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Preface

This volume comprises three parts. Part I contains the contributions from the dis-
cipline of nonlinear dynamics and its applications to the biological sciences, Part II
presents the research papers on nonlinear analysis and applications to a variety of
problems in science, engineering and industry and lastly Part III focuses on con-
tributions concerning applied analysis. The authors were speakers and participants
at the conference. Their papers touch upon a variety of important contemporary
topics including linear/nonlinear analysis, mathematical biology/ecology, dynami-
cal systems, graph theory, variational inequalities/functional analysis, differential
and difference equations, partial differential equations, numerical analysis/
techniques, chaos and wavelet analysis. The emphasis is on both the mathemati-
cal and the applied aspects of these topics. All contributions were peer reviewed.

This volume mainly focuses on current research in fields of mathematical
analysis that can be used as sophisticated tools for the study of scientific problems.
The reader will find a variety of applications and different facets of nonlinear
analysis, with an interdisciplinary flavor that ranges from model development and
formulation to the mathematical and theoretical analysis of the models. We hope
that the work presented in this volume will appeal to and benefit researchers,
academicians and engineers equally. We further hope that the research embodied in
this volume will stimulate the formation of interdisciplinary groups for fruitful
collaborative research.

The Department of Applied Mathematics at Aligarh Muslim University, Aligarh,
India, offers a Ph.D. research program in areas ranging from applied disciplines
such as Mathematical Biology and Graph Theory, to purely mathematical disci-
plines, like Functional Analysis, Special Functions and Algebra. This department is
part of the Faculty of Engineering and Technology and actively interacts with
engineering faculty and students. When in June 2014 the department was entrusted
with the task of organizing and hosting an international conference, it was natural to
include applied analysis and applications to the physical sciences as major themes.
Owing to the increasing interest and importance of applications in the biosciences,
it was decided also to include them as a major theme of the conference.
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Applications to Biological Sciences



Modeling and Dynamics of Predator Prey
Systems on a Circular Domain

Radouane Yafia, M.A. Aziz-Alaoui and Samira El Yacoubi

Abstract The present chapter is devoted to the mathematical modeling and the
analysis of the dynamics of predator prey systems on a circular domain. We first
give some reminders on the Laplace operator and spectral theory on a disc. Then,
we analyze the dynamics of two mathematical models with two or three reaction
diffusion equations, defined on a circular domain. The results are given in terms of
local/global stability and of emergence of spatio-temporal patterns due to symmetry-
breaking bifurcations. One basic type of such a phenomenon is Turing bifurcation
which gives rise to pattern formation, a process by which a spatially uniform state
loses stability to a non-uniform state. We derive, theoretically, the conditions for
Turing diffusion driven instability to occur, and perform numerical simulations to
illustrate how biological processes can affect spatiotemporal pattern formation in a
spatial domain.

Keywords Dynamics · Predator prey · Spatio-temporal · Circular domain ·
Patterns · Turing instability
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1 Introduction

In our knowledge, the first mathematical model of predator prey interaction is given
by A. Lotka [16] and V. Volterra [20]. This model is a simplified system of two ordi-
nary differential equations which does not take into account the space variable and
supposes that every individual is accessible to every other individual and produces the
so-called “mean-field description of the system”. One of the oldest spatio-temporal
model which takes into account the movement of individuals/organisms/particules
is the standard reaction diffusion system (Fisher [13], Kolmogorov et al. [15],
Murray [17]):

∂N (X, t)

∂t
= DΔN (X, t) + f (N (X, t)), (X, t) ∈ Ω × R

+,Ω ⊆ R
n, (1)

where N is a p components vector, Δ is the Laplacian operator, D is the diffusion
matrix and f is a nonlinear term (reaction term) representing the interactions between
species N (individuals/organisms/particules).

From the mathematical modeling point of view, if N (x, t) is the concentration of
individuals/organisms/particules at time t > 0 and the position x . Then the diffusion
term can be regarded as:

∂N (X, t)

∂t
= DΔN (X, t)

where D (which can depend on x) is a positive definite symmetric diffusion
matrixwhich describes the non-homogeneous diffusion. Therefore, the local reaction
process is modeled by a local dynamical system as follows:

∂N (X, t)

∂t
= f (N (X, t))

To describe the interaction of both types of processes (diffusion and reaction), we
suppose that they happen on a small time interval. If we let this interval to tend
to zero, then this time-splitting scheme turns into the so-called reaction-diffusion
system, given by system (1).

If the reaction diffusion processes occur in a spatially confined domain Ω , then
boundary conditions have to be imposed, for example the Dirichlet condition when
specifying the values that the solution must check on the boundaries of the field:

N (X, t) = ϕ(X), X ∈ ∂Ω

or the Neumann condition when specifying the values the derivative of the solution
must satisfy on the boundaries of the field :

∂N

∂n
(X, t) = ψ(X), X ∈ ∂Ω; n is outflow through the boundary of Ω.
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If ψ(X) = 0, then, for the dynamic of the populations, there is no immigration nor
emigration.

There are other possible boundary conditions. For example the Robin boundary
conditions, which are a combination of Dirichlet and Neumann conditions. The
dynamic boundary conditions, or the mixed boundary conditions which correspond
to the juxtaposition of different boundary conditions on different parts of the border
of the domain.

A lot of mathematical problems arise from reaction diffusion theory such as: exis-
tence and regularity of solutions, boundedness of solutions, stability, traveling waves
etc. [3–5, 7–10, 14, 23, 24]. One of these questions is: how the diffusion term can
affect the asymptotic behavior of the corresponding system without diffusion term?
In 1952, Turing prove that, under certain conditions, chemical products react and dif-
fuse to produce non constant steady state and induce spatial patterns. This property
can be explained as follows: In the absence of diffusion, the stable uniform steady
state of the corresponding ordinary differential equation becomes unstable in the
presence of diffusion (which called diffusion driven instability or Turing instability)
and spatial patterns can evolve through bifurcations [17].

2 Spectral Theory on a Circular Domain

In this section, since there exists a difference between the analysis in a rectangle
domain and a circular domain (disc), we give some results on the Laplace operator
on a circular domain (see, [17]).

Let us consider a disc with a radius R as follows:

D = {(r, θ) : 0 ≤ r < R}.

Then the Laplace operator is defined in cartesian coordinates as Δϕ = ∂2

∂x2 ϕ + ∂2

∂y2 ϕ

and in polar coordinates (r, θ) as Δrθϕ = ∂2

∂r2 ϕ + 1
r

∂
∂r ϕ + 1

r2
∂2

∂θ2 ϕ,

with x = r cos(θ), y = r sin(θ) and r = √
x2 + y2 and tan(θ) = y

x .
To compute the eigenvectors on the circular domain, one needs to separate vari-

ables using polar coordinates. Considering the eigenvalue problem

⎧
⎨

⎩

Δrθϕ = −λϕ

ϕ(R, θ) = 0, θ ∈ [0, 2π ]
∂ϕ

∂η
= 0, on r = R and θ ∈ [0, 2π ]

(2)

and looking for solutions of the form ϕ(r, θ) = P(r)Φ(θ). By differentiation and
from the Eq. (2) we have:

P ′′(r)Φ(θ) + 1

r
P ′(r)Φ(θ) + 1

r2
P(r)Φ ′′(θ) = −λP(r)Φ(θ) (3)
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Therefore
r2

P(r)
{P ′′(r) + 1

r
P ′(r) + λP(r)} = −Φ ′′(θ)

Φ(θ)
(4)

The only way for these two expressions to equal for all possible values of r and θ is to
have themboth equal a constant. Therefor, there exists k such that−Φ ′′(θ) = k2Φ(θ)

The appropriate boundary conditions to apply to this problem state that the func-
tion Φ(θ) and its first derivative with respect to θ are periodic in θ .

Then, the solution is given by:

Φn(θ) = an sin(nθ) + bn cos(nθ) for integers k = n ≥ 1

where an and bn are constants.
Then we have the following second order differential equation of

P ′′(r) + 1

r
P ′(r) +

(
λ − k2

r2

)
P(r) = 0, such that P ′(R) = 0 (5)

Let x = √
λr and P(x) = J ( x√

λ
). Then, we have

J ′′(x) + 1

x
J ′(x) +

(
1 − k2

x2

)
J (x) = 0 (called Bessel equation) (6)

The solution for it is the nth Bessel function

Jn(x) =
+∞∑

l=0

(−1)l

l!(n + l)!
( x
2

)n+2l

Since P(r) = Jn(
√

λr), we get:

φλ
n (r, θ) = Φn(θ)Jn(

√
λr) (7)

which are eigenfunctions of the Laplacian operator in polar coordinates.
The eigenvaluesλ associated to the eigenvectorφλ

n are determined from the bound-
ary conditions.

From Dirichlet boundary conditions defined as follows φλ
n (R, θ) = 0,∀θ ∈

[0, 2π ] we get Jn(
√

λR) = 0. This means that
√

λR is a root of Jn .
From the Neumann boundary conditions: ∂rφ

λ
n (R, θ) = 0,∀θ ∈ [0, 2π ] we get

J ′
n(

√
λR) = 0. This means that

√
λR is a root of J ′

n .
We denote these roots by αnm and assume they are indexed in increasing order:

Jn(αnm) = 0, αn1 < αn2 < αn3 < ....
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Therefore
√

λR = αnm for some index m and the eigenvalues will be written in the
following form:

λnm =
(αnm

R

)2

where n is the index of nth Bessel function and m is the index number of their roots.
If R = 1, then the eigenvalues of the equations Δϕ = −λϕ are the square of zero
solution of Bessel functions.

3 Mathematical Model of Two Species

In this section, we consider a 2-D reaction diffusion model which is based on
the modified Leslie-Gower model with Beddington-DeAngelis functional responses
[4–6, 11, 12, 18, 19, 21, 22]:

⎧
⎨

⎩

∂u(t,X)

∂t = D1Δu(t, X) +
(
a1 − b1u(t, X) − c1v(t,X)

d1u(t,X)+d2v(t,X)+k1

)
u(t, X)

∂v(t,X)

∂t = D2Δv(t, X) +
(
a2 − c2v(t,X)

u(t,X)+k2

)
v(t, X)

(8)

u(t, X) and v(t, X) represent population densities at time t and space X = (x, y)
defined on a circular domain (or disc domain) with radius R (i.e.Ω = {X = (x, y) ∈
R

2, x2 + y2 < R2}), r1, a1, b1, k1, r2, a2, and k2 aremodel parameters assuming only
positive values, a1 is the growth rate of preys u, a2 describes the growth rate of
predators v, b1 measures the strength of competition among individuals of species
u, c1 is the maximum value of the per capita reduction of u due to v, c2 has a similar
meaning to c1, k1 measures the extent to which environment provides protection to
prey u, k2 has a similar meaning to k1 relatively to the predator v, d1 and d2 are two
positive constants, D1 and D2 are the terms diffusions of the preys and the predators.

Steady States and Stability

We consider the reaction diffusion system of two species (8) defined on a circular
domain with Neumann boundary conditions (which means that there are no flux of
species of both predator and prey on the boundary of the circular domain Ω), where
Ω = {(x, y) : x2 + y2 < R2}. We can write x and y in polar coordinates as follow
x = rcosθ and y = rsinθ , applying the polar coordinate transformation we find
Γ = {(r, θ) : 0 < r < R, 0 ≤ θ < 2π}, R the radius of the disk Ω; r = √

x2 + y2,
and θ = tan−1(

y
x ).

Without loss of generalities we denote also u(t, x, y) = u(t, rcos(θ), rsin(θ)) =
u(t, r, θ) and v(t, x, y) = v(t, rcos(θ), rsin(θ)) = v(t, r, θ) are the densities of prey
and predators respectively in polar coordinates, at t = 0, u(0, r, θ) = u0(r, θ) ≥
0, v(0, r, θ) = v0(r, θ) ≥ 0. Therefore the Laplacian operator in polar coordinates
is given by:
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Δrθu = ∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2
, (9)

Then, the spatio-temporal system (8) in polar coordinates is written as follows:

⎧
⎪⎨

⎪⎩

∂u(t,r,θ)

∂t = D1Δrθu(t, r, θ) + f (u(t, r, θ), v(t, r, θ)) ∀(r, θ) ∈ Γ, t > 0
∂v(t,r,θ)

∂t = D2Δrθv(t, r, θ) + g(u(t, r, θ), v(t, r, θ)) ∀(r, θ) ∈ Γ, t > 0
∂u(t,r,θ)

∂n = ∂v(t,r,θ)

∂n = 0, ∀(r, θ) ∈ ∂Γ

(10)

where
⎧
⎨

⎩

f (u(t, r, θ), v(t, r, θ)) =
(
a1 − b1u(t, r, θ) − c1v(t,r,θ)

d1u(t,r,θ)+d2v(t,r,θ)+k1

)
u(t, r, θ),

g(u(t, r, θ), v(t, r, θ)) =
(
a2 − c2v(t,r,θ)

u(t,r,θ)+k2

)
v(t, r, θ),

(11)
A steady state (ue, ve) of (10) is a solution of the following system

{
D1Δrθue(t, r, θ) + f (ue(t, r, θ), ve(t, r, θ)) = 0
D2Δrθve(t, r, θ) + g(ue(t, r, θ), ve(t, r, θ)) = 0

(12)

Let us denote the non-negative cone by

R
2
+ = {(u, v) ∈ R

2, u0 ≥ 0, v0 ≥ 0}

and the positive cone by

intR2
+ = {(u, v) ∈ R

2, u0 > 0, v0 > 0}.

The trivial steady states (belonging to the boundary of int R2+, i.e. at which one or
more of populations has zero density or is extinct) are in the following forms:

E0 = (0, 0), E1 =
(
a1
b1

, 0

)
, E2 =

(
0,

a2k2
c2

)
. (13)

and the homogeneous steady state is given by E∗ = (u∗, v∗), where

u∗ = −B + √
B2 + 4AC

2A
, (14)

v∗ = a2
c2

(u∗ + k2), (15)

and

B = c1a2 + b1c2k1 + b1d2k2a2 − a1d1c2 − a1d2a2,
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A = b1d2a2 + d1b1c2,

C = k1a1c2 + a1a2d2k2 − c1a2k2,

Wewill investigate the asymptotic behavior of orbits starting in the positive cone.

Proposition 1 ([1])
Let Θ be the set defined by

Θ =
{
(u, v) ∈ R

2
+, 0 ≤ u ≤ a1

b1
, 0 ≤ v ≤ a2

b1c2
(a1 + b1k2)

}

(i) Θ is a positively invariant region for the flow associated to equation (10).
(ii) All solutions of (10) initiating in Θ are ultimately bounded with respect to R

2+
and eventually enter the attracting set Θ .

To study the existence of Turing instability one needs to prove the stability of spatially
independent homogeneous steady state.

Proposition 2 (local stability without diffusion [1])

• If 0 < u∗ < θ1 or θ2 < u∗ < a1
b1
, then E∗ = (u∗, v∗) is asymptotically stable.

• If (a22d2 + a2d1c2 + k1b1c2 < a1d1c2) and θ1 < u∗ < θ2, then E∗ = (u∗, v∗) is
unstable for system (16).

• If a1d1 < k1b1, then the positive equilibrium E∗ = (u∗, v∗) is locally asymptoti-
cally stable.

The proofs of Propositions 1 and 2 are given in [1].

4 Model with Three Species

In this section, we consider the following reaction-diffusion model [4, 5, 21, 23]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U (T,x,y)
∂T = D1ΔU (T, x, y) + (a0 − b0U (T, x, y) − v0V (T,x,y)

U (T,x,y)+d0
)U (T, x, y),

∂V (T,x,y)
∂T = D2ΔV (T, x, y) + (−a1 + v1U (T,x,y)

U (T,x,y)+d0
− v2W (T,x,y)

V (T,x,y)+d2
)V (T, x, y),

∂W (T,x,y)
∂T = D3ΔW (T, x, y) + (c3 − v3W (T,x,y)

V (T,x,y)+d3
)W (T, x, y),

∂U
∂n = ∂V

∂n = ∂W
∂n = 0,

U (0, x, y) = U0(x, y) ≥ 0, V (0, x, y) = V0(x, y) ≥ 0, W (0, x, y) = W0(x, y) ≥ 0,
(16)
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U (T, x, y) the density of prey specie, V (T, x, y) the density of intermediate preda-
tor specie and W (T, x, y) the density of top-predator specie, at time T and posi-
tion (x, y), defined on a circular domain (or disc domain) with radius R (i.e.
Ω = {(x, y) ∈ R2/x2 + y2 < R2}. Δ is the Laplacian operator. ∂U

∂η
, ∂V

∂η
and ∂W

∂η
are

respectively the normal derivatives of U , V and W on ∂Ω . The three species are
assumed to diffuse at rates Di (i = 1, 2, 3). a0, b0, v0, d0, a1, v1, v2, d2, c3, v3 and d3
are assumed to be positive parameters and are defined as follows: a0 is the growth
rate of the preyU , b0 measures the mortality due to competition between individuals
of the species U , v0 is the maximum extent that the rate of reduction by individual
U can reach, d0 measures the protection whose prey U and intermediate predator V
benefit through the environment, a1 represents the mortality rate V in the absence of
U , v1 is the maximum value that the rate of reduction by the individualU can reach,
v2 is the maximum value that the rate of reduction by the individual V can reach, v3
is the maximum value that the rate of reduction by the individual W can reach, d2
is the value of V for which the rate of elimination by individual V becomes v2

2 , c3
described the growth rate of W , assuming that there are the same number of males
and females. d3 represents the residual loss caused by high scarcity of prey V of the
species W .

The initial data U0(x, y), V0(x, y) and W0(x, y) are non-negative continuous
functions onΩ . The vector η is an outward unit normal vector to the smooth boundary
∂Ω . The homogeneous Neumann boundary condition signifies that the system is self
contained and there is no population flux across the boundary ∂Ω .

Following the same algebraic computations as done in Sect. 3, firstly, we write x
and y in polar coordinates as follow x = r cos θ and y = r sin θ . By applying the
polar coordinate transformation, we find Γ = {(r, θ) : 0 < r < R, 0 ≤ θ < 2π}. R
is the radius of the disk Γ , with r = √

x2 + y2 and θ = tan−1(
y
x ).

Without loss of generalities we denote also

u(t, x, y) = u(t, r cos(θ), r sin(θ)) = u(t, r, θ),

v(t, x, y) = v(t, r cos(θ), r sin(θ)) = v(t, r, θ)

and
w(t, x, y) = w(t, r cos(θ), r sin(θ)) = w(t, r, θ)

are the densities of prey, predators and top predators respectively in polar coordinates.
Therefore the Laplacian operator in polar coordinates is given by:

Δrθu = ∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2
. (17)
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To simplify system (16) we introduce some transformations of variables:

U = a0
b0

u, V = a20
b0v0

v, W = a30
b0v0v2

w, T = t

a0
, r = r

′

a0
, θ = θ

′
,

and
a = b0d0

a0
, b = a1

a0
, c = v1

a0
, d = d2v0b0

a20
, p = c3a20

v0b0v2
, q = v3

v2
, s = d3v0b0

a20
, δ1 = a0D1,

δ2 = a0D2, δ3 = a0D3.

Then the spatio-temporal system (16) in polar coordinates is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,r,θ)
∂t = δ1Δrθu(t, r, θ) + f (u(t, r, θ), v(t, r, θ),w(t, r, θ)), ∀(r, θ) ∈ Γ, t > 0

∂v(t,r,θ)
∂t = δ2Δrθ v(t, r, θ) + g(u(t, r, θ), v(t, r, θ),w(t, r, θ)), ∀(r, θ) ∈ Γ, t > 0

∂w(t,r,θ)
∂t = δ3Δrθw(t, r, θ) + h(u(t, r, θ), v(t, r, θ),w(t, r, θ)), ∀(r, θ) ∈ Γ, t > 0

∂u(t,r,θ)
∂n = ∂v(t,r,θ)

∂n = ∂w(t,r,θ)
∂n = 0, ∀(r, θ) ∈ ∂Γ

u(0, r, θ) = u0(r, θ) ≥ 0, v(0, r, θ) = v0(r, θ) ≥ 0, w(0, r, θ) = w0(r, θ) ≥ 0.
(18)

where

⎧
⎪⎪⎨

⎪⎪⎩

f (u(t, r, θ), v(t, r, θ),w(t, r, θ)) = (1 − u(t, r, θ) − v(t,r,θ)

u(t,r,θ)+a )u(t, r, θ),

g(u(t, r, θ), v(t, r, θ),w(t, r, θ)) = (−b + cu(t,r,θ)

u(t,r,θ)+a − w(t,r,θ)

v(t,r,θ)+d )v(t, r, θ),

h(u(t, r, θ), v(t, r, θ),w(t, r, θ)) = (p − qw(t,r,θ)

v(t,r,θ)+s )w(t, r, θ),

(19)
Without diffusion, system (18) becomes

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t,r,θ)

∂t = (1 − u(t, r, θ) − v(t,r,θ)

u(t,r,θ)+a )u(t, r, θ),

∂v(t,r,θ)

∂t = (−b + cu(t,r,θ)

u(t,r,θ)+a − w(t,r,θ)

v(t,r,θ)+d )v(t, r, θ),

∂w(t,r,θ)

∂t = (p − qw(t,r,θ)

v(t,r,θ)+s )w(t, r, θ),

(20)

A steady state (ue, ve,we) of (20) is an homogeneous steady state of (18) which is a
solution of the following system

⎧
⎪⎪⎨

⎪⎪⎩

δ1Δrθue(t, r, θ) + f (ue(t, r, θ), ve(t, r, θ),we(t, r, θ)) = 0,

δ2Δrθve(t, r, θ) + g(ue(t, r, θ), ve(t, r, θ),we(t, r, θ)) = 0,

δ3Δrθwe(t, r, θ) + h(ue(t, r, θ), ve(t, r, θ),we(t, r, θ)) = 0,

(21)
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Steady States and stability

Simple (and tedious) algebraic computations show that problem (18) has a homoge-
neous steady-state if and only

qc > bq + p and qc − bq − p > a(bq + p). (22)

The homogeneous steady-state in the case when d = s, is uniquely given by

u∗ = a(bq + p)

qc − bq − p
, v∗ = (1 − u∗)(u∗ + a) and w∗ = p(v∗ + s)

q
. (23)

A similar study can be used when d �= s.
The conditions (22) ensure that the system (18) has a positive homogeneous steady

state corresponding to constant coexistence of the three species E∗ = (u∗, v∗,w∗).

Proposition 3 Conditions (22) are satisfied, the set defined by

Θ ≡ [0, 1] × [0, 1 + a] ×
[
0,

p

q
(1 + a + s)

]
(24)

is positively invariant region, moreover all solutions of (18) initiating in Θ are
ultimately bounded with respect to R3+ and eventually enter the attracting set Θ .

By the same in the last section, we need the following result which states the stability
of the homogeneous steady state.

Proposition 4 (local stability without diffusion) If conditions (22) are satisfied and

a + 1

qc
>

2a

qc − bq − p
,

and

b + dp((1 − u∗)(u∗ + a) + s)

q((1 − u∗)(u∗ + a) + d)2
>

cu∗

u∗ + a
(25)

and
p2((1 − u∗)(u∗ + a) + s)2

q(u∗ + a)
> b + dp((1 − u∗)(u∗ + a) + s)

q((1 − u∗)(u∗ + a) + d)2
.

Then, the homogeneous steady state E∗ = (u∗, v∗,w∗) is locally asymptotically
stable.

The proofs of Propositions 3 and 4 require long and tedious (albeit simple) algebraic
computations, they can be found in [2].
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5 Pattern Formation and Turing Instability

Pattern formation is a process by which a spatially uniform state loses stability to a
non-uniform state : a pattern.

Two basic types of symmetry-breaking bifurcations, which are responsible for the
emergence of spatio-temporal patterns are:

• The space-independentHopf bifurcation breaks the temporal symmetry of a system
and gives rise to oscillations that are uniform in space and periodic in time.

• The (stationary) Turing bifurcation breaks spatial symmetry, leading to the forma-
tion of patterns that are stationary in time and oscillatory in space.
In this section, we mainly focus on this last type of bifurcation.

5.1 Turing Instability for Two Species Model

In this section, in order to study the diffusion driven instability for system (10), we
have to analyze the stability of the homogeneous steady state E∗ = (u∗, v∗) which
corresponds to co-existence of prey and predator. The Jacobian evaluated at the equi-
librium E∗ = (u∗, v∗) is

M =
⎛

⎝
fu fv

gu gv

⎞

⎠ =
⎛

⎝
∂
∂u f (u∗, v∗) ∂

∂v f (u
∗, v∗)

∂
∂u g(u

∗, v∗) ∂
∂v g(u

∗, v∗)

⎞

⎠

=
⎛

⎜
⎝

(a1d1−k1b1)u∗−2b1d1u∗2−b1d2u∗v∗
d1u∗+d2v∗+k1

− c1u∗(k1+d1u∗)
(d1u∗+d2v∗+k1)2

a22
c2

−a2

⎞

⎟
⎠

By setting

S =
⎛

⎝
u − u∗

v − v∗

⎞

⎠ ϕ(r, θ)eλt+ikr

where φ(r, θ) is a eigenfunction of the Laplacian operator on a disc domain with
zero flux boundary, i.e.: {

Δrθφ = −k2φ,

φr (R, θ) = 0

k is the wave number and λ is the perturbation growth rate. Then by linearizing
around (u∗, v∗), we have the following equation:
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dS

dt
= MS + DΔS (26)

where

D =
⎛

⎝
D1 0

0 D2

⎞

⎠

by substituting S by φeλt in Eq. (26) and canceling eλt , we get:

λφ = M − Dk2φ (27)

We obtain the characteristic equation for the growth rate λ as determinant of

det (λI2 − M + k2D) = 0 ⇔
∣
∣
∣
∣
λ − fu + D1k2 − fv

−gu λ − gv + D2k2

∣
∣
∣
∣ = 0, (28)

By computation we have the expression of the characteristic equation Θ(k2):

Θ(k2) = λ2 + R(k2)λ + B(k2) (29)

where
R(k2) = k2(D1 + D2) − tr(M) (30)

and
B(k2) = D1D2k

4 − (D2 fu + D1gv)k
2 + det(M). (31)

Therefore, the eigenvalues are the roots of (29) are given by

λ±(k) = −R(k2) ± √
(R(k2))2 − 4B(k2)

2
(32)

Let

θ1,2 =
−z2 ±

√
z22 − 4z1z3

z21
, (33)

and
z1 = 2b1d1c2 + b1d2a2,

z2 = a22d2 + a2d1c2 + k1b1c2 − a1d1c2,

z3 = a22d2k2 + b1d2k2a2 + k1a2c2.
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Proposition 5 If a22d2 + a2d1c2 + k1b1c2 > a1d1c2 or 0 < u∗ < θ1 or θ2 < u∗, θ1
and θ2 are defined inEq. (33) and if D2 < (D2)c, then E∗ = (u∗, v∗) is asymptotically
stable for system (10). If D2 > (D2)c then E∗ = (u∗, v∗) is unstable for system (10),
where,

(D2)c = −(2D1 fvgu − D1 fugv)

f 2u

+
√

(2D1 fvgu − D1 fugv)2 − D2
1 f

2
u g

2
v

f 2u

Now, we study the conditions leading to Turing instability for the two-species model.
These conditions are given by:

Tr(M) = fu + gv < 0 (34)

det(M) = fugv − fvgu > 0 (35)

D2 fu + D1gv > 0 (36)

(D2 fu + D1gv)
2 − 4D1D2 det(A) > 0 (37)

For a predator-prey model, the necessary condition to have the instability of Turing
is that the predator spreads faster than the prey, namely D2 > D1. Turing instabil-
ity corresponds to the onset of patterns periodic in space and stationary in time.
Mathematically speaking, the case when Im(λ(k)) = 0 for k = kc is called Turing
instability.

The conditions R(k2) > 0 and B(k2) > 0 are equivalent to the stability crite-
rion R(k2 = 0) > 0 and B(k2 = 0) > 0 for the local dynamic. In particular this
means that R(k2) > 0 for all k, (tr(M) < 0 and k2(D1 + D2) > 0, then R(k2) > 0),
therefore the only choice for Re(λ(k)) > 0 is B(k2) < 0 for some k �= 0. Thus the
instability of the homogeneous solution can occur when B(k2) is zero for some k.
It means that the instability occur at the point where the equation B(k2) = 0 has a
multiple root. We find that B(k2) is a quadratic polynomial with respect to k2. Its
extremum is a minimum at some k2 [17].

B
′
(k2) = 4D1D2k3 − 2(D2 full + D1gv)k = 0 =⇒ k2min = 1

2

(
D2 fu+D1gv

D1D2

)
. (38)

Equation (29) is defined if
D2 fu + D1gv > 0. (39)
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Then,

Bmin = B(k2min) = det (M) − (D2 fu + D1gv)2

4D1D2
. (40)

If det (M) <
(D2 fu+D1gv)2

4D1D2
, then there exists k2 �= 0 such that B(k2) < 0.

The bifurcation for which Bmin = 0 that is det (M) = (D2 fu+D1gv)2

4D1D2
occurs for a

critical value (D2)T of the diffusion coefficient D2,which is a solution of the equation:

f 2u D
2
2 + 2(2D1 fvgu − D1 fugv)D2 + D2

1g
2
v = 0 (41)

Then the critical value kc of the wave number k associated with the critical value
(D2)T is given by

k2min = 1

2

(
(D2)T fu − D1a2

D1(D2)T

)

and the wavelength wT associated also with the critical value (D2)T is given by

wT = 2π

kT
= 2π

√
2D1(D2)T

(D2)T fu − D1a2

Then, the resolution of Eq. (31) gives us the region of wavenumbers of unstable
modes

k21 = D2 fu + D1gv − √
(D2 fu + D1gv)2 − 4D1D2 det(M)

2D1D2

k22 = D2 fu + D1gv + √
(D2 fu + D1gv)2 − 4D1D2 det(M)

2D1D2

5.2 Turing Instability for Three Species Model

Let us now analyze this symmetry breaking bifurcation for system (18). We know
that Turing instability occurs from a finite number of wave vectors producing stable
spatial patterns depending essentially on the initial condition. Let

W =

⎛

⎜
⎜
⎜
⎜
⎝

u − u∗

v − v∗

w − w∗

⎞

⎟
⎟
⎟
⎟
⎠

ϕ(r, θ)eλt+ikr (42)

where k is the wave number and ϕ(r, θ) is an eigenfunction of the Laplacian operator
on a disc domain with zero flux on the boundary, i.e.:
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{
Δrθϕ = −k2ϕ,

ϕr (R, θ) = 0

Then, by linearizing around (u∗, v∗,w∗), we have the following equation:

dW

dt
= DΔW + LE (E∗)W. (43)

where E = (u, v,w)T and

L(E) =
⎛

⎝
f (u, v,w)

g(u, v,w)

h(u, v,w)

⎞

⎠ =
⎛

⎝
(1 − u − v

u+a )u
(−b + cu

u+a − w
v+d )v

(p − qw
v+s )w

⎞

⎠

Then, problem (20) can be written as: Consider now the system with diffusion (18)
and let us substitute W by ϕeλt in Eq. (43) and canceling eλt , we get:

λϕ = LE (E∗) − Dk2ϕ. (44)

We obtain the characteristic equation for the growth rate λ as the determinant of

det (λI3 − LE (E∗) + K 2D) = 0 ⇐⇒

det

⎛

⎜
⎜
⎜
⎜
⎝

λ − a11 + δ1k2 −a12 −a13

−a21 λ − a22 + δ2k2 −a23

−a31 −a32 λ − a33 + δ3k2

⎞

⎟
⎟
⎟
⎟
⎠

= 0. (45)

The characteristic polynomial from (45) is

H(k2) = λ3 + Φ1(k
2)λ2 + Φ2(k

2)λ + Φ3(k
2) = 0, (46)

with

Φ1(k
2) = k2(δ1 + δ2 + δ3) + B1,

Φ2(k
2) = k4(δ1δ2 + δ1δ3 + δ2δ3)

−k2(δ1(a22 + a33) + δ2(a11 + a33) + δ3(a11 + a22)) + B2,
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Φ3(k
2) = k6δ1δ2δ3 − k4(δ1δ2a33 + δ1δ3a22 + δ2δ3a11)

+k2(δ3(a11a22 − a12a21) + δ2a11a33) + B3.

For the stability of the equilibrium point, according to the Routh–Hurwitz criteria,
Re(λ) < 0 if

Φ1(k
2) > 0, (47)

Φ2(k
2) > 0, (48)

Φ1(k
2)Φ2(k

2) − Φ3(k
2) > 0. (49)

The Turing instability requires that the stable homogeneous steady state becomes
unstable due to the interaction and diffusion of species.

Under the conditions of Turing:

Re(λ(k2 = 0)) < 0, Re(λ(k2 > 0)) > 0, for a k2 > 0 (50)

We have the following Theorem.

Proposition 6 If one of the following conditions holds:

Φ1(k
2) < 0,

Φ2(k
2) < 0,

Φ1(k
2)Φ2(k

2) − Φ3(k
2) < 0

then, the homogeneous steady state E∗ = (u∗, v∗,w∗) of system (18) drives instabil-
ity.

Proof For k2 �= 0 we have Φ1(k2) = −(a11 + a22 + a33) + k2(δ1 + δ2 + δ3). If
a11 + a22 + a33 < 0, then Φ1(k2) > 0 and instability of Turing does not occur.
Thereafter, we suppose in Eq. (48) ρ = k2 > 0, to get:

Φ2(ρ) = ρ2 p1 − ρp2 + p3, (51)

where
p1 = δ1δ2 + δ1δ3 + δ2δ3,

p2 = δ1a22 + δ1a33 + δ2a11 + δ2a33 + δ3a11 + δ3a22,

p3 = a11a22 + a11a33 + a22a33 − a12a11 − a23a23,
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a necessary condition for E∗ = (u∗, v∗,w∗) of (18) becomes unstable is that

Φ2(ρ) = ρ2 p1 − ρp2 + p3 < 0. (52)

For the instability,weneed that p2 > 0 and p22 − 4p1 p3 > 0 for someρ. The equation
p1ρ2 − p2ρ + p3 has two positive roots given by:

ρ1 =
p2 −

√
p22 − 4p1 p3

2p1
and ρ2 =

p2 −
√
p22 + 4p1 p3

2p1
. (53)

The constant positive steady state E∗ = (u∗, v∗,w∗) of (18) is unstable and so (18)
experiences Turing instability provided that ρ1 < ρ < ρ2.

The expressions Φ3(k2) and Φ1(k2)Φ2(k2) − Φ3(k2) are a cubic function of k2

of the form
Φ3(k

2) = q1(k
2)3 + q2(k

2)2 + q3k
2 + q4, (54)

q1 = δ1δ2δ3,

q2 = −(δ1δ2a33 + δ1δ3a22 + δ2δ3a11),

q3 = δ1a22hw + δ2a11a33 + δ3a11a22 − δ1a23a32 − δ3a22a21

= δ1(a22a33 − a23a32) + δ2a11a33 + δ3(a11a22 − a12a21),

q4 = Φ3(0) = a12a21a33 + a11a23a32 − a11a22a33,

with q1 = det (D) ≥ 0 and q4 = −det (LE (E∗)) > 0.
If Φ3 has a minimum, one finds by simple computation that

dΦ3

d(k2)
= 3q1(k

2)2 + 2q2(k
2) + q3 = 0 (55)

and d2Φ3
d2(k2) > 0, this minimum is reached for the solution of (55) at

k2in f =
−q2 +

√
q2
2 − 3q1q3

3q1
. (56)

If a11 > 0, a22 > 0 and a33 > 0 then q2 < 0.
If a22a33 < a23a32, a11a33 < 0, a11a22 < a12a21 or a22a33 < 0, a11a33 < 0 and

a11a22 < 0 then, q3 < 0.
To verify condition (49) let us denote

Ψ (k2) = Φ1(k
2)Φ2(k

2) − Φ3(k
2) = r1(k

2)3 + r2(k
2)2 + r3k

2 + r4, (57)
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where

r1 = 2δ1δ2δ3 + δ21δ3 + δ21δ2 + δ1δ
2
2 + δ1δ

2
3 + δ3δ

2
2 + δ2δ

2
3

= (δ2 + δ3)(δ
2
1 + δ2δ3 + δ1δ2 + δ1δ3),

r2 = −(δ21a22 + δ21a33 + δ22a11 + δ22a33 + δ23a11 + δ23a22 + 2δ1δ2a11 + 2δ1δ2a33
+2δ1δ3a11 + 2δ1δ3a22 + 2δ1δ2a22 + 2δ1δ3a33, +2δ2δ3a11 + 2δ2δ3a22 + 2δ2δ3a33)

= −a11(δ3 + δ2)(2δ1 + δ2 + δ3) − a22(δ3 + δ1)(δ1 + 2δ2 + δ3)

−a33(δ1 + δ2)(δ1 + δ2 + 2δ3),

r3 = δ1a
2
22 + δ1a

2
33 + δ2a

2
11 + δ2a

2
33 + δ3a

2
11 + δ3a

2
22 + 2δ1a11a22

+2δ1a11a33 + 2δ1a22a33 − δ1 fvgu − δ1 fwhu + 2δ2 fugv
+2δ2a11a33 + 2δ2a22a33 − δ2a12a21 − δ2a23a32 + 2δ3a11a22
+2δ3a11a33 + 2δ1a22a33 − δ3a23a32

= δ1a
2
22 + δ1a

2
33 + δ2a

2
11 + δ2a

2
33 + δ3a

2
11 + δ3a

2
22 + 2(δ1 + δ2

+δ3)(a11a22 + a11a33 + 2a33a22) − δ1a12a21
−δ2(a12a21 + a23a32) − δ3a23a32,

r4 = Ψ (0)

= −(a211a22 + a211a33 + 2a11a22a33 + a11a
2
33 + a11a

2
22

+a222a33 + a22a
2
33) + a12a21a22 + a22a23a32.

r4 > 0 if
a211a22 + a211a33 + 2a11a22a33 + a11a

2
33 + a11a

2
22

+a222a33 + a22a
2
33 < a12a12a22 + a22a23a32.

If Ψ has a minimum, by simple algebraic computation we get

dΨ

d(k2)
= 3r1(k

2)2 + 2r2(k
2) + r3 = 0 (58)

and d2Ψ
d2(k2) > 0, this minimum is reached for the solution of (58) at

k21in f = k2in f =
−r2 +

√
r22 − 3r1r3

3r1
(59)

r2 < 0 if a11 > 0, a22 > 0 and a33 > 0.
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r3 < 0 if a12a21 > 0, (a12a21 + a23a32) > 0, a23a32) > 0 and δ1a222 + δ1a233 +
δ2a211 + δ2a233 + δ3a211 + δ3a222 + 2(δ1 + δ2 + δ3)(a11a22 + a11a33 + 2a33a22) <

δ1a12a21 + δ2(a12a21 + a23a32) + δ3a23a32.
By using the conditions for the existence of the homogeneous steady state of

the system without diffusion to be stable (Φ1(0) > 0, Φ2(0) > 0, Φ3(0) > 0Φ1(0)
Φ2(0) − Φ3(0) > 0) and the necessary condition for the homogeneous steady state
of the system with diffusion to be instable that is to say, at least one of the following
conditions, (Φ1(k2) < 0, Φ2(k2) < 0, Φ3(k2) < 0, Φ1(k2)Φ2(k2) − Φ3(k2) < 0) is
satisfied for a certain k2 �= 0, we can prove the following proposition which gives a
necessary condition (not sufficient) for the instability for the homogeneous steady
state of the reaction-diffusion system with three species.

Let

Φ3(k
2
in f ) = 2q3

2 − 9q1q2q3 + 27q2
1q4 − 2(q2

2 − 3q1q3)
3
2

27q3
1

Ψ (k21in f ) = 2r32 − 9r1r2r3 + 27r21r4 − 2(r22 − 3r1r3)
3
2

27r31

Therefore, in the following assumptions:
(H0) : q2 < 0
(H1) : q3 < 0
(H2) : q2

2 − 3q1q3 > 0
(H3) : r2 < 0, r3 < 0 and q2

2 − 3q1q3 > 0
(H4) : r22 − 3r1r3 > 0
(H5) : 2q3

2 − 9q1q2q3 + 27q2
1q4 − 2(q2

2 − 3q1q3)
3
2 < 0

(H6) : 2r32 − 9r1r2r3 + 27r21r4 − 2(r22 − 3r1r3)
3
2 < 0

and using

Lemma 1 (i)- If (H0) or (H1) and (H2) are verified, then k2in f is a positive real.
(ii)- If (H0), (H2) and (H3) (Resp (H4)) are verified, then k2in f is a positive real (Resp
k21in f is a positive real).
(iii)- If (H5) (Resp (H6)), then Φ3(k2in f ) < 0 (Resp Ψ (k21in f ) < 0).

we can easily prove the final result:

Proposition 7 Suppose
1—[(H0) or (H1) and (H2)] or [(H0), (H2) and (H3)] or [(H0), (H2) and (H4)].
2—(H5) or (H6).
If conditions 1 and 2 are satisfied, then we have emergence of Turing instability for
system (18).
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5.3 Numerical Simulations

In this subsection, we perform numerical simulations to illustrate the theoretical
results given in the previous sections. In Figs. 1 and 2, Patterns formation are shown
for systems (10) and (18).

Initial conditions for system (10) have been chosen as

u(0, r, θ) = u∗((rcosθ)2 + (rsinθ)2) < 400 (60)

v(0, r, θ) = v∗((rcosθ)2 + (rsinθ)2) < 400 (61)

Fig. 1 Spatial distribution of
species for system (10) with
D1 = D2 = 1, a1 = 1,
a2 = 0.02, b1 = 1, k1 =
0.2, k2 = 0.1, d1 =
0.9, d2 = 0.1, c1 =
1.1, c2 = 0.02 and time
varying a for t = 100, b for
t = 2800, c for t = 3500, d
for t = 6000. The left
figures are spatial evolutions
of the prey and the right are
for predator
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Fig. 2 Spatial distribution of prey (first column), predator (second column) and top predator (third
column) for system (18). Spatial patterns are obtained with diffusivity coefficients δ1 = 0.02, δ2 =
0.01and δ3 = 0.05, a0 = 0.5, a1 = 0.4, b0 = 0.36, c3 = 0.2, d0 = 0.3, d2 = 0.4, d3 = 0.4, v0 =
0.4, v1 = 0.8, v2 = 0.4, v3 = 0.6 at different time levels: for t = 0 (a), t = 1000 (b), t = 2000 (c),
t = 20000 (d)

Initial conditions for system (18) have been chosen as,

u(0, r, θ) = u∗((rcosθ)2 + (rsinθ)2) < 50,

v(0, r, θ) = v∗((rcosθ)2 + (rsinθ)2) < 50,

w(0, r, θ) = w∗((rcosθ)2 + (rsinθ)2) < 50.
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Pattern Formation in a Prey-Predator Model
with Nonlocal Interaction Terms

Malay Banerjee, Moitri Sen and Vitaly Volpert

Abstract We study a spatio-temporal prey-predatormodelwith nonlocal interaction
terms. Nonlocal interactions are considered for prey and predator species to describe
the nonlocal intra-specific competition for limited resources.We show that the region
of pattern formation increases with the increase of the range of nonlocal interaction.
Numerical continuation technique is used to determine the existence of multiple
stationary patterns.

Keywords Nonlocal interaction · Pattern formation · Stationary pattern
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1 Introduction

Spatio-temporal pattern formation in population dynamics continues to attract much
attention. Stationary pattern formation for the interacting populations was first stud-
ied by Levin and Segel [19] in the case of a planktonic system on the basis of the sem-
inal work of Turing [24] on chemical morphogenesis. Importance of spatio-temporal
models to describe the stabilization and long term existence of certain species was
first indicated by Gause [12]. Effect of the distribution of species over their habitat in
terms of long time stable coexistence of the interacting populationwas first studied by
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Luckinbill [16, 17]. There are very few experimental evidences on the spatial pattern
formation for the interacting populations since it is quite difficult to get data on the
long timescale. Some recent literature provides an observation of vegetation pattern
formation and planktonic blooms [10, 14, 22]. However, appropriate evidences for
stationary, periodic and aperiodic pattern formation in the interacting populations
are still lacking.

Mathematical analysis and relevant numerical simulations of spatio-temporal
models can explain stationary and oscillatory patterns of population distribution over
their habitats. Classical spatio-temporal models of interacting populations are con-
structed under the assumption that reproduction, predation and competition are based
on the local interaction of individuals. In this context, the reaction term describes
the growth rate of the population and the diffusion term takes care of random move-
ment of the individuals within their habitats. However a long range interaction of
the individuals in the population is not taken into account. Spatio-temporal models
with self-diffusion terms also ignore the influence of the population density of one
species towards the rate of diffusion of another one. In reality displacement of preda-
tors is mostly influenced by the prey location [20]. As a result, generation of spatial
patterns depends mostly on the reaction kinetics. This limitation manifests itself in
the absence of Turing pattern in the Gause type prey-predator models with prey-
dependent functional response and linear death rate of predator population although,
such models can produce non-Turing patterns [21]. It is important to note that the
non-Turing patterns indicate a continuous change in the population density which
does not converge to any stationary state/distribution.

Conventional spatio-temporal models in population dynamics for a single species
population growth do not generate spatial patterns. Genieys et al. [13] established
that a spatio-temporal model of single species population growth can induce such
patterns in the presence of nonlocal consumption of resources. It describes intra-
specific competition and it is appropriate formodelling of the emergence of biological
species. Various models with nonlocal and global consumption of resources are
developed in order to describe Darwin’s theory of evolution [11].

The main objective of the present work is to study a spatio-temporal model with
nonlocal consumption of resources in the context of predator-prey interaction with
Michaelis–Menten type ratio-dependent functional response [3] and to describe the
consumption of prey by their specialist predator. Nonlocal interaction terms are
introduced for both the prey and predator population with the assumption that the
intra-specific competition takes place between the individuals located at two different
locations. In Sect. 2 the formulation of basic model is presented. Linear stability
results for the nonlocal model are obtained in Sect. 3 and some numerical simulation
results are given in Sect. 4. The main results of this work are summarized in Sect. 5
along with a brief discussion on the possible future developments of this study.
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2 Basic Model

Spatio-temporal models of prey-predator interaction can produce stationary as well
as non-stationary patterns. The concerned models are constructed by adding self-
diffusion terms and/or cross-diffusion terms to the temporal models [18, 20]. Local
and global bifurcations for the temporal model have significant impact on the result-
ing spatio-temporal pattern formation [5–7]. Replacing the local interaction terms
involved with the reaction kinetics by nonlocal interactions [25], wemodify complex
nonlinear dynamics and pattern formation in the models of interacting populations.

2.1 Temporal Model

In this work we consider the Michaelis–Menten type ratio-dependent model for
prey-predator interaction and governed by the following coupled nonlinear ordinary
differential equations,

du

dt
= u(1 − u) − αuv

u + v
≡ f (u, v), (1)

dv

dt
= βuv

u + v
− γ v − δv2 ≡ g(u, v), (2)

and subjected to non-negative initial conditions u(0) ≥ 0, v(0) ≥ 0. Here u and
v stand for the population densities of prey and predator species respectively. All
the parameters involved in the model (1)–(2) are dimensionless positive numbers.
Parameters α, β, γ and δ can be interpreted as dimensionless and rescaled grazing
rate of prey by their specialist predators, growth rate of predators, death rate of
predators and intra-specific competition rate among the predators respectively (see
[5] for details). This model can be considered as an extension of the classical Bazykin
type prey-predatormodel [9]with ratio-dependent functional response. Abovemodel
exhibits a wide variety of dynamic behavior and undergoes several types of local and
global bifurcations which are related to the stable/oscillatory coexistence of the prey
and the predator aswell as to the extinction of both populations [5]. Themodel (1)–(2)
admits at most two interior equilibrium points E∗

j (u
∗
j , v

∗
j ) with the coordinates

u∗
j = α(γ − 2β + δ) + 2β + (−1) j

√
α2(γ − δ)2 + 4α2βδ + 4α3δ(γ − β)

2

v∗
j = u∗

j (1 − u∗
j )

u∗
j + α − 1

, j = 1, 2.
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The first components of E∗
j are the positive real roots of the quadratic equation

(αδ + β)u2 + (2αβ − 2β − αδ − αγ )u + α2β + αγ + β − α2γ − 2αβ = 0.

Here we assume that the parametric restriction α2β + αγ + β − α2γ − 2αβ < 0
is satisfied, and hence we get only one feasible coexisting equilibrium point E2∗ .

The temporal model (1)–(2) exhibits a wide variety of local (transcritical, saddle-
node, Hopf, Bautin) and global bifurcations (homoclinic, saddle-node bifurcation of
limt cycles) (see [5] for further details). Here we consider β, γ , δ as fixed parameters
and α as bifurcation parameter. We choose α as a bifurcation parameter since it
determines the strength of coupling between two equations. Throughout this work
the values of three parameters are fixed, β = 1, γ = 0.6 and δ = 0.1. With this
choice of parameter values, we find only one feasible interior equilibrium point E∗

2
whenever α < 2.5. The conditions for local asymptotic stability of E∗

2 are given by
[18] the inequalities

a11 + a22 < 0, a11a22 − a12a21 > 0, (3)

where

a11 = ∂ f

∂u

∣
∣
∣
∣
E∗
2

, a12 = ∂ f

∂v

∣
∣
∣
∣
E∗
2

, a21 = ∂g

∂u

∣
∣
∣
∣
E∗
2

, a22 = ∂g

∂u

∣
∣
∣
∣
E∗
2

. (4)

The coexisting equilibrium point E∗
2 is stable for α < 2.01 ≡ αH and it is unstable

for α > αH . It loses stability through a supercritical Hopf bifurcation. The stable
limit cycle generated through the Hopf bifurcation disappears due to a homoclinic
bifurcation [5]. Conditions for the Hopf bifurcation are as follows [15]:

[a11 + a22]α=αH
= 0, [a11a22 − a12a21]α=αH

> 0,
d

dα
(a11 + a22)

∣
∣
∣
∣
α=αH

�= 0. (5)

2.2 Spatio-Temporal Model

Incorporating the self-diffusion terms into the temporal model described above, we
get the spatio-temporal model of predator-prey interaction:

∂u

∂t
= u(1 − u) − αuv

u + v
+ ∂2u

∂x2
, (6)

∂v

∂t
= βuv

u + v
− γ v − δv2 + d

∂2u

∂x2
, (7)
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for (t, x) ∈ R+ × Ω, where Ω ⊂ R and subjected to the initial conditions

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ Ω, (8)

and periodic boundary conditions. The positive parameter d stands for the ratio of
diffusivity of the prey and the predator species.

The components of the interior equilibrium point E∗
2 correspond to homoge-

neous steady-state for the system (6)–(7). Instability of the homogeneous steady-
state u(t, x) = u∗

2, v(t, x) = v∗
2, whenever the condition (3) is satisfied, is known as

Turing instability [18, 20]. Turing instability conditions are given by

a11 + a22 < 0, a11a22 − a12a21 > 0, da11 + a22 > 2
√
d(a11a22 − a12a21), (9)

and the equation of the Turing bifurcation curve is

da11 + a22 = 2
√
d(a11a22 − a12a21). (10)

For the chosen parameter values, asmentioned in the Sect. 2.2, the spatio-temporal
model (6)–(7) exhibits stationary as well as chaotic pattern for different values of α

and d. Thorough numerical simulations reveal stationary and chaotic patterns within
and outside the Turing domain. These results are summarized in Fig. 1. For numerical
simulations, we have considered a small perturbation of the homogeneous steady-
state within a narrow interval around the middle point of the spatial domain [0, L].
Throughout this work we will consider only this type of initial conditions. We also
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Fig. 1 Stationary and chaotic patterns are observed from numerical simulation of the model (6)–(7)
with β = 1, γ = 0.6, δ = 0.1 and different values of α and d. Two curves correspond to Turing
bifurcation curve (magenta) and Hopf-bifurcation curve (black) respectively. The symbols repre-
sent: ∇ → homogeneous stead-state, 
 → stationary pattern, ∗ → spatio-temporal chaos, x →
extinction
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note that the results are independent of the choice of Δt and Δx in the considered
range providing a good accuracy of the simulations.

2.3 Spatio-Temporal Model with Nonlocal Interaction Terms

The spatio-temporal model of prey-predator interaction with nonlocal intra-species
competition terms are governed by the following two coupled integro-differential
equations:

∂u(t, x)

∂t
= u(t, x)(1 − w1(t, x)) − αu(t, x)v(t, x)

u(t, x) + v(t, x)
+ ∂2u(t, x)

∂x2
, (11)

∂v(t, x)

∂t
= βu(t, x)v(t, x)

u(t, x) + v(t, x)
− (γ + δw2(t, x))v(t, x) + d

∂2v(t, x)

∂x2
, (12)

where

w1(t, x) =
∫ ∞

−∞
φ1(x − y)u(t, y)dy, w2(t, x) =

∫ ∞

−∞
φ2(x − y)v(t, y)dy.

The above model is subjected to the positive initial condition and periodic boundary
condition over the same domain as described in the Sect. 2.2. To be specific, here we
consider x ∈ [0, L].

The model with nonlocal interaction term implies that the intra-specific com-
petition is not limited to the individuals located at the same spatial point x only.
Rather the prey located at space point x will compete for resources with other preys
located in some area around this space point. Hence the intra-species competition
rate among the prey is determined by the integral

∫ ∞
−∞ φ1(x − y)u(t, y)dy and the

function φ1(x − y) measures the efficiency of the competition of prey located at the
space point y with the prey located at the space point x . The function φ1 depends on
the difference x − y since it is assumed that the efficiency of competition depends on
the distance between the individuals. Hence the intra-specific competition among the
prey is described by the expression u(t, x)

∫ ∞
−∞ φ1(x − y)u(t, y)dy, and a similar

assumption is true for the intra-specific competition among the predators.
The interaction kernels φ1 and φ2 are supposed to have bounded supports and

satisfy the conditions
∫ ∞
−∞ φ1(z)dz = ∫ ∞

−∞ φ2(z)dz = 1. In this work we consider
them as piece-wise constant functions:

φ1(z) = φ2(z) ≡ φ(z) =
{

1
2M , |z| < M
0, |z| ≥ M.

(13)
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3 Linear Stability Analysis of Nonlocal Model

In thisworkweare interested to studyTuringpattern formation for the nonlocalmodel
(11)–(12) around the unique coexisting homogeneous steady state only. Accordingly,
we carry out linear stability analysis of the homogeneous steady state (u∗

2, v
∗
2). Lin-

earizing the system (11)–(12) around the homogeneous steady state u(t, x) = u∗
2,

v(t, x) = v∗
2, we get the following two linear equations:

λu1(x) = (a11 + u∗
2)u1(x) − u∗

2

∫ ∞

−∞
φ(x − y)u1(y)dy + a12v1(x) + u′′

1(x),

λv1(x) = a21u1(x) + (a22 + δv∗
2)v1(x) − δv∗

2

∫ ∞

−∞
φ(x − y)v1(y)dy + dv′′

1(x).

Hereu1 and v1 are perturbations around thehomogeneous steady-state of the variables
u and v respectively. Taking Fourier transform of these equations, we get

λu1(ξ) = (a11 + u∗
2)u1(ξ) − u∗

2φ(ξ)u1(ξ) + a12v1(ξ) − ξ 2u1(ξ), (14)

λv1(ξ) = a21u1(ξ) + (a22 + δv∗
2)v1(ξ) − δv∗

2φ(ξ)u1(ξ) − dξ 2v1(ξ), (15)

where u1(ξ), v1(ξ) and φ(ξ) are Fourier transforms of the functions u1(x), v1(x) and
φ(x), respectively. Stability conditions of the homogeneous steady state are given
by the inequalities

a11 + a22 + u∗
2 + δv∗

2 − (1 + d)ξ 2 − (u∗
2 + δv∗

2)φ(ξ) < 0, (16)

[−(a11 + u∗
2) + u∗

2φ(ξ) + ξ 2][−(a22 + δv∗
2) + δv∗

2φ(ξ) + dξ 2] − a12a21 > 0.
(17)

Like in the case of Turing instability, we are interested to find the instability condition
by reversing the inequality (17). Using (13) we get φ(ξ) = 1

2M

∫ M
−M cos(ξ y)dy =

sin(ξM)

(ξM)
, as φ is an even function. Hence the condition for instability is given by

D(ξ, M) < 0 where

D(ξ, M) ≡ dξ4 +
[
(du∗

2 + δv∗2)
sin(ξM)

ξM
− (da11 + a22 + du∗

2 + δv∗2)
]

ξ2

+
[
−(a11 + u∗

2) + u∗
2
sin(ξM)

ξM

] [
−(a22 + δv∗2) + δv∗2

sin(ξM)

ξM

]
− a12a21. (18)

To determine the stability boundary, we need to find the values of ξ and M such that
only one eigenvalue will cross the origin and other eigenvalues have negative real
parts. The stability boundary in ξ M-parameter space is determined by the solutions
of the equations

D(ξ, M) = 0,
∂D(ξ, M)

∂ξ
= 0,

∂D(ξ, M)

∂M
= 0. (19)
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According to this definition of the stability boundary, in the stability region the
stationary solution is stable for any values of ξ and M . In the instability region,
there exists at least one pair of these parameters for which the solution is unstable.
Considering eigenvalue problem (14)–(15) over a bounded interval, we find that ξ

takes a sequence of real values determined by the length of the interval. If we consider
all real values of ξ , then we get the essential spectrum and the interval is not a priori
fixed.

Differentiating D(ξ, M) with respect to M and then equating to zero, we get

[
u∗
2

{
−(a22 + δv∗

2) + δv∗
2
sin(ξM)

ξM
+ dξ 2

}

+ δv∗
2

{
−(a11 + u∗

2) + u∗
2
sin(ξM)

ξM
+ ξ 2

}] [
cos(ξM)

M
− sin(ξM)

ξM2

]
= 0,

and hence the required condition reduces to

tan(ξM) = ξM. (20)

Writing z = ξM in the above expression, we get

tan z = z. (21)

We will denote the roots of this equation by z j satisfying 0 < z1 < z2 < · · · and we
define μ j = sin z j

z j
. Finally, solving the following two equations

D(ξ, M) = 0,
∂D(ξ, M)

∂ξ
= 0,

we get,

ξ 2
j = (da11 + a22) + (1 − μ j )(du∗

2 + δv∗
2)

2d
, j = 1, 2, 3, . . . , (22)

and

Mj = z j
ξ j

= z j
√
2d

√
(da11 + a22) + (1 − μ j )(du∗

2 + δv∗
2)

, j = 1, 2, 3, . . . . (23)

Existence of admissible ξ j and Mj depends on the parameter values. They determine
the extension of the Turing domain for the model with nonlocal interaction when
compared with its local counterpart. We explain this in more detail in Sect. 4 with a
numerical example.
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4 Numerical Simulation Results

The numerical simulation results presented in this section are obtained for the fol-
lowing model:

∂u(t, x)

∂t
= u(t, x)

(
1 − 1

2M

∫ M

−M
u(t, y)dy

)
− αu(t, x)v(t, x)

u(t, x) + v(t, x)
+ ∂2u(t, x)

∂x2
,

(24)

∂v(t, x)

∂t
= u(t, x)v(t, x)

u(t, x) + v(t, x)
−

(
0.6 + 0.1

2M

∫ M

−M
v(t, y)dy

)
v(t, x) + d

∂2v(t, x)

∂x2
,

(25)
subjected to initial conditions (as described at Sect. 2.3) and periodic boundary con-
ditions. Numerical simulations are carried out using the standard Euler method for
the temporal part, Trapezoidal rule for the integration and a three point finite dif-
ference scheme for the diffusion terms with Δt = 0.01 and Δx = 1. Accuracy of
the simulations is controlled by decreasing space and time discretization. In order
to understand the impact of nonlocal interaction on pattern formation, we carry out
numerical simulations for the values of parameters α ∈ [1.9, 2.25], d ∈ [2, 12]
and for a certain range of M .

We observe that increasing M induces stationary patterns over a larger parametric
domain. We present a result of numerical simulations for M = 5 in Fig. 2. Compar-
ison of the regions filled with different symbols in parametric domains, in Figs. 1
and 2, clearly indicates a significant change in the resulting pattern in the presence
of nonlocal interactions. From Fig. 1 we see the extinction scenario in case of local
interaction and d = 2, α ∈ (2.125, 2.25). However the nonlocal interaction induces
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Fig. 2 Stationary and chaotic patterns are observed from numerical simulation of the model (24)–
(25) for M = 5. Symbols represent: ∇ → homogeneous stead-state, 
 → stationary pattern, ∗ →
spatio-temporal chaos
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Fig. 3 Upper panel Spatial average of stationary distribution of prey population for a range of
values of M are plotted here. The curves with different colours represent the branches of solutions
obtained through forward and backward continuation method. Lower panel Stationary distribution
of prey population corresponding to two different branches when M = 20. Other parameter values
are α = 2.15, β = 1, γ = 0.6, δ = 0.1 and d = 2 (color figure online)

chaotic pattern for the same parametric range and M = 5. Further increase of the
range of nonlocal interaction induces stationary patterns over a larger domain of
the parameter space. In particular we find stationary pattern over the entire range
(α, d) ∈ [1.9, 2.25] × [2, 12] with M = 10 (the figure is not presented here for
the sake of brevity).

It is interesting to note that only stationary patterns are observed for M = 10
and for all values of (α, d) ∈ [1.9, 2.25] × [2, 12]. However there exist multiple
stationary solutions for these values of α, d and M . Existence of multiple stationary
state against a range of values for M is demonstrated in Fig. 3. In the case of multiple
stationary solutions, the choice of initial condition determines which one will be
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observed through numerical simulations. For a particular choice of M , we have
performed numerical simulation to obtain the stationary pattern and this pattern is
used as the initial condition for the next simulation with another value of M . This
continuation technique along a branch of solutions is continued up to the values of
M for which transition to another branch of solution is observed. The spatial average
of the stationary patterns are plotted against M . The curves presented in Fig. 3 with
different colours correspond to the multiple stationary branches. Initially we have
obtained the stationary patterns for M = 10, 15, 20, 25, 30, 35 and then forward
and backward continuation technique is used to obtained six different branches.
Number of stationary peaks within a fixed spatial domain varies from one branch to
the other (see lower panel of Fig. 3).

Finally we provide here supportive numerical illustration for the extension of
Turing instability domain in the presence of nonlocal interaction. Turing instability
condition for the model (6)–(7) is not satisfied if we choose α = 1.925, d = 4 and
the homogeneous steady-state u∗2 = 0.25, v∗2 = 0.16 is stable. For this choice of
parameter values, first two inequalities of (9) are satisfied and the last inequality does
not hold. As a result, the point (α, d) = (1.925, 4) lies outside the Turing domain
(see Fig. 1). Our numerical simulation result revealed the appearance of Turing like
pattern for the model (11)–(12) with the same choice of parameter values and M = 5
(see Fig. 2). Substituting all the relevant parameter values and M = 5 in (18) we find
D(ξ, 5) < 0 for ξ ∈ (0.26, 0.64). Similar argument holds for other choices of (α, d)

and this result explains the extension of Turing domain in the presence of nonlocal
interaction.

5 Discussions

In this work we have considered a classical prey-predator model with nonlocal intra-
species competitions among the prey and the predator. The nonlocal terms take into
account the possibility for the individuals of prey and predator species to hunt for
resources and/or favorable habitat in some area around their average location. Hence
prey individuals on one location compete with the prey individuals from some other
location for the consumption of resources and similar argument is true for the intra-
species competition among the predator individuals. This modification of the model
influences survival of prey as well as predator. We have considered a preliminary
aspect of nonlocal interaction and for mathematical simplicity the ranges of nonlocal
interactions for prey and predators are assumed to be same. The length of the support
functions of the kernel φ involved with the integral terms (equal to 2M) indicates
the area over which prey and predator individuals can rapidly move for favorable
resources. Linear stability analysis along with the numerical simulations reveal that
long range intra-species competition enhances the stable coexistence of both species.

Stationary patterns indicate formation of some groups of individuals within their
habitats, and number of groups is determined by the length of the chosen spatial
domain and maintain a correlation with the value L/2M . Enhancement in the range
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of nonlocal interaction for a given number of groups result in the overlapping of
foraging areas and it alters the size of groups forming localized niches. This phe-
nomena is responsible for the existence of multiple stationary branches obtained
through numerical continuation technique. Over a longer time period and gradual
increase of the range of nonlocal interaction is responsible for transition from one
stationary branch to the other and hence we can claim that the proposed modelling
approach is capable to capture the evolutionary aspects. Reaction-diffusion equa-
tions with nonlocal interaction terms are intensively studied [1, 2, 4, 8, 13] but there
are still many open questions. Similar to [11, 13] we can expect the existence of
periodic travelling waves and more complex spatio-temporal dynamics like modu-
lated traveling wave and wave of chaos. Another important development concerns
the interaction of species with global consumption [11] which can show a completely
different dynamics.

Finally, we remark that the work presented here is a starting point and several
questions are required to be answered in due course of time [25, 26]. First natural
question is to consider different ranges of nonlocal interactions for the prey and
predator species as these quantities are related with their body sizes and type of the
species (invertebrate, vertebrate etc.). Another aspect will be worthy to investigate is
the effect of nonlocal consumption of prey by their predators and consequent effect of
nonlocal prey-dependent growth rate for the specialist predators. Here for simplicity
wehave used a step function as the kernels.Howeverweneed to validate the outcomes
by considering other types of kernel functions [23]. Of course the proposed and other
relevant considerations will make the model more complicated and challenging and
hence we will continue our work to address them in our forthcoming research works.
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One Dimensional Maps as Population
and Evolutionary Dynamic Models

Jim M. Cushing

Abstract I discuss one dimensional maps as discrete time models of population
dynamics from an extinction-versus-survival point of view by means of bifurcation
theory. I extend this approach to a version of these population models that incorpo-
rates the dynamics of a single phenotypic trait subject to Darwinian evolution. This
is done by proving a fundamental bifurcation theorem for the resulting two dimen-
sional, discrete time model. This theorem describes the bifurcation that occurs when
an extinction equilibrium destabilizes. Examples illustrate the application of the the-
orem. Included is a short summary of generalizations of this bifurcation theorem to
the higher dimensional maps that arise when modeling the evolutionary dynamics of
a structured population.

Keywords Discrete time dynamics · Difference equations · Population dynamics ·
Evolutionary dynamics · Bifurcations · Equilibria · Stability · Allee effects
2010 Mathematics Subject Classification 92D25 · 92D15 · 37G35 · 39A30

1 Introduction

Iterative maps of the form
xt+1 = f (xt ) xt (1)

(often called difference equations) are widely used to model the discrete time (deter-
ministic) dynamics of biological populations. Here xt is some measure of population
density at discrete census times t = 0, 1, 2, . . . and the expression f (x) describes
the per capita (or per unit) contribution to the population at the the next census
time. We refer to f as the population growth rate. In this context the sequence xt is
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non-negative, and the function f assumes only non-negative values for non-negative
values of its argument. An initial condition x0 ≥ 0 generates a unique sequence
(or trajectory) for t = 0, 1, 2, . . .. The asymptotic properties of the sequence xt are
often of central interest and these depend, of course, on the properties of f . Famous
examples include

f (x) = b
1

1 + cx
, f (x) = bxe−cx (2)

where b, c are positive constants.
The first example in (2) used in (1) gives what historically was called the discrete

logistic model (or Pielou’s logistic or Beverton-Holt model [23]). For this model, it is
well known that the extinction equilibrium (fixed point) xe = 0 is globally asymptot-
ically stable for x0 ≥ 0 (i.e. it is locally asymptotically stable and attracts all trajecto-
ries with x0 ≥ 0) if b < 1 while the positive equilibrium xe = c−1 (b − 1) is globally
asymptotically stable for x0 ≥ 0 when b > 1. This is a prototypical example of the
fundamental bifurcation that occurs at b = 1 where the extinction equilibrium desta-
bilizes and, as a result, a stable positive equilibrium is created. The second example
in (2) used in (1) gives the so-called Ricker model. The extinction equilibrium of this
model also destabilizes at b = 1 with the result that there exists positive equilibrium
xe = c−1 ln b for b > 1. The positive equilibrium is (globally) stable for 1 < b < e2

but unstable for b > e2. As b increases the Ricker model exhibits a period doubling
cascade to chaos, similar to that exhibited by the famous quadratic map given by
f (x) = b (1 − cx) (which is often called the logistic map, rather inappropriately
from a population dynamic point of view). Thus, both of these basic examples illus-
trate a fundamental bifurcation: when the extinction equilibrium destabilizes, a stable
positive equilibria is created (at least for b � 1). As we will see, this is a general
phenomenon for population models (1).

The function f is often regarded as describing reproductive processes and, as a
result, the map (1) assumes all contributions to the population at time t + 1 are due
to reproductive events (and the survival of offspring until the census at t + 1). This
is appropriate, for example, for so-called semelparous (or monocarpic) populations
in which individuals die after reproduction and, consequently, no reproductive indi-
viduals at time t are alive at time t + 1. In this case generations do not overlap. It
is often stated that one dimensional maps are only applicable to populations with
non-overlapping generations, but this is not true. Suppose s (x) is the fraction of the
population x at time t that survives a unit of time. Then, if b (x) is the (per capita)
number of offspring (that survive until time t + 1), we have

f (x) = b (x) + s (x) . (3)

The resulting map (1) allows for overlapping generations. We will refer to b (x) as
the birth or fertility rate and s(x) as the survival rate.

If f depends only on the state variable x , as indicated above, then it is only the
current population density that determines the population density at the next time
census and, as a result, the mathematical model (1) is time autonomous. There are,
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however, many circumstances under which f also depends explicitly on time t . For
example, in a seasonally fluctuating environment model coefficients, such as b and
c in the discrete logistic or Ricker models, might be assumed periodic functions of
time. In this case, the model equation (1) is periodically forced. Or model parameters
might fluctuate randomly, due to random fluctuations in the physical environment
(environmental stochasticity) or in individual organism characteristics (demographic
stochasticity). In this case, the model equation (1) becomes a stochastic dynamical
system.

Another reason that model parameters can change in time is Darwinian evolution,
which is a case we will consider here. Suppose v is a quantified, phenotypic trait
of an individual that is subject to evolution (i.e. it has a heritable component, it
has variability among individuals in the population, and it accounts for differential
fitness, e.g. individual differences among vital rates such as fertility and survival).
If we assume the per capita contribution to the population made by an individual
depends on its trait v, then f = f (x, v) depends on both x and v. It might be the
case that this contribution also depends on the traits of other individuals (due, for
example, to competition for resources or other interactions among individuals). We
can model this situation (frequency dependence) by assuming that f also depends
on the mean trait u in the population so that f = f (x, v, u). A canonical way to
model Darwinian evolution is to model the dynamics of xt and the mean trait ut by
means of the equations

xt+1 = f (xt , v, ut )|v=ut xt (4a)

ut+1 = ut + σ2 ∂vF (xt , v, ut )|v=ut . (4b)

The first equation asserts that the population dynamics can be (reasonably well)
modeled by assuming the trait v is set equal to the population mean. The second
equation (called Lande’s or Fisher’s or the breeder’s equation) prescribes that the
change in the mean trait is proportional to the fitness gradient, where fitness in this
model is denoted by F (x, v, u) [1, 21, 27, 28, 30, 36]. The modeler decides on
an appropriate measure of fitness [32], which is often taken to be f or ln f. The
constant of proportionality σ2 ≥ 0 is called the speed of evolution. It is related to
the variance of the trait in the population (exactly how depends on the derivation
of the mean trait equation), which is assumed constant in time. Thus, if σ2 = 0 no
evolution occurs (there is no variability) and one has a one-dimensional map for just
population dynamics of the form (1). If evolution occurs σ2 > 0 then the model is a
two dimensional map with state variable [xt , ut ].

In Sect. 2 we discuss non-evolutionary models of the form (1)–(3) with a focus
on the basic question of extinction versus survival from a bifurcation theory point
of view. In Sect. 3 we discuss a general class of evolutionary models from the same
point of view.
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2 One Dimensional Maps as Population Dynamic Models

The linearization principle applied to the extinction equilibrium x = 0 of (1)–(3)
implies the extinction equilibrium is (locally asymptotically) stable if the inherent
population growth rate r0 � f (0) ≥ 0 satisfies r0 < 1 and unstable if r0 > 1. In order
to expose more explicitly the role of the inherent birth and death rates (i.e. the birth
and death rates in the absence of any density effects) we write

f (x) = b0ϕ (x) + s0σ (x) , ϕ (0) = σ (0) = 1

where b0 and s0 are inherent birth and survival rates. Let Ω be an open interval of
real numbers that contains the half line of nonnegative real numbers R̄+ (the closure
of the positive real numbers R+). We assume the following.

A1. b0, s0 ∈ R̄+ and the functions ϕ and σ are twice continuously differentiable
as maps from Ω to R+ and R̄+ respectively that satisfy ϕ (0) = σ (0) = 1 and

lim
x→+∞ ϕ (x) = 0 (5)

0 ≤ sup
x∈Ω

s0σ (x) < 1. (6)

Condition (5) insures that the birth rate drops to 0 as population density x increases
without bound. Condition (6) (which implies 0 ≤ s0 < 1) expresses the fact that
some mortality occurs during any time step. Specifically, the fraction 1 − s0σ (x)
of the population that is lost to mortality is bounded away from 0 uniformly for all
x ≥ 0. We can interpret s0σ (x) as an individual’s probability of survival over one
time unit.

An introduction of
r0 =̊ b0 + s0

into
f (x) = (r0 − s0) ϕ (x) + s0σ (x) (7)

allows easy use of r0 as a bifurcation parameter in the resulting population model

xt+1 = ((r0 − s0)ϕ (xt ) + s0σ (xt )) xt . (8)

Our goal is to study the existence and stability of positive equilibria as they depend
on r0.
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The algebraic equation for a positive equilibrium is

(r0 − s0) ϕ (x) + s0σ (x) = 1.

Solving this equation for r0 we obtain

r0 = γ (x)

where

γ (x) =̊1 − s0σ (x) + s0ϕ (x)

ϕ (x)
.

By assumption A1, the function γ (x) is a twice continuously differentiable on Ω

and satisfies

γ (0) = 1, γ (x) > 0 for x ∈ Ω, lim
x→+∞ γ (x) = +∞.

The graph C of the positive equilibrium pairs [r0, xe] , xe > 0, is the set of points
[γ (x) , x] obtained from all values of x > 0, which is a continuum that contains the
point [1, 0] in its closure.We say that the continuumC of equilibrium pairs bifurcates
from the continuum of extinction equilibrium pairs [r0, 0] at r0 = 1, i.e. at the point
[1, 0].

We define the spectrum S of C to be the range of the function γ (x) for x > 0.
The spectrum consists of those values of r0 for which the population model (1)
has a positive equilibrium. Under the assumption A1, the spectrum S is infinite and
contains 1 in its closure. It is therefore a half line. If we denote the (positive) infimum
of γ (x) by rm , then

0 < rm � inf
x>0

γ (x) ≤ 1

and the spectrum is

S = {r0 : 1 < r0 < +∞} if rm = 1

S = {r0 : rm ≤ r0 < +∞} if rm < 1. (9)

The stability of a positive equilibrium pair [r0, xe] ∈ C , as determined by the
linearization principle, depends on the quantity

λ (r0, x) � d ( f (x) x)

dx
= (r0 − s0)ϕ (x) + s0σ (x) + (

(r0 − s0)ϕ′ (x) + s0σ
′ (x)

)
x

evaluated at the equilibrium pair [r0, xe]. Here we use a prime “′” to denote the
derivative a function of a single variable. A calculation shows

λ (r0, xe) = 1 − γ′ (xe) ϕ (xe) xe (10)
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from which we can conclude that positive equilibrium pairs [r0, xe] near the bifur-
cation point [1, 0] are (locally asymptotically) stable if γ′ (0) > 0 and are unstable
if γ′ (0) < 0. (An equilibrium pair is nonhyperbolic if γ′ (xe) = 1, in which case the
linearization principle is unable to determine stability.) The sign of

γ′ (0) = − (
(1 − s0) ϕ′ (0) + s0σ

′ (0)
)

is the opposite of the sign of the weighted average (1 − s0) ϕ′ (0) + s0σ′ (0). The
derivatives ϕ′ (0) and σ′ (0) are the sensitivities of fertility and survival to changes
low level population density. If one of these sensitivities is positive, it is called a
component Allee effect [2, 4]. If a derivative is negative, it implies a negative feed-
back effect is caused by (low level) increased density. This is the most commonly
made assumption in population models. Thus we see that if, at low population den-
sities, there are no component Allee effects and at least one negative feedback effect
is present, then γ′ (0) > 0 and, in a neighborhood of the bifurcation point, small
equilibria are locally asymptotically stable. Moreover, in this case, the bifurcating
positive equilibria correspond to r0 values greater than 1 and the bifurcation is said
to be forward. On the other hand, if least one sensitivity is positive enough so that
γ′ (0) < 0 (or if both sensitivities are positive), then in a neighborhood of the bifurca-
tion point small equilibria are unstable. In this case, the bifurcating positive equilibria
correspond to values of r0 less than 1 and the bifurcation is said to be backward.
Notice that in this case rm < 1 and the spectrum contains 1 in its interior (see (9)).

We arrive at the conclusion: if γ′ (0) �= 0 then in a neighborhood of the bifurcation
point a forward bifurcation is stable (meaning that the equilibria on C are stable)
and a backward bifurcation is unstable. See Fig. 1.

This bifurcation scenario occurring in a neighborhood of the bifurcation point
[r0, xe] = [1, 0] is quite general for population models. Mathematically it is a trans-
critical bifurcation exhibiting an exchange of stability principle, which is a phenom-
enon known to occur in quite general settings from nonlinear functional analysis [24,
31]. It has been established for numerous population models of many mathemati-
cal types [6]. For this reason, one can refer to the bifurcation described above as a
fundamental bifurcation theorem for nonlinear population dynamic models.

However, the stability properties of the positive equilibria near the bifurcation
point need not persist entirely along the continuum C of equilibrium pairs. It is
well known for one dimensional maps that positive equilibria can destabilize and
period doublings and routes-to-chaos can occur. These secondary bifurcations are
model dependent, being determined by the properties of the density terms ϕ (x) and
σ (x). They can occur in models with either forward or backward bifurcations at
[r0, xe] = [1, 0]. One thing we can conclude from (10) is that if γ′ (xe) > 0 then the
equilibrium is unstable. This means that the equilibria along decreasing segments of
the continuum C are unstable, as illustrated in Fig. 1.

Along increasing segments of C, however, stability is uncertain. One fact we can
assert from (10) is that increasing segments in a neighborhood of the isolated critical
points of γ (x) are (locally asymptotically) stable (because γ′ (xe) will be small and
positive). Isolated critical points at which a generic extrema occurs (γ′′ (xe) �= 0)



One Dimensional Maps as Population … 47

mx

Forward Bifurcation Backward Bifurcation

0 ( )r x

x

ex

0r

1 x

1

1 0r
s

s

s

s

u
u

u

u

1

?

?

?

mr

mx

s us

u

s
?

?

mr

CC

CC

Fig. 1 The graph C of r0 = γ (x) gives the continuum of positive equilibria which bifurcates
from the extinction equilibrium [r0, x] = [1, 0]. The second row shows the graphs of equilibria
xe plotted against the inherent population growth rate r0 obtained by reflecting the graphs above
them through the r0 = x line. On these graphs the letter s indicates a (locally asymptotically)
stable positive equilibrium while the letter u indicates an unstable positive equilibrium. The dots in
the lower bifurcation diagrams show where blue-sky (saddle-node) bifurcations occur. The angled
line segments and question marks shown along the curve C indicate that stability is, in general,
guaranteed along increasing segments of C in only a neighborhood of a bifurcation point. See
Example 1 and Fig. 2

correspond to the “turning or fold points” as seen (and indicated by the solid dots)
the lower row of graphs in Fig. 1. These are called blue-sky bifurcations (or saddle-
node or tangent bifurcations).

Thus, in the neighborhood of blue-sky bifurcations the lower (decreasing) segment
of C will contain unstable equilibria while the upper (increasing) segment of C will
have stable equilibria. See Fig. 1.

We note that a backward bifurcation creates the possibility that positive stable
equilibria (or other kinds of attractors) can occur for r0 < 1 when the extinction
equilibrium is also stable. Such multiple attractor scenarios, where one attractor
is extinction and the other is non-extinction, is called a strong Allee effect [4]. A
backward bifurcation is not necessary for a strong Allee effect, but it is a common
way for them to occur in population models [15].
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Fig. 2 Shown are bifurcation diagrams for the model Eq. (11) in Example 1. (a) A forward bifur-
cation of positive equilibria occurs when a = −5, s = 0.5, and c = 5. (b)–(d) Backward bifurca-
tions occur when a = 1. The three cases shown in (b)–(d) use s0 = 0.5, 0.4, and 0.1 respectively
and all three use c = 5. The branches of unstable equilibria that connect the bifurcation point
[r0, xe] = [1, 0] to the blue-sky bifurcation point (indicated by solid dots) are not shown. The blue-
sky bifurcation points [rm , xe] in Example 1 are [rm , a] with rm given by (12), which for these three
cases are rm = 0.583, 0.500, and 0.250

Example 1 We consider an example that illustrates both possibilities of forward and
backward bifurcations, depending on a parameter value. As seen above, to construct
such an example requires a component Allee effect, for at least some parameter
values in the model equation. If, in this example, we assume that density dependence
is absent in the survival rate and occurs only in fertility rate, then σ (x) ≡ 1. Thus,
to obtain component Allee effects our choice of ϕ (x) must allow for ϕ′ (0) > 0 for
at least some parameter values in addition, of course, to the requirements in A1.

Innumerable functional expressions have been used in the literature to construct
difference equation models and, in particular, Allee effects; see for example [4, 20].
For our illustrative purposes here, the specific functional form of ϕ (x) is not so
important as that requirements in A1 be satisfied and that it contain a coefficient
whose value determines the presence or absence of a component Allee effect. A
rationale function that serves these purposes is

ϕ (x) = 1 + ca2

1 + c (x − a)2
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where c > 0 and a is any real number. This expression is that used the discrete
Bernoulli equation [33] adapted so as to include the possibility of a component Allee
effect. Specifically, since

ϕ′ (0) = 2a
c

ca2 + 1

we see that a component Allee effect is present when a > 0 and is absent when
a < 0. The resulting difference equation is

xt+1 =
[
(r0 − s0)

1 + ca2

1 + c (xt − a)2
+ s0

]
xt . (11)

To determine the geometry of the bifurcating branch of positive equilibria, we note
that

γ (x) = 1 − s0
1 + ca2

(
1 + c (x − a)2

) + s0

and calculate

γ′ (x) = 2c (1 − s0)

1 + ca2
(x − a) , γ′′ (x) = 2c (1 − s0)

1 + ca2
> 0.

From

γ′(0) = −2ac
1 − s0
1 + ca2

we deduce that a forward bifurcation occurs (i.e. γ′(0) > 0) when a < 0 and a
backward bifurcation occurs (i.e. γ′(0) < 0) if a > 0.

In the case of a backward bifurcation we see from these calculations that γ (x)
has a minimum at xm = a and the lower endpoint of the spectrum S is

rm = 1 + s0ca2

1 + ca2
(12)

at which a blue-sky bifurcation occurs (sometimes called a tipping point). There are
two positive equilibria for rm < r0 < 1 and, according to the general principles above
(as shown in Fig. 1), the smaller positive equilibria is unstable and the larger equilib-
rium is stable at least for r0 � rm . The larger positive equilibrium is not necessarily
stable for all values of r0 > rm however, a fact demonstrated by the dynamically
computed bifurcation diagrams shown in Fig. 2. In those sample diagrams we see
the possibility of complicated secondary bifurcations (period doublings, etc.) for
r0 > rm . Specifically, Fig. 2c, d show secondary bifurcations (and apparently chaotic
attractors) occurring for values of r0 < 1. In these cases strongAllee effects involving
non-equilibrium attractors occur.
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3 Evolutionary Dynamics

We begin with a population growth rate in equation (1) given by

f (x) = (r0 − s0)ϕ (x) + s0σ (x) , ϕ (0) = σ (0) = 1.

Concerning model parameter dependence on a heritable trait, we make the following
assumptions. First, the inherent individual fertility and survival rates, and hence r0
and s0, depend only on the individual’s trait v. A rationale for this is that at low
population densities the traits (and hence the characteristics and behavior) of other
individuals have negligible effect on the individual’s vita rates. Thus, it is only the
density terms ϕ and σ that depend on the mean trait u. Moreover, as is commonly
done, we assume that these effects are a function of the difference between v and
u and that the effects are maximized (or minimized) when v = u, i.e. when the
individual is most like other individuals (as represented by the mean trait u) [36].
We incorporate these assumptions by writing

f (x, v, u) = (r0 (v) − s0 (v)) ϕ (x, v, v − u) + s0 (v) σ (x, v, v − u) (13)

where, for all values of the arguments v and z inϕ (0, v, z) and σ (0, v, z)we assume

ϕ (0, v, z) ≡ σ (0, v, z) ≡ 1 (14a)

∂zϕ (0, v, z) |z=0 ≡ ∂zσ (0, v, z) |z=0 ≡ 0 (14b)

∂zzϕ (0, v, z) |z=0 �= 0, ∂zzσ (0, v, z) |z=0 �= 0. (14c)

An example is the discrete logistic (Beverton-Holt) or Ricker expressions

ϕ = 1

1 + cx
, ϕ = exp (−cx)

in which the coefficient c is under the influence of evolution, that is to say, c = c (z)
where the distribution of c values is Gaussian-like (often taken to be the case in
evolutionary game theoretic models [36])

c (z) = ψ exp
(−z2/w

)

whereψ > 0 andw > 0 are positive constants. Themaximal density effect on fertility
is experienced by an individual when its inherited trait v equals the population mean
u (i.e. when z = v − u = 0). In some models ψ = ψ (v) is assumed a function of
the trait v, in which case c = c (v, z). These modeling assumptions on ϕ satisfy the
constraints (14). Similar models can be built using the c (z) = ψ/

(
1 + wz2

)
. In these

examples w measures the width of the distribution of c values around z = 0.
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If, for notational simplicity, we define

ϕ (x, v) � ϕ (x, v, 0) , σ (x, v) � σ (x, v, 0)

f (x, v) � f (x, v, 0)

and take fitness to be
F (x, v) = ln f (x, v) ,

then the evolutionary model (15) becomes

xt+1 = f (xt , ut ) xt (15a)

ut+1 = ut + σ2 ∂v f (xt , ut )

f (xt , ut )
. (15b)

Here we have used the notation

f (x, u) � f (x, v)|v=u , ∂v f (x, u) � ∂v f (x, v)|v=u .

More explicitly, in (15)

f (x, u) = (r0 (u) − s0 (u))ϕ (x, u) + s0 (u) σ (x, u)

∂v f (x, u) = (
r ′
0 (u) − s ′

0 (u)
)
ϕ (x, u) + (r0 (u) − s0 (u)) ∂vϕ (x, u)

+ s ′
0 (u) σ (x, u) + s0 (u) ∂vσ (x, u) .

The assumption we make on the terms in this model are as follows.
A2. Assume r0 (v) and s0 (v) are twice continuously differentiable functions map-

ping R to R+ and R̄+. respectively. Assume ϕ (x, v) and σ (x, v) are twice con-
tinuously differentiable functions mapping Ω × R toR+ and R̄+ respectively that
satisfy

ϕ (0, v) ≡ σ (0, v) ≡ 1 for all v ∈ R (16)

and
0 ≤ sup

x∈Ω,v∈R
s0 (v) σ (x, v) < 1. (17)

Conditions (16) and (17) imply 0 ≤ supv∈R s0 (v) < 1 and

∂vϕ (0, v) ≡ ∂vσ (0, v) ≡ 0 for all v.

The equilibrium equations associated with (15) are

x = f (x, u) x

0 = ∂v f (x, u) .
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Clearly x = 0 solves the first equilibrium equation. Thus, a pair [x, u] = [0, u] is an
equilibrium if and only if u satisfies

∂v f (0, u) = r ′
0 (u) = 0.

Definition 1 An extinction equilibrium is an equilibrium [x, u] with x = 0. A pair
[0, u∗] is an extinction equilibrium if and only if u∗ is a critical trait, i.e. if and only
if r ′

0 (u∗) = 0.

We assume throughout that there exists a critical trait u∗. To use

r∗
0 =̊ r0

(
u∗)

as a bifurcation parameter we write

r0 (v) = r∗
0ρ (v) , ρ

(
u∗) = 1, ρ′ (u∗) = 0

where ρ (v) satisfies the same conditions in A2 as does r0 (v). Note that [0, u∗] is an
equilibrium for all values of the bifurcation parameter r∗

0 .
To investigate the (local asymptotic) stability of the extinction equilibrium [0, u∗]

by means of the linearization principle we consider the Jacobian

J (x, u) =
(

f (x, u) + x∂x f (x, u) x∂v f (x, u)

∂xv ln f (x, u) 1 + σ2∂vv ln f (x, u)

)
(18)

of (15). Evaluated at an extinction equilibrium [x, u] = [0, u∗] this Jacobian becomes

J (0, u∗) =
(

r∗
0 0

η/r∗
0 1 + σ2ρ′′ (u∗)

)
(19)

where

η �
(−∂xϕ

(
0, u∗) + ∂xσ

(
0, u∗))

s′0
(
u∗) + (

1 − s∗
)
∂xvϕ

(
0, u∗) + s∗0∂xvσ

(
0, u∗)

.

The eigenvalues appear along the diagonal.

Theorem 1 Assume A2 and that u∗ is a critical trait.

(a) Suppose ∣
∣1 + σ2ρ′′ (u∗)∣∣ < 1. (20)

Then the extinction equilibrium [0, u∗] of (15) is (locally asymptotically) stable if
r∗
0 < 1 and is unstable if r∗

0 > 1.
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(b) Suppose, on the other hand, that

∣
∣1 + σ2ρ′′ (u∗)∣∣ > 1. (21)

Then the extinction equilibrium is unstable.
Note that (20) holds if ρ′′ (u∗) < 0 and σ2 is small, i.e. ρ has a generic maximum

at u∗ and evolution is not rapid. Condition (21) holds if ρ′′ (u∗) > 0, i.e. ρ has a
generic minimum at u∗.

Definition 2 A positive equilibrium [xe, ue] of (15) is an equilibrium with xe > 0.

The equilibrium equations satisfied by positive equilibria are

1 = f (x, u) (22a)

0 = ∂v f (x, u) (22b)

which we can re-write as

g(x, u, r∗
0 ) = 0 (23a)

h
(
x, u, r∗

0

) = 0 (23b)

where

g
(
x, u, r∗

0

)
�

(
r∗
0ρ (u) − s0 (u)

)
ϕ (x, u) + s0 (u) σ (x, u) − 1

h
(
x, u, r∗

0

)
�

(
r∗
0ρ

′ (u) − s ′
0 (u)

)
ϕ (x, u) + s ′

0 (u)σ (x, u)

+ (
r∗
0ρ (u) − s0 (u)

)
∂vϕ (x, u) + s0 (u) ∂vσ (x, u) .

