
Chapter 12
Reasoning in Uncertain Environments

Abstract Real-life propositions are neither fully true nor false, also there is always
some uncertainty associated with them. Therefore, the reasoning using real-life
knowledge should also be in accord. This chapter is aimed to fulfill the above objec-
tives. The chapter presents the prerequisites—foundations of probability theory, con-
ditional probability, Bayes theorem, and Bayesian networks which are graphical rep-
resentation of conditional probability, propagation of beliefs through these networks,
and the limitations of Bayes theorem. Application of Bayesian probability has been
demonstrated for specific problem solutions. Another theory—the Dempster–Shafer
theory of evidence—which provides better results as the evidences increase is pre-
sented, and has been applied on worked examples. Reasoning using fuzzy sets is yet
another approach for reasoning in uncertain environments—a theory where mem-
bership of sets is partial. Inferencing using fuzzy relations and fuzzy rules has been
demonstrated, followed by chapter summary, and a set of exercises at the end.

Keywords Reasoning in uncertainty · Probability theory · Conditional
probability · Bayes theorem · Belief networks · Belief propagation ·
Dempster–Shafer theory · Fuzzy sets · Fuzzy relations · Fuzzy inference

12.1 Introduction

The real-life propositions are neither fully true nor false, and there is uncertainty asso-
ciated with them. Therefore, the reasoning drawn from these are also probabilistic.
This requires probabilistic reasoning for decision-making. This chapter presents two
approaches for probabilistic reasoning—the Bayes theorem and Dempster–Shafer
theory. The first is implemented as Bayesian belief networks, where nodes (events)
are connected using directed graph with edges of the graph representing cause–effect
relationships; the beliefs propagate in a network as per the rules of Bayes conditional
probability. TheDempster–Shafer (D-S) theory is based on evidential reasoning such
that evidences are conjuncted, and as more and more evidences take part in the rea-
soning, the ignorance interval decreases. The classical probability theory is a special
case of D-S theory of Evidential Reasoning.
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In the case of Classical Logic, a proposition is always taken either as true or
false. However, in a real-life scenario one cannot always say a proposition to be
either 100% true or 100% false, but known to be true with a certain probability. For
example, one can say that the proposition: “Moon rover will function alright,” may
have a probability of being true as 30%, which is calculated based on the success
rate of previous probes sent to the Moon. However, the proposition “Sun rover will
function alright” has a probability of being true as 0%, due to extreme temperature
at the Sun’s surface. Because such uncertainties are common in expert systems when
they are deployed in real-life applications, the knowledge representation as well as
the reasoning system of the expert systemmust be extended to work like in a real-life
situation.

Fundamentally, there are two basic approaches to reasoning in uncertain domains:
probabilistic reasoning and non-monotonic reasoning. The basis of probabilistic
reasoning is to attach some probability value to each proposition to express the
uncertainty of the event. These uncertainties may be derived from existing statistical
information available as the database of a corpus, or these may be estimated by the
experts.

Facilities for handling uncertainty have long been an integral part of knowledge
based system. In the early days of rule-based programming, the predominantmethods
used variants on probability calculus to combine certainty factors associated with
applicable rules. Although it was recognized that certainty factors did not conform
to thewell-established theory of probability, thesemethodswere nevertheless favored
because the probabilistic techniques available at the time required either specifying
an intractable number of parameters or assumed an unrealistic set of independence
of relationships.

The most important area, for understanding the uncertainties is medical diagnos-
tics or troubleshooting of any system; in the first it is required to identify the patterns
(diagnoses) on the basis of their properties (symptoms), while in the second it is com-
mon to recognize the faults on the basis of system behavior. However, there is no
one-to-one mapping of symptoms and diagnoses, and the uncertainties of mapping
symptoms with diagnoses prevail due to the following reasons:

• ascertaining of the symptoms,
• proper evaluation of symptoms, and
• insufficient criteria about reckoning the scheme.

Generally, the end user of an expert system identifies and ascertains about the
symptoms and their uncertainties, while the uncertainties in the evaluation of symp-
toms are carried out by the experts. Because different people judge these uncertain-
ties, they are likely to judge it differently, and there is no scope of normalization.
Consequently, it is likely to be a large uncertainty. Often the reckoning methods
are also simple, which are some “ad hoc representations”, on account of lack of
theoretical foundations.

Many different methods for representing and reasoning with uncertain knowledge
have been developed during the last three decades, including the certainty factor
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calculus, Dempster–Shafer theory, possibilistic logic, fuzzy logic, and Bayesian net-
works (also called belief networks and causal probabilistic networks).

Learning Outcomes of this Chapter:

1. Identify examples of knowledge representations for reasoning under uncertainty.
[Familiarity]

2. Make a probabilistic inference in a real-world problem using Bayes theorem to
determine the probability of a hypothesis given evidence. [Usage]

3. Apply Bayes rule to determine the probability of a hypothesis given evidence.
[Usage]

4. Describe the complexities of temporal probabilistic reasoning. [Familiarity]
5. State the complexity of exact inference. Identify methods for approximate infer-

ence. [Familiarity]
6. Design and implement an HMM as one example of a temporal probabilistic

system. [Usage]
7. Explain how conditional independence assertions allow for greater efficiency of

probabilistic systems. [Assessment]
8. Make a probabilistic inference in a real-world problem using Dempster–Shafer’s

theorem to determine the probability of a hypothesis given evidence. [Usage]

12.2 Foundations of Probability Theory

In the following, we list the commonly used terminology of the probability theory.
Considering an uncertain even E , the probability of its occurrence is a measure

of the degree of likelihood of its occurrence.
A sample space S is the name given to the set of all possible events.
A probability measure is a function P(Ei ) that maps every event outcomes,

E1, E2, . . . , En from event space S, to real numbers in the range [0, 1].
These outcomes satisfy the following axioms (basic rules) of probability:

1. for any event E ⊆ S, there is 0 ≤ P(E) ≤ 1,
2. an outcome from space S that is certain is expressed as P(S) = 1, and
3. when events Ei , E j are mutually exclusive, i.e., for any events Ei , E j , there

is Ei ∩ E j = φ, for all i �= j . In that case, P(E1 ∪ E2 ∪ . . . ∪ En) = P(E1) +
P(E2) + · · · + P(En) = 1.

Using these three axioms, and the rules of set theory, the basic laws of proba-
bility can be derived. However, the axioms alone are not sufficient to compute the
probability of an outcome, because it requires an understanding of the corresponding
distribution of events. The distribution of events must be established using one of
the following approaches:

1. Collection of experimental data to perform statistical estimates about the under-
lying distributions,
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2. Characterization of processes using theoretical argument,
3. Understanding about the basic processes are helpful to assign subjective proba-

bility.

Some examples of computation of probability are given below. The upper case
variable names represent the sets.

P(A) = count o f (All A)

count o f (all events)
(12.1)

P(A ∩ B) = count o f (All A and B together)

count o f (all B’s)
(12.2)

P(A ∩ B) = P(A | B)P(B)

= P(B | A)P(A). (12.3)

Therefore,

P(A|B) = P(B | A)P(A)

P(B)
. (12.4)

Most of the knowledge we deal with is uncertain, hence the conclusions based
on available evidences and past experiences are incomplete. Many a time it is only
possible to obtain partial knowledge about the outcomes.

12.3 Conditional Probability and Bayes Theorem

The Bayesian networks provide a powerful framework for modeling uncertain inter-
actions between variables in any domain of concern. The interactions between the
variables are represented in two ways: 1. Qualitative way, using directed acyclic
graph, and 2. Quantitative way, which makes use of conditional probability distri-
bution for every variable in the network. This probability distribution-based system
allows to express the relationship between the variables, as functional, relational, or
logical.

Along with the above, the dynamic probability theory provides a mechanism
for revising the probabilities of events in a coherent way, as the evidences become
available. We represent the conditional probability, i.e., the probability of occurrence
of an event A, given that the event B has already occurred, as P(A|B). Note that, if the
events A and B are totally independent, then P(A|B) and P(A) will have the same
result, otherwise, due to its dependency, the occurrence of A will be effected, and
accordingly the probability P(A|B). Here, occurrence of event A is called hypothesis
and occurrence of event B is called as evidence. If we are counting the number of
sample points, we are interested in the fraction of events B for which A is also true,
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i.e., (B ∩ A) is what fraction of B? The meaning of fraction is like the A and B are
fractions of the universe set Ω . In (B ∩ A), both A and B are partly included, which
is also represented as (A, B). From this it becomes clear that

P(A|B) = P(A, B)

P(B)
. (12.5)

The above equation is often written as

P(A, B) = P(A|B)P(B). (12.6)

Equation (12.6) is also called “product rule” or simple form of Bayes theorem. It
is important to note that this form of the rule is not often stated a definition, but a
theorem, which can be derived from simpler assumptions. The term P(A|B) in the
equation is called posterior probability.

