
19© Springer India 2016 
S. Srivastava (ed.), Biomarker Discovery in the Developing World: Dissecting the Pipeline for 
Meeting the Challenges, DOI 10.1007/978-81-322-2837-0_3

      Omics: Data Processing 
and Analysis                     

     Saicharan     Ghantasala    ,     Shabarni     Gupta    , 
    Vimala     Ashok     Mani    ,     Vineeta     Rai    ,     Tumpa     Raj     Das    , 
    Panga     Jaipal     Reddy    , and     Veenita     Grover     Shah    

    Abstract  

  The innovations in genome sequencing technologies have emanated in 
better understanding of biosystems leading to the dawn of the “omics” era. 
Proteomics has been an integral interface in the post-genomic era, and has 
allowed researchers to explore other omics-based platforms like metabo-
lomics, transcriptomics, phenomics, etc. In pursuit of obtaining a systemic 
understanding of biosystems, the scientifi c community is now largely 
incorporating a multi-omics-based workfl ow, with genomics and pro-
teomics at the centre of this integrated approach. Techniques such as gel- 
based proteomics, mass spectrometry, protein microarrays and label-free 
platforms have emerged as powerful tools for high-throughput screening 
and discovery-based studies in many of these multi-omics disciplines. 
However, with increased throughput, large amount of data is generated, 
and analysis of huge data often poses a challenge to researchers. The auto-
mation in specialized software has been immensely helpful to researchers 
in data acquisition; however, the downstream workfl ow of these sophisti-
cated technologies continues to disconcert scientists, embracing an inte-
grated multi-omics approach. This chapter aims at providing an overview 
of various proteomics-based technologies and their data evaluation strate-
gies in context to biological studies. Data storage in specialized databases 
also requires attention, but is beyond the scope of this chapter. Gel-based 
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proteomics, mass spectrometry, protein microarrays and label-free tech-
nologies are some of the commonly employed techniques in metabolo-
mics, interactomics, genomics and transcriptomics, thus encompassing a 
multi-omics perspective on data analysis.  

  Keywords  

  Omics   •   Data analysis   •   2D-DIGE   •   MALDI-TOF   •   LC-MS-MS   •   Protein 
microarray   •   Surface Plasmon Resonance  

3.1       Introduction 

 Omics refers to a fi eld of biology aimed at eluci-
dating the structure, function and dynamics of 
various biological entities that constitute a cell. 
Various omics technologies are used in different 
disciplines such as genomics, “the study of 
genes”; transcriptomics, “the study of expression 
and spatial distribution of gene at the mRNA 
level”;  proteomics  , “the study of gene function at 
the protein level”; and metabolomics, “the study 
of metabolites”. The common objective of these 
omics approaches is the creation of large compre-
hensive data sets, which will help in a better 
understanding of the biology of organisms. Until 
a few decades ago, Sanger’s sequencing was the 
sole method to gain an insight on primary struc-
ture of proteins, but recent advances in electro-
phoresis and  chromatography     , coupled with 
improvements in mass  spectrometry  , allow a bet-
ter understanding of proteomes. Proteomics is the 
comprehensive analysis of protein structure, 
function and dynamics studied by investigating 
the protein abundance, modifi cations, interacting 
partners and pathways, in order to understand the 
cellular processes (Chandramouli and Qian 
 2009 ). Some of the sophisticated and high- 
throughput omics techniques, described in this 
chapter, such as 2-DE, DIGE, mass spectrometry, 
 protein microarrays   and surface plasmon  reso-
nance  , make the quest of knowledge seem never 
ending. An overall schematic representing a typi-
cal proteomic analysis workfl ow using various 
omics tools is shown in Fig.  3.1 .

   With the advent of technology in  proteomics  , 
the data generation is fast, enormous and explod-
ing in terms of size and complexity. The prime 
challenge today is to handle large data sets gener-
ated across the world and to analyse the same for 
relevant biological interpretations (Gomez- 
Cabrero et al.  2014 ). The accessibility of omics 
data to researchers is another matter of concern. 
Many proteomics data repositories have been 
established to safely store the vast data generated 
by researchers across the globe. Some of the 
known 2-DE data repositories include SWISS- 
2DPAGE, WORLD-2DPAGE Portal, EcoproDB, 
2Dbase, GELBANK and proteome 2D-PAGE 
database. Recently, some  mass spectrometry 
(MS)  -based data repositories (PRIDE, GPMDB, 
PeptideAtlas, Tranche and NCBI peptidome) 
have also been established with generation of 
high-confi dence data and coverage. 

 Besides  proteomics  , many other omics 
approaches have attained greater interest in 
research to offer a better understanding of bio-
logical systems. The emerging omics technolo-
gies such as transcriptomics, metabolomics and 
phenomics provide a critical insight into the ori-
gin, function and regulation of molecules and 
their pathways. With the infl ux of omics data, 
there is a growing need to know the subject better 
in order to combat the challenges in data  manage-
ment      and analysis. Systems biology has undoubt-
edly evolved to manage, organize and process 
 multi-omics   data, in a methodical manner, by 
generating tools capable of analysing huge data 
sets (Gehlenborg et al.  1998 ). The current chapter 
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focuses on providing an overview on some of the 
omics approaches, mentioned above, and their 
data evaluation strategies.  

3.2     Two-Dimensional Gel 
Electrophoresis 

 Two-dimensional gel electrophoresis (2-DE) has 
been an effective gel-based method for global and 
quantitative  proteomic   analysis of various bio-
specimens. With its advent in the 1970s, this tech-
nique has paved the way for easy separation of 
complex protein mixtures, which was not possible 
through one-dimensional electrophoresis. The 
technique gained popularity in the 1990s with the 
introduction of immobilized pH gradient (IPG) 
strips which eased the protocols and increased its 
reproducibility and effi ciency (Palzkill  2002 ; 
Beckett  2012 ). The basic principle involves the 
separation of a complex mixture of proteins 
based on two independent parameters: isoelectric 
point (pI) and molecular weight (Fig.  3.2a ). The 

fi rst-dimensional separation occurs through iso-
electric focusing (IEF), a technique in which 
separation of proteins occurs based on their 
respective pI (the pH at which proteins form 
zwitterions), followed by a second-dimensional 
separation which is based on their molecular 
weight, similar to one-dimensional gel electro-
phoresis (1-DE). 2-DE approach can be used for 
global as well as differential protein profi ling 
from biological samples (Fig.  3.2b ). In the past, 
protein spot detection involved visual analysis of 
coomassie or silver-stained spots. Over the years, 
several software have been developed to enhance 
the sensitivity of protein spot detection (Table 
 3.1 ). The protein spots of interest (all spots in 
case of global  proteomics   and statistically signifi -
cant spots in case of quantitative proteomics) can 
be excised, subjected to in-gel digestion followed 
by identifi cation using mass  spectrometry  . The 
major advantage of 2-DE over 1-DE is the fact 
that it enables high-resolution separation of pro-
teins with similar molecular weights but different 
pIs. Thus, 2-DE can be regarded as a milestone in 

  Fig. 3.1    Overall schematic representing a typical  proteomic   analysis workfl ow using various  omics      tools       
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the  proteomics      era due to its ability to provide 
relatively higher protein coverage.

