
Building Stateful Firewall Over Software
Defined Networking

Karamjeet Kaur and Japinder Singh

Abstract Current network architectures are ill suited to meet today’s enterprise and
academic requirements. Software Defined Networking (SDN) is a new way to
Design, Build and Operate Networks. It replaces static, inflexible and complex
networks with networks that are agile, scalable and innovative. The main idea is to
decouple the control and data planes, allowing the network to be programmatically
controlled. A key element of SDN architectures is the controller. This logically
centralized entity acts as a network operating system, providing applications with a
uniform and centralized programming interface to the underlying network. But it
also introduces new security challenges. The challenge of building robust firewalls
is the main challenge for protection of OpenFlow networks. The main problem with
traditional firewall is that Network Administrator cannot modify/extend the capa-
bilities of traditional vendor-specific firewall. Network Administrator can only
configure the firewall according to the specifications given by the firewall vendor.
To solve these problems we developed stateful firewall application that runs over
SDN controller to show that most of the firewall functionalities can be built on
software, without the aid of a dedicated hardware.

Keywords SDN � OpenFlow � Firewall � Packet filtering � Stateful firewall �
Stateless firewall

1 Introduction

Firewall is used for preventing unauthorized access to and from the private network.
Firewall examines all packets leaving or entering internal networks and block those
who do not meet the defined security criteria. A firewall allows or rejects a specific

K. Kaur (&) � J. Singh
Shaheed Bhagat Singh State Technical Campus, Ferozepur, India
e-mail: bhullar1991@gmail.com

J. Singh
e-mail: japitaneja@gmail.com

© Springer India 2016
S.C. Satapathy et al. (eds.), Information Systems Design and Intelligent
Applications, Advances in Intelligent Systems and Computing 434,
DOI 10.1007/978-81-322-2752-6_15

159



type of information. Implementation of a stateful firewall is the mandatory part of
an effective information security program.

Most businesses and institutions deploy firewall as the main security mechanism.
A traditional firewall is placed at the boundary of public and private network. It
prevents attacks and unauthorized access by examining all incoming and outgoing
traffic. In Traditional Firewall deployments, all Insiders in the private network are
considered trustworthy. So internal traffic is not examined and filtered by the firewall.
The assumption that insiders are trustworthy is not valid these days since insiders can
perform attacks on others by bypassing security mechanisms. The main problemwith
traditional firewall is that they use dedicated hardware. That hardware is expensive
and inflexible. This can be an even greater burden if a network needs more than one,
as is common. Network administrators can not add new features since traditional
firewalls are vendor locked, difficult to program, as discussed by the Hu et al. [1, 2].

To solve the problems of traditional firewall, we created SDN application which
turned simple OpenFlow device into powerful firewall. Our firewall application
runs on an SDN controller. To achieve our goal we used the Ryu controller which is
implemented in Python. In this paper, we focus on implementation of robust stateful
firewall. Firewalls are the most widely used security mechanism for OpenFlow
based networks.

Our main contribution is the development and evaluation of stateful firewall
solution for software defined network.

• To implement Stateful firewall to keep track the state of network connections
passing through it. The stateful firewall is programmed to differentiate between
packets from different types of connections. Firewall will allow only those
packets which match with known connection state, others will be rejected.

• To Test our stateful firewall application in real environment.
• To compare our stateful firewall with stateless firewall using HTTP (Hyper Text

Transfer Protocol), ICMP (Internet Control Message Protocol) traffic and
observe that our firewall is more secure because it is able to block the fake
packets as compared to stateless firewall.

The outline of our paper is as follow. Section 2 contains background and related
work. Section 3 describes implementation details. Section 4 covers Experimental
Evaluation and Sect. 5 contains conclusion and future work.

