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1 Introduction

Mixture regressionmodels were first introduced byQuandt (1972), Quandt andRam-
sey (1978) as switching regressionmodels, which are used to explore the relationship
between variables that come from some unknown latent groups. These models are
widely applied in areas such as engineering, genetics, biology, econometrics and
marketing. These mixture regression models are used to model data sets which con-
tain heterogeneous groups. Figure1 shows the scatter plots of this type of real data
sets used in literature. A pure fundamental tone electronically obtained overtones
added was played to a trained musician in the tone perception data which given by
Cohen (1984) in Fig. 1a. The overtones were determined by a stretching ratio which
is between the adjusted tone and the fundamental tone. 150 trials were performed
by the same musicians in this experiment. This experiment was to reveal how the
tuning ratio affects the perception of the tone and to choose if either of two musical
perception theories was reasonable (see Cohen 1984 for more detail). The other data
contains a number of green peach aphids which were released at various times over
51 small tobacco plants (used as surrogates for potato plants) and the number of
infected plants was recorded after each release given in Fig. 1b (see Turner 2000 for
more detailed explanations). From these figures, we can observe that there are two
groups in both examples. Therefore, these data sets should be modeled by using the
mixture regression models.

In general, the parameters of a mixture regression model are estimated under nor-
mality assumption. Since the estimators based on normal distribution are sensitive
to the outliers, robust mixture regression models have been proposed by Bai (2010)
and Bai et al. (2012) to estimate the parameters of mixture regression using the M-
estimation method. Wei (2012), Yao et al. (2014) proposed the mixture regression
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Fig. 1 a The scatter plot of the tone perception data. b The scatter plot of the aphids data

model based on the mixture of t distribution. Liu and Lin (2014) studied the mix-
ture regression model based on the skew normal (Azzalini 1985, 1986) distribution.
Doğru (2015), Doğru and Arslan (2016) propose a robust mixture regression proce-
dure using the mixture of skew t distribution (Azzalini and Capitaino 2003) to model
skewness and heavy-tailedness in the data with the groups.

Up to nowmixture regressionmodels are considered using the finitemixture of the
same type of distributions such as mixture of normal or mixture of t distributions.
The purpose of this work is to deal with the mixture regression model using the
mixture of different type of distributions. This is due to the fact that the subclasses
of data may not have same type of behavior. For example some of them may be
heavy-tailed, skew or heavy-tailed skew. Using the same type of distributions to
model such heterogeneous data may not produce efficient estimators. To accurately
model this type of data we may need a mixture of distributions with different type
of components. For example, it is clear that in the tone perception data (Fig. 1) two
groups should have different type of error distributions. This is due to the fact that
the observations around each line has differently scattered.

The rest of the paper is organized as follows. In Sect. 2, we give the mixture
regression estimation based on mixture of different distributions. We consider two
different mixtures. First, we consider the mixture of symmetric distributions. In
particular, we take the mixture of normal and t distribution to estimate the regression
parameters in a mixture regression model. Second model will be the mixture of
skew distributions. In this context, we study the mixture of skew t and skew normal
distribution to estimate the parameters of the mixture regression model. In both cases
we give the EM algorithms in details. In Sect. 3, we provide a simulation study to
demonstrate the performances of the proposed mixture regression estimators over
the counterparts. In Sect. 4, we explore two real data examples to see the capability
of the proposed estimators for real data sets. The paper is finalized with a conclusion
section.
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2 Mixture Regression Model Using the Mixture
of Different Type of Distributions

In this section, we will carry out the mixture regression procedure based on the mix-
ture of different distributions. We will only consider the mixture of two distributions,
but mixture of more than two different types of distributions can be easily done using
the methodology given in this paper.

2.1 Mixture Regression Estimation Based on the Mixture
of Normal and t Distributions

A two-component mixture regression model can be defined as follows. Let Z be
a latent class variable which is independent of explanatory variable x. Then given
Z = i , the response variable y and the p-dimensional explanatory variable x have
the following linear model

y j = x′
jβ i + εi , i = 1, 2, (1)

where x j contains both the predictors and constant 1. Letwi = P(Z = i |x), i = 1, 2,
be the mixing probability with

∑2
i=1wi = 1. The conditional density of y given x

has the following form

f (y j ; x j ,Θ) = wφ
(
y j ; x′

jβ1, σ
2
1

)
+ (1 − w) ft

(
y j ; x′

jβ2, σ
2
2 , ν

)
, (2)

where Z is not observed. This implies that the distribution of the first error term
is a normal distribution with 0 mean and the variance σ 2

1 and the distribution of
the second error term is a t distribution with 0 mean, the scale parameter σ 2

2 and
the degrees of freedom ν. Let Θ = (w,β1, σ

2
1 , β2, σ

2
2 , ν)′ be the vector of all the

unknown parameters in the model (2).
The ML estimator of the unknown parameter Θ is obtained by maximizing the

following log-likelihood function

�(Θ) =
n∑

j=1

log(wφ(y j ; x′
jβ1, σ

2
1 ) + (1 − w) ft (y j ; x′

jβ2, σ
2
2 , ν)). (3)

However, the maximizer of the log-likelihood function does not have an explicit
solution. Therefore, the numerical methods should be used to obtain the estimators
for the parameters of interest. Because of the mixture structure of the model the EM
algorithm (Dempster et al. 1977) will be the convenient numerical method to obtain
the estimators for the parameters.

Let z j be the latent variable with
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z j =
{
1, i f j th observation is f rom 1th component
0, otherwise,

(4)

for j = 1, . . . , n. The joint density function of two-component mixture regression
model is

f (y j , z j ) = (
wφ(y j ; x′

jβ1, σ
2
1 )

)z j (
(1 − w) ft (y j ; x′

jβ2, σ
2
2 , ν)

)(1−z j )
. (5)

To further simplify the steps of the EM algorithm, we will use the scale mixture rep-
resentation of the t distribution. Let the random variable u has a gamma distribution
with the parameters (ν/2, ν/2). Then, the conditional distribution of ε2 given u will
be N (0, σ 2/u). With the scale mixture representation of the t distribution this joint
density can be further simplified as

f
(
y j , u j , z j

) =
⎛

⎜
⎝w

1
√
2πσ 2

1

e
−

(
y j−x′j β1

)2

2σ21

⎞

⎟
⎠

z j ⎛

⎜
⎝(1 − w)

(ν/2)ν/2 u
ν
2 −1
j e− ν

2 u j

Γ
(

ν
2

)√
2πσ 2

2 /u j

e
−

(
y j −x′j β2

)2

2σ22 /u j

⎞

⎟
⎠

1−z j

. (6)

In this model, (z,u) are regarded as missing data and y is taken as observed data,
where y = (y1, . . . , yn),u = (u1, . . . , un) and z = (z1, . . . , zn). Equation (6) is the
joint density function of the complete data (y,u, z). Using this joint density function
the complete data log-likelihood function for Θ can be written as follows

