
Chapter 21
The Method of Least-Squares

D.D. Kosambi, Poona

The English version of this paper appeared two years after the Chinese “original.”
During the 1950s and early 1960s, DDK visited China several times on exchange
programs. This paper was probably written when he visited the Academia Sinica on
an exchange program between India and China as an expert in statistics from TIFR
[DDK-JK]. This was a visit of several months, ample time for DDK to write his paper
and have it translated into Chinese.

This note begins with a discussion of possible metrics in probability spaces asso-
ciated with independent random variables; the Euclidean metric (in suitable coordi-
nates) turns out to be the only one admissible. The method of least squares is known
to be derived from such a concept of distance. In the second section, a unique least-
squares solution is derived for general linear systems of equations in abstract spaces
even when there may be no proper solution in the usual sense, the two coinciding
when the ordinary solution exists. This is of considerable importance for diffusion
theory and the integral equations for atomic energy piles. The final section gives a
sketch of the extension to general nonlinear systems of equations.

1. We start with a system of measurable sets called “simple events” such that the
adjunction of the “compound events” obtained by set addition and set multiplication
gives an aggregate of measurable Borel sets constituting a Boolean set algebra. The
union A ∪ B of two sets is the compound event “A or B”; the intersection A ∩ B
is the compound event “A and B (simultaneously)”; the operational laws for the
dual operations “cap” = ∩ and “cup” = ∪ being as usual in Boolean algebra, which
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contains the null set O and the universe I . The probability measure is regulated by
the postulates [1]:

P(I ) = 1. (21.1a)

P(A) ≥ P(B) if A ∪ B = A, i.e., if A ⊃ B. (21.1b)

If A ∩ B = O, P(A ∪ B) = P(A) + P(B). (21.1c)

Taking A = I , B = O in Eq. (21.1c), it follows that P(O) = O . With (21.1a)
and (21.1b), this gives O ≤ P(A) ≤ 1 for all sets of the ensemble. Finally, seeing
that A ∪ B is the union of three mutually non-intersecting sets (A − A ∩ B), A ∩
B, (B − A ∩ B), we obtain the general result:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) . (21.2)

This could have been substituted for the third postulate in (21.1a, 21.1b and 21.1c)
with the addition of P(O) = O . The events are to be regarded as reduced modulo,
the ideal of all sets withmeasure zero. The restriction to Borel sets, though not always
necessary, permits infinite repetition of the two operations ∪, ∩.
Definition Two events A, B such that A ∩ B = O are called mutually exclusive.
Non-null events A1, A2, . . . An . . . such that P(Ai ∩ A j ∩ Ak . . .) = P(Ai )P(A j )

P(Ak) . . . for any finite section i, j, k . . . are called mutually independent events.

It follows that twomutually exclusive events cannot be mutually independent, nor
can two events one of which wholly includes the other; these are the extreme case
of zero and unit conditional probability, always omitting from the classification the
trivial extremes, O, I . Starting with any simple event of the algebra, we can build
an ordered maximal chain of such simple events, with O and I at the two ends,
each event of the chain including all preceding members and being included in all
that follow, while no other simple event of the algebra outside the chain has this
property, with respect to all sets of the particular chain. We consider hereafter only
such Boolean probability algebras whose simple events can be split up into a finite
number of maximal chains, every event of each chain being independent of every
event in any other chain.

In the first place, each such chain can be mapped upon the real line segment
(0, 1) by the correspondence A → [O, P(A)]. But we need also a map on the whole
real axis −∞ ≤ x ≤ +∞, which is connected with the (0, 1) measure map by a
distribution function F(x), which is monotonically non-decreasing, with F(−∞) =
0, F(+∞) = 1. Any set A of the chain can be mapped upon the interval (−∞, α) on
the line such that F(α) < P(A) if x < α, while F(a) = P(A). Using one dimension
for each such ordered chain, we map the Boolean algebra upon an n-dimensional
continuum (x1, x2 . . . xn), where the image of a simple event is a section from−∞ to
+∞ in all dimensions except one, where the section extends only from−∞ to α. The
measure image on the unit hypercube is the rectangular parallelepiped of side unity
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in all except one dimension, where the side is the interval [O, P(A)]. Compound
events are derived from these by set union and set intersection.

Theorem 1 If an n-dimensional probability space be associated with a Boolean
algebra of events such that each dimension represents a chain of events independent
of all the others, and if the space is endowed with a Riemann metric plus a measure
function which give a true map upon the unit hypercube, then the metric can only be
Euclidean.

