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Abstract A meshfree framework for numerical simulations of magnetohydrody-
namic flows is proposed. The framework is based on the Least-Squares-Based
Upwind Finite Difference method (LSFD-U) and is capable of handling arbitrary
point distributions. The approach is based on the least-squares method of error
minimisation to compute the inviscid flux derivatives. The flux derivatives at every
point require the fluxes at the point as well as those in fictitious interfaces in a
neighbourhood around it. The fluxes at the fictitious interfaces are computed by
using any numerical flux formula of interest that incorporates upwinding and
consequently a global rather than the one-sided stencil may be chosen for com-
putation. The meshfree framework is implemented through AUSM scheme, using a
first-order accurate spatial and temporal discretisation. Studies on the
one-dimensional MHD shock tube problems demonstrate the efficacy of the algo-
rithm. The effect of non-uniform point distributions on the performance of the
meshfree framework particularly with regard to conservation has also been studied.
On the non-uniform grid the solutions of meshfree framework are not in agreement
with the solutions of the finite volume framework unlike on uniform meshes. The
finite volume formulation is known to be conservative and therefore it is very clear
that meshfree formulation has conservation issues particularly as the grid becomes
more non-uniform. It is therefore desirable to have a formulation for meshfree
framework that preserves conservation at a discrete level like the finite volume
method. Attempts have been made to develop a conservative meshfree framework
using weighted least-squares technique for a particular case of one-dimensional
non-uniform point distribution.
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1 Introduction

In recent decades, advancements in computing technology and hardware have
enabled the use of numerical simulations to tackle problems with complexity and
scale larger than ever before. While the algorithms of mesh-based methods (like
FDM, FEM and FVM) are being nurtured day by day, mesh or grid generation for
complex real life configuration and sophisticated problems has become a bottleneck
for computational science. To address this issue a class of methods called
‘‘Meshless’’ (also known as ‘‘Meshfree’’ or ‘‘Gridfree’’) methods have been
developed. These methods require the information at a set of grid points around a
node to approximate the derivatives at that node. Though the use of arbitrary point
distributions increases the computational effort compared to the mesh-based
methods, the advancement of computing technology has made these techniques
realistic.

In this work a meshfree framework for numerical simulations of magnetohy-
drodynamic (MHD) flows is proposed. MHD investigates the flow of electrically
conducting fluids in the presence of magnetic fields. In other words, the magnetic
field influences the fluid motion, and at the same time the fluid motion changes the
magnetic field. Thus, the governing equations are inherently coupled in terms of the
fluid velocity and the induced magnetic field. The MHD equations are non-strictly
hyperbolic and nonconvex [1]. As a result, the wave structure is more involved than
the wave structure of the Euler equations. Till date, a number of researchers have
investigated many flow problems of MHD owing to its important applications in the
fields like astrophysics, geology, geophysics, metallurgy, power generation,
thermo-nuclear reactors, liquid metals cooling systems, biofluids and drug delivery.

Although, the application of meshfree methods for solving different hydrody-
namical problems is not uncommon, very limited application of meshfree tech-
niques is observed in solving MHD flow problems. Out of the different meshfree
methods, most of the authors have previously used smoothed particle hydrody-
namics (SPH) in their MHD simulations. Namely, Brackbill [2] extended the
Fluid-Implicit-Particle Method (FLIP) (combination of particle-in-cell (PIC) and
SPH) to MHD and Jiang et al. [3] applied SPH simulations to show that a magnetic
field applied in the streamwise direction can restrain the turbulence fluctuations in
the transverse plane of fluid flow. Element-Free Galerkin (EFG) method was also
used by several authors in [4–7] for solving MHD flow problems. Among other
meshfree approaches, Bourantas et al. [8] used the meshless point collocation
method (MPCM); Dehghan and Mirzaei used the local boundary integral equation
(LBIE) meshless method [9], and the meshless local Petrov-Galerkin (MLPG)
method [10] to obtain the numerical solution for MHD flows. Recently, Deghan and
Salehi [11] used a meshfree weak-strong (MWS) form method to solve MHD flow
problems.

