7 Naive Bayes Classifiers 429

Fig. 14.9 Naive Bayes
network structure

A Naive Bayes is composed of a DAG with one root node (called parent), which is
an unobserved node representing class of each object to which the testing set belongs,
and several leaf nodes, corresponding to observed nodes, with strong assumption of
independence among these leaf nodes in the contexts of their common parent. The
leaf nodes represent different attribute (features) specifying this object. Note that
the Naive Bayes are composed of two levels only as shown in Fig. 14.9, whereas a
Bayesian network may consist of many levels.

The decision of a Bayesian classifier is represented as a matrix of P(x;j|y;), which
specifies the probability of occurrence of each feature value (xy, ..., xj, ..., X,) given
each class y;. To classify a new example having features among x; . . . x,,, we make
use of Bayes theorem as

P(Axily)P(yi)
2k PO\ X[y P (x)

argmax,, P(y;| /\xj) = argmax,, (14.17)

that computes P (y;| /\ x;), which is the probability of the example in class y; given the
features x;. The subexpression /\ x; denotes a conjunct of attribute values all occurring
in an example. The summation is performed over N (1 < k < N) classes, and the
above probability is calculated for each class y;, and then the class of the highest
probability is selected. The probability P(yy) is estimated from the distribution of
the training examples among classes. If independence of all attributes is assumed
under a given context (i.e., class), then P(/\ x;|yx) can be calculated using

PN\ xilyo) = [[PGilyo)- (14.18)
J

The values P (x;]y;) are calculated from the probability matrix. Here, x; is the evidence
on attribute nodes, which can be dispatched into pitches of n evidence of features,
Xi,...,X,...,X,. Because Naive Bayes is working on the assumption that these
attributes are independent of each other (given the parent node), their combined
probability is obtained by substituting Eq. (14.18) into (14.17), which results in,

[1; PCly)P (i)
2L PGy Pl
= argmaxy, l_[PQxi|y)P(yi). (14.19)

J

argmax,, P(yj| /\xj) = argmax,,

430 14 Statistical Learning Theory

Note that, there is no need to explicitly compute the denominator Y, [[; P (x|
yi)P(y)], since it is common among all the computation being a normalization
constant. In some practice, log is computed instead of a product, because probabilities
involved can be very small.

The Bayesian learning method, as a classifier, builds the matrix P(x;|y;) from
training examples, by examining the frequency values in each class. It is possible to
compute this matrix incrementally by incorporating one instance at a time. Alterna-
tively, it can be constructed (i.e., without incremental approach), using all the data
at a time.

Due to its simple structure, the Naive Bayes has many advantages. It is efficient,
as the inference (i.e., classification) is achieved in a linear time. However, the Bayes
network with general structure has complexity of NP-complete. Naive Bayes con-
struction is incremental, in the sense that it can be easily updated, e.g., addition of
new cases. The major problem with Naive Bayes is the assumption of strong indepen-
dence relation, i.e., assumption of independence of features in the context of session
class is not always true, and leads to negative influence on the inferred results.

Naive Bayes is most commonly used in text classification, where words are fea-
tures, and presence/absence of a word can be used to determine the topic of a docu-
ment.

Given N number of training examples, each with n number of attributes, com-
plexity of generating probability matrix for Bayes classifier is O(n.N). Hence,
the classifier is substantially faster as the runtime is independent of the decision
“rule”generated. Apart from this, the basic operation is performed only once.

14.8 Artificial Neural Networks

The science of machine learning is mostly experimental as there is a no universal
learning algorithm existing yet. That is clear from the fact that, given a number of
tasks, none can make a computer to learn every task well. A knowledge-acquisition
algorithm is always required to be tested on learning tasks and data, that are specific
to a given situation, and it is irrespective of whether it is recognizing a sunrise or
it is doing a language translation. There is no method to prove that the given algo-
rithm will be consistently better for all the situations. However, the human behavior
apparently contradicts. We are fairly good at general learning abilities due to which
we are able to master a number of tasks, like playing chess and playing cards. These
arguments suggest and might serve as inspirations for building machines with some
form of general intelligence. Therefore, the use of Artificial Neural Networks (ANN),
which is a brain model, appears to be a logical justification for building intelligence
systems [8].

