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Abstract Singular perturbation problems, by nature, are not easy to handle and they
demand efficient techniques to solve and careful analysis. And systems of singular
perturbation problems are tougher as their solutions exhibit layers with sub-layers.
Their properties are studied and examples are given to illustrate.
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1 Introduction

Recently systems of singularly perturbed differential equations are studied by many
researchers all over the world. To cite a few: [1–20]. Most of the works are confined
to systems with two equations and a few works are found on systems of n equations;
n > 0 is arbitrary. Here, three types of systems of singularly perturbed differential
equations are to be discussed.

2 A System of First Order Ordinary Differential Equations

Consider the system

Eu′(x) + A(x)u(x) = f(x), x ∈ Ω = (0, X ] (1)

with u(0) = φ given. E is the diagonal matrix E = diag(εi ), i = 1, 2, · · · , n and
A(x) = (ai j (x)) is an n × n matrix. The functions ai j (x) and fi (x) for 1 ≤ i, j ≤
n are assumed to be in C2(Ω) where Ω = [0, 1], assuming, without loss of
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generality, X = 1. For convenience, the ordering ε1 < ε2 < · · · εn is assumed. Fur-
ther, the functions ai j are assumed to satisfy

aii (x) >

n∑

j=1
j �=i

|ai j (x)|, i = 1, 2, · · · , n (2)

ai j (x) ≤ 0, 1 ≤ i �= j ≤ n (3)

and the singular perturbation parameters εi , i = 1, 2, · · · , n are assumed to satisfy

εn ≤ α

6
(4)

so as to accommodate all the layers well inside the domain.
With the above assumptions, the problem (1) has a solution u ∈ C (0)(Ω) ∩

C (1)(Ω)

As explained in [21], here also the supremum norm is used in estimates. The
norms ||V|| = max1≤k≤n |Vk | for any n−vector V, ||y|| = sup0≤x≤1 |y(x)| for any
scalar-valued function y and ||y|| = max1≤k≤n ||yk || for any vector valued function
y are introduced.

The problem (1) is singularly perturbed, in the following sense. The reduced prob-
lem obtained by putting each εi = 0, i = 1, 2, · · · , n, in (1) is the linear algebraic
system

A(x)u0(x) = f(x). (5)

This problem (5) has a unique solution and hence arbitrary initial conditions cannot
be imposed. This shows that there are initial layers at x = 0 for u. The attracting
feature of the layers is that the component un has an initial layer of width O(εn), the
component un−1 also has a layer of width O(εn) and an additional sublayer of width
O(εn−1) and so on. Lastly the component u1 has an initial layer of width O(εn) and
additional sub-layers of widths O(εn−1), O(εn−2), · · · , O(ε1). The complexity of
the layer pattern of the solution makes the problem more interesting. This complexity
makes the derivation of bounds on the estimates of the derivatives and the error
analysis more challenging.

2.1 Analytical Results

Valarmathi and Miller [19] established the maximum principle for a general system
of ′n′ linear first order singularly perturbed differential equations, with an additional
result that the maximum principle satisfied by the operator
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L = ED + A(x) of system (1) implies that the operator L̃ of any lower order
system also satisfies the maximum principle.

Apart from the stability result, estimates of the derivatives of smooth and singular
components derived with the help of induction will not suffice for error analysis.
Novel estimates of derivatives are required. To achieve this, points of interaction of
the layer functions are identified. For a system of two equations, it was Linss [9]
who identified such a point. But it is Valarmathi and Miller [20] who identified a
sequence of such points between the ‘n’ layer functions and came out with some
interesting properties, which lead to non classical bounds for the derivatives of the
singular components that are interlinked.

2.2 Shishkin Mesh

The construction of an appropriate mesh plays a vital role in solving the singular
perturbation problem. As there are layer regions or inner regions and outer regions
and as more information is needed inside the inner region, a piecewise uniform mesh
is needed.

A piecewise uniform Shishkin mesh distributing N /2 points to the outer region
and the remaining N /2 points equally to all the inner regions will serve the pur-

pose. The Shishkin mesh suggested for problem (1) is the set of points Ω
N =

{x j }N0 that divides [0, 1] into n + 1 mesh intervals [0, σ1] ∪ ... ∪ (σn−1, σn] ∪ (σn, 1]
where the n parameters σr separate the uniform meshes. With σ0 = 0, σn+1 = 1, σn

is defined by σn = min
{σn+1

2
,
εn

α
ln N

}
and for r = n − 1, n − 2, ..., 2, 1, σr =

min

{
rσr+1

r + 1
,
εr

α
ln N

}
. Then on the subinterval (σn, 1], a uniform mesh with N /2

mesh points is placed and on each of the intervals (σr , σr+1], r = 0, 1, ..., n − 1, a
uniform mesh of N /2n mesh points is placed where ′n′ is the number of perturbation
parameters involved in (1).

