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Abstract

Systemic fungal infections have increased over time due to the rise in the

at-risk population, which includes immunocompromised patients, those

submitted to organ transplantation or undergoing chemotherapy. Clinically

available antifungals are limited since some of them have important side

effects, being toxic to the host cells, and some can quell filamentous fungi,

but their activity against pathogenic yeasts is not killing but controlling their

multiplication. Antimicrobial peptides are multifunctional molecules

expressed by several microorganisms or synthetized by different

techniques. They can play a central role in infection and inflammation.

Some of their other effects include chemotactic and immunomodulating

activities and wound repair. Antimicrobial peptides (AMPs) can be isolated

from a large variety of microorganisms, such as plants, vertebrates, insects,

bacteria, and fungi. They are classified into categories according to their

amino acid composition, size, and conformational structures, and naturally

occurring peptides can be synthetized. Solid-phase peptide synthesis allows

the use of nonproteinogenic amino acids and permits changes in structural

and physicochemical properties. In these terms, peptide engineering is a

useful tool to adjust features such as net charge, surface hydrophobicity, and

polarity, and it may also optimize activity and overcome the limitations

inherent to natural peptides. AMPs have potential applications in antifungal

therapeutics in human health, and recent uses of synthetic AMPs against

fungal infections are discussed in this article.

C.G. Freitas

Instituto Federal de Brası́lia, Brasilia, Brazil
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Abbreviations

ABP-dHC Antimicrobial peptide drury

Hyphantria cunea

AIDS Acquired immune deficiency

syndrome

AMPs Antimicrobial peptides

ATP Adenosine triphosphate

BMAP Bovine myeloid antimicrobial

peptides

DNA Desoxyribonucleic acid

EDMC Electrostatically driven Monte

Carlo

FDA US Food and Drug Administration

GPI Glycosylphosphatidylinositol

HIV Human immunodeficiency virus

hLF Human lactoferrin

HNP Human neutrophils peptides

HP Human defensins

MDR Multidrug-resistant

MPTP Mitochondrial permeability

forming transition pores

PI Propidium iodate

PMAP Porcine myeloid antimicrobial

peptide

SMAP Sheep myeloid antimicrobial pep-

tide

3.1 Introduction

Pathogenic fungal infections are the seventh

most common cause of infection-related deaths

in the United States, and the fourth cause of

nosocomial infection is due to the fungal patho-

gen Candida albicans (McNeil et al. 2001;

Fisher et al. 2012; Wisplinghoff et al. 2004). Sys-

temic mycoses can be classified according to

whether the causative agent is a systemic fungal

pathogen (Coccidioides immitis, Histoplasma
capsulatum, and Paracoccidioides brasiliensis)

or one of the increasing number of opportunistic

fungal pathogens, including C. albicans, Crypto-

coccus neoformans var. grubii (Maurya

et al. 2011; Rodriguez-Cerdeira et al. 2014),

and several other ones. Those infections have

become more frequent among the increasingly

large population of individuals with severe

immune deficiencies, including those with

human immunodeficiency virus (HIV) and

acquired immune deficiency syndrome (AIDS)

(Martinez and Temesgen 2006; Marukutira

et al. 2014).

The treatments of those systemic fungal

infections are primarily based on itraconazole,

fluconazole, or amphotericin B (Rodriguez-

Cerdeira et al. 2014; Kahn et al. 2014). The

triazole group enhances the specificity for fungal

cytochrome P450 target, and the extra methyl

group in fluconazole enhances the hydrophobic

interactions at the active site, but they present

limitations of toxicity or bioavailability problems

that affect their potential use as systemic agents

(Fukuoka et al. 2003; Ostrosky-Zeichner

et al. 2010).

Amphotericin B is used for the treatment of

many types of invasive fungal infections and

binds to ergosterol to form membrane pores,

which leads to leakage of intracellular constituents

(Gabrielska et al. 2006). Despite its undeniable

antifungal activity, amphotericin B has many side

effects, such as nephrotoxicity (Fanos and Cataldi

2001; Wong-Beringer et al. 1998). These side

effects occur mainly because drug targets in fungi

are homologues of some molecular sites in

humans. In addition to this limitation, the develop-

ment of antimicrobial resistance due to the use of

broad-spectrum antifungal drugs and their limited

number for clinical purposes is a concern for public

health. Considering these facts, research into new

molecules with future potential therapeutic appli-

cation is extremely important. Antimicrobial

peptides have potential use as antifungal agents,

killing the microorganism directly, or immunomo-

dulating the host immune system response

(Maurya et al. 2011; Zhai et al. 2010;

Lakshminarayanan et al. 2014; Wong et al. 2013;

Steinstraesser et al. 2011; Lim et al. 2015).

3.2 Antimicrobial Peptides

Antimicrobial peptides (AMPs) are naturally

occurring molecules that play an important role

in the first line of defense against microbial
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threats. They can be isolated from organisms as

diverse as humans, plants, insects, and even other

microorganisms like bacteria (Zasloff 2002).

They are produced due to an exposure to

infecting microorganisms and act in order to

kill or to slow the growth of invading

microorganisms and to aid allied mechanisms

of natural and adaptive immunity (Fox 2013;

Brogden 2005).

AMPs have a broad spectrum of activity

against bacteria, fungi, enveloped viruses,

parasites, and even cancerous cells. They can

act directly on microorganism membranes or

other nonspecific cell targets, which is an advan-

tage in avoiding the development of microbial

resistance by gene mutation, as it might happen

when drugs have specific proteins as targets

(Peschel and Sahl 2006). Moreover, those

peptides can be extremely variable in length,

amino acid composition, and structure (Nguyen

et al. 2011). According to their predominant sec-

ondary structure, AMPs are divided into four

categories: (a) α-helical, (b) β-sheet, (c) mixed

α-helix/β-sheet, and (d) extended. The net posi-

tive charge of cationic peptides (þ2 or þ9)

mediates their selective activity against

microorganisms’ cells that carry a negative net

charge due to arginine and lysine residues. Those

peptides also have approximately 50 % of hydro-

phobic amino acids that facilitate interactions

with the fatty acyl chains (Steckbeck

et al. 2014; Hancock and Patrzykat 2002;

Garibotto et al. 2010; Hancock and Rozek 2002).

