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Preface

This book is the consolidation of the selected articles by the participants of the
International Winter Workshop on Differential Equations and Numerical Analysis
(DEANA 2015), held during 5–7 January 2015 at Bishop Heber College,
Tiruchirappalli, India. Though the conference was intended to accommodate works
on differential equations, the main concentration was on equations whose solutions
and their derivatives are non-smooth with singularities related to boundary layers.
Most of the works were on singular perturbation problems whose solutions exhibit
initial/interior/boundary layers and occur in many physical phenomena.

With the presentation of the paper “On the motion of fluids with very little
friction” by Ludwig Prandtl in 1904, in the International Congress of Mathematics,
held in Heidelberg, Germany, the field of classical fluid dynamics got revolution-
ized. This led to the development of boundary layer theory and singular pertur-
bation problems. Typically, these problems arise in various fields of applied
mathematics such as fluid dynamics (boundary layer problems), elasticity (edge
effect in shells), quantum mechanics (WKB problems), electrical networks,
chemical reactions, control theory, gas porous electrodes theory and many other
areas. The Navier–Stokes’ equation with a large Reynolds number is one of the
most striking examples of singular perturbation problems.

The aim of the conference was to give the young researchers the core of the
subject for which pioneers in this area of research were invited from India and
abroad. The invited talks were given by Prof. John J.H. Miller, Professor Emeritus,
Trinity College, Dublin and Director, INCA, Dublin, Ireland; Prof. Eugene
O’Riordan, School of Mathematical Sciences, Dublin City University, Ireland; Prof.
N. Ramanujam, Honorary Professor, Department of Mathematics, Bharathidasan
University, Tiruchirappalli, India; Dr. S. Valarmathi, Associate Professor and Head,
Department of Mathematics, Bishop Heber College, Tiruchirappalli, India; and a
few others. Also, there were contributions from various researchers working on
differential equations and numerical analysis.

The book consists of two parts. Part I includes lectures by the invited speakers.
The chapter “Elementary Tutorial on Numerical Methods for Singular Perturbation

v
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Problems” gives a tutorial on singular perturbation problems. The chapter entitled
“Interior Layers in Singularly Perturbed Problems” presents an introduction to interior
layers occurring in the solution of singular perturbation problems. In the chapter
“Singularly Perturbed Delay Differential Equations and Numerical Methods”, an
introduction about the applications and various methods of solving delay differential
equations are presented. In the chapter “Initial or Boundary Value Problems for
Systems of Singularly Perturbed Differential Equations and Their Solution Profile”, a
sketch of the analytical and numerical results for initial/boundary value problems for
systems of singularly perturbed differential equations is given. In Part II, six refereed
contributions of people working in the area of singular perturbation problems are
included.

We are grateful to the invited speakers, the authors of contributed papers and to
the unnamed referees for their valuable contributions, without which this volume is
not possible. We acknowledge with sincere thanks the financial support extended
by the University Grants Commission, Government of India and the National Board
for Higher Mathematics, Government of India, to conduct the conference. Thanks
are also due to the members of the organizing committee and the Principal and the
management of Bishop Heber College. Our special thanks are also due to
Mr. Kennet Jacob Jaisingh, software consultant, who designed the logo of DEANA
2015, constructed the website and helped us to have the book of abstracts, the
brochure, etc., in the stipulated time.

Tiruchirappalli, India Valarmathi Sigamani
Dublin, Ireland John J.H. Miller
Tiruchirappalli, India Ramanujam Narasimhan
Tiruchirappalli, India Paramasivam Mathiazhagan
Tiruchirappalli, India Franklin Victor
April 2016
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Elementary Tutorial on Numerical Methods
for Singular Perturbation Problems

John J.H. Miller

Abstract In the first section we introduce a simple singularly perturbed initial value
problem for a first order linear differential equation.We construct the backward Euler
finite difference method for this problem. We then discuss continuous and discrete
maximum principles for the associated continuous and discrete operators and we
conclude the section by defining what is meant by a parameter-uniform numerical
method. In the second section we introduce a fitted operator method on a uniform
mesh for our simple initial value problem defined in the previous section. We then
prove rigorously that this method is parameter-uniform at the mesh points. Fitted
mesh methods on piecewise uniform meshes are introduced in the third section. A
fitted mesh method for our simple initial value problem is constructed. It is proved
rigorously that this method is parameter-uniform at the mesh points. Finally, in the
fourth section, numerical solutions of singular perturbation problems are discussed.
Computations using standard and a parameter-uniform numerical method are pre-
sented. The usefulness and reliability of parameter-uniformmethods is demonstrated.

Keywords Singular perturbation problems · Finite difference scheme · Shishkin
mesh · Boundary layers · Parameter uniform convergence

1 Introduction to Singular Perturbation Problems
and Their Numerical Solution

We begin with a brief introduction to singular perturbation problems for differential
equations by describing the concepts in terms of a simple linear problem and a
maximum principle.

We consider the simple singularly perturbed first order initial value problem (Pε)

on the interval Ω = (0, T ]

J.J.H. Miller (B)
INCA-Institute for Numerical Computation and Analysis, Dublin, Ireland
e-mail: jm@incaireland.org

© Springer India 2016
V. Sigamani et al. (eds.), Differential Equations and Numerical Analysis,
Springer Proceedings in Mathematics & Statistics 172,
DOI 10.1007/978-81-322-3598-9_1
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εu′
ε + a(t)uε = f (t), t ∈ Ω, (1)

uε(0) given, (2)

where, for all t ∈ Ω, a(t) ≥ α and 0 < ε ≤ 1.
We are interested in designing a numerical method which gives good approxima-

tions to the solution of (Pε), regardless of the value of ε, in the entire range 0 < ε ≤ 1.
It can be seen from the exact solution of this problem that, as ε → 0, the gradient
of the solution becomes increasingly steep as we approach t = 0. We say that the
solution has a layer at the point t = 0. In this case it is called an initial layer, because
it is associated with a boundary point where an initial condition is specified. In the
analysis that follows it becomes clear that the width of this layer is O(ε).

To analyse such problems, and their numerical solutions, we introduce some
norms and semi-norms. For singular perturbation problems it is important to work
in the maximum norm. We define the maximum norm of a differentiable function on
a set S by

Definition 1.1 |φ|S = supt∈S |φ(t)|
and, for any positive integer k, we define the kth order semi-norm of a differentiable
function on a set S by

Definition 1.2 |φ|k,S = supt∈S |φ(k)(t)|.
For k = 0, the semi-norm becomes the maximum norm. Note that when the meaning
is clear the subscript S is usually dropped from the notation.
For some T > 0, let Ω = (0, T ] and Ω = [0, T ].
For convenience we introduce the differential operator

Lε = ε
d

dt
+ a(t), a(t) > α > 0, for all t ∈ Ω.

The operator Lε satisfies the following maximum principle.

Lemma 1.1 Let ψ(t) be any function in the domain of Lε such that ψ(0) ≥ 0. Then
Lεψ(t) ≥ 0 for all t ∈ Ω implies that ψ(t) ≥ 0 for all t ∈ Ω .

Proof Let t∗ be such that ψ(t∗) = mint ψ(t) and assume that the lemma is false.
Then ψ(t∗) < 0. From the hypotheses we have t∗ �= 0 and ψ′(t∗) ≤ 0. Thus

Lεψ(t∗) = εψ′(t∗) + a(t∗)ψ(t∗) < 0,

which contradicts the assumption.

This leads immediately to the following stability result.

Lemma 1.2 Let ψ(t) be any function in the domain of Lε. Then

|ψ(t)| ≤ max{|ψ(0)|, 1
α

|Lεψ|} for all t ∈ Ω.
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Proof Define the two functions

θ±(t) = max{|ψ(0)|, 1
α

|Lεψ|} ± ψ(t).

It is not hard to verify that θ±(0) ≥ 0 and Lεθ
±(t) ≥ 0. It follows from Lemma 1.1

that θ±(t) ≥ 0, for all t ∈ Ω, as required.

In order to discuss numerical solutions we need to discretise the domain Ω =
(0, T ]. The simplest discretisation is a uniform mesh having N sub-intervals of
equal length h, which is determined by a set of N + 1 equally spaced mesh points
ΩN

h = {ti }Ni=0. Here, t0 = 0, tN = T , and, for any i, 1 ≤ i ≤ N , h = ti − ti−1.

Uniformmeshes are adequate for fitted operatormethods, but non-uniformmeshes
are used for fitted mesh methods. Piecewise-uniform meshes are the simplest kind
of non-uniform mesh. We will be interested in piecewise-uniform meshes, where the
transition point between the two uniform meshes is specially chosen. This choice
depends on the problem under consideration.

We now consider discrete solutions. We first need to introduce the forward, back-
ward, centered and second order finite difference operators D+ D− D0 δ2, where,
on an arbitrary mesh ΩN = {ti }Ni=0,

D+U (t j ) = U (t j+1) −U (t j )

t j+1 − t j
, D−U (t j ) = U (t j ) −U (t j−1)

t j − t j−1

D0U (t j ) = U (t j+1) −U (t j−1)

t j+1 − t j−1
, δ2U (t j ) = D+U (t j ) − D−U (t j )

(t j+1 − t j−1)/2
.

Using these we can now define our finite difference methods. For example, the
backward Euler finite difference method for (Pε) is the following finite difference
method (PN

ε )

εD−UN + a(t)UN = f, UN (0) = u(0),

or in operator form
LN

ε U
N = f, UN (0) = u(0),

where the finite difference operator is defined by

LN
ε = εD− + a(t)I.

We have the following discrete maximum principle for LN
ε analogous to the contin-

uous case.

Lemma 1.3 Foranymesh functionΨ N , the inequalitiesΨ N (0) ≥ 0 and Lε
NΨ N (t j )

≥ 0 for 1 ≤ j ≤ N , imply that Ψ N (t j ) ≥ 0 for all j, 0 ≤ j ≤ N .
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Proof Let j∗ be such that Ψ N (t j∗) = min j Ψ
N (t j ) and assume that the lemma is

false. Then Ψ N (t j∗) < 0. From the hypotheses we have j∗ �= 0 and Ψ N (t j∗) −
Ψ N (t j∗−1) ≤ 0. Thus

LN
ε Ψ N (t j∗) = ε

Ψ N (t j∗) − Ψ N (t j∗−1)

δ j∗
+ a(t j∗)Ψ

N (t j∗) ≤ a(t j∗)Ψ
N (t j∗) < 0,

which contradicts the assumption, as required.

An immediate consequence of this is the following discrete stability result anal-
ogous to the continuous result.

Lemma 1.4 For any mesh function Ψ N , we have

|Ψ N (t j )| ≤ max{|Ψ N (0)|, 1
α

|LN
ε Ψ N |}, 0 ≤ j ≤ N .

Proof Define the two mesh functions

ΘN
± (t) = max{|Ψ N (0)|, 1

α
|LN

ε Ψ N |} ± Ψ N (t).

It is not hard to verify that ΘN± (0) ≥ 0 and LN
ε ΘN± (t j ) ≥ 0. It follows from Lemma

1.3 that ΘN± (t j ) ≥ 0 for all 0 ≤ j ≤ N .

We now consider estimates of the local truncation error, which will be required
later in our proofs of parameter-uniform convergence. In particular, we give two
distinct estimates of the local truncation error in approximating d

dt by D−, that is we
consider |(D− − d

dt )φ| for any differentiable function φ.
First, we observe that, at any mesh point ti ,

(D− − d

dt
)φ(ti ) = φ(ti ) − φ(ti−1)

ti − ti−1
− φ′(ti ) = 1

ti − ti−1

∫ ti

ti−1

(φ′(s) − φ′(ti ))ds

and so

|(D− − d

dt
)φ(ti )| ≤ 1

ti − ti−1

∫ ti

ti−1

(|φ′(s)| + |φ′(ti )|)ds ≤ 2|φ|1,[ti−1,ti ]. (3)

Secondly, integrating by parts, we obtain

(D− − d

dt
)φ(ti ) = φ(ti ) − φ(ti−1)

ti − ti−1
− φ′(ti ) = 1

ti − ti−1

∫ ti

ti−1

(ti−1 − s)φ′′(s)ds

and it follows that
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|(D− − d

dt
)φ(ti )| ≤ 1

ti − ti−1

∫ ti

ti−1

(s − ti−1)|φ′′(s)|ds ≤ 1

2
(ti − ti−1)|φ|2,[ti ,ti−1].

(4)
We now define what is meant by a parameter-uniform numerical method for a

family of singular perturbation problems.
It is important to note that in this definition, and throughout the remainder of this
tutorial,C denotes a generic constant that is independent of the singular perturbation
parameter ε.

Definition 1.3 Consider a family of problems (Pε) parameterised by the singular
perturbation parameter ε, 0 < ε ≤ 1. Suppose that the exact solution uε is approx-
imated by the sequence of numerical solutions {UN

ε }∞N=1, defined on meshes ΩN
ε ,

where N is the discretization parameter. Then, the numerical solutions UN
ε are said

to converge ε-uniformly to the exact solution uε, if there exists a positive integer N0,
and positive numbersC and p, all independent of N and ε, such that, for all N ≥ N0,

sup
0<ε≤1

|UN
ε − uε|ΩN

ε
≤ CN−p, (5)

where |.|ΩN
ε
is the maximum norm on ΩN

ε .

We now derive two useful consequences of the stability of Lε established in Lemma
1.2. The first is an a priori bound on the solution of (Pε). It is an immediate corollary
to Lemma 1.2.

Corollary 1.1 Let uε be the solution of (Pε). Then,

|uε| ≤ |uε(0)| + 1

α
| f |.

The second establishes the uniqueness of the solution.

Corollary 1.2 If (Pε) has a solution, it is unique.

Proof Let u1, u2 be any two solutions of (Pε) and consider z = u1 − u2. Then it is
easy to see that

z(0) = z1(0) − z2(0) = 0 and

Lεz = Lε(u1 − u2) = Lεu1 − Lεu2 = f − f = 0.

Hence z is a solution of (Pε) in the special case with homogeneous initial condition
and homogeneous differential equation. Applying Corollary1.1 in this case gives,
for all t ∈ Ω ,

|z(t)| ≤ |z(0)| + 1

α
|Lεz| ≤ 0.

We conclude that |u1(t) − u2(t)| = 0, for all t ∈ Ω , and so u1 = u2.
The next lemma provides additional classical a priori bounds on the solution of the
problem (Pε) and its derivatives.
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Lemma 1.5 Let uε be the solution of (Pε). Then, we have

|uε|k ≤ Cε−k, for each k, 0 ≤ k ≤ 2.

Proof For k = 0 the required result is simply Corollary1.1. For k = 1 we use the
differential equation as follows. We have

u′
ε(t) = ε−1( f (t) − a(t)uε(t))

and so
|u′

ε| ≤ ε−1(| f | + |a||uε|) ≤ Cε−1

as required. The result for k = 2 follows from this result and the differential equation
again. We have

u′′
ε(t) = ε−1( f ′(t) − a(t)u′

ε(t) − a′(t)uε(t))

and so

|u′′|ε ≤ ε−1(| f ′| + |a||u′
ε| + |a′||uε|) ≤ Cε−1(1 + ε−1 + 1) ≤ Cε−2,

which completes the proof.
There are discrete analogues to the above. For example, the following analogue to
Corollary1.1 is an immediate consequence of Lemma 1.4.

Corollary 1.3 Let U N
ε be the solution of (PN

ε ). Then,

|UN
ε | ≤ |UN

ε (0)| + 1

α
| f |.

2 Fitted Operator Methods

In this section a simple result from [1] is proved. The aim is to explain the proof
as clearly as possible by including some helpful details that were omitted from the
book. Consider again the initial value problem (Pε)

Lεuε(t) ≡ εu′
ε(t) + a(t)uε(t) = f (t),

uε(0) given.

We introduce the fitted operator method (Ph
ε )

Lh
εU

N
ε (ti ) ≡ εσi (ρ)D+UN

ε (ti ) + a(ti )U
N
ε (ti ) = f (ti ), ti ∈ ΩN

uhε (0) = uε(0),
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where D+ is the forward difference operator on the uniform mesh Ω
N = {ti }N0 ,

ti = ih, h = 1
N and σi is the fitting factor

σi (ρ) = ρa(ih)

1 − e−ρa(ih)
, ρ = h

ε
.

It is convenient to write

μh
i = σi (ρ)

ρ
= a(ih)

1 − e−ρa(ih)
.

We consider the problem on the two distinct uniform meshes ΩN = {t hi }Ni=0 and

Ω2N = {t h
2
2i }2Ni=0, where t

h
i = ih,UN

ε (thi ) = uhi and we note that t
h
i = ih = (2i)( h2 ) =

t
h
2
2i .

The finite difference operator can now be written in the form

Lh
εu

h
i = μh

i (u
h
i+1 − e−ρa(ih)uhi ).

We now estimate

Lh
ε (u

h
2
2i − uhi ). (6)

Considering separately the two terms in (6) we have

Lh
εu

h
i = f (ih) (7)

and
Lh

εu
h
2
2i = μh

i (u
h
2
2i+2 − e−ρa(ih)u

h
2
2i ). (8)

Now express u
h
2
2i+2 in terms of u

h
2
2i using the following two equations

L
h
2
ε u

h
2
2i = μ

h
2
2i (u

h
2
2i+1 − e− ρ

2 a(ih)u
h
2
2i ) = f (ih),

L
h
2
ε u

h
2
2i+1 = μ

h
2
2i+1(u

h
2
2i+2 − e− ρ

2 a((2i+1) h
2 )u

h
2
2i+1) = f ((2i + 1)

h

2
).

To eliminate u
h
2
2i+1 between these two equations, first divide each equation by the

appropriate μ, then multiply the first equation by e− ρ
2 a((2i+1) h

2 ) and add to get

u
h
2
2i+2 = e− ρ

2 (a((2i+1) h
2 )+a(ih))u

h
2
2i + e− ρ

2 a((2i+1) h
2 ) f (ih)

μ
h
2
2i

+ f ((2i + 1) h2 )

μ
h
2
2i+1

.
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Using this expression for u
h
2
2i+2, the right hand side of (8) becomes

μh
i (e

− ρ
2 (a((2i+1) h

2 )+a(ih)) − e−ρa(ih))u
h
2
2i +

μh
i

μ
h
2
2i

e− ρ
2 a((2i+1) h

2 ) f (ih) + μh
i

μ
h
2
2i+1

f ((2i + 1)
h

2
).

Using the Taylor expansion

f ((2i + 1)
h

2
) = f (ih) + h

2
f ′(ξ), ih ≤ ξ ≤ (2i + 1)

h

2
, (9)

this becomes

μh
i (e

− ρ
2 (a((2i+1) h

2 )+a(ih)) − e−ρa(ih))u
h
2
2i +

+(
μh
i

μ
h
2
2i

e− ρ
2 a((2i+1) h

2 ) + μh
i

μ
h
2
2i+1

) f (ih) + h

2

μh
i

μ
h
2
2i+1

f ′(ξ).

Using this and (7), expression (6) becomes

μh
i (e

− ρ
2 (a((2i+1) h

2 )+a(ih)) − e−ρa(ih))u
h
2
2i +

+(
μh
i

μ
h
2
2i

e− ρ
2 a((2i+1) h

2 ) + μh
i

μ
h
2
2i+1

− 1) f (ih) + h

2

μh
i

μ
h
2
2i+1

f ′(ξ).

We now bound separately each of the three terms in this expression.

Writing ti = ih, the coefficient of u
h
2
2i is

C1 = μh
i e

−ρa(ti )(e− ρ
2 (a(ti+ h

2 )−a(ti )) − 1).

Consider the expression in the brackets as a function

F(ρ) = e− ρ
2 (a(ti+ h

2 )−a(ti )) − 1

and expand it in a two-term Taylor series about the point ρ = 0, to obtain

F(ρ) = F(0) + ρ
dF

dρ
(ξ)

for some ξ, 0 < ξ < ρ. Noting that F(0) = 0, this leads to

C1 = μh
i e

−ρa(ti )(
−ρ

2
)(a(ti + h

2
) − a(ti ))e

ti
2 (a(ti+ h

2 )−a(ti )),
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Since a(ti + h
2 ) − a(ti ) = h

2a
′(ti + η), for some η, 0 < η < h

2 , it follows that

|C1| ≤ Chμh
i e

−ρa(ti )ρe− 1
2 ξa(ti+ h

2 )e
1
2 a(ti ).

Also 0 < ξ < ρ and e− 1
2 ξa(ti+ h

2 ) ≤ 1, and so we have

|C1| ≤ Chμh
i e

− ρ
2 a(ti ) = Ch

1
2ρa(ti )

sinh( 12ρa(ti ))
≤ Ch, (10)

because y
sinh(y) is bounded for all real y.

Likewise, it is not hard to see that the coefficient of f (ih) can be written in the form

C2 = −C1 + μh
i

a(ti )

a(ti ) − a(ti + h
2 )

a(ti + h
2 )

(1 − e− ρ
2 a(ti+ h

2 )).

The second expression here can be written as

h

2

μh
i

a(ti )

a′(ti + η)

a(ti + h
2 )

(1 − e− ρ
2 a(ti+ h

2 )) ≤ Ch
1 − e−ρa(ti+ h

2 )

1 − e−ρa(ti )
≤ C ′h,

and it follows that
|C2| ≤ |C1| + C ′h ≤ Ch (11)

as required.
Finally, the coefficient of f ′ is

C3 = h

2

1 − e−ρa(ti+ h
2 )

1 − e−ρa(ti )
≤ Ch. (12)

Combining the separate estimates (10), (11) and (12) we conclude that

|Lh
ε (u

h
2
2i − uhi )| ≤ Ch. (13)

Using Lemma 1.4 we then obtain

|u h
2
2i − uhi | ≤ Ch,

which is an estimate, at the common mesh points, of the difference between the
discrete solutions on the two meshes.

Suppose now that, for any function F , |F(h) − F( h2 )| ≤ Chp for all h, 0 < h ≤
h0, and some positive number p. Then, using the hypothesis repeatedly, we get, for
all positive integers n,
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|F(h) − F(
h

2n
)| = |(F(h) − F(

h

2
)) + (F(

h

2
) − F(

h

22
)) + ... + (F(

h

2n−1 ) − F(
h

2n
))|

≤ Chp(1 + 1

2p
+ ... + 1

2(n−1)p
) <

Chp

1 − 1
2p

.

Taking the limit, as n → ∞, we get

|F(h) − F(0)| ≤ Chp 1

1 − 1
2p

.

Applying this result to F(h) = uhε (ti ), with p = 1, we conclude from (13) and the
consistency and stability of (Ph

ε ), that

|(uhε − uε)(ti )| ≤ Ch.

Therefore (Ph
ε ) is a parameter-uniformfitted operatormethod for solving the singular

perturbation problem (Pε).

3 Fitted Mesh Methods

The aim of this section is to use the fitted mesh method to solve the simple problem
(Pε) introduced above and to prove that it is parameter-uniform. We use a general
method of proof, deliberately avoiding any simplifications that could arise due to the
simplicity of the problem. Our purpose is to illustrate the general method of proof
in this simple setting.

The fitted mesh method (Ph
ε ) consists of the backward Euler finite difference

operator on a specially constructed non-uniform mesh ΩN
ε

Lh
εU

N
ε (ti ) ≡ εD−UN

ε (ti ) + a(ti )U
N
ε (ti ) = f (ti ), ti ∈ ΩN

ε ,

uhε (0) = uε(0),

where ΩN
ε is a carefully constructed piecewise uniform mesh with a transition para-

meter σ due to Shishkin (note that this σ should not be confused with the fitting
factor σ in the previous section). This piecewise uniform mesh is constructed by
first specifying a σ in the interior of Ω and then constructing two uniform meshes
on each of the two resulting subintervals of Ω . Taking N to be an even number, each
of these uniform meshes has N

2 equal mesh intervals and their common point σ is
called the transition point between these two uniform meshes. If the point σ = 1

2 , it

is clear that the complete mesh Ω
N = {ti }Ni=0 on T is a uniform mesh, but if σ �= 1

2 ,

say σ < 1
2 , then the mesh in (0,σ] is finer than the mesh in (σ, T ]. The explicit

definition of the Shishkin mesh ΩN
ε in this case is as follows.

First, the transition point is defined by
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σ = min(
1

2
, ε ln N ) (14)

and it is not hard to see that the mesh widths of the fine and coarse uniform meshes
are

h = 2σ

N
and H = 2(1 − σ)

N
, (15)

respectively. Then, the mesh points are given explicitly by

ti = ih, i = 0 : N

2
, (16)

ti = σ + (i − N

2
)H, i = N

2
+ 1 : N . (17)

Notice that the Shishkin mesh ΩN
ε depends on N and ε.

The main theoretical result we want to prove is contained in the following theorem,
which provides a parameter-uniform error estimate of essentially first order, in the
sense that the ln N factor means that it is not strictly first order. However, in practice,
the factor ln N is negligible.

Theorem 1.1 The numerical solutionsU N
ε of (PN

ε ) and the exact solution uε of (Pε)

satisfy the following ε-uniform error estimate, for all N ≥ 4,

sup
0<ε≤1

|UN
ε − uε|ΩN

ε
≤ CN−1 ln N , (18)

where C is a constant independent of ε and N.

This will be proved in what follows by a sequence of lemmas.
First we define the reduced problem (P0) corresponding to (Pε) as

a(t)u0(t) = f (t). (19)

This is obtained by putting ε = 0 in (Pε). Its solution is clearly

u0(t) = f (t)

a(t)
.

We then define the Shishkin decomposition of uε. We write

uε = vε + wε,

where vε is the smooth component of the decomposition and is defined to be the
solution of the problem

Lεvε = f, vε(0) = u0(0);
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u0 being the solution of the reduced problem. It follows that the singular component
wε must be the solution of the problem

Lεwε = 0, wε(0) = uε(0) − vε(0).

This decomposition enables us to obtain sharper bounds than the classical bounds
given in Lemma 1.5.

Note that the equation for vε gives εv′
ε(0) + a(0)vε(0) = f (0) and the initial

condition for vε gives a(0)vε(0) = f (0). Combining these we obtain εv′
ε(0) = 0

and so v′
ε(0) = 0.

Note also that Lεv
′
ε = εv′′

ε + av′
ε and, by differentiating the equation satisfied by

vε, we get εv′′
ε + (avε)

′ = f ′. Eliminating v′′
ε gives Lεv

′
ε = f ′ − a′v′.

The sharper bounds are contained in the following lemma.

Lemma 1.6 The components vε, wε of the exact solution uε satisfy the bounds

|vε|k ≤ C, k = 0, 1 and |vε|2 ≤ Cε−1,

|w(k)
ε (t)| ≤ Cε−ke− αt

ε , k = 0, 1, 2 for all t ∈ Ω.

Proof The bound on vε follows from the corresponding bound in Lemma 1.5, since
vε is the solution to a problem of the same form as (Pε).
The bound on v′

ε is obtained by considering the two functionsφ±(t) = C(1 + | f ′|) ±
v′

ε(t). Then, φ±(0) = C(1 + | f ′|) ± v′
ε(0) ≥ v′

ε(0) = 0. Furthermore, Lεφ
±(t) =

a(t)C(1 + | f ′|) ± Lεv
′
ε(t) ≥ Cα(1 + | f ′|) ± ( f ′ − a′v′) ≥ 0. The required bound

on v′
ε follows from the bound on vε and the maximum principle Lemma 1.1. The

bound on v′′
ε is obtained from the equation εv′′

ε + (avε)
′ = f ′ and the bounds on vε

and v′
ε.

The bound on wε is obtained similarly. We introduce the functions

ψ±(t) = Ce− αt
ε ± wε(t),

where C is a suitably large constant. Then

ψ±(0) = C ± wε(0) = C ± (uε(0) − vε(0)) ≥ C − (|u0| + |v0(0)|) ≥ 0.

Also,

Lεψ
±(t) = CLεe

− αt
ε ± Lεwε(t) = CLεe

− αt
ε = (a(t) − α)e− αt

ε > 0.

From the maximum principle we then have

ψ±(t) ≥ 0 for all t ∈ Ω,

and so
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|w(k)
ε (t)| ≤ Cε−ke− αt

ε for all t ∈ Ω,

as required.
To bound the derivatives of wε we use the differential equation repeatedly. We have

w′
ε(t) = −ε−1a(t)wε(t)

and so
|w′

ε(t)| = |ε−1a(t)wε(t)| ≤ Cε−1e− αt
ε .

Similarly
w′′

ε (t) = −ε−1(a(t)w′
ε(t) + a′(t)wε(t))

and so
|w′′

ε (t)| ≤ Cε−2e− αt
ε ,

as required.
This completes the proof of this lemma.
The Shishkin decomposition of the discrete solution is analogous to that of the

exact solution. We have
UN

ε = V N
ε + WN

ε ,

where V N
ε is the smooth component of the decomposition and is defined to be the

solution of the problem

LN
ε V

N
ε = f, V N

ε (0) = vε(0).

It follows that the singular component WN
ε must be the solution of the problem

LεW
N
ε = 0, WN

ε (0) = wε(0).

The error can now be decomposed into smooth and singular components as follows

UN
ε − uε = (V N

ε − vε) + (WN
ε − wε). (20)

These are now bounded separately. We bound the smooth component first. We have

LN
ε (V N

ε − vε) = f − LN
ε vε = (Lε − LN

ε )vε = ε(
d

dt
− D−)vε.

Hence, using (4), we have, for each ti ∈ ΩN
ε ,

|LN
ε (V N

ε − vε)(ti )| = |ε( d
dt

− D−)vε(ti )| ≤ ε

2
(ti − ti−1)|vε|2,[ti−1,ti ].
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Noting that, for a Shishkin mesh, ti − ti−1 ≤ 2N−1 and using the bound for |vε|2 in
the Lemma 1.6, we obtain

|LN
ε (V N

ε − vε)(ti )| ≤ CεN−1ε−1 = CN−1.

From the stability of LN
ε it follows that

|(V N
ε − vε)(ti )| ≤ CN−1, for all ti ∈ ΩN

ε ,

which is
|V N

ε − vε|ΩN
ε

≤ CN−1, (21)

the required bound on the smooth component of the error.
For the singular component of the error we need to use the two different estimates
of the local truncation error. From (4) we obtain

|LN
ε (WN

ε − wε)(ti )| = |ε( d
dt

− D−)wε(ti )| ≤ ε

2
(ti − ti−1)|wε|2,[ti−1,ti ] (22)

and similarly from (3)

|LN
ε (WN

ε − wε)(ti )| = |ε( d
dt

− D−)wε(ti )| ≤ 2ε|wε|1,[ti−1,ti ]. (23)

We consider the following two possibilities separately; either σ = 1
2 or σ = ε

α
ln N .

In the first case, since σ = min{ 12 , ε
α
ln N } = 1

2 , we have 1
2 ≤ ε

α
ln N or ε−1 ≤

2
α
ln N . Since, in this case, the mesh is uniform ti − ti−1 = N−1 and using the bound

for |wε|2,[ti−1,ti ] in Lemma 1.4, we obtain

|LN
ε (WN

ε − wε)(ti )| ≤ CεN−1ε−2e− αti−1
ε ≤ CN−1ε−1 ≤ CN−1 ln N .

From the stability of LN
ε it follows that

|(WN
ε − wε)(ti )| ≤ CN−1 ln N , for all ti ∈ ΩN

ε , (24)

which is the required bound.

In the second case the argument depends on the location of the mesh point ti .
There are 3 possibilities:

• ti ∈ (0, t N
2
], in the fine mesh;

• ti ∈ (t N
2 +1, 1], in the coarse mesh;

• ti = t N
2

= σ, at the transition point.

and we recall that for all of these we are dealing with the case σ = ε
α
ln N . We

consider each possibility in turn.
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We begin with the fine mesh. Since ti − ti−1 = 2σ
N = 2ε

α
N−1 ln N , using the bound

for |wε|2,[ti−1,ti ] in Lemma 1.4, we obtain from (22)

|LN
ε (WN

ε − wε)(ti )| ≤ Cε2N−1 ln N ε−2e− αti−1
ε ≤ CN−1 ln N . (25)

On the other hand, in the coarse mesh ti > ti−1 ≥ σ = ε
α
ln N and so

e− αti−1
ε ≤ e− ασ

ε = e− ln N = N−1.

Then, using the estimate (23) of the local truncation error and the bound for
|wε|1,[ti−1,ti ] in Lemma 1.4, we obtain

|LN
ε (WN

ε − wε)(ti )| ≤ 2ε|wε|1,[ti−1,ti ] ≤ Ce− αti−1
ε ≤ CN−1. (26)

Finally, at the transition point, ti−1 = σ − 2σN−1, we have

e−
ati−1

ε = e− ασ
ε e

2ασN−1
ε = e− ln N e2N

−1 ln N = N−1eln(N
2N−1

) = N−1N2N−1 = N−1(N
1
N )2 ≤ CN−1,

since N
1
N is bounded. Then, using the estimate (23) of the local truncation error and

the bound for |wε|1,[xi−1,xi ] in Lemma 1.4, we obtain

|LN
ε (WN

ε − wε)(σ)| ≤ Cε|wε|1,[σ−2σN−1,σ] ≤ Ce− α(σ−2σN−1)

ε ≤ CN−1. (27)

Combining (24), (26) and (27)we see that the singular component of the error satisfies

|WN
ε − wε|ΩN

ε
≤ CN−1 ln N . (28)

Theboundon the error is obtainedby combining the bounds (21) and (28) respectively
on the smooth and singular components, which completes the proof of the theorem.

4 Computations

For the numerical solution of differential equations the following codes are useful and
widely available: MatLab, Octave and Python-Anaconda. The first is a commercial
code with a reduced price for academics and a further reduced price for the student
edition. The second and third are open source and free.
In this section we consider another simple initial value problem. This involves the
following second order differential equation with constant coefficients

m
d2y

dt2
+ k

dy

dt
+ cy = 0,
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which describes the damped vibrations of a point mass m on a spring with spring
constant c and damping coefficient k. Here,m, k, c are taken to be positive constants.
The initial conditions are

y(0) = y0,
dy(0)

dt
= y1,

where the initial displacement y0 and the initial velocity y1 are given.
The exact solution is

y(t) = Aeλ+t + Beλ−t ,

where A, B are integration constants and λ+, λ− are the roots of

mλ2 + kλ + c = 0, λ± = −k ± √
k2 − 4mc

2m
.

We assume, henceforth, that
k2 > 4mc,

which ensures that both of these roots are real and distinct.
The integration constants A, B are determined by the initial conditions as follows:

y(0) = 0 implies that A + B = 0 or B = −A

and

dy(0)

dt
= y1 implies that A(λ+ − λ−) = y1 or A = y1

λ+ − λ− .

This example becomes a singularly perturbed problem if m is small. We write

m = ε, 0 < ε << 1.

where ε is a singular perturbation parameter multiplying the highest derivative term.
The equation is then

ε
d2y

dt2
+ k

dy

dt
+ cy = 0. (29)

The appropriate initial conditions are now

y(0) = 0, (30)

ε
dy(0)

dt
= γ, (31)
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where γ is independent of ε. These differ from the unperturbed case, because the
derivative in the second condition is now multiplied by ε. This is necessary here
because the first derivative of the solution | dydt | is unbounded as ε → 0, while |ε dy

dt |
is bounded. This is seen at once from the exact solution

y(t) = γ

ε(λ+ − λ−)
(eλ+t − eλ−t ),

where λ± are the roots of
ελ2 + kλ + c.

We assume that k2 > 4εc to ensure that the roots are real and distinct.
The plot of the exact solution for the moderate value ε = 1

2 is given in Fig. 1.
Let us investigate now what happens as ε → 0. The plots of the exact solution for
ε = 1

4 ,
1
8 ,

1
16 ,

1
32 are given in Fig. 2. As expected we see that as ε → 0 the gradient

of the solution becomes increasingly steep in a neighbourhood of t = 0, so we have
a layer there. Even for the moderately small value 1

32 , the exact solution near the
origin is graphically indistinguishable from the vertical axis.

We now use numerical methods to solve problems with layers. We shall discover
that standard finite difference methods are not reliable for this task. The same can
be shown to be true for standard finite element methods. By this we mean that they
must be used with caution and particular attention must be paid to the relative sizes
of the singular perturbation parameter and the mesh parameters.
The finite difference method with centered operator for the above problem is

εδ2Ui + kD0Ui + cUi = 0, U0 = 0, εD+U0 = γ,

where the mesh is uniform with mesh spacing h = 1
N and N is the number of mesh

subintervals in a unit interval on the t-axis.
We look for a numerical solution for t ∈ [0, T ],where, to be specific, we take T = 3.
Plots of the numerical solution for ε = 1

8 , N = 16 and the corresponding exact
solution are given in Fig. 3. The exact solution is plotted as a continuous line, while
the values of the numerical solution are denoted by a small circle at each mesh point.
It is easy to see that the numerical solution is highly inaccurate.

Fig. 1 The exact solution
for ε = 1

2
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Fig. 2 The exact solution for decreasing values of ε

Fig. 3 The numerical
solution with centered
operator, uniform mesh for
ε = 1

8 , N = 16

Can this situation be improved and, if so, how? What about a finer mesh? Can you
predict what will happen? We take N = 256 and plot the results in Fig. 4. These
results are a big improvement. But are they robust in the sense that they are just as
good for other values of the parameter? So far, ε has had moderate values. Let us try
taking the smaller value ε = 1

1000 . The results are plotted in Fig. 5. We see that the
numerical solution is again highly inaccurate outside the boundary layer. Moreover,
in a neighbourhood of the boundary layer at t = 0 it displays enormous spurious
oscillations unrelated to the exact solution. In fact here, the numerical solution is
completely different from the exact solution. This is seen more clearly when we
restrict the plot of the solution to a neighbourhood of the boundary layer as in Fig. 6.

Can we do anything to overcome these problems? The obvious thing to try is to
refine the mesh as before. We therefore take N = 1024 and plot the results in Fig. 7.
We see there that the spurious oscillations in the neighbourhood of the boundary
layer have been eliminated, but there remain large errors in the rest of the domain.
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Fig. 4 The numerical
solution with centered
operator, uniform mesh for
ε = 1

8 , N = 256

Fig. 5 The numerical
solution with centered
operator, uniform mesh for
ε = 1

1000 , N = 256

Fig. 6 Blow up for centered
operator, uniform mesh for
ε = 1

1000 , N = 256

Fig. 7 The numerical
solution with centered
operator, uniform mesh for
ε = 1

1000 , N = 1024

Our overall conclusion is that the finite difference method with centered operator
on a uniform mesh is unreliable for this problem, even for moderate values of ε. We
can also say that this example has illustrated the fact that numerical experimentation is
an extremely useful tool for distinguishing between good and bad numericalmethods.

We now try a different numerical method, namely, the following upwind method
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Fig. 8 The numerical
solution with upwind
operator, uniform mesh for
ε = 1

8 , N = 256

εδ2Ui + kD+Ui + cUi = 0, U0 = 0, εD+U0 = γ.

Here the first order derivative is replaced by a one-sided finite difference quotient
and the method is said to be upwinded. The mesh is uniform with N equally spaced
mesh subintervals. The results of applying this method for ε = 1

8 and N = 256 are
shown in Fig. 8. The solution is satisfactory, although not quite as accurate as the
solution given by the previous method with the centered difference operator.

Let us now look at the behaviour for smaller ε = 1
1000 , keeping the same uniform

mesh with N = 256. The results are shown in Fig. 9. Again the errors have become
enormous, when ε is reduced. The one positive thing about this method is that the
numerical solution shows no sign of spurious oscillations, as was the case for the
method with the centered operator. Our overall conclusion is that the finite difference
method with an upwind operator on a uniform mesh is again unreliable for this
problem.

It has become apparent that we need a method that produces numerical solutions
with an accuracy that is not destroyed when ε becomes small. To achieve this we use
a parameter-uniform numerical method. For the singularly perturbed initial value
problem (29), (30), (31) it can be shown theoretically that a parameter-uniform
method is obtained by using the upwind finite difference operator described above
together with the Shishkin mesh that was constructed in the previous section.

Fig. 9 The numerical
solution with upwind
operator, uniform mesh for
ε = 1

1000 , N = 256
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Fig. 10 The numerical
solution with upwind
operator, Shishkin mesh for
ε = 1

1000 , N = 256

Fig. 11 The numerical
solution with upwind
operator, Shishkin mesh for
ε = 10−6, N = 256

The numerical results obtained by applying this parameter-uniform method are plot-
ted in Fig. 10. We see that the agreement with the exact solution is excellent for this
small value of ε. The use of the Shishkin mesh has eliminated the large errors of the
methods based on the centered or upwind operators on uniform meshes.

