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Preface

Damodar Dharmananda Kosambi1 was a man of many parts: phi beta kappa scholar
and Harvard graduate, mathematics professor, historian, archaeologist, epigraphist,
polyglot, numismatist, Sanskritist, Indologist, and Marxist: the list of his identities
and his personæ is a long and varied one. Over a period of a little over 35 years,
Kosambi built a reputation as a major (if somewhat maverick) thinker of modern
India, and this reputation has largely remained intact over the years. Widely
regarded as one of the founding figures of contemporary Indian historiography,
Kosambi quantified numismatics and used statistical inference to inform the study
of Indian history [1]. His contributions to Indology and the study of prehistory have
been fundamental, and his translations of the poetry of Bhartrhari [2] are consid-
ered definitive.

As it happens, while the historian, Indologist, and numismatist Kosambi has
been written about and his articles and papers in those areas have been published in
collections [3] and celebrated, much less has been done with regard to his contri-
butions to mathematics and statistics. This is surprising for at least two reasons.
Kosambi was first and last a mathematician in that his first independent paper and
his last-known academic contribution were both in mathematics. Indeed, mathe-
matics was the one constant and consistent preoccupation of his professional life: he
says as much in the epilogue to his posthumously published autobiographical essay
[4]. DDK’s first paper2 [DDK1] was written when he, then 22 years of age, was
temporarily at the Banaras Hindu University in 1930, and his final work, a
monograph on prime numbers [5], was submitted to publishers very shortly before
his death at the age of 59, in 1966. It can be argued that his major contributions in
other areas were moulded by his knowledge and style of mathematics—whether the

1For convenience, I will henceforth use just the surname Kosambi or the initials DDK. Other
abbreviations used frequently are American Mathematical Society (AMS), Mathematical Reviews
(MR), International Mathematical Union (IMU), Journal of the Indian Society of Agricultural
Statistics (JISAS), Riemann hypothesis (RH), and Tata Institute of Fundamental Research (TIFR).
2These papers of DDK are numbered 1 through 67 and are distinguished from the other references
by the initials preceding the paper number. See the bibliography on pages xv–xix.
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creation of numismatics as a form of historiography through the extensive statistical
analysis of large hoards of coins or his deduction of the probable location of the
Karasambhale caves [6] through a combination of estimation and logic.

Most scholars who have been influenced by the historical writings of Kosambi
are acquainted with a lesser extent with the nature and range of his mathematical
contributions [7]. This is mainly a domain issue: as a field, mathematics and history
are perceived as separated by a major cultural divide, and there is a general (and
reasonable) feeling that the mathematics would be too difficult to understand by any
but a trained mathematician. Ironically, Kosambi had in his lifetime experienced the
same reaction from the other side—his scientist colleagues at the TIFR had also not
appreciated the nature and the extent of his contributions to Indology and the study
of Indian history.

Kosambi’s intellectual legacy needs to be considered in its totality; the mathe-
matics is integral to his thinking and analysis and cannot be seen as separate from
the work in numismatics or, for that matter, history. DDK wrote about 65 papers
that were of a mathematical or statistical nature [7]. Some articles were pedagogic
expositions rather than original contributions, and some were multidisciplinary in
the sense that they integrated linguistics or numismatics along with the mathematics
or statistics. Two were the same work in two languages, Chinese [DDK56] and
English [DDK59]. In addition, there were original contributions in German [DDK7]
and French [DDK5, DDK20, DDK21, DDK42, DDK45], and one of his papers had
been translated into Japanese [DDK22]. He wrote at least two mathematical
monographs, but regrettably, these never appeared in print, and the manuscripts of
both of them are lost. Towards the end of his life, he published two articles
[DDK60, DDK64] in the Journal of the Indian Society of Agricultural Statistics that
tangentially implied that he had a proof of the Riemann hypothesis. These articles
contained an incomplete and flawed approach to this very fundamental mathe-
matical problem; the damage that they caused to his reputation as a serious
mathematician was irreparable and irreversible.

Details of Kosambi’s professional life are well known and bear only a limited
retelling [8]. On completing his BA (summa cum laude) at Harvard, Kosambi had,
for a complex combination of reasons, to return to India in 1929. He took up a
position at the Banaras Hindu University teaching mathematics and gave (optional)
German classes on the side [6]. Although he started doing some research in
mathematics at BHU, he was soon persuaded to move to Aligarh Muslim
University to join a department of mathematics headed by the French mathemati-
cian André Weil. It was here that Kosambi first earned a place in the history of
mathematics. His paper, On a generalization of the second theorem of Bourbaki
[DDK2], was written at the provocation of Weil, as “a parodic note passed off as a
serious contribution to a provincial journal” [9], the Bulletin of the Academy of
Sciences, U. P. [10]. The incident remains somewhat mysterious; according to
Weil, Kosambi was having problems with a colleague, and he (Weil) suggested this
prank, to name a theorem after a fictitious Russian author. Whether or not this paper
deflated the recalcitrant colleague’s ego is not clear, but nevertheless, this paper
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of Kosambi marks the first occurrence of the name of Bourbaki in the published
literature [11].

Kosambi lasted 2 years in Aligarh before moving back to Pune, to Fergusson
College where he stayed until 1945. In this time, he first built up a reputation as a
serious mathematician, serious enough that he was elected to the Indian Academy
of Sciences by C.V. Raman in 1935 who also probably nominated him for the
Ramanujan Medal of the Madras University in 1934. He had started a study of the
area he termed “path–geometry” [12] that was to occupy him for several decades
subsequently. A note on the trial of Socrates appeared in the magazine of Fergusson
College in 1939, marking his initial professional foray outside mathematics. In
1940, this was followed by The emergence of national characteristics among three
Indo-European people [13] in the Annals of the Bhandarkar Oriental Research
Institute. By this time, he had also begun his careful analysis of the weights of
ancient coins—the first publication on this topic also dates to 1940—and marks the
start of his use of quantitative methods in historical analysis.

The years of World War II saw DDK at his creative best. Between 1939 and
1944, he published 35 articles including two papers he wrote in 1943–1944 which
brought him considerable renown. One that appeared in the Journal of the Indian
Mathematical Society, Statistics in function space [DDK36], is a method for
decomposing an arbitrary signal into its significant components, a technique termed
the principal value decomposition. Today, this is known as the Karhunen–Loève
expansion, although both Karhunen and Loève did their work only later, in 1947
and 1948, respectively. It is regrettable that Kosambi’s work was not followed up
either by him or by others (although it was reviewed in Mathematical Reviews).
The second contribution is in his 1944 paper in the Annals of Eugenics [DDK37].
This work in genetics, on what is termed the map distance, quantifies the genetic
similarity in terms of the recombination frequency of linked genes. At the time
when DDK did the work, his knowledge of genetics was probably minimal, and the
structure of DNA was itself largely unknown. Nevertheless, Kosambi provided an
interesting and useful method to estimate the map distances from recombination
values and this work continues to be used and cited even to this day.

In 1945, DDK left Fergusson College to move to the newly established Tata
Institute of Fundamental Research (TIFR) in Bombay following an invitation from
the founding director, Homi J. Bhabha, to help establish a School of Mathematics.
This remained his address for the next 16 years, although his increasingly mean-
dering intellectual interests, his personal politics, his mathematical obsessions, and
his personal angularities all combined to make his tenure at the TIFR a fraught one.

The relationship between Bhabha and Kosambi started off on a cordial note.
Bhabha was responsible for having DDK elected president of the Mathematics
Section of the Indian Science Congress that was held in Delhi in early 1947 where
he gave his presidential address on “Possible applications of the functional calcu-
lus” [DDK44], a summary of his ideas on function spaces and the proper orthogonal
decomposition [14]. Bhabha also helped arrange a year’s visit to the USA for DDK.
He gave a course of lectures on tensor analysis at the University of Chicago
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and also spent time at the Institute for Advanced Studies in Princeton as well as
Harvard and MIT in Cambridge.

As his interests in historical analysis increased in the 1950s, DDK’s mathematics
inevitably slowed down. He travelled to the Soviet Union and China during this
period and wrote on a variety of social issues. All these activities were at variance
with the TIFR ethos; Bhabha, who was attempting to build a first-class research
establishment in nuclear science and mathematics, had little time to indulge DDK in
these pursuits. Towards the end of the 1950s, Kosambi started working on the
Riemann hypothesis. He published two papers offering a proof of this problem, in
the Indian Journal of Agricultural Statistics [DDK60, DDK64]. The motivation for
his foray into this work remains unknown since his approach, a probabilistic one,
does not evolve out of his earlier work. At any rate, his choice of the journal and the
scale of his claim (since the Riemann hypothesis remains unproven today) exposed
him to ridicule, both professionally and in person. Mathematicians who knew
Kosambi speak of this phase of his life with a distinct air of embarrassment.

The relationship with Bhabha soured, and DDK’s contract with the TIFR was
not renewed after 1962, making Kosambi one of the very few people to have
effectively been fired by the Tata Institute of Fundamental Research. Between 1962
and 1964, DDK was without a formal position although he published papers both in
and outside mathematics. Peculiarly, he wrote four of these under the pseudonym
S. Ducray [DDK62, DDK63, DDK65, and DDK66]. In 1964, he was appointed a
CSIR emeritus professor attached to the Maharashtra Vidnyanvardhini in Pune, a
position he held until his death in 1966.

There remain important gaps in writings by or on DDK that need to be filled in
the order that an accurate picture of the evolution of his intellectual framework can
be drawn. His extensive correspondence with Professor and Mrs. R.J. Conklin
between 1930 and 1948, friends of him from his undergraduate years at Harvard, is
only partly available. The TIFR correspondence is on record, and the details of the
relationship with Bhabha that started out so cordially and ended in so much acri-
mony that DDK could not bring himself to be generous even after Bhabha died are
again well enough known but incompletely analysed. A series of letters exchanged
between Divyabhanusinh Chavda and DDK in his final and very bitter years remain
essentially unknown. Some of these gaps are being addressed, most recently in
Unsettling the Past, a collection of essays by and on Kosambi [15].

The present volume brings together the complete bibliography of the mathe-
matics papers of DDK, along with other essays on and by Kosambi. This preface
gives a general background, summarizing an earlier essay that was published in the
Economic and Political Weekly [8]. Part I of this book contains an introductory
essay, A Scholar in his Time, which analyses the mathematical development of
Kosambi and attempts to situate his contributions in context. This is a reproduction
of [16] with small modifications and is followed by selected essays by DDK that
help give a perspective on the many strands of thought that he integrated into his
work. The autobiographical Adventures into the Unknown [4] has appeared in part
in several collections as Steps in Science [17], but the essay, On Statistics, is not
widely known. In the war years, when Kosambi was teaching at Fergusson College
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in Poona in his most intellectually fertile period, he made several interesting
mathematical contributions that were in part responsible for his being invited in
1945 to the newly formed Tata Institute of Fundamental Research in Bombay, to
help its director, Homi J. Bhabha, to nucleate the School of Mathematics. Also
around that time, he received a small grant from the Tata Trust, and the report that
he submitted to them and which is reprinted here reveals a side of him that is not
evident in his publications. He worked on a diverse set of problems more or less
simultaneously, was meticulous in his accounts, and was frugal as well.

Reprinted in Part II are some of the most significant papers written by Kosambi
between 1930 and 1964, in particular, those that contributed to his reputation as well
as those that were responsible for its loss. The selection of papers and the essays that
are reprinted in this book are each accompanied by an introductory paragraph.
Part III contains a listing of DDK’s papers in languages other than English. Three
of these, in German, French, and Chinese, respectively, are reprinted. The articles
that are not reproduced here are available at the repository of the Indian Academy of
Sciences, Bangalore. Along with the personal papers of Kosambi that are now
available in the Nehru Memorial Museum and Library, these various resources can
only help complete the mosaic of a complex and very gifted scholar.

New Delhi, India Ramakrishna Ramaswamy
June 2016

Note to the Reader

This volume includes both published papers in mathematics and statistics, as well
as essays and commentaries. The footnotes and citations in each of these come in
several styles.

• DDK’s papers are listed on pages xv–xix. They are cited as [DDK1], [DDK2],
etc. throughout the book.

• For biographical information, I have relied to a great extent on Chintamani
Deshmukh’s Damodar Dharmanand Kosambi: Jivan ani Karya (The life and
Work of D.D. Kosambi), Mumbai: Granthali, 1993. This was first published in
Marathi and subsequently translated into English by Suman Oak, and several
versions are freely available online. This is referred to as [DDK-JK] where cited
in the commentaries to the papers.

• For each of DDK’s published papers that has been reprinted here, the references
and footnotes appear within the article. Attempts have been made to remain
faithful to the originals.

• References cited in the Preface are listed on the following pages. References in
the essays and commentaries in Part I are collectively listed on pages 41–45.
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Part I
Essays on and by D.D. Kosambi



Chapter 1
A Scholar in His Time

“Kosambi introduced a new method into historical scholarship, essentially by appli-
cation of modern mathematics.” Bernal [1], who shared some of his interests and
much of his politics, summarized the unique talents of DDK in an obituary that
appeared in the journal Nature (London), adding, “Indians were not themselves his-
torians; they left few documents and never gave dates. One thing the Indians of all
periods did leave behind, however, were hoards of coins. […] By statistical study of
the weights of the coins, Kosambi was able to establish the amount of time that had
elapsed while they were in circulation …”

Today, the significance of Kosambi’s mathematical contributions [2] tends to be
underplayed, given the impact of his scholarship as historian and Indologist. His
work in the latter areas have been collected in several volumes [3] and critical com-
mentaries have appeared over the years [4], but his work in mathematics has not been
compiled and reviewed to the same extent [5–8]. Indeed, a complete bibliography is
not available so far in the public domain [2]. This asymmetry is unfortunate since,
as commented elsewhere [5], an understanding of Kosambi the historian can only be
enhanced by an appreciation of Kosambi the mathematician.

There are several contributions that he is known for, some of which like the
Kosambi–Cartan–Chern (KCC) theory [9] carry his name, and some like the
Karhunen–Loève expansion [10] that do not. The Kosambi mapping function in
genetics [DDK37] continues to be used to this day [11], but the path geometry that
he studied for much of his life [12] has not found further application. DDK’s final
years were mired in controversies, both personal and professional. His papers on the
Riemann hypothesis (RH) [DDK60, DDK64] brought him a great deal of criticism
and not a little ridicule, while his personal politics put him in direct conflict with
Homi Bhabha and the Department of Atomic Energy (DAE). These contributed to
his eventual and somewhat ignominious ouster from employment at the Tata Insti-
tute of Fundamental Research. Although it was a contrary position to hold at the
TIFR at that time, his early and passionate advocacy of solar energy was practical
and based on sound scientific common sense. In some of his arguments, he seems
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4 1 A Scholar in His Time

even somewhat Gandhian and indeed, the essential validity of Kosambi’s argument
remains to this day [13].

DDK was just about 23 years old when he returned to India and took up a temporary
position at Banaras Hindu University with a BA (summa cum laude) from Harvard.
A year later he had moved to the Aligarh Muslim University where he was appointed
in the Mathematics Department at the suggestion of Weil [14] who was then already
well known as a mathematician and as a prodigy, and who had been invited to the
AMU by Syed Ross Masood, the vice chancellor at the time.

Although Weil did not last long in Aligarh, his influence on Kosambi was consid-
erable. In addition to giving him the position and encouraging him on the matter of
the Bourbaki prank, Weil helped DDK forge early mathematical links with, among
others, Vijayaraghavan [15] and Chowla [16]. He undoubtedly influenced his taste
on mathematics, possibly sparking DDK’s interest in the Riemann hypothesis. Weil
would, in the early 1940s, make important contributions to this field [17], although
when DDK turned to it almost thirty years later [DDK60] his efforts were to come
a cropper. Weil spent the summer of 1931 in Europe and upon his return to Aligarh,
he found that not only had his own position been compromised, but the group of
mathematicians that he had put together had also fragmented, with Vijayaraghavan
having moved to take up a professorship in Dacca [18]. By early 1932, Weil had
returned to Europe, and DDK was to leave Aligarh soon thereafter.

Kosambi started his independent work in Aligarh, choosing the area of path-
geometry, a term he coined, submitting his papers to leading European jour-
nals [DDK3, DDK5, DDK7, DDK8]. The paper that was sent to Mathematische
Zeitschrift was also communicated to Élie Cartan who was inspired enough by the
result to write a detailed commentary that was published [DDK8] as a note imme-
diately following DDK’s paper in 1933. Along with a later paper by the Chinese
mathematician, Chern [19], these three works constitute what is now termed the
KCC-theory, a topic that has, in recent years, found new applications in physics and
biology [9]. (Some years later, in 1946, Kosambi tried to have Chern invited to visit
India when he was at the TIFR but nothing came of it given the complexity of the
political situation both in India and in China at that time [20].) DDK wrote many
papers on path geometry, and in the mid-1940s summarized his work in a manuscript
that was submitted to Marston Morse at the Institute for Advanced Study in Prince-
ton. In a letter [21] to Bhabha he says, “The book on path geometry will, according to
a letter from Morse, appear in the Annals of Mathematics Studies, Princeton.” This
book was never published—indeed very few books in this series were published in
the post-war years between 1945 and 1948. Efforts to locate a copy of the manuscript
in the Morse archives have proved fruitless [22]. DDK makes reference to a second
copy of the manuscript that he gave to Bhabha, but that copy has not been located
either.

The Nobel laureate, C.V. Raman, had visited Aligarh in 1931 as member of a
selection committee, and although there is no specific record of his having met
Kosambi, his subsequent actions suggest that he quickly gathered, either directly or
indirectly, a very high opinion of DDK. In 1934 when Raman founded the Indian
Academy of Sciences in Bangalore, he elected Vijayaraghavan and Chowla. The very
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next year Kosambi was elected to the IASc at the age of 28, when his mathematical
œuvre was slight, and along with others such as P.C. Mahalanobis and V.V. Narlikar.
Kosambi was one of the younger of the Founding or Foundation Fellows (namely
those elected in 1934 and 1935). Since the initial election to the Academy was almost
entirely his decision, the estimation that Raman had of Kosambi’s scholarship or of
his potential must have been considerable. It is possible that Vijayaraghavan may
have played some role in this early recognition [23], and it is also likely that the award
of the first Ramanujan Prize of the Madras University in 1934 to S. Chandrashekar,
S. Chowla and DDK [24] would have favourably impressed Raman. As it happened,
in later years, Kosambi was privately and publicly very critical of Raman’s style of
functioning [25].

This early recognition, however, stood him in good stead. He published a couple
of papers in the Academy journal, Proceedings of the Indian Academy of Sciences
in 1935 (and not again until the 1960s when, as S. Ducray, he published two more).
Reviews of his papers in other journals began to appear inCurrent Science, the general
science journal started by Raman, in addition to original articles that he chose to
publish in this journal as well. Indeed, his initial papers on the quantitative approach
to numismatics [DDK23, DDK24, DDK31, DDK33] all appeared inCurrent Science.

1.1 Reviews and Commentaries

One of the early references to the work of DDK on numismatics that was brought
to the attention of readers of Current Science was a review in 1941 [26] by K.A.N.
(this was probably the well-known historian K.A. Nilakantha Sastry) of two papers
by Kosambi in the New Indian Antiquary [27]. By this time, DDK seems to have
been well established as an eminent mathematician. While generally admiring of
the work, KAN comments on a number of DDK’s characteristics: the use of “hard
phrases” in his critique of the methods used by others, his exposure “of the hollowness
of much pseudo-expertise that has held the field,” etc. Nevertheless, the review is
not uniformly accepting of DDKs conclusions, and KAN does alert the reader to the
potential areas of inaccuracy. In a charming final paragraph, for instance he says “Yet,
this conclusion hardly tallies with the impressions of the Mauryan epoch gathered
from other sources such as the inscriptions of Asoka, or the polished stone pillars-
not to speak of Megasthenes and the Arthasastra. There are other statements, obiter
dicta, which may surprise the reader and even shock him; but there is much, very
much in these papers and their method for which he will be grateful.”

The journal Mathematical Reviews (MR) was started in 1940 by the American
Mathematical Society as a way for working mathematicians to keep up with the
increasing numbers of papers that appeared each year in diverse journals. The practice
was (and still is) to have a brief summary of these papers sometimes with commentary,
and sometimes without. Indeed, some papers are merely noted or abstracted, and all
reviews are signed.
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Of DDK’s sixty or so papers in mathematics, about half were reviewed in MR;
these are indicated in the bibliography on pages xv–xix. The reviewers include R.L.
Anderson, R.P. Boas, Jr., N. Coburn, J.L. Doob, W. Feller, V. Hlavatý, M. Janet, A.
Kawaguchi, J.B. Kelly, M.S. Knebelman, J. Korevaar, J. Kubilius, R.G. Laha, W.J.
LeVeque, A. Nijenhuis, E.S. Pondiczery (a pseudonym of R.P. Boas Jr), A. Rényi,
J.A. Schouten, E.W. Titt, J.L. Vanderslice, O. Varga, B. Volkmann, A. Wald, and J.
Wolfowitz.

Several of these reviews are just summaries of the papers, but some are serious
commentaries on the work of Kosambi, and, significantly, are by some of the leading
contemporaneous mathematicians, probabilists, and statisticians. Indeed, R. P. Boas
Jr. who reviewed some of the papers was one of the main editors of Mathematical
Reviews.

It may be pertinent to note that it is not just DDK’s papers that were published
in journals outside India that were reviewed in Mathematical Reviews; several of
the papers published in Indian journals were also commented upon critically. These
include the important paper, “Statistics in function space” [DDK36] on which Doob
remarks:

The author discusses statistical problems connected with continuous stochastic processes
whose representative functions x(t) are defined by x(t) = ∑

j x jφ j (t), where the φ j deter-
mine an orthonormal set and x1, x2, . . . are mutually independent Gaussian chance vari-
ables with vanishing means and variances σ12,σ22, . . . , respectively. It is supposed that∑

j σ4
j < ∞ and that K (s, t) = ∑

j σ
2
jφ j (s)φ j (t) defines a continuous integral operator.

The process is determined completely by the function K . The samples he considers are
functions x(t) rather than merely the values of functions x(t) at a finite number of points.
An estimate of the function K is given in terms of a sample of n functions x(t). Various
mechanical and electrical methods are suggested for combining functions x(t), given graph-
ically, as necessitated by this type of statistical approach.

This paper was reviewed soon after it was published in 1943. Unfortunately, neither
Karhunen nor Loève who essentially rediscovered these results [10] were aware
either of the paper or of its review by Doob. In his autobiographical note [28], DDK
noted that the lack of computational power had precluded the “effective use” of the
results of this paper.

Another of DDK’s reviewer’s was Abraham Wald (who was later to die in a
plane crash in India when he was visiting the country at the invitation of the Indian
government) who commented, generally favourably, on four of his papers. What is
interesting is that many of the papers were published in journals such as Mathe-
matics Student and the Journal of the Indian Mathematical Society, both of limited
circulation, and which to this day remain somewhat difficult to locate.

It should be mentioned that most of DDK’s publications in mathematics are inde-
pendently authored. He did, however, mentor several students, both formally and
informally at the TIFR in the 1950s, and among these were S. Raghavachari and U.
V. Ramamohana Rao who are his only coauthors [DDK51, DDK54, DDK58].
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1.2 The RH Papers

Arguably, the most important as yet unresolved problem in pure mathematics is a
hypothesis that was enunciated in 1857 by the celebrated mathematician, Bernhard
Riemann. A brief introduction to the nature of the mathematical problem [29] is
included here to give some flavour of why it is interesting and a challenge.

The function

ζ(s) =
∞∑

n=1

1

ns
,

which is defined and finite for all real s > 1 can be extended uniquely, in a natural way,
to the whole complex plane, by a process termed analytic continuation; the resulting
function is the Riemann zeta function. Recall that when s is a complex number, it
can be written in the form s = α + iβ, where α is the real part, β the imaginary
part, and i is the “square root” of −1. The Riemann zeta function is defined for all
complex numbers, and its value is finite except for a collection of isolated points
in the plane. The hypothesis concerns the zeros of the zeta function, namely those
values of s where ζ(s) = 0.

The value of the ζ-function for specific s is a number that can be calculated
explicitly in many cases. When s is 1, the sum becomes infinitely large (the → in
the equation below signifies “tends to”),

ζ(1) = 1

1
+ 1

2
+ 1

3
+ 1

4
+ · · · → ∞;

which is the so-called harmonic series. When s equals 2, the sum converges to a
finite value,

ζ(2) = 1

12
+ 1

22
+ 1

32
+ 1

42
+ · · · → π2

6
.

In order to study the questions involved, it is necessary to consider the function
ζ(s) for all s in the complex plane, namely for all values of α and β. The zeta function
can also then take values among complex numbers. It turns out that ζ(s) = 0 when
s is a negative even integer, namely α = −2,−4,−6, and so on, with the imaginary
part β being 0. These zeros of the zeta function are termed trivial since the proof is
based on a straightforward procedure [30].

The ζ function has in addition an infinite number of “nontrivial” zeros, and Rie-
mann’s hypothesis is that for all of these, α (namely the real part of s) has the value
1/2. In the complex plane, these zeros therefore all lie on the so-called “critical”
line, α = 1/2. While being simple enough to state, it remains unproven to this day.
Because of connections between the zeta function and prime numbers, a proof of the
RH would have significant implications for the distribution of prime numbers, and
via this, to essentially all of mathematics.

DDK’s mathematical reputation suffered greatly as a result of two papers he
published in the Journal of the Indian Society of Agricultural Statistics, on the RH
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[DDK60, DDK64]. Notwithstanding its name, the journal does publish serious math-
ematics, particularly in the area of probability. Although obscure and highly special-
ized, the journal may not have been as inappropriate for the papers as might appear,
since the methods suggested by Kosambi were probabilistic. However, the lack of
appropriate refereeing was a real deficiency, and the charge remains that DDK chose
to publish the papers in JISAS to be able to pass off a doubtful “proof.”

Both papers were reviewed in MR, one by W. J. LeVeque, a number theorist who
eventually became executive director of the American Mathematical Society. His
critique of “An application of stochastic convergence” [DDK60] goes straight to the
point that the claim made by DDK, that

lim
x→∞

(
∑

n≤x

n−σ −
∑

p≤x

p−σ log p

)

exists and is finite for real σ > 1 is a result which easily implies the Riemann hypoth-
esis. However, since the proof is probabilistic in nature, there are major problems that
he identifies. “Of the two proofs given for the crucial Lemma 1.2, the reviewer does
not understand the first, which seems to involve more “hand-waving” than is custom-
arily accepted even in proofs of theorems less significant than the present one. The
second proof appears to be erroneous.” The review concludes “The reviewer is unable
either to accept this proof or to refute it conclusively. The author must replace verbal
descriptions, qualitative comparisons and intuition by precise definitions, equations
and inequalities, and rigorous reasoning, if he is to claim to have proved a theorem
of the magnitude of the Riemann hypothesis.”

The kindest analysis of these works of DDK comes from the Hungarian math-
ematician, A. Rényi, who says in a posthumous review of the paper “Statistical
methods in number theory” [DDK64] that

The late author tried in the last 10 years of his life to prove the Riemann hypothesis by
probabilistic methods. Though he did not succeed in this, he has formulated the following
highly interesting conjecture on prime numbers. Put li(x, a) = ∫ x

a (1/ log t)dt for x ≥ a, 2 ≤
a < 3. Let p1 < p2 < · · · < pn < · · · denote the sequence of odd primes and consider the
numbers qn(a) = li(pn, a)(n = 1, 2, . . .). Clearly qn(a) ∼ n by the prime number theorem.
Let πn(u, a)(n = 1, 2, . . .) denote the number of points qr (a)(r = 1, 2, . . .) lying in the
interval [(n − 1)u, nu), where u > 0. Let Vk(N , u, a) denote the number of those values of
n ≤ N for which πn(u) = k. The author’s conjecture states that one can choose the values
of a and u in such a way that limN→∞ Vk(N , u, a)/N = uke−u/k!(k = 0, 1, . . .). In other
words, his conjecture states that the points qn(a) are distributed as the points in a typical
realization of a homogeneous Poisson process with density 1.

Rényi, who had been sent both this and the earlier papers [DDK60, DDK61] prior
to publication, goes on to say that “Neither in this paper nor in his previous paper
[Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 20–23; MR0146168 (26 #3690)] did the
author succeed in proving his hypothesis, nor in deducing from it the Riemann
hypothesis.” The PNAS paper [DDK61] was reviewed by J. B. Kelley who states,
after summarizing the main result, that “The exposition is rather sketchy; in particular,
the reviewer could not follow the proof of the crucial Lemma 4.”
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Either because of the timing of the review or because he may have appreciated
the valiant attempts of DDK to prove the Riemann hypothesis by an unusual route,
Rényi concludes the review by saying that at that point in time (1968) “one does not
have enough knowledge of the fine structure of the distribution of primes to prove
or disprove the author’s conjecture. The problem seems to be even more difficult
than the problem of the validity of the Riemann hypothesis. As a matter of fact, no
obvious method exists to prove the author’s hypothesis even under the assumption of
the Riemann hypothesis. Nevertheless, the conjecture is worthy of study in its own
right, and the reviewer proposes to call it the Kosambi hypothesis in commemoration
of the enthusiastic efforts of the late author.”

Rényi’s suggestion has not found favour. The probabilistic approach has inherent
limitations, but also as these reviews suggest, the rigour emphasized by DDK in
his early years had deserted him. What is somewhat surprising is that there are
errors in these papers that become evident even with a fairly cursory examination
[31] and which could have been detected by an alert referee. The fact that IJSAS
published this paper with the errors added to the feeling that DDK deliberately
chose the journal to avoid qualified peer review. DDK’s mathematical reputation
was essentially destroyed by these papers.

Given the continual interest in the RH, only in part increased now by its inclusion as
a Millennium Prize problem, there are a number of popular books [32] that summarize
the approaches to proving it. Not surprisingly, the work of DDK is not mentioned
in any of these. In private correspondence, the mathematical physicist Sir Michael
Berry (who has had an abiding interest in the problem) remarks that DDK’s “idea for
proving RH based on showing that a certain function is nonsingular off the line, is
ingenious.” Andrew Odlyzko, another mathematician who has worked extensively
on the RH and who, even as a graduate student, was aware of DDK’s work says [33]
that he “was really intrigued by these approaches, but after a while decided that it
would take some clever insights far beyond what [he] could think of to accomplish
anything rigorous in this area.” Among Odlyzko’s major contributions to a study of
the RH is the computation of a very large number of the zeros to high precision, and
for all of these, the real part equals 1/2. As an experimental mathematician, he has a
good insight into the approach suggested by DDK, adding, “in summary, I think it is
a pity that Kosambi did not see the flaws in his arguments and published this paper,
but the basic idea is an interesting one, and certainly worth exploring. I would be
surprised, but not shocked, if somebody clever managed to do something with it.”

1.3 Bhabha and DDK

DDK joined the newly formed Tata Institute of Fundamental Research on 16 June
1945. His appointment, which was for an initial period of five years, was decided at
the first meeting of the provisional council of TIFR [34].

The initial correspondence between Bhabha and DDK, although formal, was
extremely cordial [35]. In 1946, when Bhabha travelled to England, he appointed
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DDK Acting Director, leaving him in charge of the fledgling institute. This was a
position of considerable responsibility, and one that DDK clearly enjoyed, and in a
long letter [21] written on 8th July he writes, “About building up a School of Mathe-
matics in India, we also think alike; but, as you are fully aware, we have to get people
trained in a considerable number of branches for which there are no real specialists
in this country.”

The relationship also grew warm, especially since they had to plan the Institute
together, concerning themselves with details regarding land acquisition, equipping
the laboratories, hiring staff, and planning for the future. That same year DDK was
elected Fellow of the Indian National Science Academy, and the next, in 1947, was
awarded the Bhabha Prize (named for Bhabha’s father, Jehangir Hormusji Bhabha).
He was also chosen the president of the Mathematics section of the 34th Indian
Science Congress that was held in Delhi in December 1947 [DDK44] with the active
support of Bhabha who also realized that this would bring DDK into contact with
Nehru. Kosambi’s mathematical and statistical expertise was also greatly appreciated
in the new institute—a number of colleagues, Bhabha among them, acknowledge his
advice and help explicitly in their scientific publications. And outside TIFR, the
Ministry of Defence sought DDK’s advice on cryptography [35, 36]!

In 1948, when DDK was to go to the USA for a year’s visit, to Chicago and
Princeton, Bhabha threw a party for him at his residence in Malabar Hill. This
visit was in fact largely arranged by Bhabha, and among other things, DDK was to
investigate the possibility of getting a computing machine for the new institute [21]
as well as to attract new faculty, K. Chandrasekharan and S. Minakshisundaram in
particular. On this trip, he pursued all aspects of his wide-ranging interests, visiting
Einstein and von Neumann in Princeton, Norbert Wiener in Boston, as well as the
historian, A.L. Basham in London. In Chicago, he was visiting professor at the
University, where he gave a course of 36 lectures on tensor analysis. This was a special
interest of his: he had been invited to the editorial board of the Hokkaido University
journal, Tensor (New Series), and indeed an article of his had been translated into
Japanese already in 1939 by the same journal [DDK22].

The position at TIFR gave DDK national prominence as well. In 1950, when the
International Mathematical Union was being revived, DDK was effectively asked to
head the National Committee on the proposed IMU [37]. Travel money was difficult
to come by, so DDK was unable to travel to the USA, and India was represented at the
Union Conference in New York [38] by S. Minakshisundaram (of Andhra University,
Waltair, but who was already in the USA) and K. Chandrasekharan, who had joined
the TIFR by then. Shortly afterwards, K.G. Ramanathan who had obtained his Ph.D.
at Princeton also moved to TIFR; Chandrasekharan and he would subsequently play a
much more influential role in shaping the TIFR School of Mathematics than Kosambi.
Cracks began to surface in the relationship between Bhabha and DDK in the next
few years, first in regard to students and then gradually with regard to details such
as his attendance in office and other aspects of his working.

The spiral downwards, though, began in 1959 with the publication of the JISAS
paper [DDK60] and the subsequent grand obsession with a probabilistic proof of
the Riemann hypothesis. His differences became more pronounced with Bhabha
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who relied more and more on Chandrasekharan’s opinion and estimation of DDK’s
work. The coup–de–grace was a letter signed by four of the mathematicians at TIFR
stating that Kosambi had become an embarrassment to the Institute with his claim
of the proof of the RH and of Fermat’s Last Theorem [39] that was being broadcast
internationally.

There were other differences with Bhabha which were of a political nature, but
these differences were already present in 1945 when Bhabha invited DDK to join
TIFR. The largely unknown essay “An Introduction To Lectures On Dialectical Mate-
rialism” summarizes a set of 15 lectures given by Kosambi in Poona in 1943 [40].
Later, after he had joined the TIFR, when he gave a lecture in Bombay House, the
headquarters of the Tata Group, the notes conclude with an appreciation of Lenin
[41]. Indeed, Bhabha facilitated DDK’s visits to the Soviet Union and China, and it is
not possible that DDK’s views were hidden under a bushel until the early 1960s [42].

In July 1960, DDK gave a talk to the Rotary Club of Poona on “Atomic Energy for
India.” This essay [43] is an unabashed advocacy of solar power over atomic power,
mirroring in a sense his ideological conflict with the DAE. Half a century later, many
of these issues remain current and the arguments remain valid, as for example the
following observation.

It seems to me that research on the utilisation of solar radiation, where the fuel costs nothing
at all, would be of immense benefit to India, whether or not atomic energy is used. But by
research is not meant the writing of a few papers, sending favoured delegates to interna-
tional conferences and pocketing of considerable research grants by those who can persuade
complaisant politicians to sanction crores of the taxpayers’ money. Our research has to be
translated into use.

There is more in these essays on solar energy that merits attention even today
such as his observations on energy storage and distribution, and on environmental
issues [43]. Eventually matters came to such a pass as to cause the DAE to not
renew DDK’s contract. As already pointed out, the RH papers had caused a serious
blow to Kosambi’s mathematical reputation and while this was made out as the
proximate cause for his dismissal from TIFR, trouble had been brewing for some
time. The letters between Bhabha and DDK grew increasingly formal, bureaucratic,
and strained. There was a distinct difference in styles, and the iconoclastic Kosambi
was hardly one to fit into the DAE mould.

1.4 Pseudonyms and Aliases

DDK was responsible for the first mention of Bourbaki in the mathematics literature
in his publication [DDK2] in 1931, although the obscurity of the Proceedings of
the Academy of Sciences, UP, has resulted in the article receiving less attention
than it deserved, even from a purely historical point of view [44]. André Weil had
suggested a prank that Kosambi ascribe a theorem to a nonexistent (but possibly)
Russian mathematician, in order to put down an older colleague in Aligarh who was
giving the young Kosambi a difficult time. There is not much more than a paragraph
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in Weil’s autobiography [14] on this episode, so the circumstances surrounding the
event are difficult to reconstruct. Nevertheless, this parodic note passed off as a
serious contribution to a provincial journal is not entirely facetious.

It was not until December 1934 that the Bourbaki idea acquired more momentum
[45, 46], when Weil along with Henri Cartan, Claude Chevalley, Jean Delsarte, Jean
Dieudonné, and René de Possel, decided “... to define for 25 years the syllabus for the
certificate in differential and integral calculus by writing, collectively, a treatise on
analysis. Of course, this treatise will be as modern as possible.” The book [47] would
eventually appear in 1938, authored by the group that now called themselves Nicolas
Bourbaki [44]; they then went on to write many more (and extremely influential)
volumes. An Indian connection remained: when Boas mentioned (in the Britannica
Book of the Year) that Bourbaki was a collective pseudonym, he got an indignant
letter of protest, from Bourbaki, writing from his ashram in the Himalayas [48]. It
should also be noted that Kosambi gives credit to a D. Bourbaki [DDK2] although
the forename eventually chosen by the French group was Nicolas [49].

Aliases were used by DDK several times: “Ahriman” in an article published in the
magazine of Fergusson College [50], “Indian Scientist” in a piece titled “The Raman
Effect” [51], and “Vidyārthi” in a note [52] that used statistics (maybe his nod to
William Sealy Gosset, the chemist and statistician who, as “Student” invented the
t-test). Apart from these scattered instances, between 1962 and his death in 1966,
DDK used the nom de plume S. Ducray extensively, both in personal correspondence
as well as professionally. This was also by far his most elaborately chosen alias.

It is difficult to discern what led him to use the pseudonym S. Ducray. The alleged
etymology is that Bonzo, the Kosambi family dog in the 1960s, was quite plump, and
DDK affectionately called him Dukker, namely “pig” in Marathi. This evolved into
Ducray, a name that sounds vaguely French, with the forename being the Sanskrit for
dog, namely Svana [53]. The choice of such a name remains enigmatic, and while
it may have been prompted initially by his anger with the establishment—to date
Kosambi is among the very few persons to have had their appointment terminated
by the Department of Atomic Energy—there is enough to suggest that there may be
more to the use of this alias than pique. In fact, he signed several letters to his friends
as S. Ducray [35].

DDK published four articles as S. Ducray, two in the Journal of the University
of Bombay [DDK63, DDK64] and two in the Proceedings of the Indian Academy
of Sciences [DDK66, DDK67]. The latter two were in fact communicated by C.V.
Raman. While this may have been a formal device employed by the journal, it is
highly unlikely that Raman knew of the masquerade. Had Raman known, it is also
highly unlikely that he would have permitted such subterfuge in a journal of his
Academy. These two papers were serious enough as works of mathematics, as were
the other two Ducray papers that were submitted to the Journal of the University of
Bombay. Indeed, two of these four papers were reviewed in Mathematical Reviews.
All the four articles show a strong connection to DDK, acknowledging him in one
and quoting a private communication from Paul Erdős in another, in addition, of
course, to citing his related papers written as D.D. Kosambi.
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These papers continued the prime obsession that DDK showed in his last years.
Regrettably, the manuscript of his book [54] was lost. If nothing else, it would have
provided some clues as to how he hoped to use probability theory in this arena.
Although reviewed in MR, the papers had serious shortcomings. J. Kubilius who
himself worked in the area of probabilistic number theory says of “Probability and
prime numbers” [DDK65] that “The reviewer could not follow the proof of the
cardinal Lemma 3.” The paper “Normal Sequences” [DDK63] was comprehensively
reviewed by B. Volkmann who pointed out a number of inaccuracies and misprints.

One of DDK’s earlier papers had been reviewed in Mathematical Reviews by
E.S. Pondiczery: this was the editor Ralph Boas Jr’s pseudonym, a fanciful “slavic”
spelling of Pondicherry. The name, which Boas used even when writing serious
mathematics, was apparently concocted for its initials, ESP, and was to have been used
for writing an article debunking extra-sensory perception. Boas had a well-developed
sense of the ludic and was one of the authors of the brilliant article “A Contribution to
the Mathematical Theory of Big Game Hunting” that was published in the American
Mathematical Monthly under the (collective) pseudonym H.W.O. Pétard [55]. Both
Boas and Kosambi were publicly dismissive of extrasensory perception [56]. Perhaps
it was these connections that inspired Kosambi when he was to later adopt the Ducray
alias.

1.5 Concluding Remarks

History may not have been particularly kind to Kosambi, the mathematician, but
in his lifetime DDK was appreciated for his scholarship and intelligence [57] early
in his career and by his peers. The manner in which Kosambi was viewed by his
contemporaries—many of who were more distinguished than him and had a more
significant impact on mathematics—is revealing. From 1930 to 1958 or so, DDK
enjoyed the respect and admiration of a large professional circle. As has been noted
earlier [5], his contributions in areas such as ancient Indian history, Sanskrit epigra-
phy, Indology, as well as his writings of a political and pacific nature grew both in
volume and in substance in the 1940s and 1950s, overshadowing his mathematics,
although the constancy of his work in the area remained. His wide scholarship and
his ability to integrate different strands of thought gave him an large and dispersed
audience, although his temperament and his politics were also well known and not
as widely appreciated.

One important recognition that was accorded him, in part due to his being at the
TIFR and the association with Bhabha, but also for his work and his mathematical
antecedents [58] was his appointment as a member, in 1950, of the Interim Executive
Committee of the International Mathematical Union, to serve along with Harald Bohr,
Lars Ahlfors, Karol Borsuk, Maurice Fréchet, William Hodge, A. N. Kolmogorov
and Marston Morse. One of the tasks of this rather distinguished group was to choose
Fields medalists, and DDK served on this committee for two years.
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It is thus noteworthy that in a period that spans three decades, Kosambi was math-
ematically productive, prolific, original, and was taken seriously by the scientific
establishment in the country, as his elections to the Fellowships of the Indian Acad-
emy of Sciences and the Indian National Science Academy and the Presidency of
the Mathematics section of the 34th Indian Science Congress in 1947, among other
distinctions, testify. His papers appeared in leading journals of the world and were
communicated by or reviewed by some of the leading mathematicians. And that this
happened while his reputation in a diametrically different field was also burgeoning
can only be seen as evidence of a complex but nevertheless Promethean intellect.



Chapter 2
Adventure into the Unknown

This essay, published posthumously in the collection Current Trends in Indian Phi-
losophy [28], resulted from an invitation from scholars at Andhra University to write
on his ‘personal philosophy as a scientist and research worker’. A somewhat bowd-
lerised version of this article has been excerpted and published as ‘Steps in Science’
in the collection Science and Human Progress: Essays in honour of late Prof. D.D.
Kosambi, scientist, indologist and humanist [59]. The important Epilogue (Sect.2.6)
was unfortunately left out of ‘Steps in Science’.

2.1 Why Science?

The question ‘Why solve problems?’ is psychological. It is as necessary for some as
breathing. Why scientific problems, not theology, or literary effort, or some form of
artistic expression? Many practising scientists never work out the answer consciously.
Those lands where the leading intellectuals speculated exclusively upon religious
philosophy and theology remained ignorant and backward, and were progressively
enslaved (like India) in spite of a millennial culture. No advance was possible out of
this decay without modern techniques of production, towards which the intellectuals’
main contribution was through science. There is a deeper relationship: science is the
cognition of necessity; freedom is the recognition of necessity. By finding out why a
certain thing happens, we turn it to our advantage rather than be ruled helplessly by
the event. Science is also the history of science. What is essential is absorbed into
the general body of human knowledge, to become technique. No scientist doubts
Newton’s towering achievement; virtually, no scientist ever reads Newton in the
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original. A good undergraduate commands decidedly more physics and mathematics
than was known to Newton, but which could not have developed without Newton’s
researches. This cumulative effect links science to the technology of mechanised
production (where machine saves immense labour by accumulating previous labour)
to give science its matchless social power in contrast to art and literature with their
direct personal appeal. Archimedes, Newton and Gauss form a chain wherein each
link is connected in some way to the preceding; the discoveries of the latter would not
have been possible without the earlier. Shakespeare does not imply the pre-existence
of Æschylus or of Kalidasa; each of these three has an independent status. For that
very reason, drama has advanced far less from the Greeks to the present day than
has mathematics or science in general. Even the anonymous statues of Egypt and
Greece or the first Chinese bronzes show a command of technique, material and of
art forms that make them masterpieces, but the art is not linked to production as
such, hence not cumulative. The artist survives to the extent that his name remains
attached to some work that people of later ages can appreciate. The scientist, even
when his name be forgotten, or his work buried under the wrong tombstone, has only
to make some original contribution, however small, to be able to feel with more truth
than the poet, ‘I shall not wholly die; The greater part of me will escape Libitina’.
The most bitter theological questions were argued out with the sword; for science,
we have the pragmatic test, experiment, which is more civilised except when some
well-paid pseudo-scientist wishes to ‘experiment’ with thermo-nuclear weapons or
bacterial warfare.

2.2 Natural Philosophy

It was obligatory for me to learn several European languages in school and college
in the USA. The libraries were the best in the world for accessibility and range of
books. Alexander von Humboldt’s Cosmos surveyed the whole universe known to the
middle of the nineteenth century, from the earth to those mysterious prawn-shaped
figures visible through the powerful telescopes, the spiral nebulae. The Einstein the-
ory, arousing passions of theological intensity, had just been regarded as proved,
and offered new insight into the structure of space, time and matter. Innumerable
outlines made it easy to learn something about every branch of science. Freud had
taught men to take an honest look at their own minds. H.G. Wells showed in his Out-
line of History how much the professional annalistic historian had to learn, though
Spengler’s Untergang des Abendlandes made it extremely unlikely that the historian
would learn it. The inspiring lives of Pasteur and Claude Bernard proved that man
could gain new freedom from disease through the laboratory; the deadliest poison
became a tool for the saving of life through investigation of the body’s functions.
Such were the real r. s. is and bodhisattvas of modern times, the sages whose scien-
tific achievement added to man’s stature. This contrasted with the supposed inner
perfection of mythical Indian sages, expressed in incomprehensible language and
fantastically interpreted by commentators. The ability to replace incomprehensible
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Sanskrit words by still longer and equally meaningless English terms can make a
prosperous career. It cannot produce an Albert Schweitzer, whose magnificent study
Von Reimarus zu Wrede, analysis of Bach’s music and record as medical missionary
at Lambarene were impressive even in my irreverent undergraduate years.

Engineering is based upon physics and chemistry, which are qualified as ‘exact
sciences’ precisely because they admit a mathematical basis. Mathematics unlocked
the door to the atom and to the movement of celestial bodies equally well. Aptitude
granted, mathematical research needed the least financial resources of any science.
Mathematical results possess a clarity and give an intellectual satisfaction above all
others. They have absolute validity in their own domain, due to the rigorous logical
process involved, independent of experimental verification upon which the appli-
cations to the exact sciences must depend. This was the very language of nature,
scientiarum clavis et porta as Roger Bacon put it. Its supreme, transcendental, aes-
thetic fascination can only be experienced, never explained.

Unfortunately, not every kind of mathematics unlocks every door to nature’s
secrets. For some twenty years, my main work lay in tensor analysis and path-
geometry (my own term). The structure of space–time had been analysed by the
measurement of ‘distance’ in space and time; I showed that it could be done without
distance, merely by the racks that explored the ‘space’, even when the concept of
‘space’ was generalised beyond physical recognition. In 1949, Einstein pointed out
to me during one of several long and highly involved private technical discussions
that certain beautifully formulated theories of his would mean that the whole uni-
verse consisted of no more than two charged particles. Then, he added with a rueful
smile, ‘Perhaps I have been working on the wrong lines, and nature does not obey
differential equations after all’. If a scientist of his rank could face the possibility that
his entire life-work might have to be discarded, why insist that the theorems whose
inner beauty brought me so much pleasure after heavy toil must be of profound sig-
nificance in natural philosophy? Fashions change quickly in physics where theory
is so rapidly outstripped by experiment. It seemed and still seems to me that non-
associative linear algebras and Markov chains would remove many of the physicists’
theoretical difficulties; the experimenters are satisfied with abandoning the principle
of parity. The ‘redshift’ of distant stars will perhaps be explained one day as due to
the absorption of energy when light travels at cosmic distances through extremely
tenuous matter, rather than evidence for an expanding universe. Such speculations
are of no use unless they tally in mathematical detail with observed data.

2.3 Chance and Certainty

Borderline phenomena of classical physics illustrate the inexhaustibility of the prop-
erties of matter. Ice, according to the textbooks, melts and water freezes at zero
degrees centigrade. But when carefully purified samples of water are slowly cooled
and the ice slowly melted again, a considerable gap is found between the melting and
freezing points. Fundamental particles that make-up the atom and its nucleus show
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another type of aberrant behaviour. An electron can cross a potential barrier, as if a
stone were of itself to roll uphill against gravity and down the other side. Even the
observation of isolated particles becomes difficult, for the very act of observation
means some interaction and effect upon the observable. The certainty of classical
physics develops only when many fundamental particles are organised into higher
units with clear patterns. In the same way, individual molecules of water may move in
any direction with almost any speed, but the river as a whole shows directed motion
in spite of eddies, so also for aggregates of living matter. In human society, the net
behaviour of the group smooths out the vagaries of individual action.

The mathematical analysis best suited for handling such aggregates is the theory
of probability. Variation is as important a characteristic of the collective as the mean
value. Prediction can only be made within a certain probability, which sounds like
the language of the race course. But when the chances of a mistake amount to one in a
million, most people take the effect as certain. The level of significance desired may
be a personal matter. For example, there is a chance of a letter being lost in the mail;
whether or not we register or insure it depends upon our estimate of the risk involved
and the expectation of loss. Thus, modern statistical method can be an excellent guide
to action. It extends the assurance of exact science to biological and social sciences.
Though no man can say when death will come to him, as it certainly must, it is fairly
easy to predict within a reasonable margin of error about how many men out of a
large group will die after a set number of years. That is why life insurance manages
to be a highly paying business, without recourse to astrology. It is further possible
to say how occupation and living conditions affect longevity. The man who has to
work in a lead mine (without special protection) has his expectation of life reduced
by a predictable number of years, more surely than if he were shot at by lead bullets
on the battlefield.

Deductions based upon probability differ radically from those of pure mathemat-
ics. Conclusions cannot be ‘true or false’ without qualification, when the variation
inherent in the trials is assessed. The standard method is to set up a ‘null hypothesis’,
and take the observed results as due to purely random independent variation. The
theory suitably applied (and the application needs profound grasp) then gives one of
two conclusions that the numerical observations (if relevant) are compatible with the
hypothesis or not. But either conclusion would be true only with a certain calculable
probability, which tells us about how often we would go wrong in action. The trick
is to set up the experiment in such a way that the desired action may be taken if
the null hypothesis is contradicted, for incompatibility implies falsehood whereas
compatibility need not imply truth.

This may lead to difficulties when the experimenter’s will to believe is stronger
than his common sense. Parapsychologists testESP, ‘extra-sensory perception’ (such
as telepathy) by having two people match cards at a distance. The effect is so faint
and irregular as to call for delicate statistical tests, which show that the chances are
very small, for random matching, wherefore the parapsychologists claim victory.
Unfortunately, my own experiments showed that the kind of shuffling practised for
ESP is inefficient when judged by the same kind of statistics that is applied to
card matching. Cards originally next to each other tend too often to stay together.
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Claims of ESP would be more convincing if one produced supplementary evidence
(say matching encephalograms for sender and receiver) for a physical mechanism
of transmission. Some regard the effect as beyond normal sensation, transcendental,
not accessible to material analysis. In that case, laboratory tests and the statistical
‘proof’ become mere ritual.1

One of my theoretical papers deals with probability and statistics in infinitely
many dimensions. There has been no effective use, because we could not get or
make the special electronic calculating machine needed to translate this theory into
practice. On the other hand, a brief note on genetics was unexpectedly successful.
Professional geneticists use it for all kinds of investigations, such as heredity in
house mice. It seems to have given a new lease of life to genetical theories which I,
personally, should like to see revised. I am accused at times of not appreciating my
own formula. It would have been pleasant to see the formula applied to the increase
in food production, but the pure scientists of the country which grows the world’s
greatest food surpluses and suppresses or destroys them to keep grain prices high in
a hungry world sneer at ‘clever gardening’. There is some difference of opinion here
as regards the proper relation of theory to practice.