Some of the AMP mechanisms of action

involve different membrane interactions. Mem-

brane disruption can occur through the formation

of toroidal pores, composed of loosely associated

peptides with interdigitating phospholipid head

groups among them. Those peptides are at a criti-

cal threshold concentration (Brogden 2005). Dif-

ferently, in the “barrel-stave model,” the peptides

are not associated with the lipid head groups, but

their hydrophobic regions alignwith the lipid core

region of the bilayer, and the hydrophilic peptide

regions form the interior region of the pore (Yang

et al. 2001). Another type of membrane interac-

tion is through peptide accumulation on the

bilayer surface, since they are electronically

attracted to the anionic phospholipid head groups

at numerous sites, thus covering the surface of the

membrane in a carpet-like manner. At high pep-

tide concentrations, these surface-oriented

peptides may act like detergents, leading to the

formation of micelles (Shai 1999; Ladokhin and

White 2001).

The mechanism of action for the antifungal

activity of peptides is generally more complex

and often involves entry of the peptide into the

cell. It occurs mainly because of the fungal cell

architecture, briefly described since they are

targets for antifungal drugs (Yu et al. 2014). The

cell wall has been shown to be primarily com-

posed of chitin, glucans, and glycoproteins, all of

them being covalently cross-linked together. The

glycoproteins presented in the cell wall are exten-

sively modified with both N- and O-linked

carbohydrates and, in many instances, contain a

glycosylphosphatidylinositol (GPI) anchor as

well (Bowman and Free 2006). The β-glucan net-
work consists largely of (1–3)-β-glucans with

(1–6)-β-branches. In yeast (1–6)-β-glucans are

also present. The cell wall is also composed of

glycosylated proteins that can be decorated with

mannose, galactose, glucose, and uronic acid

residues. Chitin and (1-3)-β-glucan layer are a

target for a wide range of antifungal molecules

that can affect their synthesis and lead to a growth

inhibitory effect (Fontaine et al. 2000;

Schoffelmeer et al. 1999; Theis and Stahl 2004).

Figure 3.1 is a schematic representation of some

possible peptide membrane interactions and the

basic fungi cell wall structure. Fungal plasma

membranes are composed of three main lipids

including phospholipids, sphingolipids, and

sterols, mainly ergosterol (differently from mam-

malian cells, composed of cholesterol). The dif-

ference in sterol content has been exploited in the

mechanism of antifungal drugs such as

amphotericin B and azoles (van der Weerden

et al. 2013; Kaminski 2014). The mechanisms

through which AMPs have antimicrobial activity

involve not only membrane physiology interfer-

ence or disruptions (as described by the proposed

models of barrel-stave, carpet, or toroidal pores).

They might also interact with protein targets

associated with the membrane or by intracellular
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targets, including DNA and protein synthesis,

protein folding, enzymatic activity, and cell wall

synthesis, which may confound the generation of

resistance development (Lakshminarayanan

et al. 2014; Brogden 2005; Jenssen et al. 2006;

Hale and Hancock 2007; Hancock et al. 2012;

Yount et al. 2006). As an example, histatins bind

to a receptor in the fungal cell membrane, enter

the cytoplasm, and induce the non-lytic loss of

ATP from actively respiring cells. Their action

can also disrupt the cell cycle and lead to the

generation of reactive oxygen species (Kavanagh

and Dowd 2004; De Smet and Contreras 2005)

(Table 3.1).

The isolation and characterization of a natural

peptide is a long and laborious process that can

hinder the clinical use of AMPs. A new approach

is the design of synthetic sequences, which are

the result of optimizing sequence and chemical

characteristics that are common to many types of

AMPs (pharmacophoric patron). Ideally, an anti-

fungal peptide agent should be as short as possi-

ble, and therefore the de novo peptide design

approaches help to minimize costs production

and can help to overcome the low in vivo activ-

ity, the labile nature of peptides, and potential

toxicity (Steckbeck et al. 2014; Garibotto

et al. 2010).

Fig. 3.1 Peptide interaction with the fungal membrane.

Schematic representation of the fungal cell wall, com-

posed of outer protein layer with carbohydrate residues

(dark purple). Peptides with hydrophilic head group and

hydrophobic acyl side chain regions (dark green, light
green, and orange) interacting with fungal plasma mem-

brane as barrel-stave pore (a), toroidal pore (b), or by

membrane translocation (c) and membrane disruption in a

carpet-like manner (d), as highlighted for LL-37. These

interactions depend on the peptide, its concentration, and

lipid composition of the membrane. Some peptides such

as histatins, β-defensins, lactoferricins, RK-31, KS-30,
and hLF (1-11) can reach internal targets such as the

mitochondria (e). Histatin 5 also leads to the generation

of (f) reactive oxygen species – ROS (black spindles). The
non-lytic release of ATP (pink) (g) by HNP-1, HNP-2,

HNP-3a, histatin-5, hLF(1–11), hLF(21–31), and B4010

might activate cell death pathway and (h) induce G1

phase arrest of the nucleus (i)
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Table 3.1 Antifungal peptides

Antifungal peptides

Origin Name Species Effective References

Insect Alo-3 Acrocinus longimanus Candida albicans,
C. albicans ATCC 90030,

C. glabrata, C. glabrata
ATCC 36082

van der Weerden et al. (2013)

and Barbault et al. (2003)

Termicin Pseudocanthotermes
spiniger

C. albicans, Cryptococcus
neoformans

Da Silva et al. (2003) and

Lamberty et al. (2001)

Holotricin-3 Holotrichia
diomphalia

C. albicans Lee et al. (1995)

Tenecin-3 Tenebrio molitor C. albicans Kim et al. (1998)

Cecropin A Hyalophora cecropia,
Drosophila

Aspergillus fumigatus Steiner et al. (1988) and De

Lucca et al. (1997 2000)

ABP-dHC-

cecropin

Hyphantria cunea C. albicans, Neurospora
crassa, Rhyzopus,
Fusarium, Alternaria,
Mucor

Zhang et al. (2015)

Rondonin Acanthoscurria
rondoniae

C. albicans, C. krusei,
C. glabrata,
C. parapsilosis,
C. tropicalis,
C. guilliermondii

Riciluca et al. (2012)

Amphibian Brevenin-

1BYa

Rana boylii C. albicans, Staphylococcus
aureus

Conlon et al. (2003), Yeaman

and Yount (2003), and Pal

et al. (2006)