The basic unit of the brain for performing the computation is a cell, called neuron;
each one of them sends a signal to other neurons through very small gaps between the
cells, called synaptic clefts. The property of any neuron of sending a signal through

14.8 Artificial Neural Networks 431

this gap, and the amplitude of the signal together, is called as synaptic strength. As
a neuron learns enough, its synaptic strength increases, and in that situation, if it
is stimulated by an electrical impulse, there are better chances that it would send
messages to its neighboring neurons.

The current neural-based learning algorithms need close involvement of humans,
for producing better results. Majority of these algorithms are based on supervised
learning, where each training example is carried out using human-crafted labels,
about what is being learned. Consider an example of a picture of sunrise associated
with the caption: “Sunrise”. In that instance, the goal of the learning algorithm is to
take the photograph as an input, and produce output, the name of the object in the
image, i.e., “sunrise”. We know that the mathematical process of transforming an
input to the output is a function. The synaptic strength, which is a numerical value,
produces this function, which corresponds to the solution to the learning through
ANN.

It is interesting to note that it can be achieved through rote learning also, but it
would not be useful. In fact, when we want to teach to the algorithm “what the sunrise
is”, then to have the algorithm recognize any sunrise, even the one for which we have
not trained! This is the ultimate goal of machine learning algorithm.

The Artificial Neural Networks (ANN) possess the following important
properties:

Learning ability,

Massive parallelism,

Adaptability,

Fault tolerance,

Distributed representation and computation,
Generalization ability, and

Low energy consumption.

which make them candidate for many applications. Although the details of the pro-
posals vary, the most common models for learning and computation take the neuron
as the basic processing unit. Each processing unit is characterized by the following:

— an activity level to represent polarization state of a neuron,

— an output value to represent firing rate of the neuron,

— a set of input connections,

— synapses on the cell and its dendrite,

— a bias value to represent an internal resting level of a neuron, and

— a set of output connections to represent a neuron’s axonal projections.

Each of these aspects of the unit are represented mathematically by real numbers.

Hence, each connection of a neuron has an associated weight, called synaptic
strength, which influences the effect of the incoming input on the activity of the unit.
This weight is either positive, called excitatory or, negative, called inhibitory.

The basic model of artificial neuron with binary threshold is shown in Fig. 14.10.
The mathematical neuron computes the weight as the sum of its » number of input

432 14 Statistical Learning Theory

Fig. 14.10 Basic model of
an artificial neuron

Fig. 14.11 Single-layer
feedforward and feedback

networks
Feedforward Feedback
network
network
signals x, ..., x,, and the generated output is 1 if the sum is above some threshold

value u, otherwise the output is zero. This can be represented by
y=0()_ wix; — u) (14.20)
i=1

where 6(.) is called a unit step function at 0, and w; is the synapse weight associated
with the ith input. For the sake of simplicity, we consider the threshold u as another
weight, wg = —u attached to the neuron with a constant input xo = 1. A properly
chosen weight allows a synchronous arrangement of such neurons to perform uni-
versal computations. There is a crude analogy of this neuron model to biological
neurons as follows: the wires and interconnections model the axons and dendrites,
respectively, in the biological neuron; connection weights in this model correspond
to synapses in biological neuron; and threshold function approximates the activity in
soma. However, this model is an overly simplified one of a true biological neuron.

The ANNSs can be considered as weighted directed graphs, where artificial neurons
act as nodes, and directed edges with weights are connections between neurons, and
between outputs and inputs of neuron.

Based on the connection pattern an ANN can be classified as

1. Feedforward networks: In these, the direct graphs have no loops, and
2. Recurrent feedback networks: There are loops because of feedback connections.

Figure 14.11 shows the single-layer feedforward and feedback neural networks.
The most common family of feedforward networks is the multilayer perceptron. The
neurons in these networks are organized into layers with unidirectional connections
between them. Usually, the feedforward networks are of a static type, as they produce
only one set of output values instead of a sequence of values for a given input. These
networks are without memory, as their output is independent of the previous states
of the network.

14.8 Artificial Neural Networks 433

The feedback networks are called recurrent networks, and are dynamic systems.
Neurons’ output patterns are computed when a new input pattern is presented to these
networks. Due to feedback paths, the input to each neuron is then modified, which
causes the network to enter a new state.

The problem of learning in neural networks is simply the problem of finding
a set of connection strengths which allows the network to carry out the desired
computation [10].