2.4 Ancient Indian Culture

To teach myself statistics, I decided to take up some practical problems from the
very beginning. One such was the study of examination marks of students. It turned
out that even the easiest of examinations in India (the first-year college examination)
was based on a standard that differed from that of the instruction, if in 25 years no
student of the 90 % or more that passed could score more than 82 % overall while
the professors who taught and examined had scored much less in their own time.
Improvement of the system (whether in examination or instruction) was out of the
question in a country where the teaching profession is the waste-basket of all ‘white-
clothes’ occupations and the medium of higher instruction still remains a foreign
language.

A more fruitful problem was the statistical study of punch-marked coins. It turned
out that the apparently crude bits of ‘shroff-marked’ silver were coins carefully
weighed as modern machine-minted rupees. The effect of circulation on any metal
currency is obviously to decrease the average weight in proportion to the time and to
increase the variation in weight. This is the mark any society leaves upon its coinage,
just by use. The theory of this ‘homogeneous random process’ is well known, but
its application meant the careful weighing, one at a time, of over 7,000 modern
coins as control. Numismatics becomes a science rather than a branch of epigraphy
and archaeology. The main groups of punch-marked coins in the larger Taxila Hoard

1All the well-designed experiments in parapsychology have used random procedures for target
selection, and the statistics used inESP research were approved by the American Statistical Institute
as early as in the 1930s—K.R. Rao.
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could be arranged in definite chronological order, the oldest groups being the lightest
in average weight. There seems to have been a fairly regular pre-Mauryan system of
checking silver coins.

Arranging coin groups in order of time led naturally to the question: Who struck
these coins? The hoard was deposited a few years after Alexander’s death: but who
left the marks on the coins? The shockingly discordant written sources (Purān. as,
Buddhist and Jain records) often give different names for the same king. Study of the
records meant knowledge of Sanskrit, of which I had absorbed a little through the
pores. Other preoccupations made it impossible to learn the classical idiom like any
other beginner. So, the same method was adopted as for the study of statistics: to take
up a specific work, of which the simplest was Bhartr.hari’s epigrams (subhās. itas). The
supposed philosophy of Bhartr.hari, as glorified by commentators, was at variance
with his poetry of frustration and escape. By pointing this out in an essay which
caused every god-fearing Sanskritist to shudder, I fell into Indology, as it were,
through the roof.

There was one defect in the essay, in that the existence and the text of Bhartr.hari
were both rather uncertain. This meant text criticism, which ought to have been com-
pleted in a few months, as the entire work supposedly contains no more than 300
stanzas. Study of about 400 manuscripts yielded numerous versions with characteris-
tically different stanzas, as well as divergent readings in the common verses. Two and
a half years of steady collation work showed that I should never have undertaken such
a task, but abandoning it then would mean complete loss of the heavy labour, which
could yield nothing to whoever came after me. It took 5 years to edit Bhartr.hari, but
even the critics who dislike the editor or his philosophy maintain that the result is a
landmark in text criticism. Different methods were needed to edit (with a very able
collaborator) the oldest known anthology of classical Sanskrit verse, composed about
A.D. 1100 under the Pāla dynasty. The main sources were atrocious photographs of
a palm-leaf manuscript in Tibet, and of a most corrupt paper manuscript in Nepal.
My judgement of the class character of Sanskrit literature has not become less harsh,
but I can at least claim to have rescued over fifty poets from the total oblivion to
which lovers of Sanskrit had consigned them.

All this gave a certain grasp of Sanskrit, but hardly of ancient Indian history; the
necessary documents simply did not exist. My countrymen eked out doubtful sources
with an exuberant imagination and what L. Renou has called ‘logique imperturbable’.
One reads of the revival of Nationalism and Hinduism under Chandragupta II, of
whom nothing is known with certainty. Indian nationalism is a phenomenon of the
bourgeois age, not to be imagined before the development of provincial languages
(long after the Guptas) under distinct common markets. Our present-day clashes
between linguistic groups are an index to the development of local bourgeoisies
in the various states. Hinduism came into existence after Mohammedan invasion.
Clearly, one of two positions had to be taken. Either India has no history at all, or
some better definition of history was needed. The latter I derived from the study of
Karl Marx, who himself expressed the former view. History is the development in
chronological order of successive changes in the means and relations of production.
Thus, slavery in the Graeco-Roman sense was replaced by the caste system in India
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only because commodity production was at a lower level. Indian history has to be
written without the episodes that fill the history books of other countries. But what
were the relevant sources? Granted that the plough is more important than a dynasty,
when and where was the tool first introduced? What class took the surplus produced
thereby? Archaeology provided some data, but I could get a great deal more from the
peasants. Field work in philology and social anthropology had to be combined with
archaeology in the field as distinguished from the site archaeology of a ‘dig’. Our
villagers, low caste nomads, and tribal minorities live at a more primitive stage than
city people or the brahmins who wrote the purān. as. Their cults, when not masked
by brahmin identification with Sanskritised deities, go back to prehistory like the
stone axes used in Roman sacrifices. Tracing a local god through village tradition
gives a priceless clue to ancient migrations, primitive tracks, early trade routes and
the merger of cattle breeding tribesmen with food gatherers which led to firm the
agricultural settlement. The technique of observation has to be developed afresh for
every province in India. The conclusions published as An Introduction to the Study
of Indian History had a mixed reception because of the reference to Marx, which
automatically classifies them as dangerous political agitation in the eyes of many,
while official Marxists look with suspicion upon the work of an outsider.

Field investigation continues to give new and useful results. Experts say glumly
that my collection of microliths is unique not only in range of sites but in containing
pierced specimens. A totally unsuspected megalithic culture came to light this year.
It fell to my lot to discover, read and publish a Brāhmi inscription at Kārle caves,
which had passed unnoticed though in plain sight of the 50,000 people who visit the
place every year. The suggestion for using the Māl.shet. Pass should give Maharasht.ra
a badly needed key road from Bombay to Ahmadnagar, and save a few million rupees
though the funicular railway down Nāneghāt. would have been more spectacular.

2.5 Social Aspects

The greatest obstacles to research in any backward, underdeveloped country are those
needlessly created by the scientist’s or scholar’s colleagues and fellow citizens. The
meretricious ability to please the right people, an attractive pose, glib charlatanism
and a clever press agent are indispensable. Mere scientific ability is at a discount.
The Byzantine emperor Nikephoros Phokas assured himself of ample notice from
superficial observers, at someone else’s expense by setting up in his own name at a
strategic site in the Roman Forum, a column pilfered from some grandiose temple.
Many eminent intellectuals have mastered this technique in India.

The deep question is not what floats to the top of a stagnant class but of fun-
damental relationship between the great discoverers and their social environment.
Conservatives take history as the personal achievement of great men, especially the
history of science. The Marxist assertion is that the great man is he who finds some
way to fulfil a deep though perhaps unstated social need of his times. Thus, B. Hessen
explained Newton’s work in terms of the technical and economic necessities of his



22 2 Adventure into the Unknown

class, time and place. The thesis was successful enough to be noticed and contested
by a distinguished authority on seventeenth-century European history, Sir George
Clark. Clark’s knowledge of the sources is unquestionably greater than Hessen’s,
but the refutation manages to overreach the argument. According to Clark, the sci-
entific movement (of the seventeenth century) was set going by ‘six interpenetrating
but independent impulses’ from outside and ‘some of its results percolated down
into practice and were applied’. The external impulses were ‘from economic life,
from war, from medicine, from the arts and from religion. What is left then of the
independence of science?’ The sixth impulse was from the ‘disinterested desire to
know’. So far as I know, all six impulses applied from the very earliest civilisations
of Mesopotamia, Egypt, China and probably the Indus Valley, without producing
what we recognise as ‘science’ from, say, the time of Galileo. What was the missing
ingredient, if not the rise of the proto-bourgeoisie in Europe? No Marxist would
claim that science can be independent of the social system within which the scientist
must function.

Much the same treatment may be given to the literature. Disregarding oversim-
plification, can one say that Shakespeare’s plays manifest the rise of the Elizabethan
proto-bourgeoisie, when the said dramas are full of kings, lords and princes? The
answer is yes. Compare Hamlet or Richard the Third with the leading characters in
Beowulf or the Chanson de Roland. The fattest Shakespearean parts such as Shylock
and Falstaff are difficult to visualise in any feudal literature. The characters in those
plays have a ‘modern’ psychology, which accounts for their appeal to the succeeding
bourgeoisie and hence for the survival value of the dramas. Troilus and Cressida are
not feudal characters any more than they are Homeric; Newton’s Latin prose and
archaic geometrical proofs in the Principia make that work unreadable, but do not
make it Roman or Greek science.

It would take a whole book to develop this thesis for India’s trifling successes
and considerable failure in modern science. In what follows, only the most obvious
defects in applying science to major Indian problems are considered, without dis-
cussion of the extent to which this accounts for the lack of really great scientists in
India.

India, the experts tell us, is overpopulated and will remain poor unless birth control
and population planning are introduced. But surely, overpopulation can only be with
respect to the available food supply. Availability depends upon production, transport
and the system of distribution. What is the total amount of food produced? We have
theological quarrels between two schools of statisticians, but no reliable estimate of
how much is actually grown and what proportion thereof escapes vermin—including
middlemen and profiteers—to reach the consumer. If shopkeepers can and do raise
prices without effective control, what does a rise in the national income mean? Is
the scarcity of grain or of purchasing power? A great deal is said about superstitious
common people who must be educated before birth control becomes effective. The
superstition which makes the poor long for children has a solid economic founda-
tion. Children are the sole means of support for those among the common people
who manage to reach helpless old age. The futility of numerical ‘planning’ of the
population, when nothing is done to ensure that even the able-bodied have a decent
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level of subsistence, is obvious to anyone but a born expert. Convince the people that
even the childless will be fed and looked after when unable to fend for themselves
and birth control will become popular.

Let me give examples of scientific effort which could easily have been turned to
better account. Considerable funds will be devoted during the Third Plan to research
on the uses of bagasse (sugarcane pulp). At present, it is used as fuel and the ashes
as fertiliser, whereas paper and many other things could be made from it. But are
the other uses (quite well known) the best in the present state of Indian economy?
The extra money to be spent on fuel, not to speak of difficulties in getting fuel,
would increase the already high cost of sugar manufacture; new factories for by-
products mean considerable foreign exchange for the machinery and for the ‘experts’.
However, if the bagasse is fermented in closed vats, the gas given off can be burned,
so that the fuel value is not reduced. The sludge makes excellent fertiliser, which
saves money on chemical fertilisers and improves the soil. The scheme (not mine,
but due to Hungarian scientists) has apparently been pushed into the background.
Again, the proper height of a dam is important in order to reduce the outlay to a
minimum, without the risk of running dry more than (say) once in 20 years. The
problem is statistical, based upon the rainfall and run-off data where both exist.
The principles I suggested were adopted by the Planning Commission, though not
as emanating from me. Neither the engineers nor the Planning Commission would
consider a more important suggestion, namely, that many cheap small dams should
be located by plan and built from local materials with local labour. Monsoon water
would be conserved and two or three crops raised annually on good soil that now
yields only one. The real obstacle is not ignorance of technique but private ownership
of land and lack of cooperation among the owners.

This country needs every form of power available, but is too poor to throw money
away on costly fads like atomic energy merely because they look ultra-modern. A
really paying development will be of solar energy, neglected by the advanced coun-
tries because they have not so much sunlight as the tropics. Our problem lies deeper
than power production. The reforestation, indispensable for good agriculture, will
not be possible without fuel to replace the firewood and charcoal. Coal mining does
not suffice even for industry; fuel oil has to be imported. A good solar cooker would
be the answer. Such cookers exist and have been used abroad. The one produced in
India was hopelessly inefficient (in spite of the many Indian physicists of interna-
tional reputation). Neatly timed publicity and a fake demonstration made the gullible
public buy just enough useless ‘cookers’ for a quick profit to the manufacturer.

A flimsy ‘Indian Report’ on the effects of atomic radiation shows our low moral
and scientific calibre by ignoring the extensive data compiled since 1945 in the
one country which has had the most painful experience of atomic radiation applied
to human beings—Japan. The real danger is not death, which is a release for most
Indians, but genetic damage to all humanity. We know what radiation does to heredity
in the ephemeral banana-fly Drosophila melanogaster. A good deal was found out in
the USA about what happens to laboratory mice. What little has been released for the
publication is enough to terrify. Man is as much more complicated than a mouse as
the mouse than the fruit fly. Humans take a proportionately longer time to breed and
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to reach maturity, giving fuller scope for genetic derangements to develop. It may
take some twenty generations to find out just what these derangements amount to. By
then, they will have been bred into many millions of human beings, not as a disease
but incurably as a set of hereditary characters. Mankind cannot afford to gamble with
its own future in this way, whether that future lies in the hands of communists or not.
Atomic war and the testing of nuclear weapons must stop. These views on nuclear
war are now fashionable enough to be safely expressed.

2.6 Epilogue

A mathematician must earn that designation by enriching mathematics with orig-
inal theorems of basic importance. Einstein, for all the stimulus his ideas gave to
contemporary differential geometry, was not, and never regarded himself as a math-
ematician. So, my excursions into statistics, Indology, archaeology and the rest are
irrelevant unless some real mathematics emerged at the end. Alternatively, is there
something wrong in the philosophy that asserts the unity of theory and practice?

Mathematics is no longer the by-product of a natural philosopher’s investigations,
as it had been from Pythagoras to Gauss. All sorts of mathematical technique exist
today, fully developed long before the physicist feels the need for it. One should
contrast G.H. Hardy’s Mathematician’s Apology (Cambridge, 1941) with L. Hog-
ben’s Mathematics for the Million (London, 1936). The former, though leader and
virtually creator of the modern school of British mathematics, was indifferent to the
applications and the social context of mathematical discovery. Those were the aspects
of mathematics of primary interest to the biologist Hogben, who thereby presented
rather elementary mathematics in attractive popularisation. Hardy counted useless-
ness among the great assets of real mathematics; forgetting Archimedes’s military
engines, he blamed ‘Hogben mathematics’ for the senseless destruction of world
wars. This was just before the manufacture of nuclear weapons by the ‘Science has
known Sin’ group, in collaboration with outstanding mathematicians like J. von Neu-
mann. If any important mathematics came out of the atomic and hydrogen bombs,
the secret has been well kept.

The theory of numbers is the oldest branch of mathematics. Hogben mathematics
would not exist without numbers, while Hardy and his associates devoted their best
efforts to number theory. Two outstanding problems here are as follows: (1) Fermat’s
Last Theorem, which can be explained to a schoolboy in spite of its melodramatic
title and (2) the Riemann Hypothesis, decidedly more recondite. Both have defeated
the efforts of great mathematicians to prove or to disprove them. The Fermat theorem,
if true, would lead to no new mathematics; proof of the Riemann conjecture would
lay the very foundations of analytic number theory. These unsolved problems gave
rise to a distressing possibility in mathematical reasoning: Was there a category of
propositions ‘neither (demonstrably) true nor false’?
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Riemann’s conjecture has to do with the distribution of primes, which are those
integers (like 257) not divisible by any smaller number except unity. Every whole
number can be expressed in just one way as the product of primes, hence their
importance. There are infinitely many primes. A given integer is either a prime or
not, with no question of probability; yet the occurrence of primes among the integers
is highly irregular, without a pattern. Given a specific prime, it is always possible
to find the next by hard work, but not by formula. This parallels an experimental
situation. Weights of coins of the same denomination fluctuate so much that I could
never predict what the next coin would show on delicate balances. However, if there
was a next coin, its weight could always be recorded as one more figure of a series.
Enough such figures outlined a curve for the distribution of weights. The series of
weights formed a sample from a population assumed subject to probability laws.
Could something of the sort not be proved for the primes? It was necessary to change
the scale, because primes occur with less and less frequency (on the whole) as the
integers grow larger. The change gave a fixed average number of primes per interval
of any constant length on the changed scale. Still, the number varied unpredictably
from interval to interval. The number of primes per interval was then shown by me
to follow a simple though unsuspected probability law, the Poisson distribution. This
describes many experimental samples such as the number of cosmic rays per second,
of bacteria in thin cultures and of calls in a telephone exchange. The previous failures
in prime number theory resulted from the attempt to fit an exact description to an
infinite set of infinite random samples.

Every competent judge who saw only this radically new basic result intuitively
felt that it was correct as well as of fundamental importance. Unfortunately, the Rie-
mann hypothesis followed as a simple consequence. Could a problem over which the
world’s greatest mathematicians had come to grief for over a century be thus casually
solved in the jungles of India? Psychologically, it seemed much more probable that
the interloper was just another ‘circle-squarer’. Mathematics may be a cold, imper-
sonal science of pure thought; the mathematician can be thoughtless, heatedly acrid,
even rabid, over what he dislikes. Let me admit at once that I made every sort of
mistake in the first presentation. There is no excuse for this, though there were strong
reasons: I had to fight for my results over three long years between waves of agony
from chronic arthritis, against massive daily doses of aspirin, splitting headaches,
fever, lack of assistance and steady disparagement. It was much more difficult to
discover good mathematicians who were able to see the main point of the proof than
it had been to make the original mathematical discovery. How much of this is due to
my own disagreeable personality and what part to the spirit of a tight medieval guild
that rules mathematical circles in certain countries with an ‘affluent society’ need
not be considered here. There is surely a great deal to be said for the notion that the
success of science is fundamentally related to the particular form of society.



Chapter 3
On Statistics

This essay was written after 1945 by which time DDK had moved to TIFR. It is not
clear whether this was a lecture given to colleagues there or to a different audi-
ence (cf. the reference to Bombay House in the last paragraph). There is not much
formal statistics here: indeed, there is not a single equation. The essay is fairly dis-
cursive and even somewhat polemical; it reflects the mixture of ideas that Kosambi
carried along with themathematics and statistics that were basic to his analysis [42].

Modern statistics, as contrasted with descriptive statistics of the older type, differs
primarily in being a guide to action, which implies more accurate results with an
estimate of the error and greater rapidity of working with smaller samples observed.
It is not realised that ancient statistics was also in its own way a guide to action, its
lack of credit today being due solely to its clumsier apparatus and, with more reason,
to the distressing quality of its findings from the point of view of a certain class of
people.

The standard types of descriptive statistics are the ancient Roman census which
was after all a stock taking for the purposes of the state; its logical continuation in
feudal times is the Domesday book of William the Conqueror which (allowing for
the changed circumstances) is much the same thing, namely a bit of stocktaking for
taxation purposes.

I might illustrate the rise of a new class and a new way of thinking by pointing
out to you the change in European literature in the seventeenth and the eighteenth
centuries. The older literature dealt with persons of heroic stature who specialise in
humanly impossible knightly adventures. The tradition begins with the Chanson de
Roland, to continue through the entire Arthurian Round Table cycle and the deeds
of the Paladins of Charlemagne. On the other hand, when you look down into later
literary efforts, you find quite unheroic average figures as, for example, Lesage’s
Gil Blas or Marivaux’s Paysan parvenu or the most attractive of them all, Voltaire’s
Candide who passes through adventures which are quite romantic in themselves but
in which his behaviour is such that the reader can say “this might happen to anyone”.
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It is not realised, however, that this change in literature corresponds to an appreciation
of the fact that human beings have a certain average and a certain standard or norm,
which in itself is well worth studying. The terms “average man“had to wait until well
into the nineteenth century, but the concept definitely existed long before Voltaire
whose charming story on the subject is entitled “L’homme a quarante écus” deals
with a person who has forty minted pieces of money, which was the average wealth
of a Frenchman at that time. The point is that someone had made a fairly reliable
estimate of the total national wealth and of the total population, thereby reaching
the estimate of average wealth and actually showing the possibility of a statistical
approach to the whole subject. That is, the “average men” who figure in the literature
of the nineteenth century depend upon a statistical attitude towards humanity. This
naturally is to be expected from the long tradition of study which lies back of Sully,
Bodin, Turgot, and the entire school of physiocrats; it also implies the rise of a new
type of people who liked to think in this manner peculiar to the French bourgeoisie.

Let us look now at the development of the need for a wider kind of statistics than
that necessary only for budget and taxation. In the year 1542, for example, we find
that at Antwerp wagers are being laid against the sex of on unborn child. A merchant
would undertake to pay 30 livres if the offspring were a girl, whereas in gratitude,
he would receive from the mother 48 livres if a son were born. Or there may be a
wager that the exchange rate would be at a 2% premium or discount; there would
be other wagers which would deal with the failure or success of a certain standing
crop or the safe homecoming of a given ship. These look like gambles, but you will
see at once that these are a primitive type of insurance. The thirty livres go towards
the girl’s dowry, whereas the son could earn his keep and the 48 livres besides.
Insurance of cargoes goes right back to Roman and Grecian times. Nevertheless,
with statistics undeveloped, and a very poor control of the subject as well as very
few cases coning up, the merchant who undertook this enterprise was virtually a
gambler. Briefly, if you insure one man for 7 million rupees, you are running a far
greater risk than if you insure 7000men for 1000 rupees each. The fuller development
comes in the year 1836, when the Belgian A. Quetelet published his book on Social
Physics. Quetelet, to who the term “average man” is due, was the first person to
break down any modern census figures. He found among other things that crime
depended to a regularly predictable extent upon the economic level of the class under
consideration. The poorer the class, the greater the incidence of crime, independently
of the locality. It was also found thatmortality dependedwith a tremendous regularity
upon professions. If a man has to work for his living in a military profession in a
period of constant warfare, he certainly risks his life in an open manner. But it was
not realised that forcing a certain worker to work with lead—as for example types
of glazing—or phosphorus and sulphur as in matchmaking, or mercury as for felt
hats, amounted to sentencing that worker to die a few years earlier, or in the last
case, to lunacy as well. I should like to point out that this discovery of Quetelet led
in the long run to the discrediting of statistics as a science, whereas Quetelet himself
believed that he had discovered new scientific laws whose inexorable character really
frightened him. What he had discovered were not laws of nature but actually laws of
a certain particular type of industrial society.
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Such discoveries are used nowadays in building up the basis of such a gigantic
financial development as the insurance business, those importance I need not explain
to anyone in Bombay who can walk down a single mile of Hornby Road and read the
signboards around him. Mortality tables were first made privately by the actuaries
themselves in a very crude fashion and from the late seventeenth century onwards
are available from census figures. The differences of mortality in different occupa-
tions are fully recognised and allowed for in the premium charged by the insurance
company. But insurance is no longer speculation or gamble for the simple reason
that the data from millions of policies are available and that millions of people get
themselves insured so that the statistical average can apply very well. In fact, the
data from insurance companies have allowed tremendous advances to be made in
the science of demography, so that we can predict years in advance the approximate
amount of the population as well as its structure by age groups. In the USA, for
example, manufacturers pay a great deal of attention to this. It was known before the
war that the number of children born was decreasing due to falling birth rate and the
predictions based on this warned manufacturers of school textbooks and children’s
clothes to allow for so many million articles less annually. Such forecasts are not
only possible but absolutely essential in a country where mass production is the rule.
In other words, this type of statistics is also a guide to action, provided it pays the
right people to act upon it. On the other hand, if it be discovered that conditions led
to the shortage of certain commodities, the action generally taken is that of attempt-
ing to secure a corner in those commodities, regardless of its effect on the lives of
the consumers; this happened, for example, in the Bengal famine. It is difficult to
commend such action upon any basis, statistical or otherwise. I take just one more
example that of Lotka’s findings from the data accumulated by theMetropolitan Life
Insurance Company of New York. Among other things, he showed that the general
USA death rate was decreasing slowly, but with absolute regularity, up to the year
1918 when a sudden rise occurred because of the epidemic of Spanish influenza.
But after that epidemic was over, the death rate fell again succeeding years not to
the straight line on which it had been declining but another straight line decidedly
lower than but parallel to the first. The conclusion was that the Spanish influenza
had killed those with the least powers of resistance whether physical or financial and
those that survived were under the circumstances of contemporary society, fitter to
live. Possibly, some genius may arise here to prove a similar beneficial action for the
Bengal famine.

People were not willing to face up to the idea that the structure of society might
itself force certain classes to criminality, which was really a result marked out in
Quetelet’s work. Towards the end of the last century, eminent Italian criminologists
following a great tradition founded by the jurist Cesare Beccaria began to investigate
the criminal’s circumstances. Among them, Lambroso, Ferraro, and Mantegazza
studied the physique of convicted criminals only to discover that there was a criminal
type. Criminals had abnormalities of vision, asymmetric skulls, and various types of
impediments. Ergo, there was a criminal type, the criminal could not help himself,
and his nature was crooked because his head was crooked. This kind of research
(which would not be taken as accurate by current standards) attracted a great deal
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of attention because it drew emphasis away from the economic question. No one
asked why the man’s head had become deformed, whether poverty in childhood had
anything to do with it, nor even whether the confusion of cause and effect might not
have existed in such researches. Later on, these same scientists undertook to examine
in the same way men of superior intellect, supposedly valuable members of society
such as artists, musicians, and even professors of mathematics. Being honest men,
they had to publish their findings which were, alas, that the heads of these geniuses
were also not symmetrical and they too suffered from a considerable number of
impediments. Nevertheless, society chose not to pay any attention to this, preferring
to drop the entire subject in a quiet but discreet fashion.

At this stage, statistics becomes the joke that it is often mistaken to be. No sta-
tistician today can deliver a popular lecture without quoting that British statesman
who gave vent to a classical utterance “Gentlemen—There are three kinds of lies;
lies, damned lies, and statistics”. The idea is that one can prove anything he likes by
reference to the appropriate set of statistics. I once made a collection of jokes of this
sort about statistics of which one or two may be given here. At a medical conference,
an eminent child specialist gave the conclusion of 15years of painstaking research to
prove that the first day of life was the most dangerous as having the highest recorded
average mortality of 28.2%. His rival jumped up with the remark that this research
was all bosh and that the last day of life was much more dangerous because then
the mortality was 100%. In another case, two very learned people were having an
intellectual tea with an even more intellectual conversation which ran somewhat as
follows: “My dear colleague—I find that the latest statistics show men graduates
of our colleges as having 1.4 children each, whereas the lady graduates have 3.7
children each. What does this prove?” The answer came immediately, “Obviously
this shows that women have more children than men”. One could go on like this for
ever, but I only want to make it clear to you that statistics had fallen into considerable
disrepute.

From this stage, it had to be rescued by the need for application to branches of
science in which experiment could not be refined beyond a certain level. In physics of
the classical type, one can measure more accurately, or make pure alloys or refine the
experiment almost indefinitely. In modern physics on the contrary, electrons, cosmic
rays, and such new discoveries behave in a highly individualistic manner. In fact, they
behave like biological specimens, that is to say the output of a certain type of grain
planted in a field or the blood content of a given strain of mice, or fish in a certain
lake. In this case, you can only observe but not refine the observation. Nevertheless,
some method is needed for drawing accurate conclusions, that is to say a guide for
immediate action. It was a biological science that developed statistics itself as a basic
and even a fundamental science. The first stop in the modern direction came in the
year 1908 from the mind of an able mathematician employed by the great breweries
of Messrs. Guinness. They had to find from experiment in small plots which variety
of barley would give the greatest yield and what types of fertilisers would increase
this yield most economically. Now, it is impossible to count every grain of barley
and experimenting with all their land year after year for different varieties world not
only be very costly but would also not give valid result for the simple reason that
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rainfall conditions also differ from year to year. Finally, the ground is not uniform
so that soil variation has also to be taken into account along with the possible action
of insects, weeds, and other causes that might affect the grain. Nevertheless, the
method was worked out and can give good results using not more than a couple of
dozen plots each the size of a small room provided the plots are selected in certain
random unbiased fashion. The methods were later worked up with far more detail,
accuracy, penetration, and insight by R.A. Fisher who is today the great name in
modern statistics. These methods are now applicable not only to biology and to
cosmic rays but to sociology, archaeology, and even financial questions. Statistics
may now be regarded as a science rather than as a joke or a laborious but painful
method of description. With a small sample, often less than 5% of the whole, we can
draw conclusions about the entire aggregate and in addition say what the error of our
estimate happens to be. This point has not always been grasped by statisticians of
the older school, primarily economists, who use new methods mechanically without
realising that statistics even of the most improved type cannot be a substitute for
intelligence. For example, I recall an economic survey of Poona City undertaken
in the years 1937–1938 which chose one house out of every fifteen for its sample
without attention to appropriate randomisation and without testing for bias. The
conclusions were published only in the year 1945 by which time the findings had
been completely invalidated by the pressure of war, by the influx of military and
other new Government establishments, and by the construction of tremendous new
factories for which the working population was based upon Poona. The only excuse
for the sampling survey of this sort is its rapidity as well as accuracy and its estimate
of error; all three were absent in the case cited.

Let me give you a concrete example of what a precise scientific prediction is
like and then show you that such a prediction can be made also by using statistical
methods. Just a 100 years ago, the Newtonian theory of gravitation had began to be
suspected because the outermost planet then known, namely Uranus, did not follow
the path predicted for it by Newton’s laws. Uranus had been discovered by Herschel
(then a professional musician) an amateur astronomer who prepared his own lenses
and telescopes. The question now was as to whether the Newtonian theory with its
inverse square law of gravitation had to be modified or whether there existed another
planetwhose pull could account for the discrepancies between theory and observation
as regards the movement of Uranus through the sky. Two unknown but ambitious
young men independently undertook this task of explaining the discrepancy on the
hypothesis of an unknown planet. Of these, Adams had the misfortune to send his
conclusions to the Astronomer Royal who quietly filed them away, the other Urbain
Jean-Jacques Leverrier wrote to the astronomer at Berlin Dr. Galle to the effect that
if Dr. Galle would point his telescope to a part of the sky where he had recently
chartered his stars he would find within the field of that telescope a new heavenly
body, a star that moved, in fact a planet; and on 23 September 1846, Galle had the
stirring experience given to so few of finding a new planet swim into his ken. As
Arago put it to the FrenchAcademy of Sciences in reporting on the great discovery of
the young French astronomer, M. Leverrier had not to see his planet with a telescope;
he saw it at the end of his pen. This is the classical example of a prediction in science
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which was spectacular as well as fully confirmed by experiment. I could give you
many such in pure science where statistics was the tool of analysis, but these will
not be as spectacular as the one that I shall now call to your attention. In the USA, a
journal called the Literary Digest had started the custom of taking straw votes among
its readers by asking them to fill out certain types of coupons on various questions
of interest, and this had led them to a quite successful study of prediction in events
such as elections. In 1936, they announced their intention of taking another poll of
this sort for the forthcoming presidential election. The editor was annoyed to read
the assertion from a young public opinion expert, Dr. Gallup, that the Literary Digest
would show a vote of 56% against Roosevelt and 44% for him, while the real facts
would show an overwhelming majority of votes cast for Roosevelt and a still larger
percentage of votes in the electoral college under the peculiar American system of
presidential elections. What annoyed the Literary Digestmost was that this assertion
was made six weeks before their survey actually started. Yet when they had finished
counting well over two million of their returns, they did announce the conclusion
that Gallup had said they would announce while the election results again proved
Gallup’s own forecast completely while driving the Literary Digest to ruin. All that
Gallup had done was to follow the method laid down by Fisher. He had counted, with
trained observers, a small percentage of the total population of the USA in which
were represented all groups in every locality according to their appropriate strength.
That is, in the sample Dr. Gallup chose at random, he made certain that working class
voters, voters of the professional class such as doctors and lawyers, religious groups
such as Protestants of various denominations, Roman Catholics, Jews, and racial
minorities were all properly represented and picked at random from local directories
without personal knowledge. Predictions of this sort enable us to say that statistics
has a claim to be more than a joke, in fact to be a very respectable science.

In modern statistics, the estimate of the error is a specially important point, for
our statistics no longer deals only with averages and percentages but also with the
amount of variation. An important function of statistics is that of “costing” or giving
the amount of information in a certain samplewhich in effect is equivalent to showing
how sharply the mechanism of observation can focus upon a given problem. The
statistician, if consulted before the observations are taken and supplied with some
minimum data about the nature of the population, can say how best to allocate the
energy available for observation, or to what degree of accuracy information may be
obtained from a given amount of available resources. The results have to be expressed
in terms of probability which has misled many people. When we say that a certain
result is significant in that there is only a chance in 20 or one in a hundred of being
exceeded, we are not speaking in terms of the race course but are actually using the
same kind of reasoning that you use, almost instinctively, but actually because of
long experience, when you allow for a given amount of time to catch a bus or a train
or for a certain letter to reach a certain correspondent. Naturally, the allowance made
depends not only upon your previous experience of such happenings but also upon
the importance you may happen to attach to the outcome of the particular event,
whether it is a matter of routine or a matter of importance to which a cash value
can be attached, or a matter of life and death. What has not been grasped is that in
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all cases of this sort where noticeable variation necessarily occurs—and this means
in all cases where scientific observation has to be repeated—one can never get an
infallible answer but only an answer that is likely to be right in almost all cases.
Statistics tries to give you a definite estimate to how often you are likely to be right
in the long run.

Nevertheless, the fact still remains that very few people are interested in statistics
itself as a pure science and those people have no voice in the affairs of the world.
We still have the habit of taking conclusions that are pleasing to us and ignoring
the rest. For example, Gallup was able to say that the vast majority of the people
who voted for Roosevelt did not approve of Roosevelt’s ideas about the Supreme
Court reform in spite of which Roosevelt took his third-term election an a mandate
for driving the Supreme Court to acquiescence. If it comes to that, Gallup does not
make his living by forecasting elections but by predicting the popularity of a certain
commercial product say a new soap or a new brand of coffee or a particular kind
of advertising programme for the business people of the USA. He is, inevitably,
subservient to the interests of the business community, and his election forecasts
are more a sort of advertising for the superior accuracy of the methods he uses.
In the matter of these public opinion surveys, I might point out in them two types
of results, qualitative and quantitative. Gallup’s result are quantitative, and for this,
a precise, accurate statistical mechanism is indispensible. But others, for example,
the great anthropologist B. Malinowski, used a totally different approach to reach
qualitative results. Malinowski had made quite remarkably acute observations on
living conditions upon the Trobriana islanders using his own Western education as
a background against which to measure the mentality of the primitive people being
studied. Then, he turned this method as well the background he himself acquired
by his studies over to observing the British public, and his inquiries were directed
towards asking all kinds of people through the medium of trained impartial observers
as to why they did or did not do certain things and noting down the results verbatim.
This showed, for example, that the football pool which is virtually a swindle in Great
Britain is nevertheless popular only because it is the sole method by which a member
of the British working class has any chance of clearing enough money to rise out of
that class. He investigated questions as to why pubs (places where alcoholic drinks
are served) are so popular and what time of the day or week they were specially
popular, why people do not vote in spite of the franchise, and so on. The method
still continues in Great Britain under the name of Mass Observation, but its findings
have raised the expected opposition and antipathy, and the mass observers are often
regarded as gratuitous snoopers in spite of the fact that the Ministry of Information
found it very useful to avail itself of their service on questions such as that of morale
and rationing which are after all qualitative rather then quantitative questions. In
India, we could use this type of qualitative analysis to find for example not how
many Muslims wanted Pakistan (which would need a sampling survey) but what
kind of Pakistan was meant by what particular type or types of Muslims. I might add
that the question cannot be settled in any other way except such observations, for the
electorate is not a random survey sample of the total Muslim population and victory
at the polls says virtually nothing about the actual desire of the masses about which
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every politician can speak interminably. The great example of such observation is of
course the work of the supreme realist of our times, Vladimir Illyich Ulianov, better
known as Lenin. He kept his pulse so accurately not only on the voiced but even on
the unspoken desire of the masses that he was able to guide an entire revolution in
its most critical period and through most unfavourable circumstances to a successful
consummation. With him, we reach the stage not only of observing society but also
of changing it. But if I go any further into his achievements, I shall be preaching
Bolshevism in the sacred precincts of Bombay House and so must stop here.



Chapter 4
A Report to the JRD Tata Trust

In 1945, shortly before he joined the TIFR, Kosambi received a grant of Rs. 1800 for
a 6-month period from the Tata Trust. His “completion report,” reproduced below,
reveals another side of DDK and the multiple scholarly interests that he pursued in
parallel.

There are six projects described here. The first deals with his manuscript on
path geometry; this was eventually submitted to Marston Morse at the Institute for
Advanced Study in Princeton, but was never published. The second is the Kosma-
graph project that probably owes its genesis to the ideas on computing machines
that DDK outlined in [DDK36]. Although initiated around the same time as the
ENIAC project in the USA, this was on a far smaller scale and far less success-
ful; it is not clear if a working model was ever actually tested. DDK’s interest in
computing machines stayed alive for some years [36] and in the 1960s TIFR would
eventually construct the TIFRAC, an indigenous calculating machine. The joint paper
mentioned in the report was almost surely never published. Projects 3 and 4 dealt
with Kosambi’s interest in applying statistics to real data, and Project 5 reflects his
concerns with social issues. The final Project 6 was a consequence of his learning
Sanskrit in order to “give an opinion upon points concerning ancient Indian mathe-
matics.” DDK undertook a translation of Bhartrhari, and this resulted in two works,
The Satakatrayam of Bhartrhari and The Southern Archetype of Epigrams Ascribed
to Bhartrhari [60].

On May 10, 1945, I received from the JRD Tata Trust the sum of Rs. 1800 as a
research grant, for 6 months from April 1945. A word about my situation at that time
and the use I have made or propose to make of the money may clarify the position
and enable the Trustees to judge whether or not the grant is being utilized as they
had originally intended.

© Springer (India) Pvt. Ltd. 2016
R. Ramaswamy (ed.), D.D. Kosambi, DOI 10.1007/978-81-322-3676-4_4
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At the end of 1944, I had (apart frommy usual small mathematical research papers
which need only paper, pencil, leisure, and postage to publish) the following major
projects in hand: (1) The preparation of a book on path geometry. (2) The design
and construction of a universal calculating machine, called the Kosmagraph. (3)
Statistical analysis of cancer and tuberculosis data. (4) Statistical work on ancient
Indian coinage. (5) Investigation of living conditions among the poorest class of
workers (Manga) in Poona and other accessible cities of India. (6) The edition of
poetry ascribed to a Sanskrit poet Bhartrhari.

From 1945, however, most of these projects had to be kept in abeyance for I had
had ten attacks of fever from August 1944 to May 1945. These, with the stomach
trouble and neuralgia which I have had almost continuously since 1935, made it
difficult for me to do much mechanical work alone.

Hiring assistants was out of the question, as I had run completely out of funds.
My trained students had necessarily to take the good jobs offered them, and at the
time the grant was received, I had only one trained assistant whom I could afford
to pay: a Sanskritist Sastri who helped with Project 6 on a part-time basis. The one
bright student left wasMr. A.B. Magdum, who has suffered from recurrent attacks of
appendicitis (and chronic poverty), and who had, to leave for Sangli two days before
the grant was actually received. He has not been able to work for more than 1 month
since May 1945.

The first attempted use of the grant, therefore, was in helping able mathematicians
whowere in great need. The offer was accordinglymade to Dr. S.Minakshisundaram
of Andhra University andMr. K. Chandrasekharan of Madras. They could have done
research at Poona for the summer months with profit to all, particularly as Prof. H.C.
Chow, the Tata Public Relations scholar from China was expected to come to Poona
to work with me. But by May 10, Minakshisundaram was under medical treatment
at Madras, unfit to travel, Chandrasekharan had to await the results of his attempt to
secure continuation of his temporary lectureship at the Presidency College, Madras.
Finally, Prof. Chow was recalled suddenly to China, never having been able to do
any work at Poona. Just about this time, I was appointed to a professorship at the
newly founded Tata Institute of Fundamental Research. This gave me mental as well
as financial relief, as my relations with the Fergusson College authorities had not
been of the happiest. The actual situation as regards the six research projects I have
mentioned is as follows:

1. The book on path-spaces is completed in typescript, though minor additions and
revisions are inevitable before going to press. The assistance of Mr. V. Seethara-
man, a former research student of mine now a lecturer at Annamalai University,
would have been very useful, enabling me to round out certain results in the book
and to take his doctorate. But he was doubtful about the wishes of God and his
vice-chancellor in this matter; as I have no influence with either of the two, I had
to finish up the work as best I could and leave him to his own devices. Very little
money was actually used for the book, and that came from the generous invitation
tendered by Prof. H.J. Bhabha, then at Bangalore, to lecture on the topic. As for
the publication, I believe no funds will be required, unless we decide to publish
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the work locally; there is a good chance of getting the work published in the USA
or in England, the only case for local publication being that the book would then
be more easily available to our students.

2. The Kosmagraph is finished, and a working model being improved at St. Xavier’s
College. The total outlay forworkshop charges, electricmotors, cathode-ray oscil-
lographs, valve tubes, etc., would have exceeded the total amount of the Tata grant.
But the St. Xavier’s authorities stood the expense of these items, as Fr. Rafael has
collaborated in the work. My total expenses from the grant have been a nominal
honorarium of Rs. 250/- to K.B. McCabe, the third collaborator, and another of
Rs. 50 to Salvador D’Souza, head mechanic at the St. Xavier’s workshop. Both
have deserved far more, end the work of McCabe in particular seems to me to be
beyond recompense.
A joint paper is being made ready for publication, though it will be some months
before all the points are checked.

3. Prof. R.A. Fisher thought that my ideas on blood groups and cancer were worth
following through, but I have been unable to get the necessary technical collab-
oration. The Tata Memorial Hospital staff have their hands full, and in addition,
they have the aid of the statisticians for their own experiments, so that my function
does not go beyond an occasional consultation, which costs me nothing. Tuber-
culosis data is expected at any time from UMT Sanatorium, Arogyavaram, which
had asked me to work out a better index for the measurement for TB than the one
now in use. I did give them a new provisional index, but that was on the basis
of data from 50 patients from group III, whereas at least ten times the number
would be really necessary. Some portion of the grant has been earmarked for this
purpose, as I shall need the services of a tabulator, probably Mr. Magdum, and
in addition shall have to travel to Arogyavaram again to see the index applied in
practice. I have paid Rs. 150/- to Dr. J. Frimodt-Møller of the UMT Sanatorium.

4. For thework on ancient Indian coinage, I hoped to be able to borrow the services of
Dr. S. Paramasivan,ArchaeologicalChemist at theGovernmentMuseum,Madras,
for 4 to 6 months. This has proved to be impossible, and all work done in this
connection has been done by me. This is mostly the work of classifying and
weighing coins accurately, preliminary to applying modern statistical methods to
the data, and I have concentrated on hoards of punch-marked coins. The analysis
of 690 coins of theKhandeshHoardwith theBBRAS is almost complete and bears
out my former (published) conclusions about such coins. The most substantial
new discovery has been that of an entirely new type of punch-marked coin, and
I hope to publish a paper on this find shortly. It may be of interest to note that
the same hoard was first studied by an expert of the Prince of Wales Museum,
who was able to classify only 218 of the 690 coins, not always correctly; the new
discovery belongs to his “unclassified” group, which would ordinarily have been
scattered as of no importance.

5. Working class conditions in Poona are being studiedwith the assistance ofMessrs.
T.G. Kulkarni, A.T. Patil, A.D. Taskar—three former students of mine now study-
ing for the MSc degree at Bombay University. In addition, I hire occasional tabu-
lators to help in the work. The data was available from figures collected by Prof.
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S.R. Bhagwat, well known for his work on adult education, civic and rural uplift.
But tabulation and checking have taken Rs. 450/- over 5 months, and another
couple of hundred rupees at least should be necessary before the work can be
completed. This money is divided between the students and tabulators, all of
whom work very hard. So far, food figures for 200 of the 300 families I expect
to study have been tabulated and checked. The rest will be covered in a month,
after which we shall start field investigation (from home to home) of the same
families. The conclusion so far reached is that the lack of purchasing power is
more serious than any real shortage in rationing among the Manga workers, but
this will be amplified later. We hope to publish the findings in detail.

6. Work on the edition of Bhartrhari was taken up as a sideline for two reasons: (A)
I have often been asked to give an opinion upon points concerning ancient Indian
mathematics, which I could not do without studying Sanskrit. I also find that the
editions now extant of such technical works are not satisfactory, so that I should
need general editorial experience before doing anything in ancient mathematical
texts. (B) The particular problem of Bhartrhari was taken up at the suggestion of
the late Dr. V.S. Sukthankar, famed for his great (though incomplete) edition of
the Mahabharata. Dr. Sukthankar believed that I could edit Bhartrhari and that
the work would be of value. As a matter of fact, his methods, and even more
my own, have had to be based upon good statistical practice, stratified sampling.
For this work, I need one copyist at least (at present Mr K.V. Krishnamoorthi),
and one or more people to write the critical apparatus (now being written by
D.V. Navarane). The expenses of borrowing, comparing, and copying MSS with
checking collation sheets have been heavy, about 805 rupees, but results seen to
have justified the outlay. One edition based on two MSS and a commentary has
already appeared at the Anandāśrama, the total outlay for this would not exceed
Rs. 75/-, and help from the JRD Tata Trust has been acknowledged in the Preface.
A second edition of a different recension has gone to press under the auspices
of the Bharatiya Vidya Bhavan, Bombay. This is costlier, as it is based upon 22
sources with four commentaries. The final editio princeps (based on 42MSS plus
14 commentaries and study of another 150 MSS) should take another year to
prepare, though the main task of collecting and analyzing sources is over, even
the final stage of writing the variants down and preparing a press copy being half
finished.
In this connection, I have sent for publication (before the grant was thought of)
a statistical paper (accepted by the Journal of the American Oriental Society)
on Sanskrit studies and hope to have another of a slightly different type on the
comparative (numerical) study of Bhartrhari versions, of which I have been able
to establish eight, with not less than four others which certainly exist, but cannot
be established on the basis of available numerical data, which is derived from
the close study of about 250 MSS from all over the world. A third paper on the
authorship of the Satakas has been sent for publication to the J. Or. Research,
Madras, by invitation.
As for Indian mathematical texts, I hope to edit the Aryābhatiya, which should
take another 2 years of work. The India Office Librarian has already sent meMSS
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of this work, and I have others at my disposal here. My copyists will undertake
this as soon as the essentials of the Bhartrhari work are dealt with.

Abstract of Expenditure.

Project (1) Nil

" (2) 250./- + 50./-

" (3) 150./-

" (4) Nil

" (5) 450./-

" (6) 805./-

Total 1705./-

MV/10-10-1945.
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Chapter 5
Precessions of an Elliptical Orbit

D.D. Kosambi, Banaras Hindu University

Thiswas the first of Kosambi’s published papers and is a largely pedagogical exercise
started while he was a student at Harvard, and polished up after his return to India.
In this early work, DDK displays a sophisticated ability to integrate many strands
of thought, to generalize observations from one context to another, while retaining
sufficient rigor. The mention of quasiperiodic motion suggests that some of these
topics were possibly covered in the special course on the many-body problem that
was given by themathematicianG.D. Birkhoff. Kosambi’s biographer reports [DDK-
JK] that Birkhoff counted DDK among the better students at Harvard and allowed
him to take this course.

(Notes on: Vibrating Strings; Planetary Orbits; The Raman Effect.)

I. Any textbook of hydrodynamics will give the following equations for the motion
of an infinite cylinder through a perfect incompressible fluid, at rest at infinity:

(
M + M ′) ξ̇ + kρη = X (5.1)

(
M + M ′) η̈ − kρξ̇ = Y .

(
M + M ′) dU

dt
= P (5.2)

(
M + M ′)U

dψ

dt
= kρU + Q .

Here, M is the mass of an unit length of the cylinder, M ′ that of the fluid displaced
thereby; ξ, η coordinates of the central axis with respect to axes fixed in space, the
whole motion being in a direction perpendicular to the length of the cylinder. The

Published in the Indian Journal of Physics 5, 359–64 (1930). Reprinted with permission.
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constant of circulation about the body is denoted by k; density of the fluid medium
by ρ; components of the external forces per unit length by X,Y . In Eq. (5.2), P, Q
are components of the external force along the tangent and normal to the path of the
center; ψ the angle made by the direction of the velocity U , with a fixed direction.
(cf. Lamb, Hydrodynamics, 5th ed., p. 76.)

The important characteristic of these equations is that the total energy of the
motion represented is exactly the same as when there is no circulation (k = 0). In
fact, the force of circulation is perpendicular to the velocity, and so does no work.
These equations may be made also to represent the case of an electron in a magnetic
field, a Foucault pendulum, and even the restricted problem of three bodies, as by
the equations of Hill. We processed to consider special cases.
II. If a vibrating string be set in motion by plucking it in the middle, most of its
motion will be represented by

y = A sin bx sin bct. (5.3)

Seen lengthwise, the string is approximately our infinite cylinder attracted to the
center with a force proportional directly to the distance. Due to natural unevenness
of the apparatus, the actual path will be a flat ellipse rather than a straight line, and
so circulation of the air will be set up. Our Eq. (5.1) become:

ξ̈ + 2νη̇ + λ2ξ = 0
η̈ − 2νξ̇ + λ2η = 0

}

ν = kρ

2(M + M ′)
, λ2 = force at unit distance

(M + M ′)
. (5.4)

These may be formally integrated by an ingenious device due to Bronwich (Pro-
ceedings of the London Math. Soc. Series 2, Vol. XIII, p. 225). Multiplying the
second by i = √−1 and adding to the first, we have:

z̈ − 2νλż + λ2z = 0 , z = ξ + iη , i = √−1 (5.4a)

whence z = eνi t
(
Aeipt + Be−i pt

)
(5.5)

where p = √
ν2 + λ2.

With the initial conditions z′ = 0, z = a, when t = 0, the motion follows an hypocy-
cloid tangent to |z| = aν

p with cusps on the circle |z| = a.

With another set of initial conditions, say ξ0 = η0 = η0 = 0 ξ̇0 = ν, when t = 0,
we obtain:

z = ν

p
eiνt sin pt (5.6)
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In polar coordinates, z = reiθ

θ = νt , r = ν

p
sin pt or r = ν

p
sin

pθ

ν
(5.6a)

The path is thus a rosette, described by a casual observer as a rotating ellipse, as
also in the gyroscopic pendulum. We see that a new period has appeared, that of
precession:

T = 2
π

ν
= 4π(M + M ′)

kρ
(5.7)

Actually if one tightens the heavy string of a banjo and plucks it in the middle, the
whole motion seems a blurred region to naked eye, and its boundaries, instead of
narrowing down uniformly to rest because of air resistance, are seen expanding again,
after a little while. The period of this expansion would be just a half of the above.
An ink dot on the string apparently follows the “rotating ellipse,” and the period of
a full rotation would then be T . An experiment seems to be called for with brilliant
points and photographic observations.
III. The theory of relativity has still to account for the observed precessions of peri-
helion in our planets, especially Venus.We can consider the atmosphere of the planet
and other light surrounding debris such as the rings of Saturn as constituting a circu-
latory effect with respect to the space occupied by the planet, since the rotation of the
planet is sure to set thismatter intomotion. Unfortunately, the infinite cylinder cannot
yield numerical results applicable to the planetary case, and the three-dimensional
analysis presents difficulties. However, a criterionmay be obtained as to the direction
of rotation of the planet, i.e., as to the circulation setup. Notice in passing that Venus
is known to have a dense atmosphere though the question of its period of rotation
about its axis is still a point of some doubt.

Instead of taking Eq. (5.1) with attraction inversely as the square of the distance,
we assume the divergence from the normal state to be small and apply Eq. (5.2).

Let
U = U1 +U2

ψ = ψ1 + ε

}

U1,ψ1, as in the Keplerian condition. (5.8)

then

(M + M ′)
dU

dt
= P = (M + M ′)

dU1

dt
∴ U2 = 0

and

(M + M ′)U
dψ

dt
= kρU + Q
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and

(M + M ′)U1
dψ

dt
= Q

whence
de

dt
= kρ

M + M ′ and e =
∫ t

0

Kρdt

M + M ′

which leads to the result that ε in a complete period increases by kρT
M+M ′ . If the direction

from which ψ is measured be taken as the radius vector to the perihelion, the orbit
being nearly circular, the perihelion is retarded by this amount if k be positive.
The actual direction of procession depends only on the direction of circulation. An
advance would signify that the directions of circulation and of description of the
orbit were opposite; a retardation would mean that they were identical. Finally, this
precession when small might also be taken as a slight change of period of the moving
body: advance of perihelion as an increase of period, retardation as a decrease. In
the string, the circulation is set up by the vibration itself, and a retardation should
always occur.
IV. The solar system is but a step from the atomic model. The two-dimensional
fluid motion of our cylinder, of a vortex, of an electric charge in an electromagnetic
field is indistinguishable. Thus, the change of period just pointed out in the case of
a planet might well be seen as an extra line of the spectrum, if all the electrons have
a sole direction in describing the orbit; as two lines, symmetrically displaced from
the ordinary line, if the constituent electrons have both senses of description. And
indeed, this is the usual explanation of the well-known Zeeman effect, after Larmor.
In the Raman effect, however, a number of electrons are excited by a light wave and
send out a certain number of extra waves not yet satisfactorily explained (the Smekal
jump is most unattractive). We might extend our analysis, and replace the constant
of circulation k by a periodic function of the time which represents the change of
electromagnetic intensity. The phenomenon and the problem will not be discussed in
the present note, though I hope a suggestion will not be ill received. Quantization and
the critical value method of Schrödinger should be used to obtain the proper numbers
corresponding to the new periods caused by the disturbing function. Secondly, the
asymmetry of the Raman effect has also to be considered. The Zeeman effect might
be observed, for purposes of comparison, in a magnetic field wherein the intensity
has a period comparable to that of the light waves used in the more recent discovery.
Let it finally be noticed that while electrodynamically unsound models have usually
been employed for purposes of illustration and deduction, equations of our type will
be applicable wherever a stable periodic motion of any given system is acted on
by “non-energic” forces, here forces perpendicular to the displacement. As for the
mathematical justification of the assumption that in an arbitrary system, a number of
stable recurrent—if not periodic—motions exist, and the reader is referred to modern
dynamical theorists, such as Birkhoff.
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Harvard University, September, 1927.
Banaras Hindu University, April, 1930.

