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Abstract

Apart from two major components nitrogen and phosphorous, potassium

is the third essential macronutrient required for the growth and metabo-

lism of plant, and its deficiency in plants causes poorly developed roots,

slow growth, low resistance to disease, delayed maturity, small seed

production and lower yields. The concentration of soluble K in soil is

very small as maximum part of K exists in insoluble form. Silt, clay and

sand are important components of soil in earth and biggest reservoir of

potassium. Most common deposits of potassium are feldspar and mica.

The available K level in soil dropped in the last decade due to rapid

development of agriculture and application of imbalanced fertilizers.

Potassium is released when these minerals are slowly weathered, or,

alternatively, it can be solubilized by some beneficial microorganisms

and made available for plants. Several bacterial and fungal strains have

been identified for their ability of high potassium solubilization. Various

species of Pisolithus, Cenococcum, Piloderma, Bacillus, Paenibacillus,

Acidithiobacillus, Pseudomonas, Burkholderia, Aspergillus and Clostrid-

ium have been reported to release large amount of potassium from differ-

ent minerals and enhance the productivity of many crops. Co-inoculation

of PSMs and KSMs in conjunction with direct application of rock P and K

minerals into the soil has been reported to increase N, P and K uptake,

photosynthesis and the yield of plants grown in P- and K-limited soils.

Thus, identification of microbial strains capable of solubilizing potassium

minerals can rapidly conserve our existing resources and escape environ-

mental pollution hazards caused by heavy application of chemical

fertilizers.

J. Rawat (*) • P. Sanwal • J. Saxena

Biochemical Engineering Department, B. T. Kumaon

Institute of Technology, Dwarahat 263653, Uttarakhand,

India

e-mail: jyotisaxena2000@yahoo.co.in

# Springer India 2016

V.S. Meena et al. (eds.), Potassium Solubilizing Microorganisms for Sustainable Agriculture,
DOI 10.1007/978-81-322-2776-2_17

235

mailto:jyotisaxena2000@yahoo.co.in


Keywords

Potassium • Sustainable agriculture • Biotic and abiotic stress • KSMs

17.1 Introduction

Potassium (K) is a soft, silver-white metal, light

in its pure form that reacts very violently with

water. It is commonly called potash (K2O), a

term that has been derived from an early produc-

tion technique where K was leached from wood

ashes and concentrated by evaporating the leach-

ate in large iron pots (Mikkelsen and Bruulsema

2005). Soils contain varying quantities of

K-bearing minerals that constitute a major K

reserve. The K reservoir in the earth crust is

associated with primary alumina silicates that

are the most abundant K-bearing minerals

such as K feldspar, mica, biotite, muscovite and

nepheline. The secondary alumina silicates, how-

ever, comprise hydrous mica (illite) as well as a

continuum of micaceous weathered or inherited

products, viz. mixed-layer phyllosilicates

(Bertsch and Thomas 1985). McAfee (2008)

described feldspar and mica ranging from 90 %

to 98 % as the most common soil components of

potassium. The potassium content of Indian soils

varies from less than 0.5 % to 3.00 % (Mengel

and Kirkby 1987). Some of the mineral sources

available in India containing 3–14 % K2O are

glauconitic sand, feldspar, muscovite and nephe-

line syenite (Indian Minerals Yearbook 2011).

Out of various feldspars, potassium feldspar is

the most common one and contains up to 13 %

K2O (Rao et al. 1998). Micas are important for

plant nutrition because they represent a major

source of K, whereas the K in biotite acts as a

good fertilizer for plants (Arnold 1963).

17.1.1 Forms of Potassium

Potassium is available in four forms in the soil

which are K+ ions in the soil solution, an

exchangeable cation tightly held on the surfaces

of clay minerals and organic matter, potassium

fixed by weathered micaceous minerals and

potassium present in the lattice of certain

K-containing primary minerals. All forms of

potassium are linked with each other. The

amounts of exchangeable and readily available

potassium do not provide the rate at which the

non-exchangeable or fixed potassium can move

into the exchangeable form. These are the

reasons why some soils may have a relatively

low level when tested and yet supply enough

potassium for relatively high crop yields. It has

been hypothesized that the lack of crop response

on these soils may be attributed to K release from

non-exchangeable soil K, particularly from K

feldspars (Rehm and Sorensen 1985).

17.1.1.1 Soluble Potassium
Soluble potassium is the most available form but

its contribution to total K is very small.

According to a report of During (1984), it ranged

from 3 to 30 μg/ml in most soils of New Zealand.

This type of potassium does not form any

chelates, complexes or ion pairs in the soil.

Plants take up most of their potassium directly

in this form and so deplete it very rapidly in soil.

17.1.1.2 Exchangeable Potassium
Exchangeable K is defined as the fraction that

occupies sites in the soil colloidal complex

(Malavolta 1985). It is a major bioavailable

form of K in the soil, usually 0.1–2 % of total

potassium, i.e. between 10 and 400 ppm

(Schroeder 1974). The amount of K+ held by

clay minerals at exchange sites depended on

kinetic as well as thermodynamic factors (Parfitt

1992).

Release of non-exchangeable K to the

exchangeable form occurred when levels of

exchangeable and soluble K were decreased due

to crop uptake or leaching and perhaps by

increase in microbial activity (Sparks

et al. 1980; Sparks 2000). Hence, the amount of
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the exchangeable K concentration determines the

effectiveness of resupply. The exchangeable K is

more related to the type of clay and its net nega-

tive charge. It was found that the exchangeable K

levels of allophanic soils were relatively small,

whereas soils with large amounts of vermiculite

or mica had greater amounts of exchangeable K

(Parfitt 1992). Potassium in this form is mostly

contained by minerals as feldspar and mica. For

optimal nutrition of a crop, the replenishment of

a K-depleted soil solution was affected predomi-

nantly by the release of exchangeable K from

clay minerals (Sheng and Huang 2002).