2 Background and Related Work

Current networks are very complex and hard to manage. These networks consists of
different types of devices such as routers, switches, firewalls, network address
translators, load balancers, and intrusion detection systems. These devices run
software that are typically closed and vendor specific. New network protocols goes
through years of standardization efforts and interoperability tests. Network
administrators have to configure each individual network devices as specified by the

160 K. Kaur and J. Singh



vendor. Even more painful is that different products from the same vendor require
different configuration. Traditional Networks has slowed down innovation, are very
complex, and both the capital and operational expenses of running the network are
high.

Mendonca et al. [3] discusses about the Software Defined Networking is
emerging networking architecture in which the control plane is decoupled from data
plane. Separation of control plane from data plane allows easier deployment of new
applications and simplified protocol management as shown in Fig. 1. In SDN, the
control plane is shifted into centralized place and shifted control plane is called
SDN controller or OpenFlow controller. The network devices become simple
packet forwarding devices that can be programmed via southbound interfaces such
as ForCES (Forwarding and Control Element Separation), OpenFlow, as explained
by Feamster et al. [4]. The research community and industry are giving significant
attention to SDN [5]. The Open Network Foundation (ONF) has been created by
service providers, network operators and vendors for promoting SDN and stan-
dardizing OpenFlow protocol. Although the concept of software defined net-
working is quite new, still it is growing at a very fast speed.

OpenFlow architecture basically consists of three components, OpenFlow
switch, controller and Openflow protocol, as explained by Lara et al. [6]. OpenFlow
protocol is used for communication between switch and controller through a secure
channel. OpenFlow switch contains flow tables entries that consist of match fields,
statistics, actions. When packet arrives at switch it is matched against rules. If match
is found, corresponding action is performed. If no match is found, action is taken as
specified in table miss entry. Controller is responsible for adding, updating or
deleting flow entries, as discussed by Suzuki et al. [7].

Tariq et al. [8] successfully implemented layer 2 firewall by modifying layer 2
learning switch code in the POX controller. Limitation of this implementation is
that this blocks only layer 2 traffic. Michelle et al. [9] Created simple user interface
for the firewall. Their design looks at few header fields. Kaur et al. [10] implement
stateless firewall that watch network traffic, and deny or drop packets based on
source IP, destination IP, source MAC, destination MAC or other static parameters.

All previous work implemented stateless firewall that treats each packet in
isolation. Stateless firewall is not able to determine whether packet is attempting to
establish new connection or is a part of existing connection or just a fake packet.

Fig. 1 Traditional and software defined network

Building Stateful Firewall Over Software Defined Networking 161



Second problem of these implementations is that they were tested using only ICMP
traffic. TCP traffic was not used for testing. To solve these problems, we design and
implement a stateful firewall that is more secure than the stateless firewall.

3 Implementation

Firewall is used for preventing unauthorized access to and from the private network
based on packet filtering rules. Firewall examines all packets leaving or entering
internal networks and block those who do not meet the defined security criteria.
When configuring filter rules for TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol) services such as File Transfer Protocol (FTP), Trivial File
Transfer Protocol (TFTP), http, we have to allow traffic in both directions since
these services are bi-directional. A TCP or UDP session involves two players, one
is the client that initiates the session and the other is the server hosting particular
service. As an example, Fig. 2 the rules are added in such a way so that traffic can
cross the firewall between web client with address 192.168.0.2/24 and web server
with address 172.16.0.31/16.

The server IP address, the client IP address, the server port also known as
destination port and client port known as source port are the 4 attributes that defines
a TCP or UDP session. Generally, the server port helps in identifying the type of
service that is being offered. For example, port 80 is associated with web service
and ports 20, 21 are associated with ftp service. Client port which is mostly greater
than 1023 is dynamically chosen by client host’s operating system. It also means
that client’s ports are mostly unpredictable and firewall has to allow all the source
ports so that session can be successful. As a result, this type of approach introduces
serious security problem. It enables malicious hosts to launch Denial of Service
(DOS) attack by flooding the servers with unwanted traffic. The Fig. 2 shows
network architecture used in experiment.