Note: The Kármán solution involving rotational motion of the fluid about the infinite
cylinder has been neglected; it should most certainly be taken into account in any
experiments with vibrating strings.



Chapter 6
On a Generalization of the Second Theorem
of Bourbaki

D.D. Kosambi, The Muslim University, Aligarh

The name of Bourbaki first appears in the published literature in this paper. As
described by André Weil, the prank was designed to deflate a senior colleague’s ego,
presumably by demonstrating the greater familiarity that Kosambi had with modern
methods and the then current literature. The rest of the paper is serious enough and
points to Kosambi’s interests in differential geometry which were to preoccupy him
for the next twenty years. Schnirelmann’s work continues to be of interest.

In a paper under publication [1], I have discussed the existence of covariant deriva-
tives and proved that there are infinitely many parallelisms connected with the paths:

ẍ i + αi (x, ẋ, t) = 0 (6.1)

These parallelisms are defined by

D(u)i = u̇i + γi
ku

k + εi (6.2)

where

ẋ kγi
k(x, ẋ, t) + εi (x, ẋ, t) = αi

One of these, for which

γi
k =

1

2
αi
;k (6.3)

Published in the Bulletin of the Academy of Sciences, U.P. 1, 145–47 (1931). Reprinted with
permission of the National Academy of Sciences, India. The journal is also known in the
literature as the Bulletin of the Academy of Sciences of the United Provinces of Agra and
Oudh, Allahabad, India.
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is the fundamental parallelism; with this, a covariant derivative independent of the
direction exists only for the symmetric affine connection:

αi = �i
jr ẋ

j ẋ k , �i
jr = �i

r j (6.4)

I was not aware that a little-known Russian author, D. Bourbaki, who died of acute
lead poisoning during the revolution, had anticipated part of these results and pointed
out a way to their extension. I shall not go into details here, for an excellent résumé
and critique has been published recently by Lusternik and Schnirelmann [2]. But it
will be clear to geometers acquainted with last-named paper that I merely proceed
by discarding all three of the ‘Vysokoblagodaren’ axioms. With our notations, this
means that a vector field ui (x) will have a covariant derivative ui|r independent of
direction, such that:

ui|r ẋ
r = D(u)i (6.5)

We have, therefore:

uilr =
∂ui

∂xr
+ γi

kr u
k + εir (6.6)

where γi
kr ẋ

r = γi
k and εir ẋ

r = εi .
It follows, with the notation of my first paper, that:

γi
kr = γi

k;r independent of ẋ

εir = εi;r

That is:

αi
;r − ẋr

[
γi
kr + γi

kr

] = φi
r (x)

Thus for the most general αi , we can have at best:

αi = γi
kr ẋ

k ẋr + φi
r ẋ

r (6.7)

For the principal parallelism,αi
;k = 2γi

k . This gives my former result. For the general
γi
k , linear in ẋ , (6.7) gives the most general form of the α’s and hence of the paths.
It will be noted that the φi

r (x) are precisely the εir . Furthermore, an important
consequence of this generalization is the inclusion of Cartan’s torsion, which is
given by:

�i
kr = γi

kr − γi
rk = γi

k;r − γi
r;k (6.8)
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The second is the most general form of torsion, for all possible parallelisms. The
quantities

εir = αi
;r −

[
γi
kr + γi

rk

]
ẋ k

are used in the new unitary field theories to denote the electromagnetic components
of the forces deforming the hyperspace E4.
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Chapter 7
Parallelism and Path-Spaces

D.D. Kosambi, Fergusson College, Poona

After DDK returned to India, he kept up his contacts with well-known European math-
ematicians such as T. Levi-Civita and É. Cartan, who also communicated his papers
to professional journals. This paper appears to have been sent to Élie Cartan prior to
publication, and the ensuing correspondence resulted in this paper by Kosambi and
a note by Cartan being published back-to-back in Zeitschrift (see the next Chapter).
Along with a later paper by S.S. Chern in the Bulletin des Sciences Mathématiques,
63, 206–212 (1939) these papers lay the foundations of the Kosambi-Cartan-Chern
theory.

1. This paper is devoted to the geometrical study of an arbitrary system of second-
order differential equations of the form:

ẍ i + αi (x, ẋ, t) = 0 (i = 1, 2, . . . , n). (I)

The integral curves of (I) are assumed to be such that in some continuous n-
dimensional region of the space (xi ) they possess the property of convexity: One
and only one such curve—which we shall call path—passes through any two points
of the region. The parameter t can be considered as an additional time-like coordi-
nate, or an arbitrary arc-like parameter, the latter point of view being rarely stressed.
Besides the tensor summation convention, I use the following notation for partial
differentiation:

∂ A::
∂xk

= A::,k ,
∂ A::
∂ ẋ k

= A::,k .

Published in Mathematische Zeitschrift 37, 613–18 (1933).
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In a previous memoir1 (the knowledge of which is not assumed here) I attempted
to investigate the possibility of deducing the system (I) from a variational principle

δ

∫

f (x, ẋ, t)dt = 0 (7.1)

this is equivalent to finding a metric for the path-space. It is seen at once that the
integrand f must be a solution of

−αi f;i; j + ẋ i f,i; j + ∂

∂t
f; j − f, j = 0 . (7.2)

These equations as they stand are tensor-invariant, but without simple or even
geometrically interpretable compatibility conditions. If, however, an additional con-
dition is imposed on the effect that f be a constant over the paths, i.e., d f

dt = 0 the
system (7.2) reduces at once to

−αi f;i + ẋ i f,i + ∂ f

∂t
= 0 ,

1

2
αi

; j f;i − f, j = 0 . (7.3)

The compatibility conditions for this first-order system are easily worked out, and if
f,k be eliminated wherever they occur, we obtain the following differential invariants
as coefficients in successive equations:

εi = αi − 1

2
αi

;k ẋ k ,

−2Pi
j = ασαi

;σ; j − ẋσ
,σ; j − 1

2
ασ

; jα
i
;σ − ∂

∂t
αi

; j + 2αi
, j ,

3Ri
jk = Pi

j;k − Pi
k; j .

The ordinary Riemann-Christoffel curvature tensor is Ri
jk;l . M.E. Cartan2 has

been kind enough to point out that one differential invariant, namely, αi
; j;k;l does

not so appear, but this may be regarded essentially as εi
; j;k . To see the geometrical

bearing of these invariants, it is necessary to develop the concept of parallelism for
our spaces, and this is the main purpose of this work.

1D.D. Kosambi, The existence of a metric and the inverse variational problem, Bull. U.P. Acad.
of Science, vol. 2. The main ideas of the investigation were set forth in a lecture to the Aligarh
Mathematical Seminar on March 5, 1931. Some of the results of this paper have also been given in
a note in the Rendiconti R. Accad. Dei Lincei 16 (1932), S. 410–415.
2In a personal letter, an extract of which is published after this paper. Mathematische Zeitschrift.
37.
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The fundamental ideas are sufficient to develop the full use of a parallelism that
the paths should be autoparallel lines, and that the operator of the parallelism should
have the tensorial character. From these, it is shown that a non-distributive parallelism
results, but that a distributive biparallelism can be obtained by omitting an additive
vector. If, on the other hand, we keep consistently to the point of view that the inverse
variational problem is essential, then the parallelism must give an invariantive form
to the equations of variation of the paths. And that too leads to much the same result.
These methods show no way of obtaining an additional index for a given tensor,
in a fashion analogous to covariant differentiation in the Ricci calculus. But it is
seen that since only the biderivate can be defined for the general tensor, this is not a
fundamental question.

In the first paper referred to, there appeared a curious result in the guise of the
theorem:

A necessary and sufficient condition that the integral of any twice differentiable
function ϕ( f ) be stationary over the extremals of δ

∫
f dt = 0 is that the integrand

f be a constant along the extremals, i.e., d f
dt = 0.

This gives the same reduction as in the system (7.3). To account for it, it is
necessary to develop the analog of the equations of Killing. The metric f can be
regarded as an invariant of a certain fundamental group, and any function thereof
will naturally be an invariant also. The second-order equations given by Davis3 in his
treatment of the inverse variational problem can be deduced from (7.2) by requiring
the metric to be a relative invariant in place of an absolute invariant, which implies that
d f
dt = λ f . The arbitrary constant λ is then eliminated from the resulting compatibility
conditions.4

2. In the metric case, where the vanishing of the first variation gives the usual system
of Euler’s equations, or (as we then assume) the equivalent system (I), the important
part played by the second variation of the integrand is well known; this leads to the
equations of variation, which we have to consider in order to restrict the end points
of the integral in (7.1) to lie between two conjugate foci on the extremal. On the
other hand, in the metric as well as in the non-metric case, the equations of variation
can be obtained by taking

x̄ i = xi + uiδτ

where δτ is an infinitesimal, and x̄ i and xi are assumed to lie on nearby paths or
extremals. Substituting in (I) and neglecting higher powers of δτ , we have

üi + u̇kαi
;k + ukαi

,k = 0 . (II)

3D.R. Davis in the Bull. Amer. Math. Soc. (1929), pp. 371–380. The equations given there would
seen to be necessary but not sufficient.
4For a detailed bibliography of the subject, and in particular for references to the numerous papers
of Berwald, I refer the reader to the article of Koschmieder, Jahresber. d. D.M.V. 40, pp.109–132.
Other papers related to the present investigation are D.R. Davis, l. c. and Trans. Amer. Math. Soc.
33, p. 246 and J. Douglas, Ann. of Math. (II) 29.
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It will be seen that these are equivalent to the equations of second variation in the
metric case, provided f is non-trivial, i.e.,

� ≡ | f;k;l | �= 0 .

We shall take (I) and (II) as fundamental systems of equations for affine path-
spaces and proceed to investigate the possibility of deducing both from a unifying
basis of parallelism.

3. The derivate D(u)i of a set of n quantities shall be defined along a given curve
as

D(u)i = u̇i + βi (x, ẋ, t) . (7.4)

We neglect here the possibilities of derivates containing differential coefficients
of x and u of higher order than the first. Even so, a more general form might seem
to be

D(u)i = f i (x, ẋ, u, u̇, t).

But if the derivate is to be fundamental, we must deduce (I) from

f i (x, ẋ, ẋ, ẍ, t) = 0 .

This implies that the equations,

f (x, ẋ, u, u̇, t) = 0

thought of as equations in five variables, are soluble for u̇. Hence rather than attempt
an investigation of all possible linear or functional combinations of the f i , we might
postulate a derivate as in (7.4). Since an invariantive form of equations is to be
desired, we restrict the derivate to be such that on a non-singular transformation of
coordinates, the transformed derivate also vanishes with the original, at least when
the set derived forms the components of a contravariant vector. That is to say,

D(u)i = Fi
j D(u) j . (7.5)

The coefficients Fi
j must be non-singular for D(u) = 0, and their determinant F =

|Fi
j | �= 0. The simplest possible assumption that gives the result desired is that the

derivate of a contravariant vector is itself a contravariant vector. The coefficients Fi
j

are then ∂ x̄ i

∂x j , functions of the transformation itself, and the nonvanishing of F is
equivalent to the non-singularity of the transformation.

The assumption is more restrictive than others that can be made, but it leads
directly to the tensor invariance of all our fundamental equations.
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The parallel displacement of a vector or even a set of n functions along a given
curve will be said by definition to take place when and only when the derivate along
the curve vanishes. The vector curvature of any curve will be defined as the derivate
D(ẋ) along the curve itself. Finally, the paths are to be autoparallel or curves of zero
vector curvature:

D(ẋ i ) ≡ ẋ i + αi (x, ẋ, t) = 0 . (7.6)

This gives at once a restriction on the form of the derivate,

βi (x, ẋ, ẋ, t) = αi (x, ẋ, t) . (7.7)

4. Since the Eq. (II) are fundamental in the metric K-space, it should be also possible
to reduce them by an application of the principle of derivation to a tensor-invariant
form. To this end, we shall assume u = x−x

δτ
to be a contravariant vector, which is

displaced parallel along the path that is the base of the variation. The Eq. (II) must
reduce to the form

D2(u)i ≡ D[D(u)]i = ϕi (x, ẋ, u, t) . (7.8)

To compute ϕi equate the two forms of (II).

üi + u̇kαi
;k + ukαi

,k ≡ üi − αkβi
;k + ẋ kβi

,k + u̇k ∂βi

∂uk

+ ∂βi

∂t
+ βi (x, ẋ, u̇ + β, t) − ϕi = 0 .

It follows immediately by observing the fashion in which u̇ enters the identity that

βi (x, ẋ, u, t) = γi
kuk + εi

γi
k = γi

k(x, ẋ, t), εi = εi (x, ẋ, t) , (7.9)

1

2
αi

;k = γi
k .

Furthermore, recalling the previous identity (7.7) we have our complete formula for
the derivate;

εi = αi − 1

2
ẋ kαi

;k ,

D(u)i = u̇i + 1

2
ukαi

;k +
[

αi − 1

2
ẋ kαi

;k

]

. (7.10)

Note that the residual coefficients εi vanish identically if and only if αi (λẋ) =
λ2αi (ẋ). Whenever the residual coefficients are zero, we have the derivate of the null
vector also vanishes, and the operation of the derivate becomes distributive;
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D(u + v) − {D(u) + D(v)} = −εi = 0 . (7.11)

The vanishing of εi is seen to be a necessary as well as a sufficient condition for
the last. Postulating a distributive law a priori for the derivate would have greatly
restricted the spaces for which the operation had a meaning.

5. The Eq. (II) or (7.8) can now be written in the invariantive form

D2(u)i = ur Si
r + D(ε)i

where

Si
r = γi

kγ
k
r − αi

,r − γi
r;kα

k + ẋ kγi
r,k + ∂γi

r

∂t
= Pi

r . (7.11)

It can be seen that Si
r is a mixed tensor. For if D(u)i is to be a vector with ui

then εi must be the components of a vector, which we call the residual vector. And
we have assumed that u is a vector, and D(u), D2(u) are then vectors also. The
chief usefulness of our equations is seen to be in their normal form, that is, when the
equations can be reduced by means of some change of coordinates that is non-singular
and bring (7.11) to

üi = Pi
r ur . (7.12)

This implies that we can make

ü = D2(u) − D(ε)

along the path that forms the base. The transformation must therefore be that partic-
ular one which makes

γi
k = 1

2
αi

;k = 0

along the base. We can thus state a theorem.

A necessary and sufficient condition for the reduction of the equations of variation
to the normal form is the existence of a non-singular transformation of coordinates
for which γi

k = αi
;k = 0 along the given base.5

Thus, we see the need for what amounts to an extended theorem of Fermi for
our K-spaces. This is proved in a later section though when the residual vector is
identically null, the proof for symmetric affine connections is immediately extensible.

5Note that for other parallelisms, where γi
k �= 1

2 αi
;k , we must have transformations that make both

γi
k and αi

;k vanish simultaneously on the base, for reduction to the normal form; this is the general
necessary and sufficient condition.
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In the normal form, the Eq. (II) give the geodesic deviation of Levi-Cività. Suc-
cessive roots of |ui

j | = 0 give conjugate foci on the base. |ui
j | is the determinant of

n independent solution of (7.12), or of (II). Dynamical stability for systems that are
given by (I) would mean that u can be made arbitrarily small for all values of the
parameter by choosing reasonably small values of u and u̇ initially. But here again,
the various definitions of stability will have to be considered separately.

By taking v(x) to be a vector field, one can consider the existence of a covariant
derivative v i

|r

D(v)i = v i
|r ẋ = ẋr [v i

,r + γi
krv

k + εi
r ] ,

ẋrγi
kr = 1

2
αi

;k , ẋrεi
r = αi − 1

2
ẋ kαi

;k . (7.13)

To be of any use at all the covariant derivative must be independent on the direction
of derivation, which gives

αi = ẋ k ẋ j�i
jk(x, t) , �i

jk = �i
k j (7.14)

for the most general K-spaces in which a proper covariant derivative exists: the
symmetric affine connections.

If, however, we use the general parallelism γi
k and εi , where εi = αi − ẋ kγi

k
2γi

k �= αi
;k we can still get valid results; these are seen to be:

γi
k =ẋrγi

kr (x, t)

εi
r (x, t) =αi

;k − [γi
kr + γi

rk]ẋ k (7.15)

i.:
αi = γi

rk ẋr ẋ k + εi
r ẋr .

These are the most general parallelisms admitting a covariant derivative independent
of direction. And it is shown that the torsion tensor is given by

�i
jk = γi

jk − γi
k j = γi

j;k − γi
k; j . (7.16)

6. As εi is a vector on the assumption that D(u) is always a vector with u, we can
have a restricted derivate, or the “biderivate”

D(u)i = u̇i + 1

2
αi

;kuk . (7.17)

The operation so defined becomes distributive and is also a vector with u. We get
correspondingly bipaths and a biparallelism and the reduction of the equations of
variation is simplified, though for the canonical form, the necessary and sufficient
condition reads as before.
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The same results are seen to be true even for a more general tensor analysis, of
the sort suggested in the first paper. For instance, let the vector law of transformation
be

ūi = Fi
j (x, ẋ, t)u j , F = |Fi

j | �= 0 . (7.18)

where the coefficients Fi
j are functions of the transformation, as well as of any partic-

ular curve along which the vector may be defined. We again assume that the derivate
D(u) is a vector with u and that the paths are given by D(ẋ) ≡ ẍ i + αi (x, ẋ, t) = 0
as before. Then the identities following must hold for all vectors u.

D(u)i = u̇i + βi (x, ẋ, u, t) ,

D(ū)i = Fi
j D(u) j , (7.19)

u̇ j Fi
j + u j d

dt
Fi

j +βi (x̄, ˙̄x, u j Fi
j , t) ≡ Fi

j [u̇ j + β j (x, ẋ, u, t)] .

The following results are then read off by inspection:

(a) The βi are linear in u:

βi (x, ẋ, u, t) = ukγi
k(x, ẋ, t) + εi (x, ẋ, t) .

(b) The residual coefficients εi still form a vector:

εi =αi − γi
k ẋ k

ε̄i =Fi
j ε

j .

(c) The law of transformation for γi
k is

γ̄i
k Fk

j + d

dt
Fi

j = Fi
k γ

k
j .

We have again a vector biderivate. The complete determination of the γi
k requires

further conditions, which we can impose as before, with the same results.
The most general transformation laws, which involve the vector itself, are not

feasible, for
ūi = ui Fi

j (x, ẋ, u, t)

implies that
D(ū)i = D(u) j Fi

j (x, ẋ, D(u), t) .

To solve the resulting equations, we ought to assume that

ẍ i + αi (x, ẋ, t) = 0
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when D(ẋ) = 0 but without the identical relationship.
The analysis becomes complicated, and as yet, I see no elegant presentation, or

even any particularly interesting results that can be included here.

7. To revert to the discussion of reduction to a normal form of the Eq. (II), we note
first of all that the standard proof by Eisenhart6 of the theorem of Fermi can be
extended as it stands to the case εi = 0. Furthermore, the formula (7.19)c shows that
the γ̄i

k will all vanish provided only

γi
k F

k
j + d

dt
F

i
j = 0 . (7.20)

If this is scrutinized accurately, one can see at once that a sufficient condition
for the reducibility in question is the existence of n independent families of vectors
λi

( j) that are all biparallel along the base and equal to the coefficients of the inverse
transformation to Fi

j . We must have

λi
( j) = F

i
j F

k
j Fi

k = δi
j = λ

i
( j) (7.21)

D(λi
( j)) = 0 .

For the ordinary laws of point transformation, this can always be done, as is
seen from the work of Eisenhart cited, formula (25.10), where such a transformation
is built up for any curve as base; the process can be reproduced merely by using
biparallelism of the K-space in question. Stability thus comes to discussing the roots
of the characteristic equation

|λδi
j − Si

j | = 0 . (7.22)

If these are all real and negative, we have a transformation for our normal coor-
dinates and finite oscillations in these.

Si
j = Pi

j is a mixed tensor, and the roots of (7.22) will therefore be invariants
under point transformation.

With the general Fi
j (x, ẋ, t) for transformation coefficients, reduction is not

always possible, as there may not be a transformation corresponding to a given
set of coefficients even along a curve; ẋ is not in general a vector. The condition
(7.20) and its interpretation are unchanged. Matrix laws of combination apply to
the coefficients F , when two or more transformations are performed in succession.
Lastly, a covariant biderivate can be defined;

Dui = u̇i − γk
i uk . (7.23)

6See Eisenhart, Non-Riemannian Geometry, Am. Math. Soc. Coll. (1927), pp. 64–67.

http://dx.doi.org/10.1007/978-81-322-3676-4_25
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The coefficients of covariance being ϕi
j

ūi = ϕ
j
i u j .

For self-consistence and simplicity F
i
j = ϕi

j can be assumed, using the upper index
for summation, though this is merely a sufficient condition. Biderivation for ten-
sors of any rank can be defined by analogy with the usual formulae for covariant
differentiation, giving always a tensor of the same type as the original.

8. The foregoing deductions can be motivated by considering groups of deformations
of the space. If the infinitesimal transformation of the group be

x̄ i = xi + ξiδτ (7.24)

invariants of the group of the form f (x, ẋ) will be given by

δ f ≡ δτ
[
ξi f,i + ξ̇i f;i

] = 0

we demand that the transformation be parallel in the path-space:

ξ̇i + γi
kξ

k + εi = 0 . (7.25)

This gives us at once

ξi
[

f,i − γk
i f;k

] − εi f;i = 0 . (7.26)

Sufficient conditions for invariance are

εi ∂ f

∂ ẋ i
= 0 , (7.27a)

∂ f

∂xi
− γk

i

∂ f

∂ ẋ k
= 0 . (7.27b)

In addition to this, if f contains the parameter t explicitly, we can expand the
group by adding to (7.24)

t̄ = t + δτ .

By this, we shall say that t is an affine parameter for the path-space. There is then
added an extra term ∂ f

∂t to (7.26) and (7.27) becomes

f,i − γk
i f;k = 0 , εi f;i − ∂ f

∂t
= 0. (7.28)
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If the parallel transformations are n + 1 in number, it is seen that (7.28) is nec-
essary as well as sufficient conditions for invariance. If the streamlines of the trans-
formation defined by the congruence ẋ i = ξi are paths of the space, as would be
expected from (7.25) we see from the relation εi = αi − γi ẋ k and from the condi-
tion for invariance that

d f

dt
≡ −αi ∂ f

∂ ẋ i
+ ẋ i ∂ f

∂xi
+ ∂ f

∂t
= 0 , (7.29)

i.e., the function f (x, ẋ, t) is constant along the path-streamline. The n + 1 transfor-
mations imply that every path can be made a streamline in some sufficiently restricted
n dimensional manifold of the space: We should expect the same result from (7.28).
This indeed is seen at once to be true by eliminating γi

k . And this property of the
invariant is independent of the particular γi

k—or parallelism—chosen. Our reduction
of the equations of variation gave us γi

k = 1
2αi

;k , the transformation being one which
carried paths into paths.7

9. If then, we are to deduce our geometry from some fundamental group to which
the space is subjected, and the space has one or more metrics attached to it, we should
expect the metric f (x, ẋ, t) to be an invariant of the group, and the paths to be the
geodesics of the metric, i.e., extremals of the variational principle

δ

∫

f (x, ẋ, t)dt = 0 .

This implies that f be a solution of

δi f ≡ α j ∂2 f

∂ ẋ i∂x j
− ẋ j ∂2 f

∂ ẋ i∂x j
− ∂2 f

∂ ẋ i∂t
+ ∂ f

∂xi
= 0 (7.30)

such that

� ≡
∣
∣
∣
∣

∂2 f

∂ ẋ i∂ ẋ j

∣
∣
∣
∣ �= 0 .

Now the actual condition of invariance d f
dt = 0 along the paths reduces this system

to one of the first orders;

1

2

∂αi

∂ ẋ j

∂ f

∂ ẋ i
− ∂ f

∂x j
= 0. (7.31)

7And the group, if solutions of the equation of variation define one as would be expected, will
be valid in that neighborhood of a point within which no conjugate focus exists on any extremal
through the point.
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The parallelism is then determined at once8 as γi
k = 1

2αi
;k . The same reduction

can be obtained by imposing on f a property of the invariants that any ϕ( f ) be also
a possible metric with f .

As is well known from Hamilton’s principle, or as can be proved directly, any
solution of (7.30) has the property

d

dt

[

ẋ i ∂ f

∂ ẋ i
− f

]

+ ∂ f

∂t
= 0 . (7.32)

If f does not contain explicitly the parameter t , then ẋ i f;i − f is a constant along
the paths.

Whence any f (x, ẋ), homogeneous of any degree except one in ẋ , and a solution
of (7.30) is also a solution of (7.31), and constant along a path-extremal. There will
in general be a finite number of independent solutions if Eq. (7.31) are compatible
with d f

dt = 0, or else none. And just as all invariants of the group can be expressed as
a function of a finite number of them, so also any invariant metric will be expressible
in terms of these fundamental solutions, the analogy being complete. Of course, a
metric proper would need certain other conditions to determine it completely.

Differential invariants of the space, including the two curvature tensors, appear
as coefficients in successive compatibility conditions of (7.28) or (7.31) depending
on the choice of parallelism.

(Eingegangen am 2. Dezember 1932.)

8Or else extra compatibility conditions are introduced (αi
;k − γi

k) f;i = 0.



Chapter 8
Observations sur le mémoire précédent

par Élie Cartan, (à Paris)
(Extrait d’une lettre à M. D. D. Kosambi.)

As mentioned in footnote 2 in the previous paper, in private correspondence, Élie
Cartan made certain observations on the manuscript that DDK had sent him. There
seems to have been a lively exchange of letters and ideas between Kosambi and Car-
tan, as the next paper also testifies. The previous paper, this note, and a later paper,
by S.S. Chern in the Bulletin des Sciences Mathématiques, 63, 206 (1939) form the
basis of the Kosambi–Cartan–Chern or KCC theory. Kosambi’s contribution here
is the short explanatory paragraph in English at the end. Although the paper is in
French, it seems more appropriate to include it here, given the close relationship it
bears to the preceding paper, rather than in Sect. III.

…J’admets donc que dans les équations

ẍ i + αi (x, ẋ, t) = 0 (8.1)

t est un paramètre imposé (par exemple le temps). S’il en est ainsi, on peut formuler
de deux manières différentes le problème à résoudre:

(A) Trouver les propriétés géométriques qu’on peut attacher au système (8.1) et
qui ont un caractère intrinsèque par rapport au groupe infini des transformations

(xi )′ = Fi (x) , t ′ = t .

Published in Mathematische Zeitschrift 37, 619–22 (1933).
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(B) Trouver les propriétés géométriques qu’on peut attacher au système (8.1) et
qui ont un caractère intrinsèque par rapport au groupe infini des transformations

(xi )′ = Fi (x, t) , t ′ = t .

Dans le cas (A), qui est celui que vous semblez envisager, on a affaire à un espace
et à un temps (qui a une signification absolue).

Dans le cas (B), on a affaire à un espace-temps, le temps ayant encore une signi-
fication absolue.

Du reste, toute notion géométrique fournie par le problème (B) conserve un sens
dans le problème (A); mais la réciproque n’est pas vraie.

Il est remarquable que dans le problème (A) vous avez en somme trouvé presque
tous les tenseurs fondamentaux, et cela par un procédé très élégant. Il n’y en a
qu’un que vous n’ayez pas obtenu; c’est le tenseur αi

; j;k;l (qui existe dans les deux
problèmes (A) et (B)). Vous n’avez pas non plus obtenu les procédés les plus généraux
de dérivation covariante des tenseurs (formation par dérivation de nouveaux tenseurs
à partir d’un tenseur donné), car il y en a d’autres que la dérivation par rapport aux
ẋ h . A mon avis, pour résoudre complètement le problème, il faut considérer l’espace
à 2n + 1 dimensions des x, ẋ et t et considérer dans cet espace un transport parallèle
à partir du point (x, ẋ, t), en faisant varier les x, ẋ et t sans que δx soit égal à ẋδt .
Admettons a priori que la différentielle covariante d’un vecteur Xi soit

DXi = d Xi + [
γi

kdt + γi
kh(dxh − ẋ hdt)

]
Xk (γi

jk = γi
k j )

et plaçons-nous dans le cas du problème général (B). Les quantités ωi
d = dxi −

xi dt déterminent manifestement un vecteur (d est un symbole de différentiation
indéterminée). Introduisons deux symboles d et δ échangeables entre eux et formons
Dωi

δ − �ωi
d . On obtient, en supposant γi

rh = γi
hr ,

Dωi
δ − �ωi

d = dt
[
δẋ i + αiδt + γi

h(δxh − ẋ hδt)
]

− δt
[
dẋ i + αi dt + γi

h(dxh − ẋ hdt)
]

. (8.2)

Posons
ω̃i

d = dẋ i + αi dt + γi
h(dxh − ẋ hdt) .

Comme le système d’equations ω̃i
d = ωi

d = 0 n’est autre que le système donné (8.1),
il a un caractère invariant, et la formule (8.2) montre que la forme ω̃i a le caractère
d’un vecteur. Formons alors

Dω̃i
δ − �ω̃i

d = (αi
;k − 2γi

k)[ω̃k
dδt − ω̃k

δ dt]
+ (γi

hk − γi
h;k)(ω

h
δ ω̃k

d − ωh
δ ω̃k

δ ) (8.3)

+ Ai
k(ω

k
dδt − ωk

δ dt) + Ai
kh(ω

k
dω

h
δ − ωk

δω
h
d ) .
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On aura une détermination intrinsèque de la différentiation covariante en annulant
les deux premiers coefficients:

γi
k = 1

2
αi

;k , γi
hk = 1

2
αi

;h;k . (8.4)

Les autres coefficients donneront alors vos deux tenseurs Pi
j et Ri

jk , qui jouent
ainsi le rôle du tenseur de torsion. Quant au tenseur de courbure, il se calcule comme
d’habitude et fait intervenir

1. le tenseur Pi
k;h ;

2. le tenseur que vous avez indiqué Ri
hk;l ;

3. le tenseur αi
; j;k;h .

Enfin si les composantes Xi d’un vecteur sont des fonctions de x , ẋ et t , on a, en
posant

DXi = Xi
|0dt + Xi

|k(dxk − ẋ kdt) + Xi
;k

[

dẋk + αkdt + 1

2
αk

;h(dxh − ẋ hdt)

]

,

les tenseurs derivés Xi
|0, Xi

|k et Xi
;k , avec

Xi
|0 =∂Xi

∂t
+ ẋ k X i

,k − αk Xi
;k + 1

2
αi

;k Xk ;

Xi
|k =Xi

,k + 1

2
αr

;k Xi
;r + 1

2
αi

;k;r Xr .

La différentiation covariante obtenue correspond à votre biparallélisme, seulement
vous supposez que dans votre transport les x , ẋ , t varient de manière à satisfaire
toujours à dxi − ẋ i dt ≡ 0.

Dans le problème (B), les espaces à courbore nulle sont ceux pour lesquels les
fonctions sont réductibles à de simples fonctions des xi et de t (les ẋ i n’entrant plus).
Les espaces à courbure nulle et torsion nulle se réduisent à l’espace linéaire (αi =
0). ... Pour l’espace quelconque, si l’on considère la trajectoire d’un point mobile
d’une manière quelconque (dxi − ẋ i dt = 0), ce point n’a pas de vitesse intrinsèque,
comme vous le remarquez vous-même, puisqu’on peut à chaque instant faire une
transformation permise annulant les ẋ i ; mais il a une accélération intrinsèque ẍ i + αi

et des accélérations covariantes de différents ordres.
Dans le problème (A), aux tenseurs fondamentaux de torsion et de courbure,

s’ajoute le vecteur ẋ i (coefficient de dt dans ωi ) et le vecteur εi (coefficient de dt
dans ω̃i ). On a du reste

Dẋi − ω̃i = −εi dt − εi
;k(dxk − ẋ k dt) , ẋ i

|k = −εi
;k .

Pour que l’espace soit linéaire, il ne suffit plus que la courbure et la torsion
s’annulent, mais il faut et il suffit qu’en outre le vecteur εi soit nul (done Pi

j = 0,
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εi = 0, αi
; j;k;h = 0). Ici, l’accélération covariante (dérivée covariante de la vitesse

d’un point mobile) est ẍ i + αi − εi . Les espaces à connexion affine ordinaire sont
ceus pour lesquels les deux tenseurs εi et αi

; j;k;h sont identiquement nuls.

Enfin, on peut dans les problèmes (A) et (B) interpréter la condition αi
; j;k;h = 0.

Remarquons pour cela qu’un vecteur est défini non seulement par ses composantes
Xi , mais encore par son origine (x, ẋ, t); on pourrait dire que l’élément linéaire (x, ẋ)
est l’élément d’appui d’un vecteur. Cela posé, supposons qu’on transporte le vecteur
par parallélisme à temps constant (dt = 0) en faisant varier les xi infinitement peu;
si l’on obtient la même variation des Xi en changeant les paramètres directeurs de
l’élément linéaire d’appui, c’est que le tenseur αi

; j;k;l est nul et réciproquement. On
pourrait naturellment varier ces considérations...

Note:
To compute the curvature tensor, the “usual method” referred to by M. Cartan

is that of parallel displacement about an infinitesimal circuit. In essence, this is
equivalent to computing the second covariant derivative of any vector

(�D − D�)Xi

This can be written as

Xk
{

Ai
hk(ω

h
dδt − ωh

δ dt) + Bi
rhkω

r
δω

h
d + Ci

hrk(ω
h
d ω̃r

δ − ωh
δ ω̃r

d)
}

The coefficients are seen to be tensors, and their actual values come out to be

Ai
hk = Pi

h;k + Ri
hk , Bi

rhk = Ri
rh;k , Ci

hrk = 1

2
αi

;h;r;k .

The slight difference in the introduction of the tensor Ri
jk does not affect, of course,

M. Cartan’s deduction, since this is only 1
3 (Pi

j;k − Pi
k; j ).

(D.D. Kosambi.)

(Eingegangen am 2. Dezember 1932.)



Chapter 9
The Tensor Analysis of Partial Differential
Equations

This paper, read at the tenth conference of the Indian Mathematical Society, Luc-
know, in 1938, came to the attention of mathematicians at the University of Hokkaido
in Sapporo, Japan. A Japanese translation was published in the journal Tensor (and
as it happens, a few weeks earlier than this paper). DDK was subsequently invited to
the editorial board of the journal and he published a paper [DDK55] in Tensor (New
Series) in 1954. Both journals were published by Akitsugu Kawaguchi (1902–1984)
who founded the Tensor Society and the journal Tensor in 1938 in Sapporo. Publi-
cations were initially in Japanese, but after World War II, the new series of Tensor
published papers in English as well. The journal is now housed at the Kawaguchi
Research Institute in Chigasaki, Japan.

After the comprehensive works of Bortolotti [1] on partial differential equations
of the second order from the differential geometer’s point of view, and the equally
comprehensive memoir of Kawaguchi and Hombu [2] on systems of higher order,
the present note serves only to show that slightly different results can be obtained by
keeping to the point of view that I have used in my former papers [3]. The method,
in particular, is to handle such systems as obeying the following postulates and for

Published in Journal of the Indian Mathematical Society 3, 249–53 (1939). Reprinted with
permission.
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the special transformation groups under which the postulates hold: (1) the system of
equations transforms according to the tensor law; (2) the equations of variation of
the given system are also tensorial when the variation itself is a vector; and (3) there
exists at least one operator which is vectorial in character and corresponds to total
differentiation with respect to one of the independent variables.

To illustrate this, let us consider the second-order system

∂2xi

∂uα∂uβ
+ Hi

αβ(u, x, pr
ν) = 0 ; pi

α = ∂xi

∂uα
. (9.1)

Here, the Latin indices refer to the coordinates x and range over values 1, . . . , n; the
Greek indices refer to the parameters u and have the values 1, . . . , m. The functions
Hi

αβ must have the transformation law

−H ′i
αβ = −Hr

νδ

∂x ′i

∂xr

∂uν

∂u′α
∂uδ

∂u′β + ∂2x ′i

∂xr∂xs
pr

δ ps
ν

∂uδ

∂u′α
∂uν

∂u′β

+ ∂2uν

∂u′α∂u′β
∂x ′i

∂xr
pr

ν , (9.2)

under the group

x ′i = Fi (x1, . . . , xn) ; u′α = φα(u1, . . . , um) . (9.3)

But we can speak of x-transformations or u-transformations alone and of x-tensors
or u-tensors accordingly. Tensor will mean, unless specialised, a geometric object
which has the proper law of transformation for both sorts of indices. It is assumed
that the conditions of integrability of the partial differential equations are identically
satisfied, but no direct use will be made of them. We introduce the non-tensorial
operator of differentiation with respect to u, viz.

∂a ≡ ∂

∂ua
+ pi

a

∂

∂xi
− Hi

αβ

∂

∂ pi
β

. (9.4)

It follows that for an x-vector λi , a vectorial operator must be of the type Dαλi ≡
∂αλi + γi

αrλ
r . But this will not do for any tensor with Greek indices. Therefore, the

γi
α j must behave like covariant u-vectors, and an additional term will have to enter

the Dα. We may, therefore, take the general operator to be of the form

DαT :::= ∂αT ::: + γi
αr T r.:: −γr

α j T
...
r ::

+ �ν
αρT ::ρ. − �ρ

ασT ::...ρ

}

(9.5)
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The laws of transformation for the two sets of coefficients must be as follows:

γs
σr

∂x ′i

∂xs

∂uσ

∂u′α =γ′i
αs

∂x ′s

∂xr
+ ps

σ

∂2x ′i

∂xr∂xs

∂uσ

∂u′α .

�′σ
αβ

∂uν

∂u′σ =�ν
στ

∂uσ

∂u′α
∂uτ

∂u′β + ∂2uν

∂u′α∂u′β (9.6)

Let the coordinates xi now undergo a vector variation represented by xi = xi + ελi .
Neglecting the coefficients of ε2 and higher powers as usual, we have the equations
of variation

∂α∂βλi + ∂νλ
r

∂Hi
αβ

∂ pr
ν

+ λr
∂Hi

αβ

∂xr
= 0 . (9.7)

These can at once be put in the invariantive form

Dα Dβλi + Dνλ
r T iν

rαβ + λr Pi
rαβ = 0 , (9.8)

where

T iν
jαβ =δi

j�
ν
αβ − γi

α jδ
ν
β − γi

β jδ
ν
α + ∂Hi

αβ

∂ p j
ν

; (9.8a)

Pi
jαβ =∂Hi

αβ

∂x j
− ∂Hi

αβ

∂ pr
σ

γr
σ j + γr

β jγ
i
αr − ∂βγi

α j . (9.8b)

In my former work, the coefficients γi
α j were determined by taking the tensor

corresponding to the first of these as equal to zero. This can no longer be done here,
as it would be too restrictive and would not even then serve to determine both γi

α j
and �ν

αβ . �ν
αβ need not be symmetrical in the subscripts, but the anti-symmetrical

part (torsion) will be indeterminate; one may therefore assume �ν
αβ to be symmetric.

It is also clear that the derivatives
∂2γi

α j

∂ pk
β∂ pl

ν
and

∂�ν
αβ

∂ pi
σ
are the components of tensors.

The operator ∂
∂ pi

α
is also tensorial in character, adding a covariant x-component and

a contravariant u-component.
The problem is now to determine the coefficients γi

α j and �ν
αβ in a fashion which

has some claim to be called intrinsic. Let us assume that all possible contractions of
T iν

jαβ vanish. This gives

T rν
rαβ ≡ n�ν

αβ − δν
βγr

αr − δν
αγr

βr + ∂Hr
αβ

∂ pr
ν

= 0

T rν
rαν ≡ n�ν

αν − (m + 1)γr
αr + δν

αγr
βr + ∂Hr

αν

∂ pr
ν

= 0 , etc. (9.9)
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The general solutions must then have the form:

γi
α j = 1

m + 1

[

�σ
ασδ

i
j + ∂Hi

ασ

∂ p j
σ

]

;

�ν
αβ = − 1

n

∂Hr
αβ

∂ pr
ν

+ δν
βτα + δν

ατβ . (9.10)

The τα that enter into the second of these must have the law of transformation

τ ′
α = τν

∂uν

∂u′α − 1

n

∂2x ′ j

∂xr∂xs

∂xr

∂x ′ j
ps

ν

∂uν

∂u′α , (9.11)

but are otherwise arbitrary so far as the present argument is concerned. This shows,
in the first place, that the logical types of connection for our systems are not affine
but projective; however, we shall not pursue this further.

There exists another set of the equations of variation, namely those obtained by
giving a vector variation to u. These are

pi
ν Dα Dβμν + Dνμ

σ Qiν
αβσ + μσ Ri

αβσ = 0 , (9.12)

if uα = uα + ημα, η being an infinitesimal, where

Qiν
αβσ = ∂Hi

αβ

∂ p j
ν

p j
σ − Hi

ασδ
ν
β − Hi

βσδν
α + �ν

αβ pi
σ − pi

ρ�
ρ
ασδ

ν
β − pi

ρ�
ρ
βσδν

α

Ri
αβσ = pi

ν(�
ν
δσ�δ

αβ − �ν
αδ�

δ
βσ − ∂β�ν

ασ) − ∂Hi
αβ

∂uσ
− �δ

νσ Qiν
αβδ . (9.13)

The first of these might also be used to determine the connection �ν
αβ . But it is clear,

from the manner in which pi
ν enters, that this cannot be done without differentiation.

In particular, inasmuch as
∂�ν

αβ

∂ p j
δ

is a tensor, we might set
∂Qiσ

αβσ

∂ pi
ν

+ pi
σ

∂�σ
αβ

∂ pi
ν

= 0, which

leads at once to

�ν
αβ = 1

n

[
∂2Hi

αβ

∂ p j
α∂ pi

ν

p j
σ − ∂Hi

αβ

∂ pi
ν

]

. (9.14)

This connection involves the second partial derivatives of Hi
αβ . With the first

derivatives alone, we cannot go beyond (9.10). Since the difference of two sets of
γ’s is a tensor, the differential invariants of the space may be calculated for any one
connection and are then obtained for any other by the use of this tensor difference.

There is another operator besides Dν , and ∂/∂ pi
α, but it may be obtained by

alternating the pair thus:
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[
∂

∂ p j
ν

DνT iα − Dν
∂

∂ p j
ν

T iα

]

= m
∂T iα

∂x j
+ ∂T iα

∂ pr
β

[

γr
β j − γν

νβδr
j − ∂Hr

νβ

∂ p j
ν

]

+ T rα ∂γi
νr

∂ p j
ν

+ T iβ
∂�α

νβ

∂ p j
ν

. (9.15)

Discarding the additive tensorial terms andmaking use of (9.10),we get the simplified
operator

∇ j T
iα = ∂T iα

∂x j
− γr

β j

∂T iα

∂ pr
β

+ 1

m
T rα ∂γi

νr

∂ p j
ν

. (9.16)

The differential invariants of the space are to be obtained by alternating the three
operators given, as usual.

The usefulness of the foregoing discussion lies in its adaptability to the case of
differential equations of higher order. Let, for instant, such a system be given by

∂q+1xi

∂uα1∂uα2 · · · ∂uαq+1
+ Hl

α1α2,···αq+1
(u, x, pi

α,··· , pi
α1···αq

) = 0 . (9.17)

The operator Dν will be of the same type as before. The connection coefficients can
again be determined from the two sets of equations of variation, in particular, by
contraction of the corresponding coefficients of the varied equations. The remaining
coefficients of the equations of variation given the “primary” differential invariants
of the system. A new differential operator is obtained by alternating and contracting
∂/∂ pi

α1···αq
and Dν . This will give an operator with one covariant Latin index and

q − 1 contravariant Greek indices, viz. ∇α1···αq−1

i . Alternation and contraction of
this ∇α1···αq−1

i with Dν will again get rid of another Greek index and give a second
operator∇α1···αq−2

i . This can be continued till no Greek indices are left, and we obtain
the operator which corresponds to the purely Latin index covariant derivative ∇i .
Further alternations will give only differential invariants. At each stage, additive
tensorial terms can be discarded to obtain a reduced operator.

The complete set of differential invariants is not worked out here in view of the
memoirs already cited. But it must consist, for the greater part, of those that enter
into the equations of variation pi

α, and such others are to be obtained from these by
the application of the tensorial operators.
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Chapter 10
A Statistical Study of the Weights of Old
Indian Punch-Marked Coins

D.D. Kosambi, Fergusson College, Poona

This paper marks the beginning of DDK’s foray into numismatics. As Kosambi’s
biographer states [DDK-JK], “Coins, being means of financial transaction, are true
indicators of the kind of regime the kings of those specific periods ruled with. Kosambi
tried to glean historically important information by studying them and was successful
to a large extent. He collected hundreds of ancient coins cleaned them very care-
fully and weighed each of them accurately on the sensitive balance in the chemical
laboratory of the Fergusson College. He then noted the minute differences in their
weights due to usage and drew their graphs. Applying statistical tests to this data
he successfully drew conclusions regarding the exchange rate, the period when the
coins were cast, etc., that could stand up to scientific tests. These graphs and the
punch-marks of the mint and the traders’ guilds impressed on the coins helped him
draw inferences about the state of affairs of that land, in that specific period.”

The punch-marks on old silver coins found in Indian have presented an unsolved
riddle which has been attacked by a classification of the obversemarks. The efforts of
Messrs. Durgā Prasād,1 Walsh,2 andAllan,3 in this directionwill be valuable to future
scholars, but as yet lead to no conclusion. The first two have paid some attention to
the reverse marks also, while the third sometimes ignores them; the reason for this
partiality to the obverse is that a group of five marks occurs systematically there,
while the reverse may be blank or contain from one to sixteen marks.
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Table 10.1

x 0 1 2 3 4 5 6 7 8 9 10

Square n 224 128 132 85 64 46 21 25 10 9 8

m 53.26 52.93 52.74 52.47 52.53 52.17 52.03 51.67 51.40 51.47 51.01

Round n 58 34 29 28 25 10 13 8 9 3 3

m 53.35 52.84 52.75 51.90 52.29 51.67 51.82 52.23 51.23 50.10 51.20

The most important qualities of the coins in the ancient days were undoubtedly
the weight and the composition. The latter has received very little attention, a coin
or two being sampled from each new lot. The former is given as a rule, for every
coin, but the statistical study of coin group by weight does not seem to have been
attempted4. The resulting confusion as to what standard of weight actually existed
can be seen by consulting any of the above works; even Rapson5 found documentary
evidence too self-contradictory for use.

For the basis of a preliminary study, I took Walsh’s memoir on two Taxila hoards
as fundamental. The work is full of oversights andmistakes, as I have shown in a note
to be published in theNew Indian Antiquary. Nevertheless, it is the only sizeablemass
of data available to me, and I take all figures from Appendix XI, with the hope that
no error of any importance enters into the weighing. Excluding the 33 long bar coins
which approximate to Persian sigloi, and the 79min coins, all the rest, to a total of
1059 coins which seem meant to represent the same amount of metal, average 52.45
grains in weight. The 162 later coins (App. XII) of a single coinage average 52.72
grains. But the standardization of weights was not the same as is shown by applying
the z test to the variances of the two lots.

But even the main hoard of 1059 kārs. āpana is not homogeneous. So, I classified
them by the number of reverse marks and found the following data, in which the 64
double obverse coins have been omitted.

In Table10.1, n is the number of coins with the number x of reverse marks given
at the column head, and m the average weight in grains. One coin in the square 10-
reverse mark class has been omitted, because it has a decidedly different history from
that of the rest.6 There exists coins with as many as 16 reverse marks, but counting
the number of marks becomes difficult, and the total not tabulated being 15 square
coins and 7 round; the table given belowwill represent substantially the most reliable
portion of the data available to us.

It is seen at once that there is a regular drop in average weight with increase in
the number of reverse marks. In fact, for the square coins, the linear regression can
be fitted accurately enough by eye and is found on calculation to give the formula:
y = 53.22 − 0.212x , where y is the average weight in grains and x the number of
reverse marks. For round coins, the fit is not so good, though still satisfactory, the
regression being y = 53.1 − 0.214x , that is particularly the same line servers for
both (Fig. 10.1). The second result concerns the number of coins in each group. For
simplicity, taking the sum y of both round and squarewith a given number x of reverse
marks, the drop in number is exponential (Fig. 10.2). That is, the regression is given
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Fig. 10.1

by y = 283.86 e−x/3. This was obtained by taking the logarithm of the number of
coins with each x and fitting a linear regression. The divergence between the formula
and the observed number is not significant by theχ2 test, and the calculation obtained
from the above table serves also for the omitted coins, giving, for x = 0 to 16, a value
of χ2 with P near 0.2, on the whole, a just tolerable fit. These two results are quite
startling. They show that the reverse marks—irregular as they might appear—were
not distributed at random, for had they been so distributed, we should have obtained
a Poisson’s distribution or something of the sort for the number of coins as a function
of x , and the linear regression for weight would not have fitted so well. The only
hypothesis that can account for our results is that the reverse marks are checking
marks stamped on by contemporary regulators or controllers of currency, at regular
intervals.

If accepted, this means that among the obverse marks, there might exist some
symbols that specify the date of issue of the coins. This would, possibly, account for
the fifth variable symbol found on the obverse. Even now, we have a sixty-year cycle
with a name for each year, and there certainly existed an older 12-year cycle, still
extant in Chines and Tibetan tradition, which was converted into a sixty-year affair
by associating twelve years with each of the five elements. This could account for
one or two of the five obverse marks. One observes mark is fixed: the sun symbol.
If it is not votive, it might be a symbol of the metal itself. The next commonest
mark is some form of the wheel, with (usually) six points of varying design. This
s. ad. aracakra is, in my opinion, not to be interpreted as a symbol of any deity, but as
representative of the issuing authority, the cakravartin or kind. The form of the points
of the wheel, with perhaps one of the extra symbols, might be the ruler’s personal
monogram. This is borne out by the fact that in the few cases where the six-pointed
wheel does not occur, we invariably get (with two exceptions) small homo-signs in
their place (Durgā Pras̄ad, p. 41). That is, when the issue was not authorized by a
king, it was authorized by a council of some sort.

Leaving these doubtful conjectures, we can use groupings by obverse marks for
the purpose of weight analysis and compatibility tests, in particular the t test and the
z test. I shall publish my results on this elsewhere.
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Fig. 10.2

Even in modern times, a certain amount of currency will be lost each year due to
damage, hoarding, melting down, etc. This should, in stable times, be proportional
to the actual number of coins in circulation. But when the coin does not represent
full value in metal content, being just a token coin, with a rigorous control of weight
by the examiners of currency, the formula for the number of coins surviving t years
after issue would be given by

y = ae−bt

(
1

σ
√
2π

∫ m1+r

m1−r
e

(x−m)2

2σ2 dx

)

where m = m1 − tm2; σ 2 = σ 2
1 + tσ 2

2 .
Here, a is a constant of integration, essentially the number minted. The legal

weight, as also the average of freshly minted coins, is taken as m1, the variance at
the mint as σ 2

1 . The average loss of weight per year is m2, and the variance of this
annual loss, σ 2

2 . The legal remedy, i.e., the weight by which a coin may exceed or
fall below the legal standard, is called r in the formula.