17.1.1.3 Fixed Potassium
Fixed K is held between the layers of micaceous

clay minerals and not readily accessible for

exchange with other solution cations. The K+

present in the wedge, edge, step and crack

positions can be referred to as fixed

K. Potassium in this form is temporarily trapped

between the expanding layers of some clay

minerals and most likely between structural

layers in the soil of micas, intergraded hydrous

micas (e.g. illites) and vermiculites or in the

wedge zones during edge weathering of the

micas (Kirkman et al. 1994). A fixed form of

potassium in soils which is high in feldspars

and volcanic glass where the K is structurally

bonded is slowly available to plants over time

and cannot be replaced by ordinary cation

exchange process. This would contribute little

to plant growth, because of the low levels or

absence of micaceous 2:1 clay minerals (Fieldes

and Swindale 1954).

17.1.1.4 Structural Potassium
Potassium within a soil also exists as structural

potassium and is variously known as mineral K,

unweathered K, native K, matrix K or inert K. It

constitutes the largest amount of the total K in

most soils (Metson 1980). It is mostly bound

covalently within the crystal structure of the

K-bearing minerals such as micas (biotite and

muscovite), feldspars (orthoclase and micro-

cline) and volcanic glasses (acidic and basic)

(Metson 1968), and it only becomes available

upon long-term weathering. Biotite and basic

volcanic glasses were found to weather easily,

whereas feldspars and acidic volcanic glass

weathered slowly (Fieldes and Swindale 1954).

Generally, highly weathered soils from humid

and tropical areas have much less structural

potassium remaining than newer soils or soils

from cold arid climates.

17.2 Potassium as Fertilizer

Glauconite sand contains around 4–8 % K2O and

has been used as a source of potash fertilizer

worldwide (Majumder et al. 1995; Yadav

et al. 2000). The need for potash in fertilizer

can be determined by plant analysis and soil

testing.

17.2.1 Potassium Chloride

It is a common source of fertilizer, and for the

most part, it is mined as sylvite ore (KCl, the

potassium analogue of halite, or rock salt, NaCl),

mixed with NaCl, beneficiated to remove some

of the contaminants and sold. It is highly soluble;

hence, excessive rate can cause salt damage to

plants. Further, KCl may also be the result of

crystallization from brine, either from solution

mining of KCl ore or precipitation from hypersa-

line waters, e.g. Searles Lake and Dead Sea,

often with carnallite (KClMgCl2) as an interme-

diate precipitate. The final form of KCl from

crystallization processes is white crystals. Typi-

cal fertilizer analysis of KCl consists of 60–63 %

K2O and 46 % Cl.

17.2.2 Potassium Sulfate

Potassium sulfate has ~5 % market share and

basically constitutes 48–53 % K2O and

17–18 % S. It is found rarely in pure form. This

fertilizer is used particularly for horticultural

crops in which chloride uptake is a problem, as

in tobacco plant.
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17.2.3 Potassium Magnesium Sulfate

This is the primary K fertilizer produced by Ger-

man and French mines from langbeinite ore and

historically was called ‘double manure salts’.

The analysis comprises 20–22 % K2O with sec-

ondary nutrients like S (21–22 %) and Mg

(10–11 %). Potassium magnesium sulfate is a

good source of K when there is also a need for

magnesium and sulfate in plant nutrition, though

excess K is expected to induce magnesium

deficiency.

17.2.4 Potassium Nitrate

In this fertilizer the formulated forms of potas-

sium are KCl and nitric acid with 44 % K2O and

13 % N. It is expensive for agronomic use,

mostly applied for horticulture and greenhouses.

It was also known as saltpetre to the ancients and

recognized by Glauber in the seventeenth century

as the ‘principle of vegetation’. Besides above-

cited fertilizers, potassium phosphate (KH2PO4)

and potassium thiosulfate (K2S2O3) are also

available. Kelp meal, plant residues and wood

ash, which contain K mainly as a carbonate

(K2CO3), hydroxide (KOH) and rock powder,

e.g. granite and minerals such as alunite, ortho-

clase, microcline, etc., are some other sources of

potassium sold as K fertilizer.

17.3 Functions of Potassium
in Plants

Potassium is a major nutrient element found in

the soil which is required by plants in greater

amounts. Being essential or vital nutrient for

plant growth, potassium (K+) plays an important

role in plant regulatory development including

osmoregulation, plant-water relation and internal

cation/anion balance. It also has substantial

effect on enzyme activation involved in the for-

mation of organic substances, protein and starch

synthesis, respiratory and photosynthetic metab-

olism (Lauchli and Pfluger 1979; Wyn Jones

et al. 1979; Marschner 2010), stomatal move-

ment and water relations (turgor regulation and

osmotic adjustment) by increasing protein pro-

duction in plants (Marschner 1995). Enzyme

activation is also needed to metabolize

carbohydrates for the manufacture of amino

acids and proteins and tolerance of external stress

such as frost, drought, heat and light. Potassium

also functions in triggering the growth of young

tissues and cell enlargement and, hence,

improves early growth. Besides, potassium is

important during plant ontogeny and in improv-

ing plant quality and oil content in plants. Hence,

large amount of potassium is required to main-

tain plant health but it often receives less atten-

tion than N and P in many crop production

systems. The crop yield can be positively and

negatively influenced by favourable and

unfavourable environmental conditions.