The meshfree framework developed in this work is based on the
Least-Squares-Based Upwind Finite Difference method (LSFD-U) introduced by
Sridar and Balakrishnan [12]. The least squares method of error minimisation is
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used to compute the inviscid flux derivatives. The fluxes at the fictitious interfaces
are computed by using any numerical flux formula of interest that incorporates
upwinding and consequently a global rather than one-sided stencil may be chosen
for computation. Although LSFD-U has many positive properties, however like all
other meshless methods, it also lacks conservation at the discrete level owing to its
local nature. Most importantly, when sharp discontinuities exist, non-conservative
numerical methods under- or overestimate shock speeds, as a result of which
numerical shocks increasingly lag or lead the true shocks. To deal with this issue,
Chiu et al. [13] made an attempt to present a novel conservative meshfree method
by careful construction of discrete derivative operators. In the present work, we
attempt to enforce discrete conservation in LSFD-U for a particular case of
one-dimensional non-uniform point distribution.

The organization of the rest of this paper is as follows: In Sect. 2, the governing
equations of ideal MHD are defined. In Sect. 3, a general discussion on the
least-squares-based update procedure is presented. An introduction to LSFD-U
procedure is given in Sect. 4. Discussions on conservation issues related to
meshfree methods and the procedure to obtain a conservative meshfree method is
given in Sect. 5. Results and discussions are presented in Sect. 6. Finally in Sect. 7,
concluding remarks are given.

2 Ideal MHD Equations

The magnetohydrodynamics (MHD) equations characterise the flow of electrically
conducting fluids in the presence of magnetic fields. The coupling of fluid dynamics
equations with Maxwell’s equations of electrodynamics results into the governing
equations of MHD. Ideal MHD equations can be obtained by neglecting electro-
static forces, displacement current, effects of viscosity, electrical resistivity and heat
conduction. They can be written as:

@q
@t

þr � ðqVÞ ¼ 0 ð1Þ

@ðqVÞ
@t

þr � ðqVVþ IPt � BBÞ ¼ 0 ð2Þ

@B
@t

þr � ðVB� BVÞ ¼ 0 ð3Þ

@E
@t

þr � fðEþPtÞV � BðB � VÞg ¼ 0 ð4Þ

with the constraint r � B ¼ 0. In the above equations q denotes density, V the
velocity field, B the magnetic field, Pt the full pressure, and E denotes the total
energy. The full pressure and total energy are defined by
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Pt ¼ Pþ 1
2
ðB2

x þB2
y þB2

z Þ

E ¼ 1
2
qðu2 þ v2 þw2Þþ P

ðc� 1Þ þ
1
2
ðB2

x þB2
y þB2

z Þ

where P is the static pressure; u, v, and w are the components of the velocity field V
and Bx, By and Bz are the components of the magnetic field B in the x, y and z
directions, respectively. The ideal MHD equations are non-strictly hyperbolic and
nonconvex in nature [1], since there are some fields which are neither linearly
degenerate nor genuinely nonlinear.

When the variables change only with respect to x and t and Bx remains as a
constant, we can obtain the one-dimensional ideal MHD equations from system
(1–4). The resulting equations in the conservative form can be written as:

@U
@t

þ @F
@x

¼ 0 ð5Þ

where,

U ¼

q
qu
qv
qw
By

Bz

E

2
666666664

3
777777775
; F ¼

qu
qu2 þPt � B2

x
quv� BxBy

quw� BxBz

uBy � vBx

uBz � wBx

ðEþPtÞu� BxðuBx þ vBy þwBzÞ

2
666666664

3
777777775

3 Least-Squares Based Update Procedure
for One-Dimensional Problems

To describe the least-squares method we consider the one-dimensional point dis-
tribution presented in Fig. 1. An arbitrary function /(x) is introduced to approxi-
mate the derivative at point ‘o’. Truncated Taylor series is used to estimate

Fig. 1 Typical 1D point
distribution
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functional value at the neighbouring point of ‘o’ (say at point ‘i’). Taylor series
expansion for /i around point ‘o’ is given by:

/i ¼ /o þ
@/
@x

����
o

Dxi þ @2/
@x2

����
o

ðDxiÞ2
2!

þ @3/
@x3

����
o

ðDxiÞ3
3!

þ � � � ð6Þ

with Dð�Þi ¼ ð�Þi � ð�Þo. The ith element of the error vector E is defined as:

Ei ¼ D/i �
@/
@x

����
o

Dxi � @2/
@x2

����
o

ðDxiÞ2
2!

� @3/
@x3

����
o

ðDxiÞ3
3!