An ANN usually learns of the connection weights from the available training pat-
terns, the performance of which gets improved over time through iterative updating
of the weights. The ability of ANNSs to automatically learn from examples makes
them attractive and exciting. From a given collection of representative examples, the
ANNSs learn underlying rules as a form of input—output relationship, instead of fol-
lowing the rules specified by human experts. This simple factor is a major advantage
of neural networks over traditional experts systems.

To understand this learning process, first there is need of a model of learning
environment in which these neural networks operate. That means, we must know
about what information is available to the network. This model is called the learning
paradigm. The second requirement is to know about how these weights are updated.
This means to know, as to which rule controls the updating process of the weight.
In fact, a learning algorithm refers to some procedure which uses learning rules to
adjust the weights of inputs.

All the three paradigms of learning exist in the neural networks, i.e., supervised
learning, unsupervised learning, and hybrid learning. Supervised learning requires
a teacher, where the network is provided with correct answers, i.e., output, for every
input pattern. The weights are so determined that they allow the network to produce
answers, which are as close as possible to known correct answers.

The unsupervised learning-based neural networks explores the underlying struc-
ture in the data, or correlations between patterns in the data, and organizes patterns
into categories based on the correlations.

A hybrid learning ANN combines both the supervised and unsupervised
approaches.

The learning rules in the neural networks are of four basic types. These are error
correction, Boltzmann, Hebbian, and Competitive learning. Their basic principles
are presented in the following.

14.8.1 Error-Correction Rules

A learning based on error-correction rules makes use of simple concepts. During the
training, the input xy, ..., x, is applied to the network, and the flows through the
network generates a set of values in the units of output y. As the next step, the actual
output y is compared with the desired target d. If the output and the target match,
no change is made to weights. If there is no match, change is made to weights of
some of the connections. The problem is to find out as which connections in the

434 14 Statistical Learning Theory

network were at fault that caused the error and resulting in a mismatch. Obviously,
it is supervised learning paradigm. The principle used for error-correction learning
rules is based on the error signal (d — y), to modify the connection weights so as to
gradually reduce the error magnitude.

The perception-based learning works on this principle of error correction. A
perceptron comprises a single neuron with adjustable weights, w;,i = 1, ..., n, and
a threshold value u, as shown in Fig. 14.10 (page no. 432). Given an input vector x =
(x1, ..., x,)", where t is the iteration number, net input to the neuron is expressed as

v=) wixi—u (14.21)
i=1

If v > 0 the output y of the perceptron is +1, otherwise it is 0. In a classification
problem (of two classes, say A and B), the perceptron assigns an input pattern to
classAif y =1, and to class Bify = 0.

Algorithm 14.2 Perceptron learning Algorithm

1: Initialize weights wy, ..., w,, and threshold u to some small random numbers,

2: Apply a small pattern input vector (xi, ..., x,)" and evaluate the output of the neuron, as per
equation (14.21),

3: Update each weight w; (i = 1, ..., n) according to: w;(t + 1) = w;(¢) + n(d — y)x;.

Algorithm 14.2 is backpropagation learning algorithm, based on error-correction
principle, where d is the desired output, 7 is the iteration number, and (0.0 < n <
1.0) is the gain, i.e., size of the step.

14.8.2 Boltzmann Learning

The learning in ANN based on Boltzmann machines has many properties: they are
symmetric and recurrent (i.e., feedback) networks. It consists of binary units (41 for
“on”, and —1 for “off””). The symmetric property means, weight on the connection
from unit number 7 to unit j is identical to weight from unit j to unit i, formally,
w;; = wj;. The neurons are also of two types: 1. Visible neurons are a subset of the
entire set of neurons, and they interact with the environs, and 2. Hidden neurons are
the remaining neurons, which do not interact. Each neuron is a stochastic unit, which
generates and outputs (or it is a state) according to the Boltzmann distribution of
statistical machines.

A Boltzmann machine also operates in one of two modes: 1. Clamped mode, where
visible neurons are clamped onto a specific state determined by the environment; and
2. Free-running mode, in which both the visible and hidden neurons are allowed to
operate freely.

