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Preface

The advent of cheap electronic sensors, cloud computing, IoT, smart devices,
mobile computing platforms, driverless cars, drones, etc., has led to generation of
enormous amounts of data. Some characteristics central to this big data are its
asynchronous and non-standardized nature. The vast amount of data by itself is of
less value; however, the ability to effectively and efficiently process it in real-time
leading to meaningful patterns, trends, and interpretation is the real treasure trove.

Several upcoming unconventional (non-Von Neumann) computing paradigms,
where memory (storage) and processing are not isolated tasks in themselves or
rather memory is intelligent, offer promising capabilities to this problem of massive
non-synchronous, non-standardized data treatment. Techniques such as software
artificial neural networks (ANNs), artificial intelligence (AI), and machine learning
(ML) have been proving their mettle in fields as diverse as autonomous navigation,
to robotics to analytics since a while. However the full potential of these computing
paradigms can only be realized when they are directly implemented on dedicated
low-power, compact, reconfigurable, programming-free hardware.

When it comes to dedicated hardware, some first contenders are CMOS-ASICs,
DSPs, GPUs, and FPGAs. However, most of these implementations rely on a layer
of digital (Von Neumann modified) abstraction even if some grassroots computing
arises out of purely analog traits.

To this end, over the last few years there has been a lot of activity across research
groups postulating efficient hybrid CMOS-“nanodevice” computing hardware
architectures. The “nanodevice” in these hybrid systems cover a vast range of
technologies such as organic nanoparticle transistors (NOMFETs), carbon nan-
otubes (CNTs), atomic nanogap switches, silicon thin-film transistors (TFTs),
magnetic spin-based devices, to families of emerging non-volatile resistive memory
including phase-change memory (PCM), conductive bridge memory (CBRAM or
PMC), metal-oxide-based memory (OxRAM), theoretical memristor, and so on, to
name a few.

This book is a selective collection of recent works from some of the leading
research groups across the globe working to achieve dedicated hybrid (CMOS +
nanodevice) hardware for neuromorphic computing. The book in its present form is
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certainly not exhaustive of all the research in the field, but is an attempt to get
started; bringing valuable and diverse approaches on the subject matter under one
roof.

While curating the valuable contributions for the present edition, special atten-
tion was paid to create a right mix of conceptual (primarily simulation-based
studies) and experimental (technology-based studies) works.

The book may be used as teaching material for undergraduate and postgraduate
course work, or a focused read for advanced researchers working in the domain and
related areas.

Key building blocks for neuromorphic systems would comprise of hardware
implementations of—(i) the neuron or neuron-like functionality and (ii) the synapse
or synapse-like functionality, where both are powered by relevant learning rules.

Chapter “Hardware Spiking Artificial Neurons, Their Response Function, and
Noises,” by researchers at Korea Institute of Science and Technology, provides an
overview of silicon hardware implementation of the first essential block of neu-
romorphic systems, i.e., the neuron.

Chapter “Synaptic Plasticity with Memristive Nanodevices,” by researchers at
University of Lille—France, offers the reader a strong overview or primer on dif-
ferent techniques of emulating forms of synaptic plasticity using various memristive
nanodevices.

Chapter “Neuromemristive Systems: A Circuit Design Perspective,” by
researchers at University of Rochester—USA, focuses on hybrid circuit design
perspectives of emerging neuromemristive architectures and systems.

Chapter “Memristor-Based Platforms: A Comparison Between Continous-Time
and Discrete-Time Cellular Neural Networks,” by researchers at Politecnico di
Torino—Italy, focuses on analysis and comparison of memristive continuous-time
and discrete-time cellular neural networks.

Chapter “Reinterpretation of Magnetic Tunnel Junctions as Stochastic
Memristive Devices,” by researchers at University Paris-Sud—France, discusses
how spin-transfer torque magnetic random access memory (STT-MRAM) can be
used to realize stochastic neuroinspired hardware architectures.

Chapter “Multiple Binary OxRAMs as Synapses for Convolutional Neural
Networks,” by researchers at French Alternative Energies and Atomic Energy
Commission (CEA-LETI and CEA-LIST), presents the implementation of convo-
lutional neural networks exploiting metal-oxide-based OxRAM technology.

Chapter “Nonvolatile Memory Crossbar Arrays for Non-von Neumann
Computing,” which is a joint effort of researchers at EPFL—Switzerland, IBM
Almaden—USA, and Pohang University—Korea, presents neuromorphic imple-
mentations that utilize chalcogenide-basedphase-change memory (PCM), and
non-filamentary RRAM (PCMO)-based nanodevices.

Chapter “Novel Biomimetic Si Devices for Neuromorphic Computing
Architecture,” by researchers at Indian Institute of Technology Bombay, presents
novel SiGe-based nanodevices for neuron and synaptic implementations inside the
neuromorphic hardware architectures.
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Chapter “Exploiting Variability in Resistive Memory Devices for Cognitive
Systems,” by researchers at Indian Institute of Technology—Delhi, presents
implementation of extreme learning machines (ELM) and restricted Boltzmann
machines (RBM) using RRAM nanodevices.

Chapter “Theoretical Analysis of Spike-Timing-Dependent Plasticity Learning
with Memristive Devices,” by researchers at University Paris-Sud—France, and
Alternative Energies and Atomic Energy Commission (CEA-LIST), presents the
underlying theoretical framework behind STDP-based learning and its equiv

New Delhi, India Manan Suri
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Hardware Spiking Artificial Neurons,
Their Response Function, and Noises

Doo Seok Jeong

Abstract In this chapter, overviewed are hardware-based spiking artificial neurons
that code neuronal information by means of action potential, viz. spike, in hardware
artificial neural networks (ANNs). Ongoing attempts to realize neuronal behaviours
on Si ‘to a limited extent’ are addressed in comparison with biological neurons.
Note that ‘to a limited extent’ in this context implicitly means ‘sufficiently’ for
realizing key features of neurons as information processors. This ambiguous defin-
ition is perhaps open to a question as to what neuronal behaviours the key features
encompass. The key features are delimited within the framework of neuromorphic
engineering, and thus, they approximately are (i) integrate-and-fire; (ii) neuronal
response function, i.e. spike-firing rate change upon synaptic current; and (iii) noise
in neuronal response function. Hardware-based spiking artificial neurons are aimed
to achieve these goals that are ambitious albeit challenging. Overviewing a num-
ber of attempts having made up to now illustrates approximately two seemingly
different approaches to the goal: a mainstream approach with conventional active
circuit elements, e.g. complementary metal-oxide-semiconductor (CMOS), and an
emerging one with monostable resistive switching devices, i.e. threshold switches.
This chapter will cover these approaches with particular emphasis on the latter. For
instance, available types of threshold switches, which are classified upon underlying
physics will be dealt with in detail.

1 Introduction

Neuromorphic systems based on full hardware artificial neural networks consist
of a complex array of building blocks encompassing artificial neuron and synapse
devices. The artificial neuron represents the information—input synaptic current—
which it receives by relaying the corresponding response to neighbouring neurons via
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2 D.S. Jeong

synapses. Namely, the neuron encodes the input information into a particular form
of response and the response is subsequently processed by the synapses and further
encoded by the bridged neurons. Encoded information at the outset, for instance, by
sensory neurons flows throughout the entire network by repeating the aforementioned
process. The neuron is therefore required to represent information clearly in order to
prevent information loss in the network. Hereafter, a device in charge of information
representation in a neuromorphic system is referred to as an artificial neuron—in
short, neuron—for simplicity, at times its behaviour is barely biologically plausible
though.

Choice of type of an artificial neuron depends upon the dimension of a neu-
romorphic system—including time frame, i.e. dynamic system, leads to an addi-
tional request for dynamic neuronal behaviour—and the information type in use
such as binary, multinary, and analogue. The simplest case is when the neuromor-
phic system disregards time frame, i.e. static, and employs information in binary;
time-independent binary neurons that merely represent 1 bit of information meet the
requirements. For instance, a summing amplifier—summing inputs from adjacent
neurons—in conjunctionwith a single transistor, representing binary states—channel
on and off (log2n and n = 2, where n denotes the number of states)—upon the input
in total, perhaps successfully works as an artificial neuron in this simplest system.
Employing multinary or analogue information in the neuromorphic system requires
the neuron to exhibit various states (n > 2) for log2n bit of information; for instance,
a transistor, working in the subthreshold regime, and thus representingmultiple states
of channel conductance, may meet the need. Note that the use of multinary informa-
tion gains the remarkable benefit that the same amount of information is represented
by much less number of multinary neurons than binary neurons if preventing the
response variability upon the same input and the consequent information loss [1, 2].
Later, this variability-induced information loss will be addressed in detail from the
perspective of information decoding.

When it comes to time-dependent (dynamic) neuromorphic systems, the neuron
should introduce a time-varying response to the input in total, which also varies
in time, rendering the neuron complicated. If binary, the input elicits all—or—
nothing output. The rest case, dynamic and multinary information-utilizing neu-
romorphic systems, is most biologically plausible regarding information represen-
tation by biological neurons. As for the dynamic binary system, the response of the
neuron should be reliably distinguished in time. Besides, the response should vary
upon the input in order for the response to be decodable. For instance, in case of
a single-pulse output, the response may be parameterized by pulse height and/or
width—varying with respect to the input—and used in information representation.
A number of different types of neurons and their outputs can be used in such a
system as far as they meet the aforementioned requirements and are compatible
with the synapse as a whole in the system. Regarding the root of neuromorphic
engineering, our intuition perhaps leads us to use the most biologically plausible
one—satisfying fidelity to key features of biological neurons—among the possi-
ble candidates. Thus far, a great deal of effort on building biologically plausible
artificial neurons—hereafter such a type of a neuron is referred to as spiking neuron—
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has been made by capturing key features of biological neurons and then realizing
them by means of electric circuit components [3].

The forthcoming Sects. 1.1–1.3 are dedicated to addressing essential characteris-
tics of biological neurons, which artificial neurons are required to reflect. Sect. 1.4 is
dedicated to introducing in silico—computational—neuronmodels that also form the
basis of hardware artificial neurons. Section2 addresses the state-of-the-art spiking
artificial neurons being classified as silicon neuron (SiN), realized by very-large-scale
integration (VLSI) circuits, and functional materials-based emerging technologies.

1.1 Biological Neurons

Biological neurons (also known as nerve cells) are a living electrochemical system
being made of a lipid membrane containing ion channels and pumps. A schematic
of a biological neuron is illustrated in Fig. 1. The membrane separates intracellular
and extracellular media in which there exist significant differences in concentration
of important ions, e.g. Na+,K+,Ca2+, and Cl−, between the media. Na+, Cl−, and
Ca2+ are rich in the extracellular medium whereas K+ and fixed anions—in the
sense that they cannot diffuse out through ion channels—such as organic acids and
proteins, are rich on the other side. Namely, for each ion, chemical potential through
the membrane is not equal. In the resting state, the extracellular charge in total
is positive, whereas the total charge in the intracellular medium is negative as a
whole; that is, the resting state indicates electrical polarization, leading to electric
field, e.g. electrostatic potential gradient, evolution through the lipid membrane.
This potential difference caused by the difference in chemical potential between
the two sides of the membrane is referred to as the Donnan potential [4], which
tends to recover the equilibrium distribution—no chemical potential gradient—of
each ion. This ionic distribution is not spontaneous configuration as being far from
energy-minimizing conditions; work should be done by a third party to maintain the
polarized state, raising the internal energy. Ion pumps embedded in the membrane

Fig. 1 Schematic of neurons
and chemical synapses
in-between. The grey and the
orange neurons denote a
presynaptic and a
postsynaptic neurons,
respectively. The blue
arrows indicate the spike
propagating direction—from
the pre- to the postsynaptic
neuron
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are in charge of the work by pumping out ions in order for the resting state to be
maintained [5]. Ion pumps consume chemical energy that is subsequently converted
into electrical energy as for batteries [6]. They are known as sodium–potassium
adenosine triphosphatase (Na+/K+−ATPase), which drive Na+ and K+ ions—two
important ions in membrane potential maintenance—into and out of the intracellular
fluid, respectively.

Temporary breakdown of the resting state occurs upon significant fluctuation in
ion concentration in the intracellular fluid. In particular, Upon release of chemi-
cal messengers, i.e. neurotransmitters, at a chemical synapse, N-methyl-D-aspartate
receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic recep-
tor (AMPAR) open their ion channels, so that both monovalent ions, e.g. Na+ and
K+, and divalent ions, e.g. Ca2+, are able to diffuse into the intracellular fluid,
leading to breakdown of the resting state ion concentration [7]. The inward diffu-
sion corresponds to synaptic current that is of significant importance in spiking.
Such concentration fluctuation causes a change in membrane potential regarding the
aforementioned origin of the potential. Given that Na+ and K+ ion channels are
voltage-gated [5], the change in the membrane potential can determine the channel
conductance. However, the consequent change in the membrane potential should
be larger than a threshold for the channel opening; otherwise, the change lasts for
a short time without leading to any significant phenomena. Thus, introduction of
synaptic current—sufficing for large potential evolution—opens voltage-gated Na+
and K+ channels, and thus, the resting state ion distribution is locally destroyed by
inward Na+ ions and outward K+ ions through their characteristic ion channels. As
a consequence, the membrane undergoes depolarization—down to almost zero volt
or sometimes polarity reversal occurs.

Once such local depolarization occurs, ion pumps do not let the membrane main-
tain the depolarization and recovers the resting state ion distribution, and thus mem-
brane potential. Meanwhile, this local depolarization in turn affects adjacent Na+
and K+ ion channels and the same depolarization procedure keeps being repeated
throughout the entire axon down to the end of the axon that is termed as axon
terminal—similar to dominoes [6]. Therefore, so far explained procedure in both
time and spatial frames produces an action potential also known as spike and it prop-
agates along the axon in due course. Neurons in a neural network communicate by
firing spikes and receiving them. To be precise, a train of spikes, rather than a single
spike, appears used in the communication, which enables representation of analogue
information in terms of spike frequency also known as activity.

1.2 Neuronal Response Function

The biological neuron locally fires a spike if and only if the membrane potential
goes above the threshold, which is attributed to synaptic current injection through
channels such as NMDAR and AMPAR. For the time being, the question as to how
these purely electrochemical phenomena are in association with information repre-
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sentation arises. To answer this question, we need to elucidate the electrochemical
phenomena in regard to a relationship between input and output and define types of
both analogue input and output. Given that synaptic current injection initiates spik-
ing at the outset, synaptic current works as input, varying its quantity upon synaptic
weight. Synapse in this chapter implies chemical synapse unless otherwise stated.
Synapses are spatially discrete given that each neuron has an immense number of
synapses. Also, the synaptic current through them varies in time upon arrival of a
train(s) of spikes from the presynaptic neuron. Fortunately, the membrane of the
neuron resembles a capacitor that integrates the synaptic current varying in metric
as well as temporal space. The integrated synaptic current at given time is therefore
typically taken as input value. Activity—the number of spikes per unit time or at
times per particular time period—caused by the input is typically regarded as output;
that is, a train of spikes, rather than a single spike, is of concern in determining output
value. Note that evaluating time-varying activity is fairly complicated, in particular,
when the synaptic current varies in time—this situation is very often encountered in
in vivo experiments. There exist several methods in the linear-filtering framework
with different linear filters (see Ref. [8]).

The activity tends to increase with synaptic current and this tendency is the sub-
strate of the neuronal response function that enables representation of analogue infor-
mation. Given the role of themembrane as a capacitor, the larger the synaptic current,
the sooner the membrane potential hits the threshold for spiking and the more there
exist spikes in a unit time. This tendency holds for stereotypical neurons, the detailed
behaviour is rather complicated in the light of presence of refractory time though.
A relation between activity and synaptic current is referred to as a gain function,
providing the key features of the tuning function [9]. From a perspective of infor-
mation coding, the gain function provides single neuron’s ability to encode a large
number of different inputs—in comparison with digital components such as a tran-
sistor representing merely 1 bit of information—and make them distinguishable by
the output, i.e. very clearly decodable in one-to-one correspondence. However, bio-
logical neurons are noisy [10–12], in particular, in vivo neurons, so that a great deal
of information is lost. Neuronal noises and related information loss will be addressed
in the following subsection in detail.

1.3 Neuronal Noises

Neuronal behaviour, particularly in vivo behaviour, is noisy including a number of
unpredictable features.Neuronal noises are loosely classified as (i) background noise,
e.g. white noise, in themembrane potential in conjunctionwith the neuronal response
of focus [8] and (ii) irregularity in spiking, e.g. irregular periodicity of spikes in a
single spike train [1, 2, 13, 14]. The former may be attributed to white-noise-like
synaptic current injection that keeps on perturbing the membrane potential. [13, 15]
These two types of noisesmay be correlated insomuch as the random synaptic current
injection—causing the former—enables random spike firing at times [15]. Addition-
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ally, the background noise is thought to enable gain modulation, altering the gain
function [16]. For the time being, questions as to what roles of the noise in a neural
network are and if it is good or bad have barely been answered clearly. Regarding
information representation, of course, the noise is the root cause of information loss,
and thus, it needs to be avoided [17]. The brain may, however, perform stochastic
calculations making use of probability, rather than single bit, coding schemes, which
can be robust to errors due to noises in the noisy neural network [18–20]. How-
ever, this hypothesis is open to objection due to lack of understanding of probability
estimation [14].

Regarding the irregularity in spiking, the irregularity is well parameterized by
variability in inter-spike interval (ISI) in an ensemble of spike trains [8]. In the bio-
logical neuron, the ISI distribution in the same spike train is dispersive. The distrib-
ution varies upon experimental conditions such as in vitro and in vivo experiments.
Despite such variations, it is generally agreed that the biological neuron represents
Poisson or Poisson-like noises, which is possibly justified by the relation between the
mean neuronal response and the corresponding variance [8, 13]. The Poisson noise
is a result of random spike generation, so that it is also required to be identified,
for instance, by simply evaluating correlation between the spikes in the same train
[21]. A similar type of noise may be present in hardware artificial neurons due to
operational variability in the core device. We will revisit this later in Sect. 2.

1.4 Artificial Neuron Models

Thus far, biological neurons are featured by (i) integrate-and-fire—the membrane
integrates synaptic current and fires a spike when the resulting membrane poten-
tial goes above the threshold; (ii) gain function—the output varies upon the input
and they are in one-to-one correspondence in the ideal case; and (iii) noise leading
to variability in ISI, and thus activity. There exist several artificial neuron models,
being mostly for computational purpose but serving as the basis of hardware-based
artificial neurons, which mainly reflect the first two features. The integrate-and-fire
(IF) model is simplest; its equivalent circuit is shown in Fig. 2a. The capacitor in
Fig. 2a corresponds to the membrane of a biological neuron, and it integrates the
injected synaptic current until the electrostatic potential difference across the capac-
itor reaches the threshold. Crossing the threshold generates a spike by the lumped
switch in parallel with the capacitor, and the refractory period follows spiking hin-
dering another spiking in close succession. The lumped switch and its functions in
spiking can simply be programmed, rendering the model very easily implementable.
However, deficient fidelity of the model to the biological neuron is noticeable at a
glance; particularly, the membrane cannot be lossless perfect dielectric as assumed
in the model in the light of leakage of ions through the membrane. That is, under-
pinning the model and thus making it more realistic require a parallel resistor to
the capacitor, which results in charge loss in due course when the model system is
subject to no or smaller synaptic current than it used to be. This charge loss and
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Fig. 2 Equivalent circuits of
(a) IF and (b) LIF neurons.
For each circuit, the
component lumped in the
box outlined with a grey
dashed line generates a spike
when the membrane
potential crosses Vth, i.e. a
threshold membrane
potential for spiking

the corresponding potential decay away with time cannot be implemented in the IF
model. This modified model is referred to as the leaky integrate-and-fire (LIF) model
[8, 17, 22–25]. The equivalent circuit is illustrated in Fig. 2b. The membrane poten-
tial Vm with time in the subthreshold regime is described by the following equation:
Vm = Iin Rm

(
1 − e−t/τ

)
, where Iin, Rm, and τ mean the input current, i.e. synap-

tic current, the membrane resistance, and the time constant for membrane charging
and discharging—product of Rm and Cm (membrane capacitance)—respectively.
Including the parallel resistor barely adds up further complexity so that the LIF
model is still easy to implement in in silico neural networks. In fact, the LIF model
is thought to reflect the most essential feature in a very simple manner, offering
remarkable computational efficiency regarding computational time. In addition, this
model likely bridges a computational neuron model to a hardware-achievable model
in which realizing the lumped switch by means of scalable electrical components is
of significant concern. This issue will be revisited in Sect. 2.

It should be noted that the resting state of both IF and LIF models indicates depo-
larization and, upon incidence of synaptic current, a build-up of membrane poten-
tial, i.e. polarization, evolves in due course unlike the biological neuron—membrane
polarization in the resting state and depolarization evolving upon synaptic current
incidence. It is, however, believed that this reversal is trivial. The most significant
discrepancy between the simple LIF model and the biological neuron consists in the
fact that the LIF deals with a single type of charge, whereas the biological neuron
involves two different ions, i.e. Na+ and K+, and their transport through different ion
channels in the membrane. In this regard, the LIF model is often regarded as being
oversimplified to gain computational efficiency.

Another class of artificial neuron models is conductance-based LIF model in
which the conductance of the ion channel varies upon arrival of a spike from the
postsynaptic neuron [26–29]. This class is more biologically plausible in the sense
that the assumed channel conductance increase upon spike transmission is the fea-
ture of the biological neuron albeit lumped. Furthermore, unlike the integrate-and-
fire-based models, the resting state denotes polarization and the polarization is per-
turbed by the increase in the channel conductance, leading to depolarization. Var-
ious conductance-based models are available, ranging from a simple one offering
similar computational efficiency to the LIF model [29] to a one, offering a great
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deal of fidelity to the biological neuron, such as the Hodgkin–Huxley (HH) model
[26]. Later, several attempts to simplify the HH model have been made by reduc-
ing the number of auxiliary variables; the FitzHugh–Nagumo model is an example
[27, 28, 30].

2 Hardware Spiking Neurons

Several prototypical hardware spiking neurons have been achieved in search of mod-
els fulfilling the aforementioned requirements for neuronal information representa-
tion. Basically, they should produce spike trains in association with input synaptic
current and the activity of the neuronal response is required to vary upon the input
synaptic current. When it comes to hardware neurons, integration, for which scala-
bility is a premise, should be taken into account, and thus scalability is an additional
requirement.

2.1 Silicon Neurons

The neuromorphic engineering stemmed from VLSI technologies, dating back in
1980s [31]. In the past few decades, vigorous attempts to realize neuromorphic cir-
cuits, encompassing basic building blocks, i.e. neuron and synapse, and related physi-
ological phenomena, have beenmade by utilizingVLSI circuit elements such as field-
effect transistor (FET), capacitor, and resistor [3, 32, 33]. As a consequence, they
have led themainstream trend of neuromorphic engineering. An evident advantage of
the SiN is such that designed circuits can readily be fabricated using the conventional
complementary metal-oxide-semiconductor (CMOS) technology. Also, the SiN is
likely scalable unless the case of real-time operation, i.e. the operational timescale is
comparable to that of biological neurons, which perhaps requires a large capacitor(s)
working as the membrane. Note that the same difficulty in scalability due to a large
capacitor also holds for the emerging neurons. A number of SiNs mimicking differ-
ent in silico neuron models and the progress in the related technologies are very well
overviewed by Indiveri et al. in their review paper [3].

2.2 Emerging Spiking Neurons

As mentioned in Sect. 1.4, the LIF model includes the lumped switch and one should
be in search of the switch—achievable by means of electrical components—so as to
realize the LIF model. In 2012, Pickett et al. at the Hewlett Packard Labs proposed a
neuron model in the framework of the LIF neuron [34]. Later, Lim et al. named the
model the neuristor-based LIF (NLIF) model [21]. In the NLIF circuit, a neuristor—
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Fig. 3 a Equivalent circuit of the NLIF neuronmodel. The blue boxes stand for the threshold switch
whose current–voltage hysteresis loop is sketched in b. Reprinted with permission from Ref. [21].
Copyright 2015, Nature Publishing Group

its first proposal dates back to 1962 [35]—is employed as the lumped switching;
the neuristor consists of a pair of Pearson–Anson oscillators in parallel [34]. The
oscillators are made of a pair of a capacitor and a threshold switch in parallel. The
circuit of the proposed NLIF neuron circuit is illustrated in Fig. 3a. The key role
in the oscillation is played by the S-shape negative differential resistance (NDR)
effect that is not followed by memory effect. This class of resistive switching is
termed as ‘monostable’ resistive switching in order to distinguish it from ‘bistable’
switching typically referring to memory-type resistive switching [36]. Given the lack
of memory effect, this class of switching is also referred to as volatile switching. The
threshold switching effect is a typical example of volatile switching. The effect has
been seen in various systems such as amorphous higher chalcogenides [37–40], Mott
insulators [34, 36, 41, 42], Si n+/p/n+ junctions [43], and particular transition metal
oxides such as NbOx [44, 45].

A typical current–voltage (I-V) hysteretic loop of a threshold switch is shown in
Fig. 3b. Two thresholds for critical resistance changes are defined in Fig. 3b: Von for
high-to-low resistance transition and Voff for the reversed one. The low resistance
state (LRS; Ron) emerges at Von, and a drastic transition from the high resistance state
(HRS; Roff) to the LRS takes place. The LRS can be maintained unless the applied
voltage falls below Voff (Voff < Von), i.e. the HRS is of the only stability under no
voltage application.

Regarding the working principle of the NLIF model, the membrane potential
evolution and the resulting spiking can be described by membrane potential V2 and
auxiliary variable V1 as follows [21]:

C1
dV1

dt
= Iin − 1

RS1
(V1 − Vdc1) − 1

R2
(V1 − V2) (1)

and

C2
dV2

dt
= 1

R2
(V1 − V2) − 1

RS2
(V2 − Vdc2) − 1

RL
V2, (2)
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where RS1 and RS2 denote the resistance of threshold switches S1 and S2, respec-
tively. The spiking dynamics of the NLIFmodel can bemapped onto a V2 − V1 phase
plane; this phase-plane analysis clearly shows the dynamics in a compact manner. In
fact, such a phase-plane analysis is often employed to account for membrane poten-
tial change in time for the FitzHugh–Nagumo model [27, 28]. Towards this end, V1-
and V2-nullclines need to be defined, which denote the lines on which every (V2, V1)

point satisfies dV1/dt and dV2/dt , respectively. The V1- and V2-nullclines are readily
obtained by equating the left-hand side of Eqs. (1) and (2) to zero as follows:

V1 − RS1

R2 + RS1
V2 − R2Vdc1

R2 + RS1
− R2RS1

R2 + RS1
Iin = 0, (3)

and

V1 − R2

(
1

R2
+ 1

RS2
+ 1

RL

)
+ R2Vdc2

RS2
= 0, (4)

respectively.
A crossing point between these nullclines is termed as fixed point at which both

dV1/dt and dV2/dt are zero—no gradient in either axis exists so that the (V2, V1)
configuration becomes stuck at this stable point unless perturbation is applied to the
configuration, for instance, by changing Iin. It should be noted that, as explained,
RS1 and RS2 vary upon the threshold switching defined by two thresholds, Von and
Voff, so that the nullclines also vary in association with RS1 and RS2 as shown in
Eqs. (3) and (4). This change in the nullclines features the spiking dynamics of the
NLIF model, rendering this model distinguishable from other dynamic models such
as the HH and the FHN models [21]. The results of the phase-plane analysis under
a constant synaptic current are plotted in Fig. 4, sorted in due course. Following this
first cycle of (V2, V1) at the outset, the trajectory repeats the grey cycle plotted in
Fig. 4f, which is referred to as limit cycle.

The limit cycle shows important information as to the spiking dynamics at a
glance: V2 maximum (spike height) and V2 minimum (spike undershoot). In addition,
such phase-plane analysis intuitively provides a current threshold for spiking in
comparison between Figs. 4a, b—the fixed point without synaptic current application
(Fig. 4a) is required to be driven out of the subthreshold region in order for spiking
to be initiated as for the case shown in Fig. 4b. The fixed point for the nullclines in
Fig. 4b is definitely placed in the above-threshold region, so that the trajectory meets
the threshold switching condition. Otherwise, a fixed point stays in the subthreshold
region and thus no threshold switching takes place throughout the entire current
application.

A following question is if the NLIFmodel successfully represents a gain function.
Recent calculations on the NLIF model have properly answered the question by
exhibiting an ideal gain function shown in Fig. 5a. The activity tends to increase with
synaptic current above the threshold for spiking. In particular, for case α, the change
in activity with respect to synaptic current is very large compared to the other cases—
suitable for discriminating the applied synaptic current without uncertainty [21].
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Fig. 4 Phase-plane analysis on the NLIF neuronal dynamics. The V1- and V2-nullclines Eqs.
(3) and (4) cross each other at a particular point—fixed point—on the plane. The resting state is
described by the nullclines and fixed point in a. The state of the neuron stays at the fixed point unless
perturbation. b Upon application of a current, the V1-nullclile shifts upwards and the fixed point
leaves the subthreshold region; the trajectory moves towards the fixed point in due course. c The
trajectory confronts the threshold switching condition, so that V1-nullclile shifts down according
to Eq. (3) and accordingly a new fixed point appears. d–f Threshold switching of both switches
subsequently takes place and the dynamic procedure finishes a single complete cycle, i.e. limit
cycle,—a grey cycle in f. The cycle in succession follows this limit cycle and the same dynamics is
repeated. Reproduced with permission from Ref. [21]. Copyright 2015, Nature Publishing Group

Owing to the gain function, the tuning function of the NLIF model is conse-
quently acquired by presuming the synaptic current in association with a stimulus
and the preferred stimulus of the synapse [21]. Invoking the Bienenstock–Cooper–
Munro rule, stimulus selectivity is spontaneously given to synapses so that each
synapse is supposed to possess strong preference for a unique stimulus [46]. In case
of one-dimensional stimulation, such as edge orientation and light intensity in visual
stimulation, the synaptic current can be assumed to be of a bell-shaped, i.e. Gaussian,
function centred at the preferred stimulus (zero degree; see Fig. 5b), which eventu-
ally gives a tuning function (see Fig. 5c). The tuning function is also bell shaped
and represents the maximum activity at the preferred stimulus. One of the most
significant implications of a tuning function is to bridge external sensory informa-
tion, i.e. stimulus, to the corresponding neuronal response. In this way, the sensory
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Fig. 5 a Gain functions of the NLIF neuron with three different sets of circuit parameters.
b Assumed synaptic current profile with respect to one-dimensional stimulus (here, bar orienta-
tion). c The resulting tuning function of the given NLIF neuron clearly represents good selectivity
to input stimulus. Reproduced with permission from Ref. [21]. Copyright 2015, Nature Publishing
Group

information is encoded by the neuron into the value for activity and later the activity
is most likely decoded in communication between adjacent neurons.

It iswell known that resistive switching encompasses variability in switching para-
meters such as Von, Voff,Ron, and Roff. The same most likely holds for the thresh-
old switches in the NLIF model. The variation of such switching parameters is
generally a switching event-driven, rather than real-time-varying, phenomenon, i.e.
upon termination of one switching cycle—depicted in Fig. 3b—the parameters are
updated, and this randomupdate lasts throughout the entire spiking period [21].Given
this inevitable variability in switching parameters, the consequent spiking dynamics
undergoes variation, mainly alternating ISI in a spike train. Taking into account vari-
ation of switching parameters, following a normal distribution, ISI alternation in a
single spike train could be predicted theoretically; interestingly, the results identified
that the noise is featured by a Poisson-like noise—often seen in biological neurons
[13]—and the uncorrelated spikes in the train [21].

The noise in the NLIF neuron inevitably elicits a noise in the gain function, which
consequently leads to a noisy tuning function (e.g. Fig. 6a). Despite the presence of
the noise, the average behaviour of the tuning function is comparable to the ideal one
albeit noisy. This noisy tuning function brings about serious problems in information
decoding. For instance, in Fig. 6b, the distributions of activities at three different
stimuli (10, 20, and 30◦) exhibit a remarkable overlap, so that discriminating two
different stimuli from the neuronal activity is of difficult—especially if the observed
activity is placed in the overlap. That is, a difficulty lies in decoding the neuronal
response, implying information loss [1]. Several hypotheses on noise cancelling at the
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Fig. 6 a Tuning curve of the NLIF neuron with 10% Ron and Roff variability-tolerant threshold
switches. The variability elicits large error bars compared with the ideal one in Fig. 5c. The distri-
butions of activities at three different stimuli (10, 20, and 30◦) represent large overlaps that lead
neurons to difficulty in decoding the encoded information, i.e. orientation in this case

network scale have been proposed and theoretically identified their feasibility albeit
not experimentally evidenced [47]. Probability of noise correlation and its positive
effect on information decoding have also been proposed to reduce the uncertainty
in stimulus discrimination to some extent [1, 2]. In addition, a recent study has
theoretically proven that uncertainty in information decoding can be largely reduced
by representation of a population of neurons [21]. All these hypotheses presume that
information decoding can be conducted in a statistical manner; however, a biological
mechanism for probabilistic coding has barely been understood for the time being.

As stated earlier, scalability of emerging artificial neurons is an important issue.
The threshold switch is perhaps scaled down without remarkable degradation of its
functionality [48]. Both Ron and Roff likely increase as the cell size shrinks so that
materials engineering—able to adjust the resistance accordingly—needs to follow.
However, making use of capacitors is a challenge. The capacitance determines the
spiking dynamics in the way that it determines a time constant of the capacitance
charging—immediately following spiking—and thus ISI. Provided the shrinkage of
the capacitor area and the resulting decline in the capacitance, the spiking activity
is seen at high-frequency scale and it may cause technical problems regarding the
compatibility with the artificial synapse devices.

3 Summary and Outlook

Neuromorphic engineering provides versatile platform technologies that are possibly
applied to various functional devices that recognize patterns in general such as visual,
auditory, and semantic patterns. For the time being, a few neuromorphic products
are already in the pipeline and expected to appear in the market in the near future
[49, 50]. They are only a few examples in sight, however, a number of precious
gems are probably hidden for the moment and waiting to be discovered. Gaining a
better understanding of brain functionalities, e.g. recognition, perception, long-term



14 D.S. Jeong

memory, working memory, is an important premise for accelerating the progress in
neuromorphic technologies. Towards this end, a significant portion of this chapter
is devoted to the explanation as to biological neurons. Addressing artificial neuron
models that are not merely delimited within the framework of hardware design is of
importance given that themodels are perhaps the roots of hardware artificial neurons.

Recalling the emphasis in Introduction, the target application determines the type
of a neuron as well as a synapse in use; therefore, it is fruitful to diversify available
artificial neuron models—ranging from a static and binary neuron to a dynamic and
analogue neuron that is fairly biologically plausible. The latter may be most versatile
in the light of its similarity to the biological neuron. This class of neurons follows the
fidelity to the key features of the biological neuron—integrate-and-fire and variation
in the response upon the input, i.e. gain function.

In designing a neuron, its detailed specifications need to be determined in combi-
nation with other significant components such as synapses and details of receiving
data. Spiking neurons are required to allow synapses in connection to them to change
their synaptic weights in the case that reweighting is supposed to occur. Thus, spiking
dynamics, e.g. activity and spike height and width, should be compatible with the
operational conditions of the synaptic weight change; otherwise, no weight change
regardless of the activity of the adjacent neurons. For instance, use of an emerging
memory element, e.g. phase-change memory and resistive switching memory, as an
artificial synapse imposes remarkable constraints on the neuron design insomuch as
the operational window of such an emerging memory is fairly narrow. In addition,
when the target neuromorphic system deals with external dynamic stimulation—as
our eyes do—the response rate should be comparable to the rate of the external stim-
ulus. Otherwise, the cost of neuronal representation—approximately (the number of
spikes) × (the energy consumption/spike)—outweighs the benefit, which is against
one of the mottos of neuromorphic engineering: low power consumption. Thus, use
of fairly large capacitors is inevitable regarding the reconciliation between low power
consumption and high sensitivity to a time-varying stimulus. This serves as a signifi-
cant obstacle to integrating the neuromorphic system, so that it is a challenge for the
moment. A workaround solution may be to employ high dielectric constant materi-
als representing much larger capacitance density at a given thickness compared to
a conventional one such as SiOx. Further technical issues in integration will appear
with maturation of the technology, and multidisciplinary approaches to issues most
likely provide shortcuts to the solutions.
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Synaptic Plasticity with Memristive
Nanodevices

Selina La Barbera and Fabien Alibart

Abstract This chapter provides a comprehensive overview of current research on
nanoscale memory devices suitable to implement some aspect of synaptic plasticity.
Without being exhaustive on the different forms of plasticity that could be realized,
we propose an overall classification and analysis of few of them, which can be the
basis for going into the field of neuromorphic computing. More precisely, we present
how nanoscale memory devices, implemented in a spike-based context, can be used
for synaptic plasticity functions such as spike rate-dependent plasticity, spike timing-
dependent plasticity, short-term plasticity, and long-term plasticity.

1 Introduction

There is nowadays an increasing interest in neuromorphic computing as a promis-
ing candidate to provide enhanced performances and new functionalities to efficient
and low-power biomimetic hardware systems. On the one hand, seminal works in
the 1950s with the concept of perceptron have been evolving continuously via soft-
ware approaches. Starting from the simplest circuit structure (the perceptron), which
corresponds to some formal neural networks representation, the Artificial Neural
Networks (ANNs) have seen the emergence of very complex systems with impres-
sive performances in recognition tasks, for example. Along these lines, the deep
neural networks (DNNs) are today the most promising candidates for new comput-
ing systems. Even if the concepts of neurons and synapses are largely used in this
field, a direct equivalence with their biological counterparts is not straightforward
and sometimes impossible (or not biorealistic). On the other hand, recent progresses
in neurosciences and biology have highlighted some basic mechanisms present in
biological neural networks (BNNs). If the global understanding of the computing
principle of such networks is out of reach, lots of key elements for computing have
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been evidenced. For example, spike timing-dependent plasticity (STDP), initially
observed in BNNs, has attracted strong attention from computer science commu-
nity since it opens the way to unsupervised learning systems which are expected
to provide another breakthrough in the future of computing. In between these two
main directions, i.e., ANNs and BNNs, neuromorphic computing and engineering
emerge as an intermediate solution: The objective is still oriented toward the devel-
opment of computing systems but with stronger analogy with biology with respect
to ANNs. This classification should be carefully handled since the frontier between
these different fields is far from being clear.

This chapter focuses on a crucial aspect addressed by neuromorphic computing:
the synaptic plasticity. More precisely, starting from biological evidences, we will
present some aspects of the synaptic plasticity that can be efficiently implemented
with various emerging nanoscale memories for future biomimetic hardware systems.

2 Neuromorphic Systems: Basic Processing and Data
Representation

By analogy with biological systems, information in neuromorphic systems is carried
by spikes of voltage with a typical duration in the range of milliseconds. Starting
from this simple observation, a first statement would be to consider neuromorphic
networks as digital systems (spike being an all or nothing event). This direction
was explored with the concept of neuron as logical unit performing logic opera-
tions in a digital way [32]. This short cut is of course hiding very important features
observed in biological systems that present many analog properties of fundamental
importance for computing. The first footprint of analog characteristics of biological
systems can be simply emphasized by considering the analog nature of the synaptic
connections bridging neurons. Analog synapses can be described in a first approx-
imation as a tunable linear conductance, defining the synaptic weight between two
neurons (this description is largely used in ANNs). Meanwhile, a more biorealistic
description should consider the analog synapse as a complex device-transmitting
signal in a nonlinear manner (i.e., frequency dependent). The second footprint of
analog property is somehow embedded in the time-coding strategy used in BNNs:
As the neuron is performing time integration of the digital spikes, the signal used for
computing (the integrated value of the overall spiking activity) becomes an analog
value regulating the spiking activity of the neuron. This second aspect is of par-
ticular relevance if we consider dynamical computing (i.e., natural data processing
such as vision or sound that present a strong dynamical component). The temporal
organization of spikes (or their time occurrence with respect to other spikes in the
network) is carrying some analog component of the signal in biological networks.
Now combining analog synapses with integrating neurons, the level of nonlinearity
used by the network for computing the analog signal can be strongly modify. Simple
linear filters can be realized with linear synaptic conductance associated with simple
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integrate-and-fire (I&F) neurons or strongly nonlinear systems can be built, based
on nonlinear synaptic conductance with complex integration at the neuron level such
as leaky integrate-and-fire (LIF) or sigmoid neurons.

2.1 Data Encoding in Neuromorphic Systems

Starting from the statement that neuromorphic systems are analog systems,wehave to
define the appropriate data representation that will match the function to be realized.
It should be stressed that data representation in biological systems is still under debate
and a detail understanding is still a major challenge that should open new avenues
from both a basic understanding and practical computing point of views.

Based on these general considerations, we can now try to present a simplified
vision of data coding in biological systems that could be the basic ingredient for
neuromorphic computing (i.e., hardware system implementation).

2.1.1 Rate-Coding Scheme

The simplest data representation corresponds to a rate-coding scheme, i.e., the analog
value of the signal carrying information (or strength of stimuli) is associated with the
average frequency of the train of pulse. The neuron can then transmit some analog
signals through its mean firing rate. Rate-coding data representation is often used
for static input stimuli representation but appears to be less popular for time-varying
stimuli. Indeed, the sampling time interval �sampling used for estimating the mean
firing rate imply that events with fast temporal variation (typically variation on a
timescale smaller than �sampling) cannot be described accurately. For example, the
brain’s time response to visual stimuli is around 100ms and it cannot be accurately
described in rate-coding systems that are typically in the range of frequencies from
1 to 100 Hz. A simple example of static data representation is to consider the repre-
sentation of a static image from a N × M pixel array of black and white pixels into
a N × M vector X = (x1, . . . , xi . . . , xn) where xi can be either 0 or 1 (i.e., min and
max frequencies). Then, this concept can be simply extended to analog data (such as
pictures with different level of grays) by choosing properly the average firing rate.

2.1.2 Temporal-Coding Scheme

A second coding scheme is known as temporal coding in which each individual
pulse of voltage is carrying a logical +1 and a time signature. This time stamp,
associated with a given spike, can carry some analog value if we now consider its
timing with respect to the other spikes emitted in the network [26]. The difficulty in
this coding scheme is to precisely define the origin of time for a given spiking event
that should depend on the event to be computed. A simple example is to consider a



20 S. La Barbera and F. Alibart

Fig. 1 Schematic illustration of data encoding schemes. A natural stimulus (such as a visual or
auditory cue) is encoded through an input neuron population that sends and encodes the information
on time in a time-coding scheme and in b rate-coding scheme

white point passing with a given speed in front of a detector with a black background
and producing a pulse of voltage in each pixel of the detector when it is in front of
it. By tracking both position of the activated pixel and time stamp attached to it, the
dynamic of the event can be encoded.

