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Abstract The theory of complex networks has a wide range of applications in a
variety of disciplines such as communications and power system engineering, the
internet and worldwide web (www), food webs, human social networks, molecu-
lar biology, population biology and biological networks. The focus of this paper is
on biological applications of the theory of graphs and networks. Graph theory and
several graph theoretic properties serve as an ideal mathematical tool in the analy-
sis of complex networks. We present the basic concepts and notations from graph
theory which is widely used in the study of biological networks. Various biological
networks such as Protein interaction networks, Metabolome based reaction network,
Gene regulatory network, Gene coexpression network, Protein structure network,
Structural brain network, Phylogenetic networks, Ecological networks and Food
web networks are described. We also deal with various centrality measures which
provide deep insight in the study of biological networks. Applications of biological
network analysis in several areas are also discussed.
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1 Introduction

The theory of complex networks has a wide range of applications in a variety of
disciplines such as communications and power system engineering, the internet and
worldwide web (www), food webs, human social networks, molecular biology, pop-
ulation biology and biological networks. The focus of this paper is on biological
applications of the theory of graphs and networks. Network analysis leads to a bet-
ter understanding of the critical role of these networks in many key questions. For
instance the complex interplay between the structure of social networks and the
spread of disease is a topic of critical importance and hence in recent years the
researches in ecology and epidemiology have focused attention in network analysis.

Graph theory and several graph theoretic properties serve as an ideal mathe-
matical tool in the analysis of complex networks. In Sect. 2, we present the basic
concepts and notations from graph theory which is widely used in the study of bio-
logical networks. Various biological networks such as Protein interaction networks,
Metabolome based reaction network, Gene regulatory network, Gene coexpression
network, Protein structure network, Structural brain network, Phylogenetic networks,
Ecological networks and Food web networks are described in Sect. 3. Section4 deals
with the various centrality measures which provide deep insight in the study of bio-
logical networks. Topology of biological networks and network motifs have been
stated in Sects. 5 and 6 respectively. Sections7 and 8 deal with network databases
and network visualizing tools. Applications of biological network analysis in several
areas and concluding remarks are given in Sects. 9 and 10 respectively.

2 Graph Theoretic Concepts

In this section we present a few basic concepts in graph theory which are essential
for the study of biological networks. For graph theoretic terminology we refer to
Chartrand and Lesniak [8].

A graphG is a finite nonempty set of objects called vertices or nodes together with
a set of unordered pairs of distinct vertices of G called edges or links. The vertex
set and the edge set of G are denoted by V (G) and E(G) respectively. The edge
e = {u, v} is said to join the vertices u and v. We write e = uv and say that u and
v are adjacent vertices; u and e are incident, as are v and e. If e1 and e2 are distinct
edges of G incident with a common vertex, then e1 and e2 are adjacent edges.

The number of vertices in G is called the order of G and the number of edges in
G is called the size of G. A graph of order n and size m is called a (n,m)-graph.
A graph is trivial if its vertex set is a singleton. A graph G = (V, E) is called a
weighted graph if for every edge e of G a weight w(e) is assigned. The weight is
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usually a positive number. The graph G is called a signed graph if every edge e of
G is assigned a positive or a negative sign.

A vertex u is called a neighbor of a vertex v in G, if uv is an edge of G. The set
of all neighbors of v is the open neighborhood of v and is denoted by N (v); the set
N [v] = N (v) ∪ {v} is the closed neighborhood of v in G.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A
subgraph H of a graph G is a proper subgraph of G if either V (H) �= V (G) or
E(H) �= E(G). A spanning subgraph of G is a subgraph H of G with V (H) =
V (G).

For a set S of vertices of G, the induced subgraph is the maximal subgraph of G
with vertex set S and is denoted by 〈S〉. Thus two vertices of S are adjacent in 〈S〉
if and only if they are adjacent in G. The induced subgraph 〈S〉 is also denoted by
G[S].