When the coin is a source of metal, the first factor would account for most of
the currency in circulation, particularly as the variances with modern technique of
minting are very small. But with a token coin, and in any case after the passage
of a greater number of years, the second factor would begin to dominate and the
coins withdrawn rapidly from circulation by those who check the currency. The



10 A Statistical Study of the Weights of Old Indian Punch-Marked Coins 85

phenomenon is similar to that often seen in biology, where a gene or culture of
bacteria shows exponential growth till a threshold value is reached;when the situation
changes entirely, the growth makes its own surroundings lethal, and further growth
is either inhibited, or the whole of the variate vanishes altogether.
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Chapter 11
A Bivariate Extension of Fisher’s Z-Test

D.D. Kosambi, Fergusson College, Poona

DDK had great regard for R.A. Fisher and had studied his work extensively. There
appears to have been some correspondence between them, although this has not been
documented. A few years later (see Chap. 4), DDK was to write that “R.A. Fisher
thought that my ideas on blood groups and cancer were worth following through”,
so it appears that Fisher appreciated DDK’s applications of his methods and tech-
niques (see for example also Chaps. 14, 17 and 18).

A normal distribution in k variates x1, x2, . . . , xk , each with expectation (popula-
tion mean) zero is defined by the probability density c exp−φ/2, where c is always
to be understood as a constant so chosen as to make the total probability equal to
unity, and φ is a positive definite homogeneous quadratic form in the variates, i.e.:

ρ = 1

σ(2π)
k
2

∫

R
· · ·

∫

e−φ/2dx1 · · · dxk ; (11.1)

φ =σi j xi x j .

σi j =σ j i ; σirσr j = δij ; σ2 = |σi j | .

Here, we use the tensor summation convention for repeated indices, and the inte-
gral is to be taken as extended over that portion of the k-space inwhich the variates are
to lie. The coefficients σi j are to be formed by taking the normalized co-factors of the

corresponding element in ‖σi j‖, as usual. Alternatively, we can write σi j = ∂ logσ2

∂σi j
.

The form φ being definite, the determinant σ2 does not vanish, and there is no theo-
retical difficulty in finding either σi j or σi j , the matrix of the other coefficients being
given.
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Suppose now that a sample of n observations be taken from such a population,
the j-th sample value of the variate x1 being xi j . Then, it is known that the best [1]
estimates of σi j are given by

Si j = 1

n − 1

n∑

r=1

(xir − x̄i )(x jr − x̄ j ) (11.2)

where

x̄i = 1

n

n∑

j=1

xi j

The best [1] estimate σ2 is s2 = |si j | and of σi j , the corresponding normalized co-
factors, si j .

It is well known that the quantities si j are the sample variances when i = j , and
the sample correlations multiplied by the corresponding standard deviations when
i �= j . Again, s2, the determinant of the sampling coefficients, has a strong claim to
be considered as the generalized variance of the multivariate sample. The ratio of
two such variances chosen from the same populations would be independent of a
linear homogeneous transformation of the co-ordinates, and also of the population
parameters. It is natural to ask whether the distribution of this ratio, or rather of its
logarithm, has anything in common with Fisher’s z, so that the z tables could be used
without further ado. The answer is negative in general, but it is the purpose of this
note to point out the fact that for a bivariate population (k = 2), such an extension
is valid.
2. Following the methods given by Uspensky [2], it is a comparatively simple matter
to find the distribution of S, where

S2 = det

{
n∑

i=1

(xir − x̄i )(x jr − x̄ j )

}

; i, j = 1, 2. (11.3)

It is to be noted that s2 = S2/(n − 1)2. By a distribution, we mean the probability
that S2 < t2, the derivative of this with respect to t being then the probability density,
which is sometimes called the “distribution” by statistical writers.

For convenience of notation, let the two variates be x and y. Then, φ = ax2 +
2bxy + cy2. But as we mean ultimately to consider the ratio of two generalized
variances, which is a function independent of linear homogeneous transformations,
we might as well consider the transformation to have been performed in advance
which brings φ to its canonical form: For a positive definite form, φ = x2 + y2. The
required distribution is then given by

p(t) = 1

(2π)n

∫

R
· · ·

∫

e− 1
2 (x21+···+x2n+y+

1 ···+y2n )dx1 · · · dxndy1 · · · dyn (11.4)
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where the region of integration R is defined by the inequality:

S2 ≡
∑

(xi − x̄)
∑

(yi − ȳ) −
{∑

(xi − x̄)(yi − ȳ)
}2

< t2 ; (11.5)

with

x̄ =1

n

∑
xi ,

ȳ =1

n

∑
yi .

The variates x and y have the sampling values x1, . . . , xn; y1, . . . , yn , which are
independent, being chosen at random by hypothesis, and the formulae (11.4–11.5)
are then self-evident.

For the reduction of the integral, the treatment by Uspensky for the distribution of
the correlation coefficient is rigorous and can be carried out step by step. Choosing
the new variables of integration as the means x̄, ȳ and n − 1 each of the differences
xi − x̄ , yi − ȳ, and performing a suitable linear homogeneous transformation, the
integral in (11.4) is reduced to a similar one with n − 1 in place of n, the usual loss of
a degree of freedom for measuring from the sample mean. A second transformation
and one integration will reduce the integral further to

p(t) =c
∫

R
. . .

∫

e− 1
2 (w2

1+...+w2
n−1+ξ21+...+ξ2n−2) dw1 . . . dwn−1dξ1 . . . dξn−2 (11.6)

R :(w2
1 + · · · + w2

n−1)(ξ
2
1 + · · · + ξ2n−2) < t2

But we have the two classical formulae of integration:

(a) :
∫ ∞

0
e−x2− a2

x2 dx =
√

π

2
e−2a

(b) :
∫

· · ·
∫

x21+···+x2r <a
e− 1

2 (x21+···+x2r )

F(x21 + · · · + x2r )dx1 · · · dxr
= πr/2

�(r/2)

∫ a

0
e− u

2 u
r
2 −1F(u)du

(11.7)

These allow us at once to write down dp/dt in the form:

dp

dt
= ce−t t n−3 : range t = 0 − ∞ . (11.8)

This is, again, of the form of the integrand for the incomplete gamma function,
and so, if we wish to find the distribution of the ratio of two independent sampling
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observations of S2, we can proceed as usual. But it is clear that the exponent is not the
usual number of degrees of freedom. In fact, the degrees of freedom, as is to be seen
by comparing exponents with those in the usual formula, are now 2n − 4. Thus, we
must use (2n − 4)2 as the divisor for S2 in place of (n − 1)2. Finally, a last correction
is necessary for the fact that we have used S2 < t2 in place of the usual distribution,
which would be the probability S2 < t . All of this, however, is now quite obvious,
and the result can be summed up in a theorem:

If two independent samples of n, n′ specimens are taken at random from a bivari-
ate normal population, then the quantity

z =1

4
log

S2

S′2 + 1

2
log

n′ − 2

n − 2
(11.9)

= log

{√
S

n − 2

/√
S′

n′ − 2

}

.

has the same distribution as Fisher’s z for a single variate, with the degrees of
freedom 2n − 4, 2n′ − 4.

The distribution was known (Wilks [3], 478), but the adjustment for the proper
number of degrees of freedom, and the possibility of using Fisher’s tables, have
apparently been overlooked. The rule is quite as simple as for a single variate. In the
usual notation, we calculate the quantity s2x s

2
y(1 − r2) multiplied by the correction

factor
(n − 1)2/4(n − 2)2 .

and take a quarter instead of a half of the natural logarithm of the ratio of two such
sampling observations. Then, enter Fisher’s tables of z as usual, but with the degrees
of freedom 2n − 4 instead of n − 1.
3. The results of the preceding section are not extensible to k ≥ 3. The integral do
not reduce so easily, at least by any known formulae. For example, the case k = 3
can be solved completely if an explicit formula for the integral from zero to infinity
of exp−(x + a2/x2) is found. But it does not seem possible that this would allow a
rigorous use to be made of the z tables.

It would be interesting to see the extended Z -test for k = 2 used for analysis of
variance: say for plot experiments with two simultaneous crops sown on each plot.
The test is open to the same criticisms leveled against the Z -test for one variate, in
that it does not take the mean values into account, but tests directly on the basis of the
observed variances, the hypothesis that both samples might have been drawn from
the same normal population. For tests also taking the mean values into account, as in
Student’s t test, we have the T 2 ofHotelling and its generalizations. But for a bivariate
population, the test suggested here is surely more complete than the usual method
of testing the variances s2x , s

2
y individually along with the correlation coefficient τ .
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Chapter 12
The Effect of Circulation Upon the Weight
of Metal Currency

D.D. Kosambi, Fergusson College, Poona

As DDK says in his autobiographical note (see Chap.2), he took up this problem as
a way of learning statistics. Since examination marks provided poor quality data, he
turned to the statistical study of punch-marked coins. He noted that “not all coins
issued at the same time are used in exactly the same manner. Therefore, the effect of
circulation is to decrease the average weight but also to increase the variation”. A side
effect was that he became more aware of the sociology of the process: these years at
Fergusson College were to see his interest in the other aspects grow, as he brought
experimental tools, the careful weighing of thousands of coins, to make numismatics
“a science rather than a branch of epigraphy and archaeology”.

In contrast to the physical sciences, the social sciences allow, even now, the detec-
tion of quite important effects with the aid of comparatively simple apparatus and a
certain amount of knowledge ofmodern statistical technique. The historical evidence
of the demand for currency shown by the loss of weight of coins still in active circu-
lation comes under this head. The same methods may be applied to hoards deposited
in ancient times and recovered intact, thus giving the foundations of numismatics as
a science.

The normal law of weight distribution may be assumed to hold for a set of coins
honestly minted to a fixed legal standard in large numbers. The population meanmay
be taken as the supposed legal weight, the variance could be estimated by taking the
number of rejections at the mint beyond the fixed “legal remedy” by which the coin
is allowed to differ from legal weight. Supposing the minted weight distribution to be
represented by I in Fig. 12.1 (and ignoring the absorption of the coinage), the effect
of circulation will be to lower the mean and to increase the variance, as in II. Further
circulation changes the curve to III, where only the heavier half has been drawn.
Deviations from normality will become more strongly marked, and the currency will
tend to disappear from circulation. While the general case can be brought under
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Fig. 12.1 Effect of circulation on weight

the “homogeneous random process” [1] which is so universal in application as to
qualify for a law of nature, it suffices for comparatively short periods of time to take
the average weight as a linear function of the date.

This theory was applied to a statistical analysis [2] of the earlier Taxila hoard
(deposited circa317B.C.), butworkonother ancient hoards of interestwas prohibited
by lack of access to the material and by the honoured custom of scattering most
such material unweighed after a perfunctory study. So, the validity of the theory
is here proved on modern coins from active circulation [3], as a control measure.
During March and April 1942, I gathered from some stores in Poona, from the
great marketplace (man. na. i), and when not otherwise available, from the day’s take
over the counter of a local bank as many specimens as my finances permitted and
my energy sufficed to weigh. These were stripped of the pieces whose date was
illegible, or which were severely damaged by accident, or which did not ring true
for the higher denominations. Experience shows that, as regards weight, coins of the
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latter two classes invariably differ in a marked fashion from the rest of their annual
group for the first, there was no choice. The effect of the two latter discards is to
decrease the variance within a year, so that the goodness of fit is actually reduced
by this process and the theory stands confirmed even under the most unfavourable
circumstances. The date on worn specimens could probably be restored by means
of an examination of the crystal structure formed at the time of stamping, but I was
unable to devise any method with the apparatus at hand. The pieces were taken
as they stood; for the other currency, modern specimens, minted in 1936 and after
1939k, were in overwhelmingly large proportion, and subsamples had to be taken
to reduce the numbers. The final selections were classified according to the date of
the issue and each coin weighed to a tenth of a milligram. The time of the weighing
was reduced by using a chainomatic analytical balance of Indian manufacture; the
error of the (new) instrumentwas rather high—1

2 mg—but decreasedwith use. Proper
checks were taken regularly, and the fourth place of decimals ignored in the statistical
work; all means would have to be increased by half a milligram and Sheppard’s
corrections necessary for the variances of the data were to be used for purposes of
estimation. Thefinal stagewas the statistical analysis of theweights by themethods of
Fisher [4].

With larger samples, the estimates of composition and even of the actual weight
and its variance would be more accurate; reliable information could be gained as to
the proportion of counterfeits, mint-defective, dumb, and accidentally damaged coins
in circulation. The variation between localities and local needs can also be estimated
by the allocation of the properly randomized samples to various regions. Finally, the
residuals after fitting the regressions would be of great use in correlating the wave
of various denominations to show the extent to which one type was supplementing
another and enable a scientific distribution of currency to be made. Any method
of currency control based on science, not on the flat of authority, would have to
consider these matters seriously. As for the weights of a larger sample, the analytical
balances will no longer be necessary; a histogram can be run off directly by setting
the mint’s automatic weighting machines in series and counting the number of coins
not rejected at each step.

A look at the tables of analysis of variance shows at once that the results of my
observations are highly favourable to the theory. Where deviations from the linear
regression become significant, they are immediately explicable. The pies being not
current in Poona bazaars had to be imported from Benares where they are gathered
from the shops before Hindu holidays by the frugal pious, distributed to beggars, and
revert to the shops immediately after. This can hardly be called active circulation; as
an aside, be it noted that in places like Benares simple bits of copper can be and are
still used to substitute for the lower currency: for Benares, the Butwal “pice”, almost
any ancient coin in most of the purely agrarian districts of India.

The Poona pice fall into two classes, the weight of the denomination having been
materially reduced in 1907, apparently to 75 grains. In fact, all pice of my 1906
sample fall into either the 4-g or the 6-g group, without a single specimen of 5 g;
the mean for this year is very significantly lighter by the t test than for previous
years, heavier than for succeeding years; the variance by the Z -test is significantly



96 D.D. Kosambi

Table 12.1 Analyses of variance. Regressions given only where significant. Unit: one milligram;
y = weight in milligrams, x = date in years

Source d.f. Sum square Mean sq. F

Æ Pies (Benares) 1912–1939; y − 1599.55 = 1.955(x − 1929.12);

Regression 1 43015 43015 36.66***

Deviations 23 61528 2675.13 2.28**

Within a year 198 232300 1173.23 r = 0.357

Total 222 336843 1517.31 1.29*

Æ Pies (superseded) 1835–1906

Regression 1 35969 35969 (5.95)−1

Deviations 27 7133371 264198.92 1.234

Within a year 99 21195723 214098.21 r = −0.0356

Total 127 28365063 223346.95 1.0432

Æ Pies 1907–1941; y − 4728.86 = 9.903 (x − 1928.87)

Regression 1 8574800 8574800 1663.96***

Deviations 26 201108 7734.94 1.50

Within a year 639 3292918 5153.24 r = 0.843

Total 666 12068826 18121.36 3.516**

N Annas 1908–1941; y − 3803.20 = 6.545 (x − 1927.70)

Regression 1 3250147 3250147 1903.31***

Deviations 26 132110 5081.15 2.975**

Within a year 698 1191923 1707.63 r = 0.843

Total 725 4574180 6309.21 3.695***

N 2-Annas 1918–1941; y − 5759.2 = 8.516 (x − 1931.99)

Regression 1 1890586 1890586 695.86***

Deviations 16 71021 4438.81 1.63**

Within a year 315 855827 2716.91 r = 0.819

Total 332 2817434 8486.25 3.12***

AR 4-Annas 1904–1940; y − 2857.9 = 4.615 (x − 1928.098)

Regression 1 725568 725568 459.70***

Deviations 21 56104 2671.62 1.69

Within a year 224 353551 1578.35 r = 0.799

Total 246 1135223 4614.73 2.92***

AR 8-Annas 1905–1941; y − 5764.83 = 5.949 (x − 1928.5)

Regression 1 259159 259759 139.86***

Deviations 21 31273 1489.19 (1.2472)−1

Within a year 43 79865 1857.32 r = 0.837

Total 65 370897 5706.11 3.07***

(continued)
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Table 12.1 (continued)

Source d.f. Sum square Mean sq. F

AR Rupees [3] 1903–1920; y − 11579.86 = 4.16 (x − 1913.12)

Regression 1 15423 15423 674.67***

Deviations 16 1130 70.63 3.0898***

Within a year 2868 65563 22.86 r = 0.433

Total 2885 82116 28.463

AU Sovereigns 1900–1931

Regression 1 72 72 2.382

Deviations 11 772 70.54 2.333*

Within a year 38 1179 30.23 r = 0.1885

Total 51 2027 39.745 1.315

greater than those before or after. This seems to indicate that some of the 1906 pice
were minted to the lower weight. Thus, the pre-1907 coins have been withdrawn
for the greater part or have otherwise tended to disappear from circulation. Only
the unworn specimens have managed to survive, whence neither the regression nor
the deviations from it are of any significance. For the nickel one anna coins, the
deviations from regression are caused entirely by the oldest issues: Edward VII,
1908–1910. For these, no less than 15 out of a total of 38 had illegibly worn dates,
a proportion fourteen times that of the George V issues. The 23 coins retained were,
naturally, heavier than the average for their groups, somewhat after the fashion of III
in Fig. 12.1. A precisely similar effect is to be seen in the Taxilan coins of more than
ten reverse marks. A recalculation of the anna data discarding the Edward VII issues
immediately reduces the deviations from linear regression to insignificance, so that
the deviations are to be assigned to our mechanism of selection. We can thus state a
low of wear for metal currency: For coins in active circulation, the loss of average
weight is proportional to the age. But the oldest coins of a series tend to be above the
regression weight and for currency not in active circulation [5] or an issues which
is superseded, the significance of the regression tends to disappear.

An even more striking result is that the correlation coefficient for currency in
active circulation over comparable periods of time is independent of the denomina-
tion. Except the pies, the older pice, rupees, and sovereigns all the remaining corre-
lation coefficients do not differ significantly from the population value of � = 0.838,
estimated by pooling the observed values after Fisher’s z transformation [6]. The cor-
relation for the 4-anna bits is somewhat low, but there have been disturbing factors at
work here: the 1917–1918 specimens show unusual wear and nickel 4-anna bits (not
included in this study) were minted in 1919, 1920, and 1921. In stating such a “law”
for currency weights, other things must be equal: minting variances must not be great
in comparison with those caused by wear the currency must have been minted over
about the same period and must have circulated in the same locality over about the
same time. As a matter of fact, 2.886 rupees of 1903–1920 issue sampled at Poona
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in 1940 gave me a correlation of 43 and deviations from linearity were insufficient
to explain this entirely different value. The reason for the difference, however, is
very simple. It is known that r2 is the ratio of sum square due to regression by the
total sum square. Our theory requires that the variances increase with age, which
means that for coins longer in circulation, the residual sum square takes up a greater
proportion of the total, thus depressing the correlation. Even the pice of our sample
show a correlation compatible with that of the rupees when calculated only from the
1907–1920 issues in the sample. It is a feature of the data that when the calculations
are made from year to year on the basis of the weights, the correlation coefficient
is found to increase steadily with the date of the last issue to its maximum value at
the end: this holds for all denominations provided the oldest issues do not contain
overweight survivors in large proportion and the regression is really significant.

Whereas the samples show that the variances are in general decidedly greater
for the older issues, the samples do not allow the question of linear increase of the
variance with age to be effectively discussed except for the post-1906 pice. The only
method I can see that would test this would be (1) to calculate the linear regression
from the sample variances giving each the weight of its degrees of freedom and (2)
to apply the χ2 test, noting that the ratio of the observed to a hypothetical variance
should be distributed as χ2/n. From the total number of degrees of freedom, two
have to be subtracted for the fitting. The pice variances only, when all are tested by
this method show linear increase with age; on the whole, the pice are statistically
the most satisfactory denomination in spite of evidence of heavy corrosion of three
specimens by fatty acids—because no one rings them, counterfeits and hoarding are
absent, change of hands regular.

Brass 1
2 annas, annas, and two annas of 1942 issue just reached circulation at

the time of the study, so that no disturbing effect was obvious on the rest of the
currency,whatever the futuremay show.Thedata gives: 12 annas-n = 53,m = 2.9125
gm, s2 = 786.88 mgm2; annas-n = 38, m = 3.8851 gm, s2=3934.51 mgm2; and
2 annas-n = 22, m = 5.8023 gm, s = 7773.6mg2. The two last fit very well into
their respective lines of regression and analysis of variance. It is not likely that the
debasement will cause any disturbance due to hoarding, though the rate of wear will
naturally change. For the silver alloy had already changed nearly 3years ago from
11/12 to 6/12 fine, even the nickel of George VI appears to differ from the older
composition. Even with the pure metal used for each denomination, including the
rupee, the currency would have a value of metal well below its denomination; hence,
the change to brass only emphasizes the most universal of all numismatic laws, the
inevitable trend towards debasement in time of stress. For our purpose, there is a far
more serious effect visible in the samples. The minting since 1939 shows a decided
increase in variance, and the occurrence of overweight specimens shows that the only
legal remedy (from 1/40 for copper to 1/200 of silver) has been relaxed in practice,
whatever the law at present. If this tendencywas present in the coins struck during the
last Great War (1914–1918), or during the depression years, it is certain to upset the
linearity of variance increase, without affecting the law for mean weights. Whether
the tendency towards cruder striking of the coins with regard to weight is manifested
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in the other countries and periods before great changes of structure will also have to
be studied with this example in mind.

I am grateful to the kind friends who saved me much of the labour of gathering
the samples in an unusually hot summer. Special thanks are due to my geological
colleague Prof. K.V. Kelkar for going out of his way to place the facilities of his
laboratory at my disposal.
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Chapter 13
A Test of Significance for Multiple Observations

D.D. Kosambi, Fergusson College, Poona

In the years at Fergusson College, Kosambi did extensive statistical measurements
and was devising new ways of analysing the data. This work, a precursor to “Statis-
tics in Function Space”, was reviewed by Abraham Wald who says “For the purpose
of discriminating multivariate normal populations with respect to their mean values,
test functions have been introduced and studied by H. Hotelling, R.A. Fisher, P.C.
Mahalanobis, R.C. Bose, S.N. Roy and others. If the number of variates as well as the
number of populations is greater than two, the application of the test would require
the knowledge of certain probability distributions which have not yet been tabu-
lated”. DDK proposes a method in this paper to overcome this lack, but falls short of
convincing his reviewer Wald, who adds “The author states that F∗ has the ordinary
F-distribution tabulated by R.A. Fisher and others. It seems to the reviewer that
this statement of the author would be correct only if the coefficients λ1, . . . , λp were
chosen independently of the sample. Since λ1, . . . , λp are functions of the sample val-
ues, the sampling distribution of F∗ will arise partly from the sampling variation of
λ1, . . . , λp and consequently the distribution of F∗ need not be the same as that of F .

1. A test of significant discrimination between two sample groups of multivariate
observations can be made by Hotelling’s extension [1] of Student’s t test; R.A.
Fisher’s discriminating function [2] based on the multiple correlation coefficient;
and the generalised distance [3] of Mahalanobis, Bose and Roy. In addition to these
closely related T2, R2, and D2 tests, Wilks [4] has suggested others which would
not involve the group means entering into the first three, but these last, as well as
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D2, necessitate new sets of tables. For the case of two variates, however, it has been
shown [5] that the usual analysis of variance can be carried out exactly, using the
z-tables of Fisher, provided the degrees of freedom are suitably readjusted.

Here, I propose to extend the Z -test partially to samples drawn from a normally
distributed population in p > 2 linearly independent variates. I also consider briefly
the limiting case in which the number of variates increases beyond an limit, which
leads us to the discrimination between samples consisting of sets of whole curves.
This has the advantage of theoretical simplicity, in that all finite dimensional normal
distributions are special cases, in much the same way as polygonal area rules like
Simpson’s come under the general

∫
ydx formula. If accepted, the method would

extend the analysis of variance to suchmaterial as electrocardiograms, cranial shapes,
temperature curves and the like. It is emphasised that the discrimination is performed
by the best linear combination of the old variates and not by the characteristic roots
as such that appear in the process.

The contents of the opening chapters of Courant–Hilbert, Methoden der Mathe-
matischen Physik I (1931), are taken for granted in the deduction.

2.We use the tensor summation convention: a repeated index denotes summation
over all values of the index. The variates 1, 2, . . . , p are indicated by Greek indices;
sampling values 1, 2, . . . , n of each variate are indicated by an additional Latin index.
Thus, xνi is the i th sample value of the νth variate. Without loss of generality, the
populationmean for each variate is taken as zero. Themultivariate normal distribution
has then the probability density c exp(−φ/2)where φ is a positive-definite quadratic
form in the p variates, c a constant so chosen as to make the total probability over
the whole p-space equal to unity.

There exist infinitely many linear homogeneous transformations of the variates
reducing φ to a sum of squares:

φ = σαβ xαxβ = δαβ yα yβ; δαβ = 0, α �= β;= 1, α = β.

yα = aν
αxν, |aμ

ν | �= 0; σαβ = δμνaα
μaβ

ν .

}

(13.1)

The new variates y are therefore uncorrelated, each with unit variance. The meth-
ods of discrimination proposed are that of applying the Z -test in that particular one
of the hypothetical y variates for which the observed samples give a maximum value
of z. Let this be yλ. For a sample of n observations, we have:

1
n

∑n
i=1 yλi = ȳλ = x̄νaν

λ, where x̄ν = 1
n

∑n
i=1 xνi ;

1
n−1

∑n
i=1(yλi − ȳλ)

2 = 1
n−1

∑n
i=1{aν

λ(xνi − x̄ν)}2 = aν
λaμ

ν sμν; (13.2)

where sμν = sνμ = 1
n−1

∑n
i=1(xνi − x̄ν)(xμi − x̄μ).

The tensors sμν, s ′
μν are unbiassed estimates of the normalised cofactors of the pop-

ulation tensor σαβ , calculated from the n, n′ random multiple observations, respec-
tively. Nothing is to be assumed known as to the actual values of σαβ or of the
normalising transformation coefficients aμ

ν .
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3.Wenow take a newvector variable uα = aα
λ , sinceλ is to be fixed for the problem

in hand. The two quadratic forms sαβuαuβ, s ′
αβuαuβ are positive definite because all

principal determinants in any samplingmatrix ||sαβ || calculated as in (13.2) are Gram
determinants, which are positive whenever the p variates are linearly independent.
Our special discrimination problem is thus reduced to finding the maximum of F =
s ′
αβuαuβ/sμνuμuν or of its reciprocal.
The answer to this is well known. All we need here is the greatest relative char-

acteristic root of the two forms, i.e., of the determinantal equation

det. |sαβ − ϑs ′
αβ | = 0, (13.3)

or of the reciprocal equation, interchanging s, s ′. These roots are all positive. If
arranged in descending order of magnitude, they have theminimax property: ϑν, 1 <

ν ≤ p, is the smallest value assumed by the maximum of F when the u are subjected
to ν − 1 independent linear homogeneous restrictions. Thus, all we have to do here
is to put z = 1

2 | logϑ | for the extreme root, using the z-tables of Fisher with degrees
of freedom based on the samples alone, as for the single variate. The distribution of
the greatest or of any other characteristic root does not enter into the argument, the
ratio of the two hypothetically transformed quadratic forms being always that of two
sample variances. What we have obtained is essentially an existence theorem to the
effect that the change by means of a suitable linear transformation of coordinates
(variates) can give a z-value as great as but no greater than the greatest relative
characteristic root of the two sampling tensor matrices. So, the z-tables are to be
entered with degrees of freedom one less than the number in the samples, in the
absence of any other linear restriction on the variates than that incurred in measuring
from the sample mean. It might be possible to use the other roots by compounding
probabilities, but it must be kept in mind that the minimax property requires that our
transformation coefficients not the variates be sufficiently unrestricted. For example,
our method of deduction cannot be called valid for p = 1, p = 2, as there are then
not enough of the aμ

ν left free, for a maximum to exist necessarily, after reducing the
population form to a sum of squares. Of course, this is immaterial in view of the fact
that p=1 is trivial and p = 2 settled by means of a special device [5]. In each of these
cases, it is true that no greater z-discrimination is possible with linear combinations
than is indicated by our test.

4. One advantage of the extension is that it holds for any p > 2. The ordinary
analysis of variance is to be carried out exactly, in view of the fact that any sam-
pling matrix may be broken up into various additive components die to the sources
between which one wishes to discriminate. There is the further advantage that in
case significant discrimination has been shown, the residual matrix of ||sμν || may be
used as the fundamental matrix in Hotelling’s T2 in the same way that the residual
estimate of variance is used for Student’s t test after the analysis of variance in a sin-
gle dimension. The disadvantage is that our test would not be so powerful as others
in rejecting H0 when it is false; H0 here being the null hypothesis that the various
sampling tensors are pairwise compatible estimates of the same population tensor.
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One method of calculating the extreme root has been given by Fisher (SMRW ex.
46.2) who uses divided differences. But Eq. (13.3) also lends itself to approximation
for the greatest root bymeans of root squaring.Where the greatest root is notmultiple,
the rule can be stated immediately, without going into the very simple proof. We
define: 
 = |sαβ |;
′ = |s ′

αβ |; and � is the sum of the p determinants formed by
substituting in rotation a single row in ||sαβ || by the corresponding row of ||s ′

αβ ||,
and �′ has the same function interchanging s, s ′. Finally, let 
m,
′

m,�m,�′
m be

the corresponding functions constructed by squaring (iteration) m times, according
to the rule for matrix multiplication, each of the two matrices. Then, an approximate
value of z for maximal significance is the greater of

1

2m+1
log

(
�m


m

)

or
1

2m+1
log

(
�′

m


′
m

)

. (13.4)

Approximation is quite rapid when the greatest root is isolated. For a multiple root,
the ratio�/
must be divided by a factor corresponding to the multiplicity; a similar
precaution should also be taken for roots very close together.

5. Still more interesting is the passage to the limit. Suppose we have to deal with
silhouettes taken on the profiloscope.Onemethodwould be to take somewell-defined
point such as the ear orifice for the origin and somewell-defined line such as that from
the origin to the base of the nose as prime vector, and to expand the distance from the
origin to the general point of the profile as a Fourier series in terms of the angle from
the prime vector. The coordinates would then be the Fourier coefficients; if enough
were determined to permit the reproduction of any profile to within the original limits
of observation, our test or any suitable multivariate test could be applied directly. Yet
this is clearly unsatisfactory in that we are using a finite number of coordinates in
an indefinite number of dimensions without knowing anything of those discarded.
The argument that professional anthropometrists do this or worse in using a finite
number of characters instead of our harmonic analyser, without proving normality
of the distribution, does not suffice. So, we take the other form of the passage to the
limit represented by integral equations.

We keep the original quadratic form, extended to infinitely many dimensions,
and take the coordinates as “Fourier” coefficients associated with expansion in some
given set of orthonormal functions defined over 0 ≤ x ≤ 1, which is also to be taken
hereafter as the range for all undefined integrations. The probability density will
again be represented by c exp(−φ/2), with

φ =
∫ ∫

K (s, t) f (s) f (t) ds dt; f̄ (s) = 1

n

n∑

1

fi (s) (13.5)

S(s, t) = 1

n − 1

n∑

1

{ f ′
i (s) − f̄ (s)}{ f ′

i (t) − f̄ (t)}.
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These now replace (13.1) and (13.2) in the function space, each multiple observation
on the vacate taken to define a function f (x) over 0 ≤ x ≤ 1. For significance tests,
the reciprocal to S(s, t) is the best estimate of the population kernel K (s, t). An alter-
native simultaneous visualisation of the space is, as before, the Hilbert space of the
coefficients in the orthogonal function expansion of fi (x). Naturally, it is essential to
take the population kernel K (s, t) as positive semi-definite or definite; its character-
istic functions form the most convenient orthogonal functions to use for theoretical
purposes, which amounts to using a quadratic form with diagonal matrix. If the char-
acteristic orthonormal functions do not form a closed set, as many more are to be
adjoined as are necessary for closure, taking the additional coordinates associated
with these extra functions to constitute the orthocomplement to the functionmanifold
of K (s, t). In probability integrations, these extra coordinates will be undetermined,
hence to be integrated over the whole of the orthocomplement. This allows all ker-
nels to be considered in a proper function space, even the degenerate kernels that
actually include the ordinary p-variate normal distribution; conversely, the p-variate
case may be considered as associated with a degenerate K (s, t), by ascribing one
function of an arbitrary orthonormal set to each coordinate as coefficient. For limits
of integration, we use the convenient aswell as fashionable terminology of lattice the-
ory, taking f ( g, f ) g, respectively, as the functions whose “Fourier” coefficients
are the greater and the lesser of the corresponding coefficients in the expansion of f
and g. Thus, the integration can extend from f ( g to f ) g, and over the whole of
the orthocomplement, whenever integration “between” two function limits f, g is to
be performed.

6. The trouble with all this is that it has only an appearance of verisimilitude.
In a space of infinitely many dimensions, we have as yet failed to define the vol-
ume element. If we take the multiple integral over infinitely many dimensions as
evaluated by successive iterated integrals in the usual manner, it will be seen that
any consistent evaluation making the total probability unity leads in general to zero
probability in integrating over any proper sub-manifold of the whole space. One
must go much deeper than the intuitive methods of 5. It is seen that if we merely
take the limits increasing the number of dimensions, the “volume” of a hypercube is
0, 1 or ∞—of a hypersphere zero—as the n-dimensional sphere has the volume of
2π2nrn/n(n/2) → 0 as n → ∞.

This difficulty is surmounted under the hypotheses that the abstract space under
consideration has a distance relationship obeying the usual postulates; it is separable,
locally compact, with a congruence relation. The two middle ones have to remain
assumptions, distance r being defined by r2 = φ( f − g), for any two elements f, g.
The space has to be restricted to elements for which K (s, t) is a positive-definite
kernel. Congruence of two regions may be taken as transformability of one region
into the other by some member of a suitably restricted (linear) transformation group,
preserving φ( f − g) and transforming the entire manifold into the entire manifold.
Then, aHaarmeasure [6] and aLebesgue–Stieltjes integral exist. UnrestrictedHilbert
space is not locally compact because no infinite sequence of orthogonal functions
can converge in L2.
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It follows that all classical results can be stated and proved again in general abstract
spaces, though it is better for our purpose to take kernels of the second (Fredholm)
kind for some theorems, which means only the addition of a term

∫
f 2ds to the φ of

(13.5).Wemay then state such results as follows: the sum of two normally distributed
variates is also normally distributed with mean the sum of the two means and kernel
whose (formal) reciprocal is the sum of the two (formal) reciprocals of the given
kernels.

Many fundamental procedures and distributions may be generalised to this space,
including some of the more powerful tests considered by Hsu [7]. Not only can
the Hotelling–Fisher formulæ [2] be derived from a degenerate population kernel
of p degrees of freedom, but a space of sufficiently large (or infinite) number of
dimensionswould lead to corresponding formulæwith p = n, the degrees of freedom
within groups. It is clear, however, that the nature of the fundamental abstract space
associated with a given population will not be revealed in general by means of the
sample taken by a practising statistician; here, I regret my inability to demonstrate
with a practical example, forwhich there is data enough, but no access to the necessary
machines: ordinary or cinema integraph, differential analyser, etc. In any case, it is
clear that a test which applies independently of dimensionality,1 without new tables,
becomes of importance whether or not more efficient and powerful tests could be
devised for the particular unknown population in question. This test is the analogue of
(13.3); taking limits, we state it as the problem of locating the extreme characteristic
root of

∫ {S[s, t] − ϑS′[s, t]} f dt = 0. By noting that the sample kernels S, S′ are
degenerate, this can be reduced to a set of linear equations in a finite number of
unknowns, whence the existence of a finite number of positive determinate roots
follows at once. It is proposed that the extreme root be used as before for the Z -tests;
the estimating kernels may still be broken up into additive components, permitting
analysis of variance. It would, of course, be convenient to have the distribution of
certain sampling functions, as, for example, of

∫ ∫
S−1S′ds dt , where S−1 is the

reciprocal to S(s, t).
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Chapter 14
On Valid Tests of Linguistic Hypotheses

D.D. Kosambi, Fergusson College, Poona

Although it is not clear if they knew each other, the linguist Zipf who graduated in
1923 was a near-contemporary of DDK’s at Harvard. Zipf went on to study in Berlin
and Bonn, returning to Harvard to do his masters and PhD, eventually becoming
university lecturer in 1939. DDK is scathing in his criticism of Zipf’s law as not being
statistically significant. After eighty years and numerous applications, the debate is
still on; the validity of this “law” and its applicability are investigated to this day,
so it would seem that DDK’s reservations on the statistics used had some justification.

It is known that in any connected piece of writing [“language stream”] the number
of words used twice is far less than that used only once. The number occurring three
times is still less, and the drop continues rapidly. The Harvard philologist George
Kingsley Zipf has proposed a “law” for this, the number of words used n times being,
according to him proportional to n−2 (1, 24; 2, 40–44). The main purpose of this
note to raise serious objections to this inverse square “law”. These objections are
statistical. I maintain that no such law, whatever the exponent, will do for the data
so far given because the fit is not sufficiently good even when the best exponent is
taken by calculations on the logarithmic scale. (1, 25–26; 2, 43; 5, 63). To put this in
non-technical language: to every head, there will be one cube-shaped wooden box
that fits best, but in general, a rubber cap or a felt hat of the right size will fit better,
and the latter is more likely to indicate a contour of the skull.
1.Asmy attentionwas first called to the problem by theOld-Kanarese word counts of
Mr.M.G. Venkatesaiya (working under the direction of Mr.C. R. Sankaran), I
shall illustrate the accepted statistical method by an application to his data. K , V, P,

denote three works in Hal.agannad. a, entitled the Kavirājamārga, Vod. d. ārādhane, and
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Table 14.1

Observed Expected

Fr. K V P Totals K V P

1. 3241 2990 1087 7318 3220.6 3041.3 1056.1

2. 270 301 62 633 278.6 263.1 91.3

3. 62 71 19 152 66.9 63.2 21.9

4. 40 45 14 99 43.6 41.1 14.3

5. 29 22 7 58 25.5 24.1 8.4

6. 39 47 18 104 45.8 43.2 15.0

Total 3681 3476 1207 8364 3681.0 3476.9 1207.0

Pampāśatakam, respectively. For purpose of testing it will be necessary to group
together the small frequencies at the end, and sufficient to present the counts as
follows:

The expected numbers are calculated on the assumption that the three works are
uniform in the structure of their language stream, whence it follows that the ratio
of the figure in each “expected” cell to the total at the foot of its column must be
the same as the corresponding ratio of the marginal totals. The numbers so obtained
are rounded off to the first decimal, taking due care to preserve the totals each way.
As it is clear that the expected and observed totals will never coincide in practice,
some method of calculating the magnitude of the discrepancy and of judging its
seriousness is necessary. This, for the care in hand, is Karl Pearson’s χ2 test, χ2

being the sum obtained by squaring the difference between each expectation and
observation, and dividing the square by the expected number. This sum is here about
22.25, and inasmuch as ten of the given eighteen entries could have beenmade at will
without disturbing the totals, we enter the tables of χ2 (to be found in any standard
text on statistics, such as R. A. Fisher’s Statistical Methods for Research Workers)
with 10 degrees of freedom. It is then found that the probability of exceeding this
value of χ2 lies between 0.01 and 0.02. That is, we should, on the hypothesis of
uniformity between the three works, expect to obtain such a result not oftener than
once in fifty times, but not so rarely as only once in a hundred trials. This is hardly
in favour of the hypothesis, though the “level of significance” is to some extent a
matter of individual choice, just as the fit of a hat would depend upon the wearer. If
P were smaller than 0.05, as it is here, the statistician would take the hypothesis as
contradicted, following the standard practice of his trade.

This test is surely more exact than anything suggested by Zipf (5) or his critics
(4), judging from the reference material to which I have access here. If the same test
be applied to the data for the K and the V , it will be found that the two works are
compatible, P being not less than about 0.2, which is not at all serious. That is, the
Kavirājamārga and the Vod. d. ārādhane follow about the same frequency laws, but the
Pampāśatakam is decidedly of a different nature. The main cause of the discrepancy
lies in words of frequency two, of which the V has too many and the P far too few.
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2. Applying this χ2 test to Zipf’s data, we reach the following conclusions: Taking
together his numbers for Chinese and Plautian Latin with Eldridge’s for American
newspaper English (1, 23: 2, 26–28), the value of χ2 is enormous and virtually
excludes the very notion of uniformly. Of the three, Peiping Chinese and Plautian
Latin are closest together, as would be expected from the fact that Eldridge did not
count numerals and proper nouns (2, 25). We note in passing that the totals as given
byZipf need two corrections, that for Chinese being 3342 instead of his 3332, and for
Eldridge’s English, 6001 in place of 6002. Testing the two languages counted byZipf,
however, we find χ2 about 40.8, which for 17 degrees of freedom gives a probability
of 0.001, almost exactly, about one chance in a thousand that the two languages
follow the same frequency law, the discrepancy arising mainly in frequencies 5 and
15.

Finally, the same test applies to any proposed law of frequency, in particular to
the inverse square law. For sufficiently extended counts, the expected number of
words occurring n times would be given by 6N/(πn)2, or 0.6079 N/n2, where N is
the total number of distinct words counted. The square of each discrepancy is again
divided by the expected number; the ratios are added together for the value of χ2. It
will be found that of all the six sets of counts cited here, the “law” applies best to
Chinese. It is again necessary to group together the smaller frequencies at the end
(in testing by χ2 the expected frequency should not in any cell fall much below ten)
and for 17 degrees of freedom, I obtain a value of χ2 = 27.17 whereas the value of
P 0.05 is 27.587. The fit, then, is hardly satisfactory; the best that can be said about
the proposed law is that the data for Chinese does not contradict it so decisively as
that for the remaining languages.
3. To apply these simple tests, little knowledge of statistical theory, none of pure
mathematics, is required. The labour involved is trifling when it is considered that
final conclusions are to be drawn from data far more laboriously compiled and that
their validity is to be tested. It is surprising, therefore, to note that nowhere in the
work of Zipf, nor in the criticisms of Joos (4) nor the argument advanced by an able
mathematician like Stone (5, 60–61, 63–64) is there any idea of testing goodness
of fit or significance. As the U.S.A. are fortunate in possessing many statisticians of
eminence, I shall offer a few suggestions here, and leave it to the philologists to work
them out, if they see fit to do so.

Table 14.2 Analysis of variance

Source d.f. Sum squares Mean sq. Ratio

Languages 12 15.424060 1.285338 (1.0987)−1

Block t·b. vs. m·r 1 76.736862 – 55.75***

Consonants within a
block

8 376.270187 47.033773 33.3046***

Lang. × blocks 12 25.192508 2.099376 1.4866*

Residual 96 135.574263 1.412233 (s.d. 1.18837)

Total 129 631.197880 4.893007 3.4647
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None of the inverse exponent laws fit at all well, though each exponent may be
said to characterize the sample from which it was calculated just as the best fitting
cubical box would characterize a skull. For Kaeding’s data (2, 23), the three counts
given by Zipf, as well as the three of Kanarese with which I illustrated the χ2 test, a
type B series derived from the Poisson distribution or one of Neyman’s “contagious”
distributions (6) would be found, to fit far better. But the same series would not do for
all the samples any better than the same box or hat for all heads: The statistics would
be of a descriptive type, lacking the attractive if fictitious Newtonian simplicity of
the inverse square law, supplemented by an appeal to Schrödinger, Heisenberg,
and Dirac (5, 61). Another interesting possibility, if a Poissonian or type B series is
found to fit well, would be of estimating the passive vocabulary of the stream, words
not used at all, by extrapolation; the “maximum-likelihood” formulae for estimating
the words of zero frequency from a supposed Poisson distribution can be worked
out very easily, but are not given here inasmuch as the said distribution, which is
virtually a random distribution, does not fit.

A far more serious matter is that of properly randomized sampling. Zipf and his
followers wish to characterize an entire language, sometimes all languages, bymeans
of their counts. But the total number of words in the respective language streams is
always enormous in comparison with the number that can be counted (with obvious
exceptions like Anglo-Saxon or Sumerian); therefore, every precaution has to be
taken to avoid bias. This, again, is a matter to which the statisticians have devoted a
good deal of time; standard methods of randomization exist which might very well
be considered before the work of counting is begun. It is to be noted that Zipf’s
scattering point (1, 24) disappears with increased size of the sample, as well as in
out test of significance.

Finally, it must be stated that statistics is not just a laborious method of contra-
dicting the pleasing conclusions obtained by the common sense of the philologist.
For example, analysis of variance may be applied to the combined data for thirteen
languages (3, 61, 65) using the percentages given by Zipf. The conclusions are that
the languages are remarkably uniform that there is no difference between the classic
and the modern languages and that there is a tremendous difference between the
consonants t d k g p b on p. 61 and the m n l r on 65, whether they be taken in these
two blocks or separately. For any two entries in Zipf’s table, the difference of 3.36%
is to be taken as significant at the 5% level; for the means between two languages,
this should be divided by

√
10, for two consonants, by

√
13. A caution is necessary

in that the use of percentages can be objectionable: If all the percentages were taken,
every languagewould have the same total 100. But if the use be allowed in the present
case, the information which I give and which does not contradict Zipf is partially
summarized in the following table:

Here, the blocks are the two sets of consonants. It is seen that the languages behave
differently in the two sets, but this has not the enormous significance of the difference
between consonants.
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Chapter 15
Statistics in Function Space

D.D. Kosambi, Fergusson College, Poona

Had DDK followed up on this paper in a more systematic manner, and if attribution
had been given more properly, the Karhunen–Loève theorem may well have been
known more widely as the Kosambi–Karhunen–Loève theorem. This work, which
essentially lays the foundation of the proper orthogonal decomposition technique
for analyzing random signals, predates the work of Karhunen and Loève by sev-
eral years, and although published in the Journal of the Indian Mathematical Soci-
ety, it was reviewed in the more widely circulated Math. Revs. by J.L. Doob who
summarized it succinctly: The author discusses statistical problems connected with
continuous stochastic processes whose representative functions x(t) are defined by
x(t) = ∑

j x jφ j (t), where the φ j determine an orthonormal set and x1, x2, . . . are
mutually independent Gaussian chance variables with vanishing means and vari-
ances σ2

1,σ
2
2, . . . , respectively. […]. The samples he considers are functions x(t)

rather than merely the values of functions x(t) at a finite number of points. […].
Various mechanical and electrical methods are suggested for combining functions
x(t), given graphically, as necessitated by this type of statistical approach.

The mechanical and electrical methods suggested were pursued to some extent
in the “Kosmagraph” project (see Chap.4) and were to inspire him in constructing
various computing machines. Beyond summarizing these results in [DDK44], how-
ever, DDK did not expand on this work.

The main purpose of this note is to develop statistical methods for discrimination
between samples consisting of whole curves.
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We take the observables as simple curves of type y = f (x), the functions
f (x) being all single valued, of bounded variation, continuous (though stepwise
continuity—as for a sample of histograms—would cause no difficulties), defined on
a finite closed interval which may be taken without loss of generality as 0 ≤ x ≤
1 by suitable choice of origin and scale. The methods developed for such curves
apply directly to diagrams in polar coordinates r = f (θ), 0 ≤ θ ≤ 2π, by an obvious
extension, to suitably restricted surfaces (say crania) or multidimensional varieties.
Peano’s space-filling curves, Jordan curves of positive area, are naturally excluded.

The problem clearly resolves itself into four components: (1) to define a normal
distribution in function space, (2) to deduce useful consequences of such normality,
assumed to hold for population of curves, (3) to devise new methods of calculation
where necessary, and (4) to examine the generality of the approach.

1. The probability P associated with a multivariate normal distribution is the
definite integral, over the proper region, of

(2π)−k/2e−φ/2dV, (15.1)

where k is the number of variates in which φ is a positive definite quadratic form, and
dV is the associated volume element. That is, the same transformation that reduces φ
to a sum of squaresmakes dV = dx1dx2 . . . dxk , the whole space being recognizable
as an ordinary k-dimensional Euclidean manifold with φ = r2 as the square of the
distance. A continuous function is determined completely by its values on a set of
points everywhere dense on (0, 1), say all rational points; a function in general,
therefore, has an infinity of coordinates. As approximation is possible by increasing
k indefinitely, the first step would be to generalize distance and the quadratic form
φ.

To this end, we assume the existence of a continuous symmetric kernel K (s, t),
positive definite or semi-definite. Then, the distance between any two of our functions
f (x), g(x) is given by

r( f, g) = φ( f − g) =
∫ ∫

K (s, t){ f (s) − g(s)}{ f (t) − g(t)}ds dt. (15.2)

The range for all otherwise undefined integrals in s and t is (0, 1) for each variable,
here, the unit square. Restricting the population of functions to be such that K (s, t)
gives a definiteφ therein according to the definition of (15.2), we shall have r( f, g) =
0 if and only if f ≡ g with respect to the mechanism of observation; it follows,
therefore, that r obeys all the basic postulates for distance including the triangular
inequality. The normal distribution in function space could be taken as defined by
c exp(−φ/2)dV .

Unfortunately, not all terms of this probability density can be given a meaning
that is useful in practice. As (2π)−k/2 → 0 when k → ∞, c can only be specified
by the restriction that the total probability equals unity; also the “volume element”
dV may be given a direct mathematical meaning [1], but not one of much real
use. To surmount this obstacle, we resort to a choice of independent variates that
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reduces φ to a diagonal form. This amounts to taking K (s, t) in its canonical form
[2, 117, 114]

K (s, t) =
∑

σ2
i φi (s)φi (t). (15.3)

The φi are the orthonormal characteristic (eigen-) functions of the kernel, σ2
i the

corresponding characteristic values (=1/λi in the notation of 2), all positivewith
∑

σ4
i

convergent [2, 111]. The orthogonal or independent coordinates for any function f (t)
are obviously the “Fourier” coefficients x1, x2, . . . , xr , . . . with

xr =
∫

f (t)φr (t)dt, f (t) =
∑

r

xrφr (t). (15.4)

As K (s, t) is definite for the population, every function served can be so repre-
sented. The series will converge uniformly and absolutely [2, 114] for every function
that is the K = transform of any piecewise continuous function, a restriction which
we place upon the population.

We now define normality in the function space tomean normal distribution in each
of the xi . Without loss of generality, the population mean for the function space and
hence for each xi may be taken as zero. The variances will be σ2

i . That is, our φ has to
be taken as generalizing not the k-dimensional population quadratic form, but the one
that enters into the characteristic function of the distribution, the Fourier transform. In
Euclidean space, both become equal to r2 when φ is expressed as a sum of squares.
Our choice for function space is dictated by the implication of (15.4) that

∑
x2

i
converges whence xi → 0 as i → ∞, which can be made to hold in probability for
random xi if and only if σ2

i →0. If φ were to be taken as the population (probability
density) quadratic form, or variances would become 1/σ2

i , the two kernels must
be reciprocals, as is seen by application of the Fourier transform to the k-variate
distribution. Sincewe deal herewith kernels of the first kind, only one can be properly
defined, in general, the other “existing” only in symbolic form as is seen by the fact
that except in the degenerate case, the series of squares of characteristic values and
the series of squares of their reciprocals cannot both converge simultaneously. To
sum up, we may formulate definitions:

Definition 1 Normal distribution in function space will be taken to mean normal
distribution for each variate xi of an (independent) infinite sequence x1, x2, . . . ,
with all population means zero and variances σ2

1,σ
2
2, . . . These xi are the “Fourier”

coefficients of a random function of the space with reset to the orthonormal charac-
teristic functions φ1(t),φ2(t), . . . with characteristic values σ2

1,σ
2
2, . . . belonging to

a continuous, symmetric, positive, definite (in the manifold of admissible functions)
kernel K (s, t) defined over the unit square 0 ≤ s ≤ 1, 0 ≤ t ≤ 1. The kernel K (s, t)
thus completely determines the distribution.



118 D.D. Kosambi

2. This definition has the initial advantage of covering all finite-dimensional cases,
represented by degenerate kernels where all but a finite number of the variances σ2

i
vanish. Conversely, it allows approximation by degenerate kernels and application of
methods developed for k-variate distributions. These can be used together to prove,
for example, that

The sum of two normally distributed function variates is also normally distributed
with mean the sum of the population means and kernel the sum of the two given
kernels.

This follows directly from the definition since exp(−φ/2) is not the probability
density but the characteristic function of the distribution. The characteristic function
of the sum of two variates is the product of the two characteristic functions. In
particular, the mean of a sample of n functions chosen at random from the same
normal population will have the population mean and kernel K /n; one degree of
freedom will be lost in measuring from the sample mean, and so on. If the same
set of orthonormal functions covers both kernels, then we may add corresponding
variances as usual; if no, we can at least state that the sum variances do not decrease
(2, 113 with an obvious correction).

What seems to me to be the most important consequence of our definition rests
upon a basic theoremofKolmogoroff [3].Using the letter P to indicate the probability
and E the expectation of the events bracketed, this may be stated as follows.

Given a random sequence u1, u2, . . . , ur , . . . , the probability of the convergence
of the series

∑
ur is unity if there exists some random sequence v1, v2, . . . , vr , . . .

such that the three series
∑

P(ur �= vr ),
∑

E(vr ),
∑

E[(vr − E(vr ))
2] all con-

verge. If no such sequence exists, the probability for the convergence of
∑

ur is
zero.

In our case we take ur = vr = xrφr (t), so that the first two series converge by
hypothesis. The third is

∑
E(x2

r φ2
r ) =

∑
φ2

n(t)E(x2
n ) =

∑
σ2

nφ
2
n(t) = K (t, t) (by 2, 110).