Note that the equations (23) are satisfied by [x, u] = [0, u∗] and r∗
0 = 1. To use the

implicit function theorem to solve equations (23) for x and u as functions of r∗
0 near

this solution, we need Δ(0, u∗, 1) �= 0 where

Δ
(
x, u, r∗

0

) = det

(
∂xg

(
x, u, r∗

0

)
∂ug

(
x, u, r∗

0

)

∂xh
(
x, u, r∗

0

)
∂uh

(
x, u, r∗

0

)

)

and

∂xg
(
x, u, r∗

0

) = (
r∗
0ρ (u) − s0 (u)

)
∂xϕ (x, u) + s0 (u) ∂xσ (x, u)

∂ug
(
x, u, r∗

0

) = (
r∗
0ρ

′ (u) − s ′
0 (u)

)
ϕ (x, u) + (

r∗
0ρ (u) − s0 (u)

)
∂vϕ (x, u)

+ s ′
0 (u) σ (x, u) + s0 (u) ∂vσ (x, u)
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∂xh
(
x, u, r∗

0

) = (
r∗
0ρ

′ (u) − s ′
0 (u)

)
∂xϕ (x, u) + s ′

0 (u) ∂xσ (x, u)

+ (
r∗
0ρ (u) − s0 (u)

)
∂xvϕ (x, u) + s0 (u) ∂xvσ (x, u)

∂uh
(
x, u, r∗

0

) = (
r∗
0ρ

′′ (u) − s ′′
0 (u)

)
ϕ (x, u) + (

r∗
0ρ

′ (u) − s ′
0 (u)

)
∂vϕ (x, u)

+ s ′′
0 (u) σ (x, u) + s ′

0 (u) ∂vσ (x, u)

+ (
r∗
0ρ

′ (u) − s ′
0 (u)

)
∂vϕ (x, u) + (

r∗
0ρ (u) − s0 (u)

)
∂vvϕ (x, u)

+ s ′
0 (u) ∂vσ (x, u) + s0 (u) ∂vvσ (x, u) .

For notational purposes we let an asterisk denote evaluation at
(
[x, u] , r∗

0

) =
([0, u∗] , 1), i.e.

∂∗
xϕ � ∂xϕ

(
0, u∗) , r∗

0 = r0
(
u∗) , etc.

A calculation shows

Δ
(
0, u∗, 1

) = det

(−κ 0
η ρ′′ (u∗)

)

where

κ � − [(
1 − s∗

0

)
∂∗
xϕ + s∗

0∂
∗
xσ

]

η �
(−∂∗

xϕ + ∂∗
xσ

)
s ′
0

(
u∗) + (

1 − s∗
0

)
∂∗
xvϕ + s∗

0∂
∗
xvσ.

It follows that Δ(0, u∗, 1) �= 0 if and only if κ �= 0 and ρ′′ (u∗) �= 0. Under these
conditions the Implicit Function Theorem implies the existence of (unique, smooth)
solutions [x, u] = [

xe
(
r∗
0

)
, ue

(
r∗
0

)]
for r∗

0 near 1 with [xe (1) , ue (1)] = [0, u∗].
The latter equality means that this branch of solutions bifurcates from the branch of
extinction equilibria at r∗

0 = 1.
To determine whether these solutions are feasible as equilibria of the population

model, we need to determine whether x = xe (r0) is positive or not. We also want to
determine when a positive equilibrium is (locally asymptotically) stable. From the
identities

g
(
xe

(
r∗
0

)
, ue

(
r∗
0

)
, r∗

0

) = 0

g
(
xe

(
r∗
0

)
, ue

(
r∗
0

)
, r∗

0

) = 0

valid for r∗
0 near 1 we find, by differentiation with respect to r∗

0 followed by an
evaluation at r∗

0 = 1, that

x ′
e (1) ∂∗

xg + u′
e (1) ∂∗

ug + ∂∗
r∗
0
g = 0

x ′
e (1) ∂∗

x h + u′
e (1) ∂∗

uh + ∂∗
r∗
0
h = 0

or

κx ′
e (1) + 1 = 0

ηx ′
e (1) + ρ′′ (u∗) u′

e (1) = 0



One Dimensional Maps as Population … 55

and hence

x ′
e (1) = 1

κ
, u′

e (1) = −κ

ηρ′′ (u∗)
.

The first equation implies xe
(
r∗
0

)
is positive for r∗

0 � 1 if κ > 0 and for r∗
0 � 1

if κ < 0. As a result we conclude that a bifurcation of positive equilibrium pairs
from the extinction equilibrium [0, u∗] occurs at r∗

0 = 1 and is forward if κ > 0 or
backward if κ < 0.

We can determine the stability of the positive equilibria, by the lineariza-
tion principle, from the eigenvalues of the Jacobian (18) evaluated at (x, u) =(
x∗
e

(
r∗
0

)
, u∗

e

(
r∗
0

))
, namely

(
f
(
x

(
r∗
0

)
, u

(
r∗
0

)) + x
(
r∗
0

)
∂x f

(
x

(
r∗
0

)
, u

(
r∗
0

))
x

(
r∗
0

)
∂v f

(
x

(
r∗
0

)
, u

(
r∗
0

))

∂xv ln f
(
x

(
r∗
0

)
, u

(
r∗
0

))
1 + σ2∂vv ln f

(
x

(
r∗
0

)
, u

(
r∗
0

))

)

which, because
(
x

(
r∗
0

)
, u

(
r∗
0

))
solves the equilibrium equations (22), simplifies to

(
1 + x

(
r∗
0

)
∂x f

(
x

(
r∗
0

)
, u

(
r∗
0

))
0

∂xv f
(
x

(
r∗
0

)
, u

(
r∗
0

))
1 + σ2∂vv f

(
x

(
r∗
0

)
, u

(
r∗
0

))

)

(24)

The eigenvalues, which appear along the diagonal, are

λ1 = 1 − (
r∗
0 − 1

) + O
((
r∗
0 − 1

)2)

λ2 = 1 + σ2ρ′′ (u∗) + O
(
r∗
0 − 1

)
.

For r∗
0 near 1 the positive equilibrium

[
x∗
e

(
r∗
0

)
, u∗

e

(
r∗
0

)]
is stable if both |λi | < 1 and

is unstable if at least one |λi | > 1.
We summarize these results in the theorem below. In that theorem we make use

of the following definitions. If [xe, ue] is an equilibrium for a value of r∗
0 , then we

call
(
r∗
0 , [xe, ue]

)
an equilibrium pair. If the equilibrium [xe, ue] is positive, stable

or unstable, then we say the equilibrium pair
(
r∗
0 , [xe, ue]

)
is respectively positive,

stable or unstable.

Theorem 2 Assume A2 and that u∗ is a critical trait such that ρ′′ (u∗) �= 0. Assume
κ �= 0. Then a continuum C of positive equilibrium pairs

(
r∗
0 , [xe, ue]

)
of the evolu-

tionary model (15) bifurcates from the extinction equilibrium [1, (0, u∗)]. Near the
bifurcation point these positive equilibria are approximately

xe = 1

κ

(
r∗
0 − 1

) + O
((
r∗
0 − 1

)2)
(25a)

ue = u∗ + −κ

ηρ′′ (u∗)
(
r∗
0 − 1

) + O
((
r∗
0 − 1

)2)
(25b)

The bifurcation is forward if κ > 0 and backward if κ < 0.
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(a) If (20) holds, then the stability of the bifurcation (meaning the stability of the
equilibria [xe, ue] on the continuum C ) is determined by the direction of bifur-
cation. Specifically, a forward bifurcation is stable and a backward bifurcation
is unstable.

(b) If (21) holds, then both forward and backward bifurcations are unstable.

Note that ρ′′ (u∗) > 0 implies (21) holds. In this case, Theorems 1 and 2 imply that
in a neighborhood of the bifurcation point all equilibria – extinction and positive – are
unstable. An explanation for this is roughly as follows. The trait dynamic equation
(15b) is based on the assumption that the mean trait ut moves up the fitness gradi-
ent, which near the extinction equilibrium is approximately ln ρ (v). The inequality
ρ′′ (u∗) > 0 implies ln ρ (v) has a local minimum at the critical trait v = u∗ and con-
sequently the trait component ut of orbits in a neighborhood of the extinction equi-
librium increases until the orbit leaves the neighborhood. Thus, when ρ′′ (u∗) �= 0
a necessary condition for stability is ρ′′ (u∗) < 0, which implies ρ (v) has a local
maximum at the critical trait v = u∗. In this case (20) is equivalent to

σ2 <
−2

ρ′′ (u∗)
.

That is to say, a forward bifurcation will be stable if the speed of evolution σ2 is not
too fast.

Corollary 1 Assume A2 and that u∗ is a critical trait such that ρ′′ (u∗) < 0. Assume
κ �= 0. If the speed of evolution σ2 is not too fast, then the direction of bifurcation of
the positive equilibrium pairs guaranteed by Theorem 2 determines their stability: a
forward bifurcation is stable and a backward bifurcation is unstable.

In A2 we assumed for simplicity that the domain of trait values v is the whole
real lie R. Since Theorem 2 and Corollary 1 concern bifurcation phenomena in a
neighborhood of an extinction equilibrium [1, (0, u∗)], these results remain valid if
R is replaced in A2 by an open set of trait values, so long as the critical trait u∗ lies
in the set.

Example 2 As mentioned in Sect. 1 the fertility density term

ϕ (x) = 1

1 + c1x
, c1 > 0 (26)

is used in the classic discrete logistic (Beverton-Holt) equation for a population
with non-overlapping generations (σ (x) ≡ 0). It expresses a negative feedback of
population density on the fertility rate (since ϕ (x) is a decreasing function of x).
For a population with over-lapping generations the survival rate σ (x) would not be
identically 0. In our example here, we take σ (x) to be an increasing function of
x , i.e. to have a component Allee effect. The biological rationale for this is that we
wish to model a trade-off between density effects on the fertility and survival rates:
increased population density suppresses an individual’s fertility rate, but enhances
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an individual’s survival probability (through, for example, group defence). Trade-
off’s of this sort play a fundamental role in the study of life history strategies and
usually constitute the driving mechanisms that determine evolutionary dynamics and
outcomes [32].

An example mathematical function σ (x) that satisfies A1 and that is increasing
in x is

σ (x) = 1 + c2smx

1 + c2s0x
, 0 < s0 < sm < 1, c2 > 0 (27)

As a function of population density x , the survival rate s0σ (x) increases monotoni-
cally from s0 to sm .The coefficients ci > 0 in the density terms (26) and (27)measure
the strength of the density effects on these vital rates.

We assume that a heritable trait v, in addition to determining an individual’s
inherent net reproductive rate r∗

0ρ (v), determines an individual’s sensitivities to
density increases, i.e. we assume c1 = c1 (v) > 0 and c2 = c2 (v) > 0 are functions
of v. In this example, we assume inherent survival s0 is trait independent. We have
then the fitness function

f (x, v) = (
r∗
0ρ (v) − s0

) 1

1 + c1 (v) x
+ s0

1 + c2 (v) smx

1 + c2 (v) s0x
(28)

in the model equations (15).
We assume there exists a trait v = u∗ atwhich the inherent growth rateρ (v) attains

a maximum (and does so with ρ′′ (u∗) < 0) and the the numerical scale for the trait is
chosen so that u∗ = 0. On the other hand, we assume the density coefficients ci are
decreasing functions of the trait v. This means that an increase in the trait v results
in weaker density effects on fertility and survival.

For the evolutionary model (15)–(28) we calculate the quantity κ, whose sign
determines the properties of the bifurcation at r∗

0 = 1 (according to Theorem 2),
to be

κ = (1 − s0) c1 (0) − s0 (sm − s0) c2 (0) .

Suppose the coefficient c2 (0) is small compared to c1 (0) so that κ > 0. Then by
Theorem 2 the bifurcation of positive equilibrium pairs is forward and stable. In other
words, if at the critical trait v = 0 survival is less sensitive to density effects than is
fertility, then the bifurcation of positive equilibrium pairs is forward and there exist
(locally asymptotically) stable survival equilibria for r∗

0 � 1. On the other hand, if
the reverse is true, i.e. if at the critical trait v = 0 survival is more sensitive to density
effects than is fertility, then the bifurcation of positive equilibrium pairs is backward
and unstable. In this latter case, there is a potential for a strong Allee effect, which is
to say, a potential for the existence of a stable positive equilibrium when r∗

0 < 1 (as
discussed in Sect. 2). Evidence that this can indeed occur in this example appears in
Fig. 3.
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Fig. 3 Bifurcation diagrams plotting the x and u components of (dynamically computed) positive
equilibria of the evolutionarymodel (15) with fitness function (28) and trait dependencies (29). Here
s0 = 0.3, sm = 0.6 and κ = 0.7c1 − 0.09c2. The speed of evolution is σ2 = 0.1. When c1 = 5,
c2 = 0.1 and κ = 3.491 > 0 a forward, stable bifurcation occurs, as seen in the right column of
plots. When c1 = 0.1, c2 = 5 and κ = −0.380 < 0 a backward, unstable bifurcation occurs, as
seen in the left column of plots. In this case a strong Allee effect occurs as can be seen by the
existence of positive equilibrium pairs for an interval of r∗

0 values less than 1

The bifurcation diagrams shown in Fig. 3 illustrate these results for the evolution-
ary model (15)–(28 ) with

ρ (v) = e−v2 , c1 (v) = c1e
−v, c2 (v) = c2e

−v . (29)

In this case, the only critical point of ρ (v) is v = u∗ = 0 at which inherent fertility
has a maximum (note that ρ′′ (0) = −2 < 0). The only extinction equilibrium pairs
are

(
r∗
0 , [0, 0]

)
, which exist for all values of r∗

0 > 0. The right column of plots in Fig. 1
shows an example when κ > 0 and the bifurcation from the extinction equilibrium(
r∗
0 , [0, 0]

)
at r∗

0 = 1 is forward and stable. The left column of plots in Fig. 1 shows
an example when κ < 0 and the bifurcation is backward and unstable. In this case,
one can observe the occurrence of a strong Allee effect, i.e. the existence of positive
equilibria for an interval of r∗

0 values less than 1. Although the intent here is only
to illustrate the mathematical results in Theorem 2 by use of the example (15)–(28),
we point out some of the resulting biological implications. The biological features
implied by (29) are that fertility is optimized at a unique heritable trait v = 0 and that
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an increase in v lessens both the negative density effects on fertility and the positive
density effects on survival. The positive equilibrium pairs shown in the bifurcation
diagrams of Fig. 3 have a positivemean trait component ue > 0. Thus, evolution does
not select to maximize inherent fertility, but selects for a lesser inherent fertility rate
and for lower effects of population density on both fertility and survival.

4 Concluding Remarks

We focussed in this paper on one dimensional maps as models of population dynam-
ics. Many of the results given in Sects. 2 and 3 have been extended in several direc-
tions. The bifurcation of a global continuum of positive equilibrium as graphically
portrayed in Fig. 1 for one dimensional maps has been proved for higher dimensional
systems of difference equations of the form

xt+1 = P (xt ) xt (30)

where xt ∈ Rm+ and P is an m × m matrix valued function [6, 8]. This kind of
matrix equation arises in structured population dynamics where the vector xt is the
demographic distribution of individuals into specified categories (chronological age,
physiological size, weight, etc.) [3]. When the projection matrix P is primitive (non-
negative, irreducible and a strictly dominant positive eigenvalue), the direction of
bifurcation determines the stability of the bifurcating continuumof positive equilibria
(as in Fig. 1). This is a general phenomenon in bifurcation theory [24], as the global
extent of the continuum [31].

However,when a non-negative and irreducible projectionmatrix P is not primitive
(its dominant positive eigenvalue is not strictly dominant), then it is no longer true
in general that the direction of bifurcation determines the stability of the bifurcating
positive equilibria. The bifurcation in this case is of higher codimension and is
complicated by the possibility of branches of periodic cycles (and even other more
complicated invariant sets) that bifurcate simultaneously with positive equilibria
[7, 9, 12, 18, 19, 22, 25, 26, 35]. Several lower dimensional species cases have
been thoroughly analyzed, but for higher dimensional models a complete theory
is lacking. Imprimitive projection matrices do arise in applications [16], and more
analysis towards a general theory that determines the properties of the bifurcation at
the point where the extinction equilibrium destabilizes would be of interest.

The fundamental bifurcation theorem for matrix equations (30) can be stated
using the inherent population growth rate r0 (the dominant eigenvalue of P (0)) as the
bifurcation parameter, as is done in Sect. 2 for them = 1 dimensional case. However,
it is worth pointing out that for higher dimensional cases it is often mathematically
more tractable to use a different bifurcation parameter. As seen in Sect. 2, for the
one dimensional case the direction of bifurcation and, consequently, the stability of
the bifurcating continuum of positive equilibria is determined by the sign of r0 − 1.
Notice that the sign of r0 − 1 is the same as the sign of R0 − 1 where
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R0 � b0 (1 − s0)
−1 .

This quantity, when written as

R0 = b0 + b0s0 + b0s
2
0 + · · · =

∞∑

i=0

b0s
i
0,

is seen to be the expected number of newborns per newborn per life time and is
referred to as the inherent net reproduction number. In higher dimensions, R0 is
defined as follows. The projection matrix is additively decomposed into a fertility
matrix F,which accounts for all newborns at the next census, and a transition/survival
matrix T , which accounts for survivors at the next census (who might or might not
change their classification categories):

P (x) = F (x) + T (x)

(a direct analog of the decomposition in Sect. 2). Here both F and T are non-negative
matrices. The inherent net reproductive number is defined to be the spectral radius
of

F (0) (I − T (0))−1 .

Here an additional constraint on the transition/survival matrix T is that it columns
sums are less than or equal to 1 (the number of survivors cannot exceed the original
number of individuals) with at least one sum strictly less than 1 (there is some
mortality in the population). Or more generally, it is assume that the spectral radius
of T (0) is less than 1,which (as the generalization of s0 < 1)means the expected life
span on an individual is finite. It is known that the signs of R0 − 1 and r0 − 1 (here r0
is the spectral radius of the projection matrix F + T ) are the same [5, 11, 29]. Thus,
either quantity R0 or r0 determine the local stability or instability of the extinction
equilibrium and, as a result, the bifurcation point r0 = R0 = 1 in the fundamental
bifurcation theorem. One analytic advantage of this result is that frequently a formula
(expressed in terms of the entries of the projection matrix) is available for R0 while,
in higher dimensions, this not the case for r0 [6].

Backward bifurcations and their role in the creation of strong Allee effects for
matrix models (30) are investigated in [15] (for an application see [14]). The stability
of the “upper” branch of positive equilibria near blue-sky bifurcation bifurcations (cf.
Fig. 1) for higher dimensional matrix equations remains an open question, however.

In Sect. 3 the model tracks the dynamics of only one phenotypic trait v. If a vector
of phenotypic traits v and their population means are included in the model, then the
evolutionary model takes the form

xt+1 = P (xt , v, ut )|v=ut xt
ut+1 = ut + C∇vF (xt , v, ut )|v=ut
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where F is a measure of fitness and C is a variance-covariance matrix for the vari-
ability of the traits [36]. For example, fitness can be taken to be the logarithm of
the spectral radius of the dominant eigenvalue of P (x, v, u), as a generalization of
ln f (x, v, u) used in Sect. 3. Some generalizations of Theorem 2 for the evolutionary
matrix model have been established. For a single trait v in a structured population
model (of arbitrary sizem) with primitive projection matrix see [10] and for multiple
traits see [17]. For some applications of imprimitive evolutionary models see [13,
34].
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An SIR Model with Nonlinear Incidence Rate
and Holling Type III Treatment Rate

Preeti Dubey, Balram Dubey and Uma S. Dubey

Abstract We propose a mathematical model with nonlinear incidence rate and
treatment rate to study the dynamics of susceptible-infected-recovered population.
We consider nonlinear incidence rate as Crowley-Martin type and nonlinear treatment
rate as Holling type III (saturated treatment function). The global stability analysis of
disease-free equilibrium point and endemic equilibrium point has been investigated
using Lasalles’ invariance principle and Lyapunov function. A threshold value has
been found to ensure the extinction or persistence of infection. The non-existence of
periodic solutions have been shown using Dulac’s criterion. Numerical simulations
are performed to validate these analytical findings.

Keywords Crowley-Martin type incidence rate · Holling type III treatment rate ·
Periodic solution · Dulac’s criterion · Persistence
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1 Introduction

In the field of epidemiology, interventions (e.g. treatment, vaccination, quarantine
etc.) play an important role in controlling the disease spread. The diseases for which
treatment is available like flu, tuberculosis, measles [1, 2]; treatment is an useful tool
to eradicate them. Several researchers [3–7] have studied the effect of treatment using
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different type of treatment functions. In classical models treatment rate is considered
to be proportional to the number of infectives. This treatment rate is not suitable
in case of large number of infectives due to availability of limited resources in a
community. To study this effect of limited resources, Wang and Ruan [8] developed
the constant removal rate (i.e. recovery per unit time), which is given by:

h(I ) =
{
r, if I > 0
0, if I = 0

.

This removal rate is further improved by taking the following removal rate func-
tion [9]:

h(I ) =
{
r I, if 0 ≤ I ≤ I0
r I0, if I > I0

,

where r and I0 are positive constants. This removal rate shows that when the capacity
of treatment is not reached then the removal rate is proportional to the number of
infectives otherwise it takes the maximum capacity. Several authors [10, 11] used
this removal rate to study the dynamics of their models. Further there was a scope
to improve this removal rate. Zhang and Liu [12] introduced the improved treatment
rate as a continuous differentiable function which saturates at its maximum value.
This removal rate is given by the term h(I ) = r I

1+α I , where r is positive constant
which denotes the cure rate and α is non-negative constant which measures the
effect of delay in treatment. The term 1

1+α I represents inverse of the effect of delay
in treatment. This saturated removal rate is recently studied by Zhou and Fan [13]
with little modification. This saturated removal rate also named as Holling type II
removal rate and considered by several authors [14–16] to study the dynamics of
their models. Dubey et al. [15] proposed an SEIR model with three different types
of removal rates: (i) Holling type II removal rate, (as explained above) (ii) Holling
type III removal rate, this is given by the term h(I ) = β I 2

1+α I 2 , where β is positive
constant and α is non-negative constant, h(I ) is a continuous differentiable function
and approaches to its peak or maximum value when the number of infectives is large,
and (iv) Holling type IV removal rate, which is given by h(I ) = β I

I2
a +I+b

, where β

and a are positive constants and b is non-negative constant.
In population dynamics, transmission of infection is the process in which sus-

ceptibles are getting infected via infected population through the various channels.
Transmission plays an important role to study the dynamical behaviour of epidemic
models. Recently, several researchers [11, 17–24] have focused on nonlinear type
incidence rate whereas in standard models the incidence rate was defined by law of
mass action i.e. bilinear incidence rate [3, 14, 25–32]. Different type of nonlinear
incidence rates [15, 16, 33–36] (e.g. Holling type II, Beddington-DeAngelis type,
etc.) have already been implemented by the authors in their models to study the
dynamics of infectious diseases. Considering these facts, we proposed a mathemati-
cal model incorporating Crowley-Martin type incidence rate and saturated treatment
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rate (Holling type III) in SIR model to analyze the cited epidemic situation to control
the spread of infection.

In the next section, we present susceptible-infected-recovered model with non-
linear incidence rate and Holling type III treatment rate.

2 The Mathematical Model

We considered compartmental SIR model divided into three compartments; suscep-
tible S, infected I and recovered R compartments respectively. The model is given
by following system of differential equations:

⎧
⎪⎨

⎪⎩

dS
dt = A − δ0S − αSI

(1+βS)(1+γ I ) ,
d I
dt = αSI

(1+βS)(1+γ I ) − δ0 I − δ1 I − δ2 I − aI 2

1+bI 2 ,
dR
dt = δ2 I − δ0R + aI 2

1+bI 2 ,

(1)

where S(0) > 0, I (0) ≥ 0, R(0) ≥ 0.

In model equations d
dt , represent the rate of change in corresponding compartment.

Let A be the recruitment rate of the susceptible and δ0 be the natural death rate of
the population in each class. We assume that the infected individuals die out at the
rate δ1 due to infection. Infected individuals may get recover with auto immunity
with the rate δ2 and join the recovered class. We have also considered the treatment
of infected individuals as saturated removal rate. The term h(I ) = aI 2

(1+bI 2)
represents

Holling type III [37, 38] treatment rate (continuously differentiable function), where
a and b are non-negative constants and can be understood as treatment given to the
infected individuals and limitation to the treatment availability, respectively. Unlike
the Holling type II treatment rate this treatment rate grows first very fast and later
on increases slowly with increase in number of infection and gets saturated to its
maximum level a

b (treatment capacity of community) due to limited availability of
resources in the community [15, 16]. The term αSI

(1+βS)(1+γ I ) denotes the monotone
nonlinear incidence rate, where α is incidence rate of infection, β and γ are the
effects of inhibition due to susceptible individuals and due to infected individuals or
γ may also be understood as the crowding effect due to infected individuals. This
functional response was introduced by P.H. Crowley and E.K. Martin in 1989 [39,
40] and is known as Crowley-Martin type incidence rate. We notice that other forms
of nonlinear incidence rates can be derived from this incidence rate [16]:

(i) If we put β = γ = 0, then αSI which is bilinear incidence rate [14, 25–30].
(ii) If we take γ = 0, then αSI

(1+βS)
, which is saturated incidence rate with the sus-

ceptible individuals [19, 20].
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(iii) For β = 0, we get αSI
(1+γ I ) , which is again saturated incidence rate but with the

infected individuals. In such a case, the contact between infective and suscepti-
ble individuals may saturate at high infection level due to crowding of infective
individuals or due to protection taken by susceptible individuals [11, 23, 24].

Unlike the Beddington-DeAngelis type incidence rate, the Crowley-Martin type
incidence rate considers the effect of inhibition among infectives even in case of high
density of susceptible populations [47]. This can be seen as follows:
Beddington-DeAngelis type for S → ∞,

lim
S→∞

αSI

1 + βS + γ I
= α

β
,

and Crowley-Martin type incidence rate for S → ∞,

lim
S→∞

αSI

(1 + βS)(1 + γ I )
= α

β(1 + γ I )
.

From the above system (1) we can infer that S and I are free from the effect of
R. Thus it is enough to consider the following reduced system for the study:

{
dS
dt = A − δ0S − αSI

(1+βS)(1+γ I ) ,
d I
dt = αSI

(1+βS)(1+γ I ) − δ3 I − aI 2

1+bI 2 ,
(2)

where δ3 = δ0 + δ1 + δ2 and S(0) > 0, I (0) ≥ 0.

3 Positivity and Boundedness of the System

For system (2), we found that all the solutions initiating in the region defined in
Lemma 1 will eventually lie in the same region even after a long time say for t → ∞
or will always stay in the same region. This can be observed as follows:

Let N = S + I , then Ṅ = Ṡ + İ = A − δ0N − (δ1 + δ2)I − aI 2

1+bI 2 .

Then,

N (t) ≤ N (0)e−δ0t + A

δ0
(1 − e−δ0t ).

Thus,

lim
t→∞ sup N (t) ≤ A

δ0
.

Furthermore, Ṅ < 0 if N > A
δ0

. This shows that solutions of system (2) point towards
� the region defined in Lemma 1. Hence � is positively invariant and solutions of
(2) are bounded. Thus, we can state the following Lemma.
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Lemma 1 The set � = {(S, I ) : 0 < S + I ≤ A
δ0

} is a positively invariant region of
system (2).

The above lemma shows that all solutions of the model are non-negative and bounded.
Thus the model is biologically well behaved.

In the next section, we discuss the existence of equilibrium points of system (2).

4 Equilibrium and Stability Analysis

We see that system (2) has only two equilibria: (i) the disease-free equilibrium (DFE)
E0(

A
δ0

, 0), the state when infection dies out i.e. (I = 0) and (ii) the endemic equilib-
rium E1(S∗, I ∗) i.e. the state when infection persists (I �= 0).

We can infer from system (2) that the disease-free equilibrium E0 always exists
and its existence is trivial.

We compute the basic reproduction number using next generation matrix method
and describe the stability behaviour of DFE, which is independent of initial status of
sub-populations.

4.1 Computation of R0

Model (2) can be rewritten as ẋ = F(x) − V (x), where x = [I, S]T and F(x) be the
rate of appearance of new infections and V (x) be the the rate of transfer of individuals
into compartment and out of compartment by all other means. Jacobian of F(x) at
E0 is

F =
[

αA
(δ0+Aβ)

0
0 0

]
,

and Inverse of Jacobian of V (x) at E0 is

V−1 =
[

1
δ3

0
αA

(δ0+Aβ)δ3δ0

1
δ0

]

.

Then ρ(FV−1) gives the spectral radius (largest eigenvalue) of the next generation
matrix (FV−1) [41]. The spectral radius gives the basic reproduction number, thus

R0 = ρ(FV−1) = αA

(δ0 + Aβ)δ3
,

where R0 is basic reproduction number.

Theorem 1 (i) The disease-free equilibrium E0(
A
δ0

, 0) is locally asymptotically
stable if R0 < 1 and is a saddle point with stable manifold locally in the
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S-direction and unstable manifold locally in the I -direction if R0 > 1.

(ii) The disease-free equilibrium E0(
A
δ0

, 0) is globally asymptotically stable if R0 ≤
1.

Proof (i) We find the general variational matrix and then compute the variational
matrices corresponding to each equilibrium point. The variational matrix corre-
sponding to DFE E0(

A
δ0

, 0) is given by

JE0 =
[

−δ0 − αA
(δ0+Aβ)

0 αA
(δ0+Aβ)

− δ3

]

.

The above matrix is upper-triangular matrix and has two eigenvalues: e1 = −δ0

and e2 = αA
(δ0+Aβ)

− δ3. We note that e1 < 0 and e2 < 0 if R0 < 1. Again e2 > 0
if R0 > 1. Hence the first part of the theorem follows.

(ii) To show the global stability of DFE, we use Lasalle’s invariance principle [42].
Let us define the positive definite function

L = 1

1 + βS0

(
S − S0 − S0ln

S

S0

)
+ I, where S0 = A

δ0
.

Differentiating L along the solutions of (2) and simplifying, we get

L̇(t) = −
[
δ0(S − S0)

2

S(1 + βS0)
+

(
a

1 + bI 2
+ δ3γ

1 + γ I

)
I 2

]
+ δ3 I

(1 + γ I )
[R0 − 1],

L̇(t) < 0 if R0 ≤ 1 and ∀S, I > 0, L̇(t) = 0 iff S = S0 = A

δ0
and I = I0 = 0.

Then let M be the largest invariant set in the set E = {(S, I )|L̇(t) = 0} for each ele-
ment of M , we have I = 0. Thus M = {E0} is the singleton set. Thus from Lasalle’s
invariance principle disease-free equilibrium is globally asymptotically stable.

4.2 Analysis at R0 = 1

In this section, we state and prove the following theorem which characterizes the
behavior of the DFE at R0 = 1.

Theorem 2 Thedisease-free equilibriumchanges its stability fromstable to unstable
at R0 = 1 and system (2) exhibits transcritical bifurcationwith bifurcation parameter
α = α∗ = δ3(δ0+Aβ)

A .
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Proof Linearization matrix of system (2) at E0 and bifurcation parameter α = α∗ =
δ3(δ0+Aβ)

A is given by

J =
[−δ0 − α∗A

(δ0+Aβ)

0 α∗A
(δ0+Aβ)

− δ3

]

.

The matrix J has a simple zero eigenvalue at R0 = 1 and other eigenvalue of the
matrix has negative real part. At this stage linearization techniques fail to conclude
the behaviour of system (2). Centre Manifold Theory is used to study the behaviour
of non-hyperbolic equilibrium. Then from Theorem 1 of Castillo-Chavez and Song
[43], the bifurcation constants a1 and b1 are given by

a1 =
2∑

k,i, j=1

wkuiu j

(
∂2 fk

∂xi∂x j

)

E0

,

and

b1 =
2∑

k,i=1

wkui

(
∂2 fk

∂xi∂α∗

)

E0

,

where u = [ −α∗A
δ0(δ0+Aβ)

, 1]T and w = [0, 1] are right eigenvector and left eigenvec-
tor of the matrix J corresponding to zero eigenvalue, respectively. Nonzero partial
derivatives associated with the system at E0 and α = α∗ are

∂2 f2
∂x1∂x2

= α∗δ0
2

(δ0 + Aβ)2 ,
∂2 f2
∂x2

2

= −2

(
a + α∗γ A

(δ0 + Aβ)

)
,

∂2 f2
∂x2∂α∗ = A

(δ0 + Aβ)
.

Hence,

a1 = − α∗2δ0A

(δ0 + Aβ)3
− 2

(
a + α∗γ A

(δ0 + Aβ)

)
< 0,

b1 = A

(δ0 + Aβ)
> 0.

This shows that at R0 = 1, DFE changes stability from stable to unstable and positive
equilibrium exists when R0 crosses the threshold value i.e. ‘one’. This emphasizes
that the system exhibits transcritical bifurcation at R0 = 1.

4.3 Existence of Endemic Equilibrium E1(S∗, I∗)

Now we show the existence of endemic equilibrium E1(S∗, I ∗) using isocline method
under certain threshold value or conditions. Let us assume that
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f (S, I ) = A − δ0S − αSI

(1 + βS)(1 + γ I )
= 0, (3)

g(S, I ) = αS

(1 + βS)(1 + γ I )
− δ3 − aI

1 + bI 2
= 0. (4)

From first isocline (3), we observe the following:
(i) when

I = 0, then S = A

δ0
= S0.

(ii)
dS

d I
= −∂ f /∂ I

∂ f/∂S
,

where
∂ f

∂ I
= − αS

(1 + βS)(1 + γ I )2
,

∂ f

∂S
= −δ0 − α I

(1 + γ I )(1 + βS)2
.

This implies that
dS

d I
= −αS/(1 + βS)(1 + γ I )2

δ0 + α I
(1+γ I )(1+βS)2

< 0.

Hence first isocline (3) is decreasing function of I .
From second isocline (4), we have the following observations:

(i) when

I = 0, then S = δ3

α − δ3β
= S1(say).

S1 > 0 if α > δ3β. (5)

(ii)
dS

d I
= − ∂g/∂ I

∂g/∂S
,

where
∂g

∂ I
= − αγ S

(1 + βS)(1 + γ I )2
− a(1 − bI 2)

(1 + bI 2)2
,

∂g

∂S
= α I

(1 + γ I )(1 + βS)2
,
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This implies

dS

d I
=

αγ S
(1+βS)(1+γ I )2 + a(1−bI 2)

(1+bI 2)2

α I
(1+γ I )(1+βS)2

,

It can be noted from the above expression that the denominator is always positive
and the numerator is positive if

1 − bI 2 > 0 i.e. bI 2 < 1,

After substituting the maximum value of I (i.e. A
δ0

), we get the inequality bA2 < δ2
0 .

Thus, dS
d I is positive if bA2 < δ2

0 and g(S, I ) is increasing function of I . This implies
that the two isoclines (3) and (4) intersects at a unique point E∗(S∗, I ∗) if S0 > S1

i.e. if R0 = αA
δ3(δ0+Aβ)

> 1. Thus we can state the existence and uniqueness of the
endemic equilibrium in the following Lemma.

Lemma 2 The endemic equilibrium E1(S∗, I ∗) exists if the following inequalities
hold true:

bA2 < δ2
0, (6)

R0 = αA

δ3(δ0 + Aβ)
> 1. (7)

Remark 1 It may be noted that if condition (7) holds, then condition (5) is satisfied
by default.

Remark 2 If condition (6) fails, then dS
d I for isocline (4) may be positive or negative

depending upon the values of parameters. In such a case there may exist more than
one endemic equilibrium.

The graphical representation of existence of endemic equilibrium, using the set of
parameters given in Table 1, is shown in Fig. 1.

Table 1 Parameter values and units

Parameters Value (Unit)

Recruitment rate (A) 2 (person (d)−1)

Natural Death rate of each sub-population (δ0) 0.05 (d)−1

Disease induced death rate of infected (δ1) 0.001 (d)−1

Recovery rate of infected due to auto immunity
(δ2)

0.002 (d)−1

Treatment rate (a) 0.02 (person)−1 (d)−1

Limitation rate in treatment availability (b) 0.0004 (person)−1 (d)−1

Transmission rate (α) 0.004 (person)−1 (d)−1

Inhibition rate due to susceptible (β) 0.004 (person)−1 (d)−1

Inhibition rate due to infected (γ ) 0.002 (person)−1 (d)−1
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Fig. 1 Plot of two isoclines showing existence of endemic equilibrium (E1)

The next theorem shows the uniform persistence of system (2). Biologically per-
sistence implies that the sub-populations exist always and will not lead to extinction
if initially they are present.

Theorem 3 Assume that Lemma 1 holds. Let the following inequality is satisfied:

max
{

αA
(δ0+βA)(δ0+γ A)

, aA
δ2

0+bA2

}
< 1. Then system (2) is uniformly persistent.

Proof In order to define permanence (uniformly persistence) of the system, we
assume that S(0) > 0 and I (0) > 0. Then we say that system (2) is uniformly per-
sistence [45, 46] if there exists positive constants M1 and M2 s.t.

M1 ≤ lim inf
t→∞ S(t) ≤ lim sup

t→∞
S(t) ≤ M2,

M1 ≤ lim inf
t→∞ I (t) ≤ lim sup

t→∞
I (t) ≤ M2.

From Lemma 1, it follows that

lim sup
t→∞

S(t) ≤ A

δ0
,

lim sup
t→∞

I (t) ≤ A

δ0
.

⇒ For any ε > 0, ∃ a T > 0 such that

S(t) <
A

δ0
+ ε = Sm(say),
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I (t) <
A

δ0
+ ε = Sm, ∀t ≥ T .

From the first equation of model (1.2), we have

dS

dt
≥ A − δ0S − αS2

m

(1 + βSm)(1 + γ Sm)
,

This implies that

lim inf
t→∞ S(t) ≥ 1

δ0

(
A − αS2

m

(1 + βSm)(1 + γ Sm)

)
,

which is true for every sufficiently small ε > 0. Hence for large t , it follows that

lim inf
t→∞ S(t) ≥ A

δ0

(
1 − αA

(δ0 + βA)(δ0 + γ A)

)
= Sa(say)

and Sa > 0 if αA
(δ0+βA)(δ0+γ A)

< 1, or R0 <
(δ0+Aγ )

δ3
.

Again from model (2), we have

d

dt
(S + I ) ≥ A − δm(S + I ) − aA2

δ2
0 + bA2

,

where δm = max{δ0, δ3}.

⇒ lim inf
t→∞ (S(t) + I (t)) ≥ A

δm

(
1 − aA

δ2
0 + bA2

)
= Ia(say),

We note that Ia > 0 if
aA

δ2
0 + bA2

< 1.

Hence the theorem follows.

Further, we discuss the local and global stability of the endemic equilibrium point
E1(S∗, I ∗). We state and prove the following results:

Theorem 4 The endemic equilibrium E1(S∗, I ∗) is locally asymptotically stable iff
the following inequalities hold true:

αS∗

(1 + βS∗)(1 + γ I ∗)2
< L1, (8)

δ0αS∗

(1 + βS∗)(1 + γ I ∗)2
< L2, (9)

http://dx.doi.org/10.1007/978-81-322-3640-5_1
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where

L1 = δ0 + δ3 + 2aI ∗

(1 + bI ∗2)2
+ α I ∗

(1 + γ I ∗)(1 + βS∗)2
,

L2 =
(

δ3 + 2aI ∗

(1 + bI ∗2)2

) (
δ0 + α I ∗

(1 + γ I ∗)(1 + βS∗)2

)
.

Proof The variational matrix corresponding to endemic equilibrium E1(S∗, I ∗) is
given as follows:

JE1 =
⎡

⎢
⎣

−δ0 − α I ∗
(1+γ I ∗)(1+βS∗)2 − αS∗

(1+βS∗)(1+γ I ∗)2

α I ∗
(1+γ I ∗)(1+βS∗)2

αS∗
(1+βS∗)(1+γ I ∗)2 − δ3 − 2aI ∗

(1+bI ∗2)2

⎤

⎥
⎦ .

The characteristic polynomial of the above matrix is given by the following equation

λ2 + a1λ + a2 = 0, (10)

where,

a1 = δ0 + α I ∗

(1 + γ I ∗)(1 + βS∗)2
− αS∗

(1 + βS∗)(1 + γ I ∗)2
+ δ3 + 2aI ∗

(1 + bI ∗2)2
,

a2 =
(

δ3 + 2aI ∗

(1 + bI ∗2)2

) (
δ0 + α I ∗

(1 + γ I ∗)(1 + βS∗)2

)
− δ0αS∗

(1 + βS∗)(1 + γ I ∗)2
.

Using the Routh-Hurwitz criteria, it follows that eigenvalues of the above variational
matrix have negative real parts iff a1 > 0 and a2 > 0. This implies that the endemic
equilibrium E1(S∗, I ∗) is locally asymptotically stable iff inequalities (8) and (9)
hold true.

Remark 3 It may be noted that conditions (8) and (9) hold if

αS∗

(1 + βS∗)(1 + γ I ∗)2
< δ3 + 2aI ∗

(1 + bI ∗2)2
.

In the following theorem, we show that the endemic equilibrium E1(S∗, I ∗) is glob-
ally asymptotically stable.

Theorem 5 Let the following inequality holds in the region �:

α2γ S∗ I ∗

(1 + γ I ∗)(1 + βS∗)2
< X1X2, (11)
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where

X1 = δ0 + α I ∗δ2
0

(1 + βS∗)(δ0 + βA)(δ0 + γ A)
,

X2 = αγ δ2
0S

∗

(δ0 + βA)(1 + γ I ∗)(δ0 + γ A)
+ aδ0

2

(δ0
2 + bA2)(1 + bI ∗2)

− aI ∗√b

2(1 + bI ∗2)2
.

Then the positive equilibrium E1(S∗, I ∗) is globally asymptotically stable with
respect to all solutions in the interior of the positive quadrant �.

Proof We take a positive definite scalar function V as follows:

V (S, I ) = 1

2
(S − S∗)2 + 1

2
k1

(
I − I ∗ − I ∗ln

I

I ∗

)
.

Differentiating V w.r.t. time t along the solutions of model (2), we get

dV

dt
= −a11(S − S∗)2 + a12(S − S∗)(I − I ∗) − a22(I − I ∗)2

where

a11 = δ0 + α I ∗

PP∗L
> 0,

a12 = − αS

PL
+ αγ S∗ I ∗

P∗LL∗ + αk1

PP∗L
,

a22 = k1

(
αγ S∗

P∗LL∗ + a(1 − bI I ∗)
(1 + bI ∗2)(1 + bI 2)

)
,

P = 1 + βS, P∗ = 1 + βS∗, L = 1 + γ I, L∗ = 1 + γ I ∗.

Sufficient conditions for V̇ to be negative definite are a11 > 0 and a2
12 < 4a11a22.

The second condition for V̇ to be negative definite leads to the inequality (11) for
k1 = γ S∗ I ∗

1+γ I ∗ . Hence the theorem follows.

In the following theorem, we show the non-existence of limit cycle under certain
condition.

Theorem 6 If bA2 < δ0
2, then model (2) does not have any periodic solution in the

interior of the positive quadrant of the SI -plane.

Proof We define a real valued function in the interior of positive quadrant of the
SI -plane as follows:

H(S, I ) = (1 + βS)(1 + γ I )

SI
> 0.
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Let us consider,

h1(S, I ) = A − δ0S − αSI

(1 + βS)(1 + γ I )
,

h2(S, I ) = αSI

(1 + βS)(1 + γ I )
− δ3 I − aI 2

1 + bI 2
.

Then we have,

div(Hh1, Hh2) = ∂

∂S
(Hh1) + ∂

∂ I
(Hh2)

= − A(1 + γ I )

I S2
− δ0β(1 + γ I )

I
− δ3γ (1 + βS)

S
− a(1 − bI 2 + 2γ I )(1 + βS)

S(1 + bI 2)2
.

We can see that the above expression is not zero and this will not change sign in the
positive quadrant of the SI -plane if the inequality bA2 < δ0

2 holds. Then by Dulac’s
criterion [44], it is apparent that model (2) does not have any periodic solution in the
interior of the positive quadrant of the SI -plane.

5 Numerical Simulations

In this section, we present simulation results for model (2) using Mathematica and
MatLab 7.10. Mathematica has been used for calculation of symbolic mathematical
expressions while Matlab is used to plot the figures.

We chose the dataset of parameters as given in Table 1 for model (2). For this
set of parameters, the basic reproduction number R0 is 2.6025 > 1 and other con-
ditions for the existence of endemic equilibrium are satisfied. Endemic equilibrium
point E1(S∗, I ∗) is given by S∗ = 33.0457 and I ∗ = 3.1467. The phase portrait of
susceptible population and infected population (Fig. 2) shows that the trajectories ini-

Fig. 2 Phase portrait of
endemic equilibrium point
E1
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Fig. 3 Effect of incidence rate (α) on S and I

tiating from different initial points (initial values are given in the legend) approach
to the unique equilibrium point E1(33.0457, 3.1467). This is evident from Fig. 2
that the endemic equilibrium point is globally asymptotically stable for this dataset.
Thus the stability of the endemic equilibrium point is independent of initial status of
susceptibles and infectives.

In Fig. 3a, b, we plotted the effect of variation of incidence rate α on susceptible
S and infected population I for the values of parameters given in Table 1. For higher
values of α the trajectory corresponding to susceptible population settles down at low
level while trajectory for infected population first decreases and then attains its steady
state at high level of infection. The initial decrease in infection is due to treatment
available in the community. The number of infectives decreases with decrease in
incidence of infection which can be controlled by treatment.

We have considered Crowley-Martin type nonlinear incidence rate so the effect
of the constant β (involved in the incidence expression) i.e. measure of inhibition
with respect to susceptible is plotted in Fig. 4a, b. When β is low the trajectory
corresponding to susceptible population settles at a lower level and the trajectory
corresponding to infected population settles at high level of infection. This shows
that the number of susceptible can be increased and the number of infectives can be
decreased by increasing the value of β i.e. by increasing the density of preventive
measures taken by susceptible individuals.

The effect of treatment given to the community is shown in Fig. 5a–d using dif-
ferent treatment rates. It may be noted here that the legend for Fig. 5a, c are same.
Further, the legend for Fig. 5b, d is same. Figure 5a shows the effect of treatment
on the infected and Fig. 5b shows the effect of limitation to the treatment resources
on infected population with Holling type III treatment rate while the same has been
shown in Fig. 5c, d using Holling type II treatment rate for comparison purposes. In
absence of treatment (a = 0) the infection increases very rapidly and settles to its
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steady state (Fig. 5a), on the contrary, when there is no restriction to availability of
treatment (b = 0) the infection decreases sharply and get settled to its steady state
(Fig. 5b). Figure 5a, c show that the number of infected individuals can be decreased
faster in the case of Holling type III treatment rate in comparison to that of Holling
type II treatment rate. When there is low availability of treatment, infection is high.
When the ample quantity of treatment is available in the community the infection
almost dies out. Infection gets increase with increase in limit to the availability of
treatment.

6 Conclusion

In this paper, we addressed the intervention to control the infection and a monotone
nonlinear incidence rate to get the better insight of spread of infection among the
populations. We found that model has two equilibria: disease-free equilibrium E0

and endemic equilibrium E1. It has been shown that the infection persists along
with the low availability of treatment when basic reproduction number is greater
than one. The local and global stability of each equilibria have been studied and
found that persistence or eradication of infection is independent of initial status of
the sub-populations and system is uniformly persistence under the condition stated
in Theorem 3. This is also evident from numerical simulations that the infection
increases with increase in incidence but settles at a lower level due to availability of
treatment. Further infection will decrease with the increase in measure of inhibition
taken by susceptibles. It is also found that the eradication of infection is possible only
when the treatment given to the population managed according to the availability of
resources. It has also been observed that the equilibrium point changes its stability
from stable to unstable at R0 = 1 i.e. model exhibits transcritical bifurcation at R0 =
1. Non-existence of periodic solution under the condition defined in Theorem 6
ensures that the infection will not reoccur in future under mentioned condition.
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Dynamic Complexities in a Pest Control
Model with Birth Pulses

Anju Goel and Sunita Gakkhar

Abstract In this paper, an impulsive system of differential equations is proposed to
model a pest control system. The stage-structured system consists of immature and
mature pest population. Birth pulses occur at regular intervals to release immature
pest. The pest is controlled by spraying chemical pesticides affecting both immature
and mature pest. The stroboscopic map of the impulsive system is analyzed for the
stability of pest-free and non-trivial period-1 solution. Numerical simulations with
MATLAB reveal the complex dynamical behavior. Period doubling cascade, chaos
and period halving bifurcations are observed above the threshold level.

Keywords Stage-structure · Birth-pulse · Ricker function · Bifurcation · Chaos
1 Introduction

Integrated pest management (IPM) is a long-term control strategy which is a combi-
nation of biological, cultural and chemical tactics to reduce pest population in such a
way that economic loss to the grower is minimized with least impact on the environ-
ment [9]. Many authors have investigated different population models concerning
the impulsive pest control. In terms of the mathematical treatment, such models are
described by the system of impulsive differential equations [6]. These equations
describe the phenomena of steep/ instantaneous changes. Many mathematical mod-
els are developed to predict success of an IPM plan. These models incorporate the
dynamics of pest when chemical control/biological control is applied continuously
[2, 8] or impulsively [7, 9, 12].

Researchers have mostly considered that the mature pest reproduce throughout
the year, but quite frequently births are seasonal or occur in regular pulses. The
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term of continuous reproduction of mature pest is replaced with birth pulse [1]. An
impulsive system with birth pulses has been discussed by [3, 4, 10, 11].

In this paper, an impulsive stage-structured system with birth pulses is proposed
to study the effects of spraying pesticides to control the pest population. The objec-
tive of this paper is to investigate the dynamics of impulsive stage-structured system
subjected to time-dependent impulsive control strategy with birth pulses. The thresh-
old conditions for the stability of pest free solution as well as period-1 solution is
obtained. Numerical simulation has been carried out to study the analytical results
and to explore the complex dynamics of the system.

2 Mathematical Model

Consider the dynamics of stage-structured single species pest. Let total pest density
N(t) be divided into two classes: immature class with density x1 and mature class
with density x2 at time t. The mortality rate of immature and mature pest is dr . The
maturation rate ar > 0 determines the mean length of the juvenile period. Let mature
pest population release immature pest continuously and the birth function Bf (N) is
assumed to be of Ricker type as:

Bf (N(t)) = be−N(t); N(t) = x1(t) + x2(t). (1)

Accordingly, the dynamics of system is governed by the following mathematical
model:

dx1(t)

dt
= Bf (N(t))x2(t) − (dr + ar)x1(t)

dx2(t)

dt
= arx1(t) − drx2(t) (2)

Now, it is assumed that the mature population reproduce in pulses periodically at an
interval T instead of continuous births as in (2). Let x(t+) and y(t+) be the quantities
of biomass of immature and mature pest just after birth pulse at t. The following
system of differential equations for t �= mT with impulsive conditions incorporating
birth pulses at t = mT is given as:

dx1(t)

dt
= −drx1(t) − arx1(t)

dx2(t)

dt
= arx1(t) − drx2(t) t �= mT (3)

x1(mT
+) = x1(mT) + Bf (N(mT))x2(mT)

x2(mT
+) = x2(mT) t = mT ,m = 1, 2, 3, ...
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Assuming chemical spray is also periodic of period T , but it is applied at a time
different then the birth. Accordingly, lr is introduced and chemical spray is applied
between (m − 1)th and mth pulse at fixed time t = (m + lr − 1)T , 0 < lr < 1. Fur-
ther, the fraction of immature and mature pest which die due to pesticide spray
instantaneously are β1, β2(0 < β1, β2 < 1) respectively. Accordingly the system (3)
is subjected to the following additional impulsive condition at t = (m + lr − 1)T :

x1(t
+) = (1 − β1)x1(t), x2(t

+) = (1 − β2)x2(t), t = (m + lr − 1)T (4)

The stage-structured impulsive pest control model with pesticide spray and birth
pulse is defined on set �2+ = {(x1, x2) ∈ �2 | x1 ≥ 0, x2 ≥ 0}. The complete model
is now written as:

dx1(t)

dt
= −(dr + ar)x1(t)

dx2(t)

dt
= arx1(t) − drx2(t) t �= (m + lr − 1)T , t �= mT

x1(t
+) = (1 − β1)x1(t) (5)

x2(t
+) = (1 − β2)x2(t) t = (m + lr − 1)T

x1(t
+) = x1(t) + Bf (N(t))x2(t)

x2(t
+) = x2(t) t = mT

x1(0) = x10 > 0, x2(0) = x20 > 0

Here, x10 and x20 are initial densities of immature and mature pest respectively. All
model parameters are positive constants.

3 Model Analysis

Let x1 = x1m−1 and x2 = x2m−1 be the initial densities of immature and mature pest
respectively at t = (m − 1)T . The analytical solution of the differential equations of
system (5) between the pulses can be written as:

x1(t) = x1m−1e
−(ar+dr)(t−(m−1)T) (m − 1)T ≤ t < (m + lr − 1)T

x2(t) = e−dr(t−(m−1)T)[x2m−1 + x1m−1(1 − e−ar(t−(m−1)T))] (6)

x1(t) = (1 − β1)x1m−1e
−(ar+dr)(t−(m−1)T) (m + lr − 1)T ≤ t < mT

x2(t) = [{(β2 − β1)e
−ar lrT − (1 − β1)e

−arT + (1 − β2)}x1m−1 + (1 − β2)x2m−1]
× e−dr(t−(m−1)T)
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Applying impulsive conditions and using (6), gives stroboscopic map of system (5)
after each successive birth pulse:

x1m = (1 − β1)x1m−1e
−(ar+dr )T + be−(β2−β1)x1m−1e−(dr+ar lr )T−(1−β2)(x2m−1+x1m−1)e−drT

× [(β2 − β1)x1m−1e
−ar lrT + (1 − β2)(x2m−1 + x1m−1) − (1 − β1)x1m−1e

−arT ]e−drT

x2m = [(β2 − β1)x1m−1e
−ar lrT + (1 − β2)(x2m−1 + x1m−1) − (1 − β1)x1m−1e

−arT ]e−drT

(7)

The dynamical behavior of the system (5) will be given by the dynamical behavior
of the system (7) coupled with system (6).

Let R0 be the intrinsic net reproductive number denoting average number of off-
spring that an individual produces over the period of its lifetime. It can be computed
as:

R0 = be−drT ((β2 − β1)e−ar lrT + (1 − β2) − (1 − β1)e−arT )

(1 − (1 − β1)e−drT−arT )(1 − (1 − β2)e−drT )
= b

b0
(8)

For the system (7), the following fixed points are obtained:

(i) A unique pest-free fixed point E0 = (0, 0) exists without any parametric restric-
tion.

(ii) The non-trivial interior fixed point E∗ = (x∗
1, x

∗
2) is obtained as:

x∗
1 = (1 − (1 − β2)e−drT ) log(R0)

e−drT {(β2 − β1)e−ar lrT + (1 − β2) − (1 − β2)(1 − β1)e−(dr+ar)T }
x∗
2 = ((β2 − β1)e−ar lrT + (1 − β2) − (1 − β1)e−arT ) log(R0)

(β2 − β1)e−ar lrT + (1 − β2) − (1 − β2)(1 − β1)e−(dr+ar)T

The interior fixed point exists if R0 > 1. It does not exist for R0 < 1. In other words,
the interior fixed point is feasible if birth rate of pest is more than a critical value b0
which depends upon all model parameters. It may be noted that E∗ = E0 if R0 = 1.

3.1 Stability Analysis of the Fixed Point

The linearized system about any arbitrary fixed point X = (x1, x2) can be written as:

Xm = AXm−1 (9)

The linearized coefficients of the matrix A = (aij)2×2 are computed as:
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a11 = (1 − β1)e
−(dr+ar)T + be−Dx1−(1−β2)x2e−dr T [D − (1 − β1)e

−(dr+ar)T

− D{Dx1 + (1 − β2)x2e
−drT − (1 − β1)x1e

−(dr+ar)T }]
a12 = b(1 − β2)e

−drT−Dx1−(1−β2)x2e−dr T [1 − {Dx1 + (1 − β2)x2e
−drT

− (1 − β1)x1e
−(dr+ar)T }]

a21 = D − (1 − β1)e
−(dr+ar)T (10)

a22 = (1 − β2)e
−drT

D = (β2 − β1)e
−(dr+ar lr)T + (1 − β2)e

−drT

Let characteristic equation in terms of trace Tr and determinant Det be written as:

λ2 − Trλ + Det = 0

The fixed point X = (x1, x2) is stable when the magnitude of eigenvalues of A are
less than unity. For this, Jury conditions are:

1 − Tr + Det > 0 (11)

1 + Tr + Det > 0 (12)

1 − Det > 0. (13)

If inequality (11) is violated, then one of the eigenvalues of A is larger than 1. If
inequality (12) is violated, then one of the eigenvalues of A is less than −1. Finally,
If inequality (13) is violated, then A has a complex-conjugate pair of eigenvalues
lying outside the unit circle [5].

Theorem 1 The pest- free fixed point E0 = (0, 0) is locally asymptotically stable if

R0 < 1. (14)

Proof Using (10) coefficients of the linearized matrix A = (aij)2×2 are evaluated
about the pest-free fixed point (0, 0) as:

a11 = (1 − β1)e
−(dr+ar)T + b{(1 − β2) + (β2 − β1)e

−ar lT − (1 − β1)e
−arT }e−drT

a12 = b(1 − β2)e
−drT

a21 = (β2 − β1)e
−(dr+ar l)T + (1 − β2)e

−drT − (1 − β1)e
−(dr+ar)T

a22 = (1 − β2)e
−drT

Accordingly, the trace Tr and determinant Det are computed as:

Tr = [(1 − β1)e
−arT + b{(1 − β2) + (β2 − β1)e

−ar lT − (1 − β1)e
−arT }]e−drT

+ (1 − β2)e
−drT

Det = (1 − β1)(1 − β2)e
−(2dr+ar)T
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In the following it is observed that conditions (12) and (13) are always satisfied:

1 + Tr + Det = 1 + (1 − β1)e
−(dr+ar)T + be−drT [{(1 − β2) + (β2 − β1)e

−ar lT

− (1 − β1)e
−arT } + (1 − β2) + (1 − β2)(1 − β1)e

−(dr+ar)T )] > 0

1 − Det = 1 − (1 − β1)(1 − β2)e
−(2dr+ar)T > 0

The expression 1 − Tr + Det simplifies to:

1 − Tr + Det = 1 − (1 − β1)e
−(dr+ar)T − b[{(1 − β2) + (β2 − β1)e

−ar lT

− (1 − β1)e
−arT } + (1 − β2) − (1 − β1)(1 − β2)e

−(dr+ar)T ]e−drT

= (1 − (1 − β1)e
−drT−arT )(1 − (1 − β2)e

−drT ) − b{(1 − β2)

+ (β2 − β1)e
−ar lT − (1 − β1)e

−arT }e−drT

Accordingly, the condition (11) gives

(1 − (1 − β1)e
−drT−arT )(1 − (1 − β2)e

−drT ) > b{(1 − β2) + (β2 − β1)e
−ar lT

− (1 − β1)e
−arT }e−drT

i.e.

b <
(1 − (1 − β1)e−drT−arT )(1 − (1 − β2)e−drT )

e−drT ((β2 − β1)e−ar lrT + (1 − β2) − (1 − β1)e−arT )
= b0 (15)

Using (8) and (15), the stability condition (14) is obtained. �

Accordingly, the fixed point (0, 0) is locally stable for b ∈ (0, b0). The trajectories
in the neighborhood of (0, 0) tend to origin and the pest will extinct. Thus, the
pest eradication is possible when R0 < 1. The existence of non-trivial fixed point is
overruled in this case. When R0 > 1, the fixed point (0, 0) is unstable. The pest-free
fixed point becomes non-hyperbolic at R0 = 1 and it collides with the interior fixed
point. Further analysis in this case is carried out later in the next section.

Theorem 2 The non-trivial fixed point E∗ = (x∗
1, x

∗
2) is locally asymptotically stable

provided

b < b0e
2((β2−β1)e−ar lr T +(1−β2)−(1−β2)(1−β1)e−(dr+ar )T )(1+(1−β1)(1−β2)e−(2dr+ar )T )

(1−(1−β1)e−(dr+ar )T )(1−(1−β2)e−dr T )((β2−β1)e−ar lr T +(1−β2)+(1−β2)(1−β1)e−(dr+ar )T ) (= bc) (16)

Proof Using (10) coefficient of linearized matrix A are computed around E∗ =
(x∗

1, x
∗
2) as:
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a11 = (1 − β1)e
−(dr+ar)T + b0e

−drT [(β2 − β1)e
−ar lrT + (1 − β2)

− (1 − β1)e
−arT − {(β2 − β1)e

−ar lrT + (1 − β2)}x∗
2]

a12 = b0(1 − β2)[1 − x∗
2]e−drT

a21 = (β2 − β1)e
−(dr+ar lr)T + (1 − β2)e

−drT − (1 − β1)e
−(dr+ar)T

a22 = (1 − β2)e
−drT

Accordingly, the trace Tr and determinant Det are computed as:

Tr = (1 − β1)e
−(dr+ar)T + b0e

−drT [(β2 − β1)e
−ar lrT + (1 − β2)

− (1 − β1)e
−arT − {(β2 − β1)e

−ar lrT + (1 − β2)}x∗
2] + (1 − β2)e

−drT

Det = (1 − β1)(1 − β2)e
−(2dr+ar)T [1 − b0x

∗
2]

It is observed that conditions (11) and (13) are always satisfied:

1 − Tr + Det = 1 − (1 − β1)e
−(dr+ar)T − b0[(β2 − β1)e

−ar lrT + (1 − β2)

− (1 − β1)e
−arT − {(β2 − β1)e

−ar lrT + (1 − β2)}x∗
2 ]e−drT

− (1 − β2)e
−drT + (1 − β1)(1 − β2)e

−(2dr+ar)T [1 − b0x
∗
2 ]

= (1 − (1 − β1)e
−(dr+ar)T )(1 − (1 − β2)e

−drT ) − b0[(β2 − β1)e
−ar lrT

+ (1 − β2) − (1 − β1)e
−arT ](1 − x∗

2)e−drT

= (1 − (1 − β1)e
−(dr+ar)T )(1 − (1 − β2)e

−drT )x∗
2 > 0

1 − Det = 1 − (1 − β1)(1 − β2)e
−(dr+ar)T [1 − b0x

∗
2 ] > 0

The expression 1 + Tr + Det simplifies to:

1 + Tr + Det = 1 + (1 − β1)e
−(dr+ar )T + b0[(β2 − β1)e

−(dr+ar lr )T + (1 − β2)e
−drT

− (1 − β1)e
−(dr+ar )T − {(β2 − β1)e

−(dr+ar lr )T + (1 − β2)e
−drT }x∗

2 ]
+ (1 − β2)e

−drT + (1 − β1)(1 − β2)e
−(2dr+ar )T [1 − b0x

∗
2 ]

= (1 + (1 − β1)e
−drT−arT )(1 + (1 − β2)e

−drT ) + b0[(β2 − β1)e
−ar lrT

+ (1 − β2) − (1 − β1)e
−arT − {(β2 − β1)e

−ar lrT + (1 − β2)

+ (1 − β1)(1 − β2)e
−(dr+ar )T }x∗

2 ]e−drT

= (1 + (1 − β1)e
−drT−arT )(1 + (1 − β2)e

−drT )

+ (1 − (1 − β1)e
−drT−arT )(1 − (1 − β2)e

−drT )

×
[

1 − (β2 − β1)e−ar lrT + (1 − β2) + (1 − β1)(1 − β2)e−(dr+ar )T

(β2 − β1)e−ar lrT + (1 − β2) − (1 − β1)(1 − β2)e−(dr+ar )T
log(R0)

]
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Accordingly, condition (12) gives:

R0 < exp(CF−1) (17)

C = 2((β2 − β1)e
−ar lrT + (1 − β2) − (1 − β2)(1 − β1)e

−(dr+ar)T )

× (1 + (1 − β1)(1 − β2)e
−(2dr+ar)T )

F = (1 − (1 − β1)e
−(dr+ar)T )(1 − (1 − β2)e

−drT )

× ((β2 − β1)e
−ar lrT + (1 − β2) + (1 − β2)(1 − β1)e

−(dr+ar)T )

The stability condition (16) is obtained from (17). Hence, if b < bc then E∗ is locally
asymptotically stable. �

Accordingly, when b0 < b < bc, the fixed point E∗ exists and is locally asymptot-
ically stable. The trajectories of system (7) tend to asymptotically stable period-1
solution (x1e(t), x2e(t)):

x1e(t) = (1 − β1)x
∗
1e

−(ar+dr)(t−(m−1)T)

x2e(t) = [(β2 − β1)x
∗
1e

−(dr+ar)lrT + (1 − β2)(x
∗
2 + x∗

1)e
−dr lrT ]e−dr(t−(m+lr−1)T)

− (1 − β1)x
∗
1e

−(ar+dr)(t−(m−1)T)

Further increasing parameter value b > bc, the fixed point E∗ losses its stability and
the system may exhibit complex dynamics. The complex dynamical behavior will
be shown in later section. The interior fixed point becomes non-hyperbolic at b = bc
and one of the eigenvalues becomes −1. So, there is a possibility of flip bifurcation.

4 Transcritical Bifurcation

The pest-extinction point E0 = (0, 0) becomes non-hyperbolic at R0 = 1 (i.e. b =
b0) as one of the eigenvalues is 1. It is observed that at b = b0, E0 = (0, 0) and
E∗ = (x∗

1, x
∗
2) exchange stability. The center manifold theorem and Lemma 1 is used

to characterize the nature of bifurcation point b = b0.

Lemma 1 Let x → f (x, b), x ∈ �, b ∈ � be a one-parameter family of one-
dimensional map having a non-hyperbolic fixed point with an eigenvalue 1 then
the map undergoes transcritical bifurcation at (x, b) = (0, 0) if

∂f (0, 0)

∂b
= 0,

∂2f (0, 0)

∂x∂b
�= 0,

∂2f (0, 0)

∂2x
�= 0

Theorem 3 The system (7) undergoes transcritical bifurcation at b = b0.
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Proof Let Υ = e−drT ((β2 − β1)e−ar lrT + (1 − β2) − (1 − β)e−arT ). Consider the
map

(
x1
x2

)
→

⎛

⎝
be−((β2−β1)x1e−ar lrr T+(1−β2)(x2+x1))e−dr T [Υ x1 + (1 − β2)e−drT x2]

+(1 − β1)x1e−(ar+dr)T

Υ x1 + (1 − β2)e−dT x2

⎞

⎠ (18)

Let x1 = u, x2 = v, b = b1 + b0, b0 = Υ −1(1 − (1 − β1)e−drT−arT )(1 − (1 − β2)

e−drT ). The fixed point E0 of the map is transformed to (u, v) and the map (18)

becomes:

(
u
v

)
→

(
(b1 + b0)Θ(Υ u + (1 − β2)ve−drT ) + (1 − β1)ue−(ar+dr)T

Υ u + (1 − β2)ve−drT

)

where Θ = exp (−(β2 − β1)ue−(dr+ar l)T − (1 − β2)(v + u)e−drT )).
It can be rewritten as:

(
u
v

)
→ M

(
u
v

)
+

(
c11u2 + c12uv + c13v2 + c14b1u + c15b1v

0

)
(19)

The coefficients of the matrix M = mij2×2 and coefficients c1j, j = 1, 2, 3, 4, 5 are
obtained as:

m11 = (1 − β1)e
−(dr+ar)T + b0Υ,

m21 = Υ,

m12 = b0(1 − β2)e
−drT ,

m22 = (1 − β2)e
−drT

c11 = [−(β2 − β1)e
−ar lT (e−ar lrT + 2(1 − β2) + (1 − β1)e

−arT ) − (1 − β2)
2

+ (1 − β2)(1 − β1)e
−arT ]b0e−2drT

c12 = (−2(β2 − β1)e
−ar lrT − 2(1 − β2) + (1 − β1)e

−arT )b0(1 − β2)e
−2dT

c13 = −b0(1 − β2)
2e−2drT

c14 = Υ

c15 = (1 − β2)e
−dT

The eigenvalues of M are 1 and (1 − β2)(1 − β1)e−(ar+2dr)T . The corresponding
eigenvectors are {J11, 1}T and {J12, 1}T where J11 = Υ −1(1 − (1 − β2)e

−drT ) and
J12 = Υ −1e−drT (1 − β2)((1 − β1)e

−(dr+ar)T − 1).

Consider the transformation

(
u
v

)
= J

(
x̄
ȳ

)
with J =

(
J11 J12
1 1

)
. Now, the map

(19) can be written as:

(
x̄
ȳ

)
→

(
1 0
0 (1 − β2)(1 − β1)e−(ar+2dr)T

)(
x̄
ȳ

)
+

(
f1(x̄, ȳ, b1)
f2(x̄, ȳ, b1)

)
(20)
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where

f1(x̄, ȳ, b1) = d1b1x̄ + d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2

f2(x̄, ȳ, b1) = −f1(x̄, ȳ, b1)

d1 = (1 − (1 − β2)(1 − β1)e
−(ar+2dr )T )Υ −1

d2 = (1 − β2)(1 − β1)e
−(ar+dr )T (1 − (1 − β2)(1 − β1)e

−(ar+2dr )T )Υ −1e−drT + c12Υ
−1

d3 = 2c13 + 2c11Υ
−2e−drT (1 − β2){(1 − β1)e

−(dr+ar )T − 1}(1 − (1 − β2)e
−drT )Υ −1

× [1 − (1 − β2)e
−drT {1 + {(1 − β1)e

−(dr+ar )T − 1}}][1 − (1 − β2)(1 − β1)e
−(ar+2dr )T ]

d4 = [(c11 + c12)Υ
−1(1 − (1 − β2)e

−drT ) + c13]
× [1 − (1 − β2)(1 − β1)e

−(ar+2dr )T ]Υ −1

d5 = [(c11 + c12)(1 − β2)((1 − β1)e
−(dr+ar )T − 1)Υ −1e−drT + c13]

× [1 − (1 − β2)(1 − β1)e
−(ar+2dr )T ]Υ −1

Now the center manifold theorem is used to determine the nature of bifurcation
of the fixed point (0, 0) at b1 = 0. The center manifold for the map (20) can be
represented as:

wc(0) = {(x̄, ȳ, b1) ∈ �3|ȳ = f (x̄, b1), f (0, 0) = 0,Df (0, 0) = 0}

Let ȳ = f (x̄, b1) = B0b1 + B1b1x̄ + B2x̄2 + O(|b1|2 + |b1x̄2| + |x̄|3). The coefficients
in ȳ can be computed as:

B0 = 0, B1 = −d1
(1 − (1 − β2)(1 − β1)e−(ar+2dr)T )

,

B2 = d4
(1 − β2)(1 − β1)e−(ar+2dr)T − 1

The map restricted to the center manifold is given by:

f̄ : x̄ → x̄ + f1(x̄, ȳ, b1) = x̄ + d1b1x̄ + d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2

= x̄ + d1b1x̄ + d3d4x̄3

(1 − β2)(1 − β1)e−(ar+2dr)T − 1
+ d4x̄

2 + O(|b1|2 + |b1x̄2| + |x̄|4)

From the Lemma 1, it can be observed that

∂ f̄ (0, 0)

∂b1
= 0,

∂2 f̄ (0, 0)

∂x∂b1
= d1 �= 0,

∂2 f̄ (0, 0)

∂2x
= 2d4 �= 0

Note that, all conditions of Lemma 1 are satisfied at (x̄, b1) = (0, 0). Further, E∗
becomes E0 as b = b0. Hence the system (7) undergoes to transcritical bifurcation
between E0 = (0, 0) and E∗ = (x∗, y∗) at b = b0.
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5 Numerical Simulation

In this section, numerical analysis of the system is performed based on the analytical
results. The critical parameters for investigation are identified as T , lr , β1, β2, ar
and dr that are involved in R0 and affects the dynamics of the system. Consider the
following parameter set

ar = 0.4, dr = 0.2, lr = 0.5, β1 = 0.4, β2 = 0.8 (21)

Considering T = 1.0 and data set (21), the constant b0 is computed as b0 = 5.4674.
For b = 5, the basic reproduction number is obtained as (R0 = 0.9145 < 1). Accord-
ing to Theorem 1, the pest-free fixed point is locally asymptotically stable and coex-
istence is not possible. Taking b = 11, the pest-free fixed point becomes unstable.
The non-trivial fixed point E∗ = (1.5106, 0.1898) is stable as b0 < b < 101.7607
(see Theorem 2). Further, transcritical bifurcation occurs at b = 5.4674.

Figure1 shows variation of equilibrium level of pest population versus lr for
different killing rates of immature and mature pest β1, β2 ∈ (0, 1). It clearly shows
that the lowest equilibrium level of pest is possible when lr = 1. It also follows from
Fig. 1 that the number of the immature and mature pest is dependent on the killing
rate and pesticide spray timing. From biological point of view, the aim is to reduce
the pest to the low level not to eliminate it. If pest is removed early in the season,
higher amounts of pesticides are needed to reduce the pest. Since pesticides have
negative impact on the environment this is not desirable. Therefore, the best timing
of pesticide spraying is before the end of season that is when half of the season has
been passed or before the end of season. Further, it can be easily seen that equilibrium
density of mature pest is a decreasing function with respect to pesticide spraying time
parameter lr :
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Fig. 1 Equilibrium density versus lr for data set (21)
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dx∗
2

dlr
= − (arT(1 − β1)(β2 − β1)e−ar lrT−ar (1 − (1 − β2)e−drT )) log(R0)

((β2 − β1)e−ar lrT + (1 − β2) − (1 − β2)(1 − β1)e−(dr+ar)T )2

− (arT(β2 − β1)e−ar lrT )

((β2 − β1)e−ar lrT + (1 − β2) − (1 − β2)(1 − β1)e−(dr+ar)T )
< 0

Similarly, it can be proved that equilibrium density of immature pest is monotonic
decreasing function with respect to parameter lr for the data set (21).

The expression of R0, which includes killing rate of immature and mature pest,
clearly shows the effect of pesticide spray on threshold R0. The first order derivatives
of the threshold R0 with respect to β and α respectively are found to be negative:

dR0

dβ1
= −be−drT ((1 − β2)e−(dr+ar)T (1 − e−ar lrT ) + e−arT − e−ar lT )

(1 − (1 − β2)e−drT )(1 − (1 − β1)e−(dr+ar)T )2
< 0

dR0

dβ2
= −be−drT ((1 − β1)e−drT (e−arT − e−ar lrT ) + 1 − e−ar lrT )

(1 − (1 − β2)e−drT )2(1 − (1 − β1)e−(dr+ar)T )
< 0

It can be easily observed that the larger killing (or poisoning) rate β1 and β2 reduces
the threshold value R0. The effects of pesticide spraying on immature and mature
pest have strong effect on threshold R0.

Figure2a shows the variation of R0 with impulsive period T . The non-monotonic
behavior of R0 with respect to the impulsive period T is observed. As the values of
T increases, R0 first decreases and attains a peak then it decreases with increase in
T . From the point of pest control, it is necessary that the pulse time period should
be selected carefully. As, once the threshold value R0 is less than 1, pest goes to
extinction.

To see complexity due to pesticide spraying time and birth rate, two parameter
bifurcation diagram is drawn in lr − b plane see Fig. 2b. In this figure, region of pest

0 1 2 3 4 5 6
0

2

4

6

8

10

T

R
0

(a) (b)

Fig. 2 a Contours plot shows non-monotonicity of R0. b Two parameter bifurcation diagram in
lr − b plane with respect to T for data set (21)
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extinction is shown by white, while the region of stable period-1 solution is shown
by light-grey. For higher birth rates of the pest, the system becomes chaotic which is
shown in the black region. At lower birth rates pest will be eradicated for all values
of pesticide spray time. It has been observed that pest will go to extinction in a small
neighborhood of (0, 0). The periodic doubling leads to chaos in the system for higher
birth rate.

Typical bifurcation diagram is drawn for total pest in Fig. 3a with respect to
critical parameter b which is involved in R0 as well as in Rc = b

bc
. The bifurca-

tion diagram shows existence of chaos through period-doubling route. The criti-
cal value for period-doubling bifurcation parameter is bc = 101.7607 as obtained
from Eq. (16) is confirmed from Fig. 3a. The period-1 solution occurs in the range
b ∈ (5.4674, 101.7607). As parameter value of b increases further, successive
period-doubling with period-2, period-4, period-8 and period-16 occur in the inter-
vals (101.7607, 296.841), (296.841, 406.783), (406.783, 434.8518) and (434.8518,
441.16) respectively. The cascades of period-doubling is observed in the bifurcation
diagram, which is route of chaos in the system. Several periodic windows are visible
in the interval (500, 700). A region of Fig. 3a is separately blown up in Fig. 3b in the
interval (690, 720) and a periodic window is clearly visible. Thus, the pest coexist
in periodic solution/ chaotic attractor in range of values of b beyond bc.

The Fig. 4 shows bifurcation diagrams with respect to pesticide spray time lr ∈
(0, 1) with b = 450. The system (7) depicts very complex dynamical behavior if
pesticide is sprayed just after birth pulse. As parameter lr increases, chaotic behavior
is followed by period-halving bifurcation. It can be observed that immature and
mature pest decreases as the pesticide spray timing lr increases. From an ecological
point of view, it can be observed that pesticide spray time may reduce complexity
with increasing lr and may stabilize the system.

Fig. 3 a Bifurcation diagram with respect to parameter b. b Blown up of the bifurcation diagram
for data set (21)
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Fig. 4 Bifurcation diagrams a for immature pest b for mature pest with respect to time of spraying
pesticide lr for data set (21)

6 Discussion

In this paper, a stage-structured pest model with birth pulse and impulsive spraying
pesticide at fixed time is considered. By using the stroboscopic map, the complete
expression for periodic solution with period-1 is obtained. Also the threshold condi-
tions for the stability of two fixed points is obtained. The effects of pesticide spraying
timing on the number of the pest is considered. The results show that the best time
of pesticide spraying is at the end of the season, that is before and near the time of
birth. The system with Ricker type birth function shows a very complex dynamical
behavior. As the parameter of pesticide spray timing increases, there exist period-
halving bifurcations followed by chaotic behavior. It is observed that the number of
mature pest is a decreasing function with respect to pesticide spray. Also there exist
a cascade of period-halving bifurcations from chaos to cycles.
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Dynamical Behavior of a Modified
Leslie–Gower Prey–Predator Model
with Michaelis–Menten Type
Prey-Harvesting

R.P. Gupta and Peeyush Chandra

Abstract In this article we discuss the dynamical behavior of a modified
Leslie–Gower prey–predatormodel in presence of nonlinear harvesting in prey under
the assumption that the protection provided by environment to prey and predator is
different. The objective of this work is to find the parametric conditions so that
extinction of the species can be prevented in presence of continuous harvesting of
the prey population. We analyze the effect of harvesting on the proposed model by
considering the harvesting as a bifurcation and control parameter. The existence and
stability of equilibrium points are discussed and singular optimal control has been
derived through Pontryagin’s Maximum Principle. This study provides important
tools for investigations pertaining to controllability of the system. Numerical sim-
ulations using MATLAB are carried out as supporting evidences of our analytical
findings.

Keywords Stability · Hopf-bifurcation · Bionomic equilibria · Singular control
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1 Introduction

In population dynamics one of the fundamental interactions which influences the
dynamics of species is predation. Hence prey–predator models are receiving a
considerable attention by researchers in recent years. More realistic models have
been developed keeping in view the laboratory experiments and observations. Also
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harvesting of resources is important issue from the ecological and the economic point
of view. Depending upon the types of species, harvesting of all or one of the species
has been considered in the literature [3–5, 9]. There are several types of harvesting
functions available in the literature. One of the most popular one is proportional
harvesting [3] which is given by

H1(x, E) = qE x . (1)

where, x is population density (stock abundance), q is the catchability coefficient
and E is the effort applied to harvest individuals.

It may be noted that this harvesting function (1) has limited applicability as it
accounts for unbounded linear increase of H1(x, E)with x for fixed E andunbounded
linear increase of H1(x, E) with E for fixed x . In view of this Michaelis–Menten
type harvesting has been suggested which is given by [3]

H2(x, E) = qE x

m1E + m2x
. (2)

Here m1, m2 are suitable positive constants. It may be noted that the nonlinear
harvesting function (2) exhibits saturation effects with respect to both the stock
abundance and the effort-level.

The Leslie–Gower prey–predator model assumes that interacting species grow
according to the logistic law and that the environmental carrying capacity for the
predator is not a constant but proportional to the population size of the prey. However,
due to the rarity of the prey, the predator can switch over to other food, but its
growth is still limited by the fact that its favorite prey is not available in abundance.
Therefore in modified Leslie–Gower functional response a positive constant is added
into the function of the carrying capacity for the predator. With these assumptions
Aziz-Alaoui and Daher Okiye [1] proposed a two-dimensional system for a prey–
predator which incorporates a modified version of Leslie–Gower and Holling-type
II functional response.

Gupta and Chandra [7] extended this model for prey–predator system in presence
of nonlinear prey-harvesting under the assumption that the protection provided by the
environment to prey and predator is same. They studied the permanence, stability and
bifurcation (saddle-node bifurcation, transcritical, Hopf-Andronov and Bogdanov-
Takens) of this model. They also observed that whenever there are two interior
equilibria, the one lying on the left is always a saddle and the other can be either an
attractor or a repeller surrounded by a limit cycle. The present study is an extension
of the model studied by Gupta and Chandra [7]. Here it is assumed that the protection
provided by the environment to prey and predator is different.
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2 Mathematical Model

In this section we briefly describe the model formulation which is being studied in
the current article.

2.1 Model with Prey Harvesting

We consider here the modified Leslie–Gower prey–predator model in presence of
nonlinear prey-harvesting under the assumption that the protection provided by the
environment to prey and predator is different. The model is given by

{ dx
dt = r x

(
1 − x

k

) − axy
n1+x − qEx

m1E+m2x
,

dy
dt = sy

(
1 − by

n2+x

)
,

(3)

subject to positive initial conditions x(0) > 0, y(0) > 0. Here, x(t) and y(t) are the
prey and predator population densities respectively. r and k are intrinsic growth rate
and environmental carrying capacity for the prey species respectively. a is the max-
imum value which per capital reduction rate of prey can attain, n1 and n2 measures
the extent to which environment provides protection to prey and predator respec-
tively and s is the intrinsic growth for the predator species. b for predator has similar
meaning to a. For biological considerations all the parameters are assumed to be
positive.

Gupta and Chandra [7] have considered a particular case of above model where
they assumed that the environment provides similar protection to both prey and
predator (i.e. n1 = n2 = n). In the following we discuss the positivity, boundedness
and permanence of solutions of the model system (3).

2.2 Positivity of Solution

Integrating Eq. (3) we get

x(t) = x(0) exp

[∫ t

0

(
r

(
1 − x(τ )

k

)
− ay(τ )

n1 + x(τ )
− qE

m1E + m2x(τ )

)
dτ

]
,

and

y(t) = y(0) exp

[∫ t

0
s

(
1 − by(τ )

n2 + x(τ )

)
dτ

]
,
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showing that x(t) ≥ 0 and y(t) ≥ 0 whenever x(0) > 0 and y(0) > 0. Hence all
solutions remain within the first quadrant of the xy-plane starting from an interior
point of it. Further we can easily establish that solution trajectories starting from
(x0, 0) with x0 > 0, remain within the positive x-axis at all future time and similar
result holds for trajectories starting from a point on the positive y-axis. Hence, R2+0 =
{(x, y) : x, y ≥ 0} is an invariant set.

2.3 Boundedness of Solution

Consider, (x(t), y(t)) be an arbitrary positive solution of the system (3) subject to a
positive initial condition. Using the positivity of variables x, y and the first equation
of the system (3), we can write,

dx

dt
= r x

(
1 − x

k

)
− axy

n1 + x
− qEx

m1E + m2x
≤ r x

(
1 − x

k

)
, (4)

From Lemma 1 of [7], we have

x(t) ≤ max {x(0), k} ≡ M1 for all t ≥ 0.

Further, from the second equation of the system (3), we have

dy

dt
= sy

(
1 − by

n2 + x

)
≤ s y

(
1 − by

n2 + M1

)
, (5)

Again from Lemma 1 of [7], we have

y(t) ≤ max

{
y(0),

n2 + M1

b

}
≡ M2 for all t ≥ 0.

This completes the proof of the boundedness of solutions and hence the system under
consideration is dissipative.

2.3.1 Permanence

Here we prove the permanence result for the system (3). Biologically it ensures the
long term co-existence of both the species.

Proposition 1 The system (3) is permanent if, a(n2+k)
bn1

+ q
m1

< r .

Proof From the above result it is clear that 0 < x(t) < k and so y(t) ≤ n2+k
b for

sufficiently large t . Therefore from first equation of system (3), we can write
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dx

dt
= r x

(
1 − x

k

)
− axy

n1 + x
− qEx

m1E + m2x
≥ x

(
r − r x

k
− a(n2 + k)

bn1
− q

m1

)
.

From Lemma 1 of [7] if, ω1 = 1 − a(n2+k)
brn1

− q
m1r

> 0, then

lim inf
t→+∞ x(t) ≥ kω1,

i.e. for each ε > 0 there exists t1(ε) > 0 such that x(t) ≥ kω1 − ε, for all t > t1.
Further, since x(t) is the solution of a differential equation so it is continuous on

the interval [0, t1] and hence x(t) ≥ m3 on t ∈ [0, t1] for some m3 > 0. Therefore,
if we choose 0 < ε < kω1 and m4 = min{kω1 − ε,m3}, then x(t) ≥ m4 > 0 for all
t and hence from predator equation of system (3), we can write

dy

dt
≥ sy

(
1 − by

n2 + m4

)
,

which on using Lemma 1 of [7] gives the following result

lim inf
t→+∞ y(t) ≥ n2 + m4

b
≡ ω2.

Also from inequalities (4) and (5), together with the Lemma 1 of [7], we have

lim sup
t→∞

x(t) ≤ k and lim sup
t→∞

y(t) ≤ n2 + M1

b
.

Thus,

min

{
lim inf
t→+∞ x(t), lim inf

t→+∞ y(t)

}
≥ min(kω1, ω2)

and

max

{
lim sup
t→+∞

x(t), lim sup
t→+∞

y(t)

}
≤ max

(
k,

n2 + M1

b

)
.

Hence result follows from [10].

3 Existence and Stability of Equilibria

The system (3) has following trivial equilibrium points

(i) Origin S0(0, 0),
(ii) Prey-extinction equilibrium is S1(0,

n2
b ),

(iii) Predator-free equilibrium points are SL(xL , 0) and SH (xH , 0)where xL and xH
are positive roots the following quadratic equation
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rm2x
2 + (rm1E − rkm2) x + qEk − rkm1E = 0 (6)

The interior equilibrium points are the points of intersection of the following two
non-trivial nullclines,

y = −[rm2x2 + (rm1E − rkm2) x + qEk − rkm1E](n1 + x)

ka(m1E + m2x)
, (7)

y = n2 + x

b
, (8)

in the interior of the first quadrant. A portion of the first nullcline (7) lies in R2+ for
x ∈ [xL , xH ] and it is a continuous smooth curve joining the points SL(xL , 0) and
SH (xH , 0). For the first nullcline y → ∞ when x → −m1E

m2
. The second nullcline

(8) is a straight line which intersects the x-axis at (−n2, 0) and y-axis at
(
0, n2

b

)
.

Using the Eqs. (7) and (8) we see that the first component of interior equilibrium
is a positive root of following cubic equation.

rbm2x
3 + (−rbkm2 + akm2 + rbm1E + rbn1m2) x

2

+ (−rbkn1m2 − rbkm1E + akn2m2 + akm1E + qEkb + rbn1m1E) x

+akn2m1E + Ekbn1(q − rm1) = 0 (9)

Also, if q > rm1 it can be ensured from Descartes’ rule of signs, the Eq. (9) has at
least one negative real root.

It is difficult to derive analytical conditions to determine the number of interior
equilibrium points, however the possible number of feasible interior equilibrium
points can be explained from the relative positions and shapes of the non-trivial
nullclines as presented in Fig. 1. It can be observe from the Eq. (7) that the nontrivial
prey nullcline intersects x-axis at (xl , 0), (xh, 0) and (−n1, 0), where xl and xh are
real roots of the quadratic equation (6). Since the nontrivial predator nullcline (8) is
a straight line therefore we can easily observe that there will be at most two positive
interior equilibrium points. From this diagram one can see that whenever the point
(−n2, 0) lies between the points (xl , 0) and (xh, 0), where xl and xh are such that
xl < 0 and xh > 0, then the system (3) has exactly one equilibrium point. We denote
interior equilibrium point by S∗(x∗, y∗).

One can notice from the Fig. 1 that whenever (xl, 0) lies between the points
(−n2, 0) and (xh, 0) such that xl < xh , then the system (3) can have either zero,
one or two interior equilibrium points. Therefore, the dynamics of the system (3) is
similar to that of the model studied in [7]. Hence we omit this case here.

Theorem 1 (i) The origin S0(0, 0) is a saddle point if q > rm1 and unstable if
q < rm1.

(ii) The axial equilibrium point SL(xL , 0) is always unstable.
(iii) The equilibrium point SH (xH , 0) is always a saddle point.
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Fig. 1 The two nullclines (prey and predator) are drawn to get possible number of interior equi-
librium points

(iv) The axial equilibrium point S1(0,
n2
b ) is stable if a n2

b n1
+ q

m1
> r and a saddle

point if a n2
b n1

+ q
m1

< r .
(v) System (3) undergoes a transcritical bifurcation around S1(0,

n2
b ) if a n2

b n1
+

q
m1

= r .

Proof Proof of these results can be done as in [7]. Therefore we omit it here.

3.1 Stability and Hopf-Bifurcation of Interior Equilibrium

Theorem 2 (a) The equilibrium point S∗(x∗, y∗) is locally asymptotically stable if,
s
x∗ + r

k > a(n2+x∗)
b(n1+x∗)2

+ qEm2

(m1E+m2x∗)2
and r

k + a
b(n1+x∗) > a(n2+x∗)

b(n1+x∗)2
+ qEm2

(m1E+m2x∗)2

(b) The system undergoes a Hopf-bifurcation with respect to bifurcation parameter
s around the equilibrium point S∗(x∗, y∗) if, s

x∗ + r
k = a(n2+x∗)

b(n1+x∗)2
+ qEm2

(m1E+m2x∗)2

and r
k + a

b(n1+x∗) > a(n2+x∗)
b(n1+x∗)2

+ qEm2

(m1E+m2x∗)2
.

Proof These results can be proved by using linearization techniques and Hopf-
bifurcation theorem as in [7].

3.2 Numerical Simulation

For the parameter values r = 0.5, k = 2000, a = 0.2, n1 = 10, q = 0.03, E = 1,
m1 = 0.2,m2 = 0.1, b = 0.5, n2 = 1, we observe that a unique interior equilib-
rium point S∗(x∗, y∗) = (430, 862). A small amplitude stable periodic solution
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appears around it for s[H ] = 0.2761145338. The trivial equilibrium points S0(0, 0),
S1(0,

n2
b ) = (0, 2) and SH (xH , 0) = (1999.4, 0) are all unstable or saddle. For

s > s[H ] the unique interior equilibrium point S∗(x∗, y∗) = (430, 862) is stable and
for s < s[H ] the size of periodic solution increases. These results are shown in Fig. 2.
The time series diagram for the above set of parameter value is also provided in Fig. 3
to verify the dynamics of the system. The local maximum and minimum of x and y
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Fig. 2 a The unique interior equilibrium point S∗(x∗, y∗) is stable. b A stable periodic solution
bifurcates from the interior equilibrium through Hopf-bifurcation for s[H ] = 0.27
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Fig. 3 a Time series diagram for S∗(x∗, y∗) is stable. b Time series diagram for periodic solution
through Hopf-bifurcation for s[H ] = 0.27
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Fig. 4 a Bifurcation diagram for prey population with respect to growth rate of predator. b Bifur-
cation diagram for predator population with respect to growth rate of predator

are plotted with respect to a range of values of s in Fig. 4 to ensure the existence of
Hopf-bifurcation.