Let v be a vertex of a graph G and |V (G)| ≥ 2. Then the induced subgraph
〈V (G)\{v}〉 is denoted by G − v and it is the subgraph of G obtained by the removal
of v and the edges incident with v. If e ∈ E(G), the spanning subgraph with edge set
E(G)\{e} is denoted by G − e and it is the subgraph of G obtained by the removal
of the edge e. The graph obtained from G by adding an edge e is denoted by G + e.

The degree of a vertex v in a graphG is defined to be the number of edges incident
with v and is denoted by deg(v).

The minimum of {deg(v) : v ∈ V (G)} is denoted by δ(G) or simply δ and the
maximum of {deg(v) : v ∈ V (G)} is denoted by �(G) or simply �.

A graph G is complete if every pair of distinct vertices of G are adjacent in G. A
complete graph on n vertices is denoted by Kn .

A clique in G is a complete subgraph of G. The maximum order of a clique in G
is called the clique number of G and is denoted by ω(G) or simply ω. A clique H in
G with |V (H)| = ω is called a maximum clique in G.

A bipartite graph is a graph G whose vertex set V (G) can be partitioned into
two nonempty subsets X and Y such that each edge of G has one end in X and the
other end in Y . The pair (X,Y ) is called a bipartition of G. If further, every vertex
in X is adjacent to all the vertices of Y , then G is called a complete bipartite graph.
The complete bipartite graph with bipartition (X,Y ) such that |X | = r and |Y | = s
is denoted by Kr,s . In particular, the graph K1,n−1 is called a star and the graph K1,3

is called a claw.
A walk in a graph G is an alternating sequence u0, e1, u1, . . . , un−1, en, un of

vertices and edges of G, beginning and ending with vertices such that ei = ui−1ui ,
for 1 ≤ i ≤ n. This walk joins u0 and un and may also be denoted (u0, u1, u2, . . . ,
un−1, un); it is sometimes called a u0 - un walk. It is closed if u0 = un and is open
otherwise.

A path P of length n in a graph G is a sequence (u0, u1, u2, . . . , un−1, un) of
distinct vertices such that for 0 ≤ i ≤ n − 1, the vertices ui and ui+1 are adjacent.We
say that P is an u0–un path. The vertices u0 and un are called the origin and terminus
of P respectively. The vertices u1, u2, . . . , un−1 are called the internal vertices of P .
A path on n vertices is denoted by Pn.
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A cycle of length n ≥ 3 in a graph G is a sequence (u0, u1, u2, . . . , un−1, u0) of
vertices of G such that for 0 ≤ i ≤ n − 2, the vertices ui and ui+1 are adjacent, un−1

and u0 are adjacent and u0, u1, u2, . . . , un−1 are distinct. A cycle on n vertices is
denoted by Cn . A cycle Cn of length n is called even or odd according as n is even
or odd.

A graph G is said to be connected if every pair of vertices of G are joined by a
path. A maximal connected subgraph of G is called a component of G.

A graph G having more than one component is called a disconnected graph. An
edge e of a connected graph G is called a cut-edge ifG − e is disconnected. A vertex
v of a connected graph G is called a cut-vertex if G − v is disconnected.

The distance d(u, v) between two vertices u and v of a connected graph G is
defined to be the length of any shortest path joining u and v. A shortest u–v path is
often called a geodesic.

The diameter of a connected graph G is the length of any longest geodesic and is
denoted by diam(G). We call an u - v path in G for which d(u, v) = diam(G) as a
diametrical path.

3 Biological Networks

In this section we present some of the popular biological networks which have been
investigated by several authors.

Protein-Protein Interaction network (PPI-Network) is a graph G = (V, E) where
V is a set of proteins and two proteins are joined by an edge if they interact physically.
The interaction between viral proteins and human proteins can be represented as a
bipartite graph G. The vertex set of G is V1 ∪ V2,where V1 is the set of viral proteins
and V2 is the set of all human proteins. A viral protein v ∈ V1 is joined to a human
proteinw ∈ V2 if v interactswithw. This bipartite graph is called viral-human protein
interaction network and this network has been investigated by Mukhopadhyay and
Maulik [26].