Fig. 2 Network topology

162 K. Kaur and J. Singh



For the experimental evaluation we create a real topology which consists of 4
computers. We implement the OpenFlow switch and Ryu controller on one com-
puter. On second computer we are implemented apache web server, FTP server and
TFTP server. Other two systems act as clients on which we implemented Ostinato
packet generation tool. Ryu controller is started and connectivity between the
openflow network and controller is verified. OpenFlow switch and controller
exchange series of messages for connection establishment and setup. We have got
two hosts host1 with IP address 192.168.0.2/24 and a host2 with IP address
172.16.0.31/16 connected using of the OpenFlow switch.

3.1 Stateful TCP Packet Filtering

Stateful firewall handles the security issue by enabling connection tracking. The
connection tracking keeps track of established TCP sessions. Firewall maintains
entries of open TCP sessions in cache or in connection tracking table. An entry
contains information regarding server ip address, client ip address, server port and
client port. The firewall administrator does not have any information regarding
client port at the time of configuration of rules. But at the time of connection setup,
both server and client port information is available in TCP header. Stateful firewall
allows traffic in both directions for packets belonging to existing TCP connection.

After connection establishment, the decision to allow or block subsequent
packets will be based on contents of connection tracking table. When a subsequent
packet reaches the firewall with flag ACK set and flag SYN unset, its information
entry is checked in connection tracking table. If entry exists, the packet is allowed
to pass through immediately. The packet gets rejected if no such entry is found.

On the completion of 3-way handshake, TCP connection state turns to
ESTABLISHED state. On connection termination, the entry is removed from the
connection tracking table. If TCP connection is inactive for a long time, a timeout
value is kept to flush out the inactive entries from connection tracking tables and
thus blocking the connection.

3.2 Stateful ICMP Packet Filtering

It is easy to track ICMP sessions. It involves 2 ways communication. For every
response ICMP message, there should be corresponding ICMP request message.
ICMP tracking is done on basis of Sequence number, Type Identifier, source
address, destination address of reply and request messages. The sequence number
and type identifier cannot alter in an ICMP session when returning a message to the
sender. The sender matches each echo request with echo request by using these.
These parameters should have the same values for echo request and echo reply.
This is the only way for tracking ICMP sessions.

Building Stateful Firewall Over Software Defined Networking 163



Upon receiving ICMP request packet, an entry is made in connection tracking
table by stateful firewall. Stateful firewall will accept the echo reply if parameter
value are the same as in request packet. Fake ICMP reply will be rejected since
connection tracking table does not contain any entry the same parameter values.

4 Experimental Evaluation

The purpose of this evaluation is to ascertain the functionality of our Stateful
firewall application. The key components involved for experimental setup are, Ryu
OpenFlow Controller, OpenFlow virtual switch, Ostinato packet generation tool.

Ryu OpenFlow Controller
Monaco et al. [11] discusses about the Ryu controller that is a component-based
OpenFlow controller in Software Defined Networking [11]. Ryu provides well
defined Application programming interface that make it easy for developers to create
new network control applications like Firewall, Load Balancer. Ryu supports dif-
ferent protocols for controlling network devices, such as OpenFlow, Netconf,
OF-config, etc. Ryu supports OpenFlow versions 1.0, 1.2, 1.3. The code of Ryu is
available under theApache 2.0 license. Ryu is completelywritten in Python language.

OpenFlow Virtual Switch
An OpenFlow switch is a virtual or physical switch that forwards packets in a
software defined networking (SDN) infrastructure. OpenFlow switches are either
pure SDN switches or hybrid switches as explained by Bianco et al. [12].

Ostinato
Ostinato is GUI based network packet analyzer and generator tool. It is open source
and cross platform tool. By using it, we can create and send several streams of
packets at different rates having different protocols as explained by Botta et al. [13],
Srivastava et al. [14].

Wireshark
Orebaugh et al. [15] discusses about the Wireshark that is a best available network
protocol analyzer tool that is open source and multi-platform. It permits you to
analyze information from stored captured file or using live network. Captured
information can be scanned interactively, as explained by Sanders et al. [16].

The experiment includes two parts.