4 Bionomic Equilibria

The bionomic equilibrium is the combination of biological and economic equilibrium
point, i.e. the bionomic equilibrium is the intersection of biological equilibrium curve
and the zero profit line. The Net Economic Revenue is given by:

Net Economic Revenue (N.E.R.) = Total Revenue (T.R.) - Total Cost (T.C.),

where T .R. = pqE x/(m1E + m2x) and T .C. = CE with C being the constant
harvesting cost per unit effort and p being the constant price per unit biomass of prey
species.

Thus the net profit at any time [5] is given by

P(x, E) =
(

pq x

m1E + m2x
− C

)
E . (10)

Note that if the harvesting cost is greater than the revenue for prey species (i.e.
C >

pqx
m1E+m2x

), then harvesting in prey species is not profitable and so it is not of
interest. Hence to continue the harvesting we consider here the cost must be less than
the revenue for prey species (i.e. C <

pqx
m1E+m2x

).
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The bionomic equilibrium (x∞, y∞, E∞) is given by the positive solutions of
dx
dt = dy

dt = P = 0, i.e.,

r
(
1 − x

k

)
− ay

n1 + x
− qE

m1E + m2x
= 0, (11)

by = n2 + x, (12)

pqx

m1E + m2x
− C = 0. (13)

From Eqs. (11), (12) and (13), we get the bionomic equilibrium points as (x∞, y∞,

E∞) where x∞ is positive root of following quadratic equation

rbm1 px
2 + (akm1 p + rbn1m1 p + qkbp − rbkm1 p − kbCm2) x

+ qkbn1 p + akn2m1 p − rbkn1m1 p − kbn1Cm2 = 0, (14)

with y∞ = n2+x∞
b , E∞ = pq−Cm2

Cm1
x∞ and pq > Cm2.

5 Singular Optimal Control

In this section, our objective is to maximize the current value of continuous time
stream of revenues which is given by

J (x, E) =
∫ ∞

0
e−δt P(x, E)dt, (15)

where δ denotes the continuous annual discount rate which is fixed by harvesting
agencies. We shall maximize (15) together with the steady state equations (11) and
(12) with the help of Pontryagin’s Maximum Principle [11]. The control variable E
is subjected to the constraint 0 ≤ E ≤ Emax , where Emax is a feasible upper limit
for the harvesting effort.

Therefore, the optimal control problems over an infinite time horizon is given by

max
0≤E(t)≤Emax

∫ ∞

0
e−δt P(x, E)dt, (16)

subject to the system (3) and x(0) = x0, y(0) = y0.
The associated Hamiltonian function is given by
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H(x, y, E, t) =
(

pqx

m1E + m2x
− C

)
Ee−δ t

+ λ1

(
r x

(
1 − x

k

)
− axy

n1 + x
− qEx

m1E + m2x

)

+ λ2sy

(
1 − by

n2 + x

)
, (17)

where λi = λi (t), i = 1, 2 are adjoint variables.
Differentiating the Hamiltonian H with respect to the control variable E we get

∂H

∂E
=

(
pqx2m2

(m1E + m2x)
2 − C

)
e−δ t + λ1qx2m2

(m1E + m2x)
2 , (18)

and
∂2H

∂E2
= − 2m1

m1E + m2x

(
∂H

∂E
+ Ce−δt

)
. (19)

Notice that Hamiltonian is nonlinear in control variable and from Eqs. (18) and (19)
we can not claim that the Hamiltonian is strictly monotone with respect to the control
variable E [14]. Therefore we can not assure here that the optimal control strategy
involves bang-bang controls.

Now, we find the singular path and hence singular solutions in the following. The
considered control problem admits a singular solution on the control set [0, Emax ],
if ∂H

∂E = 0 which gives

λ1e
δ t = p − C(m1E + m2x)

2

qm2x2
, (20)

where λ1eδt is the usual shadow price [6].
In order to find the path of a singular control, Pontryagins Maximum Principle

[11] is utilized and the adjoint variables must satisfy the adjoint equations given by

dλ1

dt
= −∂H

∂x
and

dλ2

dt
= −∂H

∂y
. (21)

Since, we are looking for singular optimal equilibrium solution, so we use steady
state equations (11) and (12), hence x, y and E can be taken as constant [8]. Thus
Eq. (21) along with steady state equations (11) and (12) give

dλ1

dt
= − pqm1E2e−δ t

(m1E + m2x)
2 − λ1

(
−r x

k
+ ax(n2 + x)

b (n1 + x)2
+ qE2m1

(m1E + m2x)
2

)
− λ2s

b
,

(22)
dλ2

dt
= λ1ax

n1 + x
+ λ2s. (23)
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Due to the presence of the term e−δt no steady state is possible for the above system.
Hence we consider the following transformation [13].

λi (t) = μi (t)e
−δt , i = 1, 2,

where μi represents the present value of the adjoint variable λi .
Using Eq. (20), the Eq. (23) can be written in terms of μ2 as follows:

dμ2

dt
− (s + δ) μ2 = −P1(x). (24)

where P1(x) = αx
(n1+x)

(
C(m1E+m2x)

2

qm2x2
− p

)
.

The shadow prices μi = λi (t)eδt , i = 1, 2 should remain constant over time in
singular equilibrium to satisfy the transversality conditions at∞ (i.e. limt→∞ λi (t) =
0, for i = 1, 2). Thus the solution of Eq. (24) is given by

μ2(t) = P1(x)

s + δ
.

Using the above value of μ2 the Eq. (22) can be written in the terms of μ1 as follows:

dμ1

dt
− (Q1(x) + δ)μ1 = −Q2(x), (25)

where, Q1(x) =
(
r x
k − ax(n2+x)

b(n1+x)2
− qE2m1

(m1E+m2x)
2

)
and Q2(x) = pqm1E2

(m1E+m2x)
2 + s

b
P1(x)
(s+δ)

.

Solution of the Eq. (25) satisfying the transversality condition at ∞ is given by

μ1(t) = Q2(x)

Q1(x) + δ
. (26)

From Eqs. (20) and (26) we get

C(m1E + m2x)
2

qm2x2
+

(
Q2

Q1 + δ

)
= p, (27)

Equation (27) gives the desired singular path.

6 Discussion

In this paper, we have considered a modified Leslie–Gower predator-prey model
with Michaelis–Menten type prey harvesting. This model is applicable for those
prey–predator systems where the predator is more capable of switching from its
favorite food (the prey) to other food options and it can survive more easily when
the prey is lacking severely.
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The positivity, boundedness and permanence of the solutions of the proposed sys-
tem are discussed. Biologically the permanence ensures the long term co-existence
of the two species. We have discussed the stability and Hopf bifurcation of a unique
coexisting steady-state. We choose the growth rate of predator as Hopf bifurcation
parameter to observe the existence of periodic solutions near positive equilibrium.
Using Hopf bifurcation theorem, we have established the existence of Hopf bifurca-
tion and have shown our conclusions by numerical simulations. The bifurcation dia-
grams are provided which indicate that how the period of periodic solutions changes
with respect to the growth rate of predator.

We have obtained the conditions for the existence of bionomic equilibrium point
of the exploited system. The problem of singular optimal control has been discussed
by using Pontryagins Maximum Principle. If the unharvested system is persistent
[1], then a sufficiently small harvesting rate will not change drastically the qualita-
tive behavior of the system, but the region of coexistence shrinks as the harvesting
rate increases. This provides a theoretical support for safe harvesting in biological
resource management in terms of co-existence of species.
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A Special Class of Lotka–Volterra Models
of Bacteria-Virus Infection Networks

Daniel A. Korytowski and Hal L. Smith

Abstract We show that the classical Volterra Lyapunov function can be used to
obtain useful results for a Lotka–Volterra model of bacteria-virus infection networks.
In particular, if a positive equilibrium exists, then it is stable and all positive trajecto-
ries are bounded and persistent in the sense that the limit inferior of each component
is positive.

Keywords Virus · Bacteria · Infection network · Lotka–Volterra system
2010 Mathematics Subject Classification 92D40 · 93D30

1 Introduction

Motivated by the work of Jover et al. on virus-bacteria infection networks in aquatic
environments [3]modeled byLotka–Volterra systems,we showed in [4] that balanced
bacteria-virus communities with either one-to-one or nested infection networks are
persistent and that they can be assembled, one species at a time, through a sequence of
persistent bacteria-virus subcommunities provided certain trade-offs between bacter-
ial growth rate and defence against infection and between virus efficiency at infection
and their host range are satisfied. Our modeling was based on a chemostat-like model
involving a single limiting nutrient. In [5], we showed how these same results could
be obtained using a slight modification of the Lotka–Volterra model employed in [3].
We also exploited the Lotka–Volterra framework and Volterra’s famous Lyapunov
function to obtain strong results on the global behavior of positive solutions of our
model, in some cases obtaining global convergence to the positive equilibrium. Here,
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we show that theVolterra Lyapunov function can be employed to obtain useful results
in the case of general infection networks under suitable conditions.

Let Bi , 1 ≤ i ≤ n, denote bacteria strain i density and Vj , 1 ≤ j ≤ m, denote
phage strain j density. The specific growth rate of Bi is denoted by ri and we assume
without loss of generality that

r1 > r2 > · · · > rn > 0. (1)

We assume that the effect of density dependence and intra-strain competition on
growth rate of bacteria is independent of bacteria strain as in [3–5]. Decay rates of
phage strains are denoted by μ j . The infection network, which phage strain infects
which bacteria strain is encoded by the non-negative n × m matrix Φ:

Φi j = attack rate of virus j on host i.

The non-negativematrixβ, of the same size asΦ, captures the “burst size”, or number
of progeny virus released by each lysed bacteria:

βi j = burst size of virus j from host i

We tacitly assume that matrices Φ and β have the same set of zero entries. The
equations of our model are the following.

B ′
i = Bi

(

ri −
n∑

k=1

Bk

)

− Bi

m∑

j=1

Φi j Vj , 1 ≤ i ≤ n (2)

V ′
j = Vj

(
n∑

k=1

βk jΦk j Bk − μ j

)

, 1 ≤ j ≤ m.

A special feature of system (2), also assumed in [5], is that intra-specific and inter-
specific competition among bacteria is assumed to be identical for all bacteria.

A solution of (2) is said to be positive if all components of it are positive for all
t ; the form of (2) ensures that a solution is positive if and only if it has all positive
components for some particular value of t .

We assume that an equilibrium E∗ = (B∗, V ∗) exists with all components posi-
tive. It satisfies

r = 1Tn B
∗1n + ΦV ∗ (3)

μ = [β · Φ]T B∗

where r = (r1, . . . , rn)T , 1n is the n-vector with all entries one, and μ = (μ1, . . . ,

μm)T . [β · Φ] denotes the entry-wise product of β and Φ.
Generically, no such equilibrium will exist if n �= m. If n = m, then the second

equation has a positive solution B∗ ifμ belongs to the interior of the polyhedral cone
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spanned by the columns of [β · Φ]. The existence of such a solution is independent
of the length of the column vectors of the matrix and the length of μ, depending
only on their respective directions. In view of (1), B∗ must not be so large that
rn − 1Tn B

∗1n < 0 since then the first equation will not have a positive solution V ∗.
If E∗ exists, then the system may be rewritten as:

B ′
i = Bi

⎛

⎝
n∑

k=1

(B∗
k − Bk) +

m∑

j=1

Φi j (V
∗
j − Vj )

⎞

⎠ , 1 ≤ i ≤ n (4)

V ′
j = Vj

n∑

k=1

βk jΦk j (Bk − B∗
k ), 1 ≤ j ≤ m.

Let U (x, x∗) = x − x∗ − x∗ log x/x∗, x, x∗ > 0, be the familiar Volterra func-
tion and let

W (B, V ) =
n∑

i=1

ciU (Bi , B
∗
i ) +

m∑

j=1

d jU (Vj , V
∗
j ) (5)

where c1, . . . , cn and d1, . . . , dm are to be determined.
Then the derivative of W along solutions of (4), Ẇ , is given by

Ẇ = −
n∑

i=1

ci (Bi − B∗
i ) ·

n∑

k=1

(Bk − B∗
k ) +

n∑

i=1

ci (Bi − B∗
i )

m∑

j=1

Φi j (V
∗
j − Vj )

+
m∑

j=1

d j (Vj − V ∗
j )

n∑

i=1

βi jΦi j (Bi − B∗
i )

= −
n∑

i=1

ci (Bi − B∗
i ) ·

n∑

k=1

(Bk − B∗
k )

+
m∑

j=1

(Vj − V ∗
j )

n∑

i=1

(d jβi j − ci )Φi j (Bi − B∗
i )

If
0 = (d jβi j − ci )Φi j , ci = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (6)

then we have

Ẇ = −
(

n∑

i=1

(Bi − B∗
i )

)2

.

Evidently, (6) holds if, for example, d jβi j = 1, a very restrictive assumption. If we
require that βi j , the burst size for virus j is independent of the host i that it infects,
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βi j = β j , then (6) holds with d j = β−1
j . Clearly, the latter is a strong assumption but

one that has been made for strategic reasons in [3–5].
We proceed, assuming that (6) is satisfied. It follows that E∗ is a stable equilibrium

(see Theorem X.1.1 in [1]). Furthermore, a weak form of persistence holds since
positive solutions satisfyW (B(t), V (t)) ≤ W (B(0), V (0)), t ≥ 0 and therefore 0 <

lim inf t→∞ x(t) ≤ lim supt→∞ x(t) < ∞ for each component x = Bi , Vj .
By LaSalle’s invariance principle, the asymptotic dynamics (on the omega limit

set) of a positive solution takes place on the set

{

(B, V ) : Ẇ = 0} = {(B, V ) :
n∑

i=1

(Bi − B∗
i ) = 0

}

and therefore is governed by the system

B ′
i = −Bi

⎛

⎝
m∑

j=1

Φi j (Vj − V ∗
j )

⎞

⎠ , 1 ≤ i ≤ n (7)

V ′
j = Vj

n∑

k=1

βk jΦk j (Bk − B∗
k ), 1 ≤ j ≤ m.

Observe that if βk jΦk j is independent of k for some j , then V ′
j = 0 on the limit set

since
∑n

i=1(Bi − B∗
i ) = 0.

System (7) is conservative if βi j = β j , ∀i, j . Indeed,
n∑

i=1

B ′
i

Bi
(Bi − B∗

i ) = −
n∑

i=1

m∑

j=1

Φi j (Vj − V ∗
j )(Bi − B∗

i ) = −
m∑

j=1

V ′
j

β j Vj
(Vj − B∗

j ).

Adding the last term to the first and integrating gives that

n∑

i=1

U (Bi (t), B
∗
i ) +

m∑

j=1

1

β j
U (Vj (t), V

∗
j ) = constant.

We summarize our results as follows.

Theorem 1 Let the system (2) have a positive equilibrium E∗ = (B∗, V ∗) and sup-
pose that (6) holds. Then E∗ is locally stable. Moreover, every positive solution of (2)
is weakly persistent: there exists m, M > 0, which depend on the solution, such that
m ≤ Bi (t), Vj (t) ≤ M,∀i, j, t ≥ 0. Trajectories on the omega limit set of a positive
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solution belong to the hyperplane
∑n

i=1 Bi = ∑n
i=1 B

∗
i and satisfy (7). If E∗ is the

unique positive equilibrium, then

lim
t→∞

1

t

∫ t

0
(B(s), V (s))ds = E∗

holds for every positive solution.

The final assertion follows from Theorem 5.2.3 in [2].

2 Two Virus and Two Bacteria

We start by assuming that βi j = β j and define

ei j = β jΦi j

μ j
(8)

the efficiency of virus j at exploiting bacteria i. Our assumption for this model is that
virus one specializes on infecting bacteria onewhile virus two specializes on infecting
bacteria two. Thus virus one should have a lower virus efficiency for infecting bacteria
two than for bacteria one and it should be superior in infecting bacteria one than virus
two is. Symmetric considerations hold for virus two. This leads to the following
inequalities.

e11 > e21, e11 > e12, e22 > e21, e22 > e12. (9)

Note that they imply e12/e22 < 1 < e11/e21. (9) imply that the second equation of
(3) has a unique positive solution given by

B∗
1 = e22 − e21

e11e22 − e12e21
(10)

B∗
2 = e11 − e12

e11e22 − e12e21

A necessary condition for the first equation of (3) to have a positive solution is that

ri > B∗
1 + B∗

2 , i = 1, 2. (11)

If, in addition to (11), the following holds

e12
e22

<
r1 − B∗

1 − B∗
2

r2 − B∗
1 − B∗

2

<
e11
e21

, (12)
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then the virus components of the equilibrium are positive:

V ∗
1 = β1

μ1

e22(r1 − B∗
1 − B∗

2 ) − e12(r2 − B∗
1 − B∗

2 )

e11e22 − e12e21
(13)

V ∗
2 = β2

μ2

e11(r2 − B∗
1 − B∗

2 ) − e21(r1 − B∗
1 − B∗

2 )

e11e22 − e12e21

In summary, a unique positive equilibriumexists if (9), (11), and (12) hold. Theorem1
implies that the positive equilibrium is stable and all positive solutions have time-
averages equal to it.

3 Conclusion

In [4] we showed persistence for a balanced bacteria-virus community with either
one-to-one or nested infection networks in a chemostat-basedmodel. In [5] we estab-
lished the same result for a Lotka–Volterra model with the same two special network
structures. In addition, we introduced the Volterra-type Lyapunov function and used
it to obtain global qualitative features of the dynamics. In this paper we use a similar
Lyapunov function to extend our earlier results to more general infection networks
than one-to-one and nested networks, for example, allowing each virus to infect each
host, under suitable conditions.We find that if the burst size for a virus is independent
of which host it infects, also assumed in [3–5], then the coexistence equilibrium is
stable and weak persistence of the host-virus community holds. In addition, the time
averages of host and virus densities are asymptotic to their appropriate equilibrium

Fig. 1 Parameters:
r1 = 6, r2 = 5, Φ11 =
0.5, Φ12 = 0.4, Φ21 =
0.3, Φ22 = 0.6, β1 =
4, β2 = 5, μ1 = 2, μ2 = 8

3
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values. Figure1 depicts a representative example of system dynamics. Parameters
specified in the figure are chosen to satisfy conditions (9), (11), and (12), and are
not intended to be biologically realistic. Solutions are highly oscillatory, and seem
to be aperiodic. It is an open question as to whether our conclusions hold without
the restrictive conditions (6).
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Plant Disease Propagation in a Striped
Periodic Medium

Arnaud Ducrot and Hiroshi Matano

Abstract This work deals with the existence and non-existence of travelling wave
solutions for a two-dimensional reaction-diffusion equation coupled with ordinary
differential equations. The system models the spatial spread of a fungal disease over
a field of crops whose spatial configuration exhibits a periodic stripe pattern, such
as a vineyard. The standard comparison principle does not hold for this system. We
establish a sharp criterion for the existence of (directional) travelling waves in terms
of what we call the epidemic thresholdR0, which is independent of the direction of
the travelling wave. We then study the minimal speed c∗

θ of travelling waves for each
direction θ ∈ [0, 2π) and prove its monotone dependence on θ . Our analysis is based
on the fixed point argument, a variational characterization of principal eigenvalues
and Harnack type inequalities for elliptic and parabolic problems.

Keywords Reaction-diffusion equations · Travelling waves · Periodic striped
medium · Minimal wave speed · Epidemic model
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1 Introduction

In this paper we study the existence and non-existence of travelling wave solutions
for a system of equations modelling the spatial spread of a fungal disease over
a field of crops. The problem we shall consider consists of a reaction-diffusion
equation coupled with ordinary differential equations and is a simplified version
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of the epidemic model proposed by Burie et al. [8] to study the spatial spread of
“powdery mildew” epidemics over vineyards.

Fungal diseases of crops are roughly caused by the germination of spores of
a fungus and the development of infected lesions on the leafs of plants. During
the infectious (or sporulating) period, the infected lesions produce new spores that
disperse through the cropping system due to environmental turbulence which leads
to new infections by falling down on healthy vegetable tissue. In the context of
fungal diseases, infected plants do not recover and remain infected until death. The
normalized model we shall consider in this work takes into account the main feature
of such an epidemic cycle as well as the spatial structure of the cropping system. It
is posed for t > 0 and (x, y) ∈ R

2 and reads as follows:

⎧
⎪⎨

⎪⎩

(∂t − DΔ) S(t, x, y) = −S(t, x, y) + r I (t, x, y),

∂t H(t, x, y) = −α(x)H(t, x, y)S(t, x, y),

∂t I (t, x, y) = α(x)H(t, x, y)S(t, x, y) − β I (t, x, y).

(1)

Here H(t, x, y) and I (t, x, y) respectively denote the density of healthy and infec-
tious plant tissue at time t > 0 and spatial location (x, y) ∈ R

2 while S(t, x, y)
denotes the density of spores. The infected tissue remains infectious for a period of
average length 1

β
during which spores are produced by this infected tissue at a rate

r > 0.
The contamination rate is denoted by α(x). It depends on the spatial location

in order to take into account the varying germination probability due to the spatial
structure of the field. Indeed this probability is larger in regions with high density of
plants, so that the function α(x) reflects the spatial distribution of the plants over the
field. Here we assume that this function depends only on one variable x , meaning
that the cropping system exhibits a spatial configuration consisting of parallel rows.
We furthermore assume the following periodicity condition

α(x + L) ≡ α(x), (2)

for some given period L > 0, meaning that the rows are periodically arrayed. Such
a spatial heterogeneity is particularly well suited for the modelling of vineyards, but
it also applies to various other types of cropping systems.

As mentioned above, System (1) is a simplified version of the model studied by
Burie et al. in [8], where the authors consider a dual-range dispersal process for the
spores — short and long ranges — which is formulated by a system of two reaction-
diffusion equations coupled with ODEs. This system with dual range dispersal has
been further investigated by Mammeri et al. in [26] by including spatial hetero-
geneities. Numerical experiments performed in the aforementioned work indicate
that the epidemic propagates in the form of a pulsating travelling wave, in particular
when the environment exhibits a striped periodic pattern. Let us also mention the
earlier work of Zawolek and Zadoks [38], in which the authors have used reaction-
diffusion equations with time delay to model and investigate the spatial spread of
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fungal diseases of plants. We also refer to [30] and the references therein for models
of plant diseases using ODEs and delay differential equations, and to the monograph
of Okubo and Levin [29] and that of Shigesada and Kawazaki [32] for more details
about passive and stratified diffusion processes in biology.

Travelling wave solutions for System (1) have been studied in [9, 10] in the case
of a spatially homogeneous environment, namely when α is a constant function. The
aim of the present paper is to study the existence and non-existence of travelling
waves for System (1) posed in a periodic striped environment. Since the medium is
spatially periodic, one has to dealwith the so-called pulsating travellingwaves, which
generalize the usual notion of travelling waves in homogeneous media. Roughly
speaking, a pulsating travellingwave is a solutionwhose profile and speedfluctuate as
its front passes through varying environments, yet it keeps a certain coherent structure
during the entire course of evolution. See Definition2.1 below for the precise notion
of such solutions in the context of System (1). We also refer the reader to [33, 35,
36] for earlier works related to this notion.

Front propagations in spatially and/or temporally heterogenous media have
received much attention in the past two decades. We refer the reader to [37] for
a review of relatively early works on this topic. We also refer to [1, 3, 4, 6, 7, 22,
24, 25, 34] and the references cited therein for detailed mathematical analysis of
pulsating travelling waves in scalar equations and order preserving evolution prob-
lems. More general notions of propagating solutions can be found in Berestycki and
Hamel [2] for general spatially heterogeneous media, and in Huang and Shen [18]
and Shen [31] for spatio-temporally heterogeneous media. Let us finally mention
some works on front propagation in a striped periodic medium. Kinezaki et al. [21]
studies biological invasions in such a medium from the ecological viewpoint. The
work of Liang and Matano [23] studies the problem of finding a periodic coefficient
that maximizes the speed of spreading fronts. These works are for scalar KPP type
equations, but their problems are posed on a striped periodic medium similar to our
System (1).

In the present paper, we shall first prove (see Theorem1 below) that the quantity
R0 defined in (8) below gives a sharp threshold for the existence of (pulsating)
travelling wave solutions of (1). More precisely, we shall show that no travelling
wave exists in any direction if R0 < 1, while, if R0 > 1, travelling waves exists in
every direction. Furthermore, for each θ ∈ [0, 2π), and for any c ∈ [c∗

θ ,∞), there
exists a travelling wave solution in the direction θ with speed c. The minimal wave
speed c∗

θ will be characterized in a closed form (10). The minimality of (10) will be
proved by deriving suitable Harnack like inequalities for some elliptic and parabolic
problems coupled with ODEs. Since our analysis does not make use of comparison
arguments, we expect that such a methodology can be extended to other problems.

Next we study properties of the directional minimal wave speed c∗
θ (see

Theorem2). We shall first prove that c∗
θ has a certain monotonicity property with

respect to the angle θ . This implies, in particular, that the epidemic spreads faster
along the rows than in the transverse directions. Next we shall derive asymptotic for-
mulas for c∗

θ in the homogenization limit as L → 0 and also in the limit as L → ∞
(see Theorem3). The former corresponds to the fast diffusion (D >> 1) approxi-
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mation in the original variables, while the latter corresponds to the slow diffusion
limit (D << 1). We refer to Hamel et al. [16] and Hamel et al. [17] for some similar
results for the scalar Fisher-KPP equation.

Remark 1.1 The reason why we pay much attention to the minimal wave speed
c∗
θ is because we suspect that it is closely related to the so-called spreading speed,
namely the speed of the expanding front arising in solutions with compactly sup-
ported initial data. In epidemiology, it is important to estimate how fast the epidemic
spreads starting from localized initial data, and this is precisely what the notion of
spreading speed is about. In the case of scalar KPP type equations or more general
order-preserving evolution problems with periodic spatial inhomogeneity, the rela-
tion between the minimal wave speed and the spreading speed is well understood:
the spreading speed is given by the Wulff shape associated with the minimal wave
speed, as defined in (14); see [4, 34]. We believe that the same relation holds for
the epidemic model (1), though at present, very little is known rigorously about the
spreading properties of epidemic-diffusion models in general.

The one-dimensional travelling wave profiles for System (1) are illustrated in
Fig. 1 above for a homogeneous medium (left) and for a periodic medium (right).
Since no influx of population is considered in System (1), the infection dies out
after the propagation of the wave of infection. Hence the pulsating travelling waves
we shall investigate in the present paper involve travelling pulses of infections. Such
propagating profiles are commonly observed in the Kermack andMcKendick model.
We refer to Hosono and Ilyas [15] for the study of such a system in a homogeneous
medium, in which the existence of travelling pulses have been proved. We also
refer to Ducrot and Giletti in [11] where a Kermack and McKendick like system of
equations in a periodic environment is considered. Note that System (1), as well as
the problems studied in the aforementioned papers, admits a continuum of stationary
states. Therefore one needs to prescribe the state of the healthy tissue component H
ahead of the epidemic front. To that aim we fix a periodic function v+ ≡ v+(x) that

Fig. 1 Typical one-dimensional front propagation: in a homogeneous medium (left) and in a peri-
odic medium (right)
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represents the spatial structure of the cropping system before the arrival of epidemic.
Recalling (2), the function v+ is assumed to satisfy the same periodicity condition
as the function α, that is,

v+(x + L) ≡ v+(x).

Hence we shall look for travelling wave solutions for (1) connecting the pre-
scribed stationary state (S, H, I ) = (

0, v+, 0
)
at t = −∞ and the stationary state

(S, H, I ) = (
0, v−, 0

)
at t = +∞. Here v− ≡ v−(x) is an unknown L−periodic

function that should be found together with the travelling wave profile and the wave
speed. This function v− represent the surviving healthy vegetable tissue behind the
epidemic wave.

This paper is organized as follows. In Sect. 2, we state the main results of the
present paper. Section3 deals with preliminary results including the formulation
of the problem that determines the travelling wave profile and the study of the
principal eigenvalue of some elliptic problem with periodic boundary conditions.
These preliminary results will allow us to characterize the minimal wave speed in a
closed form. In Sect. 4 we provide a key estimate for the solutions by using suitable
Harnack like inequalities. This estimate will be used in Sect. 5 to prove the criticality
of the minimal wave speed. Section5 is devoted to the proof of our non-existence
and existence results. Finally Sect. 6 investigates several qualitative properties of this
minimal wave speed.

2 Main Results

In this section we shall state the main results of this paper. Before doing so, let us
observe that (1) can be reduced to the case D = 1 by replacing the period L by L√

D
.

Thus, in the sequel we shall assume, without loss of generality, that

D = 1. (3)

With this simple change of variable, the fast (resp. slow) diffusion approximation
D → ∞ (resp. D → 0) in the original variables corresponds to small (resp. large)
period limit as L → 0 (resp. L → ∞).

From now on we setTL = R/(LZ), the one-dimensional torus with period L > 0
and, in addition to (3), we assume that the parameters arising in (1) satisfy the
following set of conditions:

Assumption 2.1 We assume that r > 0 and β > 0 are given positive parameters
while the functions α and v+ belong to L∞+ (TL) and satisfy

κ(x) := α(x)v+(x) ∈ L∞
+ (TL) \ {0}. (4)
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The condition r > 0 implies that infected plants produce spores. The condition
κ(x) �≡ 0 implies that some healthy plants exist in the area where infection is pos-
sible (i.e. where α(x) �= 0) before the epidemic arrives. Clearly these conditions
are necessary for the propagation of epidemic. The condition β > 0 implies that
the population of infectious plants decays with positive rate, which is also a natural
assumption from the epidemiological point of view.

Next let us recall the definition of pulsating travelling waves in a given direction
θ . We state it in the context of System (1) in a periodic striped medium (Fig. 2); see
[23] for a similar definition.

Definition 2.1 (Directional travelling wave) An entire solution (S, H, I )(t, x, y) of
system (1) defined on R × R

2 is called a (pulsating) travelling wave solution of (1)
in the direction θ ∈ [0, 2π) with speed c > 0 if it is written in the form

(S, H, I ) (t, x, y) = (u, v,w) (x cos θ + y sin θ − ct, x), (5)

where (u, v,w) ≡ (u, v,w)(z, x) : R × TL → R
3 is a bounded function satisfying

the following conditions:

(i) The function (u, v,w) is positive and L−periodic with respect to x . Here posi-
tivity is understood in the following sense:

u > 0, v ≥ 0 and w ≥ 0.

(ii) The function (u, v,w) possesses the following asymptotics at z = ±∞:

lim
z→±∞ (u, v,w) (z, x) = (

0, v±(x), 0
)
in L∞(TL),

where v+ is a prescribed TL−periodic function while v− is a priori an unknown
TL−periodic function.

As mentioned in the Introduction, v+ ≡ v+(x) in the above definition is a pre-
scribed nonnegative L−periodic function that describes the density of the vegetable
tissue before the epidemic, while v− ≡ v−(x) is an unknown L−periodic function
that represents the density of the healthy tissue after the epidemic.

Fig. 2 A travelling wave in
the direction θ . The diagonal
line shows schematically the
position of the front. Note
that, in general, the actual
front is not flat; it undulates
periodically along this line
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Next, for each θ ∈ [0, 2π), we define a function μθ : R × (−β,∞) → R as fol-
lows, where κ is a function defined in (4) in Assumption2.1.

μθ (λ, ν) = max
g∈A

{∫

TL

[
−g′(x)2 + rκ(x)g2(x)

β + ν

]
dx + λ2 cos2 θ

(
J (g) − 1

)
}

,

where

A :=
{
g ∈ C1(TL) : g > 0,

∫

TL

g2(x)dx = 1

}
, (6)

whileJ : A → R denotes the functional defined by

J (g) = L2

∫
TL

dx
g2(x)

, ∀g ∈ A . (7)

As we shall explain later, μθ (λ, ν) is the principal eigenvalue of a certain differ-
ential operator (see (31)). Now we introduce the following quantity:

R0 := μθ(0, 0) = max
g∈A

{∫

TL

[
−g′(x)2 + rκ(x)g2(x)

β

]
dx

}
. (8)

As we explain in Remark2.1 below, this quantity is closely related to the so-called
basic reproduction number of the epidemic system (1).We shall callR0 the epidemic
threshold, as it plays the role of a threshold for the existence of travelling wave
solutions for (1). Note that R0 does not depend on the angle θ .

Remark 2.1 In epidemiology, “the basic reproduction number” of an infection
roughly means the number of cases of infection that one case generates on aver-
age during its infectious period. Let us explain how the above quantityR0 is related
to this notion. When the medium is spatially homogeneous, namely v+(x) = v+ and
α(x) = α, the above quantity R0 becomes

R0 = rκ

β
,

while System (1) reduces to the following ODE system:

Ṡ = −S + r I, Ḣ = −αHS, İ = αHS − β I.

To compute the basic reproduction number, we replace the last equation by İ = −β I
and plug I (t) = e−βt I (0) into the first equation. Then the total amount of infection
caused by the (infinitesimally small) initial data I (0) is given by

αH(0)
∫ ∞

0
S(t)dt = r

β
α I (0)H(0) = rκ

β
I (0).
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Hence the basic reproduction number for the homogeneous problem is rκ/β, which
coincides with the above-mentioned value of R0. Next we consider the original
system with D = 1. Note first thatR0 in (8) coincides with the principal eigenvalue
μ of the following eigenvalue problem on the one-dimensional torusTL := R/(LZ):

ϕ′′ + rκ(x)

β
ϕ = μϕ, x ∈ TL .

As for the basic reproduction number, assuming that the initial data of infection
I (0, x) << 1 is independent of y, and making similar calculations as above, we see
that the total amount of infection caused by I (0, x) is given by

rκ(x)

β
(1 − Δ1)

−1 I (0, x), x ∈ TL ,

where Δ1 denotes the operator d2/dx2 on the one-dimensional torus TL . Thus the
basic reproduction number may be defined by the largest eigenvalue of the operator
I0 �→ rκ(x)

β
(1 − Δ1)

−1 I0. Let μ̂ denote this largest eigenvalue. Then

ψ ′′ + μ̂−1 rκ(x)

β
ψ = ψ, x ∈ TL

(
ψ := (1 − Δ1)

−1 I0
)
.

It follows that μ̂ > 1 (resp.< 1) if and only ifμ > 1 (resp.< 1). For the convenience
of later calculations we defineR0 byμ, not μ̂. As we shall see later, the valueR0 = 1
gives a sharp threshold between the existence and non-existence of travelling waves
in any direction.

Our first main result is the following:

Theorem 1 (Travelling wave solutions) Let Assumption2.1 be satisfied. Then the
following statements hold true.

(i) Assume thatR0 ≤ 1, then System (1) does not admit any travelling wave solution
in any given direction θ ∈ [0, 2π).

(ii) Assume thatR0 > 1. Then for each direction θ ∈ [0, 2π) there exists a constant
c∗
θ > 0 such that:

(1) for any c ∈ [c∗
θ ,∞

)
, System (1) possesses a travelling wave solution in the

direction θ ;
(2) for any c ∈ (0, c∗

θ

)
, System (1) does not admit any travelling wave in the

direction θ .

Remark 2.2 When R0 > 1, we will henceforth refer to the quantity c∗
θ , for each

θ ∈ [0, 2π), as the minimal wave speed of System (1) in the direction θ .

WhenR0 > 1, the minimal wave speed c∗
θ in the above theorem is characterized

in a close form as follows.
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Here we only give a sketch. Detailed arguments will be given in Proposition3.1
below. Fix θ ∈ [0, 2π). Then for each λ ∈ R, the fixed point equation

Λθ(λ, ν) := λ2 + μθ(λ, ν) − 1 = ν, (9)

has a unique solution νθ (λ) > 0 with the following properties:

νθ (0) > 0 and lim
λ→∞

νθ (λ)

λ
= ∞.

Using this notation, the minimal wave speed c∗
θ is defined by

c∗
θ = min

λ>0

νθ (λ)

λ
= inf{c > 0 : ∃λ > 0 λc − Λθ(λ, cλ) = 0},
= sup{c > 0 : λc − Λθ(λ, cλ) ≤ 0, ∀λ ≥ 0}. (10)

Remark 2.3 Note that the epidemic threshold R0 given in (8) depends upon the
heterogeneity functions α and v+ only through their product κ := αv+. The same is
true of μθ(λ, v) for any λ, v; hence, by (9), (10), the minimal wave speed c∗

θ depends
on α, v+ only through κ . Hereafter we shall write R0(κ) and c∗

θ (κ), whenever we
want to emphasize their dependence on the heterogeneity function κ .

Remark 2.4 Since μθ(λ, v) depends on the angle θ only through cos2 θ , c∗
θ can be

extended to all θ ∈ R as a π -periodic function.

The next theorem is concerned with the minimal wave speed c∗
θ :

Theorem 2 (The minimal speed) Let R0 the epidemic threshold defined in (8).

(i) Assume that R0 > 1. Then the function θ �→ c∗
θ satisfies

c∗
θ+π = c∗

θ and c∗
π−θ = c∗

θ

for all θ ∈ [0, 2π) (or all θ ∈ R), and it is increasing on the interval [0, π
2 ].

(ii) Let
(
α̂, v̂+ ) and κ̂ denote the periodic Schwarz rearrangement of the pair

(
α, v+)

and κ , respectively, over TL as defined in Definition6.1. Then

R0(κ) ≤ R0 (̂κ) and R0(κ) ≤ R0
(
α̂v̂+) .

Furthermore, ifR0(κ) > 1 then for all θ ∈ [0, 2π), there hold

c∗
θ (κ) ≤ c∗

θ (̂κ) and c∗
θ (κ) ≤ c∗

θ

(
α̂v̂+) .

Our next result deals with the asymptotic properties of the epidemic threshold and
the minimal wave speed for fast diffusion D>>1 (resp. slow diffusion 0 < D<<1).
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As mentioned at the beginning of Sect. 2, this problem is equivalent to the case
where D = 1 and L << 1 (resp. D = 1 and L >> 1). Hence we consider two given
functions α and v+ in L∞+ (T1) such that κ(x) := α(x)v+(x) ∈ L∞+ (T1)\{0} and we
define, for each L > 0, the following L−periodic functions

αL(x) = α
( x
L

)
, v+

L (x) = v+
( x
L

)
and κL(x) = αL(x)v

+
L (x), x ∈ TL .

Then we have the following theorem:

Theorem 3 (Slow/fast diffusion limit) The function L �→ R0(κL) is increasing and
satisfies

lim
L→0

R0(κL) = R0,0 := r

β

∫

T1

κ(x)dx,

and

lim
L→∞R0(κL) = R0,∞ := r‖κ‖∞

β
.

Moreover the following properties hold true:

(i) (Fast diffusion limit) If R0,0 > 1, then R0(κL) > 1 for all L > 0. Let c∗
θ,L

denote, for each θ ∈ [0, 2π) and L > 0, the minimal wave speed in the direction
θ for System (1) with

(
α, v+) replaced by

(
αL , v

+
L

)
. Then for each θ ∈ [0, 2π),

the function L → c∗
θ,L is increasing and has the following limit:

lim
L→0

c∗
θ,L = c∗, with

1

c∗2
= sup

x>0

{
1

x2

(

1 − r
∫ 1
0 κ(s)ds

β + x
+ x

)}

. (11)

(ii) (Slow diffusion limit) If R0,∞ > 1 then there exists L0 > 0 such that, for all
L > L0, the minimal wave speed c∗

θ,L is well defined in each direction θ , and it
converges as L → ∞ to a limit c∗

θ,∞ that is characterized as follows

c∗θ,∞ = inf

{

c > 0 : ∃λ > 0 λ2 sin2 θ − cλ − 1 + F
(
cos θ λ

√
β + cλ

)

β + cλ
< 0

}

,

where F is a function as defined below in (12).

The function F : R → R in the above theorem is an even function defined by

F(x) =
{
r‖κ‖∞ if |x | < j (r‖κ‖∞),

j−1(|x |) if |x | ≥ j (r‖κ‖∞),
(12)

where j : [r‖κ‖∞,∞) → [ j (r‖κ‖∞) ,∞) is an nondecreasing function defined by

j (k) =
∫ 1

0

√
k − rκ(x) dx .
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Now, as we mentioned in Remark1.1, we suspect that the directional wave speed
c∗
θ is closely related to the “spreading speed”, namely the speed of expanding front
of a solution starting from compactly supported initial data for S, I . In the context
of System (1), this is interpreted as the speed of propagation of the epidemic that
is triggered by a localized infection. If we denote by w∗

θ the spreading speed in the
direction θ , then, by the analogy of known results on scalar KPP type equations, we
suspect that the spreading speed is given in the form

w∗
θ = min

|φ|< π
2

c∗
θ+φ

cosφ
. (13)

Once the spreading speed is computed, then asymptotic shape of the spreading front
is roughly given by the following form in the polar coordinates

r = tw∗
θ + ε(t) with lim

t→∞
ε(t)

t
= 0.

Equivalently, the spreading speed and the shape can be expressed by using the Wulff
shape associated with c∗

θ , which is defined by

W =
⋂

θ∈[0,2π)

{
(x, y) ∈ R

2 : x cos θ + y sin θ ≤ c∗
θ

}
. (14)

In fact, the boundary of W is given by r = w∗
θ with w∗

θ as in (13). The validity of
the formula (13) for scalar KPP type equations in periodic media, or even in more
general problems, is well established; see, for instance, [4, 12, 13, 34]. However, in
all these previous works, the proof of the validity of the formula (13) relies heavily
on the comparison principle (or the maximum principle), which, unfortunately, does
not hold in the epidemic system (1). Therefore, at present, it is just a speculation that
the spreading speed is given by (13), or, equivalently, by the Wulff shape (14). We
nonetheless believe that this is true.

In the special case where the function κ ia a step function of the form

κ(x) =
{
m if x ∈ (0, l),

0 if x ∈ (l, 1),

for somem > 0 and l ∈ (0, 1), one can compute the limit wave speed c∗
θ,∞ explicitly.

Consequently, the spreading speed and the Wulff shape associated with c∗
θ,∞ can be

computed explicitly. Figure3 below shows this limit Wulff shape for different values
of l (with m = 2, r = 1 and β = 1 fixed).
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Fig. 3 The Wulff shapes in the slow diffusion limit for varying parameters: (from left to right)
l = 0.2, 0.4 and 0.8

3 Preliminaries

3.1 Travelling Wave Formulation and Remarks

In this subsection we write down the equations satisfied by the profile function of the
directional travelling wave solution of (1) and reformulate the equations in a suitable
form.

Consider a pulsating travelling wave (S, H, I ) in the direction θ ∈ [0, 2π) with
speed c > 0, and let (u, v,w)denote its profile function. Then it satisfies the following
elliptic problemcoupled with ODE

(Δθ + c∂z − 1) u(z, x) + rw(z, x) = 0, z ∈ R, x ∈ TL , (15)

c∂zv(z, x) = α(x)u(z, x)v(z, x), z ∈ R, x ∈ TL , (16)

c∂zw(z, x) + α(x)u(z, x)v(z, x) − βw(z, x) = 0 z ∈ R, x ∈ TL , (17)

where Δθ denotes the differential operator

Δθ = ∂2
x + 2 cos θ ∂x∂z + ∂2

z . (18)

This system is supplemented with the following limit behaviour

lim
z→±∞

(
u, v, w

)
(z, x) = (

0, v±(x), 0
)
. (19)

Next we shall derive an alternative integral reformulation of System (15)–(19).
To that aim let us prove the following lemma.

Lemma 3.1 Let (u, v,w) be a positive solution of (15)–(19) with a speed c > 0
then one has
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sup
x∈TL

∫

R

w(z, x)dz < ∞ and sup
x∈TL

∫

R

u(z, x)dz < ∞.

Proof Let M > 0 be given. Integrating (16) with respect to z ∈ (−M, M) yields for
almost every x ∈ TL

c [v(M, x) − v(−M, x)] =
∫ M

−M
α(x)u(z, x)v(z, x)dz.

Passing to the limit M → ∞ yields using (19)

sup
x∈TL

∫

R

α(x)u(z, x)v(z, x)dz < ∞.

Next we infer from (17) that

sup
x∈TL

∫

R

w(z, x)dz < ∞. (20)

We now split the argument into two cases: θ �= 0, π and θ ∈ {0, π}. For the latter
values of the parameter θ , the operator Δθ defined in (18) is not uniformly elliptic.

First case: θ �= 0, π .

Now observe that because of elliptic regularity (recall that θ �= 0, π ) the limit behav-
iour in (19) implies that

lim
z→±∞ u(z, x) = 0 in C1(TL). (21)

Now for each K > 0 we set

uK (x) =
∫ K

−K
u(z, x)dz and wK (x) =

∫ K

−K
w(z, x)dz.

Then integrating the u−equation with respect to z ∈ (−K , K ) yields for any x ∈ TL :

[
d2

dx2
+ 2 cos θ

d

dx
− 1

]
uK (x)

+ [(∂zu(K , x) − ∂zu(−K , x)) + c(u(K , x) − u(−K , x))
]

+ rwK (x) = 0.
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Because of (20) the family {wK }K>0 is bounded so that, using (21), we infer from
the above equation that the family {uK }K>0 is bounded in H 2(TL) and Lemma3.1
follows.

Second Case: θ ∈ {0, π}.
To study that case we come back to the parabolic equation by introducing the func-
tions

(S, I )(t, x) = (u,w)(cos θx − ct, x).

Observe that (20) rewrites as

sup
x∈R

∫

R

w(t, x)dt < ∞.

Next note that the function S becomes a solution of

∂t S = ∂2
x S − S + r I, (t, x) ∈ R × R.

Moreover due to parabolic regularity, the limit behaviour in (19) rewrites as

lim
t→±∞ S(t, x) = 0 locally uniformly for x ∈ R.

Using similar arguments as in the proof of the non-degenerate case θ �= 0, π , namely
integrating in time over some interval (−K , K ) for K > 0, we easily conclude that
for each compact set [−K , K ] one has

sup
x∈[−K ,K ]

∫

R

S(t, x)dt = 1

c
sup

x∈[−K ,K ]

∫

R

u(z, x)dz < ∞,

that completes the proof of Lemma3.1.

Now let θ ∈ [0, 2π) be given and fixed. Let (u, v,w) be a solution of (15)–(19)
for a given wave speed c > 0. Then from (16) and (19) one gets

v(z, x) = v+(x) exp

(
−α(x)

c

∫ ∞

z
u(s, x)ds

)
, ∀(z, x) ∈ R × TL . (22)

Remark 3.1 Passing to the limit z → −∞ in the above equation and using
Lemma3.1, one obtains that there exists η > 0 such that

ηv+(x) ≤ v−(x) ≤ v(z, x) ≤ v+(x), ∀(z, x) ∈ R × TL .
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Moreover we can re-write (17) by using the following integral formulation:

w(z, x) = α(x)

c

∫ ∞

0
u(z + s, x)v(z + s, x)e− β

c sds, ∀(z, x) ∈ R × TL . (23)

Finally we infer from (15), (22) and (23) that Problem (15)–(19) reduces to the
following single scalar equation for u on the cylinder R × TL :

(Δθ + c∂z − 1) u(z, x) + rκ(x)

c

∫ ∞

0
u(z + s, x)e− α(x)

c

∫∞
z+s u(σ,x)dσ e− β

c sds = 0,

(24)
together with

lim
z→±∞ u(z, x) = 0, uniformly for x ∈ TL . (25)

It is also easy to check that a solution u of (24)–(25) provides a solution for (15)–(19)
via the expressions (22) and (23). Therefore the two problems are equivalent.

Now letU (z, x) := ∫∞
z u(z, x)dz. ThenU is a decreasing (with respect to z ∈ R)

solution of the following monotone non-local equation on the cylinder R × TL :

(Δθ + c∂z − 1)U (z, x) + rv+(x)
∫ ∞

0
H

(
α(x)

c
U (z + s, x)

)
e− β

c sds = 0, (26)

where we have set H(u) = 1 − e−u . This monotone reformulation of Problem
(15)–(19) will not be used in this work to prove our existence and non-existence
results. Instead, we shall directlyworkwith the integro-differential formulation given
(24)–(25) to derive our existence result. Our non-existence results will be discussed
by using the original formulation given in (15)–(19).

To proceed, let us come back to Problem (24)–(25). By analogy with the Fisher-
KPP equation, we expect that solutions of this equation would have an exponential
decay as z → ∞, namely at the leading edge of the front. Thuswemake the following
ansatz for some λ > 0 and some positive L−periodic function ϕ:

u(z, x) ≈ e−λzϕ(x), for z >> 1 and x ∈ TL . (27)

Next observe that exp
(
−α(x)

c

∫∞
z+s u(σ, x)dσ

)
≈ 1 for z >> 1. Therefore, plugging

the above ansatz into (24) yields the following equation for ϕ:

ϕ′′(x) − 2λ cos θϕ′(x) + rκ(x)

β + λc
ϕ(x) = (

cλ − λ2 + 1
)
ϕ(x), x ∈ TL .

This implies that ϕ is an eigenfunction of the elliptic operator

L θ
λ,ν := d2

dx2
− 2λ cos θ

d

dx
+ rκ(x)

β + ν
, x ∈ TL , (28)
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with ν = λc. Since ϕ > 0, by the Krein-Rutman theorem ϕ is the principal eigen-
function of this operator. Denote by μθ(λ, ν) the principal eigenvalue ofL θ

λ,ν . Then
we see from the above equation that

μθ(λ, cλ) = cλ − λ2 + 1. (29)

Thus, under the ansatz (27), c can be the speed of a travelling wave in the direction
θ only if there exists λ > 0 satisfying the identity (29). Assuming further that the
converse is true (that is, any c > 0 that satisfies (29) for some λ > 0 is the speed of
some travelling wave in the direction θ ), the problem of finding the minimal wave
speed for (1) in the direction θ amounts to finding the smallest c > 0 that satisfies
(29) for some λ > 0.

As one can see, the observation here bears much similarity to that for scalar KPP
type equations in a striped periodic medium:

ut = Δu + b(x) f (u), (x, y) ∈ R, t ∈ R,

where b(x + L) = b(x) and f is a KPP type nonlinearity. This problem was studied
in [23] and the following relation that is analogous to (29) was established for the
speed of travelling waves in the direction θ :

μθ(λ) = cλ − λ2, (30)

where μθ(λ) is the principal eigenvalue of the operator

d2

dx2
− 2λ cos θ

d

dx
+ b(x), x ∈ TL .

In [23], the formula (30) was proved even for the case where b is a measure onR. If b
is a bounded function, the same formula also follows directly from [5], in which the
eigenfunction characterization of the speed is established in a highly general setting.
Note also that the validity of the asymptotics (27) is confirmed in [14] for a large
class of scalar KPP type equations in periodic medium.

On the other hand, there are a number of notable differences between the present
problem and scalar KPP type equations. For one thing, the characteristic equation
(29) is more complicated than (30) as the former μθ involves λ in two parts. More
important difference is that the rigorous proof of the formula (30) for scalar KPP
type equations relies largely on the comparison principle, which we do not have
for System (1). Therefore more involved arguments will be needed to determine the
minimal wave speed in each direction θ for System (1).

This characteristic equation (29) will be studied in the next subsection. This will
allow us to (formally) define the set of admissible wave speeds as the set of speed
c > 0 such that there exists λ > 0 satisfying (29). This formal heuristic argument
based on the ansatz (27)will turn out to be useful in the rigorous proof of our existence
and non-existence results in Sect. 5.



Plant Disease Propagation in a Striped Periodic Medium 137

3.2 Analysis of the Eigenvalue Problem

In this subsection we study the characteristic equation (29) and characterize the set of
admissible wave speeds. To that aimwewrite down the principal eigenvalue problem
for the operator L θ

λ,ν in (28) for each θ ∈ [0, 2π), λ ∈ R and ν > −β:

{
L θ

λ,νϕ := ϕ′′ − 2λ cos θϕ′ + G(ν, x)ϕ = μθ(λ, ν)ϕ, ∀x ∈ TL ,

ϕ ∈ ∩p≥1W
2,p(TL) and ϕ > 0,

(31)

where the function G : (−β,∞) × TL → R is defined by

G(ν, x) = rκ(x)

β + ν
. (32)

Note that the operatorL θ
λ,ν is not self-adjoint if λ �= 0, and because of the periodic

boundary conditions, some eigenvalues (not the principal one) can indeed be of
complex values. Therefore, the standard variational formulation of eigenvalues do
not apply to (31). However, thanks to the formula due to Nadin in [27, 28], we have
the following variational representation of the principal eigenvalue of (31):

Lemma 3.2 For each θ ∈ [0, 2π), λ ∈ R and ν > −β, one has

μθ(λ, ν) = max
g∈A

{∫

TL

[
−g′(x)2 + rκ(x)g(x)2

β + ν

]
dx + λ2 cos2 θ(J (g) − 1)

}
,

(33)

where A is defined in (6) while the functional J is defined in (7).

From this variational formulation we obtain the following qualitative properties
for the principle eigenvalue μθ(λ, ν).

Lemma 3.3 The function μ : [0, 2π) × R × (−β,∞) → R defined by

μ(θ, λ, ν) = μθ(λ, ν),

have the following properties:

(i) μ(π − θ, λ, ν) = μ(θ, λ, ν) and μ(2π − θ, λ, ν) = μ(θ, λ, ν) for all θ ∈
[0, 2π) and all (λ, ν) ∈ R × (−β,∞). For each λ ∈ R and ν > −β the func-
tion θ → μ(θ, λ, ν) is increasing on [0, π

2 ].
(ii) For each θ ∈ [0, 2π) and each ν > −β the map λ → μ(θ, λ, ν) is convex on

R.
(iii) For each θ ∈ [0, 2π) and each λ ∈ R the map ν → μ(θ, λ, ν) is decreasing

and convex on (−β,∞).



138 A. Ducrot and H. Matano

Proof The proof of (i) and (i i i) directly follows from the variational formula given
in Lemma3.2 while the convexity property stated in (i i) follows from the following
bound for the functional J :

J (g) ≥ 1 for each g ∈ A .

Indeed from Hölder inequality, we have for each g ∈ A :

L2 =
(∫

TL

g(x)
1

g(x)
dx

)2

≤
∫

TL

g(x)2dx ×
∫

TL

dx

g(x)2
≤
∫

TL

dx

g(x)2
.

Recalling (9), the quantityΛθ(λ, ν) enjoys the following properties that will allow
us to define the set of admissible wave speed as well as the minimal wave speed.

Proposition 3.1 The function (θ, λ, ν) ∈ [0, 2π) × R × (−β,∞) �→ Λθ(λ, ν) ∈
R satisfies the following properties:

(i) For each θ ∈ [0, 2π) the map (λ, ν) �→ Λθ(λ, ν) is convex and

lim
λ→∞

1

|λ|Λ
θ(λ, ν) = ∞,

where the above convergence holds uniformly for ν > −β and θ ∈ [0, 2π).
For each (λ, ν) ∈ R × (−β,∞), the function θ �→ Λθ(λ, ν) is increasing on
[0, π

2 ].
(ii) For each λ ∈ R and θ ∈ [0, 2π) the map ν �→ Λθ(λ, ν) is non-increasing on

(−β,∞).
(iii) IfR0 > 1 then for all θ ∈ [0, 2π) one has

Λθ(λ, ν) > 0, ∀λ ∈ R, ν > −β.

Proof The convexity and increasing properties stated in (i) directly follow from
Lemma3.3. Next observe that one has

Λθ(λ, ν) ≥ λ2 − 1, ∀λ ∈ R, ν > −β, (34)

that completes the proof of (i). The point (i i) directly follows from Lemma3.3.
It remains to prove (i i i). Recalling that R0 − 1 = Λθ(0, 0) > 0, we shall argue

by contradiction by assuming that there exist θ ∈ [0, 2π), λ ∈ R and ν > −β such
that Λθ(λ, ν) = 0. This means that there exists ϕ ∈ ⋂p≥1 W

2,p (TL) with ϕ > 0
satisfying

ϕ′′(x) − 2λ cos θϕ′(x) + [G(ν, x) + λ2 − 1
]
ϕ(x) = 0, x ∈ TL .

Moreover according to (34) one has λ2 − 1 ≤ 0. Now note that the function ϕ > 0
satisfies the equation on TL
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ϕ′′(x) − 2λ cos θϕ′(x) + (λ2 − 1
)
ϕ(x) = − f (x), (35)

where the function f is defined by

f (x) := rκ(x)

ν + β
ϕ(x) ≥ 0 and f (x) �≡ 0.

As a consequence the function − f belongs to the range of the periodic elliptic oper-
ator M := d2

dx2 − 2λ cos θ d
dx + (λ2 − 1

)
acting on L2(TL). Hence Fredholm alter-

native ensures that − f is orthogonal to the kernel of the adjoint operator M∗ on TL .
However this kernel is spanned by the eigenvector ϕ∗ defined by

ϕ∗(x) =
{
1ifλ cos θ = 0 and λ2 = 1,
(
1 − eLγ −)

eγ +x + (eLγ + − 1
)
eγ −x else,

where we have set

γ ± = −λ cos θ ±
√

λ2 cos2 θ + 1 − λ2.

Once again since λ2 − 1 ≤ 0, one obtains that ϕ∗ > 0 so that, since f ≥ 0 and
f �≡ 0, the solvability condition

∫
TL

f (x)ϕ∗(x)dx = 0 provides a contradiction. This
completes the proof of (i i i).

We now come back to the study of the characteristic equation given (29). To that
aim we assume that R0 > 1. Let θ ∈ [0, 2π) be given. As discussed above, we aim
to characterize of the set of admissible wave speed, denoted byVθ , defined as follows

Vθ = {
c > 0 : ∃λ > 0 μθ(λ, cλ) = cλ − λ2 + 1

}
.

Let us observe that, using the above notation, this set can be re-written as

Vθ = {
c > 0 : ∃λ > 0 Λθ(λ, cλ) = cλ

}
. (36)

On the one hand, as a consequence of Proposition3.1(i i)–(i i i), one may observe
that for each λ ∈ R, for each θ ∈ [0, 2π) there exists a unique νθ (λ) > 0 solution of
the fixed point equation

νθ (λ) = Λθ
(
λ, νθ (λ)

)
. (37)

In addition due to the convexity property stated in Proposition3.1 (i), for each θ ∈
[0, 2π) the function λ �→ νθ (λ) is also continuous and convex on R and satisfies

lim
λ→±∞

νθ (λ)

|λ| = ∞, uniformly for θ ∈ [0, 2π). (38)

Now we define for each θ ∈ [0, 2π) the positive real number c∗
θ as in (10), namely
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c∗
θ = inf

λ>0

νθ (λ)

λ
. (39)

Note that because of the limit behaviour (38) and since νθ (0) > 0 the above infimum
is actually a minimum.

On the other hand, due to the reformulation of Vθ in (36), one obtains that

Vθ = [
c∗
θ ,∞

)
,

where c∗
θ is defined in (39).

Moreover one may observe that, due the properties of the function Λθ provided
in Proposition3.1, the following definitions for c∗

θ are equivalent to the above one:

c∗
θ = sup

{
c > 0 : Λθ(λ, cλ) − cλ ≥ 0, ∀λ ≥ 0

}

= inf
{
c > 0 : ∃λ > 0 Λθ(λ, cλ) − cλ < 0

}
.

4 Harnack Inequality

The aim of this section is to prove an important bound for the travelling wave pro-
files. This estimate will be crucially used in Sect. 5 to prove the minimality of the
wave speed c∗

θ defined in the previous section. We shall more specifically prove the
following.

Proposition 4.1 Let (u, v,w) be a travelling wave profile of (1) with speed c > 0
in the direction θ ∈ [0, 2π). Then there exists some constant M > 0 such that

w(z, x) ≤ Mu(z, x), ∀(z, x) ∈ R × TL .

This section is devoted to the proof of this key estimate. For that purpose we shall
develop suitable Harnack inequality like arguments for a reaction-diffusion equation
coupled with an ordinary differential equation. This section is split into two parts.
We shall first deal with the case θ ∈ (0, 2π)\{π} and, then we shall focus on the
case θ = 0, π . This splitting follows from the properties of the elliptic operator Δθ

defined in (18). Indeed, as already mentioned, when θ ∈ (0, 2π)\{π} then Δθ is
uniformly elliptic while when θ ∈ {0, π} it is degenerate.

4.1 The Case θ ∈ (0, 2π)\{π}

Let θ ∈ (0, 2π)\{π} be given and fixed. In order to prove Proposition4.1 we will
need a slightlymodified version of the usualHarnack inequality for elliptic equations.
This modified version reads as follows.



Plant Disease Propagation in a Striped Periodic Medium 141

Lemma 4.1 Let f ∈ L∞+ (R2) be given. Let c > 0 be a given constant. Let u ≡
u(z, x) be a nonnegative continuous function that is L−periodic with respect to its
second argument and that satisfies the equation

(Δθ + c∂z − 1) u(z, x) + f (z, x) = 0, z ∈ R, x ∈ R.

Then for each h > 0 there exists some constant C(h) > 0 such that for any z ∈ R

max
Dh(z)

u ≤ C(h) min
Dh(z)

u + C(h)

∫ L

0
sup

z−2h≤s≤z+2h
f (s, x)dx .

Here we have set Dh(z) = [z − h, z + h] × [0, L].
Proof To prove this lemma, let us introduce for each h > 0 and z ∈ R the rectangle

D′
h(z) = (z − 2h, z + 2h) × (−L , 2L).

Let h > 0 and z ∈ R be given. Consider the function k defined by the resolution of
the elliptic problem: {

Lk + f = 0 in D′
h(z),

k = 0 on ∂D′
h(z),

where the operator L is defined by

L = Δθ + c∂z − 1.

Now note that, since u ≥ 0, one has

{
L(u − k) = 0 in D′

h(z),

(u − k) ≥ 0 on ∂D′
h(z).

Thus, due to the maximum principle, ones obtains that u − k ≥ 0. Moreover the
classical Harnack inequality for homogeneous elliptic equations ensures there exists
some constant C(h) > 0 such that

max
Dh(z)

(u − k) ≤ C(h) min
Dh(z)

(u − k).

This readily yields
max
Dh(z)

u ≤ C(h) min
Dh(z)

u + max
Dh(z)

k.

Let us now consider the one-dimensional function f ∗ = f ∗(x) defined by

f ∗(x) = sup
z−2h≤s≤z+2h

f (s, x), x ∈ R,
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as well as the positive function h∗ = h∗(x) defined by the resolution of the one-
dimensional elliptic boundary value problem

h∗′′
(x) + f ∗(x) = 0 in (−L , 2L), h∗(−L) = h∗(2L) = 0.

Next let us observe that f ≤ f ∗ in D′
h(z) so that

L(k − h∗) ≥ 0, in D′
h(z) and k − h∗ ≤ 0 on ∂D′

h(z).

Hence the maximum principle applies and ensures that k ≤ h∗ in D′
h(z). Thus this

yields
max
Dh(z)

k ≤ max
Dh(z)

h∗.

One the other hand, let us notice that simple computations ensure that

h∗(x) ≤ (x + L)

∫ L

0
f ∗(x)dx, ∀x ∈ (−L , 2L).

This implies that

max
Dh(z)

u ≤ C(h) min
Dh(z)

u + 3L
∫ L

0
sup

z−2h≤s≤z+2h
f (s, x)dx,

and this completes the proof of the lemma.

Equipped with this lemma we are now able to prove Proposition4.1 for directions
θ �= 0, π .

Proof (Proof of Proposition4.1 for θ �= 0, π ) Fix θ ∈ (0, 2π)\{π}. Let (u, v,w) be
a solution of (15)–(19) for some speed c > 0. Now observe that due to Remark3.1,
there exists η > 0 such that

ηv+(x) ≤ v(z, x) ≤ v+(x), ∀z ∈ R × TL . (40)

In that proof the notation C or C(h) will denote any constant that may depend on h
but that is independent of (z, x) ∈ R × TL .
Let h > 0 and z ∈ R be given. Then applying Lemma4.1 to the u−equation (see
(15)) ensures that there exists some constant C = C(h) such that for all z ∈ R

max
Dz(h)

u ≤ C min
Dh(z)

u + C
∫ L

0
sup

z−2h≤s≤z+2h
w(z, x)dx . (41)

Next let us recall that w is given in (23). Hence (40) yields
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∫

TL

w(z, x)dx ≥ η

∫

TL

κ(x)

c

∫ ∞

0
u(z + s, x)e− γ

c sdsdx . (42)

Hence, since κ �≡ 0 (seeAssumption2.1), one deduces that there exists some constant
C(h) (independent of z) such that for all z′ ∈ [−3h,−2h]

∫ L

0
w(z + z′, x ′)dx ′ ≥ C(h) min

(z′,x)∈Dh(z)
u(z′, x).

On the other hand let us consider the function K (t, z, x) defined as the heat kernel
associated to the heat operator ∂t − Δθ on R

2. Then observe that the function Γ

defined by

Γ (z, x) =
∫ ∞

0
e−t K (t, z − ct, x)dt,

becomes the Green function of the elliptic operator Δθ + c∂z − 1. As a consequence
using (15), one obtains

u(z, x) = r
∫∫

R2
Γ (z − z′, x − x ′)w(z′, x ′)dz′dx ′. (43)

Thus using theTL−periodicity with respect to x of the functions u andw, one obtains
that for all k ∈ (−h, h)

min
x∈[0,L] u(z + k, x) ≥ r

∫

R

{[
min

x∈[L ,3L] Γ (z + k − z′, x)
] ∫ L

0
w(z′, x ′)dx ′

}
dz′

≥ C(h) inf−3h≤z′≤−2h

∫ L

0
w(z + z′, x ′)dx ′.

Here the constant C(h) > 0 is given by

C(h) = r
∫ −h

−4h

{[
min

x∈[L ,3L] Γ (z′, x)
]
dz′
}

.

We now come back to (43) to get an upper estimate of the last term arising in the
right hand side of (41). To that aim let us observe that due to (17) the function z �→
e

−γ z
c w(z, x) is decreasing for each x ∈ TL . Now observe that for each k ∈ (−h, h)

and (z, x) ∈ R × [0, L] one has

u(z + k, x) ≥ r
∫ z−2h

z−3h

∫ −2L

−3L
Γ (z + k − z′, x − x ′)e

γ z′
c e− γ z′

c w(z′, x ′)dz′dx ′,

≥ r
∫ −2h

−3h
min

x∈[2L ,4L] [Γ (l, x)] e
γ l
c dle− 2γ h

c w(z − 2h)dz′,

≥ C(h)w(z − 2h).
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Here we have set w(z) := ∫ L
0 w(z, x)dx . As a consequence one has obtained that for

each h > 0 there exists some constant C(h) > 0 such that

C(h)w(z − 2h) ≤ min
Dh(z)

u, ∀z ∈ R. (44)

Finally let us observe that since cw′(z) ≤ γw(z), one has

sup
k∈(−2h,2h)

w(z + k) ≤ e
4hγ

c w(z − 2h), ∀z ∈ R, h > 0. (45)

Finally coupling (41) together with (44) and (45) ensures that the following Harnack
inequality holds true: For each h > 0 there exists C(h) > 0 such that for all z ∈ R,
there holds

max
Dh(z)

u ≤ C(h) min
Dh(z)

u.

To complete the proof of Proposition4.1, let us observe that from the above estimate,
there exists some constant C > 1 such that for all (z, x) ∈ R × TL , one has

C−1
∫ L

0
u(z, x)dx ≤ u(z, x) ≤ C

∫ L

0
u(z, x)dx .

Next using the expression of w in (23) together with (44) and (45), one obtains that
there exists some constant C > 0 such that for all (z, x) ∈ R × TL , it holds that

w(z, x) ≤ Cw(z) ≤ Cu(z, x).

This completes the proof of Proposition4.1 in the case where θ �= 0, π .

4.2 Proof of Proposition 4.1 in the Case θ = 0, π

Here we assume that θ = 0, π . As mentioned above, in that case, since Δθ is not
uniformly elliptic our proof will rely on the parabolic formulation of travelling wave
solutions instead of the elliptic wave profile formulation.

Let (u, v,w) : R × TL → R
3 be a travelling wave profile in the direction θ and

speed c > 0. Consider the vector valued function (S, H, I ) ≡ (S, H, I )(t, x) defined
by

(S, H, I ) (t, x) = (u, v,w) (cos θx − ct, x). (46)

Hence the function (S, H, I ) satisfies (1) on R × R, that reads as for all (t, x) ∈
R × R:
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∂t S(t, x) = ∂2
x S(t, x) − S(t, x) + r I (t, x),

∂t H(t, x) = −α(x)H(t, x)S(t, x), (47)

∂t I (t, x) = α(x)H(t, x)S(t, x) − β I (t, x).

Moreover the TL−periodicity of the profile (u, v,w) reformulates as

(S, H, I ) (t, x + Lk) = (S, H, I )

(
t − Lk cos θ

c
, x

)
, ∀(t, x) ∈ R

2, ∀k ∈ Z.

(48)
In order to proveProposition4.1 in that context, namely for θ = 0, π , and similarly

as in the above elliptic proof, we need a slightly modified version of the usual one-
dimensional parabolic Harnack inequality that reads as follows.

Lemma 4.2 Let f ∈ L∞+ (R × R) be given and let u be a nonnegative function sat-
isfying

(∂t − L) u(t, x) = f (t, x) with L = ∂2
x − 1.

Then for each τ > 0 and h > 0 there exists some constant C > 1 such that for all
t ∈ R and x ∈ R one has

max
y∈[−h,h] u(t − τ, x + y) ≤ C

[

min
y∈[−h,h] u(t, x + y) + sup

s∈(−2τ,−τ)

∫ 2h

−2h
f (t + s, x + y)dy

]

.

Proof Let τ > 0 and h > 0 be given. Up to translation in time and space, we assume
for notational simplicity that t = 0 and x = 0.

Consider the nonnegative function k defined as the solution of the parabolic prob-
lem {

∂t k − Lk = f in Q := (−2τ, 0) × (−2h, 2h),

k(−2τ, .) = 0 and k(t, x) = 0 on (−2τ, 0) × {−2h, 2h}.

Then from the parabolic comparison principle one has k ≥ u and the function u − k
satisfies on Q the homogeneous parabolic equation

∂t (u − k) − L(u − k) = 0.

Now the parabolic Haranck inequality applies and ensures that there exists some
constant C > 1 such that for all t ∈ (−τ, 0)

max
y∈[−h,h](u − k)(t − τ, y) ≤ C min

y∈[−h,h](u − k)(t, y).

Hence this yields for all t ∈ (−τ, 0)

max
y∈[−h,h] u(t − τ, y) ≤ C min

y∈[−h,h] u(t, y) + max
y∈[−h,h] k(t − τ, y).
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Now constructing the nonnegative function w∗ ≡ w∗(x) defined by

− (w∗)′′ (x) = sup
−2τ≤t≤−τ

f (t, x) and w∗(−2h) = w∗(2h) = 0,

one obtains from the comparison principle that k(t, x) ≤ w∗(x) for all t ∈ (−2τ,−τ)

and x ∈ (−2h, 2h). Finally the explicit expression for w∗ completes the proof of the
lemma.

Using the above modified Harnack inequality we are now able to complete the
proof of Proposition4.1 in the case θ = 0, π .

Proof (Proof of Proposition4.1 for θ = 0, π ) Let h > 0 and τ > 0 be given and set
Dh(x) = [x − h, x + h].

Now from the one-dimensional parabolic Harnack inequality derived in
Lemma4.2 applied to each S−equation, there exists some constant C = C(h) > 0
such that for all t ∈ R one has

max
y∈Dh(x)

S(t − τ, y) ≤ C

(
min

y∈Dh(x)
S(t, y) + sup

s∈[t−2τ,t−τ ]

∫ x+2h

x−2h
I (s, y)dsdy

)
.

Since the function t �→ eβs I (s, x) is increasing, one obtains, for some constant C
independent of t and x , that

max
y∈Dh(x)

S(t − τ, y) ≤ C

[
min

y∈Dh(x)
S(t, y) +

∫ x+2h

x−2h
I (t − τ, y)dsdy

]
. (49)

On the other hand, from the parabolic S−equation we get that

S(t, x) = r
∫ t

−∞

∫ ∞

−∞
K (t − s, x − y)I (s, y)dyds,

where the function K : (0,∞) × R → R is defined by

K (s, ξ) = 1√
4πs

e− ξ2

4s −s .

Using the above integral reformulation one obtains that for any k ∈ [−h, h]

S(t, x + k) ≥ r
∫ t

t−τ

∫ x+2h

x−2h
K (t − s, x + k − y)I (s, y)dyds.
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Since the function t �→ eβs I (s, x) is increasing, one obtains that

S(t, x + k) ≥r
∫ t

t−τ

∫ x+2h

x−2h
e−βs K (t − s, x + k − y)eβs I (s, y)dyds

≥r
∫ t

t−τ

∫ x+2h

x−2h
e−βs K (t − s, x + k − y)eβ(t−τ) I (t − τ, y)dyds.

Hence there exists some constant C = C(τ, h) > 0 such that for all (t, x) ∈ R × R

one has

min
Dh(x)

S(t, .) ≥ C
∫ x+2h

x−2h
I (t − τ, y)dy. (50)

Coupling this inequality together with (49) yields for some constant C > 0

max
y∈Dh(x)

S(t − τ, y) ≤ C min
y∈Dh(x)

S(t, y), ∀(t, x) ∈ R × R. (51)

However integrating the I−equation in (47) ensures that

I (t, x) = α(x)
∫ t

−∞
H(σ, x)S(σ, x)eβ(σ−t)dσ. (52)

Moreover, recalling Remark3.1, there exists η > 0 such that ηv+(x) ≤ H(t, x) ≤
v+(x) and by using the same arguments as in the proof of the elliptic case above, one
obtains that

max
y∈Dh(x)

S(t − τ, y) ≤ min
y∈Dh(x)

S(t, y), ∀(t, x) ∈ R × R.

Now we use a similar argument as in the proof of the elliptic case above to
complete the proof of the proposition. Let h > 0 and τ > 0 be given. Then by using
(52), one obtains that for some constant C > 0 (independent of t and x and that may
change from line to line)

max
y∈Dh(x)

I (t − 2τ, y) ≤C
∫ 0

−∞
max

y∈Dh(x)
S(t − 2τ + l, y)eβldl

≤ C
∫ 0

−∞
min

y∈Dh(x)
S(t − τ + l, y)eβldl

≤ C
∫ 0

−∞

∫ x+2h

x−2h
S(t − τ + l, y)eβldl

≤ C
∫ x+2h

x−2h
I (t − τ, y)dy.
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Using (50), one obtains that for all h > 0, τ > 0, there exists some constant C > 0
such that for all (t, x) ∈ R × R, one has

sup
y∈Dh(x)

I (t, y) ≤ C min
Dh(x)

S(t + 2τ, .).

Now we choose τ = L
2c and h = 2L . Recalling that (see (48))

S

(
t + L

c
, x

)
≡ S(t, x − cos θL),

one gets, since h > L , that

min
y∈Dh(x)

S(t + 2τ, y) ≤ S(t, x), ∀(t, x) ∈ R × R.

Therefore there exists some constant C > 0 such that for all (t, x) ∈ R × R

I (t, x) ≤ CS(t, x).

This completes the proof of Proposition4.1 in this parabolic case θ = 0, π .

5 Proof of Theorem1

This section is concerned with the proof of Theorem1. As in the statement of this
result, this section is split into three parts, the proof of (i), the proof of (i i)–(1) and
those of (i i)–(2).

5.1 Proof of Theorem 1(i)

This section is devoted to prove thatR0 > 1 is a necessary condition for the existence
of travelling of System (1). To that aim we shall prove the following lemma.

Lemma 5.1 Let (u, v,w) be a travelling wave profile of (1) in some direction θ ∈
[0, 2π) and for some wave speed c > 0. Define the function � : TL → R by

�(x) = 1

c

∫ ∞

−∞
u(z, x)dz, ∀x ∈ TL .

Then it is a solution of the following nonlinear elliptic equation on TL
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�′′(x) − �(x) + rv+(x)

β

(
1 − e−α(x)�(x)

) = 0, x ∈ TL . (53)

Before proving this lemma one may first observe that it allows us to complete
the proof of Theorem1(i). Indeed it is easy to note that the second order equation
in (53) has a positive solution if and only if the principal eigenvalue σ(L) of the
linear operator L = d2

dx2 + r
β
κ(x) − 1 on the torus TL is positive. This linear opera-

tor corresponds to the linearization of (53) at the trivial solution � = 0. However,
recalling the definition ofR0 in (8), one has σ(L) = μθ(0, 0) − 1 = R0 − 1 so that
this completes the proof of Theorem1(i). Moreover, one may also notice that when
R0 > 1 then (53) has a unique positive solution � and it follows from the above
lemma that the following corollary holds true.

Corollary 5.1 Assume thatR0 > 1. Let (u, v,w) be a travelling wave profile of (1)
in some direction θ ∈ [0, 2π) for some wave speed c > 0. Then, for all x ∈ TL , it
holds that

∫

R

u(z, x)dz = c�(x) and v−(x) = v+(x) exp (−α(x)�(x)) , (54)

where � is the unique positive solution of (53).

Proof (Proof of Lemma5.1) Let (u, v,w) be a solution of (15)–(19) for some given
and fixed value of c > 0. Next due to Lemma3.1, one knows that there exists some
constant M > 0 such that

∫

R

u(z, x)dz ≤ M ∀x ∈ TL .

This allows us to introduce the bounded and TL−periodic function

�(x) := 1

c

∫ ∞

−∞
u(z, x)dz, ∀x ∈ TL .

Note that since u > 0 then � > 0. Next integrating (15) with respect to z ∈ R yields

�′′(x) − �(x) + r

c

∫ ∞

−∞
w(s, x)ds = 0, ∀x ∈ TL . (55)

Integrating (16) provides

v(z, x) = v+(x) exp

(
−α(x)

c

∫ ∞

z
u(s, x)ds

)
, ∀(z, x) ∈ R × TL ,

c(v+(x) − v−(x)) = α(x)
∫ ∞

−∞
u(s, x)v(s, x)ds, ∀x ∈ TL . (56)
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Letting z → −∞ in the first equality in (56) yields, for any x ∈ TL ,

v−(x) = v+(x) exp (−α(x)�(x)) . (57)

Now integrating (17) over R and combining it together with the second equality in
(56) lead, for any x ∈ TL , to

α(x)
∫ ∞

−∞
u(s, x)v(s, x)ds = β

∫ ∞

−∞
w(s, x)ds = c(v+(x) − v−(x)). (58)

Finally we infer from (55), (57) and (58), that the function � satisfies (53). Since
� > 0, this completes the proof of Lemma5.1.

5.2 Proof of Theorem 1(i i)–(1)

In this section we investigate the existence of travelling wave solution for (1) when
c ≥ c∗

θ . This part uses rather classical arguments that we shall sketch for the sake
of completeness. Note that instead of using the monotone reformulation (26) for
the travelling waves, we shall construct a sub and super solution pair and we shall
directly deal with the formulation given in (24). We split this section into two parts.
We first investigate the case of super-critical wave speed c > c∗

θ and then we recover
the critical case c = c∗

θ by using limiting arguments.

5.2.1 Existence of Waves for c > c∗
θ

The aim of this section is to prove the following result:

Proposition 5.1 Let Assumption2.1 be satisfied and assume furthermore that
R0 > 1. Let θ ∈ [0, 2π) be given and let ĉ > c∗

θ be given. Then there exists a positive
solution (u, v,w) of system (15)–(19) for the given wave speed ĉ > 0.

The proof of this result is split into several steps andwill use the equivalent integral
formulation, namely system (24)–(25). The first step consists in constructing sub and
super solutions that allow us to construct a solution for any θ ∈ (0, 2π)\{0, π}when
the elliptic operator Δθ defined in (18) is non-degenerate. Finally we consider the
case θ = 0 and θ = π by coming back to the original evolution problem in order to
get some useful local compactness properties for the solutions.

First step: θ �= 0, π

Let us first fix some notation. Since ĉ > c∗
θ is given and fixed, then, according to

Proposition3.1 and the definition of c∗
θ given in (39), there exist λ > 0 and η > 0

such that
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(H1) Λθ (λ, ĉλ) − ĉλ = 0.
(H2) Λθ (λ + ε, ĉ (λ + ε)) − (λ + ε) ĉ < 0 ∀ε ∈ (0, η].

Next for each λ̂ > 0 we denote by ψλ̂ a positive eigenvector associated to the
principal eigenvalue problem (31) with ν = ĉ̂λ. Using this notation, straightforward
computations allow us to check that the following lemmas hold true.

Lemma 5.2 The function (z, x) �→ u(z, x) defined by u(z, x) = e−λzψλ(x), satis-
fies the linear equation on R × TL:

(Δθ + ĉ∂z − 1) u(z, x) + rκ(x)

ĉ

∫ ∞

0
u(z + s, x)e− β

ĉ sds = 0.

Lemma 5.3 For each k̃ > 0 there exists β(̃k) > 0 such that for each β̂ > β(̃k) the
function u : R × TL → R defined by

u(z, x) = e−λzψλ(x) − β̂e−(λ+η)zψλ+η(x),

satisfies the following inequality, on the set {(z, x) ∈ R × TL : u(z, x) ≥ 0},

(Δθ + ĉ∂z − 1) u(z, x) + rκ(x)

ĉ

∫ ∞

0
u(z + s, x)

(
1 − k̃e−λ(z+s)

)+
e− β

ĉ sds ≥ 0.

In the next step we consider a similar problem as (24)–(25) posed on an semi-
infinite interval of the form (−a,∞) for some a > 0. Then we prove the existence of
solution for this approximated problem by using a fixed point argument and finally
we pass to the limit a → ∞ in order to get a solution of (24)–(25).

To that aim we consider for any a > 0 the following problem: find a non zero,
continuous and positive function u such that u(., x) ∈ L1(−a,∞) for all x ∈ TL and
that satisfies, for all (z, x) ∈ (−a,∞) × TL , the following equation

(Δθ + ĉ∂z − 1) u(z, x)

+ rκ(x)

ĉ

∫ ∞

0
u(z + s, x) exp

(
−α(x)

ĉ

∫ ∞

z+s
u(σ, x)dσ

)
e− β

ĉ sds = 0, (59)

with the boundary condition

u(−a, x) = 0 ∀x ∈ TL . (60)

In order to handle this equation, for any a > 0, we introduce the Banach space

Xa = {ϕ ∈ C([−a,∞) × TL) : (z, x) �→ eλzϕ(z, x) bounded},
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endowed with the weighted norm

‖ϕ‖Xa := sup
z≥−a, x∈TL

eλz|ϕ(z, x)|.

To prove the existence of a nontrivial solution of (59)–(60), we shall construct a
suitable closed and convex subset of Xa as well as a suitable map on Xa in order to
apply a fixed point argument. Using the notation of Lemma5.3, we now fix

k̃ = sup
x∈[0,L]

α(x)ψλ(x)

λ̂c
and β0 > β(̃k). (61)

Next we consider the function u provided by Lemma5.3 with β̂ = β0 and recalling
that sinceR0 > 1, Corollary5.1 ensures that the function� > 0, the unique solution
(53), is well defined. Next we consider the closed and convex subset Ca,β0 ⊂ Xa

defined by

Ca,β0 =
{
u ∈ Xa : max(0, u) ≤ u ≤ u,

∫ ∞

−a
u(s, x)ds ≤ ĉ�(x) ∀x ∈ TL

}
,

as well as the map F : Ca,β0 → C ([−a,∞) × TL) defined by

F (u)(z, x) =
∫ ∞

0
ũ(z + s, x) exp

(
−α(x)

ĉ

∫ ∞

z+s
ũ(σ, x)dσ

)
e− β

ĉ sds.

We also introduce the map Φ : Ca,β0 → Xa defined by

Φ (̃u) = u,

where u ∈ Xa is defined by the resolution of the equation

{
(Δθ + ĉ∂z − 1) u(z, x) + rκ(x)

ĉ F (̃u) (z, x) = 0 on (−a,∞) × TL ,

u(−a, x) = 0 ∀x ∈ TL .
(62)

Next it is easy to check that the map Φ has a fixed point in Ca,β0 by applying the
Schauder fixed point theorem. For that purpose we prove that

Φ
(
Ca,β0

) ⊂ Ca,β0 and Φ
(
Ca,β0

)
compact in Xa .

The proof of that claim is rather classical and the details are left to the reader.
Finally to complete the proof of Proposition5.1 it is sufficient to pass to the

limit a → ∞ in the solution ua ∈ Ca,β0 of (59)–(60) for any a > 0. This limiting
procedure directly follows from elliptic regularity. One can note that the solution u
constructed in that step satisfies
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max
(
u, 0

) ≤ u ≤ u and
∫ ∞

−∞
u(s, x)ds ≤ ĉ�(x), ∀x ∈ TL .

Note that the lower estimate above ensures that u �≡ 0, hence u > 0 due the uniform
ellipticity of Δθ . This completes the proof of Proposition5.1 when θ �= 0, π .

Using this first step, one can use a limiting argument to prove Proposition5.1 in
the case θ = 0, π .

Second step: θ = 0, π

Here we consider the case θ = 0. Note the case θ = π can be similarly handled and
the proof is omitted. In that situation we fix ĉ > c∗

0. Therefore there exist λ0 > 0 and
η0 > 0 such that

Λ0 (λ0, ĉλ0) = ĉλ0,

Λ0 (λ0 + ε, ĉ(λ0 + ε)) − ĉ (λ0 + ε) < 0, ∀ε ∈ (0, η0].

Since the map (θ, λ) → Λθ(λ, ĉλ) is continuous there exists θ0 > 0 small enough
such that ĉ > c∗

θ for each θ ∈ [0, θ0). Moreover, recalling the properties of the func-
tion Λθ in Proposition3.1, for each θ ∈ (0, θ0], there exist λθ > 0 and a value
η ∈ (0, η0) such that λθ → λ0 as θ → 0 and such that for all θ ∈ [0, θ0] one has

Λθ (λθ , ĉλθ) = ĉλθ ,

Λθ (λθ + η, ĉ(λθ + η)) − ĉ (λθ + η) < 0.

Thus from the first step of the proof, for each θ ∈ (0, θ0] there exists uθ a non zero
and positive solution of (24)–(25) for the wave speed ĉ. Moreover, recall that from
our construction in the first step, the function uθ satisfies, for each θ ∈ (0, θ0], the
following estimates on R × TL

e−λθ zψ
λθ

θ (x) − β̂e−(λθ +η)zψ
λθ+η

θ (x) ≤ uθ (z, x) ≤ e−λθ zψ
λθ

θ (x), (63)

where ψλ
θ denotes the principal eigenvector associated to (31) with the angle θ and

ν = ĉλ > 0 while β̂ > 0 is a constant large enough independent of θ ∈ (0, θ0].
Next we introduce the functions

vθ (z, x) = v+(x) exp

(
−α(x)

ĉ

∫ ∞

z
uθ (s, x)ds

)
,

wθ (z, x) = α(x)

ĉ

∫ ∞

0
uθ (z + s, x)vθ (z + s, x)e− β

ĉ sds, (64)

and we set for all t ∈ R, (x, y) ∈ R
2 and θ ∈ (0, θ0]:

(Sθ , Hθ , Iθ ) (t, x, y) = (uθ , vθ ,wθ ) (x cos θ + y sin θ − ĉt, x) . (65)
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Recall that the vector valued function (Sθ , Hθ , Iθ ) is a travelling wave of Problem
(1) with the speed ĉ and the angle θ .

Now let {θn} ⊂ (0, θ0) be a given sequence tending to 0 as n → ∞. Due to (65)
the sequence {Iθn } is uniformly bounded. Therefore by using parabolic regularity
one obtains that the sequence {Sθn } is locally bounded in W 1,p

loc (R × R
2) for any

p ∈ (1,∞). As a consequence, the sequence {uθn } is also bounded inW 1,p
loc (R × TL).

Hence, up to a subsequence, one may assume that uθn and Sθn converge locally
uniformly towards some function u and S respectively.Moreover u satisfies (63) with
θ = 0 while S(t, x, y) = u(x − ĉt, x). The lower bound in (63) more particularly
ensures that u �≡ 0 and thus S �≡ 0 while the upper bound implies that u(z, x) → 0,
uniformly for x ∈ TL , as z → ∞. Note also that from our construction in the first
step, the uniform L1 bound for the sequence {uθn } holds true

∫ ∞

−∞
uθn (σ, x)dσ ≤ ĉ�(x), ∀x ∈ TL , n ≥ 0,

that ensures, due to Fatou Lemma, that u(., x) ∈ L1(R) for all x ∈ TL .
In addition, due to Lebesgue convergence theorem, the sequence of function(

vθn ,wθn

)
defined in (64) with θ = θn converges in L∞

loc (R × TL) to (v,w) defined
by

v(z, x) = v+(x) exp

(
−α(x)

ĉ

∫ ∞

z
u(s, x)ds

)
,

w(z, x) = α(x)

ĉ

∫ ∞

0
u(z + s, x)v(z + s, x)e− β

ĉ sds.

Hence, the sequence of functions
(
Hθn , Iθn

)
(t, x, y) converges to (H, I ) for the

topology of L∞
loc

(
R × R

2
)
with (H, I )(t, x) = (v,w) (x − ĉt, x). And, the vector

valued function (S, H, I ) is an entire solution of System (1).
Finally it remains to notice, using the parabolic equation satisfied by S, that the

condition u �≡ 0 or S �≡ 0, ensures that S > 0, that is u > 0. This proves that the
vector valued function (S, H, I ) is positive in the sense of Definition2.1 and, that
(S, H, I ) is a travelling wave of (1) with the wave speed ĉ and angle θ = 0. This
completes the proof of Proposition5.1 in the case θ = 0, π .

5.2.2 Existence of Waves for c = c∗
θ

The aim of this section is to prove the existence of wave solution for the limit wave
speed c∗

θ . More precisely one will show the following result:

Proposition 5.2 Let Assumption2.1 be satisfied and assume furthermore that
R0 > 1. Then for each θ ∈ [0, 2π) there exists a wave solution for the wave speed
c∗
θ defined in (39).
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The idea of the proof is to use a limiting procedure cn → c∗
θ . Our proof is split

into two parts, the case θ ∈ (0, 2π)\{π} and the case θ = 0 or θ = π .

Proof Let θ ∈ [0, 2π) be given let {cn}n≥0 a sequence of real number such that

cn > c∗
θ , ∀n ≥ 0 and lim

n→∞ cn = c∗
θ .

Recalling the definition of v− in Corollary5.1, fix α∗ > 0 such that

∫

TL

v−(x)dx < α∗ <

∫

TL

v+(x)dx . (66)

Due to Proposition5.1 combined together with the translation invariance (with
respect to z) of the travelling wave problem, for each n ≥ 0 one may consider
(un, vn,wn) a positive solution of (15)–(19) with c = cn and satisfying the nor-
malization condition ∫

TL

vn(0, x)dx = α.

Then we get from the first equation in (56) that

α∗ =
∫

TL

v+(x) exp

(
−α(x)

cn

∫ ∞

0
un(s, x)ds

)
dx . (67)

We now split our arguments into two parts: θ �= 0, π and θ = 0, π .
Let us start with some fixed angle θ �= 0, π .