    The limitations associated with 2-DE such as 
gel-to-gel variability and poor sensitivity led to 
the development of a relatively new technique 
with the ability to label proteins, which are then 
subjected to co-electrophoresis on a single gel. 
This technique, designed by Jon Menden’s group, 
is referred to as  two-dimensional difference gel 

electrophoresis (2D-DIGE)   (Unlü et al.  1997 ). 
The methodology is similar to the conventional 
2-DE except for the pre-electrophoretic labelling 
of samples with cyanine dyes (Fig.  3.2c ). The 
cyanine dyes (Cy2, Cy3 and Cy5) bearing 
N-hydroxysuccinimidyl ester groups bind cova-
lently with ɛ-amino groups of lysine residues in 
the protein of interest (Wilkins  2008 ). Each of 
these Cy dyes is matched for mass and charge, 

  Fig. 3.2     Proteomic   analysis using classical 2-DE and 
2D- DIGE  . A classical workfl ow demonstrating ( a ) 2-DE 
and 2D-DIGE experiment generating ( b ) coomassie- 
stained gel image of a complex protein mixture after clas-

sical 2-DE and ( c ) scanned image of a gel following 
2D-DIGE with fl uorescently labelled proteins as visible 
spots. 3D views for different ( d ) protein  spots      and dust 
particle as detected using DeCyder software       

    Table 3.1    List of commonly available  software      for 2-DE and 2D- DIGE   analysis   

 S. No.  Software  Source  Applications 

 1  IMP7    www.gehealthcare.com      2-DE 

 2  DeCyder    www.gehealthcare.com      2D-DIGE 

 3  PDQuest    www.bio-rad.com      2-DE 

 4  Delta2D    www.decodon.com      2-DE and 
2D-DIGE 

 5  GelScape    www.gelscape.ualberta.ca      2-DE 

 6  Flicker    http://open2dprot.sourceforge.net/Flicker      1-DE and 2-DE 

 7  REDFIN    www.ludesi.com/redfi n      2-DE 

 8  Melanie    http://world-2dpage.expasy.org/melanie/      2-DE 

 9  ImageMaster    www.apbiotech.com      2-DE 

 10  ProteomeWeaver    www.defeniens-imaging.com      2-DE 

 11  Z3 2D-gel analysis system    www.compugen.co.il      2-DE 

 12  Progenesis and Phoretix 2D    www.nonlinear.com      1-DE and 2-DE 
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and is spectrally resolvable due to different exci-
tation/emission wavelengths. Cy2 (excitation, 
492 nm; emission, 510 nm) is preferably used to 
label the internal control, which is a pool of equal 
amounts of all samples loaded on the gel, whereas 
the samples under study (test and control) are 
labelled with Cy3 (excitation, 550 nm; emission, 
570 nm) and Cy5 (excitation, 650 nm; emission, 
670 nm) dyes. The internal control helps to elimi-
nate the gel-to-gel variations. DIGE gels are usu-
ally run in biological replicates for gel consistency 
and better statistical analysis of protein spots. 

3.2.1     Gel Analysis and Data 
Assimilation 

 The 2D- DIGE   gels are scanned in a specialized 
variable mode laser scanner that enables visual-
ization of a wide range of fl uorescent wave-
lengths. The scanned images are further analysed 
using various software, some of which are enlisted 
in Table  3.1 . These software align two or more 
gels in the same orientation, assign spot numbers 
to all protein spots in a gel and then overlay the 
gels. The differential expression (up- or down-
regulation) in protein spots is enlisted based on 
their spot intensities. For instance, the DeCyder 
software provides options like differential in-gel 
analysis (DIA) for the analysis of an individual 
gel image and biological variation analysis (BVA) 
for the analysis of multiple gels (biological repli-
cates) (GE Healthcare DeCyder 2D Software GE 
Healthcare 2-DE Principles and Methods  2004 ). 
DIA provides three-dimensional view of each 
protein along with its maximum slope and volume 
which aids in better understanding of the protein 
expression level in a given sample (Fig.  3.2d ). 
Care must be taken to ensure meticulous gel crop-
ping and overlaying to avoid elimination or mis-
match of any protein spot. It is necessary to 
include certain fi lters during image analysis which 
aid in excluding some artifacts as the software 
cannot distinguish between protein spots and dust 
particles resulting in false 3D images (Fig.  3.2d ). 
Additionally, manual  curation      is preferred to 
avoid false results and mismatching of protein 
spots. For the protein identifi cation of 2D- DIGE   

analysis, a preparatory 2-DE gel run is preferred. 
However, a 2-DE gel may not be an exact replica 
of the corresponding DIGE gel making spot cut-
ting a diffi cult task (Baggerman et al.  2005 ). 

 Owing to limitations such as limited protein 
coverage, higher sample requirement, low sensi-
tivity in protein identifi cation, low solubility of 
membrane-associated proteins, limited sample 
loading capacity of IPG strips and gel-to-gel vari-
ability, gel-based approaches (2-DE and 
2D- DIGE  ) are increasingly being replaced by gel-
free methods like iTRAQ (isobaric tag for relative 
and absolute quantitation) and SILAC (stable iso-
tope labelling by amino acids in cell culture). 
These approaches directly label the peptides, 
which can be detected using mass  spectrometry  . 

 For many years, protein identifi cation relied 
on a laborious technique called Edman degrada-
tion. However, there were several disadvantages 
linked to this method: (a) very slow and exhaus-
tive process (only ten residues identifi ed in 24 h), 
(b) required large amount of protein samples, (c) 
could not be performed if N-terminus of the pro-
tein was inaccessible (folded or modifi ed) and (d) 
the reduction in effi ciency after 50–60 residues. 

 The advent of high-throughput mass  spectro-
metric   technologies eased the task of protein 
identifi cation and quantifi cation with greater effi -
ciency and accuracy. An overview of mass spec-
trometric analysis of proteins following the 2-DE 
procedure is described in the following sections.   

