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Abstract In this chapter, overviewed are hardware-based spiking artificial neurons
that code neuronal information by means of action potential, viz. spike, in hardware
artificial neural networks (ANNs). Ongoing attempts to realize neuronal behaviours
on Si ‘to a limited extent’ are addressed in comparison with biological neurons.
Note that ‘to a limited extent’ in this context implicitly means ‘sufficiently’ for
realizing key features of neurons as information processors. This ambiguous defin-
ition is perhaps open to a question as to what neuronal behaviours the key features
encompass. The key features are delimited within the framework of neuromorphic
engineering, and thus, they approximately are (i) integrate-and-fire; (ii) neuronal
response function, i.e. spike-firing rate change upon synaptic current; and (iii) noise
in neuronal response function. Hardware-based spiking artificial neurons are aimed
to achieve these goals that are ambitious albeit challenging. Overviewing a num-
ber of attempts having made up to now illustrates approximately two seemingly
different approaches to the goal: a mainstream approach with conventional active
circuit elements, e.g. complementary metal-oxide-semiconductor (CMOS), and an
emerging one with monostable resistive switching devices, i.e. threshold switches.
This chapter will cover these approaches with particular emphasis on the latter. For
instance, available types of threshold switches, which are classified upon underlying
physics will be dealt with in detail.

1 Introduction

Neuromorphic systems based on full hardware artificial neural networks consist
of a complex array of building blocks encompassing artificial neuron and synapse
devices. The artificial neuron represents the information—input synaptic current—
which it receives by relaying the corresponding response to neighbouring neurons via
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synapses. Namely, the neuron encodes the input information into a particular form
of response and the response is subsequently processed by the synapses and further
encoded by the bridged neurons. Encoded information at the outset, for instance, by
sensory neurons flows throughout the entire network by repeating the aforementioned
process. The neuron is therefore required to represent information clearly in order to
prevent information loss in the network. Hereafter, a device in charge of information
representation in a neuromorphic system is referred to as an artificial neuron—in
short, neuron—for simplicity, at times its behaviour is barely biologically plausible
though.

Choice of type of an artificial neuron depends upon the dimension of a neu-
romorphic system—including time frame, i.e. dynamic system, leads to an addi-
tional request for dynamic neuronal behaviour—and the information type in use
such as binary, multinary, and analogue. The simplest case is when the neuromor-
phic system disregards time frame, i.e. static, and employs information in binary;
time-independent binary neurons that merely represent 1 bit of information meet the
requirements. For instance, a summing amplifier—summing inputs from adjacent
neurons—in conjunctionwith a single transistor, representing binary states—channel
on and off (log2n and n = 2, where n denotes the number of states)—upon the input
in total, perhaps successfully works as an artificial neuron in this simplest system.
Employing multinary or analogue information in the neuromorphic system requires
the neuron to exhibit various states (n > 2) for log2n bit of information; for instance,
a transistor, working in the subthreshold regime, and thus representingmultiple states
of channel conductance, may meet the need. Note that the use of multinary informa-
tion gains the remarkable benefit that the same amount of information is represented
by much less number of multinary neurons than binary neurons if preventing the
response variability upon the same input and the consequent information loss [1, 2].
Later, this variability-induced information loss will be addressed in detail from the
perspective of information decoding.

When it comes to time-dependent (dynamic) neuromorphic systems, the neuron
should introduce a time-varying response to the input in total, which also varies
in time, rendering the neuron complicated. If binary, the input elicits all—or—
nothing output. The rest case, dynamic and multinary information-utilizing neu-
romorphic systems, is most biologically plausible regarding information represen-
tation by biological neurons. As for the dynamic binary system, the response of the
neuron should be reliably distinguished in time. Besides, the response should vary
upon the input in order for the response to be decodable. For instance, in case of
a single-pulse output, the response may be parameterized by pulse height and/or
width—varying with respect to the input—and used in information representation.
A number of different types of neurons and their outputs can be used in such a
system as far as they meet the aforementioned requirements and are compatible
with the synapse as a whole in the system. Regarding the root of neuromorphic
engineering, our intuition perhaps leads us to use the most biologically plausible
one—satisfying fidelity to key features of biological neurons—among the possi-
ble candidates. Thus far, a great deal of effort on building biologically plausible
artificial neurons—hereafter such a type of a neuron is referred to as spiking neuron—
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has been made by capturing key features of biological neurons and then realizing
them by means of electric circuit components [3].