� � � � ð7Þ

Let ‘m‘represent the number of neighbours of ‘o’. For linear least-squares
(LLSQ) fit we include terms up to first order derivative for defining the error vector.
Then the derivative at point ‘o’ is determined by minimizing the sum of all the
squared residuals i.e., the error vector for all neighbouring points of ‘o’ under
consideration (known as neighbouring points) w.r.t @/@x

��
o. The sum of all the squared

residuals can be written as:

Xm
i¼1

E2
i ¼

Xm
i¼1

D/i �
@/
@x

����
o
Dxi

� �2
ð8Þ

After minimizing w.r.t @/
@x

��
o we get the gradient at point ‘o’:

@/
@x

����
o

¼
Pm

i¼1 ðwiD/iDxiÞPm
i¼1 wiðDxiÞ2

ð9Þ

where, wi is a monotonically decreasing weight function which can be written as

wi ¼ 1
rpi

ð10Þ

with ‘ri‘as the distance between point ‘o’ and its neighbouring points ` i’ and p� 1.
The weights give preference to neighbouring information which is closer to point
‘o’ than those are far away. When the weights are chosen to be identically unity
then the approach is referred to as unweighted least-squares approach or simply
least-squares approach. The gradient becomes

@/
@x

����
o
¼

Pm
i¼1 ðD/iDxiÞPm
i¼1 ðDxiÞ2

ð11Þ
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4 Upwind Least-Squares Finite Difference Method

In this work we use upwind least-squares finite difference method (LSFD-U) pro-
posed by Sridar and Balakrishnan [12]. To understand the method we consider the
one-dimensional point distribution presented in Fig. 2. In LSFD-U, the upwind flux
is calculated at a fictitious interface I associated with the neighbouring point i. This
flux is then used in the least-squares formula. As stated in Eq. (9), the linear
least-squares approximation for flux gradient at point ‘o’ can be written as:

@F
@x

����
o

¼
Pm

I¼1 wIðDFIDxIÞPm
I¼1 wIðDxIÞ2

ð12Þ

with Dð�ÞI ¼ ð�ÞI � ð�Þo. In the above equation FI indicates the upwind flux cal-
culated at the fictitious interface I corresponding to the neighbouring point i. The
appealing property of this method is that, the flux FI at the fictitious interface can be
determined by using any numerical flux formula of interest. Additionally, a global
stencil of grid points can be used in this method instead of a one-sided upwind
stencil resulting in lesser computational effort and greater accuracy. As this method
does not use one-sided stencil of grid points, the difficulty of locating physically
relevant neighbours near the boundaries of the computational domain can be
avoided.

5 Enforcing Conservation in LSFD-U

Like all other meshless methods, LSFD-U also faces a fundamental challenge i.e.,
the lack of discrete conservation. Owing to the local nature of the scheme, it does
not preserve conservation at the discrete level except with a uniform point distri-
bution. Compared to mesh-based approaches non-conservative numerical methods
consistently under- or overestimate shock speeds when sharp discontinuities exist,
and therefore the numerical shocks increasingly lag or lead the true shocks as time
progresses. The effects of non-conservation on accuracy and stability of meshfree
algorithms, as compared to their mesh-based counterparts is often a cause of
concern in terms of the utility of these techniques.

In this section, we attempt to enforce discrete conservation within the meshfree
framework for a very specific one-dimensional case. A non-uniform point distri-
bution as shown in Fig. 3 is considered, where every point has a neighbourhood

Fig. 2 Use of fictitious
interface to enforce
upwinding in 1D problem
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stencil consisting of one left and one right neighbour. Studies are performed using
both unweighted and weighted LSFD-U, to study the impact of weights on
non-uniform point distribution. We have considered a weight function wI ¼ 1=r pI
with p ¼ 1.

6 Results and Discussions

We have tested our algorithm on two MHD shock tube problems to check the
consistency and robustness of our method under different conditions on the physical
variables. Our suite of one-dimensional problems include the Brio and Wu problem
and the Dai and Woodward problem (also known as Ryu and Jones problem).