Figure1 shows how the rate- and time-coding schemes can be used to encode an
analog signal xi .
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2.2 Spike Computing for Neuromorphic Systems

In this chapter, we will use only these two simplified data encoding concepts, but it
should be stressed that other strategies such as stochastic-coding (i.e., the analogvalue
of the signal is associated with the probability of a spike) are potential directions that
deserve attention. We should also be aware that both rate coding and temporal cod-
ing have been evidenced to coexist in biological systems and both coding strategies
can be used for powerful computing implementation. In fact, spike computing has
attracted a large attention since the low-power performances of biological systems
seem to be strongly linked to the spike coding used in such networks. But it should be
emphasized and we should be aware of that translating conventional representation
(i.e., digital sequences as in video) into spiking signal would most probably miss
the roots of low-power computing in the biological system. Discretization of time
and utilization of synchronous clock is in opposition with continuous time and asyn-
chronous character of biological networks. Spike computing needs to be consider
globally, i.e., by considering the full functional network and data encoding principle,
from sensors to high-level computing elements. In this sense, recent development of
bioinspired sensors such as artificial cochlea (sound detection) or artificial retinas
(visual detection) with event-based representation opens many potentialities for fully
spike-based computingwhere the dynamical aspect of spikes is naturally reproduced.

3 Synaptic Plasticity for Information Computing

By remaining in a computational spike-based context, we now focus on how a bioin-
spired network, composed in a first approximation of neurons and synapses, can
process information (other functional units have to be considered if we want to
describe precisely a biological networks such as proteins, glial cells, and . . .). We
can roughly categorized spike processing into (i) how spikes are transmitted between
neurons, (ii) how spikes propagate along neurons, and (iii) how spikes are generated.
These two last points can be attributed to ‘neuron processing’ and more precisely to
the response of a biological membrane (the neuron membrane) to electrical or chem-
ical signals. Many associated features such as signal integration, signal restoration,
or spike generation are of first importance for spike computing, but these aspects
are beyond the purposes of this chapter. The signal transmission will be the focus of
this chapter, and different processes involved at the synaptic connection between two
neurons will be described. We will concentrate on the dynamical responses observed
in chemical synapses that are of interest for spike processing. Such synaptic mech-
anisms are broadly described as synaptic plasticity: the modification of the synaptic
conductance as a function of the neurons activity. The specific synaptic weight val-
ues stored in the network are a key ingredient for neuromorphic computing. Such
synaptic weight distribution is reached through synaptic learning and adaptation and
can be described by the different plasticity rules present in the network. Furthermore,
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it should be noted that all the processes observed in biological synapses and their
consequences on information processing are still an ongoing activity and final con-
clusions are still out of reach. Most probably, the efficiency of biological computing
systems lies in a combination of many different features (restricted to the synapse
level in this chapter) and our aim is to expose few of them that have been successfully
implemented and to discuss their potential interest for computing.

In biology, synaptic plasticity can be attributed to various mechanisms involved
in the transmission of the signal between pre- and post-synaptic neurons, such as
neurotransmitter release modification, neurotransmitter recovery in the pre-synaptic
connection, receptors sensitivity modification, or even structural modification of the
synaptic connection (see [6]) for a description of the different mechanisms involved
in synaptic plasticity).

It seems important at this stage to make a comprehensive distinction between
different approaches used to describe the synaptic plasticity. The first approach, used
to describe the synaptic plasticity, can be identified as a ‘causal description’ based
on the origin of the synaptic conductance modification. A second one is based on a
‘phenomenological description,’ in which the temporal evolution (i.e., the dynamics)
of the synaptic changes is the key element.

3.1 Causal Approach: Synaptic Learning Versus Synaptic
Adaptation

By following the seminal idea of Hebb [19], a first form of plasticity is the so-called
synaptic learning (Hebbian-type learning) and can be simply defined as an increase
of the synaptic weight when the activity of its pre- and post-neuron increases. Many
learning rules have been adapted following this simple idea of ‘who fire together, wire
together.’ Hebbian-type plasticity implies that the synaptic weight evolution dwi j/dt
depends on the product of the activity of the pre-neuron (ai ) and post-neuron (a j ) as
follows:

dwi j

dt
∝ ai · a j (1)

This type of plasticity is defined in biology as homosynaptic plasticity [37]. Depend-
ing on the signal representation, i.e., rate coding or temporal coding, refinement
(or particular cases) of Hebb’s rule can be formulated such as spike rate-dependent
plasticity (SRDP) or spike timing-dependent plasticity (STDP) with neuron activity
defined as the mean firing rate or the spike timing, respectively.

A second formof synaptic plasticity can be referred to Synaptic Adaptation (where
adaptation is in opposition with the notion of learning). In this case, synaptic weight
modification depends on the activity of the pre- or post-neuron activity only or on
the accumulation of both but in an additive process:
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dwi j

dt
∝ ai + a j (2)

In particular, if the synaptic plasticity depends only on post-activity, suchmechanism
is defined as heterosynaptic plasticity otherwise, if it is only pre-neuron activity
dependent, it is named transmitter-induced plasticity.

Practically, this distinction seems very useful to classify the different synaptic
processes that will be implemented and to evaluate their efficiency and contribution
to the computing network performances. One major difficulty is that both synaptic
learning and synaptic adaptation can manifest simultaneously and it becomes much
more complicated in practical cases to make a clear distinction between them. In
fact, learning in its large sense (i.e., how a network can become functional based on
its past experiences) may involve both processes. Also, activity-independent weight
modification can also be included to describe synaptic plasticity (e.g., to describe the
slow conductance decay of inactive synapses, as it will be presented in the following
paragraph).

3.2 Phenomenological Approach: Short-Term Plasticity
Versus Long-Term Plasticity

Another important synaptic plasticity aspect that has to be considered is the timescale
involved in the synaptic weight modification. Thus, by focusing on the synaptic
plasticity dynamics observed in biological systems, synaptic weightmodification can
be either permanent (i.e., lasting for months to years) or temporary (i.e., relaxing to
its initial state with a characteristic time constant in the milliseconds to hours range).
This observation leads to the definition of long-term plasticity (LTP) and short-
term plasticity (STP), respectively. We can notice that the boundary classification
into long-term (LT) and short-term (ST) effects is not well defined and should be
consider with respect to the task to be realized. Both STP and LTP can correspond
to an increase or decrease of the synaptic efficiency, thus leading to the definition of
facilitation (or potentiation) and depression, respectively. It is important to notice that
there is no one to one equivalence between the concepts of STP, LTP, and the notion
of short-term memory (STM) and long-term memory (LTM) which corresponds to
a higher abstraction level (i.e., memory is then used in the sense of psychology). In
this latter case, the information can be recalled from the network (i.e., information
that has been memorized) and it cannot be directly associated with a specific set
of synaptic weight with a given lifetime and plasticity rule. In fact, how synaptic
plasticity can be related to the memorization of the information as well as how it is
involved in different timescale of memory (from milliseconds to years) still remains
debated.
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4 Synaptic Plasticity Implementation in Neuromorphic
Nanodevices

Many propositions of synaptic plasticity implementation with nanoscale memory
devices have emerged these past years. By referring to the classification previously
proposed, two main streams can be identified: the causal description and the phe-
nomenological one. The first one relies on the implementation of the origin of the
synaptic plasticity, without necessarily replicating the details of the spike transmis-
sion observed in biology. On the contrary, the second strategy has the aim to repro-
duce accurately the spike transmission properties observed in BNNs, by omitting the
origin of the synaptic response, but rather by highlighting its temporal evolution.

In this section, we will present examples of practical devices implementation by
following these two lines. Of course, a global approach based on a combination of
both descriptions (the causal and the phenomenological one) would be the ideal solu-
tion to describe the synaptic weights distribution in ANNs for the future development
of neuromorphic computing.

4.1 Causal Implementation of Synaptic Plasticity

In this first part, by following the Causal description, we will take into account the
origin of the synaptic plasticity, without necessarily replicating the details of the
spike transmission observed in biology.

4.1.1 Generality: Hebbian Learning

Hebbian learning has been at the basis of most of the learning strategies explored
in neuromorphic computing. Hebbian-type algorithms define how a synaptic weight
evolves during the learning experience and set the final weight distribution after the
learning experience. Starting from its simplest form, i.e., ‘who fire together, wire
together,’ a first limitation of Hebbian learning can be evidenced. Indeed, if all
synapses of the network are subject to Hebbian learning (Fig. 2), all synaptic con-
nections should converge to their maximum conductivity after some time of activity
since only potentiation is included in this rule, thus destroying the functionality of
the network. A first addition to the Hebb’s postulate is then to introduce anti-Hebbian
plasticity that would allow to decrease the synaptic weight conductance (i.e., depres-
sion) when activity of both pre- and post-neurons are present (Fig. 2, green curve).
One important consequence of this simple formulation (Hebbian and anti-Hebbian)
is that the final synaptic weight distribution after learning should become bimodal
(or binary), i.e., some weights became saturated to their maximum conductance (i.e.,
fully potentiated) while all the others should saturate to their lowest conductance
state (i.e., fully depressed).
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Fig. 2 Representation of the Hebbian rule (purple) and Hebbian/anti-Hebbian rule (green) for a
constant post-neuron activity when pre-neuron activity is increased (stimulation rate). Addition of
anti-Hebbian learning is a prerequisite in order to prevent all the synaptic weight to reach their
maximal conductance

4.1.2 Time-Based Computing: Spike Timing-Dependent Plasticity

Without reviewing all the different STDP implementation in nanoscale memory
devices propositions, we want to highlight some general ideas that are at the origin
of this plasticity mechanism. The STDP was introduced by [2, 34] as a refinement
of Hebb’s rule. In this plasticity form (Synaptic Learning), the precise timing of pre-
and post-synaptic spikes is taken into account as a key parameter for updating the
synaptic weight. In particular, the pre-synaptic spike is required to shortly precede
the post-synaptic one to induce potentiation, whereas the reverse timing of pre- and
post-synaptic spike elicits depression. To understand how synaptic weights change
according to this learning rule, we can focus on the process of synaptic transmission,
depicted in Fig. 3.

Whenever a pre-synaptic spike arrives (tpre) at an excitatory synapse, a certain
quantity (r1), for example, glutamate, is released into the synaptic cleft and binds
to glutamate receptors. Such detector variable of pre-synaptic events r1, increases
whenever there is a pre-synaptic spike and decreases back to zero otherwise with a
time constant τ+. Formally, when t = tpre this gives the following:

dr1
dt

= −r1(t)

τ+
(3)

We emphasize that r1 is an abstract variable (i.e., state variable). Instead of glutamate
binding, it could describe equally well some other quantity that increases after pre-
synaptic spike arrival. If a post-synaptic spike arrives (tpost ) at the same synapse, and
the temporal difference with respect to the pre-synaptic one is not much larger than
τ+, the interaction between these two spikes will induce potentiation (LTP). As a
consequence the synaptic weight w(t) will be updated as follows:

w(t) = w(t) + r1 · A+
2 (4)
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Fig. 3 Pair-based STDP learning rules: Long-term potentiation (LTP) is achieved thanks to a
constructive pulses overlap respecting the causality principle (pre-before-post). On the contrary, if
there is no causality correlation between pre- and post-synaptic spikes, long-term depression (LTD)
is induced

If a pre-synaptic spike arrives after the post-synaptic one, another detector variable
will be taken into account, relative to post-synaptic events (o1), as shown in Fig. 3.
Similarly, we can consider that the dynamics of o1 can be described by time constant
τ−. Formally, when t = tpost this gives the following:

do1
dt

= −o1(t)

τ−
(5)

If the temporal difference is notmuch larger than τ−, the spike interactionwill induce
depression (LTD). As a consequence the synaptic weight w(t) will be updated as
follows:

w(t) = w(t) − o1 · A−
2 (6)

One of the important aspects of STDP is to present both Hebbian and anti-Hebbian
learning. Replicating the exact biological STDP window (Fig. 4a) is not a mandatory
condition for implementing interesting learning strategies (other shapes have been
reported in biology) while balancing the Hebbian/anti-Hebbian contribution remains
a challenge in order tomaintain STDP learning stable. It should be noted that synaptic
weight distribution becomes bimodal after some time of network activity if this
simple STDP window is implemented [40].

The proposition of memristor [38] provides an interesting framework for the
implementation of synaptic weights (i.e., analog property of the memory) and for the



Synaptic Plasticity with Memristive Nanodevices 27

Fig. 4 aBiological STDPwindow from [4]. In all three cases:b–d, the particular shape of the signal
applied at the input (pre-neuron) and output (post-neuron) of the memory element induces a partic-
ular effective voltage that induces potentiation (increase of conductance) or depression (decrease of
conductance) reproducing the STDP window of (a). b First proposition of STDP implementation in
nanoscale bipolar memory devices where time multiplexing approach was considered. In this case,
the STDPwindow can be reproducedwith high fidelity while the spike signal is far from biorealistic.
c Implementation of STDP in unipolar PCM devices. Still the STDP window can be reproduced
precisely while the signal is not biorealistic. d Proposition of STDP implementation with bipolar
memristor. Both the STDP window and pulse shape are mapped to biorealistic observations

implementation of STDP in particular. Nanoscale memories or ‘memristive devices,’
as previously introduced, are electrical resistance switches that can retain a state of
internal resistance based on the history of applied voltage and the associated memris-
tive formalism. Using such nanoscale devices provides a straightforward implemen-
tation of this bioinspired learning rule. In particular, themodulation of thememristive
weight (i.e., the conductance change ΔG(W, V ) is controlled by an internal para-
meter W that depends on the physics involved in the memory effect. In most of the
memory technologies used for such bioinspired computational purpose, the internal
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state variableW (and consequently the conductance) is controlled through the applied
voltage or the current (and implicitly by its duration). Mathematically, this behavior
corresponds to a first-order memristor model:

dW

dt
= f (W, V, t) (7)

with I = V · G(W, V ). Practically, by exploiting memristive devices as synapses,
most of the STDP implementation relies on specific engineering of the spikes’s
shape that convert the time correlation (or anti-correlation) between pre- and post-
spikes into a particular voltage that induces a modification of the memory element
conductance. The time lag induced by pre-synaptic events, as the r1 variable in
Fig. 3, determines that the potentiation is converted into a particular voltage across
the memristor in order to induce an increase of conductance when a post-synaptic
spike interact with it. Similarly, time lag induced by post-synaptic events in analogy
with o1 variable in Fig. 3 will induce depression in form voltage across the memristor
when interacting with a pre-synaptic spike.

First implementation was proposed by Snider [36] with time multiplexing
approach (Fig. 4b), in which, although the spike signal is far from biorealistic, the
STDP window can be reproduced with high fidelity. Figure4c shows another suc-
cessful STDP implementation with non-biorealistic signal in a phase-change mem-
ory device [22]. Depending on the particular memory device considered, different
encoding strategies were proposed with the same principle of input/output voltage
correlation inwhich theSTDPwindowmapped to biorealistic observations.Recently,
by going deeper in the memristive switching behavior (i.e., by considering a higher-
order memristive model), STDP was proposed through even more biorealistic pulse
shape [21], as it will be explained in the Sect. 4.1.4.

4.1.3 Rate-Based Computing: The BCM Learning Rule

While the STDP learning rule has been largely investigated these past years, another
refinement of theHebb’s rule can be formulated in the case of rate-coding approaches.
Bienenstock et al. [5] proposed in the 1980s the BCM learning rule with the con-
cept of ‘sliding threshold’ that ensures to maintain the weight distribution bounded
and thus avoiding unlimited depression and potentiation resulting from simple Heb-
bian learning implementation. The BCM learning rule can be simply formalized as
follows:

dwi j

dt
= ϕ(a j (t)) · ai (t) − εwi j (8)

where wi j is the synaptic conductance of the synapse bridging the pre-neuron i and
post-neuron, j, ai , and a j are the pre- and post-neuron activities, respectively, ε is a
constant related to a slow decaying component of all the synaptic weights (this term
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Fig. 5 BCM learning rule
representation. The synaptic
weight modification is
represented as a function of
pre-neuron activity for a
fixed post-neuron activity.
The sliding threshold
depends on the mean
post-neuron activity, i.e., θm
is increased if a j increases
while θm is decreased if a j
decreases, thus preventing
unlimited synaptic weight
modification

appears to become important in special cases, see [5] but not mandatory) and ϕ a
scalar function parametrized as follows:

ϕ(a j ) < 0 f or a j < θm & ϕ(a j ) > 0 f or a j > θm

where θm is a threshold function that depends on themean activity of the post-neuron.
A first-order analysis can be realized on this simple learning rule. (i) Both Hebbian-
type learning (product between ai and a j ) and adaptation (through the small decay
function that is not related to pre- and post-neuron activities) are present in this
rule. (ii) The threshold ensures that both Hebbian and anti-Hebbian plasticity can
be obtained through the scalar function ϕ that can take positive and negative values
(potentiation and depression). (iii) Thus, the ‘sliding threshold effect’ corresponds
to the displacement of the threshold as a function of the post-neuron activity and
is a key ingredient to prevent the synaptic weight distribution to become bimodal.
Indeed, if the mean post-neuron activity is high, any pre-neuron activity should
induce potentiation (most probably). If now θm is increased when the mean post-
neuron activity increases, it will increase the probability of depression or at least
reduce the magnitude of potentiation and consequently limit the potentiation of the
weight (Fig. 5).

The BCM learning rule was initially proposed for rate-coding approaches and
was measured in BNNs in the long-term regime of the synaptic plasticity. The BCM
learning rule has been shown tomaximize the selectivity of the post-neuron [5]. Only
few works have demonstrated partially the BCM rule in nanoscale memory devices
with some limitations. Lim et al. [25] proposed to describe the weight saturation
in T iO2 electrochemical cells subject to rate-based input. This work demonstrated
the sliding threshold effect describing the saturation of the weight during poten-
tiation and depression but did not reproduce the Hebbian/anti-Hebbian transition.
Ziegler et al. [47] demonstrate the sliding threshold effect in the long-term regime
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but without considering explicitly a rate-coding approach, i.e., neuron activity was
simply associated with the pre- and post-neuron voltages. Kim et al. [21] proposed
an adaptation of the BCM rule in second-order memristor, as it will be presented
in the next section, but in a transmitter-induced plasticity context, thus missing the
Hebbian-type plasticity initially proposed in the BCM framework. Future works are
expected to provide stronger analogy with BCM rule, both from a phenomenological
point of view (i.e., biorealistic rate-coding implementation) and from a causal point
of view (i.e., reproducing all the aspects of the BCM rule).

4.1.4 Reconciliation of BCM with STDP

On the one hand, the importance of individual spikes and their respective timing can
only be described in the context of STDP. The time response in the visual cortex
being in the order of 100 ms, rate-coding approaches are unlikely to offer a con-
venient description of such processes while time coding could. On the other hand,
simple STDP function misses the rate-coding property observed in BNNs and conve-
niently described in the context of the BCM.More precisely, in the case of pair-based
STDP, both potentiation and depression are expected to decrease as the activity mean
frequency of the network is increased while BNNs show opposite trend. Izhikevich
et al. [20] proposed that classical pair-based STDP, implemented with the nearest-
neighbor spike interactions, can be mapped to the BCM rule. However, their model
failed to capture the frequency dependence [35] if pairs of spikes are presented at
different frequencies [14].

From a neurocomputational point of view, Gjorgjieva et al. [18] proposed a triplet
STDP model based on the interactions of three consecutive spikes as generalization
of the BCM theory. This model is able to describe plasticity experiments that the
classical pair-based STDP rule has failed to capture and is sensitive to higher-order
spatio-temporal correlations, which exist in natural stimuli and have been measured
in the brain. As done for the pair-based case, to understand how synaptic weights
change according to this learning rule, we can focus on the process of synaptic
transmission, depicted in Fig. 6.

Instead of having only one process triggered by a pre-synaptic spike, it is possible
to consider several different quantities, which increase in the presence of a pre-
synaptic spike. We can thus consider, r1 and r2 two different detectors variables of
pre-synaptic events and their dynamics can be described with two time constant τ+
and τx (τx > τ+). Formally, when t = tpre, this gives the following:

dr1
dt

= −r1(t)

τ+
&

dr2
dt

= −r2(t)

τx
(9)

Similarly, we can consider, o1 and o2 two different detector variables of post-synaptic
events and their dynamics can be described with two time constants τ− and τy
(τy > τ−). Formally, when t = tpost , this gives the following:
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Fig. 6 Triplet-based STDP learning rules. a Synaptic weight potentiation (LTP) is achieved thanks
to (post-pre-post) spike iterations, as a result the relative time lag of the detector-variable dynamics.
Similarly a synaptic weight depression (LTD) is induced with (pre-post-pre) spike interactions.
b Synaptic weight evolution in function of time correlation of pre- and post- spikes
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do1
dt

= −o1(t)

τ−
&

do2
dt

= −o2(t)

τy
(10)

We assume that the weight increases after post-synaptic spike arrival by an amount
that is proportional to the value of the pre-synaptic variable r1 but depends also on
the value of the second post-synaptic detector o2. Hence, post-synaptic spike arrival
at time tpost triggers a change given by the following:

w(t) = w(t) + r1(t) · (A+
2 + A+

3 o2(t)) (11)

Similarly, a pre-synaptic spike at time tpre triggers a change that depends on the
post-synaptic variable o1 and the second pre-synaptic variable r2 as follows:

w(t) = w(t) − o1(t) · (A−
2 + A−

3 r2(t)) (12)

As done previously, we emphasize that r1, r2, o1, and o2 are abstract variables that
not identify with specific biophysical quantities. Biological candidates of detectors
of pre-synaptic events are, for example, the amount of glutamate bound [9] or the
number of NMDA receptors in an activated state [34]. Post-synaptic detectors o1
and o2 could represent the influx of calcium concentration through voltage-gated
Ca2+ channels and NMDA channels [9] or the number of secondary messengers in
a deactivated state of the NMDA receptor [34].

A possible solution to implement this generalized rule that embraces both BCM
theory and STDP has been proposed by Mayr et al. [31] for the first time in Bi FeO3

memristive devices. They succeeded in implementing triplet STDP through a more
complex spikes’s shape engineering that encodes the time interaction between more
than two pulses into a particular voltage able to induce a modification of the memory
element conductance. Triplet STDP rule has been also performed by Williamson
et al. [43] in asymmetric T iO2 memristor in hybrid neuron/memristor system.
Subramaniam et al. [39] have used triplet STDP rule in a compact electronic circuit
in which neuron consists of a spiking soma circuit fabricated with nanocrystalline-
silicon thin-film transistors (ns-Si TFTs) with nanoparticle TFT-based short-term
memory device and HfO2 memristor as synapse.

Another generalized description, in which both time- and rate-coding approaches
are taken into account at the same time and implemented in an amorphous InGaZnO
memristor, has been proposed byWang et al. [42]. In addition to the conventional ion
migration induced by the application of pulse of voltage, another physicalmechanism
of the device operation occurs: the gradient of the ions concentration, leading to the
appearance of ion diffusion, resulting in an additional state variable. Kim et al. [21]
recently proposed a second-ordermemristor that offers an interesting solution toward
this goal of reconciliation of various learningmechanisms in a singlememory device.

Mathematically, in analogy to the previous definition, a second-order memristor
model can be described as follows:
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dW1

dt
= f1(W1,W2, V, t) &

dW2

dt
= f2(W1,W2, V, t) (13)

with I = V · G(W1,W2, V, t) and implementedwith a simple nonoverlappingpulses
protocol for the synaptic weight modulation.

The interest behind this higher-ordermemristor description is to provide additional
parameters that will ensure some other higher-order interaction between pulses (i.e.,
more than two), while the pair-based interaction is preserved. More precisely, as
shown in Fig. 7a, the temperature has been proposed as second-order state variable
that exhibits short-term dynamics and naturally encodes information on this relative
timing of synapse activity. By exploiting these two state variables (i.e., the conduc-
tance and the temperature), STDP has been implemented, as it is shown in Fig. 7a.
Specifically, the first ‘heating’ spike elicits an increase in the device temperature by
Joule effect regardless of the pulses polarity, which then tends naturally to relax after
the removal of the stimulation, then temporal summation of the thermal effect can
occur and can induce an additional increment in the temperature of the device if the
second ‘programming’ spike is applied before T has decayed to its resting value.

Longer time interval will induce a small conductance change because of the heat
dissipation responsible to a lower residual T when the second spike is applied. Thus,
the amount of the conductance change (long-term dynamics) can be tuned by the
relative timing of the pulses encoded in the short-term dynamics of second state
variable (i.e., the temperature T).

Du et al. [17] have proposed another second-order memristor model. Also in this
case, two state variables are used to describe an oxide-based memristor. The first
one, as in the previous example, directly determines the device conductance (i.e.,
the synaptic weight). Specifically, this first state variable represents the area of the
conducting channel region in the oxide memristor, thus directly affecting the device
conductance. The second state variable represents the oxygen vacancy mobility in
the film which directly affects the dynamics of the first state variable (conductance)
but only indirectly modulates the device conductance (Fig. 7a). Equivalently to T,
the w is increased by application of a pulse and then tends to relax to an initial value
and affects the first state variable by increasing the amount of conductance change
in a short timescale. By exploiting this second-order memristor model, Du et al.
[17] have demonstrated that STDP can be implemented in oxide-based memristor
by simple nonoverlapping pre- and post-synaptic spike pairs, rather than through the
engineering of the pulse’s shape (Fig. 7b).

In neurobiology, the timing information is intrinsically embedded in the internal
synaptic mechanisms. Malenka and Bear [27] have demonstrated that together with
the neurotransmitter dynamics in the presynaptic connection, secondary internal state
variables, such as the natural decay of the post-synaptic calcium ion (Ca2+) concen-
tration, are involved in the synaptic weight modulation and the synaptic plasticity
that can be achieved by simple nonoverlapping spikes and tuned by synaptic activity
(i.e., rate- and timing-dependent spikes) which brings an interesting analogy between
biological processes and material implementation described above [18].
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Fig. 7 Second-order memristor model. a On the right: the modulated second-order state variable
exhibits short-term dynamics and naturally encodes information on the relative timing and synapse
activity. On the left STDP implementation: memristor conductance change as a function of only two
spikes (i.e., each spike consists of a programming pulse and a heating pulse) [21]. b On the right
Simulation results illustrating how the short-term behavior affected long-term weight change. The
difference in long-termweight is caused by the different values of residue of the second state variable
at the moment when the second pulse is applied. The first and the second state variables under two
conditions (interval between two pulses Δt = 20, 90ms) are shown. On the left memristor weight
change as a function of the relative timing between the pre- and post-synaptic pulses without pulses
overlapping (STDP implementation) [17]

The hypothesis that several synaptic functions manifest simultaneously and are
interrelated at synaptic level seems accepted by different scientific communities.
Recent biological studies indicate that multiple plasticity mechanisms contribute
to cerebellum-dependent learning [8]. Multiple plasticity mechanisms may pro-
vide the flexibility required to store memories over different timescales encoding
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the dynamics involved. From a computational point of view, Zenke et al. [46]
have recently proposed the idea to use multiple plasticity mechanisms at different
timescales. Instead of focusingonparticular and local learning schemes, their strategy
aims to create memory and learning functions through interplay of multiple plasticity
mechanisms. By following this trend of multi-scale plasticity mechanisms, Mayr
et al. [30] have realized a VLSI implementation in which short-term, long-term, and
meta-plasticity interact each other at different timescales to tune the overall synapse
weights distribution.

4.2 Phenomenological Implementation of Synaptic Plasticity

In this section, we will follow the second synaptic description approach: the phe-
nomenological one. The spike transmission properties observed in BNNs will be
presented as a function of the temporal evolution of the synaptic weight.

4.2.1 STP in a Single Memristive Nanodevices

As previously mentioned, the transmitter-induced plasticity is a particular form of
synaptic adaptation that depends only on pre-neuron activity. From a phenomeno-
logical point of view, such plasticity is most often observed on short timescale, thus
belonging to the class of STP. As shown in Fig. 8b, this STP regime is frequency
dependent and can be used to modulate the synaptic weights distribution as a func-
tion of network activity. From a biological view point, a phenomenological model
of frequency-dependent synaptic transmission was used to describe such synaptic
response in STP regime [28]. The primary synaptic parameters are the absolute
synaptic efficacy (A), the utilization of synaptic efficacy (U ), recovery from depres-
sion (τrec), and the recovery from facilitation (τ f acil ) (Fig. 8a). In this model, synaptic
response is then dependent on the finite amount of neurotransmitter resources in the
pre-synaptic neuron and their respective dynamics (utilization and recovery) and
on the absolute efficacy of the synaptic connection which could depends on post-
synaptic neuron receptors sensitivity or synaptic connection, for example. The most
likely biophysical mechanisms underlying changes in the value of these synaptic
parameters were considered [28].

If we consider a temporal-coding approach in which pulses are considered as
discrete events, STP can be evidenced through the notion of paired pulse facilitation
(PPF) corresponding to the enhancement of a pulse transmission when this latter
closely follows a prior impulse. The countereffect (i.e., corresponding to depres-
sion) is referred to as paired pulse depression (PPD). If we now focus on rate-
coding approaches, facilitation and depression can be simply described as a high-pass
and low-pass filters. Depending on the mean firing rate of the synapse, signal can
be enhanced or depressed when pre-neuron frequency is increased. A simple mater-
ial implementation of such mechanism can be realized through passive RC circuits.
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Fig. 8 Phenomenological model of frequency-dependent synaptic transmission. a EachAP utilizes
U a fraction of the available/recovered synaptic efficacy R. When an AP arrives, U is increased by
an amplitude of u and becomes a variable, U1. b Phenomenology of changing absolute synaptic
efficacy parameter A. On the left synaptic responses of depressing synapses when A is increased
1.7-fold. On the right synaptic responses of facilitating synapses when A is increased 1.7-fold.
Adapted from [29]

It turns out that RC circuits with time constants in the milliseconds to seconds range
leads to very high capacity with large area (even at low current operation) that
are a severe limitation for hardware implementation of STP. Different alternative
approaches can realize more efficiently such dynamical effects by taking advantage
of physical mechanisms present in nanoscale memory devices.

The first proposition of STP with nanodevices was realized in a nanoparti-
cles/organic memory transistor (NOMFET) [3]. The basic principle of this device
is equivalent to a floating gate transistor. Charges, stored in the nanoparticles, mod-
ify the channel conductivity via coulomb repulsion between the carriers (holes) and
the charged nanoparticles. The particularity of this device relies on the leaky mem-
ory behavior: Charges stored in the nanoparticles tend to relax with a characteristic
time constant in the 100–200 ms range [16]. When the NOMFET is connected in a
diode-like configuration (Fig. 7a), each input spike (with a negative voltage value)
charges the nanoparticles and decreases the NOMFET conductivity. Between pulses,



Synaptic Plasticity with Memristive Nanodevices 37

Fig. 9 STP implementation in a NOMFET. a Schematic representation of the NOMFET and
pseudo-two-terminal connections of the device. b Comparison between the frequency-dependent
post-synaptic potential response of a depressing synapse (lines) and the iterative model of Varela et
al. (dots), adapted from [41], as a function of frequency of the pre-synaptic input signal. c Response
(drain current) of NOMFET with L/W ratio of 12µm/113µm and NP size of 5nm to sequences
of spikes at different frequencies (pulse voltage V p = −30V)

charges escape from the nanoparticles and the conductivity relaxes toward its resting
value. By analogy with biology, this device mimics the STP observed in depress-
ing synapses (Fig. 9) and described by [1]. As a matter of comparison, this synaptic
functionality is realized with a single memory transistor while its implementation in
Si-based technologies (i.e., CMOS) required 7 transistors [7].

STP has been also demonstrated in two-terminal devices that would ensure higher
devices density when integrated into complex systems. Equivalently, STP in two-
terminal devices is implemented by taking advantage of the volatility of the different
memory technologies (i.e., low retention of the state that is often a drawback in
pure memory applications). Redox systems based on electrochemical memory cell
(ECM) [33] or valence change memory (VCM) [12, 44] have demonstrated STP
with a facilitating behavior. In such devices, short-term plasticity is ensured by the
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low stability of the conducting filaments that tends to dissolve, thus relaxing the
device toward the insulating state. TiO2 VCM cells have been reported with both
facilitating and depressing behavior [25] with relaxation related to oxydo-reduction
counter-reaction. Protonic devices have demonstrated STPwith depressing function-
ality due to proton recovery latency from atmosphere required to restore the proton
concentration and conductivity [15].

In terms of functionality, [1] has demonstrated that depressing synapses with STP
act as a gain control device (at high frequency, i.e., high synaptic activity, the synaptic
weight is decreased, thus leading to a lowering of the signal when activity becomes
too important).More generally, STP (both depressing and facilitating) provides a very
important frequency coding property (as depicted in Fig. 7 that could play amajor role
in the processing of spike rate-coded information). Indeed, if a simple integrate-and-
fire neuron (I&F) is associated with static weight (with no dependence with spike
frequency), the computing node (i.e., neuron and synapses) is only a linear filter
(linear combination of the different input) while STP turns the node to nonlinear.
This property (i.e., locally induced nonlinearity in spike signal transmission) has been
used to implement reservoir-computing approaches as proposed by Buonomano and
Maass [10] with the liquid-state machine and could be an important property of
biological systems for computing.

4.2.2 Coexistence of STP and LTP in the Same Memristive Nanodevice

If the contribution of short-term and long-term processes to computing is not com-
pletely understood in biological systems, both STP and LTP effects in synaptic con-
nections have been evidenced and should play a crucial role. A first approach is to
consider that repetition of short-term effects should lead to long-term modification
in the synaptic connections. This behavior would explain the important hypothesis
of memory consolidation in the sense of psychology [24]. Ohno et al. [33] reported
for the first time the transition from short-term to long-term potentiation in atomic
bridge technology (Fig. 10). Considering again the transmitter-induced plasticity
dependent on the pre-synaptic activity (associated with spike rate in this case), the
synaptic conductivity is increased due to the formation of a silver (Ag) filament across
the insulating gap.While for low frequency, the bridge tends to relax between pulses;
higher frequencies lead to a strong filament that maintains the device in the ON state.
These results suggest a critical size of the bridging filament in order to maintain the
conductive state stable (i.e., providing a LTP of the synaptic connection).

Similar results have been obtained in a variety of memory devices where filamen-
tary switching displayed two regimes of volatility. Wang et al. [42] have shown that
STP-to-LTP transition can occur through repeated ‘stimulation’ training. By stimu-
lating sequentially an oxide-based memristive device with 100 positive pulses, the
synaptic weight gradually increases with the number of pulses. Once the applied
voltage is removed, a spontaneous decay of synaptic weight occurs in the case of no
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Fig. 10 STP and LTP implementation in an ECM cell depending on input pulse repetition time. a
Schematic representation of the Ag2S ECM cell and the signal transmission of a biological signal.
Application of input pulses causes the precipitation of Ag atoms from the Ag2S electrode, resulting
in the formation of an Ag atomic bridge between the Ag2S electrode and a countermetal electrode.
When the precipitated Ag atoms do not form a bridge, the ECM cell works in the STP regime. After
an atomic bridge is formed, it works as LTP. b Frequent stimulation (T = 2 s) causes long-term
enhancement in the strength of the synaptic connection while short-term enhancement is induced
at lower frequency (T = 20 s) [33]

external inputs. The synaptic weight does not relax to the initial state, but stabilizes
at a mid-state, which means that the change of synaptic weight consists of two parts:
STP and LTP.

Chang et al. [13] have evidenced a continuous evolution of the volatility as a
function of the conductivity level of the device in WO3 oxide cells attributed to
the competition between oxygen vacancies drift (creation of conductive path across
the device) and lateral diffusion (disruption of the conducting filament). Another
description of these two regimes of volatility could be associated with a competition
between surface and volume energies in the conductive filament [45].
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4.2.3 Conflict Between Causal and Phenomenological Description

If this concept of ST-to-LT transition has been well demonstrated in a variety of
nanoscale memory devices, we have to emphasize that they were all reported in the
context of transmitter-induced plasticity (more precisely corresponding to the synap-
tic adaptation, a non-Hebbian plasticity form). In biology, the facilitating processes
observed in short timescale (i.e., transmitter-induced STP) and associated with an
increase of neurotransmitter release probability during a burst of spike (i.e., cor-
responding to an increase of synaptic efficiency at high-frequency spiking rate) is
additive with LTP [6] that could be associated with a Hebbian-type plasticity involv-
ing both pre- and post-neuron activities. In other words, a causal description will
make a clear distinction between the origin of ST- and LT-plasticity while a phe-
nomenological description (Fig. 10) will not. Indeed, during high-frequency burst of
spikes associated with transmitter-induced plasticity, the firing of the post-neuron
is favored and should lead to both pre- and post-activities, thus leading to Hebbian-
type LTP. In the case of the neuromorphic implementation described above, the
transition between STP and LTP is associated with a single parameter (such as the
mean firing rate of the pre-neuron) and both ST and LT regimes cannot be uncor-
related (i.e., ST will lead to LT regime). The device state will move sequentially
from one regime to another one via transmitter-induced plasticity only. It should
be noted that this effect induces some restriction in terms of (i) network configura-
bility, since non-Hebbian and Hebbian-type learning cannot be dissociated, and (ii)
network functionality, since the synaptic connection moves from a nonlinear con-
ductance in its ST regime (i.e., frequency dependent) to a linear conductance in its
LT regime. Alternative approaches are still needed as proposed by Cantley et al. [11]
where short-term processes and long-term processes are realized by two different
devices (leaky floating gate transistor and nonvolatile two-terminal devices) in order
to match the complexity of biological synapses.

Another approach [23] relies on the fact that ECM cells are multi-filamentary
systems providing one additional parameter for device’s conductance modulation:
Either the number of filaments or the size of a single filament can produce an increase
of conductivity, while these two situations will lead to different volatility properties
(Fig. 11). The independent control of these two parameters leading both to potentia-
tion offers the possibility to dissociate different forms of plasticity and to reproduce
synaptic plasticity in a more biorealistic way. In particular, in the case of multi-
filamentary ECM cells, an independent control of the number of filaments and of
the width of each individual filament was proposed in order to reproduce different
potentiation with both ST and LT regimes.
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Fig. 11 STP and LTP implementation in an ECM cell. By using the number of pulses as plasticity
key factor, two examples of LTP (case 1 and 2) and STP (case 3 and 4) are obtained. Both dendritic
branches density and dendrites diameter can be tuned independently to reproduce various STP/LTP
combinations

5 Conclusions

We have presented various plasticity mechanisms that have been implemented in
nanoscale memory devices, promising candidates for future biomimetic hardware
systems. Of course, the different examples described above are far from being
exhaustive but are a tentative classification and formalization of synaptic plastic-
ity in nanoscale devices. Future works should provide more complex device systems
with richer features embedded in nanoscale components that will pave the way to
complex neuromorphic computing systems. Notably, while we have only focused
on the synaptic aspect, important efforts are still needed to implement neurons and
synaptic interconnections that will determine the applicability of the different con-
cepts exposed in this chapter. Indeed, since synaptic elements are required to be
implemented in a high-density architecture, major challenges in terms of practical
operating conditions and interconnections strategies should be taken into account.

Finally, neuromorphic computing being an emerging field evolving in between
ANNs and BNNs, strong interdisciplinary approaches will be valuable for the future
of neuromorphic computing.
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Neuromemristive Systems: A Circuit Design
Perspective

Cory Merkel and Dhireesha Kudithipudi

Abstract Neuromemristive systems (NMSs) are brain inspired, adaptive computer
architectures based on emerging resistive memory technology (memristors). NMSs
adopt a mixed-signal design approach with closely coupled memory and processing,
resulting in high area and energy efficiencies. Existing work suggests that NMSs
could even supplant conventional architectures in niche application domains. How-
ever, given the infancy of the field, there are still a number open design questions,
particularly in the area of circuit realization, that must be explored in order for the
research to move forward. This chapter reviews a number of theoretical and practical
concepts related to NMS circuit design, with particular focus on neuron, synapse,
and plasticity circuits.

1 Introduction: Taking a Cue from Nature

AnNMS is a brain inspired, special-purpose computing platform based on nanoscale
resistive memory (memristor) technology. NMSs represent a subclass of a broader
movement in brain-inspired computing called neuromorphic systems, which were
pioneered by Carver Mead in the late 1980s [1]. The primary goal of both neu-
romorphic and neuromemristive systems is to provide levels of intelligent informa-
tion processing, adaptation/learning, energy/area efficiency, and noise/fault tolerance
in niche application domains that are not achievable using conventional comput-
ing paradigms. Conventional computer architectures are limited in these aspects
because of their adherence to the von Neumann model, where the hardware is dig-
ital and immutable, computation is sequential and precise, and a distinct separa-
tion exists between computation and memory. Although the von Neumann model is
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unparalleled for well-defined sequential problems (e.g., arithmetic and logic), it is ill
suited in application domains such as visual information processing, where problems
are not well posed, data are analog and noisy, and solutions are inherently parallel.
Mead and many researchers before him recognized that biological systems such as
the primate brain solve these types of problems with much greater efficiency than
conventional computing systems. In fact, it is estimated that for applications such as
visual information processing, the brain is a factor 1×107 more energy efficient than
any conceivable digital computer. The explanation for this large efficiency gap lies in
the stark contrast between conventional computer architectures and the computing
methods employed by the brain.

The human brain is inherently mixed signal, massively parallel, approximate, and
plastic, giving rise to its incredible processing ability, low power consumption, and
capacity for adaptation. Both neuromorphic and neuromemristive systems attempt
to emulate brain functionality with neural networks built from mixed-signal circuits.
The two distinguishing features of an NMS are as follows:

• The incorporation of memristive devices into NMSs enables plasticity at multiple
levels, beyond the synaptic plasticity that is typically implemented in neuromor-
phic systems.

• NMSs focus on abstraction of the computational principles found in the nervous
system rather than biological plausibility. This approach is better for two reasons.
First, it is still unclear how behavior at the level of single neurons and small neu-
ronal populations leads to system-level behavior of the brain. Secondly, the basic
components of the brain (e.g., proteins and cells) are much different than those
used in integrated circuit (IC) design (e.g., transistors and memristors). Therefore,
it is unlikely that copying the brain’s structure in an ICwill yield the same emergent
properties.

Note that there are other computing platforms that are attractive for brain-like infor-
mation processing, including general-purpose graphical processing units (GPGPUs)
and field-programmable gate arrays (FPGAs). GPGPUs are optimized for the types
of linear algebra computations that govern neural network behavior. However, they
lack the reconfigurability that is offered by NMSs. On the other hand, FPGAs have a
high degree of reconfigurability, but they have very high area and power overheads
to support their interface and routing resources.