The forthcoming Sects. 1.1–1.3 are dedicated to addressing essential characteris-
tics of biological neurons, which artificial neurons are required to reflect. Sect. 1.4 is
dedicated to introducing in silico—computational—neuronmodels that also form the
basis of hardware artificial neurons. Section2 addresses the state-of-the-art spiking
artificial neurons being classified as silicon neuron (SiN), realized by very-large-scale
integration (VLSI) circuits, and functional materials-based emerging technologies.

1.1 Biological Neurons

Biological neurons (also known as nerve cells) are a living electrochemical system
being made of a lipid membrane containing ion channels and pumps. A schematic
of a biological neuron is illustrated in Fig. 1. The membrane separates intracellular
and extracellular media in which there exist significant differences in concentration
of important ions, e.g. Na+,K+,Ca2+, and Cl−, between the media. Na+, Cl−, and
Ca2+ are rich in the extracellular medium whereas K+ and fixed anions—in the
sense that they cannot diffuse out through ion channels—such as organic acids and
proteins, are rich on the other side. Namely, for each ion, chemical potential through
the membrane is not equal. In the resting state, the extracellular charge in total
is positive, whereas the total charge in the intracellular medium is negative as a
whole; that is, the resting state indicates electrical polarization, leading to electric
field, e.g. electrostatic potential gradient, evolution through the lipid membrane.
This potential difference caused by the difference in chemical potential between
the two sides of the membrane is referred to as the Donnan potential [4], which
tends to recover the equilibrium distribution—no chemical potential gradient—of
each ion. This ionic distribution is not spontaneous configuration as being far from
energy-minimizing conditions; work should be done by a third party to maintain the
polarized state, raising the internal energy. Ion pumps embedded in the membrane

Fig. 1 Schematic of neurons
and chemical synapses
in-between. The grey and the
orange neurons denote a
presynaptic and a
postsynaptic neurons,
respectively. The blue
arrows indicate the spike
propagating direction—from
the pre- to the postsynaptic
neuron
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are in charge of the work by pumping out ions in order for the resting state to be
maintained [5]. Ion pumps consume chemical energy that is subsequently converted
into electrical energy as for batteries [6]. They are known as sodium–potassium
adenosine triphosphatase (Na+/K+−ATPase), which drive Na+ and K+ ions—two
important ions in membrane potential maintenance—into and out of the intracellular
fluid, respectively.

Temporary breakdown of the resting state occurs upon significant fluctuation in
ion concentration in the intracellular fluid. In particular, Upon release of chemi-
cal messengers, i.e. neurotransmitters, at a chemical synapse, N-methyl-D-aspartate
receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic recep-
tor (AMPAR) open their ion channels, so that both monovalent ions, e.g. Na+ and
K+, and divalent ions, e.g. Ca2+, are able to diffuse into the intracellular fluid,
leading to breakdown of the resting state ion concentration [7]. The inward diffu-
sion corresponds to synaptic current that is of significant importance in spiking.
Such concentration fluctuation causes a change in membrane potential regarding the
aforementioned origin of the potential. Given that Na+ and K+ ion channels are
voltage-gated [5], the change in the membrane potential can determine the channel
conductance. However, the consequent change in the membrane potential should
be larger than a threshold for the channel opening; otherwise, the change lasts for
a short time without leading to any significant phenomena. Thus, introduction of
synaptic current—sufficing for large potential evolution—opens voltage-gated Na+
and K+ channels, and thus, the resting state ion distribution is locally destroyed by
inward Na+ ions and outward K+ ions through their characteristic ion channels. As
a consequence, the membrane undergoes depolarization—down to almost zero volt
or sometimes polarity reversal occurs.

