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Abstract Normally in tracking applications, the target motion is usually modeled
in Cartesian coordinates but, most sensors measure target parameters in polar
coordinates. In this paper two contributions are considered in target tracking. One
depends on position measurements and another one is on Doppler measurements.
The position measurements are measured by taking the range and bearing (angle) of
the target depending on the sensor location. Tracking the target Cartesian coordi-
nates by using this range and bearing measurements is a nonlinear state estimation
problem. To calculate the position measurements (range and angle), it is preferred
to convert them to Cartesian coordinates by considering the linear form values. This
is done, to avoid using nonlinear filters. This method is called as converted position
measurement Kalman filter (CPMKF). In this paper another contribution is Doppler
(range rate) measurement in target tracking systems. In this contribution the non-
linear pseudo states are calculated. This method is called as Converted Doppler
measurement Kalman filter (CDMKF). By considering these two methods a parallel
filtering structure, called statically fused converted measurement Kalman filter
(SF-CMKF) is proposed. The two methods are operated along with each other to
construct the new state estimator SF-CMKF by a static estimator to obtain final state
estimates.
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1 Introduction

In much Doppler type of radars, the measurements are considered in the form of
polar values, which gives the measurements like range, range rate (Doppler), and
one or two angles of its position during moving. Then the Cartesian components
errors in the converted measurements are correlated with each other is explored in
[4, 5, 9, 11, 13, 14]. The other one is done by using extended Kalman filter
(EKF) presented in [3, 6, 8, 10, 12, 13]. In this approach we have to consider the
measurements of the target state estimation in a nonlinear fashion, which results the
mixed coordinate filter [7, 8]. These measured terms results are considered to
compare with the first two moment approximations which are presented here. The
new converted measurement Kalman filter (CMKF) [14], is having estimation
errors, which are compatible with the calculated covariance of the measured terms.
The EKF is different from this method, because it is consistent only for small errors.
So that the CMKF is having the correct covariance, it processes all the target
measurements with a gain, which is nearly optimal and gives smaller errors com-
pared with the EKF [3]. In the moderately accurate sensors, the EKF performs very
poorly in tracking the target at long range for RMS azimuth error of 1.5° or more
[10]. But the CMKF [12] is consistent for 10° RMS azimuth error also.

In this paper to rectify these shortcomings, a new method is proposed. In the
proposed method, the use of the nonlinear recursive filtering methods is avoided
during the processing of Doppler measurements [6]. In the first one, a pseudo state
vector is considered, in which the existing converted Doppler measurements of the
target are linear functions and they are constructed. These pseudo state vectors
consist of the converted Doppler measurements and its derivatives [7, 8]. The
pseudo state equations are derived from the measurements and proven to be linear
in two commonly used target motion models. One model is the constant velocity
(CV) and the other one is constant acceleration (CA) models. By using these
converted Doppler measurement Kalman filter (CDMKF), is proposed to estimate
the pseudo states [7]. This is also used to filter the noise in the converted Doppler
measurements Kalman filter. Finally, the CDMKF is combined with the CPMKF
[13, 14] to construct a new filter which gives a new state estimator called as
statically fused converted measurement Kalman filters (SF-CMKF).

2 Problem Description

2.1 System Formulation

In Cartesian coordinates target’s parameters are considered by depending on the
conversion measurements of the target from polar coordinates to Cartesian. It is
modeled as
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X kþ 1ð Þ ¼ U kð ÞXðkÞþCðkÞVðkÞ ð1Þ

where X kð Þ ¼ x kð Þ; y kð Þ; _x kð Þ; _yðkÞ½ �T , here X kð Þ ¼ Rn is the state vector consisting
of target’s position components and corresponding target’s velocity components
along x and y directions, respectively, at every time step k. If a moving target is
considered, the state vector can be taken by other components such as acceleration.
Here, U kð Þ �Rn�n is the target’s state transition matrix, v(k) is zero-mean Gaussian
random process noise with covariance Q(k), and CðkÞ is noise gain matrix [2].

