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1 Introduction

The advent of high-throughput technology has revolutionized biological sciences in
the last two decades enabling experiments on the whole genome scale. Data from
such large-scale experiments are interpreted at system’s level to understand the
interplay among genome, transcriptome, epigenome, proteome, metabolome, and
regulome. This has enhanced our ability to study disease systems, and the interplay
between molecular data with clinical and epidemiological data, with habits, diet,
and environment. A disproportionate amount of data has been generated in the last
5 years on disease genomes, especially using tumor tissues from different subsites,
using high-throughput sequencing (HTS) instruments. Before elaborating the use of
HTS technology in generating cancer-related data, it is important to describe briefly
the history of DNA sequencing and the revolution of second and third generation of
DNA sequencers that resulted in much of today’s data deluge.

2 Sequencing Revolution

The history of DNA sequencing goes back to the late 1970s when Maxam and
Gilbert [1] and Sanger, Nicklen and Coulson [2] independently showed that a
stretch of DNA can be sequenced either by using chemical modification method or
by chain termination method using di-deoxy nucleotides, respectively. Maxam and
Gilbert’s method of DNA sequencing did not gain popularity due to the usage of
toxic chemicals and the di-deoxy chain termination method proposed by Professor
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Fred Sanger became the de facto standard and method of choice for researchers
working in the field of DNA sequencing. Many of the present-day high-throughput
next-generation sequencing methods (described later) use the same principle of
sequencing-by-synthesis originally proposed by Sanger. The pace, ease, and
automation of the process have since grown further with the advent of PCR and
other incremental, yet significant, discoveries including introduction of error-free,
high fidelity enzymes, use of modified nucleotides, and better optical detection
devices. It is essentially the same technology, first proposed and used by Fred
Sanger [2], with modifications that led to the completion of the first draft of the
Human Genome Project [3, 4] that ushered in a new era of DNA sequencing.

The idea behind some of the first generation high-throughput sequencing
(HTS) assays was to take a known chemistry (predominantly the Sanger’s
sequencing-by-synthesis chemistry) and parallelize the assay to read hundreds of
millions of growing chains of DNA rather than tens or hundreds as done with
capillary Sanger sequencing. The processes for HTS comprise mainly of four dis-
tinct steps, template preparation, sequencing, image capture, and data analysis
(Fig. 1). Different HTS platforms use different template preparation methods,
chemistry to sequence DNA, and imaging technology that result in differences in
throughput, accuracy, and running costs among platforms. As most imaging
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Fig. 1 Steps involved in HTS assays involving cancer patient samples and variant discovery,
validation and interpretation
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systems are not designed to detect single fluorescent events, clonal amplification of
templates prior to imaging is incorporated as a part of template preparation before
optical reading of the signal. In some cases, as in the case of single molecule
sequencing, templates are not amplified but read directly to give base-level infor-
mation. Some platforms are better suited than others for certain types of biological
applications [5]. For discovery of actionable variants in tumors, accuracy is more
important over all other parameters. Therefore, some HTS platforms are better
suited to study tumor genomes over others. However, as the cost per base goes
down, accuracy is increasingly achieved by higher coverage, thereby compensating
errors with higher number of overlapping reads. The first publications on the human
genome resequencing using the HTS system appeared in 2008 using pyrose-
quencing [6] and sequencing-by-synthesis using reversible terminator chemistry
[7]. Since that time, the field that has gained the most amount of information using
HTS platforms is cancer science. The discovery of novel DNA sequence variants in
multiple cancer types using HTS platforms along with the advances in analytical
methods has enabled us with the tools that have the potential to change the way
cancer is currently diagnosed, treated, and managed.