NMSs generally have neural network-like architectures/topologies. To date, a
number of NMS designs have been proposed for a wide spectrum of applications.
These include associative memory [2], brain-state-in-a-box recall [3], temporal pat-
tern recognition in a reservoir network [4], and implication logic [5]. Beyond these
applications, many groups have focused on NMSs for vision. In [6], a neuromemris-
tive winner-take-all-type network is designed to detect the position of an object. A
type of biologicallymotivated training called spike time-dependent plasticity (STDP)
is used for unsupervised learning. The authors of [7] propose an NMS with a multi-
layer perceptron topology for classifying automobiles. An NMS for optical character
recognition (OCR) is designed in [8] using a simple feedforward network and STDP
training. In [9], the authors propose an NMS that uses stochastic conductive bridge
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random access memory (CBRAM) devices for visual pattern extraction, and in [10]
an NMS with an extreme learning machine topology is designed for pattern recog-
nition.

The rest of this chapter focuses on the circuit designs underlying the architectures
cited above. While the emphasis will be on circuit functionality, models of the cir-
cuits’ power consumption, area, and variability can be found in the accompanying
references. Section2 provides a brief overview of memristors and the motivation for
their incorporation into NMSs. Section3 discusses voltage versus current-mode cir-
cuit designs forNMSs. Sections4, 5, and 6 review circuit designs for neuron, synapse,
and plasticity (learning) circuits, respectively. Section7 concludes this chapter.

2 Memristor Overview

Our abilities to learn a new face, drive a car, identify objects, and perform other visual
tasks are the results of brain plasticity. Plasticity is the characteristic of a system that
allows it to undergo permanent changes in response to an external force. Biolog-
ical systems exhibit remarkable levels of plasticity, enabling organisms to adapt
to a changing environment, maintain a homeostatic state, and recover from injury.
The same characteristics are of interest for future computing systems as they facili-
tate reconfigurability and noise tolerance, reliability, and self-healing/resilience. The
mechanisms that enable plasticity in a biological context occur at multiple scales,
from the level of individual cells up to functional brain regions. These include neuro-
genesis, epigenetic mechanisms, long-term potentiation and depression in chemical
synapses, and changes in topologicalmappings between brain regions and brain func-
tions (e.g., retinotopicmaps).At an abstract level, each of these plasticitymechanisms
requires some form of memory. In particular, there is a certain level of persistence
in, e.g., the locations of specific neurons, the efficacy of synaptic transmission in
a particular synapse, and the topology of brain regions. Hence, any brain-inspired
computing system should ideally employ some form of nonvolatile memory (NVM)
to achieve plastic behavior.

Flash has been the dominant nonvolatile memory technology used in computing
systems for many years because of its high density and low cost. However, due to
many scaling-related challenges, flash is expected to be superseded by a novel mem-
ory technology within the next decade. Table1 shows a comparison of NAND flash
and prototypical/emerging nonvolatile memories across energy, performance, and
reliability metrics. Biologically motivated targets for each metric are listed in the
right column. In particular, phase change memory (PCM), spin transfer torque ran-
dom access memory (STT-RAM), and resistive random access memory (RRAM) are
among the most promising candidates for future NVM implementations [11]. Each
of these technologies may also be described as a memristor or memristive device. A
memristor is a two-terminal passive circuit element that follows a state-dependent
Ohm’s Law, characterized by a pinched hysteresis current–voltage relationship as
shown in Fig. 1 [12–14]:
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Table 1 Comparison of nonvolatilememory technologies for brain-inspired computing [11, 15–17]

Metric Flash Memristors Targets

PCM STT-RAM RRAM

Dynamic range (�/�) – >1000 2 1000 >4

Number of states 8–16 100 4 100 20–100

Retention Several years at room temp. Years

Energy (pJ/bit) >100 2–25 0.1–2.5 0.1–3 0.01

Endurance (cycles) 104 109 1015 1012 109

Fig. 1 Pinched hysteresis
current–voltage relationship
that characterizes memristive
devices
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im(t) = Gm(γ )vm(t) (1)

dγ

dt
= χ(γ, vm(t)) (2)

where im is the current through the memristor, vm is the voltage across the memristor,
γ ∈ [0, 1] is a state variable, Gm(γ ) is the state-dependent conductance, and χ gov-
erns how γ changes over time. The conductancewill range fromGmoff ≡ Gm(γ = 0)
to Gmon ≡ Gm(γ = 1). By applying short voltage pulses to these devices, one can
incrementally modify their conductance states, enabling the storage of multi-level
memory values.

The most important metrics for an NVM technology within an NMS are dynamic
range, number of memory states, retention, energy efficiency, and endurance. A
memristor’s dynamic range can be measured as the ratio of its ON and OFF con-
ductances (GmON/GmOFF). A large dynamic range allows sense circuitry to easily
distinguish an NVM cell’s different memory states. The number of states that the
NVM cell can achieve has a direct impact on the area and energy efficiencies, as
well as the functionality of an NMS. The number of memory states in a memristive
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device is equivalent to the number of distinguishable Gm(γ ) values that exist. For
two conductance states to be distinguishable, they need to yield two different current
levels (when placed in a circuit) that have a range which is larger than the noise
level (e.g., thermal and shot noise) of the circuit. It may take several bistable (only
able to achieve two memory states) NVM cells in an NMS to attain the same level
of functionality as an NMS with a single NVM cell that has many memory states.
Retention is another critical characteristic for an NVM technology. Within an NMS,
a large retention allows the system to accumulate and integrate information over long
periods of time. Low power is a primary NMS design goal, making energy-per-bit
a critical metric in evaluating NVM technologies within these systems. Finally, in
order for an NMS to learn and adapt, its underlying memory must be able to endure
a large number of write events. Based on these metrics, RRAM is the most suitable
NVM for NMS implementation. Although it has a good dynamic range, number of
states, and retention, PCM requires high energy and voltages for writing. In addition,
its endurance is borderline. In contrast, STT-RAM has very high endurance, but its
dynamic range and number of resistance states are too small for NMS implemen-
tation. In addition, RRAM has excellent compatibility with CMOS and is highly
scalable; its competition with other emerging NVM technologies will continue to
fuel research that will be fruitful for RRAM-based NMSs.

RRAMcells, which will be referred to as memristors for the rest of this document,
have a metal–insulator–metal (MIM) structure, where two conducting electrodes
sandwich a thin-film switching layer. Various MIM memristor stacks have been
explored, and there are several ways to categorize them based on their material
properties (e.g., crystalline structure and band gap), proposed switching mechanism
(e.g., anion, cation, and Ferroelectric), or observed switching characteristics (e.g.,
bipolar or unipolar switching). Comprehensive reviews are provided in [15, 18–21].
The proposed switching mechanism for most of the fabricated devices is based on
redox reactions andmigration of defects such as interstitial ions or vacancies. Several
different models have been proposed to capture the physical phenomena underlying
memristive behavior [21–24]. However,many of them are computationally expensive
and are not amenable to large-scale circuit simulations. Simpler empirical models
such as the PWLmodel proposed in [25] are parametrized by experimentalmemristor
data and have lower computational complexity. Finally, several groups have proposed
simulationprogramwith integrated circuit emphasis (SPICE)orVerilogAMSmodels
for circuit-level simulations [26–33].

3 Voltage Versus Current-Mode Circuit Designs for NMSs

At the circuit level, an NMS can perform computations on information represented
by currents (current mode), voltages (voltage mode), or a combination of the two.
Deciding which of these methodologies to adopt can be challenging, as each has its
own set of strengths and weaknesses. Current-mode design techniques date back to
1975, when Gilbert proposed a general class of circuits composed of devices (called
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translinear elements) that have an exponential current–voltage relationship [34].
Gilbert’s translinear principle states that circuits configured with loops of translin-
ear elements (translinear circuits) behave in a very predictable way: The products of
the currents flowing in one direction equal the products of the currents flowing in
the other direction. Initially, the translinear principle was demonstrated with bipolar
junction transistor (BJT) devices, but it is also applicable to MOS devices operating
in weak inversion. Complex computations such as vector magnitude calculations
can be implemented in current mode using the translinear principle with a handful
of transistors. There is no similar design principle for voltage-mode circuits.

Current-mode circuits have several other advantages over voltage-mode designs.
They are generally able to operate at lower supply voltages and typically can achieve
higher bandwidths, sometimes approaching theMOSFET intrinsic frequency fT [35].
In addition, current representations of information have an inherent advantage in
terms of communication.When voltages are sent along long routing paths, they incur
losses due to series resistances, diminishing the integrity of the signal. Biology’s
solution to this problem has been to send long-range communications in the form
of spikes which are regenerated along myelinated axons. However, it is still largely
unknown how neural information is encoded in spikes and rate encoding is still the
dominant scheme used in hardware implementations of spiking networks. It is often
easier to represent spiking rates in hardware as continuous analog values, albeit
with some reduced noise tolerance. However, buffering analog voltages requires
expensive hardware, with carefully designed amplifier circuits (e.g., common drain
amplifiers) to achieve unity gain. In addition, simple analog voltage buffers typically
operate in small-signal operating regions and require very careful biasing to obtain
zero offset. Better designs typically employ a source follower op-amp configuration
which can handle rail-to-rail input and output signals. However, even the simplest
op-amps consisting of differential and gain stages require 7 transistors—contrast that
with current-mode designs, which can communicate information over long distances
with relatively little signal degradation.

In addition to the general advantages of current-mode circuits, there are also
specific benefits when these designs are used to implement neuromemristive archi-
tectures and systems. Consider the two configurations in Fig. 2. In the first case
(Fig. 2a), a presynaptic neuron has a voltage output vx(l)

j
which falls across an

output impedance Ro connected to a small-signal ground. Here, each neuron is
modeled as an ideal voltage source that implements a linear activation function.
However, the pre- and postsynaptic neurons may generally have any activation func-
tion. The gain of the presynaptic neuron can be described as Av = gmRo, where gm
is a transconductance factor. Now, consider the direct connection of the presynaptic
neuron to all of the outgoing synapses, which can be characterized by several par-
allel conductance values. In this case, the gain of the presynaptic neuron becomes

Av = gm

(
Ro|| · · · 1

G(l+1)
i−1,j

|| 1
G(l+1)

i,j

|| 1
G(l+1)

i+1,j

· · ·
)
. Therefore, if the neuron’s fan-out is high,

then small weight values in the outgoing synapses (typically represented as high con-
ductances) will significantly diminish the neuron gain. Therefore, it is usually best
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(a) (b)

Fig. 2 a Voltage-mode NMS, where neuronal activations are represented as voltages and synapses
typically operate via transconductance. b Current-mode NMS where neuronal activations and the
results of synaptic weighting are represented as currents

practice to add a buffer before each outgoing synapse to reduce the loading effect
on the presynaptic neuron. In fact, this technique is analogous to biological ner-
vous systems, where each outgoing synapse is buffered using synaptic vesicles held
within the presynaptic terminal (synaptic bouton). As discussed earlier, buffering
voltage-mode analog neurons is expensive in terms of hardware area. In contrast, a
current-mode design (Fig. 2b) affords the ability to buffer presynaptic neuron outputs
using current-controlled current sources (typically simple CMOS current mirrors),
which have smaller area and power requirements.

Although the current-mode design approach is attractive, there are some chal-
lenges to consider when designingNMSs using current-mode circuits. First, a current
cannot be distributed through multiple circuit branches without buffering. Secondly,
since current mirrors are employed extensively, current-mode designs are especially
prone to mismatch-related problems. The effects of mismatch on the circuit, archi-
tecture, and system-level performance are studied extensively in this work.

4 Neuron Circuits: Primary Information Processing Units

The human brain contains an estimated 80 billion neuron cells. In an abstract sense,
each neuron performs the same task; it processes information sent from one group of
neurons and then sends the result along to another group of neurons. Of course, this is
a massive oversimplification. In reality, there are hundreds of types of neurons, each
having complex and unique physical, biochemical, and functional characteristics.1

1For example, different neurons may have different dendritic arborizations, axon lengths, methods
of encoding/decoding information, etc.
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(a)

(b)

(e) (f) (g) (h) (i)

(c) (d)

Fig. 3 NMS neuron circuit designs. a Block diagram of a neuron showing input and activation
function stages. b–d Input stages using a common node for current summation, a pull-down resistor
for current-to-voltage conversion, and an inverting summing amplifier circuit to provide a virtual
ground node, respectively. e–h Example circuits for implementing rectified linear, threshold, sig-
moid, and spiking activation functions, respectively

Although these nuances are critical from a biological standpoint, it is infeasible to
capture somany details in an energy-efficient/area-efficient circuit. Therefore, NMSs
typically employ simplified behavioral models of neurons, such as those shown in
Fig. 3.

In the first stage, or input stage (see Fig. 3a), each neuron sums weighted outputs
from other neurons. This convergence of signals allows each neuron to integrate
information from across the network and get its own unique sense of the system’s
current state. In the second stage, the neuron applies an activation function to the
summation and sends the result downstream to other neurons that are awaiting its
arrival. It is in this stage that information is said to diverge, since the downstream
neurons may be distributed across the entire network. Overall, the behavior of a
neuron in an NMS can be described as

xi (t) = f (si (t)) = f

⎛

⎝
∑

j

si,j (t)

⎞

⎠ , (3)

where f is the activation function and si,j is the jth incoming signal to the ith neuron.
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4.1 Input Stage

The neuron input stage defines how signals are integrated over space/time.Depending
on the design approach, the input stage will place different constraints on the neuron,
such as its maximum fan-in. Figure3b–3e show four common input stages. The
simplest design (Fig. 3b, c) makes use of Kirchoff’s current law, connecting all of
the incoming signals, which are assumed to be currents, to a common node for
summation. Optionally, a pull-up/pull-down resistor may be used to convert the
current summation to a voltage. The choice of whether or not to include a current-to-
voltage conversion depends on the design of the activation function circuit, discussed
later. This type of input stage (with and without voltage conversion) has generally
been used in NMSs with so-called first- and second-generation designs [10, 36–38],
where neurons are nonspiking and transient states of the network are ignored (except
in the case of recurrent topologies). In the case where a current-to-voltage conversion
is required, it is advisable to use a memristor in place of a pull-up/pull-down resistor.
The reason is twofold: First, the currents that appear at the neuron’s input stage are
usually in the nanoampere range, so a very large resistance is needed to get a good
dynamic voltage range. Large resistors are very costly (in terms of area) to implement
on-chip. Secondly, the ability to adjust a memristor’s resistance/conductance can be
useful for adjusting the neuron’s activation function.

Neuron input stages can also be designed using operational amplifiers, as shown
in Fig. 3d. The advantage of this approach is that the amplifier circuits can be used to
force identical potentials at different circuit nodes, which is especially useful when
designing NMSs that incorporate memristor crossbars [10, 39]. The disadvantage,
which is frequently overlooked, is that good op-amps (e.g., meeting minimum phase
margin, slew rate, gain, and input/output range) require significant effort from expe-
rienced analog designers, not to mention their potentially large area and power costs.
In fact, the open-loop gain is usually assumed to be infinite [39], allowing the circuit
to produce a perfect summation even with a very large fan-in. However, in [10], the
authors show that op-amp input stages have very limited fan-in (e.g., ≈50 incoming
synapses), evenwhen the op-amp gain is high (e.g., 100 dB). However, this constraint
can be relaxed if it is not necessary for the op-amp circuit to have perfect behavior
(i.e., produce a perfect summation of the inputs). Similar to the input stage discussed
earlier, an op-amp-based input stage may also need to have very large resistances, so
a memristor implementation is much more practical than, e.g., a polysilicon resistor
implementation.

The input stages discussed so far integrate incoming signals over space, and the
networks that they comprise make use of steady-state signals (again, with the excep-
tion of recurrent networks). Another type of input stage integrates signals over space
and time, allowing an NMS to exploit temporal dynamics for efficient encoding and
communication of information. The circuit is shown in Fig. 3e. The biological moti-
vation is readily apparent. An input resistor and a capacitor represent the impedance
and capacitance of the neuron cell’s membrane, respectively. Charge is integrated on
the capacitor each time a voltage spike, or action potential, appears at the input. The
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current flowing into the capacitor represents sodium influx that occurs after a neuron
receives an incoming action potential. The current flowing out of the capacitor rep-
resents potassium efflux, which causes the charge to “leak,” pulling the membrane
voltage down to the neuron’s resting potential. Consequently, the neuronmodel asso-
ciated with the input stage in Fig. 3e is referred to as a leaky-integrate-and-fire (LIF)
model. The LIF input stage can be designed in a variety of ways. For example, the
current injected into the capacitor after receiving an action potential and the leak-
age current can both be made approximately independent of the membrane potential
itself. See [40] for a review.

4.2 Activation Function

Possibly the most critical aspect of a neuron in an NMS (and any other artificial
neural network) is its activation function f . The precise shape of f dictates the com-
plexity of relationships that the NMS can learn. Recall that real (biological) neurons
encode information in spikes. Generally, a neuron’s spike frequency will increase
as it becomes more excited and vice versa. Perhaps the simplest way to model this
behavior is with an identity function. In other words, the output of the activation
function will be the same as its input. Of course, this type of activation function does
not need to be implemented explicitly, since one can just take the output as si. But
if all of the activation functions in the network are linear, then it follows that the
NMS will only be able to learn linear relationships. Fortunately, the linear activation
function can be made nonlinear by adding a diode-connected MOSFET, as shown in
Fig. 3f. This type of activation function is referred to as a rectified linear unit (ReLU).
Besides its computational advantages, ReLUs are much more biologically plausible
than linear activation functions. Despite their simple circuit implementation, ReLUs
have scarcely been incorporated into NMS designs. However, that is likely to change
given the ReLU’s success in software implementations of deep belief networks.

Another simple activation function models a neuron as being either “ON” or
“OFF.” Concretely, the circuit uses a binary signal, which is “1” to indicate a spike
frequency above some threshold θ and “0” otherwise. The circuit implementation
(Fig. 3g) consists of a comparator to implement the thresholding and a buffer to dig-
itize the output. This type of threshold activation function is used in single-layer
perceptron networks, which were proposed by Rosenblatt in the late 1950s [41].
Although Minsky and Papert showed in the following decade that single-layer per-
ceptrons have a major flaw, they can only learn linearly separable functions [42]. To
learn more complex relationships, an NMS must employ multilayer networks with
continuous and nonlinear activation functions, such as logistic sigmoid and hyper-
bolic tangent functions. The circuit implementation of a logistic sigmoid function is
shown in Fig. 3h. Note that if the output of the circuit is taken as the difference of
the two differential pair branch currents, then the result will be a hyperbolic tangent
function. Logistic sigmoid and hyperbolic tangent functions are very similar, and
their “S” shape is often used to model the spike rates of biological neurons [43].
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Both functions have been used in the implementation of NMSs for a variety of appli-
cations [10, 39, 44]. The major difference between the two lies in their range. A
logistic sigmoid function ranges from 0 to +1, while a hyperbolic tangent function
ranges from −1 to +1. It has been shown empirically that bipolar (i.e., ranging from
negative to positive values) activation functions perform better than unipolar activa-
tion functions (strictly positive or negative range) [45]. However, it can be shown
that any network with bipolar activation functions can be transformed to one with
unipolar activation functions [46]. Therefore, it is generally better to use unipolar
activation functions because of their simpler circuit implementation.

The reason that Rosenblatt’s perceptron could only learn linearly separable func-
tions was not because it had a single layer. Rather, it was because the network’s
activation functions (i.e., the threshold activation function) were monotonic. In fact,
all of the activation functions discussed so far are monotonic, meaning that they have
a purely positive or purely negative first derivative. It can be shown that, by mak-
ing the activation function nonmonotonic, a neuron can learn nonlinearly separable
functions. A classic example of a nonlinearly separable function is parity detec-
tion. Another example is edge detection in images. In [47], researchers show that
an NMS employing a nonmonotonic activation function can learn to detect edges
using a single neuron. Nonmonotonic activation functions can be implemented as
a combination of sigmoid activation circuits [47]. Although neurons in the brain
exhibit nonmonotonic responses to external stimuli (e.g., cells in the primary visual
cortex respond selectively to edge orientation), there is no evidence that their indi-
vidual activation or encoding scheme is nonmonotonic. Therefore, an NMS neuron
with a nonmonotonic activation function is modeling multiple layers of neurons in a
biological neural network.

Evolution designed the neurons in our brains to encode information in spikes.2 One
can speculate that the evolutionary advantage of spiking is amixture of efficiency and
reliability. The former is evident from the brain’s use of sparsely distributed encoding
[48], and the latter can be inferred from neural tissue’s leaky conduction properties,
which would make the use of graded potentials very unreliable [43]. A number of
NMS researchers have integrated spiking activation functions, such as the one shown
in Fig. 3i, into their designs [9, 49]. One of the major questions concerning spiking
NMSs is how should information be encoded/decoded? In nonspiking designs, espe-
cially feedforward networks, information is encoded by a neuron’s intensity or the
output of its activation function. However, when it comes to spiking neurons, there
are several choices. Information can be encoded by spike rate, interspike latency, etc.
[50]. To date, there are no studies that make a direct comparison between spiking and
nonspiking NMSs in terms of area and energy efficiency, or computational capacity.

2However, photoreceptors in our eyes and neurons in the peripheral nervous system have graded
(nonspiking) responses to stimuli.
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5 Synapse Circuits: Communication and Memory

The neurons in our brains are functionally connected to each other via synapses.
A biological synapse facilitates the transmission of information from one neuron
to another using molecules called neurotransmitters. Neurotransmitters are released
from special processes on the axon of one neuron (the presynaptic neuron) and dif-
fuse across a small part of extracellular space to receptors on the dendrites of another
neuron (the postsynaptic neuron). At the postsynaptic neuron, the neurotransmitters
cause a change in concentration of intra- and extracellular ions (e.g., Na+), leading
to a change in the membrane potential. If the change in the membrane potential is
positive and large enough, it could cause the postsynaptic neuron to spike. Some
synapses may have a stronger effect (i.e., cause a larger change in membrane poten-
tial) on the postsynaptic neuron than others. Critically, the whole process of synaptic
communication is plastic over different timescales. This means that the strength
of communication between two neurons can change over time through a number
of different processes including modulation of receptor efficacy, addition/deletion of
receptors, synaptogenesis, and many others [51]. Synaptic plasticity is believed to
be one of the primary mechanisms involved in learning.

The three primary functions of biological synapses (physical coupling of neurons,
weighted communication, and facilitation of learning) can all be realized with mem-
ristor circuits. In the simplest design, often used in spiking NMSs, a single device
connects pre- and postsynaptic neurons (Fig. 4a). This is often referred to as a 1R
configuration. The device’s conductance is modified to change the synaptic weight.
The advantage of this approach is that it is the most compact. It also lends itself to a
biologically motivated learning rule called spike time-dependent plasticity (STDP),
which is discussed in the next section. However, there are a number of challenges
related to a single-memristor design. Many devices have very low ON resistances
(e.g., in 100s of k�), causing adverse loading effects on presynaptic neurons, limit-
ing their fan-out and drive capability. The design can be modified slightly (Fig. 4b)
by adding aMOSFET to alleviate the loading effect. A variation of this design, which
separates the presynaptic and postsynaptic neurons, but does not necessarily solve
the loading issue is shown in Fig. 4c. This design has also been used in nonspiking
designs [36].

A disadvantage of the designs discussed so far is that they can only achieve
unipolarweight values,while artificial neural networks usually learn bestwith bipolar
weights. The predominant method to get bipolar weight values has been to use two
or more memristors per synapse with competing positive and negative effects on
the postsynaptic neuron. One such design, proposed by Kim et al. [38], is shown in
Fig. 4d. The circuit uses a bridge configuration to control the output of a differential
pair. The amount of current flowing through each branch of the output depends on the
ratios of memristor conductances. The final synaptic output is taken as the difference
of the two branch currents, so the circuit can achieve both positive and negative
weight values. In addition, the circuit has a reduced loading effect on the presynaptic
neuron since the input impedance is approximately constant (≈ (Gon + Goff )/2)
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 4 Synapse circuits for NMSs: a Single memristor as a synapse, predominantly used in spiking
networks. b Single-memristor synapse with a transistor used to provide a high-impedance input.
c Single-memristor synapse with a current mirror to isolate the pre- and postsynaptic neurons.
d Memristor bridge synapse providing bipolar weight values. e Current-mode bipolar weight
synapse circuit. f Voltage-mode synapse composed of bistable memristors. g Constant weight
synapse

over the entire weight range. Besides the large number of circuit components, one
disadvantage of this design is that it only behaves linearly over a certain range of
input voltages (i.e., when all transistors are saturated).

Another synapse design, shown in Fig. 4e, uses two memristors whose conduc-
tance ratio determines the synaptic weight. When the ratio is at one extreme, all of
the current from the source current is shunted to ground, and the sink current inhibits
the postsynaptic neuron. When the ratio is at the other extreme, the sink current is
outweighed by the source current. Therefore, the circuit can achieve a continuous
number of weight values between −1 and +1. Notice, however, that an op-amp is
required to provide a virtual ground at the output node. As discussed earlier, op-amps
are potentially expensive in terms of area, power consumption, and design effort.

It is important to note that not allmemristors have continuous switching properties.
That is, some devices can only achieve a small number of conductance states—the
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minimumofwhich is two.Deviceswith only two conductance states are referred to as
bistable. Connecting a number N of bistable devices in parallel yields an equivalent
memristor that hasN + 1 states. Note that any of the synapse circuits discussed so far
can be implemented with bistable devices. Each memristor would just be replaced
with N bistable memristors in parallel. Figure4f shows a bistable memristor-based
synapse that incorporates an excitatory pull-up and an inhibitory pull-down group
of memristors. Initially, the capacitor is discharged to ground. Then the positive and
negative voltage representation of the presynaptic neuron is applied to the pull-up
and pull-down networks, respectively. After a short time, the voltages are removed,
and the capacitor will have charged toward vxj or −vxj based on the relative states of
the pull-up and pull-down conductances. The obvious disadvantage of designs that
use bistable devices is the overhead associated with extra memristors.

One final synapse design is shown in Fig. 4g. Note the lack of any memristive
devices in the circuit. This design is useful for network topologies that require con-
stant, random weights, such as reservoir networks and extreme learning machines.
The ratio of the transistor sizes will determine the weight value. In addition, for
small transistor sizes, there will be some degree of random mismatch which can be
leveraged to create random weight values.

6 Plasticity Circuits: Adaptation/Learning

NMSs learn through adaptation of synaptic weights which, in turn, are modified
through adjustment of memristor conductance values. This section discusses a num-
ber of methods for adjusting memristor conductances in accordance with different
learning algorithms. But before a learning algorithm can be developed, one must
identify a cost function J . The cost function specifies how well the current state of
the NMS (i.e., all of its weight values) satisfies the objective or hypothesis function
(i.e., the desired functionality of theNMS).Once J is determined, it is straightforward
to design a training algorithm that minimizes the cost via gradient descent:

wi,j := wi,j − α
∂

∂wi,j
J(W), (4)

where α is a constant called the learning rate, and W is the matrix containing all
of the weights in the NMS. Now, consider a single-layer perceptron, which is the
smallest indivisible unit of any neural network. If the current input is u(p), the current
output is ŷ(p)

i , and the desired output is y(p)
i , then it is easy to show that (4) becomes

wi,j := wi,j + αu(p)
j

(
y(p)
i − ŷ(p)

i

)
(5)

This is the well-known least-mean-squares (LMS) algorithm. Here, p is the index of
the current input. In general, increasing the weight value corresponds to applying a
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positive write voltage vw to the synapse’s memristors and vice versa. If the NMS is
digital, all of the signals in (5) will be binary, and theweight update rule can be imple-
mented using a digital circuit. On the other hand, if the NMS is analog/mixed signal,
then implementation of (5) necessitates the use of an analog multiplier (Fig. 5a),
which is expensive in terms of area, power, and design complexity.

A few methods have been developed to implement learning rules similar to (5)
without the need for analog multiplication. In [52], the authors propose an adjusted
learning rule:

w(p)
i,j := w(p)

i,j + α
(
Y (p)
i − Ŷ (p)

i

)
U(p)

j . (6)

Uppercase letters correspond to Bernoulli random variables. This stochastic imple-
mentation of the least-mean-squares algorithm (SLMS) probabilistically increments
and decrements weight values using only comparators and digital logic gates. Conse-
quently, the circuit implementation consumes ≈3.5× less area than the LMS imple-
mentation (Fig. 5b).

Another approach to training an NMS, shown in Fig. 6, is to approximate com-
plex functions such as multiplication with functions that are easier to implement in
hardware. The proposed circuit first converts an input current to a pulse width (left
schematic). Then, using two current-to-pulse width (itop) converters and an AND
gate, one can compute themin. In this case, the pulsewidth of wewill be proportional
to min(ixj , |ixi − ix̂i |). The resulting write voltage is vw. If the normalized values of
ix̂j and |ixi − ix̂i | are both in the unit interval, then the normalized write voltage vw
will be very similar to their product.

The simplification presented above is used to design a learning circuit similar to
the LMS rule [53], which can be written as

wij := wij + αxjxiD = wij + αxj(x̂i − xi). (7)

Here, xiD is the difference between the neuron’s actual and expected outputs. In this
work, a novel circuit for implementing a learning rule similar to (7). The modified
training rule becomes

wij := wij + αsign(xiD)min(xj, |xiD|). (8)

To implement this in hardware, one must first find |xiD| using a modified current sub-
traction circuit. Then, sign(xiD) is found using a current comparator. Subsequently,
ixiD and ixj are converted into pulse widths using the circuit in Fig. 6. If the buffer’s
threshold voltage is low, then the length of the pulse width at vout measured from the
rising edge of clk to the falling edge of vout will be

tw ≈ iin
Ic

Tclk
2

, (9)
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(a)

(b)

Fig. 5 Plasticity circuits for adjusting synaptic weight values in an NMS. a Implementation of the
SLMS algorithm. b Implementation of the LMS algorithm
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Fig. 6 Circuits for implementing the min function

where Tclk is the clock period. Combining two such circuits and an AND gate gives
us the min function, which is used as a write enable, WE, signal for each synapse.
Finally, the sign of the ixiD = ix̂i − ixi is used to select a positive or negative write
voltage. The variation in current matchingwill have the largest effect on the function-
ality
of the proposed training circuit.

The NMS training methods discussed above are just two of the many approaches
that have been explored. In [39], authors explore training NMSs with the widely used
backpropagation algorithm. In [54], authors present a novel training algorithm and
circuit implementation for unsupervised learning in NMSs. A number of plasticity
circuits for training spikingNMSshave alsobeendesigned. For example, [49] reviews
several STDP implementations in NMSs. STDP is believed to be one of the primary
mechanisms behind synaptic plasticity in the brain.

7 Summary and Outlook

This chapter reviewed a number of theoretical and practical considerations for the
design of NMS circuits. Currently, the NMS research domain is flooded with experts
in devices, circuit design, and computer architecture. More recently, groups from
the neuroscience community are also becoming engaged. With so many different
perspectives, the design space of NMSs is intimidatingly large, leaving a number
of important design choices to be made at different levels of the design hierarchy.
One question discussed in this chapter was whether NMSs should adopt a current or
voltage-mode design methodology. There are clear advantages and disadvantages to
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both approaches, so the choice will likely be application dependent. Another ques-
tion is how much biological realism should be integrated into the neuron design?
Some groups have meticulously designed neuron, synapse, and plasticity circuits to
mimic biological processes in the brain. To date, however, the most successful imple-
mentations of NMSs in terms of application-level performance (e.g., classification
accuracy) have been based on the same high-level abstractions that are seen in the
machine learning community. There should be some direct comparisons to uncover
what degree of biomimicry yields the most efficient NMSs in terms of area, power,
and learning capacity.
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Memristor-Based Platforms: A Comparison
Between Continous-Time and Discrete-Time
Cellular Neural Networks

Young-Su Kim, Sang-Hak Shin, Jacopo Secco, Keyong-Sik Min
and Fernando Corinto

1 Introduction

In this chapter, theory, circuit design methodologies and possible applications of
CellularNanoscaleNetworks (CNNs) exploitingmemristor technology are reviewed.
Memristor-based CNNs platforms (MCNNs) make use of memristors to realize ana-
log multiplication circuits that are essential to perform CNN calculation with low
power and small area. Compared to memristor-based crossbar architectures pro-
posed to mimic fundamental neuron–cell-level operations (e.g. Spike Time Depen-
dent Plasticity), MCNNs are more suitable in mimicking the mammalian visual
system that processes topographic image flows through a set of separate spatial–
temporal channels. As so, it will also be shown how special classes of MCNNs,
for instance Continous-Time and Disctrete-Time CNNs (DTCNNs) can be assim-
ilated to other algorithmic techniques for image and data processing such as Cel-
lular Automata (CA), with fulfilling applicative examples. In the chapter, it will be
presented a detailed comparison of the two circuitry designs and their algorithmic
interactions that occur to obtain similar results on generic digital images. The scope
is to understand the importance of the use of MCNNs and the actual technical ben-
efits that derive from these systems. The chapter summarizes the basic concepts of
CNN computation at first, and memristor-based CNN circuits that are very useful in
performing analog multiplication. Some practical issues of MCNN circuits and their
possible solutions are outlined as well. Finally, we present the results of MCNNs
calculation with Laplacian template that is used for edge detection in various image
processing tasks.
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2 Backgorund

One of the neuromorphic applications that use memristors is CNNs [1–4]. In the
memristor-based CNNs, synaptic weights are calculated by analog multiplication
which can consume smaller power and occupy smaller area than digitalmultiplication
[5–8]. Figure1 shows a conceptual diagram of analog multiplication of input matrix
and template matrix. In the matrix multiplication, the input matrix, [X] is multiplied
by the CNN template, [A], as shown in Fig. 1. By multiplying [X] with [A], we can
calculate the output matrix, [Z]. Here, we assume that the input matrix has 60 × 60
pixels, and the CNN template is composed of nine coefficients from a0 to a8. As
shown in Fig. 1, one 3 × 3 sub-matrix in [X] that is represented by X1 is multiplied
with the CNN template, [A]. Thereby, we can obtain one output pixel, Z1 in the output
matrix, [Z]. Similarly, X2 is multiplied with A, and we can calculate Z2. And, also, X3

is multiplied with A. Z3 can be given as an output of this sub-matrix multiplication
of X3 with A.

The analogmultiplication of sub-matrix and CNN template is based onOhms law.
From Ohms law, the memristors voltage is given by v(t) = M(t)i(t), where v(t) and
i(t) are the memristors voltage and current, respectively. M(t) is the memristance
that can be varied dynamically with respect to time, according to the history of
applied current and voltage [8]. Here, if the input matrix is the input current applied
to memristor, we can regard memristors voltage, v(t) as the multiplication result of

Fig. 1 Conceptual diagram of matrix multiplication in the memristor-based CNNs. [X] matrix is
the input matrix. [Z] matrix is the output matrix. [A] matrix is the CNN template that can be such
as Average template, Laplacian template, etc., as shown in this figure [1]
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M(T) and i(t). Here, the CNN template is composed of nine different memristance
values of M(T) from nine memristors.

Unfortunately, the fact that memristance value of M(t) is changed dynamically
causes an important problem inmatrixmultiplication.Aswe repeat themultiplication
over and over, memristance values of M(t) can be drifted away from the originally
programmed values. It means that the coefficients of CNN template become different
from the original values. Though an amount of memristance drift is negligible for
one-time multiplication, memristance may be varied very much as matrix multipli-
cation is repeated over and over. Hence, a kind of memristance restoring circuit is
indispensable in sustaining the multiplication accuracy during the CNN operation.
In this work, we propose a new memristance restoring circuit to recover the drifted
memristance values to the original ones.

3 New Memristance Restoring Circuit

Figure fk2a shows the synaptic weighting circuit of one CNN cell that has one
current mirror, one common-mode feedback circuit, nine differential pairs for nine
input currents and nine memristors [1]. The current mirror is composed ofMP3 and
MP4 and RL means the load resistor. The common-mode feedback biasing circuit
adjusts the tail-current biasing voltage for nine differential pairs to keep VOUT around
VDD/2 when the input currents are zero, regardless of Process–VDD–Temperature
variations. The differential pairs in Fig. 2a convert the differential voltages that are
obtained by memristor weighting circuits to the output currents for the summation
of nine output currents. The nine memristor weighting circuits can calculate nine
products of the input currents and the coefficients of CNN template.

In Fig. 2a, MW0 is the weighting memristor for calculating the multiplication of
the input current IIN0 with the a0 coefficient of CNN template. S0 and SB0 are the
complement switches. When S0 is turned on, SB0 is turned off and vice versa. When
S0 is on, IIN0 is applied to MW0 to calculate the multiplication of IIN0 with MW0. If
the coefficient value in CNN template matrix is zero such as a0 of CNN average
template, SB0 becomes on and S0 becomes off. This is because we cannot make
memristance value zero. Hence, instead of making the memristance value zero, we
can turn off S0 and turn on SB0 to make zero the output current of the multiplication of
IIN0 with a0. One more thing to note here is that the weighting memristor,MW0, can
be connected toMN4 orMN5 according to the polarity of coefficient. If the coefficient
in CNN template is positive,MW0 is connected toMN4. If the coefficient is negative,
MW0 should be connected to MN5. Here, we assume the Laplacian template, where
a0 is negative. Thus, MW0 is connected to MN5 in Fig. 2a. On the contrary, MW4 is
connected to MN7 not MN8, because a4 in CNN Laplacian template is positive. The
nine differential pairs convert nine results of matrix multiplication into the currents.
These currents are summated by the current mirror that is composed ofMP3 andMP4.
The summated current is delivered to RL to make the final output voltage.MP1,MP2,



68 Y.-S. Kim et al.

Fig. 2 a The synaptic weighting circuit with memristors for one CNN cell. b The memristance
restoring circuit for one CNN cell. c The one row of restoring circuits can be shared among 10 rows
of synaptic weighting circuits in 10 × 10 CNN cell array [1]

MN1 andMN2 constitute the common-mode feedback biasing circuit to fix the output
voltage by VDD/2 when the input currents are zero.

The memristance restoring circuit for one CNN cell is shown in Fig. 2b. In one
CNN cell, there are nine memristors to be restored. Thus, we have nine memristance
restoring circuits. SEL0 means the selection signal for the 0th memristor, MW0 in
Figure 2a. SEL4 means a signal to select the 4th memristor, MW4. Here, VOUT is
the output voltage of the synaptic weight circuit in Fig. 2a. VTAR0 is a target voltage
for restoring the 0th memristor. VTAR4 is a target voltage for the 4th memristor. In
Fig. 2b, PG is the pulse generator circuit, and SR latch is used to control the switches
in the memristor weighting circuit. Here ‘/Q’ and ‘Q’ are the outputs of SR latch,
LAT0. They are used to control S0 and SB0 in the memristor weighting circuit of
a0. Similarly, the outputs of SR latch, LAT4 control S4 and SB4 in the memristor
circuit of a4. For restoringMW0 to the original programmed value, ’RESET’ pulse is
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generated in PG1, if VOUT becomes equal to VTAR0. By doing so, the generated pulse
can go into the SR latch, LAT0, to stop programingMW0 further beyond the original
programmed value.

Figure2c shows the block diagramofCNNcircuitswith 10 × 10 cells and one row
of memristance restoring circuits. C0,0 is the CNN cell of ROW = 0 and COL = 0.
C0,9 is the CNN cell of ROW = 0 and COL = 9. Similarly, C9,0 and C9,9 are the cell
of ROW = 9 and COL = 0 and the cell of ROW = 9 and COL = 9, respectively.
The memristance restoring circuits are shown below in Fig. 2c. The 0th restoring
circuit, R0 is for the 0th column of CNN array. The 9th restoring circuit, R9 is for the
9th column. Each restoring circuit can restore one CNN cell.

The more detailed schematic of Fig. 2c is shown in Fig. 3. Here, we assume a
10 × 10 CNN array.CELL0,0 is the CNN cell ofROW = 0 andCOL = 0.CELL0,9 is
the CNN cell of ROW = 0 andCOL = 9. Similarly,CELL9,0 is the cell of ROW = 9
andCOL = 0.CELL9,9 is the cell ofROW = 9 andCOL = 9. EachCNNcell is com-
posed of nine weighting memristors, nine differential pairs, one current mirror, etc.,

Fig. 3 10 × 10 Synaptic weighting circuits and 10 memristance restoring circuits that are shared
among 10 rows in 10 × 10 CNN cell array
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as shown in Fig. 2a.MW0 andMW8 are representing the first coefficient and the ninth
one of the CNN template, respectively. VOUT0,0 and VOUT0,9 are the output voltages
of CELL0,0 and CELL0,9, respectively, for ROW = 0. VOUT9,0 and VOUT9,9 are the
output voltages of CELL9,0 and CELL9,9, respectively, for ROW = 9. At the bottom
row in Fig. 3, thememristance restoring circuit ofCOL = 0 is connected to the output
voltages of COL = 0. Similarly, the memristance restoring circuit of COL = 9 can
recover the memristance values which are inCOL = 9 to the originally programmed
values. As shown in Fig. 3, the memristance restoring circuits are shared among ten
rows from ROW = 0 and ROW = 9. This sharing of memristance restoring circuits
is very helpful in reducing the layout area of memristance restoring circuits.

4 Simulation Results

At this section, we discuss the simulation results of thememristance restoring circuit.
The circuit simulation is done by CADENCE SPECTRE [9] using HP memristor
model [4, 8] and SAMSUNG CMOS 0.13m SPICE model. Figure4a shows that the
random input currents are applied to weighting memristors for the first 0–100 cycles.
During the 0–100 cycles, the memristance values can be drifted from the originally
programmed values. And, during the 100–150 cycles, NO Operation (NOP) is exe-
cuted in the CNN array. For the 100–150 cycles, memristance values are not changed
further from the drifted values during the 0–100 cycles. For the following 150–350
cycles, the memristance restoring circuits start to work. By doing so, they can restore
the memristance values which were drifted from the originally programmed values
to the original values.

Figure4b shows memristance of four coefficients versus the number of cycles.
During the 0–100 cycles, the memristance values are affected by the input currents;
thus, they become different from the original programmed values. For the 150–
350 cycles, the memristance values can be restored to the original values by the
restoring circuits. In Fig. 4b, the restoring times of four coefficients seem different
each other. For coefficient 2, the memristance restoring seems to start at 175 cycle.
For coefficient 4, the restoring circuit seems to work from 225 cycle. This different
restoring time is because the restoring circuit can restore only one memristor to its
original programmed value among nine memristors of nine coefficients at one time.
The restoring circuit can sense only one memristance among nine memristors at
one time. To restore all nine memristance values to the original values, the restoring
circuit should work nine times one by one. Each time, the restoring circuit can restore
one memristor to the original value.