Brevenin-

1Pa,

brevenin-

1Pb,

brevenin-1Pc

Rana pipiens C. albicans, S. aureus,
Escherichia coli

Goraya et al. (2000) and

Marenah et al. (2004)

Temporin A Rana temporaria C. albicans Mangoni et al. (2000)

Mammalian Indolicidin Cytoplasmic granules

of neutrophils

C. albicans, C. neoformans,
S. aureus, E. coli

Selsted et al. (1992), Lee

et al. (2003) and Hsu

et al. (2005)

BMAP-28 Bovine myeloid

antimicrobial peptide

C. albicans, mammalian

tumor cells

Risso et al. (2002)

SMAP-29 Sheep myeloid

antimicrobial peptide

C. albicans, Pseudomonas
aeruginosa

Lee et al. (2002a), Shin

et al. (2001) and Dawson and

Liu (2011)

PMAP-23 Porcine myeloid

antimicrobial peptide

C. albicans Park et al. (2002b) and Lee

et al. (2001, 2002b)

Protegrin-1 Porcine cathelicidin C. albicans, C. neoformans Dawson and Liu (2010)

LL-37 Human secretions C. albicans, Gram-positive

and Gram-negative bacteria

den Hertog et al. (2005), Durr

et al. (2006), and Oudhoff

et al. (2010)

HNP1,

HNP-2,

HNP3a

Human neutrophils C. albicans, C. neoformans,
Coccidioides immitis,
Rhizopus oryzae,
A. fumigatus

Ganz (2003, 2005), Raj and

Dentino (2002), and Lehrer

et al. (1988)

Histatin 5 Human salivary

peptide

C. albicans, C. neoformans,
A. fumigatus

Xu et al. (1999), Tsai and

Bobek (1997), Situ

et al. (2000), and

Helmerhorst et al. (2001)

hLF(1–11),

hLF (21–31)

Human lactoferrin C. albicans Lupetti et al. (2000) and

Viejo-Diaz et al. (2004)

(continued)
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De novopeptide design includes high-

throughput combinatorial library screening,

structure base modeling, predictive algorithms,

and introduction of non-coded modifications to

conventional peptide chemistry (Nguyen

et al. 2011; Blondelle and Lohner 2010). The

great importance of designed peptides is that

many specific properties, such as hydrophobicity,

hydrophobic length, or nature of flanking

residues, can be systematically varied. Ideally,

artificial transmembrane peptides should serve

as mimics for transmembrane segments of mem-

brane proteins (Holt and Killian 2010). It is pos-

sible to synthetize shorter peptides structurally

related to another known peptide, exploring the

influence of amino acid substitutions and

deletions on its antifungal activity. Linear

peptides are flexible, and their possible tridimen-

sional conformations are therefore very complex

to determine. It is necessary to use tools to per-

form conformational analysis for these structures

(Garibotto et al. 2010). Figure 3.2 shows

structures of some antifungal peptides deposited

in RSCB Protein Data Bank website by their

authors, including its PDB code (Barbault

et al. 2003; Da Silva et al. 2003; Saravanan

et al. 2013; Friedrich et al. 2001; Yang et al.

2009; Tack et al. 2002; Fahrner et al. 1996;

Wang 2008; Zhao et al. 2013; Day et al. 1993).

3.3 Insect Antifungal Peptides

Insect peptide Alo-3 was isolated from the cole-

opteran Acrocinus longimanus. This peptide

contains six cysteine residues, forming three

disulfide bridges and an antiparallel β-sheet
with a long flexible loop connecting the first

strand to the second strand and a series of turns.

Alo-3 belongs to the knottin-type family of

proteins with a cysteine-stabilized, “knotted”

topology, defined by two parallel disulfide

bonds, threaded by a third one. It has no nega-

tively charged residues and displays a cationic

Table 3.1 (continued)

Antifungal peptides

Origin Name Species Effective References

Synthetic B4010 Originated from a

secondary peptide

derived from human

β-defensin3

C. albicans Eckert (2011) and Nguyen

et al. (2010)

Penetratin 1 Cell-penetrate peptide C. albicans, C. neoformans Milletti (2012) and Masman

et al. (2009)

Fig. 3.2 Structures of antifungal peptides. Schematic

representation of antifungal peptide based on nuclear

magnetic resonance. Each PDB code is in parenthesis.

Alo-3 (a), termicin (b), temporin-1 (c), indolicidin (d),

BMAP-27(e), SMAP-29 (f), protegrin-1 (g), LL-37 (h),
HNP1 (i), and (hLF) (j). All images were done using The

Pymol molecular graphic system, v1.7.4
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pole on its surface that may contribute to its

antifungal activity (van der Weerden

et al. 2013). Barbault and coworkers (2003)

tested two other homologous peptides, Alo-1

and Alo-2, with sequence identity above 80 %,

but Alo-3 was the most effective against Candida
glabrata and C. albicans, both tested not only

against clinical isolates of those pathogens but

also against ATCC strains (ATCC90030 and

ATCC 36082, respectively). Another peptide

derived from insects is termicin, isolated from

the fungus-growing termite Pseudocanthotermes
spiniger (heterometabole insect, Isoptera).

Termicin is a cysteine-rich antifungal peptide

with a α-helical segment and two antiparallel

β-sheets forming a “cysteine αβ motif,” also

found in antibacterial and antifungal defensins

and from plants. Termicin showed activity

against C. albicans and C. neoformans, but was

inactive against C. glabrata (Da Silva et al. 2003;

Lamberty et al. 2001).

Likewise, C. albicans growth was inhibited by

holotricin-3 and tenecin-3 peptides, isolated from

the hemolymph of the coleopteran insect

Holotrichia diomphalia and from the larvae of

Tenebrio molitor, respectively (Kim et al. 1998;

Lee et al. 1995). Tenecin-3 had a better

candidacidal effect, and its uptake and internali-

zation by the cell are essential for its antimicro-

bial activity. This indicates an inner target

involvement in the process of killing, since mem-

brane permeabilization and calcein release were

not observed. Uptake of tenecin-3 was inhibited

at low temperature (0 �C) and by the presence of

the oxidative phosphorylation inhibitor, sodium

azide (Kim et al. 2001). Chae and coworkers

(2012) isolated a new 14 kDa peptide, named

tenecin-4, which was effective against

Escherichia coli but not against Bacillus subtilis
or C. albicans.