Humanprotein anddisease association network is a bipartite graphGwhosevertex
is V1 ∪ V2, where V1 is the set of human proteins and V2 is the set of diseases and
v1 ∈ V1 is joined by an edge to v2 ∈ V2, if the human protein v1 is associated with the
disease v2. This network has been investigated by Mukhopadhyay and Maulik [26].

Metabolome based reaction network is a directed graph D = (V, A) where V is
a set of metabolites and a vertex v is joined to a vertex w by an arc (v, w) if there is
a reaction or interaction which transforms the metabolite v to the metabolite w. This
network has been investigated by Veeky Baths et al. [5].

Gene regulation is a general term for cellular control of the synthesis of protein
at the transcription step. Often one gene is regulated by another gene via the cor-
responding protein. Thus gene regulation leads to the concept of gene regulatory
network, which has been investigated by Yue and Chunmei [36]. Gene regulatory
network is a directed graph D = (V, A) where V is the set of genes and two genes
g1, g2 ∈ V are joined by an arc if there is a regulatory relationship between g1 and
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g2, or more precisely g1 regulates g2. The regulatory relationship between two genes
may be either positive direct regulatory influence or inverse causality or no correla-
tion. Hence gene regulatory network can also be represented as a directed weighted
graph, where the weight of an arc is an estimate of the probability of relationship
between the genes in the network. This network has been investigated by Raza and
Jaiswal [29]. Positive regulatory relationship represents activation and negative reg-
ulatory relationship represents inhibition. This leads to the representation of a gene
regulatory network as a signed directed graph where an arc (g1, g2) is assigned a pos-
itive sign if the corresponding regulatory relationship is activation and is assigned
a negative sign if the corresponding relationship is inhibition. A study of gene reg-
ulatory network leads to a better understanding of the regularity mechanism of the
genes and prediction of the behavior of some unknown genes. This network has been
studied in Christensen et al. [9].

A gene coexpression network is a graphG = (V, E)where V is a set of genes and
two genes are connected by an edge if there is a significant coexpression relationship
between them. There are several methods for constructing the gene coexpression
network and this network has been studied in Perkins et al. [28]. A coexpression
measure is selected and a similarity score is calculated for each pair of genes using
thismeasure. Twogeneswhich have a similarity score higher than a selected threshold
value are joined by an edge (Azuaje [2]).

Tounderstand the protein structures, a graph representation of protein structure has
recently been introduced. Protein structure is modeled as residue interaction graph
(RIG) in which nodes represent the amino acid residuals and an edge represents a
pairwise contact between residuals. A contact between two residuals is defined if the
distance between any pair of their heavy atoms is within a specified distance cut-off
and the cut-off is normally taken in the range (4,5). Understanding RIGsmay provide
deeper insights into protein structures binding and folding mechanisms as well as
inter protein stability and function. Properties of this network are given in [24].

Structural brain network can be represented as a graph whose vertex set is the
set of neural elements (neurons or brain regions) and edges representing physical
connections (Synapses or axonal projections). This is used to understand the complex
structure of the brain and brain associated diseases such as Alzheimers disease, brain
tumor and epilepsy. This network has been studied in [7].

Consider an ecological community V consisting of predators and preys where a
predator eats a prey. The food web network is a directed graph D whose vertex set is
V and if u, v ∈ V , then (u, v) is an arc in D if u is a predator, v is a prey and u eats v.
The competition graph is a graph whose vertex set is the set of predators and there is
an edge between two predators if they have a common prey. If further we associate
a weight with edge in the competition graph, where the weight is the number of
common preys then we obtain a weighted competition graph. These concepts have
been investigated by Dunne et al. [10].