Unfavourable environmental conditions which

would create potentially damaging physiological

changes within plants are known as stresses

(Shao et al. 2008). Potassium has also been

involved in various physiological functions

related to plant health and resistance to biotic

and abiotic stresses such as diseases, pests,

drought, salinity, cold, frost and waterlogging

(Wang et al. 2013) However, suitable application

of potassium can improve insect and disease

resistance in plants. The protective role of K+ in

plants suffering from drought stress has been

well documented (Pier and Berkowitz 1987;

Sen Gupta et al. 1989). There are major

challenges for agriculture to enhance crop yields

and to stabilize plant development and yield for-

mation under biotic and abiotic stress conditions

(Reynolds et al. 2011).

17.3.1 Biotic Stress Resistance

Biotic components such as weeds caused the

highest potential loss (~32 %), followed by ani-

mal pests (18 %), fungi, bacteria (15 %) and

viruses (3 %) (Oerke and Dehne 2004).

Recently, it was seen in K-deficient soil that

plants were more susceptible to infection than

those plants having adequate supply of K
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(Wang et al. 2013) and also the rate of rice borer

infestation was greatest when there was no sup-

ply of K, but decreased rapidly as the K concen-

tration increased (Sarwar 2012). It was found that

the use of K in fields extensively decreased the

occurrence of fungal diseases by 70 %, bacterial

by 69 %, viral by 41 %, insect and mite infesta-

tion by 63 % and nematodes by 33 % (Perrenoud

1990). The synthesis of high-molecular-weight

compounds (such as proteins, starch and cellu-

lose) was markedly increased in K-sufficient

plants, thus lowering the concentrations of low-

molecular-weight compounds, such as soluble

sugars, organic acids, amino acids and amides

in the plant tissues which were generally respon-

sible for the development of infections and insect

infestations. Thereby, plants were protected from

diseases and pest attacks in K-sufficient plants

(Marschner 2012). Adequate K also increased

phenol concentrations, which could also play a

significant role in plant resistance (Prasad

et al. 2010).

17.3.2 Abiotic Stress Resistance

Abiotic stresses can cause major damage to the

crops as compared to yield losses from biotic

stress (Oerke 2006). Major abiotic factors are

drought stress (low moisture, aquaporins and

water uptake, osmotic and stomatal regulation,

detoxification of reactive oxygen species, etc.),

salt stress, cold stress and waterlogging stress.

The use of potassium triggers many plant

activities, whereas depletion of potassium uptake

can cause problem for plant growth. Potassium to

a great extent contributes to the survival of the

plants exposed to various abiotic stresses. It was

documented by Wang et al. (2013) that abiotic

stress factors such as heat, cold, drought and

salinity had a huge impact on world agriculture,

and they might reduce average yields by ~50 %

for most major crop plants. Increased application

of K+ has been shown to enhance photosynthetic

rate, plant growth and yield and drought resis-

tance in different crops under water stress

conditions (Sharma et al. 1996; Tiwari

et al. 1998; Yadav et al. 1999; Egilla et al. 2001).

17.3.2.1 Drought and Low Moisture
Stress

Association between K stress and plant drought

resistance has been demonstrated by many

workers. Drought can be defeated by plants by

inducing deeper rooting, larger absorption

surfaces and greater water retention in plant

tissues, which can also be overcome by applica-

tion of K fertilizers with other nutrients like

phosphorus and nitrogen (Kirkby et al. 2009).

Sufficient amounts of K enhanced the total dry

mass accumulation of crop plants under drought

stress/low-moisture conditions in comparison to

lower K concentrations (Egilla et al. 2001). Sim-

ilar findings were documented by Lindhauer

(1985) that not only plant dry mass was increased

but also leaf area and water retention in plant

tissues under drought-stressed conditions

improved. It was found that plants that were

continuously exposed to drought stress could

form reactive oxygen species, which caused leaf

damage (Cakmak et al. 2005; Foyer et al. 2002;

Oerke and Dehne 2004). Wang et al. (2013)

found a close relation of K in physiological and

molecular mechanisms of plant drought resis-

tance. For the period of drought stress, root

growth and the rate of K+ diffusion in the soil

towards the root got restricted and depressed the

plant resistance as well as K absorption.

Aquaporins and Water Uptake

Potassium is also involved in plant-water

relations by regulating the osmotic potential and

hydraulic conductivity of membranes and alter-

ing water permeability (Heinen et al. 2009;

Maurel and Chrispeels 2001). Aquaporin is

water along with K+ ions which moves through

specific channel protein present in the plasma

and intracellular membranes of cells (Maathuis

et al. 1997; Steudle 2000). K+ is found in the

plant cell in two distinct compartments, the cyto-

sol and the vacuole (Leigh 2001), hence

transported through plant cell membranes with

the help of specific protein channels (Maathuis

et al. 1997). Under drought stress conditions,

aquaporin gene expression could be regulated

(Tyerman et al. 2002; Lian et al. 2004) to help
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the plants to maintain their water balance

(Kaldenhoff et al. 2008). During water stress,

roots regulated their water and ion uptake

capacities by modifying PIPs (plasma membrane

intrinsic proteins) and K+ channel at the tran-

scription level to cope with the water deficiency

(Smart et al. 2001; Galmes et al. 2007; Cuellar

et al. 2010). Kanai et al. (2011) also observed

close coupling between aquaporin activities and

K channel transporters. They found that

aquaporin activities might have been suppressed

by K deficiency and resulted in a reduction of

root hydraulic conductance and water supply to

the growing stem for diameter expansion and the

leaf for transpiration.

Osmotic and Stomatal Regulation

Under drought stress condition, the maintenance

of enough water levels is important for plant

survival; hence, osmotic regulation is the most

important trait involved in maintaining high cel-

lular turgor potential and water retention in

response to drought stress. An adequate amount

of K may help osmotic adjustment, which

maintains higher turgor pressure, relative water

content and lower osmotic potential, thus

improving the ability of plants to tolerate drought

stress (Kant and Kafkafi 2002; Egilla et al. 2005).

