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Abstract In the present work for numerically investigating the interfacial flows, an
algebraic Volume of Fluid technique has been implemented over hybrid unstruc-
tured meshes. Following the work of Dalal et al. (Numer Heat Transf Part B 54
(2):238–259, 2008 [2]), the governing equations are discretised by cell centered
finite volume method wherein pressure-velocity coupling has been achieved by
momentum interpolation due to Rhie and Chow (AIAA J 21:1525–1532, 1983
[12]). The binary fluid problem is represented by a single fluid formulation with a
fluid property jump at the interface. Two schemes namely NVD based GAMMA
scheme (Jasak, Int J Numer Meth Fluids 31:431–449, 1999 [7]) and Convergent
and Universally Bounded Interpolation Scheme for the Treatment of Advection
(CUBISTA) (Alves et al., Numer Heat Transf 49:19–42, 2006 [1]) has been
incorporated into an in-house fully coupled Navier-Stokes solver. These schemes
are validated with the published results of collapse of water column also known as
dam break problem by Martin and Moyce (Math Phys Sci 244:312–324, 1952 [9])
and Rayleigh-Taylor instability (Tryggvason, J Comput Phys 75:253–282, 1988
[13]). The results are found to be in good agreement.
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1 Introduction

Interfacial flows arise in various practical and natural applications like water wave,
liquid sloshing inside a tank, flame propagation and many other areas in engi-
neering and science. The prediction of multi-phase flows is beneficial in process
design or in the diagnosis of problems in the established process. A detailed
analysis of immiscible fluid flows requires a precise representation of the interface
which separates the two fluids. In the last few decades, a lot of work has been done
in this direction and many methods have been proposed for defining sharp and
accurate interface position. In general these methods can be broadly categorized
under two categories: Lagrangian and Eulerian. In Lagrangian method either the
mesh boundary coincides with the interface or internal mesh edges collectively
forms an interface. So in order to capture the interface, continuous re-meshing of
the domain is needed at each time step. This may require complex algorithm
depending upon whether extra elements needs to be added or subtracted during the
re-meshing operation. In addition to this an extra precaution has to be taken in order
to enforce volume conservation of the moving cell. This method faces difficulty
while simulating flows undergoing large deformations as the mesh elements will be
highly deformed which on the other hand reduces the accuracy and sometimes leads
to the numerical instabilities.

In Eulerian method, the interface needs not to coincide with the mesh boundary
or with the edge of an internal element rather it is treated as a sharp front moving
through the mesh elements. In general, two different approaches have evolved
within this category: (a) surface methods and (b) volume methods. In surface
methods special marker points are used to represent an interface and in order to
approximate the points in between these marker points special interpolation tech-
niques are used. The advantage of this method lies in the fact that interfaces remains
sharp as it is advected with time across the domain. Glimm et al. [4] and
Tryggvason et al. [14] are the major developers of this method. However, this
method fails to give accurate results while simulating coalescence and breakup of
the interface. The complexities further increases due to interaction between fixed
grid and movable interface particles. Another front tracking method is the level set
method introduced by Osher and Sethian [11], wherein a continuous level set
function is defined throughout the domain by the shortest distance from the inter-
face. Naturally, the interface is represented with the zero value of the level set
function and is advected with the background flow field. This method is simple and
easy to implement, but the limitation of mass loss occurs while simulating flows in
which interface gets highly distorted.

An alternative to surface methods are volume methods or volume tracking
methods. In this method, the presence of fluid is identified by some kind of indi-
cators. One of the oldest method known as marker-and-cell (MAC) method pro-
posed by Harlow and Welch [6], specifically for free surface flows, the presence of
fluid is determined by the presence of massless particles. These particles are
transported in a Lagrangian fashion over a fixed Eulerian grid. This method
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simulated a variety of flow configurations including the famous dam break flow and
Rayleigh Taylor instability. However, difficulty arises while simulating high shear
flows, which needs large number of particles, which on the other hand increases the
computational power. Additionally for simulating three dimensional flows, also
large number of particles is needed which again requires high computational power.