Figure4c shows the percentage drift in memristance versus the number of cycles.
Here, one cycle for doing one multiplication is assumed as long as 100ns. In Fig. 4c,
during the 0–100 cycles, we can know that the memristance values are drifted from
the originally programmed values by the random input currents, as mentioned in
Fig. 4b. One more thing to note in Fig. 4c is that the percentage drift in memristance
is depending on its coefficient value and the amount of input current applied to this
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Fig. 4 a The random input currents are applied during the 0–100 cycles. For the 100–150 cycles,
No operation is performed in CNN array. For the following 150–350 cycles, the memristance
restoring circuits work to restore the memristance values to the original programmed values.
b Memristance variation in the synaptic weighting circuit with increasing the number of cycles.
c Percentage variation in memristance in the synaptic weighting circuit with increasing the number
of cycles [1]

memristor. In Fig. 4c, coefficient 2 shows the largest amount of percentage drift in
memristance among four coefficients. If the coefficient value becomes larger, the
percentage drift in memristance becomes smaller.

Figure5a shows the edge-detected Lena image with 60 × 60 pixels which is cal-
culated by CNN Laplacian template. Here, we can see the detected edges are shown
in white, while the rest parts of Lena image are in black. Here, if we assume that
memristors in CNN array are applied by the random input current as long as 100
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Fig. 5 a The edge-detected
Lena image with 6060 pixels
that is calculated by CNN
Laplacian template. b The
image degradation of the
edge-detected Lena image
due to memristance drift
with 10% variation. c The
image degradation of the
edge-detected Lena image
due to memristance drift
with 20% variation. Here,
the memristance drift is
caused by the random input
currents which are applied to
memristors in CNN array as
long as 100 cycles

operating cycles, the edge-detected Lena image is degraded as shown in Fig. 5b and
c. In Fig. 5b and c, the variation in the drifted memristance is assumed 10% and
20%, respectively. Comparing Fig. 5b and c, the degradation of the detected edges
in Lena image seems more severe in Fig. 5c than Fig. 5b. Using the memristance
restoring circuit in Fig. 3, we can restore the drifted memristance to the original
programmed values to avoid the image degradation that is shown in Fig. 5b and c.
Finally, it should be noted that the memristance restoring circuit can be applied to not
only CNN template, but also the other CNN templates such the average template, etc.

5 Cellular Automata and DTCNNs

A cellular automaton (CA) is a discrete time-space model used to study computabil-
ity theory [10]. Furthermore, as described in details in [11], memristive CNNs, in
particular DTCNNs, can be assimilated to memristive CAs. It was first theorized
by Satnslaw Ulham and John von Neumann in the late 1940s and later defined by
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Stephen Wolfram. This assimilation is possible since memrisitive CAs are able to
perform similar functions as neural networks due to their dynamic nonlinear structure
defined by coupling identical simple dynamical elements called cells. Since 2008,
when R. Stanley Williams from the Hewlett-Packard Company was able to fabricate
a nanoscale memristor [4], a nonlinear resistive device capable of retaining memory
of its internal state [12], the scientific impact of such technologies has grown.

Cellular automata consist in a regular grid of cells, each one with a finite number
of states. The grid must be of finite dimensions. The states of the cells composing
the grid at time instant t = 0 are the initial states of the automaton and are arbitrarily
set. At each time point, the combination of the cell’s states forms a generation.
The generational evolution occurs at specific discrete time instants, and it depends
on the state of the previous generation. More precisely, each cell changes its state
from a generation to another depending on its previous state and/or on the states of
the surrounding cells. The possible number of rules that the system can implement
strongly depends on surrounding radius that effects the change of the given cell.
Supposing to have an array of n cells and the generational evolution of a given cell
of the system is given by its actual state (1 or 0) and the state of the two adherent
cells then there are 23 = 8 possible combinations that lead to 28 possible rules.

From Wolfram’s definition, a system must present the following characteristics
in order to be defined a CA [10]:

• there must be a spatial representation of the involved entities;
• uniformity: or in other words all the entities must have the same characteristics
and must be identical other than interchangeable; and

• locality: each entity changes its state from a generation to the other taking into
account the states of the entities within a given surrounding radius.

Still, from Wolfram’s theory, CAs can be described as a fourfold < d,Q,Nn, f >

where

• d is the dimension of the CA;
• Q is the space of the states which the cells can assume;
• Nn is the neighbourhood index which describes the region of influence of the other
cells for the given cell’s state change; and

• f is the generation transition function which describes the state change of each cell
at each time instant t = τ + nT and must be a function of a cell neighbourhood
described by parameter Nn.

Itoh and Chua [11] first described an implementation of a cellular automaton with
inputs using memristors. The dynamics of their system were given by

yi,j(nT) = M(
∑

g,l∈(−1,0,1)

ag,lyi+g,j+l((n − 1)T)+

+
∑

g,l∈(−1,0,1)

bg,lui+g,j+l((n − 1)T) + ΔT)
(1)
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where y is the output or in other words the state of the cell, and u are the external
inputs of the system. T is the time period in which there is a new input and, therefore,
a new generation change in the system, whileΔt represents the charge accumulation
in the memristor during the previous generations. ag,l and bg,l are elements of two
distinct matrices A and Bwhich both have size G × L. A is the template that contains
the weights given to the neighbour cell states (feed-forward), and B contains the
weights given to the external input (feed-back). A and B are the necessary sufficient
elements, which describe the imposed rules to the memristor CA. Function M(·)
denotes the memristace change function.

6 Belief Propagation Inspired Algorithm and Cellular
Automaton Equivalence for RGB Image Processing

In the previous section, an algorithm was introduced by which Itoh and Chua man-
aged to control the memristances of each cell [11]. The CA that is presented hereafter
exploits the BPI algorithm, and the cells have been assimilated with mathematical
models of memristors (see [13, 14] for further details). The BPI algorithm [15] works
throughout a single layer of cells called synapses. Each synapse returns a binary
value, which depends on the actual memristance values of each cell. For the BPI,
it is necessary to compute the “normalized” memristance of each cell hi ∈ [−1, 1]
subdivided in k discrete steps. The highest possible resistance of the single ele-
ment (Roff ) corresponds to hi = −1, and viceversa the lowest possible value (Ron)
corresponds to hi = 1. All the normalized memristances are to be commuted into
synaptic weights as wi = 1

2 (sign(hi) + 1), where sign(·) represents a signum func-
tion. According to the given rule intended to be learned by the system, it is necessary
to set a threshold parameter θ ∈ [0,N], where N is the number of cells composing
the array. Given a set of binary input patterns ζi, and for each pattern a desired output
σd (also binary) that follows the implemented rule, it is possible to calculate the
total current flowing from the cells as I = ∑N

i=1 wiζi. Once computed the “stability
parameter” as Δ = (2σd − 1)(I − θ), the evolutionary change may be described by
the three following rules:

(R1) if Δ ≥ 0, then all wτ
i = w(τ+1)

i ;
(R2) if Δ < 0, then all hτ+1

i = hτ
i + 2ζ τ

i (2σ τ − 1); and
(R3) with probability ps ∈ [0, 1], ifwτ

i > 0 then hτ+1
i = hτ

i − 2ζ τ
i ; else h

τ+1
i = hτ

i +
2ζ τ

i .

In order to find an equivalence between the CA described in Eq.1 and a CA built
using the BPI, several arrangements were made on the parameters of the algorithm.
The probability ps was set to zero in order to have total control of the generation
changes of the states of the cells composing the system. The number of states k was
set equal to 2 in order to have hi ∈ {−1, 1} significantly cutting down the computa-
tional complexity. Combining R1 and R2 with the definition of stability parameter Δ

function J(·) can be obtained, which describes the evolution dynamics of the cells:
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Fig. 6 Brief depiction of the crosswise CA. All three matrices (R, G and B) are divided in cells
which are compared through the equations in G(ri,j, gi,j, bi,j). The results of the system give the
inputs to the CA, which evolves horizontally and vertically from the original neighbourhood array
until it covers the whole image

Ji(ζ, σd) = hτ+1 = hτ
i + 2ζ τ

i

(sign(Δ) − 1)

2sign(I − θ)
(2)

τ in R1, R2, R3 and J(·) denotes the time point of a given generational change. As it
is possible to see from Eq.2, J(·) is the function that states the weights given to the
inputs (ζi and σd).

In our BPI-CA, the actual cells that evolve during the process are posed in three
memristor-composed matrices with the same size of the analyzed image (Hr ,Hg and
Hb). This is so since differently from normal CA use (grey tone image processing and
filtering), the BPI-CA can be used to elaborate full colour map images (RGB). As an
initial condition, the memristive elements were all set to the Roff state (hHr ,Hg ,Hb|i,j =
−1). The iterations of the system do not occur in the single matrix but crosswise
in the three memristive blocks, taking into account the spacial correspondence of
the cells as shown in Fig. 6. The neighbourhood in which the region of influence is
described is composed by the triplets of cells that correspond to the same position in
the three memristive matrices (Nn = 3). Considering Eq.1, it is possible to rewrite
Eq.2 in the same form.

hτ+1
x|i,j = M(

Nn∑

x=1

ax|i,jhτ
x|i,j +

Nn∑

x=1

ζ τ
x|i,j(2

(sign(Δ) − 1)

2sign(I − θ)
))

= M(

Nn∑

x=1

ax|i,jhτ
x|i,j +

Nn∑

x=1

Jx|i,j(ζ, σd) + Δt)

(3)

In Eq.3,1 the threshold parameter was set to θ = 2.5. All the generation changes
in the system must be input-based, so in the case of our CA performing the BPI, the

1In Eq.3 the cell states are noted as hi,j instead if yi,j since for the BPI algorithm the possible states
are discrete and properly fixed. On the other hand, in the algorithm by Itoh and Chua the state of
the single cell coincides with the actual internal state of the memristive element.
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matrix that gives the weights to the surrounding states is A = [0 1 0]. By inserting
A in Eq.3, it is possible to obtain directly Eq.2. It is possible to notice that the
evolutionary algorithms described by Eqs. 1 and 3 present the same properties of a
CA as described by Wolfram, thus are considered to be equivalent.

7 Element Detection in RGB Image

TheBPI-CAcan be used as aforementioned in the processing of genericRGB images.
The scope for which ha been performed in this work is the detection of particular
elements from digital images. In order to obtain a good identification of a specific
element depicted in a generic coloured image, it is necessary to understand the
properties of the image segment that shows the element itself. It is necessary to
understand that the BPI-CA was performed on pictures taken with generic digital
optic devices such as the one shown inFig. 7a. Every element of a picture has a specific
colour combinations that diverges from the rest of the background. Considering a
generic RGB image, it is possible to decompose its three colour maps. Considering
the single elements of R, G and B, it is possible to find mathematical relations
between the three, here described as G(ri,j, gi,j, bi,j) (as described in Fig. 6), in order
to distinguish the patterns that are only proper of the areas of the depicted detail that
is intended to be isolated. G(·) is a system of equations that take inspiration from
the “green screen” detection techniques and its equations vary according to different
factors relating the image, i.e. the exposure of the picture, but can be adjusted through
digital image filters that act directly on the brightness histogram.

All the elements of the RGB matrices of the picture (i.e. Fig. 7a) were analyzed
according to these functions and the solutions of the equations gave the correspond-
ing value range in which all three must reside in order to identify the particular
element obtaining G(ri,j, gi,j, bi,j) = {ζr|i,j, ζg|i,j, ζb|i,j}. In other words, the colours
that identify the object are singular and are not repeated in other areas of the picture
external to the object itself. As mentioned before, the BPI-CA does not perform its
iterations singularly in each matrix, but it evolves crosswise between R, G and B as
shown in Fig. 6.

Each element of the three matrices was considered as an input cell. The envi-
ronmental neighbourhood of the generational evolution of the cells is given by the
spatial relation of the elements of the three matrices. The BPI other than cellular
external inputs needs the according desired output in order to arrange the eventual
generation change of the states. By these means, the rule imposed to the CA can be
easily described by Table1.

Once all the iterations are over and all the cells in the three H matrices have been
set according to the algorithm, matrix S was created re-presenting all the inputs to
the cells. In this second computational phase, the cells do not change their states
but retain memory of the CA interactions. S has the same size of the image and its
elements are the outputs of the BPI calculated as:
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Table 1 BPI–CA Particular colour detection rule

ζr|i,j ζg|i,j ζb|i,j σd|i,j
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

si,j = Θ(wHr |i,jζr|i,j + wHg |i,jζg|i,j + wHb|i,jζb|i,j − θ). (4)

Θ(·) is the Heaveside function, wH|i,j are the synaptic weights computed from the
cells composing Hr ,Hg and Hb, and θ is the threshold parameter.

The resulting contents of S matrix corresponds to a bit-wise image representing
the mask of the element since the white pixels (si,j = 1) are spatially corresponding
to the ones in the native image in which the object is present as shown in Fig. 7. It is
possible to notice that in the particular case of Fig. 7, the subject has two very close
objects with the same colour scheme and that the system was able to exclude the rest
of the background of the picture, detecting in fact, both elements. The BPI-CA is
able to precisely detect the contours of a single chosen element. The results depend
on the conditions present when the picture was taken. All images used to prove the
reliability of the method were randomly selected from several databases and all have
variable features, i.e. use of the flash when capturing the picture and degree of focus.

Fig. 7 Results of the CA iterations on a generic digital image. a Picture representing a subject
holding two objects of similar colour which are intended to be identified and isolated from the
picture. b The mask image given by matrix S, which is composed of the binary outputs of the three
memristive matrices Hr,g,b
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Although this variability could lead to aleatory results, applying well-known image
filtering solutions (same filters for each picture examined), the system was able to
detect several elements with the same high precision for all pictures.

8 Conclusions

In the first part of this chapter, the memristance restoring circuit in the memristor-
based CNN array was proposed and verified. The restoring circuit can be shared
among 10 different rows of synaptic circuits in CNN array to minimize the area
overhead, when we assume 10 × 10 CNN array. If we share the restoring circuit
among 10 rows in 10 × 10 CNN array, the area overhead of the restoring circuit can
be reduced to 1/10. Moreover, Lena image with 60 × 60 pixels was calculated with
Laplacian CNN template to detect the edges of Lena image. In the detected edges of
Lena image, we could verify the image degradation due to memristance drift. Here,
the memristance drift was caused by the random input currents which were applied
to memristors in CNN array as long as 100 cycles.

On the other hand in the second part, a possible application for the implementation
of image precessing device though CA is presented. The aim of this work is to
demonstrate the possibility to exploit neuromorphic systems, such as CAs or CNNs,
in various fields that require large amount of data storage and processing with low
hardware use. Memristive devices could provide breakthroughs in the analysis of all
sorts of data, yielding highly efficient methods to measure various parameters. The
system presented herein is highly reproducible and can easily be used in conjunction
with other technologies. To conclude, the future development and use of this system
is likely to lead to improvements in industrial and high automation fields.
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Reinterpretation of Magnetic Tunnel
Junctions as Stochastic Memristive Devices

Adrien F. Vincent, Nicolas Locatelli and Damien Querlioz

Abstract Spin-transfer torque magnetic random access memory (STT-MRAM) is
currently under intense academic and industrial development, since it features non-
volatility, high write and read speed, and outstanding endurance. The basic cell of
STT-MRAM, the spin-transfer torque magnetic tunnel junction (STT-MTJ), is a resis-
tive memory that can be switched by electrical current. STT-MTJs are nevertheless
usually not considered as memristors as they feature only two stable memory states.
Their specific stochastic behavior, however, can be particularly interesting for synap-
tic applications and can allow us reinterpreting STT-MTJs as “stochastic memristive
devices.” In this chapter, we introduce basic concepts relating to STT-MTJs behavior
and their possible use to implement learning-capable synapses. Using system-level
simulations of an example of neuroinspired architecture, we highlight the potential
of this technology for learning systems. We also compare the different program-
ming regimes of STT-MTJs with regard to learning and evaluate the robustness of a
learning system based on STT-MTJs to device variations and imperfections. These
results open the way for unexplored applications of magnetic memory in low-power,
cognitive-type systems.

1 Introduction

Spintronic devices constitute an emerging class of electron devices where the intrin-
sic magnetic moment of the electrons—their spin—plays a major role, in addition to
their electrical charge. In recent years, a flagship application of spintronics, magnetic
random access memory (MRAM), has appeared as a breakthrough for nonvolatile
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memory chips. More precisely, spin-transfer torque magnetic random access mem-
ory (STT-MRAM), the second generation of MRAM, provides a combination of
nonvolatility and fast programming. These features are shared with several emerg-
ing nonvolatile memory technologies, which do not make use of spintronics. STT-
MRAMs, by contrast, also provide outstanding endurance [13, 53], a much rarer
feature, and are in the process of industrialization by several major companies. The
unique properties of STT-MRAM are the result of important progress made in recent
years on their basic cell, a resistive switching element known as the spin-transfer
torque magnetic tunnel junction (STT-MTJ). Yet, a drawback of this technology
remains: The switching between the memory states of STT-MTJs is of a stochastic
nature [13, 26, 55]. The time needed for programming from a memory state to another
is a random quantity, and this phenomenon came under physicists scrutiny [6, 12]. In
conventional memory applications, this drawback requires designing programming
pulses long enough to ensure high enough safety margins. Elaborate circuit concepts,
as self-enabled programming, have been proposed by circuit designers to mitigate
this issue [26]. However, an alternative point of view can be to consider this source
of randomness as a feature, and not as a weak point of the device.

In particular in this chapter, we reinterpret STT-MTJs’ behavior as a “stochas-
tic memristive device” and show a way of how it may be used in a neuromorphic
system for practical applications. Numerous works have proposed to use memristive
devices as synapses in neuromorphic systems [18, 19, 36, 39, 42]. Usually, they
rely on multilevel memory devices, close to the original memristor paradigm [43].
An alternative idea is to use binary devices programmed in a stochastic fashion, or
even to use binary devices with intrinsic stochastic properties [15, 21, 48, 49], as
has also been proposed in theoretical works [25, 28, 40]. We suggest that STT-MTJs
are ideal for this vision and illustrate it in the case of unsupervised learning.

In the present chapter, we introduce the basic physics of STT-MTJs and the foun-
dations of their behavior as stochastic memristive devices. We illustrate this last
idea with system-level simulations incorporating an accurate model of the stochastic
effects in the case of a practical application of car counting. Monte Carlo simulations
show the relevance and the robustness of the approach to device variations and are
used to identify in which regime STT-MTJs should preferentially be used.

2 Magnetic Tunnel Junction Basics

2.1 Basic Structure of Magnetic Tunnel Junctions

The basic structure of a magnetic tunnel junction (MTJ) is composed of two ferro-
magnetic layers, surrounding an insulator layer. This last layer is thin enough (0.5 to
2 nm) to allow a tunneling current to flow through the device. As presented in Fig. 1,
the magnetic moment of the so-called reference layer is pinned in a fixed direction
(usually by means of additional layers that are not represented here), while the mag-
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In-plane magnetized MTJ

Free ferromagnetic layer

Tunneling insulator layer

Reference ferromagnetic layer

Perpendicular magnetic
anisotropy MTJ

Fig. 1 The principal layers in magnetic tunnel junctions. The arrows represent the magnetization
of the different layers. Left a configuration with an in-plane magnetization. Right a device with
perpendicular magnetization

netic moment of the “free layer” can adopt two different relative orientations with
respect to the reference layer, parallel (P) or antiparallel (AP). Furthermore, the two
ferromagnetic layers can be magnetized either in-plane or out-of-plane, depending
on the dominant anisotropy axis.

Due to the spin-dependent electron tunneling, the electrical resistance of MTJs
depends on the relative orientation of the ferromagnetic layers’ magnetizations.
Assuming that the spins of the electrons are conserved during the tunneling, one
can consider that the total electronic current flowing through an MTJ results from
the contributions of two independent parallel channels, as electrons’ spins can have
two different directions. In a ferromagnet, the existence of a nonzero magnetization
is associated with a dissymmetry in the density of electrons depending on their spin
direction. In an easy picture, electrons whose magnetic moment direction (related to
their spin) is identical to the local magnetization are majority, when electrons whose
magnetic moment direction is opposite are minority. Identically, when tunneling into
a ferromagnetic layer, an incoming electron whose magnetic moment is opposite to
the local magnetization will have a higher probability to be reflected than an electron
whose magnetic moment is parallel to the local magnetization. In an MTJ, when the
magnetizations of both ferromagnetic layers are in the same direction (parallel), the
majority spin electrons emitted by the first ferromagnetic layer (FM 1) will have a
higher tunneling probability into FM 2 than the minority spin electrons. In the other
case, when the magnetizations are antiparallel, the minority electrons from FM 1
have a high tunneling probability into FM 2, while the majority spins have a low
tunneling probability. The resulting electronic current is then lower than in the first
case, the resistance is higher. This simple model explains why the resistance RAP in
the antiparallel state is higher than the resistance RP in the parallel state [20].

The tunnel magnetoresistance (TMR) is a metric used to characterize the ampli-
tude of this phenomenon and is defined as

TMR = RAP − RP

RP
. (1)

Higher TMR values mean higher separation between the AP and P states, in terms of
resistance values. TMR in mature technologies typically ranges 100–200 % and can
reach 600 % in academic technologies. It should be noted that the TMR is voltage
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Fig. 2 Sketch of the resistance voltage a and current voltage b characteristics of an MTJ

dependent, because of the evolution of the resistance in the antiparallel state RAP

with respect to the voltage. A sketch of this dependence is given in Fig. 2a. Figure 2b
is the sketch of the equivalent current-voltage characteristic.

We can also see on these curves that it is possible to switch the state of the MTJ
with electrical currents: High positive currents can switch MTJ from the AP to P
state, while high negative currents can switch it from the P to AP state. The detailed
physics (spin-transfer torque) and behaviors associated with MTJ resistive switching
are explained in Sect. 2.4, but we can already remark that the MTJ is reminiscent of
a bipolar memristive device. Its two distinctive features are that MTJ are true binary
devices (no intermediate state between P and AP is stable), and the stochastic nature
of switching, largely discussed in Sect. 2.4.

2.2 Integration and Scaling Potential of STT-MTJs

In terms of materials, the ferromagnetic layers are usually made of CoFeB alloy.
The barrier layers were originally made of aluminum oxide, but are now replaced by
crystalline MgO to maximize the TMR values. The reference CoFeB layer is usually
coupled to a third CoFe ferromagnet in a CoFeB/Ru/CoFe structure constituting a
“synthetic antiferromagnet” (SAF) in order to cancel the reference layer’s dipolar
influence on the free layer. This SAF is then pinned by the addition of a PtMn
antiferromagnet, completing the standard MTJ stack.

One of the great advantages of MTJs is their back-end-of-line (BEOL) compati-
bility with a standard CMOS process, as they can sustain annealing of 350 ◦C [35].
From a technological point of view, the most challenging step is the etching of the
individual MTJs.

The integration potential of STT-MTJ has been demonstrated in many realizations,
which use STT-MTJs as standard memory. A standalone memory of 64 Mb, in a
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90 nm process, has already reached the market [2, 38], and similar chips have been
published by several groups [5, 11, 54]. An embedded memory of 1 Mb in a 65 nm
process has been published [34].

Unlike flash memory, as well as several alternative nonvolatile memory tech-
nologies, STT-MTJs use programming voltages lesser or equal than logic voltages.
Programming currents scale with the technology node [13] and can range from mA to
10µA. The most recent realizations use structures with out-of-plane magnetization
(PMA MTJs, referring to the perpendicular magnetic anisotropy), which reduces the
programming current [23, 24, 50]. In Ref. [24, 34], with 30 nm PMA MTJs, pro-
gramming voltage is 0.6 V, programming current is 50µA and programming time is
only 3 ns. The read and write circuits associated with STT-MTJs have also been heav-
ily developed in recent years. Advanced read circuits make use of sense amplifiers
specially designed for STT-MTJs [34, 56], while advanced write circuits mitigate
stochastic effects using self-enabled paradigms [26].

2.3 Physical Modeling of Magnetization Dynamics

A usual approximation to describe the dynamics of an MTJ is to assume that the
total magnetic moment of the free layer behaves as a single “macropsin” mf , with
a coherent reversal process between the two stable directions. This approximation
is believed to capture the essential behavior of in-plane MTJs. With perpendicularly
magnetized MTJs, macrospin predictions tend to become less accurate when the
devices lateral size exceeds ∼50 nm. Beyond this boundary, one should include
subvolume thermal magnetic fluctuations to account for the experimental evidences
demonstrating the failure of the macrospin reversal model [46].

The precessional motion of the macrospin mf is well described by the Landau–
Lifshitz–Gilbert equation, in which additional terms are added to account for the
thermal noise, and for the spin-transfer torque (STT):

dmf

dt
= −|γ |μ0mf × (Heff + hsto)︸ ︷︷ ︸

Precession

+ α

MsV
mf × dmf

dt︸ ︷︷ ︸
Damping

+ VTS︸︷︷︸
STT

(2)

(all the equations of the present chapter are given in SI units.)
The effective field Heff includes the different magnetic anisotropy terms and a

possibly applied external field. The parameters γ , μ0, and V are, respectively, the
electron gyromagnetic ratio, the vacuum magnetic permeability, and the volume of
the free layer. The material-related parameters are the saturation magnetization Ms

and the dimensionless Gilbert damping parameter α. TS stands for Slonczewski’s
spin-transfer torque term [14, 41] and is current dependent. The smaller field-like
STT term is here neglected. The stochastic Langevin term hsto models the thermal
effects: Its Cartesian coordinates are assumed to be independent Gaussian stochastic
processes with zero average and no correlation [14, 16].
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Undamped precession
Damped precession

Precession

STT

Damping
Heff

mf

Fig. 3 Sketch of the trajectory of a magnetic moment mf around an effective field Heff (for clarity,
hsto is presently assumed to be zero), without damping (solid ellipse) or with damping (dotted
spiral). The three colored arrows represent the three torques’ components appearing in Eq. (2). The
STT torque may be in the opposite direction, depending on the sign of the current

Figure 3 gives a sketch of the effect of each of the three different components that
are present in Eq. (2):

• the precession torque, because of which the magnetic momentmf tends to describe
a cyclic trajectory around the effective field Heff ;

• the damping torque, characterized through the α factor, which makes the magnetic
moment mf relax along the direction of the effective field Heff ;

• the spin-transfer torque, which can act as an antidamping component or an over-
damping component, depending on the sign of the current flowing through the
MTJ.

The spin-transfer torque effect is the physical effect which allows to act on the
magnetization of the MTJ’s free layer by simply flowing current through it. If the
injected current is of the correct direction and of a sufficient magnitude to overcome
damping, the magnetic moment mf can switch into the other configuration.

A phenomenological explanation of the spin-transfer torque effect is sketched
in Fig. 4. Each electron possesses a magnetic moment, induced by its spin angular
momentum. For positive currents, the magnetic moments of conduction electrons
tend to align with the local magnetization of the first ferromagnetic layer that they
encounter, which is the reference layer: This layer acts as a spin polarizer. During
the tunneling through the insulator layer, the spin polarization is conserved and the
second ferromagnetic layer, the free layer, sees an incoming flow of polarized elec-
trons. As they flow through the free layer, the magnetic moments of these electrons
lose their transverse component to align along the free layer’s magnetization. Con-
sidering spin/momentum conservation, this component is actually transferred to the
free layer, resulting in a torque acting to tilt its magnetization, as pictured in Fig. 4a.
This phenomenon is thus called spin-transfer torque (STT), and its magnitude is
proportional to the flow of electrons, hence the current. When the current is reversed,
the free layer is still subject to a spin-transfer torque, of opposite direction, due to
electrons that are reflected back from the reference layer, as cartooned in Fig. 4b.
One can find more details about the spin-transfer phenomenon in the reference [37].
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(a) Spin-transfer torque on the free ferromagnetic layer, due to the crossing electrons (positive current).
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(b) Spin-transfer torque on the free ferromagnetic layer, due to the reflected electrons (negative current).

Fig. 4 a For positive currents, the first ferromagnetic layer crossed by the incoming electrons is the
reference layer and acts as a polarizer. After tunneling, the electrons realign their magnetic moment
along the magnetization of the free layer, which results in applying a spin-transfer torque (STT) to
it (see sketch on the right part of the figure). b When the current is reversed, the spin-transfer torque
acting on the free layer is due to electrons reflected from the reference layer. The torque direction
is then reversed

With the correct sign and a sufficient magnitude of current, the spin-transfer torque
can overcome the damping torque and make the magnetization mf of the free layer
switch into the other direction.1

An illustration of the reversal process is plotted in Fig. 5. The trajectory of the free
layer’s magnetization (blue solid line) was obtained by numerically solving Eq. (2)
in the presence of a DC current. The spiral oscillations of the trajectory are the result
of the precession component; the trajectory is jittered as the magnetic moment is
subject to thermal agitation. The magnetic moment mf is progressively dragged out
of its initial position, before switching into the opposite direction. After reversing, the
DC current does not act as an antidamping effect any more, but as a supplementary
damping torque; mf then converges quickly toward its new equilibrium position.

1It should be noted that the reference layer also experiences spin torque, but cannot switch as it is
intentionally pinned.
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Fig. 5 Example of one
trajectory of the magnetic
moment mf that is given by
Eq. (2) for an in-plane
magnetized MTJ, when a DC
current is injected and the
temperature is nonzero

Switching

Initial mf

Final mf

In-plane easy axis

In-plane hard axis

Out-of-plane axis

2.4 Models About the Statistics of MTJs Switching Delay

Except the case at T = 0 K, a magnetic moment is always subject to thermal
agitation. The impact of such noise on the magnetization mf of the free layer is taken
into account in Eq. (2) by adding a Langevin term hsto. Mathematical details on this
particular term can be found in the reference [16]. The important consequence of
this observation is that for an MTJ at room temperature, the switching process will
always be affected by a stochastic component. The switching delay—between the
instant when a current or a voltage is applied, and the instant when the magnetization
mf has switched—is thus intrinsically a random quantity [6, 12, 13].

Different regimes of stochasticity of the switching delay exist, depending on the
programming current amplitude, which determines the magnitude of the spin-transfer
torque. In the next subsections, we identify three different regimes and briefly present
how they differ from one another and how one can model them. It is an important
step to further be able to exploit this intrinsic stochasticity of MTJs as a feature in
neuromorphic architectures.

In the following, we will focus on a study of in-plane magnetized STT-MTJs and
assume that no external magnetic field is applied on them.

2.4.1 A Critical Value of Current Density for Magnetization Reversal

For a correct choice of the current sign, the spin-transfer torque has an antidamping
effect, as explained previously in Sect. 2.3. The critical current density magnitude
Jc0 can be defined as the limit of stability of the free layer’s magnetization when
current is injected at T = 0 K [45].

Physically, putting aside the thermal fluctuations and considering a slightly out-of-
equilibrium magnetic moment mf , one can mainly encounter two situations, depend-
ing on the magnitude of the injected current density Js:
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Js < Jc0: The damping torque is bigger than the spin-transfer torque and the mag-
netic momentmf relaxes into its initial position (as the dotted trajectory in Fig. 4a).

Js > Jc0: The spin-transfer torque overcompensates the damping torque, desta-
bilizing the equilibrium state. The precession radius of mf increases until mf

switches in the opposite configuration.

This critical current density magnitude can be expressed, in the case of an in-plane
magnetized MTJ [44, 45], as

Jc0 = 2|e|
�

× 1 ± P2

P
× αtfμ0Ms

(
Hk + Ms

2

)
, (3)

where |e| and � are, respectively, the elementary charge and the reduced Planck con-
stant. The ± sign should be − for the AP→P transition, and + for the P→AP transi-
tion. The term P is the spin polarization of the current (which can be computed from
the TMR using TMR = 2P2/(1 − P2)) and Hk is the amplitude of the anisotropy
field. This anisotropy field can result from the summation of different anisotropies
contributions. It may, for example, be the combination of material-related magnetic
anisotropy, such as crystalline anisotropy, and of shape anisotropy that results from
the device geometry (in case of an elliptical cross section for instance).

The corresponding equation in the case of out-of-plane magnetization can be
found in [22].

The spin torque amplitude appears not to be equivalent for both signs of the current,
so that Jc0 has two different values, depending on the transition that is considered
(P→AP or AP→P). However, basic calculations, confirmed by measurements,
show that they correspond to the same critical voltage: J P→AP

c0 RP = JAP→P
c0 RAP = Vc

(as illustrated in Fig. 2). This symmetry is an interesting property of STT-MTJs when
used as memristive devices.

In Fig. 6, dots show the evolution of the mean switching times obtained from
solving Eq. (2) in macrospin-based Monte Carlo numerical simulations, at 300 K.

To have an idea of the order of magnitude of the critical current density, let
us consider the case of an MTJ with P = 0.65 (which corresponds to a TMR
around 150 %), typical values for α, tf , and Ms of, respectively, 0.01, 2 nm, and
1.2 × 106A · m−1. The magnitude of the anisotropy field Hk is usually smaller
than the saturation magnetization Ms. We will assume that Hk ∼ 1

10 Ms. In this
situation, Eq. (3) results in Jc0 ∼ 9 × 106A · cm−2 for an AP→P event, and
Jc0 ∼ 22 × 106A · cm−2 for a P→AP event.
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Fig. 6 Evolution of the mean switching delay <Δt> with respect to the injected current density
Js, for an AP→P switching event. The blue dots are the average values on Monte Carlo simulations
of Eq (2). The green solid line is the prediction coming from analytical equations detailed in the
reference [52]. Orange ellipses identify the three regions with a different behavior of <Δt>. Some
information about the simulated free layer is given in the inset, and the critical current density Jc0
is indicated on the x-axis

2.4.2 In the Low-Current Regime

When the magnitude of the current density Js that flows through a STT-MTJ is
significantly lower than its critical value Jc0, the reversal process of the magnetic
moment mf is dominated by the thermal activation.

Solving the Fokker–Planck equation derived from Eq. (2) results in the Néel–
Brown model [3, 10, 29, 32] of the STT-MTJ mean switching delay

<Δt> = f −1
0 × exp

(
E0

kBT

(
1 − Js

Jc0

))
, (4)

where E0 = μ0MsHkV/2 is the energy barrier separating the two stable states for
the magnetization at zero current, and kBT is the thermal energy. The prefactor f −1

0
is a time constant, usually chosen of the order of 1 ns; it is related to the natural
precession timescale [3, 44].
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To illustrate how the mean switching delay <Δt> can easily be tuned over
several decades in the low-current regime, let us assume (for example) an
energy barrier E0 = 40 kBT (which in average retains a given state during
approximately 7.5 years with f −1

0 = 1 ns). In that case, the model of Néel–
Brown predicts a value of <Δt> about 0.2µs when Js = 3

4 Jc0. If one now
reduces the current by one-third (i.e., Js = 1

2 Jc0), then <Δt> almost reaches
0.5 s.

One can effectively observe in Fig. 6 that, in the low-current regime, the mean
switching delay <Δt> exponentially decreases with respect to the current density
Js, which agrees with the predictions of the model of Néel–Brown.

In this regime, the injected current thus acts like it increases the effective tem-
perature of the system (or decreases the effective energy barrier), thus increasing
the probability to cross the energy barrier [29]. However, it should be noted that
this equation was derived in the high-energy-barrier approximation: if the effective
energy barrier becomes too small, the Néel–Brown model should thus no longer be
valid.

It has been theoretically [29] and experimentally [17] demonstrated that in this
regime, the reversal process is a Poisson process, so that the probability density
function (PDF) of the switching delay Δt is

fsw (t) = 1

<Δt>
exp

(
− t

<Δt>

)
, (5)

where <Δt> is given by Eq. (4): The switching delay Δt follows an exponential ran-
dom law with mean <Δt> given by Eq. (4) [6, 13]. It is what can also be observed in
Fig. 7a. With such a probability density function, if a programming pulse of duration
tp (and of constant current) is applied to the junction, its probability of switching is

Psw = 1 − exp

(
− tp

<Δt>

)
. (6)

In these conditions, choosing the pulse duration tp allows tuning the switching prob-
ability of the devices anywhere between a low (Psw � 1 for tp � <Δt>) and a high
probability (Psw ≈ 1 for tp � <Δt>).

An important difference with other families of memristive devices is that STT-
MTJs possess no hard threshold. Even an extremely low current will increase the
probability for the MTJ to switch its state.
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Fig. 7 From a to c: the probability distribution functions of the switching time Δt in the low-,
the intermediate-, and the high-current regimes. The precise value of current density is given in
each inset. The dashed orange lines compare fitting a two-parameter Gamma law Γ (k, θ) with the
normalized histograms (tinted areas) that are computed from the same Monte Carlo simulations as
in Fig. 6. In the low-current regime, the exponential law presented in Eq. (5) is recovered by using
k = 1 and θ = <Δt>

2.4.3 In the High-Current Regime

When the current density Js is of a significantly higher magnitude than Jc0, the
reversal dynamics becomes dominated by the spin-transfer torque action, which
results in a quasi-adiabatic reversal process. In the case of in-plane MTJs, the mean
switching delay Δt then behaves according to Sun’s law [12, 13, 45]

<Δt> = ln

(
π

2φ0

)
× 1

αγμ0
(Ms

2 + Hk
) × Jc0

Js − Jc0
, (7)

where φ0 is the standard deviation of the random initial angle of the magnetic moment
mf . The initial angle before reversal is indeed related to thermal fluctuations around
the equilibrium position before the current is applied and follows a Gaussian dis-
tribution around 0 and a standard deviation φ0 = √

kBT/(μ0HkMsV ). Sun’s model
then considers that the reversal trajectory is not affected by thermal fluctuations. It is
then often referred to as “precessional switching.” This model is thus no longer valid
when the current density is low enough for the Brownian motion of mf to notably
affect its trajectory.

The corresponding equation in the case of out-of-plane magnetization can be
found in [22].
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If we consider an MTJ with the same parameters as for the previous examples
and if we assume a plausible value of 4◦ for φ0, then for Js = 2 Jc0 the mean
switching delay is about 3ns. In the high-current regime, the switching delay is
thus much faster in average than in the low-current regime. It is, for example,
the targeted programming regime in memory chips.

In this regime, the probability density function of <Δt> is no longer an expo-
nential law as is seen in Fig. 7c. One can instead use a Gamma law Γ (k, θ) to model
the probability distribution of the switching delay. Details are given in the reference
[52].

2.4.4 The Intermediate-Current Regime

Between the low-current and high-current regimes, thermal fluctuations can no longer
be neglected during the switching process, although the spin-transfer torque also
plays a significant role. Since none of the effects can be neglected in this intermediate
regime, an analytical expression of the mean switching delay cannot be easily derived
from the dynamics equation. The non-negligible influence of the thermal noise on
the switching trajectory makes the dynamic harder to model than in the two other
regimes [14]. Furthermore, there is no easy connection between the two extreme
models, since one can notice that according to Sun’s model the mean switching
delay diverges for Js = Jc0.

However, one can use the comprehensive analytical model from reference [52].
The latter is compared, in the case of an in-plane magnetized MTJ, with the physical
macrospin Monte Carlo simulations in Figs. 6 and 7b, showing good agreement.

3 MTJs as Stochastic Synapses

Artificial neural networks usually rely on synapses that can feature multiple conduc-
tance values (synaptic weights) to achieve learning. However, it has been suggested
that a neural network with binary weight synapses is still able to perform learning
if one adopts a probabilistic learning rule, in particular for supervised learning [25,
40].

Let us first consider a conventional learning-capable system with multiple-weight
synapses and a deterministic learning rule. During each learning step, that occurs
after an input pattern is presented, every relevant synapse increases or decreases its
conductance of a small quantity. The combination of all these small variations results
in a global change of the network.

By contrast, in a system with binary synapses, the synapses’ conductance can
only evolve with an “all or nothing” fashion. A way to achieve similar global change
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as in a multiple-weights synapses system is that, during each learning step, only a
small fraction of the synapses whose weight should evolve according to the learning
rule actually do, while the weight of the others—most synapses—does not evolve at
all. A proposed manner to achieve this is to implement a probabilistic learning rule:
during a learning step, each synaptic switching from one weight to another that is
supposed to occur only has a limited probability to happen.

Some work recently successfully demonstrated the relevance of this approach in
the case of unsupervised learning by applying a stochastic learning rule to binary
CBRAM synapses [49]. In this work, an external pseudorandom number generator
(PRNG) is used to probabilistically program the deterministic synaptic devices.

A peculiar feature of MTJs-based synapses is that one has a good understanding of
the intrinsic randomness of their switching delay. It is therefore possible to exploit this
behavior to directly implement the aforementioned stochastic learning rule, without
using an external PRNG.

In the current section, we will present the design and the simulation of a neuro-
morphic system with synapses made of a single MTJ and that are probabilistically
programmed by harnessing the randomness of their switching delay. This example
will be used to discuss how to program these binary stochastic MTJ-based synapses
in a way that ensures both a high resilience to device variations and a low program-
ming power. Extensive details about the system itself or the numerical results can
be found in the reference [51], which the current section is based on. The simulated
system adapts a scheme that was originally proposed for phase-change memory [9,
47] and conductive bridge RAM (CBRAM) [48, 49] synapses. This example of neu-
romorphic system uses a simplified version of the spike-timing-dependent plasticity
(STDP) learning rule, adapted to stochastic binary synapses. STDP is a model of
biological plasticity [7, 31] and has been used widely as an inspiration for works
using memristive devices as synapses [19, 39, 42]. Here, we abstract the STDP bio-
logical models, by making major simplifications [36] which make its implementation
natural with STT-MTJs.

3.1 Example of a Feed-Forward Spiking Neural Network
Using MTJ-based Synapses

3.1.1 Architecture and Operation of the System

The system implements a spiking neural network: The computation units (CMOS
neurons) communicate by asynchronous spikes, similarly to biological neurons.
Figure 8 shows the basic architecture of the system. CMOS input neurons present
spikes, which may come directly from a neuromorphic sensor. For example, in the
presented case, each input neuron corresponds to one pixel of a bioinspired silicon
retina filming a 6-lane freeway [1, 30]. The system uses a properly chosen number
of CMOS output neurons. The STT-MTJs are organized as a crossbar-connecting
input and output neurons in an “all-to-all” manner.
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Fig. 8 Cartoon of the 1R crossbar architecture for the learning system, during read operation,
which occurs whenever an input neuron spikes and applies a (R1) waveform. The two types of
concurrently used voltage waveforms are sketched on the right. Each input neuron (�) is connected
to every output neuron (	) through a STT-MTJ synapse. At the top of the figure, one can see some
frames made from the input spikes: vehicles are driving toward the DVS retina, on six different
lanes (dotted yellow lines)

For simplicity, the system is here presented with STT-MTJs organized in a passive
crossbar. Physical implementation might require the use of selector devices (1T-1R
structure), although this loses the compactness of the scheme, to limit leakages.