�(Θ; y, u, z) =
n∑

j=1

z j

⎛

⎜
⎝logw − log 2π

2
− log σ 2

1
2

−
(
y j − x′

jβ1

)2

2σ 2
1

⎞

⎟
⎠

+ (
1 − z j

)
(

log (1 − w) − log 2π

2
− log σ 2

2
2

+ log u j

2
− ν

2
u j

−
(
y j − x′

jβ2

)2

2σ 2
2 /u j

− logΓ
(ν

2

)
+ ν

2
log

(ν

2

)
+

(ν

2
− 1

)
log u j

)

. (7)

Since u j and z j for j = 1, . . . , n, are taken as missing observations this log-
likelihood function cannot be directly used to obtain the estimator forΘ . To overcome
this latency problemwe have to take the conditional expectation of the complete data
log-likelihood function given y j . This will be the E-step of the EM algorithm:
E-step:

E
(
�(Θ; y, u, z)|y j

) =
n∑

j=1

E
(
z j |y j

)

⎛

⎜
⎝logw − log 2π

2
− log σ 2

1
2

−
(
y j − x′

jβ1

)2

2σ 2
1

⎞

⎟
⎠

+ (
1 − E

(
z j |y j

))
(

log (1 − w) − log 2π

2
− log σ 2

2
2
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+ 1

2
E

(
log u j |y j

) −
(
y j − x′

jβ2

)2
E

(
u j |y j

)

2σ 2
2

− ν

2
E

(
u j |y j

)

− logΓ
(ν

2

)
+ ν

2
log

(ν

2

)
+

(ν

2
− 1

)
E

(
log u j |y j

))
. (8)

To obtain this conditional expectation of the complete data log-likelihood function
we have to find ẑ j = E(z j |y j , Θ̂), û1 j = E(u j |y j , Θ̂) and û2 j = E(log u j |y j , Θ̂)

given in (36), (37) and (38), where Θ̂ is the current estimate for Θ .
The M-step of the EM algorithm will be as follows.

M-step: Maximize the following function with respect to Θ

Q
(
Θ; Θ̂

)
=

n∑

j=1

ẑ j

⎛

⎜
⎝logw − log 2π

2
− log σ 2

1
2

−
(
y j − x′

jβ1

)2

2σ 2
1

⎞

⎟
⎠

+ (
1 − ẑ j

)
(

log (1 − w) − log 2π

2
− log σ 2

2
2

+ û2 j
2

− ν

2
û1 j

−
(
y j − x′

jβ2

)2
û1 j

2σ 2
2

− logΓ
(ν

2

)
+ ν

2
log

(ν

2

)
+

(ν

2
− 1

)
û2 j

⎞

⎟
⎠ . (9)

Then, E- and M-steps of the EM algorithm will form the following iteratively
reweighting algorithm.

Iteratively reweighting algorithm (EM algorithm)

1. Set initial parameter estimate Θ (0) and a stopping rule Δ.

2. Calculate the conditional expectations ẑ(k)
j , û(k)

1 j and û(k)
2 j for the (k + 1)th for

k = 0, 1, 2, . . . iteration using the Eqs. (36), (37) and (38) given in appendix.

3. Insert the current values ẑ(k)
j , û(k)

1 j , û
(k)
2 j and Θ̂

(k)
in Q(Θ; Θ̂) to form Q(Θ; Θ̂

(k)
)

and maximize Q(Θ; Θ̂
(k)

) with respect to the parameters (w,β1, σ
2
1 ,β2, σ

2
2 , ν)

to get new estimates for the parameters. Thismaximizationwill give the following
updating equations:

ŵ(k+1) =

n∑

j=1
ẑ(k)
j

n
, (10)

β̂
(k+1)

1 =
⎛

⎝
n∑

j=1

ẑ(k)
j x jx′

j

⎞

⎠

−1 ⎛

⎝
n∑

j=1

ẑ(k)
j x j y j

⎞

⎠ , (11)
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σ̂
2(k+1)
1 =

n∑

j=1
ẑ(k)
j

(
y j − x′

j β̂
(k)

1

)2

n∑

j=1
ẑ(k)
j

, (12)

β̂
(k+1)

2 =
⎛

⎝
n∑

j=1

(
1 − ẑ(k)

j

)
û(k)
1 j x jx′

j

⎞

⎠

−1 ⎛

⎝
n∑

j=1

(
1 − ẑ(k)

j

)
û(k)
1 j x j y j

⎞

⎠ , (13)

σ̂
2(k+1)
2 =

n∑

j=1

(
1 − ẑ(k)

j

)
û(k)
1 j

(
y j − x′

j β̂
(k)

2

)2

n∑

j=1

(
1 − ẑ(k)

j

) . (14)

4. To obtain the ν̂(k+1) solve the following equation

n∑

j=1

(
1 − ẑ(k)

j

) (
DG

(ν

2

)
− log

(ν

2

)
− 1 − û(k)

2 j + û(k)
1 j

)
= 0, (15)

where DG( ν
2 ) = Γ ′( ν

2 )

Γ ( ν
2 )

is the digamma function.

5. Repeat E and M steps until the convergence rule ‖Θ̂ (k+1) − Θ̂
(k)‖ < Δ is satis-

fied.

Note that the Eq. (15) can be solved by using some numerical methods.

2.2 Mixture Regression Estimation Based on the Mixture
of Skew t (ST) and Skew Normal (SN) Distributions

Next we will consider the parameter estimation for the mixture regression model
assuming that the error terms have mixture of skew t and skew normal distributions.
By taking this mixture of two different skew distributions we attempt to model
skewness, as well as, the heavy-tailedness in the sub groups of the data.

For two-component mixture regressionmodel given in (1), the conditional density
of y given x is

f (y j ; x j ,Θ) = w fST
(
y j ; x′

jβ1, σ
2
1 , λ1, ν

) + (1 − w) fSN
(
y j ; x′

jβ2, σ
2
2 , λ2

)
,

(16)
where fST (·) is the density function of the skew t distribution proposed by Azza-
lini and Capitaino (2003) with the parameters (σ 2

1 , λ1, ν) and fSN (·) is the density
function of the skew normal distribution proposed by Azzalini (1985, 1986) with the
parameters (σ 2

2 , λ2). Note that the skew t is the distribution of ε1 and the skew nor-
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mal is the distribution of ε2. Let Θ = (w,β1, σ
2
1 , λ1, ν,β2, σ

2
2 , λ2)

′
be the unknown

parameter vector for this model. Notice that we have extra two skewness parameters
to be estimated compare to the model given in Sect. 2.1. In this mixture regression
model we note that different from the symmetric case E(ε) �= 0. Therefore, when
we estimate the intercept we take into consideration ̂E(ε).

To find the ML estimator of the unknown parameter Θ we should maximize the
following log-likelihood function

�(Θ) =
n∑

j=1

log
(
w fST (y j ; x′

jβ1, σ
2
1 , λ1, ν) + (1 − w) fSN (y j ; x′

jβ2, σ
2
2 , λ2)

)
.