Once such local depolarization occurs, ion pumps do not let the membrane main-
tain the depolarization and recovers the resting state ion distribution, and thus mem-
brane potential. Meanwhile, this local depolarization in turn affects adjacent Na+
and K+ ion channels and the same depolarization procedure keeps being repeated
throughout the entire axon down to the end of the axon that is termed as axon
terminal—similar to dominoes [6]. Therefore, so far explained procedure in both
time and spatial frames produces an action potential also known as spike and it prop-
agates along the axon in due course. Neurons in a neural network communicate by
firing spikes and receiving them. To be precise, a train of spikes, rather than a single
spike, appears used in the communication, which enables representation of analogue
information in terms of spike frequency also known as activity.

1.2 Neuronal Response Function

The biological neuron locally fires a spike if and only if the membrane potential
goes above the threshold, which is attributed to synaptic current injection through
channels such as NMDAR and AMPAR. For the time being, the question as to how
these purely electrochemical phenomena are in association with information repre-
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sentation arises. To answer this question, we need to elucidate the electrochemical
phenomena in regard to a relationship between input and output and define types of
both analogue input and output. Given that synaptic current injection initiates spik-
ing at the outset, synaptic current works as input, varying its quantity upon synaptic
weight. Synapse in this chapter implies chemical synapse unless otherwise stated.
Synapses are spatially discrete given that each neuron has an immense number of
synapses. Also, the synaptic current through them varies in time upon arrival of a
train(s) of spikes from the presynaptic neuron. Fortunately, the membrane of the
neuron resembles a capacitor that integrates the synaptic current varying in metric
as well as temporal space. The integrated synaptic current at given time is therefore
typically taken as input value. Activity—the number of spikes per unit time or at
times per particular time period—caused by the input is typically regarded as output;
that is, a train of spikes, rather than a single spike, is of concern in determining output
value. Note that evaluating time-varying activity is fairly complicated, in particular,
when the synaptic current varies in time—this situation is very often encountered in
in vivo experiments. There exist several methods in the linear-filtering framework
with different linear filters (see Ref. [8]).

The activity tends to increase with synaptic current and this tendency is the sub-
strate of the neuronal response function that enables representation of analogue infor-
mation. Given the role of themembrane as a capacitor, the larger the synaptic current,
the sooner the membrane potential hits the threshold for spiking and the more there
exist spikes in a unit time. This tendency holds for stereotypical neurons, the detailed
behaviour is rather complicated in the light of presence of refractory time though.
A relation between activity and synaptic current is referred to as a gain function,
providing the key features of the tuning function [9]. From a perspective of infor-
mation coding, the gain function provides single neuron’s ability to encode a large
number of different inputs—in comparison with digital components such as a tran-
sistor representing merely 1 bit of information—and make them distinguishable by
the output, i.e. very clearly decodable in one-to-one correspondence. However, bio-
logical neurons are noisy [10–12], in particular, in vivo neurons, so that a great deal
of information is lost. Neuronal noises and related information loss will be addressed
in the following subsection in detail.

1.3 Neuronal Noises

Neuronal behaviour, particularly in vivo behaviour, is noisy including a number of
unpredictable features.Neuronal noises are loosely classified as (i) background noise,
e.g. white noise, in themembrane potential in conjunctionwith the neuronal response
of focus [8] and (ii) irregularity in spiking, e.g. irregular periodicity of spikes in a
single spike train [1, 2, 13, 14]. The former may be attributed to white-noise-like
synaptic current injection that keeps on perturbing the membrane potential. [13, 15]
These two types of noisesmay be correlated insomuch as the random synaptic current
injection—causing the former—enables random spike firing at times [15]. Addition-
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ally, the background noise is thought to enable gain modulation, altering the gain
function [16]. For the time being, questions as to what roles of the noise in a neural
network are and if it is good or bad have barely been answered clearly. Regarding
information representation, of course, the noise is the root cause of information loss,
and thus, it needs to be avoided [17]. The brain may, however, perform stochastic
calculations making use of probability, rather than single bit, coding schemes, which
can be robust to errors due to noises in the noisy neural network [18–20]. How-
ever, this hypothesis is open to objection due to lack of understanding of probability
estimation [14].