If we considered a 2D Doppler radar, which is assumed to report measurements
of moving targets in polar coordinates, including range, range rate (Doppler) and
angle presented in [3, 13, 14]. The measurement equation can be expressed as

z kð Þ ¼ rm kð Þ; hm kð Þ; _rðkÞ½ �T

¼ h XðkÞ½ � þw kð Þ ¼ rðk; h kð Þ; _rðkÞÞ½ �T þwðkÞ
ð2Þ

where

rðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 kð Þþ y2ðkÞ

p
ð3Þ

h kð Þ ¼ tan�1 yðkÞ=xðkÞ½ � ð4Þ

_r kð Þ ¼ x kð Þ _x kð Þþ y kð Þ _yðkÞ½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 kð Þþ y2ðkÞ

p
ð5Þ

w kð Þ ¼ ~r kð Þ; ~h kð Þ;~_rðkÞ
h i

ð6Þ

Normally the measured range and bearing of the target [14] are considered by
taking the true range r and bearing h as

rm ¼ rþ~r; hm ¼ hþ ~h ð7Þ

2.2 Measurement Conversion Equations

The errors like range ~r and bearing ~h are taken to get independent with zero mean
and standard deviations presented in [1]. These polar measurements are converted
into Cartesian coordinate measurements by using the following conversion tech-
niques [14]

xm ¼ rm cos hm; ym ¼ rm sin hm; ð8Þ
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The errors can be found by expanding these terms

xm ¼ xþ~x ¼ ðrþ~rÞ cosðhþ ~hÞ;
ym ¼ yþ~y ¼ ðrþ~rÞ sinðhþ ~hÞ

ð9Þ

The mean error of Cartesian positions becomes

lt r; hð Þ ¼ E½~x r; h�j
E½~y r; h�j
� �

¼ r cos hðe�
r2
h
2 � 1Þ

r sin hðe�
r2
h
2 � 1Þ

2
4

3
5 ð10Þ

After some algebraic manipulation of the measurements, the elements of the
targets converted measurement covariance [14] are given by

R11
t ¼ varð~x r; hj Þ ¼ r2e�r2h ½cos2hðcosh r2h

� �� 1Þþ sin2h sinhðr2hÞ�
þ r2r e

�r2h ½cos2h cosh r2h þ sin2h sinhðr2hÞ� ð11aÞ

R22
t ¼ varð~y r; hj Þ ¼ r2e�r2h ½sin2hðcosh r2h

� �� 1Þþ cos2h sinhðr2hÞ�
þ r2r e

�r2h ½sin2h cosh r2h þ cos2h sinhðr2hÞ� ð11bÞ

R12
t ¼ varð~x;~y r; hj Þ ¼ sin h cos he�2r2h ½r2r þ r2ð1� er

2
hÞ� ð11cÞ

Equations (10) and (11a, 11b, 11c) are the expressions of the bias and covariance
of the targets converted measurements. The converted measurements of the target
have a significant bias for long range and large bearing error. The true bias and
covariance of the measured parameter values depend on the true range and bearing.
They are denoted as with elements (10) and with elements (11a, 11b, 11c),
respectively.

A conversion of the Doppler measurements is also made in this paper to yield the
converted Doppler measurements as [7]:

gc kð Þ ¼ rm kð Þ_rm kð Þ ¼ g kð Þþ ~gðkÞ ð12Þ

where η(k) is the converted Doppler (i.e., the product of range and range rate),
given by

g kð Þ ¼ x kð Þ _x kð Þþ y kð Þ _y kð Þ ð13Þ

and ~gðkÞ is the error in the converted Doppler Measurement gc kð Þ, [10].
The use of the zero-mean expressions of measured one cannot be taken for the

bias of the target at long ranges with the bearing error and the covariance
approximation (13) is poor. The expressions in (10) and (11a, 11b, 11c) cannot be
used because; the fact is that they are conditioned on the target’s true values of
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range and bearing [14]. But these are not available in practice. The results become
useful, when the expected values of target true moments are evaluated with the
measured position. The expected bias and covariance are examined as [5]:

E lt r; hð Þ rm;hm
��� 	 ¼ la ð14Þ

E Rt r; hð Þ rm;hm
��� 	 ¼ Ra ð15Þ

Then the expected value of the target’s true bias is considered with elements of
its classical approximations and target’s true covariance is considered with elements
of the same, which are conditioned on the measured position. These are called as
the target’s average true bias and target’s average true covariance. Expanding the
expected bias and covariance using (1) and applying the trigonometric identities
gives the mean (14) as [5]

la ¼ rm cos hmðe�r2h � e�r2h=2Þ
rm sin hmðe�r2h � e�r2h=2Þ

� �
ð16Þ

and the covariance as [5]:

R11
a ¼ r2me

�2r2h ½cos2hmðcosh 2r2h � cosh r2hÞþ sin2hmðsinh 2r2h � sinh r2hÞ�
þ r2r e

�2r2h ½cos2hmð2 cosh 2r2h � cosh r2hÞ
þ sin2hmð2 sinh 2þ 2

h � sinh r2hÞ�
ð17aÞ

R22
a ¼ r2me

�2r2h ½sin2hmðcosh 2r2h � cosh r2hÞþ cos2hmðsinh 2r2h � sinh r2hÞ�
þ r2r e

�2r2h ½sin2hmð2 cosh 2r2h � cosh r2hÞ
þ cos2hmð2 sinh 2r2h � sinh r2hÞ� ð17bÞ

R12
a ¼ sin hm cos hme�4r2h r2r þðr2m þ r2r

� �ð1� er
2
hÞ� ð17cÞ

Note that the average covariance (17a, 17b, 17c) is larger compared to the
covariance (11a, 11b, 11c), which is conditioned on the exact position; it gives the
additional errors by evaluating it by the measured position [7]. This is difficult in
showing the consistency later. The bias and increase in the covariance, is always
significant for long ranges and also for large bearing errors. So the new
polar-to-Cartesian conversion [8], is an unbiased consistent conversion [8], with the
correction of the average bias which is taken, instead of (7), given by

zc ¼ xcm
ycm

� �
¼ rm cos hm

rm sin hm

� �
� la ð18Þ

where the elements of la are taken from (16) and the average covariance of the
converted measurements is Ra with elements (17a, 17b, 17c).
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Similarly, one can get the bias and variance of the converted Doppler mea-
surements as [8]

ln kð Þ ¼ qrrr_r ð19Þ

Rgg kð Þ ¼ r2m kð Þr2_r þ r2r _r
2
m kð Þþ 3 1þ q2

� �
r2rr

2
_r þ 2rmðkÞ_rmðkÞqrrr_r ð20Þ

The debiased converted position measurements are given as

zgc kð Þ ¼ gc kð Þ � lg kð Þ ð21Þ

The covariance between the converted position measurements and the converted
Doppler measurements can be given as [8]

Rpg kð Þ ¼ RxgðkÞ
RygðkÞ
� �

¼ r2r _rm kð Þþ rmðkÞqrrr _r
� 	

cos hmðkÞe�r2h

r2r _rm kð Þþ rmðkÞqrrr_r
� 	

sin hmðkÞe�r2h

" #
ð22Þ

2.3 Converted Doppler Kalman Filter

Normally, nonlinear filtering methods like the EKF and UKF are taken to deal with
Doppler measurements. Here, the nonlinear problem is solved by building a pseudo
state vector, which is having a linear relationship with the already existing con-
verted measurements of the target and by deriving the particular linear filtering
equations. This shows the results of the CDMKF. In this particular section, the two
commonly used target motion models are, one is nearly constant velocity
(NCV) and the other one is nearly constant acceleration (NCA) models [2], are
evaluated. Now, the pseudo state equations of derivatives are considered by taking
the second order and third order derivatives are as zero [2].