Stomata are essential to control plant water loss

via transpiration and quick stomatal closures are

needed to survive during stressed conditions.

Stomatal closure is preceded by rapid release of

K+ from the guard cells into the leaf, thus

improving the ability of plants to tolerate drought

stress (Kant and Kafkafi 2002). When K+ is defi-

cient, the stomata cannot function properly and

water losses from plant may reach damaging

levels (Gething 1990).

Detoxification of Reactive Oxygen Species

(ROS)

Generally, drought stress or K-deficient plants

induce ROS, e.g. superoxide radical (O•
2), hydro-

gen peroxide (H2O2) and hydroxyl radical (
•HO),

production (Cakmak 2005). Production of ROS

is mainly responsible for impairment of cellular

functions and growth depression in stress

conditions. K requirement for drought-stressed

plants could be related to the role of K in enhanc-

ing photosynthetic CO2 fixation and transporting

photosynthates into sink organs and inhibiting

the transfer of photosynthetic electrons to O2,

thus reducing ROS production (Cakmak 2005).

Besides the photosynthetic electron transports,

nicotinamide adenine dinucleotide phosphate

(NADPH)-dependent oxidase activation

represents another major source for production

of ROS in plant cells by a number of biotic and

abiotic stress factors. Furthermore, abscisic acid

has also been shown to be effective in increasing

H2O2 and O2
� accumulations in roots or leaves

(Lin and Kao 2001; Jiang and Zhang 2001).

Hence, maintaining an adequate K nutritional

status critical for plant osmotic adjustment and

for mitigating ROS damage as induced by

drought stress.

17.3.2.2 Salinity Stress
Salinity is another major abiotic stress that

affects major part of the total land area on

earth. Saline soils generally had higher

concentrations of Na+ than K+ and Ca2+ which

resulted in passive accumulation of Na+ in root

and shoot (Bohra and Doerffling 1993). Due to

the accumulation of salt, water uptake by plant

roots in soil became difficult thus disturbing

water balance, while high concentrations of

salts in plant tissue were found to be toxic

(Wang et al. 2013). Salinity inhibited seed ger-

mination and plant growth, affected the leaf anat-

omy and physiology of plants and, thereby,

influenced plant-water relations, photosynthesis,

protein synthesis, energy production and lipid

metabolism (Parida and Das 2005).

17.3.2.3 Cold Stress
Cold stress inhibited plant growth and develop-

ment and resulted in reduced crop productivity

(Wang et al. 2013). Devi et al. (2012) noticed

that in Panax ginseng, a high K+ concentration

activated the plant’s antioxidant system and

increased the levels of ginsenoside-related sec-

ondary metabolite transcripts, which are

associated with cold tolerance. Thus, cold stress

might have destroyed photosynthetic processes

and reduced the efficacy of antioxidant enzymes,
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resulting in ROS accumulation (Mittler 2002;

Xiong et al. 2002; Suzuki and Mittler 2006).

Potassium improved plant survival under cold

stress by increasing antioxidant levels and reduc-

ing ROS production (Cakmak 2005; Devi

et al. 2012).

High concentrations of K+ protect plant cell

against freezing by lowering the freezing point of

the cell solution. The plasma membrane is the

prime site which is mainly affected when

changes in temperature occur, and membrane

fluidity is reduced by cold stress resulting in

changes of fatty acid unsaturation and the lipid-

protein composition of the cell membrane (Wang

et al. 2006). Maximum growth response and

chilling resistance in tomato, eggplant and pep-

per plants with the addition of K+ were

associated with increase in phospholipids, mem-

brane permeability and improvement in biophys-

ical and biochemical properties of cell

(Hakerlerker et al. 1997). Hence, higher K tissue

concentrations reduced chilling damage and

increased cold resistance, thereby increasing

yield production (Mengel 2001; Kant and

Kafkafi 2002).

17.3.2.4 Waterlogging Stress
Waterlogging, a serious obstacle for sustainable

agriculture development, affected approximately

10 % of the global land area (Setter and Waters

2003). The main biological consequence that

plant encounters during waterlogging stress is

the respiration of roots, and microorganisms fur-

ther deplete the residual oxygen, hence making

the environment hypoxic (i.e. oxygen levels limit

mitochondrial respiration) and later anoxic

(i.e. respiration is completely inhibited). It

resulted in a severe decline in energy status of

root cells which affected important metabolic

processes of plants (Bailey-Serres and Voesenek

2008; Wegner 2010). To overcome this diffi-

culty, application of K could efficiently offset

the adverse effects of waterlogging on plants. It

was reported that K supplement under

waterlogging not only increased plant growth,

photosynthetic pigments and photosynthetic

capacity but also improved plant nutrient uptake

as a result of higher K+, Ca2+, N, Mn2+ and Fe2+

accumulation (Ashraf et al. 2011). Exogenous

application of K in soil and as foliar spray

alleviated the adverse effects of waterlogging

on cotton and many other plants such as corn

(Welch and Flannery 1985; Csatho 1991), rice

(Datta and Mikkelsen 1985), wheat (Beaton and

Sekhon 1985; Khurana and Bhaya 1990) and

oilseed rape (Sharma and Kolte 1994). There

are major challenges for agriculture to enhance

crop yields and to stabilize plant development

and yield formation under biotic and abiotic

stress conditions (Reynolds et al. 2011).