6.1 Test Case 1: Brio and Wu Problem

Brio and Wu problem is an MHD analogue of the Sod shock tube problem. It is a
coplanar Riemann problem for MHD, with two initial constant states Ul and Ur

which were suggested by Brio and Wu in [1]. Even though, the Brio and Wu test
problem is non-physical and cannot be realised in a laboratory environment, it is
regarded as a benchmark problem to test numerical schemes for local linear
degeneracy and lack of strict hyperbolicity in one-dimensional ideal MHD. As in
[1] we choose (ρ, u, v, w, By, Bz, p)l = (1, 0, 0, 0, 1, 0, 1); (ρ, u, v, w, By, Bz,
p)r = (1/8, 0, 0, 0, −1, 0, 1/10); Bx = 0.75 and c = 1.4, with the initial discontinuity
at the middle of the tube.

Numerical solutions obtained for 800 grid points with length of the tube = 800 m
and Dt ¼ 0:2 s (CFL* 0.8) are shown at t ¼ 80 s. Figure 4 shows the solutions for
this test obtained through unweighted LSFD-U, weighted LSFD-U and simple finite
volume method using AUSM [14] flux vector splitting formula on the same
non-uniform point distribution.

Five waves are generated in the solution. A fast rarefaction wave (FR), and a
slow compound wave (SM) (compound wave is a combination of a shock and
rarefaction wave of the same family attached with each other) move towards the
left, and a contact discontinuity (C), a slow shock (SS), and a fast rarefaction wave
(FR) move towards the right. This numerical example is important, since it

Fig. 3 1D non-uniform point distribution
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demonstrates one of the typical characteristics of the solutions of the MHD system
i.e., a compound wave. The existence of the compound wave in the solution is
correlated with the non-convex character of the MHD system by Brio and Wu
in [1].

Fig. 4 Solutions for Brio Wu shock tube problem
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Fig. 5 Solutions for Dai Woodward shock tube problem
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6.2 Test Case 2: Dai and Woodward Problem

This MHD shock tube problem was first suggested by Dai and Woodward [15] and
later solved by Ryu and Jones [16], which involves three-dimensional field and
velocity structure where the magnetic field plane rotates. Initial left and right values
are: (ρ, u, v, w, By, Bz, p)l = (1.08, 1.2, 0.01, 0.5, 3.6/

pð4pÞ, 2.0/pð4p), 0.95) and,
(ρ, u, v, w, By, Bz, p)r = (1.0, 0.0, 0.0, 0.0, 4.0/

pð4pÞ, 2.0/pð4pÞ, 1.0). With,
Bx = 2.0/

pð4pÞ and c = 5/3. Numerical solutions obtained for 512 grid points at
t = 0.2 s with length of the tube = 1 m and Dt ¼ 10�5 s are plotted in Fig. 5. Two
fast shocks (FS), two slow shocks (SS), two rotational discontinuities (RD) and a
contact discontinuity (C) are generated in the solution. This is an important test case
since we can check the ability of the scheme to capture all the seven waves in MHD
with a single test. For a fast shock the magnitude of each transverse component of
magnetic field increases from its pre-shock state to its post-shock state while it is
vice versa for a slow shock. A rotational discontinuity propagates at the Alfven
speed and there are jumps in transverse components of flow velocity, but no jumps
in density, static pressure and longitudinal component of flow velocity. Importantly,
across a rotational discontinuity, the transverse part of magnetic field undergoes a
rotation around the normal of the surface, but the magnitude remains unchanged.

The results demonstrate the efficacy of our algorithm. On the non-uniform grid
the solutions of the unweighted LSFD-U are not in agreement with the solutions of
the finite volume framework, however, there are no discernible differences between
the solutions of weighted LSFD-U and the solutions of the finite volume frame-
work. This suggests that the weighting has been successful in eliminating conser-
vation issues related with LSFD-U and it preserves conservation at a discrete level
like the finite volume method. However, the behaviour of weights on asymmetric
neighbourhood stencils has not been studied for now and is a matter of ongoing
investigation.

7 Conclusions

In this paper we have proposed a meshfree framework for numerical simulations of
ideal magnetohydrodynamic flows. The framework is based on the
Least-Squares-Based Upwind Finite Difference method (LSFD-U), which employs
a global stencil on any arbitrary point distribution. Any upwind numerical flux
formula of interest (we have used AUSM) can be used to compute the fluxes at the
fictitious interfaces. The ability of LSFD-U has been demonstrated by solving two
different MHD shock tube problems and the importance of weighting on LSFD-U
in enforcing discrete conservation has been highlighted over its unweighted
counterpart. Efforts to develop a conservative meshfree framework on non-uniform
point distributions with asymmetric neighbourhood stencil is currently under
progress.
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