It remains to see whether further reduction of ε destroys the numerical solution
or not. We take ε = 10−6, much smaller than any previous choice. We see in Fig. 11
that the numerical results with this method are brilliant; just as good as for ε = 1

1000
and without the need for any finer mesh than was used in the previous case!

In this section we have shown experimentally that standard finite difference meth-
ods, applied on uniform meshes, are not reliable for solving singularly perturbed
differential equations, when the singular perturbation parameter becomes small. To
overcome this problem it may be possible to increase the number of mesh subin-
tervals so that N is of order 1

ε
. This brute force approach can be used for simple

problems, but for very large systems of equations and very small values of the singu-
lar perturbation parameters this may not be feasible. In such cases the use of suitable
generalisations (for example in the books [1–5]) of the parameter-uniform methods
described in this tutorial may offer an elegant and reliable option.
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Interior Layers in Singularly Perturbed
Problems

Eugene O’Riordan

Abstract To construct layer adapted meshes for a class of singularly perturbed
problems, whose solutions contain boundary layers, it is necessary to identify both
the location and the width of any boundary layers present in the solution. Additional
interior layers can appear when the data for the problem is not sufficiently smooth.In
the context of singularly perturbed partial differential equations, the presence of any
interior layer typically requires the introduction of a transformation of the problem,
which facilitates the necessary alignment of the mesh to the trajectory of the interior
layer. Here we review a selection of published results on such problems to illustrate
the variety of ways that interior layers can appear.

Keywords Singular perturbation problems · Finite difference scheme · Shishkin
mesh · Interior layers

1 Introduction

The analytical solutions of linear singularly perturbed differential equations typically
contain boundary layers. To construct parameter-uniform numerical methods [1] for
such problems, the location, width and strength of all layers present in the solution
needs to be identified. In addition to boundary layers, interior layers can also appear
in certain types of singularly perturbed problems. Interior layers can form for several
reasons. For example, interior layers can appear due to the presence of turning points,
non-smooth coefficients, non-smooth boundary/initial data, non-linearities or lack of
compatibility at any corner points within the domain. In the case of linear problems,
the strength and width of any interior layer will depend on whether the problem is of
convection-diffusion or reaction-diffusion type on either side of the layer. If turning
points are present (when the convective coefficient is continuous and passes through
zero at some point within the domain) then the nature of any boundary or interior
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layer will depend on the rate at which the convective coefficient approaches its root.
The level of smoothness of the problemdatawill also influence the creation of interior
layers. In the case of singularly perturbed parabolic problems, the location of any
interior layer may move with time and any layer-adaptive mesh will be required to
track this movement. In the case of nonlinear problems, the location of any interior
layer may not be known explicitly and detailed asymptotic information about the
location of the interior layer will be required in order to construct a suitable mesh
for the problem. In this paper, we review some recent results on singularly perturbed
problems with interior layers.

In Sect. 2,we beginwith some standard results on linear singularly perturbed prob-
lems with smooth data, where we identify sufficient regularity for the data so that no
internal layer appears in the solution and the standard results on parameter-uniform
numerical methods for both convection-diffusion and reaction-diffusion problems
immediately apply. In Sect. 3, we introduce a discontinuity into a simple initial value
problem and give themodifications in both themesh and the analysis that are required
to retain the basic result of first order parameter-uniform convergence. In Sect. 4, we
discuss some results concerning interior layers appearing in linear ordinary differ-
ential equations due to discontinuities in the data. In Sect. 5 we briefly consider a
particular type of singularly perturbed turning point problem with interior layers of
exponential-type in the solution. In Sect. 6, we outline the issues around capturing a
moving interior layer and in Sect. 7 we conclude the paper with some comments on
interior layers occurring in nonlinear singularly perturbed problems.

Notation. Here and throughout the paper,C is a generic constant independent of both
the singular perturbation parameter ε and N , which is the number of mesh elements
used in any co-ordinate direction. Also, ‖ · ‖D denotes the maximum pointwise norm
over the set D.

2 Linear Singularly Perturbed Problems with Smooth Data

Linear second order singularly perturbed boundary value problems can be catego-
rized into two broad problem classes: problems of reaction-diffusion or convection-
diffusion type.

Consider the following class of singularly perturbed reaction-diffusion problems
of the form: Find u ∈ Ck+2(Ω̄), k ≥ 0 such that

Lε,(1)u := −εu′′ + b(x)u = f (x), x ∈ Ω := (0, 1), (1a)

u(0) = u0, u(1) = u1; b, f ∈ Ck(Ω); b(x) ≥ β > 0, x ∈ Ω. (1b)

Due to the assumption b(x) > 0, the differential operator is inverse-monotone. That
is: For any function y ∈ C0(Ω̄) ∩ C2(Ω) if y(0) ≥ 0, y(1) ≥ 0 and Lε,(1)y(x) ≥
0, x ∈ Ω then y(x) ≥ 0,∀x ∈ Ω̄. This property of the differential operator is used
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extensively to obtain suitable bounds on various components of the solution and in
estimating the level of accuracy of any proposed approximation to the solution.

The associated reduced problem is simply b(x)v0(x) = f (x). Note that the
reduced solution v0 of any singularly perturbed problem is defined in such a way that

‖u − v0‖Ω0 ≤ Cεp, meas(Ω \ Ω0) = O(εp ln(1/ε)), p > 0

and that v0 solves the associated differential equation with ε formally set to zero. In
general, the reduced solution will not satisfy all the boundary conditions and, then,
boundary layers formwhen there is a discrepancy between the boundary values of the
reduced solution and the solution. To correct this discrepancy, we define the leading
term of the two boundary layer functions for problem (1) to be

wL ,0(x) := (u(0) − v0(0))e
−
√

b(0)
ε x , wR,0(x) := (u(1) − v0(1))e

−
√

b(1)
ε (1−x).

Then we observe that Lε,(1)(v0 + wL ,0 + wR,0) = O(
√

ε) as

‖Lε,(1)v0‖Ω̄ ≤ Cε and |Lε,(1)wL ,0(x)| ≤ Cxe−
√

b(0)
ε x ≤ C

√
ε;

and (v0 + wL ,0 + wR,0)(0)=Ce−
√

b(1)
ε , (v0 + wL ,0 + wR,0)(1) = Ce−

√
b(0)
ε . Hence,

we have constructed the following asymptotic expansion

uasy = v0 + wL ,0 + wR,0, where ‖u − uasy‖Ω̄ ≤ C
√

ε.

From this bound, we see that f (x)/b(x) is indeed the reduced solution for the
reaction-diffusion problem.

If we impose the constraint ε ≤ CN−2p, p > 0, then without performing any
numerical calculations the above asymptotic expansion of v0 + wL ,0 + wR,0, yields
an O(N−p)-approximate solution to the solution u with relatively low regularity
assumed (i.e., let k = 2 in (1)). However, we wish to generate approximations with-
out imposing a constraint of the form ε ≤ CN−2p on the set of problems being con-
sidered. Our interest lies in designing parameter-uniform numerical methods [1] for
a large set of singularly perturbed problems. Parameter-uniform numerical methods
guarantee convergence of the numerical approximations, without imposing a mesh-
dependent restriction on the permissible size of the singular perturbation parameter.
To establish parameter-uniform asymptotic error bounds on any numerical approx-
imations generated, we will require bounds on the derivatives of the components.
The above asymptotic expansion does not yield information about the derivatives of
the solution.

In place of the asymptotic expansion, we will utilize a Shishkin decomposi-
tion [2] of the solution in the analysis of appropriate numerical methods for (1).
Consider the extended domain Ω∗ := (−L , L), 1 < L and the extended functions
b∗, f ∗ ∈ Ck(Ω∗) of b, f . The extended regular component: v∗ := v∗

0 + εv∗
1 , where

the correction v∗
1 to the reduced solution v∗

0 satisfies
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L∗
ε,(1)v

∗
1 = (v∗

0)
′′, v∗

1(−L) = v∗
1(L) = 0.

Then the regular component v ∈ Ck(Ω̄) satisfies the boundary value problem

Lε,(1)v = f, v(0) = v∗(0), v(1) = v∗(1).

If v(0) �= u(0), then a boundary layer will be present in a neighbourhood of x = 0.
Layer componentswL , wR ∈ Ck+2(Ω̄) at either endpoint, are defined as the solutions
of the following homogeneous problems

Lε,(1)wL = 0, wL(0) = u(0) − v(0), wL(1) = 0;
Lε,(1)wR = 0, wR(0) = 0, wR(1) = u(1) − v(1).

Note that wL(x) �= wL ,0(x). The Shishkin decomposition (with no remainder term)
is now of the form

u = v + wL + wR .

If b, f ∈ C4(Ω) then one can establish [3, Chap. 6] the following bounds on the
derivatives of the components of the solution of (1).

‖v(i)‖Ω̄ ≤ C(1 + ε1−i/2), i ≤ 4;
|w(i)

L (x)| ≤ Cε−i/2e−
√

β
ε x , |w(i)

R (x)| ≤ Cε−i/2e−
√

β
ε (1−x), i ≤ 4.

where v(i) denotes the i th-derivative of v. Thus the solution of (1) has boundary
layers of width O(

√
ε log ε) near the end-points x = 0 and x = 1. Once the location

and width of all the layers have been identified (as above) then a layer-adapted mesh
can be constructed for the problem.

In the case of convection-diffusion problems of the form: Find u ∈ Ck+2(Ω̄),

k ≥ 0 such that

Lε,(2)u := −εu′′ + a(x)u′ + b(x)u = f (x), x ∈ Ω, (2a)

u(0) = u0, u(1) = u1; a, b, f ∈ Ck(Ω), a(x) ≥ α > 0, b(x) ≥ 0. (2b)

The reduced solution satisfies the first order problem: Find v0 ∈ Ck+1(Ω̄) such that

L0,(2)v0 := a(x)v′
0 + b(x)v0 = f (x), x ∈ Ω, v0(0) = u(0).

Define the extended domainΩ∗ := (0, L), L > 1 and a∗, b∗, f ∗ ∈ Ck(Ω∗). The
regular component is v∗ := v∗

0 + εv∗
1 + ε2v∗

2 , where

L∗
0,(2)v

∗
0 = f ∗, v∗

0(0) = u(0); L∗
0,(2)v

∗
1 = (v∗

0)
′′, v∗

1(0) = 0;
L∗

ε,(2)v
∗
2 = (v∗

1)
′′, v∗

2(0) = v∗
2(L) = 0.
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Then L∗
ε,(2)v

∗ = f ∗ and Lε,(2)v = f, v(0) = u(0), v(1) = v∗(1). If a, b, f ∈
Ck(Ω), then v ∈ Ck(Ω̄). The boundary layer component satisfies the homogeneous
problem

Lε,(2)w = 0, w(0) = 0, w(1) = u(1) − v(1).

Hence u = v + w and if a, b, f ∈ C3(Ω) then [1, Chap. 3]

‖v(i)‖Ω̄ ≤ C(1 + ε2−i ); |w(i)(x)| ≤ Cε−i e−α(1−x)/ε, i ≤ 3.

Using simple stable finite difference scheme with a standard piecewise-uniform
Shishkinmesh to produce a numerical approximationUN , one has for the convection-
diffusion problem (2) (see, for example, [1, Chap. 3]): If a, b, f ∈ C3(Ω) then

‖u − Ū N‖Ω ≤ CN−1(ln N )

and for the reaction-diffusion problem (1) (see, for example, [3, Chap. 6]): If b, f ∈
C4(Ω) then

‖u − Ū N‖Ω ≤ CN−2(ln N )2,

where Ū N is the piecewise linear interpolant of the mesh function UN . Note that,
as one would expect, higher regularity is required of the data to establish higher
order convergence. The regularity required of the data is dictated by the chosen con-
struction of the solution decomposition. An alternative construction of the solution
decomposition can allow one relax the constraints (imposed above) on the data [4].

If there is no modification to the standard numerical method on a layer-adapted
mesh, then the above stated orders of parameter-uniform convergence can reduce for
less smooth data [2, Sect. 14.2], [5]. If the data is discontinuous, then the standard
numerical method will fail to be parameter-uniformly convergent [6, Table4].

3 Singularly Perturbed Initial Value Problems
with Discontinuous Data

Notation: Throughout the paper we adopt the following notation for the jump in a
function at an internal point:

[ f (d)] := f (d+) − f (d−), 0 < d < 1;

and we define the punctured domain by Ωd := (0, 1) \ {d}.
To illustrate the effect of discontinuous data,we begin our discussionwith a simple

initial value problem of the form: Find u ∈ C0(Ω̄) ∩ Ck+1(Ωd) such that

εu′ + a(x)u = f (x), a(x) ≥ α > 0, x ∈ Ωd , (3a)

u(0) = u0, a, f ∈ Ck(Ωd), k ≥ 0. (3b)
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Observe that the differential equation is not applied at the single interior point x = d,
Instead, the value of the solution at x = d is determined by requiring that the solution
be continuous at this internal point. In addition, sincea(x) ≥ α > 0, x ∈ Ωd ,wehave
the following useful monotonicity property of the first order differential operator
associated with problem (3):

For any function g ∈ C1(Ωd) ∩ C0(Ω̄), then if g(0) ≥ 0 and (εg′ + ag)(x) ≥ 0
for all x ∈ Ωd then g(x) ≥ 0, x ∈ Ω̄ .

The solution can be decomposed into a sum u = v + w + z, composed of a dis-
continuous regular component v, a continuous initial layer component w and a dis-
continuous interior layer component z. The components are defined as the solutions
of the problems:

εv′ + a(x)v = f (x), x ∈ Ωd , a(0)v(0) = f (0), a(d+)v(d+) = f (d+);
εw′ + a(x)w = 0, x ∈ Ωd , w(0) = u(0) − v(0), w(d+) = w(d−);
εz′ + a(x)z = 0, x ∈ Ωd , z(0) = 0, [z(d)] = −[v(d)].

Using the above monotonicity property of the differential operator, one can easily
deduce the following bounds on these components: If a, f ∈ C1(Ωd) then

‖v(i)‖Ωd ≤ C(1 + ε1−i ), i = 0, 1, 2; (4a)

|w(x)| ≤ Ce−αx/ε, |w(i)(x)|Ωd ≤ Cε−i e−αx/ε, i = 1, 2; (4b)

z(x) ≡ 0, x < d, |z(x)| ≤ Ce−α(d−x)/ε, x ∈ (d, 1); (4c)

|z(i)(x)|(d,1) ≤ Cε−i e−α(d−x)/ε, i = 1, 2. (4d)

From these bounds we see that the solution has an initial boundary layer w in the
vicinity of x = 0 and an interior layer to the right of x = d.

Given this a priori information, an appropriate distribution of the mesh points
{xi }Ni=0 is as follows: The end-points of the domain are included as x0 = 0, xN = 1
and the internal point d, where the data is discontinuous, is taken to be the mesh
point xN/2. The remaining internal mesh points ωN = {xi }N/2−1

i=1 ∪ {xi }N−1
i=N/2+1 are

distributed so as to capture the two scales present in the solution. The domain is split
into four sub-intervals [0, 1] = [0,σ1] ∪ [σ1, d] ∪ [d, d + σ2] ∪ [d + σ2, 1], where
the Shishkin transition parameters [3] are taken to be

σ1 := min

{
d

2
,

ε

α
ln N

}
, σ2 := min

{
1 − d

2
,

ε

α
ln N

}
.

The mesh elements are distributed equally across these sub-intervals. An appropriate
numerical method for this problem is: Find a mesh function U such that:

εD−UN (xi ) + a(x−
i )UN (xi ) = f (x−

i ), xi ∈ ωN ∪ {d}, UN (0) = u(0),

where D− is the standard backward finite difference operator. The discrete solution
U may be decomposed into the sum U = V + W + Z , where the boundary layer
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component w is approximated by the solution W of the homogeneous problem

εD−W (xi ) + a(x−
i )W (xi ) = 0, xi ∈ ωN ∪ {d}, W (0) = u(0) − v(0).

The discrete regular component V and discrete interior layer component Z are multi-
valued (at x = d) functions and are defined to be

V :=
{
V−, xi ∈ [0, d]
V+, xi ∈ [d, 1] , Z :=

{
0, xi ∈ [0, d]
Z+, xi ∈ [d, 1] ,

where

εD−V−(xi ) + a(x−
i )V−(xi ) = f (x−

i ), xi ∈ (0, d], V−(0) = v(0);
εD−V+(xi ) + a(xi )V

+(xi ) = f (xi ), xi ∈ (d, 1], V+(d) = v(d+);
εD−Z+(xi ) + a(xi )Z

+(xi ) = 0, xi ∈ (d, 1], Z+(d) = −[V ](d).

Based on classical stability, truncation error analysis and the parameter-explicit
bounds on the derivatives of w given in (4b), we conclude that in the initial layer
region [0,σ1]

|W (xi ) − w(xi )|[0,σ1] ≤ CN−1 ln N .

Then we note that, for xi ∈ [σ1, 1], the error in the layer component is

|W (xi ) − w(xi )|[σ1,1] ≤ |W (xi )| + |w(xi )|
≤ |Wε(σ1)| + CN−1 ≤ CN−1, if 2σ1 < d.

Using the bounds (4a) on the regular component we also conclude that

|V (xi ) − v(xi )| ≤ CN−1, xi ∈ Ωd , |V−(d) − v(d−)| ≤ CN−1.

Note that Z+(d) = −[v(d)] + V−(d) − v(d−) and by examining the error |Z − z|
on (d, d + σ2] and (d + σ2, 1] separately we conclude that

|Z(xi ) − z(xi )|[d,1] ≤ CN−1 ln N , if 2σ2 < 1 − d.

If 2σ1 = d or 2σ2 = 1 − d then a standard stability and consistency argument yields

max
i

|UN (xi ) − u(xi )| ≤ CN−1 ln N .

Hence, using linear interpolation (e.g., see [1, Theorem 3.12]), we conclude that

‖Ū N − u‖Ω ≤ CN−1 ln N ,

where Ū N is again the piecewise linear interpolant of the mesh function UN .
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4 Singularly Perturbed Boundary Value Problems
with Non-smooth Data

Let us now consider a reaction-diffusion two point boundary value problem with a
diffusion coefficient of a constant scale O(ε) and a lack of smoothness in the data at
some internal point. Find u ∈ C1(Ω̄) ∩ Ck(Ωd) such that

−εu′′ + b(x)u = f (x), b(x) ≥ β > 0, x ∈ Ωd , u(0), u(1)given; b, f ∈ Ck(Ωd).

The associated reduced problem is b(x)v0(x) = f (x), x �= d and so if [( f/b)(d)] �=
0, then the reduced solution will be discontinuous at the internal point d. Hence, the
solution will contain an internal layer function, which will exhibit layers of width
O(

√
ε ln ε) on either side of the interface point x = d. Note that by requiring that

u ∈ C1(Ω̄) we are imposing the constraints [u](d) = [u′](d) = 0 on the solution.
We generalize this problem to a reaction-diffusion problem with a variable diffu-

sion coefficient having potentially different scales either side of a point of disconti-
nuity x = d in the data. Find u ∈ C0(Ω̄) ∩ C4(Ωd) such that

Lε,(3)u := −(ε(x)u′)′ + r(x)uε = f, x ∈ Ωd; u(0), u(1) given; (5a)

[ f (d)] = Q2, [r(d)] = Q3, [−εu′
ε(d)] = Q′

1 ≤ C(
√

ε1 + √
ε2), (5b)

ε(x) =
{

ε1 p(x), x < d
ε2 p(x), x > d

, ε1, ε2 > 0, p(x) ≥ p > 0, x ∈ Ωd , (5c)

p, r, f ∈ C4(Ωd), r(x) ≥ r0 > 0,
r(x)

p(x)
> β > 0, x ∈ Ωd . (5d)

In particular, Eqs. (5c) and (5b) above indicate that all the coefficients in (5a) may
exhibit a jump at x = d and also they allow for a scaled jump in the flux (−εu′

ε)

at x = d. The regular component v and singular component w of the solution are
defined, respectively, as the solutions of the discontinuous problems

Lε,(3)v = f, Lε,(3)w = 0, x ∈ Ωd; r(x)v(x) = f (x), x ∈ {0, d−, d+, 1};
[w(d)] = −[v(d)], [εw′(d)] = −[εv′(d)] − Q′

1,

w(0) = u(0) − v(0), w(1) = u(1) − v(1).

Note that, in general, v,w /∈ C0(Ω) even though their sum u = v + w is continuous.
For each integer k, satisfying 0 ≤ k ≤ 4, these components satisfy the bounds [7].

|v(k)
ε (x)| ≤

{
C(1 + ε

1− k
2

1 ), x < d

C(1 + ε
1− k

2
2 ), x > d

,
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|w(k)
ε (x)| ≤

⎧⎪⎪⎨
⎪⎪⎩
Cε

− k
2

1

(
e
−

√
β
ε1
x + e

−
√

β
ε1

(d−x)
)

, x < d

Cε
− k

2
2

(
e
−

√
β
ε2

(1−x) + e
−

√
β
ε2

(x−d)

)
, x > d

.

Based on these bounds, an appropriate piecewise-uniform Shishkin mesh can be
constructed. However, to retain parameter-uniform second order convergence for
this reaction-diffusion problem, it is necessary to employ a particular discretization
of the jump conditions at the mesh point xi = d. See [7] for details.

Boundary and interior layers can be classified as either weak or strong layers. A
layer is a strong layer near a point x = p if u′(p−) or u′(p+) is unbounded as ε → 0.
A layer is a weak layer near x = p, if the first derivatives u′(p−) and u′(p+) are
bounded, but either u′′(p−) or u′′(p+) is unbounded as ε → 0. In all of the above
problems, only strong interior layers appeared.When a convective term is included in
the differential equation, weak interior layers can appear in the solutions. Note that,
if one employs a classical finite difference operator (such as simple upwinding), then
it is essential that one employs a suitable layer-adapted mesh to capture any strong
internal layers present in the solution. The adverse effect of using a uniform mesh
for a weak layer are minimal. Nevertheless, one still observes some improvement in
the numerical results if one also uses a layer-adapted mesh in the vicinity of a weak
layer. We refer to the numerical results in [8] to justify this comment.

We now look at five particular singularly perturbed problems, with a convective
term present in the differential equation. These particular problems illustrate the
variety of layers that can occur when the problem has discontinuous data. For all five
problems, we seek to find u ∈ C1(Ω̄), with u(0) = u(1) = 0 and

− εu′′ + u′ = 1, x < 0.5; −εu′′ − u′ = −1, x > 0.5; (6a)

−εu′′ + u′ = 1, x < 0.5; −εu′′ + u = −1, x > 0.5; (6b)

−εu′′ + u′ = 1, x < 0.5; −εu′′ + 2u′ = −1, x > 0.5; (6c)

−εu′′ − u′ = 1, x < 0.5; −εu′′ + u = −1, x > 0.5; (6d)

−εu′′ − u′ = 1, x < 0.5; −εu′′ + u′ = −1, x > 0.5. (6e)

For the first four problems, we can define the following associated reduced problems

v′
0 = 1, x < 0.5, v0(0) = u(0); v′

0 = 1, x > 0.5, v0(1) = u(1);
v′
0 = 1, x < 0.5, v0(0) = u(0); v0 = 1, x > 0.5;

v′
0 = 1, x < 0.5, v0(0) = u(0); 2v′

0 = −1, x > 0.5, [v0(0.5)] = 0;
v′
0 = 1, x < 0.5, v0(0) = u(0); v0 = −1, x > 0.5, [v0(0.5)] = 0.

In the case of the first two problems (6a, 6b), the reduced solution is discontinuous
and a strong interior layer forms in a neighbourhood of x = 0.5. In the next two
problem classes (6c, 6d), the reduced solution is continuous and a weak layer forms
in a neighbourhood of x = 0.5. There is no reduced problem for the fifth problem (6e)
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as the solution is of order O(εe
1
2ε ) throughout the domain, except in O(ε ln(1/ε))-

neighbourhoods of the two end points.
For the first four sample problems (6a–6d), associated problem classes can be

formulated and parameter-uniform numerical methods (based on standard finite dif-
ference schemes combined with appropriately fitted piecewise uniform Shishkin)
were constructed in [9]. In the case of problems of the form (6e) a modification
of the transmission condition from [u′(d)] = 0 to [(−εu′ + γu)(d)] = 0 (where γ
sufficiently large) allows one design a parameter-uniform numerical method for this
modified class of problems [10].

Further effects can be built into such problem classes, such as point sources (i.e.
δ-functions) or multi-parameter problems with variable diffusion. In [11], high order
parameter-uniformmethods were constructed for the following two problem classes:
Find u ∈ C4(Ωd) ∩ C0(Ω̄), u(0) = u0, u(1) = u1, such that

− (ε(x)u′)′ + a(x)u′ + b(x)u = f (x), x �= d,
[−(εu′)(d)

] = Q1; (7)

−(ε(x)u′ + a(x)u)′ + b(x)u = f (x), x �= d,
[
(−εu′ + au)(d)

] = Q2; (8)

and for both problem classes we assume that

ε, a, b, f ∈ C4(Ωd); b(x) ≥ 0, ε(x) > 0, |a(x)| > 0, x �= d.

The nature of the interior layers appearing in (7) and (8) can have different character.
If Q1 = 0 in (7), then the strength of the interior layer depends on the sign of a(x)
and on the change in the ratio of convection to diffusion at d. A strong interior layer
can appear in (7) when a(x) > 0, x �= d and

ε(d−)

a(d−)
<<

ε(d+)

a(d+)
.

If Q2 = 0 then a strong interior layer always appears near d in (8).
Numerous different types of interior layers can appear in problem classes (5), (7)

and (8), which is an indication of the rich variety of layers one can expect to occur
in higher dimensional versions of these one dimensional problem classes.

5 Singularly Perturbed Turning Point Problems

Singularly perturbed differential equations with discontinuous coefficients can be
viewed as approximate models for singularly perturbed nonlinear problems. For
example, in the case of the quasilinear second order problem

− εu′′ + uu′ + u = 0, x ∈ Ω; (9a)

u(0) = A > 1, u(1) = B < −1; (9b)
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then an interior layer (with a profile of hyperbolic-tangent type) will appear [12, 13]
in the vicinity of some internal point 0 < dε < 1, where u(dε) = 0 and d0 :=
limε→0 dε. The associated reduced problem to this nonlinear problem is the non-
linear first order problem

u0u
′
0 + u0 = 0, u0(0) = A, 0 < x < d0; u0u

′
0 + u0 = 0, u0(1) = B, 1 > x > d0;

which has the discontinuous solution

u0(x) = A − x, 0 ≤ x < d0; u0(x) = B + 1 − x, d0 < x ≤ 1.

For ε << 1, it is natural to consider the following approximate problem for the above
nonlinear problem (9). Find y ∈ C1(Ω) such that

−εy′′ + u0y
′ + y = 0, x ∈ Ωd , y(0) = u(0), y(1) = u(1).

This linearized approximate problem is within the class of problems discussed in
Sect. 3, for which parameter-uniform numerical methods have been developed in
the literature [9]. However, the convective coefficient in the nonlinear problem is
continuous and not discontinuous as in the above linearization of (9).

An alternative linearization of the nonlinear problem (9) would be the following
class of turning point problems with a continuous convective coefficient: Find u ∈
C3(Ω) such that

(−εu′′ + aεu
′ + bu)(x) = f (x), x ∈ Ω; u(0) > 0, u(1) < 0; (10a)

aε ∈ C2(Ω), aε(x) > 0, x ∈ [0, d), aε(d) = 0, aε(x) < 0, x ∈ (d, 1]. (10b)

Observe that the convective coefficient is continuous, but depends on the singular
perturbation parameter.We also assume that the convective coefficient aε(x) contains
it’s own interior layer. Define the limiting functions

a−
0 (x) := lim

ε→0
aε(x), x ∈ [0, d) and a+

0 (x) := lim
ε→0

aε(x), x ∈ (d, 1].

Assume that

|aε(x)| > |θ tanh (r(d − x)/ε)|, θ > 2r > 0, (10c)

|(a±
0 − aε)(x)| ≤ Ce± θ

2ε (d−x), x ∈ Ωd . (10d)

Then the solution of the above problem (10) will have an interior layer (with
a profile of hyperbolic-tangent type) in an O(ε)-neighbourhood of the point d,
where the convective coefficient has an interior layer. Based on this information,
a parameter-uniform numerical method was constructed [14] and shown to be
parameter-uniformly convergent of first order.
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The nature of the interior layers appearing in problem (10) is different to the layers
appearing in the solutions of singularly perturbed turning point problems of the form

−εu′′ + a(x)u′ + b(x)u = f (x), x ∈ Ω;
a ∈ C2(Ω), a(d) = 0, d ∈ Ω, b > 0;

where the convective coefficient a is independent of the singular perturbation para-
meter. Depending on the quantity b(d)/a′(d), there may be no interior layer or there
may be layers of power-law type present at d. See [15, 16] for a discussion of these
types of turning point problems.

6 Singularly Perturbed Parabolic Problems

Consider the following singularly perturbed parabolic problem: Find u ∈ C1+γ(G),

G := (0, 1) × (0, 1] such that

−εuss + a1us + b1u + c1ut = f, (s, t) ∈ G \ Γ,

Γ := {(s, t)|s = d(t), 0 < d(t) < 1};
u = g, (s, t) ∈ Ḡ \ G; b(s, t) ≥ 0, c(s, t) ≥ γ > 0.

As in the previous sections, interior layers can appear in the solution due to discon-
tinuous coefficients a, b, c and/or f [17]. Nine subclasses can be identified (see [9]
and [10]), which can exhibit strong or weak interior layers in the vicinity of the curve
Γ . Note that in these references, the interior layer location is known and the center of
the interior layer can move with time. By using a transformation T : (s, t) → (x, t)
so that T : Γ → {x = d(0)} any internal layer will be located along the vertical line
x = d in the computational domain (x, t) [18]. A computed solution is generated on
this transformed domain so that the piecewise-uniform mesh is aligned to the curve
Γ . Shishkin [19] established that it is necessary to align the grid to the interior layer
if one is seeking to construct a parameter-uniform numerical method.

Moreover, for parabolic problems interior layers can also appear when the bound-
ary/initial conditions are not smooth [20, 21]. If there is a discontinuity in the initial
condition u(s, 0) then a standard finite difference operator on a piecewise uniform
mesh will not suffice to generate a parameter-uniform numerical method. A special
fitted finite difference operator is required [22]. A regularization of a discontinuous
initial condition is possible by replacing the initial condition with an initial condition
of the form

u(s, 0) = A tanh
( s − d0√

ε

) + B.

In this case, assuming the convective coefficient is independent of space, the initial
interior layer is transported along the curve {(d(t), t) : d ′(t) = a(t), d(0) = d0}; and
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a parameter-uniform numerical method based on classical finite difference operator,
a suitable transformation and an appropriate piecewise-uniform mesh can be con-
structed [23, 24].

7 Singularly Perturbed Nonlinear Problems
with Interior Layers

Semilinear singularly perturbed differential equations of the form

−εu′′ + g(x, u) = 0, x ∈ Ω, u(0) = A, u(1) = B; (11a)

are typically constrained by a condition of the form

gu(x, u) ≥ β > 0, (x, u) ∈ Ω̄ × [−M, M]; (11b)

where M is a sufficiently large number that needs to be be explicitly identified. This
constraint is a restriction on the admissible type of nonlinear problem being studied.
Note that requiring

gu(x, u) ≥ β > 0, (x, u) ∈ Ω̄ × (−∞,∞),

is a significantly stronger restriction to impose on the problem class. This stronger
constraint guarantees a unique solution to the reduced problem and thereby regu-
lates the problem class to a minor extension from the corresponding class of linear
problems of reaction-diffusion type

−εu′′ + b(x)u = f (x), b(x) ≥ β > 0.

Interesting new phenomena can be observed when the nonlinear reduced problem
g(x, v) = 0 has non-unique solutions. The reduced solutions are classified as stable
reduced solutions if gu(x, v(x)) > 0, ∀x ∈ Ω̄ and as unstable reduced solutions if
gu(x, v(x)) < 0, ∀x ∈ Ω̄ .

Interior layers can appear in nonlinear problems. Typically, restrictions need to be
placed on the data so that solutions to the reduced problem exist and for the solution
of the singularly perturbed problem to exist and be unique. For example, in the case
of the semilinear reaction-diffusion problem: Find u ∈ C1(Ω̄) ∩ C3(Ωd) such that

−εu′′ + (1 − u2)u = f (x), x ∈ Ωd; d = 0.5;
u(0) = A, u(1) = B; f (x) > 0, x < d, f (x) < 0, x > d; [ f ](d) �= 0;
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we impose the following limits on the input data

|A|, |B| <
1√
3
, ‖ f ‖ <

2

3
√
3
.

This problem is formulated so that a discontinuous stable reduced solution lies
between two discontinuous unstable reduced solutions. Interior layers can appear in
the solution of this problem and the location of the layer will be positioned around the
point d, where the discontinuity in the data is located. By placing further restrictions
on the data, a parameter-uniform method was constructed in [25] for this semilinear
problem.

However, other semilinear problems of the form (11) can be very difficult to solve
numerically. In [26] a semilinear problemof the form (11)with smooth data,where an
unstable continuous reduced solution was positioned between two stable continuous
reduced solutions, was examined. Using a piecewise-uniform Shishkin mesh (of an
appropriate width) centered at any point in the domain Ω , then an interior layer
forms within the fine mesh, no matter where the mesh is centered [26]. Only in the
exceptional case where the fine mesh is located in an O(

√
ε) neighbourhood of the

actual location of the interior layer will the numerical approximation be of any true
value.

Parameter-uniform numerical methods (based on piecewise-uniform Shishkin
meshes) have also been constructed [27] for quasilinear problems with interior layers
of the form: Find u ∈ C1(Ω̄) ∩ C3(Ωd) such that

εu′′(x) + b(x, u)u′(x) = f (x), x ∈ Ωd , u(0) = A, u(1) = B, (12a)

b(x, u) =
{
b1(u) = −1 + cu, x < d

b2(u) = 1 + cu, x > d
, f (x) =

{−δ1 < 0, x < d

δ2 > 0, x > d
(12b)

−1 < u(0) < 0, 0 < u(1) < 1, 0 < c ≤ 1. (12c)

As in the case of the semilinear problem, additional constraints need to be imposed
on the data {A, B, ‖ f ‖, c} in order for the theoretical convergence result given in [27]
to apply. The numerical results in [28] suggest that the numerical approximations
generated by the method described in [27] converge for a wider class of problems
to that covered by the theoretical convergence analysis in [27]. Note, again, that for
this problem (12) the location of the interior layer is known to be positioned at d,
where both the convective coefficient b(x, u) and the forcing term f are formulated
to be discontinuous.

An interesting open issue is to examine singularly perturbed problemswith an inte-
rior layer, whose location is not known a priori. Many nonlinear singularly perturbed
problems of interest [29–32] exhibit this phenomenon. The design of parameter-
uniform numerical methods for a broad class of nonlinear singularly perturbed prob-
lemswith interior layers, remains an areawith significant challenges for the numerical
analyst.
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Singularly Perturbed Delay Differential
Equations and Numerical Methods

Ramanujam Narasimhan

Abstract The main objective of my talk is to discuss some numerical methods for
singularly perturbed delay differential equations. First some well-known mathemat-
ical models represented by differential equations with out delay and with delay are
presented. Then some basic numerical methods for delay differential equations are
briefly described. After this an introduction to singularly perturbed delay problems
is given. Finally some numerical methods for these problems are discussed.

Keywords Singular perturbation problems · Delay differential equations · Finite
difference methods

1 Introduction

As mentioned in the abstract first I will present some well known mathematical
models represented by differential equations. Let P(t) denote the population size of
a single species at time t . Let b and d denote birth and death rates respectively. Then
a simple population model is [1]

dP

dt
= bP − dP = r P,

where r = b − d is the intrinsic growth rate of the population. This model is valid,
in general, for short periods. Taking into account that resources are limited then the
more realistic model will be

dP

dt
= r P

(
1 − P

K

)
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r > 0, K > 0 are respectively intrinsic growth and carrying capacity. Next a prey-
predator model is described. Let x(t), y(t) denote the populations of the prey and
predator species at time t respectively. Under suitable assumptions this model can
be described by the following system [1, 2]

{
dx
dt = ax − bxy = x(a − by), a, b > 0, x(0) = x0,
dy
dt = −py + qxy = −y(p − qx), p, q > 0, y(0) = y0.

Inmanyapplications, one assumes that the future state of the system is independent
of the past states and is determined solely by the present. However, under closer
scrutiny, it becomes apparent that this is often a first order approximation to the
true situation and more realistic model would involve some of the past states of the
system. For an example

{
dx
dt = g(x(t), x(s), t), t − τ ≤ s < t,

x(0) = C.

Now I present a simple population delay model. Imagine a biological population
composed of adult and juvenile individuals. Let A(t) denote the density of adults at
time t . We assume that

• The length of the juvenile period is exactly h units of time for each individual.
• Adults produce offspring at a per capita rate α and that their probability per unit
of time of dying is μ.

• A newborn survives the juvenile period with probability ρ.

Let r = αρ. Then we have

d A

dt
= −μA(t) + r A(t − h),

where the term r A(t − h) means that newborns become adults with some delay.
In the above discussed logistic model it was assumed that the growth rate of a

population at any time t depends on the relative number of individuals at that time. In
practice, the process of reproduction is not instantaneous. Hence the more realistic
logistic model will be

dP

dt
= aP(t)

[
1 − P(t − τ )

N

]
,

where τ is a delay or lag and the equation is known as Hutchinson’s equation or
delayed logistic equation.

Let me present a population model consisting of adult and juvenile. Let A(t)
and J (t) denote adult and juvenile population respectively. Further let 10 be the
dividing line for sexually matured. Then the mathematical model for this population
problem is
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⎧⎪⎨
⎪⎩

d J
dt = bA(t) − sabA(t − 10) − d j J (t),
d A
dt = sbA(t − 10) − da A(t),

J (0) = J0, A(t) = A0, −10 ≤ t ≤ 0.

Next let us consider a cell to cell virus spread model. Interaction between the sus-
ceptible host cells (S), infected host cells (I ) and free virus particles (V ) can be
modelled as ⎧⎪⎨

⎪⎩
dS
dt = λS(t) − dS(t) − βS(t)V (t),
d I
dt = βS(t)V (t) − aI (t),
dV
dt = k I (t) − βS(t)V (t) − uV (t),

where λS(t), dS(t),βS(t)V (t) are respectively production, death and infected rates
of the susceptible host cells S, etc. In above model it was assumed that as soon as
the virus contacts a target cell, the cell begins producing virus. In general this may
not happen. In fact there is a time delay between the initial viral entry into a cell and
subsequent viral production. Therefore an appropriate model will be [3]

⎧⎪⎨
⎪⎩

dS
dt = λS(t) − dS(t) − βS(t)V (t),
d I
dt = βS(t−τ )V (t−τ )

1+V (t−τ )
− aI (t),

dV
dt = k I (t) − βS(t)V (t) − uV (t).

2 Preliminaries

Definition 1 (Functional Differential Equation (FDE)) A FDE is an equation for
an unknown function which involves derivatives of the function and in which the
function, and possibly its derivatives, occur with various different arguments.

Examples:

• u′(x) = u(x − π) (DDE),
• u′(x) = u(x) − u(x/2) (DDE with variable delay),
• u′(x) = x2u(x) − u′(x − 1) (NFDE),
• u′(x) = u(x)u(x − 1) + u(x + 2) (DDE with advance argument),
• u′′(x) = −u′(x) + sin(u(x)) + u(x − 5) + u2(x − 3) (non-linear DDE),
• u′(x) = u2(x) + 2

π

∫ ∞
0 e−s2u(x − s)ds (DDE with distribution delay).

Definition 2 (DelayDifferential Equation (DDE)) A retarded functional DE or aDE
with retarded arguments or a DDE is a FDE when the highest derivative only occurs
with one value of the arguments, and this argument is not less than the arguments of
the unknown function and its lower order derivatives appearing in the equation.
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2.1 Properties of FDE

• Propagation of discontinuity:

Consider the DDE {
u′(x) = −u(x − 1), x ≥ 0,

u(x) = 1, x ≤ 0.

Then we see that u ∈ C1(0, 1] ∩ C0[0, 1], u′ is discontinuous at x = 0 and u′′ is
discontinuous at x = 1.

• No injectivity:

Consider the DDE
u′(x) = u(x − 1)(u(x) − 1), t ≥ 0.

Then u(x) = 1 is the solution for any initial function φ(x) on [−1, 0] such that
φ(0) = 1.