3.3     Matrix-Assisted Laser 
Desorption/Ionization Time 
of  Flight   

 Mass  spectrometry   is one of the key platforms in 
the fi eld of proteomics. Out of the various mass 
spectrometric techniques available,  matrix- 
assisted laser desorption/ionization time of fl ight 
(MALDI-TOF)   gained popularity due to its ease 
of application for mass determination and pro-
tein identifi cation. MALDI-TOF is a versatile 
approach for analysing proteins, peptides, oligo-
nucleotides, glycans, polymers and organome-
tallics, utilizing minimal reagents and easily 
 accessible      protocols. 
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 MALDI- TOF   like other mass spectrometric 
instruments consists of three functional compo-
nents: an ion source to ionize and transfer analyte 
ions to gaseous phase, a mass analyser to sepa-
rate ions based on their mass-to-charge ratio 
(m/z) and a detector to detect the separated ana-
lyte ions. Ionization techniques like  MALDI   and 
electrospray are soft-ionization approaches in 
mass  spectrometry   that allow large non-volatile 
biomolecules like proteins to ionize and vaporize 
readily (Croxatto et al.  2012 ). 

  MALDI   is based on rapid photo-volatilization 
of analytes embedded in the matrix. A matrix is a 
compound capable of acquiring energy generated 
by laser and passing this energy to analyte mole-
cules, thereby facilitating their desorption and 
ionization (Marvin et al.  2003 ). The excited 
matrix causes protonation of analytes resulting in 
formation of singly or doubly charged (some-
times multiply charged) ions in the gaseous 
phase. An electrostatic fi eld further accelerates 
all analyte ions to attain equal kinetic energy. 
These ions further travel ahead in the fl ight tube 
to get separated by the analyser based only on 
their m/z ratio such that the ions with low m/z 
ratios travel faster compared to the ones with 
higher m/z. The separated ions are detected by 
the detector, which records the intensity of ions 
and generates a plot of m/z to relative ion inten-
sity/abundance referred to as the mass spectrum. 
MALDI offers both positive and negative modes 
that can be selected during analysis depending on 
the charge attained by the analyte during ioniza-
tion. Proteins and peptides are generally analysed 
using positive mode, whereas nucleic acids are 
analysed using negative mode. 

 The selection of matrix is a crucial step in 
 MALDI  , and depends on the type of analyte and 
objective of analysis. Preparation of matrix solu-
tion involves dissolving the solid matrix in suit-
able organic solvents. Pure proteins and in-gel 
(trypsin or other suitable enzymes) digested pro-
teins are analysed for mass determination and 
protein identifi cation, respectively. Desalting is 
an important step performed to remove salts and 
other contaminants which may result in unwanted 
peaks and noise in the mass spectrum. Semi- 

purifi ed proteins may generate large number of 
peaks causing uncertainty in the data obtained. 

3.3.1     Data Acquisition and Analysis 

 Data acquisition refers to storing of  electrical      sig-
nals as mass spectrum after the ions are detected 
by the detector. The matrix and samples are 
loaded on the  MALDI      target resulting in sample 
crystallization followed by data acquisition by 
laser bombardment (Fig.  3.3a ). In the generated 
mass spectrum, we may often observe noisy peaks 
having poor signal-to-noise ratio (S/N) and higher 
baseline for low m/z values. Data processing 
involves improving the S/N ratio of peaks and 
correcting the baseline by base smoothening and 
baseline subtraction, respectively (Fig.  3.3b ). This 
is followed by peak picking (selection of suitable 
peaks), which is generally performed using algo-
rithms such as SNAP (sophisticated numerical 
annotation procedure) and centroid. A modifi ca-
tion of peak picking method called two- Gaussian 
algorithm is utilized for proteins showing low 
intensity in MS spectrum due to their poor expres-
sion (Kempka et al.  2004 ). Kernel matching pur-
suit (KMP) classifi er is another novel algorithm 
that has been used to identify differentially 
expressed proteins in tissues of healthy controls 
and patients with lung  cancer   (Liu et al.  2003 ).

   Bovine serum albumin (BSA) is extensively 
used as a control for  MALDI   studies. The molec-
ular weight of BSA is determined in linear posi-
tive mode using sinapinic acid matrix. In linear 
mode, generally used for labile or high molecular 
weight molecules (proteins), the fl ight tube is 
straight with a detector at its end. In case of BSA, 
two major peaks are observed in the mass spec-
trum after initial processing of the raw data 
(smoothening and baseline correction). The peak 
with maximum intensity corresponds to the mass 
of intact singly charged BSA ion ~66.5 KDa (m/z 
value), whereas the smaller peak ~33 KDa 
denotes the doubly charged BSA ion (m/2Z) 
(Fig.  3.4a ).

   Mass determination for complex samples such 
as polysaccharides, polymers, glycans and 
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nucleic acids is more challenging compared to 
proteins. Polysaccharides (due to their high 
molecular weight) require additional salts and 
high concentration of matrix for better ionization 
and desorption. The  MALDI   analysis for oligo-
saccharides and polysaccharides may differ from 
each other due to their varying molecular weights 
and non-uniformity in their structure (Hao et al. 
 1998 ). For synthetic polymers, mass determina-
tion has always been questionable due to their 
molecular weight, polydisperse nature and the 
presence of additional end groups in their 
 structure (Christian and Jackson  1997 ). However, 
MALDI- TOF   plays a signifi cant role in combat-
ing the challenges associated with mass  determi-
nation      of such complex samples. 

 For protein identifi cation, the digested protein 
yields a mixture of peptides unique to the particu-
lar protein, which results in a peptide mass fi n-
gerprint (PMF) or peptide mass map. This PMF 
is further searched against different protein 
sequence databases identifying the correct match 
with the highest score (Webster and Oxley  2012 ). 
For BSA identifi cation, after trypsin digestion, 
α-cyano-4-hydroxycinnamic acid (CHCA) is 
used as matrix to spot the BSA tryptic digest. The 
refl ectron mode, designed for peptides and other 
small molecules, is used in such situations. In this 
mode, a  refl ectron   (series of evenly spaced elec-
trodes) is introduced in the fl ight tube at the end 

of the analyser to increase the fl ight length of the 
ions. Electrical fi eld is applied over the refl ectron 
so that the ions entering the refl ectron undergo a 
continuous deceleration till they stop and leave 
the refl ectron, where they get accelerated again to 
reach the detector. The refl ectron thus facilitates 
in improving the resolution of small molecules 
by increasing their fl ight length. 

 The BSA peptide mass fi ngerprint shows 
many signature peptide peaks of different molec-
ular masses: 927.4, 1,439.7, 1,479, 1,567.7, 
1,724.7 and 2,044.9 (Fig.  3.4b ). After processing 
the raw PMF, few peptide peaks with higher 
signal- to-noise ratios are selected for an extended 
step, the tandem mass  spectrometry   (MS-MS) 
(Fig.  3.4c ). In tandem mass spectrometry, an 
additional analyser is incorporated, as observed 
in TOF/TOF with two TOF analysers or Q-TOF 
with one quadrupole and one TOF analyser. The 
two mass analysers in these instruments are sepa-
rated by a collision cell and an ion defl ection 
gate. The precursor ions, after being separated by 
the fi rst analyser, get further fragmented in the 
collision cell, and the resultant daughter ions are 
analysed by the second analyser (Hoffman and 
Stroobant  2007 ). Tandem mass spectrometry 
thereby signifi cantly increases the sensitivity of 
protein identifi cation. 