17.4 Deficiency of Potassium

There are several factors that lead to the insuffi-

cient supply of nutrients in soil and as a result

plant has to face deficiency. In addition, the pres-

ence of extreme amounts of reduced substances

in poorly drained soils is also responsible for

retarded root growth and reduced K uptake

(Fairhurst et al. 2007). Fundamentally, K+ is

water soluble and highly mobile and transported

to the xylem in plants (Lack and Evans 2005). It

acts as regulator in plants since it is constituent of

60 different enzyme systems of drought tolerance

and water-use efficiency. K deficiency, also

known as potash deficiency, occurs widely in

plants and has a strong impact on plant metabo-

lism. A plenty of deficiency symptoms have been

reported which include chlorosis, poor growth,

reduced yield and poor fibre quality with the

increased susceptibility to diseases (Amtmann

et al. 2008) and pests (Amtmann et al. 2006;

Troufflard et al. 2010). It also affects photosyn-

thesis process and plant growth; hence, purple

spots may also appear on the leaf undersides.

Besides, older leaves change from yellow to

brown, leaf tips and margins dry up, root oxida-

tion power declines, younger leaves decolourize,

and root length and density reduce causing

reduction of nutrient uptake and cytokine pro-

duction in roots. Moreover, K-deficient plants

are highly light sensitive and very rapidly

become chlorotic and necrotic when exposed to

high light intensity (Cakmak 2005). Potassium

deficiency also inhibits evaporation which causes
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the temperature in the leaves to rise and results in

burning of cells, which mainly occurs on the

edges of the leaves. Stressed plants may be

more sensitive to the cold injury. Sometimes

rust-brown spots may appear in the leaf if K

deficiency is severe, and leaves often turn or

curl radially on the top and entire leaves become

necrotic and eventually fall off. Flowering will

be severely inhibited which ultimately affects

crop production.

The reasons for potassium deficiency could be

insufficient fertilization, excessive ‘table salt’

(sodium) in the root environment, unfavourable

soil structure (e.g. sandy soils) and formation of

depletion zones around roots (Kayser and

Isselstein 2005; Moody and Bell 2006; Andrist-

Rangel et al. 2007). Effects of K deficiency on

plants depended on specific crop type such as corn

becoming small in size and showing low yield and

tomatoes exhibiting uneven fruit ripening,

whereas leaves of cotton plants turned reddish

brown and then black, appeared scorched and

eventually fell, and yield and quality of forage

crops were adversely affected (www.ncagr.gov).

To overcome the deficiency, the prevention and

cure can be achieved at great extent by adding

potassium-specific fertilizer, e.g. potassium car-

bonate, rock potash, potassium nitrate, potassium

sulfate, etc. Thus, study of potassium uptake and

strategies to enhance uptake in plants is necessary.

17.5 Pathways and Mechanisms
for Potassium Uptake

Plant cannot acquire nutrient directly unless it is

present in available or dissolved form or released

by weathering. There are several processes that

contribute to the availability of potassium in the

soil. Besides, the release of K from the rocks and

minerals requires weathering over long periods

of time, although calcinations of rocks can break

the K out of the structure but makes the K more

expensive than that from the evaporite ores. In

addition to plant uptake of K from the soil solu-

tion, some of the exchangeable potassium on the

soil colloids is also absorbed directly by roots. A

plant root possesses a negative charge and

attracts the positively charged potassium (K+)

which is held on the clay mineral surfaces and

edges. However, potassium uptake of plants can

be increased by using potassium solubilizers as

bioinoculants which further increased the crop

productivity (Shanware et al. 2014). Lian

et al. (2008) reported that there were three

major reaction pathways utilized by Aspergillus

fumigatus to release potassium from potassium

minerals which were acid hydrolysis, secretion

of insoluble macromolecules and polymers

bound in the cell membrane and direct biophysi-

cal forces which could split mineral grains.

It was demonstrated that potassium-

solubilizing microorganisms have the capacity

to dissolve K from insoluble minerals (Alexander

1985). Potassium-solubilizing bacteria are able

to solubilize rock K mineral powder, such as

micas, illite and orthoclases through various pro-

cesses such as acidolysis, enzymolysis, capsule

absorption and complexation by extracellular

polysaccharides (Avakyan 1984; Rozanova

1986; Malinovskaya 1988; Malinovskaya

et al. 1990; Friedrich et al. 1991; Ullman

et al. 1996; Welch et al. 1999). Mechanisms

involved in degradation of potassium-bearing

minerals can be divided into direct (bacterial

cell wall) and indirect (bioleaching, mineral

weathering, microbial weathering and mechani-

cal fragmentation) mechanisms.

17.5.1 Bacterial Cell Wall

Prokaryotes have various cell wall types which

secrete one or more metabolic products that react

with ions or compounds in the environment

resulting in the deposition of mineral particles.

Bacterial surfaces such as cell walls or polymeric

materials (exopolymers) exuded by bacteria,

including slimes, sheaths or biofilms, and even

dormant spores, acted as important sites for the

adsorption of ions and mineral nucleation and

growth (Konhauser 1998; Beveridge 1989;

Banfield and Zhang 2001; Bäuerlein 2003). In

gram-negative bacteria, the layers external to

the bacterial cell wall that may be involved in

mineral nucleation include S-layers, capsules,
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slimes and sheaths. S-layers are acidic and pos-

sess a net negative charge, thereby having an

affinity for metal cations (Southam 2000). In

some cases, capsules are also known to form in

response to the presence of metal ions (Appanna

and Preston 1987).

17.5.2 Bioleaching

The process of removal of soluble material from

the rocks in solution by percolating water is

termed as leaching. Halite (NaCl) and sylvite

(KCl) are highly water soluble, while carbonates

and sulfates are sparingly soluble. Bioleaching

microbes are mainly Thiobacillus ferrooxidans,
T. thiooxidans and Leptospirillum ferrooxidans.