(17)
Since the log-likelihood function does not have an explicit maximizer, the estimates
for the unknown parameter vector Θ can be again obtained by using the EM algo-
rithm.

Let z j define as in Eq. (4), for j = 1, . . . , n. The joint density function of two-
component mixture regression model is

f (y j , z j ) = (
w fST (y j ; x′

jβ1, σ
2
1 , λ1, ν)

)z j (
(1 − w) fSN (y j ; x′

jβ2, σ
2
2 , λ2)

)1−z j
.

(18)
To represent this joint density function in terms of the normal distribution, we will
use the stochastic representation of the skew t and the skew normal distributions. By
doing this we will simplify the steps of the EM algorithm. One can see the papers
proposed by Azzalini and Capitaino (2003), Azzalini (1986, p. 201), Henze (1986,
Theorem 1) to get more details for the stochastic representation of the skew t and
the skew normal distributions. Using the scale mixture representation of the skew
t distribution and the stochastic representation of the skew t and the skew normal
distribution following conditional distributions can be given (Lin et al. 2007; Liu and
Lin 2014). Let γ and τ be the latent variables. Then, we have

y j
∣
∣ γ j , τ j ∼ N

(

x′
jβ1 + α1γ j ,

κ2
1

τ j

)

,

y j
∣
∣ τ j ∼ T N

(

0,
1

τ j
; (0,∞)

)

, τ j ∼ Gamma
(ν

2
,
ν

2

)
,

y j
∣
∣ γ j ∼ N

(
x′
jβ2 + α2γ j , κ

2
2

)
, γ j ∼ T N (0, 1; (0,∞)) ,

where δλ1 = λ1/

√
1 + λ2

1, δλ2 = λ2/

√
1 + λ2

2, α1 = σ1δλ1 , α2 = σ2δλ2 , κ
2
1 = σ 2

1 (1 −
δ2λ1

), κ2
2 = σ 2

2 (1 − δ2λ2
) and T N (·) shows the truncated normal distribution.

Using the conditional distributions given above the joint density function given
in (18) can be rewritten as
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f (y j , γ j , τ j , z j ) =
⎛

⎝w
(ν/2)ν/2τ

ν/2
j

πΓ
(

ν
2

) √
κ2
1

e
− ντ j

2 − τ j (y j−x
′
j β1−α1γ j )

2

2κ21
− τ j γ

2
j

2

⎞

⎠

z j

⎛

⎜
⎝

(1 − w)

π

√
κ2
2

e
−

(

y j−x
′
j β2−αγ j

)2

2κ22
− γ 2j

2

⎞

⎟
⎠

1−z j

. (19)

Note that in this model (γ , τ , z) will be regarded as the missing and y will be
the observed data, where y = (y1, . . . , yn), γ = (γ1, . . . , γn), τ = (τ1, . . . , τn) and
z = (z1, . . . , zn). Let (y, γ , τ , z) be the complete data. Then, using the complete
data joint density function given in (19), the complete data log-likelihood function
can be obtained as follows

�c(Θ; y, γ , τ , z) =
n∑

j=1
z j

(

logw − logπ − log κ2
1

2 + ν
2 log

(
ν
2

) − log
(
Γ

(
ν
2

))

+ ν
2 log τ j − ντ j

2 − (y j−x
′
jβ1−α1γ j )

2

2κ2
1 /τ j

− τ jγ
2
j

2

)

+ (1 − z j )

(

log (1 − w) − logπ − log κ2
2

2 − (y j−x
′
jβ2−α2γ j )

2

2κ2
2

− γ 2
j

2

)

. (20)

Since we cannot be able to observe the missing data (γ , τ , z) this complete data
log-likelihood function cannot be used to obtain the estimator for Θ . To overcome
this problem we have to take the conditional expectation of the complete data log-
likelihood function given the observed data y. This will be the E-step of the EM
algorithm

E-step

E
(
�c(Θ; y, γ , τ , z)|y j

) =
n∑

j=1

E(z j |y j )
(

logw − log κ21
2

+ ν

2
log

( ν

2

)
− logΓ

( ν

2

))

+ νE(z j log τ j |y j )
2

− νE(Z j τ j |y j )
2

−
E(Z j τ j |y j )

(
y j − x

′
jβ1

)2

2κ21

−
α21E(z j τ jγ

2
j |y j )

2κ21
+

α1E(Z j τ jγ j |y j )(y j − x
′
jβ1)

κ21

+ (1 − E(z j |y j ))
(

log(1 − w) − log κ22
2

−
(
y j − x

′
jβ2

)2

2κ22

+
α2E(γ j |y j )(y j − x

′
jβ2)

κ22

−
α22E(γ 2

j |y j )
2κ22

)

. (21)

To obtain the conditional expectation of the complete data log-likelihood function
we have to find ẑ j = E(z j |y j , Θ̂), ŝ1 j = E(z jτ j |y j , Θ̂), ŝ2 j = E(z jγ jτ j |y j , Θ̂),
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ŝ3 j = E(z jγ 2
j τ j |y j , Θ̂), ŝ4 j = E(z j log(τ j )|y j , Θ̂), t̂1 j = E(γ j |y j , Θ̂) and t̂2 j =

E(γ 2
j |y j , Θ̂) given in (39)–(45).

M-step: For the M step of the EM algorithm, the expected complete data log-
likelihood function will be maximized with respect to the parameter Θ

Q
(
Θ; Θ̂

)
=

n∑

j=1

ẑ j

(

logw − 1

2
log(κ2

1 ) + ν

2
log

(ν

2

)
− log

(
Γ

(ν

2

)))

− ν ŝ1 j
2

+ ν ŝ4 j
2

− ŝ1 j (y j − x
′
jβ1)

2

2κ2
1

+ α1ŝ2 j (y j − x
′
jβ1)

κ2
1

− α2
1 ŝ3 j
2κ2

1

+ (1 − ẑ j )

(

log(1 − w) − log κ2
2

2
− (y j − x

′
jβ2)

2 − 2α2 t̂1 j (y j − x
′
jβ2) + α2

2 t̂2 j

2κ2
2

)

.

(22)

Similar to the iteratively reweighting algorithm given in Sect. 2.1, we can give the
following algorithm based on the steps of the EM algorithm for the two-component
mixture regression model obtained from the skew t and skew normal distributions.

Iteratively reweighting algorithm (EM algorithm)

1. Set an initial parameter estimates Θ (0) and stopping rule Δ.

2. Use Θ̂
(k)

to compute the conditional expectations ẑ(k)
j , ŝ(k)

1 j , ŝ(k)
2 j , ŝ(k)

3 j , ŝ(k)
4 j , t̂ (k)1 j , t̂ (k)2 j

for k = 0, 1, 2, . . . from the Eqs. (39)–(45) given in appendix.