• Propagation of discontinuity:

Consider the FDE {
u′(x) = −u′(x − 1), t ≥ 0,

u(x) = x, x ≤ 0.

Then u′(t) has a jump discontinuity at x = 0, x = 1, · · · .
• Non uniqueness:

Consider the DDE
{
u′(x) = u(x − |u(x)| − 1) + 1

2 , x ≥ 0,

u(x) = φ(x), x ≤ 0.

where

φ(x) =
{
1, x < −1,

0, −1 ≤ x ≤ 0.

On [0, 2], u(x) = 3
2 x and u(x) = x

2 are solutions.

2.2 Classification of FDEs

• Retarded type:
(delay will not occur in the highest derivative)
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du

dx
+ au(x) + bu(x − τ (x)) = g(x).

• Neutral type:
(delay will appear in the highest derivative)

du

dx
+ a

du(x − τ (x))

dx
+ bu(x) + cu(x − τ (x)) = g(x).

• Advanced type:
(delay will appear in the highest derivative and not in the next lower order)

d2u(x − τ (x))

dx2
+ a

du

dx
+ bu(x) + cu(x − τ (x)) = g(x).

• State dependent type:
(delay can be a function of unknown function)

du

dx
+ au(x) + bu(x − τ (x, u(x))) = g(x).

2.3 Method of Steps/Step by Step Integration

2.3.1 Initial Value Problem (IVP)

Consider the following IVP for the first order ordinary delay differential equa-
tion(ODDE): {

u′ + au(x) + bu(x − τ ) = g(x), x > 0,

u(x) = φ(x), x ∈ [−τ , 0]. (1)

Recall thatφ(x) is thehistory function. The solutionof the aboveproblem is obtained
as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′
A + auA(x) = −bφ(x − τ ) + g(x), x ∈ (0, τ ],

yA(0) = φ(0),

u′
B + auB(x) = −buA(x − τ ) + g(x), x ∈ (τ , 2τ ],

uB(τ ) = uA(τ )

and so on.
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2.3.2 Boundary Value Problem (BVP)

Consider the following BVP for the second order ODDE:

⎧⎪⎨
⎪⎩
u′′(x) + au′(x) + bu(x) + cu(x − 1) = f (x), x ∈ (0, 2),

u(x) = φ(x), x ∈ [−1, 0],
u(2) = l.

(2)

This BVP can be solved as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′
A(x) + au′

A(x) + buA(x) = f (x) − cφ(x − 1), x ∈ (0, 1),

u′′
B(x) + au′

B(x) + buB(x) + cuA(x − 1) = f (x), x ∈ (1, 2),

uA(0) = φ(0), uB(2) = l,

uA(1−) = uB(1+), u′
A(1−) = u′

B(1+).

2.4 Existence, Uniqueness and Stability

Consider the initial value problem

{
u′ = f (x, u(x), u(x − τ )), x > 0,

u(x) = φ(x), x ∈ [−τ , 0]. (3)

On [0, τ ], this IVP becomes

{
u′ = f (x, u(x),φ(x − τ )), x > 0,

u(0) = φ(0),

which is an IVP for ODE with out a delay term and hence it can be solved. On
[τ , 2τ ], the term u(x − τ ) in f is known and the initial value u(τ ) is also known.
Repetition shows the existence, uniqueness and continuous dependence on the data
of the solution for all x > 0.

3 Euler Method for Delay Differential Equations

One cannot apply directly the existing numerical method of ODE to DDEs. To
illustrate this, we consider the following IVP:
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{
u′(x) = u(x − τ ), x > 0, τ > 0,

u(x) = 1, x ∈ [−τ , 0]. (4)

The Euler formula for the above problem is given by

{
u(xi ) = u(xi−1) + h(i)(u(xi−1 − τ )),

u(x) = 1, x ∈ [−τ , 0]. (5)

Note that, we used the Taylor’s expansion to discretize the DDE into difference
equation [4, 5]. But the solution is no longer smooth in the domain of differential
equation. It is smooth except at the points of the discontinuity (x = 0, 1). Since the
truncation error depends on the higher derivatives of the solution we have to

• include all the points of the discontinuity as mesh points,
• go for a non uniform mesh,
• apply an appropriate interpolation method to evaluate at the points xi − τ as they
need not fall on the mesh points.

Hence the the appropriate Euler method is

{
u(xi ) = u(xi−1) + h(i)(uI (xi )), i ≥ 1,

u(x0) = 1,
(6)

where

uI (xi ) =

⎧⎪⎨
⎪⎩
u0(xi − 1), xi ≤ 1,

u(x j ), xi − 1 = x j , xi > 1,
(xi−1)−x j

x j+1−x j
u(x j+1) + x j+1−(xi−1)

x j+1−x j
u(x j ), x j < xi − 1 < x j+1, xi > 1.

(7)
This method is known as continuous ODE method [6]. The above numerical method
is consistent with the DDE (4). (Local truncation error tends to zero as the mesh
parameter tends to zero.)

4 Singular Perturbation Problems

Definition 3 Let Pε denote the original problem and uε be its solution. Let P0 denote
the reduced problem of Pε (setting ε = 0 in Pε). Then the problem Pε is called a
Singular PerturbationProblem (SPP) if and only if uε does not converge uniformly
to u0 in the entire domain of the definition of the problem. Otherwise the problem is
called Regular Perturbation Problem (RPP) [7–9]
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4.1 One-Dimension Convection Diffusion Problems

Consider the following differential equation

− εu′′(x) + a(x)u′(x) + b(x)u(x) = f (x), x ∈ Ω, (8)

subject to

• Dirichlet type boundary conditions

u(0) = A, u(1) = B.

• Neumann type boundary conditions

u′(0) = A, u′(1) = B.

• Mixed type boundary conditions

{
α1u(0) − α2u′(0) = A,

β1u(1) + β2u′(1) = B.

4.2 Reaction Diffusion Problems

Consider the following differential equation

− εu′′(x) + b(x)u(x) = f (x), x ∈ Ω, (9)

subject to

• Dirichlet type boundary condition

u(0) = A, u(1) = B.

• Neumann type boundary condition

u′(0) = A, u′(1) = B.

• Mixed type boundary condition

{
α1u(0) − α2u′(0) = A,

β1u(1) + β2u′(1) = B.
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5 Locations of Boundary Layers

Consider the BVP
{

−εu′′(x) + a(x)u′(x) + b(x)u(x) = f (x), x ∈ Ω = (0, 1),

u(0) = u0, u(1) = u1.

1. Case (A): a, b, and f are smooth.

• a(x) > 0, ∀x ∈ Ω there is a strong boundary layer at x = 1.
• a(x) < 0, ∀x ∈ Ω there is a strong boundary layer at x = 0.

2. Case (B): a and b are smooth, f is bounded and has a discontinuity at x = d ∈ Ω.

• a(x) > 0, ∀x ∈ Ω there is a strong boundary layer at x = 1 and a weak
interior layer at x = d (left side of the point x = d).

• a(x) < 0, ∀x ∈ Ω there is a strong boundary layer at x = 0 and a weak
interior layer at x = d (right side of the point x = d).

3. Case (C):b is smooth,a and f are bounded andhave a discontinuity at x = d ∈ Ω.

• a(x) > 0, ∀x ∈ Ω there is a strong boundary layer at x = 1 and a weak
interior layer at x = d (left side of the point x = d).

• a(x) < 0, ∀x ∈ Ω there is a strong boundary layer at x = 0 and a weak
interior layer at x = d (right side of the point x = d).

• a(x) > 0, x ∈ (0, d) and a(x) < 0, x ∈ (d, 1) there are strong twin interior
layers at x = d.

• a(x) < 0, x ∈ (0, d) and a(x) > 0, x ∈ (d, 1) the solution is unbounded.

4. Case (D): Suppose a(x) = 0 (reaction diffusion) and

• the coefficients are all smooth then, there are strong boundary layers at x = 0
and x = 1.

• f is discontinuous at x = d then, there are strong boundary layers at
x = 0, x = 1, x = d (both sides).

6 Numerical Methods for SPPs

In general classical numerical methods on equidistant grids yield satisfactory numer-
ical solution for singularly perturbed boundary value problems only if one uses an
unacceptably large number of grid points. Further Galerkin finite element method
even on layer adapted meshes produces an oscillation of the solution/ and its deriv-
ative. Hence one has to develop special types of numerical methods to SPPs. In the
literature various non-classical methods are available [10–17]:
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(i) Variable Mesh size Method (VMM)
(ii) Boundary Value Technique (BVT)
(iii) Initial Value Technique (IVT)
(iv) Fitted Operator Method (FOM)
(v) Fitted Mesh Method (FMM)
(vi) Booster Method (BM)
(vii) Schwartz Iterative Method (SIM)
(viii) Shooting Method (SM)
(ix) Spline Approximation Method (SAM)
(x) Finite Element Method (FEM)
(xi) Asymptotic Numerical Method (ANM)
(xii) Collocation Method

6.1 Fitted Mesh Method for Second Order SPDEs [18, 19]

Consider the following BVP. Find u ∈ Y = C0(Ω) ∩ C2(Ω) such that

{
−εu′′(x) + a(x)u′(x) = f (x), x ∈ Ω = (0, 1),

u(0) = u0, u(1) = u1,
(10)

where u0, u1 are given constants, the functions a and f sufficiently smooth func-
tions. Further, we assume that, a(x) ≥ α > 0. Since the BVP exhibits a boundary
layer at x = 1, we choose a piecewise uniform mesh on [0, 1]. For this we divide
the interval [0, 1] into two subintervals, namely Ω1 = [0, 1 − τ ], [1 − τ , 1], where
τ = min{0.5, 2ε ln N/α}. Let h = 2N−1τ , H = 2N−1(1 − τ ). The fitted mesh
Ω

N = {xi }Ni=0 is defined by

⎧⎪⎨
⎪⎩
x0 = 0,

xi = i ∗ H, i = 1(1)N/2,

xN/2+i = xN/2 + i ∗ h, i = 1(1)N/2.

The fitted mesh method for the above problem is given by

{
LNUi = −εδ2Ui + a(xi )D−Ui = f (xi ), i = 1(1)N − 1,

U0 = u0, UN = u1,

where δ2, D− are central and backward difference operators.
The above system yields a numerical solution for the BVP (30).
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7 Numerical Method for Singularly Perturbed Delay
Differential Equations (SPPDDs) of First Order

Consider the IVP:
Find u ∈ C([0, 2]) ∩ C1((0, 2]) such that

{
εu′ + au(x) + bu(x − 1) = f (x), x ∈ (0, 2],
u(x) = φ(x), x ∈ [−1, 0], (11)

where a > 0. The equivalent problem is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εu′
A + auA(x) = f (x) − bφ(x − 1), x ∈ (0, 1],

uA(0) = φ(0),

εu′
B + auB(x) = f (x) − buA(x − 1), x ∈ (1, 2],

uB(1) = uA(1).

The problem (11) has a boundary layer at x = 0 and an interior layer (due to the
delay term) at x = 1. So we divide the given domain [0, 2] into four subintervals
[0, τ ], [τ , 1], [1, 1 + τ ] and [1 + τ , 2] where τ = 2ε ln N

a is transition parameter.
On each subinterval there are N

4 mesh points are placed. The Shishkin mesh ΩN

is given by
ΩN = {0 = x0, · · · , x N

2
= 1, · · · , xN = 2}.

We now define a fitted mesh method on the mesh ΩN as

ui+1 =
{
ui + hi

ε
[ f (xi ) − aui − bφ(xi − 1)] , i = 1(1) N

2 ,

ui + hi
ε

[
f (xi ) − aui − bui− N

2

]
, i > N

2 .
(12)

This gives a numerical solution for the IVP (11)

8 Location of Boundary Layers for Second Order SPPDDs

Consider the following BVP for SPDDE:

⎧⎪⎨
⎪⎩

−εu′′(x) + a(x)u′(x) + b(x)u(x) + c(x)u(x − 1) = f (x), x ∈ Ω = (0, 2),

u(x) = φ(x), x ∈ [−1, 0],
u(2) = u2.
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1. Case (A): a, b, c, f, and φ are smooth.

• a(x) > 0, ∀x ∈ Ω there is a strong boundary layer at x = 2.
• a(x) < 0, ∀x ∈ Ω there is a strong boundary layer at x = 0 and weak interior
layer at x = 1 (right side of the point x = 1).

2. Case (B): a and b are smooth, f is bounded and has a discontinuity at x = 1.

• a(x) > 0, ∀x ∈ Ω there is a strong boundary layer at x = 2 and a weak
interior layer at x = 1 (left side of the point x = 1).

• a(x) < 0, ∀x ∈ Ω there is a strong boundary layer at x = 0 and a weak
interior layer at x = 1 (right side of the point x = 1).

3. Case (C): b is smooth,a and f are bounded and have a discontinuity at x = 1 ∈ Ω .

• a(x) > 0, ∀x ∈ Ω there is a strong boundary layer at x = 2 and a weak
interior layer at x = 1 (left side of the point x = 1).

• a(x) < 0, ∀x ∈ Ω there is a strong boundary layer at x = 0 and a weak
interior layer at x = 1 (right side of the point x = 1).

• a(x) > 0, x ∈ (0, 1) and a(x) < 0, x ∈ (1, 2) there is a strong twin interior
layer at x = 1 and weak interior layer at x = 2.

• a(x) < 0, x ∈ (0, 1) and a(x) > 0, x ∈ (1, 2) the solution is unbounded.

4. Case (D): Suppose a(x) = 0 (reaction diffusion) there are strong boundary layers
at x = 0, x = 2, and x = 1 (both sides).

9 Numerical Methods for Singularly Perturbed Second
Order Delay Differential Equations

Consider the following BVP:
Find u ∈ Y = C0(Ω) ∩ C2(Ω) such that

⎧⎪⎨
⎪⎩

−εu′′(x) + a(x)u′(x) + b(x)u(x) + c(x)u(x − 1) = f (x), x ∈ Ω,

u(x) = φ(x), x ∈ [−1, 0],
u(2) = l.

(13)

where

• a(x) ≥ α > 0, b(x) ≥ β0, γ0 ≤ c(x) ≤ γ < 0, 2α + 5β0 + 5γ0 ≥ η > 0
• a, b, c, f, and φ are sufficiently smooth functions on Ω.

The above problem is equivalent to

⎧⎪⎨
⎪⎩
Lεu(x) : =

{
−εu′′(x) + a(x)u′(x) + b(x)u(x) = f (x) − c(x)φ(x − 1), x ∈ Ω−,

−εu′′(x) + a(x)u′(x) + b(x)u(x) + c(x)u(x − 1) = f (x), x ∈ Ω+,

u(0) = φ(0), u(1−) = u(1+), u′(1−) = u′(1+), u(2) = l.

(14)
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The differential-difference operator Lε defined above satisfies the following maxi-
mum principle and in turn yields a stability result.

Theorem 1 (Mamimum Principle) Let w ∈ Y ′ be any function satisfying w(0) ≥
0, w(2) ≥ 0, Lεw(x) ≥ 0, ∀x ∈ Ω− ∪ Ω+ and w′(1+) − w′(1−) = [w′](1) ≤ 0.
Then w(x) ≥ 0, ∀x ∈ Ω.

Corollary 1 (Stability Result) If u ∈ Y ′ then

| u(x) |≤ C max

{
| u(0) |, | u(2) |, max

x∈Ω−∪Ω+
| Lεu(x) |

}
, ∀ x ∈ Ω.

9.1 Initial Value Technique [20]

9.1.1 An Asymptotic Expansion

Let u0 ∈ C0(Ω) ∩ C1(Ω ∪ {2}) be the solution of the reduced problem of (13) given
by

{
a(x)u′

0(x) + b(x)u0(x) + c(x)u0(x − 1) = f (x), x ∈ Ω ∪ {2},
u0(x) = φ(x), x ∈ [−1, 0], (15)

and assume that ‖ u(2)
0 ‖≤ C . Further, let vr (x) = exp(− ∫ 2

x
a(s)
ε
ds), ∀x ∈ Ω be the

solution of the terminal value problem (TVP)

{
εv′

r (x) − a(x)vr (x) = 0, x ∈ [0, 2),
vr (2) = 1.

(16)

An asymptotic expansion solution of the original problem (13) is given by

uas(x) =
{
u0(x) + k1x, x ∈ [0, 1],
u0(x) + k2vr (x) + k3, x ∈ [1, 2], (17)

where the constants k1, k2, and k3 are to be determined such that uas ∈ Y ′. In fact
the constants k1, k2, and k3 are given by

⎧⎪⎨
⎪⎩
k2 = l−u0(2)

1+( a(1)
ε −1)vr (1)

,

k3 = k2(
a(1)
ε

− 1)vr (1), and

k1 = k2(
a(1)
ε

)vr (1).

(18)
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Theorem 2 The function uas defined by (17) satisfies the inequality

| u(x) − uas(x) |≤ Cε, x ∈ Ω.

Here u(x) is the solution of the problem (13).

9.1.2 Numerical Method

Since the BVP (13) exhibits a boundary layer at x = 2 and u′′
0(x) has jump dis-

continuity at x = 1 we choose a piece-wise uniform Shishkin mesh on [0, 2]. For
this we divide the interval [0, 2] in to four subintervals, namely Ω1 = [0, 1 − τ ],
Ω2 = [1 − τ , 1], Ω3 = [1, 2 − τ ], Ω4 = [2 − τ , 2] where τ = min

{
0.5, 2ε ln(N )

α

}
.

Let h = 2N−1τ and H = 2N−1(1 − τ ). The mesh Ω
2N = {x0, x1, . . . , x2N } is

defined by

⎧⎪⎨
⎪⎩
x0 = 0.0,

xi = x0 + i H, i = 1(1) N
2 , xi+ N

2
= x N

2
+ ih, i = 1(1) N

2 ,

xi+N = xN + i H, i = 1(1) N
2 , xi+ 3N

2
= x 3N

2
+ ih, i = 1(1) N

2 .

9.1.3 A Hybrid Finite Difference Scheme for the TVP (16)

{
L1Vi = 0, i = 0(1)2N − 1

V2N = 1,
(19)

where

L1Vi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε Vi+1−Vi

H − a(xi )Vi , i = 0(1) N
2 − 1,

ε Vi+1−Vi

h − a(xi )Vi , i = N
2 (1)N − 1,

ε Vi+1−Vi

h − a(xi )Vi , i = N (1) 3N2 − 1,

ε Vi+1−Vi

h − a(
xi+xi+1

2 )
Vi+Vi+1

2 , i = 3N
2 (1)2N − 1.

The following theorem gives an error estimate for this scheme.

Theorem 3 Let vr (x) be the solution of (16). Further let Vi be its numerical solution
defined by (19). Then

| vr (xi ) − Vi |≤ CN−2 ln2 N , i = 0(1)2N .
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9.1.4 A Numerical Method for the Problem (15)

In order to obtain a numerical solution for the problem (15), we apply the fourth

order Runge-Kutta method with piecewise cubic Hermite interpolation on Ω
2N

. In
fact we have

U0i+1 = U0i + h∗

6
(K1 + 2K2 + 2K3 + K4), (20)

where,

h∗ =
{
H, i = 0(1) N2 − 1, i = N (1) 3N2 − 1,

h, i = N
2 (1)N − 1, i = 3N

2 (1)2N − 1,

K1 = h∗
a(xi )

[
f (xi ) − b(xi )U0i − c(xi )U

h∗
0 (xi )

]
,

K2 = h∗
a(xi + h∗

2 )

[
f (xi + h∗

2
) − b(xi + h∗

2
)(U0i + K1

2
) − c(xi + h∗

2
)Uh∗

0 (xi + h∗
2

)
]
,

K3 = h∗
a(xi + h∗

2 )

[
f (xi + h∗

2
) − b(xi + h∗

2
)(U0i + K2

2
) − c(xi + h∗

2
)Uh∗

0 (xi + h∗
2

)
]
,

K4 = h∗
a(xi + h∗)

[
f (xi + h∗) − b(xi + h∗)(U0i + K3) − c(xi + h∗)Uh∗

0 (xi + h∗)
]
,

and

U∗
0 (x) =

⎧⎪⎨
⎪⎩

φ(x − 1), x ∈ [xi , xi+1], i = 0(1)N − 1,

U0i−N Ai−N (x − 1) +U0i−N+1 Ai+1−N (x − 1) + Bi−N (x − 1) f ∗(xi−N )

+Bi+1−N (x − 1) f ∗(xi−N+1), x ∈ [xi , xi+1], i = N (1)2N − 1,

Ai (x) =
[
1 − 2(x − xi )

xi − xi+1

]
(x − xi+1)

2

(xi − xi+1)
2 ,

Ai+1(x) =
[
1 − 2(x − xi+1)

xi+1 − xi

]
(x − xi )2

(xi+1 − xi )2
,

Bi (x) = (x − xi )(x − xi+1)
2

(xi − xi+1)2
, Bi+1(x) = (x − xi+1)(x − xi )2

(xi+1 − xi )2

f ∗(xi−N ) = f (xi−N )

a(xi−N )
− b(xi−N )

a(xi−N )
(U0i−N ) − c(xi−N )

a(xi−N )
φ(xi−N − 1),

The following theorem gives an error estimate for the above method.

Theorem 4 Let u0(x) be the solution of the problem (15). Further let U0i be its
numerical solution defined by (20). Then

| u0(xi ) −U0i |≤ Ch
4
, i = 0(1)2N ,
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where h = max {H, h}.
A numerical solution to the original problem (13) is given by

Ui =
{
U0i + xi k1, i = 0(1)N ,

U0i + Vik2 + k3, i = N + 1(1)2N ,
(21)

whereU0i and Vi are numerical solutions of the problems (15) and (16) respectively
and k1, k2 and k3 are defined by (18). An error estimate for the above numerical
solution is given in the following theorem.

Theorem 5 Let u(x) be the solution of the problem (13). Further let Ui be its
numerical solution defined by (21). Then

| u(xi ) −Ui |≤ C(ε + N−2 ln2 N ), i = 0(1)2N .

9.2 Asymptotic Numerical Method [21]

Asymptotic Numerical Method consists of 3 Steps:

• In the first step we obtain the reduced problem solution.
• In the second step we construct an auxiliary problem.
• A numerical solution is obtained in the third step.

Step 1: Solve the reduced problem of (13).

Theorem 6 Let u be the solution of (13) and u0 be its reduced problem solution as
defined in (15). Then,

| u(x) − u0(x) |≤ Cε + C exp(
−α(2 − x)

ε
), x ∈ Ω.

Note: From the above theorem, it is clear that the solution u of the boundary value
problem (13) exhibits a strong boundary layer at x = 2 and further, away from the
boundary layer and in particular on [0, 1], we have

| u(x) − u0(x) |≤ Cε + C exp

(−α

ε

)
, x ∈ [0, 1].

Step 2: Define an auxiliary problem to (13):
Find u∗ ∈ Y such that

{
P∗u∗(x) : = −εu∗′′(x) + a(x)u∗′(x) + b(x)u∗(x) = f ∗(x),
u∗(0) = u(0), u∗(2) = u(2),

(22)
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where

f ∗(x) =
{
f (x) − c(x)φ(x − 1), x ∈ Ω− ∪ {1},
f (x) − c(x)u0(x − 1), x ∈ Ω+.

We now state a maximum principle for this problem.

Theorem 7 Let w ∈ Y ′ be any function satisfying w(0) ≥ 0, w(2) ≥ 0, P∗w(x) ≥
0, ∀x ∈ Ω− ∪ Ω+ and [w′](1) ≤ 0. Then, w(x) ≥ 0, ∀x ∈ Ω.

Theorem 8 Let u and u∗ be the solutions of the problems (13) and (22) respectively.
Then,

| u(x) − u∗(x) |≤ Cε + C exp(
−α

ε
), x ∈ Ω.

Step 3:
On Ω

2N
, we define the following scheme for the BVP (22):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P∗NU∗(xi ) = −εδ2U∗(xi ) + a(xi )D
−U∗(xi ) + b(xi )U

∗(xi ) = F∗(xi ),

i = 1(1)N − 1, N + 1(1)2N − 1,

D−U∗(xN ) = D+U∗(xN ),

U∗(x0) = u∗(0), U∗(x2N ) = u∗(2),
(23)

where

δ2U ∗(xi ) = 2

xi+1 − xi−1

[
D+U ∗(xi ) − D−U ∗(xi )

]
,

D−U ∗(xi ) = U ∗(xi ) −U ∗(xi−1)

xi − xi−1
, D+U ∗(xi ) = U ∗(xi+1) −U ∗(xi )

xi+1 − xi
,

F∗(xi ) = f ∗(xi ), xi ∈ Ω
2N \ {x0, xN , x2N }, (24)

or

F∗(xi ) =
{
f (xi ) − c(xi )φ(xi − 1), xi ∈ Ω− ∩ Ω

2N
,

f (xi ) − c(xi )U0i−N , xi ∈ Ω+ ∩ Ω
2N

.
(25)

Theorem 9 (Discrete Maximum Principle) Suppose a mesh function Z(xi ) satisfies

Z(x0) ≥ 0, Z(x2N ) ≥ 0, P∗N Z(xi ) ≥ 0, xi ∈ Ω
2N \ {x0, xN , x2N }and [D]Z(xN ) =

D+Z(xN ) − D−Z(xN ) ≤ 0. Then, Z(xi ) ≥ 0, ∀xi ∈ Ω
2N
.

A consequence of this theorem is the following stability result.

Theorem 10 (Discrete Stability Result) Let U ∗(xi ) be a numerical solution of the
problem (23). Then,
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| U ∗(xi ) |≤ C max{| U ∗(x0) |, | U ∗(x2N ) |,max
j∈J

P∗NU ∗(x j )},
J = {1, . . . , N − 1, N + 1, . . . , 2N − 1}, i = 0(1)2N .

Theorem 11 Let u∗ be the solution of the auxiliary problem (22) and let U ∗(xi ) be
the corresponding numerical solution defined by (23) and (25). Then,

| u∗(xi ) −U ∗(xi ) |≤ CN−1 ln N , xi ∈ Ω
2N

.

Theorem 12 Let U ∗(xi ) be a numerical solution of (22) defined by (23) and (25).
Then,

| u∗(xi ) −U ∗(xi ) |≤ CN−1 ln N , xi ∈ Ω
2N

.

Theorem 13 Let u be the solution of the problem (13) and let U ∗(xi ) be a numerical
solution defined by (23) with either (25) or (25). Then,

‖ u −U ∗ ‖
Ω

2N ≤ CN−1 ln N .

The above IVT and ANM can be applied to the following problems

• Convection diffusion equation with discontinuous source term
• Convection diffusion equation with discontinuous convection coefficient
• Neumann boundary value problem with smooth data
• Neumann boundary value problem with discontinuous source term
• System of convection diffusion equations with smooth data
• System of convection diffusion equations with discontinuous source terms
• Singularly perturbed third order delay differential equations [22]
• Singularly perturbed system of reaction-diffusion type delay differential equations
[23]

9.3 An Iterative Numerical Method [24]

Consider BVP:
Find u ∈ U := C2(Ω) ∩ C(Ω) such that

⎧⎪⎨
⎪⎩

−εu′′(x) + a(x)u(x) + b(x)u(x − 1) = f (x), x ∈ Ω,

u(x) = φ(x), x ∈ [−1, 0],
u(2) = l,

(26)

where 0 < α ≤ a(x), −β0 ≤ b(x) ≤ β < 0, for all x ∈ Ω , Ω = (0, 2), Ω = [0, 2],
α − β0 > 0, the functions a, b and f are sufficiently smooth on Ω and φ is smooth
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on [−1, 0]. The above boundary value problem (26) has a solution and the solution
is unique [25].

The above problem is equivalent to find u ∈ U ∗ := C2(Ω− ∪ Ω+) ∩ C(Ω) such
that

⎧⎪⎨
⎪⎩
Pu(x) :=

{
−εu′′(x) + a(x)u(x) = f (x) − b(x)φ(x − 1), x ∈ Ω−,

−εu′′(x) + a(x)u(x) + b(x)u(x − 1) = f (x), x ∈ Ω+,

u(0) = φ(0), u(1−) = u(1+), u′(1−) = u′(1+), u(2) = l,

(27)

where Ω− = (0, 1) and Ω+ = (1, 2). This boundary value problem (27) exhibits
strong boundary layers at x = 0, x = 2 and strong interior layers (left and right) at
x = 1 [26].

9.3.1 Iterative Method

Following the method suggested in [25], we now suggest an iterative procedure for
the boundary value problem (27) as follows. Let

{
u0(x) = φ(x), x ∈ [−1, 0],
u0(x) = φ(0), x ∈ [0, 2], (28)

and
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un(x) ∈ C2(Ω− ∪ Ω+) ∩ C1(Ω) ∩ C(Ω) such that

un(x) = φ(x), x ∈ [−1, 0],
−εu′′

n(x) + a(x)un(x) =
{

f (x) − b(x)φ(x − 1), x ∈ Ω−,

f (x) − b(x)un−1(x − 1), x ∈ Ω+,

un(0) = φ(0), un(2) = l. for n = 1, 2, · · · .

(29)

Theorem 14 The sequence {un(x)} defined by (28)–(29) converges uniformly to the
solution u of the problem (27) on Ω .

9.3.2 Shishkin Mesh

Since the boundary value problem (27) and the boundary value problems (29) exhibit
boundary layers at x = 0, x = 2 and interior layers (left and right) at x = 1, we
divide the interval [0, 2] into six subintervals, namelyΩ1 = [0, τ ],Ω2 = [τ , 1 − τ ],
Ω3 = [1 − τ , 1],Ω4 = [1, 1 + τ ],Ω5 = [1 + τ , 2 − τ ] andΩ6 = [2 − τ , 2], where
τ = min

{
1
4 ,

2
√

ε ln(N )√
α

}
. Let h = 4N−1τ and H = 2N−1(1 − 2τ ).
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The Shishkin mesh Ω
2N = {x0, x1, · · · , x2N } is defined by

⎧⎪⎨
⎪⎩
x0 = 0.0, xi = x0 + ih, i = 1(1) N

4 , xi+ N
4

= x N
4

+ i H, i = 1(1) N
2 ,

xi+ 3N
4

= x 3N
4

+ ih, i = 1(1) N
4 , xi+N = xN + ih, i = 1(1) N

4 ,

xi+ 5N
4

= x 5N
4

+ i H, i = 1(1) N
2 , xi+ 7N

4
= x 7N

4
+ ih, i = 1(1) N

4 .

9.3.3 Scheme

Using the finite difference scheme discussed in [27] on the Shishkin mesh Ω
N =

{x0, x1, · · · , xN }, we now now define the following finite difference scheme for
the sequence of the problems (29). Let U [0] = (

u0(x0), u0(x1), · · · , u0(xN )
)
.

Find U [n] = (
U [n]

0 , U [n]
1 , · · · , U [n]

N

)
such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−εδ2U [n]
i + aiU

[n]
i =

{
fi − biφ(xi − 1), i = 1, · · · , N

2 − 1,

fi − biU
[n−1]
i− N

2
, i = N

2 + 1, · · · , N − 1,

U [n]
0 = φ(0), U [n]

N = l,

D+U [n]
N
2

= D−U [n]
N
2

, for n = 1, 2, · · · .

(30)

Here

δ2U [n]
i = 1

xi+1 − xi−1

(
U [n]

i+1 −U [n]
i

xi+1 − xi
− U [n]

i −U [n]
i−1

xi − xi−1

)

D+U [n]
N
2

=
U [n]

N
2 +1

−U [n]
N
2

x N
2 +1 − x N

2

and D−U [n]
N
2

=
U [n]

N
2

−U [n]
N
2 −1

x N
2

− x N
2 −1

.

9.3.4 Error Estimate

An error estimate for the above method is given as follows:

Theorem 15 Let u(x) andU [n] be the solutions of the problems (27) and (30) respec-
tively. Then we have

‖u −U [n]‖
Ω

N ≤ CN−1 ln N ,

provided that

n ≥ ln(N−1 ln N )

ln γ
, γ = β0

α
.

Following are the recommended papers for references. One may see some more
references mentioned in these papers.
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Initial or Boundary Value Problems
for Systems of Singularly Perturbed
Differential Equations and Their Solution
Profile

Valarmathi Sigamani

Abstract Singular perturbation problems, by nature, are not easy to handle and they
demand efficient techniques to solve and careful analysis. And systems of singular
perturbation problems are tougher as their solutions exhibit layers with sub-layers.
Their properties are studied and examples are given to illustrate.

Keywords Singular perturbation problems · Initial/boundary layers · Sublayers ·
Shishkin meshes · Finite difference scheme · Parameter uniform convergence

1 Introduction

Recently systems of singularly perturbed differential equations are studied by many
researchers all over the world. To cite a few: [1–20]. Most of the works are confined
to systems with two equations and a few works are found on systems of n equations;
n > 0 is arbitrary. Here, three types of systems of singularly perturbed differential
equations are to be discussed.

2 A System of First Order Ordinary Differential Equations

Consider the system

Eu′(x) + A(x)u(x) = f(x), x ∈ Ω = (0, X ] (1)

with u(0) = φ given. E is the diagonal matrix E = diag(εi ), i = 1, 2, · · · , n and
A(x) = (ai j (x)) is an n × n matrix. The functions ai j (x) and fi (x) for 1 ≤ i, j ≤
n are assumed to be in C2(Ω) where Ω = [0, 1], assuming, without loss of
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generality, X = 1. For convenience, the ordering ε1 < ε2 < · · · εn is assumed. Fur-
ther, the functions ai j are assumed to satisfy

aii (x) >

n∑
j=1
j �=i

|ai j (x)|, i = 1, 2, · · · , n (2)

ai j (x) ≤ 0, 1 ≤ i �= j ≤ n (3)

and the singular perturbation parameters εi , i = 1, 2, · · · , n are assumed to satisfy

εn ≤ α

6
(4)

so as to accommodate all the layers well inside the domain.
With the above assumptions, the problem (1) has a solution u ∈ C (0)(Ω) ∩

C (1)(Ω)

As explained in [21], here also the supremum norm is used in estimates. The
norms ||V|| = max1≤k≤n |Vk | for any n−vector V, ||y|| = sup0≤x≤1 |y(x)| for any
scalar-valued function y and ||y|| = max1≤k≤n ||yk || for any vector valued function
y are introduced.

The problem (1) is singularly perturbed, in the following sense. The reduced prob-
lem obtained by putting each εi = 0, i = 1, 2, · · · , n, in (1) is the linear algebraic
system

A(x)u0(x) = f(x). (5)

This problem (5) has a unique solution and hence arbitrary initial conditions cannot
be imposed. This shows that there are initial layers at x = 0 for u. The attracting
feature of the layers is that the component un has an initial layer of width O(εn), the
component un−1 also has a layer of width O(εn) and an additional sublayer of width
O(εn−1) and so on. Lastly the component u1 has an initial layer of width O(εn) and
additional sub-layers of widths O(εn−1), O(εn−2), · · · , O(ε1). The complexity of
the layer pattern of the solution makes the problem more interesting. This complexity
makes the derivation of bounds on the estimates of the derivatives and the error
analysis more challenging.

2.1 Analytical Results

Valarmathi and Miller [19] established the maximum principle for a general system
of ′n′ linear first order singularly perturbed differential equations, with an additional
result that the maximum principle satisfied by the operator
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L = ED + A(x) of system (1) implies that the operator L̃ of any lower order
system also satisfies the maximum principle.

Apart from the stability result, estimates of the derivatives of smooth and singular
components derived with the help of induction will not suffice for error analysis.
Novel estimates of derivatives are required. To achieve this, points of interaction of
the layer functions are identified. For a system of two equations, it was Linss [9]
who identified such a point. But it is Valarmathi and Miller [20] who identified a
sequence of such points between the ‘n’ layer functions and came out with some
interesting properties, which lead to non classical bounds for the derivatives of the
singular components that are interlinked.

2.2 Shishkin Mesh

The construction of an appropriate mesh plays a vital role in solving the singular
perturbation problem. As there are layer regions or inner regions and outer regions
and as more information is needed inside the inner region, a piecewise uniform mesh
is needed.

A piecewise uniform Shishkin mesh distributing N /2 points to the outer region
and the remaining N /2 points equally to all the inner regions will serve the pur-

pose. The Shishkin mesh suggested for problem (1) is the set of points Ω
N =

{x j }N0 that divides [0, 1] into n + 1 mesh intervals [0, σ1] ∪ ... ∪ (σn−1, σn] ∪ (σn, 1]
where the n parameters σr separate the uniform meshes. With σ0 = 0, σn+1 = 1, σn

is defined by σn = min
{σn+1

2
,
εn

α
ln N

}
and for r = n − 1, n − 2, ..., 2, 1, σr =

min

{
rσr+1

r + 1
,
εr

α
ln N

}
. Then on the subinterval (σn, 1], a uniform mesh with N /2

mesh points is placed and on each of the intervals (σr , σr+1], r = 0, 1, ..., n − 1, a
uniform mesh of N /2n mesh points is placed where ′n′ is the number of perturbation
parameters involved in (1).

In particular, when all the parameters σr , r = 1, 2, ..., n are with the left choice,
the Shishkin mesh becomes a classical uniform mesh with stepsize N−1 through out
from 0 to 1. For the other cases, the mesh is coarse in the outer region and becomes
finer and finer towards the initial point. Infact σr , r = 1, 2, 3, · · · , n are the points
only where a change in the mesh size may occur.

2.3 Discrete Problem

To solve (1) numerically, consider the corresponding discrete initial value problem

on the Shishkin mesh Ω
N

given by

ED−U + AU = f on ΩN ,U = u at the initial point. (6)
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Making use of the mesh geometry and the novel estimates of derivatives derived by the
existence of the sequence of layer interaction points, the authors in [20] established
the almost first order parameter uniform convergence.

More general case of problem (1)

In nature, many systems of multiscale dynamics, involve some components having
large scale flow rates. This problem when formulated follows the form EDu + Au =
f on (0, 1] and u(0) = φ where E = diag(εi ) with 0 < ε1 < ε2 < ... < εk = εk+1

= ... = εn = 1. In this case, the problem is called a partially singularly perturbed
initial value problem for a linear system of first order ODEs.

Establishing analytical results and error analysis demand the judicial use of certain
barrier functions and the appropriate modification of the Shishkin mesh considered
for problem (1). In the construction of the Shishkin mesh for solving problem (1),
the number of transition parameters was fixed to be equal to the number of distinct
perturbation parameters in (1). Here also, having the same strategy, the outer region
gets wider as the number of transition parameters gets reduced.

2.4 Discontinuous Source Terms

In some multiscale fluid flows, it may also happen that some of the source functions
fi , 1 ≤ i ≤ n may go discontinuous at points in the domain of definition of problem
(1). These discontinuities result in some interesting characteristics of the solution.

The solution, apart from its initial layers, exhibits interior layers at the points of
discontinuity. Then care has to be taken in constructing the mesh because it should
resolve interior layers in addition to the initial layers. Further, for a simple discon-
tinuity at a point, the interior layers are just like the initial layers dislocated. These
layer functions have a similar sequence of layer interaction points. Making use of
these facts and the mesh geometry one can solve the problem with discontinuous
source function.

Example 1 Consider the following system of singularly perturbed initial value prob-
lem.

ε1u′
1(t) + 2(1 + t)2u1(t) − (1 + t2)u2(t) = 0.5(1 + t)

ε2u′
2(t) − (1 + t)u1(t) + 2(1 + t)u2(t) = (1 + t

4
)

}

for t ∈ (0, 1] and u(0) = 0. The layer profile of the solution u of this problem
obtained by the proposed method is as in Fig. 1 for ε1 = 10−10, ε2 = 10−7 and N =
128.
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Fig. 1 Solution profile of
Example 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.0002  0.0004  0.0006  0.0008  0.001

Figure 1 -uu2-

Fig. 2 Solution profile of
Example 2

Solution profile of Example 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.2  0.4  0.6  0.8  1

u1
u2
u3

Fig. 3 Solution profile of
Example 3

Solution profile of Example 3

 0
 0.2

 0.4
 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

u1
u2
u3



68 V. Sigamani

3 System of Second Order Differential Equations
of Reaction—Diffusion Type

Consider the system of singularly perturbed differential equations of reaction-
diffusion type with boundary values prescribed.

−Eu′′(x) + A(x)u(x) = f(x), x ∈ Ω = (0, 1)

u(0),u(1) given (7)

E is the same as in problem (1), A = (ai j )n×n, ai j (x), fi (x) ∈ C2(Ω) and (2), (3)
& (4) hold good in Ω . Under these assumptions the problem (7) has a solution in
C (0)(Ω) ∩ C (2)(Ω).