14.8 Artificial Neural Networks 435

The Boltzmann learning algorithm works to adjust the connection weights in such
a way that the desired probability distribution is satisfied by the states of the visible
units. According to the rule of Boltzmann learning, the change in the connection
weight wy; is given by

Awij = (P — py), (14.22)

where 7 is learning rate, p;; and p;; are correlations between the states of units i and j
when the network operates in the clamped mode and free-running mode, respectively.
The values of Dij and pj; are estimates using Monte Carlo experiments [8].

14.8.3 Hebbian Rule

The Hebbian learning rule specifies the magnitude of the weight by which the con-
nection between two units is increased/decreased in proportion to the product of
their activation. It builds on the Hebbs’s learning rule, which states that the connec-
tions between two neurons might be strengthened if the corresponding neurons fire
simultaneously. This rule works well as long as the input patterns are uncorrelated,
however, this condition places serious limitations on the Hebbian learning rule. A
Hebbian rule for ANN is described as

wii(t + 1) = wy (1) + ny; (@) x; (1), (14.23)

where x;, y; are the output values of neurons 7 and j, respectively. These are connected
by the weight w;;, and 7 represents the learning rate. An important property of this
approach is that learning is carried out locally, that is, the change in synapse weight
depends only on the activities of two neurons connected by it. This simplifies the
implementation of the circuit.

A more powerful learning rule is the delta rule, that utilizes the discrepancy
between the desired and actual output of each output unit to change the weights
feeding into it.

14.8.4 Competitive Learning Rules

The competitive-learning units compete among themselves for activation, which is
in contrast to the Hebbian learning, where multiple output units can be fired together.
Hence, only one output unit is active at any given time. The biological neurons follow
this type of learning.

The competitive learning often categorizes or clusters the input data, where similar
patterns are grouped by the network and represented by a single unit. The grouping
is carried out automatically, which is actually based on the correlations.

436 14 Statistical Learning Theory

The simplest possible competitive learning network has a single layer of output
units, as shown in Fig. 14.11, where each output unit j connects to all the input units
x;s, through the weights wy;, i = 1, . .., n. Each output unit also connects to all other
units via inhibitory weights, but has a self feedback with an excitatory weight. Due
to the competition, only the unit i with the largest net input becomes the winner. This
can be expressed by

Viw! X > W X. (14.24)

In this learning, only the weights of the winner unit gets updated.

14.8.5 Deep Learning

Beginning from 2005, deep learning—a neural net-based approach, which is driven
for its inspiration from brain science—began to come into its own, and has now
become a singular force propelling Al research forward.

The deep learning is concerned with simulation of ANNS s that “learn” gradually,
in the areas of image processing, speech recognition, and understanding, and even to
make the decisions of their own. The basic technique relies on ANNs, which do not
precisely mimic as to how the actual neurons are working. Instead of this they are
based on the general principles of mathematics that allow them to learn from examples
to recognize people or objects in a photograph, and translate the spoken language
from one to another. The technologies based on deep learning have transformed the
Al research, and have produced far accurate results in speech recognition, computer
vision, natural language processing, and robotics.

To be successful in generalizing after observing a number of examples, deep
learning network needs more than just the examples. For example, it depends on
hypotheses about the data and assumptions about what can be a possible solution
for a particular problem. A typical hypothesis that can be built into a system might
conclude that if data input for a particular function in two situations are almost similar,
the output should not change drastically. For example, on altering a few pixels in an
image of a dog will not transform it into a picture of cat.

One type of a neural network that consists of hypotheses about images is called
convolutional neural network. These networks when used in deep learning have
many layers of neurons, which are organized in such a way that the output is less
sensitive to the deviation from the original object, due to changes in the input image.
For example, we will note the changes in a face when viewed from different angles,
however we will still recognize it correctly. A well-trained deep learning network
will also do a similar job.

The design of convolutional networks take their inspirations from multilayered
structure of visual cortex—part of the brain that receives input from eyes. Too many
layers of virtual neurons in a convolutional neural network are what that make the
network “deep”, and hence it is better able to learn about the world about it.

14.9 Instance-Based Learning 437

14.9 Instance-Based Learning

Instance-based learning (IBL) approaches uses supervised learning techniques. There
are several variants of IBL, e.g., exemplar-based learning, case-based reasoning, and
memory-based learning. Though all these methods emphasize somewhat different
aspects, all these approaches are founded on the basic concept of an instance or a
case, as a basis of knowledge representation and reasoning. The meaning of case
here is, observation or example, or incident, which is a single experience, e.g., a
pattern, along with its solution, is a problem of pattern recognition.