3. Insert ẑ(k)
j , ŝ(k)

1 j , ŝ(k)
2 j , ŝ(k)

3 j , ŝ(k)
4 j , t̂ (k)1 j , t̂ (k)2 j and Θ̂

(k)
in Q(Θ; Θ̂) to form Q(Θ; Θ̂

(k)
).

Maximize the function Q(Θ; Θ̂
(k)

) given in (22) with respect to the parameters
(w,β1, σ

2
1 , λ1,β2, σ

2
2 , λ2) to get (k + 1) iterated values

ŵ(k+1) =

n∑

j=1
ẑ(k)
j

n
, (23)

β̂
(k+1)

1 =
⎛

⎝
n∑

j=1

ŝ(k)
1 j x jx

′
j

⎞

⎠

−1 ⎛

⎝
n∑

j=1

(
y j ŝ

(k)
1 j − δ̂

(k)
λ1
ŝ(k)
2 j

)
x j

⎞

⎠ , (24)

α̂
(k+1)
1 =

n∑

j=1
ŝ(k)
2 j (y j − x

′
j β̂

(k)

1 )

n∑

j=1
ŝ(k)
3 j

, (25)

κ̂
2(k+1)
1 =

n∑

j=1
ŝ(k)
1 j (y j − x

′
j β̂

(k)

1 )2 − 2α̂(k)
1 ŝ(k)

2 j (y j − x
′
j β̂

(k)

1 ) + α̂
2(k)
1 ŝ(k)

2 j

n∑

j=1
ẑ(k)
j

, (26)
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1 − ẑ(k)

j

) (
(y j − x

′
j β̂

(k)

2 )2

− 2α̂(k)
2 t̂ (k)1 j (y j − x

′
j β̂

(k)

2 ) + α̂
2(k)
2 t̂ (k)2 j

)
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Then, we obtain the σ̂
2(k+1)
1 , λ̂

(k+1)
1 , σ̂

2(k+1)
2 and λ̂

(k+1)
2 parameter estimates

σ̂
2(k+1)
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2(k+1)
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2(k+1)
1 , (30)
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where δ̂
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= α̂1
(k+1)

/σ̂
(k+1)
1 and δ̂

(k+1)
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= α̂2
(k+1)
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2 .

4. Also (k + 1)th value of λ1 can be found by solving following equation
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ŝ(k)
1 j

(y j − x′
j β̂

(k)

1 )2

σ̂
2(k)
1

+
n∑

j=1
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The (k + 1)th values of ν can be calculated solving the following equation
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j
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5. Repeat E and M steps until the convergence rule ‖Θ̂ (k+1) − Θ̂
(k)‖ < Δ is satis-

fied.

Note that we can solve the Eqs. (34) and (35) using some numerical algorithms.

3 Simulation Study

In this section we will give a simulation study to assess and compare the perfor-
mances of the mixture regression estimators proposed in this paper with the existing
mixture regression estimators in the literature. We specifically compare the mixture
regression estimators obtained from normal and t (MixregNt) distributions with the
estimators obtained fromnormal (MixregN) and t (Mixregt) distributions for the two-
component mixture regression models for the symmetric case. For the skew case, we
compare the mixture regression estimators obtained from the skew t and the skew
normal (MixregSTSN) distributions with the estimators obtained from skew normal
(MixregSN) and skew t (MixregST) distributions for the two-component mixture
regression models. The compression will be done in terms of bias and mean square
error (MSE) which are given the following formulas

̂bias(θ̂) = θ̄ − θ, ̂MSE(θ̂) = 1

N

N∑

i=1

(θ̂i − θ)2,

where θ is the true parameter value, θ̂i is the ith simulated parameter estimate,
θ̄ = 1

N

∑N
i=1 θ̂i and N = 500 is the replication number. For the sample sizes, we

take n = 200 and n = 400. The simulation is conducted using MAT LAB R2013a.
The MAT LAB codes can be obtained upon request.

Alternatively, the MSE for the Θ̂ which can be defined as ‖Θ̂ − Θ0‖2, whereΘ0

is the true parameter, can be also used to illustrate the performance of the parameter
vector as is suggested by one of the referee. However, to see the performance of each
parameter we prefer computing the MSE for each parameter separately. We compare
the both the MSE values and observe the similar behavior.

The data {(x1 j , x2 j , y j ), j = 1, . . . , n} are generated from the following two-
component mixture regression model (Bai et al. 2012)

Y =
{
0 + X1 + X2 + ε1, Z = 1,
0 − X1 − X2 + ε2, Z = 2,

where P(Z = 1) = 0.25 = w1, X1 ∼ N (0, 1) and X2 ∼ N (0, 1). The values of the
regression coefficients areβ1= (β10, β11, β12)

′= (0, 1, 1)
′
andβ2=(β20, β21, β22)

′ =
(0,−1,−1)

′
, respectively.

We consider the following error distributions for the symmetric (i) and skew (ii)
cases.
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(i) Case I: ε1, ε2 ∼ N (0, 1), the standard normal distribution.
Case II: ε1, ε2 ∼ t3(0, 1), the t distribution with 3 degrees of freedom.
Case III: ε1 ∼ N (0, 1) and ε2 ∼ t3(0, 1).
Case IV: ε1, ε2 ∼ N (0, 1) and we also added %5 outliers at X1 = 20, X2 = 20 and
Y = 100.
(ii) Case I: ε1, ε2 ∼ SN (0, 1, 0.5), the skew normal distribution.
Case II: ε1, ε2 ∼ ST (0, 1, 0.5, 3), the skew t distribution with 3 degrees of freedom.
Case III: ε1 ∼ ST (0, 1, 0.5, 3) and ε2 ∼ SN (0, 1, 0.5).
Case IV: ε1, ε2 ∼ N (0, 1) and we also added %5 outliers at X1 = 20, X2 = 20 and
Y = 100.

The simulation results are summarized in Tables1, 2, 3 and 4. Tables 1 and 2
show the simulation results for the estimators based on MixregNt with the error
distributions given in case (i). For the Case I the best result is obtained from the
estimators based on MixregN. For this case, the estimators based on Mixregt and
the estimators based on MixregNt have similar behavior. For the error distribution
given in Case II the best behavior is obtained, as expected, fromMixregt. In this case,
the estimators based on MixregN are drastically affected. The proposed estimators
(MixregNt) again have similar behavior with the estimators obtained from Mixregt
which shows that it tolerates the heavy-tailedness. The estimators obtained from
MixregNt perform the best for the error distribution given in Case III. In this case
the estimator obtained fromMixregN again has the worst performance. On the other
hand, the performance of the estimators based on Mixregt is comparable with the
estimators based on MixregNt. Finally, for the outlier case (Case IV) the behavior of
the estimators based onMixregN andMixregt is very similar. In both cases the worst
performance is obtained for small groups. That is, they fail to find the regression
line for the smaller group. In contrast, the estimators based on MixregNt can be
able to accommodate the regression lines for both groups. This can be seen from the
smaller bias and the MSE values. In summary, for all the cases considered in this
part of the simulation the behavior of the proposed estimators is comparable with
the counterparts.