Another way to identify a particular fluid is to use indicator function or color
function. Volume of Fluid (VOF) method is one of the most widely used method
which comes under this category. In this method the interface is tracked with the
help of a phase indicator function ϕ (also known as volume fraction) whose value
varies from 0 to 1. A value of ϕ = 1 shows the complete presence of one fluid while
ϕ = 0 refers to the complete presence of other fluid in the respective grid element.
For the values of ϕ in between 0 and 1, the grid element is partly filled by one fluid
and partly by other, which indirectly represents the presence of interface in that
particular grid element. The advection of volume fraction is governed by a
hyperbolic equation, which may incur numerical diffusion of the step profile of the
interface, while solving directly with the help of numerical differencing schemes.
To avoid this numerical smearing of the interface, generally following two
approaches are adopted: (1) interface reconstruction using line techniques [10, 17],
(2) usage of high resolution differencing schemes. On unstructured grid it is difficult
to use line reconstruction method, further the complicacy even more increases while
extending it to three dimensional simulations. For this reason generally second
approach is adopted for simulating interfacial flows over unstructured grid, wherein
no explicit reconstruction of the interface is required and interface is captured by
directly solving the hyperbolic equation. In the past various schemes have been
devised [3, 15, 16] to discretize the advection equation which governs the volume
fraction field. These schemes are generally blend of high resolution schemes and
compressive schemes so as to reduce numerical diffusion and preserve boundedness
of the solution at the interface. Gopala et al. [5] compared different interface cap-
turing method over structured grids and discussed in detail about the merits and
demerits of these methods. In the present work, GAMMA scheme due to Jasak and
Weller [7] and CUBISTA scheme due to Alves et al. [1] have been implemented
into an in house fully coupled Navier-Stokes solver over hybrid unstructured grid.
Validation of different schemes has been carried out with the published results of
dam break problem and Rayleigh-Taylor instability.

1.1 Governing Equations

The two different fluids are modeled by single fluid formulation wherein the fluids
separated by an interface are assumed to be viscous, incompressible and immiscible
following the same form of equations accounting conservation of mass and
momentum.
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Continuity Equation

r � u ¼ 0 ð1Þ

Momentum Transport Equation

@ quð Þ
@t

þr � quuð Þ ¼ �rpþr � sþ qg ð2Þ

where ρ is the density, u is the velocity, τ is the stress tensor, g is the gravitational
acceleration and p is the pressure.

In this study, the mixture of fluids is considered as a single continuum.
Therefore, we can define a volume fraction f (also called as the color or indicator
function) whose value varies between 0 and 1. Values of volume fraction varies
from cell to cell, one of the fluid (generally lighter fluid) is recognized with a
volume fraction of 0 while the other one (generally heavier fluid) is recognized with
unity. The cell through which interface is passing, will be recognized with a value
of volume fraction varying in between 0 and 1 (Fig. 1). Thus the fluid properties of
interest can be expressed as a function of the volume fraction f. The density and
viscosity at any location (where the volume fraction is calculated) are evaluated as,

q ¼ fq1 þð1� f Þq2 ð3Þ

l ¼ fl1 þð1� f Þl2 ð4Þ

Advection Equation
The time dependence of f is governed by

@f
@t

þ u � r f ¼ 0 ð5Þ

where f is volume fraction.
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Fig. 1 Volume fraction field
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Using continuity equation, advection equation can bewritten in divergence form as

@f
@t

þr � ðu f Þ ¼ 0 ð6Þ

Following the work of Manik et al. [8] this advection equation is solved along
with the conservation equations in a coupled fashion over unstructured grid in a
collocated finite volume framework.

2 Results and Discussion

The performance evaluation of the two advection schemes has been done by
simulating collapse of water column (dam break problem) and Rayleigh-Taylor
instability and is shown in the following subsections.

2.1 Collapse of Water Column

The problem definition consists of a rectangular domain of size 5 × 1.6 with a water
column 1 × 1 placed at the bottom left corner as shown in Fig. 2. The grid
comprises of 3000 hexahedral elements and simulation is carried out with a con-
stant time step of 0.001 until t = 2.5 and the contour plot of volume fraction is
shown in Fig. 3. Figure 4 shows the variation of column height and evolution of the
front along with the experimental results of Martin and Moyce [9]. It can be seen
that the numerical results gives a satisfactory match with the experimental data.

2.2 Rayleigh-Taylor Instability

It is a density driven problem where an interface separates two different fluid,
heavier liquid on top is separated from a lighter liquid on the bottom. The
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Fig. 2 Schematic diagram for dam break flow simulation
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computational domain is a 1 × 4 rectangular domain and is discretised using 6000
hexahedral mesh elements. The top and bottom walls are prescribed with no-slip
boundary condition and the remaining boundaries are assumed to be slip walls. The
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density and viscosity ratio are taken as 3 and 1 respectively so that the Atwood
number (At ¼ qmax�qmin

qmax þqmin
) becomes 0.5. The interface is initially perturbed by the

following relation.

y ¼ 2:0þ 0:1 cosð2pxÞ ð7Þ

Fig. 5 Interface position—initially and after few time steps

Fig. 6 Position of rising and
falling bubble with time
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Temporal evolution of the interface position has been shown in Fig. 5. GAMMA
scheme has been used for this simulation with a constant time step of 0.001. The
results are compared with the analytical results of Trygggvason [13] as shown in
Fig. 6 and found to be in well agreement with the published results.