From the operation point of view, when an input neuron (�) spikes, it applies a brief
read pulse (R1) to the crossbar, while output neurons (	) maintain a constantly null
voltage (R0) at their input, as illustrated in Fig. 8, while reading the current.2 Induced
current reaches the different output neurons simultaneously. The current received by
each output neuron depends on the state (P or AP) of the synapse that connects
the input to this particular output. Functionally, the output neurons implement leaky
integrate-and-fire (LIF) spiking neurons, a simple and standard neuronal model.
Due to design choices that are detailed in [51], only the input spikes going through
synapses in the parallel state are integrated by the output neurons. Besides, when
an output neuron spikes, it inhibits the other output neurons, resetting their internal
variable to zero.3 The architecture is therefore reminiscent of a “winner-takes-all”
structure, widely used in the field of neural networks.

2This can be achieved using second-generation current conveyor designs [27].
3This can be implemented by nearest-neighbor inhibition [4].
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Fig. 9 Cartoon of the 1R crossbar architecture for the learning system, during STDP (write) oper-
ation, which occurs when an output neuron spikes. Due to the stochastic nature of switching, in the
presented example, only two STT-MTJs switch states (G↗ and G↘) while every other synapses
stays in its previous state (G→). Upper right sketches of the programming voltage waveforms
that are applied concurrently. Bottom the evolution during the learning process of the states of the
synapses that are connected to one of the output neurons. For visibility, the weights are plotted as
a 2-D map

All the simulations’ results that are presented in the current Sect. 3 are based
on a STT-MTJ device representative of a 45 nm technology. The STT-MTJs are
ellipses with a width of 40 nm, a length of 100 nm, and a free layer thickness
of 2 nm. The tunnel magnetoresistance (TMR) is 150 % (i.e., RAP/RP = 2.5).
The programming voltage amplitude Vprog is varied between 0.3 V and 0.6 V,
which has an impact on the system operation, as we will see in further sections.
The stochastic switching delay is modeled with equations from [52]. More in-
depth description and discussion of the system architecture are available in
[51].

The stochastic STDP learning rule is implemented by applying concurrent voltage
waveforms, as sketched in the upper half of Fig. 9. When an output neuron spikes, the
system enters a programming phase4: the output neuron that spikes applies a voltage
waveform (W2), while only the “recently active” input neurons apply a voltage

4Therefore, STDP occurs only when an output neuron spikes. This approach is not common in
neurosciences, although Nessler et al. did a similar choice [33].
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waveform (W1) at the same time. In the presented case, an input neuron is considered
as “recently active” if it spiked during the last 10 ms. This temporal window is very
problem dependent, especially on the natural timescale of the presented inputs. As
described in detail in Ref. [51], this combination of pulses directly implements the
stochastic simplified STDP rule. A STT-MTJ synapse connected to the output neuron
that spiked:

• is programmed by a voltage pulse of Vprog amplitude and has a given probability
PAP→P

sw of switching to the low-resistance P state, if its input neuron was active in
a recent time window (given it is not already in the P state);

• is programmed by a voltage pulse of −Vprog amplitude and has a given probability
PP→AP

sw of switching to the high-resistance AP state if its input neuron was not
active in the same time window (given it is not already in the AP state).

At the same time, the STT-MTJs connected to the other output neurons are either
nonselected, or half-selected (i.e., the voltage amplitude applied to these devices
is either 0 or Vprog/2). According to the model of Fig. 6 and Eq. (6), the switching
probability of these devices is thus negligible if one cleverly chooses Vprog/2 to
correspond to the regime of low programming current.

As the STDP rule is not deterministic but probabilistic, a STDP event has a
probability Psw to switch a synaptic nanodevice, as explained in the introduction of
the current section.

Assuming that one has a comprehensive analytical model of the probability density
function fsw of the switching delay Δt with respect to the voltage amplitude, one can
easily design the relevant programming pulses that will make the synapses to switch
with the wanted probabilities PAP→P

sw and PP→AP
sw . First, setting the pulse amplitude

defines the probability density function fsw of Δt . Then, one simply has to tune the
pulse duration tp to precisely ensure the wanted probability to switch

Psw = Probabili t y(Δt ≤ tp) =
∫ tp

0
fsw (t) dt . (8)

Let us consider again the same MTJ as in the previous examples. Assuming
we work in the low-current regime, with a programming pulse correspond-
ing to a current density Js = 0.65Jc0, the Eq. (4) predicts a mean switching
time <Δt> = 1.2 ms. As Eq. (6) is nothing else but the result of Eq. (8), we
can derive tp = −<Δt> × ln (1 − Psw). If, for example, the targeted prob-
ability Psw is 10 %, the programming pulse has to last about 125µs. In the
higher-programming-current regimes, solving Eq. (8) often requires numeri-
cal techniques, as the analytical expression of the probability density function
becomes more complex. In these regimes, typical pulse duration is much more
shorter, in the nanosecond range.
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3.1.2 Task Results for Car Detection

The neuromorphic DVS retina, used in our example as an input layer, is a sensor
that is inspired by the human retina: each input generates spikes when the incoming
light intensity of the corresponding pixel changes. The STDP programming pulse
width is adjusted such that P→AP and AP→P transitions both have a probability of
10 %. The whole system is simulated by a system-level simulator including a detailed
physical model of the STT-MTJs behavior [51].

The system has 20 output neurons and each of them is connected to every input
pixel through a synapse made of a single STT-MTJ, as described in Sect. 3.1.1. For
each output neuron, one can plot a map of the states (P or AP) of the synapses that are
connected to it. The bottom part of Fig. 9 shows some snapshots of such a map for a
given output neuron. One can observe how a pattern emerges and stabilizes starting
from a random distribution of synaptic states (originally, the STT-MTJ states are
random). After 33s of operation, the neuron has started to specialize in lane 4 (see
lane labels in Fig. 10). After 114s, the global state of the STT-MTJs is stabilized:
Although switching events P→AP and AP→P still occur, the pattern does not
evolve anymore, even after a significant amount of time.

Therefore, due to the stochastic STDP learning rule, the output neurons natu-
rally specialize on particular lanes and the system effectively becomes a vehicle
counter. The specialization of the output neurons is evident in Fig. 10, which shows
an overview of the STT-MTJs final states. The top image represents a sample of the
inputs: Every input pixel that spiked during a short period is colored with light blue.
The yellow dotted lines materialize the six different lanes of the freeway. Every other
image represents the final states of the STT-MTJs connected to one of the twenty
output neurons (white for P, black for AP). The output neurons are listed according
to the lane to which they specialized. The number of output neurons specialized in
each lane is not identical. This is determined by the number of cars passing on each
lane, and the number of pixels they activate.

To estimate the performance of the system on the car detection task, only the
output neuron with the best detection rate is retained for each lane.5 If one interprets
the system as a vehicle counter, the detection rate is 97.3 % (excluding the two outer
lanes). The proportion of false positives among the output spikes is 4.7 %.

The best result on the same dataset, using a neural network with double-
precision analog weight reports a detection rate of 98.1 % and a proportion
of false positives of 4.3 % [8].

Once the learning has been achieved, it is possible to deactivate the learning
process to save energy. Besides, the entire system can be switched OFF and ON
without losing its function, as the state of STT-MTJs is nonvolatile.

5This operation could be done automatically by adding a second layer to the network as proposed
in [8].
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Fig. 10 The top image is a sample of the inputs that are presented to the system; the pixels that
spiked during the considered 30ms are colored with light blue. The other 20 subimages represent
the state of the MTJs that are connected to the 20 output neurons (white is P, black is AP), presented
as 2-D maps for clarity. The yellow dotted lines mark off the driving lanes

It should be noted that, here, a single binary STT-MTJ connects each input to each
output. For more complex tasks, it is possible to connect each input to each output
by several stochastic STT-MTJs, recreating a multibit synapse [36].



100 A.F. Vincent et al.

3.2 Impact of the Device Properties on the System Operation

3.2.1 Impact of Device Variations

In a real system, after the shape of the programming pulse is defined (amplitude and
duration), the dispersion on the values of the STT-MTJs characteristics will cause
the synapses to have different switching probabilities. For instance, let us consider
variations of the minimum and maximum resistances of the MTJs. As they affect
the current that flows through the devices, such device variations have a dramatic
effect on the probabilities of switching STT-MTJs when programming voltage pulses
are applied. Figure 11 illustrates this fact. Different levels of independent Gaussian
dispersions are introduced on the resistance of the P state and on the TMR. These
two parameters have the same standard deviation relative to the mean that will be
named “synaptic variability” SV in the rest of the chapter.
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Fig. 11 Histograms representing the values of P and AP states resistance (left subfigures) and
associated switching probabilities (right subfigures), with and without synaptic variability. The
switching probabilities are represented in the low-, intermediate-, and high-programming-current
regimes, with Vprog = 0.3 V, 0.4 V, and 0.6 V, respectively. The targeted switching probability Psw
is 10 % for all regimes in the case with zero synaptic variability (top subfigures). From top to
bottom, synaptic variability SV is 0, 5, 10 and 25 % of standard deviation relative to the mean, on
the resistance of the P state and on the TMR
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This way of introducing variability is motivated by experimental realizations,
which suggest that variations on the resistance of the P state and on the TMR are
uncorrelated and have equivalent values of relative standard deviation. In Refs. [5,
54], the SV parameter was found to be approximately 5 %. Most of the synaptic
variability values that are further considered—up to 25 %—therefore correspond to
extremely high levels of variability, in terms of realistic technology.

The left subfigures of Fig. 11 represent histograms on the resistance values of the
parallel and antiparallel states. The right subfigures are computed with the model from
[52], mentioned in Sect. 2.4. Given programming pulses designed to ensure a 10 %
switching probability for SV = 0 %, they are the STT-MTJs switching probabilities’
histograms once synaptic variability is considered. Three histograms are superim-
posed in the low-, intermediate-, and high-programming-current regimes. One can
observe that the variability on the switching probabilities is exacerbated with regard
to the variability on the resistance states. The variability on the switching proba-
bilities is also considerably higher in the low-programming-current regime than in
the intermediate- and high-programming-current regimes. One can explain this with
Figs. 6 and 7: The distribution of the switching delay Δt in the low-programming-
current regime is broader, and its mean value is much more dependent on the current
density value (see Eq. (4)) than in the other two regimes.

Yet the whole system reveals to be spectacularly tolerant to device variation.
Let us consider the case where the STT-MTJs are programmed in the intermediate-
programming-current regime. Figure 12 shows the detection rate and the proportion
of false positives as a function of the synaptic variability. No significant impact of
the synaptic variability on the detection rate or the proportion of false positives is
observed up to high values, largely beyond the ∼5 % that are encountered in memory
chip demonstrators.

Reference [51] also shows that the system is equally resilient to transient device
variations.
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Fig. 12 Detection rate (blue solid line and ©) and proportion of false positives (orange dashed
line and �) as a function of synaptic variability, in the intermediate-programming-current regime
(Vprog = 0.4 V). Learning and lateral inhibition are disabled at the end of the learning process.
Every simulation was repeated ten times
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3.2.2 Impact of the Programming Regime

We have previously seen that STT-MTJs can be operated in different programming
regimes (low, intermediate, and high current). In this part, we study the benefits and
drawbacks of the different regimes when using STT-MTJs as synapses.

Without device variations (SV = 0 %), one can tailor the programming pulse
duration to implement the very same switching probability in all the programming
regimes. It therefore leads to the same detection rate and proportion of false posi-
tives. However, the average power that is required to program the STT-MTJs differs
significantly. For example, during the learning process, the power consumption for
programming the STT-MTJs (excluding the power consumption of the CMOS neu-
rons and of the rest of the studied system) can be as low as only a few hundreds
of nanowatts in the high-current regime, while it can reach several hundreds of
microwatts, or beyond, in the low-current regime, where programming times are
longer [51].

In the presence of device variation (SV �= 0 %), the programming regimes are
furthermore not equivalent in terms of the system operation. This is seen in the
Monte Carlo simulations of Fig. 13, where the detection rate and the proportion

Memory chip demonstrators
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�)-programming-current regimes. Both learning and lateral inhibition were disabled at the end of
the learning process. Every simulation was repeated ten times, the error bars represent one standard
deviation
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of false positives are plotted as a function of the synaptic variability, in the three
programming regimes. In the low-programming-current regime, the detection rate is
observed to start decreasing for values of synaptic variability beyond 10 %, while the
number of false-positive events increases as soon as device variations exist. These
results are naturally explained by the nonequivalence of programming regimes seen
in Fig. 11.

In summary, intermediate- and high-programming-current regimes require smaller
programming power than the low-programming-current regime and have a better
robustness to device variations. To ensure the highest endurance/reliability for the
STT-MTJs, it is preferable using the smallest amplitude possible for the voltage. The
intermediate-programming-current regime therefore appears as the ideal regime for
synaptic use of STT-MTJs. This differs from more conventional applications where
programming speed is the most important, and where high-programming-current
might be a preferable choice.

4 Conclusion

In the first part of this chapter, we reviewed the physics basics of spin-transfer torque
magnetic tunnel junctions. We put a particular focus on the switching delay of these
binary devices and the intrinsic randomness of this quantity. We saw that one can
distinguish three different regimes of programming current. Depending on the fact
that one uses low, intermediate, or high programming current, the reversal process
is ruled by different dominant physical phenomena, which modifies the statistical
distribution of the switching delay.

In a second part, we reinterpreted STT-MTJs’ behavior as a stochastic memris-
tive synapse. We studied how to achieve probabilistic programming of this kind of
devices, by using the intrinsic randomness of their switching delay. We introduced
the example of a spiking neural network-inspired system that can exploit this stochas-
tic effect to perform unsupervised learning, through a simplified stochastic STDP
learning rule.

The switching probabilities of the nanodevices do not need to be controlled per-
fectly, as the system is robust to device mismatch, which is evidenced by Monte Carlo
simulations. The three programming regimes are not equivalent: the intermediate-
programming-current regime minimizes the power consumption and leads to high
robustness to device variations. This regime thus appears to be ideal for the use of
STT-MTJs as stochastic synapses.

This system also gives insight into an original approach to use memristive nanode-
vices. Intrinsic unpredictability associated with nanoscale physics is not necessarily
an enemy, but can be harnessed for bioinspired computing techniques.
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Multiple Binary OxRAMs as Synapses
for Convolutional Neural Networks

E. Vianello, D. Garbin, O. Bichler, G. Piccolboni, G. Molas,
B. De Salvo and L. Perniola

Abstract Oxide-based resistive memory (OxRAM) devices find applications in
memory, logic, and neuromorphic computing systems. Among the different
dielectrics proposed in OxRAM stacks, hafnium oxide, HfO2, attracted growing
interest because of its compatibility with typical BEOL advanced CMOS processing
and promising performances in terms of endurance (higher than Flash) and switch-
ing speed (few tens of ns). This chapter describes an artificial synapse composed
of multiple binary HfO2-based OxRAM cells connected in parallel, thereby provid-
ing synaptic analog behavior. The VRRAM technology is presented as a possible
solution to gain area with respect to planar approaches by realizing one VRRAM pil-
lar per synapse. The HfO2-based OxRAM synapse has been proposed for hardware
implementation of power efficient Convolutional Neural Networks for visual pattern
recognition applications. Finally, the synaptic weight resolution and the robustness
to device variability of the network have been investigated. Statistical evaluation of
device variability is obtained on a 16 kbit OxRAM memory array integrated into
advanced 28nm CMOS technology.

1 Multiple Binary OxRAM Devices as Artificial Synapses

Research activities in the field of brain-inspired computation have gained importance
in recent years [1–4]. Emerging backend resistive memory devices are considered
the optimum candidates to emulate biological synaptic behavior at nanometer scale,
thanks to the fact that they offer the possibility to modulate their conductance by
applying low biases, and they can be easily integrated with CMOS-based neuron
circuits [5]. This opens the way to the realization of compact and energy-efficient
computing architectures based on artificial neural networks. In literature, several
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Resistive RAM (RRAM) technologies such as phase-change memory (PCM),
conductive-bridgememory (CBRAM), and oxide-based resistivememory (OxRAM)
have been investigated as possible solutions for the implementation of artificial
synapses [6–10]. We focused on HfO2-based OxRAM technology [11, 12], which
demonstrated attractive features such as low switching voltage and fast switching
speed (few tens of ns at 1 V), promising endurance (up to 108 cycles) and high
scalability (10 ·10 nm2) [13].

Twomain approaches to emulate synaptic conductance modulation were success-
fully demonstrated using RRAM devices:

1. analog approach, where multiple low-resistance states for emulating long-
term potentiation (cumulative increase of conductance, LTP) and multiple high-
resistance states for long-term depression (cumulative and gradual decrease of
conductance, LTD) were adopted [7, 8];

2. binary approaches, where only two distinct resistive states (low-resistance state,
LRS and high-resistance state, HRS) per device associated with a probabilistic
STDP bioinspired learning rule were adopted [6, 14].

HfO2/Ti OxRAMcells are intrinsically binary devices: They switch between two dis-
tinct resistance states, a low-resistance state and a high-resistance state when appro-
priate identical SET/RESET pulses are applied. These programming pulses can be
optimized for high speed and low power consumption, and are thus ideal for the
implementation of an energy-efficient hardware implementation of artificial neural
networks. To achieve multiple resistance levels adopting HfO2/Ti OxRAM cells,
each neuron must generate pulses with increasing amplitude to gradually increase
the programming current [15]. This implies keeping a history of the previous state of
the synaptic device, thus leading to additional overhead in the programming circuitry.
For this reason, we adopted the binary approach. However, the use of only two resis-
tance levels per synapse, with respect to the multilevel approach, can be insufficient
to achieve good performances in neuromorphic systems designed for some com-
plex applications, as for example image recognition [16]. Consequently, to emulate
synaptic conductance, we propose a solution based on a hybrid approach, which tries
to unify the advantages of both multilevel and binary approaches. In this solution, a
single synapse is composed of n multiple binary OxRAM cells operating in parallel
(nTnR structure) [15]. The model which we refer to is schematically represented
in Fig. 1; all the devices on the same row, connected in parallel, build an equivalent
synapse which connects a presynaptic neuron (neuron A) to a post-synaptic neuron
(neuron B). Since parallel conductance sum-up, the conductance of the equivalent
synapse ranges from the sum of the n conductances in the HRS to the sum of all
the n conductances in the LRS. This strategy provides the opportunity to build an
analog-like conductance behavior for a binary device, at the cost of an increased
number of devices needed to build a synapse. This approach offers the advantage
of a simple programming methodology for the OxRAM devices, in which standard
SET and RESET pulses, optimized for high endurance and low power consumption,
are used to switch the device resistance from LRS to HRS and vice versa.
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Fig. 1 Schematic of OxRAM-based synapse. All the OxRAM devices on the same row build
one equivalent synapse (nTnR structure). Driver circuit is used to individually program OxRAM
devices and propagate spikes to next neuron layer. The weighted PRNG is used for online learning,
to implement extrinsic stochasticity in probabilistic STDP learning rule. (@ 2016 IEEE. Reprinted
with permission from [15])

In order to define the resistance state (LRSorHRS) of eachOxRAMdevice needed
to obtain the desired equivalent synaptic conductance, two alternative approaches can
be used: supervised or unsupervised learning. Supervised learning is obtained using
back-propagation algorithm [17], where the LRS/HRS status of eachOxRAMdevice
is determined with computer simulations (offline learning), and then discretized and
imported in the memory array with a one-time programming operation. In unsuper-
vised learning, the LRS/HRS status of the devices is learned in-situ (online learning)
with the stochastic STDP learning rule shown in Fig. 2a [18]. According to the dif-
ference �t of the spiking time of the post-neuron (ts) and the preneuron (tx ), a
Long-Term Potentiation (LTP) or a Long-Term Depression (LTD) operation is car-
ried out. AnLTP (LTD) operation consists in applying to each device of the equivalent
synapse a SET (RESET) operation with a probability pSET (pRESET ). The switch-
ing probability can be governed by the RRAM itself (internal switching probability):
SET and RESET conditions can be tuned to control the probability to switch the
memory [6]. Another possibility, which allows a more fine-tuning of the switching
probability, at the expense of small increase of the circuit complexity, consists in
using stronger programming conditions that do not show intrinsic stochasticity; i.e.,
switching probability is equal to one. Extrinsic stochasticity is thus obtained using
an external PseudorandomNumber Generator (PRNG) circuit block, which provides
tunable switching probabilities pSET and pRESET . The driver circuit block can be
used to individually program the OxRAM devices (see Fig. 1).

In order to validate the functionality of the proposed synapse design (Fig. 1), we
carried out simulations of LTP and LTD operations on OxRAM synapses composed
by a variable number of devices connected in parallel. Figure2b–e show the evolution
of the conductance corresponding to 100 LTP (SET) followed by 100 LTD (RESET)
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Fig. 2 a Probabilistic STDP learning rule. 100 consecutive LTP (SET) and LTD (RESET) events,
with pSET = 0.02 and pRESET = 0.04 on a synapse composed of b 1OxRAMdevice, c 3OxRAM
devices, d 10 OxRAM devices, and e 20 OxRAM devices connected in parallel, as shown in Fig. 1.
The use of multiple devices allows to implement a multilevel equivalent synapse, and increasing
the number of devices connected in parallel increases the number of intermediate conductance
levels. It should be noted that the vertical axis scale is not constant. (@ 2016 IEEE. Reprinted with
permission from [15])

operations for a synapse composed ofn = 1OxRAMdevice,n = 3OxRAMdevices,
n = 10 OxRAM devices, and n = 20 OxRAM devices connected in parallel, using a
binary probabilistic approachwith pSET = 0.02 and pRESET = 0.04. TheLTP (SET)
and LTD (RESET) programming conditions are targeted to obtain 3 and 30kΩ LRS
andHRS, respectively. In the case of Fig. 2b, a singleOxRAMdevice, obviously, only
two conductance levels can be achieved. Using multiple OxRAM devices, Fig. 2c–e,
allows to obtain a gradual modulation of conductance, with a behavior that is sim-
ilar to an analog approach. Increasing the number of devices connected in parallel
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increases the number of intermediate conductance levels. For the same number of
intermediate conductance levels, using multiple OxRAM devices does not necessar-
ily introduce a penalty in power consumption with respect to a single analog device.
The number of switching events needed to program the synaptic weight is the same
in the case of single analog synapse and multiple binary OxRAMs (it is n switch-
ing events times 1 device and 1 switching event times n devices for the analog and
binary approaches, respectively). Achieving multiple conductance levels with mul-
tiple devices in parallel has the advantage of enabling a multilevel behavior in a way
which is independent on technology: The first target for RRAM memories for Flash
replacement is to achieve two distinct resistance levels.

To study the impact of the programming conditions (power consumption) on
the synaptic behavior, we calculated the cumulative distributions of LRS and HRS
corresponding to weak and strong programming conditions (Fig. 3a, b). Weak pro-
gramming conditions (switching energy/device ∼9 pJ) result in smaller program-
ming window (i.e., smaller separation between the distributions of HRS and LRS)

Fig. 3 Experimental resistance levels and associated variability for aweak (Icomp = 50µA, Vset =
1V, Vreset = 1.3V, Tpulse = 100 ns,) and b strong (Icomp = 340 µA, Vset = 1 V, Vreset = 1.7 V,
Tpulse = 100 ns) programming conditions. Conductance evolution corresponding to 100 consecu-
tive LTP (SET) and LTD (RESET) events.Gray lines are representative of 25 synapses composed of
20 OxRAMs each, programmed with a weak programming conditions and b strong programming
conditions (@ 2016 IEEE. Reprinted with permission from [15])
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and larger variability. Stronger programming conditions (switching energy/device
∼58 pJ), on the other hand, result in larger programming window and tighter distrib-
utions showing better variability for LRS. Figure3c, d shows the impact of the choice
of the programming condition on the conductance evolution of the synapses. Light
gray curves are the conductance response of 25 synapses composed of 20 OxRAM
devices each, when 100 LTP and 100 LTD operations are performed consecutively
with pSET = 0.02 and pRESET = 0.04.Red curves are themean conductance over 25
synapses. When stronger programming conditions are used (condition B), the asso-
ciated larger programming window allows achieving a wider range of conductance
values with respect to weaker programming conditions (condition A). The quantities
GMAX , i.e., the average conductance after 100 LTP events, and �G, i.e., the differ-
ence between the maximum and minimum conductances on a set of 25 synapses,
have been extracted for the two conditions. Due to the fact that a probabilistic learn-
ing rule is used, the impact of the device variability on the synaptic conductance
response plays a secondary role with respect to the stochasticity introduced by the
probabilistic STDP learning rule. In fact, a ratio �G/Gmax ∼ 32% is obtained for
both programming conditions.

Theweakest point of the proposedhybrid approach is the silicon area consumption
for each synapse that is proportional to the number of devices needed to obtain a
multilevel behavior. A possible solution to overcome this problem is the adoption
of the Vertical RRAM (VRRAM) technology [19], which consists of RRAM cells
integrated in multilayered VNAND-like structure, this is a simple and cost-effective
3D processes to achieve high memory density (Fig. 4). A synapse is composed by
n stacked VRRAM with one common select transistor, 1TnR structure (Fig. 4b).
This solution offers significant area gain with respect to neural networks in planar
configuration with n 1T 1R elements in parallel (Fig. 1), and the silicon area for
each synapse is independent of the number of devices required to obtain a multilevel
behavior. The 1TnR structure imposes the use of the RRAM intrinsic variability in
order to implement progressive on line learning (the use of an external Pseudorandom
Number Generator circuit block is possible only with a nTnR structure). Figure4c

Fig. 4 a TEM cross sections on one TiN/HfO2/Ti/TiN VReRAM. b 1TnR VReRAM pilar for one
synapse. c Percentage of SET cells as a function of the pulse voltage for different pulse times (@
2016 IEEE. Reprinted with permission from [19])
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shows the percentage of switched cells (∼50 VRRAM measured) as a function of
the applied bias and pulse times [19]. Programming conditions can be identified to
control the probability to switch the memory with a given value for each pulse, the
probability being imposed by the application and neural network structure.

2 Convolutional Neural Network Architecture

The implementation of artificial neural networks composed of CMOS neurons, and
NVM-based synapses have been widely investigated in the literature [3, 4, 21, 22].
The network topology that has been mostly investigated is the fully connected neural
network. In this topology, neurons are organized in layers. Each neuron of the N
layer is connected to every neuron of the N + 1 layer by a large number of synapses
(Fig. 5a). The first neuron layer is connected to the input of the network, while the last
neuron layer represents the output of the system. The neuron layers between input
and output are generally referred to as hidden layers. Fully connected neural network
topologies are often limited to a maximum number of hidden layers equal to one or
two. Further increasing the number of layers explosively increases the complexity of
the network and the number of required synapses, without necessarily improving the
performance of the network. Convolutional neural networks (CNNs), often referred
to as deep neural networks, are composed of a cascade ofmany layers. The first layers
of a CNN are convolutional layers, with a topology schematized in Fig. 5b. Neurons
of a convolutional layer are organized in feature maps. Neurons in one feature map
receive inputs from a small subset of neurons (receptive field) in the previous layer
and produce an output which is a threshold or sigmoidal function of the weighted
sum of inputs. The connectivity pattern between the neurons of the receptive field
of one layer and the neurons of the subsequent layer, responsible for the weighted
sum operation, forms the convolution kernel. The latter is composed of a small set of
synapses shared among different neurons to connect layers N and N + 1 through a

Fig. 5 a Fully connected neural network topology. Each neuron is connected to every neuron of
the upper layer by a large number of synapses. b Convolutional neural network topology. A small
set of synapses (kernel) is shared among different neurons to connect layers N and N + 1 through
a convolution operation (@ 2016 IEEE. Reprinted with permission from [20])
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convolution operation. The kernel corresponds to a feature that has to be localized in
the input image. A peak in the convolution signal means that the feature is present in
the input pattern, and the featuremap indicateswhere the feature is present in the input
field. At each convolutional layer, the input pattern undergoes a transformation to a
higher, more abstract representation. In the case of image recognition applications,
for example, the kernel features in the first convolutional layer typically represent
simple edges or segments with a given orientation, while the features of the second
layer represent particular arrangements of edges in more complex shapes. After the
convolutional layers, a classifier with fully connected topology is used to classify
objects as combinations of the different parts extracted by the previous convolutional
layers. The organization of convolutional layers in CNNs is originally inspired by
the structure of the visual system in mammals [23–25]. Software implementations of
CNNs were applied with great success in applications such as traffic sign recognition
[26], the analysis of biological images [27], and the detection of faces, complex text,
pedestrians on the streets and human bodies in natural images [28–31]. A major
recent practical success of software implementations of CNNs is the face recognition
software proposed by Facebook [32].

The power consumption to perform convolution operations is computationally
expensive in the CNN implementation on CPUs and GPUs. This hinders their inte-
gration in portable devices. In recent years, dedicated system on chip (SOC) solutions
and FPGA platforms have been used to implement these networks for increasing per-
formances while decreasing their power consumption. A hardware implementation
of CNNs based on the OxRAM devices can further improve the power efficiency.
We proposed the use of OxRAM synapses presented in Sect. 1 to store the kernel
features [20, 33]. Two different visual pattern recognition applications were demon-
strated: the MNIST handwritten digits database [34] and the German Traffic Sign
Recognition Benchmark (GTSRB) database [35]. For both the applications, the pro-
posed architecture is composed of a feature extractionmodule, made of two cascaded
convolutional layers, each of them followed by a subsampling layer [36] in the case
of the GTSRB network, and a classification module, made of two fully connected
layers (Fig. 6). For theMNIST applications, the first convolutional layer is composed
of 16 feature maps of size 13 ·13 (169 neurons), the second convolutional layer is
composed of 24 feature maps with size 5 · 5 (25 neurons), the third layer, with fully
connected topology, is composed of 150 neurons, and the output layer is composed
of 10 neurons, where each neuron is associated with one of the 10 digit categories. 16
(size: 4·4) and 90 (size: 5·5) shared kernels are used in the first and second CNN lay-
ers, respectively. For the more complex GTSRB applications, the first convolutional
layer is composed of 32 feature maps with size 26 ·26 (676 neurons), the second
convolutional layer is composed of 48 feature maps with size 9 ·9 (81 neurons),
the third layer, with fully connected topology, is composed of 200 neurons, and the
output layer is composed of 43 neurons, where each neuron is associated with one
traffic sign. 32 (size: 4 ·4) and 186 (size: 5 ·5) shared kernels are implemented in the
first and second CNN layers, respectively. The estimated size of the OxRAM array
needed to implement the CNNs is 600 kb for MNIST and 1 Mb for GTSRB, with
11 levels (OxRAM cells) per synapse. The kernel features, and the corresponding
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Fig. 6 CNN architecture for a handwritten digits recognition (MNIST database) and b traffic signs
recognition (GTSRB database). (@ 2016 IEEE. Reprinted with permission from [33])

synaptic weights, must be learned in an initial phase and then the network can be
used in read mode for visual pattern recognition. The synaptic weights are defined
offline with supervised back-propagation learning algorithm [17].

The designed architecture has a structure equivalent to the one used for software
implementations of CNNs. The main difference resides in the way the convolution
operation is carried out.Mathematically, a discrete convolution operation, for a kernel
with size k · k, is described by the following equation:

Oi, j =
k−1∑

p=0

k−1∑

q=0

Ii+q, j+p · Kp,q (1)
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where Oi, j is the brightness value at coordinates (i, j) in the output feature map,
Ii+q, j+p is the brightness values at coordinates (i + p, j + q) in the input feature
map, and Kp,q is the kernel coefficient at coordinates (p, q).

In a conventional Von Neumann architecture, the convolution operation would be
carried out using digital multipliers, adders, and registers. The operands Ii+q, j+p and
Kp,q are stored in memory as numbers in digital format. At every clock cycle, these
data have to be retrieved from the system memory and stored back in memory after
computation. This process has to be repeated Nc times, according to the following
equation:

Nc = k2 · f 2 · Nk · NF · Ncl (2)

where k is the size of one kernel, f is the size of the input feature map, Nk is the
number of kernels in one convolutional layer, NF is the number of featuremaps in one
convolutional layer, and Ncl is the number of convolutional layers in the network. In
the case of a state-of-the-art convolutional neural network for the recognition of traffic
signs with 8-bit synapses [37], for example, a Von Neumann implementation would
require ∼125 million clock cycles for the recognition of one image. This would
correspond to a latency of 625 ms per image recognition assuming an operating
frequency of 200 MHz.

In our solution, thanks to the use of OxRAM synapses to implement the kernel,
the convolution operations are performed directly in memory, in a fully parallel and
distributed approach. Specifically, themultiplications are carried out in parallel using
the simple Ohms law:

I outputi+q, j+p = V input
i+q, j+p · Gkernel

q,p (3)

where V input
i+q, j+p is a voltage that, using a proper encoding, represents the input image

at the pixel (i + q, p + j), Gkernel
q,p is the conductance of an OxRAM synapse which

represents the kernel feature at the coordinate (p, q) and Ii+q, j+p is the current that
has to be accumulated at the coordinate (i, j) of the output feature map neuron.

Figure7 shows the voltage encoding of the input image (V input
i+q, j+p, in Eq. (3)) into

Address Event Representation (AER) format and the propagation of spiking activity
through neuron layers of the CNN architecture for the handwritten digits recognition
(Fig. 6). The input images are composed of 29 · 29 pixels. Each pixel’s brightness,
V input
i+q, j+p, is converted into a voltage spike train with a given frequency, during a time

slot t = 1µs. The lowest pixel brightness (i.e., black pixel) is converted to the lowest
spiking frequency fM I N = 1 MHz. The highest pixel brightness (i.e., white pixel)
is converted to the highest spiking frequency fM AX = 8 MHz. All the grayscale,
intermediate pixel brightness values are linearly converted into spiking frequency
between fM I N and fM AX . Moreover each pixel is associated with a neuron address
(a sequential address from 0 to 840, corresponding to the 29 ·29 pixels).

Figure8 represents the hardware implementation of a convolutional kernel
(Gkernel

q,p , in Eq. (3)) with OxRAM array. The kernel is a collection of k · k synap-
tic weights, representing a feature to be convoluted with the input image. Each
row represents one of the k · k synaptic weights of the kernel, and, at each row, an
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Fig. 7 Encoding of the input image (V input
i+q, j+p) in the Address Event Representation (AER) for-

mat and propagation of spiking activity through neuron layers of the CNN architecture for the
handwritten digits recognition (Fig. 6). (@ 2016 IEEE. Reprinted with permission from [20])

Fig. 8 Proposed hardware implementation of convolutional kernel using OxRAM synapses

OxRAM-based synapse composed of n devices connected in parallel is implemented
(as illustrated in Fig. 1 and Sect. 1). Figure9 illustrates the read-mode operation in the
convolutional kernel.When a spike, V input

i+q, j+p, occurs at coordinates (i + q, j + p) in
the input image, an address decoder is used to dynamically map the kernel synapses
to the feature map neurons that have the input neuron (i + q, j + p) in their recep-
tive field, p and q ranging from 1 to k − 1 (k is the size of the kernel). The spike is
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Fig. 9 Proposed implementation of convolutional kernel and spike propagation through it. Each
synapse is composed of 20 OxRAM devices as illustrated in Fig. 1. The address decoder is used
to dynamically map the kernel synapses to the feature map neurons that have the input neuron
(i + q, j + p) in their receptive field. (@ 2016 IEEE. Reprinted with permission from [20])

then propagated through the synapses of the kernel to the mapped output Integrate
and Fire (IF) neurons. The IF neurons accumulate (integrate) the incoming current
over time and will fire when a given threshold is reached. The accumulated current
at the coordinate (i, j) of the output feature map neuron is given by the following
formula:

I outputi, j =
k−1∑

p=0

k−1∑

q=0

V input
i+q, j+p · Gkernel

p,q (4)

The spiking frequency of the feature map neuron at coordinate (i, j) is proportional
to I outputi, j .

In order to validate the functionality of the two CNNs architectures proposed for
the recognition task of the MNIST and GTSRB databases (Fig. 6), we performed
simulations using the special-purpose spiking neural network simulator Xnet [38],
using synapses composed of n = 20 OxRAM devices connected in parallel. In order
to define the resistance state of each OxRAM device, we used the supervised back-
propagation learning algorithm. Figure7b shows an example of the propagation of
the spikes through the layers of the CNN of the CNN architecture for the handwritten
digits recognition (Fig. 6), when a test image representing the handwritten digit 8 is
presented to the network. At the input layer, the static image is converted in AER
format, with neurons spiking at different frequencies according to the brightness
of the corresponding image pixel. The signals are propagated through the network
until the output layer, where the neuron with the highest spiking frequency (neuron
number 8 in this specific case) indicates the category in which the input image has
been categorized by the network.
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Fig. 10 a SEM cross section of CMOS 28nm stack including OxRAM device, b 1T1R bitcell
schematic, c 16 kbit demonstrator. (@ 2016 IEEE. Reprinted with permission from [33])

3 Synaptic Weight Resolution and Tolerance to Variability

In order to study the impact of the OxRAM electrical performances and reliability on
the network, we fully characterized a 16 kbit OxRAM demonstrator integrated into
a 28-nm CMOS digital test-chip (Fig. 10) [12]. OxRAM devices feature a metal–
insulator–metal (MIM) structure composed of a 5-nm-thick HfO2 layer sandwiched
between a Ti top electrode and a TiN bottom electrode. A bitcell is composed of
1 Transistor–1 Resistor (1T1R) structure. The access transistor is used to select and
limit the current flowing through the device during programming. Figure11 reports
the cumulative distributions of low-resistance state (LRS) and high-resistance state
(HRS) extracted from the 16 kb OxRAM array statistics. No correction code or smart
programming algorithms have been used. Discrete steps in the experimental distri-
butions are given by discrete thresholds in read current sensing. The experimental
distribution is cut at about 1 MΩ because of the lower limit in current sensing. All
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Fig. 11 Cumulative
distributions of LRS and
HRS for 16kb array. Discrete
steps are due to discrete
thresholds in read current
sensing. The experimental
distribution is cut at 1M due
to lower limit in current
sensing

Fig. 12 Recognition success as a function of the number n of parallel OxRAM devices used to
implement an equivalent synapse, using analog neuron model and taking into the LRS and HRS
OxRAMdistributions presented in Fig. 11.Dashed lines reference recognition success rate obtained
on the testing dataset with the formal CNN model and floating-point precision synapses. (@ 2016
IEEE. Reprinted with permission from [33])

the network simulations presented into the following take into account the real LRS
and HRS distributions presented in Fig. 11.

In Sect. 1, we demonstrated that using more OxRAM cells per synapse increases
the synaptic weight resolution (Fig. 2), but comes at the cost of larger area consump-
tion (for the nTnR structure, Fig. 1) or more complex process integration (1TnR
VReRAM architecture, Fig. 4). We therefore studied the impact of the number, n, of
OxRAM devices per synapse on the performance of the CNN architectures for the
recognition tasks of the MNIST and GTSRB databases presented in Fig. 11. Para-
metric simulations have been performed, varying the number of OxRAM cells per
synapse, n, and keeping all the other parameters of the network constant. The red
curve in Fig. 12 reports the recognition success of 10 000 handwritten digits after
learning with back-propagation algorithm [17] as a function of the number n. The
recognition success improves as n increases, for n higher than 12 the maximum net-
work performance greater than 97% is reached. The blue curve in Fig. 12 reports the
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recognition success as a function of the number n of OxRAM devices per synapse
for the GTSRB database recognition. More complex application tasks, such as the
GTSRB database recognition, are more demanding in terms of synaptic weight reso-
lution. In the case of handwritten digits recognition (MNIST), 11OxRAMdevices per
synapse are enough to achieve a recognition performance equivalent to the reference
recognition success rate obtained with the formal CNN model with floating-point
precision for the synapses. In the case of the more complex recognition task of traffic
signs, 20 OxRAM devices per synapse are necessary to achieve a recognition rate
equivalent to the reference one.

OxRAMs are considered a promising technology for Flash replacement in both
stand-alone and embedded memory solutions [39, 40]. However, one of the main
issues for conventional memory applications is the noise behavior of the high-
resistance state (HRS) that reduces thememory operationwindow [12]. In the follow-
ing, the impact of resistance variability on the performance of Convolutional Neural
Network (CNN) systems will be investigated. In order to quantify the impact of the
OxRAM resistance variability on the performance of the CNN, we used the MNIST
database as test bench simulations. Since the OxRAM LRS and HRS resistance dis-
tributions can be fitted by lognormal distributions with mean value μ and standard
deviation σ , the resistance of each OxRAM device (Ri ) in the Xnet simulations of
the network is defined using the following relation:

Ri = lognorm(μ, σ ) (5)

where lognorm (μ, σ ) is a function that draws a random sample from the base-10
lognormal distribution with parameters μ and σ . The experimental HRS and LRS
distribution of Fig. 11 are well reproduced by lognormal distributions with μ = 5.5,
σ = 0.45 and μ = 3.45, σ = 0.06, respectively. These values allow to achieve a
recognition success larger than 98.9%. To study the impact of the HRS variability on
the network performances, we performedXnet simulations of the CNN network with
different values for σ and μ of the HRS distribution (Figs. 13a and 14b). Figure13b
demonstrates that a reduction in the HRS variability (corresponding to a reduction
of the standard deviation of the HRS distribution) does not improve the recognition
rate of the network. Moreover, we studied the impact of the reduction of the HRS
mean value for a given value of σ on the network performances (Fig. 14). A reduction
of the HRS mean value of about one order of magnitude (μ form 5.5 to 4.5) does
not compromise the recognition rate, which remains higher than 98.8%. A further
reduction of the HRS (μ = 3.9) starts to degrade the network performances. These
results confirm the robustness and tolerance of the proposed network to the HRS
variability [41].
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Fig. 13 a Distributions of LRS (red) and HRS (blue) for experimental 16 kbit (symbols) and HRS
lognormal distributions implemented in our Xnet (lines) with different variabilities (σ ) and same
mean value (μ). b Impact of the standard deviation of the lognormal HRS distribution (σ ) on
recognition success of OxRAM-based CNN

Fig. 14 a Distributions of LRS (red) and HRS (blue) for experimental 16 kbit (symbols) and HRS
lognormal distributions implemented in our Xnet (lines) with different mean values (μ) and same
variability (σ ). b Impact of the mean value of the HRS lognormal distribution (μ) on recognition
success of OxRAM-based CNN

4 Conclusions

In this chapter, we proposed a synapse that employs multiple OxRAM binary cells
operating in parallel to achieve an analog behavior. The implementation of one
VRRAM pillar per synapse was presented as a possible solution to gain area with
respect to planar approaches.Moreover,we described a possible hardware implemen-
tation of a spike-based Convolutional Neural Network for visual pattern recognition
using multiple binary OxRAM devices as synapses. The proposed solution, with
respect to typical software implementation on CPUs and GPUs, allows to improve
performances and to decrease the power consumption. Thanks to the use of the
OxRAMsynapses to implement the kernel, the convolution operations are performed



Multiple Binary OxRAMs as Synapses for Convolutional Neural Networks 125

directly in memory, in a fully parallel and distributed approach, allowing to achieve
a latency of 1 µs per image (assuming a spike encoding frequency fM AX = 8 MHz).
The estimated latency per image for a software implementation of the network is
2.5 ms, using 16 parallel processing cores with a clock frequency of 200MHz. The
impact of the synaptic resolution and OxRAM variability on the CNN performances
were evaluated using the electrical data extracted froma28nmCMOSOxRAMarray.
The proposed CNN architecture is highly tolerant to variability. Recognition success
rates higher than 99 and 97% have been demonstrated for the MNIST and GTSRB
networks, respectively. These results are similar to the state-of-the-art recognition
success rates obtained with formal CNN models, implemented with floating-point
precision synapses. These success rates are reached using 11 and 20OxRAMdevices
per synapse for the MNIST and GTSRB applications, respectively.
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Abstract In the conventional vonNeumann (VN) architecture, data—both operands
and operations to be performed on those operands—makes its way frommemory to a
dedicated central processor. With the end of Dennard scaling and the resulting slow-
down in Moore’s law, the IT industry is turning its attention to non-Von Neumann
(non-VN) architectures, and in particular, to computing architectures motivated by
the human brain. One family of such non-VN computing architectures is artificial
neural networks (ANNs). To be competitive with conventional architectures, such
ANNs will need to be massively parallel, with many neurons interconnected using a
vast number of synapses, working together efficiently to compute problems of signifi-
cant interest. Emerging nonvolatile memories, such as phase-change memory (PCM)
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or resistive memory (RRAM), could prove very helpful for this, by providing inher-
ently analog synaptic behavior in densely packed crossbar arrays suitable for on-chip
learning.We discuss our recent research investigating the characteristics needed from
such nonvolatile memory elements for implementation of high-performance ANNs.
We describe experiments on a 3-layer perceptron network with 164,885 synapses,
each implemented using 2 NVM devices. A variant of the backpropagation weight
update rule suitable for NVM+selector crossbar arrays is shown and implemented in
a mixed hardware–software experiment using an available, non-crossbar PCM array.
Extensive tolerancing results are enabled by precise matching of our NN simulator
to the conditions of the hardware experiment. This tolerancing shows clearly that
NVM-based neural networks are highly resilient to random effects (NVM variabil-
ity, yield, and stochasticity), but highly sensitive to gradient effects that act to steer all
synaptic weights. Simulations of ANNs with both PCM and non-filamentary bipolar
RRAM based on Pr1−xCaxMnO3 (PCMO) are also discussed. PCM exhibits smooth,
slightly nonlinear partial-SET (conductance increase) behavior, but the asymmetry of
its abrupt RESET introduces difficulties; in contrast, PCMO offers continuous con-
ductance change in both directions, but exhibits significant nonlinearities (degree of
conductance change depends strongly on absolute conductance). The quantitative
impacts of these issues on ANN performance (classification accuracy) are discussed.