4.1 Stateful TCP Packet Filtering Testing

(1) We tested number of scenarios on firewall application. In first scenario we
applied rule in which host1(“192.168.0.2/24”) was allowed to access the web

164 K. Kaur and J. Singh



server at host2 (“172.16.0.31/16”). This means that web traffic between host2
web server and host1 web client is allowed.

(2) At host2, wireshark has been used for capturing 3 way TCP handshake packets
during web session. Table 1 represents the three-way handshake web session.

(3) At Ostinato Packet Builder was used for sending a fake TCP packet from
host1 to host2 as shown in Fig. 3. The fake packet pretended that connection
to TCP port 80 is already established (SYN = 0, ACK = 1). The fake packet
was having a source port that was different from the source port of current
active session as shown in Table 2.

(4) Wireshark at host2 was not able to capture the fake packet sent by host1. This
happened because fake TCP packet was blocked by the stateful firewall.
Stateful firewall blocks TCP packets which do not belong to established TCP
sessions. But in case of stateless firewall the fake packets are reached at web
server. This means that stateful firewall is more secure than stateless firewall.

4.2 Stateful ICMP Packet Filtering Testing

(1) We tested number of scenario on firewall application. In this scenario we applied
rule that allow host2 (“172.16.0.31/16”) to ping host1 (“192.168.0.2/24”).

Table 1 Three-way handshake of web session

Source IP Destination IP Source port Destination port SYN ACK

192.168.0.2 172.16.0.31 35591 80 1 0

172.16.0.31 192.168.0.2 80 35591 1 1

192.168.0.2 172.16.0.31 35591 80 0 1

Fig. 3 Fake TCP packet
generated by ostinato packet
builder

Building Stateful Firewall Over Software Defined Networking 165



(2) Wireshark at host2 is used for capturing ICMP packets. Table 3 show the
ICMP exchange packets between the two systems.

(3) Ostinato Packet Builder is used for sending a fake ICMP echo reply packet
from host1 to host2. This fake packet pretended that ICMP echo request
packet was received from host2 previously. The fake packet contains different
sequence number as shown in Table 4.

(4) Wireshark at host2 is not able to capture the fake ICMP packet sent by host1.
This happened because fake ICMP packet was blocked by the stateful firewall.
Stateful firewall blocks fake ICMP echo reply packet. This means that stateful
firewall is more secure than stateless firewall.

After stateful firewall implementation, Fig. 4 shows that latency got increased
which means that firewall provide security with little more overhead than stateless
firewall.

Table 2 Fake TCP packet parameters

Source IP Destination IP Source port Destination port SYN ACK

192.168.0.2 172.16.0.31 7000 80 0 1

Table 3 ICMP exchange packet parameters

Source IP Destination IP Type Identifier Sequence number

172.16.0.31 192.168.0.2 8 314 1

192.168.0.2 172.16.0.31 0 314 1

Table 4 Fake ICMP echo reply packet

Source IP Destination IP Type Identifier Sequence number

192.168.0.2 172.16.0.31 0 314 10

Fig. 4 Latency in Stateful and stateless firewall

166 K. Kaur and J. Singh



5 Conclusion and Future Work

The popularity of SDN is increasing day by day. Although there exist many quality
firewalls but they are very costly. Another limitation is that Network Administrator
cannot modify/extend the capabilities of the traditional vendor-specific firewalls.
They can only configure the firewall according to the specification given by the
firewall vendor. We have implemented a stateful firewall and compared it with the
stateless firewall and observed that our firewall is more secure (means able to block
fake packets) than the stateless firewall. Our firewall is also able to block the SYN
flooding attack by keeping a record of each connection.

Future direction can be to design and implementation Intrusion Detection system
and combine it with our firewall for creating Intrusion Prevention system.

Acknowledgments We thanks Mr. Vipin Gupta of U-Net Solutions, Moga, India for his valuable
help.

References

1. Hu, Hongxin, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. “FLOWGUARD: building
robust firewalls for software-defined networks.” In Proceedings of the third workshop on Hot
topics in software defined networking, pp. 97–102. ACM, 2014.