3 Primary Data Generation in Cancer Studies

Various steps involved in a typical high-throughput experiment involving cancer
tissue are depicted in Fig. 1. Briefly, when the patient is admitted in the hospital,
clinical, epidemiological and information on habits and previous diagnosis, and
treatment (if any) is recorded. Any study involving human subjects must be
preapproved by an institutional review/ethics board with informed consent from all
participants. Following this, analytes, full history of patients, including information
on habits, and previous diagnosis/treatment (if any) are collected. Then the patients
undergo treatment (surgery/chemoradiation) and the tumor tissue is collected and
stored properly till further use. Once the tumor/adjacent normal/blood is collected,
nucleic acids are isolated, checked for quality, and used in library/target preparation
for HTS or microarray experiments. Once the raw data is collected, the data is
analyzed by computational and statistical means before being integrated with
clinical and epidemiological features to come up with a set of biomarkers, which is
then validated in a larger cohort of patients.

4 High-Throughput Data

HTS platforms generate terabytes of data per instrument per run per week. For
example, the Illumina HiSeq 4000 can generate nearly 3 terabytes of data per run in
7 days (or >400 Gb of data per day). This pose challenges for data storage, anal-
ysis, sharing, interpreting, and archiving.
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Although there are many different HTS instruments in the market, the bulk of the
cancer data so far have been generated using the Illumina’s sequencing-by-synthesis
chemistry. Therefore, a detailed description is provided on the data size, types, and
complexity involved in cancer data generated by the Illumina instruments. Below is
a description of different data types, usually produced during the course of a cancer
high-throughput discovery study.

Despite the fact that the process of high-throughput data generation using Illu-
mina sequencing instruments has become streamlined, never-the-less, there are
inherent limitations on the quality of data generated. Some of the limitations are high
degree of errors in sequencing reads (making some clinical test providers sequence
up to 1000 × coverage or more per nucleotide to attain the requisite accuracy),
shorter sequencing reads (HiSeq series of instruments do not produce data with
longer than 150 nt read length), the assay not interrogating the low-complexity
regions of the genome, and higher per sample cost (to gain the requisite accuracy,
one needs to spend thousands of dollars per sample even for a small gene panel test).
Details on different data types generated by Illumina HiSeq instrument, their
approximate sizes and file type descriptions are provided in Table 1.

5 Primary Data Analysis

The cancer data analysis schema is represented in Fig. 2. First, the raw image data
from the sequencing instruments are converted into fastq format, which is con-
sidered as the primary data files for all subsequent analysis. Before analyzing the
data, the quality of the fastq files is checked by using tools like FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), or with in-house scripts to
reduce sequencing quality-related bias in subsequent analysis steps. Next,
sequencing reads are aligned against a reference sequence. Broadly, the alignment
tools fall into two major classes, depending on which of the indexing algorithm it
uses: (hash table-based or Burrows Wheeler transformation (BWT)-based). Some of
the commonly used alignment tools that use hash table-based approach are Bfast
[8], Ssaha [9], Smalt [10], Stampy [11] and Novoalign [12] and the ones that are
BWT-based are Bowtie [13], Bowtie2 [14], and BWA [15]. BWA is the most
widely used aligner by the research community. Lately, many of the alignment
programs are made parallel to gain speed [16–19]. Most aligners report the results
of the alignment in the form of Sequence Alignment/Map (SAM, and its binary
form the BAM) format [20] that stores different flags associated with each read
aligned. Before processing the aligned files for calling single (SNVs)—and/or multi
(indels)—nucleotide variants, copy number variants (CNVs), and other structural
variants (SVs), a few filtering, and quality checks on the SAM/BAM files are
performed. These include removal of duplicates and reads mapped at multiple
locations in the genome, realigning reads with known Indels, and recalibrating base
quality scores with respect to the known SNVs. Once the SAM/BAM files are
checked for quality, the files are used for variant calling. Although there are
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multiple tools for calling variants, the widely used popular one is the genome
analysis toolkit (GATK) [21, 22] developed at the Broad Institute, USA. GATK
implements variant quality score recalibration and posterior probability calculations
to minimize the false positive rates in the pool of variants called [22]. Variants are
stored in a file format called variant call format (VCF), which is used by various
secondary and tertiary analysis tools. Another commonly used file format for cancer
data analysis is called mutation annotation format (MAF), initially made to analyze
data coming out from the cancer genome atlas (TCGA) consortium. The MAF
format lists all the mutations and stores much more information about the variants
and alignment than the VCF files.