In particular, when all the parameters σr , r = 1, 2, ..., n are with the left choice,
the Shishkin mesh becomes a classical uniform mesh with stepsize N−1 through out
from 0 to 1. For the other cases, the mesh is coarse in the outer region and becomes
finer and finer towards the initial point. Infact σr , r = 1, 2, 3, · · · , n are the points
only where a change in the mesh size may occur.

2.3 Discrete Problem

To solve (1) numerically, consider the corresponding discrete initial value problem

on the Shishkin mesh Ω
N

given by

ED−U + AU = f on ΩN ,U = u at the initial point. (6)
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Making use of the mesh geometry and the novel estimates of derivatives derived by the
existence of the sequence of layer interaction points, the authors in [20] established
the almost first order parameter uniform convergence.

More general case of problem (1)

In nature, many systems of multiscale dynamics, involve some components having
large scale flow rates. This problem when formulated follows the form EDu + Au =
f on (0, 1] and u(0) = φ where E = diag(εi ) with 0 < ε1 < ε2 < ... < εk = εk+1

= ... = εn = 1. In this case, the problem is called a partially singularly perturbed
initial value problem for a linear system of first order ODEs.

Establishing analytical results and error analysis demand the judicial use of certain
barrier functions and the appropriate modification of the Shishkin mesh considered
for problem (1). In the construction of the Shishkin mesh for solving problem (1),
the number of transition parameters was fixed to be equal to the number of distinct
perturbation parameters in (1). Here also, having the same strategy, the outer region
gets wider as the number of transition parameters gets reduced.

2.4 Discontinuous Source Terms

In some multiscale fluid flows, it may also happen that some of the source functions
fi , 1 ≤ i ≤ n may go discontinuous at points in the domain of definition of problem
(1). These discontinuities result in some interesting characteristics of the solution.

The solution, apart from its initial layers, exhibits interior layers at the points of
discontinuity. Then care has to be taken in constructing the mesh because it should
resolve interior layers in addition to the initial layers. Further, for a simple discon-
tinuity at a point, the interior layers are just like the initial layers dislocated. These
layer functions have a similar sequence of layer interaction points. Making use of
these facts and the mesh geometry one can solve the problem with discontinuous
source function.

Example 1 Consider the following system of singularly perturbed initial value prob-
lem.

ε1u′
1(t) + 2(1 + t)2u1(t) − (1 + t2)u2(t) = 0.5(1 + t)

ε2u′
2(t) − (1 + t)u1(t) + 2(1 + t)u2(t) = (1 + t

4
)

}

for t ∈ (0, 1] and u(0) = 0. The layer profile of the solution u of this problem
obtained by the proposed method is as in Fig. 1 for ε1 = 10−10, ε2 = 10−7 and N =
128.
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Fig. 1 Solution profile of
Example 1
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Fig. 2 Solution profile of
Example 2

Solution profile of Example 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.2  0.4  0.6  0.8  1

u1
u2
u3

Fig. 3 Solution profile of
Example 3

Solution profile of Example 3

 0
 0.2

 0.4
 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

u1
u2
u3



68 V. Sigamani

3 System of Second Order Differential Equations
of Reaction—Diffusion Type

Consider the system of singularly perturbed differential equations of reaction-
diffusion type with boundary values prescribed.

−Eu′′(x) + A(x)u(x) = f(x), x ∈ Ω = (0, 1)

u(0),u(1) given (7)

E is the same as in problem (1), A = (ai j )n×n, ai j (x), fi (x) ∈ C2(Ω) and (2), (3)
& (4) hold good in Ω . Under these assumptions the problem (7) has a solution in
C (0)(Ω) ∩ C (2)(Ω).

For systems of this type, Paramasivam et al. [16] established maximum principle,
the analytical results and a parameter uniform method of solving them on a Shishkin
mesh.