Since the operatorΔθ is uniformly elliptic, from standard elliptic regularity, possibly
along a subsequence one may assume that un and (vn,wn) convergences to some
functions u and (v,w) respectively for the strong topology of Cloc(R × TL) and for
theweak star topology of L∞(R × TL) × L∞(R × TL). Nowdue to the upper bound
for the function un , we have

un(z, x) ≤ e−λn zψλn (x) ∀(z, x) ∈ R × TL ,

where λn > 0 is the smallest solution of the characteristic equation Λθ(λn, cnλn) =
cnλn . Now note that λn → λ0 as n → ∞ where λ0 > 0 is the unique solution of the
equation Λθ(λ0, c∗

θ λ0) = c∗
θλ0. Hence we get from Lebesgues convergence theorem

that
∫ ∞

0
un(s, x)ds →

∫ ∞

0
u(s, x)ds uniformly for x ∈ TL as n → ∞.

Therefore we infer from (67) that

α∗ =
∫

TL

v+(x) exp

(
−α(x)

c

∫ ∞

0
u(s, x)ds

)
dx,
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and, because of the definition of α∗ in (66), one concludes that u �= 0. Hence Problem
(15)–(17) has a nontrivial solution for the wave speed c = c∗

θ and the result follows
for any angle θ �= 0, π .

For the cases θ = 0 or π , we use the same arguments as above. The lack of local
compactness for this elliptic degenerate operators Δ0 and Δπ is handled similarly
as in the proof of the existence of wave for θ = 0 by using the corresponding par-
abolic equation. The details are left to the reader and this completes the proof of
Proposition5.2.

5.3 Proof of Theorem 1(i i)–(2)

The aim of this section is to prove Theorem1(i i)–(2), that is that System (1) does
not admit any travelling wave solution in any direction θ and for any wave speed
0 < c < c∗

θ . Our precise result is given in the following Theorem:

Theorem 4 Let Assumption2.1 be satisfied and assume thatR0 > 1. Let us assume
that (15)–(19) has a positive solution (u, v,w) in some direction θ ∈ [0, 2π) for
some wave speed c > 0. Then there exists λ > 0 such that

cλ = Λθ(λ, cλ).

Here recalling the definition of c∗
θ in (39), this implies that c ≥ c∗

θ and this completes
the proof of Theorem1(i i)–(2).

In order to prove Theorem4, once again we split the arguments into two parts:
the case θ ∈ (0, 2π)\{π} and the case where θ = 0 or π . The key argument in that
proof relies on the estimate derived in Proposition4.1.

Proof (Proof of Theorem4 for θ �= 0, π ) Let θ ∈ (0, 2π)\{π} be given and fixed.
Let (u, v,w) be a positive solution of (15)–(19).

Now, recalling that the function u satisfies (15), let us observe that due to Propo-
sition4.1, the function ∇u

u is bounded on R × TL . Hence consider the real number
Λ ∈ R defined by

Λ := lim inf
z→∞
x∈TL

∂zu(z, x)

u(z, x)
. (68)

Let us consider a sequence {(zn, xn)}n≥0 ⊂ R × TL such that

lim
n→∞ zn = ∞ and Λ = lim

n→∞
∂zu(zn, xn)

u(zn, xn)
.

Next consider the sequences of functions ũn and w̃n defined as

ũn(z, x) = u (z + zn, x + xn)

u(zn, xn)
and w̃n(z, x) = w(z + zn, x + xn)

u(zn, xn)
.
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Now note that these sequences of functions are locally bounded (see Proposition4.1).
Hence, due to elliptic regularity, one may assume, possibly along a subsequence, that

ũn(z, x) → ũ(z, x) for the topology of C1
loc(R × TL),

w̃n(z, x) → w̃(z, x) and ∂zw̃
n(z, x) → ∂zw̃(z, x) for the L∞

loc − weak ∗ topology,

while xn → x∞ in TL .
Furthermore these limit functions satisfy the following system of equations

{[
Δθ + c∂z − 1

]
ũ(z, x) + rw̃(z, x) = 0, (z, x) ∈ R × TL ,[

c∂z − β
]
w̃(z, x) + κ(x + x∞)ũ(z, x) = 0, (z, x) ∈ R × TL .

(69)

Note that the definition of ũn ensures that ũ(0, 0) = 1. As a consequence one gets
that ũ > 0. Furthermore the definition of Λ in (68) implies that

∂z ũ ≥ Λũ and ∂z ũ(0, 0) = Λũ(0, 0). (70)

Moreover formula (23) for w̃n rewrites as

w̃n(z, x) = α(x + xn)

c

∫ ∞

0
ũn(z + s, x)v(zn + z + s, x + xn)e

− β

c sds.

Hence, recalling that κ = αv+, Fatou lemma ensures that, for all (z, x) ∈ R × TL ,
one has

κ(x + x∞)

∫ ∞

0
ũ(z + s, x)e− β

c sds ≤ cw̃(z, x).

On the other hand, since v(z, x) ≤ v+(x), one also obtains the reserve inequality, so
that

lim
n→∞ w̃n(z, x) = 1

c
κ(x + x∞)

∫ ∞

0
ũ(z + s, x)e− β

c sds = w̃(z, x), (71)

where the above limit is understood for the weak star topology of L∞(R × TL).
Now observe that the above equation for w̃n coupled with the property ∂zv ≥ 0

(see (16)) ensures that for all n ≥ 0

∂zw̃
n(z, x) ≥ α(x + xn)

c

∫ ∞

0

∂z ũn(z + s, x)

ũn(z + s, x)
ũn(z + s, x)v(zn + z + s, x + xn)e

− β
c sds.

Thus due to the definition of Λ and using (71) one gets

∂zw̃(z, x) ≥ Λw̃(z, x). (72)
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In order to complete the proof of the result let us consider the function û defined by

û(z, x) = Λ − ∂z ũ(z, x)

ũ(z, x)
.

Observe that due to (70) it holds

û ≤ 0 and û(0, 0) = 0.

Moreover this function satisfies the following elliptic problem

(
Δθ + 2

(
1 cos θ

cos θ 1

) ∇ũ

ũ
· ∇ + c∂z − r

w̃

ũ

)
û = r

ũ
(∂zw̃ − Λw̃) . (73)

Now, using (72), one concludes that

û ≡ 0 and ∂zw̃ ≡ Λw̃,

that is, recalling that ũ > 0,

ũ(z, x) ≡ eΛzϕ(x) and w̃(z, x) = eΛzw0(x),

for some functions ϕ > 0 and 0 ≤ w0 with w0 �≡ 0.
Next, on the one hand, plugging the above expression for ũ into the integrability

condition (71) ensures that
cΛ < β. (74)

On the other hand, plugging the above expression for w̃ into the w̃−equation (69)
yields

(cΛ − β)w0(x) + κ(x + x∞)ϕ(x) = 0.

Finally plugging the above expressions into (69), recalling (74) and that ϕ > 0,
implies that λ := −Λ satisfies

cλ > −β and cλ = Λθ(λ, cλ).

This completes the proof of the theorem in the case where θ �= 0, π .

Proof (Proof of Theorem4 with θ = 0 or π ) In order to avoid the lack of uniform
ellipticity, we shall work with the parabolic problem. For that purpose consider
(u, v,w) to be a positive solution of (15)–(19) for some wave speed c > 0 and let us
introduce the function

(S, H, I ) (t, x) = (u, v,w) (cos θx − ct, x).
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Note that it is a one-dimensional entire solution of (1). Moreover with these notation,
Proposition4.1 ensures that the function I

S is globally bounded on R × R. So that
parabolic regularity applies and ensures that the ratios ∂t S

S , ∂x S
S are all bounded on

R × R. Similarly as in the proof for the case θ �= 0, π , we define Λ ∈ R by

Λ := lim sup
t→−∞

inf
x∈[0,L]

∂t S(t, x)

S(t, x)
.

Then using similar arguments as the ones developed above for the elliptic case, one
obtains that λ = Λ

c satisfies the following properties:

cλ > −β and cλ = Λθ (λ, cλ) .

This completes the proof of Theorem4 in the case where θ = 0, π .

6 Qualitative Properties of the Minimal Wave Speed

The aim of this section is to derive further qualitative properties of the minimal wave
speed and to prove Theorem2 as well as Theorem3.

6.1 Proof of Theorem 2

In this sectionwe prove Theorem2. To that aim let us recall that according to Proposi-
tion3.1, for each (λ, ν) ∈ R × (−β,∞), the function θ �→ Λθ(λ, ν) is increasing on[
0, π

2

]
. Hence it easily follows from (39) that for all λ ∈ R, the function θ �→ νθ (λ)

is increasing on that interval so that the function θ �→ c∗
θ is also increasing on

[
0, π

2

]
.

Furthermore the symmetries of the minimal wave speed stated in Theorem2(i)
directly follow from the symmetries of the function θ �→ μθ(λ, ν) stated in
Lemma3.3.

We shall now focus on proving the second part of Theorem2. Recall that the
influence of the periodic Schwarz rearrangement of the heterogeneity of the medium
increases the spreading rate of invasion for the scalar Fisher-KPP equation (we refer
toBerestycki et al. in [6] andNadin in [27, 28]).We shall prove that the same property
holds true for the epidemic system under consideration, namely System (1). For that
purpose let us recall the definition of the periodic Schwarz rearrangement. More
details are given by Kawohl in [19, 20].

Definition 6.1 (Schwarz rearrangement) Let f ∈ L∞+ (TL) be a given function.
There exists a unique measurable, non-negative, bounded and L−periodic function
f̂ such that:
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(i) f̂ is symmetric with respect to L
2 ,

(ii) f̂ is nondecreasing on
(
0, L

2

)
,

(iii) f̂ and f have the same distribution function, that is that for each t ∈ R the
sets {x ∈ TL : f (x) > t} and {x ∈ TL : f̂ (x) > t} have the same Lebesgue
measure.

This function f̂ is called the periodic Schwarz rearrangement of the function f .

In order to prove that Schwarz rearrangement increases the epidemic threshold
as well as the minimal wave speed when it is defined, let us explicitly write down
the dependence of the function κ in the function μθ(λ, ν) defined in (31). It is now
written as μθ(λ, ν; κ).

Recall that the following result has been proved by Nadin [27, 28]: for all θ ∈
[0, 2π) and all (λ, ν) ∈ R × (−β,∞) one has

μθ(λ, ν; κ) ≤ μθ(λ, ν; κ̂) and μθ(λ, ν; κ) ≤ μθ(λ, ν; α̂v̂+).

Note that this result follows from the variational formula (33) togetherwith Polya and
Hardy–Littlewood inequalities for rearrangements. Now, using the above inequali-
ties, Theorem2(i i) follows by recalling definition (8) and (39). This completes the
proof of Theorem2.

6.2 Influences of the Period

In order to study the influence of the periodicity of the medium upon the epidemic
threshold and upon the minimal wave speed and to prove Theorem3, we consider
two functions α and v+ in L∞+ (T1) such that κ := α × v+ �≡ 0 and we define for any
L > 0 the L−periodic functions

αL(x) = α
( x
L

)
, v+

L (x) = v+
( x
L

)
, and κL(x) = κ

( x
L

)
x ∈ TL .

As above, we explicitly write down the dependence ofμθ(λ, ν)with respect to L > 0
by using the notation μθ

L(λ, ν). Let us also observe that because of the symmetry
property stated in Theorem2, it is sufficient to study the dependence of the period L
for the angles θ ∈ [0, π

2

]
. The proof of Theorem3 will follow from the properties of

that function L �→ μθ
L(λ, ν). We first collect and recall some needed properties.

Lemma 6.1 For each θ ∈ [0, π
2

]
, λ ∈ R and ν > −β the following hold true.

(i) The function L �→ μθ
L(λ, ν) is increasing on (0,∞).

(ii) One has

lim
L→0+

μθ(λ, ν) = r

ν + β

∫

T1

κ(x)dx,

uniformly with respect to θ ∈ [0, π
2

]
, locally uniformly for λ ∈ R and ν > −β.
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(iii) One has
lim
L→∞ μθ

L(λ, ν) = − (λ cos θ)2 + K∞(λ cos θ, ν),

locally uniformly for λ ≥ 0, ν ≥ 0 and θ ∈ [0, π
2

]
where we have set

K∞(λ, ν) =
⎧
⎨

⎩

1
ν+β

j−1
(
λ
√

ν + β
)

if λ
√

ν + β ≥ j (r‖κ‖∞) ,

r‖κ‖∞
β+ν

if λ
√

ν + β ≤ j (r‖κ‖∞) ,

and j (k) = ∫ 1
0

√
k − rκ(x)dx for any k ≥ r‖κ‖∞.

Parts (i) and (i i) in the above result have been proved by Nadin in [27, 28]
while the part (i i i) in the above lemma has been proved by Hamel et al. in [17] (see
Proposition3.2 in that paper).

Because of the above lemma, one may first obtain that the epidemic threshold
R0 = R0,L := μθ

L(0, 0) is increasing with respect to L > 0 and satisfies

lim
L→0

R0,L = R0,0 := r

β

∫

T1

κ(x)dx and lim
L→∞R0,L = R0,∞ = r‖κ‖∞

β
.

Next let us define the function Λθ
L(λ, ν) by

Λθ
L(λ, ν) := λ2 − 1 + μθ

L(λ, ν),

and observe that the above function is increasing with respect to L for any (λ, ν) ∈
R × (−β,∞) and any θ ∈ [0, π

2

]
. As a consequence if R0,0 > 1, then R0,L > 1

for any L > 0 and the minimal wave speed c∗
θ,L is well defined for any L > 0.

Recalling (39), it follows from Lemma6.1 (i) that T �→ c∗
θ,L is increasing with

respect to L . Hence it converges as L → 0 and the limit, denoted by c∗, is given, due
to Lemma6.1(i i) by the following expression

c∗ = sup

{
c ≥ 0 : r

cλ + β

∫

T1

κ(x)dx + λ2 − 1 − cλ ≥ 0, ∀λ ≥ 0

}
.

This formula is equivalent to the formulation given in Theorem3(i) and this com-
pletes the proof of part (i).

Now in order to prove part (i i) of Theorem3, we assume that R0,∞ > 1. Then,
since the L �→ μθ

L(0, 0) is increasing (see Lemma6.1(i)), there exists L0 > 0 large
enough such that R0,L > 1 for all L ≥ L0. Hence the minimal wave speed c∗

θ,L is
well defined for any L ≥ L0 and it is increasing with respect to L . Now to complete
the proof of Theorem3(i i), due to Lemma6.1(i i i), it is sufficient to prove that c∗

θ,L
is uniformly bounded with respect to L ≥ L0. To that aim, let us observe that for
each L > 0, for each θ ∈ [0, π

2

]
and each (λ, ν) ∈ R × (−β,∞), one has

http://dx.doi.org/10.1007/978-81-322-3640-5_3
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Λθ
L(λ, ν) − cλ ≤ λ2 − cλ − 1 + r‖κ‖∞

β + ν
. (75)

Now recalling that R0,∞ > 1, let us defined the quantity c ∈ (0,∞) by

c = inf

{
c > 0 : ∃λ > 0 λ2 − cλ − 1 + r‖κ‖∞

β + cλ
< 0

}
.

Moreover, recalling the definition of c∗
θ,L in (39), the upper estimate in (75) ensures

that for each L > 0 sufficiently large one has

c∗
θ,L ≤ c, ∀θ ∈

[
0,

π

2

]
.

As a consequence of the boundedness of that quantity and due to Lemma6.1(i i i),
one obtains that

lim
L→∞ c∗

θ,L = c∗
θ,∞,

where this limit wave speed in defined in Theorem3(i i). This completes the proof
of the theorem.
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AWithin-Host Model of Dengue Viral
Infection Dynamics

Arti Mishra

Abstract In this paper, a non-linear within-host viral infection model has been
proposed and analyzed for primary dengue infection. The model incorporates the
dynamics of virus particles, T cells and antibodies during pathogenesis of dengue
infection. The basic reproduction number has been computed. The five equilibrium
states exist. The existence conditions for various equilibrium points are obtained.
The stability analysis of equilibrium states have been discussed. The existence of bi-
stability of statesE2 andE3 is possible under certain parametric conditions. Themodel
shows that the viral load decreases within 7 to 14 days after the onset of symptoms
which validates the clinical feature of dengue fever. The model also concludes that
the humoral response is more powerful in viral clearance as compared to immune
response by CD8 T cells.

Keywords T cells · Threshold · Stability · Dengue infection · Antibodies
2010 Mathematics Subject Classification One primary · One secondary

1 Introduction

Dengue disease has spread almost all over the world and has become the disease
of important international health concern. As there is no commercial dengue vac-
cine [7], there is need to understand the infection dynamics inside the body. Many
mathematical models on dengue infection dynamics at population level are found in
literature [5, 6, 14, 17, 18]. However, very few models are available in literature for
within-host dengue dynamics [1, 2, 4, 8, 15].

As the virions enter into the body, they infect monocytes, macrophages, dendritic
cells and hepatocytes [9, 10, 19]. This stimulates and expands the dengue virus
specificCD4 andCD8 T cells [19, 20]. TheCD4 T cells obstruct the spread of virions
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through the secretion of antiviral cytokines such as IFNγ that block viral replication
[20]. The CD8 T cells are also important for viral clearance as they directly kill the
infected cells which reduces virus load [16, 19]. The CD4 T cells are needed to elicit
the antibody responses and for the production of both B cells as well as CD8 T cells
[12, 16, 19, 20]. The B cells further produce antibodies to bind the virions [12, 16,
19].

Particularly, Nuraini et al. have incorporated the class of immune cells for primary
dengue infection dynamics [15]. These immune cells activate the CTL response
which are basically carried by CD8 T cells. They kill infected cells and are also
activated by them. They have not considered the T cell mediated immune response
as well as humoral response (by antibodies) explicitly. Ansari and Hesaaraki have
considered the Beddington-DeAngelis functional response for target cells and virus
particles interaction in the model proposed by Nuraini [1]. They have discussed the
existence and stability of various equilibrium states. The dynamics of primary dengue
infection at cellular level has also been modeled by Ambika and Gulati [8]. They
have considered only the humoral response in the model.

In this paper, a within host nonlinear model for primary dengue infection has been
proposed and analyzed to reveal the biological process. To model the virus clearance
dynamics in primary dengue infection, both the responses namely, T cell response as
well as humoral response should be incorporated. It is known that both the responses
play very important role in controlling primary dengue infection dynamics [3, 8].
The paper incorporates the dynamics of T cell mediated response by CD4 and CD8

T cells and humoral response by antibodies. In Sect. 2, the mathematical model has
been formulated. In Sect. 3, model analysis has been done. In Sect. 4, existence of
bi-stability has been discussed. The last section discusses the conclusion of the paper.

2 The Mathematical Model

The within-host nonlinear model assumes the presence of single serotype only. Con-
sider S, I and V be the number of healthy target cells (monocytes, macrophages or
dendritic cells, etc.), infected cells and dengue virions respectively. The basic math-
ematical model having interaction among S, I and V cells was proposed by Nowak
and May [13]. In the present model, the dynamics of cellular response by CD4 T
cells (let H) and CD8 T cells (let Z) as well as the humoral response by antibodies
(let A) have been incorporated. Let ω be the constant recruitment of target cells. The
virus particles attack target cells and make them infected with the rate β1. Let β2 be
the decay rate of virus particles due to activation of dengue specific CD4 T cells. The
rate of activation of CD4 T cells by virus particles be β3. Let β4 and β5 be the rates
of activation of CD8 T cells and CD4 T cells by infected cells and virus particles
respectively. As CD4 T cells elicit the antibody response, let the rate of activation be
c1. Assume d, d1, d2, d3, d4 and d5 be the natural death rates of target cells, infected
cells, virus particles, CD4 T cells, CD8 T cells and antibodies respectively. The burst
rate for virus particles be k and the killing rate of infected cells by CD8 T cells be
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Fig. 1 Schematic diagram

p. Let p1 be the rate at which antibodies neutralize the virus particles. The Fig. 1
represents the schematic diagram for virus-cell dynamics.

Keeping above in view, the model is formulated below:

dS

dt
= ω − β1SV − dS (1)

dI

dt
= β1SV − pIZ − d1I (2)

dV

dt
= kI − β2HV − p1AV − d2V (3)

dH

dt
= β3HV − d3H (4)

dZ

dt
= β4IZ + β5HZ − d4Z (5)

dA

dt
= c1H − d5A (6)

The model is associated with the following non-negative initial conditions:

S(0) ≥ 0, I(0) ≥ 0, V (0) ≥ 0,H(0) ≥ 0,Z(0) ≥ 0,A(0) ≥ 0
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3 Model Analysis

3.1 Basic Reproduction Number

The basic reproduction number for themodel (1)–(6) is defined as the average number
of secondary infected target cells generated by a single infected target cell placed in
an uninfected target cell population [15]. The basic reproduction number in absence
of any immune response is computed by next generation approach. It is given as:

R0 = β1kω

d1d2d
(7)

3.2 Equilibrium Points and Stability Analysis

It is observed that the non-linear system of equations (1)–(6) have five equilib-
rium points. The existence conditions for all equilibrium states are computed in
terms of basic reproduction number. For stability analysis of various equilibrium
states, the system (1)–(6) is linearized and the Jacobian matrix [J] about the point
E(S, I, V,H,Z,A) is given as:

J[E] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−β1V − d 0 −β1S 0 0 0
β1V −d1 − pZ β1S 0 −pI 0
0 k −β2H − d2 − p1A −β2V 0 −p1V
0 0 β3H β3V − d3 0 0
0 β4Z 0 β5Z β4I + β5H − d4 0
0 0 0 c1 0 −d5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

1. The disease-free equilibrium point E0 = (Ŝ, 0, 0, 0, 0, 0, 0); Ŝ = ω
d

The eigenvalues of jacobian matrix [J] about the disease-free point E0 are as
follows:

− d,−d3,−d4,−d5,
−A ± B

2
where, A = d1 + d2

B =
√

(d1 − d2)2 + 4β1kŜ

It is observed that all the eigenvalues are having negative real part when R0 < 1.
Therefore, the disease-free point (E0) is locally asymptotically stable.

For the global stability of the disease-free equilibrium state (E0), the Lyapunov
second method of stability [11] has been used. Consider the following positive defi-
nite function L(I, V ) as:
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L(I, V ) = k

dd1
I + V

d

Taking derivative of L(I, V ) with respect to t gives,

L̇(I, V ) = k

dd1
İ + V̇

d

L̇(I, V ) ≤ −V

(
d2 − β1kω

dd1

)

or L̇(I, V ) ≤ −Vd2

(
1 − β1kω

dd1d2

)
< −Vd2 for

β1kω

dd1d2
(=R0) < 1

or L̇(I, V ) < 0 for R0 < 1

L(I, V ) is a Lyapunov function for R0 < 1. Accordingly, the global stability of E0

can now be stated as following:

Theorem 1 The locally asymptotically stable stateE0 is also globally asymptotically
stable.

Numerical simulation for disease-free state (E0) has been performed for the choice
of following data from literature [8]:

ω = 10, β1 = 0.001, β2 = 0.001, β3 = 0.001, β4 = 0.001, k = 1, d = 0.05,

d1 = 0.5, d2 = 0.5, d3 = 0.05, d4 = 0.02, d5 = 0.051, p1 = 0.001, p = 0.001,

c1 = 0.01, β5 = 0.015

R0 is found to be less than 1. It is observed from time series analysis (Fig. 2) that, virus
particles get cleared within 7–14 days which is in line with the clinical observation
of dengue infection.

Fig. 2 Time series for the
virus particles
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2. The ineffective immune response state E1 = (S̄, Ī, V̄ , 0, 0, 0)
where

S̄ = d1d2
β1k

; Ī = (R0 − 1)dd2
β1k

; V̄ = (R0 − 1)d

β1

Accordingly, the state E1 exists for

R0 > 1 (8)

For the stability of E1 state, the three eigenvalues of the Jacobian matrix [J] about E1

are

− d5,−d4 + (R0 − 1)dd2β4

β1k
,−d3 + (R0 − 1)dβ3

β1
(9)

It is noted that the eigenvalues given in (9) will have negative real part when the
following condition is satisfied:

R0 < 1 + min

(
β1kd4
β4dd2

,
β1d3
β3d

)
(10)

The remaining three eigenvalues are the roots of the following cubic polynomial:

λ3 + M1λ
2 + M2λ + M3 = 0 where,

M1 = d + d1 + d2 + β1V̄ > 0

M2 = dd1 + dd2 + β1d1V̄ + β1d2V̄ > 0

M3 = β1d1d2V̄ > 0

It is observed that the M1M2 − M3 > 0. Therefore, by Routh–Hurwitz criterion, all
the three eigenvalues will have negative real part. Hence, all the six eigenvalues of
the system will have negative real part under condition (10).

Theorem 2 The state E1 is locally asymptotically stable under condition (10).

The immune response is ineffective and could not activate T cell response as well as
humoral response to a level where infection could be eradicated.

3. The ineffective antibody response state E2 = (S̃, Ĩ, Ṽ , 0, Z̃, 0) where

S̃ = ωβ4d2
β1kd4 + β4dd2

; Ĩ = d4
β4

; Ṽ = d4k

β4d2
; Z̃ = β4ωβ1k − β4dd2d1 − kβ1d4d1

p(β1kd4 + β4dd2)



AWithin-Host Model of Dengue Viral Infection Dynamics 171

Accordingly, the state E2 exists for

β4ωβ1k > β4dd2d1 + kβ1d4d1

or

R0 > 1 + β1kd4
β4dd2

(11)

For stability of antibody response ineffective equilibrium point (E2), the two of the
eigenvalues of Jacobian matrix about E2 for the system are given as:

− d5,−d3 + β3d4k

β4d2
(12)

It is observed that the eigenvalues given in (12) are having negative real part provided:

β1kd4
β4dd2

<
β1d3
β3d

(13)

The remaining eigenvalues are the roots of following fourth degree polynomial:

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0 where

A1 = d + d1 + d2 + β1Ṽ + pZ̃

A2 = d(d1 + d2) + d1d2 − β1kS̃ + β1Ṽ (d1 + d2) + pZ̃(d + d2 + d4 + β1Ṽ )

A3 = β1kd4(β4(d2 + d) + β1d2(d2 + d4)k)ω

β4dd2 + β1kd4
− d1d4(β4(d + d2 + β1d2d4k))

β4

A4 = d2d4pZ̃(d + β1Ṽ )

Applying the Routh–Hurwitz criteria to the above fourth degree polynomial, it is
observed that A1 > 0, A4 > 0, A3 > 0 and A1A2A3 > A2

3 + A2
1A4 provided the con-

ditions (11) and (13) are satisfied.

Theorem 3 The state E2, if exists, is locally asymptotically stablewhen the condition
(13) is satisfied.

This state is obtained due to the presence of infected cells in the body. For humoral
response to be activated, there should be sufficient number of virus particles.

4. The ineffective CD8 T cells response state E3 = (S̆, Ĭ, V̆ , H̆, 0, Ă)
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S̆ = ωβ3

β1d3 + dβ3
; Ĭ = β1ωd3

(β1d3 + dβ3)d1)
; V̆ = d3

β3
;

H̆ = (ωβ1kβ3 − β1d1d2d3 − dd1d2β3)d5
d1(β1β2d5d3 + β1p1c1d3 + dβ2d5β3 + dp1c1β3)

;

Ă = c1(ωβ1kβ3 − β1d1d2d3 − dd1d2β3)

d1(β1β2d5d3 + β1p1c1d3 + dβ2d5β3 + dp1c1β3)

The state E3 exists for,

ωβ1kβ3 > β1d1d2d3 + dd1d2β3

or

R0 > 1 + β1d3
β3d

(14)

For the stability of CD8 T cells response ineffective equilibrium point (E3), the one
of the eigenvalues of Jacobian matrix about E3 for the system are given as:

− d4 + β5H̆ + β4 Ĭ (15)

It is observed that the eigenvalue in (15) has negative real part provided:

R0 < W

(
1 + β1d3

β3d

)
;W = (β5d2d5 + β2d4d5 + c1d4p1)kβ3d

(β5β3kd5 + β2β4d3d5 + β4c1d3p1)d1d2
(16)

The rest of the eigenvalues are the roots of following fifth degree polynomial:

λ5 + B1λ
4 + B2λ

3 + B3λ
2 + B4λ + B5 = 0

B1 = d + d1 + d2 + d3 + d5 + β2H̆ + Ăp1 + β1V̆

B2 = β2d3H̆ + (d2 + β2H̆ + p1Ă)(d5 + d + β1V̆ + d1) + (ωβ1kβ3 − β1d1d2d3−
dd1d2β3)d1d3 + d(d1 + d5) + d1(d5 + β1V̆ )

B3 = (dd2d5 + d1d2d5 + β2(d1d3 + d1d5 + d3d5)H̆ + Ăp1(d1d3 + d1d5 + d3d5+
dd1 + d3 + d5) − (−ωβ1kβ3 + β1d1d2d3 + dd1d2β3)(d + d3 + d5) + β3c1H̆p1+

β1(d3d5 + d2(d3 + d5) + β2d3H̆

B4 = (d3d5(d1(d2 + β2H̆ + Ăp1) − (β1d1d2d3 + β3dd1d2 − β1kωβ3)(d3d5+
d(d3 + d5)) + β1(d3d5(d2 + β2H̆ + Ăp1) + d1(d3d5 + d2(d3 + d5) + β2d3H̆+
β2d5H̆ + Ă(d3 + d5)p1) + β3d5kS̆))V̆ + d(d2d3d5 + β2d3d5H̆ + Ăd3d5p1+

d1(d2d3 + d2d5 + d3d5 + β2d3H̆ + β2d5H̆ + Ăd3p1 + Ăd5p1)))
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B5 = dd1H̆(β2d3d5 + β3c1p1V̆ ) + β1d1d3d5(β2H̆ + p1Ă)

For the above fifth degree polynomial, it is observed that B1 > 0, B2 > 0, B3 > 0,
B4 > 0, B5 > 0, B1B2B3 > B2

3 + B2
1B4 and (B1B4 − B5)(B1B2B3 − B2

3 −
B2
1B4) > B5(B1B2 − B3)

2 + B1B2
5 for the conditions (14) and (16) to be satisfied.

Hence, by Routh–Hurwitz criteria, all the five roots will have negative real part.

Theorem 4 The state E3, if exists, is locally asymptotically stable under the condi-
tion (16).

The activation of CD8 T cells depends not only on CD4 T cells but also occurs due to
the presence of infected cells. There is a need of sufficient amount of infected cells
for the CD8 T cells to be activated.

5. The Endemic equilibrium point E∗ = (S∗, I∗, V ∗,H∗,Z∗,A∗)

S∗ = ωβ3

β1d3 + dβ3
; I∗ = d3(β5d2d5 + d5β2d4 + p1c1d4)

(β4d3β2d5 + β4d3p1c1 + β5kd5β3)
; V ∗ = d3

β3
;

H∗ = d5(−β4d3d2 + β3kd4)

(β4d3β2d5 + β4d3p1c1 + β5kd5β3)
;

Z∗ = −d1 + β1S∗d3 − d1β3(1 + αS∗)I∗

pβ3(1 + αS∗)I∗
; A∗ =

c1(−β4d3d2 + β3kd4)

(β4d3β2d5 + β4d3p1c1 + β5kd5β3)

It is observed that for the positivity of endemic equilibrium point (E∗), the following
two conditions are satisfied:

β1kd4
β4dd2

>
β1d3
β3d

(17)

R0 > W

(
1 + β1d3

β3d

)
(18)

W = (β5d2d5 + β2d4d5 + c1d4p1)kβ3d

(β5β3kd5 + β2β4d3d5 + β4c1d3p1)d1d2

Due to complex expressions for elements of 6 × 6 Jacobian matrix, using Math-
ematica, the local stability analysis of E∗ is not conclusive. Therefore, numerical
simulations have been performed for the following relevant data [8]:
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Fig. 3 Time series for the
virus particles

ω = 10, β1 = 0.001, β2 = 0.001, β3 = 0.004, β4 = 0.005, β5 = 0.001, k = 3.5, d =
0.05, d1 = 0.5, d2 = 0.5, d3 = 0.05, d4 = 0.02, d5 = 0.051, p1 = 0.001, p = 0.001,

c1 = 0.08

For the above choice of data, endemic state exists. It is found that starting with the
neighborhood of E∗(160, 2.291272629, 12.5, 8.543636855, 372.8773585,
13.40178330), the solution converges to endemic state (Fig. 3).

4 Existence of Bi-Stability

With the help of existence and stability conditions of various equilibrium points,
the bifurcation diagrams with respect to R0 have been drawn for Ṽ (= kd4

β4d2
) > V̆ (=

V ∗)(= β1d3
β3d

) and Ṽ < V̆ (= V ∗) in Figs. 4 and 5 respectively. The following obser-
vations are made from bifurcation diagrams:
The regions of existence and stability of states E0 and E1 remain same in Figs. 4 and
5.

In Fig. 4, the state E2 gets unstable when its viral load is higher than that of E3 or
E∗ states. Further, for W < 1, the state E3 becomes unstable. However, for W > 1,
it is found to be stable in the region given in Fig. 4. The endemic state E∗ exists,
when R0 is higher than (1 + Ṽ ), the virus particles density in E2 state. No region of
bi-stability could be observed in this case.

In Fig. 5, when virus load in E3 or E∗ states is higher than the E2 state, the state E2

gets stable if exists. However, forW < 1, the state E3 remains unstable. For W > 1,
the state E3 gets stable in the region (1 + V ∗) < R0 < W (1 + V ∗). The bi-stability
of states E2 and E3 occurs in this region. The endemic state does not exist in this
case.

Thus, the bi-stability of the states E2 and E3 exist in the region (1 + V ∗) < R0 <

W (1 + V ∗) for Ṽ > V ∗(= V̆ ).
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Fig. 4 Bifurcation diagram for Ṽ > V ∗(=V̆ )

Fig. 5 Bifurcation diagram for Ṽ < V ∗(=V̆ )

5 Conclusions

In this paper, the cellular dynamics of primary dengue infection has been proposed
and analyzed through non-linear mathematical model. The model incorporates the
effects of T cells specifically, CD4 and CD8 and antibody response to present the
clinical features of primary dengue infection. It validates the clinical features of
disease that dengue virus gets cleared from the body within 7–14 days. Further, it is
found analytically that for R0 < 1, the infection free state remains stable while rest
of the other states do not exist. The endemic state is found to be stable for the choice
of data. By bifurcation diagrams, it can be concluded that there is a region for the
bi-stability of states E2 and E3 for W > 1 and V ∗(= V̆ ) > Ṽ . It is also observed
that there is a critical level of infected cells and virus particles inside the body above
which T cell response activates. Once the state E2 gets stable, the virus load is found
to be low as compared to E3 and E∗ states. The states E2 and E3 will be unstable if
the E1 state gets stable. If the state E3 stabilizes andW > 1, infection will not persist
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as will violate the existence condition of the endemic state E∗. Therefore, humoral
response is more strong as compared to immune response by CD8 T cells.
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Stabilization of Prey Predator Model
via Feedback Control

Anuraj Singh

Abstract In this paper, the effect of feedback linearization in Leslie–Gower type
prey-predator model with Holling-type IV functional response is investigated. It is
shown that the closed loop system may be stabilized using either approximate or
exact linear approach. The former approach uses a linear control variable to pro-
vide a feedback linearization law whereas in latter approach, state space coordinates
are suitably changed. Using this feedback control, a complex non-linear system is
reduced to a linear controlled system that yields a globally asymptotically stable
equilibrium point. Finally Analytical findings are validated through numerical sim-
ulations.

Keywords Feedback control ·Exact linearization ·Closed loop ·Asymptotic stable
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1 Introduction

The prey predator dynamics has been extensively discussed by several investigators
[4, 15, 16]. Leslie and Gower proposed a prey-predator model under the assumption
that there is a correlation between reduction in population of predator and its pre-
ferred food [10]. Even, another prey-predator model has been introduced by Leslie
in which carrying capacity of predator population depends commensurately upon
prey population [10, 11]. Later, May incorporated Holling type functional response
in this model [15]. On account of the functional responses of types I, II and III, the
model produced a wide range of dynamics and investigators explored global stabil-
ity of equilibrium point, occurrence of chaos and periodicity in the system [2, 5,
7, 9]. Sokol and Howell [19] introduced a Holling type IV functional response in
the model which fitted their experimental data significantly better. The functional
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response IV is characterized by inflation in predation rate with prey population to
utmost at a threshold prey density beyond which predation rate drops [6]. Whereas,
in case of other functional responses the predation rate inflates with prey density. In
another study [3], a model with functional response IV numerically demonstrated
different dynamics at significant levels of prey interference in comparison to the other
functional responses. Li and Xiao investigated Leslie–Gower model with functional
response IV which manifested limit cycles and bifurcation [12]. Models incorporat-
ing time delays with Holling type IV functional response are extensively studied by
Jiang and Lian [8, 13]. They explored complex dynamics in the system and demon-
strated stability, periodic orbits and direction of bifurcating periodic orbits.

The employment of feedback control in complex systems generated significant
interest after influential work by Ott [17]. The method is so simple and convenient
that it appears to be remarkable for biological problem. Not much of research has
been done in this area pertaining to ecological systems [14, 18].

By studying a Leslie–Gower prey-predator model with Holling’s functional
response of type IV, it is shown in this paper that an appropriately chosen control
approach can render an unstable system into one that is globally stable.

2 The Mathematical Model

Let the density of prey and predator population be X (t) and Y (t) respectively. It
is assumed that prey population is growing logistically with Holling’s functional
response of type IV

dX

dT
= r X

(
1 − X

K

)
− mXY

X2 + a

dY

dT
= s

(
1 − Y

nX

)
Y. (1)

where r is the intrinsic growth of prey species with carrying capacity K . m denotes
per capita consumption rate of the predator and the constant a denotes the number of
prey required to make maximum rate just half. s is the growth rate of the logistically
growing population Y and n is magnitude of food quality of prey for reproduction
in predator population. All the parameters are assumed to be taken positive. The
following set of non-dimensional variables and parameters helps reduce the number
of parameters from 6 to 3:

t = rT, x = X/K , y = mY/r K 2 and

α = a/K 2, β = mn/Kr, γ = s/r
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This leads to non-dimensional form of the system

dx

dt
= x (1 − x) − xy

x2 + α

dy

dt
= γ

(
1 − y

βx

)
y. (2)

The initial conditions for the system (2) are:

x ≥ 0, y ≥ 0. (3)

From the biological point of view, the equilibrium point lying in the positive quadrant
R2 is of interest for the dynamics of the system. The interior equilibrium point
E∗ = (x∗, y∗) can be obtained from the equations:

1 − x = y

x2 + α
, y = βx .

It is seen that the system (2) exhibits Hopf bifurcation and admits a limit cycle under
certain conditions (refer [12]).

The main objective of this paper is to show that a dynamic balance can be reached
and the system (2) can be stabilized both locally and globally by suitably chosen
feedback linearization design.

3 Feedback Linearization

Feedback linearization fully or partly transforms the primary nonlinear system into
an equivalent linear system. This approach is entirely different from the traditional
Jacobian approach.

3.1 Approximate Linearization

In the present section, an effort is made to stabilize the system (2) by employing
approximate linearization.

Theorem 1 The feedback control law u stabilizes the closed-loop system (2), where
u is

u = k1(x − x∗) + k2(y − y∗)
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k1 >
(k2 − γ )

(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2

)

x∗
x∗2+α

− βγ

k2 < γ + 2x∗ + (α − x∗2)βx∗

(x∗2 + α)2
− 1.

Proof A linear control u is exerted on the system (2) as

dx

dt
= x (1 − x) − xy

x2 + α

dy

dt
= γ

(
1 − y

βx

)
y + u. (4)

Transformations v = x − x∗ and w = y − y∗ reduce the system (4) to

v̇ = (v + x∗)
(
1 − (v + x∗)

) − (v + x∗)(w + y∗)
(v + x∗)2 + α

ẇ = (w + y∗)
(

γ − γ (w + y∗)
β(v + x∗)

)
+ u. (5)

where x∗ and y∗ are equilibrium values. The linearized form of (5) can be written as

U̇ = AU + Bu (6)

where

U =
(
v
w

)
, A =

(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2
− x∗

x∗2+α

βγ −γ

)

, B =
(
0
1

)
.

In linear feedback, each control variable takes as a linear combination of state vari-
ables. In our case

u = KU. (7)

where row vector K = (
k1 k2

)
represents a constant feedback. Using (7), (6) can be

written as
U̇ = (A + BK )U = CU (8)

and

C = A + BK =
(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2
− x∗

x∗2+α

βγ + k1 −γ + k2

)

.
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The trace and determinant of matrix C are

Trace C = 1 − 2x∗ − (α − x∗2)βx∗

(x∗2 + α)2
− γ + k2

det C =
(

1 − 2x∗ − (α − x∗2)βx∗

(x∗2 + α)2

)

(−γ + k2) + (βγ + k1)

(
x∗

x∗2 + α

)
.

It follows from the Routh–Hurwitz criterion that the controlled system (8) is stable
iff

Trace C < 0, det C > 0.

Thus suitably chosen k1 and k2 such that

k2 < γ + 2x∗ + (α − x∗2)βx∗

(x∗2 + α)2
− 1 < 0 (9)

and

k1 >
(k2 − γ )

(
1 − 2x∗ − (α−x∗2)βx∗

(x∗2+α)2

)

x∗
x∗2+α

− βγ. (10)

would make the system (8) stable.

3.2 Exact Linearization

In the previous section, a control law was obtained, using approximate linearization
approach, locally. In this section, another approach known as exact linearization, is
employed which makes the system locally as well as globally stable.

The nonlinear system is assumed to be of the form

Ẋ = f (X) + g(X)u
′
, X(0) = X0

X̃ = h(X) (11)

where X ∈ Rn and u
′ ∈ Rm are state vector and input vector respectively. X̃ ∈ Rm is

output vector having continuous derivatives where f, g are continuous vector on Rn

with f (0) = 0.
The feedback control is employed as

u
′ = α(X) + β(X)v (12)

where v is an external reference input. Further, a change of variable z = Φ(X) is
introduced that transforms the nonlinear system into a linear controllable system.
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The original system (2) with control term can be written as

Ẋ =
⎛

⎝
x (1 − x) − xy

x2+α

y
(
γ − γ y

βx

)

⎞

⎠ +
(
0
1

)
u

′
(13)

Here u
′
is an exerted control introducing an output X̃ = x − x∗ stands for chasing

of prey population. Theorem 2 is the main result of this section.

Theorem 2 The closed loop system (13) is globally asymptotically stable provided
the feedback control law is

u
′ = −x(x2 + α) − y + x2 + α

x
− (α − x2)β

(x2 + α)
. (14)

Proof Using the transformations be x̄ = x − x∗, ȳ = y − y∗, the system (13) can
be rewritten as

˙̄X = f (X̄) + g(X̄)u
′

X̃ = h(X̄) = x̄ (15)

where

f (X̄) =
⎛

⎝
(x̄ + x∗) (1 − (x̄ + x∗)) − (x̄+x∗)(ȳ+y∗)

(x̄+x∗)2+ alpha

(ȳ + y∗)
(
γ − γ (ȳ+y∗)

β(x̄+x∗)

)

⎞

⎠ , g(X̄) =
(
0
1

)

and X̄ =
(
x̄
ȳ

)
.

As h(X̄) = x̄ , then

L f h(X̄) = ˙̄x = x (1 − x) − xy

x2 + α
, (16)

obviously,

LgL
r−1
f h(X̄) = LgL

2−1
f h(X̄) = − x

x2 + α
�= 0. (17)

Here r is relative degree. For the particular system r = 2.
Letting

z = Φ(X̄) =
(

h(X̄)

L f h(X̄)

)
=

(
x̄
˙̄x
)

(18)
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which denotes change of variables and h(X̄) and L f h(X̄) being linearly independent,
it is global diffeomorphism. Describing

ż1 = z2
ż2 = v (19)

in the new z-coordinate system, where v is a input relating to actual input u
′
by

v = L2
f h(X̄) + LgL f h(X̄)u

′
, LgL f h(X̄) �= 0

The Brunovsky canonical form is written as (see [1])

u
′ = 1

LgL f h(X̄)
(−z1 − z2 − L2

f h(X̄)). (20)

Accordingly, the system (2) converts into the linear system and the Brunovsky linear
system is absolutely controllable [1]. Hence the system (13) is globally stable (ref.
[18]).

From (20), the control law u
′
can be written as

u
′ = −x(x2 + α) − y + x2 + α

x
− (α − x2)β

(x2 + α)
. (21)

Hence the proof.

4 Numerical Simulation

In the current section, numerical simulations are given to validate the analytic results
for the stabilization of the system (2). Let us consider the following set of parame-
ters [8]:

α = 0.2, β = 1.2, γ = 0.02. (22)

For this choice of parameters, system (2) shows limit cycle and corresponding oscil-
lating time series, respectively for initial values (0.1578, 0.18935). Analysis suggests
that system (2) exhibits periodic orbits and thrashing time series (see Figs. 1 and 2).

By employing feedback control with approximate linearization (see Sect. 3.1), a
control law u = KU is achieved with K = (

1 0.27
)
through which system attains

asymptotic stability. In Fig. 3, the time series converges to equilibrium point of the
system (2).
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Fig. 1 Closed loop of original system (2)

Fig. 2 Oscillating time series of original system (2)

In exact linearization (see Sect. 3.2), the control law (14) as given in Theorem 2,
i.e.

u
′ = −x(x2 + 0.2) − y + (x2 + 0.2)

x
+ (0.2 − x2)1.2

(x2 + 0.2)

makes system (2) globally stable. Time series plotted in Fig. 4 shows that solution
trajectory approaches to equilibrium point E∗(0.0025, 0.2005).
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Fig. 3 Approximate linearization

Fig. 4 Exact linearization

5 Conclusions

The Leslie–Gower prey-predator model with Holling type IV functional response
shows periodic solutions and bifurcations [8, 12]. In this paper, it is shown that
desired control laws can be determined using feedback (approximate and exact)
linearizations that can bring the system into order such that its positive equilibrium
solution becomes locally and globally stable.

Feedback linearization approaches are important methods to deal with nonlinear
dynamical systems. Results of this study further show that control theory has a vital
role to play even in biological sciences.
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Graph Theoretic Concepts in the Study
of Biological Networks

M. Indhumathy, S. Arumugam, Veeky Baths and Tarkeshwar Singh

Abstract The theory of complex networks has a wide range of applications in a
variety of disciplines such as communications and power system engineering, the
internet and worldwide web (www), food webs, human social networks, molecu-
lar biology, population biology and biological networks. The focus of this paper is
on biological applications of the theory of graphs and networks. Graph theory and
several graph theoretic properties serve as an ideal mathematical tool in the analy-
sis of complex networks. We present the basic concepts and notations from graph
theory which is widely used in the study of biological networks. Various biological
networks such as Protein interaction networks, Metabolome based reaction network,
Gene regulatory network, Gene coexpression network, Protein structure network,
Structural brain network, Phylogenetic networks, Ecological networks and Food
web networks are described. We also deal with various centrality measures which
provide deep insight in the study of biological networks. Applications of biological
network analysis in several areas are also discussed.
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1 Introduction

The theory of complex networks has a wide range of applications in a variety of
disciplines such as communications and power system engineering, the internet and
worldwide web (www), food webs, human social networks, molecular biology, pop-
ulation biology and biological networks. The focus of this paper is on biological
applications of the theory of graphs and networks. Network analysis leads to a bet-
ter understanding of the critical role of these networks in many key questions. For
instance the complex interplay between the structure of social networks and the
spread of disease is a topic of critical importance and hence in recent years the
researches in ecology and epidemiology have focused attention in network analysis.

Graph theory and several graph theoretic properties serve as an ideal mathe-
matical tool in the analysis of complex networks. In Sect. 2, we present the basic
concepts and notations from graph theory which is widely used in the study of bio-
logical networks. Various biological networks such as Protein interaction networks,
Metabolome based reaction network, Gene regulatory network, Gene coexpression
network, Protein structure network, Structural brain network, Phylogenetic networks,
Ecological networks and Food web networks are described in Sect. 3. Section4 deals
with the various centrality measures which provide deep insight in the study of bio-
logical networks. Topology of biological networks and network motifs have been
stated in Sects. 5 and 6 respectively. Sections7 and 8 deal with network databases
and network visualizing tools. Applications of biological network analysis in several
areas and concluding remarks are given in Sects. 9 and 10 respectively.

2 Graph Theoretic Concepts

In this section we present a few basic concepts in graph theory which are essential
for the study of biological networks. For graph theoretic terminology we refer to
Chartrand and Lesniak [8].

A graphG is a finite nonempty set of objects called vertices or nodes together with
a set of unordered pairs of distinct vertices of G called edges or links. The vertex
set and the edge set of G are denoted by V (G) and E(G) respectively. The edge
e = {u, v} is said to join the vertices u and v. We write e = uv and say that u and
v are adjacent vertices; u and e are incident, as are v and e. If e1 and e2 are distinct
edges of G incident with a common vertex, then e1 and e2 are adjacent edges.

The number of vertices in G is called the order of G and the number of edges in
G is called the size of G. A graph of order n and size m is called a (n,m)-graph.
A graph is trivial if its vertex set is a singleton. A graph G = (V, E) is called a
weighted graph if for every edge e of G a weight w(e) is assigned. The weight is
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usually a positive number. The graph G is called a signed graph if every edge e of
G is assigned a positive or a negative sign.

A vertex u is called a neighbor of a vertex v in G, if uv is an edge of G. The set
of all neighbors of v is the open neighborhood of v and is denoted by N (v); the set
N [v] = N (v) ∪ {v} is the closed neighborhood of v in G.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A
subgraph H of a graph G is a proper subgraph of G if either V (H) �= V (G) or
E(H) �= E(G). A spanning subgraph of G is a subgraph H of G with V (H) =
V (G).

For a set S of vertices of G, the induced subgraph is the maximal subgraph of G
with vertex set S and is denoted by 〈S〉. Thus two vertices of S are adjacent in 〈S〉
if and only if they are adjacent in G. The induced subgraph 〈S〉 is also denoted by
G[S].

Let v be a vertex of a graph G and |V (G)| ≥ 2. Then the induced subgraph
〈V (G)\{v}〉 is denoted by G − v and it is the subgraph of G obtained by the removal
of v and the edges incident with v. If e ∈ E(G), the spanning subgraph with edge set
E(G)\{e} is denoted by G − e and it is the subgraph of G obtained by the removal
of the edge e. The graph obtained from G by adding an edge e is denoted by G + e.

The degree of a vertex v in a graphG is defined to be the number of edges incident
with v and is denoted by deg(v).

The minimum of {deg(v) : v ∈ V (G)} is denoted by δ(G) or simply δ and the
maximum of {deg(v) : v ∈ V (G)} is denoted by �(G) or simply �.

A graph G is complete if every pair of distinct vertices of G are adjacent in G. A
complete graph on n vertices is denoted by Kn .

A clique in G is a complete subgraph of G. The maximum order of a clique in G
is called the clique number of G and is denoted by ω(G) or simply ω. A clique H in
G with |V (H)| = ω is called a maximum clique in G.

A bipartite graph is a graph G whose vertex set V (G) can be partitioned into
two nonempty subsets X and Y such that each edge of G has one end in X and the
other end in Y . The pair (X,Y ) is called a bipartition of G. If further, every vertex
in X is adjacent to all the vertices of Y , then G is called a complete bipartite graph.
The complete bipartite graph with bipartition (X,Y ) such that |X | = r and |Y | = s
is denoted by Kr,s . In particular, the graph K1,n−1 is called a star and the graph K1,3

is called a claw.
A walk in a graph G is an alternating sequence u0, e1, u1, . . . , un−1, en, un of

vertices and edges of G, beginning and ending with vertices such that ei = ui−1ui ,
for 1 ≤ i ≤ n. This walk joins u0 and un and may also be denoted (u0, u1, u2, . . . ,
un−1, un); it is sometimes called a u0 - un walk. It is closed if u0 = un and is open
otherwise.

A path P of length n in a graph G is a sequence (u0, u1, u2, . . . , un−1, un) of
distinct vertices such that for 0 ≤ i ≤ n − 1, the vertices ui and ui+1 are adjacent.We
say that P is an u0–un path. The vertices u0 and un are called the origin and terminus
of P respectively. The vertices u1, u2, . . . , un−1 are called the internal vertices of P .
A path on n vertices is denoted by Pn.
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A cycle of length n ≥ 3 in a graph G is a sequence (u0, u1, u2, . . . , un−1, u0) of
vertices of G such that for 0 ≤ i ≤ n − 2, the vertices ui and ui+1 are adjacent, un−1

and u0 are adjacent and u0, u1, u2, . . . , un−1 are distinct. A cycle on n vertices is
denoted by Cn . A cycle Cn of length n is called even or odd according as n is even
or odd.

A graph G is said to be connected if every pair of vertices of G are joined by a
path. A maximal connected subgraph of G is called a component of G.

A graph G having more than one component is called a disconnected graph. An
edge e of a connected graph G is called a cut-edge ifG − e is disconnected. A vertex
v of a connected graph G is called a cut-vertex if G − v is disconnected.

The distance d(u, v) between two vertices u and v of a connected graph G is
defined to be the length of any shortest path joining u and v. A shortest u–v path is
often called a geodesic.

The diameter of a connected graph G is the length of any longest geodesic and is
denoted by diam(G). We call an u - v path in G for which d(u, v) = diam(G) as a
diametrical path.

3 Biological Networks

In this section we present some of the popular biological networks which have been
investigated by several authors.

Protein-Protein Interaction network (PPI-Network) is a graph G = (V, E) where
V is a set of proteins and two proteins are joined by an edge if they interact physically.
The interaction between viral proteins and human proteins can be represented as a
bipartite graph G. The vertex set of G is V1 ∪ V2,where V1 is the set of viral proteins
and V2 is the set of all human proteins. A viral protein v ∈ V1 is joined to a human
proteinw ∈ V2 if v interactswithw. This bipartite graph is called viral-human protein
interaction network and this network has been investigated by Mukhopadhyay and
Maulik [26].

Humanprotein anddisease association network is a bipartite graphGwhosevertex
is V1 ∪ V2, where V1 is the set of human proteins and V2 is the set of diseases and
v1 ∈ V1 is joined by an edge to v2 ∈ V2, if the human protein v1 is associated with the
disease v2. This network has been investigated by Mukhopadhyay and Maulik [26].

Metabolome based reaction network is a directed graph D = (V, A) where V is
a set of metabolites and a vertex v is joined to a vertex w by an arc (v, w) if there is
a reaction or interaction which transforms the metabolite v to the metabolite w. This
network has been investigated by Veeky Baths et al. [5].

Gene regulation is a general term for cellular control of the synthesis of protein
at the transcription step. Often one gene is regulated by another gene via the cor-
responding protein. Thus gene regulation leads to the concept of gene regulatory
network, which has been investigated by Yue and Chunmei [36]. Gene regulatory
network is a directed graph D = (V, A) where V is the set of genes and two genes
g1, g2 ∈ V are joined by an arc if there is a regulatory relationship between g1 and
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g2, or more precisely g1 regulates g2. The regulatory relationship between two genes
may be either positive direct regulatory influence or inverse causality or no correla-
tion. Hence gene regulatory network can also be represented as a directed weighted
graph, where the weight of an arc is an estimate of the probability of relationship
between the genes in the network. This network has been investigated by Raza and
Jaiswal [29]. Positive regulatory relationship represents activation and negative reg-
ulatory relationship represents inhibition. This leads to the representation of a gene
regulatory network as a signed directed graph where an arc (g1, g2) is assigned a pos-
itive sign if the corresponding regulatory relationship is activation and is assigned
a negative sign if the corresponding relationship is inhibition. A study of gene reg-
ulatory network leads to a better understanding of the regularity mechanism of the
genes and prediction of the behavior of some unknown genes. This network has been
studied in Christensen et al. [9].

A gene coexpression network is a graphG = (V, E)where V is a set of genes and
two genes are connected by an edge if there is a significant coexpression relationship
between them. There are several methods for constructing the gene coexpression
network and this network has been studied in Perkins et al. [28]. A coexpression
measure is selected and a similarity score is calculated for each pair of genes using
thismeasure. Twogeneswhich have a similarity score higher than a selected threshold
value are joined by an edge (Azuaje [2]).

Tounderstand the protein structures, a graph representation of protein structure has
recently been introduced. Protein structure is modeled as residue interaction graph
(RIG) in which nodes represent the amino acid residuals and an edge represents a
pairwise contact between residuals. A contact between two residuals is defined if the
distance between any pair of their heavy atoms is within a specified distance cut-off
and the cut-off is normally taken in the range (4,5). Understanding RIGsmay provide
deeper insights into protein structures binding and folding mechanisms as well as
inter protein stability and function. Properties of this network are given in [24].

Structural brain network can be represented as a graph whose vertex set is the
set of neural elements (neurons or brain regions) and edges representing physical
connections (Synapses or axonal projections). This is used to understand the complex
structure of the brain and brain associated diseases such as Alzheimers disease, brain
tumor and epilepsy. This network has been studied in [7].

Consider an ecological community V consisting of predators and preys where a
predator eats a prey. The food web network is a directed graph D whose vertex set is
V and if u, v ∈ V , then (u, v) is an arc in D if u is a predator, v is a prey and u eats v.
The competition graph is a graph whose vertex set is the set of predators and there is
an edge between two predators if they have a common prey. If further we associate
a weight with edge in the competition graph, where the weight is the number of
common preys then we obtain a weighted competition graph. These concepts have
been investigated by Dunne et al. [10].

A Phylogenetic network is a graph which is used to visualize evolutionary rela-
tionships between nucleotide sequences, genes, chromosomes or genomes. They are
used when reticulated events such as hybridization, horizontal gene transfer, recom-
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bination or gene duplication and loss are believed to be involved. For further details
we refer to [17].

An Ecological network is a representation of the biotic interactions in an ecosys-
tem. This is an undirected graph whose vertex set is a set of species and two species
are joined by an edge if they interact. These interactions can be trophic or symbi-
otic. Applications of ecological networks include exploration of how the community
context affects pairwise interactions. Other related studies include Metapopulations,
epidemiology and evolution of cooperation. For some basic results in Ecological
network we refer to Sole and Montoya [32].

4 Centrality Measures

Graph theoretic concepts are being extensively used in the analysis of biological
networks. In this section we present several centrality measures which are used to
rank the nodes of a network in the order of their performance.

4.1 Stress

The stress is a node centrality index, which has been studied by Shannon et al. [31].
The stress of a node v is the number of shortest paths passing through v. A node with
a high stress is traversed by a high number of shortest paths. However, a node has
high stress value does not imply that it is critical to maintain communication. Indeed
two nodes may be connected by other shortest paths not passing through v. Hence
“high” and “low” stress are more meaningful when stress of a node v is compared
with the average stress value of the graph G. In biological terms, the stress of a node
indicates its relevance in holding together communicating nodes. Hence, if the stress
is higher, then the relevance of the node connecting other node is higher. Due to
the nature of this centrality it may also be possible that the stress indicates how a
molecule is heavily involved in cellular processes but not necessarily in maintaining
the communication between the other nodes.

4.2 Betweenness

Betweenness is another node centrality index which is similar to stress, but provides
more information. Let v1, v2 and v be three distinct nodes. Let σv1v2(v) denote the
number of shortest v1–v2 pathswhich pass through v. Letσv1v2 denote the total number
of shortest v1–v2 paths. The betweenness centrality index of v is defined by



Graph Theoretic Concepts in the Study of Biological Networks 193

CB(v) =
∑

v1 ,v2∈V
v1 �=v2

(
σv1v2(v)

σv1v2

)
.

Since for computing the betweenness centrality index, the summation is taken
overall pairs of nodes, we divide it by (n−1)(n−2)

2 for graphs, where n is the total
number of nodes; so that the betweenness index of v lies in the range [0, 1]. A high
betweenness index indicates that the node for certain paths is crucial to maintain
node connections (Scardoni and Laudana [30]). The betweenness index of a node
in a protein-signaling network indicates the relevance of a protein as functionally
capable of holding together communicating proteins. The higher the value the higher
the relevance of the protein as organizing regularity molecule.

4.3 Edge Betweenness

Edge betweenness centrality is the edge version of the node betweenness centrality.
Let v1, v2 be two distinct nodes and let e be an edge. Let σv1v2(e) denote the number of
shortest v1–v2 paths which pass through the edge e. Let σv1v2 denote the total number
of shortest v1–v2 paths. Then the edge betweenness centrality index of e is defined
by

CB(e) =
∑

v1 ,v2∈V
v1 �=v2

(
σv1v2(e)

σv1v2

)
.

The edge betweenness index is normalized as in the case of node betweenness index.
In the context of a protein-signaling network, edge betweenness centrality indicates
that a specific biochemical reaction has a central role in the network functional
organizations.

4.4 Diameter

Thediameter of a graphG is defined bydiam(G) = max {d(u, v) : u, v ∈ V }, where
d(u, v) is the distance between the vertices u and v. It is a simple general parameter
which indicates the compactness of the network. If G has high diameter, then G has
two vertices whose distance is high. However, a graph with high diameter may have
subgraphs which are compact. If a graph has low diameter, then it surely indicates
that all the nodes are close to each other and the graph is compact.

For example, the diameter of a protein-signaling network can be interpreted as the
overall easiness of the proteins to communicate or influence their reciprocal function.



194 M. Indhumathy et al.

4.5 Average Distance

The average distance of a graph G is defined by

Ad(G) =

(
∑

u,v∈V
u �=v

d(u, v)

)

n(n−1)
2

where n in the number of nodes in G.
In general Ad(G) is not an integer. In most cases, Ad(G) is more informative than

the diameter. High average distance indicates that the nodes are distant, implying that
the network is not compact. A low average distance indicates that the nodes are close
to each other and the network is compact. For example if a big protein signaling
network has low average distance, then the proteins within the network have the
tendency to generate functional complexes or modules.

4.6 Closeness

Closeness is another node centrality index. The closeness centrality of a node v is
defined by

CC(v) = n − 1
∑

u∈V−{v}
d(u, v)

,

where n is the number of nodes in the network. Here high and low values are more
meaningful when compared to the average closeness of G. High value of closeness
of v indicates that all the nodes are in proximity to v and low value of closeness of v
indicates that all other nodes are distant from v.

For example, the closeness of a node in a protein-signaling network can be inter-
preted as the probability of a protein to be functionally relevant for several other
proteins. Thus a protein with high closeness will be easily central to the regularity of
other proteins. This concept has been used in [1] for the study of protein structures.

4.7 Eigenvector Centrality

The adjacency matrix A of a graph G with vertex set V (G) = {v1, v2, ....., vn} is the
n × n matrix defined by

ai j =
{
1 if vi and v j are adjacent
0 otherwise.
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A number λ is called an eigen value of A, if there exists a vector e such that Ae = λe
and e is called the eigen vector corresponding to the eigen value λ. Since the matrix
A is symmetric, all its eigen values are real. Let e1 be the eigen vector corresponding
to the largest eigen value λ1 of A. Then the i th component of the vector e1 is the eigen
vector centrality of the node vi . In biological terms, a node with high eigen vector
centrality value is adjacent to the other nodes that themselves have high eigenvector
centrality value. This concept is given in [6].

4.8 Eccentricity

The eccentricity of a node v is defined by e(v) = max{d(u, v) : u ∈ V − {v}}. Thus
eccentricity of v is the distance between v and a node which is farthest from v. Let
f (v) = 1

e(v) , the reciprocal of the eccentricity. If f (v) has a high value, then all other
nodes are in proximity with v. On the other hand, if f (v) is low, then there is at least
one node which is far from v. For example in a protein-signaling network a protein
with high value of f will be more easily influenced by activity of other proteins.

4.9 Subgraph Centrality

Subgraph centralitywas introduced by Estrada in 2005. This centralitymeasure helps
in finding hidden subgraph within a network. Here, smaller subgraph has given more
weightage than the larger one as smaller subgraph can reveal the networkmotifs [13].

5 Topology of Biological Network

5.1 Watts and Strogatz Small World Network

Small world network was proposed by Watts and Strogatz [34]. This network is a
random network with high clustering coefficient value indicating that most pairs of
nodes contain at least one shortest path of small length between them. Therefore, in
this type of network, mean length of shortest path is always small and in a given time,
it is possible to reach from one node to another with few steps. Internet connectivity,
social network, gene network are examples of small world network. This type of
topology is only applied to the network where single nodes have few neighbors. If
links between nodes are grown in huge number, then this theory fails as there may
not be a shortest path of small length between two distant nodes.
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5.2 Erdos Renyi Random Network

Paul Erdos and Alfred Renyi proposed this random graph network for non regu-
lar complex networks. Here edges are randomly added between pairs of randomly
selected nodes with an initial condition of N nodes without any edges between them.
This network follows poissonian distribution assuming added edges << N 2 [11].
Real world network like internet, social network, biological network etc. do not
follow this network.

5.3 Barabasi–Albert Scalefree Network

Scalefree networkwas proposed byBarabasi–Albert [3]. Thismodel opposes the idea
that all complex networks are random in nature. According to this network, there are
some special kind of mechanisms which shape this randomness of complex network.
In scalefree network, structure and evolution are closely related and it is constantly
changing by addition of new node or link to the existing network. When a new node
comes in the existing network, it will tend to link with the node having maximum
number of connections in a given network. This type of attachment is known as
preferential attachment, and the nodewithmaximumnumber of connections is known
as hub. Here, degrees are distributed following the power law distribution resulting
a few nodes with maximum links(hubs) while many nodes with a very few links.

6 Network Motifs

In biological network, it has been observed that a particular group of nodes with
a fixed structural pattern, are involved in specific functions and these are known
as motifs. Motifs are often called simple building blocks of complex network [25].
In graphs, motifs are basically repeating units of small subgraphs within a single
network or amongmany networks. As motifs are involved in the particular functions,
it is possible to predict the function of unknown proteins by comparing with the
knownmotifs and then with its function. There are many motifs finder algorithm like
Mavisto, FANMOD used to identify motifs within a network.

7 Network Databases

Todate, vast amount of biological data has been createdwith the help of high through-
put techniques like yeast two hybrid screening systems, DNA microarray and next
generation sequencing. These data can be accessed through databases. There are
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many such online databases housing these data and are freely accessible. Following
are some important databases of biological network.

• KEGG. Kyoto Encyclopedia of Genes and Genomes [21].
• STRING. Search Tool for the Retrieval of Interacting Genes/Proteins [18].
• HPRD. Human Protein Reference Database [23].
• MINT. Molecular Interaction Database [37].
• DIP. Database of Interacting Proteins [35].
• Reactome. It is database for reaction pathways and biological processes. The
pathways represented here are species specific [20].

• BioGRID. Biological General Repository for Interaction Datasets [33].
• SPIKE. Signaling Pathway Integrated Knowledge Engine [27].
• IntAct. InAct Molecular interaction database [22].

8 Network Visualizing and Analyzing Tools

There are many open source tools routinely used for network visualization and also
for calculating different centrality values along with many network parameters like
diameter, degree, shortest pathlength, clustering coefficient etc. Following three tools
are widely used in biological network visualizing and analysis.

• Cytoscape [31]
• Pajek [4]
• Visant [16]

9 Applications

Applications of graph theory in the fields of biology and medicine include identi-
fication of drug targets, determination of the role of proteins or genes of unknown
function [12, 14], design of effective containment strategies for infectious diseases
and early diagnosis of neurological disorders by detecting abnormal patterns of neural
synchronization. The knowledge of the topologies of biological networks and their
impact on biological processes is needed to develop more sophisticated treatment
strategies for complex diseases such as cancer [19]. Protein-Protein interaction net-
works have recently been combined with the networks describing the relationships
between the diseases and disease gene causing them as well as between drugs and
their protein targets, thus giving insights into pharmacology. Another application is
the study of genetic disorders. A diseasome is represented as a bipartite graph, whose
vertex set is the set of genetic disorders and disease genes. A genetic disorder X is
joined to the disease gene Y if there is a mutation in the gene Y which gives genetic
disorder X [15]. Two other graphs in this connection are constructed as follows.
The human disorder network has its vertex set the set of genetic disorders and two
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disorders are joined by an edge if they are both caused by at least one common gene.
The disease gene network has its vertex set the set of all disease genes and two genes
are joined by a link if they are associated with at least one common disorder. These
networks are used to examine and understand human disease gene and phenotype
associations. Measures of centrality are used to identify structurally important genes
or proteins in interaction networks. Network motifs help in finding structural pattern
along with unknown protein functions.

10 Conclusion

In this survey article a detailed account of various biological networks, basic graph
theoretic concepts, various centrality measures which play a crucial role in the analy-
sis of biological networks, biological databases which are essential for the construc-
tion of biological networks and software tools required for the network visualizing
and analyzing have been presented. Analysis of the biological networks using graph
theoretic tools lead to the identification of influential proteins or genes, which can
be confirmed experimentally.
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Some Algebraic Aspects and Evolution
of Genetic Code

Tazid Ali and Nisha Gohain

Abstract The genetic code is the set of rules by which DNA stores genetic infor-
mation of organisms. In this paper we discuss an algebraic structure of the genetic
code in terms of the four DNA bases (A, C, G, T). Some relations between transi-
tion/transversionmutation of codons and algebraic properties of respective codons of
the group structure are obtained. A distance matrix of the amino acids is constructed.
We establish some relations between the distancematrix and physico-chemical prop-
erties of amino acids. Further we argue that the distance matrix reflects evolutionary
pattern of amino acids.

Keywords DNA · Genetic code · Mutation · Algebra · Distance matrix

1 Introduction

The genetic code gives the information about the formation of protein molecule. It
is the set of rules by which information encoded in genetic material (DNA or RNA
sequences) is translated into proteins. A linear chain of amino acids forms the protein
molecule. There are 20 different amino acids found till now that occur in proteins.
Amino acids are synthesized by RNAs and RNAs are obtained from DNAs. Each
amino acid is a triplet code (codon) of four possible bases (A, C, G, T) of DNA. The
base Thymine (T) is replaced by Uracil (U) in RNA.

The transmission of information from DNA to protein goes through transcription
and translation. Due to mutation, the sequence of bases is not copied precisely in
replicating the strand of DNA. This affects protein formation. Codons are muted in
different ways such as deletion, insertion, inversion, point and frame-shift mutation.
In this paper only the case of point mutation is considered. The point mutation is a
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simple change in one base of the gene sequence. Point mutation may be at a single
point or atmore than one point. Transition is the pointmutation either from purine (A,
G) to purine or from pyrimidine (C, T) to pyrimidine. Point mutation from purine to
pyrimidine or vice-versa is called transversion. Point mutations usually occur during
DNA replication.

The 20 amino acids are coded by the 64 codons, which makes the genetic code.
That is same amino acid may be coded by different codons. Mathematically, it can be
considered as a many to one function from codons to amino acids. Balakrishnan [3]
pointed out that as the total number of codons are almost triple than the total number
of amino acids, so there may be some mathematical structures on genetic code.

A codon is formed of three bases and the importance of a base differs according
to its position on the codon. The error frequency (accepted mutations) of codons
plays an important role on the importance of different positions of bases in codons.
The frequency of errors decreases from the third base to the first base and then next
to the second base. That is the second base of a codon is biologically most relevant
base. Also, the hydrophobicity property of an amino acid is connected with the most
significant base i.e., the second base of codons. According toWatson and Crick [17],
the hydrophilic amino acids are coded by the codons having Adenine (A) as second
base and in case of hydrophobic amino acids, the codons has Uracil (U) as second
base.

Many researchers such as, Hornos and Hornos [8], Beland and Allen [6], Schuster
et al. [15], Bashford et al. [5], Robin et al. [10], Bashford et al. [4], Lehmann [9],
Stadler et al. [16], Antoneli et al. [2] and Ali and Phukan [1] tried to study the
genetic code algebraically. Sanchez et al. [11–14] discussed some algebraic structures
of DNA sequences. They proposed a partial order on codon set and studied the
genetic code through Boolean deductions. They also pointed out that based on some
biological properties of codons itwas possible to deduce and studydifferent structures
of the genetic code algebraically. Gohain et al. [7] also worked on the genetic code
and found some interesting relations between the lattice structure and the biological
aspects.

In this paper, some algebraic concepts in genetic code are investigated and the
evolutionary pattern of amino acids based on hamming distance are explored.

2 Algebraic Structure on Genetic Code

Sanchez et al. [14] discussed two orderings of the RNA bases. The ordering is based
on the chemical types (that is purine and pyrimidine) and the number of hydrogen
bonds. The two orderings are: {A, C, G, U} and {U, G, C, A} and a sum operation
(Table1) is defined on these two base sets. The two sets are isomorphic to the cyclic
group Z4 (group Z4 of integer module 4).

Working on the same field, by considering the same order of bases, Ali and
Phukan [1] define a product operation (Table1) on the base set X = {A,C,G,U }.
With these two binary operations (sum and product) the set X fulfils the axioms of a
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Table 1 Sum and product operations on X = {A,C,G,U}
Sum + A C G U Product • A C G U

A A C G U A A A A A

C C G U A C A C G U

G G U A C G A G A G

U U A C G U A U G C

ring structure. In the ring (X,+, •), A is additive identity and C is the multiplicative
identity. Also, X has commutative ring structure with identity element.

Ali and Phukan [1] arranged all the codons in the genetic code table (Table2)
by using the Cartesian product of the ring X i.e., X × X × Xand denoted it as CG ,
where

X × X × X = {(P, Q, R) : P, Q, R ∈ {A,C,G,U }} (2.1)

i.e.,CG = {PQR : P, Q, R ∈ {A,C,G,U }} (2.2)

Each codon of the form PQR is associated with the element (P, Q, R) of X ×
X × X and thus a one to one correspondence can be established between set X ×
X × Xand CG . Next, sum and product operations are defined between the codons as
follows:

(PQR) + (
P ′Q′R′) = (

P + P ′) (
Q + Q′) (

R + R′) (2.3)

PQR.P ′Q′R′ = P.P ′Q.Q′R.R′ (2.4)

With these two operations, CG possesses ring structure and is isomorphic to Z4 ×
Z4 × Z4.

For example, the element GAC ∈ CG has correspondence with the element
(2, 0, 1) ∈ Z4 × Z4 × Z4. The genetic code with corresponding amino acids is
shown in Table2.

We propose the following

Definition 1 Codon in which all bases are purines is an even codon and the codon
in which at least one base is a pyrimidine is an odd codon.

It is observed that the set of all even codons, that is {AAA, AAG,GAA,GAG,

AGA, AGG,GGA,GGG} is a subgroup of the group (CG,+).
The order of the elements of the group (CG,+) divides the group into three

classes. The following Table3 gives the order of the codons.
The transition mutation (purine to purine or pyrimidine to pyrimidine) and

transversion mutation of codons are connected with changes in parity (change from
odd codon to even or vice-versa) and the order of codons (order as element of the
ring). Following are a few connections that we have observed:
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Table 2 The Z4 × Z4 × Z4 table of the Genetic code

A C G U

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

A 000 AAA K 010 ACA T 020 AGA R 030 AUA I A

001 AAC N 011 ACC T 021 AGC S 031 AUC I C

002 AAG K 012 ACG T 022 AGG R 032 AUG M G

003 AAU N 013 ACU T 023 AGU S 033 AUU I U

C 100 CAA Q 110 CCA P 120 CGA R 130 CUA L A

101 CAC H 111 CCC P 121 CGC R 131 CUC L C

102 CAG Q 112 CCG P 122 CGG R 132 CUG L G

103 CAU H 113 CCU P 123 CGU R 133 CUU L U

G 200 GAA E 210 GCA A 220 GGA G 230 GUA V A

201 GAC D 211 GCC A 221 GGC G 231 GUC V C

202 GAG E 212 GCG A 222 GGG G 232 GUG V G

203 GAU D 213 GCU A 223 GGU G 233 GUU V U

U 300 UAA – 310 UCA S 320 UGA – 330 UUA L A

301 UAC Y 311 UCC S 321 UGC C 331 UUC F C

302 UAG – 312 UCG S 322 UGG W 332 UUG L G

303 UAU Y 313 UCU S 323 UGU C 333 UUU F U

(1) → Corresponding elements of Z4 × Z4 × Z4
(2) → The codons
(3) → The amino acids, – → The stop codons

Table 3 Partition of the group into three classes w.r.t. their orders

Order Related codon

1 AAA

2 AAG, GAA, GAG, AGA, AGG, GGA, GGG

3 AAC, CAC, UAC, UUC, CCC, GCC, UCC, AGC, CGC, UCU, GGC, UGC, AUC,
CUC, ACC, AAU, CAU, GAU, UAU, CAA, UAA, GUC, CAG, UAG, CGG, ACA,
ACG, ACU, CCA, CCG, GAC, CCU, GCA, UUG, GUU, GUA, GCG, GCU, UCA,
UCG, AGU, CGA, CGU, GGU, UGA, UGG, UGU, AUA, AUG, AUU, CUA, CUG,
CUU, GUG, UUA, UUU

1. One-point transition of any base keeps the codon parity as well as codon order
unchanged. No extreme changes are introduced in the properties of amino acids
due to these mutations.

2. Transversion of bases changes codon parity as well as codon order.
3. Transversion of codons having a pyrimidine as second base (biologically most

significant position) keeps the codon parity as well as codon order unchanged.
4. All odd codons have maximal order and all even codons have order less than that.
5. During single base transversion, even codons are always muted to odd codons

and for each codon, the resulting muted codons are algebraically inverse of one
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Table 4 Substitution of the
bases of all even codons w.r.t
Watson–Crick base pairs

Even codon ←→ not zero-divisor codon

AAA ←→ UUU

AAG ←→ UUC

GAA ←→ CUU

GAG ←→ CUC

AGA ←→ UCU

AGG ←→ UCC

GGA ←→ CCU

GGG ←→ CCC

another. For example, first base transversion of the even codon AAG are CAG
and UAG, which are algebraically inverse of one another.

6. In the first base transversion, the even codons are changed to a codon that code to
a polar amino acid, for the second base it is to hydrophobic and for the third base
it is to a small amino acid. Also, due to third base transversion, the hydrophilic
(hydrophobic) codon changes to a hydrophilic (hydrophobic) codon.

We have eight even codons and the substitution of the bases of the codons with
respect to theWatson–Crick base pairing (A ←→ U,G ←→ C) gives another eight
codons (see Table4) which are not zero-divisors of the group (CG,+).

The even codons with their muted codons (transversion) and the not zero-divisor
codons with their muted codons (transversion) partition the whole set of codons into
two equal, disjoint subsets. Table5 gives the even and not zero-divisor codons with
their muted codons.

Thus, we can define a function f : CG → CG such that for α ∈ CG ,

f (α) = f (α1, α2, α3) = (α1 + x1, α2 + x2, α3 + x3)

xi =
{
U if αi is a purine

C if αi is a pyrimidine, for every i = 1, 2, 3.

An alternative way of defining the function f is f : CG → CG such that for all
α ∈ CG

f (α) = f (α1α2α3) = (UUU − α1α2α3).

It is observed that all the elements having order less than 4 map to an element
of order 4 and will give us the set of all not zero-divisors of CG . The function f
represents the triple base mutation of all even codons in terms of Watson–Crick base
pairs.

The set obtained by transversion of domain of f (even codons) together with the
domain set and the range set together with the set obtained by the transversion of the
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Table 5 Transversion of even codons and not zero-divisor codons

Even
codons

Muted codons(transversion) Not zero-
divisor
codons

Muted codons(transversion)

AAA CAA, UAA, ACA, AUA, AAC,
AAU

UUU AUU, GUU, UAU, UGU, UUA,
UUG

AAG CAG, UAG, ACG, AUG, AAC,
AAU

UUC AUC, GUC, UAC, UGC, UUA,
UUG

GAA CAA, UAA, GCA, GUA, GAC,
GAU

CUU AUU, GUU, CAU, CGU, CUA,
CUG

GAG CAG, UAG, GCG, GUG, GAC,
GAU

CUC AUC, GUC, CAC, CGC, CUA,
CUG

AGA CGA, UGA, ACA, AUA, AGC,
AGU

UCU ACU, GCU, UAU, UGU, UCA,
UCG

AGG CGG, UGG, ACG, AUG, AGC,
AGU

UCC ACC, GCC, UAC, UGC, UCA,
UCG

GGA CGA, UGA, GCA, GUA, GGC,
GGU

CCU ACU, GCU, CAU, CGU, CCA,
CCG

GGG CGG, UGG, GCG, GUG, GGC,
GGU

CCC ACC, GCC, CAC, CGC, CCA,
CCG

range set (set of all not zero-divisors) partitions the whole set CG into two disjoints
sets. In other words, if M is the set of even codons and their one-point transversions,
N is the set of all not zero-divisors and their one point transversions, then,

CG = M ∪ N and M ∩ N = φ

3 Distances Between Amino Acids
and Their Biological Significance

Wedefine a distancematrix using theHammingdistance between eachpair of codons.
Further, this matrix is used to determine the distances between amino acids. For that
purpose, the average distances between the coded codons for the respective amino
acids are considered.

For example, if we consider the codons GGA and CGG, then the number of
base positions at which the corresponding codons are different gives the hamming
distance between the respective codons. Next, we consider the amino acids H and T
then the distance between them can be calculated by using the hamming distances
between their corresponding coded codons. The amino acid H is coded by the codons
CAC, CAU and the amino acid T is coded by the codons ACA, ACC, ACG, ACU.
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Therefore the distances between the codons of H and T are

ACA ACC ACG ACU
CAC 3 2 3 3
CAU 3 3 3 2

Hence the distance between the amino acids H and T is 2.75.
In this way the distance matrix of the 20 amino acids is calculated as shown in

Table6.
It is observed that as the distance values increase, the differences of physico-

chemical properties of amino acids increase in most of the cases. Also, the distance
values are higher between most of the hydrophilic and hydrophobic amino acids. For
example, the strong hydrophilic amino acid Lysine and the strong hydrophobic amino
acid Phenylalanine have maximum distance value 3. When there is small difference
in the distance values between two amino acids, there is also little difference in their
properties. Further it is observed that the distance obtained above defines a metric
on the set of amino acids.

It may be noted that similar results were also obtained by Sanchez et al. [11]
wherein he used a different approach to obtain the distance table.

From the distance matrix of Table6 we have obtained graph of the amino acids as
explained below.Vertices are represented by the amino acids, and two vertices (amino
acids) α and β are connected by an edge if their distance is less than some given
threshold value ε > 0. First we consider the average distance (2.21) as threshold
value. The corresponding graph is depicted below in Fig. 1. The graph structures for
threshold values ε = 2.00, 1.75 and 1.5 are given in Figs. 2, 3 and 4 respectively.

From these graph structures we observe that with the increase in the threshold
value, the accessibility of getting an amino acid from other decreases simultaneously.
The graphs in Figs. 1 and 2 are connected while the others are disconnected. Also
in Fig. 3, the amino acids A, G, P, T, V are isolated. These five amino acids are

Fig. 1 Graph of amino acids
for the threshold value 2.21
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Fig. 2 Graph of amino acids
for the threshold value 2.00

Fig. 3 Graph of amino acid
for threshold value 1.75

Fig. 4 Graph of amino acid
for the threshold value 1.5
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different from the remaining amino acids in the sense that all of them are coded by
four codons, having same first and second bases. In Fig. 4, we have observed that the
amino acids V, L, F, R, G, S, A, T, P, Y are isolated and the amino acids I, W, K, E,
Q are connected with M, C, N, D, H respectively. Here the non-isolated amino acids
differ from the other 10 isolated amino acids in the sense that each is obtained from
any of the other by third base mutation of a codon and the corresponding codons of
the connected amino acids have same first and second bases. Also, for the isolated
amino acids, the third base mutation of the corresponding codons of an amino acid
produces synonymous codons. That is the muted codon codes the same amino acid.

Next we discuss a real life example and observe that the distance value is usually
small in between frequently occurring codonmutations.At firstwe check the distance
between the single point drug resistance mutations in HIV-1 protease gene (see
Table7). Next we go through the respective gene of the HXB2 strain and human
beta globin gene (refer. Table8). The distance value obtained is 1 between most of
the codons in both the cases. And it is also noted that if a small change occurs in
the physico-chemical properties of the amino acids in human beta-globin gene, then
there is a change in the biological function of hemoglobin.

Therefore we can conclude that the physico-chemical properties of the amino
acids are connected with the hamming distances determined in the genetic code.

4 Conclusions

In this paper, we discussed an algebraic structure of the genetic code which exhibited
some interesting connections of physico-chemical properties of amino acids with the
algebraic structure. We observed that there is a close connection between the order
of the codons and transition/transversion mutations. We have shown that the set of
all codons which are not zero divisors can be obtained from the even codons and
the transversion of these two sets partitioned the whole set of codons into disjoint
subsets. Next, a distance matrix of codons is obtained from which a distance matrix
of amino acids is constructed. The distance matrix reflects the fact that the difference
of physico-chemical properties of amino acids is related to the distance between
amino acids. A graph of the amino acids is generated from the distance matrix. This
graph structure roughly depicts the evolutionary pathway of the amino acids.
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On Ramsey (2K2, 2H)-Minimal Graphs

Kristiana Wijaya and Edy Tri Baskoro

Abstract The Ramsey set R(G, H) consists of all graphs F satisfying that any
red-blue coloring of edges of F contains a red copy of G or a blue copy of H but if
any edge in F is deleted then this condition is not fulfilled. For any integer m ≥ 2,
letmG be a disjoint union ofm copies of graph G. In this paper, we construct graphs
in R(2K2, 2H) by using graph theoretical operations over graphs in R(2K2, H) if
H is either a cycle, a path, or a star.

Keywords Ramsey minimal graph · Matching · Cycle · Path · Star
2010 Mathematics Subject Classification. 05D10 · 05C55

1 Introduction

Let G and H be two graphs. A graph F is said to arrow the pair (G, H), written
F → (G, H), if every red-blue coloring of G results in a subgraph isomorphic to
G every edge of which is colored red (a red G) or a subgraph isomorphic to H
every edge of which is colored blue (a blue H ). Therefore, if F � (G, H), then
there exists a red-blue coloring of F for which there is neither a red G nor a blue
H . Such a red-blue coloring of F is called a (G, H)-coloring. A graph F is called
a Ramsey (G, H)-minimal if F → (G, H) and for every edge e ∈ F , we have that
F − e � (G, H). Next, the set of all Ramsey (G, H)-minimal graphs is denoted by
R(G, H).
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Fig. 1 The graphs A ∈ R(2K2, 2P4) and B /∈ R(2K2, 2P4)

Investigation on Ramsey (G, H)-minimal graphs was initiated by Burr et al. [3].
The set R(G, H) can be finite or infinite. For any integer m ≥ 2, let mG be a
disjoint union of m copies of graph G. Burr et al. [3] proved that if G is a matching,
namely G = mK2, then R(G, H) is finite for any graph H . In this paper, we focus
on G = 2K2. The study of Ramsey (2K2, H)-minimal graphs has received much
attention for various graphs H . The set R(2K2, P3) = {2P3,C4,C5} was showed
by Mengersen and Oeckermann [4]. In the same paper, they characterized all graphs
inR(2K2, K1,3). Moreover, Wijaya et al. [6] determined the graphs inR(2K2,C4).
The sets R(2K2, P4) = {2P4,C+

4 ,C5,C6,C7} and R(2K2, P5) were characterized
by Baskoro and Yulianti [1], where C+

4 is the graph in Fig. 1. Later, Tatanto and
Baskoro [5] gave the graphs in the set R(2K2, 2P4) and R(2K2, 2P5). Recently,
Baskoro and Wijaya et al. [2] showed that a graph obtained from two disjoint graphs
inR(2K2, K4) by identifying vertices and edges is a member of R(2K2, 2Kn).

Motivated by these last results, in this paper, we will propose some constructions
for a member of R(2K2, 2H) by using the graphs in R(2K2, H), provided H is a
connected graph. We only consider if H is a cycle, a path, or a star. Let G and H be
graphs. Let u ∈ V (G), v ∈ V (H), a ∈ E(G) and b ∈ E(H). The graph G �u,v H
is defined as a graph obtained from two disjoint graphs G and H by identifying
vertices u and v. So, the graph G �u,v H has (|V (G)| + |V (H)| − 1) vertices and
(|E(G)| + |E(H)|) edges. Next, the graph G �a,b H is defined a graph obtained
from two disjoint graphsG and H by identifying edges a and b. The graphG �a,b H
has (|V (G)| + |V (H)| − 2) vertices and (|E(G)| + |E(H)| − 1) edges.

2 Previous Results

In this section, we give some previous results from Baskoro and Wijaya [2] used in
this paper.

Theorem 1 ([2]) For any integers s ≥ 2, m ≥ 1 and any connected graph H, the
graph (s + m − 1)H is inR(sK2,mH).

Theorem 2 ([2]) If F1, F2 ∈ R(2K2, Kn) and both are connected, then G �u,v H ∈
R(2K2, 2Kn), for any u ∈ V (F1) and v ∈ V (F2).
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Theorem 3 ([2]) If F1, F2 ∈ R(2K2, Kn) and both are connected, then (F1 �a,b

F2) ∈ R(2K2, 2Kn), for a ∈ E(F1) and b ∈ E(F2).

3 Union of Two Ramsey Minimal Graphs

By Theorem 1, for any connected graph H , one of disconnected graphs belonging
toR(2K2, 2H) is given by the following corollary.

Corollary 1 Let H be a connected graph. Then, 3H ∈ R(2K2, 2H).

Theorem 4 Let H1 and H2 be connected graphs. Let F1 ∈ R(2K2, H1), F2 ∈
R(2K2, H2) be two connected graphs. If each of {F1, F2} contains no H1 ∪ H2,
then F1 ∪ F2 ∈ R(2K2, H1 ∪ H2).

Proof We consider F = F1 ∪ F2. Then, any red-blue coloring of edges of F with no
red 2K2 will contain a blue H1 in F1 and H2 in F2. Hence, in total, we have a blue
H1 ∪ H2 in F . So, F1 ∪ F2 → (2K2, H1 ∪ H2).

Now, we will prove that for every e ∈ E(F1 ∪ F2), (F1 ∪ F2) − e � (2K2,

H1 ∪ H2). Without loss of generality, we can only consider when e ∈ F1. Then, there
exits a (2K2, H1)-coloring φ1 of edges of F1 − e. We now define φ as a red-blue
coloring of edges of (F1 ∪ F2) − e such that φ(x) = φ1(x) for every x ∈ E(F1 − e)
and φ(x) = blue for every x ∈ E(F2). Since F2 contains no H1 ∪ H2, under the
coloring φ, (F1 ∪ F2) − e contains neither a red 2K2 nor a blue H1 ∪ H2. We obtain
a (2K2, H1 ∪ H2)-coloring of (F1 ∪ F2) − e. �	
Theorem 5 Let H be a connected graph. If F1, F2 ∈ R(2K2, H), then

(a) F1 ∪ F2 ∈ R(4K2, H),

(b) F1 ∪ F2 ∈ R(2K2, 2H).

Proof Let F1, F2 ∈ R(2K2, H).

(a) We consider F = F1 ∪ F2. Then, any red-blue coloring of edges of F with no
blue H will contain a red 2K2 in F1 and a red 2K2 in F2. Therefore, in total, we
have a red 4K2 in F . So, F1 ∪ F2 → R(4K2, H). Next, let e ∈ E(F). Then, e is
in either E(F1) or E(F2). Consider e ∈ E(F1) (the case of e ∈ E(F2) is similar).
Then, there is a (2K2, H)-coloring φ1 of edges of F1 − e. Let ϕ be a red-blue
coloring of edges of F2 with a red 2K2 and no blue H . Now, we define φ as a
red-blue coloring of F such that φ(x) = φ1(x) for x ∈ E(F1) and φ(x) = ϕ(x)
for x ∈ E(F2). Under the coloring φ, the graph F contains neither a red 4K2

nor a blue H . Hence, φ is a (4K2, H)-coloring of edges of F1 ∪ F2. This means
that F1 ∪ F2 ∈ R(4K2, H).