The Bayes theorem is used to tell us how to obtain a posterior probability of a
hypothesis A once we have observed some evidence B, given the prior probability
P(A) of event A, and probability P(B|A)—the likelihood of observing B—were A
to be given. The theorem is stated as

P(A|B) = P(B|A)P(A)

P(B)
. (12.7)

The formula (12.7), though simple, has abundant practical importance in the area
such as diagnosis, may it be patient or a fault diagnosis in software or an electric
circuit, or any other similar situation. Note that it is often easier to conclude the
probability of observing a symptom given a disease, than the reverse—that is, of a
disease, given a symptom. Yet, in practice it is the latter (i.e., find out the disease or
fault given the symptom), which is required to be computed. See what the doctors
do, it is the disease (hypothesis) they try to find out given the symptom (evidence).

There are certain conditions under which the Bayes theorem is valid. Let us
assume that there is only one symptom (S) and corresponding only one diagnosis
(D), and having given thiswewill try to extend the formula of theBayes theorem. The
conditional probability for this is expressed as P(S|D), which says about relative
frequency of occurrence of the symptom S when diagnosis D is true. The term
P(S|D) can be expressed by

P(S|D) = |S ∩ D|
|D| , (12.8)

where

|S| is frequency of occurrence of symptom S,
|D| is frequency of the occurrence of diagnosis D, and
|S ∩ D| is frequency of simultaneous occurrence of both S and D.
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The probability P(D|S), called posterior probability or conditional probability
of diagnosis D, assuming a symptom S, is given by Bayes theorem as

P(D|S) = P(S|D)P(D)

P(S)
. (12.9)

The term P(S|D) is called likelihood of symptom S when diagnosis is D, and
P(D) is called prior probability.

The above can be proved as follows:

P(D|S) = |S ∩ D|
|S|

= |D|
|D| ∗ |S ∩ D|

|S|
= |D| ∗ |S ∩ D|

|D| ∗ |S|
= |D| ∗ |S ∩ D|

|D| ∗ 1

|S|
= P(S|D) ∗ P(D)

P(S)
; using Eq. (12.8)

The denominator terms P(S) is called the normalizing factor.

Example 12.1 Suppose that the following statistics hold for some disease:

P(tuberculosis) = 0.012,
P(cough) = 0.10, (for over 3 weeks)
P(cough | tuberculosis) = 0.90, i.e., if a patient has tuberculosis, the coughing
is found in 90% of the cases.

Given this, compute the probability of having tuberculosis, given that coughing
exists in those persons, for over 3 weeks.

P(tuberculosis|cough) = P(cough|tuberculosis) × P(tuberculosis)

P(cough)

= 0.9 × 0.012

0.10
= 0.108.

Hence, the relative probability that a patient who had a tuberculosis was found
to be having also the cough is, 8.33 (= 0.9/0.108) times the probability of finding
tuberculosis in the coughing patients. �
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Relative Probability

The Bayes theorem allows the determination of the most probable diagnosis, assum-
ing the presence of symptoms S1 . . . Sm . The probability is determined using: 1.
a priori probabilities P(Di ) that belong to a set of diagnoses, and 2. likelihood
P(Sj/Di ). The latter is the relative frequency of the occurrence of a symptom Sj

given that the diagnosis is Di . In the Bayes probability, an absolute probability is
not important, but a relative probability Pr is determined. Pr is the probability of a
diagnosis compared to the other diagnoses, which is computed as

Pr (Di |S1 ∧ S2 ∧ . . . ∧ Sm) = P(Di ) P(S1|Di ) . . . P(Sm |Di )

Σn
j=1P(D j ) P(S1|D j ) . . . P(Sm |D j )

. (12.10)

Note that in the above definition, the normalization factor of P(S1 ∧ . . . ∧ Sm),
which is a common denominator, in the numerator and denominator terms, has been
dropped.

Whenwe are consideringmany symptoms, as in the above case, it is necessary that
the correlation of every relevant combination of symptoms to disease be determined.
However, if this happens, it would lead to a combinatorial explosion of diagnoses,
e.g., with 100 all possible symptoms, there are 2100 different constellations of diag-
noses. This figure is more that 1030!

Therefore, while using the Bayes theorem it is always assumed that the symptoms
are independent of each other, i.e., for two symptoms, Si and Sj

P(Si ∧ Sj |D) = P(Si |D)P(Sj |D). (12.11)

The exception to the above is allowed when symptoms are caused directly by the
same diagnosis.

From Eqs. (12.10) to (12.11), it follows that

P(D|S1 ∧ . . . ∧ Sm) = P(S1 ∧ . . . ∧ Sm |D)

P(S1 ∧ . . . ∧ Sm)P(D)

= P(S1|D) . . . P(Sm |D)

P(S1 ∧ . . . ∧ Sm)P(D)
.

The Bayes theorem in the above form is correct, subject to the fulfillment of the
following conditions:

1. The symptoms may depend only on the diagnoses, and must be independent of
each other. This becomes a critical point, when more and more symptoms are
ascertained.

2. The set of diagnoses is complete.
3. Single fault assumption or mutual exclusion of diagnoses—presence of any one

diagnosis automatically excludes the presence of other diagnoses. This criteria is
justified only in a relatively small set of diagnoses.

4. The requirement of correct and complete statistics of prior probabilities (P(D))

of the diagnoses, and conditional symptom-diagnosis probabilities(P(S|D)).
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12.4 Bayesian Networks

The Bayesian network is a graphical representation of the Bayes theorem—a set of
variables represented as cause–effect relations, where variables are nodes and edges
represent the relevance or influence relation between variables. Absence of an edge
between two variables indicates independence of the variables, i.e., nothing can be
inferred about the state of one variable, having given the state of the other variable.
A variable may assume the values from a collection such that this collection is a
mutually exclusive as well as collectively exhaustive set. A variable is allowed to
be discrete—having a finite countable number of states—or it may be continuous—
infinitely many possible states.

The lowercase letters in Bayesian networks represent single variables, while
uppercase letters represent sets of variables. To assign state k to variable x , we
write as x = k. When the state of every variable is comprised in set X , then this
set (an observation) is an instance of X . Set of all the instances is represented by
a universal set U , which is the joint space of all the instances. A joint probability
distribution over setU is the probability distribution over joint spaceU . Considering
X, and Y as sets, the expression P(X |Y ) denotes the joint probability distribution
over the set X , one for each conditional corresponding to every instance in the joint
space of Y .

The Bayesian networks are good for structuring probabilistic information about a
situation in a systematic way. This information is provided in localized and coherent
way. These networks also provide a collection of algorithms, which help in deriving
many information as implications of the conditionals, that can lead to important
conclusions, and decisions about the given situation. These may be for example, in
the area of genetics—mapping genes onto a chromosome, in message transmission
and reception—finding the most likely message that was sent across a noisy channel,
in system reliability—computing the overall reliability of a system, in online sales,
e.g., to identify the most likely users who would respond to a given advertisement,
in image processing, e.g., restoring a noisy image, and so on.

In more technical terms, a Bayesian network is a representation in a compact form
of probability distribution using graphical method. The traditional methods were
usually too large to handle probability and statistics computations, such as using
tables and equations. Typically, a Bayesian network of 100s variables can be easily
constructed and used for reasoning successfully about probability distribution [4].

12.4.1 Constructing a Bayesian Network

Though the definition of a Bayesian network is based on conditional independence,
these networks are usually constructed using the notions of cause and effect. In simple
words, for a given set of variables, we construct a Bayesian network by connecting
every cause to its immediate effect using arrows in that direction. In almost all the
cases, this results in Bayesian networks, whose conditional independence are implicit
and accurate.
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Fig. 12.1 Cause–effect
Bayesian network

c1

c2

cn

e

Figure 12.1 shows a Bayesian network with many causes (c1, c2, . . . , cn) and a
single effect e. Due to this, specification of its local distribution can be quite onerous
in the general case. As per the definition for a Bayesian network, it is necessary to
compute the probability distribution of the node conditional on every instance of its
parents. For example, if a node x has n number of parents, each is binary in nature
(either 0 or 1 only), then we need to specify total 2n probability distributions for the
node x . We can reduce the complexity of this computation in such cases by adding
more structures in the model. For example, we can convert our model into a n-way
interaction model by associating with each cause node an inhibitory mechanism that
prevents the cause from producing the effect. In such a model, the effect will be
absent if and only if all the inhibiting mechanisms associated with the present cause
node are active. And, if any of the inhibiting mechanism for this node is inactive, the
cause node will produce the effect.