For systems of this type, Paramasivam et al. [16] established maximum principle,
the analytical results and a parameter uniform method of solving them on a Shishkin
mesh.

The solution u of the problem (7) exhibits twin boundary layers at the bound-
ary, x = 0 and x = 1. The component un exhibits twin boundary layers of width
O(

√
εn), while un−1 has twin boundary layers of width O(

√
εn) and additional

twin boundary sub layers of width O(
√

εn−1) and so on. Lastly u1 has twin bound-
ary layers of width O(

√
εn) and additional twin boundary sub layers of widths

O(
√

εn−1), O(
√

εn−2), · · · , O(
√

ε1).

These boundary layers also have twin layer interaction sequences which could be
used with the induction method in establishing the novel estimates of the derivatives
of the smooth and singular components of the solution.
The related systems of (7) which are partially singularly perturbed and which have
discontinuous source vector are with higher order difficulty and are handled as in the
previous case, in [22, 23].

Example 2 Consider the following singularly perturbed boundary value problem

−ε1u′′
1(x) + 5u1(x) − u2(x) − u3(x) = x2

−ε2u′′
2(x) − u1(x) + (5 + x)u2(x) − u3(x) = e−x

−ε3u′′
3(x) − (1 + x)u1(x) − u2(x) + (5 + x)u3(x) = 1 + x

⎫⎪⎪⎬
⎪⎪⎭

for x ∈ (0, 1) and u(0) = 0, u(1) = 0. The layer profile of the solution u of
this problem obtained by the method suggested in [16] is presented in Fig. 2 for

ε1 = η

16
, ε2 = η

4
, ε3 = η where η = 0.1 and N = 512.
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4 Systems of Singularly Perturbed Time Dependent
Equations of Reaction-Diffusion Type

Consider the following parabolic initial-boundary value problem for a singularly
perturbed linear system of second order differential equations

∂u
∂t

− E
∂2u
∂x2

+ Au = f, on Ω, u given on Γ, (8)

where Ω = {(x, t) : 0 < x < 1, 0 < t ≤ T }, Ω = Ω ∪ Γ, Γ = ΓL ∪ ΓB ∪ ΓR

with u(0, t) = φL(t) on ΓL = {(0, t) : 0 ≤ t ≤ T }, u(x, 0)=φB(x) on ΓB = {(x,
0) : 0 < x < 1}, u(1, t) = φR(t) on ΓR = {(1, t) : 0 ≤ t ≤ T }.Here, for all (x, t)
∈ Ω, u(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t))

T , f(x, t) = ( f1(x, t), f2(x, t),
. . . , fn(x, t))

T ,

E =

⎛
⎜⎜⎜⎝

ε1 0 · · · 0
0 ε2 · · · 0
...

...
...

0 0 · · · εn

⎞
⎟⎟⎟⎠ , A(x, t) =

⎛
⎜⎜⎜⎝

a11(x, t) a12(x, t) · · · a1n(x, t)
a21(x, t) a22(x, t) · · · a2n(x, t)

...
...

...

an1(x, t) an2(x, t) · · · ann(x, t)

⎞
⎟⎟⎟⎠ .

The problem (8) can also be written in the operator form

Lu = f on Ω, u given on Γ,

where the operator L is defined by

L = I
∂

∂t
− E

∂2

∂x2
+ A,

where I is the identity matrix.
The reduced problem obtained by putting εi = 0, i = 1, 2, · · · , n in (8) is

defined by
∂u0

∂t
+ Au0 = f, on Ω, u0 = u on ΓB . (9)

The εi are assumed to be distinct and, for convenience, to have the ordering
ε1 < · · · < εn. For all (x, t) ∈ Ω , it is assumed that the components ai j (x, t) of
A(x, t) satisfy the inequalities

aii (x, t) >

n∑
j �=i
j=1

|ai j (x, t)| for 1 ≤ i ≤ n, and ai j (x, t) ≤ 0 for i �= j (10)
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and there exists a number α satisfying the inequality 0 < α < min
(x,t)∈Ω
1≤i≤n

(

n∑
j=1

ai j (x, t)).

It is also assumed, without loss of generality, that
√

εn ≤
√

α

6 which ensures that the
solution domain contains all the layers.

The norms, ‖ V ‖ = max1≤k≤n |Vk | for any n-vector V, ‖ y ‖D = sup{|y(x, t)| :
(x, t) ∈ D} for any scalar-valued function y and domain D, and ‖ y ‖ = max1≤k≤n

‖ yk ‖ for any vector-valued function y, are introduced. When D = Ω or Ω the
subscript D is usually dropped. In a compact domain D a function is said to be
Hölder continuous of degree λ, 0 < λ ≤ 1, if, for all (x1, t1), (x2, t2) ∈ D,

|u(x1, t1) − u(x2, t2)| ≤ C(|x1 − x2|2 + |t1 − t2|)λ/2
.

The set of Hölder continuous functions forms a normed linear space C0
λ(D) with the

norm

||u||λ,D = ||u||D + sup
(x1,t1),(x2,t2)∈D

|u(x1, t1) − u(x2, t2)|
(|x1 − x2|2 + |t1 − t2|)λ/2 ,

where ||u||D = sup
(x,t)∈D

|u(x, t)|. For each integer k ≥ 1, the subspaces Ck
λ(D) of

C0
λ(D), which contain functions having Hölder continuous derivatives, are defined

as follows

Ck
λ(D) = {u : ∂ l+mu

∂xl∂tm
∈ C0

λ(D) for l,m ≥ 0 and 0 ≤ l + 2m ≤ k}.

The norm on C0
λ(D) is taken to be ||u||λ,k,D = max

0≤l+2m≤k
|| ∂ l+mu

∂xl∂tm
||λ,D . For a vector

function v = (v1, v2, ..., vn), the norm is defined by ||v||λ,k,D = max
1≤i≤n

||vi ||λ,k,D .

Regularity and Compatibility conditions

It is assumed that enough regularity and compatibility conditions hold for the data
of the problem (8) so that the partial derivatives with respect to the space variable
of the solution are continuous up to fourth order and the partial derivatives with
respect to the time variable of the solution are continuous up to second order. The
compatibility conditions for the problem (8) defined on a rectangular domain Ω is
established in [3].

Sufficient conditions for the existence, uniqueness and regularity of solution of
(8) are given in the following.

Assume that A, f ∈ C2
λ(Ω), φL ∈ C1(ΓL), φB ∈ C2(ΓB), φR ∈ C1(ΓR) and

that the following compatibility conditions are fulfilled at the corners (0, 0) and
(1, 0) of Γ

φB(0) = φL(0) and φB(1) = φR(0), (11)
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dφL(0)

dt
− E

d2φB(0)

dx2
+ A(0, 0)φB(0) = f(0, 0),

dφR(0)

dt
− E

d2φB(1)

dx2
+ A(1, 0)φB(1) = f(1, 0)

(12)

and

d2

dt2
φL(0) = E2 d4

dx4
φB(0) − 2E A(0, 0)

d2

dx2
φB(0) − E A(0, 0)

d

dx
φB(0)

−(A2(0, 0) + ∂A

∂t
(0, 0) + E

∂2A

∂x2
(0, 0))φB(0)

−A(0, 0)f(0, 0) + ∂f
∂t

(0, 0) + E
∂2f
∂x2

(0, 0),

(13)

d2

dt2
φR(0) = E2 d4

dx4
φB(1) − 2E A(1, 0)

d2

dx2
φB(1) − E A(1, 0)

d

dx
φB(1)

−(A2(1, 0) + ∂A

∂t
(1, 0) + E

∂2A

∂x2
(1, 0))φB(1)

−A(1, 0)f(1, 0) + ∂f
∂t

(1, 0) + E
∂2f
∂x2

(1, 0).

ss (14)

Then there exists a unique solution u of (8) satisfying u ∈ C4
λ(Ω).

As there are twin boundary parabolic layers with sub-layers, the Shishkin mesh
to resolve these layers is constructed on the rectangular domain Ω and a classical
finite difference method is suggested and proved to be parameter-uniform first order
convergent in time and almost second order convergent in space in [3].

Example 3 Consider the problem

∂u
∂t

− E
∂2u
∂x2

+ Au = f on (0, 1) × (0, 1], u = 0 for x = 0 or t = 0 or x = 1,

where E = diag(ε1, ε2, ε3), A =
⎛
⎝ 6 −1 0

−t 5(x + 1) −1
−1 −(1 + x2) 6 + x

⎞
⎠ , f =

⎛
⎝ 1 + ex+t

1 + x + t2

1 + et

⎞
⎠ .

The layer profile of the solution u of this problem is displayed in Fig. 3 for
ε1 = 2−7, ε2 = 2−5, ε3 = 2−2, M = 32 and N = 48.

Here for the system (8) also, its subcases of the system being partially perturbed
and the source vector to have discontinuities could also be dealt with in a way similar
to those in Sects. 2 and 3.
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Convergence of the Crank-Nicolson
Method for a Singularly Perturbed
Parabolic Reaction-Diffusion System

Franklin Victor, John J.H. Miller and Valarmathi Sigamani

Abstract A general parabolic system of singularly perturbed linear equations of
reaction-diffusion type is considered. The components of the solution exhibit over-
lapping layers. A numerical method with the Crank-Nicolson operator on a uniform
mesh for time and classical finite difference operator on a Shishkin piecewise uniform
mesh for space is constructed. It is proved that in the maximum norm, the numerical
approximations obtained with this method are second order convergent in time and
essentially second order convergent in space.

Keywords Singular perturbation problems ·Parabolic problems ·Boundary layers ·
Uniform convergence · Finite difference scheme · Shishkin mesh

1 Introduction

The following parabolic initial-boundary value problem is considered

Lu = ∂u
∂t

+ Lxu = f on Ω, u given on Γ, (1)

where the operator Lx is defined by

Lx = −E
∂2

∂x2
+ A.
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Here Ω = {(x, t) : 0 < x < 1, 0 < t ≤ T }, Ω = Ω ∪ Γ, Γ = ΓL ∪ ΓB ∪ ΓR

where ΓL = {(0, t) : 0 ≤ t ≤ T }, ΓB = {(x, 0) : 0 ≤ x ≤ 1} and ΓR = {(1, t) :
0 ≤ t ≤ T }. For all (x, t) ∈ Ω, u(x, t) and f(x, t) are column n − vectors, E and
A(x, t) are n × n matrices, E = diag(ε), ε = (ε1, · · · , εn) with 0 < εi < 1
for all i = 1, . . . , n. The εi are assumed, for convenience, to have the ordering
ε1 ≤ · · · ≤ εn. For all (x, t) ∈ Ω it is assumed that the components ai j (x, t) of
A(x, t) satisfy the inequalities

aii (x, t) >

n∑
j �=i
j=1

|ai j (x, t)| for 1 ≤ i ≤ n, and ai j (x, t) ≤ 0 for i �= j (2)

and

0 < α < min
(x,t)∈Ω
1≤i≤n

(

n∑
j=1

ai j (x, t)), for some α. (3)

It is also assumed that
√

εn ≤
√

α

6
. Further f and A are assumed to be sufficiently

smooth and sufficient compatibility conditions are assumed such that u ∈ C6
λ(Ω),

for A, f ∈ C3
λ(Ω). Here

Ck
λ(D) = {u : ∂ l+mu

∂xl∂tm
∈ C0

λ(D) for l,m ≥ 0, l ≤ 4, and 0 ≤ l + 2m ≤ k}.

The reduced problem corresponding to (1) is defined by

∂u0

∂t
+ Au0 = f, on Ω, u0 = u on {(x, 0) : 0 < x < 1}.

For any vector-valued function y on Ω the following norms are introduced:
‖ y(x, t) ‖= maxi |yi (x, t)| and‖ y ‖= sup{‖ y(x, t) ‖: (x, t) ∈ Ω}Throughout the
paperC denotes a generic positive constant,which is independent of x, t andof all sin-
gular perturbation and discretization parameters. Furthermore, inequalities between
vectors are understood in the componentwise sense.Whenever necessary the required
smoothness of the problem data is assumed.

For a general introduction to parameter-uniform numerical methods for singular
perturbation problems, see [1–3] and for parameter-uniform numerical methods for
singularly perturbed parabolic problems, see [4–8]. In [7] the general n × n system is
considered and uniform convergence of first order in time and essentially first order in
space is proved. In [8], for the problem under consideration, first order convergence
in time and essentially second order convergence in space is established. In [5], (1)
is considered in the special case n = 2. A numerical method combining the Crank-
Nicolson operator in time and a central difference operator in space on a piecewise
uniform Shishkin mesh is used. Second order convergence in time and essentially
second order convergence in space is proved under the additional restrictions

√
ε1 <
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√
ε2 ≤ N−1. In the present paper these results are generalised to an n × n system.

Moreover, no restrictions of the above kind on the εi and N are required. These
results are made possible by the use of a sequence of layer interaction points, which
were introduced in [8]. A single layer interaction point was used in [6] in the special
case n = 2 and s = 1. Note that, as in [5], the power-boundedness of a family of
operators is assumed.

The plan of the paper is as follows. In Sect. 2 estimates of the analytical behaviour
of the exact solution are presented without proof; these are available in [8]. In Sect. 3,
the Crank-Nicolson semi-discretisation in time is defined and the error is estimated.
In Sect. 4, the complete discretisation in time and space is introduced. The central
difference scheme is used on a piecewise uniform Shishkin mesh for the spatial
discretisation. In Sect. 5, the error of this complete discretisation is estimated.

2 Analytical Estimates of the Exact Solution

The proofs of all the lemmas in this section may be found in [8]. The operator L
satisfies the following maximum principle

Lemma 1 Let A(x, t) satisfy (2) and (3). Let ψ be any vector-valued function in
the domain of L such that ψ ≥ 0 on Γ . Then Lψ(x, t) ≥ 0 on Ω implies that
ψ(x, t) ≥ 0 on Ω .

Lemma 2 Let A(x, t) satisfy (2) and (3). If ψ is any vector-valued function in the
domain of L, then, for each i, 1 ≤ i ≤ n and (x, t) ∈ Ω ,

|ψi (x, t)| ≤ max

{
‖ ψ ‖Γ ,

1

α
‖ Lψ ‖

}
.

The Shishkin decomposition of the exact solution u of (1) is u = v + w where
the smooth component v is the solution of Lv = f in Ω, v = u0 on Γ and the
singular component w is the solution of Lw = 0 in Ω, w = u − v on Γ. For
convenience the left and right boundary layers of w are separated using the further
decomposition w = wL + wR where LwL = 0on Ω, wL = w on ΓL , wL = 0 on
ΓB ∪ ΓR and LwR = 0 on Ω, wR = won ΓR , wR = 0 on ΓL ∪ ΓB .

Sharper estimates of smooth and singular components of the solution u are
obtained by defining layer functions BL

i , BR
i , Bi , i = 1, . . . , n, as follows.

BL
i (x) = e−x

√
α/εi , BR

i (x) = BL
i (1 − x), Bi (x) = BL

i (x) + BR
i (x).

The following elementary properties of these layer functions, for all 1 ≤ i < j ≤ n
and 0 ≤ x < y ≤ 1, should be noted:
Bi (x) = Bi (1 − x). BL

i (x) < BL
j (x), BL

i (x) > BL
i (y), 0 < BL

i (x) ≤ 1.
BR
i (x) < BR

j (x), BR
i (x) < BR

i (y), 0 < BR
i (x) ≤ 1.
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Bi (x) is monotone decreasing for increasing x ∈ [0, 1
2 ].

Bi (x) is monotone increasing for increasing x ∈ [ 12 , 1].

Bi (x) ≤ 2BL
i (x) for x ∈ [0, 1

2
], Bi (x) ≤ 2BR

i (x) for x ∈ [1
2
, 1].

BL
i (2

√
εi

α
ln N ) = N−2.

The layer interaction points x (s)
i, j are now defined.

Definition 1 For BL
i , B

L
j , each i, j, 1 ≤ i �= j ≤ n and each s, s > 0, the point

x (s)
i, j is defined by

BL
i (x (s)

i, j )

εsi
= BL

j (x
(s)
i, j )

εsj
.

It is remarked that
BR
i (1−x (s)

i, j )

εsi
= BR

j (1−x (s)
i, j )

εsj
.

In the next lemma the existence and uniqueness of the points x (s)
i, j are shown.

Lemma 3 For all i, j , such that 1 ≤ i < j ≤ n and 0 < s ≤ 3/2, the points xi, j
exist, are uniquely defined and satisfy the following inequalities

BL
i (x)

εsi
>

BL
j (x)

εsj
, x ∈ [0, x (s)

i, j ),
BL
i (x)

εsi
<

BL
j (x)

εsj
, x ∈ (x (s)

i, j , 1].

Moreover

x (s)
i, j < x (s)

i+1, j , if i + 1 < j and x (s)
i, j < x (s)

i, j+1, if i < j.

Also

x (s)
i, j < 2s

√
ε j

α
and x (s)

i, j ∈ (0,
1

2
) if i < j.

Analogous results hold for the BR
i , B

R
j and the points 1 − x (s)

i, j .

In the following lemma estimates of the smooth component are presented.

Lemma 4 Let A(x, t) satisfy (2) and (3). Then the smooth component v of the
solution u of (1) satisfies, for all i = 1, · · · , n and all (x, t) ∈ Ω,

| ∂ l vi
∂xl (x, t)| ≤ C(1 +

n∑
q=i

Bq(x)

ε
l
2 −1
q

)for l = 0, 1, 2, 3

| ∂ l vi
∂xl−1∂t (x, t)| ≤ C for l = 2, 3.
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Bounds on wL , wR and their derivatives are contained in

Lemma 5 Let A(x, t) satisfy (2) and (3). Then there exists a constant C, such that,
for each (x, t) ∈ Ω and i = 1, . . . , n,

|∂
lwL

i

∂tl
(x, t)| ≤ CBL

n (x), for l = 0, 1, 2, |∂
lwL

i

∂xl
(x, t)| ≤ C

n∑
q=i

BL
q (x)

ε
l
2
q

, for l = 1, 2

|∂
3wL

i

∂x3
(x, t)| ≤ C

∑n
q=1

BL
q (x)

ε
3
2
q

, |∂
4wL

i

∂x4
(x, t)| ≤ C

1

εi

∑n
q=1

BL
q (x)
εq

.

Analogous results hold for the wR
i and their derivatives.

3 Crank-Nicolson Semi-discretization in Time

On [0, T ], a uniform mesh with M mesh intervals, given by Ω
M
t = {kΔt, 0 ≤ k ≤

M,Δt = T/M} is considered. The following Crank-Nicolson scheme is applied on
this mesh

u0(x) = u(x, 0),

(I + Δt
2 Lx )uk+1(x) = Δt

2 (fk + fk+1)(x) + (I − Δt
2 Lx )uk(x),

uk+1(0) = u(0, tk+1),uk+1(1) = u(1, tk+1), k = 0, ..., M − 1

(4)

where fk = f(x, tk), k = 0, ..., M .
It is helpful to introduce the following artificial problem:

(I + Δt
2 Lx )û

k+1
(x) = Δt

2 (fk + fk+1)(x) + (I − Δt
2 Lx )u(x, tk),

ûk+1
(0) = u(0, tk+1), û

k+1
(1) = u(1, tk+1),

(5)

where the exact solution u has replaced uk in the right hand side of (4).
The operator I + Δt

2 Lx satisfies the following maximum principle.

Lemma 6 Let A(x, t) satisfy (2) and (3). Let ψ be any vector-valued function
in the domain of the operator I + Δt

2 Lx such that ψ(0) ≥ 0 and ψ(1) ≥ 0. Then
(I + Δt

2 Lx )ψ(x) ≥ 0 on (0, 1) implies that ψ(x) ≥ 0 on [0, 1].
Proof Let ψi∗(x∗) = min

i
min[0,1] ψi (x). Assume that ψi∗(x∗) < 0. Then d2ψi∗

dx2 (x∗) ≥
0. From the hypotheses we have x∗ /∈ {0, 1}. Using (2), (3) it follows that (I +
Δt
2 Lx )i∗ψ(x∗) < 0,

The stability of the operator I + Δt
2 Lx is now established.
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Lemma 7 Let A(x, t) satisfy (2) and (3). If ψ is any vector-valued function in the
domain of the operator I + Δt

2 Lx then, for each i, 1 ≤ i ≤ n and x ∈ [0, 1],

||ψ(x)|| ≤ max

{
‖ ψ(0) ‖, ‖ ψ(1) ‖, 1

α
‖ (I + Δt

2
Lx )ψ(x) ‖

}
.

Proof Define the barrier functions

θ±(x) = max

{
||ψ(0)||, ||ψ(1)||, 1

α
||(I + Δt

2
Lx )ψ(x)||

}
e ± ψ(x)

where e = (1, . . . , 1)T is the unit column vector. Then θ±(x) ≥ 0 at x = 0, 1
and (I + Δt

2 Lx )θ
±(x) ≥ 0 on (0, 1). The result follows from Lemma 6.

The error in the solution ûk+1 of the artificial problem is estimated in the following
lemma.

Lemma 8 If u(x, t) is the solution of (1) and ûk+1
(x) is the solution of (5), then, for

x ∈ [0, 1] and k = 0, ..., M − 1,

||u(x, tk+1) − ûk+1
(x)|| ≤ C(Δt)3.

Proof Since f
k+

1

2 (x) = f k+1(x) + f k(x)

2
+ O((Δt)2), from (1)

∂u(x, tk+ 1
2
)

∂t
+ Lxu(x, tk+ 1

2
) =

∂u(x, tk+1)

∂t
+ Lxu(x, tk+1) + ∂u(x, tk)

∂t
+ Lxu(x, tk)

2
+O((Δt)2).

So

Lxu(x, tk+ 1
2
) = Lx

u(x, tk+1) + u(x, tk)

2
+ O((Δt)2). (6)

From (1),
∂u
∂t

(x, tk+1) + Lxu(x, tk+1) = fk+1(x)

(
Δt

2
)Lxu(x, tk+1) = (

Δt

2
)(−∂u

∂t
(x, tk+1) + fk+1(x))

(I + Δt

2
Lx )u(x, tk+1) = u(x, tk+1) + Δt

2
(
−∂u
∂t

(x, tk+1) + fk+1(x)). (7)



Convergence of the Crank-Nicolson Method … 83

Then (7) and (5) yield

(I + Δt
2 Lx )(u(x, tk+1) − ûk+1

(x)) = u(x, tk+1) + Δt
2 (−∂u

∂t (x, tk+1))

−Δt
2 fk(x) − (I − Δt

2 Lx )u(x, tk)

= (u(x, tk+1) − u(x, tk)) + Δt
2 (fk+1(x) + Lxu(x, tk+1)) + Δt

2 (Lxu(x, tk)) − Δt
2 fk(x)

= Δt
2 Lx (u(x, tk+1) + u(x, tk)) − Δt

2 (fk + fk+1)(x) + (u(x, tk+1) − u(x, tk))

= ΔtLx (u(x, tk+ 1
2
) + O((Δt)2)) − Δt (fk+ 1

2 (x) + O((Δt)2))

+Δt (
∂u(x,t

k+ 1
2
)

∂t + O((Δt)2))

= O((Δt)3), using (6).

Then by Lemma 7 it follows that

||u(x, tk+1) − ûk+1
(x)|| ≤ O((Δt)3).

Consider now the Shishkin decomposition of ûk+1 into smooth and singular com-
ponents given by

ûk+1 = v̂k+1 + ŵk+1
,

where v̂k+1 and ŵk+1 are defined to be the solutions of the problems

(I + Δt
2 Lx )v̂

k+1
(x) = Δt

2 (fk + fk+1)(x) + (I − Δt
2 Lx )v(x, tk),

(I + Δt
2 A)v̂k+1

(x) = Δt
2 (fk + fk+1)(x) + (I − Δt

2 A)v(x, tk), x = 0, 1

}
(8)

and
(I + Δt

2 Lx )ŵ
k+1 = (I − Δt

2 Lx )w(x, tk),

ŵk+1
(0) = ûk+1

(0) − v̂k+1
(0), ŵk+1

(1) = ûk+1
(1) − v̂k+1

(1).

}
(9)

The bounds on v̂k+1 and its x-derivatives are contained in the following lemma.

Lemma 9 The smooth component v̂k+1
(x) and its derivatives satisfy, for each i =

1, . . . , n and x ∈ [0, 1],

|d
l v̂k+1

i

dxl
(x)| ≤ C(1 + ε

1− l
2

i ) for l = 0, 1, 2, 3, 4.

Proof By the i th equation of the defining equations for v̂k+1
(x),

((I + Δt

2
Lx )v̂

k+1
)i (x) = Δt

2
( f ki + f k+1

i )(x) + ((I − Δt

2
Lx )v)i (x, tk).
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Using the bounds of vi and its derivatives, |((I + Δt
2 Lx )v̂

k+1
)i (x)| ≤ C(1 + εi ).

Using Lemma 7, |v̂i k+1
(x)| ≤ C(1 + εi )

Differentiating the i th equation of (8) twice with respect to x ,

|((I + Δt

2
Lx )

d2v̂k+1

dx2
)i (x)| ≤ C(I + dv̂k+1

i

dx
(x)). (10)

Let | dv̂k+1
i∗
dx (x∗)| = || dv̂k+1

dx ||, for some i = i∗, x = x∗.

Then for some y ∈ [0, 1 − x∗], and for some θ ∈ (x∗, x∗ + y), by the mean value
theorem,

|dv̂
k+1
i∗

dx
(x∗)| ≤ 2

y
||v̂k+1

(x)|| + y

2
||d

2v̂k+1

dx2
(x)||. (11)

Using (11) in (10)

||d
2v̂k+1

dx2
(x)|| ≤ 1 + 2

y
||v̂k+1

(x)|| + y

2
||d

2v̂k+1

dx2
(x)||

or

(1 − y

2
)||d

2v̂k+1

dx2
(x)|| ≤ C(1 + 2

y
||v̂k+1

(x)||).

Using the expression in (11) gives

||dv̂
k+1

dx
(x)|| ≤ 2

y
||v̂k+1

(x)|| + C + C

y
||v̂k+1

(x)|| ≤ C.

The bounds on || d3v̂k+1

dx3 (x)||, || d4v̂k+1

dx4 (x)|| can be obtained analogously.

For convenience the left and right boundary layers of ŵk+1 are separated
using the further decomposition ŵk+1 = ŵk+1,L + ŵk+1,R

where
(I + Δt

2 Lx )ŵ
k+1,L

(x) = (I − Δt
2 Lx )wL(x, tk),

ŵk+1,L
(0) = ŵk+1

(0), ŵk+1,L
(1) = 0

}
(12)

and
(I + Δt

2 Lx )ŵ
k+1,R

(x) = (I − Δt
2 Lx )wR(x, tk),

ŵk+1,R
(0) = 0, ŵk+1,R

(1) = ŵk+1
(1).

}
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Boundson the singular components ŵk+1,L
, ŵk+1,R of ûk+1 and their x-derivatives

are contained in the next lemma.

Lemma 10 For i = 1, . . . , n and x ∈ [0, 1], the singular component ŵk+1,L
(x)

and its derivatives satisfy

|ŵk+1,L
i (x)| ≤ CBL

n (x), |d
lŵk+1,L

i

dxl
(x)| ≤ C

∑n
q=i

BL
q (x)

ε
l
2
q

, for l = 1, 2.

|d
3ŵk+1,L

i

dx3
(x)| ≤ C

∑n
q=1

BL
q (x)

ε
3
2
q

and |d
4ŵk+1,L

i

dx4
(x)| ≤ C

1

εi

∑n
q=1

BL
q (x)

εq
.

Analogous results hold for the ŵk+1,R and its derivatives.

Proof Considering the i th equation of (12),

|((I + Δt

2
Lx )ŵ

k+1,L
)i (x)| = |((I − Δt

2
Lx )wL)i (x, tk)|.

Then, using the fact that (LxwL)i (x, tk) = − ∂
∂t w

L
i (x, tk)

and Lemma 5, it follows that |((I + Δt
2 Lx )ŵ

k+1,L
)i (x)| ≤ CBL

n (x).
Then by Lemma 7, |ŵk+1,L

i (x)| ≤ CBL
n (x).

Differentiating the i th equation of (12) partially with respect to x , using Lemma
5 and the bound for ŵk+1,L

j , it follows that

|((I + Δt
2 Lx )

dŵk+1,L

dx )i (x)| ≤ CBL
n (x) + C

∑n
q=i

BL
q√
εi

(x)

+Δt
2 |(Lx

∂wL

∂x )i (x, tk)| + CBL
n (x).

(13)

It can be found in the proof of Lemma 4.3 in [8] that

|∂
l+mwL

i

∂xl∂tm
(x)| ≤ Cε

−l
2
i BL

n (x), l ≤ 3, m ≤ 2 and 0 ≤ l + 2m ≤ 4. (14)

Substituting the bound for ∂2wL
i

∂x∂t (x, tk) in

|(Lx
∂wL

∂x
)i (x, tk)| ≤ |∂

2wL
i

∂x∂t
(x, tk)| + |

n∑
j=1

∂ai j
∂x

(x, tk)w
L
j (x, tk)|

yields

|(Lx
∂wL

∂x
)i (x, tk)| ≤ C

n∑
q=i

BL
q√
εq

(x) + CBL
n (x). (15)
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Using (15) in (13) andLemma7, the bound | dŵk+1,L
i
dx (x)| ≤ C

∑n
q=i

BL
q√
εq

(x) follows.

Differentiating the i th equation of (12) twicewith respect to x , and using (14), Lemma

5 and the bounds of ŵk+1,L
i ,

dŵk+1,L
i
dx (x) gives

|((I + Δt
2 Lx )

d2ŵk+1,L

dx2 )i (x)| ≤ ∑n
q=i

BL
q (x)

ε1q
.

Then, using Lemma 7, the bound on | d2ŵk+1,L
i

dx2 (x)| follows.
Using the appropriate barrier functions and the techniques used in [8], it follows

that | ∂4wL
i

∂x3∂t (x)| ≤ Cε
−3
2
i BL

n (x) and | ∂5wL
i

∂x4∂t (x)| ≤ Cε−2
i BL

n (x). Then, the bounds on

|d
3ŵk+1,L

i

dx3
(x)| and |d

4ŵk+1,L
i

dx4
(x)| are obtained by repeating the same procedure.

A similar proof of the analogous results for the boundary layer functions ŵk+1,R

holds.
Sharper bounds on v̂k+1 and its derivatives are contained in the following lemma

Lemma 11 The smooth component v̂k+1
(x) and its x-derivatives satisfy, for each

i = 1, . . . , n and x ∈ [0, 1],

|d
l v̂k+1

i

dxl
(x)| ≤ C(1 +

n∑
q=i

Bq(x)

ε
l
2 −1
q

) for l = 0, 1, 2, 3.

Proof Define the barrier functions ψ±(x) = C[1 + Bn(x)]e ± dl v̂k+1

dxl (x), l = 0,

1, 2, x ∈ [0, 1]. It follows from Lemma 6 that | dl v̂k+1
i

dxl (x)| ≤ C[1 + Bn(x)], l =
0, 1, 2. Let p = d2 v̂k+1

dx2 (x), then

(I + Δt

2
Lx )p(x) = g(x, t) with p(0) = 0, p(1) = 0, (16)

where

g(x, t) = Δt
2 ( ∂2fk

∂x2 + ∂2fk+1

∂x2 )(x) + (I − Δt
2 Lx )

∂2

∂x2 v(x, tk) − 2 ∂A
∂x

dv̂k+1

dx (x)

+ 2 ∂A
∂x

∂v
∂x (x, tk) − ∂2A

∂x2 v(x, tk) − d2A
dx2 v̂

k+1
(x).

(17)

Using the bound | ∂3

∂x2∂t v(x, tk)| ≤ C in the expression for Lx
∂2

∂x2 v(x, tk) leads to

the bound |Lx
∂2

∂x2 v(x, tk)| ≤ C and it follows that |g(x, t)| ≤ C .
Let p = q + r, where q and r, the smooth and singular components of p, are

defined to be the solutions of the following problems: (I + Δt
2 Lx )q = g(x, t), with

q(0) = p0(0),q(1) = p0(1), where p0 is the solution of the reduced problem of (16),
and (I + Δt

2 Lx )r = 0, with r(0) = −q(0), r(1) = −q(1).

By Lemma 9, | dqidx (x)| ≤ C and by Lemma 10, | dridx (x)| ≤ C(1 + ∑n
q=i

Bq (x)√
εq

).

Thus,
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|dpi
dx

(x)| = |d
3v̂k+1

i

dx3
(x)| ≤ (1 +

n∑
q=i

Bq(x)√
εq

),

which completes the proof of the lemma.

4 The Complete Discretisation in Time and Space

A piecewise uniform Shishkin mesh with M × N mesh-intervals is now constructed.

Let ΩM
t = {tk}Mk=1, ΩN

x = {x j }N−1
j=1 , Ω

M
t = {tk}Mk=0, Ω

N
x = {x j }Nj=0, ΩM,N =

ΩM
t × ΩN

x , Ω
M,N = Ω

M
t × Ω

N
x and Γ M,N = Γ ∩ Ω

M,N
.ThemeshΩ

M
t is cho-

sen to be a uniform mesh with M mesh-intervals on [0, T ]. Let {εr }n′
1 be the set of

all distinct parameters in {εr }n1. The mesh Ω
N
x is a piecewise-uniform mesh on [0, 1]

obtained by dividing [0, 1] into 2n′ + 1 mesh-intervals as follows

[0, σ1] ∪ · · · ∪ (σn′−1, σn′ ] ∪ (σn′ , 1 − σn′ ] ∪ (1 − σn′ , 1 − σn′−1] ∪ · · · ∪ (1 − σ1, 1].

The n′ parameters σr , which determine the points separating the uniform meshes,
are defined by σ0 = 0, σn′+1 = 1

2 and, for r = 1, . . . , n′,

σr = min

{
σr+1

2
, 2

√
εr

α
ln N

}
.

Clearly

0 < σ1 < . . . < σn′ ≤ 1

4
,

3

4
≤ 1 − σn′ < . . . < 1 − σ1 < 1.

Then, on the sub-interval (σn′ , 1 − σn′ ] a uniformmeshwith N
2 mesh-intervals is

placed, on each of the sub-intervals (σr , σr+1] and (1 − σr+1, 1 − σr ], r = 1, . . . ,
n′ − 1, a uniform mesh of N

2n′−r+2 mesh-intervals is placed and on both of the sub-

intervals [0, σ1] and (1 − σ1, 1] a uniform mesh of N
2n′+1 mesh-intervals is placed.

In practice it is convenient to take

N = 2n
′+p+1

for some natural number p. It follows that, for 2 ≤ r ≤ n′, in the sub-interval
[σr−1, σr ] there are N/2n

′−r+3 = 2r+p−2 mesh-intervals and in each of [0, σ1],
[σ1, σ2], [1 − σ2, 1 − σ1] and [1 − σ1, 1] there are N/2n

′+1 = 2p. This construc-
tion leads to a class of 2n

′
piecewise uniform Shishkin meshesΩM,N . Note that these

meshes are not the same as those constructed in [7].
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Lemma 12 For some r, 1 ≤ r ≤ n′, suppose that σr <
σr+1

2 . Then the following
inequalities hold

BL
r (1 − σr ) ≤ BL

r (σr ) = N−2.

x (s)
r−1,r ≤ σr − h−

r for 0 < s ≤ 2, 1 < r ≤ n′.

BL
q (σr − h−

r ) ≤ CBL
q (σr ) for 1 ≤ r ≤ q ≤ n′.

BL
q (σr )√

εq
≤ C

1√
εr ln N

for 1 ≤ q ≤ n′, 1 ≤ r ≤ n′.

Analogous results hold for BR
r .

Proof The proof is as given in [9].

The discrete initial-boundary value problem is now defined on any mesh by

U0(x j ) = u(x j , 0) on Γ N
B ,

(I + Δt
2 L

N
x )Uk+1(x j ) = Δt

2 (fk + fk+1)(x j ) + (I − Δt
2 L

N
x )Uk(x j ),

Uk+1(x j ) = u(x j , tk+1) on Γ M
L ∪ Γ M

R , for k = 0, ..., M − 1

⎫⎬
⎭ (18)

where
LN
x = −Eδ2x + A

and δ2x , D+
x and D−

x are the standard difference operators

δ2xU(x j , tk+1) = D+
x U(x j , tk+1) − D−

x U(x j , tk+1)

(x j+1 − x j−1)/2
,

D+
x U(x j , tk+1) = U(x j+1, tk+1) − U(x j , tk+1)

x j+1 − x j
,

D−
x U(x j , tk+1) = U(x j , tk+1) − U(x j−1, tk+1)

x j − x j−1
.

The following results for the discrete operator I + Δt
2 L

N
x are analogous toLemmas

6 and 7 for the continuous case. They are presented below without proof.

Lemma 13 Let A(x, t) satisfy (2) and (3). Then, for any vector-valuedmesh function
�, the inequalities � ≥ 0 on Γ M,N and (I + Δt

2 L
N
x )� ≥ 0 on ΩM,N imply that

� ≥ 0 on Ω
M,N

.

An immediate consequence of this is the following discrete stability result.

Lemma 14 Let A(x, t) satisfy (2) and (3). Then, for any vector-valuedmesh function

� on Ω
M,N

, for k = 0, ..., M − 1 and 0 ≤ j ≤ N,
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‖ �(x j , tk+1) ‖ ≤ max

{
||�||Γ M,N ,

1

α
||(I + Δt

2
LN
x )�||

}
.

The discrete analogue of the artificial problem (5) is now defined by

(I + Δt
2 L

N
x )ûk+1

(x j ) = Δt
2 (fk + fk+1)(x j ) + (I − Δt

2 L
N
x )u(x j , tk),

ûk+1 = ûk+1 at x j = 0, 1, for 0 < j < N , and k = 0, ..., M − 1.

}
(19)

and the decomposition of its solution by Û
k+1 = V̂

k+1
(x j ) + Ŵ

k+1
(x j ), where

V̂
k+1

(x j ), Ŵ
k+1

(x j ) are the discrete analogues of v̂k+1
(x j ), ŵ

k+1
(x j ), which are

respectively, the solutions of the problems, for k = 0, ..., M − 1,

(I + Δt
2 L

N
x )V̂

k+1
(x j ) = Δt

2 (fk + fk+1)(x j ) + (I − Δt
2 L

N
x )v(x j , tk),

V̂
k+1

(0) = v̂k+1
(0), V̂

k+1
(1) = v̂k+1

(1), 0 < j < N ,

}

and

(I + Δt
2 L

N
x )Ŵ

k+1
(x j ) = Δt

2 (fk + fk+1)(x j ) + (I − Δt
2 L

N
x )w(x j , tk),

Ŵ
k+1

(0) = ŵk+1
(0), Ŵ

k+1
(1) = ŵk+1

(1), 0 < j < N .

}

5 Error Estimate

Lemma 15 Let V̂
k+1

(x) be the solution of (5) and Û
k+1

(x j ) be the solution of (19).
Then

||V̂k+1
(x j ) − ûk+1

(x j )|| ≤ CΔt (N−1 ln N )2.

Proof From (5) and (19),

(I + Δt
2 L

N
x )(ûk+1

(x j ) − ûk+1
(x j )) = Δt

2 (Lx − LN
x )ûk+1

(x j )

+Δt
2 (Lx − LN

x )u(x, tk).
(20)

From [8, 9] it is found that

||(Lx − LN
x )u(x, tk)|| ≤ C(N−1(ln N ))2. (21)

Now, using the Shishkin decomposition of ûk+1, and the arguments used in [8, 9]
on the different segments of the Shishkin mesh, the following hold

||Δt

2
(Lx − LN

x )v̂k+1
(x j )|| ≤ CΔt (N−1(ln N ))2,
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||Δt

2
(Lx − LN

x )ŵk+1
(x j )|| ≤ CΔt (N−1(ln N ))2.

Using the above two expressions and (21) in (20) and Lemma 14, the required
result follows.

Lemma 16 Let u(x j , tk) be the solution of (1) and Uk+1(x j ) be the solution of (18).
Then

u(x j , tk+1) − Uk+1(x j ) = ∑k
q=0 R

q{[u(x j , tk+1−q) − ûk+1−q
(x j )]

+[ûk+1−q
(x j ) − Û

k+1−q
(x j )]},

where R is the operator given by R = (I + Δt
2 L

N
x )−1(I − Δt

2 L
N
x ), for j = 0, 1, ..., N

and k = 0, 1, ..., M − 1.