The solution u of the problem (7) exhibits twin boundary layers at the bound-
ary, x = 0 and x = 1. The component un exhibits twin boundary layers of width
O(

√
εn), while un−1 has twin boundary layers of width O(

√
εn) and additional

twin boundary sub layers of width O(
√

εn−1) and so on. Lastly u1 has twin bound-
ary layers of width O(

√
εn) and additional twin boundary sub layers of widths

O(
√

εn−1), O(
√

εn−2), · · · , O(
√

ε1).

These boundary layers also have twin layer interaction sequences which could be
used with the induction method in establishing the novel estimates of the derivatives
of the smooth and singular components of the solution.
The related systems of (7) which are partially singularly perturbed and which have
discontinuous source vector are with higher order difficulty and are handled as in the
previous case, in [22, 23].

Example 2 Consider the following singularly perturbed boundary value problem

−ε1u′′
1(x) + 5u1(x) − u2(x) − u3(x) = x2

−ε2u′′
2(x) − u1(x) + (5 + x)u2(x) − u3(x) = e−x

−ε3u′′
3(x) − (1 + x)u1(x) − u2(x) + (5 + x)u3(x) = 1 + x

⎫
⎪⎪⎬

⎪⎪⎭

for x ∈ (0, 1) and u(0) = 0, u(1) = 0. The layer profile of the solution u of
this problem obtained by the method suggested in [16] is presented in Fig. 2 for

ε1 = η

16
, ε2 = η

4
, ε3 = η where η = 0.1 and N = 512.
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4 Systems of Singularly Perturbed Time Dependent
Equations of Reaction-Diffusion Type

Consider the following parabolic initial-boundary value problem for a singularly
perturbed linear system of second order differential equations

∂u
∂t

− E
∂2u
∂x2

+ Au = f, on Ω, u given on Γ, (8)

where Ω = {(x, t) : 0 < x < 1, 0 < t ≤ T }, Ω = Ω ∪ Γ, Γ = ΓL ∪ ΓB ∪ ΓR

with u(0, t) = φL(t) on ΓL = {(0, t) : 0 ≤ t ≤ T }, u(x, 0)=φB(x) on ΓB = {(x,
0) : 0 < x < 1}, u(1, t) = φR(t) on ΓR = {(1, t) : 0 ≤ t ≤ T }.Here, for all (x, t)
∈ Ω, u(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t))

T , f(x, t) = ( f1(x, t), f2(x, t),
. . . , fn(x, t))

T ,

E =

⎛

⎜⎜⎜⎝

ε1 0 · · · 0
0 ε2 · · · 0
...

...
...

0 0 · · · εn

⎞

⎟⎟⎟⎠ , A(x, t) =

⎛

⎜⎜⎜⎝

a11(x, t) a12(x, t) · · · a1n(x, t)
a21(x, t) a22(x, t) · · · a2n(x, t)

...
...

...

an1(x, t) an2(x, t) · · · ann(x, t)

⎞

⎟⎟⎟⎠ .

The problem (8) can also be written in the operator form

Lu = f on Ω, u given on Γ,

where the operator L is defined by

L = I
∂

∂t
− E

∂2

∂x2
+ A,

where I is the identity matrix.
The reduced problem obtained by putting εi = 0, i = 1, 2, · · · , n in (8) is

defined by
∂u0

∂t
+ Au0 = f, on Ω, u0 = u on ΓB . (9)

The εi are assumed to be distinct and, for convenience, to have the ordering
ε1 < · · · < εn. For all (x, t) ∈ Ω , it is assumed that the components ai j (x, t) of
A(x, t) satisfy the inequalities

aii (x, t) >

n∑

j �=i
j=1

|ai j (x, t)| for 1 ≤ i ≤ n, and ai j (x, t) ≤ 0 for i �= j (10)
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and there exists a number α satisfying the inequality 0 < α < min
(x,t)∈Ω
1≤i≤n

(

n∑

j=1

ai j (x, t)).

It is also assumed, without loss of generality, that
√

εn ≤
√

α

6 which ensures that the
solution domain contains all the layers.

The norms, ‖ V ‖ = max1≤k≤n |Vk | for any n-vector V, ‖ y ‖D = sup{|y(x, t)| :
(x, t) ∈ D} for any scalar-valued function y and domain D, and ‖ y ‖ = max1≤k≤n

‖ yk ‖ for any vector-valued function y, are introduced. When D = Ω or Ω the
subscript D is usually dropped. In a compact domain D a function is said to be
Hölder continuous of degree λ, 0 < λ ≤ 1, if, for all (x1, t1), (x2, t2) ∈ D,

|u(x1, t1) − u(x2, t2)| ≤ C(|x1 − x2|2 + |t1 − t2|)λ/2
.