12.4.2 Bayesian Network for Chain of Variables

A problem domain is nothing but a set of variables. Thus, a Bayesian network for the
domain {x1, . . . , xn} can represent a joint probability distribution over these variables.
This distribution consists of a set of local conditional probability distribution, that
when combined with a set of assertions of conditional independence, gives a joint
global distribution.

The composition is based on the chain rule of probability (see Fig. 12.2), which
dictates that

P(x1, . . . , xn) =
n∏

i=1

P(xi |x1, . . . , xi−1). (12.12)

For each given variable xi , let us assume that Si ⊆ {x1, . . . , xi−1} is a set of
variables which causes the variable xi , and {x1, . . . , xi−1} to be conditionally inde-
pendent. That is

Fig. 12.2 Chain of domain
variables

x1 x2 x3 xn−1 xn
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P(xi |x1, . . . , xi−1) = P(xi |Si ). (12.13)

The approach to this idea is that the distribution of xi can be represented as condi-
tional on a parent set of Si which is substantially smaller than {x1, . . . , xi−1}. Given
these two sets, a Bayesian network can be represented as a directed acyclic graph
such that each variables x1, . . . , xn corresponds to a node in that graph and the parents
of the node corresponding to the variables in Si . Note that since the graph coincides
with the conditioning set Si , the assertions of the conditional dependence are directly
encoded by the Bayesian network structure. This is expressed in Eq. (12.13).

A conditional probability distribution P(xi |Si ) is associated with each node
xi , such that there is one distribution for each instance of Si . By combining the
Eqs. (12.12) and (12.13), we obtain a Bayesian network for {x1, . . . , xn} which
uniquely determines a joint probability distribution for these variables. That is,

P(x1, . . . , xn) =
n∏

i=1

P(xi |Si ). (12.14)

Because the joint probability distribution for any network can be determined
using Bayesian network for a given domain, this network can be used in principle to
compute any probability of interest. Consider that we are given a simple Bayesian
network, with structure w → x → y → z, and we are interested to find out the
probability “of occurrence of event w given that the event z has already occurred,”
which can be expressed as P(w|z). From the Bayes rule, andmaking use of the above
structure w . . . z, the equation can be expressed as follows.

P(w|z) = P(w, z)

P(z)
=

∑
x,y

P(w, x, y, z)

∑
w,x,y

P(w, x, y, z)
. (12.15)

In the above, P(w, x, y, z) is called the joint probability distribution computed for the
Bayesian network w → x → y → z. On observation of numerator and denominator
terms of Eq. (12.15), we can understand that this approach is not feasible, due to the
reason that it requires summing over exponential number of terms. However, we can
exploit the conditional independence encoded in a Bayesian network to arrive at a
more efficient computation. Using this feature, the network structure of Eq. (12.15)
can be transformed to

P(w|z) =
∑
x,y

P(w, x, y, z)

∑
w,x,y

P(w, x, y, z)

=
P(w)

∑
x

P(x |w)
∑

y
P(y|x)P(z|y)

∑
w

P(w)
∑
x

P(w)P(x |w)
∑

y
P(y|x)P(z|y)

. (12.16)
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Equation (12.16) indicates that using conditional independence (i.e., indepen-
dence of conditional variable), we can often reduce the dimensions of an equation
by rewriting the “sums over multiple variables as a product of sums over a single
variable,” or at least to a lesser number of variables.

A probabilistic inference is a general problem of computing probabilities of inter-
est from a joint probability distribution, which may be possibly implicit. It may be
noted that all the exact algorithms for probabilistic inference using Bayesian net-
works exploit conditional independence in the manner described above.

For drawing probabilistic inferences, it is possible to exploit the conditional inde-
pendence in aBayesiannetwork, however, the exact inference in an arbitraryBayesian
network isNP-hard.1 But, actually, for many applications, the Bayesian networks are
of small size, or they can be simplified sufficiently, such that the complexity issues
are not important. For applications where usual inference are impracticable, there
are equivalent applications existing which are particular network tailored or suited
for specific queries.

12.4.3 Independence of Variables

The notions of independence and conditional independence are fundamentals notions
of probability theory. It is the combination of quantitative information of numerical
parameters and the qualitative information, that makes the probability theory so
expressive. Consider x and y as two variables that are independent of each other.
The corresponding probabilistic expression of occurrence of events corresponding
to these variables is

P(x, y) = P(x)P(y). (12.17)

Given three variables x, y, z, the probability distribution of these can be decom-
posed into a joint probability distribution that comprises terms, each of two variables,
as shown in Eq.12.18 and Fig. 12.3.

P(x, y, z) = P(x, y|z)P(z)

= P(x |z)P(y|z)P(z). (12.18)

For the situation shown in Fig. 12.3, the variables x and y are called marginally
independent, but they are conditional dependent, for a given variable z. It is possible
to convince ourselves using the following example. Let the first variable have the
assignment x = “rain”, and the second is y = “sprinkler on”. When both are True,
they will cause the lawn to become wet.

So far we have not made any observation about the lawn, and occurrence of x
(rain) and y (sprinkler on) are independent. However, once it is observed that the lawn

1NP-Hard: Non-deterministic Polynomial-hard, i.e., whose polynomial nature of complexity is
unknown, and these problems are considered as the hardest problems in Computer Science.
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x y

z

Rain Sprinkler on

Wet lawn

Fig. 12.3 Variables x and y are “Conditionally Dependent Given” z

x z y

Fig. 12.4 Variables x and y are conditionally independent given z

is wet, and it is confirmed that it raining, it automatically influences the probability
of the sprinkler, that it is “on”. This probability distribution is therefore

P(x, y, z) = P(z|x, y)P(x)P(y). (12.19)

The next example shows the cause–effect relationships shown in Fig. 12.4. In this
case, the probability distribution is given by

P(x, y, z) = P(y|z)P(z|x)P(x). (12.20)

12.4.4 Propagation in Bayesian Belief Networks

The aim of constructing a Bayesian network is—for a given observation (evidence),
answer a query about the probability distribution over the values of query variables.
A Bayesian network having full specification contains all the information needed to
answer all the queries of probability distributionover these variables. Thepropagation
of evidence in these networks helps in drawing conclusions. Usually, we make use
of the term “propagation” only, instead of propagation of evidence.

This kind of representation is calledBayesian belief network. The inference in this
network amounts to thepropagationof probabilities of a given and related information
through the network to one or more conclusion nodes. If we consider representing
the knowledge related to a set of variables, say, x1, x2, . . . , xn , using their point
probability distribution, P(x1, x2, . . . , xn), it will require a total of 2n entries to store
the entire distribution explicitly. Further, for the determination of probability say xi

will require summing all the remaining xi , whichwill make it prohibitively expensive
in terms of computation.

However, once it is represented using causal relationships, the joint probability
can be computed much faster. Figure 12.5 shows the cause and effect relationships
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Fig. 12.5 Bayesian belief
network

x1

x2 x3

x4

x5

x6

between variables x1 . . . x5, and the joint probability distribution can be given as

P(x5|x4 ∧ x3)P(x4|x2 ∧ x3)P(x2|x1)P(x3|x1)P(x6|x3)P(x1). (12.21)

Example 12.2 Some examples of Bayesian belief networks.

Following are causal dependencies of variables, their corresponding belief networks,
and probability distributions:

(i) Let W = “Worn piston rings”, that causes O = “excessive oil consumption”,
which in turn causes L = “low oil level in fuel tank”. Figure 12.6 shows the
cause–effect relationships, and the joint probability distribution for this is given
by

P(W, O, L) = P(W ) P(O|W ) P(L|O). (12.22)

(ii) As another example, let W = “Worn piston rings” cause both B = “blue exhaust”,
as well as, L = “low oil level” (see Fig. 12.7). The joint probability distribution
is given by

P(W, B, L) = P(W ) P(B|W ) P(L|W ). (12.23)

(iii) Consider another example, with variables, L = “Low oil level”, which can
be caused either by C = “excessive consumption” or by E = “oil leak” (see
Fig. 12.8). The joint probability distribution is given by

P(C, E, L) = P(C) P(E) P(L|C, E). (12.24)

�

Based on the above discussions, we have the following steps for the construction
of a Bayesian network:

W O L

Fig. 12.6 Bayesian network-1
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Fig. 12.7 Bayesian
network-2

W

B L

Fig. 12.8 Bayesian
network-3

C E

L

Fig. 12.9 Bayesian
network-4

Report(R)

Fire(F)

Smoke(S)

Tempering(T)

Alarm(A)

Leaving(L)

1. Construct belief (event) nodes corresponding to the events,
2. For each node in belief network, make all links corresponding to the cause–effect

relationships,
3. Compute probability at each nodes based on the probabilities of the premises

nodes, and then,
4. Compute the joint probability distribution of the network.

Example 12.3 A Bayesian network for fire security system.