In Tables3 and 4 we summarize the simulation results obtained from the skew
distributions with the error distributions given in case (ii). From this table we can
observe that when the error distribution is the mixture of skew normal distribution,
the estimators obtained from MixregSN behave better than the other cases. The
same behavior can be noticed for the skew t distribution as well. When the error
distribution is the mixture of the skew t and the skew normal the estimators obtained
from MixregSTSN outperform the counterparts in terms of the MSE values. In this
case, the estimators based on MixregSN have the worst performance. When we add
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Table 1 MSE (bias) values of estimates for n = 200

MixregN Mixregt MixregNt

Case I: ε1, ε2 ∼ N (0, 1)

β10:0 0.0468 (−0.0039) 0.0547 (−0.0038) 0.0468 (−0.0036)

β20:0 0.0099 (0.0028) 0.0112 (0.0056) 0.0111 (0.0048)

β11:1 0.0457 (−0.0273) 0.0483 (−0.0364) 0.0529 (−0.0573)

β21:−1 0.0147 (0.0055) 0.0101 (0.0090) 0.0096 (−0.0025)

β12:1 0.0414 (−0.0015) 0.0463 (−0.0046) 0.0545 (−0.0353)

β22:−1 0.0216 (0.0026) 0.0108 (0.0013) 0.0109 (−0.0090)

w:0.25 0.0029 (0.0071) 0.0022 (0.0048) 0.0036 (0.0335)

Case II: ε1, ε2 ∼ t3(0, 1)

β10:0 12.7323 (0.2016) 0.0846 (0.0245) 0.1378 (0.0265)

β20:0 1.9712 (−0.0228) 0.0146 (−0.0048) 0.0140 (−0.0047)

β11:1 10.6545 (0.3274) 0.1037 (−0.0479) 0.1417 (0.0332)

β21:−1 1.5718 (−0.0867) 0.0128 (−0.0110) 0.0136 (0.0148)

β12:1 8.2033 (0.0267) 0.0806 (0.0024) 0.1288 (0.0403)

β22:−1 2.8037 (0.2205) 0.0143 (−0.0149) 0.0156 (0.0126)

w:0.25 0.0250 (−0.0347) 0.0030 (0.0062) 0.0045 (−0.0374)

Case III: ε1 ∼ N (0, 1) and ε2 ∼ t3(0, 1)

β10:0 6.5822 (0.0716) 0.0608 (−0.0015) 0.0564 (0.0039)

β20:0 0.3372 (−0.0249) 0.0144 (0.0036) 0.0139 (0.0030)

β11:1 5.0332 (0.0836) 0.0494 (−0.0387) 0.0459 (−0.0170)

β21:−1 0.2761 (0.0073) 0.0138 (−0.0185) 0.0133 (−0.0105)

β12:1 5.1167 (0.1571) 0.0673 (−0.0496) 0.0647 (−0.0287)

β22:−1 0.5948 (0.0062) 0.0136 (−0.0213) 0.0134 (−0.0145)

w:0.25 0.0120 (0.002) 0.0039 (0.0352) 0.0029 (0.0174)

Case IV: ε1, ε2 ∼ N (0, 1) (% 5 outliers)

β10:0 2.3909 (0.1047) 1.4186 (0.0618) 0.0506 (0.0003)

β20:0 0.0149 (0.0029) 0.0110 (0.0022) 0.0173 (0.0036)

β11:1 3.1304 (1.4785) 2.7396 (1.4819) 0.1498 (−0.0521)

β21:−1 0.0799 (0.2483) 0.0241 (0.1065) 0.2815 (0.1407)

β12:1 3.2398 (1.5125) 2.8212 (1.5088) 0.1734 (−0.0633)

β22:−1 0.0834 (0.2492) 0.0246 (0.1078) 0.1636 (0.1285)

w:0.25 0.0095 (−0.0943) 0.0062 (−0.0753) 0.0081 (−0.0208)

Note Value in parentheses indicates the bias

the leverage point (the error distribution given in Case IV) the behavior of all the
estimators are similarly worse. However, the estimators obtained from MixregST
and MixregSTSN give comparable results which have smaller bias and MSE than
MixregSN.
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Table 2 MSE (bias) values of estimates for n = 400

MixregN Mixregt MixregNt

Case I: ε1, ε2 ∼ N (0, 1)

β10:0 0.0202 (−0.0021) 0.0260 (−0.0004) 0.0217 (−0.0003)

β20:0 0.0041 (0.0018) 0.0052 (0.0036) 0.0050 (0.0031)

β11:1 0.0160 (0.0033) 0.0206 (−0.0062) 0.0188 (−0.0199)

β21:−1 0.0045 (−0.0035) 0.0053 (0.0018) 0.0051 (−0.0069)

β12:1 0.0177 (−0.0019) 0.0254 (−0.0099) 0.0210 (−0.0213)

β22:−1 0.0038 (−0.0038) 0.0049 (0.0035) 0.0046 (−0.0055)

w:0.25 0.0010 (0.0037) 0.0011 (0.0007) 0.0018 (0.0241)

Case II: ε1, ε2 ∼ t3(0, 1)

β10:0 13.4210 (−0.1318) 0.0376 (−0.0066) 0.0473 (−0.0154)

β20:0 1.4586 (0.0306) 0.0068 (−0.0021) 0.0066 (−0.0026)

β11:1 9.2787 (0.5967) 0.0335 (0.0019) 0.0449 (0.0632)

β21:−1 1.8295 (0.0194) 0.0063 (0.0015) 0.0079 (0.0314)

β12:1 11.8714 (0.4395) 0.0388 (−0.0008) 0.0533 (0.0722)

β22:−1 0.7543 (0.01106) 0.0064 (0.0024) 0.0082 (0.0308)

w:0.25 0.0171 (−0.0596) 0.0014 (0.0040) 0.0037 (−0.0454)

Case III: ε1 ∼ N (0, 1) and ε2 ∼ t3(0, 1)

β10:0 7.7436 (0.0036) 0.0247 (0.0066) 0.0240 (0.0060)

β20:0 0.3984 (0.0218) 0.0070 (0.0050) 0.0068 (0.0050)

β11:1 5.8227 (0.1401) 0.0251 (−0.0372) 0.0206 (−0.0124)

β21:−1 0.4005 (−0.0086) 0.0062 (−0.0126) 0.0060 (−0.0039)

β12:1 6.6747 (0.2501) 0.0244 (−0.0365) 0.0213 (−0.0125)

β22:−1 0.3341 (−0.0023) 0.0064 (−0.0143) 0.0063 (−0.0060)

w:0.25 0.0090 (−0.0070) 0.0021 (0.0289) 0.0015 (0.0077)

Case IV: ε1, ε2 ∼ N (0, 1) (% 10 outliers)