(b) The minimality of F1 and F2 implies that each of {F1, F2} must contain no 2H .
Furthermore, by Theorem 4, we obtain F1 ∪ F2 ∈ R(2K2, 2H). �	

Note that the second statement of Theorem 5 has been appeared in [2].
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4 Identifying Two Vertices of Two Ramsey
Minimal Graphs

Motivated by Theorem 2, we will apply a similar method on cycles, paths, and
stars. Now, we consider the graphs inR(2K2,Cn). If F1, F2 ∈ R(2K2,Cn) and u ∈
V (F1), v ∈ V (F2), then every cycle in F1 �u,v F2 must inclusively use the vertices
in either F1 or F2, but not both. It means that if there exists a cycle C containing the
identified vertex u = v in F1 �u,v F2, then either V (C) − u ⊆ F1 or V (C) − u ⊆ F2.
Therefore, we obtain that 3Cn � F1 �u,v F2. Consequently, we have the following
theorem.

Theorem 6 Let n ≥ 3 be an integer. If connected graphs F1, F2 ∈ R(2K2,Cn),
u ∈ V (F1) and v ∈ V (F2), then F1 �u,v F2 ∈ R(2K2, 2Cn).

Proof First, observe that F1 �u,v F2 → (2K2, 2Cn). Now, we will prove that for
every e ∈ E(F1 �u,v F2), (F1 �u,v F2) − e � (2K2, 2Cn). Without loss of general-
ity, we need only consider the case e ∈ F1.We have a (2K2,Cn)-coloring φ1 of edges
of F1 − e. Now, we define φ as a red-blue coloring of edges of (F1 �u,v F2) − e such
that φ(x) = φ1(x) for x ∈ E(F1 − e) and φ(x) = blue otherwise. Thus, we obtain
(F1 �u,v F2) − e containing neither a red 2K2 nor a blue 2Cn . �	

On the other hand, we cannot replace the complete graph Kn in Theorem 2 directly
by a path Pn or a star K1,n . If F1, F2 ∈ R(2K2, Pn) and u ∈ V (F1), v ∈ V (F2), then
3Pn ⊆ F1 �u,v F2 is possibly true. Therefore, we need some additional conditions so
that F1 �u,v F2 ∈ R(2K2, 2Pn). One such condition is that F1 �u,v F2 contains no
3Pn . But, this is not enough to guarantee F1 �u,v F2 ∈ R(2K2, 2Pn). For instance,
consider the graphs in Fig. 1. The graphs A and B are obtained from C+

4 � C+
4 but

two different identifying vertices. Even though both graphs A and B do not contain
a graph 3Pn , we can show that A ∈ R(2K2, 2P4) but B /∈ R(2K2, 2P4), since there
is no (2K2, 2P4)-coloring in B − e. We have the following theorem.

Theorem 7 Let n ≥ 3 be an integer. Let F1, F2 be connected graphs inR(2K2, Pn),
u ∈ V (F1) and v ∈ V (F2). If F1 �u,v F2 contains no 3Pn, then F1 �u,v F2 →
(2K2, 2Pn).

Proof Suppose F1 �u,v F2 � (2K2, 2Pn). Then, there exists a (2K2, 2Pn)-coloring
φ of edges of F1 �u,v F2. So, under the coloring φ, F1 �u,v F2 contains at most one
red K2 and at most one blue Pn . It means that the red subgraph of F1 �u,v F2 forms
either a triangle or a star. If the red subgraph of F1 �u,v F2 forms a triangle K3, then
this K3 can be either in F1 or F2. Now, if this red K3 is in F1, then, this blue Pn can
be in F1 or F2. If Pn is in F1, then it contradicts F2 → (2K2, Pn). If Pn is in F2,
then it contradicts F1 → (2K2, Pn). If Pn is in both F1 and F2, then it contradicts
either F1 → (2K2, Pn) or F2 → (2K2, Pn). Therefore, F1 �u,v F2 → (2K2, 2Pn).
A similar argument can be applied if the red subgraph of F1 �u,v F2 forms a
star. �	
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Fig. 2 The graph F1 �u,v F2 � 3K1,3 but F1 �u,v F2 /∈ R(2K2, 2K1,3)

Similarly, there are two graphs F1, F2 ∈ R(2K2, K1,n), u ∈ V (F1), v ∈ V (F2),
and F1 �u,v F2 � 3K1,n but F1 �u,v F2 is not inR(2K2, 2K1,n). An example can be
seen in Fig. 2. Thus, we have the following theorem. The proof is similar.

Theorem 8 Let n ≥ 2 be an integer. Let F1, F2 be connected graphs in R(2K2,

K1,n), u ∈ V (F1) and v ∈ V (F2). If F1 �u,v F2 contains no 3K1,n, then F1 �u,v

F2 → (2K2, 2K1,n).

5 Identifying Two Edges of Two Ramsey
Minimal Graphs

In this section, we replace the complete graph in Theorem 3 by a cycle, a path, or a
star. First, we let F1 and F2 be connected graphs inR(2K2,Cn). Then, we have the
following theorem for the graph F1 �a,b F2 for any edges a ∈ E(F1) and b ∈ E(F2).

Theorem 9 Let n ≥ 3 be an integer. Let F1, F2 be connected graphs in R(2K2,

Cn), a ∈ E(F1) and b ∈ E(F2). If F1 �a,b F2 contains no 3Cn, then F1 �a,b F2 ∈
R(2K2, 2Cn).

Proof Let F1, F2 ∈ R(2K2,Cn) be connected graphs, a ∈ E(F1), and b ∈ E(F2).
It is easily seen that F1 �a,b F2 → R(2K2, 2Cn). Next, we show that for every edge
e ∈ E(F1 �a,b F2), (F1 �a,b F2) − e � (2K2, 2Cn). Without loss of generality, we
consider e ∈ E(F1). Then, there exists a (2K2,Cn)-coloring φ1 of edges of F1. Let
φ be a red-blue coloring of edges of (F1 �a,b F2) − e such that φ(x) = φ1(x) for
x ∈ E(F1 − e) and φ(x) = blue for all x ∈ E(F2). It can be immediately shown that
φ is a (2K2, 2Cn)-coloring of (F1 �a,b F2) − e. Hence, for every a ∈ E(F1) and
b ∈ E(F2), F1 �a,b F2 ∈ R(2K2, 2Cn). �	

Before we observe a path Pn and a star K1,n , we first give one class of graph
belonging inR(2K2, 2Pn).

Theorem 10 Let n ≥ 3 be an integer. The cycle Cs ∈ R(2K2, 2Pn) if and only if
2n + 1 ≤ s ≤ 3n − 1.
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Proof Let s and n be integers such that 7 ≤ 2n + 1 ≤ s ≤ 3n − 1. Consider a red-
blue coloring of Cs containing no red 2K2. Then, all edges of Cs are blue or the
subgraph induced by red edges form a path P3. Hence, the remaining edges form a
path Ps−1. It means that there exists a blue 2Pn . Now, let e be an edge of Cs . Then,
Cs − e = Ps . Let V (Ps) = {v1, v2, . . . , vs}. Let φ be a red-blue coloring of edges
of Cs − e such that φ(x) = red for x incident to vn and φ(x) = blue otherwise. We
obtain a (2K2, 2Pn)-coloring of edges of Cs − e. So, Cs ∈ R(2K2, 2Pn).

Next, let Cs ∈ R(2K2, 2Pn) for n ≥ 3. For a contradiction, if s ≤ 2n, then we
have a (2K2, 2Pn)-coloring φ of edges of Cs where φ(x) = red for x incident to v1
and the remaining edges are colored by blue. Under the coloring φ, there is neither
a red 2K2 nor a blue 2Pn . If s ≥ 3n, then Cs is not minimal, since Cs contains
3Pn . �	

Now, we will replace the cycle Cn in Theorem 9 by a path Pn . Let F1, F2 be
connected graphs in R(2K2, Pn). For every a ∈ E(F1) and b ∈ E(F2), a graph
F1 �a,b F2 can contain either 3Pn or a cycle Cs with 2n + 1 ≤ s ≤ 3n − 1. Even
though, we exclude the graph 3Pn and cycle Cs with 2n + 1 ≤ s ≤ 3n − 1, we
cannot guarantee that F1 �a,b F2 ∈ R(2K2, 2Pn). For example, by [1], we know
that C7, F3 ∈ R(2K2, P5), where F3 is the graph in Fig. 3. For the edge a ∈ E(C7)

and b ∈ E(F3) as depicted in Fig. 2, we have C7 �a,b F3 containing neither 3Pn
norC11. Since for e = a = b, (C7 �a,b F3) − e → R(2K2, 2P5), thenC7 �a,b F3 /∈
R(2K2, 2P5). A similar argument holds for a star K1,n (see Fig. 4). So, we only have
the following theorems. The proofs of these theorems can be done in a similar way
as the proof of Theorem 7.

Theorem 11 Let n ≥ 3 be an integer. Let F1, F2 be two connected graphs in
R(2K2, Pn), a ∈ E(F1) and b ∈ E(F2). If F1 �a,b F2 contains neither 3Pn nor Cs

with 2n + 1 ≤ s ≤ 3n − 1, then F1 �a,b F2 → R(2K2, 2Pn).

Fig. 3 The graph C7 �a,b F3 � 3P5 and C7 �a,b F3 � C11 but C7 �a,b F3 /∈ R(2K2, 2P5)

Fig. 4 The graph F4 �a,b F5 � 3K1,3 but F4 �a,b F5 /∈ R(2K2, 2K1,3)
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Theorem 12 Let n ≥ 3 be an integer. Let F1, F2 be two connected graphs in
R(2K2, K1,n), a ∈ E(F1) and b ∈ E(F2). If F1 �a,b F2 contains no 3K1,n, then
F1 �a,b F2 → R(2K2, 2K1,n).
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Solution of Viscous Burgers Equation
Using a New Flux Based Scheme

Mohammad Belal and Nadeem Hasan

Abstract In this work, a new scheme (PVU-M+) is used for obtaining the numerical
solution of viscous Burgers equation (VBE) in 1-D which is widely regarded as a
1D cartoon of the Navier–Stokes Equation. The scheme is a variant of PVU family
of schemes. The analytical/exact solutions of problems governed by the equation are
utilized for comparing the numerical solutions obtained by PVU-M+ scheme.

Keywords Viscous Burgers equation · Discontinuities · Waves

1 Introduction

While computing the compressible flows which are governed by Euler/Navier–Stokes
equations, the discontinuities pose a stiff challenge. There should be sufficient numer-
ical diffusion in the numerical scheme to stably resolve the discontinuities without
any spurious oscillations. It is generally believed that schemes relying on the wave
dynamics would capture the flow physics of compressible flows much better. There
has been much effort in development of schemes that utilize the wave dynamics.
However, schemes relying on direct discretization of the conservation equations
didnt get much attention.

1.1 Background

Laney [1] classified the time marching methods for Euler/Navier–Stokes equations
as:
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1. Flux based methods
2. Wave based methods of Reconstruction-Evolution type
3. Wave based methods of flux splitting type

Qamar et al. 2006 [2] gave a flux based scheme for computation of compressible
flows. The scheme is a two-step, predictor-corrector algorithm utilizing the basic
ideas of upwinding. The inter cell convective fluxes were estimated on the basis
of upwind interpolation of convective transport vector based on particle convec-
tive velocities and thus the scheme was named as Particle Velocity Upwind (PVU)
scheme. The scheme employed first-order upwind procedure without explicitly using
artificial viscosity/damping to stabilize the solution in the vicinity of shocks.

Later, Qamar et al. 2010 [3] presented an extension of the PVU scheme. Here
first order upwind interpolations was only utilized in the regions of discontinuities
while second order upwind interpolation was employed for both inter cell velocity
and convective transport vector in smooth regions of solution. The use of first order
upwind interpolations in the neighborhood of shocks resulted in high dissipation.

In its third phase Hasan et al. [4] extended the scheme to an efficient and robust
higher order scheme named as PVU-M+. In this version higher order (central/upwind)
estimates for inter-cell particle velocity and inter-cell convective property vector are
obtained and blended through a suitably defined weight function Wf in the smooth
varying solution region. In the vicinity of shocks, the higher order estimates (cen-
tral/upwind) are combined with the lower order estimates (upwind biased) through
suitably defined solution sensitive weight functions or limiter functions in order to
compute the inter-cell numerical convective flux. This reduces the large dissipation
associated with first order upwind interpolation estimate employed in earlier versions
reported in [2, 3].

In the present work, the solutions of 1D viscous Burgers equation are obtained
using PVU-M+ scheme. VBE is taken as a model, not only to test the numerical
methods but also to obtain the numerical solution of the equation for small values
of the viscosity, largely due to its similarity with Navier–Stokes equation (NSE). In
the present study, the 1D viscous Burgers equation (VBE) has been selected as a
test bed as analytical solutions can be obtained for initially continuous as well as
discontinuous spatial data. Consequently, the properties like numerical dissipation
and numerical dispersion for a nonlinear convection combined with linear diffusion
model problems can be easily identified and studied. Such properties play an impor-
tant role in capturing the chaotic/turbulent solutions of Navier–Stokes equations. The
compressible flow test cases for the PVU-M+ scheme reported earlier in [4] com-
prised mostly of inviscid model problems so that the ability of the scheme to capture
the shock dynamics under action of non-linear convection and physical diffusion
is not known. Also the ability of the scheme in resolving the wave dynamics for
a non-linear convection combined with linear diffusion scenario, as represented by
VBE is also not established and warrants an investigation.
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1.2 Viscous Burgers Equation

The classical VBE in 1D is given as,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(1)

where u is a characteristic velocity in x direction, t is the time and ν is the damping
or viscosity parameter.

VBE is a fundamental partial differential equation that occurs in various areas
of physical sciences. It is named after Johannes Martinus Burgers (1895–1981). It
can be considered as a simplified form of the Navier–Stokes equation [5] due to
the presence of nonlinear convection term and the linear viscosity term. The main
feature of VBE is the simultaneous existence of a nonlinear convection term and a
linear diffusion term. If the diffusion term is dominant over convection, the solution
of VBE approaches the solution of the diffusion equation. On the other hand, if the
nonlinear term dominates, there will be formation of shock-like discontinuities. The
conservation form of VBE is given as,

∂u

∂t
+ ∂

∂x

(
u2

2
− ν

∂u

∂x

)
= 0 (2)

The VBE is an important model which appears in various fields of physical science
[6–12]. Analytic solutions of VBE can be obtained by the Cole–Hopf transformation,
which transforms the VBE to a linear heat equation [9, 10].

1.3 Exact Solutions of Viscous Burgers Equation

To transform VBE into a linear heat equation via the Cole–Hopf transformation [9,
10], we consider Eq. (2). The transformation can be done in two steps, first introduce
ζ such that,

u = ζx (3)

u2

2
− ν

∂u

∂x
= −ζt (4)

Now, taking ξ(x, t) = e− ζ

2ν

ζ = −2νlogξ (5)

Using the above relations, Eq. (2) transforms to a linear parabolic equation (pure
diffusion).

ξt = νξxx (6)
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Now, when the VBE has been transformed into a linear partial differential equation,
the initial and boundary conditions on u can be transformed via

u(x, t) = −2ν
ξx

ξ
(7)

The initial condition can be given as,

u(x, 0) = f (x) = −2ν
ξx

ξ
(8)

On integrating this equation, we get

ξ(x, 0) = ξ(0, 0)exp

[

−
∫ x

0
u(x′, 0)dx′

2ν

]

(9)

Now, using Eq. (7) the boundary conditions can be given as,

u(0, t) = −2ν
ξ0

ξ
⇒ ξx + u(0, t)

2ν
ξ = 0 (10)

u(l, t) = −2ν
ξl

ξ
⇒ ξx + u(l, t)

2ν
ξ = 0 (11)

1.3.1 Wave Solutions

For wave solution over the interval −∞ < x < +∞, the boundary conditions are not
required. A common example of a solution with space-time translational symmetry
is the travelling wave solution. Suppose the Eq. (6) admits a travelling wave solution
[13] of the form given as,

ξ(x, t) = Aeμ(x+ct), (12)

where c and μ are arbitrary complex constants. On substituting in Eq. (6), c and μ

can be shown to be related as,
c = νμ. (13)

Since Eq. (6) is linear, by superposition,

ξ(x, t) = D +
p∑

1

Bie
μi(x+νμi t), (14)
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is also a solution. Expressing μi = μRi + jμIi , the real part of the solution is given
as,

ξ(x, t) = D +
p∑

1

Bie
μRi x+ν

(
μ2
Ri

−μ2
Ii

)
t
cos

(
μIi x + 2μRiμIiνt

)
. (15)

This equation represents a general wave solution to the heat equation.

1. Standing waves: Standing waves are characterized by a zero phase speed. This
implies that for standing waves, μRiμIi = 0.
For μRi = 0, μi = μIi . One obtains solution using Eq. (15) of the form given as,

ξ(x, t) = D +
p∑

1

Bie
−νμ2

Ii
t cos

(
μIi x

)
. (16)

This equation represents a superposition of individual standing waves whose
amplitude damps out in time for v > 0. The corresponding solution for the VBE
can be obtained using Eq. (7) as,

μ(x, t) = 2ν

∑p
1

[
CiμIi exp

{−νμ2
Ii
t
}
sin

(
μIi x

)]

1 + ∑p
1

[
CiμIi exp

{−νμ2
Ii
t
}
cos

(
μIi x

)] (17)

where Ci = Bi/D.
2. Travelling waves: Travelling waves are mathematically represented as ξ = func

(x ± at), where a is a real constant representing the phase velocity of the wave.
Therefore, if we choose μIi = 0, using Eq. (15) one obtains a solution of the form
given as,

ξ(x, t) = D +
p∑

1

Bie
μRi (x+νμRi t). (18)

This equation represents a spatially non-periodic travelling wave solution to the
heat equation.

3. Spatially modulated travelling wave: If μi = μRi = ±(μIi) one obtains a solution
of the form given as,

ξ(x, t) = D +
p∑

1

Bie
μixcosμi(x ± 2μiνt). (19)

The above solution is readily recognized as a spatially modulated travelling wave.
For ν > 0, μi > 0, it represents a left travelling wave, while forμi < 0 one obtains
a right travelling wave in the (t-x) plane. In both cases the waves are damped along
their direction of propagation.
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1.3.2 Exact Solutions for Specified Initial and Boundary Conditions

Consider the boundary and initial conditions as,

u(0, t) = 0, u(l, t) = 0, t > 0, (20)

u(x, 0) = f (x), 0 ≤ x ≤ l. (21)

The methodology for obtaining the exact solution has been taken from Lokenath
Debnath [14]. It follows from Eq. (9) that

ξ(x, 0) = exp

⎡

⎣− 1

2ν

x∫

0

f (x′)dx′
⎤

⎦ (22)

The standard solution of the linear diffusion equation is given by

ξ(x, t) = ao +
∞∑

n=1

anexp

(
−n2π2νt

l2

)
cos

(nπx
l

)
(23)

where

ao = 1

l

l∫

0

ξ(x, 0)dx (24)

and

an = 2

l

l∫

0

ξ(x, 0)cos
(nπx

l

)
dx (25)

The corresponding solution for the VBE can be obtained using Eq. (7).

2 PVU-M+ Scheme

The general equation for the compressible form of the Navier–Stokes equations
strong conservative form [15] in three dimensions is

∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= J (26)

As the present work deals with one-dimensional viscous Burgers equation, the equa-
tion in dimensionless form is expressed as,
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Fig. 1 Diagram showing a
computational molecule at a
grid point (i)

x 

cell interface 

i-1 i i+1 i+2 i+1/2 

∂U

∂t
+ ∂(Fc + Fnc)

∂x
= 0 (27)

where U is the solution vector, F is the flux vector, Fc is the convective flux vector
and Fnc is the non-convective flux vector. Figure 1 shows a typical uniform 1-D mesh
with a computational segment surrounding the ith node or grid point. The PVU-M+
scheme is a two-step predictor-corrector scheme [4]. The solution vector at the ith

grid point can be obtained at the new time level (nt + 1) through the predictor and
corrector steps given as,

Predictor Step:

U∗ = Unt − Δt

(
Fc
i+1/2

(
Unt

) − Fc
i−1/2

(
Unt

)

xi+1/2 − xi−1/2
+ Fnc

i+1

(
Unt

) − Fnc
i

(
Unt

)

xi+1 − xi

)

(28)

Corrector Step:

Unt+1 = U∗ + Unt

2
− Δt

2

(
Fc
i+1/2 (U∗) − Fc

i−1/2 (U∗)
xi+1/2 − xi−1/2

+ Fnc
i (U∗) − Fnc

i−1 (U∗)
xi − xi−1

)

(29)
The inter-cell numerical convective flux given in the above steps is expressed as,

Fc
i+1/2 = ui+1/2Φi+1/2 (30)

where ui+1/2 and Φi+1/2 is an estimate of inter-cell particle velocity and the inter-cell
convective property vector Q respectively.

2.1 Estimation of ui+1/2 and Φi+1/2 in Smooth Varying
Solution Region

The higher order (cubic central interpolation) and lower order (quadratic upwind
biased and first order upwind biased interpolation) estimates of any discrete function
fi at midway location i + 1/2 in the interval [xi, xi+1] is given by Hasan et al. [4]. The
cubic central and quadratic upwind estimates for both inter-cell numerical particle
velocity and the inter-cell convective property vector are blended through a suitably
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defined weight function Wf . The weighted estimates, thus obtained are employed
in the smooth regions. The weight function has been designed in such a way that
it approaches unity with increasing magnitude of the convection velocities, thereby
giving more weight to the upwind estimate [4].

To maintain the numerical stability in the vicinity of shocks and other types
of discontinuities, the artificial viscosity or numerical dissipation is enhanced by
employing lower order estimates. In order to achieve this, the weighted higher order
estimates obtained above are combined with the lower order estimates, via solu-
tion sensitive weight functions ψ and η, to finally estimate the inter-cell values. The
solution sensitive normalized weight functions ψ and η perform the dual role of iden-
tifying the discontinuities in the solution and automatically adjusting the proportions
of the higher/lower order interpolation estimates to the inter-cell values. Finally, the
estimates of inter-cell particle velocity and the inter-cell convective property vector
are examined against a range boundedness criteria. If any of the estimates does not
satisfy the range boundedness criteria, then the value of the component is taken to
be the mean of the value on either side of the interface.

2.2 Estimation of ui+1/2 and Φi+1/2 in the Vicinity of Shocks
or High Solution Gradients

The procedures described earlier, to obtain the estimates of ui+1/2 and Φi+1/2, lead
to oscillations/overshoots/undershoots in the vicinity of high solution gradients or
shocks on the failure of range boundedness criteria. A value of ψ or η in excess
of a threshold value is used to identify a shock or a non-smooth solution feature.
Threshold limits in the range of [0.7–0.9] are found to be suitable for the detection
of shock.

In order to specifically identify the shock, the wave speeds on either side of
the interface (i+1/2) are utilized. It is known that for the formation of shocks, the
characteristics must converge. Once a shock is detected the inter-cell particle velocity
and convective transport property vector can be determined as,

ui+1/2 = ui and Φi+1/2 = Qi (31)

3 Numerical Solution of Viscous Burgers Equation
Using PVU-M+ Scheme

The numerical solution for VBE using PVU-M+ scheme has been obtained for six
cases. Three cases involve wave solutions while the other three cases involve solutions
with continuous and discontinuous initial conditions and fixed boundary conditions.
The methodology for computing the analytical solution of the VBE in all these cases
has already been presented in Sect. 1.3. Table 1 summarizes the cases employed for
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Table 1 Summary of the Test cases employed for the wave solutions

Test case Wave Domain Time

1 Standing wave [−5, 5] 3.0, 6.0

2 Travelling wave [−5, 5] 3.0, 6.0

3 Spatially modulated
travelling wave

[−1, 1] 1.0, 2.0

Table 2 Summary of the Test cases employed for the wave solutions

Test case Initial conditions u(x,0) Boundary
condition

Domain Time

4 uosin
(
jπx
l

)
sin

(
kπx
l

)
u(−2.5, t) = 0
u(2.5, t) = 0

[−2.5, 2.5] 3.0, 6.0

5 0, 0 ≤ x ≤ 1
3

1, 0 < x < 2
3

0, 2
3 ≤ x ≤ 1

u(0, t) = 0
u(1, t) = 0

[0, 1] 0.6

6 −1, 0 ≤ x ≤ 1
3

1, 0 < x < 2
3

−1, 2
3 ≤ x ≤ 1

u(0, t) = −1
u(1, t) = −1

[0, 1] 0.3

wave solutions and Table 2 summarizes the cases involving solutions with continuous
and discontinuous initial conditions and fixed boundary conditions.

For cases 1–3, the parameter ν has been taken as 0.1 while for cases 5–6 it is taken
as 0.005. For case 4 the parameter ν is chosen as 0.01. For all cases uniform grids
having 160 points have been utilized except for case 4 where a uniform 400 point
grid has been utilized in order to capture the small length scales in the solution. A
time step of 5 × 10−4 is employed for test cases 1–4 while a smaller time step of
1 × 10−4 is employed for test cases involving initial discontinuities (cases 5 and 6).

Case 1: A three wave (p = 3) exact standing wave solution (Eq. (17)) is con-
structed. The values of exact solution parameters Ci have been taken as: C1 =
0.6,C2 = 0.65,C3 = 0.7, μ1 = 1.1, μ2 = 1.2, and μ3 = 1.3. Figure 2 compares the
solution obtained by the PVU-M+ scheme with the exact solution. The waves are
damped with time. The shape and amplitude are well captured by the PVU-M+
scheme. This is a direct evidence of the fact that the physical rates of convection and
diffusion are very faithfully captured.

Case 2: In this case also, a three wave (p = 3) exact travelling wave solution is
employed. The values of parameters Ci and that of μRihave been taken identical to
those considered for case 1. Figure 3 compares the solution obtained by the PVU-
M+ scheme with the exact solution. The wave motion (towards left) is resolved quite
accurately without any dispersion and noticeable numerical (excessive) diffusion.

Case 3: This is a test case based on spatially modulated left travelling wave
solutionof the transformed heat equation (i.e. μi > 0). A single wave (p = 1) exact
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Fig. 2 Comparison of
solution obtained by the
PVU-M+ scheme with the
exact solution for case 1
taking 160 grid points
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Fig. 3 Comparison of
solution obtained by the
PVU-M+ scheme with the
exact solution for case 2
taking 160 grid points
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exact_6
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solution is obtained by setting the solution parameters as C1 = 0.001 and μ1 = 0.4,
respectively. Figure 4 compares the numerical solutions with the exact solutions. The
wave movement towards the left is faithfully captured by the scheme.

Cases 4–6 involve exact solutions of VBE subjected to specified initial and bound-
ary conditions. The integrals involved in Eqs. (22), (24) and (25) are estimated numer-
ically using one-third Simpsons rule. For case 4, uniformly spaced 151 points over
the entire domain are utilized while for case 5 and case 6 a data sample of 201
uniformly spaced points are employed. A convergence study of the integral values
ensures that the number of sample points is appropriate for each case. The exact
solutions are constructed (Eqs. (23) and (7)) by considering leading 40 terms in case
4 while 50 terms are utilized in cases 5 and 6. The number of terms is chosen so as
to yield a convergence upto 5th decimal place in the analytical series solutions.

Case 4: This case involves a smooth initial data having the superposition of sine
wave. The value of uo has been taken as 0.2 which controls the amplitude of the
waveform. The values of j and k have been taken as 6 and 26 respectively and l is
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x

u

-1.5 -1 -0.5 0 0.5 1 1.5

-0.0008

-0.00075

-0.0007

-0.00065

-0.0006

-0.00055

-0.0005

-0.00045

-0.0004 u_initial
exact_1
PVU-M+_1
exact_2
PVU-M+_2

Fig. 4 Comparison of solution obtained by the PVU-M+ scheme with the exact solution for case
3 taking 160 grid points
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Fig. 5 Comparison of solution obtained by the PVU-M+ scheme with the exact solution on 400
grid points for case 4 a showing initial waveform b without initial waveform

the length of the domain which is 5. Figure 5 compares the solutions. For clarity,
the exact and numerical solutions (using PVU-M+) at time t = 3 and t = 6 have
been shown separately in Fig. 5b without the initial data. The shape of complex or
superposed waves and their amplitude are well captured by the PVU-M+ scheme
without any noticeable effects of numerical dissipation and dispersion.

Case 5: This case involves a jump discontinuity in the initial data. Further, with
passage of time, the solution involves a moving shock towards right. Figure 6 com-
pares the numerical solution with the exact solution solutions. The spreading and
movement of the initial discontinuity under the combined effects of non-linear con-
vection and linear viscous diffusion is captured very faithfully by the scheme.
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Fig. 6 Comparison of
solution obtained by the
PVU-M+ scheme with the
exact solution for case 5
taking 160 grid points

x

u

-0.2 0 0.2 0.4 0.6 0.8 1 1.2-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 u_initial
exact_0.6
PVU-M+_0.6

Fig. 7 Comparison of
solution obtained by the
PVU-M+ scheme with the
exact solution for case 6
taking 160 grid points
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Case 6: This test case involves a stronger jump discontinuity in the initial data
in comparison to the previous case. In contrast with case 5, the discontinuity is
stationary in time as the medium flows through it. Figure 7 compares the numerical
solution with the exact solution solutions. The scheme captures the evolution of
initial discontinuity very accurately and thus, can easily capture the steep gradients
of stationary strong shocks without any numerical contamination in the form of
excessive diffusion and dissipation.

3.1 Global Convergence Rates

The global convergence rates are a measure of the rate at which the numerical solution
converges to the exact solution as the numbers of grid points are increased. For a
discrete approximate solution uN (xi, t) and exact solution uEX(x, t) on a uniform
mesh of length scale h and total grid points N, the global error can be expressed as,
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E(h) =
{

1

N

N∑

i=1

[uN (xi, t) − uEX(xi, t)]
2

} 1
2

. (32)

For all the test cases, except case 4 and case 2, uniform grids with 40, 80 and 160
points have been taken. For test case 4, the grid points have been taken as 100, 200
and 400 while for case 2, the numerical solutions converge to the exact solutions
at much coarser grids and solutions are considered at 10, 20 and 40 grid points.
Figure 8 depicts a typical convergence characteristic for test case 3. Similar linear
characteristics were obtained for other test cases.

For sufficiently large N (depending on the problem), the convergence character-
istics exhibit a linear trend which implies that the behaviour of E with N can be
mathematically described by the power law,

E = d (N)m , (33)

where, d and m are constants.
The slope m of the characteristic is a measure of the global convergence rate. The

value of the constant m for the various test cases found from the convergence charac-
teristics is summarized in Table 3. The PVU-M+ scheme exhibits a nearly quadratic

Fig. 8 Convergence
characteristics for test case 3
employing 40, 80 and 160
grid points

log N

lo
g
E

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
-10.2

-10

-9.8

-9.6

-9.4

-9.2

-9

-8.8

-8.6

Table 3 Convergence
statistics for the different test
cases

Test case m

1 −2.27

2 −2.04

3 −1.97

4 −2.48

5 −2.42

6 −2.44
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and even super-quadratic global convergence rate. This is in close agreement with the
formal local spatial order of accuracy (between 2 and 3) of the various discretizations
involved.

4 Conclusions

The cases involving wave solutions clearly indicate that the shape and amplitude are
well captured by the PVU-M+ scheme without any significant numerical dissipation
and dispersion. This indicates good potential of the scheme for capturing instabilities
in non-linear viscous flow processes. The scheme also captures the solutions even
on lowering the viscosity coefficient. Even on taking coarser grids, the scheme has
been found to behave faithfully.

The case involving smooth initial data with superposition of sine waves and char-
acterized by large number of length scales was easily captured by the scheme. Thus,
the scheme shows good promise in capturing spatio-temporal evolution of widely
varying length scales under the influence of non-linear interactions and linear phys-
ical diffusion as in the case of turbulent motion of fluids.

The evolution of initial discontinuities in the last two cases was easily captured by
the scheme without any spurious oscillations or overshoots/undershoots. For all the
test cases considered, the scheme delivers a quadratic/super-quadratic global conver-
gence rate. Thus, the capturing of smooth as well as non-smooth or discontinuous
features of the solutions without any spurious oscillations or overshoots/undershoots
essentially establishes TVD character of the PVU-M+ scheme for VBE. The PVU-
M+ scheme can further be used for the solution of 2D viscous Burgers equation
(VBE). In a multi-dimensional scenario the interaction between different variables
adds a new dimension and a new challenge for numerical methods.
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Effect of Slip Velocity on the Performance
of a Magnetic Fluid Based Transversely
Rough Porous Narrow Journal Bearing

Snehal Shukla and Gunamani Deheri

Abstract Efforts have been made to study and analyze the effect of slip velocity
on the performance of a magnetic fluid based transversely rough porous narrow
journal bearing. The Neuringer-Rosensweig model governs the fluid flow while the
velocity slip is modeled by the method of Beavers and Joseph. The stochastic model
of Christensen and Tonder has been adopted to evaluate the effect of transverse
surface roughness. With the adding of suitable boundary conditions, the associated
stochastically averaged Reynolds’ equation is solved to obtain the fluid pressure, in
turn, which results in the calculation of load carrying capacity. It is found that the
combined effect of slip velocity and surface roughness is to decrease the load carrying
capacity significantly, in general. Of course, in augmenting the performance of the
bearing system, the eccentricity ratio plays a central role even if the slip parameter is
at minimum. It is established that the bearing can support a load even in the absence
of flow, unlike the case of a conventional lubricant.

Keywords Journal bearing · Load carrying capacity · Magnetic fluid · Porosity ·
Roughness · Slip velocity
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c radial clearance
e eccentricity ratio (e = e1

c )

h fluid film thickness at any point
y Co-ordinate in axial dirction
e1 eccentricity
H magnitude of magnetic field
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L length of the bearing
P lubricant pressure
R radius of the bearing
S slip parameter
U shaft surface speed
W load carrying capacity
P∗ dimensionless pressure
S∗ non-dimensional slip velocity
W ∗ dimensionless load carrying capacity
σ standard deviation
ε skewness
α variance
θ circumferential co-ordinate
ϕ Porosity
� attitude angle of bearing
η dynamic viscosity of fluid
σ ∗ non-dimensional standard deviation
ε∗ non-dimensional skewness
α∗ non-dimensional variance
ϕ∗ non-dimensional porosity
μ∗ magnetization parameter
μ̄ magnetic susceptibility
μ0 permeability of the free space
dy
dx gradient of the film thickness in the direction of motion

1 Introduction

Journal bearings support load acting in the direction normal to the rotating shaft.
It is the most common bearing among sliding bearings. Journal bearings are used
even today as indispensable bearings in many rotating machines such as stream
turbines, generators, blowers, compressors and ship propulsion shafts. Moreover,
journal bearings have a strong impact on the vibration characteristics of machinery.
The type of machinery we are concered with range from small high speed spindles
to motors, fans, amd pumps to large turbines to some paper mill rolls and other large
slow speed rotors. Journal-type models are often best for situations where there is a
lot of motion. People often commit to regular oil changes for car and truck engines
in part to keep these moving pieces in good working order. Additionally, they are
widely use in gasoline and fueled piston engine in motor vehicle. Porous journal
bearings impregnated with oils are widely used in industrial applications. Also, they
are more advantageous because they do not need continuous lubrication, therefore,
their structure is simple and also reduce cost is reduced.

The hydrodynamic theory of lubrication of porous journal bearing has been dis-
cussed in Cameron [1], who obtained away out for oil film pressure and load carrying
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capacity offinite, full bearingusing the short bearing assumptions.Baka [2] computed
the pressure function using short bearing as well as long bearing approximations and
calculated the load capacity and coefficient of friction and compared to one another.
Desai and Patel [3] conducted an experimental analysis of pressure distribution in
hydrodynamic journal bearing for various loading conditions with several operating
parameters. Agostino et al. [4] presented an approximate model for unsteady finite
porous journal bearings and proposed a model which provided a quick analytical cal-
culation of the fluid film force for different values of the permeability factor, aspect
ratio and eccentricity ratio. Durany et al. [5] considered the numerical solution of a
transient thermo-hydrodynamical model for a journal bearing device.

Recently, considerable attention has been paid to the use of magnetic fluid as a
lubricant modifying the performance of bearing system. The properties of magnetic
fluids are well controlled by external magnetic field that gives broad possibilities
for technical and biomedical applications. The use of magnetic fluid as a lubricant
modifying the performance of a bearing system has been discussed in various in-
vestigations, Yan [6] deliberated on the performance of dynamically loaded journal
bearings lubricated with couple stress fluids considering the elasticity of the liner.
Lin [7] presented a study dealing with the effects of couple stress fluids based upon
the Stock micro-continuum theory together with the Hopf bifurcation. Zakharov
[8] reviewed the progress in the theory of hydrodynamic lubrication. Guha [9] dealt
with the steady-state performance of hydrodynamic flexible journal bearings of finite
width considering micro-polar ferrofluid lubrication. Shah and Patel [10] analyzed
the performance of porous layered axially journal bearing lubricated with ferrofluid
considering the effects of permeability of porous facing, slip velocity at the in-
terface of the porous matrix and squeeze velocity. Lin et al. [11] investigated the
non-Newtonian effects on the nonlinear stability boundary of short journal bearings.
Here, it was found that the non-Newtonian effects provided a large stability boundary
within the clearance circle as compared to the bearing lubricated with a Newtonian
fluid.

When gap between twomating surfaces becomes smaller, the effects of roughness
become more important. In most of the applications, the smoothness of bearing
surfaces would not be valid for the accurate prediction of the performance and life
of the bearings. Thus, surface roughness has been studied with much interest in
the recent years because all bearing surfaces are rough to some extent. The effect
of roughness in hydrodynamic bearings was first studied by Tzeng and Saibel [12]
and subsequently by Christensen and Tonder [13–15]. Tzeng and Saibel [12] found
that the load carrying capacity of such bearings was high and frictional force in an
infinitely long bearing was low. The performance characteristics of transverse rough
bearing were compared with that of smooth bearing. Later, Christensen and Tonder
[13–15], extended the model of Tzeng and Saibel [12] for the longitudinal roughness
case. Tala-Ighil [16] dealt with a numerical study, based on finite difference method
to find the tendency for the importance of tribological properties of a journal bearing
such as minimum film thickness, maximum pressure, and axial oil flow and friction
torque. Buuren [17] solved the problem of porous journal bearing using Galerkin’s
method with a novel approach. The proposed method was verified by analytical
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expressions and new results were shown for porous journal bearings including the
influence of rough surfaces.

Hsu et al. [18] investigated the performance of a ferrofluid under the combined
influence of surface roughness and a magnetic field. Deheri and Patel [19] analyzed
the performance of a squeeze film in an infinitely long rough journal bearing using the
ferrofluid flow model of Jenkins. Shukla and Deheri [20] dealt with the performance
of a magnetic fluid based squeeze film in porous rough infinitely long parallel plates
under the influence of slip velocity.

Thus, it was deemed appropriate to make an investigation on the performance
of a magnetic fluid based transversely rough porous journal bearing taking the slip
velocity in to account.

2 Analysis

The geometry and configuration of the bearing system is provided in Fig. 1.
Under usual assumptions of hydrodynamic lubrication theory the governing

Reynolds’ equation for pressure, Cameron [1], by employing the Beavers and Joseph
[21] model for smooth bearing system takes the form

dP/dx = (3Uη/(h3S))(dh/dx)((L2/4) − y2) (1)

Fig. 1 The configuration of
the bearing system
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where
S = (1 + sh)/(2 + sh)

Following Christensen and Tonder [13–15] the expression for film thickness is
considered in the form of

h(x) = h̄(x) + hs (2)

where h̄ is the mean film thickness, while hs is a randomly varying portion measured
from the mean level characterizing the random roughness. Here hs is assumed to be
governed by the probability density function f (hs) (Tzeng and Seibel [12])

f (hs) =
{ 32

35b (1 − (h2s/b
2))3 ; −b ≤ hs ≤ b

0 , elsewhere,
(3)

The details regarding themean α, standard deviation σ , and skewness ε associated
with the characterization of roughness, can be seen from [13–15].

The magnetic field is oblique to the stator and its magnitude is given by

H 2 = kc2sin(2π − θ) (4)

where k = 1014 A2m(−4) chosen so as to hence a magnetic field of strength over 105

(Bhat [22]).
Stochastically averaging equation (1) by the method of Christensen and Tonder,

and using the standard narrow bearing theory and assumptions of hydrodynamic
lubrication as well as the method adopted by Bhat [22], the Reynolds type equation
governing the pressure distribution is found to be

(d/dx)(P − (μ0μ̄H 2)/2) = (3Uη/a(h)S)(dh/dx)(L2/4 − y2) (5)

where

a(h) = h3 + 3αh2 + 3(σ 2 + α2)h + ε + 3σ 2α + α3 + 12ϕH

which is just h3 + 12ϕH in the case of smooth bearings.
Considering

x = Rθ

and following the discussions of (Cameron [1]), the film thickness is expressed as

h = c(1 + ecosθ) (6)

The concerned boundary conditions are

P = 0, x = −L/2 and x = L/2 (7)
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Introducing the dimensionless quantities

(y∗) = y/L , P∗ = (Rc2)/(UηL2)P, μ∗ = (kμ0μ̄Rc2)/Uη, ε∗ = ε/c3, σ ∗ = σ/c,

α∗ = α/c, ϕ∗ = 12ϕH/c3, A1 = ε∗ + 3((σ ∗)2α∗) + (α∗)3, A2 = 12ϕ∗, A4 = 3α∗,

A3 = 3((σ ∗)2 + (α∗)2), S∗ = Sh (8)

and fixing the following symbols

Q1 = 1 + A1 + A2 + A3 + A4; Q2 = eA3 + 2eA4 + 3e, Q3 = e2A4 + 3e2, Q4 = e3;

a1 = Q1 + Q2 + Q3 + Q4; a2 = (3/2)Q4 + Q3 + (1/2)Q2

One obtains the expression for pressure distribution in dimensionless form as

P∗ = ((0.25 − (y∗)2)(μ∗/6) + ((0.25 − (y∗)2)esinθ)/(Q1 + Q2cosθ + Q3cos
2θ

+ Q4cos
3θ))(1/S∗) (9)

The load carried by the narrow journal bearing can be found by integrating the pres-
sure around it, taking the directions in to account and using half Sommerfeld condi-
tions, which state that when the film diverges (at θ = π ), the pressure is uniformly
zero. What is of course needed is the resulting force which is balanced by the load
applied to the shaft. Following the discussions in Cameron, [1] the dimensionless
load carrying capacity per unit width is given by

W ∗ =
√

(WX )2 + (WY )2 (10)

where in
WX : The total component in the direction of the line of center
WY : The total force at right angles to the line of center, determined by the relations

WX =
π∫

0

L/2∫

−L/2

(P − (μoμ̄H2)/2)Rcosθdθdx,WY =
π∫

0

L/2∫

−L/2

(P − (μoμ̄H2)/2)Rsinθdθdy

This leads to the dimensionless load carrying capacity calculated as

W ∗ = (c2/(UηL3S∗))W = W1 + W2 (11)

where
W1 = π2/2 + ((a1/(2a2)) − 1) log((π2a2 − a1)/a1),
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and

W2 = π − 1/2
√

(a1/a2)log((π + √
(a1/a2))/(π − √

(a1/a2))) + ((μ∗a2)/3e).

3 Results and Discussions

It is clearly seen that Eq. (9) determines the dimensionless pressure distribution;
while the distribution of load carrying capacity in non-dimensional form is given
by Eq. (11). It is seen from Eqs. (9) and (11) that the increase in the dimensionless
pressure and load carrying capacity as compared to the case of conventional lubricant
respectively, turns out to be,

(0.25 − ((y∗)2)μ∗/6) and (a2/3e)μ
∗ (12)

It is manifested that the expression for the load carrying capacity is linear with
respect to the magnetization parameter and hence the dimensionless load carrying
capacity increases with increasing magnetization parameter as shown in Fig. 2. The
magnetization results in an improved performance because it increases the viscosity
of the lubricant leading to an increase in pressure, thus, providing increased load
carrying capacity (Bhat [22]).

The profile for the non-dimensional load carrying capacitywith respect to standard
deviation is presented in Figs. 3 and 4. It is clearly seen that the standard deviation
adversely affects the bearing system in the sense that the load carrying capacity
decreases due to the standard deviation. Figure3 says that the rate of decrease in the
load carrying capacity due to σ ∗gets decreased due to negatively skewed roughness.
This is because the surface roughness of the bearing system retards the motion of
lubricant, resulting in decreased load carrying capacity. However, this decrease is
relatively less in the case of porosity and negligible up to ϕ∗= 0.001, which can be
seen from Fig. 4.

One can observe the variation of non-dimensional load-carrying capacity with
respect to variance from Figs. 5, 6 and 7. α∗(positive) decreases the load-carrying
capacity. It is seen thatα∗(negative) induces an increase in the load-carrying capacity.
One can easily find that the effect of slip velocity and eccentricity ratio is more sharp,
which can be seen from Figs. 6 to 7. It is interesting to note that the effect of the
porosity on the distribution of the load-carrying capacity with respect to variance is
negligible up to 0.001.

The profile for the distribution of the load-carrying capacity with respect to skew-
ness is depicted in Figs. 8, 9, 10 and 11.
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Fig. 2 The Variation of load
carrying capacity with
respect to μ∗ and σ ∗

Fig. 3 The variation of load
carrying capacity with
respect to σ ∗ and ε∗
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Fig. 4 The variation of load
carrying capacity with
respect to σ ∗ and ϕ∗
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Fig. 5 The variation of load
carrying capacity with
respect to α∗ and ϕ∗
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Fig. 6 The variation of load
carrying capacity with
respect to α∗ and S∗
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Fig. 7 The variation of load
carrying capacity with
respect to α∗ and e

0.425

0.625

0.825

1.025

-0.2 -0.1 0 0.1 0.2

W
*

α*

e=.08 e=.085 e=.09

e=.095 e=.1



252 S. Shukla and G. Deheri

Fig. 8 The variation of load
carrying capacity with
respect to ε∗ and α∗
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Fig. 9 The variation of load
carrying capacity with
respect to ε∗ and ϕ∗
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Fig. 10 The variation of
load carrying capacity with
respect to ε∗ and S∗
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Fig. 11 The variation of
load carrying capacity with
respect to ε∗ and e
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Fig. 12 The variation of
load carrying capacity with
respect to ϕ∗ and S∗
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Fig. 13 The variation of
load carrying capacity with
respect to ϕ∗ and e
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It is found that the skewness follows the trends of the variance. The effect of
slip velocity as well as eccentricity ratio is sharp which can be seen from Figs. 10
and 11. It is noticed that the effect of the porosity on the distribution of the load-
carrying capacity with respect to skewness is negligible up to 0.001. However, one
can easily notice that the positive effect of negative variance is relatively sharp as
compared to the effect of negatively skewed roughness. Furthermore, one can visu-
alize that the combined effect of negatively skewed roughness and negative variance
is significantly positive in most of the situations.

The effect of the porosity is considerably adverse as can be seen from Figs. 12
and 13. One can easily conclude that indeed, the load carrying capacity decreases
sharply due to porosity.

A close glance at the graphs reveals that the negative effect of porosity can be
overcome to a large extent by the positive effect of magnetization in the case of
negatively skewed roughness for small to moderate values of the slip parameter.
The adverse effect of standard deviation can be compensated to some extent by the
magnetization for small values of slip parameter at least in the case when α∗ (-ve) is
in place. The combined negative effect of positively skewed roughness and variance
(+ve) can be reduced only to a small extent, by the positive effect of magnetization,
keeping slip at minimum, for small values of standard deviation suitably choosing
the eccentricity ratio.

These observations confirm that in spite of the fact that, the porosity, standard
deviation and slip parameter combine decreases the load carrying capacity, this article
offers some measures to improve the situation.

4 Validation

A comparison of the result found here with that of Cameon [1], indicates that the load
is decreased by 1.35%. It is not surprising as roughness, slip velocity and porosity
combine decreases the load carrying capacity. Only due to the effect of surface
roughness, does the load capacity gets decreased by 3.29%.

In order to validate our results, the following sets of of comparison have been
made with well-known published work of Cameon [1].
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Quantity ε̄ = −0.05
μ∗ α∗ σ ∗ ϕ∗ S*

Load
carrying
capacity in
this
Manuscript

With
consideration

1.11955 0.66635 0.37117 1.06792 0.37876

With
consideration

1.10829 0.67170 0.44588 1.09453 0.38049

Article in
Cameron

With
consideration

1.16890 0.91033 0.68983 1.16894 0.75377

Quantity ϕ∗ = 0.25
μ∗ ᾱ σ̄ ε∗ S*

Load
carrying
capacity in
this
Manuscript

With
consideration

1.09112 0.32586 0.36186 0.42283 0.35659

With
consideration

1.07073 0.34374 0.37306 0.43791 0.40434

Article in
Cameron

With
consideration

1.16894 0.57110 0.60973 0.68983 0.64928

Quantity S∗ = 0.3
μ∗ ᾱ σ̄ ϕ∗ ε∗

Load
carrying
capacity in
this
Manuscript

With
consideration

0.75952 0.73401 0.57497 0.57497 0.45948

With
consideration

0.74701 0.81488 0.60570 0.60570 0.46836

Article in
Cameron

With
consideration

0.91032 0.9558 0.81825 0.81825 0.68984

5 Conclusion

This investigation makes it clear that from bearing’s life period point of view the
roughness aspects must be considered carefully while designing the bearing system,
even if there is the presence of a suitablemagnetic strength and slip is at theminimum.
Tomitigate the adverse effect of porosity and standard deviation, even the eccentricity
ratio may offer some help in the case of negatively skewed roughness when variance
(−ve) occurs. In spite of the fact that there is a hoast of factors bringing down the
load carrying capacity of the bearing system supports a good amount of load even
when there is no flow. If developed this, can be a useful piece of work for space craft
vehicles and nuclear power plant.
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On the Wave Equations
of Kirchhoff–Narasimha and Carrier

Pratik Suchde and A.S. Vasudeva Murthy

Abstract A nonlinear nonlocal wave equation modelling the coupling between
transverse and longitudinal vibrations was derived by Carrier in 1945. In 1968, using
careful asymptotics, Narasimha derived a similar equation but with a different non-
linearity (nowadays referred as Kirchhoff type nonlinearity). In this study we solve
both the equations numerically and compare them. Since there are no experimen-
tal data available it is not possible to suggest which is the better model. However
Kurmyshev has pointed out that Carrier’s model cannot be valid for rubber or soft
nylon strings.

Keywords Nonlinear wave equations · Kirchhoff
2010 Mathematics Subject Classification 74J30 · 74H45

1 Introduction

It is well known that the classical wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(1)

does not accurately describe the transverse motion of a vibrating elastic string [5, 7,
10, 13, 17]. This was known to Kirchhoff and Rayleigh over a century ago [15]. The
modern study to correct this anomaly was started by Carrier [5, 6] who derived the
equation
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wt t (x, t) =
(
1 + 1

2π

∫ π

0
w2(x, t) dx

)
wxx (x, t), 0 < x < π, 0 < t ≤ T (2)

followed by several others (see [15]) including Narasimha [17] who derived the
equation

wt t (x, t) + 2Rwt (x, t) =
(
1 + Γ

2

∫ 1

0
w2

x (x, t) dx

)
wxx (x, t) + f(x, t),

0 < x < 1, 0 < t ≤ T (3)

Although the nonlinearity in (2) and (3) are different, it was only recently that this
difference has been highlighted. The nonlinearity in (3) is of the same form as that in
Kirchhoff’swave equation [10] for slender beams. Even thoughmathematical studies
of Kirchhoff’s equation dates back to the 1940s [3], there has been no reference to
Kirchhoff’s work in the studies of Rayleigh [22], Carrier, Narasimha [17], Pohozaev
[21] and Lions [12]. In fact, till 1985, (3) was referred as the Carrier–Narasimha
equation [2]. Kirchhoff’s work was only rediscovered in the 1990s [23].

Numerical study of (3) for planar (w(x, t) = (y(x, t), 0)), undamped (R = 0)
and free ( f (x, t) ≡ 0) vibrations have been done by Bilbao [4], Peradze [20], Liu
and Rincon [13] and Christie and Sanz-Serna [7]. However, the same as not been
done for the nonplanar, damped and forced case or for Eq. (2). Furthermore, there
has been no comparison between the solutions of (2) and (3). The aim of the present
study is to make this comparison. Since exact solutions are difficult to obtain, we
seek numerical solutions.

2 The Equations of Narasimha and Carrier

While Kirchhoff’s equation represented planar motion, Narasimha and Carrier’s
equations represent non-planar motion for a vibrating elastic string. In Eqs. (2)
and (3), w(x, t) is the transverse displacement of the string where w(x, t) =
(y(x, t), z(x, t)), y(x, t) and z(x, t) being the transverse motion in the y and z
direction respectively. Subscripts t and x refer to temporal and spatial derivatives
respectively.w2(x, t) = y2(x, t) + z2(x, t) andw2

x (x, t) = y2x (x, t) + z2x (x, t) is the
squared x derivative of w. f is the external force acting on the string, R the damping
coefficient andΓ the nonlinearity parameter (in (3)). Here, R andΓ are fixed positive
constants, same in both directions, which holds true for a uniform string of circular
cross-section.

Adding a damping and forcing term to (2) and changing the non-dimensional
values to facilitate easy comparison with (3), we get the damped Carrier’s equation
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wt t (x, t) + 2Rwt (x, t) =
(
1 + Γ

2

∫ 1

0
w2(x, t) dx

)
wxx (x, t) + f(x, t),

0 < x < 1, 0 < t ≤ T (4)

Now, consider (3) and (4) with the initial boundary conditions

w(x, 0) = φ(x)

wt (x, 0) = ψ(x) (5)

w(0, t) = w(1, t) = (0, 0)

boundary conditions corresponding to fixed ends.

3 Numerical Algorithm

We now present a numerical scheme to solve (3), (5) and (4), (5) using a spectral
spatial approximation similar to that used by Peradze [20] for a special case of (3)
with time integration similar to that proposed by Christie and Sanz-Serna [7]. We
consider approximate solutions of the form

W(x, t) =
n∑

j=1

Wj(t) sin( jπx) (6)

Wj(t) = (
Wj , y(t),Wj , z(t)

)
j = 1, 2, . . . , n

for both (3) and (4). Henceforth, for a fixed j , the summand in (6) will be referred to
as the j th mode and the j th harmonic interchangeably. Further, jπ will be referred
to as the (spatial) frequency. Now, we assume that the initial conditions and forcing
function are of the form:

φ(x) =
n∑

j=1

αj sin( jπx)

ψ(x) =
n∑

j=1

βj sin( jπx) (7)

f(x, t) =
n∑

j=1

Fj(t) sin( jπx)
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where

αj = (α j , y, α j , z)

βj = (β j , y, β j , z)

Fj(t) = (Fj , y(t), Fj , z(t))

Further details of the algorithm can be found in the Appendix.

4 Difference Between the Two Equations

For the same initial conditions, forcing function, R and Γ . The difference in the two
solutions can be considerable even for very small values of time. Figure1 shows the
displacements at t = 0.15 for

φ(x) = (sin(πx), sin(2πx))

ψ(x) = (5 sin(πx), sin(πx) + sin(2πx))

f(x, t) = (sin(πx), sin(2πx))

R = 0.1

Γ = 0.5

Δt = 0.05
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Fig. 1 Displacement at t = 0.15
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Fig. 3 Net displacement of centre of the string

Figure2 shows the square of L2 norm of the difference of the solutions of the two
equations for the same conditions as above. Figure3 shows the net displacement
of the centre of the string ((y(0.5, t)2 + z(0.5, t)2)

1
2 ) following both Narasimha’s

and Carrier’s wave equation for the same conditions as above with zero forcing
function. This illustrates that the solutions of the two equations oscillatewith different
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(temporal) frequencies. It disagrees with Anand’s [1] conclusion that under free
vibrations the amplitude of total transverse displacement does not exhibit oscillatory
behaviour.

4.1 Nonlinearity

Comparing the nonlinearity in the Eqs. (9) and (23) for the same values of Wk ,

1 + Γ

2
π2

n∑

k=1

k2Wk
2(t)

2
≥ 1 + Γ

2

n∑

k=1

Wk
2(t)

2
(8)

The inequality will be strict for non-trivial solutions. Thus, we can conclude that the
resulting nonlinearity for same initial conditions will be more in the Narasimha’s
equation compared to Carrier’s wave equation (for very small time). Physically, this
can interpreted as the solution of (3) starts with a higher phase velocity and thus
higher temporal frequency than the solution of (4) under the same initial conditions.
This is illustrated in Fig. 4 for the conditions

φ(x) = (sin(πx) + sin(2πx), sin(πx))

ψ(x) = (5 sin(πx), sin(πx) + sin(2πx))

f(x, t) = (sin(πx)+, sin(2πx))
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Fig. 4 Evolution of nonlinearity, for small time
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Fig. 5 Evolution of nonlinearity

R = 0.05

Γ = 0.5

Δt = 0.005

Figure5 shows the variation of the nonlinearity (the coefficient of wxx ) with time for
(3) and (4) for the above conditions with Δt = 0.05.

4.2 Precession

In physics and astronomy, precession refers to the motion or simply the change
in orientation of the axis of a rotating body. It is this phenomenon which causes
the wobble of a spinning top and the shift in the orientation of the Earth’s axis of
rotation. For a string undergoing nonplanar vibration, each point of the string follows
a slightly distorted elliptic orbit. For a linear string, the orientation of the elliptical
orbit followed by each point is constant as shown in Fig. 6. It only decreases in size
due to damping.

For time-independent forcing f(x, t) = g(x), the nonlinearity causes a change in
orientation of this elliptical orbit, which is similar to the phenomenon of precession if
the whirling motion of each point of the string was to be imagined as a rotating body.
Figures6 and 7a, b show the path traced by the centre point of a string following
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Fig. 6 Path traced by the centre point of a string following the linear wave equation

a linear wave equation, Carrier’s wave equation and Narasimha’s wave equation
respectively up to time t = 10 s under the conditions

f(x, t) = (sin(πx), 2 sin(πx))

w(x, 0) = (sin(πx), sin(πx))

wt (x, 0) = (5 sin(πx), sin(πx))

R = 0.1

Γ = 0 (Fig. 6)

Γ = 1 (Fig. 7a, b)

Δt = 0.01

This phenomenon of precession occurs in both the nonlinear wave equation, but
it does so at a much higher rate in Narasimha’s wave equation than in Carrier’s.
The rate of precession is proportional to the amplitude of motion for both equations,
which agreeswith the results of Gough [9]. Thus the rate of precession decreaseswith
time as damping reduces the amplitude. Precession occurs even for time-dependent
forcing but the orbit followed is extremely distorted.
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Fig. 7 Precession in a string following the nonlinear Wave Equations

4.3 Onset of Nonplanar Motion

Determining the conditions under which a force in one directions (say y) can cause
motion in the perpendicular transverse direction z has been an area of interest for
a long time. This has been studied analytically for (3) by Murthy and Ramakrishna
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[16], Miles [14] and Narasimha [17]. O’Reilly and Holmes [19] studied the same and
concluded that in a ‘hysteresis region’ near the fundamental frequency planar motion
is unstable for high enough amplitudes and ballooning or whirling motion develops.
Our numerical simulations agree with this conclusion and show that the same also
holds for (4). Physically, the effective natural frequency changes with damping and
nonlinearity.

Numerically we study the onset of nonplanar motion by answering the following
problem. If a small disturbing z motion is introduced in planar xy motion, under
what conditions does this disturbance grow with time. Narasimha studied onset of
nonplanar motion by trying to answer the same analytically. For only one trans-
verse mode of motion and F1 = (c1 cos(ωt), 0) for a constant c1 and varying ω,
we observe that in a neighbourhood around ω = 1.5 for Carrier’s wave equation
and ω = 2 for Narasimha’s wave equation, z motion is ensured to be excited. This
shows the difference in the effective natural frequency for the two equations. For both
equations, increasing R and increasing Γ (keeping the other fixed), shifts this neigh-
bourhood to the right. Increasing R also decreases the length of this neighbourhood.
Further, increasing R and decreasing Γ suppresses the onset of nonplanar motion.
This disagrees with Narasimha’s conclusion that increasing nonlinearity suppresses
nonplanar motion. Further, for fixed R, there exists a minimum value of Γ for which
this neighbourhood is observed which increases with increasing R beyond a cer-
tain value. This minimum value is shown in Fig. 8 for c1 = 0.5π3, initial conditions
φ(x) = (sin(πx), 0.05 sin(πx)) and φ(x) = (0, 0).
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Fig. 8 Minimum Γ for onset of nonplanar motion
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4.4 Damping of Free Motion

Each mode of the solution to both (3) and (4) undergoes harmonic oscillations for
small R. For free motion f(x, t) ≡ (0, 0), the peaks of these oscillations damp to
zero exponentially at a rate almost equal to R for both the equations.

5 Conclusion

The difference in the integrands of the wave equations of Narasimha and Carrier
showconsiderable difference. Extensive experimental results are needed to determine
which of them provides a better model to the vibrating string.

Appendix: Algorithm

Narasimha’s Wave Equation

Using (6) with Narasimha’s wave Eq. (3), we get1:

Wj
′′(t) + 2RWj

′(t) +
(

1 + Γ

2
π2

n∑

k=1

k2Wk
2(t)

2

)

Wj(t) j
2π2 = Fj(t)

Wj(0) = αj (9)

Wj
′(0) = βj j = 1, 2, . . . , n

Now, we introduce aj(t) = jWj(t) and bj(t) = Wj
′(t) to get the equivalent first

order system

bj
′(t) = Fj − 2Rbj(t) −

(

1 + Γ

4
π2

n∑

k=1

aj
2(t)

)

π2 jaj(t)

aj
′(t) = jbj(t) (10)

aj(0) = jαj

bj(0) = βj j = 1, 2, . . . , n

1Different modes are independent. It is also observed experimentally [16] that when the forcing
function is in the vicinity of a spatial frequency ωn = nπ , the mode of vibration can be closely
described by the function sin(nπx). See also [8].
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Now, we form the vectors

a(t) = (aj(t))
n
j=1

b(t) = (bj(t))
n
j=1

F(t) = (Fj(t))
n
j=1

α = (αj)
n
j=1

β = (βj)
n
j=1

Further we define the norm of a constant or time-dependent vector r = (rj)
n
j=1 =

((r j , y, r j , z))
n
j=1 as

‖r‖2 =
n∑

j=1

rj
2 with rj

2(t) = rj · rj = r2j , y + r2j , z

We also define the (linear bounded) operator K acting on the vector r

K (r) = K (((r j , y, r j , z))
n
j=1) = (( jr j , y, jr j , z))

n
j=1 (11)

Using these our system (10) becomes

b′(t) = F − 2Rb(t) −
(
1 + Γ

4
π2‖a(t)‖2

)
π2K (a(t))

a′(t) = K (b(t)) (12)

a(0) = K (α)

b(0) = β

Due to the presence of the nonlocal term ‖a(t)‖2 we will solve (12) by the use of
a predictor corrector algorithm similar to that proposed by Christie and Sanz-Serna
[7]. First we discretize the time t by introducing a uniform grid {tm |0 = t0 < t1 <

· · · < tM = T } with a time step Δt . The approximate values obtained at the time
t = tm will be denoted by am and bm respectively and the forcing function by Fm .

Predictor Stage:

b[0] − bm−1

Δt
+ 2R

b[0] + bm−1

2
+

(
1 + Γ

4
π2‖am−1‖2

)
π2K (am−1)

= Fm + Fm−1

2
(13)

a[0] − am−1

Δt
= K (bm−1)
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Corrector Stage:

b[s] − bm−1

Δt
+ 2R

b[s] + bm−1

2
+

(
1 + Γ

4
π2 ‖am−1‖2 + ‖a[s−1]‖2

2

)
π2×

K

(
am−1 + a[s−1]

2

)
= Fm + Fm−1

2
(14)

a[s] − am−1

Δt
= K

(
bm−1 + b[s−1]

2

)
s = 1, 2, . . . (15)

The corrector stage is repeated till a value of s is found such that the approximations of
a andb obtained at the s and s − 1 stage are identical, up to a certain level of tolerance.
Then am andbm are taken to be a[s] andb[s] respectively. Thus, the predictor-corrector
algorithm gives an approximation to the modified Crank–Nicolson scheme

bm − bm−1

Δt
+ 2R

bm + bm−1

2
+

(
1 + Γ

4
π2 ‖am‖2 + ‖am−1‖2

2

)
π2

×K

(
am + am−1

2

)
= Fm + Fm−1

2

am − am−1

Δt
= K

(
bm + bm−1

2

)

At time t = tm our approximate solution can be obtained by

W(x, tm) =
n∑

j=1

aj
m

j
sin( jπx) (16)

Further space and time derivatives can be obtained by

Wx (x, tm) =
n∑

j=1

aj
m cos( jπx)π

Wt (x, tm) =
n∑

j=1

bj
m sin( jπx)

To determine a criteria for convergence of these corrector steps, we shall assume
that

∫ 1
0 w2

x (x, t) dx is bounded. We shall also assume that the corresponding values,
‖am‖ and ‖a[s]‖ are also bounded. Further, say

‖am‖, ‖a[s]‖ ≤ Cmax ∀m, s (17)
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It is easy to show that
‖K (r)‖ ≤ n‖r‖ (18)

Upon replacing s by s − 1 in (14), subtracting the resulting equation from (14),
taking the norm, using (17), (18) and simplifying, for s ≥ 3 we get:

(
1 + RΔt

Δt

)
‖b[s] − b[s−1]‖ ≤

(
3

8
Γ π4nC2

max + π2n

2

)
‖a[s−1] − a[s−2]‖ (19)

Using a similar procedure on (15), we get

‖a[s−1] − a[s−2]‖ ≤ Δtn

2
‖b[s−3] − b[s−4]‖ (20)

Using (19) and (20) we get

‖b[s] − b[s−1]‖ ≤ (Δt)2

1 + RΔt
n2

π2

4

[
1 + 3Γ

4
π2C2

max

]
‖b[s−2] − b[s−3]‖ (21)

Thus,
(Δt)2

1 + RΔt
n2

π2

4

[
1 + 3Γ

4
π2C2

max

]
< 1 (22)

is a necessary condition for the convergence of the corrector stages at every time step.
Under typical conditions when the corrector steps converge, they do so in within 5
corrector iterations for a tolerance of 10−2 and within 35 corrector steps with an
tolerance of 10−8.

Carrier’s Wave Equation

The same method is used to obtain approximate solutions to Carrier’s wave Eq. (4).
The first equation of the system (9) will get modified to

Wj
′′(t) + 2RWj

′(t) +
(

1 + Γ

2

n∑

k=1

Wk
2(t)

2

)

Wj(t) j
2π2 = Fj(t) (23)

This is converted to an equivalent first order system by the introduction of aj(t) =
Wj(t) (note the difference in the definition of aj(t)) and bj(t) = Wj

′(t). Upon further
introducing the same vector notation, norm and operator as done before, our system
becomes

b′(t) = F − 2Rb(t) −
(
1 + Γ

4
‖a(t)‖2

)
π2K 2(a(t))

a′(t) = b(t) (24)

a(0) = α

b(0) = β
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Now using a similar predictor-corrector algorithm to get an approximation to a mod-
ified Crank–Nicolson scheme.

Predictor Stage:

b[0] − bm−1

Δt
+ 2R

b[0] + bm−1

2
+

(
1 + Γ

4
‖am−1‖2

)
π2K 2(am−1)

= Fm + Fm−1

2

(25)

a[0] − am−1

Δt
= bm−1

Corrector Stage:

b[s] − bm−1

Δt
+ 2R

b[s] + bm−1

2
+

(
1 + Γ

4

‖am−1‖2 + ‖a[s−1]‖2
2

)
π2×

K 2

(
am−1 + a[s−1]

2

)
= Fm + Fm−1

2
(26)

a[s] − am−1

Δt
= bm−1 + b[s−1]

2
s = 1, 2, . . .

At time t = tm our approximate solution can be obtained by

W(x, tm) =
n∑

j=1

aj
m sin( jπx) (27)

The criteria for convergence of the corrector steps can be obtained in amanner similar
to that done in section “Narasimha’s Wave Equation”. For

‖am‖, ‖a[s]‖ ≤ Cmax ∀m, s

(Δt)2

1 + RΔt
n2

π2

4

[
1 + 3Γ

4
C2
max

]
< 1 (28)

is a necessary condition for the convergence of the corrector steps. Further the cor-
rector steps take a similar number of steps to converge as those for Narasimha’s wave
equation.

For both equations, the accuracy of the algorithm and the code was verified by
comparing the numerical solutions with various manufactured solutions. One such
manufactured solution used was

w(x, t) = (sin(πx) + 0.5 sin(2πx)) cos(π t), (2 sin(πx) + sin(2πx)) cos(π t))
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for which, we obtain

f1(x, t) = π sin(πx)

(
5

2
Γ π3cos3(π t) − 2R sin(π t)

)

+ π sin(2πx)

(
3

2
π cos(π t) + 5Γ π3 cos3(π t) − R sin(π t)

)

f2(x, t) = π sin(πx)

(
25

16
Γ π cos3(π t) − 2R sin(π t)

)

+ π sin(2πx)

(
3

2
π cos(π t) + 25

8
Γ π cos3(π t) − R sin(π t)

)

where f1 and f2 are the corresponding y components of the forcing functions for (3)
and (4) respectively, with the z components equal to twice the y components.

By setting Γ = 0, we obtain the well known linear wave equation, the closed
form solution of which is known. In this case, the numerical solution matched the
d’Alembert’s solutions very well.
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Mathematical Model of Flow in a Channel
with Permeability - Combined Effect
of Straight and Curved Boundaries

P. Muthu and M. Varunkumar

Abstract We investigate the effect of straight and curved boundary on the viscous,
incompressible fluid flow in a channel with absorbing walls. The effect of fluid
absorption through permeable wall is considered by taking flux as a function of axial
distance. The nonlinear equations of motion are linearized by perturbation method
by assuming δ (ratio of inlet half-width to length of channel) as a small parameter
and are solved by numerical methods. The effects of double constriction the velocity
profiles and mean pressure drop are observed and are presented graphically. The
model may be considered for possible application to flow in renal tubule.

Keywords Renal tubules · Straight and curved boundary channel · Perturbation
method · Permeable walls

1 Introduction

The study of flow through tubes of non-uniform cross-section has attracted by many
researchers mainely due to its relevance to flow in renal tubules. Mathematical models
of flow in renal tubule has been studied by various authors. Macey [1] seems to be
the first to study the flow in the proximal renal tubule and modeled the problem as
the flow of an incompressible viscous fluid through a circular tube with linear rate
of reabsorption at the wall. A mathematical model for the bulk flow in the proximal
tubule decays exponentially with axial distance was introduced by Kelman [2]. Macey
[3] extended his first model using Kelman’s condition and solved the equations of
motion to find the average pressure drop.
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Marshal and Trowbridge [4] considered a flow of a newtonian fluid through a
rigid permeable tube and transmural seepage is assumed to obey Darcy’s law. Pallat
et al. [5] have assumed that fluid loss from a porous tube is a function of pressure
gradients across the tubule wall.

All these above studies treated renal tubule is assumed as cylindrical tube of
uniform cross-section, while in general, such tubes may not have uniform cross-
section through out their length. The hydrodynamical studies of an incompressible
viscous fluid in a circular tube of varying cross-section with reabsorption at the
wall have been investigated by Radhakrishnamacharya et al. [6] The effects of wall
permeability on the velocity and wall shear stress in tubes(renal tubules) have been
studied by Chathurani and Ranganatha [7], who treated the tubule as non-uniform.

Recently, Muthu and Tesfahun [8] developed a mathematical model for a vis-
cous, incompressible fluid flow in a channel with slowly varying cross-section with
permeable walls.

The objective of this is to investigate the flow through the renal tubule by con-
sidering an incompressible viscous fluid in a straight and curved boundary channel
with reabsorbing walls.

2 Geometry

The boundary of the channel walls are assumed to be symmetric about x-axis and
vary with x . It is taken as [9] (Fig. 1),

oL

η(x)

−−3 h
4

η
o

hh

x

y
d

L

o

Fig. 1 Geometry of the straight and curved boundary channel
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η(x) =
{

η0 − 3
2h

[
11( x−d

L0
) − 47( x−d

L0
)2 + 72( x−d

L0
)3 − 36( x−d

L0
)4

]
, d ≤ x ≤ d + L0

η0, otherwise.
(1)

where η0 is the half width of the channel inlet (at x = 0), h is the maximum height
of the constriction, d is the location of constriction, L0 is the length of the spread of
constriction and L is the length of the channel.

3 Mathematical Formulation

Consider an incompressible Newtonian fluid flow through a straight and curved
boundary channel as given by Eq. (1). The motion of the fluid is assumed to be
laminar, steady and symmetric. The channel is assumed to be long enough to neglect
both the entrance and end effects. The governing equations of such fluid motion are
given by

∂u

∂x
+ ∂v

∂y
= 0 (2)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ μ

ρ

(
∂2u

∂x2
+ ∂2u

∂y2

)
(3)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+ μ

ρ

(
∂2v

∂x2
+ ∂2v

∂y2

)
(4)

where u and v are the velocity components along the x and y axes, respectively, p is
the pressure, (

μ

ρ
) is the kinematic viscosity of the fluid, μ is the kinematic viscosity

and ρ is the density.
The boundary conditions are taken as follows:

(i) The tangential velocity at the wall is zero. That is,

u + dη

dx
v = 0 at y = η(x) (5)

(ii) The regularity condition requires,

v = 0 and
∂u

∂y
= 0 at y = 0 (6)

(iii) The reabsorption has been accounted by considering the bulk flow as a decreas-
ing function of x . That is, the flux across a cross section is given as
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Q(x) =
∫ η(x)

0
u(x, y)dy = Q0F(αx) (7)

where F(αx) = 1 when α = 0 and decreases with x . Further, α ≥ 0 is the reabsorption
coefficient, a constant and Q0 is the flux across the cross section at x = 0.

Eliminating pressure p from Eqs. (3) and (4) and introducing stream function
ψ(x, y)

u = ∂ψ

∂y
and v = −∂ψ

∂x
(8)

and the following non-dimensional quantities,

x ′ = x
L , y′ = y

η0
, η′ = η

η0
, α′ = αL0, p′ = pη2

0
μQ0

.

The non-dimensional form of the boundary, the governing equations and the
boundary conditions are (after dropping primes)

η(x) =
{

1 − 3
2

δ1
η0

[
11( x−a

ε
) − 47( x−a

ε
)2 + 72( x−a

ε
)3 − 36( x−a

ε
)4

]
, a ≤ x ≤ a + ε

1, otherwise.
(9)

where a = d
L and ε = L0

L .
And the equations of motion (3)–(4) transform to the following form, which is

written after dropping the primes,

∇2ψ = δRe

[
∂ψ

∂y
∇ ∂ψ

∂x
− ∂ψ

∂x
∇ ∂ψ

∂y

]
(10)

where ∇ =
[
δ2 ∂2

∂x2 + ∂2

∂y2

]
, δ = η0

L and Re = Q0ρ

μ
.

And the boundary conditions (3)–(7) become

∂ψ

∂y
= −3

2
Aδ

[

11 − 94

(
x − a

ε

)
+ 216

(
x − a

ε

)2

− 144

(
x − a

ε

)3
]

∂ψ

∂x
at y = η(x)

(11)

ψ = 0 and
∂2ψ

∂y2
= 0 at y = 0 (12)

ψ = F(αx) at y = η(x) (13)

where A = h
L0

, δ = η0

L , ε = L0
L and a = d

L .
In this problem, we consider exponentially decaying bulk flow, that is, in Eq. (7),

F is taken as,

F(αx) = e−αx (14)
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4 Method of Solution

The flow is complex because of the nonlinearity of the governing equations and
boundary conditions (10)–(13). Thus, to solve (10) for velocity components in the
present analysis, assuming the geometrical parameter δ � 1, we shall seek a solution
for stream function ψ(x, y) in the form of a power series in terms of δ, as

ψ(x, y) = ψ0(x, y) + δψ1(x, y) + · · · (15)

Substituting (15) in Eqs. (10)–(13) and collecting coefficients of various like powers
of δ, we get the following sets of equations for ψ0(x, y), ψ1(x, y),…

δ0 case:
∂4ψ0

∂y4
= 0 (16)

The boundary conditions are

∂ψ0

∂y
= 0 at y = η(x) (17)

ψ0 = 0 and
∂2ψ0

∂y2
= 0 at y = 0 (18)

ψ0 = e−αx at y = η(x) (19)

δ1 case:

∂4ψ1

∂y4
= Re

[
∂ψ0

∂y

∂3ψ0

∂y2∂x
− ∂ψ0

∂x

∂3ψ0

∂y3

]
(20)

The boundary conditions are

∂ψ1

∂y
= −3

2
A

[

11 − 94

(
x − a

ε

)
+ 216

(
x − a

ε

)2

− 144

(
x − a

ε

)3
]

∂ψ0

∂x
at y = η(x)

(21)

ψ1 = 0 and
∂2ψ1

∂y2
= 0 at y = 0 (22)

ψ1 = 0 at y = η(x) (23)

Similar expressions can be written for higher orders of δ. However, since we are
looking for an approximate analytical solution for the problem, we consider upto
order of δ1 equations. The solution of Eq. (16) together with Eqs. (17)–(19) is
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ψ0 = A1(x)y + A2(x)y
3 (24)

where A1(x) = 3
2η
e−αx and A2(x) = − 1

2η3 e−αx .
The solution of Eq. (20) together with Eqs. (21)–(23) is

ψ1(x, y) = A3y + A4y
3 + Re

[ (
A1

d A2

dx
− A2

d A1

dx

)
y5

20
+ A2

d A2

dx

y7

70

]
(25)

where

A3(x) = Re

[(
A1

d A2

dx
− A2

d A1

dx

)
η4

20
+ A2

d A2

dx

η6

35

]

+ 3

4
A

[

11 − 94

(
x − a

ε

)
+ 216

(
x − a

ε

)2
− 144

(
x − a

ε

)3
] [

d A1

dx
η + d A2

dx
η3

]

A4(x) = −Re

[(
A1

d A2

dx
− A2

d A1

dx

)
η2

10
+ 3A2

d A2

dx

η4

70

]

− 3

4
A

[

11 − 94

(
x − a

ε

)
+ 216

(
x − a

ε

)2
− 144

(
x − a

ε

)3
] [

d A1

dx

1

η
+ d A2

dx
η

]

Hence, substituting ψ0 and ψ1 in Eq. (15), we get

ψ(x, y) = A1y + A2y
3 + δ

(
A3y + A4y

3 + A5
y5

120
+ A6

y7

840

)
(26)

where A5(x) = 6Re
[
A1

d A2
dx − A2

d A1
dx

]
and A6(x) = 12ReA2

d A2
dx .

The velocities along x- and y-directions respectively, are obtained by substituting
Eq. (25) in (8), as

u = ∂ψ

∂y
= A1 + 3A2y

2 + δ

(
A3 + 3A4y

2 + A5
y4

4
+ A6

y6

10

)
(27)

v = −∂ψ

∂x
= −d A1

dx
y − d A2

dx
y3 − δ

[
d A3

dx
y + d A4

dx
y3 + d A5

dx

y5

20
+ d A6

dx

y7

70

]

(28)

Now, the non dimensional pressure p(x, y) can be obtained by using Eqs. (25), (8)
and (3). It is given as

p(x, y) = δ
∂u

∂x
+ 1

δ

∫
∂2u

∂y2
dx − Re

∫ [
u

∂u

∂x
+ v

∂u

∂y

]
dx (29)
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The mean pressure is given as

p̄(x) = 1

η(x)

∫ η(x)

0
p(x, y)dy (30)

Further, the mean pressure drop between x = 0 and x = x0

� p̄(x0) = p̄(0) − p̄(x0), 0 ≤ x0 ≤ 1 (31)

The wall shear stress τw(x) is defined as,

τw(x) = (σyy − σxx )
dη

dx + σxy(1 − (
dη

dx )
2)

1 + (
dη

dx )
2

at y = η(x) (32)

where σxx = 2μ∂u
∂x , σyy = 2μ ∂v

∂y and σxy = μ(∂u
∂y + ∂v

∂x )

Using the non-dimensional quantity τ ′
w = η2

0
μQ0

τw, the wall shear stress becomes,

τw(x) = 2δ2( ∂v
∂y − ∂u

∂x )
dη

dx + ( ∂u
∂y + δ2 ∂v

∂x )(1 − δ2(
dη

dx )
2)

1 + δ2(
dη

dx )
2

(33)

It may be noted that in Eq. (29), the integrals are difficult to evaluate analyti-
cally to get the expression for p(x, y). Therefore, they are calculated by numerical
integration.

5 Results and Discussion

The aim of this analysis is to observe the behaviour of an incompressible fluid flow
through a straight and curved boundary channel with absorbing walls. The parameter
A characterizes the double constriction of the walls and α represents reabsorption
coefficient of walls.

We discuss the effects of these parameters on the transverse velocity v(x, y) and
mean pressure drop (Δ p̄), given in Eqs. (28) and (31). In all our calculations, the
following parameters are fixed as δ = 0.1, Re = 1.0 and a = 0.1.

Velocity v:

In this case, the velocity profile of the flow is obtained by taking different values of
constriction parameter A at different cross-sections x = 0.25, x = 0.50 and x = 0.75
of the channel. Here, the constriction is narrow at locations x = 0.25 and x = 0.75
and is wide at x = 0.50. The reabsorption coefficient is taken as α = 1.0.
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Fig. 2 Distribution of transverse velocity (v) with y
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As the value of A increases from 0.01 to 0.03, the narrowness of double con-
striction increases. From the Fig. 2a–c, the value of transverse velocity at x = 0.25
is more than at x = 0.50 and x = 0.75. That is, the transverse velocity decreases
as x increases at different cross-sections, even though the degree of narrowness is
same at locations x = 0.25 and x = 0.75. In the both cases, the downstream of the
flow, though there is no significant change in the behaviour of transverse velocity,
the quantity of the velocity decreases.

Mean Pressure Drop Δp̄:

The value of the mean pressure drop over the length of the channel is calculated
for different values of A, a and α. It can be observed, from Fig. 3a, that the mean
pressure drop increases as A increases. Further, from Fig. 3b–d, as the reabsorption
coefficient α increases the mean pressure drop decreases.
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Fig. 3 Distribution of mean pressure drop � p̄ with x
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Fig. 3 (continued)

Wall Shear Stress |τw|:
Figure 4a–f gives the magnitude of wall shear stress (|τw|) at various values of the axial
distance. As the reabsorption coefficient α increases, the magnitude of wall shear
stress decreases (Fig. 4a–c). Also noted that, as constriction parameter A increases,
the magnitude of the wall shear stress increases.
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Fig. 4 Distribution of wall shear stress |τw| with x
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Approximate Controllability of Nonlocal
Fractional Integro-Differential Equations
with Finite Delay

Kamaljeet, D. Bahuguna and R.K. Shukla

Abstract Our purpose in this paper is to derive the approximate controllability of
nonlocal integro-differential system of fractional order with finite delay. The main
result is proved by using Schauder’r fixed point theorem alongwith semigroup theory
and fractional calculus. Finally, we endow an example to show the application of the
main result.

Keywords Approximate controllability · Fractional differential equations · Finite
delay · Semigroup theory

2010 Mathematics Subject Classification 34A08 · 34G20 · 34K30 · 93B05

1 Introduction

Let Y and V be Hilbert spaces. Consider the following nonlocal fractional integro-
differential system

{
cDp y(t) = − Ay(t) + Bw(t) + F(t, yt ,

∫ t
0 ζ(t, r, yr )dr), t ∈ J = [0, b],

y0(υ) = ϕ(υ) + h(y)(υ), υ ∈ [−σ, 0],
(1)

where σ, b > 0, 0 < p < 1, cDp denotes the Caputo fractional derivative; −A :
D(A) → Y generates an analytic and compact semigroup {T (t), t ≥ 0} of bounded
linear operators in Y ; the control w(·) ∈ L2(J, V ); the operator B : V → Y is lin-
ear and bounded; the nonlinear operators F : J × D × Yα → Yβ , ζ : � × D → Yα
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are given continuous functions, here 0 < α ≤ 1,β ∈ [α, 1], D = C([−σ, 0],Yα)

and� = {(t, r)|0 ≤ r ≤ t ≤ b}; the operatorh : C([−σ, b],Yα) → D is completely
continuous; ϕ ∈ D and the history function yt is defined by yt (υ) = y(t + υ), υ ∈
[−σ, 0] and belongs to D. The terms Yα,Yβ are explained in Sect. 2.

Nowadays, numerous researchers have shown more interest in fractional calculus
(see [1–6] and references therein). It has a lot of applications in the field of control,
electromagnetic, porous media, electrochemistry, etc. Also fractional derivatives and
integrals help us to describe various phenomena appearing in economics, engineer-
ing and science, more accurately. In [7–11], the authors have discussed the existence
results of fractional delay systems. Several authors have worked on nonlocal frac-
tional differential systems; see, for instance, [3, 11–13]. In applications of physical
problems, many times the nonlocal initial condition gives better effects and is more
suitable than the usual initial value of the form y(0) = y0.

Kalmanwasfirst onewho introduced the concept of controllability.Controllability
problem allows us to drive the state of dynamical system to the desired state with
help of a control parameter existing in the system. In recent years, the controllability
of the various nonlinear system has been investigated by many authors (see [10, 11,
14–24]). Exact controllability makes us able to drive the system to any final state, but
in case of approximate controllability, the system can be driven to arbitrarily small
neighbourhoodof afinal state. Thus the approximately controllability ismore suitable
to a dynamical system and quite appropriate in applications. In [11, 15], authors
have derived the controllability of abstract functional differential equations with
the help of measures of noncompactness and Mönch fixed point theorem. Surendra
and Sukavanam [10] have established the approximate controllability of semilinear
system of fractional order with bounded delay. In the papers [17, 19, 20, 22–24], the
authors have assumed that associated linear system is approximately controllable for
proving the approximate controllability of nonlinear systems.

This paper is motivated by recent works [10, 11, 20, 22, 23]. We establish some
sufficient conditions to investigate the approximate controllability of the system (1).
Schauder’s fixed point theorem, Semigroup theory and fractional calculus are applied
to derive the main results. To the best of our information, approximate controllability
of nonlocal integro-differential system (1) has not yet been studied.

The outline of the paper is as: In the coming Sect. 2, we provide some notations,
definitions and preliminary results. The existence result and the approximate con-
trollability of (1) are discussed in Sect. 3. In last Sect. 4, we endow an example to
show the application of the main result.

2 Preliminaries

Since −A generates an analytic and compact semigroup {T (t), t ≥ 0} of uniformly
bounded linear operator in Y . Therefore supt≥0 ‖T (t)‖ ≤ M for some M > 1. With-
out loss of generality, let 0 ∈ ρ(A) (a resolvent set of A). Now it is feasible to define
Aα, 0 < α ≤ 1, which is closed linear operator with domain D(Aα) ⊆ Y . Moreover,
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D(Aα) is dense in Y . Now, we denote by Yα the Hilbert space D(Aα) endowed
with norm ‖ · ‖α = ‖Aα · ‖. More details are given in the book by Pazy [25]. The
following lemma gives the basic properties of Aα.

Lemma 1 (see [25]) The operator Aα has satisfied the following:

(i) D(Aβ) ⊂ D(Aα) for any β ≥ α > 0.
(ii) If α,β ∈ R and γ = max{α + β,α,β} then

Aα+β y = Aα.Aβ y, y ∈ D(Aγ).

(iii) For any t > 0, α ≥ 0 and y ∈ Y , then T (t)y ∈ D(Aα).
(iv) T (t)Aαy = AαT (t)y, ∀ y ∈ D(Aα).
(v) AαT (t) is bounded in Y for each t > 0 and

‖AαT (t)‖ ≤ Mαt
−α, for some Mα > 0.

(vi) The linear operator A−α, 0 ≤ α ≤ 1, is bounded and

‖A−α‖ ≤ Cα, for someCα > 0.

Definition 1 (see [1]) The fractional integral for a function f ∈ L1([0, b],Y ) is
given by

I p f (t) = 1

�(p)

∫ t

0
(t − r)p−1 f (r) dr, t > 0, p > 0,

where �(·) is the gamma function.

Definition 2 (see [1]) The Caputo fractional derivative of a function f is defined as

cDp f (t) = 1

�(k − p)

∫ t

0

f (k)(r)

(t − r)p+1−k
dr, t > 0,

where 0 ≤ k − 1 < p < k.

Definition 3 ([2, 10]) A function y(·) ∈ C([−σ, b],Yα) is said to be mild solution
of the Eq. (1) if it satisfies

y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Up(t)(ϕ(0) + h(y)(0)) + ∫ t
0 (t − r)p−1Vp(t − r)

×
[
F(r, yr ,

∫ r
0 ζ(r, η, yη)dη) + Bw(t)

]
dr, t ∈ J,

ϕ(t) + h(y)(t), [−σ, 0],
(2)

where

Up(t) =
∫ ∞

0
ψp(λ)T (t pλ)dλ, Vp(t) = p

∫ ∞

0
λψp(λ)T (t pλ)dλ, (3)
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ψp(λ) = 1

p
λ−1−1/pρp(λ

−1/p) and

ρp(λ) = 1

π

∞∑

n=1

(−1)n−1λ−np−1 �(np + 1)

n! sin(nπ p), λ ∈ (0,∞).

Note that ψp(λ) is a probability density function on (0,∞), that is ψp(λ) ≥ 0,∫∞
0 ψp(λ)dλ = 1 and

∫∞
0 λψp(λ) = 1

�(1+p) .

Lemma 2 (see [2]) The operators Up(t) and Vp(t) satisfy the following:

(i) For any fixed t ≥ 0,

‖Up(t)y‖α ≤ M‖y‖α, ‖Vp(t)y‖α ≤ M

�(α)
‖y‖α, ∀y ∈ Yα.

(ii) Up(t) and Vp(t) are strongly continuous for each t ≥ 0.
(iii) If the semigroup T (t) is compact in Y , then Up(t) and Vp(t) are norm-

continuous and compact in Y for each t > 0. Also the restriction of Up(t)
and Vp(t) to Yα are compact in Yα for each t > 0.

(iv) Up(t)Aαy = AαUp(t)y, Vp(t)Aαy = AαVp(t)y for each t ≥ 0 and y ∈ Yα.
(v) If β ∈ (0, 1], then for any y ∈ Y, t > 0

‖AβVp(t)y‖ ≤ Nβ

t pβ
‖y‖, where

pMβ�(2 − β)

�(1 + p(1 − β))
.

Definition 4 The system (1) is called approximately controllable on J if for each
final state z ∈ Yα and ε > 0, there is a control w(·) ∈ L2(J, V ) such that the mild
solution y(·, w) of the system (1) satisfies that ‖y(b, w) − z‖ < ε.