2. Hu, Hongxin, Gail-Joon Ahn, Wonkyu Han, and Ziming Zhao. “Towards a Reliable SDN
Firewall.” Presented as part of the Open Networking Summit 2014 (ONS 2014)} (2014).

3. Mendonca, Marc, Bruno Astuto A. Nunes, Xuan-Nam Nguyen, Katia Obraczka, and Thierry
Turletti. “A Survey of software-defined networking: past, present, and future of programmable
networks.” hal-00825087 (2013).

4. Feamster, Nick, Jennifer Rexford, and Ellen Zegura. “The road to SDN: an intellectual history
of programmable networks.” ACM SIGCOMM Computer Communication Review 44, no.
2 (2014): 87–98.

5. N. Feamster, “Software defined networking,” Coursera, 2013. [Online]. Available: https://
class.coursera.org/sdn-001.

6. Lara, Adrian, Anisha Kolasani, and Byrav Ramamurthy. “Network innovation using
openflow: A survey.” (2013): 1–20.

7. Suzuki, Kazuya, Kentaro Sonoda, Nobuyuki Tomizawa, Yutaka Yakuwa, Terutaka Uchida,
Yuta Higuchi, Toshio Tonouchi, and Hideyuki Shimonishi. “A Survey on OpenFlow
Technologies.” IEICE Transactions on Communications 97, no. 2 (2014): 375–386.

8. Javid, Tariq, Tehseen Riaz, and Asad Rasheed. “A layer2 firewall for software defined
network.” In Information Assurance and Cyber Security (CIACS), 2014 Conference on,
pp. 39–42. IEEE, 2014.

9. Suh, Michelle, Sae Hyong Park, Byungjoon Lee, and Sunhee Yang. “Building firewall over
the software-defined network controller.” In Advanced Communication Technology (ICACT),
2014 16th International Conference on, pp. 744–748. IEEE, 2014.

10. Kaur, K.; Kumar, K.; Singh, J.; Ghumman, N.S., “Programmable firewall using Software
Defined Networking,” Computing for Sustainable Global Development (INDIACom), 2015
2nd International Conference on, vol., no., pp. 2125, 2129, 11–13 March 2015.

11. Monaco, Matthew, Oliver Michel, and Eric Keller. “Applying operating system principles to
SDN controller design.” In Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks, p. 2. ACM, 2013.

Building Stateful Firewall Over Software Defined Networking 167

https://class.coursera.org/sdn-001
https://class.coursera.org/sdn-001


12. Bianco, Andrea, Robert Birke, Luca Giraudo, and Manuel Palacin. “Openflow switching: Data
plane performance.” In Communications (ICC), 2010 IEEE International Conference on,
pp. 1–5. IEEE, 2010.

13. Botta, Alessio, Alberto Dainotti, and Antonio Pescapé. “A tool for the generation of realistic
network workload for emerging networking scenarios.” Computer Networks 56, no.
15 (2012): 3531–3547.

14. Srivastava, Shalvi, Sweta Anmulwar, A. M. Sapkal, Tarun Batra, Anil Kumar Gupta, and
Vinodh Kumar. “Comparative study of various traffic generator tools.” In Engineering and
Computational Sciences (RAECS), 2014 Recent Advances in, pp. 1–6. IEEE, 2014.

15. Orebaugh, Angela, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal network protocol
analyzer toolkit. Syngress, 2006.

16. Sanders, Chris. Practical Packet Analysis: Using wireshark to solve real-world network
problems. No Starch Press, 2011.

168 K. Kaur and J. Singh


	15 Building Stateful Firewall Over Software Defined Networking
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Implementation
	3.1 Stateful TCP Packet Filtering
	3.2 Stateful ICMP Packet Filtering

	4 Experimental Evaluation
	4.1 Stateful TCP Packet Filtering Testing
	4.2 Stateful ICMP Packet Filtering Testing

	5 Conclusion and Future Work
	Acknowledgments
	References