Figure12.9 shows a small network of six binary variables given in Tables 12.1 and
12.2. The use of such networkmay be to compute answers to probabilistic queries, for
example, we may like to know the probability of fire, given that people are reported
to be leaving from the room, or answers for queries like what is the probability of
smoke given that the alarm is off.

A Bayesian network has two components: a structure in the form of a directed
acyclic graph, and a set of conditional probability tables. The acyclic graph’s nodes

Table 12.1 Two-variable table

Fire Smoke P(S|F)

False True 0.01

True True 0.90
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Table 12.2 Four-variable table

Fire(F) Tempering(T ) Alarm(A) P(A|F, T )

True True True 0.50

False True True 0.85

True False True 0.99

False False True 0.0001

correspond to variables of interest (see Fig. 12.9), and the graphs edges have a
formal interpretation in the form of direct causal influences. A Bayesian network
must include the conditional probability tables (CPTs) for each variable quantifying
the relationship between a variable and its parents in the network.

Consider that there are variables A = “Alarm”, F = “tempering”, and F =
“Fire”, each of which may be True or False. Figure 12.9 shows the acyclic graph,
and Table 12.2 shows the conditional probability distribution of A, given its par-
ents as “Fire” and “Tempering”. As per this CPT, the probability of occurrence
of the event A = T rue, given the evidence F = T rue and T = False (row 3),
is P(A = T rue|F = T rue, T = False) = 0.99. This probability is called the net-
work parameter.

The guaranteed consistency and completeness are the main features of Bayesian
networks. The latter is possible because there is one and only one probability distri-
bution, which satisfies the network constraints.

A Bayesian network with n binary variables will induce a unique probability
distribution for over 2n instantiations; such instantiations for the network shown in
Fig. 12.9 are 64. This distribution provides sufficient information to predict prob-
ability for each and every event we can express using variables S, F, T, A, L , R,
appearing in this network. An event may be a combination of these variables with
True/False values. An example of an event may be to found out as “probability of an
Alarm and Tempering, given no smoke, and a report has indicated people leaving the
building.” �
An important advantage of Bayesian networks is the availability of efficient algo-
rithms for computing such probability distributions. In the absence of these networks,
it would require explicit generation of required probability distributions. Generating
suchdistributions explicitly is infeasible for a large number of variables. Interestingly,
in areas such as genetics, reliability analysis, and information theory, the already
existing algorithms are subsumed by the more general algorithms for Bayesian net-
works.

12.4.5 Causality and Independence

We will try to discover the central insight behind Bayesian networks, due to which it
becomes possible to represent large probability distributions in a compact way. Con-
sider Fig. 12.9 and the associated Conditional Probability Tables (CPTs), Tables12.1
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and 12.2. Each probability appearing in a CPT specifies a constraint which must be
satisfied by the distribution induced by the network. Consider that a distribution
must assign the probability of 0.1 to the event of “having smoke without fire”, i.e.,
P(S = T rue|F = False), where S and F are variables, respectively for “smoke”
and “fire”. These constraints, however, are insufficient to help in concluding a unique
probability distribution. So, what additional information we need? This answer lies
in the structure of a Bayesian network; as we know, that additional constraints are
specified by the Bayesian network in the form of probabilistic conditional indepen-
dence. As per that, once the parent of every variable is known, the variable in the
structure is assumed to be independent of its non-descendent parents. Figure12.9
shows that the variable L that stands for “leaving the premises” is taken as indepen-
dent of its non-descendant parents T , F , and S, once its parent A becomes known.
Put differently, as soon as the variable A becomes known, the probability distribu-
tion of variable L will not change on the availability of new information about the
variables T , F , and S.

As a different case in Fig. 12.9, we assume that variable A has no dependence
on variable S (a non-descendant parent of A). This assumption becomes true as
soon as the parents F and T of variable A becomes known. These independence
constraints, due to non-descendant parents are called Markovian assumptions of a
Bayesian network [2].

From the above discussion, do we mean that whenever a Bayesian network is
constructed, it is necessary to verify the conditional non-dependencies? This, in fact
depends on the construction method adopted. There are three main approaches to the
construction of Bayesian networks:

1. subjective construction,
2. a construction based on synthesis from other specifications, and
3. construction by learning from data.

Thefirstmethod in the above approaches is somewhat less systematic, as one rarely
thinks about the conditional independence while constructing a Bayesian network.
Instead, one thinks about causality, i.e., adding an edge Ei → E j , from event Ei

to event E J , whenever Ei is recognized as a direct cause of E j . This results in a
causal structure where Markovian assumption is read as: “each variable becomes
independent of its non-dependents, once direct causes are known.”

A distribution of probabilities induced due to a Bayesian network also satisfies
additional independencies beyond the Markovian. All these independent variables
can be identified using a graphical test, called d-separation.2 As per this test, any two
variables Ei and E j shall be considered to be independent if every path between Ei

and E j is blocked by a third variable Ek . For instance, consider the path α as shown
in Fig. 12.9.

α : S ← F → A ← T . (12.25)

2d-separation: A method to determine which variables are independent in a Bayes net [3].
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Now, consider that alarm A is triggered. The path in Eq. (12.25) can be used to
show a dependency between variables A and T as follows: we know that observing S
(smoke as evidence) increases the likelihood that fire F has taken place. This is due to
the direct cause–effect relation. Also, the increased likelihood that F has taken place
explains away the tempering T as cause of the alarm, i.e., there are lesser chances
that the alarm is due to tempering. Hence, a path in Eq. (12.25) can be used as a
dependence between S and T . Therefore, the variables S and T are not independent
due to the presence of unblocked path between them.

However, instead of variable A, if F is a given variable, this path cannot be used
to show a dependency between S and T , and in that case the path will be blocked
by F .

12.4.6 Hidden Markov Models

The HiddenMarkovModels (HMMs) are useful for modeling dynamic systems with
some states not observable, andwhen it is required tomake inferences about changing
states, given the sequence of outputs they generate. The potential applications of
HMMs are those that require temporal pattern recognition, like speech processing,
handwriting recognition, recognizing gestures, and in bioinformatics [2].

Figure12.10a shows an HMM—amodel of a system with three states a, b, c, and
with three outputs x, y, z, and possible transitions between the states. There is prob-
ability associated with each transition, e.g., there is a transition from state b to c with
20% probability. Each state can produce certain output, with some probability, e.g.,
state b can produce output z with probability 10%. An HMM of Fig. 12.10a has been
represented by a Bayesian network as shown in Fig. 12.10b. There are two variables,
St (for state at time t), and Ot (for system output at time t), with t = 1, 2, . . . , n.
The variable St has three values a, b, c, and Ot also has three values x, y, z. Using
d-separation on this network, one can derive the characteristic properties of HMMs,
i.e., once the system state at time t is known, its states and outputs are independent
at time > t , and also independent at time < t . Figure 12.10b is a simple dynamic
Bayesian network.

a b c S1 S2 S3 Sn

O1 O2 O3 On

(a) HMM (b) Dynamic Basian network.

x y z

.20

.10

Fig. 12.10 Hidden Markov model
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12.4.7 Construction Process of Bayesian Networks

One approach for the construction of Bayesian networks is mostly subjective—
reflecting on the available knowledge in the form of say, perceptions about causal
influences. This knowledge is captured into a Bayesian network, e.g., the network
shown in Fig. 12.9 we discussed earlier.

Automatic Synthesizing of networks

The second method for Bayesian networks construction synthesizes these networks
automatically using some other type of formal knowledge. Many jobs, related to
reliability and diagnosis, require system analysis. A Bayesian network can be auto-
matically synthesized from the formal system design of such systems. We consider
a job of reliability, where a reliability block diagram is used for reliability analysis,
with system components being connected to effect their reliability and dependencies,
as shown in Fig. 12.11a. The various components shown are power supply to power
the Fan-1 and Fan-2, which collectively cool the processor-1 and 2, and these proces-
sors are interfaced to the a hard disk drive. The processor-1 requires the availability
of either Fan-1 or 2, and each fan requires the availability of power supply. We are
interested to compute the overall reliability of the system, i.e., probability of its avail-
ability, given the reliability of each of the components in the system. Figure 12.11b
shows the systematic conversion of each block of the reliability block diagram into
a Bayesian network fragment, where Subsystem-1, Subsystem-2, and Block-B are
assumed to be available [2].

Figure 12.12 shows the corresponding Bayesian network constructed using reli-
ability blocks. Using the reliability of individual components we can construct Con-

Power
supply

Fan1

Fan2

Processor 1

Processor 2

Hard
disk
drive

(a) Reliability block diagram.