β10:0 1.4233 (0.1705) 1.0180 (0.2007) 0.0236 (0.0089)

β20:0 0.0079 (0.0102) 0.0048 (0.0045) 0.0045 (0.0042)

β11:1 2.9197 (1.5268) 2.5645 (1.4732) 0.0280 (−0.0003)

β21:−1 0.0774 (0.2583) 0.0162 (0.1023) 0.0450 (0.0842)

β12:1 2.7131 (1.4602) 2.6908 (1.5157) 0.0277 (0.0093)

β22:−1 0.0759 (0.2536) 0.0150 (0.0961) 0.0264 (0.0733)

w:0.25 0.0099 (−0.0981) 0.0069 (−0.0817) 0.0036 (−0.0412)

Note Value in parentheses indicates the bias

Note that from the computational point of view, computing the estimators based
onMixregSTSN is less intensive than the estimators obtained fromMixregST. There-
fore, even they show similar behavior MixregSTSN should be preferred.
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Table 3 MSE (bias) values of estimates for n = 200

MixregSN MixregST MixregSTSN

Case I: ε1, ε2 ∼ SN (0, 1, 0.5)

β10:0 0.0396 (0.0145) 0.3796 (0.5558) 0.2090 (0.3916)

β20:0 0.0083 (0.0124) 0.0388 (0.1602) 0.0095 (0.0228)

β11:1 0.0322 (−0.0016) 0.0481 (−0.0041) 0.0445 (−0.0325)

β21:−1 0.0080 (−0.0025) 0.0107 (0.0166) 0.0083 (−0.0082)

β12:1 0.0366 (−0.0051) 0.0509 (−0.0150) 0.0491 (−0.0357)

β22:−1 0.0080 (0.0019) 0.0104 (0.0212) 0.0083 (−0.0039)

w:0.25 0.0021 (0.0044) 0.0029 (−0.0087) 0.0028 (0.0162)

Case II: ε1, ε2 ∼ ST (0, 1, 0.5, 3)

β10:0 5.5600 (0.3072) 0.8540 (0.7143) 0.4782 (0.2833)

β20:0 1.7060 (−0.0335) 0.0239 (0.0805) 0.0421 (−0.0715)

β11:1 5.1535 (0.2173) 0.1600 (0.0246) 0.2281 (−0.1303)

β21:−1 0.9447 (0.0240) 0.0154 (0.0272) 0.0198 (−0.0147)

β12:1 2.9528 (0.0176) 0.1445 (0.0178) 0.2302 (−0.1455)

β22:−1 3.6893 (−0.0872) 0.0159 (0.0190) 0.0206 (−0.0084)

w:0.25 0.0175 (−0.0268) 0.0041 (−0.0128) 0.0084 (0.0444)

Case III ε1 ∼ ST (0, 1, 0.5, 3) and ε2 ∼ SN (0, 1, 0.5)

β10:0 2.7217 (0.2228) 0.6258 (0.6722) 0.2932 (0.4207)

β20:0 0.0555 (−0.0775) 0.0250 (0.1057) 0.0102 (−0.0123)

β11:1 2.3168 (0.2017) 0.1033 (0.0327) 0.0921 (−0.0165)

β21:−1 0.1975 (0.0372) 0.0108 (0.0305) 0.0088 (0.0059)

β12:1 2.2086 (0.0959) 0.1158 (0.0228) 0.0958 (−0.0324)

β22:−1 0.0244 (0.0598) 0.0111 (0.0314) 0.0090 (0.0079)

w:0.25 0.0079 (−0.0450) 0.0049 (−0.0369) 0.0031 (−0.0026)

Case IV: ε1, ε2 ∼ N (0, 1) (% 5 outliers)

β10:0 2.8415 (−0.5539) 5.7397 (2.1180) 1.7247 (0.5967)

β20:0 0.2470 (−0.4804) 0.0437 (−0.1774) 0.1687 (−0.3970)

β11:1 3.4886 (1.5398) 2.9568 (1.5342) 3.0075 (1.5224)

β21:−1 0.0703 (0.2303) 0.0263 (0.1172) 0.0310 (0.1347)

β12:1 3.2631 (1.4610) 2.4560 (1.3592) 2.7780 (1.4447)

β22:−1 0.0784 (0.2423) 0.0278 (0.1211) 0.0347 (0.1435)

w:0.25 0.0093 (−0.0928) 0.0113 (−0.1031) 0.0049 (−0.0632)

Note Value in parentheses indicates the bias
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Table 4 MSE (bias) values of estimates for n = 400

MixregSN MixregST MixregSTSN

Case I: ε1, ε2 ∼ SN (0, 1, 0.5)

β10:0 0.0172 (0.0055) 0.3194 (0.5421) 0.1741 (0.3920)

β20:0 0.0035 (0.0040) 0.0258 (0.1422) 0.0038 (0.0147)

β11:1 0.0145 (−0.0061) 0.0229 (−0.0045) 0.0197 (−0.0334)

β21:−1 0.0035 (−0.0066) 0.0045 (0.0165) 0.0039 (−0.0122)

β12:1 0.0145 (0.0012) 0.0220 (−0.0019) 0.0181 (−0.0235)

β22:−1 0.0035 (−0.0004) 0.0048 (0.0194) 0.0036 (−0.0065)

w:0.25 0.0010 (0.0010) 0.0015 (−0.0147) 0.0013 (0.0126)

Case II: ε1, ε2 ∼ ST (0, 1, 0.5, 3)

β10:0 9.1023 (0.5460) 0.6374 (0.6651) 0.2101 (0.3311)

β20:0 0.7382 (−0.1361) 0.0105 (0.0402) 0.0141 (−0.0717)

β11:1 7.2165 (0.2491) 0.0540 (0.0211) 0.0783 (−0.0925)

β21:−1 0.7558 (0.0446) 0.0078 (0.0307) 0.0091 (−0.0188)

β12:1 7.3711 (0.2215) 0.1714 (0.0671) 0.0785 (−0.0720)

β22:−1 1.9910 (−0.0097) 0.0078 (0.0331) 0.0098 (−0.0157)

w:0.25 0.0144 (−0.0534) 0.0025 (−0.0217) 0.0044 (0.0441)

Case III: ε1 ∼ ST (0, 1, 0.5, 3) and ε2 ∼ SN (0, 1, 0.5)

β10:0 1.7316 (0.1760) 0.4115 (0.6026) 0.2035 (0.4153)

β20:0 0.0162 (−0.0883) 0.0142 (0.0890) 0.0042 (−0.0102)

β11:1 1.9504 (0.1686) 0.0400 (0.0425) 0.0272 (0.0063)

β21:−1 0.0140 (0.0589) 0.0057 (0.0318) 0.0038 (0.0055)

β12:1 1.1483 (0.1871) 0.0426 (0.0430) 0.0303 (0.0114)