 The MS-MS spectra for BSA with collective 
parent and daughter ions can then be searched 

  Fig. 3.3    Spotting and peak generation using MALDI- TOF  . The representative fi gure illustrates ( a ) peptide-matrix 
crystals after spotting and ( b ) common peak  characteristics      obtained after peak generation       
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against one of the various protein databases using 
mascot search engine (Fig.  3.4d ). The search 
result also displays other serum albumins from 
closer taxonomical groups, due to protein 
sequence similarity in related species. The data 
retrieved from such databases provides a compre-
hensive information on molecular weight, iso-
electric pH, protein sequence and the sequence 
coverage of protein under study (Fig.  3.4e, f ). To 
achieve high sequence coverage, maximum num-
ber of peaks should be analysed while perform-
ing MS-MS. 

 Various databases, such as UniProt (Swiss- 
Prot), NCBInr, PlasmoDB and PlantEST (Table 
 3.2 ), help in protein identifi cation via search 
 engines      like Matrix science (Mascot server). 
Though  MALDI   is a reliable and effective tech-
nique for rapid identifi cation of proteins, the data-

bases play a signifi cant role in data generation and 
analysis. For this reason, studies associated with 
proteins from remote sample sources with no 
record of their information in existing databases 
face challenges in their true identifi cation. 
Nevertheless, MALDI- TOF   offers a promising 
platform for rapid molecular identifi cation with 
extensive applications in clinical diagnostics,  bio-
marker   detection and tissue imaging studies.

3.4         Liquid Chromatography- 
Mass Spectrometry 

 The technique LC-MS is a result of a successful 
alliance between two techniques, the liquid chro-
matography and mass  spectrometry  . Liquid chro-
matography separates a highly complex mixture 

  Fig. 3.4    MALDI- TOF   data analysis for mass determina-
tion and identifi cation of bovine serum albumin. The pan-
els demonstrate ( a ) mass spectrum of undigested BSA, 
( b ) peptide mass fi ngerprint of trypsin-digested BSA and 

( c ) MS/MS spectrum of BSA. Protein identifi cation is 
performed using Swiss-Prot  database      to derive ( d ) Mascot 
search results for generating  (e)  Spectrum analysis report 
showing ( f ) BSA sequence data       
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into different subsets based on their physical and 
chemical properties. The separated mixtures are 
then ionized and injected into the mass spectrom-
eter where ions get further separated under the 
infl uence of a strong electromagnetic fi eld before 
getting detected. The data obtained is in the form 
of a spectrum, which can either be analysed man-
ually (if the sample contains very few proteins) or 
with the use of specialized software developed 
for analysing high-throughput data (Table  3.2 ). 
Despite the superior capabilities of this tech-
nique, its use in protein studies picked up pace 
only in the 1980s, after the advent of ionization 
techniques such as electrospray ionization. This 
soft ionization method was demonstrated to 
 generate charged ions from peptides in solution 
thereby paving the way for the emergence of 
LC-MS as a robust technique in  proteomics  . Over 
the last two decades, LC-MS has played a critical 
role in proteomics and contributed in sequencing 
of the yeast proteome (Peng et al.  2003 ), human 
tissues and cell lines (Phanstiel et al.  2011 ; 
Munoz et al.  2011 ; Geiger et al.  2012 ; Moghaddas 
Gholami et al.  2013 ), to name a few. 

3.4.1     Data Acquisition and Analysis 

 Before the complex protein sample is injected 
into the mass spectrometer, a number of process-

ing steps, aimed at reducing the complexity of 
samples, are involved. The process of enzymatic 
digestion ensures that the complex proteins are 
broken down into less complex peptides. MS 
instruments measure the m/z values of various 
fragments by reducing these sequences into pat-
terns of numbers. Therefore, understanding the 
number pattern becomes very important in iden-
tifying the right peptide sequence leading to the 
right protein. A clear idea of the chemistry behind 
fragmentation is needed to help marvel the ability 
of these highly sensitive instruments. When the 
peptide ions  collide      with the neutral gas mole-
cules in the collision cell, the most common 
cleavage involves that of the peptide bond form-
ing the backbone. This cleavage results in the for-
mation of two ions – most commonly referred to 
as the “y ion” and the “b ion”. The “y ion” is 
positively charged and represents the C-terminal 
end of the peptide, while the “b ion” is negatively 
charged ion and represents the N-terminal of the 
peptide. It is to be noted that in addition to the 
peptide bond, the other bonds of less signifi cance 
also undergo fragmentation, albeit less 
frequently. 

 Manual analysis of the spectra and data inter-
pretation is easier with a defi nite pattern of 
observed peptide peaks. In cases of complex pep-
tide peak profi les, the process of understanding 
the data and being able to decipher the sequence 

    Table 3.2    Few commonly used software/tools for protein  identifi cation      from MS-MS data   

 S. No.  Software  Features  URL site  References 

 1  Mascot  Protein identifi cation using 
mass  spectrometry   data 

   http://www.matrixscience.com/      Palagi et al. ( 2006 ) 

 2  MS-Fit  Mining the sequence of the 
protein from MS data 

   prospector.ucsf.edu      Palagi et al. ( 2006 ) 

 3  SEQUEST  Interpretation of tandem 
mass spectra data for protein 
identifi cation and amino acid 
sequence 

   http://fi elds.scripps.edu/sequest/      Palagi et al. ( 2006 ) 

 4  X! Tandem  Protein identifi cation using 
tandem MS data 

   http://www.thegpm.org/tandem/
index.html     

 Palagi et al. ( 2006 ) 

 5  Sequit!  De novo sequencing of 
protein using tandem mass 
spectrum 

   http://www.sequit.org/      Palagi et al. ( 2006 ) 

 7  PEAKS  De novo sequencing of raw 
MS-MS data, label-free 
quantifi cation 

   http://www.bioinfor.com/      Pevtsov et al. 
( 2006 ) 
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can be time consuming. Moreover, the ambigu-
ous fragmentation of certain peptides due to the 
variable amino acid fragmentation tendency and 
presence of proline, which does not facilitate 
easy fragmentation, can pose additional chal-
lenges, thereby making manual data analysis 
from MS-MS spectra an uphill task. 

 Owing to challenges associated with manual 
analysis of tandem mass  spectrometry   data, a 
number of software have been developed, each 
with their own merits and demerits. While most 
commercially available software come with a 
huge price tag, software like Mascot allow easy 
analysis and interpretation of data from tandem 
mass spectrometry experiments. 