OR AND

(b) Bayesian network fragments

Subsystem-2

Subsystem-1

Block B

Subsystem-1

Subsystem-2

Block B

Fig. 12.11 Syntheizing a Bayesian network
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Fig. 12.12 A Bayesian
network for reliability
analysis
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ditional Probability Tables (CPTs) of this system. Consider the variables as follows:
E is for power supply, F1 and F2 for fans, P1, P2 for processors, and D for hard disk.
Let these variables represent the availability of the corresponding component. Let us
assume that variable S represents the availability of the whole system. The variables
Ai and O j represent the logical AN D and O R, respectively.

Network Constructing by learning from data

A third approach for the construction of Bayesian networks works on the principle
of learning from data, like patients medical records, airline ticket records, or buying
patterns of customers, etc. Such data sets can help the network to learn parameters
given the structure of the network, or it can learn both the network and its parameters
when the data set is complete. However, learning only the parameter is an easier task.

Since the learning itself is an inductive task, the learning process is guided using
the induction principle. Two main principles of inductive-based learning are 1. max-
imum likelihood function, and 2. learning using the Bayesian approach. The first
approach is suitable to those Bayesian networks that maximize the probability of
observing the given data set, while the second approach uses some prior information
that encodes preferences on a Bayesian network, along with the likelihood principle.

Let us assume that we are interested in learning the network parameters. Learning
using the Bayesian approach allows to put a prior distribution on each network
parameter’s possible values. The data set and the prior distribution together induce
new distribution on the values of that parameter, called posterior distribution. This
posterior distribution is then used to pick a value for that parameter, e.g. distribution
mean. As an alternative, we can also use different parameter values while computing
answers to queries. This can be done by averaging over to all possible parameter
values according to their posterior probabilities.

Given a Bayesian network as in Fig. 12.12, we can find out the overall reliability
of this system. Also, for example, given that the system is unavailable, we can find
the most likely configuration of the two fans, or the processors. Further, given a
Bayesian network, we can answer the questions such as What single component can
be replaced to increase the system reliability by, say, 10%? These are the example
questions which can be answered in these domains using the principles of Bayesian
probability distributions.
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12.5 Dempster–Shafer Theory of Evidence

The Dempster–Shafer Theory (DST) of evidence can be used for modeling several
single pieces of evidences within a single hypothesis relations,3 or a single piece of
evidence in relations that aremulti-hypotheses type. TheDST is useful for the assess-
ment of uncertainty of a system where actually only one hypothesis is true. Another
approach to DST, called the reliability-oriented approach, contains the system with
all hypotheses—pieces of evidence and data sources. The hypothesis is a collection
of all possible states (e.g., faults) of the system, which is under consideration [5].

In DST, it is a precondition that all hypotheses are singletons (i.e., elements) of
some frame of discernment—a finite universal set Ω , with 2|Ω| subsets. However,
we will write it simply as 2Ω subsets. A subset of Ω is a single hypothesis or a
conjunction of hypotheses. The subsets 2Ω are unique and not all of them disjoint,
however, it is mandatory that all the hypotheses are disjoint and mutually exclusive,
in addition to being unique.

The pieces of evidences above are symptoms or events. An example of a symp-
tom or evidence is the failure that has occurred or may occur in the system. An
evidence is always related to a single hypothesis or to a set of hypotheses (multi-
hypothesis). Though theoretically it can be debated, it is not allowed in DST that
many different evidences may lead to conclude the same hypothesis or the same
collection of hypotheses. A relation between a piece of evidence and a hypothesis
is qualitative, which correspond to a chain of cause–effect relations—an evidence
implies an existence of hypothesis or hypotheses, like in the Bayes rule.

The DST represents a subjective viewpoint in the form of a computation for an
unknown objective fact. The data sources used in DST are persons, organizations,
or other entities that provide the information. Using a data source, the mapping in
Eq. (12.26) assigns an evidential weight to a diagnosis set A ⊆ Ω . Since A ∈ 2Ω ,
the set A contains a single hypothesis or a set of hypotheses. The probability of any
diagnosis A is a function whose value is between 0 and 1, and is expressed by

m : 2Ω → [0, 1]. (12.26)

Note that the difference between DST with probability theory is that, the DST map-
ping clearly distinguishes between the evidence measures and probabilities.

Definition 12.1 (Focal Element) Each diagnosis set A ⊆ Ω , for which m(A) > 0,
is called a focal element.

Definition 12.2 (Basic Probability Assignment) The function m is called a Basic
Probability Assignment (BPA) that fulfills the condition:

∑

A⊆Ω

m(A) = 1. (12.27)

3H → E is a hypothesis relation, where H is hypothesis and E is evidence.
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Meaning of the above statement is that, for the evidences presented by each data
source which are equal in weight, it is necessary that all statements of a single data
source are normalized. In other words, no data source is more important than the
others. We assume that if a data source is null, then its BPA should also be null, i.e.,
m(φ) = 0.

A belief measure is given by the function, which also ranges between 0 and 1,

bel : 2Ω → [0, 1], (12.28)

such that
bel(A) =

∑

B⊆A; B �=φ

m(B). (12.29)

Counterpart of belief (bel) is called plausibility measure pl, which again is a
mapping pl : 2Ω → [0, 1], and is defined as

pl(A) =
∑

B∩A �=φ

m(B). (12.30)

It is important to note that pl(A) above is not be understood as a complement of
bel(A). For a focal element m(A) > 0, and A ⊆ Ω , it always holds that bel(A) ≤
pl(A). The difference between plausibility and belief is evidential interval range,
called uncertainty interval. Thus,

uncertanty interval = pl(A) − bel(A). (12.31)

As we add more and more evidences in the system, the uncertainty interval
reduces, as will be seen in examples in the following. This is a natural and logi-
cal property of DST.

12.5.1 Dempster–Shafer Rule of Combination

The DST allows combination of evidences to predict the hypothesis with a stronger
belief. It is calledDempster’s rule of combination, which aggregates two independent
bodies of evidence, into one body of evidence, provided that they are defined within
the same frame of discernment. The Dempster’s rule of combination combines two
evidences and computes new basic probability assignment as

m(A) = m1 ⊗ m2 (A) =
∑

A=B∩C
m1(B) ∗ m2(C)

1 − ∑
B∩C=φ

m1(B) ∗ m2(C)
. (12.32)
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In the above, A �= φ and numerator part in the equation represent the accumulated
evidences for the sets B and C , that supports the hypothesis A (since A = B ∩ C),
and the denominator is called the normalization factor [5].

12.5.2 Dempster–Shafer Versus Bayes Theory

The Dempster–Shafer Theory (DST) (also called theory of belief functions) is the
generalization of the Bayes theory of conditional probability. To carry out the com-
putation of probability, the Bayes theory requires actual probabilities for each ques-
tion of interest. But in DST, the degree of belief of one question is based on the
probabilities of the related questions. The “degree of belief” may or may not have
real mathematical properties of probability, but, how much they actually differ from
probabilities will depend on how closely the two questions are related.

TheDST is based on two ideas: 1. obtaining degrees of belief for one question from
subjective probabilities of related question, and 2. use Dempster’s rule for combining
such degrees of belief when they are based on independent items of evidence.

The DST differs from the application of Bayes theorem in the following respects:

1. Unlike the Bayes theorem, the DST allows the representation of diagnoses in
the form of classes and hierarchies, as shown in Fig. 12.13.

2. For a probability of X% for a diagnosis, the difference (100 − X)% is not taken
as against the diagnosis, but interpreted as an uncertainty interval. That is, the
probability of diagnosis lies between X% and 100%, and as more and more
evidence is added the diagnosis may tend toward 100%.

3. Probability against a diagnosis is considered as the probability of the complement
of the diagnosis. For example, if an event set is {A, B, C, D}, the probability
against the event “A” is probability of {B, C, D}, which will have further distri-
bution.

In spite of many advantages of DST, evaluation of probabilities in DST is more
complex than in the Bayesian probabilities. This is because, probabilities for a set of
diagnoses are related to one another in DST, hence probability of a set of diagnoses
needs to be calculated from the distribution of probabilities over all sets of diagnoses.

Fig. 12.13 Hierarchy of
evidences
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Example 12.4 Computing Probability distribution of a biased coin.

Consider a biased coin, where the probability of arriving at the head is P(H) = 0.5.
Since it is biased we do not know as to what the rest 50% is attributed to. In the DS
theory, this is called the ignorance level. Since we do not know where the rest of the
probability goes, we assign it to the universe U = {H, T }. Which means that it can
attribute to {T } and {H, T }.

Now let us assume that there is an evidence, that probability for arriving at the tail
is 46%. Due to this new evidence, the balance probability assignment is 1 − 0.45 −
0.46 = 0.09, and this can be assigned to the set {H, T }, that cannot be attributed to
{H} or {T }, unless there is some further evidence available. Hence, 0.09 probability
assigned stands for the coin standing vertical when it is tossed. �

Example 12.5 Using DST for finding probabilities for certain diseases.