Proof For the Riemann metric, ds2 = �gi j dxi dx j . The measure of any
k-dimensional event in the x-space is given, for 1 ≤ k ≤ n by an integral of
the form

∫
fk(xi1 , . . . , xik )

√|gi j | dxi1 . . . dxik . But if the region be the compound
event A1 ∩ A2 ∩ · · · ∩ Ak , it follows that the integral must break up into a prod-
uct of k separate integrals for all k ≤ n. Therefore, any principal minor as well as
the whole determinant |gi j | must reduce to a product of diagonal terms: g11(x1)
g22(x2) · · · gnn(xn), and correspondingly for each of its principal minors. The mea-
sure function f , essentially the derivative of the distribution, assumed to exist and
be continuous, will similarly break up into a product of factors, but that is of
lesser interest here. It is clear that the cross terms of the tensor gi j all vanish, with
ds2 = g11(x1)dx2

1 + g22(x2)dx2
2 + · · · + gnn(xn)dx2

n . The gii are positive from the
hypothesis of positive measure for any chain (we need not invoke the positive defi-
nition form of the metric here), permitting a transformation of coordinate variables
defined by dx ′

r = √
grr dxr . These are the Euclidean coordinates of the space. �

We have two simple corollaries:—

Corollary 1 If the space of n random variables be endowed with a Riemann metric
and a measure (distribution density) function which permit the original random vari-
ables to be replaced by n independent random functions thereof, then the curvature
tensor of the original space must vanish, the space being Euclidean.

The new variables amount simple to a non-singular transformation of coordinates.
But there, the space will have the Euclidean coordinates of the preceding theorem;
hence its curvature tensor will vanish in both coordinate systems. For the second
corollary, we need a topological result, [2] that a Riemann metric exists when the
space may be covered by neighborhoods such that each pair of points may be joined
by one and only one arc (lying wholly within the neighborhood) of a previously
defined class which we may call paths. Then, for any compact portion of the space
that can be so covered, a Riemann metric can be assigned whereof the given paths
are actually the geodesics. In the present case, we have one compact space, namely
the unit hypercube, to which the result may be applied, working back to the original
space if the f function is continuous, giving us:

Corollary 2 If the space of random variables is only endowed with a continuous
measure density function, and a set of continuous paths with the property that any
two points sufficiently close have a unique path join, then the space also possesses a
Riemann metric, hence is Euclidean if the concept of independent random variables
is applicable by suitable transformation.
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With Euclidean space, if the compound probability density function of several
independent randomvariables depends only upon the distance, it follows immediately
that the distribution of each variate must be normal (Gaussian) [3]. From this to the
usual motivation of least squares is only one step, for the best approximation to
the population mean from a sample is that which minimizes the sampling variance,
which is a sum of squares (the distance, in fact, to a hyperplane), hence the arithmetic
mean.

2. We deal throughout with real variables, though the extension to complex or other
number systems causes little difficulty. The system of m linear equations in n < m
real variables

n∑

j=1

Ai j x j − yi = 0 ; i = 1, 2, . . . , m > n (21.3)

has no solution in general. But it has always a least-squares solution minimizing

m∑

i=1

⎛

⎝
n∑

j=1

Ai j x j − yi

⎞

⎠

2

, (21.4)

thereby, specifying the values of x as solutions of the n equations:

n∑

r=1

Ckr xr − zk = 0 , Ckr =
m∑

q=1

Aqk Aqr , zk =
m∑

q=1

Aqk yq . (21.5)

Here, every free index runs through the values 1, 2, . . . , n. The system (21.5) has
a unique solution in general, coinciding with the exact solution of (21.3) should
those equations be compatible. Clearly, we can take formal passage to the limit to
an integral equation of the first kind:

∫
A(s, t)x(t)dt = y(s) , (21.6)

and to other general linear systems. This is the work of the present section, regardless
of probability considerations.

We begin with a vector space V over the field C of all real numbers, the elements
x, y, · · · being in V and constants a, b · · · in C give ax + by + · · · also in V . We
further require a symmetric bilinear scalar product x · y as a mapping of V × V into
C , with the properties: x · y = y · x , and x · (ay + bz) = a(x · y) + b(x · z). This
leads to a quadratic norm x · x of which we demand that x · x = 0 if and only if
x = 0, which amounts to reduction of V with respect to elements of zero norm. We
shall assume that V is complete with respect to convergence in the norm. The usual
condition that the norm be positive is easily imposed, for it must always be of the
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same sign. If there were two distinct elements x, y with x · x > 0, y · y < 0, the
quadratic in λ : (x + λy) · (x + λy) = 0 would have real roots, giving an element
with vanishing norm, of the form x + λy. But this cannot be zero identically, for then
x · x = λ2(y · y), which is impossible because the two norms had initially opposite
signs. Hence, the norm must always have the same sign, and there is no loss of
generality in taking it always positive.