Table 1 Different types of cancer data generated from a typical Illumina sequencing instrument
and their descriptions.

Data types Description

Raw data ∙ Multiple instruments, from multiple vendors and produced by multiple
scientists
∙ Produced as image data and never leaves the primary instrument that drives
the sequencing instruments
∙ Image data (in multi-terabytes) are automatically discarded after the initial QC
∙ Image files are converted to base call files (BCL) after the initial QC and
transferred to a server for further analyses

Primary
data

∙ Usable data that is derived from raw data and serves as the first-level primary
data for all subsequent analyses
∙ Usually in the form of fastq files
∙ Usually kept for 3–5 years depending on the project duration and complexity
before being archived
∙ A single fastq file size can vary anywhere between 5–15 Gb (for a 50 MB
human exome at 50–100X) to 200–350 Gb (for a 30–50X whole human
genome)

Secondary
data

∙ The fastq files are aligned to a reference genome and kept as aligned file
(SAM/BAM format)
∙ A single SAM/BAM file can vary in size (2–5 GB in size for a single 50 MB
human exome at 50–100X).

Tertiary
data

∙ Files produced after the variant calls are made (in most cases VCF files)
∙ Usually vary in size (40–250 Mb for a 50 MB human exome data with
50–100X coverage)
∙ Kept for selected project-specific files for up to a year and then archived

Final results ∙ Amalgamated with other data types from multiple instruments
∙ Used in publication
∙ Between 10Mb - Gb in size depending on the data type for each sample
∙ Kept for a very long time
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6 Secondary Data Analysis

Before secondary analysis, usually the PASS variants produced by GATK (standard
call confidence >= 50) within specific genomic bait (used in exome or gene panels)
are filtered and taken for further use. Tumor-specific variants are detected by fil-
tering out the variants found in its corresponding/paired normal sample. During this
process of calling tumor-specific variants, sequencing reads representing a partic-
ular variant in a tumor sample that have no corresponding reads in matched normal
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Fig. 2 Cancer data analysis schema
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in the same location are ignored (using the callable filter of the variant caller). Then
common SNPs (found in the normal population) are filtered out using a list of
variants found in the databases like dbSNP and 1000 genome project. Therefore,
only variants that are represented by sequencing reads both in tumor and its mat-
ched normal samples are considered. Optimization methods/workflows have been
designed to analytically access the best combination of tools (both alignment and
variant calling) to increase the sensitivity of variant detection [23]. The sensitivity
of the alignment and variant calling tools are usually assessed by a set of metrics
like aligner and variant caller-specific base quality plots of the variants called,
transition/transversion (Ti/Tv) ratios, and SNP rediscovery rate using microarrays
[23]. Further cross-contamination in tumor samples are assessed using tools like
ContEst [24]. Searching variants against the known cancer-specific variants in
databases like COSMIC [25–27] is the first step to find out whether the variant/gene
is unique/novel or have been found in the same or other cancer types previously.
There are cancer-specific tools to perform annotation and functional analysis. The
common annotation tools are ANNOVAR [28] and VEP [29]. CRAVAT [30]
provides predictive scores for different types of variants (both somatic and germ-
line) and annotations from published literature and databases. It uses a specific
cancer database with the CHASM analysis option. Genes with a CHASM score of a
certain value are considered significant for comparison with other functional
analyses. IntoGen [31], MutSigCV [32], and MuSiC2 [33] are other tools that are
used for annotation and functional analyses of somatic variants.

7 Data Validation, Visualization, and Interpretation

Once annotated, the cancer-specific genes are validated in the same discovery set
and also using a larger set of validation samples. Validation is largely done using
either an orthologous sequencing method/chemistry, mass-spec-based mutation
detection methods, and/or using Sanger sequencing technique. Finally the validated
variants are mapped to pathways using tools like Graphite Web [34] that employs
both the topological and multivariate pathway analyses with an interactive network
for data visualizations. Once the network of genes is obtained, the interactions are
drawn using tools like CytoScape [35–37]. Variants can also be visualized by using
Circos [38], a cancer-specific portal like cbio portal [39] or with a viewer like the
integrative genomics viewer (IGV) [40]. Finally, the genes that are altered in a
specific cancer tissue are validated using functional screening methods using
specific gene knockouts to understand their function and relationship with other
genes.
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8 High-Throughput Data on Human Cancers