€xðkÞ
€yðkÞ
� �

¼ 0
0

� �
ð23Þ

for CV model and

€xðkÞ
€yðkÞ
� �

¼ 0
0

� �
ð24Þ

for CA model.
The pseudo state vector of the dynamic system for a CV model and CA model is

considered as [9, 10]
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g kð Þ ¼ gðkÞ
_gðkÞ

� �
¼ c XðkÞ½ � ¼ x kð Þ _x kð Þþ y kð Þ _y kð Þ

_x2ðkÞþ _y2ðkÞ
� �

ð25Þ

gðkÞ ¼

gðkÞ
_gðkÞ
€gðkÞ
vgðkÞ

2
6664

3
7775 ¼ c½XðkÞ ¼

xðkÞ _xðkÞþ yðkÞ _yðkÞ
_x2ðkÞþ _y2ðkÞþ xðkÞ€xðkÞþ yðkÞ€yðkÞ

3 _xðkÞ€xðkÞþ 3 _yðkÞ€yðkÞ
3€x2ðkÞþ 3€y2ðkÞ

2
6664

3
7775 ð26Þ

The derivatives of the NCV and the NCA in Cartesian coordinates are consid-
ered by using zero-mean white noise [2]. Then the NCV and NCA are expressed as
follows

xðkþ 1Þ
yðkþ 1Þ
_xðkþ 1Þ
_yðkþ 1Þ

2
664

3
775 ¼

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

2
664

3
775

xðkÞ
yðkÞ
_xðkÞ
_yðkÞ

2
664

3
775þ

T2=2 0
0 T2=2
T 0
0 T

2
664

3
775 vxðkÞ

vyðkÞ
� �

ð27Þ

xðkþ 1Þ
yðkþ 1Þ
_xðkþ 1Þ
_yðkþ 1Þ
€xðkþ 1Þ
€yðkþ 1Þ

2
666666666664

3
777777777775
¼

1 0 T 0 T2=2 0

0 1 0 T 0 T2=20

0 0 1 0 T 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

xðkÞ
yðkÞ
_xðkÞ
_yðkÞ
€xðkÞ
€yðkÞ

2
6666666664

3
7777777775
þ

T2=2 0

0 T2=2

T 0

0 T

1 0

0 1

2
666666664

3
777777775

vxðkÞ
vyðkÞ
� �

ð28Þ

Now by considering the mean of the squared noise as a known input, the state
equation can be written as

g kþ 1ð Þ ¼ Ugg kð ÞþGu kð ÞþCxvx kð ÞþCsvs kð Þ ð29Þ

where for NCV model

Ug ¼
1 T

0 1

� �
; G ¼ Cs ¼ T3=2 3T=2

T2 T2

� �
; u kð Þ ¼ E

v2xðkÞ
v2yðkÞ

" # !
¼ q

q

� �

Cx kð Þ ¼ T 3T2=2

0 2T

� �
; vx kð Þ ¼ XCv kð Þ ¼ xðkÞ yðkÞ

_xðkÞ _yðkÞ

� �
vxðkÞ
vyðkÞ
� �

vs kð Þ ¼ v2x kð Þ � q

v2y kð Þ � q

" #

for NCA model
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/g ¼

1 T T2=2 T3=6

0 1 T T2=2

0 0 1 T

0 0 0 3

2
6664

3
7775; G ¼ Cs ¼

T3=2 T3=2

3T2=2 3T2=2

3T 3T

3 3

2
6664

3
7775; u kð Þ ¼ E

v2xðkÞ
v2yðkÞ

" # !
¼ q

q

� �

Cx ¼

T 3T2=2 T3

1 3T 3T2

0 3 6T

0 0 6

2
6664

3
7775; vx kð Þ ¼ XCv kð Þ ¼ xðkÞ yðkÞ

_xðkÞ _yðkÞ
� �

vxðkÞ
vyðkÞ
� �

;