The structure of Kolmogoroff’s proof shows that in our case convergence and
uniform convergence go together. We conclude, therefore, that

A random sequence of the variates x1, x2, . . . , xr , . . . , of our definition represents
with unit probability a function of the normally distributed function population.

This replaces the Riesz–Fischer theorem, proving a 1-1 correspondence between
random functions and random sequences of coefficients, in the sense of unit probabil-
ity. The Riesz–Fischer theorem would require, for unit probability, the convergence
of

∑
σ2

r and give only convergence in the mean for
∑

xrφr (t).
Let yi = f (ti ) = ∑

xrφr (ti ) be the ordinate at a fixed point ti as abscissa. From
E(xi x j ) = 0, E(x2

i ) = σ2
i , we obtain

E(y2i ) = ∑
σ2

r φ
2
r (ti ) = K (ti , ti )

E(yi y j ) = ∑
σ2

r φr (ti )φr (t j ) = K (ti , t j )

}

(15.5)
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The matrix ||E(yi y j )|| = ||K (ti , t j )|| of covariances may be regarded as the
symbolic product of ||σrφr (ti )|| with the transposed matrix. In case the kernel is
degenerate and there are more ordinates yi , y2, . . . , ym than characteristic functions
φ1,φ2, . . . ,φk , it is obvious that the determinant |E(yi y j )|will vanish. Conversely,
if |K (ti , t j )| vanishes identically, the kernel is necessarily degenerate as its Fredholm
expansion [2, 122] breaks down into the ratio of two polynomials. As the yi are con-
vergent (in the sense of unit probability) linear combinations of normally distributed
variates, we have proved that

For any fixed abscissa t, in a normally distributed population of function, the ordi-
nate is normally distributed with variance K (t, t). The covariance between values of
the functions at two points s and t is K (s, t). The distribution of ordinates at k fixed
points is multivariate normal and is a proper distribution except when the kernel
K (s, t) is itself degenerate with less than k characteristic values.

In this, of course, the nodal points of the entire set of functions, points where
K (t, t) = 0 in particular, must be avoided when selecting the k points for measuring
abscissae. An example would be φr = √

2 sin πr t and the end points of the interval,
t1 = 0, t2 = 1.

3. The usefulness of the preceding section is manifest, as the population kernel
K (s, t) would remain unknown in practice even when the hypothesis of normality
is granted. Our theorems enable us to proceed by the methods of the ordinary mul-
tivariate normal distribution, measuring ordinates at suitably chosen abscissae. The
meteorologist would be justified in working with temperatures taken at noon and
midnight, but not necessarily with his maximum and minimum temperatures, which
are measured at varying times of the day. The anthropologist’s characters and indices
would be less justified, than, say, measurements from the ear orifice to the profile
at fixed angles from the line joining the orifice to the base of the nose. Coefficients
on the harmonic analyzer and regression coefficients in properly chosen orthogonal
functions (whether they belong to the kernel or not) are also to be regarded as coor-
dinates in multivariate normal distribution, provided the fitting when done by values
at fixed points is done with the same fixed abscissae for each curve.

Given a sample of n curves, y = f1(x), f2(x), . . . , fn(x), the best estimate of the
population mean μ(x) and the population kernel K (s, t) are given, respectively, by

m(t) = 1

n

∑
fi (t); k(s, t) = 1

n − 1

∑
[ fi (t) − m(t)][ fi (s) − m(s)] (15.6)

as follows obviously from the foregoing. Large sample theory means calculation of
these sample functions and therewith the characteristic functions and values [which
will approximate those of the population]. Hotelling’s T 2, Fisher’s discriminating
function, and such methods for discrimination would also apply without restriction
provided the number of points for taking ordinates did not exceed the number of
functions in the samples.

But inmany cases the complete curves are recorded automaticallywith less trouble
and more accuracy than for a finite number of observations on the same material.
In that case, we could, if the proper machines were available, calculate the sample



120 D.D. Kosambi

functions in (15.6) and thereafter the “Student” ratio t (x) or Fisher’s z(x) from two
given samples for every point of the abscissae 0 ≤ x ≤ 1. Corresponding to these
or to any other statistics, we shall get a probability p(x) as a function over the unit
interval. In methods of discrimination, one may choose a single point, say the point
where p(x) takes on its maximum value in the closed unit interval; the corresponding
value of x gives the abscissa where the maximum discrimination has been achieved.
this, in a way, is the determination of the best [in the obviously restricted sense]
linear combination of the unknown coordinates x , the “Fourier” coefficients with
respect to the unknown population orthogonal functions. But, again, one is tempted
to ask whether something more could not be done, whether one could not calculate
or measure a single probability for the whole interval or of any given subinterval,
instead of a point probability. What is required is not p(x) but a P(α,β) for any
given 0 ≤ α < β ≤ 1, on the basis of the two samples and any given statistic. The
most that can be done here is to show that such questions need not be meaningless.

Suppose the kernel to have a single nonnegative characteristic function φ(t) ≥ 0
and characteristic value σ2. We ask for the probability that a sample function f (t) =
xφ(t) lies between the two limits a(t) and b(t) throughout an interval (α,β) in (0,
1). Then, this probability is

1

σ
√
2π

∫ x2

x1

exp(
−x

2σ2
)dx, (15.7)

if x2 is the greatest value of x satisfying xφ(t) ≤ b(t) and x1 the least for xφ(t) ≥ a(t)
in (α,β), with x2 > x1; the probability is zero otherwise. A similar approach is
possible for φ(t) with changes of sign or more than one characteristic function. The
general question, for examples of the type chosen for illustration, depends upon
the correspondence that can be set up between two different types of function-em
lattices, not merely function spaces, with measure and maps upon the unit hypercube
in infinitely many dimensions (torus space).

The calculating machines, under the circumstances that now limit my activity,
cannot go beyond the stage of design. The fundamental ideas will be made clearly
by the two schematic figures appended here in the hope of doing service to some
more fortunately situated experimenter. Figure15.1 shows how σ fi (x)may be drawn
by means of templates and a wire passing over a system of alternately fixed and
moving pulleys, suggesting by Kelvin’s tidal machine. The formulae of (15.6), in
particular the most important ones for m(t) and k(t, t), depend upon the operations
of addition, summation of the square, subtraction, and division by a chosen factor.
For the pulley machine, subtraction is possible by reversing the direction of the ire or
rather substituting a moving for a fixed pulley; or by using as template the conjugate
curve to the one to be subtracted. Reduction of scale, i.e., division by a given number,
will have to be done by a pantagraph, or some such device. Both of these introduce
errors, and there is the additional difficulty of getting material for templates that will
be stiff enough to stand up under the weights, and smooth enough to allow all the
templates to be pulled through on their rack without sticking. For sum squares, and
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Fig. 15.1

sums of products, the arrangement has to be extended to the measurement of torque
and moments, the simple pulley machine being inadequate.

The second instrument is suggested by the high fidelity with which sound is
recorded on and reproduced by cinematography. Here, the area under the curve is
cut out of standard sheet of paper and scanned by means of movement past a narrow
fixed slit. The light that falls on the slit is of uniform intensity throughout, in the first
instance. The film is coupled with the template, and both are drawn through with
uniform speed. The lens reduces the curve in height, but not in length, and by means
of a vertically movable rack, many such curves, say at least a dozen, may be easily
recorded on a single film. At the end of each curve template, a standard height is cut
out of the template material.

The film is developed and printed as usual and focussed back in all its width
through another slit on to a photoelectric cell. The current recorded will be propor-
tional to

∑
fi (x) at each point, standardization being achieved by means of the fixed

heights cut out of each template at the end of the curve. The factor 1/n or 1/(n − 1)
can also be set, thereby adjusting the primary current, or putting the proper shunt
across the current-recording device.

Sums of squares are easily obtained by varying the intensity as well. This is best
done by means of a photoelectric cell coupled with the moving template rack. This
cell would regulate the current supplied to the light, so that we should have the
product of the height of the curve by the intensity as f 2i (x). The difficulty here, of
course, is in the law of darkening, and very much more careful adjustments will have
to be made. The same method allows function covariances to be calculated, coupling
one set of templates to the photoelectric cell and the other to the slit-rack.

The law of resistance in electric circuits in parallel shows obvious means of calcu-
lating harmonic means. For the two-dimensional kernels K (s, t), the best methods
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Fig. 15.2

would seem to be those derived from television. Such instruments are now being
devised by others for work in a single dimension. If successful, the need for cutting
templates would be obviated, with a gain in accuracy.

4. From the purely theoretical point of view, we have ignored many other possi-
bilities. Some of these were mentioned in a former exploratory approach [1]. I give
an example to show that theoretical generality is certainly possible, in defining the
normal distribution, but that the usual facilities such as the central limit theorem,
the chi-square, and other tests used in practice, in short the whole mechanism of
everyday statistics is invalidated.

The population is defined by the functions

φr (t) = √
2 sin πr t,

f (t) = ∑
3−n/2anφn(t), where an = 0 or 2

(15.8)

The kernel K (s, t) is given by

K (s, t) = [
∑

3−i/2φi (s)][
∑

3− j/2φ j (t)] (15.9)

being thus degenerate of the first order. It follows that r( f, g) for two functions
defined by sequences an, bn is given by r = | ∑(bn − an)/3n|. If the sequence an

is regarded as defining a point of Cantor’s ternary set [discontinuum], expressed by
the same sequence of zeroes and twos in a ternary expansion, it is seen that there
is a 1-1 correspondence between points of the set and our population of admissible
functions; moreover, the distance between two functions is now the distance between
the two corresponding points of the line segment. NowHausdorff [4] has shown that a
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measure can be defined over theCantor set or over any similar set obtained by deletion
of a central interval. If each of the surviving pieces is, at each stage, a fraction p of
the original, the dimension r of the set is given by 2pr = 1, whence the Cantor set
is of dimension log 2/ log 3; a trifling extension of Hausdorff’s argument will show
that when the deletion is not symmetric, the surviving pieces being of fractions p and
q at each deletion, the dimension r is given by pr + qr = 1. What concerns us here
is the existence of the outer measure, by means of which we may define our integral
of c exp(−φ/2)dV , where φ is the quadratic form defined by means of the kernel
K (s, t) of (15.9), and dV is the Hausdorff measure on the Cantor set, extended from
the line segment (0, 1) to the entire line −∞,+∞ by simple translation, along with
the coefficients and functions of the space. This shows the possibility of generalizing
the normal distribution beyond the needs of the statistician. Let it be noted that in
choosing samples of functions from such a space, the gaps might pass unnoticed,
because the set of points is perfect though nowhere dense, so that arbitrarily close to
every function there could be other functions of the population. In this connection, we
might also note the fundamental role of measure and distance, as contrasted to mere
one-to-one correspondence. Every point on the line segment (0, 1) may be expressed
by means of the two digits 0, 1 in the binary decimal scale; replacing the 1 of the
binary by the 2 of the ternary set, we get a one-to-one correspondence, excepting
for the points which, in the Cantor discontinuum, have an infinite sequence of 2’s.
As these doubly represented points are all rational in the binary scale, their totality
forms a set of measure zero. But on the continuous line segment (0, 1), extended
by translation, our normal statistics can be defined as usual. This is of particular
interest in considering such cases as the Kollektiv concept of von Mises, where we
usually start by setting up a 1-1 correspondence between the throws of a coin and the
binary expansion on (0, 1), which determines the measure a priori without further
justification.

It gives me great pleasure to thank Mr. S.K. Sane for his careful execution of the
two figures.
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Chapter 16
The Estimation of Map Distances
from Recombination Values

D.D. Kosambi, Fergusson College, Poona

The genetic map is a tool to quantify the distance between genes on a chromosome,
based on the observed frequency of crossovers during cell division. These have been
in use for over a century, from before the structure of DNA or of a gene was known.
Kosambi’s sole and lasting contribution to genetics built upon the work of J.B.S.
Haldane (another polymath whom DDK greatly admired) and gave a formula that
improved the estimates provided by the Haldane mapping function, correcting for
the interference between genes. These formulas continue to be used in these days.

The paper, written in a charmingly simple and colloquial style, remains fresh
and carries the characteristic Kosambi acidity—e.g., “The similarity of this with the
velocity-addition formula in the special theory of relativity should not be made the
basis of more bad philosophy.” Although Haldane later relocated to India, there is
not much information about any further interactions that he and DDK might have
had on this problem.

Suppose three consecutive locia, b, c of the same linkage group to have the recom-
bination fractions (percentage divided by 100) (a, b) = y1, (b, c) = y2, (a, c) = y12.
Then it is known that for small values of y1 and y2, y12 = y1 + y2 approxi-
mately. For slightly larger values, we have a better approximation given by y12 =
y1 + y2 − y1y2; for still larger values, the approximation has again to be replaced
by y12 = y1 + y2 − 2y1y2. It is desired to obtain one single formula that will cover
the entire range 0–1

2 of y-values in a reasonably satisfactory manner. This must also
correspond to a single-valued, monotonically increasing, continuous function x of y
in such a way that the corresponding identity becomes x12 = x1 + x2. The variable
x will then be called the map distance corresponding to the given y.

Taking y = f (x), our functional relation, assumed to be independent of the posi-
tion on and number of the chromosome, must be of the form:

Published in Annals of Eugenics 12, 172–175 (1944). Reprinted with permission from John
Wiley & Sons, Inc.
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f (x + h) = f (x) + f (h) − p f (x) f (h). (16.1)

The evidence that led to the conclusions of the first paragraph indicates that
f (x)/x → 1 as x → 0. Also, that the unspecified function p increases from 0 to
2 with increasing x . Transposition and division by h gives

f (x + h) − f (x)

h
= f (h)

h
− p f (x)

f (h)

h
. (16.2)

Taking limits as h → 0, and assuming f (x) to possess a derivative, we have

f ′(x) = 1 − p f (x) ; or
dy

dx
= 1 − py . (16.3)

So far, we have followed the arguments and derivation of Haldane [4], who then
fits an empirical curve from observed data for the X -chromosome, to obtain

x = 0.7y − 0.15 loge(1 − 2y) . (16.4)

This fits the observed data reasonably well and seems to fit other data also,
to a considerable extent. But this amounts to abandoning (16.3) or taking p =
0.6/(1 − 1.4y), which does not agree with our hypotheses. At best, (16.4) would
indicate the existence of a general formula of the type desired. It is seen that formula
(16.4) cannot conveniently be inverted, the usual method of use being by means of
a table calculated by Haldane at intervals of 0.01 for those ranges of values of y,
where the deviation from Morgan’s first formula y12 = y1 + y2 becomes serious.
The method would be, then, to find the values of x for given y (by interpolation if
necessary), add, and then change back by using the table again.

It seems, however, possible to take one further step directly from the differential
equation (16.3), by making a very plausible hypothesis about the unknown function
p. This depends in some way on x and must increase steadily so far as known. The
simplest such functionwould be one linear in x and y, and the simplest linear function
taking the values 0 and 2 at the two ends of the range is, obviously, 4y in view of the
fact that no recombination value can exceed 50%. We thus obtain

dy

dx
= 1 − 4y2 . (16.5)

This integrates at once to the very simple solution:

2y = tanh 2x ; x = 1

4
log

1 + 2y

1 − 2y
. (16.6)

The tables to use are, therefore, those of Fisher andYates [3] for the transformation
of the correlation coefficient, with 2y = r , 2x = z. The chief advantage of formula
(16.6) is that we obtain a direct combination value
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y12 = y1 + y2
1 + 4y1y2

. (16.7)

The similarity of this with the velocity-addition formula in the special theory of
relativity should not be made the basis of more bad philosophy.

Formula (16.7) eliminates the use of tables and correction curves. In the examples
to be found in our textbooks, and in such other cases for which I have been able to
obtain reasonably good data, the formula works at least as well as Haldane’s. The
use of tables would be necessary in comparing the lengths of two chromosomes, in
accurate determination of the position in terms of x of the spindle-fiber attachment,
and so forth. A comprehensive recasting of available data on map distances is not
possible at present, because I have no access to the necessary bibliographic material
and also because a good deal of the data seems to have been estimated by statistically
unsatisfactory methods.

For example, the data quoted by Haldane give

yellow-vermilion-rudimentary = 0.345 − 0.241 − 0.429,

yellow-vermilion-bar = 0.345 − 0.239 − 0.479,

which would indicate that the sum of a given distance to a fixed distance is more
when the distance is shorter, contradicting our hypotheses. Similarly, for

yellow-sable-rudimentary = 0.429 − 0.143 − 0.429,

yellow-sable-bar = 0.429 − 0.138 − 0.479.

These figures are also connected with such questions as the analysis of interference.
Bridges and Morgan [1, p. 6] give the recombination percentage between sepia and
Minute f as 52.4, which is impossible. The same authors give

lethal-iiih-Dichaete-Hairless = 0.177-0.234-0.489 ,

so that y12 > y1 + y2 which can only be explained by discarding the formulae or
by emphasizing the paucity of the data and difficulty of locating lethals. Finally, we
are given [1, p. 4] Dichaete-spineless recombination fraction as 0.137 from 3030
primary and as 0.153 from 9143 secondary observations, both sets being supposed
[1, p. 21] “on an equal footing…in calculating recombination percents.” If we restore
the original recombination numbers from the given percentages, a rapid calculation
gives χ2 = 4.62 (without Yates’s correction) which is significant at the 5% level for
a single degree of freedom, making it unlikely that the two sets of figures locate the
same point. This is not surprising, as salivary maps by Bridges and others seem to
show, if I amnotmistaken, that certain loci refer towhole sections of the chromosome.
Under these circumstances, the use of any formula is naturally limited.

A few comments may nevertheless be useful. Various modifications of our most
useful hypothesis, p = 4y, may be made if required by the evidence. All func-
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tions p = a(x) + yb(x) lead to Riccati equations, which may be integrated without
much trouble. Another possibility is that of restricting the passage to the limit from
Eq. (16.2), obtaining a difference instead of a differential equation. But with p = 4y,
it will be seen that the leading term in the solution will be of the same type as for the
differential equation. One possible use of the last modification would be the deriva-
tion of formulae that retain their validity when there is a known minimum length of
the chromosome that acts as a crossover quantum. For the present, there seems to be
no evidence that would require any definite change of the formulae derived in (16.6)
and (16.7).

If y, the recombination value, is to be treated as a probability, themethods of Fisher
[2, Chap. XI] show the amount of information about the distance x in a sample of n
observations to be

Ix = n(1 − 4y2)2

y(1 − y)
. (16.8)

It is this, and not n itself, that should be used as aweight in estimating the same x from
parallel observations. Relative to y, the maximum information about x is obtained
at y = 0.25, so that a new locus should be estimated from others which give about
a quarter of the total number as recombinations. The point of maximum efficiency
relative to x is a little farther to the right, so that slightly greater recombination
values would do. The problem of efficient estimation of recombination values has
been treated directly by Fisher [2, pp. 235–252].

Suppose that between a new gene and a known one n observations givem recom-
binations; for a second gene, n′ and m ′, between the two reference loci M recom-
binations occur in N cases. By least squares the “best” values of the recombination
fractions y1, y2 between the two markers and the gene to be located would be those
minimizing

w1

(
y1 − m

n

)2 + w2

(

y2 − m ′

n′

)2

+ w12

(

y12 − M

N

)2

, (16.9)

where y12 has the value given by (16.7). Here y has to be used in place of x because
the distribution is much nearer to normal. For the weights most experimenters would
choose wi = ni , the number of observations, though the proper value would be the
amounts of information: wi = ni/yi (1 − yi ), which make (16.9) yield the value of
χ2. For the more efficient maximum-likelihood estimates, we should equate to zero
the first partial derivatives of S{mi log yi + (ni − mi ) log(1 − yi )}, always taking y12
as in (16.7).
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To illustrate, we simplify still further by taking the recombination value between
markers as precisely known (M, N very large). Then y12 = a, y1 = y, y2 = (a −
y)/(1 − 4ay), and we have

χ2 = (ny − m)2

ny(1 − y)
+ {n′(a − y) − m ′(1 − 4ay)}2

n′(a − y){(1 − a) + y(1 − 4a)} , (16.10)

and

log L = const.+m log y + (n − m) log(1 − y) − n′ log(1 − 4ay)

+m ′ log(a − y) + (n′ − m ′) log{(1 − a) + y(1 − 4a)} . (16.11)

The minimum χ2 gives an equation of the sixth degree, whereas equating L ′ to zero
gives a quartic:

ny4 − b1y
3 + b2y

2 − b3y + b4 = 0 , (16.12)

where

b1 = n(a + r + s) + m + n′(r − s) + m ′(s − a),

b2 = n(ar + as + rs) + m(a + r + s) + n′(r − s)(1 + a) + m ′(s − a)(1 + r),

b3 = n(ars) + m(ar + as + rs) + n′a(r − s) + m ′r(s − a),

b4 =m(ars); with r = 1

4
a and s = (1 − a)/(4a − 1).

de Winton and Haldane [5, p. 75] give for Primula-II~ the y-values PF − FCh −
PCh corrected as 15.10 − 10.35 − 23.92, whereas our formula (16.7) should give
23.95 for the last, a very good fit; the uncorrected (backcross crossovers) values are
14.52 − 10.83 − 23.10, where the last should have been 23.85 for consistence by
(16.7). If we took 23.92 as the fixed value and worked only with the backcross data,
we should have a = 0.2392, n = 1253,m = 182, n′ = 2613,m ′ = 283, which gives

y4 − 18.77314y3 + 15.2263y2 + 2.5593y − 0.63951 = 0 ,

the root between 0 and 0.5 being 0.146 to the nearest three figures, which is hardly
an improvement worth the trouble, the present case being merely an illustration. The
standard error is immediately calculated, as usual, by taking the reciprocal of −L ′′
as the variance when the value of y from (16.12) is substituted. For the more general
formulae with several y-values determined simultaneously, the best method is to
substitute the observed values in the maximum-likelihood equations and proceed by
successive approximations.

de Winton and Haldane [5, pp. 96–97] extend our postulates by considering the
nature of the coincidence. This amounts to the extra condition that p(x, y)/2y →
const. as y → 0. Taking p = 8y/(1 + 2y), Haldane integrates the differential equa-
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tion to get
12x = log(1 + 4y) − 4 log(1 − 2y) .

But p = 2y/(1 − y) also satisfies all conditions to give 6x = 4 log(1 + y) − log(1 −
2y), which gives somewhat better consistency in the values of x , here the sole crite-
rion, as there is no intrinsic unit of map distance. That formula is the most suitable
where the distances are additive to within the limits of significance. The data from
Primula-I may be used for the purposes of comparison [5, p. 98]:

SB SG SL BG BL GL
~ y 6.25 34.40 37.53 32.14 36.73 3.61
x̄0 6.26 42.20 48.72 38.15 46.93 3.61
x̄1 6.33 46.06 54.03 41.21 51.77 3.61
x̄2 6.27 39.12 44.39 35.72 42.97 3.61
◦↗ y 11.55 41.03 41.45 35.01 38.86 1.82
x̄0 11.76 57.94 59.24 43.38 47.22 1.82
x̄1 11.92 65.37 67.07 47.45 52.11 1.82
x̄2 11.92 65.37 67.07 47.45 52.11 1.82

where x̄0 is from formula (16.6) of this note, x̄1 is Haldane’s revised formula above,
and x2 ours. Others could be devised very easily, as for example by taking the simple
value p(x, y) = 2y + 4y2, which satisfies all the conditions to give the very clumsy
result

10x = 4 tan−1(1 + 2y) + log(2y2 + 2y + 1) − 2 log(1 − 2y) − π ;

this gives more trouble in the calculation with actually less consistence in the fit
for map distances. Besides being less trouble to calculate, the inverse hyperbolic
tangent formula has the tremendous advantage of the handy composition rule (16.7),
which also allows use in actually fitting crossover values and map distances from the
observational data.
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Chapter 17
The Geometric Method in Mathematical
Statistics

D.D. Kosambi, Fergusson College, Poona

This paper, where DDK used n-dimensional geometry to derive all the elementary
distributions, was among the last that he wrote while he was still at Fergusson
College, prior to moving to TIFR. This was also one of the papers written during his
anni mirabili, the war years.

17.1 Introduction

R.A. Fisher was the first to make use of n-dimensional geometry in the derivation of
certain distributions. A direct approach is always possible and is even to be preferred,
by the use of the Fourier transform, with or without the transformation theory of
positive-definite quadratic forms. Nevertheless, the geometric method offers great
advantages in brevity, clarity, and insight. It is in no way inferior in rigor to any other
method, and finally, its applications extend to a greater number of the distributions
used in small-sample theory than is realized.

17.2 Geometric Preliminaries

In an Euclidean space of n ≥ 1 dimensions with coordinates (x1, x2, . . . , xn) for a
generic point x, the distance d between two points x and x′ is given by

d2 =
∑

(xi − x′
i)
2 . (17.1)
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In all summations, unless otherwise specified, the range is over values 1 to n of
the index. This definition of distance, combined with the usual methods in use for
three-dimensional Euclidean geometry, suffices to derive most of the formulas we
need.

The vector x′ − x has direction components ai = x′
i − xi, i = 1, 2, . . . , n, so that

the square of its length is d2 = ∑
a2i and the direction cosines are αi = ai/d,

with
∑

α2
i = 1. The angle θ between two directions is given by cos θ = ∑

αiα
′
i =∑

aia′
i/dd

′.
A hyperplane in n-space is represented by a linear equation

∑
aixi = y . (17.2)

The coefficients ai are the direction components of the normal to the plane. The

perpendicular distance from a point x to the plane is p = (∑
aixi − y

)
/
√∑

a2i ,
where the proper sign is to be taken in the square root so as to make this distance
positive. When the direction cosines αi are used in place of ai in Eq. (17.2), y is itself
the perpendicular distance from the origin to the plane. The foot of the perpendicular
to the plane from the point x is x̄, which is given by

x̄i = xi − λai , where λ =
(∑

aixi − y
) /∑

a2i . (17.3)

The hypersphere of radius r centered at the origin is

∑
x2i = r2 or

∑
x2i ≤ r2 (17.4)

of which the first represents the surface, and the second the volume of the sphere.
A plane section of the n-sphere is always an n − 1 sphere where we understand by
the one-dimensional sphere, the line interval (−r, r), with “surface” x = ±r, the
two-dimensional sphere being the circle, and so on. The volume of the n-sphere is
2πn/2rn/n�(n/2). It suffices for our purpose that this volume should be crn, which
is equivalent to the statement that the volume element for purposes of integration is

dVn = dx1dx2 · · · dxn = rn−1f (θ1θ2 · · · θn−1)drdθ1dθ2 · · · dθn−1 . (17.5)

The actual form of f for any given n may be derived by simple extension of the
three-dimensional spherical polar coordinate formula.
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17.3 The Normal Distribution and Euclidean n-Space

The most important basic distribution [important because of the “central limit theo-
rem” which shows that it is the limiting form of the distribution of an average from
any fairly general type of population] is the normal distribution, where the elemen-
tary probability is given by (1/σ

√
2π) exp−(x − μ)2/2σ2dx. By change of origin

and scale, we can always take the population mean μ as zero and the population
variance σ2 as unity; this we shall call standard measure.

For several normally distributed standard independent variables x1, . . . , xn, the
elementary probabilities are compounded by multiplication to give

dP = 1√
2π

e−x21/2dx1
1√
2π

e−x22/2dx2 · · · 1√
2π

e−x2n/2dxn ,

= 1

(
√
2π)n

e−r2n/2dVn . (17.6)

The basis of the geometrical method as applied to mathematical statistics is that
this probability density depends only upon r2n ; i.e., it is isotropic in the n-space.
Moreover, this is a characteristic property of the normal distribution. If the elementary
probability were f (x)dx, and if we should ask ourselves when a relation of type

f (x1)f (x2) · · · f (xn)dx1dx2 · · · dxn = φ(rn)dVn , (17.7)

would be valid, we should obtain the functional equation

f (x1)f (x2) · · · f (xn) = φ

(√
∑

x2i

)

, (17.8)

to hold identically in x. Setting x2 = · · · = xn = 0, we get φ(x1) = f (0)n−1f (x1). The
functional equation is thus equivalent to f (x)f (y) = cf (

√
x2 + y2), which is known to

have no continuous solutions except f (x) = aebx
2
. This sort of argument is followed,

for example, in the deduction ofMaxwell’s law in the kinetic theory of gases. If, now,
the total range for each xi is−∞,+∞, we have b < 0, say b = −1/2σ2, to make the
total probability unity, a = 1/σ

√
2π. If the range be restricted, other distributions,

including the uniform distribution, are possible—a fact that is forgotten by all who
use this derivation for theoretical physics.

Not onlymaywe build up the normal distribution in n dimensions from n indepen-
dent individual distributions, but the process may also be reversed so that one ormore
dimensions can be cut off as necessary. Orthogonality is the geometric equivalent of
independence in statistics. We utilize this after performing linear transformations to
new sets of orthogonal axes; for our purpose, dealing only with normal distributions
in standard measure, rotations alone suffice. The effective number of dimensions in
a given problem is called degrees of freedom by R.A. Fisher, who uses the letter n to
denote this number. We shall use n for the original number of dimensions, keeping
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in mind that a random sample of n from an infinite basic population represents such
an n-dimensional distribution as in (17.6). The degrees of freedom not in use are to
be integrated out. Contrary to dynamical usage, the effective number of degrees of
freedom in a statistical problem represents that number of dimensions in which the
coordinates are free under the statistical conditions imposed only in the limited sense
that a definite probability necessarily attaches to each region of the subspace.

17.4 The Distribution of the Mean and Variance in Samples
From normal. The χ2-Distribution

Let y = ∑
aixi be a linear combination of n standard normal variables x1, . . . , xn.

To derive the distribution of y, we rotate so that one axis lies along the normal to
the family of hyperplanes y = ∑

aixi, or with respect to the new axes, y = const.,

and the remaining n − 1 lie in the plane
∑

aixi = 0. Taking r = y/
√∑

a2i , we may

split up the distance from the origin to a point x as r2n = r21 + r2n−1. That is, r1 is the
distance from the origin to the foot of the perpendicular to the particular hyperplane
of the family

∑
aixi = ywhich passes through the point x = (x1, . . . , xn); rn−1 is the

distance in the plane from the foot of the perpendicular to the point x. The elementary
probability of (17.6) may, therefore, be expressed as

dP = 1

(
√
2π)n

e−r2n/2dVn = 1√
2π

e−r21/2dr1 · 1

(
√
2π)n−1

e−r2n−1/2dVn−1 . (17.9)

As the r1 component alone interests us here, we may eliminate the rest by integra-
tion over thewhole of Vn−1. Therefore, r1 is normally distributed in standardmeasure.

Hence, y = r1
√∑

a2i is normalwith zeromean and variance
∑

a2i . Replacing xi + μi

by xi, to pass from standard measure to the general normal distribution, we obtain:

Theorem 1 If n independent variates x1, . . . , xn are normally distributedwithmeans
μi and variances σ2

i , any linear combination thereof
∑

aixi is also normally distrib-
uted with mean

∑
aiμi and variance

∑
aiσ2

i .

On the other hand,wemight have integrated out r1 to concentrate upon rn−1, noting
that the resulting distribution in Vn−1 would be normal, the original n variables being
now restricted to lie in a hyperplane, i.e., to obey one identical linear restriction of
type

∑
aixi = const. As rn−1 is to be measured from the foot of the perpendicular

from the origin of n-space, formula (17.9) may be applied to give

Theorem 2 If upon n originally independent standard normal variables a linear
restriction

∑
aixi = b is imposed,we obtain a normal distribution in n − 1 variables:

dP = c exp−r2n−1/2 · dVn−1, where

r2n−1 =
∑

(xi − x̄i)
2 , x̄i = bai

/∑
a2i . (17.10)
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If we abandon the standard measure, putting xi − μi for xi, we should have to
replace b by b + ∑

aiμi. Thus, x̄i shifts correspondingly except in the special case
where all these separate additions cancel out in each bracket (xi − x̄i). To this end, it
is necessary and sufficient that

μi = ai
∑

ai
∑

a2i
. (17.11)

Since in sampling problems μi = μ, i = 1, 2, . . . , n, we have

Theorem 3 For random sampling from a normal population, the sole linear restric-
tion independent of the population mean is of type (x1 + · · · + xn)/n = constant.

That is, in general, the population mean being unknown, we may measure from
the sample meanm = ∑

xi/nwith the loss of a single degree of freedom. Moreover,
there is no other linear sample function from which such measurement may be
made independent of the population mean. The statistic m has the further advantage
that it is normally distributed, according to Theorem1, with expectation equal to
the population mean and variance σ2/n. Thus, it is unbiased, and using results and
terminology due to Fisher, since no other estimate of μ can have a smaller variance
than σ2/n, m is the most efficient such estimate; finally, as n → ∞, the probability
for m �= μ tends to zero, so that the estimate is consistent.

For the χ2 and other tests, we need the distribution of the sum of squares of n
normal standard variables, our r2n . That is,

P(r2n ≤ t) =
∫

∑
x2i ≤t

· · ·
∫

e−(x21+···+x2n)/2dx1 · · · dxn . (17.12)

This is evaluated at once in spherical polar coordinates, integrating over thin
spherical shells centered at the origin. This gives

P(r2n ≤ t) = 2πn/2

�
(
n
2

)
(
√
2π)n

∫ √
t

0
e−r2/2rn−1dr . (17.13)

Transforming by u = r2, r = √
u, dr = du/2

√
u, we get

P(r2n ≤ t) = 1

2n/2�
(
n
2

)

∫ t

0
e−u/2un/2−1du . (17.14)

Provided the population means is zero, this χ2 or incomplete gamma function distri-
bution holds even for a change of scale, in particular for

∑
x2i /σ

2. The expectation
of u = r2n is easily calculated by multiplying under the sign of integration by u and
integrating to infinity. This amounts to replacing the exponent n by n + 2, so that the
result must be 2 · 2n/2�(n/2 + 1)/2n/2�(n/2) = n. Therefore, r2n/n furnishes, when
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the population mean is known, an unbiased estimate of σ2. For unknown population
mean, we apply the findings of Theorem3 to obtain.

Theorem 4 For random sampling from the same normal population,
∑

(x − m)2

with m = ∑
xi/n has the χ2 distribution with n − 1 degrees of freedom, its expecta-

tion being (n − 1).

To estimate the population variance without bias, we must divide
∑

(x − m)2 by
n − 1, and not by n.

17.5 The Student–Fisher t-Distribution

The next step is to derive statistics independent of the population variance. The
first of these is “Student’s” t = m

√
n/s = √

n(m/σ)/(s/σ), which has the requisite
property. We known that m is normally distributed with standard deviation σ/

√
n

and that s2 = ∑
(x − m)2/(n − 1) is the best estimate of σ2 in samples of n. For

large samples, a consistent t tends therefore to normality with unit variance; its chief
importance, however, lies in its use for small samples.

First, in standard variables, m
√
n is the distance from the origin to the plane∑

xi = mn. Moreover, rn−1 = s
√
n − 1 is the distance within the hyperplane from

the foot of the perpendicular, as before. Hence, the ratio m
√
n/rn−1 = t/

√
n − 1 is

the cotangent of the angle made by the radius vector from the origin to a point x of
n-space with the normal to a family of parallel hyperplanes. Taking this normal as
one axis, the distance from the origin may be integrated out over thin conical shells
of angle θ with this direction. In one dimension, two lines can only make the angle
0 or π. In two dimensions, the thin sector has the “volume” element for the “cone”
2rdθdr. In three dimensions, we apply the theorems of Pappus to get the volume
element 2πr2 sin θdrdθ over the conical shell, by simple extension to n dimensions,
(n − 1)(n − 2)crn−1 sinn−2 θdrdθ. Integrating out the r, the elementary probability is
seen to be c sinn−2 θdθ, where c is hereafter treated throughout as a generic constant
to be determined at the last step by equating the total probability to unity. Putting
u = cot θ, dP transforms to c(1 + u2)−n−2/2(1 + u2)−1du. Finally, u = t/

√
n − 1,

which gives

Theorem 5 The probability of m
√
n(n − 1)/

∑[xi − m]2 ≤ t, where m = ∑
xi/n

and the xi are independent normal variables with zero population mean and an
identical variance is

P = �
(
n
2

)

√
n − 1�

(
1
2

)
�

(
n−1
2

)

∫ t

−∞

(

1 + t2

n − 1

)−n/2

dt . (17.15)

Supposewehave two independent randomsamples ofn1, n2 members respectively
from the same standard normal population. Sincem1

√
n1,m2

√
n2 are distances, inde-

pendent and normally distributed, Theorem1 applies to prove that m1 − m2 is also
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normal with variance 1/n1 + 1/n2; hence, (m1 − m2)/
√

(1/n1 + 1/n2) is a normally
distributed variable in standard measure. From this, we get a cotangent provided we
can divide by some rk . This is best done by taking r2k = r2n1−1 + r2n2−1, i.e., by com-
bining the distance in the remaining n1 + n2 − 2 dimensions, orthogonal to both m1

and m2. This gives

Theorem 6 For two independent samples from the same normal population

m1 − m2
√

(n1−1)s21+(n2−1)s22
n1+n2−2

√
1
n1

+ 1
n2

= m1 − m2
√

(n1 − 1)s21 + (n2 − 1)s21

×
√
n1n2(n1 + n2 − 2)

n1 + n2

has the t distribution with n1 + n2 − 2 degrees of freedom. If the mean from the first
and the variance from the second are used, t = m1

√
n1/s2 with n2 − 1 degrees of

freedom.

In the first portion, standard measure is unnecessary in view of the fact that the
expression for t is independent of both μ and σ. The second part follows immediately
upon consideration of the fact that the degrees of freedom were associated only with
the estimate of variance, for m

√
n represents just one fixed direction, the movement

over the “surface” of the cone being associated with r2n−1 = (n − 1)s2 which gives
the degrees of freedom in t.

17.6 Distribution of the Variance Ratio

A most important property of r2n is that it may be broken up into components of the
same type. Each component divided by its degrees of freedom gives an estimate of
σ2. The sum of squares is the only analytic nonnegative function of the coordinates
that may thus be resolved into additive components without the change of form.
This simple algebraic fact is the basis, for example, of dynamical theorems like
those of Bertrand and Kelvin on the energy of a system after a certain number of
constraints. In statistics, the use made of this resolution into components is called
analysis of variance and consists of testing the above independent estimates of σ2

for compatibility. From the preceding sections, it is clear that the ratio of any two
such estimates is independent of both the population parameters μ and σ2.

Assuming therefore a normal standard population without loss of generality,
s21/s

2
2 = (n2 − 1)r2n1−1/(n1 − 1)r2n2−1. Now, rn1−1/rn2−1 is again the cotangent (or

tangent) of an angle with this difference: In the t distribution, the numerator was
confined to one fixed direction by taking n1 = 1, whereas it is now allowed to move
freely through n1 − 1 dimensions independently of the denominator. Accordingly,
the n2 dimensions of the denominator contribute c′′ sinn2−2 θdθ as before, which
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must be multiplied by c′ cosn1−2 θdθ for the swing of rn1−1 (at right angles). The total
elementary probability is, therefore, c sinn2−2 θ cosn1−2 θdθ. With u = cot θ, we get

Theorem 7 In two independent random samples of size n1, n2 from the same normal
populations, the distribution of F = s21/s

2
2 is given

P(F ≤ t) =�
( n1+n2−2

2

)
(n1 − 1)(n1−1)/2(n2 − 1)(n2−1)/2

�
( n1−1

2

)
�

( n2−1
2

)

·
∫ t

0

F(n1−3)/2dF

[(n2 − 1) + (n1 − 1)F](n1+n2−2)/2
. (17.16)

The distribution of z = log
√
F has special advantages over that of F in the way of

asymptotic formulae, and is therefore commonly used for accurate work. In practice,
s21, s

2
2 are so labeled as to give F � 1, z � 0.

17.7 Distribution of the Coefficient of Correlation in
Samples from an Uncorrelated Normal Universe

The product-moment correlation (briefly the correlation) coefficient is estimated
from a random sample of n pairs (x1, y1) · · · (xn, yn) by

r =
∑

(xi − x̄)(yi − ȳ)/

√
∑

(xi − x̄)2
∑

(yi − ȳ)2 ,
x̄ =

∑
xi/n

ȳ =
∑

yi/n.
(17.17)

The basic assumption is that the coordinate pairs are sampled from an uncorrelated
bivariate normal population, the elementary probability being 2π exp−(x2 − y2)/2,
using standard measure without loss of generality because r as defined above does
not depend upon the population parameters.

In this case, we superpose the y-space upon the x-space by rotation, much as two
pictures on transparent film may be superposed upon a screen. In this, the xi and the
yi axis are to coincide for each i, which does not imply any relationship between
the generic points x and y. Then, clearly, r = cos θ, θ being the angle between the
two (independent) directions from the points x̄, ȳ to the points x, y, respectively. The
family of hyperplanes x̄-const. coincides with the family ȳ-const. so that we can
rotate both spaces simultaneously without destroying the original correspondence
and have only to investigate the distribution of cos θ in the superposed n − 1-space
within the hyperplanes.

Here, the x-radius vector traverses the whole space without restriction and hence
may be integrated out, and the y-vector has only the restriction of making the angle
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θ with the first, so that its radial distance may be integrated out also over thin conical
shells as in the twopreceding distributions. This gives the total elementary probability
c sinn−3 θdθ, the exponent being 2 less than the dimensions n − 1 of the free y-space
(under the restriction ȳ = const.). This gives for the distribution of r

P(r ≤ R) = �
(
n−1
2

)

√
π �

(
n−2
2

)

∫ R

−1
(1 − r2)(n−4)/2dr . (17.18)

Our method of derivation shows the intimate relation between t and F, which is
that t = √

F essentially when n1 = 2. Moreover, the relation between r and t is also
immediately evident, given that r = cos θ with t = √

(n − 1) · cot θ for a sample of
n. Seeing that for twehave onemore dimension at the start than for r when generating
the hypercone of angle θ, it follows that t = r

√
(n − 2)/

√
(1 − r2) has the Student

distribution with n − 2 degrees of freedom.



Chapter 18
The Law of Large Numbers

D.D. Kosambi, Tata Institute of Fundamental Research, Bombay

This is probably the first paper that DDK published with the TIFR byline. Although
not much more than a pedagogical exercise, the paper was reviewed in Mathemat-
ical Reviews by W. Feller who noted that the paper provided “an elementary proof
of the weak law of large numbers, stressing the rôle and the implications of the
assumptions.”

18.1 Introduction

Let X1, . . . , Xn be a sequence of random (stochastic) variables with expectations
E(Xr ) = mr . Then, LLN1 states that under suitable restrictions upon the Xr , the
difference (X1 + · · · + Xn)/n − (m1 + · · · + mn)/n may be made arbitrarily small
in absolute value with probability arbitrarily close to unity by taking n sufficiently
large (U, Chap.10). The proof is based upon Tshebysheff’s Lemma (U, p. 182): If
Xis a positive random variable, then

P{X ≤ t2E(X)} > 1 − 1

t2
.

Thus, if Bn = E(X1 − m1 + · · · + Xn − mn)
2 exists, the lemma applied to the pos-

itive random variable
∑n

i (Xr − mr )
2 gives at once

1Abbreviations used are: LLN for the law of large numbers; c.f. for characteristic function; U for
J.V.Uspensky, “Introduction toMathematical Probability” (NewYork, 1937);Cr. forHaraldCramér,
“Random Variables and Probability Distributions” (Cambridge Tract no. 36, Cambridge 1937).
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∣
∣
∣
∣
X1 + · · · + Xn

n
− m1 + · · · + mn

n

∣
∣
∣
∣ ≤ ε with Pn > 1 − Bn

n2ε2
.

So, for convergence in probability, it suffices that Bn/n2 → 0. On the other hand, if
for r = 1, 2, . . . , n, max |Xr − mr | ≤ Cn < ∞, and LLN holds, so that (1 − Pn) →
0,wemay use the easily derivable inequality: Bn < n2C2

n (1 − Pn) + n2ε2Pn to prove
that Bn/n2 → 0 follows as a necessary condition from LLN under the restriction
C2
n (1 − Pn) → 0; hence, in particular, when the variables Xr are uniformly bounded,

Cn ≤ C (U, pp. 185–6). This may be and has been extended in various directions,
beginning with the Bienaymé-Tshebysheff inequality (Cr. pp. 21; 38–39). What
interests us here is the analysis of the structure of the proof, using only text book
methods as far as possible.

In what follows I consider LLN only in the particularly useful special case when
the variable Xr are all independent.

18.2 The Law of Large Numbers

To cover general types of distributions, we assume at the outset that each Xr has
a distribution function Fr (x) which is positive, non-decreasing, with Fr (−∞) = 0,
Fr (+∞) = 1 for all r and P{Xr ≤ x} = Fr (x) for all values of the real variable
x . The integral being taken in the sense of Lebesgue Stieltjes, we may assume the
existence of E(Xr ) = ∫

x dFr (x) over the entire real line −∞ ≤ x ≤ ∞. Other-
wise LLN has to be given a special meaning for the occasion. We make the further
assumption that

∫ |x |dFr (x) also exists for each value of the index; this is “reason-
able” in that when the distribution is given only discrete values for the observable
variable, we have an infinite series replacing the integral and in view of the fact that
a preferential order is hardly reconcilable with the intuitive idea of randomness, the
series in question would have to converge absolutely, i.e., independently of order, to
the same value.

These fundamental assumptions are then also fulfilled for the independent sto-
chastic variable Xr − E(Xr ) with which alone LLN is concerned, so that there is
no further loss of generality in assuming E(Xr ) = 0 for all r . We are therefore
dealing with a sequence of random independent variables X1, . . . , Xn such that∫
xdFr (x) = 0 for all r , and

∫ |x |dFr (x) exists. LLN holds for these if and only if
(X1 + · · · + Xn)/n converges in probability to zero. For each n and N , we define
non-negative functions of the two variables n and N (of which the first is only a
positive integer, the second a continuous variable) as follows:
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∫

|x |>N
|x |dFn(x) = h(n, N ) → 0 as N → ∞ for each n (18.1)

h0 = max h(r, N ), r = 1, 2, . . . , n ; H =
n∑

1

h(r, N ) .

∫

|x |<N
|x |dFn(x) = c(n, N ) ;

c0 = max c(r, N ) , r = 1, 2, . . . , n ; C =
n∑

1

c(r, N ) .

Following a standard device (U, p. 192), the variables X are each split up into two
additive stochastic components as follows:

Xi = ui + vi ; if |Xi | ≤ N , ui = Xi , ui = 0 ; otherwise ui = 0, vi = Xi .
(18.2)

We then define bi = E(ui ) = −E(vi ) and it follows that

|X1 + · · · + Xn| ≤ |u1 + · · · + un| + |v1 + · · · + vn|
≤ |u1 − b1| + · · · + un − bn| + |b1 + · · · + bn| + |v1 + · · · + vn| .

By definition, it also follows that

|bn| = |
∫

|x |>N
x dFn(x)| ≤ h(n, N ) ; |b1 + · · · + bn| ≤ H(n, N ) (18.3a)

P{vn �= 0} = P{|Xn| > N } =
∫

|x |>N
d Fn(x) (18.3b)

= N

N

∫

|x |>N
d Fn(x) ≤ 1

N

∫

|x |>N
|x |d Fn(x) ,

whence P{vn �= 0} ≤ h(n, N )/N and �P{vr �= 0} ≤ H(n, N )/N .
From (18.2) and the above, we have

P

{ |X1 + · · · + Xn|
n

≤ ε

}

(18.4)

> P

{ |u1 − b1 + · · · + un − bn|
n

≤ ε − H(n, N )

n

}

− H(n, N )

N
.

The argument is that |X1 + · · · + Xn| ≤ Amay hold in twomutually exclusiveways:
when all the vr = 0, or when at least one v �= 0. The probability for the latter event
is allowed for by subtracting the term H/N , which it can never exceed.
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The ε in (18.4) may be chosen arbitrarily small, so that H/n must tend to zero
with increasing n. For LLN to hold, H/N must also tend to zero with increas-
ing N , for some method of having n, N both → ∞. A third condition has to be
satisfied, however. The stochastic variables ui − bi are independent with zero expec-
tation each and bounded so that their second moment exists; the second moment
of their sum is the sum of their second moments. It is easily proved that, for
any random variable, E(X2) ≥ E[X − E(X)]2, so that E[∑(ui − bi )2] = Bn ≤∑

E(u2i ) ≤ N
∑

E(|ui |), whence Bn ≤ NC .
Applying LLN in its classical form to ui − bi , we obtain

P

{ |ui − bi + · · · + un − bn|
n

≤ ε − H

n

}

> 1 − NC

n2(ε − H/n)2
. (18.5)

That is,

P

{ |X1 + · · · + Xn|
n

≤ ε

}

> 1 − NC

(nε − H)2
− H

N
. (18.6)

So, for LLN to hold, the third condition is that NC/(nε − H)2 → 0. In this limit,
the quantity ε − H/n may be ignored, which gives our main result: LLN holds,
(X1 + · · · + Xn)/n converging in probability to zero, when E(Xr ) = 0 and E(|Xr |)
exists for all r , if for some manner of approach of n and N to infinity the conditions

1

n

n∑

I

∫

|x |>N
|x |dFr (x) → 0 ; 1

N

n∑

I

∫

|x |>N
|x |dFr (x) → 0 , (18.7)

N

n2

n∑

I

∫

|x |≤N
|x |dFr (x) → 0

are all satisfied.
In particular, as a corollary, LLN holds if h(n, N ) < G(N ) → 0. In this case, we

need not attempt refinement by asking the condition to hold for all large n in view of
the fact that h(n, N ) → 0 for each n as N → ∞; so that if the condition holds for
n ≥ k, the larger of the functions h0(k, N ) and G(N ) will do for all n. The proof of
this corollary is simple: the condition leads at once to H(n, N ) < nG(N ) , H/n <
G(N ) → 0 ; H/N < n

√
G · √

G/N → 0 also, if we take n = N/
√
G → ∞.

One implication of this corollary is that the absolute expectations E(|Xr |) are
bounded. For,

E(|Xn|) ≤ N + h0 < N + G(N ) < N + ε
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for some N with ε as small as desired, and for all n. The corollary includes special
cases as follows:

1. Markoff’s: LLN holds if E(|Xr |1+δ) exists and are bounded for all r and some
δ > 0. In this case, again, no loss of generality is caused by taking E(Xr ) = 0.
Therefore,

∫

|x |1+δdFr (x) < A leads to h < A/N δ = G(N ) .

2. Khintchine’s LLN holds if all the Xr have the same distribution and E(|X |) exists.
In this case, for all n,

h =
∫

|x |>N
|x |dF(x) = G(N ) → 0 ,

taking E(X) = 0 as before. Our result is only a slight and almost obvious refinement
of existing deductions. The basic process (due apparently to Markoff) is the division
of the variables into two portions, of which one is bounded and the other contains
values of negligible probability. The question still remains: What is the function of
the second moment for the bounded part in the deduction?

18.3 The Law of Large Numbers and the Central Limit
Theorem

For a simple random variate X , bounded with |X | ≤ M and zero expectation, the
probability of X lying outside a given interval centered at the origin can be increased
by the increase of the dispersion. Under the conditions of the problem, there is an
optimum “most scattered” distribution, independent of the particular and variable
limits outside which X may be asked to lie from stage to stage; that is, X = ±M
with probability 1

2 each will give the greatest possible scattering once for all. Then,
P{|X | > S} = 0 if S ≥ M and P{|X | > S} = 1 if S < M . If the value of S be
preassigned and not greater than M , we have some choice in limiting the random
variable, but the distribution given here is the optimum in that it gives the greatest
probability, independently of S.

For two independent variables of the same type, the sum X1 + X2 can be dispersed
in a similar manner. Here, P{|X1 + X2| > S} = 1, 1

2 , or 0 according as S < M ,
M ≤ S < 2M , or S ≥ 2M . The first can be obtained in particular by taking one
of the variables ±M with probability 1

2 each and the other 0 with probability 1.
In the last case, no permissible choice of distributions can possibly give any other
probability than zero. In the middle case, however, there does exist an optimum,
i.e., X1, X2 = ±M , p = 1

2 each, so that the value of the sum would be ±2M with
p = 1

4 each and 0 with p = 1
2 . This, incidentally, points out the essential reason for
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the validity of our LLN, in that the values of the independent stochastic variables
with zero expectations cancel out. But it is of basic importance for the optimum to
exist, in such addition, that the interval 2S be sufficiently large. For the purpose of
the preceding section, it suffices to note that S must lie between (n − 1)M and nM
to enforce the optimum scattering for the sum of n variates. In the variables ui − bi ,
S corresponds to nε − H , and M to N , or rather to N + b0. So, N must be of the
same order as ε − H/n, which will not do in view of the fact that ε is arbitrarily
small while N has to be taken arbitrarily large.