Regarding the irregularity in spiking, the irregularity is well parameterized by
variability in inter-spike interval (ISI) in an ensemble of spike trains [8]. In the bio-
logical neuron, the ISI distribution in the same spike train is dispersive. The distrib-
ution varies upon experimental conditions such as in vitro and in vivo experiments.
Despite such variations, it is generally agreed that the biological neuron represents
Poisson or Poisson-like noises, which is possibly justified by the relation between the
mean neuronal response and the corresponding variance [8, 13]. The Poisson noise
is a result of random spike generation, so that it is also required to be identified,
for instance, by simply evaluating correlation between the spikes in the same train
[21]. A similar type of noise may be present in hardware artificial neurons due to
operational variability in the core device. We will revisit this later in Sect. 2.

1.4 Artificial Neuron Models

Thus far, biological neurons are featured by (i) integrate-and-fire—the membrane
integrates synaptic current and fires a spike when the resulting membrane poten-
tial goes above the threshold; (ii) gain function—the output varies upon the input
and they are in one-to-one correspondence in the ideal case; and (iii) noise leading
to variability in ISI, and thus activity. There exist several artificial neuron models,
being mostly for computational purpose but serving as the basis of hardware-based
artificial neurons, which mainly reflect the first two features. The integrate-and-fire
(IF) model is simplest; its equivalent circuit is shown in Fig. 2a. The capacitor in
Fig. 2a corresponds to the membrane of a biological neuron, and it integrates the
injected synaptic current until the electrostatic potential difference across the capac-
itor reaches the threshold. Crossing the threshold generates a spike by the lumped
switch in parallel with the capacitor, and the refractory period follows spiking hin-
dering another spiking in close succession. The lumped switch and its functions in
spiking can simply be programmed, rendering the model very easily implementable.
However, deficient fidelity of the model to the biological neuron is noticeable at a
glance; particularly, the membrane cannot be lossless perfect dielectric as assumed
in the model in the light of leakage of ions through the membrane. That is, under-
pinning the model and thus making it more realistic require a parallel resistor to
the capacitor, which results in charge loss in due course when the model system is
subject to no or smaller synaptic current than it used to be. This charge loss and
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Fig. 2 Equivalent circuits of
(a) IF and (b) LIF neurons.
For each circuit, the
component lumped in the
box outlined with a grey
dashed line generates a spike
when the membrane
potential crosses Vth, i.e. a
threshold membrane
potential for spiking

the corresponding potential decay away with time cannot be implemented in the IF
model. This modified model is referred to as the leaky integrate-and-fire (LIF) model
[8, 17, 22–25]. The equivalent circuit is illustrated in Fig. 2b. The membrane poten-
tial Vm with time in the subthreshold regime is described by the following equation:
Vm = Iin Rm

(
1 − e−t/τ

)
, where Iin, Rm, and τ mean the input current, i.e. synap-

tic current, the membrane resistance, and the time constant for membrane charging
and discharging—product of Rm and Cm (membrane capacitance)—respectively.
Including the parallel resistor barely adds up further complexity so that the LIF
model is still easy to implement in in silico neural networks. In fact, the LIF model
is thought to reflect the most essential feature in a very simple manner, offering
remarkable computational efficiency regarding computational time. In addition, this
model likely bridges a computational neuron model to a hardware-achievable model
in which realizing the lumped switch by means of scalable electrical components is
of significant concern. This issue will be revisited in Sect. 2.

It should be noted that the resting state of both IF and LIF models indicates depo-
larization and, upon incidence of synaptic current, a build-up of membrane poten-
tial, i.e. polarization, evolves in due course unlike the biological neuron—membrane
polarization in the resting state and depolarization evolving upon synaptic current
incidence. It is, however, believed that this reversal is trivial. The most significant
discrepancy between the simple LIF model and the biological neuron consists in the
fact that the LIF deals with a single type of charge, whereas the biological neuron
involves two different ions, i.e. Na+ and K+, and their transport through different ion
channels in the membrane. In this regard, the LIF model is often regarded as being
oversimplified to gain computational efficiency.