The set of Hölder continuous functions forms a normed linear space C0
λ(D) with the

norm

||u||λ,D = ||u||D + sup
(x1,t1),(x2,t2)∈D

|u(x1, t1) − u(x2, t2)|
(|x1 − x2|2 + |t1 − t2|)λ/2 ,

where ||u||D = sup
(x,t)∈D

|u(x, t)|. For each integer k ≥ 1, the subspaces Ck
λ(D) of

C0
λ(D), which contain functions having Hölder continuous derivatives, are defined

as follows

Ck
λ(D) = {u : ∂ l+mu

∂xl∂tm
∈ C0

λ(D) for l,m ≥ 0 and 0 ≤ l + 2m ≤ k}.

The norm on C0
λ(D) is taken to be ||u||λ,k,D = max

0≤l+2m≤k
|| ∂ l+mu

∂xl∂tm
||λ,D . For a vector

function v = (v1, v2, ..., vn), the norm is defined by ||v||λ,k,D = max
1≤i≤n

||vi ||λ,k,D .

Regularity and Compatibility conditions

It is assumed that enough regularity and compatibility conditions hold for the data
of the problem (8) so that the partial derivatives with respect to the space variable
of the solution are continuous up to fourth order and the partial derivatives with
respect to the time variable of the solution are continuous up to second order. The
compatibility conditions for the problem (8) defined on a rectangular domain Ω is
established in [3].

Sufficient conditions for the existence, uniqueness and regularity of solution of
(8) are given in the following.

Assume that A, f ∈ C2
λ(Ω), φL ∈ C1(ΓL), φB ∈ C2(ΓB), φR ∈ C1(ΓR) and

that the following compatibility conditions are fulfilled at the corners (0, 0) and
(1, 0) of Γ

φB(0) = φL(0) and φB(1) = φR(0), (11)



Initial or Boundary Value Problems for Systems of Singularly Perturbed … 71

dφL(0)

dt
− E

d2φB(0)

dx2
+ A(0, 0)φB(0) = f(0, 0),

dφR(0)

dt
− E

d2φB(1)

dx2
+ A(1, 0)φB(1) = f(1, 0)

(12)

and

d2

dt2
φL(0) = E2 d4

dx4
φB(0) − 2E A(0, 0)

d2

dx2
φB(0) − E A(0, 0)

d

dx
φB(0)

−(A2(0, 0) + ∂A

∂t
(0, 0) + E

∂2A

∂x2
(0, 0))φB(0)

−A(0, 0)f(0, 0) + ∂f
∂t

(0, 0) + E
∂2f
∂x2

(0, 0),

(13)

d2

dt2
φR(0) = E2 d4

dx4
φB(1) − 2E A(1, 0)

d2

dx2
φB(1) − E A(1, 0)

d

dx
φB(1)

−(A2(1, 0) + ∂A

∂t
(1, 0) + E

∂2A

∂x2
(1, 0))φB(1)

−A(1, 0)f(1, 0) + ∂f
∂t

(1, 0) + E
∂2f
∂x2

(1, 0).

ss (14)

Then there exists a unique solution u of (8) satisfying u ∈ C4
λ(Ω).

As there are twin boundary parabolic layers with sub-layers, the Shishkin mesh
to resolve these layers is constructed on the rectangular domain Ω and a classical
finite difference method is suggested and proved to be parameter-uniform first order
convergent in time and almost second order convergent in space in [3].

Example 3 Consider the problem

∂u
∂t

− E
∂2u
∂x2

+ Au = f on (0, 1) × (0, 1], u = 0 for x = 0 or t = 0 or x = 1,

where E = diag(ε1, ε2, ε3), A =
⎛

⎝
6 −1 0
−t 5(x + 1) −1
−1 −(1 + x2) 6 + x

⎞

⎠ , f =
⎛

⎝
1 + ex+t

1 + x + t2

1 + et

⎞

⎠ .

The layer profile of the solution u of this problem is displayed in Fig. 3 for
ε1 = 2−7, ε2 = 2−5, ε3 = 2−2, M = 32 and N = 48.

Here for the system (8) also, its subcases of the system being partially perturbed
and the source vector to have discontinuities could also be dealt with in a way similar
to those in Sects. 2 and 3.
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