If we take the distribution with optimum scattering, Xi = X = ±M , with p = 1
2

each, then each X has the c.f.

1

2

(
e−int + e+int

) = cosMt = 1 − 2 sin2
1

2
Mt .

The c.f. of the sum of n is therefore (1 − 2 sin2 1
2Mt)n , which, for the average of n

tends to (1 − M2t2/2n2)n → exp(−M2t2/2n). So the general distribution, bounded
by the most scattered case, is thus bounded by a normal distribution with zero mean
and variance N 2/n, in substance. If M and N are of the same order, we must
have (N + h0)2/n → 0 simultaneously with nε − H ∼ n(N + h0); but in LLN, it is
essential to have N → ∞ unless we restrict ourselves to almost trivial cases. These
conditions obviously contradict each other.

The function of the second moment, or any moment higher than the first, is to
bridge this gap between the requirements of LLN and the approach of this section,
by consideration of the most scattered variables.

Suppose that to our preceding assumptions E(X) = 0, |X | ≤ M , we add the
condition E(X2) ≤ kM . In the former case, E(X2) = M2 for the most scattered
distribution, so that for k < M (which we assume hereafter), we have less con-
centrated scattering. The extreme limits ±M can no longer be attained as before
with p = 1

2 . The greatest concentrated scattering is, in fact, now given by pm
√
kM ;

p = 1
2 each. Nevertheless, P{|X | ≥ S} need not vanish if we push S beyond

√
kM

so that the actual optimum in this case is much less clear-cut. For M > S ≥ √
kM ,

the best choice is clearly to take X = ±S with probability kM/2S2 for each value,
and X = 0 with probability 1 − kM/S2. If the probability is reduced at either of
the two extremes, it would be necessary to add an extra value on the same side
of zero, or to cut down the probability for the other extreme, in order to preserve
the mean value E(X) = 0. The optimum for this three-valued distribution is more
clearly dependent upon the choice of interval, and the probabilities for the great-
est scattering also depend upon S. The c.f. for a single such scattered variable is
1 − (2kM/S2) sin2 1

2 St . For the sum of n, we raise this to the n-th power, for the
average of n, we have only to replace t by t/n in raising to nth power. Similarly, for
the sum of n, the second moment is Bn ≤ nkM ; for the average, we replace each X
by X/n and Bn by Bn/n2 ≤ kM/n. So, in getting the distribution of the average of
n values, we should not only raise the c.f. to the n-th power but also replace t by t/n
and S by S/

√
n. Making these substitutions, we get the most scattered distribution

of the average as having the c.f.
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(

1 − 2kMn

S2
sin2

St

2n
√
n

)n

→
(

1 − kMt2

2n2

)2

→ e−kMt2/2n . (18.8)

In spite of its fundamental role, S has cancelled out in the process of deduction,
to give a normal distribution for the bounding scattered variate. The mean is zero as
before, the variance reduced to kM/n. This must tend to zero if LLN is to hold. For
the attack of Sect. 2, we should have to take M = N + h0, k = c0, S ∼ √

c0nM =
n(ε − h0). The condition would then take on the form h0 → 0, c0(N + h0)/n → 0,
which it is possible to fulfill, as, for example, under the assumptions of the preceding
section.

That is, the second moment or any moment higher than the first helps only by
restricting the admissible variation, the maximum possible scattering. The analysis
of this section shows in addition to this a general connection between LLN and the
central limit theorem. In fact,wehave the limitingvalues of the boundingdistributions
as normal distributions.
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1. The concept of a function as developed today is neither simple nor in its defin-
itive form. However, a great deal of what we have to discuss would be illustrated
reasonably well by real continuous functions of a single variable. For us, functions
are defined as sets of real numbers of which one is known for every value of another
set of real numbers which are the values of the independent variable x . It suffices to
select the case of a single continuous interval for the range of values of x ; there are
two essentially distinct cases here, as the interval is finite or infinite and of these again
we keep to the first. By suitable choice of origin and scale, we may then take the fun-
damental x interval as [0, 1], including the endpoints; the function f (x) then takes on
a single real value for every value of x in the closed interval, 0 ≤ x ≤ 1. Continuity at
a point a in the fundamental interval would mean that to every ε > 0 however small,
there corresponds another positive number δ such that | f (x) − f (a)| ≤ ε holds for
all x with |x − a| ≤ δ, in [0, 1]. Naturally, this may be phrased in different ways.
We can prove immediately by using the Heine-Borel theorem that since the whole
closed interval [0, 1] is covered by intervals δ1 (the function being continuous at
each point there) each of bounded oscillation for f (x), it is so covered by a finite
number thereof. That is, a δ exists independent of the location of a in [0, 1], which
gives us the notion of continuity and uniform continuity throughout an interval. With
the Borel-Lebesgue theory of point sets, we pass to a further generalization labeled
absolute continuity, where the definition could read | f (x) − f (x ′)| < ε for x, x ′ on
any set in [0, 1] of measure less than δ.

In the same way, our concept of function would change very greatly from that of
a simple graph on [0, 1] with which, after all, we are most familiar in practice. We
can have functions continuous at every irrational point and discontinuous at every
rational point, as for example f (x) = 0, x irrational, and f (x) = 1/q for x = p/q,
where p, q are integers with highest common factor unity. But the opposite case of
discontinuity at irrational and continuity at rational points is, according to a theorem
of Young, not possible. This and theorems on oscillation [Schwankung] show that our
definitions, apparently so very general, still limit discontinuity. On the other hand,
the apparently simple concept of a function as a graph is still too general for our main
purpose. It is “intuitively obvious” that every continuous graph has a tangent except
at a discrete set of points—but it is not true! Nondifferentiable functions, beginning
fromWeierstrass, have been constructed by a procedure which does mathematically
in an infinite number of smaller and smaller steps in the plane of the graph what a
coiled coil wire filament of a modern electric light bulb does in at most three steps for
a space curve. It is known from the time of Peano that a pair of continuous functions
y = f (t), x = g(t) can be found giving an unbroken curve in its parametric form
which passes through or comes arbitrarily close to every point of a two- dimensional
region in the x − y plane. Finally, we follow Euclid in saying that a line, or a curve,
has no area, and believe this too holds of the ideally thin curve which is represented
by any material graph obtained in practice. If, however, we define the area of any
region as the limit of sum of small squares that cover that region and decrease in
size to zero, the “area” of a curve should be zero, in the mathematical sense, taking
the curve in the sense of Jordan as separating the plane into two parts. But the above
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example shows what can be proved independently, that there exist Jordan curves of
positive area.

There is a very good reason for pointing out all these complications when the
idea of a continuous function is simple and capable of being dealt within a rigorous
manner. In many of the processes that follow, we shall need mathematical tools of a
special kind, namely successive approximations by sequences and series, where the
process is infinite. It is then possible that the limiting cases obtained do not belong
to the class of functions used in the infinite approximating process, and proofs to be
fully valid must extend to the “exotic” forms that may arise. For example, before the
Lebesgue theory of integration was formulated, it was impossible even to make a
proper approach to the theory of convergence of Fourier series; thereafter, still more
complicated and specialized integration processes have been introduced to facilitate
that discussion in special cases where the Lebesgue integral fails.

2. Restricting the discussion to real single-valued continuous functions of a single
variable x on [0, 1], and even to functions of a reasonably simple type, the next step
is to visualize a function as a single point in a space of infinitely many dimensions.
That is, the function being defined by its value for every x , we take each value of
x as representing, in some way, a different dimension. The generality here obtained
is necessarily restricted by the continuity of the functions or even otherwise by the
result of Young which shows that functions cannot be too highly discontinuous. For,
a continuous function is defined everywhere by its values on a set of points {x}which
is everywhere dense on [0, 1], seeing that the limiting points of the set give the whole
of the fundamental interval and that the value of the function coincides with the limit
of its values. Thus, the essential number of dimensions is reduced to a denumerable
infinity. The ingenious generalization, however, causes some new difficulties of its
own. The difference between two dimensions in Euclidean space is qualitative, or if
the dimensions are arranged in some particular order and numbered, may be regarded
as an integer which could be arbitrarily large for an infinite-dimensional Euclidean
space. For our function space, the difference between two values of x has a totally
different meaning and is a real number [actually the measure of an interval] never
surpassing unity. Naturally, topological questions in function space and those dealing
with pure geometry will have a totally different appearance. We may note in passing
that though the method is actually of no use for our purpose, a geometry in infinitely
many dimensions, utilizing the basic axioms and results of projective geometry such
as Desargue’s theorem, has been built up even when the number of dimensions is
infinite of the same order as the number of points on [0, 1], the dimension being
indicated by a coordinate x as in our case.

But we do make use of another basic idea in ordinary geometry. If, in any n-
dimensional space with n ≥ 2 we are given two vectors λ,μ, then the linear combi-
nation aλ + bμ is also a vector when a, b are arbitrary real constants not both zero.
Moreover, either the linear combination sweeps out a two-dimensional manifold, or
a single-dimensional variety; the condition for the latter being that aλ + bμ should
vanish identically for some pair of values of a, b not both zero. Except in this latter
degenerate case, the arbitrary constants of linear combination a, b can be regarded
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as coordinates with reference to the two given vectors which define all vector ele-
ments of the two-dimensional variety. A similar step can immediately be taken in
our function space. We take the identically zero function as the origin, with which
any point represented by the generic f (x) defines a vector. Two functions f (x), g(x)
are [linearly] independent if and only if the combination a f + bg cannot vanish for
all x in [0, I] unless a and b are both zero simultaneously. Excluding this degener-
ate case where every linear combination is a multiple of the same function, we see
that a f + bg can be taken as the generic function of a two-dimensional subspace
of the function space. Again, the real numbers a, b can be regarded as coordinates
of the submanifold, with reference to the given functions f (x), g(x). This process
is extended to more than two functions of reference. Inasmuch as the fundamental
space in all its generality is infinite dimensional, the really interesting case is where
an infinite set of functions is used for reference and we have the expansion

h(x) = a1 f1(x) + a2 f2(x) + · · · + an fn(x) + · · · .

The question then is: In what sense and what type of functions may one regard as
represented by the infinite linear combination? The non-degenerate case here is one
in which the basic set of functions { fn(x)} is closed with reference to the system of
expansion and in the sense of the representation, i.e., the function zero can be repre-
sented only by the expansion in which all the coefficients ai vanish simultaneously.
The type of representation then involves somemanner of determining the coefficients
uniquely, and the kind of convergence [which may, for example, be some type of
summability, or may be discussed almost everywhere] for which the expansion has
some meaning. Here, we are led to the necessity of a process which has no precise
analogue in the space of the geometry that we learn, integration.

3. The integral of f (x) over the whole fundamental range [0, 1] is best visualized
not as an area, but as an average. The “area between the graph and the x-axis” implies
that areas have a sign—which may be admitted—and also that the space is Euclidean
with y = f (x) the same sort of variable as x , which is generally not true whatever
its appearance on the material surface upon which the graph is traced. If we define
the average or mean m as that constant which minimizes

∫ [ f (x) − m]2dx over [0,
1], we see at once that whenever f (x) and its square are integrable, the minimum
does exist and is actually the Riemann or Lebesgue or some such integral of f (x),
depending upon the process used. By integration, then, we shall mean an operation
defined over [0, 1] as well as arbitrary subsets thereof, with the following properties:
i. For every integrable function f (x) any two point sets E, E ′ in [0, 1],

∫

fE+E ′ =
∫

fE +
∫

fE ′ −
∫

fEE ′

where E + E ′ is the set sum and EE ′ the crosscut.
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ii. For every set fixed in advance and two integrable functions,

f (x), g(x),
∫

[ f ± g] exists and is equal to
∫

f ±
∫

g.

iii.
∫
a f = a

∫
f , for all constants a.

iv. If f (x) ≥ 0 and
∫

f exists, then
∫

f ≥ 0; if f ≤ 0,
∫

f ≤ 0.
v.

∫
1 exists for every permissible E in [0, 1].
Without troubling ourselves here about the completeness and independence of

these systems of working postulates, we see that
∫
1 is a function of E which we

may hereafter call the measure of E, and this measure cannot be negative, according
to (iv). These postulates are trivially satisfied by the value 0 for the integral of every
function over any set whatsoever, so that we need one more postulate:
vi. The measure of [0, 1] is unity:

∫
1 = 1 if E = [0, 1].

This shows at least that [0, 1] cannot be subdivided into a finite number of sets of
zeromeasure; in infinite operations,we need some similar result, or axioms extending
(i) and (ii) for infinitely many operations, but we shall take those for granted when
the necessity arises.

It may be noted that we no longer write
∫ [ ]dx , for the integration may depend

upon the variations of some function, as in the case of Stieltjes integral, in which
case we shall have to write

∫ [ ]dg(x). With this measure, we may then evaluate the
integral as a limit in one or more ways, as the function integrated may allow. For
example, for continuous functions, we may divide [0, 1] into smaller and smaller
intervals and then show that the two sums formed by multiplying the maximum
and minimum, respectively, in each interval by the measure of that interval bound
[by (ii) and (iv)] the integral; these sums are easily shown to converge to a limit
which is necessarily the integral in question. So also for a subinterval, or finite set of
subintervals of [0, 1]. However, this is not the Riemann integral for the simple reason
that nothing in our postulates makes the measure of an interval [except [0, 1]] equal
to its length; for that matter, two intervals of equal length need not have the same
measure. This can be seen by taking the integral as an ordinary Riemann integral with
a nonnegative weight function attached to dx in the integration which may further
be visualized as a probability distribution over [0, 1], the integral itself being then
the expectation of the function f (x). For the Lebesgue type of integration, we may
subdivide [0, 1] into mutually exclusive sets, or at least sets whose pairwise common
points are, taken in their totality, a set of measure zeros, and again take limits. The
existence of such a limit necessarily depends upon the nature of the function itself,
the question for given classes of function [particularly when convergence of series
of orthogonal functions is being discussed] being: “What limiting processes should
one use to yield the existence of an integral of some sort in this case?”

4.Given the particular class of functions admitting someprocess of integration and
constituting a function space for our purpose, we may introduce a simplification in
our coordinate system as proposed at the beginning of the last section. This parallels
the use of orthogonal coordinate axes in Euclidean space. In the first place, it is clear
that any number of the reference functions, given as linearly independent at the start,
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may be replaced by the same number of linearly independent linear combinations
thereof, and the new systemof referencewill do equallywell for the space or subspace
in question. We use the standard procedure of orthonormalization as follows, for a
finite or infinite sequence { f, [x]}:

φ1(x) = a f1;with
∫

φ2
1 = 1. (a,α, . . . generic constants).

φ2(x) = a f1 + b f2;
∫

φ2
2 = 1,

∫

φ1φ2 = 0.

φ3(x) = a f1 + b f2 + c f3;
∫

φ2
3 = 1,

∫

φ1φ3 =
∫

φ2φ3 = 0, and so on.

Here and hereafter, all unspecified integrals will be taken as extended over [0, 1]. It is
then seen that the process leads to the independent linear combinations desired and is
uniquely defined, besides being easy to apply. The principal advantage is that where
there is an infinite basis for the function manifold, we can determine the coefficients
of the expansion of any integrable function, provided the process of term by term
integration is justified:

f (x) = a1φ1 + a2φ2 + a3φ3 + · · · + anφn + · · ·

where multiplying by φr on each side and integrating gives, taking into account the
property of orthonormality, ar = ∫

f φr .
Moreover, these orthonormal functions 0 have, individually or collectively in finite

or infinite number, the averaging property with which we started the section. If we
take the integral ∫

{ f (x) − (a1φ1 + a2φ2 + · · · + anφn)}2

and ask what choice of coefficients ai minimizes it, we get again the same answer
as for the formal infinite series expansion as before for each φ1 actually present.
Such a thing is not true, for example, of the Taylor series, which means expansion
in terms of the set {1, x, x2, . . . , xn, . . .} for analytic functions. The minimizing of
the squared difference will not, no matter what the fundamental set or interval non-
trivially chosen, give the same coefficients for representing a given general type of
function if a few of the expansion functions are omitted. Naturally, the convergence
for our series of orthonormal functions is also of a different type than for the Taylor
series, being associated with the process of integration. In fact, the value of the
minimized integral above is

∫

f 2 − a21 − a22 − a23 − · · · − a2n . . .
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which tells us incidentally that the sum of squares of the coefficients of expansion
converges. If now the difference between

∫
f 2 and the sum of squared coefficients

converges to zero, the function is properly represented, the series converging in the
mean. In order to represent all integrable functions in this way, it is necessary and
sufficient that the set {φn} should be closed, i.e., that no function except the one
identically zero should exist with the property

∫
f φn = 0 for all n. Further, the

Riesz-Fischer theorem tells us that for a closed set of orthonormal functions and
any set of real coefficients {an} such that ∑ a2n converges, there exists an integrable-
square function towhich the series

∑
anφn actually converges in themean andwhich

then has the coefficients of expansion an .
The orthogonal functions do this work in a quite remarkable way, by changing

sign more and more often. This is easily seen for all the polynomials in use, for all
Sturm-Liouville type of expansion, functions, and for others defined by the differ-
ential equations of mathematical physics. As the convergence of

∑
a2n implies that

an tends to zero, and therewith not only
∫

f φn over [0, 1] but over any subinterval
thereof, follows that there must be either an increasingly rapid tendency to zero for
φn , or more and more changes of sign. The full impossibility of the first has not been
shown as yet. The functions themselves have a peculiar averaging property, for it is
easily shown that over [0, 1] or any subset thereof any infinite sequence of ortho-
normal functions is summable in the mean to zero, by any method of summability
in which the maximum weight attached to each function tends uniformly to zero
after some stage. At the same time, no orthonormal sequence can converge to any
limit function, which means that the sequence cannot be uniformly continuous in the
subscript. One consequence is that this type of function space is not locally compact.
We can have an infinite sequence of points arbitrarily close to the origin which does
not converge, as for example εφ1, εφ2, . . . , εφn, . . . which tends to no limit in the
function space for any fixed ε no matter how small. This may be visualized as the
non-convergence of points on a small sphere about the origin which are in different
orthogonal directions.

5. We have actually ended the preceding section by using the intuitive but unde-
fined concept of distance. For an abstract space of elements f, g, . . ., the distance D,
if any exist, is defined by the following postulates:

i. D( f, g) ≥ 0.
ii. D( f, f ) = 0, and D( f, g) = 0 implies the equivalence of f and g.
iii. D( f, g) = D(g, f ).
iv. For any three distinct elements f, g, h, D( f, g)D(g, h) ≥ D( f, h).

If, for some suitable arrangement of the three elements, the equality can always
be made to hold in the last [triangular] relation, then the space is linear, and the
elements can be arranged in some sort of order. We have already pointed to two
possible definitions of distance. The first was the “absolute value” | f − g|, which
is a nonnegative function and whose integral is a pure nonnegative number that
satisfies the postulates above provided equivalence in (ii) is understood in the proper
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sense: For Riemann integration, some stepwise discontinuities are permissible in the
difference; for Lebesgue integration, one can demand equality “almost everywhere,”
i.e., at most except over sets of measure zero, when the distance between the two
functions vanishes. The other form, which is much nearer to our Euclidean concept,
is definable in terms of the expansion coefficients of f, g with respect to some given
set of orthonormal functions φn . If f ∼ ∑

anφn and g ∼ ∑
bnφn, then

D2 =
∑

[an − bn]2.

Here again, either the set of {φn} must be closed or the functions that constitute the
elements of the space must be such as are expansible in terms of the φn; otherwise
equivalence must be understood as to within the possibilities of such expansion.
Actual equality, again, depends upon our generalized integration and measure, so
that sets of generalized measure zero may be excluded; in the probability example
used, two continuous functions whose distance apart is zero must coincide except
over sets where the probability vanishes.

Even the latter type of distance, however, is not general enough for our pur-
pose; besides, the fundamental orthonormal set {φn} has to be given in advance. We
recall that in a finite number of dimensions a positive definite quadratic form in the
coordinates has the same property as the sum of squares when it comes to defining
D2. Proceeding by analogy, we replace the matrix Q of the form by a function of
two variables K (x, y) called the kernel; the summation process is then replaced by
integration, so that D( f, g) is to be defined by

D2( f, g) =
∫∫

K (x, y)[ f (x) − g(x)][ f (y) − g(y)]dxdy

(integration over the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.) This is again seen to have all
the necessary properties provided

∫∫
K f (x) f (y)dxdy is never negative, vanishing

only for functions equivalent to zero, while equivalence is suitably defined for the
second postulate. To save space, we shall adopt the notation

X f =
∫

K (x, y) f (y)dy,

(y variable of integration). Thus, regarding f (x) as a vector, it is seen that X f is a
vector of contragradient type, i.e. covariant if f itself be given as contravariant. The
square of the distance of f from the origin then becomes

∫

f X f, and D2( f, g) =
∫

[ f − g]X [ f − g].

Suppose a set of orthonormal functions be desired that minimizes D2 according to
this present definition between an arbitrary f and any number of terms of the series∑

anφn . That is, we are to determine ai so that
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∫∫

K (x, y)[ f (x) − a1φ1(x) − a2φ2(x) − . . .][ f (y) − a1φ1(y) − a2φ2(y) − . . .]

becomes a minimum. The conditions are
∫∫

{K (x, y) + K (y, x)}[ f (x)φ1(y) − a1φ1(x)φi (y) − a2φ2(x)φi (y) − . . .] = 0, i = 1, 2

These become less awkward if the kernel is symmetric, i.e. K (x, y) = K (y, x), in
which case X f may be defined by integration with respect to either the first or the
second variable, the case corresponding to that of the symmetric quadratic form
generally used in geometry. Our conditions then become

∫

f Xφi − a1

∫

φ1Xφi − a2

∫

φ2Xφi + . . . , i = 1, 2, . . .

These still do not permit direct use of the orthonormality properties. But now suppose
that the set of expansion functions is intimately related to the kernel by Xφn − λnφn .
This would lead immediately to precisely the same determination of the coefficients
ai provided none of the λi vanishes, which is guaranteed by the definiteness of the
kernel.

Every function f (x) represented in terms of the set {φn} associated with a given
K is transformed into another by X f , the former coefficients ai , being multiplied
each with corresponding λi . Thus, X is the operator of a linear transformation in
the function space. However, this does not represent the identity, for there exists
no non-singular kernel which transforms every function of the space into itself. For
that matter, the continuous kernels with which we operate transform the space of
all integrable functions into the subspace of continuous functions, as can be seen by
taking Riemann integrability and stepwise continuous functions for elements of the
space. This last cannot be avoided, being concomitant of the integration process, as
explained. But we can add the identity to our transformations and then generate a
one-parameter Lie group bymeans of X , the infinitesimal transformation being Xδτ .
That is, we are led to expand the transformation as a series

f = f + t X f + t2

2! X
2 f + · · · + tn

n! X
n f + · · · .

The kernels associated with X2, . . . , Xn . . . are the iterates of K , given by

K 2 =
∫

K (x, u)K (u, y), . . . Kn =
∫

K (x, u)Kn−1(u, y),

(u variable of integration). Ignoring the question of convergence, the formal theory
is carried through directly. For the characteristic functions φr and characteristic
values λr , of K , we get the same φr and characteristic value λn

r for Kn . The full
transformation for such a φr gives
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φr = φr e
λr t .

Finally, several such one-parameter transformations for a group if the defining oper-
ators Xi obey the laws

Xi X j − X j Xi =
∑

cri j Xr ; cri j = crji ;
∑

r

(clr j c
r
kl + cirkc

r
l j + cirlc

r
jk) = 0.

These constants cijk are, as usual, the constants of structure of the formal multipara-
meter Lie group and define it completely as a group. Naturally, the symmetric kernels
to which we restrict ourselves in most cases give only Abelian groups with vanishing
structure constants. If we admitted complex variables, defined the path of integration
suitably and overcame certain difficulties at the endpoints of the fundamental range
or boundary, we could use even singular kernels as in the Cauchy contour integral
and make the operation X correspond, for example, to a differentiation, which would
make the expansion yield such values as f̄ = f (x + t).

6. The foregoing treatment is purely formal, as it has not been shown that the
necessary relation between the symmetric kernel and the orthonormal expansion set
can subsist; or conversely that for a given kernel there exist associated orthonormal
functions. This is comparatively simple and straightforward for kernels K (x, y) that
are sufficiently small and have a bounded difference quotient in each variable, i.e.,

|K (x, y)| ≤ 1; |K (x + h, y) − K (x, y)| < hM,M constant.

The former restriction is not very important, as it follows from the uniform continuity
of our kernels in the unit square which gives |K | ≤ G and then by taking a new
kernel which is the old one divided by its upper bound G. Then, it follows at once
that for any function continuous in [0, 1], X f, X2 f, . . . , Xr f are all bounded and of
difference quotient bounded uniformly for all values of the index n. By a well-known
theorem of Ascoli, such a set of functions has at least one limiting function, which
has also the property of continuity. We utilize this as follows: Start with any smooth
function f (x), and take μ1 f1 = X f , determining μ1 so as to make

∫
f 21 = 1. Again,

μ2 f2 = X f1, normalizing f2 by proper choice of the characteristic value μ2. This
process leads to a limit function φ1 (taking subsequences if necessary) that does not
vanish, and as the kernel was definite by hypothesis, the characteristic values will
also converge to a limit λ1. We start again with a smooth function, and repeat the
process, but this time taking the initial function orthogonal to φ1. As symmetry of
the kernel gives

∫
φX = ∫

f Xφ, it follows that all the successive transforms are
also orthogonal, and we are led to another function φ2 characteristic of the kernel,
with a second characteristic value λ2, the functions φ1,φ2 will be orthonormal,
hence distinct, whether the characteristic values are distinct or not. It remains to be
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pointed out that dividing the original kernel by a constant only means dividing all
the characteristic values by the same constant.

For degenerate kernels, symmetric or not, the existence theorem is proved by a
matter of simple algebra. A kernel is degenerate if it consists of the sum of products of
a finite number of functions. Taking these without loss of generality as orthonormal
among themselves, we may take

K (x, y) =
∑

ai jφi (x)φ j (y).

Then, the equation X f = λ f has solutions

f = b1φ1 + b2φ2 + · · · + brφr ,

provided the characteristic values are roots of the equation

|ai j − λδi j | = 0.

If the matrix ||ai j || was in its diagonal form, then the kernel would be in its simplest
representation:

K (x, y) =
∑

λiφi (x)φi (y).

The question is whether this is possible for the general symmetric kernel, though the
algebraic reduction shows that symmetry is not absolutely essential. If the expansion
was so possible, we see that the existence of

∫∫
K 2 leads to the necessary condi-

tion,
∑

λ2
i converges. It remains to show that the original infinite series would also

converge and to the value K (x, y), under very general conditions.
In the first place, if the double series

∑
λiφi (x)φi (y)

converged to any other value [as an integrable function] except K (x, y), then the
difference would be treated as a new kernel for which we could show the existence
of another characteristic function, which could not be any of the known φi ; hence K
would not be definite. Again, itmay be noted thatλnφn(x) is the expansion coefficient
cn of K (x, y) in terms of

∑
cnφn(y). Therefore, the series

∑
λiφi (x)φi (y)

certainly converges in the mean, in the sense that the difference between the series
and K (x, y) squared integrates to zero over the fundamental range. Ordinary con-
vergence, according to the known properties of convergence in the mean, depends
then only upon the smoothness of the {φn}, i.e., ultimately of K (x, y), and in any
case, a subsequence of the double series always converges to the proper limit. We
are thus left with an expansion
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K (x, y) =
∑

λiφi (x)φi (y)

which will be very useful later. The entire treatment could have been by reduction
to the case of degenerate kernels, or by Weierstrass’ polynomial approximation the-
orem applied in two dimensions.

7. We come now to the applications, of which many are already known to the
equations of mathematical physics, particularly in the systematic reduction of partial
differential equations with given boundary value problems. In particular, we have
integral equations of type

f (x) = g(x)
∫

K (x, y)g(y)dy,

f known, g to be found. Visualize the right-hand side as [I t X ]g(x), so that the
inversion is immediately available if the formal expansion

[I − t X ]−1 = I + t X + t2X2 + · · ·

converges, I being the identity, I f ≡ f for all f . In this case, there can be no charac-
teristic function or value with the property tλn = 1, or else the expansion would fail.
Now it may happen that the kernel in question is such that there is no characteristic
function at all, as for example with the Volterra type differential equations in which
K (x, y) = 0, y ≥ x . Alternatively, there exist characteristic values but none is the
reciprocal of the particular t chosen in which case we can expand f (x), g(x) in terms
of the characteristic functions φr and determine the coefficients of g(x) as those of
f (x) divided by [1 − tλn].
This need not detain us long, as the discussions are now classic. I come to a com-

paratively new application to statistical problems where the observed and observable
variates are themselves functions defined on [0, 1], and at least stepwise continuous.
Now it is known or can be seen from any classical text on the theory that the basic
probability distribution in n-space is the normal distribution, and that this depends
upon the definition of both distance and volume in the space. That is, we have

dP = C exp(−r2n/2)dVn,

the constant C being chosen in such a manner as to make the total probability distri-
bution over the whole n-dimensional infinite continuum equal to unity. This may be
generalized in two ways, namely to spaces which allow both distance and volume
measure to be defined without being continua such as for example, the Cantor ternary
set—which is purely a mathematical fiction at present. It suffices, according to an
elegant result of Haar, that the space has distance, a relation which permits volume
elements to be superposed one upon the other, that it be separable, and is locally com-
pact. This, incidentally, makes the space “almost finite dimensional” and excludes
our Hilbert space. However, the Haar measure of volume is then taken in essence
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by covering any region of the space by smaller and smaller standard volumes, say
spheres of decreasing radius, and taking the lower limit of these in terms of the same
lower limit for some fixed region like the unit sphere. This differs from the usual
procedure in that there we cover by intervals or such elements which in themselves
have knownmeasure, in that the measure of a covering element is not taken as known
a priori. A practical example is furnished by the measurement of skull volume by
shot or seed of decreasingly smaller size. At each stage, one may count the actual
number of shot so used and take the ratio for a corresponding count of the number
of shot or seed of the same size needed to fill a glass beaker. The ideal limit is then
the volume of the skull in terms of the beaker as unit.

For our purpose, this will not do at all, as limiting processes in covering are
excluded by the Hilbert space not being locally compact, except when we have a
degenerate kernel. However, the kernel itself taken as positive definite and symmetric
enables distance to be defined. It need only to be definite for the space of function
observed, in the sense that no observable function transforms to zero by means of
X f . Now, we take the kernel in its canonical form

∑
λiφi (x)φi (y),

and define normal distribution in the function space as normal distribution in each of
the coordinates, the coordinates themselves being the coefficients of expansion of the
population functions f in terms of the φn . Here, the population mean has been taken
as zero without loss of generality, but we could have taken some function expansible
by the φn as the population mean, in which case the corresponding coefficient would
give the populationmean for each coordinate. The variancesmust here be taken equal
to the characteristic values λi , so that the kernel defines the distribution.

Having introduced the concept of probability, the question now arises whether
there is a one-to-one correspondence between a random sequence of the coefficients
and the population functions f . Given the function, the coefficients are available, but
is the converse true for a random sequence of coefficients?A theoremofKolmogoroff
enables us to answer in the affirmative under the conditions of the problem in the sense
of unit probability of convergence of the series, whereas the Riesz-Fischer theorem
would not hold, without further restriction, and would then give only convergence in
the mean with unit probability. As the canonical coordinates are taken as orthogonal,
i.e., statistically independent variables, it is possible to define the probability without
further difficulty. Theorems on linear combinations of normally distributed variates
showus that the values of the population functions at any pointu on [0, 1] are normally
distributed, those at two or more points are in multivariate normal correlation. The
variance at a point x is K (x, x) while K (x, y) is the covariance between functions
sampled at two values x, y of the independent variable. The distribution in many
variates is proper provided the kernel contains more characteristic functions than the
number of distinct points taken, The population, mean function, and the population
kernel are approximated, for a given sample of n, by
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m(x) = −1

n

n∑

i=1

fi (x);

K (x, y) = 1

n − 1

n∑

i=1

{ fi (x) − m(x)}{ fi (y) − m(u)}.

One can apply multivariate tests at a finite number of fixed points or replace them
by obvious integral tests. For example, Hotelling’s T 2 test would mean finding

R2 =
∫∫

S(x, y)[m(x) − m̄(x)][m(y) − m̄(y)],

where ∫

S(x, y)K (x, y) = I,

and
exp 2t = cR2/(1 − R2),

with c = (n − p + 1)/p, if K (x, y) degenerate with p < n, and 1/n otherwise.

8. We now come to the stage where a mathematical laboratory is essential for
the realization of all these applications. The cinema intergraph, which measures the
light gathered by the [unshaded] area on the film images of the curves, is useful
in rapid integration, and therefore in solving integral equations to a rather rough
approximation. For ordinary integration, we have the mechanical Bush analyzer of
which the basic theory is as old as the planimeter and Kelvin’s integrators, but whose
practical success is due solely to a remarkable technical advance in the nature of
a gearbox without backlash. The new Bush analyzer utilizing an immense number
of electronic valves is meant to solve partial differential equations, as are Soviet
inventions about which no details have as yet become known. But in these cases, it
takes a considerable amount of time to prepare the data for the machine which then
solves the problem almost in a flash, or even in the mechanical case with unusual
rapidity. What we need is something that will give the sum, differences, the product
of functions, and any number of combinations of these; will integrate; and will do all
this without retouching the data graphs as obtained in practice. Finally, the calculator
will have to operate not only with rectangular graphs but also with those in polar
coordinates, and still worse those with one set of lines curved, as are generally
obtained by recording on cylindrical drums.

If such instruments exist and are reasonably simple to operate, we can answer
questions of great importance in practice. For example, not only will the average
temperature curves be available for any range or period, but also it will be possible
for us to say whether two samples from two different places differ materially. The
question whether two sets of pulse-wave records, say of the effect of a certain illness
or drug, differ significantly would be settled by the same methods. Distinguishing
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between skulls found by the archaeologist or anthropometrician in two different
places would be treated as a problem of curves in polar coordinates if one considers
profiles alone; our methods, however, are extensible to more than two dimensions,
thoughwithmore complicatedmachinery needed in practice. In any case, themethod
will be much more satisfactory than the extraordinarily cumbrous set of characters
and indices in general use today. All of these would be new applications, though the
problems have been attacked by older methods without utilizing all the data.

A similar type of problem arises in generalized harmonic analysis, by which is
meant not the reproduction of a given curve by means of Fourier series with arbitrary
fundamental period but the detection of hidden periods and their intensities from a
given graph. We know that a period ν/2π appearing as a term

aν cos νx + bν sin νx

can be detected by the operation

lim
T→∞

1

2T

∫ T

−T
e−i t x f (x)dx .

This is a spectrum function, of the type attained by physicists in energy level
calculations, which vanishes for t not equal to any of the ν’s and is equal to the coef-
ficient of exp iνx when such a term enters into the composition of f (x). Naturally,
we are not concerned with continuous spectra for the present though they can also
be treated.

For the graph, it is necessary and for approximation purposes also sufficient—to
have the curve decidedly longer than any of its basic periods. Then, cos t x, sin t x can
be generated mechanically and imposed upon f (x), the product being mechanically
integrated. This must be done for sufficiently many values of t to give the result
as a stepwise continuous function, and periods can be more precisely located by
finer shifts in t values, once approximate location has been performed. Some such
methods, combined with statistical analysis of the error arising from measurements
and recording of the original graph, will be needed to settle the still disputed question
of degree and quality of similarity between the sunspot and the magnetic variations
cycles. A further application would be to the problem of mixed populations in sta-
tistics. Here, we know that the ordinary Fourier transform gives exp{iμx − 1

2σ
2x2},

where μ is the population mean and σ2 the population variance. Thus, the first trans-
form of the sum of such probability densities consists of a sum of periodic terms
multiplied by factors that tend to zero. These factors must be eliminated experi-
mentally, by multiplying with exponentials expμx2 till one is found which keeps
the graph level at the ends of the range without letting it tend to infinity or to zero
asymptotically. Then, a harmonic analysis gives the mean corresponding to that vari-
ance. This component of the population is then eliminated by subtraction, and the
process repeated, provided the machine allows all this to be done. The method may
be of use in determining location of lines in diffuse spectrograms, as for example in
fine structure.
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Chapter 20
Lie Rings in Path Space

D.D. Kosambi, Tata Institute of Fundamental Research, Bombay

This work, one of two papers that DDK published in the PNAS, was communicated
by Oswald Veblen of the Institute for Advanced Study, Princeton onMay 8, 1949. The
article appeared in print in the July 15 issue of the same year. DDK was visiting the
USA during this year and had also visited Princeton where he met Veblen, Einstein,
and others.

1. In studying the tensor analysis of the system of differential equations

ẍi + αi(x, ẋ, t) = 0 ; i = 1, 2, . . . , n ; ẋi = dxi

dt
, etc (20.1)

their equations of variation

θui ≡ üi + αi
;r u̇

r + αi
,ru

r = 0 (20.2)

have been found to be a prime tool of exploration. The notation used is, for any
function ϕ(x, ẋ, t),

ϕ,r = ∂ϕ

∂xr
; ϕ;k = ∂ϕ

∂ẋk
; ϕ̇ = dϕ

dt
= ∂ϕ

∂t
+ ϕ,r ẋ

r − ϕ;rαr (20.3)

and the tensor summation convention is followed for indices repeated in subscript
and superscript.

These equations of variation (20.2) to be regarded as partial differential equations
in ui are obtained from (20.1) by the “infinitesimal change,” x̄i = xi + uiδτ , where x̄
and x are supposed to be coordinates of points on “nearby” paths. Thus, δxi = uiδτ
and the convention usually adopted is δẋi = u̇iδτ , which is derived from the assump-
tion dδ − δd = 0; this appears in all classical texts without further clarification. The
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αi are assumed to be arbitrarily differentiable, which allows an expansion in which
second and higher powers of the parameter δτ are to be neglected.

2. The only meaning (unless we fix the basic path in (20.2)) that can be attached
to δxi = uiδτ is of an infinitesimal transformation of a one-parameter Lie group. But
the solutions of θui = 0 are generally functions of x, ẋ, t, whence the most general
such one-parameter group must be taken as operating in the V2n+l of t, x, ẋ, where
ẋi is to be regarded as a fiber bundle attached to a generic point of the base-space
defined by coordinates xi. The only operator which can be used here must necessarily
be of “the first extension,” i.e.,

X ≡ ur
∂

∂xr
+ u̇r

∂

∂ẋr
(20.4)

and the usual infinite series expansion

ψ̄ = ψ + τXψ + τ 2

2
X2ψ + · · · (20.5)

can then be obtained, at least symbolically, in the case where the αi are analytic, to
which we restrict our entire discussion. Given several distinct solutions ui, vi, wi, . . .

of the equations of variation with the associated (extended) operators X,Y ,Z, . . .,
the question then naturally arises as to the existence of a Lie group, with more
than one parameter being formed in some way out of these. For this, the alternant
{X,Y} = XY − YX must itself be an operator of the first extension with respect to
the paths. That is, if

XY − YX = μr ∂

∂xr
+ λr ∂

∂ẋr
, then u̇r − λr = 0 . (20.6)

Furthermore, the Jacobi condition must also be satisfied:

{X, {Y ,Z}} + {Y , {Z,X}} + {Z, {X,Y}} = 0 for all X,Y ,Z . (20.7)

After this, we can see whether the solutions of the equations of variation form a Lie
algebra, and over what fields.

Direct calculation gives us

Theorem 1 Two (extended) operators X,Y associated with vectors ui, vi alternate
to give one of the same type if the vectors concerned are (each) solutions of the
equations of variation θui = 0 or of ui;j = 0. Similarly for the Jacobi condition on
three operators.

The proofs can be shortened considerably by noting another result.

Theorem 2 The solutions of θui = 0 are just those whose associated operators
permute with the linear operator d/dt of (20.3).
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Proof We have

X
d

dt
− dX

dt
≡ θur

∂

∂ẋr
, (20.8)

which suffices for the second theorem. To use this result, we may put Z = XY − YX,
and note that

dZ

dt
− Z

d

dt
= dXY

dt
− dYX

dt
− XY

d

dt
+ YX

d

dt
= 0 . (20.9)

The vanishing identically follows from the permutability of d/dt with both X and Y ,
and then proves that XY − YX is also permutable with d/dt, whence the associated
operator for Z must be formed from the solutions of the equations of variation,
provided of course it was of the first extension. For solutions of ui;j = 0, the proof is
trivial. Similarly for the Jacobi identity. �

Theorem 3 The solutions of θui = 0 form a vector space which gives a Lie ring over
the set of functions ϕ with ϕ̇ = 0 (i.e., constant along any path) and a Lie algebra
(and therefore defines a Lie group in the analytic case under discussion) over the
field of all real constants.

The latter statement follows fromwell-known results in Lie groups. For the former
case, we havemerely to note thatϕui is a solution of the equations of variation with ui

provided ϕ̇ = 0. However, we only have here {ϕX,Y} = ϕ{X,Y} − (Yϕ)X, whence
we get a ring over the set ϕ̇ = 0 defined by the vector space of solutions of θui = 0.
The basis of the ring is clearly of dimension 2n + 1. For the Lie group, however,
if we take the most general case, the dimension cannot be finite, and the question
remains open whether the infinite Lie algebra and group thus obtained are equivalent
to E. Cartan’s infinite Lie groups.

3.We now consider the subgroups (over the field of all real constants) leaving the
base-space of the x as well as the paths invariant; the generators must now satisfy
∂ui/∂t = 0; ui;j = 0; θui = 0. This leads to

Theorem 4 The Lie group leaving the base space as well as the paths invariant is
of order ≤ n(n + 1).

It suffices to show that the total number of arbitrary parameters in the solutions is
finite,≤ n(n + 1) for then these can be specialized to give that number of independent
basic solutions and the linearity of the equations allows a general solution to be
formed out of linear combinations of these basic solutions. That is, the number
of essential parameters being determined, they can be taken to occur in the linear
combinations alone.

In this case,we have u̇i = ui,r ẋ
r and üi = ui,j,k ẋ

j ẋkui,rα
r . Now the equations θui = 0

may be differentiated successively, because of ∂ui/∂t = 0 to give a succession of
homogeneous linear conditions on ui,j, u

k . Differentiating the equations of variation
with respect to ẋs successively gives on the second differentiation an explicit equation
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for ui,j,k , and thereafter linear homogeneous restrictions in ui, ui,r . From the original
equations θui = 0, and from the first ẋ derivative thereof, wemay therefore eliminate
ui,j,k and obtain two more linear homogeneous restrictions on ui,r, uj. The problem
therefore is reduced to solving a system of first-order partial differential equations for
the variables ui and vij = ui,j (adjoining this last differential equation to the system),
along with linear homogeneous restrictions upon the variables vij , u

k , to which may
be added others derived from the compatibility conditions. In any case, the solution
ui = v

j
k = 0 always exists, corresponding to the identity as the sole Lie group for the

path-space. But it is well known (cf., E. Goursat, Chap. 1 of “Leçons sur ... équations
aux dérivées partielles”) that the total number of arbitrary parameters in the general
solution is equal to the number of variables which cannot be eliminated from the
conditions of compatibility and the linear restrictions, which in no case can exceed
the total original number of the variables. Here, that number is n for the ui plus n2

for the vij , proving our theorem.
It is easy to see that the maximum number of parameters for the group may

actually be attained. The simplest example is of ẍi = 0, the paths being straight
lines. The group is then that of the translations with n parameters, plus the linear
transformations leaving the origin invariant, of order n2. In the Riemannian case, for
example, as with the equations of Killing, something more is demanded, namely the
invariance of a quadratic form as well, whence the maximum order is half the above.
For the path-space of straight lines, if we impose, say, a Euclidean metric, the group
is then translations plus rotations, order n + n(n − 1)/2 = n(n + 1)/2.

4. Further extensions of the previous results are possible in several directions,
e.g.:

The group whose generating vectors satisfy only ui;j = 0, θui = 0, thus transform-
ing into itself the space (x, t), while leaving the absolute parameter t unchanged,
has a number of parameters ≤ n(n + 2).

The point transformations corresponding to this are Cartan’s group B, and their
tensor invariants, can be found now in an obvious way. The proof parallels the above
step by step.

These processes can be carried out also for systems of ordinary differential equa-
tions of higher order, as well for partial differential equations, the sole condition
being that they be explicitly soluble for the derivatives of highest total order. The
d/dt operator for ordinary differential equations has to be again defined as total dif-
ferentiation along the paths, whereas for partial differentiation we have as many such
operators as there are independent variables. We can then prove as before:

Theorem 5 The results of Theorems 1–3 are valid also for the systems

dσ+1xi

dtσ+1
+ αi

(

t, x,
dxi

dt
, . . . ,

dσxi

dtσ

)

= 0, (20.10)

the equations of variation being defined by all those (extended) operators which
permute with d/dt, itself defined as:
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d

dt
≡ ∂

∂t
+ dxr

dt

∂

∂xr
+ · · · + dσxr

dtσ
∂

∂x(σ−1)r
− αr ∂

∂x(σ)r
. (20.11)

The maximum number of parameters in the group leaving base-space as well as
paths invariant cannot then exceed the sum of the first (σ + 1) terms of the series

n

{

1 + n + n(n + 1)

2
+ n(n + 1)(n + 2)

3
+ · · ·

}

. (20.12)

For partial differential equations, we consider only the second-order system:

∂2xi

∂t2∂tβ
+ Hi

αβ(t, x, p
j
γ) = 0 ;

α,β =1, . . .m ,

i, j, . . . =1, . . . n ,

piα = ∂xi

∂tα
.

(20.13)

Here, the operators corresponding to d/dt are the set ∂α defined by

∂α ≡ ∂

∂tα
+ prα

∂

∂xr
− Hr

αβ

∂

∂prβ
. (20.14)

Theorem 6 The equations of variation have as solutions those vectors and only
those whose associated (extended) operators form the ring that permutes with all
operators ∂α. The maximum number of parameters for the group leaving base-space
and paths invariant cannot exceed n(n + 1), as before.

The proof is by following the case of ordinary differential equations step by step,
and the condition for composition of two operators as well as the Jacobi condition
may be derived by direct calculation. The number of parameters is again from con-
siderations of the variation vector ui being a function of the same number of variables
x, as is seen directly from the structure of the equations of variation. However, in
this case, there are also equations of variation for the independent variables tρ, and
it should be made clear that the base-space is of the variables xi.

For Eqs. (20.1) which are deducible from a metric, i.e., the extremals of a regular
problem of the calculus of variations, we have the following formula. If the (inverse)
Eulerian equations be abbreviated by δif = 0, then the result of any operation X of
the base-space group is:

δi(Xf ) = X(δif ) + ur,iδr f + f;i;rθur . (20.15)

This shows what would otherwise have been expected:

Theorem 7 If a metric exists for the paths, it is carried into metric by any transfor-
mation of the group preserving base space and paths.
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For the simple case ẍi = 0, a general metric is any arbitrary function f (x)with the
determinant |f;i;j| �= 0, and not containing the xi at all. This is carried into another of
the type by any linear homogeneous transformation, and into itself by any translation.
The only possible additive terms are necessarily of type dh/dt, where h(x, x) is
homogeneous of degree zero in ẋ, as can easily be shown.

It is to be noted, in conclusion, that the conditions of Theorem 1 are not necessary.
For the alternant of two extended operators associated with vectors u, v to give an
extended operator, the precise condition is

vi;rθu
r − ui;rθv

r = 0 . (20.16)

Similarly, the Jacobi condition for three such operators is satisfied if and only if

ui;r{vr;kθwk − wr
;kθv

k} + (two more terms by cyclic rotation) = 0 . (20.17)

This shows, in particular, that it even suffices to have one of the two vectors a
solution of both θui = 0 and ui;j = 0; in the Jacobi condition, it is again sufficient for
one of the three to satisfy both these equations. Thus, the infinitesimal transformations
not containing ẋi, and in particular the subgroup leaving both base-space and paths
invariant, have a special position.

The second remark is about the possibility of defining a Lie differential operator
that carries tensors into others of the same type, but of defining it in a manner that
can be carried over to more general classes of transformations, such as those over
the entire path-space. To this end, we may note that any such transformation may be
regarded either as a change in variables, or a charge of coordinates.The (infinitesimal)
Lie operation gives the difference of the (infinitesimal) changes in any geometric
object due first to regarding the transformation as a change of variables, and then as
a change of coördinates. Thus, for the tensor Ti

j of weight p under transformations
preserving the base-space, we have, when ui;j = 0,

LTi
j ≡ Ti

j,ru
r + Ti

j;ru
r − Tr

j u̇
i
,r + Ti

ru
r
,j + pTi

j u
r
,r . (20.18)

Moreover, there is the infinite series expansion as in (20.5), and we have the tensor
carried over into another of the same sort, independently of any connection that may
be assigned to the x-space. The main definition is obviously extensible for more
general transformations.



Chapter 21
The Method of Least-Squares

D.D. Kosambi, Poona

The English version of this paper appeared two years after the Chinese “original.”
During the 1950s and early 1960s, DDK visited China several times on exchange
programs. This paper was probably written when he visited the Academia Sinica on
an exchange program between India and China as an expert in statistics from TIFR
[DDK-JK]. This was a visit of several months, ample time for DDK to write his paper
and have it translated into Chinese.

This note begins with a discussion of possible metrics in probability spaces asso-
ciated with independent random variables; the Euclidean metric (in suitable coordi-
nates) turns out to be the only one admissible. The method of least squares is known
to be derived from such a concept of distance. In the second section, a unique least-
squares solution is derived for general linear systems of equations in abstract spaces
even when there may be no proper solution in the usual sense, the two coinciding
when the ordinary solution exists. This is of considerable importance for diffusion
theory and the integral equations for atomic energy piles. The final section gives a
sketch of the extension to general nonlinear systems of equations.

1. We start with a system of measurable sets called “simple events” such that the
adjunction of the “compound events” obtained by set addition and set multiplication
gives an aggregate of measurable Borel sets constituting a Boolean set algebra. The
union A ∪ B of two sets is the compound event “A or B”; the intersection A ∩ B
is the compound event “A and B (simultaneously)”; the operational laws for the
dual operations “cap” = ∩ and “cup” = ∪ being as usual in Boolean algebra, which
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Chinese version appeared in Advancement in Mathematics 3, 485–491 (1957). Reprinted with
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contains the null set O and the universe I . The probability measure is regulated by
the postulates [1]:

P(I ) = 1. (21.1a)

P(A) ≥ P(B) if A ∪ B = A, i.e., if A ⊃ B. (21.1b)

If A ∩ B = O, P(A ∪ B) = P(A) + P(B). (21.1c)

Taking A = I , B = O in Eq. (21.1c), it follows that P(O) = O . With (21.1a)
and (21.1b), this gives O ≤ P(A) ≤ 1 for all sets of the ensemble. Finally, seeing
that A ∪ B is the union of three mutually non-intersecting sets (A − A ∩ B), A ∩
B, (B − A ∩ B), we obtain the general result:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) . (21.2)

This could have been substituted for the third postulate in (21.1a, 21.1b and 21.1c)
with the addition of P(O) = O . The events are to be regarded as reduced modulo,
the ideal of all sets withmeasure zero. The restriction to Borel sets, though not always
necessary, permits infinite repetition of the two operations ∪, ∩.
Definition Two events A, B such that A ∩ B = O are called mutually exclusive.
Non-null events A1, A2, . . . An . . . such that P(Ai ∩ A j ∩ Ak . . .) = P(Ai )P(A j )

P(Ak) . . . for any finite section i, j, k . . . are called mutually independent events.

It follows that twomutually exclusive events cannot be mutually independent, nor
can two events one of which wholly includes the other; these are the extreme case
of zero and unit conditional probability, always omitting from the classification the
trivial extremes, O, I . Starting with any simple event of the algebra, we can build
an ordered maximal chain of such simple events, with O and I at the two ends,
each event of the chain including all preceding members and being included in all
that follow, while no other simple event of the algebra outside the chain has this
property, with respect to all sets of the particular chain. We consider hereafter only
such Boolean probability algebras whose simple events can be split up into a finite
number of maximal chains, every event of each chain being independent of every
event in any other chain.

In the first place, each such chain can be mapped upon the real line segment
(0, 1) by the correspondence A → [O, P(A)]. But we need also a map on the whole
real axis −∞ ≤ x ≤ +∞, which is connected with the (0, 1) measure map by a
distribution function F(x), which is monotonically non-decreasing, with F(−∞) =
0, F(+∞) = 1. Any set A of the chain can be mapped upon the interval (−∞, α) on
the line such that F(α) < P(A) if x < α, while F(a) = P(A). Using one dimension
for each such ordered chain, we map the Boolean algebra upon an n-dimensional
continuum (x1, x2 . . . xn), where the image of a simple event is a section from−∞ to
+∞ in all dimensions except one, where the section extends only from−∞ to α. The
measure image on the unit hypercube is the rectangular parallelepiped of side unity
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in all except one dimension, where the side is the interval [O, P(A)]. Compound
events are derived from these by set union and set intersection.