 We now take up an example of an LC-MS run 
for a protein sample from  Arabidopsis thaliana  to 
better understand, analyse and interpret an 
LC-MS data set. The foremost step in analysing 
data using Mascot involves fi lling up of a MS-MS 
ion search form on the Mascot website, enquiring 
all important information such as the enzyme 
used during digestion, database used for search, 
number of missed cleavages, taxonomy, fi xed 
and variable modifi cations, MS-MS tolerance, 
peptide charge, etc. After initiating the search, 
the software generates a result fi le containing a 
Mascot histogram and a peptide summary report. 
The protein hits falling outside the green region 
of the histogram are considered  signifi cant     . The 
generated peptide summary report allows the 
user to select the signifi cant peptides, in addition 
to other valuable information such as molecular 
weight, total ion score and the number of pep-
tides matched (Fig.  3.5a ). The peptide view con-
tains all information regarding the peptide 
sequence derived from the corresponding “y” and 
“b” ions (Fig.  3.5b, c ).

   In the current analysis, a total of three signifi -
cant hits were obtained. Of these, one hit corre-
sponded to trypsin used for digestion of proteins. 
The other two peaks corresponded to the follow-
ing proteins: photosystem I reaction centre sub-
unit IV A (chloroplastic) and photosystem I 
reaction centre subunit IV B (chloroplastic), with 
molecular masses 14,958 Da and 15,188 Da, 
respectively.  

3.4.2     Advancements in LC-MS- 
Based Quantifi cation 
of Proteins 

 The technological advancements in mass  spec-
trometry   have led to increased use of these new- 
age instruments in quantitative  proteomics  . 
Quantifi cation of peptides can either be achieved 
through differential labels such as iTRAQ and 
ICAT (isotope-coded affi nity tag) or SILAC or 
label-free quantifi cation approaches. The use of 
labels allows relative quantifi cation of peptides 
among different biological samples in a single 
run. The iTRAQ-labelling approach enables cal-
culation of peptide abundance based on intensi-
ties of fragment ions reported in the obtained 
MS-MS spectra (Chloe et al.  2007 ). The ICAT- 
based approach (Gygi et al.  1999 ) and SILAC 
(Ong et al.  2002 ), on the other hand, result in the 
generation of pairs of peptides with mass differ-
ences characteristic to the label used. The shift in 
masses and similarities in elution profi les form 
the basis for computing peptide ratios between 
the two forms of labels thereby allowing determi-
nation of the relative abundance of peptides. 
Despite their widespread usage, a major limita-
tion associated with these approaches is the prej-
udice towards high-intensity peptide signals for 
the selection of the precursor ion, which results 
in under-sampling of low-abundant proteins in 
the sample mixture (Mueller et al.  2008 ). 

 The past few years have seen an upsurge in the 
label-free quantifi cation strategies, which rely on 
correlating the abundance of a protein or peptide 
in a sample with the corresponding MS signal 
(Simpson et al.  2009 ). Determination of ion inten-
sity using extracted ion chromatograms (XIC) is a 
popular method for the protein quantifi cation. 
This involves summation of the number and 
intensity of the selected precursor ions at a spe-
cifi c m/z range and peak areas as a measure of the 
relative abundance (Old et al.  2005 ). Another 
approach that is increasingly being used for quan-
tifi cation is spectral counting of fragment ion 
spectra for a particular  peptide     . This is a semi-
quantitative approach used for low to moderately 
mass-resolved LC-MS data. The approach relies 
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  Fig. 3.5    MS-MS search results of an in-gel digested pro-
tein sample mixture using Mascot. The panels demon-
strate ( a ) peptide summary report containing details of 
signifi cant hits, ( b ) peptide view of a signifi cant hit indi-

cating the peptide  sequence      information and ( c ) the infor-
mation regarding residual masses of amino acids deducing 
the peptide sequence       
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on the assumption that the frequency of a particu-
lar precursor ion getting selected in a large data 
set is proportional to the abundance of the peptide 
in a sample. The spectral counts from peptides are 
averaged and an abundance index of a protein is 
generated (Liu et al.  2004 ; Gao et al.  2003 ; 
Colinge et al.  2005 ; Ishihama et al.  2005 ). The 
label-free approaches mentioned above facilitate 
quantifi cation of peptides without using expen-
sive labels and performing additional sample pro-
cessing steps. They are, hence, becoming the 
choice of most researchers despite their inherent 
limitations (Simpson et al.  2009 ). However, these 
approaches are still evolving, and are believed to 
improve greatly in the years to come (Mueller 
et al.  2008 ).   

3.5      Protein Microarrays   

 Protein microarrays have been widely accepted 
as a high-throughput technique to achieve sys-
temic understanding of protein-protein interac-
tions, functional analysis of proteins and 
autoantibody screening in various systems 
(Mitchell  2002 ; MacBeath  2002 ). This technol-
ogy essentially relies on proteins immobilized on 
glass slides, traditionally coated with PVDF 
(polyvinylidene fl uoride), nitrocellulose or poly-
styrene. The approach has now evolved into 
incorporating soft lithography techniques to 
enhance surface chemistry for the immobiliza-
tion of proteins (Hu et al.  2011 ). These protein 
arrays are subjected to a set of probe molecules, 
and are classifi ed on the basis of the biological 
question to be answered. For instance, functional 
protein arrays are arrays where immobilized pro-
teins are subjected to probing by query DNA, 
RNA, peptides, small molecules, glycans or pro-
tein molecules to observe their interaction with 
ligands on the chip (Phizicky et al.  2003 ; Hu 
et al.  2011 ). Analytical protein arrays are arrays 
on which ligands like allergens, aptamers, anti-
bodies or antigens are printed to perform protein 
profi ling or clinical diagnostics (Phizicky et al. 
 2003 ). Reverse-phase protein microarrays is 
another popular kind of  biomarker   validation 
platform, where a large number of clinical sam-

ples such as, biofl uids or cell lysates are printed 
on the chip and probed with antibodies for target 
biomarkers for large-scale screening in clinical 
cohorts (Zha et al.  2004 ; Tibes et al.  2006 ). 