The current projects on cancer genomics are aimed to produce a large amount of
sequence information as primary output and information on variant data (somatic
mutations, insertions and deletions, copy number variations and other structural
variations in the genome). In order to analyze the large amount of data,
high-performance compute clusters (HPC) with large memory and storage capacity
are required. Additionally, higher frequency, high-throughput multi-core chips
along with the ability to do high-volume data analysis in memory are often
required. Due to the sheer number of files, and not just the size of the files, that need
to be processed, the read/write capability is an important parameter for sequence
analysis. For effective storage and analysis of sequencing and related metadata,
network access storage systems, providing file-level access, are recommended.
Additionally, there is a need for an effective database for data organization for easy
access, management, and data update. Several data portals, primarily made by the
large consortia are developed. Prominent among them are: The Cancer Genome
Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/) data portal; cbio data portal [39]
(developed at the Memorial Sloan-Kettering Cancer Center, http://www.cbioportal.
org); the International Cancer Genome Consortium (ICGC) data portal (https://dcc.
icgc.org); and the Sanger Institute’s Catalogue of Somatic Mutations in Cancer
(COSMIC) database [25] portal (http://cancer.sanger.ac.uk/cosmic).

Although biological databases are created using many different platforms, the
most common among them are MySQL and Oracle. MySQL is more popular
database because of its open source. Although the consortia-led efforts (like TCGA
and ICGC) have resulted in large and comprehensive databases covering most
cancer types, the sites are not user-friendly and do not accept external data for
integration and visualization. Therefore, efforts like cbio portal (http://www.
cbioportal.org) are required to integrate data and user-friendly data search and
retrieval. However, such efforts have to balance keeping in mind the cost and time
required versus usability and additional value addition from the new database. The
common databases use software systems known as Relational Database Manage-
ment Systems (RDBMS) that use SQL (Structured Query Language) for querying
and maintaining the databases. MySQL is a widely used open source RDBMS.
Although most biological database uses MySQL or other RDBMS, it has its lim-
itations as far as large data is concerned. First, big data is assumed to come in
structured, semi-structured, and unstructured manner. Second, traditional SQL
databases and other RDBMS lack ability to scale out a requirement for databases
containing large amount of data. Third, RDBMS cannot scale out with inexpensive
hardware. All these make RDBMS unsuitable for large data uses. This is primarily
filled by other databases like NoSQL that are document-oriented graph databases
that are non-relational, friendly to HPC environment, schema-less, and built to scale
[41]. One of the important parameters in a database is the ability to take care of
future increase in data size and complexity (Fig. 3), therefore having an ability to
scale in both these parameters. Although it is a good idea to think of databases that

266 B. Panda

https://tcga-data.nci.nih.gov/tcga/
http://www.cbioportal.org
http://www.cbioportal.org
https://dcc.icgc.org
https://dcc.icgc.org
http://cancer.sanger.ac.uk/cosmic
http://www.cbioportal.org
http://www.cbioportal.org


have the ability to scale out, and accommodate variety and volume of future data
increase, due to simplicity and ease of use, most small labs stick with MySQL
database that uses variety of data, commonly used middleware and web server, and
browser for data retrieval and visualization.