17.5.3 Mineral Weathering

The weathering reactions contribute to nutrient

cycling (Huntington et al. 2000). Chemical

weathering of bedrock releases inorganic

nutrients such as Ca, Mg, K, Fe and P, which

are then cycled through the saprolite, soil and

vegetation. Inorganic nutrients were cycled by

microorganisms via uptake, release, biominerali-

zation, oxidation and reduction (Berner and

Berner 1996). Microorganisms also contributed

to mineral weathering and soil formation by

secreting organic acids and other ligands such

as siderophores as indicated by many researchers

(Richter and Markewitz 1995; Kalinowski

et al. 2000; Liermann et al. 2000, 2005; Richter

and Oh 2002). Within the rooting zone, plants

take up mineral nutrients, which are recycled

back into the soil when plants get decomposed.

During weathering, physical, chemical and

biological forces act on the parent materials and

break them down into finer fractions, largely

sand-, silt- and clay-size particles. This break-

down results in the release of several chemical

elements, including potassium, and the formation

of different clay minerals. Most of the total

potassium inherited from the parent material dur-

ing the soil-forming processes will be in the

non-exchangeable and exchangeable forms. The

relative amounts of sand, silt and clay fractions

found in a soil depend on the kind of parent

material (sandstone, limestone, shale or mica)

from which the soil was derived. Potassium fixa-

tion and release is greatly influenced by the rela-

tive amounts of these fractions and the kinds of

clay minerals present in the soil. Mineral disso-

lution studies with cultures of bacteria and fungi

showed a dramatic increase in the dissolution

rates of feldspar, biotite, quartz, apatite and

other minerals (Berthelin and Belgy 1979; Callot

et al. 1987; Thorseth et al. 1995; Ullman

et al. 1996; Barker et al. 1997; Paris et al. 1996).

17.5.4 Microbial Weathering

The known and potential mechanisms of micro-

bial weathering included redox reactions through

the production of organic acids which led to

weakening of chemical bonds in minerals for

promoting mineral dissolution (Banfield

et al. 1999; Harley and Gilkes 2000) and chelat-

ing molecules for mineral degradation (Uroz

et al. 2007, 2009; Lian et al. 2008). Bacteria

produced a wide range of low-molecular-weight

organic acids such as citric, malic, oxalic,

succinic and tartaric acid (Jones 1998; Neaman

et al. 2005). Han and Lee (2005) concluded in a

study that KSB solubilized potassium rock

through production and secretion of organic

acids. Similar were the observations of Prajapati

and Modi (2012), which attributed the solubili-

zation to reduction in pH due to organic acids.

Few other reports are also available for feldspar

solubilization by Bacillus mucilaginosus and

Bacillus edaphicus due to acid production

(Malinovskaya et al. 1990; Sheng and Huang

2002). In addition to organic acids,

microorganisms (such as bacteria, algae, fungi

and protozoa) used carbonic acid formed from

carbon dioxide to attack the mineral surface,

promoting the chemical weathering of rocks

and minerals (Gadd 2007; Park et al. 2009).

Microbes played a key role in the weathering

of major type of rocks, releasing various

elements they needed as nutrients (Calvaruso

et al. 2006). Many rock-inhabiting fungi were
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melanized, and melanin pigmentation conferred

extra-mechanical strength to the hyphae to pene-

trate the rock surface and crevices (Dornieden

et al. 1997; Sterflinger and Krumbein 1997) and

also offered protection from metal toxicity (Gadd

1993). Fungi have been reported from a wide

range of rock types, including rocks from

extreme environments (Staley et al. 1983;

Nienow and Fridman 1993; Sterflinger 2000;

Etienne and Dupont 2002; Gorbushina 2007). In

an experimental study conducted by Puente

et al. (2004), fluorescent pseudomonads and

bacilli were found to weather igneous rock, lime-

stone and marble.

17.5.5 Biofilm

Biofilm helps to accelerate weathering of

minerals like biotite and anorthite. Biotite

weathering occurs in two stages: by oxidation

within the rindlet zone and by alteration to kao-

linite within the saprolite. Biofilms and biocrusts

were normally supposed to cause higher

weathering rates due to biodegradation

(Warscheid and Braams 2000). It was accepted

that the microbial biofilms not only accelerated

the weathering process but also regulated denu-

dation losses by acting as a protective layer cov-

ering the mineral-water-hyphal/root hair

interface in the mycorrhizosphere and rhizo-

sphere of vascular plants. Besides, biofilm for-

mation on mineral surface promoted the

corrosion of potassium-rich shale and the release

of K, Si and Al in the bacteria-mineral contact

model (Li-yang et al. 2014).

17.5.6 Mechanical Fragmentation

Fragmentation of the mineral caused by root

activity increases the reactive surfaces, so having

direct positive effect of the bacteria on mineral

weathering. Mechanical fragmentation of rock

particles also occurred when there was extension

of hyphae (unique for fungal organisms) into the

interior of minerals to acquire nutrition

(Jongmans et al. 1997).

17.6 Potassium-Solubilizing
Microorganisms (KSMs)

Potassium is the third major essential macronu-

trient for plant growth and development. It

constitutes ~2.5 % of the lithosphere but actual

soil concentrations of this nutrient vary widely

ranging from 0.04 % to 3.0 % (Sparks and

Huang 1985). Plants absorb K only in soluble

form from soil, and its availability to crop plants

is generally as low as 90–98 % of total K in soil

in the unavailable mineral forms (Sparks 1987)

such as feldspar and mica (McAfee 2008). The

addition of chemical fertilizers causes environ-

mental pollution and has many deteriorating

impacts such as global warming, alteration of

soil microbial diversity, etc. Moreover, they

also influence soil-plant dynamics with its micro-

bial distribution (Meena et al. 2013; Maurya

et al. 2014).