1 Introduction

Dense arrays of nonvolatile memory (NVM) and selector device pairs (Fig. 1) can
implement neuro-inspired non-von Neumann computing [8, 16], using pairs [16]
of NVM devices as programmable (plastic) bidirectional synapses. Prior work has
emphasized the spike-timing-dependent plasticity (STDP) algorithm [8, 16], moti-
vated by synaptic measurements in real brains. However, full experimental NVM
demonstrations of successful network learning have been limited in size (≤100
synapses), and few results have reported quantitative performance metrics such as
classification accuracy. Worse yet, it has been difficult to be sure whether the rela-
tively poor metrics reported to date might be due to immaturities or inefficiencies in
the STDP learning algorithm (as it is currently implemented), rather than reflective
of problems introduced by the imperfections of the NVM devices.

Unlike STDP, backpropagation is a widely used, well-studied method in training
artificial neural networks, offering benchmark-able performance on datasets such as
handwritten digits (MNIST) [11]. Although proposed earlier, it gained great pop-
ularity in the 1980s [11, 15], and with the advent of GPUs, backpropagation now
dominates the neural network field. In the present work, we use backpropagation to
train a relatively simple multilayer perceptron network (Fig. 2). During forward eval-
uation of this network, each layer’s inputs (xi) drive the next layer’s neurons through
weights wij and a nonlinearity f () (Fig. 2). Supervised learning occurs (Fig. 3) by
backpropagating error terms δj to adjust each weightwij as the second step. A 3-layer
network is capable of accuracies, on previously unseen “test” images (generaliza-
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Fig. 1 Neuro-inspired non-Von Neumann computing [8, 16], in which neurons activate
each other through dense networks of programmable synaptic weights, can be imple-
mented using dense crossbar arrays of nonvolatile memory (NVM) and selector device pairs.
(© IEEE, all rights reserved. Reprinted, with permission, from [4])

tion), of ∼97% [11] if all 60,000 training examples are used for training. (Fig. 4);
even higher accuracy is possible by first “pre-training” the weights in each layer [7].
However, if fewer training images are used for training, higher training accuracy but
lower generalization accuracy (94%) on the “test” set is obtained (Fig. 4).

Here,weuse tanh() as thenonlinear function f (), andonebias (always-ON)neuron
is added to each layer other than the output layer, in addition to those neurons shown
in Fig. 2. Like with STDP, low-power neurons should be achievable by emphasizing
brief spikes [14] and local-only clocking. However, note that no CMOS neuron
circuitry is built or even specified in this chapter—the focus here will be solely on
the effects of the imperfections of the NVM elements.

We have chosen to work with phase-change memory (PCM) since we have access
to large PCM arrays in hardware. We discuss the consequences of the fundamental
asymmetry in PCM conductance response: The fact that small conductance increases
can be implemented through “partial-SET” pulses, but the RESET (conductance
decrease) operation tends to be quite abrupt. However, we also discuss the use of
bidirectional NVM devices (such as non-filamentary RRAM [9]). We show that such
a bidirectional NVM with a symmetric, linear conductance response is fully capa-
ble of delivering the same high classification accuracies (on the problem we study,
handwritten digit recognition) as a conventional, software-based implementation of
the same neural network.
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Fig. 2 In forward evaluation of a multilayer perceptron, each layer’s neurons drive the next layer
through weights wij and a nonlinearity f (). Input neurons are driven by pixels from successive
MNIST images (cropped to 22 × 24); the 10 output neurons identify which digit was presented. (©
IEEE, all rights reserved. Reprinted, with permission, from [4])

In Sect. 4, we describe additional simulation studies using the measured conduc-
tance response of a real bidirectional NVM: the non-filamentary RRAM based on
Pr1−xCaxMnO3, also known as PCMO.

2 Considerations for a Crossbar Implementation

By encoding synaptic weight in the conductance difference between a pair of non-
volatile memory devices,wij =G+−G− [16], forward propagation simply compares
total read signal on columns (Fig. 5). (A similar parallel read operation on rows
enables the backpropagation of δ corrections.)

This can be performed by encoding x using some combination of voltage-domain
or time-domain encoding (either number of read pulses, or pulse duration, or some
appropriate combination of both). These CMOS circuitry choices are interesting and
important topics, but are beyond the scope of this chapter. Any nonvolatile memory
device that can offer a nondestructive parallel read (as shown in Fig. 5) of memory
states that can be smoothly adjusted up or down through a wide range of analog
values could potentially be used in this application. Here, we focus on NVM devices
that offer a range of analog conductance states.
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Fig. 3 In supervised learning, error terms δj are backpropagated, adjusting each weight wij to
minimize an “energy” function by gradient descent, reducing classification error between computed
(xDl ) and desired output vectors (gl). (© IEEE, all rights reserved. Reprinted, with permission,
from [4])

Fig. 4 A 3-layer perceptron network can classify previously unseen (“test”) MNIST handwritten
digits with up to ∼97% accuracy [11]. Training on a subset of the images sacrifices some general-
ization accuracy but speeds up training. (© IEEE, all rights reserved. Reprinted, with permission,
from [4])
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Fig. 5 By comparing total
read signal between pairs of
bitlines, summation of
synaptic weights (encoded as
conductance differences,
wij =G+−G−) is highly
parallel. (© IEEE, all rights
reserved. Reprinted, with
permission, from [4])

Fig. 6 Backpropagation
calls for each weight to be
updated by Δwij = η xi δj ,
where η is the learning rate.
Colormap shows
log(occurrences), in the 1st
layer, during NN training
(blue curve, Fig. 4); white
contours identify the
quantized increase in the
integer weight. (© IEEE, all
rights reserved. Reprinted,
with permission, from [4])

This chapter is concerned with how real NVM devices will respond to program-
ming instructions during in situ training of their artificial neural network. Unfor-
tunately, the conventional backpropagation algorithm [15] calls for weight updates
Δwij ∝ xiδj (Fig. 6), which forces upstream i and downstream j neurons to exchange
information uniquely for each and every synapse. This serial, element-by-element
information exchange between neurons is highly undesirable in a crossbar array
implementation. One alternative is to have each neuron, downstream and upstream,
fire pulses based on their local knowledge of xi and δj, respectively. The presence of
a nonlinear selector is critical to ensure that NVM programming occurs only when
pulses from both the upstream and downstream neurons overlap. This allows neurons
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Fig. 7 In a crossbar array,
efficient learning requires
neurons to update weights in
parallel, firing pulses whose
overlap at the various NVM
devices implements training.
Colormap shows
log(occurrences), in the 1st
layer, during NN training
(red curve, Fig. 8); white
contours identify the
quantized increase in the
integer weight. (© IEEE, all
rights reserved. Reprinted,
with permission, from [4])

Fig. 8 Computer NN
simulations show that a
crossbar-compatible weight
update rule (Fig. 7) is just as
effective as the conventional
update rule (Fig. 6). (©
IEEE, all rights reserved.
Reprinted, with permission,
from [4])

tomodify weights in parallel, making learningmuchmore efficient [8] (Fig. 7). (Note
that to reduce peak power, one might choose to stagger these write pulses across the
array, one sub-block at a time.) Figure8 shows, using a simulation of the neural net-
work in Figs. 2 and 3, that this adaptation for nonvolatile memory implementation
has no adverse effect on accuracy.

However, while modifying the update rule is clearly not a problem, the conduc-
tance response of any real nonvolatile memory device exhibits imperfections that can
decidedly affect the neural network performance. These imperfections include non-
linearity, stochasticity, varying maxima, asymmetry between increasing/decreasing
responses, and non-responsive devices at low or high conductance (Fig. 9). The ini-
tial version of this work [4] was the first paper to study the relative importance of
each of these factors. A later, expanded version added significantly more explana-
tory details, adding several new plots detailing paths for future improvement [5]. A
recently published conference paper included both a summary of this work as well
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Fig. 9 The conductance response of an NVM device exhibits imperfections, including nonlinear-
ity, stochasticity, varying maxima, asymmetry between increasing/decreasing responses, and non-
responsive devices (at low or high G). (© IEEE, all rights reserved. Reprinted, with permission,
from [4])

Fig. 10 If G values can only be increased (asymmetric G-response), a synapse at point (A) (G+
saturated) can only increase G−, leading to a low weight value (B). If response at small G values
differs from that at largeG (nonlinearG-response), alternating weight updates can no longer cancel.
As synapses tend to get herded into the same portion of the G-diamond (C → D), the decrease
in average weight can lead to network freeze-out. (© IEEE, all rights reserved. Reprinted, with
permission, from [4])

as an initial assessment of the potential improvements in power and speed offered
by NVM-based acceleration of machine learning [3].

The nonlinearity and asymmetry in the G-response can strongly degrade accu-
racy [4]. The “G-diamond”—a diamond-shaped plot of G+ versus G− in which
weight is vertical position—is a graphical method for illustrating the synaptic “state”
of a nonvolatile memory pair. In PCM-based synapses, the G-response is highly
asymmetric and only partial-SET can be done gradually. In this context (Fig. 10), the
synapse state can only move unidirectionally, from left to right, on the G-diamond.
Bipolar filamentary RRAM such as HfOx or TaOx [18] or CBRAM [17] has a simi-
lar problem, except that the names are reversed: SET is the abrupt step and it is the
RESET step which can be performed gradually.
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Once one G value is saturated, subsequent training can only increase the other G
value, reducing weight magnitude. Nonlinearity in G-response further encourages
weights of low value. If the response at small G values differs from that at large
G, alternating weight updates no longer cancel. As synapses are herded into the
same portion of the G-diamond (Fig. 10), the decrease in average weight can lead
to network “freeze-out.” In such a condition, the network chooses to update very
few if any weights, meaning that the network stops evolving toward higher accuracy.
Worse yet, since the fewweight updates that do occur are quite likely to lead toweight
magnitude decay, previously trained information is steadily erased and accuracy can
actually decrease [4].

3 Phase-Change Memory (PCM): Results

One solution to the highly asymmetric response of PCM devices is occasional
RESET [16], moving synapses back to the left edge of the “G-diamond” while
preserving weight value (using an iterative SET procedure, Fig. 11 inset). However,
if this is not done frequently enough, weight stagnation will degrade neural net-
work accuracy (Fig. 11). (An analogous approach for bipolar filamentary RRAM or
CBRAM would be occasional SET.)

3.1 Experimental Results

We implemented a 3-layer perceptron of 164,885 synapses (Figs. 2 and 3) on a 500×
661 array ofmushroomcell [2], 1T1RPCMdevices (180nmnode, Fig. 12).While the

Fig. 11 Synapses with large
conductance values (inset,
right edge of G-diamond)
can be refreshed (moved left)
while preserving the weight
(to some accuracy) by
RESETs to both G followed
by a partial-SET of one. If
such RESETs are too
infrequent, weight evolution
stagnates and NN accuracy
degrades. (© IEEE, all rights
reserved. Reprinted, with
permission, from [4])
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Fig. 12 Mushroom cell [2], 1T1R PCM devices (180nm node) with 2 metal interconnect layers
enable 512 × 1024 arrays. A 1-bit sense amplifier measuresG values, passing the data to software-
based neurons. Conductances are increased by identical 25ns “partial-SET” pulses to increase G+
(G−) (Fig. 7), or by RESETs to both G followed by an iterative SET procedure (Fig. 11). (© IEEE,
all rights reserved. Reprinted, with permission, from [4])

weight update algorithm (Fig. 7) is fully compatible with a crossbar implementation,
our hardware allows only sequential access to each PCM device (Fig. 12). For read,
a sense amplifier measures G values, passing the data to software-based neurons.
Although thismeasurement is performed sequentially, weight summation andweight
update procedures in the software-based neurons closelymimic the column- and row-
based integrations. (Again, since no particular CMOS circuitry has been specified,
we assume that the 8-bit value of xi is implemented completely accurately. Any
problems introduced by inaccurate encoding of xi values by real CMOS hardware
could be easily assessed using our tolerancing simulator.)

Weights are increased (decreased) by identical “partial-SET” pulses (Fig. 7) to
increase G+ (increase G−) [4]. The deviation from true crossbar implementation
occurs upon occasional RESET (Fig. 11), triggered when either G+ or G− are large,
thus requiring both knowledge of and control over individual G values. Serial device
access is required, both to measure the G values (to determine which are in the
“L-shaped” region at the right side of the G-diamond) and then to fire two RESET
pulses (at both G+ and G−) followed by an iterative SET procedure to increase one
of those two conductances until the correct synaptic weight is restored. Since the time
and energy associated with this process are large, it is highly desirable to perform
occasional RESET as infrequently and as imprecisely as possible.

Figure13 shows measured accuracies for a hardware synapse neural network,
with all weight operations taking place on PCM devices. To reduce test time,
weight updates for each mini-batch of 5 MNIST examples were applied together,
and the G-response, stochasticity, variability, stuck-ON pixel rate, and RESET accu-
racy observed during the experiment were recorded [4]. By matching all parameters
including stochasticity (Fig. 14) to those measured during the experiment, our neural
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Fig. 13 Training and test
accuracy for a 3-layer
perceptron of 164,885
hardware synapses, with all
weight operations taking
place on a 500 × 661 array
of mushroom cell [2] PCM
devices (Fig. 12). Also shown
is a matched computer
simulation of this NN, using
parameters extracted from
the experiment. (© IEEE, all
rights reserved. Reprinted,
with permission, from [4])

Fig. 14 Fitted G-response
versus number of pulses
(blue average, red ±1σ
responses) obtained from our
computer model (inset) for
the rate and stochasticity of
G-response (ΔG per pulse
vs. G) matched to
experiment [4]. (© IEEE, all
rights reserved. Reprinted,
with permission, from [4])

network computer simulation was able to precisely reproduce the measured accuracy
trends (Fig. 13).

We could then use that matched neural network simulation to explore the impor-
tance of nonvolatile memory imperfections. Final training (test) accuracy was tol-
eranced as a function of variations in nonvolatile memory and neural network para-
meters away from the conditions used in our hardware demo [4]. NN performance
was found to be highly robust to stochasticity, variable maxima, the presence of
non-responsive devices, and infrequent and inaccurate RESETs [4]. However, as
mentioned earlier, nonlinearity and asymmetry in G-response limited the maximum
possible accuracy to ∼85%, and required precise tuning of the learning rate and
neuron response (f ′) (see blue and red curves in Fig. 15). Too low a learning rate
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Fig. 15 A large number of
synapses tend to “dither,”
with frequent updates whose
aggregate effect ought to be
zero (but which is nonzero
due to the nonlinearity and
asymmetry of NVM-based
synapses). By suppressing
update of such synapses, NN
performance can be
improved and training energy
reduced, while reducing the
need to tune the learning rate
precisely. (© IEEE, all rights
reserved. Reprinted, with
permission, from [3].)

and no weight receives any update; too high, and the imperfections in the NVM
response generate chaos. The narrow distribution of these parameters means that the
experiment must be tuned very carefully. An extension of an existing neural network
technique to a crossbar-based neural network has been found to provide a much
broader distribution of the learning rate (magenta and cyan curves in Fig. 15), while
also improving overall performance. This technique is currently under investigation
and will be the subject of a future publication.

4 Non-filamentary RRAM Results

In resistivememory devices such as phase-changememory (PCM), the application of
successive pulses can smoothly change analog conductance in one direction (increas-
ing), but conductance change in the other direction (decreasing) is regrettably abrupt,
returning to the conductance extrema after a single pulse. Resistive memory devices
that offer bidirectional analog conductance change [9, 10] could potentially lead to
more power- and area-efficient systems.

Resistive memory technology is a promising synaptic device due to its analog
memory characteristics offeringmany intermediate conductance states, the high den-
sity of the cross-point array structure, and low power consumption.

In this section, we study the optimum potentiation and depression characteristics
of bidirectional synaptic devices for neuromorphic systems. To investigate the effects
of the potentiation and depression characteristics on the system,we simulate the same
3-layer multilayer perceptron described earlier for the application of handwritten
digit classification, using the measured bidirectional switching characteristics of
Pr1xCaxMnO3 (PCMO)-based synaptic devices.
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Fig. 16 a Current–voltage characteristics of TiN/PCMO-based resistive memory and b a TEM
image of the device. (© IEEE, all rights reserved. Reprinted, with permission, from [9])

4.1 Fabrication of PCMO Devices

Wefabricated 1 k-bit PCMO-based resistivememory arrays for evaluation as synaptic
devices (Fig. 16), extending upon earlier work [13]. For device fabrication, a 50-nm-
thick Pt layer for a bottom electrode and a 30-nm-thick polycrystalline PCMO film
were deposited and patterned using conventional lithography and reactive ion etch-
ing. Next, an 80-nm-thick SiNx layer was deposited by chemical vapor deposition,
and via-holes (ranging in size from 0.15 to 1.0 µm) were formed by conventional
lithography and reactive ion etching. A 10-nm-thick TiN layer and an 80-nm-thick
Pt layer for a top electrode were deposited and patterned by conventional lithogra-
phy. Electrical characteristics of the resistive memory devices based on PCMOwere
measured using an Agilent B1500A (Fig. 17). Reads were performed at 1.0 V; write
currents ranged from ∼0.1 nA to ∼1.0 mA.

Based on the measured device characteristics, we performed simulations of a
neural network with three layers of synapses (Fig. 1) using the backpropagation
algorithm [15].

Previously, we proposed a resistive memory-based synaptic device model (1)
for various potentiation and depression characteristics to find conductance change
behavior which can optimize the performance of a neuromorphic system [9].

G =
{

((Gα
LRS − Gα

HRS) × w + Gα
HRS)

1/α if α �= 0
GHRS × (GLRS/GHRS)

w if α = 0
, (1)

whereGLRS andGHRS are low-resistance state (LRS) and high-resistance state (HRS)
conductance, respectively, α is a parameter that controls potentiation (αp) or depres-
sion (αd) characteristics, and w is an internal variable which ranges from 0 to 1.
During learning, w increases or decreases as potentiating (depressing) pulses are
applied to the resistive memory- based synaptic device. The potentiation and depres-



142 S. Sidler et al.

Fig. 17 Potentiation and
depression characteristics of
the experimental TiN/PCMO
resistive memory and the
proposed resistive
memory-based synaptic
device model when a
identical pulses are applied
and b nonidentical
(increasing amplitude) pulses
are applied. (© IEEE, all
rights reserved. Reprinted,
with permission, from [9])

sion characteristics of the resistivememory-based synaptic devicemodel are concave
down if α >1, and concave up if α <1.

4.2 Simulation Results

To investigate the effect of α on the neuromorphic system, we evaluated neural
network accuracies as both αp and αd were varied. The fixed, unit-less GLRS and
GHRS values (64 and 319), and the size of the smallest change in w (0.004), were
based on the measurement data (Fig. 17), resulting in an on–off ratio of 5 and 256
effective multiple-conductance levels. From these simulations, we expect the con-
ductance response in these PCMO devices to lead to a classification “test” accuracy
of 82.38% when identical pulses are used (Fig. 18b) and 90.55% when nonidentical
pulses are used (Fig. 18c). The highest possible accuracy, which occurs when the
switching behavior is perfectly linear and symmetric (Fig. 18d), is 94.31%. (At this
point, the only remaining non-ideality is the constraint onweight magnitude imposed
by the finite GLRS [4].) However, similarly high accuracies, 88.93% (Fig. 18e) and
86.12% (Fig. 18f), can be obtained for nonlinear conductance responses, so long as
the increasing and decreasing conductance responses are mirror-symmetric.

The G-diamond plots discussed earlier [4] can be used to represent distributions
of G+ and G− in the neural network. Such plots represent both conductance values
together with the resulting synaptic weight, G = G+ − G− (as vertical position
within the diamond) [4]. The weights, initially distributed uniformly along the center
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Fig. 18 aCalculated classification accuracieswhen b identical pulses are used (αp = 5.5,αd = 4.0),
c nonidentical pulses are used (αp = 0.5, αd = 0.0), d the conductance-change behavior is perfectly
linear and symmetric (αp = αd = 1.0), e and f the conductance-change behaviors are nonlinear
but are mirror-symmetric (αp = αd = 5.5, and αp = αd = 4.0, respectively). (© IEEE, all rights
reserved. Reprinted, with permission, from [9])

Fig. 19 Diamond-shaped plots of G+ versus G (weight is vertical position [4]) a before training,
and b after training when identical pulses are used (αp = 5.5, αd = 4.0) or c after training when
nonidentical pulses are used (αp = 0.5, αd = 0.0). (© IEEE, all rights reserved. Reprinted, with
permission, from [9])

axis of the G-diamond (Fig. 19a), spread out during neural network training. When
identical pulses are used, the resulting G+ and G− values tend to concentrate around
low weight values (Fig. 19b), preventing the neural network from utilizing the full
range of possible weights. On the other hand, when nonidentical pulses are used, G+
and G are spread out more (Fig. 19c), allowing the neural network to utilize the full
range of weights.

However, the use of nonidentical training pulses in such a neuromorphic system
requires additional external circuits, because the system has to read the conductance
of a synaptic device before programming it, in order to identify which nonidentical
training pulse to apply. Thus, there is a trade-off between the higher accuracy, and the
resulting lower chip-area efficiency, higher power, and longer training time associated
with the need to repeatedly measure individual conductances.

Total power is difficult to estimate without specifying the CMOS circuitry. With
our current devices, training power would certainly be dominated by the large PCMO
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write energy (currently, 300 nJ/pulse = (100 µs)(3 V)(1 mA)). However, further
increases in scaling (from 1 µm diameter or ∼8e5 nm2 down to 20nm diameter
∼300 nm2) can be expected to reduce this by at least three orders of magnitude [12].

5 Discussion

While the asymmetric G-response of PCM makes it necessary to occasionally stop
training, measure all conductances, and apply RESETs and iterative SETs, energy
usage can be reasonable if RESETs are infrequent (Fig. 20, inset), and if learning
rate is low (Fig. 20). In contrast, we observed that the highly nonlinear G-response of
PCMO devices (Fig. 17a) degrades accuracy, unless additional time and energy are
spent to identify the conductance states prior to selecting an appropriate programming
pulse (Fig. 17b).

Neural networks based on bidirectional nonvolatile memory-based synapses can
deliver high classification accuracy if G-response is linear and symmetric rather
than nonlinear. We have previously explored the trends with an ideal but nonlinear
NVM, varying both the initial steepness of the G-response and the choice of “fully
bidirectional”weight updates (when increasingweight, for instance,we both increase
G+ and decrease G− together) or “alternating bidirectional” (we choose one, but
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Fig. 20 Despite the higher power involved in RESET rather than partial-SET (30pJ and 3pJ for
highly scaled PCM [8]), total energy costs of training can be minimized if RESETs are sufficiently
infrequent (inset). Low-energy training requires low learning rates, which minimize the number of
synaptic programming pulses. At higher learning rates, even a bidirectional, linear NVM requiring
no RESET and offering low power (1pJ per pulse) can lead to large training energy. (© IEEE, all
rights reserved. Reprinted, with permission, from [4])
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Fig. 21 NN performance (classification accuracy during training) when updating both G+ and G−
(“fully bidirectional” scheme), with a linear G-response. The inset shows that when the dynamic
range of the linear response is large, the classification accuracy can now reach that of the original
network (a test accuracy of 94%when trained with 5,000 images; 97%when trained with all 60,000
images). (© IEEE, all rights reserved. Reprinted, with permission, from [5])

not both, of these two steps) [5]. A less steep response was found to be favorable,
and the distinction between fully or alternating bidirectional has the most impact for
steeply nonlinear G-responses [5].

The most ideal NVM, with a linear and symmetric conductance response in both
directions, would result in more regularly distributed weight values and less freeze-
outs, leading to higher accuracies. In Fig. 21, we show that a gentle linear response
(e.g., a large number of identical pulses are needed to change the conductance from
minimum to maximum conductance and vice versa) is advantageous compared to
a steep response. While both the alternating bidirectional and fully bidirectional
update schemes deliver higher accuracies than anNVMwith a nonlinear conductance
response, only the fully bidirectional update scheme reaches the same high test
accuracies exhibited by networks in which the NVM conductances are unbounded
(Fig. 21, inset).

The reason for this difference is that when the state of the synapse is at the
boundaries of the G-diamond, there is a significant chance that the next weight
update using the alternating bidirectional schemewill have little or no impact, simply
because a conductance that is already saturated cannot be increased (decreased) any
further. In the fully bidirectional update scheme, some amount of weight update
will still occur at the edges of the G-diamond, leading to smaller discrepancies
between the desired and actual weight changes, and thus higher performance. In
addition, because the weights only move “up” and “down” the G-diamond in the
fully bidirectional scheme, the synapses stay in the center stripe of the G-diamond
(Fig. 22b), where they have access to the full dynamic range available. In contrast,
because each weight update in the alternating bidirectional scheme moves along a
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Fig. 22 When the G-response is steeply nonlinear, a “fully bidirectional” scheme exhibits lower
accuracy [4] because any single weight update could potentially make two overly large conductance
changes instead of just one. However, the “fully bidirectional” scheme provides better performance
for a linear response with high dynamic range (see Fig. 21), because the small symmetric changes
of each conductance move the synaptic weight up and down along the central vertical axis of the
G-diamond. In contrast, the “alternating bidirectional” scheme can move some synapses to the left
or right edges of the G-diamond, where the effective dynamic range (maximum weight magnitude)
is significantly reduced. (© IEEE, all rights reserved. Reprinted, with permission, from [5])

diagonal line, some number of synapses end up at the edges of the G-diamond, where
the effective dynamic range which they can access is significantly reduced (Fig. 22a).

These results demonstrate conclusively that NVMdevices should be fully capable
of delivering the same classification accuracy on the MNIST handwritten digits as
a conventional implementation of this artificial neural network. All that is required
of the NVM device is that it offers a bidirectional, linear, and symmetric response
in conductance with large dynamic range (e.g., the change due to any one pulse
represents only a small fraction of the entire conductance range available).

Figure23 compares predicted training time (per ANN example) and power for
two configurations of PCM-based on-chip machine learning against conventional
GPU training. Under aggressive assumptions for parallel-read and parallel-write
speed, PCM-based on-chip machine learning can potentially offer lower power and
faster training for both large and small networks [3]. However, as circuit sharing,
cs, increases, the speed benefits of PCM-based on-chip machine learning disappear,
since significant time is spent re-reading different columns of the same arrays because
of the lack of sufficient readout parallelism [3]. The additional time and energy
associated with the “occasional RESET” required for PCM devices are included
here, and remain modest so long as this step is sufficiently infrequent [3].

Other future work will be needed to demonstrate a full crossbar-array imple-
mentation, including dedicated CMOS circuitry for summation of synaptic weights
during both forward and backpropagation through nearly identical high-performance
nonlinear selector devices. The values of neurons (x) and backpropagated errors (δ)
will need to be stored in CMOS circuitry and presented to the crossbar, through
some combination of analog voltage levels, number of read pulses, and/or dura-
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Fig. 23 Predicted training time (per ANN example) and power for 5 ANNs, ranging from 0.2 GB
to nearly 6 GB [3]. Network #1 assumes Tesla K10 w/o momentum [1, 6]; #2–#5, Tesla K20x
and momentum [1]. Mini-batch size is 1024, RESET intervalR = 200, circuit sharing cs = 4, solid
(dotted) line assumes 50W (20W) idle GPU power. Under aggressive assumptions for parallel-read
and parallel-write speed, PCM-based on-chip machine learning could potentially offer lower power
and faster training for both large and small networks. (© IEEE, all rights reserved. Reprinted, with
permission, from [3])

tion of read pulses. The need to synchronize write pulse timing between upstream
and downstream neurons, and techniques to disperse the high-energy writes in time
(to reduce the load on write drivers and voltage supplies), must also be addressed in
futurework,whilemaintaining sufficient speedupover existingGPU-based solutions.
Neural network performance (test or generalization accuracy) must be increased to
levels competitive with CPU- or GPU-based solutions, both on the MNIST dataset
as well as newer and larger datasets.

6 Conclusions

Using two phase-change memory (PCM) devices per synapse, a 3-layer perceptron
with 164,885 synapses was trained with backpropagation on a subset (5000 exam-
ples) of the MNIST database of handwritten digits to high accuracy of 82.2% on
the training set and 82.9% on the test set. A weight update rule compatible for
NVM+selector crossbar arrays was developed and was shown to have no adverse
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effect on accuracy. A novel “G-diamond” concept (Fig. 10) was introduced to illus-
trate issues created by nonlinearity and asymmetry in NVM conductance response.
Asymmetry can be mitigated by an occasional RESET strategy, which can be both
infrequent and inaccurate.

Using a neural network (NN) simulator matched to the experimental demonstra-
tor, extensive tolerancing has shown that network parameters such as learning rate
and the slope of the nonlinear neuron response function, and the nonlinearity, sym-
metry, and bounded nature of the conductance response are critical to achieving high
performance in an NVM-based neural network [4].

Our results show that all NVM-based neural networks (not just those based on
PCM) can be expected to be highly resilient to random effects (NVM variability,
yield, and stochasticity), but will be highly sensitive to “gradient” effects that act
to steer all synaptic weights. A learning rate just high enough to avoid network
“freeze-out” is shown to be advantageous for both high accuracy and low training
energy.

Simulations of ANNs with both PCM and non-filamentary bipolar RRAM based
on Pr1−xCaxMnO3 (PCMO) were also discussed. In contrast to the smooth, slightly
nonlinear partial-SET and asymmetric, abrupt RESET behavior of PCM, PCMO
offers continuous conductance change in both directions, but exhibits significant
nonlinearities (degree of conductance change depends strongly on absolute conduc-
tance). The quantitative impacts of these issues on ANN performance (classification
accuracy) were discussed.

We also showed that a bidirectional NVM with a symmetric, linear conductance
response of high dynamic range (each conductance step is relatively small) would
be fully capable of delivering the same high classification accuracies on the MNIST
handwriting digit database as a conventional, software-based implementation, rang-
ing from >94% when trained on 5000 examples to >97% when trained on the full
set of 60,000 training examples.
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Novel Biomimetic Si Devices
for Neuromorphic Computing
Architecture

U. Ganguly and Bipin Rajendran

Abstract Neuromorphic computing requires low-power devices and circuits in
cross-point architecture. On-chip learning is a significant challenge that requires the
implementation of learning rules like spike-timing-dependent plasticity (STDP)—a
method that modifies synaptic strength depending upon the time correlation between
the presynaptic and postsynaptic neuron spikes in a specific function. To implement
this capability in phase-change memory (PCM) or resistance RAM (RRAM)-based
cross-point arrays, two schemes have been proposed in the literature where the time
correlations are captured by an address event representation scheme using an univer-
sal bus or superposition of long custom waveforms. In comparison, in biology, the
pulses are sharp and the time correlation information is processed at the synapse by the
natural dynamics of the synapse. These are attractive attributes for minimizing power
and complexity/area. Another challenge is realizing an area- and power-efficient
implementation of the electronic neuron. A leaky integrate-and-fire (LIF) neuron
has been implemented using analog and digital circuits which are highly power and
area inefficient. To improve area and power efficiency, we have recently proposed:
(i) A Si diode-based synaptic device where the charge carrier internal dynamics is
used to capture the time correlation based on sharp pulses (100× sharper than custom
waveforms to improve energy per spike) which can operate at 103–106 times faster
than biology (providing accelerated learning) and (ii) A compact Si neuronal device
that has a 60× area and 5× power benefit compared to analog implementation of
neurons. These are novel devices that are based on SiGe CMOS technology, and they
are highly manufacturable. The synaptic devices are based on natural transients of
the impact ionization-based n+ p n+ diode (I-NPN diode). STDP and Hebbian learn-
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ing rules have been implemented. The neuron requires further modification of the
I-NPN diode requiring a gating structure and some simple circuits. A leaky integrate-
and-fire (LIF) neuron has also been demonstrated. Based on their device-level area
and power efficiency, system-level power and area of neural networks will be highly
enhanced.

1 Motivation

As von Neumann computing reaches the energy and functionality limits, neuro-
science offers examples of an alternate platform of computation. Neuroscience
presents two critical paradigm shifts. The first paradigm shift is the implementation of
learning—which has to do with rewiring of signal paths (equivalent to modification
of logic operation sequences) based on experience (equivalent to memory). In terms
of hardware, this implies the integration of memory and logic at the circuit level.
Such an exercise is very different from the traditional dedicated memory and logic
separation (e.g., arithmetic and logic unit (ALU) from SRAM cache and DRAM).
Field programmable gate arrays (FPGAs) have some level of rewiring capability.
However, time evolution of rewiring at the unit level is the norm in biological sys-
tems. The second paradigm shift is clockless operation. The timing information is
communicated locally by spiking neurons. This ensures a largely quiescent system
that may now be extensively interconnected system without having to drive the entire
system with a clock. This leads to improved overall power efficiency to system size
trade-off. Thus, local memory and local time information are the basic foundations
of neuromorphic systems.

2 Biological Systems, Computing Algorithms,
and Electronic Hardware Equivalents

Spiking neural networks (SNN) employing time-based weight modification algo-
rithms have the potential to realize large power-efficient learning systems. Presently,
the focus has shifted to custom computer architecture and circuits on standard CMOS
device platform [21]. This requires the development of an efficient electronic analog
of the biological neuron and synapse supported by suitable computer architecture to
enable brain-like computing. In biology, the pre-neurons are connected by synapses to
the post-neurons [10]. This is mimicked by CMOS-based neurons and a resistance
RAM (RRAM) as the synapse [30] as shown in Fig. 1. The strength of intercon-
nection between pre- and post-neurons is determined by the “conductivity” of the
synapse;e.g., a non-conductive synapse impedes signal transfer while a conductive
synapse enables it.

A neuron may be connected to many (typically ∼104) downstream neurons in
the brain via synapses compared to a typical fan-out of 4–10 in logic circuits. The
synapses may have different strengths of connectivity measured in conductance. A
highly conducting synapse is said to have a high synaptic strength and vice versa. We
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(a) (b) (c)

(d)

(g) (h)

(e) (f) (i) (j)

Fig. 1 a An array of pre- and postsynaptic neurons is connected by an n × n array of synapses based
on a cross-bar array architecture. b A neuron with a leaky integrate-and-fire (LIF). c A synapse with
a given STDP-based learning rule. d A task is provided to recognize 3 binary sequence of 9 bits
using a 9 × 9 synaptic array from spurious sequences. e The input is represented as DC levels in
time to 9 input neurons for the three training patterns. f Synaptic array with random weights before
training and patterned weights after training. Response to inputs g before and h after training shows
that after training vigorous spikes occur corresponding to input signal patterns. Test shows that i
for “unrecognized patterns” spiking is not correlated with input j for “recognized patterns” spikes
are highly correlated with input signal [31, 32]

present simple pattern recognition example. A cross-bar array of n × n synapses con-
necting n presynaptic to n postsynaptic neurons is shown. As only some synapses are
conductive, it represents a circuit configuration where there is a connection between
only specific pre- and postsynaptic neurons that defines a specific set of signal path-
ways. If the synaptic strengths of the cross-bar array are modified, the neuronal
connectivity can be reconfigured. This enables a reconfigurable circuit. To give an
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Fig. 2 Change in excitatory postsynaptic current (EPSC) which is essentially synaptic strength
or conductivity as a function of pre-neuron spike time (referenced to post-neuron spike), i.e., �t.
Causal events (�t > 0) causes increase in synaptic strength (LTP long-term potentiation) while
anti-causal events (�t < 0) causes a decrease (LTD long-term depression). A correlated event
(|�t| ∼ 0) causes strong change while uncorrelated event (|�t| � 0) causes a weak response. This
response of such a nature is called spike-timing-dependent plasticity (STDP) [3, 10]

example of a simple pattern recognition task, a set of three 9-digit binary numbers
need to be recognized. 9 input and output neurons are connected through a cross-bar
structure with 9 × 9 synapses as shown in Fig. 2a. The neuronal response is based on
the leaky integrate-and-fire (LIF) model (Fig. 2b). A specific synaptic learning rule
is chosen (Fig. 2c). The input data is represented by DC current levels and presented
to the 9 input neurons. The initial synaptic conductivities are randomly assigned
(Fig. 2e). Training consists of presenting the input data to the neural network repeat-
edly. Before training, the spiking of the output neurons is not highly correlated with
the input data (Fig. 2f). However, as training progresses, the spiking of the output
neurons becomes vigorous and highly correlated with the input data (Fig. 2g). This
also causes a change in the pattern of synaptic conductance map from random to a
specific pattern (in this case approximately diagonally symmetric) (Fig. 2e). Upon
training completion, if a spurious or “unrecognized” data is presented, we observe
that the output spikes are sparse and not correlated with input data. However, if train-
ing pattern is presented, the output spikes are vigorous and strongly correlated with
input. Thus, the neural network produces a distinct response (sparse and uncorre-
lated spikes) to spurious data as opposed to familiar data (vigorous and correlated
spikes) which is equivalent to recognition. This basic strategy with further refine-
ments can be demonstrated based on a computer model of this network and its evolu-
tion. These computer models have been demonstrated to be able to implement recog-
nition tasks such as handwriting recognition and music recognition. A conventional
von Neumann architecture-based computer with separate memory and logic units
requires a large data transfer rate and consequently compromises energy efficiency.
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Fig. 3 Output neurons issue spikes that are encoded by address event representation (AER), send
on a bus and decoded at the input of the receiving neurons [24]

A more biomimetic approach is required where both the architecture and the device
mimic the brain with better fidelity. This chapter focuses on electronic devices that
reproduce the functions of synapses and neurons to enable a more biomimetic archi-
tecture and further realize the advantages of the biological system (Fig. 3).

2.1 Synapse

Learning is based on the idea that a random pattern of synaptic conductivity may
be trained toward a specific pattern by repeated application of a signal pattern that
needs to be “memorized.” The conductivity of a synapse is modified as a function
of �t, i.e., time of pre-neuron firing with post-neuron firing time as a reference.
Such a �t is essentially a measure of correlation between pre- and post-neuron
firing. Figure 4 shows a biological synapse whose strength is modified by the �t.
Causal spikes (�t > 0) increase synaptic strength while anti-causal spikes (�t <

0) decreases it. Highly correlated spikes (|�t| ∼ 0) elicit a strong response unlike
uncorrelated events (|�t| � 0). Thus, conductivity of a synapse may be modified
by �t dependence of the following sort (Fig. 4) termed as spike-timing-dependent
plasticity (STDP).

For implementing synapses in electronic hardware, SRAM circuits could be used,
though it has significant density challenges [33]. To improve density, advanced mem-
ory devices like phase-change memory (PCM) have been pursued for system-level
demonstration [16, 17, 36]. For lower power consumption, bipolar RRAM devices
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Fig. 4 High-level architecture for learning systems showing a tiled array of neuro-synaptic cores
that communicate to each other using a packet routing digital mesh network. To realize a system
with 1 million neurons, 4096 cores (with 256 neurons) are tiled in a 64 × 64 array [32]

have been explored [5, 12, 29, 30, 38]. RRAM provides the ability to modify con-
ductance (�G) based on voltage applied (V).

The function of conversion of �t to a conductance change (�G) is the central
challenge [10, 31, 32]. Various memory systems provide analog G versus V char-
acteristics as discussed above. To achieve �G (�t), a two-step process is needed,
i.e., first implement a timing-dependent voltage signal that can be applied to the
device, V(�t) and then use a resistance-based memory whose conductance depends
on the applied voltage, G(V). To realize V(�t), two proposals have been explored.
The first one is STDP implemented by address event representation (AER)-based
communication protocol. The second one is based on waveform superposition-based
STDP.

2.1.1 AER-Based Communication Scheme

Neurons issue spikes in an asynchronous way. The �t between spikes of different
pre- and post-neuron combinations must be calculated first. Based on the calculated
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�t for a specific pre- and post-neuron combination, a proportional modulation of the
connecting synapse is done. The calculation of �t for various pre- and post-neuron
combinations is done using address event representation (AER). Various implemen-
tation schemes and their comparison have been described in the literature [14]. A
simplified description is as follows. All neurons are connected to a common bus.
When a neuron spikes, it sends out its address into the bus. As the bus is fast compared
to the spiking rate, the address is received all over the network “instantaneously.”
The receipt time of the address represents the time of spike. This way all the neurons
are aware of the spiking of a specific neuron by its address and the time of receipt
of the address. It now needs two further sets of information: first, its own last spike
time to calculate the �t, and second, whether the spiking neuron is connected to it.
For this, a look-up table may be used. The bus may be managed by protocols of (a)
address encoder and (b) address decoder. Further, a protocol to resolve concurrently
occurring spikes is performed by (c) an arbiter circuit that ensures that no spike is
lost even if they arrive concurrently.