Proof Subtracting (18) and (19) gives (I + Δt
2 L

N
x )(Û

k+1 − Uk+1)(x j ) = (I − Δt
2

LN
x )(u(x j , tk) − Uk(x j )) and so

Û
k+1

(x j ) − Uk+1(x j ) = R(u(x j , tk) − Uk(x j ))

It is clear that

u(x j , tk+1) − Uk+1(x j ) = (u(x j , tk+1) − ûk+1
(x j )) + (ûk+1

(x j ) − Û
k+1

(x j ))

+(Û
k+1

(x j ) − Uk+1(x j )).

Now,

u(x j , tk+1) − Uk+1(x j ) = [u(x j , tk+1) − ûk+1
(x j )] + [ûk+1

(x j ) − Û
k+1

(x j )]
+R{[u(x j , tk) − Û

k
(x j )] + [ûk

(x j ) − Û
k
(x j )]

+R[u(x j , tk−1) − Uk−1(x j )]}.

Iterating,

u(x j , tk+1) − Uk+1(x j ) = ∑k
q=0 R

q{[u(x j , tk+1−q) − Û
k+1−q

(x j )]
+[Ûk+1−q

(x j ) − Û
k+1−q

(x j )]}.

Power-Bound of the operator R

Definition 2 The family of operators R is said to be power-bounded if ||Rl || ≤ C
for all integers l ≥ 0 and for some constant C independent of M, N , i, j and ε.
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In the following the power-boundedness of the operator R is proved for the special
case where n = 1, the co-efficient function a(x, t) is a constant and the x-domain
isR.

The discrete problemcorresponding to theCrank-Nicolson scheme can be restated
as

(1 + Δt

2
(−εδ2x + a))Uk(x j ) = (1 − Δt

2
(−εδ2x + a))Uk−1(x j ) + Δt

2
( f k + f k−1)(x j ).

(22)
where

δ2xU
k(x j ) = 2

h+ − h− (
Uk(x j+1) −Uk(x j )

h+ − Uk(x j ) −Uk(x j−1)

h− ).

Using Fourier transformation on (22)

(1 + Δt
2 (a + 4ε

h+−h− (
sin2 ωh+

2
h+ + sin2 ωh−

2
h− ) − 2iε

h+−h− (sin ωh+
h+ − sin ωh−

h− ))Ũ k(ω)

= (1 − Δt
2 (a + 4ε

h+−h− (
sin2 ωh+

2
h+ + sin2 ωh−

2
h− ) − 2iε

h+−h− (sin ωh+
h+ − sin ωh−

h− ))Ũ k−1(ω)

+Δt
2 ( f̃ k + f̃ k−1)(ω)

The above can be rewritten as

(1 + L)Ũ k(ω) = (1 − L)Ũ k−1(ω) + Δt

2
( f̃ k + f̃ k−1)(ω) (23)

where

L = Δt

2
(a + 4ε

h+ − h− (
sin2 ωh+

2

h+ + sin2 ωh−
2

h− ) − 2iε

h+ − h− (sin
ωh+

h+ − sin
ωh−

h− )).

In order that (23) produces solution Ũ k(ω) which is bounded it suffices that |R| =
|1 − L

1 + L
| ≤ 1.

Equivalently
1 − L

1 + L
.
1 − L

1 + L
≤ 1 or 2(L + L) ≥ 0.

But

L + L = Δt (a + 4ε

h+ − h− (
sin2 ωh+

2

h+ + sin2 ωh−
2

h− )) > 0

which concludes the proof.

In the case of a system of n equations where n > 1, the coefficient is a constant and
the domain isR, we have

L = Δt

2
(A + 4E

h+ − h− (
sin2 ωh+

2

h+ + sin2 ωh−
2

h− ) − 2i E

h+ − h− (sin
ωh+

h+ − sin
ωh−

h− )),
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A and E are as in (1). It is conjectured that R satisfies the resolvent condition of
the Kreiss matrix theorem in [10, 11] and hence is power-bounded. The power-
boundedness of the operator R, leads to the following theorem on the estimate of the
error.

Theorem 1 Assume that R is power-bounded. Let u(x, t) be the solution of (1) and
Uk+1(x j ) be the solution of (18). Then, for j = 0, 1, ..., N and k = 0, 1, ..., M − 1,

||u(x j , tk+1) − Uk+1(x j )|| ≤ C((N−1 ln N )2 + M−2),

where C is independent of ε, i, j, N and M.

Proof Using Lemmas 8, 15 and 16, it follows that

||u(x j , tk+1) − Uk+1(x j )|| ≤ C((N−1 ln N )2 + M−2),

as required.

6 Numerical Illustrations

In this section two problems are considered. The Crank-Nicolson method suggested
is applied to solve these problems and the results are compared with those obtained
by the method suggested in [8], where the first order differential operator in t is
discretized using the Backward Euler scheme. To get the order of convergence in
the variable t exclusively, a fine Shishkin mesh is considered for x and the resulting
problem is solved for various uniform meshes with respect to t . The two mesh
algorithm [3] is applied to get the parameter-uniform order of convergence and the
error constant.

Next a fine mesh for t is considered, the resulting problem is solved, the x− order
of convergence of the method is found. From both the examples the theory that the
Crank-Nicolsonmethod doubles the order of convergencewith respect to the variable
t is well illustrated.

Example 1 Consider the problem

∂u
∂t

− E
∂2u
∂x2

+ Au = f on (0, 1) × (0, 1], u = 0 on Γ,

where E = (ε1, ε2, ε3), A =
⎛
⎝ 6 −1 0

−t 5(x + 1) −1
−1 −(1 + x2) 6 + x

⎞
⎠ , f =

⎛
⎝ 1 + ex+t

1 + x + t2

1 + et

⎞
⎠ .

The Crank-Nicolson method is applied to solve the above BVP. For various val-
ues of ε1, ε2, ε3, the maximum errors, the ε-uniform order of convergence and the
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Table 1 Example 1, Crank-Nicolson method, t-convergence

η Number of mesh points N

4 8 16 32 64

0.100E+01 0.666E-01 0.288E-01 0.134E-01 0.532E-02 0.187E-02

0.500E+00 0.634E-01 0.287E-01 0.113E-01 0.376E-02 0.183E-02

0.250E+00 0.637E-01 0.254E-01 0.810E-02 0.370E-02 0.179E-02

0.125E+00 0.602E-01 0.199E-01 0.756E-02 0.361E-02 0.171E-02

0.625E-01 0.529E-01 0.162E-01 0.731E-02 0.346E-02 0.138E-02

0.312E-01 0.453E-01 0.151E-01 0.707E-02 0.282E-02 0.904E-03

DN 0.666E-01 0.288E-01 0.134E-01 0.532E-02 0.187E-02

pN 0.121E+01 0.110E+01 0.134E+01 0.151E+01

CN
p 0.574E+00 0.532E+00 0.532E+00 0.452E+00 0.341E+00

t-order of convergence = 0.1100358E+01

The error constant = 0.5736979E+00

Table 2 Example-1, Euler scheme, t-convergence

η Number of mesh points N

4 8 16 32 64

0.100E+01 0.343E-01 0.230E-01 0.146E-01 0.835E-02 0.449E-02

0.500E+00 0.357E-01 0.238E-01 0.150E-01 0.851E-02 0.455E-02

0.250E+00 0.367E-01 0.243E-01 0.152E-01 0.856E-02 0.458E-02

0.125E+00 0.381E-01 0.248E-01 0.152E-01 0.856E-02 0.456E-02

0.312E-01 0.384E-01 0.248E-01 0.152E-01 0.843E-02 0.447E-02

DN 0.384E-01 0.248E-01 0.153E-01 0.856E-02 0.458E-02

pN 0.630E+00 0.700E+00 0.836E+00 0.904E+00

CN
p 0.260E+00 0.260E+00 0.248E+00 0.215E+00 0.178E+00

t-order of convergence = 0.6304507E+00

The error constant = 0.2602176E+00

ε-uniform error constant are computed using the general methodology from [3]. The
variation in all the three parameters is given by considering ε3 = η, ε2 = η

8 , ε1 = η

32
where η is varied as shown in the tables. α is taken to be 2.9

Fixing a fine Shishkin mesh with 48 points horizontally, the problem is solved
by the Crank-Nicolson method suggested in this paper and the Backward Euler
scheme method suggested in [8]. The order of convergence and the error constant
are calculated for t and the results are presented in Tables1 and 2. A fine uniform
mesh on t with 32 points is considered and the order of covergence in the variable
x is calculated. The results are presented in Table3. Table4 presents corresponding
results by the method suggested in [8].
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Table 3 Example 1, Crank-Nicolson method, x-convergence

η Number of mesh points N

24 48 96 192 384

0.100E+01 0.504E-02 0.132E-02 0.333E-03 0.837E-04 0.209E-04

0.500E+00 0.975E-02 0.259E-02 0.663E-03 0.167E-03 0.418E-04

0.250E+00 0.181E-01 0.503E-02 0.132E-02 0.332E-03 0.834E-04

0.125E+00 0.282E-01 0.973E-02 0.259E-02 0.662E-03 0.167E-03

0.625E-01 0.357E-01 0.181E-01 0.502E-02 0.132E-02 0.332E-03

0.312E-01 0.358E-01 0.282E-01 0.973E-02 0.259E-02 0.662E-03

DN 0.358E-01 0.282E-01 0.973E-02 0.259E-02 0.662E-03

pN 0.346E+00 0.154E+01 0.191E+01 0.197E+01

CN
p 0.505E+00 0.505E+00 0.221E+00 0.748E-01 0.243E-01

x-order of convergence = 0.3460829E+00

The error constant = 0.5048752E+00

Table 4 Example 1, Euler scheme, x-convergence

η Number of mesh points N

24 48 96 192 384

0.100E+01 0.458E-02 0.896E-03 0.669E-03 0.416E-03 0.231E-03

0.500E+00 0.951E-02 0.217E-02 0.864E-03 0.583E-03 0.337E-03

0.250E+00 0.179E-01 0.453E-02 0.102E-02 0.776E-03 0.475E-03

0.125E+00 0.281E-01 0.948E-02 0.215E-02 0.971E-03 0.647E-03

0.625E-01 0.357E-01 0.179E-01 0.451E-02 0.112E-02 0.843E-03

0.312E-01 0.359E-01 0.281E-01 0.947E-02 0.214E-02 0.104E-02

DN 0.359E-01 0.281E-01 0.947E-02 0.214E-02 0.104E-02

pN 0.352E+00 0.157E+01 0.215E+01 0.104E+01

CN
p 0.507E+00 0.507E+00 0.218E+00 0.628E-01 0.389E-01

x-order of convergence = 0.3520847E+00

The error constant = 0.5074601E+00

Example 2 Consider the problem

∂u
∂t

− E
∂2u
∂x2

+ Au = f on (0, 1) × (0, 1], u = 0 on Γ,

where E = (ε1, ε2, ε3), A =
⎛
⎝ 4(1 + x + t) −t −x

−2(1 − t) 7 + ((2 + t)x) −(3 − x)
−1 −(x + t) 4(1 + x

2 + t
2 )

⎞
⎠,

f = (1 + x + t2, 1 + ex+t , 2)T .
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Table 5 Example 2, Crank-Nicolson method, t-convergence

η Number of mesh points N

8 16 32 64 128

0.156E-01 0.312E-01 0.140E-01 0.655E-02 0.260E-02 0.852E-03

0.781E-02 0.293E-01 0.137E-01 0.541E-02 0.173E-02 0.684E-03

0.391E-02 0.295E-01 0.116E-01 0.372E-02 0.139E-02 0.444E-03

0.195E-02 0.265E-01 0.856E-02 0.286E-02 0.914E-03 0.229E-03

0.977E-03 0.215E-01 0.606E-02 0.194E-02 0.486E-03 0.207E-03

0.488E-03 0.210E-01 0.589E-02 0.183E-02 0.487E-03 0.216E-03

DN 0.312E-01 0.140E-01 0.655E-02 0.260E-02 0.852E-03

pN 0.116E+01 0.109E+01 0.133E+01 0.161E+01

CN
p 0.568E+00 0.542E+00 0.542E+00 0.459E+00 0.320E+00

t-order of convergence = 0.1091209E+01

The error constant = 0.5679663E+00

Table 6 Example 2, Euler scheme, t-convergence

η Number of mesh points N

8 16 32 64 128

0.156E-01 0.241E-01 0.152E-01 0.871E-02 0.467E-02 0.242E-02

0.781E-02 0.242E-01 0.153E-01 0.868E-02 0.467E-02 0.243E-02

0.391E-02 0.243E-01 0.153E-01 0.867E-02 0.461E-02 0.238E-02

0.195E-02 0.244E-01 0.153E-01 0.855E-02 0.453E-02 0.234E-02

0.977E-03 0.245E-01 0.153E-01 0.858E-02 0.455E-02 0.235E-02

0.488E-03 0.246E-01 0.154E-01 0.863E-02 0.458E-02 0.236E-02

DN 0.246E-01 0.154E-01 0.871E-02 0.467E-02 0.243E-02

pN 0.673E+00 0.824E+00 0.898E+00 0.946E+00

CN
p 0.267E+00 0.267E+00 0.241E+00 0.206E+00 0.171E+00

t-order of convergence = 0.6733944E+00

The error constant = 0.2674448E+00

The variation in all the three parameters is given by considering ε3 = η, ε2 = η

4 , ε1 =
η

16 where η is varied as shown in the tables. α is taken to be 0.9.

Fixing a fine Shishkin mesh with 192 points horizontally, the problem is solved by
the Crank-Nicolson method suggested in this paper and the Backward Euler scheme
method suggested in [8]. A fine uniform mesh on t with 32 points is considered
and the order of covergence in the variable x is calculated. Tables5 and 7 present
the results by the Crank Nicolson Method. Tables6 and 8 present the results by the
method presented in [8].
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Table 7 Example 2, Crank-Nicolson method, x-convergence

η Number of mesh points N

48 96 192 384 768

0.156E-01 0.945E-02 0.328E-02 0.997E-03 0.285E-03 0.786E-04

0.781E-02 0.157E-01 0.535E-02 0.171E-02 0.574E-03 0.155E-03

0.391E-02 0.216E-01 0.941E-02 0.327E-02 0.997E-03 0.285E-03

0.195E-02 0.238E-01 0.157E-01 0.534E-02 0.171E-02 0.574E-03

0.977E-03 0.239E-02 0.494E-02 0.940E-02 0.327E-02 0.997E-03

0.488E-03 0.238E-02 0.298E-02 0.194E-02 0.174E-02 0.606E-03

DN 0.238E-01 0.157E-01 0.940E-02 0.327E-02 0.997E-03

pN 0.599E+00 0.740E+00 0.152E+01 0.171E+01

CN
p 0.712E+00 0.712E+00 0.646E+00 0.340E+00 0.157E+00

x-order of convergence = 0.5994747E+00

The error constant = 0.7119137E+001

Table 8 Example 2, Euler scheme, x-convergence

η Number of mesh points N

48 96 192 384 768

0.156E-01 0.932E-02 0.323E-02 0.828E-03 0.387E-03 0.222E-03

0.781E-02 0.156E-01 0.531E-02 0.167E-02 0.502E-03 0.304E-03

0.391E-02 0.215E-01 0.929E-02 0.322E-02 0.826E-03 0.406E-03

0.195E-02 0.238E-01 0.156E-01 0.531E-02 0.166E-02 0.522E-03

0.977E-03 0.238E-02 0.489E-02 0.927E-02 0.322E-02 0.825E-03

0.488E-03 0.237E-02 0.291E-02 0.173E-02 0.184E-02 0.824E-03

DN 0.238E-01 0.156E-01 0.927E-02 0.322E-02 0.825E-03

pN 0.607E+00 0.751E+00 0.153E+01 0.197E+01

CN
p 0.725E+00 0.725E+00 0.656E+00 0.347E+00 0.135E+00

x-order of convergence = 0.6068922E+00

The error constant = 0.7251142E+00
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A Numerical Method for a System
of Singularly Perturbed Differential
Equations of Reaction-Diffusion Type
with Negative Shift

P. Avudai Selvi and Ramanujam Narasimhan

Abstract Anumerical method based on an iterative scheme is proposed for a system
of singularly perturbed differential equations of reaction-diffusion typewith negative
shift term. In this method the solution of the delay problem is obtained as the limit of
the solutions to a sequence of the non-delay problems. Then non-delay problems are
solved by applying available finite difference scheme andfinite elementmethod in the
literature. An error estimate in supremum norm is derived. Numerical experiments
are carried out.

Keywords System of singularly perturbed problem · Maximum principle ·
Reaction-diffusion problem · Finite difference scheme · Finite element method ·
Shishkin mesh · Delay · Negative shift
AMS Mathematics Subject Classification (2010): 34K10 · 34K26 · 34K28

1 Introduction

Delay differential equations appear in various discipline, where they provide good
approximations of the observed phenomena. The problems involving these differ-
ential equations occur where the future depends not only on the immediate present,
but also on the past history of the system under consideration. A delay differen-
tial equation is said to be retarded type if the delay argument does not occur in the
highest order derivative term. Further if the highest derivative of this delay differ-
ential equation is multiplied by a small parameter, then we get singularly perturbed
delay differential equations of retarded type. Such type of equations arises frequently
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in the mathematical modeling of various practical phenomena, for example, in the
modeling of the human pupil-light reflex [1], the study of bistable devices [2] and
variational problems in control theory [3], etc.

In general the standard numerical methods for solving singularly perturbation
problems are sometimes not stable and also they do not give desired results when
the perturbation parameter is very small. Hence many people developed suitable
numerical methods to solve singularly perturbed differential equations such that
these methods provide good accuracy which do not depend on the small parameter.
In the literature these methods are known as parameter-uniform numerical methods.

In the recent years there has been a growing interest in the area of numerical
methods to SPDDEs. In fact, Erdogan [4] proposed an exponentially fitted operator
method for singularly perturbed first order equations. Kadalbajoo and Sharma [5–7]
and Mohapatra and Natesan [8] proposed some methods for equations of reaction-
diffusion type with small delays either in function or its derivative.

Subburayan and Ramanujam [9–14] suggested two methods namely initial value
technique and asymptotic numerical method for equations of reaction-diffusion type
as well as convection-diffusion type. Nicaise and Xenophontos [15], developed a
hp-version finite element method for reaction-diffusion type DEs. In [16], the author
proposed a discontinuous Galerkin finite element method for reaction-diffusion type
DEs and established robust convergence of the method in the energy norm.

We, in this paper, using the iterative procedure given in [17], finite difference
scheme and finite element method available in the literature for system of singularly
perturbed differential equations without delay, propose a numerical method to find
a numerical solution for the following problem:

Find u = (u1, u2), u1, u2 ∈ U := C2(Ω) ∩ C(Ω) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−εu′′
1(x) + ∑2

k=1 a1k(x)uk(x) + ∑2
k=1 b1k(x)uk(x − 1) = f1(x), x ∈ Ω,

−εu′′
2(x) + ∑2

k=1 a2k(x)uk(x) + ∑2
k=1 b2k(x)uk(x − 1) = f2(x), x ∈ Ω,

u1(x) = φ1(x), x ∈ [−1, 0], u1(2) = l1,

u2(x) = φ2(x), x ∈ [−1, 0], u2(2) = l2,
(1)

where 0 < ε ≤ 1, a11(x) > 0, a22(x)> 0, a12(x) ≤ 0, a21(x) ≤ 0, ai1(x) + ai2(x) ≥
αi ≥ α > 0, i = 1, 2, bi j (x) ≤ 0, i = 1, 2, j = 1, 2, 0 > bi1(x) + bi2(x) ≥ −βi ≥
−β, i = 1, 2, α − β > 0, the functions aik , bik , fi ∈ C4(Ω), i = 1, 2, k = 1, 2,
Ω = (0, 2),Ω = [0, 2],Ω− = (0, 1), Ω+ = (1, 2) and φi ∈ C4([−1, 0]), i = 1, 2.

The present paper is organized as follows. Section2 presents the maximum prin-
ciple and the stability result. The proposed iterative procedure is explained in Sect. 3.
Mesh selection strategy is discussed in Sect. 4. A first order finite difference scheme
is presented in Sect. 5, where as the Sect. 6 deals with the finite element method.
Numerical experiments are carried out in Sect. 7. The paper concludes with a discus-
sion.

Throughout our analysis C is a generic positive constant that is independent of
parameter ε and number of mesh points N . In this paper the following supremum
norm is used:
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‖u‖D = sup
x∈D

| u(x) | .

In case of vectors u = (u1, u2), we define

‖u‖ = max{‖u1‖, ‖u2‖}.

2 Maximum Principle and Stability Result

Consider the following problem.
Find u = (u1, u2), u1, u2 ∈ U ∗ := C2(Ω− ∪ Ω+) ∩ C(Ω) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1u(x) : =
{

−εu′′
1(x) + ∑2

k=1 a1k(x)uk(x) = f1(x) − ∑2
k=1 b1k(x)φk(x − 1), x ∈ Ω−,

−εu′′
1(x) + ∑2

k=1 a1k(x)uk(x) + ∑2
k=1 b1k(x)uk(x − 1) = f1(x), x ∈ Ω+,

P2u(x) : =
{

−εu′′
2(x) + ∑2

k=1 a2k(x)uk(x) = f2(x) − ∑2
k=1 b2k(x)φk(x − 1), x ∈ Ω−,

−εu′′
2(x) + ∑2

k=1 a2k(x)uk(x) + ∑2
k=1 b2k(x)uk(x − 1) = f2(x), x ∈ Ω+,

u1(0) = φ1(0), u1(1−) = u1(1+), u′
1(1−) = u′

1(1+), u1(2) = l1,

u2(0) = φ2(0), u2(1−) = u2(1+), u′
2(1−) = u′

2(1+), u2(2) = l2.
(2)

The differential-difference operator P = (P1, P2) satisfies the following maxi-
mum principle.

Theorem 1 (Maximum Principle) Let w = (w1, w2), w1, w2 ∈ U ∗ be any func-
tion satisfying wi (0) ≥ 0, wi (2) ≥ 0, Piw(x) ≥ 0, ∀x ∈ Ω− ∪ Ω+ and w′

i (1+) −
w′

i (1−) = [w′
i ](1) ≤ 0, i = 1, 2. Then wi (x) ≥ 0, ∀x ∈ Ω, i = 1, 2.

Proof Using the method of proof given in Theorem 3.1 of [12], one can prove the
present theorem. �

Note The above theorem was proved using the conditions α − β > 0 [12].
The following stability result can be proved by using the above maximum principle.

Corollary 1 Let w = (w1, w2), w1, w2 ∈ U ∗. Then

| w j (x) |≤ C max
{
max
i=1,2

{| wi (0) |}, max
i=1,2

{| wi (2) |}, max
i=1,2

{‖ Piw ‖Ω−∪Ω+}
}
,

∀ x ∈ Ω, j = 1, 2, (3)

where C = 8max
{
1, 1

α
, 1

5(α−β)

}
.

Proof Using the method of proof given in Corollary 3.2 of [12], one can prove the
present corollary. �
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3 Iterative Method

3.1 Procedure

Using the iterative procedure suggested in [17], we define the following iterative
method for the above boundary value problem (2).

Let u(0) = (u(0)
1 , u(0)

2 ) such that

{
u(0)
1 (x) = φ1(x), x ∈ [−1, 0],

u(0)
1 (x) = φ1(0), x ∈ [0, 2],

{
u(0)
2 (x) = φ2(x), x ∈ [−1, 0],

u(0)
2 (x) = φ2(0), x ∈ [0, 2], (4)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(n) = (u(n)
1 , u(n)

2 ), u(n)
1 , u(n)

2 ∈ U∗ such that

u(n)
1 (x) = φ1(x), x ∈ [−1, 0],

u(n)
2 (x) = φ2(x), x ∈ [−1, 0],

−εu(n)
1

′′
(x) + ∑2

k=1 a1k(x)u
(n)
k (x) =

{
f1(x) − ∑2

k=1 b1k(x)φk(x − 1), x ∈ Ω−,

f1(x) − ∑2
k=1 b1k(x)u

(n−1)
k (x − 1), x ∈ Ω+,

−εu(n)
2

′′
(x) + ∑2

k=1 a2k(x)u
(n)
k (x) =

{
f2(x) − ∑2

k=1 b2k(x)φk(x − 1), x ∈ Ω−,

f2(x) − ∑2
k=1 b2k(x)u

(n−1)
k (x − 1), x ∈ Ω+,

u(n)
1 (0) = φ1(0), u(n)

1 (1−) = u(n)
1 (1+), u(n)

1
′
(1−) = u(n)

1
′
(1+), u(n)

1 (2) = l1,

u(n)
2 (0) = φ2(0), u(n)

2 (1−) = u(n)
2 (1+), u(n)

2
′
(1−) = u(n)

2
′
(1+), u(n)

2 (2) = l2,
(5)

for n = 1, 2, · · · .

3.2 Convergence Analysis

To prove that the sequence defined in the previous section converges uniformly to
the solution of the problem (2) the following result is used.

Theorem 2 (Maximum Principle) Let w = (w1, w2), w1, w2 ∈ U ∗ such that
wi (0) ≥ 0, wi (2) ≥ 0, P∗

i w(x) ≥ 0, ∀x ∈ Ω− ∪ Ω+ and w′
i (1+) − w′

i (1−) =
[w′

i ](1) ≤ 0, i = 1, 2, where P∗
i w(x) = −εw′′

i (x) + ∑2
k=1 aik(x)wk(x), i = 1, 2.

Then wi (x) ≥ 0, ∀x ∈ Ω, i = 1, 2.

Proof For proof refer (Theorem 2.2, [19]). �

Theorem 3 (Uniform Convergence) The sequence {u(n)} defined by (4)–(5) con-
verges uniformly to the solution u of the problem (2).
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Proof From Corollary 1, we have

|u j (x)| ≤ C max
{
max
i=1,2

{|ui (0)|}, max
i=1,2

{|ui (2)|}, || f || + β||φ||}
}

= M ′ (say),

∀ x ∈ Ω, j = 1, 2.

Let z(n) = (z(n)
1 , z(n)

2 ), z(n)
i (x) = u(n)

i (x) − ui (x), n = 0, 1, 2, · · · , i = 1, 2. Then,
on Ω , we have

|z(0)
i (x)| = |u(0)

i (x) − ui (x)| = |φi (0) − ui (x)|,
≤ |φi (0)| + |ui (x)|,
≤ |φi (0)| + M ′ = M (say), i = 1, 2.

We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P∗
1 z(n)(x) =

{
0, x ∈ Ω−,

−∑2
k=1 b1k(x)z

(n−1)
k (x − 1), x ∈ Ω+,

P∗
2 z(n)(x) =

{
0, x ∈ Ω−,

−∑2
k=1 b2k(x)z

(n−1)
k (x − 1), x ∈ Ω+,

z(n)
1 (0) = 0, z(n)

1 (2) = 0,

z(n)
2 (0) = 0, z(n)

2 (2) = 0, n = 1, 2, · · · .

Define, ηn = (ηn, ηn), where ηn =
(

β

α

)n
M, n = 0, 1, 2, · · · . Since α − β > 0,

then ηn → 0 as n → ∞. By the method of induction we now prove that

||z(n)
i ||Ω ≤ ηn, i = 1, 2, n = 0, 1, 2, · · · .

Clearly, |z(0)
i (x)| ≤ M = η0, ∀x ∈ Ω, i = 1, 2. Therefore, ||z(0)

i ||Ω ≤ η0, i = 1, 2.
We now prove that ||z(1)

i ||Ω ≤ η1, i = 1, 2. We have

P∗
i η1 = ∑2

k=1 aik(x)η1 ≥ αη1 = βM ≥ 0 = P∗
i z(1)(x), x ∈ Ω−,

P∗
i η1 = ∑2

k=1 aik(x)η1 ≥ αη1 = βM ≥ −∑2
k=1 bik(x)M

≥ −∑2
k=1 bik(x)z

(0)
k (x − 1) = P∗

i z(1)(x), x ∈ Ω+, i = 1, 2.

Therefore, P∗
i z(1)(x) ≤ P∗

1 η1, ∀x ∈ Ω− ∪ Ω+, i = 1, 2. Also z(1)
i (0) = 0 ≤ η1,

z(1)
i (2) = 0 ≤ η1, [z(1)

i

′](1) = 0, i = 1, 2. Then, byTheorem2,we have z(1)
i (x) ≤ η1,

∀x ∈ Ω , i = 1, 2. Similarly we can show that −η1 ≤ z(1)
i (x), ∀x ∈ Ω , i = 1, 2.

Therefore,
||z(1)

i ||Ω ≤ η1, i = 1, 2. (6)
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Now assume that, ||z(n)
i ||Ω ≤ ηn, i = 1, 2, for some n > 1. We have

P∗
i ηn+1 = ∑2

k=1 aik(x)ηn+1 ≥ αηn+1 = β
(

β
α

)n
M ≥ 0 = P∗

i z(n+1)(x), x ∈ Ω−,

P∗
i ηn+1 = ∑2

k=1 aik(x)ηn+1 ≥ αηn+1 = β
(

β
α

)n
M ≥ − ∑2

k=1 bik(x)ηn

≥ − ∑2
k=1 bik(x)z

(n)
k (x − 1) = P∗

i z(n+1)(x), x ∈ Ω+, i = 1, 2.

Therefore, P∗
i z(n+1)(x) ≤ P∗

i ηn+1, ∀x ∈ Ω− ∪ Ω+, i = 1, 2. Also z(n+1)
i (0) =

0 ≤ ηn+1, z
(n+1)
i (2) = 0 ≤ ηn+1, [z(n+1)

i

′](1) = 0, i = 1, 2. Then, by Theorem 2, we
have z(n+1)

i (x) ≤ ηn+1, ∀x ∈ Ω , i = 1, 2. Similarly we can show that
−ηn+1 ≤ z(n+1)

i (x), ∀x ∈ Ω , i = 1, 2. Therefore,

||z(n+1)
i ||Ω ≤ ηn+1, i = 1, 2. (7)

Hence the sequence {u(n)} converges uniformly to the solution of the problem (2).�

Note: Theorem 1was proved under the assumption that α − β > 0 [12]. Further it
may be observed that the same assumption is used to prove the uniform convergence.
That is, no extra assumption is imposed on the coefficients.

4 Layer Adapted Meshes

In this sectionwe present two types ofmeshes namely Shishkinmesh andBakhvalov-
Shishkin mesh (BS mesh).

4.1 Shishkin Mesh

The present paper is an extension of thework carried out in [18] from single to system.
In [18] authors mentioned that the differential equation exhibits boundary layers at
x = 0, x = 2 and interior layers (left and right) at x = 1. The same conclusion can
be made for the above problem (1) by deriving suitable estimates for the solution.
Therefore we divide the interval [0, 2] into six subintervals, namely Ω1 = [0, τ ],
Ω2 = [τ, 1 − τ ], Ω3 = [1 − τ, 1], Ω4 = [1, 1 + τ ], Ω5 = [1 + τ, 2 − τ ] and Ω6 =
[2 − τ, 2], where τ = min

{
1
4 ,

2
√

ε ln(N )√
α

}
. On Ω1, Ω3, Ω4 and Ω6 a uniform mesh

with N
8 mesh intervals is placed, while on Ω2 and Ω5 uniform mesh with N

4 mesh
intervals is placed.
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The Shishkin mesh Ω
N = {x0, x1, · · · , xN } is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = 0,

xi = x0 + ih, 1 ≤ i ≤ N
8 ,

xi+ N
8

= x N
8

+ i H, 1 ≤ i ≤ N
4 ,

xi+ 3N
8

= x 3N
8

+ ih, 1 ≤ i ≤ N
8 ,

xi+ N
2

= x N
2

+ ih, 1 ≤ i ≤ N
8 ,

xi+ 5N
8

= x 5N
8

+ i H, 1 ≤ i ≤ N
4 ,

xi+ 7N
8

= x 7N
8

+ ih, 1 ≤ i ≤ N
8 .

where h = 8N−1τ and H = 4N−1(1 − 2τ).

4.2 BS Mesh

The mesh points of these meshes are given by [20]

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

ε
α
φ1(ti ), i = 0, · · · , N/8

τ + 4
N (1 − 2τ)

(
i − N

8

)
, i = N/8 + 1, · · · , 3N/8

1 − 2
√

ε
α
φ2(ti ), i = 3N/8 + 1, · · · , N/2

1 + 2
√

ε
α
φ3(ti ), i = N/2 + 1, · · · , 5N/8

1 + τ + 4
N (1 − 2τ)

(
i − 5N

8

)
, i = 5N/8 + 1, · · · , 7N/8

2 − 2
√

ε
α
φ4(ti ), i = 7N/8 + 1, · · · , N

where ti = i/N , φi = − lnψi , i = 1, 2, 3, 4, ψ1(t) = 1 − 8(1 − N−1)t , ψ2(t) =
1 − 4(1 − N−1)(1 − 2t), ψ3(t) = 1 − 4(1 − N−1)(2t − 1) and ψ4(t) = 1 − 8(1 −
N−1)(1 − t).

5 First Order Finite Difference Scheme

In the present section a finite difference scheme is presented for problems (5). Further
we derive an error estimate for the numerical method suggested in this paper.

5.1 Scheme

Using the finite difference scheme discussed in [19] on the Shishkin mesh Ω
N =

{x0, x1, · · · , xN }, we now define the following finite difference scheme for the
sequence of the problems (5).
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Let U
[0] = (U [0]

1 ,U [0]
2 ), U [0]

i = (
u(0)
i (x0), u(0)

i (x1), · · · , u(0)
i (xN )

)
, i = 1, 2.

Find U
[n] = (U [n]

1 ,U [n]
2 ), U [n]

i = (
U [n]

i,1 , U [n]
i,2 , · · · ,U [n]

i,N

)
, i = 1, 2, such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P∗
1
NU

[n]
j ≡ −εδ2U [n]

1, j + ∑2
k=1 a1k, jU

[n]
k, j =

⎧⎨
⎩

f1, j − ∑2
k=1 b1k, jφk (x j − 1), j = 1, · · · , N

2 − 1,

f1, j − ∑2
k=1 b1k, jU

[n−1]
k, j− N

2
, j = N

2 + 1, · · · , N − 1,

P∗
2
NU

[n]
j ≡ −εδ2U [n]

2, j + ∑2
k=1 a2k, jU

[n]
k, j =

⎧⎨
⎩

f2, j − ∑2
k=1 b2k, jφk (x j − 1), j = 1, · · · , N

2 − 1,

f2, j − ∑2
k=1 b2k, jU

[n−1]
k, j− N

2
, j = N

2 + 1, · · · , N − 1,

U [n]
1,0 = φ1(0), D+U [n]

1, N
2

= D−U [n]
1, N

2
, U [n]

1,N = l1,

U [n]
2,0 = φ2(0), D+U [n]

2, N
2

= D−U [n]
2, N

2
, U [n]

2,N = l2, n = 1, 2, · · · .

(8)

Here

U
[n]
j = (U [n]

1, j ,U
[n]
2, j ), U [n]

1, j = U [n]
1 (x j ), U [n]

2, j = U [n]
2 (x j ),

δ2U [n]
i, j = 1

x j+1 − x j−1

(
U [n]

i, j+1 −U [n]
i, j

x j+1 − x j
− U [n]

i, j −U [n]
i, j−1

x j − x j−1

)
,

D+U [n]
i, N

2
=

U [n]
i, N

2 +1
−U [n]

i, N
2

x N
2 +1 − x N

2

and D−U [n]
i, N

2
=

U [n]
i, N

2
−U [n]

i, N
2 −1

x N
2

− x N
2 −1

,

aik, j = aik(x j ), bik, j = bik(x j ) fk, j = fk(x j ).

5.2 Error Estimate

We now derive an error estimate for the above scheme.

Theorem 4 Let u and U
[n]

be the solutions of the problems (2) and (8) respectively.
Then we have

‖ui −U [n]
i ‖

Ω
N ≤ CN−1 ln N , i = 1, 2, provided that n ≥ ln(N−1 ln N )

ln γ
, γ = β

α
.

Proof We have

⎧⎪⎨
⎪⎩

−εu(1)
i

′′
(x) + ∑2

k=1 aik(x)u
(1)
k (x) =

{
fi (x) − ∑2

k=1 bik(x)φk(x − 1), x ∈ Ω−,

fi (x) − ∑2
k=1 bik(x)u

(0)
k (x − 1), x ∈ Ω+,

u(1)
i (0) = φi (0), u(1)

i (2) = li , i = 1, 2.

(9)

Recall that U [0]
i = (

u(0)
i (x0), u(0)

i (x1), · · · , u(0)
i (xN )

)
, i = 1, 2. From (8) we have
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⎧⎪⎪⎨
⎪⎪⎩

−εδ2U [1]
i, j + ∑2

k=1 aik, jU
[1]
k, j =

{
fi, j − ∑2

k=1 bik, jφk (x j − 1), j = 1, · · · , N
2 − 1,

fi, j − ∑2
k=1 bik, j u

(0)
k (x j − 1), j = N

2 + 1, · · · , N − 1,

U [1]
i,0 = φi (0), D+U [1]

i, N2
= D−U [1]

i, N2
, U [1]

i,N = li , i = 1, 2.

(10)
Applying the error estimate result from [19] to the problems (9)–(10) we have

|u(1)
i (x j ) −U [1]

i, j | ≤ CN−1 ln N , for j = 0, 1, · · · , N i = 1, 2. (11)

From (6) and (11) we have

|ui (x j ) −U [1]
i, j | ≤ |ui (x j ) − u(1)

i (x j )| + |u(1)
i (x j ) −U [1]

i, j |
≤ C(

β
α ) + CN−1 ln N , for j = 0, 1, · · · , N , i = 1, 2.

Hence

‖ui −U [1]
i ‖

Ω
N ≤ C

(
β

α

)
+ CN−1 ln N , i = 1, 2.

Now consider

⎧⎪⎨
⎪⎩

−εu(2)
i

′′
(x) + ∑2

k=1 aik (x)u
(2)
k (x) =

{
fi (x) − ∑2

k=1 bik (x)φk (x − 1), x ∈ Ω−,

fi (x) − ∑2
k=1 bik (x)u

(1)
k (x − 1), x ∈ Ω+,

u(2)
i (0) = φi (0), u(2)

i (2) = li , i = 1, 2.

(12)

Discretize (12) we get

⎧⎪⎪⎨
⎪⎪⎩

−εδ2U∗[2]
i, j + ∑2

k=1 aik, jU
∗[2]
k, j =

{
fi, j − ∑2

k=1 bik, jφk (x j − 1), j = 1, · · · , N
2 − 1,

fi, j − ∑2
k=1 bik, j u

(1)
k (x j − 1), j = N

2 + 1, · · · , N − 1,

U∗[2]
i,0 = φi (0), D+U∗[2]

i, N2
= D−U∗[2]

i, N2
, U∗[2]

i,N = li , i = 1, 2.

(13)
Applying the error estimate result from [19] to the problems (12)–(13) we have

|u(2)
i (x j ) −U ∗[2]

i, j | ≤ CN−1 ln N , for j = 0, 1, · · · , N i = 1, 2. (14)

Replacing u(1)
k (x j − 1) by its numerical solution we get

⎧⎪⎪⎨
⎪⎪⎩

−εδ2U [2]
i, j + ∑2

k=1 aik, jU
[2]
k, j =

{
fi, j − ∑2

k=1 bik, jφk(x j − 1), j = 1, · · · , N
2 − 1,

fi, j − ∑2
k=1 bik, jU

[1]
k, j− N

2
, j = N

2 + 1, · · · , N − 1,

U [2]
i,0 = φi (0), D+U [2]

i, N2
= D−U [2]

i, N2
, U [2]

i,N = li , i = 1, 2.

(15)

Applying the discrete stability result [19] for Z
[2] = (Z [2]

1 , Z [2]
2 ), Z [2]

i, j = U ∗[2]
i, j −U [2]

i, j

where Z
[2]

satisfies the following discrete problem
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P∗
i
N Z

[2]
j =

⎧⎨
⎩
0, j = 1, · · · , N

2 − 1,

− ∑2
k=1 bik, j

(
u(1)
k (x j − 1) −U [1]

k, j− N
2

)
, j = N

2 + 1, · · · , N − 1,

Z [2]
i,0 = 0, D+Z [2]

i, N2
= D−Z [2]

i, N2
, Z [2]

i,N = 0, i = 1, 2,

we get

|U ∗[2]
i, j −U [2]

i, j | ≤ β

α
CN−1 ln N < CN−1 ln N , for j = 0, 1, · · · , N , i = 1, 2.

(16)
From (14) and (16) we have

|u(2)
i (x j ) −U [2]

i, j | ≤ |u(2)
i (x j ) −U∗[2]

i, j | + |U∗[2]
i, j −U [2]

i, j |
≤ CN−1 ln N + CN−1 ln N
≤ CN−1 ln N , for j = 0, 1, · · · , N , i = 1, 2.