A Phylogenetic network is a graph which is used to visualize evolutionary rela-
tionships between nucleotide sequences, genes, chromosomes or genomes. They are
used when reticulated events such as hybridization, horizontal gene transfer, recom-
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bination or gene duplication and loss are believed to be involved. For further details
we refer to [17].

An Ecological network is a representation of the biotic interactions in an ecosys-
tem. This is an undirected graph whose vertex set is a set of species and two species
are joined by an edge if they interact. These interactions can be trophic or symbi-
otic. Applications of ecological networks include exploration of how the community
context affects pairwise interactions. Other related studies include Metapopulations,
epidemiology and evolution of cooperation. For some basic results in Ecological
network we refer to Sole and Montoya [32].

4 Centrality Measures

Graph theoretic concepts are being extensively used in the analysis of biological
networks. In this section we present several centrality measures which are used to
rank the nodes of a network in the order of their performance.

4.1 Stress

The stress is a node centrality index, which has been studied by Shannon et al. [31].
The stress of a node v is the number of shortest paths passing through v. A node with
a high stress is traversed by a high number of shortest paths. However, a node has
high stress value does not imply that it is critical to maintain communication. Indeed
two nodes may be connected by other shortest paths not passing through v. Hence
“high” and “low” stress are more meaningful when stress of a node v is compared
with the average stress value of the graph G. In biological terms, the stress of a node
indicates its relevance in holding together communicating nodes. Hence, if the stress
is higher, then the relevance of the node connecting other node is higher. Due to
the nature of this centrality it may also be possible that the stress indicates how a
molecule is heavily involved in cellular processes but not necessarily in maintaining
the communication between the other nodes.

4.2 Betweenness

Betweenness is another node centrality index which is similar to stress, but provides
more information. Let v1, v2 and v be three distinct nodes. Let σv1v2(v) denote the
number of shortest v1–v2 pathswhich pass through v. Letσv1v2 denote the total number
of shortest v1–v2 paths. The betweenness centrality index of v is defined by
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CB(v) =
∑

v1 ,v2∈V
v1 �=v2

(
σv1v2(v)

σv1v2

)
.

Since for computing the betweenness centrality index, the summation is taken
overall pairs of nodes, we divide it by (n−1)(n−2)

2 for graphs, where n is the total
number of nodes; so that the betweenness index of v lies in the range [0, 1]. A high
betweenness index indicates that the node for certain paths is crucial to maintain
node connections (Scardoni and Laudana [30]). The betweenness index of a node
in a protein-signaling network indicates the relevance of a protein as functionally
capable of holding together communicating proteins. The higher the value the higher
the relevance of the protein as organizing regularity molecule.

4.3 Edge Betweenness

Edge betweenness centrality is the edge version of the node betweenness centrality.
Let v1, v2 be two distinct nodes and let e be an edge. Let σv1v2(e) denote the number of
shortest v1–v2 paths which pass through the edge e. Let σv1v2 denote the total number
of shortest v1–v2 paths. Then the edge betweenness centrality index of e is defined
by

CB(e) =
∑

v1 ,v2∈V
v1 �=v2

(
σv1v2(e)

σv1v2

)
.

The edge betweenness index is normalized as in the case of node betweenness index.
In the context of a protein-signaling network, edge betweenness centrality indicates
that a specific biochemical reaction has a central role in the network functional
organizations.

4.4 Diameter

Thediameter of a graphG is defined bydiam(G) = max {d(u, v) : u, v ∈ V }, where
d(u, v) is the distance between the vertices u and v. It is a simple general parameter
which indicates the compactness of the network. If G has high diameter, then G has
two vertices whose distance is high. However, a graph with high diameter may have
subgraphs which are compact. If a graph has low diameter, then it surely indicates
that all the nodes are close to each other and the graph is compact.