Let us assume that in a certain isolated island the universe set of disease is Ω =
{malaria, typhoid, common cold}. A team of Doctors visit this island and perform a
laboratory test (T1) on a patient, which shows that it is the case of 40% for Malaria.
Hence, as per the DS theory, the balance 60% goes to the ignorance level for the
entire universe {malaria, typhoid, common cold}.

Fearing lack of confidence, the Doctors ask the patient for a second laboratory
test, for some other parameters; the evidence now shows a belief case of 30% for
Malaria. Hence, the rest 30% goes to the entire universe {malaria, typhoid, common
cold}. Thus ignorance is 30%.

TheDoctor then asks for a third laboratory test, to further add to the evidences, and
the finding shows that the belief for Typhoid is 20%. This makes the total belief of
90%, and the ignorance level reduces to 10%, which again is assigned to the universe
set {malaria, typhoid, common cold}. �
The above example shows that as more and more evidence is added, we get more
and more strong belief about the distribution of probability on various diagnoses,
and the ignorance level reduces. This, in fact, is what it should be, and the natural
case of reasoning in a probability case.

Let us assume that the kind or errors which can occur in software testing is the
set: {data validation errors, computation errors, transmission errors, output error}. In
this case also we use DST, similar to the cases discussed above, and can compute
the joint probability distribution of errors.

Example 12.6 Find out the distribution of probabilities for some diseases shown
by a hierarchically structured diagnoses as shown in Fig. 12.13. Consider that the
following are the probabilities of certain events: against A = 40%, and evidence for
Y = 70%.

Let event E1 correspond to against A = 40%, and event E2 : correspond to Y =
70%. The evidence against A means evidence for the complement of A, which is the
set of evidences {B, C, D}. From Fig. 12.13, the evidence for Y is evidence for set
{A, B}.



360 12 Reasoning in Uncertain Environments

Table 12.3 Combination of evidences

E1 ↓ E2 → {A, B} = 0.7 {A, B, C, D} = 0.3

{B, C, D} = 0.6 {B} = 0.42 {B, C, D} = 0.18

{A, B, C, D} = 0.4 {A, B} = 0.28 {A, B, C, D} = 0.12

In DST, when the evidences are combined, the probabilities get multiplied and the
resultant set is the intersection of original sets. Table 12.3 shows the new distribution.

The probability of an event or a set of events is expressed not as an absolute value
but an uncertainty interval [a, b], where a and b are lower and upper probability
limits, respectively. The value a is computed as the sum of the probabilities of the
set and its subsets, while b is a value 100 − c, where c is the sum of the probabilities
of complements of the set and complements of the subsets corresponding to a.

The probability range [a, b] for diagnoses {A} and {B} are computed as follows:

For diagnosis {A}:
[a, b] = [{A}, 1 − ({B, C, D} + {B, C} + {B, D} + {C, D} + {B} + {C} + {D} + {})]

= [0, 1 − 0.6] = [0, 0.4].

Hence, the probability of diagnosis {A} lies between 0 and 40%.
We know that in DST, probabilities are multiplied and intersection is performed.

Since probability for {A, B} is 0.7 and for {B, C, D} is 0.6, the probability for {B}
({A, B} ∩ {B, C, D} = {B}) is 0.42. Thus, the probability range for diagnosis B is

[a, b] = [{B}, 1 − ({A, C, D} + {A, C} + {A, D} + {C, D} + {A} + {C} + {D} + {})]
= [0.42, 1 − 0.0] = [0.42, 1].

Hence, the probability for {B} lies between 42 and 100%.
If a further evidence E3 of 20% for D is added, the distribution of probabilities

is changed as shown in Table 12.4.
The empty bracket {} shows that there is no diagnosis attributed to this fraction

of probability. Since it is assumed that the set of diagnoses are complete, we can

Table 12.4 Combination of evidences after a new evidence E3 is added

E1&E2 ↓ E3 → {D} = 0.2 {A, B, C, D} = 0.8

{B} = 0.42 {} = 0.084 {B} = 0.336

{A, B} = 0.28 {} = 0.056 {A, B} = 0.224

{B, C, D} = 0.18 {D} = 0.036 {B, C, D} = 0.144

{A, B, C, D} = 0.12 {D} = 0.024 {A, B, C, D} = 0.096
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eliminate the empty set and the remaining sets of the probabilities can be taken as
100%. This can be done by dividing all probabilities of non-empty sets by a factor
equal to (1 − s), where s is the sum of the probabilities of empty sets. For this
example, s = 0.084 + 0.056 = 0.14 and 1 − s = 1 − 0.14 = 0.86. Now, the sum
of probabilities without an empty set is 1.0. Next, we obtain the following results
using Dempster’s rule of combination.

{B} = 0.336

0.86
= 39.0%

{D} = 0.06

0.86
= 7.0%

{A, B} = 0.224

0.86
= 26.0%

{B, C, D} = 0.144

0.86
= 16.8%

{A, B, C, D} = 0.096

0.86
= 11.2%.

The probabilities for {A} and {B} are computed as follows:

{A} = [{A}, 1 − ({B, C, D} + . . . + {B} + {D})] = [0, 0.372], i.e., 0–37.2%.
{B} = [{B}, 1 − ({A, C, D} + . . . + {D})] = [0.39, 0.93], i.e., 39–93.0%. �

From the above exercise, we note that the uncertainty interval (probability of
{A, B, C, D}) has decreased after addition of new evidence E3. In addition, the
probabilities of A and B have turned out to be more precise, i.e., narrow.

However, we note that the computation required in DST is combinatorial, since
with n diagnoses a total of 2n number of sets need to be computed [7].

12.6 Fuzzy Sets, Fuzzy Logic, and Fuzzy Inferences

In classical set theory, an element x of the universe U either absolutely belongs to
a set A ⊆ U or does not belong to it at all. This membership relation between the
element x and set A is called crisp, i.e., either Yes/No (or On/Off). A fuzzy set is a
generalization of a classical set by allowing the degree of membership, which is a
real number [0, 1]. In extreme cases the degree is 0, i.e., the element does not belong
to the set or 1, or the element fully belongs to the set.

To understand the idea of a fuzzy set, let us assume that people in an organization
are the universe and consider a set of “young” people in this universe. The youngness
is definitely not a step function from 1 to 0, as one attains a certain age, say 30 years.
In fact, it would be natural if we associate a degree of youngness for each element of
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age, for example, ({Anand/1, Babita/0.8, Choudhary/0.3}). Thatmeans, perhaps
Anand is 23 years old, Babita is 27 years old, and Choudhary is in his 50s. The
membership function of a set maps each element of the universe to some degree of
association with the set.

The fuzzy set concept is somewhat similar to the concept of the set in the classical
set theory. When we say, “Sun is a star”, it means the Sun belongs to the set of stars,
and when we say, “Moon is a satellite”, it means the Moon belongs to the set of
satellites of the Earth. At the same time, both these statements are true, hence, they
both map to true or 1. The statement “the Sun is a black hole” is false as it does
not belong to the set of blacks holes yet. Hence, the statement maps to false or 0.
Thus, mapping of a statement in classical logic is either to 1 and 0, having crisp
values. Since, with each statement in the classical set theory having logical value 0
or 1, the set of these statements is called a crisp set, and also, these sets have a logic
associated, (T/F) due to the membership of their elements. Thus, sets and logic are
two sides of the same coin, they go together. Various properties of fuzzy sets, like
relations, logic, and inferences, have counterparts in the classical sets [1].

To propose a formal representation, a fuzzy set A is represented as A = { u
a(u)

| u ∈
U }, where u is an element, and a(u) the membership function, called characteristic
function, and represents the degree of belongingness; U is universe set. The notation
u ∈ U means “every u ∈ U”.

The Fuzzy operations have counterparts operations in classical set theory as union,
intersection, complement, binary relation, and composition of relations.

The common definitions of fuzzy set operations are as follows.

A ∪ B =
{ u

max(a(u), b(u))
| u ∈ U

}
(12.33)

A ∩ B =
{ u

min(a(u), b(u))
| u ∈ U

}
(12.34)

and complement of A is expressed as

A′ =
{ u

1 − a(u)
| u ∈ U

}
. (12.35)

It is possible to derive fuzzy versions of familiar properties of ordinary sets, such
as commutative laws, associative laws, and De Morgan’s laws, based on the above
definitions [6].