β22:−1 0.0157 (0.0639) 0.0062 (0.0364) 0.0039 (0.0076)

w:0.25 0.0053 (−0.0483) 0.0032 (−0.0405) 0.0012 (−0.0037)

Case IV: ε1, ε2 ∼ N (0, 1) (% 5 outliers)

β10:0 1.4831 (−0.4157) 7.0063 (2.5017) 1.2509 (0.6932)

β20:0 0.2537 (−0.4938) 0.0412 (−0.1874) 0.1635 (−0.3971)

β11:1 2.9504 (1.4961) 2.4430 (1.4533) 2.5928 (1.4990)

β21:−1 0.0792 (0.2631) 0.0245 (0.1325) 0.0311 (0.1548)

β12:1 2.9498 (1.4958) 2.3507 (1.4210) 2.4870 (1.4631)

β22:−1 0.0760 (0.2565) 0.0222 (0.1247) 0.0286 (0.1467)

w:0.25 0.0099 (−0.0978) 0.0139 (−0.1165) 0.0051 (−0.0681)

Note Value in parentheses indicates the bias

4 Real Data Examples

In this section, we will analyze two real data examples to show the performances of
the proposed estimators over the estimators given in literature for the cases with and
without outliers.
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Fig. 2 a Fitted mixture regression lines without outlier. b Fitted mixture regression lines with
outliers at (50, 50)

Table 5 ML estimates and some information criteria for fitting mixture regression models to the
aphids data

MixregN Mixregt MixregNt

β̂10 0.8586 0.8522 0.8648

β̂20 0.0024 0.0011 0.0022

β̂11 3.4745 5.2578 4.3813

β̂21 0.0553 0.0398 0.0448

σ̂1 1.1249 0.9127 1.0892

σ̂2 3.1153 1.0946 2.2073

ŵ1 0.4984 0.5821 0.5128

�(Θ̂) −132.0651 −137.4716 −133.7615

AIC 278.1302 288.9432 281.5230

CAIC 298.6530 309.4660 302.0458

BIC 291.6530 302.4660 295.0458

Note Bold value indicates the smallest values of AIC, CAIC and BIC

Example 1 In this example, we use the aphids data introduced in Sect. 1 which can
be accessed by using mixreg package (Turner 2000) in R. We first fit the lines using
the estimates based on MixregN, Mixregt and MixregNt. These fitted lines along
with the scatter plot of the data are shown in Fig. 2a. We can see that all methods
successfully find the groups and give the correct fitted lines. Also, we summarize the
ML estimates and the values of some information criteria in Table5. Note that for
the t distribution we assume that ν = 2. We observe that MixregN has the best fit
than the other mixture regressionmodels in terms of the Akaike information criterion
(AIC) (Akaike 1973), consistent AIC (CAIC) (Bozdogan 1993) and the Bayesian
information criterion (BIC) (Schwarz 1978) values.

To see the performances of our estimators when there are outliers in the data, we
add five pairs of high leverage outliers at point (50, 50). These points are shown in
Fig. 2b by asterisk. Also, the fitted lines and the scatter plot of the data are displayed
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Table 6 ML estimates and some information criteria for fitting mixture regression models to the
aphids data with five outliers at (50, 50)

MixregN Mixregt MixregNt

β̂10 1.7334 0.8694 0.7843

β̂20 −0.0010 0.0013 0.0014

β̂11 21.5569 5.2484 3.8322

β̂21 −0.0199 0.0400 0.0484

σ̂1 1.6859 1.0449 0.9362

σ̂2 16.3307 1.3244 4.0712

ŵ1 0.5539 0.5547 0.41212

�(Θ̂) −194.0987 −192.1452 −182.4878

AIC 402.1974 398.2904 378.9756

CAIC 416.3749 412.4678 393.1531

BIC 423.3749 419.4678 400.1531

Note Bold value indicates the smallest values of AIC, CAIC and BIC
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Fig. 3 a Fitted mixture regression lines without outlier. b Fitted mixture regression lines with
outliers at (0, 5)

in Fig. 2b. We give the ML estimates in Table6. We can see that the fitted lines
obtained fromMixregN are drastically affected by the outliers. On the other hand, the
estimators obtained from Mixregt and MixregNt correctly identifies the groups and
fit the regression lines. However, when we compare all methods MixregNt provides
the best model in terms of the values of the information criteria.
Example 2. In this example,we use the tone perception data described in Sect. 1which
is given in fpc package (Hennig 2013) in R. This data analyzed by Bai et al. (2012) to
model robust mixture regressionmodel. Also, Yao et al. (2014) and Song et al. (2014)
used the same data to test performances of the mixture regression estimators based
on t and Laplace distributions. The results of these papers show that there should
be two groups in the data. We fit mixture of skew normal, mixture of skew t and
mixture of skew t and skew normal to check the performances of estimators based on
these finite mixture models. We first consider this data without outlier and obtain the
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Table 7 ML estimates and some information criteria for fitting mixture regression models to the
tone perception data

MixregSN MixregST MixregSTSN

β̂10 1.9171 1.9491 1.9430

β̂20 0.0424 0.0318 0.0339

β̂11 −0.0717 0.0054 0.0030

β̂21 0.9604 0.9982 0.9988

σ̂1 0.0463 0.0393 0.0419

σ̂2 0.1883 0.0033 0.0043

λ̂1 −0.0100 −0.1666 −0.1692

λ̂2 1.7534 0.4465 0.1297

ŵ1 0.7006 0.6410 0.6534

�(Θ̂) 140.5585 211.7766 215.4246

AIC −263.1171 −405.5532 −412.8491

CAIC −227.0213 −369.4574 −376.7534

BIC −236.0213 −378.4574 −385.7534

Note Bold value indicates the smallest values of AIC, CAIC and BIC

Table 8 ML estimates and some information criteria for fitting mixture regression models to the
tone perception data with ten outliers at (0, 5)

MixregSN MixregST MixregSTSN

β̂10 1.8948 1.9553 1.9450

β̂20 0.0478 0.0313 0.0339

β̂11 3.4734 0.0057 0.0031

β̂21 −0.7579 0.9981 0.9987

σ̂1 0.0612 0.0542 0.0562

σ̂2 1.2593 0.0031 0.0043

λ̂1 −0.2667 −0.2030 −0.1971

λ̂2 1.6770 0.4493 0.1297

ŵ1 0.7382 0.6759 0.6752

�(Θ̂) 40.7933 109.3612 115.0275

AIC −63.5867 −200.7225 −212.0549

CAIC −26.9101 −164.0459 −175.3783

BIC −35.9101 −173.0459 −184.3783

Note Bold value indicates the smallest values of AIC, CAIC and BIC

fitted lines from the mixture models mentioned above. The fitted lines along with the
scatter plot are displayed in Fig. 3a. This figure shows that all the models give similar
fits. Also, we give the ML estimates and some values of the information criteria in
Table7. The value of the degrees of freedom of the skew t distribution is taken as 2.
We see that MixregSTSN gives the best fit than the other mixture regression models
in terms of the AIC, CAIC and the BIC values.
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To see the performances of the estimators when there are outliers in the data we
added ten identical outliers at point (0, 5). The results for the data with outliers are
shown in Fig. 3b. Note that the asterisk in this figure shows the location of outliers.
It is clear from this figure that the outliers badly affect the estimators obtained from
MixregSN. On the other hand, the estimators based on MixregST and MixregSTSN
are not affected from the outliers. From the results of information criteria given in
Table8, MixregSTSN has the best fit to model to the tone perception data.