Another class of artificial neuron models is conductance-based LIF model in
which the conductance of the ion channel varies upon arrival of a spike from the
postsynaptic neuron [26–29]. This class is more biologically plausible in the sense
that the assumed channel conductance increase upon spike transmission is the fea-
ture of the biological neuron albeit lumped. Furthermore, unlike the integrate-and-
fire-based models, the resting state denotes polarization and the polarization is per-
turbed by the increase in the channel conductance, leading to depolarization. Var-
ious conductance-based models are available, ranging from a simple one offering
similar computational efficiency to the LIF model [29] to a one, offering a great
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deal of fidelity to the biological neuron, such as the Hodgkin–Huxley (HH) model
[26]. Later, several attempts to simplify the HH model have been made by reduc-
ing the number of auxiliary variables; the FitzHugh–Nagumo model is an example
[27, 28, 30].

2 Hardware Spiking Neurons

Several prototypical hardware spiking neurons have been achieved in search of mod-
els fulfilling the aforementioned requirements for neuronal information representa-
tion. Basically, they should produce spike trains in association with input synaptic
current and the activity of the neuronal response is required to vary upon the input
synaptic current. When it comes to hardware neurons, integration, for which scala-
bility is a premise, should be taken into account, and thus scalability is an additional
requirement.

2.1 Silicon Neurons

The neuromorphic engineering stemmed from VLSI technologies, dating back in
1980s [31]. In the past few decades, vigorous attempts to realize neuromorphic cir-
cuits, encompassing basic building blocks, i.e. neuron and synapse, and related physi-
ological phenomena, have beenmade by utilizingVLSI circuit elements such as field-
effect transistor (FET), capacitor, and resistor [3, 32, 33]. As a consequence, they
have led themainstream trend of neuromorphic engineering. An evident advantage of
the SiN is such that designed circuits can readily be fabricated using the conventional
complementary metal-oxide-semiconductor (CMOS) technology. Also, the SiN is
likely scalable unless the case of real-time operation, i.e. the operational timescale is
comparable to that of biological neurons, which perhaps requires a large capacitor(s)
working as the membrane. Note that the same difficulty in scalability due to a large
capacitor also holds for the emerging neurons. A number of SiNs mimicking differ-
ent in silico neuron models and the progress in the related technologies are very well
overviewed by Indiveri et al. in their review paper [3].

2.2 Emerging Spiking Neurons

As mentioned in Sect. 1.4, the LIF model includes the lumped switch and one should
be in search of the switch—achievable by means of electrical components—so as to
realize the LIF model. In 2012, Pickett et al. at the Hewlett Packard Labs proposed a
neuron model in the framework of the LIF neuron [34]. Later, Lim et al. named the
model the neuristor-based LIF (NLIF) model [21]. In the NLIF circuit, a neuristor—
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Fig. 3 a Equivalent circuit of the NLIF neuronmodel. The blue boxes stand for the threshold switch
whose current–voltage hysteresis loop is sketched in b. Reprinted with permission from Ref. [21].
Copyright 2015, Nature Publishing Group

its first proposal dates back to 1962 [35]—is employed as the lumped switching;
the neuristor consists of a pair of Pearson–Anson oscillators in parallel [34]. The
oscillators are made of a pair of a capacitor and a threshold switch in parallel. The
circuit of the proposed NLIF neuron circuit is illustrated in Fig. 3a. The key role
in the oscillation is played by the S-shape negative differential resistance (NDR)
effect that is not followed by memory effect. This class of resistive switching is
termed as ‘monostable’ resistive switching in order to distinguish it from ‘bistable’
switching typically referring to memory-type resistive switching [36]. Given the lack
of memory effect, this class of switching is also referred to as volatile switching. The
threshold switching effect is a typical example of volatile switching. The effect has
been seen in various systems such as amorphous higher chalcogenides [37–40], Mott
insulators [34, 36, 41, 42], Si n+/p/n+ junctions [43], and particular transition metal
oxides such as NbOx [44, 45].