The definition of fuzzy logic has semantic issues also; as per that fuzzy logic
it has two different senses: 1. It is a logical system, which is aimed to formalize
the approximate reasoning, 2. It is rooted in a multivalued logic, but its objective is
quite different from traditional multivalued logical system. It accounts for a concept
of linguistic variables (large, small, big, old, cloudy, etc.), canonical form, fuzzy
if-then rule, fuzzy quantifiers, etc. In a broad sense, fuzzy logic is governed by the
fuzzy set theory.
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Fig. 12.14 Linguistic and numerical variable “young”

The fuzzy arithmetic, fuzzy mathematical programming, fuzzy topology, fuzzy
graph theory, and fuzzy data analysis are other branches of fuzzy set theory. It is
indeed quite likely that most theories will be fuzzified in this way. The impetus
for the transition from a crisp set theory to fuzzy theory results from the fact that
both—the applicability to real-world problems and generality of the theory—are
substantially enhanced when the concepts of a set are replaced by a fuzzy set.

The concept of a linguistic variable plays a central role in the applications of fuzzy
logic. Consider the linguistic variable, say Age whose values are young, youth, and
old, with “young” defined by a membership function μ as shown in Fig. 12.14. It is
interesting to note that a numerical value such as 25 years is definitely simpler than a
function like young. The value young represents a choice out of three values—young,
youth, old—but 25 represents a choice, which is out of 100 values. Consequently,
the linguistic variable young may be viewed as a method of data compression.

We achieve the same effect in quantization (conversion of an integer into a binary
number), where the values are in intervals. In contrast to quantization, the values
are overlapping in fuzzy sets. The advantage of granulation over quantizations are 1.
granulation is more general, 2. it mimics the way humans interpret linguistic values
(i.e., not as intervals), and 3. a transition from one linguistic value to the next higher
and lower is gradual rather than abrupt. This results in a continuity and robustness
of the system.

12.6.1 Fuzzy Composition Relation

Let us assume that A and B are fuzzy sets of universes U and V , respectively. The
Cartesian productU × V is defined just like for ordinary sets.Wedefine theCartesian
product A × B as follows,

{ (u, v)

min(a(u), b(v))
| u ∈ U, v ∈ V

}
. (12.36)
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Every fuzzy binary relation (or a mapping relation or fuzzy relation), from fuzzy
set U to fuzzy set V , is a fuzzy subset of relation R defined below. Here m(u, v) is
called a membership function, having the range [0, 1].

R : U × V =
{ (u, v)

m(u, v)
| u ∈ U, v ∈ V

}
. (12.37)

A fuzzy relation R from set A to B can be defined as

RAB =
{ (u, v)

m(u, v)
| m(u, v) ≤ a(u), m(u, v) ≤ b(u), u ∈ U, v ∈ V

}
. (12.38)

Consider that a similar relation RBC exists from fuzzy set B to C . As in classical
sets, a composition relation of relations RAB and RBC , i.e., RAB ◦ RBC is obtained
as

RAB ◦ RBC =
⋃ {

max
[ (a, c)

min(m R(a, b), mS(b, c))

]}
. (12.39)

The fuzzy sets are extensions andmore general forms of ordinary sets; accordingly,
the fuzzy logic is an extension of the ordinary logic. Just as there are correspondences
between ordinary sets and ordinary logic, there exists correspondence between fuzzy
set theory and fuzzy logic. For example, the set operations of union (OR), intersection
(AND), and complement (NOT) exists in classical set theory (classical logic) aswell as
in fuzzy system. The degree of belongingness of an element in a fuzzy set corresponds
to the truth value of the proposition in fuzzy logic.

A fuzzy implication is viewed as describing a relation between two fuzzy sets.
Using fuzzy logic we can represent a fuzzy implication such as A → B, i.e., if “A
then B”, where A and B are fuzzy sets. For example, if A is fuzzy set young, and B
is fuzzy set small, then A → B may mean, if young then small. A simple definition
is A → B = A × B, where A × B is the Cartesian product of fuzzy sets A and B.

12.6.1.1 Inferencing in Fuzzy Logic

Let R be a fuzzy relation from set U to V (i.e., R : U → V ), X be a fuzzy subset of
U , and Y be a fuzzy subset of V . Given these, we can define a composition rule of
fuzzy inference as

Y = X ◦ R (12.40)

where Y is said to be induced by X and R. A fuzzy inference is based on fuzzy
implication and the compositional rule of inference. A fuzzy inference is defined as
follows:

Given:
Implication: “If A then B”
Premise: “X is true”,
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Derive:
Conclusion Y .

To derive a fuzzy inference, we perform the following steps:

1. Given, “if A then B”, compute the fuzzy implication as a fuzzy relation, R =
A × B,

2. Induce Y by Y = X ◦ R.

12.6.2 Fuzzy Rules and Fuzzy Graphs

We have noted that linguistic variable in fuzzy logic behaves as a source of data
compression, as a linguistic variable may stand for a large number of values. The
fuzzy logic, in addition, provides fuzzy if-then rule or simply the fuzzy rule, and a
fuzzy-graph. The fuzzy rule and fuzzy graph bear the same relation to numerical
value dependencies that the linguistic variable has with numerical values [8].

Figure 12.15 shows a fuzzy graph f ∗ of a function dependence f : X → Y ,
where X ∈ U , Y ∈ V , are linguistic variables. Let the set of values in linguistic
variables X and Y be Ai , Bi , respectively. This graph is an approximate compressed
representation of f in the form of f ∗ as

f ∗ = A1 × Bi + A2 × B2 + . . . + An × Bn, (12.41)

which is equal to

f ∗ =
n∑

i=1

Ai × Bi . (12.42)

Ai , Bi (for i = 1 . . . n) are called contiguous fuzzy subsets of sets U and V ,
respectively. Also, Ai × Bi is the Cartesian product of Ai , Bi , and “+” in Eq. (12.41)
represents the operation of disjunction—a union operation. When expressed more
explicitly in the form of membership functions, we have

Fig. 12.15 A function and
corresponding fuzzy graph Y

XAi

Bi

f

f∗

Ai × Bi

(Fuzzy point)
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Table 12.5 Fuzzy relation
f ∗ f ∗ A B

A1 B1

A2 B2

. .

An Bn

μ f ∗(u, v) = Vi (μAi ∧ μBi ). (12.43)

where μ is the membership function. The operation of ∧ is min, ∨ is max, u ∈ U ,
and v ∈ V .

A fuzzy graph can also be represented as a fuzzy relation f ∗, as shown in
Table 12.5.

Also, a fuzzy graph can be represented as a collection of if-then rules as follows:

f ∗ : i f X is A1 then Y is B1

i f X is A2 then Y is B2

. . .

i f X is An then Y is Bn. (12.44)

In other words, “(X, Y ) is Ai × Bi”. Given a fuzzy if-then rule set as follows,

f ∗ : i f X is small then Y is large

i f X is medium then Y is medium

. . .

i f X is large then Y is small. (12.45)

This rule can be represented equivalently as a fuzzy graph (see Fig. 12.16) using the
fuzzy expression for f ∗,

f ∗ = small × large + medium × medium + · · · + large × small. (12.46)

An important concept in a fuzzy graph is any type of function (or relation) that can
be approximated by a fuzzy graph. For example, a normal distribution for probability

Fig. 12.16 Fuzzy graph for
a fuzzy relation (Eq.12.46) f

f∗

X
0

Y
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Fig. 12.17 Fuzzy graph for
a probability distribution

P

X
0

is represented as a fuzzy graph, as shown in Fig. 12.17. This representation is useful
in decision-making and fault diagnosis. Here, the probability P is represented by

P = small × medium + medium × large + large × small. (12.47)

The constraint for probability is that it sums to 1, i.e., Σi Pi = 1.

12.6.3 Fuzzy Graph Operations

The interesting point in fuzzy calculus is that it aims to develop computational pro-
cedures for basic operations on fuzzy graphs. These operations are generalizations
of basic operations on crisp sets and functions, and can be defined as follows: The
required computations can be simplified if the operation of “∗” is taken as mono-
tonically increasing. That is, if a, b, a′, and b′ are real numbers, then the following
holds:

a′ ≥ a, b′ ≥ b ⇒ a′ ∗ b′ ≥ a ∗ b

a′ ≤ a, b′ ≤ b ⇒ a′ ∗ b′ ≤ a ∗ b. (12.48)

From these operations, it can be easily deduced that “∗” is a distributive operator
over “∨ (max)” and “∧ (min)”. Accordingly,

a ∗ (b ∨ c) = a ∗ b ∨ a ∗ c

a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c. (12.49)

From the above, we conclude that if

f ∗ =
∑

i

Ai × Bi (12.50)

is a fuzzy graph and C is a fuzzy set, then

C ∗ (∑

i

Ai × Bi
) =

∑

i

C ∗ (Ai × Bi ). (12.51)
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Fig. 12.18 Basic operations on functions and relations of fuzzy sets

Consider finding the intersection of fuzzy graphs (Fig. 12.18) f ∗ and g∗, where

f ∗ =
∑

i

Ai × Bi (12.52)

and
g∗ =

∑

j

C j × D j . (12.53)

From f ∗ and g∗, we obtain the fuzzy intersection as

f ∗ ∩ g∗ =
∑

i, j

(Ai × Bi ) ∩ (C j × D j ) (12.54)

and, the view of distributivity of “∩” ultimately reduces to

f ∗ ∩ g∗ =
∑

i, j

(Ai ∩ C j ) × (Bi ∩ D j ). (12.55)

These operations on fuzzy functions and fuzzy relations are shown in Fig. 12.18.