Thus

|ui (x j ) −U [2]
i, j | ≤ |ui (x j ) − u(2)

i (x j )| + |u(2)
i (x j ) −U [2]

i, j |
≤ C(

β
α )2 + CN−1 ln N , for j = 0, 1, · · · , N , i = 1, 2.

Hence

‖ui −U [2]
i ‖

Ω
N ≤ C

(
β

α

)2

+ CN−1 ln N , i = 1, 2.

Continuing this process one can prove that

‖ui −U [n]
i ‖

Ω
N ≤ C

(
β

α

)n

+ CN−1 ln N , i = 1, 2, for n > 2.

Since ln(N−1 ln N )

ln γ
≤ n and γ = β

α
, we have (

β

α
)n ≤ N−1 ln N . Finally we have

‖ui −U [n]
i ‖

Ω
N ≤ CN−1 ln N , i = 1, 2.

Hence the proof of the theorem. �

Note: The scheme discussed in [19] is for the system of differential equations with
discontinuous source terms. It may be noted that though the systems of differential
equations in (5) has continuous source terms but the source terms are not differen-
tiable in general. Hence one can use the scheme given in [19] to the problems (5).
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6 Finite Element Method

6.1 Scheme

Using the finite element method presented in [20] we get the following system of
equations for the problems (5).

⎧⎨
⎩

P∗
i
NU

[n]
j ≡ −ε

(
U [n]

i, j+1−U [n]
i, j

h j+1
− U [n]

i, j −U [n]
i, j−1

h j

)
+ h j

∑2
k=1 aik, jU

[n]
k, j = Fi, j

U [n]
i,0 = U [n]

i,N = 0, i = 1, 2,
(17)

where

Fi, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h j ( fi, j − ∑2
k=1 bik, jφk(x j − 1)), j = 1, · · · , N

2 − 1,
h j

2 ( fi, j−1 − ∑2
k=1 bik, j−1φk(x j−1 − 1)

+ fi, j+1 − ∑2
k=1 bik, j+1U

[n−1]
k,1 ), j = N

2 ,

h j ( fi, j − ∑2
k=1 bik, jU

[n−1]
k, j− N

2
), j = N

2 + 1, · · · , N − 1,

for n = 1, 2, · · · .
The above difference operator P∗N = (P∗

1
N , P∗

2
N ) satisfies the following discrete

maximum principle.

Theorem 5 (Discrete Maximum Principle) Let W = (W1, W2) be any mesh func-
tion satisfying P∗

i
NW j ≥ 0, ∀ j = 1, 2, · · · , N − 1, Wi (x0) ≥ 0 and Wi (xN ) ≥ 0,

i = 1, 2. Then Wi (x j ) ≥ 0, ∀x j ∈ Ω
N
, i = 1, 2.

Proof Using the basic idea used in [12] for the continuous maximum principle and

the discrete test functions given by, S1(x j ) = S2(x j ) = 1 + x j , ∀x j ∈ Ω
N
, the above

theorem can be proved. �

The following discrete stability result can be proved by using the above discrete
maximum principle.

Corollary 2 (Discrete Stability Result) Let W = (W1, W2) be any mesh function.
Then

| Wi (x j ) |≤ C max
{
max
k=1,2

{| Wk(x0) |}, max
k=1,2

{| Wk(xN ) |}, 1

α
max
k=1,2

{ sup
ξ∈ΩN

|P∗
k
NW (ξ)|}

}
,

∀ x j ∈ Ω
N

, i = 1, 2,

where ΩN = Ω
N\{x0, xN }.
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6.2 Error Estimate

Using the Theorem 5.1 of [20] and the procedure adapted in the above Sect. 5.2, we
derive the following result

Theorem 6 Let u andU
[n]

be the solutions of the problems (2) and (17) respectively,√
ε ≤ CN−1. Then we have

(i) Shishkin mesh:

‖ui −U [n]
i ‖

Ω
N ≤ CN−2 ln2 N , i = 1, 2, provided that n ≥ ln(N−2 ln2 N )

ln γ
, γ = β

α
.

and
(ii) BS mesh:

‖ui −U [n]
i ‖

Ω
N ≤ CN−2, i = 1, 2, provided that n ≥ ln(N−2)

ln γ
, γ = β

α
.

Proof Consider the problem (9). From (17) we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P∗
i
NU

[1]
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h j ( fi, j − ∑2
k=1 bik, jφk(x j − 1)), j = 1, · · · , N

2 − 1,
h j
2 ( fi, j−1 − ∑2

k=1 bik, j−1φk(x j−1 − 1)

+ fi, j+1 − ∑2
k=1 bik, j+1u

(0)
k (x j+1 − 1)), j = N

2 ,

h j ( fi, j − ∑2
k=1 bik, j u

(0)
k (x j − 1)), j = N

2 + 1, · · · , N − 1,

U [1]
i,0 = U [1]

i,N = 0, i = 1, 2,
(18)

Applying the error estimate result from [20] to the problems (9)–(18) we have

|u(1)
i (x j ) −U [1]

i, j | ≤
{
CN−2 ln2 N , for Shishkin mesh,

CN−2, for BS mesh.
(19)

As done in Sect. 5, using (6) and (19) we get

‖ui −U [1]
i ‖

Ω
N ≤

{
C

(
β

α

) + CN−2 ln2 N for Shishkin mesh,

C
(

β

α

) + CN−2 for BS mesh.

Now consider the problem (12). The scheme (17) corresponding to this problem is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P∗
i
NU

∗
j
[2] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h j ( fi, j − ∑2
k=1 bik, jφk (x j − 1)), j = 1, · · · , N

2 − 1,
h j
2 ( fi, j−1 − ∑2

k=1 bik, j−1φk (x j−1 − 1)

+ fi, j+1 − ∑2
k=1 bik, j+1u

(1)
k (x j+1 − 1)), j = N

2 ,

h j ( fi, j − ∑2
k=1 bik, j u

(1)
k (x j − 1)), j = N

2 + 1, · · · , N − 1,

U∗[2]
i,0 = U∗[2]

i,N = 0, i = 1, 2,

(20)
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Applying the error estimate result from [20] to the problems (12) and (20) we have

|u(2)
i (x j ) −U [2]

i, j | ≤
{
CN−2 ln2 N , for Shishkin mesh,

CN−2, for BS mesh, j = 0, 1, · · · , N , i = 1, 2.
(21)

Replacing u(1)
k (x j − 1) by its numerical solution we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P∗
i
NU j

[2] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h j ( fi, j − ∑2
k=1 bik, jφk(x j − 1)), j = 1, · · · , N

2 − 1,
h j
2 ( fi, j−1 − ∑2

k=1 bik, j−1φk(x j−1 − 1)

+ fi, j+1 − ∑2
k=1 bik, j+1U

[1]
k,1), j = N

2 ,

h j ( fi, j − ∑2
k=1 bik, jU

[1]
k, j− N

2
), j = N

2 + 1, · · · , N − 1,

U [2]
i,0 = U [2]

i,N = 0, i = 1, 2,

(22)

ApplyingCorollary 2 for Z
[2] = (Z [2]

1 , Z [2]
2 ), Z [2]

i, j = U ∗[2]
i, j −U [2]

i, j where Z
[2]

satisfies
the following discrete problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P∗
i
N Z j

[2] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, j = 1, · · · , N
2 − 1,

− h j
2

(∑2
k=1 bik, j+1

(
u(1)
k (x j+1 − 1) −U [1]

k,1

))
, j = N

2 ,

−h j

(∑2
k=1 bik, j

(
u(1)
k (x j − 1) −U [1]

k, j− N
2

))
, j = N

2 + 1, · · · , N − 1,

Z [2]
i,0 = 0, Z [2]

i,N = 0, i = 1, 2,

we get

|U∗[2]
i, j −U [2]

i, j | ≤
{

β
αCN−2 ln2 N < CN−2 ln2 N , for Shishkin mesh,
β
αCN−2 < CN−2, for BS mesh, j = 0, 1, · · · , N , i = 1, 2.

The proof of Theorem 4 can be used to show that

‖ui −U [2]
i ‖

Ω
N ≤

{
C

(
β

α

)2 + CN−2 ln2 N , for Shishkin mesh,

C
(

β

α

)2 + CN−2, for BS mesh, i = 1, 2.

Continuing this process one can prove that

‖ui −U [n]
i ‖

Ω
N ≤

{
C

(
β

α

)n + CN−2 ln2 N , for Shishkin mesh,

C
(

β

α

)n + CN−2, for BS mesh, i = 1, 2, n > 2.

Since ln(N−2 ln2 N )

ln γ
≤ n and ln(N−2)

ln γ
≤ n for Shishkin mesh and BS mesh respectively

and γ = β

α
, we have (

β

α
)n ≤ N−2 ln2 N and (

β

α
)n ≤ N−2. Finally we have
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‖ui −U [n]
i ‖

Ω
N ≤

{
CN−2 ln2 N , for Shishkin mesh,

CN−2, for BS mesh, i = 1, 2.

Hence the proof of the theorem. �

7 Numerical Experiments

In all the examples considered below, the number of iterations used is the smallest
integer n such that

n ≥ ln(N−1 ln N )

ln γ
, γ = β

α
, (23)

for the scheme given in Sect. 5.1. A similar criteria is used for the scheme given in
Sect. 6.1.

Let UN
1, j and UN

2, j denote U
[n]
1, j and U [n]

2, j which met stopping criterion (23) for N
points.

To find themaximumerror, rate of convergence and error constant to the computed
solution, the following double mesh principle is used. For this we put

DN
i,ε = max

0≤ j≤N
| UN

i, j −U 2N
i,2 j |, i = 1, 2,

where UN
i j

and U 2N
i2 j

are the j th and 2 j th components of the numerical solutions on
meshes of N and 2N points respectively. The uniformerror and rate of convergence as

DN
i = max

ε
DN

i,ε, pN
i = log2

(
DM

i

D2N
i

)
, i = 1, 2.

The ranges of values of ε used to present the numerical results for the following
examples are {2−15, 2−14, · · · , 2−6} and {2−19, 2−18, · · · , 2−15} for Shishkin
mesh and BS mesh respectively.

Example 1 [12]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−εu′′
1(x) + 11u1(x) − (x2 + 1)u1(x − 1) − (x + 1)u2(x − 1) = exp(x), x ∈ Ω,

−εu′′
2(x) + 16u2(x) − xu1(x − 1) − xu2(x − 1) = exp(x), x ∈ Ω,

u1(x) = 1, x ∈ [−1, 0], u1(2) = 1,

u2(x) = 1, x ∈ [−1, 0], u2(2) = 1,
(24)
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Example 2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−εu′′
1(x) + 2u1(x) − u2(x) − (x2 + 1)u1(x − 1) − (x + 1)u2(x − 1) = 1, x ∈ Ω,

−εu′′
2(x) − u1(x) + 2u2(x) − xu1(x − 1) − xu2(x − 1) = 1, x ∈ Ω,

u1(x) = 1, x ∈ [−1, 0], u1(2) = 1,

u2(x) = 1, x ∈ [−1, 0], u2(2) = 1,

(25)

Table 1 Numerical result for Example 1 using finite difference method (Shishkin mesh)

ε Number of mesh points N

64 128 256 512 1024 2048

2−6 5.1574e-2 3.2754e-2 2.1024e-2 1.2629e-2 7.3995e-3 4.2054e-3

Iterations 2 3 3 3 4 4

2−7 5.1933e-2 3.2911e-2 2.1114e-2 1.2675e-2 7.4222e-3 4.2184e-3

Iterations 2 3 3 3 4 4

2−8 5.2117e-2 3.2993e-2 2.1161e-2 1.2699e-2 7.4340e-3 4.2252e-3

Iterations 2 3 3 3 4 4

2−9 5.2211e-2 3.3035e-2 2.1185e-2 1.2712e-2 7.4402e-3 4.2287e-3

Iterations 2 3 3 3 4 4

2−10 5.2258e-2 3.3056e-2 2.1198e-2 1.2718e-2 7.4433e-3 4.2304e-3

Iterations 2 3 3 3 4 4

2−11 5.2282e-2 3.3066e-2 2.1204e-2 1.2721e-2 7.4449e-3 4.2313e-3

Iterations 2 3 3 3 4 4

2−12 5.2294e-2 3.3072e-2 2.1207e-2 1.2723e-2 7.4457e-3 4.2318e-3

Iterations 2 3 3 3 4 4

2−13 5.2300e-2 3.3074e-2 2.1208e-2 1.2724e-2 7.4461e-3 4.2320e-3

Iterations 2 3 3 3 4 4

2−14 5.2302e-2 3.3076e-2 2.1209e-2 1.2724e-2 7.4463e-3 4.2321e-3

Iterations 2 3 3 3 4 4

2−15 5.2304e-2 3.3076e-2 2.1210e-2 1.2724e-2 7.4464e-3 4.2322e-3

Iterations 2 3 3 3 4 4

DN
1 5.2304e-2 3.3076e-2 2.1210e-2 1.2724e-2 7.4464e-3 4.2322e-3

PN
1 0.6611 0.6411 0.7371 0.7730 0.8151 –
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Table 2 Numerical results for Example 1

N 64 128 256 512 1024 2048

Finite Difference scheme (Shishkin mesh)

DN
2 9.3629e-3 5.9954e-3 3.7002e-3 2.2098e-3 1.2801e-3 7.2479e-4

pN2 0.6431 0.6963 0.7437 0.7877 0.8206 –

Finite Element method (Shishkin mesh)

DN
1 7.9973e-3 4.3482e-3 1.9510e-3 8.3107e-4 3.1085e-4 1.0563e-4

pN1 0.8791 1.1562 1.2312 1.4188 1.5572 –

DN
2 8.9543e-3 5.3117e-3 2.7851e-3 1.2847e-3 4.901e-4 1.7257e-4

pN2 0.7534 0.9314 1.1163 1.3903 1.5059 –

Finite Element method (BS mesh)

DN
1 2.3584e-2 6.5168e-3 1.7037e-3 4.3490e-4 1.0982e-4 2.7590e-5

pN1 1.8555 1.9355 1.9699 1.9855 1.9929 –

DN
2 8.7156e-3 2.2031e-3 5.5483e-4 1.3916e-4 3.4829e-5 8.7112e-6

pN2 1.9840 1.9894 1.9952 1.9984 1.9993 –

Table 3 Numerical results for Example 2

N 64 128 256 512 1024 2048

Finite Difference scheme (Shishkin mesh)

DN
1 1.4468e-2 1.0713e-2 6.8360e-3 4.1030e-3 2.3105e-3 1.2826e-3

pN1 0.4335 0.6481 0.7365 0.8285 0.8491 –

DN
2 1.2130e-2 7.9075e-3 4.9016e-3 2.9443e-3 1.6815e-3 9.4230e-4

pN2 0.6173 0.6900 0.7353 0.8082 0.8355 –

Finite Element method (Shishkin mesh)

DN
1 5.2581e-4 2.9272e-4 1.4352e-4 6.1086e-5 2.4814e-5 8.6222e-6

pN1 0.8450 1.0282 1.2323 1.2996 1.5250 –

DN
2 5.0298e-4 2.7196e-4 1.3244e-4 6.0314e-5 2.3404e-5 8.0203e-6

pN2 0.8871 1.0381 1.1348 1.3657 1.5450 –

Finite Element method (BS mesh)

DN
1 1.8931e-3 5.0521e-4 1.2988e-4 3.2891e-5 8.2735e-6 2.0746e-6

pN1 1.9057 1.9596 1.9814 1.9911 1.9956 –

DN
2 3.4511e-4 8.918e-5 2.2922e-5 5.8009e-6 1.4559e-6 3.4563e-7

pN2 1.9523 1.9600 1.9824 1.9944 2.0746 –

Tables1, 2 and 3 present the values of DN
i , P

N
i , i = 1, 2 for the above Examples

1–2 respectively. Fig. 1 represents the numerical solution of the problem stated in
Examples 1.
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Fig. 1 Numerical solution
of the above Example 1 for
ε = 2−14 and N = 128
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8 Discussion

A numerical method is suggested in this paper for a system of singularly perturbed
differential equations of reaction-diffusion type with negative shift. This method is
based on an iterative procedure, new and easy to implement. A numerical method
namely initial value technique for the above problem (1) is proposed in [12]. The
error estimate derived by them depends on the parameter ε though they arrived at
the maximum order of convergence as almost two. In our method though the error
estimate depends on the number of iterations, this number grows slowly with N .
Further the bound is independent of the parameter ε. Further using a finite element
method on BS mesh, we are able to improve the order of the convergence by two.

Acknowledgments The first author thank theDepartment of Science and Technology, Government
of India, for their financial support under the DST/INSPIRE Fellowship/2014/[IF140503].
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Numerical Method for a Singularly
Perturbed Boundary Value Problem
for a Linear Parabolic Second Order Delay
Differential Equation

Parthiban Swaminathan, Valarmathi Sigamani and Franklin Victor

Abstract A singularly perturbed boundary value problem for a linear parabolic
second order delay differential equation of reaction-diffusion type is considered. As
the highest order space derivative is multiplied by a singular perturbation parameter,
the solution exhibits boundary layers. Also, the delay term that occurs in the space
variable gives rise to interior layers. A numerical method which uses classical finite
difference schemeon aShishkin piecewise uniformmesh is suggested to approximate
the solution. Themethod is proved to be first order convergent uniformlywith respect
to the singular perturbation parameter. Numerical illustrations are also presented.

Keywords Singular perturbation problems · Boundary layers · Parabolic delay-
differential equations ·Finite difference scheme ·Shishkinmesh ·Parameter uniform
convergence

1 Introduction

Singularly Perturbed Delay Differential Equations (SPDDE) are being used tomodel
many practical problems in different branches of science such as Biomathematics,
Control Theory, Ecology, etc.

This work is confined to the class of boundary value problems for linear second
order singularly perturbed delay differential equations of parabolic type. As singular
perturbation parameter (ε) multiplies the highest order derivative term of the equa-
tion, boundary layers appear on the lateral sides of the rectangular domain. These
boundary layers are of parabolic type since the characteristic of the reduced equation
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(by putting ε = 0) are parallel to the boundary. Further, due to a lag which is assumed
in the space variable, interior layers also arise. Since the classical finite difference
schemes on uniform meshes fail to give good approximations, it is essential to con-
struct a numerical method which is robust and layer resolving. General introduction
to finite difference methods to solve singularly perturbed differential equations of
parabolic reaction-diffusion type can be found in [1–5]. In [6–8] numerical methods
for singularly perturbed delay differential equations are found. In [7], a numerical
method comprising a standard finite difference operator (centered in space, implicit
in time) on a rectangular piecewise uniform fitted mesh condensing at the bound-
ary layers is established to solve singularly perturbed delay differential equations of
parabolic type. The delay term is assumed to occur in time variable. This method is
proved to be uniformly convergent with respect to the parameter (ε).

Here in this paper a numerical method which uses standard finite difference
scheme on a Shishkin piecewise uniform mesh is constructed. It is proved that the
numerical approximations obtained by this method converge to the exact solution
uniformly for all the values of the parameter in the maximum norm. The plan of the
paper is as follows. In Sect. 2, the problem is defined and existence and regularity
of the solution of the problem are discussed. In Sect. 3, the maximum principle for
the differential operator is proved and consequently the stability result is established.
And also standard estimates of the derivatives of the solution are presented. Further,
improved estimates for the derivatives of components of the solution are presented.
In Sect. 4, piecewise-uniform Shishkin meshes are introduced and in Sect. 5, the dis-
crete problem is defined and the discretemaximumprinciple and the discrete stability
properties are established. In Sect. 6, numerical analysis is presented and the error
bounds are established. In Sect. 7, numerical illustrations are presented.

2 The Continuous Problem

A singularly perturbed boundary value problem for a linear parabolic second order
delay differential equation of reaction—diffusion type is considered as follows

Lu(x, t) = ∂u

∂t
(x, t) − ε

∂2u

∂x2
(x, t) + a(x, t)u(x, t) + b(x, t)u(x − 1, t) = f (x, t) on Ω,

u given on Γ, u(x, t) = χ(x, t), (x, t) ∈ [−1, 0] × [0, T ], (1)

where Ω = {(x, t) : 0 < x < 2, 0 < t ≤ T }, Ω̃ = ((0, 1−) × (0, T ]) ∪ ((1+, 2) ×
(0, T ]), Ω̃ = ([0, 1−] × [0, T ]) ∪ ([1+, 2] × [0, T ]) Ω=Ω ∪ Γ, Γ = ΓL ∪ ΓB ∪
ΓR with u(0, t)=χ(0, t) on ΓL = {(0, t) : 0 ≤ t ≤ T }, u(x, 0) = φB(x) on ΓB =
{(x, 0) : 0 ≤ x ≤ 2}, and u(2, t) = φR(t) on ΓR = {(2, t) : 0 ≤ t ≤ T }. The func-
tions χ, φB, and φR are assumed to be sufficiently smooth. It is to be noted that the
domain of the operator L isMλ(Ω) = {ψ : ∂ψ

∂t ,
∂2ψ

∂x2 exist on Ω}.
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Standard theoretical results on the solutions of (1) are stated, without proof, in
this section. See [2, 9, 10] for more details.

For all (x, t) ∈ [0, 2] × [0, T ], it is assumed that a(x, t) and b(x, t) satisfy

a(x, t) + b(x, t) > 2α, for some real number α > 0 (2)

and b(x, t) < 0 (3)

The problem (1) can be rewritten as,

L1u(x, t) = ∂u

∂t
(x, t) − ε

∂2u

∂x2
(x, t) + a(x, t)u(x, t) = g(x, t), on Ω1 = (0, 1) × (0, T ]

(4)
where g(x, t) = f (x, t) − b(x, t)χ(x − 1, t)

L2u(x, t) = ∂u

∂t
(x, t) − ε

∂2u

∂x2
(x, t) + a(x, t)u(x, t) + b(x, t)u(x − 1, t) = f (x, t),

on Ω2 = (1, 2) × (0, T ] (5)

u(0, t) = χ(0, t), u(x, 0) = φB(x) on ΓB1 = {(x, 0) : 0 ≤ x ≤ 1−},u(1−, t) = u(1+, t),
u′(1−, t) = u′(1+, t), u(x, 0) = φB(x) on ΓB2 = {(x, 0) : 1+ ≤ x ≤ 2}, u(2, t) = φR(t)
on ΓR .

The reduced problem corresponding to (4)–(5) is defined by

∂u0
∂t

(x, t) + a(x, t)u0(x, t) = g(x, t), on (0, 1) × (0, T ]
u0(x, 0) = φB(x), 0 ≤ x ≤ 1

(6)

∂u0
∂t

(x, t) + a(x, t)u0(x, t) + b(x, t)u0(x − 1, t) = f (x, t), on (1, 2) × (0, T ]
u0(x, 0) = φB(x), 1+ ≤ x ≤ 2.

(7)

In general as u0(x, t) need not satisfy u0(0, t) = u(0, t) and u0(2, t) = u(2, t), the
solution u(x, t) exhibits boundary layers at x = 0 and x = 2. In addition to that,
as u0(1−, t) need not be equal to u0(1+, t), the solution u(x, t) exhibits interior
layers at x = 1.

For any function y on a domain D the following norm is introduced:
‖ y ‖D= sup(x,t)∈D |y(x, t)|. If D = Ω , the subscript is dropped.

In a compact domain D a function is said to be Hölder continuous of degree
λ, 0 < λ ≤ 1, if, for all (x1, t1), (x2, t2) ∈ D,

|u(x1, t1) − u(x2, t2)| ≤ C(|x1 − x2|2 + |t1 − t2|)λ/2
.
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The set of Hölder continuous functions forms a normed linear space C0
λ(D) with the

norm

||u||λ,D = ||u||D + sup
(x1,t1),(x2,t2)∈D

|u(x1, t1) − u(x2, t2)|
(|x1 − x2|2 + |t1 − t2|)λ/2 .

For each integer k ≥ 1, the subspaces Ck
λ(D) of C0

λ(D), which contain functions
having Hölder continuous derivatives, are defined as follows

Ck
λ(D) = {u : ∂ l+mu

∂xl∂tm
∈ C0

λ(D) for l,m ≥ 0 and 0 ≤ l + 2m ≤ k}.

The norm on C0
λ(D) is taken to be ||u||λ,k,D = max

0≤l+2m≤k
|| ∂ l+mu

∂xl∂tm
||λ,D .

Sufficient conditions for the existence, uniqueness and regularity of solution of
(1) are given in the following theorem.

Theorem 1 Assume that a, b, f ∈ C2
λ(Ω), χ ∈ C1

λ([−1, 0] × [0, T ]), φB ∈ C2

(ΓB), φR ∈ C1(ΓR) and that the following compatibility conditions are fulfilled at
the corners (0, 0) and (2, 0) of Γ ,

φB(0) = χ(0, t) and φB(2) = φR(0). (8)

∂χ

∂t
(0, 0) − ε

d2φB

dx2
(0) + a(0, 0)φB(0) + b(0, 0)χ(0, 0) = f (0, 0),

dφR

dt
(0) − ε

d2φB

dx2
(2) + a(2, 0)φB(2) + b(2, 0)φB(2) = f (2, 0)

(9)

and

∂2χ

∂t2
(0, 0) = ε2

d4φB

dx4
(0) − ε{ ∂2a

∂x2
(0, 0)φB(0) − 2

∂a

∂x
(0, 0)φB(0) + a(0, 0)

d2φB

dx2
(0)

+ ∂2b

∂x2
(0, 0)χ(−1, 0) − 2

∂b

∂x
(0, 0)χ(−1, 0) + b(0, 0)

∂2χ

∂x2
(−1, 0)}

−{∂a

∂t
(0, 0)φB(0) + b(0, 0)

∂χ

∂t
(−1, 0) + ∂b

∂t
(0, 0)χ(−1, 0)}

+ε
∂2 f

∂x2
(0, 0) + ∂ f

∂t
(0, 0),

(10)

d2φR

dt2
(0) =ε2

d4φB

dx4
(2) − ε{ ∂2a

∂x2
(2, 0)φB(2) − 2

∂a

∂x
(2, 0)φB(2) + a(2, 0)

d2φB

dx2
(2)
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+ ∂2b

∂x2
(2, 0)φB(1) − 2

∂b

∂x
(2, 0)φB(1) + b(2, 0)

d2φB

dx2
(1)}

− {∂a

∂t
(2, 0)φB(2) + b(2, 0)

dφB

dt
(1) + ∂b

∂t
(2, 0)φB(1)}

+ ε
∂2 f

∂x2
(2, 0) + ∂ f

∂t
(2, 0). (11)

Then there exists a unique solution u of (1) satisfying u ∈ C = C0
λ([0, 2] × [0, T ]) ∩

C1
λ((0, 2) × (0, T ]) ∩ C4

λ(Ω̃).

It is assumed throughout the paper that all of the assumptions (2), (3), (8), (9), (10) and
(11) of this section hold. Furthermore, C denotes a generic positive constant, which
is independent of x, t and of all singular perturbation and discretization parameters.

3 Analytical Results

The operator L satisfies the following maximum principle

Lemma 1 Let ψ be any function in the domain of L such that ψ ≥ 0 on Γ . Then
Lψ(x, t) ≥ 0 on Ω implies that ψ(x, t) ≥ 0 on Ω .

Proof Let x∗, t∗ be such that ψ(x∗, t∗) = minΩ̄ ψ(x, t) and assume that the lemma
is false. Then ψ(x∗, t∗) < 0. From the hypotheses we have (x∗, t∗) /∈ Γ. With
∂ψ

∂t (x∗, t∗−) ≤ 0 and ∂2ψ

∂x2 (x∗, t∗) ≥ 0,

Lψ(x∗, t∗) = ∂ψ

∂t
(x∗, t∗) − ε

∂2ψ

∂x2
(x∗, t∗) + a(x∗, t∗)ψ(x∗, t∗) + b(x∗, t∗)ψ(x∗ − 1, t∗)

< 0 as ψ(x∗ − 1, t∗) ≥ ψ(x∗, t∗).

This contradicts the assumption and proves the result of L .

As a consequence, the stability result for the problem (1) follows and is as stated in

Lemma 2 If ψ is any function in the domain of L, then for all (x, t) ∈ Ω ,

|ψ(x, t)| ≤ max

{
‖ ψ ‖Γ ,

1

α
‖ Lψ ‖

}
.

Proof Define the two functions

θ±(x, t) = max

{
‖ ψ ‖Γ ,

1

α
‖ Lψ ‖

}
± ψ(x, t).

Using the properties of a(x, t) and b(x, t), it is not hard to verify that θ±(x, t) ≥ 0
for (x, t) ∈ Γ and Lθ± ≥ 0 on Ω. It follows from Lemma 1 that θ± ≥ 0 on Ω̄.
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Standard estimates of the solution of (1) and its derivatives are contained in the
following lemma.

Lemma 3 Let u be the solution of (1). Then, for all (x, t) ∈ Ω̃ ,

|∂
ku

∂t k
(x, t)| ≤ C(||u||Γ + ∑k

q=0 ||∂
q f

∂tq
||), k = 0, 1, 2

|∂
ku

∂xk
(x, t)| ≤ Cε

−k
2 (||u||Γ + || f || + ||∂ f

∂t
||), k = 1, 2

|∂
ku

∂xk
(x, t)| ≤ Cε

−k
2 (||u||Γ + || f || + ||∂ f

∂t
|| + ||∂

2 f

∂t2
|| + ε

k−2
2 ||∂

k−2 f

∂xk−2
||), k = 3, 4

| ∂ku

∂xk−1∂t
(x, t)| ≤ Cε

1−k
2 (||u||Γ + || f || + ||∂ f

∂t
|| + ||∂

2 f

∂t2
||), k = 2, 3.

Proof Following steps as in [2, 6], the required bounds are derived.
The Shishkin decomposition of the exact solution u of (1) is u = v + w where

the smooth component v is the solution of

L1v = g on (0, 1−) × (0, T ], v(0, t) = u0(0, t), v(x, 0) = φB(x), v(1−, t) = u0(1−, t)
(12)

L2v = f on (1+, 2) × (0, T ], v(2, t) = u0(2, t), v(x, 0) = φB(x), v(1+, t) = u0(1+, t)
(13)

and the singular component w is the solution of

L1w = 0 on (0, 1) × (0, T ], L2w = 0 on (1, 2) × (0, T ]
with w(0, t) = u(0, t) − v(0, t), [w](1, t) = −[v](1, t), [w ′](1, t) = −[v ′](1, t),
w(2, t) = u(2, t) − v(2, t), w(x, 0) = 0.

(14)
For convenience the left and right boundary layers of w are separated using

w(x, t) = wL(x, t) + wR(x, t) (15)

with

wL (x, t) = w(0, t)wL
1 (x, t) + AwL

2 (x, t),

satisfying L1w
L
1 (x, t) = 0, (x, t) ∈ (0, 1) × (0, T ] with wL

1 (0, t) = 1, wL
1 (1, t) = 0,

wL
1 (x, t) = 0 on (1, 2] × (0, T ],

L2w
L
2 (x, t) = 0, (x, t) ∈ (1, 2) × (0, T ] with wL

2 (1, t) = 1, wL
2 (2, t) = 0,

wL
2 (x, t) = 0 on [0, 1) × (0, T ],

and wR(x, t) = BwR
1 (x, t) + w(2, t)wR

2 (x, t),

satisfying L1w
R
1 (x, t) = 0, (x, t) ∈ (0, 1) × (0, T ] with wR

1 (0, t) = 0, wR
1 (1, t) = 1,

wR
1 (x, t) = 0 on (1, 2] × (0, T ],

L2w
R
2 (x, t) = 0, (x, t) ∈ (1, 2) × (0, T ] with wR

2 (1, t) = 0, wR
2 (2, t) = 1,

wR
2 (x, t) = 0 on [0, 1) × (0, T ].
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Here, A and B are constants to be chosen in such a way that the jump conditions
at x = 1 are satisfied. Bounds on the smooth component and its derivatives are
contained in the following lemma.

Lemma 4 The smooth component v and its derivatives satisfy, for each (x, t) ∈ Ω̃ ,

|∂
kv

∂t k
(x, t)| ≤ C, for k = 0, 1, 2

|∂
kv

∂xk
(x, t)| ≤ C(1 + ε1− k

2 ), for k = 0, 1, 2, 3, 4

| ∂kv

∂xk−1∂t
(x, t)| ≤ C, for k = 2, 3.

Proof Using the procedure adopted in [2, 6], the above bounds are derived.

4 Improved Estimates

The layer functions BL
1 , BR

1 , BL
2 , BR

2 , B1, B2, associated with the solution u, are
defined by

BL
1 (x) = e

−x
√

α√
ε , BR

1 (x) = e
−(1−x)

√
α√
ε , B1(x) = BL

1 (x) + BR
1 (x), on [0, 1] × [0, T ],

BL
2 (x) = e

−(x−1)
√

α√
ε , BR

2 (x) = e
−(2−x)

√
α√
ε , B2(x) = BL

2 (x) + BR
2 (x), on [1, 2] × [0, T ].

Bounds on the singular components wL and wR of u(x, t) and their derivatives are
contained in the following lemma.

Lemma 5 There exists a constant C, such that, for (x, t) ∈ [0, 1−] × [0, T ],
|∂

kwL

∂t k
(x, t)| ≤ CBL

1 (x), for k = 0, 1, 2,

|∂
kwL

∂xk
(x, t)| ≤ C

BL
1 (x)

ε
k
2

, for k = 0, 1, 2, 3,

| ∂kwL

∂xk−1∂t
(x, t)| ≤ C

BL
1 (x)

ε
k
2

, for k = 0, 1, 2, 3.

and for (x, t) ∈ [1+, 2] × [0, T ],

|∂
kwL

∂t k
(x, t)| ≤ CBL

2 (x), for k = 0, 1, 2,

|∂
kwL

∂xk
(x, t)| ≤ C

BL
2 (x)

ε
k
2

, for k = 0, 1, 2, 3,

| ∂kwL

∂xk−1∂t
(x, t)| ≤ C

BL
2 (x)

ε
k
2

, for k = 0, 1, 2, 3.

Analogous results hold for wR and its derivatives.

Proof The required bounds are derived following steps as in [2, 6].
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Using the procedure adopted in [2, 6], sharper estimates of the smooth component
derived and presented in the following lemma.

Lemma 6 The smooth component v of the solution u of (1) satisfies, for (x, t) ∈
[0, 1−] × [0, T ],
| ∂vk

∂xk (x, t)| ≤ C (1 + B1(x)), for k = 0, 1, 2 and | ∂v3

∂x3 (x, t)| ≤ C

(
1 + B1(x)√

ε

)
.

and for (x, t) ∈ [1+, 2] × [0, T ],
| ∂vk

∂xk (x, t)| ≤ C (1 + B2(x)), for k = 0, 1, 2 and | ∂v3

∂x3 (x, t)| ≤ C

(
1 + B2(x)√

ε

)
.

5 The Shishkin Mesh

A piecewise uniform Shishkin mesh with M × N mesh-intervals is now constructed.
LetΩM

t ={tk}Mk=1, Ω
N
x ={x j }N−1

j=1 , ΩM,N = ΩM
t × ΩN

x ,Ω
M
t = {tk}Mk=0, Ω

N
x = {x j }Nj=0,

Ω
M,N = Ω

M
t × Ω

N
x , Ω−N

x = {x j }
N
2 −1
j=1 , Ω+N

x = {x j }N−1
j= N

2 +1
, Ω−M,N = ΩM

t × Ω−N
x ,

Ω+M,N = ΩM
t × Ω+N

x , Ω
−N
x = {x j }

N
2
j=0, Ω

+N
x = {x j }Nj= N

2
, Ω

−M,N = Ω
M
t × Ω

−N
x ,

Ω
+M,N = Ω

M
t × Ω

+N
x and Γ M,N = Γ ∩ Ω

M,N
. The mesh Ω

M
t is chosen to be a

uniform mesh with M mesh-intervals on [0, T ]. The mesh Ω
N
x is chosen to be

a piecewise-uniform mesh with N mesh-intervals on [0, 2]. The interval [0, 1] is
divided into 3 sub-intervals as follows

[0, τ ] ∪ (τ, 1 − τ ] ∪ (1 − τ, 1].

The parameter τ , which determine the points separating the uniform meshes, is
defined by

τ = min

{
1

4
,

√
ε√
α
ln N

}
. (16)

Then, on the sub-interval (τ, 1 − τ ] a uniform mesh with N
4 mesh points is placed

and on each of the sub-intervals [0, τ ] and (1 − τ, 1], a uniform mesh of N
8 mesh

points is placed.
Similarly, the interval (1, 2] is also divided into 3 sub-intervals (1, 1 + τ ], (1 +

τ, 2 − τ ]and(2 − τ, 2],using the sameparameter τ . In particular,when the parameter

τ takes on its lefthand value, the Shishkin mesh Ω
N
becomes a classical uniform

mesh throughout from 0 to 2.
In practice, it is convenient to take

N = 8k, k ≥ 2. (17)
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From the above construction of Ω
N
, it is clear that the transition points {τ, 1 −

τ, 1 + τ, 2 − τ } are the only points at which the mesh-size can change and that
it does not necessarily change at each of these points. The following notations
are introduced: h j = x j − x j−1, h j+1 = x j+1 − x j and if x j = τ , then h−

j = x j −
x j−1, h

+
j = x j+1 − x j , J = {x j : h+

j �= h−
j }.

6 The Discrete Problem

In this section, a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1) which is shown later to be
essentially first order parameter-uniform convergent.
The discrete two-point boundary value problem is now defined on any mesh by the
finite difference method

LM,NU (x j , tk) = D−
t U (x j , tk) − εδ2xU (x j , tk) + a(x j , tk)U (x j , tk)

+b(x j , tk)U (x j − 1, tk) = f (x j , tk) on ΩM,N (18)

U = u on Γ M,N

The problem (18) can be rewritten as

LM,N
1 U (x j , tk) = D−

t U (x j , tk) − εδ2xU (x j , tk) + a(x j , tk)U (x j , tk) = g(x j , tk) on Ω−M,N

where g(x j , tk) = f (x j , tk) − b(x j , tk)χ(x j − 1, tk)

LM,N
2 U (x j , tk) = D−

t U (x j , tk) − εδ2xU (x j , tk) + a(x j , tk)U (x j , tk) + b(x j , tk)U (x j − 1, tk)

= f (x j , tk) on Ω+M,N (19)

U = u on Γ M,N

D−
x U (x N

2
, tk) = D+

x U (x N
2
, tk)

This is used to compute numerical approximations to the exact solution of (1). The
following discrete results are analogous to those for the continuous case.

Lemma 7 For any mesh function Ψ (x j , tk), 0 ≤ j ≤ N , 0 ≤ k ≤ M, the inequali-
tiesΨ ≥0 on Γ M,N ,LM,N

1 Ψ (x j , tk) ≥ 0, onΩ−M,N , LM,N
2 Ψ (x j , tk) ≥ 0 onΩ+M,N

and D+
x Ψ (xN/2, tk) − D−

x Ψ (xN/2, tk) ≤ 0 imply that Ψ (x j , tk) ≥ 0 on Ω
M,N

.

Proof Let j∗, k∗ be such that Ψ (x j∗ , tk∗) = min
Ω̄M,N

Ψ (x j∗ , tk∗) and assume that the

lemma is false. Then Ψ (x j∗ , tk∗) < 0. From the hypotheses we have (x j∗ , tk∗) /∈
Γ M,N , Ψ (x j∗ , tk∗) − Ψ (x j∗ , tk∗−1) ≤ 0, Ψ (x j∗ , tk∗) − Ψ (x j∗−1, tk∗) ≤ 0, Ψ (x j∗+1,

tk∗) − Ψ (x j∗ , tk∗) ≥ 0 so D−
t ψ(x j∗ , tk∗) ≤ 0, δ2Ψ (x j∗ , tk∗) ≥ 0. It follows that
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LM,N
1 Ψ (x j∗ , tk∗) = D−

t ψ(x j∗ , tk∗) − εδ2Ψ (x j∗ , tk∗) + a(x j∗ , tk∗)Ψ (x j∗) < 0,

which is a contradiction. If (x j∗ , tk∗) ∈ Ω+M,N , a similar argument shows that

LM,N
2 Ψ (x j∗ , tk∗) = D−

t ψ(x j∗ , tk∗) − εδ2Ψ (x j∗ , tk∗) + a(x j∗ , tk∗)Ψ (x j∗ , tk∗)

+b(x j∗ , tk∗)Ψ (x j∗ − 1, tk∗) < 0,

which is a contradiction. Finally if x j∗ = xN/2, then

D−
x Ψ (xN/2, tk∗) ≤ 0 ≤ D+

x Ψ (xN/2, tk∗) ≤ D−
x Ψ (xN/2, tk∗), by the hypothesis

and so
Ψ (x N

2 −1, tk∗) = Ψ (xN/2, tk∗) = Ψ (x N
2 +1, tk∗) < 0.