We avoid the trivial cases where V contains only the element 0, or only multiplies
of a single element φ. Two nonzero elements φ,ψ are defined as orthogonal if their
scalar product vanishes: φ · ψ = 0, while an element with unit norm (always to be
had by multiplication with a suitable constant) is called normal. The assumption is
that V has an orthonormal basis φ1, φ2, . . . φn, . . . not necessarily finite, but (by the
Hilbert theorem) at most denumerable, and that the Riesz–Fisher theorem applies
so that with any convergent �a2

r , there always exists a function in V represented by
�anφn; this is necessary for the completeness of the space, which we have assumed.

To correspond to the matrices in (21.3), we need two-sided linear associa-
tive operators S, T, . . . defined over V , i.e., T x and xT ⊂ V for all x ⊂ V ; with
(ax + by)T = a(xT ) + b(yT ), T (ax + by) = a(T x) + b(T y). For xT , we shall
also write T ∗x , the adjoint of T . This adjoint is governed by the operational rule:
(T ∗)∗ = T . If we define the operator product ST by (ST )x = S(T x), with x(ST ) =
(x S)T , it follows that ST x = S(xT ∗) = (xT ∗)S∗, whence (ST )∗ = T ∗S∗, the star
operation for the adjoint of these linear operators thus satisfying four of the basic pos-
tulates for a C∗ algebra in the sense of Gelfand and Neimark. We may write SxT for
S(xT ) = ST ∗x = xT S∗ = T ∗x S∗, according to convenience, without confusion.
The scalar product x · (T y) is similarly abbreviated xT y = yT ∗x , at will.

Using the orthonormal basis for V , it is seen that the T operation amounts to a
linear matrix transformation for the coordinates (Fourier coefficients) of an element.
All operations may be visualized and theorems proved by use of the matrix represen-
tation. For Hilbert spaces (vector spaces with infinite basis), the argument has to be
restricted in general to such operators as may be separated into two additive portions
of which one is finite dimensional, the other with arbitrarily small norm. That is, the
operators must be bounded: (T x) · (T x) ≤ M(x · x) for all x ⊂ V , M depending
only upon T . We shall deal only with non-singular bounded operators, and remark
that a symmetric operator such that T = T ∗ has always a real spectrum. To each T ,
there correspond always the two symmetric operators T T ∗ and T ∗T , of which the
latter is assumed to have a discrete spectrum for our main result.

The entire least-squares procedure rests upon the following [4]

Lemma The orthonormal portion of V which does not lie in T V is mapped into
zero by T ∗ that is, T ∗(V − T V ) = 0.

Proof If the transformed space T V is the whole of V , the result is trivially true. If
not call V̄ , the orthonormal component of V not in T V . The generic scalar product
of a function in V̄ and another in V is V̄ T V = V T ∗V̄ . By hypothesis, this scalar
product is zero, which means that every element in the whole of V is orthogonal
to every element in T ∗V̄ , which is impossible, except when T ∗V̄ = 0, proving the
lemma. �
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The main least-squares equation now takes the form

T x − y = 0 (21.7)

with T, y given, x to be found.
This need not have a solution at all, as T x lies necessarily in T V , while the given

y may have a component outside T V . The norm of the left-hand side is

(T x − y) · (T x − y) ≡ xT ∗T x − 2(xT ∗y) + (y · y) . (21.8)

Tominimize this, give a variation to x , replacing x by x + δx . Subtracting the original
value in (21.8) from the varied value gives

2δx · (T ∗T x − T ∗y) + (T δx) · (T δx) . (21.9)

The coefficient of δx is equated to zero for a minimum as usual, for the remainder is
positive, while we take the norm of δx as tending to zero. This gives us the following:

Theorem 2 The least-squares solution of T x − y = 0 is given by

T ∗T x − T ∗y = 0 . (21.10)

Our lemma T ∗(V − T V ) = 0 makes the solution possible. Naturally, there are some
simple restrictions upon the operator in question. In terms of eigenfunctions and
eigenvalues, these give Picard’s solution [5] of integral equations of the first kind and
the corresponding least-squares solution, which may be subsumed in the following:

Theorem 3 The least-squares solution of T x − y = 0 exists if and only if
�(φnT ∗y)2/λ4

n converges, where φn and λ2
n are the eigenfunctions and eigenvalues

respectively of T ∗T φ − λ2φ = 0. In particular, if the orthonormal set {φn} furnish
a basis for V , we have the exact solution (for that portion of V in which y lies).