There are two costs in using such a bus. First, a circuit enabling the communication
protocol is an overhead. Second, the single bus presents a bandwidth constraint on
total spiking rate of the system and hence the learning rate [7].

2.1.2 Waveform Superposition

An interesting observation is that some neurons are grouped together such that they
communicate strongly within the group. Neuronal groups dedicated to sensory cod-
ing, e.g., retinal and cochlear neurons spike in close temporal and physical prox-
imity while the larger population remains idle [11]. Intergroup communication is
less frequent. To implement local grouping, a cross-bar array is chosen to create a
neuro-synaptic core. Many such cores are tiled. Each such core is connected to other
cores through a bus as described above or by a router system as shown in Fig. 4. The
crossbar within the neuro-synaptic core can be driven by a simple scheme that does
not require AER-based communication. The scheme involves custom waveforms
that are applied from the pre- and the post-neurons when they spike.

The synapse could be implemented by a memristive RRAM device, along with a
bipolar diode for nonlinearity as shown in Fig. 5a. An exemplary waveform consists
of a sharp peak followed by an extended peak in the opposite polarity using analog RC
delay-type circuits [31, 32]. These waveforms are applied to the two terminals of the
synapse by the pre- and postsynaptic neurons when they spike. The superposition
of these waveforms staggered by �t, i.e., the spike time difference between pre-
and postsynaptic neurons, creates a �t dependent V-peak across the synaptic device
(Fig. 5b). Thus, the conductivity of the RRAM is modified. As the �G depends upon
�t, STDP is implemented. Akin to synaptic recording [10], applying these pulses in
random, our group has demonstrated STDP and Hebbian learning (Fig. 5c, d) using
Pr0.7Ca0.3MnO3-based RRAM [28] (Fig. 6).
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Fig. 5 a The synapse is represented by a memristive RRAM device along with a nonlinear bipolar
diode. Custom pulses are provided by the pre- (blue pulse) and post(red pulse)-neurons. b The over-
lap of the pulses dependent on time produces different magnitudes of peak voltage across the RRAM,
and hence, RRAM conductance changes. Experimental observation of PCMO (Pr0.7Mn0.3CaO3)-
based synaptic plasticity showing c STDP and d Hebbian learning by random generation of custom
pulses [28]

2.1.3 Motivation for Synaptic Time Keeping

As shown in Fig. 5, the neuronal pulses are long (15 μs), a significant fraction of the
time correlation range (50 μs),and hence,energy-expensive. In comparison, biologi-
cal pulses are sharp (∼1–5 ms) and 40–100× smaller than the time-correlation range
(∼80–100 ms). In biology, such time correlations are implemented in the synapse.
It has been demonstrated that this can be achieved by using the intrinsic transient
behavior of a novel 4F2 I-NPN device [8, 9]. The device implements spike-timing-
dependent resistance changes using very short and simple pulse signals similar to
those issued by biological neurons [22, 23]. In the next section, we discuss the physics
of this device, and also the experimentally validated device model that can be used to
study and benchmark the efficiency of such neuromorphic computing architectures.
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Fig. 6 A punch-through diode with a uniformly doped p-region in a n+ p n+ stack or NPN diode,
b doping profile, c delta-doped p-region in a n+ i δp i n+ stack or NIPIN diode, d doping profile, e
Applied bias dependence of peak barrier position and magnitude shows that triangular barrier (due
to δ-doping) has stronger voltage modulation than parabolic barrier (uniform p-doping) [22]

2.1.4 Background of Si-Based Punch-Through Diode

The synaptic time-keeping device evolved out of a Si bidirectional selector diode.
The n+/p/n+ vertical diode by epitaxial Si has been demonstrated experimentally [2,
34]. Its design space has been evaluated to demonstrate voltage scalability, nonlin-
earity, and asymmetric operation [18, 19]. To enable backend compatibility, low-
temperature Si junctions (sub-430 ◦C) have been demonstrated in Si [20]. Further,
low-temperature Ge epitaxy has been demonstrated from Ge-based triangular bar-
rier selectors (Srinivasan et al. 2015—not online yet-add citation). The vertical NPN
diode consists of an n+ p n+ stack with a uniformly doped p-region which is grown
by Si epitaxy [4]. To improve ideality, a triangular barrier is implemented by an n+/i/δ
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p/i/n+ stack by Si epitaxy where the p-region is delta-doped [22, 23]. The ideality
(η) is given by the extent of barrier reduction (Vb) due to applied voltage (Va) as
given by Eq. (1). Given that the p-region is in punch-through, the net charges, i.e.,
the depletion charges remain bias-independent in the low-bias regime. So the applied
bias causes an electric field that causes barrier reduction whose extent depends on
the peak position like a simple voltage divider. In the triangular barrier, the position
of the electron barrier does not change. If there is any asymmetry in the position of
the δ-doped p-region, it is captured in δ as shown in Fig. 5b. The ideality for bias
applied to left terminal (ηL) versus right terminal (ηR) is given by equation (2). If the
δ = L/2 (symmetric), ideality ηL = ηR = 2. If δ �= L/2 (asymmetric), then ideality
ηL �= ηR. The average ideality is given by Eq. (3) in which the minimum ηavg = 2
when δ = L/2.

η = Va

Vb
(1)

ηL = L

δ
; ηR = L

L − δ
(2)

ηavg = ηL + ηR

2
= L2

2(L − δ)δ
(3)

min(ηavg) = 2; when δ = L/2 (4)

Thus, the NPN selector provides a bidirectional nonlinear element with excellent
ideality or nonlinearity. Impact ionization may be enabled in the NPN selector (I-
NPN) to further improve the ideality and subthreshold slope to sub-60 mV/decade [9].
As shown in Fig. 7a in a NPN diode with uniformly doped p-region, at equilibrium,
current is zero. At small bias (Fig. 7b), the barrier is reduced due to punch-through
effect, akin to drain-induced barrier lowering in MOSFETs. Hence, the diode cur-
rent increases exponentially. If the electrons can impact ionization at the positive
terminal, an electron–hole pair is generated. The electron contributes to the diode
current directly. However, the hole gets stuck in the p-well. The holes stored in the
p-region in this manner reduce the electron barrier and enhances the electron cur-
rent strongly. This increase in current enhances impact ionization, causes more hole
storage, and sets up a positive feedback process. As the electron barrier reduces, the
hole well depth reduces. Steady state is achieved when hole escapes either out of
the well or by recombination matches hole generation by impact ionization (Fig. 7d).
TCAD simulations have been used to demonstrate that upon adding impact ioniza-
tion, the subthreshold slope improves. Figure 8 shows that a sub-60 mV/decade can
be achieved. Further, using Si/SiGe/Si-based heterostructures, a sharper subthreshold
slope may be enabled. The experimental evidence of low-voltage (sub-0.5 V) impact
ionization has also been presented [8]. Recall that in the thermal excitation over the
barrier, the minimum ideality is ηavg = 2. The temperature-dependent IV of NIPIN
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Fig. 7 Band diagram showing a equilibrium, b current due to electron conduction over the barrier,
c beginning of impact ionization that creates hole trapping in the p-type well. This provides elec-
trostatic barrier lower to enable more current. Higher current produces more impact ionization. A
positive feedback process ensues. d Steady state when holes generated by impact ionization is lost
by hole loss from the p-well by recombination or escape over the hole barrier [9]

Fig. 8 IV characteristics
showing steep subthreshold
slope of better than the
thermal limit of
60 mV/decade to indicate the
effect of impact ionization.
Drift diffusion simulation
verified by Monte Carlo [9]

device shows that at T > 250 K, ηavg < 2 is observed. The voltage of η extraction
is less than 0.5 V, which indicates low-voltage impact ionization. This is consistent
with sub-bandgap voltage impact ionization that has been observed earlier [1].
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Fig. 9 a Temperature-dependent IV of NIPIN diode. b Extracted at 0.5 V versus T shows that
ηavg < 2 at T > 250 K. This demonstrates that thermal excitation over the barrier alone cannot
account for improved ideality. Impact ionization is responsible [8]

2.1.5 I-NPN Circuit Model

Now we discuss a compact circuit model that captures the salient features of the
I-NPN device [27]. As we have seen above, the I-NPN diode has two regimes: (i)
At small applied bias (Vin), the barrier (�B) is lowered by voltage division to get
exponential current as shown in Fig. 10a. This is implemented by a voltage divider
circuit in Fig. 10b, where upon voltage division, the resultant voltage Va is applied
to the gate of the MOSFET operating in subthreshold region (which is essentially a
voltage controlled current source) as shown in Fig. 10 to get exponential drain current
(ID) with Vin and (ii) at higher Vin, impact ionization occurs and the generated holes
get stored in the p-well, which lowers the electron barrier as shown in Fig. 10c; hence,
current increases. Higher current causes more impact ionization to create a positive
feedback. This hole generation current (III) by impact ionization is implemented by
a current source,

III = (M − 1) ∗ ID (5)

where M = 1/(1 − ∫
ae− b

E dx) is the multiplication factor based on a simple model
of impact ionization coefficient [6].

For the calculations, electric field is assumed constant in the I-region where impact
ionization occurs. The current causing loss of stored holes (IL) over the source hole
barrier is modeled by a diode D1. The net current (III − IL) charges a capacitor to
produce a further barrier lowering Vb due to holes stored in the P-region. The diode
current IL depends upon total barrier lowering, i.e., VG(= V

a
+ V

b
) applied on the

gate of the MOSFET. As it already has Vb on one end, a −Va source is added to the
other end to enable the bias-dependent barrier lowering. As Vb increases, leakage
current increases and multiplication factor decreases. Hence, Vb will settle to a volt-
age such that impact ionization current becomes equal to diode leakage current. A
second diode D2 is added to ensure that without impact ionization Vb = 0 for low



Novel Biomimetic Si Devices for Neuromorphic Computing Architecture 163

Fig. 10 a At low voltage, barrier lowering due to punch-through. b Equivalent voltage divider
circuit. c At high voltage, impact ionization-based hole storage causes barrier reduction, current
increase, and further impact ionization (positive feedback). d Impact ionization modeled as current
source (III) and diode current (IL) for stored hole loss. Stored holes in the capacitor produce Vb
[24]

input voltages. This is physically equivalent to the drain barrier for hole leakage.
Hence, a voltage source Va is applied to the other end to enable the bias-dependent
barrier increase on the drain side. Thus, the circuit elements mimic the main physical
mechanisms. To obtain exponential current–voltage relationship, VG = Va (barrier
lowering by applied bias) + Vb (barrier lowering by hole storage) is applied to MOS-
FET M1 operating in subthreshold region. The complete equivalent circuit is shown in
Fig. 11. Similar to DC I–V by TCAD simulations, I–V by SPICE shows the improved
ideality upon enabling impact ionization as shown in Fig. 12a. The structure, doping,
and germanium content of I-NPN device determine ideality and the threshold voltage
for onset of impact ionization. The SPICE model ideality and the threshold voltage
for onset of impact ionization can be engineered by selecting parameters of M, i.e.,
a and b as shown in Fig. 12b.

2.1.6 Transient Characteristics of I-NPN

TCAD-based turn-on transient shows that an instantaneous modulation in the turn-
on and turn-off transients, respectively, is because of barrier changes due to voltage
division. This is followed by a transient flat and then sharp turn-on as holes builds up



164 U. Ganguly and B. Rajendran

Fig. 11 VG = VA + VB is applied to the gate of MOSFET working in subthreshold region to
obtain exponential drain current ID. Diode D2 ensures without impact ionization Vb = 0 for lower
voltages [24]

Fig. 12 a TCAD. b SPICE I–V characteristics of the device with and without II. TCAD shows
ideality improvement with hole storage. SPICE shows ideality improvement with C charge up.
Modifying multiplication factor M can engineer ideality [24]

with positive feedback (Fig. 8a) while turn-off shows an exponential decay timescale.
The SPICE-based turn-on and turn-off transients show similar behavior (Fig. 8b). The
turn-on causes the charge up of the capacitor due to the net current between III and
IL while turn-off transient is due to capacitor discharge through the D1 due to IL. For
fixed impact ionization parameters a and b, leakage diode saturation current (Is) and
capacitor C1 can be used for engineering transient properties (Figs. 13 and 14).

2.1.7 Pulse-Train Response

The TCAD-based pulse-train response shows gradual increase of ID as holes build
up during spikes and then partially leak out during the next low-bias part [4].
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Fig. 13 Simulated turn-on (VOFF → VON : red) and turn-off (VON → VOFF : blue) transients
of the device which depend upon stored hole buildup and stored hole escape in the p-region well,
respectively. a TCAD. b SPICE shows charge discharge of capacitor [24]

Fig. 14 The response to a pulse train shows increase in stored hole density, and the resultant ID
increases by barrier reduction in a TCAD. b SPICE [24]

The SPICE response shows similar gradual current response builds up to a pulse
train (Fig. 9). This demonstrates that the SPICE circuit model is able to capture the
salient electrical behavior exhibited by TCAD simulations.

2.1.8 Spike-Timing-Dependent Plasticity

The TCAD simulations show that when the spike time difference is small (time
difference < toff), the stored holes do not get enough time to escape leading to a large
ID response for the second pulse as shown in Fig. 15. As the spike time difference
increases, the stored holes are reduced and the ID response to second pulse decreases.
The SPICE simulations show the same behavior as it is able to charge up the capacitor
during spiking and partially discharge the capacitor based on the time difference. This
is the synaptic time-keeping function. Using this time-keeping function in series
with RRAM device, time difference can be converted to conductance change and
can then generate STDP and other timing-dependent plasticity behaviors. Based on
these features, an STDP learning rule has been demonstrated in SPICE and compared
to the TCAD results as shown in Fig. 16.
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Fig. 15 Effect of spike time difference shows high current for low time difference between pulses.
a TCAD—1st graph corresponds to two input pulses given with different time differences; 2nd
graph shows output current for different sets of pulses. b SPICE model: output current for two
pulses with increasing time difference [24]
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Fig. 16 Hebbian learning can be implemented in a TCAD and b SPICE. Trends are identical [24]

2.1.9 Advantages of Implementing Proposed STDP

The small (4F2) footprint enables high-density cross-point arrays. It eliminates large
waveform generation circuits at the periphery of the synaptic array which is 7× larger
than the array itself—leading to proportionally higher areal density. The speed of
learning is improved by a factor of 20–100× as long waveforms are replaced by
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short pulses which are approximately 20–100× smaller than correlation time range.
Choice with a fast RRAM (μs set/reset) may provide a further acceleration from
biological pulse timescales (∼ms) by a factor of 1000×. Finally, unlike neuronal
implementation, the synaptic implementation of time correlation is truly biomimetic
with a large ratio between spike time (pulse width) and learning timescale.

2.2 Neuron

While the synapse is responsible for reconfiguring the network, the neurons essen-
tially form the nodes of the network. As the neuron is formed of many complex
biochemical systems, a simple mathematical models have been developed to emu-
late the behavior [13, 15]. The simplest model is the leaky integrate-and-fire neuron
model [35] which may be described as follows. A neuron receives signals as current
spikes (Iin) via synapses from many pre-neurons shown in Fig. 17a. The simple leaky
integrate-and-fire (LIF) model of the neuron describes that the neuron will integrate
the Iin (akin to charging of a capacitor) and partly discharge between the Iin spikes (as

I in
V o

ut time

time

I in
V o

ut time

time

(a)

(b)

Fig. 17 a In a neuromorphic circuit, many pre-synaptic neurons (up-triangles) are connected to
the postsynaptic neuron (green triangle) via synapses. b In a leaky integrate-and-fire (LIF) neuron
model, as the pre-neuron issues current spikes, the post neuron integrates (I) the incoming current,
but the accumulated charge can leak away (L) in between spikes. When the potential across the
capacitor reaches a threshold level, the post-neuron spikes and the resets (all charge is lost) are to
start all over again. c As the input-current level increases, threshold is reached faster and spikes are
more frequent [27]
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if the capacitor is leaky). When the voltage across the capacitor exceeds a threshold
level, the neuron will issue a spike (fire) and then reset (lose all integrated charge) to
start the process again (Fig. 1b). Thus, as the magnitude of input current Iin increases,
the neuron spiking frequency will increase as shown in Fig. 17c as integrating a higher
input current results in reaching threshold levels in shorter timescales.

2.2.1 Digital and Analog Circuit-Based Neuron

Various analog and digital implementations of the LIF neurons have been presented
[31–33]. The main idea has been a circuit implementation based on standard CMOS
devices. However, each approach has a different power, and area performance based
on the number of transistors required to implement the neuronal function [31–33].
Thus, a compact implementation with fewer circuit elements may be more advanta-
geous from an area and power perspective.

2.2.2 A Gated I-NPN Based Si Neuron

Low-voltage impact ionization (II)-based n+/p/n+ selector (I-NPN) has been pro-
posed [9, 22], and the physics has been experimentally validated [25] including
impact ionization at sub-0.5 V in Si NPN device as seen earlier [8]. It has been shown
that such devices could be also adapted to mimic neuronal integration function [26].
An exemplary n+ (1020 cm3, Si, 20 nm)/p (4 × 1018 cm3, Si0.9Ge0.1, 35 nm)/n +
(1020 cm3, Si, 20 nm) device on a 20 nm node SOI is shown in Fig. 18a. During
turn-on (0.2 V → 0.5 V), electrons undergo II to generate electron (e)–hole (h) pair
as shown in Fig. 18b. The hole is stored in the p-well to reduce the e-barrier and
enhance e-current which causes further II and h-storage (positive feedback). Steady
state occurs when h-current (Jo) due to h-escape from well cancels out h-generation
current (Jin) as shown in Fig. 18c. During turn-off (0.5 V → 0.2 V), instant e-barrier
increase occurs due to electrostatics (Fig. 18d). Then, further barrier increase occurs
as stored holes recombine to equilibrium slowly (Fig. 18e). Thus, I-NPN is able to
integrate and fire during turn-on. However, neuronal fast reset requires fast loss of
stored holes after the voltage has peaked during firing. This necessitates a voltage-
dependent control of stored h-escape from the p-well. This is obtained by adding
a gated p-region extension to a contact to the conventional I-NPN (Fig. 18f). If the
gate voltage (Vg) capacitively increases h-escape barrier (Fig. 18h), then h-storage
may occur. However, if Vg capacitively removes the h-barrier, fast hole loss may
occur. The turn-on and turn-off transients of the modified I-NPN device show that
Vg = 0.8 V is able to provide sufficient barrier to enable h-storage during turn on.
During turn-off, Vg = 0.8 V leads to slow h-loss (Fig. 19). However, at Vg = 0 V, the
h-loss is fast. Thus, a Vg-controlled h-loss capability is added. Finally, to ensure that
reset (i.e., h-loss) occurs right after spiking, a resistance R1 is added in series with
modified I-NPN as shown in Fig. 20a. When I-NPN is off, Vo is low and transistor
M is off, so Vg is high. Hence, h-storage and buildup occurs. As I-NPN turns on, Vo
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Fig. 18 a Structure of impact ionization-based NPN device (I-NPN). b During turn-on (0 → V),
impact ionization occurs to generate holes. Holes get stored in the p-well to reduce e-barrier increase
current, producing further impact ionization. c Steady state is reached when hole current generation
(Jin) is equal to hole current (Jo) escaping the well from decreasing h-well. d During turn-off
(V → 0), e-barrier is low due to stored holes. d Holes escape by recombination “slowly” to restore
equilibrium to increase barrier. e To enable V-controlled hole escape rate, a MOS-based p-region
in added. f Band diagram is the XX′ direction equivalent to band diagram in (d). g Band diagram
in YY′ added to show that stored holes cannot escape if Vg capacitively produces barrier for holes
(h) This hole barrier can be removed by Vg to enable fast charge loss. This enables Vg-controlled
hole escape [27]

increases sharply (Fig. 20b) which turns the transistor (M) on, and Vg becomes low,
h-barrier is reduced, and h-loss occurs. I-NPN current reduces as well. So Vo reduces
and M turns off. However, to ensure that Vg remains low to ensure sufficient time
for h-loss, the Vg, i.e., C2 charge-up time (τ2 = R2C2) is longer than the Vo decay
timescale (τ1 = R1C1). Thus, stored holes are fully drained to ensure a full reset.
Simulations show that DC input produces spikes (Fig. 21a). The spike frequency
increases with the magnitude of the DC input. In a scenario closer to operational
situation, a pulse-train input causes the neuronal device to spike at regular intervals.
This demonstrates the functional verification of the neuronal device based on TCAD
(Fig. 22).
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Fig. 19 IV turn-off transient with Vg off (solid) and on (dashed) showing that Vg can control hole
loss rate effectively (fast vs. slow) after initial instant drop [27]
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Fig. 20 a The complete circuit of the neuron. b Transient of Vin, Vo, and Vg. When Vin is low,
NPN device is off, I1 is low, and Vo is low. So M is off, hence Vg is high and Ih is low. So holes
will be stored. When Vin turns on sharply, I1 current increases with I-NPN turn transient timescale
and Vo goes from low to high. At high Vo, Vo > VT of transistor M, M turns on to discharge C2
quickly. Thus, Vg switches from high to low fast to increase Ih sharply and drain all the stored holes.
So I1 drops and hence Vo drops to turn off M. However, C2 charges through R2 slowly (τ = R2C2)

to ensure that Vg remains low for all stored holes to drain completely [27]

Fig. 21 a DC input cause. b Spikes in the neuron and higher DC levels produce more frequency
spikes. c Spike train inputs produce spike output at lower frequency [27]
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Fig. 22 Layout of the neuron to show a max 225 ∗ F2 size [27]

Table 1 Performance benchmark

Analog neuron 10 nm
node

Neuron device 20 nm
node (this work)

Benefit

Area 5.6 μm2 0.09 μm2 >60×
Power 65 nW 11.5 nW >5×

2.2.3 Area and Power

The layout of the neuron circuit shows a 225 ∗ F2 area assuming 20 nm technology
node. Capacitors of 1fF may require a deep trench technology (capable of Cmax =
20 fF) with a footprint of 0.013 μm2 at 32 nm node [37]. This is approximately 14 ∗ F2.
Power estimates showed that active power was 11.5 nW. Table 1 shows a comparison
with an analog design to highlight the ultra high density (>60×) and high power
efficiency (>6×) of the neuronal device compared to an analog neuron. Further, our
circuit issues spikes at ∼1–10 MHz, providing an acceleration factor of ∼10,000
compared to biology (10 Hz).

3 Conclusions

Even though various implementations of neuromorphic circuits exist based on stan-
dard CMOS devices, a biomimetic synapse capable of fast, energy-efficient adapta-
tion is still a challenge. We have discussed several device concepts that have been
proposed and demonstrated by our groups in this chapter. We discussed a silicon
synaptic time-keeping device based on I-NPN device technology that enables STDP
based on simple spikes. The method enables lower power and simplification of neu-
ronal circuits. Another critical challenge is the neuron based on standard CMOS
analog or digital devices. We have shown that an I-NPN device could be used to
mimic basic neuronal behavior in a highly area- and power-efficient manner. Circuit
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models developed in our group for these devices have also been discussed, which
could be used to benchmark large neuromorphic circuits in performing various learn-
ing and recognition tasks.
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Exploiting Variability in Resistive Memory
Devices for Cognitive Systems

Vivek Parmar and Manan Suri

Abstract In literature, different approaches point to the use of different resistive
memory (RRAM) device families such as PCM [1], OxRAM, CBRAM [2], and STT-
MRAM [3] for synaptic emulation in dedicated neuromorphic hardware. Most of
these works justify the use of RRAMdevices in hybrid learning hardware on grounds
of their inherent advantages, such as ultra-high density, high endurance, high reten-
tion, CMOS compatibility, possibility of 3D integration, and low power consumption
[4]. However, with the advent of more complex learning and weight update algo-
rithms (beyond-STDP kinds), for example the ones inspired fromMachine Learning,
the peripheral synaptic circuit overhead considerably increases. Thus, use of RRAM
cannot be justified on the merits of device properties alone. A more application-
oriented approach is needed to further strengthen the case of RRAM devices in
such systems that exploit the device properties also for peripheral nonsynaptic and
learning circuitry, beyond the usual synaptic application alone.In this chapter, we dis-
cuss two novel designs utilizing the inherent variability in resistive memory devices
to successfully implement modified versions of Extreme Learning Machines and
Restricted Boltzmann Machines in hardware.

1 Introduction

In literature, several approaches point to the use of different resistive memory
(RRAM) device families such as PCM [1], OxRAM, CBRAM [2], and STT-MRAM
[3] for synaptic emulation in dedicated neuromorphic hardware. Most of these works
justify the use of RRAM devices in hybrid learning hardware on grounds of their
inherent advantages, such as ultra-high density, high endurance, high retention,
CMOS compatibility, possibility of 3D integration, and low power consumption
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[4]. However, in order to implement more complex learning and weight update algo-
rithms (beyond-STDP kinds), for example the ones inspired fromMachine Learning,
the peripheral synaptic circuit overhead considerably increases. Thus, use of RRAM
cannot be justified on the merits of device properties alone. A more application-
oriented approach is needed to further strengthen the case of RRAM devices in such
systems that exploit the device properties also for peripheral nonsynaptic and learn-
ing circuitry beyond the usual synaptic application. In this chapter, we discuss two
such novel designs utilizing RRAMdevices for implementation of modified Extreme
Learning Machines (ELMs) and Restricted Boltzmann Machines (RBMs) in hard-
ware. The ELM design utilizes device-to-device variability present in CBRAM and
OxRAMdevices to implement the random input weights. The RBMutilizes cycle-to-
cycle variability in OxRAM devices to implement stochasticity in neuron activation
and perform bioinspired learning. Thus, both designs tend to exploit RRAM’s inher-
ent variability as an advantage to implement learning in hardware without using
RNGs (random number generators), thus effectively reducing the power and area
requirements of implementation while still performing high-speed learning unlike
traditional spiking neural network (SNN) circuits implemented using RRAM.

2 Nanoscale Filamentary RRAM

RRAMdevices are two-terminalMIM-type structures (metal–insulator–metal) sand-
wiching an active insulator layer, between metallic electrodes (see Fig. 1). The active
layer exhibits reversible nonvolatile switching behavior on application of appropriate
programming current/voltage across the device terminals. In the case of filamentary
RRAM devices, formation of a conductive filament in the active layer leads the
device to a low-resistance (LRS/On) SET-state, while dissolution of the filament
puts the device in a high-resistance (HRS/OFF) RESET-state. For OxRAM devices,
the conductive filament is composed of oxygen vacancies and defects [5], while in
the case of CBRAM it consists of reduced metal ions sourced from a thin sacrificial
metal anode [6]. For both CBRAM and OxRAM devices, the SET-state resistance
(LRS) values can be well defined by controlling the dimensions of the conductive

Fig. 1 Basic switching principle of filamentary RRAM devices



Exploiting Variability in Resistive Memory Devices for Cognitive Systems 177

filament [2, 5], or the conduction mechanism (specific to someOxRAMdevices) [7],
which depends on the amount of current flowing through the active layer. Current
flowing through the active layer is controlled either by externally imposed current
compliance or by using an optional selector device that is used to drive the RRAM
device (i.e., 1R-1T/1D configurations).

2.1 RRAM Resistance Variability

RESET-state resistance values (HRS) of filamentary RRAM devices generally
present a large variable dispersion. The spread in HRS values arises due to sto-
chastic breaking or uncontrolled dissolution of the conductive filament during the
reset process.Different nanoscale factors, such as the presence of unavoidable defects
close to the filament, interface effects, active-layer/electrode nonuniformity, material
degradation/morphological changes on cycling, percolation paths, and process vari-
ations, may lead to HRS variability in cycle-to-cycle or device-to-device realizations
[11–13]. Table1 lists the HRS variability parameters (mean-μ, standard deviation-σ)
for HfOx-based OxRAM, and Ag/GeS2-based CBRAM devices that were extracted
from [2, 8], respectively. We chose different RESET programming conditions for
HfOx-based OxRAM devices to study a wide range of mean HRS values. Device-
to-device HRS spreads, for CBRAM and OxRAM, are shown in Fig. 2, generated
by applying a log-normal distribution to the parameters listed in Table1. While HRS
variability profiles, like the ones shown in Fig. 2, are undesired for implementing
multilevel memory states, in the following sections we show they can be exploited
as an advantage in ELM architecture design (Fig. 3).

2.2 Cycle-to-Cycle Variability

Figure4 and Table3 present the evolution of cycle-to-cycle OFF/ON- state resistance
variability with device active area dimensions. Large devices (active area of 1 ×

Table 1 Extracted HRS parameters for filamentary RRAM devices

Device, Technology,
Reference

Mean (k�) Variance (log10R) Reset programming
conditions
(configuration)

CBRAM, (Ag/GeS2),
[2]

892.86 0.6 VG = 2V,
VBL = 2V, 10s,
(1R-1T)

OxRAM, (HfOx), [8] 25.12 0.03 −2.4V, 50ns (1R)

OxRAM, (HfOx), [8] 221.82 0.06 −2.7V, 50ns (1R)

OxRAM, (HfOx), [8] 2238.72 0.07 −3V, 50ns (1R)
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Fig. 2 Extracted HRS (Rof f ) log-normal distributions for filamentary RRAM devices listed in
Table1 [10]

Table 2 Extracted ON/OFF resistance spread parameters for T iO2 and H f O2 OxRAM devices
[9]

Device, State Mean (k�) Standard Deviation (log10R)

H f O2 (On) 22.89 0.16

H f O2 (Off) 3985.7 0.36

T iO2 (On) 3.68 0.14

T iO2 (Off) 193.5 0.26

Fig. 3 Extracted (log-normal) ON and OFF resistance distributions for T iO2 and H f O2 OxRAM
devices (parameters listed in Table2) [9]
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Fig. 4 ON/OFF-state
resistance distribution for 20
cycles. VREAD = 0, 4V.
Devices A, B, C active areas
are listed in Table3. Spread
increases with device active
area dimensions

Table 3 Cycle-To-Cycle Resistance characteristics of the Fabricated Devices [14]

Device Active Area Thickness (nm) State Mean (log(R)) Std (log(R))

A 1µm × 1µm 10 On 3.47 0.11

A 1µm × 1µm 10 Off 6.72 0.69

B 500 nm × 500 nm 10 On 4.24 0.32

B 500 nm × 500 nm 10 Off 6.10 0.59

C 200 nm × 200 nm 10 On 4.08 0.17

C 200 nm × 200 nm 10 Off 6.40 0.08

1µm2) have a large variability, which decreases with the device dimensions. Such
effect is notably due to the higher number of effective disrupted filaments (i.e., OFF
paths), in the case of large devices that define the OFF-state. Unlike ON-state, which
is mostly defined by the strongest filament, OFF-state is defined by multiple weak
filaments obtained during forming and modified from cycle to cycle [14]. Stochastic
filament formation and rupture leads to a spread in the IV traces and also RON/ROFF
from cycle to cycle.

Figure5 shows 30 cycle-to-cycle ON/OFF switching transitions and their corre-
sponding reads at variable VREAD values (in the range of 0.1 to 1 V) for the same
HfOx device. Between each RESET transition, the memory element is SET with
identical positive voltage sweeps and current compliance. While ON-state spread
almost stays constant with change in VREAD, the OFF-state variability significantly
increaseswhenVREAD is decreased.While such cycle-to-cycleON/OFF-state resis-
tance variability is a severe constraint for pure memory applications, we exploited
this intrinsic effect for implementing stochasticity necessary for RBM architecture.
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Fig. 5 30 successive
RESET transitions for one
OxRAM device. Change in
ON/OFF-state dispersion
with reference to change in
VREAD is evidenced in the
shaded region (0.1 to 1 V)
[14]. (Note: VREAD does
not modify the device state)

3 Extreme Learning Machine

3.1 Basics of Extreme Learning Machines (ELM)

AnELMbasically consists of hidden layer synapseswith randomly assignedweights,
a hidden neuron layer with an infinitely differentiable activation function, and an
output layer with synaptic weights determined by the learning rule shown in Fig. 6.
Unlike other algorithms that try to assign hidden layer synaptic weights to some
predetermined values while solving a QPP (Quadratic Programming Problem) for
the output synaptic weights, (e.g., Support Vector Machines), or to improve them
over successive iterations (e.g., backpropagation) [15], ELMs use random distrib-
utions of input weights and hidden layer neuron biases that remain fixed during
learning [16]. Output synaptic weights in ELMs are determined through a simple
L1-minimization scheme, i.e., using a matrix inversion [17]. Use of fixed random
input layer weights allows the ELM to obtain a very good generalization behav-
ior, compared to other gradient-based neural networks which explicitly try to tune
all parameters [18]. ELMs simple learning algorithm gives it a strong advantage in
terms of speed when compared to SVMs and other bioinspired algorithms [16].

3.2 Proposed OxRAM-ELM Architecture

Our proposed OxRAM-ELM architecture is shown in Fig. 7. The system is operated
in training and test modes. Blockwise description is as follows:
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Fig. 6 Basic ELM framework and governing equations used to calculate output synaptic weights
during training. [10]

Fig. 7 Proposed OxRAM-ELMArchitecture for multiclass classification. Resistance variability of
OxRAM devices was exploited for implementing both random input weights and random neuron
biases [9]



182 V. Parmar and M. Suri

3.2.1 Preprocessing Block

Stored data are first preprocessed by conventional filtering, digital-to-analog conver-
sion (DAC), and normalization steps. Output of the preprocessing block is in the form
of voltage signals, fed directly to a network of hidden layer synapses with voltage
amplitude below the switching threshold of the synaptic devices. This ensures that
output of preprocessing stage does not program the input layer synapses, when not
required [10].

3.2.2 Hidden Layer Synapses

In order to reach the higher integration capability, hidden layer synapses are realized
using either a crossbar (1R) or matrix (1T-1R) configuration of filamentary (HfO2)
or interfacial (TiO2) OxRAM devices. Such architecture is indeed perfectly adapted
to the parallel structure of the hidden layer consisting N input neurons connected to
M hidden neurons. Thus, the minimum size of the crossbar should be (N + 1) × M;
where N denotes the total number of input features (with one additional bias) and M
denotes the total number of hidden layer neurons. ELM architectures require fixed
random input weights. A RESET (or SET) operation is performed initially on the
OxRAM synaptic matrix, before the launch of training mode, to obtain the type of
OFF (or ON) state resistance distribution described in Sect. 2.1. The variable OFF (or
ON) resistance spreads give rise to random input layer synaptic weights. Exploiting
intrinsic resistance spreads is area and energy efficient as use of costly extrinsic
techniques such as random number generator or PRNG (pseudo-random) circuits are
avoided [19, 20]. In Sect. 3.3, we implemented the classification simulations using
the extreme ON/OFF resistance distributions for both TiO2 and HfO2 devices (listed
in Table1 and Fig. 4). However, it is important to note that the devices can also be
programmed to intermediate resistance states (i.e., can be tuned with programming
conditions) [21, 22]. Standard deviation (σ) of the resistance distribution is more
intrinsic to the device process and underlying resistive switching physics [13, 23].
From a purely circuit/analog design point of view, choice of μ for the input weights
will have an impact on power dissipation, voltages/currents of operation, and line
parasitic. μwould also determine the amount of current flowing into the hidden layer
neurons. Higher values of μ would lead to less input layer power-dissipation when
the network is operated in the test mode [9].

3.2.3 Hidden Layer Neurons

Current flowing through the input synaptic matrix is weighted by the resistances
of the OxRAM devices and constantly integrated in the hidden layer neuron block.
The ELM learning algorithm can work with many infinitely differentiable activation
functions such as sine and radial basis function. We chose the sigmoid function
(Fig. 8) as the hidden neuron for our architecture, based on the circuit implementation



Exploiting Variability in Resistive Memory Devices for Cognitive Systems 183

Fig. 8 Hidden layer neuron
sigmoid response curve
realized in the proposed
OxRAM-ELM with different
gain (g) values. Equation is
also shown

described in [24]. The sigmoid response may be modified in the design by tuning
the gain or slope, as shown in Fig. 8. Random neuron biasing can be achieved in
an extremely area efficient manner by exploiting the hidden layer OxRAM synaptic
matrix. (N + 1) th line in the OxRAM matrix (assuming the system has N input
features) can be biased using a constant voltage source, applied across the top terminal
of all the OxRAM devices. The bottom terminals of each individual device in the
(N + 1)th line is directly connected to the individual hidden layer neurons. Since
the resistance of all OxRAM devices in the matrix follows one of the resistance
distributions shown in Fig. 2, the resultant current being fed into the hidden layer
neurons from the (N + 1)th OxRAM line also follows a similar distribution. Such
implementation avoids the need of any external bias randomization circuit.

3.2.4 Training Block

This block is active only during the training-mode operation of the network. In the
training mode, data are simultaneously fed to the preprocessing and the training
blocks. For each training data point, the output of the hidden layer neurons and the
expected output are stored inside the training block (see Fig. 9). Thus, the minimum
size of training block memory is given by the following expression. Once all hid-
den layer neuron responses and their corresponding output values/classes have been
stored in the trainingmodulememory, amatrix inversion is performed as described in
[16], in order to solve the linear systemof equations and generate the synapticweights
for the output layer. The matrix inversion can be implemented using algorithms such
as Gauss–Jordan elimination or QR decomposition using the tool discussed in [25]
or through LU factorization technique [26].

Training block memory = #Training samples × (#Hidden neurons + 1)

× Data bit width (1)



184 V. Parmar and M. Suri

Fig. 9 Training block
schematic

3.2.5 Output Layer Synapses

These are programmed only at the end of the training mode. As the output layer
weights are generated from a matrix inversion operation, they will have a wide
dynamic range. We choose to implement the output weights as ideal synapses (i.e.,
using purely digital memory). Floating point representation enables to store values
of a very high dynamic range by using fewer bits. Hence, we used a 12-bit floating
representation (2 bits mantissa and 10 bits exponent). This also helped with the
problem of realizing +ve and −ve output synaptic weights.

3.2.6 Output Neuron

In contrast to the hidden layer, which uses a sigmoid activation function, for the
output neuron we make use of a linear activation function. This is primarily due to
the reason that we make use of a linear equation solver to find/calculate the output
synapticweights. For themulticlass classification,we requiremultiple output neurons
(one per class). During the training phase, the output layer is switched off in order
to minimize power dissipation.

3.3 Results

3.3.1 Image Segment Classification

Thegoal of this testwas to classify segments of images into 7 classes (listed inTable3)
based on the image pixel corresponding to it and its neighborhood. Features used for
classification are described in [27] simulated OxRAM-ELM network consists of 19
input nodes (1 per input features), 4000 hidden synapses, 200 hidden neurons, 1400
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Table 4 Image segment
labels

Sr.no. Class of image segment

1 Brickface

2 Sky

3 Foliage

4 Cement

5 Window

6 Path

7 Grass

Fig. 10 Dependency of mean classification accuracy on device resistance distributions and hidden
layer neuron gain (mean obtained on 10 cycles for each point)

output stage synapses, and 7 output neurons (1 per class). Figure10 shows the mean
image segment classification accuracy over 10 test cycles for all device resistance
distributions listed in Table2 with varying hidden layer neuron gain values. The
comparison is also listed in Table4.

3.3.2 Sinc Function Regression

The goal of this experiment was to emulate the functionality of a Sinc function
generator using the RRAM-ELM architecture. The data provided to the network
were comprised of uniformly distributed samples of input and output values of an
ideal Sinc function over the interval of −10 to 10. Training data size as well as test
data size was 5000 sample points. The simulated network consists of 1 input node,
40 hidden layer synapses, 20 hidden layer neurons, 20 output layer synapses, and 1
output neuron (Fig. 11).
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Fig. 11 Sinc Regression
Performance Comparison for
RRAM-ELM

4 CMOS-RRAM Restricted Boltzmann Machine

4.1 Restricted Boltzmann Machines

RBM is a generative, stochastic neural network architecture consisting of two layers
of nodes representing visible and hidden variables. RBMs are a variant of Boltz-
mann machines, with the restriction that their neurons must form a bipartite graph
[28]. There are weighted connections between every node in opposite layers, and no
connections between any nodes in the same layer (Fig. 12). The following notation
system will be used: vi and hj are the binary states of the ith and jth node, where i =
1 .. I and j = 1,..,J, in the visible and hidden layer, respectively; wi j is the connection
weight between the ith and jth nodes.

4.1.1 Mathematical Formulation

The energy function E (v, h) of an RBM is defined as:

Energy(v, h) = −b′h − c′v − h′Wv. (2)

Here W represents the weights connecting hidden and visible units, and b, c are
the offsets of the visible and hidden layers, respectively. This translates directly to
the following free energy formula adapted from [28]:

FreeEnergy(v) = −b′v −
∑

i

log
∑

hi

ehi (ci+Wiv) (3)
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Fig. 12 General RBM architecture. h denotes hidden layer nodes, while v denotes visible layer
nodes. There are no connections within the same layer

Because of no lateral connections within a given layer (definition of RBM), neu-
rons are conditionally dependent only on the other layer, and independent of entities
within the same layer. Using this property, we can write:

p(v|h) =
∏

i

p(hi |v)) (4)

p(h|v) =
∏

i

p(vi |h)) (5)

4.1.2 Training Algorithm

Alternating Gibbs Sampling (AGS) and Contrastive-Divergence learning (CD) have
been found to be an effective process to determine the node states and update the
weight parameters [29], respectively. For the proposed RRAM-based implementa-
tion, we make use of contrastive divergence. The steps followed in the algorithm are
listed as:

• Take a training sample v, compute the probabilities of the hidden units and sample
a hidden activation vector h from this probability distribution.