3 Conclusion

In order to simulate interfacial flows, algebraic volume of fluid method has been
adopted, wherein advection equation has been solved along with conservation
equations in an in-house fully coupled Navier-Stokes solver. Two schemes namely
GAMMA due to Jasak et al. [7] and CUBISTA by Alves et al. [1] has been used for
discretisation of the advection equation. Validation has been done with the pub-
lished results of dam break problem [9] and Rayleigh-Taylor instability [13] and a
good qualitatively agreement between the numerical and experimental results
depicts the potential of the algorithm to handle interfacial flows with large distor-
tions. Further investigation can be done in simulating interfacial flows where sur-
face tension force is dominant and for that we have plans to extend the present
solver to simulate these kinds of problems as well.

Acknowledgments This study is funded by a grant from the DAE-BRNS, Government of India.

References

1. Alves, M.A., Oliveira, P.J., Pinho, F.T.: A convergent and universally bounded interpolation
scheme for the treatment of advection. Numer. Heat Transf. 49, 19–42 (2006)

2. Dalal, A., Eswaran, V., Biswas, G.: A finite-volume method for Navier-Stokes equation on
unstructured meshes. Numer. Heat Transf. Part B 54(2), 238–259 (2008)

3. Darwish, M., Moukalled, F.: Convective schemes for capturing interfaces of free-surface flows
on unstructured grids. Numer. Heat Transf. 49, 19–42 (2006)

4. Glimm, J., Grove, J.W., Li, X.L., Oh, W., Sharp, D.H.: A critical analysis of Rayleigh-Taylor
growth rates. J. Comput. Phys. 169, 652–677 (2001)

5. Gopala, V.R., Berend, G.M., Wachem, V.: Volume of fluid methods for immiscible-fluid and
free-surface flows. Chem. Eng. J. 141, 204–221 (2008)

6. Harlow, F., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow
of fluid with free surface. Phys. Fluids, vol. 12 (1965)

7. Jasak, H., Weller, H.G., Gosman, A.D.: High resolution NVD differencing scheme for
arbitrarily unstructured meshes. Int. J. Numer. Meth. Fluids 31, 431–449 (1999)

8. Manik, J., Parmananda, M., Dalal, A., Natarajan, G.: Development of 3-d Navier-Stokes
solver over a hybrid unstructured grid. In: 22nd National and 11th International
ISHMT-ASME Heat and Mass Transfer Conference. IIT Kharagpur, India, ASME (May
2013), hMTC1300353

9. Martin, J.C., Moyce, W.J.: An experimental study of collapse of liquid column on the rigid
horizontal plan. Math. Phys. Sci. 244, 312324 (1952)

1118 Jai Manik et al.



10. Noh, W.F., Woodward, P.R.: SLIC (simple line interface method). In: van de Vooren, A.I.,
Zandbergen, P.J. (eds.) Lecture Notes. Physics, vol. 59, pp. 330–340 (1976)

11. Osher, S., Sethian, J.A.: Front propagation with curvature dependent speed: algorithm based
on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

12. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing
edge separation. AIAA J. 21, 1525–1532 (1983)

13. Tryggvason, G.: Numerical simulations of the Rayleigh-Taylor instability. J. Comput. Phys.
75, 253–282 (1988)

14. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas,
S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput.
Phys. 169, 701–759 (2001)

15. Tsui, Y., Lin, S., Wu, T.: Flux-blending schemes for interface capture in two-fluid flows. Int.
J. Heat Mass Transf. 52, 5547–5556 (2009)

16. Ubbink, O., Issa, R.: A method for capturing sharp fluid interfaces on arbitrary meshes.
J. Comput. Phys. 153, 26–50 (1999)

17. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.
W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285 (1982)

A Hybrid Grid Based Algebraic Volume of Fluid Method … 1119


	105 A Hybrid Grid Based Algebraic Volume of Fluid Method for Interfacial Flows
	Abstract
	1 Introduction
	1.1 Governing Equations

	2 Results and Discussion
	2.1 Collapse of Water Column
	2.2 Rayleigh-Taylor Instability

	3 Conclusion
	Acknowledgments
	References