An interesting group of insect peptides is the

cecropins, which were originally isolated from

the cecropin moth (Hyalophora cecropia) and

have been found in insects like Drosophila (van

der Weerden et al. 2013). Cecropins are basic

35–39 amino acid residue peptides that can fold

into two amphipathic α-helices, separated by a

more flexible hinge. Their mode of action against

bacteria is based on the formation of either

voltage-dependent ion channels or general dis-

ruption of the membrane by a “carpet-like”

mechanism (Steiner et al. 1988). Cecropin A, a

37 amino acid residue peptide, is complexed with

lipopolysaccharide and in germinating cells of

Aspergillus fumigatus induces death, whereas

binding and cell death were not observed with

non-germinating hyphae (De Lucca et al. 1997).

De Lucca and coworkers (2000) have proposed

the mode of action of this peptide as involving

disruption of the plasma membrane. The ABP-

dHC-cecropin A (antimicrobial peptide drury

Hyphantria cunea), a highly cationic peptide

isolated from the fat bodies of drury moths

(H. cunea), has shown a strong antifungal activ-

ity against both C. albicans and Neurospora

crassa as well as Rhyzopus, Fusarium,
Alternaria, and Mucor species (Zhang

et al. 2015).

Riciluca and coworkers (2012) have recently

isolated a peptide named rondonin from the spi-

der Acanthoscurria rondoniae. This peptide

shows a molecular mass of 1236.77 Da and activ-

ity against C. albicans, C. krusei, C. glabrata,

C. parapsilosis, C. tropicalis, and

C. guilliermondii. Otherwise, no deleterious

activities against human erythrocytes or Gram-

positive and Gram-negative strains were

observed.

3.4 Amphibian Antifungal
Peptides

Amphibians inhabit environments that provide a

great challenge for their immunity, providing

valuable information about prospective func-

tional molecules. In this context, peptides have

been isolated and described. Some of them, like

brevinins and temporins, were effective against

human fungal pathogens (Xu and Lai 2015).

Brevinins consist of two families named

brevinin-1 (24 residues) and brevinin-2 (33–34

residues), and they were first described in 1992

by Morikawa and coworkers (Morikawa

et al. 1992), who isolated these peptides from

the skin of the Japanese frog Rana brevipoda
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porsa, demonstrating microbicidal activity

against a wide range of Gram-positive, Gram-

negative bacteria and pathogenic fungi strains.

Up to now about 350 types of brevinins have

been discovered, sharing common features like

linearity, amphipathicity, and cationicity, and

some of them have a C-terminal disulfide-bridge

cyclic heptapeptide, called a rana box (Novkovic

et al. 2012; Savelyeva et al. 2014). Brevinin-1

exists as a random coil in aqueous solution, but

adopts an amphipathic α-helical structure in a

hydrophobic membrane-mimetic environment

such as 50 % trifluoroethanol. The brevinin-1

peptides generally comprise an N-terminal

hydrophobic region, a proline containing a

hinge region in the central portion, and a

C-terminal disulfide-bonded loop (Kwon

et al. 1998). The α-helical structure leads to per-

turbation of the phospholipid bilayer of target

membranes in the “barrel-stave” and “carpet-

like” models (Savelyeva et al. 2014)

Conlon and coworkers (2003) isolated the pep-

tide brevinin-1BYa (FLPILASLAAKFGPKLFCL

VTKKC) from the norepinephrine-stimulated skin

secretions from the foothill yellow-legged frog

Rana boylii. This peptide was potent against

C. albicans and Staphylococcus aureus, but its
therapeutic potential is limited due to its strong

hemolytic activity. The research group has also

substituted amino acid in the original molecule,

which leads to brevenin-1BYb and brevenin-

1BYc peptides with fourfold and tenfold reduction

against C. albicans, respectively. The change in

the cationic residues can be the explanation of the

observed result, since this global net charge reduc-

tion affects the initial binding to the negatively

charged phospholipids in the microorganisms’

cell membranes (Yeaman and Yount 2003).

Another study evaluated the antimicrobial activity

of brevinin-1BYa and investigated the growth

inhibitory activity of a synthetic replicate of this

peptide: [Ser18, Ser24] brevinin-1BYa (FLPILASL

AAKFGPKLFSLVTKKS). The group observed

an eightfold reduced hemolytic activity compared

to the native peptide and suggested that this reduc-

tion arises fromdestabilization of the α-helix in the
C-terminal region of the peptide associated with

replacement of the cysteine bridge. Antimicrobial

activities against C. albicans and Gram-negative

bacteria were reduced. In contrast, substituting the

two cysteines for serines abolished the antifungal

activity (Park et al. 2002a; Pal et al. 2006). Peptides

isolated from Rana pipiens, such as brevinin-1Pa,

brevinin-1Pb, and brevinin-1Pc, were also effec-

tive againstC. albicans, S. aureus, andEscherichia

coli (Goraya et al. 2000). In addition, brevinins are

able to stimulate insulin release, which causes

hypoglycemia in frogs attacking predators. This

property can also be explored for the treatment of

patients with type 2 diabetes (Marenah et al. 2004;

Abdel-Wahab et al. 2010).

Another class of amphibian peptides is the

temporins. They were initially identified in

1996 in skin secretion of the European red frog

Rana temporaria (Simmaco et al. 1996), but they

can be isolated from several other frog species as

well as from wasp venom (Rollins-Smith

et al. 2003). They are a group of linear short

peptides (10–14 amino acid residues) with a net

cationic charge and an amidated C-terminus. In

an apolar environment, temporins showed a

marked propensity to adopt an amphipathic

α-helical structure. Temporins are not as basic

as other cationic peptides, although in the most

potent, temporin A, the one basic residue is

essential for activity. Temporins A and B have

been reported to be active against C. albicans and

Gram-positive and Gram-negative bacteria.

These peptides permeate both artificial and

biological membranes, but they do not lyse

human erythrocytes, which suggests there are

additional factors involved in the mechanism of

action on different cell types (van der Weerden

et al. 2013; Mangoni et al. 2000; Wade

et al. 2000; Hujakka et al. 2001; Carotenuto

et al. 2008).

3.5 Mammalian Antifungal
Cathelicidins

Cathelicidins are peptides of approximately

100 amino acid residues, and their sequences

are related to cathelin, a cystatin-like protein.