Theorem 1 If an n-dimensional probability space be associated with a Boolean
algebra of events such that each dimension represents a chain of events independent
of all the others, and if the space is endowed with a Riemann metric plus a measure
function which give a true map upon the unit hypercube, then the metric can only be
Euclidean.

Proof For the Riemann metric, ds2 = �gi j dxi dx j . The measure of any
k-dimensional event in the x-space is given, for 1 ≤ k ≤ n by an integral of
the form

∫
fk(xi1 , . . . , xik )

√|gi j | dxi1 . . . dxik . But if the region be the compound
event A1 ∩ A2 ∩ · · · ∩ Ak , it follows that the integral must break up into a prod-
uct of k separate integrals for all k ≤ n. Therefore, any principal minor as well as
the whole determinant |gi j | must reduce to a product of diagonal terms: g11(x1)
g22(x2) · · · gnn(xn), and correspondingly for each of its principal minors. The mea-
sure function f , essentially the derivative of the distribution, assumed to exist and
be continuous, will similarly break up into a product of factors, but that is of
lesser interest here. It is clear that the cross terms of the tensor gi j all vanish, with
ds2 = g11(x1)dx2

1 + g22(x2)dx2
2 + · · · + gnn(xn)dx2

n . The gii are positive from the
hypothesis of positive measure for any chain (we need not invoke the positive defi-
nition form of the metric here), permitting a transformation of coordinate variables
defined by dx ′

r = √
grr dxr . These are the Euclidean coordinates of the space. �

We have two simple corollaries:—

Corollary 1 If the space of n random variables be endowed with a Riemann metric
and a measure (distribution density) function which permit the original random vari-
ables to be replaced by n independent random functions thereof, then the curvature
tensor of the original space must vanish, the space being Euclidean.

The new variables amount simple to a non-singular transformation of coordinates.
But there, the space will have the Euclidean coordinates of the preceding theorem;
hence its curvature tensor will vanish in both coordinate systems. For the second
corollary, we need a topological result, [2] that a Riemann metric exists when the
space may be covered by neighborhoods such that each pair of points may be joined
by one and only one arc (lying wholly within the neighborhood) of a previously
defined class which we may call paths. Then, for any compact portion of the space
that can be so covered, a Riemann metric can be assigned whereof the given paths
are actually the geodesics. In the present case, we have one compact space, namely
the unit hypercube, to which the result may be applied, working back to the original
space if the f function is continuous, giving us:

Corollary 2 If the space of random variables is only endowed with a continuous
measure density function, and a set of continuous paths with the property that any
two points sufficiently close have a unique path join, then the space also possesses a
Riemann metric, hence is Euclidean if the concept of independent random variables
is applicable by suitable transformation.
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With Euclidean space, if the compound probability density function of several
independent randomvariables depends only upon the distance, it follows immediately
that the distribution of each variate must be normal (Gaussian) [3]. From this to the
usual motivation of least squares is only one step, for the best approximation to
the population mean from a sample is that which minimizes the sampling variance,
which is a sum of squares (the distance, in fact, to a hyperplane), hence the arithmetic
mean.

2. We deal throughout with real variables, though the extension to complex or other
number systems causes little difficulty. The system of m linear equations in n < m
real variables

n∑

j=1

Ai j x j − yi = 0 ; i = 1, 2, . . . , m > n (21.3)

has no solution in general. But it has always a least-squares solution minimizing

m∑

i=1

⎛

⎝
n∑

j=1

Ai j x j − yi

⎞

⎠

2

, (21.4)

thereby, specifying the values of x as solutions of the n equations:

n∑

r=1

Ckr xr − zk = 0 , Ckr =
m∑

q=1

Aqk Aqr , zk =
m∑

q=1

Aqk yq . (21.5)

Here, every free index runs through the values 1, 2, . . . , n. The system (21.5) has
a unique solution in general, coinciding with the exact solution of (21.3) should
those equations be compatible. Clearly, we can take formal passage to the limit to
an integral equation of the first kind:

∫

A(s, t)x(t)dt = y(s) , (21.6)

and to other general linear systems. This is the work of the present section, regardless
of probability considerations.

We begin with a vector space V over the field C of all real numbers, the elements
x, y, · · · being in V and constants a, b · · · in C give ax + by + · · · also in V . We
further require a symmetric bilinear scalar product x · y as a mapping of V × V into
C , with the properties: x · y = y · x , and x · (ay + bz) = a(x · y) + b(x · z). This
leads to a quadratic norm x · x of which we demand that x · x = 0 if and only if
x = 0, which amounts to reduction of V with respect to elements of zero norm. We
shall assume that V is complete with respect to convergence in the norm. The usual
condition that the norm be positive is easily imposed, for it must always be of the
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same sign. If there were two distinct elements x, y with x · x > 0, y · y < 0, the
quadratic in λ : (x + λy) · (x + λy) = 0 would have real roots, giving an element
with vanishing norm, of the form x + λy. But this cannot be zero identically, for then
x · x = λ2(y · y), which is impossible because the two norms had initially opposite
signs. Hence, the norm must always have the same sign, and there is no loss of
generality in taking it always positive.

We avoid the trivial cases where V contains only the element 0, or only multiplies
of a single element φ. Two nonzero elements φ,ψ are defined as orthogonal if their
scalar product vanishes: φ · ψ = 0, while an element with unit norm (always to be
had by multiplication with a suitable constant) is called normal. The assumption is
that V has an orthonormal basis φ1, φ2, . . . φn, . . . not necessarily finite, but (by the
Hilbert theorem) at most denumerable, and that the Riesz–Fisher theorem applies
so that with any convergent �a2

r , there always exists a function in V represented by
�anφn; this is necessary for the completeness of the space, which we have assumed.

To correspond to the matrices in (21.3), we need two-sided linear associa-
tive operators S, T, . . . defined over V , i.e., T x and xT ⊂ V for all x ⊂ V ; with
(ax + by)T = a(xT ) + b(yT ), T (ax + by) = a(T x) + b(T y). For xT , we shall
also write T ∗x , the adjoint of T . This adjoint is governed by the operational rule:
(T ∗)∗ = T . If we define the operator product ST by (ST )x = S(T x), with x(ST ) =
(x S)T , it follows that ST x = S(xT ∗) = (xT ∗)S∗, whence (ST )∗ = T ∗S∗, the star
operation for the adjoint of these linear operators thus satisfying four of the basic pos-
tulates for a C∗ algebra in the sense of Gelfand and Neimark. We may write SxT for
S(xT ) = ST ∗x = xT S∗ = T ∗x S∗, according to convenience, without confusion.
The scalar product x · (T y) is similarly abbreviated xT y = yT ∗x , at will.

Using the orthonormal basis for V , it is seen that the T operation amounts to a
linear matrix transformation for the coordinates (Fourier coefficients) of an element.
All operations may be visualized and theorems proved by use of the matrix represen-
tation. For Hilbert spaces (vector spaces with infinite basis), the argument has to be
restricted in general to such operators as may be separated into two additive portions
of which one is finite dimensional, the other with arbitrarily small norm. That is, the
operators must be bounded: (T x) · (T x) ≤ M(x · x) for all x ⊂ V , M depending
only upon T . We shall deal only with non-singular bounded operators, and remark
that a symmetric operator such that T = T ∗ has always a real spectrum. To each T ,
there correspond always the two symmetric operators T T ∗ and T ∗T , of which the
latter is assumed to have a discrete spectrum for our main result.

The entire least-squares procedure rests upon the following [4]

Lemma The orthonormal portion of V which does not lie in T V is mapped into
zero by T ∗ that is, T ∗(V − T V ) = 0.

Proof If the transformed space T V is the whole of V , the result is trivially true. If
not call V̄ , the orthonormal component of V not in T V . The generic scalar product
of a function in V̄ and another in V is V̄ T V = V T ∗V̄ . By hypothesis, this scalar
product is zero, which means that every element in the whole of V is orthogonal
to every element in T ∗V̄ , which is impossible, except when T ∗V̄ = 0, proving the
lemma. �
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The main least-squares equation now takes the form

T x − y = 0 (21.7)

with T, y given, x to be found.
This need not have a solution at all, as T x lies necessarily in T V , while the given

y may have a component outside T V . The norm of the left-hand side is

(T x − y) · (T x − y) ≡ xT ∗T x − 2(xT ∗y) + (y · y) . (21.8)

Tominimize this, give a variation to x , replacing x by x + δx . Subtracting the original
value in (21.8) from the varied value gives

2δx · (T ∗T x − T ∗y) + (T δx) · (T δx) . (21.9)

The coefficient of δx is equated to zero for a minimum as usual, for the remainder is
positive, while we take the norm of δx as tending to zero. This gives us the following:

Theorem 2 The least-squares solution of T x − y = 0 is given by

T ∗T x − T ∗y = 0 . (21.10)

Our lemma T ∗(V − T V ) = 0 makes the solution possible. Naturally, there are some
simple restrictions upon the operator in question. In terms of eigenfunctions and
eigenvalues, these give Picard’s solution [5] of integral equations of the first kind and
the corresponding least-squares solution, which may be subsumed in the following:

Theorem 3 The least-squares solution of T x − y = 0 exists if and only if
�(φnT ∗y)2/λ4

n converges, where φn and λ2
n are the eigenfunctions and eigenvalues

respectively of T ∗T φ − λ2φ = 0. In particular, if the orthonormal set {φn} furnish
a basis for V , we have the exact solution (for that portion of V in which y lies).

The proof is as follows: The non-singular operator T ∗T leaves the origin invariant
in V , hence by continuity maps some portion of V on to some neighborhood of O , in
the map space T ∗V . We (assume the operator T ∗T to have a discrete spectrum, and)
expand T ∗y in terms of the eigenfunctions. The lemma above says that T ∗y cannot
be orthogonal to all these eigenfunctions without vanishing identically, while the
condition of the theoremmerely requires T ∗y to lie in the transformed neighborhood
of the origin.

The result is independent of the norm. That is, our norm was best taken with
respect to the identity, the symmetric operators x I = I x = x for all x ⊂ V . Anyother
symmetric operators may be used for the least-squares norming provided SV = V ,
and x Sx = 0 if and only if x = 0. The result is of great use in the solution of integral
equations when nothing is known about the closure of the eigenfunctions of the
particular kernel.
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3. The square sum (21.4) of the linear equation (21.3) amounts to the sum ofweighted
squares of distances from a generic point (x) to the various hyperplanes. The same
idea can be extended, therefore, to nonlinear hypersurfaces. We look for the point
or points from which the sum of squares of distances to a given set of (weighted)
hypersurfaces is minimum, which is included in the set of points where the distance
sum is stationary and which is all we shall investigate without insisting upon a true
minimum. The geometric picture tells us that the point sought is common to all
the surfaces if they have a common interesection, or that point which lies on the
intersection of normals to each of the surfaces. In mathematical notation, let the
surfaces be:

f1(x1, x2, . . . , xn) = c1, f2(x) = c2, . . . fm(x) = cm ; m > n . (21.11)

The point sought is the solution of the equations:

∂ F

∂x
= 0 ,

∂ F

∂u
= 0 ,

∂ f

∂v
= 0 , (21.12)

where

F ≡
∑

i

(xi − ui )
2 + (xi − vi )

2 + · · · + λ1 f1(u) + λ2 f2(v) + · · ·

and the unindexed letters x, u, v . . . each represent the set of n variables, the index
being understood, even in the partial differentiation. This is Lagrange’s method of
multipliers leading to two sets of equations:

xi =ui + vi + · · ·
m

(21.13a)

2(xi − ui ) − λ1∂ f1
∂ui

=0 , 2(xi − vi ) − λ2∂ f2
∂vi

= 0 , . . . (21.13b)

These lead to compatibility conditions:

λ1∂ f1
∂ui

+ λ2∂ f2
∂vi

+ · · · = 0 ; i = 1, 2, . . . , n , (21.14)

which merely reflects our previous lemma T ∗(V − T V ) = 0 in the total extended
space. For linear equations, the process is as before, and for the general case, the
extension is fairly clear.

We beginwith an abstract vector space V such that x ⊂ V . This V is extended over
a variety which was formerly a finite Abelian group and may for the present be taken
as an indexed variety. The extension is then indicated by Vα , with variables uα ⊂ Vα .
The α-space has to be compact, with an abstract integral whichwe shall denote by�α

and which has the properties of a Lebesgue–Stieltjes integral, while �α1 = M . The
scalar product is defined over the extended space as �α(x − uα) · (x − uα). Finally,
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f (x) is a general operator, mapping x into the real field, fα(u) being the (suitably
but completely defined) extended operation, understood as fα(uα).

We need further the generalized partial differentiation, which is defined as the
infinitesimal operator of the (Abelian) Lie group in the space of f (x) when the
base space of x undergoes a translation x → x + h; the Lie group is generated by
the usual exponential representation, which leads to a Lie-Taylor series expansion
which is the formal representation, and in the analytic case converges to give an
exact representation. Our nonlinear functional operators f need not be analytic nor
even arbitrarily differentiable, for they may be approximated by such at need; but
the f -operators must at least be continuous in the first derivative for the analogue
of (21.12) to be valid. By introducing an orthonormal basis and coordinates for V ,
the partial derivative becomes just the ordinary partial derivative in the coordinates;
generically, we represent this by f ′. The results are then summed up as follows:

The least-squares solutions of the simultaneous projections fα(x) = 0 are given
by x = (1/M)�αuα , provided the extended variables uα satisfy

λα f ′
α(uα) =

(
1

M

)

�αuα − uα . (21.15)

The λα and uα being so chosen as to further satisfy fα(uα) = 0.
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Chapter 22
An Application of Stochastic Convergence

D.D. Kosambi, Poona

Although DDK was still at the TIFR, Bombay, he chose to publish this paper giving
only the Poona address as he did for the other papers published in JISAS. This was the
first of the infamous Riemann Hypothesis papers and was reviewed in Mathematical
Reviews by the number theorist W.J. LeVeque who was extremely critical of the work:
‘The reviewer is unable either to accept this proof or to refute it conclusively. The
author must replace verbal descriptions, qualitative comparisons and intuition by
precise definitions, equations and inequalities, and rigorous reasoning, if he is to
claim to have proved a theorem of the magnitude of the Riemann hypothesis.’ Two
errors are pointed out in the review, and this does not include an elementary error
noted by Berry (private communication) that in Eq. (3.3) all the denominators should
be unity.

The approach itself, however, has some points of merit. Odlyzko (private commu-
nication) notes that although [Kosambi’s] method is highly probabilistic, if it went
through, it would provide a proof of the RH in its full strength. If indeed the series
(22.1) converged for every σ > 1/2, ζ ′(s)/ζ(s) would be analytic in σ > 1/2, aside
from s = 1, and we would have the RH. Kosambi’s ‘proof’ is that in the space of his
rearrangements of series, this follows with a positive probability, and he really only
needs a single rearrangement.
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The basic result of this paper, from which the conclusions of Section3 follow, is
the proof that the series

∑

n≤x

1

nσ
−

∑

p≤x

log p

pσ
, x → ∞ , (22.1)

converges for every real σ > 1
2 . Here, n runs through the positive integers and p the

primes, in natural order. The convergence of (22.1) for σ ≥ 1 + 0 is known, but not
for 1

2 < σ < 1. The classical tools for dealing with such convergence problems [1]
are inadequate.

The special device employed in this note resembles to a certain extent the use of
Lebesgue integration when the integrand oscillates so much that the evaluation of a
Riemann integral does not seem feasible. Only, in place of Lebesgue outer measure,
we use probability measure. This is more convenient because of the powerful results
in probability theory now available.

The following method is adopted for the proof. Terms of the series (22.1) are
grouped together for n and p in irregular, non-overlapping, consecutive intervals dddν

of length dν , with a uniquely defined, not necessarily integral, real number xν in dddν .
The original series (22.1) is then replaced by

∑

ν

{
dν

log xν

− π(dddν)

}

· log xν

xσ
ν

, σ >
1

2
, (22.2)

where π(dddν) is the number of primes in dddν . Differences between the partial sums of
(22.1) and (22.2) are clearly expressible as the sum of terms

(
dν

xσ
ν

−
∑ 1

nσ

)

−
(

π(dddν)
log xν

xσ
ν

−
∑ log p

pσ

)

; n, p ⊂ (dddν) . (22.3)

Therefore, they may be dissected into components due to the grouping; to the sub-
stitution of xν for n and p; and those from the partial sums of (22.1) and (22.2) not
terminating at the same term.

If a set of covering intervals {dddν} exists such that (22.2) and the various series
and sequences (finite in number) arising from the above differences all converge
simultaneously, then clearly the series (22.1) converges.

In what follows, [ddd] indicates the number of integers in the interval ddd . The prime
number theorem is taken for granted in the form: π(0, x) ∼ li(x) ∼ x/ log x . P
denotes a probability, E the expectation (mean), andV the variance (dispersion) in the
sense of probability theory. For stochastic X and scalar λ, we always have E(λX) =
λE(X) and V (λX) = λ2V (X). By a variate is meant a stochastic variable, i.e., one
that has a probability distribution. The following result due to A. Kolmogoroff [2] is
fundamental:

Lemma K. The stochastic series �un of independent variates {un} converges with
P = 1 if there exists another set of independent variates vn such that the series
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�P(un 	= vn),�E(vn), and �V (vn) all converge; otherwise, the convergence prob-
ability of �un is zero.

The use of this theorem in the sequel does not mean that (22.1) converges with
unit probability, for (22.1) is not a stochastic series. The utility of Lemma K lies
in showing the existence of a suitable choice of ddd-intervals. That is, a stochastic
mechanismof selectionmay be set up fordddν , ν = 1, 2, . . . so that (22.2) and the series
and sequences of its differences with (22.1) all converge, with a positive compound
total probability. Therefore, at least one infinite sequence of covering intervals {dddν}
must exist giving simultaneous convergence of all these, and hence, the series (22.1)
converges. The existence theorem need not actually construct a specific set {dddν},
but the logic involved is completely rigorous, having as its basis the fact that a set
of positive measure cannot be empty. The proof is not heuristic, as it would have
been had the prime numbers been treated as a stochastic sequence because of their
irregularity.

In series (22.2) and some of the associated series and sequences, the occurrence
of xν makes the terms dependent in probability. This is circumvented by setting up
comparison series where the terms are independent, and to which lemma K applies.
Similarly, π(dddν) enters into some of the auxiliary series; there, the probabilities
required may be assessed by a change of measure in sample space. Thereby, the
erratic behavior of the primes in the natural sequence of positive integers, which
spoils other proofs, is turned into an asset.

The use of probability methods is easily motivated. If the primes were regularly
spaced, log p apart (22.1), would converge for σ > 0. On the other hand, suppose
thatπ(n) = li(n) exactly, whenever n = ka , k an integer andα ≥ 3. Further, let these
‘pseudo-primes’ cluster together at the left-hand end of kα ≤ n < (k + 1)α , leaving
the rest of the interval void of primes. Then, the corresponding series (22.1) clearly
diverges for some σ > 1

2 . For the actual primes, the gaps would be much too large
even when a = 2 (which does not give divergence); it is known [3] that for almost all
x and h of order x1/4, π(x + h) − π(x) ∼ h/ log h. Thus, known facts about primes
suffice to exclude regular arrangements that would make (22.1) diverge. The ques-
tion is really settled by showing that the prime numbers, in suitably defined intervals
behave like an unbiased random sample from a non-singular probability distribution
(or like a von Mises Kollektiv). That is, the relative frequencies of intervals contain-
ing 0, 1, 2, . . . primes each tend to definite limits as the real line are progressively
covered. This is shown in Lemma 1.2, which should be the most useful result of this
note.

The problem is to discover an underlying stochastic population from which an
irregular infinite sequence, specified by a procedure, not by formula, might be drawn
as an unbiased random sample. The answer can be obtained only in the sense of
unit probability. For the sequence of primes considered directly, the question of bias
would still remain, i.e., whether they do not form part of the exceptional set of
zero probability measure. We consider instead an infinite set of complete coverings
defined by choice of the initial point, the situation repeating itself when the initial
point moves thorough a single covering interval. Unit probability would mean ‘for
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almost all initial points.’ This validates applications of the basic Poisson distribution,
which is even more important and useful than the Riemann Hypothesis.
1. This section deals with the mechanism of choice for ddd. Textbook [4] results in
probability theory are taken for granted. The real half line 2 ≤ x ≤ ∞, on which
the integers and primes are marked off, is transformed into 2 ≤ y ≤ ∞ by y =
li(x) + c = ∫

dx/ log x . Then, to an interval (a, a + 	) on the y-line corresponds a
unique interval ddd on the x-line and conversely, with	 = d/ log x ; where x is chosen
as that number (not necessarily an integer) lying in ddd, which makes this relationship
hold. The mean value theorem for the integral of a monotonic function shows the
existence of such an x , which lies properly within ddd . The intervals may be taken to
include the left-hand end point, but not the right. An arbitrarily large initial portion
of either line may be ignored in discussion of the convergence problem.

Each length	ν , ν = 1, 2, . . . is taken to have the identical distribution, namely the
uniform distribution over (0, 2). Being open on the right, marking off consecutive
intervals of the lengths 	ν , without gaps, furnishes a complete non-overlapping
covering of the y-line. That is, the length is a stochastic variable equivalent to the
ν-th independent selection from the uniform distribution; the position of the interval
of length 	ν is uniquely determined by the particular sample. Hence, the ddd-intervals
that correspond by the inverse li(x) transformation give a stochastic covering of the
x-line, one complete covering for each such infinite random sample of the 	’s. The
number xν ⊂ dddν has been specified above. For the lengths 	ν , we have for every ν

and any positive integer k:

E(	) = 1 ; V (	) = 1

3
; E(	 − 1

2k
) = 1

(2k + 1)
;

E(	 − 1
2k+1 = 0 . (22.4)

The variate yν is defined as the sum of the first ν independent, consecutive, non-
overlapping	-intervals: yν = 	1 + 	2 + . . . + 	ν ; this has the range (0, 2ν), mean
ν, and variance ν/3. Its probability curve is convex upwards, with a single maximum.
According to the central limit theorem, the probability distribution of yν is approx-
imated efficiently by a normal (Gaussian) distribution with mean ν and standard
deviation

√
ν/3. It follows that the maximum height of the yν probability curve

is rapidly asymptotic to 1/
√
2πν/3 = a/

√
ν and the distribution may be taken as

approximately uniform over steps of order less than
√

ν in width. The estimates of
S. Bernstein [4] may be applied to (22.4) to give:

Lemma 1.1 The probability is less than exp(−t2) for each of the inequalities to
hold (separately) for all large ν:

yν > ν + t ·
√
2ν

3
and yν < ν − t ·

√
2ν

3
. (22.5)

Two useful corollaries follow. Taking t = √
(3/2) log ν, P is less than ν−3/2 for

each of the inequalities
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xν > 2ν log ν ; xν <
ν

2
, (22.6)

for all large x and ν. Secondly, the ratio yν/ν converges in probability to unity.

Lemma 1.2 π(d) has a proper frequency distribution over almost all complete cov-
erings, the expectation begin unity, and the variance finite. If consecutive intervals
be grouped together k at a time, then the mean and the variance of primes covered
are each multiplied by k.

Proof The prime number theorem and Lemma 1.1 show that the limit as r → ∞
of {π(dddk) + π(dddk+1) + . . . + π(dddk+r )}/r is unity, with unit probability, for every k.
But this only gives the general expectation for almost all complete coverings. The
limiting distribution may be singular if the primes occurred in maximal clumps sep-
arated by sufficiently many voids to restore the average. In the limit, the frequency of
intervals with no primes could then be unity, all others zero—and yet no finite limit-
ing variance need exist. Known results on gaps between successive primes (Prachar,
[3], p. 154 ff.) make this singular case very unlikely, but we need only appeal to the
principle of the sieve method. If all multiples of 2, 3, 5, . . . are successively struck
out, the smallest integer left at each stage is itself the prime to be used in the next
deletion, and every prime is reached in this way. The survivors are thus asymptotic
to n(1 − 1/2)(1 − 1/3) · · · (1 − 1/p) · · · where the product must be suitably termi-
nated. This says precisely that the (suitably bounded) primes act, each with its own
probability 1/p, independently (or the probabilities for survival would not be mul-
tiplied as above) of each other in the deletion. There is no linear (or even algebraic)
relationship between the primes, and any two or more primes have the highest com-
mon factor one while pk ∼ k · log k. The theorem of de la Vallée Poussin says that
for any arithmetic progression ar + b, r = 1, 2, . . . the primes are asymptotically
equally divided between the φ(a) possible different categories, no matter what a is
chosen. �

Therefore, the number of primes ‘striking’ an integer and the number of integers
escaping the sieve ought each to have some sort of asymptotic frequency distribution.
Of these, the first is given by Landau’s theorem that the relative frequency of integers
< n having k + 1 prime factors is asymptotic to e−t t k/k! for k = 0, 1, 2, . . ., with
t = log log n. This is a Poisson distribution, and the value of the parameter t would
follow from the prime number theorem, if the distribution were granted.

For the prime survivors, we first take an interval hhh of y-image μ (fixed), hence of
x-length approximatelyμ. log n. This is allowed to cover, with a uniform probability,
the total range whose image of length N (n) contains the integer n. Then, all deletions
from hhh may be considered as due to primes not exceeding

√
n + N . Of these, the

primes smaller than h will cause compulsory deletions, but those between μ. log n
and

√
n + N will act as amatter of chance. The survivors of the compulsory deletions

are ≈ e−γ h/ log h (where γ is Euler’s constant) which increases beyond any limit.
The mean being μ, the probability of the survivors of the first deletion in the interval
containing a prime will be ≈ μeγ log h/h, which tends to zero. The introduction
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of probability methods is needed because not enough is known about the location
of primes for direct calculation of their frequency distribution. This does not distort
the actual distribution, particularly as regular arrangements have been disposed of in
our preamble. The μ-intervals still belong to a covering and hence do not overlap. It
suffices, therefore, to choose any interval at random after giving the initial point of
the first μ-interval in the range a uniform distribution over one interval length. The
number of primes neglected cannot exceed the maximum covered by a μ-interval of
the N -range, which affects neither the distribution nor the convergence of (22.1).

Statements about the number of ‘survivors’ per interval have to be understood
in the sense of unit probability. The arrangement of integers not divisible by
2, 3, 5, . . . , pr is repeated modulo Nr = 2, 3, 5, . . . , pr . The theorem of Mertens
gives the proportion of numbers prime to Nr as ∼ e−γ / log pr . Only the very small
primes with Nr ≤ h = μ log n can have a cyclic effect over an interval length.
The less regular effect of the remaining small primes ≤ h is most economically
described as an independent survival probability ∼ log pr/ log h, because the initial
point and length of the range are each of order exp(cp). By classical probability
theorems, the chance of an interval having less than ah/ log h survivors (with suit-
able a > 0) tends to zero. However, every one of the consecutive integers kNr + 2,
kNr + 3, . . . , kNr + Pr+1 − 1 has a factor in common with Nr . Inasmuch as Nr is
of order nμ, there could be (for small μ) intervals in a range devoid of survivors.
These, or intervals with less than any fixed number of survivors, may be ignored in
the limiting process as zero probability phenomena.

We have now to consider whether the chances of an integer being a prime or com-
posite are affected by the knowledge that some other integer in the interval is actually
a prime or composite. Should r be a prime > 3, then r + 1 and r − 1 are necessarily
composite. Such obligatory dependence is removed by striking out the multiples of
2, 3, . . . , p < μ log n. Suppose that among the ‘first survivors’ one is known to be
composite. Then its prime factors cannot, by construction, divide any other in the
same μ-interval. The chance P ′ for primality among the rest may at worst have to be
P (the original probability) multiplied by 1/(1 − 1/p) for every such prime factor.
By Landau’s theorem above, the average number of prime factors is of order log2 n;
the maximum number of such factors can obviously not exceed log n/ log2 n. Thus,
P would at most have to be multiplied by eφ(n), where log2 n < 1/φ(n) < log n. The
supply of primes which cause deletion, being of order

√
n/ log n, is not materially

depleted, so that the argument may be repeated for further numbers found composite.
On the other hand, if the known integer be a prime, the probability for the rest is not
thereby affected in the same interval, for deletion is caused only by primes <

√
n,

approximately. Thus any modification of P is an infinitesimal of higher order, which
justifies passage to the limit on the basis of independence in probability among the
‘first survivors’ within the interval. This is also supported by known sieve theorems
(Prachar, [3] Chap. II). Parallel arguments hold a fortiori for independence between
intervals. As has been shown above, the number of these survivors tends to infinity
with n, P tending reciprocally to zero, while the expectation is μ. It follows [5] that
the limiting distribution is Poissonian provided there are an unboundedly increasing
number of disjoint intervals in the range and E{π(h)} → μ over the separate ranges
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as n → ∞. These conditions are met by taking N − n3/4, though smaller exponents
will do as well [3]. The distribution therefore approximates rapidly to the frequen-
cies e−μ(1, μ, μ2/2 · · · ) for π(h) = 0, 1, 2, . . .. If, instead of a fixed length μ, we
allowed a uniform distribution over (0, μ) for the length, simple integration would
yield the asymptotic frequency for k primes as (1 − e−μsk)/μ, where Sk is the sum
of the first k + 1 terms in the Maclaurin expansion of eμ. The mean is now μ/2,
and the variance becomes (μ/2 + μ2/12), the second term being the ‘Sheppard’s
correction for grouping’ familiar to statisticians.

For any finite number of consecutive N -ranges and fixed μ, the distribution is the
weighted average of the component distributions over each range, with the number of
μ-intervals in the range as weight. The whole line being thus progressively covered,
and this amounts to summability by a regular Toeplitz matrix, of the sequence of
range-distributions. Therefore, the distribution over the whole line is the same as
the asymptotic distribution over the N-range, namely Poissonian with mean and
varianceμ. The other distribution derived naturally holds over the complete real line
also. The Poisson distribution being valid for any μ, grouping consecutive intervals
together k at a time (every interval belonging to one and only one such grouping)
again gives a Poisson distribution with parameter kμ. With uniform distribution
of interval length over (0, μ) the mean and variance of primes will be 1

2kμ and
k(μ/2 + μ2/12) respectively; in our special case, k and 4k/3. Thus, the π(ddd) in
consecutive intervals (of a complete covering) grouped together add like independent
random variables. Q.E.D.

The distribution itself is less important than the existence of a non-singular distri-
bution. Each individual π(dddν) has also some frequency distribution for fixed index
ν, which obviously tends to the distribution over a complete covering as the index
increases beyond limit.

A more number-theoretic proof of this fundamental lemma would run as follows:
Brun’s sieve theorem extends (note 4, p. 52, th. 4.7) to: The number of primes p ≤
N for which p + b1, p + b2, . . . , p + br , 0 < b1 < b2 · · · , br , are also primes is
less than cMN/ logr+1 N, where M ≤ ∏

(1 − 1/p)−r , taken over all primes dividing∏
bi

∏
(b j − bk) > 0. Let p, p + bi be restricted to lie within a single covering

interval of length h ≤ μ log N . By the theorem of Mertens, M < ar logr h, where a
is a constant. The bi can be chosen at will provided there is no a priori restriction to
prevent p + bi being a prime; for example, bi must be even for p > 2. This means
precisely that every p + bi must be a ‘first survivor.’ If R be the number of choices for
any bi , R < Bh/ log h. This follows in the sense of unit limiting probability from the
preceding paragraphs,while it is known frompurely number-theoretic considerations
that no interval of length f can contain more than Df/ log f primes, D constant.
The whole set of b’s may be specified in R!/(R − r)! r ! different ways. The number
of covering intervals being N/h, the relative frequency of intervals covering r + 1
primes cannot exceed the binomial coefficient above, multiplied by CM/ logr N .
Therefore, ultimately, the frequency of intervals having r + 1 ≥ 2 primes cannot
exceed Abr/r ! (A, b const.) This suffices to prove the existence of the second and
higher moments, but the vital Poisson distribution would require further refinement
of the sieve, or probability arguments.
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2. The series (22.2) is now written as the difference of the two stochastic series,
whose convergence is to be considered separately:

∑

ν

(	ν − 1) · log xν

xσ
ν

−
∑

ν

[π(dddν) − 1] · log xν

xσ
ν

; σ >
1

2
. (22.7)

Theorem 1 The series �ν(	ν − 1) · log xν/xσ
ν converges with unit probability for

σ > 1
2 and zero probability for σ < 1

2 .

Proof Step 1. There exists a critical value σ0 of the exponent σ such that the con-
vergence probabilities for the series under consideration are P = 0 for σ < σ0 and
P > 0 for σ > σ0. If any series with a specific choice of ddd converge for a given
σ , it necessarily converges for all greater values of σ ; if it diverge, then divergence
follows for all lesser values of the exponent. This is a consequence of standard results
in the theory [1] of infinite series, noting that the coefficients outside the brackets are
ultimately monotonically decreasing and positive. Thus, if the convergence proba-
bility be zero for any exponent, it cannot be positive for any lesser value of σ . This
enables a Dedekind section to be defined for the values of σ , between the zero and
the nonzero probability ranges.
Step 2.The convergence exponent is the samewhen log xν/xσ

ν is replaced by log ν/νσ

in the coefficients. To prove this, we note that by lemma 1.1, an arbitrarily small
ε > 0 may be chosen, with two suitable sets of positive constants a, b; ā, b̄ such that
log xν/xσ

ν is bracketed between a · log νb/νσ+ε and ā · log ν b̄/νσ−ε . Moreover, the
probability Pν for each bracketing is such that

∏
Pν converges. Conversely, a similar

bracketing of log ν/νσ by corresponding terms in xν is also obviously possible. [In
each case, the log terms in the factors may be ignored, as logk z = 0(zε) for every
k and every positive ε.] It follows that if σ < σ0 in the x-series, the convergence
probability cannot be positive for the ν-series with the same exponent; similarly for
σ > σ0.
Step 3. Lemma K applies to the series

∑
ν(	ν − 1) · log ν/νσ . The term means are

all zero; the variances are log2 ν/3ν2σ . The critical exponent for the ν − series, and
therefore, the x-series also is thus σ = 1

2 . Finally, the convergence probability for the
x-series with σ > 1

2 is at least
∏

Pν . Inasmuch as xν ≥ 2, the contribution from any
finite number of initial terms remains finite, regardless of probability considerations,
and the terms may be omitted without affecting convergence. However, the omission
of the corresponding terms in

∏
Pν brings the probability arbitrarily near to unity.

Hence, the probability of convergence for σ > 1
2 must be unity even for the x-series.

This completes the proof, though it suffices for our ultimate purpose that P > 0 for
σ > 1

2 . �
Theorem 2 The series

∑
ν[π(dddν) − 1] · log xν/xσ

ν has likewise P > 0 for conver-
gence when σ > 1

2 .

Proof The existence of a critical exponent which coincides with that of the compar-
ison series

∑
ν[π(dddν) − 1] · log ν/νσ is proved as in the preceding theorem so that

we may deal only with the latter series. �
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Lemma1.2 shows that for almost every complete covering π(ddd) − 1 has a zero
mean (over the covering, not for fixed index, ν) and finite variance. Therefore, with
probability P0 arbitrarily close to unity, V {π(ddd)} < A2 over complete coverings for
suitably large A. The sum of any m terms π(ddd) − 1 taken at random from the same
covering would be less than A.t.

√
m in absolute value, with P > 1 − 1/t2. Take

non-overlapping consecutive blocks of m = 2k consecutive terms of the covering,
with k = 2, 3, . . . and the understanding that an arbitrary number of initial terms
of the series may eventually be omitted at need. The first subscript ν in each block
will be equal to the total number of terms in that block. By Abel’s lemma [1] and
taking t = k, the sum of the terms in the comparison series corresponding to the
k-th block will be less absolutely than Ak2 log 2/2k·ε (where ε = σ − 1

2 > 0) with
probability Pk > 1 − 1/k2. Hence, the series has a convergence probability not less
than P0

∏
Pk > 0.

Choice of consecutive instead of completely random intervals does not vitiate
the result. The existence of a distribution for π(ddd) was proved as for consecutive
intervals; and the selection is uninfluenced at any stage by the actual prime content
of any intervals or blocks. In fact, it is known [3] that if m consecutive intervals
together cover a stretchofmagnitude yc for any c > 38/61, then the (stochastic) block
sum under consideration is 0(2m), as y → ∞, without any probability condition or
exceptional set of integers. This is stronger than what is demanded or yielded by
probability considerations. That is, the values assumed by sums of π(ddd) − 1 for
sufficiently great block lengths cannot be more extreme for consecutive covering
intervals than with random choice. Lemma1.1 says, however, that every block length
will be of order arbitrarily close to y with a compound probability given by an infinite
product that converges to some P∗ > 0. Thus, the inequalities can be strengthened,
with a convergence probability at the worst multiplied by another factor P∗. The
critical exponent of convergence for the series remains σ0 = 1

2 .
Though justified by Lemma1.2, the multiplication of probabilities Pk is unnec-

essary. No matter what the joint probabilities, the chance for all the grouped sums
lying within the absolute limits given above for each is not less than 1 − �(1 − Pk),
or than 1 − �1/k2, which can be brought arbitrarily close to unity by rejection of
enough initial terms of the series. The grouping of intervals need not be in geomet-
ric progression. It would suffice to combine (k + 1)α − kα successive intervals at
a time with k = 1, 2, . . . and α > 3/(2σ − 1). The process need begin only from
some ν = ν0. Thus far, only the simple Chebyshev inequality is used, which requires
nothing beyond the existence of a distribution with finite second moment. Use of the
actual distributions found in Lemma1.2, with or without the normal approximation
given by the Central Limit Theorem, permits still freer groupings. Q.E.D.

An alternative proof of Theorem2 would run as follows. The correspondence
ddd → π(ddd) maps the space of all permissible complete coverings into the points
of an integral infinite-dimensional lattice with coordinates xi = π(dddi ). We take the
lattice as right-angled and redefine the measure by giving equal weight to every point
actually realized. Suppress a suitably large but finite number of initial dimensions
altogether. Then, if necessary, trim off just enough peripheral points to make the
center of gravity (with equal weights) the unit point (1, 1, 1, . . .). This can always be
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done with an arbitrarily small measure of deletion because almost every realizable
point of the lattice has (x1 + x2 + · · · + xn)/n → 1 and a limiting distribution (in
the old measure) is approached by all xi with large i which is also the distribution
over the successive x-coordinate values of almost every point. What is left may be
further restricted to almost all lattice points of an infinite-dimensional hypercube
(with unequal indefinitely increasing sides), of the same center of gravity, and with a
rectangular section in any finite number of dimensions. If xi = a is realizable, then
so is every value 0 ≤ xi ≤ a, by contraction of interval length.

The newmeasure is defined over this lattice hypercube as the proportion of points
lying in any included region to be measured. The total measure of the hypercube
is unity, with an induced measure over every subspace which is defined as the rel-
ative number of points in the lattice hypercube lying in the cylinder with a region
of the subspace as base and sides extended over the entire ortho-complement. Then,
the measure over the product-space is the product of the component measures. This
change of probability measure amounts to the integration of a positive weight func-
tion. It suffices for our purpose that no set of measure unity in the new lattice measure
is of measure zero in the original measure. In the lattice measure, the variates π(dddν)

become independent in probability; each has a unit mean because of the center of
gravity chosen, and the variance can never be greater than 2 · log2 ν, whatever the
actual distribution. Therefore, Lemma K becomes immediately applicable, and the
comparison series converges with uniform lattice measure one for every σ > 1

2 ;
hence, the original series with P > 0 in the previous measure.

Theorem 3 The difference between the series (22.2) and (22.1) may be resolved into
the following series and sequences, each of which converges with unit probability
for σ > 0:

∑

ν

(dν − [dddν])
xσ

ν

;
∑

ν

π(dddν) · dν(σ · log xν − 1) − σ · dν(dν + 1)

x1+σ
ν

;

(dν + 1)

xσ
ν

; π(dddν) · log xν

xσ
ν

. (22.8)

Proof The first of these is due to there being [ddd] and not d integers in ddd . Now not
only d − [ddd] but the sum of any number of such differences for consecutive non-
overlapping intervals dddν ranges by definition between −1 and +1 without reach-
ing either extreme. By Abel’s lemma, the series will converge provided xν → ∞
monotonically, for which the probability is unity. Terms of the second series may be
compared with log3 ν/ν1+σ ; and so it also converges with P = 1 for σ > 0. The two
sequences are due to the partial sums of (22.1) and (22.2) not necessarily terminating
at the same place; both obviously converge with P = 1 for σ > 0. Q.E.D. �
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The three auxiliary theorems lead immediately to:

Theorem 4 The series (22.1) converges for σ > 1
2 .

Proof The series (22.1) converges if and only if (22.2) and (22.8) converge for at
least one choice of consecutive non-overlapping intervals ddd . If no such choice exists,
the joint probability for the simultaneous convergence of all the stochastic series and
sequences in (22.2) and (22.8) would have to be zero. But the joint probability is
positive (in fact arbitrarily close to unity). Q.E.D. �

3. The function ζ(s) is defined for a complex variable s = σ + i t with σ , t real, for
the half plane σ > 1 by

ζ(s) =
∞∑

1

1

ns
=

∏ 1

(1 − p−s)
. (22.9)

Both the series and the infinite product converge for σ > 1. The function ζ(s) thus
defined by the series and its analytic continuation has no singularity in the entire
finite plane except for the simple pole with unit residue 1/(s − 1), as is well known.

The zeta-function obeys the functional equation [6]:

ζ(1 − s) = 21−sπ−s cos
(πs

2

)
(s)ζ(s) . (22.10)

The Riemann hypothesis (RH) is the conjecture that all zeros of ζ(s) not s =
−2,−4, . . . lie on the vertical line σ = 1

2 . It is easily seen, directly from the con-
vergence of the infinite product, that no zero can occur in σ > 1. It is also known
from a theorem of G. H. Hardy that an infinity of zeros lie on the line σ = 1

2 . Using
the functional equation, it would suffice to prove RH if it could be shown that no
zero lies in the critical half-strip 1

2 < σ ≤ 1. To this end, we use a classical lemma
of function theory: Any singularity of an analytic F(z), except isolated simple poles
with unit residue, and any zero of F(z) is a singularity of F(z) + F ′(z)/F(z). Only
the simple poles 1/(z − a) cancel out, but zeros of F(z) now appear as first degree
poles because of the second term, the logarithmic derivative. For F(s) = ζ(s), the
fact that ζ(s) has no finite singularity other than the pole 1/(s − 1) would mean that
the singularities of ζ ′(s)/ζ(s) + ζ(s) must be due only to the zeros of ζ(s).

Formally, differentiation of the logarithm of the infinite product in (22.9) gives,
using the series expansion log(1 − x) = −x − x2/2 − x3/3 − · · · :

−ζ ′(s)
ζ(s)

=
∑

ν

log p

ps
+

∑

p

log p

2p2s
+

∑

p

log p

3p3s
· · · (22.11)

The expansion is valid for σ > 1. For 1
2 < σ , all the series on the right except the

first are together dominated by 2� log n/n2σ = −2ζ ′(2σ). Therefore, the discussion
by means of ζ(s) + ζ ′(s)/ζ(s) reduces to showing that the Dirichlet series
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∑ 1

ns
−

∑ log p

ps
, p, n ≤ x → ∞ , s = σ + i t , (22.12)

converges for all σ > 1
2 . But we have already shown that (22.1), which is the form

assumed by (22.12) on the real axis, converges for all σ > 1
2 . Hence, by the known

property of such Dirichlet series, (22.12) converges uniformly in any half plane to
the right of σ = 1

2 . This proves that ζ(s) + ζ ′(s)/ζ(s) has no finite singularities for
σ > 1

2 . Therefore, no zeros of ζ(s) can occur in 1
2 < σ , proving RH :

Theorem 5 The Riemann zeta-function, defined for σ > 1 as in (22.9), has all its
non-trivial zeros on the vertical line σ = 1

2 .

The corresponding theorem for the Dirichlet L-functions is proved in analogous
fashion. The consequences are well known [7].

Possible convergence of (22.1) on or to the left of σ = 1
2 would not affect RH

because singularities of ζ ′(s)/ζ(s) occur in any case on the line σ = 1
2 from the

second series on the right in (22.11). Moreover, the function Q(s) = −� log p/ps

is�μ(n)ζ ′/(ns)/ζ(ns) in σ > 0, so has poles on σ = 1
2 . Hence (22.1), the Dirichlet

series for ζ(s) + Q(s), cannot converge beyond the critical line.
The probability approach allows some conclusions to be drawn quickly without

the intermediacy of RH . For example, the Poisson distribution for primes covered by
unit-image intervals, and the famous lawof the iterated logarithm allows a probability
estimate of |π(x) − li(x)|. This, under the assumption of independence for primes
in the given intervals, would exceed with probability arbitrarily close to unity, the
magnitude (1 − δ)

√
2y · log log y. The probability would be arbitrarily close to zero

if the−δ be replaced by+δ. With y ∼ x/ log x , it is seen that the original Littlewood
result is not quite the best possible.

The zeros of li(x) − π(x) appear as recurrence times (on the y-scale) for the
equilibrium of a Poisson variate. The distance between consecutive primes amounts
to the ‘waiting time’ on the y-scale and has a distribution given by dP = e−μdμ. It
follows that for any φ(n) = o(log n) and infinitely many primes p, the separation
from the next primewill exceed φ(p) log p. Systematic use of the Poisson distribution
would eliminate Theorem1 altogether, but would not bring out the basic fact that
Theorem2 is independent of any reasonable choice of covering intervals. Finally, RH
may be generalized to Dirichlet series whose exponents (our log n) form a complete
Abelian semigroup under addition with a basis set of generators, our log p. But no
generalization of RH exists if the product corresponding to

∏
(1 − 1/ps) converges

in the half plane σ > 0. This covers the case where the generator basis is finite and
should explained the negative Bourbaki–Weil result for Abelian fields.
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Chapter 23
The Sampling Distribution of Primes

D.D. Kosambi, P. O. Deccan Gymkhana, Poona

This paper was communicated to the journal by H. S. Vandiver, number theorist and
fellow of the US National Academy of Sciences. The paper was reviewed by J. B.
Kelly who felt that the “exposition is rather sketchy; in particular, the reviewer could
not follow the proof of the crucial Lemma 4”. By the time this paper was submitted
to the journal, DDK was no longer at TIFR and also not formally associated with
any other academic institution, hence the post office address.

The real half-line x ≥ x0 ≥ 2, uponwhich the integers aremarked off unit distance
apart, is mapped onto y ≥ 0 by the transformation y = ∫ x

x0
dt/log t = li(x) − li(x0).

Cover the whole of y ≥ 0 by a sequence of intervals, each of length u > 0, fixed. The
nth such interval will be (n − 1)u ≤ y < nu, and πn(u) = π(x0, u; n) denotes the
number of primes in its x-image. We show that the primes in an arbitrary connected
stretch of the y-line have a Poisson distribution in the sense of probability theory, the
sequences πn(u) constituting statistical samples thereof. Hereafter, take all positions
of the initial point (on the y-line) as equally likely and x0 neither restricted nor
specified otherwise.

Textbook results in number theory and probability theory are taken for granted.
In particular,

Lemma 1 The number of primes p ≤ x is ∼ li(x) ∼ y (for any x0, as x → ∞). If
ϑ(x) = ∑

log p, p ≤ x, then ϑ(x) ∼ x. If pk be the k th prime in order, starting
from p1 = 2, then pk ∼ k log k.

The first of these is the prime number theorem1, and the other two are equivalent,
as is well known.
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Lemma 2 For p ≤ x,
∏

(1 − 1/p) ∼ e−γ / log x; γ , Euler’s constant.

This is a classical theorem of Mertens2.

Lemma 3 If for any set Z of primes,
∏

p = x, p ⊂ Z, then
∏

(1 − 1/p)−1 is less
than C log2 x, p ⊂ Z, x large.

Proof The product of (1 − 1/p)−1 will be greatest for any given number of primes
if the primes are 2, 3, · · · in sequence and all distinct. Then, log x = log

∏
p =∑

log p by hypothesis, p ⊂ Z . Lemma 1 says that packing the primes at the begin-
ning of the sequence, max p ∼ ∑

log p, and here,
∑

log p = log x . By Lemma 2
(the product being not greater than in this case)

∏
(1 − 1/p)−1 < C log2 x , p ⊂ Z .

Q.E.D. �

Lemma 4 The proportion of u-intervals for which π(x0, u, n) ≥ 2 is less than cu2

for small u, regardless of x0, if x is large.

Proof The sieve of Viggo Brun leads to the theorem:3 The number of primes p ≤ x
forwhich p + b is also a prime is< (cx/ log2 x)

∏
(1 − 1/p)−1, p|b. The u-intervals

containing two or more primes must contain one such pair p, p + b for some b ≤
u log x approximately. Not all b, however, are admissible, as no odd b will do for
p > 2. The number of admissible b’s within the same u-interval is easily seen to be
not greater than the number of integers in (the x-image of) the covering interval prime
to N = 2.3 · · · p, provided N ≤ u log x . Clearly, p + b not a prime to N cannot be a
primeexcept in the interval that begins from x0 = 2,whichmaybe ignored;moreover,
such numbers are arranged cyclically modulo N , which, being about the length of
the interval on the x-axis, cannot be materially changed in the vicinity of any given
x . By Lemmas 2 and 3, the admissible set will contain less than c′u log x/ log3 x
members, for large x . The bound for

∏
(1 − 1/p)−1 for primes dividing any b in

the interval cannot ultimately be greater than c′′ log3 x . Finally, the total number of
covering intervals in the range is∼ x/u log x . The estimate therefore is not in excess
of (cx/ log2 x) (c′u log x/ log3 x) (c′′ log3 x) (u log x/x) = c̄u2. Q.E.D. �

Lemma 5 If f0, f1, f2, · · · be the relative frequencies,
∑

fi = 1, with which small
u-intervals containing 0, 1, 2, · · · primes occur in a large range of x, then f1 =
u + o(u).

Proof Corresponding to the theorem cited in the proof of Lemma 4 is an extension
by P. Erdős:4 The number of primes p ≤ x for which all the numbers p + b1, p +
b2, · · · , p + br , 0 < b1 < b2 < · · · < br are also primes is less than

(cx/ logr+1 x)
∏

p|E
(1 − 1/p)−(r+1−ω(p)) , E =

r∏

i=1

bi

∏

1≤i<k≤r

(bk − bi ) (23.1)

where ω(p) is the number of solutions mod p of m(m + b1) . . . (m + br ) ≡ O(mod p).
From this point, the reasoning of the previous lemma holds, except that the num-
ber of choices for the set of r b’s will not exceed the binomial coefficient nCr , with
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n = c log x/ log3 x and
∏

p, p|E cannot exceed (u log x)m , with m = r2(r − 1)/2
(an overestimate which we shall not stop to refine). The upper bound, for small
u, is therefore cur+1/r ! for each r , and the same c may be taken throughout,
quite obviously. For any u, the contribution of f2, f3, · · · to the expectation (mean
value, average) of primes per covering interval may be assessed as not exceed-
ing cu2eu . The mean value is (0. f0 + 1. f1 + 2. f2 + · · · ), so that f0 contributes
nothing. Any term from f2 onward, as assessed above, will contribute O(u2). The
total contribution of those terms will be O(u2eu), as may be seen from the upper
bounds just given above. Now, the mean value, by the prime number theorem, is
exactly u, over the whole y-line, no matter what the x0. It follows that for small
u, f1 = u + O(u2). Q.E.D. �
Theorem With all x0 equally likely, the probability that exactly r primes will lie in
the x-image of 0 ≤ y < t is e−t tr/r ! (the Poisson distribution, with parameter t).

Proof Given x0, there is no question of any probability; the entire sample is com-
pletely defined for the whole y-line. But under the present conditions, the irreg-
ularity of primes permits the use of the concept “probability” the “event” being
0, 1, 2, · · · primes lying in the interval 0 ≤ y < t . These events are exhaustive and
mutually exclusive. The conditions for a Poisson process are given by the following
postulates:5 The probability for one prime in t ≤ y < t + h for small h is h + o(h);
the probability for more than one prime in the small interval is o(h); and the prob-
ability for the small interval being totally void of primes is 1 − h + o(h). Lastly,
none of these are affected if it is known that k primes have actually occurred in
0 ≤ y < t, k = 0, 1, 2 . . ..