• Compute the vector product of v and h; termed as the positive gradient.
• From h, sample a reconstruction v’ of the visible units, then resample the hidden
activations h’ from this. (Gibbs sampling step)

• Compute the outer product of v’ and h’; termed as the negative gradient.
• Theweight update towi j is the positive gradient minus the negative gradient, times
learning rate (accuracy optimization parameter) [28, 29]:

� wi j = ε × (v · h − v′ · h′) (6)
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Fig. 13 Proposed hybrid RRAM-CMOS RBM architecture with individual functional sub-blocks.
RRAM devices are used in a Synapse, b Hidden/Visible memory, and c Stochastic fire circuit
blocks [14]

4.2 Proposed RBM Architecture

Our proposed RBM architecture is shown in Fig. 13 [14]. The system consists of 2
layers of stochastic sigmoid neurons (hidden and visible), all fully connected. For
classification, a third layer is also added. Individual functional sub-blocks are realized
as follows:

4.2.1 Synapse Network

The synaptic array canbe realizedwith either a crossbar or amatrix ofRRAMdevices.
In the proposed scheme, each synapse is realized using 4 binary RRAM devices (to
obtain a 4-bit weight resolution). This scheme allows us to have a reasonable amount
of weight accuracy while keeping the hardware complexity and area requirements
manageable. The 4-device/synapse approach can be further simplified, if the RRAM
device being used offers multilevel programming capability. Our fabricated HfOx
devices offered good binary programming with a conservative resistance window.
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Fig. 14 Block-level design of a single neuron. Consists of sigmoid circuit, RRAM devices for
stochastic activation and neuron internal state storage, and comparator

4.2.2 Stochastic Neuron

Figure14 shows the full stochastic neuron block. Each neuron (hidden or visible)
follows a sigmoid response, which is implemented by a low-power 6-T CMOS sig-
moid circuit. The gain of the sigmoid circuit can be tuned by optimizing the scaling
of the six transistors [30]. Voltage output of sigmoid circuit is compared with the
voltage drop across an RRAM device, with the help of a comparator. The HfOx-
based device is repeatedly cycled to OFF-state. The cycle-to-cycle intrinsic RON

and ROFF variability of the RRAM device leads to a variable reference voltage for
the comparator. This helps translate the deterministic sigmoid output to an overall
neuron output, which is stochastic in nature. At any given moment, the specific neu-
ron output is also that specific neurons internal state, which needs to be stored for
RBM-driven learning. The internal state of each neuron is stored using individual
RRAM devices, placed after the comparator. 1-RRAM device/neuron is sufficient
since RBM requires each neuron to have either 1 or 0 as its binary activation state.

4.2.3 CD Weight Update Block

The weight update module is a purely digital circuit that accesses synaptic weights
and internal neuron states. It updates the synapticweights during learning by applying
the contrastive-divergence RBM algorithm. The block consists of an array of weight
update circuits, one of which is shown in Fig. 15. Synaptic weight is updated (by
�Wij), based on the previous (v, h) and current (v, h) internal neuron states of the
mutually connected neurons of the hidden and visible layers. CD is realized using
twoANDgates and a tri-state comparator (having outputs−1, 0, +1). Input to the first
AND gate is previous internal neuron states, while the input to second AND gate is
the current internal neuron states. Based on the tri-state comparator output (learning
rate- optimization parameter) will either be added, or subtracted, or no-change will
be made to the existing synaptic weight (wi j ).
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Fig. 15 Training block

4.3 Results and Discussion

4.3.1 Learning Performance

Simulation results are shown in Fig. 16 and Table5. Average learning accuracy of
the system, for both RON and ROFF distributions, was 89%. From Tables3 and 5, it
is evident that exploitation of RON distributions in the stochastic neuron activation
block gave a higher learning accuracy compared to ROFF , for all device dimensions.
This may possibly happen because resistance variation in ON-state is in the order of
k�, compared to M� in the case of OFF-state. Since the cycled OxRAM resistances
are eventually mapped and compared against a small voltage range (i.e., the Vneuron),
0 to 1 V, the OxRAM reference voltage points are more evenly distributed in the case
of ON-state and tend to get saturated for OFF-state resistance distributions. Note
from Table5 that εwas used as an optimization parameter for improving the learning
accuracy. Figure16b shows that reconstruction error for the reduced MNIST dataset
minimizes after 80 epochs (Tables6 and 7).

4.3.2 Stochastic Neuron Activation Block

The neuron circuit was simulated in cadence using 90-nmCMOSdesign kit (Fig. 17).
Conductive-filament (CF)-based Verilog-A compact model proposed in [31] was
used to model our HfOx devices. The model parameters were tweaked to emulate
RON/ROFF spreads equivalent to the ones shown in Fig. 4 and Table3. The circuit
shown in Fig. 17 has two subcircuits: (a) 6-T sigmoidal function circuit and (b)
OxRAM-comparator circuit. Pre-synaptic input to the sigmoid circuit is modeled
by a current source (Idc), while the output is a voltage (Vneuron), thus making it a
resistive type of neuron [30]. Value ofVneuron dependswhether the pre-synaptic input
acts as a current sink (−ve Idc) or current source (+ve Idc). The second subcircuit
consists of an OxRAM device connected to two voltage sources, Vpulse1 and Vpulse2

(used to generate set, reset and read bias voltages). A read voltage VRE AD (Vpulse1

Vpulse2) and series resistance R are used to obtain a voltage drop (Voxram) for the
reference-voltage input of the comparator. Due to the low value of read current,
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Fig. 16 Simulation results of proposed RBM on reduced MNIST dataset of 6000 images

Table 5 Image segmentation
performance for the proposed
ELM architecture

Synapse type Test acc (mean) Test acc (std dev)

Ideal ELM 94.84 0.81

HfO2(On) 95.65 0.26

HfO2(Off) 95.31 0.48

TiO2(On) 95.07 0.37

TiO2(Off) 95.58 0.34

Table 6 Sinc regression
performance comparison for
RRAM-ELM

Device (State) Mean square error

H f O2 (On) 0.0409

H f O2 (Off) 0.3154

T iO2 (On) 0.0071

T iO2 (Off) 0.2576
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Table 7 Performance results of the system

State Test accuracy Epochs ε

Device A On 91.9 100 0.08

Off 88.6 100 0.04

Device B On 89.1 25 0.08

Off 88.9 100 0.08

Device C On 92.2 100 0.08

Off 83.8 100 0.04

Fig. 17 Schematic of the single neuron circuit used in Cadence simulations

Voxram needs to be amplified before it is fed to the comparator. Based on the Vneuron

and amplifier output, the comparator generates logic values 1 s or 0 s for each run
of the simulation. Cycle-to-cycle variability of ROFF also makes the comparator
reference-voltage variable, thus leading to a stochastic comparator output. Figure18
shows the distribution of the stochastic neuron block output as a function of the
comparator inputs (Vneuron & Voxram), simulated for 100 points. VREAD = 0.1V, R
= 5 k�, and an amplifier gain of 350 was used for exploiting the ROFF distribution of
deviceB.However, if RON distribution is used, value ofR and gain should be changed
accordingly. From Fig. 18, it is evident that majority of the activations happen when
the OxRAM resistance attains lower values of ROFF .

4.3.3 Endurance Estimation

Average switching activity for HfOx devices (inclusive of all 3 applications—
synaptic, stochastic neuron activation, and internal neuron state storage) was found
to be around ∼14 million events per epoch from full system simulations. The max-
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Fig. 18 Distribution of
stochastic neuron block
output as a function of
comparator inputs (Vneuron
and Voxram ). Majority of
activations occur when the
cycled OxRAM device
attains low-resistance values

imum switching activity for any single OxRAM device comes out ∼2 million for
the full training simulation. This number is further expected to go up as the number
of data points in the training set increases. Thus for large datasets, memory devices
with strong endurance characteristics are required. HfOx-based devices can satisfy
this constraint easily [14].

5 Conclusion

As shown in the previous two sections, we have shown how two different methods
utilize variability for two completely different types of learning algorithms.

ELM is a simple neural network with supervised learning utilizing random hidden
nodes in order to achieve universal approximation.Hence, it required static variability
which we utilized in the form of device-to-device variability of RRAM. Thus, we
have utilized noise/faults to achieve computation.

On the other hand, RBM is an unsupervised learning algorithm using stochastic
neuron activation tomodel neural activity. This can bemodeled using dynamic (cycle
to cycle) variability of RRAM. Also it forms the unit cell of deep neural network. In
this case,we have utilized the unreliability at lowcurrent to achieve computation.Also
notable is the fact that hereRRAMwasprimarily utilized as a digital device in contrast
to its use in the ELM design where its use was completely as an analog device.

In both cases, modeling the respective variability using standard digital compo-
nents would be possible but would cause high power dissipation and area usage.
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Theoretical Analysis of Spike-Timing-
Dependent Plasticity Learning
with Memristive Devices

Damien Querlioz, Olivier Bichler, Adrien F. Vincent
and Christian Gamrat

Abstract Several recent works, described in chapters of the present series, have
shown that memristive devices can naturally emulate variations of the biological
spike-timing-dependent plasticity (STDP) learning rule and can allow the design of
learning systems. Such systems can be built with memristive devices of extremely
diverse physics and behaviors and are particularly robust to device variations and
imperfections. The present work investigates the theoretical roots of their STDP
learning. It is suggested, by revisiting works developed in the field of computational
neuroscience, that STDP learning can approximate the machine learning algorithm
of Expectation-Maximization, the neural network operation implementing “Expec-
tation” steps, while STDP itself implementing “Maximization” steps. This process
allows a system to perform Bayesian inference among the values of a latent variable
present in the input. This theoretical analysis allows interpreting how STDP differs
for several device physics and why it is robust to device mismatch. It can also provide
guidelines for designing STDP-based learning systems.

1 Introduction

In recent years, memristive devices have emerged as an attractive opportunity to
implement synapses in neuroinspired systems [6, 7, 9–11, 14, 20, 23, 26, 28, 29].
Memristive devices can indeed provide a form of compact embedded and nonvolatile

D. Querlioz (B) · A.F. Vincent
CNRS, Institut d’Electronique Fondamentale, University of Paris-Sud, Orsay, France
e-mail: damien.querlioz@u-psud.fr

A.F. Vincent
e-mail: adrien.vincent@u-psud.fr

O. Bichler · C. Gamrat
CEA, LIST, Saclay, France
e-mail: olivier.bichler@cea.fr

C. Gamrat
e-mail: christian.gamrat@cea.fr

© Springer (India) Pvt. Ltd. 2017
M. Suri (ed.), Advances in Neuromorphic Hardware Exploiting Emerging
Nanoscale Devices, Cognitive Systems Monographs 31,
DOI 10.1007/978-81-322-3703-7_10

197



198 D. Querlioz et al.

memory, which can be used as a binary memory and sometimes even as a multilevel
or partly analog memory.

Additionally, a promising lead is to not use the memristive devices solely as
memory, but to harness their physics to implement learning rules, in similarity to
real biological synapses. In this context, the most investigated learning approach
is based on spike-timing-dependent plasticity (STDP). This learning rule, which is
inspired by biological measurements performed since the late 1990s [2, 16], can
be implemented by memristive nanodevices directly [1, 12, 13, 15, 25, 27, 33] or
under simplified forms [3, 21–23, 31, 32]. The capabilities of STDP have mostly
been investigated within neuroscience studies [17, 18]. It has also been shown that
a system equipped with STDP can learn advanced proof-of-concept tasks [3, 21].
Nevertheless, if we are to develop useful systems exploiting nanodevice-based STDP,
a deeper understanding of the computational power of STDP-based learning is nec-
essary. Additionally, it is essential to understand how nanodevice-specific questions
affect the STDP-learning process.

The present chapter starts to address these questions. It builds on theoretical works
originally introduced in the context of neuroscience in Ref. [19]. These works inter-
pret STDP-trained systems as performing a form of Bayesian inference. They also
show that STDP learning approximates the algorithm of Expectation-Maximization,
a powerful machine learning algorithm. The present chapter adapts these theoretical
works to nanodevices in the context of the simplified STDP approach of [3, 21, 22,
31, 32]: In particular, the chapter highlights how the different device physics (pre-
sented in the other chapters of this book) affect STDP learning and its interpretation
as Bayesian inference. This theoretical analysis also allows us to discuss and interpret
specific questions related to nanodevices, such as the impact of device variations.

The present chapter extends a discussion originally appearing in Ref. [23].

2 Spike-Timing-Dependent Plasticity and
Expectation-Maximization

2.1 Simplified STDP

Most STDPmodels are inspired by biologicalmeasurements or considerations. How-
ever, in an important work, Nessler et al. showed that STDP can lead to a form of
optimal Bayesian inference [19], by approximating the powerful machine learning
algorithm of Expectation-Maximization. For this demonstration, the authors employ
a highly simplified version of STDP, which deviates from most models of STDP
in several aspects. In conventional STDP, conductance change occurs when a pair
of spikes occur at near times on the two sides (presynaptic and postsynaptic) of a
synapse. This is illustrated in the conventional STDP graph of Fig. 1a.
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Fig. 1 Illustration of several STDP rules. a Original measurement from biology (symbols) [2] and
the conventional model of STDP (full lines). b Simplified STDP used within the present chapter.
c Stochastic version of the simplified STDP

By contrast, in the approach of Ref. [19], conductance changes occur specifically
when a postsynaptic spike occurs. After the postsynaptic neuron of a synapse has
spiked:

1. if there was a presynaptic spike recently, within a STDP “window,” the weight of
the synapse increases by a weight increment δw+

2. if there was no recent presynaptic spike, the weight of the synapse decreases by
a weight decrement δw−.

This simplified rule maps especially well to nanodevices [3, 21, 23, 31, 32], and
we use variations of it throughout the whole chapter. It is possible to plot this STDP
rule on a graph similar to conventional STDP (Fig. 1b), although this plot might be
misleading in that STDP does not specifically occur when a pair of spikes occur.

As equations for theweight increment δw+ and theweight decrement δw−, Nessler
et al. considered:

δw+ = C exp(−w) − 1

δw− = 1, (1)
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where C is a real constant greater than one. It should be noted that the weight
increment δw+ depends highly on the current conductancew of the synapse. Physical
memristive devices, of course, do not obey these particular equations. The impact of
their device physics will be discussed in Sect. 3.

2.2 Connection with Expectation-Maximization

Based on Eq. (1), it is possible to analyze formally the learning process. In particular,
we can derive analytically the value that the synaptic weights approach at the end of
a learning process. We can introduce

p(PRE|POST) = p(tPRE ∈ [tPOST − tSTDP; tPOST ]|tPOST ), (2)

which represents, for a given synapse, the probability that when its postsynaptic
neuron spiked, its presynaptic neuron spiked in the STDP window tSTDP preceding
the spike. Then, we can show that the final weight w∞ that this particular synapse
will approach during the learning process is

w∞ = log p(PRE|POST) + logC. (3)

(log represents the natural logarithm). The derivation of this equation appears in
the Appendix of the chapter.

This result has deep implications. Nessler et al. have shown that this allows
a system with simplified STDP to perform an approximation of Expectation-
Maximization, a powerful machine learning algorithm [8]. The process is illustrated
in Fig. 2. We consider a feedforward system, where input neurons are connected to
output leaky-integrate-and-fire neurons, in an all-to-allmanner, by synapses equipped
with simplified STDP. The crossbar shown in Fig. 2 naturally implements this sys-
tem. Additionally, when an output neurons spike, it inhibits all the other output
neurons. The system is therefore reminiscent of a winner-takes-all architecture. The
system has two distinct behaviors. Most of the time, the output neurons integrate
information, until an output neuron spikes. This corresponds to an Expectation step
of the Expectation-Maximization algorithm. After the output neuron has spiked, the
weights of the synapses are updated according to the simplified STDP rule. This
corresponds to a Minimization step of the Expectation-Maximization algorithm.

This correspondence can explain that this system has been used successfully for
learning different tasks like handwritten character digit recognition [21], car detection
in a video [4], or audio pattern recognition [31]. In each case, the system, using the
Expectation-Maximization analog, is capable of identifying the latent variable behind
the inputs and of classifying input along the different identified latent variable values.

These theoretical considerations provide insight into how our inference engine
learns and performs inference. However, physical memristive synapses do not lead to
a behavior equivalent toEq. (1).Wenowconsider the details regarding the importance
of this difference.
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Fig. 2 Top image simplied schematics of the architecture considered within this chapter. Bot-
tom images correspondence between the operation of this architecture and the Expectation-
Maximization algorithm

3 Impact of Device Physics

Several works have shown that memristive devices can naturally implement varia-
tions of the simplified STDP rule. They are described in the other chapters of this
book, and here, we revisit them in light of the theoretical analysis of the previous
section.
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3.1 Cumulative Memristive Synapses

We first consider the case of cumulative memristive devices. We use a simple model
of the conductance increase and decrease, described in Ref. [24], which fits the
measurements of a cumulative memristor presented in [12]. This model can also be
employed for phase change memories associated in the 2-PCM structure [4, 30].

For the sake of simplicity, we use normalized units w = G/GMAX , where G is
the conductance of a memristive device, and GMAX is its maximum conductance.
We assume that minimum and maximum conductances are 0 and 1, and we identify
normalized conductance with a synaptic weight w. The device model of [24] then
becomes

δw+ = α+ exp(−β+w)

δw− = α− exp(−β−(1 − w)). (4)

where α+ andα− represent the amplitude of conductance of thememristive device
changes when a programming pulse is applied. Smaller α values lead to more analog
behavior.

β+ and β− model the dependency of this conductance change with the state of
the memristive device. β values around 3.0 are typical and can, for example, model
the devices of [4, 12, 30].

Under these conditions,we can show that the finalweight of this particular synapse
approaches

w∞ = β−
β+ + β−

+ 1

β+ + β−
log

p(PRE|POST)

1 − p(PRE|POST)
+ 1

β+ + β−
log

α+
α−

, (5)

withw∞ being additionally bounded between 0 and 1. The full derivation appears
in the Appendix.

In the case, where β+ and β− are equal (β+ = β− = β), Eq. (5) simplifies to

w∞ = 1

2
+ 1

2β
log

p(PRE|POST)

1 − p(PRE|POST)
+ 1

2β
log

α+
α−

. (6)

This equation is reminiscent of Eq. (3). A significant difference is thatw∞ appears
to approach infinity when p(PRE|POST) approaches one. However, as the weight
of a physical device is bounded between 0 and 1, this divergence does not actually
occur. Additionally, when considering and putting practical values into Eq. (5), it
becomes similar to Eq. (3). This is shown in Fig. 3b, where Eq. (5) is plotted for
different values of α+/α−. The value for β is taken from real devices [12]. This
suggests that our inference engine with cumulative memristive devices may work by
an approximation of Expectation-Maximization.

Interestingly, the curves corresponding to different values of α+/α− (2.0, 1.0, and
0.5) are qualitatively similar. This is in agreement with the fact that when training real
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Fig. 3 a Final weight w∞ as a function of p(PRE|POST) Nessler theory (Eq. (3)), compared with
cumulative memristive devices (Eq. (6)), and final probability of a stochastic synapse being in the
state 1 (Eq. (7)). b Final weight w∞ as a function of p(PRE|POST) with cumulative memristive
devices for different α+ and α− values. c Final probability w∞ of a stochastic synapse being in the
state 1 as a function of p(PRE|POST) for different α values

life tasks with simplified STDP, the value of α+/α− is not a sensitive parameter. For
example, on a car counting task, and with cumulative memristive devices, the best
recognition rate on the four inward lanes (99%) is obtained with α+/α− = 2.0. With
α+/α− = 1.0, the recognition rate on the four inward lanes is only slightly reduced
(97%). This result has important implications when dealing with nanodevices. The
parameters associated with learning do not need to be too fine-tuned for the system
to be able to learn tasks.

Additionally, we notice that only the ratio α+/α− appears in Eq. (5) and not the
actual α value. This is also consistent with what is seen when training tasks with
simplified STDP. This does not mean, however, that the actual α values are entirely
insignificant, as they directly affect the speed of learning.

Finally, we should note that the β value has considerable impact on the shape of
thew∞ curves. To illustrate this, we simulated a networkwith only one output neuron,
to which we presented static photographs of faces, and repeated the simulation for
devices with different β values. The resulting synaptic weights, organized as a two-
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Simulation Theoretical resultMean of the presented images 

Weights trained with STDP

Fig. 4 Top left picture mean image of the faces presented in a system with STDP and one neuron,
to which photographs of faces were presented. Right pictures representation of the final weights,
as obtained in a numerical simulation and as expected from the theoretical analysis presented
in this chapter. With cumulative memristive devices and top β = 3, α+/α− = 1, middle β = 1,
α+/α− = 1, bottom β = 0. Graph: Final weight as a function of p(PRE|POST) in these three
situations

dimensional picture, as well as the corresponding w∞ curves, appear in Fig. 4. We
can see that with a β value of 3.0 (which is close to what is observed in the devices
of [12], or the 2-PCM structure [4]), the final weights are very analog and approach
the mean of all the presented faces. By contrast, a β value of 1.0 produces a more
binary map, amplifying the distinctive features of a face. A β value of 0 leads to
an entirely binary map separating pixels where p(PRE|POST) is lower and greater
than 0.5. This corresponds well to what would be expected from w∞ as a function
of p(PRE|POST) curves. This means that depending on device, different kinds of
learning can thus be envisioned.

In summary, we have observed a remarkable insensitivity to relative steps of
potentiation and depression, as well as to the actual value of these steps (α values).
We have observed that the devices with different dependences of steps with actual
values of the conductance (β values) can have different learning characteristics.



Theoretical Analysis of Spike-Timing-Dependent Plasticity Learning … 205

3.2 Stochastic Synapses

In some memristive devices, it is not possible to implement directly an analog of
Eqs. (1) or (4), as they do not feature a cumulative analog memory behavior. By con-
trast, it is possible to use these devices as stochastic binary synapses: Such synapses
possess only two memory states (“0” or “1”), and when a STDP step occurs, they
have a probability to switch state. Such a stochastic STDP rule is illustrated in Fig. 1c.
This probabilistic behavior can be implemented using pseudorandom number gen-
erators (see the examples of conductive bridge memory [31]) or intrinsic stochastic
effects in nanodevices, as in spin-transfer torque magnetic tunnel junctions [32].

It has been shown that systems with binary stochastic synapses can implement the
car detection task, with only one binary device per synapse, or handwritten character
digit recognition using several binary devices per synapse [5, 23].

In order to understand this, we introduce p+ the probability for a synapse to
switch from low conductance (“0”) to high conductance (“1”) when a presynaptic
spike occured before the postsynaptic spike, p− the probability to switch from high
conductance to low conductance in the other situations, and α = p+/p−. At the end
of the learning process, we show in the Appendix that the probability of a synapse
to be in the high conductance state is

w∞ = αp(PRE|POST)

1 + p(PRE|POST)(α − 1).
(7)

If p+ and p− are equal (α = 1),w∞ reduces to p(PRE|POST). As shown in Fig. 3c,
the shape of the w∞ as a function of p(PRE|POST) appears relatively different from
that of Eq. (3), but retains some of its distinctive features. It can be thus expected that
learning with stochastic synapses also performs an approximation of Expectation-
Maximization in an extremely stochastic form. A more detailed analysis of this
appears in Ref. [5].

When redundancy between stochastic synapses is introduced, w∞ not only rep-
resents the probability of an individual device to be 1, but also a mean value of the
weight of the equivalent synapse formed by the ensemble of the stochastic synapses.
It is thus natural that the system approximates Expectation-Maximization better, as
was seen with the handwritten digit classification task [5, 23].

Finally, it is insightful to compare the w∞ curves for α values ranging from 0.5 to
2. Once again, the curves are qualitatively relatively similar. This result is consistent
with the practical observation that the choice of α is not extremely sensitive when
solving actual tasks with stochastic simplified STDP, although it is more sensitive
than the choice of α+/α− in the case of cumulative memristive devices. For example,
when solving the vehicle counting task with an α value of 1.0 (p+ = p− = 0.1), the
detection rate is 97.3%. With an α value of 2.0 (p+ = 2p− = 0.1), the detection rate
is reduced significantly, but remains high (83.0%). This is an important feature for
being able to use a systemwith real devices, where mean switching probability might
not be tuned with an arbitrary precision.
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4 Robustness of STDP Learning

A striking feature of systems based on simplified STDP is their extreme robustness
to synaptic device variations [21, 23, 32]. An understanding of the fundamental
origin of this robustness is instructive. It appears to emerge from two roots: the
unsupervised nature of learning and the diversity of synapses that can approximate
the Expectation-Maximization algorithm.

First, the fact that the system learns in an unsupervised way is an important asset
to tolerate variations. When initialized, the neurons are not specialized and respond
more readily to the patterns that they are naturally capable of learning. We can, for
example, consider a specific input pattern. If some synapses associated with input
neurons fundamental to this pattern do not work, then the output neurons of these
synapses will likely learn another input pattern. In that sense, a reasonable device
variability is not deeply troublesome for the system. It may even be considered as a
feature that precipitates the beginning of the learning process.

A second component of robustness to variability can be gathered from the theo-
retical analysis of the present chapter. For the case of cumulative devices, we have
shown in Fig. 3 that the curve of w∞ as a function of p(PRE|POST) depends only on
the ratio of α+ and α− and that its shape does not qualitatively depend dramatically
on this ratio. Similarly, in the stochastic synapse case, the curve of w∞ depends
only on the ratio of p+ and p− and its shape does not exhibit significant qualitative
dependence on this ratio. This suggests that variable synapses will still manage to
perform their task even if they learn through completely different manners. This
also suggests that the analysis of Sect. 3 can be an effective way to assess whether a
particular technology will give rise to a robust inference engine.

5 Conclusion

In this chapter, we introduced a lead for the theoretical interpretation of the capability
of systems that learn using STDP-capable memristive synapses. This theoretical
analysis connects STDP learning with Bayesian inference trained with Expectation-
Maximization. It can allow us to compare different device physics with regard to
learning and to interpret the robustness of STDP-based learning schemes. Even more
importantly, it could be a lead toward developing more advanced systems using
memristive devices, capable of learning and performing complex inferences.
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Appendix Derivation of the Expressions of w∞

Nessler et al. Synapses

We first derive Eq. (3) from Sect. 2. At the end of learning, if a synapse has reached
a stable state, the impact of depression events balances the impact of potentiation
events. With the notations of Sect. 2, this reads:

δw+p(PRE|POST) = δw−p(PRE|POST), (8)

where we have introduced p(PRE|POST) = 1 − p(PRE|POST). By introducing
the expressions of δw+ and δw− from Eq. (4), this becomes:

(C exp(−w) − 1)p(PRE|POST) = 1 − p(PRE|POST), (9)

which leads to Eq. (3):

w∞ = log p(PRE|POST) + logC. (10)

Cumulative Memristive Synapses

We now derive Eq. (5) from Sect. 3. Again, at the end of learning, if a synapse
has reached a stable state, the impact of depression events balances the impact of
potentiation events. With the notations of Sect. 3, this reads:

δw+p(PRE|POST) = δw−p(PRE|POST), (11)

where we have introduced p(PRE|POST) = 1 − p(PRE|POST). By introducing
the expressions of δw+ and δw− from Eq. (4), this becomes:

α+ exp(−β+w∞)p(PRE|POST) =
α− exp(−β−(1 − w∞))(1 − p(PRE|POST)). (12)

Therefore, we have

exp((β+ + β−)w∞ − β−) = α+
α−

p(PRE|POST)

(1 − p(PRE|POST))
, (13)

which leads to Eq. (5):

w∞ = β−
β+ + β−

+ 1

β+ + β−
log

p(PRE|POST)

1 − p(PRE|POST)
+ 1

β+ + β−
log

α+
α−

. (14)
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Stochastic Synapses

This appendix derives Eq. (7) from Sect. 3. Again, at the end of learning, if a synapse
has reached a stable state, the impact of depression events balances the impact of
potentiation events. With the notations of Sect. 3, and by introducing p(State = 1)
and p(State = 0), the probabilities of the synapse to be in the 1 and 0 states, this
reads:

p+ · p(PRE|POST) · p(State = 0) = p− · p(PRE|POST) · p(State = 1) (15)

With the notations of Sect. 3, p(State = 1) = w∞ and p(State = 0) = 1 − w∞. If
we introduce α = p+/p−, Eq. (15) becomes

αp(PRE|POST)(1 − w∞) = (1 − p(PRE|POST))w∞, (16)

which leads to Eq. (7):

w∞ = αp(PRE|POST)

1 + p(PRE|POST)(α − 1)
. (17)

References

1. Alibart, F., Pleutin, S., Bichler, O., Gamrat, C., Serrano-Gotarredona, T., Linares-Barranco, B.,
Vuillaume, D.: A memristive nanoparticle/organic hybrid synapstor for neuroinspired comput-
ing. Adv. Funct. Mater. 22(3), 609–616 (2012). doi:10.1002/adfm.201101935

2. Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s Postulate Revisited.
Annu. Rev. Neurosci. 24(1), 139–166 (2001). doi:10.1146/annurev.neuro.24.1.139

3. Bichler, O., Querlioz, D., Thorpe, S.J., Bourgoin, J.P., Gamrat, C.: Extraction of temporally
correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural
Netw. 32, 339–348 (2012). doi:10.1016/j.neunet.2012.02.022

4. Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B., Gamrat, C.: Visual pattern
extraction using energy-efficient “2-PCM Synapse” neuromorphic architecture. IEEE Trans.
Electron Devices 59(8), 2206–2214 (2012). doi:10.1109/TED.2012.2197951

5. Bill, J., Legenstein, R.: A compound memristive synapse model for statistical learning through
STDP in spiking neural networks. Front. Neurosci. 8, 412 (2014). doi:10.3389/fnins.2014.
00412

6. Chabi, D., Querlioz, D., Zhao, W., Klein, J.O.: Robust learning approach for neuro-inspired
nanoscale crossbar architecture. J. Emerg. Technol. Comput. Syst. 10(1), 5:1–5:20 (2014).
doi:10.1145/2539123

7. Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S.,
Yamada, H., Deranlot, C., Mathur, N.D., Bibes, M., Barthélémy, A., Grollier, J.: A ferroelectric
memristor. Nat. Mater. 11(10), 860–864 (2012). doi:10.1038/nmat3415

8. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. J. Roy. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977). doi:10.2307/2984875

9. Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.:
Materialmemristive device circuitswith synaptic plasticity: learning andmemory.BioNanoSci.
1(1–2), 24–30 (2011). doi:10.1007/s12668-011-0004-7

http://dx.doi.org/10.1002/adfm.201101935
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://dx.doi.org/10.1016/j.neunet.2012.02.022
http://dx.doi.org/10.1109/TED.2012.2197951
http://dx.doi.org/10.3389/fnins.2014.00412
http://dx.doi.org/10.3389/fnins.2014.00412
http://dx.doi.org/10.1145/2539123
http://dx.doi.org/10.1038/nmat3415
http://dx.doi.org/10.2307/2984875
http://dx.doi.org/10.1007/s12668-011-0004-7


Theoretical Analysis of Spike-Timing-Dependent Plasticity Learning … 209

10. Gacem, K., Retrouvey, J.M., Chabi, D., Filoramo, A., Zhao, W., Klein, J.O., Derycke, V.: Neu-
romorphic function learning with carbon nanotube based synapses. Nanotechnology 24(38),
384013 (2013). doi:10.1088/0957-4484/24/38/384013

11. Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration
of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology
24(38), 384010 (2013). doi:10.1088/0957-4484/24/38/384010

12. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor
device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). doi:10.1021/
nl904092h

13. Lecerf, G., Tomas, J., Saighi, S.: Excitatory and inhibitory memristive synapses for spiking
neural networks. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1616–1619 (2013). doi:10.1109/ISCAS.2013.6572171

14. Lee, J.H., Likharev, K.K.: Defect-tolerant nanoelectronic pattern classifiers. Int. J. Circuit
Theor. Appl. 35(3), 239–264 (2007). doi:10.1002/cta.410

15. Linares-Barranco, B., Serrano-Gotarredona, T.: Exploiting memristance in adaptive asynchro-
nous spiking neuromorphic nanotechnology systems. In: Proceedings of IEEE Conference on
Nanotechnology, 2009, pp. 601–604 (2009)

16. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coin-
cidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997). doi:10.1126/
science.275.5297.213

17. Masquelier, T., Guyonneau, R., Thorpe, S.J.: Spike timing dependent plasticity finds the start
of repeating patterns in continuous spike trains. PLoS ONE 3(1), e1377 (2008). doi:10.1371/
journal.pone.0001377

18. Masquelier, T., Thorpe, S.J.: Unsupervised learning of visual features through spike timing
dependent plasticity. PLoS Comput. Biol. 3(2), e31 (2007). doi:10.1371/journal.pcbi.0030031

19. Nessler, B., Pfeiffer, M., Buesing, L., Maass, W.: Bayesian computation emerges in generic
cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput. Biol. 9(4)
(2013). doi:10.1371/journal.pcbi.1003037

20. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys.
Rev. E 80(2), 021926 (2009). doi:10.1103/PhysRevE.80.021926

21. Querlioz, D., Bichler, O., Dollfus, P., Gamrat, C.: Immunity to device variations in a spiking
neural networkwithmemristive nanodevices. IEEETrans.Nanotechnol. 12(3), 288–295 (2013)

22. Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural network
immune to device variations. In: Proceedings of the International Joint Conference on Neural
Networks (IJCNN), pp. 1775–1781 (2011)

23. Querlioz,D.,Bichler,O.,Vincent,A.,Gamrat,C.:Bioinspiredprogrammingofmemorydevices
for implementing an inference engine. Proc. IEEE 103(8), 1398–1416 (2015). doi:10.1109/
JPROC.2015.2437616

24. Querlioz, D., Dollfus, P., Bichler, O., Gamrat, C.: Learning with memristive devices: how
should we model their behavior? In: Proceedings of IEEE/ACM International Symposium
Nanoscale Architectures (NANOARCH 2011), p. 150 (2011)

25. Seo, K., Kim, I., Jung, S., Jo, M., Park, S., Park, J., Shin, J., Biju, K.P., Kong, J., Lee, K.,
Lee, B., Hwang, H.: Analog memory and spike-timing-dependent plasticity characteristics of
a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22(25), 254023
(2011). doi:10.1088/0957-4484/22/25/254023

26. Sharad, M., Augustine, C., Panagopoulos, G., Roy, K.: Spin-based neuron model with domain-
wall magnets as synapse. IEEE Trans. Nanotechnol. 11(4), 843–853 (2012). doi:10.1109/
TNANO.2012.2202125

27. Snider, G.: Spike-timing-dependent learning in memristive nanodevices. In: Proceedings of
IEEE International Symposium on Nanoscale Architectures 2008 (NANOARCH), pp. 85–92
(2008). doi:10.1109/NANOARCH.2008.4585796

28. Snider, G.S.: Self-organized computation with unreliable, memristive nanodevices. Nanotech-
nology 18(36), 365202 (2007). doi:10.1088/0957-4484/18/36/365202

http://dx.doi.org/10.1088/0957-4484/24/38/384013
http://dx.doi.org/10.1088/0957-4484/24/38/384010
http://dx.doi.org/10.1021/nl904092h
http://dx.doi.org/10.1021/nl904092h
http://dx.doi.org/10.1109/ISCAS.2013.6572171
http://dx.doi.org/10.1002/cta.410
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.1371/journal.pone.0001377
http://dx.doi.org/10.1371/journal.pone.0001377
http://dx.doi.org/10.1371/journal.pcbi.0030031
http://dx.doi.org/10.1371/journal.pcbi.1003037
http://dx.doi.org/10.1103/PhysRevE.80.021926
http://dx.doi.org/10.1109/JPROC.2015.2437616
http://dx.doi.org/10.1109/JPROC.2015.2437616
http://dx.doi.org/10.1088/0957-4484/22/25/254023
http://dx.doi.org/10.1109/TNANO.2012.2202125
http://dx.doi.org/10.1109/TNANO.2012.2202125
http://dx.doi.org/10.1109/NANOARCH.2008.4585796
http://dx.doi.org/10.1088/0957-4484/18/36/365202


210 D. Querlioz et al.

29. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found.
Nature 453(7191), 80–83 (2008). doi:10.1038/nature06932

30. Suri, M., Bichler, O., Querlioz, D., Traoré, B., Cueto, O., Perniola, L., Sousa, V., Vuillaume,
D., Gamrat, C., DeSalvo, B.: Physical aspects of low power synapses based on phase change
memory devices. J. Appl. Phys. 112(5), 054904–054904–10 (2012). doi:10.1063/1.4749411

31. Suri,M., Querlioz, D., Bichler, O., Palma,G., Vianello, E., Vuillaume,D., Gamrat, C., DeSalvo,
B.: Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron
Devices 60(7), 2402–2409 (2013). doi:10.1109/TED.2013.2263000

32. Vincent, A., Larroque, J., Locatelli, N., Ben Romdhane, N., Bichler, O., Gamrat, C., Zhao, W.,
Klein, J.O., Galdin-Retailleau, S., Querlioz, D.: Spin-transfer torque magnetic memory as a
stochastic memristive synapse for neuromorphic systems. IEEE Trans. Biomed. Circuits Syst.
9(2), 166–174 (2015). doi:10.1109/TBCAS.2015.2414423

33. Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., Wong, H.P.: An electronic synapse device based on
metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron
Devices 58(8), 2729–2737 (2011). doi:10.1109/TED.2011.2147791

http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1063/1.4749411
http://dx.doi.org/10.1109/TED.2013.2263000
http://dx.doi.org/10.1109/TBCAS.2015.2414423
http://dx.doi.org/10.1109/TED.2011.2147791


Erratum to: Novel Biomimetic Si Devices
for Neuromorphic Computing
Architecture

U. Ganguly and Bipin Rajendran

Erratum to:
Chapter “Novel Biomimetic Si Devices for Neuromorphic
Computing Architecture” in: M. Suri (ed.), Advances
in Neuromorphic Hardware Exploiting Emerging Nanoscale
Devices, Cognitive Systems Monographs 31,
DOI 10.1007/978-81-322-3703-7_8

The original version of this Chapter “Novel Biomimetic Si Devices for Neuromorphic
Computing Architecture” was inadvertently published with an incorrect affiliation for the
author Bipin Rajendran. The correct information is given below: Dr. Bipin Rajendran
Department of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ, USA

Theupdated original online version for this chapter can be found atDOI10.1007/978-81-322-3703-7_8

U. Ganguly (&)
Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
e-mail: udayan@ee.iitb.ac.in

B. Rajendran
Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, USA

© Springer (India) Pvt. Ltd. 2017
M. Suri (ed.), Advances in Neuromorphic Hardware Exploiting Emerging
Nanoscale Devices, Cognitive Systems Monographs 31,
DOI 10.1007/978-81-322-3703-7_11

E1

http://dx.doi.org/10.1007/978-81-322-3703-7_8
http://dx.doi.org/10.1007/978-81-322-3703-7_8

	Preface
	Contents
	About the Editor

	Hardware Spiking Artificial Neurons,  Their Response Function, and Noises
	1 Introduction
	1.1 Biological Neurons
	1.2 Neuronal Response Function
	1.3 Neuronal Noises
	1.4 Artificial Neuron Models

	2 Hardware Spiking Neurons
	2.1 Silicon Neurons
	2.2 Emerging Spiking Neurons

	3 Summary and Outlook
	References

	Synaptic Plasticity with Memristive Nanodevices
	1 Introduction
	2 Neuromorphic Systems: Basic Processing and Data Representation
	2.1 Data Encoding in Neuromorphic Systems
	2.2 Spike Computing for Neuromorphic Systems

	3 Synaptic Plasticity for Information Computing
	3.1 Causal Approach: Synaptic Learning Versus Synaptic Adaptation
	3.2 Phenomenological Approach: Short-Term Plasticity Versus Long-Term Plasticity

	4 Synaptic Plasticity Implementation in Neuromorphic Nanodevices
	4.1 Causal Implementation of Synaptic Plasticity
	4.2 Phenomenological Implementation of Synaptic Plasticity

	5 Conclusions
	References

	Neuromemristive Systems: A Circuit Design Perspective
	1 Introduction: Taking a Cue from Nature
	2 Memristor Overview
	3 Voltage Versus Current-Mode Circuit Designs for NMSs
	4 Neuron Circuits: Primary Information Processing Units
	4.1 Input Stage
	4.2 Activation Function

	5 Synapse Circuits: Communication and Memory
	6 Plasticity Circuits: Adaptation/Learning
	7 Summary and Outlook
	References

	Memristor-Based Platforms: A Comparison Between Continous-Time and Discrete-Time Cellular Neural Networks
	1 Introduction
	2 Backgorund
	3 New Memristance Restoring Circuit
	4 Simulation Results
	5 Cellular Automata and DTCNNs
	6 Belief Propagation Inspired Algorithm and Cellular Automaton Equivalence for RGB Image Processing
	7 Element Detection in RGB Image
	8 Conclusions
	References

	Reinterpretation of Magnetic Tunnel Junctions as Stochastic Memristive Devices
	1 Introduction
	2 Magnetic Tunnel Junction Basics
	2.1 Basic Structure of Magnetic Tunnel Junctions
	2.2 Integration and Scaling Potential of STT-MTJs
	2.3 Physical Modeling of Magnetization Dynamics
	2.4 Models About the Statistics of MTJs Switching Delay

	3 MTJs as Stochastic Synapses
	3.1 Example of a Feed-Forward Spiking Neural Network Using MTJ-based Synapses
	3.2 Impact of the Device Properties on the System Operation

	4 Conclusion
	References

	Multiple Binary OxRAMs as Synapses  for Convolutional Neural Networks
	1 Multiple Binary OxRAM Devices as Artificial Synapses
	2 Convolutional Neural Network Architecture
	3 Synaptic Weight Resolution and Tolerance to Variability
	4 Conclusions
	References

	Nonvolatile Memory Crossbar Arrays  for Non-von Neumann Computing
	1 Introduction
	2 Considerations for a Crossbar Implementation
	3 Phase-Change Memory (PCM): Results
	3.1 Experimental Results

	4 Non-filamentary RRAM Results
	4.1 Fabrication of PCMO Devices
	4.2 Simulation Results

	5 Discussion
	6 Conclusions
	References

	Novel Biomimetic Si Devices  for Neuromorphic Computing  Architecture
	1 Motivation
	2 Biological Systems, Computing Algorithms,  and Electronic Hardware Equivalents
	2.1 Synapse
	2.2 Neuron

	3 Conclusions
	References

	Exploiting Variability in Resistive Memory Devices for Cognitive Systems
	1 Introduction
	2 Nanoscale Filamentary RRAM
	2.1 RRAM Resistance Variability
	2.2 Cycle-to-Cycle Variability

	3 Extreme Learning Machine
	3.1 Basics of Extreme Learning Machines (ELM)
	3.2 Proposed OxRAM-ELM Architecture
	3.3 Results

	4 CMOS-RRAM Restricted Boltzmann Machine
	4.1 Restricted Boltzmann Machines
	4.2 Proposed RBM Architecture
	4.3 Results and Discussion

	5 Conclusion
	References

	Theoretical Analysis of Spike-Timing-Dependent Plasticity Learning  with Memristive Devices
	1 Introduction
	2 Spike-Timing-Dependent Plasticity and Expectation-Maximization
	2.1 Simplified STDP
	2.2 Connection with Expectation-Maximization

	3 Impact of Device Physics
	3.1 Cumulative Memristive Synapses
	3.2 Stochastic Synapses

	4 Robustness of STDP Learning
	5 Conclusion
	References

	11 Erratum to: Novel Biomimetic Si Devices for Neuromorphic Computing Architecture
	Erratum to: Chapter “Novel Biomimetic Si Devices for Neuromorphic Computing Architecture” in: M. Suri (ed.), Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices, Cognitive Systems Monographs 31,&#6;DOI 10.1007/978-81-322-3703-7_8