They are commonly found in humans and other

species such as sheep, pigs, horses, cattle,
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chickens, rabbits, and some species of fishes,

being usually stored in the secretory granules of

neutrophils and macrophages. They can also be

released extracellularly upon leukocyte activa-

tion (Zanetti 2005; Kosciuczuk et al. 2012). The

term cathelicidins was first proposed in 1995 to

acknowledge the evolutionary relationship of the

novel protein family to cathelin, and it is used to

denote holoproteins that contain a cathelin-like

sequence and a cationic antimicrobial domain

(Zanetti et al. 1995). The first is a conserved

N-terminal sequence (“cathelin” domain, the

cathepsin L inhibitor), and the second is a

C-terminal antimicrobial domain of varied

sequence and length (both interspecies and intra-

species), which express their activity after they

have been cleaved from the holoprotein

(Gennaro and Zanetti 2000). In mammals,

cathelicidins were first identified in bone marrow

myeloid cell, and therefore they are also named

“myeloid antimicrobial peptides” (MAP)

(Zanetti 2005).

Among the cathelicidin peptides, some pres-

ent antifungal activity and this is stronger against

yeast than against filamentous fungi (Benincasa

et al. 2006). Indolicidin is a tryptophan-rich

bovine cathelicidin peptide of 13 amino acid

residues (ILPWKWPWWPWRR-NH2), purified

from the cytoplasmic granules of neutrophils and

found in bone marrow cells as a 144-long amino

acid precursor (Selsted et al. 1992; Del Sal

et al. 1992). This peptide showed activity against

fungi C. albicans and C. neoformans, as well

toward bacteria S. aureus and E. coli (Benincasa

et al. 2006). The fungicidal activity involves

membrane disruption, DNA binding and topo-

isomerase 1 inhibition. In the first situation, the

peptide interacts with the lipid bilayers in a salt-

and energy-dependent manner. The DNA inter-

action occurs by DNA synthesis inhibitors bind-

ing DNA or proteins involved in the process.

Indolicidins may also interact in other biosynthe-

sis pathways or in cell cycle signal transduction

(Lee et al. 2003; Hsu et al. 2005).

Other bovine cathelicidins with fungicidal

activity are bovine myeloid antimicrobial

peptides (BMAP) of 27 and 38 amino acid

residues, BMAP-27 and BMAP-28, respectively.

BMAP-28 is toxic for mammalian tumor cells,

inducing their apoptosis, and it was also

demonstrated that it induces mitochondrial per-

meability, forming transition pores (MPTP),

resulting in the release of cytochrome c. The

cytotoxic activity has been related to the struc-

tural features of the peptide, which consists of a

cationic N-terminal sequence predicted to

assume an amphipathic α-helical conformation

(residues 1–18) and a C-terminal hydrophobic

tail (residues 19–27). This hydrophobic tail is

responsible for the peptide activity, since its ana-

logue, BMAP28 (1–18), which comprises the

18 N-terminal residues, showed a reduction in

MPTP effect. BMAP28 cytotoxicity requires an

active metabolism of the target cells (Risso

et al. 2002).

SMAP-29 is cathelicidin-like peptide derived

from myeloid sheep with α-helical structure in a

hydrophobic environment, and its C-terminal

hydrophobic domain has a strong membrane per-

meability (Chen et al. 2011; Skerlavaj

et al. 1999). This peptide concentrates on the

plasma membrane of treated cells and causes

propidium iodide (PI) uptake, provided by the

cells that are metabolically active. Lee and

coworkers (2002a) suggest that membrane dis-

ruption by SMAP-29 occurs via pore formation,

due to a direct interaction with the lipid bilayers

and irregularly disrupted fungal membranes in an

energy- and salt-dependent manner. SMAP-29,

however, is strongly hemolytic against human

erythrocytes. A variant of SMAP-29, [K22,25,27]-

SMAP-29, is effective against bacterial and fun-

gal cells in physiological salt concentrations and

was not injurious to eukaryotic cells, such as

human erythrocytes (Shin et al. 2001; Dawson

and Liu 2011).

Isolated from porcine myeloid, peptide

PMAP-23 was identified by cDNA cloning and

is 23 residues long, cationic (þ7), and amphi-

pathic. In a hydrophobic environment, it forms

two α-helices joined by a flexible region when

membrane-bound (Roversi et al. 2014; Park

et al. 2002b). This peptide is capable of binding

to plasma membrane of C. albicans protoplasts,

indicating that an interaction with the cell wall is

not a requirement for the inhibitory activity of
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this peptide, which also did not show hemolytic

activity (Park et al. 2002b; Lee et al. 2001). Lee

and coworkers (2002b) designed several analogs

of PMAP-23, with amino acid substitutions in

order to increase the net hydrophobicity by Trp

(W)-substitution at positions 10, 13, or 14 on the

hydrophilic face of the peptide. In C. albicans the

P6 analog peptide exerted its fungicidal effect on

the blastoconidia by disrupting the mycelial

forms, causing significant morphological

changes. Meanwhile, P6 also displayed about

fourfold greater antitumor activity than the par-

ent PMAP-23.

Porcine cathelicidins, such as protegrin-1

(PG-1), showed activity against clinical isolates

of fungi, including those resistant to conven-

tional medicines used in human therapy

(Benincasa et al. 2006). These peptides and

their variants have a rather rigid antiparallel

β-sheet (β-hairpin) structure that is stabilized by

two intramolecular disulfide bonds. The linear

peptide forms have been reported to be consider-

ably less active than the native form, being sen-

sitive to physiological salt concentrations

(Dawson and Liu 2010). PG-1, BMAP-27,

BMAP-28, SMAP-29, and indolicidin showed

deleterious activity against a number of nosoco-

mial yeast strains, mainly Candida spp. and

C. neoformans (Benincasa et al. 2006).

The most famous prototype of cathelicidin

group is human cathelicidin LL-37, which attains

a helical structure when bounded to cell wall and

plasma membrane of treated cells and has the

protein hCAP-18 as its precursor. LL-37 is

secreted in human sweat and further processed

into RK-31 and KS-30, more active peptides that

retain their activity even in high salt conditions.

Moreover, they are able to enter the cytoplasm of

C. albicans cells, suggesting that their increased

activity may result from interaction with intra-

cellular targets. In contrast, LL-37 could not be

detected in the cytoplasm (den Hertog

et al. 2005, 2006; Lopez-Garcia et al. 2005).