9 Large-Scale Cancer Genome Projects

Advances in technology have fuelled interest in the cancer research community that
has resulted in several large publicly funded consortia-based efforts to catalogue
changes in primary tumors of various types. Some of the notable and prominent
efforts in this direction are, The Cancer Genome Atlas (TCGA) project (http://www.
cancergenome.nih.gov/), the International Cancer Genome Consortium (ICGC)
project (https://icgc.org) [42], the Cancer Genome Project (http://www.sanger.ac.
uk/genetics/CGP/), and the Therapeutically applicable Research to Generate
Effective Treatments (http://target.cancer.gov/) project. The National Cancer Insti-
tute (NCI) and the National Human Genome Research Institute (NHGRI) of USA
initially launched the TCGA as a pilot project in 2006 even before the first human
resequencing work using HTS platforms was published. The TCGA effort plans to
produce a comprehensive understanding of the molecular basis of cancer and
currently has grown to include samples from more than 11,000 patients across 33
different cancer types. The ICGC is an international consortium that plans to obtain
a comprehensive description of various molecular changes (genomic, transcrip-
tomic and epigenomic) in 50 different tumor types and/or subtypes. ICGC currently
has participants from 18 countries studying cancer samples from more than 12000
donors on 21 tumor types. All the consortia projects are producing substantial
resource for the wider cancer research community.

Till date, HTS data on several cancer types have been generated and data analysis
confirmed the presence of somatic mutations in important genes, significant changes
in gene/miRNA expression, hyper- and hypo-methylation in gene promoters, and
structural variations in the cancer genomes [32, 43–66]. Additionally, comparative
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Fig. 3 Two important parameters of big data and the place for an ideal database
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analysis of different analytical tools have been published for cancer data analysis
[23, 67–83]. Pan-cancer analyses projects have also have come up with specific and
shared regions among different cancer types [32, 65, 84–88].

10 Cancer Research-Specific Challenges

There are challenges related to HTS assays using tumor tissues. For a HTS assay to
have clinical utility, several challenges need to be overcome. The challenges can be
clinical, technical, biological, statistical, regulatory, and market-related and are
outlined in Table 2.

Clinical challenges: First among the clinical challenges is related to sample
quantity. For retrospective studies to be meaningful, assays must be robust to use
nucleic acids derived from formalin-fixed paraffin-embedded (FFPE) tissues. Tissue
sections extracted are not often big to yield sufficient quantity of nucleic acids that
can be used for sequencing, and validation studies even with the newer assays that

Table 2 Challenges of making high-throughput assays, especially sequencing-based assays,
meaningful in clinics

Type of
challenge

Issues

Clinical ∙ Sample quantity from tissue biopsies
∙ Sample quality (FFPE tissue, chemical-crosslinking, etc.)
∙ Tumor heterogeneity

Biological ∙ Background somatic mutation (needle in a haystack problem)
∙ Varying mutation rate
∙ Finding the right matched normal
∙ Lack of proper controls for data assessment

Technical ∙ Sequencing error rate
∙ Repeats in the genome
∙ Read length
∙ Stretch of homopolymers in the genome
∙ Regions of low-complexity in the genome
∙ Nucleotide composition

Statistical ∙ Large sample number requirement to catch somatic mutations at low
frequency

Regulatory ∙ Lack of standards for clinical evaluation
∙ Lack of controls to judge sequencing and variant calling error and
accuracy
∙ Lack of proper regulatory guidelines

Market-related ∙ Price
∙ Competition
∙ Acceptability
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use only tens of nanograms of nucleic acids as starting material. Even if one
manages to get enough nucleic acids from the FFPE tissues, the quality of nucleic
acids extracted is not the best of quality and is often fragmented. Additionally,
chemical modifications like the presence of cross-links and depurination and the
presence of certain impurities in the FFPE-extracted DNA make them less amen-
able to alterations required for high-throughput assays. Therefore, FFPE-extracted
DNA can have a stronger influence on the HTS assays. Cancer tissues are
heterogeneous [32, 89] and in certain cases extremely heterogeneous (for example
in pancreatic adenocarcinoma) that cautions overinterpreting HTS data from a lump
of tumor tissue as shown in metastatic renal-cell carcinoma [90]. Therefore, in
heterogenous tumors, the mutational burden may be underestimated. Studying
such intra-tumor heterogeneity may aid the case for combination therapeutic
approaches in cancer [91]. Analytical methods have been devised in the past to
detect tumor heterogeneity [73, 92, 93].

