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Abstract In this paper, the effect of feedback linearization in Leslie–Gower type
prey-predator model with Holling-type IV functional response is investigated. It is
shown that the closed loop system may be stabilized using either approximate or
exact linear approach. The former approach uses a linear control variable to pro-
vide a feedback linearization law whereas in latter approach, state space coordinates
are suitably changed. Using this feedback control, a complex non-linear system is
reduced to a linear controlled system that yields a globally asymptotically stable
equilibrium point. Finally Analytical findings are validated through numerical sim-
ulations.
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1 Introduction

The prey predator dynamics has been extensively discussed by several investigators
[4, 15, 16]. Leslie and Gower proposed a prey-predator model under the assumption
that there is a correlation between reduction in population of predator and its pre-
ferred food [10]. Even, another prey-predator model has been introduced by Leslie
in which carrying capacity of predator population depends commensurately upon
prey population [10, 11]. Later, May incorporated Holling type functional response
in this model [15]. On account of the functional responses of types I, II and III, the
model produced a wide range of dynamics and investigators explored global stabil-
ity of equilibrium point, occurrence of chaos and periodicity in the system [2, 5,
7, 9]. Sokol and Howell [19] introduced a Holling type IV functional response in
the model which fitted their experimental data significantly better. The functional
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response IV is characterized by inflation in predation rate with prey population to
utmost at a threshold prey density beyond which predation rate drops [6]. Whereas,
in case of other functional responses the predation rate inflates with prey density. In
another study [3], a model with functional response IV numerically demonstrated
different dynamics at significant levels of prey interference in comparison to the other
functional responses. Li and Xiao investigated Leslie–Gower model with functional
response IV which manifested limit cycles and bifurcation [12]. Models incorporat-
ing time delays with Holling type IV functional response are extensively studied by
Jiang and Lian [8, 13]. They explored complex dynamics in the system and demon-
strated stability, periodic orbits and direction of bifurcating periodic orbits.

The employment of feedback control in complex systems generated significant
interest after influential work by Ott [17]. The method is so simple and convenient
that it appears to be remarkable for biological problem. Not much of research has
been done in this area pertaining to ecological systems [14, 18].

By studying a Leslie–Gower prey-predator model with Holling’s functional
response of type IV, it is shown in this paper that an appropriately chosen control
approach can render an unstable system into one that is globally stable.

2 The Mathematical Model

Let the density of prey and predator population be X (t) and Y (t) respectively. It
is assumed that prey population is growing logistically with Holling’s functional
response of type IV

dX

dT
= r X

(
1 − X

K

)
− mXY

X2 + a

dY

dT
= s

(
1 − Y

nX

)
Y. (1)

where r is the intrinsic growth of prey species with carrying capacity K . m denotes
per capita consumption rate of the predator and the constant a denotes the number of
prey required to make maximum rate just half. s is the growth rate of the logistically
growing population Y and n is magnitude of food quality of prey for reproduction
in predator population. All the parameters are assumed to be taken positive. The
following set of non-dimensional variables and parameters helps reduce the number
of parameters from 6 to 3:

t = rT, x = X/K , y = mY/r K 2 and

α = a/K 2, β = mn/Kr, γ = s/r
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This leads to non-dimensional form of the system

dx

dt
= x (1 − x) − xy

x2 + α

dy

dt
= γ

(
1 − y

βx

)
y. (2)

The initial conditions for the system (2) are:

x ≥ 0, y ≥ 0. (3)

From the biological point of view, the equilibrium point lying in the positive quadrant
R2 is of interest for the dynamics of the system. The interior equilibrium point
E∗ = (x∗, y∗) can be obtained from the equations:

1 − x = y

x2 + α
, y = βx .

It is seen that the system (2) exhibits Hopf bifurcation and admits a limit cycle under
certain conditions (refer [12]).

The main objective of this paper is to show that a dynamic balance can be reached
and the system (2) can be stabilized both locally and globally by suitably chosen
feedback linearization design.

3 Feedback Linearization

Feedback linearization fully or partly transforms the primary nonlinear system into
an equivalent linear system. This approach is entirely different from the traditional
Jacobian approach.

3.1 Approximate Linearization

In the present section, an effort is made to stabilize the system (2) by employing
approximate linearization.

Theorem 1 The feedback control law u stabilizes the closed-loop system (2), where
u is

u = k1(x − x∗) + k2(y − y∗)
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k1 >
(k2 − γ )

(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2

)
x∗

x∗2+α

− βγ

k2 < γ + 2x∗ + (α − x∗2)βx∗

(x∗2 + α)2
− 1.

Proof A linear control u is exerted on the system (2) as

dx

dt
= x (1 − x) − xy

x2 + α

dy

dt
= γ

(
1 − y

βx

)
y + u. (4)

Transformations v = x − x∗ and w = y − y∗ reduce the system (4) to

v̇ = (v + x∗)
(
1 − (v + x∗)

) − (v + x∗)(w + y∗)
(v + x∗)2 + α

ẇ = (w + y∗)
(

γ − γ (w + y∗)
β(v + x∗)

)
+ u. (5)

where x∗ and y∗ are equilibrium values. The linearized form of (5) can be written as

U̇ = AU + Bu (6)

where

U =
(
v
w

)
, A =

(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2
− x∗

x∗2+α

βγ −γ

)
, B =

(
0
1

)
.

In linear feedback, each control variable takes as a linear combination of state vari-
ables. In our case

u = KU. (7)

where row vector K = (
k1 k2

)
represents a constant feedback. Using (7), (6) can be

written as
U̇ = (A + BK )U = CU (8)

and

C = A + BK =
(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2
− x∗

x∗2+α

βγ + k1 −γ + k2

)
.
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The trace and determinant of matrix C are

Trace C = 1 − 2x∗ − (α − x∗2)βx∗

(x∗2 + α)2
− γ + k2

det C =
(
1 − 2x∗ − (α − x∗2)βx∗

(x∗2 + α)2

)
(−γ + k2) + (βγ + k1)

(
x∗

x∗2 + α

)
.