LL-37 showed a pH-dependent activity against

C. albicans, disrupting its membrane and

allowing leakage of proteins of up to 40 kDa

into the medium (den Hertog et al. 2005). This

peptide discriminates against phospholipid

monolayers containing negatively charged lipids,

as SMPA-29 does. However, experiments com-

paring these two peptides demonstrated that the

LL-37 peptide had a more potent effect than the

SMAP-29, suggesting that its interaction with

monolayers involves other factors, such as

hydrophobicity, size, and charge distribution,

although SMAP-29 has a higher net positive

charge (þ10), and it would be expected to be

more attracted to the negatively charged lipid

monolayers (Neville et al. 2010). When com-

pared to histatin-5, LL-37 induced higher mor-

phological defects, but the efflux of nucleotides

is similar in comparable candidacidal

concentrations, suggesting that the loss of

nucleotides plays an important role in the killing

process (den Hertog et al. 2005). LL-37 has been

found to have additional activities, such as

regulating the inflammatory response and

chemo-attracting cells of the adaptive immune

system to wound or infection sites, helping to

neutralize the microorganism and promoting

re-epithelization and wound closure (Durr

et al. 2006; Oudhoff et al. 2010).

3.6 Mammalian Antifungal
Defensins

Mammalian defensins are a large group of

peptides with an important role in the host’s

immune system. They can be divided into the

α- and β-defensins based on their structural

characteristics and cysteine spacing pattern (van

der Weerden et al. 2013). Both defensins were

first identified as antimicrobial compounds

involved in innate immunity. In humans, α- and
β-defensins are expressed mainly in different

sites: the α-defensins are mostly expressed in

neutrophils (known as human neutrophil peptides

(HNP), or human defensins (HP) when expressed

in natural killer cells) and the β-defensins are

secreted by the epithelial cells of the skin and

mucosae and known as HβD (Suarez-Carmona

et al. 2014). Apart from the antimicrobial

activities, the defensins appeared as modulators

of the adaptive immune system and angiogene-

sis, key mediators of wound healing and
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determinant players in male fertility (Ganz 2003;

Oppenheim et al. 2003). The α-defensins com-

prise 29–35 amino acid peptides that share six

conserved cysteine residues with three disulfide

bonds. Their structure is formed by an amphi-

pathic and antiparallel β-sheet. They also have a

β-hairpin loop containing cationic charged

molecules. The β-defensins are longer than their

α-counterparts (34–42 residues in length) and are
triple-stranded with an antiparallel β-sheet as

well as a short α-helix (De Smet and Contreras

2005; Selsted and Ouellette 2005). The human

defensins present activity against a wide range of

microorganisms, including fungal pathogens.

HNP 1–3 are identical apart from one

N-terminal amino acid, which makes HNP

3 completely inactive against C. albicans, while

HNP 1–2 is candidacidal. HNP 4 is also toxic to

C. albicans cells, and the mechanism of action of

those peptides on fungal cells has been proposed

to be by membrane permeabilization (Ganz and

Lehrer 1995; Ganz 2005). NP 1 seems to work in

the same way, but differently from HNP, and it

was shown to be dependent on the metabolic

activity of the target cells. HNP-1 causes

C. albicans to release ATP, just as histatin

5 does, but in contrast, it did not seem to lyse

cells. NP-1, NP2, and NP3a were highly effective

against C. albicans, and NP-1 was effective

against C. neoformans, Coccidioides immitis,
and hyphae and germinating conidia of Rhizopus

oryzae and Aspergillus fumigatus (van der

Weerden et al. 2013; Raj and Dentino 2002;

Lehrer et al. 1988).

Moreover, β-defensins, HβD 2 and HβD 3, are

potent inhibitors of C. albicans. Exposure to this

microorganism and to Trichophyton rubrum and

A. fumigatus stimulates HβD 2 expression.

A. fumigatus also induces the expression of

HβD 9. The mechanisms of action of these

peptides are not well known, but some

requirements seem to be necessary for their

activities, such as metabolically active cells and

a low concentration, since they have a strong

positive net charge, which in high concentrations

of cations may decrease efficacy (Dhople

et al. 2006; Joly et al. 2004; Liu et al. 2002;

Alekseeva et al. 2009). Another antifungal

peptide is Novexatin, a cyclic and highly cationic

peptide (1,093 daltons), arginine rich, based on

the human α and β defensins. It is currently in

phase 1/2 of clinical trials for use against fungal

infections of the toenails; NovaBiotics

(Aberdeen, UK) is the company responsible for

its development (Fox 2013).

3.7 Mammalian Antifungal
Histatins

The histatin family consists of 12 members of

histidine-rich peptides from which histatins 1 and

3 (the full-length proteins and gene products) and

histatin 5 (a cleavage product of histatin 3) are

the main ones and constitute 70–80 % of the total

amount (Xu et al. 1999). The other nine members

are proteolytic cleavage products of these

peptides (Fitzgerald et al. 2003). Although they

are named due to a high number of histidine

residues, other amino acids including lysines

(Lys5 and Lys13) rather than histidines have key

importance for fungicidal activity (Kumar

et al. 2011; Rothstein et al. 2001). Studies dem-

onstrate that histatins have a number of

biological activities in vitro, such as the mainte-

nance of tooth surface integrity, histamine

release induction, and potentiation of rabbit

chondrocyte growth (Hay 1975; Oppenheim

et al. 1986; Sugiyama et al. 1985; Murakami

et al. 1994). The histatins are encoded by two

closely related genes (HIS1 and HIS2), with

histatin 1 and histatin 3 as primary products of

HISI and HIS2, respectively (Sabatini and Azen

1989).

Histatin 5 was obtained from histatin 3 (Raj

et al. 1998) and has the strongest antimicrobial

activity against pathogenic fungi C. albicans,

C. neoformans, and A. fumigatus (Kavanagh

and Dowd 2004). This histatin is 24-amino acid

residues long with seven histidines, four

arginines, and three lysines, and its fungicidal

activity resides in a region of 11–24 residues at

the C-terminal, referred to as the functional

domain or dh-5 (Driscoll et al. 1995). In a non-

aqueous environment, the peptide adopts a

α-helical conformation, and, like histatin 3, in
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an aqueous environment it adopts a random coil

structure (van der Weerden et al. 2013;

Helmerhorst et al. 1999a; Tsai and Bobek

1997). The ability to form a α-helix was thought

to be important for the mode of action of histatin

5, but Situ and coworkers (2000) demonstrated

that one variant of histatin 5 (3P) with reduced

ability to form α-helix had an antifungal ability

comparable to that of histatin 5. Its antifungal

mechanisms against C. albicans involve binding

to a specific receptor, translocation across the

membrane, and interaction with internal targets

such as mitochondria and non-lytic release of

cellular ATP (Fitzgerald et al. 2003; Helmerhorst

et al. 1999b; Koshlukova et al. 1999, 2000).