Microorganisms on solid and liquid medium

were tested, and it was observed that bacterium

Enterobacter hormaechei (KSB-8) was more

viable in liquid broth as compared to solid

medium containing carrier lignite, while fungus

Aspergillus terreus (KSF-1) was good at both

liquid and solid medium (Kalawati and Modi

2014). Rhizosphere microorganisms play an

important role in solubilization of bound form

of soil minerals and enhancing the availability

of plant nutrients in the soil. Increasing the bio-

availability of phosphorus (P) and potassium in

soils with inoculation of plant growth-promoting

rhizobacteria (PGPR) singly or in consortium

with or without rock materials has been reported

by many researchers (Lin et al. 2002; Sahin

et al. 2004; Girgis 2006; Eweda et al. 2007; Jha

et al. 2012; Meena et al. 2015b; Singh

et al. 2015), which may lead to increasing P

uptake and plant growth. The mould A. niger

has been well documented for its ability to solu-

bilize P in rocks due to organic acid production,

especially citric acid (Nahas et al. 1990;

Vassileva et al. 1998; Jain et al. 2014).

Different microorganisms are used to supply

different kind of nutrients in the soil such as

symbiotic and non-symbiotic nitrogen-fixing
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bacteria which can supply nitrogen to plants by

fixing the atmospheric nitrogen and converting

the nitrogen into ammonium ion. Bacillus
megaterium and Pseudomonas sp. are the most

common phosphate-solubilizing bacteria that are

used as a biofertilizer to solubilize phosphorus in

soil. Solubilization of potassium from alumino-

silicate minerals has also been observed by some

fungi (Wallander and Tonie 1999; Glowa

et al. 2003). It was proposed by Yuan

et al. (2000) that ectomycorrhizae could mobilize

potassium from clay minerals and thus enhanced

its uptake by plants. Further, Yuan et al. (2004)

studied the effect of four fungal strains,

Pisolithus XC1, Pisolithus sp., P. microcarpus
and Cenococcum geophilum SIV, collected from

the roots of eucalyptus on the degradation of

phlogopite and vermiculite; the results revealed

that all four strains were able to weather the

mineral phases and release elemental

K. Moreover, Glowa et al. (2003) evaluated the

ability of fungus Piloderma in extracting potas-

sium from biotite, microcline and chlorite and

found that the fungus species was able to acquire

potassium from all three minerals, out of which

biotite was more biodegradable (Meena

et al. 2014a, 2015a).

Muentz (1890) showed the first evidence of

microbial involvement in solubilization of rock

potassium. Since then a diverse group of soil

microflora has been reported to be involved in

the solubilization of insoluble and fixed forms of

K into available forms, which can easily be

absorbed by plants (Li et al. 2006; Gundala

et al. 2013; Zarjani et al. 2013). A wide range

of potassium-solubilizing bacteria (KSB),

namely, Bacillus edaphicus, B. circulans,

Paenibacillus spp., Acidithiobacillus

ferrooxidans, Pseudomonas spp., Burkholderia
spp., etc., have been reported to release potas-

sium from K-bearing minerals in soil (Sheng

et al. 2008; Lian et al. 2002; Rajawat

et al. 2012; Liu et al. 2012; Basak and Biswas

2012; Singh et al. 2010).

KSB such as Bacillus mucilaginosus
solubilized potassium rock and stimulated plant

growth through synthesis of growth-promoting

substances via their biological activities.

Similarly, silicate-solubilizing bacteria were

found to dissolve potassium, silicon and alumin-

ium from insoluble minerals (Aleksandrov

et al. 1967). KSB have capacity to dissolve K

from insoluble minerals (Alexander 1985). Many

microorganisms in the soil are able to solubilize

‘unavailable’ forms of K-bearing minerals, such

as micas, illite and orthoclases, by excreting

organic acids which either directly dissolved

rock K or chelated silicon ions to bring the K

into solution (Groudev 1987; Friedrich

et al. 1991; Ullman et al. 1996; Bennett

et al. 1998). Therefore, the application of

K-solubilizing microorganisms (KSMs) is a

promising approach for increasing K availability

in soils (Zahra et al. 1984; Vandevivere

et al. 1994; Barker et al. 1998; Meena

et al. 2014b; Kumar et al. 2015).

KSMs can be isolated from many sources in

in vitro conditions using different media.

Prajapati and Modi (2012) isolated 14 bacterial

strains from samples collected from ceramic

industry using feldspar on a solid media, out of

which five strains showed higher potassium sol-

ubilization. Recently, Parmar and Sindhu (2013)

used Aleksandrov medium supplemented with

mica to isolate 137 K-solubilizing bacteria from

soil samples collected from wheat rhizosphere.

Among isolated strains, 20 strains were found to

solubilize potassium from mica. The amount of

K released by the strains ranged from 15 to 48 mg

L�1. Further examination for optimization of

conditions for K release revealed that maximum

solubilization occurred with glucose as carbon

source at 25 �C temperature and 7.0

pH. Potassium solubilization was maximum

when KCl was used as potassium source,

followed by K2SO4, and least solubilization was

found in mica powder. It was suggested that

efficient potassium-solubilizing bacterial strains

could be further exploited for plant growth

improvement under field conditions. Sheng

(2005) used sucrose minimal salt medium with

illite as K source for the isolation of B. edaphicus

strain NBT from rhizosphere soil of cotton. Wu

et al. (2005) used the same medium with glass

powder for the growth of B. mucilaginosus, a

vigorous K solubilizer. Further, it was found to
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have great K-releasing capability and could pro-

mote the release of potassium through

weathering of silicate minerals (Hu et al. 2006;

Lian 1998; Zhao et al. 2006, 2008). Sangeeth

et al. (2012) identified potassium-solubilizing

bacterium, Paenibacillus glucanolyticus
IISRK2, isolated from rhizosphere of black pep-

per plant. It was further evaluated for plant

growth, and after the studies, it was documented

that the strain efficiently promoted the shoot and

dry matter of wheat plants promoting the overall

plant growth. Commercially available microbial

inoculants that are able to dissolve K from

minerals and rocks not only enhance plant

growth and yield but are also eco-friendly;

microbes Aspergillus niger, Bacillus extorquens

and Clostridium pasteurianum were found to

grow on muscovite, biotite, orthoclase

microclase and mica in vitro (Archana

et al. 2013).