In general, a problem along with its solution is a case-based reasoning. To highlight
the main properties of IBL, it is important to understand its difference with model-
based learning. As a typical case, IBL methods learn by simply storing some of the
observed examples. The processing of these inputs are differed until a prediction or
some other query is actually requested. Later, predictions are derived by combining
information from stored examples, in some way. Once the query is answered, the
prediction and intermediate results are discarded.

In contrast, the model-based or inductive-based learning derive predictions in an
indirect way as follows: as a first step, observed data is used in order to induce a
model, say, a decision tree or a regression function. As a second step, the predictions
are obtained using this model, which can also serve as the function of explaining.

Generally, the model-based algorithms, also called eager algorithms, carry higher
complexity during the training phase than the instance-based algorithms. The latter
are also called /azy algorithms, where learning is basically storing of selected algo-
rithms. The lazy methods also need more storage requirements, in a linear order
of the size of the input, and higher computational cost compared to deriving of a
prediction.

The IBL algorithms make use of specific instances, instead of pre-compiled
abstractions during the prediction. They also describe the probabilistic concepts,
because they use similarity functions to yield graded matches between instances.

The IBL algorithms are derived from the nearest neighbor (NN) pattern classifiers,
which also do not save and use only selected instances to generate the classification
predictions. Thus, they are also called as edited NN algorithms. They also maintain
the prefect consistency with the initial training set.

14.9.1 Learning Task

The instance-based learning makes use of the supervised approach, or learning from
examples. The input is a sequence of instances, where each instance is a set of n
attribute—value pair, thus creating an n-dimensional instance space. Only one of these
attributes corresponds to a category attribute, and the other attributes are predictor
attributes. A category is a set of all instances in the instance space which have the
same value for their category attribute. For the sake of simplicity, it is assumed that
categories are disjoint.

438 14 Statistical Learning Theory

The main output of IBL algorithms is concept or concept description. The algo-
rithm is a function that maps instances to categories, i.e., for a given instance from
a instance space, it produces the classification—a predicted value for instance’s cat-
egory attribute.

An instance-based concept description comprises a set of stored instances and,
some information about their past performances, e.g., the number of correct and
incorrect classification predictions. The set of instances can change once each training
instance has been processed. The concept descriptions are decided based on how the
selected similarities and classification functions of the IBL algorithm make use of the
current set of saved instances. In all the IBL algorithms, at least two of the following
three components constitute these functions [1].

Function of Similarity

This function computes the similarity between two instances: one is a training
instance, and the other is in the concept description. The similarities are represented
in numeric values.

Classification Function

The input to this function are 1. similarity function’s result, and 2. classification
performance records of instances in the concept description, which produces output
of the classification.

Concept Description Updater

An updater keeps records of classification performance and resolves as to which
instance to include in the concept description. Inputs to the concept description
updater are training instance, similarity results, classification results, and current
concept description. The output of the updater is the modified concept description.

The first two functions in the above decide how the saved instances in the concept
description can be used to predict the category attributes. Thus, concept description
in IBL not only comprises a set of instances, but also these two functions.

There is an important difference between IBL algorithms and most other super-
vised learning methods: the IBL algorithms do not construct explicit abstractions,
like decision trees or rules. Most of the learning algorithms produce generalizations
using the instances, and use simple matching procedures to classify the instances
when presented in future. This eliminates the need of storing rigid generalizations
of concept descriptions for IBL algorithms.

14.9.2 IBL Algorithm

Algorithm 14.3 is the simple instance-based learning algorithm. The similarity func-
tion, sim(x, y), used in the algorithm is expressed by

14.9 Instance-Based Learning 439

sim(x, y) = —

> f iy (14.25)
i=1

To compute the similarity, the instances have n attributes. For numerical attributes,
the relation used is

F G, yi) = (i, yi)* (14.26)

For attributes with Boolean and symbolic values, f (x;, y;) = (x; # y;), i.e., f is false
when x; # y;. The missing attribute values are taken as having maximum difference
from the value present. If both are missing, then f (x;, y;) = 1. IBL Algorithm 14.3
is very similar to the nearest neighbor algorithm (see page no. 425) we have studied
earlier. The only difference in the IBL algorithm is that it normalizes its attributes’
ranges, processes instances incrementally, and has a simple policy that allows missing
values of attributes [1].