5 Conclusions

In this paper, we have proposed an alternative robust mixture regression model based
on themixture of different type of distributions.We have specifically considered two-
component mixture regression based on mixture of t and normal distributions for
the symmetric case, and the mixture of skew t and skew normal distributions for the
skewcase.Wehave given theEMalgorithms for themixture of different distributions.
We have provided a simulation study and two real data examples. The simulation
results and the real data examples have shown that the proposed method based on
the mixture of different distributions is superior to or comparable with the method
based on mixture of the same type of distributions such as mixture of (skew) normal
and mixture of (skew) t distribution. If the groups in the data set have different tail
behavior using the mixture of different type of distributions should be preferred. For
example, in two group case if one of the groups has heavier tails but the other one
is not then instead of using mixture of (skew) t distribution one can use mixture of
(skew) t and (skew) normal and get the similar result. Using the mixture of t and
normal will be computationally less intensive.
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Appendix

To get the conditional expectation of the complete data log-likelihood function given
in (8), the following conditional expectations should be calculated given y j and the

current parameter estimate Θ̂ = (β̂1, σ̂
2
1 , β̂2, σ̂

2
2 , ν̂)

ẑ j = E(z j |y j , Θ̂) = ŵφ(y j ; x′
j β̂1, σ̂

2
1 )

ŵφ(y j ; x′
j β̂1, σ̂

2
1 ) + (1 − ŵ) ft (y j ; x′

j β̂2, σ̂2, ν̂)
, (36)
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û1 j = E(u j |y j , Θ̂) = ν̂ + 1

ν̂ +
((

y j − x′
j β̂2

)
/σ̂2

)2 , (37)

û2 j = E(log u j |y j , Θ̂) = DG

(
ν̂ + 1

2

)

− log

⎛

⎜
⎝

ν̂

2
+

(
y j − x′

j β̂2

)2

2σ̂ 2
2

⎞

⎟
⎠ . (38)

These conditional expectations will be used in EM algorithm given in Sect. 2.1.
Similarly, to obtain the conditional expectation of the complete data log-likelihood
function given in (21) the following expectations should be computed given y j and

the current parameter estimate Θ̂ = (β̂1, σ̂
2
1 , λ̂1, ν̂, β̂2, σ̂

2
2 , λ̂2)

ẑ j = E(z j |y j , Θ̂) = ŵ fST (y j ; x′
j β̂1, σ̂

2
1 , λ̂1, ν̂)

ŵ fST (y j ; x′
j β̂1, σ̂

2
1 , λ̂1, ν̂) + (1 − ŵ) fSN (y j ; x′

j β̂1, σ̂
2
2 , λ̂2)

, (39)

ŝ1 j = E(z j τ j |y j , Θ̂) = ẑ j

(
ν̂ + 1

η̂21 j + ν̂

) Tν̂+3

(

M̂ j

√
ν̂+3
ν̂+1

)

Tν̂+1(M̂ j )
, (40)

ŝ2 j = E(z jγ j τ j |y j , Θ̂) = δ̂λ1 (y j − x
′
j β̂1)ŝ1 j

σ̂1
+

ẑ j
√
1 − δ̂2λ1

πσ̂1 f̂ (y j )

(
η̂21 j

ν̂(1 − δ̂2λ1 )
+ 1

)−( ν̂
2 +1)

, (41)

ŝ3 j = E(z jγ
2
j τ j |y j , Θ̂) = δ̂2λ1

( y j − x
′
j β̂1

σ̂1

)2

ŝ1 j + ẑ j

{

(1 − δ̂2λ1 )

+
δ̂λ1 (y j − x

′
j β̂1)

√
1 − δ̂2λ1

πσ̂ 2
1 f̂ (y j )

(
η̂21 j

ν̂(1 − δ̂2λ1 )
+ 1

)−( ν̂
2 +1)}

, (42)

ŝ4 j = E(z j log(τ j )|y j , Θ̂) = ẑ j

{

DG

(
ν̂ + 1

2

)

− log

( η̂21 j + ν̂

2

)

+
(

ν̂ + 1

η̂21 j + ν̂

)

⎛

⎜
⎜
⎜
⎝

Tν̂+3

(

λ̂1η̂1 j

√
ν̂+3

ν̂+η̂21 j

)

Tν̂+1

(

λ̂1η̂1 j

√
ν̂+1

ν̂+η̂21 j

) − 1

⎞

⎟
⎟
⎟
⎠

+
λ̂1η̂1 j (η̂

2
1 j − 1)

√
(ν̂ + 1)(ν̂ + η̂21 j )

3

tν̂+1

(

λ̂1η̂1 j

√
ν̂+1

ν̂+η̂21 j

)

Tν̂+1

(

λ̂1η̂1 j

√
ν̂+1

ν̂+η̂21 j

)

+ 1

Tν̂+1

(

λ̂1η̂1 j

√
ν̂+1

ν̂+η̂21 j

)

M̂ j∫

−∞
gν̂ (x)tν̂+1(x)dx

}

, (43)

t̂1 j = E(γ j |y j , Θ̂) = δ̂λ2 η̂2 j +
√
1 − δ̂2λ2

φ
(
λ̂2η̂2 j

)

�
(
λ̂2η̂2 j

) , (44)
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t̂2 j = E(γ 2
j |y j , Θ̂) = 1 − δ̂2λ2 + δ̂λ2 η̂2 j t̂1 j , (45)

where

η̂1 j =
(y j − x′

j β̂1)

σ̂1
, δ̂λ1 = λ̂1

√
1 + λ̂21

,

η̂2 j =
(y j − x′

j β̂2)

σ̂2
, δ̂λ2 = λ̂2

√
1 + λ̂22

, M̂ j = λ̂1η̂1 j

√
√
√
√

ν̂

ν̂ + η̂21 j

,

gν̂ (x) = DG

(
ν̂ + 2

2

)

− DG

(
ν̂ + 1

2

)

− log

(

1 + x2

ν̂ + 1

)

+ x2(ν̂ + 1) − ν̂ − 1

(ν̂ + 1)(ν̂ + 1 + x2)
,

f̂ (y j ) = ŵ1
2

σ̂1
tν̂ (η̂1 j )Tν̂+1(M̂ j ) + (1 − ŵ1)

2

σ̂2
φ(η̂2 j )�(λ̂2η̂2 j ).

These conditional expectations will be used in EM algorithm given in Sect. 2.2.
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