The proof is as follows: The non-singular operator T ∗T leaves the origin invariant
in V , hence by continuity maps some portion of V on to some neighborhood of O , in
the map space T ∗V . We (assume the operator T ∗T to have a discrete spectrum, and)
expand T ∗y in terms of the eigenfunctions. The lemma above says that T ∗y cannot
be orthogonal to all these eigenfunctions without vanishing identically, while the
condition of the theoremmerely requires T ∗y to lie in the transformed neighborhood
of the origin.

The result is independent of the norm. That is, our norm was best taken with
respect to the identity, the symmetric operators x I = I x = x for all x ⊂ V . Anyother
symmetric operators may be used for the least-squares norming provided SV = V ,
and x Sx = 0 if and only if x = 0. The result is of great use in the solution of integral
equations when nothing is known about the closure of the eigenfunctions of the
particular kernel.
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3. The square sum (21.4) of the linear equation (21.3) amounts to the sum ofweighted
squares of distances from a generic point (x) to the various hyperplanes. The same
idea can be extended, therefore, to nonlinear hypersurfaces. We look for the point
or points from which the sum of squares of distances to a given set of (weighted)
hypersurfaces is minimum, which is included in the set of points where the distance
sum is stationary and which is all we shall investigate without insisting upon a true
minimum. The geometric picture tells us that the point sought is common to all
the surfaces if they have a common interesection, or that point which lies on the
intersection of normals to each of the surfaces. In mathematical notation, let the
surfaces be:

f1(x1, x2, . . . , xn) = c1, f2(x) = c2, . . . fm(x) = cm ; m > n . (21.11)

The point sought is the solution of the equations:

∂ F

∂x
= 0 ,

∂ F

∂u
= 0 ,

∂ f

∂v
= 0 , (21.12)

where

F ≡
∑

i

(xi − ui )
2 + (xi − vi )

2 + · · · + λ1 f1(u) + λ2 f2(v) + · · ·

and the unindexed letters x, u, v . . . each represent the set of n variables, the index
being understood, even in the partial differentiation. This is Lagrange’s method of
multipliers leading to two sets of equations:

xi =ui + vi + · · ·
m

(21.13a)

2(xi − ui ) − λ1∂ f1
∂ui

=0 , 2(xi − vi ) − λ2∂ f2
∂vi

= 0 , . . . (21.13b)

These lead to compatibility conditions:

λ1∂ f1
∂ui

+ λ2∂ f2
∂vi

+ · · · = 0 ; i = 1, 2, . . . , n , (21.14)

which merely reflects our previous lemma T ∗(V − T V ) = 0 in the total extended
space. For linear equations, the process is as before, and for the general case, the
extension is fairly clear.

We beginwith an abstract vector space V such that x ⊂ V . This V is extended over
a variety which was formerly a finite Abelian group and may for the present be taken
as an indexed variety. The extension is then indicated by Vα , with variables uα ⊂ Vα .
The α-space has to be compact, with an abstract integral whichwe shall denote by�α

and which has the properties of a Lebesgue–Stieltjes integral, while �α1 = M . The
scalar product is defined over the extended space as �α(x − uα) · (x − uα). Finally,
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f (x) is a general operator, mapping x into the real field, fα(u) being the (suitably
but completely defined) extended operation, understood as fα(uα).

We need further the generalized partial differentiation, which is defined as the
infinitesimal operator of the (Abelian) Lie group in the space of f (x) when the
base space of x undergoes a translation x → x + h; the Lie group is generated by
the usual exponential representation, which leads to a Lie-Taylor series expansion
which is the formal representation, and in the analytic case converges to give an
exact representation. Our nonlinear functional operators f need not be analytic nor
even arbitrarily differentiable, for they may be approximated by such at need; but
the f -operators must at least be continuous in the first derivative for the analogue
of (21.12) to be valid. By introducing an orthonormal basis and coordinates for V ,
the partial derivative becomes just the ordinary partial derivative in the coordinates;
generically, we represent this by f ′. The results are then summed up as follows:

The least-squares solutions of the simultaneous projections fα(x) = 0 are given
by x = (1/M)�αuα , provided the extended variables uα satisfy

λα f ′
α(uα) =

(
1

M

)

�αuα − uα . (21.15)

The λα and uα being so chosen as to further satisfy fα(uα) = 0.
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