It is important to note that this algorithm’s concept description changes over
time. In the k-NN algorithm, the classification function simply assigns classifications
according to the nearest neighbor policy. In the IBL algorithm, we can find out
instances in the instance space that will be classified by each of the stored instances.
The term CD in the algorithm stands for concept description, and TS is the training
set.

Algorithm 14.3 IBL algorithm
1: Initialize: CD = ¢
2: for every x € TS do

3: foreveryy € CD do

4: SIM [y] = sim(x,y)

5. end for

6: ymax = 3y € CD with maximal SIM [y]
7. if class(x) = class(Ymqx) then
8: classification = True

9: else

10: Classification = False

11: end if

12. CD =CDU {x}

13: end for

14: End

14.10 Summary

Machine learning systems help the programs automatically learn from the data; it can
be said to be a kind of a data mining. Machine learning is used in computer science
and beyond, e.g., in search engines, spam filters, advertisements, credit scoring, fraud
detection, stock trading, drug design, and in many other applications.

440 14 Statistical Learning Theory

A learning algorithm can be expressed as comprising three parts:

1. Representation,
2. Evaluation, and
3. Optimization.

The popular approaches of statistical machine learning are support vector machine,
k-nearest neighbor algorithm, Naive Bayes, and instance-based learning.

The support vector machines (SVMs) are supervised learning models which use
associative learning algorithms, which can analyze the data and recognize patterns.
Thus they have applications in classification and regression analysis.

An SVM is a model where examples are nothing but a representation of points
in space, which are mapped to two classes, so that the examples of the separate
categories are divided by a clear gap that is as wide as possible. The latter is to
help in making clear distinctions between the categories. New examples are then
mapped into that same space and predicted about their category based on which
side of the gap they fall on. The support vector machine (or support vector network
(SVN)) maps the input vectors into some high-dimensional feature space through
some nonlinear mapping chosen a priori. A limitation of SVMs and other statistical
learning methods is that the category structure is treated as “flat”’and that they do
not consider any relationships between categories, which are commonly expressed
in concept hierarchies or taxonomies. The structured SVMs are capable of learning
the taxonomical architectures.

The problem with taxonomical structures is that the number of classes are very
large. For example, in parsing, the number of possible parse-trees is the exponential
factor of the length of the sentence, and this scenario is similar for a majority of other
problems that are designed to predict the output, which is structured in nature. Thus,
there is need for exploring a more compact representation for these large output
spaces.

The k- nearest neighbor method is a statistical method, where, given a training set
60 of nlabeled patterns, a nearest neighbor algorithm decides that some new pattern, X,
belongs to the same category, as do the closest neighbors in 6. The k-NN algorithms
are used for the classification of objects, in many practical applications, e.g., in the
areas of artificial intelligence, pattern recognition, statistics, cognitive psychology,
vision analysis, and in medicines. Under many circumstances, the k-NN algorithm
is used to perform the classification.

Bayes networks are powerful tools for decision-making and reasoning under
uncertainty. These networks are specified using two components: 1. a graphical com-
ponent, composed of directed acyclic graph (DAG) to represent causal relations, and
2. numerical component, consisting in a quantification of different links in the DAG
by conditional probability distribution. The Bayesian classifier (Naive Bayes), i.e.,
“straw man” assumes that the attributes in the examples are statistically independent
of each other, given the value of the class attribute, which makes it computationally
efficient.

14.10 Summary 441

The most common models for learning and computation take the neuron as the
basic processing unit. Each such processing unit has following characteristics:

. Activity level. It is the state of polarization of a neuron.

. Output value. It depends on the firing rate of the neuron.

. Input connections. It is the collection of synapses on the cell and their dendrite.
. Bias value. It is an internal resting level of the neuron.

. Output connections. These are neuron’s axonal projections.

O O R N R

The Artificial Neural Networks (ANNs) are weighted directed graphs, where
nodes are treated as artificial neurons and directed edges (with weights) are connec-
tions between neurons, and also they act as connections between input and outputs.
The problem of learning in neural networks is the problem of finding a set of con-
nection strengths which can allow the network in future to carry out the desired
computation. There exist all three paradigms for learning in a neural network: super-
vised, unsupervised, and hybrid.