It follows from the Routh–Hurwitz criterion that the controlled system (8) is stable
iff

Trace C < 0, det C > 0.

Thus suitably chosen k1 and k2 such that

k2 < γ + 2x∗ + (α − x∗2)βx∗

(x∗2 + α)2
− 1 < 0 (9)

and

k1 >
(k2 − γ )

(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2

)
x∗

x∗2+α

− βγ. (10)

would make the system (8) stable.

3.2 Exact Linearization

In the previous section, a control law was obtained, using approximate linearization
approach, locally. In this section, another approach known as exact linearization, is
employed which makes the system locally as well as globally stable.

The nonlinear system is assumed to be of the form

Ẋ = f (X) + g(X)u
′
, X(0) = X0

X̃ = h(X) (11)

where X ∈ Rn and u
′ ∈ Rm are state vector and input vector respectively. X̃ ∈ Rm is

output vector having continuous derivatives where f, g are continuous vector on Rn

with f (0) = 0.
The feedback control is employed as

u
′ = α(X) + β(X)v (12)

where v is an external reference input. Further, a change of variable z = Φ(X) is
introduced that transforms the nonlinear system into a linear controllable system.
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The original system (2) with control term can be written as

Ẋ =
⎛
⎝ x (1 − x) − xy

x2+α

y
(
γ − γ y

βx

)
⎞
⎠ +

(
0
1

)
u

′
(13)

Here u
′
is an exerted control introducing an output X̃ = x − x∗ stands for chasing

of prey population. Theorem 2 is the main result of this section.

Theorem 2 The closed loop system (13) is globally asymptotically stable provided
the feedback control law is

u
′ = −x(x2 + α) − y + x2 + α

x
− (α − x2)β

(x2 + α)
. (14)

Proof Using the transformations be x̄ = x − x∗, ȳ = y − y∗, the system (13) can
be rewritten as

˙̄X = f (X̄) + g(X̄)u
′

X̃ = h(X̄) = x̄ (15)

where

f (X̄) =
⎛
⎝ (x̄ + x∗) (1 − (x̄ + x∗)) − (x̄+x∗)(ȳ+y∗)

(x̄+x∗)2+ alpha

(ȳ + y∗)
(
γ − γ (ȳ+y∗)

β(x̄+x∗)

)
⎞
⎠ , g(X̄) =

(
0
1

)

and X̄ =
(
x̄
ȳ

)
.

As h(X̄) = x̄ , then

L f h(X̄) = ˙̄x = x (1 − x) − xy

x2 + α
, (16)

obviously,

LgL
r−1
f h(X̄) = LgL

2−1
f h(X̄) = − x

x2 + α
�= 0. (17)

Here r is relative degree. For the particular system r = 2.
Letting

z = Φ(X̄) =
(

h(X̄)

L f h(X̄)

)
=

(
x̄
˙̄x
)

(18)
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which denotes change of variables and h(X̄) and L f h(X̄) being linearly independent,
it is global diffeomorphism. Describing

ż1 = z2
ż2 = v (19)

in the new z-coordinate system, where v is a input relating to actual input u
′
by

v = L2
f h(X̄) + LgL f h(X̄)u

′
, LgL f h(X̄) �= 0

The Brunovsky canonical form is written as (see [1])

u
′ = 1

LgL f h(X̄)
(−z1 − z2 − L2

f h(X̄)). (20)

Accordingly, the system (2) converts into the linear system and the Brunovsky linear
system is absolutely controllable [1]. Hence the system (13) is globally stable (ref.
[18]).

From (20), the control law u
′
can be written as

u
′ = −x(x2 + α) − y + x2 + α

x
− (α − x2)β

(x2 + α)
. (21)

Hence the proof.

4 Numerical Simulation

In the current section, numerical simulations are given to validate the analytic results
for the stabilization of the system (2). Let us consider the following set of parame-
ters [8]:

α = 0.2, β = 1.2, γ = 0.02. (22)

For this choice of parameters, system (2) shows limit cycle and corresponding oscil-
lating time series, respectively for initial values (0.1578, 0.18935). Analysis suggests
that system (2) exhibits periodic orbits and thrashing time series (see Figs. 1 and 2).

By employing feedback control with approximate linearization (see Sect. 3.1), a
control law u = KU is achieved with K = (

1 0.27
)
through which system attains

asymptotic stability. In Fig. 3, the time series converges to equilibrium point of the
system (2).
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Fig. 1 Closed loop of original system (2)

Fig. 2 Oscillating time series of original system (2)

In exact linearization (see Sect. 3.2), the control law (14) as given in Theorem 2,
i.e.

u
′ = −x(x2 + 0.2) − y + (x2 + 0.2)

x
+ (0.2 − x2)1.2

(x2 + 0.2)

makes system (2) globally stable. Time series plotted in Fig. 4 shows that solution
trajectory approaches to equilibrium point E∗(0.0025, 0.2005).
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Fig. 3 Approximate linearization

Fig. 4 Exact linearization

5 Conclusions

The Leslie–Gower prey-predator model with Holling type IV functional response
shows periodic solutions and bifurcations [8, 12]. In this paper, it is shown that
desired control laws can be determined using feedback (approximate and exact)
linearizations that can bring the system into order such that its positive equilibrium
solution becomes locally and globally stable.

Feedback linearization approaches are important methods to deal with nonlinear
dynamical systems. Results of this study further show that control theory has a vital
role to play even in biological sciences.
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