These postulates are obviously satisfied in view of our lemmas above. Lemma
4 says that the probability (approximated arbitrarily closely by the corresponding
frequency) for more than one prime in the small interval is o(h). Lemma 5 gives
the probability for a single prime as h + o(h). Since these two cases and that of
the h-interval being void of primes are mutually exclusive and exhaustive, the third
postulate is satisfied. Finally, the lemmas hold regardless of x0 and t , over the whole
of the y-line, y > t . Moreover, the number of primes known to have occurred in
0 ≤ y < t does not in any way affect the frequencies or probabilities or permit x0 to
be determined even approximately. (It is possible to gomuch further in this direction,)
for not even the precise knowledge of the points t1, t2, · · · at which these primes may
actually have occurred changes the situation. If it could then be said that there must
exist a prime in t ≤ y < t + h, no matter how small the h, it would follow that the
k + 1 st prime could be located from the positions on the y-line of the first k, for
all large primes and some k. This implies a recurrence relation between the primes;
no such relation is known, and an algebraic one of any finite degree is demonstrably
impossible. There is no finite upper bound for the gap between consecutive primes
on the y-line6 and no known positive lower bound. On the other hand, it is known
that subsequences of primes (of positive density) exist7 for which the y-distance
between consecutive primes is dense over a certain positive range, whose precise
termini are not known. This shows the impossibility of using any but probability
methods. Q.E.D. �
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The Poisson distribution of our theorem may be quickly derived as follows. For
the argument, allow x to be any point (with equal likelihood) of a range R(x) ≈ xα ,
38/61 < α < 1. It is known (Ingham, A. E., Quart. J. Math., 8, 255–266 (1937))
that the prime number theorem holds asymptotically over R(x) as x → ∞. Further,
let I (x) be a randomly selected interval within R(x) of y-length t , hence containing
∼ t log x integers regardless of position (since the variation in log x is negligible
over R(x)). No matter where I (x) is located, alternate integers in it must be even,
four out of every six (regularly arranged) divisible by 2 or 3, etc. This regularity of
deletion by the sieve of Eratosthenes extends to all the smallest primeswhose product
2.3.5 · · · p = N ≤ t log x . About te−γ log x/ log3 x = tg(x) integers in I (x) will
survive. Any p not a factor of N need not be the smallest prime factor of a surviving
integer in I (x), and a prime larger than t log x need not even have a multiple in I (x),
so that one of the “survivors” being deleted by any such prime is now a matter of
chancewith probability 1/p. By the primenumber theorem, the expectation of primes
in I (x) is exactly t (in the limit); hence, the compound probability for primality of
a “survivor” is asymptotic to 1/g(x). Moreover, if some k of these survivors be
tested and found composite or prime (without revealing their numerical values), the
knowledge does not modify the probability for primality for the rest. In all this, x is
merely a background parameter, whose principal use is to furnish relativemagnitudes
of the various functions involved, as x → ∞.

It follows that if Pr be the probability for precisely r primes in I (x), then in the
limit, P0 = lim(1 − 1/g)tg = e−t . Using textbook definitions and procedures, the
limit P1 = lim(1 − 1/g)tg−1(tg)(1/g) = te−t , and so on, with limit Pr = e−t tr/r !
But any limiting distribution over R(x) as x → ∞ will obviously be the distribution
over the entire x-line, here the Poisson distribution with parameter t , as before.
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Chapter 24
Statistical Methods in Number Theory

D.D. Kosambi, Poona

Although no longer affiliated with the TIFR, DDK persisted in his prime obsession,
repeating and refining the basic arguments set forth in his earlier papers. The Hun-
garian mathematician A. Rényi reviewed this paper in Mathematical Reviews and
noted that “Neither in this paper nor in his previous paper did the author succeed
in proving his hypothesis, nor in deducing from it the Riemann hypothesis”. The
“Kosambi hypothesis” (see the discussion on pages 7–9) is, according to Rényi
“even more difficult than the problem of the validity of the Riemann hypothesis. As a
matter of fact, no obvious method exists to prove the author’s hypothesis even under
the assumption of the Riemann hypothesis.” Theorem1 of this paper, therefore, is
not proven.

24.1 Basic Results

The function ζ(s) of a complex variable s = σ + i t is defined by the Dirichlet series
and the Euler product:

ζ(s) =
∑ 1

ns
=

∏ (

1 − 1

ps

)−1

; (24.1)

n, integer; p, prime; σ > 1; and by analytic continuation over the rest of the complex
domain. It is known [1] that ζ(s) has no finite singularity except the simple pole
1/(s − 1). It has no zero in σ > 1 and only the trivial zeros s = −2,−4 . . . in σ < 0.
Infinitely many of its zeros lie on the vertical line [2] s = 1

2 + i t . The Riemann
hypothesis (= RH) is that all non-trivial zeros of ζ(s) lie on σ = 1

2 .
Let π(x) be the number of primes p ≤ x and li(x) the integral

∫
dt/ log t over

2 ≤ t ≤ x . Then it is further known [3] that the range of variation of π(x) − li(x)
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must include ±xa infinitely often as x → ∞, where a is the greatest abscissa of any
zero of ζ(s). It was proved by J. E. Littlewood [4] that there exists a number b ≥ 0
such that the value of π(x) − li(x) obeys each of the inequalities:

π(x) − li(x) > b
√
x
log3 x

log x
;

π(x) − li(x) < − b
√
x
log3 x

log x
, (24.2)

infinitely often as x → ∞. Here, log2 x = log(log x) and log3 x = log(log2 x), all
logs to the base e.

Starting from the initial point x0 > 2 and any fixed but arbitrary u > 0, the real
half-line x ≥ x0 is transformed into y ≥ 0 and covered by right-open intervals In as
follows:

y = li(x) − li(x0) ; In : (n − 1)u ≤ y < nu . (24.3)

The number of primes in the x-image of In is denoted by πn(u) or π(x0, u; n). The
prime number theorem [5]: π(x) ∼ li(x), amounts to �πn(u) ∼ Nu, summation
over 1 ≤ n ≤ N → ∞. This gives:

Lemma 1 RH is true if and only if, for every ε > 0 and some u > 0:

N∑

1

π(x0; u ; n) − Nu = O(N
1
2 +ε) . (24.4)

It is essential to show that the totality of distinct sequences {π(x0, u; n)} is equiva-
lent to the number of points on a continuous line segment. This will enable a suitable
measure to be introduced. To this end, the following lemma is essential:

Lemma 2 There exists at least one u > 0 such that the number of distinct sample-
sequences {πn(u)} obtained by shifting the initial point x0 through a single covering
interval of y-length u can be put into a 1-1 correspondence with the points of 0 ≤
t < 1.

Proof Suppose that, for some given u and x0, the same sequence {πn(u)} is obtained
when the initial point is shifted to the right through a y-distance w. It would then
follow that the number of primes gained by any interval at the right is precisely
equal to that lost at the left during the shift. Therefore, every w-interval, separated
by the y-distance u − w from the next on either side, must contain the same number
of primes. Known separation theorems [6] by P. Erdős say that there exist infinitely
many gaps between consecutive primes, larger than any preassigned y-length. Hence,
these w-intervals must be totally void of any primes. �
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The results of Ricci [7] show, on the other hand, that there exist subsequences of
primes such that the y-distances between consecutive primes are dense over some
nonzero interval (1 − α, 1 + β). If α = 1, then take any u < 1 + β. Otherwise, take
an integer k so large that (1 − α)/k is less than α + β, and take (1 − α)/k = u.
In either case, the Ricci density theorem shows that w must vanish. Thus, for the
chosen u (and there are infinitely many such choices, obviously), there must be as
many distinct sequences as points of 0 ≤ t < u; this can be projected upon the unit
interval 0 ≤ t < 1, to complete the proof of the theorem (which holds in fact for all
u > 0).

Lemma 3 If M = M(z) be the product of all primes p ≤ z and γ is Euler’s constant,
then the number of integer relatively prime to M in any range A ≤ n < A + R is
asymptotic to Re−γ/ log z as z → ∞, provided R/ log z is large compared to 2π(z),
where π(z) is the number of primes p ≤ z.

Proof This is essentially the form in which the Sieve of Eratosthenes is to be used.
The integers prime to M are cyclically arranged modulo M with symmetry about
the middle of any cycle kM to (k + 1)M . If A = kM + 1, the number out of the R
consecutive integers, not divisible by any prime p ≤ z, is given by:

R −
[
R

pi

]

+
[

R

pi p j

]

−
[

R

pi p j pk

]

+ · · · ; pi , p j , pk �= . (24.5)

The square brackets denote the largest positive integer in the enclosed quotient, or
zero. The primes are to run through the complete set p ≤ z. Since no remainder can
be as great as unity, the difference when the brackets are removed will not exceed
1
2 (1 + 1)π(s) in absolute value. For any A, we can regard the result as the sum of
difference of two expressions as in (24.5). The asymptotic value of R

∏
(1 − 1/p)

which is the value of (24.5) with brackets removed is Re−γ/ log z by the classic
theorem of Mertens [8]. �

24.2 Lemmas on Measure

Definitions.—A proper frequency distribution is furnished by a set of real numbers
fi > 0 such that � fr = 1. If A0, A1, A2, . . . be an indexed set of distinct attributes,
an infinite sequence thereof Ai A j Ak · · · (not necessarily all distinct) represents a
sample, or point is sample-space. A sequence {Ar } wherein the limiting frequency
with which a particular An occurs is, for every n, the fn above has that distribution.
By probability is meant ameasure function obeying the usual postulates, defined over
the whole sample-space or over a subset thereof, such that the total measure of the
universe of definition is unity. The probability measure of an event (subset of sample-
space) is indicated by the letter P . The nth term of a sequence has the designation Xn

and P(Xn = A j ) is the probability measure, if it exists, of the set of sample-points
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where A j appears as the n-the term of the corresponding sequence. The joint prob-
ability of a compound event is similarly defined, e.g., P(Xi = A j ; Xr = Ak . . .).
A sample-sequence is normal if every finite combination Ai A j Ak · · · occurs with
frequency equal to the product of the individual component frequencies. Correspond-
ingly, the events Xi = A j , Xr = Ak . . . are said to be independent in probability if
for any number of such events the compound probability is the product of the com-
ponent individual probabilities.

Lemma 4 Given a set of attributes A0, A1, A2, . . . and a corresponding proper
frequency distribution. Then there exists a mapping whereby: (1) The totality of
sample-sequences is mapped in a 1-1 manner onto the right-open unit interval 0 ≤
t < 1. (2) TheLebesguemeasure on themap is equivalent to probabilitymeasure over
the sample-space. (3) Almost all sample-sequences are normal with the given basic
frequency distribution and all the events Xi = A j are independent in probability.

Proof The actual map is constructed as follows. Divide (0, 1) into right-open
subintervals by marking off successive points t0 = f0, t1 = f0 + f1, . . . , ti = fi +
ti−1, . . . Then subdivide the subintervals (0, t0), (t0, t1) . . . in the same manner,
each in proportion to its total length. And so on, step by step. For the sequence
Ai A j Ak, · · · , take first the subinterval immediately to the left of ti in the first sub-
division. Then in the next subdivision of this selected interval, that to the left of the
point marked off with the subscript j ; and so on, taking the next stage of subdivision
for each successive subscript. The sequence of nesting intervals obviously converges
to a single point in (0, 1). Conversely, to each such point there corresponds just one
sequence of subscripts, provided a suitable convention is made (to avoid duplication)
about sequences terminating in an infinite succession of zeros or of the final index
r when the total number of frequencies is finite and equal to r + 1. The properties
listed follow obviously, with this mapping. �

The well-known theorem of Borel [9]: almost every number in (0, 1) is normal
in a “decimal” expansion to any base becomes a special case of this lemma when
the number of attributes is finite, with equal frequencies. The proof, for finite or
infinitely many basic frequencies, may be derived from the law of large numbers
[10] in probability theory.

Lemma 5 Given a sample-space where the basic frequencies have a Poisson dis-
tribution with parameter u, the sample-sequences are normal, and the attribute Ar

assigned the numerical value r . Then almost all points of the sample-space obey the
inequalities:

−(1 + ε)
√
2Nu log2 Nu <

N∑

1

(Xi − u)

< (1 + ε)
√
2Nu log2 Nu , (24.6)

with at most a finite number of exceptions as N → ∞, for every ε > 0.
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Proof This is the upper law of the iterated logarithm, abbreviatedUL I L . The Pois-
son distribution has fi = e−nui/ i !. The standard proof [11] for binomial distribu-
tions extends immediately to the Poisson, and hence need not be repeated here. The
canonical mapping of Lemma4 is to be used. �

Lemma 6 UL I L holds with unit probability for all ε > λ − 1 > 0 if the Xi of
Lemma5 have the Poisson distribution with parameter u and a joint distribution such
that: (1) The sumof any finite number k of consecutive Xr has the Poisson distribution
with parameter ku. (2) The probability that |�k

1(Xr − u)| > λ
√
2Nu log2 Nu for

some λ > 1 and at least one k ≤ N does not exceed the corresponding probability
when the Xr have distributions independent in probability; for all large N.

Proof Lemma5 does not depend upon any particular mapping, nor is independence
necessary, though it suffices. The first Borel–Cantelli lemma [12] upon whichUL I L
depends does not require independence. The two conditions given here suffice for
the textbook proof of Lemma5 cited, [11] as may be verified by inspection. �

24.3 Applications

In what follows, only the sample-sequences {π(x0, u; n)} are considered. The
attribute Ak will be taken to have presented itself whenever a member of such a
sequence has the value k. Again, Xr is simply the numerical value of the r -th mem-
ber of such a sequence. Then we have:

Lemma 7 The sequences {πn(u)} have the Poisson frequency distribution with fr =
e−uur/r !, in the sense of unit probability measure.
Proof This follows from known [13] results and could be proved again from the fol-
lowing considerations: As the number of trials (integers tested per covering interval)
increases, the probability of the event (of a number being prime) tends to zero, but
nevertheless the expectation (primes “expected” per interval) tends to u; the prob-
ability is unaffected by the results of any number of previous trials, or at worst the
change in the probability is an infinitesimal of higher order than P itself. This last
point is proved in the next lemma; the rest are obvious. �

There now arise three possibilities:

(A) The sequences {πn(u)} are independent in probability, in the sense that the
actual values of any finite number of X ’s will not determine x0, nor affect the
probability for a given value of any other Xr to occur. In that case, UL I L of
Lemma5 and therefore Lemma1 would hold; hence, RH is true. In addition,
the lower law of the iterated logarithm would also apply, which would enable
the Littlewood inequalities (2) to be improved with the bounds replaced by
±(1 − ε)

√
2x log x log2 x .
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(B) The sequences may not be independent, but the effect of any dependence upon
the sums of consecutive member may be compensatory. That is, deviations in
the sums from expectation might be no greater (in probability) than in case A.
It suffices if the probability measure of the set |�πn(u) − Nu| > a (summation
over indices 1 to N ) does not exceed that in the caseA.ThenLemma5 andUL I L
could still hold, but (2) cannot be improved and theLittlewood inequalitiesmight
be the best possible.

(C) The effect of dependence (if any) might be cumulative. That is, the occurrence
of an excess from expectation in either direction, for sums of consecutive πn(u),
might imply a similar excess in the same direction somewhere else in the same
sequence (positive autocorrelation). In this case,UL I L need not hold, nor RH .

The sieve of Eratosthenes, as will be seen, excludes C.

Lemma 8 The terms of a sequence {πn(u)} are asymptotically independent in prob-
ability; moreover, the effect (if any) upon sums of consecutive terms of any deviation
from independence cannot be cumulative, but at most compensatory.

Proof In the discussion that follows, consider only such covering intervals as lie in
the range (x/2, x). This suffices because:

(i) The prime number theorem (and hence also the Poisson distribution) is asymp-
totically valid over such lengths of the real half-line; in fact, even over much
smaller ranges, (x, x + xa) if a > 38/61, as is known [14].

(ii) The proof and applications of UL I L may be carried through with successive
ranges of order (Abk, Abk+1), with any fixed b > 1 and k = 1, 2, 3, . . . , so that
there is no loss of generality involved. In the discussion, however, x is only
to be regarded as a large background parameter whose sole use is to estimate
the relative magnitudes of various arithmetic functions that appear. If x were
specified exactly, there would be no question of probability, as everything would
be exactly known. �

In the sieve of Eratosthenes, the multiples of 2, 3, 5,. . . are successively deleted;
at each stage, the smallest number left is the next prime to be used in deletion. This
way, every prime and only primes are obtained, as a succession of smallest survivors
of the deletions. Every integer is deleted by its smallest prime factor, and once
deleted, so remains regardless of how many other primes divide it. If this division
were independent (in the sense of probability theory), there would be nothing left to
prove, and alternative A above would be the only one left. Lemma3, however, says
that primes p ≤ h, where h is the length of an interval In hence h ≈ u log x have
multiples in every Ir and act independently (with probability 1/p each) over the given
range, or indeed any range of order not less than xe/ log2 a . Beyond this, it is not possible
to go. The larger the primes, the less chance of several of them dividing an integer in
the range. If independence in division were present, the Mertens theorem [3] would
have given us for the prime number theorem 2e−γx log x , instead of x/ log x . This
is taken by some to show that “probability methods do not apply in prime number
theory,” but is in fact irrelevant. The independence in probability of the number of
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primes in various πn(u), specified only by the index, not with a priori reference
to the number of primes contained nor by knowledge of the initial point x0, could
still be a result of the sieve. The crucial question is: Given that a certain number of
primes have actually occurred in a given stretch (i.e., a given number of consecutive
In), what can then be said of the chances of primality anywhere else as affected or
unaffected by this occurrence?

Directly, we are concerned only with deletions by primes p ≤ √
x . The small

primes act independently over the range, by Lemma3, as noted above. The only
effect that the occurrence of a composite number can have is that its prime factors
will not operate in the immediate neighborhood; for every such inoperative prime, the
probability will be locally enhanced by a factor 1/(1 − 1/p). But a certain number of
such dividing primes must become inoperative on the average over any stretch, while
the probability for primality and expectation are always given overall by the prime
number theorem. This means that unusually many inoperative primes may cause a
local enhancement of the probability for primality—unusually few, a lowering of the
probability for primality.Otherwise, nothing can be said. For deleting primes between
h and x−1/ log2 z , the inoperative primes must be greater than x1/ log2 z and the local
factor can be calculated by packing the maximum possible a number of prime lost as
close to x1/ log2 z from above as possible. The extreme factors are thus easily shown to
be bracketed by (1 ± log22 x/ log x). For deleting primes not exceeding x1/k , k > 2
fixed, the loss or gainwill be not greater in either direction than (1 ± k log2 x/ log x)/.
In each case, the sign makes the extreme factors compensatory, while smaller factors
in any case cannot be cumulative. Finally, for stretches of length

√
x or more all

the deleting primes have multiples. Unusually many deletions mean unusually many
factors higher than

√
x ; again, the tendency cannot be cumulative, and the foregoing

shows that the probability is changed by very little; asymptotically, not changed at
all.

Theorem 1 (RH) No sample-sequence {π(x0, u; n)} can lie within the exceptional
set of probability measure zero with respect to the ULIL of Lemma6, for any ε > 0.
Whence all nontrivial zeros of ζ(s) lie on the vertical line s = 1

2 + i t .

Proof Starting with any x0 and some fixed u derived from Lemma2, map all
sequences with initial points in I1 onto (0, 1). The entire coset to be obtained by
the displacement of any initial point in I1 by an integral number of intervals in either
direction is also mapped upon the same point of (0, 1). All members of a coset have
clearly the same limiting-frequency properties. Probability measure is now taken as
Lebesgue measure over the coset map on (0, 1). The probability can be calculated as
the Lebesgue integral of the corresponding frequency. Thus, the basic distribution is
Poissonian with parameter u, by Lemma7. The distribution for k consecutive cov-
ering intervals amounts to that with covering intervals of length ku and is therefore
Poissonian with parameter ku. As for the condition (2) of Lemma6, we note that the
expectation per stretch of length ku on the y-line is ku primes, and that, for large
x , it is physically impossible for the deviation from this expectation to be as much
as

√
2Nu log2 Nu, if k is small enough; e.g., the total stretch covered by ku consec-

utive intervals does not exceed
√
x log x . Here, the P is zero hence less than with
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total independence, as one would expect from the compensatory effect found above.
Whatever the extreme actually found in stretches of this order, one can repeat the
arguments of Lemma8. Thus, condition (2) of Lemma6 is also satisfied by virtue of
the non-cumulative effect of the sieve, and for every ε > 0. Therefore,UL I L applies
to almost all sample-sequences {πn(u)}. For large N , the partial sums of the first N
terms of any two sample-sequences whose initial points lie within the y-distance u
of each other cannot differ by more than u log Nu. Therefore, either all the sample-
sequences satisfy UL I L , or none. The latter case is excluded, as the measure of the
exceptional set would then have to be unity instead of zero. This proves the theorem
and the Riemann hypothesis. �

Theorem 2 The non-trivial zeros of all Dirichlet L-functions likewise lie on the
vertical line s = 1

2 + i t .

This is the extended RH or the Piltz conjecture. The result is merely stated
without proof, because of the same methods and arguments as above suffice. The
consequences of these two theorems are given in books on specialized function
theory [2] and advanced number theory [3]. Improvement of the inequalities (2) by
the present methods would depend upon LL I L and hence the second Borel–Cantelli
lemma, which requires independence in probability.

The Poisson distribution of Lemma2 allows many new results to be obtained
directly. For example, gaps of y-length t or more between consecutive primes have
the distribution function e−1. However, it should be noted that the Poisson distribution
is not essential for RH , which can be proved without any distribution at all, merely
by taking the Poissonian as a bounding distribution for estimating the deviations
of sums from expectation. Also, the Poisson distribution would not follow directly,
granted RH . In other words, Lemma8 is more important than Lemma7.

Counter-examples of a fairly complicated nature could be produced which do not
affect Lemma7 nor the inequalities (2) but for which RH is false. These are formed
by adding pseudo-primes and by striking out (in suitable stretches) sufficiently “thin”
sequences of the primes. Such counter-examples do not affect our arguments because
such changes in the series of prime numbers within the positive integers will block
sieve deletion, invalidate the Euler product, and destroy unique factorization—all of
which are essential to RH (as they are to our present arguments).

The result also indicates that the zeros of ζ(s) on the vertical line σ = 1
2 should

have a distribution of their own, presumably also the Poisson distribution. The proper
transformation here must replace the coordinate t on the vertical line by the integral∫
log t dt to the upper limit T/2π. The results will be considered elsewhere.
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Chapter 25
Probability and Prime Numbers

S. Ducray

This paper, received in July 1964 and marked as being communicated by Sir C.V.
Raman, then President of the Indian Academy of Sciences is one of four that DDK
wrote under the Ducray pseudonym. One other paper was submitted to the same
journal, and two were sent to the Journal of Bombay University. The paper was
reviewed in Mathematical Reviews by J. Kubilius, a well-known number theorist and
probabalist who noted that he “could not follow the proof of the cardinal Lemma3.”

This note sets up a sample-space connected with the infinite succession of prime
integers. The properties of this sample-space cast fresh light upon some fundamental
problems of analytic number theory.

Definitions—Let an arbitrary denumerable set of positive real numbers (not nec-
essarily integers) be given: 0 < a1 < a2 · · · with an → ∞ as n → ∞. For a fixed
length u > 0, a covering of the real half-line y > 0 is given by the sequence of inter-
vals I1, I2, . . . where In : (n − 1) u ≤ y < nu. sn = s(u, n) means that the number
of points with co-ordinates y = ai contained in In . Thus, {sn} provides a sample-
sequence for the particular covering which begins from y = 0. Other sequences
similarly obtained by beginning the covering sequence from some other point of
y > 0 or (what is the same thing) by subtracting the corresponding value from each
ai . Displacement of the initial point through an integral multiple ku of u gives the
same sequence begun from the (k + 1)st term. We shall say that two sequences are
essentially different if they do not coincide after a finite number of terms of one are
omitted.
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Lemma 1 If the sequence {ai } has the properties: (a) that there are infinitely many
gaps ar+1 − ar > 2u and (b) the ai are Gleichverteilt modulo u, then the number
of different sample-sequences obtained by displacement of the initial point through
distances not exceeding u can be mapped in a 1–1 manner upon the right-open unit
interval 0 ≤ y < 1.

Proof Suppose that, throughout some displacement w < u, the same sequence {sn}
is obtained. Then the number of points y = ai lost to the left by a displaced interval
must be precisely equal to that gained from the right, hence the same for all intervals.
But the gaps ensure that no matter where the initial point be taken, there are always
intervals with zero gain and loss. Hence, the number gained or lost must always be
zero throughout the displacementw > 0. This means a regular gap of lengthw in the
numbers ai as reduced modulo u, which contradicts hypothesis b. Therefore, w = 0
and there is a different sample-sequence for every point of (0, u], which interval may
then be projected upon (0, 1]. �

Lemma 2 If, in Lemma1, condition b be replaced by requiring only that the set of
cluster-points of {ai } modulo u be of positive measure, it still follows that a sub-set
of the distinct sample-sequences {si } obtained by displacement of the initial point
through not more than one u-interval may be mapped in a 1 − 1 manner upon (0, 1].
Proof Now, it may be possible to obtain the same sequence for some positive dis-
placement w, as gaps among the cluster points are permitted. Let w1 be the limit
superior of such displacements, beginning from y = 0. If, thereafter, the cluster-
points modulo u are dense throughout some sub-interval (w,w1 + h), there will
be a different sample-sequence for every point of this sub-interval, and the theo-
rem is proved. If not, the cluster-points near w can be covered by an interval of
arbitrary small length ε > 0, and we proceed to the next cluster-point outside this
small sub-interval, say w2. Again, cover this with an interval ε/2, then ε/4 and so
on, if at no stage is a finite interval of density attained for the cluster points. But
then the set of cluster-points modulo u must be of measure zero, as their total mea-
sure cannot exceed 2ε, arbitrarily small. This proves the lemma by contradicting the
hypothesis. �

Definition In what follows, we take 1, 2, . . . , n, . . . as the positive integers marked
off at unit intervals on the half-line x > 0. Let Li(x) be the integral

∫
dt/ log t

to the upper limit x . Take y = Li(x) − Li(x0) for any x0 ≥ 2. Our set {ai } is the
image-set on this y-line of the prime numbers x = 2, 3, 5 . . . p . . .. Every covering
is always to begin with y = 0, but the initial point may be varied by displacement
of x0. Thus, sn = s(x0, u; n) is the number of primes included in the x-image of
In : (n − 1)u ≤ y < nu.

Theorem 1 There exists at least one u > 0 such that a subset of the different sample-
sequences (of prime images) {sn} obtained by displacement of the initial point con-
tinuously through the image of a single covering interval may be mapped in a 1 − 1
manner upon (0, 1].
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Proof Condition a of Lemma1 is satisfied by the Erdős [1] gap-theorem. On the
y-line, there are infinitely many gaps greater than f (y) between the images of con-
secutive primes, where f tends rather slowly to infinity with y; hence the gaps are
greater than any Au, for arbitrary constants A and u. Condition b of Lemma1 is
apparently satisfied by a whole range of u-values, according to a result of Ricci [2].
However, P. Erdős [3] has pointed out that the result actually proven shows only the
existence of a positive measure for the set of cluster-points on the y-line (modulo
any u > 0) for the images of the primes. This in any case satisfies the requirements
of Lemma2, which suffices. �

Hereafter, take u to be one of the particular values under Theorem1. Then make a
canonical mapping onto (0, 1] of (almost all) covering sequences with initial points
in some one fixed u-interval. Every sequence obtained by displacement of the initial
point through any integral number of converting intervals in either direction is to be
mapped on the same point of (0, 1]. Every sequence thus mapped upon a given point
of (0, 1] has then the same limiting frequency properties. That is, if the number of
intervals of the sequence covering 0, 1, 2, . . . , k, . . . image of primes reaches some
limiting proportion fk for one sequence associated with a point, it does so for every
sequencemapped upon that point.Random choice of a sequence is defined as follows:
first, all points of (0, 1] have an equal chance of being chosen (uniform distribution
on the map). Then, for a given point of the map, the actual sequence may be begun
from any term whatever, counting that term as s1, the next as s2, and so on. This
eliminates x0 altogether from consideration, and we may speak only of properties of
the sequences associated with points of the canonical map, using Lebesgue measure
on the map for probability.

In this situation, probability concepts apply to the {sn}.
Theorem 2 For all sequences {sn} defined as above, the mean value (expectation)
is given by E(sn) = u for all n.

Proof This is an immediate and obvious consequence of the prime number theorem,
and of the method of choice of the sequences, seeing that sn can be the number of
primes covered by any interval of length u anywhere on the half-line y > 0. Here,
the prime number theorem is taken for granted, in the form π(x) ∼ Li(x), where
π(x) is the number of primes p ≤ x . �

There arise two cases, according to whether the random variables si are indepen-
dent in the sense of probability theory or not.

Theorem 3 Should the consecutive sr of the same sequence (chosen at random, as
above) be independent in probability, then the following results are true with unit
probability (i.e., for almost all points of the canonical map).

3.1. The probability for any si assuming the value k is given by P(si = k) =
e−uuk/k for k = 0, 1, 2, . . ..

3.2. If Sn = s1 + s2 + · · · sn, then for any arbitrary ε > 0,

−(1 + ε)
√
2Nu log log Nu < SN − Nu < (1 + ε)

√
2Nu log log Nu
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for all except a finite number of values of N .
3.3. If, in 3.2, ε be replaced by −ε, then each of the two inequalities is false

infinitely often as N → ∞.

Proof The first of these, namely 3.1, is equivalent to a result published by Kosambi
[4] showing the primes on the y-line to be in a Poisson distribution with parameter
u. The result is almost obvious under the given conditions.

With the Poisson distribution and complete independence in probability, textbook
[5] methods lead immediately to the other two results. Of these, 3.2 is the upper law
of the iterated logarithm, and 3.3 the lower law of the iterated logarithm.

However, independence in probability is not easy to prove for consecutive terms of
our sample-sequences. Nevertheless, the sieve of Eratosthenes in its most elementary
form enables the most important and useful part of the theorem, namely 3.2, to be
carried over. This is best done in two stages: �

Lemma 3 For large N and each k, 1 ≤ k ≤ N, the probability of k being the first
index for which |Sk − ku| ≥ √

2Nu log log Nu cannot exceed the same probability
as calculated under the assumption of independence of the si as in Theorem3.

Proof The main idea is that the sieve of Eratosthenes prevents very large deviations
from expectation from accumulating, if it has any effect at all upon independence of
(sn − u) in the sense of probability theory. �

If the position on the x-line were known, the primes in the image of k consecutive
u-intervals would be completely determined. As it is, all that can be said is that there
exists an unknown background parameter x such that Nu ∼ x/ log x for large N .
The primes about x on the x-line are the numbers not deleted by the sieve, i.e., the
numbers not multiples of any primes p ≤ √

x . It is known that a connected stretch
of length h on the x-line can contain at most ch/ log h primes, where c is an absolute
constant. A length ku on the y-line has an image∼ ku log x . Therefore the probability
in Lemma3 is zero for k ≤ C

√
x(log log x/ log x)3/2, using the asymptotic values

for N and x .
The question of independence now appears in the following manner. Given that

r primes have in fact occurred in a specific number of consecutive intervals; are
the chances of some number m of primes occurring in a pre-assigned number of
following intervals increased or decreased thereby, or remain unaffected–with no
other information available. The answer is worked out as follows:

For every composite number that occurs, each prime factor <
√

x cannot act as
deleting prime for the corresponding distance on either side. The prime number the-
orem and the existence of an expectation say that the probability for an integer in
the x-image of a single interval being a prime is 1/ log x , in order. If an unusually
large number of primes turn up in a given stretch, this means unusually few com-
posite numbers, unusually few p ≤ √

x inactivated as deleting primes, and so, if the
probability for primality is affected at all, a slight decrease therein. In the opposite
direction, unusually few primes may mean more than a fair share of deleting primes
dropping out of action; hence, possible enhancement of the probability for primality
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in adjacent stretches. Nothing more can be said, provided of course, that the stretch
where the known number of primes have turned up is of x-length less than

√
x in

order. For greater x-lengths, all deleting primes will delete in the stretch. The most
that can then be said is that unusually many of these multiply each other when the
number of primes left in the stretch is well above expectation; and the opposite when
the number of primes covered by the stretch is far below expectation. In neither case
can the same phenomenon be expected to continue over the next stretch. So, the effect
of dependence, if any, upon Sn − nu may be compensatory, but never cumulative.
This proves the lemma.

Theorem 4 If π(x) be defined as the number of primes p ≤ x, then

π(x) − Li(x) = O(
√

x log log x/ log x) .

Proof With independence in probability, the result 3.2 and the asymptotic values for
N and x prove the result immediately. With dependence, the estimates of Lemma3
still remain valid. This is the key condition for the validity of the upper law of the
iterated logarithm, which is based upon the first Borel-Cantelli [6] lemma and hence
does not require independence (which is only a sufficient condition). Thus, regardless
of the validity of 3.1 and 3.3, the result 3.2 still remains true, and the inequalities
may at most be strengthened, never weakened [7].

Theorem3, however, may admit an exceptional set of measure zero, like any such
unit-probability result. It remains to show that this must be empty for the particular
sample-sequences of primes in covering intervals. Consider two In whose coverings
do not differ by more than u on the y-scale. The number of integers covered by
any such In is not greater than C log n for large n. Therefore, the difference in the
number of primes SN for two different sample-sequences cannot be of greater order
than log N . This does not affect the order of magnitude as given in 3.2 which is
therefore true for all covering sequences without exception. The result as translated
here is thus proved. �

The consequences of Theorem4 are sufficiently well known to number-theorists
and need not be detailed here.
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7. S. Ducray, Normal Sequences, to appear in the J. Uni. Bombay.



Part III
Select Publications of D.D. Kosambi

in Other Languages

DDK’s Publications in Other Languages

Kosambi published mainly in English, but also occasionally in French and German.
An article of his was translated into Japanese and one article appeared originally in
Chinese. The three articles with titles in boldface are reproduced in their entirety.

• In German:
1. Affin-geometrische Grundlagen der Einheitlichen Feldtheorie
SitzungsberichtenderPreussischeAkademiederWissenschaften, Physikalisch-
mathematische klasse 28, 342–45 (1932)

• In French:
1. Geometrie differentielle et calcul des variations,
Rendiconti della Reale Accademia Nazionale dei Lincei 16, 410–15 (1932)

2. Les metriques homogenes dans les espaces cosmogoniques
Comptes Rendus 206, 1086–88 (1938)

3. Les espaces des paths generalises qu’on peut associer avec un espace
de Finsler
Comptes Rendus 206, 1538–1541 (1938)

4. Sur la differentiation covariante
Comptes Rendus 222, 211–13 (1946)

5. Les invariants differentiels d’un tenseur covariant a deux indices
Comptes Rendus 225, 790–92 (1947)

• In Japanese:
1. The tensor analysis of partial differential equations
Tensor, 2, 36–39 (1939)

• In Chinese:
1. The method of least-squares
Advancement in Mathematics 3, 485–491 (1957)



Chapter 26
Affin-geometrische Grundlagen der
einheitlichen Feldtheorie

Von D.D. Kosambi, in Aligarh (Indien)

DDK’s work on path-geometry started in Aligarh with [DDK3] that was submitted
to the Indian Journal of Physics, [DDK5] in French and this paper in German were
basically expositions designed to present his work to a European audience and also,
as it appears, to assert that these ideas were presented at a seminar on 5 March
1931. DDK had an extensive collection of scientific books in German and knew the
language well; during his brief stay in Banaras prior to the writing of this paper, he
had been teaching German language classes in addition to mathematics [DDK-JK].

In einer früheren Arbeit1 habe ich den Versuch gemacht, eine möglichst allge-
meine Theorie der affinen Bahngeometrie aufzubauen. Dadurch wird auch die ein-
fachste geometrischeGrundlage zu den neueren einheitlichen Feldtheorien2 geschaf-
fen. Der erste Ansatz zu dieser Auffassung wurde durch die Bemerkung von. P.
Straneo gegeben, daß die Autoparallelen von den geodätischen Linien zu unter-
scheiden sind. In einer rein-affinen Theorie erscheinen in der Tat zwei verschiedene
Arten von Parallelismen, die sich aus einer nicht-distributivenVektorderivierten bzw.
aus der entsprechenden distributiven Derivierten ergeben. Dadurch und durch de
Annahme der Existenz einer kovarianten Ableitung werden Fünfervektoren über-
flüssig gemackt, und die Tensoren der einheitlichen Theorie sowie neue bisher
physikalisch nich gedeutete Tensoren ergeben sich ohne weiteres.

1D.D. Kosambi, Modern Differential Geometries, erschient demnächst in Indian Journal of
Physics (1932). Diese Grundzüge dieser Theorie wurden im Mathmatischen Seminar der Ali-
garh Universität am 5. März 1931 vorgetragen.
2P. Straneo, diese Sitzungber., 1931, S. 319–325; Einstein und Mayer, ib., 1931, S. 541–557.

Published in Sitzungsberichten der Preussische Akademie der Wissenschaften, Physikalisch-
mathematische klasse 28, 342–45 (1932).

© Springer (India) Pvt. Ltd. 2016
R. Ramaswamy (ed.), D.D. Kosambi, DOI 10.1007/978-81-322-3676-4_26

215



216 D.D. Kosambi

1. Es werde ein System von Bahnkurven zugrunde gelegt, die als Lösungen eines
allgemeinen Systems von Differentialgleichungen zweiter Ordnung

ẍ i + αi (x, ẋ, t) = 0 (i = 1, 2, . . . n) (26.1)

gegebenwerden.Dabei bedeutendie x Punktkoordinaten, und t einen (will-kürlichen)
Bahnparameter.

Die Vektorderivierte D(u)i längs einer willkürlichen Kurve möge nun folgender-
maßen definiert werden:

D(u)i = u̇i + ukγi
k(x, ẋ, t) + εi (x, ẋ, t), (26.2)

wobei:
εi = αi − γi

k ẋ k . (26.3)

Die Parallelverschiebung eines Vektors ui wird durch D(u)i = 0 erklärt. Infolge
(26.3) sind die Bahnkurven (26.1) autoparallele Linien, d. h. D(ẋ)i = 0.

Da wir verlangen, daß D(u)i gleichzeitig mit ui zu einem kontravarianten Vektor
wird, lautet das Transformationsgesetz der γi

k folgendermaßen:

γ̄i
k

∂ x̄ k

∂x j
+ d

dt

∂ x̄ i

∂x j
= γk

j

∂ x̄ i

∂xk
. (26.4)

Die γi
k werden keiner anderen Beschränkung untworfen. Es folgt unmittelbar, daß εi

auch einVektor ist.DurchdasWeglassen der εi wird eine distributiveVektorderivierte
(die Nebenderivierte) erzeugt:

D(u)i = u̇i + γi
kuk (26.5)

mit einem entsprechenden Nebenparallelismus.
2. Wir machen jetzt die weitere Annahme, daß jedes Vektorfeld ui (x) eine von

der Kurvenrichtung ẋ i unabhängige kovariante Ablietung ui
|r besitzt, durch welche

die Vektorderivierte nach der üblichen Regel erzeugt wird:

D(u)i = ui
|r ẋr . (26.6)

Dafür ist es notwendig und hindreichend, daß:

ui
|r = ∂ui

∂xr
+ γi

kr uk + εi
r

γi
k = γi

kr · ẋr

εi = εi
r · ẋr

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(26.7)

wo die γi
kr und εi

r von den ẋ i unabhängig sein müssen. Daraus ergibt sich:
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αi = γi
kl ẋ

k ẋ l + εi
r ẋr . (26.8)

Diese sind also die allgemeinsten Übertragungen, die eine richtungsunabhängige
kovariente Ableitung ermöglichen.

3. Der x Torsionstensor ist jetzt:

�i
kl = γi

kl − γi
lk (26.9)

Wir setzen außerdem:
2�i

kl = γi
kl + γi

lk . (26.10)

Weitere Tensoren ergeben sich, wie a. a. O.3 gezeigt wirde, aus Integrabilitätsbedin-
gungen. Zunächst erhält man:

Si
j = −αi

, j + 1

2

∂αi
,k

∂ ẋ j
ẋ k + 1

2

∂2αi

∂ ẋ j∂t
− 1

2

∂2αi

∂ ẋ j∂ ẋ k
αk + 1

4

∂αi

∂ ẋ k

∂αk

∂ ẋ j
(26.11)

(

wie üblich, wird gesetzt: f ...
...,k = ∂ f ...

...

∂xk

)

.

Wird, weiter Si
jk durch

3Si
jk = ∂Si

k

∂ ẋ j
− ∂Si

j

∂ ẋ k
(26.12)

definiert, so ist

Ri
jkl = ∂Si

jk

∂ ẋ l
(26.13)

(bei geeigneter Anordnung der Indizes) der gewöhnliche Riemann-Christoffelsche
Krümmungstensor.

In unserem Falle, wo die αi die Bedingungen (26.8) erfüllen, hat man:

Si
j = K i

jkl ẋ
k ẋ l + W i

jk ẋk + V i
j . (26.14)

Dabei sind:

K i
jkl = 1

2
(�i

jk,l + �i
jl,k) − �i

kl, j + 1

2
(�i

kr�
r
jl + �i

lr�
r
jk) − �i

jr�
r
kl

W i
jk = −εi

k, j + 1

2
εi

j,k − εr
k�

i
jr + 1

2
εi

r�
r
jk + 1

2
εr

j�
i
rk + ∂�i

jk

∂t

V i
j = 1

2

∂εi
j

∂t
+ 1

4
εi

rε
r
j

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(26.15)

3Siehe Anm. 1 auf S. 342.
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Der Riemann-Christoffelsche Krümmungstensor hängt nur von K i
jkl ab und wird

leicht berechnet. Wir definieren nun den weiteren Tensor:

εi
jk = εi

j,k + εr
j�

i
rk − εi

r�
r
jk (26.16)

(das ist nur die gewöhnliche kovariante Ableitung der εi
j für den symmetrischen

Zussamenhang �i
jk).

Dann läßt sich die folgende Identität leicht verifizieren:

W i
jk = 1

2
εi

jk − εi
k j + ∂�i

jk

∂t
. (26.17)

4.DieGleichungender in der neuerenZeit vonverschiedenenAutoren vorgeschla-
gen Feldtheorien können mittels unserer Tensoren ausgedrückt werden, wie wir am
Beispiel der Einstein-Mayerschen Theorie erklären wollen, wenn man noch eine
Riemannsche Grundform zu Hilfe nimmt, die das Herauf-bzw. Herunterziehen von
Indizes ermöglicht; dabei wird ein vierdimensionaler Raum zugrunde gelegt, und
es wird auch angenommen, daß der Bahnparameter t nirgends explizit vorkommt.
Die jetzt eingeführte Grundform wird mit unserem Parallelismus durch die weitere
Annahme in Beziehung gesetzt, daß die geodätischen Linien der Grundform mit den
�Nebenbahnkurven�

ẍ i + γi
kl ẋ

k ẋ l ≡ ẍ i + �i
kl ẋ

k ẋ l = 0 (26.18)

zusammenfallen. Allgemeiner könnte man aber annehmen, daß die Nebenbahnkur-
ven Extremalen eines nich-entarten Variationsproblemes sind, desen Integrand als-
dann als Metrik benutzt werden kann.

Wir setzen also

�i
jk =

{
i
jk

}

. (26.19)

Der Einstein-Mayersche Tensor Fi
j wird in unserer Schreibweise:

− �Fi
j = εi

j . (� = Konstante) (26.20)

Die Einstein-Mayerschen Gleichungen lauten nun, unter Benutzung der Tensoren
W i

jk, V i
j :

(a) εikεki = 0, εik = girε
r
k

(b) Wi jk + W jki + Wki j = 0, Wi jk = gir W r
jk

(c) εk
ik = 0

(d)
�2

4
(Ri

j − 1

2
δi

j R) + (V i
j − 1

4
δi

j V ) = 0, V = V k
k .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(26.21)



26 Affin-geometrische Grundlagen der einheitlichen Feldtheorie 219

Wenigstens ein Teil dieser Gleichungen is nun rein-affin. Zunächst is dies der Fall
für Gleichung (26.21c). Weiter folgt aus (26.21a):

εk
ki = 0 (26.22)

oder, mit Hilfe von (26.17) ausgedrückt und unter Beifügung von (26.21c):

W k
ki = 0, W k

ik = 0, (26.23)

wodurch (26.21c) ersetzt werden darf.
In bekannten Spezialfall, wo die absolute Krümmung identisch verschwindet,

bekommt man statt (26.21d) die weiteren rein-affinen Gleichungen:

Ri j = 0

V i
j − 1

4
δi

j · V = 0.

⎫
⎬

⎭
(26.24)

In diesem Spezialfall gilt, wie aus (26.23) and (26.24) folgt:

Si = Sk
ki = 0, (26.25)

was aber nicht genügt, um diesen Fall zu charakterisieren.
Wie ersichtlich, bekommt man sämtliche zu benutzende Tensoren durch die

Annahme, erstens, der Existenz einer kovarianten Ableitung, die den zugrunde
gelegten Parallelismus erzeugt, und, zweitens, der Ableitbarkeit des dazu gehöri-
gen Nebensparallelismus aus einer Grundform. Wie oben bemerkt wurde, hängt
die Verallgemeinerung der zweiten Annahme von der Lösung des Umkehrprob-
lemes der Variationsrechnung ab, worüber ich meine Resultate anderswo zu veröf-
fentlichen beabsichtige. Deshalb möge es auch dahingestellt bleiben, ob überhaupt
eine rein-affine Feldtheorie möglich sei: dabei wäre auch gewiß der Torsionstensor
zu benutzen, der, wie bekannt, in den früheren Theorien von Einstein eine wichtige
Rolle spielte.



Chapter 27
Les Espaces des Paths Généralisés Qu’on Peut
Associer Avec Un Espace de Finsler

Note de M. Damodar Kosambi, présentée par M. Élie Cartan

This is one of four papers DDK published in Comptes Rendus, of five that appear
to have been originally written in French. The other paper was in Rendiconti della
Reale Accademia Nazionale dei Lincei. DDK’s French connection appears to have
been particularly strong, doubtless reinforced by André Weil who remained in con-
tact with Kosambi till late in the 1950’s. The geometric methods introduced in the
KCC theory have some similarity to the study of geodesics in a Finsler space, and
Kosambi pursued these analogies extensively in his series of papers on path spaces.

Soit Kn un espace des paths généralisé défini par les équations

ẍ i + αi (x, ẋ, t) = 0 (i = 1, 2, . . . , n; ẋ = dx

dt
; ẍ = d2x

dt2
). (27.1)

Regardons le paramètre t comme une variable nouvelle, t = x0, et introduisons
un autre paramètre s. Les équations (27.1) deviennent

x ′′i − x ′i

x ′0 x
′′0 + (x ′0)2αi (x,

x ′ j

x ′0 , x0) = 0 (x ′i = dxi

ds
= x ′i

x ′0 , . . .). (27.2)

En prenant une fonction arbitraire β(x, ẋ, t) avec x ′′0 + (x ′0)2β = 0 nous aurons le
système de n + 1 équations

x ′′i + Ai (x, x ′) = 0 (i = 0, 1, 2, . . . , n),

A0 = β(x ′0)2, Ai = (αi + β ẋ i )(x ′0)2 (i �= 0). (27.3)

Published in Comptes Rendus 206, 1538–41 (1938).
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222 Damodar Kosambi

Or, les Ai étant homogènes de degré 2 en x ′, et non paramétriques, les équations
(27.3) définissent un espace Bn+1 du type Berwald-Douglas, dans lequel nous dirons
que leKn a été plongé. La géométrie duKn , ne correspond pas à celle duBn+1, parce
qu’il n’existe aucune méthode intrinsèque pour associer un tenseur quelconque du
Kn biunivoquemenr à un tenseur du Bn+1. Nous nous bornerons donc à la résolution
de la question: peut-on déduire les équations (27.3) formellement d’un problème
variationnel δ

∫
Fds = 0 quand les (27.1) peuvent se déduire de δ

∫
f dt = 0, et vice

versa?
On aurait cru qu’à la métrique f [x, ẋ, t] pour Kn doit toujours correspondre la

métrique F = f [x, x ′i/x
′0, x0]x ′0 dans Bn+1 et réciproquement. Mais cette fonction

F étant homogène de degré 1 en x
′
, |∂2F/∂ ẋ i∂ ẋ j | = 0, et les équations covariantes

eulériennes de δ
∫
Fds = 0 ne peuvent pas être résolues sous la forme contravariante

(27.3). Comme d’habitude pour les espaces de Finsler, nous devons remplacer F par
F2 ou par une autre fonction de F; cela est permis seulement si F satisfait au système
d’équations

∂F
∂xi

− 1

2

∂Ar

∂x ′i
∂F
∂x ′r = 0 (i = 0, 1, 2 . . . , n.) (27.4)

Ces équations ont la propriété qu’une fonction quelconque des solutions est encore
une solution et, ici, il suffit d’en chercher les solutions homogènes en x

′
. Pour un

degré d’homogénéité k non nul, nous pourrons toujours substituer la métrique de
Finsler F1/k .

Alors, pour discuter le problème du point de vue de l’espace Kn , nous prenons
F = �(x, ẋ, t)(x

′0)k où k = 0, 1 seulement. Les équations (27.4) prennent la forme

D� = kβ�, �|i − β

2
�;i = k

2
�β;i (27.5)

où nous avons posé

�;i = ∂�

∂ ẋ i
, �,i = ∂�

∂xi
, D� = −αr�;r + ẋr�,r + ∂�

∂t

�|i = �,i − 1

2
αr

;i�;r .

Pour k = 1, nous pouvons éliminer les termes en β et nous trouvons

(D�);i − 2�|i ≡ d

dt
�;i − �,i = 0. (27.6)

Cela signifie que � satisfait aux équations eulériennes de δ
∫

�dt = 0, et fournit
une métrique pour Kn si |�i, j | �= 0. Nous avons donc le théorème.

Théorème I.—Pour que l’espace associéBn−1 admette une métrique régulière de
Finsler F(x, ẋ), il faut et il suffit qu’une métrique quelconque� existe pour l’espace
Kn . La fonction β, dans (27.3), sera donc uniquement définie par
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β = D�

�
(27.7)

pour chaque métrique � du Kn .
Pour le cas k = 0, il n’en est pas ainsi. Si β �= 0, l’espace Kn n’admet pas la

métrique �, et nous avons un cas très intéressant. En effet, on obtient facilement le
théorème:
Théorème II. —S’il existe une fonction non identiquement nulle pour laquelle
les équations D� = �i1 − (β/2)� = 0 ont une solution avec �= 0, l’espace Kn ,
métrique ou non, peut être plongé dans Bn+1 avec une métrique homogène de degré
zéro en x ′.

Dans ce cas, pour avoir une métrique de Finsler, on doit répéster le proceédé en
plongeant Bn+1 dans un Bn+2.

Les équations d’intégrabilité de (27.5) sont

(
Pri + 1

2
δri {Dβ − 1

2
β2})�;r = k�{β|i − 1

2
Dβ;i − 1

4
ββ;i };

( − 2Rr
i j + δrjβ|i − δri β| j + 1

2
β{δri − δrjβ;i }

)
�;r = k�{β;i | j − β; j |i }; (27.8)

Pi
j = −αi

; j + 1

2

d

dt
αi

; j + 1

4
αi

;rα
r
; j ; Ri

jk = 1

3
(Pi

j;k − Pi
k; j ).

Comme tout K1, admet une métrique, nous avons un corollaire du théorème I:
Tout K1, peut être plongé dans un B2 avec une métrique de Finsler.

II y a des différences importantes entreKn etBn+1: les équations (27.1) possèdent
des solutions à 2n constantes arbitraires (à 2n + 2 pour (27.3)). Les groupes les plus
généraux de transformations ponctuelles, pour lesquels (27.1) et (27.3) se transfor-
ment par la loi tensorielle ne sont pas les mêmes. Pour les problèmes du calcul des
variations, il y a la différence entre l’extremum faible et l’extremum fort. Nous avons
suivi les méthodes purement formelles, ayant trouvé dans une autre Note [1] que les
deux cas signalés dans les deux théorèmes peuvent effectivement se présenter.

Reference

1. D.D. Kosambi, Compt. Rendus 206, 1086 (1938). Voir aussi D.D. Kosambi (Oxford), Q. J.Math.
6, 1–12 (1935). pour les méthodes et notations employées ici.



Chapter 28
The Method of Least Squares

Kosambi
(India)

During the 1950s and early 1960s, DDK visited China several times on exchange
programmes and this paper was probably written when he visited the Academia
Sinica on an exchange programme between India and China as an expert in statis-
tics from TIFR [DDK-JK].

The paper, published in Advancement in Mathematics 3, 485–491 (1957), first
appeared in Chinese, and a facsimile of the article is given in the following pages.
It is interesting to note that in Chinese, the author’s name (see above) is composed
of three characters that can be pronounced “gāo-shan-bi” in Mandarin. In all like-
lihood, DDK would have chosen these himself. The characters individually have
the meanings1“tall/ high”, “charitable/ kind”, and “surely/ must” (in the sense of
necessarily).

1I am grateful to Profs. Zhou Changsong (Hong Kong Baptist University) and Takatsuka Kazuo
(Fukui Institute of Fundamental Chemistry, Kyoto) for consultation on this.
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