 Although there are several types of protein 
microarrays with varied applications for each, 
autoantibody screening from biofl uids like serum 
and CSF has been one of the most popular appli-
cations for elucidating novel bio markers      in infec-
tious diseases or  cancers   (Song et al.  2010 ; 
Anderson et al.  2011 ; Hu et al.  2012 ). 
Autoantibody production is a response of the 
immune system against certain aberrant self- 
proteins, also termed as tumour-associated anti-
gens (TAAs) in case of  cancer   (Anderson et al. 
 2011 ). Biofl uids can be screened for the presence 
of autoantibodies by high-throughput protein 
microarrays harbouring human peptides or whole 
proteins (Fig.  3.6a, b ). If antibodies are produced 
against an aberrant protein, they would bind to 
the  antigen   and detected using Cy dye-labelled 
secondary antibodies displaying fl uorescent sig-
nals. The spot intensity of the protein would indi-
cate the strength of the immunogenic response 
against a particular protein, which enables rela-
tive quantifi cation of the protein. The signal 
intensities are measured by scanning the chip 
using a microarray scanner at appropriate chan-
nels depending on the absorbance wavelength of 
the Cy dye employed in the assay (Fig.  3.6a ). The 
data exported is usually in .gpr, .cel or .txt format, 
depending on the scanner used to generate the 
output fi le, which contains information regarding 
image acquisition and each protein spot (feature). 
As against tissue biopsy, a highly invasive diag-
nostic approach, the autoantibody profi ling using 
serum is a minimal invasive approach aiding in 
early diagnosis of  cancer  .

   DNA microarrays provided the foundation for 
data analysis strategies for protein microarrays. 
(Hu et al.  2011 ; An et al.  2014 ). Here, we will 
focus on the generic data analysis approach 
applicable across all platforms of protein 
 microarrays. The workfl ow of protein microar-
rays for screening autoantibodies is very similar 
to other immunological assays like western blot-
ting and ELISA. However, the staggering differ-
ence in microarray throughput as against to these 
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traditional techniques, accompanied with other 
variables infl uencing the experimental outcome, 
makes protein microarray data analysis extremely 
challenging. Specialized software used for data 
acquisition from the microarray scanner, statisti-
cal models and robust computational support fol-
lowed by systems biology approaches are the 
fundamentals of protein microarray data analysis 
(An et al.  2014 ). The primary statistical and com-
putational elements of data analysis in a protein 
microarray experiment can be broadly divided 
into following stages. 

3.5.1     Pre-processing of the Data: 
Background Correction 
and Normalization 

 The use of Cy dyes often results in false positives 
(noise), in addition to the true positives, due to 
non-specifi c binding. The true  estimate      of a spot 
intensity is obtained by subtracting the back-
ground intensity from the foreground, called 
background correction. In order to study the 
effects of different background correction meth-
ods, log-normalized foreground and background 

  Fig. 3.6    An overview of protein  microarray   data analy-
sis. The fi gures represent ( a ) a processed microarray slide 
scanned at 635 nm for Cy5. This results in illumination of 
features, signal intensities of which are extracted during 
data acquisition. The autoantibody profi le of a healthy 
against diseased subject is shown in panel ( b ). Quality 
control features like positive controls and negative con-
trols aid as landmarks in the normalization  process     . 
Differentially expressed proteins can visually be observed 
showing opposite trends in the two cohorts. The visual 

representation of unnormalized ( top panel ) and normal-
ized data ( bottom panel ) is shown in panel ( c ). The dif-
ferential expression of a putative protein marker emerging 
from the data, and its relative fold change across the 
cohorts is shown in ( d ) upper panel, whereas the bottom 
panel shows the visual spot intensities. Panel ( e ) repre-
sents the classifi cation of subjects in two distinct cohorts 
based on the group of classifi ers deduced using mathemat-
ical algorithms       
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intensities are plotted for different samples with-
out performing any correction at fi rst. One of the 
methods (normexp + offset) from LIMMA (lin-
ear model for analysing differential expression) 
model is used to normally distribute the back-
ground intensities treating the foreground signal 
as an exponential  distribution   while stabilizing 
any resulting variance (Syed et al.  2015 ). 

 The underlying assumption of any microarray 
experiment is that the majority of proteins dis-
play the same expression levels across arrays. In 
order to study the biological differences, the 
technical variation that may arise due to dye bias, 
print-tip effects or day-to-day variations must 
fi rst be optimized. It is therefore important that 
the data is normalized for an unbiased analysis 
(Fig.  3.6c ). Some of the commonly used normal-
ization strategies include quantile normalization, 
variance-stabilizing normalization, cyclic loess 
and robust-linear-model normalization (An et al. 
 2014 ). These are essentially mathematical algo-
rithms aimed at distributing the variance arising 
in a set of arrays to normalize the signal intensi-
ties. Each of these strategies may be used under 
different set of conditions, depending on the 
nature of experiment in consultation with the 
biologists, clinicians and statisticians analysing 
the data. A comparative analysis of these normal-
ization strategies has been described in one of the 
previous studies (Kingsmore  2006 ).  

3.5.2     Differentially Expressed 
Proteins 

 Protein microarrays are generally used to com-
prehend the differential protein expression levels 
across any two cohorts (diseased vs. healthy) 
(Fig.  3.6d ). Determination of differentially 
expressed proteins between two sets of samples 
involves statistical tests with a null hypothesis 
that no gene is differentially expressed. In order 
to screen for signifi cant  biomarkers   that could 
differentiate these cohorts, a robust analysis of 
protein expression levels is required. The stu-
dent’s  t -test (assuming normal distribution of 
data), rank product (non-parametric), Wilcoxon 
rank-sum test (assuming nonparametric, normal 

distribution approximation), signifi cance analy-
sis of microarrays (SAM), LIMMA and 
M-statistic are commonly employed for generat-
ing a list of differentially expressed proteins (An 
et al.  2014 ). However, since protein microarrays 
are highly dynamic, statisticians often choose 
one or a combination of these tools or alterna-
tively develop  complementary      approaches to 
improve the stringency of data, especially if there 
are underlying assumptions of data distribution.  

3.5.3     Shortlisting Differentially 
Regulated Proteins 

 Correction methods, like Benjamini-Hochberg, 
shortlist proteins based on their statistical signifi -
cance providing a  p -value cut-off. Another way 
to improve the stringency of shortlisting proteins 
is to employ a fold-change cut-off further to the 
corrected  p -value cut-off. This is a manual way of 
examining if the data shortlisted qualifi es the 
threshold cut-off, which may be of interest to a 
biologist. These shortlisted proteins could be 
studied further or subjected to  algorithms   like 
correspondence analysis (CA) (Syed et al.  2015 ), 
a model analogous to principal component analy-
sis (PCA), to understand the degree of classifi ca-
tion that can be achieved to segregate two cohorts. 
CA is a dimensionality reduction technique, 
which helps in narrowing down the long list of 
differentially expressed proteins. The list from 
correspondence analysis can be treated as set of 
markers whose values are associated with classes 
in a statistically signifi cant manner rather than by 
mere chance. In order to select a panel of signifi -
cant classifi er proteins differentiating control 
samples from diseased samples, recursive feature 
elimination using models like support vector 
machine can be used (Syed et al.  2015 ). The effi -
cacy of these models can be visually validated 
using multidimensional scaling plots (Fig.  3.6e ) 
(Syed et al.  2015 ). Figure  3.7  describes the basic 
workfl ow of such an autoantibody screen-
ing experiment along with a general pipeline for 
protein  microarray   data analysis.