Instance-based learning (IBL) approaches is supervised machine learning tech-
nique. Several variants of instance-based approaches have been devised, e.g., memory-
based learning, exemplar-based learning, and case-based reasoning. The informa-
tion provided by the stored examples is used in some way, to perform the predictions
in the IBL. Once the query has been answered, the prediction itself and other inter-
mediate results are discarded.

As opposed to IBL, the model-based or inductive learning methods derive pre-
dictions in an indirect way: in step one, the observed data is used in order to induce a
model, say a decision tree or a regression function. Then in the second step, the pre-
dictions are obtained on the basis of this model, which can also serve other purposes
like explaining or justifying the inferences.

Exercises

1. “The task of text categorization is to assign a given document to one of the
categories out of a fixed set of categories. This is done on the basis text contents.
The Naive Bayes model is often used for this purpose, where a query variable is the
document category and the “effect” variables are presence/ absence of each word
in the language. It is assumed that words occur independently in the documents,
and their frequencies determine the document category.* For this statement,

a. Explain how such a models can be constructed, given a set of “training data”
in the form of documents that have been already assigned to categories.

b. Explain how to categorize a new document.

c. Is the independence assumption reasonable? Justify your answer.

2. What linear or nonlinear function is used by an SVM for performing classifica-
tion? How is an input vector X; (instance) assigned to the positive or negative
classes.

442 14 Statistical Learning Theory

Fig. 14.12 Training data for 1,1
SVMs O, 1) , 1) .
(0,0) é) 0,0) T
(@) (b)
Table 14.1 Data set for machine learning
Department Class Age Salary K$s
Sales Programmar 36...40 51...55
Sales Assistant 31...35 31...35
Sales Assistant 36...40 36...60
Production Assistant 26...30 51...55
Production Programmar 36...40 71...75
Production Assistant 31...35 51...55
Marketing Programmar 41...45 51...55
Marketing Assistant 36...40 46...50

3. Consider the SVM for the training data given in %2, in Fig. 14.12a, b; find out the
separating hyperplanes in both the cases.

4. Why is the Naive Bayes classification called Naive? What are the main goals
behind this classification?

5. Consider the data given in Table 14.1,
and use these to train a Naive Bayes classifier with designation attribute as the
class label and all the remaining attributes regarded as input. Once you have your
Naive Bayesian classifier, test the following unseen instances to find out the class:

a. Marketing, 36...41,51K ...55K
b. Sale,36...41,71K ...75K

References

—

Aha DW et al (1991) Instance-based learning algorithms. Mach Learn 6:37-66

Boser EB et al (1992) A training algorithm for optimal margin classifiers. In: Proceedings of
the fifth annual workshop on computational theory, COLT” 92. ACM, New York, pp 144-152
Bradley P (2002) Scaling mining algorithms. Commun ACM 45(8):38-43

Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3:261-283

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297

Domingos P (2012) A few useful things to know about machine learning. Commun ACM
55(10):78-87

N

AR

References 443

7. Fukunaga K, Narendra PM (1975) A branch and bound algorithm for computing K-nearest
neighbors. IEEE Trans Comput 750-753
8. Jain AK et al (1996) Artificial neural networks: a tutorial. Computer 3:31-46
9. Joachims T (2009) Predicting structured objects with support vector machines. Commun ACM
52(11):97-104
10. Rummelhart DE et al (1994) The basic ideas in neural networks. Commun ACM 37(3):86-92
11. Shawe-TaylorJ (2009) Machine learning for complex predictions. Commun ACM 52(11):96-96

	14 Statistical Learning Theory
	14.1 Introduction
	14.2 Classification
	14.3 Support Vector Machines
	14.3.1 Learning Pattern Recognition from Examples
	14.3.2 Maximum Margin Training Algorithm

	14.4 Predicting Structured Objects Using SVM
	14.5 Working of Structural SVMs
	14.6 k-Nearest Neighbor Method
	14.6.1 k-NN Search Algorithm

	14.7 Naive Bayes Classifiers
	14.8 Artificial Neural Networks
	14.8.1 Error-Correction Rules
	14.8.2 Boltzmann Learning
	14.8.3 Hebbian Rule
	14.8.4 Competitive Learning Rules
	14.8.5 Deep Learning

	14.9 Instance-Based Learning
	14.9.1 Learning Task
	14.9.2 IBL Algorithm

	14.10 Summary
	References