Consider the linear control system of fractional order

{
cDp y(t) = − Ay(t) + Bw(t), t ∈ J,

y(0) = ϕ(0).
(4)

The controllability operator �b
0 : Yα → Yα and the resolvent operator R(ε, �b

0) :
Yα → Yα associated with (4) are defined as

�b
0 =

∫ b

0
(b − r)p−1Vp(b − r)BB∗V∗

p(b − r) dr,

R(ε, �b
0) = (εI + �b

0)
−1, ε > 0,

where V∗
p and B∗ are the adjoint of Vp and B respectively.

Theorem 3 (see [22]) Let Y ∗ be a dual space of a separable reflexive Banach space
Y . Also let � : Y ∗ → Y be a symmetric operator, i.e. 〈y∗

1 , �y
∗
2 〉 = 〈y∗

2 , �y
∗
1 〉 for all

y∗
1 , y

∗
2 ∈ Y ∗. Then the statements given below are equivalent:
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(i) 〈y, �y〉 > 0 for each nonzero y ∈ Y ∗, i.e., � is a positive operator.
(ii) For each z ∈ Y , yε(z) = ε(εI + �P)−1(z) → 0 strongly as ε → 0+. Here P :

Y → Y ∗ is a duality map.

Lemma 4 (see [20]) The linear control system (4) is approximately controllable on
J if and only if εR(ε, �b

0) → 0 strongly as ε → 0+.

3 Main Results

To prove the result of approximate controllability of the problem (1), we make the
following assumptions:

(H1) The function ζ : � × D → Yα satisfies the following:

(i) For every (t, r) ∈ �, the function ζ(t, r, ·) : D → Yα is continuous and for
ϕ ∈ D, ζ(·, ·,ϕ) is strongly measurable on �.

(ii) There exists m(·, ·) ∈ L1(�,R+) such that

‖ζ(t, r, yr )‖α ≤ m(t, r)‖yr‖D,

where ‖ϕ‖D = sup{‖ϕ(t)‖α : t ∈ [−σ, 0]}, ϕ ∈ D. For convenience, we
write L0 = max

∫ t
0 m(t, r)dr .

(H2) The function F : J × D × Yα → Yβ satisfies the following:

(i) The function F(t, ·, ·) : D × Yα → Yβ is continuous for each t ∈ J and for
all (ϕ, y) ∈ D × Yα, F(·,ϕ, y) is strongly measurable.

(ii) For k > 0 and t ∈ J , there exist ak (·)
(t−·)1−p ∈ L1([0, t],R+) such that

sup{‖F(t,ϕ, y)‖β : ‖ϕ‖ ≤ k, ‖y‖α ≤ L0bk} ≤ ak(t) for a.e. t ∈ J,

and

lim
k→∞ inf

1

k

∫ t

0

ak(r)

(t − r)1−p
= μ < +∞.

(H3) h : C([−σ, b],Yα) → C([−σ, 0],Yα) is a completely continuous operator
such that

lim‖y‖∞→∞
‖h(y)‖D

‖y‖∞
= 0,

where ‖y‖∞ = sup{‖y(t)‖α : t ∈ [−σ, b]}, y ∈ C([−σ, b],Yα).

For any ε > 0 and z ∈ Yα, we define a control wε(t, y) as
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wε(t, y) = B∗V∗
p(b − t)R(ε, �b

0)
[
z − Up(b)(ϕ(0) + h(y)(0))

−
∫ b

0
(b − r)p−1Vp(b − r)F

(
r, yr ,

∫ r

0
ζ(r, η, yη)dη

)
dr
]
. (5)

For sake of the convenience, we write

R = M

ε�(p)
‖B‖2

[
Cα‖z‖α + MCα(‖ϕ(0)‖α + ‖h(y)(0)‖α)

+ MCβ

�(p)

∫ b

0
(b − r)p−1ak(r)dr

]
.

Theorem 5 Assume that the hypothesis (H1)–(H3) hold. Then, for each ε > 0,
the nonlocal integro-differential system (1) corresponding to the control function
wε(t, y) has a mild solution if

M

�(p)
μ

[
Cβ−α + Mbp(1−α)NαCβ

ε(1 − α)�(p + 1)
‖B‖2

]
< 1. (6)

Proof Let Bk = {y ∈ C([−σ, b],Yα) : ‖y‖∞ ≤ k}, where k > 0. Define an operator
Qε : C([−σ, b],Yα) → C([−σ, b],Yα) by

(Qεy)(t) =
⎧
⎨

⎩

Up(t) [ϕ(0) + (h(y))(0)] + ∫ t
0 (t − r)p−1Vp(t − r)

× [F (r, yr ,
∫ r
0 ζ(r, η, yη)dη

)+ Bwε(r, y)
]
dr t ∈ J,

ϕ(t) + (h(y))(t), t ∈ [−σ, 0].
(7)

It is obvious that any fixed point of Qε is a mild solution of the system (1). So we
have to prove that the operator Qε has a fixed point for each ε > 0. Firstly, for each
ε > 0, we show that Qε(Bk) ⊂ Bk for some k = k(ε) > 0. If it is not true for each
k > 0, then there would exist y(k) ∈ Bk and t ∈ J such that ‖(Qεy(k))(t)‖α > k. By
Lemma 2, (H1) and (H2), we get

‖F
(
r, y(k)

r ,

∫ r

0
ζ(r, η, y(k)

η )dη
)
‖β ≤ ak(r), (8)

‖Bwε(r, y
(k))‖ ≤ 1

ε
‖BB∗V∗

p(b − r)‖
[
‖A−αAαz‖

+ ‖A−αAαUp(b)(ϕ(0) + h(y)(0))‖ + ‖
∫ b

0
(b − r)p−1

× A−β AβVp(b − r)F
(
r, y(k)

r ,

∫ r

0
ζ(r, η, y(k)

η )dη
)
dr‖
]

≤ M

ε�(p)
‖B‖2

[
Cα‖z‖α + MCα

(‖ϕ(0)‖α
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+ ‖h(y)(0)‖α

)+ MCβ

�(p)

∫ b

0
(b − r)p−1ak(r)dr

]

= R (9)

and

k < ‖Qεy
(k)(t)‖α ≤ ‖Up(t)(ϕ(0) + h(y)(0)‖α +

∥
∥
∥
∫ t

0
(t − r)p−1Vp(t − r)

×
[
F
(
r, y(k)

r ,

∫ r

0
ζ(r, η, y(k)

η )dη
)

+ Bwε(r, y
(k))
]
dr
∥
∥
∥

α

≤ M(‖ϕ‖α + ‖h(y)‖α) +
∫ t

0
(t − r)p−1

∥
∥
∥Aα−βVp(t − r)

× AβF
(
r, y(k)

r ,

∫ r

0
ζ(r, η, y(k)

η )dη
)∥∥
∥dr

+
∫ t

0
(t − r)p−1‖AαVp(t − r)Bwε(r, y

(k))‖dr

≤ M(‖ϕ‖α + ‖h(y)‖α) + MCβ−α

�(p)

∫ t

0
(t − r)p−1ak(r)dr

+ Mbp(1−α)Nα

ε(1 − α)�(p + 1)
‖B‖2

[
Cα‖z‖α + MCα

× (‖ϕ(0)‖α + ‖h(y)(0)‖α

)+ MCβ

�(p)

∫ b

0
(b − r)p−1ak(r)dr

]
. (10)

Dividing both side of (10) by k and taking k → ∞, we get

1 <
M

�(p)
μ

[
Cβ−α + Mbp(1−α)NαCβ

ε(1 − α)�(p + 1)
‖B‖2

]
.

This contradicts (6). Hence Qε(Bk) ⊆ Bk for some k > 0.
To prove the continuity of Qε on Bk , we let {y(n)} ⊂ Bk with y(n) → y ∈

Bk as n → ∞. If any t ∈ [−σ, 0], then ‖Qεy(n)(t) − Qεy(t)‖α = ‖h(y(n))(t) −
h(y)(t)‖α → 0 as n → 0. If t ∈ J = [0, b], then, by assumptions (H1)–(H3), we
have

(I) ζ(t, τ , y(n)
τ ) → ζ(t, τ , yτ ).

(II) F(t, y(n)
t ,
∫ t
0 ζ(t, τ , y(n)

τ )dτ ) → F(t, yt ,
∫ t
0 ζ(t, τ , yτ )dτ ).

(III) h(y(n)) → h(y).
(IV) wε(r, y(n)) → wε(r, y).
(V) ‖F(t, y(n)

t ,
∫ t
0 ζ(t, τ , y(n)

τ )dτ ) − F(t, yt ,
∫ t
0 ζ(t, τ , yτ )dτ )‖β ≤ 2ak(t).

(VI) ‖Bwε(r, y(n)) − Bwε(r, y)‖ ≤ 2R.

In view of Lebesgue’s dominated convergence theorem, we get
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‖Qεy
(n)(t) − Qεy(t)‖α

≤ M‖h(y(n))(0) − h(y)(0)‖α + MCβ−α

�(p)

∫ t

0
(t − r)p−1

×
∥
∥
∥F
(
r, y(n)

r ,

∫ r

0
ζ(r, τ , y(n)

τ )dτ
)

− F
(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)∥∥
∥

β
dr

+ Nα

∫ t

0
(t − r)p(1−α)−1‖Bwε(r, y

(n)) − Bwε(r, y)‖dr
→ 0 as n → ∞.

Thus Qε : Bk → Bk is continuous.
Further we prove the equicontinuity of Qε(Bk) on [−σ, b]. Take arbitrary y ∈ Bk

and t1, t2 ∈ [−σ, b] with t1 ≤ t2. If t1, t2 ∈ [−σ, 0], then ‖Qy(t2) − Qy(t1)‖ ≤
‖ϕ(t2) − ϕ(t1)‖ + ‖h(y)(t2) − h(y)(t1)‖ → 0 as t1 → t2 independent of y ∈ B
because ϕ ∈ D and h is completely continuous. Further, if t1, t2 ∈ J , we get

‖Qεy(t2) − Qεy(t1)‖α ≤ ‖Up(t2)(ϕ(0) + h(y)(0)) − Up(t1)(ϕ(0) + h(y)(0))‖α

+ ‖
∫ t1

0
(t2 − r)p−1[Vp(t2 − r) − Vp(t1 − r)]F

(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)
dr‖α

+ ‖
∫ t1

0

[
(t1 − r)p−1 − (t2 − r)p−1

]
Vp(t1 − r)F

(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)
dr‖α

+ ‖
∫ t2

t1
(t2 − r)p−1Vp(t2 − r)F

(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)
dr‖α

+ ‖
∫ t1

0
(t2 − r)p−1[Vp(t2 − r) − Vp(t1 − r)]Bwε(r, y) dr‖α

+ ‖
∫ t1

0

[
(t1 − r)p−1 − (t2 − r)p−1

]
Vp(t1 − r)Bwε(r, y) dr‖α

+ ‖
∫ t2

t1
(t2 − r)p−1Vp(t2 − r)Bwε(r, y) dr‖α

≤ ‖Up(t2)(ϕ(0) + h(y)(0)) − Up(t1)(ϕ(0) + h(y)(0))‖α

+ Cβ−α

∫ t1

0
(t2 − r)p−1‖Vp(t2 − r) − Vp(t1 − r)‖ak(r) dr

+ MCβ−α

�(p)

∫ t1

0
|(t1 − r)p−1 − (t2 − r)p−1| ak(r) dr

+ MCβ−α

�(p)

∫ t2

t1
(t2 − r)p−1ak(r) dr

+ R
∫ t1

0
(t2 − r)p−1‖Aα(Vp(t2 − r) − Vp(t1 − r))‖ dr

+ NαR
∫ t1

0
|(t1 − r)p(1−α)−1 − (t2 − r)p(1−α)−1| dr
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+ NαR
∫ t2

t1
(t2 − r)p(1−α)−1 dr

= I1 + I2 + I3 + I4 + I5 + I6 + I7. (11)

From expression of I1, I3, I4, I6 and I7, we can easily see that I1 → 0, I3 → 0,
I4 → 0, I6 → 0 and I7 → 0 as t2 → t1 independent of y ∈ Bk and for any ε ∈ (0, t1),
we have

I2Z ≤ Cβ−α

∫ t1−ε

0
(t2 − r)p−1‖Vp(t2 − r) − Vp(t1 − r)‖ak(r) dr

+ Cβ−α

∫ t1

t1−ε

(t2 − r)p−1‖Vp(t2 − r) − Vp(t1 − r)‖ak(r) dr

≤ Cβ−α

∫ t1−ε

0
(t2 − r)p−1ak(r) dr. sup

r∈[0,t1−ε]
‖Vp(t2 − r) − Vp(t1 − r)‖

+ 2MCβ−α

�(p)

∫ t1

t1−ε

(t2 − r)p−1ak(r) dr (12)

and

I5 ≤ R
∫ t1−ε

0
(t2 − r)p−1

∥
∥Aα

[Vp(t2 − r) − Vp(t1 − r)
]∥∥dr

+ R
∫ t1

t1−ε

(t2 − r)p−1
∥
∥Aα

[Vp(t2 − r) − Vp(t1 − r)
]∥∥dr

≤ pR
∫ t1−ε

0
(t2 − r)p−1

∥
∥
∫ ∞

0
λψp(λ)Aα

[
T
(
(t2 − r)pλ

)− T
(
(t1 − r)pλ

)]
dλ
∥
∥dr

+ NαR
∫ t1

t1−ε

[
(t2 − r)p(1−α)−1 + (t1 − r)p(1−α)−1

]
dr

≤ pR
∫ t1−ε

0
(t2 − r)p−1

∫ ∞

0
λψp(λ)

∥
∥AαT

(
(t1 − r)pλ

)∥∥

× ∥∥T ((t2 − r)pλ − (t1 − r)pλ
)− I

∥
∥dλdr

+ NαR
∫ t1

t1−ε

[
(t2 − r)p(1−α)−1 + (t1 − r)p(1−α)−1

]
dr

≤ pMαR
∫ t1−ε

0
(t1 − r)p(1−α)−1dr

× sup
r∈[0,t1−ε]

∫ ∞

0
λαψp(λ)

∥
∥T
(
(t2 − r)pλ − (t1 − r)pλ

)− I
∥
∥dλ

+ NαR
∫ t1

t1−ε

[
(t2 − r)p(1−α)−1 + (t1 − r)p(1−α)−1

]
dr. (13)
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Since the semigroup {T (t), t ≥ 0} is analytic and compact, then, by Lemma 2,
we obtain that I2, I5 → 0 as t2 → t1 and ε → 0 independent of y ∈ Bk . Thus the
equicontinuity of Qε(Bk) on [−σ, b] has been proved.

Finally, we have to prove that G(t) = {(Qεy)(t) : y ∈ Bk}, t ∈ [−σ, b], is rela-
tively compact set in Yα. Take a fixed number t ∈ (0, b] and then take κ ∈ (0, t). For
y ∈ Bk and δ > 0, we define

(Qκ,δ
ε y)(t) =

∫ ∞

δ

ψp(λ)T (t pλ)dλ
(
ϕ(0) + h(y)(0)

)

+ p
∫ t−κ

0
(t − r)p−1

∫ ∞

δ

λψp(λ)T ((t − r)pλ)

×
[
F
(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)
+ Bwε(r, y)

]
dλdr

= T (κpδ)

∫ ∞

δ

ψp(λ)T (t pλ − κpδ)dλ
(
ϕ(0) + h(y)(0)

)

+ pT (κpδ)

∫ t−κ

0
(t − r)p−1

∫ ∞

δ

λψp(λ)T ((t − r)pλ − κpδ)

×
[
F
(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)
+ Bwε(r, y)

]
dλdr.

By the compactness of the semigroup T (t) in Yα, the set {(Qκ,δ
ε y)(t) : y ∈ Bk} is

relatively compact in Yα. But we also get that

‖(Qεy)(t) − (Qκ,δ
ε y)(t)‖α

≤
∥
∥
∥
∫ δ

0
ψp(λ)T (t pλ)dλ

(
ϕ(0) + h(y)(0)

)∥∥
∥

α

+ p
∥
∥
∥
∫ t

0
(t − r)p−1

∫ δ

0
λψp(λ)T ((t − r)pλ)

×
[
F
(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)
dλ + Bwε(r, y)

]
dr
∥
∥
∥

α

+ p
∥
∥
∥
∫ t

t−κ

(t − r)p−1
∫ ∞

δ

λψp(λ)T ((t − r)pλ)

×
[
F
(
r, yr ,

∫ r

0
ζ(r, τ , yτ )dτ

)
dλ + Bwε(r, y)

]
dr
∥
∥
∥

α

≤ M‖(ϕ(0) + h(y)(0)
)‖
∫ δ

0
ψα(λ)dλ

+ pMCβ−α

∫ t

0
(t − r)p−1ak(r) dr

∫ δ

0
λψp(λ)dλ
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+ MCβ−α

�(p)

∫ t

t−κ

(t − r)p−1ak(r) dr

+ pMαR
∫ t

0
(t − r)p(1−α)−1 dr

∫ δ

0
λ1−αψp(λ)dλ

+ NαR
∫ t

t−κ

(t − r)p(1−α)−1 dr

→ 0 as κ, δ → 0+.

Thus, for each t ∈ (0, b], G(t) is relatively compact in Yα. If t ∈ [−σ, 0], then
G(t) = {ϕ(t) + h(y)(t) : y ∈ B} is relatively compact in Yα as given that h :
C([−σ, b],Yα) → D is completely continuous. Hence, for each t ∈ [−σ, b], the
set G(t) is relatively compact in Yα.

By the Ascoli–Arzela theorem, the set {Qεy : y ∈ Bk} is relatively compact in
C([−σ, b] : Yα). Hence the operator Qε : Bk → Bk is completely continuous for
each ε > 0. So by Schauder’s fixed point theorem, Qε has a fixed point on Bk for
each ε > 0. This consummate the proof. �

Theorem 6 Assume that F : J × D × Yα → Yβ and h : C([−σ, b],Yα) → C
([−σ, 0],Yα) are uniformly bounded, and also the hypotheses (H1)–(H3) are satis-
fied. If the linear system (4) is approximately controllable on J , then the nonlocal
integro-differential system (1) is also approximately controllable on J .

Proof Since F : J × D × Yα → Yβ and h : C([−σ, b],Yα) → C([−σ, 0],Yα) are
uniformly bounded, then all hypotheses of Theorem 5 are verified. Therefore, for
each ε > 0 the system (1) has a mild solution y(ε) in some Bk ⊂ C([−σ, b],Yα)

under the control

wε(t, y
(ε)) = B∗V∗

p(b − t)R(ε, �b
0)p(y

(ε)),

p(y(ε)) = z − Up(b)
(
ϕ(0) + h(y(ε))(0)

)

−
∫ b

0
(b − r)p−1Vp(b − r)F

(
r, y(ε)

r ,

∫ r

0
ζ(r, τ , y(ε)

τ )dτ
)
dr.

Also note that

y(ε)(b) = Up(b)
[
ϕ(0) + (h(y(ε)))(0)

]+
∫ b

0
(b − r)p−1Vp(b − r)

×
[
F
(
r, y(ε)

r ,

∫ r

0
ζ(r, τ , y(ε)

τ )dτ
)

+ Bwε(r, y
(ε))
]
dr

= z − p(y(ε)) + �b
0 R(ε, �b

0)p(y
(ε))

= z − εR(ε, �b
0)p(y

(ε)). (14)

The sequence
{
F
(
r, y(ε)

r ,
∫ r
0 ζ(r, τ , y(ε)

τ )dτ
)}

is bounded as F : J × D × Yα →
Yβ is bounded. So there is a subsequence denoted by itself, that converges weakly
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to say F(r) in L2([0, b],Yβ). The set
{
Up(b)h(y(ε))(0)

}
is relatively compact as

h is bounded. Hence there is a subsequence denoted by
{
Up(b)h(y(ε))(0)

}
, that

converges to say h in Yα. Now we define

v = z − Up(b)ϕ(0) − h −
∫ b

0
(b − r)p−1Vp(b − r)F(r)dr.

So we have

‖p(y(ε)) − v‖α ≤ ‖Up(b)h(y(ε))(0) − h‖α

+
∥
∥
∥
∫ b

0
(b − r)p−1Vp(b − r)

[
F
(
r, y(ε)

r ,

∫ r

0
ζ(r, τ , y(ε)

τ )dτ
)

− F(r)
]
dr
∥
∥
∥
α

≤ ‖Up(b)h(y(ε))(0) − h‖α

+ sup
0≤t≤b

∥
∥
∥
∫ t

0
(t − r)p−1Aα−βVp(t − r)Aβ

[
F
(
r, y(ε)

r ,

∫ r

0
ζ(r, τ , y(ε)

τ )dτ
)

− F(r)
]
dr
∥
∥
∥

→ 0 as ε → 0. (15)

ByAscoli–Arzela theorem, the operator l(·) → ∫ ·
0(· − r)p−1Vp(· − r)l(r)dr is com-

pact. So we get ‖p(y(ε)) − v‖α → 0 as ε → 0. Thus from (14), we get

‖y(ε)(b) − z‖α ≤ ‖εR(ε, �b
0)(v)‖α + ‖εR(ε, �b

0)‖‖p(y(ε)) − v‖α

≤ ‖εR(ε, �b
0)(v)‖α + ‖p(y(ε)) − v‖α.

It follows from the Lemma 4 and (15) that ‖y(ε)(b) − z‖α → 0 as ε → 0. Hence the
nonlocal integro-differential system (1) is approximately controllable. �

4 Example

Consider the following finite delay partial differential equation of fractional order:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cDp
t y(t, η) = ∂2

∂η2 y(t, η) + w(t, η) + a
∫ t
0 (t − r)− 1

2

× ∫ π

0 �(η,ψ) sin
( |y(r−σ,ψ)|

r
1
2

)
dψdr, t ∈ [0, b], η ∈ [0,π],

y(t, 0) = y(t,π) = 0, t ∈ [0, b],
y(υ, η) = ϕ(υ, η) + ∫ b

0 K (r, υ) 1
1+(y(r,η))2

dr, −σ ≤ υ ≤ 0,

(16)

where cDp
t is a caputo fractional partial derivative of order p, 0 < p < 1; ϕ ∈ D =

C([−σ, 0] × [0,π],R+).
Let Y = L2([0,π],R). Define an operator A : Y → Y by Aν = −ν ′′ with

D(A) = {ν ∈ Y : ν, ν ′ is absolutely continuous ν ′′ ∈ Y, ν(0) = ν(π) = 0}.



Approximate Controllability of Nonlocal Fractional … 305

Obviously −A generates an analytic and compact semigroup {T (t), t ≥ 0} in Y .
Moreover, the operator A is given by

Aν =
∞∑

m=1

m2〈ν, em〉em, ν ∈ D(A)

and semigroup {T (t)} is given by

T (t)ν =
∞∑

m=1

exp(−m2t)〈ν, em〉em, ν ∈ Y,

where em(η) =
√

2
π
sin(mη), 0 ≤ η ≤ π, m = 1, 2, . . . For α = 1

2 , the operator A
1
2

is given by

A
1
2 ν =

∞∑

m=1

m〈ν, em〉em, ν ∈ D(A
1
2 ),

where D(A
1
2 ) = {ν ∈ Y : ∑∞

m=1 m〈ν, em〉em ∈ Y }. In Particular ‖A− 1
2 ‖ = 1.

Nowwedefine y(t)(η) = y(t, η), yr (υ)(ψ) = y(r + υ,ψ), f (t,ϕ, x)(η) = ax(η),

ζ(t, r,ϕ)(η) = (t − r)− 1
2
∫ π

0 �(η,ψ) sin
( |ϕ(−σ)(y)|

r
1
2

)
dψ, h(x)(υ)(η) =

∫ b
0

K (r,υ)

1+(y(r,η))2
dr , and ϕ(υ)(η) = ϕ(υ, η). Thus above nonlocal fractional partial

differential equations (16) can be written as the abstract form (1).
We assume that the following conditions holds.

1. The operator K (r, υ) is continuous on compact rectangle [0, b] × [−σ, 0].
2. The function � : [0,π] × [0,π] → R is continuously differentiable with

�(0,ψ) = �(π,ψ) = 0 and

L =
[∫ π

0

∫ π

0

(
∂�(η,ψ)

∂η

)2

dψdη

] 1
2

< ∞.

For x ∈ C([−σ, b],Y 1
2
), we have

〈ζ(t, r,ϕ), em〉 =
∫ π

0

(
(t − r)−

1
2

∫ π

0
�(η,ψ) sin

( |ϕ(−σ)(y)|
r

1
2

)
dψ

)
em(η)dη

= (t − r)− 1
2

m

〈∫ π

0

∂�(η,ψ)

∂η
sin

( |ϕ(−σ)(ψ)|
r

1
2

)
dψ,

√
2

π
cos(mη)

〉
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and in view of Bessel’r inequality,

‖ζ(t, r,ϕ)‖21
2

=
∞∑

m=1

m2|〈ζ(t, r,ϕ), em〉|2

= (t − r)−1
∞∑

m=1

∣
∣
〈∫ π

0

∂�(η,ψ)

∂η
sin

( |ϕ(−σ)(ψ)|
r

1
2

)
dψ,

√
2

π
cos(mη)

〉∣
∣2

≤ (t − r)−1
∫ π

0

(∫ π

0

∂�(η,ψ)

∂η
sin

( |ϕ(−σ)(ψ)|
r

1
2

)
dψ

)2
dη

≤ (t − r)−1
∫ π

0

∫ π

0

(
∂�(η,ψ)

∂η

)2
dψdη ×

∫ π

0
sin2

( |ϕ(−σ)(ψ)|
r

1
2

)
dψ

≤ (t − r)−1r−1
∫ π

0

∫ π

0

(
∂�(η,ψ)

∂η

)2
dψdη ×

∫ π

0

(
ϕ(−σ)(ψ)

)2
dψ.

This implies

‖ζ(t, r, yr )‖ 1
2

≤ (t − r)−
1
2 r− 1

2 L‖yr (−σ)‖ 1
2
.

Thus the function ζ satisfies the assumption (H1). We also can easily see that
the function f satisfies the assumption (H2) and the function h : C([0, b],Y 1

2
) →

C([−σ, 0],Y 1
2
) given by

h(y)(υ)(η) =
∫ b

0
K (r, υ)

1

1 + (y(r, η))2
dr.

is a completely continuous and h satisfies the assumption (H3).
The function Vp(t) : Y 1

2
→ Y 1

2
is defined as

Vp(t)ν = p
∞∑

m=1

∫ ∞

0
λψp(λ) exp(−m2t pλ)dλ〈ν, em〉em

and

B∗V∗
p(T − t)ν = p

∞∑

m=1

∫ ∞

0
λψp(λ) exp(−m2(T − t)pλ)dλ〈ν, em〉em .

If B∗V∗
p(T − t)ν = 0, 0 ≤ t < b, then, by the definition of B∗V∗

p(T − t)ν, we
get ν = 0. In view of Lemma 4 and Theorem 6, the system (16) is approximately
controllable.
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Some Solutions of Generalised Variable
Coefficients KdV Equation by Classical
Lie Approach

Rajeev Kumar, Anupma Bansal and R.K. Gupta

Abstract We investigate the symmetries of the generalised KdV Equation by using
the theory of Lie classical method. The similarities obtained are utilized to reduce the
order of nonlinear partial differential equation. Some solutions of reduced differential
equation are presented.

Keywords Exact solution · Symmetry analysis · KdV equation

1 Introduction

Mathematical formulation of some of the physical systems is represented by nonlin-
ear partial differential equations. Korteweg–de Vires (KdV) [1, 2]

∂

∂t
u (x, t) + u (x, t)

∂

∂x
u (x, t) + ∂3

∂x3
u (x, t) = 0, (1)

is the third order nonlinear partial differential equation where u = u(x, t), is a func-
tion of x and t . Equation (1) is derived from the long one-dimensional, surface
gravity, small amplitude, waves propagating in a shallow channel of water. But, it
also describes various physical systems in science and engineering, like hydromag-
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netic waves, stratified internal waves, rotons, plasma, ion-acoustic waves, physics,
lattice dynamics and geophysical fluid dynamics. Under different geophysical con-
ditions different forms of KdV equations are obtained. One of the particular forms
of KdV is its variable-coefficients form (VCKdV) [3–7]

∂

∂t
u (x, t) + f (t) u (x, t)

∂

∂x
u (x, t) + g (t)

∂3

∂x3
u (x, t) = 0, (2)

where f(t) and g(t) are some real coefficients, the actual form of which depend on
the physics of the problem. Though there exists no general method for the solution
of nonlinear partial differential equations (PDEs), but due to great advancement in
software technology, a significant progress has been made in the implementation of
various methods for nonlinear PDEs like Lie classical method [8–10], nonclassical
method [11], simplest equation method [12] and different forms of G ′

G method [13–
15] etc. Many authors like Bluman, Kumei [16, 17], Bruzón [18], Gandarias [19]
and Kudryashov [20, 21] studied the nonlinear PDEs using these methods. Invari-
ant solutions of PDE are obtained by determining the symmetries. These solutions
are obtained by utilizing the group invariants to fewer the number of independent
variables. According to the Lie classical approach, a reduction transformation exists
whenever a given PDE is invariant under a Lie group of transformations. This paper
studies the variable-coefficient generalized KdV (VCGKdV) equation which was
studied by Wazwaz [22, 23].

∂

∂t
u (x, t) + f (t) (u (x, t))n

∂

∂x
u (x, t) + g (t)

∂3

∂x3
u (x, t) = 0, (3)

f (t) and g(t) are variable time-dependent coefficients. By applying the symmetry
reduction procedure, we determine some exact solutions for this equation which
provide much information about nonlinear phenomena.

2 Classical Symmetries

For applying Lie classical approach to Eq. (3), we assume the one-parameter Lie
group of infinitesimal transformations in (x, t, u) given by

x∗ → x + εξ (x, t, u) + O
(
ε2

)
, (4)

t∗ → t + ετ (x, t, u) + O
(
ε2

)
, (5)

u∗ → u + εη (x, t, u) + O
(
ε2

)
, (6)
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where ε is the group parameter. Under the transformation (6), Eq. (3) remains invari-
ant. On solving the invariance condition, a set of system of linear equations for the
infinitesimals ξ(x, t, u), τ(x, t, u) and η(x, t, u) is obtained. The corresponding Lie
algebra of infinitesimal symmetries is the set of vector fields of the form

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (7)

Invariance of the given PDE (3) under Lie’s transformations with infinitesimal gen-
erator (7) gives a collection of determining equations.

τx = 0, τu = 0, ξu = 0, ηuu = 0, (8)

3g(t)ηxu − 3g(t)ξxx = 0, (9)

g(t)ηxxx + ηt + f (t)unηx = 0, (10)

τg(t)
′ + τt g(t) − 3g(t)ξx = 0, (11)

τt f (t)u
n − g(t)ξxxx − f (t)unξx − ξt + τ f (t)

′
un + n f (t)un−1η + 3g(t)ηxxu = 0,

(12)
where the subscript represents the derivativewith respect to the indicated variable. On
solving the determining equations, we get the following form of symmetry generator.

ξ = xk1 + k2, τ = τ(t), η = uk3, (13)

where k1, k2, k3 are constants.
Using (13) into (12), we obtain the classifying relations as

τg
′ + τt g − 3gk1 = 0, (14)

τt f − f k1 + τ f
′ + nk3 f = 0. (15)

3 Symmetry Classification

The analysis of the classifying relations by specifying the forms of the arbitrary
parameters is presented in this section. In doing so, we utilize the principal Lie
algebra and hence, obtain the maximal symmetry Lie algebra by which the invariant
or similarity solution is obtained.

The analysis of the classifying relations (14) and (15) can be done for the different
cases of f (t) and g(t) by considering τ �= 0 in order to obtain the principal Lie
algebra.
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3.1 Case 1

If f (t) �= 0, the Eq. (15) can be written as

ft
f

= −τt − k1 + nk3
τ

= m, (16)

where m is a constant.
For solving (16), two subcases i.e. m �= 0 and m = 0 are considered.

Subcase 1.1 Assume that m �= 0, then from Eq. (16), we obtain

f (t) = f0e
mt , τ = k4

emt
− nk3

m
+ k1

m
(17)

where f0 and k4 are constants. If k1 �= 0, then from classifying relation we get g(t)
as.

g(t) = g0e
mt

[
(1 − nα) emt + βm

](− nα+2
nα−1 ) , (18)

whereα = k3
k1
,β = k4

k1
and g0 is a nonzero arbitrary constant. The symmetry generator

coefficients of (13) become

τ =
(

βe−mt + 1 − nα

m

)
, ξ = x, η = βu. (19)

If k2 = 0, the principal Lie algebra is given by the vector field

X1 =
(

βe−mt + 1 − nα

m

)
∂

∂t
+ x

∂

∂x
+ uβ

∂

∂u
. (20)

Let k1 = 0, then τ = k4
emt − nk3

m thus, for k4 �= 0 we have

g(t) = g0
me−mt − nγ

, (21)

where k3 = γ k4. The extended principal Lie algebra is given by the vector field as

X2 = (
me−mt − nγ

) ∂

∂t
+ uγ

∂

∂u
. (22)

If k4 = 0 we get g(t) = g0

X3 = −n
∂

∂t
+ mu

∂

∂u
. (23)
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Subcase 1.2
If m = 0 in (16), we get

f = f0, τ = (nk3 − k1)t + k5. (24)

Putting k5 = μk1 and k3 = αk1, we obtain

g(t) = g0 [(nα − 1) t − μ]
−(nα+2)
(nα−1) (25)

and

X4 = [(nα − 1) t + μ]
∂

∂t
+ x

∂

∂x
+ αu

∂

∂u
. (26)

If k1 = 0, we get
τ = nk3t + k5 (27)

and the substitution k5 = λk3 gives the extended principal Lie algebras as

X5 = (nt + λ)
∂

∂t
+ u

∂

∂u
. (28)

3.2 Case 2

Considering g(t) �= 0 and applying the same procedure as in case 1 (see Sect. 3.1),
the classifying Eq. (14) can be written as

gt
g

= 3k1 − τt

τ
= q, (29)

where q is a constant and the classifying results can be obtained as follows:

Subcase 2.1 For q �= 0, we have g(t) = g0eqt and thus if k1 �= 0

f (t) = f1e
qt

[
3eqt + β

] −(2+nα)

3α , (30)

where k6 = βk1, k3 = αk1 and f1 is non-zero arbitrary constant.

X6 = (
qβe−qt + 3

) ∂

∂t
+ qx

∂

∂x
+ qαu

∂

∂u
. (31)

Putting k1 = 0, we get

f (t) = f1e
− neqt−q2 tγ

qγ (32)

and
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X7 = γ e−qt ∂

∂t
+ u

∂

∂u
. (33)

Subcase 2.2
If q = 0, we get g = g1 and f (t) = f1 [3k1t + k7]

−(2k1+nk3)

3K1 , τ = 3k1 + k7, putting
k7 = μk1 and k3 = αk1, we obtain

f (t) = f1 (3t + μ)
−(2+nα)

3 (34)

and

X8 = (3t + μ)
∂

∂t
+ x

∂

∂x
+ αu

∂

∂u
. (35)

If k1 = 0 we have τ = k7 and

f = f0e
− nk3

k7
t
, (36)

this and the extended Lie algebra can then be written as

f = f0e
− nα

μ
t (37)

X9 = μ
∂

∂t
+ αu

∂

∂u
. (38)

3.3 Case 3

From (12), we get

τ = 3k1(
∫
g (t) dt)

g(t)
. (39)

The condition governing the function f(t) is given as

τt f − f k1 + τ f
′ + nk3 f = 0 (40)

and the infinitesimal generators or vectors of the corresponding Lie algebra are given
by

X10 = x
∂

∂x
+ 3(

∫
g (t) dt)

g(t)

∂

∂t
, X11 = ∂

∂x
, X12 = u

∂

∂u
. (41)

4 Symmetry Reductions

The main objective of determining the symmetries of a given PDE is to utilize
them for symmetry reductions and obtain their solutions. In the subsection, we will
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utilize the different vector fields and reduce the VCGKdV equation (3) into ODEs
of one independent variable. The similarity variables and the invariant solutions of
the VCGKdV equation (3) can be determined by solving characteristic equation as
given below:

dx

ξ
= dt

τ
= du

η
. (42)

4.1 Reduction 1.

From X10 + βX12 we obtain, ξ = x
3
√∫

g(t)dt

and u = xβF (ξ) and f (t) = c1g (t)
(∫

g (t) dt
)− (nβ+2)/3

which reduce the Eq. (3)
into ode

−1/3 ξ4 d
dξ

F (ξ) + c1ξnβ+2 (F (ξ))n+1 + c1ξnβ+3 (F (ξ))n d
dξ

f (ξ) + β (β − 1) (β − 2) F (ξ)

+ 3β (β − 1) ξ d
dξ

F (ξ) + 3β ξ2 d2

dξ2
F (ξ) + ξ3 d3

dξ3
F (ξ) = 0.

(43)

4.2 Reduction 2.

From X11 + αX12 we obtain ξ = t , u = eα x F (ξ) and nα f (ξ) = 0 which implies
either n = 0 or α = 0 or f (ξ) = 0.

For α = 0, we get
d

dξ
F (ξ) = 0 (44)

For f (ξ) = 0, we obtain

d

dξ
F (ξ) + g (ξ) α3.F (ξ) = 0. (45)

For n = 0, we have

d

dξ
F (ξ) + f (ξ) F (ξ) + g (ξ) α3F (ξ) == 0. (46)

4.3 Reduction 3

From X8 we obtain ξ = x

(3t+μ)
1
3
, u = (3t + μ)

α
3 f (ξ) and the reduced ODE is

α f (ξ) − ξ f (ξ)
′ + f1 f

n(ξ) f
′
(ξ) + g1 f

′′′
(ξ) = 0. (47)
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4.4 Reduction 4

From X9 + cX11 we obtain ξ = x − tc
μ
, u = e

tα
μ f (ξ), and the reduced ODE turns

out to be
α

μ
f (ξ) − c

μ
f

′
(ξ) + f0 f

n(ξ) f
′
(ξ) + g1 f

′′′
(ξ) = 0. (48)

5 Analysis of Reduced Equations

To obtain the solutions of Eqs. (43) and (47), consider

F(ξ) = Aξ p, (49)

where p and A are the constants to be determined. The exponents of ξ are suitably
equated such that their respective coefficients become zero. By equating the coef-
ficients of (p + 3) and (nβ + np + p + 2) we get p = 1−nβ

n . On substituting (49)
into (43), the solution of Eq. (3) is obtained as

u =
(
3c1 (n + 1 − nβ)

n

)−n−1
⎛

⎝ x

3

√∫
g (t) dt

⎞

⎠

1−nβ
n

(50)

where c1 is a constant.
On using Eq. (49) into Eq. (47), the solution of Eq. (3) is obtained as,

u = (3t + μ)
α
3 (eln(−g1(6 n−1+2+4 n−2) f1−1)n−1

)

(
x

(3t + μ)
1
3

) −2
n

(51)

From Eq. (45), the solution of given PDE (3) is given as

u = c2 e
∫ −g(ξ)αdξ , (52)

where c2 is constant.
From Eq. (46), the solution of Eq. (3) is obtained as

u = c3 e
∫ − f (ξ)−g(ξ)αdξ (53)

where c3 is constant.
For the solutions of Eq. (48), assume

f (ξ) = B tanh (ξ)p . (54)
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Fig. 1 The figure of solution (50) β = 4, n = 1, c1 = 1, g (t) = cos(t)

Fig. 2 The figure of solution (52) n = 1, f0 = 2, c1 = 3, g1 = 1, μ = 1
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The exponents of tanh(ξ) [24–26] are suitably equated such that their respective
coefficients become zero. By equating the exponents pn+p+1 and p-2 respectively,
we get p = −4

n . Using the Eq. (54) into Eq. (48), the following solitary wave solution
of Eq. (3) is obtained as (Figs. 1 and 2):

u = e
tα
μ

(
eln(−g1(−4 n−1−1)(−4 n−1−2) f0−1)n−1

)
tanh

(
x − tc

μ

)
. (55)

6 Conclusion

This paper obtains the Lie symmetries and similarity reductions of variable coeffi-
cients generalized KDV equation and further the analysis of the different classifying
relations was presented to get the functional forms of the various arbitrary time-
dependent parameters for the VCGKDV equation. Also the reduced ODEs have
been studied to obtain certain exact solitary wave solutions by using tanh method
and other methods. Some graphs of the solution surfaces with some special parame-
ters has been plotted by using the maple software.
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Levitin–Polyak Well-Posedness of Strong
Parametric Vector Quasi-equilibrium
Problems

M. Darabi and J. Zafarani

Abstract We generalize the notion of Levitin–Polyak well-posedness under
perturbations for strong version of generalized quasi-equilibrium problems. Some
necessary and sufficient conditions for Levitin–Polyak well-posedness and their
equivalences between well-posedness of these problems with their scalarizations
are given.

Keywords Levitin–Polyak well-posedness · Generalized quasi-equilibrium · Gap
function · Scalarization
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1 Introduction and Preliminaries

Well-posedness has played an important role in the theory of optimization. The
first concept of well-posedness was initiated by Tykhonov [25] for unconstrained
optimization problems. A generalization of Tykhonov well-posedness for an opti-
mization problem (in the scalar case) by the perturbations has been obtained in [7, 30,
31]. Levitin and Polyak [16] extended the well-posedness notion to the constrained
case. There are various notions of Levitin–Polyak (in short, LP) well-posedness for
scalar and vector optimization problems [10, 12, 15, 26, 29], for scalar and vec-
tor equilibrium problems and vector quasi-equilibrium problems [4, 17, 20–22] and
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for scalar and vector variational inequalities problems [9, 11, 13, 14, 18, 23, 28].
Motivated by the above works, we investigate two generalized vector versions of
Levitin–Polyak well-posedness for two class of generalized parametric strong vec-
tor quasi-equilibrium problems. We deduce a characterization of Levitin–Polyak
well-posedness given in [4] in terms of neighborhoods around solution set.

The outline of the paper is organized as follows: In this section, we present
two classes of generalized parametric strong versions of vector quasi-equilibrium
problems and some basic definitions and preliminary results. Section 2 deals with
notions of LP well-posedness of type I and type II for parametric strong vector quasi-
equilibrium problems and conclude their basic properties. In Sect. 3, by introducing
two class of gap functions of our problem, we deduce the LP well-posedness of our
problems via the LP well-posedness of those gap functions.

Suppose that X,Y and Z are metric topological vector spaces, W is a Hausdorff
topological vector space and Λ and Γ are metric spaces. Assume that A, B and D
are nonempty closed convex subsets of X , Y and Z , respectively. Assume that C :
X × Λ × Γ ⇒ W is a set-valued mapping such that for any x ∈ X, λ ∈ Λ and γ ∈
Γ, C(x, λ, γ ) is a closed, convex and pointed cone inW such that int C(x, λ, γ ) �=
∅. Let e : X × Λ × Γ −→ W be a continuous vector valued mapping satisfying
e(x, λ, γ ) ∈ int C(x, λ, γ ). Assume that K1 : A × Λ ⇒ A, K2 : A × Λ ⇒ B, K3 :
A × Λ × Γ ⇒ D and K4 : B × Λ × Γ ⇒ D are defined. Let the machinery of the
problems be expressed by Φ : A × B × D × Γ ⇒ W .

For any nonempty sets A and B, we adopt the following notations

(x, y) r1 A × B means ∀x ∈ A, ∀y ∈ B,

(x, y) r2 A × B means ∀x ∈ A, ∃y ∈ B,

(x, y) r3 A × B means ∃x ∈ A, ∀y ∈ B,

and

β1(A, B) means A ⊆ B,

β2(A, B) means A ∩ B �= ∅.

For r ∈ {r1, r2, r3} and β ∈ {β1, β2} and given λ ∈ Λ and γ ∈ Γ , we define the
Problem (P3rβ(λ, γ )) as:

∃ x̄ ∈ clK1(x̄, λ) : (y, z) r K2(x̄, λ) × K3(x̄, λ, γ ) ⇒ β (Φ(x̄, y, z, γ ), C(x̄, λ, γ )) ,

and the Problem (P4rβ(λ, γ )) as:

∃x̄ ∈ clK1(x̄, λ) :, (y, z) r K2(x̄, λ) × K4(y, λ, γ ) ⇒ β (Φ(x̄, y, z, γ ), C(x̄, λ, γ )) .

We designate the above problems by (PJrβ(λ, γ )) where J ∈ {3, 4} and the set
of their solutions by SJrβ(λ, γ ). In the literature, some important special cases of
the above problems were studied; see [1, 3, 8, 19]. For existence result of Prob-
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lem (PJrβ(λ̄, γ̄ )) in topological vector spaces and its special cases, one can refer
to [5, 6].

Definition 1 A set-valued map T : X ⇒ Y is called

(i) lower semi continuous (l.s.c.), if and only if for each open setU ⊂ Y , T−(U ) :=
{x ∈ X : T (x) ∩U �= ∅} is open in X .

(ii) closed if and only if Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x), x ∈ X} is closed
in X × Y.

(iii) upper semi continuous (u.s.c.), if and only if for each closed set F ⊂ Y ,
T−(F) := {x ∈ X : T (x) ∩ F �= ∅} is closed in X .

One can characterize the lower and upper semicontinuity in terms of sequences, as
in the following results (see; Theorems 17.16 and 17.19 in [2]).

Lemma 1 ([2]) A set-valued map T : X ⇒ Y is

(a) l.s.c. if and only if for any sequence {xn} in X converging to x ∈ X and each
y ∈ T (x), there is a sequence {yn} converging to y with yn ∈ T (xn), for all n.

(b) u.s.c. if and only if for every sequence {xn} in X converging to x ∈ X and for
any sequence {yn} with yn ∈ T (xn), there is y ∈ T (x) and a subsequence {yni }
of {yn} converging to y, where T is compact.

2 Levitin–Polyak Well-Posedness

In this section, we define two generalized LP well-posedness of parametric strong
vector quasi-equilibrium problems, that improve corresponding definitions in [4, 17,
21].

Definition 2 Let {(λn, γn)} ⊆ Λ × Γ be a convergent sequence to (λ̄, γ̄ ).
A sequence {xn} ⊂ A is called

(a) LP of type I asymptotically solving sequence corresponding to {(λn, γn)}, for
Problem (P3rβ(λ̄, γ̄ )) (resp. (P4rβ(λ̄, γ̄ ))), if xn ∈ clK1(xn, λn) and there is a
sequence of positive numbers {εn} that converges to zero such that

(y, z) r K2(xn, λn) × K3(xn, λn, γn)
(
resp. (y, z) r K2(xn, λn) × K4(y, λn, γn)

)
,

(1)

β(Φ(xn, y, z, γn) + εne(xn, λn, γn),C(xn, λn, γn)). (2)

(b) LP of type II asymptotically solving sequence corresponding to {(λn, γn)}, for
Problem (P3rβ(λ̄, γ̄ )) (resp. (P4rβ(λ̄, γ̄ ))), if there is a sequence of positive
numbers {εn} that converges to zero such that
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d(xn, K1(xn, λn)) ≤ εn (3)

and (1) and (2) hold.

Example 1 Suppose that X = Y = Z = Λ = Γ = R, W = R
2. Assume that

K1(x, λ) = K2(x, λ) = K3(x, λ, γ ) = [0, 1] and Φ : R × R × R × R → R
2 is

defined by Φ(x, y, z, γ ) = {y − x} × {y − x, z − x}, C(x, λ, γ ) = R
2+ and

e(x, λ, γ ) = (1, 1), for all x, λ, γ ∈ R. Now for β = β1, r = r1 and J = 3, the
sequence { 1n } is an example of an LP of type I and type II asymptotically solving
sequence for εn = 1

n , for all n.

Definition 3 (a) The Problem (PJrβ(λ̄, γ̄ )) is a generalized LP well-posed of type
I (resp. type II) if and only if

(i) there is a solution for Problem (PJrβ(λ̄, γ̄ ));
(ii) for any sequence {(λn, γn)} ⊆ Λ × Γ that converges to (λ̄, γ̄ ), every LP

of type I (resp. type II) asymptotically solving sequence for Problem
(PJrβ(λ̄, γ̄ )) corresponding to {(λn, γn)} contains a subsequence that con-
verges to some points of SJrβ(λ̄, γ̄ ).

(b) The Problem (PJrβ(λ̄, γ̄ )) is LP well-posed of type I (resp. type II) if and only
if

(i) there is only one solution for Problem (PJrβ(λ̄, γ̄ ));
(ii) for any sequence {(λn, γn)} ⊆ Λ × Γ, which converges to (λ̄, γ̄ ), every

LP of type I (resp. type II) asymptotically solving sequence for Problem
(PJrβ(λ̄, γ̄ )) corresponding to {(λn, γn)}, converges to SJrβ(λ̄, γ̄ ).

Example 2 In Example 1, we have

S3r1β1(λ, γ ) = {x ∈ clK1(x, λ) : y ∈ K2(x, λ), z ∈ K3(x, λ, γ ), Φ(x, y, z, γ ) ⊆ R
2+}

= {x ∈ [0,+∞[: y ∈ [0, +∞[, z ∈ [0, +∞[ Φ(x, y, z, γ ) ⊆ R
2+}

= {0}.

In Example 1, if {xn} ⊆ clK1(xn, λn) is an LP of type I asymptotically solving
sequence corresponding to (λn, γn) → (λ, γ ), then there is a sequence of positive
numbers {εn} that converges to 0 and

y ∈ K2(xn, λn), z ∈ K3(xn, λn, γn) Φ(xn, y, z, γn) + εne(xn, λn, γn) ⊆ R
2+,

which means that

y ∈ [0, +∞[, z ∈ [0, +∞[ ({y − xn} × {y − xn, z − xn}) + εne(xn, λn, γn) ⊆ R
2+,

therefore, limn xn = 0, thus Problem (P3r1β1(λ, γ )) is LP well-posed of both types.
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Example 3 Suppose that X = Y = Z = Λ = Γ = R, W = R
2. Assume that

K1(x, λ) = K2(x, λ) = K3(x, λ, γ ) = R andΦ : R × R × R × R ⇒ R
2 is defined

by

Φ(x, y, z, γ ) =
⎧
⎨

⎩

{x} × [x,+∞[ if x > 1, x < −1,

(x, ||x | − 1|) o.w.,

for all x, λ, γ ∈ R. Let C(x, λ, γ ) = R
2+ and e(x, λ, γ ) = (1, 1). Now for β = β1,

r = r1 and J = 3, one has

S3r1β1 = {x ∈ clK1(x, λ) : y ∈ K2(x, λ), z ∈ K3(x, λ, γ ) Φ(x, y, z, γ ) ⊆ R
2+}

= {x ∈ R : y ∈ R, z ∈ R Φ(x, y, z, γ ) ⊆ R
2+}

= [0,+∞[.

If xn = n, for all n, then {xn} is an LP of type I asymptotically solving sequence
corresponding to (λn, γn) → (λ, γ ), but {xn} is not convergent. Thus, this problem
is not LP well-posed of type I.

Example 4 Suppose that X = Y = Z is the set of all bounded functions f : [0, 1] →
R provided with the uniform norm ‖ f − g‖ = supx∈[0,1] | f (x) − g(x) |. Assume
that Λ = Γ = R, W = R

2 and for all f ∈ X, λ, γ ∈ R,

K1( f, λ) =
⎧
⎨

⎩

A if f is continuous,

Ac o.w.,

where A is the set of all continuous functions in X and Ac = X \ A. Suppose

K2( f, λ) = K3( f, λ, γ ) =
⎧
⎨

⎩

{ f } if f is continuous,

Ac o.w.,

and Φ : X × Y × Z × R ⇒ R
2 is defined by

Φ( f, g, h, γ ) =
⎧
⎨

⎩

R
2+ if f = g = h

B1(0) o.w.,

where B1(0) is the open ball with radius 1 around (0, 0). Assume for all f ∈ X,

λ, γ ∈ R, C( f, λ, γ ) = R
2+ and e( f, λ, γ ) = (1, 1). Now for β = β1, r = r1 and

J = 3, one has
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S3r1β1 = { f ∈ clK1( f, λ) : g ∈ K2( f, λ), h ∈ K3( f, λ, γ ) Φ( f, g, h, γ ) ⊆ R
2+}

= { f ∈ X : g ∈ K2( f, λ), h ∈ K3( f, λ, γ ) Φ( f, g, h, γ ) = R
2+}

= A.

Select the sequence { fn} as fn(x) = nx, for all x ∈ [0, 1], then { fn} is an LP of type
I and type II asymptotically solving sequence corresponding to (λn, γn) → (λ, γ ),

but { fn} is not convergent. Then, this problem is neither a generalized LP of type I
nor a generalized LP well-posed of type II.

Remark 1 If Problem (PJrβ(λ̄, γ̄ )) is a generalized LP well-posed (resp. LP well-
posed of type II), then Problem (PJrβ(λ̄, γ̄ )), is a generalized LP well-posed (resp.
LPwell-posed of type I), but in general, they are different. The next example confirms
our claim.

Example 5 Assume that X = R
2, Y = Z = W = Γ = Λ = R, K1(x, λ) =

[0, 1] × {0}, K2(x, λ) = K3(x, λ, γ ) = [0, 1], and Φ : R × R × R × R −→ R is
defined by

Φ((x1, x2), y, z, γ ) = −x1
2 + (x1

4 + x1)x2
2,

for all x ∈ R
2, y, z, λ, γ ∈ R. Let C(x, λ, γ ) = R+, and e(x, λ, γ ) = 1. Now for

β = β1, r = r1 and J = 3,

S3r1β1 = {x ∈ clK1(x, λ) : y ∈ K2(x, λ), z ∈ K3(x, λ, γ ), Φ(x, y, z, γ ) ⊆ R+}
= {x ∈ R

2 y, z ∈ R, Φ(x, y, z, γ ) ⊆ R+}
= {(0, 0)}.

If {xn} = {(xn1 , xn2)} ⊆ clK1(xn, λn) is an LP of type I asymptotically solving
sequence corresponding to (λn, γn) → (λ, γ ), then there is a positive sequence {εn}
that converges to 0 and

y ∈ K2(xn, λn), z ∈ K3(xn, λn, γn), Φ(xn, y, z, γn) + εne(xn, λn, γn) ⊆ R+,

which means that

y, z ∈ [0, 1], − xn1
2 + (xn1

4 + xn1)xn2
2 + εne(xn, λn, γn) ⊆ R+.

Since {xn} = {(xn1, xn2)} ⊆ clK1(xn, λn), then xn2 = 0 and therefore we obtain
limn xn = (0, 0), thus Problem (P3r1β1(λ, γ )) is an LP well-posed of type I.

But, if {xn} = {(n, 1
n )}, then {xn} is an LP of type II asymptotically solving

sequence corresponding to (λn, γn) → (λ, γ ), but {xn} is not convergent. Hence,
this problem is not LP well-posed of type II.

Remark 2 If Problem (PJrβ(λ̄, γ̄ )) is a generalized LP well-posed of type I (resp.
type II), then the solution set for Problem (PJrβ(λ̄, γ̄ )) is a nonempty compact set. In
fact, if {xn} is a sequence in SJrβ(λ̄, γ̄ ), consider a constant asymptotically solving
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sequence corresponding to {(λn, γn)}, that is for all n: λn = λ̄ and γn = γ̄ . Therefore,
there exists x0 ∈ SJrβ(λ̄, γ̄ ) and a subsequence xnk of xn such that xnk → x0 and
hence, SJrβ(λ̄, γ̄ ) is compact.

In the next two results, we obtain sufficient conditions for generalized LP well-
posedness of type I and type II of Problem (PJrβ(λ̄, γ )).

Theorem 1 Assume that Ē(λ) is the set of all fixed points of clK1(., λ) and

(i) SJr1β(λ, γ ) is nonempty;
(ii) Ē is compact valued and upper semi continuous;
(iii) K2 and K3 are lower semi continuous and Φ is single-valued continuous map;
(iv) C(x, λ, γ ) is closed.

Then, Problem (PJr1β(λ, γ )) is a generalized LP well-posed of type I.

Proof It suffices to consider Problem (P3r1β(λ, γ )), the proof for the case J = 4,
is similar. Assume that {(λn, γn)} ⊆ Λ × Γ is a sequence converging to (λ, γ ) and
sequence {xn} is LP of type I asymptotically solving sequence corresponding to
{(λn, γn)} for Problem (P3r1β(λ, γ )), then there is a sequenceof positive numbers {εn}
which converges to 0 such that for all y ∈ K2(xn, λn) and for all z ∈ K3(xn, λn, γn),

Eq. (1) holds. Since, for all n, xn ∈ Ē(λn), then by the upper semi continuity of Ē and
compactness of Ē(λ), we can deduce that xn → x0 for some x0 ∈ Ē(λ). Suppose
that x0 /∈ S3r1β(λ, γ ), that is

∃y0 ∈ K2(x0, λ) : ∃z0 ∈ K3(x0, λ, γ ), Φ(x0, y0, z0, γ ) /∈ C(x0, λ, γ ). (4)

Since K2 and K3 are lower semi continuous, then there exists a sequence (yn, zn) ∈
K2(xn, λn) × K3(xn, λn, γn), such that yn → y0 and zn → z0 and from Eq. (2), we
deduce

Φ(xn, yn, zn, γn) + εne(xn, λn, γn) ∈ C(xn, λn, γn).

Since Φ is continuous, then the sequence wn = Φ(xn, yn, zn, γ ) tends to w0 =
Φ(x0, y0, z0, γ ) and

wn + εne(xn, λn, γn) ∈ C(xn, λn, γn).

But C is a closed map and w0 = limn(wn + εne(xn, λn, γn)), therefore,

Φ(x0, y0, z0, γ ) ∈ C(x0, λ, γ ),

which contradicts (4). �

Theorem 2 Suppose that

(i) SJr1β(λ, γ ) is nonempty;
(ii) K1 is closed with a compact range;
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(iii) K2 and K3 are lower semi continuous and Φ is a single-valued continuous
map;

(iv) C(x, λ, γ ) is closed.

Then, Problem (PJr1β(λ, γ )) is a generalized LP well-posed of type II.

Proof It suffices to consider Problem (P3r1β(λ, γ )), the proof for the case J = 4,
is similar. Assume that {(λn, γn)} ⊆ Λ × Γ is a sequence converging to (λ, γ ) and
sequence {xn} is an LP of type II asymptotically solving sequence corresponding to
{(λn, γn)} for Problem (P3r1β(λ, γ )), then there is a sequenceof positive numbers {εn}
which converges to 0 such that for all y ∈ K2(xn, λn) and for all z ∈ K3(xn, λn, γn),
Eqs. (1) and (2) hold. Since d(xn, K1(xn, λn)) ≤ εn, then there is a sequence un ∈
K1(xn, λn) such that d(xn, un) ≤ εn. Then by the compactness of clK1, we can
assume that {un} has a convergent subsequence {um} which converges to x0. From
d(xn, un) ≤ εn, we conclude that xm → x0. By a similar argument as that of the last
part of the proof of Theorem 1, we can deduce that x0 ∈ S3r1β(λ, γ ) and the proof is
complete. �

Remark 3 (a) In the two previous theorems, one can replace conditions (i) and (iii)
with the following conditions:

(i)
′
SJr2β(λ, γ ) is nonempty;

(i i i)
′
K2 is lower semicontinuous, Φ is a single-valued continuous map, and

KJ is upper semicontinuous and compact valued.

Then, with minor modifications in the proofs, one can obtain the generalized LP
well-posedness of type I (resp. type II) of the Problem (PJr2β(λ, γ )).

(b) In the two previous theorems, if we replace conditions (i) and (iii) by the fol-
lowing conditions:

(i)
′′
SJr3β(λ, γ ) is nonempty;

(i i i)
′′
KJ are lower semi continuous, Φ is a single-valued continuous map

and K2 is compact valued and upper semicontinuous.

Then, with minor modifications in the proofs, one can deduce the generalized
LP well-posedness of type I (resp. type II) of the Problem (PJr3β(λ, γ )).

Many researchers show that LPwell-posedness can be investigated and characterized
via approximate of solutions, for example, for optimization problems, see [10, 29];
for equilibriumproblems, see [4, 17, 20, 21]; and for variational inequality problems,
see [11, 13, 18, 27, 28]. In order to consider this case, let us introduce the set-valued
maps:

ΠI Jrβ,ΠI I Jrβ : R
+ × Λ × Γ ⇒ A

as follows:

ΠI3rβ(ε, λ̄, γ̄ ) =: {x ∈ A : x ∈ clK1(x, λ̄)), (y, z) r K2(x, λ̄) × K3(x, λ̄, γ̄ )

β(Φ(x, y, z, γ̄ ) + εe(x, λ̄, γ̄ ),C(x, λ̄, γ̄ ))}.
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ΠI I3rβ(ε, λ̄, γ̄ ) =: {x ∈ A : d(x, clK1(x, λ̄)) ≤ ε, (y, z) r K2(x, λ̄) × K3(x, λ̄, γ̄ )

β(Φ(x, y, z, γ ) + εe(x, λ̄, γ̄ ),C(x, λ̄, γ̄ ))}.

Similarly, by replacing K3 by K4, we can define:

ΠI4rβ(ε, λ̄, γ̄ ) and ΠI I4rβ(ε, λ̄, γ̄ ).

The above mentioned sets are increasing, i.e., for all λ ∈ Λ and γ ∈ Γ if ε1 ≤ ε2,
then

ΠI Jrβ(ε1, λ, γ ) ⊆ ΠI Jrβ(ε2, λ, γ ), J ∈ {3, 4};

ΠI I Jrβ(ε1, λ, γ ) ⊆ ΠI I Jrβ(ε2, λ, γ ), J ∈ {3, 4},

and furthermore, we obtain the following equalities

SJrβ(λ̄, γ̄ ) =
⋂

ε>0

ΠI Jrβ(ε, λ̄, γ̄ ) = ΠI Jrβ(0, λ̄, γ̄ ), J ∈ {3, 4}.

The next two results provide some alternative characterization of LP well-
posedness of problem (PJrβ(λ̄, γ̄ )). In particular, they extend Theorems 4.1–4.4
in [4] and the corresponding ones in [11, 13, 17, 18, 20, 21, 27, 28].

Theorem 3 If Problem (PJrβ(λ̄, γ̄ )) is a generalized LP well-posed of type I (resp.
type II), then there is a nonempty compact subset G of SJrβ(λ̄, γ̄ ) such that for every
neighborhood V of 0, there is δ > 0 such that

x ∈ ΠI Jrβ(δ, λ̄, γ̄ )(resp. x ∈ ΠI I Jrβ(δ, λ̄, γ̄ )) + V ⇒ x ∈ G + V .

Conversely, if

(i) there is a nonempty compact subset G of SJrβ(λ̄, γ̄ ) such that for every neigh-
borhood V of 0, there is δ > 0 such that

x ∈ ΠI Jrβ(δ, λ̄, γ̄ )(resp. x ∈ ΠI I Jrβ(δ, λ̄, γ̄ )) + V ⇒ x ∈ G + V,

(ii) ΠI Jrβ (resp. ΠI I Jrβ) is simultaneously upper semi continuous in its second and
third arguments.

Then, Problem (PJrβ(λ̄, γ̄ )) is a generalized LP well-posed of type I (resp. type II).

Proof The proof with some minor modifications is similar to the proof of Theorem
3.1 in [5] therefore, we omit it here. �

Corollary 1 If Problem (PJrβ(λ̄, γ̄ )) is LP well-posed of type I (resp. type II), then
there is x0 ∈ X such that for every neighborhood V of 0, there is δ > 0 such that
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x ∈ ΠI Jrβ(δ, λ̄, γ̄ )(resp. x ∈ ΠI I Jrβ(δ, λ̄, γ̄ )) + V ⇒ x ∈ {x0} + V .

Conversely, if

(i) there exists x0 ∈ SJrβ(λ̄, γ̄ ) such that for every neighborhood V of 0, there is
δ > 0 such that

x ∈ ΠI Jrβ(δ, λ̄, γ̄ )(resp. x ∈ ΠI I Jrβ(δ, λ̄, γ̄ )) + V ⇒ x ∈ {x0} + V,

(ii) ΠI Jrβ (resp. ΠI I Jrβ) is simultaneously upper semi continuous in its second and
third arguments.

Then Problem (PJrβ(λ̄, γ̄ )), is an LP well-posed of type I (resp. type II).

Remark 4 The above corollary improves Theorems 3.1 and 3.2 in [15].

Example 6 Suppose that X = Y = Z = Λ = Γ = W = R. Define K1(x, λ) =
K2(x, λ) = K3(x, λ, γ ) = [1,+∞[ and Φ : R × R × R × R ⇒ R as
Φ(x, y, z, γ ) = [y2 − x,+∞[, for all x, λ, γ ∈ R. Let C(x, λ, γ ) = R+ and
e(x, λ, γ ) = 1. Now for β = β1, r = r1 and J = 3, one has

S3r1β1 = {x ∈ clK1(x, λ) : y ∈ K2(x, λ), z ∈ K3(x, λ, γ ), Φ(x, y, z, γ ) ⊆ R
+}

= {x ∈ [1,+∞[: y ∈ [1,+∞[, z ∈ [1,+∞[, Φ(x, y, z, γ ) ⊆ R
+}

= {1}.
Hence,

ΠI3r1β1(δ, λ, p)

= {x ∈ clK1(x, λ) : y ∈ K2(x, λ), z ∈ K3(x, λ, γ ), Φ(x, y, z, γ ) + δe(x, λ, γ ) ⊆ R
+}

= {x ∈ [1,+∞[: y ∈ [1, +∞[, z ∈ [1, +∞[, Φ(x, y, z, γ ) + δe(x, λ, γ ) ⊆ R
+}

= [1, 1 + δ].

Thus,ΠI3r1β1 fulfills conditions (i) and (ii) of Corollary 1 and therefore, this problem
is LP well-posed of type I.

The following result provides a sufficient condition for existence of condition (ii) of
Theorem 3 and its corollary.

Theorem 4 Assume (λ̄, γ̄ ) ∈ Λ × Γ, ΠI Jr1β1 (resp.ΠI I Jr1β1) is nonempty and the
following assumptions hold:

(i) Φ is lower semicontinuous;
(ii) K2 and K3 are lower semicontinuous on A × {λ̄} (resp. A × {λ̄} × {γ̄ });
(iii) Ē(λ̄) is compact and Ē is upper semicontinuous;
(iv) C(x, λ, γ ) is closed.

Then, ΠI Jr1β1 (resp. ΠI I Jr1β1) is simultaneously upper semicontinuous in its second
and third arguments.
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Proof For J = 3, it suffices to consider ΠI Jr1β1 , the proofs for the other cases are
similar. By contradiction, for a fix ε > 0, suppose there is an open superset U
of ΠI3r1β1(ε, λ̄, γ̄ ), a sequence {(λn, γn)} ⊆ Λ × Γ with (λn, γn) −→ (λ̄, γ̄ ) and
a sequence xn ∈ ΠI3r1β1(ε, λn, γn), such that xn /∈ U for all n. Since Ē is Upper
semicontinuous at λ̄ and by compactness of Ē(λ̄), we can deduce that xn → x0
for some x0 ∈ Ē(λ̄). If x0 /∈ ΠI3r1β1(ε, λ̄, γ̄ ), then there exist y0 ∈ K2(x0, λ̄) and
z0 ∈ K3(y0, λ̄, γ̄ ) such that

Φ(x0, y0, z0, γ̄ ) + εe(x0, λ̄, γ̄ ) � C(x0, λ̄, γ̄ ).

Therefore, there exists w0 ∈ Φ(x0, y0, z0, γ̄ ) such that w0 + εe(x0, λ̄, γ̄ ) /∈ C
(x0, λ̄, γ̄ ). On the other hand, by the lower semicontinuity of K2 there is a sequence
yn ∈ K2(xn, λn) such that yn → y0 and the lower semicontinuity of K3 implies the
existence of a sequence zn ∈ K3(yn, λn, γn) such that zn → z0.

As xn ∈ ΠI3rβ1(ε, λn, γn) thus, we have

Φ(xn, yn, zn, γn) + εe(xn, λn, γn) ⊆ C(xn, λn, γn).

Since C is a closed map and e is continuous, we deduce

w0 + e(x0, λ̄, γ̄ ) ∈ C(x0, λ̄, γ̄ ),

that contradicts our choice w0. Therefore, x0 ∈ ΠI3r1β1(ε, λ̄, γ̄ ) ⊆ U , so there is n0
such that for all n ≥ n0, we have xn ∈ U , which is a contradiction. �

Remark 5 (i) The above result holds for r2 if K2 is lower semi continuous and K3

is upper semi continuous and compact valued.
(ii) The above result holds for r3 if K3 is lower semi continuous and K2 is upper

semi continuous and compact valued.

3 Scalarization Method for LP Well-Posedness

In this section by introducing two different classes of gap functions for our Problem
(PJrβ(λ̄, γ̄ )), we obtain its LP well-posedness via LP well-posedness of these gap
functions. Let us consider the following scalar optimization problem under pertur-
bation:

(OP(λ̄,γ̄ )) minφ(x, λ̄, γ̄ ) s.t. x ∈ clK1(x, λ̄),

where φ : A × Λ × Γ −→ R. We designate the solution set and minimum value of
Problem (OP(λ̄,γ̄ )) by S(λ̄, γ̄ ) and v̄, respectively. Now, similar to Definitions 2 and
3, we define the notions of asymptotically solving sequence and LP-well-posedness
in the scalar case.
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Definition 4 ([4]) Suppose that {(λn, γn)} ⊆ Λ × Γ is a sequence converging to
(λ̄, γ̄ ). A sequence {xn} ⊂ A is

(a) LP of type I asymptotically solving sequence corresponding to {(λn, γn)}, for
Problem (OP(λ̄,γ̄ )), iff

(i) xn ∈ clK1(xn, λn), for all n;
(ii) there is a sequence of positive numbers {εn} that converges to 0 and n0 such

that for all n ≥ n0, φ(xn, λn, γn) ≤ εn + v̄.

(b) LP of type II asymptotically solving sequence corresponding to {(λn, γn)}, for
Problem (OP(λ̄,γ̄ )), condition (ii) of part (a) and d(xn, clK1(xn, λn)) ≤ εn, for
all n.

Remark 6 Part (a) of the above definition is a generalization of LP of type I asymp-
totically solving sequence for optimization problem in [10, 12, 15, 26, 29]. While,
part (b) is a generalization of Definition 3.1 of LP asymptotically solving sequence
for optimization problem in [15].

Definition 5 (a) The Problem (OP(λ̄,γ̄ )) is LP well-posed of type I (resp. type II)
if and only if,

(i) there is only one solution for Problem (OP(λ̄,γ̄ ));
(ii) for any sequence {(λn, γn)} ⊆ Λ × Γ converging to (λ̄, γ̄ ), every LP of type

I (resp. type II, ) asymptotically solving sequence for Problem (OP(λ̄,γ̄ )) cor-
responding to {(λn, γn)} contains a subsequence that converges to S(λ̄, γ̄ ).

(b) The Problem (OP(λ̄,γ̄ )), is generalized LP well-posed of type I (resp. type II) if
and only if,

(i) there is a solution for Problem (OP(λ̄,γ̄ ));
(ii) for any sequence {(λn, γn)} ⊆ Λ × Γ converging to (λ̄, γ̄ ), every LP of

type I (resp. type II) asymptotically solving sequence for Problem (OP(λ̄,γ̄ ))

corresponding to {(λn, γn)} contains a subsequence that converges to some
points of S(λ̄, γ̄ ).

Remark 7 The above definitions of LP well-posedness of type I extend the corre-
sponding ones in [10, 12, 15, 26, 29] for Problem (OP(λ̄,γ̄ )).

Example 7 Suppose that X = Λ = Γ = R. Define K1(x, λ) = [0,+∞[ and φ :
[0,+∞[×R × R −→ R by φ(x, λ, γ ) = |x − 1|, for all x ∈ X, λ ∈ Λ, γ ∈ Γ.

Then S(λ, γ ) = {1}. If {xn} ⊆ clK1(xn, λn) is an asymptotically solving sequence
corresponding to (λn, γn) −→ (λ, γ ), then there is a sequence of positive numbers
{εn} which converges to 0 and

∃n0 : ∀n ≥ n0 φ(xn, λn, γn) ≤ εn,

which means that
∃n0 : ∀n ≥ n0 |xn − 1| ≤ εn,
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since limn εn = 0 and 1 − εn < xn < 1 + εn , then limn xn = 1.Hence, the sequence
{1 − 1

n } is an example of an LP of type I asymptotically solving sequence for εn = 1
n ,

for all n.

Example 8 Suppose that X = R
2,Λ = Γ = R, A = {(x1, 0) : x1 ∈ R}. Define

K1(x, λ) = [0,+∞[×[0,+∞[, φ : X × R × R → R by φ((x1, x2), λ, γ ) = x41 −
(x81 + x1)x42 , for x ∈ X, λ, γ ∈ R. Then S(λ, γ ) = {(0, 0)}. If {xn} = {(n, 1

n )}, then{xn} is an LP of type I asymptotically solving sequence corresponding to (λn, γn) →
(λ, γ ), but {xn} is not convergent. Therefore, this problem is not an LP well-posed
of type I.

Here, we use a modified version of a result of Sach [24] for obtaining a nonlinear
scalarization function and define gap functions for problem (PJrβ(λ̄, γ̄ )).

Definition 6 Let Q ⊂ Y, C be a closed convex cone in Y with intC �= ∅ and e ∈
int C, then

(i) tβQ := {t ≥ 0 : β(Q + te,C)}.
(ii) Q is called C-bounded if for each neighborhood U of the origin of Y there is

a real positive number t, such that Q ⊂ C + tU.

(iii) Q is called −C-closed if Q − C is closed.
(iv) Q is called C-compact if any cover of Q of the form {Q +Uα : Uα open} has

a finite subcover

Remark 8 One can show that when Q is C-compact, then Q is −C closed and C-
bounded. If the set valued functionΦ satisfies condition (ii) (resp. (iii)) of Definition
6 at each point of A × B × D × Γ, then we say that Φ is C-bounded (resp. −C-
closed). It is evident that if Φ has bounded values in W, then it is C-bounded and
furthermore, if Φ has C-compact values inW, then Φ is simultaneously C-bounded
and −C-closed.

The proofs of the following results are similar to the corresponding ones in [24],
with replacing C by −C, therefore it is omitted.

Lemma 2 For a subset Q of Y, e ∈ intC and ε > 0, we have

(i) If Q is C-bounded, then sβ1
Q := min{t; t ∈ tβ1

Q } is well-defined.
(ii) If Q is −C-closed, then sβ2

Q := min{t; t ∈ tβ2
Q } is well-defined.

(iii) If Q is C-bounded, then sβ1
Q = 0 iff β1(Q,C), and when Q is compact, sβ1

Q < ε

iff β1(Q,C − εe).
(iv) If Q is −C-closed, then sβ2

Q = 0 iff β2(Q,C) and sβ2
Q ≤ ε iff β2(Q,C − εe).

Remark 9 If we replace Φ(x, y, z, γ ) for each (x, , y, z, γ ) ∈ A × B × D × Γ by
Q in the Definition 6, then by Remark 8, when Φ is compact valued, all of the
consequences of Lemma 2 are valid for ϕ3(resp. ϕ4) : X × Λ × Γ −→ R defined
as
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ϕ3(x, λ, γ ) := min{t ∈ R+ : (y, z) r K2(x, λ) × K3(x, λ, γ ),

β(Φ(x, y, z, γ ) + te(x, λ, γ ), C(x, λ, γ ))}.
(5)

(resp. ϕ4(x, λ, γ ) := min{t ∈ R+ : (y, z) r K2(x, λ) × K4(y, λ, γ ),

β(Φ(x, y, z, γ ) + te(x, λ, γ ), C(x, λ, γ ))}).
(6)

Definition 7 A function L : X × Λ × Γ → R is a gap function corresponding to
function K1, for Problem (OP(λ̄,γ̄ )) iff

(i) L(x, λ̄, γ̄ ) ≥ 0, ∀x ∈ X ;
(ii) x̄ ∈ S(λ̄, γ̄ ), iff L(x̄, λ̄, γ̄ ) = 0 and x̄ ∈ clK1(x̄, λ̄).

Lemma 3 If the map C : X × Λ × Γ → W is a closed map, then the function
ϕ3(resp. ϕ4) is a gap function corresponding to function K1 for Problem (P3rβ(λ̄, γ̄ ))

(resp. (P4rβ(λ̄, γ̄ ))).

Proof It suffices to consider J = 3, for J = 4 the proof is similar. Obviously, for
all (x, λ̄, γ̄ ) ∈ X × Λ × Γ , ϕ3(x, λ̄, γ̄ ) ≥ 0 and if x ∈ S3rβ(λ̄, γ̄ ), then we obtain
ϕ3(x, λ̄, γ̄ ) = 0.

Conversely, if ϕ3(x, λ̄, γ̄ ) = 0 and x ∈ clK1(x, λ̄), then there is a sequence of
positive numbers {εn} which converges to 0 and

(y, z) r K2(x, λ̄) × K3(x, λ̄, γ̄ ), β(Φ(x, y, z, γ̄ ) + εne(x, λ̄, γ̄ ), C(x, λ̄, γ̄ )).

Since C is a closed map and limn εn = 0, we obtain

(y, z) r K2(x, λ̄) × K3(x, λ̄, γ̄ ), β(Φ(x, y, z, γ̄ ), C(x, λ̄, γ̄ )),

then x ∈ S3rβ(λ̄, γ̄ ). �

In the following theorem, we obtain an equivalence relation between the general-
ized LP well-posedness of Problem (PJrβ(λ̄, γ̄ )) and LP well-posedness of Problem
(OP(λ̄,γ̄ )) via its gap function.

Theorem 5 Suppose that C : X × Λ × Γ ⇒ W is a closed map and Φ has C-
compact values. Then, Problem (PJrβ(λ̄, γ̄ )) is a generalized LP well-posed of type
I (resp. type II) if and only if Problem (OP(λ̄,γ̄ )) for ϕJ (x, λ̄, γ̄ ) is a generalized LP
well-posed of type I (resp. type II).

Proof It suffices to consider J = 3; for J = 4 the proof is similar. Since solution
sets of two problems are nonempty, then it suffices to show that every LP of type I
(resp. type II) asymptotically solving sequence for Problem (OP(λ̄,γ̄ )) corresponding
to {(λn, γn)}, is an LP of type I (resp. type II) asymptotically solving sequence for
Problem (P3rβ(λ̄, γ̄ )) and vice versa. Suppose that a sequence {xn} is an LP of type
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I (resp. type II) asymptotically solving sequence for Problem (OP(λ̄,γ̄ )), then th ere
is a sequence of positive numbers {εn} which converges to 0 and there is n0 such that
for all n ≥ n0, ϕ3(xn, λn, γn) ≤ εn, since ϕ3 is a gap function and v̄ = 0. Then, by
definition of ϕ3 and Remark 9 we have: (y, z) r K2(xn, λn) × K3(xn, λn, γn),

β(Φ(xn, y, z, γn) + εne(xn, λn, γn), C(xn, λn, γn)),

Furthermore, xn ∈ clK1(xn, λn) (resp. d(xn, clK1(xn, λn) ≤ εn). Therefore {xn}
is an LP of type I (resp. type II) asymptotically solving sequence for Problem
(P3rβ(λ̄, γ̄ )). Conversely, suppose that a sequence {xn} is an LP of type I (resp.
type II) asymptotically solving sequence corresponding to {(λn, γn)} for Problem
(P3rβ(λ̄, γ̄ )). Then there is a sequence of positive numbers {εn} which converges to
0 and

xn ∈ clK1(xn, λn) (resp. d(xn, clK1(xn, λn) ≤ εn)

such that

(y, z) r K2(xn, λn) × K3(xn, λn, γn), β(Φ(xn, y, z, γn) + εne(xn, λn, γn), C(xn, λn, γn)).

Then, from definition of ϕ3(xn, λn, γn), we obtain ϕ3(xn, λn, γn) ≤ εn. So, {xn}
is an LP of type I (resp. type II) asymptotically solving sequence for Problem
(OP(λ̄,γ̄ )). �

Example 9 In Example 3,

ϕI3(x, λ, γ )

= min{t ∈ R+ : y ∈ K2(x, λ), z ∈ K3(x, λ, γ ) Φ(x, y, z, γ ) + te(x, λ, γ ) ⊆ R
2+}

= min{t ∈ R+ : y ∈ R, z ∈ R Φ(x, y, z, γ ) + te(x, λ, γ ) ⊆ R
2+}

=
⎧
⎨

⎩

0 if x ≥ 0,

−x o.w.,

If {xn} is an LP of type I asymptotically solving sequence corresponding to
(λn, γn) −→ (λ, γ ), then limn xn = 0. Therefore, Problem (OP(λ̄,γ̄ )) for ϕI3 is LP
well-posed of type I.

Remark 10 As it was shown in [5], one can deduce similarly the Levitin–Polyak
well-posedness of generalized vector variational inequalities and generalized set-
valued optimization problems from our results in this paper.
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Abstract We discuss the problem of best simultaneous approximation in quotient
spaces when the underlying spaces are metric linear spaces. We characterize
simultaneous proximinality, simultaneous Chebyshevity, simultaneous pseudo-
Chebyshevity and simultaneous quasi-Chebyshevity and see how these are trans-
mitted to and from quotient spaces. The results proved in the paper generalize and
extend several known results on the subject.
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1 Introduction and Preliminaries

C.B. Dunham [3] was the first to generalize the classical problem of approximating a
continuous function to the problem of simultaneously approximating two continuous
functions by a family of functions defined on a closed interval. Ahuja and Narang
[1], Goel et al. [4], Holland et al. [5], Sastry and Naidu [12] and others studied this
problem in normed linear spaces. Many researchers have discussed results on the
existence, uniqueness and characterization of elements of best simultaneous approx-
imation in normed linear spaces (see [1, 9] and references cited therein). Iranmanesh
andMohebi [6], Mohebi and Rezapour [7] have discussed these problems in quotient
spaces when the underlying spaces are normed linear spaces. The situation in case
of metric linear spaces and metric spaces is somewhat different. Although, some
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attempts have been made to develop the theory of best simultaneous approximation
in such spaces (see [10]) but this theory has not reached a satisfactory level as in the
case of normed linear spaces. The present paper is also a step in this direction. In this
paper, we discuss the problem of best simultaneous approximation in quotient spaces
when the underlying spaces are metric linear spaces. We characterize simultaneous
proximinality, simultaneous Chebyshevity, simultaneous pseudo-Chebyshevity and
simultaneous quasi-Chebyshevity inmetric linear spaces and see how these are trans-
mitted to and from quotient spaces. The results proved in the paper generalize and
extend several known results on best approximation and also results of [6, 7]. We
start with a few definitions.

LetW be a non-empty subset of a metric space (X, d). A point w0 ∈ W is called
a best approximation for x ∈ X, if

d(x,w0) = d(x,W ) ≡ inf
w∈W d(x,w).

We denote the set of all best approximations to x in W by PW (x) i.e. PW (x) =
{w ∈ W : d(x,w) = d(x,W )}.

We say that the set W is proximinal (Chebyshev) if PW (x) �= φ (exactly a sin-
gleton) for each x ∈ X.

For a non-empty bounded subset S of X, we define

δ(S,W ) = inf
w∈W sup

s∈S
d(s,w).

An element w0 ∈ W is called a best simultaneous approximation to S from W
if sups∈S d(s,w0) = δ(S,W ).

We denote the set of all best simultaneous approximations to S fromW by LW (S)
i.e. LW (S) = {w ∈ W : sups∈S d(s,w) = δ(S,W )}.

The set W is called simultaneous proximinal (simultaneous Chebyshev) if for
each bounded subset S of X there exist at least one (exactly one) best simultaneous
approximation to S fromW.

Clearly, every simultaneously proximinal set is proximinal.
A closed subsetW of X is called simultaneous quasi-Chebyshev (see [7]) if the

set LW (S) is non-empty and compact in X for every bounded subset S of X.
A metric space (X, d) is said to be totally complete [8] if its closed and bounded

subsets are compact.
A linear space X with a translation invariant metric d (i.e. d(x + z, y + z) =

d(x, y) for all x, y, z ∈ X) such that addition and scalar multiplication are continuous
on (X, d) is called ametric linear space.

Every normed linear space is a metric linear space but converse is not true.
The space X of all entire functions i.e. X = {f : f (z) = ∑∞

n=0 anz
n, |an| 1

n →
0 as n → ∞}with the metric d defined by d(f , g) = max{|a0 − b0|, |an − bn| 1

n , n ≥
1},where f (z) = ∑∞

n=0 anz
n and g(z) = ∑∞

n=0 bnz
n is a non-normable metric linear

space (see [2], p. 238).
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For a non-empty convex set A of a metric linear space (X, d), we denote by l(A)

the linear manifold spanned by A i.e.

l(A) = {λx + (1 − λ)y : x, y ∈ A, λ a scalar}

For a fixed z ∈ A, the set l(A) − z = {x − z : x ∈ l(A)} is a linear subspace of X,
satisfying

l(A) − z = l(A − z)

The dimension of an arbitrary convex set A ⊆ X is defined by

dim A =
{
dim l(A) ifA �= φ

−1 ifA = φ

For every z ∈ A we have

dim A = dim l(A) = dim [l(A) − z] = dim l(A − z) = dim (A − z).

A closed subsetW of a metric linear spaces (X, d) is called simultaneous pseudo-
Chebyshev (see [7]) if the set LW (S) is non-empty and finite dimensional in X for
every bounded subset S of X.

It is easy to see that for any non-empty subset W of a metric linear space (X, d),
LW+x(S + x) = LW (S) + x for every x ∈ X.

If (X, d) is a metric linear space over a field F andM is a closed linear subspace
of X. Then the quotient space

X/M = {x + M : x ∈ X}

with linear operations:
(i) (x + M) + (y + M) = (x + y) + M for every x, y ∈ X.

(ii) λ(x + M) = λx + M for every x ∈ X, λ ∈ F.

is a metric linear space endowed with the metric

d(x + M, y + M) = inf
m∈M d(x + m, y + m).

The canonical mapping π : X → X/M defined by π(x) = x + M, x ∈ X is linear,
continuous, open and satisfies l(π(A)) = π(l(A)) (see [11]).

2 Main Results

In this section, we prove how simultaneous proximinality and simultaneous Cheby-
shevity is transmitted to and from quotient spaces when the underlying spaces are
metric linear spaces. We start with proving a few lemmas. For normed linear spaces,
these lemmas were proved in [6].
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Lemma 1 Let (X, d) be a metric space and M a proximinal subset of X, then for
each non-empty bounded set S in X, we have

δ(S,M) = sup
s∈S

inf
m∈M d(s,m).

Proof Since infm∈M d(s,m) ≤ d(s,m′) for every m′, we have

sup
s∈S

inf
m∈M d(s,m) ≤ sup

s∈S
d(s,m′) for every m′

and so

sup
s∈S

inf
m∈M d(s,m) ≤ inf

m′∈M sup
s∈S

d(s,m′).

By the proximinality ofM it follows that for each s ∈ S, there existms ∈ PM(s) such
that

d(s,ms) = inf
m∈M d(s,m)

Therefore, δ(S,M) = infm∈M sups∈S d(s,m) ≤ sups∈S d(s,ms) = sups∈S infm∈M
d(s,m) ≤ infm∈M sups∈S d(s,m) = δ(S,M). This gives δ(S,M) = sups∈S infm∈M
d(s,m).

Lemma 2 Let (X, d) be a metric linear space,M a proximinal subspace of X, and
S a subset of X, then the following are equivalent:
(i) S is a bounded subset of X.
(ii) S/M is a bounded subset of X/M.

Proof (i) ⇒ (ii) Let s ∈ S be arbitrary. Since d(s + M, 0) ≤ d(s, 0) as 0 ∈ M, we
get sups∈S d(s + M, 0) ≤ sups∈S d(s, 0) < ∞ as S is bounded. Therefore, S/M is a
bounded subset of X/M.
(ii) ⇒ (i) Suppose S/M is bounded subset of X/M i.e. sups∈S d(s + M, 0) < ∞.

Since M is proximinal, for each s ∈ S there exist ms ∈ M such that ms ∈ PM(s)
and so d(s,ms) = infm∈M d(s,m).

Using Lemma 1, we get

sup
s∈S

d(s,ms) = sup
s∈S

inf
m∈M d(s,m) = inf

m∈M sup
s∈S

d(s,m).

Therefore for each ε > 0, there exist mε ∈ M such that

sup
s∈S

d(s,mε) ≤ sup
s∈S

d(s,ms) + ε

Now, d(s, 0) ≤ d(s,mε) + d(mε, 0) ⇒ sups∈S d(s, 0) ≤ sups∈S d(s,mε) + d(mε,

0) ≤ sups∈S d(s,ms) + ε + d(mε, 0) = sups∈S infm∈M d(s,m) + d(mε, 0) + ε =
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sups∈S d(s + M, 0) + d(mε, 0) + ε < ∞ as S/M is bounded. Therefore, sups∈S
d(s, 0) < ∞ and hence S is bounded.

Concerning the simultaneous proximinality in quotient spaces, we have

Theorem 1 Let W and M be subspaces of a metric linear space (X, d). If M ⊆ W
is simultaneous proximinal in X, then the following are equivalent:
(i) W is simultaneous proximinal in X.
(ii) W/M is simultaneous proximinal in X/M.

Proof (i) ⇒ (ii) Let S/M be any bounded set in X/M, it follows from Lemma 2 that
S is a bounded set in X.

Assume w0 ∈ LW (S) and w0 + M /∈ LW/M(S/M). Now

w0 ∈ LW (S) ⇒ sup
s∈S

d(s,w0) = δ(S,W ) ≡ inf
w∈W sup

s∈S
d(s,w).

If w0 + M /∈ LW/M(S/M) then sups+M∈S/M d(s + M,w0 + M) �= infw+M∈W/M

sups+M∈S/M d(s + M,w + M) and so there exist w′ ∈ W such that

sup
s∈S

d(s − w′ + M, 0) < sup
s∈S

d(s − w0 + M, 0) ≤ sup
s∈S

d(s,w0) = δ(S,W ) (1)

On the other hand, for each s ∈ S, we have

d(s − w′ + M, 0) = inf
m∈M d(s − w′ + m, 0)

and so for each ε > 0 and each s ∈ S there exist ms ∈ M such that

d(s − w′ − ms, 0) ≤ d(s − w′ + M, 0) + ε (2)

As w′ + ms ∈ W , we conclude that δ(S,W ) ≤ sups∈S d(s − (w′ + ms), 0) = sups∈S
d(s,w′ + ms) ≤ sups∈S d(s − w′ + M, 0) + ε by (2).

Since ε > 0 is arbitrary,

δ(S,W ) ≤ sup
s∈S

d(s − w′ + M, 0) (3)

From (1) and (3), we obtain

δ(S,W ) ≤ sup
s∈S

d(s − w′ + M, 0) < δ(S,W )

which is not possible and hence w0 + M ∈ LW/M(S/M).

(ii) ⇒ (i) As w0 + M ∈ LW/M(S/M), we have
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sup
s+M∈S/M

d(s + M,w0 + M) = inf
w+M∈W/M

sup
s+M∈S/M

d(s + M,w + M) (4)

Since M is proximinal, there exist m0 ∈ M such that

sup
s−w0∈S−w0

d(s − w0,m0) = inf
m∈M sup

s−w0∈S−w0

d(s − w0,m) (5)

Using (5) and Lemma 1, we obtain

sup
s∈S

d(s − w0 − m0, 0) = inf
m∈M sup

s∈S
d(s − w0 − m, 0) = sup

s∈S
inf
m∈M d(s − w0 − m, 0) =

sup
s∈S

d(s − w0 + M, 0) ≤ sup
s∈S

d(s − w + M, 0) for every w ∈ W by (4).