17.7 KSM Role in Sustainable
Agriculture

Potassium is an essential and major nutrient for

crop production (Alfaro et al. 2003; Zhang

et al. 2011). The role of potassium is well

known for improving shelf life of crops and

disease resistance (Khawilkar and Ramteke

1993). Potassium is useful in agriculture land to

increase crop yield as proper amount of potas-

sium in soil can enhance root growth, improve

drought resistance, activate many enzyme

systems, maintain turgor pressure, reduce water

loss and wilting, aid in photosynthesis and food

formation, reduce respiration, prevent energy

losses, enhance translocation of sugars and

starch, produce grain rich in starch, increase pro-

tein content of plants, reduce waterlogging and

retard crop diseases. Therefore, it is essential for

the growth and metabolism of plants; the defi-

ciency of potassium in plants causes poorly

developed roots, slow growth and low resistance

to disease, delayed maturity, small seeds and

lower yields. With rapid development of agricul-

ture or due to application of imbalanced

fertilizers, available K level in soils has dropped.

The concentration of soluble K is very small

and the maximum part of K exists in insoluble

form. Silt, clay and sand are biggest reservoirs

of potassium and important component of soil.

The most common component of potassium is

feldspar and mica, and fortunately, India has

the largest deposits of mica mines distributed in

some districts of Bihar and Jharkhand. In

such conditions the application of KSMs can

be an alternative approach for increasing K avail-

ability (Krishnamurti and Huang 1988; Prajapati

and Modi 2014; Zhang and Kong 2014).

It has been studied that by introducing potas-

sium-solubilizing bacteria B. mucilaginosus and

phosphate-solubilizing bacteria Bacillus
megaterium var. phosphaticum, simultaneously,

macronutrient (nitrogen, phosphate and potassium)

uptake was increased in eggplant, pepper and

cucumber leading to higher yields (Han

et al. 2006). B. edaphicus strain was also exam-

ined for the growth promotion and increased

potassium uptake on cotton and rape plants, and

increased plant growth was observed in the soil

treated with insoluble potassium with strain

NBT. The shoot and root dry weight increased

from 25 % to 33 % (cotton) and from 24 % to

27 % (rape), whereas K content was increased

from 31 % to 34 % (P < 0.05) (cotton) and

28–31 % (rape) when the soil with insoluble K

source and bioinoculant was compared to the

uninoculated soil (Sheng 2005). Experiments

conducted with tobacco seedlings, inoculated

with Klebsiella variicola strains JM3, XF4 and

XF11, showed greater height and dry weight than

uninoculated seedlings. The GL7 significantly

increased plant dry weight. Inoculation with the

strains JM3, GL7, XF4 and XF11 significantly

increased seedling absorption of N, P and

K. Seedlings exposed to K feldspar absorbed

significantly more N and K than those not

exposed to added K feldspar (Jhang and Kong

2014). Krishnamurthy (1990) reported that the

potassium content in tobacco leaf was strongly

and positively correlated with available K status

in sandy and sandy loam soils.

Nowadays, biofertilizer is a substitute to

chemical fertilizer to increase soil fertility and

crop production in sustainable farming. The use
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of plant growth-promoting microorganisms,

including phosphate-solubilizing and

potassium-mobilizing bacteria as biofertilizers,

was suggested as a possible solution to improve

plant nutrient and production (Vessey 2003).

Beneficial microorganisms in the form of

biofertilizers are applied on seeds/roots or in

soil which mobilizes the availability of nutrients,

especially N-P-K by their biological activity,

thereby helping in the build-up of positive micro-

flora and enhancing the soil health. The use of

bioinoculants can also improve the physical

properties and enhance water-holding capacity

of soil. Moreover, microorganisms that are

applied as biofertilizer can prevent nutrient

leaching and lead to soil enrichment with

nutrients. They are low in cost, compatible with

long-term sustainability, and eco-friendly as

compared to chemical fertilizers. Besides, the

nutrient supply is constant and sustainable

through these microorganisms’ activities.

Though the use of biofertilizer has gained

momentum in recent years since chemical

fertilizers are high in cost and can cause hazard-

ous effect (Aseri et al. 2008), unfortunately not

much attention has been given to the

manufacturing of K biofertilizers.

17.8 Concluding Remarks

Potassium being the third major nutrient for

plants is vital for plant growth. However, major-

ity of potassium in soils is available in insoluble

forms. Therefore, potassium-solubilizing

microorganisms, the component of soil microbial

community, play an important role in K solubili-

zation to provide available form to plants. K

solubilization benefits crop growth and improves

soil fertility in an eco-friendly manner.

Potassium-solubilizing strains are able to colo-

nize the rhizosphere, promote crop yield and

enhance plant stress response during stress

conditions and K uptake. Unfortunately, very lit-

tle attention has been paid to K-solubilizing

microorganisms and K biofertilizers as most of

the researches are focused on nitrogen and phos-

phorus biofertilizers. Hence, it is requisite to

study the efficient K-solubilizing microorganisms

to improve sustainable agriculture and to keep the

soil productive.
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