Then LN
1 Ψ (x N

2 −1, tk∗) < 0, a contradiction. This concludes the proof of the lemma.

An immediate consequence of this is the following discrete stability result.

Lemma 8 For any mesh function Ψ on Ω
M,N

,

|Ψ (x j , tk)| ≤ max

{
||Ψ ||Γ M,N ,

1

α
||LM,N

1 Ψ ||Ω−M,N ,
1

α
||LM,N

2 Ψ ||Ω+M,N

}
,

0 ≤ j ≤ N , 0 ≤ k ≤ M.

7 Error Estimate

Analogous to the continuous case, the discrete solution U can be decomposed into
V and W which are defined to be the solutions of the following discrete problems

LM,N
1 V (x j , tk) = g(x j , tk), (x j , tk) ∈ Ω−M,N , 0 ≤ j ≤ N , 0 ≤ k ≤ M

V (0, tk) = v(0, tk), V (xN/2−1, tk) = v(1−, tk), V (x j , 0) = φB(x j ), (20)

LM,N
2 V (x j , tk) = f (x j , tk), (x j , tk) ∈ Ω+M,N , 0 ≤ j ≤ N , 0 ≤ k ≤ M

V (xN/2+1, tk) = v(1+, tk), V (2, tk) = v(2, tk), V (x j , 0) = φB(x j ) (21)

and

LM,N
1 W (x j , tk) = 0, (x j , tk) ∈ Ω−M,N ,W (0, tk) = w(0, tk), 0 ≤ j ≤ N , 0 ≤ k ≤ M

LM,N
2 W (x j , tk) = 0, (x j , tk) ∈ Ω+M,N ,W (2, tk) = w(2, tk), 0 ≤ j ≤ N , 0 ≤ k ≤ M
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V (xN/2+1, tk) + W (xN/2+1, tk) = V (xN/2−1, tk) + W (xN/2−1, tk),

D−
x W (xN/2, tk) + D−

x V (xN/2, tk) = D+
x W (xN/2, tk) + D+

x V (xN/2, tk).

W (x j , 0) = 0 (22)

The error at each point (x j , tk) ∈ Ω
M,N

is denoted by e(x j , tk) = U (x j , tk) −
u(x j , tk).Then the local truncation error LM,Ne(x j , tk), for j �= N/2, has the decom-
position

LM,Ne(x j , tk) = LM,N (V − v)(x j , tk) + LM,N (W − w)(x j , tk).

The error in the smooth and singular components are bounded in the following
theorem.

Lemma 9 Let v(x j , tk) denote the smooth component of the exact solution from (1)
and V (x j , tk) the smooth component of the solution from (19), then for j �= N

2

||LM,N
1 (V − v)(x j , tk)|| ≤ C(M−1 + (N−1 ln N )2), 0 ≤ j ≤ N

2
− 1, 0 ≤ k ≤ M,

(23)

||LM,N
2 (V − v)(x j , tk)|| ≤ C(M−1 + (N−1 ln N )2),

N

2
+ 1 ≤ j ≤ N , 0 ≤ k ≤ M.

(24)
Let w(x j , tk) denote the smooth component of the exact solution from (1) and
W (x j , tk) the smooth component of the solution from (19), then for j �= N

2

||LM,N
1 (W − w)(x j , tk)|| ≤ C(M−1 + (N−1 ln N )2), 0 ≤ j ≤ N

2
− 1, 0 ≤ k ≤ M,

(25)

||LM,N
2 (W − w)(x j , tk)|| ≤ C(M−1 + (N−1 ln N )2),

N

2
+ 1 ≤ j ≤ N , 0 ≤ k ≤ M.

(26)

Proof For j �= N
2 , as the expression derived for the local truncation error in V andW

and estimates for the derivatives of the smooth and singular components are exactly
in the form found in [2], the required bounds hold good.

At the point x j = xN/2,

(D+
x − D−

x )e(xN/2, tk) = (D+
x − D−

x )(U − u)(xN/2, tk), 0 ≤ k ≤ M

Recall that (D+
x − D−

x )U (xN/2, tk) = 0. Let h∗ = h−
N/2 = h+

N/2, where h−
N/2 =

xN/2 − xN/2−1 and h+
N/2 = xN/2+1 − xN/2.

Then

|(D+
x − D−

x )e(xN/2, tk) ≤ C
h∗

ε
. (27)
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Define a set of discrete barrier functions on Ω
M,N

by

ω(x j , tk) = Π
j
l=1(1 + √

α/εhl)

Π
N/2
l=1 (1 + √

α/εhl)
, 0 ≤ j ≤ N/2 (28)

Π N−1
l= j (1 + √

α/εhl+1)

Π N−1
l=N/2(1 + √

α/εhl+1)
, N/2 ≤ j ≤ N . (29)

Note that
ω(0, tk) = 0, ω(1, tk) = 1, ω(2, tk) = 0 (30)

and from (28), for 0 ≤ j ≤ N , 0 ≤ k ≤ M,

0 ≤ ω(x j , tk) ≤ 1. (31)

For (x j , tk) ∈ Ω
−M,N

D+
x ω(x j , tk) = √

α/εω(x j , tk), (32)

D−
x ω(x j , tk) = √

α/ε
1

(1 + √
α/εh j )

ω(x j , tk). (33)

and

δ2ω(x j , tk) ≤ 2α

ε
ω(x j , tk). (34)

Similarly, for (x j , tk) ∈ Ω
+M,N

D+
x ω(x j , tk) = −√

α/ε
1

(1 + √
α/εh j+1)

ω(x j , tk),

D−
x ω(x j , tk) = −√

α/εω(x j , tk) and δ2xω(x j , tk) ≤ 2α

ε
ω(x j , tk). (35)

In particular, at x j = xN/2, using (35), (33) and (30),

(D+
x − D−

x )ω(x j , tk) ≤ − C√
ε
. (36)

From (34) and (35),
−ε δ2xω(x j , tk) ≥ −2αω(x j , tk).
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Therefore

LN
1 ω(x j , tk) = D−

t ω(x j , tk) − ε δ2xω(x j , tk) + a(x j , tk)ω(x j , tk)

≥ 0 − 2αω(x j , tk) + a(x j , tk)ω(x j , tk)

= (a(x j , tk) − 2α)ω(x j , tk) (37)

and

LN
2 ω(x j , tk) = D−

t ω(x j , tk) − ε δ2xω(x j , tk) + a(x j , tk)ω(x j , tk) + b(x j , tk)ω(x j − 1, tk)

≥ 0 − 2αω(x j , tk) + a(x j , tk)ω(x j , tk) + b(x j , tk)

= (a(x j , tk) − 2α)ω(x j , tk) + b(x j , tk). (38)

We now state and prove the main theoretical result of this paper.

Lemma 10 Let u(x j , tk) denote the exact solution of (1) and U (x j , tk) the solution
of (19). Then, for 0 ≤ j ≤ N , 0 ≤ k ≤ M,

||U (x j , tk) − u(x j , tk)|| ≤ C(M−1 + N−1 ln N ). (39)

Proof Consider the mesh function Ψ given by
Ψ (x j , tk) = C1(M−1 + N−1 ln N ) + C2

√
α/εh∗ω(x j , tk) ± e(x j , tk),whereC1 and

C2 are constants. Then for x j ∈ Ω−N
x ,

LN
1 Ψ (x j , tk) = C1a(x j , tk)(M

−1 + N−1 ln N ) + C2
√

α/εh∗LN
1 ω(x j , tk) ± LN

1 e(x j , tk).
(40)

Using (37) in (40) and Lemma 9,

LN
1 Ψ (x j , tk) ≥ C1a(x j , tk)(M−1 + N−1 ln N )

+C2
√

α/εh∗(a(x j , tk) − 2α)ω(x j , tk) ± C (M−1 + N−1 ln N ) ≥ 0, (41)

for appropriate choices of C1 and C2. For x j ∈ Ω+N
x ,

LN
2 Ψ (x j , tk) = C1(a(x j , tk) + b(x j , tk))(M

−1 + N−1 ln N )

+C2

√
α/εh∗LN

2 ω(x j , tk) ± LN
2 e(x j , tk). (42)

Using (38) in (42),

LN
2 Ψ (x j , tk) ≥ C1(a(x j , tk) + b(x j , tk))(M

−1 + N−1 ln N )

+C2

√
α/εh∗((a(x j , tk) − 2α)ω(x j , tk) + b(x j , tk)) ± C(M−1 + N−1 ln N ). (43)

Letλ(x j , tk) = (a(x j , tk) − 2α)ω(x j , tk) + b(x j , tk)). Then choosingC1 >
C2||λ||
2α +

C , and Lemma 9, LN
2 Ψ (x j , tk) ≥ 0.
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Further,

D+
x Ψ (1, tk) − D−

x Ψ (1, tk) ≤ −C2
Ch∗

ε
± C

h∗

ε
, using (27) and (36)

≤ 0, for proper choice of C2. (44)

Also, using (30), Ψ (0, tk) = C1(M−1 + N−1 ln N ) ≥ 0, Ψ (2, tk) = C1(M−1 +
N−1 ln N ) ≥ 0, Ψ (x j , 0) = C1(M−1 + N−1 ln N ) ≥ 0.

Therefore, using Lemma 7 for Ψ, it follows that Ψ (x j , tk) ≥ 0 for all 0 ≤ j ≤
N , 0 ≤ k ≤ M. As, from (31), ω(x j , tk) ≤ 1 for 0 ≤ j ≤ N , 0 ≤ k ≤ M

|(U − u)(x j , tk)| ≤ C(M−1 + N−1 ln N ),

which completes the proof.

8 Numerical Illustration

The ε–uniform convergence of the numerical method proposed in this paper is illus-
trated through an example presented in this section. A singularly perturbed bound-
ary value problem for a linear parabolic second order delay differential equation of
reaction-diffusion type is considered for numerical illustration.

Example

∂u

∂t
(x, t) − ε

∂2u

∂x2
(x, t) + (2 + x + t + xt + (1 + x)(x)(1 − x)

6
)u(x, t) − u(x − 1, t)

= (1 + x)et − (1 + x)(x)(1 − x)

6
,

for (x, t) ∈ ((0, 1) ∪ (1, 2)) × [0, T ],
u(x, t) = 1 for x ∈ [−1, 0] × [0, T ], u(0, t) = 1, u(x, 0) = 1, u(2, t) = 1.

(45)

Fixing a fine Shishkin mesh with 128 points horizontally, the problem is solved
by the method suggested above. The order of convergence and the error constant are
calculated for t and the results are presented in Table1. A graph of the numerical
solution is presented in the Fig. 1.

A fine uniform mesh on t with 32 points is considered. The order of convergence
and the error constant are calculated for x and the results are presented in Table2. A
graph of the numerical solution is presented in the Fig. 2.

Based on the algorithm found in [5], it is to be noted that Tables1 and 2 give the
parameter-uniform order of convergence and the error constant.
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Table 1 Values of DN , pN , p∗ and CN
p∗ for ε = η/8 and α = 0.9

η Number of mesh points N

128 256 512 1024 2048

2−4 0.587E-03 0.240E-03 0.832E-04 0.253E-04 0.707E-05

2−6 0.292E-03 0.836E-04 0.225E-04 0.583E-05 0.149E-05

2−8 0.293E-03 0.838E-04 0.225E-04 0.585E-05 0.149E-05

2−10 0.294E-03 0.840E-04 0.226E-04 0.586E-05 0.149E-05

2−12 0.294E-03 0.840E-04 0.226E-04 0.586E-05 0.149E-05

2−14 0.294E-03 0.840E-04 0.226E-04 0.586E-05 0.149E-05

2−16 0.294E-03 0.841E-04 0.226E-04 0.586E-05 0.149E-05

2−18 0.294E-03 0.841E-04 0.226E-04 0.586E-05 0.149E-05

DN 0.587E-03 0.240E-03 0.832E-04 0.253E-04 0.707E-05

pN 0.129E+01 0.153E+01 0.172E+01 0.184E+01

CN
p 0.523E+00 0.523E+00 0.444E+00 0.331E+00 0.227E+00

t-order of convergence = 0.1291767E+01

The error constant = 0.5233417E+00

 0  0.5  1  1.5  2  0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

u(x,t)

Numerical Solution

x

t

u(x,t)

Fig. 1 The numerical solution for the problem (45), computed for M = 1024, N = 128 and ε =
2−18. The solution u(x, t) has boundary layers at (0, t) and (2, t) and interior layers at (1, t)



132 P. Swaminathan et al.

Table 2 Values of DN , pN , p∗ and CN
p∗ for ε = η/16 and α = 0.9

η Number of mesh points N

128 256 512 1024 2048

20 0.882E-04 0.224E-04 0.561E-05 0.140E-05 0.558E-06

2−3 0.641E-03 0.174E-03 0.445E-04 0.112E-04 0.281E-05

2−6 0.225E-03 0.138E-03 0.110E-03 0.587E-04 0.223E-04

2−9 0.224E-03 0.138E-03 0.110E-03 0.637E-04 0.307E-04

2−12 0.224E-03 0.138E-03 0.110E-03 0.637E-04 0.307E-04

DN 0.641E-03 0.174E-03 0.110E-03 0.637E-04 0.307E-04

pN 0.188E+01 0.662E+00 0.790E+00 0.105E+01

CN
p 0.432E-01 0.186E-01 0.186E-01 0.170E-01 0.129E-01

x-order of convergence = 0.6615490E+00

The error constant = 0.4316255E-01

 0  0.5  1  1.5  2  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

u(x,t)

Numerical Solution

x

t

u(x,t)

Fig. 2 The numerical solution for the problem (45), computed for M = 32, N = 4096 and ε =
2−12. The solution u(x, t) has boundary layers at (0, t) and (2, t) and interior layers at (1, t)

Acknowledgments The second and third authors acknowledge the financial support extended by
the University Grants Commission, Govt. of India, through theMinor Research Project Grant—No.
F MRP-5806/15 (SERO/UGC) the authors’ thank the unknown refree for the valuable suggestions
which resulted in this improved version of the paper.



Numerical Method for a Singularly Perturbed Boundary Value Problem … 133

References

1. J.J.H.Miller, E. O’Riordan, G.I. Shishkin,Fitted NumericalMethods for Singular Perturbation
Problems (World Scientific Publishing Co., Singapore, 1996)

2. V. Franklin, M. Paramasivam, J.J.H. Miller, S. Valarmathi, Second order parameter-uniform
convergence for a finite difference method for a singularly perturbed linear parabolic system.
Int. J. Numer. Anal. Model. 10(1), 178–202

3. J.J.H. Miller, E. O’Riordan, G.I. Shishkin, L.P. Shishkina, Fitted mesh methods for problems
with parabolic boundary layers. Math. Proc. Royal Irish Acad. 98A(2), 173–190 (1998)

4. E.P. Doolan, J.J.H. Miller, W.H.A. Schilders, Uniform Numerical Methods for Problems with
Initial and Boundary Layers (Boole Press, 1980)

5. P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E.O’ Riordan, G.I. Shishkin, Robust Computational
Techniques for Boundary Layers (Chapman and hall/CRC, Boca Raton, Florida,USA, 2000)

6. M. Manikandan, N. Shivaranjani, J.J.H. Miller, S. Valarmathi, A parameter uniform first order
convergent numerical method for a boundary value problem for a singularly perturbed delay
differential equation. Adv. Appl. Math. Springer Proc. Math. Statis. 87, 71–88

7. A.R. Ansari, S.A. Bakr, G.I. Shishkin, A parameter-robust finite difference method for sin-
gularly perturbed delay parabolic partial differential equations. J. Comput. Appl. Math. 205,
552–566 (2007)

8. Z. Cen, A hybrid finite difference scheme for a class of singularly perturbed delay differential
equations. Neural, Parallel Scient. Comput. 16, 303–308 (2008)

9. A. Friedman, Partial Differential Equations of Parabolic Type (Prentice Hall, 1964)
10. O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations (Academic

Press, New York, London, 1968)



A Parameter Uniform Numerical Method
for an Initial Value Problem for a System
of Singularly Perturbed Delay Differential
Equations with Discontinuous Source Terms

Nagarajan Shivaranjani, John J.H. Miller and Valarmathi Sigamani

Abstract In this paper an initial value problem for a system of singularly perturbed
first order delay differential equations with discontinuous source terms is considered
on the interval (0, 2]. The source terms are assumed to have simple discontinuities
at the point d ∈ (0, 2). The components of the solution exhibit initial layers and
interior layers. The interior layers occuring in the solution are of two types-interior
layers due to delay and interior layers due to the discontinuity of the source terms.
A numerical method composed of the standard backward difference operator and
a piecewise-uniform Shishkin mesh which resolves the initial and interior layers
is suggested. This method is proved to be essentially first order convergent in the
maximum norm uniformly in the perturbation parameters. Numerical illustrations
are provided to support the theory.

Keywords Singular perturbation problems · Initial and interior layers ·Delay differ-
ential equations · Discontinuous source terms · Finite difference scheme · Shishkin
mesh · Parameter-uniform convergence

1 Introduction

Singularly perturbed delay differential equations play an important role in the mod-
elling of several physical and biological phenomena like first exit time problems
in modelling of activation of neuronal variability [2], bistable devices [18], evolu-
tionary biology [3] and a variety of models for physiological processes or diseases
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[4–6, 13]. These systems also find applications in Belousov-Zhabotinskii reaction
(BZ reaction) models and the modelling of biological oscillators [3].

In [7], the authors have considered an initial value problem for a system of sin-
gularly perturbed first order delay differential equations and have established the
parameter uniform convergence of the numerical method suggested. In this paper,
the following systemwhich is similar to the one considered in [7] with discontinuous
source terms is considered:

Lu(x) := Eu′(x) + A(x)u(x) + B(x)u(x − 1) = f(x), x ∈ (0, d) ∪ (d, 2], (1)
u(x) = φ(x), x ∈ [−1, 0], (2)

and f(d−) �= f(d+) for some d ∈ (0, 2). (3)

For all x ∈ [0, 2],u(x) = (u1(x), u2(x))T and f(x) = ( f1(x), f2(x))T . E, A(x),

B(x) are 2 × 2 matrices. E = diag(ε), ε = (ε1, ε2) with 0 < ε1 < ε2 ≤ 1, B(x) =
diag(b(x)), b(x) = (b1(x), b2(x)). For all x ∈ [0, 2], it is assumed that the compo-
nents ai j (x), bi (x) of A(x) and B(x) respectively satisfy

bi (x), ai j (x) ≤ 0 for 1 ≤ i �= j ≤ 2 and aii (x) >
∑
i �= j

|ai j (x) + bi (x)| and (4)

0 < α < min
x∈[0,2]
1≤i≤2

(

2∑
j=1

ai j (x) + bi (x)) for some α. (5)

Further, the functions ai j (x), bi (x), 1 ≤ i, j ≤ 2 are assumed to be in C (2)([0, 2])
and φi (x) are assumed to be in C (2)([−1, 0]). It is to be noted that L can operate on
functions in the domain C0(0, 2] ∩ C1((0, d) ∪ (d, 2]).

For any functionh, the jump ofh at d is denoted by [h](d) = (h)(d+) − (h)(d−).
Here the function f is assumed to have a jump of finite magnitude at d. Since f is
discontinuous at d, the solution u of (1) does not necessarily have a continuous first
order derivative at the point d. The cases (i) d ∈ (0, 1) and (ii) d ∈ (1, 2) are dealt
with separately.

Case (i):
In this case, the components u1 and u2 have initial layers of width O(ε2) at x = 0 and
interior layers of width O(ε2) at x = 1, x = d and x = 1 + d while the component
u1 has additional layers of width O(ε1) at x = 0, x = 1, x = d and x = 1 + d.

Case (ii):
In this case, the components u1 and u2 have initial layers of width O(ε2) at x = 0
and interior layers of width O(ε2) at x = 1 and x = d while the component u1 has
additional layers of width O(ε1) at x = 0, x = 1 and x = d.

In the case when d = 1, the solution profile is similar as that for the problem
considered in [7]. The components u1 and u2 have initial layers of width O(ε2)

at x = 0 and interior layers of width O(ε2) at x = 1 while the component u1 has
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additional layers of width O(ε1) at x = 0 and x = 1. As the solution profile for this
case is same as in [7], the estimates of the derivatives and the construction of Shishkin
mesh for this case are as in [7]. Hence in the rest of the paper, the cases (i) and (ii)
are discussed in detail.

For any vector-valued function y on [0, 2] the following norms are introduced:
‖ y(x) ‖= maxi |yi (x)| and ‖ y ‖= sup{‖ y(x) ‖: x ∈ [0, 2]}. For any mesh func-

tion V on Ω
N = {x j }N

j=0 the following discrete maximum norms are introduced:

‖ V(x j ) ‖= maxi |Vi (x j )| and ‖ V ‖= max{‖ V(x j ) ‖: x j ∈ Ω
N }.

Throughout this paperC denotes a generic positive constant, which is independent
of x and of the two singular perturbation and discretization parameters. Furthermore,
inequalities between vectors are understood in the componentwise sense.

The plan of the paper is as follows: In Sect. 2, analytical results are presented.
In Sects. 3 and 4, appropriate Shishkin meshes are constructed for each case and
corresponding numerical analysis is presented. In Sect. 5, the bound for the error
of the discretisation is established in the maximum norm followed by numerical
illustrations in Sect. 6.

2 Analytical Results

The problem (1)–(3) can be rewritten as follows for the case (i):

Lu(x) :=

⎧⎪⎨
⎪⎩
L1u(x) := Eu′(x) + A(x)u(x) = f(x) − B(x)φ(x − 1), x ∈ (0, d) ∪ (d, 1],
L2u(x) := Eu′(x) + A(x)u(x) + B(x)u(x − 1) = f(x), x ∈ (1, 2],
[εi u′

i ](d) = [ fi ](d), i = 1, 2; u(0) = φ(0)
(6)

and as follows for the case (ii):

Lu(x) :=

⎧⎪⎨
⎪⎩
L1u(x) := Eu′(x) + A(x)u(x) = f(x) − B(x)φ(x − 1), x ∈ (0, 1],
L2u(x) := Eu′(x) + A(x)u(x) + B(x)u(x − 1) = f(x), x ∈ (0, d) ∪ (d, 2],
[εi u′

i ](d) = [ fi ](d), i = 1, 2; u(0) = φ(0).
(7)

Theorem 1 The given problem (1)–(3) has a solution u ∈ C = C([0, 2]) ∩
C1((0, 2]\{d}).
Proof The proof is by construction.
Case (i): Let y, z, y1, z1 be the particular solutions of

Ey′(x) + A(x)y(x) = f(x) − B(x)φ(x − 1), x ∈ (0, d)

Ez′(x) + A(x)z(x) = f(x) − B(x)φ(x − 1), x ∈ (d, 1]
Ey′

1(x) + A(x)y1(x) = f(x) − B(x)y(x − 1), x ∈ (1, 1 + d)

Ez′
1(x) + A(x)z1(x) = f(x) − B(x)z(x − 1), x ∈ (1 + d, 2].
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Consider the function,

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(x) + (u(0) − y(0))ψ1(x), x ∈ [0, d)

z(x) + Pψ2(x), x ∈ (d, 1]
y1(x) + Qψ3(x), x ∈ (1, 1 + d)

z1(x) + Rψ4(x), x ∈ (1 + d, 2],

where ψ1,ψ2,ψ3, and ψ4 are solutions of

Eψ ′
1(x) + A(x)ψ1(x) = 0, x ∈ (0, d],ψ1(0) = 1

Eψ ′
2(x) + A(x)ψ2(x) = 0, x ∈ (d, 1],ψ2(d) = 1

Eψ ′
3(x) + A(x)ψ3(x) = 0, x ∈ (1, 1 + d],ψ3(1) = 1

Eψ ′
4(x) + A(x)ψ4(x) = 0, x ∈ (1 + d, 2],ψ4(1 + d) = 1

and y(0) = η1, z(d) = η2, y1(1) = η3, z1(1 + d) = η4, the η′
i s are any particular

vector constants. P,Q and R can be derived in the following way so as to have
u ∈ C .

P = y(d−) + (u(0) − η1)ψ1(d) − z(d+)

Q = z(1−) + P − y1(1+)

R = y1((1 + d)−) + Qψ3((1 + d)−) − η4.

The product between vectors is the Schur product of vectors.

Case (ii): Let y, z, z1 be the particular solutions of

Ey′(x) + A(x)y(x) = f(x) − B(x)φ(x − 1), x ∈ (0, 1]
Ez′(x) + A(x)z(x) = f(x) − B(x)y(x − 1), x ∈ (1, d)

Ez′
1(x) + A(x)z1(x) = f(x) − B(x)y(x − 1), x ∈ (d, 2].

Consider the function,

u(x) =

⎧⎪⎨
⎪⎩
y(x) + (u(0) − y(0))ψ1(x), x ∈ [0, 1]
z(x) + Pψ2(x), x ∈ (1, d)

z1(x) + Qψ3(x), x ∈ (d, 2],
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where ψ1,ψ2,ψ3 are solutions of

Eψ ′
1(x) + A(x)ψ1(x) = 0, x ∈ (0, 1],ψ1(0) = 1

Eψ ′
2(x) + A(x)ψ2(x) = 0, x ∈ (1, d],ψ2(1) = 1

Eψ ′
3(x) + A(x)ψ3(x) = 0, x ∈ (d, 2],ψ3(d) = 1

and y(0) = ζ 1, z(1) = ζ 2, z1(d) = ζ 3, the ζ ′
i s are any particular vector constants.

P and Q can be derived in the following way so as to have u ∈ C .

P = y(1−) + (u(0) − ζ 1)ψ1(1) − z(1+)

Q = z(d−) + Pψ2(d−) − ζ 3.

Analogous construction shows that the solution exists for the case when d = 1.
In the case when d �= 1, u′(1) exists and is continuous at 1 as f (1) is well defined
and is continuous at 1.

The operator L satisfies the following maximum principle.

Lemma 1 Let ψ be any function in the domain of L. Let ψ(0) ≥ 0. Then Lψ ≥ 0
on (0, d) ∪ (d, 2], [ψ](d) = 0 implies that ψ(x) ≥ 0 on [0, 2].
Proof Let ψi∗(x∗) = mini,x {ψ(x)} and assume ψi∗(x∗) < 0. Without loss of gen-
erality let i∗ = 1. By the hypothesis, x∗ �= 0 and note that ψ ′

1(x∗) ≤ 0. Suppose
x∗ ∈ (0, 1] − {d}, then,

(Lψ)1(x∗) = (L1ψ)1(x∗) = ε1ψ
′
1(x∗) + a11(x∗)ψ1(x∗)

+a12(x∗)ψ2(x∗)
≤ (a11 + a12)(x∗)ψ1(x∗)
< 0,

which is a contradiction.
Suppose x∗ ∈ (1, 2] − {d}, then,

(Lψ)1(x∗) = (L2ψ)1(x∗) = ε1ψ
′
1(x∗) + a11(x∗)ψ1(x∗)

+a12(x∗)ψ2(x∗) + b1(x∗)ψ1(x∗ − 1)

≤ ((a11 + a12)(x∗) + b1(x∗))ψ1(x∗)
< 0,

which is a contradiction.
Suppose x∗ = d, then, (

∑2
j=1 a1 j (d) + b1(d))ψ1(d) < 0, and there exists a

neighborhood Nh = (d − h, d) such that (
∑2

j=1 a1 j (x) + b1(x))ψ1(x) < 0 for all
x ∈ Nh . If ψ ′

1(x) < 0 for an x1 ∈ Nh , then (Lψ)1(x1) < 0. Suppose ψ ′
1(x) > 0 for

all x ∈ Nh then ψ1 is an increasing function in Nh and hence cannot attain its mini-
mum at x = d which is a contradiction.
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An immediate consequence of themaximumprinciple is the following stability result.

Lemma 2 Let u be the solution of (1–3). Then
‖ u ‖≤ C max{‖ u(0) ‖, ‖ f ‖(0,d)∪(d,2)} + C ‖ [f](d) ‖
Proof Using the barrier function ψ±

i (x) = M1 + M2Gi (x) ± ui (x) where M1 =
max{‖ u(0) ‖, ‖ f ‖(0,d)∪(d,2)}, M2 =‖ [f](d) ‖ and

Gi (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − d

d
+ 1, x ∈ (0, d]

e−α(x−d)/εi , x ∈ (d, 1]
(1 − exp(−α(x − d)/εi ))(x − 1 − d)

d
+ 1, x ∈ (1, 1 + d]

e−α(x−(1+d))/εi , x ∈ (1 + d, 2],

when d ∈ (0, 1) and when d ∈ (1, 2), d = 1 + d1 for some d1 ∈ (0, 1) and in this
case,

Gi (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x − d1
d1

+ 1, x ∈ (0, d1]
e−α(x−d1)/εi , x ∈ (d1, 1]
(1 − exp(−α(x − d1)/εi ))(x − 1 − d1)

d1
+ 1, x ∈ (1, d]

e−α(x−d)/εi , x ∈ (d, 2],

and applying the maximum principle for the functions ψ±
i , the result follows. Anal-

ogous proof holds for the case d = 1.

The solution is decomposed into smooth and singular components v andw defined
to be the solutions of

L1v = Ev′(x) + A(x)v(x) = f(x) − B(x)φ(x − 1) = g(x) on (0, d) ∪ (d, 1]
L2v = Ev′(x) + A(x)v(x) + B(x)v(x − 1) = f(x) on (1, 2],

with v(0) = A−1(0)(f(0) − B(0)φ(−1)), v(d+)=A−1(d)(f(d+) − B(d)v(d − 1))
and
L1w = 0 for x ∈ (0, d) ∪ (d, 1]; L2w = 0 for x ∈ (1, 2] with w(0) = u(0) − v(0),
w(d+) = w(d−) − [v](d) respectively for case (i) and

L1v = Ev′(x) + A(x)v(x) = f(x) − B(x)φ(x − 1) = g(x) on (0, 1]
L2v = Ev′(x) + A(x)v(x) + B(x)v(x − 1) = f(x) on (1, d) ∪ (d, 2],
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with v(0)=A−1(0)(f(0) − B(0)φ(−1)), v(d+) = A−1(d)(f(d+) − B(d)v(d − 1))
and
L1w = 0 for x ∈ (0, 1] and L2w = 0 for x ∈ (1, d) ∪ (d, 2) with w(0) = u(0) −
v(0), w(d+) = w(d−) − [v](d) respectively for case (ii).

The bounds of the smooth component and its derivatives are contained in the
following

Lemma 3 The smooth component v satisfies the bounds

||v|| ≤ C, ||v′|| ≤ C, ||v′′
i || ≤ Cε−1

i , i = 1, 2 on (0, 2]\{d, 1 + d} for case (i)

and

||v|| ≤ C, ||v′|| ≤ C, ||v′′
i || ≤ Cε−1

i , i = 1, 2 on (0, 2]\{d} for case (ii).

Proof Applying the procedure followed in [7] in the domains [0, d), (d, 1], [1,1+d)
and (1 + d, 2] separately for the case (i) and in the domains [0, 1], [1, d), (d, 2]
separately for the case (ii), the result follows.

The following layer functions are defined:

Bp,i (x) = e
−α(x−p)

εi , i = 1, 2, p = 0, 1, d, 1 + d.

The bounds of the singular components are derived in terms of these layer func-
tions and are presented in the following lemma.

Lemma 4 The singular component w satisfies the following bounds for case (i)

|wk(x)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C B0,2(x), x ∈ [0, d)

C Bd,2(x), x ∈ (d, 1]
C B1,2(x), x ∈ [1, 1 + d)

C B1+d,2(x), x ∈ (1 + d, 2]

|w′
1(x)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C(ε−1
1 B0,1(x) + ε−1

2 B0,2(x)), x ∈ [0, d)

C(ε−1
1 Bd,1(x) + ε−1

2 Bd,2(x)), x ∈ (d, 1]
C(ε−1

1 B1,1(x) + ε−1
2 B1,2(x)), x ∈ [1, 1 + d)

C(ε−1
1 B1+d,1(x) + ε−1

2 B1+d,2(x)), x ∈ (1 + d, 2]

|w′
2(x)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cε−1
2 B0,2(x), x ∈ [0, d)

Cε−1
2 Bd,2(x), x ∈ (d, 1]

Cε−1
2 B1,2(x), x ∈ [1, 1 + d)

Cε−1
2 B1+d,2(x), x ∈ (1 + d, 2]

|w′′
k (x)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cε−1
k (ε−1

1 B0,1(x) + ε−1
2 B0,2(x)), x ∈ [0, d)

Cε−1
k (ε−1

1 Bd,1(x) + ε−1
2 Bd,2(x)), x ∈ (d, 1]

Cε−1
k (ε−1

1 B1,1(x) + ε−1
2 B1,2(x)), x ∈ [1, 1 + d)

Cε−1
k (ε−1

1 B1+d,1(x) + ε−1
2 B1+d,2(x)), x ∈ (1 + d, 2]

and for the case (ii), the following bounds are satisfied

|wk(x)| ≤

⎧⎪⎨
⎪⎩

C B0,2(x), x ∈ [0, 1]
C B1,2(x), x ∈ [1, d)

C Bd,2(x), x ∈ (d, 2]
|w′

1(x)| ≤

⎧⎪⎨
⎪⎩

C(ε−1
1 B0,1(x) + ε−1

2 B0,2(x)), x ∈ [0, 1]
C(ε−1

1 B1,1(x) + ε−1
2 B1,2(x)), x ∈ [1, d)

C(ε−1
1 Bd,1(x) + ε−1

2 Bd,2(x)), x ∈ (d, 2]
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|w′
2(x)| ≤

⎧⎪⎨
⎪⎩

Cε−1
2 B0,2(x), x ∈ [0, 1]

Cε−1
2 B1,2(x), x ∈ [1, d)

Cε−1
2 Bd,2(x), x ∈ (d, 2]

|w′′
k (x)| ≤

⎧⎪⎨
⎪⎩

Cε−1
k (ε−1

1 B0,1(x) + ε−1
2 B0,2(x)), x ∈ [0, 1]

Cε−1
k (ε−1

1 B1,1(x) + ε−1
2 B1,2(x)), x ∈ [1, d)

Cε−1
k (ε−1

1 Bd,1(x) + ε−1
2 Bd,2(x)), x ∈ (d, 2]

for k = 1, 2.

Proof Following the procedure adopted in [7], in each domain, the required bounds
are derived.

There exists a unique point x∗ in (0, 1], such that
ε−1
1 B0,1(x∗) = ε−1

2 B0,2(x∗), ε−1
1 B1,1(1 + x∗) = ε−1

2 B1,2(1 + x∗), ε−1
1 Bd,1(d + x∗)

= ε−1
2 Bd,2(d + x∗) and ε−1

1 B1+d,1(1 + d + x∗) = ε−1
2 B1+d,2(1 + d + x∗).

The properties of this point are judicially used in deriving the novel estimates for
the derivatives of the singular components.

The existence, uniqueness and properties of this point are derived in [1].
For the parameter-uniform convergence of the method suggested, the singular

component is further decomposed as follows:

w1(x) = w1,1(x) + w1,2(x), w2(x) = w2,1(x) + w2,2(x).

Following the steps in [1], it is not hard to derive the following estimates.

|w′
1,1(x)| ≤ Cε−1

1 B0,1(x), |w′′
1,2(x)| ≤ Cε−1

1 ε−1
2 B0,2(x),

|w′
2,1(x)| ≤ Cε−1

2 B0,1(x), |w′′
2,2(x)| ≤ Cε−2

2 B0,2(x), x ∈ [0, d),

|w′
1,1(x)| ≤ Cε−1

1 Bd,1(x), |w′′
1,2(x)| ≤ Cε−1

1 ε−1
2 Bd,2(x),

|w′
2,1(x)| ≤ Cε−1

2 Bd,1(x), |w′′
2,2(x)| ≤ Cε−2

2 Bd,2(x), x ∈ (d, 1],

|w′
1,1(x)| ≤ Cε−1

1 B1,1(x), |w′′
1,2(x)| ≤ Cε−1

1 ε−1
2 B1,2(x),

|w′
2,1(x)| ≤ Cε−1

2 B1,1(x), |w′′
2,2(x)| ≤ Cε−2

2 B1,2(x), x ∈ [1, 1 + d)

and
|w′

1,1(x)| ≤ Cε−1
1 B1+d,1(x), |w′′

1,2(x)| ≤ Cε−1
1 ε−1

2 B1+d,2(x),

|w′
2,1(x)| ≤ Cε−1

2 B1+d,1(x), |w′′
2,2(x)| ≤ Cε−2

2 B1+d,2(x), x ∈ (1 + d, 2]

for the case (i) and

|w′
1,1(x)| ≤ Cε−1

1 B0,1(x), |w′′
1,2(x)| ≤ Cε−1

1 ε−1
2 B0,2(x),

|w′
2,1(x)| ≤ Cε−1

2 B0,1(x), |w′′
2,2(x)| ≤ Cε−2

2 B0,2(x), x ∈ [0, 1],
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|w′
1,1(x)| ≤ Cε−1

1 B1,1(x), |w′′
1,2(x)| ≤ Cε−1

1 ε−1
2 B1,2(x),

|w′
2,1(x)| ≤ Cε−1

2 B1,1(x), |w′′
2,2(x)| ≤ Cε−2

2 B1,2(x), x ∈ [1, d)

and
|w′

1,1(x)| ≤ Cε−1
1 Bd,1(x), |w′′

1,2(x)| ≤ Cε−1
1 ε−1

2 Bd,2(x),

|w′
2,1(x)| ≤ Cε−1

2 Bd,1(x), |w′′
2,2(x)| ≤ Cε−2

2 Bd,2(x), x ∈ (d, 2]

for the case (ii).

3 Shishkin Mesh

The Shishkin mesh Ω
N = {x j }N

j=0 is constructed on Ω = [0, 2] as follows for the
case (i) when ε1 < ε2. In the case ε1 = ε2 a simpler construction requiring just two
parameters τ and σ suffices. The interval [0, 1] is subdivided into 6 sub-intervals
[0, τ1] ∪ (τ1, τ2] ∪ (τ2, d] ∪ (d, d + τ3]∪, (d + τ3, d + τ4] ∪ (d + τ4, 1]. The para-
meters τr , r = 1, 2, 3, 4, which determine the points separating the uniformmeshes,
are defined by

τ2 = min

{
d

2
,
ε2

α
ln N

}
, τ1 = min

{τ2

2
,
ε1

α
ln N

}
, τ4 = min

{
1 − d

2
,
ε2

α
ln N

}
and

τ3 = min
{τ4

2
,
ε1

α
ln N

}
.

Then, on each of the sub-intervals (τ2, d] and (d + τ4, 1] a uniform mesh
with N

8 mesh points is placed and on each of the remaining sub-intervals a uni-
form mesh of N

16 mesh points is placed. Similarly, the interval [1, 2] is also
divided into 6 sub-intervals [1, 1 + τ1] ∪ (1 + τ1, 1 + τ2] ∪ (1 + τ2, 1 + d] ∪ (1 +
d, 1 + d + τ3] ∪ (1 + d + τ3, 1 + d + τ4] ∪ (1 + d + τ4, 2] having the same num-
ber of mesh intervals as in [0, 1].