A typical current–voltage (I-V) hysteretic loop of a threshold switch is shown in
Fig. 3b. Two thresholds for critical resistance changes are defined in Fig. 3b: Von for
high-to-low resistance transition and Voff for the reversed one. The low resistance
state (LRS; Ron) emerges at Von, and a drastic transition from the high resistance state
(HRS; Roff) to the LRS takes place. The LRS can be maintained unless the applied
voltage falls below Voff (Voff < Von), i.e. the HRS is of the only stability under no
voltage application.

Regarding the working principle of the NLIF model, the membrane potential
evolution and the resulting spiking can be described by membrane potential V2 and
auxiliary variable V1 as follows [21]:

C1
dV1

dt
= Iin − 1

RS1
(V1 − Vdc1) − 1

R2
(V1 − V2) (1)

and

C2
dV2

dt
= 1

R2
(V1 − V2) − 1

RS2
(V2 − Vdc2) − 1

RL
V2, (2)
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where RS1 and RS2 denote the resistance of threshold switches S1 and S2, respec-
tively. The spiking dynamics of the NLIFmodel can bemapped onto a V2 − V1 phase
plane; this phase-plane analysis clearly shows the dynamics in a compact manner. In
fact, such a phase-plane analysis is often employed to account for membrane poten-
tial change in time for the FitzHugh–Nagumo model [27, 28]. Towards this end, V1-
and V2-nullclines need to be defined, which denote the lines on which every (V2, V1)

point satisfies dV1/dt and dV2/dt , respectively. The V1- and V2-nullclines are readily
obtained by equating the left-hand side of Eqs. (1) and (2) to zero as follows:

V1 − RS1

R2 + RS1
V2 − R2Vdc1

R2 + RS1
− R2RS1

R2 + RS1
Iin = 0, (3)

and

V1 − R2

(
1

R2
+ 1

RS2
+ 1

RL

)
+ R2Vdc2

RS2
= 0, (4)

respectively.
A crossing point between these nullclines is termed as fixed point at which both

dV1/dt and dV2/dt are zero—no gradient in either axis exists so that the (V2, V1)
configuration becomes stuck at this stable point unless perturbation is applied to the
configuration, for instance, by changing Iin. It should be noted that, as explained,
RS1 and RS2 vary upon the threshold switching defined by two thresholds, Von and
Voff, so that the nullclines also vary in association with RS1 and RS2 as shown in
Eqs. (3) and (4). This change in the nullclines features the spiking dynamics of the
NLIF model, rendering this model distinguishable from other dynamic models such
as the HH and the FHN models [21]. The results of the phase-plane analysis under
a constant synaptic current are plotted in Fig. 4, sorted in due course. Following this
first cycle of (V2, V1) at the outset, the trajectory repeats the grey cycle plotted in
Fig. 4f, which is referred to as limit cycle.

The limit cycle shows important information as to the spiking dynamics at a
glance: V2 maximum (spike height) and V2 minimum (spike undershoot). In addition,
such phase-plane analysis intuitively provides a current threshold for spiking in
comparison between Figs. 4a, b—the fixed point without synaptic current application
(Fig. 4a) is required to be driven out of the subthreshold region in order for spiking
to be initiated as for the case shown in Fig. 4b. The fixed point for the nullclines in
Fig. 4b is definitely placed in the above-threshold region, so that the trajectory meets
the threshold switching condition. Otherwise, a fixed point stays in the subthreshold
region and thus no threshold switching takes place throughout the entire current
application.