Biological challenges: The next challenge is biological where finding somatic
mutations, especially, those present at very low frequency, among the sea of normal
background is really difficult. The use of a matched normal sample for cancer
sequencing is essential to find somatic variants but, at times, the matched normal
tissue might be hard to get and therefore, variants found in lymphocytes from the
same patients are often used as normal samples. Another problem in sequencing
tumor tissue DNA is cross-contamination. Analytical tools have been developed to
detect the level of cross-contamination in tumor tissues from both sequencing and
array data [24, 94]. To overcome both the heterogeneity and the
cross-contamination issue, the best way is to perform DNA/RNA sequencing
derived from a single tumor cell. Single-cell genomics is likely to help and improve
detection, progression, and prediction of therapeutic efficacy of cancer [95]. Several
reports have been published on single-cell sequencing of different cancers and
analytical tool development to analyze data from a single tumor cell [96–108].
Although the problem of heterogeneity is overcome with single-cell sequencing, the
fundamental questions may still linger, i.e., how many single cells have to be
sequenced and if the signature is different in different single tumor cells. Addi-
tionally, there are limitations to the current protocols for isolation of single tumor
cells and the inaccuracies involved in whole genome amplification of genomic
DNA derived from a single cell. Therefore, capturing minute amounts of genetic
material and amplifying them remain as one the greatest challenges in single cell
genomics [109, 110].

Technical challenges: The third type of challenge is related to technical issues
with current generation of sequencing instruments. Depending on the instrument in
use, there could be an issue related to high error rate, length of the read,
homopolymer stretches, and GC-rich regions in the genome. Additionally, accurate
sequencing and assembling correct haplotype structures for certain regions of the
genome, like the human leukocyte antigen (HLA) region, are challenging due to
shorter read lengths generated in second generation DNA sequencers, presence of
polymorphic exons and pseudogenes, and repeat rich region.
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Statistical challenges: One of the biggest challenges to find driver mutations in
cancer is related to sample number. Discovering rare driver mutations in cancer is
extremely challenging, especially when sample numbers are not adequate. This,
so-called, “the long tail phenomenon” is quite common in many of the cancer
genome sequencing studies. Discovering rare driver mutations (found at 2 % fre-
quency or lower) requires sequencing a large number of samples. For example, in
head and neck cancer, imputations have shown that it will take 2000 tumor:normal
samples to be sequenced at 90 % power in 90 % of the genes to find somatic
variants present at 2 % frequency or higher [43].

Regulatory and other challenges: In order for cancer personalized medicine to
become a reality, proper regulatory and policy framework need to be in place.
Issues around how to deal with germline changes along with strict and proper assay
and technical controls/standards are needed to be in place to assess biological,
clinical, and technical accuracy and authenticity. A great beginning in this direction
has already been made by the genome in a bottle consortium (https://sites.stanford.
edu/abms/giab) hosted by the National Institute of Standards and Technology of the
USA that has come up with reference materials (reference standards, reference
methods, and reference data) to be used in sequencing. Finally, in order for cutting
edge genomic tests to become a reality, collaboration and cooperation between
academic centers and industry are absolutely necessary [111]. Additionally,
acceptability criteria and proper pricing control mechanism(s) need to be in place by
the government. This is necessary for countries like India where genomic tests are
largely unregulated.

11 Conclusion

Cancer research has changed since the introduction of technologies like DNA
microarray and high-throughput sequencing. It is now possible to get a
genome-wide view on a particular tumor rather than looking at a handful of genes.
The biggest challenge for finding actionable variants in cancer remains at the level
of data analysis and understanding of their functional importance. Recent demon-
strations [112–115] of gene editing systems like CRISPR-Cas9 in understanding the
function of cancer-related genes and their role(s) in carcinogenesis and metastasis
will play a big role in the future. Further, high-throughput sequencing technology
can be used to providing information on individual cancer regulome by integrating
information on genetic variants, transcript variants, regulatory proteins binding to
DNA and RNA, DNA and protein methylation, and metabolites. Finally, for big
data to bear fruits in cancer diagnosis, prognosis, and treatment, processes like;
simplified data analytics platforms; accurate sequencing chemistry; standards for
measuring clinical accuracy, precision and sensitivity; proper country-specific
regulatory guidelines and stringent yet ethical framework against data misuse; need
to be in place [111].
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