Histatins do not display lytic activities to lipid

membranes, measured by release and

dequenching of the fluorescent dye calcein

(Edgerton et al. 1998).

Histatin interaction with the cell wall and its

uptake by the cell are two independent events,

since the fungal cell wall binding itself does not

result in uptake of histidines. Li and coworkers

(2006) demonstrated that the heat shock protein

Ssa2p is the binding site for histatin 5 measured by

yeast two-hybrid analyses, whereas Ssa1p appears

to have a lesser role in histatin 5 toxicity. This heat

shock protein 70 (Ssap 1/2) is located in the fungal

cell envelope. These interactions, however, can be

prevented in the presence of Caþ, which presum-

ably disrupts the interaction between histatin

5 and Ssa2p (Li et al. 2006). Internalization of

histatin 5 occurs by translocation, and its uptake is

dependent on two polyamine transporters, Dur3

and Dur31 (which usually function in spermidine

uptake), since C. albicans showed a reduced intra-
cellular transport of histatin 5 upon growth in a

medium rich in spermidine, implicating poly-

amine transporters in uptake of this peptide (van

der Weerden et al. 2013; Kumar et al. 2011).

The mitochondrion’s primeval functionality is

as an energy-generating organelle, although the

molecular machinery in charge of its role shows

a broad divergence among different phyla

(Tielens et al. 2002). It has been proposed that a

negatively charged phospholipid in the mito-

chondrion membrane, called cardiolipin, attracts

histatin 5 toward the mitochondrion. This

interaction causes ATP release into the cyto-

plasm, and it was shown by the evidence of

unchanged levels of ATP when cells were treated

with respiration uncouplers, such as azide or

cyanide, and then exposed to histatin 5, indicating

that respiration is essential for histatin activity to

occur (Helmerhorst et al. 1999a; Koshlukova

et al. 1999). Gyurko and coworkers (2000) also

demonstrated that fungal cells incapable of res-

piration (respiratory-deficient or petite mutants)

are resistant to the action of histatins. The ATP

efflux occurs via ATP-binding cassette (ABC)

proteins, and extracellular ATP activates a

purigenic-like receptor that triggers cell death

(Koshlukova et al. 2000). Another ATP release

consequence is the effect on the regulation of cell

volume homeostasis, which can halt cells at the

G1 phase, disrupting the cell cycle and leading to

cell death that is not in a programmed pathway

(Wunder et al. 2004). Histatin 5 is responsible for

the generation of reactive oxygen species (ROS),

which is measured using an oxygen radical sen-

sitive probe (dihydroethidium), and it is one of

the components responsible for the disruption of

cell organelle structure or function (Baev

et al. 2001). Another important factor of

histatin-5 is that it retards the transition of

C. albicans from the blastopore to the hyphal

stage of growth, a process that may assist in

arresting tissue penetration by the fungus

(Helmerhorst et al. 1997).

3.8 Mammalian Lactoferrin-
Derived Antifungal Peptides

Lactoferrin (Lf) is a multifunctional protein

(80 kDa), a member of the transferrin family of

non-heme iron-binding glycoproteins that is

expressed and secreted by granular epithelial

cells and secreted into mucosal fluids that bathe

the body surface; it is found in the secondary

granules of neutrophils during the myelocyte

stage of maturation (Ward et al. 2005; Levay

and Viljoen 1995). It was first isolated from

bovine milk and later identified in mice, pigs,

and humans (van der Weerden et al. 2013). On

the mucosal surface, this peptide works as a
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component of the first line of host defense, being

released from neutrophils during infection,

inflammation, tumor development, and iron

overload (Levay and Viljoen 1995; Legrand

et al. 2008). It also acts in the regulation of iron

homeostasis, cellular growth, and differentiation

and protection against cancer development and

metastasis (Ward et al. 2005; Shimamura

et al. 2004).

Proteolytic cleavages of lactoferrin revealed

some peptides (lactoferricins) with better anti-

fungal activity than that of the whole protein,

such as the first and second cationic domains

derived from human lactoferrin (hLF) hLF

(1–11) and hLF (21–31), respectively (Lupetti

et al. 2000). A study using those synthetic

peptides revealed a dose-dependent release of

ATP by C. albicans upon exposure to hLF

(1–11). The same study demonstrated that a met-

abolic active cell is necessary for the hLF (1–11)

mode of action, since cells incubated with

sodium azide had a reduced candidacidal activity

and a lower PI uptake. The use of the fluorescent

dye rhodamine 123 showed an accumulation

inside the mitochondria and later was released

into the cytoplasm when cells were treated with

hLF (1–11), which indicates that the peptide

triggers the energized mitochondrion (Lupetti

et al. 2000). This ATP efflux was also observed

in a short synthetic peptide following the

N-terminal amino sequence of bovine lactoferrin

(peptide 2 or Pep2). Pep 2 activated pertussis

toxin-insensitive and cholera toxin-sensitive

G-protein and activated signals downstream

through phosphatidylinositol 3-kinase to protein

kinase C. This indicates that Pep 2 induced ATP

efflux mediated by G-protein activation (Tanida

et al. 2006; Helmerhorst et al. 2002). Another

study showed that cell wall interaction and there-

fore membrane binding with hLF are not the

major mode of action, thus demonstrating a

slight efflux of Kþ from C. albicans cells, but

this did not allow Naþ release or membrane

disruption (Viejo-Diaz et al. 2004). Some other

peptides, derived both from bovines (LfcinB),

which comprise the region spanning 17–40

residues, and from humans (LfcinH), dissipated

the proton gradient across the plasma membrane.

However, they did not seem to act by nonspecific

permeabilization of the membrane as they did not

cause calcein release from artificial liposomes

(Nguyen et al. 2005; Viejo-Diaz et al. 2003).