For example, the diameter of a protein-signaling network can be interpreted as the
overall easiness of the proteins to communicate or influence their reciprocal function.
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4.5 Average Distance

The average distance of a graph G is defined by

Ad(G) =

(∑
u,v∈V
u �=v

d(u, v)

)

n(n−1)
2

where n in the number of nodes in G.
In general Ad(G) is not an integer. In most cases, Ad(G) is more informative than

the diameter. High average distance indicates that the nodes are distant, implying that
the network is not compact. A low average distance indicates that the nodes are close
to each other and the network is compact. For example if a big protein signaling
network has low average distance, then the proteins within the network have the
tendency to generate functional complexes or modules.

4.6 Closeness

Closeness is another node centrality index. The closeness centrality of a node v is
defined by

CC(v) = n − 1∑
u∈V−{v}

d(u, v)
,

where n is the number of nodes in the network. Here high and low values are more
meaningful when compared to the average closeness of G. High value of closeness
of v indicates that all the nodes are in proximity to v and low value of closeness of v
indicates that all other nodes are distant from v.

For example, the closeness of a node in a protein-signaling network can be inter-
preted as the probability of a protein to be functionally relevant for several other
proteins. Thus a protein with high closeness will be easily central to the regularity of
other proteins. This concept has been used in [1] for the study of protein structures.

4.7 Eigenvector Centrality

The adjacency matrix A of a graph G with vertex set V (G) = {v1, v2, ....., vn} is the
n × n matrix defined by

ai j =
{
1 if vi and v j are adjacent
0 otherwise.
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A number λ is called an eigen value of A, if there exists a vector e such that Ae = λe
and e is called the eigen vector corresponding to the eigen value λ. Since the matrix
A is symmetric, all its eigen values are real. Let e1 be the eigen vector corresponding
to the largest eigen value λ1 of A. Then the i th component of the vector e1 is the eigen
vector centrality of the node vi . In biological terms, a node with high eigen vector
centrality value is adjacent to the other nodes that themselves have high eigenvector
centrality value. This concept is given in [6].

4.8 Eccentricity

The eccentricity of a node v is defined by e(v) = max{d(u, v) : u ∈ V − {v}}. Thus
eccentricity of v is the distance between v and a node which is farthest from v. Let
f (v) = 1

e(v) , the reciprocal of the eccentricity. If f (v) has a high value, then all other
nodes are in proximity with v. On the other hand, if f (v) is low, then there is at least
one node which is far from v. For example in a protein-signaling network a protein
with high value of f will be more easily influenced by activity of other proteins.

4.9 Subgraph Centrality

Subgraph centralitywas introduced by Estrada in 2005. This centralitymeasure helps
in finding hidden subgraph within a network. Here, smaller subgraph has given more
weightage than the larger one as smaller subgraph can reveal the networkmotifs [13].

5 Topology of Biological Network

5.1 Watts and Strogatz Small World Network

Small world network was proposed by Watts and Strogatz [34]. This network is a
random network with high clustering coefficient value indicating that most pairs of
nodes contain at least one shortest path of small length between them. Therefore, in
this type of network, mean length of shortest path is always small and in a given time,
it is possible to reach from one node to another with few steps. Internet connectivity,
social network, gene network are examples of small world network. This type of
topology is only applied to the network where single nodes have few neighbors. If
links between nodes are grown in huge number, then this theory fails as there may
not be a shortest path of small length between two distant nodes.
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5.2 Erdos Renyi Random Network

Paul Erdos and Alfred Renyi proposed this random graph network for non regu-
lar complex networks. Here edges are randomly added between pairs of randomly
selected nodes with an initial condition of N nodes without any edges between them.
This network follows poissonian distribution assuming added edges << N 2 [11].
Real world network like internet, social network, biological network etc. do not
follow this network.