For case (ii), the Shishkin mesh is constructed as follows: The interval [0, 1]
is subdivided into 3 sub-intervals [0, τ1] ∪ (τ1, τ2] ∪ (τ2, 1] and the interval [1, 2]
is divided into 6 sub-intervals [1, 1 + τ3] ∪ (1 + τ3, 1 + τ4] ∪ (1 + τ4, d] ∪ (d, 1 +
τ5]∪, (1 + τ5, 1 + τ6] ∪ (1 + τ6, 2]. On each of the intervals (τ2, 1], (1 + τ4, d] and
(1 + τ6, 2], a uniformmeshwith N

6 points is placed and in each of the remaining inter-
vals a uniform mesh with N

12 mesh points is placed. The parameters τr , r = 1, 2..., 6
are defined as follows:

τ2 = min

{
1

2
,
ε2

α
ln N

}
, τ1 = min

{τ2

2
,
ε1

α
ln N

}
, τ4 = min

{
d − 1

2
,
ε2

α
ln N

}
,

τ3 = min
{τ4

2
,
ε1

α
ln N

}
, τ6 = min

{
2 − d

2
,
ε2

α
ln N

}
and τ5 = min

{τ6

2
,
ε1

α
ln N

}
.
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4 The Discrete Problem

The IVP (6)–(7) is discretised using the backward Euler scheme applied on the

piecewise uniform fitted mesh Ω
N
. The discrete problem for case (i) is

LNU(x j ) = E D−U(x j ) + A(x j )U(x j ) + B(x j )U(x j − 1) = f(x j ),

j = 1(1)
N

4
− 1,

N

4
+ 1(1)N ,

(8)

εi (D+ − D−)Ui (x N
4
) = [ fi ](x N

4
), i = 1, 2. (9)

U(0) = u(0). (10)

The discrete problem for case (ii) is

LNU(x j ) = E D−U(x j ) + A(x j )U(x j ) + B(x j )U(x j − 1) = f(x j ),

j = 1(1)
2N

3
− 1,

2N

3
+ 1(1)N ,

(11)

εi (D+ − D−)Ui (x 2N
3
) = [ fi ](x 2N

3
), i = 1, 2, (12)

U(0) = u(0). (13)

Lemma 5 Let Z be any vector mesh function such that Z(x0) ≥ 0, LNZ(x j ) ≥ 0
for all x j ∈ Ω N and (D+ − D−)Z(x N

4
) ≤ 0 in case (i) and (D+ − D−)Z(x 2N

3
) ≤ 0

in case (ii) then Z(x j ) ≥ 0 for all x j ∈ Ω
N
.

Proof Let xk be such thatZ attains its minimum onΩ
N
. Further, suppose (Z)i (xk) <

0. If xk ∈ (0, 1] or if xk ∈ [1, 2] and xk �= d then, (LNZ)i (xk) < 0 which is a con-
tradiction. If xk = d then, (D−Z)i (xk) ≤ 0 ≤ (D+Z)i (xk) as Z attains its mini-
mumat xk . Also fromhypothesis, (D+Z)i (xk) ≤ (D−Z)i (xk). Hence, (D−Z)i (xk) ≤
0 ≤ (D+Z)i (xk) ≤ (D−Z)i (xk) which implies Zi (xk−1) = Zi (xk) = Zi (xk+1) < 0.
Now, (LNZ)i (xk−1) < 0 which is a contradiction.

5 Error Analysis

The error at each point x j ∈ Ω̄ N is denoted by e(x j ) = U(x j ) − u(x j ). For case
(i) when j �= N

4 , for case (ii), when j �= 2N
3 and for the case d = 1 when j �= N

2 ,

following steps as in [1], it can be derived that

|(LNe)i (x j )| ≤ C N−1 ln N , i = 1, 2.
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When j = N
4 or 2N

3 or N
2 ,

|(LNe)i (x j )| ≤ Cεi h
+ max[x j ,x j+1]

|u′′
i (η)|

+ Cεi h
− max[x j−1,x j ]

|u′′
i (θ)|

≤ C N−1 ln N ,

where h+ = x j+1 − x j and h− = x j − x j−1.

Theorem 2 Let u be the solution of the continuous problem (6)–(7) and U be the
solution of the discrete problem (8)–(10). Then

||U − u|| ≤ C N−1 ln N . (14)

Proof Using the barrier functions

Ψ ±
i (x j ) =

{
C1(1 + 2x j )N−1 ln N ± ei (x j ), j ≤ N

4 or 2N
3 or N

2

C1(d + x j )N−1 ln N ± ei (x j ), j > N
4 or 2N

3 or N
2

and the maximum principle, it is not hard to derive the required bounds.

6 Numerical Illustration

In this section, a singularly perturbed linear system of delay differential equations
is considered for numerical illustration. The source term of the system has a point
of discontinuity d inside the domain of definition. All the three cases when (i) d ∈
(0, 1) (ii) d ∈ (1, 2) and (iii) d = 1 are considered. Appropriate Shishkin meshes are
constructed and the resulting discrete problems (8)–(13) are solved. The results are
presented in the tables and figures. It is to be noted that the error constants presented
in the tables are approximations to the error constant C derived in the error bound
(14).

Case (i): Consider the IVP

ε1u′
1(x) + (6 + x)u1(x) − xu2(x) − u1(x − 1) = 0.8 + 2x (15)

ε2u′
2(x) − u1(x) + (5 + x)u2(x) − xu2(x − 1) = 0.9 for x ∈ (0, 0.4) (16)

ε1u′
1(x) + (6 + x)u1(x) − xu2(x) − u1(x − 1) = 2 + 2x (17)

ε2u′
2(x) − u1(x) + (5 + x)u2(x) − xu2(x − 1) = 3 for x ∈ (0.4, 2) (18)

u1(x) = 2, u2(x) = 2, x ∈ [−1, 0]. (19)
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Table 1 Values of DN , pN , p∗ and C N
p∗ for ε1 = η/4 , ε2 = η and α = 3.9

η Number of mesh points N

512 1024 ... 16384 32768

20 0.103E-01 0.527E-02 ... 0.842E-04 0.421E-04

2−3 0.442E-01 0.306E-01 ... 0.102E-02 0.550E-03

2−6 0.458E-01 0.305E-01 ... 0.102E-02 0.549E-03

... ... ... ... ... ...

2−24 0.467E-01 0.305E-01 ... 0.102E-02 0.549E-03

2−27 0.467E-01 0.305E-01 ... 0.102E-02 0.549E-03

DN 0.467E-01 0.306E-01 ... 0.102E-02 0.550E-03

pN 0.609E+00 0.693E+00 ... 0.897E+00

C N
p 0.397E+01 0.397E+01 ... 0.168E+01 0.138E+01

Order of convergence = 0.6094098E+00

The error constant = 0.3974310E+01

Table 2 Values of DN , pN , p∗ and C N
p∗ for ε2 = η and α = 3.9

ε1 Number of mesh points N

256 512 ... 32768 65536

2−5 0.306E-01 0.189E-01 ... 0.189E-02 0.102E-02

2−6 0.306E-01 0.189E-01 ... 0.189E-02 0.102E-02

2−7 0.306E-01 0.189E-01 ... 0.189E-02 0.102E-02

... ... ... ... ... ...

2−19 0.305E-01 0.189E-01 ... 0.189E-02 0.102E-02

2−20 0.305E-01 0.189E-01 ... 0.189E-02 0.102E-02

DN 0.306E-01 0.189E-01 ... 0.189E-02 0.102E-02

pN 0.693E+00 0.770E+00 ... 0.886E+00

C N
p 0.606E+01 0.606E+01 ... 0.415E+01 0.363E+01

Order of convergence = 0.6934210E+00

The error constant = 0.6059335E+01

It is to be noted that the point of discontinuity d ∈ (0, 1). Based on the algorithm
found in [19], Tables1 and 2 gives the parameter-uniform order of convergence and
the error constant. From the table it is seen that the order of convergence well agrees
with the theoretical results.

The figure displays the numerical solution for the problem (15)–(19), computed
for N = 8192, ε1 = 2−17, ε2 = 2−15 and d = 0.4. The components u1 and u2 have
initial layer at x = 0 and interior layers at x = d, x = 1 and x = 1 + d (Fig. 1).
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Fig. 1 Numerical solution of the IVP (15)–(19)

Case (ii): Consider the IVP

ε1u′
1(x) + (6 + x)u1(x) − xu2(x) − u1(x − 1) = 0.8 + 2x (20)

ε2u′
2(x) − u1(x) + (5 + x)u2(x) − xu2(x − 1) = 0.9 f or x ∈ (0, 1.4) (21)

ε1u′
1(x) + (6 + x)u1(x) − xu2(x) − u1(x − 1) = 1 + 2x (22)

ε2u′
2(x) − u1(x) + (5 + x)u2(x) − xu2(x − 1) = 3 f or x ∈ (1.4, 2) (23)

u1(x) = 2 , u2(x) = 2, x ∈ [−1, 0] (24)

It is to be noted that the point of discontinuity d ∈ (1, 2). The maximum pointwise
two mesh differences and the rate of convergence for this IVP are presented in
Table3.

This table shows that in this case also the order of convergence increases to one.
The numerical solution computed for problem (20)–(24) is presented in Fig. 2 for
N = 6144, ε1 = 2−17, ε2 = 2−15 and d = 1.4. In this case, the components u1 and
u2 have initial layer at x = 0 and interior layers at x = 1 and x = d.

Case (iii): Consider the IVP

ε1u′
1(x) + (6 + x)u1(x) − xu2(x) − u1(x − 1) = 0.8 + 2x (25)

ε2u′
2(x) − u1(x) + (5 + x)u2(x) − xu2(x − 1) = 0.9 f or x ∈ (0, 1) (26)

ε1u′
1(x) + (6 + x)u1(x) − xu2(x) − u1(x − 1) = 1 + 2x (27)

ε2u′
2(x) − u1(x) + (5 + x)u2(x) − xu2(x − 1) = 3 f or x ∈ (1, 2) (28)

u1(x) = 2 , u2(x) = 2, x ∈ [−1, 0] (29)
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Table 3 Values of DN , pN , p∗ and C N
p∗ for ε1 = η/4 , ε2 = η and α = 3.9

η Number of mesh points N

384 768 ... 12288 24576

20 0.127E-01 0.654E-02 ... 0.420E-03 0.210E-03

2−3 0.294E-01 0.180E-01 ... 0.183E-02 0.994E-03

2−6 0.294E-01 0.180E-01 ... 0.183E-02 0.993E-03

... ... ... ... ... ...

2−18 0.293E-01 0.180E-01 ... 0.183E-02 0.992E-03

2−21 0.293E-01 0.180E-01 ... 0.183E-02 0.992E-03

DN 0.294E-01 0.180E-01 ... 0.183E-02 0.994E-03

pN 0.709E+00 0.758E+00 ... 0.883E+00

C N
p 0.514E+01 0.514E+01 ... 0.375E+01 0.332E+01

Order of convergence= 0.7089833E + 00

The error constant= 0.5143387E + 01

Fig. 2 Numerical solution
of the IVP (20)–(24)
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It is to be noted that the point of discontinuity d = 1. The maximum pointwise two
mesh differences and the rate of convergence for this IVP are presented in Table4.

This table shows that in this case also the order of convergence well agrees with
the theoretical results. The numerical solution computed for problem (25)-(29) is
presented in Fig. 3 for N = 8192, ε1 = 2−17, ε2 = 2−15 and d = 1.0. In this case,
the components u1 and u2 have initial layer at x = 0 and interior layers at x = 1.
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Table 4 Values of DN , pN , p∗ and C N
p∗ for ε1 = η/4 , ε2 = η and α = 3.9

η Number of mesh points N

512 1024 ... 16384 32768

20 0.654E-02 0.332E-02 ... 0.210E-03 0.105E-03

2−3 0.167E-01 0.998E-02 ... 0.951E-03 0.513E-03

2−6 0.167E-01 0.997E-02 ... 0.950E-03 0.513E-03

... ... ... ... ... ...

2−18 0.167E-01 0.997E-02 ... 0.950E-03 0.513E-03

2−21 0.167E-01 0.997E-02 ... 0.950E-03 0.513E-03

DN 0.167E-01 0.998E-02 ... 0.951E-03 0.513E-03

pN 0.745E+00 0.809E+00 ... 0.890E+00

C N
p 0.434E+01 0.434E+01 ... 0.327E+01 0.296E+01

Order of convergence= 0.7454905E + 00

The error constant= 0.4340162E + 01

Fig. 3 Numerical solution
of the IVP (25)–(29)
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A Parameter-Uniform First Order
Convergent Numerical Method for a
Semi-linear System of Singularly Perturbed
Second Order Delay Differential Equations

Mariappan Manikandan, John J.H. Miller and Valarmathi Sigamani

Abstract In this paper, a boundary value problem for a semi-linear system of two
singularly perturbed second order delay differential equations is considered on the
interval (0, 2).The components of the solution of this system exhibit boundary layers
at x = 0 and x = 2 and interior layers at x = 1. A numerical method composed of
a classical finite difference operator applied on a piecewise uniform Shishkin mesh
is suggested to solve the problem. The method is proved to be first order conver-
gent in the maximum norm uniformly in the perturbation parameters. Numerical
computation is described, which supports the theoretical results.

Keywords Singular perturbation problems · Boundary and interior layers · Semi-
linear delay-differential equations · Finite difference scheme · Shishkin mesh ·
Parameter-uniform convergence

1 Introduction

Delay differential equations are common in the mathematical modelling of various
physical, biological phenomena and control theory [1, 2]. A subclass of these equa-
tions consists of singularly perturbed ordinary differential equations with a delay.
Such equations arise frequently in the mathematical modelling of various practical
phenomena, for example, in the modelling of human pupil-light reflex [3], models of
HIV infection [4], the study of bistable devices in digital electronics [5], variational
problems in control theory [6], first exit time problems in modelling of activation of
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neuronal variability [7], evolutionary biology [8], mathematical ecology [9], popu-
lation dynamics [10] and in a variety of models for physiological processes [11].

Investigation of boundary value problems for singularly perturbed linear second-
order differential-difference equations was initiated by Lange and Miura [7].

The singularly perturbed boundary value problem for a semi-linear system of
delay differential equations under consideration here is

Tu(x) : = −E u ′′(x) + f(x, u) + B(x) u(x − 1) = 0 on Ω = (0, 2) (1)

with u = φ on [−1, 0] and u(2) = l, (2)

where φi ∈ C2([−1, 0]), i = 1, 2. For all x ∈ [0, 2] = Ω, u(x) = (u1(x), u2(x))T

and f(x, u) = ( f1(x, u), f2(x, u))T . E, and B(x) are 2 × 2matrices. E = diag(ε),

ε = (ε1, ε2) with 0 < ε1 < ε2 ≤ 1, B(x)=diag(b(x)),b(x) = (b1(x), b2(x)). The
special cases ε2 = 1 and ε1 = ε2 are simpler and could be treated with numeri-
cal schemes on modified meshes. For all (x, u) ∈ Ω × R2, it is assumed that the
nonlinear terms satisfy

∂ fk(x, u)

∂uk
≥ β > 0,

∂ fk(x, u)

∂u j
≤ 0, k, j = 1, 2, k �= j, (3)

min
x∈[0,2]
i=1,2

⎛
⎝ 2∑

j=1

∂ fi (x, u)

∂u j
+ bi (x)

⎞
⎠ ≥ α > 0, for some α, (4)

bi (x) ≤ 0, i = 1, 2. (5)

Further, it is assumed that fi ∈ C2(Ω × R2) and bi ∈ C2(Ω), i = 1, 2. The
above assumptions ensure that u ∈ C where C = C 0(Ω) ∩ C 1(Ω) ∩ C 2((0, 1) ∪
(1, 2)).

The components u1 and u2 have boundary layers of width O(ε2) at x = 0 and
x = 2 and interior layers of width O(ε2) at x = 1, while the component u1 has addi-
tional boundary layers of width O(ε1) at x = 0 and x = 2 and interior layers of
width O(ε1) at x = 1.

The problem (1)–(2) can be rewritten as

− E u ′′(x) + f(x, u) + B(x) φ(x − 1) = 0 on (0, 1), (6)

− E u ′′(x) + f(x, u) + B(x) u(x − 1) = 0 on (1, 2), (7)

u(0) = φ(0), u(2) = l,u(1−) = u(1+) and u ′(1−) = u ′(1+). (8)

or more concisely as
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T1u(x) := −E u ′′(x) + g(x, u) = 0 on (0, 1), (9)

T2u(x) := −E u ′′(x) + f(x, u) + B(x) u(x − 1) = 0 on (1, 2), (10)

where g(x, u) = f(x, u) + B(x) φ(x − 1).

The reduced problem corresponding to (9)–(10) is defined by

g(x, r) = 0 on (0, 1), (11)

f(x, r) + B(x) r(x − 1) = 0 on (1, 2). (12)

The implicit function theorem and conditions (3)–(5) ensure the existence of a
unique solution for (11) and (12).

The solution r has derivatives which are bounded independently of ε1 and ε2.

Hence,

|r (k)
1 (x)| ≤ C, |r (k)

2 (x)| ≤ C, k = 0, 1, 2, 3, 4, x ∈ [0, 2]. (13)

For any vector-valued function y on [0, 2] the following norms are introduced:

‖ y(x) ‖= maxi |yi (x)| and ‖ y ‖= sup{‖ y(x) ‖: x ∈ [0, 2]}. For any mesh func-

tion V on Ω
N = {x j }Nj=0 the following discrete maximum norms are introduced:

‖ V(x j ) ‖= maxi |Vi (x j )| and ‖ V ‖= max{‖ V(x j ) ‖: x j ∈ Ω
N }.

Throughout the paperC denotes a generic positive constant, which is independent
of x and of all singular perturbation and discretization parameters. Furthermore,
inequalities between vectors are understood in the componentwise sense.

2 Analytical Results

The following Shishkin decomposition of the solution u of (1)–(2) is considered:

u = v + w

where the smooth component v(x) is the solution of

−E v ′′(x) + g(x, v) = 0 on (0, 1), v(0) = r(0), v(1−) = r(1−), (14)

−E v ′′(x) + f(x, v) + B(x) v(x − 1) = 0 on (1, 2), v(1+) = r(1+), v(2)=r(2)
(15)
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and the singular component w(x) is the solution of

−E w ′′(x) + g(x, v + w) − g(x, v) = 0 on (0, 1), (16)

−E w ′′(x) + f(x, v + w) − f(x, v) + B(x) w(x − 1) = 0 on (1, 2), (17)

w(0) = u(0) − v(0), w(2) = u(2) − v(2), [w](1) = −[v](1), and [w′](1) = −[v′](1),
(18)

where for any function h, the jump at x is, [h](x) = h(x+) − h(x−).

Lemma 1 For i = 1, 2 and for all x ∈ [0, 2], the smooth component v(x) satisfies,

|v(k)
i (x)| ≤ C, k = 0, 1, 2 and |v(k)

i (x)| ≤ C

(
1 + ε

1− k
2

i

)
, k = 3, 4.

Proof The smooth component v is further decomposed as follows

v = q̃ + q̂

where q̂ is the solution of
g1(x, q̂) = 0, (19)

− ε2
d2q̂2
dx2

+ g2(x, q̂) = 0, x ∈ (0, 1), (20)

q̂2(0) = v2(0), q̂1(0) = v1(0) (21)

and
f1(x, q̂) + b1(x)q̂1(x − 1) = 0, (22)

− ε2
d2q̂2
dx2

+ f2(x, q̂) + b2(x)q̂2(x − 1) = 0, x ∈ (1, 2), (23)

q̂2(2) = v2(2), q̂1(2) = v1(2). (24)

On the other hand, q̃ is the solution of

− ε1
d2q̃1
dx2

+ g1(x, q̃ + q̂) − g1(x, q̂) = ε1
d2q̂1
dx2

, (25)

− ε2
d2q̃2
dx2

+ g2(x, q̃ + q̂) − g2(x, q̂) = 0, x ∈ (0, 1), (26)

q̃1(0) = q̃2(0) = 0, q̃1(1−) = v1(1−) − q̂1(1−) and q̃2(1−) = v2(1−) − q̂2(1−)

(27)
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and

− ε1
d2q̃1
dx2

+ f1(x, q̃ + q̂) − f1(x, q̂) + b1(x)q̃1(x − 1) = ε1
d2q̂1
dx2

, (28)

− ε2
d2q̃2
dx2

+ f2(x, q̃ + q̂) − f2(x, q̂) + b2(x)q̃2(x − 1) = 0, x ∈ (1, 2), (29)

q̃1(1+) = v1(1+) − q̂1(1+), q̃2(1+) = v2(1+) − q̂2(1+) and q̃1(2) = q̃2(2) = 0.
(30)

Let x ∈ [0, 1]. Using (11), (19) and (20),

a11(x)(q̂1 − r1) + a12(x)(q̂2 − r2) = 0, (31)

− ε2
d2

dx2
(q̂2 − r2) + a21(x)(q̂1 − r1) + a22(x)(q̂2 − r2) = ε2

d2r2
dx2

(32)

where ai j (x) = ∂gi
∂u j

(x, χ gi (x)), i, j = 1, 2, are intermediate values.

Using (31) in (32),

−ε2
d2

dx2
(q̂2 − r2) +

(
a22(x) − a12(x)a21(x)

a11(x)

)
(q̂2 − r2) = ε2

d2r2
dx2

.

Consider the linear operator,

L1z(x) := −ε2 z
′′(x) +

(
a22(x) − a12(x)a21(x)

a11(x)

)
z(x) = ε2

d2r2
dx2

(33)

where z = q̂2 − r2.
This operator satisfies the maximum principle in [12]. Thus, ‖ q̂2 − r2 ‖≤ C ε2

and ‖ d2(q̂2 − r2)

dx2
‖≤ C.Using themean value theorem, |(q̂2 − r2)′(x)| = |z′(x)| ≤

C ε
1
2
2 .

Differentiating (33) with respect to x once and twice and using the bounds of z, z′

and z′′, we get |z′′′(x)| ≤ C
(
1 + ε

−1
2
2

)
and |z(iv)(x)| ≤ C

(
1 + ε−1

2

)
.

Using the bound of z in (31), ‖ q̂1 − r1 ‖≤ C ε2. Hence

‖ q̂2 ‖≤ C, ‖ dq̂2
dx

‖≤ C, ‖ d2q̂2
dx2

‖≤ C,

‖ d3q̂2
dx3

‖≤ C ε
−1
2
2 , ‖ d4q̂2

dx4
‖≤ C ε−1

2 and ‖ q̂1 ‖≤ C.
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Differentiating (31) with respect to x once, twice, thrice and four times and using

the estimates of
dq̂2
dx

,
d2q̂2
dx2

,
d3q̂2
dx3

and
d4q̂2
dx4

and the assumption that ε1 < ε2, we

get

‖ dq̂1
dx

‖≤ C, ‖ d2q̂1
dx2

‖≤ C, ‖ d3q̂1
dx3

‖≤ C

(
1 + ε

−1
2

1

)
and ‖ d4q̂1

dx4
‖≤ C

(
1 + ε−1

1

)
.

From (25), (26) and (27),

−ε1
d2q̃1
dx2

+ a∗
11(x)q̃1 + a∗

12(x)q̃2 = ε1
d2q̂1
dx2

,

−ε2
d2q̃2
dx2

+ a∗
21(x)q̃1 + a∗

22(x)q̃2 = 0,

q̃1(0) = q̃2(0) = 0, q̃1(1−) = v1(1−) − q̂1(1−) and q̃2(1−) = v2(1−) − q̂2(1−)

(34)

where a∗
i j (x) = ∂gi

∂u j
(x, ηgi (x)), i, j = 1, 2, are intermediate values.

From (34), for i = 1, 2,

‖ dkq̃i
dxk

‖≤ C, k = 0, 1, 2 and ‖ dkq̃i
dxk

‖≤ C
(
1 + ε

1− k
2

i

)
, k = 3, 4. (35)

Hence from the bounds for q̃ and q̂, the required bounds of v follow.
Let x ∈ [1, 2]. Using (12), (22) and (23),

p11(x)(q̂1 − r1) + p12(x)(q̂2 − r2) + b1(x)(q̂1(x − 1) − r1(x − 1)) = 0 (36)

−ε2
d2

dx2
(q̂2 − r2) + p21(x)(q̂1 − r1) + p22(x)(q̂2 − r2) + b2(x)(q̂2(x − 1)

−r2(x − 1)) = ε2
d2r2
dx2

(37)

where pi j (x) = ∂ fi
∂u j

(x, κ fi (x)), i, j = 1, 2, are intermediate values.

Using (36) in (37),

−ε2
d2

dx2
(q̂2 − r2) +

(
p22(x) − p12(x)p21(x)

p11(x)

)
(q̂2 − r2)

− p21(x)

p11(x)
b1(x)(q̂1(x − 1) − r1(x − 1)) + b2(x)(q̂2(x − 1) − r2(x − 1)) = ε2

d2r2
dx2

.
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Consider the linear operator,

L2z(x) := −ε2z
′′(x) +

(
p22(x) − p12(x)p21(x)

p11(x)

)
z(x) + b2(x)z(x − 1)

= ε2
d2r2
dx2

+ p21(x)

p11(x)
b1(x)(q̂1(x − 1) − r1(x − 1))

(38)

where z = q̂2 − r2.
This operator satisfies the maximum principle in [13]. Hence using similar argu-

ments as in the interval [0, 1] and the bounds of q̂ and q̃ in the interval [0, 1], the
required bounds in the interval [1, 2] are derived. �

From equation (16),

− ε1w
′′
1(x) + s11(x)w1(x) + s12(x)w2(x) = 0, x ∈ (0, 1), (39)

− ε2w
′′
2(x) + s21(x)w1(x) + s22(x)w2(x) = 0, x ∈ (0, 1) (40)

where si j (x) = ∂gi
∂u j

(x, θgi (x)), i, j = 1, 2, are intermediate values.

And from Eq. (17),

− ε1w
′′
1(x) + s∗

11(x)w1(x) + s∗
12(x)w2(x) + b1(x)w1(x − 1) = 0, x ∈ (1, 2),

(41)
− ε2w

′′
2(x) + s∗

21(x)w1(x) + s∗
22(x)w2(x) + b2(x)w2(x − 1) = 0, x ∈ (1, 2)

(42)

where s∗
i j (x) = ∂ fi

∂u j
(x, λ fi (x)), i, j = 1, 2, are intermediate values.

The singular component is given a further decomposition

w(x) = w l(x) + w r (x) (43)

with w l(x) = w(0)w l
1(x) + Aw l

2(x) (44)

satisfying −Ew l,′′
1 (x) + S(x)wl

1(x) = 0, x ∈ (0, 1) (45)

with w l
1(0) = 1, w l

1(1) = 0 and w l
1(x) = 0 on (1, 2] where S(x) =[

s11(x) s12(x)
s21(x) s22(x)

]
,

−Ew l,′′
2 (x) + S∗(x)wl

2(x) + B(x)wl
2(x − 1) = 0, x ∈ (1, 2) (46)
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with w l
2(1) = 1, w l

2(2) = 0 and w l
2(x) = 0 on [0, 1) where S∗(x) =[

s∗
11(x) s

∗
12(x)

s∗
21(x) s

∗
22(x)

]
and

w r (x) = B w r
1 (x) + w(2)w r

2 (x) (47)

satisfying − Ew r,′′
1 (x) + S(x)wr

1(x) = 0, x ∈ (0, 1) (48)

with w r
1 (0) = 0, w r

1 (1) = 1 and w r
1 (x) = 0 on (1, 2],

−Ew r,′′
2 (x) + S∗(x)wr

2(x) + B(x)wr
2(x − 1) = 0, x ∈ (1, 2) (49)

with w r
2 (1) = 0, w r

2 (2) = 1 and w r
2 (x) = 0 on [0, 1).

Here, A and B are vector constants to be chosen in such a way that the jump
conditions at x = 1 are satisfied.

The layer functions Bl
1,i , B

r
1,i , B

l
2,i , B

r
2,i , B1,i , B2,i , i = 1, 2, associated with the

solution u, of (1)–(2), are defined by

Bl
1,i (x) = e−x

√
α/

√
εi , Br

1,i (x) = e−(1−x)
√

α/
√

εi , B1,i (x) = Bl
1,i (x) + Br

1,i (x), on [0, 1],

Bl
2,i (x) = e−(x−1)

√
α/

√
εi , Br

2,i (x) = e−(2−x)
√

α/
√

εi , B2,i (x) = Bl
2,i (x) + Br

2,i (x),
on [1, 2].

Lemma 2 The singular component w(x) satisfies, for i = 1, 2 and for any x ∈
[0, 1],

|wl
i (x)| ≤ C Bl

1,2(x), |wl,′
i (x)| ≤ C

2∑
q=i

Bl
1,q (x)
√

εq
, |wl,′′

i (x)| ≤ C
2∑

q=i

Bl
1,q (x)

εq
,

|wl,(3)
i (x)| ≤ C

2∑
q=1

Bl
1,q (x)

ε
3
2
q

, |εiwl,(4)
i (x)| ≤ C

2∑
q=1

Bl
1,q (x)

εq

and for x ∈ [1, 2], |wl
i (x)| ≤ C Bl

2,2(x), |wl,′
i (x)| ≤ C

2∑
q=i

Bl
2,q (x)
√

εq
,

|wl,′′
i (x)| ≤ C

2∑
q=i

Bl
2,q (x)

εq
, |wl,(3)

i (x)| ≤ C
2∑

q=1

Bl
2,q (x)

ε
3
2
q

, |εiwl,(4)
i (x)| ≤ C

2∑
q=1

Bl
2,q (x)

εq
.

Analogous results hold for w r
i and its derivatives.

Proof From equations (39), (40), (41), and (42), the bounds of the singular compo-
nent w can be derived as in [14] in the domains [0, 1] and [1, 2]. �
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3 The Shishkin Mesh

A piecewise uniform Shishkin mesh with N mesh-intervals is now constructed on

[0, 2] as follows. LetΩN = Ω1
N ∪ Ω2

N whereΩ1
N={x j }

N
2 −1
j=1 , Ω2

N = {x j }N−1
j= N

2 +1

and x N
2

= 1.ThenΩ1
N = {x j }

N
2
j=0, Ω2

N = {x j }Nj= N
2
, Ω1

N ∪ Ω2
N = Ω

N={x j }Nj=0

and Γ N = {0, 2}. As the solution exhibits overlapping layers at x = 0 and x =
2 and interior overlapping layers at x = 1, a Shishkin mesh is constructed to
resolve these layers. The interval [0, 1] is subdivided into 5 sub -intervals as fol-
lows [0, τ1] ∪ (τ1, τ2] ∪ (τ2, 1 − τ2] ∪ (1 − τ2, 1 − τ1] ∪ (1 − τ1, 1]. The parameter
τr , r = 1, 2, which determine the points separating the uniform meshes, are defined
by

τ2 = min

{
1

4
,
2
√

ε2√
α

ln N

}
and τ1 = min

{
τ2

2
,
2
√

ε1√
α

ln N

}
.

On the sub -interval (τ2, 1 − τ2] a uniform mesh with N
4 mesh points is placed

and on each of the sub -intervals [0, τ1], (τ1, τ2], (1 − τ2, 1 − τ1] and (1 − τ1, 1],
a uniform mesh of N

16 mesh points is placed. Similarly, the interval (1, 2] is also
divided into 5 sub -intervals (1, 1 + τ1], (1 + τ1, 1 + τ2], (1 + τ2, 2 − τ2], (2 −
τ2, 2 − τ1] and (2 − τ1, 2], using the same parameters τ1 andτ2. In particular, when

both the parameters τ1 andτ2 takes on their lefthand value, the Shishkin mesh Ω
N

becomes a classical uniform mesh throughout from 0 to 2. In practice, it is conve-

nient to takeN = 16k, k ≥ 3. From the above construction ofΩ
N
, it is clear that the

transition points {τr , 1 − τr , 1 + τr , 2 − τr }, r = 1, 2, are the only points at which
the mesh-size can change and that it does not necessarily change at each of these
points.

4 The Discrete Problem

In this section, a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1)–(2) which is shown later to be
essentially first order parameter-uniform convergent.

The discrete two -point boundary value problem is defined to be

TNU(x j ) := −E δ2U(x j ) + f(x j , U(x j )) + B(x j )U(x j − 1) = 0, 1 ≤ j ≤ N − 1,
(50)

U(x0) = u(x0), D−U(xN/2) = D+U(xN/2) and U(xN ) = u(xN ). (51)

The problem (50)–(51) can be rewritten as

T1NU(x j ) := −E δ2U(x j ) + g(x j , U(x j )) = 0, 1 ≤ j ≤ N

2
− 1, (52)
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T2NU(x j ) := −E δ2U(x j ) + f(x j , U(x j )) = −B(x j )U(x j − 1),

N

2
+ 1 ≤ j ≤ N − 1,

(53)

U(x0) = u(x0), D−U(xN/2) = D+U(xN/2) and U(xN ) = u(xN ). (54)

For x j ∈ ΩN
1 ,

(T1NY − T1NZ)(x j )

= −E δ2(Y − Z)(x j ) + g(x j , Y(x j )) − g(x j , Z(x j ))

= −E δ2(Y − Z)(x j ) + ∂g
∂u1

(x j , K(x j ))(Y1 − Z1) + ∂g
∂u2

(x j , K(x j ))(Y2 − Z2)

= T′
1N (Y − Z)(x j ).

Similarly for x j ∈ ΩN
2 ,

(T2NY − T2NZ)(x j )

= −E δ2(Y − Z)(x j ) + f(x j , Y(x j )) − f(x j , Z(x j ))

= −E δ2(Y − Z)(x j ) + ∂f
∂u1

(x j , M(x j ))(Y1 − Z1) + ∂f
∂u2

(x j , M(x j ))(Y2 − Z2)

= T′
2N (Y − Z)(x j )

where
∂g
∂ui

(x j , K(x j )) and
∂f
∂ui

(x j , M(x j )), i = 1, 2, are intermediate values and

T′
1N and T′

2N are the Frechet derivatives of T1N and T2N respectively. Since T′
1N

and T′
2N are linear, they satisfy the discrete maximum principle and discrete stability

result in [15]. Hence,

‖ Y − Z ‖ ≤ C ‖ T′
1N (Y − Z) ‖= C ‖ T1NY − T1NZ ‖ on ΩN

1

and
‖ Y − Z ‖ ≤ C ‖ T′

2N (Y − Z) ‖= C ‖ T2NY − T2NZ ‖ on ΩN
2 .

i.e. ‖ Y − Z ‖ ≤ C ‖ T1NY − T1NZ ‖ on ΩN
1 (55)

and ‖ Y − Z ‖ ≤ C ‖ T2NY − T2NZ ‖ on ΩN
2 . (56)
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Lemma 3 Let u be the solution of the problem (1)–(2) and U be the solution of the
discrete problem (52)–(54). Then for j �= N

2 ,

‖ U − u ‖ ≤ C (N−1 ln N )2. (57)

Proof Let x j ∈ ΩN
1 . From (55),

‖ U − u ‖ ≤ C ‖ T1NU − T1Nu ‖ .

Consider,
‖ T1Nu ‖=‖ T1Nu − T1NU ‖ .

Hence,

‖ T1Nu − T1NU ‖ = ‖ T1Nu ‖

= ‖ T1Nu − T1u ‖

= E ‖ (δ2u − u′′)(x j ) ‖

≤ E (‖ (δ2v − v′′)(x j ) ‖ + ‖ (δ2w − w′′)(x j ) ‖).

Since the bounds for v and w are the same as in [14], the required result follows on
ΩN

1 .

Let x j ∈ ΩN
2 . From (56),

‖ U − u ‖ ≤ C ‖ T2NU − T2Nu ‖

≤ C ‖ B(x j )(U − u)(x j − 1) ‖, from (53)

≤ C ‖ U − u ‖ΩN
1

≤ C (N−1 ln N )2.

Hence for j �= N
2 , ‖ U − u ‖ ≤ C (N−1 ln N )2. �

The error at each point x j ∈ Ω
N
is denoted by e(x j ) = U(x j ) − u(x j ).

At the point x j = xN/2, for i = 1, 2,

(D+ − D−)ei (x N
2
) = (D+ − D−)(Ui − ui )(x N

2
)

= (D+ − D−)Ui (x N
2
) − (D+ − D−)ui (x N

2
).
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Recall that (D+ − D−)Ui (x N
2
) = 0. Let h∗ = max{h−

N/2, h
+
N/2}.

Then

|(D+ − D−)ei (x N
2
)| = |(D+ − D−)ui (x N

2
)|

≤ |(D+ − d

dx
)ui (x N

2
)| + |(D− − d

dx
)ui (x N

2
)|

≤ 1

2
h+
N/2

∣∣u′′
i (η)

∣∣
η∈(1,2) + 1

2
h−
N/2

∣∣u′′
i (ξ)

∣∣
ξ∈(0,1)

≤ C h∗ max
x∈(0,1)∪(1,2)

∣∣u′′
i (x)

∣∣ .

Therefore,

|(D+ − D−)ei (x N
2
)| ≤ C

h∗

εi
. (58)

Define, for i = 1, 2, a set of discrete barrier functions on Ω
N

by

ωi (x j ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Π
j
k=1(1 + √

αhk/
√
2εi )

Π
N/2
k=1 (1 + √

αhk/
√
2εi )

, 0 ≤ j ≤ N/2

Π N−1
k= j (1 + √

αhk+1/
√
2εi )

Π N−1
k=N/2(1 + √

αhk+1/
√
2εi )

, N/2 ≤ j ≤ N .

(59)

Note that
ωi (0) = 0, ωi (1) = 1, ωi (2) = 0 (60)

and from (59), and for 0 ≤ j ≤ N/2,

ω1(x j ) = 1

Π
N/2
k= j+1(1 + √

αhk/
√
2ε1)

, ω2(x j ) = 1

Π
N/2
k= j+1(1 + √

αhk/
√
2ε2)

.

From the assumption that ε1 < ε2,
1

1 + √
αhk/

√
2ε1

<
1

1 + √
αhk/

√
2ε2

which

implies that, for any 0 ≤ j ≤ N/2,

ω1(x j ) < ω2(x j ). (61)

Similarly, for any N/2 ≤ j ≤ N , (61) holds.
Therefore, for any0 ≤ j ≤ N ,

0 ≤ ω1(x j ) < ω2(x j ) ≤ 1. (62)
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It is not hard to see that, for i = 1, 2,

(T′
1Nω)i (x j ) = −εi δ

2ωi (x j ) +
2∑

l=1

∂gi
∂ul

(x j , K(x j ))ωl(x j )

≥ −α ωi (x j ) +
2∑

l=1

∂gi
∂ul

(x j , K(x j ))ωl(x j ).

(63)

And

(T′
2Nω)i (x j ) = −εi δ

2ωi (x j ) +
2∑

l=1

∂ fi
∂ul

(x j , M(x j ))ωl(x j )

≥ −α ωi (x j ) +
2∑

l=1

∂ fi
∂ul

(x j , M(x j ))ωl(x j ).

(64)

We now state and prove the main theoretical result of this paper.

Theorem 1 Let u(x j ) be the solution of the problem (1)–(2) and U(x j ) be the solu-
tion of the discrete problem (50)–(51). Then,

‖ U(x j ) − u(x j ) ‖≤ C N−1 ln N , 0 ≤ j ≤ N .

Proof The result follows by using the procedure adopted in the proof of Theorem 2
in [14] to the linear operators T′

1N and T′
2N . �

5 Numerical Illustration

The numerical method of applying (50)–(51) on the Shishkin mesh constructed in
Sect. 3 is illustrated through an example presented in this section.

Example Consider the BVP

−E u ′′(x) + f(x, u) + B(x) u(x − 1) = 0 on (0, 2),

u(x) = (1, 1)T , for x ∈ [−1, 0], u(2) = (1, 1)T ,

where E = diag(ε1, ε2), B(x) = diag(−1, −1), f(x, u) = (u21(x) − 0.01u2(x),
u22(x))

T .
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Table 1 Values of DN
ε , DN , PN , P∗, and CN

p∗ for ε1 = η
2 , ε2 = η and α = 0.9

η Number of mesh points N

128 512 1024 2048

20 0.112E-01 0.567E-02 0.286E-02 0.144E-02

2−2 0.229E-01 0.119E-01 0.607E-02 0.307E-02

2−4 0.431E-01 0.232E-01 0.120E-01 0.614E-02

2−6 0.762E-01 0.431E-01 0.232E-01 0.120E-01

2−8 0.124E+00 0.762E-01 0.431E-01 0.232E-01

2−10 0.178E+00 0.124E+00 0.762E-01 0.431E-01

2−12 0.158E+00 0.132E+00 0.959E-01 0.638E-01

2−14 0.158E+00 0.132E+00 0.959E-01 0.634E-01

2−16 0.158E+00 0.132E+00 0.959E-01 0.634E-01

2−18 0.158E+00 0.132E+00 0.959E-01 0.634E-01

DN 0.178E+00 0.132E+00 0.959E-01 0.638E-01

pN 0.429E+00 0.464E+00 0.588E+00

CN
p 0.554E+01 0.554E+01 0.541E+01 0.484E+01

Computed order of ε -uniform convergence, p∗ = 0.4285641

Computed ε -uniform error constant, CN
p∗ = 5.540243

The numerical method suggested is found to work very well for reasonable number of mesh points

Fig. 1 Solution profile for
N = 512 and η = 2−8. The
figure gives a portrait of the
boundary layers and the
interior layers at x = 1 due
to the presence of the delay
term for N = 512 and
η = 2−8
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The maximum pointwise errors and the rate of convergence for this BVP are
presented in Table1 and the solution in Fig. 1.
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