   A biologist could use a systemic approach to 
understand the dysregulated pathways emerging 
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from the list of signifi cantly dysregulated pro-
teins. In addition to this, protein interaction and 
metabolic networks, gene ontology and gene set 
enrichment analysis can be performed to com-
pletely understand pathobiology of the disease 
under study (Syed et al.  2015 ). Classifi er proteins 
with high fold-change values can be validated in 
clinical diagnostics   . Thus protein  microarray   
platform, with indispensable computational and 
statistical support for robust data analysis, is a 
powerful discovery tool for biomarker studies.   

3.6     Surface Plasmon  Resonance   

 Surface plasmon resonance (SPR) is an optical 
method to monitor changes in the refractive index 
of materials in the near vicinity of the metal sur-
face. It is a phenomenon that occurs when polar-
ized light, under the condition of total internal 
refl ection, strikes an electrically conducting thin 
metal fi lm at the interface between media of dif-
ferent refractive index: the glass of the sensor 
chip surface and the sample solution. 

 As the plane polarized light  strikes      through a 
high refractive index prism, the light becomes 
totally internally refl ected and generates an eva-
nescent wave that penetrate the thin metal fi lm. 
At a certain angle of incidence, the incident light 
excites surface plasmons (electron charge density 

waves) on the metallic fi lm. As a result, there is a 
characteristic absorption of energy via the eva-
nescent wave fi eld, and a drop in the intensity of 
refl ected light at a specifi c angle known as the 
resonance angle. These surface plasmon waves 
are extremely sensitive to the refractive index of 
the solution within the effective penetration depth 
of the evanescent fi eld. Interaction of biomole-
cules produces a change in the refractive index 
near the metal surface, leading to a shift in the 
resonance angle, which is monitored in real time 
by detecting changes in the intensity of the 
refl ected light. The apparent rate constants for the 
association ( K  a ) and dissociation ( K  d ) can be ana-
lysed from the rate of change of the SPR signal. 

 SPR-based biosensors are now routinely used 
as an established platform for validating biomo-
lecular interactions and performing concentra-
tion analysis (Pattnaik  2005 ; Helmerhorst et al. 
 2012 ; Berggård et al.  2007 ; Boozer et al.  2006 ; 
Shah et al.  2015 ). The technology allows analysis 
of these interactions in real time with high sensi-
tivity and low sample requirement in a label-free 
environment. The method is not restricted to the 
usage of protein-protein interactions, but the gen-
erality extends to all kinds of molecules includ-
ing protein-lipid, protein-RNA and 
protein-nanoparticle studies (Katsamba et al. 
 2002 ; Cedervall et al.  2007 ; Navratilova et al. 
 2006 ). Briefl y, one of the interacting molecules 

  Fig. 3.7    Schematic  representation      
of the protein  microarray   data 
analysis strategy       
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(ligand) is bound on a sensor chip surface and the 
other interacting partner (analyte) is injected over 
the surface. The amount of analyte bound is con-
tinuously monitored as a function of time show-
ing the progress of interaction. This plot of 
response against time is called sensorgram. The 
SPR response is proportional to the mass of ana-
lyte bound at the sensor surface. The analyte 
injection is followed by an increase in binding 
response which enables the determination of rate 
of complex formation (K a ). As the analyte injec-
tion is replaced by buffer fl ow, the rate of disso-
ciation of the complex (K d ) can be monitored. 
The complex may not dissociate completely in 
many cases, wherein regeneration of the surface 
is performed with mild acidic or basic washing 
conditions. 

3.6.1     SPR Data Processing 
and Analysis 

 In SPR, the data is collected continuously over 
time so that the kinetic parameters can be deter-
mined with accuracy and precision. SPR analysis 
of  biomolecular   interactions involves crucial 
experimental design and depends on several 
experimental factors such as optimum buffers, 
pH conditions, immobilization  chemistry     , ligand 
density, regeneration solutions, fl ow rate and 
temperature. In single-cycle kinetics, analytes 

with increasing concentrations are injected one 
after the other in a single cycle without the need 
to regenerate the surface between sample injec-
tions. However, in multi-cycle kinetics, different 
analyte concentrations are run as different cycles 
which may require regeneration of the surface 
after every individual cycle, depending on the 
dissociation pattern of the analyte molecule. 
Figure  3.8  demonstrates an example of protein 
interaction with a small drug molecule performed 
using both multi-cycle kinetics and single-cycle 
kinetics. The latter approach reduces the experi-
mental time involved and seems aptly suitable for 
situations where optimum regeneration condi-
tions cannot be achieved. It is suggested to immo-
bilize low amount of ligand for kinetic analysis 
of macromolecular interactions to achieve sur-
face saturation and avoid mass transport limita-
tion effect and aggregation. Mass transport 
limitation occurs when the binding rate of ana-
lyte to ligand is faster than the diffusion rate of 
analyte to the ligand surface. Low surface immo-
bilization and high fl ow rates can minimize this 
effect allowing better fi t of models.

   After the data is collected, several processing 
steps need to be performed before any quantita-
tive information can be extracted. A number of 
software programs are available for processing 
SPR data, including BIAevaluation, Scrubber and 
CLAMP (Morton and Myszka  1998 ). The initial 
steps in data processing involve zeroing on the 

  Fig. 3.8    Surface plasmon  resonance   analysis for a protein-drug interaction study. The fi gures illustrate protein interac-
tion with a small drug molecule performed using ( a ) multi-cycle kinetics and ( b ) single-cycle  kinetics            
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x-axis (time) and y-axis (response units). This 
aligns the beginning of injections with respect to 
each other and allows the responses observed 
from each fl ow channel to be compared with one 
other. The referencing steps help in minimizing 
artifacts, and also correcting for any bulk shift 
resulting from buffer mismatch in sample buffer 
and running buffer. In the fi rst referencing step, 
the reference fl ow cell sensorgram is subtracted 
from the active fl ow cell to produce a sensorgram 
removing bulk shift contributions. In the second 
referencing step, as exemplifi ed in Fig.  3.9  from a 
protein-protein interaction study, the effect of buf-
fer injections is nullifi ed by subtracting the base-
line response before sample injection from the 
obtained sample response. These two referencing 
steps, known as double referencing, remove the 
systematic shifts and drifts in baseline, frequently 
observed in sensorgrams (Myszka  1999 ).