5.3 Barabasi–Albert Scalefree Network

Scalefree networkwas proposed byBarabasi–Albert [3]. Thismodel opposes the idea
that all complex networks are random in nature. According to this network, there are
some special kind of mechanisms which shape this randomness of complex network.
In scalefree network, structure and evolution are closely related and it is constantly
changing by addition of new node or link to the existing network. When a new node
comes in the existing network, it will tend to link with the node having maximum
number of connections in a given network. This type of attachment is known as
preferential attachment, and the nodewithmaximumnumber of connections is known
as hub. Here, degrees are distributed following the power law distribution resulting
a few nodes with maximum links(hubs) while many nodes with a very few links.

6 Network Motifs

In biological network, it has been observed that a particular group of nodes with
a fixed structural pattern, are involved in specific functions and these are known
as motifs. Motifs are often called simple building blocks of complex network [25].
In graphs, motifs are basically repeating units of small subgraphs within a single
network or amongmany networks. As motifs are involved in the particular functions,
it is possible to predict the function of unknown proteins by comparing with the
knownmotifs and then with its function. There are many motifs finder algorithm like
Mavisto, FANMOD used to identify motifs within a network.

7 Network Databases

Todate, vast amount of biological data has been createdwith the help of high through-
put techniques like yeast two hybrid screening systems, DNA microarray and next
generation sequencing. These data can be accessed through databases. There are
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many such online databases housing these data and are freely accessible. Following
are some important databases of biological network.

• KEGG. Kyoto Encyclopedia of Genes and Genomes [21].
• STRING. Search Tool for the Retrieval of Interacting Genes/Proteins [18].
• HPRD. Human Protein Reference Database [23].
• MINT. Molecular Interaction Database [37].
• DIP. Database of Interacting Proteins [35].
• Reactome. It is database for reaction pathways and biological processes. The
pathways represented here are species specific [20].

• BioGRID. Biological General Repository for Interaction Datasets [33].
• SPIKE. Signaling Pathway Integrated Knowledge Engine [27].
• IntAct. InAct Molecular interaction database [22].

8 Network Visualizing and Analyzing Tools

There are many open source tools routinely used for network visualization and also
for calculating different centrality values along with many network parameters like
diameter, degree, shortest pathlength, clustering coefficient etc. Following three tools
are widely used in biological network visualizing and analysis.

• Cytoscape [31]
• Pajek [4]
• Visant [16]

9 Applications

Applications of graph theory in the fields of biology and medicine include identi-
fication of drug targets, determination of the role of proteins or genes of unknown
function [12, 14], design of effective containment strategies for infectious diseases
and early diagnosis of neurological disorders by detecting abnormal patterns of neural
synchronization. The knowledge of the topologies of biological networks and their
impact on biological processes is needed to develop more sophisticated treatment
strategies for complex diseases such as cancer [19]. Protein-Protein interaction net-
works have recently been combined with the networks describing the relationships
between the diseases and disease gene causing them as well as between drugs and
their protein targets, thus giving insights into pharmacology. Another application is
the study of genetic disorders. A diseasome is represented as a bipartite graph, whose
vertex set is the set of genetic disorders and disease genes. A genetic disorder X is
joined to the disease gene Y if there is a mutation in the gene Y which gives genetic
disorder X [15]. Two other graphs in this connection are constructed as follows.
The human disorder network has its vertex set the set of genetic disorders and two
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disorders are joined by an edge if they are both caused by at least one common gene.
The disease gene network has its vertex set the set of all disease genes and two genes
are joined by a link if they are associated with at least one common disorder. These
networks are used to examine and understand human disease gene and phenotype
associations. Measures of centrality are used to identify structurally important genes
or proteins in interaction networks. Network motifs help in finding structural pattern
along with unknown protein functions.

10 Conclusion

In this survey article a detailed account of various biological networks, basic graph
theoretic concepts, various centrality measures which play a crucial role in the analy-
sis of biological networks, biological databases which are essential for the construc-
tion of biological networks and software tools required for the network visualizing
and analyzing have been presented. Analysis of the biological networks using graph
theoretic tools lead to the identification of influential proteins or genes, which can
be confirmed experimentally.
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