A following question is if the NLIFmodel successfully represents a gain function.
Recent calculations on the NLIF model have properly answered the question by
exhibiting an ideal gain function shown in Fig. 5a. The activity tends to increase with
synaptic current above the threshold for spiking. In particular, for case α, the change
in activity with respect to synaptic current is very large compared to the other cases—
suitable for discriminating the applied synaptic current without uncertainty [21].
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Fig. 4 Phase-plane analysis on the NLIF neuronal dynamics. The V1- and V2-nullclines Eqs.
(3) and (4) cross each other at a particular point—fixed point—on the plane. The resting state is
described by the nullclines and fixed point in a. The state of the neuron stays at the fixed point unless
perturbation. b Upon application of a current, the V1-nullclile shifts upwards and the fixed point
leaves the subthreshold region; the trajectory moves towards the fixed point in due course. c The
trajectory confronts the threshold switching condition, so that V1-nullclile shifts down according
to Eq. (3) and accordingly a new fixed point appears. d–f Threshold switching of both switches
subsequently takes place and the dynamic procedure finishes a single complete cycle, i.e. limit
cycle,—a grey cycle in f. The cycle in succession follows this limit cycle and the same dynamics is
repeated. Reproduced with permission from Ref. [21]. Copyright 2015, Nature Publishing Group

Owing to the gain function, the tuning function of the NLIF model is conse-
quently acquired by presuming the synaptic current in association with a stimulus
and the preferred stimulus of the synapse [21]. Invoking the Bienenstock–Cooper–
Munro rule, stimulus selectivity is spontaneously given to synapses so that each
synapse is supposed to possess strong preference for a unique stimulus [46]. In case
of one-dimensional stimulation, such as edge orientation and light intensity in visual
stimulation, the synaptic current can be assumed to be of a bell-shaped, i.e. Gaussian,
function centred at the preferred stimulus (zero degree; see Fig. 5b), which eventu-
ally gives a tuning function (see Fig. 5c). The tuning function is also bell shaped
and represents the maximum activity at the preferred stimulus. One of the most
significant implications of a tuning function is to bridge external sensory informa-
tion, i.e. stimulus, to the corresponding neuronal response. In this way, the sensory
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Fig. 5 a Gain functions of the NLIF neuron with three different sets of circuit parameters.
b Assumed synaptic current profile with respect to one-dimensional stimulus (here, bar orienta-
tion). c The resulting tuning function of the given NLIF neuron clearly represents good selectivity
to input stimulus. Reproduced with permission from Ref. [21]. Copyright 2015, Nature Publishing
Group

information is encoded by the neuron into the value for activity and later the activity
is most likely decoded in communication between adjacent neurons.

It iswell known that resistive switching encompasses variability in switching para-
meters such as Von, Voff,Ron, and Roff. The same most likely holds for the thresh-
old switches in the NLIF model. The variation of such switching parameters is
generally a switching event-driven, rather than real-time-varying, phenomenon, i.e.
upon termination of one switching cycle—depicted in Fig. 3b—the parameters are
updated, and this randomupdate lasts throughout the entire spiking period [21].Given
this inevitable variability in switching parameters, the consequent spiking dynamics
undergoes variation, mainly alternating ISI in a spike train. Taking into account vari-
ation of switching parameters, following a normal distribution, ISI alternation in a
single spike train could be predicted theoretically; interestingly, the results identified
that the noise is featured by a Poisson-like noise—often seen in biological neurons
[13]—and the uncorrelated spikes in the train [21].

The noise in the NLIF neuron inevitably elicits a noise in the gain function, which
consequently leads to a noisy tuning function (e.g. Fig. 6a). Despite the presence of
the noise, the average behaviour of the tuning function is comparable to the ideal one
albeit noisy. This noisy tuning function brings about serious problems in information
decoding. For instance, in Fig. 6b, the distributions of activities at three different
stimuli (10, 20, and 30◦) exhibit a remarkable overlap, so that discriminating two
different stimuli from the neuronal activity is of difficult—especially if the observed
activity is placed in the overlap. That is, a difficulty lies in decoding the neuronal
response, implying information loss [1]. Several hypotheses on noise cancelling at the
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Fig. 6 a Tuning curve of the NLIF neuron with 10% Ron and Roff variability-tolerant threshold
switches. The variability elicits large error bars compared with the ideal one in Fig. 5c. The distri-
butions of activities at three different stimuli (10, 20, and 30◦) represent large overlaps that lead
neurons to difficulty in decoding the encoded information, i.e. orientation in this case