This implies that sups∈S d(s − w0 − m0, 0) ≤ sups∈S d(s,w) for every w ∈ W as 0 ∈
M. Hence sups∈S d(s,w0 + m0) ≤ sups∈S d(s,w) for everyw ∈ W . Sincew0 + m0 ∈
W , we obtain w0 + m0 ∈ LW (S).

Corollary 1 Let M be a simultaneous proximinal subspace of a metric linear space
(X, d) andW ⊇ M asimultaneous proximinal subspace of X. Then for each bounded
set S in X, we have π(LW (S)) = LW/M(S/M).

Using the continuity of π , we obtain

Corollary 2 Let M be a simultaneous proximinal subspace of a metric linear space
(X, d) and W ⊇ M a simultaneous quasi-Chebyshev subspace of X. Then W/M is
simultaneous quasi-Chebyshev in X/M.

Concerning the simultaneous Chebyshevity in quotient spaces, we have

Theorem 2 Let W and M be subspaces of a metric linear space (X, d). If M ⊆ W
is simultaneous Chebyshev, then the following are equivalent:
(i) W/M is simultaneous Chebyshev in X/M.
(ii) W is simultaneous Chebyshev in X.

Proof (i) ⇒ (ii) Assume (ii) is false. Then some bounded subset S of X has two
distinct best simultaneous approximations say l0 and l1 inW i.e. l0 and l1 ∈ LW (S).

SinceW ⊇ M, it follows from Theorem 1 that l0 + M and l1 + M ∈ LW/M(S/M).
By hypothesis,W/M is simultaneousChebyshev and therefore l0 + M = l1 + M. So,
there exist m0 ∈ M\{0} such that l1 = l0 + m0. Since l0, l1 ∈ LW (S), we have

sup
s∈S

d(s − l0 − m0, 0) = sup
s∈S

d(s − l1, 0) = sup
s∈S

d(s, l1) = inf
l∈W

sup
s∈S

d(s − l, 0) =

δ(S,W ) = δ(S − l0,W ) ≤ δ(S − l0,M). This shows that both m0 and 0 are best
simultaneous approximation to S − l0 fromM i.eM is not simultaneous Chebyshev,
a contradiction. Hence W is simultaneous Chebyshev in X.
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(ii)⇒ (i) Assume (i) does not hold. Then for some bounded subset S of X, S/M has
two distinct best simultaneous approximations say w + M and w′ + M belonging to
W/M. Thus w − w′ /∈ M.

Since M is simultaneously proximinal, there exist best simultaneous approx-
imations m and m′ to S − w, S − w′ respectively. Therefore, we have m ∈ LM
(S − w), m′ ∈ LM(S − w′).

Since W ⊇ M and w + M,w′ + M ∈ LW/M(S/M) it follows from Theorem 1
that w + m and w′ + m′ ∈ LW (S). But W is simultaneous Chebyshev in X, therefore
w + m = w′ + m′. This gives w − w′ ∈ M which is not true and hence (i) holds true.

Remark 1 For normed linear spaces, Theorems 1 and 2 were proved in [6].

We shall be needing the following result for characterizing simultaneous pseudo-
Chebyshevity and simultaneous quasi-Chebyshevity in quotient spaces.

Lemma 3 If K is a boundedly compact, closed subset of a metric space (X, d), then
there exist a best simultaneous approximation to any bounded subset F of X i.e. K
is simultaneous proximinal in X.

Proof Let g(k) = supf∈F d(f , k) and δ = δ(F,K) ≡ infk∈K supf∈F d(f , k) =
infk∈K g(k). By the definition of δ, there exist a sequence {kn} in K such that

g(kn) → δ(F,K) ≡ δ (6)

Since {g(kn)} is a convergent sequence of scalars, it is bounded and therefore there
exist a positive real number p such that

g(kn) ≤ p for all n i.e. sup
f∈F

d(f , kn) ≤ p for all n.

Now, d(kn, km) ≤ d(kn, f ) + d(f , km) for all f implies

sup
f∈F

d(kn, km) ≤ sup
f∈F

d(kn, f ) + sup
f∈F

d(f , km) ⇒ sup
kn,km∈K

d(kn, km) ≤ 2p

This implies that {kn} is a bounded sequence in K. Since K is boundedly compact,
there exist a subsequence {kni} of {kn} such that kni → k0 ∈ K . From (6), we have

lim
n→∞ g(kn) = δ i.e. lim

n→∞ sup
f∈F

d(f , kn) = δ.

Therefore, for a given ε > 0, there exist a positive integer m such that

∣
∣ sup
f∈F

d(f , kn) − δ
∣
∣ < ε for all n ≥ m

This gives supf∈F d(f , kn) < δ + ε for all n ≥ m. Consequently, supf∈F d(f , kni)
< δ + ε for all ni ≥ m.
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Since ε > 0 is arbitrary, supf∈F d(f , kni) ≤ δ for all ni ≥ m ⇒ d(f , kni) ≤ δ for
all ni ≥ m and for every f.

Letting ni → ∞, we get

d(f , k0) ≤ δ for every f ∈ F ⇒ sup
f∈F

d(f , k0) ≤ δ

Also,
δ = inf

k∈K
sup
f∈F

d(f , k) ≤ sup
f∈F

d(f , k0)

Hence supf∈F d(f , k0) = δ = infk∈K supf∈F d(f , k) i.e.K is simultaneous proximinal
in X.

Concerning simultaneous pseudo Chebyshevity, we have

Theorem 3 Let (X, d) be a totally complete metric linear space, M a finite dimen-
sional subspace of X andW ⊇ M a subspace of X. Then the following are equivalent:
(i) W/M is simultaneous pseudo Chebyshev in X/M.
(ii) W is simultaneous pseudo Chebyshev in X.

Proof Since a finite dimensional subspace of a metric linear space is closed [11],
M is a closed subspace of the totally complete metric linear space X and so it is
boundedly compact [8]. Lemma 3 implies thatM is simultaneously proximinal in X.
(i) ⇒ (ii) Suppose W/M is simultaneous pseudo Chebyshev in X/M then W/M
is simultaneous proximinal in X/M. Since M is simultaneous proximinal in X. It
follows from Theorem 1 thatW is simultaneous proximinal in X. Let S be a bounded
set in X and k0 ∈ LW (S) be arbitrary. SinceW ⊇ M, it follows from Corollary 1 that

π [l(LW (S) − k0)] = l[π(LW (S) − k0)] = l[LW/M(S/M) − (k0 + M)] =

l[LW/M(S/M) − (k0 + M)] (7)

Since W/M is simultaneous pseudo-Chebyshev in X/M,

dim l[LW/M(S/M) − (k0 + M)] = dim l[LW/M(S/M)] = dim LW/M(S/M) < ∞
(8)

From (7) and (8), we have

dim π [l(LW (S) − k0)] < ∞.

Since π [l(LW (S) − k0)] = l[LW (S) − k0)]/M, dim π [l(LW (S) − k0)] = dim l
[LW (S) − k0)] − dim M. As dim M is finite, it follows that dim l[LW (S) − k0)] is
finite. Therefore, dim l[LW (S) − k0)] = dim [LW (S)] is finite. Hence, W is simulta-
neous pseudo-Chebyshev in X.
(ii) ⇒ (i) Let S be a bounded set in X. Since W is simultaneous pseudo-Chebyshev
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in X, LW (S) is a non-empty and finite dimensional set in X. In view of Theorem 1 and
the fact that M is simultaneous proximinal in X, we get that W/M is simultaneous
proximinal in X/M.

Thus, we have dim [LW/M(S/M)] = dim l[LW/M(S/M)] = dim l[π(LW (S)]. But
dim l[π(LW (S)] = dim π [l(LW (S)] = dim l[LW (S)]/M = dim [l(LW (S)] −dim M
implies dim π [l(LW (S)] < dim [l(LW (S)] < ∞ and so dim LW/M(S/M) < ∞. Con-
sequently, W/M is simultaneous pseudo-Chebyshev in X/M.

Remark 2 For normed linear spaces, Theorem 3 is given in [6].

The above proof shows that the condition of total completeness of the space in
the above theorem can be removed if we take M to be a simultaneously proximinal
subspace in X, so we have

Theorem 4 Let (X, d) be a metric linear space, M a finite dimensional simultane-
ously proximinal subspace of X and W ⊇ M a subspace of X. Then the following
are equivalent:
(i) W/M is simultaneous pseudo Chebyshev in X/M.

(ii) W is simultaneous pseudo Chebyshev in X.

Concerning simultaneous quasi Chebyshevity, we have

Theorem 5 LetMbea closed subspaceandW ⊇ M asubspaceof a totally complete
metric linear space (X, d), then the following are equivalent:
(i) W/M is simultaneous quasi-Chebyshev in X/M.

(ii) W is simultaneous quasi-Chebyshev in X.

Proof AsM is a closed subset of totally complete metric linear space X, it is bound-
edly compact [8]. Lemma 3 implies that M simultaneously proximinal in X.
(i) ⇒ (ii) Suppose W/M is simultaneous proximinal in X/M. SinceM is simultane-
ous proximinal in X, it follows from Theorem 1 that W is simultaneous proximinal
in X. Let S be a bounded set in X, then LW (S) �= φ.

We now show that LW (S) is compact. Let {ln} be a sequence in LW (S). Then it
follows from Theorem 1 that {ln + M} is a sequence in LW/M(S/M).

Since LW/M(S/M) is compact, there exist a subsequence {lnk + M} of {ln + M}
such that {lnk + M} → l0 + M ∈ LW/M(S/M). As M is proximinal in X, there exist
mnk ∈ M such that mnk ∈ PM(l0 − lnk ) for every k ≥ 1.

Hence d(l0 − lnk − mnk ) = d(l0 − lnk ,M) for every k ≥ 1. Taking limit as k → ∞
and using the fact lnk + M → l0 + M, we get

lim
n→∞ d(l0 − lnk − mnk , 0) = 0. (9)
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Moreover, M is simultaneous proximinal and hence closed. Without loss of gen-
erality we may assume that {mnk } converges to an element say m0 ∈ M. (otherwise
consider a suitable subsequence of {mnk } and use the fact that every bounded sequence
has a convergent subsequence)

Let l′ = l0 − m0. Then l′ ∈ W + M, and we have

d(l′ − lnk , 0) = d(l0 − m0 − lnk , 0) = d(l0 − lnk ,m0) ≤ d(l0 − lnk ,mnk ) + d(mnk ,m0)

for every k ≥ 1.
Taking limit as k → ∞, we get

d(l′ − lnk , 0) → 0 as k → ∞

Since lnk ∈ LW+M(S) for all k ≥ 1 and LW (S) is closed, we conclude that l′ ∈ LW (S).
Therefore, LW (S) is compact.
(ii) ⇒ (i) follows from Corollary 2.

The above proof shows that the condition of total completeness of the space in
the above theorem can be removed if we take M to be a simultaneously proximinal
subspace in X, so we have

Theorem 6 Let (X, d) be a metric linear space, M a finite dimensional simultane-
ously proximinal subspace of X and W ⊇ M a subspace of X. Then the following
are equivalent:
(i) W/M is simultaneous quasi-Chebyshev in X/M.

(ii) W is simultaneous quasi-Chebyshev in X.

Remark 3 For finite dimensional subspaces of normed linear spaces, Theorem 6 is
given in [6].
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H(., ., .)-η-Proximal-Point Mapping
with an Application

Shamshad Husain, Huma Sahper and Sanjeev Gupta

Abstract In this article, we introduce the new notion of accretive mapping known
as H(., ., .)-η-mixed accretive mapping in q-uniformly smooth Banach spaces. It is
the generalization of the H(., .)-accretive mapping, introduced and studied by Zou
and Huang [25]. Then, we will introduce the proximal-point mapping related with
H(., ., .)-η-mixed accretive mapping and discuss its Lipschitz continuity. We design
an iterative algorithm for solving the system of variational inclusions by utilizing the
proximal-point method and prove the convergence of iterative sequences generated
by the algorithm. Few examples are considered to illustrate the introduced proximal-
point mapping.

Keywords H(., ., .)-η-mixed accretive mapping · Proximal-point mapping ·
Iterative algorithm · Convergence · Variational inclusions
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1 Introduction

The study of the variational inequalities and variational inclusions is very crucial
that allow mathematical models to some problems arising in mechanics, engineering
science and economics etc. Firstly, Huang and Fang [8] studied the generalization of
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m-accretivemappings anddefined its proximal-pointmapping inBanach space. Since
then, a number of mathematicians introduced and studied the several generalized
mappings such as H-accretive, A-η-accretive and G-η-monotone mappings etc. For
example, see [2–21, 24] and references therein.

In the last few years, Zou and Huang [25] introduced and studiedH(., .)-accretive
mapping, Wang et al. [22] introduced and studied H(., .)-η-accretive mappings in
the setting of Banach spaces and their proximal-point mappings, respectively. Very
recently, Husain et. al. [11] introduced and studiedH(., .)-mixed mapping in the set-
ting of Banach spaces and Ahmad et al. [1] introduced and studiedH(., .)-cocoercive
mappings in the setting of Hilbert spaces.

This work is inspired by the research going in this direction. In this article we
investigate a new notion of generalized accretive mapping known as H(., ., .)-η-
mixed accretive mapping in q-uniformly smooth Banach spaces and discuss the
properties of its proximal-point mapping like single-valuedness and Lipschitz conti-
nuity. As an application, we consider the system of set-valued variational inclusion
involving H(., ., .)-η-mixed accretive mappings. Then, we design an iterative algo-
rithm for solving the considered system of set-valued variational inclusions and show
that the iterative sequences generated through the algorithm are strongly convergent
to the solution of the system.

2 Preliminaries

Let E be a real Banach space equipped with norm ‖.‖ and E∗ be the topological dual
space of E. Let 〈., .〉 be the dual pair between E and E∗.

Definition 1 ([23]) A mapping Jq : E � E∗, where q > 1, is said to be generalized
duality mapping, if it is defined as

Jq(u) = {f ∗ ∈ E∗ : 〈u, f ∗〉 = ‖u‖q, ‖f ∗‖ = ‖u‖q−1},∀u ∈ E.

If J2 is the usual normalized duality mapping on E, given as

Jq(u) = ‖u‖q−1J2(u)∀u( �= 0) ∈ E.

If E ≡ X, a real Hilbert space, then J2 becomes identity mapping on X.

Definition 2 ([23]) A Banach space E is called smooth if for every u ∈ E with
‖u‖ = 1, there exists a unique f ∈ E∗ such that ‖f ‖ = f (u) = 1.

The modulus of smoothness of E is a function ρE : [0,∞) → [0,∞), defined by

ρE(t) = sup

{
1

2
(‖u + v‖ + ‖u − v‖) − 1 : ‖u‖ ≤ 1, ‖v‖ ≤ t

}
.
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Definition 3 ([23]) A Banach space E is called
(i) uniformly smooth if

lim
t→0

ρE(t)

t
= 0;

(ii) q-uniformly smooth, for q > 1, if there exists c > 0 such that

ρE(t) ≤ ctq, t ∈ [0,∞).

Note that Jq is single-valued if E is uniformly smooth.

Lemma 1 ([23]) Let E be a real uniformly smooth Banach space. Then E is q-
uniformly smooth if and only if there exists cq > 0 such that, for all u, v ∈ E,

‖u + v‖q ≤ ‖u‖q + q〈v, Jq(u)〉 + cq‖v‖q.

Definition 4 Let us consider the mappings P : E → E and η : E × E → E. Then P
is said to be
(i) η-accretive if

〈P(u) − P(v), Jq(η(u, v))〉 ≥ 0,∀u, v ∈ E;

(ii) strictly η-accretive, if P is η-accretive and equality holds if and only if u = v;
(iii) δ1-η-strongly accretive with constant δ1 > 0 if

〈P(u) − P(v), Jq(η(u, v))〉 ≥ δ1‖u − v‖q,∀u, v ∈ E;

(iv) Lipschitz continuous with λP > 0, if

‖P(u) − P(v)‖ ≤ λP‖u − v‖,∀u, v ∈ E;

(v) μ-expansive with μ > 0, if that

‖P(u) − P(v)‖ ≥ μ‖u − v‖,∀u, v ∈ E;

if μ = 1, then it is expansive;
(vi) η is said to be Lipschitz with τ > 0, if

‖η(u, v)‖ ≤ τ‖u − v‖,∀u, v ∈ E.

Definition 5 Let us consider the single-valued mappings A,B,C : E → E, η : E ×
E → E and H : E × E × E → E. Then
(i) H(A, ., .) is said to be α-η-cocoercive regarding A with α > 0, if
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〈H(Au,w,w) − H(Bv,w,w), Jq(η(u, v))〉 ≥ α‖Au − Av‖q,∀u, v,w ∈ E;

(ii) H(.,B, .) is said to be β-η-relaxed cocoercive regarding B with β > 0, if

〈H(w,Bu,w) − H(w,Bv,w), Jq(η(u, v))〉 ≥ (−β)‖Bu − Bv‖q,∀u, v,w ∈ E;

(iii) H(., .,C) is said to be δ-η-strongly accretive regarding C with δ > 0, if

〈H(w,w,Cu) − H(w,w,Cv), Jq(η(u, v))〉 ≥ δ‖u − v‖q,∀u, v,w ∈ E;

(iv) H(A, ., .) is said to be Lipschitz continuous regarding A with r1 > 0, if

‖H(Au,w,w) − H(Av,w,w)‖ ≤ r1‖u − v‖,∀u, v,w ∈ E;

Similarly, we can give the Lipshitz continuity of H regarding B and C by taking
constants r2 > 0 and r3 > 0 respectively.

Definition 6 Let M : E � E be a set-valued mapping, then M is said to be κ-η-
relaxed accretive with κ > 0, if

〈x − y, Jq(η(u, v))〉 ≥ (−κ)‖u − v‖q,∀u, v ∈ E, x ∈ M(u), y ∈ M(v).

Definition 7 A set-valued mapping T : E � CB(E) is said to be D-Lipschitz con-
tinuous with l > 0 such that

D(T(u),T(v)) ≤ l‖u − v‖,∀u, v ∈ E,

where D(., .) is the Hausdorff metric on CB(E).

3 H(., ., .)-η-Mixed Accretive Mapping

First we consider the following assumptions, then we will introduce H(., ., .)-η-
mixed accretive mapping and its proximal-point mapping.
Assumption c1: Let H : E × E × E → E and η : E × E → E be the single-valued
mappings and assume that

1. H(., ., .) is α-η-cocoercive regarding A,
2. H(., ., .) is β-η-relaxed cocoercive regarding B,
3. H(., ., .) is δ-η-strongly accretive regarding C.

Assumption c2:

1. A is μ-expansive,
2. B is γ -Lipschitz continuous.



H(., ., .)-η-Proximal-Point Mapping with an Application 355

Definition 8 Let assumption c1 holds, then the set-valued mapping M : E � E is
said to be H(., ., .)-η-mixed accretive regarding A,B and C, if
(i)M is κ-η-relaxed accretive;
(ii) (H(A,B,C) + ρM)(E) = E, for all ρ > 0.

Example 1 Let q = 2 and E = R
2 with the usual inner product. Let A,B,C : R2 →

R
2 be defined by

Au =
(
1

2
u1 − 1

2
u2,−1

2
u1 + u2

)
,

Bv =
(

−1

2
v1 − 1

2
v2,

1

2
v1 − 1

2
v2

)
,

Cw =
(
1

2
w1 − 1

4
w2,

1

4
w1 + 1

3
w2

)
,

for all u = (u1, u2), v = (v1, v2) and w = (w1,w2) ∈ R
2.

Suppose that H : R2 × R
2 × R

2 → R
2 and η : R2 × R

2 → R
2 be defined by

H(Au,Bv,Cw) = Au + Bv + Cw,

η(u, v) = u − v, ∀u, v,w ∈ R
2.

Then, we can check easily the constants in Definition 8 having values α = 2
3 , β = 1

and δ = 1
3 .

Example 2 Let E,A,B,C,H(A,B,C) and η are defined as in Example 1. Suppose
that M : E � E be defined by M(u) = (−3π,−3u2),∀u = (u1, u2) ∈ R

2.

Then, we can easily obtained the constant κ = 3 in Definition 8 and M is H(., ., .)-
η-mixed accretive mapping due to (H(A,B,C) + ρM)(E) = E, ∀ ρ > 0.

Theorem 1 Let M : E � E be a H(., ., .)-η-mixed accretive mapping regarding
A,B and C. Let assumptions (c1) and (c2) hold with α > β, μ > γ and � = αμq −
βγ q + δ > κ . If the inequality given below

〈u − v, Jq(η(x, y))〉 ≥ 0, (1)

satisfied for each (y, v) ∈ Gph(M), then u ∈ Mx, where

Gph(M) = {(p, q) ∈ E × E : q ∈ M(p)}. (2)

Proof Assume on contrary that ∃ (x0, u0) /∈ Gph(M)

〈u0 − v, Jq(η(x0, y))〉 ≥ 0,∀(y, v) ∈ Gph(M). (3)

By definition of H(., ., .)-η-mixed accretive mapping, we have (H(A,B,C) + ρM)

(E) = E, holds for all ρ > 0, then ∃(x1, u1) ∈ Gph(M) s.t.
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H(Ax0,Bx0,Cx0) + ρu0 = H(Ax1,Bx1,Cx1) + ρu1 ∈ E. (4)

Now,

ρu0 − ρu1 = H(Ax1,Bx1,Cx1) − H(Ax0,Bx0,Cx0) ∈ E

〈ρu0−ρu1, Jq(η(x0, x1))〉
= −〈H(Ax0,Bx0,Cx0) − H(Ax1,Bx1,Cx1), Jq(η(x0, x1))〉. (5)

Setting (y, v) = (x1, u1) in (3) and then from the resultant, (4) and κ-η-relaxed accre-
tivity of M, we obtain

−κ‖x0 − x1‖q ≤ ρ〈u0 − u1, Jq(η(x0, x1))〉
= −〈H(Ax0,Bx0,Cx0) − H(Ax1,Bx1,Cx1), Jq(η(x0, x1))〉
= −〈H(Ax0,Bx0,Cx0) − H(Ax1,Bx0,Cx0), Jq(η(x0, x1))〉

− 〈H(Ax1,Bx0,Cx0) − H(Ax1,Bx1,Cx0), Jq(η(x0, x1))〉
− 〈H(Ax1,Bx1,Cx0) − H(Ax1,Bx1,Cx1), Jq(η(x0, x1))〉. (6)

By assumptions (c1) and (c2), we have

−κ‖x0 − x1‖q ≤ −α‖Ax0 − Ax1‖q + β‖Bx0 − Bx1‖q − δ‖x0 − x1‖q
≤ −(αμq − βγ q + δ)‖x0 − x1‖q
= −�‖x0 − x1‖q ≤ 0,where � = αμq − βγ q + δ

≤ −(� − κ)‖x0 − x1‖q ≤ 0,

which gives x0 = x1, since � > κ . By (3), we have u0 = u1, a contradiction.
Hence (x0, u0) = (x1, u1) ∈ Gph(M) and so x0 ∈ Mu0. This complete the proof.

Theorem 2 Let M : E � E be a H(., ., .)-η-mixed accretive mapping regarding
A,B and C. If assumptions (c1) and (c2) hold with α > β, μ > γ and � = αμq −
βγ q + δ > ρκ , then (H(A,B,C) + ρM)−1 is single-valued.

Proof For any given z ∈ E, let p, q ∈ (H(A,B,C) + ρM)−1(z). It follows that

{−H(Ap,Bp,Cp) + z ∈ ρMp,
−H(Aq,Bq,Cq) + z ∈ ρMq.

By using the κ-η-relaxed accretivity of M, we have

−κ‖p − q‖q ≤ 1

ρ
〈−H(Ap,Bp,Cp) + z − (−H(Aq,Bq,Cq) + z), Jq(η(p, q))〉
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−ρκ‖p − q‖q ≤〈−H(Ap,Bp,Cp) + z − (−H(Aq,Bq,Cq) + z), Jq(η(p, q))〉
= − 〈H(Ap,Bp,Cp) − H(Aq,Bq,Cq), Jq(η(p, q))〉
= − 〈H(Ap,Bp,Cp) − H(Aq,Bp,Cp), Jq(η(p, q))〉

− 〈H(Aq,Bp,Cp) − H(Aq,Bq,Cp), Jq(η(p, q))〉
− 〈H(Aq,Bq,Cp) − H(Aq,Bq,Cq), Jq(η(p, q))〉. (7)

By assumptions (c1) and (c2), we have

−ρκ‖p − q‖q ≤ −α‖Ap − Aq‖q + β‖Bp − Bq‖q − δ‖p − q‖q
≤ −(αμq − βγ q + δ)‖p − q‖q
= −�‖p − q‖q ≤ 0,where � = αμq − βγ q + δ

≤ −(� − ρκ)‖p − q‖q ≤ 0,

since � > ρκ . Hence, ‖p − q‖ ≤ 0. Thus, we have p = q, and so (H(A,B,C) +
ρM)−1 is single-valued.

Definition 9 Let M : E � E be a H(., ., .)-η-mixed accretive mapping regarding
A,B and C. If assumptions (c1) and (c2) hold with α > β, μ > γ and � = αμq −
βγ q + δ > ρκ , then the proximal-point mapping RH(.,.,.)−η

ρ,M : E → E is defined by

RH(.,.,.)−η

ρ,M (a) = (H(A,B,C) + ρM)−1(a),∀a ∈ E. (8)

Theorem 3 Let M : E � E be a H(., ., .)-η-mixed accretive mapping regard-
ing A,B and C. If assumptions (c1) and (c2) hold with α > β, μ > γ and � =
αμq − βγ q + δ > ρκ , then the proximal-point mapping RH(.,.,.)−η

ρ,M : E → E is τ q−1

�−ρκ
-

Lipschitz continuous, i.e. satisfy the following inequality

‖RH(.,.,.)−η

ρ,M (a) − RH(.,.,.)−η

ρ,M (b)‖ ≤ τ q−1

� − ρκ
‖a − b‖, ∀a, b ∈ E.

Proof Let us consider the given point a, b ∈ E. It follows from (8) that

RH(.,.,.)−η

ρ,M (a) = (H(A,B,C) + ρM)−1(a),

RH(.,.,.)−η

ρ,M (b) = (H(A,B,C) + ρM)−1(b).

1

ρ
(a − H(A(RH(.,.,.)−η

ρ,M (a)),B(RH(.,.,.)−η
ρ,M (a)),C(RH(.,.,.)−η

ρ,M (a))) ∈ M(RH(.,.,.)−η
ρ,M (a)),

1

ρ
(b − H(A(RH(.,.,.)−η

ρ,M (b)),B(RH(.,.,.)−η
ρ,M (b)),C(RH(.,.,.)−η

ρ,M (b))) ∈ M(RH(.,.,.)−η
ρ,M (b)).

Let p1 = RH(.,.,.)−η

ρ,M (a) and p2 = RH(.,.,.)−η

ρ,M (b).
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By using the κ-η-relaxed accretivity of M, we have

1

ρ
〈(a − H(A(p1),B(p1),C(p1))) − (b − H(A(p2),B(p2),C(p2))), Jq(η(p1, p2))〉

≥ −κ‖p1 − p2‖q,

〈a − b − (H(A(p1),B(p1),C(p1)) − H(A(p2),B(p2),C(p2))), Jq(η(p1, p2))〉

≥ −ρκ‖p1 − p2‖q,
thus we have

〈a − b, Jq(η(p1, p2))〉 ≥ 〈H(A(p1),B(p1),C(p1)) − H(A(p2),B(p2),C(p2)), Jq(η(p1, p2))〉
− ρκ‖p1 − p2‖q.

Further, we have

‖a − b ‖τq−1‖p1 − p2‖q−1

≥‖a − b‖‖η(p1, p2)‖q−1

≥〈a − b, Jq(η(p1, p2))〉
≥ 〈H(A(p1),B(p1),C(p1)) − H(A(p2),B(p2),C(p2)), Jq(η(p1, p2))〉

− ρκ‖p1 − p2‖q
≥〈H(A(p1),B(p1),C(p1)) − H(A(p2),B(p1),C(p1)), Jq(η(p1, p2))〉

− 〈H(A(p2),B(p1),C(p1)) − H(A(p2),B(p2),C(p1)), Jq(η(p1, p2))〉
− 〈H(A(p2),B(p2),C(p1)) − H(A(p2),B(p2),C(p2)), Jq(η(p1, p2))〉
− ρκ‖p1 − p2‖q

≥α‖A(p1) − A(p2)‖q − β‖B(p1) − B(p2)‖q + δ‖C(p1) − C(p2)‖q − ρκ‖p1 − p2‖q
≥αμq‖p1 − p2‖q − βγ q‖p1 − p2‖q + δ‖p1 − p2‖q − ρκ‖p1 − p2‖q
= (αμq − βγ q + δ − ρκ)‖p1 − p2‖q
= (� − ρκ)‖p1 − p2‖q,where � = αμq − βγ q + δ.

Hence

‖a − b‖τ q−1‖p1 − p2‖q−1 ≥ (� − ρκ)‖p1 − p2‖q,

that is

‖RH(.,.,.)−η

ρ,M (a) − RH(.,.,.)−η

ρ,M (b)‖ ≤ τ q−1

� − ρκ
‖a − b‖,∀u, v ∈ E.
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4 System of Generalized Set-Valued Mixed
Quasi-variational-like Inclusions

In this section, we formulate a system of generalized set-valued mixed quasi-
variational-like inclusions involving H(., ., .)-η-mixed accretive mapping in q-
uniformly smooth Banach spaces.

Throughout the rest of the paper, unless otherwise stated, we consider that for
each i ∈ {1, 2}, Ei be qi-uniformly smooth Banach spaces with norm ‖.‖i,CB(Ei)

the family of all bounded and closed subsets of Ei. Let Hi : Ei × Ei × Ei → Ei,
ηi : Ei × Ei → Ei, Ai,Bi,Ci, gi : Ei → Ei, Ni,Pi : E1 × E2 → Ei, are all single-
valued mappings and Si : E1 � CB(E1), Ti : E2 � CB(E2) are four set-valued
mappings. For each i ∈ {1, 2}, let Mi : Ei � Ei, be a set-valued mapping such
that Mi is a Hi(Ai,Bi,Ci)-ηi-mixed accretive mapping regarding Ai,Bi,Ci, and
range(gi)∩dom(Mi) �= ∅. Then the problem (9) is to find (x, y, u, v,w, z) such that
(x, y) ∈ E1 × E2, u ∈ S1(x), v ∈ T1(y),w ∈ S2(x), z ∈ T2(y) and

{
0 ∈ N1(x, y) + P1(u, v) + M1(g1(x)),
0 ∈ N2(x, y) + P2(w, z) + M2(g2(y)).

(9)

The system (9) is called the systemof generalized set-valuedmixed quasi-variational-
like inclusions.

Lemma 2 An element (x, y, u, v,w, z), where (x, y) ∈ E1 × E2, u ∈ S1(x), v ∈
T1(y),w ∈ S2(x), z ∈ T2(y), is a solution of the system (9), if and only if
(x, y, u, v,w, z), satisfies the following relation:

⎧
⎪⎨

⎪⎩

g1(x) = R
H1(.,.,.)−η1
ρ1,M1

[H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) − ρ1(N1(x, y) + P1(u, v))],

g2(y) = R
H2(.,.,.)−η2
ρ2,M2

[H2(A2(g2(y)),B2(g2(y)),C2(g2(y))) − ρ2(N2(x, y) + P2(w, z))],
(10)

where RH1(.,.,.)−η1
ρ1,M1

= (H1(A1,B1,C1) + ρ1M1)
−1, RH2(.,.,.)−η2

ρ2,M2
= (H2(A2,B2,

C2) + ρ2M2)
−1, and ρ1, ρ2 > 0 are two constants.

Proof Consider first that an element (x, y, u, v,w, z) is a solution to system (9). Then
it follows that

0 ∈ N1(x, y) + P1(u, v) + M1(g1(x)),

=⇒ H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) ∈ H1(A1(g1(x)),B1(g1(x)),C1(g1(x)))

+ ρ1N1(x, y) + ρ1P1(u, v) + ρ1M1(g1(x))

=⇒ H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) − ρ1N1(x, y) − ρ1P1(u, v)

∈ (H1(A1,B1,C1) + ρ1M1)(g1(x))

=⇒ g1(x) = (H1(A1,B1,C1) + ρ1M1)
−1[H1(A1(g1(x)),B1(g1(x)),C1(g1(x)))

− ρ1N1(x, y) − ρ1P1(u, v)]
=⇒ g1(x) = R

H1(.,.,.)−η1
ρ1,M1

[H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) − ρ1N1(x, y) − ρ1P1(u, v)].
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Similarly, we can obtain

g2(y) = RH2(.,.,.)−η2
ρ2,M2

[H2(A2(g2(y)),B2(g2(y)),C2(g2(y))) + ρ2N2(x, y) + ρ2P2(w, z)].

Similarly the converse of lemma as follow:

g1(x) = RH1(.,.,.)−η1
ρ1,M1

[H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) − ρ1N1(x, y) − ρ1P1(u, v)],
=⇒ g1(x) = (H1(A1,B1,C1) + ρ1M1)

−1[H1(A1(g1(x)),B1(g1(x)),C1(g1(x)))

−ρ1N1(x, y) − ρ1P1(u, v)]
=⇒ H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) − ρ1N1(x, y) − ρ1P1(u, v)

∈ (H1(A1,B1,C1) + ρ1M1)(g1(x))

=⇒ H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) ∈ H1(A1(g1(x)),B1(g1(x)),C1(g1(x)))

+ ρ1N1(x, y) + ρ1P1(u, v) + ρ1M1(g1(x))

=⇒ 0 ∈ N1(x, y) + P1(u, v) + M1(g1(x)).

Similarly, we can obtain

0 ∈ N2(x, y) + P2(w, z) + M2(g2(y)).

Algorithm 1 For each x, y ∈ E1 × E2, G1(x) ⊆ g1(E1), G2(y) ⊆ g2(E2), where
set-valued mappings G1 : E1 � E1 and G2 : E2 � E2 defined by

G1(x) =
⋃

u∈S1(x)

⋃

v∈T1(y)
(RH1(.,.,.)−η1

ρ1,M1
(H1(A1(g1(x)),B1(g1(x)),C1(g1(x)))

− ρ1N1(x, y) − ρ1P1(u, v))), (11)

G2(y) =
⋃

w∈S2(x)

⋃

z∈T2(y)
(RH2(.,.,.)−η2

ρ2,M2
(H2(A2(g2(y)),B2(g2(y)),C2(g2(y)))

− ρ2N2(x, y) − ρ2P2(w, z))), (12)

where for each i = 1, 2, Mi : Ei � Ei is Hi(Ai,Bi,Ci)-ηi-mixed accretive mapping
regarding Ai,Bi,Ci, respectively.

For given (x0, y0) ∈ E1 × E2, u0 ∈ S1(x0), v0 ∈ T1(y0),w0 ∈ S2(x0), z0 ∈ T2(y0),
let

a0 =RH1(.,.,.)−η1
ρ1,M1

(H1(A1(g1(x0)),B1(g1(x0)),C1(g1(x0)))

− ρ1N1(x0, y0) − ρ1P1(u0, v0)) ∈ G1(x0) ⊆ g1(E1),
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b0 =RH2(.,.,.)−η2
ρ2,M2

(H2(A2(g2(y0)),B2(g2(y0)),C2(g2(y0)))

− ρ2N2(x0, y0) − ρ2P2(w0, z0)) ∈ G2(y0) ⊆ g2(E2).

Hence, there exists (x1, y1) ∈ E1 × E2 such that a0 = g1(x1), b0 = g2(y1).Since u0 ∈
S1(x0) ∈ CB(E1), v0 ∈ T1(y0) ∈ CB(E2),w0 ∈ S2(x0) ∈ CB(E1) and z0 ∈ T2(y0) ∈
CB(E2), then by Nadler’s result [17], ∃ u1 ∈ S1(x1), v1 ∈ T1(y1),w1 ∈ S2(x1) and
z1 ∈ T2(y1) such that

‖u0 − u1‖1 ≤ (
1 + 1−1

)
D1(S1(x0), S1(x1)),

‖v0 − v1‖2 ≤ (
1 + 1−1

)
D2(T1(y0),T1(y1)),

‖w0 − w1‖1 ≤ (
1 + 1−1

)
D1(S2(x0), S2(x1)),

‖z0 − z1‖2 ≤ (
1 + 1−1

)
D2(T2(y0),T2(y1)),

where Di(., .) is the Hausdorff metric on CB(Ei), for i = 1, 2. Let

a1 = RH1(.,.,.)−η1
ρ1,M1

(H1(A1(g1(x1)),B1(g1(x1)),C1(g1(x1)))

− ρ1N1(x1, y1) − ρ1P1(u1, v1)) ∈ G1(x1) ⊆ g1(E1),

b1 = RH2(.,.,.)−η2
ρ2,M2

(H2(A2(g2(y1)),B2(g2(y1)),C2(g2(y1)))

− ρ2N2(x1, y1) − ρ2P2(w1, z1)) ∈ G2(y1) ⊆ g2(E2).

Hence, there exists (x2, y2) ∈ E1 × E2 such that a1 = g1(x2), b1 = g2(y2).By induc-
tion, we can define sequences {xn}, {g1(xn)}, {yn}, {g2(yn)}, {un}, {vn}, {wn} and {zn}
as follows:

g1(xn+1) = RH1(.,.,.)−η1
ρ1,M1

(H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn)))

− ρ1N1(xn, yn) − ρ1P1(un, vn)), (13)

g2(yn+1) = RH2(.,.,.)−η2
ρ2,M2

(H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn)))

− ρ2N2(xn, yn) − ρ2P2(wn, zn)), (14)

un ∈ S1(xn), ‖un − un+1‖1 ≤ (
1 + (n + 1)−1

)
D1(S1(xn), S1(xn+1)), (15)

vn ∈ T1(yn), ‖vn − vn+1‖2 ≤ (
1 + (n + 1)−1

)
D2(T1(yn),T1(yn+1)), (16)

wn ∈ S2(xn), ‖wn − wn+1‖1 ≤ (
1 + (n + 1)−1

)
D1(S2(xn), S2(xn+1)), (17)

zn ∈ T2(yn), ‖zn − zn+1‖2 ≤ (
1 + (n + 1)−1

)
D2(T2(yn),T2(yn+1)), (18)

for all n = 0, 1, 2, . . . , and ρ1, ρ2 > 0 are constants.
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5 Existence of Solutions for the System (9)

In this section, first we recall some definitions and thenwe discuss about the existence
of solution of system (9) and convergence analysis of iterative sequences generated
by Algorithm 1.

Definition 10 For i ∈ {1, 2}, the single-valued mapping Ni : E1 × E2 → Ei is said
to be

(i) Lipschitz continuous with constant ζi > 0 in the first component, if

‖Ni(x1, .) − Ni(x2, .)‖i ≤ ζi‖x1 − x2‖1,∀x1, x2 ∈ E1;

(ii) Lipschitz continuous with constant νi > 0 in the second component, if

‖Ni(., y1) − Ni(., y2)‖i ≤ νi‖y1 − y2‖2,∀y1, y2 ∈ E2;

(iii) strongly accretive with constant ni > 0 in the first component, if

〈Ni(x1, .) − Ni(x2, .), Jqi(ηi(x1, x2))〉i ≤ ni‖x1 − x2‖q11 ,∀x1, x2 ∈ E1;

(iv) strongly accretive with constant ϑi > 0 in the second component, if

〈Ni(., y1) − Ni(., y2), Jqi(ηi(y1, y2))〉i ≤ ϑi‖y1 − y2‖q22 ,∀y1, y2 ∈ E2.

Definition 11 For i ∈ {1, 2}, let Pi : E1 × E2 → Ei be a single-valued mapping,
Si : E1 � CB(E1) and Ti : E2 � CB(E2) be the set-valued mappings. Then Pi is
said to be

(i) Lipschitz continuous with constant εi > 0 in the first component regarding Si,
if

‖Pi(u1, .) − Pi(u2, .)‖i ≤ εi‖u1 − u2‖1, ∀(x, y) ∈ E1 × E2, u1 ∈ S1(x), u2 ∈ S2(x);

(ii) Lipschitz continuous with constant σi > 0 in the second component regarding
Ti, if

‖Pi(., v1) − Pi(., v2)‖i ≤ σi‖v1 − v2‖2, ∀(x, y) ∈ E1 × E2, v1 ∈ T1(y), v2 ∈ T2(y).

Theorem 4 In problem (9), for each x, y ∈ E1 × E2, G1(x) ⊆ g1(E1), G2(y) ⊆
g2(E2), where G1 : E1 � E1 and G2 : E2 � E2 defined by (11) and (12). For each
i ∈ {1, 2}, assume that
(i) Si is D1-Lipschitz continuous with constant lSi and Ti is D2-Lipschitz continuous
with constant lTi ;
(ii) Ai is αi-expansive, and Bi, ηi are βi, τi-Lipschitz continuous, respectively;
(iii) gi is λgi -Lipschitz continuous and ξgi -strongly accretive;
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(iv) Hi(Ai,Bi,Ci) is ri, si and ti-Lipschitz continuous regarding Ai, Bi and Ci, respec-
tively;
(v) Ni is ξi-strongly accretive in the ith component, ζi-Lipschitz continuous in the first
component and νi-Lipschitz continuous in the second component;
(vi) Pi is εi-Lipschitz continuous in the first component regarding Si and σi- Lipschitz
continuous in the second component regarding Ti;
In addition

0 <
τ
q1−1
1 k1
ξg1

[L1 + ρ1ε1lS1 ] + τ
q2−1
2 k2ρ2

ξg2
[ζ2 + ε2lS2 ] < 1,

0 <
τ
q1−1
1 k1ρ1

ξg1
[ν1 + σ1lT1] + τ

q2−1
2 k2
ξg2

[L2 + ρ2σ2lT2 ] < 1, (19)

where

L1 = [
(r1 + s1 + t1)

q1λ
q1
g1 − q1ρ1ξ1 + q1ρ1ζ1{(r1 + s1 + t1)

q1−1λ
q1−1
g1 + τ

q1−1
1 }

+ ρ
q1
1 Cq1ζ

q1
1

] 1
q1 ,

L2 = [
(r2 + s2 + t2)

q2λ
q2
g2 − q2ρ2ξ2 + q2ρ2ν2{(r2 + s2 + t2)

q2−1λ
q2−1
g2 + τ

q2−1
2 }

+ ρ
q2
2 Cq2ν

q2
2

] 1
q2 ,

k1 = τ
q1−1
1

α1μ
q1
1 − β1γ

q1
1 + δ1 − ρ1κ1

, α1μ
q1
1 − β1γ

q1
1 + δ1 > ρ1κ1, α1 > β1, μ1 > γ1, and

k2 = τ
q2−1
2

α2μ
q2
2 − β2γ

q2
2 + δ2 − ρ2κ2

, α2μ
q2
2 − β2γ

q2
2 + δ2 > ρ2κ2, α2 > β2, μ2 > γ2.

Then, the system (9) has a solution (x, y, u, v,w, z) ∈ E, and the iterative sequences
{xn}, {yn}, {un}, {vn}, {wn} and {zn} generated by Algorithm 1 strongly converge to x,
y, u, v, w and z, respectively.

Proof For each i = 1, 2, Si is D1-Lipschitz continuous with constant lSi and Ti is
D2-Lipschitz continuous with constant lTi . It follows from (15)–(18)

‖un+1 − un‖1 ≤ (
1 + (n + 1)−1)D1(S1(xn+1), S1(xn))

≤ (
1 + (n + 1)−1) lS1‖xn+1 − xn‖1, (20)

‖vn+1 − vn‖2 ≤ (
1 + (n + 1)−1)D2(T1(yn+1),T1(yn))
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≤ (
1 + (n + 1)−1) lT1‖yn+1 − yn‖2, (21)

‖wn+1 − wn‖1 ≤ (
1 + (n + 1)−1)D1(S2(xn+1), S2(xn))

≤ (
1 + (n + 1)−1

)
lS2‖xn+1 − xn‖1, (22)

‖zn+1 − zn‖2 ≤ (
1 + (n + 1)−1)D2(T2(yn+1),T2(yn))

≤ (
1 + (n + 1)−1

)
lT2‖yn+1 − yn‖2, (23)

for n = 0, 1, 2, . . .
Since, for each i = 1, 2, gi is ξgi -strongly accretive and ηi is τi Lipschitz contin-

uous, we have

‖g1(xn+1) − g1(xn)‖1τ q1−1
1 ‖xn+1 − xn‖q1−1

1 ≥ ‖g1(xn+1) − g1(xn)‖1‖η1(xn+1, xn)‖q1−1
1

≥ 〈g1(xn+1) − g1(xn), Jq1 (η1(xn+1, xn))〉1
≥ ξg1‖xn+1 − xn‖q11 ,

implies that

‖xn+1 − xn‖1 ≤ τ
q1−1
1

ξg1
‖g1(xn+1) − g1(xn)‖1. (24)

In the view of (24), we can obtain

‖yn+1 − yn‖2 ≤ τ
q2−1
2

ξg2
‖g2(yn+1) − g2(yn)‖2. (25)

For each i ∈ {1, 2} and (x, y) ∈ E1 × E2, the proximal-point mappings RH1(.,.,.)−η1
ρ1,M1

and RH2(.,.,.)−η2
ρ2,M2

are k1 = τ
q1−1
1

α1μ
q1
1 −β1γ

q1
1 +δ1−ρ1κ1

and k2 = τ
q2−1
2

α2μ
q2
2 −β2γ

q2
2 +δ2−ρ2κ2

-Lipschitz

continuous, respectively. It follows from (13) and Theorem 3 that

‖g1(xn+1) − g1(xn)‖1 = ‖RH1(.,.,.)−η1
ρ1,M1

{H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn)))

− ρ1N1(xn, yn) − ρ1P1(un, vn)}
− [RH1(.,.,.)−η1

ρ1,M1
{H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))

− ρ1N1(xn−1, yn−1) − ρ1P1(un−1, vn−1)}]‖1
≤ k1‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn)))

− ρ1N1(xn, yn) − ρ1P1(un, vn)

− {H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))

− ρ1N1(xn−1, yn−1) − ρ1P1(un−1, vn−1)}‖1
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= k1‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn)))

−H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))

− ρ1(N1(xn, yn) − N1(xn−1, yn))

− ρ1(N1(xn−1, yn) − N1(xn−1, yn−1))

− ρ1(P1(un, vn) − P1(un−1, vn−1))‖1
≤ k1‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn)))

−H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))

− ρ1(N1(xn, yn) − N1(xn−1, yn))‖1
+ k1ρ1‖N1(xn−1, yn) − N1(xn−1, yn−1)‖1
+ k1ρ1‖P1(un, vn) − P1(un−1, vn−1)‖1. (26)

Using the ri, si and ti-Lipschitz continuity of Hi(Ai,Bi,Ci) regarding Ai,Bi and Ci
for each i = 1, 2, respectively and λgi -Lipschitz continuity of gi, we have

‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn))) − H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))‖1
≤ ‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn))) − H1(A1(g1(xn−1)),B1(g1(xn)),C1(g1(xn)))‖1

+ ‖H1(A1(g1(xn−1)),B1(g1(xn)),C1(g1(xn)))

− H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn)))‖1
+ ‖H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn)))

− H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))‖1
≤ (r1 + s1 + t1)‖g1(xn) − g1(xn−1)‖1
≤ (r1 + s1 + t1)λg1‖xn − xn−1‖1. (27)

In view of (27), we have the following

‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn))) − H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))‖2

≤ (r2 + s2 + t2)λg2‖yn − yn−1‖2. (28)

For each i = 1, 2, using the ζi and νi-Lipschitz continuity of Ni in their first and
second component, respectively, we have

‖N1(xn, yn) − N1(xn−1, yn)‖1 ≤ ζ1‖xn − xn−1‖1, (29)

‖N2(xn, yn) − N2(xn−1, yn)‖2 ≤ ζ2‖xn − xn−1‖1, (30)

‖N1(xn, yn) − N1(xn, yn−1)‖1 ≤ ν1‖yn − yn−1‖2, (31)

and

‖N2(xn, yn) − N2(xn, yn−1)‖2 ≤ ν2‖yn − yn−1‖2. (32)



366 S. Husain et al.

By using Lemma 1, (27), (29), ξ1-strongly accretiveness of N1 in the first component
and τ1-Lipschitz continuity of η1, we have

‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn))) − H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))

− ρ1(N1(xn, yn) − N1(xn−1, yn))‖q11
≤ ‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn))) − H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))‖q11

− q1ρ1〈N1(xn, yn) − N1(xn−1, yn), Jq1 (η1(xn, xn−1))〉1
− q1ρ1〈N1(xn, yn) − N1(xn−1, yn), Jq1 [H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn)))

− H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))] − Jq1 (η1(xn, xn−1))〉1
+ ρ

q1
1 Cq1‖N1(xn, yn) − N1(xn−1, yn))‖q11

≤ (r1 + s1 + t1)
q1λ

q1
g1‖xn − xn−1‖q11 − q1ρ1ξ1‖xn − xn−1‖q11

+ q1ρ1‖N1(xn, yn) − N1(xn−1, yn)‖1
[‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn)))

− H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))‖q1−1
1 + ‖η1(xn, xn−1)‖q1−1

1
]

+ ρ
q1
1 Cq1ζ

q1
1 ‖xn − xn−1‖q11

≤ (r1 + s1 + t1)
q1λq1

g1‖xn − xn−1‖q11 − q1ρ1ξ1‖xn − xn−1‖q11
+ q1ρ1ζ1‖xn − xn−1‖1

[
(r1 + s1 + t1)

q1−1λq1−1
g1 ‖xn − xn−1‖q1−1

1

+ τ
q1−1
1 ‖xn − xn−1‖q1−1

1

] + ρ
q1
1 Cq1ζ

q1
1 ‖xn − xn−1‖q11

= (r1 + s1 + t1)
q1λq1

g1‖xn − xn−1‖q11 − q1ρ1ξ1‖xn − xn−1‖q11
+ q1ρ1ζ1

[
(r1 + s1 + t1)

q1−1λq1−1
g1 + τ

q1−1
1

]‖xn − xn−1‖q11
+ ρ

q1
1 Cq1ζ

q1
1 ‖xn − xn−1‖q11

= [
(r1 + s1 + t1)

q1λq1
g1 − q1ρ1ξ1 + q1ρ1ζ1{(r1 + s1 + t1)

q1−1λq1−1
g1 + τ

q1−1
1 }

+ ρ
q1
1 Cq1ζ

q1
1

]‖xn − xn−1‖q11 .

This implies that

‖H1(A1(g1(xn)),B1(g1(xn)),C1(g1(xn))) − H1(A1(g1(xn−1)),B1(g1(xn−1)),C1(g1(xn−1)))

− ρ1(N1(xn, yn) − N1(xn−1, yn))‖1
≤ [

(r1 + s1 + t1)q1λ
q1
g1 − q1ρ1ξ1 + q1ρ1ζ1{(r1 + s1 + t1)q1−1λ

q1−1
g1 + τ

q1−1
1 }

+ ρ
q1
1 Cq1ζ

q1
1

] 1
q1 ‖xn − xn−1‖1 = L1‖xn − xn−1‖1, (33)

where

L1 = [
(r1 + s1 + t1)

q1λq1
g1 − q1ρ1ξ1 + q1ρ1ζ1{(r1 + s1 + t1)

q1−1λq1−1
g1 + τ

q1−1
1 }

+ ρ
q1
1 Cq1ζ

q1
1

] 1
q1 .
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For each i = 1, 2, using the εi and σi-Lipschitz continuity of Pi in their first second
component, respectively, we have

‖P1(un, vn) − P1(un−1, vn−1)‖1
≤ ‖P1(un, vn) − P1(un−1, vn)‖1 + ‖P1(un−1, vn) − P1(un−1, vn−1)‖1
≤ ε1‖un − un−1‖1 + σ1‖vn − vn−1‖2
≤ ε1

(
1 + n−1) lS1‖xn − xn−1‖1 + σ1

(
1 + n−1) lT1‖yn − yn−1‖2

= ε1lS1
(
1 + n−1

) ‖xn − xn−1‖1 + σ1lT1
(
1 + n−1

) ‖yn − yn−1‖2. (34)

Similarly,

‖P2(wn, zn) − P2(wn−1, zn−1)‖2 = ε2lS2
(
1 + n−1

) ‖xn − xn−1‖1

+ σ2lT2
(
1 + n−1

) ‖yn − yn−1‖2. (35)

It follows from (26), (31), (33) and (34) that

‖g1(xn+1) − g1(xn)‖1 ≤ k1

[
L1 + ρ1

(
1 + n−1

)
ε1lS1

]
‖xn − xn−1‖1

+ k1ρ1

[
ν1 + (

1 + n−1
)
σ1lT1

]
‖yn − yn−1‖2. (36)

Using (24) and (36), we have

‖xn+1 − xn‖1 ≤ τ
q1−1
1 k1
ξg1

[
L1 + ρ1

(
1 + n−1

)
ε1lS1

]
‖xn − xn−1‖1

+ τ
q1−1
1 k1ρ1

ξg1

[
ν1 + (

1 + n−1
)
σ1lT1

]
‖yn − yn−1‖2. (37)

Let

‖xn+1 − xn‖1 ≤ θ1n‖xn − xn−1‖1 + θ2n‖yn − yn−1‖2, (38)

where

θ1n = τ
q1−1
1 k1
ξg1

[
L1 + ρ1

(
1 + n−1) ε1lS1

]
,

and



368 S. Husain et al.

θ2n = τ
q1−1
1 k1ρ1

ξg1

[
ν1 + (

1 + n−1
)
σ1lT1

]
.

By (14) and Theorem 3, we have

‖g2(yn+1) − g2(yn)‖2 = ‖RH2(.,.,.)−η2
ρ2,M2

{H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn)))

− ρ2N2(xn, yn) − ρ2P2(wn, zn)}
− [RH2(.,.,.)−η2

ρ2,M2
{H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))

− ρ2N2(xn−1, yn−1) − ρ2P2(wn−1, zn−1)}]‖2

≤ k2‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn)))

− ρ2N2(xn, yn) − ρ2P2(wn, zn)

− {H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))

− ρ2N2(xn−1, yn−1) − ρ2P2(wn−1, zn−1)}‖2
= k2‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn)))

− H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))

− ρ2(N2(xn, yn) − N2(xn, yn−1))

− ρ2(N2(xn, yn−1) − N2(xn−1, yn−1))

− ρ2(P2(wn, zn) − P2(wn−1, zn−1))‖2
≤ k2‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn)))

− H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))

− ρ2(N2(xn, yn) − N2(xn, yn−1))‖2
+ k2ρ2‖N2(xn, yn−1) − N2(xn−1, yn−1)‖2
+ k2ρ2‖P2(wn, zn) − P2(wn−1, zn−1)‖2. (39)

By using Lemma 1, (28), (32), ξ2-strongly accretivity ofN2 in the second component
and τ2-Lipschitz continuity of η2, we have

‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn))) − H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))

− ρ2(N2(xn, yn) − N2(xn, yn−1))‖q22
≤ ‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn))) − H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))‖q22

− q2ρ2〈N2(xn, yn) − N2(xn, yn−1), Jq2 (η2(yn, yn−1))〉2
− q2ρ2〈N2(xn, yn) − N2(xn, yn−1), Jq2 [H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn)))

− H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))] − Jq2 (η2(yn, yn−1))〉2
+ ρ

q2
2 Cq2‖N2(xn, yn) − N2(xn, yn−1))‖q22

≤ (r2 + s2 + t2)
q2λ

q2
g2‖yn − yn−1‖q22 − q2ρ2ξ2‖yn − yn−1‖q22

+ q2ρ2‖N2(xn, yn) − N2(xn, yn−1)‖2
[‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn)))

− H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))‖q2−1
2 + ‖η2(yn, yn−1)‖q2−1

2

]

+ ρ
q2
2 Cq2ν

q2
2 ‖yn − yn−1‖q22
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≤ (r2 + s2 + t2)
q2λ

q2
g2‖yn − yn−1‖q22 − q2ρ2ξ2‖yn − yn−1‖q22

+ q2ρ2ν2‖yn − yn−1‖2
[
(r2 + s2 + t2)

q2−1λ
q2−1
g2 ‖yn − yn−1‖q2−1

2

+ τ
q2−1
2 ‖yn − yn−1‖q2−1

2

] + ρ
q2
2 Cq2ν

q2
2 ‖yn − yn−1‖q22

= (r2 + s2 + t2)
q2λ

q2
g2‖yn − yn−1‖q22 − q2ρ2ξ2‖yn − yn−1‖q22

+ q2ρ2ν2
[
(r2 + s2 + t2)

q2−1λ
q2−1
g2 + τ

q2−1
2

]‖yn − yn−1‖q22
+ ρ

q2
2 Cq2ν

q2
2 ‖yn − yn−1‖q22

= [
(r2 + s2 + t2)

q2λ
q2
g2 − q2ρ2ξ2 + q2ρ2ν2{(r2 + s2 + t2)

q2−1λ
q2−1
g2 + τ

q2−1
2 }

+ ρ
q2
2 Cq2ν

q2
2

]‖yn − yn−1‖q22 .

This implies that

‖H2(A2(g2(yn)),B2(g2(yn)),C2(g2(yn))) − H2(A2(g2(yn−1)),B2(g2(yn−1)),C2(g2(yn−1)))

− ρ2(N2(xn, yn) − N2(xn, yn−1))‖2
≤ [

(r2 + s2 + t2)q2λ
q2
g2 − q2ρ2ξ2 + q2ρ2ν2{(r2 + s2 + t2)q2−1λ

q2−1
g2 + τ

q2−1
2 }

+ ρ
q2
2 Cq2ν

q2
2

] 1
q2 ‖yn − yn−1‖2 = L2‖yn − yn−1‖2, (40)

where

L2 = [
(r2 + s2 + t2)

q2λq2
g2 − q2ρ2ξ2 + q2ρ2ν2{(r2 + s2 + t2)

q2−1λq2−1
g2 + τ

q2−1
2 }

+ ρ
q2
2 Cq2ν

q2
2

] 1
q2 .

It follows from (30), (35), (39) and (40) that

‖g2(yn+1) − g2(yn)‖2 ≤ k2ρ2

[
ζ2 + (

1 + n−1
)
ε2lS2

]
‖xn − xn−1‖1

+ k2

[
L2 + ρ2

(
1 + n−1

)
σ2lT2

]
‖yn − yn−1‖2. (41)

Using (25) and (41), we have

‖yn+1 − yn‖2 ≤ τ
q2−1
2 k2ρ2

ξg2

[
ζ2 + (

1 + n−1) ε2lS2

]
‖xn − xn−1‖1

+τ
q2−1
2 k2
ξg2

[
L2 + ρ2

(
1 + n−1

)
σ2lT2

]
‖yn − yn−1‖2. (42)

Let

‖yn+1 − yn‖2 ≤ θ3n‖xn − xn−1‖ + θ4n‖yn − yn−1‖, (43)

where
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θ3n = τ
q2−1
2 k2ρ2

ξg2

[
ζ2 + (

1 + n−1
)
ε2lS2

]
,

and

θ4n = τ
q2−1
2 k2
ξg2

[
L2 + ρ2

(
1 + n−1

)
σ2lT2

]
.

On adding (38) and(43), we get

‖xn+1 − xn‖1 + ‖yn+1 − yn‖2 ≤ (θ1n + θ3n)‖xn − xn−1‖1 + (θ2n + θ4n)‖yn − yn−1‖2,
≤ θn(‖xn − xn−1‖1 + ‖yn − yn−1‖2), (44)

where

θn = max{(θ1n + θ3n), (θ2n + θ4n)}.

Let

θ = max{(θ1 + θ3), (θ2 + θ4)},

where

θ1 = τ
q1−1
1 k1
ξg1

[
L1 + ρ1ε1lS1

]
, θ2 = τ

q1−1
1 k1ρ1

ξg1

[
ν1 + σ1lT1

]
,

and

θ3 = τ
q2−1
2 k2ρ2

ξg2

[
ζ2 + ε2lS2

]
, θ4 = τ

q2−1
2 k2
ξg2

[
L2 + ρ2σ2lT2

]
.

Here θn tend to θ, as n goes to ∞. By (19), 0 < θ < 1 and so (44) implies that {xn}
and {yn} are Cauchy sequences. Then, ∃x ∈ E1 and y ∈ E2 such that xn, yn converges
to x, y, respectively, as n goes ∞.

Now, we show that un converges to u ∈ S1(x), vn converges to v ∈ S2(y), wn

converges tow ∈ T1(x) and zn converges to z ∈ T2(y). From (20)–(23), the sequences
{un}, {vn}, {wn} and {zn} are Cauchy sequences. Hence, there ∃ u ∈ E1, v ∈ E2,w ∈
E1, z ∈ E2 such that un converges to u, vn converges to v, wn converges to w and zn
converges to z as n goes to ∞.

Furthermore,

d(u, S1(x)) ≤ ‖u − un‖1 + d(un, S1(x))

≤ ‖u − un‖1 + D1(S1(xn), S1(x))

≤ ‖u − un‖1 + lS1‖xn − x‖1 → 0, as n → ∞.
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Which shows that d(u, S1(x)) = 0. Since S1(x) ∈ CB(E1), we have u ∈ S1(x). Sim-
ilarly, it is easy to observe that v ∈ S2(y),w ∈ T1(x), z ∈ T2(y). By continuity of
g1, g2,H1,H2,A1,A2,B1,B2,C1,C2, η1, η2,N1, N2,P1,P2,R

H1(.,.,.)−η1
ρ1,M1

,

RH2(.,.,.)−η2
ρ2,M2

and Algorithm 1, the following relation satisfied by x, y, u, v,w, z that is

g1(x) = RH1(.,.,.)−η1
ρ1,M1

(H1(A1(g1(x)),B1(g1(x)),C1(g1(x))) − ρ1N1(x, y) − ρ1P1(u, v)),

g2(y) = RH2(.,.,.)−η2
ρ2,M2

(H2(A2(g2(y)),B2(g2(y)),C2(g2(y))) − ρ2N2(x, y) − ρ2P2(w, z)).

By Lemma 2, (x, y, u, v,w, z) is the solution of the system (9).
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Some Integral Inequalities for Log-Preinvex
Functions

Akhlad Iqbal and V. Samhita

Abstract In this paper, a new type of Hermite–Hadamard inequalities is established
for log-preinvex functions. Some natural applications to special means of real num-
bers are also discussed.

Keywords Invex sets · Preinvex functions · Log-preinvex functions · Hermite–
Hadamard inequality

Mathematics Subject Classification 26D10 · 26D15 · 26D99

1 Introduction

Log-preinvex functions are nonconvex functions and are the generalized class of
log-convex functions. Log-convex functions play an important role in the theory
of special functions and mathematical statistics [9, 17, 18, 21]. Let I be a closed
interval. A real valued function f : I → R is said to be convex on I if f (t x + (1 −
t)y) ≤ t f (x) + (1 − t) f (y) for all x, y ∈ I and t ∈ [0, 1]. Thewell-known classical
Hermite–Hadamard inequality

f

(
a + b

2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2

gives us an estimate of the mean value of a convex function f : I → R.
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In recent years, some refinements and several generalizations of the Hermite–
Hadamard Inequality have been extensively investigated by the many authors, see
[4–8, 10–13, 15, 22, 24]. Dragomir and Aggarwal [7] proved two inequalities for
differentiable convex mappings.

An important and significant generalization of convexity is invexity, which was
introduced by Hanson [14] in 1981. Weir and Mond [23] introduced the concept of
preinvex functions while Jeyakumar [16] studied the properties of preinvex functions
and their role in optimization and mathematical programming. Ahmad et al. [2]
introduced the concept of geodesic η-preinvex functions on Riemannian manifolds.

The main purpose of this paper is to establish some new refined inequalities of
Hermite–Hadamard’s type for log-preinvex functions. Applications to special means
have also been considered.

2 Preliminaries

Definition 2.1 ([14]) A set S ⊆ Rn is said to be invex with respect to η : S × S →
Rn if for every x, y ∈ S and t ∈ [0, 1]

y + tη(x, y) ∈ S (1)

Every convex set is invex for η(x, y) = x − y but converse need not be true. Let
S ⊆ Rn be an invex set with respect to η : S × S → Rn . For every x, y ∈ S in the
η-path Pxv joining the points x and v := x + η(y, x) is defined as follows

Pxv := {z : z = x + tη(y, x) : t ∈ [0, 1]}.

Definition 2.2 ([23]) Let S ⊆ Rn be an invex set with respect to η : S × S → Rn .
Then, the function f : S → R is said to be preinvex with respect to η, if for every
x, y ∈ S and t ∈ [0, 1],

f (y + tη(x, y)) ≤ t f (x) + (1 − t) f (y). (2)

Every convex function is a preinvex function but the converse is not true. For
example, the function f (x) = − | x | is not a convex function but it is a preinvex
function with respect to η, where

η(x, y) :=
⎧
⎨

⎩

x − y, if x ≤ 0, y ≤ 0 and x ≥ 0, y ≥ 0,

y − x, otherwise.

The concept of invex and preinvex functions have played a very important role in
the development of generalized convexities.
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Definition 2.3 ([20]) A function f : I → (0,∞) on the invex set S is said to be
logarithmic preinvex with respect to η, if

f (y + tη(x, y)) ≤ ( f (x))t ( f (y))(1−t), for every x, y ∈ S, t ∈ [0, 1] (3)

Note that for η(x, y) = x − y, the invex set S reduces to convex set and conse-
quently log-preinvex function to log-convex function.

3 Main Results

In this section, we generalize Hermite–Hadamard inequality for log-preinvex func-
tions. Barani et al. [3] generalized the result ofDragomir andAggarwal [7] as follows:

Lemma 3.1 ([3]) Let A ⊂ R be an open invex subset with respect to θ : AX A → R
and a, b ∈ A with θ(a, b) 	= 0. Suppose that f : A → R is a differentiable function.
If f ′ is integrable on the θ path Pbc, c = b + θ(a, b), then the following equality
holds

− f (b) + f (b + θ(a, b))

2
+ 1

θ(a, b)

∫ b+θ(a,b)

b
f (x)dx = θ(a, b)

2

∫ 1

0
(1 − 2t) f ′(b + tθ(a, b))dt

Using Lemma 3.1, we prove the following theorem.

Theorem 3.1 Let A ⊂ R be an open invex subset with respect to θ : AX A → R and
f : A → R be a differentiable function. If | f ′| is log-preinvex on A then for every
a, b ∈ A with θ(a, b) 	= 0 the following inequality holds

∣
∣
∣
∣
f (b) + f (b + θ(a, b))

2
− 1

θ(a, b)

∫ b+θ(a,b)

b
f (x)dx

∣
∣
∣
∣

≤ θ(a, b)

2

[
| f ′(a)| − | f ′(b)|

log| f ′(a)| − log| f ′(b)| − 2

( √| f ′(a)| − √| f ′(b)|
log| f ′(a)| − log| f ′(b)|

)2
]

Proof Using Lemma 3.1 and log preinvexity of | f ′|, we get

∣
∣
∣ f (b)+ f (b+θ(a,b))

2 − 1
θ(a,b)

∫ b+θ(a,b)
b f (x)dx

∣
∣
∣ =

∣
∣
∣ θ(a,b)

2

∫ 1
0 (1 − 2t) f ′(b + tθ(a, b))dt

∣
∣
∣

≤ θ(a,b)
2

∫ 1
0 |1 − 2t | | f ′(b)|1−t | f ′(a)|t dt

Now integrating by parts, the above result is obtained.
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Theorem 3.2 Let A ⊂ R be an open invex subset with respect to θ : AX A → R and
f : A → R beadifferentiable function. Suppose that p ∈ R with p > 1. If | f ′|p/(p−1)

is log-preinvex on A then for every a, b ∈ A with θ(a, b) 	= 0 the following inequality
holds

∣
∣
∣
∣
∣
f (b) + f (b + θ(a, b))

2
− 1

θ(a, b)

∫ b+θ(a,b)

b
f (x)dx

∣
∣
∣
∣
∣
≤ |θ(a, b)|

2(p + 1)1/p

[ | f ′(a)q − | f ′(b)|q
q(log| f ′(a)| − log| f ′(b)|)

]1/q

Proof Using Lemma 3.1 and Holders’ Inequality, we get

∣
∣
∣ f (b)+ f (b+θ(a,b))

2 − 1
θ(a,b)

∫ b+θ(a,b)
b f (x)dx

∣
∣
∣ =

∣
∣
∣ θ(a,b)

2

∫ 1
0 (1 − 2t) f ′(b + tθ(a, b))dt

∣
∣
∣

≤ θ(a,b)|
2

[∫ 1
0 |1 − 2t |pdt

]1/p

×
[∫ 1

0 | f ′(b + tθ(a, b)|qdt
]1/q

= |θ(a,b)|
2(p+1)1/p

[∫ 1
0 | f ′(b + tθ(a, b))|qdt

]1/q

≤ |θ(a,b)|
2(p+1)1/p

[∫ 1
0 | f ′(b)|q(1−t)| f ′(a)|qt dt

]1/q

= |θ(a,b)|
2(p+1)1/p

[ | f ′(a)|q−| f ′(b)|q
q(log| f ′(a)|−log| f ′(b)|)

]1/q
,

where 1
p + 1

q = 1. This completes the proof.

It is to be noted that if A = [a, b] and θ(x, y) = x − y for every x, y ∈ A then, these
results of log-preinvex will be converted to that of log-convex.

Mohan and Neogy [19] gives the following condition C.

Condition C The mapping η : S × S → Rn is said to satisfy the condition C if for
every x, y ∈ S and t ∈ [0, 1],

η(y, y + tη(x, y)) = −tη(x, y),

η(x, y + tη(x, y)) = (1 − t)η(x, y)

Now, from condition C, for every x, y ∈ S and every t1, t2 ∈ [0, 1], we have

η(y + t2η(x, y), y + t1η(x, y)) = (t2 − t1)η(x, y).

Lemma 3.2 Let S ⊆ Rn be an invex set with respect to η : SXS → Rn and f : S →
R be a function. Suppose that η satisfies the condition C on S. Then for every x, y ∈ S
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the function f is log-preinvex with respect to η on the η path Pxv if and only if the
function φ : [0, 1] → R defined by φ(t) := f (x + tη(y, x)) is log convex on [0, 1].

Proof Suppose that φ is log convex on [0, 1] and z1 := x + t1η(y, x) ∈ Pxv, z2 :=
x + t2η(y, x) ∈ Pxv . Fix λ ∈ [0, 1]. Since η satisfies condition C,

f (z1 + λη(z2, z1)) = f (x + ((1 − λ)t1 + λt2)η(y, x))

= φ((1 − λt1) + λt2)

= (φ(t1)
1−λ)(φ(t2)

λ)

= f (z1)
1−λ f (z2)

λ.

Hence, f is log preinvex with respect to η on the η path Pxv.
Conversely, let x, y ∈ S and the function f is log preinvex with respect to η on

the η path Pxv . Suppose that η satisfies the condition C and t1, t2 ∈ [0, 1]. Then for
every λ ∈ [0, 1] we have,

φ((1 − λ)t1 + λt2) = f (x + ((1 − λ)t1 + λt2)η(y, x))

≤ f (x + t1η(y, x) + λη(x + t2η(y, x), x + t1η(y, x))

≤ f (x + t1η(y, x))1−λ f (x + t2η(y, x))λ

= φ(t1)
1−λφ(t2)

λ.

Therefore, φ is log convex on [0, 1].

Lemma 3.3 Assume that a, b ∈ R with a < b and f : [a, b] → R is a differentiable
function on (a, b). If | f ′| is log convex on [a, b] then the following inequality holds
true

∣
∣
∣
∣
f (a) + f (b)

2
− 1

b − a

∫ b

a
f (x)dx

∣
∣
∣
∣ ≤ b − a

2

[ | f ′(a)| − | f ′(b)|
log| f ′(a)| − log| f ′(b)|

− 2

( √| f ′(a)| − √| f ′(b)|
log| f ′(a)| − log| f ′(b)|

)2
]

Proof Since | f ′| is log convex, using Lemma 3.1, we get

∣
∣
∣ f (b)+ f (a)

2 − 1
b−a

∫ b+θ(a,b)
b f (x)dx

∣
∣
∣ =

∣
∣
∣ θ(a,b)

2

∫ 1
0 (1 − 2t) f ′(ta + (1 − t)b)dt

∣
∣
∣

≤ b−a
2

∫ 1
0 |1 − 2t | | f ′(b)|1−t | f ′(a)|t dt .
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Now integrating by parts,the above result is obtained.

Theorem 3.3 Let S ⊆ Rn be an invex set with respect to η : SXS → Rn. Suppose
that η satisfies the conditionCon S. Suppose that every x, y ∈ S the function f : S →
R+ is log preinvex with respect to η on the η path Pxv . Then for every (a, b) ∈ (0, 1)
with a < b the following inequality holds
∣
∣
∣
∣1/2

∫ a

0
f (x + sη(y, x))ds + 1/2

∫ b

0
f (x + sη(y, x))ds− 1

b − a

∫ b

a

∫ s

0
f (x + sη(y, x))dtds

∣
∣
∣
∣

≤ (b − a)

[
f (x + bη(y, x)) − f (x + aη(y, x)) − f (x + bη(y, x)) f (x + aη(y, x))

log( f (x + bη(y, x))) − log( f (x + aη(y, x)))

]1/2

≤ b − a

2

[ | f (x + aη(y, x))| − | f (x + bη(y, x))|
log| f (x + aη(y, x))| − log| f (x + bη(y, x))|

− 2

( √| f (x + aη(y, x))| − √| f (x + bη(y, x))|
log| f (x + aη(y, x))| − log| f (x + bη(y, x))|

)2
]

Proof Let x, y ∈ S and a,b ∈ (0,1) with a < b. Since f is log-preinvex with respect
to η on the η path Pxv by Lemma 3.3 the function φ : [0, 1] → R+ defined by

φ(t) := f (x + tη(y, x))

is log convex on [0, 1]. Now we define the function ϕ : [0, 1] → R+ as follows

ϕ(t) :=
∫ t

0
φ(t)ds =

∫ t

0
f (x + sη(y, x))ds

Obviously for every t ∈ (0, 1) we have

ϕ′(t) = φ(t) = f (x + tη(y, x)) ≥ 0.

Applying Lemma 3.3 to the function ϕ implies that

∣
∣
∣
∣
ϕ(a) + ϕ(b)

2
− 1

b − a

∫ b

a
ϕ(s)ds

∣
∣
∣
∣

≤ b − a

2

[
|ϕ′(a)| − |ϕ′(b)|

log|ϕ′(a)| − log|ϕ′(b)| − 2

( √|ϕ′(a)| − √|ϕ′(b)|
log|ϕ′(a)| − log|ϕ′(b)|

)2
]

and hence we deduce that the above theorem holds.
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4 Inequalities for Second Order Differentiable Functions

Now, we derive some results for functions whose second order derivative absolute
values are log-preinvex. The following Lemma was given by Barani et al. [3].

Lemma 4.1 ([3]) Let A ⊂ R be an open invex subset with respect to θ : AX A → R
and a, b ∈ A with θ(a, b) 	= 0. Suppose that f : A → R is a differentiable function.
If f ′′ is integrable on the θ path Pbc, c = b + θ(a, b), then the following equality
holds

f (b) + f (b + θ(a, b))

2
− 1

θ(a, b)

∫ b+θ(a,b)

b
f (x)dx = θ(a, b)

2

2 ∫ 1

0
t (1 − t) f ′′(b + tθ(a, b))dt

Using Lemma 4.1, we prove the following result.

Theorem 4.1 Let A ⊂ R be an open invex subset with respect to θ : AX A → R and
a, b ∈ Awith θ(a, b) 	= 0. Suppose that f : A → R is a twice differentiable function
on A. If | f ′′| is log-preinvex and f ′′ integrable on the θ path Pbc, c = b + θ(a, b),
then the following inequality holds

∣
∣
∣ f (b)+ f (b+θ(a,b))

2 − 1
θ(a,b)

∫ b+θ(a,b)
b f (x)dx

∣
∣
∣

≤ θ(a, b)2

2

[ | f ′′(a)| + | f ′′(b)|
(log| f ′′(a)| − log| f ′′(b)|)2 + 2(| f ′′(b)| − | f ′′(a)|)

(log| f ′′(a)| − log| f ′′(b)|)3
]

Proof From Lemma 4.1, we have

∣
∣
∣ f (b)+ f (b+θ(a,b))

2 − 1
θ(a,b)

∫ b+θ(a,b)
b f (x)dx

∣
∣
∣ =

∣
∣
∣ θ(a,b)

2
2 ∫ 1

0 t (1 − t) f ′′(b + tθ(a, b))dt
∣
∣
∣

≤ θ(a,b)
2

2 ∫ 1
0 t (1 − t)| f ′′(b)|1−t | f ′′(a)|t dt

= θ(a,b)2

2

[ | f ′′(a)|+| f ′′(b)|
(log| f ′′(a)|−log| f ′′(b)|)2

+ 2(| f ′′(b)|−| f ′′(a)|)
(log| f ′′(a)|−log| f ′′(b)|)3

]

which completes the proof.

Theorem 4.2 Let A ⊂ R be an open invex subset with respect to θ : AX A → R
and a, b ∈ A with θ(a, b) 	= 0. Suppose that f : A → R is a twice differentiable
function on A. If | f ′′|p/p−1 is log-preinvex on A for p > 1. If f ′′ integrable on the θ
path Pbc, c = b + θ(a, b), then the following inequality holds

∣
∣
∣
∣
f (b) + f (b + θ(a, b))

2
− 1

θ(a, b)

∫ b+θ(a,b)

b
f (x)dx

∣
∣
∣
∣
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≤ θ(a, b)2

16

√
π
1/p �(p + 1)

�(p + 3/2)

1/p ( | f ′′(a)|q − | f ′′(b)|q
q(log| f ′′(a)| − log| f ′′(b)|)

)1/q

Proof By log-preinvexity of | f ′′|q , Lemma 4.1 and Holder’s inequality, we get

∣
∣
∣ f (b)+ f (b+θ(a,b))

2 − 1
θ(a,b)

∫ b+θ(a,b)
b f (x)dx

∣
∣
∣ ≤ θ(a,b)

2

2 ∫ 1
0 t (1 − t) f ′′(b + tθ(a, b))dt

≤ θ(a,b)2

2

(∫ 1
0 (t − t2)

p
dt

)1/p

×
(∫ 1

0 | f ′′(b + θ(a, b)|qdt
)1/q

≤ θ(a,b)
2

2
[
2−1−2p√π�(1+p)

�(3/2+p)

]1/p

×
[∫ 1

0 | f ′′(b)|q(1−t)| f ′′(a)|qtdt
]1/q

≤ θ(a,b)2

16

√
π
1/p �(p+1)

�(p+3/2)

1/p

×
( | f ′′(a)|q−| f ′′(b)|q
q(log| f ′′(a)|−log| f ′′(b)|)

)1/q

which completes the proof.

Theorem 4.3 Let A ⊂ R be an open invex subset with respect to θ : AX A → R and
a, b ∈ Awith θ(a, b) 	= 0. Suppose that f : A → R is a twice differentiable function
on A. If | f ′′|q is log-preinvex on A for q > 1 and f ′′ integrable on the θ path Pbc,
c = b + θ(a, b),then the following inequality holds

f (b) + f (b + θ(a, b))

2
− 1

θ(a, b)

∫ b+θ(a,b)

b
f (x)dx

≤ θ(a, b)2

12
(6)1/q

[ | f ′′(a)|q + | f ′′(b)|q
(q(log| f ′′(a)| − log| f ′′(b)|))2 + 2(| f ′′(b)|q − | f ′′(a)|q )

(q(log| f ′′(a)| − log| f ′′(b)|))3
]1/q

Proof By Lemma 4.1 and using the well known weighted power mean inequality,
we get∣

∣
∣
∣
f (b) + f (b + θ(a, b))

2
− 1

θ(a, b)

∫ b+θ(a,b)

b
f (x)dx

∣
∣
∣
∣
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≤ θ(a,b)
2

2 ∫ 1
0 t (1 − t)| f ′′(b + tθ(a, b))|dt

≤ θ(a,b)2

2

(∫ 1
0 (t − t2)dt

)1−1/q (∫ 1
0 (t − t2)| f ′′(b + θ(a, b)|qdt

)1/q

≤ θ(a,b)2

2 (1/6)1−1/q
[∫ 1

0 (t − t2)| f ′′(b)|q(1−t)| f ′′(a)|qtdt
]1/q

≤ θ(a,b)2

12 (6)1/q
[ | f ′′(a)|q+| f ′′(b)|q

(q(log| f ′′(a)|−log| f ′′(b)|))2 + 2(| f ′′(b)|q−| f ′′(a)|q )
(q(log| f ′′(a)|−log| f ′′(b)|))3

]1/q

which completes the proof.

5 Applications to Special Means

Let a and b be two positive numbers. We have:
Arithmetic mean

A(a, b) = a + b

2
,

Logarithmic mean

L p(a, b) = a − b

lna − lnb
,

and generalized logarithmic mean

L p(a, b) =
[

a p+1 − bp+1

(p + 1)(a − b)

]1/p

, p 	= −1, 0;

There are several results connecting these means, see [1] for some new relations;
however very few results are known for arbitrary real numbers. For this, it is clear
that we can extend some of the above means as follows:

A(α,β) = α + β

2
, α,β ∈ R

L̄(α,β) = β − α

ln|β| − ln|α| , α,β ∈ R\0

Ln(α,β) =
[

βn+1 − αn+1

(n + 1)(β − α)

] 1
n

n ∈ N , n ≥ 1, α,β ∈ R, α < β
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Nowusing the results of Sects. 3 and4,weprove the following inequalities connecting
the above means for arbitrary real numbers.

Proposition 5.1 Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then the following
inequality holds:

|A(an, bn) − (Ln(a, b))n | ≤ n|a − b|
2

[
L̄(|bn−1|, |an−1|) − 1

2
(L̄(

√
|bn−1|,

√
|an−1|))2

]

Proof The proof is immediate from Theorem 3.1 applied for f (x) = xn, x ∈ R,

θ(a, b) = a − b.

Proposition 5.2 Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then, for all p > 1, the
following inequality holds:

|A(an, bn) − Ln
n(a, b)| ≤ n|a − b|

2(p + 1)1/p
[
L̄(|bn−1|q , |an−1|q)] 1

q

Proof The proof is immediate from Theorem 3.2 applied for f (x) = xn, x ∈ R,

θ(a, b) = a − b.

Proposition 5.3 Let a, b ∈ R\0, a < b. Then the following inequality holds:

|A
(
1

a
,
1

b

)
− L̄−1(a, b)| ≤ |a − b|

2

[
L

(
1

b2
,
1

a2

)
− 1

2
(L̄(|1

b
|, |1

a
|))2

]

Proof The proof is obvious from Theorem 3.1 applied for f (x) = 1
x , x ∈ [a, b],

θ(a, b) = a − b.

Proposition 5.4 Let a, b ∈ R\0, a < b. Then for all p > 1, the following inequality
holds:

|A
(
1

a
,
1

b

)
− L̄−1(a, b)| ≤ |a − b|

2(p + 1)1/p

[
L

((
1

b2

)q

,

(
1

a2

)q)] 1
q

Proof The proof is obvious from Theorem 3.2 applied for f (x) = 1
x , x ∈ [a, b],

θ(a, b) = a − b.

Proposition 5.5 Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then the following
inequality holds

1

(n + 1)(n + 2)

∣
∣
∣A(an+2, bn+2) − Ln+2

n+2(a, b)
∣
∣
∣ ≤ 1

n2
L̄(a, b)2

[
A(|an |, |bn |) − L(|an | − |bn |)]

Proof The proof is immediate fromTheorem 4.1 applied for f (x) = xn+2

(n+1)(n+2) , x ∈
R, θ(a, b) = a − b.
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Proposition 5.6 Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then, for all p > 1, the
following inequality holds

1

(n + 1)(n + 2)

∣
∣
∣A(an+2, bn+2) − Ln+2

n+2(a, b)
∣
∣
∣ ≤ θ(a, b)2

16

√
π
1/p �(p + 1)

�(p + 3/2)

1/p (
L(|an |q , |bn |q )

) 1
q

Proof The proof is immediate from Theorem 4.2 applied for f (x) = xn+2

(n+1)(n+2) , ∈
R, θ(a, b) = a − b.

Proposition 5.7 Let a, b ∈ R\0, a < b. Then the following inequality holds

∣
∣
∣
∣
∣
A(alog|a|, blog|b|) + 1

2
A(a, b) − b2log|b| − a2log|a|

2(b − a)

∣
∣
∣
∣
∣
≤ L2(a, b)

[
A(| 1

a
|, | 1

b
|) − L(| 1

a
|, | 1

b
|)
]

Proof The proof is obvious from Theorem 4.1 applied for f (x) = xlogx − x, x ∈
[a, b], θ(a, b) = a − b.

Proposition 5.8 Let a, b ∈ R\0, a < b. Then for all p > 1, the following inequality
holds

∣
∣
∣
∣A(alog|a|, blog|b|) + 1

2
A(a, b) − b2log|b| − a2log|a|

2(b − a)

∣
∣
∣
∣ ≤ θ(a, b)2

16

√
π
1/p �(p + 1)

�(p + 3/2)

1/p

×
[
L

(∣
∣
∣
∣
1

bq

∣
∣
∣
∣

q

,

∣
∣
∣
∣
1

aq

∣
∣
∣
∣

q)] 1
q

Proof The proof is obvious from Theorem 4.2 applied for f (x) = xlogx − x, x ∈
[a, b], θ(a, b) = a − b.
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Estimates for Initial Coefficients of Certain
Starlike Functions with Respect
to Symmetric Points

Kanika Khatter, V. Ravichandran and S. Sivaprasad Kumar

Abstract It is well known that the class of all analytic functions f defined on
the unit disk satisfying �(z f ′(z)/( f (z) − f (−z))) > 0 is a subclass of close-to-
convex functions and the nth Taylor coefficient of these functions are bounded
by one. However, no bounds for the nth coefficients of functions f satisfying
2z f ′(z)/( f (z) − f (−z)) ≺ ϕ(z) are known except for n = 2, 3. The sharp bounds
for the fourth coefficient of analytic univalent functions f satisfying the subordina-
tion 2z f ′(z)/( f (z) − f (−z)) ≺ ϕ(z) is obtained. The bound for the fifth coefficients
is also obtained in certain special cases including ϕ is ez and

√
1 + z.

Keywords Starlike function · Coefficient estimates · Subordination
2010 Mathematics Subject Classification 30C45 · 30C80

1 Introduction

Let A be the class of all normalized analytic functions of the form f (z) = z +∑∞
n=2 anz

n in the open unit disk D := {z ∈ C : |z| < 1} and S be the subclass of
A consisting of univalent functions. A function f ∈ A is starlike with respect to
symmetric points inD if for every r less than and sufficiently close to one and every ζ

on |z| = r , the angular velocity of f (z) about the point f (−ζ ) is positive at z = ζ as
z traverses the circle |z| = r in the positive direction. Analytically, a function f ∈ A
is starlike with respect to symmetric points if
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Re

(
z f ′(z)

f (z) − f (−z)

)
> 0 (z ∈ D).

The classS ∗
s of all functions starlikewith respect to symmetric pointswas introduced

and studied by Sakaguchi [11]. The functions belonging to this class are close-to-
convex and hence univalent. It is well known that this class S ∗

s includes the class
of convex functions CV and the class of odd starlike functions [11]; the functions
inS ∗

s also satisfy the sharp coefficient inequality |an| ≤ 1, see [3] and [9] for other
related classes. An analytic function f is said to be subordinate to F , written f ≺ F
or f (z) ≺ F(z) (z ∈ D) if there exists an analytic function w : D → D satisfying
w(0) = 0 and f (z) = F(w(z)) in |z| < 1. Let ϕ be a univalent function with positive
real part which maps D onto a domain which is symmetric with respect to the real
line and starlike with respect to ϕ(0) = 1 and ϕ′(0) > 0. Let S ∗(ϕ) be the class of
functions f ∈ S for which z f ′(z)/ f (z) ≺ ϕ(z) and C (ϕ) be the class of functions
f ∈ S for which 1 + z f ′′(z)/ f ′(z) ≺ ϕ(z). The above classes were introduced and
studied by Ma and Minda [4]. Also, for such ϕ, Ravichandran [9] introduced the
following class:

S∗
s (ϕ) =

{
f ∈ S : 2z f ′(z)

f (z) − f (−z)
≺ ϕ(z)

}

and later in [12], the sharp bound for the Fekete–Szegö coefficient functional |a3 −
μa22 | were obtained. This immediately gives the bound for the first two coefficients
of functions in the above classes.

In this paper, our aim is to determine the bound for the fourth coefficient of
functions belonging to the class S∗

s (ϕ). This is done byfirst expressing the coefficients
of f in terms of the coefficients Bn of ϕ and the coefficient cn of a function with a
positive real part. The coefficient estimate for a4 follows from a result of Prokhorov
and Szynal [8]. The bound for the fifth coefficient of functions in S∗

s (ϕ) is highly
non-linear. We are able to estimate a5 in certain important special cases of ϕ:

S ∗
s,e := S∗

s (e
z), S ∗

s,L := S∗
s (

√
1 + z), and

S ∗
s,RL := S∗

s

(√
2 − (

√
2 − 1)

√
1 − z

1 + 2(
√
2 − 1)z

)

.

These classes are analogues of the corresponding classes of starlike functions intro-
duced and studied respectively in [6, 7, 13].

LetP be the calss of all analytic functions p(z) = 1 + ∑∞
n=0 cnz

n withRe p(z)>0
for z ∈ D and � be the class of all analytic functions w : D → D of the form
w(z) = w1z + w2z2 + · · · . To prove our results, we need the following results; the
results in (a)–(c) of Lemma 1 are respectively in [1, 4, 10] while we refer the reader
to [8] for the very lengthy expression of H(q1, q2).
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Lemma 1 Let p(z) = 1 + ∑∞
n=0 cnz

n ∈ P . Then,

(a) |c2 − υc21| ≤ 2max{1, |2υ − 1|},
(b) |c3 − 2βc1c2 + δc31| ≤ 2 if 0 ≤ β ≤ 1 and β(2β − 1) ≤ δ ≤ β.
(c) |γ c41 + ac22 + 2αc1c3 − (3/2)βc21c2 − c4| ≤ 2, when 0 < α < 1, 0 < a < 1

and 8a(1 − a)((αβ − 2γ )2 + (α(a + α) − β)2) + α(1 − α)(β − 2aα)2 ≤ 4α2

(1 − α)2a(1 − a).