3.9 Synthetic Antifungal Peptides

Natural peptides can have their activity enhanced

by peptide engineering, which can help to

develop novel peptides with desirable biological

properties (Ryu et al. 2014). The synthetic pep-

tide B4010 originated from a 10-residue peptide

(RGRKVVRRKK), which in turn is a synthetic

analogue of human β-defensin-3 (HβD-3). Its

properties have been previously reported by

Lakshminarayanan and coworkers (2014) as

showing potent activity against Pseudomonas

aeruginosa, but poor activity against fungi (Bai

et al. 2009).

That research group also extended the previ-

ous analysis to a higher order of covalently

linked peptides. B4010 is a tetravalent synthetic

peptide, which carries four copies of the

sequence RGRKVVRR through a branched

lysine core. This strategy of developing multiva-

lent peptides by assembling multiple copies of

monomeric peptides around a core molecule is an

alternative to circumventing the drawbacks of

antimicrobial peptides, such as the loss of anti-

microbial properties in a physiological concen-

tration of salts and polyanionic polymers

(Knappe et al. 2010; Eckert 2011).

B4010 presented deleterious activity against

C. albicans strains (Lakshminarayanan

et al. 2014). The researchers also tested another

peptide by linking two copies of the sequence

through a branched lysine, B2088, and observed

a substantial decrease in MIC (minimal inhibi-

tory concentration) values when compared to the

monomer or linear retrodimer peptide

(RGRKVVRRKKRRVVVKRGR). The MIC

values of B4010 (0.37 μM) for two clinical

isolates of C. albicans were also lower when

compared to the MIC values for amphotericin B

(1.4 μM) and natamycin (15 μM). This last one is

the only US FDA-approved antifungal for oph-

thalmic applications (Lakshminarayanan
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et al. 2014; Arora et al. 2011), which is also

nonhemolytic and nontoxic to mice when

administrated by intravenous (100 mg.kg�1) or

intraperitoneal (200 mg.kg�1) routes and had no

affinity for cell wall polysaccharides. It was pro-

posed that its mode of action includes a rapid

dissipation of membrane potential and release of

vital ions and ATP when challenged by

C. albicans, and some studies suggest that the

first arginine is important for mediating peptide-

bilayer interactions (Lakshminarayanan

et al. 2014; Nguyen et al. 2010).

Cell-penetrating peptides (CPPs) are part of a

group of synthetic peptides with up to 30 peptides

and are able to enter cells in an energy-

independent manner, translocating across the

membrane (Milletti 2012). Penetratin 1 is a

16 amino acid long CPP from the third helix of

the Antennapedia homeodomain of Drosophila.

It can be classified as a cationic amphipathic

peptide, and its proposed mechanism of action

is by “inverted micelle” pathway. This peptide

was synthetized and had its fungicidal activity

evaluated by Masman and coworkers (2009).

This research group tested not only penetratin

1 against C. albicans and C. neoformans but

also tested other peptide sequences, among

them a trapeptide (RQKK-NH2), identified as

8 in their study. Both peptides, 1 and 8, displayed

the most potent inhibitory effect against those

pathogenic fungi (Garibotto et al. 2010; Masman

et al. 2009).

3.10 Prospects for Clinical Use
of Antimicrobial Peptides

The development of new drugs is a remarkable

challenge. The last new class of antibiotics, the

lipopeptide daptomycin, was introduced in 2003,

more than 40 years after the introduction of

fluoroquinolones, the last antibiotics used to

treat multidrug-resistant (MDR) organisms such

as Klebsiella and Acinetobacter species. Peptides

are a class of molecules with potential for thera-

peutic use against fungal infections (Steckbeck

et al. 2014), but their use as novel drugs has to

overcome some therapeutic difficulties, such as

their poor chemical and physical stability and

short circulating plasma half-life. Additionally,

those molecules are antagonized by physiologi-

cal concentrations of salt and polyanionic

polymers (mucins, DNA, and glycosami-

noglycans) and by the action of proteolytic

enzymes, thus limiting their therapeutic potential

(Lakshminarayanan et al. 2014; Knappe

et al. 2010; Otvos and Wade 2014). Another

difficulty is the expensive manufacturing of

peptides when compared to small-molecule

drugs. Companies are scrambling for financial

support both from federal programs and from

corporate partners through the later and most

expensive stages of clinical evaluations (Fox

2013).

AMPs have only been tested in clinical trials

relatively recently, and to date, with the excep-

tion of gramicidin for topical administrations,

none has received US Food and Drug Adminis-

tration (FDA) approval. Kaspar and Reichert

(Kaspar and Reichert 2013) highlight that in

2012 the first marketing approvals were made

for six peptides (lucinactant, peginesatide,

pasireotide, carfilzomib, linaclotide, and

teduglutide) in the United States and European

Union, which only disapproved peginesatide

due to safety issues. Another example of a pep-

tide that was undergoing clinical trials is

pexiganan, a synthetic analog of the AMP

magainin. Pexiganan had impressive results in

early phase I and II clinical trials to treat dia-

betic ulcers, but its performance was not supe-

rior when compared to traditional antibiotics

used in treating feet ulcers (Moore 2003). At

present, approximately 140 peptide therapeutics

are being evaluated in clinical trials (Fosgerau

and Hoffmann 2015).

In spite of all the challenges, antimicrobial

peptides have the potential for development as

novel antifungal agents, because they have rapid

action and a broad spectrum, being active against

species that are multiple resistant to currently

used antimycotics. Moreover, peptides are selec-

tive and efficacious signaling molecules with

specific targets, properties that are important

features for drug safety, and they show dimin-

ished side effects for the patient (Matsuzaki
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2009; Wang et al. 2010; Takahashi et al. 2010).

Natural or designed peptides can avoid cell tox-

icity and hemolytic activity and other undesir-

able features (Fjell et al. 2012). Some chemical

strategies that have been used are sugar

molecules incorporated in the peptide

N-terminus, which may improve tissue penetra-

tion, and the conjugation to passive and active

transport enhancers in order to increase oral bio-

availability (Charlton et al. 2008; Gupta

et al. 2013; Sachdeva et al. 2013). In addition,

peptides play important roles in innate immune

response and wound healing, additional features

for their antimicrobial activity (Pena et al. 2013;

Steinstraesser et al. 2012).

In summary, peptides are promising

molecules with potential as future therapeutics

for fungal diseases. Research is imperative to

understand their mode of action and specific

targets against fungi and to improve their phar-

macological properties to meet clinical therapeu-

tics and drug manufacturing needs.
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