network scale have been proposed and theoretically identified their feasibility albeit
not experimentally evidenced [47]. Probability of noise correlation and its positive
effect on information decoding have also been proposed to reduce the uncertainty
in stimulus discrimination to some extent [1, 2]. In addition, a recent study has
theoretically proven that uncertainty in information decoding can be largely reduced
by representation of a population of neurons [21]. All these hypotheses presume that
information decoding can be conducted in a statistical manner; however, a biological
mechanism for probabilistic coding has barely been understood for the time being.

As stated earlier, scalability of emerging artificial neurons is an important issue.
The threshold switch is perhaps scaled down without remarkable degradation of its
functionality [48]. Both Ron and Roff likely increase as the cell size shrinks so that
materials engineering—able to adjust the resistance accordingly—needs to follow.
However, making use of capacitors is a challenge. The capacitance determines the
spiking dynamics in the way that it determines a time constant of the capacitance
charging—immediately following spiking—and thus ISI. Provided the shrinkage of
the capacitor area and the resulting decline in the capacitance, the spiking activity
is seen at high-frequency scale and it may cause technical problems regarding the
compatibility with the artificial synapse devices.

3 Summary and Outlook

Neuromorphic engineering provides versatile platform technologies that are possibly
applied to various functional devices that recognize patterns in general such as visual,
auditory, and semantic patterns. For the time being, a few neuromorphic products
are already in the pipeline and expected to appear in the market in the near future
[49, 50]. They are only a few examples in sight, however, a number of precious
gems are probably hidden for the moment and waiting to be discovered. Gaining a
better understanding of brain functionalities, e.g. recognition, perception, long-term
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memory, working memory, is an important premise for accelerating the progress in
neuromorphic technologies. Towards this end, a significant portion of this chapter
is devoted to the explanation as to biological neurons. Addressing artificial neuron
models that are not merely delimited within the framework of hardware design is of
importance given that themodels are perhaps the roots of hardware artificial neurons.

Recalling the emphasis in Introduction, the target application determines the type
of a neuron as well as a synapse in use; therefore, it is fruitful to diversify available
artificial neuron models—ranging from a static and binary neuron to a dynamic and
analogue neuron that is fairly biologically plausible. The latter may be most versatile
in the light of its similarity to the biological neuron. This class of neurons follows the
fidelity to the key features of the biological neuron—integrate-and-fire and variation
in the response upon the input, i.e. gain function.

In designing a neuron, its detailed specifications need to be determined in combi-
nation with other significant components such as synapses and details of receiving
data. Spiking neurons are required to allow synapses in connection to them to change
their synaptic weights in the case that reweighting is supposed to occur. Thus, spiking
dynamics, e.g. activity and spike height and width, should be compatible with the
operational conditions of the synaptic weight change; otherwise, no weight change
regardless of the activity of the adjacent neurons. For instance, use of an emerging
memory element, e.g. phase-change memory and resistive switching memory, as an
artificial synapse imposes remarkable constraints on the neuron design insomuch as
the operational window of such an emerging memory is fairly narrow. In addition,
when the target neuromorphic system deals with external dynamic stimulation—as
our eyes do—the response rate should be comparable to the rate of the external stim-
ulus. Otherwise, the cost of neuronal representation—approximately (the number of
spikes) × (the energy consumption/spike)—outweighs the benefit, which is against
one of the mottos of neuromorphic engineering: low power consumption. Thus, use
of fairly large capacitors is inevitable regarding the reconciliation between low power
consumption and high sensitivity to a time-varying stimulus. This serves as a signifi-
cant obstacle to integrating the neuromorphic system, so that it is a challenge for the
moment. A workaround solution may be to employ high dielectric constant materi-
als representing much larger capacitance density at a given thickness compared to
a conventional one such as SiOx. Further technical issues in integration will appear
with maturation of the technology, and multidisciplinary approaches to issues most
likely provide shortcuts to the solutions.
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