Lemma 2 ([8]) Let H(q1, q2) be as in [8]. If w ∈ �, then for any real numbers
q1 and q2, the following sharp estimate |w3 + q1w1w2 + q2w3

1| ≤ H(q1, q2) holds,
where

H(q1, q2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for (q1, q2) ∈ D1 ∪ D2

|q2| for (q1, q2) ∈ ∪7
k=3Dk

2
3 (|q1| + 1)

( |q1|+1
3(|q1|+1+q2)

) 1
2
for (q1, q2) ∈ D8 ∪ D9

1
3q2

(
q2
1−4

q2
1−4q2

) (
q2
1−4

3(q2−1)

) 1
2

for (q1, q2) ∈ D10 ∪ D11 − {±2, 1}
2
3 (|q1| − 1)

( |q1|−1
3(|q1|−1−q2)

) 1
2
for (q1, q2) ∈ D12

(1)
The extremal functions, up to rotations, are of the form

w(z) = z3, w(z) = z, w(z) = w0(z) = z([(1 − λ)ε2 + λε1] − ε1ε2z)

1 − [(1 − λ)ε1 + λε2]z ,

w(z) = w1(z) = z(t1 − z)

1 − t1z
, w(z) = w2(z) = z(t2 + z)

1 + t2z

|ε1| = |ε2| = 1, ε1 = t0 − e
−iθ0
2 (a ∓ b), ε2 = −e

−iθ0
2 (ia ± b),

a = t0 cos
θ0

2
, b =

√

1 − t20 sin
2 θ0

2
, λ = b ± a

2b

t0 =
[
2q2(q2

1 + 2) − 3q2
1

3(q2 − 1)(q2
1 − 4q2)

] 1
2

, t1 =
( |q1| + 1

3(|q1| + 1 + q2)

) 1
2

,

t2 =
( |q1| − 1

3(|q1| − 1 − q2)

) 1
2

, cos
θ0

2
= q1

2

[
q2(q2

1 + 8) − 2(q2
1 + 2)

2q2(q2
1 + 2) − 3q2

1

]
.

The sets Dk, k = 1, 2, . . . , 12, are defined as follows
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D1 = {(q1, q2) : |q1| ≤ 1

2
, |q2| ≤ 1},

D2 = {(q1, q2) : 1
2

≤ |q1| ≤ 2,
4

27
(|q1| + 1)3 − (|q1| + 1) ≤ q2 ≤ 1},

D3 = {(q1, q2) : |q1| ≤ 1

2
, q2 ≤ −1},

D4 = {(q1, q2) : |q1| ≥ 1

2
, q2 ≤ −2

3
(|q1| + 1)},

D5 = {(q1, q2) : |q1| ≤ 2, q2 ≥ 1},
D6 = {(q1, q2) : 2 ≤ |q1| ≤ 4, q2 ≥ 1

12
(q2

1 + 8)},

D7 = {(q1, q2) : |q1| ≥ 4, q2 ≥ 2

3
(|q1| − 1)},

D8 = {(q1, q2) : 1
2

≤ |q1| ≤ 2,−2

3
(|q1| + 1) ≤ q2 ≤ 4

27
(|q1| + 1)3 − (|q1| + 1)},

D9 = {(q1, q2) : |q1| ≥ 2,−2

3
(|q1| + 1) ≤ q2 ≤ 2|q1|(|q1| + 1)

q2
1 + 2|q1| + 4

},

D10 = {(q1, q2) : 2 ≤ |q1| ≤ 4,
2|q1|(|q1| + 1)

q2
1 + 2|q1| + 4

≤ q2 ≤ 1

12
(q2

1 + 8)},

D11 = {(q1, q2) : |q1| ≥ 4,
2|q1|(|q1| + 1)

q2
1 + 2|q1| + 4

≤ q2 ≤ 2|q1|(|q1| − 1)

q2
1 − 2|q1| + 4

},

D12 = {(q1, q2) : |q1| ≥ 4,
2|q1|(|q1| − 1)

q2
1 − 2|q1| + 4

≤ q2 ≤ 2

3
(|q1| − 1)}.

2 Main Results

By making use of Lemma 2, we prove the following bound for the fourth coefficient
for functions in the class S∗

s (ϕ).

Theorem 1 Let the function f (z) = z + a2z2 + a3z3 + · · · ∈ S ∗
s (ϕ)where ϕ(z) =

1 + B1z + B2z2 + B3z3 + · · · . Then

|a4| ≤ B1

4
H(q1, q2),

where H(q1, q2) is as defined in (1),

q1 := 4B2 + B2
1

2B1
; q2 := 2B3 + B1B2

2B1
. (2)
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Proof If f ∈ S∗
s (ϕ), then there is an analytic functionw(z) = w1z + w2z2 + · · · ∈ �

such that
2z f ′(z)

f (z) − f (−z)
= ϕ(w(z)). (3)

Since

2z f ′(z)
f (z) − f (−z)

= 1 + 2a2z + 2a3z
2 + (−2a2a3 + 4a4)z

3 + (−2a23 + 4a5)z
4 + · · ·

and

ϕ(w(z)) = 1 + B1w1z + (B2w
2
1 + B1w2)z

2 + (B3w
3
1 + 2B2w1w2 + B1w3)z

3 + · · ·

we get, from (3),

a2 = 1

2
B1w1,

a3 = 1

2
(B2w

2
1 + B1w2),

a4 = 1

4

((
B3 + 1

2
B1B2

)
w3
1 +

(
2B2 + 1

2
B2
1

)
w1w2 + B1w3

)
.

The coefficient a4 can be rewritten as

a4 = B1

4
(w3 + q1w1w2 + q2w

3
1)

where q1 and q2 are given by 2. Lemma 2 immediately yields the desired estimate
|a4| ≤ B1H(q1, q2)/4.

Our next theorem provides sharp bound on |a5| for three different choices of ϕ.
The bounds for a2, a3, a4 are also included here for completeness.

Theorem 2 Let f (z) = z + a2z2 + a3z3 + · · · .
(a) If f ∈ S ∗

s,L , then

|a2| ≤ 1

4
, |a3| ≤ 1

4
, |a4| ≤ 1

8
and |a5| ≤ 1

8
.

(b) If f ∈ S ∗
s,RL , then

|a2| ≤ 5

4
− 3

2
√
2
, |a3| ≤ 5

4
− 3

2
√
2
, |a4| ≤ 5

8
− 3

4
√
2

and |a5| ≤ 5

8
− 3

4
√
2
.
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(c) If f ∈ S ∗
s,e, then

|a2| ≤ 1

2
, |a3| ≤ 1

2
, |a4| ≤ 1

4
and |a5| ≤ 1

4
.

All the bounds here are sharp.

Proof For the function f (z) = z + a2z2 + a3z3 + · · · ∈ S ∗
s (ϕ), we first express

an in terms of the coefficients of the functions ϕ(z) = 1 + B1z + B2z2 + · · · and
p1(z) = 1 + c1z + c2z2 + · · · ∈ P . In terms of the coefficients bn of the function p
defined by

p(z) := 2z f ′(z)
f (z) − f (−z)

= 1 + b1z + b2z
2 + · · · ,

the coefficients an are expressed by

nan =
�n/2�∑

k=1

bn+1−2ka2k−1. (4)

From Eq. (4), we have

2a2 = b1, 2a3 = b2, −2a2a3 + 4a4 = b3, −2a23 + 4a5 = b4. (5)

Since ϕ is univalent and p ≺ ϕ, the function

p1(z) = 1 + ϕ−1(p(z))

1 − ϕ−1(p(z))
= 1 + c1z + c2z

2 + · · ·

belongs toP . Equivalently,

p(z) = ϕ

(
p1(z) − 1

p1(z) + 1

)
.

Using the last equation, we obtain each bi ’s in terms of ci ’s and Bi ’s as follows:

b1 = 1

2
B1c1,

b2 = 1

4

(
(B2 − B1)c

2
1 + 2B1c2

)
,

b3 = 1

8

(
(B1 − 2B2 + B3)c

3
1 + 4(B2 − B1)c1c2 + 4B1c3

)
, (6)

b4 = 1

16

(
(−B1 + 3B2 − 3B3 + B4)c

4
1 + 6(B3 − 2B2 + B1)c

2
1c2

+ 4(B2 − B1)c
2
2 + 8(B2 − B1)c1c3 + 8B1c4

)
.
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Thus, from (5) and (6), we get

a2 = 1

4
B1c1, (7)

a3 = 1

8

(
(B2 − B1)c

2
1 + 2B1c2

)
, (8)

a4 = 1

64

(
(2B1 − B2

1 − 4B2 + B1B2 + 2B3)c
3
1 + (2B2

1 + 8B2 − 8B1)c1c2 + 8B1c3
)

(9)

and

a5 = 1

128

(
(−2B1 + B2

1 + 6B2 − 2B1B2 + B2
2 − 6B3 + 2B4)c

4
1 (10)

+ (12B1 − 4B2
1 − 24B2 + 4B1B2)c

2
1c2 + (4B2

1 + 8B2 − 8B1)c
2
2

+ (16B2 − 16B1)c1c3 + 16B1c4
)
.

(a) Let f ∈ S ∗
s,L . Then,

ϕ(z) = √
1 + z = 1 + 1

2
z − 1

8
z2 + 1

16
z3 − 5

128
z4 + · · · .

Thus B1 = 1/2, B2 = −1/8, B3 = 1/16 and B4 = −5/128. On substituting these
values in (7), (8), (9) and (10), we get

a2 = 1

8
c1,

a3 = 1

64
(−5c21 + 8c2),

a4 = 1

1024
(21c31 − 72c1c2 + 64c3),

a5 = 1

8192
(−116c41 + 544c21c2 − 256c22 − 640c1c3 + 512c4).

Since |cn| ≤ 2 for n ≥ 1, we have |a2| ≤ 1/4. By using Lemma 1(a) we obtain
|a3| ≤ 1/4. Since

a4 = 1

16
(c3 − 2βc1c2 + δc31)

where β = 9/16 and δ = 21/64, Lemma 1(b) shows that |a4| ≤ 1/8. Similarly,

a5 = 1

16
(γ c41 + ac22 + 2αc1c3 − (3/2)βc21c2 − c4),
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where γ = 29/128, a = 1/2, α = 5/8, β = 17/24. Lemma 1(c) shows that |a5| ≤
1/8. Define the functions fk (k = 1, 2, . . .) by

2z f ′
k(z)

fk(z) − fk(−z)
=

√
1 + zk = 1 + zk

2
− z2k

8
+ z3k

16
+ · · · , ( fk(0) = 0, f ′

k(0) = 1).

Then

f1(z) = z + 1

4
z2 + · · · , f2(z) = z + 1

4
z3 + · · · ,

f3(z) = z + 1

8
z4 + · · · , and f4(z) = z + 1

8
z5 + · · · .

Clearly the functions fk ∈ S ∗
s,L . Moreover the kth coefficient is sharp for fk−1 where

k = 2, 3, 4, 5.
(b) Let f ∈ S ∗

s,RL . Then,

ϕ(z) = √
2 − (

√
2 − 1)

√
1 − z

1 + 2(
√
2 − 1)z

= 1 + 5 − 3
√
2

2
z + 71 − 51

√
2

8
z2 + 589 − 415

√
2

16
z3 + 20043 − 14179

√
2

128
z4 + · · · .

Thus B1 = (5 − 3
√
2)/2, B2 = (71 − 51

√
2)/8, B3 = (589 − 415

√
2)/16and B4 =

(20043 − 14179
√
2)/128. Using these values in (7), (8), (9) and (10), we get

a2 = 1

8
(−1 + √

2)(−c1 + 2
√
2c1),

a3 = 1

64
(−1 + √

2)
(
(−27 + 12

√
2)c21 + (−8 + 16

√
2)c2

)
,

a4 = 1

1024

(
(1179 − 818

√
2)c31 + 8(145 − 108

√
2)c1c2 + 64(5 − 3

√
2)c3

)

and

a5 = 1

8192
((14638 − 10453

√
2)c41 − 48(−508 + 351

√
2)c21c2

− 64(−94 + 69
√
2)c22 − 384(−17 + 13

√
2)c1c3 − 512(−5 + 3

√
2)c4).

Since |cn| ≤ 2 for n ≥ 1, we have

|a2| ≤ 5

4
− 3

2
√
2
.
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Use of Lemma 1(a) shows that

|a3| ≤ 5

4
− 3

2
√
2
.

Since

a4 = 5 − 3
√
2

16

(
c3 − 2βc1c2 + δc31

)

where

β = (108
√
2 − 145)/(16(5 − 3

√
2)), δ = (1179 − 818

√
2)/(64(5 − 3

√
2)).

Lemma 1(b) shows that

|a4| ≤ 5

8
− 3

4
√
2
.

Similarly, a5 can be rewritten as

a5 = −5 + 3
√
2

8

(
γ c41 + ac22 + 2αc1c3 − (3/2)βc21c2 − c4

)

where

γ = (14638 − 10453
√
2)/(512(−5 + 3

√
2)), a = (94 − 69

√
2)/(8(−5 + 3

√
2)),

α = (3(17 − 3
√
2))/(8(−5 + 3

√
2)) and β = (−508 + 351

√
2)/(16(−5 + 3

√
2)).

Lemma 1(c) shows that

|a5| ≤ 5

8
− 3

4
√
2
.

Define the functions fk (k = 1, 2, . . .) by

2z f ′
k(z)

fk(z) − fk(−z)
= √

2 − (
√
2 − 1)

√
1 − zk

1 + 2(
√
2 − 1)zk

( fk(0) = 0, f ′
k(0) = 1).

Then

f1(z) = z + 5 − 3
√
2

4
z2 + · · · , f2(z) = z + 5 − 3

√
2

4
z3 + · · · ,

f3(z) = z + 5 − 3
√
2

8
z4 + · · · , and f4(z) = z + 5 − 3

√
2

8
z5 + · · · .
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Clearly, the functions fk ∈ S ∗
s,RL and the kth coefficient is sharp for fk−1

(k = 2, 3, 4, 5)
(c) Let f ∈ S ∗

s,e. Then,

q(z) = ez = 1 + z + z2

2
+ z3

6
+ z4

24
+ z5

120
+ · · · .

Thus, B1 = 1, B2 = 1/2, B3 = 1/6 and B4 = 1/24. Using these values in (7), (8),
(9) and (10), we get

a2 = 1

4
c1,

a3 = 1

16
(−c21 + 4c2),

a4 = 1

384
(−c31 − 12c1c2 + 48c3)

and

a5 = 1

384
(c41 − 24c21c3 + 48c4).

Since |cn| ≤ 2 for n ≥ 1, therefore |a2| ≤ 1/2. Use of Lemma 1(a) shows that
|a3| ≤ 1/2. Since

a4 = 1

8
(c3 − 2βc1c2 + δc31)

where β = 1/8 and δ = −1/48, Lemma 1(b) shows that |a4| ≤ 1/4. Similarly,

a5 = 1

8
(γ c41 + ac22 + 2αc1c3 − (3/2)βc21c2 − c4)

where γ = −1/48, a = 0, α = 1/4, β = 0. Note that Lemma 2 holds for a = 0.
Applying Lemma 1(c) with a = 0, we have |a5| ≤ 1/4. Define the functions fk
(k = 1, 2, . . .) by

2z f ′
k(z)

fk(z) − fk(−z)
= ekz = 1 + zk + z2k

2! + z3k

3! + · · · ( fk(0) = 0, f ′
k(0) = 1).

Then

f1(z) = z + 1

2
z2 + · · · f2(z) = z + 1

2
z3 + · · · ,

f3(z) = z + 1

4
z4 + · · · , and f4(z) = z + 1

4
z5 + · · · .
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Clearly the functions fk ∈ S ∗
s,e. Clearly the kth coefficient is sharp for fk−1 for

k = 2, 3, 4, 5.
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Note on Convex Functionals in the Dual
Spaces of Nonreflexive Banach Spaces

Yuqing Chen, Yeol Je Cho and Jong Kyu Kim

Abstract Let E be a real nonreflexive Banach space, E∗ be the dual space of E and
φ : D(φ) ⊆ E∗ → R ∪ {+∞} be a convex functional. Comparing with the classical
Legendre-Fenchel conjugate, we define the weak∗ conjugate of φ as

φ∗(x) = sup
p∈D(φ)

{(p, x) − φ(p)}

and also, comparing with the classical sub-differential, we define the weak∗ sub-
differential of φ as

∂∗φ(p) = {x ∈ E∗ : φ(q) − φ(p) ≥ (q − p, x), ∀ q ∈ D(φ)}.

In this paper, we study their properties and relationships with the classical conjugate
and the sub-differential.

Keywords Legendre-Fenchel conjugate ·Weak∗ conjugate · Classical sub-differe-
ntial · Weak∗ sub-differential
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1 Introduction

Convex functionals play important roles in variational problems, the existence prob-
lems of partial differential equations, control and optimize problems and variational
inequality problems, etc., and it has been extensively studied by many authors, espe-
cially, the theory of convex functionals has been well developed (see [4–6, 8, 13–15,
21, 22, 25, 26, 28]). In recent years, abstract convex functional has also been studied
by Bartz and Reich [7] and Jeyakumar et al. [16].

Let E be a nonreflexive Banach space, E∗ be the dual space of E and E∗∗ be the
second dual space of E . In this paper, we further study the convex functional defined
on the dual space of E . To be precise, let φ : D(φ) ⊆ E∗ → R ∪ {+∞} be a convex
functional, φ∗( f ) = supp∈D(φ){(p, f ) − φ(p)} be the classical Legendre–Fenchel
conjugate, and

∂φ(p) = { f ∈ E∗∗ : φ(q) − φ(p) ≥ (p − q, f ), ∀ q ∈ D(φ)}

be the classical sub-differential. Then we define the weak∗ conjugate of φ as

φ∗(x) = sup
p∈D(φ)

{(p, x) − φ(p)}

and the weak∗ sub-differential of φ as

∂∗φ(p) = {x ∈ E∗ : φ(q) − φ(p) ≥ (q − p, x), ∀ q ∈ D(φ)}.

Then these two concepts coincide with their classical ones when E is reflexive, but
different when E is not reflexive. Also, we study their properties and relationships
with the classical conjugate and the sub-differential.

Throughout this paper, we use ⇀∗ to represent the convergence in the weak∗
topology and → represent the convergence in the norm topology.

2 The Weak∗ Conjugate and Weak∗ Sub-differential
of Convex Functionals

In this section, let E be a real Banach space, E∗ be the dual space of E and E∗∗ be
the dual space of E∗. Under the canonical embedding mapping, E can be embedded
as a subspace of E∗∗ and so we always regard E as a subspace of E∗∗.

Now, we introduce the weak∗ conjugate and weak∗ sub-differential of a convex
functional and study their properties.

Letφ : D(φ) ⊆ E∗ → R ∪ {+∞}be a functional.We recall that the classical sub-
differential of a convex function φ : E → R ∪ {+∞}, Legendre–Fenchel conjugate
of φ is defined by
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φ∗( f ) = sup
p∈D(φ)

{(p, f ) − φ(p)}

for all f ∈ E∗∗ and the second conjugate of φ is defined by

φ∗∗(p) = sup
f ∈D(φ∗)

{(p, f ) − φ∗(p)}

for all p ∈ E∗, respectively. Similarly, we define the weak∗ Legendre–Fenchel con-
jugate of φ by

φ∗(x) = sup
p∈D(φ)

{(p, x) − φ(p)}

for all x ∈ E and define

φ∗
∗(p) = sup

x∈D(φ∗)
{(p, x) − φ∗(x)}

for all p ∈ E∗, respectively.

Remark 2.1 If E is reflexive, then φ∗ = φ∗ and φ∗∗ = φ∗∗, but, in the nonreflexive
case, these equalities don’t necessarily hold. See the following example.

Example 2.1 Let E = c0 = {(ai ) : ai ∈ R, i = 1, 2, . . . , limi→∞ ai = 0} with the
sup norm. Then we have

E∗ = l1 = {(ai ) : ai ∈ R, i = 1, 2, . . . , �∞
i=1|ai | < +∞}

and
E∗∗ = l∞ = {(ai ) : ai ∈ R, i = 1, 2, . . . , sup

i≥1
|ai | < +∞}.

Take v = (vi ) ∈ l∞ \ c0 and w = (wi ) ∈ c0, set φ(p) = �∞
i=1 pivi and ψ(p) = �∞

i=1
piwi for all p ∈ l1. Then, we get

(a) φ∗(x) = +∞ for all x ∈ c0;

(b) φ∗∗(p) = +∞ for all p ∈ l1;

(c)

φ∗(x) =
⎧
⎨

⎩

0, i f x = v

+∞, otherwise

for all x ∈ l∞;

(d) φ∗∗(p) = φ(p) for all p ∈ l1;
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(e)

ψ∗(x) =
⎧
⎨

⎩

0, i f x = w

+∞, otherwise

for all x ∈ c0;

(f)

ψ∗(x) =
⎧
⎨

⎩

0, i f x = w

+∞, otherwise

for all x ∈ l∞;

(g) ψ∗∗ (p) = ψ(p) for all p ∈ l1.

Proposition 2.2 Let φ : E∗ → R ∪ {+∞} be a proper convex functional. Then we
have the following:

(1) φ∗(x) + φ(p) ≥ (p, x) for all x ∈ E and p ∈ E∗;
(2) φ∗∗(p) ≤ φ∗∗(p) ≤ φ(p) for all p ∈ E∗;
(3) if φ is lower semi-continuous in the weak∗ topology of E∗, then φ∗∗(p) = φ(p).

Proof By the definition, (1) and (2) are trivial. We only prove (3).
By the assumption that φ is lower semi-continuous in the weak∗ topology of

E∗, we know that epiφ = {(p, α) ∈ E∗ × R : φ(p) ≤ α} is a weak∗ closed convex
subset.

Suppose that φ∗∗(p0) < φ(p0) for some p0 ∈ E∗. Then

(p0, φ
∗
∗(p0)) /∈ epi(φ).

By Hahn–Banach’s separation theorem (see [27]), there exists x0 ∈ E , and λ0 ∈ R
such that

(p0, x0) + λ0φ
∗
∗(p0) < β ≤ inf

(p,α)∈epi(φ)
{(p, x0) + λ0α}

for some β ∈ R. Since λ0φ
∗∗(p0) < λ0φ(p0), we have λ0 > 0. Therefore, we have

(p0,− x0
λ0

) − φ∗
∗(p0) > − β

λ0
≥ (p,− x0

λ0
) − φ(p)

for all p ∈ D(φ) and so we have

(p0,− x0
λ0

) − φ∗
∗(p0) > − β

λ0
≥ φ∗(− x0

λ0
).

Thus we have φ∗∗(p0) > φ∗∗(p0), which is a contradiction. Therefore, we have
φ∗∗(p0) ≥ φ(p0). From (2), we have φ∗∗(p) = φ(p) for all p ∈ E∗. This completes
the proof. �
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Let φ : D(φ) ⊆ E∗ → R ∪ {+∞} be a mapping.We recall that the classical sub-
differential of φ at p is defined by

∂φ(p) = { f ∈ E∗∗ : φ(q) − φ(p) ≥ (p − q, f ), ∀ q ∈ D(φ)}.

It is a well-known result of Rockfellar [25] that ∂φ is a maximal monotone mapping.
Similarly, we define the weak∗ sub-differential of φ at p as follows:

∂∗φ(p) = {x ∈ E : φ(q) − φ(p) ≥ (q − p, x), ∀ q ∈ D(φ)}

for all p ∈ D(φ) and ∂∗φ(p) = ∅ for all p /∈ D(φ).
It is obvious that ∂∗φ(p) ⊆ ∂φ(p), and those two concepts coincides when E is

reflexive. In the nonreflexive case, they are not necessarily equal as the following
example can be seen.

Example 2.3 Let E = c0, E∗ = l1, E∗∗ = l∞ and φ(p) = ‖p‖ for all p ∈ l1. Then,
by the direct computation, we get ∂∗φ(0) = {x ∈ c0 : ‖x‖ ≤ 1} and ∂φ(0) = {x ∈
l∞ : ‖x‖ ≤ 1}.

The following result is obvious:

Proposition 2.4 Let φ : E∗ → R ∪ {+∞} be a convex functional. Then we have the
following:

(1) ∂∗φ(p) is a weak closed convex subset of E;

(2) 0 ∈ ∂∗φ(p0) if and only if φ(p0) = inf p∈D(φ) φ(p);

(3) ∂∗φ : E∗ → E is monotone.

Theorem 2.5 Let φ : E∗ → R ∪ {+∞} be a convex functional which is lower semi-
continuous in the weak∗ topology, and p ∈ E∗, x ∈ E. Then the following statements
are equivalent:

(1) φ(p) + φ∗(x) = (p, x);
(2) x ∈ ∂∗φ(p);
(3) p ∈ ∂φ∗(x);
(4) x ∈ ∂φ∗∗(p);
(5) x ∈ ∂φ(p).

Proof (1) ⇒ (2) is obvious.
(2) ⇒ (3) If x ∈ ∂∗φ(p), then φ(q) − φ(p) ≥ (q − p, x) for all q ∈ E∗ and

so we have (p, x) − φ(p) ≥ (q, x) − φ(q) and it implies (p, x) − φ(p) ≥ φ∗(x).
Consequently, we have

φ∗(y) + (p, x − y) ≥ φ∗(x)

for all y ∈ E . Therefore, p ∈ ∂φ∗(x).
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(3) ⇒ (4) If p ∈ ∂φ∗(x), then φ∗(y) − φ∗(x) ≥ (p, y − x) for all y ∈ E∗ and so
we have (p, x) − φ∗(x) ≥ φ∗∗(p). Thus it follows that φ∗∗(q) + (p − q, x) ≥ φ∗∗(p)
for all q ∈ E∗ and so x ∈ φ∗∗(p).

(4) ⇒ (5) Sinceφ is lower semi-continuous in theweak∗ topology, by Proposition
2.2, we have φ(p) = φ∗∗(p) and so (5) is true.

(5) ⇒ (1) If x ∈ ∂φ(p), thenφ(q) − φ(p) ≥ (q − p, x) for all q ∈ E∗ and sowe
have (p, x) − φ(p) ≥ φ∗(x), i.e., (p, x) ≥ φ(p) + φ∗(x). Thus, from Proposition
2.2-(1), it follows that (1) holds. This completes the proof. �

Let L(x, p) : E × E∗ → R ∪ {+∞} be a Lagrange convex functional and
L∗(p, x) = sup(y,q)∈E×E∗ {(p, y) + (q, x) − L(y, q)}, which plays important role in
variational inequality problems (see Ghoussoub [15] and the references therein).

Proposition 2.6 Let φ : E∗ → R ∪ {+∞} be a convex functional and L(x, p) =
φ∗(x) + φ(p) for all (x, p) ∈ E × E∗. Then L∗(p, x) = φ∗(x) + φ∗∗(p). Moreover,
if φ is lower semi-continuous in the weak∗ topology of E∗, then L∗(p, x) = L(x, p).

Proof The proof is straightforward and so we omit it. �

Definition 2.7 (see [12]) Let X be a topological space. A function f : X → R is
said to be sequentially lower semi-continuous from above at x0 if, for any xn → x0,
f (xn+1) ≤ f (xn) implies that f (x0) ≤ limn→∞ f (xn).

Remark 2.2 It is known that a lower semi-continuous function is a lower semi-
continuous function from above, but the reverse is not true. A lower semi-continuous
from above and convex function with the coercive condition in a reflexive Banach
space attains its minimum (see [12]). It is well known that, for a convex function in
a reflexive Banach space, the lower semi-continuity in strong topology is equivalent
to the lower semi-continuity in weak topology, but this is not true for lower semi-
continuity from above (see [2]). For more on lower semi-continuous functions from
above with its generalizations and applications in nonconvex equilibrium problems,
variational inequality problems and fixed point problems, see [1, 3, 10, 11, 17–20,
23, 24].

Proposition 2.8 Let φ : E∗ → R ∪ {+∞} be a convex functional which is sequen-
tially lower semi-continuous from above in the weak∗ topology and lim‖p‖→+∞ φ

(p) = +∞. Then there exists p0 ∈ E∗ such that φ(p0) = inf p∈D(φ) φ(p).

Proof We take a sequence {pn} in E∗ such that

φ(p1) ≥ φ(p2) ≥ · · · ≥ φ(pn) ≥ · · ·

and
φ(pn) → inf

p∈D(φ)
φ(p).
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Since lim‖p‖→+∞ φ(p) = +∞, {pn} is a bounded sequence in E∗ and so {pn} has
a convergent subsequence of {pn} with pnk ⇀∗ p0 in E∗. By the assumption, φ

is sequentially lower semi-continuous from above and so φ(p0) ≤ limn→∞ φ(pn).
Therefore, it follows that

φ(p0) = inf
p∈D(φ)

φ(p).

This completes the proof. �

Proposition 2.9 The functional ‖ · ‖2 : E∗ → R is sequentially lower
semi-continuous in the weak∗ topology.

Proof Suppose that pn ⇀∗ p0. Then p0(x) = limn→∞ pn(x) for all x ∈ E and so
we have

|p0(x)| ≤ lim inf
n→∞ ‖pn‖‖x‖

for all x ∈ E . Thus we have

‖p0‖ = sup
‖x‖=1

|p0(x)| ≤ lim inf
n→∞ ‖pn‖

and so
‖p0‖2 ≤ lim inf

n→∞ ‖pn‖2.

This completes the proof. �

Theorem 2.10 Let φ : E∗ → R ∪ {+∞} be a convex functional which is sequen-
tially lower semi-continuous in the weak∗ topology. Then we have

∂∗(φ + ε‖ · ‖2)(E∗) = E

for all ε > 0.

Proof For any x ∈ E , we set ψ(p) = φ(p) + ε‖p‖2 − p(x) for x ∈ D(φ). It is
obvious that ψ is sequentially lower semi-continuous in the weak∗ topology and so
ψ is sequentially lower semi-continuous from above in the weak∗ topology and

lim‖p‖→+∞ ψ(p) = +∞.

By Proposition 2.8, there exists p0 ∈ E∗ such that φ(p0) = inf p∈D(ψ) ψ(p). By
Proposition 2.4-(2),

0 ∈ ∂∗(φ + ε‖ · ‖2 − (·)(x))(p0),

which is equivalent to x ∈ ∂∗(φ + ε‖ · ‖2)(p0). This completes the proof. �
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Nonlinear Aspects of Certain Linear
Phenomena in Banach Spaces

M.A. Sofi

Abstract As opposed to the linear theory of Banach spaces which deals with the
description of Banch spaces in terms of their linear topological properties involving
the use of linear subspaces, linear maps and their relatives, the nonlinear theory seeks
to achieve the same goal using nonlinear objects/quantities attached to a Banach
space. These latter objects include Lipschitz maps, bilinear/multilinear maps and
polynomials with domains of definition being replaced by subsets of the given space.
It is remarkable that the linear structure of a Banach spaces is determined to a large
extent by Lipschitzmaps and that in a number of interesting cases, the linear structure
is also captured by the larger class of uniformly continuous mappings acting between
Banach spaces. In the presentwork, thiswill be illustrated by a number of results, both
old and new, involving the extendability of Lipschitz maps and certain phenomena
associated with it.

Keywords Banach space · Hilbert space · Lipschitz map · Extension operator

2010 Mathematics Subject Classication Primary: 46B03 · 46B20 · Secondary:
45C15

1 Introduction

A Banach space—and more generally, a Frechet space—comes equipped with a
metric topology (derived from its norm in the former case)which is tied up to its linear
structure by a set of compatibility conditions required of the norm function (linear
topology in the latter case) on the given space. Thus, apart from the structure which is
endowed on a Banach space by virtue of its norm, two of the many other underlying
structures derive from the uniformity and the (associated) topology induced on it by
themetric. The question regarding the extent to which the linear topological structure
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of a Banach space is determined by these weaker structures assumes significance in
view of the symbiotic relationship between these structures as has been unraveled
over a period of time. The phenomenal progress having been witnessed in recent
years on ‘nonlinear geometry’ of Banach spaces has led to a better understanding of
certain deeper aspects of Banach space theory on the one hand and to far reaching
implications of it in theoretical computer science on the other.

To illustrate this point, let us recall the famous Maur–Ulam theorem [23] which
says that a bijective isometry between (real) Banach spaces which preserves the ori-
gin is linear! In effect, it says that two (real) Banach spaces which can be identified
as metric spaces are already equivalent as linear topological spaces. In other words,
the metric topology of a Banach space is strong enough to capture its linear structure.
On the other hand, the norm-topology of a Banach space is too weak to distinguish a
Banach soace from another. In fact, an old theorem of M.I. Kadec [19] says that any
two separable infinite dimensionalBanach spaces are (topologically) homeomorphic.
However, as opposed to these extreme possibilities, it turns out that the uniform clas-
sification of Banach spaces belongs somewhere in the middle. In this classification,
what we consider are uniform homeomorphisms, and more importantly, bi-Lipschitz
mappings in place of isometries and topological homeomorphisms. To put this point
into perspective, a well known theorem of Enflo [12] says that a Banach space is
linearly homeomorphic to a Hilbert space as soon as it is uniformly homeomorphic
to it. On the other hand, it remains an important open problem whether two (infi-
nite dimensional) separable Banach spaces are linearly homeomorphic if they are
Lipschitz homeomorphic.

The presentwork is devoted to a discussion of these issues in the context of extend-
ability of Lipschitz maps between Banach spaces. As will be shown in what follows,
in most of the cases—as in the linear theory—the phenomenon of extendability
of nonlinear maps determines to a large extent the linear structure of the underly-
ing Banach as is illustrated in the following examples which may be looked upon
as nonlinear analogues of results already known from the linear theory of Banach
spaces.

Before we do that, let us describe a few examples involving some nonlinear
characterisations of Hilbert spaces which, however, do not have a counterpart in the
linear theory.

2 Nonlinear Characterisations of Hilbert Spaces

Example 1 Given a real Banach space X , then each of the following conditions is
equivalent to X being Hilbertian.

(a) Reference [6] ‖ f ‖‖g‖ ≤ 2‖ f g‖, ∀ f, g ∈ X∗.
(b) Reference [5] ‖L‖ = ‖L∧‖ for each symmetric bilinear from L on X . (Here L∧

denote the polynomial associated to L).
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(c) Reference [5] ∀x( �= 0), y( �= 0) ∈ X, ∃ a symmetric bilinear form L on X such
that L(x, y) = ‖x‖‖y‖.

Comments:

(i) The norm of the product in the RHS of (a) is meant in the sense of f g acting
as a bilinear form on X : f g(x, y) = f (x)g(y), x, y ∈ X . In general the norm
of an n-linear L on X is defined by:

‖L‖ = sup {|L(x1, x2, . . . , xn)|; x1, x2 . . . , xn ∈ BX } .

(ii) A complex analogue of (c) is also valid whereby L is required to be symmetric
Hermitian: L(x, y) = L(y, x), ∀ x, y ∈ X.

(iii) Without requiring symmetry of L , the assertion in Example1(c) always holds
in an arbitrary normed space by choosing L(x, y) = f (x)g(y). This follows
from Hahn Banach extension theorem.

Example 2 A Banach space X is a Hilbert space if and only if given x, y ∈ SX (unit
sphere of X ), there exists a linear isometry T on X such that T ({x, y}) = {x, y}, i.e.,
X is 2-transitive.

Example 3 ([22, Theorem 1.9]) Given a (complex) Banach space X such that for
each contraction T on X and a polynomial p(z), it holds that

‖p(T )‖ ≤ sup
|z|≤1

|p(z)|,

then X is a Hilbert space.

(iv) It is a celebrated open problem in functional analysis—known as Banach–
Mazur rotation problem—whether a separable Banach space is isometric (resp.
isomorphic) to a Hilbert space if X is transitive (=1-transitive), i.e. if T in
Example2 above can be chosen such that T (x) = y. It iswell known thatHilbert
spaces satisfy this property and that this property characterises Hilbertisability
in finite dimensional spaces. The latter statement is a consequence of an old
result of Auerbach asserting the existence of an inner product on each finite
dimensional space X , which induces a larger group of isometries on X than
the group of isometries with respect to the given norm. On the other hand, a
transitive norm is always maximal in the sense that no equivalent norm on the
space admits a larger group of isometries, a fact combined with the above result
of Auerbach yields the desired assertion. See [16] for a comprehensive survey
of state of art surrounding this problem upto 2002.

(v) The proof of the statement in Example3 is a consequence of the 2-dimensional
analogue of the above statement in (iv) combined with the well known fact (due
to Kakutani [20]) that a Banach space is isometric to a Hilbert space if (and
only if) each of its 2-dimensional subspaces is an inner product space.
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(vi) The converse of the statement that the inequality in Example3 above is valid for
contractions T acting in aHilbert space is already awell known result in operator
theory popularly known as Von Neumann inequality (see [25, Chap.1]).

Example 4 Lipschitz equivalent of an operator-valued Hahn Banach theorem:
An easily checked consequence of the projection theorem in Hilbert space X

is the assertion that every bounded linear map defined on a subspace of X and
taking values in an arbitrarily given Banach space can be extended to a bounded
linear map on the whole space X . The fact that this extension property of bounded
linear maps characterises X as being a Hilbert space follows from the celebrated
Lindenstrauss–Tzafiriri complemented subspace theorem which says that a Banach
space is Hilbertian exactly when all of its closed subspaces are complemented (see
[1, Sect. 12.4]).

The problem involving the Lipschitz analogue of the above extension property
pertains to the extension of Lipschitz maps, now defined on arbitrary subsets rather
than merely on subspaces of X . Given metric spaces X and Y , we say that a map
f : X → Y is c-Lipschitz if there exists c > 0 such that d( f (x), f (y)) ≤ cd(x, y),

∀ x, y ∈ X.

In this connection, we have the following theorem:

Theorem 5 ([7, Chap. 2], see also [27]) For a Banach space X, TFAE:

(i) Given a subset A of X and a 1-Lipschitz map f : A → �2, there exists a
1-Lipschitz map g : X → �2 such that f = g on A.

(ii) X is a Hilbert space.

Proof (Outline) The fact that (ii) implies (i) is (the infinite dimensional analogue
of) an old result of Kirszbraun which says that R

m-valued c-Lipschitz maps acting
on subsets of Euclidean spaces can always be extended to a c-Lipschitz map on the
whole space. The proof is straightforward for functions taking values in R. Indeed,
if A is a subset of R

n and f : A → R is a c-Lipschitz map, then the map

F(x) = inf{ f (a) + c|x − a| : a ∈ A}

defines a c-Lipschitz map on R
n which extends f . (It is clear that the same argument

works for a metric space in place of R
n—an important fact which is due originally

to McShane). Further, the special case of Kirszbraun’s theorem noted above applied
to the co-ordinate functions gives a cL-Lipschitz extension of a given c-Lipschitz
function f : A → R

m(A ⊂ R
n)where L is a constant depending uponm. (Precisely,

L = √
m). In effect, Kirszbraun’s original theorem is exactly the last statement mod-

ulo the assertion that the constant L appearing there is redundant! However, that is
much harder to prove! Here, let us also point out that it is relatively easier to prove
Kirszbraun’s theorem((ii)⇒(i)) for the special case involving 1-Lipschitz mappings
defined on convex domains in a Hilbert spaces and taking values in an arbitrary
Banach space. The key idea involved in the proof of this statement is the existence
of a Chebyscheff projection induced by a convex subset of a Hilbert space where it
also turns out to be a contraction, i.e. a 1-Lipschitz map.
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Regarding the implication (i)⇒(ii), it turns out that a stronger statement is true,
namely that if (i) holds for some Banach space Z in place of �2 which is merely
assumed to be strictly convex, then both X and Z are Hilbert spaces!

The conclusion in (ii) is achieved under the weaker assumption—which trivially
follows from (i)—that 1-Lipchitz maps defined on three-point subsets of the domain
can be extended to a 1-Lipschiz map on any four-point superset. Here, it is important
to point out that the extension is always possible if it is sought to be effected from a
2-point set to a larger set having three points. Indeed, if A = {x, y} and if u : A → Y
is a 1-Lipschitz map, then for z /∈ {x, y} and for t defined by

t = min

{
1,

‖z − y‖
‖x − y‖

}
,

the formula v(z) = tu(x) + (1 − t)u(y) gives a 1-Lipschitz mapping from {x, y, z}
into Y , which obviously extends the given u. �

Example 6 TheHahn–Banach extension property for subspaces Y of a Hilbert space
X yields the existence of a bounded linear map ψ : Y ∗ → X∗ such that ψ(g)|Y = g
for each g ∈ Y ∗ (For each g ∈ Y ∗, simply choose f to be the composite of g with
the orthogonal projection of X onto Y ). Further, the existence of ψ for each choice
of Y characterises X as a Hilbert space. A nonlinear analogue of this property could
be one of the following types:

(a) Polynomial analogue: Existence of ψ from the space of polynomials on Y to the
space of polynomials on X .

(b) Lipschitz analogue (for subspaces): Existence of ψ from the space of Lipschitz
functions on the subspace Y to the space of Lipschitz functions on X .

(c) Lipschitz analogue (for subsets): Existence of ψ from the space of Lipschitz
functions on subsets Y of X to the space of Lipschitz functions on X .

Comments:

(a′) As opposed to continuous linear functionals, polynomials defined on subspaces
do not always extend to larger spaces. For example, the scalar product on �2
cannot be extended to a bilinear functional on �∞. This is because bilinear
forms on �∞ are weakly sequentially continuous (because �∞ has the Dunford–
Pettis property) whereas the inner product is not! However, as in the case of
linear functionals defined on subspaces of a Hilbert space, polynomials also
admit extensions from subspaces of Hilbert spaces to the whole space. Further,
there are non-Hilbertian Banach spaces which admit extension of polynomials
from subspaces to the larger space. Indeed, Maurey’s extension theorem (See
[11, Chap.12]) guarantees the extendability of bilinear forms (and therefore
of scalar polynomials of degree 2) for type 2 Banach spaces. This raises the
question of the description of Banach spaces X such that each polynomial on
each subspace of X admit an extension to a polynomial of the same degree on X .
Whereas it remains to be knownwhether there are non-Hilbertain Banach spaces
witnessing the aforementioned extension property, it turns out that the existence
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and boundedness of the linear ‘extension’ operator between appropriate spaces
of polynomials (of a fixed degree n) involving the given Banach space X does
indeed characterise X as a Hilbert space. In what follows, the symbol Pn(Z)

shall denote the space of polynomials of degree at most n on a Banach space Z .

Theorem 7 For a Banach space X, TFAE:

(i) X is a Hilbert space.
(ii) For each subspace Y of X, there exists a bounded linear (extension) map ψ :

Pn(Y ) → Pn(X), i.e., such that ψ(g)|Y = g for each g ∈ Pn(Y ).

(iii) For each subspace Y of X, there exists a bounded linear (extension) map ψ :
Y ∗ → X∗, i.e., such that ψ(g)|Y = g for each g ∈ Y ∗.

Proof (Sketch) As noted earlier, the implications (i)⇒(ii) and (i)⇒(iii) are straight-
forward consequences of the existence of the orthogonal projection from X ontoY . To
prove that (ii)⇒(iii), letψ : Pn(Y ) → Pn(X)be as given in (ii). Fix e ∈ Y and choose
g ∈ Y ∗ such that ‖g‖ = 1 and g(e) = 1. Let η : Y ∗ → Pn(Y ) and ϕ : Pn(X) → X∗
be defined by:

η( f ) = f.gn−1, ϕ(P) = D P(e) − (n − 1)P(e)q

where D P(e) denotes the Frechet derivative of P at e. We also note that if A is the
symmetric n-linear form associated to P , then D P(e)(x) = n A(e, e, . . . , x). In case
of P = f.g(n−1), we see for the associated symmetric n-linear form A that

A(e, e, . . . , x) = 1

n
[A(x, e, . . . , e) + A(e, x, . . . , x) + · · · + A(e, e . . . , x)]

= 1

n
[ f (x) + f (e)g(x) + · · · + f (e)g(x)]

= 1

n
[ f (x) + (n − 1) f (e)g(x)] .

The desired map ρ : Y ∗ → X∗ is given by: ρ = ϕ ◦ ψ ◦ η. Indeed, given f ∈ Y ∗ and
x ∈ Y, we have

ρ( f )(x) = ϕ ◦ ψ ◦ η( f )(x)

= D [ψ ◦ η( f )] (x) − (n − 1)η( f )(e)g(x)

= D [η( f )] (e)(x) − (n − 1)η( f )(e)g(x)

= n A(e, e, . . . , x) − (n − 1) f (e)g(x)

= f (x).

Finally, whereas the proof of (iii)⇒(i) is well known from the linear theory, we
include a neat proof of this implication, using the fact that condition (iii) can be
equivalently described as a local property in the following sense:
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(∗) There exists c > 0 such that for each finite dimensional subspace Y of X ,
there exists a continuous linear extension map ψ : Y ∗ → X∗ with ‖ψ‖ ≤ c (see [12]
for details).

Indeed, consider finite dimensional subspaces Y ⊂ Z ⊂ X and let ψ : Y ∗ → X∗
be a continuous linear extension map as in (i) with ‖ψ‖ ≤ c. Taking conjugates gives
amapψ∗ : X∗∗ → Y ∗∗ whichwhen restricted to Z produces a projection P : Z → Y
with

‖P‖ ≤ ‖ψ∗‖ = ‖ψ‖ ≤ c.

From the proof of the Lindenstrauus–Tzafiriri theorem on the complemented sub-
space theorem (see [1, Theorem 12.4.2]), it follows that there exists f (c) > 0, inde-
pendent of Z ⊂ X, such that d(Z , �dim Z

2 ) ≤ f (c). Since Z was chosen arbitrarily,
by virtue of [18], we conclude that X is isomorphic to a Hilbert space. �

3 Existence of Continuous Linear ‘Extension’ Maps

Here we discuss the Lipschitz analogue of the above theorem and ask if in the setting
of (a′), it is possible to choose for each subspace Y of X a bounded linear ‘extension’
map ψ : Lip(Y ) → Lip(X) such that ψ(g)|Y = g for each g ∈ Lip(Y ). Here Lip(Y )

stands for the space of all Lipschitz functions f : Y → R which is easily checked to
be a Banach space when equipped with the norm:

‖ f ‖ = sup
x �=y

‖ f (x) − f (y)‖
‖x − y‖ .

We shall see below that for subspaces Y of a Banach space X , the existence of a
bounded linear ‘extension’ mapψ : Lip(Y ) → Lip(X) imposes rather severe restric-
tions on Y . We shall need the following definitions.

Definition 8 AsubspaceY of aBanach space X is said to be locally complemented if
there exists c > 0 such that for each finite dimensional subspace M of X , there exists
a continuous linear map f : M → Y with ‖ f ‖ ≤ c and f (x) = x for all x ∈ M ∩ Y.

Equivalently, the annihilator of Y is complemented as a subspace of X∗.

Of course, a complemented subspace is trivially locally complemented. On the
other hand, it is well known that c0 is not complemented in �∞.However, the fact that
c0 is locally complemented in �∞ is a consequence of the next theorem combined
with the fact that c0 is a Lipschitz retract of �∞ ([7, Example 1.5]). It also follows
from the more general statement that every Banach space is locally complemented
in its bidual.



414 M.A. Sofi

Theorem 9 Let X be a Banach space and Y a subspace of X such that there exists
a bounded linear ‘extension’ map L : Lip(Y ) → Lip(X), i.e., L(g)|Y = g for each
g ∈ Lip(Y ). Then there exists a bounded linear extension map ψ : Y ∗ → X∗. Equiv-
alently, Y is locally complemented in X.

Proof We begin by using L to define another bounded linear map ψ : Lip(Y ) →
Lip(X)which actually takes values in X∗ and when restricted to Y ∗ yields a bounded
linear extension map from Y ∗ into X∗. The local complementedness of Y will then
follow from the theorem of Kalton mentioned above. The mapψ is constructed using
the existence of a Banach limit

∫
.. dx which is a continuous linear functional on

�∞(X) satisfying the following conditions:

(a) ‖ ∫
.. dx‖ = 1.

(b)
∫
1dx = 1.

(c)
∫

f (x + x ′)dx = ∫
f (x)dx, ∀ f ∈ �∞(X) and ∀ x ′ ∈ X.

The new map ψ : Lip(Y ) → Lip(X) is now defined by the formula ψ( f )(z) =∫ {∫ [(L f )(x + y + z) − (L f )(x + y)]dy}dx, f ∈ Lip(Y ), z ∈ X.

The boundedness of L together with (a) and the Lipschitz property of f yield ψ
as a well defined bounded linear map such that for z1, z2 ∈ X, we have, by virtue
of (c),

ψ( f )(z1 + z2) =
∫ {∫

[(L f )(x + y + z1 + z2) − (L f )(x + y)] dy

}
dx

=
∫ {∫

[(L f )(x + y + z1 + z2) − (L f )(x + y + z2)] dy

}
dx

+
∫ {∫

[(L f )(x + y + z2) − (L f )(x + y)] dy

}
dx

=
∫ {∫

[(L f )(x + y + z1) − (L f )(x + y)] dy

}
dx

+
∫ {∫

[(L f )(x + y + z2) − (L f )(x + y)] dy

}
dx

= ψ( f )(z1) + ψ( f )(z2).

Restricting ψ to Y ∗ gives a map ψ : Y ∗ → X∗ such that for g ∈ Y ∗ and z ∈ Y, an
application of the extension property of L combined with (b) and (c) gives

ψ(g)(z) =
∫ {∫

[(Lg)(x + y + z) − (Lg)(x + y)] dy

}
dx

=
∫ {∫

[(Lg)(x + y + z) − (Lg)(y + z)] dy

}
dx

+
∫ {∫

[(Lg)(y + z) − (Lg)(x + y)] dy

}
dx
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=
∫ {∫

[(Lg)(x + y) − (Lg)(y)] dy

}
dx

+
∫ {∫

[(Lg)(y + z) − (Lg)(x + y)] dy

}
dx

=
∫ {∫

[(Lg)(y + z) − (Lg)(y)] dy

}
dx

=
∫ {∫

[g(y + z) − g(y)] dy

}
dx

=
∫ {∫

g(z)dy

}
dx = g(z).

This completes the proof of the theorem. �

Combined with Theorem 7 ((iii)⇒(i)), the above theorem yields the following
characterisation of Hilbert space.

Corollary 10 For a Banach space X, TFAE:

(i) X is a Hilbert space.
(ii) For each subspace Y of X, there exists a bounded linear ‘extension’ map ψ :

Lip(Y ) → Lip(X).

As a first important consequence of the above corollary, the following Lipschitz
analogue of an isomorphic characterisation of Hilbert spaces follows directly from
it (see [23, Theorem 4.12]).

Corollary 11 For a Banach space X, TFAE:

(i) X is a Hilbert space.
(ii) For each subspace Y of X and each Banach space Z, each Lipschitz map on Y

and taking values in Z can be extended to a Lipschitz map on X.

Indeed, the given condition applied to each closed subspace Y of X yields Y
as Lipschitz retract of X and this gives rise to a bounded linear extension map
ψ : Lip(Y ) → Lip(X) which, by virtue of Corollary 10, yields that X is a Hilbert
space.

Remark 12 The question regarding the description of Banach spaces X resulting
from (ii) in the above corollary with Z = �2 is an important open problem belonging
to this circle of ideas. It is known thatwhereas this property holds for a class ofBanach
spaces that includes L p spaces for 2 < p < ∞, a Banach space enjoying the latter
property, namely property (ii) with Z = �2 has type p for p < 2. However, it is
conjectured that such spaces are type 2 Banach spaces. To the best of our knowledge,
the linear analogue of this problem also remains open. On the other hand, (as was
seen in Theorem 5), using nonexpansive mappings on arbitrary subsets in place of
Lipschitz maps on subspaces of X (as in the above corollary) with the choice of
Z = �2 yields X (isometrically) as a Hilbert space.
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The next corollary deals with the Lipschitz analogue of a well known result
involving the description of Banach spaces X such that every closed convex subset
of X is a nonexpansive retract of X . That this property holds for Hilbert spaces
follows from the easily-checked observation that the ‘nearest point projection’ PC

corresponding to a given closed subsetC of X is indeed a nonexpansive (1-Lipschitz)
map which is the identity map on C . Here PC is defined to be the map given by:

PC(x) = inf{‖x − y‖ : y ∈ C}, x ∈ X.

The fact that the stated property holds precisely forHilbert spaces is a famous theorem
due originally to Reich [26]. The next result provides an isomorphic analogue of the
latter statement, which follows exactly on similar lines as in the previous corollary.

Corollary 13 A Banach space has the property that each closed and convex subset
of X is a Lipschitz retract of X if and only if X is isomorphic to a Hilbert space.

(c′) We now investigate the question involving the existence of an ‘extension’
operator ψ : Lip(A) → Lip(X) where A is now chosen to be an arbitrary subset of
the metric space X . A metric space with this property is said to satisfy the simulta-
neous Lipschitz extension property (SLEP). An answer to this question turns out to
be highly nontrivial, more so when X is not a Banach space. In this general setting,
this question has been a subject of intensive research spanning different areas of
mathematics including, in particular, geometry and group theory. There are interest-
ing examples of situations where such extensions always exist which include, for
example, Rn (with respect to any norm), the Heisenberg group, metric trees of arbi-
trary cardinality, groups of polynomial growth and certain classes of Riemannian
manifolds of bounded geometry. However, there are examples of 2-dimensional
Riemannian manifolds of bounded geometry and their subsets for which such an
extension does not exist. The best source of information on these and related issues
is the ground breaking work of A. Brudnyi and Y. Brudnyi [9]. Making use of some
deep but well known facts from the local theory of Banach spaces, we shall see
below that the extension procedure breaks down for all infinite dimensional Banach
spaces, including of course, infinite dimensional Hilbert spaces where the situation
was shown to be extremely pleasant from the viewpoint of the extension procedure
involving linear subspaces.

Theorem 14 A Banach space X has (SLEP) if and only if X is finite dimensional.

Proof (Sketch) Let us introduce certain numerical parameters that will be used to
quantify the existence of the extension operator mentioned above. To this end, for
each subset A of a metric space M , denote by Ext(A, M) the set of ‘extension’
operators ψ : Lip(A) → Lip(M), i.e., ψ(g)|Y = g for each g ∈ Lip(Y ). We set

λ(M) = sup {inf ‖T ‖ : T ∈ Ext (A, M), A ⊂ M} ,

and call it the ‘global Lipschitz extension constant’ of M .
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We claim that λ(X) = ∞ for each infinite dimensional Banach space X . In par-
ticular, this would imply that each infinite dimensional Banach space admits a subset
A without the simultaneous extension property. We shall need the following tools to
prove our statement.

(a) Dvoretzky’s spherical sections theorem (see [11, Chap.19]): Each infinite
dimensional Banach space X contains for each n, an n-dimensional subspace Xn

which is 2-isometric with �n
2.

(b) (Reference [8]) There exists c > 0 (independent of n) such that λ(�n
2) ≥ cn1/8.

Whereas (a) is already well known as a highly nontrivial fact from the local
theory of Banach spaces, the proof of (b) hinges on another deep result involving an
alternative description of λ(M) given by the following formula:

λ(M) = sup {ν(M, Z); Z ∈ F D} .

Here F D denotes the class of all finite dimensional Banach spaces and ν(X, Z) is
given by

ν(M, Z) = sup {ν(A, M, Z); A ⊂ M} .

where ν(A, M, Z) is defined to be the infimum of all constants c > 0 such that each
g ∈ Lip(A, Z) admits an extension to f ∈ Lip(M, Z) such that

‖ f ‖Lip(M,Z) ≤ c‖g‖Lip(A,Z).

To prove the desired assertion, for each n > 0, choose a subspace Xn of X
according to (a). Thus there exists a linear isomorphism ϕ : �n

2 → Xn such that
‖ϕ‖‖ϕ−1‖ < 2. Fix ε > 0 and let A ⊂ �n

2. There exists E ∈ Ext(ϕ(A), Xn) such
that ‖E‖ < λ(ϕ(A), Xn) + ε. Consider the mappings ψ : Lip(Xn) → Lip(�n

2) and
L : Lip(A) → Lip(ϕ(A)) given by

�( f ) = f ◦ ϕ and L(g) = g ◦ ϕ−1|ϕ(A), f ∈ Lip(Xn), g ∈ Lip(A).

Then F given by F = � ◦ E ◦ L defines a linear map F : Lip(A) → Lip(�n
2) such

that
‖F‖ ≤ ‖�‖‖E‖‖L‖ ≤ ‖ϕ‖‖E‖‖ϕ−1‖ ≤ 2‖E‖.

Using the above estimates, we get

λ(A, �n
2) ≤ ‖F‖ ≤ 2‖E‖ < 2(λ(ϕ(A), Xn) + ε) ≤ 2(λ(Xn) + ε)

Letting ε → 0 gives λ(A, �n
2) ≤ 2(λ(Xn). Now it is easy to see that λ(A) ≤ cλ(B)

whenever A is a c-Lipschitz retract of B. Applying the latter assertion to (the 2-
Lipschitz retract) Xn(in X ), it follows that λ(Xn) ≤ 2λ(X). Combined with the
above estimate, this yields
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λ(X) ≥ 1

2
λ(Xn) ≥ 1

4
λ(A, �n

2).

Taking supremum over A ⊂ �n
2 and using (b), we get

λ(X) ≥ 1

4
λ(�n

2) ≥ c

4
n1/8.

Since n is arbitrary, it follows that λ(X) = ∞. Finally, the assertion that λ(X) < ∞
for finite dimensional Banach spaces is a famous result due to Whitney (see [29,
Chap.6.2.3]). �

The following definition will be found useful in what follows. Let us use the
symbol Lip0(X) for the subspace of Lip(X) consisting of those functions f such that
f (θ) = 0 for some distinguished point θ ∈ X. It turns out that Lip0(X) is a dual space
and so, there exists a Banach space, denoted I(X), such that I(X)∗ = Lip0(X). The
space I(X) shall be called the free Banach space over X . For notational convenience
and the fact that in what follows, we shall be dealing exclusively with the space
Lip0(X), we shall continue to use the symbol Lip(X) for the space Lip0(X) defined
above.

Remark 15 It turns out that for a Banach space X , we have λ(X) = λ(BX ). In
fact, using some well known techniques involving the so-called Gromov Hausdorff
distance between metric spaces, it can be shown [8] that for a subset S ⊂ M, the
equality: λ(S) = λ(M) holds provided there exists a bi-Lipschitz map δ : M → M,

with the following properties:

(i) S ⊂ δ(S)

(ii) ∪∞
i=0δ

i (S) is dense in M .
(iii) The linear map � : Lip(M) → Lip(M) defined by �( f )(x) = f (δ(x)), x ∈

M satisfies
‖�‖‖�−1‖ = 1.

Indeed, for the case of M being a Banach space X , the choice of S = BX and of δ
given by δ(x) = 2x satisfies (i)–(iii) above and so yields the equality λ(X) = λ(BX )

as desired.
Combined the last assertion with Theorem 14, it follows that for an infinite dimen-

sionalBanach space X ,we haveλ(BX∗) = ∞.Nowchoosing X to be separable yields
a compact metrizable spaces M = BX∗ (in the weak∗-topology) for which, however,
it is not clear if λ(M) = ∞.On the other hand, there are examples of compact metric
spaces I(M) for which the Lipschitz free space (M) lacks theλ-bounded approxima-
tion property (λ-BAP) (See [14]). Interestingly, it turns out that these two properties
are closely related. In fact, for compact metric spaces M , the condition λ(M) < ∞
leads to the Lipschitz free space I(M) having BAP. The latter statement is a conse-
quence of the following uniform extension phenomenon characterising λ-BAP. (See
Godefroy [15]).
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Theorem 16 For a compact metric space M, TFAE:

(i) The space I(M) has λ-BAP.
(ii) There exists a sequence εn > 0 with εn → 0 such that for some sequence (Mn)n

of finite εn-dense subsets of M, there exist operators ψn : Lip(Mn) → Lip(M)

with ‖ψn‖ ≤ λ and ‖Rnψn − I‖L ,∞ → 0, where Rn is the restriction operator
to Mn, Rn : Lip(M) → Lip(Mn) and ‖T ‖L ,∞ denotes the norm of an operator
T acting on the domain space being equipped with the Lipschitz norm and the
range space with the uniform norm.

Noting that the finiteness of λ(M) implies condition (ii) of the above theorem,
the following question is natural:

Question: For a compact metric space M such that I(M) has λ-BAP, does it follow
that λ ≤ λ(M) < ∞?

The abovequestionwas explicitly posedbyGodefroy in [15].We feel the answer to
this question would turn out to be negative if the question mentioned in the paragraph
preceding Theorem 16 had an affirmative answer. In other words, we have

Question: Is it true that λ(M) = ∞, where M is the closed unit ball of the dual of
an infinite dimensional Banach space equipped with the weak∗-topology.

We conjecture that the answer is in the affirmative. Prof. A Brudnyi surmises the
assertion to be valid in the more general case of infinite dimensional compact metric
spaces.

(b) As opposed to the existence or otherwise of extension operators involving
spaces of Lipschitzmaps on (domains in)metric spaces, the famousDugundji–Tietze
theorem guarantees the existence of extension operators in the context of spaces of
continuous functions defined on closed subspaces of metric spaces. However, for
nonmetrizable spaces, such an extension operator may not exist. In a recent work,
A. Aviles andW.Marciszweski [3] show that there exist subsets S of the unit ball BH

of a nonseparable Hilbert space H which do not admit an extension operator from
C(S) to C(BH ).

4 Lipschitz Analogue of Injectivity

In the category of Banach spaces, the class of injective Banach spaces and the class of
Hilbert spaces are in a certain sense dual to each other and intersect precisely in finite
dimensional spaces. As seen in the previous section, many of the linear properties
of Hilbert spaces lend themselves to a suitable nonlinear analogue. We shall soon
discover that it is possible to push this analogy further in the context of injective
Banach spaces and characterise them in terms of Lipschitz maps.

Definition 17 A Banach space X is said to be injective if for each Banach space Z ,
each X -valued bounded linear map from any subspace of Z extends to a bounded
linear map on Z .
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Comments:

(i) It is not difficult to see that injectivity of aBanach space X implies the existence of
λ ≥ 1 such that X is λ-injective, i.e., each X -valued continuous linear mapping
f on any subspace of a given Banach space can be extended to a continuous
linear map g on the whole space such that ‖g‖ ≤ λ‖ f ‖. Thus, each injective
Banach space is λ-injective for some λ ≥ 1. A complete characterisation of 1-
injective Banach spaces is given in the following theorem of Nachbin, Goodner,
Hasumi and Kelley.

Theorem 18 (See [1, Chap. 4]) A Banach space X is (isometrically) injective if and
only if it is linearly isometric with C(K ) for some compact Hausdorff space K which
is extremally disconnected (i.e., each open set in K has an open closure).

(ii) It is easy to check that a Banach space X is injective if and only if it is comple-
mented in any larger Banach space.

Following is the Lipschitz analogue of the above characterisation of 1-injectivity.

Theorem 19 For a Banach space X, TFAE:

(i) X is 1-injective.
(ii) X is hyperconvex.

(iii) X is a 1-absolute Lipschitz retract.

Hyperconvexity as referred to in the above theorem is to be understood in the
following sense.

Definition 20 A metric space X is said to be hyperconvex (in the sense of
Aronszajn and Panitchpakdi [2]) if ∩i∈� B(xi , ri ) �= ∅ for any collection {xi }i∈�

in X and {ri }i∈� ⊂ R
+ such that d(xi , x j ) ≤ ri + r j , ∀i, j ∈ �.

For normed spaces, the above condition is easily seen to be equivalent to the
binary intersection property (BIP).

Remarkably, the above characterisation also holds for metric spaces X which are
1-injective in the sense of Banach spaces except that in the metric setting, what we
are seeking is the extendability of X -valued 1-Lipschitz mappings on any metric
space to a Lipschitz map on any larger metric space with the same Lipschitz norm.
Equivalently, X is a 1-Lipschitz retract of any metric space containing it, or in other
words, X is a 1-absolute Lipschitz retract. Also, the result no longer holds for λ—
injectivity as long as λ > 1—the space c0 is well known to be a 2-absolute Lipschitz
retract which is not 2-injective. In any case, it turns out that X being a λ-absolute
Lipschitz retract implies that X∗∗ is λ-injective. A proof of this assertion follows
from Theorem 9 of Section B as shown in a recent work of the author [28].

The following useful theorem guarantees the existence of an extension operator
from the space of Lipschitz functions on a certain class of Banach spaces to that on
their superspaces. More generally, we have
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Theorem 21 Let X be a Banach space which is an absolute Lipschitz retract, i.e.
there exists a Lipschitz retract onto X of any Banach space Z containing X as a
subspace. Then for each Banach space Y , there exists a continuous linear extension
operator from Lip(X, Y ) to Lip(Z , Y ).

The easy proof follows bymapping S ∈ Lip(X, Y ) to ST ∈ Lip(Z , Y )where T is
a Lipschitz retraction of Z onto X . Further, it follows fromTheorem 9 that a subspace
which is a Lipschitz retract of a larger Banach space is locally complemented in it.
Also the question regarding the existence of a locally complemented subspace which
is not a Lipschitz retract of the ambient space is intimately connectedwith the famous
open problem whether a Banach space is a Lipschitz retract of its bidual (see [7, p.
183]).

With the definition of absolute Lipschitz retract being as given above, it would be
interesting to explore the �2-analogue of this definition—i.e. Y = �2—and ask for
the description of Banach spaces Z such that the extendability of �2-valued Lipschitz
mappings on Z to larger Banach spaces could be effected within a uniform bound
on the Lipschitz norm of the extended map. The linear counterpart of this situation
is provided by the following theorem which characterises such Banach spaces Z as
those which are Hilbert–Schmidt, in the sense that each bounded linear map acting
on a Hilbert space is a Hilbert–Schmidt map as soon as it factors over Z .

Theorem 22 ([23]) For a Banach space Z, the following are equivalent:

(i) A bounded linear map on Z into �2 extends to a bounded linear map on any
superspace of Z.

(ii) Z is a Hilbert-Schmidt space.

The search for Banach spaces Z for which property (i) of Theorem 22 holds
for Lipschitz maps remains elusive. We conclude this section with the following
conjecture:

Conjecture: Given a Banach space Z , the Lipschitz free space I(Z) is a Hilbert
Schmidt space if (and only if) each �2-valued Lipschitz map on Z extends to a
Lipschitz map on any Banach space containing Z .

Comments (iv): Part of the programme involving the search for a suitable Lipschitz
analogue of a linear phenomenon in Banach space theory seeks to propose and
devise a satisfactory theory of well known operator ideals of linear operators in
Banach space theory, including in particular, the ideal of p-summing maps in the
Lipschitz setting. The success story surrounding recent breakthroughs in Banach
space theory has been due in no small measure to the decisive role played by the
theory of p-summing maps in linear theory. In recent years, several approaches have
been proposed to the idea of a polynomial/Lipschitz analogue of p-summing maps
and their relatives including a Lipschitz variant of Grothendieck’s theoremwhich has
been proved for Lipschitz maps defined on the so called weighted metric trees. This
has been made possible by extending the theory of p-summing maps to Lipschitz
p-summing maps acting between metric spaces, in tune with the general philosophy
that the numerical quantities associated with the linear structure of Banach spaces
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lend themselves to an appropriate analogue in the metric space setting. The theory of
type and cotype which has witnessed such a far reaching influence even beyond the
frontiers of Banach space theory has been successfully employed in the metric space
setting—thanks to the seminal work of Mendelson and Naor [24] and Keith Ball [4]
in this direction. This has led to a remarkable breakthrough involving the discovery
of a nonlinear analogue of the famous Maurey Extension Theorem in the framework
of metric spaces [4]. However, the picture is far from satisfactory in the nonlinear
setting as can be testified by a whole lot of problems that continue to remain open
in this area of research. We isolate but two of them as they are crucial to a possible
resolution of the conjecture proposed above. In the following, the symbol �Lip

2 shall
denote the class of Lipschitz 2-summing maps.

Problem 1 Is it true that a Banach space X is Hilbert Schmidt if and only if

Lip(X, �2) = �
Lip
2 (X, �2)

An important ingredient of an approach to the proof of the above problem would be
provided by an affirmative solution to the following problem.

Problem 2 To what extent do the Banach space properties of a Banach space X
carry over to the free space I(X) over X? In particular, does it follow that for X
being a Hilbert Schmidt space X , it follows that the free space I(X) is also a Hilbert
Schmidt space?

C. Lipschitz compact maps: The study of compact linear maps acting between
Banach spaces is an old and a thoroughly investigated theme in functional analysis.
An important outcome of this line of research has been the extent to which it has
become possible to capture the structure/geometry of a Banach space in terms of the
coincidence of the class of compact maps acting on or into themwith other classes of
maps encountered in functional analysis. An important example of this phenomenon
is furnished by a well known theorem of Davis, Figiel, Johnson and Pelczynski [10]
which characterises weakly compact linear maps precisely as those that factor over
a reflexive Banach space. The nonlinear counterpart of this assertion is a recent
development in this area that characterises weakly compact Lipschitz maps exactly
as in the linear setting. But first a definition.

Definition 23 (see [16]) Given a map f : M → X acting on a metric space M and
taking values in a Banach space X , its Lipschitz image is defined to be the set Lim( f )

given by

lim( f ) =
{

f (x) − f (y)

d(x, y)
, x, y ∈ X, x �= y

}
.

It is clear that for linear maps acting between normed spaces, lim( f ) coincides
with the image of the unit ball under f . This motivates the following definition of a
Lipschitz (weakly) compact map.
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Definition 24 (see [17]) With the setting of the above definition and a distin-
guished point θ ∈ M, the map f : M → X with f (θ) = 0 is said to be Lipschitz
weakly(compact) if lim( f ) is a (weakly) relatively compact subset of X .

Comments:

(i) It is clear that for linear maps acting between Banach spaces, the notions of
Lipschitz (weak) compactness and (weak) compactness coincide.

(ii) There is a canonical isometric embedding eM : x → δx of M intoI(M),where δx

is defined by: δx ( f ) = f (x), f ∈ Lip0(M, X). This makes it possible to define
a (unique) map T f : I(M) → X—the linearisation of the given Lipschitz—such
that T f ◦ eM = f . Further, it can be shown that f is Lipschitz (weakly) compact
if and only if T f is a (weakly) compact linear map.

We have the following theorem.

Theorem 25 (see [17]) With M and X as given above, a Lipschitz map f : M → X
is weakly compact if and only if it factors over a reflexive Banach space: there exist
a reflexive Banach space Z, a bounded linear map h : Z → X and a Lipschitz map
g : M → Z such that h ◦ g = f .

Epilogue

The linear theory of Banach spaces which has witnessed spectacular success over
the past several decades has, in recent years, lent itself to extensive research from
a variety of new points of view that include (a) quantisation of the classical theory
of Banach spaces (b) polynomial variants of linear theory of Banach spaces and
most importantly (c) Lipschitz classification of Banach spaces. It turns out that, at
least in most cases of interest, the linear theory of Banach spaces is captured to an
appreciable extent by their Lipschitz structure as is testified by a whole lot of results
discussed in the previous paragraphs. The well known but a highly nontrivial fact
due to Enflo (see [7, Chap. 10]) already mentioned in the introduction - that a Banach
space which is Lipschitz (or even uniformly) homeomorphic to a Hilbert space is
also linearly homeomorphic to it shows how the linear structure of a Banach space is
closely tied up its metric (uniform) structure. Let us also mention that in recent years,
a great deal of effort has been invested in investigating Lipschitz analogues of various
notions and results from the linear theory that include, in particular, the notions of
numerical range, numerical index, Daugavet property etc. which coincide with their
counterparts in the linear setting, as it indeed should be. An important open problem
belonging to this circle of ideas concerns the equality of the (linear) numerical index
of a Banach space with the Lipschitz numerical index, even as the equality of these
numerical parameters has been verified for a wide class of Banach space that include
finite dimensional spaces, Hilber spaces, and more generally for L p-spaces on a
σ-finite positive measure space (�,�) with � being countably generated and the
class of separable Banach spaces with the Radon Nikodym property (See [30] for a
comprehensive account on this line of research). Very recently (arXiv:1601.07821v1
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[math.FA]), efforts have been initiated to investigate the Lipschitz variants of the
Bishop-Phelps phenomena involving the structure of norm attaining maps on a given
Banach space.
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Some Results on Fixed Points of Weak
Contractions for Non Compatible Mappings
via (E.A)-Like Property

T. Som, A. Kundu and B.S. Choudhury

Abstract In the present work we have established common fixed point results for
non compatible mappings satisfy some weak contractions in metric spaces extend-
ing the works of Pathak et al. FILOMAT 21(2):211–234, 2007, [31], Babu and
Alemayehu, J. Adv. Res. Pure Math. 2(2), 89–106, 2010, [7] and others in turn. The
results are based on the newly introduced (E.A) like properties and common (E.A)-
like properties in metric spaces, the initial version of which was introduced by Aamri
and Moutawakil in 2002.

Keywords R-weakly commuting · Occasionally weakly compatible · Weak con-
traction · Control functions · E.A. Like property
AMS Subject Classification 47H10 · 54H25

1 Introduction and Mathematical Preliminaries

In fixed point theory we are always concerned with finding a set of sufficient con-
ditions for the mappings and the spaces concerned, which guarantee a fixed point
or a common fixed point result. Common fixed point theorems for contractive type
mappings necessarily require a commutativity or a variant condition, a condition on
the ranges of the mappings, continuity of one or moremappings besides a contractive
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condition. And every significant fixed point or common fixed point theorem attempts
to weaken or obtain a necessary version of one or more of these conditions [5, 6, 17,
18, 28, 29]. By weakening or adding different conditions, several authors have gen-
eralized Banach’s contraction mapping principle in different directions in the context
of metric spaces [1, 9, 26, 35]. The notion of weakly commuting maps was initiated
by Sessa [34]. Jungck [19] gave the concept of of compatible maps and showed that
weakly commuting mappings are compatible, but converse is not true. Junck [20]
further weakened the notion of compatibility by introducing weak compatibility. Of
course weakly compatible mapping need not be compatible and several fixed point
theorem has been deduced with out appeal of continuity.

However, on the other hand the study of common fixed points of noncompatible
mappings is also very interesting [3]. Work along these lines has recently been
initiated by Pant [27] by introducing point wise R-weakly commuting mappings.
There are examples of noncompatible maps among pairs of mappings which are
discontinuous at their common fixed point [30].

The mappings f and g are said to be noncompatible if there exists a sequence
{xn} in X such that for some t in X but lim

n→∞d( f gxn, g f xn) is either non-zero or

non-existent.
The following are some essential concepts for our discussion in this paper.

Definition 1.1 Let X be a set and let f, g be two self mappings of X . A point x in
X is called a coincidence point of f and g iff f x = gx . We shall call w = f x = gx
a point of coincidence of f and g.

Definition 1.2 (Weakly compatible mappings) [20] Two mappings f, g : X → X,
where (X, d) is a metric space, are said to be weakly compatible if they commute at
their coincidence points, that is, if f t = gt for some t ∈ X implies that f gt = g f t .

Definition 1.3 ([27]) Two selfmaps f and g on a metric space (X, d) are called
point wise R-weakly commuting if given x in X there exists R > 0 such that

d( f gx, g f x) ≤ Rd( f x, gx).

To generalise the notion of weakly compatible maps, in 2008, Al-Thagafi and
Shahzad [4] defined the concept of occasionally weakly compatible (owc) as men-
tioned below.

Definition 1.4 ([4]) Two self-maps f and g of a set X are occasionally weakly
compatible (owc) iff there is a point x in X which is a coincidence point of f and g
(i.e., f x = gx) at which f and g commutate (i.e., f gx = g f x).

Lemma 1.1 ([21]) Let X be a set, f, g are owc self-mappings of X. If f and g have
a unique point of coincidence, w = f x = gx, then w is the unique common fixed
point of f and g.

Remark Every pair of weakly compatible maps is occasionally weakly compatible,
but its converse need not be true [4].
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Two weakly compatible mappings having coincidence points are occasionally
weakly compatible. In [2], it was shown that the converse is not true.

In 2002, Aamri and Moutawakil [1] generalized the notion of non compatible
mapping in metric space by introducing the concept of (E.A) property and imposing
it they settle down the general commutativity condition to the commutativity con-
dition at a point of coincidence without apple of continuity of a mappings. we also
notice that (E.A) property minimizes the commutativity conditions of the maps to
the commutativity at their points of coincidence. More-over, (E.A) property allows
replacing the completeness requirement of the space with a more natural condition
of closeness of the range. If f and g are both noncompatible then they do satisfy the
(E.A) property. The beauty of this property lies in the fact that it allows the construc-
tion procedure to get Cauchy sequence in a natural way. On the other hand the (E.A)
property enables us to study the existence of common fixed point of nonexpansive
or Lipschitz type conditions in the setting of noncomplete metric spaces.

Definition 1.5 [1, 8] Let f and g be two self-maps of a metric space (X, d). We say
that f and g satisfy the property (E.A) if there exists a sequence {xn} in X such that

lim
n→∞ f xn = lim

n→∞gxn = z, for some z ∈ X.

Definition 1.6 [31] (Common (E.A) Property) Let A, B, S, T : X → X where
(X, d) is a metric space. Then the pair {A, S} and {B, T } are said to satisfy common
(E.A) property if there exist two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞T yn = lim

n→∞Byn = z for some z ∈ X.

Wadhwa et al. in [37] introduced the notion of (E.A)-like property in a fuzzy
metric space, by relaxing the containment condition of range spaces. Here we define
(E.A)-like property in a metric space.

Definition 1.7 Let f and g be two self-maps of a metric space (X, d). We say that
f and g satisfy the property (E.A.) Like property if there exists a sequence {xn} such
that

lim
n→∞ f xn = lim

n→∞gxn = z, for some z ∈ f X or gX, i.e., z ∈ f (X) ∪ g(X).

Definition 1.8 (Common (E.A)-like Property) Let A, B, S and T be self maps of a
metric space (X, d).Then the pairs (A, S) and (B, T ) said to satisfy common(E.A)-
like property if there exists two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞T yn = lim

n→∞Byn = z for z ∈ S(X) ∩ T (X) or z ∈ A(X) ∩ B(X).

Pathak, Rodrigues-Lopez and Verma [31] observed that ‘weak compatibility’
and ‘property (E.A)’ are independent of each other. Also it was shown by Babu
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and Alemayehu [7] that ‘occasionally weak compatibility’ and ‘property (E.A)’ are
independent to each other.

Role of (E.A)-like property in proving common fixed point theorems can be
concluded by following,

(1) if two mappings satisfy (E.A)-like property then they satisfy (E.A) property also
(2) (E.A)-like property relaxes the condition of containment of ranges and closeness

of the ranges which are necessary with (E.A) property.

Alber and Guerre-Delabriere in [5] suggested another way of generalization of
the Banach contraction principle by introducing the concept of weak contraction in
Hilbert spaces. Rhoades [33] has shown that the result which Alber et al. proved in
[5] is also valid in complete metric spaces. Particularly, in [13], Dutta and Choudhury
has proved a generalization different from that used by Rhoades [33]. Other weakly
contractive mappings and their generalizations and extensions in various space have
been discussed in several works some of which are noted in [10–19, 22–25, 32, 36,
38].

The purpose of this paper is to prove common fixed point theorems for generalised
weak contractions via (E.A)-like property in metric space. Here we extend the three
theorems to the case of non compatible mappings such that they mutually satisfy
the(E.A)-like- property without using the continuity requirement or the containment
of ranges and closeness of the ranges. So our work provides some new contributions
to the field of metric fixed point theory.

2 Main Results

In this section, we prove some common fixed point theorems for non compatible in
metric spaces where the functions mutually satisfy “(E.A)-like property”. Now we
prove the following theorem.

Theorem 2.1 Let f and g be two weakly compatible self mappings of a metric
spaces (X, d) and satisfy for all x, y ∈ X.

(a)

d( f x, f y) ≤ kmax(d(gx, gy), d( f x, gx), d( f y, gy), d( f x, gy), d( f y, gx)) for 0 ≤ k < 1
(2.1)

(b) if f and g have “(E.A)-like property” then f and g have a unique common fixed
point.

Proof Since f and g satisfy “(E.A)-like property” there exists a sequence {xn} in X
such that

lim
n→∞ f xn = lim

n→∞gxn = z for some z ∈ f X or gX. (2.2)
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Suppose that lim
n→∞ f xn = z ∈ gX, therefore, z = gu for some u ∈ X . Now we

prove that f u = gu. From (2.1) we get

d( f u, f xn) ≤ kmax(d(gu, gxn), d( f u, gu), d( f xn, gxn), d( f u, gxn), d( f xn, gu)) (2.3)

Taking the limit as n → ∞ in the above inequality and using (2.2) we get

d( f u, z) ≤ kmax(d(z, z), d( f u, z), d(z, z), d( f u, z), d(z, z))

d( f u, z) ≤ kd( f u, z).

Since k < 1, only we have d( f u, z) = 0, that is f u = z.
Therefore,

f u = z = gu. (2.4)

Since f and g are weakly compatible therefore from definition it follows,

f z = f gu = g f u = gz. (2.5)

Now we prove that f (z) = z. Suppose that f (z) �= z.
Then, from (2.1), we obtain

d( f z, f xn) ≤ kmax(d(gz, gxn), d( f z, gz), d( f xn, gxn), d( f z, gxn), d( f xn, gz)) (2.6)

Taking n → ∞, in the above two inequalities, using (2.5) we get

d( f z, z) ≤ kmax(d(gz, z), d( f z, gz), d(z, z), d( f z, z), d(z, gz)).

In view of (2.5), i.e., f z = gz the above inequality implies

d( f z, z) ≤ kd( f z, z).

Since k < 1, only we have z = f z.
Hence

z = f z = gz. (2.7)

That is z is a common fixed point of f and g. The uniqueness is easily followed
from the theorem.

Corollary Let f and g be two R-weakly commuting self mappings of a metric spaces
(X, d) and satisfy both the conditions (a) and (b) of Theorem 2.1 for all x, y ∈ X.
Then f and g have a unique common fixed point.

Theorem 2.2 Let A, B, S and T be self mappings of a metric spaces (X, d) and
satisfy for all x, y ∈ X
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(a)
ψ( d(Ax, By)) ≤ ψ( M(x, y)) − β(M(x, y)) + θ(N (x, y)) (2.8)

where

M(x, y) ∈ {d(Sx, T y), d(Ax, Sx), d(By, T y), 1
2 [d(Sx, By) + d(Ax, T y)]}

(2.9)
and

N (x, y) = min{d(Sx, T y), d(Ax, Sx), d(By, T y), d(Sx, By), d(Ax, T y)}
(2.10)

(i) ψ : [0,∞) → [0,∞) is a monotone non-decreasing function such that ψ(t) =
0 if and only if t = 0, called Altering distance function.

(ii) β : [0,∞) → [0,∞) is a lower semi continuous function satisfy β(t) = 0 iff
t = 0.

(iii) θ : [0,∞) → [0,∞) is a continuous function such that θ(t) = 0 if and only if
t = 0.

Also,

(b1) if the pairs (A, S) and (B, T ) satisfy common “(E.A)-like property”
(b2) both the pairs (A, S) and (B, T ) are Occasionally Weakly Compatible on X ,

then A, B, S and T have a unique common fixed point in X .

Proof Since the pairs (A, S) and (B, T ) satisfy common “(E.A)-like property” there-
fore there exists two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞T yn = lim

n→∞Byn = z (2.11)

where,
z ∈ S(X) ∩ T (X) or z ∈ A(X) ∩ B(X). (2.12)

First we assume that z ∈ S(X) ∩ T (X), then

lim
n→∞Axn = z ∈ SX that is, z = Su for some u ∈ X. (2.13)

Putting x = u and y = yn in (2.8) and using (2.9), (2.10) we have

ψ( d(Au, Byn)) ≤ ψ(M(u, yn)) − β(M(u, yn)) + θ(N (u, yn)) (2.14)

where

M(u, yn) ∈ {d(Su, T yn), d(Au, Su), d(Byn, T yn), 1
2 [d(Su, Byn) + d(Au, T yn)]}

(2.15)
and
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N (u, yn) = min{d(Su, T yn), d(Au, Su), d(Byn, T yn), d(Su, Byn), d(Au, T yn)}.
(2.16)

Taking n → ∞, in (2.15) and (2.16) respectively, and using (2.11), (2.13), we
obtain

lim
n→∞M(u, yn) ∈ {d(z, Au), 1

2d(Au, z)} (2.17)

and lim
n→∞N (u, yn) = 0. (2.18)

Now taking the limit infimum as n → ∞, in (2.14), and using (2.17) and (2.18)
and the properties of ψ,β and the fact that θ(0) = 0 we have,

lim
n→∞ inf ψ (d(Au, Byn)) ≤ lim

n→∞ inf ψ(M(u, yn)) − lim
n→∞ supβ(M(u, yn))

From the above inequality, for two different values of M(u, yn), only we have
d(z, Au) = 0, that is, z = Au = 0, hence

Au = z = Su. (2.19)

On the other hand as (B, T ) satisfy common “(E.A)-like property” then

lim
n→∞Byn = z ∈ T X that is, z = T v for some v ∈ X. (2.20)

Putting x = xn and y = v in (2.8) and using (2.9), (2.10) we have

ψ(d(Axn, Bv)) ≤ ψ(M(xn, v)) − β(M(xn, v)) + θ(N (xn, v)) (2.21)

where

M(xn, v) ∈ {d(Sxn, T v), d(Axn, Sxn), d(Bv, T v), 1
2 [d(Sxn, Bv) + d(Axn, T v)]}

(2.22)
and

N (xn, v) = min{d(Sxn, T v), d(Axn, Sxn), d(Bv, T v), d(Sxn, Bv), d(Axn, T v)}. (2.23)

Taking n → ∞, in (2.22) and (2.23) respectively, and using (2.11), (2.16), we obtain

lim
n→∞M(xn, v) ∈ {d(z, Bv)} (2.24)

and lim
n→∞N (u, yn) = 0. (2.25)

Now taking the limit infimum as n → ∞, in (2.21), and using (2.24), (2.25) and
the properties of ψ,β and the fact that θ(0) = 0 we have,

lim
n→∞ inf ψ ( d(Axn, Bv)) ≤ lim

n→∞ inf ψ(M(xn, v)) − lim
n→∞ supβ(M(xn, v)).
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From the above inequality we have β(d(z, Bv)) = 0, which implies d(z, Bv) = 0,
that is

Bv = z = T v. (2.26)

Since the pair (A; S) is owc, there exists u0 such that

Au0 = Su0 = u1 (2.27)

and

ASu0 = SAu0 = w1

i.e., Au1 = Su1 = w1. (2.28)

Again the pair (B; T ) is owc, then there exists v0 such that

Bv0 = T v0 = u2. (2.29)

And also satisfy

BT v0 = T Bv0 = w2

i.e., Bu2 = Tu2 = w2. (2.30)

We now show thatw1 = z = w2. Supposew1 �= z. Now using (2.8)–(2.10), (2.26)
and (2.28) we get

ψ(d(w1, z)) = ψ(d(Au1, Bv)) ≤ ψ(M(u1, v)) − β(M(u1, v)) + θ(N (u1, v))
(2.31)

where

M(u1, v) ∈ {d(Su1, T v), d(Au1, Su1), d(Bv, T v), 1
2
[d(Su1, Bv) + d(Au1, T v)]}

using (2.26) and (2.28) we have

M(u1, v) ∈ {d(w1, z)} (2.32)

again from (2.10)

N (u1, v) = min{d(Su1, T v), d(Au1, Su1), d(Bv, T v), d(Su1, Bv), d(Au1, T v)}

In view of (2.26), (2.28)
N (u1, v) = 0. (2.33)

Thus from (2.31) and using (2.32), (2.33) and the fact that ψ,β are continuous
and θ(0) = 0, we obtain
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ψ(d(w1, z)) ≤ ψ(d(w1, z)) − β(d(w1, z))

the above relation holds good only when β(d(w1, z)) = 0, that is w1 = z. Similarly
we can show that w2 = z.

Hence
w1 = z = w2. (2.34)

Therefore from (2.28) and (2.30), we get

Au1 = Su1 = Bu2 = Tu2 = z. (2.35)

Next we prove that u1 = u2. Suppose u1 �= u2.
Using (2.8)–(2.10) we have

ψ(d(u1, u2)) = ψ(d(Au0, Bv0)) ≤ ψ(M(u0, v0)) − β(M(u0, v0)) + θ(N (u0, v0))
(2.36)

where

M(u0, v0) ∈ {d(Su0, T v0), d(Au0, Su0), d(Bv0, T v0), 1
2 [d(Su0, Bv0) + d(Au0, T v0)]}

that is M(u0, v0) ∈ {d(u1, u2)} (2.37)

and

N (u0, v0) = min{d(Su0, T v0), d(Au0, Su0), d(Bv0, T v0), d(Su0, Bv0), d(Au0, T v0)}
i.e., N (u0, v0) = 0. (2.38)

From (2.36), using (2.37) and (2.38) we have,

ψ(d(u1, u2)) ≤ ψ(d(u1, u2)) − β(d(u1, u2)) + θ(0).

Hence using the properties of ψ,β and the fact that θ(0) = 0 we arrive at a
contradiction. Thus u1 = u2. Therefore,

Au1 = Su1 = Bu1 = Tu1 = z. (2.39)

That is z is a point of coincidence of A, B, S and T . To prove the uniqueness sup-
pose z1 and z2 (z1 �= z2) are two points of coincidences of A, B, S and T . Therefore
there exists u1 and u2in X such that

Au1 = Su1 = Bu1 = Tu1 = z1 and Au2 = Su2 = Bu2 = Tu2 = z2. (2.40)

From (2.8),
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ψ(d(z1, z2)) = ψ(d(Au1, Bu2)) ≤ ψ(M(u1, u2)) − β(M(u1, u2)) + θ(N (u1, u2))
(2.41)

where

M(u1, u2) ∈ {d(Su1, Tu2), d(Au1, Su1), d(Bu2, Tu2), 1
2 [d(Su1, Bu2) + d(Au1, Tu2)]}

∈ {d(z1, z2)} (2.42)

and

N (u1, u2) = min{d(Su1, Tu2), d(Au1, Su1), d(Bu2, Tu2), d(Su1, Bu2), d(Au1, Tu2)}
i.e., N (u1, u2) = 0. (2.43)

Hence, from (2.41), using (2.42), (2.43) and the properties of ψ,β and the fact
that θ(0) = 0, we get

ψ(d(z1, z2)) = ψ(d(Au1, Bu2)) ≤ ψ(d(z1, z2)) − β(d(z1, z2)) + θ(0)

< ψ(d(z1, z2))

which is a contradiction that is, z1 = z2. Hence z is a unique point of coincidence of
A, B, S and T .

Since z is a unique point of coincidence of A, B, S and T, then from (2.39) we
have,

Au1 = Su1 = Bu1 = Tu1 = z.

As, each of the pairs (A, S) and (B, T ) are occasionally weakly compatible, thus

Az = ASu1 = SAu1 = Sz = t1 (2.44)

and
Bz = BTu1 = T Bu1 = T z = t2 (2.45)

To prove the commonfixed point of A, B, S and T we show that t1 = z = t1. Suppose
t1 �= z. Then

ψ(d(t1, z)) = ψ(d(Az, Bu1)) ≤ ψ(M(z, u1)) − β(M(z, u1)) + θ(N (z, u1))
(2.46)

where

M(z, u1) ∈ {d(Sz, Tu1), d(Az, Sz), d(Bu1, Tu1), 1
2 [d(Sz, Bu1) + d(Az, Tu1)]}

∈ {d(t1, z)} (2.47)

and
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N (z, u1) = min{d(Sz, Tu1), d(Az, Sz), d(Bu1, Tu1), d(Sz, Bu1), d(Az, Tu1)}
i.e., N (z, u1) = 0. (2.48)

Hence, from (2.46), using (2.47), (2.48) and the properties of ψ,β and the fact
that θ(0) = 0, we get

ψ(d(t1, z)) = ψ(d(Az, Bu1)) ≤ ψ(d(t1, z)) − β(d(t1, z)) + θ(0)

< ψ(d(t1, z))

which is a contradiction. Hence we have t1 = z. Similarly we can prove that t2 = z.
Thus t1 = t2 = z. Therefore from (2.44) and (2.45)

Az = Sz = Bz = T z = z.

Then z is a common fixed point of A, B, S and T . As we prove earlier z is a unique
point of coincidence of A, B, S and T, therefore z is a unique common fixed point
of A, B, S and T . Hence the theorem.
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