12.6 Fuzzy Sets, Fuzzy Logic, and Fuzzy Inferences 369

12.6.4 Fuzzy Hybrid Systems

Different forms of hybrid systems are designed as combinations of Fuzzy Logic,
Neural Networks, andGenetic Algorithms. The fundamental concepts of such hybrid
systems is to complement each other’s weaknesses, that creates a new approach to
solving problems. For example, in fuzzy logic systems, there is no learning capability,
there is no memory, and there is no capability of pattern recognition. Fuzzy systems
combined with neural networks will have all these three capabilities.

Fuzzy systems are extensively used for control, like fuzzy controllers, specially
fuzzy PID (proportional, integral and derivative) controllers.

In spite of their wider applicability, the fuzzy systems have the following lim-
itations: The stability is a major issue in their control. There is no formal theory
guaranteeing their stability. Fuzzy systems have no memory and lack the learning
capabilities. Determining good membership functions and tuning fuzzy systems are
not always easy. In addition, verification and validation of fuzzy systems require
extensive testing. In light of these limitations, the fuzzy systems are being used more
and more, and they become better suited when combined with the neural networks
and genetic algorithms.

12.7 Summary

Probability and Bayes theorem
In classical logic, a proposition is always taken as either true or false, while in real
life, truth value of a proposition may be known only with a certain probability. This
requires probabilistic reasoning.Twobasic approaches for reasoning areprobabilistic
reasoning and non-monotonic reasoning.

Many different methods exist for representing and reasoning with uncertain
knowledge, these include Bayesian networks, Dempster–Shafer theory, possibilistic
logic, and fuzzy Logic.

Bayesian networks offer a powerful framework for the modeling of uncertainties.
These networks are represented in two different ways: (1) Qualitative approach, by
means of directed acyclic graphs, and (2) Quantitative approach, by specifying a
conditional probability distribution for every variable present in the network. The
conditional probability is represented by

P(A|B) = P(A, B)

P(B)
(12.56)

where comma denotes the conjunction of events.
The Bayes theorem is used to find out conditional probability. The theorem is

stated as

P(A|B) = P(B|A)P(A)

P(B)
. (12.57)
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In a Bayesian network, a node corresponds to a variable, which assumes values
from a collection ofmutually exclusive and collective exhaustive states, and the edges
represent relevance or influences between variables. As per the definition of Bayesian
networks, it is required to access the probability distribution of the node conditional
on every instance of its parents. Thus, if a node has n-binary-valued parents, there
are 2n probability distributions for that node. A probabilistic inference is nothing
but computing probabilities of interest from a (possibly implicit) joint probability
distribution. All exact algorithms for probabilistic inference in Bayesian networks
exploit the criteria of conditional independence.

Solving the problem of finding the exact inference in an arbitrary Bayesian net-
work is NP-hard.

The inferencing in a network amounts to propagation of probabilities of a given
and related information through the network to one ore more conclusion nodes.

The subjective approach for the construction of Bayesian networks reflects on the
available knowledge (typically, perceptions about causal influences). Other method
for Bayesian networks is based on automatically synthesizing these networks for the
purpose of reliability and diagnosis. This approach is used to synthesize a Bayesian
network automatically with the help of formal knowledge of system design.

The third method for constructing Bayesian networks is based on learning from
data, such asmedical records, customers’ purchases data, or data records of customers
applied for finances. These data sets are used to learn the network parameters, given
their structures, or can learn both the structure and network parameters.

Dempster–Shafer Theory

The Dempster–Shafer Theory (DST) of evidence is used to model several single
pieces of evidence within a single hypothesis relations, or a single piece of evidence
within multi-hypotheses relations.

The combination rule of DST aggregates two independent bodies of evidence
into one body of evidence, provided that they are defined within the same frame of
discernment.

The DST is based on two ideas: 1. to obtain the degree of belief for one question
using the subjective probabilities of a related question, and 2. making use of Demp-
ster’s rule to combine degrees of two belief which are based on independent items
of evidence.

In DST, the difference (100 − X)% with respect to a probability of X% for a
diagnosis is not valued against the diagnosis, but interpreted as anuncertainty interval,
i.e., the probability of a diagnosis is not X%, but lies between X and 100%.

Evaluation of probabilities in DST is more complicated than in Bayes theorem,
because the probabilities for a set of diagnoses must be related to one another, and the
probability of a particular set of diagnoses must be calculated from the distribution
of probabilities over all sets of diagnoses.

Fuzzy logic, sets, and reasoning

A fuzzy set is a generalization of ordinary set by allowing the degree ofmembership a
real number [0, 1], in contrast to themembership of 0 and 1 in ordinary set theory. The
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fuzzy operations that have counterparts in classical set theory are union, intersection,
complement, binary relation, and composition of relations.

Other branches of fuzzy set theory are fuzzy mathematical programming, fuzzy
arithmetic, fuzzy topology, fuzzy graph theory, and fuzzy data analysis.

In fuzzy logic systems, there is no learning capability, nomemory, and no capabil-
ity of pattern recognition. Fuzzy systems combined with neural networks will have
all these three capabilities.

Different forms of hybrid systems are constructed using a combination of fuzzy
logic and other areas. These are Fuzzy-neuro systems, Fuzzy-GA (fuzzy and genetic
algorithms), and Fuzzy-neuro-GA. They help to complement each other’s weak-
nesses, and create new systems that are more robust to solving problems.

Exercises

1. We assume a domain of 5-card poker hands out of a deck of 52 cards. Answer
the following under the assumption that it is a fair deal.

a. How many 5-card hands can be there (i.e., number of atomic events in joint
probability distribution).

b. What is the probability of an atomic event?
c. What is the probability that a hand will comprise four cards of the same

rank?

2. Either prove it is true or give a counterexample in each of the following state-
ments.

a. If P(a | b, c) = P(a), then show that P(b | c) = P(b).
b. If P(a | b, c) = P(b | a, c), then show that P(a | c) = P(b | c).
c. If P(a | b) = P(a), then show that P(a | b, c) = P(a | c).

3. Consider that for a coin, the probability that when tossed the head appears up is
x and for tails it is 1 − x . Answer the following:

a. Given that the value of x is unknown, are the outcomes of successive flips
of this coin independent of each other? Justify your answer in the case of
head and tail.

b. Given that we know the value of x , are the outcomes of successive flips of
the coin independent of each other? Justify.

4. Show that following statements of conditional independence,

P(X | Z)P(Y |Z) = P(X, Y | Z)
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are also equivalent to each of the following statements,

P(Y | Z) = P(Y | X, Z),

and
P(X | Z) = P(X | Y, Z).

5. Out of two new nuclear power stations, one of them will give an alarm when
the temperature gauge sensing the core temperature exceeds a given threshold.
Let the variables be Boolean types: A = alarm sounds, F A =alarm be faulty, and
FG = gauge be faulty. The multivalued nodes are G = reading of gauge, and T
= actual core temperature.

a. Given that the gauge is more likely to fail when the core temperature goes
too high, draw a Bayesian network for this domain.

b. Assume that there are just two possible temperatures: actual and measured,
normal and high. Let the probability that the gauge gives the correct reading
be x when it is working, and y when it is faulty. Find out the conditional
probability associated with G.

c. Assume that the alarm and gauge are correctly working, and the alarm
sounds. Find out an expression for the probability in terms of the various
conditional probabilities in the network, that the temperature of the core is
too high.

d. Let the alarm work correctly unless it is faulty. In case of being faulty, it
never sounds. Give the conditional probability table associated with A.

6. Compute the graphical representationof the fuzzymembership in the graph12.19
for following set operations:

a. Small ∩ T all
b. (Small ∪ Medium)–T all

Fig. 12.19 Membership
functions: Small, Medium,
Tall

Small

Medium

Tall
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7. Given the fuzzy sets A = { a
0.5 ,

b
0.9 ,

e
1 }, B = { b

0.7 ,
c
0.9 ,

d
0.1 }, Compute A ∪ B, A ∩

B, A′, B ′.
8. Let X = {a, b, c, d, e}, A = { a

0.5 ,
c
0.3 ,

e
1 }. Compute:

a. Ā
b. Ā ∩ A
c. Ā ∪ A
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