   The data now becomes ready for fi tting to 
appropriate models using a mathematical algo-
rithm, and to further determine the kinetic param-
eters ( K  a ,  K  d  and  K  D ) and characterize the 
interaction. The chosen analyte concentration 
range should be wide enough to achieve surface 
saturation, the highest concentration being 
approximately fi ve to ten times the K D  value. 
Purity of the ligand and analyte, immobilization 
heterogeneity, mass transfer effects, rebinding of 
analytes to ligand, buffer mismatch, inappropri-
ate analyte range and complexity of biological 

 systems   can greatly infl uence the fi tting of mod-
els. There are a number of kinetic  models      avail-
able that can fi t the acquired data such as 1:1 
Langmuir fi t model, heterogeneity model, 
 bivalent analyte model, conformational change 
model, etc. In general, the simplest model, the 
1:1 Langmuir fi t model (one ligand molecule 
interacts with one analyte molecule assuming 
that the interaction rate is not limited by mass 
transport) should be tried as the fi rst attempt 
since most of the biological interactions occur in 
a 1:1 stoichiometry. There should be a valid justi-
fi cation for the use of other models, the results of 
which should be confi rmed with other supporting 
experiments. Many factors need to be considered 
while deciding the correct fi t model. 

 In a global fi t, both association and dissocia-
tion data, for all analyte samples, are fi t at the 
same time using a sum of squared residuals over 
every data point. The global approach is more 
effi cient because there are fewer adjustable 
parameters, whereas a different  R  max  value is cal-
culated for each curve in a local fi t. After the fi t is 
made, the curves need to be studied well to 
understand the accuracy of fi t for the association 
and dissociation phase, and examine if the calcu-
lated  R  max  is within the expected range.  R  max  is the 
maximum feasible response that can be obtained 
for a specifi c interaction. The theoretical  R  max  for 
an interaction can be calculated based on the fol-
lowing formula:  R  max  =  analyteMW/ligandMW 

  Fig. 3.9    An example illustrating blank subtraction for 
subtracting bulk effects and checking the specifi city. A 
protein-protein kinetic sensorgram showing subtraction of 
an ideal baseline response (shown in  grey ) before sample 

injection from the obtained sample response of different 
concentrations (shown in different  colours     ). The panel ( a ) 
shows the unsubtracted sensorgram, whereas panel ( b ) 
displays the blank-subtracted sensorgram       
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* R  L * Sm , where  R  max  is the maximum binding 
response (RU),  R  L  is the immobilization level, S m  
is the stoichiometric ratio (number of binding 
sites per ligand) and MW is the molecular weight. 
In concept, the theoretical R max  should be the 
same for different analyte concentrations injected 
one after the other, if we do not consider the bind-
ing site loss due to harsh regeneration or incom-
plete regeneration.  R  eq  is the response obtained 
when binding between ligand and analyte reaches 
equilibrium. The equilibrium constant,  K  D , can 
be calculated directly using steady-state or equi-
librium analysis, where the rate of association 
equals the rate of dissociation. The response at 
equilibrium,  R  eq , is measured over a given range 
of analyte concentrations, and the values are plot-
ted against those analyte concentrations. The 
kinetic and equilibrium analyses performed on 
the same data set should ideally produce similar 
K D  values, which can refl ect the confi dence level 
of the data obtained. 

 Differences in sample buffer and running buf-
fer result in bulk signal, which does not allow 
models to fi t well to the data (Rich and Myszka 
 2010 ). Many times, when the analyte concentra-
tions are not accurately known, the curve fi ttings 
using software can be misleading. One such 
example is demonstrated from a protein-small 
molecule interaction study (Fig.  3.10a ). In such 
cases, a good fi t of the analysed kinetic data can 
be confi rmed by low chi 2  (less than 10 % of  R  max ), 

which is the average of squared differences 
between the measured data points and the corre-
sponding fi tted values. One chi 2  value, which 
gives a measure of the closeness of model fi t, is 
determined for all curves fi tted simultaneously. 
Residual plots, generated by some of the soft-
ware, determine the  accuracy      of fi tting even bet-
ter than chi 2  values. The residual plot shows the 
difference in response between each data point 
for the experimental curves and the calculated 
curves. The shape and distribution of the residual 
plot give a better insight on the quality of fi t to the 
chosen model. If there are systematic deviations 
between the experimental and fi tted curves, the 
plot will indicate them by displacement from the 
zero  line  . Figure  3.10b  demonstrates an ideal 
residual plot obtained from an antibody-protein 
interaction using BIAevaluation software. The 
guidelines are drawn in green to indicate the 
range of acceptability. Ideally, the noise level in 
the plot should be on the order of ±2 RU (Drescher 
et al.  2009 ).

3.7         Concluding Remarks 

 Omics platforms have emerged as powerful tools 
to help researchers look at biosystems with a 
global perspective. Innovations in technologies 
have broadened our existing knowledge, reveal-
ing the interplay of various biomolecules at the 

  Fig. 3.10    An example illustrating a poor curve fi tting and 
an ideal residual plot. A protein-small molecule interac-
tion study resulting in ( a ) a poor curve fi tting. An ideal ( b ) 
residual plot from an antibody-protein interaction show-

ing  differences      in response between experimental and 
calculated curves, demonstrating the quality of fi t to the 
chosen model       
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systemic level. However, the quantity of data 
assimilated through these technologies employs 
new challenges on data processing and analysis. 
High-throughput techniques aiming at decoding 
the complexity of biosystems have led to a surge 
of data, albeit with many downstream hurdles in 
the form of data storage and data analysis. In the 
last few decades, huge efforts have been devoted 
towards creation of database repositories for dif-
ferent data sets where researchers are encour-
aged to share their data associated with scientifi c 
 publications. This has enabled researchers 
around the world to reproduce and validate the 
studies, as well as analyse the data in innovative 
ways using different methodologies. With  multi-
omics   technologies routinely being used for var-
ious studies, it is important to appraise the 
challenges of data analysis associated with these 
sophisticated platforms. Data exploitation 
requires vital support from sophisticated soft-
ware and explorative tools, employing statistical 
methods and visualization aids, to analyse het-
erogeneous data sets. 

 Lately, there have been signifi cant advance-
ments in  proteomic   techniques offering greater 
sensitivity and rapidity, complementing the tra-
ditional methods. Data processing and analysis 
in proteomics are certainly a complex multistep 
process. Common proteomic techniques like 
gel- based approaches, mass  spectrometry  ,  pro-
tein microarrays   and label-free technologies 
fi nd overlapping applications in  multi-omics   
disciplines. As discussed above, these  tech-
niques      are often employed for proteome profi l-
ing, identifi cation of post-translational 
modifi cations, comparative expression analysis 
of proteins and studying molecular interactions. 
Accurate and reliable data processing and anal-
ysis are the fundamentals of these proteomic 
approaches to generate factual biological 
insights. Hence, data processing and analysis of 
heterogeneous data types is presently an active 
fi eld of research where biologists and biostatis-
ticians are persistently working together 
towards improving data utilization in research 
and discovery.     
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