vs kð Þ ¼ v2x kð Þ � q

v2y kð Þ � q

" #

3 Statically Fused Converted Measurement
Kalman Filters

3.1 Filtering Structure

The CDMKF provides a new method to exploit Doppler measurements. But the
resulting pseudo states from the CDMKF are quadratic [7, 8], not linear, in
Cartesian states. Additional processing is needed to extract the final target states
from the pseudo states. The Cartesian states can be provided by the CPMKF, which
is used along with the CDMKF, leading to a new tracking filtering approach, the
SF-CMKF [13].

Figure 1 illustrates the structure of the SF-CMKF. The original sensor mea-
surements (i.e., range, Doppler, and angle) are divided into two parts to be pro-
cessed separately by two linear filters first.

Fig. 1 Filtering of SF-CMKF
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The prior mean of the state to be estimated is

�xðkþ 1Þ ¼ E½xðkþ 1Þ
x̂pðkþ 1; kþ 1Þ� ð30Þ

Debiased converted measurement is

zðkþ 1Þ ¼ gðkþ 1Þ � ~gðkþ 1; kþ 1Þ ð31Þ

The covariance between the states to be estimated and the measurement is

PXZ ¼ E x� xð Þ z� zð ÞT� 	 ð32Þ

The covariance of the measurement is

PZZ ¼ E z� zð Þ z� zð ÞT� 	 ð33Þ

The static nonlinear estimation equation is obtained as

X̂ ¼ x̂p þPxz Pzzð Þ�1ðĝ� zÞ ð34Þ

4 Simulation Results

Considering the target starting and moving with two trajectories which gives the
effectiveness of the CDMKF and CPMKF methods in the forms nearly constant
velocity trajectory and also nearly constant acceleration trajectory which are starting
at (10, 10 km) and the target moves with a speed of 10 m/s heading to 60°. In the
second scenario the acceleration is of 0.2 m2/2. The process noise of the target is
assumed to be zero-mean white Gaussian noise with standard deviation 0.001 m/s2.
The sensor is located at origin (0, 0 km) and the sampling interval is T = 1 s. The
standard deviations of target’s range, azimuth, and Doppler measurements are taken
as, rr = 50 m, rh = 2.5°, r_r = 0.1 m/s. The correlation coefficient of the target
between range and bearing is taken as q = 0. Simulations are performed here, over
200 time steps with the 50 Monte Carlo experiments.

The motion of the targets and the root mean squared (RMS) errors of the
following methods are considered and are shown in Figs. 2, 3, 4, and 5. The results
are shown with Root Mean Square (RMS) error for the NCV and NCA trajectories,
respectively. The effectiveness of the SF-CMKF as tracking filter is illustrated by
comparing the performance of this method with that of the sequential nonlinear
filtering method based on the sequential extended Kalman filter (SEKF) and the
sequential filtering approach with the sequential unscented Kalman filter (UKF).
The three tracking filters are having approximately the same RMSEs.
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Fig. 2 RMS position error in
NCV scenario

Fig. 3 RMS velocity error in
NCV scenario

Fig. 4 RMS position error in
NCA scenario
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5 Conclusion

In this paper, the use of nonlinear recursive filtering approaches is avoided while
processing the Doppler measurements. A linear filter, the converted Doppler
measurement Kalman filter (CDMKF), is proposed to estimate the pseudo states
and filter the noise in the converted Doppler measurements.

CDMKF can be used to operate along with the CPMKF to construct a new state
estimator, statically fused converted measurement Kalman filter (SF-CMKF).
Cartesian state and pseudo state estimates are produced by CPMKF and CDMKF,
respectively, and are then combined by a static estimator to obtain final state
estimates. The non-linearity of the pseudo states is quadratic and is handled by
expanding the pseudo states up to the second term around the estimated states of the
CPMKF.
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